
Année 2010 N° d’ordre : 40387

Université Lille1 Sciences et Technologies
École Doctorale Sciences Pour l’Ingénieur

Laboratoire d'Informatique Fondamentale de Lille (UMR CNRS 8022)

Expériences et paradigmes de programmation
pour calcul scientifique à grande échelle sur les

grilles, les grilles de PC et les nuages
informatique privés

Thèse
pour obtenir le grade de

Docteur de l’Université Lille1 Sciences et Technologies

Informatique

Présentée et soutenue publiquement par

Ling SHANG
Le 06 Décembre 2010

Membres du jury :

M. CODOGNET Philippe, Pr - Université Paris 6 Président

M. SONG Fangmin, Pr – Nanjing University Rapporteur

Mme. EMAD Nahid, Pr –Université Versailles Rapporteur

M. QIN Xiaolin, Pr–Nanjing University of Aeronautics and Astronautics Examinateur

M. WANG Zhijian, Pr – Hohai University Examinateur

M. PETITON Serge, Pr – Université Lille 1 Directeur de thèse

Expériences et paradigmes de programmation pour calcul

scientifique à grande échelle sur les grilles, les grilles de PC et les

nuages informatique privés

par Ling Shang

These presentee a

L’Universite des Sciences et Technologies de Lille

Pour obtenir le titre de

Docteur en Informatique

These soutenue le 6 december 2010 devant la commission d’examen

Président : Philippe CODOGNET Université Paris 6

Rapporteurs: Nahid EMAD Université Versailles St. Quentin-en-Yvelines
 Fangmin SONG Nanjing University

Examinateurs: Xiaolin QIN Nanjing University of Aeronautics and Astronautics
 Zhijian WANG Hohai University

Directeur : Serge G. PETITON Université Lille 1 Sciences et Technologies

 II

Experiments and Programming Paradigms for Large Scale

Scientific Computing on Grids, Desktop Grids and Private

Clouds

by Ling Shang

A Dissertation Submitted in

Partial Fulfilment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

at

University Lille 1 Sciences and Technologies

Dissertation presented on December 6th 2010 to the Committee:

President : Philippe CODOGNET Université Paris 6

Reviewers: Nahid EMAD Université Versailles St. Quentin-en-Yvelines
 Fangmin SONG Nanjing University

Defence Member: Xiaolin QIN Nanjing University of Aeronautics and Astronautics
 Zhijian WANG Hohai University

Supervisor : Serge G. PETITON Université Lille 1 Sciences et Technologies

 III

Abstract

Grid computing and Desktop Grid computing provide interesting alternatives for large
scale scientific computing which needs very large scale computing resources.
However gridification is hard to develop because of series of factors such as complex
programming interface. The aim of this dissertation is to find a solution to make large
scientific computing in an easy way. To do that, research on Gauss Jordan algorithm
is made and a new parallel programming adapted version is presented. The adapted
parallel version can achieve maximum degree parallelism between operations. Also
the Gauss Jordan algorithm as an excellent example is used to evaluate different
experimental environments and tools. Experiments with YML, OmniRPC and
XtremWeb on Grid and Desktop Grid environments testify YML can be a good
solution for end users to make large scale scientific computing for its series of good
features such as higher level interface, component reuse and acceptable overhead. To
get better performance of platform, related issues such as task granularity, data
persistence and schedule mechanism are also discussed in this dissertation. According
to analysis made above and the common features of Clouds possessed, YML-PC a
reference architecture based on workflow for building scientific Private Clouds is
proposed. YML-PC inherits those good features presented above and some other key
technologies such as “data persistence”, “available time prediction” and “evaluation
on heterogeneous computing nodes” for YML-PC are also discussed in this
dissertation. Evaluations are made based on Gauss Jordan algorithm on Grids,
Desktop Grids and Private Clouds which build on Grid5000, Polytech Lille platform,
France and Hohai platform, China.

Key words: Large scale scientific computing, Gauss Jordan algorithm, Grids, Desktop
Grids, Private Clouds, YML, OmniRPC, XtremWeb

 IV

Résumé

Les grilles de calcul et les grille de PC sur Internet offrent des alternatives
intéressantes pour le calcul scientifique à grande échelle, qui demande des ressources
de calcul importantes. Toutefois, l’adaptation des applications pour ces systèmes est
difficile à cause des facteurs nombreux tels que l'interface complexe de
programmation. L'objectif de cette thèse est de trouver une solution pour faciliter le
calcul scientifique à grande échelle. Pour ce faire, j’ai travaillé sur l’algorithme de
Gauss Jordan et une nouvelle version d’un schéma de parallélisme. Ce schéma peut
exploiter le maximum de parallélisme entre des opérations. Comme un exemple
excellent, l'algorithme de Gauss Jordan est également utilisé pour évaluer des
environnements expérimentaux et des outils différents. Les expérimentations avec
YML, OmniRPC et XtremWeb sur les grilles et les grilles de PC montrent que YML
peut être une bonne solution pour que les utilisateurs fassent du calcul scientifique à
grande échelle, à cause des bonnes caractéristiques comme « l’interface d'abstraction
de haut niveau», « les composants réutilisables » et «le surcoût acceptable». Pour
obtenir les meilleures performances de cette plate-forme, les questions concernées,
telles que la granularité des tâches, la persistance des données et le mécanisme
d’ordonnancement, sont également abordés dans cette thèse. Selon les analyses faites
ci-dessus et les caractéristiques communes des nuages informatiques ciblés, YML-PC,
une architecture de référence basée sur les workflows pour les constructions de
nuages informatiques privés scientifique est proposée. YML-PC hérite les bonnes
caractéristiques présentées ci-dessus et des autres technologies clefs telles que « la
persistance des données », « La prévision du temps disponible » et « l'évaluation sur
des nœuds de calcul hétérogènes » pour YML-PC, qui sont également abordées dans
cette thèse. Les évaluations sur l'algorithme de Gauss Jordan sont réalisées sur les
grilles, les grilles de PC et les nuages informatiques privés qui sont implantés sur la
plate-forme Grid5000, la plateforme de calcul de Polytech Lille en France et la
plateforme de calcul de Hohai, en Chine.

Mots clés: le calcul scientifique à grande échelle, l’algorithme de Gauss Jordan,
grilles, grilles de PC, Nuages informatiques privé, YML, OmniRPC, XtremWeb

 V

 To all members of my family

 Memory to my grandfather and grandmother

 VI

Acknowledgments

I would like to thank my PhD supervisor Prof. Serge G. PETITON, for advice and
support. Thanks him again for givinig me the chance to work with him in France and I
am very appreciated of his trust and help. I am grateful for working with him since his
leadership was a perfect balance between guidance and liberty.

I am grateful to my friends who support and help me a lot during my study in France,
special thanks to Haiwu He, Maxime Hugues, Oliver Delannoy, Ye Zhang, Laurant
Choy, Eric Wartelle and other members in MAP team.

Thanks to the people in CROUS Lille, LIFL and USTL. They help me a lot during my
study in France. Thanks to France Embassy in China for their financial supports. I am
very appreciated of their warm hearted help and it is their help that make me study in
France more smoothly. Specail thanks to Daniele Fabis, Fatima Hammadi and Juliette
Jin who help me a lot during my stay in France.

I would like to express my gratitude to Philippe CODOGNET, Fangmin SONG,
Nahid EMAD, Xiaolin QIN, Zhijian WANG who accepted to preside my defense. I
am greatly honoured by their presence.

 VII

Contents

Chapter 1 Introduction..1

1.1 Context...1
1.2 Motivation and scope of study...3
1.3 Contributions..4
1.4 Organisations ...7

Chapter 2 The State of the Art ...9
2.1 Evolution of large scale scientific computing platform.................................10

2.1.1 Classification of architecture ..10
2.1.2 Evolution roadmap of high performance systems14

2.2 Grid Computing ...18
2.2.1 Introduction...18
2.2.1 Programming models on the Grids ...22
2.2.2 Grid projects..31

2.3 Desktop Grid Computing...38
2.3.1 Introduction...38
2.3.2 Programming method on Desktop Grids ..41
2.3.3 Desktop Grid projects ...44

2.4 Grids versus Desktop Grids ...49
2.5 Conclusion ...51

Chapter 3 Experimental Tools and Platforms ..53
3.1 Experimental platforms..54

3.1.1 Grid5000 ...54
3.1.2 Polytech Lille and Hohai platforms ..55

3.2 Experimental tools ...55
3.2.1 XtremWeb...55
3.2.2 OmniRPC..57
3.2.3 YML..59
3.2.4 Relation between XtremWeb/OmniRPC and YML62

Chapter 4 A New Parallel Programming Adapted Version for Block Based
Gauss Jordan Algorithm ...65

4.1 Motivation..65
4.2 Sequential algorithm of block based Gauss Jordan66
4.3 Parallelism in the algorithm...67

4.3.1 Intra-step based parallelism ..68
4.3.2 Inter-steps based parallelism...69

4.4 Description of data dependence ...69
4.4.1 Description of intra-step based data dependence................................69
4.4.2 Description of inter-steps based data dependence71

 VIII

4.4.3 Description of all the data dependence ...73
4.5 Formal description of data dependence ...73
4.6 A new parallel programming adapted version of BbGJ.................................75

4.6.1 Comparison of different parallel versions of BbGJ79
4.6.2 Theoretical analysis on BbGJ ...79

4.7 Evaluation of Max-par BbGJ ...81
4.7.1 Block-size fixed and block-count changed ...81
4.7.2 Block-count fixed and block-size changed ...83
4.7.3 Block-count changed and block-size changed....................................84
4.7.4 Situation of no enough computing resources......................................85
4.7.5 Performance in Grid environment ..86

4.8 Conclusion ...87
Chapter 5 Large Scale Scientific Computing on Grid and Desktop Grid

environment — with Gauss Jordan Algorithm as an example 89
5.1 Motivation..89
5.2 Programming model...90

5.2.1 Programming with YML...90
5.2.2 Programming with XtremWeb..96
5.2.3 Programming with OmniRPC...97
5.2.4 Summary and conclusion..100

5.3 Overhead of middleware..101
5.4 Characters of different environments...105

5.4.1 Task granularity ..105
5.4.2 Data transfer model...106
5.4.3 Schedule mechanism...107

5.5 Conclusion ...108
Chapter 6 A Reference Architecture Based on Workflow for Building Scientific

Private Clouds ..111
6.1 Motivation..111
6.2 Introduction..112
6.3 Different shapes of Clouds...113

6.3.1 Cloud computing from Google ...113
6.3.2 Cloud computing from Amazon ...115
6.3.3 Cloud computing from IBM ...117
6.3.4 Cloud computing from Microsoft ...118
6.3.5 Eucalyptus...119
6.3.6 Summary ...120

6.4 From Grids to observe Clouds ...121
6.4.1 Viewpoint from end users...122
6.4.2 Viewpoint from Grid system ..123

6.5 Summary on Clouds...124
6.5.1 Common features of Clouds ...124
6.5.2 Classification of Clouds..126
6.5.3 Our understanding on Cloud computing...129

 IX

6.6 A Reference architecture of scientific Private Clouds.................................130
6.6.1 Introduction...130
6.6.2 Concept stack of Cloud platform ..132
6.6.3 Design of YML-PC...134
6.6.4 Core design and implementation of YML-PC..................................136
6.6.5 Primary experiments on YML-PC..141
6.6.6 Conclusion and future work..149

6.7 Conclusion ...149
Chapter 7 Conclusion and Future Works ...153
Appendix ...157
Bibliography ...159

 X

List of Figure

Figure.2.1 Process of scientific computing on computer systems……………..……..……9
Figure.2.2 Classifications according to Flynn…………………………………………..…10
Figure.2.3 Evolution of high performance systems……………………………………..…17
Figure.2.4 Evolution of Grid systems………………………………………….……..……20
Figure.2.5 Layer of Grid systems…………………………………………………….……22
Figure.2.6 Common architecture of Desktop Grid systems………………………….……39
Figure 3.1 Architecture of XtremWeb……………… ……………………….………..…..56
Figure 3.2 General architecture of OmniRPC…………………………………………......58
Figure 3.3 General architecture of YML……………………………………………..…....59
Figure 3.4 Sample of YvettML based interface………………………….……………..…60
Figure 3.5 Relation between XtremWeb/OmniRPC and YML…………..………..………63
Figure 4.1 Operations in the 3rd iterative step with q is 5…………………………..…….67
Figure 4.2 Parallelism in the block-based Gauss-Jordan algorithm………………..……...68
Figure 4.3 Block based operation at the 2ed iterative step with q is 5………………..…...70
Figure 4.4 Block based operation at the 3rd iterative step with q is 5……………….……70
Figure 4.5 Intra-step based data dependence…………………………………..….………71
Figure 4.6 Inter-steps based data dependence…………………………………..…….…..72
Figure 4.7 All the data dependence in the algorithm..73
Figure 4.8 Flowchart of new parallel paradigm of BbGJ…………………………………77
Figure 4.9 Elapsed time with block-size fixed as 500*500……………………………….81
Figure 4.10 Elapsed time with block-size fixed as 1500*1500…………….......................82
Figure 4.11 Elapsed time with block-size changed……………………………………….83
Figure 4.12 Time difference between two algorithms…………………………………….84
Figure 4.13 Situation of no enough computing resources………………………………...85
Figure 4.14 Performance comparison between cluster and Grid …………………………86
Figure 5.1 Events and execution in Par-par BbGJ………………………………………...94
Figure 5.2 Events and execution in Max-par BbGJ……………………………………….95
Figure 5.3 Overhead of YML on OmniRPC………………………………………………103
Figure 6.1 Cloud computing received more attention……………………………………..112
Figure 6.2 Cloud computing from Google………………………………………………..114
Figure 6.3 Cloud computing from Amazon……………………………………………….116
Figure 6.4 Cloud computing from IBM…………………………………………………...117
Figure 6.5 Cloud computing from Micosoft………………………………………………119
Figure 6.6 Architecture of Eucalyptus…………………………………………………….120
Figure 6.7 Data transfer model in most Grid middleware………………………………..124
Figure 6.8 Type of Clouds and related examples………………………………………….128
Figure 6.9 Concept stack of Cloud platform……………………………………………...133
Figure 6.10 Reference architecture of YML-PC………………………………………….135
Figure 6.11 Core part of YML-PC………………………………………………………...137
Figure 6.12 General idea of “data persistence” in YML-PC………………………….….138
Figure 6.13 Description of YML scheduler………………………………………………140

 XI

Figure 6.14 YML-PC can collect VC as the supplement of DC………………………..142
Figure 6.15 Feature of scalability of YML-PC………………………………….………144
Figure 6.16 Data flow table of YML-PC………………………………………..………145
Figure 6.17 Data transfer model in Max-par BbGJ algorithm……………….….………146
Figure 6.18 Data persistence in YML-PC...147
Figure 6.19 Schedule mechanism in YML-PC……………………………….…………148

 XII

List of Table

Table 2.1 Evolution roadmap of high performance system………………………………..16
Table 2.2 Grids versus Desktop Grids……………………………………………………..50
Table 4.1 Parts of resources in Grid’5000 platform………………………….……………81
Table 5.1 Computing resources used in Hohai platform…………………………………..103
Table 5.2 Overhead of YML on XtremWeb……………………………………………….103
Table 5.3 Computing resources in PolyTech Lille platform…………………….…………105
Table 5.4 Block-size is 100*100 on PolyTech Lille platform……………………………..105
Table 5.5 Block-size is 2000*2000 on PolyTech Lille platform…………………………..105
Table 5.6 Block-count is 5*5 on PolyTech Lille platform……………………………...…107
Table 5.7 Block-count is 5*5 on Grid5000 platform……………………………………....107
Table 5.8 Block-count is 5*5 on PolyTech Lille platform………………………………...108
Table 6.1 Computing resources in PolyTech Lille platform………………………………141
Table 6.2 Parts of resources in Grid’5000 platform……………………………………….141

Chapter 1

 1

Chapter 1

Introduction

1.1 Context

Scientific computing is the field of study concerned with constructing
mathematical models and quantitative analysis techniques and using computers to
analyze and solve scientific problems. In practical use, it is typically the
application of computer simulation and other forms of computation to problems in
various scientific disciplines. There are many examples for scientific computing
such as LHC computing. The trend of scientific computing in real life is the scale
of computation becomes larger and larger. Two reasons can explain that, one is
that the problems to be solved become more complex and the other is the
requirement of scientists to get more precise final results. To achieve satisfying
results, the evolution of platform for scientific computing is made in two ways:
the first is to improve the performance of computer itself. It can be achieved
through integrating more CPUs or cores in a computer. But this method has the
limition from the fact that communication speed can’t surpass the light speed. The
second way is based on distributed computing. Its improvement on computing
power through harnessing more and more compouting nodes (cluster can be a
very good example to explain this case). The emergency of high speed network
and improvement on personal computers’ processing power make Grids and
Desktop Grids reality.

Generally speaking, Grids is an infrastructure to harness distributed and
heterogeneous dedicated computing resources from all over the world. It can deal
with almost all the problems solved in traditional supercomputer. Many Grid

Introduction

 2

projects have been launched and achieved fruitful results. For example, TeraGrid
integrates high-performance computers, data resources and tools, and high-end
experimental facilities around USA. Currently, TeraGrid resources include more
than a petaflop of computing capability and more than 30 petabytes of online and
archival data storage, with rapid access and retrieval over high performance
networks. Researchers can also access more than 100 discipline-specific databases.
With this combination of resources, the TeraGrid is the world’s largest, most
comprehensive distributed cyberinfrastructure for open scientific research. At the
same time, lot of Grid middlewares which can harness distributed computing
resources into a virtual platform, are developed by different research groups in
different countries. Such as, Globus Toolkit, Gridsolve, OmniRPC…

Normally, Desktop Grids is an infrastructure aiming at collecting idle CPU cycle
of volunteer computers under the Internet based environment. Lately, some
researchs on harnessing idle CPU cycle in local network based environment (for
example, in the environment of inner enterprises and research institutes) also
belong to Desktop Grid research areas. As well known to us all, thoses collected
CPU cycle can deal with very large scale problems which are difficult to finish in
the fastest supercomputer. SETI@Home is a good example. SETI@Home is the
program and the project that involves millions of at home users from around the
world in the Search for Extraterrestrial Intelligence (SETI). Since 1999,
volunteers have been able to recycle their unused computing cycles in helping to
analyze data collected from radio telescopes in search of signals from other
worlds. This unprecedented network of over 5 million independent SETI@Home
volunteers constitutes the world’s largest supercomputer. The success of
SETI@Home makes scientists be aware of the importance of volunteer computing
resrouces in scientific computing. Many Desktop Grid middlewares also have
been developed such as Boinc, XtremWeb and Entropia.

