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Résumé 

L’étude des comportements mécanique et poromécanique de grès intéresse de 

nombreux domaines d’activités,  tel que les centrales hydrauliques, les stockages des 

déchets radioactifs, les forages pétroliers et les cavités minières. En premier lieu, la 

création des structures entraîne une décharge hydraulique et mécanique instantanée 

(caractérisée par une chute des pressions d’eau et de la contrainte radiale) dans le milieu 

géologique autour de la cavité. Le déchargement se propage pendant la phase 

d’exploitation autour des ouvrages maintenus ouverts et peut créer des microfissures en 

paroi de l’ouvrage. En revanche, le comportement poromécanique de la roche peut être 

influencé par les microfissures, tel qu’une variation locale de la perméabilité (Zhu and 

Wong, 1997a; Suzuki et al, 1998; Schulze et al, 2001; Souley et al, 2001; Bossart et al, 

2002; Wang and Park, 2002; Oda et al, 2002; Shao et al, 2005) et le coefficient de Biot 

(Brace et al, 1968b; Dropek et al, 1978; Green and Wang, 1986; Fabre and Gustkiewicz, 

1997; Hart and Wang, 2001; Lion et al, 2004; Trautwein and Huenges, 2005; Ghabezloo, 

2009; just to mention a few). Notons que les microfissures se développent généralement 

de façon prédominante suivant une direction principale. L’anisotropie des microfissures 

conditionne largement les propriétés poromécaniques globales. Une littérature abondante 

a permis de comprendre l’évolution du développement progressif de la microfissuration 

et son rôle déterminant sur le comportement fragile d’une roche (Tapponier and Brace, 

1976; Wong, 1982; Moore and Lockner, 1995; Wong et al, 1997; Baud et al, 1999). 

Cependant, ces études antérieures sont concentrées essentiellement sur le comportement 

mécaniques des roches. Les études sur l’anisotropie du comportement poromécanique et 

des propriétés de transfert des roches semi-fragiles sont très limitées. De ce fait, cette 

thèse est consacrée aux études expérimentales et numériques du comportement 

mécanique et poromécanique et de l’évolution de perméabilité du grès en prenant en 

compte l’anisotropie du matériau. La rédaction de ce mémoire s’organise autour de 5 

chapitres dont nous introduisons ici le contenu. 

Le chapitre I concerne l’étude bibliographique. En se basant des études 
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expérimentales réalisées par les différentes chercheurs, le comportement mécanique et 

poromécanique du matériau est d’abords présenté, ainsi que les méthodes expérimentales 

utilisées. Un intérêt particulier est mis sur l’influence de l’eau interstitielle, l’évolution de 

perméabilité et des coefficients de Biot du matériau. Ensuite, un résumé bibliographique 

sur les modèles de comportement élasto-plastique couplé à l’endommagement est exposé.   

L’accent est mis sur l’anisotropie du comportement et le comportement poromécanique 

du matériau formulation dans le cadre de théorie de Biot.   

L’étude expérimentale fait l’objet du deuxième chapitre. Cette partie a pour objectif 

de présenter le comportement mécanique ainsi que son comportement poromécanique du 

grès, tel que l’évolution de coefficients de Biot et de la perméabilité. Après une analyse 

par microscopie électronique à balayage (MEB), l’organisation structurale de la matière 

est décrite au moyen d’expérience des rayons X. on remarque qu’une légère anisotropie 

structurelle est mise en évidence en raison de co-existence des litages parallèles et des 

microfissures initiales. Ensuite, les échantillons sont utilisés pour réaliser des essais de 

compression hydrostatique sous différentes pressions de confinement et de compression 

triaxiale. Sous les contraintes de compression hydrostatique, ces fissures peuvent être 

progressivement fermées en conduisant à une non-linéarité de la courbe de 

contrainte-déformation. Par contre, sous contrainte déviatorique, il y a une propagation 

des microfissures existantes et une nucléation des nouveaux microfissures quand le 

chargement dépasse un certain seuil. Les microfissures se développent de façon 

prédominante dans la direction parallèle à la contrainte compressive principale majeure, 

soit suivant la déformation axiale. Les évolutions des coefficients de Biot dans la 

direction radiale et axiale sont mesurées respectivement par une série de chemins de 

chargement sous différentes pressions de confinement. Afin d’étudier l’influence de l’état 

de contrainte sur l’évolution de la perméabilité, les valeurs de perméabilité sont mesurées 

sur des essais de compression triaxiales avec cycles de charges-décharges réalisés à 

différentes pressions de confinement. Une anisotropie dégradation des propriétés 

élastiques est mise en évidence ainsi que la variation anisotropique de coefficients de Biot 

et de la perméabilité intrinsèque. Au cours des essais, une transition du comportement 

fragile au comportement ductile et également une transition da la phase contractante à la 

phase dilatante est observée. Il existe quelque corrélation entre la perméabilité et les 
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déformations volumiques ainsi que la contrainte moyenne. Cependant, l’influence de la 

dilatance volumique sur l’augmentation de perméabilité n’est pas significative dans le 

régime de diffusion d’endommagement, soit avant le pic des courbes 

contraintes-déformations. Il semble que l’endommagement induit affecte la perméabilité 

d'une manière significative seulement après la coalescence des microfissures. Ce 

phénomène devrait être vérifié par les futures études.  

Dans le troisième chapitre, en se basant sur les études antérieures et en tenant compte 

des données expérimentales, nous proposons une approche thermodynamique discrète 

pour les modèles elasto-plastiques couplés à l’endommagement. L’idée de base est 

d’étendre la formulation largement utilisée pour la modélisation du couplage de la 

plasticité et l’endommagement isotrope au cas de l’anisotropie induite. La déformation 

plastique totale est considérée comme la conséquence du glissement le long des surfaces 

des plans de faiblesse, qui sont distribués aléatoirement dans la matrice solide élastique. 

Les propriétés élastiques effectives du matériau endommagé sont déterminées en fonction 

de l’endommagement lié à l’évolution des plans de faiblesse. Dans la fonction de charge 

et le potentiel plastique, deux contraintes invariantes et une variable d’écrouissage 

plastique sont introduites pour chaque famille de plans de faiblesse. L’écoulement 

plastique dans chaque orientation est couplé avec l’endommagement correspondant. En 

conséquence, une version spécifique de ce model est proposée et appliquée aux grés secs, 

la fonction de charge et le potentiel plastique de type Coulomb tandis que le critère 

d’endommagement proposé par Mazars, est utilisé pour chaque famille des plans de 

faiblesse.  En utilisant le modèle proposé, les essais en compression sont simulés. 

L’évolution et distribution de variable d’endommagement et de l’écrouissage plastique 

sont analysées. Une très bonne concordance est obtenue entre les prédictions et les 

données expérimentales. Ce modèle est donc capable de décrire les mécanismes 

principaux observés dans la plupart des roches fragiles sous contrainte compressive.  

Dans le quatrième chapitre, le modèle proposé dans le chapitre précédent sera validé 

de nouveau par les simulations des essais réalisés sur des échantillons saturés. L’accent 

est mis sur l’influence de l’état hydrique sur le comportement mécanique ainsi que sur 

l’évolution de coefficients de Biot et la variation de la perméabilité intrinsèque. Des 

essais de compression triaxiale sont d’abords simulés. Une bonne concordance est 
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également observée. En conclusion, le modèle proposé est capable de décrire la non 

linéarité de courbe de contrainte-déformation, la transition contraction-dilatance, le 

changement de comportement (de fragile à ductile) avec l’augmentation de confinement, 

la dégradation des propriétés élastiques et l’anisotropie induite. Ensuite, un modèle 

micromécanique est introduite pour décrire l’anisotropie des coefficients de Biot. Les 

coefficients de Biot sont donc formulés en fonction des tenseurs effectifs de rigidité et du 

module de compressibilité de la matrice solide. Les comparaisons entre les simulations 

numériques et les résultats d'essai nous permettent de conclure que le modèle proposé est 

capable de décrire correctement l’évolution des coefficients de Biot dans les directions 

axiale et radiale. Concernant la perméabilité, la perméabilité axiale est séparée en deux 

parties dans le modèle numérique : la perméabilité de matrice et la perméabilité à cause 

des microfissures. Le premier terme étant défini par une relation empirique liée à la 

contrainte moyenne. Par ailleurs, le deuxième dépend de l’orientation, de l’ouverture et 

de la déformation normale des fissures. L’évolution de la perméabilité axiale est simulée 

pendant l’essai triaxial sous différentes confinements. On obtient encore une fois une 

bonne concordance entre les simulations numériques et les données expérimentales.  

En se basant sur les travaux antérieurs de modèle discret couplé et la modélisation 

des coefficients de Biot, on développe un modèle anisotropie poroplastique couplé avec 

l’endommagement afin de décrire les propriétés poromécaniques du grès saturé dans le 

cinquième chapitre. On propose une surface de charge améliorée et un potentiel plastique 

sur chaque groupe des plans de faiblesse glissant en utilisant la conception des 

contraintes équivalentes. Une variable de porosité plastique, fonction linéaire des 

déformations volumiques plastiques, est introduite dans le cadre de théorie de la 

poroélasticité de Biot. Le modèle proposé est appliqué au grès de Vosges pour décrire le 

comportement du matériau dans les essais triaxiaux en condition non-drainée, y compris 

des essais triaxiaux en appliquant une pression de liquide. En général, un très bon accord 

est obtenu entre les prédictions et les données expérimentales. On peut conclure que ce 

modèle est capable de décrire l’évolution de pression interstitielle et de l’écrouissage 

dans la phase dilatante (dilatance hardening), ainsi que l’anisotropie des déformations 

accentuée par l’évolution de pression interstitielle.
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Abstract 

This thesis presents the laboratory and numerical investigations on anisotropic 
mechanical, poromechanical and fluid transport behavior of sandstone. 

A literature review is first presented including the experimental studies and modeling 
on mechanical behaviour, poromechanical behaviour and fluid transport properties of 
brittle geomaterial. 

After the X-ray and SEM tests, the samples were stressed under triaxial loading to 
study the initial and stress-induced mechanical behavior. Effective Biot’s coefficients in 
axial and lateral directions are measured at different stress (damage) level to explore the 
evolution of Biot’s coefficients, the permeability in axial direction are measured in 
triaxial compression tests with cyclic loading. The evolution of anisotropic Biot’s 
coefficients and axial permeability are discussed related to mechanical behavior. 

A plastic damage model is presented based on discrete approach. The modified 
Coulomb-type plastic yield and plastic potential function, and damage evolution criterion 
proposed by Mazars are given for each family of weakness planes. The proposed model is 
applied to simulate the mechanical behavior of dry sandstone under different loading 
conditions, the evolution and distribution of damage variable and plastic hardening 
variable are also discussed. 

The proposed model is applied to simulate the previous experimental results of 
saturated sandstones. After the modelling of mechanical behaviour in triaxial 
compression, the relation of Boit’s coefficients is introduced following the 
micromechanical analysis, the axial permeability is divided into two parts: matrix 
permeability and permeability induced by cracks. The comparisons between the 
numerical result and test data show a good performance of the present model.  

An anisotropic poroplastic damage model is developed to describe the 
poromechanical behavior of saturated sandstone. The modified plastic yield and potential 
functions are presented for each family of weakness sliding planes with the help of 
equivalent stress concept, and the constitutive equations of coupling system is set up base 
on Biot’s theory, the plastic porosity is introduced and related to volume plastic strain. 
The comparisons between numerical simulation and experimental data is given for the 
triaxial compression tests under draind and undrained condition, the tests of strain 
response to pore pressure increment is also simulated, a good accordance is obtained.
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General introduction 

In stability and durability analysis on underground engineering structures such as 

geological storage of nuclear wastes, sequestration of carbon and residual gas, oil and gas 

production and so on, where geomaterials serve as host formation, it is crucial to 

understand in depth multi-physical coupling mechanisms involved by means of both 

laboratory tests and numerical methods. On this topic, various research works have been 

carried out, among which two different approaches were widely adopted, that is, the 

mixture theories and the poromechanical theory. For the former, porous media are 

described by spatially superimposed interacting components while the latter, mainly 

based on the work by Biot (1941, 1955), assumes that the standard concepts of continuum 

mechanics are still relevant at macroscopic scale for porous media. In practical 

applications, the poromechanical theory is most often applied for its facility. 

 

One of the essential tasks in these works consists in the determination of 

multi-physical properties, such as the Biot’s coefficients, which is the main parameter in 

the poroelasticity theory (Biot, 1941, 1955), and rock permeability, which is strongly 

dependent on applied stress and subsequent rock deformation. Various experimental 

investigations have been so far reported on their determination in different rocks (Brace 

et al, 1968b; Dropek et al, 1978; Green and Wang, 1986; Fabre and Gustkiewicz, 1997; 

Hart and Wang, 2001; Lion et al, 2004; Trautwein and Huenges, 2005; Ghabezloo, 2009; 

just to mention a few) and on the validation and application of the concept of effective 

stress for poroelastic modeling (Brace, 1968a; Carrol, 1979). However, the great majority 

of these contributions have focused on the study of poroelastic and flow properties of 

rocks in their initial (undamaged) state and under hydrostatic stress. It is now known 

from observations in situ and experiments at laboratory that most brittle rocks (sandstone, 

limestone, granite, etc.) exhibit deviatoric stress induced anisotropy due to nucleation and 

propagation of microcracks in some preferential orientations (Tapponier and Brace, 1976; 

Wong, 1982; Moore and Lockner, 1995; Wong et al, 1997; Baud et al, 1999) which from 

mechanical viewpoints, is commonly characterized by the theory of the continuum 
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damage mechanics. The main consequences of the induced anisotropic damage include 

non linear stress-strain relations, anisotropic degradation of elastic properties, anisotropic 

variation in multi-physical properties, such as permeability, diffusivity, fluid transport 

through pore network and so on (Ismail and Murrell, 1976; Steif, 1984; Horii and 

Nemat-Nasser, 1985; Fredrich et al, 1989; Schmitt and Zoback, 1992; Olsson, 1995; Shao 

and Rudnicki, 2000). Evaluation of permeability during rock cracking has also been 

performed by many authors, for instance, Zhu and Wong, 1997a; Suzuki et al, 1998; 

Schulze et al, 2001; Souley et al, 2001; Bossart et al, 2002; Wang and Park, 2002; Oda et 

al, 2002; Shao et al, 2005. These works have clearly shown that the evolutions of 

poroelastic properties are directly related to the distribution, opening and coalescence of 

induced microcracks.  

 

Based on experimental investigations, some coupled poromechanical modelling has 

been developed for saturated rocks. Recent progresses have been achieved in completing 

and generalizing the pioneer theory of Biot particularly for anisotropic porous media 

(Biot, 1941, 1955; Detournay and Cheng, 1998; Coussy, 1995; Carrol, 1979). 

Reformulation of the equations of anisotropic poroelasticity was proposed by Thompson 

and Willis (1991) where the relationships between macroscopic poroelastic constants and 

the properties of porous medium constituents have been established. To better elucidate 

the physical meaning of poroelastic constants, Cheng (1997) proposed a comprehensive 

methodology for the determination of anisotropic poroelastic constants from easily 

realizable laboratory tests. Analytical and numerical solutions using anisotropic 

poroelasticity have also been proposed by Abousleiman et al. (1996) and Cui et al. (1996) 

for modelling of the generalized Mandel’s problem and of an inclined borehole problem. 

Shao (1997, 2004) proposed a poroelastic model with anisotropic damage for describing 

the evolution of poroelastic behaviour under drained, undrained triaxial and pore pressure 

controlled tests. The fluid transport in interstitial space is described by the well-known 

Darcy’s law, among which rock permeability is often determined by the empirical method 

related to stress, volume strain and porosity from experimental result (Carman, 1956; 

Paterson, 1983; Berryman and Blair, 1987; David et al, 1994; Zhu and Wong, 1997). 

In summary, existing research works have mainly focused upon poroelastic behaviors 



General introduction 

10 

and the variation in multi-physical properties. However, brittle geomaterials in 

underground settings may suffer significant inelastic deformation in compression regime, 

particularly induced by frictional sliding on the surfaces of cracks on micro- and 

meso-scales (Halm and Dragon, 1998; Pensée et al., 2002; Dormieux et al., 2006; Zhu et 

al., 2008) and by slipping faults on structural scale (Wong, 1982). Therefore, the 

commonly-used poroelastic framework becomes insufficient any more and thus the 

current mathematical framework has to be adapted for proper description of this 

poroplastic damage coupling process. The main objective of the present work aims to fill 

up this research vacancy. Focus is mainly cast upon the experimental and numerical study 

of coupled anisotropic plastic damage behaviours and of the influence of induced 

anisotropic damage by microcracks on the evolution of poromechanical behavior and 

fluid transport properties. To attain this goal, the mechanical response, the evolution of 

Biot’s coefficients and the variation of rock permeability of sandstone are studied by 

different loading paths in triaxial compression tests, a coupled poroplastic damage model 

is developed within the discrete thermodynamic approach (Zhu et el. 2008c) for 

modelling anisotropic plastic deformation and damage evolution in sandstones, dry or 

saturated, under both drained and undrained conditions. This Ph.D. thesis is structured as 

follows: 

 

In chapter 1, we give a bibliographic summary of previous works on mechanical and 

poromechanical behaviours of brittle geomaterials. After the introduction of porous 

media, the experimental studies on the brittle geomaterials are reviewed. Finally, the 

modelling of mechanical and poromechanical behaviours is summarized. 

The mechanical behaviours, determination of the Biot’s coefficients and intrinsic 

permeability of sandstone with induced anisotropic damage in saturated conditions are 

presented in Chapter 2.  In the X-ray and SEM tests, the samples are stressed under 

triaxial loading to study the initial and stress-induced mechanical behavior. Hydrostatic 

compression tests and a series of triaxial tests with different confining pressures are 

performed.  

In Chapter 3, an anisotropic plastic damage model is developed within the discrete 

thermodynamic framework. Macroscopic plastic strains of material are assumed to be 
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physically generated by frictional sliding along weakness planes. The evolution of 

damage is related to growth of weakness planes physically in connection with 

propagation of microcracks. Plastic flow in each orientation is coupled with damage 

evolution. The modified Coulomb-type plastic yield and plastic potential function, and 

damage evolution criterion proposed by Mazars are given for each family of weakness 

planes. The mechanical behavior under compressive loading are simulated, the evolution 

and distribution of damage variable and plastic hardening variable are discussed.  

In Chapter 4, the basic model is applied to simulate the experimental results of 

saturated sandstones including mechanical behaviour, Boit’s coefficients and permeability. 

In permeability characterization, rock permeability is divided into matrix permeability 

and permeability induced by crack, an empirical relationship between matrix 

permeability and mean stress is introduced to describe the former term, the latter one is 

regarded as a function of the crack orientation, crack radius and normal strain, which can 

be easily obtained from the mechanical model.  

An anisotropic poroplastic damage model is developed in Chapter 5 to describe the 

poromechanical behavior of saturated sandstone. A modified plastic yield and potential 

functions are formulated for each family of weakness sliding planes in the context of the 

equivalent stress concept and the constitutive equations of coupling system is set up base 

on Biot’s theory. The complementary variable of plastic porosity is introduced and related 

to volume plastic strain. This model is applied to Vosges sandstone to describe the 

undrained compression tests and strain response to pore pressure increment. 
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Chapter 1 Fundamentals of mechanical and 

poromechanical modelling in geomaterials 

 
 
In the first chapter, we will give a bibliographic summary of previous works on 

mechanical and poromechanical behaviours of brittle geomaterials. After an introductive 

description of porous media, experimental investigations on brittle geomaterials are 

reviewed on three aspects: mechanical behaviours under stress loading, evolution in 

permeability and in Biot’s coefficients, and effects of pore fluid on mechanical response. 

Finally, some fundamental formulations for mechanical and poromechanical modelling 

will be presented. For the former, focus is cast on anisotropic plastic damage behaviors. 

Constitutive equations for modelling poromechanical behavior will be formulated within 

the framework of the Biot’s theory of porous media. 

