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Abstract

Empirical Mode Decomposition (EMD), or Hilbert-Huang Transform (HHT) is a novel
general time-frequency analysis method for nonstationary and nonlinear time series,
which was proposed by Huang et al. (1998, 1999) more than ten years ago. During
the last ten years, there have been more than 1000 papers applying this new method
to various applications and research fields. In this thesis we apply this method to
turbulence time series for the first time, and to environmental time series. It is found
that the EMD acts a dyadic filter bank for fully developed turbulence. To characterize
the intermittent properties of a scaling time series, we generalize the classical Hilbert
spectral analysis to arbitrary order ¢, performing what we denoted “arbitrary order
Hilbert spectral analysis”. This provides a new frame to characterize scale invariance
directly in an amplitude-frequency space, by taking a marginal integral of a joint pdf
p(w, A) of instantaneous frequency w and amplitude A. We first validate the method
by analyzing a simulated fractional Brownian motion time series, and by analyzing
a synthesized multifractal nonstationary time series respectively for monofractal and
multifractal processes. Compared with the classical structure function approach, it
is found numerically that the Hilbert-based methodology provides a more precise
estimator for the intermittency parameter.

Assuming statistical stationarity, we propose an analytical model for the au-
tocorrelation function of velocity increments time series Awuy(t), where Auy(t) =
u(t + £) — u(t), and ¢ is the time increment. With this model, we prove analyti-
cally that, if a power law behaviour holds for the original variable, the location of the

minimum values of the autocorrelation function is equal exactly to the time separation

Xix
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XX

¢ when /¢ belongs to scaling range. A power law behaviour for the minimum values
is suggested by this model, and verified by a fractional Brownian motion simulation
and a turbulent database. By defining a cumulative function for the autocorrelation
function, the scale contribution is then characterized in the Fourier frequency space.
It is found that the main contribution to the autocorrelation function comes from the
large scale part. The same idea is applied to the second order structure function. It
is found the second order structure function is strongly influenced by the large scale
part, showing that it is not a good approach to extract the scaling exponent from a

given scaling time series when the data possess energetic large scales.

We then apply this Hilbert-based methodology to an experimental homogeneous
and nearly isotropic turbulent database to characterize multifractal scaling properties
of the velocity time series in fully developed turbulence. We obtain a scaling trend
in the joint pdf p(w,.A) with a scaling exponent close to the Kolmogorov value. We
recover the structure function scaling exponents ((¢) in amplitude-frequency space
for the first time. The isotropy hypothesis is then checked scale by scale in amplitude-
frequency space. It is found that the generalized isotropy ratio decreases linearly with

the order gq.

We also perform the analysis on a temperature (passive scalar) time series with
strong ramp-cliff structures. For these data, the traditional structure function fails.
However, the new method extracts a clear power law up to ¢ = 8. The scaling
exponents &(q) — 1 is quite close to the scaling exponents ((q) of the longitudinal

velocity in fully developed turbulence.

We then consider the traditional Extended Self-Similarity (ESS) (Benzi et al.,
1993b) and the hierarchy model (She & Lévéque, 1994) under the Hilbert frame. For
the case of ESS, we have here two special cases ¢ = 0 and ¢ = 3 to define the ESS in
the Hilbert frame. Both of them work for the fully developed turbulence providing the
same scaling exponents. Based on the turbulent database we have, it seems that the
lognormal model with a proper chosen intermittency parameter p provides a better

prediction of the scaling exponents.
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xx1

We finally apply the new method to daily river flow discharge and surf zone marine

turbulence to characterize the scale invariance under the Hilbert frame.
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Résumé

La Décomposition Modale Empirique (Empirical Mode Decomposition - EMD) ou la
Transformation de Hilbert-Huang (HHT) est une nouvelle méthode d’analyse temps-
fréquence qui est particulierement adaptée pour des séries temporelles nonlinéaires
et non stationnaires. Cette méthode a été proposée par Huang et al. (1998, 1999) il
y a plus de dix ans. Pendant les dix dernieres années, plus de 1000 articles ont ap-
pliqué cette méthode dans le cadre de diverses applications ou domaines de recherche.
Dans cette these, nous appliquons cette méthode a des séries temporelles de turbu-
lence, pour la premiere fois, et a des séries temporelles environnementales. Nous
avons obtenu comme résultat le fait que la méthode EMD correspond a un banc de
filtre dyadique (ou quasi-dyadique) pour la turbulence pleinement développée. Pour
caractériser les propriétés intermittentes d’une série temporelle invariante d’échelle,
nous avons généralisé ’analyse spectrale de Hilbert-Huang classique a des moments
d’ordre arbitraire g, pour effectuer ce que nous avons appelé “analyse spectrale de
Hilbert d’ordre arbitraire”. Ceci fournit un nouveau cadre pour analyser I'invariance
d’échelle directement dans un espace amplitude-fréquence, en estimant une intégrale
marginale d’une pdf jointe p(w,.A) de la fréquence instantanée w et de 'amplitude .A.
Nous validons tout d’abord la méthode en analysant des séries temporelles de mou-
vement Brownien fractionnaire, et en analysant des séries temporelles multifractales
synthétiques, en tant que modele respectivement de processus monofractals et multi-
fractals. Nous comparons les résultats obtenus avec la nouvelle méthode, a I'analyse
classique utilisant les fonctions de structure: nous trouvons numériquement que la

méthodologie utilisant I’approche de Hilbert fournit un estimateur plus précis pour

xx1il

© 2010 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Yongxiang Huang, Lille 1, 2009

XXiv

le parametre d’intermittence.

Avec une hypothese de stationarité, nous proposons un modele analytique pour la
fonction d’autocorrélation des incréments de séries temporelles de vitesse Auy(t), ou
Aug(t) = u(t + ) — u(t), et £ est incrément temporel. Dans le cadre de ce modele,
nous prouvons analytiquement que, si une loi de puissance est valide pour la série
d’origine, la position minimisant la fonction d’autocorrélation de la variable d’origine
est égale exactement au temps de séparation ¢ lorsque ¢ appartient a la zone invariante
d’échelle. Ce modele prédit une loi de puissance pour la valeur minimum, comporte-
ment vérifié par une simulation de mouvement Brownien fractionnaire et a partir
de données expérimentales de turbulence. En introduisant une fonction cumulative
pour la fonction d’autocorrélation, la contribution en échelle est alors caractérisée
dans l'espace de fréquence de Fourier. Nous observons que la contribution principale
a la fonction d’autocorrélation provient des grandes échelles. La méme idée est ap-
pliquée a la fonction de structure d’ordre 2. Nous obtenons que celle-ci est également
fortement influencée par les grandes échelles, ce qui montre que ceci n’est pas une
bonne approche pour extraire les exposants invariants d’échelle d’une série temporelle

lorsque les données sont caractérisées par des grandes échelles énergétiques.

Nous appliquons ensuite cette méthodologie Hilbert-Huang a une base de données
de turbulence homogene et presque isotrope, pour caractériser les propriétés multi-
fractales invariantes d’échelle des série temporelles de vitesse en turbulence pleinement
développée. Nous obtenons un comportement invariant d’échelle pour la pdf jointe
p(w, A) avec un exposant proche de la valeur de Kolmogorov. Nous estimons les ex-
posants ((q) dans un espace amplitude-fréquence, pour la premiere fois. L’hypothese
d’isotropie est testée échelle par échelle dans 'espace amplitude-fréquence. Nous

obtenons que le rapport d’isotropie généralisé décroit linéairement avec le moment gq.

Nous effectuons également ’analyse d’une série temporelle de température (scalaire
passif) possédant un effet de rampe marqué (ramp-cliff). Pour ces données, ’approche
traditionnelle utilisant les fonctions de structure ne fonctionne pas. Mais la nouvelle

méthode développée dans cette these fournit un net régime invariant d’échelle jusqu’au
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moment g = 8. Les exposants £5(q) — 1 sont tres proches des exposants ((q) obtenus
par 'approche des fonctions de structure pour la vitesse longitudinale.

Nous nous intéressons ensuite a ’auto-similarité étendue (Extended Self Similarity
- ESS) (Benzi et al., 1993b) dans le cadre Hilbert-Huang. En ce qui concerne la
méthode ESS, qui est devenue classique en turbulence, nous adaptons ’approche
pour le cas Hilbert-Huang dans un espace de fréquence, et nous constatons que le
modele lognormal, avec un coefficient adéquat, fournit une trés bonne estimation des
exposants invariants d’échelle.

Finalement nous appliquons la nouvelle méthodologie a des données environ-
nementales: des débits de rivieres, et des données de turbulence marine dans la zone
de surf. Dans ce dernier cas, la méthode ESS permet de séparer les ondes de vent de

la turbulence a petite échelle.
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Chapter 1

An Informal Introduction to
Time-Frequency Analysis

In this chapter, we recall some general ideas of the time-frequency analysis, such as
decomposition and representation, characteristic scale, nonlinear and nonstationary

effects, etc.

1.1 Decomposition and representation

There are plenty of time-frequency analysis methods (Cohen, 1995; Flandrin, 1998).
Their basic idea can be interpreted as representing a given signal/function, f(z), by

a given basis
+o0
f(z) = Y(v, 2’ )o(x, 2’ v) dvda’ (1.1.1)

—o0
where ¢ is a given basis (function), and 1 is the coefficient (function) which can be
determined by

“+oo

P(z,v) = f(@)o(z, 2’ v)da’ (1.1.2)

—00

Here the basis function ¢ also can be interpreted as an integral kernel of the above
equation (Cohen, 1995). It is an asymptotic approximation: the signal is asymptot-

ically approximated by the chosen basis (function) ¢. The property of the chosen

3
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basis are usually well known. Then we check ¢ to see how the given signal looks like
with the chosen basis (function) ¢. For example, when the trigonometric function is
chosen, we obtain the classical Fourier transform
+00
Y(f) = (z)e™* dx (1.1.3)
Another example is the Wavelet transform

7

—) da’ (1.1.4)

W(a,z) = o] [ f(a)e(

R
where n is the dimension of the space, ¢(x) is the so-called mother wavelet and a is
a dilatation parameter!. This is the traditional approach for time-frequency analysis:
the basis are chosen before the decomposition. Therefore once we choose a basis
(function), the information that can be extracted from the data is determined. They
are also energy based approaches: only when the component contains enough energy,

it then can be detected by such methods (Huang et al., 1998; Huang, 2005).
Moreover, most a prior: basis are defined in the global sense and they require
that the signal satisfies stationary and linearity assumptions (Cohen, 1995; Flandrin,
1998; Huang et al., 1998). Here the stationarity means that the statistical properties
are identical for different samples?. Many modifications, such as short-time Fourier
transform with various windows, Wigner-Ville distribution, have been designed to

overcome these obstacles (Cohen, 1995; Flandrin, 1998). However, they inherit more

or less the shortcoming of the Fourier transform (Huang et al., 1998, 1999).

1To be a mother wavelet, ¢(z) should satisfy some conditions. For details on wavelet theory see
Daubechies (1992). We may also consider the wavelet transform approach as an adaptive-windows
Fourier transform (Huang et al., 1998).

2The mathematical definition of stationarity is more rigorous. In practice, if some statistical
quantities of a given time series do not change beyond a certain size of sample and are identical for
different samples, then the time series is called stationary process.
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1.2 Characteristic scale

The power of a time-frequency analysis method is determined by the chosen basis ¢.
Indeed, for a certain time-frequency analysis method, a characteristic scale (CS) is al-
ways defined explicitly or implicitly. Once we choose a definition of the characteristic
scale for a certain method, then the ability and property of this method is deter-
mined /fixed. We compare here three different definitions of the CS, corresponding
to Fourier transform, Wavelet transform and Hilbert-Huang transform (HHT) (see

chapter 2 for more details of HHT).

Fourier Analysis Mexican hat Wavelet

Hilbert-Huang Transform
15 | | | |

l | .-H-:H-,- - - RN AN R ) -,H-:.‘-‘-.‘ (C)_

0 1000 2000 3000 4000
t

Figure 1.1: Demonstration of the characteristic scale of (a) Fourier analysis, (b)
Wavelet transform and (c) Hilbert-Huang transform, respectively.

e Fourier Transform:

The length of one period of sine or cosine wave.
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T . I I
Fourier Fourier
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Figure 1.2: The characteristic scale in (a) frequency-time space, and (b) amplitude-

time space.

o Wavelet Transform:

e Hilbert-Huang Transform:

The shape of the mother wavelet together with the dilation factor.

The distance between successive local extrema maxima (resp. minima) points.

We illustrate the corresponding CS in Fig. 1.1: (a) Fourier analysis, (b) Mexican hat

wavelet, and (c) Hilbert-Huang transform (HHT). As we have mentioned above, for

an a priori approach, once the basis (function) ¢ is chosen, the shape of CS is then

fixed. We illustrate here two examples for a priori approach: the Fourier transform

and Mexican hat wavelet. However, the shape of the CS of HHT can be varied from

time to time. In other words, these three time frequency analysis methods describe

the characteristic scale globally, regionally, and locally, respectively (Huang, 2005).

Frequency-Modulation

Figure 1.2 shows the CS in both frequency-time view and amplitude-time view. The

difference among them are clear. For further discussion convenience, we introduce

© 2010 Tous droits réservés.
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here the concepts of frequency-modulation and amplitude-modulation. Let us con-

sider here a monochromatic wave
z(t) = acos 2my,t (1.2.1)

where the constants a and v, are the amplitude and the frequency. It is natural to

extend this point of view to evolutionary situations
x(t) = a(t) cos 27y, (t)t (1.2.2)

where the amplitude a and the frequency v, now may vary in time. Let us first keep
the amplitude a as a constant, and let the frequency v, vary in time. We call this

“frequency modulation”.
Definition 1.2.1 (Frequency-Modulation). Frequency v, may vary in time.

Both the Fourier analysis and Wavelet transform® do not allow the frequency
modulation, since the frequency for each component is fixed, see Fig. 1.2 (a). On
the contrary, the HHT does allow frequency-modulation, since the idea of the in-
stantaneous frequency (Cohen, 1995; Flandrin, 1998) is employed to describe the
frequency. We will see this point in chapter 2, the fact that frequency modulation
may be further termed into two different types: interwave-frequency-modulation and
intrawave-frequency-modulation. The latter one can be associated to a nonlinear

mechanism (Huang et al., 1998, 1999).

Amplitude-Modulation

Now we consider another situation, the so-called amplitude-modulation. Let us keep

the frequency v, constant, and let the amplitude a vary in time. It is then called

3In fact, Wavelet may detect the so-called interwave-frequency-modulation (Huang et al., 1998,
1999). However, this ability comes from the amplitude-modulation: the wavelet coefficient ¢(x,a)
may be zero at some locations and scales.
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amplitude-modulation.

Definition 1.2.2 (Amplitude Modulation). Amplitude a may vary in time.

Figure 1.2 (b) shows the amplitude of the above mentioned three approaches
in amplitude-time view. Here again, the Fourier representation does not allow the
amplitude-modulation, since it describes the scale in a global sense. Due to a com-
pact support property of the wavelet in physical domain, it allows the amplitude-
modulation (Daubechies, 1992). HHT allows the amplitude-modulation mechanism.
Therefore, it allows the frequency-modulation and amplitude-modulation simultane-

ously (Huang et al., 1998, 1999; Huang, 2005).
Potential Shortcoming of Fourier-Based Approach

We then reproduce the main properties of the Fourier analysis, Wavelet transform
and HHT in Table 1.1 from Huang (2005). These properties determine the power of
each method and also the potential shortcoming of each one. We then list the main

potential shortcoming of the Fourier-based approach here

® q priort

The basis ¢ are given before decomposition.

e Stationary

They require that the data satisfy the stationarity assumption.

e Asymptotical approximation

They are a linear asymptotical approximation to the original data.

e Global uncertainty
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They are limited by the so-called Heisenberg-Gabor uncertainty principle?.

Due to the above mentioned properties of the Fourier-based time-frequency analysis
methods, they require high order harmonic component to mimic a transit signal, in
which both the amplitude and the frequency may vary in time.

For more details on the time-frequency analysis and potential shortcomings of the

Fourier-based approach, we suggest Cohen (1995) and Flandrin (1998).

Table 1.1: Comparison of the main properties of the Fourier analysis, Wavelet trans-
form and Hilbert-Huang transform.

Frequency-Modulation | Amplitude-Modulation

Interwave | Intrawave
Fourier analysis No No No
Wavelet transform Yes No Yes
Hilbert-Huang transform | Yes Yes Yes

1.3 Nonstationary and nonlinear effects

In the real world, most data are nonlinear, nonstationary and noisy. A general method
to deal with nonlinear and nonstationary time series is required. The terminology
‘nonlinear’ here means that the underling mechanism is nonlinear. Below, we il-
lustrate the nonstationary and nonlinear effects on both the Fourier analysis and

Hilbert-Huang transform.

4The Heisenberg-Gabor uncertainty principle (Cohen, 1995; Flandrin, 1998) means that the time
resolution &t and the frequency resolution Jf are restricted by the following relation

1
60f > o (1.2.3)
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Nonstationary Effect
Definition 1.3.1 (Stationarity). A time series x(¢) is stationary in the weak sense,
(1.3.1a)

E(|lz(8)]*) < oo
(1.3.1b)

(1.3.1c)

if, for all ¢
E(z(t)) =m

C(z(tr),z(t2)) = Clx(ty) + 1, 2(te) + 7) = C(t; — ta)

where E(+) is the expected value, and C(-) is the covariance function.

15
[

-1.5
1

Figure 1.3: Example of a nonstationary event x(t): the amplitude on range 5 <t < 6

is 20% higher, which is marked by a rectangle.
In practice, we only have a finite size sample. Obviously, the data we have may

not satisfy the above condition, which means it is nonstationary. We give an example

sin(27t) t<5
—{ 12sin(2nt) 5<t<6 (1.3.2)
sin(2mt) 6 <t <10

of a nonstationary effect here. We produce a sine wave z(t) on the range 0 < ¢t < 10

x(t)

where a nonstationary event with 20% higher amplitude is superposed on range

5 <t <6, see Fig. 1.3, in which the nonstationary event is marked by a rectan-
Figure 1.4 shows the intrinsic mode

gle. The sampling frequency is set as 100 Hz.
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Figure 1.4: Intrinsic mode functions from empirical mode decomposition.

1.2

0.8
306
0.4
0.2

Energy Ratio %

Figure 1.5: Instantaneous frequency of each mode: (a) instantaneous frequency, (b)
the relative energy. The vertical solid lines indicate the location of the nonstationary
event.

functions (IMF) from the empirical mode decomposition (EMD)®. Figure 1.5 shows

the corresponding (a) instantaneous frequency, and (b) energy ratio, where the verti-

cal solid lines indicate the location of nonstationary event. The nonstationary event

is well captured by HHT in a very local level. We compare the Hilbert marginal spec-

trum with the Fourier spectrum in Fig. 1.6, where the thin solid line is the Fourier

power spectrum of the signal without perturbation. The Fourier power spectrum is

5The concept of intrinsic mode function and the empirical mode decomposition methodology will
be presented in chapter 2.
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Figure 1.6: Comparison of the Hilbert marginal spectrum and Fourier spectra.

directly estimated by a Fourier transform without any window. All these three curves
detect the domain frequency. For the Fourier power spectrum, there are some fluc-
tuation on the high frequency range, indicating the presence of high order harmonic
component. For the Hilbert marginal spectrum, we note that it does not require
any high order harmonic component to mimic the nonstationary effect, since it allows
amplitude-modulation. We also note some energy leakage on the low frequency, which

may be the end-point effect in the empirical mode decomposition.

Nonlinear Effect

We turn to nonlinear effect. There is no general definition of nonlinearity for a discrete
time series, since we may represent it by a linear asymptotical approximation way.

Therefore, we propose here a definition of the nonlinearity for a discrete time series:

Definition 1.3.2 (Nonlinearity). If the underlying mechanism behind a time series
is nonlinear, we then call the dataset itself nonlinear.

http://doc.univ-lille1.fr
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Figure 1.7: A 5th order Runge-Kutta numerical solution of the Duffing equation.

Here we consider the classical Duffing equation with a periodic forcing. The
Duffing equation is written as
% + (1 — e2®) = beos wt (1.3.3)
where € is a nonlinear parameter, bcoswt is a periodic forcing. It can be considered
as a nonlinear spring system with a nonlinear spring (1 — ex?), and a periodic forcing
bcos(wt). The parameter and inertial condition are taken as b = 0.1, ¢ = 1, w =
27/25, and [z(0),2'(0)] = [1,1]. A 5th order Runge-Kutta scheme is performed to
integrate the equation numerically with At = 0.1. Figure 1.7 shows the corresponding
numerical solution. Due to the nonlinear mechanism, the wave profile of the numeri-
cal solution departures from a sine wave. We show the corresponding intrinsic mode
functions from EMD decomposition in Fig. 1.8. The original time series is separated
into five modes with one residual. Figure 1.9 shows the corresponding instantaneous
frequency for each mode. A frequency-modulation is clearly observed for the first
mode. As we will show in chapter 2, it belongs to the intrawave frequency-modulation

family. We compare the corresponding Hilbert marginal spectrum and the Fourier
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t
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Figure 1.8: Intrinsic mode functions from empirical mode decomposition for numerical
solution of the Duffing equation.

power spectrum in Fig. 1.10. They are significantly different. Both approaches cap-

ture the domain frequency and the periodic forcing. However, the Fourier analysis

needs high order harmonic components to mimic the nonlinear process, which is in-

deed a requirement of mathematics without physics sense. It stems from the linear

asymptotic representation of the nonlinear process. As we already have pointed out

previously, due to the nonlinear mechanism, the wave profile of the Duffing equation

o1 T 1

0.12
3
0.06

S gy ———

—
53

0 t i I ! }
0 20 40 60 80 100 120 140 160 180 200
t

N

Energy Ratio %

N

10 . .
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10° | -
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Figure 1.9: Instantaneous frequency for the Duffing equation: (a) instantaneous fre-
quency, (b) the relative energy. Frequency modulation is observed for the first IMF

mode.
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Figure 1.10: Comparison of the Hilbert marginal spectrum and Fourier power spec-
trum for Duffing equation. High order harmonic components are required by Fourier
analysis to mimic the nonlinear distortion of the nonlinear wave.

solution is in far deviation from a pure sine wave. High order harmonic components
are thus required by the Fourier analysis to mimic this deviation, namely nonlinear
distortion. For HHT, since it allows frequency- and amplitude-modulation simulta-

neously, it does not need the high order harmonic component any more to describe

the nonlinear distortion (Huang et al., 1998, 1999).

1.4 Alternative Approach?

About ten year ago, Huang et al. (1998, 1999) introduced a novel time-frequency anal-
ysis method, the Hilbert-Huang transform, or Empirical Mode Decomposition called

by some authors®, to deal with general nonstationary and nonlinear time series. This

In fact, a complete Hilbert-Huang transform has two steps. They are the empirical mode
decomposition and Hilbert spectral analysis. However, we note that some authors call the empirical

http://doc.univ-lille1.fr
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method has a very local level ability both in physical domain and spectral domain.
It also possesses fully self-adaptiveness ability, since there is no basis assumption a
priori (Huang et al., 1998, 1999; Flandrin & Gongalves, 2004). As an alternative
method to the Fourier-based approach, we will apply this methodology on turbulent

and environmental time series in this thesis.

X 3k ok ok sk ok ok sk ok ok sk ok ok ko

This thesis is organized as follows. In chapter 2, we present more details on the
traditional Hilbert-Huang transform, including Empirical Mode Decomposition, the
classical Hilbert Spectral Analysis. We generalize the latter one into arbitrary order
to consider the scale invariant properties of intermittent multifractal time series in
an amplitude-frequency space with validation in chapter 3.

In chapter 4, we recall the classical Kolmogorov’s 1941 theory on local homogenous
and isotropic turbulence together with intermittency and multifractal cascade ideas.
In chapter 5, we present an analytical model of the classical structure function analysis
to show its potential shortcoming. A similar analytical model is proposed to the
autocorrelation function of the velocity increment time series. It is found that the
autocorrelation function is a better inertial range indicator than structure functions.
In chapter 6, we apply the new Hilbert-based methodology to a turbulent database
from an experimental homogeneous and nearly isotropic turbulence experiment. We
recover the classical structure function scaling exponents ¢(g) in spectral space for the
first time. In chapter 7, we analyze a passive scalar (temperature) turbulence data

with very strong ramp-cliff structure, in which the classical structure function analysis

mode decomposition as Hilbert-Huang transform.
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fails. In chapter 8, we generalize the Extended-Self-Similarity (ESS) into Hilbert
frame to compare the scaling property of turbulent velocity with various turbulent
intermittency models. We finally apply the new methodology to environmental time
series: river flow discharge data in chapter 9, and surf zone marine turbulence data
in chapter 10, to characterize the scale invariant properties in amplitude-frequency

space. In chapter IV, we draw the main conclusions of this thesis.
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Chapter 2

Norden Huang’s 1998 Proposal:
Hilbert-Huang Transform

About ten year ago, Huang et al. (1998, 1999) introduced a new method, namely
Hilbert-Huang transform or Empirical Mode Decomposition, to deal with time se-
ries analysis that was claimed to be well adapted for nonlinear and nonstationary
data. During the last ten years, there have been more than 1000 papers devoted to
apply this new method to various engineering applications and many different sci-
ence research fields. For example, waves (Hwang et al., 2003; Veltcheva & Soares,
2004; Schmitt et al., 2009), biological applications (Echeverria et al., 2001; Baloc-
chi et al., 2004; Ponomarenko et al., 2005), financial studies (Huang et al., 2003b),
meteorology and climate studies (Coughlin & Tung, 2004; Janosi & Miiller, 2005;
Molla et al., 2006; Solé et al., 2007; Wu et al., 2007; Huang et al., 2009b), mechanical
engineering (Loh et al., 2001; Chen et al., 2004), acoustics (Loutridis, 2005), aquatic
environment (Schmitt et al., 2007), and turbulence (Huang et al., 2008), to quote a

few. In this chapter, we introduce this method in detail.

19
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2.1 Empirical mode decomposition

The most innovative part of the HHT is the Empirical Mode Decomposition. The
starting point of the EMD is that most of the signal are multi-component, which
means that there exist different scales simultaneously (Cohen, 1995; Huang et al.,
1998, 1999). This may be considered as faster oscillations superposed to slower ones
at very local levels (Rilling et al., 2003; Flandrin & Gongalves, 2004). We illustrate
this idea in Fig. 2.1.The characteristic scale is taken, for EMD method, as the dis-
tance between two successive maxima positions. This idea was at the original of the
introduction of Intrinsic Mode Function (IMF in the following). The definition of
an IMF is: (i) the difference between the number of local extrema and the number
of zero-crossings must be zero or at most one; (ii) the running mean value of the
envelope defined by the local maxima and the envelope defined by the local minima
is zero. Figure 2.2 shows an example of IMF. The next step is to consider how IMFs

can be extracted from time series.

Figure 2.1: A schematic illustration of the basic idea of EMD. The original signal
(thick line in the left diagram) is considered as the superposition of a faster oscillation
(middle diagram) on a slower oscillation (right diagram).

Norden Huang et al. (1998, 1999) introduced the Empirical Mode Decomposition

algorithm, called by himself “sifting process”, to decompose a given signal into several
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IMF

N A I N N N N B

100 200 300 400 500 600 700 800 900 1000

t

Figure 2.2: An example of IMF from EMD decomposition.

IMF modes (Flandrin et al., 2004). The corresponding flow chart of this sifting process
is shown in Fig. 2.3.

The first step of sifting process is to identify all the local extrema maxima (resp.
minima) points for a given time series z(¢). Once all the local extrema maxima
points are identified, the upper envelope ey, (t) is constructed by a cubic spline. The

the procedure is repeated for the local extrema minima points to produce the lower

envelope epin(t). Then the mean between these two envelope is defined as

emax(t) + €min(t)

my(t) = 5 (2.1.1)
The first component is then estimated by
hi(t) = z(t) — my(t) (2.1.2)

The procedure is illustrated in Fig. 2.4, where the the original data z(t) are shown
as thin solid line. Ideally, h;(t) should be an IMF as expected. In reality, however,
hy(t) may not satisfy the condition to be an IMF. We thus take hy(t) as a new time

series and repeat the sifting process j times, until hy;(¢) is an IMF

hij(t) = hij—1)(t) — ma;(t) (2.1.3)
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x(2)

il

—— Extract local extrema points —

cubic spIineﬂnterpolation

Local maxima: upper envelope e .. (1)

Local minima: lower envelope e (?)

l

my; (1) = (€, (1) +e€,,, (1)) / 2
h(8) = x(£) —m, (1)

!