Cloud computing is a buzzword and umbrella term applied to several nascent
trends in the turbulent landscape of information technology. Computing in the
Clouds alludes to ubiquitous and inexhaustible on-demand IT resources accessible
through the Internet. Many famous IT enterprises (Google, Amazon, Microsoft)
have launched their Cloud products (Chrome, EC2, Azure) and a lot of research
insititutes (Berkeley university, for example) show their understandings on Clouds.
To summary, the advantages of large scale scientific computing in Clouds are that
the Clouds can provide end user a higher level interface; users can get those
services in Clouds with lower costs and those services are on demand; resources
in Clouds can be utilized in maximum degree, i.e., Clouds can help to fully dig the
poentencial of computing resources. Some middlewares are proposed such as
Eucalyptus, but more architectures and middlewares for Clouds are under
research.

The INRIA Futurs Grand Large project is a pioneer in large scale heterogeneous
computing and the globalization of computer resources and data Grid initiative.
The project is especially interested in large scale parallel and distributed systems
supposed to work over the Internet, intranets, LANs or broadband networks. The
project’s approach concerns middleware and low level programming

Chapter 1

 3

environments, between low level system mechanisms and high level programming
environments. MAP team in LIFL aims to make research on parallel method and
algorithm in scientific domain which belongs to application level of scientific
computing. The scientific experiments often use the tools developed by Grand
Large project. The MAP team plays a major role in the necessary testing step of
computing software and it provides a precious user feed back.

1.2 Motivation and scope of study

The goal of researches in this dissertation comes from the collaboration between
MAP team, LIFL, university Lille1 science and technology, France and college of
computer and information, Hohai University, China.

Scientific computing in Hohai university is mainly on numerical computing in
water resources domain. Its situation in this field can be summarized as follows:

 Most scientific compouting is based on Cluster which belongs to dedicated
computing resources.

 It is not easy to scale up this kind of computing platform with low costs.
 The computing resources are not enough for scientific computing.
 Programming on the existing platform is not easy, especially to those end

users who are non professional computer.

To settle the problems presented above in real application environments,
collaboration between MAP team, France and Hohai, China is made. The general
idea can be described as follows:

 Make volunteer computing resources as an extension of the existing platforms
which consist of dedicated computing resources. The reasons can be
summarized as follows: 1) there are a lot of volunteer computing resources
can be collected; 2) their costs are very low and almost nothing; 3) volunteer
computing resources based platform has the ability of scalability by nature.

 Try to provide end user with a high level programming interface. The

interface is better to be platform/software independent, i.e., users can program
with the interface without knowing about the hardware infrastructure of the
platform and softwares deployed.

To achieve the goal presented above, the scope of study can be desribed as follow:

 Researches on Grid and Desktop Grid middleware have been made. Related
issues such as programming model, influence on Grids and Desktop Grids
from task granularity, data persistence and schedule mechanism are also
discussed in this dissertation.

Introduction

 4

 Researches on parallelism of block based Gauss Jordan (BbGJ) algorithm
have been made. The performance of new parallel adapted algorithm and
traditional parallel algorithm will be compared. BbGJ as an example for
scientific computing is also used to evaluate the performance of different
middlewares and platforms in this dissertation.

 Researches on Cloud computing have been made. Some famous architecures

for Cloud computing by famous enterprises will be dissected. What are the
features Clouds should possess for scientific computing will also be discussed.
Finally, according to the analysis, we will try to propose a solution to build
Private Clouds system.

1.3 Contributions

The research goal and scope of study in this dissertation are presented in the
previous section. In this section, we will introduce our works in detail to achieve
the goal.

The first contribution is on presenting a new parallel programming adapted
version for block based Gauss Jordan algorithm. Block based Gauss Jordan
algorithm is a classical numerical algorithm to invert large scale matrix. Previous
recent works for Grid, Desktop Grid and Cluster computing just focus on
intra-iterative step based parallelism without considering inter-steps based
parallelism, as past experiments on Gauss Jordan just for smaller computers. This
dissertation analyzes all the potential parallelism in the algorithm and exploits
both the inter-iteratives step and intra-iterative step based parallelism, which
depend on data dependence between basic operations. Then analysis on those data
dependences is made through an intuitive tool which is a series of tables and
according to the analysis on those tables, regularity of those data dependences can
be summarized. Then, formal descriptions on the regularity of data dependences
between operations are made. According to those formal descriptions, executable
rules on each operation in Gauss Jordan algorithm are made, i.e., whether the
operation can be executed or not will totally depend on the executable rules.
Based on those executable rules and the method of designing parallel algorithm, a
new parallel programming adapted version for Guass Jordan algorithm is
presented. The new parallel adapted vesion can adapt to any programming
environment and it is platform independent, i.e., you can program with any
programming tool (MPI, Fortuan, RPC based programming interface and so on)
you would like to use. The advantage of this new parallel adapted version is its
achieving maximum degree parallelism between operations and it helps to
generate more tasks and make them executed in parallel, thus decreasing the time
span of overall program. So it can achieve better performance than that of old
ones under the situation of enough computing resources. (Chapter 4)

Chapter 1

 5

The second contribution is on survey of evolution of large scale scientific
computing systems. Traditional large scale scientific computing platform mainly
adopts three kinds of high performance systems. First, it is the commodity
systems consisting of commodity commercial off-the-shelf microprocessors or
customized commercial off-the-shelf microprocessors; Second, it is the hybrid
systems composed of commercial off-the-shelf microprocessors, customized
commercial off-the-shelf and customized interconnections (for example,
TSUBAME at TITech); Third, it is custom systems which are entirely made of
custom microprocessors and custom interconnections (e.g., Earth simulator). To
summary, they all belong to supercomputers. But with the development of
commercial off-the-shelf microprocessors and emergence of high speed network,
three kinds of new paradigms become alternatives of making large scientific
computing, which are Cluster, Grids and Desktop Grids. Generally speaking,
Cluster and Grids are used to harness dedicated computing resources and Destop
Grids aims at collecting idle CPU cycle of non-dedicated compouing resources
connected to Internet. This dissertation makes detail description on Grids and
Desktop Grids, because our experimental environments are based on those two
kinds of parallel paradigms. The description focuses on their programming model,
data transfer model, schedule mechasnism, characters and challenges. Primary
comparison between Grids and Desktop Grids is also made in Chapter 2. In this
dissertation, OmniRPC for harnessing dedicated computing resources and
XtremWeb for collecting non dedicated computing recources and YML a
workflow based framework, are chosen as our experimental tools which will be
introduced detailly in Chapter 3. Further description about relation between YML
and OmniRPC /XtremWeb is also made. (Chapter 2 and Chapter 3)

The third contribution is on evaluating large scale scientific computing on Grids
and Desktop Grids, with Gauss Jordan algorithm as an example. As mentioned
above, we use OmniRPC to harness dedicated computing resouces and XtremWeb
to collect non dedicated computing resouces. But it is not easy for end users
especial to those non professional computer users, to program directly using the
interfaces provided by OmniRPC and XtremWeb. Through comparing the
programming model of YML with that of OmniRPC and XtremWeb, we can
conclude that YML can provide end users with a high level interface which are
pseudo code based and software/platform independent. What we want to
emphasize here is its character of platform independent, i.e., the code developed
using YML can be run both on Desktop Grid and Grid platform without any
change. As far as we know, little middleware can do it. Then analysis on overhead
of YML is made and experiments tesify its overhead is acceptable. The reusable
character of YML’s components can help to decrease the time/cost to solution
when making large scale scientific computing. To summary, YML can be a good
solution for end users to make large scale scientific computing for its series of
good features (higher level programming interface, component reuse, support
invocating third party libiary, acceptable overhead). We also discuss other factors
influencing the performance of platform in Grid and Desktop Grid environments.
Fine-grain based tasks parallelism can’t always achieve better performance in
Desktop Grid environment for its low speed network. Worker-to-worker data
transfer model can help computing platform to achieve better performance both in

Introduction

 6

Grid environment and Desktop Grid environment. Schedule mechanism in
Desktop Grid environment should take the heterogeneous (from CPU, Memeory,
Network…) into consideration. Only that, the stable performance of the platform
can be achieved. (Chapter 5)

The fourth contribution is on presenting a reference architecture for building
Private Clouds. Cloud computing has aroused great interests from indursties and
research institutes since its birth. Many famous IT enterprises such as Google,
Amazon, IBM and Microsoft have launched their products. Many prestigious
scientists such as Ian Foster, Buyya and Geoffrey Fox also show their
understandings on Cloud computing. But unfortunately, there is no agreement on
what Cloud computing is. This dissertation dissects the existing Cloud system and
summarizes their common characters behind different appearances of those
Clouds. A viewpoint from Grids to observe Clouds based on lessons learned from
Grid researches and our experiences on Grid5000 is proposed. Then according to
those common characters and lessons from utilizing Grid systems, we present our
viewpoint on Cloud computing in scientific computing area: Cloud computing is a
specific problem solving environment based on large scale resources pool (consist
of clusters, grid, desktop grid, supercomputer or hybrid platform). It encapsulates
all technological details through virtual technology and can provide end users
with on demand provision, non-trivial quality of service and pay by use, easy of
use, high level program interface; End users can utilize all these services
provided by Cloud platform in a very simple way without knowing where these
services come from and on what kinds of platform/ system/ infrastructure these
services run. Based on the idea of our definition, we extend YML and present
YML-PC which is a reference architecture based on workflow for building
scientific Private Clouds. Some important features of YML-PC can be
summarized as follows:

 YML-PC can provide end users a pseudo code based programming interface
which can help to decrease the burden of users’ programming. The developed
code can be run both on Grid and Desktop Grid platforms without any
change.

 The components of YML-PC can be reused, i.e., users can reuse the

developed components in different parallel algorithm without any change.
Those components are “independent operations” of parallel algorithm. For
example, the operation “matrix product” can be invoked by both “Matrix
Prodcut algorithm” and “Gauss Jordan” algorithm without any change. This
help to reduce time/cost to solution of their scientific computing.

 YML-PC also can harness dedicated computing resources and volunteer

computing resources at the same time. As well known to us all, volunteer
computing resources have huge processing power beyond imagination and
they possess the character of scalabitliy by nature. So the computing
resources pool of YML-PC can be scaled up dynamically through collecting
more volunteer computing resouces into platform and thus, the platform can
provide processing power on deamnd for users with low costs.

Chapter 1

 7

Some research works on extending YML to YML-PC in this dissertation can be
summarized as follows:

 Evaluate the hybrid computing environment (dedicated computing resources
and volunteer PCs) with large scale scientific computing (Gauss Jordan
algorithm as an example). As far as we know, no other evaluation is made
using two different kinds of computing resources at the same time.

 Data flows. Data flows can be added in the “application file” of YML.
Through adding data flow, data persistence and data anticipated migration can
be realized in YML-PC. And it can help to improve the efficiency of platform
greatly.

 Monitor and Trust model. They are introduced to monitor available status of

non dedicated computing resources (volunteer PCs). The aim is to predicate
future available status of non dedicated computing resources. Also a method
to evaluate expected execution time based on standard virtual machine is
adopted. Through this method, heterogeneous computing resources can be
changed into homogeneous computing resources and then can be evaluated.
According to this evaluation and predication, tasks can be allocated to
appropriate computing resources.

(Chapter 6)

1.4 Organisations

The following chapters will be organized as follows:

Chapter 2 will introduce the evolution of large scale scientific computing platform
and more details will be described on Grids and Desktop Grids. The experiment
environments and tools in this dissertation are presented in Chapter 3. Chapter 4
will propose a new parallel version adapted to Grid and Desktop Grid
environments for Guass Jordan algorithm based on analysis on data dependence
between different operations. As an example for large scale scientific computing
in Chapter 5, Gauss Jordan algorithm will be used to evaluate different
middlewares and environments on related issues such as programming model,
overhead of middleware, data perisitence and schedule mechanism. Cloud
compouting in scientific domain is discussed in Chapter 6 and a reference
architecture for building Private Clouds is also presented. Finally, conclusion and
future works are summarized in Chapter 7.

Chapter 2

 8

The State of the Art

 9

Chapter 2

The State of the Art

Scientific Computing is the collection of tools, techniques, and theories required
to solve mathematical models of problems in science and engineering on
computer system [1]. Generally speaking, it is the fields of study concerned with
constructing mathematical models and numerical solution techniques, and with
using computers to analyze and solve scientific and engineering problems.
Scientific Computing draws on modeling in science and engineering, numerical
mathematics, and computer science to develop the best ways to use computer
systems to solve problems from science and engineering. The Scientific
Computing approach is to gain understanding, mainly through the analysis of
mathematical models implemented on computers. As Richard Hamming has
observed many year ago, the purpose of Scientific Computing is insight, not
numbers [2]. The process of making scientific computing can be described using
Figure 2.1.

Figure.2.1 Process of scientific computing on computer systems

Chapter 2

 10

Scientific Computing involves a broad range of applications, from
high-performance computing (HPC) which is heavily focused on
compute-intensive applications, high-throughput computing (HTC) which focuses
on using many computing resources over long periods of time to accomplish its
computational tasks, many-task computing (MTC) which aims to bridge the gap
between HPC and HTC by focusing on using many resources over short periods
of time, to data-intensive computing which is heavily focused on data distribution
and harnessing data locality by scheduling of computations close to the data.

To solve these problems from science and engineering, the notion of parallel
computer is proposed. Parallel Computer is a collection of processing elements
that communicate and cooperate to solve large problems fast [3]. The need for
processing elements increases with more and more scientific problems are
proposed. At the same time, more complex scientific models and more accurate
results also call for more processing elements. Experiences from over past few
decades show the amount of computation required increases faster than the
computing capacities provided by parallel computer.

To support the demand of computation capacity, large scale scientific computing
platforms (LSSCP) evolve at a fearsome speed and they will soon reach the
capacity of executing a Peta floating point operations per second. In a little more
than ten years, large scale scientific computing platforms have multiplied their
capacities a thousand times. The success of LSSCP comes from the evolution of
its architecture (supercomputer, distributed computing system), hardware
(processors, networks) and software (operating systems and programming
environments). Next, the evolution of LSSCP will be described in detail.

2.1 Evolution of large scale scientific computing

platform

2.1.1 Classification of architecture

According to the taxonomy of Flynn [5], execution models of LSSCP can be
classified four types.

Figure.2.2 Classifications according to Flynn

The State of the Art

 11

SISD machines: only one instruction stream is being acted on by the CPU during
any one clock cycle (Single instruction). Only one data stream is being used as
input during any one clock cycle (Single data). Module of execution can be
deterministic execution. These are the conventional systems that contain one CPU
and hence can accommodate one instruction stream that is executed serially.
Remark: older generation mainframes, minicomputers and workstations; most
PCs today adopt this structure.

SIMD machines : all processing units execute the same instruction at any given
clock cycle (Single instruction). Each processing unit can operate on a different
data element (Multiple data). Module of execution can be synchronous (lockstep)
and deterministic execution. Single Instruction Multiple Data systems often
have a large number of processing units, ranging from 1,024 to 16,384 that all
may execute the same instruction on different data in lock-step. So, a single
instruction manipulates many data items in parallel. Two varieties of SIMD
machines are Processor Arrays and Vector Pipelines. Some examples of those
machines are: Connection Machine CM-2, MasPar MP-1 & MP-2, ILLIAC IV
(belong to Processor Arrays) and IBM 9000, Cray X-MP, Y-MP & C90, Fujitsu
VP, NEC SX-2, Hitachi S820, ETA10 (belong to Vector Pipelines).
Remark: most modern computers, particularly those with graphics processor units
(GPUs) employ SIMD instructions and execution units.

MISD machines: a single data stream is fed into multiple processing units. Each
processing unit operates on the data independently via independent instruction
streams. But no practical machine in this class has been constructed nor are such
systems easy to conceive. The only one experiment platform is the experimental
Carnegie-Mellon C.mmp computer (1971).

MIMD ma chines: every processor may be executing a different instruction
stream and every processor may be working with a different data stream. Module
of execution can be synchronous or asynchronous, deterministic or
non-deterministic. MIMD systems may run many subtasks in parallel in order to
shorten the time-to-solution for the main task to be executed. Most current
supercomputers, networked parallel computer clusters and "grids",
multi-processor SMP computers, multi-core PCs belong to MIMD systems.
Remark: now, MIMD systems are the main stream architectures of LCSSP. Grid,
Desktop Grid and future Clouds should belong to this category. Also, many
MIMD architectures also include SIMD execution sub-components

The Flynn taxonomy is not enough to classify architecture of LCSSP. Nowadays
almost all systems fall in the MIMD class of machines. However, the
classification of Flynn can be refined according to its memory model used.

2.1.1.1 Shared memory systems

Shared memory systems have multiple CPUs and those CPUs have the ability to
access all memory as global address space. In shared memory systems, the

Chapter 2

 12

communication between processors occurred through memory accesses. The
memory controller is often more complex than in other systems. It is responsible
for retrieving memory area accessed for reading and writing and to maintain the
consistency of local caches. Some characters can be summarized as follows:

 Multiple processors can operate independently but share the same memory
resources.