1.1 Description of porous media 

Brittle geomaterials, generally regarded as a kind of porous media, are composed of a 

matrix phase and some porous space (see Fig. 1.1); the latter is often filled by fluid in 

underground setting. The matrix phase consists of a solid part and some occluded pores, 

through which no filtration occurs, whether saturated or not (Coussy, 2004). The 

connected porous space is the one through which the fluid can flow freely and any two 

points inside which can be joined by a path lying entirely within it so that the fluid phase 

remains continuous therein. Correspondingly, the connected porosity is defined as the 

ratio of the volume of the connected porous space to the total volume.  

Based on laboratory investigations, two essential mechanisms, which may play a key 

role in the interaction between the interstitial fluid and the porous media where it is 

present, can be identified, (a) elastic and inelastic material deformation under stress 

loading, leading to linear and more often nonlinear mechanical behaviors and usually 

bringing some evolution in material microstructure (e.g. size, density and spatial 
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distribution of microcracks) and finally in multiphysical properties, such as permeability, 

diffusivity, fluid transport through pore network and so on; (b) existence of interstitial 

fluid in porous geomaterials, which modifies mechanical responses of the latter; for 

example, the strength of geomaterials is usually higher under dry condition than saturated 

one; another example consists that geomaterials behave more compliant under drained 

condition (when excess pore pressure is completely dissipated) than undrained one (when 

the fluid cannot escape from the porous rock). In fact, these two mechanisms are 

generally coupled each other in underground engineering, such as water power station, 

nuclear waste disposal industry, carbon dioxide sequestration process, petrol industry, 

rock mining and so on. 

 
Fig. 1.1 Structure of porous material (Coussy, 2004) 

1.2 Experimental studies on brittle geomaterials 

In multiphysical context, brittle geomaterials such as concrete and some rocks 

generally exhibit coupled poromechanical behaviors. On the one hand, during failure 

process of material, the stress-induced deformation can change in significant way some 

poromechanical properties of material, such as elastic constants, Biot’s coefficients, 

permeability, acoustic emission, elastic wave speed and others; on the other hand, the 

pore fluid can also influence material mechanical response. In this section, we will 

review some existing experimental works on the effects of stress on multiphysical 

properties and inversely the effect of pore fluid on mechanical behavior in geomaterials, 

based on which are formulated some constitutive modelings. 
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1.2.1 Mechanical behaviours 

The mechanical behaviors of brittle rocks have been extensively investigated in 

laboratory. We are first concerned with the stress-strain curves obtained from a series of 

triaxial compression tests performed on Wombeyan marble under different confining 

pressures (Paterson, 1958). Fig.1.2 shows its typical stress-strain curves under increasing 

confining pressures. Some essential features common to brittle geomaterials are 

summarized below: 

1) The mechanical behaviors are strongly dependent on confining pressures. For all 

levels of confinement, after a more or less linear phase, the stress-strain curves 

show significant nonlinear mechanical behaviors. It is obviously seen that the 

material strength or the peak stress increases with the confining pressure. 

2) There is an increasing tendency on the stress-strain curves of continuously rising 

up to large strains with greater slope, that is, there is a greater extent and degree of 

strain-hardening at higher pressures. 

3) A brittle-ductile transition occurs with the increase of confining pressures. At low 

confining pressures, brittle behaviors with a sharp drop on the stress-strain curves 

are observed just after the peak-stress while at high confining pressures ductile 

behaviors without stress softening are captured. 

 
Crack patterns 

 
Four types of crack configuration can be identified in Wombeyan marble tested 

under increasing confining pressure as shown in Fig.1.3: (a) splitting crack along the 

axial stress in uniaxial compression test, (b) single shear crack when the extent of 

confining pressures is between 3MPa an 5MPa, (c) conjugate shear cracks at confining 

pressure of about 35MPa, (d) ductile behavior without occurrence of obvious main crack 

when confining pressures are beyond 70MPa. 

 
Volumetric strain 

The evolution in volumetric strain is another important phenomenon frequently 

involved in loading process. In triaxial compression tests under hydrostatic pressure or at 

low level of deviatoric stresses, the compaction (volumetric strain decrease due to the 
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closure of total or partial pre-existing cracks and pores) is often observed; however, with 

the increase of deviatoric stress, the development of volumetric strain gradually 

undergoes an increase instead of decrease, in other words, a compaction-dilatancy 

transition occurs during failure process. The volume dilatancy is regarded as one of 

important aspects in mechanical behaviors of geomaterials. In compression regime, this 

phenomenon is mainly due to the nucleation and growth of microcracks.  

 
Fig. 1.2 Stress-strain curves of Wombeyan marble in triaxial compression tests with different 

confining pressure (Paterson, 1958) 

  
Fig. 1.3 Fracture patterns in Wombeyan marble in triaxial compression tests with different 

confining pressure (Paterson, 1958) 

Material degradation by cracking 
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In brittle geomaterials, the propagation of microcracks generally leads to a progressive 

degradation in elastic stiffness. For clarity, let us look at a conventional triaxial 

compression test on argillite with some unloading-reloading cycles (see Fig.1.4). It is 

observed that elastic constants in both axial and lateral directions are gradually reduced 

after the onset of plastic yielding, this fact being manifested by progressive decrease in 

slope of the cycles. Moreover, the degradation of the material stiffness in the lateral 

direction is more important than that in the axial direction. This stress-induced anisotropy 

is predominantly attributed to preferred propagation of microcracks whose surfaces are 

inclined at small angles with respect to the axial loading direction. 

 

 
Fig. 1.4 Stress-strain curves in a triaxial compression test with unloading-reloading cycles on 

argillite (Chiarelli et al., 2003) 
 

1.2.2 Evolution of Biot’s coefficients and permeability 

As aforementioned in Section 1.2, deformation of porous media can bring significant 

change upon multiphysical properties of material. Discusses are here addressed on the 

evolution of Biot’s coefficients and permeability in saturated porous media subjected to 

stress loading.  

Mechanical behaviour of porous geomaterials under compressive or shear stress, 

either elastic or inelastic, depends in general on both the state and history of applied 

stress and the pore pressure. In practice, for the sake of simplicity, an effective stress, 

denoted by �σ , is usually used in constitutive modelling, which is a nominal macroscopic 

stress determined by the measured total macroscopic Cauchy stress σ  and the pore 
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pressure p , and practically treated as the stress variable (thermodynamic force) 

governing the mechanical response of the porous material under consideration. This 

viewpoint of effective stress is clearly set out by Skempton (1961), Robin (1973) and 

Berryman (1992) and is adopted in the present work. 

Experimental observations show that the effective stress can be written in the form 

p−σ b , where b  is called as the Biot’s coefficients, which is a second order tensor 

depending on the pore geometry. In isotropic case, the tensor of Biot’s coefficients 

reduces to a scalar b  and the Tergazhi’s effective stress law is recovered when the value 

of b  is taken to be 1. For most geomaterials under stress loading, microcracks undergo 

successively the stages of nucleation, growth and coalescence, which can bring 

significant change in the Biot’s coefficients. Therefore, the Biot’s coefficients of damaged 

geomaterials are reasonably assumed function of the variables charactering microcracks, 

such as size, density, spatial distribution and so on (Cheng, 1997; Shao, 1998). In the 

present work, internal damage variables are used to achieve this goal. The detailed 

discussions on this point are presented later. 

The fluid transport in interstitial space can be described by the well-known Darcy’s 

law, which is an empirical equation originated for description of seepage flow in porous 

media and which can also be derived from Navier-Stokes equations by dropping the 

inertial terms (Bear, 1972). Consistent with the assumption of small deformation and by 

ignoring the fluid density variation effect (Hubert, 1940), the Darcy’s law is here adopted 

without modification: 

∇
Kv p
μ

= − ⋅ ,                            (1.1) 

where v  is referred to as the filtration velocity vector, K  denotes a second order tensor, 

describing intrinsic permeability and having the dimension of length squared and 

function of pore geometry, μ  represents the dynamic fluid viscosity and ∇p  a vector 

representing the hydraulic head gradient. In isotropic case, the above equation can be 

rewritten in the form 

K pv
hμ

Δ= −
Δ

,                           (1.2) 
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where pΔ  is the difference of hydraulic head and hΔ  the height difference. 

Experimental studies confirmed that deformations induced by stress can bring 

significant evolution in rock permeability. The relationship between stress-induced 

deformation and permeability evolution has been revealed by the following two frequent 

events: permeability reduces with material volumetric compaction (Gatto, 1984; Zhu and 

Wong, 1997a; Wang and Park, 2002) while augments with material volumetric dilatancy 

(Zoback and Byerlee, 1975; Stormont and Daemen, 1992; Zhang et al, 1994; Peach and 

Spiers, 1996; Suzuki et al, 1998; Schulze et al, 2001; Souly et al, 2001). More precisely, 

on the one hand, for highly porous rocks under compressive stress, the permeability 

deceases continuously with compaction induced by reduction in porosity; on the other 

hand, for moderately porous rocks, the permeability experiences a change from reduction 

to augmentation as the volume suffers a compaction-dilatancy transition. 

1.2.3 Role of pore fluid 

The previous parts focus mainly on the evolution of physical properties under 

mechanical loading. However, pore fluid also shows important impacts on the 

mechanical behaviour of geomaterials. For example, water content may influence 

considerably material strength and deformation extent, material hardening, chemical 

degradation and so on. Here, only the impact of pore pressure on mechanical response 

will be discussed. 

In undrained compression tests, pore pressures can be substantially modified by 

changes in porosity during stress loading, which in reverse, influence the mechanical 

behaviour. A dilatancy in volume can then lead to a decrease of pore pressure in samples 

(Heck, 1972; Dropek et al, 1978; Green and Wang, 1986). Consequently, effective 

normal stress seems to increase from the viewpoint of effective stress law. This effect is 

known as the dilatancy hardening (Brace and Martin, 1968a; Rutter, 1972; Ismail and 

Murrell et al, 1976; Chiu et al, 1983; Rudnicki, 1985; Schmitt and Zoback, 1992; 

Paterson, 2005). 

In laboratory, in order to make occurrence of material deformation by increasing pore 

pressure, saturated specimens are first subjected to a classic triaxial loading until a certain 

damage level is attained. Next, the pore pressure is increased progressively by injecting 



Chapter 1 Fundamentals of mechanical and poromechanical modelling in geomaterials 

19 

water into the specimen with the total macroscopic stresses remained constant. In this 

process, the axial and lateral strains are recorded. Such tests provide great interest in 

investigating the effects of induced microcracks on poromechanical behaviour. A 

representative result concerning such tests is shown in Fig. 1.5 (Karami, 1998).  

 
Fig. 1.5 Strain responses to pore pressure increase at different deviatoric stress in triaxial 

compression tests with the same confining pressure of 40MPa (Karami, 1998) 

1.3 Constitutive modelling of geomaterials 

In order to describe the mechanical and poromechanical behaviour of brittle 

geomaterials, various constitutive models have been proposed on the basis of the 

mechanisms revealed by laboratory investigations. In this section, a short review on 

previous works is presented. 

1.3.1 Mechanical modelling 

For most brittle geomaterials, such as concrete and some rocks, the nucleation, 

propagation and coalescence of microcracks in some preferential orientations are 

commonly observed in failure process. Microcracks growth could lead to anisotropic 

plastic deformation and damage evolution. As a consequence, these geomaterials exhibit 

stress-induced anisotropies. Optical microscope method has been largely used to trace the 

evolution of microcracks (crack size and distribution in space) as well as the formation of 

shear localization in a compact quartzite (Hallbauer et al., 1973). Further studies 
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(Tapponier and Brace, 1976) using the Scanning Electron Microscope (SEM) allow to 

observe crack growth in three-dimensional setting and finally make available the 

information of spatial geometric attributes and of stress-induced anisotropy. During 

failure process, when stress is increased to near the peak, stress-induced anisotropy 

becomes more important with some obvious degradation in elastic properties of material 

(Wong, 1985). After the peak, microcracks begin to be localized into a macroscopic shear 

band with significant plastic deformation (Wong, 1985; Moore and Lockner, 1995). It is 

commonly adopted that microcracks nucleation and growth in brittle geomaterials, often 

modelled in the framework of continuum damage mechanics, can enhance plastic flow 

while inversely plastic deformation in brittle geomaterials often plays a driving force for 

damage evolution. In summary, these two mechanisms usually couple each other. 

 

Some phenomenological models have been developed for modelling aforementioned 

coupled plastic damage behaviour (Dragon and Mroz, 1979; Ju, 1989; Hayakawa and 

Murakami, 1997; Chiarelli et al., 2003; Shao et al., 2006 and others). The advantages of 

such models are such that they are formulated in the irreversible thermodynamics 

framework and provide macroscopic constitutive equations so that these models can be 

easily implemented for engineering applications. The obvious weakness consists in the 

fact that some concepts and parameters used are not clearly connected to physical 

mechanisms and that it is difficult for such models to avoid some difficulties in 

accounting for more complex phenomena involved in geomaterials, such as unilateral 

effects, interactions between different cracks families, poromechanical coupling in 

anisotropic state, and so on. On the other hand, from physical consideration, a number of 

micromechanical damage models are developed in order to describe these physical 

mechanisms involved in geomaterials (e.g. Kachanov, 1982; Gambarotta and 

Lagomarsino, 1993; Zhu et al., 2008a, 2008b, just to mention a few). In these models, the 

macroscopic effective quantities are obtained through a micro-macro up-scaling 

procedure. However, mathematical formulation of the micromechanics-based models 

developed so far is still limited in elastic regime. In the framework of linear 

homogenization, their extension to coupled plasticity-damage one is still quite difficult.  

Finally, our eyes have to been cast onto another class of constitutive models. It 
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consists in formulating macroscopic constitutive models with consideration of physical 

mechanisms at microscopic scales. These models share the feature of 

orientation-dependence and could be cast back to the slip theory of plasticity for metal 

materials initiated by Taylor in 1938. This concept has then been applied to model 

mechanical behaviors of geomaterials. In soil mechanics, the multi-laminate concept was 

introduced for plastic/viscoplastic modelling of clays (Pande and Sharma, 1983). 

However, in these models, effects of damage related to growth of weakness planes have 

usually been neglected. For cement-based materials and rocks, Bazant and Oh (1985) 

proposed the microplane model and various extensions have been performed for specific 

applications (Carol and Bazant, 1997; Carol et al., 2001; Bazant and Zi, 2003 and others). 

Moreover, Chang and Hicher (2005) have proposed an elastoplastic model for granular 

materials with micro-structural considerations. The macroscopic behaviours of granular 

materials are obtained by averaging deformations in contact surfaces between grains, 

formally similar to the case of microcracks. More recently, Zhu et al. (2008c) proposed a 

discrete thermodynamic approach to model coupled anisotropic plastic damage 

behaviours in cohesive frictional geomaterials. In this model, macroscopic plastic strains 

of material are physically generated by frictional sliding along weakness planes, and the 

evolution of damage is related to growth of weakness planes physically in connection 

with propagation of microcracks. This model will be adopted and extended in this work 

to for modelling coupled anisotropic poromechanical behaviors in brittle geomaterials. 

1.3.2 Poromechancial modelling 

The above mentioned models only treat the mechanical behaviour of brittle materials. 

In this part, the poromechanical models based on Biot’s theory are presented. 

 

1.3.2.1 Fundamentals of linear poroelasticity 

In order to investigate the failure process of geomaterials and to evaluate the stability 

of structure in underground engineering, it is obviously necessary to study the 

hydraulic-mechanical coupling system. Terzaghi (1923) initially developed the earliest 

theory to account for the influence of pore fluid on the quasi-static deformation in soils 

and to treat one-dimensional consolidation. This theory was then generalized to 
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three-dimensional case by Rendulic (1936). Biot (1935 and 1941) proposed the theory of 

linear poroelasticity, which is consistent with the two basic mechanisms outlined above. 

This theory has been reformulated by Biot himself (1962) and by Rice and Cleary (1976) 

to link the poroelastic parameters to concepts that are well understood in rock and soil 

mechanics. More recent works on this topic (Coussy, 1995 and 2004; Detournay and 

Cheng, 1993; Cheng, 1997) have been dedicated to complete and generalize the pioneer 

works of Biot, particularly for anisotropic porous media. Alternative theories have also 

been developed using the formalism of mixtures theory (Crochet and Naghdi, 1966; 

Morland, 1972; Atkin and Craine, 1976; Bowen, 1982; Katsube and Carroll, 1987). 

Coussy et al, (1998) established a link between Biot’s theory and mixtures theory. 

However, in practice the latter does not offer any advantage over the Biot’s theory. 

Therefore, in the following part, we present the Biot’s theory based on the Biot’s 

poroelasticity framework. 

The porous media is seen as an open thermodynamic system exchanging fluid mass 

with the exterior domain. Limited to isothermal and small deformation cases, the state 

variables involved are strain tensor ε  and fluid mass change per unit initial volume m . 

Considering a natural initial state (without pre-stress and pressure), the quadratic free 

energy function is: 

 ( )
2

0
0 0

1 1, : : ( : )
2 2m

f f

m mm g m M Mψ
ρ ρ

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟= + +⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
ε ε ε εbC −           (1.3) 

where 0
mg  is the specific free fluid enthalpy and 0

fρ  the reference volumetric fluid 

mass, the fourth order tensor C  denotes the elastic stiffness of the porous media in 

undrained state, b  is the second order Biot’s coefficients tensor and M  is the scalar 

Biot’s modulus. Standard derivative of  (1.3) with respect to the state variables allows us 

to write the constitutive equations of linear poroelasticity as follows: 

b−
0

:
f

mM
ρ

⎛ ⎞⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
σ εC                               (1.4) 
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By making use of the state law of perfect fluid, (1.5) may be rewritten in the following 

form: 

( )
ρ

−
− =0 0

0m m
f

p p
g g                           (1.6) 

( ) b0 0
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f

mp p M
ρ

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟⎜ ⎟⎢ ⎥− = − + ⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦

ε                      (1.7) 

where 0p  denotes the initial pore pressure in the reference state of deformation. 

Substituting (1.7) in (1.4) leads to the constitutive relations of linear poroelasticity in 

drained conditions: 

0: ( )b p p= −σ ε bC −                       (1.8) 

with 

( )b M= − ⊗b bC C                        (1.9) 

Above, bC  denotes the drained elastic stiffness tensor. According to the concept of 

effective stress, (1.8) may also be rewritten in the form 

:b=�σ εC                            (1.10) 

It follows 

0( )p p= + −�σ σ b                      (1.11) 

where the second order tensor �σ  is called as the effective stress, serving as the 

thermodynamic force associated with the elastic strain tensor ε . 

The constitutive relations for isotropic material are given by 

( ) ( )02 b btr b p pμ λ= −σ ε ε+ δ δ−                  (1.12) 

   ( )0
0
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mp p M btr ε
ρ

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟− = − +
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

                    (1.13) 



Chapter 1 Fundamentals of mechanical and poromechanical modelling in geomaterials 

24 

where bλ  and bμ  are the Lame’s constants under drained condition. 