=
Whether /() s IMF ? No | 1
= g =
: 1
S C.(0)=h, (1)
T e (1) = ()~ C, (1)

Figure 2.3: The flowchart of sifting process for EMD algorithm.
We thus extract the first IMF component C'(t)
C1(t) = hy;(t) (2.1.4)
and the residual r(t)
ri(t) = x(t) — Ci(t) (2.1.5)

from the data z(t). An illustration of the first sifting process for a real time series
is shown in Fig. 2.4. The sifting procedure is then repeated on residual until r,(¢)
becomes monotonic function or at most has one local extreme point. This means no

more IMF can be extracted from 7,(t). We finally have n — 1 IMF modes with one

© 2010 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Yongxiang Huang, Lille 1, 2009

2.1. Empirical mode decomposition 23

Figure 2.4: Tllustration of the sifting process of EMD algorithm: (1) identify all the
local extrema points (O), and construct the upper envelop en.x(t), and the lower
envelop ey (t), (2) calculate the running average m;(t), and (3) get the local detail
hy(t) after 1st sifting. The original time series z(t) is shown as thin solid line.

residual 7,(t). The original data z(t) is then rewritten as

n—1

w(t) =D Ci(t) +ralt) (2.1.6)

i=1
Due to a dyadic filter bank property of the EMD algorithm (Wu & Huang, 2004;
Flandrin et al., 2004; Huang et al., 2008), usually in practice, the number of IMF
modes is less than log,(V), where N is the length of the data set.

The above sifting process severs as two purposes: (i) to eliminate the riding wave,
(ii) to make the wave profiles more symmetric. Therefore, the sifting process should
be repeated enough times. However, if too many times sifting are performed, the
amplitude of the IMF modes will become constant, and the nonlinear wave profiles

is then distorted, which means the modes lose their physical meaning (Huang et al.,
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1998, 1999). To guarantee that the IMF modes retain enough physical sense for both
amplitude and frequency modulations, a stopping criterion has to be introduced to
stop the sifting process. Different types of stopping criteria have been introduced by
several authors (Huang et al., 1998, 1999; Rilling et al., 2003; Huang et al., 2003a;
Huang, 2005). We only describe here what we used in this thesis. The first stop
criterion is a Cauchy-type convergence criterion. In this we introduce the standard

deviation (SD), which is defined for two successive sifting process as

S -1 (t) — b (1)
Yo hij—1)(t)

If a calculated SD is smaller than a given value, then the sifting stops and gives an

SD = (2.1.7)

IMF. A typical value proposed by Huang et al. (1998) is 0.2 ~ 0.3, proposed based
on their experience (Huang et al., 1998). Another widely used criterion is based on 3
thresholds «, 6; and 65, which are designed to guarantee globally small fluctuations
in the mean while taking into account locally large excursions (Rilling et al., 2003).

Mode amplitude and evaluation functions are then given by

emax(t) — €min(t)
2

a(t) = (2.1.8)

and

o(t) = |m(t)/a(t)] (2.1.9)
The sifting is iterated until o(¢) < 6; for some prescribed fraction 1 — « of the total
duration, while o(t) < 0 for the remaining fraction. The typical values proposed by
Rilling et al. (2003) are a ~ 0.05, ; ~ 0.05 and 0y ~ 10 6;, respectively based on their
experience. We also set the maximal iteration number, for example 300, to avoid to
over-decompose the time series. In practice, if one of these criteria is satisfied, then

the sifting process stops to give an IMF.
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The above described EMD algorithm does the decomposition in a very local level
in physical domain without a priori basis. It also means that it is an a posteriori
method, since the basis (function) is induced by the data itself (Huang et al., 1998,
1999; Flandrin & Gongalves, 2004). The fully adaptiveness ability of this method
explains that it can be considered to be well adapted for nonlinear and nonstationary
data. However, the main drawback of this method is that it is not mathemati-
cally proved (Huang, 2005). More detail about the EMD algorithm can be found in
Refs. Huang et al. (1998, 1999); Rilling et al. (2003); Flandrin et al. (2004); Flandrin
& Gongalves (2004); Huang (2005).

2.2 Hilbert spectral analysis

After having extracted the IMF modes, one can apply the associated Hilbert spectral
analysis to each IMF component C; in order to extract the energy-time-frequency
information from the data (Long et al., 1995; Huang et al., 1998, 1999). The Hilbert

transform of a function C(t) is written as

C(t) = %P/W toftlt), dt’ (2.2.1)

where ‘P’ means the Cauchy principle value (Cohen, 1995; Long et al., 1995; Huang
et al., 1998). It is a singularity integration, which means that it should have a very
local ability to denoting fluctuations. For each IMF mode, one can construct the

analytic signal (Cohen, 1995), C;(t), as
Ci(t) = Cy(t) + 5Cy(t) = As(t)e?%® (2.2.2)

where
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Hence the instantaneous frequency can be defined by using the information of phase

function 6;(t), which is written as

do;(t)
i = 2.24
w a (2.2.4)
The original signal is finally represented (excluding the residual r,(t)) as
N N
z(t) = RP ZAi(t)ejei(t) — RP ZAi<t)€j Jwilt)dt (2.2.5)
i=1 i=1

where ‘RP’ means real part. The Hilbert-Huang transform can be taken as a gener-
alization of Fourier transform, see Eq. (1.1.3): it allows a frequency-modulation and
amplitude-modulation simultaneously. A Hilbert spectrum, H(w,t) = A%(w,t), is
thus designed to represent the energy in time-frequency representation (Long et al.,

1995; Huang et al., 1998). We further can define the Hilbert marginal spectrum as

h(w) = H(w,t)dt (2.2.6)

0
This is similar with the Fourier spectrum, and can be interpreted as the energy
associated to each frequency. We however underline the fact that the definition of

frequency here is different from the definition in the Fourier frame (Huang et al.,

1998, 1999).

We do not give the validation and calibration detail of the Hilbert-Huang trans-
form here. For details of the validation and calibration, we suggest Refs. Huang et al.

(1998, 1999).
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2.3 Intrawave frequency modulation and nonlinear
mechanism

We have mentioned in chapter 1 that the the frequency modulation can be further
termed into two different types, intrawave frequency modulation and interwave fre-
quency modulation. Indeed, the former one may be linked to the nonlinear distortion.
More precisely, it may be considered as a signature of nonlinear mechanism. We show

this by an example.
Intrawave Frequency Modulation

We have taken Duffing equation as an example to show the nonlinear distortion of

Fourier representation. Figure 2.5 (a) reproduces the instantaneous frequency w of the
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Figure 2.5: Illustration of the Intrawave Frequency Modulation by using Duffing equa-
tion: (a) instantaneous frequency of the 1st mode, (b) the Fourier energy spectrum
of the instantaneous frequency of 1st mode, respectively.

first IMF mode of the numerical solution of the Duffing equation. One can find that
the instantaneous frequency w itself varies with the time ¢ between 0.05 ~ 0.15 Hz,
with a mean value of 0.1 Hz. This corresponds to frequency-modulation. We take w as
a new time series and calculate it Fourier power spectrum. The corresponding Fourier

power spectrum is shown Fig. 2.5 (b). The dominant frequency is 0.21 Hz, twice of the
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mean frequency of the 1st IMF mode. This means that the instantaneous frequency
does vary within one period. This is an intrawave type of frequency modulation. We

argue that it corresponds to a nonlinear mechanism behind the time series.

Interwave Frequency Modulation

We consider another type of FM here, interwave frequency modulation. We construct
a linear chirp signal as (Flandrin, 1998):

z(t) = sin(210t + 1ioot2), 0<t<50 (2.3.1)

The corresponding instantaneous frequency is written

11
= — 4 —¢ 2.3.2
wt) =735 * 200 (2.3.2)

Figure 2.6 shows (a) the constructed chirp signal and (b) the corresponding instan-
taneous frequency. As a comparison with Fig. 2.5, one can immediately find the

difference between them: the instantaneous frequency w here is linearly increasing

with time t.
1
0.5
E o
8
-0.5
1 | | 0 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50 0 10 207530 40 50
t
Figure 2.6: Illustration of the Interwave Frequency Modulation: (a)a chirp z(t) =
sin( 25t + 75t%), (b) the instantaneous frequency w(t) = io + ﬁt, respectively.
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Nonlinear Mechanism

For comparison convenience, we replot the first IMF mode of Duffing equation (top)
and the chirp signal (bottom) in Fig. 2.7. This illustrates the difference between
them. The former one provides a departure from the sine wave due to a nonlinear
mechanism. The latter still keeps sine wave profile from period to period. Thus,
any nonlinear distorted waveform has been referred to as “harmonic distortions for

Fourier based methods”.

Figure 2.7: Comparison of the wave profiles of the first IMF mode of Duffing equation
(top) and the chirp signal (bottom). The former one deviates from a pure sine wave
profile with nonlinear distortion. The latter still keeps sine wave profile.

2.4 Summary

We introduced the Hilbert-Huang transform above, including the empirical mode
decomposition and the Hilbert spectral analysis. The combination of EMD and HSA
also is called Hilbert-Huang transform (HHT). It is have been shown that the HHT has
fully self-adaptiveness and very local ability in both physical and spectral domains.

It is particular suitable for nonstationary time series analysis.
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The main drawback of the HHT is its lack of solid theoretical ground, since the
EMD part is almost empirical (Huang, 2005). Recently, Flandrin et al. have obtained
new theoretical results on the EMD method (Flandrin & Gongalves, 2004; Rilling &
Flandrin, 2006, 2008, 2009). However, more theoretical work is still needed to fully

mathematically understand this method.
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Chapter 3

Our Generalization: Arbitrary
Order Hilbert Spectral Analysis

We consider here the main contribution of our work: the generalization of the classical
Hilbert-Huang approach for arbitrary order moments, in order to deal with scaling
intermittent multifractal time series. The results presented in this chapter are pub-
lished in Huang et al. (2008, 2009a, 2010a) [Y. Huang, et al. Europhy. Lett., 84, 40010,
2008.; Y. Huang, et al. Traitement du Signal, 25, 481-492, 2008; Y. Huang, et al. Phys. Rev.

E, 2010 (submitted). ]

3.1 Definition

The Hilbert marginal spectrum is defined as a marginal integration of the Hilbert

spectrum H(w,t) over ¢, which is written as

h(w) = +OO H(w,t)dt (3.1.1)

where H(w,.A) is the Hilbert spectrum. There is another equivalent definition, which
is based on the joint probability density function p(w,.A) of the instantaneous fre-

quency w and the amplitude A (Long et al., 1995; Huang et al., 2008, 2009a). The

31
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Hilbert marginal spectrum is thus rewritten as the marginal integral of the joint pdf

p(w, A) over A?

h(w) = /oﬂop(w,A)A2 dA (3.1.2)

One can find that the above definition is no more than a second order statistical
moment. This constatation leads us to generalize this approach to arbitrary order

moment

Lo(w) = /0 (A AT A (3.1.3)

where ¢ > 0! (Huang et al., 2008, 2009a). In case of scale invariance, we expect a

power law of the form

Ly(w) ~w @ (3.1.4)

where £(q) is the corresponding Hilbert-based scaling exponent. Due to the integra-
tion operator, £(¢) — 1 can be associated to the classical ((g) from structure function
analysis: (Azj) ~ (@) Therefore, the generalized Hilbert spectral analysis provides
a new methodology to characterize the scale invariance in an amplitude-frequency

space (Huang et al., 2008, 2010a, 2009a).

In the following context, we validate and calibrate the idea of the arbitrary or-
der HSA methodology by fractional Brownian motion simulations and a synthesized

multifractal nonstationary time series.

'In fact here ¢ can be take as ¢ > —1. However, we only consider the case ¢ > 0 in this thesis.
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3.2 Calibration and validation

3.2.1 Fractional Brownian motion and multifractal time se-
ries
Fractional Brownian Motion

Fractional Brownian motion (fBm) is a continuous-time random process proposed
by Kolmogorov (1940) in the 1940s and Yaglom (1957) and later named ‘fractional
Brownian motion’ by Mandelbrot & Van Ness (1968). It consists in a fractional in-
tegration of a white Gaussian process and is therefore a generalization of Brownian
motion, which consists simply in a standard integration of a white Gaussian pro-
cess (Mandelbrot & Van Ness, 1968; Flandrin, 1992; Samorodnitsky & Taqqu, 1994;
Beran, 1994; Rogers, 1997; Doukhan et al., 2003; Gardiner, 2004; Biagini et al., 2008).
Because it presents deep connections with the concepts of self-similarity, fractal, long-
range dependence or 1/ f-process, fBm quickly became a major tool for various fields
where such concepts are relevant, such as in geophysics, hydrology, turbulence, eco-
nomics, communications, etc (Samorodnitsky & Taqqu, 1994; Gardiner, 2004; Biagini
et al., 2008).

For a fBm X (t) process, the autocorrelation is well known to be the following

2

Ru(t,t) = % (27 + |25 — |t — ¢/2H) (3.2.1)

where o is the variance of X (t), and H is the so-called Hurst number (Samorodnitsky
& Taqqu, 1994; Beran, 1994; Gardiner, 2004; Biagini et al., 2008). The process is said

to be self-similar, since in terms of distributions for any real a

X(at) ~ |a/f X (t) (3.2.2)
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Figure 3.1: Illustration of fractional Brownian motion with various Hurst number H.
It is also well known for its stationary increments
X(t)—X(r)~X(t—1) (3.2.3)
For the case H > 1/2, the process exhibits long-range dependence, which means that
+oo
/ C(r)dr = o0 (3.2.4)
0

where the autocorrelation function is written as

C(r) = (X)X (t+ 7)) (3.2.5)

in which () means ensemble average.

The fBm is a classical monofractal process. It requires only one parameter, the

http://doc.univ-lille1.fr
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Hurst number H, to characterize the stochastic process. For structure function anal-

ysis, the scaling exponents is well known to be the following
(X (t+7) = X0 ~ 74D, ((q) = ¢H (3.2.6)

where (g (q) is the scaling exponent from structure functions. We thus expect for the

HSA approach the corresponding scaling exponents £x(q) to be the following
Lom(w) ~ w19 ¢n(q) = gH +1 (3.2.7)

where the ‘41’ corresponds to the integration operator in Eq. (3.1.3).

We consider here a Wavelet based algorithm to simulate the fBm process, which
was first proposed by Meyer (n.d.) and Sellan (1995), then developed by Abry &
Sellan (1996). Starting from the expression of the fBm process as a integral of the
fractional Gaussian noise process, the idea of the algorithm is to build a biorthogonal
wavelet depending on a given orthogonal one and adapted to the parameter H. Then
the generated sample path is obtained by the reconstruction using the new wavelet
starting from a wavelet decomposition at a given level designed as follows: details
coefficients are independent random Gaussian realizations and approximation coeffi-
cients come from a fractional Autoregressive Integrated Moving Average (ARIMA)
process. A MATLAB® code, namely wfbm, to realize this algorithm can be found
in the Wavelet toolbox of MATLAB®,

Figure 3.1 illustrates a 2'? data points portion of fBm with various Hurst numbers
H by using above mentioned algorithm with db2 wavelet. One can find that for the
long-range dependence case, H > 1/2, an increasing pattern in the previous steps is

likely to be followed by the current increasing step as well.
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The validation of the new arbitrary order Hilbert spectral analysis using this data

series will be considered below.

Nonstationary Multifractal Time Series

Since the introduction of multifractal concepts in the 1980s (Parisi & Frisch, 1985;
Grassberger & Procaccia, 1983; Benzi et al., 1984; Grassberger, 1986) in the field of

turbulence and chaos, this approach has met huge success.

hn B W N =

€

Figure 3.2: Illustration of the discrete cascade process. Each step is associated to a
scale ratio of 2. After n steps, the total scale ratio is 2.

Multifractal properties have been found in may fields, such as, turbulence (Ansel-
met et al., 1984; Frisch, 1995), financial time series (Ghashghaie & Dodge, 1996;
Schmitt et al., 1999; Lux, 2001; Calvet & Fisher, 2002), physiology (Ivanov et al.,
1999), rainfall (Schertzer & Lovejoy, 1987; Schmitt et al., 1998; De Lima & Gras-
man, 1999; Venugopal et al., 2006), etc. A multifractal process is a generalization
of monofractal process, in which a single exponent, such as Hurst number H, is

not enough to describe its dynamics; instead, a continuous spectrum of exponents is
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Figure 3.3: A sample for one realization 27 points with p = 0.25: (a) the multifractal
measure (b) the constructed multifractal nonstationary process.

needed.

For a few years now, new methods to generate nonstationary multifractal time se-
ries mimicking turbulent velocity or passive scalar time series have been proposed (Muzy
& Bacry, 2002). Here we adapt the idea of multifractal random walks using discrete

multiplicative cascades (Schmitt, 2003).

We consider here a synthesized multifractal nonstationary time series, which is
constructed based on a multiplicative discrete cascades (Schmitt, 2003). Figure 3.2
illustrates the cascade process algorithm. The larger scale corresponds to a unique
cell of size L = ¢y}, where {; is a fixed scale and \; > 1 is dimensional scale ratio.
For discrete model, this ratio is often taken as A; = 2. The model being discrete,
the next scale involved corresponds to \; cells, each of size L/A\; = oA}~ ". This is

iterated and at step p (1 < p < n) there are \] cells, each of size L/\] = {oA\]".
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Figure 3.4: Illustration of synthesized nonstationary multifractal time series with
various intermittent parameters pu.

There are n cascade steps, and at step n there are A} cells, each of size ¢y, which
is the smallest scale of the cascade. To reach this scale, all intermediate scales have
been involved. Finally, at each point the multifractal measure writes as the product

of n cascade random variables
e(@) = [[Wpe (3.2.8)
p=1
where W), is the random variable corresponding to position z and level p in the

cascade (Schmitt, 2003). Following multifractal random walk ideas (Bacry et al.,

2001; Muzy & Bacry, 2002), we generate a nonstationary multifractal time series as

u(z) = /Ox e(z)/?dB(z') (3.2.9)

where B(z) is Brownian motion. Taking lognormal statistic for ¢, the scaling exponent
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C(q) such as (|Au,(t)|7) ~ 7¢@ is written as

o) =5 -5 —3) (3.2.10)

where g is the intermittency parameter (0 < p < 1) characterizing the lognormal
multifractal cascade (Huang et al., 2010a).

A sample for one realization is shown in Fig. 3.3 (a) the multifractal measure, and
(b) the nonstationary multifractal time series, with p = 0.25, and n = 17 levels, cor-
responding to data sets with data length 2'7 points. Figure 3.4 shows the synthesized
nonstationary multifractal time series with various intermittent parameters pu.

As for fBm time series, these multifractal synthetic time series are analyzed below

using our new method.

3.2.2 Calibration and validation

Monofractal Processes: Fractional Brownian Motions

For the fBm process, we simulate 500 segments of length 22 data points each, using
above mentioned wavelet based algorithm (Abry & Sellan, 1996), with db2 wavelet
and various Hurst values from 0.1 to 0.9. The Hilbert transform is numerically esti-
mated by using a FFT based method (Marple Jr, 1999). Figure 3.5 shows the first six
order Hilbert marginal spectrum for H = 0.4 and 0.6. Power law is observed for each
curve as expected. The scaling exponent £(q) is then estimated on the corresponding
power law range by a first order least square fitting algorithm. We then represent the
corresponding scaling exponents &(q) for various value of ¢ from 0 to 6 in Fig. 3.6,
in which perfect straight lines of equation 1+ ¢H confirms the usefulness of the new

method to estimate &(q).
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Figure 3.5: The first six order Hilbert marginal amplitude spectra of fractional Brow-
nian motion with Hurst number (a) H = 0.4, and (b) H = 0.6. Power law behaviour
is observed for each curve as expected.

We then consider estimation of the H value. For this, we consider different es-

timators. They involve the first and second order moment. These estimators are

HN =¢(1) -1 (3.2.11a)
H* = (£(2) —1)/2 (3.2.11b)

and using the least square fitting for all ¢

H® = (£(q) —1)/q (3.2.11c)

The estimated He are shown in Fig. 3.7 for H (>), H* (O) and H® (O). They
are good agreement with the theoretical H. The mean error for each estimator are
5.3%, 3.1% and 9.4%. For comparison, we reproduce the estimated value H from
Ref. Rilling et al. (2005), in which two estimators H; (), Hy (A) based on IMF
modes and one estimator based on discrete wavelet transform Hy, () are presented.
We also show the absolute error |H s — H|, the estimated values departure from the
given Hurst number H as inset, where the gray patch indicates the deviation less

than 5%. We underline that Rilling et al. (2005) simulated the fractional Gaussian
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Figure 3.6: Scaling exponents £ (q) for fractional Brownian motion simulations with
H from 0.1 to 0.9.

noise by using the algorithm proposed by Wood & Chan (1994). Their proposed
estimators H; and H, are based on the assumption of a dyadic filter bank for the
EMD method (Rilling et al., 2005). If the absolute error is less than 5%, then there
is no significant difference between estimators. Their results show two different range
for H < 1/2 and 1/2 < H, see Fig. 3.7, in which it is indicated by the vertical dashed
line. They argued that for the case where H < 1/2, the dyadic filter bank property
which underlies the EMD approach is only an approximation that has to be refined
further (Rilling et al., 2005). The estimators Hf, H* and H® we proposed here may

provide more precise estimators, since they do not require the dyadic property.

The above numerical experiment confirms the usefulness of the arbitrary order

Hilbert spectral analysis methodology for the monofractal case.

© 2010 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Yongxiang Huang, Lille 1, 2009

42 Chapter 3. Our Generalization: Arbitrary Order HSA
1
| | | | | | | |
09— B H b R —
. . . . i . . o .
o H* : : | : : :
08_H°‘ ““““ Do Do | ““““ Do R > P —
o 8 B B . B N B B
: : : : | :
R T m
I Y Ry s O O O —
Bosl ¢ e & _
T : : s
: : é g 0Me6 T T T
04— V ““““ :I |
: & - @M oi2 g ERREREEEIREEERS
L v A o NE e l..
03 D QR - Y PR SR RR
\4 E : : E i v o
02— A B SO 004f B Ao X g R
.- ° S febes g g
01— 8 ... e s QT Ly KRR R
S 01 703 057 07 09
b L 11 H]
0O 01 02 03 04 05 06 07 08 09 1

Figure 3.7: Representation of the estimation Hurst number H' (>>), H* (O) and H®
(O) with the theoretical values H used for simulations. For comparison, the values
from Ref. Rilling et al. (2005) are also presented, using the estimator H; (), Hy (A)
and discrete wavelet transform Hy, (). The inset shows the absolute error for each
estimator. The gray patch indicates when the absolute error |Hesy — H| is less than

5%.

Multifractal Process: Nonstationary Multifractal Time Series

We then validate the Hilbert-based methodology for intermittent time series by con-
sidering the synthesized nonstationary multifractal time series, and quantify the error
parameter estimation. For each realization, we choose n = 17 levels with data length
217 points each. We estimated the structure function on the range 2 < 7 < 10000. The
corresponding scaling exponents ((q) are then estimated on the range 10 < 7 < 1000.
For the HSA approach, the 2'7 points are divided into several segments, each one
with 2'* points. This averaged Hilbert marginal spectrum is taken for each realiza-
tion. Power law behaviour is found on the range 0.0002 < w < 0.3, corresponding to

3 < 7 < 5000. The corresponding scaling exponents £(q) are then estimated on this
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Figure 3.8: Structure function and Hilbert marginal spectra for one 217 points realiza-
tion (a) the second order structure function, (b) the six order structure function, (c)
the second order Hilbert marginal spectrum and (d) the six order Hilbert marginal
spectrum, where the dashed line in each figure is the best fit in least square sense.

range. Figure 3.8 shows the second and the sixth order structure functions and the
corresponding Hilbert marginal spectra for one realization, where the dashed line is
the least square fitting of the power law. For comparison convenience, we consider in
the following &(q) — 1.

We then consider the convergence of the scaling exponents. For this we consider
the number of realization n and for each n, for ¢ € [1,n], we estimate separately each

value ¢; (or &;). We also take

n—oo N, 4

_ R
C(q) = lim —> " ¢i(g) (3.2.12)
i=1
Then the convergence is characterized by the ratio

_ 12 6le) (3.2.13)

Rald =2 {(q)
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Figure 3.9: The n-dependence of the average estimator fn(q) for various ¢, where n
is the number of realization. The vertical solid line indicates the number n = 1000.

where lim,, .o, R,(q) = 1. Figure 3.9 shows the convergence of this ratio for n between
1 and 70,000 for the case p = 0.25. It shows that if one wants an error of 1% in the
estimation of (, n = 100 realizations are enough. In the following we consider 70,000
realizations corresponding in average to an error 100 x |1 — R,| in the estimation of
{(q) (resp. £(q)) of 0.02% for ¢ = 2, 0.07% for ¢ = 4 and 0.13% for ¢ = 6 for structure
functions, and 0.03% for ¢ = 2, 0.04% for ¢ = 4 and 0.05% for ¢ = 6 for HSA. This

shows that we obtain very precise estimates of ((q) (resp. £(q)).

Fig. 3.10 shows the pdf of the scaling exponents provided by structure functions
and the HSA approach for ¢ = 2 and 6 estimated for individual realizations, where
the solid line is the Gaussian distribution fitting. These graphics show the spreading
of the scaling exponents estimates. The number n = 70, 000 of realizations considered
here is rather huge compared to other multifractal studies, and represents a rather

consequent numerical effort. Graphically, for small values of g, the variability in the

http://doc.univ-lille1.fr



© 2010 Tous droits réservés.

Thése de Yongxiang Huang, Lille 1, 2009

3.2. Calibration and validation 45

10° I | | 3
= -0-(2) | 3
N e |
e AR |- | 3
: S S N IO
- /m / 1 \ CP \ E —
10% = o A QP \ —
= = / 0ol 4 Q 3
A - A ¢ ¢ Q ! A -
A B g’ ! L @A -
10° allid & \ —
E A ey DA b S
- / M I | | \ \ \ —
g A & ¢ @) \ 7]
107 g ¢ ol v
= 4 | | ‘o 3
- I ® o g7 3

e s T R 2 I B
02 04 06 08 1 12 14 16 18

¢(9)/¢(g)

Figure 3.10: pdf of scaling exponents ((q) (resp. &.(¢q) — 1) for 70,000 realizations
with p = 0.25. The solid line is the Gaussian fitting.

estimation of scaling exponents provided by both approaches are quite close to the
Gaussian distribution. We also note that the shape of the pdf corresponding to the
HSA approach is narrower, which indicates that this approach provides a more precise

estimator of multifractal parameters.

We show the scaling exponents predicted by the structure functions (J) and the
HSA approach (O) in Fig. 3.11 for the cases p = 0.25 with n = 70,000, where the
inset shows the departure from ¢/2. The curves provided by the two methods are in

good agreement with each other.

We synthesized the multifractal time series with various intermittent parameter
w from 0.1 to 0.5, and 1000 realizations for each case (except the case p = 0.25). We

estimate p by considering the first order derivative of Eq. (3.2.10). We then have the
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Figure 3.11: Representation of scaling exponents ((q) (resp. &(q) — 1) for 70000
realizations with p = 0.25.

estimator p* given by

._2-%(0)

2.14
= (3:2.14)

where (’(q) is the first derivative of ((g). The first order derivative can be estimated

by the central finite difference algorithm with a second order accuracy

((q +0q) — (g —dq)
20q

((q) =~ (3.2.15)

where dq is the increment of the order ¢q. To estimate the first order derivative more

accurately, we may firstly fit the scaling exponents ((q) by a quadratic polynomial,

which is suggested by Eq. (3.2.10)

C(q) ~ p1@® + p2q + p3 (3.2.16)

where pi, po and p3 are fitting coeflicients in least square sense. We thus have

© 2010 Tous droits réservés.

('(q) = 2p1q + p2 (3.2.17)

http://doc.univ-lille1.fr



Thése de Yongxiang Huang, Lille 1, 2009

3.2. Calibration and validation 47

We show the estimated p* with ¢ = 2 in Fig. 3.12, where the inset shows the relative
error (in %) from the theoretical p values. It seems that both methods slightly overes-
timate u; however, the HSA provides a better estimation of y, which may be linked to
the local ability of the method both in the physical and frequency domains (Huang
et al., 1998, 2008). We thus have shown above the usefulness of the present new
methodology to extract multifractal exponents with values consistent with structure

functions.

| | | | | | |
0

01 015 02 025 03 035 04 045 05
m

Figure 3.12: Representation p*, which is estimated by p* = 2 — 4¢’(2). We first fit
the corresponding scaling exponent by a quadratic polynomial. Then the first order
derivative is estimated by Eq. (3.2.17).
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3.3 Marginal pdf of the Instantaneous Frequency

We consider here a special case, the zeroth order Hilbert marginal spectrum, which

1s written as
+0o0
Lo(w) = / plw, A)dA (3.3.1)
0

a marginal integration over A. More precisely, it is the marginal pdf of the instan-

4
10 IIIII| I IIIIIII| I IIIIIII| L

10° H=09

£(0) = 0.967 £ 0.007

10’5 IIIII| | IIIIIII| | IIIIIII| | 1l 1

0.001 0.01 0.1
w

Figure 3.13: The zeroth order Hilbert marginal spectrum Ly o(w) for various H. It
is also the marginal pdf for the instantaneous frequency w. The value of the scaling
exponent is found as £ (0) = 0.967 + 0.007. The slope of the dashed line is -1.

taneous frequency w. We note that the scaling exponent £(0) ~ 1 for all H and p,
for example, see Fig. 3.6 and Fig. 3.112. Figure 3.13 shows the corresponding zeroth
order Hilbert marginal spectra Lg o(w) for various H, where the dashed line indicates
the line with slope -1. The scaling exponents are then estimated on each power law

range. The mean scaling exponent is calculated as £y (0) = 0.967 £ 0.007. A -1’ like

2For the other j, the zeroth scaling exponents are also quite close to 1.
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Figure 3.14: The scaling exponent £(0) of the zeroth order Hilbert marginal spectrum
Lo(w) for different types data: fractional Brownian motion (@), velocity turbulence
(M), temperature turbulence (#), the Seine river discharge (A), and marine surf-zone
(). The value £(q) is found to be close to 1: 0.968 & 0.054, which is marked as the
gray patch. The dashed line indicates the mean value of £(0).

power law for the zeroth order Hilbert marginal spectrum is also found in various
experimental data, for example, turbulence velocity (Huang et al., 2008) (M), turbu-
lence temperature (4), Seine river flow discharge (Huang et al., 2009b) (A), surf-zone

fluctuation (<), etc. Figure 3.14 represents the corresponding £(0) for different types

data. A mean scaling exponent is then estimated as

(€(0)) = 0.968 + 0.054 (3.3.2)

It seems that the zeroth order scaling exponent £(0) ~ 1 is a quite general property
of the present Hilbert-based methodology (Huang et al., 2008). This brings us a
question: whether this exponent £(0) = 1 for the zeroth order Hilbert marginal

spectral Lo(w) is physically meaningful? If yes, what does it really mean? It should
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be a subject of further studies for future work.