 Changes in a memory location effected by one processor are visible to all
other processors.

Generally speaking, Shared memory machines can be divided into two main
classes based upon memory access times: UMA and NUMA.

UMA: All the processors in the UMA model share the physical memory
uniformly. In UMA architecture, access time to a memory location is independent
of which processor makes the request or which memory chip contains the
transferred data. In the UMA architecture, each processor may use a private cache.
The UMA model is suitable for general purpose and time sharing applications by
multiple users. It can be used to speed up the execution of a single large program
in time critical applications [6].

NUMA: NUMA is a computer memory design used in multiprocessors, where the
memory access time depends on the memory location relative to a processor.
Under NUMA, Each group of processors has its own memory and possibly its
own I/O channels. However, each CPU can access memory associated with the
other groups in a coherent way. Each group is called a NUMA node. The number
of CPUs within a NUMA node depends on the hardware vendor. It is faster to
access local memory than the memory associated with other NUMA nodes.
NUMA systems distribute the memory to each processor. In such systems, the
network of inter-connexion is still used for all memory operations (read/write).
However, the round trip time to retrieve a memory area is not fixed and varies
depending on the distance between the two processors involved.

Pros: Global address space provides a user-friendly programming perspective to
memory; Data sharing between tasks is both fast and uniform due to the proximity
of memory to CPUs
Cons: Primary disadvantage is the lack of scalability between memory and CPUs.
Adding more CPUs can geometrically increases traffic on the shared
memory-CPU path, and for cache coherent systems, geometrically increase traffic
associated with cache/memory management; Programmer responsibility for
synchronization constructs that insure "correct" access of global memory;
Expense: it becomes increasingly difficult and expensive to design and produce
shared memory machines with ever increasing numbers of processors.

2.1.1.2 Distributed memory systems

In computer science, distributed memory refers to a multiple-processor computer
system in which each processor has its own private memory. Computational tasks

The State of the Art

 13

can only operate on local data, and if remote data is required, the computational
task must communicate with one or more remote processors. In a distributed
memory system there is typically a processor, a memory, and some form of
interconnection that allows programs on each processor to interact with each other.
The inter-connection can be organised with point to point links or a special
switching network. The network topology is a key factor in determining how the
multi-processor machine scales. The links between nodes can be implemented
using some standard network protocol (for example Ethernet), using bespoke
network links (used in for example the Transputer), or using dual ported
memories1. The characters can be summarized as follows:

 Distributed memory systems require a communication network to connect
inter-processor memory. The network "fabric" used for data transfer varies
widely, though it can be as simple as Ethernet.

 Processors have their own local memory. Memory addresses in one processor
do not map to another processor, so there is no concept of global address
space across all processors.

 Each processor has its own local memory, it operates independently. Changes
it makes to its local memory have no effect on the memory of other
processors. Hence, the concept of cache coherency does not apply.

 When a processor needs access to data in another processor, it is usually the
task of the programmer to explicitly define how and when data is
communicated. Synchronization between tasks is likewise the programmer's
responsibility.

Difference between distributed shared memory system and distributed memory
system: distributed shared memory system offers a single memory space used by
all processors. Processors do not have to be aware where data resides, except that
there may be performance penalties, and that race conditions are to be avoided.
While distributed memory system need users to control when and how to
communicate between nodes. The advantage of distributed memory system is that
it can be scaled very easily.

Pros: memory is scalable with number of processors. Increase the number of
processors and the size of memory increases proportionately; each processor can
rapidly access its own memory without interference and without the overhead
incurred with trying to maintain cache coherency; Cost effectiveness: can use
commodity, off-the-shelf processors and networking.
Cons: The programmer is responsible for many of the details associated with data
communication between processors; It may be difficult to map existing data
structures, based on global memory, to this memory organization;

2.1.1.3 Convergence and future systems

The largest and fastest computers in the world today employ both shared and
distributed memory architectures. It belongs to Hybrid Distributed-Shared

1 http://en.wikipedia.org/wiki/Distributed_memory

Chapter 2

 14

Memory system. Just as the analysis made in previous sections, the shared
memory component is usually a cache coherent SMP machine and processors on a
given SMP can address that machine's memory as global. While the distributed
memory component is the networking of multiple SMPs and those SMPs only
know about their own memory - not the memory on another SMP. Therefore,
network communications are required to move data from one SMP to another.
Now, current trends seem to indicate that hybrid distributed shared memory
component will continue to prevail and increase at the high end of computing for
the foreseeable future.

Nowadays, the performance of regular processors has been improved greatly and
scientists are likely to use those kinds of processors to build high performance
systems for its lower costs. High performance systems also converge on the aspect
of interconnection by high speed network [7] [8] [9]. The concept of Grid
computing is proposed in 1999 by Ian Foster [11][12] [13]. He describes the Grid
as follows: A computational grid is a hardware and software infrastructure that
provides dependable, consistent, pervasive, and inexpensive access to high-end
computational capabilities. Through the description, you can imagine several
million computers (include desktops, laptops, supercomputers, data vaults, and
instruments like mobile phones, meteorological sensors and telescopes) from all
over the world, and owned by thousands of different people. And all of these
computers can be connected to form a single, huge and super-powerful computer!
This huge, sprawling, global computer is what many people dream “The Grid”
will be. Although "the Grid" is still just a dream, grid computing is already reality.
Many famous grid projects have been built up successfully, such as WLCG2,
EGEE3 and TeraGrid4.

In the next parts, we will make summary on the roadmap of high performance
systems.

2.1.2 Evolution roadmap of high performance systems

“...With the advent of everyday use of elaborate calculations, speed has become
paramount to such a high degree that there is no machine on the market today
capable of satisfying the full demand of modern computational methods.” - from
the ENIAC patent (U.S.#3,120,606) filed on June 26, 1947.

From the birth of first electric computer in human history, scientists have been
working on the improvement of computer performance. To achieve the goal of
time to solution, many kinds of architectures of high performance systems are
proposed. LSSCP have evolved from single-user environments, to Massively
Parallel Processors (MPPs), to clusters of workstations, to distributed systems,
and recently to grid computing systems and even to cloud computing system.

2 http://lcg.web.cern.ch/LCG/
3 http://public.eu-egee.org/
4 https://www.teragrid.org/

The State of the Art

 15

Table 2.1 shows us its evolution roadmap.

From the Table2.1, there are two ways to improve the performance of a
“computer” in the past 60 years. The first method is to improve the process power
of a computer itself. This method is achieved through the development of
computer chip technology and it went through these following stages: tubes and
relays, transistor, central processor, vector processor, processor array, integrated
circuit, multi processor, large scale integrated circuit (LSI) and very large scale
integrated circuit (VLSI). The second manner is based on the emergency of high
speed network and through which, lots of workstations/personal computers are
harnessed to form Clusters, Grids and Desktop Grids.

Figure 2.3 shows us the trend of how to make large scale scientific computing.
Nowadays, Clusters of computers are becoming increasingly popular solutions for
high performance computing systems (HPC). For instance, architecture share for
clusters in the top 500 supercomputer sites reaches 83.4% in November 2009,
compared to a share of merely 16.2% seven years ago5. As the performance/price
ratio of PC components and LAN connections keep increasing, more and more
organizations and companies build computer clusters for matching the needs of
their applications. A cluster within one administrative domain, or one site,
typically consists of a number of processing units/nodes connected via networks
(commonly Ethernets). With the increase of complexity of computational model
and the requirement of calculation accuracy, clusters can’t meet the requirement
from scientific computing. Grids, proposed in 1999 are used to harness clusters,
supercomputer and a kind of devices to realize the expanding of computational
power. What Grids mainly are used to integrate is dedicated computing resources.
At the same time, the success of Seti@home makes people know about that huge
process power can be collected through stealing CPU cycles of personal
computers from all over of world. Paper [14] also analyzes and testifies the huge
potential capability to utilize volunteer computing resources. Then Desktop Grids,
used to harness volunteer computing are proposed and arouse great interests of
scientific researchers. After 10 years’ efforts, many middlewares for Grids
[15][16][17] and Desktop Grids [19][20] are developed. As described above,
Grids and Desktop Grids have harnessed huge process power and to make full use
of them, Clouds are proposed to provide end users with an easy-of-use and lower
cost way. Three kinds of research on Clouds are made which are private clouds,
public clouds and hybrid clouds. Generally speaking, public clouds refer to those
clouds can provide services to the third parties. Such as Google can provide email
services to people all over the world; Amazon can provide computing resources to
who need them at different levels services (CPU, Core or platform). Private
clouds refer to those clouds which are built for themselve and those Clouds will
not provide services to the third parties. While hybrid clouds represent those
clouds can provide services and those services come from public clouds and
private clouds. This dissertation will make numerical computing on Grids
platform, Desktop Grids and private Clouds. Here, what we want to emphasize is

5 Statistics of architecture share for top 500 supercomputer sites are obtained from http://www.top500.org

Chapter 2

 16

that the private Clouds in this dissertation is designed for non-large enterprises
and academic research institutes according to real requirements from China.

In the following sections, more details will be described on Grids, Desktop Grids
and Clouds.

Table 2.1 Evolution Roadmap of High Performance System

Year Name Inventors Key technology

1946 ENIAC Moore School of Electrical
Engineering, University of

Pennsylvania

Can’t store program in the ENIAC

1951 UNIVAC I J.Presper Eckert and John William
Mauchly

Tube Computer

1956 TX-0 MIT Lincoln Laboratory Transistor Digital Computer
1960 LARC UNIVAC company 2 CPU + I/O processor
1963 CDC6600 Cray 1 central processor + multi peripheral

processor; instruction Pipeline
1964 ILLAC IV University of Illinois 4 CU + 256 PE (13MHz); originator of MPP
1974 CDC

STAR-100
Jim Thornton Vector Processor

1975 Cray-1 Cray Research Vector pipeline computer with integrated
circuit

1985 VPP series Fujitsu Scalable Vector Parallel Computer
Architecture

1986 CM-1 Thinking Machines Corporation SIMD with Hypercube Architecture
1991 CM-5 Thinking Machines Corporation Multiple Instruction stream Multiple Data

stream
1991 Touchstone

Delta
Inter Micro Processor with 2D inter-connection

1993 T3D Cray Research 3D torus inter-connection with 2048 DEC
alpha MC21064 RISC micro processors at

most.
1994 Beowulf NASA With 16 486DX4 micro computers

inter-connected by 10Mb/s Earthnet
1997 NOW Berkeley 100 UltraSPARC SUN workstations

inter-connected by Myrinet
1999 Grids Ian Foster Harness dedicated computing resources
2000 Desktop

Grids
Berkeley Harness non-dedicated computing resources

2007 Clouds IBM Provide computing resources with lower cost,
easy-of-use

The State of the Art

 17

Evolution of High Performance Systems

Sigle Processor Multi Processor

Homogeneous Processor Heterogeneous ProcessorTube->Transistor
->LSI->VLSI

SMP,MPP,Vector

Super Computers

LAN based Internet Based

CORBA Cluster Grids Desktop Grids

Clouds

Private Clouds Public Clouds Hybrid Clouds

Figure.2.3 Evolution of high performance systems

Chapter 2

 18

2.2 Grid Computing

2.2.1 Introduction

The last decade has seen a substantial increase in commodity computer (PCs) and
network performance, mainly as a result of faster hardware and more
sophisticated software. These commodity technologies have been used to develop
low-cost high-performance computing systems, popularly called clusters, to solve
resource-intensive problems in a number of application domains. However, there
are number of problems, in the fields of science, engineering, and business, which
are not tractable using the current generation of high-performance computers. In
fact, due to their size and complexity, these problems are often resource
(computational and data) intensive and they also need to work collaboratively
with distributed interdisciplinary application models and components.
Consequently, such applications require a variety of resources that are not
available in a single organisation.

The popularity of the Internet and the availability of powerful computers and
high-speed networks as low-cost commodity components are changing the way of
using computers today. This technology opportunity has led to the possibility of
using networks of computers as a single, unified computing resource. It is possible
to cluster or couple a wide variety of resources including supercomputers, storage
systems, data sources, and special classes of devices distributed geographically
and use them as a single unified resource, thus forming what is popularly known
as Grid Computing [21]. Grid computing can be defined as the coordinated
resource sharing and problem solving in dynamic, multi-institutional
collaborations [23]. More simply, Grid computing typically involves using many
resources (computer, data, I/O, instruments, etc.) to solve a single, large problem
that could not be executed on any one resource. As a matter of fact, various Grid
application scenarios have been explored within both science and industry. These
applications include compute-intensive, data-intensive, sensor-intensive,
knowledge-intensive and semantics-intensive scenarios. In this dissertation,
research issues will be focused on computational grid.

There are three main issues that characterize Computational Grids: heterogeneity,
scalability and dynamic adaptability. Grid involves a multiplicity of resources that
are heterogeneous in nature and might span numerous administrative domains
across wide geographical distances. Moreover, a Grid might grow from few
resources to millions. This raises the problem of potential performance
degradation as the Grid size increases. Consequently, applications that require a
large number of geographically located resources must be designed to be
extremely latency tolerant. Finally, in a Grid, resource failures are unavoidable. In
fact, with so many resources in a Grid, the probability of some resource failing is
naturally high. The resource managers or applications must tailor their behaviours

The State of the Art

 19

dynamically so as to extract the maximum performance from the available
resources and services.

To achieve the greatest performance of Grid systems, five stages can be divided
into for the evolution of Grid computing systems. Those five stages are: early
stage of Grids; early experimental stage of Grids; development stage of Grids;
application stage of Grids and improvement stage of Grids.

 Embryonic stages of Grids: the idea of Grids comes from I-Way project [22].
It aims at demonstrating the feasibility of connecting 17 institutions providing
heterogeneous computing resources using 1Gbit/s dedicated network for high
performance applications.

 Early experimental stage of Grids: some middleware for grid computing have
been developed based on the ideas from first stage. During this stage,
representative projects are Globus6 and Legion7.

 Development stage of Grids: Since the release of the Globus Toolkit 3.0, the
Globus Project offers an open source collection of Grid services that follow
Open Grid Services Architecture (OGSA 8) architectural principles. The
Globus Toolkit also offers a development environment for producing new
Grid services that follow OGSA principles. WSRF is a set of Web service
specifications being developed by the OASIS organization. Taken together
and with the WS-Notification (WSN) specification, these specifications
describe how to implement OGSA capabilities using Web services. The
Globus Toolkit 4.0 and later versions provide an open source WSRF
development kit and a set of WSRF services. Based on OGSA and WSRF,
many grid middlewares are developed. Such as Ninf, Gridsolve, OmniRPC,
Ninf-G. Those grid systems reflect the goal of the Nowadays grid projects are
based on this work.

 Application stage of Grids: with almost 10 years’ effort, many Grids system
are established and begin to apply in many areas of scientific computing.
There are many famous and influential projects during this stage. Such as:
TeraGrid, EGEE, LCG and Earth System Grid [18].

 Improvement stage of Grids: to achieve higher performance, researches on
quality of service and service level agreement of Grids system are made
during this stage. Many compute and data-intensive functionalities in
scientific and grid workflows (such as linear algebra, image processing,
database searching, etc.) are characterized by coarse-grained parallelism that
allows for increasing performance by exploiting a pool of distributed
resources using parallel computing patterns such as simple parallelism, data
parallelism and pipeline patterns A full exploitation of multiple resources to
execute Grid workflows need take the following main issues into account: (1)
the adoption of matching strategies able to find a pool of resources satisfying
global constraints on applications; (2) definition of formal languages for QoS
[26][27][28] description of Grid services in order to avoid ambiguity during
matching; (3) mechanisms for dynamic and transparent composition and
coordination of services. Based on the ideas of appropriate matching between

6 http://www.globus.org/
7 http://legion.virginia.edu/index.html
8 http://en.wikipedia.org/wiki/Open_Grid_Services_Architecture

Chapter 2

 20

services provided by Grids and jobs generated from end-users’ applications,
the requirement of easy-of-use for end users is necessary to consider. So the
cloud computing emergences. This dissertation will take cloud computing as
a layer based on Grids system and this layer can make grids system be more
efficient and easy-of-use.

The evolution of Grids system can be described through Figure2.4.

-1995
Embryonic Stage

1995-2000
Early Experimental

Stage

2000-2005
Development Stage

2005-2008
Application Stage

2008-
Improvement Stage

representative
projects :

IWAY

Emergency of
1Gbit/s

dedicated
network

MetaComputing

Large Scale
Data Process

Middlewares
are developed

OGSA; WSRF

More
middlewares

are developed

Grids are
used in many
scientific
computing

areas

QoS , SLA and
Workflow

Mechanisms to
Grid systems

Clouds

representative
projects :

Glous and Legion

representative
projects :

Netsolve, Ninf,
OmniRPC,Gridsolve

representative
projects :

TeraGrid, EGEE,LHC

representative
projects :

Market based Grids and
cloud. Amazon cloud

Figure.2.4 Evolution of Grid systems

Just as described above, Grids enable the sharing, exchange, discovery, selection,
and aggregation of geographically distributed heterogeneous resources, such as
computers, databases, visualization devices, and scientific instruments.
Accordingly, they have been proposed as the next-generation computing platform
and global cyber-infrastructure for solving large-scale problems in science,
engineering, and business. Unlike traditional parallel and distributed systems,
Grids address issues such as security, uniform access, dynamic discovery,
dynamic aggregation, and quality-of-services. A number of prototype applications
have been developed and scheduling experiments have been carried out within
Grids [24] [25]. The results of these efforts demonstrate that the Grid computing
paradigm holds much promise. Furthermore, Grids have the potential to allow the
sharing of scientific instruments such as particle accelerator, telescope and
synchrotron that have been commissioned as national/international infrastructure
due to the high cost of ownership and to support on demand and real-time
processing and analysis of data generated by them. Such a capability will radically
enhance the possibilities for scientific and technological research and innovation,
industrial and business management, application software service delivery and
commercial activities, and so on.

