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DESCRIPTION DES TRAVAUX

Cette these est consacrée a 1’étude des comportements asymptotiques des équations
différentielles. Elle est composée de deux parties. La premiere partie concerne la sta-
bilité stochastique de certains systemes d’équations différentielles stochastiques et 1’existence
d’attracteur aléatoire de 1’équation stochastique de Ginzburg-Landau. La seconde partie
porte sur la bifurcation homocline et heterocline.

1. Stabilité stochastique et attracteur aléatoire

1.1. Stabilité de systeme SIRS avec des perturbations aléatoires. Nous con-
sidérons le modele SIRS stochastique admettant la perte d’immunité :

dS() = (=BS(HI(E) - pS(t) +YRE) + p) dt — oSOI(E) duy,
dI(t) = (BSMI(t) — A+ w)I(t))dt + o S(E)I(t) dwy, (1)
dR(t) = (AI(t) - (u+)R())dt,

et le modele SIRS avec retard :
h
aS(t) = (=BS(0) [ F)1(t=5)ds = S0 +AR0) + ) e
h
—oS(t) / f(s)I(t — s)dsduwy,
0

h
Ity = (BS() /0 F)I(t = s)ds — (A+ p)I() dt (2)

h
+oS(#) / F($)I(t — 5)ds duy,

dR(t) = (M(t) = (u+)R()dt,

ol o est une constante, qui représente la perturbation stochastique environnemental sur le
taux ( de transmission d’épidémie et w; est un processus de Wiener réel défini sur un espace
complet de probabilité (2,3, (Ft)t>0, P)-

Nous étudions la stabilité stochastique des systemes SIRS ci-dessus. Nous obtenons des
conditions sous lesquelles le point d’équilibre trivial est stable. Ces conditions améliorent
celles données dans [89] pour v = 0.

Les deux résultats principaux sont les suivants.

THEOREME 1.1. Supposons que 0 < 3 < X+ p — "—22 Alors 'équilibre sans épidémie
Ey = (1,0,0) du systéme (1) est stochastiquement asymptotiquement stable.

THEOREME 1.2. Si les conditions max{\—~, B+~} <2u, B8 < A+p— "2—2 sont vérifiées,

alors Uéquilibre sans épidémie Ey = (1,0,0) du systéme (2) est stochastiquement stable.

i
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1.2. Attracteurs aléatoire de 1’équation stochastique de Ginzburg-Landau sur
des domaines non bornés. Nous étudions ’équation stochastique de Ginzburg-Landau
définie sur R" :

m
du = (A + ip)Audt — (k + i3)|u|*udt — yudt + Z idw;(t), (3)
j=1
avec la condition initiale
U(ZL‘,O) = u0($)7 r € R", (4)
ou A\, u, k, 3, v sont des coefficients réels, avec A > 0, K > 0, v > 0; ¢; € H2(R™) N
W24R"), j = 1,...,m sont indépendants de ¢ et définis sur R"; {wj}gnzl sont des Wiener
processus réels indépendants sur un epsace complet de probabilité (2, F, P). Des équations
différentielles stochastiques de ce type apparaissent dans beaucoup de systémes physiques
quand des forces aléatoires sont prises en comptes. Notre but est d’étudier le comporte-
ment asymptotique en temps du systeme dynamique généré par ce type d’équation. Plus
précisement nous étudions 'existence de D-attracteur aléatoire dans L2(R™).
On obtient le résultat suivant.

THEOREME 1.3. Si v/3k > |B|, alors le systéme dynamique aléatoire ¢ de l’équation
stochastique de Ginzburg-Landau avec des bruits additifs possede un unique D-attracteur
aléatoire dans L2(R™).

2. Bifurcation d’orbite homocline et d’orbite heterocline

Nous considérons le systeme

Z:f(Z)+g(z,,u), (5)

et le systéme non-perturbé
i = f(2), (6)
ot z € R™IM2 ;> 0n>0,m+n>0, p€ R, 1>2 0<|lu|| <1, g(2,0) =0. On note

par || - || la norme dans R'.
Nous étudirons plusieurs situations suivant des hypotheses sur le systéme non perturbé

(6).

2.1. Bifurcation d’orbite homocline avec inclination-flip. Nous étudions d’abord
la bifurcation d’orbite homocline non résonante en dimension 3 avec inclination-flip. C’est-
a-dire que nous considérons la situation suivante : m = 0,n = 1,1 = 2, f(0) = 0. Nous
supposons que

(H;) Le systéeme (6) possede une singularité hyperbolique a l'origine et la matrice D f(0)
a trois valeurs propres réelles simples : —a, —f3,1 vérifiant a > G > 0.

H>) Le systéme (6) a une orbite homocline I' = {z = r(t), t € R}. Soit e* = lim )
(Hz) Le sy (6) o D]

Alors et € ToW", e~ € ToW*® sont les vecteurs propres unitaires correspondant aux
valeurs propres 1 et —/.
(H3) Notons ey le vecteur propre unitaire correspondant & —a. Alors

Span (T, (yW", T,(z)W?*, e5) = R®, pourt < —1.
Le systeme variationnel linéaire de (6) et son systéeme adjoint sont
2= Df(r(t))z, (7)

et
i=—(Df(r(t)))" = (8)
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2. BIFURCATION D’ORBITE HOMOCLINE ET D’ORBITE HETEROCLINE iii

Notons r(t) = (r*(t),r¥(t),r"(t)). Soit ¢ suffisamment petit tel que
{(z,y,0) : |=],[yl,[v] <20} C U.

Soit T' > 0 suffisamment grand tel que r(—T) = (6,0,0), »(T) = (0,4,8,), ou |§,| = O(5?).
Alors le systeme (7) admet une matrice fondamentale de solutions Z(t) avec

0 wa w3 wip 0 0
Z(—T) = 0 0 w32 N Z(T) = w12 1 0 N
1 0 w33 wiz  wo3z 1

ol |woz| <€ 1,wo1 < 0,w11 # 0,wss # 0. Le systéme (8) a aussi une matrice fondamentale de
solutions ®(t) = (Z71(¢))*. On note ®(t) = (¢} (t), p2(t), ¢3(t)) et

T
= [ @0y g.cm0d =13
-7

Premierement, nous étudions la bifurcation homocline d’inclination-flip non forte, c’est-
a-dire que w3s # 0. Nous obtenons que le résultat de la bifurcation est unique tel que ou bien
l'orbite homocline persiste ou bien une orbite périodique unique soit crée pour le systeme
perturbé (5).

THEOREME 2.1. Sous les hypothéses (Hu), (Ha), (Hs), si My # 0 et wsg # 0, alors le
systeme (5) a au plus une orbite périodique dans un petit voisinage de I'. Elle eziste si et
seulement si p € {wi1 Mip > 0}, 0 < ||| <1 quand o > B> 1; p € {wsawssMip > 0}, 0 <
]| < 1pourl>a>p>0o0ua>1>pF>0.

Deuxiemement, nous considérons la bifurcation homocline d’inclination-flip forte, c’est-a-
dire que w33 = 0. Le résultat de la bifurcation est aussi unique. Plus précisément on obtient
le théoreme suivant.

THEOREME 2.2. Supposons que les hypothéses (Hy), (Hs), (H3) soient vérifiées. Siwsz =
0, alors nous avons les résultats suivant.

(1) Sil>a>p0>0cetd, #0, alors le systéeme (5) a une unique orbite 1-périodique
si et seulement si p € {6, Mip < 0}, 0 < [|p|| < 1; et il existe une surface de
bifurcation de codimension 1 : Hy = {u : Myp + h.o.t. = 0} avec le vecteur normal
My en =0 tel que I' persiste pour u € Hy.

(2) Sia>1>0>0o0ua>p>1, lesystéme (5) a une unique orbite 1-périodique si
et seulement si p € {wi1Mip > 0}, 0 < ||p|] < 1; et Hy est aussi une surface de
bifurcation de codimension 1 tel que I' persiste pour u € Hy.

Et en fin, on considére le dernier cas dégénéré, c’est-a-dire que wsz = 0,4, = 0. On
obtient le théoreme suivant.

THEOREME 2.3. Supposons que les hypothéses (Hy), (Hz), (H3) soient vérifiées. On sup-
pose de plus que 1 > a > >0, wsz =0, d, =0 et rang(My, M3) = 2. Alors il existe une
surface de bifurcation 1-homocline H', une surface de bifurcation d’orbite 2-pli périodique
SN, une surface de bifurcation 2" -périodique P%", et une surface de bifurcation 2" -homocline
H?" pour tout n € N, qui admettent le méme vecteur normal My en u = 0, tels que le systéme
(5) possede

une orbite 1-homocline si et seulement si yu € H' et ||p|| < 1;

une orbite 2-pli périodique si et seulement si i € SN*;

une orbite 2" -périodique ayant changé de stabilité et une nouvelle orbite 2"-périodique
en méme temps si et seulement si p € P%";

une orbite 2"-homocline si et seulement si u € H?".
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De plus il existe une surface de bifurcation A1 (qui est une branche de H') avec codi-

mension 1 et vecteur normal M, tel que le systéme (5) posséde une orbite 1-homocline et une
orbite 1-périodique pour € Ay et ||u|| < 1.

Le diagramme de bifurcation suivant permet de bien illustrer nos résultats.

@) H!

Figure 1. Diagramme de bifurcation dans le cas :

1>a>06>0, a+8>1, 6, =0, wi;1 >0, wsg =0.

2.2. Bifurcation d’orbites double homoclines tordus avec codimension 2. Nous
étudions la bifurcation d’orbites double homoclines tordus avec codimension 2. Le systéme
que nous considérons est dans le cas ou m > 0,n > 0,m+n >0, I > 2, f(0) = 0, et est
de classe C". La différence avec la bifurcation d’orbite homocline d’inclination-flip du cas
précédent est que la dégénérescence du champ de vecteur (6) vient exclusivement de la double
homoclinicité.

Les hypotheses générales sont les suivantes.

(H}) Le systeme (6) a une singularité hyperbolique & 'origine et la matrice de linéarisation
a l'origine D f(0) a des valeurs propres simples : A1, Ag;i(i = 1,2,--- ,m), —p1, —p2;
(j=1,2,--- ,n) vérifiant

—Repgj <—p1 <0< A1 < Relg;.

On suppose qu’il n’y a pas de résonance forte entre —p; et A\;. On peut toujours
suppser que p; > Aj sans perte de généralité.
(H%) Le systeme (6) a deux orbites homoclines I' = I'; U Ty,

i={z=ri(t): teR, ri(£oo) =0}

et dim(T,, y\W* N1, nyW") = 1, pour i = 1,2, ot W* et W* désignent la variété
stable et instable respectivement, et T4 W est ’espace tangent de W en A.

(H}) Soit e = limy oo %, alors e € ToW*, e;

; € ToW? sont des vecteurs propres

unitaires associés a A; et —pq, respectivement. De plus, ef = —e;, e = —e,.

(Hy) Span{T,, yW", T, nW?, ef} =R™™M 2 quand ¢ > 1,
Span{T,, )y W", T, yW*, e; } = R™"*2 quand ¢ < —1.
Sous ces hypotheses nous étudions la bifurcation d’orbites double homoclines.
Dans le cas ol il y a une seule orbite tordu, on obtient pour le systeme perturbé ’existence
et unicité d’orbites : 1-1 double homoclines, 2-1 double homoclines, 2-1 homoclines a droite,
1-1 homoclines grand, 2-1 homoclines grand et 2-1 periodique grand.

© 2011 Tous droits réservés. http://doc.univ-lille1 fr
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2. BIFURCATION D’ORBITE HOMOCLINE ET D’ORBITE HETEROCLINE v

Pour le cas ol les double orbites sont tordu, nous obtenons I’existence et 'unicité d’orbites
: 1-1 double homoclines, 1-2 double homoclines, 2-1 double homoclines, 2-2 homoclines dou-
ble, 2-1 homocline grand, 1-2 homocline grand, 2-2 homocline grand, 2-2 homocline a droite,
2-2 orbite homocline grand, 2-2 homocline & gauche, et 2-2 periodique grand. (voir Figure
2)

De plus, les surfaces de bifurcation et les domaines d’existence sont obtenus. Les ensem-

bles de bifurcations sont présentés dans le plan engendré par les deux premiers vercteurs de
Melnikov.

<)

1-1 double homocline 1-1 homocline grand

LA

2-1 double homoclines 2-1 homocline a droite

T T

2-1 homocline grand 2-1 periodique grand

Figure 2. Diagramme de bifurcation

2.3. Bifurcation de cycle heterodimensionnel avec orbite-flip. On se place man-
tenant dans le cas ot z € RY, € Rl [ > 2, et les singularités du systéme non perturbé
(6) sont pi,pa, i.e. f(pi) = 0, g(piyu) = 0, ¢ = 1,2. On étudie la bifurcation de cycle
heterodimensionnel avec orbite-flip.

Nous supposons que les conditions suivantes soient vérifiées.

© 2011 Tous droits réservés. http://doc.univ-lille1 fr
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(H{) Le systeme (6) a deux singularités p;, i = 1,2 et les matrices de linéarisation D f(p1)
a des valeurs propres simples : M, A2, A3, —pl vérifiant —pl < 0 < Al < A} < 22,
la matrice D f(p2) a des valeurs propres simples : A}, )\%, —pi, —p% vérifiant —p% <
—py <0 <A < A3

(HY) 11 existe un cycle heterocline I' = T'; U Ty reliant p; et ps. Ici,

Iy ={z=ri(t), t € R} pouri=1,2,
r1(—00) = ra(+00) = p1, 71(+00) = ra(—00) = po;
et dim (T, Wi O Ty W5 ) = 1.

(HY) Soit et = lim; 300 %, alors ef € T, Wi, ey € T,,Ws sont des vecteurs propres

associés & A\l et —pi, respectivement.
o ut 1 7o(t) T 72 (t) u+ uu o, s
Soit ey = limy o @ €2 = limy 400 Ok alors ey, € T,,W3', e, € T, Wj
sont des vecteurs propres associés & A3 et —pl, respectivement, oit Wi est la variété
stable forte de po.
(HY) , ligl T,,yW3' = Span{e,, e}, ot e}t est le vecteur propre unitaire associé a 2.
— 100

(voir Figure 3.)

(HY) Les systemes sont de classe C" et Df(p;), ¢ = 1,2 vérifient la condition forte de
Sternberg d’ordre @) avec Q > 2 et r > 3Q). En plus le nombre de Q-lissage K de
Df(p;) est > 4.

Figure 3. Cycle heterodimensionnel I' =T'; N Ty

Sous les hypothéses ci-dessus, nous obtenons l'existence et 'unicité, ou non-existence
d’orbite homocline, orbite heterocline, et orbite périodique. Nous donnons aussi les con-
ditions de co-existence d’orbite homocline et d’orbite périodique. La co-existence d’orbite
périodique ou d’orbite homocline avec le cycle heterodimensionnel persistant est impossible.
Nous établissons aussi la surface de bifurcation d’orbite double ou triple périodique. Basant
sur I’analyse de bifurcation, nous localisons les domaines d’existence.

Les travaux présentés dans cette theése a fait I’objet de la publication de deux articles
[63, 54] et deux préprints [52, 55] soumis pour publication.
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Introduction

The study on dynamical systems can be dated back to the end of the 19th century. As
early as in 1881, H. Poincaré started the qualitative theory of ordinary differential equations,
whose topics include the stability problem, existence of periodic orbit and returning map.
All these topics together with his research techniques are the initiation of dynamical system.
Since 1912, G.D. Birkhoff expanded the research work on dynamical systems, taking the
problem of three bodies as a background, and obtained the ergodic theorem. Many years
later, the Kolmogorov-Arnold-Moser theorem is established in the fields of celestial mechanics
or in Hamiltonian system with the background of the solar system stability.

During the past two decades, there has been an essential change on the study of dynamic
system. This is due to the structural stability. The concept of structural stability for ordinary
system was firstly proposed by A.A. Andronov and L.S. Pontrjagin in 1937 on some planar
differential equations. However, it did not attract people’s attention until 20 years later
when M. Peck Soto gave the density theorem on two-dimensional structural stable system. S.
Smale together with many other mathematicians has made great contributions to differential
dynamical systems. For instance, the compact invariant subset with hyperbolic structure
is still a hot topic up to now. Since the density theorem does not hold in high dimension
systems, the bifurcation problem in high dimension receives more and more attention.

Let us recall some basic facts of dynamical systems. One can refer to [87] for more details.

We will consider dynamical systems whose state is described by an element u = u(t) of a
metric space H. In most cases, and particularly for dynamical systems associated to partial
or ordinary differential equations, the parameter ¢ (the time or the timelike variable) varies
continuously in R or in some intervals of R. In some cases, ¢ will take only discrete values,
t € Z or some subset of Z. And the space H will be a Hilbert or a Banach space.

The evolution of the dynamical system is described by a family of operators S(t), ¢t > 0,
which map H into itself and enjoy the semigroup properties:

o S(t+s)=5(t)S(s), Vs, t >0,

o S(0)=1 (Identity in H).
Usually, the semigroup S(¢) will be determined by the solution of an ordinary or a partial
differential equation.

For up € H, the orbit or trajectory starting at ug is the set |J S(t)up. Similarly, when it
t>0

exists, an orbit or trajectory ending at wug is a set of points |J S(t)up.
t<0
For ugp € H or B C H, we define the w—limit set of ug (or B) as

Au) = (YU S®ue or AB)=(JS®)B,
s>0t>s s>0t>s

where the closures are taken in H.
A fixed point, or a stationary point, or an equilibrium point is a point ug € H such that

S(t)up = ug, forall t>0.
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The orbit and the w-limit sets of such a point are of course equal to {ug}.
If ug is a stationary point of the semigroup, we define the stable and the unstable manifold
of ug as follows.
The stable manifold W#*(ug) of ug is the (possibly empty) set of points u, which belong
to a complete orbit {u(t), ¢t € R}, u. = u(tp) such that
u(t) = S(t —to)ux — up as t— +oo.

The unstable manifold W"(ug) of wg is the (possibly empty) set of points u, € H which
belong to a complete orbit {u(t), t € R} such that

u(t) > uy as t— —oo.

A stationary point ug is stable if W*(ug) = 0.
We say that a set X C H is positively invariant for the semigroup S(t) if

S(t)X c X, forall t>0.
It is said to be negatively invariant if
S(t)X DX, forall t>0.

When the set is both positively and negatively invariant, we call it an invariant set or a
functional invariant set.

DEFINITION 1. A set X C H is a functional invariant set for the semigroup S(t) if
St)X =X, forall t>0.

DEFINITION 2. An attractor is a set A C H that enjoys the following properties:

(1) A is nonempty and compact.

(2) A is an invariant set (S(H)A=2A, ¢t >0).

(3) A possesses an open neighborhood w such that, for every ug in u, S(t)ug converges
toA ast — oo :

dist(S(t)ug,2A) — 0 as t — 00.
The distance in (3) is understood to be the distance of a point to a set

dist(x,) = inf d(z,y),
yeA

d(x,y) denoting the distance of x to y in H.

In order to establish the existence of attractors, a useful concept is the so-called absorbing
set.

DEFINITION 3. Let B be a subset of H and u an open set containing B, we say that B is
absorbing in u if the orbit of any bounded set of u enters into B after a certain time:

V8o C u, By bounded
t1(Bg) such that S(t)By C B, Vit > t1(Bo).

We also say that B absorbs bounded sets of u.

Then, the main idea for the existence of an attractor is firstly to write a given physical
nonlinear system in the form of an abstract PDEs, and secondly to establish that the cor-
responding semigroup S(t) for this equation is continuous and meanwhile it has a bounded
absorbing set. And then by employing the compact property of the semigroup, we obtain the
existence of a compact attractor, which can be stated by the following theorem:
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THEOREM 1. We assume that H is a metric space and that the operator S(t) is continuous,
which satisfy the semigroup property. We also assume that there exists an open set u and a
bounded set B of u such that B is absorbing in u. Then the w-limit set of B, A= A(B) is a
compact attractor, which attracts bounded sets of u. It is the maximal bounded attractor in u
(for the inclusion relation).

Note that if ug is a stationary point, the stable manifold W*#(uy) and unstable manifold
W(ug) defined above, if not empty, are the union of trajectories defined for all time, thus
they are invariant sets. Of particular interest for the understanding of the dynamics (see,
for instance, J. Guckenheimer and P. Holmes [30]) are heteroclinic orbits which go from the
unstable manifold of a stationary point u, to the stable manifold of another stationary point
Uss F Ux; When u,, = uy, such a curve is called a homoclinic orbit. The points belonging to
a heteroclinic (or a homoclinic) orbit are called heteroclinic (or homoclinic) points.

Homoclinic bifurcation and heteroclinic bifurcation have a great deal of significance in
many complicated subject as physics, chemistry and physiology. They exist in the shock wave
solution in the aerodynamics, the traveling-wave solutions of reaction-diffusion-convection
systems and the viscous profiles for all magnetohydrodynamic shock waves. Homoclinic
orbit and heteroclinic orbit are one of the main sources for complex dynamics while the
corresponding bifurcation phenomena is the main source for the unstability of nonlinear
dynamical systems. Among all bifurcation problems, they are the most difficult and the
most complex.

Since the 80’s of the last century, bifurcation problems of homoclinic and heteroclinic
loops of planar systems have been investigated by many authors [22, 23, 20, 24, 25, 37,
56, 66, 67, 74, 77, 79, 84, 94, 103].

As well known that the bifurcation problem of a degenerate dynamical system on R? may
be very complicated. An earlier example is the case where there exists a homoclinic orbit to
a hyperbolic equilibrium point. In [84], Shil’nikov has studied the codimension 1 homoclinic
bifurcation problem with two complex conjugated eigenvalues. He has pointed out that if
the eigenvalues a and (3 verify Re a = Re 8 < 1, then the dynamical behavior in a small
neighborhood of the homoclinic orbit is chaotic. In [85], however, he has showed that, under
generic hypothesis, the homoclinic bifurcation problem is relatively simple. Precisely, the
vector field X, has neither homoclinic orbit nor periodic orbit in a small neighborhood of the
primary homoclinic orbit I' for v > 0. While, for v < 0, only one hyperbolic periodic orbit
bifurcates from the homoclinic orbit.

Accordingly, more degenerate cases should be considered for more complicated dynamics.
In [96], Yanagida has studied the inclination-flip homoclinic orbit together with two other
codimension 2 homoclinic bifurcations, which are the cases of the resonant bifurcation and
the orbit-flip bifurcation. Since then, many works have been devoted to this subject, see
17, 21, 27, 35, 36, 43, 49, 67, 101, 99, 102, 104]. Among these works, [21] gives
the persistence condition for inclination-flip homoclinic orbits in terms of Melnikov integrals.
Whereas, [43] studies the homoclinic doubling for an inclination-flip homoclinic orbit under
the assumption \* < —\® < 2\". [17] presents a scenario suggesting that a perturbation of
an inclination-flip homoclinic orbit would lead to the occurrence of Smale horseshoes, and
[36] proves the existence of Smale horseshoe under the condition 2A* < min{—\*, A"*} by
using the invariant foliation to reduce the study of the return map into the analysis of one-
dimensional multivalued map. In [67], the author shows the existence of a strange attractor
in the unfolding of an inclination-flip homoclinic orbit by comparing the Poincaré return map
with the Hénon family.

Recently, the bifurcation problems of homoclinic and heteroclinic loops in high dimen-
sional systems have been comprehensively studied as well [13, 39, 40, 86, 88, 104, 105].
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Among all these works, not many concern the bifurcation of double homoclinic loops. How-
ever, nowadays, there is an increasing interest for the subject, for example, see [32, 33, 38,
65, 78, 75, 90, 91, 106, 98]. In [91], the authors establish the classification for the set
of nonwandering points, homoclinic orbits and limit cycles, respectively. And in [90], the
author describes the topological equivalence class of X |, for a C3-dynamical system X p in
general position, where €, is a set of trajectories in a neighborhood of the double homoclinic
loop. In [65, 75], the authors show the existence of a Lorenz attractors in the unfolding of a
double homoclinic loop with a resonance condition on eigenvalues. While in [78], the author
proves that perturbations of the initial stable double homoclinic loop can lead to creation of
a Lorenz attractor. In [38], with the same configuration below, the existence of an invariant
set (shift type) in the variant center manifold (an intersection of a center stable manifold and
a center unstable manifold) is obtained for conservative and reversible vector fields.

We say that a cycle is equidimensional if all the equilibrium points in the cycle have the
same index (dimension of the stable manifold) and heterodimensional if otherwise. Heterodi-
mensional cycles have been first considered by Newhouse and Palis [68, 69]. In the past
decades, great progresses have been achieved on the bifurcation of the homoclinic and hete-
roclinic cycles (see [13, 25, 39, 40, 96, 104, 100] and the references therein). Hyperbolic
systems include many nice systems such as structurally stable systems, Axiom A systems,
etc. However, contrary to the common expectation, hyperbolic systems are found not dense
in Diff(M). Thereafter, the typical bifurcation phenomena in the robustly non-hyperbolic
world becomes quite challenging. The famous C! density conjecture of Palis [71, 72] as-
serts that diffeomorphisms exhibiting either a homoclinic tangency or a heterodimensional
cycle are C'! dense in the complement of the C'! closure of hyperbolic systems. Some generic
bifurcation through heterodimensional cycles can also be used to provide new examples of
persistent transitive diffeomorphisms and persistent partically hyperbolics transitive attrac-
tors, see [13, 18, 57, 83]. To some extent, the study of the heterodimensional cycles is of
great significance and importance.

However, as far as we know, the studies on the bifurcation problem of the heterodimen-
sional cycles are just at the threshhold. Rademacher [73] analyzed homoclinic orbits near
heterodimensional cycles between an equilibrium and a periodic orbit in three or higher di-
mensions and established conditions for the existence and uniqueness of countably infinite
families of curve segments of 1-homoclinic orbits which accumulate at codimension 1 or 2 hete-
roclinic cycles. For other references about heterodimensional cycles, see [9, 8, 11, 18, 19, 48].

In [104, 105], the authors have devoted efforts to seeking for one simple but highly
effective method to study homoclinic and heteroclinic bifurcation problems. They have es-
tablished such a unique method consisting of two kinds of normal forms. The first one is, in
a small neighborhood of a saddle point, by strengthening simultaneously the stable manifold,
unstable manifold, as well as the strong stable manifold and strong unstable manifold, to
obtain a simple normal form locally. The second one is, by selecting carefully some tangent
vector bundles along the loops and some others complement to them to originally establish
a moving frame globally. Since the coordinate vectors in the moving frame not only mirror
the geometric invariance and the various kinds of flip properties of the corresponding stable
and unstable manifolds, but also inherit the contracting or expanding instinct of these man-
ifolds. The second normal form and hence the corresponding Poincaré mapping established
in this way have very simple forms, and the key parameters in the corresponding bifurcation
equations have an explicit and definite geometric and dynamical meanings.

By using this method, together with the transversality theory and the invariant manifold
theory, they have completely solved several kinds of homoclinic bifurcation and heteroclinic
bifurcation problems, including the complete bifurcation analysis of codimension 3 planar
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homoclinic loops and some codimension 2 or 3 homoclinic and heteroclinic loop bifurcation
in high dimensional spaces with various kinds of degeneracy conditions.

Part 2 of this thesis is devoted to the bifurcation of homoclinic orbit and heteroclinic
orbit, in which we study the non-resonant 3D homoclinic bifurcation with inclination-flip,
codimension 2 bifurcation of twisted doule homoclinic loops and heterodimensional cycle
bifurcation with orbit-flip by using the local active coordinates approach.

As well known, by considering deterministic equations, many important informations are
lost in the investigation. So, it is important and necessary to introduce random spatio-
temporal forcing in our studies.

Stochastic differential equations (SDEs) arise in mathematical models of physical systems
which possess inherent noise and uncertainty. Such models have been used with great success
in a variety of application areas, including biology, epidemiology, mechanics, etc. Up to
now, SDEs is an important branch of the stochastic analysis, which has a great deal of
significance in the filtration theorem, control theorem and potential theorem. Meanwhile,
the generalization of the SDEs to the infinite dimensional space leads to stochastic partial
differential equations (SPDEs).

In many applications, one usually assumes that the system under consideration is gov-
erned by a principle of causality, that is, the future state of the system is independent of
the past states and is determined solely by the present. However, under closer scrutiny, it
becomes apparent that the principle of causality is often only a first approximation to the
true situation and that a more realistic model would include some of the past states of the
system [31]. Then, stochastic delay differential equations (SDDEs) give us a mathematical
formulation for such systems (see e.g. [44, 45, 58, 59, 60, 61, 62]).

In the 1980s, mathematicians Elworthy, Baxendale, Bismut, Ikeda, Watanabe, Kunita,
etc. discovered that the solutions of the SDEs not only define a stochastic process but also
present a stochastic diffeomorphism flow, which connected together the SDEs and stochastic
dynamical systems (RDS). Meanwhile, thanks to this connection, we can look at some classic
results in the SDEs in the viewpoint of RDS. L. Arnold and his work team have made new
contributions on RDS (one can refer to his book [1] and the references there in).

When there exists noise, it is impossible to exhibit the compact invariant set stated
above. Noises can make the system leave every bounded deterministic set with probability
1. Therefore, we need to give new definitions of random invariant set and random attractor
for RDS so as to obtain such compact invariant set, which are not fixed, but depending on
chance, and they move with time in stationary manner.

All definitions of random attractor A(w) known to the author agree in that they require
that A(w) is a random compact set which is invariant under the random dynamical system
(precise definitions are given in Chapter II). The definitions disagree however with respect
to the class of sets which are attracted as well as the precise meaning of “attracted”. Out
of the three definitions we give below, the notion of a forward attractor is closest to that
of an attractor for a deterministic dynamical system. It is however believed to be the least
appropriate one for random dynamical systems. The concept of a pullback attractor (also
called strong attractor or just attractor) has been proposed independently in [16, 81]. Weak
attractors are recently introduced by G. Ochs. In [70], he highlights differences between weak
and pullback attractors e.g. concerning invariance properties under random transformations.

In part 1, we study the stochastic stability of SIRS population model with random pertur-
bations and the existence of random attractor for the stochastic Ginzburg-Landau equations
on unbounded domains.
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Stochastic stability and random attractor
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CHAPTER 1

Stability of SIRS system with random perturbations

This chapter is devoted to the study of stabilities of an epidemiological model, which is
the stochastic SIRS model with or without time delay. We shall give sufficient conditions for
their stabilities.

1. Basic facts on stochastic stability

In this section, we shall investigate various types of stability for n-dimensional stochastic
system:

dX(t) = f(t, X (t))dt + g(t, X (t))dW, (1.1)

where f(t,z) is a function in R™ defined in [tg, +00) x R™, and ¢(t¢,z) is a n X m matrix, f, g
are locally Lipschitz functions in x and W; is an m-dimensional Wiener process. We assume
that x = 0 is a trivial solution of the system (1.1), i.e. f(¢,0) =0, g(¢,0) =0 for all ¢t > ty.