3.4 Summary

In this chapter we have proposed a new methodology, namely arbitrary order Hilbert
spectral analysis, to characterize the scale invariance directly in amplitude-frequency
space (Huang et al., 2008, 2010a, 2009a). We have calibrated and validated the new
method by fractional Brownian motion simulation for the monofractal case and by
synthesized multifractal time series for the multifractal intermittent case. We found
that the Hilbert-based methodology provides a better Hurst estimator for 0 < H < 1.
The numerical experiments, performed for n = 70,000 realizations each of size 217
for multifractal time series, have shown that the HSA approach provides a better
estimator than structure function. We have also found that the scaling exponent for
the zeroth order Hilbert marginal spectrum or the marginal pdf of the instantaneous
frequency is quite close to 1. It seems that it is a general property of the present
method, still to be further understood.

We provide some comments on the present methodology, that we called “Arbitrary
Order Hilbert Spectral Analysis”. The arbitrary order Hilbert spectral analysis is
an extended version of the Hilbert-Huang transform. Therefore, it inherits all the
advantages and shortcomings of the HHT. The main drawback of the HHT method is
its lack of solid mathematical ground, since the EMD part is almost empirical (Huang,
2005). It has been found experimentally that the method, especially for the HSA, is
statistically stable with different stopping criteria (Huang et al., 2003a). Furthermore,
the present method measures the scale invariant properties directly in an amplitude-

frequency space (Huang et al., 2008, 2010a, 2009a). For the joint pdf, it seems that it
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requires a large sample size to get a good statistical quantities. We find that the joint
pdf itself may be scattered, but the Hilbert marginal spectrum may converge (Huang
et al., 2008). However, we need more theoretical/experimental work to help us to

fully understand the present Hilbert-based method.
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Chapter 4

Homogeneous Turbulence and
Intermittency: Velocity and
Passive Scalar

It is well-known that turbulence is the “last great unsolved problem of the classical
physics” (Feynman, 1964). Let us recall the problem of turbulence here.

Since Reynolds’ very famous experiment and seminal paper of 1894 (Reynolds,
1883, 1894), turbulence has attracted many researchers interest. However, even after
long time studies (Navier-Stokes equations date back to 1821), the problem of tur-
bulence is still open. It is often believed that turbulence researches are still in their
infancy (Lumley, 1992; L’vov & Procaccia, 1997; Yaglom, 2001; Lumley & Yaglom,
2001; Tsinober, 2001). Let us quote Sir Lamb’s famous story here (L’vov & Procac-
cia, 1997). In 1932, in an address to the British Association for the Advancement of
Science, he wittily expressed the difficulty of explaining and studying turbulence in

fluids. He said

“I am an old man now, and when I die and go to Heaven there are two
matters on which I hope enlightenment. One is quantum electro-dynamics

and the other is turbulence of fluids. About the former, I am really rather

95
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optimistic. ”

Soon after this Kolmogorov’s 1941 (K41) phenomenological theory of turbulence was
one of the main successful phenomenological theories to help us quantitatively un-
derstanding the turbulence. In this chapter, we will recall the classical framework of
K41 and its continuation dealing with intermittency and multifraction cascade

The Navier-Stokes equations for the velocity field u of an incompressible fluid are

5tu+(u-v)u:%+1/Au+f, vVou=0 (4.0.1)

where p is the pressure, p the density, f an external force and v the kinematic viscosity.
The flow is controlled by the Reynolds number

UL

Re = (4.0.2)

v
where U and L are the characteristic velocity and length scale of the fluid. It measures
the ratio between the inertial forces and the viscous forces. The number of degrees of

9/4 by a dynamical arguments (Bohr

freedom may link to the Reynolds number as Re
et al., 1998). As a consequence, for high Reynolds number turbulent flows, it is im-
possible to produce a direct numerical analysis/simulation of Navier-stokes equations.
Furthermore, a numerical simulation just reproduces the turbulent flow phenomena
numerically. It does not reveal the underlying mechanisms. The difficulties also come
from the fact that the Navier-Stokes equations are nonlinear, nonintegrable and non-
local simultaneously (Tsinober, 2001). We still need a statistical theory to describe
the turbulent flows, and more experiments to accumulate knowledge about the turbu-
lent flows (Lumley & Yaglom, 2001; Yaglom, 2001; Tsinober, 2001). Here we consider

the homogeneous and locally isotropic turbulence and focus on 1D turbulent time

series.
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4.1 Kolmogorov’s 1941 theory

Richardson Cascade

We quote Richardson’s famous words here (Richardson, 1922):
Big whirls have little whirls
that feed on their velocity
and little whirls have lesser whirls

and so on to viscosity in the molecule sense.

Dissipation of energy
€

Flux of energy

Injection of energy

R

J=- 0000000000

Figure 4.1: Illustration of the cascade process: the eddy is broken from integral scale
L, where the energy injects into turbulent flow, to Kolmogorov scale n, where energy
converts into heat.

It describes qualitatively a picture of an energy flux from large vortices to small ones.
It is often believed that the energy injects into the flow from large forcing scale L,
called integral scale. The energy transforms the energy from a large scale to a small

scale on the inertial subrange, n < ¢ < L, until one reaches the finest scale 1, namely
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Kolmogorov scale. Due to the fluid viscosity, the energy is then converted into heat

at this finest scale. Figure 4.1 demonstrates this procedure.

Kolmogorov’s 1941 Phenomenological Theory

In 1935, Sir G.I. Taylor postulated the concept of homogeneous and isotropic turbu-
lence behind a grid, which is an ideal model of turbulence (Taylor, 1935). In the same
time, he introduced the powerful Fourier analysis into turbulence research (Taylor,
1935, 1938). In 1941, Kolmogorov proposed a different version of homogeneous and
locally isotropic turbulence (Kolmogorov, 1941a), in which the statistical properties
of turbulent quantities of the velocity field are independent of the position and ro-
tation of the axes. Based on the Richardson cascade, he postulated the famous two

universality hypotheses (Kolmogorov, 1941a; Monin & Yaglom, 1971; Frisch, 1995):

Hypothesis 4.1.1 (Kolmogorov’s First Universality Hypothesis). At very high, but
not infinite Reynolds numbers, all the small scale statistical properties are uniquely
and universally determined by the scale ¢, the mean energy dissipation rate € and the

viscosity v.

Hypothesis 4.1.2 (Kolmogorov’s Second Universality Hypothesis). At very high,
but not infinite Reynolds numbers, if n < ¢ < L, then the statistical properties at
scale ¢ are uniquely and universally determined by the scale ¢, and the mean energy

dissipation rate e.
In his original paper Kolmogorov considered only the second order structure function

Baa(r) = (Au(r)?) (4.1.1)
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where Au(r) = u(z+r) —u(z) is the velocity increment and r is the separation scale.
Kolmogorov’s second universality hypothesis together with dimensional consideration
gives

Buq(r) ~ @33 (4.1.2)

where ¢ is the Kolmogorov constant and is believed to be universal (Kolmogorov,
1941a; Monin & Yaglom, 1971; Frisch, 1995). Independently from Kolmogorov,
Obukhov (1941) used the power spectrum of the velocity field and obtained the -
5/3 power law

By (k) = Coe?/Pk=>/3 (4.1.3)

where Cy is the Kolmogorov constant and k is the wavenumber. These two 2/3
and -5/3 laws are mathematically equivalent and have since been verified by many

experiments (Grant et al., 1962; Anselmet et al., 1984).

4.2 Intermittency and Kolmogorov’s 1962 theory

Energy Dissipation and Intermittency

In his original postulation, Kolmogorov assumed that the energy dissipation rate of

each unite € is almost constant. The energy dissipation ratio € is defined as

1% 8’&1 8Uj 2
= — 4.2.1

where v is the kinematic viscosity. Soon after Kolmogorov’s K41 theory, Landau

gave his famous remark that the energy dissipation can not be a constant! (Landau

!The Russian edition of the book on Fluid Mechanics was published in 1944. In the later versions,
the footnote was moved to the main text.
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& Lifshitz, 1987). Batchelor & Townsend (1949) also found by experiments that the

energy dissipation is intermittent.

Kolmogorov’s 1962 (K62) Theory

In order to take into account intermittency, K41 theory had to be revised. This was
done in 1962 by Obukhov and Kolmogorov. Concerning intermittent of the energy
dissipation, Obukhov (1962) suggested to replace the mean energy dissipation rate €

by a local space averaged energy dissipation rate

6 !/ /
ex) = v /r/<e/2 e(z+r")dr (4.2.2)

where £ is radius of the sphere. Following Obukhov (1962), Kolmogorov (1962) further
proposed the hypothesis that fluctuations of the energy dissipation rate e(x) satisfy
a lognormal distribution or have a scaling representation. Denoting o7 the variance

of log €/, he assumed

o7 = A+ pln(6y/0) (4.2.3)

where A and p are constants (u is often called the intermittency exponent). He
then postulated two refined hypotheses? (Kolmogorov, 1962; Monin & Yaglom, 1971;

Stolovitzky & Sreenivasan, 1994; Frisch, 1995; Sreenivasan & Antonia, 1997).

Hypothesis 4.2.1 (Kolmogorov’s First Refined Hypothesis). If r < L then the

conditional probability distribution function for the dimensionless relative velocities

_Au(e)
V=G (4.2.4)

depends only on the local Reynolds number Re, = £({e,)'/?/v.

2In fact, in Kolmogorov’s 1962 paper, there are three hypotheses. We only consider the first
two here. The third hypothesis is “T'wo subsets of values in the set (11) (the first hypothesis) are
stochastically independent, if in the first set | X(*) — X| > 1, in the second |X(*) — X| < 7y, and
ry > 7’2”.
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Hypothesis 4.2.2 (Kolmogorov’s Second Refined Hypothesis). If Re, > 1 then the
conditional probability distribution function indicated in the first hypothesis of V'

does not depend on Rey, i.e., it is universal.

Following the above two refined hypotheses, the structure function is then rewritten

as

(L) = (Aug(x)?) = Cyl€f/*) e (4.2.5)

where Auy(z) = u(z + £) — u(z) is the velocity increment with separation scale /.
Assuming the lognormal distribution of the energy dissipation €, one can obtain the

scaling exponent ((q) of the lognormal model

C(q) = % - % (¢ —3q) (4.2.6)

4.3 Multifractality

A few years after K62 theory, Gurvich & Zubkovskii (1963); Pond & Stewart (1965)

shown that the dissipation field possesses long-range power-law correlations
(e(z)e(x +£0)) ~ L7H (4.3.1)

This was not included in the K62 proposal. It leads Yaglom (1966) to attempt to con-
ciliate his “Master” Kolmogorov and experiment results: the lognormal distribution
of the energy dissipation ¢ and the long-range correlations of the energy dissipation,
by building a recursively nested cascade model, see also Schmitt (2003).

Let us consider a multiplicative discrete cascades process to simulate a multifractal
measure €(z). Fig. 4.2 illustrates the multiplicative discrete cascade process. The

larger scale corresponds to a unique cell of size L = ¢y}, where ¢ is a fixed scale
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N B~ W N -

€

Figure 4.2: Illustration of the discrete cascade process. Each step is associated to a
scale ratio of 2. After n steps, the total scale ratio is 2™ .

and A; > 1 is dimensional scale ratio. For discrete models, this ratio is often taken
as A\; = 2. The model being discrete, the next scale involved corresponds to A; cells,
each of size L/\; = foA7~!. This is iterated and at step p (1 < p < n) there are A}
cells, each of size L/} = £oA\]™?. There are n cascade steps, and at step n there are
AT cells, each of size £y, which is the smallest scale of the cascade. To reach this scale,
all intermediate scales have been involved. Finally, at each point the multifractal

measure writes as the product of n cascade random variables
e(z) = [[Wpe (4.3.2)

where W, , is the random variable corresponding to position z and level p in the
cascade (Schmitt, 2003). Since each W, , for different cells are assumed independent,

their moment of order ¢ > 0 can be estimated as

n

(e(x)) = [[(we,) = (wo)r (4.3.3)

1=0
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This gives

() ~ NE@ (4.3.4)

where A = L/{ = 2™ is the scale ratio, K(q) = log,(W9). The conservative property
(W) =1 gives K(1) = 0 and also (¢) = 1. One can obtain finally for the scaling

exponents ((q)

((¢9) =5 —K(3) (4.3.5)

where K(q) = £(¢* — q) for lognormal model.

Later, to explain Anselmet et al. (1984) results, Parisi & Frisch (1985) proposed
a multifractal formalism. The multifractal idea have been proposed in parallel by
several authors in turbulence (Parisi & Frisch, 1985; Benzi et al., 1984) and chaos
(Hentschel & Procaccia, 1983; Halsey et al., 1986). The early Yaglom (1966) pa-
per, together with Mandelbrot (1974) cascades, were recognized as belonging to the
multifractal framework.

These papers also gave a link between fractal singularities, their dimensions, and
the moment functions through a Legendre transform (Parisi & Frisch, 1985; Benzi
et al., 1984; Halsey et al., 1986).

Now, the accepted approach for multifractal cascades using singularities can be

written as (Schertzer & Lovejoy, 1987)
e~ 077, p(y) ~ ), e(y) =d—d(y) (4.3.6)

where « is a singularity, d(v) its dimension, ¢(y) the codimension. Singularities and

codimensions can be related to moments through a Legendre transform

(€l) ~ 7K@ K(q) = max(gy = ¢(7)) (4.3.7)
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This expresses a one-to-one relation between singularities (7,c(v)) and moments
(C(q),K(q)). This is for the cascading quantity e representing the flux, becoming
the dissipation € at small scales. For the velocity fluctuations, the framework is the
same: locally, velocity are singular, Au(f) ~ £" (where h can be < 0, but is most of

the time > 0) with codimension on the form
p(h) ~ ™ (4.3.8)
and momemts
(Au(£)7) ~ (5@ (4.3.9)

where ((¢) = min{gh + c¢(h)}. In the multifractal framework, one usually considers
the scaling properties of fluctuations using the dimension or codimension, or more

frequently, the moment functions K(q) or ((q).

4.4 Intermittency models

Many statistical models have been proposed since the introduction of the multifractal
formalism or even before. Let us only recall the most well known here. The debate

still exists to known which one is the closest to the data for turbulent fluctuations.

e The (8 model: This model was introduced by Frisch et al. (1978) but already
presented by Mandelbrot (1974) or Novikov (1969)

q

K(g)=ulg—-1), ¢(g)=-— u(§ ~1) (4.4.1)

This model is monofractal K(q) or ((q) are liner and there is only one fractal

dimension.
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e The lognormal model: This model is introduced by Kolmogorov (1962) and
Obukhov (1962)

o

5@ —3) (4.4.2)

K(q) =% —q), (g =

RS
i

where p is the intermittent exponent. For this model, the most famous multi-

fractal model, the moment functions are quadratic.

e The log-Poisson model: This model was introduced by She & Lévéque (1994),
Dubrulle (1994) and She & Waymire (1995)

K(g)=cl(1-=7)g—-14+7, <¢(q) = % —c [(1 - 7)% — 14493 (4.4.3)

where c is the codimension and ~y is linked to the maximum singularity events.
She & Lévéque (1994) original proposed ¢ = 2 and vy = 2/3 providing a relation

without adjustable parameters

C(g) = g +2—2(2/3)7/3 (4.4.4)

For this model, the nonlinear part is exponential.

e The log-stable model: This model was proposed Schertzer & Lovejoy (1987)
and Kida (1991); see also Schertzer et al. (1997)

K(q) = acill(qo‘ —q), (@)= % - aclll [(%)a — %} (4.4.5)

where Cf is the codimension of the mean events (0 < C; < d, where d is the
dimension of the observation space), and « is the Lévy index, bounded between
0 and 2. When a = 2 one recovers the lognormal model and when o = 0 the
(6 model. For a = 1 one has a log-Cauchy model. For this model the nonlinear

term is a power law.
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The log-Poisson and log-stable (including lognormal) belong to the log-1D (in-
finitely divisible) models, whereas the log-stable is based on a stable property. Let us
note that the {(q) is concave and has two fixed points ((0) = 0 by its definition and
¢(3) =1 (Kolmogorov, 1941c), but there are no more result on ((q), and the precise
analytical form depend on the model. The best model for turbulence intermittency

is still a matter of debate.

4.5 Passive scalar

Another important topic in turbulence research is the passive scalar turbulence (Sreeni-
vasan, 1991; Shraiman & Siggia, 2000; Warhaft, 2000). We recall the Kolmogorov-

Obukhov-Corrsin theory here.

Governing Equation

The advection/diffusion equation for a scalar © reads as

0,0(x,t) +u(x,t) - vO(z,t) = k2 O(x,t) (4.5.1)
where © is the scalar field (for example, temperature or dye concentration), u(z,t)
is the velocity field, and x is molecular diffusivity. We consider here only the case of

passive scalar, in which it has a negligible back effect on the flow (Shraiman & Siggia,

2000; Warhaft, 2000).
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Kolmogorov-Obukhov-Corrsin Theory

Following Kolmogorov’s argument (Kolmogorov, 1941a), Obukhov (1949); Corrsin
(1951) extended the K41 theory for passive scalar. It is well-known now as Kolmogorov-
Obukhov-Corrsin (KOC) theory. The KOC theory prediction of 1D spectrum of scalar
is

Fy(k) = Cyle) 3 (eg) 0/ (4.5.2)

where € is the energy dissipation rate, and

3
- r r r |
-8 —(p(q) F.G. Schmitt 2005(
25— - © —((q) F.G. Schmitt2006 _
0 : : g :
= — ¢/3 K4l z z -9
2 — - - 2R © SRR
=) : : PR
8( : : g :
A 15 S O - I §
a0 : - L - -
S s E/”@ %
cRN P M ~
05— e —
0 | | | | | | | |

Figure 4.3: Comparison of the scaling exponents ((g) and (y(q). It is notable that
C(q) > Cy(q) for ¢ > 2. The data are compiled by Schmitt (2005) and Schmitt (2006).

€g = 2k(00/0x;)(00/0x;) (4.5.3)
is the scalar dissipation rate. It also implies for the structure functions

Se(r) = (AO(r)T) ~ (e Yo/ *)apa/3 0@ (4.5.4)
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where AO(r) = ©(z 4 r) — O(x) is the scalar increment with scale separation r, and
Co(q) is the corresponding scaling exponent. Let us note that we have the only fixed
point (y(0) = 0 but we do not have (y(3) = 1 as in velocity because of the nonlinear
mixing of the two fluxes (or dissipations) € and €y. We should note that structure
functions for velocity and passive scalar are quite stable experimentally and seem to

such ((q) > (y(q) for ¢ > 2, see Fig. 4.3.

Intermittency and Ramp-cliff Structures

For a time, people thought that the passive scalar field is just a complementary of the
velocity field (Shraiman & Siggia, 2000; Warhaft, 2000). Thus the statistical proper-
ties of the passive scalar field should be determined by the velocity field. However,
experimental and numerical experiments indicate a more intermittent field than the
velocity field (Celani et al., 2000; Shraiman & Siggia, 2000; Warhaft, 2000; Moisy
et al., 2001; Gylfason & Warhaft, 2004). It is usually believed that the so-called
ramp-cliff structures play an important role in the passive scalar field. Ramp-cliffs
are large scale structures with sharp frontiers. Thus there is a coupling with the small
scales by this frontier (Shraiman & Siggia, 2000; Warhaft, 2000), see more discussion

in chapter 5 and chapter 7.

4.6 Summary

In this chapter, we recalled the classical Kolmogorov’s 1941 and 1962 phenomenologi-
cal theories of turbulence. Historically, Kolmogorov 1941 theory is the first successful
phenomenological theories about the turbulence, and provides a quantitative descrip-

tion of the turbulent phenomena. In his theory, the structure functions play an
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important role to characterize the scale invariant properties of intermittency in the

physical domain. We will emphasize on the structure functions analysis in chapter 5.
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Chapter 5

Structure Functions and
Autocorrelation Functions of
Increments

Since Kolmogorov’s 1941 milestone work, the structure function analysis is widely
used to extract scaling exponents in turbulent research (Monin & Yaglom, 1971;
Anselmet et al., 1984; Frisch, 1995). In his original proposal, Kolmogorov considered
a tensor AV, s in space, whereas we consider here a 1D process: we do not consider
the tensor and analyze time series. For this, we implicitly involve Taylor’s hypothesis
to consider scaling 1/3 properties of turbulent time series (Taylor, 1938; Frisch, 1995).

The structure function itself is seldom investigated (Nichols Pagel et al., 2008;
Podesta et al., 2009). In this chapter, based on statistical stationary assumption,
we present an analytical analysis of the structure function to characterize the scale
contribution and the influence of a single scale (Huang et al., 2010a, 2009a, 2010b).
The results presented in this chapter are for most of them are published in Huang
et al. (2009a, 2010a,b). [Y. Huang, et al. Traitement du Signal, 25, 481-492, 2008 ; Y.
Huang, et al. Phys. Rev. E, 2010 (submitted); Y. Huang, et al. Phys. Rev. E, 2010

(submitted).]

71
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5.1 Second order structure function

We investigate here the second order structure function of velocity increments in fully
developed turbulence. For this, we use some properties of the Fourier transform. We
will obtain results about the scale contribution and an influence of single scale to the

second order structure function.

Statistical Stationary Assumption

Considering the statistical stationarity assumption (Monin & Yaglom, 1971; Frisch,

1995), the velocity u(t) may represent in Fourier space as

+o0
0() = Flu(e) = [ ue " at (5.11)
where F means Fourier transform. Then the velocity u(t) may be reconstructed by
A +OO )N .
ut) = F O = [ O (5.12)
and u(t + ¢) as
A +m A .
u(t+0) = F O ) = [ O af (5.13)

where F~! means inverse Fourier transform, and ¢ is a separation time scale. There-
fore the velocity increment Awg(t) = u(t + £) — u(t) in structure functions may be

represent as
Auy(t) = / U(f)(e2m/ D _ giznity q (5.1.4)

This means that U(f)(e®™/* — 1) is the inverse Fourier transform of Aug(t). The

Fourier transform of the velocity increment is thus written as

Se(f) = F(Aue(t)) = U(f) (e — 1) (5.1.5)
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The corresponding Fourier power spectrum is expressed as

Ex(f) = [Se(f)I? = Eo(f)(1 — cos(2m f()) (5.1.6)

where E,(f) = 2|U(f)|? is the Fourier power spectrum of original velocity (Frisch,
1995; Hou et al., 1998; Huang et al., 2009¢c, 2010b). When fan = n/¢, where n =
0,1,2---, we have

1 —cos(2mfal) =0 (5.1.7)

showing that the contributions of frequency sequences fa are cancelled. In other

2 | | | | | = (1)
0 l'l‘ u u il
— -2 AN
-~
\é/ 0 50 100 150 200 250 300
=
<
> | | | h— (c)
ol
I
-2 |
0 50 100 150 200 250 300

0 50 100 150 200 250 300
t

Figure 5.1: Illustration of the nonstationary effect on velocity increments: the velocity
increment Az (7) = z(t) — z(t + 7) with different time delay, (a) 7 =1, (b) 7 = 2, (c)
7 =10, and (d) 7 = 20 points, respectively. The nonstationary effect is marked as a
rectangle. Here x(t) is taken from Eq. (5.1.8).
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Figure 5.2: Estimation of the statistical moments for ¢ = 2, 3, 4, 5 and 6: (a) the abso-
lute error |Az(7)|9—|Axz°(7)|?, (b) the relative error (|Ax(7)|?—|Az°(7)|?)/|Az°(T)|9,
respectively. The time delay 7 is taken as 10 (o), 20 (OJ), 100 (<) and 200 (A) points.
words, the difference operator acts as a kind of filter operator, where the corresponding
frequencies fa are filtered. This means that the structure function analysis provides
a statistical information without taking into account the corresponding scales 1/ fa.
The scale invariance properties are indirectly measured. Furthermore, the structure
function analysis is a global operator in physical space, since the difference operator
is manipulated on the same data for each separation scale (Huang et al., 2010a,b).

We illustrate the nonstationary effect on structure functions by constructing a

signal z(t) with a nonstationary perturbation as following

sin(t) 0<t<207
z(t) = 1.5sin(t) 20w <t <24n (5.1.8)
sin(t) 247 <t <1007
where the sampling frequency is set as 10 Hz. Figure 5.1 shows the increments for
various time delay (a) 7 = 1 point, (b) 7 = 2 points, (c¢) 7 = 10 points, and (d) 7 = 20
points, where the nonstationary effect is marked by the rectangle. Graphically, the

nonstationary event does have influence on all scales, since the increment operator is
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manipulated on the same data for each time delay. We then compare the statistical

moments with non-perturbation case
x2°(t) =sin(t), 0<t<1007 (5.1.9)

Figure 5.2 shows (a) the absolute error (|Az(7)[?) — (|Az°(7)|?), (b) the relative
error (|Ax(7)|?)/{|Az°(7)|?) — 1 for various time lag 7. The influence increases with
the order q. The relative error shows the same evolution trend with g. This shows
experimentally that the difference operator is still a global operator in the physical

domain.

Cumulative function

The mean kinetic energy (one-half of the variance of the random function) is the

integral of the energy spectrum over all frequencies

S(u?) = /;Oo E,(f)df (5.1.10)

where E,(f) is the Fourier power spectrum of the velocity u (Frisch, 1995). Assuming

statistical stationarity, the second order is thus rewritten as
(Aug(t)?) = 2(u?) — 2(u(t)u(t + £)) = 2(u?) — 2I'(¢) (5.1.11)

where I'(¢) is the autocorrelation function of the velocity u. The Wiener-Khinchin

theorem shows that (Percival & Walden, 1993; Frisch, 1995),

Il = /+OO E,(f)e*™taf (5.1.12)

o0

Here, E(f) is extended to negative frequencies by E(—f) = E(f). Thus the the

second order structure function is finally rewritten as (Monin & Yaglom, 1971; Frisch,
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1995)
+oo )
(Aug(t)?) = 4 / Eu(F)(1 — €20 df (5.1.13)
0
Let us introduce here a cumulative function for the second order structure function
f / /
1D d
p(s,0) = D a4 (5.1.14)
fo EA(f/) df/

where Ea(f) = E,(f)(1 — cos(2mf¢)). It is increasing 0 and 1, and measures the rel-
ative contribution to the second order structure function from 0 to f. When f = 1/¢,
the cumulative function Py(f) = P(1/¢,¢) thus characterizes the contribution from
the large scale part for frequencies larger than the one associated to the increment
time scale £. We further assume a pure power law for the original velocity Fourier

power spectrum

E,f)=cf P ¢c>0 (5.1.15)

where the value of § will be specified later. When substituted into Eq. (5.1.13), this
gives an integral which is divergent for some values of 3. The convergence condition
requires 1 < 8 < 3 (Frisch, 1995; Hou et al., 1998; Huang et al., 2010b). A scaling

calculation (Frisch, 1995; Huang et al., 2010b) leads to
(Aug(t)?) ~ 0771 (5.1.16)
For fully developed turbulence, the Kolmogorov spectrum corresponds to § = 5/3.

Experimental Results

We apply here the above arguments to an homogeneous and nearly isotropic turbulent

flow! at downstream x/M = 20, where M is the mesh size. The flow is characterized

'We will present more analysis results using these data in chapter 6 and chapter 8.
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by the Taylor microscale based Reynolds number Re, = 720 (Kang et al., 2003).
Details about the experiment can be found in chapter 6. Let us note here Ty = 1/ f;
the time resolution of these measurements, where f; = 40000 Hz is the sampling
frequency. Figure 5.3 shows the compensated spectra E(f)f” for both longitudinal
(thick line, f ~ 1.63) and transverse (thin line, § ~ 1.62) velocity components,
showing a more than two decades inertial range. The Fourier spectra are taken from
Ref. Kang et al. (2003), which are estimated by a window Fourier transform, see Kang
et al. (2003) for more information. The scaling exponent 3 is estimated from each

spectrum by a least square fitting algorithm.

~ 10_?
~ E
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N It (T IE T b2t OO
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Figure 5.3: Compensated spectrum E(f)f” of longitudinal (3 ~ 1.63) and transverse
(8 ~ 1.62) velocity at /M = 20, where 3 is the corresponding power law estimated
from the power spectrum. The plateau is observed on the range 20 < f < 2000 Hz
and 40 < f < 4000 Hz for longitudinal and transverse velocity, respectively.