There are totally four parameters involved in the above linear poroelastic 

formulations: two elastic constants under drained conditions, bλ  and bμ  (or 

equivalently drained Young’s modulus bE  and Poisson’s ratio bν )  as well as two 

coupling parameters b  and M . The elastic constants may be identified in the 

framework of linear elasticity through standard laboratory tests. As for the Biot’s 

coupling parameters, the following intrinsic relations have been derived from 

microstructural analysis for saturated porous media (Coussy, 1995; Dormieux et Kondo, 

2005): 

11 ,  ,
b

c c
s s f

bkb
Mk k k

φ φ−
= − = +                     (1.14) 

where sk  and fk  are the compressibility modulus of the solid matrix and the fluid, 

respectively, and cφ denotes the connected porosity. The equation (1.14) can be recast 

into the form  

1 1 ,
b

s u
kb

B k

⎛ ⎞⎟⎜ ⎟⎜= − ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
                         (1.15) 

2,  ,s u b
u
bMB k k b M
k

= = +                     (1.16) 

Above, uk  is the bulk modulus of the porous media under undrained conditions and can 

be determined from the stress-strain curve from an undrained hydrostatic compression 

test: 

0

u m

v m

k
σ
ε

Δ =

⎛ ⎞Δ ⎟⎜ ⎟⎜= ⎟⎜ ⎟⎟⎜ Δ⎝ ⎠
                      (1.17) 

with m trσ σ= /3 being the mean stress and v trε ε=  the volumetric strain. Through 

the same test, we can also measure the pore pressure generated by compressive stress and 

then the Skempton’s coefficient sB  

σ
.s

m

pB Δ= −
Δ

                         (1.18) 
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Back to (1.14), the drained bulk modulus bk may be identified from the stress-strain 

curve obtained from a drained hydrostatic compression test 

0

b m

v p

k
σ
ε

=

⎛ ⎞Δ ⎟⎜ ⎟⎜= ⎟⎜ ⎟⎟⎜ Δ⎝ ⎠
.                         (1.19) 

Moreover, note that unlike macroscopic modulus bk  and uk , the compressibility 

modulus of solid matrix sk  is a microstructure parameter. In practice, the modulus sk  

(or more precisely, the average value of compressibility of the solid matrix) can be 

determined through a specific compression test in which the confining pressure and pore 

pressure are increased simultaneously with an increment m pσΔ = Δ . The following 

relation concerning the determination of the parameter sk  is then established 

m

s m

v p

k
σ

σ
ε

Δ =Δ

⎛ ⎞Δ ⎟⎜ ⎟⎜= ⎟⎜ ⎟⎟⎜ Δ⎝ ⎠
                      (1.20) 

1.3.2.2 Fundamentals of poroplasticity 

We present in this section some fundamental formulations for modelling plastic 

behaviour of saturated porous media. More detailed discussions may be found in Biot 

(1973) and Coussy (1995 and 2004). The assumption adopted here of small disturbances 

for porous media which exhibit elastoplastic behaviour allows to decompose both the 

strain tensor and fluid mass into an elastic part and a plastic part 

,  .e p e pm m m= + = +ε ε ε                       (1.21) 

In practice, it is convenient to use a complementary state variable to describe 

irreversible change of fluid mass. For this, a parameter of plastic porosity change is 

introduced and defined as 

0/ .p p
fmφ ρ=                            (1.22) 

For later use, we also define the parameters of total induced porosity change φ  and of 

elastic porosity change eφ  as follows 

                     0 0/ ,   /e e
f fm mφ ρ φ ρ= =  

The thermodynamic potential of poroelastic media is then extended by including plastic 
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process 
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where ( )ψp kV  denotes locked energy due to plastic hardening, assumed to be function 

of internal hardening variables denoted by the set kV  (scalar for isotropic hardening and 

tensorial for kinematic hardening). The standard derivative of the thermodynamic 

potential (1.23) leads to the constitutive relations of elastoplastic behaviour of saturated 

media 

 0: ( ) ( )b p p p= − −σ ε ε bC −                 (1.24) 

         ( )0 [ : ( ) ( )]p pp p M φ φ− = − + −ε εb −             (1.25) 

The Clausius-Duhen inequality for intrinsic dissipation reads 

0: ( ) 0,  p p
k k k

k
p p ψφ ∂+ − ≥ =

∂
� ��σ ε V

V
− Α Α              (1.26) 

Appropriate plastic laws are now required to fully determine the evolution rate of the 

state variables ( , , )p p
kφ� ��ε V . This may be done by establishing a (dual) plastic dissipation 

potential. Limited to a time-independent process, plastic complementary laws are defined 

by a yield function, a plastic potential in the case of non associated flow and a hardening 

function. The yield function is an indicative function of a convex elastic domain; it is a 

scalar function of stresses and thermodynamic forces associated with hardening variables, 

i.e. 

( )A, , 0kf p ≤σ                       (1.27) 

For most geomaterials with internal friction, a non-associated plastic flow rule is needed. 

We thus have to define a complementary plastic potential, ( ), , kg pσ A , verifying the 

dissipation condition (1.26). Similar to the plastic yield function (1.27),  ( ), , kg pσ A  

can be expressed in the following general form 

 ( ), , 0kg p =σ A  (1.28) 
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The evolution of plastic deformation and plastic porosity are calculated by following 

normality rule 

( ) ( ) ( ), , , ,
,  ,  , ,k kp p

k k

g p g p
h p
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λ φ λ λ
∂ ∂

= = =
∂ ∂
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ε σ
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A A
A A         (1.29) 

The complementary plastic laws are constrained by the Kuhn-Tucker conditions: 

( ) ( )A A0,   , , 0,   , , 0k kf p f pλ λ≥ ≤ =σ σ             (1.30) 

The plastic multiplier 0λ ≥  is determined by the plastic consistency conditions 0f =  

and 0f =� . 

The above formulation provides the general framework for elastoplastic modelling of 

saturated porous media. 

1.3.2.3 Elastic damage modelling of saturated porous media 

Damage due to microcracks is known as essential mechanism of inelastic behaviors 

and failure process in a large class of geomaterials such as rocks and concrete. During 

recent decades, a number of research works have been devoted to physical 

characterization and mathematical modelling of brittle damage. Different types of 

constitutive models, based on either phenomenological or micromechanical approaches, 

have been developed. Damage modelling of saturated materials has recently been of great 

research interest and remains largely open. It is known that material damage affects not 

only mechanical behaviour but also hydromechanical and thermomechanical properties 

(Fauchet, 1991; Carmeliet, 1998). Here, we recall the framework of poroelastic damage 

and the determination method of some effective poroelastic parameters (Shao, 1998). 

According to the theory of damage mechanics, the damage state of material is 

characterized by one or several internal variables (scalar and tensorial) , formally denoted 

by the set d . Appropriate damage variables should have the ability of taking into account 

basic characteristics of microcracks such as crack density, crack size and orientation 

(Kachonov, 1993; Lemaitre, 1996). For the sake of simplicity, at present stage, the plastic 

deformation is not involved. It is also assumed that the initial undamaged material is 

linear elastic and that its mechanical response to stress unloading in constant damage 

state is also linear elastic. Given the existence of a thermodynamic potential, the 

constitutive relations of elastic damage behaviour for saturated porous media can be 
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deduced in the same way as that for dry materials. Considering a more general case that 

damage affects both elastic constants and poroelastic coupling coefficients, the 

thermodynamic potential in the system of poroelastic damaged media is then written as: 

ψ φ φ= + +0 21 1( , ) : ( ) : ( )[ ( ) : ] ( )
2 2mm g m M Md d d dε ε ε εb−C     (1.31) 

where the fourth order tensor ( )dC  denotes the effective elastic stiffness of the 

damaged porous media in undrained condition. Analogically , ( )db  and ( )M d  are the 

effective Biot’s coefficients tensor and the effective Biot’s modulus, respectively. 

Contrast to the counterpart in (1.23),  the energy (1.31) is now dependent on damage 

variable d .  

The standard derivative of the thermodynamic potential leads to the constitutive 

relations for elastic damage behaviour of saturated media: 

= − 0( ) : ( )( )b p pd dσ ε b−C                   (1.32) 

φ= − +( )[ ( ) : ]p M d d εb                     (1.33) 

It seems more convenient to use the porosity variation as a state variable instead of 

the change of fluid mass 0/ fm ρ . The free Skeleton energy may be separated from the 

free fluid enthalpy. The equation (1.33) is then rearranged into the form 

( ) : ( )pφ β= +d dεb                      (1.34) 

where ( ) 1/ ( )M=d dβ  defines the compressibility of the pores, which is also function 

of damage variable. 

In stationary damage state, the time derivative of (1.32) and (1.33) gives incremental 

forms of the constitutive relations: 

= +d ( ) : d ( )db pd dSε σ H                   (1.35) 

* dd ( ) : d
( )
p
L

φ = +d
d

σH                    (1.36) 

with  

 ( ) ( ) : ( )b=d d dH bS  (1.37) 

 *( ) ( ) : ( )b=d d dH b S  (1.38) 
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 1 1 ( ) : ( )
( ) ( )L M
= + d d

d d
b H  (1.39) 

Above, the fourth order tensor 1( )b b −=S C  denotes the effective elastic compliance of 

a damaged material in drained conditions, and the second order symmetric tensor ( )dH  

defines strain variations due to changes of pore pressure. *( )dH  is also a second order 

symmetric tensor producing stress-induced change of pore fluid. Finally, the scalar ( )L d  

establishes the relationship between the variation of pore pressure and the change of fluid 

mass. It is clear that all the effective coefficients are function of the damage state. 

It is further assumed that there are three symmetric planes in damaged materials, 

which means that the effects of randomly distributed microcracks may be considered 

equivalent to those contributed by three orthogonal microcrack families (Kachanov, 

1993). Therefore, it is possible to define three principal directions of damage state, and 

with the principal damage components, the effective compliance tensor ( )b dS  may be 

written in the following matrix form: 

12 13

1 2 3

21 23
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31 32
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E E E

E E E
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             (1.40) 

where  ( 1,2, 3)b
kE k =  and  ( , 1,2, 3,  )b

ij i j i jν = ≠  are respectively the Young’s 

modules and Poisson’s ratio of the damaged material under drained condition and 

 ( , 1,2, 3,  )ijG i j i j= ≠  the shear modulus. In a similar way, the coupling coefficient 
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tensor ( )dH  may be expressed as: 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

1

2

3

1   0      0

1( )  0      0

1 0     0   

H

H

H

dH                           (1.41) 

In rock mechanics, basic laboratory tests are usually performed on cylinder samples. In 

this particular case, a transversely isotropic behaviour is assumed. When the axis 1x  is 

chosen parallel to the cylinder axis, the following relations are obtained: 

2 3 12 13 21 31 23 32 12 31 2 3,  ,  ,  ,  ,  b b b b b b b bE E G G H Hν ν ν ν ν ν= = = = = =    (1.42) 

and the incremental constitutive equations can be rewritten as: 

12
11 11 22

11 2

1 2 1d d d d
b

b b p
HE E

νε σ σ= − +                     (1.43) 

21 23
22 33 11 22

21 2

1 1d d d d d
b b

b b
p

HE E

ν ν
ε ε σ σ

⎛ ⎞− ⎟⎜ ⎟⎜ ⎟= = − + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠
              (1.44) 

11 220 * *
1 2

d 1 2 1d d d
f

m p
LH H

σ σ
ρ
= + +                      (1.45) 

The above equations may be inverted to give incremental stresses versus incremental 

strains and pore pressure: 

 2
22 22 21 11 22

12 21 23

d (d d ) d
1 2

b
b

b b b

E
b pσ ε ν ε

ν ν ν

⎛ ⎞⎟⎜ ⎟⎜ ⎟= + −⎜ ⎟⎜ ⎟⎜ ⎟− −⎝ ⎠
              (1.46) 

12 21 1 21 1
11 1 11 22 11

12 21 23 12 21 23

2 2
d d d d

1 2 1 2

b b b b b
b

b b b b b b

E E
E b p

ν ν ν
σ ε ε

ν ν ν ν ν ν

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟= + + −⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟− − − −⎝ ⎠ ⎝ ⎠
       

(1.47) 

The two Biot’s coefficients 11b  and 22b  are given in terms of some measurable 

quantities: 



Chapter 1 Fundamentals of mechanical and poromechanical modelling in geomaterials 

31 

 1 23 21
11

1 212 21 23

1 2

1 2

b b b

b b b

E
b

H H
ν ν

ν ν ν

⎛ ⎞⎛ ⎞⎟ − ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟= +⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟− −⎝ ⎠⎝ ⎠
                 (1.48) 

2 12
22

1 212 21 23

1

1 2

b b

b b b

E
b

H H
ν

ν ν ν

⎛ ⎞⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟= +⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟− −⎝ ⎠⎝ ⎠
                   (1.49) 

Thus, in the case of axisymmetric conditions, the effective poroelastic behaviour of 

damaged porous media is determined by 8 independent parameters: 1
bE , 2

bE , 12
bν , 21

bν , 

23
bν , 12G , 1H  and 2H , which are all dependent on the damage variable. The effective 

Biot’s coefficients may be determined by combining (1.48) and (1.49). It follows in 

Chapter 2 some details on experimental method for determination of effective Biot’s 

coefficients. 

1.4 Objectives of this thesis 

We have summarized the previous laboratory and theoretical works on physical 

description and numerical modeling of mechanical and poromechanical behavior in 

brittle geomaterials. So far as geomaterials are concerned, few works have been reported 

on laboratory investigations and constitutive modeling of coupled anisotropic 

poromechanical behaviors. The present work aims to fill up this research vacancy. First, a 

series of triaxial compression tests with different loading paths were conducted to study 

the anisotropic mechanical and poromechanical behavior of sandstone. Next, the discrete 

plastic damage model is extended to model anisotropic mechanical behaviors for dry 

materials and anisotropic poromechanical behaviors for saturated porous media, 

including the evolution of permeability and Biot’s coefficients.  

 

This thesis is organized as follows: we will present the experimental results of 

triaxial compression tests and of Biot’s coefficients and permeability measuring tests on 

red sandstone in Chapter 2. A coupled anisotropic plastic damage model is developed in 

Chapter 3 within the discrete thermodynamic framework. In Chapter 4, the mechanical 

model is applied to simulate experimental data reported in Chapter 2, including modeling 
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of the evolution of permeability and Biot’s coefficients. In the final chapter, the basic 

mechanical model is extended to simulate poroelastoplastic damage behaviors observed 

in drained and undrained compression tests as well as strain response in pore pressure 

change tests performed on Vosges sandstone.
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Chapter 2 Experimental studies on red sandstone 

 
 

In this chapter, the microscopic properties, triaxial compression tests, Biot’s coefficients 

and permeability measuring tests of red sandstone are presented. Firstly, the microscopic 

scanning tests were conducted to investigate the composition and microstructure of the red 

sandstone. Secondly, the samples were stressed under triaxial loading to study the initial and 

stress-induced mechanical behaviour. Thirdly, effective Biot’s coefficients in axial and lateral 

directions were measured at different deformation level to explore their evolution with 

deformation. Finally, in order to study the effect of stress on permeability, a series of axial 

permeability measuring tests were conducted under triaxial compression tests with cyclic 

loading. Fig. 2.1 shows the frame of this chapter. 

 

 
 

Fig. 2.1 The framework of this chapter 

2.1 Studied sandstone 

The rock studied in the present work is red sandstone from the Zhejiang province in China. 

The average porosity is about 21%; the density under dry and saturated conditions is 

2.17g/cm3 and 2.35g/cm3, respectively. The petrophysical analysis with the X-ray diffraction 
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technique shows that the main mineral compositions of the sandstone are quartz, feldspar, mica 

and calcite, as shown in Table 2.1. The microscopic analysis of sandstone microstructure is also 

performed with the SEM technique. Two representative pictures are shown in Fig. 2.2. The 

quartz and feldspar grains are ovoid and surrounded by mica and calcite; this results in a 

continuous pore network which constitutes the connected porosity for interstitial fluid flow. 

The sandstone can be considered as a typical porous medium in the sense of Biot’s theory, 

composed of skeleton and connected porosity. Further, due to the relative high porosity and 

small size of main mineral grains, it seems reasonable to use samples of centimetre scale as a 

representative volume element; and at this scale the sandstone can be seen as a continuous 

porous medium. 

 

Table 2.1: Mineral compositions of red sandstone 

Composition Content (%) Grain radius (mm) 

quartz 55 0.02-0.35 

feldspar 33 0.02-0.15 

mica 5 0.002-0.02 

calcite 4 0.002-0.02 

chlorite 2 0.02-0.07 

montmorillonite 1 0.02-0.07 
 

 

    

Fig. 2.2 Microscopic structure (SEM) 
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2.2 Experiment condition 

Like most rocks, the mechanical behaviour of the red sandstone is sensitive to the 

saturation, scale, loading parameters and so on. In this section we will present the following 

aspects: preparation for samples, loading rate and temperature. 

2.2.1 Preparation for samples 

The samples are cored from a big block without macroscopic cracks, carefully cut from an 

intact layer in situ formation. Cylindrical samples are used and the average size is 50mm in 

diameter and 100mm in height. There is the presence of moderate parallel bedding planes in 

the sandstone, resulting in a slight transverse isotropic structure. The emphasis here is the study 

of poroelastic properties with induced anisotropy due to microcracks. The slight initial 

anisotropy of the sandstone is not investigated. All the samples are then drilled in the direction 

perpendicular to the bedding planes.  

The saturation condition is an important factor for the determination of poroelastic 

properties. Thus, the sample is first saturated with distilled water in vacuum condition before 

each test. The sample is then inserted inside rubber jacket and thus isolated from confining 

pressure fluid. It is placed between two porous steel pads, in order to have uniform distribution 

of fluid pressure at the injection and outlet faces of the sample. In addition, after the 

application of confining pressure, the saturation of sample will be again verified by the 

injection of water from one side face until the set up of some uniform counter pressure. 

2.2.2 Loading rate 

As in previous studies (Paterson et al., 2005), rock compression strength is higher if the 

loading rate is greater, after investigating the effect of loading rate on strength and considering 

the quasi-static stress condition, the stress loading rate in triaxial compression tests were chose 

in magnitude order of 10-3MPa/s. 

2.2.3 Temperature 

Thermal effects are not studied here and all the tests will be carried out under isothermal 
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conditions with room temperature, an air conditioning system was employed to control 

temperature maintained at 20±2°C. 

2.3 Triaxial testing system 

A thermo-hydro-chemic-mechanical (THMC) coupling test system was used to conduct 

the experiments (Fig. 2.3), the essential elements will be shown in this section. 

2.3.1 Triaxial cell 

In our laboratory, an auto-compensated cell was developed for triaxial tests (patent No. 

9007594). In this cell, an auto-compensated room allows to counterbalance the piston load due 

to the confining pressure alone, so that the external loading device only apply the net axial 

force itself plus the friction on the piston, which is a much smaller net force than would 

otherwise be the case when the confining pressure is high. In addition, an external furnace was 

developed to heat the whole pressure cell; the maximum temperature is up to 90°C and an 

inside thermocouple was used. A special type of oil named as ENERPACK HF95Y was used as 

the confining medium. 

The samples used for this cell are cylinder and the sizes can be Ф20mm×40mm, 

Ф37.5mm×75mm or Ф50mm×100mm. The maximum confining pressure is up to 100MPa and 

the stroke length of piston is up to 20mm. Some measurement methods were designed for this 

cell, they were as follows: 

• Strain gauge 

• Lateral deformation collar 

• 1 linear variable differential transformer (LVDT) transducer on the stroke of the piston and 

2 LVDT transducers on the axial deformation 

• Measurement of fluid volume injected in or exhaust out of the sample 

• Confining pressure sensor 

• Deviatoric stress sensor 

• Pore pressure sensor 

All of classic mechanical tests on rock can be conducted with this cell: 

• Hydrostatic compression test, classic triaxial drained or undrained test with or without 
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temperature variation 

• Hydrostatic or triaxial creep test 

• Permeability test 

• Cyclic stress loading test 

• Proportion loading test 

• Lateral extension test 

• Mechanical-temperature coupling test 

• Mechanical-chemical coupling test 

• Thermo-hydro-mechanical-chemical (T-H-M-C) coupling test 

2.3.2 High pressure pump 

Three high pressure pumps are respectively employed for deviatoric stress, confining and 

pore pressure. Table 2.2 shows their detail parameters. 

 

Table 2.2 Parameters of pump 

parameters deviatoric stress pump confining pressure pump pore pressure pump 

maximum pressure 
(MPa) 100 100 100 

accuracy 
 (MPa) ±2 ±2 ±2 

flow scale 
(mm3/s) 0.05～50 0.05～50 0.05～50 

control method pressure, flow, deformation pressure, flow pressure, flow 

medium oil oil water, oil, chemical 
liquid 

 

2.3.3 Deformation measuring procedure 

Some methods were developed to measure the sample deformations under the necessary of 

tests. 