Firstly, let us introduce a few necessary notations and definitions, for which we can refer to
[34, 46, 60]. Let K denote the family of all continuous nondecreasing function p: Ry — Ry
such that p(0) =0 and pu(r) > 0if r > 0. And for h > 0, let S, = {x € R": |x| < h}.

DEFINITION 1.1. A continuous function V (t,z) defined on [ty,+00) X Sy is said to be
positive-definite (in the sense of Lyapunov) if V(t,0) =0 and, for some p € K,

V(t,z) > u(|z]) for all (t,x) € [to, +00) X S},

A function V is said to be negative-definite if —V is positive-definite.
A continuous nonnegative function V (t,x) is said to be decrescent (i.e. to have an arbi-
trarily small upper bound) if for some pu € IC,

V(t,z) < p(lx])  forall (t,x) € [to, +00) X Sh.
A function V (t,z) defined on [tg, +00) X R™ is said to be radially unbounded if

lim inf V(¢,2) = oo.
|:E|—>OO t>to
Denote by C12(Ry x Sp;Ry) the family of all nonnegative functions V (¢, ) defined on
Ry x Sy such that they are continuously once differentiable in ¢t and twice in x. Define the
differential operator L associated with equation (1.1) by

0 = 0 1 r 0?
The action of L on a function V(¢,z) € C12(Ry x Sp;R,) is
oV OV 1 o 0*V
9
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DEFINITION 1.2. (i) The trivial solution of Equation (1.1) is said to be stochastically stable
or stable in probability if for every pair of € € (0,1) and r > 0, there exists a 6 = d(e,r,tg) > 0
such that

P{|z(t;to, x0)| <r forallt >tp} >1—¢

whenever |xg| < d. Otherwise, it is said to stochastically unstable.

(i) The trivial solution of Equation (1.1) is said to be stochastically asymptotically stable
if it is stochastically stable and moreover, for every e € (0,1), there exists a § = d(e,t9) > 0
such that

P{tlir(r}o x(t;tg,x0) =0} > 1—¢

whenever |xg| < 4.

Now we present the following theorems which give conditions for the stability of the trivial
solution of the stochastic system in terms of Lyapunov function (see [60]).

THEOREM 1.1. (i) If there exists a positive-definite function V(t,x) € C12([tg, +00) x
Sp;Ry) such that L(V)(t,z) < 0 for all (t,z) € [tg,00) X Sy, then the trivial solution of
system (1.1) is stochastically stable.

(ii) If there ewists a positive-definite decrescent function V(t,x) € C%2([tg, +00) x Sp;R.)
such that L(V')(t,x) is negative-definite, then the trivial solution of system (1.1) is stochasti-
cally asymptotically stable.

It is well known that many problems concerning the stability of the equilibrium states of
a nonlinear stochastic system can be reduced to problems concerning stability of solutions of
the linear associated system (see [34]). Let X (¢) = 0 be the trivial solution of system (1.1).
The linear form of system (1.1) is defined as follows:

dX(t) = F(OX (t)dt + G X (£)dW. (1.3)

THEOREM 1.2. If the linear system (1.3) with constant coefficients (F(t)=F, G(t)=G) is
stochastically asymptotically stable, and the coefficients of the system (1.1) and the coefficients
of system (1.3) satisfy an inequality:

[f(t,x) = F-z|+[g(t,z) — G- x| <dlzl (1.4)
in a sufficiently small neighborhood of the point x = 0 and with a sufficiently small constant
J, then the trivial solution X (t) = 0 of system (1.1) is stochastically asymptotically stable.

Now we introduce some notations for the study of stochastic functional differential equa-
tions. Denote with H the space of Fo-adapted random variables ¢, with ¢(s) € R™ for s <0,
and

lell = sup lo(s)l,  llellf = supE(le(s)[?)
s<0 s<0

(E denotes the mathematical expectation). Let V : [0,00[xH — R be a functional defined
for t > 0 and ¢ € H. Reduce the arbitrary functional V'(t,¢), t > 0, ¢ € H to the form

V(t,e) =V(t,¢(0),0(s)), s<0
and define the function
Vot,z) =V(t,p) =V (t,x) =V(t,z,x(t +5)), s <0, o =4 x=¢(0) = x(t).

Let D be the class of functionals V (¢, ) for which the functions V,(t,2) has continuous
partial derivatives with respect to x of order two, and bounded derivative for all ¢ > 0.
Consider the following n-dimensional stochastic functional differential equations (SFDE):

dX () = f(t, X,)dt + g(t, X, )dW,, (1.5)
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where
Xi(s) = X(t + s) for every s <0,

with initial condition

Xo=¢p€eH.
For all V' € D, the differential operator L is given by
oV, aV, 1 0%V,
LV)= =24+ 1. 24 _Tr|g" - ——=£.¢|. 1.6
V)= *7 % *3 T[g o2 9 (1.6)

DEFINITION 1.3. (i) The trivial solution of SFDE (1.5) is said to be mean square stable
if for each € > 0, there exists 6(€) > 0 such that for any initial process ¢(0), the inequalities

sup E|p(6)[* < d(e) (L.7)
0<0

imply that E|x(t, ¢)|?> < € for t > 0.
(i3) The trivial solution of SFDE (1.5) is said to be asymptotically mean square stable if it is
mean square stable and for all functions satisfying (1.7) we have

Jim E|z(t,¢)|* = 0. (1.8)

(791) The trivial solution of SFDE (1.5) is said to be stochastically stable if for each €1 > 0
and €5 > 0, there exists a 6 > 0 such that

P{sup|z(t,p)| < e} >1—e
>0

provided that P{||p|| < §} = 1.

The following theorem gives conditions for stability of equilibrium states of a SFDE (see

[46]).
THEOREM 1.3. (i) Suppose that there exists a functional V(t,¢) € D such that
aB(je(t)]?) < E(V (¢, 21)) < collzi (1.9)
and
E(LV (7)) < —c3E(|2(1)[?) (1.10)

with ¢; > 0, 1 =1,2,3, where z; is the solution of system (1.5) verifying the initial condition
xo = . Then the trivial solution of system (1.5) is asymptotically mean square stable.
(79) Suppose that there exists a functional V(t,p) € D such that

alp(0)? <Vt ) < eallell?,
and
LV(t, .’L‘t) <0
with ¢; > 0, i = 1,2, where ¢ is the solution of system (1.5) verifying the initial condition
xo = ¢, for all functions ¢ € H such that P{||p|| < 6} =1 where 6 > 0 is sufficiently small.
Then the trivial solution of system (1.5) is stochastically stable.

Proof. (i) The proof of part (i) can be found in [45].

(i) As c1|o(0)]? < V(t, @) < ca|lp||?, we have V(t,2;) > c1]x(t)|> and V(¢,0) = 0. For
each €1 > 0 and ez € (0,1), by the continuity of V (¢, ¢) and the fact V' (0,0) = 0, there exists
0 > 0 sufficiently small, such that

1
— sup V(0,9) <c; - €. (1.11)
€2 |lell<o
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For ¥V ¢ € 'H such that P{||¢|| < d} = 1, denote by z(t) = z(t;0, ¢) and let 7 be the first exit
time of z(t) from S, that is
T=inf{t >0: |z(t)] > e1}.
By Ito’s formula, for any ¢ > 0,
tAT tAT oV,
Vit ) = VIO + [ LV)ds+ [ g7 sw) - S2AW(s)
0 0

Taking the expectation on both sides and making use of the condition LV (t,z;) < 0, we
obtain that
EV(tAT,2inr) < V(0,¢). (1.12)
Note that |x(t A T)| = z(T) = €1, if 7 < t. Therefore,
EV({tAT, zinr) > Ellrony V(T 27)]
> P{r<t}-c €.

Together with (1.11) and (1.12), one has
P{r <t} <ea.
Letting t — oo, we get P{7 < oo} < €9, that is,
P{sup|z(t)| < e} >1—e.
>0

The proof is completed. u

2. Introduction to stochastic SIRS models

The dynamic behaviors of the SIRS models have been intensively investigated by many
authors. In the 1920s, a Kermack-Mackendrick epidemic SIRS model [42] was proposed, in
which the total population is assumed to be constant and there are infectives I(t), which
can pass on the disease to susceptibles S(t), and the remaining members R(¢) which have
been infected and have become unable to transmit the disease to others. Since then, many
people have devoted to the study of the SIRS disease model (acquired immunity is permanent
or acquired immunity is temporary) with different variations in its incidence rate, at which
susceptibles become infectives, see [50, 51, 95].

The deterministic SIRS model existing loss of immunity is the following

S'(t) = =BS®)I(t) — pS() +yR(E) + 1,
I') = S(MI(E) — A+ (1), (213)
RI(t) = M(t) = (p+7)R(?),

and the deterministic SIRS model with distributed time delay is

h
S'(t) = —pS(1) /0 F()I(t - 5)ds — uS(t) +AR(E) + .

h
I'(t) = BS(t) /O F(s)I(t—s)ds — (A + p)I(t), (2.14)
R'(t) = M (t) — (u+7)R(),

where p represents the birth and death rate. Moreover, all the newborns are susceptible; the
constant A represents the recovery rate of infected people and [ is the transmission rate, ~
is the per capita rate of loss of immunity. Of course, u, A\, § € R% | v € Ry, and f(s)

is a non-negative function, which is square integrable on [0,h] and satisfy foh f(s)ds = 1.
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Here, the non-negative constant h is the time delay, the term 55(t) foh f(s)I(t—s)ds can be
considered as the force of infection at time t.

It is easy to see that system (2.13) always has a disease-free equilibrium (i.e. boundary
equilibrium) Ey = (1,0,0).

In the case of v = 0, the system is reduced to the SIR model (see [50]). The stabilities of
the various forms of SIR model are studied by several authors (see [7, 47, 95] for example), for
both the disease-free equilibrium and the endemic equilibrium E* (i.e. interior equilibrium, in
the domain S > 0,1 > 0, R > 0). The results show that if 3 < A+u, the disease will disappear
and all population will become susceptible and the disease-free equilibrium FEy(1,0,0) of

Equation (2.13) is globally asymptotically stable. If 3 > A\ + p, the disease always remains
. . sl « _ [+ B A B i
endemic and the endemic equilibrium E* = (T",% (m — 1) '3 (m — 1)) of Equation
(2.13) is globally asymptotically stable.
In this paper, we consider the stochastic perturbation of deterministic system by intro-

ducing noises in Egs. (2.13) and (2.14). That is the system

dS() = (=BS(I(E) — pS(t) +R(E) + p) dt — oSOI(E) duy,
dI(t) (BSHI(E) — (A + p)I(t)) dt + oSH)I(t) duy, (2.15)
dR(t) = (AI(t) - (u+7)R()dt,

and the system with distributed delay.

h
ds(t) = (—ﬁS(t)/O f()I(t = s)ds — pS(t) +yR(t) + p) dt

h
—oS(#) /0 F()I(t — 5) ds duy,

h
di(t) = (ﬁS(t)/o F(8)I(t—s)ds— (A+p)I(t))dt (2.16)
h
+0S5(t) /0 f(s)I(t — s)dsduwy,

dR(t) = (M(t) = (n+7)R(1))dt,

where o is a constant, which represents the environmental stochastic perturbation on the
transmission rate 3 of the disease and w; is real Wiener processes defined on a stochastic
basis (€2, 5, (§t)e>0, P).

The case where v = 0 is studied in [89]. As is shown there the noise can induce non-trivial
effects in physical and biological systems. The presence of a noise source in fact can modify the
behavior of corresponding deterministic evolution of the system. It is proved that the disease-
free equilibrium is stable in probability under the condition 0 < 8 < min{\ + p — "—22, 2u}.
The stability of the SIR model concerning the endemic equilibrium is studied in [12] in a
more general context, i.e. with general incidence function. In [6], the stability of the endemic
equilibrium is studied for SIR system with distributed delay and with linear perturbation in
noise.

We shall study the stochastic stability of the SIRS model concerning the population having
loss of immunity compared with [89]. We obtain conditions under which the stochastic SIRS
system with or without delay are stochastically asymptotically stable. Our condition for the
system without delay (2.15) is 0 < 8 < A+ p — "—22 which improves that given in [89] for
v =0.
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3. Stability of the stochastic SIRS model

In this section, we consider the stochastic SIRS model (2.15). Under the transformation
uy=85—1, up =1,u3 =R, (3.17)
system (2.15) has the following form
dui(t) = (=B(u1(t) + Dua(t) — pui(t) + yus(t)) dt — o(ui(t) + 1)ug(t) dwy,
dug(t) = (B(ur(t) + 1) — A — p)ug(t) dt + o(ug () + 1)usg(t) dwy, (3.18)
dus(t) = (s (t) — (1 +7)us(t)) d.
The corresponding linearized system
duy (t) = (—Pua(t) — pui(t) + yus(t)) dt — ous(t) dwy,
dug(t) = ((8 — A — p)ua(t)) dt + ous(t) dwy, (3.19)
dug(t) = (Muz(t) — (1 + 7)us(t)) dt

LEMMA 3.1. Suppose that condition

2

0<5<>\+u—% (3.20)

holds. Then the trivial solution of Equation (3.19) is stochastically asymptotically stable.

Proof. Denote u = (uy,us,u3) and consider the Lyapunov function
V(u) = uf + Qouj + Q3u3,
where
Oy = 8% + E 4 2uo?
2T (28— 02+ 21 +2p)

and F, (3 are to be determined.
Let L be the operator defined in (1.2) associated with system (3.19). One then has

2 (B2+E) ,
—L(V) = 2puf + 2Bujug — 2yujus + Tuz —2XQ3usuz +2Q3 (1 +v) uj
The matrix of the above quadratic form is
2p B -
A=| 5 HE -Qu

2p
-y —QsA 2Qs(p+7)
We want to choose the positive constants £ and @3 such that the quadratic form —L(V') (or
the matrix A) is positive definite. We distinguish three cases.
Case 1. If 28u + 28y — vA > 0, then we choose

_YA@2Bp+28y -7 ¥ (9 A+108p+1067)

and Q3 =
8(u+7)? 16p A (1 +7)
We then have
2p B -
3 RApYIM28Y)4Bp+48y—N) (v A=108p—1087)
A= 164 (p+7)* 164 (u+7)
_ v (yA=108p—103~) v (10 Bp+10 By—vA)
v 164 (n+) 8l A
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. . A —A
The principal minors of A are 2u, %, and
2
det(4) = 2 (201 + 267 — 7))
= 5 .
1284 (p+ )

They are all positive. Hence A is positive definite.

Case 2. If 20u + 28y — yA < 0 then we take

3A\y (VA =26 — 207)

7 (39A — 40y — 46p)

E = and Q3 =
2 (1 +7)* Ap (e + )
We obtain in this case the principal minors of A to be 2u, 37)‘(72)‘(;?7 ‘;{ 289 and

7? (02 = 26p = 26)*

3
dettd) = 8u (1 + )

Therefore the matrix A is positive definite.

Case 3. If 28u+ 28y — A = 0, then we take

v (14 28)
E=0 and Q3= ——=
8Bu (w+7)
We have in this case
2p p -
B+1)8 14+283
A— 3 ( 2u) I - )
A 20428 A2(1+28)
v ap [em

Then the principal minors are 2y, 3 and %. Therefore A is positive definite.
Finally the conclusion follows by Theorem 1.1. O

We can now give the result concerning the stability of the stochastic SIRS model.

THEOREM 3.1. Assume that hypotheses (3.20) hold. Then, the disease-free equilibrium
Ey = (1,0,0) of (2.15) is stochastically asymptotically stable.

Proof. Due to Lemma 3.1 and Theorem 1.2, it suffices to verify condition (1.4) in order to
complete our proof.
The left-hand side of Equation (1.4) equals

V(=Purug)? + (Burug)? + /(—ouruz)? + (cuyug)? = \/252u%u§ + \/202u%u§

and it is less than d|u| in the small neighborhood (—¢, €) x (—¢, €) x (—¢, €) with § = v/2¢(3+0).
O

Since the SIR model is a special case of the above system with v = 0, we have the
following consequence which improves the condition of stability as stated in [89].

COROLLARY 3.1. If condition (3.20) is satisfied, then the stochastic SIR model (i.e. system
(2.15) with v = 0) is stochastically asymptotically stable.

© 2011 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Qiuying Lu, Lille 1, 2009
16 I. STABILITY OF SIRS SYSTEM WITH RANDOM PERTURBATIONS

4. Stochastic SIRS model with distributed time delay

In this section, we study the stability of the stochastic SIRS model with distributed time
delay (2.16).
Substituting u; =S — 1, ug = I, uz = R into system (2.16), we obtain the system

h
dust) = (=Blur(®)+1) [ F(s)uat = 9)ds = s (1) + yus(e)
h
o (un () + 1) /0 F(8)us(t — 5) ds duy,
h
dus) = (B0 +1) [ )l = 9)ds = A+ pua(t)de (4.21)

h
to(uy () + 1) /0 F(8)us(t — 5) ds duy,
dusg(t) = (Aua(t) — (u+y)us(t))dt.

We first consider the corresponding linearized system which is

h h
dus (1) = (B /O F(s)ua(t — s)ds — pur () + yus(t)) dt — o /O f(s)ua(t — 5) ds duwy,

h h
dus(t) = (ﬁ/o F($)ua(t —s)ds — (A + p)ua(t)) dt + J/o f(s$)ua(t — s)dsdwy, (4.22)

dug(t) = (Mua(t) — (1 + 7)us(t)) dt.

LEMMA 4.1. Suppose that condition
2
max{A—7, B+7} <2, BEA+p— (4.23)

holds, then the trivial solution of Equation (4.22) is asymptotically mean square stable.

AN+ 2u + o2
22\ + 2 — 208 — 0?)
V(t, ) = Vile) + Valt, ¢),

Proof. Denote Cy = . Consider a Lyapunov functional

where

Vi(p) = 1(0)% + Cap2(0)* + ¢3(0)%, .

h
Vz(t,cp):(ﬁ+02)(02+1)/0 f(s)/ ©? () dr ds.

One then has
Vi(ug) = uf(t) + Couj(t) + uz(t),
h t
Va(t,ug) = (B + %) (Ca + 1)/ f(s)/ u3(7) dr ds.
0 t—s
Let L be the differential operator defined by equation (1.6) associated to system (4.22).
Then we have

h
L) = —2uu? —28u /0 f(8)ua(t — s)ds + 2yuyug — 2Co(\ + p)u3
h
+2502u2 / f(S)'LLg(t - 3) ds + 2)\'LL2'LL3 — 2(/}, —+ fy)ug
0

02 (1+ Cy) (/Ohf(s)uz(t ) ds>2
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IN

h
—2uu%+ﬁu%+ﬁ/ F(s)ud(t — s)ds + yuF 4+ yu3 — 2(\ + p)Cou3
+[302u2+602/ F(s)ud(t — s)ds + Mud + M — 2(p + v)u3
+0°% (14 Cy) / f(s)ud(t — s)ds

= —Q2u-p—ul+ (B+0?) 1+02/ f(s)u3(t —s)ds
+(Ca(8 — 2\ = 2u) + A uj — (20 — A +7)u3,
and
205) = (4 0@+ 1) (w80) -~ [ 7613 - 510 ).
Accordingly, we deduce that
L(V) L(Vi +V2)
~(2p =B =i+ (B+0%) (1+Co)uj

+((B—2N—2u)Co + N uj — (20 — A+ 7)u3
2

IA

—(2p—B—ui— A +p- % — B)us — (24— A +y)uj
Thanks to condition (4.23), we get
LV < —clul?,
where ¢ = min{2u — 8 — v, A+ p — 5 — 3,21 — A+ v}

Now it is clear that
el <Vt ug) < eollur],
with ¢; = min{1,Cs} and ¢y = max{1, Oy, (3 + 02)(Cy + 1)}.
Hence the conclusion follows by applying (i) of Theorem 1.3, a

Now, we give the following main result of our stochastic SIRS model with distributed
time delay.

THEOREM 4.1. If condition (4.23) holds, then the disease-free equilibrium Ey = (1,0,0)
of Equation (2.16) is stochastically stable.

Proof. Let Cy and V; be defined as in Lemma (4.1). Since f—2u+v < 0 and ﬁ+"2—2—)\—,u <0,
one can find § > 0 such that
B—2u+v+0%5(Cy+ 1)+ B6|Cy — 2| + 0262 (Cy + 1) < 0,
B+ % —A—p+025+6(8+0%)Cy <0.
Consider the Lyapunov functional V (¢, p) = Vi(p) + Va(t, ), where
0

h
Va(t, ) = (B + 0% + 020) (c2+1)/0 f(s)/ oo(r)2 dr ds.

—S

(4.24)

One then has
h t
Va(t,ur) = (8 + 0% + 026) (Cs + 1)/ f(s)/ W2(7) dr ds.
0 t

—S

Let L be the differential operator associated to system (2.16). Then

h
L(Vi) = =2B(u1+ 1w /0 f(8)ua(t — s)ds — 2uu? + 2yuyus

http://doc.univ-lille1.fr
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h
+2C508(u1 + 1)ug / f(s)ua(t — s)ds — 2(\ + p)Coul
0
h 2
+2 uguz — 2(p + y)ui + 0% (14 Cy) (ug + 1)? (/ f(s)ua(t —s) ds>
0
h h
—QB’U,%/ f(s)ua(t —s)ds — 20uy / f(s)ua(t — s)ds — 2uu? + 2yuyus
0 h 0 h
+28Couius / f(s)ua(t — s)ds + 26Cous / f(8)ug(t — s)ds — 2(\ 4 p)Cau3
0 0

h 2
+2X uguz — 2(p + y)ui + o (14 Cy) u? </0 F(8)ua(t — s) ds)

+207% (14 Cy) uy </Oh f(s)ua(t — s) ds>2 + 0% (14 Cy) (/Oh f(s)ua(t — s) ds>2

h h
—QB’U,%/ f(s)ug(t — s)ds + fu? + B/ f(s)u(t — s)ds — 2uu? 4+ yu? + ’yu%
0 0
h h
+502u% / f(s)ua(t —s)ds + BC’gu%/ f(s)ua(t —s)ds + BC’gu%
Jo 0
—l—ﬁC’z/ f(s)ua(t —s)ds — 2(\ + p)Coud + Mus + Mui — 2(u + v)u3
+0% (1 + o) ul/f 2(t — s)ds + 202 (1 4 Cy) ul/ f(s)u3(t —s)ds

+0? 1+02/f 2(t — s)ds

h
(B—2p+7)ui + ((B— 2\ —2u)Ca + A u3 + B(Co — 2) u%/o f(s)us(t — s)ds

h
+6Cu3 / F(s)ug(t —s)ds + (A — v — 2u)u3
0 h h
+(B+ 02) (Ca+1) / f(s)u%(t —s)ds + o2 (Co+1) u%/ f(s)u%(t —s)ds
0 0

h
+202 (Cy + 1) uy / f(s)u(t — s)ds,
0

L(Ve) = (B +0* + 0%) ( 02+1< /f 2 5)d )

2

2, /Ohf(s)ug(t _ s)ds < ou? + % (/Ohf(s)ug(t - s)ds> ,

we have, thereafter,

L(V)

© 2011 Tous droits réservés.
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L(Vy + V)

2
(B=2u+~+0%(1+Co))ui + <ﬁ—>\—u+%+025(02+1)>u%

h h
+5(Cy —2) u%/f ug(t—s)ds—l-ﬁC’gu%/f (8)ug(t — s)ds + (A — v — 2u)u3

—0? 02+1/f 2(t—s)ds + 0% (Cy + 1) ul/f Jui(t — s)ds
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02+1 (/ f(s)ua(t —s)d s>2,

(4.25)
Consider the class of process
¢ = {p € H|P{ sup | (s)] <o} =1.
—h<s<
Note that for u; € P,
s)ug(t — s)ds| < 4.
h
(ii) / f(s) u% t—s)ds§52.
(iii) </f s)us(t — s) d3> <(52/f 2(t — s) ds.
Therefore, from (4.25) and (4.24), we have
LV < (5 24+ 028 (Co + 1) + B6]Cy — 2| + 0262 (Cy + 1))u§
2
+ <B+% —)\—u+025(02+1)+5602> ud 4+ (N — v — 2p)ul
< 0.
The theorem is proved using (ii) of Theorem 1.3. O

5. Numerical simulation and conclusion

We now present some computer simulation of our SIRS model using matlab. The results
agree well with the above theoretical analysis. Theorem 3.1 is well verified by the following
numerical simulation in Figure 1.1, which shows the stability of the disease-free equilibrium
Ey under condition (3.20).

For comparison to [89], the computer simulations suggest also that Ej is globally asymp-
totically stable also under condition

2 2
o o
>\+M—7 <ﬁ<>\+u+7,
(see Figure 1.2). While, if 5 > A+ p + "72, the disease-free equilibrium Fy is unsta-
ble and the solution of Equation (2.15) fluctuates around its endemic equilibrium E* =

(Aﬂ (AN B=p=X)  A(B—p—2X)
B BOtuty) ) B(Auty)

(i.e. v # 0) does not modify the stochastic stability threshold C' = A+ u + ‘72—2 for 3, depend-
ing on o, under which Ej is asymptotically stable (Figure 1.2) and over which Ej is unstable
(Figure 1.3).

Mathematically, 02/2 can be regarded as the intensity of the environmental stochastic
perturbation on the transmission rate of the disease. We see that, for ¢ = 0, i.e, there is no
environmental stochastic perturbation for the transmission rate, § < Gy £ A\ + p guarantees
the disappearance of the disease, which agrees well with the classical results. Taken the
environment noise into account, the introduction of the noise in the deterministic SIRS model
leads the deterministic stability threshold Gy of the disease-free equilibrium to Bo 2 \pu— R
under which the disease-free equilibrium is stochastically stable such that the disease cannot
establish itself and it will disappear finally leaving all the population susceptible. However,

) , (see Figure 1.3). We conjecture that the loss of immunity
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Fi1GURE I.1. Stochastic trajectories of SIRS model for initial condition zg =

0.975, yo = 0.02, 29 = 0.005 and u = 0.2, 0 =02, A=0.1, v =03, g =
2

0.2 (A+p— % =0.28).

for the SIRS model with distributed time delay, we have much more restrictive conditions on
the loss rate of immunity -, which must be bounded in (A — 2u,2u — ). Correspondingly,
we must require that the recovery rate of infected people be two times bigger than the death
rate while the transmission rate of the disease be less than two times of birth rate. In spite
of this, these conditions are still realizable with higher recovery rate of the infected people
but lower transmission rate of the disease.
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FiGURE 1.2. Trajectories for initial condition xz¢g = 0.975, yo = 0.02, zg =
2
0.005 and =02, 0 =0.2, A=0.1, y=0.3, 3=031 (A +p+ % =0.32).
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Suscettible
Infective

Recovered

FiGurE 1.3. Trajectories for initial condition xg = 0.975, yg = 0.02, zg =
0.005 and p=0.2, 0 =0.2, A=0.1, v=0.3, 8 =0.36.
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CHAPTER II

Random attractor for stochastic Ginzburg-Landau equation
on unbounded domains

The aim of this chapter is to prove the existence and uniqueness of a D-random attractor
for the stochastic Ginzburg-Landau equation on unbounded domain.

1. Introduction to stochastic attraction

We first give a brief introduction and some basic definitions on stochastic attraction. For
more details of the definitions, one can refer to [1, 4, 14, 15, 16, 26].

All definitions of a random attractor A(w) known to the author agree in that they require
that A(w) be a random compact set which is invariant under the random dynamical system
(below we will give precise definitions). The definitions disagree however with respect to the
class of sets which are attracted as well as the precise meaning of “attracted”. Out of the
definitions we give below the notion of a forward attractor is closest to that of an attractor for a
deterministic dynamical system. It is however believed to be the least appropriate for random
dynamical systems. The concept of a pullback attractor (also called strong attractor or just
attractor) was proposed independently in [16, 81]. Weak attractors were recently introduced
by G. Ochs. In [70], he highlights differences between weak and pullback attractors e.g.
concerning invariance properties under random transformations. It is not our aim to point
out such different properties but rather to list out these concepts. For comparison of various
concepts of random attractors, on can refer to [80].

We denote by (€2, F, P) a complete probability space and X a Polish space.

DEFINITION 1.1. Let {0y : Q — Q, t € R} be a family of measure preserving transforma-
tion such that (t,w) — Oww is measurable, Oy = id, and Osy = 0,00, for all s,t € R, then the
flow 0, together with the corresponding probability space (2, F, P, (0)ier) is called a metric
dynamical system.

DEFINITION 1.2. A continuous random dynamical system (RDS) on X over a metric
dynamical system (0, F, P, (0;)icr) is a mapping

d:RT xQx X — X, (t,w,x) = ¢(t,w,z),
which is (B(R1) x F x B(X), B(X))-measurable such that for P-a.e. w € Q

(i) ¢(0,w, ) is the identity on X.
(i) o(t —|— s,w,) = ¢(t,0sw,-) o d(s,w,-) for all t,s € RT.
(iii) o(t,w, ) : X — X is continuous for all t € RT.

Hereafter, we always assume that ¢ is a continuous RDS on X over (Q,F, P, (6;)cr)-

DEFINITION 1.3. (Random attrator 1.) Suppose that ¢ is a RDS such that there exists a
random compact set w — A(w), which satisfies the following conditions:

(i) A(w) s invariant, that is,

o(t,w, Aw)) = A(bw)  for all t > 0.

23
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(ii) A attracts every bounded deterministic set K C X,
tlim d(g(t,0_w)K, Aw)) = 0.
Then A is said to be a universally or globally attracting set for ¢.

For the existence of a random attractor defined in Definition 1.3, one has the following
result:

THEOREM 1.1. ([16]) Suppose that ¢ is an RDS on a Polish space X, and suppose that
there exists a compact set w — B(w), absorbing every bounded deterministic set K C X.
Then the set

Aw) = | Axw)
KcX
is a global attractor for ¢. Furthermore, A(w) is measurable with respect to F if T is discrete,
and it is measurable with respect to the completion of F (with respect to P) if T is continuous.

Random attractor defined in Definition 1.3 attracts all bounded deterministic sets. Fur-
thermore, one introduces the collection of random subsets, depending on chance w. And the
random attractor will just attract sets in this collection.

A collection D of random subsets is called inclusion closed if whenever { E(w)},cq is an ar-
bitrary random set, and {F(w) },eq is in D with F(w) C F(w) for all w € Q, then {E(w) }weq
must belong to D. Here, D is called the basin of attraction. In practical applications, elements
in D are usually tempered.