To avoid the effect of measurement noise, see Fig. 5.3, we only consider the trans-

verse velocity here. Figure 5.4 shows the cumulative function P estimated from the
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Figure 5.4: Cumulative function P(f,¢) estimated from turbulent experimental data
for transverse velocity with ¢ in the inertial range, where the numerical solution is
shown as inset with ¢ = 1. The inertial range is denoted as IR. Vertical solid lines
demonstrate the corresponding scale in spectral space.

f 0.01004| 01 | 0.2 | 0.5 1 |10 | 100
P (%) | 0.5 | 3.0 |10.0|24.1 (629 |788|95| 99

Table 5.1: A numerical solution of cumulative function P(f,¢) with 5 = 5/3 and
¢ =1, which corresponds to the Kolmogorov scaling.

transverse velocity data, in which the spectrum E,(f) is directly estimated from the
data. The inertial range is marked as IR. We choose two time scales ¢/Ts = 20 and
¢/T; = 100 in the inertial range. The large scale contribution range is more than
1.4 decades wide. A numerical solution of Eq. (5.1.14) for a pure power law by tak-
ing E,(f) = f~°/3 is performed on range 107* < f < 10* with £ = 1 and the step
Af = 107% by using a fourth order accurate Simpson rule. The numerical solution

is shown as inset in Fig. 5.4, where the vertical solid line indicates the location of
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Figure 5.5: Cumulative function P;(f) estimated from turbulent experimental data
for both longitudinal and transverse velocity with various £.

1. The shape of the numerical solution is the same as the experimental one. We list
various value of P in Tab. 5.1. Not surprisingly, the large scale contribution P;(1)
is about 79%, which is consistent with experimental result, see Fig. 5.5. One can
find that the contribution from the first decade large scale, 0.1 < f < 1, is about
69%. Even for the second decade part, 0.01 < f < 0.1, the contribution is about
9.5%. These results show the important contribution of the large scales to the second
order structure function statistic. Figure 5.5 shows the corresponding P;(f) directly
estimated from turbulent experimental data for longitudinal (H) and transverse (@)
velocity on range 40 < f(= 1/¢) < 4000 Hz, where the spectrum E,(f) is taken the
Fourier power spectrum of each velocity component. Both curves have a similar evo-
lution trend, which may be termed into three terms: i) near forcing scale range, in
which the large scale contribution is less than 0.75, ii) unaffected inertial range, in

which the large scale contribution is on range 0.75 < P;(f) < 0.85, close to the value
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0.79 indicated by the numerical solution, and iii) near dissipation range, in which the
large scale contribution is larger than 0.85. Taking the transverse velocity as example,
the unaffected range is found around 1 decade, on range 200 < f < 2000Hz. It is
good agreement with the observation in Fig. 5.18, see next section. In the first and
the third terms of the cumulative function P;(f), the large scale contribution signif-
icantly deviates from the pure power law value 0.79. This indicates that these two
range are strongly influenced by either the large forcing scales or dissipation scales.
Furthermore, we note that the deviation may come from the following reasons: (i)
the finite power law range (Hou et al., 1998), (ii) the spectrum of the original velocity
is not a pure power law (Nelkin, 1994; Frisch, 1995) and (iii) the violation of the sta-
tistical stationary assumption. In any case, the above results indicate that structure

functions are strongly influenced by the large scales.

Influence by a Single Scale: Deterministic Forcing

We then consider the influence of a single scale both on the structure function and

the arbitrary order Hilbert spectral analysis.
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Figure 5.6: (a) A portion of fBm data with (bottom) and without (top) a sine wave
perturbation (middle), and (b) the corresponding Fourier power spectrum.
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Figure 5.7: Influence of a single scale on (a) the second order structure function,
and (b) the second order Hilbert marginal spectrum with various intensities /. The
vertical solid line indicates location of disturbance.

We simulate a fBm time series X (¢) with Hurst number H = 1/3, corresponding
to the Hurst value of turbulent velocity. We first normalize the time series by its

variance and then add on these data a pure sine wave with a disturbance frequency

fo =0.001 and various intensities /. This is written as

X(t) = X(t)/o + I sin(27 fot) (5.1.17)

where o is the variance of X (t). We show a 2 points portion of the simulated
fBm data in Fig. 5.6 (a) fBm data with (bottom) and without (top) a sine wave
perturbation (middle) with intensity I = 0.4, and (b) its corresponding Fourier power
spectrum. We then apply the structure function analysis and the arbitrary order
Hilbert spectral analysis on these data with various intensities I. For the former
approach, we consider time lags on the range 0 < 7 < 10000 points. For the original
fBm data, a power law behaviour is found on the range 5 < 7 < 10000 points.

The latter methodology is performed on each realization and the ensemble averaged

spectrum is taken as final spectrum. For the original fBm data, we find that a power
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law behaviour holds on the range 0.0002 < w < 0.2, corresponding to 5 < 7 < 5000
points. Figure 5.7 shows (a) the second order structure function, and (b) the second
order Hilbert marginal spectrum, where the solid vertical line indicates the location
of the disturbance frequency f,. The second order structure function is strongly
influenced by the single scale. An influence range down to the small scale is found
to be as large as 2 decades, which is marked by IF in Fig. 5.7. However, for the
Hilbert-based method, the influence range down to the small scale is constrained to
0.3 decades, which might be link to the fact that the EMD acts a dyadic filter bank
for several types of time series (Wu & Huang, 2004; Flandrin et al., 2004; Flandrin &
Gongalves, 2004; Huang et al., 2008).

We may also consider here the single scale as a periodic component (Huang et al.,
2010a). A quite general common property of multifractal time series (turbulent-like
stochastic dynamics) in the nature and geophysical sciences is superposed to a de-
terministic forcing associated to astronomical events (tide, daily cycle, annual cycle,
etc). This may pose a problem for the estimation of scaling exponents. This is the
case, for example, for river flow time series (Tessier et al., 1996; Kantelhardt et al.,
2003; Huang et al., 2009b), oceanic monitoring time series (Dur et al., 2007; Schmitt
et al., 2008), etc, also see chapter 9. As already noticed by several authors, the struc-
ture function may fail when a periodic component is present in the data (Kantelhardt
et al., 2003, 2006). Thus, we show here numerically that this influence on the struc-
ture function. We also show that the Hilbert-based methodology can constrain this

effect in an amplitude-frequency space (Huang et al., 2010a).
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Figure 5.8: One 0.2s portion of the temperature time series, showing strong ramp-cliff
structure.

Passive Scalar: An Example of Ramp-Cliff Structures

The above arguments and results indicate that the structure function may not con-
sidered a proper tool for scaling exponent extraction when the data possess energetic
large scales. This is the case of ramp-cliff structure in scalar turbulence (Sreeni-
vasan, 1991; Shraiman & Siggia, 2000; Warhaft, 2000; Celani et al., 2000): the struc-
ture induced by shear effect (Staicu & van de Water, 2003; Xia et al., 2008). To
show this experimentally, we consider a temperature time series with strong ramp-
cliff structure. The data is obtained in a shear layer of the mixing between a jet
flow and a cross flow, provided by Prof. Y. Gagne. The bulk Reynolds number is
about Re = 60000. The initial temperature of the two flows are T); = 27.8°C' and
T = 14.8°C'. The measurement location is close to the nozzle of the jet. For more
detail about this experiment, see chapter 7. Figure 5.8 shows a 0.2s portion temper-
ature data, showing strong ramp-cliff structures. Figure. 5.9 shows the compensated
spectra directly estimated by the Fourier analysis (solid line), the second order struc-

ture function (OJ), the Hilbert spectral analysis (O) and the autocorrelation function
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Figure 5.9: Compensated spectrum of transverse velocity. Plateau is observed on
range 80 < f < 2000 Hz for both Fourier spectrum (solid line) and Hilbert spectrum
(8). For comparison, the compensated spectra estimated from the second order
structure function (O) and the autocorrelation function (<) are also shown.

(&) (see Eq. (5.2.10) in next section). Both the structure function and the auto-
correlation function are converted from from physical domain to spectral domain by
taking f = 1/¢. Except for the structure function, the others show a clear plateau,
on the range 100 < f < 2000 Hz. For the structure function, an ambiguous plateau is
found on the range 300 < f < 2000 Hz; for higher order structure function, we even
cannot find an ambiguous inertial range, see chapter 7. However, the Hilbert spectral
analysis shows a clear inertial range even for ¢ up to 8. We reproduce the scaling
exponent estimated by the Hilbert methodology (O) in Fig. 5.10. It seems that the
scaling exponent £(q) — 1 is quite close to the scaling exponent ((q) for the velocity by
using the extended self-similarity approach (dash line) (Arneodo et al., 1996). The

scaling exponent provided directly by the structure function () seems to saturate
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Figure 5.10: Representation of the scaling exponents, which is estimated by HSA (O),
and structure function (<»). For comparison, the scaling exponent from Ref. Schmitt
(2005) (O) for passive scalar and from Ref. Arneodo et al. (1996) for the velocity
(dashed-line) are also shown.

when ¢ > 3.

The comparison between scaling exponents for temperature and velocity shows

that for ¢ > 2

Gola) < Gu(q) (5.1.18)

this is interpreted as an evidence that the scalar turbulence is more intermittent than
the velocity field (Frisch, 1995; Warhaft, 2000). The experimental results shown here
indicate that the effect of ramp-cliff structures for passive turbulence may be given
more attention. The passive turbulent field may be less intermittent than what we

believed before. We will present more detail and discussion in chapter 7.
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5.2 Autocorrelation function of velocity increments
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Figure 5.11: Autocorrelation function I'y(7) of the velocity increment Awu(f) esti-
mated from an experimental homogeneous and nearly isotropy turbulence time series
with various increments /. The location of the minimum value is very close to the
separation time ¢. The inset shows the rescaled autocorrelation function ().

We consider in this section the autocorrelation of velocity increments (without ab-
solute value), inspired by a remark found in Anselmet et al. (1984). In this reference,
it is found that the location of the minimum value of the autocorrelation function
['(7) of velocity increment Awu,(t) of fully developed turbulence with time separa-
tion ¢ is approximately equal to . The autocorrelation function of the increment

Vi(t) = Auy(t) time series is defined as
Lo(r) = ((Velt + 7) = m)(Ve(t) — 1)) (5.2.1)

where 7z is the mean value of V,(t), and 7 > 0 is the time lag.

We show the autocorrelation function I'y(7) of the velocity increments Aw,(t) for
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Figure 5.12: Location 7,(¢) of the minimum value of the autocorrelation function
estimated from experimental data, where the inertial range is marked as IR. The
solid line indicates 7,(¢) = £.

the longitudinal velocity in Fig. 5.11, where the rescaled autocorrelation function is
shown as inset. The location 7, of the minimum value of each curve is graphically

very close to ¢, which confirms Anselmet’s observation (Anselmet et al., 1984).

Let us define the minimum value of an autocorrelation function

[,(¢) = min{Ty(7)} (5.2.2)
and 7, the location of the minimum value
[, (0) = Ty(7o(0)) (5.2.3)

We show the estimated 7,(¢) for both longitudinal and transverse velocity on the
range 2 < ¢/T; < 40000 in Fig. 5.12, where the inertial range is indicated by IR. The

solid line illustrates 7,(¢) = ¢. When ¢ is larger than 207}, 7, is very close to ¢ even
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when / is in the large forcing scale range, in agreement with the remark of Anselmet

et al. (1984). We prove this observation analytically in the following.

An Analytical Model

o 1 [ |
: :—9—6:0.5
—o—p=1
: , : : S| ——B8=5/3
OB = o I AN A =2 ]
S ——p=25
S
~
“ i
= =
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Figure 5.13: Numerical solution of the rescaled autocorrelation function Y(<) with
various 3 from 0.5 to 2.5 estimated from Eq. (5.2.8).

We have shown previously that the Fourier transform of the velocity increment
Au(l) is written as

Se(f) = F(Au(0)) = U(f)(e* ~ 1)

where Au(f) = u(z + £) — u(z) and U(f) is the Fourier transform of the original
velocity. Hence, the 1D power spectral density function of velocity increments Ex (f)

is expressed as

EA(f) = |Se(f)IP = Eo(f)(1 — cos(2m f0)) (5.2.4)

where E,(f) = 2|U(f)|? is the velocity power spectrum (Frisch, 1995).
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Figure 5.14: Comparison of the autocorrelation function, which is predicted by
Eq. (5.2.19) (solid line) and estimated from fBm simulation (J) with ¢ = 200 points.

Let us consider now the autocorrelation function of the increment. The Wiener-
Khinchin theorem relates the autocorrelation function to the power spectral density

via the Fourier transform (Percival & Walden, 1993; Frisch, 1995)

Ty(r) = /O " Ba(f) cos(2n fr) df (5.2.5)

The theorem can be applied to wide-sense-stationary random processes, signals whose
Fourier transforms may not exist, using the definition of autocorrelation function in
terms of expected value rather than an infinite integral (Percival & Walden, 1993).

Substituting Eq. (5.2.4) into the above equation, we thus have

+oo
Ly(r) = / E,(f)(1 —cos(2mfl)) cos(2m fr)df (5.2.6)
0
Assuming a power law for 1D velocity spectrum (a hypothesis of similarity)

E,(f)=cf™", ¢>0 (5.2.7)
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we obtain
Ly(r)=c +<>0 F7P(1 — cos(2mfL)) cos(2n f) df (5.2.8)

0

The convergence condition requires 0 < § < 3. It implies a rescaled relation, using
scaling transformation inside the integral. This can be estimated by taking ¢ = A/,

f'=fA =71/ for A > 0, providing the identity directly from Eq. (5.2.8)
Doo(7) = Typ(t/A) N1 (5.2.9)
If we take £ = 1 and replace A by ¢, we then have
Ty(1) =Ty (7/0)6°! (5.2.10)
Thus, we have a universal autocorrelation function for each /¢
Tp(05)0 P =T (¢) = T'1(s) (5.2.11)

This universal autocorrelation function is shown as inset in Fig. 5.11. A derivative of
Eq. (5.2.9) gives T'y,(7) = I'}(7/A)A?~2. The minimum value of the left-hand side is
T = 7,(M), verifying I'} ,(7,(A¢)) = 0 and for this value we have also I'j(7,(A¢)/\) = 0.
This shows that 7,(¢) = 7,(A)/A. Taking again ¢ = 1 and A = ¢, we have

To(€) = £75(1) (5.2.12)

Showing that 7,(¢) is proportional to ¢ in the scaling range (when ¢ belongs to the
inertial range). With the definition of I',(¢) = I';(7,(¢)) we have, also using Eq. (5.2.9),
for 7 = 7,(\0):
Dae(mo(M)) = To(mo(A0) /AN
= Dy(7o(0)) N

(5.2.13)

© 2010 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Yongxiang Huang, Lille 1, 2009

5.2. Autocorrelation function of velocity increments 91

Hence T',(M) = A\°~IT,(¢) or
[,(0) =T (1)t (5.2.14)

We consider the location 7,(1) of the autocorrelation function for ¢ = 1. We take

the first derivative of Eq. (5.2.8), written for £ =1

. dPl(T)
 dr

R(7) _ /0 " P51 — cos(2nf)) sin(2r fr) df (5.2.15)

where we left out the constant in the integral. The same rescaling calculation leads

to the following expression

R(r)=[1+1/7)2+ (1 -1/7)f2-2] M/2,7 #1 (52.16)
R(r)=2°3-1)M, 71=1

where M = f0+°° 7178(1 — cos(27x)) sin(27rz7)dz and M > 0 (Samorodnitsky &

Taqqu, 1994). The convergence condition requires 1 < 3 < 4. When < 2, one

can find that both left and right limits of R(1) are infinite, but the definition of

R(1) in Eq. (5.2.15) is finite. Thus 7 = 1 is a second type discontinuity point of

Eq. (5.2.15) (Malik & Arora, 1992). It is easy to show that

R(r) <0,7<1
(5.2.17)

R(r) >0,7>1

It means that R(7) changes its sign from negative to positive when 7 is increasing
from 7 < 1 to 7 > 1. In other words the autocorrelation function will take its
minimum value at location where 7 is exactly equal to 1. We thus see that 7,(1) =1

and hence from Eq. (5.2.12) we proved that

T,(0) = ¢ (5.2.18)
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For the fBm, the autocorrelation function of the increments is known to be the

following (Biagini et al., 2008)
1
Lo(r) = 5 A+ 02 + |7 — (P — 77} (5.2.19)

where H is Hurst number, and 7 > 0. We compare the autocorrelation (coefficient)
function estimated from fBm simulation ([J) with Eq. (5.2.19) (solid line) in Fig. 5.14,
where ¢ = 200 points. Eq. (5.2.19) provides a very good agreement with numerical
simulation. Based on this model, it is not difficult to find that I',(¢) ~ 2 when
0 < H < 1, corresponding to 1 < g < 3, and 7,(¢) = ¢ when 0 < H < 0.5,
corresponding to 1 < 8 < 2. One can find that the validity range found here for
the scaling exponent 3 is only a subset of the validity range for Wiener-Khinchin

theorem.

Experimental Results

There is no analytical solution for Eq. (5.2.8). Above we could only give a rescaling
property of this function, and also give its explicit form for the fBm. It can also be
solved by a proper numerical algorithm. We perform this here using a fourth order
accurate Simpson rule of Eq. (5.2.8) on range 107* < f < 10* with £ = 1 for various 8
with Af = 1075 We show the rescaled numerical solutions for various 3 values Y(s)
in Fig. 5.13. We can verify that the location 7,(1) of the minimum autocorrelation
function is exactly equal to 1 when 0 < 3 < 2.

We then check the power law for the minimum value of autocorrelation function
given in Eq. (5.2.10). We simulate 100 segments of fBm with length 10° data points
each, by performing a Wavelet based algorithm (Abry & Sellan, 1996). We take db2

wavelet with H = 1/3 (corresponding to the Hurst number of turbulent velocity). We
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Figure 5.15: Representation of the minima value I',(¢) of the autocorrelation function
estimated from synthesized fBm time series with H = 1/3 (+), and the experimental
data for longitudinal () and transverse (O) turbulent velocity components, where
the corresponding inertial range is denoted as IR. Power law behaviour is observed
with scaling exponent f — 1 =2/3 and § — 1 = 0.78 £ 0.04 for {Bm and turbulent
velocity, respectively.

plot the estimated minima value I',(¢) (4) of the autocorrelation function in Fig. 5.15,
where the solid line demonstrates I',(¢£) ~ ¢2/3. A power law behaviour is observed
with the scaling exponent 3 — 1 = 2/3 as expected. It confirms Eq. (5.2.10) for {Bm,
the monofractal case. We also plot I',(¢) estimated from turbulent experimental data
for both longitudinal ([J) and transverse (O) velocity component in Fig. 5.15, where
the inertial range is marked by IR, which is provided by the Fourier power spectrum
of the original velocity. Power law behaviour is observed on the corresponding inertial
range, with scaling exponent 3 — 1 = 0.78 + 0.04. This scaling exponent is larger
than 2/3, which may be an effect of intermittency. The exact relation between this

scaling exponent with intermittent parameter should be investigated in future work.

© 2010 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Yongxiang Huang, Lille 1, 2009

94 Chapter 5. Structure Functions and Autocorrelation Functions

The power law range is almost the same as the inertial range estimated by Fourier
power spectrum. It indicates that autocorrelation function can be used to determine
the inertial range. Indeed, as we show later, it seems to be a better inertial range

indicator than structure function.
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Figure 5.16: Cumulative function Q(f,¢,7) estimated from turbulent experimental
data for transverse velocity with 7 = ¢ in the inertial range, where the numerical
solution is shown as inset with ¢ = 1. The inertial range is denoted as IR. Vertical
solid lines demonstrate the corresponding scale in spectral space. For comparison, we
also show the cumulative function P(f,¢) for the second order structure function.

As we have done for the second order structure function, we define here a cumu-

lative function

fo (f',¢,m)df’
Q(f, 4,7) = 5.2.20
R K TR (5220
where
K(f,0,7) = E,(f)(1 — cos(2mf¥)) cos(2m fT) (5.2.21)
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Figure 5.17: Cumulative function Q;(f) estimated from turbulent experimental data
for both longitudinal and transverse velocity with various /. The numerical solution
shows Q; ~ 0.49. For comparison, we reproduce the cumulative function P;(f) for
the second order structure function.

is the integration kernel of Eq. (5.2.6). It measures the contribution of the frequency
from 0 to f at a given time scale £ and time delay 7. We are particularly concerned
by the case 7 = ¢. To avoid the measurement noise, we only consider here the
transverse velocity. We show the estimated Q in Fig. 5.16 for two scales ¢/T, = 20
and ¢/T; = 100 (solid line) in the inertial range, in which the spectrum E,(f) in
Eq. (5.2.21) is directly estimated for the transverse velocity from the experimental
turbulent data. The vertical solid line illustrates the location of the corresponding
time scale in spectral space by taking f = 1/¢. The corresponding inertial range is
denoted by IR. We show the numerical solution of Eq. (5.2.20) for a pure power law
with £ =1 (solid line) as inset, in which the spectrum E,(f) in Eq. (5.2.21) is taken

as E,(f) = f~°/3 for a pure Kolmogorov power law. We notice that both curves cross
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Figure 5.18: Compensated spectrum of transverse velocity. A plateau is observed on
the range 40 < f < 4000 Hz and 20 < f < 2000 Hz for Fourier spectrum (solid line)
and Hilbert spectrum (O), respectively. For comparison, the compensated spectra
for the second order structure function () and the autocorrelation function (<») are
also shown.

the line @ = 0, which is marked by [J. We denote f, such as Q(f,) = 0. It has the
advantage that the contribution from the large scale part, £ > 1/f,, is canceled by
itself, and the small-scale and large-scale contributions are equal (Huang et al., 2009c¢).
In the inertial range, the distance between f, and the corresponding scale / is less than
0.3 decade. The numerical solution indicates that this distance is about 0.3 decade.
We then separate the contribution into a large scale part and a small scale part.
We denote the contribution from the large scale part as Q,(f) = Q(1/¢,¢,¢). The
experimental result is shown in Fig. 5.17 for both longitudinal ((J) and transverse (O)
velocity components. The mean contribution from the large scale is found graphically
to be 0.64. It is significantly larger than 0.5, the value indicated by the numerical

solution. It means that the autocorrelation function is influenced more by large scales

http://doc.univ-lille1.fr



Thése de Yongxiang Huang, Lille 1, 2009

5.2. Autocorrelation function of velocity increments 97

than by small scales.

For comparison, we reproduce the cumulative function P(f,¢) and Py(f) for the
second order structure function in Fig. 5.16 (dash line) and Fig. 5.17 (filled symbol).
The contribution range from the large scale part to the second order structure function
is much larger than the contribution range of the autocorrelation function. It is also
confirmed by Fig. 5.17 that the large scale contribution of the second order structure
function is larger than the large scale contribution of the autocorrelation function,
which can be linked to the cancellation property of the large scale part f < f, of the
autocorrelation function. This explains that the autocorrelation function is a better
inertial range indicator than the second order structure function (Huang

et al., 2009c).

We now consider the inertial range provided by the different methods. We replot
the corresponding compensated spectra estimated directly by Fourier power spectrum
(solid line), the second order structure function (OJ), the Hilbert spectral analysis (O)
and the autocorrelation function (<) in Fig. 5.18 for transverse velocity. For compar-
ison convenience, both the second order structure function and the autocorrelation
function are converted from physical space into spectral space by taking f = 1//.
Graphically, except for the second order structure function, the others show a clear
plateau more than two decades wide. The similar shape for the compensated sec-
ond order structure function can be found in Refs. Anselmet et al. (1984, Figure 10
and Figure 11) and Frisch (1995, P128, Figure 8.6). We have focused here on the
existence of the power law, not the value of the scaling exponent or the range of the
plateau. Thus we do not compare the scaling exponents here. Based on this obser-

vation, we state that the autocorrelation function is a better inertial range indicator
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than structure functions (Huang et al., 2009c¢).

5.3 Summary

In this chapter, we considered the second order structure function and the autocor-
relation function of the velocity increment time series Awuy(t), where ¢ is a time scale.
Taking statistical stationary assumption, we proposed an analytical model of the sec-
ond order structure function and the autocorrelation function. Within this model,
for the second order structure function, we found that it is strongly influenced by the
large scale part. Furthermore, the influence range down to the small scale part is as
large as two decades. However, the Hilbert-based methodology seems to constrain
the periodic effect in 0.3 decade, which may be linked to the fact that EMD acts a
dyadic filter bank. We thus argued that the widely used structure function method
is not a good method to extract the scaling exponents from a given time series when
the data possess energetic large scales. We showed this experimentally by analyzing
a passive turbulence data, a temperature time series obtained from a jet experiment.

For the autocorrelation function, we proved analytically that the location of the
minimum autocorrelation function is exactly equal to the separation time scale /¢
when the scaling of power spectrum of the original variable belongs to the range
0 < B < 2. In fact, this property was found experimentally to be valid outside
the scaling range, but our demonstration here concerns only the scaling range. This
model also suggests a power law expression for the minimum autocorrelation I',(¢).
Considering the cumulative integration of the autocorrelation function, it was shown
that the autocorrelation function is influenced more by the large scale part. We thus

argued that the autocorrelation function is a better indicator of the inertial range
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than second order structure function. These results have been illustrated using fully
developed turbulence data; however, they are of more general validity since we only

assumed that the considered time series is stationary and possesses scaling statistics.
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Chapter 6

Experimental Homogeneous and
Locally Isotropic Turbulence

Since Kolmogorov (1941c,a,b) proposed his very famous K41 turbulence theory, the
studies to extract the scaling exponents from various turbulent flows becomes one
central problem in turbulent research (Monin & Yaglom, 1971; Anselmet et al., 1984;
Antonia et al., 1984; Kraichnan, 1991; Frisch, 1995; Kahalerras et al., 1998; van de
Water & Herwijer, 1999; Sreenivasan & Antonia, 1997; Tsinober, 2001; Moisy et al.,
2001; Tsuji, 2004; Chevillard et al., 2005). The structure function scaling exponent
((g) extracted from various turbulent flows are well documented (Frisch, 1995; Sreeni-
vasan & Antonia, 1997). In this chapter, we apply the arbitrary order Hilbert spectral
analysis on an experimental homogeneous and nearly isotropy turbulent data to char-
acterize the scale invariant properties in amplitude-frequency space for the first time.
The results presented in this chapter are for part of them published in Huang et al.

(2008) [Y. Huang, et al. Europhy. Lett., 84, 40010, 2008.].

101
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6.1 Experimental data

The database we consider here is the same database we used in chapter 5. Here we

present it on more details.

Conventional passive grid wind tunnels of normal laboratory size allow to gen-
erate only moderate Reynolds number turbulent flow, with Taylor microscale based
Reynolds numbers typically less than 150. The main reason is that the root-mean-
square (r.m.s.) velocity downstream of a passive grid is relatively low (Kang et al.,
2003). As an alternative, the ‘active grid’ technique, which allows to achieve higher
Reynolds number turbulent flow, has been studied by several authors (Makita, 1991;
Mydlarski & Warhaft, 1996, 1998; Kang et al., 2003).

Table 6.1: Some parameters of the turbulent flow consider here at four different
locations: mean velocity (u), r.m.s velocity uyms (((u — (u))?)1/?), isotropy ratio
I, turbulence intensity (%), Kolmogorov scale n ((v®/€)}/*), Taylor microscale A
((15u2, . v/€)'/?) and corresponding Reynolds number Rey. The details about this
experiment and data can be found in Kang et al. (2003).

(up) (ms™1) 12.0 11.2 11.0 10.8
Uipms, (51 1.85 1.43 1.19 1.08
U, (m5™1) 1.64 1.25 1.04 0.932
I = Uirms. [Usrmms 1.13 1.14 1.14 1.16
Uienms./ (1) (%) 15.4 12.8 10.8 10.0
n (mm) 0.11 0.14 0.16 0.18
A (mm) 5.84 7.13 8.25 8.78
Rey = uprms AV 716 676 650 626

Experiments are performed downstream of an active grid in the return-type Corrsin
wind tunnel (Comte-Bellot & Corrsin, 1966, 1971) in the Johns Hopkins University’s

Corrsin wind tunnel (Kang et al., 2003). The wind tunnel has primary and secondary
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Figure 6.1: Schematic representation of the wind tunnel. Taken from Ref. Kang et al.
(2003).

contraction ratios of 25:1 and 1.27:1, respectively. The active grid is placed down-
stream of the secondary contraction, see the schematic of the wind tunnel in Fig. 6.1.
The test section length is 10 m and the cross-section is 1.22m by 0.91 m. The span-
wise width of the wind tunnel gradually increases along the test section to account for
boundary layer growth. Figure 6.1 demonstrates the schematic of the wind tunnel,

where the measurement locations are marked by x.

The design of the active grid follows that of Makita (1991) and Mydlarski &
Warhaft (1996, 1998). The active grid is composed of five horizontal and seven vertical
rotating shafts to which diamond-shaped winglets are attached. The shafts are made
of 19.05 mm square aluminium channel with 3.18 mm-thick walls. The horizontal and
vertical shafts have eight and six winglets, respectively, so that the grid size, M, is
0.152m. The 0.102x0.102m? square winglets are made of 3.18 mm-thick aluminium
plate. Along each shaft, the winglets are attached to opposite sides in an alternating
fashion to help reduce vibrations (Kang et al., 2003). A schematic diagram of the
active grid is shown in Fig. 6.2. Each shaft is independently driven by a 1/4 hp

AC motor (Baldor Industrial Motor, CNM20252) and each motor is controlled by an
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Figure 6.2: Schematic representation of the active grid. Taken from Ref. Kang et al.

