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Abstract

Zhang wenxing (Condensed Matter Physics) 
Major Professors: Prof. Christophe Delerue and Prof. Wang Enge 

In this thesis, the electronic structure, the phonon spectrum, and the electron- 
phonon (e-p) coupling effect in transport properties of Silicon Nanowires (SiNW) 
have been studied systematically based on Tight-Binding (TB) model and 
Valence-Force-Field (VFF) model. The electronic structure of SiNW is strongly 
dependent on the orientation and the diameter, even changing from direct gap to 
indirect gap, and the gap of SiNWs decreases and tends to the bulk value as the 
diameter increases. The phonon spectra are also dependent on the orientation and the 
diameter. It’s a character of nanowires that there are four acoustic phonon modes. 
Based on the calculation of both low field mobility and lifetime of electrons in SiNWs 
along [110], it’s confirmed that at room temperature the transport of carriers in SiNWs 
strongly depends on the phonon scattering, involving both optical phonons and 
acoustic phonons. The mobility increases and tends to the bulk value when the 
diameter increases. The mobility decreases in power law when the temperature 
increases from 77K to 300K. The relationship between the mobility and the density of 
carrier is more complicated. For low density of carrier (<1019/cm3), the mobility is 
almost constant because it is approximately independent on the Fermi level at low 
concentration. For higher concentration, the mobility is strongly dependent on the 
density of carrier because the Fermi level is high enough to cross the conduction band 
edge (CBE) and multi-band transport becomes important. 

The current programs used in the investigation are developed by the author using 
Fortran90 programming language. The mode of sparse matrix diagonalisation, which 
is named ‘diag_cg’, is based on the conjugate gradient (CG) algorithm and was 
written by Dr. Y. M. Niquet. In the code, there are three different sp3d5s* TB models 
named as Boykin’s, Jancu’s and Niquet’s, and each one can be used to construct the 
electron Hamiltonian as required. Spin-orbit coupling is included also. The code uses 
‘zheev’ (from Lapack) and ‘diag_cg’ to diagonalize the Dynamical matrix and the 
Hamiltonian matrix separately. Formulas of electron-phonon coupling, derivative of 
Hamiltonian, and low-field mobility in 1D system are derived. Based on the formulas, 
the electron-phonon scattering rate and the low-field mobility are calculated. The 
density of state (DOS) and the vibration mode are also obtained. By the means of 
including all electron-phonon scattering, the transport behavior of electrons in SiNWs 
is studied systematically. The code is MPI/OpenMPI parallel. 

TB model and Nonequilibrium Green’s Function (NEGF) are used to calculate 
the ballistic transport properties of Carbon Nanotube (CNT) heterojunctions 
(n1,m1)/(n2,m2)/(n1,m1).

Keywords:  Silicon Nanowire, Diffusion Transport, Ballistic Transport, Tight 
Binding, Valence Force Field, Nonequilibrium Green’s Function, 
Sparse Matrix, Transport of Carbon Nanotube 
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Résumé

Zhang wenxing (Condensed Matter Physics) 
Major Professors: Prof. Christophe Delerue and Prof. Wang Enge 

La structure électronique, le spectre de phonons et les effets du couplage 
électron-phonon (e-p) sur les propriétés de transport de nanofils de Si (SiNW) ont été 
étudiés systématiquement sur la base de calculs en liaisons fortes et en champ de 
forces de valence. La structure électronique des nanofils dépend de leur orientation et 
de leur diamètre, changeant d’une bande interdite directe à indirecte. La largeur de 
bande interdite décroît et tend vers celle du Si massif quand le diamètre croît. Les 
spectres de phonons dépendent également de l’orientation et du diamètre. Ils 
présentent quatre modes acoustiques ce qui est typique des systèmes 
unidimensionnels. La mobilité et le temps de vie des électrons dans des nanofils 
orientés [110] ont été calculés. Les calculs confirment qu’à température ambiante les 
propriétés de transport dans les SiNWs dépendent fortement de la diffusion par les 
phonons, impliquant à la fois des modes acoustiques et optiques tous dérivant des 
modes acoustiques du Si massif. La mobilité augmente et tend vers celle du massif 
quand le diamètre augmente, et elle décroît quand la température passe de 77K à 
300K. La relation entre la mobilité et la densité de porteurs est plus complexe. Pour 
des densités inférieures à 1019 cm-3, la mobilité est pratiquement constante car elle ne 
dépend pas de la position du niveau de Fermi. Pour des densités supérieures, la 
mobilité dépend très fortement de la densité de porteurs car le niveau de Fermi est 
suffisamment haut pour croiser le minimum de bande de conduction et le transport 
multi-bandes devient important. 

Un autre travail entrepris dans la thèse a concerné la modélisation en liaisons 
fortes et en fonctions de Green hors équilibre du transport balistique dans des 
hétérojonctions de nanotubes de carbone (n1,m1)/(n2,m2)/(n1,m1). La conductance 
des jonctions semiconductrices décroît exponentiellement quand la longueur du 
nanotube (n2,m2) augmente. Cependant la conductance de (12,0)/(9,0)/(12,0) 
augmente avec la longueur du nanotube (9,0). Cet accroissement anormal de la 
conductance est expliqué par l’évolution du potentiel. De plus, la relation entre la 
conductance et la symétrie de rotation dans les jonctions métalliques est étudiée. Un 
comportement universel de conductance est démontré et est interprété par la 
différence de phase des électrons qui traversent deux interfaces de la jonction. 
Finalement, la conductance balistique de multi-jonctions est étudiée et la possibilité 
de réaliser des composants basés uniquement sur des nanotubes de carbone est 
proposée.

Mots clés:   Nanofil, Silicium, Transport diffusif, Transport balistique, Théorie, 

Liaisons Fortes, Modèle de Champ de Forces de Valence, Fonctions de 

Green hors équilibre, Nanotubes de carbone 
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Chapter 1  Introduction

Since the invention of transistor and integrated circuit, silicon industry developed 

rapidly and mankind has entered a digital age. This digital age is changing the way we 

live, work, communicate and research. Moore's Law1-4 states that the number of 

transistors on a chip doubles about every two years. Increase of transistor density not 

only improves the performance but requires fabricating electronic devices smaller and 

smaller. Intel corporation5,6 has put ‘45nm technique CPU (Central Processing Unit)’ 

into production in 2007. They have fabricated ‘32nm transistor’ for SRAM 

successfully in 2008 and plan to realize the ‘32nm technique CPU’ in 2009. 

Sub-10nm SiNWs have already been fabricated successfully with Electron beam 

lithography (EBL) or nano-imprint lithography (NIL) in laboratory. The transport 

properties of electronic devices in nano scale are totally different from the transport 

properties of traditional ones, because the quantum effect becomes more and more 

remarkable when the size of device decreases to nano scale. Owing to a lot of 

applications7,8, nanomaterials like SiNWs9 or CNTs10 have become the foci of 

research at the end of last century. Fabrication, assembling and transport properties of 

devices in nano scale are studied extensively11-20 at the present time. 

Theoretical studies of transport properties of materials started very early and 

combined with experiments closely all the time. A lot of outstanding scientists, like 

Faraday21, Boltzmann22, Dirac23, Fermi24, Landauer25 and so on, spent a lot of time 

and energy even whole life on this subject. From classic transport26 to quantum 

transport27, researchers have developed various kinds of transport theory and applied 

them to a lot of problems successfully27. Thanks to high performance computer, 

nowadays we can study the transport property of materials at atomic level. And in turn, 
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the study of transport property helps human to improve the performance of transistor 

and the speed of computer. 

This thesis presents a theoretical study of electron-phonon coupling effect in 

transport properties of SiNWs. It consists of five chapters and two appendices. In 

chapter 2, we introduce the background of study and the structures of SiNW. In 

chapter 3, tight binding (TB) model, valence force field (VFF) model and electron- 

phonon (e-p) coupling theory are presented. In chapter 4, the algorithms and formulas 

employed in the code are introduced in detail in the order of electronic structure, 

phononic structure, e-p scattering matrix, low field mobility and diagonalisation of 

large sparse matrix. In the last section of chapter 4, we introduce some future 

development of the code. At the beginning of chapter 5, the electronic structures and 

phonon spectra of SiNWs along various orientations are presented and discussed. 

Then we introduce the low field mobility and transition rate of [110]SiNW, and we 

discuss the e-p coupling effect in transport properties of [110]SiNW in detail. At last, 

we introduce the Niquet’s tight-binding model and the ballistic transport properties of 

CNT heterojunctions in appendix A and B separately. 
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Chapter 2  Background 

Since the successful fabrication of high quality SiNW from 199728, numerous 

investigations of SiNW in both theory and experiment have been made in the past 

decade. This chapter introduces the fabrication, physical properties and structure of 

SiNW. 

§2.1 State of art of SiNW 

It can not be determined who discovered SiNW for the first time in history. As 

early as 1964, Wagner and Ellis fabricated ultra fine silicon filaments in laboratory29

with vapor-liquid-solid (VLS) method, and the smallest silicon filament is about 

90nm wide (Fig.2.1.1). In 1997, Westwater28
et al. manufactured a quantity of thin 

SiNWs successfully. From then on, the fabrication and properties of SiNW are studied 

by a lot of groups all over the world. 

Fig.2.1.1 Silicon filament from Wagner and Ellis3
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2.1.1 Fabrication of SiNW 

Vapor-liquid-solid (VLS) 

The VLS method was proposed by Wagner and Ellis in 196429. Gold is generally 

used as the mediating solvent and SiCl4 (diluted with H2) or SiH4 is used as the Si 

source gas (Fig.2.1.2). When the temperature is increased to ~950°C which is higher 

than the eutectic temperature (~370°C) of gold-silicon alloy and lower than the 

melting points of both gold (1063°C) and silicon (1414°C), the gold nano-particle 

melts into liquid droplet and silicon atoms are attached to the surface of droplet. Then 

silicon atoms pass through the gold droplet and are deposited on the substrate, and 

consequently the SiNW grows. The VLS method is a kind of bottom-up method. 

Fig.2.1.2 Schematic diagram of vapor-liquid-solid method3

Electron-beam-lithography (EBL) 

The principle of EBL30 is to apply an electron sensitive polymer film to a sample 

surface and then expose certain parts of the sample to the scanning electron beam to 

form a user-defined pattern. Further, this pattern can be transferred to the silicon layer 

by etching. It’s a top-down method. 

Nano-imprint-lithography (NIL) 

NIL31 is a novel method of fabricating nanometer scale patterns. It creates 
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patterns by mechanical deformation of imprint resist and subsequent processes. It is a 

simple process with low cost, high throughput and high resolution. In principle, there 

is no limitation on the smallest size that can be fabricated. 

2.1.2 Physical properties of SiNW 

Bulk silicon is indirect gap semiconductor32. The gap is 1.17eV at 0K and 

1.21eV at 300K. From measurements33, it is found that the gap of SiNW increases 

from 1.1eV to 3.5eV when the diameter of SiNW decreases from 7nm to 1.3nm and it 

is in consistent with the theoretical prediction34,35. Measurements on the transport 

properties of SiNWs doped with impurities show the transport of carrier in SiNW 

belongs to diffusion category. And heavily doped SiNW appears metallic. Gunawan36

et al. fabricated SiNW arrays on insulator substrate and measured the transport 

properties (Fig.2.1.3). They found the mobility of carrier in SiNW is very different 

from the planar silicon inversion layers. First, the mobility is very small for low 

density of carrier. Second, the mobility increases to a maximum for moderate density 

of carrier. Third, for high density of carrier the mobility decreases to a limit. 

Fig.2.1.3 Comparison of electron mobility (a) and hole mobility (b) in SiNW-FET36

(red) with planar silicon inversion layer (black). NINV is the inversion carrier density. 

For theoretical study, Zhao37
et al. calculated the electronic structure of SiNW 

from first principle and they introduced the GW correction to obtain correct gap. 

Thonhauser38
et al. calculated the phonon dispersion relation of [111]SiNW with 
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Stillinger model and they found four acoustic modes in SiNW while there are only 

three acoustic modes in bulk materials generally. It is a character for one dimensional 

(1D) structure. 