DEFINITION 1.4. A random variable R : Q — (0,00) is called tempered with respect to the
dynamical system 0 if for the associated stationary stochastic process t — R(0;-) the invariant
set for which

1
tl}linoo i log R(6yw) =0
(t — —oo applies only to two-sided time) has full P-measure.

DEFINITION 1.5. A random bounded set {B(w)}wuecq of X is called tempered with respect
to (0¢)ter if for P-a.e. w € Q,

lim e “*'d(B(6_w)) =0 for all € >0,

t—o0
where d(B) = sup,cp ||z||x.
DEFINITION 1.6. Let D be a collection of random subsets of X and {K(w)}ueq € D.

Then {K(w)}ueq is called a random absorbing set for ¢ in D if for every B € D and P-a.e.
w € Q, there exists tg(w) > 0 such that

d(t,0_yw,B(0_w)) C K(w) forall t>tp(w).

DEFINITION 1.7. Let D be a collection of random subsets of X. Then ¢ is said to be
D-pullback asymptotically compact in X if for P-a.e. w € Q, {¢p(tn,0_¢,w, )}, has a
convergent subsequence in X whenever t, — 0o, and x, € B(0_,w) with {B(w)}weq € D.

We can now give a second definition of random attractor.

DEFINITION 1.8. (Random attractor 2.) Let D be a collection of random subsets of X.
Then a random set {A(w)}ueq of X is called a D-random attractor (or D-pullback attractor)
for @ if the following conditions are satisfied, for P-a.e. w € €0,

(i) A(w) is compact, and w — d(z, A(w)) is measurable for every x € X.
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(ii) A(w) is invariant, that is,
o(t,w, Aw)) = A(bw)  for all t > 0.
(iii) A(w) attracts every set in D, that is, for every B = {B(w)}w,eq € D,
Jim d(¢(t, 0w, B(0—w)), A(w)) = 0,

where d is the Hausdorff semi-metric given by d(Y, Z) = sup,ecy inf.ez ||y — 2|[x for
anyY C X and Z C X.

The following result give a criterion for the existence of D-random attractor.

THEOREM 1.2. ([4, 26]) Let D be an inclusion-closed collection of random subsets of X
and ¢ a continuous RDS on X over (Q,F, P, (0:)tcr). Suppose that {K(w)},eq is a closed
random absorbing set for ¢ in D and ¢ is D-pullback asymptotically compact in X. Then ¢
has a unique D-random attractor {A(w)}weq which is given by

Aw) = (| o(t, 0w, K(6_w)).

T>0t>T

Random attractors given in Definition 1.3 and 1.8 are called pullback attractors. In
practise, for fixed w € €2, we consider the 2-limit set at time t = 0 of the trajectories starting in
bounded sets at time t = oo. Nevertheless, the pullback absorbing property cannot guarantee
that it has such a property for any forward time for almost w € Q or for all w. Since, 6
preserves the probability measure P, we can obtain weaker absorbtion. That is, trajectories
starting from any bound random set K are forward attracted to A(w) in probability.

We now define the forward absorbing set.

DEFINITION 1.9. Suppose K = {K(w)}ueq is bounded and t — Supycp (g, l|yllm is
tempered with respect to the dynamical system 0. And there exists a random closed set B =
{B(w)}weq and to(K,w) such that

o(t,w, K(w)) C B(bw), t>ty(K,w),
o(t, 04w, K(0_w)) C B(w), t > to(K,w),

and B is forward invariant, i.e., ¢(t,w, B(w)) = B(fw), fort >0, w € Q. Then B is called
a forward absorbing set for .

DEFINITION 1.10. (Random attractor 3.) Suppose that ¢ is an RDS such that there exists
a random compact set w — A(w), which satisfies the following conditions:

(i) A(w) s invariant, that is,
o(t,w, A(w)) = A(Oiw) for all t>0, we Q.
(ii) for every bounded random set K C X,
tli)ngo d(p(t,w)K (w), A(Oiw)) = 0, in probability.
Then A is said to be a weak attractor for .

DEFINITION 1.11. (Random attractor 4.) Suppose ¢ is an RDS such that there exists a
random compact set w — A(w), which satisfies the following conditions:

(i) A(w) s invariant, that is,

o(t,w, A(w)) = A(biw) for all t>0, we Q.
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(ii) for every bounded random set K C X,
tlim d(p(t,w)K(w), A(frw)) =0, a.s.
Then A is said to be a forward attractor for .

In general each forward attractor and each pullback attractor is a weak attractor. Con-
versely, it is not true, see [70] for more details.

In the sequel of this chapter, we shall adopt the definition of D-random attractor (Defini-
tion 1.8). Our aim is to use Theorem 1.2 to prove the existence and uniqueness of a D-random

attractor for the stochastic Ginzburg-Landau equation with additive noise on the entire space
R™,

2. Problem to be considered

We shall study the following stochastic Ginzburg-Landau equation with additive noise
defined in the entire space R" :

du = (A + ip)Audt — (k + i3)|u|*udt — yudt + Z ;dw;(t), (2.1)
j=1
with the initial condition
u(z,0) = up(z), x € R", (2.2)

where A, u, k, (3, 7 are real coefficients, with A > 0, k > 0, v > 0, ¢; € H*R") N
W24R"), j = 1,...,m being time independent defined on R", and {wj}gnzl being inde-
pendent two-sided real-valued Wiener processes on a complete probability space (£, F, P).
Stochastic differential equations of this type arise from many physical systems when random
spatio-temporal forcing is taken into account. Our aim is to study the long time behavior of
the stochastic Ginzburg-Landau equation of this type.

The existence of random attractors for the Ginzburg-Landau equation perturbed by ad-
ditive white noise and multiplicative white noise on bounded domains has been investigated
respectively in [92, 97].

Due to the difficulty that Sobolev embeddings are no longer compact and the compactness
of solutions cannot be obtained using standard method, the unboundedness of the domain
is a great challenging for proving the existence of an attractor. In the case of deterministic
equations, this difficulty has been overcome by the energy equation approach, introduced in
[2, 3], and then used by others to prove the asymptotic compactness of deterministic equations
in unbounded domains, for example, [10, 28, 29, 41, 63, 64, 76, 93]. In this chapter, we
prove the existence of a random attractor for the stochastic Ginzburg-Landau Equation (2.1),
defined on the unbounded domain R” by employing the method of tail estimates, which was
firstly established in [5] to the case stochastic dissipative PDEs.

For the mathematical setting we introduce complex Sobolev spaces. In general, we denote
by X,,Y, ..., the complexified space of a function space X,Y,.... For example, L2(R") is the
complexified space of L?(R"). Denote by (-,-) and || - ||,z the scalar product and the norm in
either L2(R") or L?(R™). So, if u € L%(R"), then u = {uy,us}, uj € L*(R"), j =1,2, and

1
ullz = {[lurl72 + [Juzll72}7.
If u = uy +iug, v =+ ive are in L2(R"),

(u,v) = {(ur,v1) + (uz,v2)} + i{(uz,v1) — (u1,v2)}.

The constant ¢ > 0 may change their values form line to line or even in the same line.
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We first obtain the continuous RDS ¢ associated with the stochastic Ginzburg-Landau
Equation (2.1), with the help of Ornstein-Uhlenbeck process. Then we concentrate to get
the uniform estimate on the far-field values of the solution as ¢t — oo and thus to further

establish the asymptotic compactness of the solution operator ¢. These lead to our main
result as following:

THEOREM 2.1. The random dynamical system ¢ of stochastic Ginzburg-Landau equation
with additive noise has a unique D-random attractor in L2(R™) provided that v/3x > |f3].

3. RDS associated with the stochastic Ginzburg-Landau equation on R"
m

Denote by z(t) = z(6iw) = > ¢;j2j(6iwj), where
j=1

¢
zi(t) = zj(Ow) = / e’?dw;(s), t € R,
satisfies the one-dimensional Ornstein-Uhlenbeck equation
dzj = —yz;dt + dw;(t).

Since the random variable |z;j(w;)| is tempered and |z;(fw;)| is P-a.e. continuous, there
exists a tempered function r(w) > 0 such that
|

> (12 (wp)? + |z (wp)]*) < r(w), (3.3)

7j=1
where r(w) satisfies, for P-a.e. w € Q,
r(bw) < ezlflr(w), t e R, (3.4)
thanks to the Proposition 4.3.3 in [1]. From Equation (3.3)-(3.4), we get for P-a.e. w € ,

Z 12j (01w + |2 (Bw;)|*) < eMMlr(w), t € R. (3.5)
7j=1

Introduce the transformation
v(t) = u(t) — z2(Ow),
where u is the solution of Equation (2.1)-(2.2), then v should satisfy

ov
ot

Similar as the procedure in [5], we get that Equation (3.6) has a unique solution v(¢,w,vp)
with v(0,w, vp) = vy, which is continuous respect to vg in L2(R™). Let

= A+ip) v — (k+if)|v+ 2P (v +2) — o+ A+ ip) Az (3.6)

u(t,w,up) = v(t,w,ug — 2(w)) + 2(fw),
then u is the solution of Equations (2.1)-(2.2). Define ¢ : RT x Q x L?(R") — L2(R") by
o(t,w,ug) = u(t,w,up) = v(t,w,uy — z2(w)) + z(Ow), (3.7

for all (t,w,up) € RT x © x L?(R"). Then, we can claim that ¢ is a continuous random
dynamical system associated with the stochastic Ginzburg-Landau equation on R™.
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4. Existence of random attractor

In the sequel, we always assume that D is the collection of all tempered subsets of L.2(R"™)
with respect to (Q, F, P, (0;)tcr). And then, we devote to prove that ¢ has a random absorbing
set in D, and it is also D-pullback asymptotically compact.

PROPOSITION 4.1. There exists {K(w)}weq € D such that {K(w)}ueq ia a random ab-
sorbing set for ¢ in D. Precisely, for any B = {B(w)},eq € D and P-a.e. w € €, there is
tp(w) > 0 such that

o(t,0_yw, B(0_w)) C K(w) for allt > tp(w).
Proof. Multiplying Equation (3.6) by o, integrating over R", and taking the real part, we

get
1d
2dt||v||2:Re()\—|—i,u)(Av,v) Re(n+zﬁ)(|v+z| (v+2),0)— 'y||v|| + Re(A+ip)(Az(Ow), v).
(4.8)
Here
Re(\ +ip)(Av, 0) = = \||Vo||?, (4.9)
—Re(k +i8)(Jv + z*(v + 2), )
= —Re(k+iB)(|v + z|*(v+ 2),v F 2) + Re(k +iB)(Jv + z|*(v + 2), 2)
= wlulli+ [ o+ i8] uzlde
Rn
1 27(k? 4 32
< —nllulld + Sl + 2O
1 g | 27(K% + ?)?
= —§H\|UH4+TH 2[4, (4.10)
Re(A +ip)(Az(0w),v) < / A+ ip| - | Vz(0w)||Vo|de
Rn
A 2?2 +u
< §||Vv||2 V22 (4.11)
From (4.8)-(4.11), one obtains
d 27(k? 4 2 A2 +u
Lol MVl + 2910l et < ZE IRty X g2 g

We can see that the right-hand side of Equation (4.12) can be bounded by
¢ Z |2 (0105) 7 + |25 (Biw;)|*) £ h(Biw), (4.13)
7=1
since z(w) = Y pjzj(0iw;), where p; € H*(R™) N W24(R™).

j=1
Hence, for Vi > 0,

d
a\lvl\2 + 29[| * < h(Bw), (4.14)
which leads to
t
o(t, w, v ()| < e v (w)||? + / 2D p(h,w)ds, for all ¢ > 0. (4.15)
0

according to Gronwall’s inequality.
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By replacing w by 6_;w, we derive from (3.5) and (4.15) that, for all ¢ > 0,
t
[o(t, 0w, vo(0-w))[[* < e [ug(0-ew)|* + / 1O h(f,—w)ds
0

0

= e P|jup(f_w)||* + / e h(0-w)dr,
—t
0

< 6_27t||vo(0_tw)||2+/ e e (w)dr,

—t
1
< e Y |ug(b_w)||? + ;r(w). (4.16)

Replacing w by 6_;w in (3.7), one has
d(t, 01w, ug(f_w)) = v(t, 04w, up(0_w) — 2(0_w)) + z(w).
Thereafter,

|, 01w, uo(6_w))||?
[o(t, 01w, up(0_1w) — 2(0_w)) + z(w)]]?

IA I

2| v (t, 6w, up(0_sw) — 2(0 tw))g2 + 2||z(w)]|?
< 27 Jug(0-w) — (0[] + 5 r(w) + 2||2(w)|[?
< Ae P (|[uo(0—w)||* + [12(0-w)|?) + %T(W) +2||2(w)| . (4.17)

Recall that both the random variable ||z(w)||?> and the random bounded set {B(w)},ecq € D
are tempered. Then, for any ug(f_w) € B(0_iw), there exists tp(w) > 0 such that for all

t> tB( )
462 (o (0| + [120-)|P) = 4 [ luo(@-w)])* + (" |=(0-w)]])?]
< Zrw)
—7r(w).
S
So far, for all t > tp(w),
4
16(t, 010, uo(0—w))[|* < 7"(@ +2|[2(w)II*. (4.18)
Select A
K(w) ={ueL*R"): |lul® < ;T(w) +2|l2(w)]*},
then {K(w)}ueq € D is a random absorbing set for ¢ in D. The proof is completed. O

LEMMA 4.1. Let B = {B(w)}weq € D and up(w) € B(w), then for any Th > 0 and P-a.e.
w € Q, it holds true for the solution u(t,w,up(w)) of Equations (2.1)-(2.2) and v(t,w,vo(w))
of Equation (3.6) with vo(w) = up(w) — 2(w), t > T1, such that

t B _ 2c
[ Ot 0 wo0-lids < e -+ re), @9
T
t
/ D)V o(s, 0w, v(0-4w))|Pds < e 27 ||ug(6_w)||* + % ) (420
T

Proof. Fix T7 > 0, replace t by T} and then replace w by _;w in Equation (4.15), we obtain

T
[0(Ty, 0—yw, vo(0—w))||> < e 2771 Jug (O_yw)]||> + / XTI R(0,_yw)ds. (4.21)
0
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With Equations (3.5) and (4.13) in mind, multipling e2(71=% at both side of the above
equation, one can easily get
e%(Tl—t)Hv(Tl,e_tw,vo(e_tw)w
1
< e Y| (_w)|* + / e R(0,_yw)ds

0
Ty —t

< 6_2’yt||’00(9_tw)||2+/ 62’YTh(HTw)d7'
-t Ty —t
< e—2yt‘|vo(9_tw)”2_|_c.r(w)/ e’ dr
—t
< P @)l + (@), (422)

From (4.12) — (4.13), one has
d
I+ AVl + 290l + sllullz < h(0w). (4.23)

Multiplying Equation (4.23) by e275=) and then integrating from 7} to ¢, we then obtain

[o(t,w, vo(@)[[* + A+ [z, 2D ||Vo(s,w, vo(w))][Pds + 5 - [z, €2 u(s,w, uo(w))|[{ds
< 2 TM=)||y(Ty, w, vo(w))| | + f:ﬁl e =D (0 w)ds. (4.24)

Keeping the last two terms on the right-hand side of Equation (4.24), and replacing w by
0_;w, we have

t t
A [T, 0w 6P+ i [ e (s, 0 o6 s

T1 Tl
t

< M| |o(T1, 0w, v0(0-4w))|[* + / #1070 n (G- w)ds

T
0

< D Jo(Ty, 0y, v0(6-1))[* + / ¢ h(0rw)dr. (4.25)
T1—t

Since the second term on the right-hand side can be bounded by
0
c-r(w) / Omdr < £ r(w), (4.26)
Ty —t i
due to (3.5) and (4.13). Together with Equation (4.22), it follows
A f;l e[V (s, 04w, vo(0—4w))||?ds + £ - f;l 21570 ||u(s, 0_yw, up (0—w))||1ds
< e fop (0w + £ ()T 1 £ r(w)
< e 2 |ug(O_w)||> + % -r(w) for all t > 1. (4.27)
The proof is completed. O
COROLLARY 4.1. Let B = {B(w)}ueq € D and up(w) € B(w), then for P-a.e. w € Q,
there exists tp(w) > 0 such that the solution u(t,w,up(w)) of Equations (2.1)-(2.2) and

v(t,w,vo(w)) of Equation (3.6) with vo(w) = up(w) — 2(w), satisfy the following uniform
estimates, for all t > tp(w):

t+1 de
/ HU(S, e—t—lw, UO(H—t—lw))HﬁdS < 7 . 62’7 . r(w)
t

t+1 “
/ Vo (s, 0110, v0(0-1)) | [*ds < N e’ - r(w).
t
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Proof. Replacing ¢ by (¢ + 1) and then T3 by ¢ in (4.19), we deduce
t+1

e [lu(s, 0—t—10, up(0—r—1))|l1ds

t

t+1
< / 21D u(s, 0_p_1w, ug (0——1w))|[4ds
t

2c
< ey (0 yw)| P + P r(w)

2c
< 2e 270 ([ug (0——10)|* + [|2(0-—10)) + > r(w). (4.28)
Since both random variables ug(w) € B(w) and z(w) are tempered, there exists tp(w) > 0,
such that for all t > tp(w),

2c
26—27(1&-{—1) (||U0(9—t—1w)||2 + ||z(9_t—1w)||2) < 7 -T(w).

Together with (4.28), one claims that, for all ¢t > tp(w),

t+1 de
/ (s, 6.1 w0 61 s < 25671
t

Using the same procedure as above, we can also verify that, for all t > tp(w),

t+1 4e
[ 190 00wl as < 210,
t

The proof is thus completed. O

COROLLARY 4.2. Let B = {B(w)}wen € D and up(w) € B(w), then for P-a.e. w € Q,
there exists tp(w) > 0 such that the solution u(t,w,ug(w)) of Equations (2.1)-(2.2) satisfies:

t+1 4
/ [[Vu(s, 0t 1w, up(0_t_1w))||*ds < 76 e r(w), forallt > tp(w).
t

Proof. Let tp(w) > 0 be as in Corollary 4.1, and take t > tp(w) and s € (t,£+1). Note that
by Equation (3.7),

IVu(s, 01100, 1 (8—110))]1
= [|Vu(s,0_s_1w,v0(0_¢—1)) + Vz(Bs_s_1w)|[?
< 2|Vu(s, 0_y_1w,v0(0_1-1))||> + 2||V2(0s_s_1w) . (4.29)
Owing to (3.5), one has

m
2)Vz(0s 1)l <D [2i(Bs—i-1w)* < eI (w) < cer(w) (4.30)
7j=1
Together with Corollary 4.1, we derive

t+1
/ | Vu(s, 01w, up(0—t—1w))||*ds
¢

t+1 t+1
< 9 / 1V0(s, 0100, v0(0_1_102))| 25 + 2 / 1V2(8s_s_10)||2ds
t t

4
< X r(w) + ce’r(w)
~
4
g _C . 627 . r(w)’
~
by integrating (4.29) with respect to s over (¢,¢ 4 1). The proof is completed. 0

© 2011 Tous droits réservés.

http://doc.univ-lille1.fr



Thése de Qiuying Lu, Lille 1, 2009
32 II. RANDOM ATTRACTOR FOR STOCHASTIC GINZBURG-LANDAU EQUATION

LEMMA 4.2. Suppose \/3r > |8, and let B = {B(w)}weq € D and ug(w) € B(w). Then
for P-a.e. w € ), there exists tg(w) > 0 such that for all t > tp(w),

4
IV u(t, 0—_yw, uo(0_sw))| |2 < 76 e r(w).

Proof. Multiplying Equation (3.6) by Aw, integrating over R™, and then taking the real
part, we get

5 dtl\VszJrMIAsz+VHWH2
= Re((k+iB)(Jv+ 2[*(v + 2), AD)) — Re (A + ip)(Az(w), AD)). (4.31)
Since
(Jv+ 22 (v + 2), AT) = (|u|2u, Au) — (|u|2u, AZ(Bw))
while
(Jul*u, Au) = —/ (Jul*|Vul* + uVaV|ul?) dz
we have

Re ((/@ + iﬁ)(|u|2u, Aﬂ))
= —/@/ |ul?|Vu|*dz — /1/ Re (uVaV|ul?) dz + ﬁ/ Im (uVaV|u?) dz

= —/1/ \u|2\Vu|2dx—E/ (V\u|2)2dm—é/ i (uVa — aVu) V]u|*dz

1
- / (3([ul®)? + 28i(uVii — aVu)V|ul? + KluVa — aVul?) de
R
< 0, (4.32)
provided that v/3x > |3)|.
Therefore, for the first term at the right-hand side of Equation (4.31), we have

Re ((k +iB) (v + 2*(v + 2), AD))
Re ((k +iB)(Jul*u, Aw)) — Re ((k + iB)(Jul*u, AZ(0w)))

IA

~Re (s + iB) (Jul*u, A2(0)))
< Jotisl [ fuP 220wz
R
3 1
< Slulld+ 302 + 6% - 1826w I (433)
On the other hand, the second term at the right-hand side of Equation (4.31) can be
bounded by
: 2, A2 +N 2
Atiul- [ [Az(60)] - [Avldz < A Av][" + —=—[[Az(6:w)]]". (4.34)
Rn
By (4.31), (4.33)-(4.34), we can see that
d 3 1 A2+
ZIIVOllZ + 2 Voll® < Sllulls + (% + 87 - [[A2(0) |l + =5 —[182(0)I*. - (4.35)
That is,
3
IIWII2 Slulli + 9(0r), (4.36)
where

)\—i—u

9(Ow) £ %(%2 +0%)% || Az(Bw)l[5 + 1A2(0:w)] 2. (4.37)
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m
Since z(0;w) = 3 pjzj(0iw;), where ¢; € H*(R™) N W24(R™), there exists a constant ¢ > 0
j=1

such that
g(Ow) < c- Z |2 (0:07) + |2 (01w))] ) <c-eMr(w), for all t € R. (4.38)
7=1

Let t > tp(w), s € (t,t+1), where tp(w) is the positive time taken in Corollary 4.1. Integrate
Equation (4.36) from s to ¢ + 1 shows

IV0(t + 1,1, vo(w))|
3 [t+l A t+1
< Vel +5 [ lulrww@)lidr+ [ g@w)dr

Integrating the above equation with respect to s over (t,t + 1) leads to
IVt + 1,0, 00 (@)
41 3 [l t+1
< / V(s w, vo(w))|2ds + 5/ Hu(T,w,uo(w))HﬁdT—F/ g(0rw)dr.
t t t
Replacing w by 0_;_jw, we derive
Vot + 1,0 1w, v0(0—1-1w))|?
t+1 3 [ttl A
S A O ) [ PR [T Y R O [} 21
b !
+/ 9(0r_i—qw)dr. (4.39)
t
Thanks to Corollary 4.1, it follows from (4.38) and (4.39) that, for all t > tp(w),
Vot +1,0_ 1w, vo(0_1—1w))||?

de 3 de /0
< —eir(w) 4o — e r(w) + g(0rw)dr
T g T [ a0
4
< 70 e r(w) Fc- r(w)/ e Tdr
-1
4
< f.em.r(w) (4.40)

Then together with (3.3), we obtain that, for all t > tp(w),

Vot + 1,0 1w, v0(0—¢—1w)) + Vz(w)||?
2|Vt + 1,0 1w, vo(0——1w))[|* + 2/|V2(w)[|”

4
e ().

IVt + 1,6 1w, ug(f_—1w))| |

VAR VAN

The proof is completed. g

LEMMA 4.3. Suppose v/3k > |B], and let B = {B(w)}weq € D and up(w) € B(w), then
for every e > 0 and P-a.e. w € Q, there exists T* = T(B,w,€) > 0 and R* = R*(w,€) such
that the solution v(t,w,vo(w)) of Equation (3.6) with vo(w) = up(w) — z(w) satisfies for all
t> T

/ >R lu(t, e—tvaO(H—tW))(x)ng; <e
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Proof. Let p be a smooth function defined on R* such that 0 < p(s) <1 for all s € RT, and

{O for0<s<1,

p(s) = 1 for s > 2.

Then there exists a constant ¢ > 0 such that |p/(s)| < ¢, for all s € RT. Multiplying Equation
(3.6) by p(| il )v, integrating it over R™, and then taking the real part, we obtain

1d
2dt Jy
|22] |2?|

= Re <()\+z’u)/ (l—Q)Avvdx> — Re <(/€+iﬂ)/ (—2)\v+z\2(v+z)vdx>
2 e 2‘
—7/ (‘ jv2dz + Re <(A+m)/ p(%)szdx . (4.41)
Rn
We now concentrate to estimate the terms in (4.41). Firstly,
2] _ 2l et 2
P B )Avodr = \Vv\ ,0( )dx opl(—5- B )l2 Voudz

2 2
= / |Vl ,0(| ‘)dm —/ p/(|l2‘) B Voudz.
I<|z|<V21

|22
P(l—g)\v\2d$

Since
_ 2v2 22|
v’|$| Vudz| < v] - o - |[Vu|dz
o Ve <5 [l Gl 19
C C
<5 [ ol 190kt < 5 (ol + 190R)
RTL
we find that
2
. A
Re<()\+w)/ (‘l |)Avvdx> _ / Vol p(‘ |)dx+—(\|v|\2+\|VvH) (4.42)
Secondly,
IE2 :1:2 IE2
[ oD+ 2mae = [ oSt [ pdZhup w20
TN e N e PV
Due to
‘$2| 2 - |332‘ 3
[ Sl - 20wl < [ (S jul® - 2(0w)lda
Rn Rn
() c 22 .
< s L e+ = [ D0
we have

—Re <(/~£—|—iﬁ)/ (|x—2‘)|v—|—z|2(v—|—z)ﬁdaz>
- _,.;./ (\ 2|)|u|4dx—|—Re ((/{+zﬁ)/ (‘l;|)|u|2.u.2(9tw)dx>
||

2 2 T
< —/{-/ (‘ |)|u|4d:13—|—2/ (| ‘)|u|4dac+c /Rnp(l—2)|z(0tw)|4da:
< -5 n 2‘>|u|4dx+c / p<ﬂ>|z<ew>|4da: (4.43)
= 2 W ‘ ‘
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Thirdly,

35

2 2 )\2 2 2
re (i [ plhamar) <2 [ o hpar+ 225 [ o hjazpan
R™ l 2 R™ l 2’)/ R™ l

Finally, from (4.41)-(4.44),

2dt
)\ c

z? AN+ 2 x
< (H P4 iwel) e [ plEhewerar s 225 [ ol hjazpan

2y

which 1mphes

A-c z?
< 2P+ +es [ olEhewta

A+ |2°| 2
_ —)|Az|"dx.
G S

(4.44)

1d || 12, 5 K 12, 4 . |22
s | U lvfPde + 2/Rnp(l—g)\v\ dx+§/Rnp(l—2)\u| dx+)\~/R Vol p( )da

(4.45)

Proposition 4.1 together with Lemma 4.2 shows that, there is 77 = tp(w) such that for all

t Z T17
4c
[|0(t, 01w, v0(0—1))| 71 (@ny < 5 e - r(w).

(4.46)

Now, multiplying (4.45) with e2Y(*~%) and then integrating it over (77,t) respect to s so that,

for all t > T7,

|a;_2\ 23
[ oD e
= -

12 )
A-c [* 2y(s—t) 2 2
e (Ilo(ssw, vo (@))[1* + [[Vo(s, w, vo(w))|[*) ds
1

! 2y(s—t) B 4
+c-/ (25— /R Pl (B dads

T

)\2 2 t
_‘_%\/T eQV(S—t)/ (|.’E ‘)|AZ( sw)| daxds.
1

Replacing w by 6_;w in Equation (4.47), we obtain that, for all ¢t > T1,

5
/ P(%)Iv(tﬁ_tw vo(0—yw))|*da
RTL

2
< 2(Ti-1) / (| Do(T, 010, vo(0—100)) Pl
A-c

|o(Th, w, vo(w))\2dm

l
! 2 t |332| 4
+c./ ev(s—)/ p( 7|26, w) | dads
Rn

T
)\2 2 t
+ +u / ezw(s_t)/ p(@ﬂ&z(@s_tw)ﬁdxds.
v T R™ l

We now estimate the terms in (4.48) as following.
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t A t
+—/ e u(s, 0w, vo(0-w))|ds + == / [ Vu(s, 0w, vo(0-w)|[*ds
T g

(4.48)
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Firstly, from (4.15), one deduces
[0(Ty, 0—w, v (0—w))| > < =271 |Jvg (0_sw)||? + /0 " T R(G,_yw)ds. (4.49)
Thus,
¢2/(Ti-) / (' ) 0T 0 00 (0y)) P

T
(=) <e_27T1\|vo(9_tw)\|2 +/ 62V(T_T1)h(97—tw)d7'>
0
Ty —t

= e P |ug(h_w)| > + / ¥ h(O,w)ds

—t
< e uolbw)| + 2o ) B0, (4.50)

IN

due to Equations (3.5) and (4.13). Thus, for any given € > 0, there is T5(B,w,€) > T} such
that for all ¢t > T5,

2
62V(T1_t)/ p(|ﬂ;—2|)|v(T1,9_tw,v0(9_tw))\2dx <e (4.51)
Rn

Replacing T3 by s in Equation (4.49), then we find that the second term at the right-hand
side of (4.48) satisfies

. t
M/ (25— tllv(s 0_yw, v0(0_w))|[2ds
l T

- t
< 2 i (0w Pds 4 2 / D10, _w)drds
1y 7 Jo
A
< 22 )| o (0—w)| 2 + / QWh 0,w)drds
)\l T J—t
- C _

s e 28t =) vo (0| TR 2 “r(w), (4.52)
which implies that there exists T5(B,w,€) > T} and Ry (w,€) > 0 such that for all ¢ > T5 and
l > Rl)

A t
Tc 2D |u(s, 04w, vo(0_w))|[2ds < e. (4.53)
T

From Lemma 4.1, we know that there is Ty(B,w) > T} such that for all ¢ > T}, the third
term at the right-hand side of (4.48) satisfies
Aoe [P, 2X-c

= [ V(s 0w, vo(0—w))|Pds < Z—r(w).
I o, 7

Therefore, there is Ro(w,€) > 0 such that for all ¢ > T, and [ > Ry such that

A t

Ac 2DV (s, 04w, vo(0_pw))||2ds < e. 4.54

i [[Vo(s, 0w, vo(0—w))|[*ds < (4.54)
T

Finally, note that the last two terms in (4.48) can be bounded by

t 2
c- / e?s7t) / p(%)(|Az(95_tw)\2+\z(@s_tw)\4) dzds (4.55)
Rn

Th
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and z(Qw) = Z ©;2i(0w;), where ¢; € H?(R™) N W24(R"). We can find Rs(w,€) > 0 such
that foralll>R3 and j =1,2,...,m,

/le (o3 @) + leg (@) + |A%($)|2) dz < min{ m4z:(w)’ 2m2r(w)

€

). (4.56)

Accordingly, we have the following estimates for the last two terms in (4.48),

t 2 2 2 t
e [0 [ (a0, wttanas + X [ et [yl liac, wyrasas
R™ 0 T R™

T

t 22
< c- / e2(s7t) /R p(%) (|22(0s—w)? + [2(05—w)|*) dzds
T n

t
< c-/ ezw(s_t)/ (|A2(05—w)? + [2(0s—w)|*) dzds
Ty |z >1
t m
< em?- 62“5_02/ (1805212 (Os—1))I* + 05125 (Os—1wj)[*) dzds
e m 4
< s— s— d
> r(w)/ ; |2;(6 th| + |2 (0 tw])‘) S
t 0
< X / D=0, _yw)ds < / 2 (0, w)dr
T'(CU) T%) T(W) Ty—t
< I / Tdr < e. (4.57)
T(W) T —t

Let T* = T(B,w, €) = max{T1,T»,T5,T4} and R* = R(w,¢) = max{Rj, R, R3}. Then from
(4.48), (4.51), (4.53), (4.54) and (4.57) we know that for all ¢ > 7™ and [ > R*,

2
/ p(“l”—2|)|v(t,9_tw,vo(e_tw))ﬁda: < 4.
Rn
That is, for any t > T* and | > R*,

2|

/| . [0(t, 640, 00 (6_g)) [2dz < /R P10, 6, w0(0-10)) P < 4.