(2003).

inverter (ABB Industrial Systems Inc., ACS 140). The control signal is generated by
a PC and sent to the twelve inverters through two six-node RS-485 serial networks,
using a National Instruments AT-485 card. Each motor is set to randomly change
rotational speed and direction once every second. The speed is selected from a uniform

distribution in the range of about 210-420 r.p.m., in both directions.

Figure 6.1 shows the schematic of the experimental wind-tunnel setup, in which the
active grid is located at the beginning of the test section. The measurement locations
in the streamwise (longitudinal) direction (z; ) are at z;/M = 20, 30, 40 and 48 and
marked by x. An X-wire probe array described in Kang & Meneveau (2001) is used
for measuring two velocity components in the (z; , x2 )-plane. The probe array is
composed of four custom-made miniature X-type hot-wire probes. The signals are

sampled at f, = 40 kHz, low-pass filtered at a frequency of 20 kHz and digitized with

© 2010 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Yongxiang Huang, Lille 1, 2009

6.1. Experimental data 105

20
18
16
I 14 u

12 1

u (ms

10

8
6 | | |
0 0.25 0.5 0.75 1

t (s)

Figure 6.3: One 1s portion of longitudinal velocity at location x/M = 48, showing
the intermittency nature of turbulent velocity field.

a 12-bit simultaneous sample and hold A/D converter (United Electronic Industries,
WIN-30DS). The sampling time is 30x30 s, so the total number of data points per
channel for each measurement location is 36 x10°. The array is located at the centre
of the wind tunnel and is moved manually to various downstream locations. The data
are recorded in the central core region (0.25 m< x2 <0.65m and 0.25 m< z3 <0.95m).
To obtain the spatial quantities in the streamwise direction from the temporal data,

Taylor’s hypothesis is invoked.

Table 6.1 shows the main parameters of each experimental data set, including the
mean longitudinal velocity (u;), the r.m.s. velocities uy, s and ugp s, the isotropy
ratio I = Uirms./Uorms., the turbulence intensity uiyms./{u1), the Kolmogorov scale
n = (v®/€)}/4, the Taylor microscale A\ = (15u?__ v/€)*/2, and the Taylor microscale
based Reynolds number Rey = ujrmsA/v. A 1s portion of velocity at downstream
x/M = 48, where M is the mesh size, is displayed in Fig. 6.3 to demonstrate the
intermittency and stochastic natural of the turbulent velocity field. We then show
the Fourier spectrum and the corresponding second order Hilbert marginal spectrum

at the downstream /M = 48 in Fig. 6.4, where the compensated spectrum E(f)f*/3
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Figure 6.4: Comparison of the Hilbert marginal spectrum (dashed-dotted line) and
Fourier spectrum (dashed line) at downstream x/M = 48. Both of them predict the
inertial subrange on the range 10 < w < 1000 Hz. The inset shows the corresponding
compensated spectra E(f) f%/°.

is shown as inset. The Hilbert marginal spectrum which is shown here is the first
experimental estimate of a Kolmogorov 5/3 spectrum in Hilbert spectral frame that
we published in a recent work (Huang et al., 2008). We can find that both spectra
predict an almost two decades inertial subrange on the range 10 < f(orw) < 1000 Hz,
which is illustrated as vertical dashed line. Therefore, the data we have chosen here
have a sufficient inertial subrange to test our new Hilbert-based methodology. For
more details about the experiment and the data see Kang et al. (2003); the data can

be found at http://www.me.jhu.edu/ meneveau/datasets.html.
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Figure 6.5: IMF modes of one 2'* points segment from EMD.

6.2 EMD decomposition of turbulent data

The original velocity time series is divided into 73 segments (without overlapping)
of 2! points each. After decomposition, the original velocity series is decomposed
into several IMFs, from 11 to 13 modes with one residual. Figure 6.5 shows the IMF
modes of one segment from EMD algorithm. The time scale increases with the mode
index n. We note that the number of IMF modes is deduced by the data themselves,
and depends on the length and the complexity of the data. In practice, based on
the dyadic filter bank property of the EMD algorithm, this number is usually less
than log,(NN), where N is the length of the database (Flandrin & Gongalves, 2004;
Flandrin et al., 2004; Wu & Huang, 2004; Huang et al., 2008).

The time scale is increasing with the mode index n; and each mode can be char-

acterized by its mean frequency, which is estimated by considering the Fourier energy
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log, (W)

Figure 6.6: Mean frequency @ vs mode index n for the longitude velocity time series.
There is an exponential decrease with a slope very close to 1, which indicates that
EMD acts as a dyadic filter bank. The inset shows the local slope p(n).

weighted mean frequency, @. The mean frequency w is defined as

_ _ [AIsihIFaf
1S RS

where S;(f) is the Fourier power spectrum of each IMF mode C;(t). Figure 6.6 shows

(6.2.1)

the mean frequency w(n), where the inset shows local slope. The straight line in

log-linear plot suggests the following relation
w(n) =wp™ (6.2.2)

where w, ~ 22000, and p = 2.0 £ 0.1, very close to 2. This implies that the EMD
algorithm acts as a dyadic filter bank in the frequency domain. An analogous property
was obtained using stochastic simulations of Gaussian noise and fractional Gaussian
noise (Wu & Huang, 2004; Flandrin & Gongalves, 2004), and it is interesting to note

here that the same result holds for fully developed turbulence time series.
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Figure 6.7: Fourier spectra for IMF modes. The vertical dashed lines indicate the
inertial subrange 10 < f < 1000 Hz. One can find that the modes belonging to the
inertial range have a similar shape.

We then interpret each mode according to their characteristic time scale. When
compared with the original Fourier spectrum of the turbulent time series, see Fig. 6.7,
these modes can be termed as follows: the first mode, which has the smallest time
scale, corresponds to the measurement noise; modes 2 and 3 are associated with the
dissipation range of turbulence. Mode 4 corresponds to the Kolmogorov scale, which
is the scale below which dissipation becomes important; it is a transition scale between
inertial range and dissipation range. Modes 5 to 10 all belong to the inertial range,
corresponding to the scale-invariant Richardson-Kolmogorov energy cascade (Frisch,
1995); larger modes belong to the large forcing scales. Figure 6.7 represents the
Fourier power spectra of each mode. It shows that each mode in the inertial range is
narrow-banded. This confirms that the EMD approach acts as a filter bank for turbu-

lence time series and that each mode can be associated to a given part of the different
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Figure 6.8: Fourier spectra for successive sums of IMF modes ) C;. The lope of the
reference line is -5/3. The vertical dashed lines indicate the corresponding inertial
subrange 10 < f < 1000 Hz. With the mode index increasing, the spectrum is then
asymptotic approached to the original spectrum.

zones of turbulence (injection scales, inertial range, dissipation scales) (Huang et al.,
2008). We then plot the Fourier spectrum of the cumulative sum of these IMF modes
in Fig. 6.8. For comparison, we also represent the Fourier spectrum of the original
longitude velocity u. The addition of more and more modes in the decomposition
is a progressive reconstruction of the original time series as can been seen from the

spectrum which asymptotically reaches the -5/3 behaviour.
6.3 Joint pdf and dimensional analysis

Here we consider the joint pdf in amplitude-frequency space, and obtain experimen-

tally new scaling result, for which we give some interpretation using dimensional
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Figure 6.9: Representation of the joint pdf p(w,.4) (in log scale) of turbulent fluc-
tuations in an amplitude-frequency space. The scaling range 10 < w < 1000 Hz
for frequencies is shown as vertical dashed-dotted lines. The dashed line shows the
skeleton Ag(w) of the joint pdf, which is the amplitude for which the conditional pdf
p(Alw) is maximum.

analysis.

Joint pdf p(w, A)

The arbitrary order HSA methodological framework provides a way to represent
turbulent fluctuations in an amplitude-frequency space (Huang et al., 2008, 2010a,
2009a). We represent the joint pdf p(w,.A) in Fig. 6.9 in a log-log view, where the
vertical dashed-dotted lines demonstrate the inertial subrange, 10 < w < 1000 Hz. It
can be seen that the joint pdf p(w,.A) decrease with increasing frequencies, with a

scaling trend. We show in the same graph the skeleton Ag(w) of the joint pdf which
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Figure 6.10: The skeleton of the joint pdf (a) As(w) in log-log plot. A power law
behaviour is observed in the inertial subrange with scaling exponent 0.38, which
is close to the Kolmogorov value 1/3, and (b) pmax(w) in log-log plot. A power law
behaviour is observed in the inertial subrange with scaling exponent 0.63. The vertical
dashed lines show the corresponding inertial subrange 10 < w < 1000 Hz.

corresponds to the amplitude for which the conditional pdf p(A|w) is maximum
As(w) = Ap; p(Ag,w) = m}x{p(AW)} (6.3.1)

We then reproduce the skeleton in Fig. 6.10 in two different views: (a) As(w) in a
log-log plot; (b) skeleton pdf ppax(w) = p(As(w),w) = maxa{p(Ajw)} in a log-log
plot, where the vertical dashed line indicates the inertial subrange. It is interesting

to note that a power law behaviour is found for both representations
As(w) ~w™ (6.3.2a)

where (5; ~ 0.38, and

Pmax(w) ~ w ™ (6.3.2b)

where (G5 ~ 0.63. Dimensional analysis to interpret these results is provided below.
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Table 6.2: The dimension of several physical quantities: wave number, k, arbitrary
order Hilbert marginal spectrum £,(k) and mean energy dissipation rate €.

Quantity Dimension

Wave number k 1/length (L7
arbitrary order HMS L,(k) | length?™ /time? (LIt T9)
Energy dissipation rate € energy/time (L2T3)

Dimensional Analysis

We rewrite here the arbitrary order Hilbert marginal spectrum in a wavenumber form
Lo(k) = / p(k, A)A" dA (6.3.3)

where k is the instantaneous wavenumber in the spatial domain, which corresponds
to the instantaneous frequency w in the temporal domain, and A is the instantaneous
amplitude. We list the dimensions for the arbitrary order Hilbert spectrum L£,(k),
the instantaneous wavenumber £, and the mean energy dissipation rate € in Table 6.2.

The amplitude A has the same dimension as the velocity «
(A =[A] = [u] = LT (6.3.4)

in which [] means dimension of a variable. The dimension of the arbitrary order

Hilbert marginal spectrum by its physical meaning is

[A)

[£4(k)] = T LatiT (6.3.5)
The dimension balance requires
[L4(F)] = [p(k, A)][A]" (6.3.6)
We thus have the dimension of p(k,.A)
[p(k, A)] =T (6.3.7)
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If we take the mean energy dissipation rate € and the wavenumber k as basic dimen-

sions, then we have

[Lq (k)] = [ ° k] @5V (6.3.8a)
(A = [Pk (6.3.8b)
[Pmax (k)] = [p(k, A)] = [ ~/°[k]7>/° (6.3.8¢)

Considering the Kolmogorov’s first and second universality similarity hypothesis (Kol-
mogorov, 1941a; Monin & Yaglom, 1971; Frisch, 1995), we thus have the following

power law in the so-called inertial subrange

L,(k) = C, &3~ /3)  p=(a/3+D) (6.3.9a)
As = Dy @/Bk=13 ~ 713 (6.3.9b)
Pmax(k) = Pye Y3k723 ~ k723 (6.3.9¢)

where C,, Dy and P, are Kolmogorov constant'. The argument presented above
indicates that the arbitrary order HSA methodology can be used to characterize the
intermittent properties of turbulence. We will further consider this topic in the next
section.

We notice that the difference between the estimated values  and the Kolmogorov
nonintermittent values may be an effect of the turbulent intermittency. We also note
that the value 5, = 0.38 is comparable with ((1) = 0.37 estimation given in Ref

van de Water & Herwijer (1999).

'However, these Kolmogorov constants may depend on the detail of the turbulent flow. There is
no reason to require them to be universal.
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Maxima Amplitude

Inspired by the log-Poisson model (She & Lévéque, 1994; Dubrulle, 1994; She &
Waymire, 1995), Vainshtein (2003) studied the most dissipative, most intense struc-

tures using a high Reynolds number experimental data. He found that the most
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Figure 6.11: Representation of the maxima amplitude (a) Apax(w) in log-linear plot,
and (b) the corresponding p(Amax(w)) in log-log plot, respectively.

intense of the dissipation field max(e,) satisfies a power law

max(e,) ~ (%)” (6.3.10)

The scaling value ~ is found 0.61 4 0.01, only slightly small than 2/3 (Vainshtein,

2003). We are here interested in the maxima amplitude A.x at given frequency w
Amax(w) = max{A|p4jw)£0} (6.3.11)

Figure 6.11 shows the maxima amplitude Ay (w) in two views: (a) Apax Vs w in
a log-linear, and (b) p(Amax) vs w in a log-log view, where the vertical dashed line

demonstrates the inertial subrange 10 < w < 1000 Hz. We obtain a law

Apax(w) = alogy(w) + b (6.3.12)
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in which @ ~ —0.91 and b ~ 4.19 are obtained by using a least square fitting. We

also observe a power law behaviour for p(Ay.y), which is written as
P(Amax) ~w™X (6.3.13)

where xy ~ 1.68. Here the plot is quite scattered, but nevertheless the straight line
trend in each representation is clear. We have no theoretical or dimensional expla-
nation to propose for these relations. However, these findings may be linked to the

nature of turbulence: this will be checked using more databases in the future studies.

Rescaled Conditional pdf
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Figure 6.12: Representation of the rescaled conditional pdf p;(A,w) in the inertial
range, for fixed values of w = 10 (OJ), 10*° (O), 102 (A), 10?® (v7) and 10° Hz (1>). For
comparison, we also plot the normal distribution (dash line), log-normal distribution
(solid line) and log-Poisson distribution (dashed-dotted line).

The power law relation for the skeleton indicates a rescaling relation for the pdf

pi(Aw) = w?2p(A/wPt w). We plot it in Fig. 6.12 for various fixed values of w
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in the inertial subrange, where w = 10 (O), 10° (O), 10* (A) and 10° () Hz,
respectively. In case of monoscaling, these pdfs should superpose perfectly; here the
plot is scattered, but nevertheless we note that the lack of superposition of these
rescaled pdfs is a signature of intermittency. Moments of this pdf are less noisy as
will be visible below. For comparison, we plot the normal distribution (dashed line),
lognormal distribution (solid line) and log-Poisson distribution (dashed-dotted line)
in the same figure. It seems that the log-Poisson distribution provides a better fit to
the pdf than the lognormal distribution for the left-hand part, whereas the lognormal

fit is better for the right-hand part.

6.4 Intermittency

Figure 6.13 shows L,(w) for various orders of Hilbert marginal spectra (0, 1, 3, 4, 5
and 6). The moment of order 0 is the marginal pdf of the instantaneous frequency
w, see Eq. (3.3.1) and the discussion in section 3.3. It is interesting to note that this

L corresponding

pdf is extremely “wild”, having a behaviour close to Lo(w) ~ w™
to a “sporadic” process whose probability density is not normalizable ([ p(w) dw
diverges). This result is only obtained when all modes are considered together; such
pdf is not found for the frequency pdf of an individual mode. This property seems
to be rather general: we observed such pdf for moment of order zero using several
other time series: for example surf-zone turbulence data, fBm (Huang et al., 2010a,
2009a), river flow discharge data (Huang et al., 2009b). Hence it does not seems to
be linked to turbulence itself, but to be a main property of the HSA method, see

discussion in section 3.3. Such pdf indicates in fact that high frequencies have a

smaller probability than low frequencies, but still the decrease is very slow with a
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Figure 6.13: Representation of £,(w), Hilbert spectral analysis of velocity intermit-
tency, using different orders of moments (0, 1, 3, 4, 5 and 6). Power laws are observed
on the range 10 < w < 1000 Hz for all spectra. The scaling exponent £(q) are esti-
mated on the inertial subrange, which are indicated by the vertical dashed lines.

heavy tail giving large probability to extrema events. We observe the power laws in
range 10 < w < 1000 Hz for all order moments. The values of scaling exponents £(q)
are shown in each picture. This provides a way to estimate scaling exponents £(q) for
every order of moment ¢ > 0% on a continuous range of scales in the frequency space.
We show the corresponding scaling exponent £(q) in Fig. 6.14, where the inset shows
the departure from the K41 law. For comparison, we also display the scaling exponent
provided by the Extended Self-Similarity (ESS) (Benzi et al., 1993a,b, 1995) as dashed
line. It can be seen that £(¢) — 1 is nonlinear and is close to ((q), but departure from
the K41 law shows that the curvature is not the same: £(q) seems less concave than
C(q). We thus recover the classical structure function scaling exponent ((g) in an

amplitude-frequency space here for the first time.

2As we have already indicated in chapter 3, the order of moment ¢ can belong to the on range
q > —1. However, we only consider the case ¢ > 0 here.
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Figure 6.14: Comparison of the scaling exponents £(g) —1 (O) with the classical ((q)
obtained from structure functions analysis with the ESS method (dashed line) and
K41 ¢/3 (solid line). The inset shows the departure from the K41 law.

6.5 Isotropy ratio and isotropy scaling exponent

In the database we consider here, for achieving high Reynolds number turbulent
flow, an active-grid technique is performed (Kang et al., 2003), which may cause
the turbulent flow to violate the local isotropy hypothesis. In this section we check
the scale dependent local isotropy ratio Z(w) and the corresponding isotropy scaling

exponent I'(q).

Scale Dependent Isotropy Ratio

A scale dependent isotropy ratio is defined as

I(w) = (6.5.1)
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Figure 6.15: The scale dependent isotropy ratio I(w) = Ly 2(w)/Ly2(w) (O), where
the vertical solid line indicates the inertial range 10 < w < 1000 Hz. The horizontal
dashed line indicates theoretical value 3/4 (Kolmogorov, 1941c). The direct estima-
tion of the isotropy ratio is 1.16 (Kang et al., 2003). For comparison, we also show
the scale dependent isotropy ratio provided by Fourier spectrum (O) and structure
function analysis (A), respectively. Except for the large scale part (w < 10 Hz), all
these approaches provide almost the same shape. The Fourier spectrum is taken from
Ref. Kang et al. (2003).

where £,2(w) and L, 2(w) are the second order Hilbert marginal spectrum of the
longitudinal and transverse velocity components. This is an isotropy ratio because
it quantifies the scale dependent energy ratio between longitudinal and transverse
velocity components. The Kolmogorov theory predicts that Z(w) equals 3/4 if the
scale w in the inertial range (Kolmogorov, 1941c; Monin & Yaglom, 1971). Let us
recall here how this isotropy ratio is obtained. The second order structure function

of longitudinal and transverse velocities can be related as (Monin & Yaglom (1971)
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p.352)

St(r) = Si(r) + 5 (6.5.2)

It is a consequence of the continuity equation. Taking the Kolmogorov’s second

similarity hypothesis, we have in the inertial range
S2(r) ~ Cr¥3,  Si(r) ~ C'r*3 (6.5.3)

where C' and C’ are the universal constants. From Eq. (6.5.2) and Eq. (6.5.3), it is
easy to show that
¢ 3
== =1 (6.5.4)
A similar argument may apply to the Fourier power spectrum, see Monin & Yaglom
(1971) for more details.

Figure 6.15 shows the scale dependent local isotropy ratio Z(w) (), where the
vertical solid lines demonstrate the location of the inertial range 10 < w < 1000 Hz,
and the horizontal dashed line indicates the Kolmogorov value 3/4. For comparison,
we also show the scale dependent isotropy ratio provided by Fourier spectra (O) and
structure function analysis (A) in the same figure (the structure function is converted
from physical space into spectral space by taking f = 1/7). Except for the large scale
part (w < 10 Hz), all these methods give almost the same shape. The direct estimation
of the isotropy ratio at this location is 1.16, which is estimated by the ratio of r.m.s.
velocity Uiy m.s. /Uor.ms., see Table 6.1. This value may be influenced by the large scale
anisotropy. We note that the plateau range provided by the structure function is
slightly different from the others, see also Fig. 6.16 (b). We have shown previously
that the structure function is strongly influenced by the large scales. The difference

shown here could be an effect of the large scale anisotropy on the structure functions,

see chapter 5 for more discussion on the structure function.
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The isotropy ratio has a different behaviour depending on the scale: the large
scale forcing, the inertial range, where the local isotropy ratio is close to Kolmogorov
value, and the dissipation range. Due to the grid and boundary effects, the large
scale structure is strongly anisotropic. With the scale decreasing (or the frequency
increasing), the structure becomes more and more isotropic and value asymptotically
the theoretical value 3/4 in the inertial range. It then keeps this value until entering
the dissipation range. In the dissipation range, the isotropy ratio deviates from its
theoretical value and increases very fast, which is maybe also the effect of measure-
ment noise. The mean isotropy ratio T are TH = 0.77 £ 0.05, Z* = 0.79 + 0.03, and
ZF = 0.81+0.02 for the HSA, structure function and Fourier estimators, respectively.

It seems that the HSA approach provides the most isotropic prediction.

Generalized Isotropy Ratio

In order to quantify the evolution of the isotropy ratio for more and more intense
events, and hence larger and larger moments we introduce the generalized isotropy

ratio for arbitrary order Hilbert marginal spectra

£“7 w 7(q)—&L
T,(w) = : qéw; ~ w&r(@)—€r(a)) (6.5.5)
v,q

where {7 (q) and &7(q) are the corresponding scaling exponent functions for longitudi-
nal and transverse directions. We then expect Z,(w) to be independent from w on the
inertial range. Figure 6.16 (a) shows the Z,(w) for various ¢ values in log-linear view
on the range 8 < w < 2000 Hz, where ¢ =0 (O), 2 (0), 4 (A) and 6 ({). The vertical
solid lines indicate the plateau on the range 20 < w < 800 Hz. The mean generalized
isotropy ratio value TH (q) is then estimated on this range, which are shown as thick

horizontal dashed lines. The plateau range decreases with q. We apply the same idea
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on structure function analysis. Figure 6.16 (b) shows the estimated Z,(f) on the range
8 < f(=1/7) < 8000 Hz for various ¢q. As we have mentioned previously, the struc-
ture function is strongly influenced by the large scales. The beginning of the flatness
range is shifted of almost one decade. The range of plateau decreases with ¢. It seems
that the structure function approach decreases faster than for the HSA approach. The

mean isotropy ratio Z°(q) is estimated on the range 100 < f(=1/7) < 2000 Hz.
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Figure 6.16: The scale dependent generalized isotropy ratio Z: (a) estimated by HSA
approach on the range 8 < w < 2000 Hz, where ¢ = 0 (0), 2 (), 4 (A) and 6 ();
(b) estimated by structure function on the range 8 < f(= 1/7) < 8000 Hz, where
g =1(0),2(0), 4 (A) and 6 (). The vertical solid lines indicate the plateau
range, where the mean isotropy ratio Z(q) is estimated.

Before plotting the result, we estimate the generalized isotropy ratio using the
skeleton representation. Figure 6.17 shows the isotropy ratio for the skeleton A4(w)
(O) of the joint pdf p(w,.A) and the corresponding conditional pdf pupax(w) (O),
the maxima amplitude Apax(w) (A) and the corresponding conditional pdf p4,,.. (w)
(solid line in inset). The ratio appears here noisy. However, except the condi-
tional pdf py,_, (w) for the maxima amplitude, a flatness trend exists for the others
on the inertial range. We estimate the mean isotropy ratio on the inertial range

10 < w < 1000Hz. We then plot in Fig. 6.18 the mean generalized isotropy ratio
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Figure 6.17: The scale dependent generalized isotropy ratio Z(w) on range 5 < w <
8000 Hz, where A (O), pmax(w) (O) and Apax (A), respectively. The inset shows the
isotropy ratio for p4,,,.. The vertical dash lines indicate the inertial range 10 < w <
1000 Hz. The mean isotropy ratio Z is then estimated on this range.

77 (q) (O) estimated from the Hilbert spectra and the skeleton. A straight line trend
seems compatible with the data. It suggests that the mean generalized isotropy ratio

decreases linearly with ¢

I(q) = ag + 8 (6.5.6)

where & ~ —0.091 and B ~ (.96 obtained from a least square fitting. Let us note that
Antonia et al. (1997) provided a 9/16 isotropy ratio for the fourth order structure
function. If we assume that the generalized isotropy ratio decreases linearly with g,
and consider the two theoretical isotropy ratio values as boundary condition, we then

have the equation

I(q) = P (6.5.7)

which is displayed as a dashed line in Fig. 6.18. It is rather good agreement with
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Figure 6.18: Representation of generalized isotropy ratio Z(g), estimated from the
arbitrary order Hilbert marginal spectra £,(w) (O), the skeleton As (A), maxima
amplitude (O) and the conditional pdf p(As) ({). The dashed line indicates a linearity
theoretical prediction by Eq. (6.5.7). The dashed-dotted line is an isotropy relation
Z(q) = (2/3)+9 provided by Siefert et al. (2005). The inset shows the generalized
isotropy ratio for the structure function.
experimental isotropy ratio. One interesting finding is that the mean isotropy ratio
for the skeleton and the maxima amplitude are also in agreement with this linear
prediction.

Other predications for the generalized isotropy ratio exist in the literature such

as the one of Siefert et al. (2005). They assume of 2/3 rescaled factor between

longitudinal and transverse velocity components, giving

Ju(r)?) = (Jo(5r)|7) = ¢ré@ = cg<§r><ﬂw (65.8)

where (1(q) and (r(q) are the scaling exponent function for the longitudinal and
transverse velocities respectively, and the ¢? constants are related to the Kolmogorov

constants (Siefert et al., 2005) . Assuming (;,(q) = (r(q), it then leads to the following
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relation
~ Cq 2 CL(‘I)
I(q) = & = (—) (6.5.9)

We show this relation as dashed-dotted line in the same figure, where the scaling
exponent (1,(¢q) correspond to mean values for experimental measurements (Schmitt,
2006). Both linear and convex relations are agreement with the experiment result on
the range 0 < g < 5. As a generalization of this approach, we can introduce 0 < a < 1
for which

Z(q) = a9 (6.5.10)

and try to find the best value of a. The best fitting vale of a is a = 0.65 + 0.05, quite

close to 2/3.

Isotropy Scaling Exponent

The existence of the plateau of the generalized isotropy ratio indicates that if we
plot the longitudinal spectra L, ,(w) against transverse one L, ,(w), a power law
behaviour with scaling exponent equal one should hold at least on the plateau range.

Figure 6.19 and 6.20 show respectively £, ,(w) v.s. L, 4(w) on the range 5 < w <
6000 Hz, and S, ,(7) v.s. Sy4(7) on the range 5 < f(= 1/7) < 6000 Hz for various g.

Graphically, power law behaviour holds as expected

Log) ~ (Lug@)',  &r(a) = €(a)T(q) (6.5.11)

which provides
&r(q) = €n(a)T(q) (6.5.12)

If the assumption of local isotropy holds, the scaling exponent I'(g) is then exactly

equal to 1. Figure 6.21 shows the corresponding scaling exponent I'(q) estimated from
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Figure 6.19: Representation of £, ,(w) v.s. L, 4(w) on the range 5 < w < 6000 Hz,
where ¢ = 0, 2, 4 and 6, respectively. Power law behaviour is observed for all
cases. The corresponding scaling exponent I'(q) is estimated on the inertial range
10 < w < 1000 Hz.

the turbulent database. The isotropy scaling exponent I'(q) deviates from 1. The
isotropy scaling exponent I'(q) decreases with the order ¢, which indicates that the
anisotropy effect becomes more and more strong in high order statistical quantities.
The HSA approach provides the larger scaling exponent, which may be linked to
the local ability of the method. It may constrain the large scale anisotropy effect
both in physical domain and frequency domain. However, for the high order ¢, I'(q)
is significant less than 1 within statistical uncertainty. For structure function, it

suggests an approximately linear expression

I'%(q) = —4¢ + T, (6.5.13)

where 4 ~ 0.018 and I', ~ 0.97 are obtained experimentally. However, the influ-

ence of the large anisotropy scale on the structure function should be investigated
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Figure 6.20: Representation of S, ,(7) v.s. S,4(7) on the range 5 < f(= 1/7) <
6000 Hz, where ¢ = 0, 2, 4 and 6. Power law behaviour is observed for all cases.

The corresponding scaling exponent I'(g) is estimated on the inertial range 10 < f(=
1/7) < 1000 Hz.

systematically in the future studies.

Let us note that the two approaches we considered here are complementary, writ-

ting
I'(q) =1-p(q) (6.5.14)
We have
¢r(q) = Ce(e)(1 - B(a)) (6.5.15)
and hence
T(q)(w) ~ wsr@=<e@) ~ (,~A@wL (@) (6.5.16)

This shows that if 5(q) is close to zero, Z,(w) has a flatness range and reciprocally
if Z,(w) has a flatness range, ((g) should close to zero. We cannot conclude on the

best representation using the present experimental analysis.
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Figure 6.21: Representation of the isotropy scaling exponent I'(¢g), which are esti-
mated from the arbitrary order Hilbert spectra £,(w) (O) and structure function
(O). For structure function, we have I'9(q) ~ —0.018¢ + 0.97, which is obtained by
the least square fitting.

