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nent Γ(q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

xiii



6.24 Slope of the isotropy ratio and isotropy scaling exponent . . . . . . . 132

7.1 Illustration of the “ramp-cliff” structure . . . . . . . . . . . . . . . . 136

7.2 Sketch of the experiment . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.3 A 0.3 s portion of temperature time series . . . . . . . . . . . . . . . . 137

7.4 Comparison of the HMS and PSD for temperature . . . . . . . . . . . 138

7.5 The mean frequency of IMF modes for temperature fluctuations . . . 139

7.6 Joint pdf p(ω,A) for temperature . . . . . . . . . . . . . . . . . . . . 141

7.7 Arbitrary order Hilbert marginal spectrum for temperature . . . . . . 142

7.8 The scaling exponent for passive scalar turbulence . . . . . . . . . . . 143

7.9 Structure function of Δθ(τ) . . . . . . . . . . . . . . . . . . . . . . . 144

8.1 A test of ESS for Lq(ω) vs L0(ω) . . . . . . . . . . . . . . . . . . . . 150

8.2 A test of ESS for Lq(ω) vs L3(ω) . . . . . . . . . . . . . . . . . . . . 151

8.3 Comparison of the scaling exponent ξ0(q) and ξ3(q) . . . . . . . . . . 152

8.4 Representation of the hierarchical spectral function L(q) . . . . . . . . 155

8.5 Representation of the scaling exponents π(q) . . . . . . . . . . . . . . 156

8.6 The dimensionless arbitrary order Hilbert marginal spectra Zq(ω) . . 158

8.7 Scaling exponent σ(q) . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.8 Representation of GESS Zq(ω) vs Z0(ω) . . . . . . . . . . . . . . . . 160

8.9 Representation of the scaling ratio ρ(q, p) of GESS . . . . . . . . . . . 161

8.10 Representation of the GESS Z(q) vs Z(q−1) . . . . . . . . . . . . . . . 162

8.11 Scaling exponent ratio ρ(q, q − 1) from GESS . . . . . . . . . . . . . 163

8.12 Comparison of the scaling exponents ζ(q) from GESS . . . . . . . . . 164

8.13 Absolute and relative error from ζ(q) (Benzi et al., 1993b) . . . . . . 164

9.1 Seine and Wimereux river flow discharge . . . . . . . . . . . . . . . . 172

9.2 A map showing the location of the Seine river and Wimereux river . . 173

9.3 IMF modes for the Seine river . . . . . . . . . . . . . . . . . . . . . . 175

9.4 IMF modes for Wimereux river . . . . . . . . . . . . . . . . . . . . . 176

9.5 Mean frequency of IMF modes for the Seine and Wimereux river . . . 177

xiv



9.6 Cross-correlation between the Seine and Wimereux rivers . . . . . . . 178

9.7 Most correlated IMF modes between the Seine and Wimereux rivers . 179

9.8 Energy spectrum for the Seine river and Wimereux river . . . . . . . 180

9.9 Arbitrary order Hilbert marginal spectrum for the Seine river . . . . 181

9.10 Scaling exponents ξ(q)− 1 for the Seine river . . . . . . . . . . . . . . 182

9.11 Structure function for the Seine river and Wimereux river . . . . . . . 183

9.12 ESS test of the Seine river . . . . . . . . . . . . . . . . . . . . . . . . 184

9.13 ESS test of the Wimereux river . . . . . . . . . . . . . . . . . . . . . 184

9.14 Comparison of the relative scaling exponents . . . . . . . . . . . . . . 185

10.1 Location of the measurements . . . . . . . . . . . . . . . . . . . . . . 194

10.2 ADV measuring device . . . . . . . . . . . . . . . . . . . . . . . . . . 195

10.3 A portion of surf zone data . . . . . . . . . . . . . . . . . . . . . . . . 196

10.4 IMF modes from one segment . . . . . . . . . . . . . . . . . . . . . . 197

10.5 Mean time scales of each mode . . . . . . . . . . . . . . . . . . . . . 198

10.6 Spectrum of surf zone data . . . . . . . . . . . . . . . . . . . . . . . . 199

10.7 Joint pdf of surf zone velocity . . . . . . . . . . . . . . . . . . . . . . 200

10.8 The skeleton of the joint pdf . . . . . . . . . . . . . . . . . . . . . . . 201

10.9 Estimation of the first cumulant c1 . . . . . . . . . . . . . . . . . . . 202

10.10Cumulant function Φ(q) . . . . . . . . . . . . . . . . . . . . . . . . . 203

10.11Comparison of log-stable index α(`) . . . . . . . . . . . . . . . . . . . 204

10.12Comparison of cα(`) . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

xv



xvi



摘摘摘要要要

经验模态分解(Empirical Mode Decomposition–EMD,又被称作Hilbert-Huang变换

(Hilbert-Huang Transform)–HHT) 是由黄锷等人 (Huang et al., 1998, 1999)于十年

前提出的一种新的分析非平稳和非线性数据的时频分析方法。在过去的十余年

中，有超过1000篇文献报道在工程应用及科学研究的不同领域中使用该方法。本

论文首次使用该方法分析湍流数据以及环境观测数据。在对湍流的数据分析中

发现EMD类似于一类二分滤波器(dyadic filter bank)。为了能使之刻画所分析信号

中的间歇性，我们将经典的Hilbert谱分析(Hilbert Spectral Analysis–HSA) 方法推

广为任意阶Hilbert谱分析。对HSA方法提供的联合概率密度分布函数p(ω,A) 对幅

值A 进行边际积分，就为我们提供了在幅值-频率空间中对尺度不变特性刻画的新

框架，其中ω 是瞬时频率，A 为幅值。我们首先对构造的分形布朗运动时间序列以

及多分形非平稳时间序列进行分析，从而来验证该方法的可行性和有效性。通过和

结构函数的结果相对比，我们发现新方法对间歇性参数提供了更加有效的预测。

通过统计平稳假设，我们提出了速度增量时间序列Δu`(t) 自相关函数的解析模

型，速度增量定义为Δu`(t) = u(t + `) − u(t)。通过这个模型，我们解析证明了当

原始变量具有标度行为时，其速度增量的自相关函数将在相应的时间分隔` 位置取

得最小值。同时该模型还表明该最小值存在标度行为，并被分形布朗运动以及湍流

实验数据所证明。通过定义自相关的累积函数，在傅立叶谱空间里对不同的尺度贡

献进行了刻画。我们发现对于自相关函数的主要贡献来自于大尺度部分。同样的分

析过程被应用于二阶结构函数。分析结果表明二阶结构函数强烈受到大尺度部分影

响，这表明结构函数并不适合用来提取标度指数，特别是当所分析的数据中含有大

尺度的含能结构的时候。

我们然后将该方法应用于均匀、近似各向同性的湍流实验数据来刻画湍流的间
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歇性，发现速度的联合概率密度分布函数p(ω,A) 本身具有标度趋势，相应的标度

值很接近Kolmogorov值。我们随后在幅值-频率空间里对结果函数所提供的标度指

数进行了重复。我们对局部各向同性假设在幅值-频率空间里进行检验，发现拓展

的各向同性比值随着统计阶数q 线性减小。

我们还使用该方法分析了射流实验中的一段温度数据，该数据有着较强的峭壁

结构(ramp-cliff)。对于该数据，传统的结构函数方法不再适用。但是新方法在统计

阶数高达8的时候仍然给出了清晰的标度行为，相应的标度指数ξθ(q) − 1 非常接近

充分发展湍流中的流向速度的标度指数。

最后，我们用该方法分析了河流数据以及近海海洋湍流数据，在Hilbert框架下

刻画了其中的尺度不变特性。



Abstract

Empirical Mode Decomposition (EMD), or Hilbert-Huang Transform (HHT) is a novel

general time-frequency analysis method for nonstationary and nonlinear time series,

which was proposed by Huang et al. (1998, 1999) more than ten years ago. During

the last ten years, there have been more than 1000 papers applying this new method

to various applications and research fields. In this thesis we apply this method to

turbulence time series for the first time, and to environmental time series. It is found

that the EMD acts a dyadic filter bank for fully developed turbulence. To characterize

the intermittent properties of a scaling time series, we generalize the classical Hilbert

spectral analysis to arbitrary order q, performing what we denoted “arbitrary order

Hilbert spectral analysis”. This provides a new frame to characterize scale invariance

directly in an amplitude-frequency space, by taking a marginal integral of a joint pdf

p(ω,A) of instantaneous frequency ω and amplitude A. We first validate the method

by analyzing a simulated fractional Brownian motion time series, and by analyzing

a synthesized multifractal nonstationary time series respectively for monofractal and

multifractal processes. Compared with the classical structure function approach, it

is found numerically that the Hilbert-based methodology provides a more precise

estimator for the intermittency parameter.

Assuming statistical stationarity, we propose an analytical model for the au-

tocorrelation function of velocity increments time series Δu`(t), where Δu`(t) =

u(t + `) − u(t), and ` is the time increment. With this model, we prove analyti-

cally that, if a power law behaviour holds for the original variable, the location of the

minimum values of the autocorrelation function is equal exactly to the time separation
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` when ` belongs to scaling range. A power law behaviour for the minimum values

is suggested by this model, and verified by a fractional Brownian motion simulation

and a turbulent database. By defining a cumulative function for the autocorrelation

function, the scale contribution is then characterized in the Fourier frequency space.

It is found that the main contribution to the autocorrelation function comes from the

large scale part. The same idea is applied to the second order structure function. It

is found the second order structure function is strongly influenced by the large scale

part, showing that it is not a good approach to extract the scaling exponent from a

given scaling time series when the data possess energetic large scales.

We then apply this Hilbert-based methodology to an experimental homogeneous

and nearly isotropic turbulent database to characterize multifractal scaling properties

of the velocity time series in fully developed turbulence. We obtain a scaling trend

in the joint pdf p(ω,A) with a scaling exponent close to the Kolmogorov value. We

recover the structure function scaling exponents ζ(q) in amplitude-frequency space

for the first time. The isotropy hypothesis is then checked scale by scale in amplitude-

frequency space. It is found that the generalized isotropy ratio decreases linearly with

the order q.

We also perform the analysis on a temperature (passive scalar) time series with

strong ramp-cliff structures. For these data, the traditional structure function fails.

However, the new method extracts a clear power law up to q = 8. The scaling

exponents ξθ(q) − 1 is quite close to the scaling exponents ζ(q) of the longitudinal

velocity in fully developed turbulence.

We then consider the traditional Extended Self-Similarity (ESS) (Benzi et al.,

1993b) and the hierarchy model (She & Lévêque, 1994) under the Hilbert frame. For

the case of ESS, we have here two special cases q = 0 and q = 3 to define the ESS in

the Hilbert frame. Both of them work for the fully developed turbulence providing the

same scaling exponents. Based on the turbulent database we have, it seems that the

lognormal model with a proper chosen intermittency parameter μ provides a better

prediction of the scaling exponents.
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We finally apply the new method to daily river flow discharge and surf zone marine

turbulence to characterize the scale invariance under the Hilbert frame.
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Résumé

La Décomposition Modale Empirique (Empirical Mode Decomposition - EMD) ou la

Transformation de Hilbert-Huang (HHT) est une nouvelle méthode d’analyse temps-

fréquence qui est particulièrement adaptée pour des séries temporelles nonlinéaires

et non stationnaires. Cette méthode a été proposée par Huang et al. (1998, 1999) il

y a plus de dix ans. Pendant les dix dernières années, plus de 1000 articles ont ap-

pliqué cette méthode dans le cadre de diverses applications ou domaines de recherche.

Dans cette thèse, nous appliquons cette méthode à des séries temporelles de turbu-

lence, pour la première fois, et à des séries temporelles environnementales. Nous

avons obtenu comme résultat le fait que la méthode EMD correspond à un banc de

filtre dyadique (ou quasi-dyadique) pour la turbulence pleinement développée. Pour

caractériser les propriétés intermittentes d’une série temporelle invariante d’échelle,

nous avons généralisé l’analyse spectrale de Hilbert-Huang classique à des moments

d’ordre arbitraire q, pour effectuer ce que nous avons appelé “analyse spectrale de

Hilbert d’ordre arbitraire”. Ceci fournit un nouveau cadre pour analyser l’invariance

d’échelle directement dans un espace amplitude-fréquence, en estimant une intégrale

marginale d’une pdf jointe p(ω,A) de la fréquence instantanée ω et de l’amplitude A.

Nous validons tout d’abord la méthode en analysant des séries temporelles de mou-

vement Brownien fractionnaire, et en analysant des séries temporelles multifractales

synthétiques, en tant que modèle respectivement de processus monofractals et multi-

fractals. Nous comparons les résultats obtenus avec la nouvelle méthode, à l’analyse

classique utilisant les fonctions de structure: nous trouvons numériquement que la

méthodologie utilisant l’approche de Hilbert fournit un estimateur plus précis pour
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le paramètre d’intermittence.

Avec une hypothèse de stationarité, nous proposons un modèle analytique pour la

fonction d’autocorrélation des incréments de séries temporelles de vitesse Δu`(t), où

Δu`(t) = u(t + `) − u(t), et ` est l’incrément temporel. Dans le cadre de ce modèle,

nous prouvons analytiquement que, si une loi de puissance est valide pour la série

d’origine, la position minimisant la fonction d’autocorrélation de la variable d’origine

est égale exactement au temps de séparation ` lorsque ` appartient à la zone invariante

d’échelle. Ce modèle prédit une loi de puissance pour la valeur minimum, comporte-

ment vérifié par une simulation de mouvement Brownien fractionnaire et à partir

de données expérimentales de turbulence. En introduisant une fonction cumulative

pour la fonction d’autocorrélation, la contribution en échelle est alors caractérisée

dans l’espace de fréquence de Fourier. Nous observons que la contribution principale

à la fonction d’autocorrélation provient des grandes échelles. La même idée est ap-

pliquée à la fonction de structure d’ordre 2. Nous obtenons que celle-ci est également

fortement influencée par les grandes échelles, ce qui montre que ceci n’est pas une

bonne approche pour extraire les exposants invariants d’échelle d’une série temporelle

lorsque les données sont caractérisées par des grandes échelles énergétiques.

Nous appliquons ensuite cette méthodologie Hilbert-Huang à une base de données

de turbulence homogène et presque isotrope, pour caractériser les propriétés multi-

fractales invariantes d’échelle des série temporelles de vitesse en turbulence pleinement

développée. Nous obtenons un comportement invariant d’échelle pour la pdf jointe

p(ω,A) avec un exposant proche de la valeur de Kolmogorov. Nous estimons les ex-

posants ζ(q) dans un espace amplitude-fréquence, pour la première fois. L’hypothèse

d’isotropie est testée échelle par échelle dans l’espace amplitude-fréquence. Nous

obtenons que le rapport d’isotropie généralisé décroit linéairement avec le moment q.

Nous effectuons également l’analyse d’une série temporelle de température (scalaire

passif) possédant un effet de rampe marqué (ramp-cliff). Pour ces données, l’approche

traditionnelle utilisant les fonctions de structure ne fonctionne pas. Mais la nouvelle

méthode développée dans cette thèse fournit un net régime invariant d’échelle jusqu’au
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moment q = 8. Les exposants ξθ(q)− 1 sont très proches des exposants ζ(q) obtenus

par l’approche des fonctions de structure pour la vitesse longitudinale.

Nous nous intéressons ensuite à l’auto-similarité étendue (Extended Self Similarity

- ESS) (Benzi et al., 1993b) dans le cadre Hilbert-Huang. En ce qui concerne la

méthode ESS, qui est devenue classique en turbulence, nous adaptons l’approche

pour le cas Hilbert-Huang dans un espace de fréquence, et nous constatons que le

modèle lognormal, avec un coefficient adéquat, fournit une très bonne estimation des

exposants invariants d’échelle.

Finalement nous appliquons la nouvelle méthodologie à des données environ-

nementales: des débits de rivières, et des données de turbulence marine dans la zone

de surf. Dans ce dernier cas, la méthode ESS permet de séparer les ondes de vent de

la turbulence à petite échelle.
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Part I

Methodology
Empirical Mode Decomposition
and Hilbert Spectral Analysis

1





Chapter 1

An Informal Introduction to
Time-Frequency Analysis

In this chapter, we recall some general ideas of the time-frequency analysis, such as

decomposition and representation, characteristic scale, nonlinear and nonstationary

effects, etc.

1.1 Decomposition and representation

There are plenty of time-frequency analysis methods (Cohen, 1995; Flandrin, 1998).

Their basic idea can be interpreted as representing a given signal/function, f(x), by

a given basis

f(x) =

∫ +∞

−∞
ψ(ν, x′)ϕ(x, x′, ν) dν dx′ (1.1.1)

where ϕ is a given basis (function), and ψ is the coefficient (function) which can be

determined by

ψ(x, ν) =

∫ +∞

−∞
f(x)ϕ(x, x′, ν) dx′ (1.1.2)

Here the basis function ϕ also can be interpreted as an integral kernel of the above

equation (Cohen, 1995). It is an asymptotic approximation: the signal is asymptot-

ically approximated by the chosen basis (function) ϕ. The property of the chosen

3
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basis are usually well known. Then we check ϕ to see how the given signal looks like

with the chosen basis (function) ϕ. For example, when the trigonometric function is

chosen, we obtain the classical Fourier transform

ψ(f) =

∫ +∞

−∞
f(x)ei2πfx dx (1.1.3)

Another example is the Wavelet transform

ψ(a, x) = |a|−1/2
∫

Rn
f(x′)ϕ(

x′ − x
a
) dx′ (1.1.4)

where n is the dimension of the space, ϕ(x) is the so-called mother wavelet and a is

a dilatation parameter1. This is the traditional approach for time-frequency analysis:

the basis are chosen before the decomposition. Therefore once we choose a basis

(function), the information that can be extracted from the data is determined. They

are also energy based approaches: only when the component contains enough energy,

it then can be detected by such methods (Huang et al., 1998; Huang, 2005).

Moreover, most a priori basis are defined in the global sense and they require

that the signal satisfies stationary and linearity assumptions (Cohen, 1995; Flandrin,

1998; Huang et al., 1998). Here the stationarity means that the statistical properties

are identical for different samples2. Many modifications, such as short-time Fourier

transform with various windows, Wigner-Ville distribution, have been designed to

overcome these obstacles (Cohen, 1995; Flandrin, 1998). However, they inherit more

or less the shortcoming of the Fourier transform (Huang et al., 1998, 1999).

1To be a mother wavelet, ϕ(x) should satisfy some conditions. For details on wavelet theory see
Daubechies (1992). We may also consider the wavelet transform approach as an adaptive-windows
Fourier transform (Huang et al., 1998).
2The mathematical definition of stationarity is more rigorous. In practice, if some statistical

quantities of a given time series do not change beyond a certain size of sample and are identical for
different samples, then the time series is called stationary process.
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1.2 Characteristic scale

The power of a time-frequency analysis method is determined by the chosen basis ϕ.

Indeed, for a certain time-frequency analysis method, a characteristic scale (CS) is al-

ways defined explicitly or implicitly. Once we choose a definition of the characteristic

scale for a certain method, then the ability and property of this method is deter-

mined/fixed. We compare here three different definitions of the CS, corresponding

to Fourier transform, Wavelet transform and Hilbert-Huang transform (HHT) (see

chapter 2 for more details of HHT).

2 4 6 8
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Figure 1.1: Demonstration of the characteristic scale of (a) Fourier analysis, (b)
Wavelet transform and (c) Hilbert-Huang transform, respectively.

• Fourier Transform:

The length of one period of sine or cosine wave.
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Figure 1.2: The characteristic scale in (a) frequency-time space, and (b) amplitude-
time space.

• Wavelet Transform:

The shape of the mother wavelet together with the dilation factor.

• Hilbert-Huang Transform:

The distance between successive local extrema maxima (resp. minima) points.

We illustrate the corresponding CS in Fig. 1.1: (a) Fourier analysis, (b) Mexican hat

wavelet, and (c) Hilbert-Huang transform (HHT). As we have mentioned above, for

an a priori approach, once the basis (function) ϕ is chosen, the shape of CS is then

fixed. We illustrate here two examples for a priori approach: the Fourier transform

and Mexican hat wavelet. However, the shape of the CS of HHT can be varied from

time to time. In other words, these three time frequency analysis methods describe

the characteristic scale globally, regionally, and locally, respectively (Huang, 2005).

Frequency-Modulation

Figure 1.2 shows the CS in both frequency-time view and amplitude-time view. The

difference among them are clear. For further discussion convenience, we introduce
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here the concepts of frequency-modulation and amplitude-modulation. Let us con-

sider here a monochromatic wave

x(t) = a cos 2πνot (1.2.1)

where the constants a and νo are the amplitude and the frequency. It is natural to

extend this point of view to evolutionary situations

x(t) = a(t) cos 2πνo(t)t (1.2.2)

where the amplitude a and the frequency νo now may vary in time. Let us first keep

the amplitude a as a constant, and let the frequency νo vary in time. We call this

“frequency modulation”.

Definition 1.2.1 (Frequency-Modulation). Frequency νo may vary in time.

Both the Fourier analysis and Wavelet transform3 do not allow the frequency

modulation, since the frequency for each component is fixed, see Fig. 1.2 (a). On

the contrary, the HHT does allow frequency-modulation, since the idea of the in-

stantaneous frequency (Cohen, 1995; Flandrin, 1998) is employed to describe the

frequency. We will see this point in chapter 2, the fact that frequency modulation

may be further termed into two different types: interwave-frequency-modulation and

intrawave-frequency-modulation. The latter one can be associated to a nonlinear

mechanism (Huang et al., 1998, 1999).

Amplitude-Modulation

Now we consider another situation, the so-called amplitude-modulation. Let us keep

the frequency νo constant, and let the amplitude a vary in time. It is then called

3In fact, Wavelet may detect the so-called interwave-frequency-modulation (Huang et al., 1998,
1999). However, this ability comes from the amplitude-modulation: the wavelet coefficient ϕ(x, a)
may be zero at some locations and scales.
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amplitude-modulation.

Definition 1.2.2 (Amplitude Modulation). Amplitude a may vary in time.

Figure 1.2 (b) shows the amplitude of the above mentioned three approaches

in amplitude-time view. Here again, the Fourier representation does not allow the

amplitude-modulation, since it describes the scale in a global sense. Due to a com-

pact support property of the wavelet in physical domain, it allows the amplitude-

modulation (Daubechies, 1992). HHT allows the amplitude-modulation mechanism.

Therefore, it allows the frequency-modulation and amplitude-modulation simultane-

ously (Huang et al., 1998, 1999; Huang, 2005).

Potential Shortcoming of Fourier-Based Approach

We then reproduce the main properties of the Fourier analysis, Wavelet transform

and HHT in Table 1.1 from Huang (2005). These properties determine the power of

each method and also the potential shortcoming of each one. We then list the main

potential shortcoming of the Fourier-based approach here

• a priori

The basis ϕ are given before decomposition.

• Stationary

They require that the data satisfy the stationarity assumption.

• Asymptotical approximation

They are a linear asymptotical approximation to the original data.

• Global uncertainty
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They are limited by the so-called Heisenberg-Gabor uncertainty principle4.

Due to the above mentioned properties of the Fourier-based time-frequency analysis

methods, they require high order harmonic component to mimic a transit signal, in

which both the amplitude and the frequency may vary in time.

For more details on the time-frequency analysis and potential shortcomings of the

Fourier-based approach, we suggest Cohen (1995) and Flandrin (1998).

Table 1.1: Comparison of the main properties of the Fourier analysis, Wavelet trans-
form and Hilbert-Huang transform.

Frequency-Modulation Amplitude-Modulation
Interwave Intrawave

Fourier analysis No No No
Wavelet transform Yes No Yes
Hilbert-Huang transform Yes Yes Yes

1.3 Nonstationary and nonlinear effects

In the real world, most data are nonlinear, nonstationary and noisy. A general method

to deal with nonlinear and nonstationary time series is required. The terminology

‘nonlinear’ here means that the underling mechanism is nonlinear. Below, we il-

lustrate the nonstationary and nonlinear effects on both the Fourier analysis and

Hilbert-Huang transform.

4The Heisenberg-Gabor uncertainty principle (Cohen, 1995; Flandrin, 1998) means that the time
resolution δt and the frequency resolution δf are restricted by the following relation

δt δf ≥
1

4π
(1.2.3)
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Nonstationary Effect

Definition 1.3.1 (Stationarity). A time series x(t) is stationary in the weak sense,
if, for all t

E(|x(t)|2) <∞ (1.3.1a)

E(x(t)) = m (1.3.1b)

C(x(t1), x(t2)) = C(x(t1) + τ, x(t2) + τ) = C(t1 − t2) (1.3.1c)

where E(∙) is the expected value, and C(∙) is the covariance function.
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x
(t
)

Figure 1.3: Example of a nonstationary event x(t): the amplitude on range 5 ≤ t ≤ 6
is 20% higher, which is marked by a rectangle.

In practice, we only have a finite size sample. Obviously, the data we have may

not satisfy the above condition, which means it is nonstationary. We give an example

of a nonstationary effect here. We produce a sine wave x(t) on the range 0 < t < 10

x(t) =






sin(2πt) t < 5

1.2 sin(2πt) 5 ≤ t ≤ 6

sin(2πt) 6 < t < 10

(1.3.2)

where a nonstationary event with 20% higher amplitude is superposed on range

5 ≤ t ≤ 6, see Fig. 1.3, in which the nonstationary event is marked by a rectan-

gle. The sampling frequency is set as 100Hz. Figure 1.4 shows the intrinsic mode
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Figure 1.4: Intrinsic mode functions from empirical mode decomposition.
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Figure 1.5: Instantaneous frequency of each mode: (a) instantaneous frequency, (b)
the relative energy. The vertical solid lines indicate the location of the nonstationary
event.

functions (IMF) from the empirical mode decomposition (EMD)5. Figure 1.5 shows

the corresponding (a) instantaneous frequency, and (b) energy ratio, where the verti-

cal solid lines indicate the location of nonstationary event. The nonstationary event

is well captured by HHT in a very local level. We compare the Hilbert marginal spec-

trum with the Fourier spectrum in Fig. 1.6, where the thin solid line is the Fourier

power spectrum of the signal without perturbation. The Fourier power spectrum is

5The concept of intrinsic mode function and the empirical mode decomposition methodology will
be presented in chapter 2.
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Figure 1.6: Comparison of the Hilbert marginal spectrum and Fourier spectra.

directly estimated by a Fourier transform without any window. All these three curves

detect the domain frequency. For the Fourier power spectrum, there are some fluc-

tuation on the high frequency range, indicating the presence of high order harmonic

component. For the Hilbert marginal spectrum, we note that it does not require

any high order harmonic component to mimic the nonstationary effect, since it allows

amplitude-modulation. We also note some energy leakage on the low frequency, which

may be the end-point effect in the empirical mode decomposition.

Nonlinear Effect

We turn to nonlinear effect. There is no general definition of nonlinearity for a discrete

time series, since we may represent it by a linear asymptotical approximation way.

Therefore, we propose here a definition of the nonlinearity for a discrete time series:

Definition 1.3.2 (Nonlinearity). If the underlying mechanism behind a time series
is nonlinear, we then call the dataset itself nonlinear.
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Figure 1.7: A 5th order Runge-Kutta numerical solution of the Duffing equation.

Here we consider the classical Duffing equation with a periodic forcing. The

Duffing equation is written as

d2x

dt2
+ x(1− εx2) = b cosωt (1.3.3)

where ε is a nonlinear parameter, b cosωt is a periodic forcing. It can be considered

as a nonlinear spring system with a nonlinear spring (1− εx2), and a periodic forcing

b cos(ωt). The parameter and inertial condition are taken as b = 0.1, ε = 1, ω =

2π/25, and [x(0), x′(0)] = [1, 1]. A 5th order Runge-Kutta scheme is performed to

integrate the equation numerically with Δt = 0.1. Figure 1.7 shows the corresponding

numerical solution. Due to the nonlinear mechanism, the wave profile of the numeri-

cal solution departures from a sine wave. We show the corresponding intrinsic mode

functions from EMD decomposition in Fig. 1.8. The original time series is separated

into five modes with one residual. Figure 1.9 shows the corresponding instantaneous

frequency for each mode. A frequency-modulation is clearly observed for the first

mode. As we will show in chapter 2, it belongs to the intrawave frequency-modulation

family. We compare the corresponding Hilbert marginal spectrum and the Fourier
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Figure 1.8: Intrinsic mode functions from empirical mode decomposition for numerical
solution of the Duffing equation.

power spectrum in Fig. 1.10. They are significantly different. Both approaches cap-

ture the domain frequency and the periodic forcing. However, the Fourier analysis

needs high order harmonic components to mimic the nonlinear process, which is in-

deed a requirement of mathematics without physics sense. It stems from the linear

asymptotic representation of the nonlinear process. As we already have pointed out

previously, due to the nonlinear mechanism, the wave profile of the Duffing equation
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Figure 1.9: Instantaneous frequency for the Duffing equation: (a) instantaneous fre-
quency, (b) the relative energy. Frequency modulation is observed for the first IMF
mode.
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Figure 1.10: Comparison of the Hilbert marginal spectrum and Fourier power spec-
trum for Duffing equation. High order harmonic components are required by Fourier
analysis to mimic the nonlinear distortion of the nonlinear wave.

solution is in far deviation from a pure sine wave. High order harmonic components

are thus required by the Fourier analysis to mimic this deviation, namely nonlinear

distortion. For HHT, since it allows frequency- and amplitude-modulation simulta-

neously, it does not need the high order harmonic component any more to describe

the nonlinear distortion (Huang et al., 1998, 1999).

1.4 Alternative Approach?

About ten year ago, Huang et al. (1998, 1999) introduced a novel time-frequency anal-

ysis method, the Hilbert-Huang transform, or Empirical Mode Decomposition called

by some authors6, to deal with general nonstationary and nonlinear time series. This

6In fact, a complete Hilbert-Huang transform has two steps. They are the empirical mode
decomposition and Hilbert spectral analysis. However, we note that some authors call the empirical
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method has a very local level ability both in physical domain and spectral domain.

It also possesses fully self-adaptiveness ability, since there is no basis assumption a

priori (Huang et al., 1998, 1999; Flandrin & Gonçalvès, 2004). As an alternative

method to the Fourier-based approach, we will apply this methodology on turbulent

and environmental time series in this thesis.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

This thesis is organized as follows. In chapter 2, we present more details on the

traditional Hilbert-Huang transform, including Empirical Mode Decomposition, the

classical Hilbert Spectral Analysis. We generalize the latter one into arbitrary order

to consider the scale invariant properties of intermittent multifractal time series in

an amplitude-frequency space with validation in chapter 3.