The proof is completed. O

LEMMA 4.4. Suppose v/3k > |B], and let B = {B(w)}weq € D and ug(w) € B(w), then
for every € > 0 and P-a.e. w € Q, there exist T* = T(B,w,€) > 0 and R* = R*(w,€) such
that the solution u(t,w,up(w)) of Equations (2.1)-(2.2) satisfies, for all t > T,

/ ult, 010, 10 (0_10)) () 2dar < €.
|z[> R

Proof. Let T and R* be the constants in Lemma 4.3. Then due to (3.3) and (4.56), we
know that, for all ¢t > T and [ > R*,

|2(w) P = / 13 25 (w))Pda
/x>R* |z|>R* Z
€
dx < 2 < - 4.58
< m/W*Z\m s < 5 3l < 5 (458)
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Thus, together with Lemma 4.3, we derive, for all ¢t > T* and | > R*,
/ (010, 10 (0_10)) () 2y = / (£, 00, v0(0_10)) () + 2(w) P
|| > R* |2|>R*

< 2 [u(t, 0_yw, vo(O_w))(x)]? + |2(w)[?dz < 3e.
o[> R e[ > R

The proof is completed. O

Now we are ready to give the D-pullback asymptotic compactness of ¢, based on the
former uniform estimates referring to the tails of solutions.

PROPOSITION 4.2. Suppose that \/3k > |B|, then the random dynamical system ¢ is D-
pullback asymptotically compact in L?(R™). That is to say, for P-a.e. w € ), the sequence
{(tn, O—t,w, uon(0—t,w))}2, has a convergent subsequence in L?(R™) for t, — oo, B =
{B(w)}wea € D and uppn(0—t,w) € B(0_t,w).

Proof. Let t,, — 0o, B ={B(w)}weq € D and ug n(0—+,w) € B(0_4,w). By Proposition 4.1,
we know that for P-a.e. w € (),

{p(tn, 01, w, 10 (0—t,w)) Inq is bounded in L2(R"™).
Hence, there is a ¢ € L?(R™) such that, up to a subsequence,
G(tns 0—t,w, w0 (0_1,w)) — & weakly in L2(R"). (4.59)

It only remains to prove the weak convergence of (4.59) is indeed strong convergence. Let
€ > 0 be small enough. Since ¢ € L2(R"), there exists Ry = Re) > 0, such that

/WR |€(z)Pdz < e. (4.60)

From Lemma 4.4, there is T1(B,w, €) and Ra(w,€) > Ri(e) > 0, for P-a.e. w € 2, such that
for all t > 17,

/>R |6(t, 01w, up(0—yw))[Pdz < e. (4.61)

Since t, — o0, let N; = Nj(B,w,€) be large enough such that ¢, > T3 for every n > Nj.
Hence, it follows from (4.61) that for all n > Ny,

/ 16t B0t (B, )P < . (4.62)
|z|>R2
On the other hand, from Proposition 4.1 and Lemma 4.2, there is T = T5(B,w) such that

for all ¢t > T5,
4c

1908, 0100, w0 (Ot )l 51y < = - €7 - (). (4.63)
Let Ny = Ny(B,w) > Nj such that t,, > T for n > Ny. Thus, from (4.63), we know that, for
all n > Ns,
4c
|‘¢(tn7 0_t,w, uo,n(e—tnw))‘ﬁ{l(ﬂ@”) < 7 e r(w). (4’64)

Denote by Qg, for the set {z € R™ : |z| < Ry}. Due to the compactness of embedding
HY(QRr,) — L%*(Qr,), we deduce from (4.64) that, up to a subsequence,

O(tn, O—t,w,uon(0_t,w)) — & strongly in IL2(QRQ),

which tells us that for the given e > 0, there exists N3 = N3(B,w,€) > Ny such that for all
n > N3)

16(tn, 01,0, o0 (0-1,w)) = ElE2(q,,) < € (4.65)
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By (4.60), (4.62) and (4.65), we conclude that for all n > N3,
16(tns 0—t,0, 10 (0—1,0)) — €] Pz
< / |(tn, 01w, 00 (0-1,w)) — E[Pda + / |G (tns O—t,w, o (0—¢,w)) — &P dw
l2[> Ry 2| <R>
< be.
Therefore, up to a subsequence,
G(tn, 0—t,w, uo (01, w)) — & strongly inL*(R™).

O

Up to now, we have proved that ¢ has a closed random absorbing set {K (w)}yeq in D

by Proposition 4.1, and is D-pull back asymptotically compact in L2(R™), which is present

in Proposition 4.2. So, the existence of unique D-random attractor for ¢ stated in Theorem
2.1 immediately follows from Theorem 1.2.
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Part 2

Bifurcation of homoclinic and heteroclinic
orbit
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CHAPTER III

Non-resonant 3D homoclinic bifurcation with inclination-flip

In this chapter we deal with the bifurcation problems of a 3-dimensional smooth system
having a homoclinic orbit to a hyperbolic equilibrium point with “inclination-flip”.

1. Hypotheses and Preliminaries

In this chapter, we consider homoclinic bifurcation with inclination-flip in dimension 3.
That is, we consider the following smooth system

2= f(2) +9(zp), (L.1)
and its unperturbed system
z = f(z), (1.2)
where z € R®, peR? 0 < |u[ <1, f(0) =0, g(,0) = 0.
First of all, we assume that:

(Hy) System (1.2) has a hyperbolic equilibrium O and the relevant linearization matrix
D f(0) has simple real eigenvalues: —a, —(3, 1 satisfying a > 3 > 0.

As the implicit function theorem gives us that the hyperbolic fixed point persists through
out the unfolding, so we will always assume without loss of generality, that it is the origin,
i.e., g(0,) = 0. Moreover we assume that the eigenvalues of D f(0) avoid a finite number of
resonances so that system(1.1) is uniformly C? linearizable. Thereafter, up to a C? diffeo-
morphism, there exists U, a small neighborhood of 0 in R? and V, a neighborhood of 0 in
R?, such that for all z € U and all u € V, system (1.1) has the following C? normal form:

Besides, we make the following assumptions:

(Hs) System (1.2) has a homoclinic loop T' = {z = r(t), t € R}. Let e* = tlgm@%
Then e™ € ToWY, e~ € TyW* are unit eigenvectors corresponding to 1 and —f3.

(H3) Denote by e, the unit eigenvector corresponding to —c, then

Span(T,yW", T,y W?, e ) = R3, fort < —1.
With the above assumptions, the homoclinic orbit I' is of codimension 2.

REMARK 1.1. a) (H3) is equivalent to Tz, W* — e* @e~, whent — —oc.
b) For the existing loop I, (H2) is generic, which guarantees that I" has no orbit flip.

While (H3) is not generic, which indicates that W* takes place inclination flip when t — —oo
(see Figure 111.1(1)).

43
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2. Bifurcation equations
Now we consider the linear variational system of (1.2) and its adjoint system
z2=Df(r(t))z, (2.4)
= —(Df(rt))"=. (2.5)
Denote r(t) = (r*(t),r¥(t),r"(t)) and take T" > 0 large enough such that »(=1") = (6,0, 0) and
| =

r(T) = (0,4,9,), where |§,| = O(6?) and ¢ is small enough so that {(x,y,v) : |z|,|yl,|v| <
20} CU.

LEMMA 2.1. There exists a fundamental solution matriz Z(t) = (21(t), 22(t), 23(t)) for
system (2.4) with

2 (t) € (T, )W) N (T, yW?)",
22(t) = —i(t)/|FY(T)] € Ty W" N Ty W*,
Zg(t) S Tr(t)Wss,

satisfying
0 w21 w31 w11 0 0
2-T)=( 0 0 w3 |, 2(T)=| w2 1 0 |,
1 0 w33 w13 w23 1

where | was | 1,w91 < 0,wi1 # 0,w3e # 0.

(1) Inclination-flip (2) Poincaré return map

FiGure III.1

As well known from the matrix theory, system (2.5) has a fundamental solution ma-
trix ®(t) = (Z71(t))*. We denote ®(t) = (¢} (t),d2(t), ¢3(t)). Introduce the local active
coordinates near the orbits I" as (z1(t), 22(t), 23(t)) with the components N = (ny,0,n3). Set

z2=80t)=rt)+ z(t)N* =r(t) + z1(t)n1 + z3(t)ns. (2.6)
With this notation, we can choose the cross sections
So={z=5(T):|z ||yl |v|<20} CU,
S1={z=85(-T7):lx|,|y|,|v|<2§} CU.
Under the transformation (2.6), system (1.1) has the following form
nj = (¢;(t)) 9u(r(t),0)u + h.o.t., j=13, (2.7)
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which is C? and produces the map P; : S; — Sp. Integrating both sides from —7 to T, we
have

’I’Lj(T) = nj(—T) + Mjp+ ho.t., 7 =1,3, (2.8)
where N(T') = (n1(T),0,n3(T)), N(=T) = (n1(=T),0,n3(=T)), and

’ T
M= [ @0y g.c®0d j=1,3
-T

are Melnikov vectors.
+o0

T
LEMMA 2.2. M :/_T((;bl(t))*gu(r(t),O) dt:/ (61(£) " gu(r(£), 0) dt.

— 00

Define Py : Sy — S1, qo — ¢1 induced by the flow of (1.3) in the neighbourhood U of
z = 0. Set the flying time from ¢p to ¢; as 7 and the Silnikov time s = e~ (see Figure
I11.1(2)). Then we have

Po: qo(zo,y0,v0) — q1(x1,y1,v1),

(07
zo=sr1, 1 =s"yo, v = s,
and z1 = 4§, yg =~ J;
0 _ -1 0 _ -1
ny = (wi1) ™ o, ng = vy — 0y — (W11) w130,
1 1 i 1
ny = v — (w32)” W33y, ng = (w32) " Y1

From the above, we give the following Poincaré maps:
F1:P10P02 S0—>S0,
T_L(lj = vps® — (W32)_IW3358ﬁ + Mip + h.o.t.,
T_Lg = (W32)_158ﬁ + Msu + h.o.t.
Now, the successor function is given by G(s,v9) = (G1,G3) = (Fi(q0) — qo) as follows:
Gy = _(wll)_158 + vgs* — (W32)_1W33586 + Mip + h.o.t.,
Gy = —wvyg+0d, + (wll)_lw135s + (W32)_1586 + Msu + h.o.t.
By solving vy from G5 = 0 and substituting it into G; = 0, we obtain the bifurcation equation

—(w11) 710 + 0y5% + (w2) 105+ Myus® — (wsp) twssds® + My + hot. = 0. (2.9)

3. Bifurcation analyses and bifurcation diagram

DEFINITION 3.1. The strong foliation Wfé) is called strong inclination flip if t — —oo,
the stable manifold Wf(t) is inclination flip and the strong stable component wsz = 0 as
t=1T, T>1.

We will distinguish the following cases.
Case (1): 1 > a > (3 > 0. The bifurcation equation (2.9) is reduced to the following

if wgs3 =0, for 6, #0, 0,8+ Mipu+ h.ot. =0, (3.10)
for 6, =0, —(wi1) s+ (wsz) 165HF + Mapus®
+ Mip+ h.ot. =0, (3.11)
if wsg #0, —(ws2) ‘wszds® + Myp+ h.ot. = 0. (3.12)
Case (2): a>1> > 0. We obtain the following bifurcation equations
if wgz =0, —(wn)_lés + Myp + h.ot. = 0; (3.13)
if wyg # 0, —(ws2) twszds® + My + h.ot. = 0. (3.14)
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Case (3): > > 1. We have the following bifurcation equation
—(wll)_lés—i-Mlu—i—h.o.t. = 0. (3.15)

REMARK 3.1. Notice that, the local weak stable manifold is not unique. In fact, one can
fill up a wedge area in W*NU with these manifolds (curves). Obviously, 6, = 0 means that in
the coordinate system corresponding to the normal form (1.3), the local weak stable manifold
I'NU is exactly a segment of the y-axis.

Firstly, we assume ws3 # 0, that is fé) is not strong inclination flip. It follows from
(3.12), (3.14) and (3.15) that:

THEOREM 3.1. If M1 # 0, wssg # 0, system (1.1) has at most one unique periodic orbit in
the small neighborhood of T'. And it does exist if and only if p € {w11 Mip > 0}, 0 <| p | 1,
fora>p3>1; € {wwssMip >0}, 0<|pul<l, forl>a>03>0anda>1>p0>0.

THEOREM 3.2. If My # 0, ws3 # 0, there exists codimension 1 bifurcation surface Hy :
Mip+ h.o.t. = 0 with normal vector M1 at p =0 such that " persists as p € Hj.

Secondly, we consider the case of strong inclination flip, that is, wss = 0. Owing to (3.10),
(3.13) and (3.15), we state the following result.

THEOREM 3.3. Assume w3 = 0, then
(1) if1 >a > >0 and 6, # 0, system (1.1) has a unique I1-periodic orbit if and only
if p € {0,Mip < 0}, 0 <| p | 1, and there exists codimension 1 bifurcation surface
Hy: Mip+ h.o.t. =0 with normal vector My at = 0 such that T' persists for up € Hy.
2 ifa>1>p0>0o0ra>p0>1, system (1.1) has a unique 1-periodic orbit if and
only if p € {wi1Miu > 0}, 0 <| p |< 1, and there exists codimension 1 bifurcation surface
Hy: Mip+ h.o.t. =0 with normal vector My at = 0 such that I' persists for u € Hy.

It then remains the case concerning the bifurcation equation (3.11) which we deal in the
sequel. We state the results for this case in the following.

THEOREM 3.4. Suppose that1 > a > >0, wsg =0, 0, = 0 and rank(M;, Ms3) = 2, then
there exist a 1-homoclinic bifurcation surface H', a 2-fold periodic orbit bifurcation surface
SN, a period-doubling bifurcation surface P?" of 2"~ periodic orbit and a 2"-homoclinic
bifurcation surface H*" for ¥ n € N, which share the same normal vector My at = 0, such
that system (1.1) has

a 1-homoclinic orbit if and only if p € H' and | p |< 1;

a 2-fold periodic orbit if and only if p € SN*;

a 2" -periodic orbit changing its stablility and a 2"-periodic orbit arising at the same
time if and only if p € P?";

a 2"-homoclinic orbit if and only if p € H*".

Furthermore there exists a bifurcation surface A1 (which is a branch of H') with codi-
mension 1 and normal vector My such that system (1.1) has a 1-homoclinic orbit as well as
a 1-periodic orbit for p € Ay and | p|< 1.

The rest of the paper is devoted to the proof of the above theorem which follows from
several propositions.
Denote the left side of (3.11) by F(s,pu) = L(s, ) — N (s, p), where

L(Sv M) = MgMSa + Mliu + h.o.t., L(07 M) = F(Oa M)a
N(s,p) = (wi1)710s — (w32) 165+ + hoot., N(0,u) =0,
and
DY ={p: Myp>0, M >0}, DT ={u: Mip>0, Mapu <0},
DY ={p: Mip <0, M3pu>0},  DZ={p: Mypu<0, Mau<0}.
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It is evident that the four areas are not empty when rank(M;, M3) = 2.

PROPOSITION 3.1. Suppose 1 > a > 3 > 0, w3 =0, §, = 0 and rank(My, Ms) = 2,
then F(s,p) has a unique positive zero point § sufficiently small such that system (1.1) has
a unique periodic orbit. More precisely,

(1) when o+ B > 1, F(s,pu) has a unique sufficiently small positive zero point § for
MEDi_UDI if w1 >0, and p € D~ U DY if wyy <O0.

(2) when 0 < a+ B <1, F(s,u) has a unique sufficiently small positive zero point § for
ne DtUDI if wge <0, and p € D~ U DY if wzs > 0.

(3) when a + B = 1, F(s,pu) has a unique sufficiently small positive zero point § for
ne Dt U DI if (w?,Q)_l > (wn)_l, and € D~ U D; if (W32)_1 < (wn)_l.

Proof. When a4+ (6 > 1,
F(s,p) = —(wi1) " '0s + Maus® + My + h.o.t.
Let s* = t, then in case wy; > 0. If u € DT,
L(0,p) = Myp+ h.o.t. >0, L'(t,u) = Msp + h.o.t. <0,
N'(t,p) = (awn)_létl%& + h.o.t. > 0.
So the line W = L(t, 1) and the curve W = N(t, i) intersect at a unique sufficiently small
positive point < (6~ w1 My u)® and F has a unique sufficiently small positive zero 5 = (£)1/<.
If 4 € DT, then

L(0,p) = Myp+ h.ot. >0, L'(t,u) = Msp+ h.ot. >0,

N'(t, 1) = (ow1) "6t & + h.o.t. > 0,

N"(t, 1) = (1 — a)(QPwi1) 1ot =" + hot. > 0.

Take £ = [0~ twi1(2M3p + Myp)]®, then
N(t, p) — L(t, ) = 2M3zpu + My — Mapt — Myp > Mzp > 0.

Therefore, based on the fact that N(-, ) is a monotone increasing convex function, we see
that the line W = L(t, ) and the curve W = N (¢, u) intersect uniquely at t* € (0,¢), that
is, I/ has a unique sufficiently small positive zero point 5 € (0,6 twi1 (2M3pu + Myp)).

The proof for the rest cases can be given similarly. O

PROPOSITION 3.2. Suppose that 1 > a > (3 >0, wzz3 =0, 6, =0 and rank(My, M3) = 2,
then
(1) for a+ 3 > 1, there exists a bifurcation surface Ay with codimension 1 and normal vector
My at p =0 such that system (1.1) has an 1-homoclinic orbit as well as an 1-periodic orbit
for e Ay and | p |< 1.
(2) for 0 < a+ (B < 1, there exists a bifurcation surface Ao with codimension 1 and normal
vector My at pn = 0 such that system (1.1) has an 1-homoclinic orbit as well as an 1-periodic
orbit as p € Ay and | p | 1.
(3) for a+ [ =1, there exists a bifurcation surface As with codimension 1 and normal vector
M at p =0 such that system (1.1) has an 1-homoclinic orbit as well as an 1-periodic orbit
as p € As and | p |< 1.

Proof. When a4+ 8> 1, p € Ay 2 {u: F(0,u) = Mip+ h.ot. =0, wyy Mzp > 0}, we
have
F(s,p) = s%[—(w11) 105 + Msp + h.o.t].

1
Consequently, there are two zero points s; = 0, s3 = (w116~ *M3zu)T= + h.o.t.
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When 0 < a+ B <1, p€ Ay 2 {pu: F(0,1) = Myp+ h.ot. =0, w3aMsp < 0}, one has
F(s,p) = s%(ws2) 10s” + My + h.ot] =0

which admits s1 = 0, s = (—w325_1M3,u)% + h.o.t. as its solutions.
When a+3=1,u€ Az = {u: FO,u) = Mipu+h.ot. =0, wiiwss(wss —wi1)Mau > 0},
we obtain
F(s,p) = 5%[(w32) ™! = (w11) s~ + Mzp + h.o.t.].

1
Thereafter, it has two zero points s; = 0, so = (w11w32(w32 — wi1) 16 ' Mau) ™= + h.o.t. O

PROPOSITION 3.3. Suppose that 1 > a > 3 >0, w3z =0, 6, =0 and rank(My, M3) = 2,
then F(s,p) has a unique 2-fold positive zero point § such that system (1.1) has a unique
2-fold periodic orbit. Precisely speaking,

(1) when a+ 3 > 1, F(s,u) has a unique 2-fold positive zero point § = (c?‘loa,unMg,,u)ﬁ +
h.o.t. for u satisying wiyMzpu > 0 and the 2-fold periodic orbit bifurcation surface is SN :
1 e
(wn)_lé(é_lawnMg,u)ﬁ = Mg,u(é_lawnMg,u)ﬂ + Mip+ h.o.t.
with normal vector My at p = 0.
(2) when 0 < a+ B < 1, F(s,u) has a unique 2-fold positive zero point § = [—(d(a +
1

B)) " tawsa Msp]? + h.o.t. for u satisying wss Mzu < 0 and the 2-fold periodic orbit bifurcation
surface SN

—(ws2)H0[—(8(cr + B) " awsa Map] 7 = Mypu[—(5( + B)) " owsa Msp]

has normal vector My at p = 0.
(3) when a+ =1, F(s,u) has a unique 2-fold positive zero point

e

+ Mip+ h.o.t.

§ = [(S(ws2 — wnn)) " awiiwss Map] T3
for p satisying ((w11)~! — (w32) " HMsp > 0, and the corresponding 2-fold periodic orbit
bifurcation surface SN :
((w11) ™ = (ws2) ™)8[(B(ws2 — win)) " awniwsy Msps] =
= Map[(6(wss — wn1)) tawnwse Map] s + Mip + h.o.t.
has normal vector My at p = 0.

Proof. The 2-fold zero point ¢ should satisfy

L(t,p) = N(t, ),  L'(t,p) = N'(t, ). (3.16)
The second equation turns out to be
(awn) Lt — (o + B)(awsz) " 1ota + h.ot. = Map. (3.17)

When a4+ 3 > 1, we have t = ((5‘105u111]\43u)ﬁ + h.o.t. for w1 M3z > 0 due to (3.17).
Then from the first equation of (3.16), we get the corresponding 2-fold periodic orbit bifur-
cation surface SN :

1 _ o
(wn)_lé(é_laqug,u) 1—a = Mgu(é lawnMg,u) I—a + Mipu+ h.o.t.

with normal vector M; at u = 0.

The other two cases can be proofed similarly. O

Now we try to study the bifurcation of 2-homoclinic orbit and the period-doubling bifur-
cation for the case of 1 > a > 3 > 0, w33 = 0, §, = 0. Like before, let ¢; and ¢ be the
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flying time from qg to ¢; and from ¢ to g3, respectively, s; = e~ %, i = 1,2. Then the second
successor function can be expressed by

G2(8178277)077)2) = (G%7Gé7G%7G§) = (Fl(qO) - Q27F1(Q2) - QO)

with:
Gl = —(wi1) 1052 + vosy — (ws2) 'wszdsy + Mip + hoot.,
GY = —vg + 8, + (wi1) wizdse + (ws2) 108y + Map + h.o.t.
G? = —(wi1) 1051 + vas§ — (ws2) 'wszdsy + Mip + hodt.,
G3 = v+ 8y + (win) " wizdsy + (ws2) 1055 + My + hoot.

Solving (vg,v2) from (G3,G2) = 0 and substituting it into G1 = 0 and G} = 0, we then
obtain the bifurcation equations

—(wll)_lésg + (wll)_lwlgésﬁo‘ + (wgg)_lésff‘sg + Msust + M

thot. =0, (3.18)
—(wn)_lésl + (wll)_lwlgéSé-i_a + (W32)_1581 Sg + Mg,us‘zl + Ml,u
+h.o.t. = 0. (3.19)

It is easy to see that system (1.1) has a 2-homoclinic orbit near I' if and only if the above
equation has s; = 0,53 > 0 as its solution by the symmetry of G?.

If s; =0, s9 > 0 is the solution of the bifurcation equation, then sy = 6wy My + h.o.t.
for w11 Myp > 0, and the 2-homoclinic bifurcation surface

H?: wiitMsp = —5(5_IW11M1,U)1_Q + h.o.t.

has codimension 1 with normal vector M; at u = 0.
Thus we have:

PROPOSITION 3.4. Suppose 1 > a > 3 >0, wsz3 =0, §, = 0 and rank(My, M3) = 2,
then there exists a unique I-homoclinic bifurcation surface H' : Mipu + h.ot. = 0 with
codimension 1 and normal vector My at p = 0, which coincides with Ay in the region defined
by {i: winMsp > 0}. For p € H' and | p |< 1, system (1.1) has a unique 1-homoclinic
orbit.

There exists a unique bifurcation surface H? : w1t Msp = —5(5_1w11M1,u)1_°‘ + h.o.t.
which is well defined in the region {u : w11 Mip > 0, wi1Msu < 0}, such that system (1.1)
has a unique 2-homoclinic orbit for u € H?.

From Proposition 3.4, we know that H'! and H? have the same normal vector M; at
pw =0, and Mazu = O(| Myp |'=%) for p € H?. So, there is a tongue area bounded by H'
and H2. And in the tongue area, there must be another bifurcation surface P? where a
period-doubling bifurcation arises.

Similarly as in Section 2, we define

J .
Po : Q2j—2($2j—2,y2j—2,1)2j—2) - Q2j—1($2j—1’y2j—lav2j—1)>
_ _ B _
Toj-2 = SjT2j-1, Y2j-1 = S;¥Y2j-2, V2j-1= SjV2j-2,

and T25—1 %57 Y25—2 %57 j = 1727"' .

2j-2 _ 2j-2 _
n? " = (wi1) twgj_e, ny’ " = w9 — 0y — (wi1) lwizmaj_a,
2j-1 1 5i-1 1
ny T =wgj_1 — (w32) wasyzji—1, Ny = (w32) Y2-1.
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From the above, we give the n-th Poincaré return maps:

FIJ =P o Pg 2 Sp — Sy, q2j—2 F— 4252,

_2j-2 _
ny " = g1 — (wsa)”'wasyzj1 + Mip + hoo.t.,
_2j—2 _

ny’ " = (ws2) 192;‘-1 + Msu + h.o.t.

Consequently, the associated n-th successor function is given by
Gn(sl, ct,Sn, V0, ’U2n—2) = (G%v Gilb G%’ G%? G?’ va Gzllv Gg)
= (Fl(q@) — @ Fi(@2) — a1, Fi'(q2n—2) — q0)-
Now, we study the 4-homoclinic bifurcation surface H* with the condition 1 > a > 8 >
0, w33 = 0, 51} =0.
Solve (vg,v2,v4,v6) from (Gi,G%,G3,G3) = 0 and substitute it into (G1,G2,G3,GY),
then we get the bifurcation equation:

—(wn)_1582 + (wu)_lwlgés}Jra + (W32)_158?S§ + Mg,us‘l" + Miu

+h.ot. =0, (3.20)
—(w11) sz + (wll)_lwlgés;“‘ + (wgg)_lésfsg‘ + Mspus§ + Mip
+h.ot. =0, (3.21)
—(wll)_1(584 + (wll)_lwlgéséw‘ + (wgg)_lésgsg + Mg,usg + MlN
+h.ot. =0, (3.22)
—(wll)_1581 + (wn)_lwlgés}fo‘ + (W32)_158§82‘ + Mg,usi‘ + Ml,u
+h.o.t. = 0. (3.23)

So, we just need to consider the above equations that admit s; = 0,89 > 0,83 > 0,84 >0
as solutions. Correspondingly, from (3.20), we have sy = w110~ Mypu+h.o.t. for wiy Myu > 0.
Then (3.21) yields
$3 = w115_1[M3,u(w115_1M1,u)0‘ + Miu] + h.ot. = w16 Y My + hoot.

for pe {p: wird "Mip >0} N {p: Mp=o( Mip|'=)}.
If a+ 3 > 1, we obtain s4 = w110 ' Myp+h.ot. for p € {p: wirMip > 0yN{p: Mzp =
o(| Myp |['=%)}. Then, (3.23) gives the 4-homoclinic bifurcation surface H* :
Mip(wi16 P Myp)® + My + heo.t. = 0. (3.24)

Here, we have that H* is defined on {;: Msu = O(] Myp |1=%)}.

IfO0<a+pB <1, weget s4 =wii(wse) (w10 " Myp)TB + hoodt. for p € {p: wiiMyp >
0} N{p: Msu = o Myp [*=%)}. Consequently, from (3.23) the 4-homoclinic bifurcation
surface H* should be:

(wa2) 10 (w116 My p)Plwnn (wa2) T (w1r 6™ My ) o)
+M3M[w11(wgg)_l(wll(s_lMlu)aJrﬁ]a + h.o.t. = 0. (325)

In this case, we have that H* is defined on {u: Msu = O(| Myu |?)}.
If o+ 3 =1, then s4 = w110 1+ (w32) | Myip+ h.ot. for p € {p: wiitMip>0yN{p:
Msp = o(| My |*~%)}. Then, we get the 4-homoclinic bifurcation surface H*:
Map{win 6 1+ (wsg) ™ Mip}® + Mip + (ws2) ™ wn[1 + (ws2) 1" Mip
+h.o.t. = 0. (3.26)

Owing to the bifurcation surface equation, we have that H* is defined on {u : Mzu = O(]
Mip |F=%)} as well.
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Summing up, we get the 4-homoclinic bifurcation surface H* : (3.24), (3.25) or (3.26) on
the parameter surface {u: Mzu = o(| Myu [*~®)}. Repeat the above procedure, we can also
get the 2"-homoclinic bifurcation surface H?" and the period-doubling bifurcation surface
P?" for arbitrary n € N.

To well illustrate our main theorem, we give the following bifurcation diagrams under the
assumption 1 > a > 3> 0, wss =0, §, = 0 and rank(My, M3) = 2, where O represents that
there is no periodic orbits, while P (resp. P*) represents that there exists a 1-periodic (resp.
k-periodic) orbit in the corresponding region.

Aq

P+ P

SN* A —P + P4 P

o + P24+ Py 4 P
P P2y P
’ PS":?J; p?
(@) H?
FiGure III.2. Bifurcation diagram incase: 1 >a > (>0, a+06>1, 6, =
0, w1 >0, wyz =0.
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CHAPTER IV

Codimension 2 bifurcation of twisted double homoclinic loops

We study the bifurcation of twisted double homoclinic loops. We obtain bifurcation
results in both one twisted and two twisted loops.