From both experiments and calculations, we see there are big differences in 

electronic properties, phononic properties and transport properties between SiNW and 

bulk silicon. So far, theoretical studies have explained the electronic properties and 

phonon properties successfully. However, theoretical studies of electronic transport 

properties of SiNW are far from comprehension39-42. There are several reasons: first, a 

lot of studies are based on simplified models of electrons or phonons, like pk  

model for electron40,42 or continuum model for phonon39,41; second, electronic 

structure or phononic structure of SiNW is too expensive to calculate by ab-initio 

method; third, phonon modes in previous works are treated as two parts, that is, 

acoustic modes and optical modes, so the discussion of electron-phonon (e-p) 

coupling is divided into two parts also, which results in a big difficulty for the 

analysis under uniform frame. Macro phenomena come from micro mechanism. 

Especially on nanometer scale, a little change of microstructure can result in a 

remarkable effect in e-p coupling and transport properties. For the purpose of 

investigating e-p interactions and e-p coupling effect in transport properties of SiNWs 

systematically, we derive the algorithm of e-p coupling in 1D system and develop the 

corresponding code which includes full electronic band structure, full phonon 

structure and all e-p scatterings in the calculation of transport properties. 

§2.2 Structure of SiNW 

Crystalline SiNW is always along a fixed orientation. For convenience, SiNWs 

are named after their orientations, like [001], [110], [111] or [112]. With transmission 

electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction, 

Infrared spectra or Raman scattering, people can determine the atomic structure of 

SiNW directly. A high-resolution-transmission-electron-microscopy (HRTEM) photo 
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of [111]SiNW is shown in Fig.2.2.143. The inside of nanowire is crystalline silicon 

and the outside is SiOx.

Fig.2.2.1 HRTEM photo for [111]SiNW43

Fig.2.2.2 Atomic structure of [001]SiNW with square cross section and saturated with 

silicon dioxide. (yellow ball: silicon atom, red ball: oxygen atom)44

In theory, there are several different opinions about the cross section shape of 

SiNW and the saturation of dangling bond on nanowire surface. Sacconi44
et al. used 

square cross section and saturated the dangling bonds with silicon dioxide in 
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[001]SiNW (Fig.2.2.2). Thonhauser38
et al. used hexagonal cross section and retained 

the dangling bonds in [111]SiNW (Fig.2.2.3). Niquet45
et al. chose circular cross 

section and saturated the dangling bonds with hydrogen atoms. In this thesis, circular 

cross section and hydrogen saturation are chosen. Because the circular cross section is 

the most common shape for SiNWs made in experiment and the most stable shape in 

configuration relaxations. SiNW will be metallic and reactive if dangling bonds exist, 

so the passivation is also necessary. 

Fig.2.2.3 [111]SiNW with hexagonal cross section and without passivation38

In the construction of SiNW, we cut a cylinder from the bulk silicon along a 

fixed orientation, and then we put hydrogen atoms on the dangling bonds. It’s worth 

noting that the silicon atoms on which there are three dangling bonds are replaced by 

hydrogen atoms directly because such silicon atoms are reactive and unstable. The 

radius45 of SiNW is defined as: 

l

Na
r

!8

3

"                          (2.2.1) 

where a  (=5.431Å) is the lattice constant of silicon, N  is the number of silicon 

atoms in one unit cell and l  is the length of unit cell: 
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Fig.2.2.4 illustrates the atomic structure of SiNWs created by author. 



- 9 -

Fig.2.2.4 Cross section view of atomic structure for SiNWs along different orientations 

and with various diameters: a)[001]SiNW, b)[110]SiNW, c)[111]SiNW, d)[112]SiNW. 
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Chapter 3  Theoretical model 

Electronic band structure and phononic dispersion relation of SiNW are not only 

important physical properties but the basis for calculation of e-p coupling. Since J. C. 

Slater and G. F. Koster raised the two-center approximation46 in 1954, the 

tight-binding (TB) method developed quickly and was used to explore the electronic 

structure of various materials successfully47. So far, among various TB models the 

sp3d5s* model48 is the most accurate one to describe the electronic band structure of 

silicon. Lattice dynamics49 combined with valence-force-field (VFF) model50 give us 

the phonon dispersion relations. Keating model51 is famous and D. Vanderbilt et al.

generalized it to describe anharmonic vibration of silicon52. This chapter introduces 

the sp3d5s* TB model and Vanderbilt VFF model which are used in our study. And 

then the e-p coupling theory for nanowire is presented and the formula of electron 

transition rate is derived. 

§3.1 Tight-binding model 

In the main, there are three different methods to determine the electronic 

structure of materials: quantum Monte-Carlo method53, ab-initio method54 and TB 

method46. Due to the limitation of computing power and the need of explicit 

Hamiltonian in e-p coupling, the first two methods, quantum Monte-Carlo and 

ab-initio, are not suitable for the calculation of e-p coupling currently. TB models can 

describe the quantum effect of systems because it is based on the quantum mechanics. 

The Hamiltonian of TB is parameterized and TB parameters are fitted with ab-initio 
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results or experimental data. Because of parameterization, it’s convenient to construct 

a TB Hamiltonian matrix of a system. But in turn, the transferability of the TB model 

is limited by the parameters also. In general, TB model is not as accurate as ab-initio 

method. But in applications a TB model can also be very accurate in describing the 

electronic structure with well-fitted parameters, and there have been a lot of 

successful applications55 already. Additionally, the number of nonzero elements in TB 

Hamiltonian matrix is proportional to the number of atoms in one unit cell, thus it’s 

possible and suitable to use sparse matrix skill to calculate the energy bands of 

electrons. And it’s very important for the analysis of e-p coupling to calculate the 

electron energy bands quickly. Due to all above reasons, we choose the TB method to 

describe the electronic structure of SiNW. 

In Bloch theorem56, electron wave function can be expanded into a linear 

combination of atomic orbitals (LCAO): 

' ( 

i

i

R

in

Rik
Rre )()                       (3.1.1) 

where iR  denotes the summation over all unit cells. 

Using the atomic orbitals )  as basis57, the Hamiltonian is a matrix but 

three-center integrals appear. The three-center integrals are difficult to deal with. In 

1954, J. C. Slater and G. F. Koster proposed a simplified method, that is two-center 

approximation46. It means we can disregard the three-center integrals and fit the 

Hamiltonian parameters up to two-center integrals only. From then on, the TB method 

is applied successfully to a lot of materials involving insulators58, semiconductors59

and even metals60. From two-center approximation, the Hamiltonian matrix is 

represented by several parameters )( *ss , )( *pp , )( !pp , )( *dd , )( !dd , )( +dd ,

)( *sp , )( *sd , )( *pd  and )( !pd . The expressions for off diagonal Hamiltonian 

matrix elements are shown in Table 3.1. 

All TB parameters used in this thesis are prepared by Dr. Y. M. Niquet61 and 

fitted with ab-initio results which are obtained from the calculation of band structures 

using ABINIT package62.
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Table 3.1 Off-diagonal elements in Hamiltonian matrix46
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§3.2 Valence force field model 

Phonon56,63 is a kind of elementary excitation in solid, and it describes small 

vibrations of lattice. Lattice dynamics63 is the theory of calculating phonons. 

3.2.1 Lattice dynamics64

At first for the sake of simplicity we consider a simple lattice that includes only 

one atom in one unit cell, and then we generalize the discussion to compound lattice 

which includes several atoms in one unit cell. 

Assuming the vibrations in lattice are very small, the total potential energy is 

expanded as: 

 ,-,-,-"- '''
. /

/.
./

.

.
.

, ,'
'

,
0 )',(

2

1
)(

l l

ll

l

l uullul         (3.2.1) 

Where .
lu  is the displacement of atom l  along direction .  ( zyx ,, ). 0-  is the 

potential energy of equilibrium geometry, so it’s a constant. At equilibrium the 

potential should be minimum: 
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The second derivative of potential energy is: 
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Where the second equation comes from the commutativity of second derivative and 

the last two equations are due to the translation invariance of lattice. 

For a compound lattice that includes n  atoms in one unit cell, the secular 

equation of phonon is: 
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Where s  and 's  are atom indexes ( n,,1 ), and the squared frequency 27  is 
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determined by: 
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Solving Eq.3.2.5 is a problem of nn 33 8  Matrix diagonalisation which can be 

carried out by ‘zheev’ (a standard procedure in Lapack package). In Eq.3.2.4 and 

Eq.3.2.5, the definition of dynamical matrix ./D  is: 
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Where the force-constant matrix ./-  is defined as: 
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In Eq.3.2.7, )(sul

.  denotes the displacement of atom s  in unit cell l  along 

direction . . Solving Eq.3.2.5, there should be n3  eigenfrequencies: 

)(k*77 " , )3,,1( n "*                (3.2.9) 

and each eigenfrequency corresponds to an eigenvector )(sek* . The displacement of 

atom s  in unit cell l  is: 
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Where sM  is the mass of atom s  and *kQ  is called normal coordinate. 

3.2.2 Calculation method 

Phonons can be calculated by ab-initio method65 or empirical potential method52.

Main differences of these methods lie in the way how to construct the force-constant 

matrix and dynamical matrix. So far, there are two kinds of ab-initio methods. One is 

called frozen-phonon approximation (FPA) super-cell method66 and the other is called 

density functional perturbation theory65 (DFPT). The FPA super-cell method involves 

perturbing the positions of atoms slightly and calculating the reaction forces, so it is 
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necessary to use supercells of the original cell when interatomic interaction is long 

ranged. It is a big difficulty when the super-cell is large because of costly calculation. 

The DFPT method uses linear response calculations to evaluate the dynamical matrix 

directly for a set of q-vectors. The starting point of the DFPT approach is the 

evaluation of the second-order change in the total energy induced by atomic 

displacements. However, these ab-initio methods are too expensive to calculate the 

phonon spectra of SiNW. As a result, we use the empirical potential method to 

calculate the phonons of SiNW in this thesis. 

There are a lot of empirical potential models. As the name implies, an empirical 

potential model assumes the analytical form of crystal potential energy -  directly. 

The parameters in the analytical expression of potential energy are fitted to 

experimental data. One of the most famous empirical potential models is called 

‘keating model’ which was broached by Keating in 196650,51. Vanderbilt52
et al.

generalized the keating model and studied the anharmonic elastic and phononic 

properties of diamond-structure silicon successfully. We adopt this generalized 

keating model in our work and introduce it in the next subsection. 

3.2.3 VFF model 

The generalized keating model52 proposed by Vanderbilt et al. is a kind of VFF 

model that involves contributions of bond stretch, bond angle bend, torsion and 

inversion. To describe accurately the anharmonic elastic properties of silicon, 

Vanderbilt el al. expanded the potential energy of crystal to the fourth-order as follow: 
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Here, i  and j  label nearest-neighbor bonds (NBB), ix  is the ‘bond vector’ 

pointing from one atom to its neighbor, and 4/aaK "  ( a  is lattice constant). 

)( ji :  indicates a sum over all pairs of NBBs sharing an atom, )( kji ::  indicates 

a sum over triplets of NBBs sharing an atom, and );( kji :  represents a sum over 

chains of three NBBs arranged end to end, with i  sharing one of its atoms with j

and the other with k , in a 180° dihedral-angle configuration. The superscript “[2]” 

(“[3]”, “[4]”) in Eq.3.2.13 (Eq.3.2.14, Eq.3.2.15) indicates a set of terms which are 

quadratic (cubic, quartic) in the variables r , ; , iih  and ijh . Parameters ( rrk ,

;;k , …) are determined from fitting the inelastic-neutron-scattering data211.

§3.3 Electron-phonon coupling theory67

In this section, we will discuss the electron-phonon coupling in solid and derive 

the formula of electronic transition rate due to electron-phonon scattering. 

Band theory of solid assumes an electron moves in a periodic potential. In fact, 

the lattice vibrates all the time. The periodicity of the potential in lattice will be 

broken down by the displacement of atoms from their equilibrium positions. So we 
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have to include the interaction between electron and lattice vibration when studying 

the real electron behavior. The deviation of potential from periodic case is usually 

denoted as a complementary field. When the deviation is small, we can use phonons 

to describe the vibration of lattice and use first-order perturbation theory to describe 

the electron-phonon coupling. For diffusion-transport regime, electron-phonon 

coupling is the most important factor because there are much more contributions from 

electron-phonon scattering than from any other scattering mechanism. From now on, 

we will derive the formulas of electron-phonon scattering probability and the 

electronic transition rate. Here we just consider one-phonon scattering processes. 

First, we expand the Hamiltonian to the first-order approximation of inS .