In order to provide users with a seamless computing environment, the Grid

The State of the Art

 21

middleware systems need to solve several challenges originating from the inherent
features of the Grid [29]. One of the main challenges is the heterogeneity in grid
environments, which results from the multiplicity of heterogeneous resources and
the vast range of technologies encompassed by the Grid. Another challenge
involves the multiple administrative domains and autonomy issues because of
geographically distributed grid resources across multiple administrative domains
and owned by different organizations. Other challenges include scalability
(problem of performance degradation as the size of Grids increase) and
dynamicity/ adaptability (problem of resource failing is high).

Middleware systems must tailor their behavior dynamically and use the available
resources and services efficiently and effectively. Middleware is made up of many
software programs, containing hundreds of thousands of lines of computer code.
Together, this code automates all the "machine to machine" (M2M) interactions
that create a single, seamless computational grid. In Grid systems, Middleware
can automatically negotiate deals in which resources are exchanged, passing from
a Grid resource provider to a Grid user. There are many layers within the
middleware to achieve the goal mentioned above. Generally speaking, middleware
includes a layer of "resource and connectivity protocols" (core middleware in
Figure2.5), and a higher layer of "collective services" (user level middleware in
Figure2.5). Resource and connectivity protocols handle all grid-specific network
transactions between different computers and grid resources. For example,
computers contributing to a particular grid must recognize grid-relevant messages
and ignore the rest. This is done with communication protocols, which allow the
resources to communicate with each other, enabling exchange of data, and
authentication protocols, which provide secure mechanisms for verifying the
identity of both users and resources. The collective services are also based on
protocols: information protocols, which obtain information about the structure and
state of the resources on a Grid, and management protocols, which negotiate
uniform access to the resources. Collective services include: 1) updating
directories of available resources; 2) brokering resources (which like stock
broking, is about negotiating between those who want to "buy" resources and
those who want to "sell").; 3) monitoring and diagnosing problems; 4) replicating
data so that multiple copies are available at different locations for ease of use; 5)
providing membership/policy services for tracking who is allowed to do what and
when. The components of Grid middleware that are necessary to form a Grid can
be described using Figure2.5.

Chapter 2

 22

Figure.2.5 Layer of Grid systems [30]

The goal of this dissertation is not to create/develop software but using existing
ones to propose some solutions to solve large scale scientific computing. Just as
mentioned above, core middleware and user level middleware are two main parts
to form Grid system. Core middleware is low level one which is used to charge
communicating safely between computing nodes. User level middleware belongs
to high level one used to manage end users’ interface, mechanism of mapping jobs
to computing resources and so on. User level middleware is based on core
middleware. In real Grid systems, those two layers are necessary to form Grid
middleware. In the following sections, we first introducing communication
models used in Grid middleware and then some representative Grid middlewares
are surveyed.

2.2.1 Programming models on the Grids

The basis of parallel and distributed computing is the communication layer
between the computing units which compose a complex system. Here five kinds
of communication models are summarized in grid system.

2.2.1.1 Message passing model

PVM9 (Parallel Virtual Machine) [31] [32] [33], [34] is a software system that

9 http://www.netlib.org/pvm3/

The State of the Art

 23

enables a collection of heterogeneous computers to be used as a coherent and
flexible concurrent computational resource. The individual computers may be
shared- or local-memory multiprocessors, vector supercomputers, specialized
graphics engines or workstations, which may be interconnected by a variety of
networks, such as ethernet, FDDI, etc. It exposes to the application a unified,
general, and powerful computational environment for concurrent applications.
Users can program using C, C++ or Fortran which incorporate calls to the PVM
library routines for facilities such as process initiation, message transmission and
reception, and synchronization via barriers or rendezvous. The PVM system
transparently handles message routing, data conversion for incompatible
architectures, and other tasks that are necessary for operation in a heterogeneous,
network environment. Briefly, the principles upon which PVM is based include:

 Explicit message passing model: Concurrent and parallel PVM applications
fall under the category of "message passing parallelism". Collections of
computational entities, each performing a part of an applications workload
using data- functional- or hybrid decomposition, cooperate by exchanging
messages to accomplish the overall computational task.

 User configured host pool: The application computational entities execute on
a set of machines that are selected by the user for a given run of the PVM
program. Both single-CPU machines and hardware multiprocessors
(including shared-memory and distributed-memory computers) may be part of
the host pool, which may also be altered by adding and deleting machines
during operation.

 Translucent access to hardware: Application programs may view the
hardware environment either as an attribute-less collection of virtual
processing elements or may choose to exploit the capabilities of specific
machines in the host pool by positioning certain computational entities on the
most appropriate computers.

 Process based computation: The unit of parallelism in PVM is a process, an
independent sequential thread of control that alternates between
communication and computation. No process to processor mapping is implied
or enforced by PVM; in particular, multiple processes may execute on a
single processor.

 Heterogeneity support: The PVM system supports heterogeneity in terms of
machines, networks, and applications. With regard to message passing, PVM
permits strongly typed heterogeneous messages (containing more than one
type of data)

The IceT [35] [36] project is to investigate issues surrounding dynamic
collaborative resource alliances. A collaborative resource alliance is defined as an
agreement between two or more entities to form a computational environment by
combining together or removing subsets of resources available to each party.
Within collaborative resource environments, resources are joined together in a
more usable way. In particular, the following properties are present in any
collaborative resource alliance:

 Individuals’ applications are made available to all participants, with
appropriate levels of access control.

 Designated local resources are made available to all participants. This

Chapter 2

 24

utilization of resources would be transparent to the applications and the users.
Directed resource/application orchestration is also supported.

 Any application in the combined pool is capable of executing on any of the
available resources, without concern for the heterogeneous nature of the
resource collection (to the extent possible), and without concern for the
program’s actual physical location.

 Multiple users would be able to interact concurrently with applications.
 The environment is nomadic or migratory. That is, the environment is able to

adopt (merge with) and relinquish (split off) resources as needed, or as
directed by the users or the applications.

Consequently, a main focus of the ICET project has been to facilitate the passing
of messages, processes, and data amongst various processes, data, users, and
resources. In pragmatic terms, ICET aims to provide an infrastructure on which
heterogeneous resources may be aggregated, upon these resources data and ICET
processes may be passed freely, receiving interaction and being visualized by
multiple entities.

MPI (Message Passing Interface) is a specification for a standard library for
message passing that was defined by the MPI Forum, a broadly based group of
parallel computer vendors, library writers, and applications specialists. Those
Goals of MPI are high performance, scalability, and portability. Multiple
implementations of MPI have been developed. Targets for those implementations
were to include all systems capable of supporting the message-passing model.
Two kinds of MPI are MPI-1[38] and MPI-2 [39] [40]. MPI-1 defined an interface
for a specific message-passing model of parallel computation, in which a fixed
number of processes with disjoint address spaces communicate through a
cooperative mechanism (when two processes communicate, one sends and the
other receives). MPI provides many types of point-to-point communication, to
incorporate requirements for robustness, expressivity, and performance. Messages
are strictly typed and scoped, allowing for communication in a heterogeneous
environment. MPI also contains an extensive set of collective operations, process
topology functions, and a profiling interface. While in MPI-2, processes may
create other processes, so that the number of processes in an MPI computation can
change dynamically. Processes can interact directly with the memory of other
processes. Extensions, semantic modifications, and subset definitions in support
of real-time and embedded systems also represent changes to the computational
model.

The initial implementation of the MPI 1.x standard was MPICH [41], from
Argonne National Laboratory and Mississippi State University. IBM also was an
early implementor of the MPI standard, and most supercomputer companies of the
early 1990s either commercialized MPICH, or built their own implementation of
the MPI 1.x standard. LAM/MPI from Ohio Supercomputing Center was another
early open implementation. Argonne National Laboratory has continued
developing MPICH for over a decade, and now offers MPICH 2, which is an
implementation of the MPI-2.1 standard. Several famous projects based on MPI
are described as follows:

 MPICH is a freely available, complete implementation of the MPI

The State of the Art

 25

specification, designed to be both portable and efficient. The “CH” in MPICH
stands for “Chameleon,” symbol of adaptability to one’s environment and
thus of portability. Chameleons are fast, and from the beginning a secondary
goal was to give up as little efficiency as possible for the portability.

 LAM (Local Area Multicomputer) [42] is an MPI programming environment
and development system for heterogeneous computers on a network. With
LAM/MPI, a dedicated computer cluster or an existing network computing
infrastructure can act as a single parallel computing resource. LAM/MPI is
considered to be "cluster friendly", in that it offers daemon-based process
startup/control as well as fast client-to-client message passing protocols.
LAM/MPI can use TCP/IP, shared memory, Myrinet (GM), or Infiniband
(mVAPI) for message passing.

 The HeteroMPI [43] project provides extensions to the MPI standard for
heterogeneous computing. Library assistance is provided to assist in
decomposing the problem to best fit the available resources. HeteroMPI still
relies on an underlying MPI implementation for process startup and
high-performance communication. Our current research in Open MPI seeks to
provide the greatest flexibility and performance in precisely the areas where
HeteroMPI depends on an underlying MPI implementation for functionality.

 MPICH-G [37] is a complete implementation of the MPI-1 standard and
passes the MPICH test suite. Early experiences suggest that it achieves our
goal of reducing barriers to the use of distributed computing by allowing the
use of MPI as a portable, high-performance programming model for
heterogeneous clusters and for wide-area computing systems.

 MPICH-G2 [45] is a Grid-enabled implementation of the popular MPI
(Message Passing Interface) framework. MPI is especially useful for
problems that can be broken up into several processes running in parallel,
with information exchanged between the processes as needed. The MPI
programming environment handles the details of starting and shutting down
processes, coordinating execution (supporting barriers and other IPC
metaphors), and passing data between the processes. Other MPI
implementations are dealing with aspects of Grid computing, focusing on the
given hierarchies, security aspects as well as user-friendliness. Examples are
PACXMPI, Stampi, MetaMPICH or GridMP.

2.2.1.2 RPC and RMI model

RPC and RMI both rely on the same programming paradigm for distributed
applications as for centralized applications. In RPC-based or RMI-based system, a
remote method (procedure) is transparently invoked (called) across the network,
as if it was local. The main difference between them is that client side RPC
invokes FUNCTIONS through the proxy function and RMI invokes METHODS
through the proxy function. And RMI is an object-oriented version of RPC.

RPC presumes the existence of low-level networking mechanisms (such as
TCP/IP and UDP/IP), and upon them it implements a logical client to server
communications system designed specifically for the support of network

Chapter 2

 26

applications. With RPC, the client makes a procedure call to send a data packet to
the server. When the packet arrives, the server calls a dispatch routine, performs
whatever service is requested, sends back the reply, and the procedure call returns
to the client.In order to allow servers to be accessed by differing clients, a number
of standardized RPC systems have been created. Most of these use an interface
description language (IDL) to allow various platforms to call the RPC.

RPC have been widely used in distributed systems. GridRPC [51] is a standard
promoted by the Open Grid Forum, which extends the traditional RPC. GridRPC
differs from the traditional RPC in that the programmer does not need to specify
the server to execute the task. When the programmer does not specify the server,
the middleware system, which implements the GridRPC API, is responsible for
finding the remote executing server. When the program runs, each GridRPC call
results in the middleware mapping the call to a remote server and then the
middleware is responsible for the execution of that task on the mapped server.
Another difference is that GridRPC is a stubless model, meaning that client
programs do not need to be recompiled when services are changed or added. This
facilitates the creation of interfaces from interactive environments like Matlab,
Mathematica, and IDL. A number of Grid middleware systems have recently
become GridRPC compliant including GridSolve, Ninf-G, DIET, DCE-RPC [46],
DFN RPC [47], Peregrine [48], MRPC [49] and RPC-V [50].

RMI (Remote Method Invocation) is a way that a programmer, using the Java
programming language and development environment, can write object-oriented
programming in which objects on different computers can interact in a distributed
network. RMI is the Java version of what is generally known as a remote
procedure call (RPC), but with the ability to pass one or more objects along with
the request. The object can include information that will change the service that is
performed in the remote computer. RMI is implemented as three layers:

 A stub program in the client side of the client/server relationship, and a
corresponding skeleton at the server end. The stub appears to the calling
program to be the program being called for a service. (Sun uses the term
proxy as a synonym for stub.)

 A Remote Reference Layer that can behave differently depending on the
parameters passed by the calling program. For example, this layer can
determine whether the request is to call a single remote service or multiple
remote programs as in a multicast.

 A Transport Connection Layer, which sets up and manages the request.

Java Remote Method Invocation (RMI) enables a programmer to create
distributed Java-based applications, in which the methods of remote Java objects
can be invoked from other Java virtual machines, possibly on different hosts. RMI
inherits basic RPC design in general, it has distinguishing features that reach
beyond the basic RPC. With RMI, a program running on one JVM can invoke
methods of other objects residing in different JVMs. The main advantages of RMI
are that it is truly object-oriented, that it supports all the data types of a Java
program, and that it is garbage collected. These features allow for a clear
separation between caller and callee. Development and maintenance of distributed

The State of the Art

 27

systems become easier. Java’s RMI provides a high-level programming interface
that is well-suited for Grid computing. Some examples are Jini [52] [53], JXTA
[54], Ibis [55], Albatorss project [56] and GMI [57].

2.2.1.3 Distributed object model

Distributed object model such as OMG CORBA and DCOM, have been
introduced to handle problems inherent in distributed computing on a
heterogeneous environment. Distributed object model consists of objects which
interact via method invocation, while message-passing model consists of
processes which communicate with each other via message-passing. Distributed
object model has several benefits over message-passing model. It provides an easy
programming environment by supporting transparency of distributed objects, plug
and play of software as well as the advantages of object-oriented programming
such as reusability, extensibility, and maintainability through abstraction,
encapsulation and inheritance. However, it lacks some functionalities for parallel
applications, since they are based on client-server model. It does not support
group operations, and has some difficulty in implementing efficient parallelisms
by using asynchronous communications.

The Common Object Request Broker Architecture (CORBA) is an open
distributed object-computing infrastructure being standardised by the Object
Management Group (OMG) [OMG]. CORBA automates many common network
programming tasks such as object registration, location, and activation; request
de-multiplexing; framing and error-handling; parameter marshalling and
de-marshalling; and operation dispatching. Although CORBA provides a rich set
of services, it does not contain the Grid level allocation and scheduling services
found in Globus, however, it is possible to integrate CORBA with the Grid. The
OMG has been quick to demonstrate the role of CORBA in the Grid infrastructure.
Apart from providing a well-established set of technologies that can be applied to
e-Science, CORBA is also a candidate for a higher level conceptual model. It is
language-neutral and targeted to provide benefits on the enterprise scale, and is
closely associated with the Unified Modelling Language (UML). One of the
concerns about CORBA is reflected by the evidence of intranet rather than
Internet deployment, indicating difficulty crossing organisational boundaries; e.g.
operation through firewalls. Furthermore, real-time and multimedia support was
not part of the original design.

Distributed Component Object Model (DCOM) is the distributed version of
Microsoft's COM technology which allows the creation and use of binary
objects/components from languages other than the one they were originally
written in, it currently supports Java(J++),C++, Visual Basic, JScript, and
VBScript. DCOM works over the network by using proxy's and stubs. When the
client instantiates a component whose registry entry suggests that it resides
outside the process space, DCOM creates a wrapper for the component and hands
the client a pointer to the wrapper. This wrapper, called a proxy, simply marshals
methods calls and routes them across the network. On the other end, DCOM

Chapter 2

 28

creates another wrapper, called a stub, which unmarshals methods calls and routes
them to an instance of the component.

2.2.1.4 Common component model

The Common Component Architecture [59] is a minimal set of standard features
that a high performance component framework would need to provide, or can
expect, in order to be able to use components developed within different
frameworks. Like CORBA it supports component programming, but it is
distinguished from other component programming approaches by the emphasis on
supporting the abstractions necessary for high-performance programming. The
core technologies described in the previous section, Globus or Legion could be
used to implement services within a component framework.

The idea of using component frameworks to deal with the complexity of
developing interdisciplinary high performance computing applications is
becoming increasingly popular. Such systems enable programmers to accelerate
project development by introducing higher-level abstractions and allowing code
reusability. They also provide clearly defined component interfaces, which
facilitate the task of team interaction: such a standard will promote
interoperability between components developed by different teams across
different institutions. These potential benefits have encouraged research groups
within a number of laboratories and universities to develop, and experiment with
prototype systems. There is a need for interoperability standards to avoid
fragmentation.

2.2.1.5 Service oriented model

Grid technologies are evolving toward an Open Grid Services Architecture
(OGSA10) [58] in which a grid provides an extensible set of services that virtual
organizations can aggregate in various ways. OGSA defines a uniform exposed
service semantics (the so called grid service) based on concepts and technologies
from both the Grid and Web services communities. OGSA defines standard
mechanisms for creating, naming, and discovering transient grid service instances,
provides location transparency and multiple protocol bindings for service
instances, and supports integration with underlying native platform facilities.

The OGSA effort aims to define a common resource model that is an abstract
representation of both real resources, such as nodes, processes, disks, file systems,
and logical resources. It provides some common operations and supports multiple
underlying resource models representing resources as service instances. OGSA
abstractions and services provide building blocks that developers can use to
implement a variety of higher-level Grid services, but OGSA services are in

10 http://www.globus.org

The State of the Art

 29

principle programming language- and programming model-neutral. OGSA aims
to define the semantics of a grid service instance: how it is created, how it is
named, how its lifetime is determined, how to communicate with it, and so on.