In chapter 4, we recall the classical Kolmogorov’s 1941 theory on local homogenous

and isotropic turbulence together with intermittency and multifractal cascade ideas.

In chapter 5, we present an analytical model of the classical structure function analysis

to show its potential shortcoming. A similar analytical model is proposed to the

autocorrelation function of the velocity increment time series. It is found that the

autocorrelation function is a better inertial range indicator than structure functions.

In chapter 6, we apply the new Hilbert-based methodology to a turbulent database

from an experimental homogeneous and nearly isotropic turbulence experiment. We

recover the classical structure function scaling exponents ζ(q) in spectral space for the

first time. In chapter 7, we analyze a passive scalar (temperature) turbulence data

with very strong ramp-cliff structure, in which the classical structure function analysis

mode decomposition as Hilbert-Huang transform.
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fails. In chapter 8, we generalize the Extended-Self-Similarity (ESS) into Hilbert

frame to compare the scaling property of turbulent velocity with various turbulent

intermittency models. We finally apply the new methodology to environmental time

series: river flow discharge data in chapter 9, and surf zone marine turbulence data

in chapter 10, to characterize the scale invariant properties in amplitude-frequency

space. In chapter IV, we draw the main conclusions of this thesis.
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Chapter 2

Norden Huang’s 1998 Proposal:
Hilbert-Huang Transform

About ten year ago, Huang et al. (1998, 1999) introduced a new method, namely

Hilbert-Huang transform or Empirical Mode Decomposition, to deal with time se-

ries analysis that was claimed to be well adapted for nonlinear and nonstationary

data. During the last ten years, there have been more than 1000 papers devoted to

apply this new method to various engineering applications and many different sci-

ence research fields. For example, waves (Hwang et al., 2003; Veltcheva & Soares,

2004; Schmitt et al., 2009), biological applications (Echeverria et al., 2001; Baloc-

chi et al., 2004; Ponomarenko et al., 2005), financial studies (Huang et al., 2003b),

meteorology and climate studies (Coughlin & Tung, 2004; Jánosi & Müller, 2005;

Molla et al., 2006; Solé et al., 2007; Wu et al., 2007; Huang et al., 2009b), mechanical

engineering (Loh et al., 2001; Chen et al., 2004), acoustics (Loutridis, 2005), aquatic

environment (Schmitt et al., 2007), and turbulence (Huang et al., 2008), to quote a

few. In this chapter, we introduce this method in detail.

19
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2.1 Empirical mode decomposition

The most innovative part of the HHT is the Empirical Mode Decomposition. The

starting point of the EMD is that most of the signal are multi-component, which

means that there exist different scales simultaneously (Cohen, 1995; Huang et al.,

1998, 1999). This may be considered as faster oscillations superposed to slower ones

at very local levels (Rilling et al., 2003; Flandrin & Gonçalvès, 2004). We illustrate

this idea in Fig. 2.1.The characteristic scale is taken, for EMD method, as the dis-

tance between two successive maxima positions. This idea was at the original of the

introduction of Intrinsic Mode Function (IMF in the following). The definition of

an IMF is: (i) the difference between the number of local extrema and the number

of zero-crossings must be zero or at most one; (ii) the running mean value of the

envelope defined by the local maxima and the envelope defined by the local minima

is zero. Figure 2.2 shows an example of IMF. The next step is to consider how IMFs

can be extracted from time series.

+=

Figure 2.1: A schematic illustration of the basic idea of EMD. The original signal
(thick line in the left diagram) is considered as the superposition of a faster oscillation
(middle diagram) on a slower oscillation (right diagram).

Norden Huang et al. (1998, 1999) introduced the Empirical Mode Decomposition

algorithm, called by himself “sifting process”, to decompose a given signal into several
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Figure 2.2: An example of IMF from EMD decomposition.

IMF modes (Flandrin et al., 2004). The corresponding flow chart of this sifting process

is shown in Fig. 2.3.

The first step of sifting process is to identify all the local extrema maxima (resp.

minima) points for a given time series x(t). Once all the local extrema maxima

points are identified, the upper envelope emax(t) is constructed by a cubic spline. The

the procedure is repeated for the local extrema minima points to produce the lower

envelope emin(t). Then the mean between these two envelope is defined as

m1(t) =
emax(t) + emin(t)

2
(2.1.1)

The first component is then estimated by

h1(t) = x(t)−m1(t) (2.1.2)

The procedure is illustrated in Fig. 2.4, where the the original data x(t) are shown

as thin solid line. Ideally, h1(t) should be an IMF as expected. In reality, however,

h1(t) may not satisfy the condition to be an IMF. We thus take h1(t) as a new time

series and repeat the sifting process j times, until h1j(t) is an IMF

h1j(t) = h1(j−1)(t)−m1j(t) (2.1.3)
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Figure 2.3: The flowchart of sifting process for EMD algorithm.

We thus extract the first IMF component C1(t)

C1(t) = h1j(t) (2.1.4)

and the residual r1(t)

r1(t) = x(t)− C1(t) (2.1.5)

from the data x(t). An illustration of the first sifting process for a real time series

is shown in Fig. 2.4. The sifting procedure is then repeated on residual until rn(t)

becomes monotonic function or at most has one local extreme point. This means no

more IMF can be extracted from rn(t). We finally have n − 1 IMF modes with one
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(1)

(2)

(3)

Figure 2.4: Illustration of the sifting process of EMD algorithm: (1) identify all the
local extrema points (#), and construct the upper envelop emax(t), and the lower
envelop emin(t), (2) calculate the running average m1(t), and (3) get the local detail
h1(t) after 1st sifting. The original time series x(t) is shown as thin solid line.

residual rn(t). The original data x(t) is then rewritten as

x(t) =
n−1∑

i=1

Ci(t) + rn(t) (2.1.6)

Due to a dyadic filter bank property of the EMD algorithm (Wu & Huang, 2004;

Flandrin et al., 2004; Huang et al., 2008), usually in practice, the number of IMF

modes is less than log2(N), where N is the length of the data set.

The above sifting process severs as two purposes: (i) to eliminate the riding wave,

(ii) to make the wave profiles more symmetric. Therefore, the sifting process should

be repeated enough times. However, if too many times sifting are performed, the

amplitude of the IMF modes will become constant, and the nonlinear wave profiles

is then distorted, which means the modes lose their physical meaning (Huang et al.,
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1998, 1999). To guarantee that the IMF modes retain enough physical sense for both

amplitude and frequency modulations, a stopping criterion has to be introduced to

stop the sifting process. Different types of stopping criteria have been introduced by

several authors (Huang et al., 1998, 1999; Rilling et al., 2003; Huang et al., 2003a;

Huang, 2005). We only describe here what we used in this thesis. The first stop

criterion is a Cauchy-type convergence criterion. In this we introduce the standard

deviation (SD), which is defined for two successive sifting process as

SD =

∑T
t=0 |hi(j−1)(t)− hj(t)|

2

∑T
t=0 h

2
i(j−1)(t)

(2.1.7)

If a calculated SD is smaller than a given value, then the sifting stops and gives an

IMF. A typical value proposed by Huang et al. (1998) is 0.2 ∼ 0.3, proposed based

on their experience (Huang et al., 1998). Another widely used criterion is based on 3

thresholds α, θ1 and θ2, which are designed to guarantee globally small fluctuations

in the mean while taking into account locally large excursions (Rilling et al., 2003).

Mode amplitude and evaluation functions are then given by

a(t) =
emax(t)− emin(t)

2
(2.1.8)

and

σ(t) = |m(t)/a(t)| (2.1.9)

The sifting is iterated until σ(t) < θ1 for some prescribed fraction 1 − α of the total

duration, while σ(t) < θ2 for the remaining fraction. The typical values proposed by

Rilling et al. (2003) are α ≈ 0.05, θ1 ≈ 0.05 and θ2 ≈ 10 θ1, respectively based on their

experience. We also set the maximal iteration number, for example 300, to avoid to

over-decompose the time series. In practice, if one of these criteria is satisfied, then

the sifting process stops to give an IMF.
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The above described EMD algorithm does the decomposition in a very local level

in physical domain without a priori basis. It also means that it is an a posteriori

method, since the basis (function) is induced by the data itself (Huang et al., 1998,

1999; Flandrin & Gonçalvès, 2004). The fully adaptiveness ability of this method

explains that it can be considered to be well adapted for nonlinear and nonstationary

data. However, the main drawback of this method is that it is not mathemati-

cally proved (Huang, 2005). More detail about the EMD algorithm can be found in

Refs. Huang et al. (1998, 1999); Rilling et al. (2003); Flandrin et al. (2004); Flandrin

& Gonçalvès (2004); Huang (2005).

2.2 Hilbert spectral analysis

After having extracted the IMF modes, one can apply the associated Hilbert spectral

analysis to each IMF component Ci in order to extract the energy-time-frequency

information from the data (Long et al., 1995; Huang et al., 1998, 1999). The Hilbert

transform of a function C(t) is written as

C̃(t) =
1

π
P

∫ +∞

0

C(t′)

t− t′
dt′ (2.2.1)

where ‘P ’ means the Cauchy principle value (Cohen, 1995; Long et al., 1995; Huang

et al., 1998). It is a singularity integration, which means that it should have a very

local ability to denoting fluctuations. For each IMF mode, one can construct the

analytic signal (Cohen, 1995), Ci(t), as

Ci(t) = Ci(t) + jC̃i(t) = Ai(t)e
jθi(t) (2.2.2)

where

Ai(t) = |Ci(t)| = [Ci(t)
2 + C̃2i (t)]

1/2, θi(t) = arctan

(
C̃i(t)

Ci(t)

)

(2.2.3)
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Hence the instantaneous frequency can be defined by using the information of phase

function θi(t), which is written as

ωi =
dθi(t)

dt
(2.2.4)

The original signal is finally represented (excluding the residual rn(t)) as

x(t) = RP
N∑

i=1

Ai(t)e
jθi(t) = RP

N∑

i=1

Ai(t)e
j
∫
ωi(t) dt (2.2.5)

where ‘RP’ means real part. The Hilbert-Huang transform can be taken as a gener-

alization of Fourier transform, see Eq. (1.1.3): it allows a frequency-modulation and

amplitude-modulation simultaneously. A Hilbert spectrum, H(ω, t) = A2(ω, t), is

thus designed to represent the energy in time-frequency representation (Long et al.,

1995; Huang et al., 1998). We further can define the Hilbert marginal spectrum as

h(ω) =

∫ +∞

0

H(ω, t) dt (2.2.6)

This is similar with the Fourier spectrum, and can be interpreted as the energy

associated to each frequency. We however underline the fact that the definition of

frequency here is different from the definition in the Fourier frame (Huang et al.,

1998, 1999).

We do not give the validation and calibration detail of the Hilbert-Huang trans-

form here. For details of the validation and calibration, we suggest Refs. Huang et al.

(1998, 1999).
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2.3 Intrawave frequency modulation and nonlinear

mechanism

We have mentioned in chapter 1 that the the frequency modulation can be further

termed into two different types, intrawave frequency modulation and interwave fre-

quency modulation. Indeed, the former one may be linked to the nonlinear distortion.

More precisely, it may be considered as a signature of nonlinear mechanism. We show

this by an example.

Intrawave Frequency Modulation

We have taken Duffing equation as an example to show the nonlinear distortion of

Fourier representation. Figure 2.5 (a) reproduces the instantaneous frequency ω of the
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Figure 2.5: Illustration of the Intrawave Frequency Modulation by using Duffing equa-
tion: (a) instantaneous frequency of the 1st mode, (b) the Fourier energy spectrum
of the instantaneous frequency of 1st mode, respectively.

first IMF mode of the numerical solution of the Duffing equation. One can find that

the instantaneous frequency ω itself varies with the time t between 0.05 ∼ 0.15Hz,

with a mean value of 0.1Hz. This corresponds to frequency-modulation. We take ω as

a new time series and calculate it Fourier power spectrum. The corresponding Fourier

power spectrum is shown Fig. 2.5 (b). The dominant frequency is 0.21Hz, twice of the
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mean frequency of the 1st IMF mode. This means that the instantaneous frequency

does vary within one period. This is an intrawave type of frequency modulation. We

argue that it corresponds to a nonlinear mechanism behind the time series.

Interwave Frequency Modulation

We consider another type of FM here, interwave frequency modulation. We construct

a linear chirp signal as (Flandrin, 1998):

x(t) = sin(
π

20
t+

π

100
t2), 0 ≤ t ≤ 50 (2.3.1)

The corresponding instantaneous frequency is written

ω(t) =
1

40
+
1

200
t (2.3.2)

Figure 2.6 shows (a) the constructed chirp signal and (b) the corresponding instan-

taneous frequency. As a comparison with Fig. 2.5, one can immediately find the

difference between them: the instantaneous frequency ω here is linearly increasing

with time t.
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Figure 2.6: Illustration of the Interwave Frequency Modulation: (a)a chirp x(t) =
sin( π

20
t+ π

100
t2), (b) the instantaneous frequency ω(t) = 1

40
+ 1
200
t, respectively.
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Nonlinear Mechanism

For comparison convenience, we replot the first IMF mode of Duffing equation (top)

and the chirp signal (bottom) in Fig. 2.7. This illustrates the difference between

them. The former one provides a departure from the sine wave due to a nonlinear

mechanism. The latter still keeps sine wave profile from period to period. Thus,

any nonlinear distorted waveform has been referred to as “harmonic distortions for

Fourier based methods”.

Figure 2.7: Comparison of the wave profiles of the first IMF mode of Duffing equation
(top) and the chirp signal (bottom). The former one deviates from a pure sine wave
profile with nonlinear distortion. The latter still keeps sine wave profile.

2.4 Summary

We introduced the Hilbert-Huang transform above, including the empirical mode

decomposition and the Hilbert spectral analysis. The combination of EMD and HSA

also is called Hilbert-Huang transform (HHT). It is have been shown that the HHT has

fully self-adaptiveness and very local ability in both physical and spectral domains.

It is particular suitable for nonstationary time series analysis.
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The main drawback of the HHT is its lack of solid theoretical ground, since the

EMD part is almost empirical (Huang, 2005). Recently, Flandrin et al. have obtained

new theoretical results on the EMD method (Flandrin & Gonçalvès, 2004; Rilling &

Flandrin, 2006, 2008, 2009). However, more theoretical work is still needed to fully

mathematically understand this method.



Chapter 3

Our Generalization: Arbitrary
Order Hilbert Spectral Analysis

We consider here the main contribution of our work: the generalization of the classical

Hilbert-Huang approach for arbitrary order moments, in order to deal with scaling

intermittent multifractal time series. The results presented in this chapter are pub-

lished in Huang et al. (2008, 2009a, 2010a) [Y. Huang, et al.Europhy. Lett., 84, 40010,

2008.; Y. Huang, et al.Traitement du Signal, 25, 481-492, 2008; Y. Huang, et al.Phys. Rev.

E, 2010 (submitted). ]

3.1 Definition

The Hilbert marginal spectrum is defined as a marginal integration of the Hilbert

spectrum H(ω, t) over t, which is written as

h(ω) =

∫ +∞

0

H(ω, t) dt (3.1.1)

where H(ω,A) is the Hilbert spectrum. There is another equivalent definition, which

is based on the joint probability density function p(ω,A) of the instantaneous fre-

quency ω and the amplitude A (Long et al., 1995; Huang et al., 2008, 2009a). The

31
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Hilbert marginal spectrum is thus rewritten as the marginal integral of the joint pdf

p(ω,A) over A2

h(ω) =

∫ +∞

0

p(ω,A)A2 dA (3.1.2)

One can find that the above definition is no more than a second order statistical

moment. This constatation leads us to generalize this approach to arbitrary order

moment

Lq(ω) =
∫ +∞

0

p(ω,A)Aq dA (3.1.3)

where q ≥ 01 (Huang et al., 2008, 2009a). In case of scale invariance, we expect a

power law of the form

Lq(ω) ∼ ω−ξ(q) (3.1.4)

where ξ(q) is the corresponding Hilbert-based scaling exponent. Due to the integra-

tion operator, ξ(q)− 1 can be associated to the classical ζ(q) from structure function

analysis: 〈Δxq`〉 ∼ `ζ(q). Therefore, the generalized Hilbert spectral analysis provides

a new methodology to characterize the scale invariance in an amplitude-frequency

space (Huang et al., 2008, 2010a, 2009a).

In the following context, we validate and calibrate the idea of the arbitrary or-

der HSA methodology by fractional Brownian motion simulations and a synthesized

multifractal nonstationary time series.

1In fact here q can be take as q ≥ −1. However, we only consider the case q ≥ 0 in this thesis.
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3.2 Calibration and validation

3.2.1 Fractional Brownian motion and multifractal time se-

ries

Fractional Brownian Motion

Fractional Brownian motion (fBm) is a continuous-time random process proposed

by Kolmogorov (1940) in the 1940s and Yaglom (1957) and later named ‘fractional

Brownian motion’ by Mandelbrot & Van Ness (1968). It consists in a fractional in-

tegration of a white Gaussian process and is therefore a generalization of Brownian

motion, which consists simply in a standard integration of a white Gaussian pro-

cess (Mandelbrot & Van Ness, 1968; Flandrin, 1992; Samorodnitsky & Taqqu, 1994;

Beran, 1994; Rogers, 1997; Doukhan et al., 2003; Gardiner, 2004; Biagini et al., 2008).

Because it presents deep connections with the concepts of self-similarity, fractal, long-

range dependence or 1/f -process, fBm quickly became a major tool for various fields

where such concepts are relevant, such as in geophysics, hydrology, turbulence, eco-

nomics, communications, etc (Samorodnitsky & Taqqu, 1994; Gardiner, 2004; Biagini

et al., 2008).

For a fBm X(t) process, the autocorrelation is well known to be the following

RH(t, t
′) =

σ2

2

(
|t|2H + |t′|2H − |t− t′|2H

)
(3.2.1)

where σ is the variance of X(t), and H is the so-called Hurst number (Samorodnitsky

& Taqqu, 1994; Beran, 1994; Gardiner, 2004; Biagini et al., 2008). The process is said

to be self-similar, since in terms of distributions for any real a

X(at) ∼ |a|HX(t) (3.2.2)
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Figure 3.1: Illustration of fractional Brownian motion with various Hurst number H.

It is also well known for its stationary increments

X(t)−X(τ) ∼ X(t− τ) (3.2.3)

For the case H > 1/2, the process exhibits long-range dependence, which means that

∫ +∞

0

C(τ) dτ =∞ (3.2.4)

where the autocorrelation function is written as

C(τ) = 〈X(t)X(t+ τ)〉 (3.2.5)

in which 〈 〉 means ensemble average.

The fBm is a classical monofractal process. It requires only one parameter, the
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Hurst number H, to characterize the stochastic process. For structure function anal-

ysis, the scaling exponents is well known to be the following

〈|X(t+ τ)−X(t)|q〉 ∼ τ ζH(q), ζH(q) = qH (3.2.6)

where ζH(q) is the scaling exponent from structure functions. We thus expect for the

HSA approach the corresponding scaling exponents ξH(q) to be the following

Lq,H(ω) ∼ ω−ξH(q), ξH(q) = qH + 1 (3.2.7)

where the ‘+1’ corresponds to the integration operator in Eq. (3.1.3).

We consider here a Wavelet based algorithm to simulate the fBm process, which

was first proposed by Meyer (n.d.) and Sellan (1995), then developed by Abry &

Sellan (1996). Starting from the expression of the fBm process as a integral of the

fractional Gaussian noise process, the idea of the algorithm is to build a biorthogonal

wavelet depending on a given orthogonal one and adapted to the parameter H. Then

the generated sample path is obtained by the reconstruction using the new wavelet

starting from a wavelet decomposition at a given level designed as follows: details

coefficients are independent random Gaussian realizations and approximation coeffi-

cients come from a fractional Autoregressive Integrated Moving Average (ARIMA)

process. A MATLAB R© code, namely wfbm, to realize this algorithm can be found

in the Wavelet toolbox of MATLAB R©.

Figure 3.1 illustrates a 212 data points portion of fBm with various Hurst numbers

H by using above mentioned algorithm with db2 wavelet. One can find that for the

long-range dependence case, H > 1/2, an increasing pattern in the previous steps is

likely to be followed by the current increasing step as well.
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The validation of the new arbitrary order Hilbert spectral analysis using this data

series will be considered below.

Nonstationary Multifractal Time Series

Since the introduction of multifractal concepts in the 1980s (Parisi & Frisch, 1985;

Grassberger & Procaccia, 1983; Benzi et al., 1984; Grassberger, 1986) in the field of

turbulence and chaos, this approach has met huge success.

Figure 3.2: Illustration of the discrete cascade process. Each step is associated to a
scale ratio of 2. After n steps, the total scale ratio is 2n.

Multifractal properties have been found in may fields, such as, turbulence (Ansel-

met et al., 1984; Frisch, 1995), financial time series (Ghashghaie & Dodge, 1996;

Schmitt et al., 1999; Lux, 2001; Calvet & Fisher, 2002), physiology (Ivanov et al.,

1999), rainfall (Schertzer & Lovejoy, 1987; Schmitt et al., 1998; De Lima & Gras-

man, 1999; Venugopal et al., 2006), etc. A multifractal process is a generalization

of monofractal process, in which a single exponent, such as Hurst number H, is

not enough to describe its dynamics; instead, a continuous spectrum of exponents is
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Figure 3.3: A sample for one realization 217 points with μ = 0.25: (a) the multifractal
measure (b) the constructed multifractal nonstationary process.

needed.

For a few years now, new methods to generate nonstationary multifractal time se-

ries mimicking turbulent velocity or passive scalar time series have been proposed (Muzy

& Bacry, 2002). Here we adapt the idea of multifractal random walks using discrete

multiplicative cascades (Schmitt, 2003).

We consider here a synthesized multifractal nonstationary time series, which is

constructed based on a multiplicative discrete cascades (Schmitt, 2003). Figure 3.2

illustrates the cascade process algorithm. The larger scale corresponds to a unique

cell of size L = `0λ
n
1 , where `0 is a fixed scale and λ1 > 1 is dimensional scale ratio.

For discrete model, this ratio is often taken as λ1 = 2. The model being discrete,

the next scale involved corresponds to λ1 cells, each of size L/λ1 = `0λ
n−1
1 . This is

iterated and at step p (1 ≤ p ≤ n) there are λp1 cells, each of size L/λ
p
1 = `0λ

n−p
1 .



38 Chapter 3. Our Generalization: Arbitrary Order HSA

0 40000 80000 120000
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

t

x
(t
)

μ = 0.1

0 40000 80000 120000
-2.5

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2
2.5

t

x
(t
)

μ = 0.2

0 40000 80000 120000
-4.5

-4
-3.5

-3
-2.5

-2
-1.5

-1
-0.5

0
0.5

t

x
(t
)

μ = 0.3

0 20000 40000 60000
-0.5

0

0.5

1

1.5

2

2.5

3

t

x
(t
)

μ = 0.4

Figure 3.4: Illustration of synthesized nonstationary multifractal time series with
various intermittent parameters μ.

There are n cascade steps, and at step n there are λn1 cells, each of size `0, which

is the smallest scale of the cascade. To reach this scale, all intermediate scales have

been involved. Finally, at each point the multifractal measure writes as the product

of n cascade random variables

ε(x) =
n∏

p=1

Wp,x (3.2.8)

where Wp,x is the random variable corresponding to position x and level p in the

cascade (Schmitt, 2003). Following multifractal random walk ideas (Bacry et al.,

2001; Muzy & Bacry, 2002), we generate a nonstationary multifractal time series as

u(x) =

∫ x

0

ε(x′)1/2dB(x′) (3.2.9)

where B(x) is Brownian motion. Taking lognormal statistic for ε, the scaling exponent
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ζ(q) such as 〈|Δuτ (t)|q〉 ∼ τ ζ(q) is written as

ζ(q) =
q

2
−
μ

2
(
q2

4
−
q

2
) (3.2.10)

where μ is the intermittency parameter (0 ≤ μ ≤ 1) characterizing the lognormal

multifractal cascade (Huang et al., 2010a).

A sample for one realization is shown in Fig. 3.3 (a) the multifractal measure, and

(b) the nonstationary multifractal time series, with μ = 0.25, and n = 17 levels, cor-

responding to data sets with data length 217 points. Figure 3.4 shows the synthesized

nonstationary multifractal time series with various intermittent parameters μ.

As for fBm time series, these multifractal synthetic time series are analyzed below

using our new method.

3.2.2 Calibration and validation

Monofractal Processes: Fractional Brownian Motions

For the fBm process, we simulate 500 segments of length 212 data points each, using

above mentioned wavelet based algorithm (Abry & Sellan, 1996), with db2 wavelet

and various Hurst values from 0.1 to 0.9. The Hilbert transform is numerically esti-

mated by using a FFT based method (Marple Jr, 1999). Figure 3.5 shows the first six

order Hilbert marginal spectrum for H = 0.4 and 0.6. Power law is observed for each

curve as expected. The scaling exponent ξ(q) is then estimated on the corresponding

power law range by a first order least square fitting algorithm. We then represent the

corresponding scaling exponents ξ(q) for various value of q from 0 to 6 in Fig. 3.6,

in which perfect straight lines of equation 1 + qH confirms the usefulness of the new

method to estimate ξ(q).
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Figure 3.5: The first six order Hilbert marginal amplitude spectra of fractional Brow-
nian motion with Hurst number (a) H = 0.4, and (b) H = 0.6. Power law behaviour
is observed for each curve as expected.

We then consider estimation of the H value. For this, we consider different es-

timators. They involve the first and second order moment. These estimators are

H† = ξ(1)− 1 (3.2.11a)

H? = (ξ(2)− 1)/2 (3.2.11b)

and using the least square fitting for all q

H� = (ξ(q)− 1)/q (3.2.11c)

The estimated Hest are shown in Fig. 3.7 for H
† (B), H? (#) and H� (�). They

are good agreement with the theoretical H. The mean error for each estimator are

5.3%, 3.1% and 9.4%. For comparison, we reproduce the estimated value H from

Ref. Rilling et al. (2005), in which two estimators Ĥ1 (5), Ĥ2 (4) based on IMF

modes and one estimator based on discrete wavelet transform HW (♦) are presented.

We also show the absolute error |Hest −H|, the estimated values departure from the

given Hurst number H as inset, where the gray patch indicates the deviation less

than 5%. We underline that Rilling et al. (2005) simulated the fractional Gaussian
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Figure 3.6: Scaling exponents ξH(q) for fractional Brownian motion simulations with
H from 0.1 to 0.9.

noise by using the algorithm proposed by Wood & Chan (1994). Their proposed

estimators Ĥ1 and Ĥ2 are based on the assumption of a dyadic filter bank for the

EMD method (Rilling et al., 2005). If the absolute error is less than 5%, then there

is no significant difference between estimators. Their results show two different range

for H < 1/2 and 1/2 < H, see Fig. 3.7, in which it is indicated by the vertical dashed

line. They argued that for the case where H < 1/2, the dyadic filter bank property

which underlies the EMD approach is only an approximation that has to be refined

further (Rilling et al., 2005). The estimators H†, H? and H� we proposed here may

provide more precise estimators, since they do not require the dyadic property.

The above numerical experiment confirms the usefulness of the arbitrary order

Hilbert spectral analysis methodology for the monofractal case.
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Figure 3.7: Representation of the estimation Hurst number H† (B), H? (#) and H�

(�) with the theoretical values H used for simulations. For comparison, the values
from Ref. Rilling et al. (2005) are also presented, using the estimator Ĥ1 (5), Ĥ2 (4)
and discrete wavelet transform HW (♦). The inset shows the absolute error for each
estimator. The gray patch indicates when the absolute error |Hest − H| is less than
5%.

Multifractal Process: Nonstationary Multifractal Time Series

We then validate the Hilbert-based methodology for intermittent time series by con-

sidering the synthesized nonstationary multifractal time series, and quantify the error

parameter estimation. For each realization, we choose n = 17 levels with data length

217 points each. We estimated the structure function on the range 2 < τ < 10000. The

corresponding scaling exponents ζ(q) are then estimated on the range 10 < τ < 1000.

For the HSA approach, the 217 points are divided into several segments, each one

with 214 points. This averaged Hilbert marginal spectrum is taken for each realiza-

tion. Power law behaviour is found on the range 0.0002 < ω < 0.3, corresponding to

3 < τ < 5000. The corresponding scaling exponents ξ(q) are then estimated on this
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Figure 3.8: Structure function and Hilbert marginal spectra for one 217 points realiza-
tion (a) the second order structure function, (b) the six order structure function, (c)
the second order Hilbert marginal spectrum and (d) the six order Hilbert marginal
spectrum, where the dashed line in each figure is the best fit in least square sense.

range. Figure 3.8 shows the second and the sixth order structure functions and the

corresponding Hilbert marginal spectra for one realization, where the dashed line is

the least square fitting of the power law. For comparison convenience, we consider in

the following ξ(q)− 1.

We then consider the convergence of the scaling exponents. For this we consider

the number of realization n and for each n, for i ∈ [1, n], we estimate separately each

value ζi (or ξi). We also take

ζ(q) = lim
n→∞

1

n

n∑

i=1

ζi(q) (3.2.12)

Then the convergence is characterized by the ratio

Rn(q) =
1

n

∑n
i=1 ζi(q)

ζ(q)
(3.2.13)
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Figure 3.9: The n-dependence of the average estimator ζ̃n(q) for various q, where n
is the number of realization. The vertical solid line indicates the number n = 1000.

where limn→∞Rn(q) = 1. Figure 3.9 shows the convergence of this ratio for n between

1 and 70,000 for the case μ = 0.25. It shows that if one wants an error of 1% in the

estimation of ζ, n = 100 realizations are enough. In the following we consider 70,000

realizations corresponding in average to an error 100 × |1−Rn| in the estimation of

ζ(q) (resp. ξ(q)) of 0.02% for q = 2, 0.07% for q = 4 and 0.13% for q = 6 for structure

functions, and 0.03% for q = 2, 0.04% for q = 4 and 0.05% for q = 6 for HSA. This

shows that we obtain very precise estimates of ζ(q) (resp. ξ(q)).