Axial deformation measurement: 

• Strain gauge 

• LVDT 
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Lateral deformation measurement: 

• Strain gauge 

• Collar using LVDT (patent No.05/05203) 

• Collar using strain gauge (patent No.05/05204) 

Capillary tube was used to measure the volume deformation. 

2.3.4 Microcomputer system 

A microcomputer system with software was used under laboratory view, by which we can 

control the three pumps and record the values from the above mentioned sensors. 

2.3.5 Auxiliary devices 

There are also some auxiliary devices which can be chose in triaxial tests under test need. 

• Siliconized rubber tube for isolating the sample 

• Modified siliconized rubber tube (with three metal gasket) for isolating the sample from 

confining medium in creep test 

• Metal pipe for access of interstitial fluid 

• Capillary tube for volume measure of fluid in or out the sample 

• A vacuum pump and sealed container for saturating the sample 

2.4 Test results 

In the present work, different laboratory tests will be performed, including hydrostatic 

compression, monotonous triaxial compression, triaxial compression with unloading - 

reloading cycles for the determination of Biot’s coefficients and permeability measuring.  

Throughout the dissertation, the rock mechanics sign convention will be used; the positive 

sign will be used for compressive stresses and strains. Further, a fixed coordinate frame will be 

used for the cylinder sample as shown in Fig.2.3; the cylinder axis is parallel to the axis 1x . σi  

and εi  ( = 1,2,3i ) denote the three principal stresses and strain in this frame while p  is the 

interstitial pressure. 
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Fig. 2.3 Test system, triaxial testing cell and the coordinate frame of sample 
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2.4.1 Mechanical tests 

Both hydrostatic and deviatoric stress tests were respectively conducted in order to study 

the mechanical behaviour.  

2.4.1.1 Hydrostatic stress tests 

Hydrostatic compression tests are first performed in order to determine the volumetric 

compressibility of sandstone and initial value of Bio’s coefficient in initial (undamaged) state. 

In this classic test, the sample is subjected to hydrostatic stress loading withσ σ σ= =1 2 3 . 

Two loading conditions are considered: drained test with constant interstitial pressure (Δ = 0p ) 

and partially drained test with prescribed interstitial pressure equal to confining pressure 

( σΔ = Δ mp ) with σm  being the mean stress. 

In the first case, the hydrostatic stress is increased with constant rate of 8×10-3 MPa/s in 

drained condition with Δ = 0p . This load rate is chosen according to rock permeability in 

order to avoid excessive pore pressure generated by hydrostatic stress. Typical stress strain 

curves are presented in Fig. 2.4. The axial strain is slightly different with radial (or lateral) one 

under hydrostatic stress; this confirms the small structural anisotropy of the sandstone. Further, 

both the axial and radial strains exhibit a non linear phase during the first stage of loading. 

Such a non linearity may be attributed to the progressive closure of initial microcracks and 

defeats. We recover a linear response phase after certain value of hydrostatic stress, say 

about18MPa ; this linear phase should reflect the elastic behaviour of sandstone in hydrostatic 

condition. Volumetric strain is simply calculated by ε ε ε= +1 32v and shown on the same 

figure. From this linear phase, we can easily calculate the bulk modulus of sandstone in drained 

condition noted by bk  with (1.19). 

On the other hand, a second hydrostatic test is performed. Hydrostatic stress and pore 

pressure are simultaneously increased with the same rate ( σΔ = Δ mp ) as that in the first 

drained test. The objective here is the determination of compressibility modulus of the solid 

skeleton material (or solid matrix) sk . Typical stress strain curves are shown in Fig. 2.5. We 

also observe some slight anisotropy of axial and radial strains and a small non linear phase at 

the beginning of loading. This seems to show that the slight structural anisotropy of sandstone 
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is mainly related to oriented microstructure of the solid matrix. And there exists some isolated 

microcracks inside the solid matrix contributing to the nonlinear response of this one. After the 

calculation of the volumetric strain, the compressibility modulus of the solid matrix can be 

calculated from the linear phase by (1.20). 
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Fig. 2.4 Stress-strain curves in hydrostatic compression tests under drained conditions 
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Fig. 2.5 Stress-strain curves in hydrostatic compression tests under partially drained conditions 

 

As mentioned above, the slight structural anisotropy is neglected here and the initial state 

of sandstone is assumed to be isotropic one. According to the relations between Biot’s 

coefficient and compressibility properties of constituents, the initial Biot’s coefficient of 
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sandstone, noted by b  is given by: 

= −1
b

s
kb
k

                               (2.1) 

For the sandstone studied, the initial values of drained bulk modulus, compressibility 

modulus of solid matrix and Biot’s coefficient are summarized in Table 2.3. 

 

Table 2.3 Initial values of compressibility modulus and Biot’s coefficient of sandstone 

bk  (MPa) sk  (MPa) b  

6905 50548 0.86 

 

2.4.1.2 Deviatoric stress tests 

In order to investigate basic mechanical behaviour of sandstone, monotonous triaxial 

compression tests are now performed in drained conditions and under different values of 

confining pressure. The loading procedure is conventional and composed of two stages: set up 

of confining pressure and application of deviatoric stress. All the tests are conducted in strain 

controlled conditions in order to get post peak responses. The average strain rate is -63 10 /s×  

(corresponding to an average stress rate of 10-3MPa/s); which is chosen as low as enough in 

order to avoid excessive interstitial over pressure and to verify the condition ( 0pΔ = ). Five 

values of confining pressure are used such as 0, 5, 10, 20 and 30MPa. In Fig. 2.6, we show 

axial, radial and volumetric strains as functions of deviatoric stress (σ σ−1 3 ) for the five 

values of confining pressure. These results are quite representative for most brittle rocks such 

as sandstone and the following main remarks can be issued. 

 

1) The mechanical response of sandstone is strongly dependent upon confining pressure. 

Under low confining pressure, in particular in uniaxial compression test ( 2 3 0σ σ= = ), 

there exists some non linear phase at the beginning of deviatoric loading. This non linear 

phase is attributed to the progressive closure of initial microcracks in the axial direction. 

With the increase of confining pressure, such a non linear phase disappears because the 

initial microcracks are almost closed during the application of confining stress. Also, under 
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Fig. 2.6 Stress-strain curves of triaxial compression tests under different confining pressures 

 

low confining pressure, the sample failure is marked by sharp peak stress; due to the 

coalescence of cracks leading to splitting of sample. Under higher confining pressures, this 

peak stress state is much less pronounced and even disappears. The failure of sample is 

generally associated with the onset of shear or compaction bands (Steif, 1984; Moore et 

Lockner, 1995; Olsson, 1995). There is a clear transition from brittle to ductile behaviour 

with confining pressure increase. 

2) For all confining pressures, after a more and less marked linear stress strain phase, we 

observe non linear responses of material before and after peak stress. These non linear 

inelastic strains are directly related to the nucleation and growth of microcracks and 

mainly generated by frictional sliding along cracks surfaces. 
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3) There is a clear transition from volumetric compressibility to dilatancy for almost all the 

confining pressures considered. However, this transition occurs much earlier and the 

volumetric dilatancy is more important under low confining pressure than higher one. 

Physically, this volumetric dilatancy in brittle rocks under compressive stresses may be 

related to the normal opening of microcracks generated by frictional sliding along rough 

crack surfaces. 

4) In Fig. 2.7, we have reported the values of (peak) failure stress as functions of confining 

pressure. For the reason of completeness, the values of failure stress obtained from the 

tests presented in the later sections are also presented. We can see that the failure line is 

non linear for the regime of low confining pressures and progressively becomes quasi 

linear for higher ones. This indicates that the failure condition of sandstone is more 

sensitive to confining pressure when its value is low. For the purpose to get some 

indicative values of failure parameters, we tried to represent the failure stresses of 

sandstone by the classic linear Mohr-Coulomb criterion. The following values are 

obtained for material cohesion and frictional angle: 6.3MPac = and tan 0.684ϕ = . 

 

 
Fig. 2.7 Experimental values of failure stress and Mohr-Coulomb criterion fitting, with the data 

obtained from the three series of tests (monotonous, “cyc1” for determination of Biot’s coefficients and 

“cyc2” for permeability determination) 
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evolution of Biot’s coefficient with induced damage by microcracks.  

2.4.2.1 Determining method of Biot’s coefficients 

In Section 1.4.2, we have formulated the determination method of Biot’s coefficients in 

damaged material. According to (1.48) and (1.49), for the determination of Biot’s coefficients, 

the laboratory tests consist in the measurement of two elastic modulus 1
bE  and 3

bE , three 

Poisson’s ratios 31
bν , 13

bν  and 32
bν , and the two coupling parameters 1H  and 3H , for 

different levels of deviatoric stress. Note that the Biot’s coefficients given in (1.48) and (1.49) 

are determined for a given damage state; the measurement of the elastic parameters and 

coupling coefficients should be performed during elastic loading process without additional 

damage evolution. This is done by proceeding unloading-reloading cycles during triaxial tests. 

The testing procedure is described as follows and schematically illustrated in Fig. 2.8. 

 

1) Setting up of confining pressure to desired value under drained condition; 

2) The axial displacement is increased with a fixed rate and corresponding deviatoric stress is 

monitored, while the confining pressure is kept constant; 

3) When the deviatoric (or axial) stress reaches a desired value corresponding to certain state 

of damage, a unloading-reloading cycle of axial stress is proceeded; 

4) The unloading-reloading phase corresponds to poroelastic response of material without 

damage evolution; the poroelastic relations (1.35) can be used. During the unloading of 

axial stress, the radial stress (or confining pressure) and interstitial pressure remain 

unchanged. The incremental strains are given by 1 1 1/ bEε σΔ = Δ  and 

3 31 1 1( )/b bEε ν σΔ = − Δ . This leads to the determination of 1
bE  and 31

bν . 

5) After the unloading of axial stress to certain chosen value (see Fig. 2.8), the axial stress is 

hold at this value and we increase the radial stress with some incremental value (the final 

radial stress remains lower than the axial stress) and measure the variations of axial and 

radial strains; which are related to the variation of radial stress by 

1 13 3 3( 2 )/b bEε ν σΔ = − Δ  and 3 32 3 3(1 ) /b bEε ν σΔ = − Δ . Et the end of this step, the radial 

stress is back to its initial value. This step leads to the determination of the quantities 

13 3/b bEν  and 32 3(1 )/b bEν− . 

6) In this step, an incremental variation of interstitial pressure is applied by water injection 
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into the sample while keeping the axial and radial stresses constant. Note that the 

magnitude of pressure variation should be small in order to avoid additional growth of 

microcracks and to keep the loading step in elastic range. The variations of axial and radial 

strains are measured as functions of pressure variation and the following relations hold: 

1 1/p HεΔ = Δ  and 3 3/p HεΔ = Δ . At the end of this step, the injected water is outlet 

and the interstitial pressure is back to its initial value. During this step, the values of two 

coupling coefficients ( 1H , 3H ) can be easily determined. 

 

By combination of the steps (4-6), we should determine 7 parameters with only 6 

measured quantities. More precisely, in the step (5), we should determiner three elastic 

parameters with only two measured strains. In order to overcome this difficulty, we propose the 

following simplification: the Poisson’s ratio corresponding to the isotropic plane, say 23
bν  is 

not significantly affected by the induced damage and remains at the initial value of undamaged 

material. This initial value is easily determined from the linear part of stress strain curves in a 

triaxial compression test and the average value is found to be 23 0.23bν = . Such a 

simplification seems to be plausible in triaxial compression conditions due to the fact that the 

induced microcracks are mainly oriented in the axial direction. 

 

The most important difference between the current test and the test of strain response to 

pore pressure increment, which was mentioned in Section 1.3.3, is that: the process of pore 

pressure loading in the latter one can be elastic or inelastic and it may cause further damage 

induced by microcrack growth; however, in the former one, the process of pore pressure 

loading is ensured to be elastic, in other words, the pore pressure is restricted to make sure that 

no further microcracks growth is generated. 

2.4.2.2 Test results 

A series of four tests are performed with the different values of confining pressures (5, 10, 

20 and 30MPa), following the testing procedure described above. Typical results are plotted in 

Fig. 2.9-2.12. As the emphasis here is to study poroelastic properties, pay our attention to the 

curves of strain variation due to interstitial pressure change. We can see that the variations of 
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(a) Loading path in stress space ( 1 2 3, ,pσ σ σ= ) 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Stress-strain curves in one measuring process 
 

Fig. 2.8 Schematic illustration of loading path for the determination of Biot’s at different levels of 

deviatoric stress: (a) stress and pressure path and (b) corresponding strain measurement 
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strain are clearly anisotropic between in axial and radial directions, in particular under high 

value of deviatoric stress (high level of damage). This is typically the consequence of induced 

anisotropic damage in sandstone. The variation of axial strain is much important than the radial 

one during the interstitial pressure change. This means that the Biot’s coefficient in the axial 

direction ( 1b ) becomes higher than the radial one ( 3b ).  This anisotropy of Biot’s coefficients 

is in correlation with the fact that the induced microcracks are mainly oriented in the axial 

direction. 

 For more details, the experimental values of elastic parameters and coupling coefficients 

are reported in Tables 2.4-2.7, respectively for the four values of confining pressure; the 

corresponding values of Biot’s coefficients are calculated and also given in these Tables. For 

more clarity, the evolutions of effective elastic modulus and Biot’s coefficients are plotted as 

functions of the relative axial strain in Fig. 2.13 and 2.14, respectively. From these data, some 

interesting remarks can be drawn. 

1) Under low values of the axial strain, i.e. when the induced damage is still negligible, the 

difference of elastic modulus between the axial direction ( 1
bE ) and radial direction ( 3

bE ) is 

quite small. And this difference is as smaller as the confining pressure is higher. This 

confirms the slight structural anisotropy of the sandstone and this initial anisotropy is 

progressively attenuated by the confining pressure due to the closure of bedding planes and 

initial microcracks. However, at the same time, the values of elastic modulus increase with 

the confining pressure due to this compaction effect. 

2) In Fig. 11, the variations of elastic modulus are presented as functions of the relative axial 

strain. We can see that the axial modulus increases in the first stage and the decrease when 

the axial peak strain is closed. This means that the elastic modulus in the axial direction is 

not clearly deteriorated by the induced damage. This may be explained by the fact that most 

induced microcracks are mainly parallel to the axial direction. On the other hand, the radial 

elastic modulus is decreasing almost continuously with the axial strain and then growth of 

induced damage. Therefore, with the progress of induced damage under higher values of 

axial strain, the effective elastic modulus are affected. The deterioration of the radial 

modulus is much more significant than the axial one, and there is an induced anisotropy on 

the elastic properties of sandstone. However, the deterioration of the radial elastic modulus 

is more important under low confining pressures. This indicates that the evolution of 
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induced damage becomes smaller under higher confining pressure. This is in conformation 

with the transition from brittle to ductile behaviour in most brittle rocks. 

3) Look at now the evolution of Biot’s coefficients in the axial and radial directions. Some 

interesting remarks can be drawn. Under low axial strains, i.e. in undamaged or moderate 

damage state, the Biot’s coefficient in the axial direct ( 1b ) is higher than that in the radial 

direction ( 3b ). This confirms the existence of bedding planes (which are perpendicular to 

the cylinder axis) in the initial state of sandstone. In a logic way, the difference of Biot’s 

coefficient between the two directions is largely attenuated with the confining pressure; this 

is well correlated with the closure of bedding planes. Another interesting phenomenon is 

that the values of Biot’s coefficients at lower axial strains (considered as undamaged or 

moderate damage state) decrease quite significantly with confining pressure; this is also 

correlated with the closure of initial bedding planes and microcracks.  

4) Under higher axial strains, the induced damage has developed. The Biot’s coefficients are 

affected by the induced damage. In an average way, the Biot’s coefficient in the axial 

direction ( 1b ) is in most time decreasing with the axial strain. This decrease is associated 

with the progressive closure of bedding planes and initial microcracks, which are 

perpendicular to the axis ( 1x ). In induced microcracks are developed essentially in the 

direction parallel to the axis ( 1x ). Therefore, the Biot’s coefficient ( 1b ) is not affected by 

the induced damage. Only under very higher level of load and damage, approaching to the 

coalescence of microcracks, the Biot’s coefficient ( 1b ) is affected by the induced damage 

and increases with axial strain, for instance in the test with 5MPa confining pressure. On 

the other hand, the Biot’s coefficient in the radial direction ( 3b ) is significantly affected by 

the induced damage due to the preferential orientation of microcracks. This coefficient is 

almost continuously increasing with the nucleation and growth of induced damage. 

However, the rate of such an increase is lower when the confining pressure higher; this 

confirms again that the damage evolution rate is smaller under higher confining pressure. 

Note that in the test with 5MPa confining pressure, the axial Biot’s coefficient ( 1b ) is also 

significantly increasing with axial strain and both the values of ( 1b ) and ( 3b ) become higher 

than the unit at the end of loading. This is theoretically impossible and should be 

considered with critical caution. 
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Fig. 2.9 Triaxial compression test under 5MPa confining pressure: (a) Stress-strain curves, (b) 

variations of strains due to radial stress, and (c) interstitial pressure variations 
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Fig. 2.10 Triaxial compression test under 10MPa confining pressure: (a) Stress-strain curves, (b) 

variations of strains due to radial stress, and (c) interstitial pressure variations 
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Fig. 2.11 Triaxial compression test under 20MPa confining pressure: (a) Stress-strain curves, (b) 

variations of strains due to radial stress, and (c) interstitial pressure variations 
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Fig. 2.12 Triaxial compression test under 30MPa confining pressure: (a) Stress-strain curves, (b) 

variations of strains due to radial stress, and (c) interstitial pressure variations 
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Table 2.4 Evolutions of elastic properties and Biot’s coefficients with axial strain in triaxial 
compression test with the confining pressure of 5MPa 

1ε (%) 
1
bE (MPa) 3

bE (MPa) 13
bν  31

bν  1H (MPa) 3H (MPa) 1b  3b  

0.28 7967 6991 0.2 0.21 15776 15770 0.877 0.777 

0.46 10257 6525 0.27 0.22 47793 13099 0.784 0.823 

0.66 9358 5727 0.372 0.23 96971 11401 0.756 0.877 

0.84 8363 4845 0.501 0.242 122720 9594 0.901 0.997 

0.98 6802 3563 0.631 0.256 167630 7182 1.157 1.143 

 

Table 2.5 Evolutions of elastic properties and Biot’s coefficients with axial strain in triaxial 
compression test with the confining pressure of 10MPa 

1ε (%) 
1
bE (MPa) 3

bE (MPa) 13
bν  31

bν  1H (MPa) 3H (MPa) 1b  3b  

0.20 9158 8544 0.16 0.197 20485 26912 0.677 0.544

0.40 10384 8450 0.189 0.195 36386 24991 0.549 0.549

0.61 9907 8094 0.191 0.216 42427 20064 0.572 0.641

0.81 9145 7374 0.234 0.231 56171 16275 0.582 0.732

1.12 8013 5095 0.538 0.243 144370 10881 0.789 0.960

 

Table 2.6 Evolutions of elastic properties and Biot’s coefficients with axial strain in triaxial 
compression test with the confining pressure of 20MPa 

1ε (%) 
1
bE (MPa) 3

bE (MPa) 13
bν  31

bν  1H (MPa) 3H (MPa) 1b  3b  

0.382 11352 11002 0.177 0.191 43921 44988 0.421 0.412

0.598 11250 10508 0.183 0.196 49165 42698 0.400 0.409

0.879 10313 9899 0.226 0.202 52185 35963 0.395 0.470

1.153 9305 8624 0.285 0.215 74680 22619 0.422 0.641

 

Table 2.7 Evolutions of elastic properties and Biot’s coefficients with axial strain in triaxial 
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compression test with the confining pressure of 30MPa 

1ε (%) 
1
bE (MPa) 3

bE (MPa) 13
bν  31

bν  1H (MPa) 3H (MPa) 1b  3b  

0.29 11945 11831 0.106 0.191 47380 59883 0.371 0.308

0.59 13457 11652 0.139 0.196 72488 58690 0.326 0.309

0.90 12776 11291 0.154 0.202 96899 55473 0.273 0.313

1.21 12024 10392 0.204 0.215 116860 45150 0.270 0.361

1.35 11188 9586 0.235 0.191 138710 36662 0.276 0.412
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Fig. 2.13 Evolutions of elastic modulus in axial and radial directions with relative axial strain in 

triaxial compression tests with different confining pressures for the determination of Biot’s coefficients 
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Fig. 2.14 Evolutions of Biot’s coefficients in axial and radial directions with relative axial strain for 

different confining pressures 
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2.4.3 Permeability evolution 

The emphasis of this work is the investigation of poroelastic properties of saturated 

sandstone undergoing induced anisotropic damage. However, the poroelastic coupling is 

inherently related to fluid flow in pore space, which is controlled by rock permeability. On the 

other hand, the induced damage will affect not only elastic and poroelastic properties of rock 

but also the permeability. As mentioned in the introduction section, a number of previous 

works have shown that the permeability can significantly change due to the evolution of 

microstructure of rocks such as nucleation, propagation and closure of microcracks, onset of 

shear and compaction bands (Zhu and Wong 1997a, Suzuki et al. 1998, Schulze et al. 2001, 

Souley et al. 2001, Bossart et al. 2002, Wang and Park 2002, Oda 2002). Therefore, for the 

completeness of the present work, the variation of permeability during triaxial compression 

tests is here investigated in addition to the poroelastic properties. 