1. Hypotheses and Preliminaries

For fixed r, we consider the following C" system

2= f(2) +g(zp), (1.1)
where z € R™2 m > 0,n > 0m+n >0, p € RL 1 >2 0 < ||p| <1, f(0) =
0, g(z,0) = 0, here || - || denotes the scalar product. Differently with the 3D homoclinic

bifurcation with inclination flip in the former chapter, the degeneracy of the unperturbed
vector field

i = f(2), (1.2)
comes from exclusively form the double homoclinicity, and various bifurcation manifolds and

the corresponding existence regions are concretely given.
First of all, we assume that:

(Hy) System (1.2) has a hyperbolic equilibrium at the origin and the relevant linearization
matrix Df(0) has simple eigenvalues: A1, Ayi(i = 1,2,---,m), —p1, —p2;(j =
1,2,--- ,n) satisfying

—Reij <—p1 <0< A1 < Re)o;.

With no strong resonance between —p; and A1 being allowed, we can always assume
that p; > A1 without loss of generality.

Thanks to the Implicit Function Theorem, since the equilibrium of the unperturbed
system (located at the origin for = 0) is hyperbolic, this equilibrium persists and admits a
continuation for small values of ||x||. Up to a translation, one can assume that the equilibrium
is always located at the origin.

Moreover we assume that D f(0) satisfies the Sternberg condition of order () with @) =

K([’\f—z”] + [p;—f]) + 2, where K is the Q-smoothness of Df(0), and r > 3Q, so that system

(1.1) is uniformly C¥ linearizable according to [82]. Hence, up to a C¥ diffeomorphism,
there exists a small neighborhood U of 0 in R™¥"+2_ such that for all u € R, 0 < [|u|| < 1
and for all (x,y,u,v) € U, system (1.1) has the following C¥~! (K > 4) normal form:

=Mz, g=-pi(wy,  w=X(u,  v=—pa()v. (1.3)
Here, A2(p) is an m x m diagonal matrix with Aoy, Aog, -+, Aoy, as its diagonal elements
and pa(p) is an n x n diagonal matrix with pa1, pog, -+, pon as its diagonal elements.

Besides, we make the following assumptions:
(H2) System (1.2) has a double homoclinic loops I' =TI'; U T'g,

I, = {Z:Ti(t)Z t eR, T‘Z(:l:OO) :O}

53
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and dim(T,, y W*N'T,, W) =1, i = 1,2, where W* and W* designate the stable
and unstable manifold respectively and TAW is the tangent space of W at A.

(Hs) Let el?t = limy 00 %, then e € ToW¥, e; € ToW* are unit eigenvectors corre-
sponding to A\; and —p;, respectively. Moreover, ef = —e;, e = —e,.

(Hy) Span{Tri(t)Wu, Tri(t)WS, 6:_} =R™"F2 a5t > 1,

Span{T,, iy W*, T,y W*, e; } = R™T"2 as t < —1. (see Figure IV.2)

<)

1-1 doule homoclinic orbits 1-1 large homoclinic orbit

(T

2-1 double homoclinic orbits 2-1 right homoclinic orbit

T (T

2-1 large homoclinic orbit 2-1 large periodic orbit

FiGgure IV.1

REMARK 1.1. For the ezisting loop T, (Hs) is generic, which guarantees that I' has no
orbit flip. While (Hy) says that both homoclinic orbit are not of inclination-flip. If both Hs
and Hy hold, the orbit is called non-critically twisted.

With the above assumptions, the double homoclinic loops, say I'y,I's, are of codimension
2. Besides, a non-degenerate homoclinic orbit I' is called non-twisted homoclinic orbit if the
unstable manifold W* has an even number of half twists along the homoclinic orbit. It is
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called a twisted homoclinic orbit if W* has an odd number of half twists along I', see [18]
for more details. We shall study the problems of p-g double homoclinic loops, p-q left (or
right) homoclinic loop, p-¢ large homoclinic loop and p-q large period orbit bifurcated from
the twisted double homoclinic loops in arbitrarily high-dimensional system. Here, “left” or
“right” means the corresponding orbit circulates in the small neighborhood of the original
double homoclinic loops whereas it just takes infinite time in the neighborhood of one orbit
of the double homoclinic loops, either I'y or I'y. And “large” means that the corresponding
orbit moves around in the small neighborhood of the original double homoclinic loops and it
takes infinite time in the neighborhood of each homoclinic orbit. In addition, ”p-q” refers to
the rounding number in each orbit’s neighborhood. Precisely speaking, p-¢ loop will round
I’y p cycles, while it has winding number ¢ in a small neighborhood of I';. (see Figure IV.1.)

As in the meaning of the first approximation, the tangent vector bundles, situated in the
tangent space bundles confined on the homoclinic loops, which is the intersection of the stable
manifold and the unstable manifold, inherit and exhibit sufficiently the properties (such as
the geometry, the invariance, the contractibility, the expansiveness, etc.) of the system near
the loop. Our aim is then to select carefully some tangent vector bundles along the loops and
some others complement to them to form a moving frame so as to obtain the simplest form.
Let us consider the linear variational system of (1.2)

2= Df(rit))z (1.4)
and its adjoint system
2=—(Df(ri(t))) 2. (1.5)
Denote 7;(t) = (r¥(t),r?(t),r%(t),r?(t)) and take T\, T} large enough such that

ri(_ ) (( ) 5 0, z ) )7 ri(T'O) = (O, (_1)i57 075?))7
where [|0¥]],]|67]] = O(0%), i = 1,2, o = mln{RepQJ/plaRe)\Qk/)\l} > 1, and ¢ is small
Ik

enough so that
{(z,y,u,0) [z, |yl [Jul], [Jo]| < 46} C U.
We state the following lemma which can be found in [40, 88|.

LEMMA 1.1. There exists a fundamental solution matriz Z;(t) = (21(t), 22(t), 23 (t), 2}(t))
for system (1.4) with

zi (1) € (T, yW") N (T, ey W?)",
= =) /[P (TD)] € T,y iy W N Ty W*,

satisfying
21; w?l 0 wgg 1 : 0)‘ wgi 0
oy | W 0 0 Wy 0y _ 0 -1)" w; 0
Zi(-T;) = W WB L8| Zi(17) = 0 0 wB 0 ;
0 0 0 wh ot WM W L

where, as Tz-j > 1t = 1,2, 5 =0,1), 12de‘5w33detw44 #0, () <0, [|w¥ < 1,
loi ] < 1, (@) w | < 1, [l(wi?) 7 113H < 1; [fwih) ™ 223” <1, |\(detwf4) ikl <
1, fork #4; ||(detw3®) " twk|| < 1, for k # 3.
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REMARK 1.2. In the above lemma, W"* stands for the strong unstable manifold while
W#¢ stands for the strong stable manifold.

As is well known from the matrix theory, system (1.5) has a fundamental solution matrix
D;(t) = (Z;1 (1) = (9H(t), d2(1), 92 (1), ¢(t)). Introduce the local active coordinates N; =
(n},0,n3 n4) then we parametrized a point z = (x,y,u,v) near the orbits I'; in the section
Si(t) by the coordinates (n},n?,n}). And the section S;(t) can be written as

Si(t) = {z = ri(t) + ZiO)N; = ri(t) + 2} ()n} + 23 (E)nd + 2 (t)n}}. (1.6)
Choose the cross sections, for i = 1,2,
= {z = S:(T7) : |z|, 1y, [ul, |v] < 26} C T,
S} ={z=Si(=T}) : |z|, |y, |ul, |v| <26} C U.
With the above notation, system (1.1) has the following form
= (¢1(1) gu(ra(), O+ o(llul),  i=1,2 j=1,3,4, (1.7)
which is C*~2 and produces the transition maps pPl: Sl — SZQ, i = 1,2. Here, g, is the
derivative of g with respect to u. Integrating both sides of (1.7) from —T}! to T, we have
WI(T0) = nd (=T + M+ o(llull),  i=1,2% j=1,3,4,
where N,(T?) = (nH(T?), 0, n3(T?), n&(T?)), Ni(~T}) = (n}(~T}), 0, nd(~T}), nk(~T1),
. 0 .
and M = f_TZTl (7 (t)*gu(ri(t),0)dt,i = 1,2;5 = 1,3,4 are Melnikov vectors (see for example
(39, 40, 88, 104, 105]).
REMARK 1.3. The Melnikov vectors in the case j = 1 are given by

70 +oo
i = [ eloraem.0d = [ @) amo.od i1,

—0o0

2. Bifurcation equations with single twisted orbit

We now study the case of a single twisted orbit which means that the following hypothesis
is satisfied.

(Hs) The orbit I'y is nontwisted and I'y is twisted, that is, wi? > 0 and wi? < 0.

Consider the map P : S) — S3, ¢ — 43, Fg : 0 SY — 81, @) — g and P
S9 — St ¢ — ¢f induced by the flow of (1.3) in the neighbourhood U of z = 0. Set
the flying time from q? to q% as Tq, qg to q% as To, qg to q% as 73 and the Shilnikov time
sp =e M k=1,23 (see Figure IV.2). Then we have

0. 0,0 0,0 .0 1
Pl . Ql(mlaylaulavl) _>Q2(x27y27u277)2)

0 _ 1 p1/A1_ 0 0 _ A2/A 1 1 p2/A1 00
Ty = S1%9, y2 =5 Y1, U =35 U, Uy = 8 vy,
50, -0/-0 -0 -0 -0 171 -1 ~1 =1
Py q3(T3, Ua, U3, V3) — (T2, Yo, U, Va),
0 _ . -1 o p1/A1 0 0 A2/ A1 - 1 p2/A1 -0
.T2 = 52.’1}'27 y2 82 y27 U2 82 U2, 'U2 = 82 7}27
0 . 0,0 ,0_ 0 0 1/..1 1 1.1
P2 . Q2($2’y2’u2’v2) —>Q1($1,y1,U17'U1),

0 _ 1 p1/A1, 0 0 _ A2/A1, 1 1 _ p2/M,0
.T2 — 53x17 yl - 83 y27 U2 - 83 ul, 'Ul - 83 7}27

where for k£ = 1,2, 3,

Ao/M A21/)\1 >\22/>\1
5, = diag(s), 8%

) 7

Som/A A A A /A
2 /1)’ g2/1 diag(s? p21/M1 gzz/lj,” gz/l)
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u,v

Ficure IV.2. Poincaré map with single twisted orbit

are diagonal matrices of order m and n respectively.
To be more precise, let

Sl+:{q€SZ-1|yq>0}, Sz'l—:{qesil‘yq<0}a
Sy ={qe S xy>0}, SY ={qe8%z,<0}, i=12.

Then,
PYs0 sk, PY:s) sl
PY: 8y -, Py: Sy — S
Equipped with these formulae, we calculate the relations between

2j i 25 25 2j+1, 2j+1  2j+1  2j41 2j+1 0/ 25\ 2j+1
4q; ( i 7%7 )y q @y e ), P )_qi—i-l

and their new coordinates N7 (n2!, 0, n23 n20t) N2+ (p27H01 o 2713 20414y

1,2, where g3 = ¢}, and similar relations for q2' and q2]+]L = Fg(cﬁj ). Using (1.6) and
according to the expressions of Z;(—T}) and Z;(T?), we obtain

for 7 =

_25,1 _27 3 33 2 —27,3 33 2
n2j = 2J 21(w2 )~ 1“2]’ 2] = (wy”)” 1“2],
5204 _ 52 _14 2j 14 31 34\, 33\—1-2j
ny"" =0y — 0y — 5 + (&g —wy ) (wy”) Ty,
_2j+1,1 12\ —1-2j+1 12—1, 42/ 44\—1-2j+1
nzj = (W)~ yz] — (w2™) Wy (wy") ”2] )
_2j+1,3 _ _2j+1 13 1-2j+1 13 1,42 43 1-2j+1
ny’ =y’ — 6% — wy (wy?)~ 77+ wy (ws?) " wi? — wyJ(wi®)~ vy’ ",

=2j+1,4 _  44\—1-2j+1
o - (w2 ) Uy )

27,1 27 31/, 33\—1, 2j 27,3 33\—1, 23
ny’ :mz‘]_%’ (wi*) "y, n;” = (w;”) g,
n?],4 _ — 5 — -14 23 + (@] 14 31 wf’4)(wf’3)_1uz2j,
R ( ) 1 2g+1 (w12)_1w42(w44)_1v2j+1
7 7 1 7 7 ;
n?j+1,3 u2]+1 5u . w (w}Q)_ly?jH + [wgs(wgz)—lwfxz _ w;l?»] (wf‘4)_1vi2j+l,

n2j+1,4 (w ) 1 2]-‘1-1

)
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and
x?jﬂ ~ (—1)%, a‘c%jﬂ ~ 0, yizj ~ (—1)%, ggj ~d i=1,2.
From the above, we obtain the following Poincaré maps:
Fi=PloP): S} — 59,
nyt = —(@i) 7SN — (@) e (@i T+ M3+ o)),
00 =) 55+ BB b B — ) g
+MZ g+ ol ),
nyt = (@) 7'M+ Mg+ o)),

P2 OP2 52 - 527
n = (i) 71550 — (wi?) T twd (wit) T s M 8Y + M p+ o)),
ny® = ) — 0 — wp(wi?) s M + [y <w52>-1w§2 — i) () s Mg
+ M+ o(||ul]),
nyt = (Wit M0+ M+ o)),

Fy=PloP): 89— 59
2,1 A A
! = (@12 T8N — (i) T (i) T8 M08 + M+ of|ull).
ni? = uf — of — WP (i?) 56 + ] Lttt )7t Mg
+ M+ o)),
2.4 A
= (i) 7158 + M+ of|ul))
Now, the successor function
G(Sl782783711’%717’%7”%77)?76(2)77)8) = (GLG%7G%7C§7G37G47G§7G37G§)
= (Fi(¢)) — 8. F(a) — a3, F5(ad) — @f)

is given by the following:

_ A _ _ A
Gl = —(@l) S0 — () d) T e — 20
! (W) 1 M 1+M2u+0(\lu|\)
G = w03 4 S o BB — )
— (@) sy M 1+M§’u+0(\lu|\)
A Ao/
G = = o+ () D oo, — Bl — ) 1 e
+ M+ ol||ul]),
G} = (w%2)—1SP1/>\15 (Wi2) 182 (i) P2/>\1 o0 + s36
+w3l< 33)~1gy2/M 1+M2u+0(llull)
G = b= B — l )+ B () — )
—< 33)- “2”1 1+M/2iu+0(llull) "
Gh = o8 1o+ (ot ol — aftasg — el — o))

+M p+ o[l
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G:l)) _ (W%Q)—ls 1//\15 ( )—1 42( 44)—1 p2/’\1v8—315
+w31< 33)~1gy2/N 1+M1u+0(llull)
GE = ul = 0F — ) G + o )l — )
< 83)-1 WI 1+Mf’u+0(llu||)
GY = —of 07+ (i) Mg + 0 tes — (B uf! - ) M

+M; e+ o] |ul])

Therefore, there is a correspondence between the solution @ = (s1, s2, Sg,u%,ﬂ%,u%,v?,

29, v9) of
(G1,G3,G1,G3,G3,G3,G3,G3,G5) =0

with s1 > 0,s9 > 0,s3 > 0, and the existence of 1-1 double homoclinic loops, 2-1 double
homoclinic loops, 2-1 right homoclinic loop, 1-1 large homoclinic loop, 2-1 large homoclinic
loop and 2-1 large period orbit of system (1.1).

Solving (ud, v9, 43,09, ul,v?) from (G3,GY,G3,G3,G3,G3) = 0 and substituting it into
the equations (G%, G%, Gé) = 0, we obtain the following bifurcation equations

—(wy) s PN sy 4 S IMpu+ hot. =0,
(wp?) ™! pl//\1+s + 0 "My p + hoot. =0, (2.8)
(Wi2) 1 s8™M — gy 4 6 M+ hot. = 0.

3. Bifurcation results with single twisted orbit

In this section, we study the existence, uniqueness and non-coexistence problem of p-q
double homoclinic loops, p-q right homoclinic loop, p-q left homoclinic loop together with p-¢
large homoclinic loop and p-q large period orbit for a nontwisted orbit I'y and a twisted I's.
Similarly, we can consider the corresponding problem for twisted I'; and nontwisted I's.

Firstly, we have the following result concerning the uniqueness and the non-coexistence.

THEOREM 3.1. Assume that hypotheses (H1) — (Hs) hold. Then, for ||u|| sufficiently
small, system (1.1) has at most one 1-1 double homoclinic loop, or one 2-1 double homoclinic
loop, or one 2-1 right homoclinic loop, or one 1-1 large homoclinic loop, or one 2-1 large
homoclinic loop or one 2-1 large period orbit in the small neighbourhood of I'. Moreover these
orbits do not coexist.

Proof. Let Q = (s1, 52, 83, ui, i, ul,v9,09,09) then

_ 0(GY,GY,GY,G3,G3,G3, G, G4, G I I
Q Q=0, =0 WIS 0 I3n

where I, denotes the identity matrix of order k,
Wi = diag(—4, —6,6), Wiz = diag(w}‘lé, w_%‘lé, —w_%‘lé)

are diagonal matrices. Notice that det W = —§3 # 0. According to the implict function the-

orem, in the neighbourhood of (@, 1) = (0,0), there exists a unique solution s; = s;(u), u} =

1
ul(p), o) = (p), uh = uh(p), v = v3(n) satisfying s;(0) = 0, ul(0) = 0, v)(0) =

0, u3(0) =0, ©9(0) =0, for i = 1,2.

Then, depending on the solutions s;, one may have the following possibilities which have
relations with the bifurcation problem.

If s = so = 0, then necessarily s3 = 0. By the uniqueness, we see that the double
homoclinic loop is persistent and it is impossible to appear two different homoclinic loops
near I'y forming bellows configuration.
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If s9 = s3 = 0 and s; > 0, then I'y is persistent, and meanwhile system (1.1) has a unique
1-1 large homoclinic loop.

If s = s3 =0 and s3 > 0, then system (1.1) has a unique 2-1 double homoclinic loop.

If s =0, s9 >0, s3>0o0r s3=0, s3>0, so >0, then system (1.1) has a unique 2-1
large homoclinic loop.

If s9 =0, s3>0 and s3 > 0, then system (1.1) has a unique 2-1 right homoclinic loop.

If s >0, so >0, s3>0, system (1.1) has a unique 2-1 large period orbit.

Clearly, the uniqueness guarantees that all these kinds of orbits do not coexist. O

REMARK 3.1. If there exists any p — q large homoclinic (or periodic) orbit for large p and
q, then from (Hs), p = 2q must be satisfied. However, due to the uniqueness of solution,
2q — q (¢ > 1) large homoclinic orbit is impossible to exist, and all the 2q-q (¢ > 1) large
periodic orbits are in fact the 2-1 large periodic orbit.

REMARK 3.2. If s1 = sg = s3 = 0 is the solution of equation (2.8), then G{ =&, forj =
1,3,4, thus the first two equations of (2.8) are the same.

In the sequel, we study the different bifurcation manifolds and their existence regions for
the single twisted orbit case.
By substituting s; = s9 = s3 = 0 into the first two equations we obtain

M3 p+ h.ot. = 0.

If M} # 0, then this equation defines a manifold Ly of codimension 1 with a normal vector M.}
at u = 0. One concludes that the first two equations of (2.8) have solution s; = s9 = s3 =0
when p € Ly and ||u|| < 1, which means that I's is persistent.

Similarly, there is a codimension 1 manifold L; defined by My + h.o.t. = 0 with normal
vector M{ at p = 0 such that the third equation of (2.8) has solution s; = s5 = s3 = 0
as u € Ly and ||u|| < 1. Therefore Ty is persistent. Suppose rank(M{, Mi) = 2, then
Lo = L1 N Ly is a codimension 2 manifold with normal plane Span{Mll, M21} such that the
double homoclinic orbit I' = I'y U 'y is persistent for u € Lis.

Substituting so = s3 = 0 into equations (2.8), we obtain

—(w%2)_18’1)1/)‘1 + 6 M+ hot. =0,
6 *Mjyp+ h.ot. =0,
—s14+ 6 Mip+ hot =0.
Therefore we get s; = § *Miu + h.o.t. If Miu > 0 then we have s; > 0. Substituting it

into the first two equations, we obtain the codimension 2 bifurcation set H213 such that a 1-1
large homoclinic loop bifurcates and I'y persists. We have

Hly o —(wd) Y0 M) ™ 4 67 M+ heot. = 0,
S IMJp+ hot. =0,

which is well defined at least in the region {y : M{u >0, Mip <0, Miu = o(| Myu |M/P1)}.
Similarly, if equation (2.8) has s; = s3 =0, sy > 0 as its solution, we need to have

—so 4+ 6 "My + h.ot. =0,
(w%Q)_lsgl/Al + 6 "M+ hot. =0,
6 My +h.ot. =0,

As the first equation induces so = "' MJp + h.o.t., so we can get the bifurcation manifold
for a 2-1 double homoclinic loop :

HY: s 'Mju+hot.=0,  §'Mlu+hot =0.
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Accordingly, for rank{Mi, M3} = 2, dimu = ¢ > 2, and 0 < Mju << 1, we have H% N

{p] s2(p) > 0} # 0, so there do exist 2-1 double homoclinic orbits with these conditions. If
not, there exist no 2-1 double homoclinic orbits.

PROPOSITION 3.1. There exist no p-q large homoclinic loop for any p > 2, q > 1.
Proof. If equation (2.8) has a solution with s; =0, s2 > 0,s3 > 0. one has
sy + 6 ' Myp+ hot. =0,
(wi2) "1 s8M 4 s+ 6 MY p+ hot. = 0,
((,u%z)_lsgl/)‘1 + 6 Mip+ hot. =0,
which implies that
s9 =0 "My +hot., s3=—0"Mju+ho.t.

Hence, it is impossible to have 2-1 large homoclinic loop bifurcation for system (1.1). By
using Remark (3.1), our proof is completed. O
If s9 =0, s1 > 0,s3 > 0 is the solution of (2.8), we obtain

—(w%2)_13’1)1/)‘1 + 6 M+ hot. =0,
s3+0 "My + h.ot. =0,
((,u%z)_lsgl/)‘1 —s14+ 0 'Mip+ hot =0.
Thus,
s1= (W20 M p)M/Pt 4+ heott., s3=—0 "Myp+ h.ot.
So the codimension 1 bifurcation manifold for 2-1 right homoclinic loop is
HE = {p | — (6 I MIp)N/Pr + 67 My + h.ot. = 0}

which is well defined at least in the region {y: M{p >0, Mju < 0} and has normal vector
M} at p = 0.

Let p be situated in the neighborhood of H33, differentiating equation (2.8), take values
at H13, and denoting by si, the gradient of s;(p) with respect to u, we get

(W3 T pr (WIS TIMG ) P A Py Ny 4+ MO MY + heodt. = 0,
53, + 6 IMJ + hot. =0,
(Wi2) L pr (=0 M ) A A Nysyy + MOTIM + huot. = 0.

Accordingly, we have sa, = 6~ My + O(] wi?67 M3y |(Pr=21)/p1). Therefore, sy = so(p)
increases along the direction M in a small neighborhood of H3®.
Suppose s3 =0, s1 > 0,52 > 0 is the solution of (2.8), then one has

_(Wéz)_lsfl/M —so4+ 0 1M+ h.ot. =0,
(Wi2) LM 6T M+ ot = 0,
—s1 + 5_1M11u + h.ot. = 0.
Hereafter,
51 =0 "M+ hot., S9 = (—w%25_1M21,u))‘1/p1 + hot.,
and the codimension one 2-1 large homoclinic loop bifurcation manifold is

HY? = (| ~(@§2) 7 (07 M )2 P — (—wf267 M) M/7t + hot. = 0)
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with normal vector Mj(resp. M{) at =0 as M3 # O(resp. M3y = 0), which is well defined
at least in the region {u | M{iu > 0, Mjpu > 0}.
When u € Hi?, based on (2.8) we get

(W)L (6T ME )P AN Nsa, + MM+ heoit. = 0,
(i) L1 [(—wi?6 MG )] A Py 4 Ay + A0 MY + heot. = 0,
—s1,+ 6 M} + h.ot. = 0.

Then we have s3, = —0~'Mj + O(| w20~ M3 p |P1=2)/P1) such that s3 = s3(u) increases
along the direction of the gradient —M. in a small neighborhood of HP}Q.

Now, we study the 2-1 large period orbit bifurcation and its existence regions.
Due to (2.8); — (2.8)2, we get

So + 83 = —(w%z)_ls’fl”l + h.o.t.,
so s3 = o(s1). Because of this, owing to (2.8)3, we have
s1 =06 "M+ hot.,

meanwhile (2.8)1, (2.8)2 produce

s9 = 0 MY — (W) THET ML )P 4+ heott.,

s3= =0 "Myp— (W) (0T Map — (w3?) NS ML )P AP A Bt
From the former lines we deduce that for p sitting on the set H'?3 defined by

{pw| M{p>0 and (3.9) is verified}

2-1 large period orbit persists, where

(MR < 5 M < (o) M M
3.9
and it is nonempty when rank{M{, Mj} = 2.
With the above analysis, we state the following result:

THEOREM 3.2. Suppose that (Hy) — (Hs) are fulfilled, then we have the following.

(1) If M} # 0, there exists a unique manifold Ly with codimension 1 and normal vector M;
at ;= 0, such that system (1.1) has a homoclinic loop near Ty if and only if p € L1 and
[|pf] < 1.

If M} # 0, there exists a unique manifold Lo with codimension 1 and normal vector M,
at p =0, such that system (1.1) has a homoclinic loop near T's.

If rank(Mi, M}) = 2, then L1s = L1 N Ly is a codimension 2 manifold and 0 € L1 such
that system (1.1) has an 1-1 double homoclinic loop near T as p € L1o and ||p|| < 1, namely,
T' is persistent.

(2) In the region defined by {jn: Mlp > 0,Mjpu <0, Mlp= o] Miu |/P)}, there exists
a unique bifurcation set Hi, which is tangent to Ly such that system (1.1) has one 1-1 large
homoclinic loop and I's persists as y € H213.

In the region defined by {u : 0 < Mju < 1}, there do exist a unique codimension
2 bifurcation manifold H123 which s tangent to Ly U Ly at p = 0 with the normal plane
span{ M, M3} when rank{M}, M3} = 2, and for u € Hi;, system (1.1) has a unique 2-1
double homoclinic loop near I

In the region defined by {p: Mip > 0, Mipu < 0}, there exists a unique codimension 1
bifurcation set H33 with normal vector M3 (resp. M{) at p =0 as M3 # 0 (resp. Mg =
0, M # 0) such that for u € H33, system (1.1) has a unique 2-1 right homoclinic loop near
T.
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In the region defined by {p : Miu > 0,Mjpu > 0}, there ewists a unique 2-1 large
homoclinic loop bifurcation manifold H§2 of codimension 1 with normal vector My (resp.
M) at p=0 as My #0 (resp. M} =0, M{ # 0) such that for p € Hi?, system (1.1) has a
unique 2-1 large homoclinic loop near T'.

(1.3) When p belongs to the region

H2 = {p | M{p >0 and (3.9) is verified}
which is bounded by H213 and H§2, system (1.1) has a unique 2-1 large period orbit, and
when 1 is situated in the region {u | Mip < 0}U{p | Mip < (wi?)"1(6~TM{p)rr/ 71}

Ul | M = —(i2) (0 M — (i2)=1 (0 ML) M)A system (1.1) has no large
period orbit. (see Figure IV.3)

FIGURE IV.3. Bifurcation diagram in single twisted case as rank(M], M}) = 2

4. Bifurcation with double twisted orbits

We now study the bifurcation problem of double twisted orbits, which means that the
following hypothesis is verified.

(Hg) Suppose that both T'y and I'y are twisted, that is, wiZ < 0 and wi? < 0.
Let PP,Fg, P be the same as in 2 and let F(l) : SV — 5] (see Figure IV.4) be given by

Py @, ), o) — al (@, ot al, o),
N =sat, gl=sNg @ =M, ol = s,
where s4 = e ™™ and 74 is the flying time from (j(lj to q‘%, a‘c% ~ —6, gj? ~ —¢. Like above, we
have
R T R
e = (W) ey,
=0 — oy — o'al + @' - W) i) et
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no )
1

B

FIGURE IV .4. Poincaré map with double twisted orbits

—25+1,1 —1-25+1 — —1-254+1
J+ _(w%2) 1 1J+ —(W%Q) 1 42(w4114) 1’U1J+,

ny = (] w1

_2j+1,3 _ _2j41 13, 12\—1-2j+1 13, 12\—1, 42 437, 4d\—1-2j+1
ny’ =" =0 —wit(wit) T 4wt (W) T W — Wi (wr ) T
_2j+1,4 44\ —1-2j+1

”1] = (w1) Ulj )

Fy :Pfoﬁ(l) : 8Y — 89,

Ayt = = (@) M8 — (i) T wf2 (Wi M) 4 ML+ o[ ll),

A1 = af = of + ol (W) M+ ) Tl — wof i) s el
+M7p+ o([|ul]),

nit = () T M+ o))

Up to now, the successor function is given by
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where
Gl = —(wi?)! P1/>\15 (wi2) 182 (Wit) 15 p2/>\1vg)_826
+w31< )15y M & M+ o lul),
G = ub— 05 + ()08 + ol f?) i — ) )
< ) Lsy M 1+M2u+0(llu||)
G = a0y () 1Mol ot — B! — o)) 1 Ml
+ M+ ol ||l
Gl = (wi?)1sf 1/Ag (wh?) w2 (Wit p2/>\1 20 + s36
+wdl (W) sy 1+M2u+0(\lu|\)
Gh = 63 Sl R B ) — )0
— (WP WI 1+M§’u+0(|\u\|)
Gf = —f+oy+ () g g — 1! — )
+ M+ o)),
Gl = (@2)—15171//\15 (w12) L2 ()1 pz/Al 00 + 546
+o (W) 15 M 1+M1u+0(||u||)
GE = ul = 0F + ) + o )l — )
— (W) 15 M 1+Mf’u+0(llu||)
G = o+ 0t (M) — ol — B — ) el
+ M+ o(l|pll),
Gl = —(f?) 1 — ) el e

o (wa®) 71 Mg 4 Mgt of ),
G} =} - +w] o 271N 4 [l (w12 e — W] (w1 M
~f)! 22 % M+ of|ul),
G =~ + 8 + (W) oMo + 40, — [l — () s
+ME A+ o[l
Thereafter, there is a correspondence between the solution Q = (s1, so, 83, 84, ul, U3, ud, @i,
09,99, 09, 9)) of
(G1,G,G1,G3,G3,G3, G, G3, G5, G, G, G) = 0
with s1 > 0,89 > 0,s3 > 0,s4 > 0, and the existence of 1-1 double homoclinic loop, 1-2
double homoclinic loop, 2-1 double homoclinic loop, 2-2 double homoclinic loop, 2-1 large
homoclinic loop, 1-2 large homoclinic loop, 2-2 large homoclinic loop, 2-2 right homoclinic
loop, 2-2 large homoclinic loop, 2-2 left homoclinic loop and 2-2 large period orbit of system
(1.1).
From equation (G%$,GY,G3, G5, G3,G3,G3,G1) = 0, we can solve (ul, 9, 44, v3, ul, o9, ul,
vY) as in the former section. Substituting it into (G}, G}, G3, G}) = 0, we obtain the bifurca-
tion equations

_(W%Q)_IST/M — sy + 0 MJpu+ hot. =0,
(w %2)_15/2)1/)\1 +s3+ 6 tMlp+ hot. =0,
(wi?)~ 1551/)\1 + 54+ 6 tMip+ hot. =0,
—(w %2)_1321/)\1 —s1+0 ' Mipu+ hot =0.