!
, which 

denotes the displacement of atom .  in unit cell n  along direction i  ( zyx ,, ). 
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According to the lattice dynamics introduced in last section, the displacement of atom 

from equilibrium position reads, 
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Here N  is the number of Wigner-Seitz unit cell, .M  is the mass of atom . , nR
!

is the position vector of unit cell, q
!

 is the wave vector of phonon, j  is the phonon 

mode, )()( qe j

i

!
.  is the element of eigenvector of phonon state <jq,|  and )(qj

!7  is 

the corresponding eigenfrequency. 

Second, we calculate the scattering matrix element from an initial state 

<< bk,|0|  to a final state <,<( ',|,| bqkjq  via emitting a phonon <( jq,|  under 

complementary potential field V . From second quantization, 
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Where "  is the Planck constant, ,a  is the creation operator and a  is the 

annihilation operator, Eq.3.3.4 is an expansion of electron wave function in atomic 

orbital basis under tight-binding model, k  is the wave vector of electron, b  is the 

energy-band index of electron state, bkC ,
,>/  is the eigenvector element of tight-binding 

Hamiltonian 0H , /  is the atom index, >  denotes different two-center integrals of 

tight-binding and )( />? mRr (  is the atomic orbital. Substitute Eq.3.3.3 and Eq.3.3.4 

into the transition probability of one-phonon emission <<@(,@ bkVjqbqk ,|0||,|', ,

then
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The transition probability of one-phonon absorption <<@,@ bkjqVbqk ,|,||0|',  is

exactly the same. In the derivation we used the following identity: 
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Where Kqkk ,,,'+  is the Kronecker delta function. 

Finally, we apply the Fermi-Golden rule to calculate the transition rate or inverse 

of lifetime. 

Fermi-Golden rule:  )(||||)(
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Substitute Eq.3.3.5 into Eq.3.3.7, the electronic transition rate reads 

)}()1),(()(),({

|,|0||,|',|
2

)',|,(|

,,',,,',

2
,

jqbkbqkjqbkbqk

jq

EEjqnEEjqn

bkVjqbqkbqkbkW

7+7+

!

""

"

,(,,((

8<<@(,@"A,A=

,,

(3.3.10)

Where ),( jqn  is the Bose-Einstein distribution function of phonons. 
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Chapter 4  Programming 

In programming, we will meet a lot of questions like ‘how to construct the electronic 

Hamiltonian’, ‘how to construct the dynamical matrix’, ‘how to calculate the 

transition rate’ and so on. We give answers to these questions in this chapter. The 

formulas and algorithms employed by the code are introduced. 

§4.1 Outline of the code 

There are six parts of the code: (1) atomic structure of SiNW, (2) eigenvalue and 

eigenvector of electronic Hamiltonian, (3) phonon spectra and vibration mode, (4) 

electron-phonon transition rate, (5) electron mobility, (6) data processing. This section 

will introduce each part briefly. 

The first part of the code produces the atomic coordinates of atoms in the origin 

unit cell of SiNW with Cartesian coordinate system. We use angstrom as unit of 

length. In the code, first we cut a silicon crystal lattice along an orientation with a 

fixed radius. Second search the silicon atoms who have dangling bonds. Third, 

hydrogen atoms are connected to the open ends of dangling bonds to passivate the 

surface. At last, the code searches the nearest neighbors and second-nearest neighbors 

of each atom in the unit cell, and stores the nearest-neighbor list and second-nearest- 

neighbor list into arrays. 

The second part of the code includes the generation of wave vectors in the first 

Brillouin zone, construction of Hamiltonian, calculation of eigenvalues and 

eigenvectors. The wave vector is 1-dimensional for SiNW and it is determined 
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according to the orientation of SiNW. We use sp3d5s* tight-binding model48,61,68 to 

construct the electronic Hamiltonian matrix. It means that there are ten atomic orbitals 

( s , xp , yp , zp , yzd , zxd , xyd , 22 yx
d

(
, 223 rz
d

(
, *s ) per silicon and one atomic orbital ( s )

per hydrogen. The dimension of Hamiltonian matrix should be )10( HSi NN , 8

)10( HSi NN ,  without spin-orbit coupling and )10(2 HSi NN , 8 )10(2 HSi NN ,

with spin-orbit coupling. Eigenvalues and eigenvectors are obtained by solving the 

following secular equation 

BB EH "                         (4.1.1) 

Here H  is the Hamiltonian matrix, B  is the eigenvector, and E  is the eigenvalue. 

Linear algebra told us solving secular equation is equivalent to diagonalisation of 

Hamiltonian matrix. After diagonalisation the Hamiltonian matrix is transformed to a 

diagonal matrix whose diagonal elements are eigenvalues and the columns of transfer 

matrix are eigenvectors. There are a lot of methods to diagonalize a square matrix. 

Here we use two different methods. One is ‘LU’ decomposition method and the other 

is conjugate-gradient iterative method (CG). LU method is a direct method and can be 

used to diagonalize any square matrix in principle, but the LU decomposition is costly 

in computation when the matrix is large. CG method is an iterative method and it is 

especially suitable to the diagonalisation of large sparse matrix. The advantage of CG 

method is fast, but the disadvantage is only several eigenvalues and eigenvectors 

could be obtained. In the code, LU method and CG method are implemented into 

modules ‘diag_zheev’ and ‘diag_cg’ separately, and either LU method or CG method 

can be used according to need. 

The third part of the code consists of calculation of force constant, construction 

and diagonalisation of dynamical matrix. From Eq.3.2.7, the fore constant matrix 

element is the second derivative of potential energy according to the displacement of 

atom. The dynamical matrix is constructed from Eq.3.2.6. We use ‘diag_zheev’ to 

diagonalize the dynamical matrix because the eigenvalues are heavy degenerate and it 

is difficult to deal with by ‘diag_cg’. It will need the complete phonon spectra to 
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calculate the electron transition probability, so ‘diag_zheev’ is suitable. 

The fourth part of the code solves the equation of energy conservation and 

calculates the derivative of Hamiltonian, the scattering matrix element and the 

transition rate. Both the energy and momentum of electron change when the electron 

absorbs or emits a phonon to jump to another state, but the total energy and the total 

momentum keep invariance. The conservation of momentum is ensured by the 

Kronecker delta function (Eq.3.3.6). The conservation of energy is implied by Dirac 

delta function (Eq.3.3.8). However, the Dirac delta function tends to infinity when the 

energy is conserved. It’s difficult to use Dirac delta function directly in programming. 

A lot of researchers use Gaussian function69 instead of Dirac delta function because 

Dirac delta function is the limit of Gaussian function when the line-width of Gaussian 

function tends to zero. The accuracy of approximate function depends on the selection 

of line-width and the computation is costly. The author improved the formula of 

transition rate and overcame the difficulty of Dirac delta function by searching all 

possible electronic transitions. This improvement is analytical, so the result is 

accurate. Please read the fourth section of this chapter for a detailed discussion on the 

energy conservation. The fourth section also introduces expressions of derivative of 

Hamiltonian. 

The fifth part of the code is in charge of simulating the electronic low-field 

mobility. When the applied electric field is weak, the low-field mobility can be 

derived directly from Boltzman transport equation (BTE) involving relaxation time 

approximation (RTA). Detailed derivation of low-field mobility is in the fifth section. 

This part of the code also involves the calculation of carrier density with respect to 

Fermi level. 

The last part of the code collects the data such as the electronic band structure, 

the phonon spectra, the density of states (DOS) for phonons, the vibration mode, the 

electronic transition rate, the electronic low field mobility and the density of carrier. 

And the code outputs the data to well organized files after transforming these physical 

quantities into standard units. 
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§4.2 Programming of electronic structure 

This section introduces some key aspects about the construction of sp3d5s*

tight-binding Hamiltonian with spin-orbit coupling70.

The structure of Hamiltonian with spin-orbit coupling is 
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order of silicon atoms. A block Hamiltonian matrix between any two different silicon 

atoms is in the form as follow: 

**
223

*
22

********

*
223

22322322223223223223223223223223
22

*
2222322222222222222222222

22

*
22322

*
22322

*
22322

*
22322

*
223

22

*
22322

*
22322

2222

*

3

*

3

ssdsdsdsdsdspspspsss

sdddddddddddpdpdpdsdrz

sdddddddddddpdpdpdsdyx

sdddddddddddpdpdpdsdxy

sdddddddddddpdpdpdsdzx

sdddddddddddpdpdpdsdyz

spdpdpdpdpdpppppppspz

spdpydxpdpdpdpppppppspy

spdpdpdpdpdpppppppspx

sssdsdsdsdsdspspspss

rzyxxyzxyzzyx

HHHHHHHHHHs

HHHHHHHHHHd

HHHHHHHHHHd

HHHHHHHHHHd

HHHHHHHHHHd

HHHHHHHHHHd

HHHHHHHHHHp

HHHHHHHHHHp

HHHHHHHHHHp

HHHHHHHHHHs

sdddddppps

rzyxxyzxyzzyx

rzrzrzyxrzxyrzzxrzyzrzzrzyrzxrzrz

yxrzyxyxyxxyyxzxyxyzyxzyxyyxxyxyx

xyrzxyyxxyxyxyzxxyyzxyzxyyxyxxyxy

zxrzzxyxzxxyzxzxzxyzzxzzxyzxxzxzx

yzrzyzyxyzxyyzzxyzyzyzzyzyyzxyzyz

zrzzyxzxyzzxzyzzzzyzxzz

yrzyyxyyzxyyzyzyyyxyy

xrzxyxxxyxzxxyzxzxyxxxx

rzyxxyzxyzzyx

((

((((((((((((

((((((((((((

((

((

((

((

(

((

((

(

(

(

((

Element in the block is calculated by formula 
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Here A,: jl rR  denotes the summation over all nearest neighbors of atom i , *

denotes the type of coupling between atomic orbitals like ss , xsp , ysp , zsp , yzsd ,

zxsd , xysd , 22 yx
sd

(
, 223 rz

sd
(

, *ss  and so on. 

iiH  is the diagonal block of Hamiltonian for the same silicon atom. The onsite 

energies are Si

sE , Si

pE , Si

dE  and Si

s
E *  separately. 

The form of spin-orbit coupling is as follows: 
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Where K  is called the spin-orbit coupling parameter. It’s worth noting that the 

off-diagonal blocks JI
SiSiH  and IJ

SiSiH  become nonzero because of the spin-orbit 

coupling.

Jancu et al. introduced a series of deformation-potential parameters *n  into 

two-center integrals of sp3d5s* tight-binding model to describe the effect of bond 

length.
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Here *V  represents a two-center integral, *  is the type of integral like *ss , *sp ,
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*pp , !pp , *sd , *ps* , *pd , !pd  and so on. 

We construct the block Hamiltonian JJ  and copy it to the block II , and then 

we add the spin-orbit coupling into Hamiltonian. In practice, we only construct the 

up-triangular of Hamiltonian matrix because Hamiltonian matrix is Hermitian. We put 

the line index and row index of every nonzero element into arrays at the time of 

constructing Hamiltonian, and then we store Hamiltonian matrix in sparse form. 

§4.3 Programming of phononic structure 

We have introduced the Vanderbilt’s VFF model52 in last chapter. The second- 

order approximation of potential energy is as follows: 
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3/ 22 (9 Kiii axh

222 /)6/6/( Kjijiij axxxxh ,, 9

Here i , j  and k  are chemical bonds between nearest-neighbor atoms, ix  denotes 

the vector of bond i , 4/aaK " , a  is the lattice constant, )( ji :  indicates a sum 

over all pairs of nearest-neighbor bonds sharing an atom, )( kji ::  indicates a sum 

over triplets of nearest-neighbor bonds sharing an atom, and );( kji :  indicates a 

sum over chains of three nearest-neighbor bonds arranged end to end, with i  sharing 

one of its atoms with j  and the other with k , in a 180° dihedral-angle configuration. 

The values of rrk , ;;k , ;rk , 'rrk , ';;k  and *;;
k  are from Ref.20. 

The element of force constant matrix is the second derivative of potential energy. 

The formula is as follows. 
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Where l  and l L  are atom indices, .  and /  represent coordinate x , y , z . In 

order to calculate /. ',ll-  we need to derive the expressions of 
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Here we use the relation 0"
mequilibriuiih , 1i  and 2i  denote the two atoms of bond 

‘ i ’.

It’s worth noting that the last term in second derivative of potential energy, i.e. 

'
: );(

*

kji

ikij hhk
;;

, involves four atoms and three bonds, so the list of second-nearest 

neighbors is needed in the calculation. 