 

2.4.3.1 Test procedure 

Two different experimental techniques are usually used for the measurement of rock 

permeability: the steady-state flow (or permanent regime) method and pulse test (or transient 

regime) technique. The choice of the one or the other method mainly depends on the range of 

permeability to be determined. Generally, for materials with relatively higher permeability (say 

>10-16m2), it is easily to reach the permanent flow regime in the sample and the steady-state 

flow is preferred. On the opposite side, for rocks with low and very low permeability, the set 

up of the steady state flow needs a very long time period and it is then technically impossible 

to directly estimate the permeability. An indirect method, the most largely used one is called 

the pulse test method (Brace, 1968b), is needed. The permeability is estimated from pressure 

evolution with time, using an inverse numerical algorithm.  

In the case of the sandstone studied here, its initial permeability is relatively high and 

estimated as about 16 210 m− . We have then adopted the steady-state flow method. A schematic 

illustration of the testing procedure is shown in Fig. 2.14. The principle of the test is very 

simple; it consists in the injection of water from the bottom surface of the sample in order to 

obtain an incremental variation of the interstitial pressure ( pΔ ) on this surface while keep the 

pressure at the upper surface constant. When the steady-state flow is established, the pressure 
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variation ( pΔ ) and the injection flow rate, noted as 3 -1 (m s )Q ⋅ , become constant in time. 

Applying the classic Darcy’s law, the intrinsic permeability (noted as k ) can be easily 

deduced by:  

μ=
Δ

2( ) Q Lk m
pA

                           (2.2) 

The coefficient, μ , denotes the dynamic fluid viscosity coefficient and equals to 

-3=1.005 10 Pa s μ × ⋅ under the room temperature; L  and A  are the length and cross section 

of the sample respectively. 

Note that the objective here is to study the evolution of permeability with the level of 

deviatoric stress (then of induced damage). Therefore, unloading-reloading cycles are 

performed for different levels of deviatoric stress during triaxial compression tests with 

different confining pressures. And the permeability is measured at the beginning of unloading 

and reloading. The average flow rate used is about 0.07ml/min. 
 

 
 

Fig. 2.14 Schematic illustration of testing principle for permeability 
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2.4.3.2 Test results 

The typical stress strain curves obtained in these triaxial tests for permeability 

measurement are plotted in Fig. 2.15. These stress-strain curves complete those obtained in the 

monotonous tests and cyclic tests for Biot’s coefficient determination presented in the previous 

sections. In an overall way, these results confirm the general trends obtained in the previous 

tests concerning the mechanical behaviour of the sandstone. We observe again the induced 

anisotropic degradation of elastic modulus, transition from volumetric compressibility to 

dilatancy and the transition from brittle to ductile behaviour with the confining pressure. 

In Fig. 2.15, we also show the variations of the intrinsic permeability with the relative 

axial strain (ε ε1 1/ peak ) during the triaxial compression tests with the four confining pressures 

of 5, 10, 20 and 30MPa. Note that only the permeability in the axial direction is measured in 

the present work due to technical limitation of the device. However, as the induced 

microcracks are mainly oriented in the axial direction, the permeability in this direction should 

be more significantly affected than that in the radial direction. From these curves for the 

different confining pressures, the most important feature of the axial permeability variation 

seems to be that the permeability decreases quite quickly during the two first stages of rock 

deformation, say the closure phase of initial bedding planes and microcracks and the linear 

elastic deformation phase. After then, with the onset of propagation of induced microcracks, 

the diminution of permeability is attenuated and an increase of permeability is even observed 

for low confining pressures. Such results seem to indicate that due to the relatively high value 

of the initial permeability of the sandstone, the variation of the permeability is more sensitive 

to the closure of bedding planes and initial microcracks and defeats than to the growth of 

induced damage. The effect of induced damage on the sandstone permeability becomes 

significant only at the late stage of induced damage approaching to the coalescence of 

microcracks. At the diffuse regime of damage, the sandstone permeability is very moderately 

affected. Further, it is also interesting to look at the permeability variation during the 

unloading-reloading cycle. The permeability increases slightly during the unloading stage and 

then decreases more significantly during the reloading stage. The permeability at the end of 

unloading does not recover its initial value before loading. All these phenomena indicate that 

the diminution of permeability is related to some irreversible deformation process. 

In addition, we have also looked at the correlation between the permeability change and 
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the cumulated volume strain εv  and applied mean stress σm  at each point of unloading. The 

obtained variation curves are plotted in Fig. 2.15 and Fig. 2.16. We can see that the axial 

permeability first decreases with the volumetric compressive strain. After the transition point of 

compaction-dilatancy, the axial permeability decreases with smaller rate and finally begins to 

increase. Therefore, there exists some correlation between permeability change and volumetric 

deformation. However, the permeability increase with the volumetric dilatancy is not as 

significantly as in priori expected. On the other hand, it seems that the permeability 

continuously decreases with applied effective mean stress.  
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(b) Confining pressure 10MPa 
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(c) Confining pressure 20MPa 

 

 
(d) Confining pressure 30MPa 

Fig. 2.15 Stress-strain curves, variations of permeability and volumetric deformation during triaxial 

tests for permeability measurement 
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Fig. 2.16 Relationship between intrinsic permeability and effective mean stress during triaxial 

compression tests with different confining pressure 

 

2.5 Conclusions 

In this chapter, we have investigated the mechanical behaviour, Biot’s coefficient and 

intrinsic permeability of sandstone in saturated conditions and with induced anisotropic 

damage. Hydrostatic compression tests and three series of triaxial tests with different confining 

pressures have been performed. The studied sandstone exhibits a slight structural anisotropy 

due to the existence of parallel bedding planes and initial microcracks. Under compressive 

stresses, these initial defeats are progressively closed leading to non linear stress strain 

relations. Under applied deviatoric stress and after certain threshold, there is propagation of 

existing microcracks and nucleation of new ones. The propagation of microcracks is mainly 

oriented in the axial direction in conventional triaxial compression tests. The main 

consequences of the induced damage include the deterioration of elastic properties and induced 

anisotropy, strong sensitivity to confining pressure, transition from volumetric compressibility 

to dilatancy, anisotropic variation of Biot’s coefficient and also intrinsic permeability. There is 

also the transition from brittle to ductile behaviour due to the diminution of induced damage 

rate under higher confining pressure. The oriented induced damage affects Biot’s coefficient 

much more significantly in the axial direction than in the lateral one. There exists also some 



Chapter 2 Experimental studies on red sandstone 

66 

correlation between the permeability change and volumetric deformation as well as effective 

mean stress. However, the influence of volumetric dilatancy on the permeability increase is not 

very significant during the diffuse regime of damage. It seems that the induced damage will 

affect the rock permeability in a significant way only after the coalescence of microcracks. 

This important feature needs further investigations. In the following chapters, based on the 

present experimental work, it is proposed to formulate an anisotropic poroelastic damage 

model in order to take into account the coupling between rock deformation and the evolutions 

of poroelastic properties and permeability.



Chapter 3 Modelling of anisotropic mechanical behaviours 

67 

Chapter 3 Modelling of anisotropic mechanical 

behaviours 

 

 

In this chapter, a coupled anisotropic plastic damage model is formulated within the 

discrete thermodynamic framework proposed by Zhu et al. (2008c). It is assumed that 

macroscopic plastic strains in cohesive-frictional geomaterials are mainly induced by frictional 

sliding along weakness planes and that the evolution of damage is related to growth of 

weakness planes physically in connection with propagation of microcracks. For determination 

of plastic flow and damage evolution, a modified Coulomb-type plastic yield function capable 

of taking into account material hardening/softening behaviour and a Mazars-type damage 

criterion are proposed for each family of weakness planes. A non-associated plastic flow is 

used to model volumetric dilatancy of geomaterials. Finally, the developed model is applied to 

simulate the mechanical behaviour of dry Vosges sandstone under different compressive 

loading paths. Comparisons between numerical predictions and experimental data are 

presented. The evolution and distribution in orientation of discrete plastic hardening variables 

and damage variables are discussed. 

 

3.1 Presentation of model 

3.1.1 Isotropic thermodynamic framework 

We first briefly review the thermodynamic framework of isotropic coupled 

plasticity-damage formulation using internal variables (Ju, 1989; Chiarelli et al., 2003; Shao et 

al., 2006, and others). Assume that the total macroscopic strain admits the following two-part 

decomposition 

 ,   d d de p e p= + = +ε ε ε ε ε ε ,     (3.1) 
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where eε and pε  are elastic strain and plastic strain, respectively. Under the assumption of 

small strains and isothermal condition, the internal variables involved are then isotropic 

scalar-valued damage variable 0d , plastic strain tensor pε  (equivalently elastic strain eε ) 

and isotropic plastic hardening variable 0
pγ . The Helmholtz free energy of damaged materials 

are generally formulated as a sum of an elastic free energy term ( )0,e e dψ ε  and a plastic 

hardening energy term ( )0 0,p p dψ γ  

      0 0 0

1 : ( ) : ( , )
2

e e p pd dψ ψ γ= +ε εC .                    (3.2) 

In the above equation, 0( )dC  denotes the fourth order effective elastic stiffness tensor of 

damaged materials. When assuming that the studied material is elastic, isotropic and 

undamaged in its initial state, its initial elastic stiffness tensor, denoted by 0C  can be 

characterized by two elastic constants, for example, the bulk modulus 0k  and the shear 

modulus 0μ . According to the second principle of irreversible thermodynamics, the 

Clausius-Duhem inequality requires : 0ψ− ≥��σ ε , from which is derived 

 0 0
0 0

: : 0
p

p p
e e p

d
d

ψ ψ ψ ψ γ
γ

⎛ ⎞∂ ∂ ∂ ∂⎟⎜ ⎟− + − − ≥⎜ ⎟⎜ ⎟⎜ ∂∂ ∂ ∂⎝ ⎠
�� � �σ ε ε

ε ε
. (3.3) 

Due to the fact that the above inequality must hold for any combination of the increments �ε , 
p�ε , 0d

�  and 0
pγ� , it follows the macroscopic stress-strain relation  

 ( )0( ) : p
e

dψ∂= = −
∂

σ ε ε
ε

C , (3.4) 

as well as the conjugate thermodynamics forces respectively associated with the damage 

variable 0d  and the plastic hardening variable 0
pγ . For completeness, a plastic yield function, 

a damage criterion and a plastic hardening law are required for determination of plastic flow 

and damage evolution during loading process,. For geomaterials such as rocks and soils, a 

non-associated plastic flow is also necessary for description of volumetric dilatancy.   
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3.1.2 Discrete thermodynamic framework 

Many laboratory investigations have clearly shown plastic deformation and damage 

propagatation in geomaterials essentially nucleate and develop at some preferred weakness 

sliding planes (Hallbauer et al., 1973; Tapponier and Brace, 1976; Wong, 1985; Moore and 

Lockner, 1995). In view of this orientation dependent feature, the commonly used 

thermodynamic framework of isotropic plastic damage formulation seems inappropriate for 

proper description of coupled anisotropic plastic damage behaviors.  

In the present work, we adopt the discrete thermodynamic framework recently proposed 

by Zhu et al. (2008c) for anisotropic formulations. Note that geometrically, each weakness 

sliding plane (WSP) can be identified by a unit vector normal to its plane (Fig. 3.1) and all 

planes with a same normal vector may be included into the same family. Without loss of 

generality, this normal vector is denoted by n . 

 

 

 

 

 

 

 
Fig. 3.1: (a) Representative volume element (RVE),  

(b) Schematic representation of a weakness sliding plane 

 

When ignoring interactions between different families of WSPs, the total plastic strain in a 

representative volume element (see Fig.3.1) can be considered as a superimposed consequence 

of all families of WSPs. For general distribution of WSPs, the macroscopic total plastic strain 

can be also generalized into an orientational integration over the surface of a half unit 

sphere +S .  

 ( )dp p n S+= ∫Sε ε  (3.5) 

Moreover, the planar geometry of the weakness planes allows us to decompose the local plastic 

n

n
,nσ β

,τ γ

σ

ε
pε

weakness 
sliding plane 

(a) (b) 
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strain tensor ( )p nε  into a normal part and a tangential part 

 ( ) ( ) ( )p sn n n n n nβ γ= ⊗ + ⊗ε                          (3.6) 

where ( )=tr ( )pn nβ ε  is defined as the normal strain component and ( )nγ  as the shear strain 

vector related to the family of WSPs of unit normal n . Similarly, the isotropic scalar damage 

variable 0d  and the plastic hardening variable 0
pγ  involved in isotropic plasticity-damage 

formulation can be replaced by an orientation-dependent functions (ODF) ( )d n  and ( )p nγ , 

respectively. Note that the damage distribution function ( )d n  is often combined with the 

second and/or fourth order fabric tensor n n⊗  and n n n n⊗ ⊗ ⊗  to define the classic 

second- and fourth rank tensorial damage variables D  and D , 

 ( ) dd n n n S
+

= ⊗∫SD  (3.7) 

 ( ) dd n n n n n S
+

= ⊗ ⊗ ⊗∫SD  (3.8) 

In addition, inspired by classic isotropic plasticity theory, plastic hardening variable associated 

with a general family of defects with normal vector n  is defined as: 

( ) 2 ( ) ( )p p pn n nγ = : :∫ � �ε εT                        (3.9) 

From numerical viewpoints, the Gauss-type discretization procedure has been widely adopted 

for numerical approximation of the orientational integration, for instance Stroud (1971), Bazant 

and Oh (1986). In the work by Zhu et al. (2008c), an integration scheme with 15 

equally-weighted integration points distributed over the surface of a unit sphere in 3D 

Cartesian coordinates system has been used (see Fig. a.1), in which each orientation vector 

defined by an integration point and the original point corresponds to one family of weakness 

sliding planes. Isotropy and discretization characteristics of this integration scheme have been 

studied in detail by Elata and Rubin (1995) and Zhu et al. (2006, thesis). The components of 

these 15 orientation vectors denoted by , 1, ,15rn r = "  are provided in Appendix A. With 

these 15 orientation vectors, the discrete form of the above integral formulations is given as 

follows 
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 ( )
15

1

p r r r r r s r

r
n n nϖ β γ

=
= ⊗ + ⊗∑ε , (3.10) 

 
15

1

r r r r

r

d n nϖ
=

= ⊗∑D , (3.11) 

 
15

1

r r r r r r

r

d n n n nϖ
=

= ⊗ ⊗ ⊗∑D . (3.12) 

where, without loss of generality, we have used rϖ to represent the integration weight related 

to the integration direction rn . For the current 15-point integration scheme, one has 1
15

rϖ =  

for all considered families.  

It has to be pointed out that after discretization, we have now 15 local plastic strain tensor 

,p rε , 15 discrete internal damage variables rd , and 15 plastic hardening variables ,p rγ . When 

representing all 15 discrete damage variables rd  by the set d  and ,p rγ  by the set pγ , the 

Helmholtz free energy (3.2) is rewritten in the form 

 ( )1 : ( , ) : ,
2

e e p pψ ψ= +d n dε ε γC . (3.13) 

It follows the Clausius-Duhem inequality 

 
15

, ,
,

1

: 0r p r r p r
r p r

r

d
d
ψ ψϖ γ

γ=

⎛ ⎞∂ ∂ ⎟⎜ ⎟− − ≥⎜ ⎟⎜ ⎟⎜⎝ ⎠∑ �� �σ ε . (3.14) 

Above, use has been made of the stress-strain relation (3.4). Due to the fact that (3.14) must 

hold for any combination of ,p r�ε , rd�  and ,p rγ� , one has 

 , ,
,

: 0p r r p r
r p r
d

d
ψ ψ γ

γ
∂ ∂− − ≥�� �σ ε , (3.15) 

from which the thermodynamic force associated with the discrete damage and plastic 
hardening variables rd  and ,p rγ are derived as follows 

 ,
,

,    
rd p r

r p r
F

d
ψ ψα

γ
∂ ∂= − = , (3.16) 

and we also find that it is the macroscopic stress tensor σ  that controls the plastic flow of the 

local plastic tensor ,p r�ε , in other words, σ  servers as a thermodynamic force common to all 

WSP families. 
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The normal and tangential parts of the macroscopic stress tensor σ  with respect to one WSP 

family of the unit normal n , denoted by nσ  and tσ , can be obtained respectively by 

projection of the stress tensor σ  onto n  

               ( ) ( ) ( ) ( )n tn n n n= : , = :σ σ σ σN T              (3.17) 

in which both two fourth order tensorial operators N  and T  are function of the unit normal 

vector n  and expressed as follows 

 ijkl i j k lN n n n n=    (3.18) 

 ( )1 4
2ijkl ik j l il j k jk i l jl i k i j k lT n n n n n n n n n n n nδ δ δ δ= + + + −  (3.19) 

For later use in plastic formulations, the following stress invariants based on nσ  and tσ  are 

defined 

 n n nσ = : = : :σ σ σ σN  (3.20) 

 1 1
2 2t t tσ = : = : :σ σ σ σT  (3.21) 

3.1.3 Characterization of plastic flow 

This part is devoted to develop the plastic yield and potential function. It is assumed that 

the material is initially isotropic and that anisotropic plastic deformation is induced by 

preferential slip in some weakness orientations due to deviatoric stress, in other words, the 

material anisotropy is stress induced. On the other hand, as discussed in the previous section, 

the macroscopic stress serves as the thermodynamic force common to all WSP families. 

Therefore, plastic yield function for all material orientations should take a same form and so 

does the plastic potential function. In what follows, unless required, the superscript used to 

prescribe the WSP family will be omitted. 

According to many experiments, most geomaterials can be classed into cohesive-frictional 

materials. A modified Coulomb-type plastic yield function is then used for each family. The 

plastic yield function for the chosen weakness sliding planes can be formulated with the help of 

the stress invariants nσ and tσ  
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( )0( , , ) 0p p p p
n t t nf cσ σ γ σ α σ ϑ= + − − ≤ ,                (3.22) 

where 0c  denotes the material inherent cohesion, pϑ  is used to described isotropic 

hardening/softening effect within the sliding plane and assumed to takes the form 

1
1

pap pH e γϑ γ −=  in which 1H  is a model constant and the parameter 1a  controls its kinetics. 

By virtue of (3.6), the hardening variable pγ  is now updated as: 

d dpγ γ γ= ⋅∫ ,                        (3.23) 

which can be interpreted as local cumulated shear strain. The function pα  defines the plastic 

hardening law and should be dependent on the plastic hardening variable pγ . For most 

geomaterials, the following exponential function provides an appropriate simulation  

2
0( )

pap p p p
f f e γα α α α −= − −                    (3.24) 

in which 0
pα  and p

fα  are the initial and asymptotic values of the hardening function, 

respectively and the parameter 2a  controls the evolution rate of pα  ranging from 0
pα  to 

p
fα  as pγ  increases. 