As a first step, let us consider the 2-2 bifurcations results with double twisted orbits.
We shall study the existence, uniqueness and non-coexistence problem of the p-g double

(4.10)
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homoclinic loops, p-q large homoclinic loop, p-¢ left (right) homoclinic loop, p-g large period
orbit for the double twisted homoclinic orbits I .
First, let us give the following result concerning the uniqueness and the non-coexistence.

THEOREM 4.1. Assume that (Hy) — (Hy4) and (Hg) hold. Then, for ||u|| sufficient small,
system (1.1) has at most one 1-1 double homoclinic loops, one 1-2 double homoclinic loops,
one 2-1 double homoclinic loops, one 2-2 double homoclinic loops, one 2-1 large homoclinic
loop, one 1-2 large homoclinic loop, one 2-2 large homoclinic loop, one 2-2 right homoclinic
loop, one one 2-2 left homoclinic loop or one 2-2 large period orbit in the small neighborhood
of I'. Moreover these orbits do not coexist.

Proof. Let Q = (s1, 82, 83, 54, ul, a3, ud, ul, v, 09,09, 97) and
8((;&17 G%’ G%? Gé? G37 G%? G37 G37 G?p Gzll7 G47 Gﬁ)
8(317 52,53, 54, 'U,%, ﬂ%a U%, ﬂ%a 7)5)7 687 7)87 6?)

then det W = 6% # 0. Due to the implicit function theorem, in the neighbourhood of (Q, 1) =
(0,0), there exists a unique solution s; = s;(u), u} 1 0 0 ! !

W =

|Q:07 :LL:O’

P=ui(p), v =0)(n), 4l =aj(p), o) =
29 () satisfying s;(0) = 0, u}(0) =0, v(0) =0, @}(0) =0, v9(0) =0, i=1,2.

It indicates that, if s; = s9 = s3 = s4 = 0, system (1.1) has a unique 1-1 double homoclinic
loops, that is to say, the double homoclinic loop I' persists.

If s1 = s9 =83 =0, s4 > 0, then there exists a unique 1-2 double homoclinic loops, i.e.
I'y becomes a 2-homoclinic orbit and I's persists.

If s1 = s3 = s4 = 0, s9 > 0, then there exists a unique 2-1 double homoclinic loops,
namely, I'y becomes a 2-homoclinic orbit and I'; persists.

If s1 =53=0, so >0,s4 >0, system (1.1) has a unique 2-2 double homoclinic loop.

If s1 = s4 =0, s > 0,s3 > 0, then I'1 is persistent, and meanwhile system (1.1) has a
unique 2-1 large homoclinic loop.

If s9 = s3 =0, s;1 > 0,s4 > 0, then I'y is persistent, and meanwhile system (1.1) has a
unique 1-2 large homoclinic loop.

If s1 =0, s9 > 0,s3 > 0,54 > 0, there exists a unique 2-2 large homoclinic loop.

If s9 =0, s1 > 0,83 > 0,54 > 0, system (1.1) has a unique 2-2 right homoclinic loop.

If s3=0, s1 > 0,s9 > 0,54 > 0, there exists a unique 2-2 large homoclinic loop.

If s4 =0, s3> 0,89 > 0,53 >0, system (1.1) has a unique 2-2 left homoclinic loop.

If s >0, s >0, s3>0,s4 >0, system (1.1) has a unique one 2-2 large period orbit.

Clearly, the uniqueness guarantees that all these kinds of orbits do not coexist. And all
other cases are impossible based on the definition of the Poincaré map. O

We now study the bifurcation problem for the double twisted orbits case. It can be
remarked that if s = s9 = s3 =0 (s1 = s3 = s4 = 0) is the solution of equation (4.10), then
G = G (GE = &) for j = 1,3,4, thus the first (or last) two equations of (4.10) are the
same one.

By the same reason as in 3, if s = s9 = s3 = s4 = 0 is the solution of the first (or
second) equation of (4.10), then we have Mlpu + h.o.t. = 0. In the case of MJ # 0, there
exists a codimension 1 manifold Ly with a normal vector M3 at u = 0, such that the first two
equations of (4.10) have solution s; = s9 = s3 = s4 = 0 as p € Lo and ||u|| < 1, that is, 'y is
persistent. Similarly, there is a codimension 1 manifold L; defined by M u+ h.o.t. = 0 with
normal vector M| at u = 0 when M{ # 0 such that the third and the fourth equations of
(4.10) have solution s1 = sy = s3 = s4 = 0 as u € Ly and ||u|| < 1, which indicates that T'y
is persistent. Suppose rcmk:(Mll, M21) = 2, then Lio = L1 N Ly is a codimension 2 manifold
with normal plane span{M{], M}} such that (4.10) has solution s; = sy = s3 = s4 = 0 as
w € L1y and ||p]| < 1, namely, the double homoclinic orbit I' = I'; U T is persistent.
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Suppose s1 = s3 = s3 = 0, 54 > 0 is the solution of (4.10). We have s, = —0~ 1M u+h.o.t.
for Mip < 0. Substituting it into the last equation, we obtain the codimension 2 bifurcation
set

Hiy: Myp+hot.=0,  Mlp+hot =0,

which is well defined at least in the region {; : Miu < 0} with normal plane span{M{, M1}
at u =0 when rcmk:{Mll, M21} = 2 such that a unique 1-2 double homoclinic loop bifurcates
from T for u € Hiy;. That is, 'y persists, while I'; becomes a 2-homoclinic orbit.

Similarly, we get the bifurcation set

H%,: Myp+hot.=0,  Mlpu+hot =0,

such that (4.10) has solution s; = s3 = s4 = 0, s > 0 as u € Hiy,, that is, system (1.1)
has a 2-1 double homoclinic loop near I'. Clearly, HZ;, which is well defined at least in
the region {y : MJpu > 0} when rank{M], M}} = 2, has codimension 2 and normal plane
span{ M, M}} at u = 0.

If (4.10) has s1 = s9 = s4 = 0, s3 > 0 as its solution, then s3 = —§~ 1M u+ h.o.t.. Hence,
the bifurcation set

Hiy: Myp+hot.=0,  Mlu+hot =0,
(i) (=0 MEp)P /N 4 M+ heot. = 0,

where I' persists and an 1-1 large homoclinic orbit bifurcates near I', is well defined at least
in the region {y : Miu > 0, MJu < 0}. When rank{M{, M} = 2, it has codimension no
less than 2.

Similarly, another bifurcation set

Hy: Myp+hot. =0,  Mlpu+hot =0,
— (W) ML )N 4 5T MY+ ot = 0,

such that I" persists and an 1-1 large homoclinic orbit bifurcates near I' for p € H217374 is well
defined at least in the region {u : Mip > 0, Mju < 0}. It has codimension no less than 2
as rank{ M}, M3} = 2.

Suppose s; = s3 =0, sg > 0,54 > 0 is the solution of (4.10). Consequently, we have sy =
S IM}p+h.ot., sy =—0"1Miu+h.ot.. Substituting it into the second and fourth equation,
the 2-2 double homoclinic loop bifurcation set HZ§ : Miu + h.ot. = 0, M3y + h.ot. =0
is obtained, which is well defined at least in the region {u : Mip < 0, Miu > 0} as
rank{Mj, Mj} = 2. Tt is of codimension 2 and has normal plane span{Mj, M3} at p = 0.

When p € H 12;; , system (1.1) has a unique 2-2 double homoclinic loops near T'.

Using the same reasoning, we can obtain the bifurcation set

HE . — (b)) (0 M) ™M 4 67 M+ heot. = 0,
(W) (=6 M) /M + 6 M+ oot = 0,

which is situated in the region {u : Mip > 0, M}u < 0} such that (4.10) has a solution
So=584=0,8>0,s3>0aspuc¢€ Hzli’ and the corresponding system (1.1) has two 1-1 large
homoclinic orbits near T'.

Ulteriorly, as the similar analysis tells us that it is impossible for (4.10) to have a solution
(s1,52,83,54) with s; = 0 and for j # 4, s; > 0 or s; > 0 for 4,5 = 1,2,3,4. So there exists
no 2-2 large period orbit.

Thanks to the above analysis, we have
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THEOREM 4.2. Suppose that (H1) — (Ha), (Hg) are valid, then
(1) If ]\Ii1 # 0, there exists a unique manifold L; with codimension 1 and normal vector MZ-1
at = 0, such that system (1.1) has a homoclinic loop near I'; if and only if u € L; and
pll <1, i=1,2.

If rank(M{, M}) = 2, then L1s = L1 N Ly is a codimension 2 manifold and 0 € L1y such
that system (1.1) has an 1-1 double homoclinic loop near T as p € Lig and ||u|| < 1, i =1,2
namely, I' is persistent.

(2) In the region defined by {pn: Mip < 0}, there exists a unique codimension 2 bifurcation
set Hiys such that system (1.1) has one 1-2 double homoclinic loop and Ty persists.

In the region defined by {jn: Mip > 0}, there exists a unique codimension 2 bifurcation
set HZy, such that system (1.1) has one 2-1 double homoclinic loop and T'y persists.

In the region defined by {u : Mip < 0, Miu > 0}, there exists a unique 2-2 double
homoclinic loop bifurcation set H12§ of codimension 2. For p € H12§, system (1.1) has a
unique 2-2 double homoclinic loop near T.

In the region defined by {u: Miu >0, M}p < 0}, there exists a codimension 2 bifurca-
tion set Hy} such that system (1.1) has two 1-1 large homoclinic orbits near T for u € H33

In the region defined by {u : Mip > 0, Mju < 0}, there ewist two bifurcation sets
H3,, and His, with codimension no less than 2, where T persists and an additional 1-1 large
homoclinic orbit bifurcates near T for u € Hiyy U Hagy and ||p]| < 1.

(3) There exists no 2-2 large period orbit, 2-2 large homoclinic loop, 2-2 left homoclinic loop
and 2-2 right homoclinic loop near T'.

As the second step, we shall consider the 1-1 bifurcations results with double twisted
orbits. In this sequel, we give a further study of the 1-1 large homoclinic orbit and 1-1 large
period orbit bifurcation for the case of double twisted orbits.

Consider the following Poincaré maps:

Fi=PyoP): S8 -8 F3=PloP): 59— 8
and the successor function
G(s1,s3,ub,ud, v9,08) = (G},G3,Gt,GE,G3,GS)
= (Fi(a)) — a3, F3(g3) — af).

Using the same procedure as the above, we have:

Gl= —(wl?) s P1/>\15 (wi2) 182 (d4) 1 p2/>\1 W0 + s36
+od (W) sy ™ 1+M2u+0(llull)

Gl= ub— 05 + B (l2) 5050 + ol l?) o — )
— (W) Lsy2/N 1+M§’u+0(llull)

Gim —of 88 + ()15 08 — ol — [t — ()l
+ M3+ o(||pll),

Gl = (w%Q) 18P1/>\15 (w 12)—1 42( 44) 1852/)\1 8 510
+w31< 33) Lyl 1+M11u+0(||u||)

Glm ul = 5F — )5 + o l?) ol — )

—w 33)- 1*2”1 1+Mi°’u+0(|\u\|)
Gh= o 407+ + ()18 4 s, — B — ()

+M A+ o(||ul)
Therefore, there is a correspondence between the solutions Q = (s1, s3,ui, u3, v?, vg ) of

(G1,G3,G1,G3,G3,G3) =0
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with s; > 0,s3 > 0, and the existence of 1-1 large homoclinic loops, 1-1 large period orbit of
system (1.1).
Solve (u3,v9,ui, 1) from (G3,GE,G3,G3) = 0 and then substitute it into (G, G3) = 0,

we obtain the bifurcation equation
_(Wéz)_lsfl/)\l + 83+ 0 *Mp+ hot. =0, (4.11)
(w!2)" 0™ g 4 67 M+ hoot. = 0. ‘

Similarly as in the former sections, we state the following results.

THEOREM 4.3. Assume that (Hy) — (Ha), (Hg) hold. Then, for ||p|| sufficient small,
system (1.1) has at most one 1-1 large homoclinic loop or one 1-1 large period orbit in the
small neighbourhood of I'. Moreover these orbits do not coexist.

_ 1,1 ,0 .0 _ 0(G3,G1,G3,G3,G3,GY)
Proof. Let Q = (s1,s3,uj,uy,v7,v5) and W = 3(321,813#?,@1,@923)1 06, 4t Then
detW = —6%2 # 0, According to the implicit function theorem, in the neighborhood of

(Q, 1) = (0,0), there exists a unique solution s; = s;(u), ul = ul(n), v? =0?(n), satisfying

5;(0) = 0, u}(0) =0, v)(0) =0, i = 1,2. Then if 51 = s3 = 0, by the uniqueness, we can
see that the double homoclinic loop is persistent; if s1 = 0, s3 > 0 or s3 =0, s7 > 0, then
system (1.1) has a unique 1-1 large homoclinic loop; if s; > 0, s3 > 0, system (1.1) has a
unique one 1-1 large period orbit.

Clearly, the uniqueness guarantees that all these kinds of orbits do not coexist. O

If (4.11) has s; = s3 = 0 as its solution, then M}y + h.o.t. = 0, i = 1,2. In the case
of M} # 0, there exists a codimension 1 manifold Ly with normal vector M3 at u = 0 such
that the first equation of (4.11) has solution s; = s3 = 0 as p € Lo and ||p|| < 1, that is, T's
persists. Similarly, there is a codimension 1 manifold L; defined by Miu + h.o.t. = 0 with
normal vector M at 1 = 0 such that the second equation of (4.11) has solution s; = s3 = 0 as
p € Ly and ||p|| < 1, that is, T'y persists. Suppose rank(Mi, M3) =2, then L1p = Ly N Ly is
a codimension 2 manifold with normal plane span{Mll, M21} such that the double homoclinic
orbit I' = I'y UT'y is persistent.

If (4.11) has solution s; = 0, s3 > 0, then s3 = —d *Miu + h.ot. for Miu < 0.
Substituting it into the second equation, we obtain the bifurcation set

H} (w0l Y =0t Ma )P/ 4 67 My + hoot. =0,

which is well defined in the region {u: Miu >0, M}p < 0}, such that system (1.1) has a
unique 1-1 large homoclinic orbit for u € H} and ||u|] < 1.
When p € H3, from (4.11) we have

s3u+ 0 M3 + h.ot. =0,
(W) 1 (=6 MG p) P s sy, + MM+ hot. = 0.
As sy, = 5_1M11 + O] le,u |(p1_’\1)/)‘1), S0 s1 increases along the direction of ]\411 for p € Hf’

and ||p|| < 1.
Similarly, we get the bifurcation set

HY o (i)Y M) /™ 4 67 M+ heot. =0,

which is well defined in the region {u : Mip > 0, Miu < 0}, such that (4.11) has solution
§1>0, s3=0as u € H?}, that is, system (1.1) has a unique 1-1 large homoclinic orbit near
T for 4 € Hi and ||u|| < 1. And s3 increases along the direction —M.

Thus we have proved the following statement.
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THEOREM 4.4. Assume that (Hy) — (Hy), (Hg) hold. Then
(1) If ]\Ii1 # 0, then there exists codimension 1 manifold L; with normal vector MZ-1 at pu=20
such that T'; persists for € L; and ||p|| < 1, i =1,2.

If rcmk:(Mll, M21) =2, then Lio = L1 N Lo is a codimension 2 manifold with normal plane
span{Mll,le} such that the double homoclinic orbit I' = I'y U T’y is persistent as p € Lio
and ||p]| < 1.

(2) In the region defined by {p: Mip >0, Mju < 0}, there exists a unique codimension 1
bifurcation set H (resp. H3) such that system (1.1) has a unique 1-1 large homoclinic orbit
for w € H} (resp. H3) and ||p|| < 1.

(3) There is a sector R bounded by H} and Hi such that system (1.1) has a unique 1-1 large
period orbit for p € R and ||p]| < 1. (See Figure IV.5)

M;

R
L, H}

Ficure 1IV.5. 1-1 bifurcation diagram in double twisted case as
rank(Mi, M}) =2
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CHAPTER V

Heterodimensional cycle bifurcation with orbit-flip

We consider the bifurcation problems of two heteroclinic loops to two hyperbolic equilib-
riums.

1. Hypotheses and preliminaries

Consider the following C" system

2= f(2) +9g(zp), (1.1)
and its unperturbed system
: = f(2), (1.2)
where z € RY, pe Rl 1>2, 0< |p| <1, f(pi) =0, g(pi,pn) =0, i =1,2, g(2,0) =0.
First of all, we assume that:
(H1p) System (1.2) has two hyperbolic equilibrium p;, i = 1,2 and the relevant lineariza-
tion matrix Df(p;) has simple eigenvalues: A, X2, A}, —pl satisfying —p} <
0 < M < A3 < A2 Df(p2) has simple eigenvalues: Ai, A3 —pl —p3 satisfying
—p3 < —pb <0< A <M
(H3) There is a heteroclinic cycle I' = T’y U T’y connecting p; and ps. Here, T'; = {2z =
ri(t), t€ R}, i =1,2, ri(—00) = ro(+00) = p1, r1(4+00) = ro(—00) = p2. And

dim (T, y W1 N Ty iy W3) = 1.

It is evident that I' is a heterodimensional cycle under the assumptions (H;) and (Ha).
Besides, we make the following assumptions:

(H3) Let ef = limy_7o0 %, then e € T, W, e; € T,,Ws be unit eigenvectors

corresponding to A} and —p}, respectively.
72(t)

Let e4t = limy_, oo mor €2 = limy 4 0o %, then ey € Tp, W3, ey €

T,,W; be unit eigenvectors corresponding to A3 and —pi, respectively, where W3
is the strong unstable manifold of ps.

(Hy) . liin T, yWs' = spaniey e}, where e}t is the unit eigenvector corresponding to
— 100

A? (see Figure V.1(a)).

REMARK 1.1. For the existing ', (Hs) is generic for T'y and not generic for T'y, which
means that Iy takes orbit-flip when t — —oc.

REMARK 1.2. For the existing T, (Hy) is generic, which means that unstable manifold
W3t satisfies the strong inclination property.

We will always assume that:

(Hs) » > 3Q and Df(p;), i = 1,2 satisfies the strong Sternberg condition of order @ and
K is the Q-smoothness of D f(p;), where @Q > 2, K > 4.

71
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Under assumption (Hs), system (1.1) is uniformly C¥ linearizable according to [82].
Hence, up to a C¥ diffeomorphism, there exits U;, a small neighborhood of p; in R* such
that p; = (0,0,0,0)*, i = 1,2 and for all x € R!, 0 < |u| < 1 and Vz = (z,y,u,u) € Uy,
system (1.1) has the following linearization:

=AMz, g=—pipy,  w=Xu, 4= (pa. (1.3)
For all 4 € R, 0 < |u| < 1 and Vz = (z,y,u,v) € Uy, system (1.1) has the following
linearization:

F=XNwe,  §=-p(ny,  a=Xu, b =—p3(po. (1.4)

Here, pi(0) = pi, X (0) = A, j=1,2,3, p5(0) = ph, N5(0) = A5, k=1,2.

Obviously, p1 has one dimensional stable manifold W7 and three dimensional unstable
manifold Wi*. While, po has two dimensional stable manifold Wy and two dimensional
unstable manifold Wy'.

In the new coordinate systems corresponding to (1.3) and (1.4), the local stable manifold
WP = Wi NU; is a segment of the y—axis, the local strong unstable manifold of ps is a
segment of the u—axis, but the local weak unstable manifold of p; is not unique, and has
the expression {z = (z,y,u,@) : y =0, u = O(|zM/M), @ = O(|a[*/*)}, the local weak
stable manifold of ps is also not unique with the expression {z = (z,y,u,v): z=u=0, v =
O(|y|3/72)}.

2. Bifurcation equations

Denote r;(t) = (rf(t),r?(t),r¥(t),r*(t)), i = 1,2, in the small neighborhood U; and

ri(t) = (r¥(t), ! (¢),r(t),r?(t)), i = 1,2, in the small neighborhood Us, respectively. Take
T;, i = 1,2 large enough such that r1(=11) = (6,0, 64, 6z), r1(T1) = (0,0,0,0,), m2(—T2) =
(0,0,0,0), r2(T3) = (0,6,0,0), where |0y, [0a], |dy] < 6 and & > 0 is small enough so that
{(@,y,u, @) - [a], |yl [u], |u] <26} C Uy and {(z,y,u,v) : |2/, [y], |ul, [v] <26} C Us.
Now we consider the linear variational system of (1.2) and its adjoint system
2= Df(ri(t))z, (4);
z=—(Df(ri(t))) 2. (5):
LEMMA 2.1. Assume (Hy) — (Hy) hold,then
(i) there exists a fundamental solution matriz Z1(t) = (21(t), 23 (), 23(t), 21 (t)) for sys-
tem (4)1 with
21(t) = 1)/ 17 (=T1)| € Ty ) Wi 0 Ty () W3,
(1), 2 (t) € Ty iyWi 0 (T () W35)©,
4
1

A (t) S Trl(t)Wgs N (Trl(t)Wlu)C

satisfying
1 0 0 wit 0 w w0
0 0 0 wi? wiz WP w0
Zi(-T) = WB 10 Wi | Z(h) =1 7 W3 B |
wit 01 Wi oIt Wit w1
W21 31 ,
where wi? < 0, wi* # 0, wy :‘ o o | F 0 el <1 =34, () el <

1w (i) <1, j#£2, wWorl] <1, i=2,3, j=24
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(ii) there exists a fundamental solution matriz Za(t) = (23(t), 23(t), 25(t), 25 (t)) for sys-
tem (4)2 with

23(t), 23(t) € (Try W3")",
2 (t) = 1o () /115 (= T2)| € Tryry W™ N Ty () W7,
25 (t) € Tpy iy W'

satisfying
ot @301 wy' w3l 0, wa
o 1 00 00wy
Zy(=Ts) = o o® 1 0 | L= ¢ o wy® |
1 0 00 wit w3t 0wyt

where w3 < 0, wi #0, @Y < 1, |03 < 1, i = 1,3, |wyl (Wi <1, j =
wil Wi
172747 w2 = w%4 w%A‘ 7é 0.

Proof. (i) According to (Hz) and the definition of 2] (t), we see that the first columns of
Z1(—=Ty) and Z;(Ty) are correct, and we have wi? < 0. Due to the stronger contractivity of
the u, u (respectively v) components compared with the = (respectively y) component in U;
as t — —oo (respectively Us as t — +00), we derive |wi?], |wit| < 1, |oi*(wi?) ™! <« 1.
Let 22(t), 2}(t) and z{(t) be the solutions of (4); with initial values 2?(—Ty) = (0,0,1,0)*,

w21 w31

23(~Ty) = (0,0,0,1)* and z{(T1) = (0,0,0,1)*, then w; = ‘ w%?’ w%,g, ‘ # 0 and wi? # 0
follow from the transversality condition given by (Hs). The remaining inequalities can be
verified easily.

(1) Owing to (Hj), it is nature to choose z3(t) € T, yW3" satisfying 2 (-Ty) =
(0,0,1,0)*. As in the small neighborhood Uy, T, W} = span{(0,1,0,0)*}, then we should
have 23 (Ty) = (0,w32,0,0)* with w3? < 0. Consequently, z3(—T3) and z3(T3) can be easily
given. Thanks to the strong inclination property (Hy), we have w33 # 0. Since e € (T}, W3¢,
we can choose 23(t) € (T, W3")¢ as the solution of system (4); satisfying 23(—Tb) = —e] =
(0,1,0,0)* and 22(Ty) = (W3', 032,023, H2*)*. Due to the property of the solution to the linear
differential equation, 22(t) = 22(t) — (w53) 1023325(t) — (W3%) " HW3% — (w53) 1o2wi?]23(t) is
also one solution in (7}, ;) W3')¢. Thus, 23(—T5) and 23(T) are obtained. In the same way, the

solution 21 (¢) can be chosen such that z1(—T3) and 23 (T%) have the assigned values. Based

121

Zizl Z§4 # 0.

O

As well known from the matrix theory, system (5); has a fundamental solution matrix

D;(t) = (Z71 ()" = (¢} (1), ¢2(t), #3(t), ¢2(t)). For those points z very close to the orbit
I';, ¢ = 1,2, introduce the following local moving frame coordinates:

on the fact that detZs(—T5) # 0 and the Liouville formula, we have wy =

2(t) = Si(t) £ ri(t) + Zi(t) N} (¢) (2.6)
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with Ni(t) = (0,n3(t),n3(t),n(t)), Nao(t) = (nd,n3(t),0,n3(t)). And choose the cross sec-

tions
={z=51(-T1) : ||, ]yl lu],|u] < 26} C UL,
={z=5(-T2) : ||, |yl lu],|v] <26} C Us,
Si ={z=51(T1) : ||, [yl |ul,|v| <26} C Uy,
Sy = {2 =5(T3) : |||yl ul, [u] <25} C Un.

Then, under transformation (2.6), system (1.1) has the following form:

N (£) = 67 (0)gu(ri(), 0)p + hoo.
Integrating both sides from —T; to T;, we obtain

N (Ty) = / 67 (0)gu(ra(1), O dt + hoot, i =1,2,

which produce the map F : SZQ—>S-1 2':1,2, S3 = S}. Precisely,
02 0.3 04 _12 13 _14
F11¢ S?HS%’ (0,n4 7n1 ;) = (0,m7, 0y, 0y )
1 0 1 0,1 0,4 1,1 -12 14
Fy o 55— 53, (ny anz 70”2 ) = (ny,ny",0,m57)

can be expressed by:

ap? =n% 4+ Mip+hot., j=234, (2.7)
st = Y+ MEu+ hot., k=1,2,4, (2.8)
where M{ = [0 61" (t)g,(r1(t),0)dt, j = 2,3,4 and M} = [T2 ¢k*(t)g,(ro(1),0) dt, &k =
1,2, 4.
LEMMA 2.2.
. T +oo
M{ = ¢1" (t)gu(r1(t),0) dt = o1 (1) gu(r1(t),0)dt, j = 2,3,
—-T1 =T
A T A +T A
M = ¢1" (1) gu(r1(t),0) dt = / ¢1" (1) gu(r1(t),0) dt. (2.9)
X T —+o00
My = O5* () gu(ra(t),0) dt = &5 ()gu(r2(t),0) dt, k=1,2,4. (2.10)

Proof. To prove (2.9), it is sufficient to verify that qb{*(t)g“(rl (t),0) =0fort > Ty, j=2,3,
and ¢1*(t)g,(r1(t),0) = 0 for t < —T31. As r1(Ty) = (0,6,0,6,), then 71 (t) = (0,7Y(¢),0,7¥(t))
for t > Ty with r{(t) = O(Ser2(t=T0)y < §, ri(t) = O(dy eP3(t=T1)) < §,. Similarly, we
have r1(t) = (r¥(t),0,7%(¢), r{(t)) with r¥(t) = O(deM 1(+T)) < 5, rif(t) = O(8, M) <
Suy TU(t) = O(65eM T < 65 for t < —Ty, which is due to r1(=T1) = (6,0, 8y, 8). Accord-
ing to the normal forms (1.3) and (1.4), we have

gu(ri(t),0) = (0, (5) 0,0(dy)) for ¢ > Ty,

gu(r1(t),0) = (0(6),0,0(6u), O(da)) for t < —=T1.

Since ®7(t)Z1(t) = I, we have qb] (t)2t ( ) =0, 7 =2,3, i = 1,4. Denote by qb{*(t) =
(@' (), 672(t), 61°(t), & 4( t)), then 2} (T}) = (0,wi?,0,&}*)*, 2#(T1) = (0,0,0,1)* implies that
$2(Ty) = $1M(T1) = 0, j = 2,3. Thereafter, we have qﬁj (t) =)' t) =0for t > Ty, j=2,3,
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since Df(r1(t)) and its adjoint matrix are both diagonal. Likewise, we can also obtain
¢1(—=Ty) =0, i = 1,3, 4. Consequently, ¢{:(t) = 0, for t < —Ty, i = 1,3,4. Thus, conclusion
(2.9) is verified.

Set ¢h*(t) = (d51(t), p52(1), b3 (1), #5%(t)), k = 1,2,4, then using the same procedure as
above, we can deduce that ¢§2(t) = 0 for t > Ty and ¢§3(t) = 0 for t < —Ty, k = 1,2,4.
Further more, one can easily obtain that

gu(TQ(t)7O) = (07 0(5)707 0)7 for t > TQ;
At this rate, (2.10) can be verified.

REMARK 2.1. Under the hypothesis A} > 3\} and p3 > 3p}, 6, = 6z = 6, = 0 could be
assumed. This is because under this condition, we could straighten I'y NUy and I'y NU;y to be
a segment of the x—axis and a segment of the y—azxis, respectively. So, in the following we
just consider the more general case with &, dg, 0, # 0.

Define Flg : S%l - ng q%(;vl%’y%’ulé’uf) = qg(xgvyé)vugvaol)v

F2 : Sl —>S27 ql(xlvylvulvvl)Hq2($27y27u271}2)7
induced by the flow of (1.3) in the small neighborhood Uj of z = 0 and by the flow of (1.4)
in the small neighborhood U; of z = 0, respectively. Set the flying time from q}Jrl to q? as

9,(r2(t),0) = (0,0,0(9),0), for t < —T.
O

=1 0

Ti, © =1,2, q% = q%, and the corresponding Silnikov times as s; = e‘A%(“)ﬁ, So = e=Pa(H)m2
(see Figure V.1(b)). Consequently, we have

0. gl 0
F]. N SQ — Sl
1 1 2 1 3 1
0 pPi/Ai 1 1 AT/A1, 0 _1 AT/A1 -0
Ty = 5127, Y1 = 51" "y, uy = 87" My, Uy = 87" "y, (2.11)
0. ol 0
F2 . Sl — 52
1 A3/py 0 0 1 1 A3/p3 0 0 P3/p% 1
= 557" Py, Yy = SoU7, up = 552" Pus, vy = 852" 20y, (2.12)

where 1§ &~ §, yi ~ 6, ud =6, y3 ~ 5. And coordinates (s1,u?,u?), (s2,79,v]) are called the
Shilnikov coordinates.