§4.4 Electron-phonon scattering matrix 

This section introduces how to calculate electron-phonon scattering matrix and 

how to deal with the divergence of Dirac delta function. 

4.4.1 Electron-phonon scattering matrix element 

When electron transits from one state to another by absorbing or emitting a 
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phonon, the transition probability or so-called scattering matrix element is 
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Where N  is the number of Wigner-Seitz cell, .M  is the mass of atom . ,

bbk

jqM
L,,

,  is the scattering matrix element of electronic transition from initial state 

<bk,|  to final state <L, bqk ,|  by absorbing a phonon <jq,|  or emitting a phonon 

<( jq,| , jq ,7  is the angular frequency of phonon, )()( qe j

i.  is the element of 

phonon eigenvector, i  denotes the coordinate direction, .  and /  denote atom 

indices, bkC ,
,>/  is the element of electronic eigenvector of state <bk,| , >  denotes 

the type of atomic orbital ( IJ ss , J
(

I
22 yxx dp , …), /,mR  is the coordinate of atom /

in unit cell m , iS .0  is the component of displacement of atom .  in unit cell 0

along direction i .

From Eq.4.4.1, it is necessary to calculate the derivative of Hamiltonian 
iS

H

.06
6

.

Dr. Y. M. Niquet improved the on-site block of sp3d5s* tight-binding Hamiltonian in 

order to describe the deformation potential more accurately. A detailed discussion 

about Niquet’s model is in appendix A. Thanks to the Hermitian of Hamiltonian, we 

just need the expressions for derivatives of up-triangular elements and off-diagonal 

elements, so there are 166 explicit expressions employed by the code. For the sake of 

clearness, here we take the expression of 
j

i

sE

L6

6

.
 as an example, 
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1) if atom i  is in the unit cell 0, then 
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Here }{ j  denotes the set of nearest neighbor of atom i , and ..NN  is the 

abbreviation of ‘nearest neighbor’. 

2) if atom i  is in the unit cell 1O , then 
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The other expressions are derived similarly and included in the code already. If it 

is necessary to use Boykin’s model or Jancu’s model, one just needs to change the 

parameters and set 
),,( *sdps

. , )(dp/ , )(dpP  to zero. 

Based on phonon structure, electronic eigenvector and derivative of Hamiltonian, 
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the scattering matrix element can be obtained from Eq.4.4.1. 

4.4.2 Energy conservation

Transition of electron is possible only under the condition of energy conservation. 

In the formula of electronic transition rate (Eq.3.3.10), the energy conservation is 

implied in the Dirac delta function ))(),(),(( qbkEbqkE j7+ "O(L, . However, it’s 

difficult to calculate Dirac delta function directly in programming, because the Dirac 

delta function diverges to positive infinity when the variable tends to zero. To conquer 

this difficulty, a lot of people use Gaussian function instead of Dirac delta function. 

As we know, the line shape of Gaussian function is as shown in Fig.4.4.1. 

Fig.4.4.1 Line shape of Gaussian function69, Q  is the expectation and 2*  is the 

variance of Gaussian function 

The Gaussian function 
2

2)(
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)( c

bx

e
c

xg

(
(

"
!

 has following properties: 
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1) R
,S

S(

" 1)( dxxg ;

2) expectation: b"Q ;

3) variance: 22 c"* ;

4) )()(lim
0

bxxg
c

("
=

+ .

Parameter c  is called Gaussian line width. Gaussian function tends to Dirac delta 

function when c  decreases, and correspondingly, the computation becomes more 

and more expensive. Due to the large unit cell of SiNW, we have to find a more 

suitable and practical algorithm. 

We adapted the formula of lifetime (Eq.4.5.12) as follows: 
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Where l  is the length of unit cell, and )2(1},,{ bjq L  is the set of solutions of 

0)(),(),( "O(L, qbkEbqkE j7" . The following property of Dirac delta function 

has been used in Eq.4.4.3. 
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Here ix  is the solution of 0)( "xg  and is located on the region ],[ ba .

Obviously, it’s easy to solve 0)(),(),( "O(L, qbkEbqkE j7"  and to calculate 

)](),(),([ qbkEbqkE
q

j7"O(L,
6
6

 for the code. It is worth noting that the above 

transformation is analytical. We deal with the condition of energy conservation 

directly and explicitly. It turned out that it is accurate and fast to calculate the 

transition rate from Eq.4.4.3. 

§4.5 Low field mobility and mean free path 

In this section, we will derive the low field mobility based on the relaxation time 

approximation (RTA) and the boltzman transport equation71 (BTE). At last, we will 

introduce the formula of mean free path. 

4.5.1 Low field mobility

When electrons move in electric field, the distribution function ),,( trkf  is 

described by boltzman transport equation71 (BTE), 
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Where 
collisiont

f
0
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6

 is called ‘collision term’. 

If the applied electric field and the temperature are constant, the distribution of 

electrons is independent of time, 
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Eq.4.5.2 is known as stationary BTE. 
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If the wire is uniform, the distribution function is independent of real space, 

0),( "X rkfr

and incorporated with formula 
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If applied field is low, the collision term can be written as (RTA) 
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Here W  is called lifetime and it is the inverse of transition rate. Substitute Eq.4.5.4 

into Eq. 4.5.3, the BTE reads, 
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Obviously, the solutions )(kf  of Eq.4.5.5 depend on the applied electric field Y .

It’s able to expand )(kf  into series of Y ,
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0 ffff              (4.5.6) 

Substitute Eq.4.5.6 into Eq.4.5.5, then 
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The terms of the same exponent of Y  should be equal, so 
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Where 0f  is the distribution function under equilibrium, i.e. Fermi-Dirac 

distribution function, 0f  only depends on the electronic energy )(kE . We consider 

the distribution function up to the first-order approximation, 

10 fff ," 0
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            (4.5.8) 

On the other hand, carriers in the wire will approach a new stationary distribution 

)(kf  very quickly under a constant and uniform field Y . For unit volume the 

number of electrons in dk  is 3)2/()( !dkkf . Assume the speed of electrons is )(kv ,

then the current density should be 

3)2/()()( !dkkvkqf(

The total current density is the integral over k -space,

R(" 3)2/()()( !dkkvkfqj                  (4.5.9) 

Substitute Eq.4.5.8 into Eq.4.5.9, then 
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Here the first term is equal to zero because it describes the current density under 

equilibrium, so 

RR 0
1

2
3
4

5
6

6
X Y("(" 3023

1 )2/()()()2/()( !
W

! dkkv
E

f
kEqdkkvfqj k

"

For the situation of multi-band electronic structure, the formula of current density 

should be 
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Here i  denotes the index of band. 

From now on, we will limit the discussion to one-dimensional (1D) nanowire. In 

1D system ij , Y , )(kEikX , dk  and )(kvi  in Eq.4.5.10 are scalar, and 3)2( !

should be changed into !2  also. 

The definition of mobility is 
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Here Zn  is the number of carriers and Z  is the temperature. 

We combine Eq.4.5.10 with Eq.4.5.11, then we obtain 
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Where )(ki\  is the density of state of band i , [  is unit volume which is a 

constant. The number of occupation is one, 1"in , because we have considered the 

spin orbit coupling and per state is occupied by one electron. For the sake of 

convenience in programming, we change the integral with respect to k  into a 

summation of electronic states: 
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and
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Where ‘ BZ1 ’ denotes the first Brillouin zone. 

The formula for doping density of carrier is 

cellkdoping VNnD Z"                      (4.5.14) 

Where kN  is number of k  points in the first Brillouin zone, 
8

3a
NV atomcell  " is 

volume of unit cell, and atomN  is number of silicon atoms in unit cell. 
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Eq.4.5.12, Eq.4.5.13 and Eq.4.5.14 are employed by the code to calculate the low 

field mobility and the doping density of carrier. 

4.5.2 Mean free path

Besides the low field mobility, another important transport property is the mean 

free path72 )(kLi . The mean free path describes how far the carrier can transport 

between two scatterings. The formula of mean free path is 

)()()( kkvkL iii W"                      (4.5.15) 

§4.6 CG algorithm of diagonalisation of large sparse matrix 

Conjugate-gradient (CG) iterative algorithm73 is a kind of method used widely in 

linear system. It was proposed by Hestenes and Stiefel in the beginning of 1950s at 

first74. In the recent thirty years, CG method was developed rapidly75-80 and became 

one of the most popular methods applied to solve large sparse matrix. At the 

beginning CG method was used to solve positive definite symmetric matrix only, but 

afterwards preconditioned CG algorithm was developed and was applied to Hermitian 

matrix. In principle, CG method is a direct method and beyond order-N scaling. For 

large sparse matrix, it just needs a few steps to converge to a high accuracy with 

preconditioned CG algorithm. 

4.6.1 Storage of sparse matrix81

Sparse matrix is defined as a matrix which has only a few nonzero elements. For 

example, the tight-binding Hamiltonian we used is a big sparse matrix because only 

the onsite terms and the elements between nearest neighbors are nonzero. The number 

of nonzero elements is proportional to the dimension of matrix. For large system, the 

total number of elements is very huge while the number of nonzero elements is 

limited. In many cases, the matrix is too big to deal with by standard algorithms, so 
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we need to modify standard algorithms to utilize the sparsity of sparse matrix in order 

to store and operate quickly. 

There are a lot of methods to store a sparse matrix, and here we introduce the 

most common method which is adopted in the code also. For example, A  is a sparse 

matrix as follows 

C
C
C

D

E

F
F
F

G

H
"

0410

0930

0021

A

We can store matrix A  by three arrays in computer, 

]323221[

]7531[

]419321[

"

"

"

ja

ia

a

Where a  contains all nonzero elements of A  and the elements are ranked in the 

order of row, ia ( ja ) contains the row(column) numbers of nonzero elements in the 

same order as a . The meaning of ia  is: the first and the second elements of a

belong to the first row, the third and the fourth element of a  belong to the second 

row, the fifth and the sixth element of a  belong to the third row. 

4.6.2 CG algorithm

Fig.4.6.1 A comparison of the convergence of gradient descent with optimal step size 

(green) and conjugate gradient (red).82
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Conjugate gradient (CG) method81 is a technique searching the minimum of a 

function. It comes from the famous gradient descent (GD) algorithm81. The principle 

of CG is the same as GD, i.e. searching smaller values along the direction of gradient 

descent. The difference between CG and GD is the directions of gradient descent 

adopted by the two methods are slightly different. Fig.4.6.1 shows a comparison of 

the convergence of GD with optimal step size (green) and CG (red). We see CG is 

more efficient than GD. In principle, CG is a direct method and the convergence is 

guaranteed, but GD is an iterative method and converges asymptotically. 

Definition: nnRA 8N  is a positive definite symmetric matrix, if 0"AvuT  and 

0AAuuT , 0AAvvT , then vectors u  and v  are conjugate with respect to A .

Theorem one: if nnRA 8N  is a positive definite symmetric matrix, then 

1)  solving equation bAx "  is equivalent to searching the minimum of 

function xbAxxx TT 2)( ("? ,

2)  if there are n -dimensional vectors 1u , 2u , …, mu ( nm : ), and they are 

conjugate to each other, i.e. 

$
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ji
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i ,0

,0
mji ,...,1,0, "

then 1u , 2u , …, mu  are linearly independent, 

3)  if 1g , 2g , …, mg  are linearly independent vectors, then one can construct 

a series of vectors 1p , 2p , …, mp  from linear combinations of 1g , 2g , …, mg ,

and 1p , 2p , …, mp  are conjugate to each other, 

4)  starting from any position vector nRx N0 , searching the minimum of 

xbAxxx TT 2)( ("?  along directions of 1p , 2p , …, mp , if 1p , 2p , …, mp  are 

conjugate to each other with respect to A , then the searching series ^ _ 1
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5)  if 1p , 2p , …, mp  are conjugate to each other with respect to A , starting 

from any position vector nRx N0 , walking along directions of 1p , 2p , …, mp , and 

searching series ^ _ 1

0

,
"

m

kkx  satisfy kkkk pxx .,",1 ,
k

T

k

k

T

k
k

App

pr
".  ( 1,,1,0 (" nk  ),

and *xxn " , then *x  is the solution of equation bAx " .