Spatial Evolution

We may also consider the spatial evolution of these anisotropy indicators. Figure 6.22
shows the scale dependent isotropy ratio Z at various downstream locations /M = 20
(0), /M = 30 (O), /M = 40 (A) and /M = 48 ({), where the Kolmogorov
isotropy ratio 3/4 is shown as horizontal solid line, and the vertical solid line illus-
trates the plateau range. The scale dependence isotropy ratio Z are estimated by
(a) the HSA approach, (b) the second order structure function and (c) the Fourier
power spectrum. As we have shown above, the HSA approach and the Fourier power
spectrum provide a similar shape of this ratio. The structure function is strongly

influenced by the large scale anisotropy structure. We then show the mean isotropy
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Figure 6.22: (a) The isotropy ratio Z(w) estimated by the HSA approach at various
downstream locations z/M = 20 (O), /M =30 (O), /M =40 (A) and z/M = 48
($); (b) the structure function; (c) the Fourier analysis. The vertical solid line
indicates the plateau range, where the mean isotropy ratio 7 is estimated. The
horizontal solid line illustrates the Kolmogorov value 3/4. (d) The mean isotropy
ratio Z, provided by the HSA approach (), the structure function (O) and the
Fourier analysis ({»). The straight dashed line is the least square fit for the last
three points of the HSA method. It predicts that the isotropy ratio may reach the
Kolmogorov value at the downstream z/M = 60.5 (marked as @).

ratio Z in Fig. 6.22 (d), where the Kolmogorov isotropy value 3/4 is displayed as a
horizontal solid line. It is interesting to note that both the Fourier approach and the
structure function provide a similar spatial evolution trend: the isotropy ratio first
decreases along the streamwise direction and reaches its minimum value at location
x/M = 40 and then seems to saturate. The isotropy ratio seems to never reach the
Kolmogorov value. The HSA approach gives a slightly different result. It seems that

the isotropy ratio provided first decreases slowly and then decreases linearly along
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Figure 6.23: (a) The generalized mean isotropy ratio f(q) at various downstream,
estimated by the HSA approach; (b) the structure function; (c) the isotropy scaling
exponents I'(q) estimated by the HSA approach; (d) the structure function. The
symbols are the same as Fig. 6.22 (a). The straight solid lines are the least square fit
of each curve.

the downstream direction Z(z) ~ —0.017z/M + 0.85. According to this linear trend,
the isotropy ratio may reach its Kolmogorov value at the location /M = 60.5, which
is marked as @ in Fig. 6.22 (d). Unfortunately, we do not have data on this location

to check this prediction.

We now consider the downstream evolution for various orders q. Figure 6.23 shows
the mean generalized isotropy ratio Z provided by (a) the HSA approach, and (b)
the structure function approach, and the isotropy scaling exponent I'(q) provided
by (c) the HSA approach, and (d) the structure function approach for different 4
downstream values. The symbols are the same as Fig. 6.22 (a). Except for the
Hilbert-based isotropy scaling exponent I'(q), see Fig. 6.23 (c), the others seem to

linearly decrease with ¢ with various slopes. We then show in Fig. 6.24 (a) the slope
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Figure 6.24: (a) The slope @ of the generalization isotropy ratio estimated by the
Hilbert-based approach (O) and the structure function (O); (b) The slope 7 of isotropy
scaling exponents estimated by structure function approach. The mean value is 7 ~
0.187.

&, and (b) the slope 4. It seems that both Hilbert-based approach (O) and structure
functions ([J) provide the same evolution trend of &: they firstly increases with /M
and then seem to saturate at large = /M. However, the former one is small than the
latter one. The slope of the isotropy scaling exponents is slight fluctuated around its

mean value 0.187.

6.6 Summary

To summarize the main results of this chapter, we applied the EMD and the arbi-
trary order Hilbert spectral analysis methodology on an experimental homogeneous
and nearly isotropy turbulence database. We found that the EMD acts as a dyadic
filter bank for fully developed turbulence velocity time series. Based on the Fourier
spectrum of each mode, we termed the IMF modes into different terms: measure-
ment noise, dissipation range, inertial range and large forcing scale. We observed
a scaling trend in the joint pdf p(w,.A) with a scaling exponent close to the Kol-

mogorov value. We then recovered the structure function scaling exponents ((q) in
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amplitude-frequency space for the first time.

We tested the local isotropic hypothesis by considering the scale dependent isotropy
ratio and the generalized isotropy ratio. The generalized isotropy ratio decreases lin-
early with ¢q. The spatial evolution of the isotropy ratio shows that the isotropy ratio
may reach the Kolmogorov value at downstream z/M = 60.5. The isotropy scal-
ing exponent I'(q) suggested by the existence of the plateau of the scale dependent
isotropy ratio is also studied. These scaling exponents deviate from 1, the value indi-
cated by the local isotropy hypothesis. Furthermore, the scaling exponent provided
by the structure function decreases linearly with order q. It implies that the high

order structure function is strongly influenced by the large anisotropy scale part.
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Chapter 7

Passive Scalar Turbulence

Another important issue in turbulence research is the passive scalar turbulence, which
can be linked to many natural phenomena or engineering problems, such as pollutant
diffusion, turbulent combustion, etc., see reviews by Sreenivasan (1996); Shraiman
& Siggia (2000); Warhaft (2000). It has attracted huge interest during the last two
decades (Antonia et al., 1984; Sreenivasan, 1991, 1996; Ruiz-Chavarria et al., 1996;
Mydlarski & Warhaft, 1998; Shraiman & Siggia, 2000; Warhaft, 2000; Moisy et al.,
2001; Tsinober, 2001; Gylfason & Warhaft, 2004; Celani et al., 2005; Schmitt, 2005).
In the spirit of Kolmogorov, the relevant Obukhov-Corrsin law is a 1/3 scaling relation

that predicts

S9(0) = (|AB(L)|7) ~ (6@ (7.0.1)

where AO(¢) = 0(x + £) — 6(z), and (p(q) = ¢/3 is the corresponding scaling expo-
nent. However, experimental evidence has shown that the scaling exponent (y(q) is
deviating from the simple KOC law, even with stronger deviation than the veloc-
ity field (Sreenivasan, 1991; Shraiman & Siggia, 2000; Warhaft, 2000). For example,
it is found that the scaling exponent (g(g) is almost saturating for high order mo-

ments (Warhaft, 2000; Celani et al., 2000). It is often believed that the so-called

135
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“ramp-cliff” structures play an important role in scalar turbulent flows, see Fig. 7.1.
For high order statistical moments, it seems that the statistical quantities, such as
high order structure functions, are dominated by the ramp-cliff structure. Obviously,
the ramp-cliff structure is a large scale structure with a ramp and a sharp cliff. It is
believed that this structure couples with the small scales by the cliff structure. Thus

it may have strong influence on both the small scales and large scales statistics.

50 ms

Figure 7.1: Tllustration of the “ramp-cliff” structure. Graphically, the ramp-cliff
structure is a large scale structure. Taken from Ref. Warhaft (2000)

We have shown previously that the structure functions are strongly influenced
by large scales. It may then be that the saturation of scalar turbulence structure
function is linked to the ramp-cliff structures. It could then be a shortcoming of the
analysis approach instead of a real saturation of the scaling exponent associated to
the most intense events. In this chapter, we check this hypothesis by considering
scalar turbulence intermittency using arbitrary order Hilbert spectral analysis. The
results presented in this chapter are not yet published. They will be in part included
in a paper prepared for submission Huang et al. (2010b)[Y. Huang, et al. Phy. Rev.

Lett., 2009 (in preparation)].
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7.1 Temperature data

The temperature data analyzed here are obtained from a jet experiment performed
at Joseph Fourier University by Y. Gagne and P. Fougairolles, where a hot air jets
from a nozzle into a cold ambient cross flow, see the sketch in Fig. 7.2. Along the flow
direction, the jet may be separated into four different regions (A) potential core, (B)

developing range, (C) developed range and (D) decaying range. The measurement

__\_/
Cold ambience T
C D
Cold ambience T
—’\¥_

Figure 7.2: Sketch of the experiment. A hot air jets into the cold cross ambient flow
from the nozzle: (A) potential core (B) developing range (C) developed range (D)
decaying range. The measurement point (e) is close to the nozzle and the mixing
layer. Therefore the flow here demonstrates strong intermittency properties.

30
—~ 25 I
S !
()\/
>

20

15

0 0.05 0.1 0.15 0.2 0.25 0.3
t (s)

Figure 7.3: A 0.3s portion of temperature time series. It illustrates the ”ramp-cliff”
structures and intermittent nature of passive scalar turbulence.
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Figure 7.4: Comparison of the second order Hilbert marginal spectrum and Fourier
spectrum. The inset shows the compensated spectrum E(f)f°/3, which indicates a
more than 1.4 decades of inertial range 80 < f < 2000 Hz in both spectra. Since both
EMD and HSA have very local abilities, they can constrain the ramp-cliff effects as
much as they can, thus predict a steeper spectrum.

location is situated at the edge of the mixing layer and close to the nozzle. The initial
temperature of the two flows are respectively T ;=27.8°C and T=14.8°C. The bulk
Reynolds numbers are about Re; = 60000 (based on the hydraulic diameter of the
jet nozzle) and Rejr = 1100 (based on the mesh size of the turbulence grid of the
cross flow channel). The Taylor-microscale based Reynolds number is estimated as
Rey = 250. The sampling frequency is 50 kHz with a total 5 x 10° data points. A 0.3s
portion temperature time series is reproduced in Fig. 7.3. It illustrates a strong ramp-
cliff structure and the intermittent nature of this passive scalar turbulence. Figure 7.4
shows the Fourier spectrum (dashed line) and Hilbert marginal spectrum (solid line),

where the inset shows the corresponding compensated spectra. Power law behaviour

is observed in both spectra on the range 80 < f(or w) < 2000 Hz, about 1.4 decades,
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with scaling exponent 1.56 and 1.70 respectively for the Fourier power spectrum and
the Hilbert spectrum. For the former one, it agrees with the value reported in other
literatures, for example, see Refs. Sreenivasan (1996); Warhaft (2000). The latter is
quite close to the scaling value of the longitude velocity in fully developed turbulent
flows (Anselmet et al., 1984; Benzi et al., 1995; Frisch, 1995; Sreenivasan & Antonia,

1997).

7.2 EMD results

We divided the whole data into 122 segments (without overlapping), with 22 data
points each. After decomposition each segment is decomposed into several IMF
modes, from 9 to 12 with one residual. We first check the mean frequency of each

mode. The mean frequency @ is defined by Eq. (6.2.1). Figure 7.5 shows the mean

Figure 7.5: The mean frequency of IMF modes @ vs modes n. Local slope p(n) is
shown as inset.
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frequency @ , where the inset shows the local slope p(n). One can find that, com-
pared with the result for velocity, see Fig. 6.6, the mean frequency of each realization
is rather scattered. However, the averaged mean value for all segments (w) (OJ) ex-

ponential decrease with mode index n as

w(n)~p™" (7.2.1)

where p ~ 1.71. This means that each mode is associated to a time scale almost 1.71
times larger than the previous one; this property is similar to a filter bank in the
frequency domain (Flandrin & Gongalves, 2004; Wu & Huang, 2004; Huang et al.,
2008). We note that the deviation from a dyadic filter bank could be an effect of the

ramp-cliff structure.

7.3 HSA results

Figure 7.6 shows the joint pdf p(w,.A), where the vertical dashed line illustrates the
inertial range 80 < w < 2000 Hz. We observe a scaling trend. However, the length
of data we have here is about 500,000 points. It is not long enough to get a smooth
skeleton of this joint pdf. But nevertheless, as we show later, the arbitrary order
Hilbert marginal spectrum is stable and convergent.

We provide here more comments on the marginal Hilbert spectrum and Fourier
spectrum, see in Fig. 7.4. As mentioned previously, the Fourier transform is a linear
asymptotic approach: it requires high order harmonic components to mimic nonlin-
ear and nonstationary process. In this case, the high order harmonic component may

lead an artificial energy transfer flux from a large scale (low frequency) to a small
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Figure 7.6: Representation of the joint pdf p(w,.A) for temperature fluctuations. The
vertical dashed line indicates the inertial subrange. A scaling trend is observed in
such presentation. However, due to the sample size, the skeleton of the joint pdf (not
shown here) is rather scattered.

scale (high frequency). The artificial energy transfer may give a less steep power spec-
trum. We know that both EMD and HSA methodology have very local abilities both
in physical and spectral domains: the Hilbert-based methodology can constrain the
nonlinear and nonstationary effects (Huang et al., 1998, 1999; Huang, 2005; Huang
et al., 2010a). In other words, it does not require any higher order harmonic compo-
nents to simulate the nonlinear and nonstationary events. Thus, the Hilbert spectrum

may reveal a less pertubated relation between the energy and the frequency.

Figure 7.7 shows the arbitrary order Hilbert marginal spectrum L,(w), where
q = 0,1, 3, 4, 5 and 6. The vertical dashed line indicates the inertial subrange
80 < w < 2000Hz. Power law behaviour is observed in each plot on the inertial

range, and the corresponding scaling exponents &y(q) are estimated on this range by
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Figure 7.7: Arbitrary order Hilbert marginal spectrum L,(w), where ¢ =0, 1, 3, 4, 5
and 6. Power law behaviour is observed on the range 80 < w < 2000 Hz in all cases.
The corresponding scaling exponents &y(q) is shown in each figure.

a least square fitting algorithm. We compare the scaling exponents &y(q) — 1 (O),
Co(q) from structure function (<»), the value (y(gq) complied by Schmitt (2005) (O with
error bar) with the theoretical value ¢/3 (solid line) in Fig. 7.8. The inset shows the
scaling exponents departure from the theoretical KOC value. The classical structure
function analysis method, as we will show in next section, it is strongly influenced
by the ramp-cliff structure. The scaling exponent is then estimated by a least square
fitting algorithm and by choosing the range case by case. The scaling exponent begins
to be saturated when ¢ > 3. It is usually interpreted as an evidence that the passive
scalar field is more intermittent than the velocity field (Sreenivasan, 1991; Shraiman
& Siggia, 2000; Warhaft, 2000). Using the HSA approach, a more clear inertial range
holds for each plot, up to order 8. To compare with the velocity field, we plot the
ESS result ((q) (dashed line) for longitude velocity (Benzi et al., 1995) in the same

figure. We find that the scaling exponent £(q) is quite close to the ESS result for the
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Figure 7.8: Comparison of the scaling exponents, which are estimated by the HSA
&(q) —1 (O), the structure functions (y(q) (), the value compiled by Schmitt (2005)
(O with error bar) and the theoretical value ¢/3 (solid line). We also show the ESS
result (dashed line) for longitudinal velocity (Benzi et al., 1995). The inset shows the
departure from the KOC theoretical value.

velocity, which may indicate that the scalar field is not so intermittent as what we
have believed before. This is obtained here for one database, and should be confirmed

using other database before a firm conclusion can be proposed.

7.4 Structure function analysis

As already noticed by several authors, for example, Antonia (Antonia et al., 1984),
Ruiz-Chavarria (Ruiz-Chavarria et al., 1996) and Warhaft (Warhaft, 2000), for scalar
turbulence, the scaling exponents of Fourier spectrum [y is not consistent with the
second order structure function (p(2): the relation (4(2) = By — 1 is not verified.

This may be an effect of the ramp-cliff structure. Furthermore, it has been reported
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Figure 7.9: The structure function of temperature S9(¢), ¢ = 1,2,3,4. The inset
shows the corresponding compensated spectrum S9(£)£¢(9), Power law range decreases
with the order ¢, which may be interpreted as the effects of the ramp-cliff structure.

that the scalar spectrum has a larger scaling range than the velocity field at the
same Re) (Jayesh & Warhaft, 1994; Gylfason & Warhaft, 2004). We have discussed
previously that, in case of possessing large energetic nonlinear structures, the Fourier
analysis needs high order harmonic components. Thus, both the inertial range and

the scaling exponents may be contaminated by the ramp-cliff structure.

Figure 7.9 shows the first fourth order structure functions, where the insect shows
the corresponding compensated spectrum by taking the estimated scaling exponent
Co(q). Due to the effect of the ramp-cliff structure, the inertial range decreases with
the order g. When ¢ > 4, there is no clear power law any more. It is believed that the
structure function itself is then dominated by the ramp-cliff structure for high order

structure function (Gylfason & Warhaft, 2004).
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7.5 Summary

In this chapter, we applied the EMD and arbitrary order Hilbert spectral analysis to a
temperature from a jet experiment. The data have very strong ramp-cliff structures,
which have been considered as an important signature of passive turbulence. We find
that the EMD algorithm acts a filter bank. Due to the effect of ramp-cliff structure,
it deviates from a dyadic filter bank, which have been obtained previously using
stochastic simulations of Gaussian noise, fractional Gaussian noise (fGn) and the
fully developed turbulence velocity (Wu & Huang, 2004; Flandrin & Gongalves, 2004;
Huang et al., 2008).

We then considered the intermittency property of these data. It is found that the
scaling exponent &y(q) provided by the Hilbert-based methodology is quite close to
the ESS-based scaling exponent ((q) of the longitudinal velocity. Due to the very
local ability of the Hilbert-based approach and the intrawave frequency modulation
mechanism of the nonlinear process, the present method does not require high order
harmonic components to mimic the ramp-cliff structure. Thus, the scalar turbulence
may be not so intermittent as what we believed before. We should reconsider the
role of the ramp-cliff structure in this framework. These results need to be confirmed

using other passive scalar databases. This will be done in future work.
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Chapter 8

Extended Self-Similarity and
Hierarchy Model

During the last 2 or 3 decades, to extract the scaling exponents ((q) from various
turbulent flows became a quite general approach in turbulent research (Anselmet
et al., 1984; Antonia et al., 1984; Benzi et al., 1993a; Frisch, 1995; Arneodo et al.,
1996; Sreenivasan & Antonia, 1997). One interesting improvement methodology is the
so-called Extended-Self Similarity (ESS), which was proposed by Benzi et al. (1993a,b,
1995). It is believed that the ESS approach provides a more accuracy estimation of
the scaling exponents ((g) and extends the power law range (Benzi et al., 1993a). In
this chapter, we will adapt the ESS idea into the Hilbert frame.

We recall Benzi’s ESS theory here. According to Kolmogorov’s refined similarity
hypothesis (Kolmogorov, 1962; Frisch, 1995), the statistical properties of small scales

are uniquely determined by the local energy dissipation rate ¢, and the scale r, where

6 / /
e (z,t) = — s e(z+r',t)dr (8.0.1)

where 7/2 is radius of the sphere. The gth order structure function is written

Sir) = (Ju(x +r) — u(x)|?) ~ <e§/3>7“Q/3 (8.0.2)

147
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where () is ensemble average. If the local energy dissipation rate e, itself has scaling
law

(ef) ~ @ (8.0.3)

where K (0) = 0. It then follows

C(q) = q/3 - K(q/3) (8.0.4)

The above equation connects the scaling exponents ((q) with the scaling intermittency
of the dissipation since the mean dissipation is assumed to be conserved, (¢;) = €. So
that K (1) = 0 and ((3) = 1. This can be also obtained from the Kolmogorov (1941c)

equation, for 7 > 1 (n = v3/4¢~/* is Kolmogorov scale), one has

S3(r) = —ger (8.0.5)

This is the famous Kolmogorov Four-Fifths law (Kolmogorov, 1941c; Monin & Ya-
glom, 1971; Frisch, 1995), which is the only one exactly statistical solution of Navier-
Stokes equation for turbulence. It confirms the relation K (1) = 0 and {(3) = 1, which
means that the third order structure function S?(r) is free from the intermittency cor-
rection. Benzi et al. (1993a) suggested to plot S9(r) vs S3(r) instead of S4(r) vs r in

structure function analysis, which reads
S(r) ~ S3(r)"@ (8.0.6)

Since S3(r) is proportional to 7, the scaling exponent (*(q) is supposed to be the
same as ((q). It has been found that ESS is valid not only for high Reynolds number
turbulent flows but also for moderate Reynolds numbers, even when there is no clear
inertial range (Benzi et al., 1993a,b, 1995). The method was therefore extensively used
in turbulence research and even in other fields such as natural science or finance. In

the next section we consider this approach in the Hilbert spectral analysis framework.
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8.1 Extended-Self similarity

Considering the Kolmogorov refined similarity hypothesis, we have the following re-

lation for the arbitrary order Hilbert spectra in the Hilbert frame
Ly(w) ~ (V3= (1+a/3) (8.1.1)

where ¢ > 0. We have here two special cases ¢ = 0! and ¢ = 3, which are free from
intermittency effect. Following the ESS idea of Benzi et al. (1993a,b), we link the

arbitrary order Hilbert spectrum £,(w) with these two special cases
£4() ~ (L)) .12)

where p = 0 or p = 3. We denote £y(q) and &3(q) the corresponding scaling exponents.

Figure 8.1 shows a test of the ESS of the case p = 0 for various ¢q on the range 10 <
w < 6000 Hz. The vertical dashed line illustrates the inertial range 10 < w < 1000 Hz.
A power law behaviour is observed in each plot on the inertial range , and the scaling
exponents &(q) is estimated on this range by using a least square fitting algorithm
on the inertial range. Figure 8.2 shows the case p = 3, where the vertical dashed line
demonstrates the inertial range 10 < w < 1000 Hz, and the thick solid line indicates
the location w = 3000 Hz. It seems that, except the zeroth order Hilbert marginal
spectrum, the power law range extends as expected. We take the £7(w) as example:
the scaling range extends to w = 3000Hz. This is similar with the observations
done for the traditional ESS (Benzi et al., 1993b, 1995). The corresponding scaling

exponent £3(q) is then estimated on the range 10 < w < 3000 Hz.

! As mentioned in chapter 3, the zeroth order Hilbert marginal spectrum is the marginal pdf of
the instantaneous frequency. We have found the general property that such marginal pdf itself has
a power law behaviour, and the corresponding scaling exponent £(0) is close to 1, which is rather
natural since it corresponds to ¢(0) = 0.
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Figure 8.1: A test of Extended Self-Similarity of arbitrary order Hilbert spectra £,(w)
V.S. Lo(w) for the longitudinal velocity, ¢ = 0, 1, 2, 3, 4, 5, 6 and 7 on the range
10 < w < 6000 Hz. The dashed line indicates the inertial range 10 < w < 1000 Hz.
The scaling exponent £(q) is then estimated on this range.

We then compare the scaling exponents £(q) in Fig. 8.3 for different estimators?,
HSA result £(q) — 1 (x), Hilbert-based ESS &,(q) — 1 (O) and &(q) — 1 (<), ((q)
(dashed line) provided by the traditional ESS (Benzi et al., 1995), and the K41
prediction (solid line), see also Tab. 8.1. The inset shows the departure from the K41
q/3 law. The scaling exponents &y(g) and &;3(q) are in good agreement with ((g) when
q < 4. When ¢ < 4, the Hilbert-based estimators display a larger scaling exponents
than the structure function based ESS ((q).

For comparison, we consider the log-Lévy model and the log-normal model here (Frisch,
1995; Schertzer et al., 1997). The log-Lévy model (Schertzer & Lovejoy, 1987; Kida,

1991; Schmitt et al., 1992; Schertzer et al., 1997) predicts a scaling exponent

Cla) = /3~ - [(a/3)" ~ a/3 (513

where (' is the codimension of the mean events (0 < C; < d, where d is the dimension

2We do not apply here the structure function analysis on these database.
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Figure 8.2: A test of Extended Self-Similarity of arbitrary order Hilbert spectra £,(w)
V.S. L3(w) for the longitudinal velocity, ¢ = 0, 1, 2, 3, 4, 5, 6 and 7 on the range
10 < w < 6000 Hz, where the dash line indicates the inertial range 10 < w < 1000 Hz.
The vertical thick solid line indicates the location of 3000 Hz. The scaling exponent
&(q) is then estimated on this range.

of the observation space), and « is the Lévy index, bounded between 0 and 2. We
fix « = 1.5 (Schertzer et al., 1997) and consider C; as a free parameter. We fit
experimental data by a least square fitting algorithm. C is found to be 0.095 for

Hilbert-based ESS scaling exponent. The log-normal model predicts

C(q) = % — % (¢ — 3q) (8.1.4)

where p is the so-called intermittency parameter (Frisch, 1995; Schertzer et al., 1997).
We take here p as a free parameter. The p is found to be 0.15, which is comparable
with 0.2, an estimation value provided by Anselmet et al. (1984). Graphically, both
of these two models with the present chosen parameter predict the same scaling
exponents.

As we have mentioned previously, the data we used here are generated by the

active-grid technique. The results presented here may be influenced by a lack of
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Figure 8.3: Comparison of the scaling exponents £(q) — 1 (x), ESS &(q) — 1 (O),
ESS &(q) — 1 (<), the ((¢g) provided by the ESS method (Benzi et al., 1995) (dashed
line) and K41 ¢/3 (solid line). We also show a best fitting of the data by log-Lévy
model (dashed-dotted line) with C; = 0.095 and o = 1.5, log-normal model (dotted
line) with g = 0.15. The inset shows the departure from the K41 law.

isotropy, see chapter 6, we thus should check this ESS idea on more databases.

8.2 Hierarchy model

We have shown in chapter 6 that the skeleton A,(w) and its corresponding conditional
pPAf pmax(w) of the joint pdf p(w, A) have a power law behaviour on the inertial range
10 < w < 1000 Hz, where w is the instantaneous frequency and A is the amplitude.

This power law is written as

Aw) ~ 0™ prrax (@) ~ w™ (8.2.1)
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where 31 = 0.38+0.05 and 3, = 0.63+0.05, see Fig. 6.10. We also found dimensionally

that without intermittency we have

br=5, Pa= ; (8.2.2)

see chapter 6. Following She and Lévéque’s hierarchy model (She & Lévéque, 1994),

we present a hierarchy model in the following.

A Weighted Function For Hilbert Marginal Spectra

We have shown previously that the joint pdf p(w, A) is strongly peaked around A,(w),
see Fig. 6.12. The arbitrary order Hilbert marginal spectrum £,(w) can be rewritten

L4(w) = G(w, @)Pmax(w)As (w) (8.2.3)

where G(w, q) is a weighted function. It may be determined by different distribution
functions for p(w,.A). For high Reynolds number turbulent flows, where the local
homogeneous and isotropy hypotheses hold, we assume that Eq. (8.2.1) is valid at

least on the inertial subrange. It indicates that
Ly(w) ~ G(w, qw (Fas+5) (8.2.4)

For discussion convenience, we assume that the intermittency does not affect the

skeleton A,(w) and the corresponding conditional pdf pyax(w).®> We then have
Ly(w) ~ G(w, qJw 1+ (8.2.5)

For different distribution models of the joint pdf p(w, .A), the weight function G(w, q)

may have different forms. It may be universal for high Reynolds turbulent flow. For

3Based on the observation of the joint pdf p(w,.A), the intermittency does influence on A,(w)
and pmax(w), see Fig. 6.10.
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example, if G(w,q) is independent from w and ¢, Eq. (8.2.5) then one recovers the
K41 prediction.
The weighted function G(w, ¢) may be determined by considering the compensated

arbitrary order Hilbert marginal spectrum
G(w,q) ~ Ly(w)w' /3 ~ 2D (8.2.6)

Thus A(q) measures the departure from the K41 theory. This finally give

Alg) = &) = (1+3) (8.2.7)

According to Kolmogorov’s 1962 refined similarity hypothesis (Kolmogorov, 1962),

we have A(0) = A(3) = 0, which means they are free with the intermittency effect.

A Hierarchical Model

Following the hierarchical model idea of She & Lévéque (1994), we define a hierarchical

spectral function £(9(w) by the ratio of two successive arbitrary order Hilbert spectra

[ p(w, AT A

£0(w) [ p(w, A)A1dA

—/%@mAM, (8.2.8)

where ¢ > 0, and Q,(w, A) = p(w, A)AT"!/ [ p(w, A)A?dA is weighted pdf for which
L9 (w) is a mathematical expectation. Similar with e = < el > /< e? > when
q — 00, £>)(w) measures the most intermittent structures (She & Lévéque, 1994).

We then expect that the power law behaviour holds at least in the inertial range
LD (w) ~w 1@ (8.2.9)

where

II(q) = &(g +1) — &(9) (8.2.10)
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Figure 8.4: Representation of the hierarchical spectral function £ (w), where ¢ =0
(V), 1 (+),2(0), 3(x),4 (), 5(A), 6 (0)and 7 (<). A power law behaviour is
observed in the inertial range 10 < w < 1000 Hz, which is indicated by the vertical
dashed line. The solid line demonstrates the Kolmogorov value 1/3.

The dimensional consideration indicates for the non-intermittency case

[£9] = [A], T(q) = (8.2.11)

1
3

Figure 8.4 shows the hierarchical spectral function £9(w) for various ¢ = 0 (v),
1 (4), 2 (0), 3 (x), 4 (), 5(A), 6 (O) and 7 (). The solid line indicates the
Kolmogorov value 1/3 for the nonintermittent case, and the vertical dashed line il-
lustrates the inertial range 10 < w < 1000 Hz. A power law behaviour is observed on
this inertial range for all curves. The slope shows departure from the nonintermittent
value when ¢ is increasing. We estimate the scaling exponent II(¢) on the inertial
range. The corresponding scaling value II(q) (O) is shown in Fig. 8.5, where the hor-
izontal thick solid line indicates the Kolmogorov value 1/3. For comparison, we also

show the corresponding II(q) estimated from the Hilbert-based ESS &3(¢q) (O), the
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Figure 8.5: Representation of the scaling exponents II(g) (O) for the hierarchical
spectral function £@(w). The horizontal thick line indicates Kolmogorov value 1/3.
The corresponding scaling exponent I1(g) is estimated on the inertial subrange 10 <
w < 1000Hz. For comparison, we also show the corresponding scaling exponents
from &3(q) (O), o(q) (), the log-Lévy model with C; = 0.07, « = 1.5 (dashed-dotted
line), log-normal model with p = 0.11 (dashed line) and SL model (solid line). The
inset shows the relative error from II(q).