Fig. 3.10 shows the pdf of the scaling exponents provided by structure functions

and the HSA approach for q = 2 and 6 estimated for individual realizations, where

the solid line is the Gaussian distribution fitting. These graphics show the spreading

of the scaling exponents estimates. The number n = 70, 000 of realizations considered

here is rather huge compared to other multifractal studies, and represents a rather

consequent numerical effort. Graphically, for small values of q, the variability in the
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Figure 3.10: pdf of scaling exponents ζ(q) (resp. ξn(q) − 1) for 70,000 realizations
with μ = 0.25. The solid line is the Gaussian fitting.

estimation of scaling exponents provided by both approaches are quite close to the

Gaussian distribution. We also note that the shape of the pdf corresponding to the

HSA approach is narrower, which indicates that this approach provides a more precise

estimator of multifractal parameters.

We show the scaling exponents predicted by the structure functions (�) and the

HSA approach (#) in Fig. 3.11 for the cases μ = 0.25 with n = 70, 000, where the

inset shows the departure from q/2. The curves provided by the two methods are in

good agreement with each other.

We synthesized the multifractal time series with various intermittent parameter

μ from 0.1 to 0.5, and 1000 realizations for each case (except the case μ = 0.25). We

estimate μ by considering the first order derivative of Eq. (3.2.10). We then have the
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Figure 3.11: Representation of scaling exponents ζ(q) (resp. ξ(q) − 1) for 70000
realizations with μ = 0.25.

estimator μ? given by

μ? =
2− 4ζ ′(q)
q − 1

(3.2.14)

where ζ ′(q) is the first derivative of ζ(q). The first order derivative can be estimated

by the central finite difference algorithm with a second order accuracy

ζ ′(q) '
ζ(q + δq)− ζ(q − δq)

2δq
(3.2.15)

where δq is the increment of the order q. To estimate the first order derivative more

accurately, we may firstly fit the scaling exponents ζ(q) by a quadratic polynomial,

which is suggested by Eq. (3.2.10)

ζ(q) ' p1q
2 + p2q + p3 (3.2.16)

where p1, p2 and p3 are fitting coefficients in least square sense. We thus have

ζ ′(q) ' 2p1q + p2 (3.2.17)
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We show the estimated μ? with q = 2 in Fig. 3.12, where the inset shows the relative

error (in %) from the theoretical μ values. It seems that both methods slightly overes-

timate μ; however, the HSA provides a better estimation of μ, which may be linked to

the local ability of the method both in the physical and frequency domains (Huang

et al., 1998, 2008). We thus have shown above the usefulness of the present new

methodology to extract multifractal exponents with values consistent with structure

functions.
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Figure 3.12: Representation μ?, which is estimated by μ? = 2 − 4ζ ′(2). We first fit
the corresponding scaling exponent by a quadratic polynomial. Then the first order
derivative is estimated by Eq. (3.2.17).
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3.3 Marginal pdf of the Instantaneous Frequency

We consider here a special case, the zeroth order Hilbert marginal spectrum, which

is written as

L0(ω) =
∫ +∞

0

p(ω,A) dA (3.3.1)

a marginal integration over A. More precisely, it is the marginal pdf of the instan-
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Figure 3.13: The zeroth order Hilbert marginal spectrum LH,0(ω) for various H. It
is also the marginal pdf for the instantaneous frequency ω. The value of the scaling
exponent is found as ξH(0) = 0.967± 0.007. The slope of the dashed line is -1.

taneous frequency ω. We note that the scaling exponent ξ(0) ' 1 for all H and μ,

for example, see Fig. 3.6 and Fig. 3.112. Figure 3.13 shows the corresponding zeroth

order Hilbert marginal spectra LH,0(ω) for various H, where the dashed line indicates

the line with slope -1. The scaling exponents are then estimated on each power law

range. The mean scaling exponent is calculated as ξH(0) = 0.967± 0.007. A ‘-1’ like

2For the other μ, the zeroth scaling exponents are also quite close to 1.
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power law for the zeroth order Hilbert marginal spectrum is also found in various

experimental data, for example, turbulence velocity (Huang et al., 2008) (�), turbu-

lence temperature (�), Seine river flow discharge (Huang et al., 2009b) (N), surf-zone

fluctuation (J), etc. Figure 3.14 represents the corresponding ξ(0) for different types

data. A mean scaling exponent is then estimated as

〈ξ(0)〉 = 0.968± 0.054 (3.3.2)

It seems that the zeroth order scaling exponent ξ(0) ' 1 is a quite general property

of the present Hilbert-based methodology (Huang et al., 2008). This brings us a

question: whether this exponent ξ(0) = 1 for the zeroth order Hilbert marginal

spectral L0(ω) is physically meaningful? If yes, what does it really mean? It should
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be a subject of further studies for future work.

3.4 Summary

In this chapter we have proposed a new methodology, namely arbitrary order Hilbert

spectral analysis, to characterize the scale invariance directly in amplitude-frequency

space (Huang et al., 2008, 2010a, 2009a). We have calibrated and validated the new

method by fractional Brownian motion simulation for the monofractal case and by

synthesized multifractal time series for the multifractal intermittent case. We found

that the Hilbert-based methodology provides a better Hurst estimator for 0 < H < 1.

The numerical experiments, performed for n = 70, 000 realizations each of size 217

for multifractal time series, have shown that the HSA approach provides a better

estimator than structure function. We have also found that the scaling exponent for

the zeroth order Hilbert marginal spectrum or the marginal pdf of the instantaneous

frequency is quite close to 1. It seems that it is a general property of the present

method, still to be further understood.

We provide some comments on the present methodology, that we called “Arbitrary

Order Hilbert Spectral Analysis”. The arbitrary order Hilbert spectral analysis is

an extended version of the Hilbert-Huang transform. Therefore, it inherits all the

advantages and shortcomings of the HHT. The main drawback of the HHT method is

its lack of solid mathematical ground, since the EMD part is almost empirical (Huang,

2005). It has been found experimentally that the method, especially for the HSA, is

statistically stable with different stopping criteria (Huang et al., 2003a). Furthermore,

the present method measures the scale invariant properties directly in an amplitude-

frequency space (Huang et al., 2008, 2010a, 2009a). For the joint pdf, it seems that it
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requires a large sample size to get a good statistical quantities. We find that the joint

pdf itself may be scattered, but the Hilbert marginal spectrum may converge (Huang

et al., 2008). However, we need more theoretical/experimental work to help us to

fully understand the present Hilbert-based method.
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Chapter 4

Homogeneous Turbulence and
Intermittency: Velocity and
Passive Scalar

It is well-known that turbulence is the “last great unsolved problem of the classical

physics” (Feynman, 1964). Let us recall the problem of turbulence here.

Since Reynolds’ very famous experiment and seminal paper of 1894 (Reynolds,

1883, 1894), turbulence has attracted many researchers interest. However, even after

long time studies (Navier-Stokes equations date back to 1821), the problem of tur-

bulence is still open. It is often believed that turbulence researches are still in their

infancy (Lumley, 1992; L’vov & Procaccia, 1997; Yaglom, 2001; Lumley & Yaglom,

2001; Tsinober, 2001). Let us quote Sir Lamb’s famous story here (L’vov & Procac-

cia, 1997). In 1932, in an address to the British Association for the Advancement of

Science, he wittily expressed the difficulty of explaining and studying turbulence in

fluids. He said

“ I am an old man now, and when I die and go to Heaven there are two

matters on which I hope enlightenment. One is quantum electro-dynamics

and the other is turbulence of fluids. About the former, I am really rather

55
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optimistic. ”

Soon after this Kolmogorov’s 1941 (K41) phenomenological theory of turbulence was

one of the main successful phenomenological theories to help us quantitatively un-

derstanding the turbulence. In this chapter, we will recall the classical framework of

K41 and its continuation dealing with intermittency and multifraction cascade

The Navier-Stokes equations for the velocity field u of an incompressible fluid are

∂tu+ (u ∙ 5)u =
5p
ρ
+ ν4u+ f, 5 ∙ u = 0 (4.0.1)

where p is the pressure, ρ the density, f an external force and ν the kinematic viscosity.

The flow is controlled by the Reynolds number

Re =
UL

ν
(4.0.2)

where U andL are the characteristic velocity and length scale of the fluid. It measures

the ratio between the inertial forces and the viscous forces. The number of degrees of

freedom may link to the Reynolds number as Re9/4 by a dynamical arguments (Bohr

et al., 1998). As a consequence, for high Reynolds number turbulent flows, it is im-

possible to produce a direct numerical analysis/simulation of Navier-stokes equations.

Furthermore, a numerical simulation just reproduces the turbulent flow phenomena

numerically. It does not reveal the underlying mechanisms. The difficulties also come

from the fact that the Navier-Stokes equations are nonlinear, nonintegrable and non-

local simultaneously (Tsinober, 2001). We still need a statistical theory to describe

the turbulent flows, and more experiments to accumulate knowledge about the turbu-

lent flows (Lumley & Yaglom, 2001; Yaglom, 2001; Tsinober, 2001). Here we consider

the homogeneous and locally isotropic turbulence and focus on 1D turbulent time

series.



4.1. Kolmogorov’s 1941 theory 57

4.1 Kolmogorov’s 1941 theory

Richardson Cascade

We quote Richardson’s famous words here (Richardson, 1922):

Big whirls have little whirls

that feed on their velocity

and little whirls have lesser whirls

and so on to viscosity in the molecule sense.

Figure 4.1: Illustration of the cascade process: the eddy is broken from integral scale
L, where the energy injects into turbulent flow, to Kolmogorov scale η, where energy
converts into heat.

It describes qualitatively a picture of an energy flux from large vortices to small ones.

It is often believed that the energy injects into the flow from large forcing scale L,

called integral scale. The energy transforms the energy from a large scale to a small

scale on the inertial subrange, η � `� L, until one reaches the finest scale η, namely
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Kolmogorov scale. Due to the fluid viscosity, the energy is then converted into heat

at this finest scale. Figure 4.1 demonstrates this procedure.

Kolmogorov’s 1941 Phenomenological Theory

In 1935, Sir G.I. Taylor postulated the concept of homogeneous and isotropic turbu-

lence behind a grid, which is an ideal model of turbulence (Taylor, 1935). In the same

time, he introduced the powerful Fourier analysis into turbulence research (Taylor,

1935, 1938). In 1941, Kolmogorov proposed a different version of homogeneous and

locally isotropic turbulence (Kolmogorov, 1941a), in which the statistical properties

of turbulent quantities of the velocity field are independent of the position and ro-

tation of the axes. Based on the Richardson cascade, he postulated the famous two

universality hypotheses (Kolmogorov, 1941a; Monin & Yaglom, 1971; Frisch, 1995):

Hypothesis 4.1.1 (Kolmogorov’s First Universality Hypothesis). At very high, but

not infinite Reynolds numbers, all the small scale statistical properties are uniquely

and universally determined by the scale `, the mean energy dissipation rate ε and the

viscosity ν.

Hypothesis 4.1.2 (Kolmogorov’s Second Universality Hypothesis). At very high,

but not infinite Reynolds numbers, if η � ` � L, then the statistical properties at

scale ` are uniquely and universally determined by the scale `, and the mean energy

dissipation rate ε.

In his original paper Kolmogorov considered only the second order structure function

Bdd(r) = 〈Δu(r)
2〉 (4.1.1)
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where Δu(r) = u(x+ r)−u(x) is the velocity increment and r is the separation scale.

Kolmogorov’s second universality hypothesis together with dimensional consideration

gives

Bdd(r) ∼ cε2/3r2/3 (4.1.2)

where c is the Kolmogorov constant and is believed to be universal (Kolmogorov,

1941a; Monin & Yaglom, 1971; Frisch, 1995). Independently from Kolmogorov,

Obukhov (1941) used the power spectrum of the velocity field and obtained the -

5/3 power law

E11(k) = C0ε
2/3k−5/3 (4.1.3)

where C0 is the Kolmogorov constant and k is the wavenumber. These two 2/3

and -5/3 laws are mathematically equivalent and have since been verified by many

experiments (Grant et al., 1962; Anselmet et al., 1984).

4.2 Intermittency and Kolmogorov’s 1962 theory

Energy Dissipation and Intermittency

In his original postulation, Kolmogorov assumed that the energy dissipation rate of

each unite ε is almost constant. The energy dissipation ratio ε is defined as

ε =
ν

2

∑

i,j

(
∂ui

xj
+
∂uj

xi

)2
(4.2.1)

where ν is the kinematic viscosity. Soon after Kolmogorov’s K41 theory, Landau

gave his famous remark that the energy dissipation can not be a constant1 (Landau

1The Russian edition of the book on Fluid Mechanics was published in 1944. In the later versions,
the footnote was moved to the main text.
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& Lifshitz, 1987). Batchelor & Townsend (1949) also found by experiments that the

energy dissipation is intermittent.

Kolmogorov’s 1962 (K62) Theory

In order to take into account intermittency, K41 theory had to be revised. This was

done in 1962 by Obukhov and Kolmogorov. Concerning intermittent of the energy

dissipation, Obukhov (1962) suggested to replace the mean energy dissipation rate ε

by a local space averaged energy dissipation rate

ε`(x) =
6

π`3

∫

r′<`/2

ε(x+ r′) dr′ (4.2.2)

where ` is radius of the sphere. Following Obukhov (1962), Kolmogorov (1962) further

proposed the hypothesis that fluctuations of the energy dissipation rate ε(x) satisfy

a lognormal distribution or have a scaling representation. Denoting σ2` the variance

of log ε`, he assumed

σ2` = A+ μ ln(`0/`) (4.2.3)

where A and μ are constants (μ is often called the intermittency exponent). He

then postulated two refined hypotheses2 (Kolmogorov, 1962; Monin & Yaglom, 1971;

Stolovitzky & Sreenivasan, 1994; Frisch, 1995; Sreenivasan & Antonia, 1997).

Hypothesis 4.2.1 (Kolmogorov’s First Refined Hypothesis). If r � L then the

conditional probability distribution function for the dimensionless relative velocities

V =
Δu(`)

(`ε`)1/3
(4.2.4)

depends only on the local Reynolds number Re` = `(`ε`)
1/3/ν.

2In fact, in Kolmogorov’s 1962 paper, there are three hypotheses. We only consider the first
two here. The third hypothesis is “Two subsets of values in the set (11) (the first hypothesis) are
stochastically independent, if in the first set |X(k) − X| ≥ r1, in the second |X(k) − X| ≤ r2, and
r1 � r2”.
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Hypothesis 4.2.2 (Kolmogorov’s Second Refined Hypothesis). If Re` � 1 then the

conditional probability distribution function indicated in the first hypothesis of V

does not depend on Re`, i.e., it is universal.

Following the above two refined hypotheses, the structure function is then rewritten

as

Sq(`) = 〈Δu`(x)
q〉 = Cq〈ε

q/3
` 〉`

q/3 (4.2.5)

where Δu`(x) = u(x + `) − u(x) is the velocity increment with separation scale `.

Assuming the lognormal distribution of the energy dissipation ε, one can obtain the

scaling exponent ζ(q) of the lognormal model

ζ(q) =
q

3
−

μ

18

(
q2 − 3q

)
(4.2.6)

4.3 Multifractality

A few years after K62 theory, Gurvich & Zubkovskii (1963); Pond & Stewart (1965)

shown that the dissipation field possesses long-range power-law correlations

〈ε(x)ε(x+ `)〉 ∼ `−μ (4.3.1)

This was not included in the K62 proposal. It leads Yaglom (1966) to attempt to con-

ciliate his “Master” Kolmogorov and experiment results: the lognormal distribution

of the energy dissipation ε and the long-range correlations of the energy dissipation,

by building a recursively nested cascade model, see also Schmitt (2003).

Let us consider a multiplicative discrete cascades process to simulate a multifractal

measure ε(x). Fig. 4.2 illustrates the multiplicative discrete cascade process. The

larger scale corresponds to a unique cell of size L = `0λ
n
1 , where `0 is a fixed scale
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Figure 4.2: Illustration of the discrete cascade process. Each step is associated to a
scale ratio of 2. After n steps, the total scale ratio is 2n .

and λ1 > 1 is dimensional scale ratio. For discrete models, this ratio is often taken

as λ1 = 2. The model being discrete, the next scale involved corresponds to λ1 cells,

each of size L/λ1 = `0λ
n−1
1 . This is iterated and at step p (1 ≤ p ≤ n) there are λp1

cells, each of size L/λp1 = `0λ
n−p
1 . There are n cascade steps, and at step n there are

λn1 cells, each of size `0, which is the smallest scale of the cascade. To reach this scale,

all intermediate scales have been involved. Finally, at each point the multifractal

measure writes as the product of n cascade random variables

ε(x) =
n∏

p=1

Wp,x (4.3.2)

where Wp,x is the random variable corresponding to position x and level p in the

cascade (Schmitt, 2003). Since eachWp,x for different cells are assumed independent,

their moment of order q > 0 can be estimated as

〈ε(x)q〉 =
n∏

i=0

〈W q
p,x〉 = 〈W

q〉n (4.3.3)
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This gives

〈εqλ〉 ∼ λK(q) (4.3.4)

where λ = L/` = 2n is the scale ratio, K(q) = log2〈W
q〉. The conservative property

〈W 〉 = 1 gives K(1) = 0 and also 〈ε〉 = 1. One can obtain finally for the scaling

exponents ζ(q)

ζ(q) =
q

3
−K(

q

3
) (4.3.5)

where K(q) = μ
2
(q2 − q) for lognormal model.

Later, to explain Anselmet et al. (1984) results, Parisi & Frisch (1985) proposed

a multifractal formalism. The multifractal idea have been proposed in parallel by

several authors in turbulence (Parisi & Frisch, 1985; Benzi et al., 1984) and chaos

(Hentschel & Procaccia, 1983; Halsey et al., 1986). The early Yaglom (1966) pa-

per, together with Mandelbrot (1974) cascades, were recognized as belonging to the

multifractal framework.

These papers also gave a link between fractal singularities, their dimensions, and

the moment functions through a Legendre transform (Parisi & Frisch, 1985; Benzi

et al., 1984; Halsey et al., 1986).

Now, the accepted approach for multifractal cascades using singularities can be

written as (Schertzer & Lovejoy, 1987)

ε` ∼ `−γ, p(γ) ∼ `c(γ), c(γ) = d− d(γ) (4.3.6)

where γ is a singularity, d(γ) its dimension, c(γ) the codimension. Singularities and

codimensions can be related to moments through a Legendre transform

〈εq`〉 ∼ `−K(q), K(q) = max
γ
(qγ − c(γ)) (4.3.7)
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This expresses a one-to-one relation between singularities (γ, c(γ)) and moments

(ζ(q), K(q)). This is for the cascading quantity ε representing the flux, becoming

the dissipation ε at small scales. For the velocity fluctuations, the framework is the

same: locally, velocity are singular, Δu(`) ∼ `h (where h can be < 0, but is most of

the time > 0) with codimension on the form

p(h) ∼ `c(h) (4.3.8)

and momemts

〈Δu(`)q〉 ∼ `ζ(q) (4.3.9)

where ζ(q) = min {qh+ c(h)}. In the multifractal framework, one usually considers

the scaling properties of fluctuations using the dimension or codimension, or more

frequently, the moment functions K(q) or ζ(q).

4.4 Intermittency models

Many statistical models have been proposed since the introduction of the multifractal

formalism or even before. Let us only recall the most well known here. The debate

still exists to known which one is the closest to the data for turbulent fluctuations.

• The β model: This model was introduced by Frisch et al. (1978) but already

presented by Mandelbrot (1974) or Novikov (1969)

K(q) = μ(q − 1), ζ(q) =
q

3
− μ(

q

3
− 1) (4.4.1)

This model is monofractal K(q) or ζ(q) are liner and there is only one fractal

dimension.



4.4. Intermittency models 65

• The lognormal model: This model is introduced by Kolmogorov (1962) and

Obukhov (1962)

K(q) =
μ

2
(q2 − q), ζ(q) =

q

3
−

μ

18
(q2 − 3q) (4.4.2)

where μ is the intermittent exponent. For this model, the most famous multi-

fractal model, the moment functions are quadratic.

• The log-Poisson model: This model was introduced by She & Lévêque (1994),

Dubrulle (1994) and She & Waymire (1995)

K(q) = c[(1− γ)q − 1 + γq], ζ(q) =
q

3
− c

[
(1− γ)

q

3
− 1 + γq/3

]
(4.4.3)

where c is the codimension and γ is linked to the maximum singularity events.

She & Lévêque (1994) original proposed c = 2 and γ = 2/3 providing a relation

without adjustable parameters

ζ(q) =
q

9
+ 2− 2(2/3)q/3 (4.4.4)

For this model, the nonlinear part is exponential.

• The log-stable model: This model was proposed Schertzer & Lovejoy (1987)

and Kida (1991); see also Schertzer et al. (1997)

K(q) =
C1

α− 1
(qα − q), ζ(q) =

q

3
−

C1

α− 1

[(q
3

)α
−
q

3

]
(4.4.5)

where C1 is the codimension of the mean events (0 ≤ C1 ≤ d, where d is the

dimension of the observation space), and α is the Lévy index, bounded between

0 and 2. When α = 2 one recovers the lognormal model and when α = 0 the

β model. For α = 1 one has a log-Cauchy model. For this model the nonlinear

term is a power law.



66 Chapter 4. Homogeneous Turbulence and Intermittency

The log-Poisson and log-stable (including lognormal) belong to the log-1D (in-

finitely divisible) models, whereas the log-stable is based on a stable property. Let us

note that the ζ(q) is concave and has two fixed points ζ(0) = 0 by its definition and

ζ(3) = 1 (Kolmogorov, 1941c), but there are no more result on ζ(q), and the precise

analytical form depend on the model. The best model for turbulence intermittency

is still a matter of debate.

4.5 Passive scalar

Another important topic in turbulence research is the passive scalar turbulence (Sreeni-

vasan, 1991; Shraiman & Siggia, 2000; Warhaft, 2000). We recall the Kolmogorov-

Obukhov-Corrsin theory here.

Governing Equation

The advection/diffusion equation for a scalar Θ reads as

∂tΘ(x, t) + u(x, t) ∙ 5Θ(x, t) = κ5
2 Θ(x, t) (4.5.1)

where Θ is the scalar field (for example, temperature or dye concentration), u(x, t)

is the velocity field, and κ is molecular diffusivity. We consider here only the case of

passive scalar, in which it has a negligible back effect on the flow (Shraiman & Siggia,

2000; Warhaft, 2000).
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Kolmogorov-Obukhov-Corrsin Theory

Following Kolmogorov’s argument (Kolmogorov, 1941a), Obukhov (1949); Corrsin

(1951) extended the K41 theory for passive scalar. It is well-known now as Kolmogorov-

Obukhov-Corrsin (KOC) theory. The KOC theory prediction of 1D spectrum of scalar

is

Fθ(k) = Cθ〈ε〉
−1/3〈εθ〉k

−5/3 (4.5.2)

where ε is the energy dissipation rate, and
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Figure 4.3: Comparison of the scaling exponents ζ(q) and ζθ(q). It is notable that
ζ(q) > ζθ(q) for q > 2. The data are compiled by Schmitt (2005) and Schmitt (2006).

εθ = 2κ(∂Θ/∂xi)(∂Θ/∂xi) (4.5.3)

is the scalar dissipation rate. It also implies for the structure functions

Sqθ(r) = 〈ΔΘ(r)
q〉 ∼ 〈ε−1/6ε1/3θ 〉

qrq/3 ∼ rζθ(q) (4.5.4)
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where ΔΘ(r) = Θ(x+ r)−Θ(x) is the scalar increment with scale separation r, and

ζθ(q) is the corresponding scaling exponent. Let us note that we have the only fixed

point ζθ(0) = 0 but we do not have ζθ(3) = 1 as in velocity because of the nonlinear

mixing of the two fluxes (or dissipations) ε and εθ. We should note that structure

functions for velocity and passive scalar are quite stable experimentally and seem to

such ζ(q) > ζθ(q) for q > 2, see Fig. 4.3.

Intermittency and Ramp-cliff Structures

For a time, people thought that the passive scalar field is just a complementary of the

velocity field (Shraiman & Siggia, 2000; Warhaft, 2000). Thus the statistical proper-

ties of the passive scalar field should be determined by the velocity field. However,

experimental and numerical experiments indicate a more intermittent field than the

velocity field (Celani et al., 2000; Shraiman & Siggia, 2000; Warhaft, 2000; Moisy

et al., 2001; Gylfason & Warhaft, 2004). It is usually believed that the so-called

ramp-cliff structures play an important role in the passive scalar field. Ramp-cliffs

are large scale structures with sharp frontiers. Thus there is a coupling with the small

scales by this frontier (Shraiman & Siggia, 2000; Warhaft, 2000), see more discussion

in chapter 5 and chapter 7.

4.6 Summary

In this chapter, we recalled the classical Kolmogorov’s 1941 and 1962 phenomenologi-

cal theories of turbulence. Historically, Kolmogorov 1941 theory is the first successful

phenomenological theories about the turbulence, and provides a quantitative descrip-

tion of the turbulent phenomena. In his theory, the structure functions play an
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important role to characterize the scale invariant properties of intermittency in the

physical domain. We will emphasize on the structure functions analysis in chapter 5.
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Chapter 5

Structure Functions and
Autocorrelation Functions of
Increments

Since Kolmogorov’s 1941 milestone work, the structure function analysis is widely

used to extract scaling exponents in turbulent research (Monin & Yaglom, 1971;

Anselmet et al., 1984; Frisch, 1995). In his original proposal, Kolmogorov considered

a tensor ΔVαβ in space, whereas we consider here a 1D process: we do not consider

the tensor and analyze time series. For this, we implicitly involve Taylor’s hypothesis

to consider scaling 1/3 properties of turbulent time series (Taylor, 1938; Frisch, 1995).

The structure function itself is seldom investigated (Nichols Pagel et al., 2008;

Podesta et al., 2009). In this chapter, based on statistical stationary assumption,

we present an analytical analysis of the structure function to characterize the scale

contribution and the influence of a single scale (Huang et al., 2010a, 2009a, 2010b).

The results presented in this chapter are for most of them are published in Huang

et al. (2009a, 2010a,b). [Y. Huang, et al. Traitement du Signal, 25, 481-492, 2008 ; Y.

Huang, et al. Phys. Rev. E, 2010 (submitted); Y. Huang, et al. Phys. Rev. E, 2010

(submitted).]

71
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5.1 Second order structure function

We investigate here the second order structure function of velocity increments in fully

developed turbulence. For this, we use some properties of the Fourier transform. We

will obtain results about the scale contribution and an influence of single scale to the

second order structure function.

Statistical Stationary Assumption

Considering the statistical stationarity assumption (Monin & Yaglom, 1971; Frisch,

1995), the velocity u(t) may represent in Fourier space as

Û(f) = F(u(t)) =
∫ +∞

−∞
u(t)e−i2πft dt (5.1.1)

where F means Fourier transform. Then the velocity u(t) may be reconstructed by

u(t) = F−1(Ût(f)) =
∫ +∞

−∞
Û(f)ei2πft df (5.1.2)

and u(t+ `) as

u(t+ `) = F−1(Ût+`(f)) =
∫ +∞

−∞
Û(f)ei2πf(t+`) df (5.1.3)

where F−1 means inverse Fourier transform, and ` is a separation time scale. There-

fore the velocity increment Δu`(t) = u(t + `) − u(t) in structure functions may be

represent as

Δu`(t) =

∫ ∞

−∞
Û(f)(ei2πf(t+`) − ei2πft) df (5.1.4)

This means that Û(f)(ei2πf` − 1) is the inverse Fourier transform of Δu`(t). The

Fourier transform of the velocity increment is thus written as

S`(f) = F(Δu`(t)) = Û(f)(e
i2πf` − 1) (5.1.5)
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The corresponding Fourier power spectrum is expressed as

EΔ(f) = |S`(f)|
2 = Ev(f)(1− cos(2πf`)) (5.1.6)

where Ev(f) = 2|Û(f)|2 is the Fourier power spectrum of original velocity (Frisch,

1995; Hou et al., 1998; Huang et al., 2009c, 2010b). When fΔ = n/`, where n =

0, 1, 2 ∙ ∙ ∙ , we have

1− cos(2πfΔ`) ≡ 0 (5.1.7)

showing that the contributions of frequency sequences fΔ are cancelled. In other
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Figure 5.1: Illustration of the nonstationary effect on velocity increments: the velocity
increment Δx(τ) = x(t)− x(t+ τ) with different time delay, (a) τ = 1, (b) τ = 2, (c)
τ = 10, and (d) τ = 20 points, respectively. The nonstationary effect is marked as a
rectangle. Here x(t) is taken from Eq. (5.1.8).
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Figure 5.2: Estimation of the statistical moments for q = 2, 3, 4, 5 and 6: (a) the abso-
lute error |Δx(τ)|q−|Δxo(τ)|q, (b) the relative error (|Δx(τ)|q−|Δxo(τ)|q)/|Δxo(τ)|q,
respectively. The time delay τ is taken as 10 (◦), 20 (�), 100 (C) and 200 (4) points.

words, the difference operator acts as a kind of filter operator, where the corresponding

frequencies fΔ are filtered. This means that the structure function analysis provides

a statistical information without taking into account the corresponding scales 1/fΔ.

The scale invariance properties are indirectly measured. Furthermore, the structure

function analysis is a global operator in physical space, since the difference operator

is manipulated on the same data for each separation scale (Huang et al., 2010a,b).

We illustrate the nonstationary effect on structure functions by constructing a

signal x(t) with a nonstationary perturbation as following

x(t) =






sin(t) 0 ≤ t < 20 π

1.5 sin(t) 20 π ≤ t ≤ 24 π

sin(t) 24 π < t < 100 π

(5.1.8)

where the sampling frequency is set as 10Hz. Figure 5.1 shows the increments for

various time delay (a) τ = 1 point, (b) τ = 2 points, (c) τ = 10 points, and (d) τ = 20

points, where the nonstationary effect is marked by the rectangle. Graphically, the

nonstationary event does have influence on all scales, since the increment operator is
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manipulated on the same data for each time delay. We then compare the statistical

moments with non-perturbation case

xo(t) = sin(t) , 0 ≤ t ≤ 100 π (5.1.9)

Figure 5.2 shows (a) the absolute error 〈|Δx(τ)|q〉 − 〈|Δxo(τ)|q〉, (b) the relative

error 〈|Δx(τ)|q〉/〈|Δxo(τ)|q〉 − 1 for various time lag τ . The influence increases with

the order q. The relative error shows the same evolution trend with q. This shows

experimentally that the difference operator is still a global operator in the physical

domain.