Algorithm: starting from any vector nRx N0  (e.g. 00 "x ),

0"k

00 Axbr ("

00 rp "

loop: nk ,1"

k

T

k

k

T

k
k

App

rr
".

kkkk pxx .,",1
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if `:,1kr  (e.g. 1010("` ) return 

k
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rr 11 ,,"/

kkkk prp /," ,, 11

1," kk

end loop 

1
*

," kxx

4.6.3 Convergence analysis 

Here we introduce two theorems75 as a reference for the analysis of convergence 

and errors. 
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Theorem two: nnRA 8N  is a positive definite symmetric matrix, if BIA ,"

and rBrank ")( , then the accurate solution should be obtained within 1,r

iterations by CG method. 

This theorem tells us the iteration of CG should converge to the accurate solution 

within 1,r  steps, so CG method is a direct method in principle. In application the 

scaling behavior of CG method is approximately in order of )log(N , and the worst 

case is order N .

Theorem three: if *x  is the exact solution of equation bAx " , then the error 

between *x  and the approximate solution kx  from CG iterative algorithm satisfies 

the following inequality: 
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               (4.6.1) 

Where 
2

1

22
(" AAb , and 

2
A  is the Euclidean norm of matrix. 

From theorem three, we know that the smaller Euclidean norm 2b  is, the 

smaller the error is and the quicker the convergence is. 

4.6.4 Preconditioned CG83

A preconditioner is a reversible matrix C  that equation bCAxC 11 (( "  is 

easier to solve than equation bAx " . The simplest preconditioner is a diagonal 

matrix that has just the diagonal elements of A . This is known as Jacobi 

preconditioning or diagonal scaling. 
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                        (4.6.2) 

Since diagonal matrices are trivial to invert and store in memory, a Jacobi 

preconditioner is a good starting point. More sophisticated choices must trade-off the 

reduction in the condition number of A , such as symmetric Gauss-Seidel (SGS) 
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preconditioner and Symmetric Successive Over Relaxation (SSOR) preconditioner. 

The SSOR preconditioner is of the fastest convergence. 

4.6.5 Eigenvalue81

For a square matrix A , a vector x  and a scalar c , if they satisfy 

xAx c"                           (4.6.3) 

then x  is called the eigenvector of A  and c  is called the eigenvalue of A . The 

condition of nontrivial solution is 

0)det()( "d (9 cc Ap                    (4.6.4) 

)(cp  is called the characteristic polynomial. From 0)( "cp  we can derive the 

eigenvalues directly. 

In application, it’s always difficult to solve the eigenvalues and eigenvectors of 

A  directly. Because computing the polynomial is very expensive in itself, and 

analytic roots of a high-degree polynomial are difficult to express. Effective 

numerical algorithms for approximating roots of polynomials exist, but very small 

errors of eigenvalues can lead to very large errors of eigenvectors. Therefore, we 

generally use iterative algorithms like CG to find eigenvalues and eigenvectors. 

Solving the eigenvalues is equivalent to searching the minimum of function 

xxAxxx ZZ" /)(e . So we can use a similar CG algorithm, as described in section 

4.6.2, to calculate the eigenvalues efficiently. If we got the eigenvalues of matrix A ,

we can derive the eigenvectors by solving linear equations 

0)( "d ( xA c                        (4.6.5) 

with CG method. 

§4.7 Outlook of the code 

First, for the present the code can be used to calculate the low-field transport 

properties only, because relaxation time approximation (RTA) is used. But the 
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scattering matrix element and transition rate obtained by the code are the basic 

parameters of boltzman transport equations (BTE). So we plan to develop the code to 

solve BTE directly with Monte-Carlo simulation and then the code will be able to 

simulate the transport properties of SiNWs in the presence of high field. 

Second, at the beginning the electronic model and phononic model employed by 

the code were designed to be able to describe the strain effect of lattice. Therefore, we 

plan to add the high-order terms of the VFF potential energy to the code to study the 

strain effect in transport properties of SiNWs. 

Third, we will extend the code to some other materials if there are appropriate 

tight-binding parameters. 

Fourth, in principle the method of the code is able to be implemented into an 

ab-initio code, therefore it’s possible to study transport properties of nano-electronic 

devices in the diffusive regime from first principle. 

Speaking in general, our knowledge of the electric transport of materials in the 

diffusive regime becomes deeper and deeper as the performance of computer 

improves. 



- 43 -

Chapter 5  E-p coupling effect in transport properties of 

SiNW

SiNWs are investigated widely because there are a lot of applications of SiNW in 

making electronic devices. Transport property is the most important factor to decide 

the performance of an electronic device. Therefore, we need to know the mechanism 

of each kind of scattering that reduces the mobility of carriers. From experiments and 

theoretical studies, it’s proven that at room temperature the scattering from lattice 

vibration is the most important mechanism in silicon and is the major factor that 

reduces the mobility of carriers. However, studies on the mechanism of electron- 

phonon (e-p) scattering in SiNWs are rare. There are several reasons: in experiments, 

at present high purity crystalline SiNWs are difficult to fabricate and the contact 

between lead and single SiNW is uncontrollable; in theoretical studies, there are too 

many atoms in one unit cell even for the smallest SiNW, so it’s too expensive to 

obtain the electronic structure from first principle. That is to say, it is a big challenge 

to study e-p coupling effect in transport properties of SiNW at the atomic level before 

this work. In this thesis, we have proposed a new method that makes it possible to 

study the transport properties and e-p coupling effect in SiNWs directly. The method 

is implemented into a code with which we studied electronic structures, phonon 

spectra, vibration modes of SiNWs in various orientations. And we also studied the 

low-field transport properties of [110]SiNWs. This chapter will introduce the results 

and we will also give out a detailed discussion on the e-p coupling effect in transport 

properties of SiNW. 
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§5.1 Electronic structure of SiNW 

In recent years electronic structures of SiNW are studied a lot84-97. The number 

of silicon atoms in SiNW is proportional to the square of diameter: 2dN Si f .

Therefore, the number of atoms in SiNW increases rapidly with size. For example, a 

[112]SiNW of 10nm diameter includes over 3,000 silicon atoms and about 300 

hydrogen atoms in one unit cell. It is the big size of unit cell that makes the 

investigation of electronic structure from first principle very difficult. So far, the 

biggest size of SiNWs studied from first principle is 4.2nm of diameter91. More 

frequently, people use tight-binding (TB) model or pk  model to study the electronic 

structure of SiNW. With these methods people can study SiNWs of over 10nm 

diameter. TB model is much more accurate than pk   model, so we employ TB 

method in the code. The transferability of TB model depends on the TB parameters, 

so we should be careful when we apply a set of bulk parameters to SiNWs. Due to the 

quantum-confinement effect, old parameters can not describe the band structure of 

SiNW exactly. Jancu et al. proposed a TB model48 and took into account the 

deformation potential. Applied to SiNWs, Jancu’s model is accurate for the valence 

band but not so good for the conduction band. Niquet improved Jancu’s model by 

including the strain effect of onsite terms in Hamiltonian. The TB parameters were 

fitted with ab-initio band structure of bulk silicon with GW correction98,99. By 

comparing with ab-initio results it has been confirmed that Niquet’s model is able to 

reproduce the deformation potentials of conduction band and valence band for both 

bulk silicon and SiNW. Therefore, we employed Niquet’s model61 in the study. For 

further particulars about Niquet’s model, please refer to Appendix A. 

In this section we introduce the electronic structures of [001]SiNW, [110]SiNW, 

[111]SiNW, and [112]SiNW with various diameters as shown in Fig.5.1.1, Fig.5.1.2, 

Fig.5.1.3, and Fig.5.1.4, respectively. In the figures, a (=5.431Å) is the lattice 

constant of bulk silicon, d  denotes the diameter of SiNW. For the sake of contrast, 

electronic bands of different diameter SiNWs are arranged into a line. 
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Fig.5.1.1 Electronic structure of [001]SiNW with different diameters 

Fig.5.1.2 Electronic structure of [110]SiNW with different diameters 
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Fig.5.1.3 Electronic structure of [111]SiNW with different diameters 

Fig.5.1.4 Electronic structure of [112]SiNW with different diameters 
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Table 5.1 Values of )(vcK , )(vca , and )(vcb
45

K (eV nm2) a (nm) b (nm) 

[001]c 0.6589 0.235 0.142 

[001]v -0.8825 1.245 0.488 

[110]c 0.6470 0.123 0.849 

[110]v -0.6825 2.062 0.996 

[111]c 0.8010 0.342 0.212 

[111]v -0.6964 3.664 -0.374 

[112]c 0.7273 0.246 0.313 

[112]v -0.7075 2.616 -0.083 

From the figures, we see the gap of SiNW decreases and tends to the bulk value 

(~1.2eV) as the diameter increases. Niquet45
et al. proposed an empirical formula for 

the energy gap of SiNW as follows: 
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Here )(SgE  denotes the energy gap of bulk silicon, )(vcK , )(vca , and )(vcb  are 

empirical parameters. The values of parameters are shown in table 5.1. 

Fig.5.1.5 Constant-energy ellipsoids in the Brillouin zone of silicon100 near the six 

conduction band minima. The longitudinal and transverse effective masses are: 

mml 92.0" , mmt 19.0" , and m  is the free electron mass. 
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Electronic band structures of SiNWs along different orientations are different: 

1) The conduction band minimum of direct gap (CBM1) of [001]SiNW lies on 

0"k , and the conduction band minimum of indirect gap (CBM2) of [001]SiNW 

lies on ak /4.0 !Og . In fact, there are six equivalent conduction band minima 

(CBM) located around hiO 8.0  in the Brillouin zone of bulk silicon, i.e. around 

a/6.1  !  along directions of "#001 , "#010  and "#100 . The constant-energy 

surfaces in the vicinity of CBMs are ellipsoids elongated along the $%  axes as 

shown in Fig.5.1.5. Electrons have a heavy effective mass along $%  and a light 

effective mass perpendicular to $% . Four CBMs along "#010  and "#100  

project onto 0&k  and the last two CBMs along "#001  project onto 

ak /4.0  !'  in [001]SiNW. CBM1 is lower than CBM2, because electrons 

around the "#001  minima are light in the plane vertical to nanowire and thus of a 

higher energy, while electrons around the other four minima are heavier because 

of the character mixed heavy and light. At room temperature, high-energy 

phonons exist and electrons located in the first conduction band will be able to 

jump to CBM2 by absorbing a phonon or vise versa when the splitting (

between CBM1 and CBM2 is small ~200meV. Thus the transport properties of 

SiNWs depend strongly on (  and the temperature. 

2) In [110]SiNW, CBM1 lies on 0&k  and CBM2 lies on lk /8.0  !'  with 

2/al &  the length of unit cell. Two CBMs along "#001  project onto 0&k .

The other four CBMs project onto lk /8.0  !' . Electrons around the "#001  

minima are heavier than electrons around "#010  and "#100  along the nanowire. 

Therefore, CBM1 is lower than CBM2. It’s worth noting that the first several 

conduction bands are close to each other for [110]SiNWs, thus not only intraband 

scattering but interband scattering via phonons play an important role in the 

electronic transport of [110]SiNWs. 

3) In [111]SiNW, there is only one band gap located at ak /4.0  !'  because all six 
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minima of bulk silicon project onto this k  point in [111]SiNW. Note that 

interband coupling splits the sixfold degenerate CBMs of bulk silicon into three 

subbands. The splitting between subbands is very small and depends strongly on 

the detailed structure of SiNW. For example in 1.01nm-diameter [111]SiNW the 

splitting between the first and the second conduction band is about 79meV, and 

about 14meV between the second and the third conduction band. There is another 

interesting phenomenon to note for [111]SiNW: the band gap changes from 

indirect gap to direct gap as diameter decreases because the quantum-confinement 

effect is more and more prominent when SiNW becomes thinner. 

4) The electronic band structure of [112]SiNW is a bit more complicated than the 

other SiNWs mentioned above. [112]SiNW is an indirect-gap semiconductor. 

CBM1 and CBM2 are located at ak /4.0  !'  and lk /8.0  !'  separately. But 

the position of CBM1 approaches $  point and the position of CBM2 approaches 

the boundary of Brillouin zone when the diameter of SiNW decreases. This 

phenomenon also comes from the quantum-confinement effect. 

In general, the electronic structure of SiNW is strongly dependent on the 

diameter and orientation. With increasing the diameter, conduction bands of SiNWs 

become denser, and the quantum-confinement effect becomes smaller. 

§5.2 Phonon structure of SiNW 

Based on the theory of lattice dynamics and the Vanderbilt’s VFF model 

introduced in chapter three, we studied the vibrational properties of SiNWs along 

[001], [110], [111] and [112] separately. The corresponding phonon structures are 

shown in Fig.5.2.1, Fig.5.2.2, Fig.5.2.3, and Fig.5.2.4. 