Hilbert-based generalized ESS o(q) ({) (see below), log-Lévy model with C; = 0.07
and « = 1.5 (dashed-dotted line), log-normal model with = 0.11 (dashed line)* and
SL model (thin solid line). The relative error from the direct estimated II(q) is shown
as inset. The estimated II(q) decreases linearly with ¢ with the same 0.015 obtained
graphically. In this case, only log-normal model provides a linear prediction of II(g).
Based on this observation, the log-normal model with such chosen parameter seems

to give the best fitting among these three models.

4The parameters we choose here is based on the Hilbert-based ESS £3(q). This means that we
fit £5(g)-based II(q) to determine the parameters C; and p.
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8.3 Generalized Extended-Self similarity

Following the idea of generalized extended self-similarity of Benzi et al. (1996), let us

introduce a dimensionless arbitrary order Hilbert marginal spectrum

Z,(w) = % ~w @ (8.3.1)
in which
o(q) = ¢&(q) - @ (8.3.2)

where £(q) is the scaling exponent. We expect that the dimensionless arbitrary order
Hilbert marginal spectrum Z,(w) itself has power law behaviour. We postulate a

Generalized Extended-Self Similarity (GESS) (Benzi et al., 1996), which is written as

Z,(w) ~ (Z,(w)"” (8.3.3)
By the definition we have
_ ol
p(q,p) = o) " #3 (8.3.4)

Figure 8.6 shows the dimensionless arbitrary order Hilbert marginal spectrum
Z,(w) for various ¢, 0 (O), 2 (O), 4 (4), 6 (<), 8 (<), 10 (>>). The vertical dashed
line demonstrates the inertial subrange 10 < w < 1000 Hz. A power law behaviour is
observed in each representation. We estimate the corresponding o(g) on the inertial
range by using a least square fitting algorithm. The scaling exponent o(q) (O) is
shown in Fig. 8.7. For comparison, we also show the corresponding scaling value in
the same figure, provided by the Hilbert-based ESS &3(¢) (<), the log-Lévy model
with C; = 0.07 and o = 1.5 (dashed line), the log-normal model with p = 0.11
(dashed-dotted line) and the SL model (solid line). The inset shows the relative

error from o(g). The Hilbert-based ESS predicts almost the same value o(q) as the
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Figure 8.6: Representation of the dimensionless arbitrary order Hilbert marginal
spectra function Z,(w), where ¢ = 0 (O), 2 (O), 4 (4A), 6 (<), 8 (<) and 10 ().
The vertical dashed line demonstrates the inertial subrange 10 < w < 1000 Hz. The
dashed line is the least square fitting on the inertial range.
dimensionless arbitrary order Hilbert marginal spectrum Z,(w). We also note that
the log-normal model with the parameter p = 0.11 gives the best fit of o(q).

We represent the dimensionless arbitrary order Hilbert marginal spectrum Z,(w)
vs Z,(w) on the range 10 < w < 7000Hz in Fig. 8.8 for various p (a) p = 0, (b)
p=1,(c) p=2and (d) p =4, where ¢ = 0 (O), 2 (0), 4 (2), 6 (<), 8 (>>) and
10 (V). The vertical dashed line indicates the inertial subrange 10 < w < 1000 Hz.
A power law behaviour is observed as expected in all cases. The power law range is
also extended as expected, which may depend on each case. However, we estimate
the scaling exponent p(q,p) on the inertial subrange by using a least square fitting.
Figure 8.9 shows the corresponding p(q, p) for various p, 0 (A), 1 (O), 2 (O), 4 () and
5 (<1). We compare the experimental result with (a) the SL model, (b) the log-Lévy

model with C; = 0.07 and « = 1.5, and (c) the log-normal model with = 0.11. We
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Figure 8.7: Representation of the scaling exponent o(q) (O), where ¢ goes from 0
to 10. For comparison, we also show the corresponding scaling exponent estimated
from the Hilbert-based ESS &3(q) (<), the log-Lévy model with C; = 0.07, o = 1.5
(dashed line), the log-normal model with p = 0.11 (dashed-dotted line) and the SL
model (solid line). The inset shows the relative error from o(q).

show the relative error in the right part of these figures. For each model, the relative
error have a similar shape and is parallel with each other. We also note that the
log-normal model with present choice of i has smaller relative error.

Figure 8.10 shows Z, v.s. Z,_; for various ¢ (1, 5, 8 and 10) on the range 10 <
w < T7000Hz. A power law behaviour holds on this range for each plot, which is
significant larger than the inertial range 10 < w < 1000 Hz. We still estimate the
scaling exponent p(q,q — 1) on the inertial range. The estimated p(q,q — 1) (O) are
shown in Fig. 8.11. For comparison, the log-Lévy model with C} = 0.07 and o« = 1.5
(dashed-dotted line), log-normal model with p = 0.11 (dashed line) and the SL model
(solid line) are also shown. The inset shows the relative error from experimental value

p(q,q — 1). There is no significant different among these three models. However, it
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Figure 8.8: Representation of GESS Z,(w) vs Z,(w) for various p (a) p =0, (b) p = 1,
(c) p=2and (d) p = 4, where ¢ = 0 (0), 2 (O), 4 (4), 6 (), 8 (>) and 10 (V).
The vertical dashed line demonstrates the inertial subrange 10 < w < 1000 Hz. The
dashed line is the least square fitting on inertial range.

seems that the log-normal model with present parameter provides the smallest relative
error.

Considering Eq. (8.2.7) and Eq. (8.3.2), we may link o(q) and p(q, p) to the scaling

exponent £(q), which is written as

€(g) = 2—3(1 +0(q) (8.3.5a)
and
€a) = 2+ pla,p)o(p), p# 3 (83.5)

A potential application of p(q,q—1) is to estimate £(q) for high order g, if the quantity
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Figure 8.9: Representation of the scaling ratio p(q,p) of GESS, where ¢ goes from 0
to 10, p =0 (A), 1 (O), 2 (0), 4 () and 5 (). For comparison, we present three
different model, (a) SL model, (b) log-Lévy model, and (c) log-normal model. The
right part shows the relative error.

of the data is available. One may estimate o(q) and £(q) by the following formula

q

o(q) = H p(i,i—1)o(4), ¢ >5 (8.3.6)
and
@)= 3+ [[ptii = Do), g 2 5 837)

We show the estimated ((q) (corresponding to £(q) — 1) in Fig. 8.12, based on
o(q) (dashed-dotted line), p(q,p) ({>)° and Hilbert-based ESS (<1). For comparison,
we show the log-normal model with two different intermittency parameter p = 0.11

(dashed-dotted line) fitting for o(q) and p = 0.15 (dashed line) fitting for £(g) — 1

SHere different p gives almost the same £(q). Therefore, we only present the mean value of them,
which is denoted as p(gq,p).
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Figure 8.10: Representation of the GESS Z, vs Z(_1) on the range 10 < w <
7000 Hz, where ¢ = 1, 5, 8 and 10. Power law is observed in all cases.

from Hilbert-based ESS &y(¢) and &3(g). The SL model is shown in the same picture
as thin solid line. The GESS scaling exponent is quite close to the Hilbert-based ESS
one, and significantly larger than SL. model when ¢ is greater than 5. We reproduce

these scaling exponents from different approaches in Tab. 8.1.

Taking Benzi’s ESS result (Benzi et al., 1993a,b; Arneodo et al., 1996) as a ref-
erence line, we show in Fig. 8.13 the absolute error and relative error from ((q) for
different estimators £(q) (=), &(q) (D), &s(q) (O), (g) (O), o(g) (<) and p(g, p)
(A). One can find that the relative error is decreasing with ¢ when ¢ < 4. When
q > 4, the relative error is then increasing with q. However, the relative error is less

than 10% when 2 < ¢ < 8.
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Figure 8.11: Representation of the scaling exponent ratio p(q,q — 1) from GESS (0O),
where ¢ goes from 0 to 10. For comparison, log-Lévy model with C; = 0.07 and
a = 1.5 (dashed-dotted line), log-normal model with x4 = 0.11 (dashed line) and SL
model (solid line) are also presented. The inset shows the relative error.

8.4 Summary

In this chapter, we extended Benzi’s idea of Extended Self-Similarity into the Hilbert
frame. According to Kolmogorov’s refined similarity hypothesis (Kolmogorov, 1962;
Monin & Yaglom, 1971; Frisch, 1995), we have two special cases, Lo(w) and L3(w),
which are free from the intermittency effect. We therefore use Lo(w) and L3(w) to
define the so-called ESS. They provide almost the same scaling exponents £(q), which
are slightly larger than SL model for high order q. We then proposed a hierarchy
model by defining a hierarchical spectral function. The scaling exponent II(q) of
the hierarchical spectral function decreases linearly with q. We finally presented a
generalized ESS by considering a dimensionless arbitrary order Hilbert spectrum. The
scaling exponents provided by the dimensionless spectrum and the GESS are in good

agreement with each other.
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Figure 8.12: Comparison of the scaling exponents ((¢q) from GESS, o(q) (O), p(q,p)
(&), and the direct estimation by ESS-HSA (<1). For comparison, the SL model is also
shown in the same picture as thin solid line. We also fit the data by the log-normal
model with g = 0.11 (dashed-dotted line) and p = 0.15 (thin dashed line)
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Figure 8.13: Absolute error from ((q) (Benzi et al., 1993b), where the scaling expo-

nents are estimated by £(¢) —1 (), &(q) —1 (1), &(g) — 1 (0), 1(g) (O), () (<)
and p(q,p) (A). The inset shows the relative error.
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Table 8.1: Scaling exponents ((q) from different approaches: the ESS ((q) (Benzi
et al., 1996), the Hilbert-based £(q) — 1 (Eq. (3.1.3)), the Hilbert-based ESS &,(q) — 1
(Eq. (8.1.2)), the Hilbert-based ESS &;5(¢) —1 (Eq. (8.1.2)), the dimensionless Hilbert
spectrum o(q) (Eq. (8.3.5a)) and the GESS p(q,p) (Eq. (8.3.5b)).

q Clg) &(@)—1 &lg)—1 &g —1 o(g) plg,p)
0 0.00 -0.03 0.00 0.00 0.03 -0.03
1 037 032 0.34 0.35 0.33  0.33
2 0.70 0.65 0.67 0.68 0.67 0.67
3 1.00 0.97 0.98 1.00 1.00  1.00
4 128 127 1.28 1.30 1.32  1.32
5 154 1.56 1.56 1.59 1.62  1.62
6 1.78 1.83 1.83 1.86 191 191
7 2.00 2.09 2.11 2.18  2.18
8 223 2.32 2.35 2.44 2.43
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Chapter 9

Analysis of River Flow
Fluctuations

A better understanding of river flow fluctuations is of sharp practical importance,
e.g. for ecosystem studies (transport properties), and for flood understanding and
forecasting. River flows fluctuate on many different scales: at small scales, river
turbulence induces stochastic fluctuations and at larger scales (from days to years) the
river flow fluctuations are the result of complex nonlinear interactions between rainfall
processes, topography and geography (Schumm, 2005). They are also impacted by
solar forcing and other large scale variations of the climate system (Mauas et al., 2008).
Daily river flow time series thus show fluctuations possessing stochastic properties,
as well as deterministic forcing resulting from seasonal or annual meteorological and

climatic cycles.

In this chapter, we apply the empirical mode decomposition (EMD) and the arbi-
trary order Hilbert spectral analysis (HSA) on river flow discharge fluctuations data.
to characterize the scale invariant properties of small scale in amplitude-frequency
space. The results presented in this chapter are published in Huang et al. (2009b)[Y.

Huang, et al.J. Hydrol., 373, 103-111, 2009.].

169
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9.1 Introduction

Since Hurst (1951) revealed the long-range dependent properties in river flow, asso-
ciated to scaling properties, researchers have tried different methods to characterize
the (multi)scaling properties in river flows (Hurst et al., 1965; Tessier et al., 1996;
Pandey et al., 1998; Janosi & Gallas, 1999; Kantelhardt et al., 2003, 2006; Livina
et al., 2003b,a; Koscielny-Bunde et al., 2006; Mauas et al., 2008). Below we quickly
review the approaches undertaken in these studies.

Tessier et al. (1996) analyzed the relation between rainfall and river flow of 30
rivers and basins in France. They used the double trace moment technique to charac-
terize the multifractal properties. They found that a scaling break occurs at a scale
about 16 days. They argued that the rain field itself is the source of the river flow,
therefore typical scales in the rain field will also be present in the river flow.

Dabhlstedt & Jensen (2005) investigated the Danube and the Mississippi river flows
and levels by using finite-size-scaling hypothesis (Aji & Goldenfeld, 2001). They
considered the river flow basin size L from different locations. They characterized the
multiscaling properties of river flow and level records by considering the relative and
general relative scaling (or Extended-Self-Similarity and Generalized Extended-Self-
Similarity in the turbulent community). They found that the Fourier spectrum may
be different from location to location due to the size effect of the basin area.

More recently, several authors applied the so-called detrended fluctuation analysis
(DFA) and its multifractal version to describe the scaling and multiscaling properties
of river flows (Kantelhardt et al., 2003; Livina et al., 2003b,b; Kantelhardt et al., 2006;
Koscielny-Bunde et al., 2006; Livina et al., 2007; Zhang et al., 2008, 2009). Livina

et al. (2003a,b) argued that the climate is strongly forced by the periodic variations
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of the Earth with respect to the state of the solar system. The seasonal variations in
the solar radiation cause periodic changes in temperature and precipitations, which
eventually lead to a seasonal periodicity of river flows. The Fourier and structure
function analyses are impacted by this strong periodicity (Livina et al., 2003a,b;
Kantelhardt et al., 2003; Koscielny-Bunde et al., 2006). According to these authors,
the DFA approach is an efficient method to eliminate the trend effects.
Koscielny-Bunde et al. (2006) found that the Hurst number H varies from river
to river between 0.55 ~ 0.95 in a non-universal manner independent of the size of the
basin. They found that at large time scales, Fj(s) scales as s"M9 and they further
proposed a simple function form with two parameters a and b, h(q) = 1/q¢ — [lna? +
b?]/[qIn(2)] to describe the scaling exponent h(q) of all moments (Kantelhardt et al.,
2003). Kantelhardt et al. (2006) also found that the Hurst number H estimated
from 99 precipitation and 42 river runoff records data are not consistent with the
hypothesis that the scaling is universal with an exponent close to 0.75 (Hurst et al.,

1965; Peters et al., 2002).

9.2 Seine River and Wimereux River

The Seine river is the third largest river in France. Its length is 776 km, and its basin
is 78650 km?. It is economically important for France, with 25% of its population as
well as 40% of its industry and agriculture concentrated in and around it (Dauvin,
2007). The flow data is provided by the Service de Navigation de la Seine (SNS). This
corresponds to daily flow data @ (m3s™!), recorded from 1 January 1976 to 28 April
2008. There are 11828 data values, with some missing values due to interruptions for

maintenance or because of the failure of measuring devices. Due to the local ability

© 2010 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Yongxiang Huang, Lille 1, 2009

172 Chapter 9. Analysis of River Flow Fluctuation
2500 ‘
. 20001 (a)
| 1500(
£ 1000} |
< |
500
0 | | | |
1976 1984 1992 2000 2008
year

0
1981 1985 1989 1993 1997 2001 2005
year

Figure 9.1: The river flow discharge time series of (a) Seine River, recorded from 1
January 1976 to 28 April 2008, (b) Wimereux river, recorded from 1 January 1981 to
27 May 2006. The data illustrate clear strong annual cycles with huge fluctuations.
The total lengths are 11828 and 9278 data points for the Seine river and the Wimereux
river, respectively.
of HSA approach, which is performed through spline interpolation, the missing values
in the time series do not change the results, since the method can be applied even
for irregular sampling. The data are shown in Fig. 9.1 (a), demonstrating some large
fluctuations at all scales. The mean and standard deviation of the discharge are
488 m3s~! and 349m3s~!, respectively. This figure shows a complex and stochastic
behavior, with a visible strong annual cycle.

The Wimereux river is a small river in the North of France!. Its length is 22 km,

and its basin is 78km?2. It can have strong fluctuations due to fast increase of the

flow in case of heavy rain. The daily flow discharge is recorded from 1 January 1981

'The Wimereux river is the local river in Wimereux city, the coastal host city of the laboratory
of Oceanology and Geosciences.
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Figure 9.2: A map showing the location of the Seine river and the Wimereux river,
in the eastern English Channel. The distance between them is about 300 km.

to 27 May 2006, with a total length of 9278 points values with some missing, see
Fig. 9.1 (b). The mean and standard deviation of the discharge data are 1.02m3s™*

and 1.73m3s™ 1.

Figure 9.2 shows the location of these two rivers, where the Seine river is repre-
sented as a solid line. The Wimereux river is too small to be displayed in the same
figure. The difference between these two rivers is clear: the Seine river is a real big
one, and the Wimereux river is much smaller and strongly influenced by the local
rainfall conditions. The distance between them is about 300 km, see Fig. 9.2. Both of
them are affected by the same large scale climatic factors and belong to the marine
west coast climate of Northern France. This climate is found on the west coast of

middle latitude regions and can be quite humid. Indeed it is subject to western wind
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bringing important variability and intermittent clouds, important precipitation and
temperate temperatures. The direct estimation of the cross correlation between these
two recorded data is about 0.256, a value that may be contaminated by the small
scale fluctuations. We will apply to these two data sets by the EMD method in the

following section.

9.3 EMD Results

After the application of the EMD method, the original data are separated into several
IMF modes. We then represent the IMF modes in Fig. 9.3 and Fig. 9.4 for the Seine
river and the Wimereux river, respectively. For display convenience, we exclude the
residual for the Seine river. Graphically, one can see that the characteristic scale
is increasing with the mode index n. Let us note that the number of IMF modes
is produced by the algorithm and depends on the length and the complexity of the
data. In practice, based on the dyadic filter bank property of the EMD method, this
number is usually less than log,(/N), where N is the length of the data (Flandrin &
Gongalves, 2004; Flandrin et al., 2004; Wu & Huang, 2004; Huang et al., 2008). First,
we estimate the mean frequency w of each IMF mode. We use the following three
definitions of mean frequency w. The first one was proposed by Huang et al. (1998),

which is written as

o _Jo 18(h)df
S df

where S;(f) is Fourier spectrum of C;. It is an energy weighted average in Fourier

(9.3.1)

space. The second one was given by Flandrin (Flandrin et al., 2004; Flandrin &
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Figure 9.3: IMF modes (excluding the residual) from EMD for the Seine river. Here
the data are taken from 1 January 1976 to 28 April 2008. The characteristic scale is
increasing with the mode index number n.

Gongalves, 2004), and is written as

NO —1
L0

(9.3.2)

wi:

where N is the zero-crossing number, and LL° is the distance between the first and

last zero-crossing. The third one is introduced here for the first time, and is defined

Table 9.1: The mean period (in days) of each IMF mode (excluding the residual)
of the Seine river and the Wimereux river, respectively. Here the mean period is
estimated as T = 1/, where @ is calculated by Eq. (9.3.1). The 8" and 9** IMF
modes of the Seine river and Wimereux river, respectively, are close to the annual
cycle.

1 23 4 5 6 7 8 9 10 11 12 13
Seine 3 8 19 33 55 86 185 358 452 869 1823 5551
Wimereux |5 9 16 25 36 58 103 182 376 574 2149 2785 3125
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Figure 9.4: IMF modes from EMD for Wimereux river. Here the data are taken from
1 January 1981 to 27 May 2006.

as
* whi(w) dw
T = % (9.3.3)
where h;(w) is the Hilbert marginal spectrum for the i*" mode. This definition is
similar to the first one: it is an energy weighted measurement of the mean frequency
in Hilbert space. We then represent the mean frequency w estimated by these three
definitions Eq. (9.3.1) (O), (9.3.2) (O) and (9.3.3) (x) for each mode in Fig. 9.5 for
(a) the Seine river, and (b) the Wimereux river. One can see that the two energy
weighted estimators give almost the same mean frequency. However, they are slightly

smaller than the zero-crossing based estimator. Graphically, all these three estimators

suggest the following exponential law

w(n) ~y™" (9.3.4)
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Figure 9.5: Representation of the mean frequency w vs the mode index n in log-linear
view: (a) Seine river, (b) Wimereux river, where the mean frequency @ are estimated
by using Egs. (9.3.1) (O), (9.3.2) (O) and (9.3.3) (x), respectively. An exponential
law is observed for each representation. The straight line is the least square fit of the
data.

where s ~ 1.88, v, =~ 1.62 are estimated by using the least square fitting for the
Seine river and the Wimereux river, respectively. This result implies that the mean
frequency of a given mode is 7y times larger than the mean frequency of next one. We
notice that these values are significantly different from 2, which would correspond to a
dyadic filter bank, which are reported for white noise (Wu & Huang, 2004), fractional
Gaussian noise (Flandrin et al., 2004; Flandrin & Gongalves, 2004) and turbulence
time series (Huang et al., 2008). However, it still indicates that the EMD algorithm

acts a filter bank here.

We list the mean period T (in days) in Table 9.1, where T = 1/w. Since the
three above mentioned mean frequency estimators give almost the same value, we
thus only present the value estimated by Eq. (9.3.1). One can find that the EMD
approach captures the annual cycle, which is the 8 and 9*" mode for the Seine river
and Wimereux river, respectively. Both rivers belong to the same climate and it is
expected that large scale modes are correlated. However, the data at daily scale are

not (the cross-correlation at this scale is 0.256); this is due to the influence of small
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Figure 9.6: Representation of the cross-correlation pys between IMF modes from the
Seine and Wimereux rivers. The data span is taken from 1 January 1981 to 27 May
2006 for both series. For convenience, we consider the coefficient value log;(pws(,7))-
As expected, the annual cycle shows a strong correlation with a coefficient pys(9,8) =
0.426. The coefficient of the most correlated modes is pys(11,11) = 0.579. These two
strong correlations are then marked by [J.

scales. The cross-correlation between two IMF modes is defined as

.o <CW5iCS’.>
Pws(i, ) = (C? .)1/2(05 )1/2

(9.3.5)

where (-) means ensemble average. The corresponding cross-correlation pys(4,7) is
then plotted in Fig. 9.6, where the most correlated modes are marked by [J. The
large scale modes are correlated as expected. More precisely, we observe a larger
cross-correlation between the annual cycle modes, pys(9,8) = 0.426, and the most
correlation coefficient is pys(11,11) = 0.579, with mean periods of about 6 and 8
years for the Seine river and the Wimereux river, respectively.

We then replot the annual cycle for the Seine river (thin solid line) and Wimereux

river (thick solid line) in Fig. 9.7 (a). One can find that their shapes are almost the
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Figure 9.7: Most correlated IMF modes: (a) the annual cycle mode for the Seine
river (thin solid line) and the Wimereux river (thick solid line), (b) the reconstruction
of the large scale part for the Seine river (thin solid line) and the Wimereux river
(thick solid line). We took the IMF modes 11 ~ 12 from the Seine river and 11 ~ 13
from the Wimereux river, which means periods larger than 3 years, to reconstruct the
large scale part. Graphically, they have the same evolution trend on range 1 January
1981 to 28 May 2006.

same on the range from 1 January 1981 to 28 May 2006. We also reconstruct the
large scale signal from those modes, with mean period larger than 3 years, 11" and
12%" from the Seine river (thin solid line), and 11** to 13*® from the Wimereux river
(thick solid line). The result is shown in Fig. 9.7 (b): they have almost the same

shape and evolution trend.

9.4 HSA Results

In order to characterize the intermittent properties of river flow fluctuations, we

consider here HSA and arbitrary order HSA analysis. We first compare the Hilbert
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Figure 9.8: Comparison of the Hilbert marginal spectrum (dashed line) and Fourier
spectrum (solid line) for (a) the Seine river, (b) the Wimereux river. For the Seine
river, a power law behaviour is observed on the range 6 < w < 80year™! , or 4.5 ~ 60
days: this range is marked by the vertical dashed lines. The scaling values are 2.54
and 2.45 for Hilbert spectrum and Fourier spectrum, respectively. The vertical solid
line indicates the annual cycle.

marginal spectrum (dashed line) and Fourier spectrum (solid line) in Fig. 9.8 for (a)
the Seine river, and (b) the Wimereux river to identify the power law range, where
the scale invariance holds. For the Seine river, both methods capture the annual cycle
(vertical solid line) and show power law behaviour on the range 6 < w < 80year™! or
from 4.5 to 60 days, with scaling exponent 2.54 and 2.45, respectively. The power law
range is between synoptic and intraseasonal scales (Zhang, 2005). The latter may be
linked to the Madden-Julian Oscillation (MJO), since some connection between and
the North Atlantic Oscillation (NAO) and MJO have been found (Cassou, 2008). For

the Wimereux river, the power law range is less clear. We therefore only apply below

the arbitrary order HSA analysis on the Seine river.

Since we are concerned with the scaling property in the above range, we thus
divide the entire time series into 16 segments, each one has 2 x 365 points, 2 years

each. The arbitrary order Hilbert marginal spectra are shown in Fig. 9.9, for ¢ = 0,
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Figure 9.9: Representation of arbitrary order Hilbert marginal amplitude spectra
L,(w) for the Seine river, where ¢ = 0, 1, 3, 4, 5 and 6. A power law behaviour

is observed in all cases on the range 6 < w < 80year—!. The vertical dashed lines

indicate the power law range. The corresponding scaling values are shown in each
figure.

1, 3, 4, 5 and 6. Power law behaviour is then observed in all cases on the range
6 < w < 80year!. The corresponding scaling exponents £(q) are estimated on this
range by using least square fitting with 95% confidence limit, Fig. 9.10 shows the
scaling exponents £(q) (O). This curve is concave, which indicates the multifractal
properties of the river flow discharge (Pandey et al., 1998; Kantelhardt et al., 2003,
2006). For comparison, we also show a reference line ¢H + 1 (solid line), where
H = &(1) —1 = 0.84 £ 0.08, which corresponds to the mono-scaling case. The

departure from this reference mono-scaling line is then shown in inset.
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Figure 9.10: Scaling exponents £(q) (O) for the Seine river. The inset shows the
departure from the reference line ¢H + 1, where H = £(1) — 1. The shape of these
scaling exponents is concave, which indicates the small scale intermittency nature of
river flow.

9.5 Discussion

We compare the above observation with the conventional structure function analysis,
the traditional way to extract the scaling exponents. We plot the result in Fig. 9.11,
where ¢ = 1 (), 2 (O) and 3 (), respectively. Some scaling portion are visible on
these figures, of a relatively limited amplitude. To reveal the scale invariance more
clearly, we consider the Extended Self-Similarity (ESS) properties, a relative scaling

expressed as (Benzi et al., 1993b)
(Az?) ~ (Az)¥@ (9.5.1)

where in case of scaling, we have ((¢) = H1(q). Eq. (9.5.1) can be used to estimate
more accurately the exponents 9 (q). The ESS is verified for the Seine river on range

2 < 7 < 60 days, see Fig. 9.12. Figure 9.13 shows the ESS result for the Wimereux
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Figure 9.11: Structure function for (a) the Seine river, and (b) the Wimereux river,
where ¢ = 1 (0), 2 (O) and 3 (<»). The vertical dashed lines indicate the range
4.5 ~ 60 days. The annual cycle influence is also indicated by the solid line.

river. It is scaling and is rather scattered. We then show the relative scaling exponents
¥(q) and the normalized scaling exponents (£(q) —1)/(£(1) — 1) in Fig. 9.14. In the
mono-scaling case and when there is no large scale forcing, they should collapse on
a solid line ¥(¢q) = ¢. The same approach is applied to the Wimereux river. In
this case the HSA approach is not displaying any clear scaling range. We thus use
the ESS approach and compare the resulting curve (q) to the one obtained from
the Seine river. The Wimereux river scaling exponents are saturating at (¢ = 1),
and the curve is quite different from the Seine river. This shows that the Wimereux
river is more intermittent than the Seine river: which may come from the fact that its
catchment basin is much smaller, hence its discharge variation can be more rapid. This
may also be an effect of strong oscillations that reduce the multifractal degree (see
Telesca & Macchiato (2004); Bolzan et al. (2009)). It is also interesting to see in the
same graph the difference between the HSA based exponents and structure function’s
exponents for the Seine river. The discrepancy can be interpreted as coming from

the influence of the periodic component in the time series. Indeed we have shown
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Figure 9.12: Extended self-similarity test of the Seine river on range 2 < 7 < 300
day. The relative scaling is very well captured for all moments.

in Huang et al. (2010a, 2009a), see also chapter 5, that the influence of periodic
components is stronger on structure function than on HSA exponents, which can be
linked to the fact that EMD acts a filter bank (Flandrin & Gongalves, 2004; Flandrin
et al., 2004; Huang et al., 2008; Wu & Huang, 2004). Periodic components tend to

increase the value of ((q) relative to the real theoretical curve.

logm(Sa)

10g10(51) 10g10(51)

Figure 9.13: Extended self-similarity test of the Wimereux river on range 2 < 7 < 300
day.
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9.6 Summary

In this chapter we applied for the first time the EMD methodology to river flow time
series. Using daily river flow discharge data, 32 years recorded in the Seine river
(France), and 25 years recorded in the Wimereux river (France), we have shown that
the time series can be successfully separated into several IMF modes. Exponential
laws for the mean frequency of each mode have been found, with exponents v, = 1.88
and 7, = 1.62 for the Seine river and the Wimereux river, respectively. These values
are smaller than 2, the value for dyadic filter bank. Even though, it still confirmed
that the EMD algorithm acts as a filter bank for river flow data. Furthermore, strong
cross-correlation have been observed between annual cycles and the large scale modes
having a mean period larger than 3 years. Based on the correlation analysis results,

we have found that the annual cycle mode and the reconstructed large scale part have
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almost the same evolution trends.