Cumulative function

The mean kinetic energy (one-half of the variance of the random function) is the

integral of the energy spectrum over all frequencies

1

2
〈u2〉 =

∫ +∞

0

Ev(f) df (5.1.10)

where Ev(f) is the Fourier power spectrum of the velocity u (Frisch, 1995). Assuming

statistical stationarity, the second order is thus rewritten as

〈Δu`(t)
2〉 = 2〈u2〉 − 2〈u(t)u(t+ `)〉 = 2〈u2〉 − 2Γ(`) (5.1.11)

where Γ(`) is the autocorrelation function of the velocity u. The Wiener-Khinchin

theorem shows that (Percival & Walden, 1993; Frisch, 1995),

Γ(`) =

∫ +∞

−∞
Ev(f)e

2iπf` df (5.1.12)

Here, E(f) is extended to negative frequencies by E(−f) = E(f). Thus the the

second order structure function is finally rewritten as (Monin & Yaglom, 1971; Frisch,
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1995)

〈Δu`(t)
2〉 = 4

∫ +∞

0

Ev(f)(1− e
i2πf`) df (5.1.13)

Let us introduce here a cumulative function for the second order structure function

P(f, `) =

∫ f
0
EΔ(f

′) df ′
∫ +∞
0

EΔ(f ′) df ′
(5.1.14)

where EΔ(f) = Ev(f)(1− cos(2πf`)). It is increasing 0 and 1, and measures the rel-

ative contribution to the second order structure function from 0 to f . When f = 1/`,

the cumulative function P1(f) = P(1/`, `) thus characterizes the contribution from

the large scale part for frequencies larger than the one associated to the increment

time scale `. We further assume a pure power law for the original velocity Fourier

power spectrum

Ev(f) = cf
−β, c > 0 (5.1.15)

where the value of β will be specified later. When substituted into Eq. (5.1.13), this

gives an integral which is divergent for some values of β. The convergence condition

requires 1 < β < 3 (Frisch, 1995; Hou et al., 1998; Huang et al., 2010b). A scaling

calculation (Frisch, 1995; Huang et al., 2010b) leads to

〈Δu`(t)
2〉 ∼ `β−1 (5.1.16)

For fully developed turbulence, the Kolmogorov spectrum corresponds to β = 5/3.

Experimental Results

We apply here the above arguments to an homogeneous and nearly isotropic turbulent

flow1 at downstream x/M = 20, where M is the mesh size. The flow is characterized

1We will present more analysis results using these data in chapter 6 and chapter 8.
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by the Taylor microscale based Reynolds number Reλ = 720 (Kang et al., 2003).

Details about the experiment can be found in chapter 6. Let us note here Ts = 1/fs

the time resolution of these measurements, where fs = 40000Hz is the sampling

frequency. Figure 5.3 shows the compensated spectra E(f)fβ for both longitudinal

(thick line, β ' 1.63) and transverse (thin line, β ' 1.62) velocity components,

showing a more than two decades inertial range. The Fourier spectra are taken from

Ref. Kang et al. (2003), which are estimated by a window Fourier transform, see Kang

et al. (2003) for more information. The scaling exponent β is estimated from each

spectrum by a least square fitting algorithm.
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Figure 5.3: Compensated spectrum E(f)fβ of longitudinal (β ' 1.63) and transverse
(β ' 1.62) velocity at x/M = 20, where β is the corresponding power law estimated
from the power spectrum. The plateau is observed on the range 20 < f < 2000 Hz
and 40 < f < 4000 Hz for longitudinal and transverse velocity, respectively.

To avoid the effect of measurement noise, see Fig. 5.3, we only consider the trans-

verse velocity here. Figure 5.4 shows the cumulative function P estimated from the
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Figure 5.4: Cumulative function P(f, `) estimated from turbulent experimental data
for transverse velocity with ` in the inertial range, where the numerical solution is
shown as inset with ` = 1. The inertial range is denoted as IR. Vertical solid lines
demonstrate the corresponding scale in spectral space.

f 0.01 0.04 0.1 0.2 0.5 1 10 100
P (%) 0.5 3.0 10.0 24.1 62.9 78.8 95 99

Table 5.1: A numerical solution of cumulative function P(f, `) with β = 5/3 and
` = 1, which corresponds to the Kolmogorov scaling.

transverse velocity data, in which the spectrum Ev(f) is directly estimated from the

data. The inertial range is marked as IR. We choose two time scales `/Ts = 20 and

`/Ts = 100 in the inertial range. The large scale contribution range is more than

1.4 decades wide. A numerical solution of Eq. (5.1.14) for a pure power law by tak-

ing Ev(f) = f−5/3 is performed on range 10−4 < f < 104 with ` = 1 and the step

Δf = 10−6 by using a fourth order accurate Simpson rule. The numerical solution

is shown as inset in Fig. 5.4, where the vertical solid line indicates the location of
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Figure 5.5: Cumulative function P1(f) estimated from turbulent experimental data
for both longitudinal and transverse velocity with various `.

1. The shape of the numerical solution is the same as the experimental one. We list

various value of P in Tab. 5.1. Not surprisingly, the large scale contribution P1(1)

is about 79%, which is consistent with experimental result, see Fig. 5.5. One can

find that the contribution from the first decade large scale, 0.1 < f < 1, is about

69%. Even for the second decade part, 0.01 < f < 0.1, the contribution is about

9.5%. These results show the important contribution of the large scales to the second

order structure function statistic. Figure 5.5 shows the corresponding P1(f) directly

estimated from turbulent experimental data for longitudinal (�) and transverse ( )

velocity on range 40 < f(= 1/`) < 4000Hz, where the spectrum Ev(f) is taken the

Fourier power spectrum of each velocity component. Both curves have a similar evo-

lution trend, which may be termed into three terms: i) near forcing scale range, in

which the large scale contribution is less than 0.75, ii) unaffected inertial range, in

which the large scale contribution is on range 0.75 < P1(f) < 0.85, close to the value
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0.79 indicated by the numerical solution, and iii) near dissipation range, in which the

large scale contribution is larger than 0.85. Taking the transverse velocity as example,

the unaffected range is found around 1 decade, on range 200 < f < 2000Hz. It is

good agreement with the observation in Fig. 5.18, see next section. In the first and

the third terms of the cumulative function P1(f), the large scale contribution signif-

icantly deviates from the pure power law value 0.79. This indicates that these two

range are strongly influenced by either the large forcing scales or dissipation scales.

Furthermore, we note that the deviation may come from the following reasons: (i)

the finite power law range (Hou et al., 1998), (ii) the spectrum of the original velocity

is not a pure power law (Nelkin, 1994; Frisch, 1995) and (iii) the violation of the sta-

tistical stationary assumption. In any case, the above results indicate that structure

functions are strongly influenced by the large scales.

Influence by a Single Scale: Deterministic Forcing

We then consider the influence of a single scale both on the structure function and

the arbitrary order Hilbert spectral analysis.
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Figure 5.6: (a) A portion of fBm data with (bottom) and without (top) a sine wave
perturbation (middle), and (b) the corresponding Fourier power spectrum.
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Figure 5.7: Influence of a single scale on (a) the second order structure function,
and (b) the second order Hilbert marginal spectrum with various intensities I. The
vertical solid line indicates location of disturbance.

We simulate a fBm time series X(t) with Hurst number H = 1/3, corresponding

to the Hurst value of turbulent velocity. We first normalize the time series by its

variance and then add on these data a pure sine wave with a disturbance frequency

f0 = 0.001 and various intensities I. This is written as

X(t) = X(t)/σ + I sin(2πf0t) (5.1.17)

where σ is the variance of X(t). We show a 214 points portion of the simulated

fBm data in Fig. 5.6 (a) fBm data with (bottom) and without (top) a sine wave

perturbation (middle) with intensity I = 0.4, and (b) its corresponding Fourier power

spectrum. We then apply the structure function analysis and the arbitrary order

Hilbert spectral analysis on these data with various intensities I. For the former

approach, we consider time lags on the range 0 < τ < 10000 points. For the original

fBm data, a power law behaviour is found on the range 5 < τ < 10000 points.

The latter methodology is performed on each realization and the ensemble averaged

spectrum is taken as final spectrum. For the original fBm data, we find that a power
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law behaviour holds on the range 0.0002 < ω < 0.2, corresponding to 5 < τ < 5000

points. Figure 5.7 shows (a) the second order structure function, and (b) the second

order Hilbert marginal spectrum, where the solid vertical line indicates the location

of the disturbance frequency f0. The second order structure function is strongly

influenced by the single scale. An influence range down to the small scale is found

to be as large as 2 decades, which is marked by IF in Fig. 5.7. However, for the

Hilbert-based method, the influence range down to the small scale is constrained to

0.3 decades, which might be link to the fact that the EMD acts a dyadic filter bank

for several types of time series (Wu & Huang, 2004; Flandrin et al., 2004; Flandrin &

Gonçalvès, 2004; Huang et al., 2008).

We may also consider here the single scale as a periodic component (Huang et al.,

2010a). A quite general common property of multifractal time series (turbulent-like

stochastic dynamics) in the nature and geophysical sciences is superposed to a de-

terministic forcing associated to astronomical events (tide, daily cycle, annual cycle,

etc). This may pose a problem for the estimation of scaling exponents. This is the

case, for example, for river flow time series (Tessier et al., 1996; Kantelhardt et al.,

2003; Huang et al., 2009b), oceanic monitoring time series (Dur et al., 2007; Schmitt

et al., 2008), etc, also see chapter 9. As already noticed by several authors, the struc-

ture function may fail when a periodic component is present in the data (Kantelhardt

et al., 2003, 2006). Thus, we show here numerically that this influence on the struc-

ture function. We also show that the Hilbert-based methodology can constrain this

effect in an amplitude-frequency space (Huang et al., 2010a).
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Figure 5.8: One 0.2s portion of the temperature time series, showing strong ramp-cliff
structure.

Passive Scalar: An Example of Ramp-Cliff Structures

The above arguments and results indicate that the structure function may not con-

sidered a proper tool for scaling exponent extraction when the data possess energetic

large scales. This is the case of ramp-cliff structure in scalar turbulence (Sreeni-

vasan, 1991; Shraiman & Siggia, 2000; Warhaft, 2000; Celani et al., 2000): the struc-

ture induced by shear effect (Staicu & van de Water, 2003; Xia et al., 2008). To

show this experimentally, we consider a temperature time series with strong ramp-

cliff structure. The data is obtained in a shear layer of the mixing between a jet

flow and a cross flow, provided by Prof. Y. Gagne. The bulk Reynolds number is

about Re = 60000. The initial temperature of the two flows are TJ = 27.8
◦C and

T = 14.8◦C. The measurement location is close to the nozzle of the jet. For more

detail about this experiment, see chapter 7. Figure 5.8 shows a 0.2s portion temper-

ature data, showing strong ramp-cliff structures. Figure. 5.9 shows the compensated

spectra directly estimated by the Fourier analysis (solid line), the second order struc-

ture function (�), the Hilbert spectral analysis (#) and the autocorrelation function



84 Chapter 5. Structure Functions and Autocorrelation Functions

10 100 1000 10000
10

1

10
2

10
3

10
4

f (Hz)

C
o
m
p
en
sa
te
d
S
p
ec
tr
u
m

IR

 

 

Fourier
SF
HSA
Autocorrelation

Figure 5.9: Compensated spectrum of transverse velocity. Plateau is observed on
range 80 < f < 2000Hz for both Fourier spectrum (solid line) and Hilbert spectrum
(�). For comparison, the compensated spectra estimated from the second order
structure function (#) and the autocorrelation function (♦) are also shown.

(♦) (see Eq. (5.2.10) in next section). Both the structure function and the auto-

correlation function are converted from from physical domain to spectral domain by

taking f = 1/`. Except for the structure function, the others show a clear plateau,

on the range 100 < f < 2000Hz. For the structure function, an ambiguous plateau is

found on the range 300 < f < 2000Hz; for higher order structure function, we even

cannot find an ambiguous inertial range, see chapter 7. However, the Hilbert spectral

analysis shows a clear inertial range even for q up to 8. We reproduce the scaling

exponent estimated by the Hilbert methodology (#) in Fig. 5.10. It seems that the

scaling exponent ξ(q)−1 is quite close to the scaling exponent ζ(q) for the velocity by

using the extended self-similarity approach (dash line) (Arneodo et al., 1996). The

scaling exponent provided directly by the structure function (♦) seems to saturate
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when q > 3.

The comparison between scaling exponents for temperature and velocity shows

that for q > 2

ζθ(q) < ζv(q) (5.1.18)

this is interpreted as an evidence that the scalar turbulence is more intermittent than

the velocity field (Frisch, 1995; Warhaft, 2000). The experimental results shown here

indicate that the effect of ramp-cliff structures for passive turbulence may be given

more attention. The passive turbulent field may be less intermittent than what we

believed before. We will present more detail and discussion in chapter 7.
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5.2 Autocorrelation function of velocity increments
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Figure 5.11: Autocorrelation function Γ`(τ) of the velocity increment Δu(`) esti-
mated from an experimental homogeneous and nearly isotropy turbulence time series
with various increments `. The location of the minimum value is very close to the
separation time `. The inset shows the rescaled autocorrelation function Υ(ς).

We consider in this section the autocorrelation of velocity increments (without ab-

solute value), inspired by a remark found in Anselmet et al. (1984). In this reference,

it is found that the location of the minimum value of the autocorrelation function

Γ(τ) of velocity increment Δu`(t) of fully developed turbulence with time separa-

tion ` is approximately equal to `. The autocorrelation function of the increment

V`(t) = Δu`(t) time series is defined as

Γ`(τ) = 〈(V`(t+ τ)− μ)(V`(t)− μ)〉 (5.2.1)

where μ is the mean value of V`(t), and τ ≥ 0 is the time lag.

We show the autocorrelation function Γ`(τ) of the velocity increments Δu`(t) for
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estimated from experimental data, where the inertial range is marked as IR. The
solid line indicates τo(`) = `.

the longitudinal velocity in Fig. 5.11, where the rescaled autocorrelation function is

shown as inset. The location τo of the minimum value of each curve is graphically

very close to `, which confirms Anselmet’s observation (Anselmet et al., 1984).

Let us define the minimum value of an autocorrelation function

Γo(`) = min
τ
{Γ`(τ)} (5.2.2)

and τo the location of the minimum value

Γo(`) = Γ`(τo(`)) (5.2.3)

We show the estimated τo(`) for both longitudinal and transverse velocity on the

range 2 < `/Ts < 40000 in Fig. 5.12, where the inertial range is indicated by IR. The

solid line illustrates τo(`) = `. When ` is larger than 20Ts, τo is very close to ` even
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when ` is in the large forcing scale range, in agreement with the remark of Anselmet

et al. (1984). We prove this observation analytically in the following.

An Analytical Model
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Figure 5.13: Numerical solution of the rescaled autocorrelation function Υ(ς) with
various β from 0.5 to 2.5 estimated from Eq. (5.2.8).

We have shown previously that the Fourier transform of the velocity increment

Δu(`) is written as

S`(f) = F(Δu(`)) = Û(f)(e
2πif` − 1)

where Δu(`) = u(x + `) − u(x) and Û(f) is the Fourier transform of the original

velocity. Hence, the 1D power spectral density function of velocity increments EΔ(f)

is expressed as

EΔ(f) = |S`(f)|
2 = Ev(f)(1− cos(2πf`)) (5.2.4)

where Ev(f) = 2|Û(f)|2 is the velocity power spectrum (Frisch, 1995).
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Figure 5.14: Comparison of the autocorrelation function, which is predicted by
Eq. (5.2.19) (solid line) and estimated from fBm simulation (�) with ` = 200 points.

Let us consider now the autocorrelation function of the increment. The Wiener-

Khinchin theorem relates the autocorrelation function to the power spectral density

via the Fourier transform (Percival & Walden, 1993; Frisch, 1995)

Γ`(τ) =

∫ +∞

0

EΔ(f) cos(2πfτ ) df (5.2.5)

The theorem can be applied to wide-sense-stationary random processes, signals whose

Fourier transforms may not exist, using the definition of autocorrelation function in

terms of expected value rather than an infinite integral (Percival & Walden, 1993).

Substituting Eq. (5.2.4) into the above equation, we thus have

Γ`(τ) =

∫ +∞

0

Ev(f)(1− cos(2πf`)) cos(2πfτ ) df (5.2.6)

Assuming a power law for 1D velocity spectrum (a hypothesis of similarity)

Ev(f) = cf
−β, c > 0 (5.2.7)
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we obtain

Γ`(τ) = c

∫ +∞

0

f−β(1− cos(2πf`)) cos(2πfτ ) df (5.2.8)

The convergence condition requires 0 < β < 3. It implies a rescaled relation, using

scaling transformation inside the integral. This can be estimated by taking `′ = λ`,

f ′ = fλ, τ ′ = τ/λ for λ > 0, providing the identity directly from Eq. (5.2.8)

Γλ`(τ) = Γ`(τ/λ)λ
β−1 (5.2.9)

If we take ` = 1 and replace λ by `, we then have

Γ`(τ) = Γ1(τ/`)`
β−1 (5.2.10)

Thus, we have a universal autocorrelation function for each `

Γ`(`ς)`
1−β = Υ(ς) = Γ1(ς) (5.2.11)

This universal autocorrelation function is shown as inset in Fig. 5.11. A derivative of

Eq. (5.2.9) gives Γ′λ`(τ) = Γ
′
`(τ/λ)λ

β−2. The minimum value of the left-hand side is

τ = τo(λ`), verifying Γ
′
λ`(τo(λ`)) = 0 and for this value we have also Γ

′
`(τo(λ`)/λ) = 0.

This shows that τo(`) = τo(λ`)/λ. Taking again ` = 1 and λ = `, we have

τo(`) = `τo(1) (5.2.12)

Showing that τo(`) is proportional to ` in the scaling range (when ` belongs to the

inertial range). With the definition of Γo(`) = Γ`(τo(`)) we have, also using Eq. (5.2.9),

for τ = τo(λ`):

Γλ`(τo(λ`)) = Γ`(τo(λ`)/λ)λ
β−1

= Γ`(τo(`))λ
β−1

(5.2.13)
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Hence Γo(λ`) = λ
β−1Γo(`) or

Γo(`) = Γo(1)`
β−1 (5.2.14)

We consider the location τo(1) of the autocorrelation function for ` = 1. We take

the first derivative of Eq. (5.2.8), written for ` = 1

R(τ) =
dΓ1(τ)

dτ
= −

∫ +∞

0

f 1−β(1− cos(2πf)) sin(2πfτ ) df (5.2.15)

where we left out the constant in the integral. The same rescaling calculation leads

to the following expression

R(τ) =
[
(1 + 1/τ)β−2 + (1− 1/τ)β−2 − 2

]
M/2, τ 6= 1

R(τ) =
(
2β−3 − 1

)
M, τ = 1

(5.2.16)

where M =
∫ +∞
0

x1−β(1 − cos(2πx)) sin(2πxτ) dx and M > 0 (Samorodnitsky &

Taqqu, 1994). The convergence condition requires 1 < β < 4. When β < 2, one

can find that both left and right limits of R(1) are infinite, but the definition of

R(1) in Eq. (5.2.15) is finite. Thus τ = 1 is a second type discontinuity point of

Eq. (5.2.15) (Malik & Arora, 1992). It is easy to show that






R(τ) < 0, τ ≤ 1

R(τ) > 0, τ > 1
(5.2.17)

It means that R(τ) changes its sign from negative to positive when τ is increasing

from τ < 1 to τ > 1. In other words the autocorrelation function will take its

minimum value at location where τ is exactly equal to 1. We thus see that τo(1) = 1

and hence from Eq. (5.2.12) we proved that

τo(`) = ` (5.2.18)
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For the fBm, the autocorrelation function of the increments is known to be the

following (Biagini et al., 2008)

Γ`(τ) =
1

2

{
(τ + `)2H + |τ − `|2H − τ 2H

}
(5.2.19)

where H is Hurst number, and τ ≥ 0. We compare the autocorrelation (coefficient)

function estimated from fBm simulation (�) with Eq. (5.2.19) (solid line) in Fig. 5.14,

where ` = 200 points. Eq. (5.2.19) provides a very good agreement with numerical

simulation. Based on this model, it is not difficult to find that Γo(`) ∼ `2H when

0 < H < 1, corresponding to 1 < β < 3, and τo(`) = ` when 0 < H < 0.5,

corresponding to 1 < β < 2. One can find that the validity range found here for

the scaling exponent β is only a subset of the validity range for Wiener-Khinchin

theorem.

Experimental Results

There is no analytical solution for Eq. (5.2.8). Above we could only give a rescaling

property of this function, and also give its explicit form for the fBm. It can also be

solved by a proper numerical algorithm. We perform this here using a fourth order

accurate Simpson rule of Eq. (5.2.8) on range 10−4 < f < 104 with ` = 1 for various β

with Δf = 10−6. We show the rescaled numerical solutions for various β values Υ(ς)

in Fig. 5.13. We can verify that the location τo(1) of the minimum autocorrelation

function is exactly equal to 1 when 0 < β < 2.

We then check the power law for the minimum value of autocorrelation function

given in Eq. (5.2.10). We simulate 100 segments of fBm with length 106 data points

each, by performing a Wavelet based algorithm (Abry & Sellan, 1996). We take db2

wavelet with H = 1/3 (corresponding to the Hurst number of turbulent velocity). We
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Figure 5.15: Representation of the minima value Γo(`) of the autocorrelation function
estimated from synthesized fBm time series with H = 1/3 (+), and the experimental
data for longitudinal (�) and transverse (#) turbulent velocity components, where
the corresponding inertial range is denoted as IR. Power law behaviour is observed
with scaling exponent β − 1 = 2/3 and β − 1 = 0.78 ± 0.04 for fBm and turbulent
velocity, respectively.

plot the estimated minima value Γo(`) (+) of the autocorrelation function in Fig. 5.15,

where the solid line demonstrates Γo(`) ∼ `2/3. A power law behaviour is observed

with the scaling exponent β − 1 = 2/3 as expected. It confirms Eq. (5.2.10) for fBm,

the monofractal case. We also plot Γo(`) estimated from turbulent experimental data

for both longitudinal (�) and transverse (#) velocity component in Fig. 5.15, where

the inertial range is marked by IR, which is provided by the Fourier power spectrum

of the original velocity. Power law behaviour is observed on the corresponding inertial

range, with scaling exponent β − 1 = 0.78 ± 0.04. This scaling exponent is larger

than 2/3, which may be an effect of intermittency. The exact relation between this

scaling exponent with intermittent parameter should be investigated in future work.
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The power law range is almost the same as the inertial range estimated by Fourier

power spectrum. It indicates that autocorrelation function can be used to determine

the inertial range. Indeed, as we show later, it seems to be a better inertial range

indicator than structure function.
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Figure 5.16: Cumulative function Q(f, `, τ ) estimated from turbulent experimental
data for transverse velocity with τ = ` in the inertial range, where the numerical
solution is shown as inset with ` = 1. The inertial range is denoted as IR. Vertical
solid lines demonstrate the corresponding scale in spectral space. For comparison, we
also show the cumulative function P(f, `) for the second order structure function.

As we have done for the second order structure function, we define here a cumu-

lative function

Q(f, `, τ ) =

∫ f
0
K(f ′, `, τ ) df ′

∫ +∞
0

K(f ′, `, τ ) df ′
(5.2.20)

where

K(f, `, τ ) = Ev(f)(1− cos(2πf`)) cos(2πfτ ) (5.2.21)
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Figure 5.17: Cumulative function Q1(f) estimated from turbulent experimental data
for both longitudinal and transverse velocity with various `. The numerical solution
shows Q1 ' 0.49. For comparison, we reproduce the cumulative function P1(f) for
the second order structure function.

is the integration kernel of Eq. (5.2.6). It measures the contribution of the frequency

from 0 to f at a given time scale ` and time delay τ . We are particularly concerned

by the case τ = `. To avoid the measurement noise, we only consider here the

transverse velocity. We show the estimated Q in Fig. 5.16 for two scales `/Ts = 20

and `/Ts = 100 (solid line) in the inertial range, in which the spectrum Ev(f) in

Eq. (5.2.21) is directly estimated for the transverse velocity from the experimental

turbulent data. The vertical solid line illustrates the location of the corresponding

time scale in spectral space by taking f = 1/`. The corresponding inertial range is

denoted by IR. We show the numerical solution of Eq. (5.2.20) for a pure power law

with ` = 1 (solid line) as inset, in which the spectrum Ev(f) in Eq. (5.2.21) is taken

as Ev(f) = f
−5/3 for a pure Kolmogorov power law. We notice that both curves cross
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Figure 5.18: Compensated spectrum of transverse velocity. A plateau is observed on
the range 40 < f < 4000Hz and 20 < f < 2000Hz for Fourier spectrum (solid line)
and Hilbert spectrum (#), respectively. For comparison, the compensated spectra
for the second order structure function (�) and the autocorrelation function (♦) are
also shown.

the line Q = 0, which is marked by �. We denote fo such as Q(fo) = 0. It has the

advantage that the contribution from the large scale part, ` > 1/fo, is canceled by

itself, and the small-scale and large-scale contributions are equal (Huang et al., 2009c).

In the inertial range, the distance between fo and the corresponding scale ` is less than

0.3 decade. The numerical solution indicates that this distance is about 0.3 decade.

We then separate the contribution into a large scale part and a small scale part.

We denote the contribution from the large scale part as Q1(f) = Q(1/`, `, `). The

experimental result is shown in Fig. 5.17 for both longitudinal (�) and transverse (#)

velocity components. The mean contribution from the large scale is found graphically

to be 0.64. It is significantly larger than 0.5, the value indicated by the numerical

solution. It means that the autocorrelation function is influenced more by large scales
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than by small scales.

For comparison, we reproduce the cumulative function P(f, `) and P1(f) for the

second order structure function in Fig. 5.16 (dash line) and Fig. 5.17 (filled symbol).

The contribution range from the large scale part to the second order structure function

is much larger than the contribution range of the autocorrelation function. It is also

confirmed by Fig. 5.17 that the large scale contribution of the second order structure

function is larger than the large scale contribution of the autocorrelation function,

which can be linked to the cancellation property of the large scale part f < fo of the

autocorrelation function. This explains that the autocorrelation function is a better

inertial range indicator than the second order structure function (Huang

et al., 2009c).

We now consider the inertial range provided by the different methods. We replot

the corresponding compensated spectra estimated directly by Fourier power spectrum

(solid line), the second order structure function (�), the Hilbert spectral analysis (#)

and the autocorrelation function (♦) in Fig. 5.18 for transverse velocity. For compar-

ison convenience, both the second order structure function and the autocorrelation

function are converted from physical space into spectral space by taking f = 1/`.

Graphically, except for the second order structure function, the others show a clear

plateau more than two decades wide. The similar shape for the compensated sec-

ond order structure function can be found in Refs. Anselmet et al. (1984, Figure 10

and Figure 11) and Frisch (1995, P128, Figure 8.6). We have focused here on the

existence of the power law, not the value of the scaling exponent or the range of the

plateau. Thus we do not compare the scaling exponents here. Based on this obser-

vation, we state that the autocorrelation function is a better inertial range indicator
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than structure functions (Huang et al., 2009c).

5.3 Summary

In this chapter, we considered the second order structure function and the autocor-

relation function of the velocity increment time series Δu`(t), where ` is a time scale.

Taking statistical stationary assumption, we proposed an analytical model of the sec-

ond order structure function and the autocorrelation function. Within this model,

for the second order structure function, we found that it is strongly influenced by the

large scale part. Furthermore, the influence range down to the small scale part is as

large as two decades. However, the Hilbert-based methodology seems to constrain

the periodic effect in 0.3 decade, which may be linked to the fact that EMD acts a

dyadic filter bank. We thus argued that the widely used structure function method

is not a good method to extract the scaling exponents from a given time series when

the data possess energetic large scales. We showed this experimentally by analyzing

a passive turbulence data, a temperature time series obtained from a jet experiment.

For the autocorrelation function, we proved analytically that the location of the

minimum autocorrelation function is exactly equal to the separation time scale `

when the scaling of power spectrum of the original variable belongs to the range

0 < β < 2. In fact, this property was found experimentally to be valid outside

the scaling range, but our demonstration here concerns only the scaling range. This

model also suggests a power law expression for the minimum autocorrelation Γo(`).

Considering the cumulative integration of the autocorrelation function, it was shown

that the autocorrelation function is influenced more by the large scale part. We thus

argued that the autocorrelation function is a better indicator of the inertial range
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than second order structure function. These results have been illustrated using fully

developed turbulence data; however, they are of more general validity since we only

assumed that the considered time series is stationary and possesses scaling statistics.
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Chapter 6

Experimental Homogeneous and
Locally Isotropic Turbulence

Since Kolmogorov (1941c,a,b) proposed his very famous K41 turbulence theory, the

studies to extract the scaling exponents from various turbulent flows becomes one

central problem in turbulent research (Monin & Yaglom, 1971; Anselmet et al., 1984;

Antonia et al., 1984; Kraichnan, 1991; Frisch, 1995; Kahalerras et al., 1998; van de

Water & Herwijer, 1999; Sreenivasan & Antonia, 1997; Tsinober, 2001; Moisy et al.,

2001; Tsuji, 2004; Chevillard et al., 2005). The structure function scaling exponent

ζ(q) extracted from various turbulent flows are well documented (Frisch, 1995; Sreeni-

vasan & Antonia, 1997). In this chapter, we apply the arbitrary order Hilbert spectral

analysis on an experimental homogeneous and nearly isotropy turbulent data to char-

acterize the scale invariant properties in amplitude-frequency space for the first time.

The results presented in this chapter are for part of them published in Huang et al.

(2008) [Y. Huang, et al.Europhy. Lett., 84, 40010, 2008.].

101
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6.1 Experimental data

The database we consider here is the same database we used in chapter 5. Here we

present it on more details.

Conventional passive grid wind tunnels of normal laboratory size allow to gen-

erate only moderate Reynolds number turbulent flow, with Taylor microscale based

Reynolds numbers typically less than 150. The main reason is that the root-mean-

square (r.m.s.) velocity downstream of a passive grid is relatively low (Kang et al.,

2003). As an alternative, the ‘active grid’ technique, which allows to achieve higher

Reynolds number turbulent flow, has been studied by several authors (Makita, 1991;

Mydlarski & Warhaft, 1996, 1998; Kang et al., 2003).