In bulk materials, there are three acoustic modes that pass through the $  point, 

and the other curves are optical modes that have positive values at the $  point. In 

SiNWs, those optical modes of low frequency are from the bulk acoustic modes38.
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Fig.5.2.1 Phonon structure of [001]SiNW with different diameters 
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Fig.5.2.2 Phonon structure of [110]SiNW with different diameters 
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Fig.5.2.3 Phonon structure of [111]SiNW with different diameters 
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Fig.5.2.4 Phonon structure of [112]SiNW with different diameters 
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From the figures, we find there are four acoustic modes passing through the $

point in SiNWs. Frequencies of the lowest two acoustic modes are proportional to the 

square of wavevector 2q)* , and frequencies of the other two acoustic modes are 

proportional to wavevector q)* . It is also a character38 of 1D nanowire to have 

two branches proportional to 2q . The two branches linear in q  are identified as the 

longitudinal and transverse acoustical phonons. From the center to boundary of the 

first Brillouin zone, phonon modes get together gradually. Except for the stretching 

mode101 of Si-H bond (~200meV), the largest energy of phonon is about 60meV 

corresponding to the bending mode of Si-H bond. There should be N3  phonon 

modes if there are N  atoms in one unit cell. With increasing the diameter, there will 

be more and more modes, but the energy of phonon is limited, so the dispersion 

curves grow denser and denser. 

We find the energy of the first nonzero mode at the $  point declines and the 

energy of the lowest mode at the boundary of the first Brillouin zone increases as 

diameter increases. These two phenomena are called phonon softening and hardening 

respectively and they are due to the confinement effect of 1D system. The phonon 

softening and hardening in SiNWs are reported in Ref.102 and Ref.103 also, and 

Peelaers102
et al. discussed the phenomena in detail. 

In order to understand the vibration of lattice visually, Fig.5.2.5 shows the 

vibration modes i.e. the eigenvectors of four selected phonons of 2.19nm-diameter 

[110]SiNW. Fig.5.2.5a shows the vibration of the first acoustic phonon which is 

proportional to 2q . Fig.5.2.5b shows the vibration of the third acoustic phonon i.e. 

the longitudinal acoustic phonon. Fig.5.2.5c shows the vibration of the fifth mode 

which is the lowest nonzero phonon at $  point. Fig.5.2.5d shows the vibration of the 

radial breathing mode (RBM) of [110]SiNW. 

The number of phonon mode increases as diameter increases, and consequently 

there are more electron-phonon scattering. At equilibrium or near equilibrium, 

phonons obey the Bose-Einstein distribution, 
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At room temperature (300K), 85.25&TkB meV, the distribution of phonon is shown 

in Fig.5.2.6. The number of phonon whose energy is equal to 25.85meV is 0.582. 

Therefore, there are only acoustic phonon scatterings at low temperature (77K) and 

there will be more and more optical phonon scatterings as temperature increases. The 

optical phonon scattering plays an important role in electronic transport under the 

room temperature. 

Fig.5.2.5 Vibration mode of 2.19nm [110]SiNW at 0&q  ($ ). a) 1st acoustic mode 

(cross-section view), b) 3rd acoustic mode (cross-section view), c) 5th mode (side 

view), d) radial breathing mode (cross-section view). Big circles denote silicon atoms, 

small circles denote hydrogen atoms, red arrows denote the directions and amplitudes. 
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Fig.5.2.6 Bose-Einstein distribution of phonons at room temperature (300K). 

§5.3 [110]SiNW: low-field mobility and e-p coupling effect 

Traditionally it’s believed that electronic mobility of SiNW would be larger than 

bulk silicon because the electronic density of state of SiNW is smaller than bulk 

silicon104-106. In fact, measurements of transport properties of SiNW-field-effect 

transistors (SiNW-FET) showed a contrary fact: the electronic mobility of SiNW is 

smaller than bulk silicon. For narrow channels of silicon, the mobility could be even 

ten times smaller. Therefore, we need to study the transport theory of SiNWs urgently. 

As is well known, in transport the electrons are affected by phonon scattering107-127,

coulomb scattering128-154, surface-roughness scattering155-173, impurity scattering128-132

and a lot of other factors. Among all these factors the electron-phonon (e-p) coupling 

plays a major role in electronic transport of high purity SiNW at room temperature. 

So far, there have been some works176-179 that studied the e-p scattering rate of 

SiNWs and several works174,175,180,181 that calculated the mobility of carriers in SiNWs 

by solving the Boltzmann transport equation. These theoretical works confirmed the 

experiments and revealed the physics in electronic transport of SiNWs: the electronic 

mobility of SiNW is smaller than bulk silicon because the e-p coupling in SiNWs is 
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much larger than the e-p coupling in bulk silicon i.e. the overlap of electronic 

wavefunction and phonon eigenvector is much larger in SiNWs than in bulk silicon, 

although the electronic density of state of SiNW is smaller. This illustrates that the 

quantum-confinement effect becomes more and more prominent as the size of system 

decreases to nanometer scale. The electronic structures and phononic structures of 

SiNWs are completely different from bulk silicon as introduced in previous sections. 

Previous theoretical studies have predicted some transport properties of SiNWs, 

however, there are some disadvantages: 1) due to the expensive cost of full band 

calculation, most of previous works applied the pk ,  model or simpler 

single-effective-mass model to simulate the electronic structure of SiNW, these 

models can describe the band structure around the $  point very well but they are 

invalid for general k  points, 2) the models for phononic structure of SiNW are very 

simple in previous works, various empirical formula or elastic continuum wave 

equations even bulk phonons were used to simulate the phononic structure of SiNW, 3) 

most of previous works considered intraband electronic transitions only, only a few 

works included the interband scattering, but the discussion about interband scattering 

is very limited and qualitative due to the inaccuracy of electronic wavefunction and 

phonon eigenvector, 4) it is difficult to discuss the acoustic phonon scattering and the 

optical phonon scattering uniformly, because previous works treated the acoustic 

mode and the optical mode by different models. For the sake of solving these 

problems and within current power of computation, we incorporated the tight-binding 

model and the valence-force-field model introduced in pre-chapters with Boltzmann 

transport equation to study the transport properties of SiNWs at atomic level. We have 

studied the low-field transport properties of [110]SiNW with the new method. This 

section introduces the results and discussions. 

5.3.1 Low-field mobility versus density of carrier 

Fig.5.3.1 and Fig.5.3.2 show the dependence of low-field mobility on density of 

carrier in 2.19nm [110]SiNW at low temperature and at room temperature separately. 
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Fig.5.3.1 Low-field mobility versus doping concentration of electrons (red line), and 

Fermi level versus doping concentration of electrons (blue line) at 77K. 

Fig.5.3.2 Low-field mobility versus doping concentration of electrons (red line), and 

Fermi level versus doping concentration of electrons (blue line) at 300K. 
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When the doping density of electron is low, both figures show the low-field 

mobility is almost constant. That is because the low-field mobility is nearly 

independent on the Fermi level at low doping density. 

More and more electrons occupy the high-energy states in the lowest several 

conduction bands even the states around the conduction band minimum of indirect 

gap at lk /8.0  !'  as the doping density of electron increases. Electrons are 

fermions and obey the Fermi-Dirac distribution as shown in Fig.5.3.3. The 

distribution of electrons decreases exponentially with the energy of electron. Only the 

distribution of electrons within 100meV above the Fermi level is visible. In 

calculations, we consider all electronic states within 500meV in the vicinity of the 

Fermi level to ensure all possible transitions being included. On the one hand, hot 

electrons can occupy states with dozens even hundreds of milli electron volts above 

the Fermi level. On the other hand, the energy differences of lowest conduction bands 

become smaller and smaller as increasing the diameter of SiNW. Therefore, interband 

transitions of electron play an important role in transport properties of SiNWs. This is 

different from the situation in bulk silicon. In bulk silicon, the interband scattering is 

not prominent and can be ignored. 

In the formula of low-field mobility (Eq.4.5.12), there is a derivative of 

Fermi-Dirac distribution function with respect to energy of electron. We plot the 

derivative of Fermi-Dirac distribution function in Fig.5.3.4. From this figure, it’s clear 

to see the broadening of Fermi-Dirac function at room temperature is about 400meV 

in the vicinity of Fermi level and the states outside of this range make no contribution 

to the low-field mobility. 

At 77K, there are only the acoustic phonons of low energy and the broadening of 

Fermi-Dirac function is very small ~13.2meV, so there are two peaks of mobility in 

Fig.5.3.1 corresponding to the lowest two conduction bands respectively. 

At 300K, there are much more phonons than at 77K and most of them are optical 

phonons. Thus the mobility is much smaller. Due to a big broadening of Fermi-Dirac 

function (~51.7meV), there is only one very wide peak of mobility in Fig.5.3.2. 
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Fig.5.3.3 Fermi-Dirac distribution of electrons at room temperature (300K). 

Fig.5.3.4 Derivative of Fermi-Dirac distribution function with respect to the energy of 

electron at room temperature (300K). 

5.3.2 Electron-transition rate 

Fig.5.3.5 shows the dependence of total transition rate on the energy of electrons 
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in the lowest two conduction bands of 2.19nm [110]SiNW and with doping density of 

1019/cm3. The variation tendencies of the total transition rate for two bands are similar, 

but the transition rate of the second band is about two times larger than the transition 

rate of the first band. Peaks in the figure indicate the electronic states are 

corresponding to strong e-p coupling. Here we marked four typical electronic states. 

E1 and E3 denote two states corresponding to the strongest e-p coupling in the first 

conduction band. E2 denotes a common state corresponding to weak e-p coupling in 

the first conduction band. E4 denotes the state corresponding to the strongest e-p 

coupling in the second conduction band. For the sake of comparing contributions 

from different phonon modes, we plotted the specific transition rate of the four 

marked states with respect to every scattering process in following figures (Fig.5.3.6, 

Fig.5.3.7, Fig.5.3.8 and Fig.5.3.9). 

Fig.5.3.5 Dependence of transition rate on energy of electrons in the first conduction 

band (violet line) or in the second conduction band (green line) of 2.19nm [110]SiNW. 

Doping density is 1019/cm3, temperature is 300K, energy of the first conduction band 

minimum (CBM) is 1.4357eV, energy of the second CBM is 1.5674eV. 
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Fig.5.3.6 Transition rate versus frequency of phonon for electronic state E1. 

Fig.5.3.7 Transition rate versus frequency of phonon for electronic state E2. 
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Fig.5.3.8 Transition rate versus frequency of phonon for electronic state E3. 

Fig.5.3.9 Transition rate versus frequency of phonon for electronic state E4. 
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In above figures, the blue doted lines are corresponding to the transition rate of 

1THz, and red stars denote all scattering processes corresponding transition rate larger 

than 1THz. These figures make clear to us that there are more and more phonon 

scattering of high-energy acoustic modes and optical modes from low electronic state 

E1 to high electronic state E3. That is to say, there is a transition of scattering 

mechanism from acoustic phonon scattering to optical phonon scattering when the 

energy of electron increases within the same conduction band. For electronic state E4, 

it’s also a state of low energy in the second conduction band, so the scattering process 

is similar as the electronic state E1, i.e. the acoustic phonon scattering makes a major 

contribution. But the transition rate of E4 is larger because there are more electronic 

states in the vicinity of E4 than E1 as shown in Fig.5.1.2. 

5.3.3 Low-field mobility versus diameter 

We calculated the low-field mobility of electrons in [110]SiNW of different sizes 

at both low temperature (77K) and room temperature (300K) as shown in Fig.5.3.10. 

The low-field mobility of electrons increases with the diameter and in principle it 

should tend to reach the limit of bulk when the diameter grows larger and larger. 

Fig.5.3.10 Dependence of low-field mobility on the diameter of [110]SiNW. 
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5.3.4 Low-field mobility versus temperature 

We calculated the low-field mobility of electrons in 2.19nm [110]SiNW at 

different temperatures with low doping density (1017/cm3) or high doping density 

(1019/cm3) as shown in Fig.5.3.11. It can be concluded that the low-field mobility 

decreases in power law (Eq.5.3.1) with temperature. That’s because there are more 

phonons and the broadening of Fermi-Dirac function increases with temperature, and 

correspondingly the e-p scattering increases rapidly. 