Some further discussions are addressed upon the yield function (3.22) by comparing with 

some existing formulations: 

• The yield function (3.22) can be rewritten in the standard Coulomb form: 

   ( , , ) 0p p p
n t t nf cσ σ γ σ α σ= + − ≤             (3.25) 

with 1
0 1

pap pc c H e γα γ −= + interpreted as kinetic cohesive strength. In fact, most 

laboratory experiments have shown that the cohesive strength depends not only on 

material properties but on loading history as well and that it is mobilized and 

consumed due to plastic deformation in loading process (Hajiabdolmajid, 2001). The 

failure process initiates with the growth of microcracks in the direction of maximum 

shearing and consequently these microcracks weaken the rock by reducing its 

cohesive strength in its post-peak phase. Therefore, it seems reasonable for the 

proposed yield function to divide the material cohesive strength into two parts, the 
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first one is inherent cohesion and the second one is mobilized cohesive strength as a 

function of the plastic hardening variable pγ . 

• Noticing that tσ  equals to τ  with ( )n n nτ = ⋅ ⋅ − ⊗σ δ  defined as the 

tangential part of the traction vector n⋅σ , the yield function is then equivalent to 

the following form: 

( )0( , , ) 0p p p p
n t nf t cσ σ γ τ ϑ α σ= − + − ≤             (3.26) 

with 1 ( )
t

t n n n
σ

= ⋅ ⋅ − ⊗σ δ . In the above form, ptϑ  plays a role of back 

stress hardening/softening within the sliding plane. 

  For geomaterials, a non-associated plastic flow rule is usually necessary. The following form 

of the plastic potential similar to the plastic yield function (3.22) is used here: 

( ), , 0p p p
t n t ng σ σ γ σ η σ= + =                   (3.27) 

where pη is defines as a coefficient describing plastic volumetric strain in undamaged state, 

which is induced by plastic shearing within the weakness planes. In order to describe the 

transition from plastic compressibility to dilatancy in geomaterials pη is defined as an 

increasing function of plastic hardening variable pγ  and expressed as follows: 

( ) 3,
0

pap r p p p
f f e γη η η η −= − −                    (3.28) 

Similar to the classic plasticity theory, the current value of pη  is usually called as local 

plastic dilatancy coefficient, the two parameters 0
pη  and p

fη  denote the initial and 

asymptotic value of dilatancy coefficient, respectively, and it is also assumed for both 0
pη  and  

p
fη  to take the same values for all chosen families. The parameter 3a  controls the evolution 

rate ranging from 0
pη  to p

fη .  

The plastic flow rule and loading-unloading condition are respectively described by 

( )d d d
p

p p p s pg t n n nλ λ η∂= = ⊗ + ⊗
∂

ε
σ

,          (3.29) 
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  ( , , ) 0,   d 0,   d 0p p p p p
n tf fσ σ γ λ λ= ≥ ⋅ = .            (3.30) 

where t  is defined as the plastic shear direction. On the other hand, the increment of plastic 

strain can be derived from the equation (3.6) by differentiation 

 d d dp sn n nβ γ= ⊗ + ⊗ε .                 (3.31) 

Comparison of the above equation with (3.29) leads to the increments of the variables β  and 

γ  

 d =d ,  d dp p ptγ λ β λ η=  (3.32) 

It follows finally 

 d dp pγ λ=  (3.33) 

The plastic multiplier d pλ  should be determined by accounting for the plastic consistency 

conditions 0pf =  and 0pf =�  of all WSP families. With numerical implementation in 

mind, it is convenient to rewrite the yield function in strain-based form. The yield function for 

the family with the unit normal rn  is now renewed as 

15
, , ,

1
: ( , ) : 0p r k p k r s r p r r r

k
f t n n n cϖ α

=

⎛ ⎞⎟⎜ ⎡ ⎤⎟⎜= − ⊗ + ⊗ − ≤⎟ ⎢ ⎥⎜ ⎟⎜ ⎣ ⎦⎟⎜⎝ ⎠
∑ d nε ε C      (3.34) 

In the case of stationary state of damage ( 0,  1, ,15rd r= =� … ), one obtains the differential 

formulation of (3.34) 

15, , , ,
, , ,

, , ,
1

: : 0
p r p r p r p r

p r k p k p r
p k p r p r

k

f f ff αϖ γ
α γ=

∂ ∂ ∂ ∂= + + =
∂ ∂ ∂ ∂

∑� � � �ε ε
ε ε

        (3.35) 

When the following matrix of coefficients 15 15[ ]p ×M  is introduced 

 
,

:
p I p J p I p I

p J
IJ IJp J p I I

t

f g f gM ϖ δ
γ σ

, , , ,

,
∂ ∂ ∂ ∂= − −

∂∂ ∂ ∂σε
,               (3.36) 

the system to be solved for determination of plastic multipliers for all considered families is 

then expressed in the following form: 

 { }[ ] d :
p

p p fλ
⎧ ⎫⎪ ⎪∂⎪ ⎪⎪ ⎪= ⎨ ⎬⎪ ⎪∂⎪ ⎪⎪ ⎪⎩ ⎭

M �ε
ε

                      (3.37) 
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It follows the column of plastic multipliers containing all sliding planes under consideration 

 { } 1d [ ] :
p

p p fλ −
⎧ ⎫⎪ ⎪∂⎪ ⎪⎪ ⎪= ⎨ ⎬⎪ ⎪∂⎪ ⎪⎪ ⎪⎩ ⎭

M �ε
ε

.                    (3.38) 

The rate form of stress-strain relation in stationary damage state reads 

15
,

1
( , ) : r p r

r
ϖ

=

⎛ ⎞⎟⎜ ⎟⎜= − ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑d n � ��σ ε εC                    (3.39) 

Finally, the tangential elastoplastic operator is obtained by combination of (3.31), (3.38) and 

(3.39) 

 ( ) 1, , ( , ) : [ ]
Tp p

ep p pg fϖ −
⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪∂ ∂⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪= −⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪∂ ∂⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

d n d n Mγ
σ ε

C C C          (3.40) 

where the component of the column matrix :
Tpgϖ

⎧ ⎫⎪ ⎪∂⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪∂⎪ ⎪⎪ ⎪⎩ ⎭σ
C  is 

,
:

p r
r gϖ ∂

∂σ
C . 

3.1.4 Characterization of damage flow 

In this study, we are interested in the case of the solid matrix weaken by weakness sliding 

planes in compression regime and we neglect unilateral effects related to opening/closure of 

defect planes. In the classic isotropic damage theory using one scalar damage variable 0d , let 

0( )k d  and 0( )dμ  being the bulk and shear modulus of damaged material, respectively, their 

evolution with damage growth generally takes following linear form 

 0 0
1 0 2 0( ) (1 )    ( ) (1 )k d k d d dκ μ μ κ= − , = −                   (3.41) 

where the parameters 1κ  and 2κ are used to control the degradation rate of the bulk and shear 

modulus, respectively. Correspondingly, the effective elastic stiffness tensor of damaged 

material is written in the form: 

 0 0 0 0 0
0 1 0 2 0 1 0 2 0( ) 3 (1 ) 2 (1 ) 3 2d k d d k d dκ μ κ κ μ κ= − + − = − −C J K C J K     (3.42) 

where 0C  denotes the initial elastic tensor of undamaged (sound) material. The two fourth 

order isotropic tensors J  and K , verifying the relation + = �J K I , have the components 
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 ( )1 1,   and   
2 3ijkl ik jl il jk ijkl ij klI Jδ δ δ δ δ δ= + =           (3.43) 

where I  is the fourth order identity tensor. In the case of random distribution of weakness 

sliding planes, the damage state is generally anisotropic in nature due to propagation of 

microcracks in some preferred orientations. For the description of this anisotropic damage, we 

have replaced the isotropic damage variable 0d  by the set d  of discrete damage variables. In 

addition, it is shown that the fourth order tensor ( )nT  is suitable for description of shear 

behaviors in weakness planes (Walpole, 1981). The isotropic term 0( )d K  is thus generalized 

into the following integral form:  

 20
1 ( ) ( )d
4 S

d d n n Sζ
π

= ∫K T                      (3.44) 

Note that 2
1 2
4 5

( )d
S

n S
π

=∫ T K ; it is derived from the consideration of isotropic damage 

distribution, i.e. 0( )d n d=  that 5
2

ζ = , and it follows 

 20
5 1 ( ) ( )d
2 4 S

d d n n S
π

= ∫K T                      (3.45) 

Similarly, the term 0( )d J  can also be approximated by the following integral form 

20
1 ( ) 3 ( ) ( ) d
4 S

d d n n n Sξ
π

⎡ ⎤= −⎢ ⎥⎣ ⎦∫J N T                       (3.46) 

Then, it is determined by the same procedure as that for ζ  that 1.0ξ = . By insertion of (3.45) 

and (3.46), the effective elastic stiffness tensor C  is finally written in continuous form  

       ( ) 2
0 0 0 0

1 2 1
1( ) ( ) 9 ( ) (5 3 ) ( ) d
4 S

d n d n k n k n Sκ κ μ κ
π

⎡ ⎤= − + −⎢ ⎥⎣ ⎦∫C C N T   (3.47) 

and in discrete form: 

 ( ) ( )
15

0 0 0 0
1 2 1

1
, 9 (5 3 )r r r r

r
d k kϖ κ κ μ κ

=
= − + −∑d nC C N T        (3.48) 

As aforementioned, damage evolution is physically related to propagation of microcracks 

and defects in various orientations. In general, the propagation is not uniform in space. 

Therefore, the induced damage is usually anisotropic. It is assumed that the damage evolution 

in each sliding plane is completely controlled by plastic shearing within this plane, which 
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means that interactions between different families are neglected in this version.   

Inspired by the damage criterion proposed by Mazars (1986) for concrete, we use the 

following exponential function as damage criterion 

 
,

4, 1 0
p rar rf e γω ω −⎡ ⎤

= − − ≤⎢ ⎥
⎢ ⎥⎣ ⎦

                 (3.49) 

where 4a  is used to control the kinetics of damage evolution. 

3.2 Numerical application 

The proposed model is now applied to simulate mechanical tests on dry Vosges sandstone 

reported by Khazraei (1995). We will first present the procedure of parameter determination 

and then the comparisons between numerical simulation and test data. The evolution of damage 

variable and plastic hardening variables will also be discussed in triaxial compression tests. 

3.2.1 Parameter identification 

There are totally 13 parameters involved in the coupled discrete plastic damage model: 

two elastic constants for initial (undamaged) state of material, 0E  and 0ν ; six parameters 

involved in plastic yield function 0 1 0 2, , , ,  p p
fc a aα α and 1H ; three parameters in plastic 

potential function 0,  p p
fη η  and 3a ; one parameter charactering the damage evolution 4a ; and 

the parameters 1 2 and κ κ  for describing the degradation of the bulk and shear modulus. 

These model parameters can be determined from conventional triaxial compression tests 

and direct shear tests. The initial elastic constants can be identified from cycles of 

loading-unloading performed during the stage of elastic deformation. From the triaxial 

compression tests (Khazraei, 1995) with various confining pressure, the average value of the 

initial Young’s modulus and the Poisson’s ratio are: 0 26000MPaE =  and 0 0.26ν = .  

We now discuss how to determine these parameters involved in plastic yield function. 

Schmertmann and Osterberg (1960) used a special test and curve fitting techniques to study the 

cohesive and frictional contributions to the strength of cohesive soil sample. Using their testing 

method, they could isolate the effect of basic frictional strength from the effects of other 
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variables and obtain the evolution of cohesive and frictional components of strength as a 

function of strain. Martin and Chandler (1994) conducted a damage controlled test on samples 

of Lac du Bonnet granite. The strength of intact rock is divided into two components: the 

intrinsic strength, or cohesion; and the evolution of cohesion and friction strength are modelled 

using the Griffith locus based on a sliding-crack model. The parameters 0 1 0 2, , , ,  p p
fc a aα α  

and 1H  can be determined by the aforementioned methods. However, for the sake of 

simplicity, the method based on a best fitting algorithm is used by a series of conventional 

triaxial compression tests performed under different confining pressures. The parameters in 

plastic potential function 0,  p p
fη η  and 3a  could be determined from the curves of volume 

strain versus stress. 

The parameter 1 2 and κ κ  can also be obtained with the help of micromechanical 

analysis. For example, the dilute homogenization scheme, used for an elastic solid weakened 

by an isotropic distribution of non-interacting closed microcracks, yields the following 

theoretical values of degradation rate (Budiansky and O’Connell, 1976):  

 
0

0
32 1
15 2

νκ
ν

−=
−

                          (3.50) 

where 0ν  is the initial Poisson’s ratio of undamaged material. The value given by (3.50) 

can be used as a first estimation before further experimental determination. However, in the 

present work, the parameters 4a , 1 2 and κ κ  is fitted by comparing the effective module in 

unloading path with its initial one. Typical values of model parameters are summarized in 

Table 3.1. With these parameters’ values, the validation of the developed model is conducted 

for triaxial compression tests with different confining pressures, lateral extension and 

proportional compression tests. 

 
Table 3.1 Typical values of model parameters for Vosges sandstone 

yield function potential function damage function 

0c (MPa)  1H (MPa) 1a  
0
pα  

p
fα  2a  

0
pη  

p
fη  3a  4a  1κ  2κ  

4.0 804 30 0.1 0.67 1000 -0.1 0.3 600 200 0.5 1.0 
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3.2.2 Triaxial compression tests 

In Fig. 3.2(a)-(d), comparisons between numerical values and test data for four triaxial 

compression tests under confining pressures of 5MPa, 10MPa, 20MPa and 40Mpa are 

presented. A good agreement is observed and the mains features of typical mechanical 

behaviours common to most brittle geomaterials are correctly predicted, for instance, nonlinear 

stress-strain relations after linear phase, dependence of material strength on confining pressure, 

volumetric dilatancy, strain softening, and induced anisotropy of material. 
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Fig. 3.2 Comparisons between simulation results and test data for compression tests with different 

confining pressures 
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and 3.5, respectively. Three groups of distribution rosette are very similar. Moreover, both the 

damage and plastic hardening variables are obviously anisotropic, orientation-dependent, and 

mainly locate in the weakness planes inclined at the angles between 20° and 40° with respect to 

the axial direction. This simulation result coincides well with experimental observation for 

most geomaterials. Further studies show that the biggest values of plastic strains and damage 
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family, the plastic yield function (3.22) is defined in its own planes and that no interactions 

between different WSP families have been accounted for. 

On the other hand, the difference between the evolution of damage variable and that of 

plastic hardening variable are obvious. As aforementioned, at post-peak stage, microcracks 

begin to be localized into a narrow shear band on macroscopic scale, leading to significant 

plastic deformation in few planes.  

• As the axial strain increases from 0.006 for Fig.3.3(a) to 0.011 for Fig.3.4(a), the 

damage in the planes inclined at angles ranging from 20° and 40° with respect to the 

axial direction are increased significantly while the values in the other zones are 

increased only in a small amount.  

• As the axial strain varies from 0.011 to 0.014, the damage variables in entire zone are 

increased in small quantities. It is noted that the axial strain values 0.006, 0.011 and 

0.014 for confining pressure 20MPa corresponded to 70% peak deviatoric stress, peak 

deviatoric stress and residual strength, respectively. Therefore, we can find that as axial 

stress increases, the damage as well as plastic deformation evolve in some preferential 

orientation; at peak stress, the damage has fully developed; at post-peak stage, the 

damage in entire zone increases slowly and approaches to its asymptotic value 1. 

Unlike damage, the plastic strains continue to develop in some preferential orientation 

during failure process.  

• In Fig.3.4, as the axial strain increases from 0.006 to 0.011, the damage and plastic 

hardening variables show similar propagation pattern; as the axial strain increased from 

0.011 to 0.014, the plastic hardening variables continue to increase in a considerable 

amount in the weakness planes inclined at 20°-40° with respect to the axial direction, 

but in a very limited amount in the other zones. As a consequence, the material 

anisotropy becomes more pronounced, which is consistent with laboratory observation 

on formation of shear band. 
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Fig. 3.3 Spatial distribution of damage and plastic hardening variables at axial strains of 0.005, 0.01 

and 0.013 under confining pressure 10MPa: (a) damage variable, (b) plastic hardening variable 
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Fig. 3.4 Spatial distribution of damage and plastic hardening variables at axial strains of 0.006, 0.011 

and 0.014 with confining pressure 20MPa: (a) damage variable, (b) plastic hardening variable 

 

 
Fig. 3.5 Spatial distribution of damage and plastic hardening variables at axial strains of 0.0065, 

0.0115 and 0.0145 with confining pressure 30MPa: (a) damage variable, (b) plastic hardening variable 
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It is shown on Fig. 3.6(a) that at peak stresses for all the three confining pressures, the 

damage values in the planes inclined at angles of 20°-40° with respect to the axial direction are 

almost identical and closed to the asymptotic value 1, while the damage state in the other zone 

are dependent on the level of confining pressures with the clear tendency that the damage zone 

decreases as confining pressures increase, However, we note on Fig. 3.6 (b) that the plastic 

hardening variables in all orientations decrease as confining pressures increase. In summary, a 

higher confining pressure leads to lower level of both damage and plastic hardening variables. 

Such observations are consistent with the usually recorded effects of confining pressures in 

cohesive frictional geomaterials. 

 

 

 
Fig.3.6 Damage and plastic hardening variables in different orientations at peak stress under different 

confining pressures: (a) damage variable, (b) plastic hardening variable 
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3.2.3 Lateral extension and proportional compression tests 

We are now interested in checking the validity of the proposed model for lateral extension 

and proportional triaxial compression tests. These loading paths are different from those 

conventional triaxial ones, which have also been applied to identify the model parameters. 

In Fig. 3.7(a) and (b), after the stage of hydrostatic stresses respectively at 40MPa and 

60MPa, the lateral confining stresses suffer gradually a decrease (lateral extension by 

unloading) with the axial stresses remained constant. Such loading paths frequently arise in 

underground excavations in rock formation. Therefore, comparing with the conventional 

triaxial compression tests, the lateral extension tests are of more interests to practical 

applications. We notice that there are satisfactory agreements between the numerical simulation 

and experimental data. 

In proportional compression tests, the axial and confining stresses are simultaneously 

increased with a constant proportion 11 33/k σ σ= . In the tests shown in Figs. 3.8(a) and (b), 

the proportions are fixed at k =7 and k =12, respectively. Again, the numerical prediction of 

strength, axial and lateral strain is satisfactory. 
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(b) Initial hydrostatic pressure is 60MPa 

Fig. 3.7 Comparisons between simulation and experimental data in lateral extension tests 

 

 
Fig. 3.8 Comparisons between simulation and experimental data in proportional compression tests 
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3.3 Conclusions 

An anisotropic plastic damage model has been developed within the discrete 

thermodynamic framework for modelling stress-induced anisotropic mechanical behaviors in 

cohesive-frictional geomaterials. Compared with classic isotropic plasticity damage models, 

the discrete model formulation allows taking into account physical mechanisms involved in 

geomaterials.  

The proposed model was used to simulate the mechanical tests including triaxial 

compression tests, lateral extension tests and proportional loading tests. A good agreement 

between numerical predictions and experimental data is obtained. The proposed model is 

proved capable of describing the main features observed in most brittle geomaterials under 

mechanical loading. It is more important to note that induced anisotropy both in plastic flow 

and damage evolution can be easily described. 

This basic mechanical model will be extended within the discrete thermodynamic 

framework in the following chapters to account for poromechanical behaviors in geomaterials. 

The evolution of permeability and that of Biot’s coefficients during stress loading will be 

modelled. 
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Chapter 4 Modelling of poromechanical behaviours 

of saturated sandstone 

 

 

In the previous chapter, the basic coupled anisotropic plastic damage model has been 

developed in the discrete thermodynamic framework and applied to modelling mechanical 

behaviours of dry sandstone under various loading paths. This basic model is here extended to 

model poromechanical behaviours of sandstone, such as basic triaxial mechanical behaviours, 

evolution of Biot’s coefficients and permeability in saturated sandstones. Detailed experimental 

data used for numerical simulations have been reported in Chapter 2. The formulation of Boit’s 

coefficients is derived from micromechanical analysis and that of the axial permeability is 

divided into two parts, i.e., permeability in solid matrix and permeability induced by cracks. 