Table 6.1: Some parameters of the turbulent flow consider here at four different
locations: mean velocity 〈u〉, r.m.s velocity ur.m.s.(〈(u − 〈u〉)2〉1/2) , isotropy ratio
I, turbulence intensity (%), Kolmogorov scale η ((ν3/ε)1/4), Taylor microscale λ
((15u21r.m.s.ν/ε)

1/2) and corresponding Reynolds number Reλ. The details about this
experiment and data can be found in Kang et al. (2003).

x1/M = 20 x1/M = 30 x1/M = 40 x1/M = 48
〈u1〉 (ms−1) 12.0 11.2 11.0 10.8
u1r.m.s. (ms

−1) 1.85 1.43 1.19 1.08
u2r.m.s. (ms

−1) 1.64 1.25 1.04 0.932
I = u1r.m.s./u2r.m.s. 1.13 1.14 1.14 1.16
u1r.m.s./〈u1〉 (%) 15.4 12.8 10.8 10.0
η (mm) 0.11 0.14 0.16 0.18
λ (mm) 5.84 7.13 8.25 8.78
Reλ = u1r.m.s.λ/ν 716 676 650 626

Experiments are performed downstream of an active grid in the return-type Corrsin

wind tunnel (Comte-Bellot & Corrsin, 1966, 1971) in the Johns Hopkins University’s

Corrsin wind tunnel (Kang et al., 2003). The wind tunnel has primary and secondary
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Figure 6.1: Schematic representation of the wind tunnel. Taken from Ref. Kang et al.
(2003).

contraction ratios of 25:1 and 1.27:1, respectively. The active grid is placed down-

stream of the secondary contraction, see the schematic of the wind tunnel in Fig. 6.1.

The test section length is 10m and the cross-section is 1.22m by 0.91m. The span-

wise width of the wind tunnel gradually increases along the test section to account for

boundary layer growth. Figure 6.1 demonstrates the schematic of the wind tunnel,

where the measurement locations are marked by ×.

The design of the active grid follows that of Makita (1991) and Mydlarski &

Warhaft (1996, 1998). The active grid is composed of five horizontal and seven vertical

rotating shafts to which diamond-shaped winglets are attached. The shafts are made

of 19.05mm square aluminium channel with 3.18mm-thick walls. The horizontal and

vertical shafts have eight and six winglets, respectively, so that the grid size, M , is

0.152m. The 0.102×0.102m2 square winglets are made of 3.18mm-thick aluminium

plate. Along each shaft, the winglets are attached to opposite sides in an alternating

fashion to help reduce vibrations (Kang et al., 2003). A schematic diagram of the

active grid is shown in Fig. 6.2. Each shaft is independently driven by a 1/4 hp

AC motor (Baldor Industrial Motor, CNM20252) and each motor is controlled by an
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Figure 6.2: Schematic representation of the active grid. Taken from Ref. Kang et al.
(2003).

inverter (ABB Industrial Systems Inc., ACS 140). The control signal is generated by

a PC and sent to the twelve inverters through two six-node RS-485 serial networks,

using a National Instruments AT-485 card. Each motor is set to randomly change

rotational speed and direction once every second. The speed is selected from a uniform

distribution in the range of about 210-420 r.p.m., in both directions.

Figure 6.1 shows the schematic of the experimental wind-tunnel setup, in which the

active grid is located at the beginning of the test section. The measurement locations

in the streamwise (longitudinal) direction (x1 ) are at x1/M = 20, 30, 40 and 48 and

marked by ×. An X-wire probe array described in Kang & Meneveau (2001) is used

for measuring two velocity components in the (x1 , x2 )-plane. The probe array is

composed of four custom-made miniature X-type hot-wire probes. The signals are

sampled at fs = 40 kHz, low-pass filtered at a frequency of 20 kHz and digitized with
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Figure 6.3: One 1s portion of longitudinal velocity at location x/M = 48, showing
the intermittency nature of turbulent velocity field.

a 12-bit simultaneous sample and hold A/D converter (United Electronic Industries,

WIN-30DS). The sampling time is 30×30 s, so the total number of data points per

channel for each measurement location is 36×106. The array is located at the centre

of the wind tunnel and is moved manually to various downstream locations. The data

are recorded in the central core region (0.25m< x2 <0.65m and 0.25m< x3 <0.95m).

To obtain the spatial quantities in the streamwise direction from the temporal data,

Taylor’s hypothesis is invoked.

Table 6.1 shows the main parameters of each experimental data set, including the

mean longitudinal velocity 〈u1〉, the r.m.s. velocities u1r.m.s. and u2r.m.s., the isotropy

ratio I = u1r.m.s./u2r.m.s., the turbulence intensity u1r.m.s./〈u1〉, the Kolmogorov scale

η = (ν3/ε)1/4, the Taylor microscale λ = (15u21r.m.s.ν/ε)
1/2, and the Taylor microscale

based Reynolds number Reλ = u1r.m.s.λ/ν. A 1 s portion of velocity at downstream

x/M = 48, where M is the mesh size, is displayed in Fig. 6.3 to demonstrate the

intermittency and stochastic natural of the turbulent velocity field. We then show

the Fourier spectrum and the corresponding second order Hilbert marginal spectrum

at the downstream x/M = 48 in Fig. 6.4, where the compensated spectrum E(f)f 5/3
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Figure 6.4: Comparison of the Hilbert marginal spectrum (dashed-dotted line) and
Fourier spectrum (dashed line) at downstream x/M = 48. Both of them predict the
inertial subrange on the range 10 ≤ ω ≤ 1000Hz. The inset shows the corresponding
compensated spectra E(f) f 5/3.

is shown as inset. The Hilbert marginal spectrum which is shown here is the first

experimental estimate of a Kolmogorov 5/3 spectrum in Hilbert spectral frame that

we published in a recent work (Huang et al., 2008). We can find that both spectra

predict an almost two decades inertial subrange on the range 10 ≤ f(orω) ≤ 1000Hz,

which is illustrated as vertical dashed line. Therefore, the data we have chosen here

have a sufficient inertial subrange to test our new Hilbert-based methodology. For

more details about the experiment and the data see Kang et al. (2003); the data can

be found at http://www.me.jhu.edu/˜meneveau/datasets.html.

http://www.me.jhu.edu/~meneveau/datasets.html
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Figure 6.5: IMF modes of one 214 points segment from EMD.

6.2 EMD decomposition of turbulent data

The original velocity time series is divided into 73 segments (without overlapping)

of 214 points each. After decomposition, the original velocity series is decomposed

into several IMFs, from 11 to 13 modes with one residual. Figure 6.5 shows the IMF

modes of one segment from EMD algorithm. The time scale increases with the mode

index n. We note that the number of IMF modes is deduced by the data themselves,

and depends on the length and the complexity of the data. In practice, based on

the dyadic filter bank property of the EMD algorithm, this number is usually less

than log2(N), where N is the length of the database (Flandrin & Gonçalvès, 2004;

Flandrin et al., 2004; Wu & Huang, 2004; Huang et al., 2008).

The time scale is increasing with the mode index n; and each mode can be char-

acterized by its mean frequency, which is estimated by considering the Fourier energy
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Figure 6.6: Mean frequency ω vs mode index n for the longitude velocity time series.
There is an exponential decrease with a slope very close to 1, which indicates that
EMD acts as a dyadic filter bank. The inset shows the local slope ρ(n).

weighted mean frequency, ω. The mean frequency ω is defined as

ωi =

∫
f |Si(f)|2 df∫
|Si(f)|2 df

(6.2.1)

where Si(f) is the Fourier power spectrum of each IMF mode Ci(t). Figure 6.6 shows

the mean frequency ω(n), where the inset shows local slope. The straight line in

log-linear plot suggests the following relation

ω(n) = ωoρ
−n (6.2.2)

where ωo ' 22000, and ρ = 2.0 ± 0.1, very close to 2. This implies that the EMD

algorithm acts as a dyadic filter bank in the frequency domain. An analogous property

was obtained using stochastic simulations of Gaussian noise and fractional Gaussian

noise (Wu & Huang, 2004; Flandrin & Gonçalvès, 2004), and it is interesting to note

here that the same result holds for fully developed turbulence time series.
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Figure 6.7: Fourier spectra for IMF modes. The vertical dashed lines indicate the
inertial subrange 10 ≤ f ≤ 1000Hz. One can find that the modes belonging to the
inertial range have a similar shape.

We then interpret each mode according to their characteristic time scale. When

compared with the original Fourier spectrum of the turbulent time series, see Fig. 6.7,

these modes can be termed as follows: the first mode, which has the smallest time

scale, corresponds to the measurement noise; modes 2 and 3 are associated with the

dissipation range of turbulence. Mode 4 corresponds to the Kolmogorov scale, which

is the scale below which dissipation becomes important; it is a transition scale between

inertial range and dissipation range. Modes 5 to 10 all belong to the inertial range,

corresponding to the scale-invariant Richardson-Kolmogorov energy cascade (Frisch,

1995); larger modes belong to the large forcing scales. Figure 6.7 represents the

Fourier power spectra of each mode. It shows that each mode in the inertial range is

narrow-banded. This confirms that the EMD approach acts as a filter bank for turbu-

lence time series and that each mode can be associated to a given part of the different
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Figure 6.8: Fourier spectra for successive sums of IMF modes
∑
Ci. The lope of the

reference line is -5/3. The vertical dashed lines indicate the corresponding inertial
subrange 10 ≤ f ≤ 1000Hz. With the mode index increasing, the spectrum is then
asymptotic approached to the original spectrum.

zones of turbulence (injection scales, inertial range, dissipation scales) (Huang et al.,

2008). We then plot the Fourier spectrum of the cumulative sum of these IMF modes

in Fig. 6.8. For comparison, we also represent the Fourier spectrum of the original

longitude velocity u. The addition of more and more modes in the decomposition

is a progressive reconstruction of the original time series as can been seen from the

spectrum which asymptotically reaches the -5/3 behaviour.

6.3 Joint pdf and dimensional analysis

Here we consider the joint pdf in amplitude-frequency space, and obtain experimen-

tally new scaling result, for which we give some interpretation using dimensional
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Figure 6.9: Representation of the joint pdf p(ω,A) (in log scale) of turbulent fluc-
tuations in an amplitude-frequency space. The scaling range 10 < ω < 1000Hz
for frequencies is shown as vertical dashed-dotted lines. The dashed line shows the
skeleton As(ω) of the joint pdf, which is the amplitude for which the conditional pdf
p(A|ω) is maximum.

analysis.

Joint pdf p(ω,A)

The arbitrary order HSA methodological framework provides a way to represent

turbulent fluctuations in an amplitude-frequency space (Huang et al., 2008, 2010a,

2009a). We represent the joint pdf p(ω,A) in Fig. 6.9 in a log-log view, where the

vertical dashed-dotted lines demonstrate the inertial subrange, 10 ≤ ω ≤ 1000Hz. It

can be seen that the joint pdf p(ω,A) decrease with increasing frequencies, with a

scaling trend. We show in the same graph the skeleton As(ω) of the joint pdf which
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Figure 6.10: The skeleton of the joint pdf (a) As(ω) in log-log plot. A power law
behaviour is observed in the inertial subrange with scaling exponent 0.38, which
is close to the Kolmogorov value 1/3, and (b) pmax(ω) in log-log plot. A power law
behaviour is observed in the inertial subrange with scaling exponent 0.63. The vertical
dashed lines show the corresponding inertial subrange 10 < ω < 1000Hz.

corresponds to the amplitude for which the conditional pdf p(A|ω) is maximum

As(ω) = A0 ; p(A0, ω) = max
A
{p(A|ω)} (6.3.1)

We then reproduce the skeleton in Fig. 6.10 in two different views: (a) As(ω) in a

log-log plot; (b) skeleton pdf pmax(ω) = p(As(ω), ω) = maxA{p(A|ω)} in a log-log

plot, where the vertical dashed line indicates the inertial subrange. It is interesting

to note that a power law behaviour is found for both representations

As(ω) ∼ ω−β1 (6.3.2a)

where β1 ' 0.38, and

pmax(ω) ∼ ω−β2 (6.3.2b)

where β2 ' 0.63. Dimensional analysis to interpret these results is provided below.
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Table 6.2: The dimension of several physical quantities: wave number, k, arbitrary
order Hilbert marginal spectrum Lq(k) and mean energy dissipation rate ε.

Quantity Dimension
Wave number k 1/length (L−1)
arbitrary order HMS Lq(k) lengthq+1 /timeq (Lq+1T−q)
Energy dissipation rate ε energy/time (L2T−3)

Dimensional Analysis

We rewrite here the arbitrary order Hilbert marginal spectrum in a wavenumber form

Lq(k) =
∫
p(k,A)Aq dA (6.3.3)

where k is the instantaneous wavenumber in the spatial domain, which corresponds

to the instantaneous frequency ω in the temporal domain, and A is the instantaneous

amplitude. We list the dimensions for the arbitrary order Hilbert spectrum Lq(k),

the instantaneous wavenumber k, and the mean energy dissipation rate ε in Table 6.2.

The amplitude A has the same dimension as the velocity u

[As] = [A] = [u] = LT
−1 (6.3.4)

in which [ ] means dimension of a variable. The dimension of the arbitrary order

Hilbert marginal spectrum by its physical meaning is

[Lq(k)] =
[A]q

[k]
= Lq+1T−q (6.3.5)

The dimension balance requires

[Lq(k)] = [p(k,A)][A]
q+1 (6.3.6)

We thus have the dimension of p(k,A)

[p(k,A)] = T (6.3.7)
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If we take the mean energy dissipation rate ε and the wavenumber k as basic dimen-

sions, then we have

[Lq(k)] = [ε]
q/3[k]−(q/3+1) (6.3.8a)

[As] = [ε]
1/3[k]−1/3 (6.3.8b)

[pmax(k)] = [p(k,A)] = [ε]
−1/3[k]−2/3 (6.3.8c)

Considering the Kolmogorov’s first and second universality similarity hypothesis (Kol-

mogorov, 1941a; Monin & Yaglom, 1971; Frisch, 1995), we thus have the following

power law in the so-called inertial subrange

Lq(k) = Cq ε
q/3k−(q/3+1) ∼ k−(q/3+1) (6.3.9a)

As = D0 ε
1/3k−1/3 ∼ k−1/3 (6.3.9b)

pmax(k) = P0 ε
−1/3k−2/3 ∼ k−2/3 (6.3.9c)

where Cq, D0 and P0 are Kolmogorov constant
1. The argument presented above

indicates that the arbitrary order HSA methodology can be used to characterize the

intermittent properties of turbulence. We will further consider this topic in the next

section.

We notice that the difference between the estimated values β and the Kolmogorov

nonintermittent values may be an effect of the turbulent intermittency. We also note

that the value β1 = 0.38 is comparable with ζ(1) = 0.37 estimation given in Ref

van de Water & Herwijer (1999).

1However, these Kolmogorov constants may depend on the detail of the turbulent flow. There is
no reason to require them to be universal.



6.3. Joint pdf and dimensional analysis 115

Maxima Amplitude

Inspired by the log-Poisson model (She & Lévêque, 1994; Dubrulle, 1994; She &

Waymire, 1995), Vainshtein (2003) studied the most dissipative, most intense struc-

tures using a high Reynolds number experimental data. He found that the most
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Figure 6.11: Representation of the maxima amplitude (a) Amax(ω) in log-linear plot,
and (b) the corresponding p(Amax(ω)) in log-log plot, respectively.

intense of the dissipation field max(εr) satisfies a power law

max(εr) ∼
(r
`

)−γ
(6.3.10)

The scaling value γ is found 0.61 ± 0.01, only slightly small than 2/3 (Vainshtein,

2003). We are here interested in the maxima amplitude Amax at given frequency ω

Amax(ω) = max{A|p(A|ω) 6=0} (6.3.11)

Figure 6.11 shows the maxima amplitude Amax(ω) in two views: (a) Amax vs ω in

a log-linear, and (b) p(Amax) vs ω in a log-log view, where the vertical dashed line

demonstrates the inertial subrange 10 < ω < 1000Hz. We obtain a law

Amax(ω) = a log10(ω) + b (6.3.12)
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in which a ' −0.91 and b ' 4.19 are obtained by using a least square fitting. We

also observe a power law behaviour for p(Amax), which is written as

p(Amax) ∼ ω−χ (6.3.13)

where χ ' 1.68. Here the plot is quite scattered, but nevertheless the straight line

trend in each representation is clear. We have no theoretical or dimensional expla-

nation to propose for these relations. However, these findings may be linked to the

nature of turbulence: this will be checked using more databases in the future studies.

Rescaled Conditional pdf
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Figure 6.12: Representation of the rescaled conditional pdf p1(A, ω) in the inertial
range, for fixed values of ω = 10 (�), 101.5 (#), 102 (4), 102.5 (5) and 103Hz (B). For
comparison, we also plot the normal distribution (dash line), log-normal distribution
(solid line) and log-Poisson distribution (dashed-dotted line).

The power law relation for the skeleton indicates a rescaling relation for the pdf

p1(A, ω) = ωβ2p(A/ωβ1 , ω). We plot it in Fig. 6.12 for various fixed values of ω



6.4. Intermittency 117

in the inertial subrange, where ω = 10 (�), 101.5 (#), 102 (4) and 103 (B)Hz,

respectively. In case of monoscaling, these pdfs should superpose perfectly; here the

plot is scattered, but nevertheless we note that the lack of superposition of these

rescaled pdfs is a signature of intermittency. Moments of this pdf are less noisy as

will be visible below. For comparison, we plot the normal distribution (dashed line),

lognormal distribution (solid line) and log-Poisson distribution (dashed-dotted line)

in the same figure. It seems that the log-Poisson distribution provides a better fit to

the pdf than the lognormal distribution for the left-hand part, whereas the lognormal

fit is better for the right-hand part.

6.4 Intermittency

Figure 6.13 shows Lq(ω) for various orders of Hilbert marginal spectra (0, 1, 3, 4, 5

and 6). The moment of order 0 is the marginal pdf of the instantaneous frequency

ω, see Eq. (3.3.1) and the discussion in section 3.3. It is interesting to note that this

pdf is extremely “wild”, having a behaviour close to L0(ω) ∼ ω−1, corresponding

to a “sporadic” process whose probability density is not normalizable (
∫
p(ω) dω

diverges). This result is only obtained when all modes are considered together; such

pdf is not found for the frequency pdf of an individual mode. This property seems

to be rather general: we observed such pdf for moment of order zero using several

other time series: for example surf-zone turbulence data, fBm (Huang et al., 2010a,

2009a), river flow discharge data (Huang et al., 2009b). Hence it does not seems to

be linked to turbulence itself, but to be a main property of the HSA method, see

discussion in section 3.3. Such pdf indicates in fact that high frequencies have a

smaller probability than low frequencies, but still the decrease is very slow with a
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Figure 6.13: Representation of Lq(ω), Hilbert spectral analysis of velocity intermit-
tency, using different orders of moments (0, 1, 3, 4, 5 and 6). Power laws are observed
on the range 10 < ω < 1000Hz for all spectra. The scaling exponent ξ(q) are esti-
mated on the inertial subrange, which are indicated by the vertical dashed lines.

heavy tail giving large probability to extrema events. We observe the power laws in

range 10 < ω < 1000Hz for all order moments. The values of scaling exponents ξ(q)

are shown in each picture. This provides a way to estimate scaling exponents ξ(q) for

every order of moment q ≥ 02 on a continuous range of scales in the frequency space.

We show the corresponding scaling exponent ξ(q) in Fig. 6.14, where the inset shows

the departure from the K41 law. For comparison, we also display the scaling exponent

provided by the Extended Self-Similarity (ESS) (Benzi et al., 1993a,b, 1995) as dashed

line. It can be seen that ξ(q)− 1 is nonlinear and is close to ζ(q), but departure from

the K41 law shows that the curvature is not the same: ξ(q) seems less concave than

ζ(q). We thus recover the classical structure function scaling exponent ζ(q) in an

amplitude-frequency space here for the first time.

2As we have already indicated in chapter 3, the order of moment q can belong to the on range
q ≥ −1. However, we only consider the case q ≥ 0 here.
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Figure 6.14: Comparison of the scaling exponents ξ(q)− 1 (#) with the classical ζ(q)
obtained from structure functions analysis with the ESS method (dashed line) and
K41 q/3 (solid line). The inset shows the departure from the K41 law.

6.5 Isotropy ratio and isotropy scaling exponent

In the database we consider here, for achieving high Reynolds number turbulent

flow, an active-grid technique is performed (Kang et al., 2003), which may cause

the turbulent flow to violate the local isotropy hypothesis. In this section we check

the scale dependent local isotropy ratio I(ω) and the corresponding isotropy scaling

exponent Γ(q).

Scale Dependent Isotropy Ratio

A scale dependent isotropy ratio is defined as

I(ω) =
Lu,2(ω)
Lv,2(ω)

(6.5.1)
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Figure 6.15: The scale dependent isotropy ratio I(ω) = Lu,2(ω)/Lv,2(ω) (�), where
the vertical solid line indicates the inertial range 10 < ω < 1000Hz. The horizontal
dashed line indicates theoretical value 3/4 (Kolmogorov, 1941c). The direct estima-
tion of the isotropy ratio is 1.16 (Kang et al., 2003). For comparison, we also show
the scale dependent isotropy ratio provided by Fourier spectrum (#) and structure
function analysis (4), respectively. Except for the large scale part (ω ≤ 10Hz), all
these approaches provide almost the same shape. The Fourier spectrum is taken from
Ref. Kang et al. (2003).

where Lu,2(ω) and Lv,2(ω) are the second order Hilbert marginal spectrum of the

longitudinal and transverse velocity components. This is an isotropy ratio because

it quantifies the scale dependent energy ratio between longitudinal and transverse

velocity components. The Kolmogorov theory predicts that I(ω) equals 3/4 if the

scale ω in the inertial range (Kolmogorov, 1941c; Monin & Yaglom, 1971). Let us

recall here how this isotropy ratio is obtained. The second order structure function

of longitudinal and transverse velocities can be related as (Monin & Yaglom (1971)
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p.352)

S2T(r) = S
2
L(r) +

r

2

dS2L(r)

dr
(6.5.2)

It is a consequence of the continuity equation. Taking the Kolmogorov’s second

similarity hypothesis, we have in the inertial range

S2L(r) ' Cr2/3, S2T(r) ' C ′r2/3 (6.5.3)

where C and C ′ are the universal constants. From Eq. (6.5.2) and Eq. (6.5.3), it is

easy to show that

I =
C

C ′
=
3

4
(6.5.4)

A similar argument may apply to the Fourier power spectrum, see Monin & Yaglom

(1971) for more details.

Figure 6.15 shows the scale dependent local isotropy ratio I(ω) (�), where the

vertical solid lines demonstrate the location of the inertial range 10 < ω < 1000Hz,

and the horizontal dashed line indicates the Kolmogorov value 3/4. For comparison,

we also show the scale dependent isotropy ratio provided by Fourier spectra (#) and

structure function analysis (4) in the same figure (the structure function is converted

from physical space into spectral space by taking f = 1/τ). Except for the large scale

part (ω < 10Hz), all these methods give almost the same shape. The direct estimation

of the isotropy ratio at this location is 1.16, which is estimated by the ratio of r.m.s.

velocity u1r.m.s./u2r.m.s., see Table 6.1. This value may be influenced by the large scale

anisotropy. We note that the plateau range provided by the structure function is

slightly different from the others, see also Fig. 6.16 (b). We have shown previously

that the structure function is strongly influenced by the large scales. The difference

shown here could be an effect of the large scale anisotropy on the structure functions,

see chapter 5 for more discussion on the structure function.
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The isotropy ratio has a different behaviour depending on the scale: the large

scale forcing, the inertial range, where the local isotropy ratio is close to Kolmogorov

value, and the dissipation range. Due to the grid and boundary effects, the large

scale structure is strongly anisotropic. With the scale decreasing (or the frequency

increasing), the structure becomes more and more isotropic and value asymptotically

the theoretical value 3/4 in the inertial range. It then keeps this value until entering

the dissipation range. In the dissipation range, the isotropy ratio deviates from its

theoretical value and increases very fast, which is maybe also the effect of measure-

ment noise. The mean isotropy ratio Ĩ are ĨH = 0.77 ± 0.05, Ĩs = 0.79 ± 0.03, and

ĨF = 0.81±0.02 for the HSA, structure function and Fourier estimators, respectively.

It seems that the HSA approach provides the most isotropic prediction.

Generalized Isotropy Ratio

In order to quantify the evolution of the isotropy ratio for more and more intense

events, and hence larger and larger moments we introduce the generalized isotropy

ratio for arbitrary order Hilbert marginal spectra

Iq(ω) =
Lu,q(ω)
Lv,q(ω)

∼ ω(ξT (q)−ξL(q)) (6.5.5)

where ξL(q) and ξT (q) are the corresponding scaling exponent functions for longitudi-

nal and transverse directions. We then expect Iq(ω) to be independent from ω on the

inertial range. Figure 6.16 (a) shows the Iq(ω) for various q values in log-linear view

on the range 8 < ω < 2000Hz, where q =0 (#), 2 (�), 4 (4) and 6 (♦). The vertical

solid lines indicate the plateau on the range 20 < ω < 800Hz. The mean generalized

isotropy ratio value ĨH(q) is then estimated on this range, which are shown as thick

horizontal dashed lines. The plateau range decreases with q. We apply the same idea
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on structure function analysis. Figure 6.16 (b) shows the estimated Iq(f) on the range

8 < f(= 1/τ) < 8000Hz for various q. As we have mentioned previously, the struc-

ture function is strongly influenced by the large scales. The beginning of the flatness

range is shifted of almost one decade. The range of plateau decreases with q. It seems

that the structure function approach decreases faster than for the HSA approach. The

mean isotropy ratio ĨS(q) is estimated on the range 100 < f(= 1/τ) < 2000Hz.
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Figure 6.16: The scale dependent generalized isotropy ratio I: (a) estimated by HSA
approach on the range 8 < ω < 2000Hz, where q = 0 (#), 2 (�), 4 (4) and 6 (♦);
(b) estimated by structure function on the range 8 < f(= 1/τ) < 8000Hz, where
q = 1 (#), 2 (�), 4 (4) and 6 (♦). The vertical solid lines indicate the plateau
range, where the mean isotropy ratio Ĩ(q) is estimated.

Before plotting the result, we estimate the generalized isotropy ratio using the

skeleton representation. Figure 6.17 shows the isotropy ratio for the skeleton As(ω)

(#) of the joint pdf p(ω,A) and the corresponding conditional pdf pmax(ω) (�),

the maxima amplitude Amax(ω) (4) and the corresponding conditional pdf pAmax(ω)

(solid line in inset). The ratio appears here noisy. However, except the condi-

tional pdf pAmax(ω) for the maxima amplitude, a flatness trend exists for the others

on the inertial range. We estimate the mean isotropy ratio on the inertial range

10 < ω < 1000Hz. We then plot in Fig. 6.18 the mean generalized isotropy ratio
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Figure 6.17: The scale dependent generalized isotropy ratio I(ω) on range 5 < ω <
8000Hz, where As (#), pmax(ω) (�) and Amax (4), respectively. The inset shows the
isotropy ratio for pAmax . The vertical dash lines indicate the inertial range 10 < ω <
1000Hz. The mean isotropy ratio Ĩ is then estimated on this range.

ĨH(q) (�) estimated from the Hilbert spectra and the skeleton. A straight line trend

seems compatible with the data. It suggests that the mean generalized isotropy ratio

decreases linearly with q

Ĩ(q) = α̂q + β̂ (6.5.6)

where α̂ ' −0.091 and β̂ ' 0.96 obtained from a least square fitting. Let us note that

Antonia et al. (1997) provided a 9/16 isotropy ratio for the fourth order structure

function. If we assume that the generalized isotropy ratio decreases linearly with q,

and consider the two theoretical isotropy ratio values as boundary condition, we then

have the equation

Ĩ(q) = −
3

32
q +
15

16
(6.5.7)

which is displayed as a dashed line in Fig. 6.18. It is rather good agreement with
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Figure 6.18: Representation of generalized isotropy ratio Ĩ(q), estimated from the
arbitrary order Hilbert marginal spectra Lq(ω) (�), the skeleton As (4), maxima
amplitude (#) and the conditional pdf p(As) (♦). The dashed line indicates a linearity
theoretical prediction by Eq. (6.5.7). The dashed-dotted line is an isotropy relation
Ĩ(q) = (2/3)ζL(q) provided by Siefert et al. (2005). The inset shows the generalized
isotropy ratio for the structure function.

experimental isotropy ratio. One interesting finding is that the mean isotropy ratio

for the skeleton and the maxima amplitude are also in agreement with this linear

prediction.

Other predications for the generalized isotropy ratio exist in the literature such

as the one of Siefert et al. (2005). They assume of 2/3 rescaled factor between

longitudinal and transverse velocity components, giving

〈|u(r)|q〉 = 〈|v(
2

3
r)|q〉 = cqLr

ζL(q) = cqT (
2

3
r)ζT (q) (6.5.8)

where ζL(q) and ζT (q) are the scaling exponent function for the longitudinal and

transverse velocities respectively, and the cq constants are related to the Kolmogorov

constants (Siefert et al., 2005) . Assuming ζL(q) = ζT (q), it then leads to the following
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relation

Ĩ(q) =
cqL
cqT
=

(
2

3

)ζL(q)
(6.5.9)

We show this relation as dashed-dotted line in the same figure, where the scaling

exponent ζL(q) correspond to mean values for experimental measurements (Schmitt,

2006). Both linear and convex relations are agreement with the experiment result on

the range 0 < q < 5. As a generalization of this approach, we can introduce 0 < a < 1

for which

Ĩ(q) = aζL(q) (6.5.10)

and try to find the best value of a. The best fitting vale of a is a = 0.65± 0.05, quite

close to 2/3.

Isotropy Scaling Exponent

The existence of the plateau of the generalized isotropy ratio indicates that if we

plot the longitudinal spectra Lv,q(ω) against transverse one Lu,q(ω), a power law

behaviour with scaling exponent equal one should hold at least on the plateau range.