OGSA does not, however, address issues of implementation programming model,
programming language, implementation tools, or execution environment. OGSA
definition and implementation will produce significant effects on grid
programming models because these can be used to support and implement OGSA
services and higher-level models could incorporate OGSA service model offering
high level programming mechanisms to use those services in grid applications.
The Globus project is committed to developing an open source OGSA
implementation by evolving the current Globus Toolkit towards an
OGSA-compliant Globus Toolkit 3.0. This new release will stimulate the research
community in developing and implementing OGSA oriented programming
models and tools.

Web Services Resource Framework (WSRF11) is a kind of grid computing based
on web services. WSRF defines conventions for managing 'state' so that
applications can reliably share changing information. In combination with
WS-Notification and other WS-* standards, the result is to make grid resources
accessible within a web services architecture. Coupled with WS-Notification, the
specification is a response to, and supersedes, the grid community's own first
effort to converge grid and web services, the Open Grid Service Infrastructure
(OGSI), which the Global Grid Forum (GGF) and others released in 2003.
Announced by the Globus Alliance and IBM (with contributions from HP, SAP,
Akamai, Tibco and Sonic) in January 2004, WSRF is due to be implemented in
version 4.0 of the open source Globus Toolkit for grid computing, as well as
several commercial packages. It consists of several component specifications,
including WS-Resource Properties, WS-Resource Life time, WS-Service Group
and WS-Base Faults.

2.2.1.6 Hybrid model

The inherent nature of grid computing is to make all manner of hosts available to
grid applications. Hence, some applications will want to run both within and
across address spaces. That is to say, they will want to run perhaps multithreaded
within a shared-address space, and also by passing data and control between
machines. Such a situation occurs in clumps (clusters of symmetric
multiprocessors) and also in grids. A number of programming models have been
developed to address this.

The combination of both OpenMP and MPI within one application to address the
clump and grid environment has been considered by many groups [60]. A prime
consideration in these application designs is “who’s on top”. OpenMP is
essentially a multithreaded programming model. Hence, OpenMP on top of MPI

11 http://www.globus.org/wsrf/

Chapter 2

 30

requires MPI to be thread-safe or requires the application to explicit manage
access to the MPI library. MPI on top of OpenMP can requirement additional
synchronization and limit the amount of parallelism OpenMP can realize, which
approach actually works out best is typically application dependent.

OmniRPC [170] was specifically designed as a threadsafe RPC facility for
clusters and grids. OmniRPC uses OpenMP to manage thread-parallel execution
while using Globus to manage grid interactions. Rather than using
message-passing between machines, however, it provides RPC. OmniRPC is, in
fact, a layer on top of Ninf. Hence, it uses the Ninf machinery to discover remote
procedure names, associate them with remote executables, and retrieve all stub
interface information at run-time. To manage multiple RPCs in a multi-threaded
client, OmniRPC maintains a queue of outstanding calls that is managed by a
scheduler thread. A calling thread is put on the queue and blocks until the
scheduler thread initiates the appropriate remote call and receives the results.

The argument for MPJ [61] is that many applications naturally require the
symmetric message-passing model, rather than the asymmetric RPC/RMI model.
Hence, MPJ makes multithreading, RMI and message-passing available to the
application builder. MPJ message-passing closely follows the MPI-1 specification.
This approach, however, does present implementation challenges. Implementation
of MPJ on top of a native MPI library provides good performance but breaks the
Java security model and does not allow applets. A native implementation of MPJ
in Java, however, usually provides slower performance. Additional compilation
support may improve overall performance and make this single language
approach more feasible.

2.2.1.7 Coordination model

The purpose of a coordination model is to provide a means of integrating a
number of possibly heterogeneous components together, by interfacing with each
component in such a way that the collective set forms a single application that can
execute on parallel and distributed systems [62]. Coordination models can be used
to distinguish the computational concerns of a distributed or parallel application
from the cooperation ones, allowing separate development but also the eventual
fusion of the these two development phases.

The concept of coordination is closely related to those of heterogeneity. Since the
coordination interface is separate from the computational one, therefore, the actual
programming languages used to write computational code play no important role
in setting up the coordination mechanisms. Furthermore, since the coordination
component offer a homogeneous way for inter-process communication and
abstracts from the architecture details, coordination encourages the use of
heterogeneous ensembles of machines.

A coordination language offers composing mechanism and imposes some
constraints on the forms of parallelism and on the interfacing mechanisms used to

The State of the Art

 31

compose an application. Coordination languages for grid computing generally are
orthogonal to sequential or parallel code used to implement the single modules
that must be executed, but provide a model for composing programs and should
implement inter-module optimizations that take into account machine and
interconnection features for providing efficient execution on grids. Some recent
research activities in this area use XML-based [63] [64] or skeleton-based models
for grid programming. Another potential application domain for grid coordination
tools is workflow [65], a model of enterprise work management where work units
are passed between processing points based on procedural rules.

2.2.3 Grid projects

Grid is a generalized network computing system that is supposed to scale to
Internet levels and handle data and computation seamlessly. Designing a Grid
architecture that will meet these requirements is challenging due to several issues.
Some of these issues are: (1) supporting adaptability, extensibility, and scalability,
(2) allowing systems with different administrative policies to inter-operate while
preserving site autonomy, (3) co-allocating resources, (4) supporting quality of
service, and (5) meeting computational cost constraints. Many Grid projects have
been proposed to solve those issues presented above and we will introduce some
famous Grid projects in the following parts.

2.2.3.1 Globus

The Globus [66] [67] [68] project is a multi-institutional research effort that seeks
to enable the construction of computational grids providing pervasive, dependable,
and consistent access to high-performance computational resources, despite
geographical distribution of both resources and users. A central element of the
Globus system is the Globus Toolkit (GT), which defines the basic services and
capabilities required to construct a computational grid. The toolkit consists of a set
of components that implement basic services, such as security, resource location,
resource management, and communications.

Globus is: A community of users and developers who collaborate on the use and
development of open source software, and associated documentation, for
distributed computing and resource federation; The software itself, the Globus
Toolkit (GT): a set of libraries and programs that address common problems that
occur when building distributed system services and applications; The
infrastructure that supports this community-code repositories, email lists, problem
tracking system, and so forth: all accessible at globus.org.

The software itself provides a variety of components and capabilities, including
the following: 1) a set of service implementations focused on infrastructure
management. 2) tools for building new web services, in Java, C, and Python. 3) a

Chapter 2

 32

powerful standards-based security infrastructure. 4) both client APIs (in different
languages) and command line programs for accessing these various services and
capabilities. 5) detailed documentation on these various components, their
interfaces, and how they can be used to build applications.

Globus has evolved from its original first generation incarnation as I-WAY,
through version 1 (GT1) to version 2 (GT2). The protocols and services that
Globus provided have changed as it has evolved. The emphasis of Globus has
moved away from supporting just high performance applications towards more
pervasive services that can support virtual organisations. GT4 makes extensive
use of Web services mechanisms to define its interfaces and structure its
components. Web services provide flexible, extensible, and widely adopted
XML-based mechanisms for describing, discovering, and invoking network
services; in addition, its document-oriented protocols are well suited to the loosely
coupled interactions that many argue are preferable for robust distributed systems.
These mechanisms facilitate the development of service-oriented
architectures—systems and applications structured as communicating services, in
which service interfaces are described, operations invoked, access secured, etc.,
all in uniform ways.

2.2.3.2 Apples

The AppLeS project [69] [70] [71] focuses on the design and development of
Grid-enabled high performance schedulers for distributed applications. The goals
of the AppLeS project have been twofold. The first goal has been to investigate
adaptive scheduling for Grid computing. The second goal has been to apply
research results to applications for validating the efficacy of our approach and,
ultimately, extracting Grid performance for the end-user. The first generation of
AppLeS schedulers demonstrated that simultaneously taking into account
application- and system level information makes it possible to effectively
schedule applications onto computational environments as heterogeneous and
dynamic as the Grid. However, each scheduler was embedded within the
application itself and thus difficult to re-use for other applications. The next
logical step was to consider classes of applications that are structurally similar and
to develop independent software frameworks that can schedule applications within
a class.

AppLeS agents use application and system information to select a viable set of
resources. AppLeS uses the services of other RMSs such as Globus, Legion, and
NetSolve to execute application tasks. Applications have embedded AppLeS
agents that performing resource scheduling on the Grid. AppLeS has been used in
several applications areas including gene sequence comparison, satellite radar
images visualization, and tomography. The AppLeS framework contains
templates that can be applied to applications that are structurally similar and have
the same computational model. The templates allow the reuse of the application
specific schedulers in the AppLeS agents. Templates have been developed for
parametric and master slave type of applications.

The State of the Art

 33

The focus of AppLeS is on scheduling and thus it follows the resource
management model supported by the underlying Grid middleware systems. An
AppLeS scheduler is central to the application that performs mapping of jobs to
resources, but the local resource schedulers perform the actual execution of
application units. AppLeS schedulers do not offer QoS support. AppLeS can be
classified with a predictive heuristic state estimation model, online rescheduling
and fixed application oriented scheduling policy.

2.2.3.3 Legion

Legion [72] [73] [74] is an object-based meta-system developed at the University
of Virginia. Legion provides the software infrastructure so that a system of
heterogeneous, geographically distributed, high performance machines can
interact seamlessly. Legion attempts to provide users, at their workstations, with a
single, coherent, virtual machine. In the Legion system: 1) everything is an object
– Objects represent all hardware and software components. Each object is an
active process that responds to method invocations from other objects within the
system. Legion defines an API for object interaction, but not the programming
language or communication protocol; 2) classes manage their instances – every
Legion object is defined and managed by its own active class object. Class objects
are given system-level capabilities; they can create new instances, schedule them
for execution, activate or deactivate an object, as well as provide state information
to client objects; 3) users can define their own classes – As in other
object-oriented systems users can override or redefine the functionality of a class.
This feature allows functionality to be added or removed to meet a user's needs.

Legion core objects support the basic services needed by the metasystem. The
Legion system supports the following set of core object types: 1) Classes and
Metaclasses; 2) Host objects; 3) Vault objects; 4) Implementation Objects and
Caches; 5) Binding Agents; 6) Context objects and Context spaces. Legion objects
are independent, active, and capable of communicating with each other via
unordered non-blocking calls. Like other object-oriented systems, the set of
methods of an object describes its interface. The Legion interfaces are described
in an Interface Definition Language (IDL). As the Legion system uses
object-oriented approach, which potentially make it ideal for designing and
implementing a complex distributed computing environments. However, using an
object-oriented methodology does not come without a raft of problems, many of
these is tied-up with the need for Legion to interact with legacy applications and
services.

2.2.3.4 Netsolve/Gridsolve

Netsolve [75] [76] is a client–agent–server paradigm based network enabled
application server. It is designed to solve computational science problems in a

Chapter 2

 34

distributed environment. The Netsolve system integrates network resources
including hardware and computational software packages into a desktop
application. Netsolve clients can be written in C, FORTRAN, Matlab or Web
pages to interact with the server. A Netsolve server can use any scientific package
to provide its computational software. Communications between Netsolve clients,
agents, and servers are performed using TCP/IP sockets. Netsolve agents can
search for resources on a network, choose the best one available, execute the
client request, and then return the answer to the user.

The Netsolve system is a computational Grid with hierarchical based machine
organization. Netsolve agents maintain information about resources available in
the network. The Netsolve servers which are the resources in a Netsolve Grid are
responsible for making their existence aware to Netsolve Agents and thus use a
push protocol for resource dissemination. Netsolve Agents also perform resource
discovery and scheduling. An agent may request assistance of other Agents in
identifying the best resources and scheduling. Thus Netsolve can be considered to
use a network directory implemented by the Netsolve agents, decentralized
scheduling with a fixed application oriented scheduling policy.

GridSolve [77] is a stubless RPC-based client-agent-server system for remotely
accessing hardware and software resources. GridSolve emphasizes ease-of-use for
the user and includes resource monitoring, scheduling and service-level
fault-tolerance. In addition to providing Fortran and C clients, GridSolve enables
SCEs (such as Matlab) to be used as clients, so domain scientists can use Grid
resources from within their preferred environments. GridSolve is a more highly
evolved version of the earlier NetSolve project, and it is based on the emerging
GridRPC standard.

2.2.3.5 Diet

DIET [78 [79] (Distributed Interactive Engineering Toolbox) project is to develop
a set of tools to build, deploy, and execute computational server daemons. It
focuses on the development of scalable Middleware with initial efforts
concentrated on distributing the scheduling problem across multiple agents. DIET
consists of a set of elements that can be used together to build applications using
the GridRPC paradigm. This Middleware is able to find an appropriate server
according to the information given in the client’s request (e.g. problem to be
solved, size of the data involved), the performance of the target platform (e.g.
server load, available memory, communication performance) and the local
availability of data stored during previous computations. The scheduler is
distributed using several collaborating hierarchies connected either statically or
dynamically (in a peer-to-peer fashion). Data management is provided to allow
persistent data to stay within the system for future re-use. This feature avoids
unnecessary communications when dependencies exist between different requests.
The component of DIET Dashboard can provide the users with a complete,
modular, portable, and powerful way to manage grid resources of the applications
that run on it.

The State of the Art

 35

The DIET framework comprises several components. A Client is an application
that uses the DIET infrastructure to solve problems using an RPC approach.
Clients access DIET through various interfaces: web portals or programs using C,
C++, or Java APIs. A SeD, or server daemon, acts as the service provider,
exporting a functionality through a standardized computational service interface.
A single SeD can offer any number of computational services (depending on the
capacity of the machine). A SeD can also serve as the interface and execution
mechanism for either a stand-alone interactive machine or a parallel
supercomputer (or cluster) using an interface with a batch scheduler. Agents
which are the third component of the DIET, can help to facilitate the service
location and invocation interactions between clients and SeDs. Collectively, a
hierarchy of agents provides higher-level services such as scheduling and data
management. These services are made scalable by distributing them across a
hierarchy of agents composed of a single Master Agent and several Local Agents.
In DIET system, the scheduler/agent is scattered across a hierarchy of Local
Agents and Master Agents. The motivation for this architecture was that it was
more scalable and solved the problem of bottlenecks in a centralised
agent/scheduler when many clients try to access several servers. In addition, the
DIET system employed direct communication between servers and data
persistency. Where a dependency existed between tasks, this output would remain
on the source server. When the destination task is called for execution, this data
would be pulled from the source server. If the source server is the same as the
destination server this output would be stored and retrieved locally (data
persistency).

2.2.3.6 Ninf/Ninf-G

Ninf [81] is a client–server based network infrastructure for global computing.
The Ninf system functionality is similar to NetSolve. Ninf allows access to
multiple remote compute and database servers. Ninf clients can semi-transparently
access remote computational resources from languages such as C and FORTRAN.
Programmers can build a global computing application by using the Ninf remote
libraries as its components, without being aware of the complexities of the
underlying system they are programming. Procedural parameters, including arrays,
are marshaled and sent to the Ninf server on a remote host responsible for
executing the requested library functions and returning the results. The Ninf client
library calls can be synchronous or asynchronous in nature.

Ninf-G [80] is a Grid-enabled RPC (remote procedure call) implementation that
allows existing libraries to be used as RPC calls rather than local calls. Ninf-G can
interpose itself between the library and the calling application, allowing the
library code to be run on a remote system, potentially in parallel with other
systems, while the application runs locally. Neither the library nor the calling
application need to be changed. Ninf-G can even be used with precompiled
libraries for which the source code is not available. Ninf-G is most useful in cases
where the library provides a computationally-intensive service where the

Chapter 2

 36

application would benefit if the computation were performed on a remote system.
Useful scenarios include: when several computations are needed and can be
performed in parallel, or when the user interface allows the user to do other things
while the computation is performed. In both of these cases, the calling application
would be modified to invoke the library call (using Ninf-G) in a separate process
or thread so that the application can proceed while the library call is executed
remotely.

Ninf-G2 [82] is a reference implementation of the GridRPC API, a proposed GGF
standard. Ninf-G2 aims to support development and execution of Grid
applications which will run efficiently on a large-scale computational Grid. Here,
we use the term “large-scale computational Grid” as a cluster of about ten
geographically distributed cluster systems, each of which consists of tens to
hundreds of processors.

2.2.3.7 SmartGridSolve

SmartGridRPC [83] [84] is an extension of the GridRPC model, which aims to
achieve higher performance. As well known to us all, each GridRPC task call
consists of these operations (discovery, mapping and execution) and each
GridRPC task is processed individually, the GridRPC model imposes the
restriction that these three operations are atomic and cannot be separated. As a
result, the GridRPC model can only support the minimization of the execution
time of each individual task of the application rather than the minimization of the
execution time of the whole application. Another important aspect of the GridRPC
model is its communication model. The communication model of GridRPC is
based on the client-server model or star network topology. This means that tasks
can be executed on any of the servers and inputs/outputs can only traverse the
client-server links.

SmartGridRPC model has extended the GridRPC model to support collective
mapping of a group of tasks by separating the mapping of tasks from their
execution. This allows the group of tasks to be mapped collectively and then
executed collectively. In addition the traditional client-server model of GridRPC
has been extended so that the group of tasks can be collectively executed on a
network topology which is fully connected. This is a network topology where all
servers can communicate directly or servers can cache their outputs locally.

Key benefits of SmartGridRPC can be described as follows through direct
communication between clients: 1) Improved balancing of computation load; 2)
Reduced volume of communication; 3) Improved balancing of communication
load; 4) Increased parallelism of communication; 5) Reduced memory usage and
paging.

The State of the Art

 37

2.2.3.8 DataCutter

DataCutter [85] [86] is a middleware infrastructure that enables processing of
scientific datasets stored in archival storage systems across a wide-area network.
DataCutter provides support for subsetting of datasets through multi-dimensional
range queries, and application specific aggregation on scientific datasets stored in
an archival storage system.