Some comparisons between numerical results and test data are presented.  

4.1 Modelling of mechanical behaviour 

The mechanical parameters for saturated sandstone can be determined by following the 

same procedure as that for dry samples studied in the previous chapter. The initial (undamaged) 

elastic constants are derived from cyclic loading at elastic stage: 0 10000MPaE =  and 

ν =0 0.16 . Typical values of other mechanical model parameters are provided in Table 4.1.  

 

Table 4.1 Typical values of parameters of discrete plastic damage model 

yield function potential function damage function 

c0(MPa) H1(MPa) 1a  0
pα  

p
fα  2a  p

oη  
p
fη  3a  4a  1κ  2κ  

6.0 354 35 0.1 0.67 1000 -0.1 0.3 300 70 0.5 1.0 

 

Comparisons between numerical simulations and experimental data obtained from triaxial 
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compression tests on sandstone are presented in Fig.4.1. It is observed that the basic 

mechanical model is able to describe the main mechanical behaviors of geomaterials, including 

nonlinear stress-strain relations, dependence of material strength on confining pressure, 

brittle-ductile transition with the increase of confining pressure, volumetric dilatancy during 

shear sliding, degradation of elastic modulus, and induced anisotropy of material.  
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Fig. 4.1 Numerical results of triaxial compression tests with confining pressures of 5, 10, 20 and 30MPa  

  
 

The predicted variation of the axial and radial elastic modulus ( 1E  and ν= 1 31/rE E , 

respectively) is compared with test data in Fig.2. Globally satisfactory agreements have been 

observed. It is clearly shown that for all levels of confining pressures (5MPa, 10MPa, 20MPa 

and 30MPa), the degradation of elastic stiffness in radial directions is much greater than that in 

the axial direction, which can be interpreted by the facts that microcracks with their shearing 

planes nearly parallel to the axis 1x  gain more growth than others. Consequently, final 

fracture zone(s) induced by strain localization is generally inclined at less than 45° with respect 

to the symmetry axis 1x . 
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Fig. 4.2 Variations of the normalized effective elastic constants as function of the normalized axial 
strain for four triaxial compression tests with confining pressures of 5, 10, 20 and 30MPa 

 

4.2 Modelling of Biot’s coefficients 

Laboratory investigations on Biot’s coefficients (see Fig.2.14) show that: (a) Biot’s 

coefficients in axial and radial directions exhibit abvious anisotropy, more precisely, the value 

in axial direction is generally smaller than that in radial one, which is mainly due to the 

preferential propagation of microcracks; (b) Biot’s coefficients are affected significantly by 

stress-induced damage during deformation process. Damage propagation leads to the increase 

in Biot’s coefficients; (c) Biot’s coefficients are dependent on confining pressures, that is, the 

value of Biot’s coefficients decrease with increase of confining pressures. Based on physical 

interpretation of Biot’s coefficients, a micromechanics-based model will be proposed to 

describe such anisotropic characteristics of Biot’s coefficients. We first introduce the method 

proposed by Cheng (1997) for description of anisotropic Biot’s coefficients from 

micromechanical viewpoints. This method is then incorporated into the previously-established 

discrete plastic damage model. Finally, the numerical prediction of Biot’s coefficients is 

compared with experiment data in both axial and radial directions. 

4.2.1 Determination of Biot’s coefficients  

According to the micromechanical analyses conducted by Thompson and Willis (1991) 

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

E1/E10

E13/E130

model

E1 / E0
no

rm
al

iz
ed

 m
od

ul
es

Er / Er
0

ε 1 / ε 1peak

σ 2=σ 3=30MPa2 3=30MPaσ σ=

0
1E E

0
r rE E

1 1peakε ε



Chapter 4 Modelling of poromechanical behaviours of saturated sandstone 

94 

and Cheng (1997) on initially anisotropic porous media, the macroscopic poroelastic constants 

can be deduced from the microscopic properties of the constituents of porous medium. From 

the viewpoint of material microstructure, such micro-macro analysis is also applicable for 

damage-induced anisotropic porous materials in given damage state. By considering the 

deformation of saturated porous medium on microscopic scale, the following relationship has 

been established (for more details, see Thompson and Willis, 1991; Cheng , 1997): 

( ) ( ) : :s=d db δ δ− C S                        (4.1) 

where we recall b  denotes the second rank anisotropic tensor of Biot’s coefficients; ( )dC  

represents the fourth rank elastic stiffness tensor of material in its damaged state and under 

drained condition; −= 1( )s sS C  is the fourth rank elastic compliance tensor of solid grains, 

which is assumed to be constant. For the sake of simplification, two fundamental assumptions 

are commonly adopted: the first one, called micro-homogeneity, states that the skeleton of 

porous material is homogeneous on the pore (microscopic) scale, although the material is most 

often heterogeneous on the macroscopic scale due to non uniform spatial distribution of these 

micro-homogeneous materials (Nur and Byerlee, 1971); the second one, named micro-isotropy, 

assumes that the solid constituent in the porous medium is isotropic at the microscopic (pore 

and grain) level, and the macroscopic material anisotropy is of structural origin, mainly 

resulting from oriented pore and fissure arrangement. These assumptions allow us to simplify 

the above equation into the form (Cheng, 1997):  

= 1( ) ( ) :
3 sk

d db − Cδ δ                           (4.2) 

where sk  is the bulk modulus of the solid matrix. 

When damaged porous material exhibits orthotropic behaviour and all the three material 

symmetry planes are parallel to the principal directions of the second order damage tensor 

defined by discrete damage variables 

 
15

1

r r r r
ij i j

r
d d n nϖ

=
∑= ,           (4.3) 

the matrix form of Biot’s coefficients is then given by 
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11

22

33

    0     0 
0        0 
0       0    

ij

b
b b

b

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                          (4.4) 

The three principal components of the above tensor are determined from (4.2): 

 

1111 1122 1133
11

2211 2222 2233
22

3311 3322 3333
33

1
3

1
3

1
3

s

s

s

C C C
b

k
C C C

b
k

C C C
b

k

⎧⎪ + +⎪ = −⎪⎪⎪⎪⎪ + +⎪⎪ = −⎨⎪⎪⎪⎪ + +⎪⎪ = −⎪⎪⎪⎩

                     (4.5) 

In the case of cylindrical triaxial loading where samples are subjected to axisymmetric stresses 

with 22 33σ σ= , we have accordingly 22 33ε ε=  and 22 33d d= . By setting 2222 3333C C=  

and 1122 1133C C=  in (4.5),  the Biot’s coefficients in axial and lateral directions can then be 

written as follows: 

1111 1133
11

3311 3322 3333
22 33

2
1

3

1
3

s

s

C C
b

k
C C C

b b
k

⎧⎪ +⎪ = −⎪⎪⎪⎪⎨⎪ + +⎪ = = −⎪⎪⎪⎪⎩

                   (4.6) 

Recall that the bulk modulus sk  of the solid grains is measured by hydrostatic 

compression test under partially drained condition, and the value 50548MPask =  has been 

determined from laboratory investigations in Section 2.5 of Chapter 2. The components of the 

elastic stiffness tensor for any damage state can easily be derived from the discrete plastic 

damage model. Therefore, with the help of (4.6), it is then possible to predict the evolution of 

Biot’s coefficients with damage in both the axial and radial directions in drained conventional 

triaxial compression tests.  

4.2.2 Simulation results 

Fig.4.3 shows the comparison of Biot’s coefficients between numerical simulation and test 

data under different confining pressures. It is noted that the change of the Biot’s coefficient in 

the radial directions is much more significant than that in the axial one. However, the 
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numerical values of Biot’s coefficients in axial direction are smaller than the experimental one 

near the peak stresses. Microcracks gradually propagate under deviatoric compressive stress 

and suffer a phase of coalescence as plastic flow, leading to some macroscopic cracks at final 

stage. Therefore, the above micro-homogeneity and micro-isotropy assumptions are not reliable 

any more near peak stresses, which causes the difference of Biot’s coefficients between 

numerical prediction and test data. 
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Fig. 4.3 Evolution of normalized Biot’s coefficients in axial ( 11b ) and radial ( 33b ) directions versus the 

normalized axial strain from triaxial tests with different confining pressures (5, 10, 20 and 30MPa) 
  

4.2.3 Modelling of evolution in permeability 

Laboratory investigations show that permeability in sandstone decreases quite quickly 

during the first two stages of rock deformation, that is, the closure phase of initial bedding 

planes and microcracks and the elastic linear phase of stress-strain curves. Then, after the onset 

of microcracks propagation, the decrease in permeability is attenuated and even an increase 

phase is often captured at low confinements. When the effects of volume compaction in porous 

matrix (induced by mean stress) and of volumetric dilatancy induced by microcrack growth are 

taken into account, it is convenient to divide the permeability variable into two parts, 

respectively associated with the porous matrix phase and microcracks, i.e. 
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m cK K K= +                          (4.7) 

where mK  denotes the permeability of porous matrix and cK  the permeability induced by 

microcracks growth. Correspondingly, the Darcy law already defined in (4.8) also adopts the 

following two-part decomposition 

m
v p p p

μ μ μ
=− ⋅∇ =− ⋅∇ − ⋅∇K K K c

                   (4.9) 

An empirical relationship between Km  and mean stress mσ  is used to describe the 

influence of the mean stress on permeability. 

 05 mam e σ−=K K  (4.10) 

where 0K  is the permeability of sandstone in its initial state and 5a  is a model parameter 

controlling the evolution rate. Under isotropic assumption of the initial state of sandstone, 0K  

is written in the form: 
0 0K=K δ                           (4.11) 

where 0K  is a scalar-valued parameter representing the initial isotropic permeability of 

material. The values of 0K  and 5a  can be determined by fitting the permeability evolution 

under hydrostatic loading. A typical evolution of the permeability under hydrostatic pressures 

is plotted in Fig.4.4 and the values of the above two parameters are determined as 

K 0 16 23.6 10 m−= ×  and 5 0.024a = . 
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Fig. 4.4 Experiments (points) and fitting curve (solid line) of permeability with hydrostatic pressures 



Chapter 4 Modelling of poromechanical behaviours of saturated sandstone 

99 

Since the term cK  is induced by crack nucleation and growth, it should be described by basic 

variables of microcracks, such as the normal vector n , the radius ( )r n  and aperture ( )e n  of 

crack surface. For the sake of simplicity, microcracks are here assumed to be penny-shaped and 

propagate in a self-similar way. Under the initially isotropic assumption, the number of 

weakness sliding planes in all WSP families is assumed to be identical and denoted by N . 

From the usual definition of the damage variable ( )d n  (Budiansky and O’Connell, 1976) 

3( )( ) Nr nd n =
Ω

,                       (4.12) 

one derives the radius ( )r n  

1/3
( )( )
( )
d nr n
N n

⎡ ⎤Ω⎢ ⎥= ⎢ ⎥⎣ ⎦
                        (4.13) 

where /N Ω  is the WSP density per family per unit volume. In addition, we note the 

averaging aperture ( )e n  can be linked to the normal component of the displacement jump 

[ ]nu : 

2
1( ) [ ]d

[ ( )] ne n u S
r n ωπ

+= ∫                         (4.14) 

where ω+  and dS  denote the crack surface and a small integration area on crack surface, 

respectively. On the other hand, the definition of the variable ( )nβ  (Pensee et al., 2002; Zhu 

et al, 2008a) allows to set up the following relation tween the aperture ( )e n  and normal strain 

( )nβ , i.e.: 

2
1 ( )( )

[ ( )]

ne n
Nr n

β
π

Ω=                                (4.15) 

Furthermore, it is also assumed that fluid flow takes place only in the direction parallel to the 

crack plane and can be described by the Navier–Stokes equation for laminar flow between two 

parallel plates (Shao et al, 2005). The local flow velocity, denoted by ( )cv n , is thus expressed 

as follows: 

( ) ( )21( ) [ ( )]
12

ccv n e n n n pλ
μ

= − − ⊗ ⋅ ∇δ                     (4.16) 
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where ∇( )cp  denotes the local pressure gradient vector applied to the crack. The positive 

scalar λ , less than the unity, is introduced to take into account the fact that every part of a 

crack does not work as a conduit but some parts may be left as dead end. When 1λ = , the 

classic cubic law is recovered. The local pressure gradient may be related to the macroscopic 

gradient by an appropriate localization law (Dormieux and Kondo, 2004). In this model, we 

have used a simplified law by assuming that ∇ = ∇( )cp p , implying that the local pressure 

gradient is equal to the macroscopic one. The macroscopic fluid flow velocity v is obtained 

from the averaging of local velocity field ( )cv n  over the crack volume: 

1 1( )d ( )dc

m m
c c cv p v x p v x

μ μΩ Ω
= − ⋅∇ + Ω = − ⋅∇ + Ω

Ω Ω∫ ∫K K        (4.17) 

where cΩ  denotes the volume occupied by microcracks. After determination of the crack 

space distribution at a given loading step, it is easy to calculate the volume occupied by 

microcracks. The crack volume occupied by a set of cracks with the unit vector n  normal to 

their surface may be calculated by: 

 2d [ ( )] ( )c N r n e nπΩ =                             (4.18) 

By integration over all the space orientations, the macroscopic flow velocity can be rewritten 

as: 

2
21 ( ) ( ) [ ( )] d

4

m
c

S

Nv p v n e n r n Sπ
μ π

= − ⋅∇ +
Ω ∫K                   (4.19) 

Substituting the local flow velocity ( )cv n  given in (4.16), the macroscopic velocity of fluid is 

finally determined by: 

2
3 21 1 ( )[ ( )] [ ( )] ( )d

12 4

m

S

Nv p e n e n r n n n S pλ π
μ μ π

= − ⋅∇ − − ⊗ ⋅∇
Ω ∫K δ     (4.20) 

Comparison of (4.20) with the macroscopic Darcy law (4.9) allows to derive the overall crack 

permeability tensor as follows 

2
3 21 [ ( )] [ ( )] ( )d

12 4
c

S

N e n r n n n Sλπ
π

= − ⊗
Ω ∫K δ            (4.21) 

Next, inserting (4.12) and (4.15) into (4.21) leads to the formulation of cK  in integration 
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form 

2

2/3
3 3 4/31 [ ( )] [ ( )] ( )d

12 4
c

S

N n d n n n Sλπ π β
π

−
− −⎛ ⎞⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟= − ⊗⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜Ω⎝ ⎠⎝ ⎠ ∫K δ             (4.22) 

and in discrete form 

2/3 15
2 3 4/3

1
( ) ( ) ( )

12
c r r r

r

N d n nλπ ϖ β
−

− −

=

⎛ ⎞⎟⎜ ⎟= − ⊗⎜ ⎟⎜ ⎟⎜Ω⎝ ⎠ ∑K δ             (4.23) 

The total permeability finally reads: 

05

2/3 15
2 3 4/3

1
( ) ( ) ( )

12
ma r r r r r

r

Ne d n nσ λπ ρ β
−

− − −

=

⎛ ⎞⎟⎜ ⎟= + − ⊗⎜ ⎟⎜ ⎟⎜Ω⎝ ⎠ ∑K K δ          (4.24) 

In the above equation, the variables mσ , rβ and rd  can be obtained from the mechanical 

model developed in the previous section. The density parameter /N Ω  takes the value 
111 10N = ×  for all chosen families of WSPs. For the sake of simplicity, λ  is fixed at 1λ = . 

The comparisons between the numerical result and experimental data of axial permeability 

evolution are shown in Fig. 4.5. It is obviously shown that the evolution of permeability during 

stress loading can be decomposed into two stages: at the first one, the permeability decreases 

with stress loading, corresponding to the pre-peak phase of the stress-strain curves. For all 

confining pressures, the smallest values occur at the stress-peak, beyond which the 

permeability augments again due to the growth and nucleation of cracks. This two-phase 

separation seems more obvious at low confining pressures, which can be interpreted by the 

face that the post-peak reduction in permeability is enhanced by the decrease of the mean stress 

mσ  for relatively low confining pressures. 

4.3 Conclusions 

In this chapter, the discrete plastic damage model has been applied to simulate the mechanical 

behaviour, poroelastic properties and permeability of saturated sandstones. For mechanical 

model, the modified Coulomb-type plastic yield and plastic potential function, damage 

evolution criterion of Mazars type are used for each family of weakness planes. It is observed 
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Fig. 4.5 Evolution of axial permeability as function of the normalized axial strain in four triaxial tests 
with different confining pressures (5, 10, 20 and 30MPa) 

 
 
 

that the model is able to describe the main mechanical behaviour including nonlinear stress 

strain relations, brittle-ductile transition with confining pressure, volumetric dilatancy, elastic 

modulus degradation and induced anisotropy. Biot’s coefficients is written as function of 

effective elastic stiffness tensor and bulk modulus of the solid matrix, the comparisons between 

the numerical simulation and test data shows that the proposed model is able to describe the 

anisotropic property of Biot’s coefficients in axial and radial directions. In permeability 

characterization, rock permeability is divided into permeability in matrix phase and 

permeability induced by crack, the evolution of axial permeability is well simulated during 

triaxial compression tests with different confining pressures. 
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Chapter 5 Modelling of anisotropic poroplastic damage 

behaviors 

 

In the previous chapters, some poroelastic behaviors in geomaterials have been simulated. 

This final chapter is devoted to formulate an anisotropic poroplastic damage model to describe 

poromechanical behaviour of saturated rocks. The determination of Biot’s coefficients is 

performed in elastic regime. As for the plastic yield and potential functions of saturated porous 

media, the so-called stress equivalence principle is employed to define the effects of pore 

pressure on the normal component of local traction vector for each family of weakness planes. 

The complementary plastic porosity variable is introduced and related to the variation in 

volume plastic deformation. The proposed anisotropic model is applied to simulate undrained 

compression tests and strain response induced by increase of pore pressure. 

5.1 Presentation of model 

5.1.1General framework 

The general framework is formulated under the assumption of small strains and isothermal 

condition. Considering a porous material sample subjected to current stress σ  and current 

pore pressure p  and from this current state, let dσ  and dp  be the incremental loading in 

stress and fluid pressure, and dε  and dm  denote the incremental strain and the change of 

fluid mass induced by the incremental loading. The incremental strain and the change of fluid 

mass can be respectively decomposed into elastic increment d eε  and d em  and plastic 

increment d pε  and d pm , i.e. (Coussy, 1995, 2004): 

d d de p= +ε ε ε , =d d de pm m m+                     (5.1) 

In practice, a non-dimensional variable d pφ  is usually used instead of d pm , denoting 

the incremental plastic porosity and defined as: 
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             dd
0

p
p

f

mφ
ρ

=                              (5.2) 

where 0
fρ  is the fluid mass density. Within the elastoplastic damage framework as mentioned 

in Chapter 1, a thermodynamic state of porous material is characterized by the external state 

variables ε , φ  and the internal state variables pε , pφ , d  and pγ , among which d  

represents the set of discrete damage variables, pγ  is plastic hardening variable used to 

control the plastic evolution. The thermodynamic potential of elastoplastic damaged porous 

material takes the following general form: 

 ( )( ),( ), ( , )e p p p pψ ψ φ φ ψ γ= − +d dε− ε                   (5.3) 

where the second term on the right side ψ γ( , )p pd  is the total locked plastic energy, assumed 

to be a function of internal hardening variables d  and pγ .  