Figure 6.19 and 6.20 show respectively Lv,q(ω) v.s. Lu,q(ω) on the range 5 < ω <

6000Hz, and Sv,q(τ) v.s. Su,q(τ) on the range 5 < f(= 1/τ) < 6000Hz for various q.

Graphically, power law behaviour holds as expected

Lv,q(ω) ∼ (Lu,q(ω))
Γ(q), ξT (q) = ξL(q)Γ(q) (6.5.11)

which provides

ξT (q) = ξL(q)Γ(q) (6.5.12)

If the assumption of local isotropy holds, the scaling exponent Γ(q) is then exactly

equal to 1. Figure 6.21 shows the corresponding scaling exponent Γ(q) estimated from
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Figure 6.19: Representation of Lv,q(ω) v.s. Lu,q(ω) on the range 5 < ω < 6000Hz,
where q = 0, 2, 4 and 6, respectively. Power law behaviour is observed for all
cases. The corresponding scaling exponent Γ(q) is estimated on the inertial range
10 < ω < 1000Hz.

the turbulent database. The isotropy scaling exponent Γ(q) deviates from 1. The

isotropy scaling exponent Γ(q) decreases with the order q, which indicates that the

anisotropy effect becomes more and more strong in high order statistical quantities.

The HSA approach provides the larger scaling exponent, which may be linked to

the local ability of the method. It may constrain the large scale anisotropy effect

both in physical domain and frequency domain. However, for the high order q, Γ(q)

is significant less than 1 within statistical uncertainty. For structure function, it

suggests an approximately linear expression

ΓS(q) = −γ̂q + Γo (6.5.13)

where γ̂ ' 0.018 and Γo ' 0.97 are obtained experimentally. However, the influ-

ence of the large anisotropy scale on the structure function should be investigated
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Figure 6.20: Representation of Sv,q(τ) v.s. Su,q(τ) on the range 5 < f(= 1/τ) <
6000Hz, where q = 0, 2, 4 and 6. Power law behaviour is observed for all cases.
The corresponding scaling exponent Γ(q) is estimated on the inertial range 10 < f(=
1/τ) < 1000Hz.

systematically in the future studies.

Let us note that the two approaches we considered here are complementary, writ-

ting

Γ(q) = 1− β(q) (6.5.14)

We have

ζT (q) = ζL(q)(1− β(q)) (6.5.15)

and hence

I(q)(ω) ∼ ωζT (q)−ζL(q) ∼ ω−β(q)ζL(q) (6.5.16)

This shows that if β(q) is close to zero, Iq(ω) has a flatness range and reciprocally

if Iq(ω) has a flatness range, β(q) should close to zero. We cannot conclude on the

best representation using the present experimental analysis.
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Figure 6.21: Representation of the isotropy scaling exponent Γ(q), which are esti-
mated from the arbitrary order Hilbert spectra Lq(ω) (�) and structure function
(#). For structure function, we have ΓS(q) ' −0.018q + 0.97, which is obtained by
the least square fitting.

Spatial Evolution

We may also consider the spatial evolution of these anisotropy indicators. Figure 6.22

shows the scale dependent isotropy ratio I at various downstream locations x/M = 20

(#), x/M = 30 (�), x/M = 40 (4) and x/M = 48 (♦), where the Kolmogorov

isotropy ratio 3/4 is shown as horizontal solid line, and the vertical solid line illus-

trates the plateau range. The scale dependence isotropy ratio I are estimated by

(a) the HSA approach, (b) the second order structure function and (c) the Fourier

power spectrum. As we have shown above, the HSA approach and the Fourier power

spectrum provide a similar shape of this ratio. The structure function is strongly

influenced by the large scale anisotropy structure. We then show the mean isotropy
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Figure 6.22: (a) The isotropy ratio I(ω) estimated by the HSA approach at various
downstream locations x/M = 20 (#), x/M = 30 (�), x/M = 40 (4) and x/M = 48
(♦); (b) the structure function; (c) the Fourier analysis. The vertical solid line
indicates the plateau range, where the mean isotropy ratio Ĩ is estimated. The
horizontal solid line illustrates the Kolmogorov value 3/4. (d) The mean isotropy
ratio Ĩ, provided by the HSA approach (�), the structure function (#) and the
Fourier analysis (♦). The straight dashed line is the least square fit for the last
three points of the HSA method. It predicts that the isotropy ratio may reach the
Kolmogorov value at the downstream x/M = 60.5 (marked as ⊕).

ratio Ĩ in Fig. 6.22 (d), where the Kolmogorov isotropy value 3/4 is displayed as a

horizontal solid line. It is interesting to note that both the Fourier approach and the

structure function provide a similar spatial evolution trend: the isotropy ratio first

decreases along the streamwise direction and reaches its minimum value at location

x/M = 40 and then seems to saturate. The isotropy ratio seems to never reach the

Kolmogorov value. The HSA approach gives a slightly different result. It seems that

the isotropy ratio provided first decreases slowly and then decreases linearly along
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Figure 6.23: (a) The generalized mean isotropy ratio Ĩ(q) at various downstream,
estimated by the HSA approach; (b) the structure function; (c) the isotropy scaling
exponents Γ(q) estimated by the HSA approach; (d) the structure function. The
symbols are the same as Fig. 6.22 (a). The straight solid lines are the least square fit
of each curve.

the downstream direction Ĩ(x) ' −0.017x/M + 0.85. According to this linear trend,

the isotropy ratio may reach its Kolmogorov value at the location x/M = 60.5, which

is marked as ⊕ in Fig. 6.22 (d). Unfortunately, we do not have data on this location

to check this prediction.

We now consider the downstream evolution for various orders q. Figure 6.23 shows

the mean generalized isotropy ratio Ĩ provided by (a) the HSA approach, and (b)

the structure function approach, and the isotropy scaling exponent Γ(q) provided

by (c) the HSA approach, and (d) the structure function approach for different 4

downstream values. The symbols are the same as Fig. 6.22 (a). Except for the

Hilbert-based isotropy scaling exponent Γ(q), see Fig. 6.23 (c), the others seem to

linearly decrease with q with various slopes. We then show in Fig. 6.24 (a) the slope
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Figure 6.24: (a) The slope α̂ of the generalization isotropy ratio estimated by the
Hilbert-based approach (#) and the structure function (�); (b) The slope γ̂ of isotropy
scaling exponents estimated by structure function approach. The mean value is γ̂ '
0.187.

α̂, and (b) the slope γ̂. It seems that both Hilbert-based approach (#) and structure

functions (�) provide the same evolution trend of α̂: they firstly increases with x/M

and then seem to saturate at large x/M . However, the former one is small than the

latter one. The slope of the isotropy scaling exponents is slight fluctuated around its

mean value 0.187.

6.6 Summary

To summarize the main results of this chapter, we applied the EMD and the arbi-

trary order Hilbert spectral analysis methodology on an experimental homogeneous

and nearly isotropy turbulence database. We found that the EMD acts as a dyadic

filter bank for fully developed turbulence velocity time series. Based on the Fourier

spectrum of each mode, we termed the IMF modes into different terms: measure-

ment noise, dissipation range, inertial range and large forcing scale. We observed

a scaling trend in the joint pdf p(ω,A) with a scaling exponent close to the Kol-

mogorov value. We then recovered the structure function scaling exponents ζ(q) in
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amplitude-frequency space for the first time.

We tested the local isotropic hypothesis by considering the scale dependent isotropy

ratio and the generalized isotropy ratio. The generalized isotropy ratio decreases lin-

early with q. The spatial evolution of the isotropy ratio shows that the isotropy ratio

may reach the Kolmogorov value at downstream x/M = 60.5. The isotropy scal-

ing exponent Γ(q) suggested by the existence of the plateau of the scale dependent

isotropy ratio is also studied. These scaling exponents deviate from 1, the value indi-

cated by the local isotropy hypothesis. Furthermore, the scaling exponent provided

by the structure function decreases linearly with order q. It implies that the high

order structure function is strongly influenced by the large anisotropy scale part.
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Chapter 7

Passive Scalar Turbulence

Another important issue in turbulence research is the passive scalar turbulence, which

can be linked to many natural phenomena or engineering problems, such as pollutant

diffusion, turbulent combustion, etc., see reviews by Sreenivasan (1996); Shraiman

& Siggia (2000); Warhaft (2000). It has attracted huge interest during the last two

decades (Antonia et al., 1984; Sreenivasan, 1991, 1996; Ruiz-Chavarria et al., 1996;

Mydlarski & Warhaft, 1998; Shraiman & Siggia, 2000; Warhaft, 2000; Moisy et al.,

2001; Tsinober, 2001; Gylfason & Warhaft, 2004; Celani et al., 2005; Schmitt, 2005).

In the spirit of Kolmogorov, the relevant Obukhov-Corrsin law is a 1/3 scaling relation

that predicts

Sq(`) = 〈|Δθ(`)|q〉 ∼ `ζθ(q) (7.0.1)

where Δθ(`) = θ(x + `) − θ(x), and ζθ(q) = q/3 is the corresponding scaling expo-

nent. However, experimental evidence has shown that the scaling exponent ζθ(q) is

deviating from the simple KOC law, even with stronger deviation than the veloc-

ity field (Sreenivasan, 1991; Shraiman & Siggia, 2000; Warhaft, 2000). For example,

it is found that the scaling exponent ζΘ(q) is almost saturating for high order mo-

ments (Warhaft, 2000; Celani et al., 2000). It is often believed that the so-called
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“ramp-cliff” structures play an important role in scalar turbulent flows, see Fig. 7.1.

For high order statistical moments, it seems that the statistical quantities, such as

high order structure functions, are dominated by the ramp-cliff structure. Obviously,

the ramp-cliff structure is a large scale structure with a ramp and a sharp cliff. It is

believed that this structure couples with the small scales by the cliff structure. Thus

it may have strong influence on both the small scales and large scales statistics.

Figure 7.1: Illustration of the “ramp-cliff” structure. Graphically, the ramp-cliff
structure is a large scale structure. Taken from Ref. Warhaft (2000)

We have shown previously that the structure functions are strongly influenced

by large scales. It may then be that the saturation of scalar turbulence structure

function is linked to the ramp-cliff structures. It could then be a shortcoming of the

analysis approach instead of a real saturation of the scaling exponent associated to

the most intense events. In this chapter, we check this hypothesis by considering

scalar turbulence intermittency using arbitrary order Hilbert spectral analysis. The

results presented in this chapter are not yet published. They will be in part included

in a paper prepared for submission Huang et al. (2010b)[Y. Huang, et al. Phy. Rev.

Lett., 2009 (in preparation)].
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7.1 Temperature data

The temperature data analyzed here are obtained from a jet experiment performed

at Joseph Fourier University by Y. Gagne and P. Fougairolles, where a hot air jets

from a nozzle into a cold ambient cross flow, see the sketch in Fig. 7.2. Along the flow

direction, the jet may be separated into four different regions (A) potential core, (B)

developing range, (C) developed range and (D) decaying range. The measurement

Figure 7.2: Sketch of the experiment. A hot air jets into the cold cross ambient flow
from the nozzle: (A) potential core (B) developing range (C) developed range (D)
decaying range. The measurement point (•) is close to the nozzle and the mixing
layer. Therefore the flow here demonstrates strong intermittency properties.
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Figure 7.3: A 0.3 s portion of temperature time series. It illustrates the ”ramp-cliff”
structures and intermittent nature of passive scalar turbulence.
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Figure 7.4: Comparison of the second order Hilbert marginal spectrum and Fourier
spectrum. The inset shows the compensated spectrum E(f)f 5/3, which indicates a
more than 1.4 decades of inertial range 80 < f < 2000Hz in both spectra. Since both
EMD and HSA have very local abilities, they can constrain the ramp-cliff effects as
much as they can, thus predict a steeper spectrum.

location is situated at the edge of the mixing layer and close to the nozzle. The initial

temperature of the two flows are respectively TJ=27.8
◦C and T=14.8 ◦C. The bulk

Reynolds numbers are about ReJ = 60000 (based on the hydraulic diameter of the

jet nozzle) and ReM = 1100 (based on the mesh size of the turbulence grid of the

cross flow channel). The Taylor-microscale based Reynolds number is estimated as

Reλ = 250. The sampling frequency is 50 kHz with a total 5×105 data points. A 0.3 s

portion temperature time series is reproduced in Fig. 7.3. It illustrates a strong ramp-

cliff structure and the intermittent nature of this passive scalar turbulence. Figure 7.4

shows the Fourier spectrum (dashed line) and Hilbert marginal spectrum (solid line),

where the inset shows the corresponding compensated spectra. Power law behaviour

is observed in both spectra on the range 80 < f( or ω) < 2000Hz, about 1.4 decades,
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with scaling exponent 1.56 and 1.70 respectively for the Fourier power spectrum and

the Hilbert spectrum. For the former one, it agrees with the value reported in other

literatures, for example, see Refs. Sreenivasan (1996); Warhaft (2000). The latter is

quite close to the scaling value of the longitude velocity in fully developed turbulent

flows (Anselmet et al., 1984; Benzi et al., 1995; Frisch, 1995; Sreenivasan & Antonia,

1997).

7.2 EMD results

We divided the whole data into 122 segments (without overlapping), with 212 data

points each. After decomposition each segment is decomposed into several IMF

modes, from 9 to 12 with one residual. We first check the mean frequency of each

mode. The mean frequency ω is defined by Eq. (6.2.1). Figure 7.5 shows the mean
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ρ ' 1.71
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(n
)

Figure 7.5: The mean frequency of IMF modes ω vs modes n. Local slope ρ(n) is
shown as inset.
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frequency ω , where the inset shows the local slope ρ(n). One can find that, com-

pared with the result for velocity, see Fig. 6.6, the mean frequency of each realization

is rather scattered. However, the averaged mean value for all segments 〈ω〉 (�) ex-

ponential decrease with mode index n as

ω(n) ∼ ρ−n (7.2.1)

where ρ ' 1.71. This means that each mode is associated to a time scale almost 1.71

times larger than the previous one; this property is similar to a filter bank in the

frequency domain (Flandrin & Gonçalvès, 2004; Wu & Huang, 2004; Huang et al.,

2008). We note that the deviation from a dyadic filter bank could be an effect of the

ramp-cliff structure.

7.3 HSA results

Figure 7.6 shows the joint pdf p(ω,A), where the vertical dashed line illustrates the

inertial range 80 < ω < 2000Hz. We observe a scaling trend. However, the length

of data we have here is about 500,000 points. It is not long enough to get a smooth

skeleton of this joint pdf. But nevertheless, as we show later, the arbitrary order

Hilbert marginal spectrum is stable and convergent.

We provide here more comments on the marginal Hilbert spectrum and Fourier

spectrum, see in Fig. 7.4. As mentioned previously, the Fourier transform is a linear

asymptotic approach: it requires high order harmonic components to mimic nonlin-

ear and nonstationary process. In this case, the high order harmonic component may

lead an artificial energy transfer flux from a large scale (low frequency) to a small
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Figure 7.6: Representation of the joint pdf p(ω,A) for temperature fluctuations. The
vertical dashed line indicates the inertial subrange. A scaling trend is observed in
such presentation. However, due to the sample size, the skeleton of the joint pdf (not
shown here) is rather scattered.

scale (high frequency). The artificial energy transfer may give a less steep power spec-

trum. We know that both EMD and HSA methodology have very local abilities both

in physical and spectral domains: the Hilbert-based methodology can constrain the

nonlinear and nonstationary effects (Huang et al., 1998, 1999; Huang, 2005; Huang

et al., 2010a). In other words, it does not require any higher order harmonic compo-

nents to simulate the nonlinear and nonstationary events. Thus, the Hilbert spectrum

may reveal a less pertubated relation between the energy and the frequency.

Figure 7.7 shows the arbitrary order Hilbert marginal spectrum Lq(ω), where

q = 0, 1, 3, 4, 5 and 6. The vertical dashed line indicates the inertial subrange

80 < ω < 2000Hz. Power law behaviour is observed in each plot on the inertial

range, and the corresponding scaling exponents ξθ(q) are estimated on this range by
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Figure 7.7: Arbitrary order Hilbert marginal spectrum Lq(ω), where q = 0, 1, 3, 4, 5
and 6. Power law behaviour is observed on the range 80 < ω < 2000Hz in all cases.
The corresponding scaling exponents ξθ(q) is shown in each figure.

a least square fitting algorithm. We compare the scaling exponents ξθ(q) − 1 (#),

ζθ(q) from structure function (♦), the value ζθ(q) complied by Schmitt (2005) (� with

error bar) with the theoretical value q/3 (solid line) in Fig. 7.8. The inset shows the

scaling exponents departure from the theoretical KOC value. The classical structure

function analysis method, as we will show in next section, it is strongly influenced

by the ramp-cliff structure. The scaling exponent is then estimated by a least square

fitting algorithm and by choosing the range case by case. The scaling exponent begins

to be saturated when q > 3. It is usually interpreted as an evidence that the passive

scalar field is more intermittent than the velocity field (Sreenivasan, 1991; Shraiman

& Siggia, 2000; Warhaft, 2000). Using the HSA approach, a more clear inertial range

holds for each plot, up to order 8. To compare with the velocity field, we plot the

ESS result ζ(q) (dashed line) for longitude velocity (Benzi et al., 1995) in the same

figure. We find that the scaling exponent ξ(q) is quite close to the ESS result for the
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Figure 7.8: Comparison of the scaling exponents, which are estimated by the HSA
ξθ(q)−1 (#), the structure functions ζθ(q) (♦), the value compiled by Schmitt (2005)
(� with error bar) and the theoretical value q/3 (solid line). We also show the ESS
result (dashed line) for longitudinal velocity (Benzi et al., 1995). The inset shows the
departure from the KOC theoretical value.

velocity, which may indicate that the scalar field is not so intermittent as what we

have believed before. This is obtained here for one database, and should be confirmed

using other database before a firm conclusion can be proposed.

7.4 Structure function analysis

As already noticed by several authors, for example, Antonia (Antonia et al., 1984),

Ruiz-Chavarria (Ruiz-Chavarria et al., 1996) and Warhaft (Warhaft, 2000), for scalar

turbulence, the scaling exponents of Fourier spectrum βθ is not consistent with the

second order structure function ζθ(2): the relation ζθ(2) = βθ − 1 is not verified.

This may be an effect of the ramp-cliff structure. Furthermore, it has been reported
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Figure 7.9: The structure function of temperature Sq(`), q = 1, 2, 3, 4. The inset
shows the corresponding compensated spectrum Sq(`)`ζ(q). Power law range decreases
with the order q, which may be interpreted as the effects of the ramp-cliff structure.

that the scalar spectrum has a larger scaling range than the velocity field at the

same Reλ (Jayesh & Warhaft, 1994; Gylfason & Warhaft, 2004). We have discussed

previously that, in case of possessing large energetic nonlinear structures, the Fourier

analysis needs high order harmonic components. Thus, both the inertial range and

the scaling exponents may be contaminated by the ramp-cliff structure.

Figure 7.9 shows the first fourth order structure functions, where the insect shows

the corresponding compensated spectrum by taking the estimated scaling exponent

ζθ(q). Due to the effect of the ramp-cliff structure, the inertial range decreases with

the order q. When q > 4, there is no clear power law any more. It is believed that the

structure function itself is then dominated by the ramp-cliff structure for high order

structure function (Gylfason & Warhaft, 2004).
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7.5 Summary

In this chapter, we applied the EMD and arbitrary order Hilbert spectral analysis to a

temperature from a jet experiment. The data have very strong ramp-cliff structures,

which have been considered as an important signature of passive turbulence. We find

that the EMD algorithm acts a filter bank. Due to the effect of ramp-cliff structure,

it deviates from a dyadic filter bank, which have been obtained previously using

stochastic simulations of Gaussian noise, fractional Gaussian noise (fGn) and the

fully developed turbulence velocity (Wu & Huang, 2004; Flandrin & Gonçalvès, 2004;

Huang et al., 2008).

We then considered the intermittency property of these data. It is found that the

scaling exponent ξθ(q) provided by the Hilbert-based methodology is quite close to

the ESS-based scaling exponent ζ(q) of the longitudinal velocity. Due to the very

local ability of the Hilbert-based approach and the intrawave frequency modulation

mechanism of the nonlinear process, the present method does not require high order

harmonic components to mimic the ramp-cliff structure. Thus, the scalar turbulence

may be not so intermittent as what we believed before. We should reconsider the

role of the ramp-cliff structure in this framework. These results need to be confirmed

using other passive scalar databases. This will be done in future work.
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Chapter 8

Extended Self-Similarity and
Hierarchy Model

During the last 2 or 3 decades, to extract the scaling exponents ζ(q) from various

turbulent flows became a quite general approach in turbulent research (Anselmet

et al., 1984; Antonia et al., 1984; Benzi et al., 1993a; Frisch, 1995; Arneodo et al.,

1996; Sreenivasan & Antonia, 1997). One interesting improvement methodology is the

so-called Extended-Self Similarity (ESS), which was proposed by Benzi et al. (1993a,b,

1995). It is believed that the ESS approach provides a more accuracy estimation of

the scaling exponents ζ(q) and extends the power law range (Benzi et al., 1993a). In

this chapter, we will adapt the ESS idea into the Hilbert frame.

We recall Benzi’s ESS theory here. According to Kolmogorov’s refined similarity

hypothesis (Kolmogorov, 1962; Frisch, 1995), the statistical properties of small scales

are uniquely determined by the local energy dissipation rate εr and the scale r, where

εr(x, t) =
6

πr3

∫

|r′|<r/2
ε(x+ r′, t) dr′ (8.0.1)

where r/2 is radius of the sphere. The qth order structure function is written

Sq(r) = 〈|u(x+ r)− u(x)|q〉 ∼ 〈εq/3r 〉r
q/3 (8.0.2)

147
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where 〈 〉 is ensemble average. If the local energy dissipation rate εr itself has scaling

law

〈εqr〉 ∼ rK(q) (8.0.3)

where K(0) = 0. It then follows

ζ(q) = q/3−K(q/3) (8.0.4)

The above equation connects the scaling exponents ζ(q) with the scaling intermittency

of the dissipation since the mean dissipation is assumed to be conserved, 〈ε`〉 = ε. So

that K(1) = 0 and ζ(3) = 1. This can be also obtained from the Kolmogorov (1941c)

equation, for r � η (η ≡ ν3/4ε−1/4 is Kolmogorov scale), one has

S3(r) = −
4

5
εr (8.0.5)

This is the famous Kolmogorov Four-Fifths law (Kolmogorov, 1941c; Monin & Ya-

glom, 1971; Frisch, 1995), which is the only one exactly statistical solution of Navier-

Stokes equation for turbulence. It confirms the relation K(1) = 0 and ζ(3) = 1, which

means that the third order structure function S3(r) is free from the intermittency cor-

rection. Benzi et al. (1993a) suggested to plot Sq(r) vs S3(r) instead of Sq(r) vs r in

structure function analysis, which reads

Sq(r) ∼ S3(r)ζ
?(q) (8.0.6)

Since S3(r) is proportional to r, the scaling exponent ζ?(q) is supposed to be the

same as ζ(q). It has been found that ESS is valid not only for high Reynolds number

turbulent flows but also for moderate Reynolds numbers, even when there is no clear

inertial range (Benzi et al., 1993a,b, 1995). The method was therefore extensively used

in turbulence research and even in other fields such as natural science or finance. In

the next section we consider this approach in the Hilbert spectral analysis framework.
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8.1 Extended-Self similarity

Considering the Kolmogorov refined similarity hypothesis, we have the following re-

lation for the arbitrary order Hilbert spectra in the Hilbert frame

Lq(ω) ∼ 〈ε
q/3
r 〉ω

−(1+q/3) (8.1.1)

where q ≥ 0. We have here two special cases q = 01 and q = 3, which are free from

intermittency effect. Following the ESS idea of Benzi et al. (1993a,b), we link the

arbitrary order Hilbert spectrum Lq(ω) with these two special cases

Lq(ω) ∼ (Lp(ω))
ξp(q)/ξ(p) (8.1.2)

where p = 0 or p = 3. We denote ξ0(q) and ξ3(q) the corresponding scaling exponents.

Figure 8.1 shows a test of the ESS of the case p = 0 for various q on the range 10 <

ω < 6000Hz. The vertical dashed line illustrates the inertial range 10 < ω < 1000Hz.

A power law behaviour is observed in each plot on the inertial range , and the scaling

exponents ξ0(q) is estimated on this range by using a least square fitting algorithm

on the inertial range. Figure 8.2 shows the case p = 3, where the vertical dashed line

demonstrates the inertial range 10 < ω < 1000Hz, and the thick solid line indicates

the location ω = 3000Hz. It seems that, except the zeroth order Hilbert marginal

spectrum, the power law range extends as expected. We take the L7(ω) as example:

the scaling range extends to ω = 3000Hz. This is similar with the observations

done for the traditional ESS (Benzi et al., 1993b, 1995). The corresponding scaling

exponent ξ3(q) is then estimated on the range 10 < ω < 3000Hz.

1As mentioned in chapter 3, the zeroth order Hilbert marginal spectrum is the marginal pdf of
the instantaneous frequency. We have found the general property that such marginal pdf itself has
a power law behaviour, and the corresponding scaling exponent ξ(0) is close to 1, which is rather
natural since it corresponds to ζ(0) = 0.
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Figure 8.1: A test of Extended Self-Similarity of arbitrary order Hilbert spectra Lq(ω)
V.S. L0(ω) for the longitudinal velocity, q = 0, 1, 2, 3, 4, 5, 6 and 7 on the range
10 < ω < 6000Hz. The dashed line indicates the inertial range 10 < ω < 1000Hz.
The scaling exponent ξ(q) is then estimated on this range.

We then compare the scaling exponents ξ(q) in Fig. 8.3 for different estimators2,

HSA result ξ(q) − 1 (×), Hilbert-based ESS ξ0(q) − 1 (�) and ξ3(q) − 1 (C), ζ(q)

(dashed line) provided by the traditional ESS (Benzi et al., 1995), and the K41

prediction (solid line), see also Tab. 8.1. The inset shows the departure from the K41

q/3 law. The scaling exponents ξ0(q) and ξ3(q) are in good agreement with ζ(q) when

q ≤ 4. When q < 4, the Hilbert-based estimators display a larger scaling exponents

than the structure function based ESS ζ(q).

For comparison, we consider the log-Lévy model and the log-normal model here (Frisch,

1995; Schertzer et al., 1997). The log-Lévy model (Schertzer & Lovejoy, 1987; Kida,

1991; Schmitt et al., 1992; Schertzer et al., 1997) predicts a scaling exponent

ζ(q) = q/3−
C1

α− 1
[(q/3)α − q/3] (8.1.3)

where C1 is the codimension of the mean events (0 ≤ C1 ≤ d, where d is the dimension

2We do not apply here the structure function analysis on these database.
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Figure 8.2: A test of Extended Self-Similarity of arbitrary order Hilbert spectra Lq(ω)
V.S. L3(ω) for the longitudinal velocity, q = 0, 1, 2, 3, 4, 5, 6 and 7 on the range
10 < ω < 6000Hz, where the dash line indicates the inertial range 10 < ω < 1000Hz.
The vertical thick solid line indicates the location of 3000Hz. The scaling exponent
ξ(q) is then estimated on this range.

of the observation space), and α is the Lévy index, bounded between 0 and 2. We

fix α = 1.5 (Schertzer et al., 1997) and consider C1 as a free parameter. We fit

experimental data by a least square fitting algorithm. C1 is found to be 0.095 for

Hilbert-based ESS scaling exponent. The log-normal model predicts

ζ(q) =
q

3
−

μ

18

(
q2 − 3q

)
(8.1.4)

where μ is the so-called intermittency parameter (Frisch, 1995; Schertzer et al., 1997).

We take here μ as a free parameter. The μ is found to be 0.15, which is comparable

with 0.2, an estimation value provided by Anselmet et al. (1984). Graphically, both

of these two models with the present chosen parameter predict the same scaling

exponents.

As we have mentioned previously, the data we used here are generated by the

active-grid technique. The results presented here may be influenced by a lack of
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line) with μ = 0.15. The inset shows the departure from the K41 law.

isotropy, see chapter 6, we thus should check this ESS idea on more databases.

8.2 Hierarchy model

We have shown in chapter 6 that the skeleton As(ω) and its corresponding conditional

pdf pmax(ω) of the joint pdf p(ω,A) have a power law behaviour on the inertial range

10 < ω < 1000Hz, where ω is the instantaneous frequency and A is the amplitude.

This power law is written as

As(ω) ∼ ω−β1 , pmax(ω) ∼ ω−β2 (8.2.1)
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where β1 = 0.38±0.05 and β2 = 0.63±0.05, see Fig. 6.10. We also found dimensionally

that without intermittency we have

β1 =
1

3
, β2 =

2

3
(8.2.2)

see chapter 6. Following She and Lévêque’s hierarchy model (She & Lévêque, 1994),

we present a hierarchy model in the following.

A Weighted Function For Hilbert Marginal Spectra

We have shown previously that the joint pdf p(ω,A) is strongly peaked around As(ω),

see Fig. 6.12. The arbitrary order Hilbert marginal spectrum Lq(ω) can be rewritten

as

Lq(ω) = G(ω, q)pmax(ω)As(ω)
1+q (8.2.3)

where G(ω, q) is a weighted function. It may be determined by different distribution

functions for p(ω,A). For high Reynolds number turbulent flows, where the local

homogeneous and isotropy hypotheses hold, we assume that Eq. (8.2.1) is valid at

least on the inertial subrange. It indicates that

Lq(ω) ∼ G(ω, q)ω
−((1+q)β1+β2) (8.2.4)

For discussion convenience, we assume that the intermittency does not affect the

skeleton As(ω) and the corresponding conditional pdf pmax(ω).3 We then have

Lq(ω) ∼ G(ω, q)ω
−(1+q/3) (8.2.5)

For different distribution models of the joint pdf p(ω,A), the weight function G(ω, q)

may have different forms. It may be universal for high Reynolds turbulent flow. For

3Based on the observation of the joint pdf p(ω,A), the intermittency does influence on As(ω)
and pmax(ω), see Fig. 6.10.
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example, if G(ω, q) is independent from ω and q, Eq. (8.2.5) then one recovers the

K41 prediction.