(b) Poincare map

(a) Heterodimensional cycle I' = T'y N T’y

FiGure V.1

Firstly, based on the transformation (2.6) and Lemma 2.1, we give the relationship be-
tween the old coordinates:

0,0 0.0 -0 1,1 .1 .1 .1 0,0 0 0.0 1,1 1 1 ~1
q (1,91, u1,41), q1(21,y1,u1,v1), q3(23,Ya,us,v5), qa(23,Ya,us, Us),
and the new coordinates:
0 0,2 03 04 1 1,2 1,3 14 0/ .01 02 0,4 1, 1,1 1,2 1,4
q1(0,n77,ny7,ny7), g1 (0,7, ny"ny7), ga(ng ™ ny",0,m97), ga(ng,ny™,0,my7).
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Precisely,
0,2 _
mh == 5, — wt?) i,
S = — oy — wlt(wf?) . (2.13)
1 (wi®) 1Y,
1,2
n%g =W 1(”%35131 W%lu%)
n%’4 = wy H(witul lw%%%) (2.14)
mit = ol — 8, — w7 (W — Pt + (@t - wtull)ud).
01 0,2 0,4
nyt =0y, ny =98  ny’=af — w3y —wy'el, (2.15)
nLl 1 _
ny = wy {w2244[ x5 — ws : Hwy®) ™! ). l—w%z[uiﬁt %jg( wy?) " tus)}
12 :Wzl[WQ a:%—wju% (W2 W21 21 wy™) (w3 ) 2]
ny =w21{w Hay — wi(ws®) " tuy] — wytfaeh — wi'(w 43) uj]} (2.16)
=wy [w%% —w%‘*rré (wi'wy? — watws) (ws®) ~tus),
14 o 43
ny” = (wy )

From (2.7) (2.11) and (2.13), we can define F} = Flo FY: S — S as:

,%2:,“(1)_5 — Wi (wi2)~15g0 /1+M1M+h0t
,%3 :ﬂo—(s*—WiM( ) 15891/)‘1 —i—M?’u—i-hOt (2.17)
777&4:( )15891/)‘1_’_M1u+h0t

From (2.8) (2.12) and (2.15), we can define Fy = Fj o FY : S} — S3 as:

Ny :532+M2,u+hot (2.18)
ﬁ;’ﬁ‘ =2 — 03 sy — wilsh /) v} + M3+ ho.t..
Now, the successor function is given by
G(317 52, u(1)7 u(1)7 IL’g, 2)1) (G Gi’, Gi G%? G%? G%) = (Fl(q%) - qi F2(Q%) - Q%%
which can be expressed by:
G2 =ud — 6, — w3~ 153’)1/)‘ wl_lwzl)’?’SQQ/pQ 9+ wlwdlss) e + MEu+ heo.t.,
sz _ 70_57 —w44( ) 153910\ _wl 53 3/0 T+ 1w23 /\z/pz O—i—Mlu—i—hot
AL
Gl = (@) oM ol + 5,
)\2 1
+ wi (WP — wPBw {’4)322/’0%8 + (W — wPW3h)ss, 2/p2] + Miu+ hot.,

A3 /AL _ AZ/\1
1w§4531 21 A /M o ( 24 41 21 44)( 43) 1311/ 1u‘1)]

1 pz/Pz 1
G watsT ) — (witws! — wilwyt)(ws

2= 85" "2 —wy |
+ M2,LL + h 0. t
_ >\ 1 A2/l
G = 552 AN i, — (ot — )1
+ Mzp+ hoo.t.,

1 A2/
Gy = a9 — w%ls?/% b @35y — (w53) 1811/ Y + Mjp+ h.o.t..

Define

~ Lo 24,41 _ 21,44y 43 ~ —1, 11 44 14, 41y ( 43
w1 éw2 (w3 w; wy wy")(wy ) ) @y 2w Wy (Wy wy” —wy wy ) (wy )
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Solving (uf, Y, 29, v}) from (G%, G3, G, G3) = 0, and then substituting it into (G3, G3) =
0 by using wy # 0, we obtain the bifurcation equations, which have the following three different

expressions:
Case (1):
2 /.1
51,3’2)2/’)2 — wy twitss) + Myp+ hot. =0 (2.19)
559 + wy twitdsy + Mip + h.ot. =0 (2.20)
for wit #0, w3t #£0.
Case (2):
2/,1
57,8’2)2/’)2 —wytwdtss) + M+ hot. =0 (2.21)
3 /)1
5y — wy 'wiloasi /M + M2y + hot. =0 (2.22)
for wit =0, w3t £ 0.
Case (3):
2 /.1 3 1
805272 1 w3 w2 syst M 4 My + hot. =0 (2.23)
659 + wy twitdsy + Mip + h.ot. =0 (2.24)

for wit #£ 0, w?* =0.
3. Bifurcation results

In this section, we study the existence, uniqueness and non-coexistence of the heterodi-
mensional cycle, homoclinic loop and periodic orbit for the heterodimensional cycle bifurca-
tion with orbit-flip in the non-transversal orbit I's.

Firstly, we have the following result concerned with the uniqueness and the non-coexis-
tence.

THEOREM 3.1. Suppose that (Hy) — (Hs) hold and pt > A, A\ > pl. Then, for |u|
sufficient small, system (1.1) has at most one heterodimensional cycle, one homoclinic loop
and one periodic orbit in the small neighbourhood of I' and all these orbits cannot coexist if

w3t £ 0.

Proof. Notice that
0(G?,G3,G3,Gt,GE,G3)

W =

aQ |Q:07 ©=0

0 0 100 0

0 0 010 0

B 0 ~035 00 1 0
- 0 0o 000 -1 [°

—wy'wdt 0 00 0 0

wy twits § 000 0

where Q = (s1,s2,ud,4},29,v]) and detW = 52w2_1w§4 # 0, if w3* # 0. Consequently,
owing to the implict function theorem, in the neighbourhood of (@, ) = (0,0), there exists
a unique solution s; = s;(u), ud = uf(p), 4§ = af(n), 29 = 2Y(u), vi = vi(n) satisfying
5;(0) = 0, u)(0) =0, wd(0) =0, 23(0) =0, v{(0) =0, i = 1,2. Then if 51 = sy = 0, by the
uniqueness, we can see that the heterodimensional cycle is persistent; if s1 = 0, so > 0, then
system (1.1) has a unique loop homoclinic to p;; if s =0, s3> 0, system (1.1) has a unique
loop homoclinic to po; if s1 > 0, so > 0, system (1.1) has a unique periodic orbit. Clearly,

the implicit function theorem guarantees that all these kinds of orbits cannot coexist. a
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REMARK 3.1. If the conditions of Theorem 3.1 are valid, then we can show that there is
no n-periodic or n-homoclinic orbit bifurcated from U for arbitrary n > 2.

If s; = s9 = 0 is the solution of the bifurcation equations (2.19) and (2.20), we have
M}y + h.ot. =0, M2+ h.o.t. = 0. Suppose rank(MJ, M) = 2, then

Lo ={p: Mjp+hot. =0, Mip+ h.ot =0}

is a codimension 2 surface with normal plane span{M{, M4} at = 0 such that system (1.1)
has a unique heterodimensional loop near I' for p € L3 and 0 < |u| < 1.

If s = 0, so > 0 satisfy (2.19) and (2.20), then we calculate so = —6 M2y + h.o.t. > 0
from (2.20) for {u : MZu < 0}. Substituting it into (2.19), we get the codimension 1
homoclinic bifurcation surface

Hy o Wi(p) 2 6,(—6 " M2p)P3/% + My + hot. =0

with normal vector M} at u = 0 such that a unique homoclinic loop I'? = {#(t) : t €
R, limy_, 1 7(t) = p1} bifurcates in the small neighborhood of T for € Hy and 0 < |u] < 1.

Suppose sy = 0, s; > 0 is the solution of the bifurcation equations (2.19) and (2.20).
Consequently, we have s; = wo(w3?) 161 MIp + h.ot. > 0 for wow3 M3y > 0. And the
homoclinic bifurcation surface

Hy: Wo(p) 2 wit(wiH ™M+ M2p+ h.ot. =0

has codimension 1 with normal vector 73 £ wit(w3)™1MJ + M3 at p = 0 if 73 # 0 such

that system (1.1) has a unique homoclinic loop T3 = {7(t) : t € R, limy_ 400 7(t) = po} in
the small neighborhood of T for u € Hy and 0 < || < 1.
With the above analysis, we state the following result:

THEOREM 3.2. Suppose that (Hy) — (Hs) hold and wi* # 0, w3* # 0 hold, then
(i) if rank(M}, M2) = 2, then Ly is a codimension 2 bifurcation surface with normal plane
span{Mj, M2} at =0 and 0 € L1y such that system (1.1) has a unique heterodimensional
loop TH =TYUTY near T as p € L1z and |u| < 1, namely, T is persistent. Furthermore, the
persistent heteroclinic orbit Ty has no orbit-flip if :cg = —Mél,u + h.o.t. # 0.
(ii) in the region defined by {u: M3u < 0}, there exists a unique codimension 1 bifurcation
surface Hy with normal vector M21 at u = 0 such that a unique loop F% homoclinic to p1,
bifurcates from T for uy € Hy and 0 < |pu| < 1.
In the region defined by {j1 : wow3*Mip > 0}, there exists a unique codimension 1 homoclinic
bifurcation surface Ho with normal vector iy (if it is not zero) at p = 0 such that system
(1.1) has a unique loop T'Y homoclinic to py in the small neighborhood of T' for u € Hy and
0 < |u| < 1. Moreover, '} has no orbit-flip ifxg = —Mﬁl,u + h.o.t. # 0.

THEOREM 3.3. Assume that (Hy) — (Hs) hold and w3t # 0, w3t # 0, rank(Ms, M3) = 2
are fulfilled, then in some small neighborhood U, of u = 0, there is a region Ri2 bounded by
Hy and Hy such that system (1.1) has a unique periodic orbit near I' as p € Riz and it has
no periodic orbit near I' as p € U, — clR12. Corresponding to the four different combinations
of the signs of wgw%‘l and wgw%‘l, the region Ris and its boundaries Hi and Ho have four
different kinds of relative position, which are shown in Figure V.2.

Proof. Because of the similarity, we only need to consider the case wgw%‘l < 0, w2w§4 < 0.

Near the bifurcation surface Hy, we have M%u < 0. Thus, for 0 < s1 K 1, 59 = —w;lw%‘lsl —

6 ' M2u + h.o.t. > 0. Substituting it into (2.19), we get

F(s1,p) 2 0p(—wy twytsy — 5_1M22u)p%/p5 —wytwitds) + M+ hot. = 0.
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Note that,
F(OHU)ZWI(M)a F/ (Sl, ):_5w21 24+h0t

So, if wewdWi(u) > 0, F(s1,u) has a unique sufficiently small positive zero point s; =
s1(p) >0, Whlle it has no small positive zero point if w2w24W1( ) < 0.

Since wgw < 0, and Wi () has gradient direction MJ at u = 0, we see, as u leaves
H; slightly along the direction — M., bifurcation equations (2.19) and (2.20) have a small
positive solution pair s1(u) > 0, s2(p) > 0.

On the other hand, consider the neighborhood of Hs by differentiating (2.19) and (2.20)
with respect to p and taking values at Hs, then we derive

s1 = 0 Twa(w3t) "I M3 + hoo.t., s9, = —6 M3 + wit(w3h)TIM)] + heot..

It follows that equations (2.19) and (2.20) have a small positive solution pair s;(u) >
0, s2(p) > 0 as p leaves Hy along the direction —[M3 + wit(w3*)~1M1)] for |u| < 1, where
w%‘lw%‘l > 0.

Now, combined with the uniqueness of the solution guaranteed by Theorems 3.1 and that
the set {s1(n) = 0, sa(u) > 0 or s1(u) > 0, s2(u) = 0} consists of exactly H; U Hy which
divides the small neighborhood U, into two connected regions, the above analysis leads to
the existence of the region Rj2 and locates its position. Correspondingly, the bifurcation
diagram is exhibited in Figure V.2(a).

The proof is complete. O

With similar analysis to the above, we have the following statements.

THEOREM 3.4. Suppose that (H1) — (Hs) hold and wi* =0, w3* # 0 are fulfilled, then
(i) if rank(M3, M2) = 2, then Ly is a codimension 2 bifurcation surface with normal plane
span{ M}, M3} at p =0 and 0 € Lia such that system (1.1) has a unique heterodimensional
loop TH =T% UTY near T’ as p € L1 and |u| < 1, namely, T is persistent. Furthermore, T
has no orbit-flip if 19 = — M3 + h.o.t. # 0.
(ii) in the region defined by {ju: M3u < 0}, there exists a unique codimension 1 bifurcation
surface Hy with normal vector M21 at n = 0 such that a unique loop F% homoclinic to p;
bifurcates from T’ for uy € Hy and 0 < |p| < 1.
In the region deﬁned by {p: waw3*Mlp > 0}, there exists a unique codimension 1 homoclinic
bifurcation surface Hy:

Wo(p) 2 —wy tws 8y [wo (w3te)~ 1M21,u])‘§/)‘% + M3pu+hot.=0

with normal vector M2 at ;1 = 0 such that system (1.1) has a unique loop T} homoclinic to
p2 in the small neighborhood of T for u € Hy and 0 < |u| < 1. Moreover, '} has no orbit-flip
if 19 = —M3u + h.ot. # 0.

THEOREM 3.5. Assume that (Hy) — (Hs) hold and wi* =0, w3t # 0 are Julfilled, then in
some small neighborhood U of p =0, there is a region ng bounded by Hy and H,, such that
system (1. 1) has a unique periodic orbit near T’ as uwe ng, and no periodic orbit near I' as
1 € U — clng Depending on the sign of w2w2 , the region ng and its boundaries Hy and
Hy have 2 different kinds of relative positions, which are well illustrated in Figure V.3.

Proof. Owing to the similarity, we only consider the case wgw 4 > 0. Near the surface Hy,

we have M3p < 0. Thus, due to (2.22), for 0 < s1 < 1, s = wy 'wi'd™ 15ﬁ311/)‘ — 0 *M2u+
h.o.t. > 0. Substituting it into (2.21), we get

A3 /AL

F(s1, 1) £ 6wy twitd1oys) - 1M22,u)p§/p5 — wy twitdsy + My + h.ot. = 0.
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M3

~ME -l

Hl Hl

(a) When wowi? < 0, wow3* < 0. (b) When wawi? < 0, wow3* > 0.

Hy

(c) When wowi? > 0, wawi? < 0. (d) When wowy* > 0, waw3® > 0.

FIGURE V.2. Location of Ris

Note that,
F(0, 1) = W (), Fs'l(sl,,u) = —wy'wiS + hot..

So, if wowa* Wy (1) > 0, F(sl, 1) has a unique sufficiently small positive zero point s1 = s1(p),
while, it has no sufﬁment small positive zero point if w2w24W1( ) <

Since wow3? > 0 and Wy (i) has gradient direction M3 at p = 0, we see, as u leaves Hi
slightly along the direction M, bifurcation equation (2.21) and (2.22) have a small positive
solution pair si(p) > 0, sa(p) > 0.

On the other hand, consider the neighborhood of H,. Differentiating (2.21) and (2.22)
with respect to p and taking values at Hg, we obtain sy, = wg( ) L5~ 1M2 + h.ot., sy, =

© 2011 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Qiuying Lu, Lille 1, 2009
3. BIFURCATION RESULTS 81

—6"L M2 + h.o.t.. Tt follows that equations (2.21) and (2.22) have a small positive solution
pair s1(p) > 0, s2(p) > 0 as u leaves Hy along the direction —M2 for |u| < 1.

Now, thanks to the uniqueness of the solution guaranteed by Theorem 3.1, the above
analysis leads to the existence of the Region ]%12, which is bounded by H; and Hs. O

FIGURE V.3. (a) waw?* >0 and  (b) wow3? < 0.

Now, we turn to consider case (3), that is, w%‘l # 0, w§4 = (. In this case, it is possible
for the coexistence of the homoclinic loop and the periodic orbit, and for the existence of the
multiple periodic orbit bifurcation.

Similar to the above 2 cases, we firstly have:

THEOREM 3.6. Suppose that (H1) — (Hs) and wi* # 0, w3* =0 hold, then
(i) if rank(M}, M2) = 2, then Lig = {u : Mapu + h.ot. = 0, M2u + h.ot. = 0} is a
codimension 2 surface with normal plane span{Ms, M3} at pn = 0 such that system (1) has
a unique heterodimensional cycle T* =TY UTY near T’ as p € L12 and |p| < 1, namely, T is
persistent. Furthermore, Ty has no orbit-flip if ¥ = —M3u + h.o.t. # 0.
(ii) there is a codimension 1 homoclinic bifurcation surface

Hy o Wi(p) 2 6u(—6 2 M2p)P3/P5 + My + hot. =0,

which is well defined in the region {u : d,Mip < 0, MZu < 0}, with normal vector M3 at
p =0 such that a unique homoclinic loop T = {#(t) : t € R, limy .40 7(t) = p1} bifurcates
from T for p € Hy and 0 < |u| < 1.

(#i1) there is a codimension 1 homoclinic bifurcation surface

Hy: Wo(p) = w;lwgléﬂ[—WQ(W%ZL)_I(S_IMSM])\%/)\% + Mip+ h.ot. =0,

which is well defined in the region {u : wowd*M2pu < 0, wow' 6z Mip < 0}, with normal
vector My at i = 0 such that system (1.1) has a unique homoclinic loop Ty = {F(t) : t €
R, limy 4o 7(t) = pa2} in the small neighborhood of T for € Hy and 0 < |u| < 1.

THEOREM 3.7. Suppose that (H1) — (Hs) and wi* # 0, w3* = 0, then the periodic orbit
or the homoclinic loop cannot coexist with the persistent heterodimensional cycle for system
(1.1) with 0 < |p| < 1.

© 2011 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Qiuying Lu, Lille 1, 2009
82 V. HETERODIMENSIONAL CYCLE BIFURCATION WITH ORBIT-FLIP

Proof. For p € Lis, (2.23) and (2.24) become

3 1 2 1
o7 4wy Bl 4 o1 4 o(s5772) =0, (3.25)
s9 = —wy wits) + o(s1). (3.26)

From Theorem 3.6, we know that system (1.1) has a unique heterodimensional cycle T'*
for p € L1z and |p| < 1. And if wowd* > 0, system (1.1) cannot have any periodic orbit to
coexisting with the persistent heterodimensional cycle owing to (3.26). So, we only need to
consider wowa? < 0.

By substituting (3.26) into (3.25), we get

3 /)1
3y (—ws lw%‘lsl)pg/pé + w;lwgléﬂsi‘l/)‘l + h.ot. = 0.

As in this situation, 0 < s7 < 1 always guarantees 0 < so < 1, it is sufficient to find the
sufficient small positive solution s; for the above equation. Thereafter, 5vw2w%15g < 0 is
necessary. And when p3/p} > A3 /A1, we have

—1 21
Wy w5 g

1y1/,2
o (o o1y ]p2’\1/p2)‘1 73X which cannot be as small as possible;
w 2/ P2
2

0<81:[

when p2/pd < A3/\ we have

51)"‘}2( ) 1(")2 )p2/p2 Apl/A3pl—
w3'dy

So, the periodic orbit cannot coexist with the persistent heterodimensional cycle. It is
obvious to see that the homoclinic loop cannot coexist with the persistent heterodimensional
cycle thanks to (3.26).

The proof is completed.O

Secondly, the question is whether system (1.1) can have periodic orbit for u € Hy or Ho,
that is, the coexistence of the homoclinic loop and the periodic orbit.

Set

0<81:[

MP% which cannot be sufficiently small either.

N ) .
C(u) £ —(wy") "'w3'da Al[ s (wh8) T M2 MDA

3 1
D) £ () 11%315&7“?;%))1)

Bp) 2 —5,w; ! 14'02( 51 M2 ) Ph—ri) k|
1z

[—wo(wit0) T M) NI/

2 1
F(,Uf) A 5y ( 2—1w%4)2 p2(p21_ p2) (_5—1M22N)(p%—2p%)/p%.
(p3)?
From (2.24), we have s1 = wy(watd) "t (—8sg— M2 p)+h.o.t.. By substituting it into (2.23),
Oy 822/p2 + wy twdlog [wa(wit) T (—8sy — M%,u)]xi’/)‘% + M+ h.ot. =0. (3.27)
The above equation can be reformulated as

2.1 1 _
N(so,p) = 5U3§2/p2 + C(u)s2 + §D(,u)8§ + Wa(u) + O(s3) = 0 for sy = o(|M3Iul).

As for p € Hy, Wa(p) = 0. So,

e 271 3/ 03 _ _ _ [ -1 ps/(p3—pl)
if p5/pg <2, 0ysy*’ " +C(p)sa+ h.ot. = 0. Thus, sy = 0 or s9 = [—(0y) " C(p)]P2/P27P2),
where sy = o(|M2u|) if and only if A3/A > p2/pd.
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If p2/p3 > 2, then sy = 0 or 53 = [—(6,)71C (u)]P2/(P2=P2) | where sy = o(|M2u]) and
+D(p)s3 = o(évsgg/pé) if and only if A3/A > p2/pd.

Since for pu € Ha, sg = 0, 81 = —wa(wi*d) ' M2y + h.o.t. > 0. Accordingly, for sy =
[—(8,)LC(p)]re/ Pa=r2) = o(|MZp|), s1 = wo(wdtd) L (—bsy — MZu) + h.o.t. > 0. That is,
there is a unique periodic orbit coexists with the homoclinic loop which is homoclinic to p2
if and only if A3/\ > p3/pi.

On the other hand, we get sy = —wy 'wits) — 671 M2y + h.o.t. from (2.24). Substitute it
into (2.23), we have

So(—wy twitsy — (5—1M22,u)”%/p5 + wglwgléusi‘?/)& + Mjp+ hot. =0, (3.28)

It is equivalent to

_ A3 /AL 1
M(s1, 1) 2 wy w3605y 4 B(u)s1 + 5 F ()7 + Waln) + O(s1) = 0 for s1 = of|Mp)).

As for yu € Hy, W1(u) = 0. Consequently,
3 /31
if \J/A <2, w;lwgléﬂsi‘l/j‘l —3# El(u)sl + h.o.t. =0, we have s; =0 or
51 = [~wo(wd) "1 (6g) T E(u)M/ MM where s1 = o(|M3p|) if and only if p3/ps > A3 /AL
If A3/A\ > 2 then sy =0 or 51 = [wg(wgl)_l(5a)_1E(u)]A%/()‘§_AD, where s1 = o(| M2 )
3 1
and $F(p)s} = o(wglwgléasi‘l/)‘l) if and only if p3/ps > A3 /AL
As for p € Hy, 81 =0, sg = —8 *MZpu+ h.o.t. > 0. Accordingly, for
1 3 1 — _
51 = [wa(w3) ™ (0a) TP E(u)M /MM = o(|MZu), s = —wy twitsy — 6T MEu + heot. > 0.
That is, there is a unique periodic orbit coexists with the homoclinic loop which is homoclinic
to py if and only if p3/p3 > A3 /AL
Summing up these analysis, we can state the following result.

THEOREM 3.8. Suppose that (H1) — (Hs) and p} > M, A} > pl, wit # 0, w3t =0,
then there is a unique periodic orbit coexisting with the homoclinic loop for system (1.1) with
0 < |u| < 1. Precisely speaking,

(i) for 0 < |p| < 1, there is a unique periodic orbit coexists with the homoclinic loop which
is homoclinic to py in the region {p @ wowd*M2p < 0, wow3dtdyMip < 0} if and only if
X}/ > 03/ 3.

(73) for 0 < |u| < 1, there is a unique periodic orbit coexists with the homoclinic loop which
is homoclinic to py in the region {j: §,Miu <0, M3u <0} if and only if p3/p3 > N/

Now, we try to study the existence of the periodic orbit in the small neighborhood of H;
and Hs. B

As i leaves Hy slightly, we have wgw%A‘MQQ,u < 0. Thereafter, for 0 < so < |M22,u|, owing
to (2.24), 51 = —wa(wit)"tsy — wo(wih) TSI MIp + h.ot. > 0. For u € Hy, from (2.23) and
(2.24), we have

331y /31
A/ 'wglwgléasg)‘l AL s1,+ M3 + h.ot. =0,
052, + wz_lw%%slu + M2 + h.ot. = 0.
Mwitm]

3Ty /al
)fi’w%l&z[—wg(w%‘l)*l&*lMgu}(Al_)‘l)/AI

increases along the direction M (resp. —MJ) as witw3ldy > 0 (resp. witw3lsy < 0).

— 0" 'M2 + +h.o.t.. Accordingly, so

So, we obtain s, =

© 2011 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Qiuying Lu, Lille 1, 2009
84 V. HETERODIMENSIONAL CYCLE BIFURCATION WITH ORBIT-FLIP

Similarly, as u leaves Hj slightly, we have M2y < 0. Therefore, for 0 < s; < |[M2pl, due
to (24), so = —wy 'witsy — T M2 + h.o.t. > 0. For p € Hy, from (2.23) and (2.24), we get

2_ 1 1
pa/ph - 5vsgp2 p2)/p282u + M) 4 h.ot. =0,
052, + wglwéﬁ‘&slu + M3 + h.o.t. = 0.
pywa(wy) M

pg(;v(_(;—lMQzu)(ngﬂé)/p%
direction M2l (resp. —M21) as 5vw2w%4 > 0 (resp. 5vw2w%4 < 0).

Thus, s1, = —wo(wit)71d7 M2 + h.o.t.. That is, s; increases along the

Combined with the above theorem, we have

THEOREM 3.9. Suppose that (H1) — (Hs) and pt > M, A} > pd, wit#£0, w3 =0, then
(1) for 0 < |p| < 1, system (1) have two and only two periodic orbits as j is in the small
one-sided neighborhood of Ho pointing to ]\421 (resp. —le) and a unique periodic orbit in the
small other-sided neighborhood of Hy as dzwitw3' > 0 (resp. dzwi*wdt < 0) if and only if
A/ > 03/ ph-
(2) for 0 < |p| < 1, system (1) have two and only two periodic orbits as p is in the small
one-sided neighborhood of Hy pointing to M} (resp. —MJ) and a unique periodic orbit in
the small other-sided neighborhood of Hy as S,wawit > 0 (resp. Sywowst < 0) if and only if
ps/pz > A /AL
(3) for 0 < |u| < 1, there is a unique periodic orbit for system (1) as p is in the small one-
sided neighborhood of Ha pointing to M3 (resp. — M) as Szwiwi! > 0 (resp. dzwitwi! < 0)
if \/AL < p3/ps.
(4) for 0 < |u| < 1, there is a unique periodic orbit for system (1) as p is in the small one-
sided neighborhood of Hy pointing to M (resp. — M3}) as S,wawd? > 0 (resp. Sywawi? < 0)
if p3/p3y < N/AL

In the following, we firstly try to consider the double periodic orbit bifurcation for the
case (3), which is corresponding to the double positive zero point bifurcation for Eq.(2.23)
and Eq.(2.24). Then, it is sufficient to consider the double positive zero point for M (s, u) or
N(s2, ). Here, we consider the double positive zero point 51 for M (s1, p) with 81 = o(|MZpl).

Denote by
1
Plsi,i) = 5F(p)st+ E(u)s + Wi(u) + hot.
Q(Sl, 'u) = —wglwglégsi\?/)& + h.o.t..
Then, 51 should satisfy
P(Slnu) = Q(Sl,/ﬁ), (329)
P,(Slau) = Q/(Slau)a (330)

P"(s1,1) # Q" (s1,0).

(3.30) is equivalent to
3_31) /)1
—w;lwgléa)\i’sg)‘l MM Lot = MF()s1 + M E(p) + hoo.t..

We denote it as Nj(s1, p) = Na(s1, ). Then,

(7). for wowdt < 0, witw3tszd, < 0, we have E(u) - F(u) > 0, wow3dy - E(p) > 0, then it
is easy to see that Eq.(3.30) has no positive solution. So, system (1) has no double periodic
orbit for wewi? < 0, witw3tszd, < 0.

(i1). For wowit > 0, witw? 6,8, > 0, we have E(u) - F(u) < 0, wow3ldy - E(u) < 0. Based
on the values of N;(0, ), ¢ = 1,2, and their monotonicity, we obtain Eq.(3.30) has at most
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one positive solution 51 = o(|M2pul). So, system (1) has at most one double periodic orbit
for wowd* > 0, witw3'ézd, > 0.

331y /31
Set sgAl AV h, then Eq.(3.30) becomes

—wy WP A b= ME(p) 4 hoot. = A F(p) - IM/OIM) 4 hoot., (3.31)

We denote by

Ni(h) = —wy w3 6: 03 - h — M E(u) + ho.t.,

Ny(h) = A F(p) - PN/ 4 hot
Then, for every positive intersection point of curves W = Nj(h) and W = Ny(h) with
h = o(|M22,u|()‘§_>‘D/>‘%), M (s1, 1) has a corresponding double zero point bifurcation surface
SNk,

By solving Nj(h) = N}(h), we get a unique solution
7 (3—2a) /(A=A _ (AM)? - w2 F(p)

= — + h.o.t.,
ML~ a3l

where h = o(|M2,u|(>\§—>&)/>&) for p2/ps > A3 /AL, Substitute it into Eq.(3.31), we have
_w2 15 )\3 Ny 2_10)%15 )\3
= MF(p)- [— AQQ '”fF(g) ]_1 FALE() - [_ 3(&32 .W?F(i) ~(F =D/ -2A)
T(A} = Apws' 6y N8~ Awdls,
= B[ er) }—w—m/w—»n
T(A = ADws' 6

Easily we can see from the above equation that,
14

(iii). for wowdt > 0, wiw3'6z0, < 0, we have wow3'dzE(n) > 0, so it is impossible
for A3(u) > 0. Consequently, there is no tangent point for W = Nj(h) and W = Na(h)
at this rate. Based on the figures of the two curves, there will be at most one positive
intersection point 5y satisfying 5 > sg, where sg = O(|M3Zu|) > 0 is the zero point of
Na(s1,p). Then it is impossible for 51 = o(|M2pu|). So, system (1) has no double periodic
orbit for wowl? > 0 witw 15 0y < 0.