2
210 -,.-,.& / CC00                    (5.3.1) 

where /00  denotes the low-field mobility at absolute zero, 1C  and 2C  are 

parameters. From Fig.5.3.11, we can get 78.17040 &/0 (cm2/Vs), 12.191 +&C

(cm2/VsK), and 1382.02 &C ( cm2/VsK2).

Fig.5.3.11 Dependence of low-field mobility on the temperature of 2.19nm 

[110]SiNW with low doping density of electron (1017/cm3, red line) and high doping 

density of electron (1019/cm3, black line). We use double logarithmic scale. The solid 

lines denote fitting with Eq.5.3.1. The empty circles are data from calculation. 
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§5.4 Summary 

This chapter introduced electronic structures, phononic structures of SiNWs 

along different orientations such as [001], [110], [111] and [112]. We also discussed 

about the e-p coupling and transport properties of SiNWs in detail. In particular we 

studied the low-field mobility and offered a detailed discussion on the e-p coupling 

effect in the transport properties of [110]SiNWs in the third section of this chapter, 

like the dependence of mobility on temperature, the effect of size, and the effect of 

doping density. 

Unlike the phonon scattering, the ionized impurity scattering108 is elastic in 

nature and thus it cannot control the transport process alone in the presence of an 

external field. It must be accompanied by some dissipative processes i.e. phonon 

scattering to derive a proper distribution of electrons. Another kind of scattering 

mechanism is scattering from surface roughness171 which neglects all collisions in 

principle. Therefore, the surface roughness affects the transport of electrons by 

changing the wave function. We will study the surface roughness effect in transport 

properties of SiNWs within the e-p coupling regime with our code in the future. 

With this method, people are able to study real transport behavior of carriers in 

electronic devices on a complete microscopic level and it can be expected that there 

would be more studies on the transport properties of SiNWs. The knowledge of e-p 

coupling effect in transport properties is not only very important in fundamental 

physics but very helpful in the development of high-performance electronic devices. 

The future of the new method is extensive. 
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Appendix A  Y. M. Niquet TB model 

In the diagonal-block Hamiltonian of Boykin’s model68 only the on-site term 

(diagonal element) is nonzero. Thus the valence band deformation potential vd  (see 

Ref.1) is incorrect and the Hamiltonian matrix doesn’t obey rotational invariance in 

Boykin’s model. All these deficiencies come from the ‘diagonal’ assumption. To solve 

this problem, Y. M. Niquet improved traditional sp3d5s* tight-binding Hamiltonian by 

adding the off-diagonal couplings between different orbitals of the same atom into the 

diagonal block61. The detailed form is as follows: 

1) s  ( *s ) orbital: 
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Here 01  denotes the volume of regular tetrahedron with center at a silicon atom, 

(1  denotes the deviation of volume from equilibrium value. 0
sE  is the energy of 

s  orbital at equilibrium. s3  is a parameter. 
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Here 2/)( 22 mlu +& , 32/)13( 2 +& nv . )0(
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d=  and )1(

d=  are 

parameters. 

4) coupling between s  and *s :
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5) couplings between s  ( *s ) and p  ( xp , yp , zp ):
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Appendix B  Ballistic transport of CNT heterojunctions 

The first section of this appendix introduces the structures of single-wall carbon 

nanotube (CNT) and carbon nanotube heterojunction. In the second section we 

introduce the theoretical background of ballistic transport. In the third section we 

introduce the anomalous conductance of (12,0)/(9,0)/(12,0) junction and propose a 

reasonable explanation. In the fourth section a universal relation between the ballistic 

conductance and the rotation angle for metallic CNT junctions is presented. The last 

section introduces ballistic conductance of a typical T junction and a typical Cross 

junction. These theoretical studies strengthened our understanding of the transport 

properties of CNTs. 

§B.1 CNT heterojunction 

A CNT heterojunction can be made by joining two different CNTs together with 

pentagon-heptagon (p-h) pairs or other structural defects182.

Terrones et al. created ‘X’, ‘Y’ and ‘T’ single-wall carbon nanotube junctions 

experimentally by controlled electron beam exposure of crossing tubes at elevated 

temperatures183. The structures are shown in Fig.B.1.1. and Fig.B.1.2. 

Fig.B.1.1 High-resolution transmission electron microscopy (HRTEM) image and 

molecular model of an ‘X’ junction.183
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Fig.B.1.2 HRTEM images and molecular models of a ‘Y’ junction (a) and three ‘T’ 

junctions (b).183

Single-wall carbon nanotube junction is one of the smallest and simplest 

electronic devices. CNT junctions have a lot of interesting transport properties184,185

and potential applications187-189. Thus we studied systematically the ballistic transport 

properties of CNT junctions with tight-binding model and nonequilibrium Green’s 

function (NEGF) method. 

Structure of CNT 

As shown in Fig.B.1.3, a carbon nanotube can be made by rolling up a piece of 

graphene. In the figure, 1a  and 2a  denote primitive translation vectors of graphene. 

hC
!

 is chiral vector and its definition is ),(21 mnmanaCh @.&
!

, here n  and m

are integers and nm AA ||0 . It’s customary to describe a CNT as ),( mn . B  is called 
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chiral angle. T
!

 is translation vector and determined by ),( 212211 ttatatT @.&
!

,

here
Rd

nm
t

.
&

2
1  and 

Rd

mn
t

.
+&

2
2 . )2,2gcd( nmnmd R ..@  and ‘ gcd ’ means 

‘greatest common divisor’. In fact T
!

 is just the primitive translation vector of CNT. 

A zigzag nanotube corresponds to the case of 0&m , that is )0,(nCh &
!

, and an 

armchair nanotube corresponds to the case of mn & , or ),( nnCh &
!

. All other 

),( mn  chiral vectors correspond to chiral nanotubes. Of special interest is the fact 

that the electronic structure of a carbon nanotube can be either metallic or 

semiconducting depending on its diameter and chirality. According to band-folding 

theory182, a carbon nanotube is metallic in the case of dmn 3&+  and 

semiconducting in other cases, where d  is an integer. Therefore, almost one third of 

the CNTs are metallic and the other two thirds are semiconducting. 

Fig.B.1.3 Planar schematic diagram of atomic structure of CNT. 
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Structure of CNT heterojunction 

We can join two nanotubes of different chirality together by inserting some 

structural defects like pentagon-heptagon pairs or tetragon-octagon pairs. Fig.B.1.4 

shows a (4,4)/(9,0)/(4,4) junction and its counterpart, that is (9,0)/(4,4)/(9,0) junction. 

Fig.B.1.5 shows a (12,0)/(8,4)/(12,0) junction and Fig.B.1.6 shows a (9,0)/(12,0)/(9,0) 

junction. In these figures, we use blue balls for heptagons and red balls for pentagons. 

B.1.4 Molecular models of junctions (4,4)/(9,0)/(4,4) (top) and (9,0)/(4,4)/(9,0) 

(bottom). 

B.1.5 Molecular model of (12,0)/(8,4)/(12,0) junction. 

B.1.6 Molecular model of (9,0)/(12,0)/(9,0) junction 
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Structure of T junction and Cross junction 

We can go further, and construct more complicate structures from simple CNT 

junctions mentioned above. For example, Fig.B.1.7 shows a T junction and a Cross 

junction.

Fig.B.1.7 Molecular models: (a) T junction (6,6)/(6,0)/(6,6), (b) Cross junction 

(6,6)/(6,0)/(6,6)/(6,0) 

§B.2 Theoretical background 

The theoretical background of ballistic transport is introduced in this section. 

Ballistic transport 

The mean free path of electrons in CNT is very large and always larger than the 

length of channel in nano-electronic devices, and consequently electrons pass through 

the nanotube without collision. It’s called ballistic transport191,192.

The ballistic transport conductance is 

R

T

h

e
G ,&

22
                        (B.2.1) 

which is known as the Landauer formula
193,194. For detailed derivation please refer to 

the section 1.2 of Ref.192. In Eq.B.2.1, T  is the transmission coefficient and R  is 

the reflection coefficient. If we measure the potential from two leads, then 1'R , and 
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the conductance reads 

)(
2

)(
2

ET
h

e
EG ,&                      (B.2.2) 

because the transmission coefficient always depends on the energy of electron. 

Tight-binding Hamiltonian 

A lot of tight-binding models195-198 of carbon can be used to calculate the ballistic 

conductance of carbon nanotubes. Louie et al. proposed a simple model185 with one 

  orbital. 

4
"#

. .+&2
ji

jipp ccaaV
,

..                    (B.2.3) 

Where "# ji,  denotes the summation is over all nearest neighbors, and  ppV  (2.7eV) 

is coupling between nearest neighbors. This model is used widely in studies of carbon 

nanotubes and graphene. Here we will also use it to study the ballistic conductance of 

CNT junctions. 

Nonequilibrium Green’s function (NEGF)191,199-209

In this part we will introduce the method of nonequilibrium Green’s function to 

calculate the transmission coefficient and ballistic conductance. 

Fig.B.2.1 Schematic diagram of current. ‘L’ is left lead, ‘R’ is right lead, ‘C’ is 

conductor. Red arrows denote the current flowing in or out. 

Fig.B.2.1 shows a system with a conductor in the middle and two infinite long 

leads at the two sides. The transmission coefficient can be expressed in terms of the 

Green’s functions of the conductors and the coupling of the conductor to the leads206:
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)( a

CR

r

CL GGTrT $$&                      (B.2.4) 

Here )(RL$  is function that describes the coupling between the conductor and the left 

(right) lead, )(ar

CG  is retarded (advanced) Green’s function of the conductor. To 

compute )(RL$  and )(ar

CG , we start from the equation for the Green’s function of the 

whole system: 

IGH &+ )(C                        (B.2.5) 

where DC ,.& iE  and D  is infinitesimal. According to the structure as shown in 

Fig.B.2.1, we can partition the Green’s function of the whole system into submatrices: 
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where ),( RLCH  is the block Hamiltonian of conductor (left lead, right lead), )(CRLCh

is the coupling Hamiltonian between left lead and the conductor or between the 

conductor and the right lead. We can obtain the Green’s function of the conductor 

from Eq.B.2.6 directly, 

1)( +K+K++& RLCC HG C                   (B.2.7) 

where )(RLK  is the self-energy correction of the left (right) lead. The definition of 

coupling function is, 

][ },{},{},{
a

RL

r

RLRL i K+K,&$                    (B.2.8) 

Until now, we have discussed the system with infinite long leads, but in 

calculations computer can deal with finite system only. Therefore, we need to use a 

technique called layered Green’s function204,205. From now on, we will introduce the 

layered Green’s function method which brings the calculation into practice. 

As is known, a quasi-one-dimensional lattice can be divided into layers. 

Therefore, we can construct the tight-binding Hamiltonian of the quasi-one- 

dimensional system layer by layer. If the layer is big enough, only the diagonal block 

corresponding to the same layer and the coupling block between two nearest layers 
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are nonzero. Then we can rewrite the equation of Green’s function as follows: 