We have also characterized the intermittency of the time series over the ranges
showing scaling properties. For the Seine river, we observed power laws for the first
six order Hilbert marginal spectra on the range 6 < w < 80year™! or 4.5~60 days,
between synoptic and intraseasonal scales. The corresponding scaling exponents £(q)
indicate the small scale multifractal nature of the river flow data analyzed here.
The differences obtained using the structure functions approach and the frequency
based HSA approach have been emphasized, which is especially clear for large order
moments associated to the more active fluctuations. We have interpreted this differ-
ence as coming from the strong annual cycle which has more influence on structure
functions scaling exponents than on the Hilbert-based approach. We have also com-
pared the scaling exponents estimated from the ESS method, for the Seine river and
Wimereux river; the much smaller exponents obtained for the Wimereux river express
a higher degree of multifractality, which was interpreted as coming from the inertia
associated to the large scale basin for the Seine river, whereas small rivers such as

the Wimereux river may be more sensitive to local precipitation events.

Several previous studies have considered scaling properties of river flows using
other methods such as rescaled range analysis, trace moments, double trace moments,
wavelet analysis, multifractal detrended fluctuation analysis (MFDA). We applied
here a new method which gives results similar to the classical methods (structure
functions, wavelet analysis, MFDA) for fractional Brownian motion or pure multi-
fractal processes (Huang et al., 2009a), see also chapter 3. However, we have shown
in the same chapter that strong deterministic forcing had important influence on

classical methods, whereas the Hilbert-based approach was much more stable and
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presented less influence (Huang et al., 2010a, 2009a), see also chapter 3. This method
seems hence more appropriate for environmental time series that possess often strong
periodic components superposed to scaling regimes. The origin of this stability prop-
erty is the adaptative and local approach which is at the heart of the Hilbert-based
method.

We have compared here two rivers of very different size and catchment basin in
order to compare their scaling properties. One of the objectives of scaling analy-
ses of river flow time series is indeed to detect some differences among rivers, but
also to evaluate some universality, i.e. some general similarity in statistical proper-
ties. This was done for normalized pdfs (Dahlstedt & Jensen, 2005), for river flow
volatilities (Livina et al., 2003b,a), and for scaling regimes (Tessier et al., 1996) or
multifractal parameters (Pandey et al., 1998). We hope that the method presented
in this paper, which we claim to be well adapted to environmental time series, will

help this quest for universal properties of river flow scaling statistics.
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Chapter 10

Marine Turbulence in the Surf

Zone

One of the main properties of fully developed turbulence is its inertial range intermit-
tent properties, between a large-scale injection of energy and a small-scale dissipa-
tion (Frisch, 1995; Pope, 2000). In the surf zone, when waves break, the wave energy
is transferred into turbulent motions through a violent, highly energetic process asso-
ciated with breaking wave times scales, typically a few seconds, and then turbulence
is dissipated at smaller scales (Svendsen, 1987; Battjes, 1988; Svendsen, 2005). The
surf zone environment is a complex system: there are water turbulent motion at
different scales, breaking waves feeding turbulence at the surface, and residual tur-
bulence persisting from one wave to the next (Svendsen, 1987; Jaffe & Rubin, 1996).
This highly energetic system has a strong effect on sediment transport dynamics,
morphological changes associated with it, and shoreline evolution processes (Jaffe &
Rubin, 1996; Cox et al., 1996; Trowbridge & Elgar, 2001; Masselink & Russell, 2006;

Torres-Freyermuth et al., 2007), and also on ecological processes through influences

189
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on feeding, settlement, fertilization, bloom dynamics, etc. (Denny & Shibata, 1989;
Du Preez et al., 1990; Mead & Denny, 1995).

In the intertidal zone, transport models for either sediments or living organisms
need the description of surf zone velocity fluctuations. It is then important in this
context to be able to characterize these velocity fluctuations for a wide range of scales,
including highly energetic breaking waves scales and smaller turbulent scales. This
is not an easy task because of the unsteadiness of breaking waves: phase-average
methods are not straightforward since the wave forcing is not monochromatic; ocean
breaking waves are nonlinear and present random components.

We use here for this the Empirical Mode Decomposition method and the Hilbert
spectral analysis. It has already been applied to nonstationary ocean wave data (Hwang
et al., 2003; Veltcheva & Soares, 2004), but these studies focus on deep water ocean
waves, which are different from surf zone breaking waves. Here we consider experi-
mental turbulent velocity time series recorded in the surf zone. The results presented
in this chapter are published in Schmitt et al. (2009)[Schmitt, et al. J. Mar. Sys., 77,

473-481, 2009.]

10.1 Characterization of intermittency using cu-
mulants

Structure Functions and Cumulants

One of the characteristic features of fully developed turbulence is the intermittent
nature of velocity fluctuations (Frisch, 1995). Intermittency provides corrections to

Kolmogorov’s scaling law (Kolmogorov, 1941a), which are now well established and

© 2010 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Yongxiang Huang, Lille 1, 2009

10.1. Characterization of intermittency using cumulants 191

received considerable attention in the last twenty years. Let us recall how to quan-
tify intermittency effects on scaling laws for Eulerian isotropic turbulence. Denoting
AVy = V(x4 £) — V(z) the longitudinal increments of the Eulerian velocity field at
a spatial scale ¢, their fluctuations are characterized, in the inertial range, using the

scale invariant moment function ¢(q)
(|AV]?) = A @ (10.1.1)

where ¢ > 0 is the order of moment and A, is a constant that may depend on gq.
Kolmogorov’s initial proposal, for a non-intermittent constant dissipation, leads to
((¢g) = ¢/3 (Kolmogorov, 1941a). For intermittent turbulence, ((q) is proportional to
a cumulant generating function, and is nonlinear and concave; only the third order
moment has no intermittency correction: ((3) = 1. The accuracy of the scaling of
Eq. (10.1.1) is usually tested for each order of moment, for various values of £ in log-log
plot, using a least-square regression (Anselmet et al., 1984). The values of ((g) which
are then obtained may be compared and fitted to different multifractal models (among
many studies, see She & Lévéque (1994); Chen & Cao (1995); Arneodo et al. (1996);
Boratav (1997); Schertzer et al. (1997); van de Water & Herwijer (1999); Anselmet
et al. (2001)). This way of estimating ((q) depends on the choice of the scaling range:
one usually estimates ((q) for the range of scales where the exact relation ((3) =1 is
verified, assuming that the scaling range is the same for each order of moment.

Here there is no large scaling range: we therefore consider another approach:
instead of studying the scale dependence for each moment, we focus on the moment
dependence using cumulants at a given scale. The cumulant approach has already
been undertaken in the scaling turbulence framework in a few studies (see e.g. Delour

et al. (2001); Eggers et al. (2001); Chevillard et al. (2005)), where the cumulants of
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the cascade process (Eggers et al., 2001) or a polynomial development of the cumulant
generating function (Delour et al., 2001; Chevillard et al., 2005) have been considered;
see also Ref. Venugopal et al. (2006) for an application to multifractal properties of

rainfall.

Non Analytical Cumulant Generating Functions

We consider here a random variable X. The cumulant generating function of its

generator g = log | X| is defined as (Gardiner, 2004)
U(q) = log(|X|) (10.1.2)

The function ¥(q) is also the second Laplace characteristic function of the generator:
U(q) = log(e?). As a second characteristic function, it is convex (Feller, 1971), and
can be developed using the cumulants

o P

U(q) = Zcp%! (10.1.3)

p=1

where ¢, is the p™ cumulant. Let us recall the expression for the first cumulant
c1 = (g) = (log | X]) (10.1.4)

We also know that ¢, = (g*) — ¢}, and ¢,, depends on all moments (g?) (1 < p < n).
The theorem of Marcienkiewicz states that, if it exists, the development in Eq. (10.1.3)
is either infinite, or if finite, of degree not higher than 2 (Gardiner, 2004). In fact,
the development in Eq. (10.1.3) may not exist in case of non-analycity of ¥(q). This
is the case when ¢ is a stable process whose second order moment (and hence second

order cumulant) diverges (Feller, 1971; Taqqu & Samorodnisky, 1994). Stable random
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variables (sometimes also called “Lévy” in the physics literature) correspond to vari-
ables that have a domain of attraction and being stable under addition (Feller, 1971;
Taqqu & Samorodnisky, 1994; Janicki & Weron, 1994). They have been introduced
in the 1930s by Paul Lévy and correspond to a generalisation of the Gaussian law.
The main parameter is the index a bounded between 0 and 2. The case a = 2 corre-
sponds to the Gaussian law. Log-stable models for turbulent intermittency (Schertzer
& Lovejoy, 1987; Kida, 1991) correspond to a nonanalytic scaling moment function

(see also Schertzer et al. (1997)). In this case, we have instead of Eq. (10.1.3)

U(q) = c1q + caqg” (10.1.5)

where 0 < o < 2 is the index of the stable process and c, is the cumulant of order a.
When o = 2 the generator is a Gaussian process and there are only two cumulants
in the development of Eq. (10.1.3). To check this model, we consider in the following

the function

®(q) = ¥(g) —crg (10.1.6)

For a stable law, ®(gq) should be proportional to ¢*; we check this below in log-log

plot using experimental data, for a given time or frequency scale.

Concerning the choice of the random variable w, we will compare the structure
function approach (X = |AV,|, where ¢ is the time scale) and the EMD-Hilbert
spectral analysis approach (X = A, the moments being estimated from the pdf

p(A|w) for a given frequency value w).
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10.2 Presentation of the experimental database

The data analyzed here have been recorded using an Acoustic Doppler Velocimeter
(ADV) from Sontek/YSI, operating under autonomous operation conditions, at a
25 Hz sampling rate, and providing the 3D velocity vector averaged over a small
volume of about 250 mm?® at a 5cm distance from the ADV probe, with an accuracy
of 1% of the measured value. Measurements have been performed in the beach in
front of the research laboratory for Littoral and Coastal Ecosystems (ELICO): Eastern
English Channel at Wimereux city (North of France, near Boulogne-sur-mer): this
is a flat sand beach with a megatidal regime that varies between 8 to 11m (see
Fig. 10.1). A heavy metallic structure has been built in the laboratory ELICO as a
support for the ADV, its electronics canister, and its battery canister (see Fig. 10.2).
The measurement location is the intertidal zone in the beach, corresponding to the
surf zone. The Eastern English Channel is a megatidal sea with strong currents. The
metallic structure has been fixed to the ground using hooks; it was built in thin tubes

to avoid a too strong stress on the structure from the tide and currents.

N
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Figure 10.1: A map showing the location of the measurements, in the French coast
of the Eastern English Channel (marked ”X” in the map).
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Figure 10.2: A photography of the ADV measuring device and its support, in the
intertidal zone, before being submerged by the tide.

The measurements have been done on 9 and 10 June, 2004, during 2 tidal cycles,
at a height of 50 cm from the bottom. Measurements have been considered when
there was approximately at least 1 m of water above the experimental device. Due to
the tidal activity, this distance was between 1 to 3m. We considered 27 m sections
of the U component of the velocity vector, corresponding to the direction perpendic-
ular to the shore, each of length 32,000 data points (each of 21 min duration). We
cannot consider longer sections, since the internal programming of the ADV inter-
rupts the continuous recording of data, to synchronise the different clocks. The 27
sections have been chosen among the whole data set, in order to have a large enough
internal correlation of bursts, corresponding to a precise enough estimation of the
velocity. We have thus a total of 864,000 data points, separated into 27 sections.
A one minute portion is shown in Fig. 10.3: strong fluctuations at small scales are

visible, but the whole time series seems stationary. In the following we analyze the
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Figure 10.3: A two minutes portion of the experimental velocity data, showing their
high variability at small scales.

data using the EMD method, the Hilbert-based amplitude-frequency method, and

cumulant generating functions.

10.3 EMD and HSA results

EMD Results

The analyses below are performed over the entire dataset, and the results displayed
after performing an ensemble average over 27 realizations, where each segment of
length 32,000 data points is one realization. After decomposition, the original ve-
locity series is decomposed into several IMFs (see Fig. 10.4), from 13 to 16 modes
(depending on the segment) with one residual.  As visible in this figure, the time
scale is increasing with the mode; each mode has a different mean frequency, which
is estimated by considering the energy weighted mean frequency in the Fourier power
spectrum of each mode time series; the relation between mode number m and mean
time scale is displayed in Fig. 10.5. The straight line which is obtained in log-linear

plot suggests the following relation between the mean time scale 7" and m, for modes
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Figure 10.4: IMFs estimated from one 32,000 data points segment of the velocity
time series: mode number increasing from top to below. The time scale is increasing
with the mode. The residual time series is also plotted.

between 4 and 13

T = Toe ™ (10.3.1)

where T = 0.038 is a constant and the coefficient A = 0.667 is graphically estimated.
We remark that e* = 1.94 is close to 2, showing that each mode is associated with a
time scale almost twice as large as the time scale of the preceding mode; this property
corresponds to a dyadic filter bank in the time domain. This property was shown
previously using stochastic simulations of Gaussian noise and fractional Gaussian
noise (fGn) (Flandrin & Gongalves, 2004; Wu & Huang, 2004), and also for fully
developed turbulence data (Huang et al., 2008). It is interesting to note here that
this is still verified for surf zone turbulence data possessing a strong forcing in the

middle of the studied range.
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Figure 10.5: Mean time scales associated with each mode. There is an exponential
increase for mode numbers between 4 and 13.

HSA Results

Figure 10.6 represents the averaged Fourier power spectrum of the data, superposed
with the Hilbert-Huang power spectrum. It is visible that the wind wave breaking
scales (between 2 and 16s) correspond to a strong forcing of the data. This power
spectrum is similar to power spectra presented by Trowbridge & Elgar (2001) for surf
zone turbulent data recorded in a sandy Atlantic beach near Duck, North Carolina.
A —5/3 power spectrum can be found for large scales (minutes or larger) and scales
smaller than 1 s could also be characterized by such spectrum: the range is too small
to be affirmative on this last point. The Hilbert-Huang spectrum which is superposed
presents a similar shape, despite its different mathematical definition for the frequency
as well as for the spectrum. For the smaller scales, the shape is different, since the
Hilbert-Huang power spectrum falls down very quickly.

The EMD and Hilbert spectral analysis methodological frameworks provide a way
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Figure 10.6: Fourier spectrum of the data (E(f)), superposed to the Hilbert marginal
spectrum (H(f)). The latter has been vertically shifted for clarity. A strong wind
wave breaking at scales between 2 and 16 s is clearly visible on both power spectra.
It is interesting to notice that except for the smaller scales, they have the same shape,
despite a different mathematical definition. The dotted straight line has a slope of
—5/3.

to represent the fluctuations in an amplitude-frequency space: the joint pdf p(w,.A)
is shown in Fig. 10.7. It can be seen graphically that the amplitudes decrease with
increasing frequencies. This pdf can be used to estimate many statistical information
such as the Hilbert spectrum, and the cumulants as shown below. It can also be
used to estimate the skeleton A4(w) which corresponds to the amplitude for which

the conditional pdf p(Alw) is maximum:
As(w) = Ag; p(Ag,w) = mjix{p(/l\w)} (10.3.2)

and the skeleton pdf ppax(w) = p(As(w),w) = maxa{p(Alw)}, which is shown in
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Figure 10.7: Representation of the joint pdf p(w,.A) (in log scale) of velocity fluctu-
ations in an amplitude-frequency space.

Fig. 10.8. A power law behaviour is found :
Pmax(w) ~ w (10.3.3)

where 3 ~ 1.7, close to the Kolmogorov value 5/3. This new result corresponds to

an experimental fact that needs further investigation in future studies.

10.4 Non analytic cumulant generating function

We consider here the cumulant analysis applied to the velocity fluctuations, using the
EMD and Hilbert spectral analysis described above, and compare this to the same
analysis using structure functions.

We first show the estimation of the first cumulant ¢; in Fig. 10.9. In this figure,

the first cumulant is estimated as given by Eq. (10.1.4), using on the one hand, the
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Figure 10.8: The skeleton of the joint pdf pp.x(w) in log-log plot. A power law
behaviour is observed in the inertial subrange with scaling exponent 1.70.

amplitude-frequency pdf for a given value of w, and taking the time scale ¢ = 1/w
(denoted “HSA” on the figure). On the other hand, it is superposed to the estimate of
the first cumulants estimated for all modes separately, as function of scale, through
the correspondence given by Fig. 10.5 (denoted “EMD” in the figure). It is also
superposed to the first cumulants estimated using the structure function approach,
where the scale is the time increment: this value of ¢; has been vertically shifted
by 0.6 to be compared to the other curves. Figure 10.9 shows that c; increases
strongly for energetic scales associated with wave breaking, between 2 and 20s. It
also shows that the EMD-based first cumulant is very close to the Hilbert spectral
analysis one (HSA). However the HSA approach is able to provide the first cumulant
on a continuous range, since it is based on a frequency estimation, whereas the EMD

curve is discrete in scale, being associated with the characteristic scale of each mode.
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Figure 10.9: Estimation of the first cumulant ¢y, using three different methods: (i)
estimation in frequency space using the joint amplitude-frequency pdf (dotted line
denoted HSA); (ii) estimation using the empirical mode decomposition, done for each
mode, where the time scale is estimated using the mode-scale correspondence (open
dots, denoted EMD); and (iii) estimation using the structure functions.

We also see from this figure that the first cumulant estimated using the structure
function is quite far from the other estimates: the plateau obtained at large scales
comes from the fact that the difference V(¢ 4 ¢) — V() is not removing the forcing
when the scale ¢ is larger than the forcing scale. This shows that for such data, the

EMD and HSA methods provide a more reliable estimation of the first cumulant.

The functions ®(q) are then estimated, for moments from 0 to 8, for scales between
1/25 s to 10 minutes. For comparison purposes, the analysis is done using the HSA
approach in Eq. (3.1.3) and using the structure functions. An example is shown in
Figures 10a-d, for fluctuations at the scale of 2s. Figures 10a-b show the analyses

using the HSA approach, in lin-lin and log-log plots, and Fig. 10.10 c¢-d show the same
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Figure 10.10: ®(q) vs. ¢ estimated for ¢ between 0 and 8 for a scale £ = 2 s, chosen here
for illustration purpose. Experimental values are given by continuous lines whereas
dotted lines correspond to power-law fits. The proportionalities of ®,(q) to ¢* confirm
the nonanalytic framework applied here. (a): lin-lin plot using HSA mehod; (b): log-
log plot using HSA method; (¢) lin-lin plot using the structure functions; (d) log-log
plot using the structure functions.

for the structure functions. Figures 10.10a and 10.10c show convex and increasing
functions. The non-analytical behaviour of these curves are emphasized in log-log
plots (Fig. 10.10 b and d). The straight lines which are obtained confirm the non-
analycity. Using a best fit, the slopes of these straight lines are estimated for all
scales, giving directly the exponent a in Eq. (10.1.6). Figure 10.11 shows the values
of a estimated for different scales ¢, for both the HSA and the structure function
methods. Except at both ends, the values are relatively independent of scale, and

we can estimate a mean value: we find a = 1.52 £ 0.07 for the HSA estimates
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Figure 10.11: Values of o estimated for different scales ¢: comparison between the
HSA and structure functions methods.

and a = 1.60 4+ 0.07 for the structure functions estimates, where error bars are
coming from different scales. These values are below 2 and approximately compatible
between the two methods. Figure 10.12 shows the non-analytical cumulant (it cannot
be denoted second cumulant) c,(¢) given by Eq. (10.1.5). The curves are different
for both methods, but their mean values are close. These results show that the log-
normal framework is not adequate, to be replaced by a log-Lévy stochastic modelling.
Simulations of such random variables can be performed using available stochastic

simulation algorithms (Janicki & Weron, 1994).

10.5 Summary

We have considered here surf zone velocity measurements recorded in the Eastern
English Channel using a 25 Hz sampling sonic anemometer. Such data is character-

ized by the transformation of wave motion into small-scale turbulent motion (Battjes,
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Figure 10.12: Values of ¢, (¢) estimated for different scales ¢: comparison between the
HSA and structure functions methods.

1988). An important issue in this complex framework is to be able to characterize
the contribution of each scale to velocity fluctuations, since the modelling of sediment
and living organisms transport and suspension is associated with such velocity fluc-
tuations (Cox et al., 1996; Svendsen, 2005; Torres-Freyermuth et al., 2007). We have
analysed this series here using the EMD methodology, associated with Hilbert spec-
tral analysis. We have provided the mode versus time scale relationship, showing that
for such data base, the dyadic mode decomposition which has been found in Gaussian
noise is still valid. We have also provided the Fourier and Hilbert Huang marginal
spectrum, showing the high energy associated with wave breaking scales, between 2
and 20s. In another section, we have analyzed the fluctuations at each scale using
cumulants. The cumulants could be estimated on a continuous range of scales using
the joint amplitude-frequency pdf of velocity fluctuations that was estimated using

the EMD-HSA framework. The non-analytical properties of cumulants was shown for
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each scale, for both methods. We showed, using the first cuamulant, that the structure
function approach saturates at large scales, whereas the HSA based method is more
precise in its scale approach; this therefore shows the strength and usefulness of this
new EMD-HSA method combined to cumulant analysis. It was shown here to be
efficient for surf zone velocity analysis, but could be also applied to other time series.

Let us note that our approach has considered the time series globally, while the
depth of the water varied between 1 and 3 meters. It may be that some statistical
properties depend on the depth of the water, requesting a more precise analysis,
considering separately different sections of the time series. We have checked that
this is indeed the case (not shown here), considering the power spectra; however,
the shape of the latter did not vary much. We then keep for future studies a more
precise analysis of the depth relation, noting here that the results we obtained must
be considered as a mean value for different depths between 1 and 3 meters.

We have shown that the log-stable model applies very well, with a characteristic
exponent of @ = 1.60 = 0.07 valid for all scales. This property may be used for
stochastic simulations. Such modelling in the surf zone may be useful for several
applications, such as plankton-turbulence coupling, energetics studies associated with
bloom formation, to fertilization processes, or feeding rate of small fishes, or also

sediment transport characterization and modelling.
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Discussion and Conclusion

In this chapter, we summarize the main results and conclusions of this thesis. We

provide also some comments on these results.

Main Results

The Hilbert-Huang transform is a scale dependent decomposition method with very
local ability in both physical and spectral domains. The method, we proposed here,
arbitrary order Hilbert spectral analysis, is an extended version of the HHT devoted
to take into account intermittency in a scaling framework. It inherits all the advan-
tages and shortcomings of the HHT. The main advantages of the present methodology
are the very local abilities both in physical and spectral domains, and the fully adap-

tiveness. The main drawback is its lack of rigorous mathematical foundation.
Arbitrary Order Hilbert Spectral Analysis

We validated the idea of the arbitrary order Hilbert spectral analysis by using a
simulated fractional Brownian motion time series and synthesized multifractal time
series. We found that the Hilbert-based approach provides a more precise estimator
of the scaling exponents than the classical structure function. We also found a general
property of the zeroth order Hilbert marginal spectrum Ly(w), the marginal probabil-

ity density function (pdf) of the instantaneous frequency w, with a scaling exponent

209

© 2010 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Yongxiang Huang, Lille 1, 2009

210

£(0) ~ 1. This implies that not only the amplitude has a distribution law, but also
the scale (instantaneous frequency) itself has a distribution law. However, we still
need more theoretical work to fully understand the empirical mode decomposition,
the first step of the present methodology, and the arbitrary order Hilbert spectral

analysis.

Structure Function and Autocorrelation Function of Velocity Increments

We investigated the structure function and the autocorrelation function of the veloc-
ity increments time series Auy(t). Based on statistical stationarity assumption, we
proposed an analytical model for them. By a definition of a cumulative function, we
found that the structure function is strongly influenced by the large scales. We also
shown experimentally that it is also strongly influenced by a single scale (or large
scale deterministic forcing). We proved analytically that the autocorrelation function
of the velocity increments has its minima value at the separation scale £. A power
law relation is also suggested by our analytical model. The power law is then verified

by fractional Brownian motion and confirmed by the turbulent database.

Experimental Homogeneous and isotropy Turbulent Database

We applied the empirical mode decomposition and arbitrary order Hilbert spectral
analysis to an experimental homogeneous and isotropy turbulent database. We found
that the EMD algorithm acts a dyadic filter bank. We observed a scaling trend on
the joint pdf of the velocity fluctuations with the scaling exponent quite close to
the Kolmogorov value. We recovered the structure function scaling exponent in an
amplitude-frequency space for the first time. We then tested the isotropy ratio in

Hilbert frame. It is found that the generalized isotropy ratio decreases linearly with
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Passive Scalar

We applied the empirical mode decomposition and arbitrary order Hilbert spectral
analysis to a passive scalar (temperature). Due to the strong ramp-cliff structures,
the classical structure function fails. The Hilbert-based approach provides a scaling
exponent £g(g) — 1 quite close to the scaling exponent ((q) of the fully developed
turbulent velocity field. It indicates that the scalar field may be not so intermittent
as what we believed before. However, more passive database should be investigated

under the present Hilbert framework to confirm the role of the ramp-cliff structures.
Extended Self-Similarity and Hierarchical Model

We generalized the traditional extended self-similarity into Hilbert frame. In the
present framework, according to the Kolmogorov 1962 theory, we have two special
case ¢ = 0 and ¢ = 3, which are not influenced by the intermittent effect. We
therefore proposed two ESS formula by plotting the arbitrary order Hilbert spectra
L,(w) against L£,(w), where p = 0 or p = 3. It is found experimentally that both
of them provide the same scaling exponents. We then define a hierarchical spectral
function £%(w) by considering the ratio of two successive arbitrary order Hilbert
spectra L,(w). The scaling exponents II(g) of the hierarchical functions decrease

linearly with q.
River Flow Discharge

We applied the Hilbert-based methodology to the daily river flow discharges of the
Seine river and Wimereux river. Both rivers are controlled by the marine west coast

climate of Northern France. After EMD decomposition, the original time series are
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separated into several IMF modes. We observed large correlation among the large
scale IMF modes. We found the same evolution trend for the annual cycles and
the reconstructed large scale between the Seine river and Wimereux river. We then
characterized the small scale intermittent property in the Hilbert frame. Due to the

effect of the strong annual cycle, the structure functions fail.
Surf Zone Marine Turbulence

We analyzed a surf zone marine turbulence time series. We characterized the scale
invariant properties by considering the nonanalytical cumulant analysis. The log-
stable model provides a characteristic exponent of a = 1.6 +0.07 for all scales. These
results may provide a new approach to separate waves from small scale turbulent

motions.

Future studies

The results we shown in this thesis may be useful for modelling, which we do not
consider here. However, it should be done in future studies. We list here some topics

we may consider in future studies.

1. Skeleton of the joint pdf p(w,.A)
We found experimentally a skeleton of the joint pdf with a scaling behaviour.
However, the exactly physical/mathematical meaning of this skeleton is not
understood. We need more experimental and theoretical work on this topic to

provide more understanding of the scaling property of the skeleton.

2. Zeroth order Hilbert marginal spectrum Ly(w)

The corresponding scaling exponent £(0) of the zeroth order Hilbert marginal
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spectrum is found to be approximately equal to 1. The mathematical mean-
ing of the zeroth order Hilbert marginal spectrum is the marginal pdf of the
instantaneous frequency. It seems that it is a general property of the present
methodology. It implies that not only the amplitude, but also the scale (in-
stantaneous frequency) has a distribution law. But what is the exactly physical

meaning of this £(0) = 1 scaling exponent?

3. Kolmogorov 4/5 law
The famous Kolmogorov 4/5 law for the third order structure function is an
exact statistical solution of the Navier-Stokes equations. Does it hold for the
third order Hilbert marginal spectrum? The turbulent database we considered
in this thesis has no resolution on Kolmogorov scale. Thus we did not check

this topic in this thesis. It should be checked using other databases.

4. Turbulence modelling
We believe that the results presented in this thesis provide useful information
for turbulence modelling. We will link our results with turbulence modelling in
future studies. We need for this to be able to extend the present 1D to tensorial

quantities.

5. Passive scalar: ramp-cliff structure
The ramp-cliff structure is an important signature of passive scalar turbulence.
The structure functions, especially for high order moments, are strongly influ-
enced by this large scale structure. Thus, we should check more passive scalar

turbulence databases under the present framework in future studies.
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