The weighted function G(ω, q) may be determined by considering the compensated

arbitrary order Hilbert marginal spectrum

G(ω, q) ∼ Lq(ω)ω
1+q/3 ∼ ω−Λ(q) (8.2.6)

Thus Λ(q) measures the departure from the K41 theory. This finally give

Λ(q) = ξ(q)− (1 +
q

3
) (8.2.7)

According to Kolmogorov’s 1962 refined similarity hypothesis (Kolmogorov, 1962),

we have Λ(0) = Λ(3) = 0, which means they are free with the intermittency effect.

A Hierarchical Model

Following the hierarchical model idea of She & Lévêque (1994), we define a hierarchical

spectral function L(q)(ω) by the ratio of two successive arbitrary order Hilbert spectra

L(q)(ω) =

∫
p(ω,A)Aq+1 dA
∫
p(ω,A)Aq dA

=

∫
Qq(ω,A)A dA (8.2.8)

where q ≥ 0, and Qq(ω,A) = p(ω,A)Aq+1/
∫
p(ω,A)Aq dA is weighted pdf for which

L(q)(ω) is a mathematical expectation. Similar with ε(q)r = < εq+1r >/< εqr >, when

q → ∞, L(∞)(ω) measures the most intermittent structures (She & Lévêque, 1994).

We then expect that the power law behaviour holds at least in the inertial range

L(q)(ω) ∼ ω−Π(q) (8.2.9)

where

Π(q) = ξ(q + 1)− ξ(q) (8.2.10)
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Figure 8.4: Representation of the hierarchical spectral function L(q)(ω), where q =0
(O), 1 (+), 2 (�), 3 (×), 4 (♦), 5 (4), 6 (#) and 7 (C). A power law behaviour is
observed in the inertial range 10 < ω < 1000Hz, which is indicated by the vertical
dashed line. The solid line demonstrates the Kolmogorov value 1/3.

The dimensional consideration indicates for the non-intermittency case

[L(q)] = [A], Π(q) =
1

3
(8.2.11)

Figure 8.4 shows the hierarchical spectral function L(q)(ω) for various q = 0 (O),

1 (+), 2 (�), 3 (×), 4 (♦), 5 (4), 6 (#) and 7 (C). The solid line indicates the

Kolmogorov value 1/3 for the nonintermittent case, and the vertical dashed line il-

lustrates the inertial range 10 < ω < 1000Hz. A power law behaviour is observed on

this inertial range for all curves. The slope shows departure from the nonintermittent

value when q is increasing. We estimate the scaling exponent Π(q) on the inertial

range. The corresponding scaling value Π(q) (#) is shown in Fig. 8.5, where the hor-

izontal thick solid line indicates the Kolmogorov value 1/3. For comparison, we also

show the corresponding Π(q) estimated from the Hilbert-based ESS ξ3(q) (�), the
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Figure 8.5: Representation of the scaling exponents Π(q) (#) for the hierarchical
spectral function L(q)(ω). The horizontal thick line indicates Kolmogorov value 1/3.
The corresponding scaling exponent Π(q) is estimated on the inertial subrange 10 <
ω < 1000Hz. For comparison, we also show the corresponding scaling exponents
from ξ3(q) (�), σ(q) (♦), the log-Lévy model with C1 = 0.07, α = 1.5 (dashed-dotted
line), log-normal model with μ = 0.11 (dashed line) and SL model (solid line). The
inset shows the relative error from Π(q).

Hilbert-based generalized ESS σ(q) (♦) (see below), log-Lévy model with C1 = 0.07

and α = 1.5 (dashed-dotted line), log-normal model with μ = 0.11 (dashed line)4 and

SL model (thin solid line). The relative error from the direct estimated Π(q) is shown

as inset. The estimated Π(q) decreases linearly with q with the same 0.015 obtained

graphically. In this case, only log-normal model provides a linear prediction of Π(q).

Based on this observation, the log-normal model with such chosen parameter seems

to give the best fitting among these three models.

4The parameters we choose here is based on the Hilbert-based ESS ξ3(q). This means that we
fit ξ3(q)-based Π(q) to determine the parameters C1 and μ.
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8.3 Generalized Extended-Self similarity

Following the idea of generalized extended self-similarity of Benzi et al. (1996), let us

introduce a dimensionless arbitrary order Hilbert marginal spectrum

Zq(ω) =
Lq(ω)
L3(ω)q/3

∼ ω−σ(q) (8.3.1)

in which

σ(q) = ξ(q)−
ξ(3)q

3
(8.3.2)

where ξ(q) is the scaling exponent. We expect that the dimensionless arbitrary order

Hilbert marginal spectrum Zq(ω) itself has power law behaviour. We postulate a

Generalized Extended-Self Similarity (GESS) (Benzi et al., 1996), which is written as

Zq(ω) ∼ (Zp(ω))
ρ(q,p) (8.3.3)

By the definition we have

ρ(q, p) =
σ(q)

σ(p)
, p 6= 3 (8.3.4)

Figure 8.6 shows the dimensionless arbitrary order Hilbert marginal spectrum

Zq(ω) for various q, 0 (#), 2 (�), 4 (M), 6 (♦), 8 (C), 10 (B). The vertical dashed

line demonstrates the inertial subrange 10 < ω < 1000Hz. A power law behaviour is

observed in each representation. We estimate the corresponding σ(q) on the inertial

range by using a least square fitting algorithm. The scaling exponent σ(q) (#) is

shown in Fig. 8.7. For comparison, we also show the corresponding scaling value in

the same figure, provided by the Hilbert-based ESS ξ3(q) (C), the log-Lévy model

with C1 = 0.07 and α = 1.5 (dashed line), the log-normal model with μ = 0.11

(dashed-dotted line) and the SL model (solid line). The inset shows the relative

error from σ(q). The Hilbert-based ESS predicts almost the same value σ(q) as the
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Figure 8.6: Representation of the dimensionless arbitrary order Hilbert marginal
spectra function Zq(ω), where q = 0 (#), 2 (�), 4 (4), 6 (♦), 8 (C) and 10 (B).
The vertical dashed line demonstrates the inertial subrange 10 < ω < 1000Hz. The
dashed line is the least square fitting on the inertial range.

dimensionless arbitrary order Hilbert marginal spectrum Zq(ω). We also note that

the log-normal model with the parameter μ = 0.11 gives the best fit of σ(q).

We represent the dimensionless arbitrary order Hilbert marginal spectrum Zq(ω)

vs Zp(ω) on the range 10 < ω < 7000Hz in Fig. 8.8 for various p (a) p = 0, (b)

p = 1, (c) p = 2 and (d) p = 4, where q = 0 (#), 2 (�), 4 (4), 6 (♦), 8 (B) and

10 (O). The vertical dashed line indicates the inertial subrange 10 < ω < 1000Hz.

A power law behaviour is observed as expected in all cases. The power law range is

also extended as expected, which may depend on each case. However, we estimate

the scaling exponent ρ(q, p) on the inertial subrange by using a least square fitting.

Figure 8.9 shows the corresponding ρ(q, p) for various p, 0 (M), 1 (#), 2 (�), 4 (♦) and

5 (C). We compare the experimental result with (a) the SL model, (b) the log-Lévy

model with C1 = 0.07 and α = 1.5, and (c) the log-normal model with μ = 0.11. We
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Figure 8.7: Representation of the scaling exponent σ(q) (#), where q goes from 0
to 10. For comparison, we also show the corresponding scaling exponent estimated
from the Hilbert-based ESS ξ3(q) (C), the log-Lévy model with C1 = 0.07, α = 1.5
(dashed line), the log-normal model with μ = 0.11 (dashed-dotted line) and the SL
model (solid line). The inset shows the relative error from σ(q).

show the relative error in the right part of these figures. For each model, the relative

error have a similar shape and is parallel with each other. We also note that the

log-normal model with present choice of μ has smaller relative error.

Figure 8.10 shows Zq v.s. Zq−1 for various q (1, 5, 8 and 10) on the range 10 <

ω < 7000Hz. A power law behaviour holds on this range for each plot, which is

significant larger than the inertial range 10 < ω < 1000Hz. We still estimate the

scaling exponent ρ(q, q − 1) on the inertial range. The estimated ρ(q, q − 1) (�) are

shown in Fig. 8.11. For comparison, the log-Lévy model with C1 = 0.07 and α = 1.5

(dashed-dotted line), log-normal model with μ = 0.11 (dashed line) and the SL model

(solid line) are also shown. The inset shows the relative error from experimental value

ρ(q, q − 1). There is no significant different among these three models. However, it
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Figure 8.8: Representation of GESS Zq(ω) vs Zp(ω) for various p (a) p = 0, (b) p = 1,
(c) p = 2 and (d) p = 4, where q = 0 (#), 2 (�), 4 (4), 6 (♦), 8 (B) and 10 (O).
The vertical dashed line demonstrates the inertial subrange 10 < ω < 1000Hz. The
dashed line is the least square fitting on inertial range.

seems that the log-normal model with present parameter provides the smallest relative

error.

Considering Eq. (8.2.7) and Eq. (8.3.2), we may link σ(q) and ρ(q, p) to the scaling

exponent ξ(q), which is written as

ξ(q) =
2q

3
+ σ(q) (8.3.5a)

and

ξ(q) =
2q

3
+ ρ(q, p)σ(p), p 6= 3 (8.3.5b)

A potential application of ρ(q, q−1) is to estimate ξ(q) for high order q, if the quantity
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Figure 8.9: Representation of the scaling ratio ρ(q, p) of GESS, where q goes from 0
to 10, p = 0 (M), 1 (#), 2 (�), 4 (♦) and 5 (C). For comparison, we present three
different model, (a) SL model, (b) log-Lévy model, and (c) log-normal model. The
right part shows the relative error.

of the data is available. One may estimate σ(q) and ξ(q) by the following formula

σ(q) =

q∏

i=5

ρ(i, i− 1)σ(4), q ≥ 5 (8.3.6)

and

ξ(q) =
2q

3
+

q∏

i=5

ρ(i, i− 1)σ(4), q ≥ 5 (8.3.7)

We show the estimated ζ(q) (corresponding to ξ(q) − 1) in Fig. 8.12, based on

σ(q) (dashed-dotted line), ρ(q, p) (♦)5 and Hilbert-based ESS (C). For comparison,

we show the log-normal model with two different intermittency parameter μ = 0.11

(dashed-dotted line) fitting for σ(q) and μ = 0.15 (dashed line) fitting for ξ(q) − 1

5Here different p gives almost the same ξ(q). Therefore, we only present the mean value of them,
which is denoted as ρ(q, p).
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Figure 8.10: Representation of the GESS Z(q) vs Z(q−1) on the range 10 < ω <
7000Hz, where q = 1, 5, 8 and 10. Power law is observed in all cases.

from Hilbert-based ESS ξ0(q) and ξ3(q). The SL model is shown in the same picture

as thin solid line. The GESS scaling exponent is quite close to the Hilbert-based ESS

one, and significantly larger than SL model when q is greater than 5. We reproduce

these scaling exponents from different approaches in Tab. 8.1.

Taking Benzi’s ESS result (Benzi et al., 1993a,b; Arneodo et al., 1996) as a ref-

erence line, we show in Fig. 8.13 the absolute error and relative error from ζ(q) for

different estimators ξ(q) (B), ξ0(q) (�), ξ3(q) (♦), Π(q) (#), σ(q) (C) and ρ(q, p)

(4). One can find that the relative error is decreasing with q when q ≤ 4. When

q ≥ 4, the relative error is then increasing with q. However, the relative error is less

than 10% when 2 ≤ q ≤ 8.
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Figure 8.11: Representation of the scaling exponent ratio ρ(q, q− 1) from GESS (�),
where q goes from 0 to 10. For comparison, log-Lévy model with C1 = 0.07 and
α = 1.5 (dashed-dotted line), log-normal model with μ = 0.11 (dashed line) and SL
model (solid line) are also presented. The inset shows the relative error.

8.4 Summary

In this chapter, we extended Benzi’s idea of Extended Self-Similarity into the Hilbert

frame. According to Kolmogorov’s refined similarity hypothesis (Kolmogorov, 1962;

Monin & Yaglom, 1971; Frisch, 1995), we have two special cases, L0(ω) and L3(ω),

which are free from the intermittency effect. We therefore use L0(ω) and L3(ω) to

define the so-called ESS. They provide almost the same scaling exponents ξ(q), which

are slightly larger than SL model for high order q. We then proposed a hierarchy

model by defining a hierarchical spectral function. The scaling exponent Π(q) of

the hierarchical spectral function decreases linearly with q. We finally presented a

generalized ESS by considering a dimensionless arbitrary order Hilbert spectrum. The

scaling exponents provided by the dimensionless spectrum and the GESS are in good

agreement with each other.
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Table 8.1: Scaling exponents ζ(q) from different approaches: the ESS ζ(q) (Benzi
et al., 1996), the Hilbert-based ξ(q)− 1 (Eq. (3.1.3)), the Hilbert-based ESS ξ0(q)− 1
(Eq. (8.1.2)), the Hilbert-based ESS ξ3(q)− 1 (Eq. (8.1.2)), the dimensionless Hilbert
spectrum σ(q) (Eq. (8.3.5a)) and the GESS ρ(q, p) (Eq. (8.3.5b)).

q ζ(q) ξ(q)− 1 ξ0(q)− 1 ξ3(q)− 1 σ(q) ρ(q, p)
0 0.00 -0.03 0.00 0.00 -0.03 -0.03
1 0.37 0.32 0.34 0.35 0.33 0.33
2 0.70 0.65 0.67 0.68 0.67 0.67
3 1.00 0.97 0.98 1.00 1.00 1.00
4 1.28 1.27 1.28 1.30 1.32 1.32
5 1.54 1.56 1.56 1.59 1.62 1.62
6 1.78 1.83 1.83 1.86 1.91 1.91
7 2.00 2.09 2.11 2.18 2.18
8 2.23 2.32 2.35 2.44 2.43
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Chapter 9

Analysis of River Flow
Fluctuations

A better understanding of river flow fluctuations is of sharp practical importance,

e.g. for ecosystem studies (transport properties), and for flood understanding and

forecasting. River flows fluctuate on many different scales: at small scales, river

turbulence induces stochastic fluctuations and at larger scales (from days to years) the

river flow fluctuations are the result of complex nonlinear interactions between rainfall

processes, topography and geography (Schumm, 2005). They are also impacted by

solar forcing and other large scale variations of the climate system (Mauas et al., 2008).

Daily river flow time series thus show fluctuations possessing stochastic properties,

as well as deterministic forcing resulting from seasonal or annual meteorological and

climatic cycles.

In this chapter, we apply the empirical mode decomposition (EMD) and the arbi-

trary order Hilbert spectral analysis (HSA) on river flow discharge fluctuations data.

to characterize the scale invariant properties of small scale in amplitude-frequency

space. The results presented in this chapter are published in Huang et al. (2009b)[Y.

Huang, et al.J. Hydrol., 373, 103-111, 2009.].
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9.1 Introduction

Since Hurst (1951) revealed the long-range dependent properties in river flow, asso-

ciated to scaling properties, researchers have tried different methods to characterize

the (multi)scaling properties in river flows (Hurst et al., 1965; Tessier et al., 1996;

Pandey et al., 1998; Jánosi & Gallas, 1999; Kantelhardt et al., 2003, 2006; Livina

et al., 2003b,a; Koscielny-Bunde et al., 2006; Mauas et al., 2008). Below we quickly

review the approaches undertaken in these studies.

Tessier et al. (1996) analyzed the relation between rainfall and river flow of 30

rivers and basins in France. They used the double trace moment technique to charac-

terize the multifractal properties. They found that a scaling break occurs at a scale

about 16 days. They argued that the rain field itself is the source of the river flow,

therefore typical scales in the rain field will also be present in the river flow.

Dahlstedt & Jensen (2005) investigated the Danube and the Mississippi river flows

and levels by using finite-size-scaling hypothesis (Aji & Goldenfeld, 2001). They

considered the river flow basin size L from different locations. They characterized the

multiscaling properties of river flow and level records by considering the relative and

general relative scaling (or Extended-Self-Similarity and Generalized Extended-Self-

Similarity in the turbulent community). They found that the Fourier spectrum may

be different from location to location due to the size effect of the basin area.

More recently, several authors applied the so-called detrended fluctuation analysis

(DFA) and its multifractal version to describe the scaling and multiscaling properties

of river flows (Kantelhardt et al., 2003; Livina et al., 2003b,b; Kantelhardt et al., 2006;

Koscielny-Bunde et al., 2006; Livina et al., 2007; Zhang et al., 2008, 2009). Livina

et al. (2003a,b) argued that the climate is strongly forced by the periodic variations
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of the Earth with respect to the state of the solar system. The seasonal variations in

the solar radiation cause periodic changes in temperature and precipitations, which

eventually lead to a seasonal periodicity of river flows. The Fourier and structure

function analyses are impacted by this strong periodicity (Livina et al., 2003a,b;

Kantelhardt et al., 2003; Koscielny-Bunde et al., 2006). According to these authors,

the DFA approach is an efficient method to eliminate the trend effects.

Koscielny-Bunde et al. (2006) found that the Hurst number H varies from river

to river between 0.55 ∼ 0.95 in a non-universal manner independent of the size of the

basin. They found that at large time scales, Fq(s) scales as s
h(q), and they further

proposed a simple function form with two parameters a and b, h(q) = 1/q − [ln aq +

bq]/[q ln(2)] to describe the scaling exponent h(q) of all moments (Kantelhardt et al.,

2003). Kantelhardt et al. (2006) also found that the Hurst number H estimated

from 99 precipitation and 42 river runoff records data are not consistent with the

hypothesis that the scaling is universal with an exponent close to 0.75 (Hurst et al.,

1965; Peters et al., 2002).

9.2 Seine River and Wimereux River

The Seine river is the third largest river in France. Its length is 776 km, and its basin

is 78650 km2. It is economically important for France, with 25% of its population as

well as 40% of its industry and agriculture concentrated in and around it (Dauvin,

2007). The flow data is provided by the Service de Navigation de la Seine (SNS). This

corresponds to daily flow data Q (m3s−1), recorded from 1 January 1976 to 28 April

2008. There are 11828 data values, with some missing values due to interruptions for

maintenance or because of the failure of measuring devices. Due to the local ability
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Figure 9.1: The river flow discharge time series of (a) Seine River, recorded from 1
January 1976 to 28 April 2008, (b) Wimereux river, recorded from 1 January 1981 to
27 May 2006. The data illustrate clear strong annual cycles with huge fluctuations.
The total lengths are 11828 and 9278 data points for the Seine river and the Wimereux
river, respectively.

of HSA approach, which is performed through spline interpolation, the missing values

in the time series do not change the results, since the method can be applied even

for irregular sampling. The data are shown in Fig. 9.1 (a), demonstrating some large

fluctuations at all scales. The mean and standard deviation of the discharge are

488m3s−1 and 349m3s−1, respectively. This figure shows a complex and stochastic

behavior, with a visible strong annual cycle.

The Wimereux river is a small river in the North of France1. Its length is 22 km,

and its basin is 78 km2. It can have strong fluctuations due to fast increase of the

flow in case of heavy rain. The daily flow discharge is recorded from 1 January 1981

1The Wimereux river is the local river in Wimereux city, the coastal host city of the laboratory
of Oceanology and Geosciences.
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Figure 9.2: A map showing the location of the Seine river and the Wimereux river,
in the eastern English Channel. The distance between them is about 300 km.

to 27 May 2006, with a total length of 9278 points values with some missing, see

Fig. 9.1 (b). The mean and standard deviation of the discharge data are 1.02m3s−1

and 1.73m3s−1.

Figure 9.2 shows the location of these two rivers, where the Seine river is repre-

sented as a solid line. The Wimereux river is too small to be displayed in the same

figure. The difference between these two rivers is clear: the Seine river is a real big

one, and the Wimereux river is much smaller and strongly influenced by the local

rainfall conditions. The distance between them is about 300 km, see Fig. 9.2. Both of

them are affected by the same large scale climatic factors and belong to the marine

west coast climate of Northern France. This climate is found on the west coast of

middle latitude regions and can be quite humid. Indeed it is subject to western wind
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bringing important variability and intermittent clouds, important precipitation and

temperate temperatures. The direct estimation of the cross correlation between these

two recorded data is about 0.256, a value that may be contaminated by the small

scale fluctuations. We will apply to these two data sets by the EMD method in the

following section.

9.3 EMD Results

After the application of the EMD method, the original data are separated into several

IMF modes. We then represent the IMF modes in Fig. 9.3 and Fig. 9.4 for the Seine

river and the Wimereux river, respectively. For display convenience, we exclude the

residual for the Seine river. Graphically, one can see that the characteristic scale

is increasing with the mode index n. Let us note that the number of IMF modes

is produced by the algorithm and depends on the length and the complexity of the

data. In practice, based on the dyadic filter bank property of the EMD method, this

number is usually less than log2(N), where N is the length of the data (Flandrin &

Gonçalvès, 2004; Flandrin et al., 2004; Wu & Huang, 2004; Huang et al., 2008). First,

we estimate the mean frequency ω of each IMF mode. We use the following three

definitions of mean frequency ω. The first one was proposed by Huang et al. (1998),

which is written as

ωi =

∫∞
0
fSi(f) df∫∞

0
Si(f) df

(9.3.1)

where Si(f) is Fourier spectrum of Ci. It is an energy weighted average in Fourier

space. The second one was given by Flandrin (Flandrin et al., 2004; Flandrin &
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Figure 9.3: IMF modes (excluding the residual) from EMD for the Seine river. Here
the data are taken from 1 January 1976 to 28 April 2008. The characteristic scale is
increasing with the mode index number n.

Gonçalvès, 2004), and is written as

ωi =
N0 − 1
L0

(9.3.2)

where N0 is the zero-crossing number, and L0 is the distance between the first and

last zero-crossing. The third one is introduced here for the first time, and is defined

Table 9.1: The mean period (in days) of each IMF mode (excluding the residual)
of the Seine river and the Wimereux river, respectively. Here the mean period is
estimated as T = 1/ω, where ω is calculated by Eq. (9.3.1). The 8th and 9th IMF
modes of the Seine river and Wimereux river, respectively, are close to the annual
cycle.

1 2 3 4 5 6 7 8 9 10 11 12 13
Seine 3 8 19 33 55 86 185 358 452 869 1823 5551
Wimereux 5 9 16 25 36 58 103 182 376 574 2149 2785 3125
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Figure 9.4: IMF modes from EMD for Wimereux river. Here the data are taken from
1 January 1981 to 27 May 2006.

as

ωi =

∫∞
0
ωhi(ω) dω∫∞

0
hi(ω) dω

(9.3.3)

where hi(ω) is the Hilbert marginal spectrum for the i
th mode. This definition is

similar to the first one: it is an energy weighted measurement of the mean frequency

in Hilbert space. We then represent the mean frequency ω estimated by these three

definitions Eq. (9.3.1) (#), (9.3.2) (�) and (9.3.3) (×) for each mode in Fig. 9.5 for

(a) the Seine river, and (b) the Wimereux river. One can see that the two energy

weighted estimators give almost the same mean frequency. However, they are slightly

smaller than the zero-crossing based estimator. Graphically, all these three estimators

suggest the following exponential law

ω(n) ∼ γ−n (9.3.4)
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Figure 9.5: Representation of the mean frequency ω vs the mode index n in log-linear
view: (a) Seine river, (b) Wimereux river, where the mean frequency ω are estimated
by using Eqs. (9.3.1) (#), (9.3.2) (�) and (9.3.3) (×), respectively. An exponential
law is observed for each representation. The straight line is the least square fit of the
data.

where γs ' 1.88, γw ' 1.62 are estimated by using the least square fitting for the

Seine river and the Wimereux river, respectively. This result implies that the mean

frequency of a given mode is γ times larger than the mean frequency of next one. We

notice that these values are significantly different from 2, which would correspond to a

dyadic filter bank, which are reported for white noise (Wu & Huang, 2004), fractional

Gaussian noise (Flandrin et al., 2004; Flandrin & Gonçalvès, 2004) and turbulence

time series (Huang et al., 2008). However, it still indicates that the EMD algorithm

acts a filter bank here.

We list the mean period T (in days) in Table 9.1, where T = 1/ω. Since the

three above mentioned mean frequency estimators give almost the same value, we

thus only present the value estimated by Eq. (9.3.1). One can find that the EMD

approach captures the annual cycle, which is the 8th and 9th mode for the Seine river

and Wimereux river, respectively. Both rivers belong to the same climate and it is

expected that large scale modes are correlated. However, the data at daily scale are

not (the cross-correlation at this scale is 0.256); this is due to the influence of small
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2006 for both series. For convenience, we consider the coefficient value log10(ρws(i, j)).
As expected, the annual cycle shows a strong correlation with a coefficient ρws(9, 8) =
0.426. The coefficient of the most correlated modes is ρws(11, 11) = 0.579. These two
strong correlations are then marked by �.

scales. The cross-correlation between two IMF modes is defined as

ρws(i, j) =
〈Cw,iCs,j〉

〈C2w,i〉1/2〈C
2
w,i〉1/2

(9.3.5)

where 〈∙〉 means ensemble average. The corresponding cross-correlation ρws(i, j) is

then plotted in Fig. 9.6, where the most correlated modes are marked by �. The

large scale modes are correlated as expected. More precisely, we observe a larger

cross-correlation between the annual cycle modes, ρws(9, 8) = 0.426, and the most

correlation coefficient is ρws(11, 11) = 0.579, with mean periods of about 6 and 8

years for the Seine river and the Wimereux river, respectively.

We then replot the annual cycle for the Seine river (thin solid line) and Wimereux

river (thick solid line) in Fig. 9.7 (a). One can find that their shapes are almost the
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Figure 9.7: Most correlated IMF modes: (a) the annual cycle mode for the Seine
river (thin solid line) and the Wimereux river (thick solid line), (b) the reconstruction
of the large scale part for the Seine river (thin solid line) and the Wimereux river
(thick solid line). We took the IMF modes 11 ∼ 12 from the Seine river and 11 ∼ 13
from the Wimereux river, which means periods larger than 3 years, to reconstruct the
large scale part. Graphically, they have the same evolution trend on range 1 January
1981 to 28 May 2006.

same on the range from 1 January 1981 to 28 May 2006. We also reconstruct the

large scale signal from those modes, with mean period larger than 3 years, 11th and

12th from the Seine river (thin solid line), and 11th to 13th from the Wimereux river

(thick solid line). The result is shown in Fig. 9.7 (b): they have almost the same

shape and evolution trend.

9.4 HSA Results

In order to characterize the intermittent properties of river flow fluctuations, we

consider here HSA and arbitrary order HSA analysis. We first compare the Hilbert
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Figure 9.8: Comparison of the Hilbert marginal spectrum (dashed line) and Fourier
spectrum (solid line) for (a) the Seine river, (b) the Wimereux river. For the Seine
river, a power law behaviour is observed on the range 6 < ω < 80 year−1 , or 4.5 ∼ 60
days: this range is marked by the vertical dashed lines. The scaling values are 2.54
and 2.45 for Hilbert spectrum and Fourier spectrum, respectively. The vertical solid
line indicates the annual cycle.

marginal spectrum (dashed line) and Fourier spectrum (solid line) in Fig. 9.8 for (a)

the Seine river, and (b) the Wimereux river to identify the power law range, where

the scale invariance holds. For the Seine river, both methods capture the annual cycle

(vertical solid line) and show power law behaviour on the range 6 < ω < 80 year−1 or

from 4.5 to 60 days, with scaling exponent 2.54 and 2.45, respectively. The power law

range is between synoptic and intraseasonal scales (Zhang, 2005). The latter may be

linked to the Madden-Julian Oscillation (MJO), since some connection between and

the North Atlantic Oscillation (NAO) and MJO have been found (Cassou, 2008). For

the Wimereux river, the power law range is less clear. We therefore only apply below

the arbitrary order HSA analysis on the Seine river.

Since we are concerned with the scaling property in the above range, we thus

divide the entire time series into 16 segments, each one has 2 × 365 points, 2 years

each. The arbitrary order Hilbert marginal spectra are shown in Fig. 9.9, for q = 0,
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Figure 9.9: Representation of arbitrary order Hilbert marginal amplitude spectra
Lq(ω) for the Seine river, where q = 0, 1, 3, 4, 5 and 6. A power law behaviour
is observed in all cases on the range 6 < ω < 80 year−1. The vertical dashed lines
indicate the power law range. The corresponding scaling values are shown in each
figure.

1, 3, 4, 5 and 6. Power law behaviour is then observed in all cases on the range

6 < ω < 80 year−1. The corresponding scaling exponents ξ(q) are estimated on this

range by using least square fitting with 95% confidence limit, Fig. 9.10 shows the

scaling exponents ξ(q) (#). This curve is concave, which indicates the multifractal

properties of the river flow discharge (Pandey et al., 1998; Kantelhardt et al., 2003,

2006). For comparison, we also show a reference line qH + 1 (solid line), where

H = ξ(1) − 1 = 0.84 ± 0.08, which corresponds to the mono-scaling case. The

departure from this reference mono-scaling line is then shown in inset.
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9.5 Discussion

We compare the above observation with the conventional structure function analysis,

the traditional way to extract the scaling exponents. We plot the result in Fig. 9.11,

where q = 1 (�), 2 (#) and 3 (♦), respectively. Some scaling portion are visible on

these figures, of a relatively limited amplitude. To reveal the scale invariance more

clearly, we consider the Extended Self-Similarity (ESS) properties, a relative scaling

expressed as (Benzi et al., 1993b)

〈Δxq〉 ∼ 〈Δx〉ψ(q) (9.5.1)

where in case of scaling, we have ζ(q) = Hψ(q). Eq. (9.5.1) can be used to estimate

more accurately the exponents ψ(q). The ESS is verified for the Seine river on range

2 < τ < 60 days, see Fig. 9.12. Figure 9.13 shows the ESS result for the Wimereux
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Figure 9.11: Structure function for (a) the Seine river, and (b) the Wimereux river,
where q = 1 (�), 2 (#) and 3 (♦). The vertical dashed lines indicate the range
4.5 ∼ 60 days. The annual cycle influence is also indicated by the solid line.

river. It is scaling and is rather scattered. We then show the relative scaling exponents

ψ(q) and the normalized scaling exponents (ξ(q)− 1)/(ξ(1)− 1) in Fig. 9.14. In the

mono-scaling case and when there is no large scale forcing, they should collapse on

a solid line ψ(q) = q. The same approach is applied to the Wimereux river. In

this case the HSA approach is not displaying any clear scaling range. We thus use

the ESS approach and compare the resulting curve ψ(q) to the one obtained from

the Seine river. The Wimereux river scaling exponents are saturating at ψ(q = 1),

and the curve is quite different from the Seine river. This shows that the Wimereux

river is more intermittent than the Seine river: which may come from the fact that its

catchment basin is much smaller, hence its discharge variation can be more rapid. This

may also be an effect of strong oscillations that reduce the multifractal degree (see

Telesca & Macchiato (2004); Bolzan et al. (2009)). It is also interesting to see in the

same graph the difference between the HSA based exponents and structure function’s

exponents for the Seine river. The discrepancy can be interpreted as coming from

the influence of the periodic component in the time series. Indeed we have shown
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Figure 9.12: Extended self-similarity test of the Seine river on range 2 < τ < 300
day. The relative scaling is very well captured for all moments.

in Huang et al. (2010a, 2009a), see also chapter 5, that the influence of periodic

components is stronger on structure function than on HSA exponents, which can be

linked to the fact that EMD acts a filter bank (Flandrin & Gonçalvès, 2004; Flandrin

et al., 2004; Huang et al., 2008; Wu & Huang, 2004). Periodic components tend to

increase the value of ζ(q) relative to the real theoretical curve.
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day.
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9.6 Summary

In this chapter we applied for the first time the EMD methodology to river flow time

series. Using daily river flow discharge data, 32 years recorded in the Seine river

(France), and 25 years recorded in the Wimereux river (France), we have shown that

the time series can be successfully separated into several IMF modes. Exponential

laws for the mean frequency of each mode have been found, with exponents γs = 1.88

and γw = 1.62 for the Seine river and the Wimereux river, respectively. These values

are smaller than 2, the value for dyadic filter bank. Even though, it still confirmed

that the EMD algorithm acts as a filter bank for river flow data. Furthermore, strong

cross-correlation have been observed between annual cycles and the large scale modes

having a mean period larger than 3 years. Based on the correlation analysis results,

we have found that the annual cycle mode and the reconstructed large scale part have
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almost the same evolution trends.