According to the physic linear assumption, only the linear and second order terms of the 

internal and external variables are taken into account and the following potential function ψ  

is then adopted: 

2

1 ( ) : ( ) : ( ) ( , )
2

1( )( ) ( ) : ( ) ( )( )
2

p b p p p

p p pM M

ψ ψ γ

φ φ φ φ

= − − +

− − − + −

d d

d d d

ε ε ε ε

ε εb

^
               (5.4) 

where ( )b d  is the fourth order elastic stiffness tensor of the damaged skeleton frame under 

drained conditions; ( )M d  is the Biot’s moduli depending on the damage variable; the 

symmetric second rank tensor ( )db  defines the anisotropic Biot’s coefficients of the damaged 

porous material. The first term on the right side of the above equation represents the elastic 

strain energy of the dry skeleton frame and the second one is the locked plastic energy of the 

dry skeleton frame. Therefore, the first two terms denote the total energy of the dry skeleton 

frame. The third and fourth terms represent coupling energy in the saturated damaged porous 

system. 

The standard derivative of the thermodynamic potential leads to the constitutive laws of 

saturated porous medium: 
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            �b( ) : ( ) ( )b p p= − −d dσ ε εC                              (5.5) 

φ φ= − + −( )[ ( ) : ( ) ( )]p pp M d d ε εb−                            (5.6) 

5.1.2 Plastic yield, potential functions and damage criterion 

It has been assumed that the material under consideration is initially linear isotropic, and 

that the anisotropic plastic deformation is induced by preferential slipping in some weakness 

orientations due to deviatoric stress. The structure (inherent) anisotropy is not considered in the 

present work. Therefore, a same form of plastic yield and potential function can be employed 

for all material orientations.  

The extension of plastic yield and potential functions from dry material to saturated porous 

media needs to take into account the effect of pore pressure. The concept of effective stress 

provides a possibility to extend the plastic laws by using the strain or stress equivalence 

principles. Some studies have been carried out to verify the concept both in elastic and inelastic 

domain (Rice and Cleary, 1976; P. De Buhan et al, 1992; Lydzba and Shao, 2000).  

In the present work, a mobilized coefficient rb  for the thr  family is introduced to define 

the effect of the pore pressure on the local normal stress for each family of weakness sliding 

planes saturated by water and written in the from: 

6=
,

01 (1 )
p rarb b e γ−− −                          (5.7) 

where 0b  represents the initial value of effective stress coefficient, 6a  denotes the evolution 

rate from 0b  to 1 with the shear deformation increasing along the weakness sliding planes.  

Therefore, the local equivalent normal stress of each family of weakness sliding planes 

saturated by water is written in the form: 

r r r
n n b pσ σ= +�                               (5.8) 

Based on the so-called stress equivalence principle, the basic idea is to extend the plastic 

yield and potential functions for dry materials to saturated porous media by simply replacing 

the nominal local normal stress r
nσ  by the equivalent local normal stress r

nσ� . The 

Coulomb-type plastic yield function for dry material in Chapter 3 is updated for each family of 

weakness sliding planes saturated by water by: 
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, , ,( , , , ) 0p r r r p r r p r r
n t t nf p cσ σ γ σ α σ= + − ≤� ,                   (5.9) 

and in a similar way, the plastic flow rule using the equivalent local normal stress is now given 

as: 

( ), , ,, , , 0p r r r p r r p r r
t n t ng pσ σ γ σ η σ= + =�                     (5.10) 

As mentioned in Chapter 3, plastic flow and damage evolution are inherently coupled each 

other. Precisely, the damage evolution is mainly induced by cumulated plastic sliding along 

surfaces of defects. Therefore, the damage criterion for saturated porous media is the same as 

the one for dry material, i.e.:  

γω −⎛ ⎞⎟⎜= − − ≤⎟⎜ ⎟⎜⎝ ⎠
,

4, 1 0
p rar rf d e                      (5.11) 

5.1.3 Characterization of coupling porous system 

The two internal state variables p
ijε  and pφ  are independent. However, for the sake of 

simplicity, it is assumed that the plastic porosity is proportional to plastic deformation (Coussy, 

2004): 

=p p
ij ijφ μ ε                                  (5.12) 

Further, from purely macroscopic considerations, some (unproven) kinematical hypotheses 

may be formulated. The plastic porosity is then simplified by taking an isotropic form for ijμ : 

 = ( )p p p
ij ij trφ μδ ε μ= ε                         (5.13) 

where μ  is used to define the ratio between the volume plastic deformation and plastic 

porosity. The case that =1μ  corresponds to a plastically incompressible matrix while the case 

that μ  approaches to the initial porosity 0φ  corresponds to a volumetric plastic strain of the 

skeleton frame only due to the solid matrix. It is then consistent to require μ  satisfying the 

inequalities 0 1φ μ≤ ≤ . Kerbouche et al. (1995) have performed some coupling hydrostatic 

compression tests in order to determine the value of μ  and found that the coefficient μ  is 

changed in the process of plastic deformation. For simplicity, a constant scalar is used in the 

present model. Therefore, the constitutive laws (5.5) and (5.6) is recast into the following form: 
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φ μ= − − −( ) : ( ) ( ) ( )[ tr( )]u p pMd d d�σ ε ε εbC                  (5.14) 

( )( ) ( ) : ( ) tr( )p pp M φ⎡ ⎤= − + −⎢ ⎥⎣ ⎦d d ε ε εb−                   (5.15) 

where �( )u dC  is the fourth rank effective elastic tensor under undrained condition, which is 

linked to the drained effective elastic tensor by the following expression (Thompson and wills, 

1991): 

( ) ( ) ( ) ( )u M= ⊗d d d d�b bC                       (5.16) 

Note that the effective elastic tensor under undrained condition exhibits the same symmetries 

as the drained one, i.e. C C C C�u u u u
ijkl jikl ijlk klij= = = . Further, we deduce the classic definition 

of Biot’s effective stress tensor by moving the second term of the right-hand side of Eq. (5.5) to 

the left-hand side: 

b( )p= − d�σ σ                              (5.17) 

and the constitutive stress-strain relation under the drained condition becomes: 

σ ( ) : ( )p= −d� ε εC                            (5.18) 

For any stationary damage state, the effective elastic tensor of skeleton frame is obtained 

in the proceeding part. Following the micromechanical analyses conducted by Thompson and 

Willis (1991) and Cheng (1997) for initially anisotropic porous media, the macroscopic 

poroelastic constants can be deduced from the microscopic properties of the constituents of 

porous medium. Similar analyses can be employed for a damaged induced anisotropic porous 

material in a given damage state. By considering the deformation of the saturated porous 

medium on microscopic scale within the appropriate representative elementary volume, the 

following relationships have been obtained (for more details, see Thompson and Willis (1991) 

and Cheng (1997)): 

( ) ( ) ,s
ij ij ijkl klmmδ=d db C S−                        (5.19) 

φ λ
= ⎡ ⎤− + −⎢ ⎥⎣ ⎦

1( )
2 ( ) ( ) ( )s s s
ijmn mnll ijkk ijkk f ii

M
c

d
d dC S S S

          (5.20) 

In the above equations, s
ijklS  is the fourth rank elastic compliance tensor of solid grains, which 

is assumed to be constant.; the second rank symmetric tensor s
ijλ  is introduced to describe 



Chapter 5 Modelling of anisotropic poroplastic damage behaviors 

109 

heterogeneous strains of solid grains under pore pressure; fc  denotes the compressibility 

coefficient of the fluid and φ  the porosity of material. To simplify the above relations, two 

fundamental assumptions are customarily used. The first called ‘micro-homogeneity’, assumes 

that the skeleton of porous material is homogeneous on the pore (microscopic) scale and the 

material can be heterogeneous on the macroscopic scale due to different micro-homogeneous 

materials distributed in space (Nur and Byerlee, 1991). The second one named ‘micro-isotropy’ 

argues that the solid constituent of the porous medium is isotropic at the microscopic (pore and 

grain) level and the macroscopic material anisotropy is of structural origin, mainly resulting 

from oriented pore and fissure arrangement. By adopting these assumptions, the above 

relationships are simplified as follows (Cheng, 1997):  

C
�−

( )
( )

3
ijkk

ij ij
s

b
k

δ=
d

d                              (5.21) 

*
( )

(1 ( ) / ) (1 / )
s

s s f

k
M

k k k kφ
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− − −
d

d
                   (5.22) 

C* ( )
( )

9

b
iijjk =
d

d                              (5.23) 

where sk  and fk  are respectively the bulk modulus of the solid grains and pore fluid. 

5.2 Identification of the model parameters  

The anisotropic poroplastic damage model is applied to maroon sandstone (Karami, 1998) 

sampled from the region of the Vosges Mountain in France. It is a typical brittle rock with the 

average density at about 2.06g/cm3 and the initial average porosity about 0 20%φ = . 

Hydrostatic compression tests have shown that it is initially quasi-isotropic. The initial elastic 

constants are: 0 24000MPaE =  and 0 0.20ν = . The bulk modulus of the solid grains sk  

is determined by hydrostatic compression test under partially drained condition. The bulk 

modulus of the pore fluid fk  can not be measured directly; we can calculate its value by the 

following equation: 



Chapter 5 Modelling of anisotropic poroplastic damage behaviors 

110 

 0
0

0(1 ) / (1 ) 1

s s

f s s s

B k
k

B k k B

φ

φ
=

− + + −
, 

0
0

03(1 2 )

Ek
ν

=
−

       (5.24) 

The value of Skempton coefficient sB  can be determined by hydrostatic compression 

under undrained condition. The values of bulk modulus of the solid grain and pore fluid are 

MPa52300sk =  and MPa1790fk = , respectively. 

The determination of the 12 model parameters 0, 1 1 2 , ,  ,  , p p
f oc H a aα α , 0,  p p

fη η , 3a , 4a , 

1κ and 2κ for dry material has been clarified in Section 2. There are still 3 model parameters 

0b , 6a  and μ  involved in coupling system, among which 0b  and 6a  are used to define 

the effect of the pore pressure on the local normal stress. It is then possible to let the value of 
0b  equal to the initial Biot’s coefficient of sound porous material. 5b  can be determined by 

back analysis on the evolution from the initial value to its maximum one. According to the 

experimental study (Kerbouche et al., 1995), 0.3μ =  is used in this work. Typical values of 

model parameters are summarized in Table 5.1. 

 

Table 5.1 Typical values of parameters of coupled poroplastic damage model 

dry material coupling system 

c0(MPa) H1(MPa) 1a  
0
pα  

p
fα  2a  p

oη  
p
fη  3a  4a  1κ  2κ  0b  6a  μ  

10.0 464 30 0.1 0.78 600 -0.1 0.28 300 100 0.5 1.0 0.5 50 0.3 

 

5.3 Simulation results 

In cylindrical triaxial loading, samples are subjected to axisymmetric compression stresses 

22 33σ σ= , accordingly we have 22 33ε ε= . In the following part, drained triaxial tests, 

undrained triaxial tests and tests of strain response to pore pressure change on saturated Vosges 

sandstone are simulated. 



Chapter 5 Modelling of anisotropic poroplastic damage behaviors 

111 

5.3.1 Drained triaxial tests 

In the case of drained triaxial compression tests, the stress loading is applied and the pore 

pressure keeps equal to atmospheric pressure and is considered as zero. Therefore, the 

constitutive (5.5) for skeleton frame becomes: 

( ) : ( )p= −dσ ε εC                           (5.25) 

In Fig.5.1, comparisons between numerical predictions and test data for triaxial compression 

tests with different confining pressures under drained condition are performed and a 

satisfactory agreement is observed. We can find that the proposed model is able to reproduce 

the basic mechanical behaviours.  
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(b) Pc=10MPa 

 

 

 
(c) Pc=20MPa 

 

 

 

 
(d) Pc=30MPa 

 

Fig. 5.1 Triaxial drained tests (continuous lines are numerical values) with different confining 

stress, (a) Pc=5MPa, (b) Pc=10MPa, (c) Pc=20MPa,(d)Pc=30MPa 
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5.3.2 Undrained triaxial tests 

In undrained compression tests, there is no fluid injecting into or squeezing out of the 

sample; hence, we have 0/ 0fmφ ρ= =  in (5.15). The constitutive equations for coupling 

system are written as following: 

= − −( ) : ( ) ( )b p pd dσ ε ε bC                               (5.26) 

μ= − −( )[ ( ) : ( ) tr( )]p pp M d d ε ε εb−                          (5.27) 

where both the Biot’s coefficient ( )db and the Biot’s modulus ( )M d  are functions of damage 

variables and determined by (5.21) and (5.22), respectively. 

In Fig.5.2, comparisons between numerical values and test data for triaxial compression 

tests under undrained condition are presented. There are good agreements in both strain-stress 

and pore pressure-stress relationship. Moreover, the behaviour called ‘dilatancy hardening’ 

(Rudnicki, 1984) can also be described, especially under higher confining pressure. During the 

process from compaction to dilatancy under undrained condition, the pore pressure is first 

increased and then decreased due to the shear dilatancy. The decrease in pore pressure leads to 

the increase in local equivalent normal stress (see equation (5.8)) in all families of saturated 

weakness sliding planes and hence the sample exhibits hardening behaviour. 
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(a) Pc=30MPa 

 

 
(a) Pc=50MPa 

 
Fig. 5.2 Undrained compression tests with different confining pressures (5, 30 and 50MPa) 
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pressure and : 

( ) : ( )e b pΔ = Δd dε S b                              (5.28) 

Δ = Δ +Δe pε ε ε                                  (5.29) 

where pΔε  is the plastic strain increment. Under the effect of pore pressure, the microcracks 

may continue to propagate, consequently cause the further plastic deformation and damage in 

material. The plastic strain could be determined by the plastic yield and potential functions. 

Fig. 5.3 shows numerical simulation on the test of strain response to the change of pore 

pressure at three different deviatoric stresses under the same confining pressure of 40MPa, 

there is good agreement between the numerical result and the test data. It is easily seen that the 

strains induced by variation in pore pressure are significantly anisotropic. More precisely, the 

extent in the radial one is much greater than that in the axial one. Moreover, at higher damage 

levels (deviatoric stress values), the change of axial strain due to positive variation in pore 

pressure may be compressive (positive sign in figure). 

Complementary numerical simulations on the test of strain response to pore pressure 

increment under confining pressures of 10, 20, 30 and 50MPa are provided in Appendix B. 

5.4 Conclusions 

Based on the discrete plastic damage model, a coupled anisotropic poroplastic damage 

model has been developed for modelling poromechanical behaviours in porous geomaterials 

under undrained condition. The known stress equivalence principle is employed to define the 

effect of pore pressure on the local stress for each family of weakness sliding planes. The 

plastic yield and potential functions formulated for dry materials are extended to the saturated 

undrained case; the complementary variable of plastic porosity is introduced and linked to the 

volume plastic deformation. This model is applied to Vosges sandstone. Simulations on 

undrained compression tests and strain response to the variation in pore pressure show good 

agreement. Finally, the ‘dilatancy hardening’ effect, commonly appeared in undrained 

compression tests, has been numerically reproduced. 
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Fig. 5.3 Strain response to pore pressure increment at different deviatoric stress (81, 99 and 118MPa) 
with confining pressure 40MPa 
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Conclusions and Perspectives 

 

The main objective of the work presented consists in systematic experimental and 

numerical investigations on mechanical and especially poromechanical behavior of brittle 

geomaterials. It consists of the following 4 parts: (i) experimental studies on mechanical 

behaviours, Biot’s coefficient and intrinsic permeability of sandstone in saturated conditions, 

(ii) development of discrete plastic damage model and numerical simulation of mechanical 

behavior for dry sandstone, (iii) modeling of poroelastic behaviours under compressive loading, 

including the variation of Biot’s coefficients and permeability of saturated sandstone, (iv) 

presentation of anisotropic poroplastic damage model and numerical simulation of 

poromechanical behavior. Some details are addressed as follows: 

After an introductive review on some previous experimental and numerical works on 

mechanical and poromechanical behaviors of brittle geomaterials, we have investigated 

experimentally in Chapter 2 the basic mechanical behaviours, determination of Biot’s 

coefficients and intrinsic permeability of sandstone in saturated conditions. Hydrostatic 

compression tests and a serie of triaxial compression tests with different confinements have 

been performed. Under compressive stresses, the initial defects are progressively closed 

leading to non linear stress-strain relations. When deviatoric stresses are applied, propagation 

of existing microcracks and nucleation of new ones take place after the onset of damage 

criterion. Similar to existing results, the propagation of microcracks is mainly oriented in the 

axial direction in conventional triaxial compression tests. The oriented induced damage affects 

Biot’s coefficient in the axial direction much more significantly than in the lateral one. It is also 

shown that there exists some correlation between the permeability change and volumetric 

deformation as well as effective mean stress. The influence of volumetric dilatancy on 

permeability is not significant during the diffuse regime of damage. However, in the phase of 

the coalescence of microcracks, induced damage can affect considerably rock permeability. All 

these experimental results have been successfully simulated in later numerical parts. 

In chapter 3, the discrete thermodynamic approach has been adopted for modeling of 

anisotropic plastic damage behaviours of brittle geomaterials. The discrete formulation allows 
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taking into account physical mechanisms involved in plastic deformation and damage 

evolution. The modified Coulomb-type plastic yield and plastic potential function, as well as 

the damage evolution criterion proposed by Mazars, are applied to each family of weakness 

planes. The proposed model was used to simulate the mechanical tests, including triaxial 

compression tests, lateral extension tests and proportional loading tests. A good agreement 

between numerical predictions and experimental data is obtained. The proposed model is able 

to describe the main features observed in brittle geomaterials under compression-dominated 

stresses. It is more important to note that induced anisotropy in both plastic flow and damage 

evolution can be easily described. 

In Chapter 4, the discrete model has been applied to simulate the mechanical behaviour, 

poroelastic properties and permeability of saturated sandstones. In permeability 

characterization, rock permeability is divided into the part of matrix permeability and that 

induced by cracks. The evolution of axial permeability is well simulated during triaxial 

compression tests under different confining pressures. Biot’s coefficients is written as function 

of effective elastic stiffness tensor and bulk modulus of the solid matrix, the comparisons 

between the numerical simulation and test data shows that the proposed model is able to 

describe the anisotropic property of Biot’s coefficients. 

In the last part, in order to describe the poromechanical behaviour of saturated sandstones, 

the basic model is then extended to poroplastic damage one. The well-known stress 

equivalence principle is employed to define the effect of the pore pressure on the local normal 

stress for each family of weakness sliding planes. We have updated the plastic yield and 

potential functions for saturated media by introducing the equivalent local normal stress therein. 

The complementary variable of plastic porosity is adopted and related to the volume plastic 

deformation. This model has been applied to Vosges sandstone to simulate undrained 

compression tests and pore pressure controlled tests, a good agreement has been obtained 

including the ‘dilatancy hardening’ behaviour and anisotropic strain response to pore pressure 

increment. 

  

In conclusion, the research purpose initiated by the present work has been completely 

achieved. Future extensions along this line include the following two parts: 
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• On experimental aspects, further laboratory researches will be dedicate to 

investigating the evolution of poromechancical behaviours and fluid transport 

properties in multi-physical coupling loading conditions. These tests are quite 

difficult in laboratory but of practical interests to many engineering problems, such 

as geological storage of nuclear wastes, sequestration of carbon and residual gas, 

oil and gas production in complex conditions etc.  

• On numerical aspects, the developed anisotropic poroplastic damage model will be 

implemented into a finite element code for large validations, particularly by 

stability and durability analysis on engineering structures.  
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Appendix A 

Selected material orientations used for numerical calculation of Eq. (3.8) are defined by 

the following 15 unit vectors (Elata and Rubin, 1995) and illustrated in Fig.A.1 
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Fig. A.1 15 integration orientations distributed on the surface of a unit sphere
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Fig. B.1 Strain response to pore pressure increment at different deviatoric stress (15, 30, 45 and 
60MPa) with confining pressure 10MPa 
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Fig. B.2 Strain response to pore pressure increment at different deviatoric stress (34, 50, 66, 80 and 

95MPa) with confining pressure 20MPa 
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Fig. B.3 Strain response to pore pressure increment at different deviatoric stress (46, 69, 89 and 
112MPa) with confining pressure 30MPa 
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Fig. B.4 Strain response to pore pressure increment at different deviatoric stress (80, 97, 114 and 
131MPa) with confining pressure 40MPa 
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