DataCutter provides a core set of services, on top of which application developers
can implement more application-specific services or combine with existing Grid
services such as metadata management, resource management, and authentication
services. The main design objective in DataCutter is to extend and apply features
of the Active Data Repository (ADR), namely support for accessing subsets of
datasets via range queries and user-defined filtering operations, for very large
datasets in a shared distributed computing environment. In ADR, data processing
is performed where the data is stored (i.e. at the data server). To make efficient
use of distributed shared resources within the DataCutter framework, the
application processing structure is decomposed into a set of processes, called
filters. DataCutter uses these distributed processes to carry out a rich set of queries
and application specific data transformations. Filters can execute anywhere (e.g.,
on computational farms), but are intended to run on a machine close (in terms of
network connectivity) to the archival storage server or within a proxy server.

DataCutter also provides common support for subsetting very large datasets
through multi-dimensional range queries. Very large datasets may result in a large
set of large data files, and thus a large space to index. A single index for such a
dataset could be very large and expensive to query and manipulate. To ensure
scalability, DataCutter uses a multi-level hierarchical indexing scheme.

2.2.3.9 DAGMan

Directed Acyclic Graph Manager (DAGMan) [90] [91] is a meta-scheduler for the
execution of programs (computations). DAGMan submits the programs to Condor
in an order represented by a DAG and processes the results. A DAG input file
describes the DAG, and further submit description file(s) are used by DAGMan
when submitting programs to run under Condor. DAGMan is itself executed as a
scheduler universe job within Condor. As DAGMan submits programs, it
monitors log file(s) to enforce the ordering required within the DAG. DAGMan is
also responsible for scheduling, recovery, and reporting on the set of programs
submitted to Condor.

DAGMan allows the expression of dependencies. Each job is a node of the graph
and the edges identify their dependencies. Each job can have any number of
"parent" or "children" nodes. Childrens are only executed once their parents have
completed their execution. DAGMan does not allow cycles in the graph to prevent
dead-locks. Data migration is not automated by DAGMan and must be explicitly

Chapter 2

 38

defined by the user. The mapping of the workflow to the computing resource is
done during the execution of the workflow by the condor job scheduler.

2.2.3.10 Kepler

Kepler [92] [93] is an open-source scientific workflow engine with contributors
from a range of application-oriented research projects. Kepler built upon the
Ptolemy II system based at the University of California at Berkeley, is a dataflow
oriented mature workflow architecture. The Kepler system aims at supporting
very different kinds of workflows, ranging from low-level ‘plumbing’ workflows
of interest to Grid engineers, to analytical knowledge discovery workflows for
scientists, and conceptual-level design workflows that might become executable
only as a result of subsequent refinement steps .Kepler is used in several large
Grid projects where the management of biological data analysis workflows is
critical. The approach Kepler takes is based on an actor-oriented model which
allows hierarchical modeling and dataflow semantics. The Kepler tools support a
well-designed graphical composition interface that is very intuitive and easy to
use. To support the interaction with web services Kepler uses a form of actor
proxy for each web services that is invoked. In addition they have created a set of
Grid actors for doing GridFTP file management and Globus GRAM execution.

Using Kepler, scientists can capture workflows in a format that can easily be
exchanged, archived, versioned, and executed. Both Kepler’s intuitive GUI
(inherited from Ptolemy) for design and execution, and its actor-oriented
modeling paradigm make it a very versatile tool for SWF design, prototyping,
execution, and reuse for both workflow engineers and end users. Kepler
workflows can be exchanged in XML using Ptolemy’s own Modeling Markup
Language (MoML). Kepler actors run as local Java threads by default (from
Ptolemy), but are extended to spawn distributed execution threads via web and
Grid services, as well as through Java’s foreign language interface (Java Native
Interface). Kepler currently provides the following features: Prototyping
workflows; Distributed Execution (Web and Grid-Services); Database Access and
Querying; Kepler includes a suite of data transformation actors (XSLT, XQuery,
Perl, etc.); Supporting foreign language interfaces (Matlab actor, Python actor, etc)
via the Java Native Interface (JNI).

2.3 Desktop Grid Computing

2.3.1 Introduction

The world's computing power and disk space is no longer primarily concentrated
in supercomputer centers and machine rooms, but is distributed in hundreds of

The State of the Art

 39

millions of personal computers belonging to the general public. Desktop Grids use
these resources to do scientific computing. The number of Internet-connected PCs
is indeed growing rapidly, and is projected to reach 1 billion by 2015. Together,
these PCs could provide many Petaflops of computing power. The public resource
approach applies to storage as well as computing. If 100 million computer users
each provide 10 Gigabytes of storage, the total would exceed the capacity of any
centralized storage system.

A Desktop Grid computing environment mainly consists of client, volunteer, and
server. A client is a parallel job submitter. A volunteer is a resource provider that
donates its computing resources when idle. A server is a central manager that
controls submitted jobs and volunteers. A client submits a parallel job to a server.
A job is divided into sub-jobs that have their own specific input data. The sub-job
is called a task. The server allocates tasks to volunteers using scheduling
mechanisms. Each volunteer executes its task when idle, while continuously
requesting data from its server. When each volunteer subsequently finishes its task,
it returns the result of the task to the server. Finally, when the server collects all
results of tasks from volunteers, it returns the final result of the job back to the
client.

Figure.2.6 Common architecture of Desktop Grid systems

Just as mentioned above, desktop grid systems can harvest the idle cycles of PC’s
in Internet environments and/or enterprise environments. These systems share
many features of architectural design and organization, and we give an overview
of the anatomy of those kinds of systems, identifying commonalities and
important differences at the client, application and resource management, and
worker levels (Note that the physical organization may be different than what is

Chapter 2

 40

shown in Figure 2.6. For example, components of the client level often reside on
the same host as the worker.) At the Client Level, a user submits an application to
a desktop grid, using tools for controlling the application’s execution and
monitoring its status. At the Application and Resource Management Level, the
application is then scheduled on workers and appropriate data will be sent to
workers. At the Worker Level, the worker ensures the application’s task executes
transparently with respect to other user processes on the hosts.

The ideal desktop grid system would have the following characteristics:

 Scalability: The throughput of the system should increase proportionally with
the number of resources and the computing resources can be joined in or left
from the desktop grid platform automatically without influencing the
performance of the platform.

 Fault tolerance: The system must be tolerant of both server failure and worker
failure. Traditionally, the term failure refers to a defect of hardware or
software. We use the term failure broadly to include all causes of task failure,
including not only failure of the host’s hardware or worker software, but also
keyboard/mouse activity that causes the worker to kill a running task.

 Security: The machine including its data, hardware, and processes must be
protected from a misbehaving desktop grid application. Conversely, the
application’s executable, input, and output data, which may be proprietary,
must be protected from user inspection and corruption.

 Easy to manage: To use public computing resources, client program should
be easy to install and manage. Systems should provide tools for installing and
updating workers very easily, and also tools for managing applications and
resources, and monitoring their progress.

 Unobtrusiveness: Since the desktop grid application shares the system with
the user, the user processes must have priority over the client’s. When the
worker detects user activity, the task should be suspended temporarily until
the activity subsides, or the task should be killed and restarted later when the
host becomes available again.

 Usability: Integration of an application within a desktop grid system should
be as transparent as possible; in many cases, the complexity of the (legacy)
program or the fact that the source code is proprietary and is not available
makes it difficult to modify the code to use a desktop grid system.

Some challenges have to be mentioned when building real desktop grid systems
and those challenges can be summarized as follows:

 Volatility (non-dedication): Since the computing resources of Desktop Grid
are mainly from personal computers, it should respect the autonomy of
resource providers. I.e., volunteers can leave arbitrarily even during the
process of public execution, and they are allowed to execute private execution
at any time, thus causing interrupting the public execution. Accordingly, they
have various volunteering time (that is, the time of donation and regularity of
utilization from users). The various occurrence rate and form of volatility
directly affect the execution of tasks. So the scheduler must take volatility
into account in order to provide good performance and reliable computation.

 Dynamic environment: Resource's owners can configure its preference and

The State of the Art

 41

can control its machine in Desktop Grid. They can freely join and leave in the
middle of the executions without any constraints. Thus, the state of system
(that is, load, availability, volatility, latency, bandwidth, trust, etc.) is
continuously changing over time during the public execution. A scheduler
should adapt to such a dynamic environment.

 Lack of trust: In Desktop Grid, anonymous nodes can participate as a
resource provider. Some malicious volunteers tamper with the computation
and then return corrupted results. The desktop grid system should guarantee
the correctness of results.

 Failure: In Desktop Grid, volunteers are connected through Internet/low speed
network, so they are exposed to crash and link failures. In addition, since
volunteers are not dedicated to public execution and freely leave during
public execution, the execution is delayed, blocked, and even lost. The
desktop grid system should tolerate the failures and volatility.

 Heterogeneity: Desktop Grid is based on volunteer computers at the edge of
Internet. Volunteers have heterogeneous properties each volunteer has a
various occurrence rate of failures and volatility, availability, and trust
according to its execution behavior. The heterogeneity, which can cause
delaying the overall completion time, makes scheduling decision more
difficult.

 Scalability: Scalability is character of Desktop Grid system by nature. The
Desktop Grid system must adapt to this feature. This is to say, the scheduler
must allocate tasks to appropriate computing resources according to theirs
properties such as availability, stability and trust.

 Participants: In Desktop Grid, resource providers are mainly voluntary
participants without any reward for their donation of resources. In order to
encourage resource providers to reliably and eagerly donate their resources
for a long time, the Desktop Grid system may consider reputation and
incentive mechanisms.

In Desktop grid system, the resources are often volatile due to user activity,
machine hardware failures, and network failures. The high volatility of Desktop
Grid system makes the differences between Grid and Desktop Grid in
programming method, scheduling mechanism, resources management and so on.
Next, we will present some general programming methods on Desktop Grid
systems.

2.3.2 Programming method on Desktop Grids

A key mechanism in Desktop Grid is the volatility tolerance. Every Desktop Grid
platform uses resources that are not fully manageable by the Desktop Grid
administrator. A very common situation is the resource owner disconnecting its
resource from the Desktop Grid without prior notice. Volatility tolerance systems
are also used to cope with the unavoidable failures appearing in Desktop Grid:
resource hardware of software failures, networking Failures. Like cycle stealing,
volatility tolerance is the key problem of designing a Desktop Grid system. Two

Chapter 2

 42

kinds of programming methods are proposed to deal with specific situation in
Desktop Grid.

2.3.2.1 Volatility based message passing model

MPI is the most widely used programming environment for high performance
applications. MPI in its specification and most deployed implementations follows
the fail stop semantic (specification and implementations do not provide
mechanisms for fault detection and recovery). Thus, MPI applications running on
a large cluster may be stopped at any time during their execution due to an
unpredictable failure. The MPICH-V 12 project focuses on designing,
implementing and comparing several automatic fault tolerance protocols for MPI
applications.

MPICH-V [94] [95] environment encompasses a communication library based on
MPICH and a runtime environment. The MPICH-V library can be linked with any
existing MPI program as usual MPI libraries. MPICH-V runtime is a complex
environment involving several entities: Dispatcher, Channel memories,
Checkpoint servers, and computing/communicating nodes

MPICH-V is a MPI fault tolerant implementation based on uncoordinated
checkpointing and distributed pessimistic message logging. MPICH-V relies on
the MPICH-V runtime to provide automatic and transparent fault tolerance for
parallel applications on large scale parallel and distributed systems with volatiles
nodes. By reusing a standard MPI implementation and keeping it unchanged,
MPICH-V allows to execute any existing MPI application and only requires to
relink them with the MPICH-V library. MPICH-V architecture gathers several
concepts: Channel Memory for implementing message relay and repository,
Checkpoint Servers for storing remotely the context of MPI processes.

Currently, MPICH-V proposes 7 protocols: MPICH-V1, MPICH-V2, MPICH-Vcl,
MPICH-Pcl and 3 algorithms for MPICH-Vcausal. MPICH-V1 implements an
original fault tolerant protocol specifically developed for Desktop Grids relying
on uncoordinated checkpoint and remote pessimistic message logging. It uses
reliable nodes called Channel Memories to store all in transit messages.
MPICH-V2 is designed for homogeneous networks like clusters where the
number of reliable component assumed by MPICH-V1 is too high. It reduces the
fault tolerance overhead and increases the tolerance to node volatility. This is
achieved by implementing a new protocol splitting the message logging into
message payload logging and event logging. These two elements are stored
separately on the sender node for the message payload and on a reliable event
logger for the message events. The third protocol, called MPICH-Vcl, is derived
from the Chandy-Lamport global snapshot algorithm. It implements coordinated
checkpoint without message logging. This protocol exhibits less overhead than
MPICH-V2 for clusters with low fault frequencies. MPICH-Pcl is a blocking

12 http://mpich-v.lri.fr/

The State of the Art

 43

implementation of Chandy-Lamport algorithm. It consists in exchanging
messages for emptying every communication channel before checkpointing all
processes. MPICH-Vcausal concludes the set of message logging protocols,
implementing a causal logging. It provides less synchrony than the pessimistic
logging protocols, allowing messages to influence the system before the sender
can be sure that non deterministic events are logged, to the cost of appending
some information to every communication.

2.3.2.2 Fault tolerance based RMI/RPC model

The concept of Remote Procedure Call (RPC) has been used for a long time in
distributed computing as it provides a simple way to allow communication
between distributed components. Most of the previous works have focused on the
development of high performance RPC mechanisms and RPC/RMI for the Grid.
GridRPC is a proposal to standardize a RPC/RMI mechanism for Grid computing,
but it does not encompass fault tolerance mechanisms. Ninf and Ninf-G employ a
client-server model but do not provide fault detection nor recovery. NetSolve uses
a client-agent-server paradigm and provides two levels of fault tolerance for the
servers: a) inter-server fault tolerance moves the computation to another server
when the failure of a server is detected by an agent; b) usual techniques of
coordinated checkpointing and rollback recovery ensure intra-server fault
tolerance. Agent and client fault tolerance is not supported.

The characteristics of Internet connected Desktop Grids derive from the
combination of best-effort networks and infrastructures gathering a large number
of weakly controlled and volatile computing nodes. Volatility, The size of large
scale computing infrastructure makes the node disconnection probability not a
rare event; no stable component, the unpredictability of component volatility
precludes to considering the existence of stable components in the system;
intermittent crashes, components may leave the system for any period of time
without prior notification. connection-less interactions. In Internet connected
Desktop Grids, it is likely that many clients will be connected to a server at a
given time. Reciprocally, it is likely that many servers will be connected to a
client launching a large number of non blocking RPCs and no communication
exists between clients.

Some global computing platforms like SETI and BOINC use process replication
to recover from computing resources crash. In replication, the same job is running
on several hosts and an atomic broadcast based protocol ensures consistency of
replicas. When a failure hits some processes, the recovery procedure is to rebuild
new replicas. Because of the voluntary social model of the global computing
platform, overall available computing power far oversize the application needs
and replication comes at no cost. So multi-replications for a task are possible and
reasonable.

RPC-V [96] [97] is an automatic and transparent fault-tolerant environment for
RPC programming on Internet connected Desktop Grids. The main features of

Chapter 2

 44

RPC-V (API, virtualization, basic fault management policies, scheduling and data
communication modes) have been designed according to the context of large scale
Grids. RPC-V design follows a new fault tolerant architecture based on 1) a
three-tier architecture (clients, Coordinator, servers) 2) message logging on all
system components 3) fault detector on all components and 4) passive replication
of the coordinators. RPC-V can be integrated into some desktop grid middleware,
such as Xtremweb.

2.3.3 Desktop Grid projects

To know the Desktop Grid system in detail, some representative Desktop Grid
projects will be presented in this section.

2.3.3.1 Boinc

BOINC13 [98] [99] (Berkeley Open Infrastructure for Network Computing) is an
open source platform for Desktop Grid computing. BOINC is being developed at
U.C. Berkeley Spaces Sciences Laboratory by the group that developed and
continues to operate SETI@home. Other projects such as Predictor@Home,
Folding@Home, Climatepredication.net, Climate@Home, LHC@Home and
Einstein@Home are based on BOINC.

BOINC consists of server and client. A server has a task server that dispatches
tasks and collect the results of tasks, a data server that handles file transfer, a
database that stores descriptions of applications, volunteers, scheduling, etc., and
web interfaces for account management, message boards, etc. A client (that is,
worker) runs projects' applications. It can participate in several projects. BOINC
is mainly based on voluntary participants connected through Internet .When a
client sends a request to a task server (pull mode based), the server allocates a list
of new tasks to the client. Additionally, BOINC supports locality scheduling. In
addition, a client performs local scheduling on its computer, which decides which
task to run among multiple projects' applications, when to ask a server for more
tasks, which project to ask, and how much tasks to ask for. BOINC clients can
join and leave freely, so scheduling in BOINC should be dynamic.

The applications suiting for BOINC are mainly compute-intensive and
independent. BOINC scheduler distributes a task to a worker only if the client is
likely to complete the task by its deadline. If a task's deadline passes or if a task
fails, a server marks it as time-out and redistributes a new instance of the task.
With the local scheduling, BOINC client may preempt applications either by
suspending them or by instructing them to quit if it participates in multiple
projects. That is, one task is preempted by another task. BOINC also provides
checkpoint API for applications.

13 http://boinc.berkeley.edu/

The State of the Art

 45

To prevent erroneous computational results, BOINC uses a technique called
redundant computing. In particular, a project can specify that N results should be
created for each task. Once M (M is less than or equal to N) of these have been
distributed and completed, an application-specific function is called to compare
the results and possibly select a canonical result. If no consensus is found, or if
results fail, BOINC creates new results for the task, and continues this process
until either a maximum result count or a timeout limit is reached.

As presented above, scalability is a problem that must be consider in Desktop
Grid computing projects. Specially, we may have millions of participants and a
relatively modest server complex. As a matter of fact, if all the participants
simultaneously try to connect to the server, a disastrous overload condition will
happen. BOINC has a number of mechanisms to prevent this.