(iv). for wowd? < 0, witw3'6z6, > 0, as wow3'dz E(y) < 0, then )\if(,u)|SN{; > 0. Corre-
spondingly, the curves W = Nj(h) and W = Ny(h) are tangent at the unique positive point
h as A3(1) = A3(u). Notice that

Ni(0) = =M E(u) +hot.,  N{(h) = —wy w363 + hoo.t.,
(A)?
)\3 _ )\1
We claim, for wow3'ds < 0 (resp. wow3'dy > 0), the curves W = Ni(h) and W = Ny(h)
have two positive intersection points as A3 (1) > A3 (u ) (resp. A3(u) < A3(1)) and no positive

intersection points as A3(u) < A3(u) (resp. A3(p) > A3 (p)).
In conclusion, we have

+0(1).

Ny(0)~0,  Ni(h) = F(u)h®PM= /N 4 pot.

THEOREM 3.10. Suppose that (H1) — (Hs) hold and pt > A\, A\ > pl) wl* #£0, w2t =0,
then
(1). for wawit < 0 (resp. wowdt > 0), witw3léz6, < 0, system (1) has no double periodic
orbit.
(2). for wowi >0, witw3r§;6, > 0, system (1) has at most one double periodic orbit.
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(3). for wawd? < 0, witw36,8, > 0, if p3/ps > X3 /A, then system (1) has exactly two double
periodic orbzt bifurcation surfaces when N3(u) > A(u) (resp. A3 () < A3(p)) as wawdldy <
0 (resp. waw2dy > 0);

system (1) has a unique double periodic orbit bifurcation surface when \3(u) = N\3(u) either
wowsl 6z < 0 or wow3ldy > 0;

system (1) has no double periodic orbit bifurcation surface when N3 (1) < A3 () (resp. A3 (p) >
A3 (1)) as wowatdy < 0 (resp. w2w2 L5z > 0).

The corresponding surface SN and double positive zero point 51 are given by

SN[ - %F(p)h”‘%/()‘%_)‘%)+E(u)h)‘%/()‘§_)‘%)+W1(,u)—|—h.0.t. —wy twilsy PN/ L hot,
5, = PM/OAD),
where h are the positive solutions of Eq.(3.51).
REMARK 3.2. In the above theorem, the tangency conditions for

P(s1,p) = Q(s1, 1), Ni(h) = Na(h),

given by A3 (1) = A3 (u) and p € SN are equivalent to the condition that M(s1,u) has a
unique triple positive zero point, which corresponds to the triple periodic orbit for system (1).

THEOREM 3.11. Suppose that (H1) — (Hs) hold and pt > MM\ > pd, p3/ph > A3/AL
wit #£ 0, w3t =0, then for wowit < 0, wWitw2l§;6, > 0, system (1) has a unique triple periodic
orbit bifurcation surface

A2 F 221 /(A3 —2A1) A2 F AL/(A3—2a1)
st 4o [P ) o [l

- A2 A3/(A3—2Al)
—|—W1(/.L) + h.ot. = —Woy lwgléﬁ [—%] ' ' ' +

]A%/(Ai’—%%)

.0.t.,

12,
A%F(H) [_ (M) w2 F(p)

1
AOT=ADw3'oa + M E(p) + heot.

} (AF=AD/(F=22])

= —w, w2 15u )\3 [ (]2 w2 (1) .o.t..

BT ADellen

when A3 () = A3 (1) either waw3'dy < 0 or wowd'dy > 0. And the corresponding triple positive
zero point is

e AL/(A=2A9)
(2 _ [ (A)” - woF'(p) ] + h.o.t..

U TR e
Proof. Obviously, §§2) should satisfy Eq.(3.29)-(3.30) and P”(s1,u) = Q"(s1,). From
P”(Sl):u) = Q”(Sl,/l), we have

)\1 )\3_ )\1
(@ _ [ QD2 wnF(u) WO
ET RO e,

By substituting it into Eq.(3.29)-(3.30), we obtain the triple periodic orbit bifurcation surface
SN2 O

+ h.o.t..

© 2011 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Qiuying Lu, Lille 1, 2009

Bibliography

[1] L. Arnold. Random dynamical systems. Springer, 1998.

[2] J. M. Ball. Continuity properties and global attractors of generalized semiflows and the Navier-Stokes
equations. J. Nonlinear Sci., 7(2):475-502, 1997.

[3] J. M. Ball. Global attractors for damped semilinear wave equations. Discrete Contin. Dyn. Syst., 10:31—
52, 2004.

[4] P. W. Bates, H. Lisei, and K. Lu. Attractors for stochastic lattice dynamical systems. Stoch. Dyn.,
6:1-21, 2006.

[5] P. W. Bates, K. Lu, and B. Wang. Random attractors for stochastic reaction—diffusion equations on
unbounded domains. Journal of Differential Equations, 246:845-869, 2008.

[6] E. Beretta, V. Kolmanovskii, and L. Shaikhet. Stability of epidemic model with time delay influenced
by stochastic perturbations. Math. and Computers in Simulation, 45:269-277, 1998.

[7] E. Beretta and Y. Takeuchi. Global stability of an SIR epidemic model with time delays. Journal of
Mathematical Biology, 33:250-260, 1995.

[8] C. Bonatti, L. J. Diaz, E. Pujals, and J. Rocha. Robust transitivity and heterodimensional cycles.
Asterisque, 286:187-222, 2003.

[9] V. V. Bykov. Orbits structure in a neighborhood of a separatrix cycle containing two saddle-foci. Amer.
Math. Soc. Trans., 200(2):87-97, 2000.

[10] T. Caraballo, G. Lukaszewicz, and J. Real. Pullback attractors for asymptotically compact non-
autonomous dynamical systems. Nonlinear Anal., 64:484—498, 2006.

[11] M. Carvalho. Sinai-Ruelle-Bowen measures for n-dimensional derived from Anosov diffeomorphisms.
Ergod. Theor. Dyn. Syst., 13(1):21-44, 1993.

[12] G. Chen and T. Li. Stability of stochastic delayed SIR model. Stochastics and Dynamics, 9, 2009. To
appear.

[13] S. N. Chow, B. Deng, and B. Fiedler. Homoclinic bifurcation at resonant eigenvalues. Journal of Dy-
namics and Differential Equations, 2:177-244, 1990.

[14] H. Crauel. Random point attractors versus random set attractors. J. London Math. Soc., 63:413-427,
2002.

[15] H. Crauel, A. Debussche, and F. Flandoli. Random attractors. J. Dyn. Diff. Eq., 9(2):307-341, 1997.

[16] H. Crauel and F. Flandoli. Attractors for random dynamical systems. Probab. Theory Relat. Fields,
100:365-393, 1994.

[17] B. Deng. Homoclinic twisting bifurcations and cusp horseshoe maps. Journal of Dynamics and Differ-
ential Equations, 5(3):417-467, 1993.

[18] L. J. Diaz. Robust nonhyperbolicity and heterodimensional cycles. Ergod. Theor. Dynam. Syst, 15:291—
315, 1995.

[19] L. J. Diaz and J. Rocha. Non-connected heterodimensional cycles: bifurcation and stability. Nonlinearity,
5:1315-1341, 1992.

[20] Z. Du and W. Zhang. Melnikov method for homoclinic bifurcation in nonlinear impact oscillators. Com-
puters and Mathematics with Applications, 50(3-4):445-458, 2005.

[21] F. Dumortier, H. Kokubu, and H. Oka. A degenerate singularity generating geometric Lorenz attractors.
Ergodic Theory and Dynamical Systems, 15:833-856, 1995.

[22] F. Dumortier and R. Roussarie. On the saddle loop bifurcation. Bifurcation of planar vector fields, LNM
1455, 1990.

[23] F. Dumortier, R. Roussarie, and J. Sotomayor. Generic 3-parameter families of vector fields, unfoldings
of saddle, focus and elliptic singularities with nilpotent linear parts. Bifurcations of Planar Vector Fields,
LNM, 1480:1-164, 1991.

[24] B. Feng. The stability of heteroclinic loop under the critical condition. Science in China, Ser. A, 34:673—
684, 1991.

87

© 2011 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Qiuying Lu, Lille 1, 2009
88 BIBLIOGRAPHY

[25] B. Feng and D. Xiao. Homolinic and heteroclinic bifurcations of heteroclinic loops. Acta Math. Sinica,
35:815-830, 1992.

[26] F. Flandoli and B. Schmalfu3. Random attractors for the 3 D stochastic navier-stokes equation with
multiplicative white noise. Stoch. Stoch. Rep., 59:21-45, 1996.

[27] F. Geng, D. Zhu, and Y. Xu. Bifurcations of heterodimensional cycles with two saddle points. Chaos,
Solitons and Fractals, In press, 2007.

[28] J. M. Ghidaglia. A note on the strong convergence towards attractors of damped forced KdV equations.
J. Differential Equations, 110(2):356-359, 1994.

[29] O. Goubet and R. M. S. Rosa. Asymptotic smoothing and the global attractor of a weakly damped KdV
equation on the real line. J. Differential Equations, 185:25-53, 2002.

[30] J. Guckenheimer and P. Holmes. Nonlinear oscillations, dynamical systems, and bifurcations of vector
fields. Springer-Verlag, New York, 1983.

[31] J. K. Hale and S. M. V. Lunel. Introduction to Functional Differential Equations. Berlin: Springer, 1993.

[32] M. Han and J. Chen. On the number of limit cycles in double homoclinic bifurcations. Chin. Ann. Math.,
43:914-928, 2000.

[33] M. Han and Y. Wu. The stability of double homoclinic loops. Applied mathematical letters, 17:1291-1298,
2004.

[34] R. Z. Has’'minskii. Stochastic Stability of Differential Equations. Sijthoof & Noordhoof, Alphen aan den
Rijn, The Netherlands, 1980.

[35] J. He. Limit cycle and bifurcation of nonlinear problems. Chaos, Solitons and Fractals, 26(3):827-833,
2005.

[36] A. Homburg, H. Kokubu, and M. Krupa. The cusp horseshoe and its bifurcations in the unfolding of an
inclination-flip homoclinic orbit. Ergodic Theory and Dynamical Systems, 14:667—693, 1994.

[37] A. J. Homburg. Global Aspects of Homoclinic Bifurcations of Vector Fields. Memoir American Mathe-
matical Society, 121(578):1-128, 1996.

[38] A. J. Homburg and J. Knobloch. Multiple homoclinic orbits in conservative and reversible systems.
Trans. Amer. Math. Soc, 358:1715-1740, 2006.

[39] Y. Jin and D. Zhu. Degenerated homoclinic bifurcations with higher dimensions. Chin. Ann. Math. Ser.
B, 21:201-210, 2000.

[40] Y. Jin and D. Zhu. Bifurcations of rough heteroclinic loops with three saddle points. Acta Mathematica
Sinica, 18(1):199-208, 2002.

[41] N. Ju. The Hl-compact global attractor for the solutions to the Navier-Stokes equations in two-
dimensional unbounded domains. Nonlinearity, 13:1227-1238, 2000.

[42] W. O. Kermack and A. G. McKendrick. Contributions to the Mathematical Theory of Epidemics. Pro-
ceedings of the Royal Society of London. Series A, 115:700-721, 1927.

[43] M. Kisaka, H. Kokubu, and H. Oka. Supplement to homoclinic doubling bifurcation in vector fields.
Dynamical Systems, pages 92—-116, 1990. Pitman Res. Notes Math. Ser., 285, Longman Sci. Tech.,
Harlow, 1993.

[44] V. Kolmanoskii and V. R. Nosov. Stability and Periodic Modes of Control Systems with Aftereffect.
Moscow: Nauka, 1981.

[45] V. Kolmanovskii and A. Myshkis. Applied Theory of Functional Differential Equations. Kluwer Academic
Publishers, 1992.

[46] V. Kolmanovskii and V. R. Nosov. Stability of functional differential equations. Academic Press, New
York, 1986.

[47] Y. N. Kyrychko and K. B. Blyuss. Global properties of a delayed SIR model with temporary immunity
and nonlinear incidence rate. Nonlinear Analysis: Real World Applications, 6:495-507, 2005.

[48] J. S. W. Lamb, M. A. Teixeira, and L. N. Webster. Heteroclinic bifurcation near hopf-zero bifurcation
in reversible vector fields in R®. J. Differential Equations, 219:78-115, 2005.

[49] Y. T. Lau. Global aspects of homoclinic bifurcations of three-dimensional saddles. Chaos, Solitons and
Fractals, 3:369-382, 1993.

[50] W. M. Liu, H. W. Hethcote, and S. A. Levin. Dynamical behavior of epidemiological models with
nonlinear incidence rates. J. Math. Biol., 25:359-380, 1987.

[61] W. M. Liu, S. A. Levin, and Y. Iwasa. Influence of nonlinear incidence rates upon the behavior of SIRS
epidemiological models. J. Math. Biol., 23:187-204, 1986.

[52] Q. Lu. Stability of SIRS system with random perturbations. Physica A, 2009. To appear.

[53] Q. Lu. Codimension 2 bifurcation of twisted double homoclinic Loops. Computers € Mathematics with
Applications, 57:1127-1141, 2009.

© 2011 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Qiuying Lu, Lille 1, 2009
BIBLIOGRAPHY 89

[64] Q. Lu. Non-resonance 3D homoclinic bifurcation with inclination-flip. Chaos, Soliton & Fractals, In
press, 2009. doi:10.1016/j.chaos.2009.03.112.

[55] Q. Lu, Z. Qiao, and D. Zhu. Heterodimensional cycle bifurcation with orbit-flip. Submitted, 2009.

[56] D. Luo. Bifurcation theory and methods of dynamical systems. World Scientific, 1997.

[57] R. Mane. Contributions to the stability conjecture. Topology, 17(4):383-396, 1978.

[68] X. Mao. Stability of stochastic differential equations with respect to semimartingales. Longman Scientific

and Technical, 1991.

[59] X. Mao. Ezponential stability of stochastic differential equations. Dekker, New York, 1994.

[60] X. Mao. Stochastic differential equations and their Applications. Horwood Publishing, Chichester, Eng-
land, 1997.

[61] X. Mao and C. Yuan. Stochastic differential equations with markovian switching. Imperial College Press,
2006.

[62] S-E. A. Mohammed. Stochastic functional differential equations. Longman Scientific and Technical, 1986.

[63] I. Moise and R. Rosa. On the regularity of the global attractor of a weakly damped, forced Korteweg-de
Vries equation. Adv. Differential Equations, 2:257-296, 1997.

[64] I. Moise, R. Rosa, and X. Wang. Attractors for non-compact semigroups via energy equations. Nonlin-
earity, 11:1369-1393, 1998.

[65] C.A. Morales, M.J. Pacifico, and B. San Martin. Contracting Lorenz attractors through resonant double
homoclinic loops. SIAM J. Math. Anal., 38:309, 2006.

[66] A. Mourtada. Degenerate and nontrivial hyperbolic polycycles with vertices. J. Diff. Egs., 113:68-83,
1994.

[67] V. Naudot. Strange attractor in the unfolding of an inclination-flip homoclinic orbit. Ergod. Th and
Dynam. Sys., 16:1071-1086, 1996.

[68] S. Newhouse and J. Palis. Diffeomorphisms with infinitely many sinks. Topology, 13:9-18, 1974.

[69] S. Newhouse and J. Palis. Cycles and bifurcation theory, Trois etudes en dynamique qualitative. Aster-
isque, 31:43-140, 1976.

[70] G. Ochs. Weak random attractors. Report 449, Institut fur Dynamische Systeme, Universitat Bremen,
1999.

[71] J. Palis. A global view of dynamics and a conjecture on the denseness of finitude of attractors. Asterisque,
261:335-347, 2000.

[72] J. Palis and F. Takens. Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations. Cam-
bridge University Press, 1993.

[73] J. D. M. Rademacher. Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic
orbit. Journal of Differential Equations, 218:390-443, 2005.

[74] J. W. Reyn. Generation of limit cycles from separatrix polygons in the phase plane. Lecture Notes in
Math., 810:264-289, 1980.

[75] C. Robinson. Homoclinic bifurcation to a transitive attractor of Lorenz type. Nonlinearity, 2:495-518,
1989.

[76] R. Rosa. The global attractor for the 2D Navier-Stokes flow on some unbounded domains. Nonlinear
Anal., 32:71-85, 1998.

[77] R. Roussarie. On the number of limit cycles which appear by perturbation of separatrix loop of planar
vector fields. Bulletin of the Brazilian Mathematical Society, 17(2):67-101, 1986.

[78] M. R. Rychlik. Lorenz attractors through Shil’nikov-type bifurcation. I. Ergod. Th. Dynam. Syst., 10:793—
821, 1990.

[79] B. Sandstede. Verzweigungstheorie homokliner Verdopplungen PhD thesis University of Stuttgart, 1993.

[80] M. Scheutzow. Comparison of various concepts of a random attractor: a case study. Archiv der Mathe-
matik, 78:233-240, 2002.

[81] B. Schmalfuss. Backward cocycles and attractors of stochastic differential equations. In International
Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behaviour,
pages 185-192, 1992.

[82] G. R. Sell. Smooth linearization near a fixed point. AM. J. MATH., 107(5):1035-1092, 1985.

[83] M. Shub. Topological transitive diffecomorphism on T*. Proceedings of the Symposium on Differential
FEquations and Dynamical Systems, 206:39-40, 1971.

[84] L. P. Sil'nikov. A case of the existence of a denumerable set of periodic motions. Sov. Math. Dokl,
6(1):163-166, 1965.

[85] L. P. Sil’'nikov. On the generation of a periodic motion from trajectories doubly asymptotic to an equi-
librium of state of saddle type. Mathematics of the USSR-Sbornik, 6:427-438, 1968.

© 2011 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Qiuying Lu, Lille 1, 2009
90 BIBLIOGRAPHY

[86] J. Sun. Bifurcations of heteroclinic loop with nonhyperbolic critical points in R™. Science in China, Ser.
A, 24:1145-1151, 1994.
[87] R. Temam. Infinite dimensional dynamical systems in mechanics and physics. Springer-Verlag. New
York, second edition, 1997.
[88] Q. Tian and D. Zhu. Bifurcation of nontwisted heteroclinic loop. Sci China, Ser A, 30:193-202, 2000.
[89] E. Tornatore, S. M. Buccellato, and P. Vetro. Stability of a stochastic SIR system. Physica A: Statistical
Mechanics and its Applications, 354:111-126, 2005.
[90] D. V. Turaev. Bifurcations of a homoclinic figure eight of a multi-dimensional saddle. Russian Mathe-
matical Surveys, 43:264—265, 1988.
[91] D. V. Turaev and L. P. Shil'nikov. Bifurcation of a homoclinic figure eight saddle with a negative saddle
value. (Russian) Dokl. Akad. Nauk SSSR, 290:1301-1304, 1986.
[92] G. Wang, B. Guo, and Y. Li. The asymptotic behavior of the stochastic Ginzburg-Landau equation with
additive noise. Appl. Math. and Comp., 198:849-857, 2008.
[93] X. Wang. An energy equation for the weakly damped driven nonlinear Schrodinger equations and its
application to their attractors. Physica D: Nonlinear Phenomena, 88:167—-175, 1995.
[94] Y. Wu and M. Han. New configurations of 24 limit cycles in a quintic system. Computers and Mathematics
with Applications, 2007. In press.
[95] Y. Xiao, L. Chen, and F. Ven den Bosch. Dynamical behavior for a stage-structured SIR infectious
disease model. Nonlinear Analysis: Real World Applications, 3:175-190, 2002.
[96] E. Yanagida. Branching of double pulse solutions from single pulse solutions in nerve axon equations. J.
Differ. Equations, 66:243-262, 1987.
[97] D. Yang. The asymptotic behavior of the stochastic Ginzburg-Landau equation with multiplicative noise.
J. Math. Phys., 45:4064-4076, 2004.
[98] H. Zang, T. Zhang, and M. Han. Bifurcations of limit cycles from quintic hamiltonian systems with a
double figure eight loop. Bulletin des sciences mathématiques, 130:71-86, 2006.
[99] T. Zhang and D. Zhu. Codimension 3 homoclinic bifurcation of orbit flip with resonant eigenvalues
corresponding to the tangent directions. Inter. J. Bifucation. and Chaos, 14:4161-4175, 2004.
[100] T. Zhang and D. Zhu. Homoclinic bifurcation of orbit flip with resonant principal eigenvalues. Acta
Math. Sinica, English Ser., 22:855-864, 2006.
[101] W. Zhang, F. X. Wang, and J. W. Zu. Local bifurcations and codimension-3 degenerate bifurcations of a
quintic nonlinear beam under parametric excitation. Chaos, Solitons and Fractals, 24(4):977-998, 2005.
[102] W. Zhang and D. Zhu. Codimension 2 bifurcations of double homoclinic loops. Chaos, Solitons and
Fractals, In press.
[103] Z.Zhang, C. Li, and Z. Zheng et al. The Foundation of Bifurcation Theory for Vector Field (in Chinese).
Beijing: Advanced Education Press, 1997.
[104] D. Zhu. Problems in homoclinic bifurcation with higher dimensions. Acta. Math. Sin. Engl. Ser., 14:1289—
1294, 1998.
[105] D. Zhu and Z. Xia. Bifurcations of heteroclinic loops. Science in China, Series A, 41(8):837-848, 1998.
[106] Y. Zou and Y. She. Homoclinic bifurcation properties near eight-figure homoclinic orbit,. Northeast.
Math. J., 18:79-88, 2002.

© 2011 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Qiuying Lu, Lille 1, 2009
BIBLIOGRAPHY i

X E

RXEETRAEAT ook 5 430 69 B AL A2 78 T IR B, R LR 5] F- o 77 70 1k 1) L R
BB E N XM &XHELNH B

T — W, HhERT T 4 4% 47 i M HUSIRSHE A& v 4 4 2 A7 6t # i b HUSTRSAE AL
ZSIRSA DA d, v REBEABLEEEAHLE. Ty =0 6yER, XE[8IHE HAHEK.
A KRBT TR G A 8y HLSIRSHA s AL R0 A . 3 F T4 At 4y SIRS R 4k, #4118
U 0<B<AN+pu—% )T XH[BI 3ty = Oty B F & £. R AR F# £ Lyapunovig i ty
FEBEHEDER. EHAME RINHTT SAREEY, ENEFELTEDERGTEN, B
R ATE N e H ek 5D, TABAEMR N & o E 20l R E.

Bk, R T EXEEAR" ;644 7 o 7 o B 4L Ginzburg-Landau# 4, {8 7 % v/3k >
| 3|8, B % A T ek 7t ML Ginzburg-Landaujy #2 2 X 8 M 4L 30 7 R K oELA(R") LA — 4
D-BLR 5| F. % &R K 5 Sobolevi Ay S HERFE & i, % th 7 k3 R A% R E
FOR—ANEETF, NTART| FHARG AW ERTRAMIK. EREEFEY, XA EA
BNTUR A EF RN A E AT TEXELRE S LR T F A A0, — Lk
BARBA R R A, R BT REAE T A Y BB T Fotdrt B, Bmtorad
WAL B, ATTER T BEHUR 5] Tt 7 AE

BXE =B, RN NFRT HHEA BEG3DEAEREN X, 1 WEEHFH X hoEHH
HEA B A RN XN, RIARLE RS

z2 = f(2) +g(z, ), (32)

REXRRKT R%
i = f(2), (33)

Hd 2 e R 2 m >0,n>0m+n>0, pcR, 1>2 0<|u| <1, g(2,0) =0.

|- 1] R 2 (8] o oy g 72 X AR

RNRAT RBES RAREY k. FREBET BTG T BER B H/DNSRA G zh 1%
TAEREEBRRNARAE. B, E—KRAMHEXT, BRI ERMIEEE IR
FREARN A ENL, AORGHFETTEEREMIH S A ERR, v UTAEN, 8N, 1
W, ¥ KERESESE. Eib, TYNEBOEER FEIREO &L R ILAE 8 A dE A
PHRIE SRR, AT UH R A AR A G, T E b 43 5|t Poincaresk 4t fup % 4 #2
P kRS REARAHN LA EEX

GARRREHAMBEGHERRID AEHLE. B, m=0,n=1,1=2, f(0) =0.

% (33) haBTNRERRFHMALEL A

= Df(r(t))= (34)
i = —(DF(r(#) = (35)

A r(t) = (r(1),r(t),r"(t). R T >0 K, % r(=T) = (6,0,0), r(T) = (0,0,0,), ¥
00| = 0(0), 6 /D, R {(x,y,v) : |x],]yl, |v] <26} C U.
WG (34) H—PARERE Z(t) HR

( 0 wo1 w3 ) ( wir 0 0 )

2-T)=( 0 0 w3 |, 2= w2 1 0 [,

1 0 w33 w1z wog 1

Hop | wog |[< Lwor < 0,wi1 # 0,wsp # 0. R4 (35) A— AR ©t) = (Z71(t), £
D(t) = (¢} (1), 97 (1), 9} (1)). iE

T
M= [ (6,0 9ulr(0),0) = 1.3
-7

© 2011 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Qiuying Lu, Lille 1, 2009
ii BIBLIOGRAPHY

KMNEALRAFERMBBENOEEAL T, B wsz #0. ABEAT, 2 XERRE—,
BRAAB)RFRAREKRMNEEIE, KFI W E—H AN EX, EERABENELT, &
% wys =08, RNEAREH 2 XERRE—8, BIXT RE(32) %K, AFEAFNERE, ZHF0
X WrE— A BE, BRI ERTHRRAMEN HR R ENL L, BY w =0, 6, =0 .
HFNBEATI-FER, T, 2 Ao X # @ R AR H2" ey B85 4 & A i A
ML HEP UREEHN2-FESXHEHY Fa%, Vn e N B, X7 EF6RARNH
AXER, BT ZEHL)THAE.

Bk, ARABEH2HHA G REFH X FERCZE, Atm > 0,n>0,m+n >0, 1>
2, f(0)=0. 5HEHHRABENIDEFE R XTENRE, AR EEHB3)HELERKE
REEHFRAY. P —£HEREL SN, RIEETL-IRNEEHE, 21 XEABHHE, 2-1 A
i, 1-1 KEFEHRE, 2-1 KEFREF2-1 KEARIEGFEE—HEE ERARE
WA, RIFET1-1 XEEHH, 1-2 XEFEHH, 2-1 XEEHH, 22 XEEH
#, 21 KEFHE, 1-2 KEFHRE, 2-2 KEFHE, 22 AR FHHE, 22 KEFHRE, 22 £
Bl Ef 2-2 KA AN A ES R AER B . A, & (3 A) T A b 42 B0 (&
#Do) s thit Al h B K, WEZ—F BB/ A e B AR, Kk BERENINE
FARL =T UD B R /MR A . p-adi@ithizd s &l = D UD 3/ NN B 40 46 p i,

B4 IodbqRE.
B, RANGH T ARG E XL A7EX . F 7 b a0 # P Melnikov i & 40 & fy 24 F % 18]
TEHTEMSXE.

R, AR A ANEBENFEAL) . X TREFNRAHR, ZRAKEEEEH— MR
A, XEEERINE: SRR FEAOERRENRERZHNI AN (—RHN]L), T4 HaEEN
BRERZEHGHA, BERET MM, A FRTHOIFT RN ERMME.

kzeRY, peR, 1>2 BA®EL 33) HBEANF A pp2 B f(pi) =0, g(pi,p) =
0, i =12 BNMNEFERFTHNERMBNREL DI, £H TR BHE, FEHEPEARNE N FEN,
MR FARRA. B, RIMULE TR EHE AN ELFHELE TEEFTRN RS
RF M ERG LR, 2 X HKRNOBEEAPRFTROFHEAFEA T EA. W, HEHRT2E
B A0S E A 0 Xl . FAX BTN, BT EMo T dhE R EAEX .

KW Foh BRI BIAH B MBS WE R KAMY; KEREY; 2% HaheE; 74

#; KA SIRS £ A ; Lyapunov & #; FEF2E; ML Ginzburg-Landau 7 #2; F#L3h 7 & 4 4
B R 51F; BRG] F; st &

© 2011 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Qiuying Lu, Lille 1, 2009

Stabilité stochastique, attracteur alléatoire et
bifurcation d’orbites homocline et heterocline

Résumé
Cette these est consacré a I’étude de certaines équations différentielles stochastiques et
la bifurcation des orbites homocline et heterocline. On présente les conditions pour la sta-
bilité stochastique du modele SIRS stochastique avec ou sans retard. Nous montrons que
I’équation stochastique de Ginzburg-Landau avec perturbation aléatoire additive possede un
unique D-attracteur aléatoire dans l'espace entier. Dans la seconde partie, en utilisant la
méthode des coordonnées actives locales, on étudie la bifurcation dans trois cas de figure
la bifurcation d’orbite homocline non résonante en dimension 3 avec inclination-flip, la
bifurcation d’orbites homocline doubles tordus de codimension 2, et la bifurcation de cycle
heterodimensionnel dégénéré avec orbite-flip. Dans le premier cas nous montrons, pour le
systeme perturbé, I'existence d’orbite 1-homocline, orbite 1-périodique, orbite 2"*-homocline
et orbite 2™-périodique. Dans le deuxieme cas, on montre des résultats de bifurcation sous
la condition d’une orbite tordu ou les deux tordus. Dans le troisieme situation, sous des hy-
potheses génériques, nous présentons des conditions pour ’existence, unicité, co-existence ou
non-co-existence d’orbite homocline, d’orbite heterocline et d’orbite périodique. Dans tous
les cas les surfaces de bifurcation sont obtenues et elles sont présentées dans le sous espace
de dimension 2 engendré par les deux premiers vecteurs de Melnikov.

Stochastic stability, random attractor and
bifurcation of homoclinic and heteroclinic orbit

Abstract

The thesis is devoted to the study of some stochastic differential equations and homoclinic
and heteroclinic bifurcations. We present the stability conditions of the disease-free equilib-
rium for the stochastic STRS model with or without distributed time delay. We show that the
stochastic Ginzburg-Landau equation with additive noise on the entire n-dimensional space
possesses a unique D-random attractor. In the second part, by employing the local active
coordinates method, we study the bifurcations in three situations : the bifurcation of the
non-resonant 3D homoclinic orbit with inclination-flip, codimension 2 bifurcation of twisted
double homoclinic loops, and heterodimensional cycle bifurcation with orbit-flip. In the first
case, we show, for the perturbed systems, the existence of 1-homoclinic orbit, 1-periodic
orbit, 2"-homoclinic orbit and 2™-periodic orbit. In the second case, we obtain bifurcation
results both under the condition of one twisted orbit and double twisted orbits. In the last
case, under some generic hypotheses, we present conditions for the existence, uniqueness,
coexistence or non-coexistence of the homoclinic orbit, heteroclinic orbit and periodic orbit.
In all cases we figure out the bifurcation diagrams based on the existence region and they are
presented on the 2-dimensional subspace spanned by the first two Melnikov vectors.
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