We have also characterized the intermittency of the time series over the ranges

showing scaling properties. For the Seine river, we observed power laws for the first

six order Hilbert marginal spectra on the range 6 < ω < 80 year−1 or 4.5∼60 days,

between synoptic and intraseasonal scales. The corresponding scaling exponents ξ(q)

indicate the small scale multifractal nature of the river flow data analyzed here.

The differences obtained using the structure functions approach and the frequency

based HSA approach have been emphasized, which is especially clear for large order

moments associated to the more active fluctuations. We have interpreted this differ-

ence as coming from the strong annual cycle which has more influence on structure

functions scaling exponents than on the Hilbert-based approach. We have also com-

pared the scaling exponents estimated from the ESS method, for the Seine river and

Wimereux river; the much smaller exponents obtained for the Wimereux river express

a higher degree of multifractality, which was interpreted as coming from the inertia

associated to the large scale basin for the Seine river, whereas small rivers such as

the Wimereux river may be more sensitive to local precipitation events.

Several previous studies have considered scaling properties of river flows using

other methods such as rescaled range analysis, trace moments, double trace moments,

wavelet analysis, multifractal detrended fluctuation analysis (MFDA). We applied

here a new method which gives results similar to the classical methods (structure

functions, wavelet analysis, MFDA) for fractional Brownian motion or pure multi-

fractal processes (Huang et al., 2009a), see also chapter 3. However, we have shown

in the same chapter that strong deterministic forcing had important influence on

classical methods, whereas the Hilbert-based approach was much more stable and
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presented less influence (Huang et al., 2010a, 2009a), see also chapter 3. This method

seems hence more appropriate for environmental time series that possess often strong

periodic components superposed to scaling regimes. The origin of this stability prop-

erty is the adaptative and local approach which is at the heart of the Hilbert-based

method.

We have compared here two rivers of very different size and catchment basin in

order to compare their scaling properties. One of the objectives of scaling analy-

ses of river flow time series is indeed to detect some differences among rivers, but

also to evaluate some universality, i.e. some general similarity in statistical proper-

ties. This was done for normalized pdfs (Dahlstedt & Jensen, 2005), for river flow

volatilities (Livina et al., 2003b,a), and for scaling regimes (Tessier et al., 1996) or

multifractal parameters (Pandey et al., 1998). We hope that the method presented

in this paper, which we claim to be well adapted to environmental time series, will

help this quest for universal properties of river flow scaling statistics.
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Chapter 10

Marine Turbulence in the Surf

Zone

One of the main properties of fully developed turbulence is its inertial range intermit-

tent properties, between a large-scale injection of energy and a small-scale dissipa-

tion (Frisch, 1995; Pope, 2000). In the surf zone, when waves break, the wave energy

is transferred into turbulent motions through a violent, highly energetic process asso-

ciated with breaking wave times scales, typically a few seconds, and then turbulence

is dissipated at smaller scales (Svendsen, 1987; Battjes, 1988; Svendsen, 2005). The

surf zone environment is a complex system: there are water turbulent motion at

different scales, breaking waves feeding turbulence at the surface, and residual tur-

bulence persisting from one wave to the next (Svendsen, 1987; Jaffe & Rubin, 1996).

This highly energetic system has a strong effect on sediment transport dynamics,

morphological changes associated with it, and shoreline evolution processes (Jaffe &

Rubin, 1996; Cox et al., 1996; Trowbridge & Elgar, 2001; Masselink & Russell, 2006;

Torres-Freyermuth et al., 2007), and also on ecological processes through influences

189
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on feeding, settlement, fertilization, bloom dynamics, etc. (Denny & Shibata, 1989;

Du Preez et al., 1990; Mead & Denny, 1995).

In the intertidal zone, transport models for either sediments or living organisms

need the description of surf zone velocity fluctuations. It is then important in this

context to be able to characterize these velocity fluctuations for a wide range of scales,

including highly energetic breaking waves scales and smaller turbulent scales. This

is not an easy task because of the unsteadiness of breaking waves: phase-average

methods are not straightforward since the wave forcing is not monochromatic; ocean

breaking waves are nonlinear and present random components.

We use here for this the Empirical Mode Decomposition method and the Hilbert

spectral analysis. It has already been applied to nonstationary ocean wave data (Hwang

et al., 2003; Veltcheva & Soares, 2004), but these studies focus on deep water ocean

waves, which are different from surf zone breaking waves. Here we consider experi-

mental turbulent velocity time series recorded in the surf zone. The results presented

in this chapter are published in Schmitt et al. (2009)[Schmitt, et al. J. Mar. Sys., 77,

473-481, 2009.]

10.1 Characterization of intermittency using cu-

mulants

Structure Functions and Cumulants

One of the characteristic features of fully developed turbulence is the intermittent

nature of velocity fluctuations (Frisch, 1995). Intermittency provides corrections to

Kolmogorov’s scaling law (Kolmogorov, 1941a), which are now well established and
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received considerable attention in the last twenty years. Let us recall how to quan-

tify intermittency effects on scaling laws for Eulerian isotropic turbulence. Denoting

ΔV` = V (x + `) − V (x) the longitudinal increments of the Eulerian velocity field at

a spatial scale `, their fluctuations are characterized, in the inertial range, using the

scale invariant moment function ζ(q)

〈|ΔV`|
q〉 = Aq`

ζ(q) (10.1.1)

where q > 0 is the order of moment and Aq is a constant that may depend on q.

Kolmogorov’s initial proposal, for a non-intermittent constant dissipation, leads to

ζ(q) = q/3 (Kolmogorov, 1941a). For intermittent turbulence, ζ(q) is proportional to

a cumulant generating function, and is nonlinear and concave; only the third order

moment has no intermittency correction: ζ(3) = 1. The accuracy of the scaling of

Eq. (10.1.1) is usually tested for each order of moment, for various values of ` in log-log

plot, using a least-square regression (Anselmet et al., 1984). The values of ζ(q) which

are then obtained may be compared and fitted to different multifractal models (among

many studies, see She & Lévêque (1994); Chen & Cao (1995); Arneodo et al. (1996);

Boratav (1997); Schertzer et al. (1997); van de Water & Herwijer (1999); Anselmet

et al. (2001)). This way of estimating ζ(q) depends on the choice of the scaling range:

one usually estimates ζ(q) for the range of scales where the exact relation ζ(3) = 1 is

verified, assuming that the scaling range is the same for each order of moment.

Here there is no large scaling range: we therefore consider another approach:

instead of studying the scale dependence for each moment, we focus on the moment

dependence using cumulants at a given scale. The cumulant approach has already

been undertaken in the scaling turbulence framework in a few studies (see e.g. Delour

et al. (2001); Eggers et al. (2001); Chevillard et al. (2005)), where the cumulants of
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the cascade process (Eggers et al., 2001) or a polynomial development of the cumulant

generating function (Delour et al., 2001; Chevillard et al., 2005) have been considered;

see also Ref. Venugopal et al. (2006) for an application to multifractal properties of

rainfall.

Non Analytical Cumulant Generating Functions

We consider here a random variable X. The cumulant generating function of its

generator g = log |X| is defined as (Gardiner, 2004)

Ψ(q) = log〈|X|q〉 (10.1.2)

The function Ψ(q) is also the second Laplace characteristic function of the generator:

Ψ(q) = log〈eqg〉. As a second characteristic function, it is convex (Feller, 1971), and

can be developed using the cumulants

Ψ(q) =
∞∑

p=1

cp
qp

p!
(10.1.3)

where cp is the p
th cumulant. Let us recall the expression for the first cumulant

c1 = 〈g〉 = 〈log |X|〉 (10.1.4)

We also know that c2 = 〈g2〉 − c21, and cn depends on all moments 〈g
p〉 (1 ≤ p ≤ n).

The theorem of Marcienkiewicz states that, if it exists, the development in Eq. (10.1.3)

is either infinite, or if finite, of degree not higher than 2 (Gardiner, 2004). In fact,

the development in Eq. (10.1.3) may not exist in case of non-analycity of Ψ(q). This

is the case when g is a stable process whose second order moment (and hence second

order cumulant) diverges (Feller, 1971; Taqqu & Samorodnisky, 1994). Stable random
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variables (sometimes also called “Lévy” in the physics literature) correspond to vari-

ables that have a domain of attraction and being stable under addition (Feller, 1971;

Taqqu & Samorodnisky, 1994; Janicki & Weron, 1994). They have been introduced

in the 1930s by Paul Lévy and correspond to a generalisation of the Gaussian law.

The main parameter is the index α bounded between 0 and 2. The case α = 2 corre-

sponds to the Gaussian law. Log-stable models for turbulent intermittency (Schertzer

& Lovejoy, 1987; Kida, 1991) correspond to a nonanalytic scaling moment function

(see also Schertzer et al. (1997)). In this case, we have instead of Eq. (10.1.3)

Ψ(q) = c1q + cαq
α (10.1.5)

where 0 ≤ α ≤ 2 is the index of the stable process and cα is the cumulant of order α.

When α = 2 the generator is a Gaussian process and there are only two cumulants

in the development of Eq. (10.1.3). To check this model, we consider in the following

the function

Φ(q) = Ψ(q)− c1q (10.1.6)

For a stable law, Φ(q) should be proportional to qα; we check this below in log-log

plot using experimental data, for a given time or frequency scale.

Concerning the choice of the random variable w, we will compare the structure

function approach (X = |ΔV`|, where ` is the time scale) and the EMD-Hilbert

spectral analysis approach (X = A, the moments being estimated from the pdf

p(A|ω) for a given frequency value ω).
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10.2 Presentation of the experimental database

The data analyzed here have been recorded using an Acoustic Doppler Velocimeter

(ADV) from Sontek/YSI, operating under autonomous operation conditions, at a

25Hz sampling rate, and providing the 3D velocity vector averaged over a small

volume of about 250mm3 at a 5 cm distance from the ADV probe, with an accuracy

of 1% of the measured value. Measurements have been performed in the beach in

front of the research laboratory for Littoral and Coastal Ecosystems (ELICO): Eastern

English Channel at Wimereux city (North of France, near Boulogne-sur-mer): this

is a flat sand beach with a megatidal regime that varies between 8 to 11m (see

Fig. 10.1). A heavy metallic structure has been built in the laboratory ELICO as a

support for the ADV, its electronics canister, and its battery canister (see Fig. 10.2).

The measurement location is the intertidal zone in the beach, corresponding to the

surf zone. The Eastern English Channel is a megatidal sea with strong currents. The

metallic structure has been fixed to the ground using hooks; it was built in thin tubes

to avoid a too strong stress on the structure from the tide and currents.

Figure 10.1: A map showing the location of the measurements, in the French coast
of the Eastern English Channel (marked ”X” in the map).
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Figure 10.2: A photography of the ADV measuring device and its support, in the
intertidal zone, before being submerged by the tide.

The measurements have been done on 9 and 10 June, 2004, during 2 tidal cycles,

at a height of 50 cm from the bottom. Measurements have been considered when

there was approximately at least 1m of water above the experimental device. Due to

the tidal activity, this distance was between 1 to 3m. We considered 27m sections

of the U component of the velocity vector, corresponding to the direction perpendic-

ular to the shore, each of length 32, 000 data points (each of 21 min duration). We

cannot consider longer sections, since the internal programming of the ADV inter-

rupts the continuous recording of data, to synchronise the different clocks. The 27

sections have been chosen among the whole data set, in order to have a large enough

internal correlation of bursts, corresponding to a precise enough estimation of the

velocity. We have thus a total of 864, 000 data points, separated into 27 sections.

A one minute portion is shown in Fig. 10.3: strong fluctuations at small scales are

visible, but the whole time series seems stationary. In the following we analyze the
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Figure 10.3: A two minutes portion of the experimental velocity data, showing their
high variability at small scales.

data using the EMD method, the Hilbert-based amplitude-frequency method, and

cumulant generating functions.

10.3 EMD and HSA results

EMD Results

The analyses below are performed over the entire dataset, and the results displayed

after performing an ensemble average over 27 realizations, where each segment of

length 32, 000 data points is one realization. After decomposition, the original ve-

locity series is decomposed into several IMFs (see Fig. 10.4), from 13 to 16 modes

(depending on the segment) with one residual. As visible in this figure, the time

scale is increasing with the mode; each mode has a different mean frequency, which

is estimated by considering the energy weighted mean frequency in the Fourier power

spectrum of each mode time series; the relation between mode number m and mean

time scale is displayed in Fig. 10.5. The straight line which is obtained in log-linear

plot suggests the following relation between the mean time scale T and m, for modes
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Figure 10.4: IMFs estimated from one 32, 000 data points segment of the velocity
time series: mode number increasing from top to below. The time scale is increasing
with the mode. The residual time series is also plotted.

between 4 and 13

T = T0e
λm (10.3.1)

where T0 = 0.038 is a constant and the coefficient λ = 0.667 is graphically estimated.

We remark that eλ = 1.94 is close to 2, showing that each mode is associated with a

time scale almost twice as large as the time scale of the preceding mode; this property

corresponds to a dyadic filter bank in the time domain. This property was shown

previously using stochastic simulations of Gaussian noise and fractional Gaussian

noise (fGn) (Flandrin & Gonçalvès, 2004; Wu & Huang, 2004), and also for fully

developed turbulence data (Huang et al., 2008). It is interesting to note here that

this is still verified for surf zone turbulence data possessing a strong forcing in the

middle of the studied range.
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Figure 10.5: Mean time scales associated with each mode. There is an exponential
increase for mode numbers between 4 and 13.

HSA Results

Figure 10.6 represents the averaged Fourier power spectrum of the data, superposed

with the Hilbert-Huang power spectrum. It is visible that the wind wave breaking

scales (between 2 and 16 s) correspond to a strong forcing of the data. This power

spectrum is similar to power spectra presented by Trowbridge & Elgar (2001) for surf

zone turbulent data recorded in a sandy Atlantic beach near Duck, North Carolina.

A −5/3 power spectrum can be found for large scales (minutes or larger) and scales

smaller than 1 s could also be characterized by such spectrum: the range is too small

to be affirmative on this last point. The Hilbert-Huang spectrum which is superposed

presents a similar shape, despite its different mathematical definition for the frequency

as well as for the spectrum. For the smaller scales, the shape is different, since the

Hilbert-Huang power spectrum falls down very quickly.

The EMD and Hilbert spectral analysis methodological frameworks provide a way
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Figure 10.6: Fourier spectrum of the data (E(f)), superposed to the Hilbert marginal
spectrum (H(f)). The latter has been vertically shifted for clarity. A strong wind
wave breaking at scales between 2 and 16 s is clearly visible on both power spectra.
It is interesting to notice that except for the smaller scales, they have the same shape,
despite a different mathematical definition. The dotted straight line has a slope of
−5/3.

to represent the fluctuations in an amplitude-frequency space: the joint pdf p(ω,A)

is shown in Fig. 10.7. It can be seen graphically that the amplitudes decrease with

increasing frequencies. This pdf can be used to estimate many statistical information

such as the Hilbert spectrum, and the cumulants as shown below. It can also be

used to estimate the skeleton As(ω) which corresponds to the amplitude for which

the conditional pdf p(A|ω) is maximum:

As(ω) = A0 ; p(A0, ω) = max
A
{p(A|ω)} (10.3.2)

and the skeleton pdf pmax(ω) = p(As(ω), ω) = maxA{p(A|ω)}, which is shown in
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Figure 10.7: Representation of the joint pdf p(ω,A) (in log scale) of velocity fluctu-
ations in an amplitude-frequency space.

Fig. 10.8. A power law behaviour is found :

pmax(ω) ∼ ω−β2 (10.3.3)

where β2 ' 1.7, close to the Kolmogorov value 5/3. This new result corresponds to

an experimental fact that needs further investigation in future studies.

10.4 Non analytic cumulant generating function

We consider here the cumulant analysis applied to the velocity fluctuations, using the

EMD and Hilbert spectral analysis described above, and compare this to the same

analysis using structure functions.

We first show the estimation of the first cumulant c1 in Fig. 10.9. In this figure,

the first cumulant is estimated as given by Eq. (10.1.4), using on the one hand, the



10.4. Non analytic cumulant generating function 201

-5 -4 -3 -2 -1 0 1 2
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

log10(ω) (Hz)

p
m
a
x
(ω
) 1.70

Figure 10.8: The skeleton of the joint pdf pmax(ω) in log-log plot. A power law
behaviour is observed in the inertial subrange with scaling exponent 1.70.

amplitude-frequency pdf for a given value of ω, and taking the time scale ` = 1/ω

(denoted “HSA” on the figure). On the other hand, it is superposed to the estimate of

the first cumulants estimated for all modes separately, as function of scale, through

the correspondence given by Fig. 10.5 (denoted “EMD” in the figure). It is also

superposed to the first cumulants estimated using the structure function approach,

where the scale is the time increment: this value of c1 has been vertically shifted

by 0.6 to be compared to the other curves. Figure 10.9 shows that c1 increases

strongly for energetic scales associated with wave breaking, between 2 and 20 s. It

also shows that the EMD-based first cumulant is very close to the Hilbert spectral

analysis one (HSA). However the HSA approach is able to provide the first cumulant

on a continuous range, since it is based on a frequency estimation, whereas the EMD

curve is discrete in scale, being associated with the characteristic scale of each mode.
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Figure 10.9: Estimation of the first cumulant c1, using three different methods: (i)
estimation in frequency space using the joint amplitude-frequency pdf (dotted line
denoted HSA); (ii) estimation using the empirical mode decomposition, done for each
mode, where the time scale is estimated using the mode-scale correspondence (open
dots, denoted EMD); and (iii) estimation using the structure functions.

We also see from this figure that the first cumulant estimated using the structure

function is quite far from the other estimates: the plateau obtained at large scales

comes from the fact that the difference V (t + `) − V (t) is not removing the forcing

when the scale ` is larger than the forcing scale. This shows that for such data, the

EMD and HSA methods provide a more reliable estimation of the first cumulant.

The functions Φ(q) are then estimated, for moments from 0 to 8, for scales between

1/25 s to 10 minutes. For comparison purposes, the analysis is done using the HSA

approach in Eq. (3.1.3) and using the structure functions. An example is shown in

Figures 10a-d, for fluctuations at the scale of 2 s. Figures 10a-b show the analyses

using the HSA approach, in lin-lin and log-log plots, and Fig. 10.10 c-d show the same
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Figure 10.10: Φ(q) vs. q estimated for q between 0 and 8 for a scale ` = 2 s, chosen here
for illustration purpose. Experimental values are given by continuous lines whereas
dotted lines correspond to power-law fits. The proportionalities of Φ`(q) to q

α confirm
the nonanalytic framework applied here. (a): lin-lin plot using HSA mehod; (b): log-
log plot using HSA method; (c) lin-lin plot using the structure functions; (d) log-log
plot using the structure functions.

for the structure functions. Figures 10.10a and 10.10c show convex and increasing

functions. The non-analytical behaviour of these curves are emphasized in log-log

plots (Fig. 10.10 b and d). The straight lines which are obtained confirm the non-

analycity. Using a best fit, the slopes of these straight lines are estimated for all

scales, giving directly the exponent α in Eq. (10.1.6). Figure 10.11 shows the values

of α estimated for different scales `, for both the HSA and the structure function

methods. Except at both ends, the values are relatively independent of scale, and

we can estimate a mean value: we find α = 1.52 ± 0.07 for the HSA estimates
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Figure 10.11: Values of α estimated for different scales `: comparison between the
HSA and structure functions methods.

and α = 1.60 ± 0.07 for the structure functions estimates, where error bars are

coming from different scales. These values are below 2 and approximately compatible

between the two methods. Figure 10.12 shows the non-analytical cumulant (it cannot

be denoted second cumulant) cα(`) given by Eq. (10.1.5). The curves are different

for both methods, but their mean values are close. These results show that the log-

normal framework is not adequate, to be replaced by a log-Lévy stochastic modelling.

Simulations of such random variables can be performed using available stochastic

simulation algorithms (Janicki & Weron, 1994).

10.5 Summary

We have considered here surf zone velocity measurements recorded in the Eastern

English Channel using a 25Hz sampling sonic anemometer. Such data is character-

ized by the transformation of wave motion into small-scale turbulent motion (Battjes,
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Figure 10.12: Values of cα(`) estimated for different scales `: comparison between the
HSA and structure functions methods.

1988). An important issue in this complex framework is to be able to characterize

the contribution of each scale to velocity fluctuations, since the modelling of sediment

and living organisms transport and suspension is associated with such velocity fluc-

tuations (Cox et al., 1996; Svendsen, 2005; Torres-Freyermuth et al., 2007). We have

analysed this series here using the EMD methodology, associated with Hilbert spec-

tral analysis. We have provided the mode versus time scale relationship, showing that

for such data base, the dyadic mode decomposition which has been found in Gaussian

noise is still valid. We have also provided the Fourier and Hilbert Huang marginal

spectrum, showing the high energy associated with wave breaking scales, between 2

and 20 s. In another section, we have analyzed the fluctuations at each scale using

cumulants. The cumulants could be estimated on a continuous range of scales using

the joint amplitude-frequency pdf of velocity fluctuations that was estimated using

the EMD-HSA framework. The non-analytical properties of cumulants was shown for
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each scale, for both methods. We showed, using the first cumulant, that the structure

function approach saturates at large scales, whereas the HSA based method is more

precise in its scale approach; this therefore shows the strength and usefulness of this

new EMD-HSA method combined to cumulant analysis. It was shown here to be

efficient for surf zone velocity analysis, but could be also applied to other time series.

Let us note that our approach has considered the time series globally, while the

depth of the water varied between 1 and 3 meters. It may be that some statistical

properties depend on the depth of the water, requesting a more precise analysis,

considering separately different sections of the time series. We have checked that

this is indeed the case (not shown here), considering the power spectra; however,

the shape of the latter did not vary much. We then keep for future studies a more

precise analysis of the depth relation, noting here that the results we obtained must

be considered as a mean value for different depths between 1 and 3 meters.

We have shown that the log-stable model applies very well, with a characteristic

exponent of α = 1.60 ± 0.07 valid for all scales. This property may be used for

stochastic simulations. Such modelling in the surf zone may be useful for several

applications, such as plankton-turbulence coupling, energetics studies associated with

bloom formation, to fertilization processes, or feeding rate of small fishes, or also

sediment transport characterization and modelling.
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Discussion and Conclusion

In this chapter, we summarize the main results and conclusions of this thesis. We

provide also some comments on these results.

Main Results

The Hilbert-Huang transform is a scale dependent decomposition method with very

local ability in both physical and spectral domains. The method, we proposed here,

arbitrary order Hilbert spectral analysis, is an extended version of the HHT devoted

to take into account intermittency in a scaling framework. It inherits all the advan-

tages and shortcomings of the HHT. The main advantages of the present methodology

are the very local abilities both in physical and spectral domains, and the fully adap-

tiveness. The main drawback is its lack of rigorous mathematical foundation.

Arbitrary Order Hilbert Spectral Analysis

We validated the idea of the arbitrary order Hilbert spectral analysis by using a

simulated fractional Brownian motion time series and synthesized multifractal time

series. We found that the Hilbert-based approach provides a more precise estimator

of the scaling exponents than the classical structure function. We also found a general

property of the zeroth order Hilbert marginal spectrum L0(ω), the marginal probabil-

ity density function (pdf) of the instantaneous frequency ω, with a scaling exponent

209
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ξ(0) ' 1. This implies that not only the amplitude has a distribution law, but also

the scale (instantaneous frequency) itself has a distribution law. However, we still

need more theoretical work to fully understand the empirical mode decomposition,

the first step of the present methodology, and the arbitrary order Hilbert spectral

analysis.

Structure Function and Autocorrelation Function of Velocity Increments

We investigated the structure function and the autocorrelation function of the veloc-

ity increments time series Δu`(t). Based on statistical stationarity assumption, we

proposed an analytical model for them. By a definition of a cumulative function, we

found that the structure function is strongly influenced by the large scales. We also

shown experimentally that it is also strongly influenced by a single scale (or large

scale deterministic forcing). We proved analytically that the autocorrelation function

of the velocity increments has its minima value at the separation scale `. A power

law relation is also suggested by our analytical model. The power law is then verified

by fractional Brownian motion and confirmed by the turbulent database.

Experimental Homogeneous and isotropy Turbulent Database

We applied the empirical mode decomposition and arbitrary order Hilbert spectral

analysis to an experimental homogeneous and isotropy turbulent database. We found

that the EMD algorithm acts a dyadic filter bank. We observed a scaling trend on

the joint pdf of the velocity fluctuations with the scaling exponent quite close to

the Kolmogorov value. We recovered the structure function scaling exponent in an

amplitude-frequency space for the first time. We then tested the isotropy ratio in

Hilbert frame. It is found that the generalized isotropy ratio decreases linearly with
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q.

Passive Scalar

We applied the empirical mode decomposition and arbitrary order Hilbert spectral

analysis to a passive scalar (temperature). Due to the strong ramp-cliff structures,

the classical structure function fails. The Hilbert-based approach provides a scaling

exponent ξΘ(q) − 1 quite close to the scaling exponent ζ(q) of the fully developed

turbulent velocity field. It indicates that the scalar field may be not so intermittent

as what we believed before. However, more passive database should be investigated

under the present Hilbert framework to confirm the role of the ramp-cliff structures.

Extended Self-Similarity and Hierarchical Model

We generalized the traditional extended self-similarity into Hilbert frame. In the

present framework, according to the Kolmogorov 1962 theory, we have two special

case q = 0 and q = 3, which are not influenced by the intermittent effect. We

therefore proposed two ESS formula by plotting the arbitrary order Hilbert spectra

Lq(ω) against Lp(ω), where p = 0 or p = 3. It is found experimentally that both

of them provide the same scaling exponents. We then define a hierarchical spectral

function Lq(ω) by considering the ratio of two successive arbitrary order Hilbert

spectra Lp(ω). The scaling exponents Π(q) of the hierarchical functions decrease

linearly with q.

River Flow Discharge

We applied the Hilbert-based methodology to the daily river flow discharges of the

Seine river and Wimereux river. Both rivers are controlled by the marine west coast

climate of Northern France. After EMD decomposition, the original time series are
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separated into several IMF modes. We observed large correlation among the large

scale IMF modes. We found the same evolution trend for the annual cycles and

the reconstructed large scale between the Seine river and Wimereux river. We then

characterized the small scale intermittent property in the Hilbert frame. Due to the

effect of the strong annual cycle, the structure functions fail.

Surf Zone Marine Turbulence

We analyzed a surf zone marine turbulence time series. We characterized the scale

invariant properties by considering the nonanalytical cumulant analysis. The log-

stable model provides a characteristic exponent of α = 1.6±0.07 for all scales. These

results may provide a new approach to separate waves from small scale turbulent

motions.

Future studies

The results we shown in this thesis may be useful for modelling, which we do not

consider here. However, it should be done in future studies. We list here some topics

we may consider in future studies.

1. Skeleton of the joint pdf p(ω,A)

We found experimentally a skeleton of the joint pdf with a scaling behaviour.

However, the exactly physical/mathematical meaning of this skeleton is not

understood. We need more experimental and theoretical work on this topic to

provide more understanding of the scaling property of the skeleton.

2. Zeroth order Hilbert marginal spectrum L0(ω)

The corresponding scaling exponent ξ(0) of the zeroth order Hilbert marginal
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spectrum is found to be approximately equal to 1. The mathematical mean-

ing of the zeroth order Hilbert marginal spectrum is the marginal pdf of the

instantaneous frequency. It seems that it is a general property of the present

methodology. It implies that not only the amplitude, but also the scale (in-

stantaneous frequency) has a distribution law. But what is the exactly physical

meaning of this ξ(0) = 1 scaling exponent?

3. Kolmogorov 4/5 law

The famous Kolmogorov 4/5 law for the third order structure function is an

exact statistical solution of the Navier-Stokes equations. Does it hold for the

third order Hilbert marginal spectrum? The turbulent database we considered

in this thesis has no resolution on Kolmogorov scale. Thus we did not check

this topic in this thesis. It should be checked using other databases.

4. Turbulence modelling

We believe that the results presented in this thesis provide useful information

for turbulence modelling. We will link our results with turbulence modelling in

future studies. We need for this to be able to extend the present 1D to tensorial

quantities.

5. Passive scalar: ramp-cliff structure

The ramp-cliff structure is an important signature of passive scalar turbulence.

The structure functions, especially for high order moments, are strongly influ-

enced by this large scale structure. Thus, we should check more passive scalar

turbulence databases under the present framework in future studies.
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