2.3.3.2 Entropia

Entropia [100] [101] is a middleware for commercial Desktop Grid. The
Entropia system architecture consisted of three layers: physical node management,
scheduling, and job management. The physical node management layer, provided
basic communication and naming, security, resource management, and application
control. The second layer was resource scheduling, providing resource matching,
scheduling, and fault tolerance. Users could interact directly with the resource
scheduling layer through the available APIs or alternatively through the third layer
management, which provides management facilities for handling large numbers of
computations and files. Entropia provided a job management system, but existing
job management systems can also be used. The three-layer architecture of
Entropia can provide end users with a wealth of benefits in system capability, ease
of use by users and IT administrators, and internal implementation.

The key advantages of the Entropia system are the ease of application integration
and a new model for providing security and unobtrusiveness for the application
and client machine. The approach is to automatically wrap an application in a
virtual machine technology. When an application program is registered or
submitted to the Entropia system, it is automatically wrapped inside the virtual
machine. This isolation is called sandboxing. The application is contained within
a sandbox and is not allowed to modify resources outside the sandbox. The
application is fully unaware of being running within a sandbox, since its
interaction with the OS is automatically controlled by the virtual machine. The
virtual machine intercepts system calls the application makes. This ensures that
the virtual machine has complete control over the applications. The Entropia
system also can aggregate the raw desktop resources into a single logical resource.
This logical resource is reliable, secure and predictable despite the fact that the
underlying raw resources are unreliable, insecure and unpredictable. This logical
resource provides high performance for applications through parallelism while
always respecting the desktop user and his or her use of the desktop machine.
Furthermore, this logical resource can be managed from a single administrative

Chapter 2

 46

console. Addition or removal of desktop machines from the Entropia system is
easily achieved, providing a simple mechanism to scale the system as the
organization grows or as the need for computational cycles grows.

The disadvantage of the Entropia system was that it did not support heterogeneous
systems. The only platform was Windows that limited the usability of this system
in a research environment.

2.3.3.3 Condor

Condor [104] [103] [102] [89], developed at the department of Computer Science,
University of Wisconsin, Madison, is a High Throughput Computing (HTC)
environment that can manage very large collections of distributive owned
workstations.The Condor environment provides a powerful resource management
by match-making resource owners with resource consumers. Condor provides a
job queuing mechanism, scheduling policy, priority scheme, resource monitoring,
and resource management. Users submit their serial or parallel jobs to Condor,
Condor places them into a queue, chooses when and where to run the jobs based
upon a policy, carefully monitors their progress, and ultimately informs the user
upon completion.

Condor implements ClassAds to simplify the user’s submission of jobs. ClassAds
work in a fashion similar to the newspaper classified advertising want-ads. All
machines in the Condor pool advertise their resource properties, both static and
dynamic, such as available RAM memory, CPU type, CPU speed, virtual memory
size, physical location, and current load average, in a resource offer ad. A user
specifies a resource request ad when submitting a job. The request defines both
the required and a desired set of properties of the resource to run the job. Condor
acts as a broker by matching and ranking resource offer ads with resource request
ads, making certain that all requirements in both ads are satisfied. During this
match-making process, Condor also considers several layers of priority values: the
priority the user assigned to the resource request ad, the priority of the user which
submitted the ad, and desire of machines in the pool to accept certain types of ads
over others.

Condor also provides DAGMan for executing dependable jobs. Condor enables
preemptively resume scheduling on dedicated compute cluster resources. It can
preempt a low-priority task in order to immediately start a high-priority task.

2.2.3.4 BitDew

BitDew [87] [88] framework is a programmable environment for management and
distribution of data for Desktop Grid. It aims to break the "data wall" by adopting
the key P2P technologies (DHT, BitTorrent). BitDew can offer programmers a
simple API for creating, accessing, storing and moving data with an easy way,

The State of the Art

 47

even on highly dynamic and volatile environments. The BitDew programming
model relies on 5 abstractions to manage the data : 1) replication indicates how
many occurrences of a data should be available at the same time on the network, 2)
fault-tolerance controls the policy in presence of machine crash, 3) lifetime is an
attribute absolute or relative to the existence of other data, which decides the life
cycle of a data in the system, 4) affinity drives movement of data according to
dependency rules, 5) protocol gives the runtime environment hints about the
protocol to distribute the data (http, ftp or bittorrent).

The BitDew runtime environment is a flexible environment implementing the API.
It relies both on centralized and distributed protocols for indexing, storage and
transfers data. The architecture follows a classical three-tiers schema commonly
found in Desktop Grids: it divides the world in two sets of nodes: stable nodes and
volatile nodes. Stable nodes run various independent services which compose the
runtime environment: Data Repository, Data Catalog, Data Transfer and Data
Scheduler. We call these nodes the service hosts. Volatile nodes can either ask for
storage resources or offer their local storage. Usually, programmers will not use
directly the various D* services; instead they will use the API which in turn hides
the complexity of internal protocols. The Bitdew runtime environment delegates a
large number of operation to third party components : 1) Meta-data information
are serialized using a traditional SQL database, 2) data transfer are realized
out-of-band by specialized file transfer protocols and 3) publish and look-up of
data replica is enabled by the means of DHT protocols.

2.3.3.5 Javalin

Javelin [105] [106] [107] is a Java-based infrastructure for parallel Internet
computing. Applications run as Java applet or screen saver. Applications are
mainly compute-intensive and independent. Javelin consists of three entities:
broker, client, and host (volunteer in this thesis). A client registers its tasks to a
broker, a host offers computing resources and a broker coordinates the supply and
demand for computing resources. When a host contacts a broker, the broker adds
the host to a logical tree structure. A broker maintains the organized tree of hosts.

A client registers with a broker. If a host requests tasks to the broker, the broker
informs the host of client ID and application information. Then the host executes
tasks. At this time, work stealing and advanced eager scheduling are performed.
With worker stealing, when a host finish a task, it request tasks from other host in
two ways: deterministic or probabilistic approaches. In a deterministic approach, a
host asks tasks from its children or its parents on the basis of tree structure. In a
probabilistic approach, the host selects the target randomly from the list of hosts it
currently knows. With advanced eager scheduling, the client selects the next task
marked undone and reissues it to another host. The advanced eager scheduling is
invoked only when worker stealing fails. It also provides fault tolerant mechanism,
that is, how to fix tree in the presence of host's failure. The failed work is
redistributed by eager scheduling, in the sense that eager scheduling guarantees
that the undone works will be rescheduled to different hosts eventually. In Javelin,

Chapter 2

 48

the work stealing is performed at a host, and eager scheduling is performed at a
client. A broker is a simple mediator between clients and hosts.

Javelin 2.0 [108] is a branch-and-bound computational model through extending
javelin and it facilitates aggregating larger sets of host processors through
improving the following aspects: a branch-and-bound computational model, a
scalable task scheduler using distributed work stealing, a distributed eager
scheduler implementing fault tolerance. Javelin 2.0 frees application developers
from concerns about complex inter-processor communication and fault tolerance
among Internet worked hosts. When all or part of their application can be cast as a
piecework or a branch-and-bound computation, Javelin 2.0 allows developers to
focus on the underlying application.

2.3.3.6 Webcom

WebFlow [109] [110] is a computational extension of the Web model that can act
as a framework for wide-area distributed computing. The main design goal of
WebFlow was to build a seamless framework for publishing and reusing
computational modules on the Web, so that end users, via a web browser, can
engage in composing distributed applications using WebFlow modules as visual
components and editors as visual authoring tools.

WebCom uses a variant of the client/server paradigm to distribute instructions for
execution over the web. These instructions are arbitrarily complex and are
specified in the application programming environment. When the Condensed
Graphs instruction constructor is used in conjunction with WebCom, instructions
are typically composed of both sequential programs (also called atomic
instructions) and Condensed nodes encapsulating graphs of interacting sequential
programs. In effect, a Condensed Graph on WebCom represents a hierarchical job
control and specification language. Execution begins on a single server (also
called a master) and instructions are distributed to clients (which are known as
slaves or potential masters, depending on the type of instruction they can receive)
via TCP/IP socket connections. Typically, clients which are going to act as slaves
connect to WebCom via a web server. They then receive atomic instructions by
way of a Java applet, execute these instructions within the confines of their
browser and return results to the WebCom server via a dedicated TCP/IP socket
connection. Clients which act as potential masters are implemented as Java
applications and are capable of executing atomic and Condensed Node
instructions. On receipt of a Condensed Node, a potential master is promoted to
be a fully fledged master, is assigned a number of clients to help in executing its
atomic instructions and becomes the root of another computation tree distributed
over the web. WebCom employs a fault survival mechanism to counteract the
volatile nature of its underlying platform. Typical web based faults include the
failure of TCP/IP sockets due to normal network failure. Also, client machine
users may wish to exit from WebCom by killing their browser or pointing it to a
different location.

The State of the Art

 49

WebCom-G [112] [111] is the evolution of WebCom for producing a grid-enabled
middleware. The aim of the WebCom-G OS is to hide the low level details from
the programmer while providing the benefits of distributed computing. The
WebCom-G System is proposed as a Grid Operating System. It is modular and
constructed around a WebCom kernel, offering a rich suite of features to enable
the Grid. WebCom-G utilizes the tested benefits of the WebCom metacomputer
and leverages existing grid technologies such as Globus and MPI. To WebCom-G,
multiple grids are themselves viewed as independent WebCom-G units. When an
instruction is sent to WebCom-G all the information is supplied to either
dynamically create or invoke an RSL script or to execute the job directly. When a
WebCom-G unit receives an instruction it is passed to the grid engine module.
This module unwraps the instruction, creates the RSL script and directs the
gatekeeper to execute it. Once the Gatekeeper has completed execution, the result
is passed back to the unit that generated the instruction. As WebCom-G uses the
underlying grid architectures, failures are detected only at the higher level. In this
case WebCom-G.s fault tolerance will cause the complete job to be rescheduled.

2.4 Grids versus Desktop Grids

Desktop Grid and Grid computing share the same goal of better utilizing existing
computing resources. However, there are key differences between the two
paradigms. As a matter of fact, Grid computing involves organizationally-owned
resources: supercomputers, clusters, and PCs owned by universities, research labs,
and companies. These resources are centrally managed by IT professionals, are
powered on most of the time, and are connected by full-time, high-bandwidth
network links. Furthermore, there is a symmetric relationship between
organizations: each one can either provide or use resources. In contrast, Desktop
Grids involve an asymmetric relationship between projects and participants.
Projects are typically in a special interests based academic research groups. Most
participants are individuals who own Windows, Macintosh and Linux PCs,
connected to the Internet by telephone or cable modems or DSL, and often behind
network-address translators (NATs) or firewalls. The computers are frequently
turned off or disconnected from the Internet. Participants are not computer experts,
and participate in a project only if they are interested in it. Projects have no
control over participants, and cannot prevent malicious behavior.

The second difference is that, Grid computing has many requirements that
Desktop Grid computing does not. Grids architecture must accommodate many
existing commercial and research-oriented academic systems, and must provide a
general mechanism for resource discovery and access. In fact, it must address all
the issues of dynamic heterogeneous distributed systems, an active area of
computer science research for several decades. This has led to architecture such as
OGSA, which achieves generality at the cost of complexity and even performance.
In contrast, the main characteristic of Desktop Grid systems is the unobtrusiveness
because the resource used are installed and designed for purposes other than

Chapter 2

 50

distributed computing, thus the resource must be exploited without disturbing
their primary use. Moreover, the machine including its data, hardware, and
processes must be protected from a misbehaving of Desktop Grid applications.
Analogously, the application's executable, input, and output data, which may be
proprietary, must be protected from user inspection and corruption.

More detail comparison between Grids and Desktop Grids can be summarized
using Table 2.2.

Table 2.2 Grids versus Desktop Grids

Items Desktop Grids Grids
Initial ideas To collect idle cycle of PCs

connected by Internet to do scientific
computing

To harness more clusters,
supercomputers, devices into a
meta-computer which can provide
users on-demand process power

Resources Supercomputer, cluster, scientific
instruments and so on.

Mainly PCs, it also can be
workstation, supercomputers…

Connection Internet based
Poor bandwidth; low speed

LAN based
high speed network

Task
management

Pull mode Push mode

Dedication Non-dedicated
High volatile

Dedicated
Utilize based on “reservation”

Trust Low confidence
Results need certification

High confidence

Stable Failure is common
Fault tolerance mechanism is
necessary

More stable

Application high throughput computing (mainly);
Job independent

High performance computing;
High throughput computing;
Job independent or Job dependent.

Scalability Easy to scale with low cost
Large scale based systems

Very easy to scale with no cost
Very large scale based systems

Quality of
service

High
Or service level agreement based
services

Low

Heterogeneity High heterogeneous Heterogeneous

The State of the Art

 51

2.5 Conclusion

In this chapter, we briefly presented the evolution of high performance systems.
Generally speaking, its development experienced two stages. The first is to
improve the process power of a single computer through adopting new materials
of chips (from electron tube to transistor) and start-of-art technology (digital large
scale integrated circuit, for example). But as well known to us all, the signal
couldn’t be transmitted faster than the speed of light and perhaps Moore’s law
doesn’t work in future. So the second method of improving process power is to
harness lots of CPU/computers to finish tasks cooperatively. Two kinds of
methods can be divided into according to what is harnessed (CPU or computer).
In 80’s, the main way is to harness many CPUs to improve the performance of
supercomputer. Then the cluster emerged in 90s and it became the main stream of
high performance systems. Up to the middle of 90s, the architecture of high
performance systems is mostly homogeneous.

With the development of programming language and emergence of Java, virtual
technology make programming interface be platform independent and easy of
networking. So the concept of Grids and Desktop Grids are proposed and they
become the main stream in high performance systems. Lots of Grid systems have
been utilized in real society, such as LCG project for LCH, EGEE for high energy
physics and TeraGrid for scientific computing. At the same time many Desktop
Grids, Seti@home, Condor, XtremWeb for example, also have been widely used
in scientific computing. Some famous Grid systems and Desktop Grid systems
have been described in this chapter and some comparisons between Grids and
Desktop Grids are also made in this chapter.

Though there are many successful applications on Grids and Desktop Grids. Some
drawbacks still exist in those Grid and Desktop Grid projects. Also from the
description of Grids/Desktop Grids, we also know different Grid/Desktop Grid
systems suit for different applications, this is to say, no a general Grid/Desktop
Grid systems can suit for all the applications/situations. So the aim of this chapter
is to analyze different Grid/Desktop Grid systems and find an appropriate way to
make scientific computing more efficiently. Our research is for not big enterprises
or research institutes whose users are non professional computer users. So we
should try to find a way to make scientific computing more simply. At the same
time, we will try to utilize the computing resources we can use. According to the
research context, we choose appropriate experiment tools and environments to
make our experiments. Detail on experimental tools and environments will be
introduced in chapter three.

Chapter 3

 52

Experimental Tools and Platforms

 53

Chapter 3

Experimental Tools and Platforms

This chapter presents our experimental tools and platforms. We choose the
OmniRPC (Grid middleware), XtremWeb (Desktop Grid middleware) and YML
(workflow language based middleware) as our software/tools; Grid5000 (Grid
environment), Polytech Lille (Desktop Grid environment) and Hohai platform
(Desktop Grid environment) as our platforms/environments. The reason why we
choose the softwares and platforms presented above is from the background of the
research in the dissertation.

The aim of this dissertation is to find an easy of use way to make large scale
scientific computing for non professional computer end users. This is to say, the
new solution will try to provide higher level interface to end users and it is better
for users to develop using the interface without knowing much about
programming knowledge. To achieve this goal, a component based framework
YML is presented in this chapter. YML an open source middleware, is a workflow
based framework which can help provide end users high level programming
interface and users also can extend YML by modifying its components or adding a
new component.

As well known to us all, volunteer computing resources can be harnessed into a
powerful platform and Desktop Grids become more and more important in
scientific computing area. So an open source desktop middleware XtremWeb is
selected to testify the performance of volunteer computing resources based
platform. The reason of using XtremWeb can be described as follows: firstly, it is
a java based Desktop Grid middleware which can provide three kinds clients
program separately suiting for Windows OS, Linux OS and Mac OS. Secondly,
XtremWeb can support different scale applications. It can be used to make large
scale scientific computing such as high energy physics and small or middle scale
applications also can be dealt with using Xtremweb. Thirdly, it is open source

Chapter 3

 54

software.

In scientific computing areas, dedicated computing resources (for example,
supercomputer, workstation, cluster, servers) always play an important role.
Recently, more and more scientific computing applications are based on
distributed computing. So this dissertation chooses OmniRPC to harness
dedicated computing resources. The reason of choosing it can be summarized as
follows: firstly, it is RPC based middleware and it has more efficiency than virtual
technology based middleware (for example, RMI based middleware); secondly,
OmniRPC can support a local environment with “rsh” and remote hosts with
“ssh”; thirdly, it can provide SMP environment and a Grid environment with
Globus. It also supports programming in Fotran and OmniRPC API; fourthly, it
provides end users with several kinds of scheduling mechanism and user can
choose appropriate scheduling strategy according to real situation.

As to platform, Grid5000 a national wide Grid platform in France and two
Desktop Grid platforms in Polytech Lille, France and Hohai platform, China are
also presented. Our experiments are based on those platforms.

3.1 Experimental platforms

3.1.1 Grid5000

Grid’500014 [113, 114] is national wide experimental set of clusters which aims
at providing a strong reconfiguration, control and monitoring infrastructure,
transforming the full system into a scientific instrument. Actually, its
reconfiguration capability allows a large variety of configurations. The full
software stack between the hardware and the Grid user can be configured on all
processors, at a nation wide scale. Grid'5000 can be used and shared by many
researchers. Its control infrastructure allows researchers running interactive as
well as batch experiments. Experiments in batch mode follow a complex sequence
of operation including the following steps: reservation, reconfiguration, run
preparation, run and post run resource liberation.