10010000 )( GHIGH .&+C

200100011000 )( GHGHGH .&+ .C

……

0,1010,101000 )( .+
. .&+ nnn GHGHGHC

where nmH ( nmG ) is the Hamiltonian (Green’s function) element between the layer n

and the layer m . We use the same pristine CNT for both leads, so 

...1100 && HH

and

...1201 && HH

We define two transfer matrices: 

no ttttttttttT "21021010
~~~...~~~ ...&                (B.2.9) 

and

nttttttttttT
~...~~~

210210100 "....&               (B.2.10) 

where

.++& 01
1

000 )( HHt C

and

01
1

000 )(~
HHt ++& C

We can calculate the transfer matrices iteratively from Eq.B.2.9 and Eq.B.2.10. 

And then the Green’s function of the conductor is 

1
0101 )()( +.+++& THTHHEG CC C              (B.2.11) 

Compared with Eq.B.2.7, we find 

THL

.&K 01                        (B.2.12) 

and

THR 01&K                        (B.2.13) 
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then the coupling functions will be 

)Im( 01THL

.+&$                      (B.2.14) 

and

)Im( 01THR +&$                      (B.2.15) 

From the Green’s function theory, the electronic density of state (DOS) can be 

obtained from the Green’s function directly 

))]((Im[
1

)( EGTrEN
 

+&                   (B.2.16) 

With the nonequilibrium Green’s function method and the Landauer formula, we 

can calculate the ballistic conductance of quasi-one-dimensional nanomaterials. For 

example, we studied the ballistic conductance and the electronic density of state for 

pristine CNTs (12,0) and (9,0), and the results are shown in Fig.B.2.2. The peaks of 

DOS are consistent with the steps of conductance. Because every peak of DOS 

corresponds to a new electronic band, i.e. a new conducting channel for electrons, 

then the conductance corresponds to a step. 

Fig.B.2.2 a) ballistic conductance of (12,0), b) electronic density of state of (12,0),   

c) ballistic conductance of (9,0), d) electronic density of state of (9,0) 
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§B.3 Anomalous conductance of (12,0)/(9,0)/(12,0) junction 

According to Ohm’s law, the conductance of conductor should decreases with 

increasing the length. However, in our studies190 on length-dependent transport 

behaviors of (12,0)/(n,m)/(12,0), we find the conductance of (12,0)/(9,0)/(12,0) 

increases and approaches to a limit when the length increases. This anomalous 

phenomenon denotes the ballistic transport is very different from the classic transport. 

The Ohm’s law is not valid anymore when carbon nanotube enters into nano scale. 

Fig.B.3.1 Side view of atomic structure of CNT junctions190: a) (12,0)/(11,0)/(12,0), b) 

(12,0)/(8,4)/(12,0), c) (12,0)/(6,6)/(12,0), d) (12,0)/(9,0)/(12,0) 

Fig.B.3.1 shows the atomic structures of CNT junctions in the study. We use 

metallic carbon nanotube (12,0) as leads, and use different type of nanotubes as 

conductor. We studied the relationship between ballistic conductance at Fermi level 

and the length of conductor. Results are shown in Fig.B.3.2. To study semiconducting 

CNTs we choose a zigzag tube (11,0) (Fig.B.3.1a) and a chiral tube (8,4) (Fig.B.3.1b). 

To study metallic CNTs we choose an armchair tube (6,6) (Fig.B.3.1c) and a zigzag 

tube (9,0) (Fig.B.3.1d). 

Fig.B.3.2a, Fig.B.3.2b and Fig.B.3.2c show that the conductances at Fermi level 
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decrease exponentially with length of conductor. We can fit the curves with 

exponential law very well 

LeGG <+& 1                          (B.3.1) 

where L  denotes the length of conductor. </1  is called attenuation length which is 

an important physical parameter for electronic devices. 1G  is contact conductance. 

The fitted values of parameters are listed in table B.3.1. 

Table B.3.1 Parameters of length-dependent conductance 

1G  ( he /2 2 ) <  (Å-1)

(12,0)/(11,0)/(12,0) 1.066 0.132 

(12,0)/(8,4)/(12,0) 0.820 0.552 

(12,0)/(6,6)/(12,0) 0.371 0.801 

However, in Fig.B.3.2d, the ballistic conductance of (12,0)/(9,0)/(12,0) increases 

exponentially to a limit with increasing length of conductor. We can describe this 

curve with 

LeGGG <++& 21                       (B.3.2) 

where 1G  is the limit of conductance, 2G  is a parameter corresponding to interface, 

<  is inverse saturation length. And the fitted values are 01 383.1 GG & ,

02 167.0 GG &  and 492.3&< Å-1, where heG /2 2
0 @ .

To explain the two contrary length dependences of ballistic conductance at Fermi 

level as mentioned above, we studied the ballistic conductance spectra of four 

single-interface junctions (12,0)/(11,0), (12,0)/(8,4), (12,0)/(6,6) and (12,0)/(9,0) 

separately. And the results are shown in Fig.B.3.3. 

From Fig.B.3.3, the first three junctions are semiconducting and the last one, or 

(12,0)/(9,0), is metallic. That is, there are barriers for electrons to transmit through the 

conductor in junctions (12,0)/(11,0)/(12,0), (12,0)/(8,4)/(12,0), and (12,0)/(9,0)/(12,0). 
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Fig.B.3.2 Length-dependent ballistic conductance at Fermi level for different CNT 

junctions190: a) (12,0)/(11,0)/(12,0), b) (12,0)/(8,4)/(12,0), c) (12,0)/(6,6)/(12,0), d) 

(12,0)/(9,0)/(12,0). Insets are semi-log plots. Red solid lines denote fitting curves. 

Black dots denote results from calculation. 
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Fig.B.3.3 Ballistic conductance spectra for different single-interface junctions:      

a) (12,0)/(11,0), b) (12,0)/(8,4), c) (12,0)/(6,6), d) (12,0)/(9,0). 

According to the quantum mechanics, the transmission coefficient of electron 

decreases exponentially with increasing the width of barrier. It is in consistent with 

our results. 

But for (12,0)/(9,0) junction, it’s metallic. In the (12,0)/(9,0)/(12,0) junction, the 

injected electrons are multiscattered between two interfaces at (12,0)/(9,0) and 

(9,0)/(12,0) during they pass through the region of conductor, that is (9,0). Those 

electrons with wavelengths obeying the condition of resonance will tunnel through the 

junction without decay. We show the ballistic conductance spectra of 

(12,0)/(9,0)/(12,0) with different lengths of conductor in Fig.B.3.4. From bottom to 

top, the corresponding lengths of conductor are 1.8 Å, 10.2 Å, 18.7 Å and 23.0Å, and 

corresponding to 1, 3, 5 and 6 unit cells of (9,0) respectively. The peaks of value 02G

around Fermi level are corresponding to resonant tunneling190. With increasing the 

length, the peak (indicated by black arrow) moves towards the Fermi level (dotted 



- 84 -

line), and resulting in an increase of the conductance at Fermi level. 

Fig.B.3.4 Conductance spectra for (12,0)/(9,0)/(12,0) with different lengths of (9,0), 

from bottom to top, corresponding to 1, 3, 5, and 6 unit cells of (9,0) respectively.190

Further, we raised an exponentially dropped potential (Fig.B.3.5) to describe the 

potential distribution in the vicinity of interface (12,0)/(9,0). 

)(][)( 2/
10

)2/()2/(
10

xxLLxLx eeeVVeeVVxV 33333 ..&..& +++.+     (B.3.3) 

Fig.B.3.5 Schematic diagram of the exponentially dropped potential in Eq.B.3.3. 
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Where 0V , 1V , 3  are parameters to be determined and 2/Lx A . A schematic plot 

of the potential is shown in Fig.B.3.5. When x3  is small, we can expand the 

exponential to the second order 

222/
10

222/
10 2

1
2)2()( xmeVVxeVVxV LL *3 33 ..&..' ++      (B.3.4) 

4/12 Le
m

V 33* +@

Eq.B.3.4 is a harmonic potential, and the energy interval between its neighbor 

eigenenergies is 

4/12 Le
m

V
E 33* +&&(                      (B.3.5) 

The energy interval decreases exponentially with L . It is in good agreement with the 

exponential decrease of resonant energy peak spacing shown in Fig.B.3.6. We can fit 

the peak spacing with Eq.B.3.5. Fitted values are 1V = 4.30eV and 3 = 0.1786Å-1.

Fig.B.3.6 Relation between the peak spacing of resonant transmission and the length 

of conductor in (12,0)/(9,0)/(12,0) junction. Inset is semi-log plot.190
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§B.4 Ballistic transport of metallic CNT junctions 

For a metallic CNT junction like ),( 11 mn / ),( 22 mn / ),( 11 mn , if the center 

segment is of high symmetry, the geometry of junction can be changed by rotating 

one side with respect to the other side, and the rotation angle is determined by the 

symmetry of the center segment. 

2

2

d
n

 
B ,&                          (B.4.1) 

),gcd( 222 mnd @

Fig.B.4.1 is an illustration of such metallic junction with )6,6(),( 11 &mn , &),( 22 mn

)0,12( and vice versa. 

Fig.B.4.1 a) Geometries of (6,6)/(12,0)/(6,6) junction for L& 0B  and L& 30B ,     

b) geometries of (12,0)/(6,6)/(12,0) junction for L& 0B  and L& 60B . From Ref.210.
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Fig.B.4.2 plot the conductance spectra for various configurations of (6,6)/(12,0)/ 

(6,6) and (12,0)/(6,6)/(12,0) separately. In the vicinity of the Fermi level (0eV), there 

are two shapes of the conductance spectra for all configurations of (6,6)/(12,0)/(6,6), 

and a period of 90° exists. However, the conductance spectra for all configurations of 

(12,0)/(6,6)/(12,0) are the same. We studied many kinds of junctions and found the 

phenomenon is quite common. 

Fig.B.4.2 a) Conductance spectra for (6,6)/(12,0)/(6,6) with L& 0B , L30 , ..., L330 . b) 

Conductance spectra for (12,0)/(6,6)/(12,0) with L& 0B , L60 , ..., L300 . From Ref.210.

From now on, we move on to investigate the general physics behind this 

phenomenon. We consider a general case that an electron passes through a carbon 

nanotube from site A  to site B  as illustrated in Fig.B.4.3. The phase difference of 

electron traveling from A  to B  is the only factor that may affect the transmission 

coefficient because there is no collision in ballistic transport. Then we write down the 

phase difference as 
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Fig.B.4.3 a) Schematic diagram of a CNT with two defects A  and B . b) Planar 

graph of a), hC
!

= ),( mn  and T
!

 are the chiral vector and the translational vector of 

the nanotube respectively, 1a
!

 and 2a
!

 are primitive vectors, all the points of lB

( 1,...,2,0 +& dl , ),gcd( mnd & ) are equivalent due to the symmetry of the tube.210

)()(),( AByABxyxAB yykxxkkk
lll
+.+&M              (B.4.2) 
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0
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1,,0 +& dl "

From band-folding theory, the Fermi level lies on two irreducible points 1K  and 

2K  in the reciprocal space of Bravais lattice as shown in Fig.B.4.4. The transverse 

component of wavevector is 

||3
2/

h

hhy
C

mn
CCKk !
!!! +

,!&,$&                 (B.4.4) 

substitute Eq.B.4.4 into Eq.B.4.3, then 
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Fig.B.4.4 Reciprocal space of graphene, the irreducible points 1K  and 2K  are 

corresponding to the Fermi level in electronic structure.210

d

mnl
ykxkKk AByABxxABl 3

)(
2),(

+,
,!(.(&  M          (B.4.5) 

1,,0 +& dl "

Based on Eq.B.4.5, a universal relation for any metallic CNT junction like 

),( 11 mn / ),( 22 mn / ),( 11 mn  is predicted: 

1) When dmn 3/)( 22 +  is an integer, M  changes integer times of  2  with 

different l ’s, and then no change in the ballistic transport behavior of electrons. 

Consequently, all conductance spectra are the same for various configurations. 

2) When dmn 3/)( 22 +  is not an integer, M  changes periodically in period of three 

with increasing l . There are two situations now. First, if the first two terms of the 

right hand side in Eq.B.4.5 are integral multiple of 3/ , two thirds of the 

configurations are corresponding to the first conductance spectrum, and the other one 

third are corresponding to the second conductance spectrum. Second, if the first two 

terms of the right hand side in Eq.B.4.5 are not integral multiple of 3/ , there will 

be three different conductance spectra (e.g. (12,0)/(9,3)/(12,0), shown in Fig.B.4.5). 
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Fig.B.4.5 Conductance spectra for (12,0)/(9,3)/(12,0) with L& 0B , L120 , and L240 .

§B.5 Ballistic transport of T junction and Cross junction 

Fig.B.5.1 is an illustration of the atomic structure of T junction (6,6)/(6,0)/(6,6). 

We marked the three ends with numbers. Ballistic conductance spectra between any 

two ends are calculated and shown in Fig.B.5.2. The two conductance spectra 

between (6,0) tube and different (6,6) tube are the same. 

Fig.B.5.1 Atomic structure of T junction (6,6)/(6,0)/(6,6). Numbers ‘1’, ‘2’ and ‘3’ 

denote the three leads if the junction is regarded as an electronic device. 
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Fig.B.5.2 Conductance spectra between different leads of T junction (6,6)/(6,0)/(6,6).

Fig.B.5.3 Atomic structure of Cross junction (6,6)/(6,0)/(6,6)/(6,0). 

Fig.B.5.3 shows the structure of Cross junction (6,6)/(6,0)/(6,6)/(6,0) and Fig.B.5.4 

plots the ballistic conductance spectra between different leads. The conductance 

between two (6,6) leads is nearly zero in the vicinity of Fermi level. The conductance 

between one (6,6) lead and one (6,0) lead is a small finite value around Fermi level. 

The conductance between two (6,0) leads is very big and resonant tunneling appears. 
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Fig.B.5.4 Conductance spectra between different leads of Cross junction 

(6,6)/(6,0)/(6,6)/(6,0). 
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