Grid'5000 is implemented as a nation wide cluster of clusters. Nine sites in France
are equipped with clusters ranging from 100 to 1000 CPUs. The sites are
connected by RENATER through VLANS implemented by MPLS at level 2. The
clusters are not connected to the rest of the Internet. From the Internet, accesses to
clusters are made through a first access to the laboratory hosting the cluster.
Strong authentication and authorization verification procedures check the access
rights of users. When a user is logged in Grid'5000, he can see all the Grid'5000
processors without restriction. A reservation tool called OAR allows to reserve

14 https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home

Experimental Tools and Platforms

 55

nodes on several sites. After the reservation, the user can deploy a specific stack
of software and reboot the reserved nodes. After the reboot, the user can start the
experiment. A set of probes inside RENATER allows capturing and recording the
inter-site network traffic during the experiment. Grid 5000 will offer a set of tools
controlling the experimental conditions during the execution of the experiment.
Basically, the user will be able to start and stop every Grid 5000 nodes, on
demand. Grid'5000 is used for many experiments in all levels of the Grid software
stack: resource provisioning systems, network protocols, operating systems
mechanisms, middleware, runtime and applications. Researchers can study issues
(performance, scheduling, fault tolerance, QoS, etc) on the Grid5000 platform.

3.1.2 Polytech Lille and Hohai platforms

Polytech Lille platform: its machines are teaching machines at the university
school of engineer of Lille. There are total 128 machines which are non-dedicated
machines under Linux OS. The bandwidth varies from 10 to 100MB/S in the LAN
and it’s about 1GB/S between those switches.

Hohai platform: this platform also belongs to non-dedicated platform which are
from 2 labs. Those PCs are utilized when there is an experimental course and if no
course in the labs, users/clients can utilize the machines in the labs. The
bandwidth between machines is based on 100M/S and the bandwidth between
labs is 1GB/S. There are total 108 machines.

3.2 Experimental tools

3.2.1 XtremWeb

XtremWeb15 [115] [116] an open source middleware to form global computing
platform for a multi-user and multi-parallel programming context, intends to
distribute applications over dynamic resources according to their availability and
implements its own security and fault tolerance policies. XtremWeb relies on the
notion of services to deploy a Desktop Grid based on a three-tiers based
architecture. This architecture gathers tree main services: Clients, Coordinators
and Workers. Detail architecture can be described using Figure 3.1.

15 http://www.xtremweb.net/

Chapter 3

 56

Figure 3.1. Architecture of XtremWeb

 The coordinator. The coordinator manages a bag of tasks provided by clients
and coordinates their scheduling among a set of workers that are volunteers
provided by institutional or private users. But those workers are not under the
control of the coordinator and they can join in or leave from the platform at
any time. Under this situation, each action is initiated by workers and this
behavior model is commonly known as pull model. Tasks are scheduled to
workers on their specific demand only since they may appear (connect to
coordinator) and disappear (disconnect from coordinator) with no predictable
pattern (a worker is then said connected as long as it periodically contacts the
coordinator). Scheduling mechanism in XtremWeb is based on FIFO (first in,
first out) mode. Any scheduled task is expected to be computed by a worker
and have its results sent back to the coordinator; once the task is failure, it
will be rescheduled to another worker to get correct results. XtremWeb can
schedule applications as jar files (binary files) to ensure its security.

 The clients. Clients are distributed to authorized users only to make them able
to submit tasks to the coordinator as transactions. Before submitting any task,
the client contacts the coordinator to fetch any previous submitted ones. This
ensures that when the client restarts from a fault or any other reason, it does
not resubmit previously submitted tasks. Results are managed according to
the user needs. They can be discarded immediately after fetch or kept by the

Experimental Tools and Platforms

 57

coordinator until the end of the session. So on client failure, it is the
responsibility of the client programmer to fetch relevant results. An API is
implemented to provide such secure implementations.

 The workers. Workers are distributed entity to volunteer institutional or
individual PCs, which aim to use CPU accordingly to a local user
customizable policy (available scheduling time, CPU usage conditions...) to
compute tasks provided by the coordinator. A worker requests task to
compute accordingly to its own local policy; it downloads task software and
all expected objects (input file, arguments...), stores them on reliable media
and starts computing the provided tasks. Computation goes on locally until it
ends or dies for any reason, including due to host utilization policy rules. As
computation is started, the worker periodically signals the coordinator, so that
coordinator knows the computation goes on well. The coordinator manages
its tasks using transactions and stores them in reliable media (disk) so that the
full system integrity is preserved even if the coordinator shuts down for any
reason. At starting time, the coordinator reads the information stored on disk
to set up its proper state. The client submits tasks and the worker fetches tasks
using transactions; this ensures a consistent state when the coordinator
restarts from fault and the client/worker have not failed. Workers failures are
detected (by the alive signal) and their tasks may be rescheduled on another
available worker. Also, to avoid redundant task and result overwriting, a
worker can be brought to stop its current task if it has been disconnected for a
long time.

3.2.2 OmniRPC

OmniRPC16 [16] is designed to allow easy development and implementation of
parallel scientific applications for distributed and Grid environments. OmniRPC is
an evolution of Ninf, since it inherits the API and basic structure from it, and thus
the OmniRPC programming model is very similar to the GridRPC one. It is
composed of a client application and various remote computational hosts, which
execute the remote procedures. Remote locations can be connected via a local area
network or over a wide-area network. The client application can be written in
various different languages, such as FORTRAN, C and C++, and the parallel
execution in the client can be obtained by using direct thread libraries, such as the
POSIX thread, or the OpenMP API. The interface to a remote function is
described by the Ninf IDL. In OmniRPC, the remote executions are managed by
the use of remote shell (rsh) for local distributed environments and by the use of
Globus and ssh for Grid environments.

OmniRPC follows a master-worker structure. It consists of three parts which are
client, agent and computational hosts. Its architecture can be described through
figure 3.2.

16 http://www.omni.hpcc.jp/OmniRPC/

Chapter 3

 58

Figure 3.2 General architecture of OmniRPC

The executable process can be described as follows: when the OmniRPC client
program starts, the initialization function of the OmniRPC system invokes the
OmniRPC agent program omrpcagent in the remote hosts listed in the host file. In
order to invoke the agent called omrpc-agent, the user can use rsh in a local-area
network, the Globus Resource Allocation Manager of the Globus toolkit in a Grid
environment, or ssh in a private Grid environment. The user can switch the
configurations only by changing the host file.

OmniRpcCall is a simple client programming interface for calling remote
functions. When OmniRpcCall makes a remote procedure call, the call is allocated
to an appropriate remote host. When the client issues the RPC request, it requests
that the agent in the selected host submit the job of the remote executable with the
local job scheduler specified in the host file. If the job scheduler is not specified,
then the agent executes the remote executable in the same node by using the fork
system call. The client sends the data of the input arguments to the invoked
remote executable and receives the results upon return of the remote function.
Once a remote executable is invoked, the client attempts to use the invoked
remote executable for subsequent RPC calls in order to eliminate the cost of
invoking the same remote executable again. RPCs are properly allocated in the
idle node. When the agent and the remote executables are invoked, the remote
programs obtain the client address and port from the argument list and reconnect
to the client by direct TCP/IP or Globus-IO for data transmission. Because the
OmniRPC system does not use any fixed service ports, the client program
allocates unused ports dynamically in order to wait for a connection from the
remote executables. This avoids possible security problems and allows the user to
install the OmniRPC system without a privileged account.

In our experimental environment, the Grid resource is based on cluster of
geographically distributed PC clusters. For PC clusters on a private network, an
OmniRPC agent process on the server host functions as a proxy to relay

Experimental Tools and Platforms

 59

communications between the client and the remote executables by multiplexing
the communications using a single connection. This feature, called multiplex IO
(MXIO), allows a single client to use up to 1,000 remote computing hosts. When
the PC cluster is located inside a firewall, the port forwarding of SSH enables the
node to communicate to the outside via MXIO.

3.2.3 YML

YML17 [117] [118] [119] is a framework, developed at PRiSM laboratories in
collaboration with Laboratoire d'Informatique Fondamentale de Lille (Grand
Large Team, INRIA Futurs). The aim of YML is to define an abstraction for
middlewares, hiding differences among them and using this abstraction to remain
portable over multiple middlewares. The user can easily develop a complex
parallel application which may transparently execute on multiple middlewares
during one application execution. The framework can be divided into three parts
which are “end-users interface”, “frontend” and “backend”.

Figure 3.3 General architecture of YML

17 http://yml.prism.uvsq.fr/

Chapter 3

 60

“End-users interface” is used to provide an easy-to-use and intuitive way to
submit their applications and applications can be described using a workflow
language YvetteML. YvettML is a dedicated language embedded in XML which
helps to make the writing of application description of application graph more
human friendly. It can support a ‘graph component’ based program (See an
example in Figure3.4). The YvetteML language is used to control the activity of
YML. The main role of the language is to describe component and execution. It
focuses on the control provided to the user to manage the creation of an
application and it allows the coordination and the description of the dependencies
between the various component calls composing the graph of an application. The
‘graph component’ based interface is separation of the control or communication
of the application and the computation. Several structures in YvetteML can be
described as follows:

 Component call: It corresponds to the execution of a component on the
remote peers. The component call is composed of a scheduling policy that can
be used to invoke the name of an abstract component and a list of parameters.
Parameters can be a data or a constant value.

 Parallel section: In YvetteML like most programming language the control
flow is sequential until you explicitly mark section as parallel. YvetteML
supports two kind of parallel sections. Parallel section are separated by a “//”
separator. Multiple statements can compose a parallel section. “Par” and
“Endpar” are keywords of parallel section.

 Sequential loop: You can also express sequential loop controlled by an
iterator using a form similar to the parallel iterated loop described previously.
The example does the same as before but sequentially.

 Conditional: YML allows the definition of conditional branches based on a
boolean condition. The condition can use the operator available in the
language as well as any user defined function.

 Events manipulation: The events can be explicitly managed using two
constructions called notify and wait. The first construction set a list of events.
The second one is used to wait until a boolean expression of events is true.
“wait()” and “notify()” are two keys to execute dependable tasks.

Figure 3.4 Sample of YvettML based interface

Experimental Tools and Platforms

 61

“Frontend” is the main part of YML which includes compiler, scheduler, data
repository and Development Catalogs (in this part, two components will be
developed or invoked based on reuse: abstract component and implementation
component). Abstract components and implementation components based on
function can be reused very easily and we will explain it in the fifth chapter.

 Compiler: It translates applications described using the YvetteML language to
a set of components calls. Its component call is decorated with two pieces of
information. The execution condition is a boolean expression which
determines whether the component can be executed or not. The post condition
is a list of boolean flags used to describe the state of the application.
Execution conditions are evaluated based on the events.

 Scheduler: It manages application executions. It acts as a client for underlying
middleware accurately requiring computing resources. During the application
execution the scheduler detects task ready for execution solving dependencies
at runtime. Each scheduling iteration may or not generate a set of parallel
tasks which are translated in computing requests to middleware through
dedicated back-ends

 Data Repository: The YML framework implies a lot of data exchange through
the network. The Data Repository server acts as a resource provider and
delivers data to each component on demands.

 Development Catalogs: The YML framework stores components in Catalogs.
The Development Catalog stores the information used only during the
development stage. The middleware independent part relies only on this
catalog. The Development Catalog store components information and data
type information used to validate the YvetteML input program. This catalog
is not required for executing an application. Two kinds of components are
needed to develop which are abstract component and implemental
component.
1. Abstract component: an abstract component defines the communication

interface with the other components. This definition gives the name and
the communication channels with other components. Each channel
corresponds to a data input, data output or both and is typed. This
component is used in the code generation step and to create the graph.
This part of work can be developed by computer engineering in advance
according to users’ requirement.

2. Implementation component: an implementation component is the
implementation of an abstract component. It provides the description of
computations through YvetteML language. The implementation is done
by using common languages like C or C++. They can have several
implementations for a same abstract component. This part of work also
can be developed by computer engineers in advance.

“Backend” is the part to connect different Grid and peer to peer middleware. This
layer is responsible for the interaction between YML and middleware. Its goal is
to allow YML to execute the YML service on a worker. In order to accomplish
this, the back-end layer defines three components: the back-end, the worker and

Chapter 3

 62

the data repository. These components interact with the middleware to provide a
consistent execution environment to YML services.

 The back-end component is a client of middleware services. It permits YML
to request the execution of a work on a peer. It also notifies of work
terminations. The application executed on peers is the YML worker
component.

 The worker component is a service container. It defines a consistent
environment for the execution of a service. Among the tasks assumed by the
worker, the most significant is data management. The worker is responsible
of importing data for the service and exporting its results. In order to do that,
the worker component interacts with data repositories.

 Data repository components are responsible for all data exchanges between
two peers and with the other components. A data repository component
provides two services to its local or distant clients: the publication of a
resource and its retrieval.

3.2.4 Relation between XtremWeb/OmniRPC and YML

Just as presented above, XtremWeb is a middleware for Desktop Grid
environment and it is based PULL model. If the worker has CPU idle, it will take
the initiative to get tasks from coordinator and then send its result to coordinator
after finishing it. Its programming interface is based Java based API; OmniRPC is
a middleware for cluster and Grid environment and it is based on PUSH model.
Users will set the computational environment by themselves and agent will push
tasks to related workers according to users’ configuration. Its programming
interface is based GridRPC API; YML is a framework aiming at making users
program in cluster, Grid and Desktop Grid environments more simply. It is based
on workflow technology and suits for large scale scientific computing. Users can
program in pseudo-code mode based YvettML language and YML will parse the
pseudo-code program and generate “Task Table”. Then those tasks will be
allocated to YML workers. YML workers are interfaces to different middleware
which can be XtremWeb or OmniRPC or both. Their relations can be described
using Figure 3.5.

Experimental Tools and Platforms

 63

Figure 3.5 Relation between XtremWeb/OmniRPC and YML

Chapter 3

 64

A New Parallel Paradigm for Block Based Gauss Jordan Algorithm

 65

Chapter 4

A New Parallel Programming Adapted Version for
Block Based Gauss Jordan Algorithm

4.1 Motivation

Large scale matrix inversion has been widely used in many scientific research
domains. As a classical method of large matrix inversion, block-based
Gauss-Jordan (BbGJ) algorithm has aroused great concerns among many
researchers. Many people have developed parallel versions of BbGJ [122] [121]
[120] [123]. But large granularity based task parallelism (intra-steps data
dependence based tasks parallelism) disables mapping more tasks on computing
resources simultaneously. As a result, the performance of those parallel versions
degrades when running on the Grid platform consisting of a lot of heterogeneous
PCs and workstations. So this chapter will make further research on BbGJ and
analyze all the data dependences between operations. Then a series of executable
rules on when each operator can be executed are made. Finally a fine-grained task
based parallel adapted version of BbGJ algorithm in which both intra-steps and
inter-steps based data dependences are considered, is presented in this chapter.

Chapter 4

 66

4.2 Sequential algorithm of block based Gauss

Jordan

The sequential BbGJ algorithm is a classical linear algebra method to get a large
scale matrix inversion. The algorithm can be described as follows: Let A and B be
two dense matrices of dimension N, and let B be the inverse of A, i.e. AB=BA=I.
Let A and B be partitioned into a matrix of q×q blocks of dimension n which n =
N/q.

--
Sequential algorithm of BbGJ
 Input: A,B ←I (n, n), q
 Output: B=A-1

--

 For k=1 to q do
 Ak

k,k ← (Ak-1
k,k)-1 (1)

 Bk
k,k ← Ak

k,k (2)
 For j=k+1 to q do
 Ak

k,j ← Ak
k,k Ak-1

k,j (3)
 End For
 For j=1 to k-1 do
 Bk

k,j ← Ak
k,k Bk-1

k,j (4)
 End For
 For j=k+1 to q do
 For i=1 to q and i≠k do
 Ak

i,j ← Ak-1
i,j - Ak-1

i,k Ak
k,j (5)

 End For
 End For
 For j=1 to k-1 do
 For i=1 to q and i≠k do
 Bk

i,j ← Bk-1
i,j - Ak-1

i,k Bk
k,j (6)

 End For
 End For
 For i=1 to q and i≠k do
 Bk

i,k← - Ak-1
i,k Ak

k,k (7)
 End For

End For

A New Parallel Paradigm for Block Based Gauss Jordan Algorithm

 67

4.3 Parallelism in the algorithm

Through the sequential BbGJ algorithm, we can find that each iterative step of
algorithm is made up of five loops (the third, fourth, fifth, sixth and seventh
operation marked in sequential BbGJ algorithm) and two other operations (the
first and second ones in sequential BbGJ algorithm). In the iterative step k (k =
1,…,q), the first operation is used to get the inverse of pivot block Ak-1

k,k ; the
second operation will assign the sub-block of matrix A to corresponding
sub-block of matrix B; the third operation computes the blocks of the row k of
matrix A with subscripted variables j above k while the fourth operation acts on
the row k of matrix B with subscripted variables j below k; the fifth operation
calculates the blocks of all columns of the matrix A with subscripted variables i
above and below k and subscripted variables j above k; while the sixth operation
calculates the blocks of all columns of the matrix B with subscripted variables i
above and below k and subscripted variables j below k. At last the seventh
operation is used to compute the blocks of the column number k of matrix B
except Bk,k. Refer to Figure 4.1.

Figure 4.1. Operations in the 3rd iterative step with q is 5

So, the parallelization of the sequential BbGJ algorithm consists of exploiting two
kinds of parallelism: the inter-steps based parallelism and the intra-step based
parallelism. The intra-step parallelism aims at exploiting the parallelism involved
in each of the five loops (operation ‘3’ to operation ‘7’ in sequential BbGJ
algorithm). It falls into two categories: the inter-loops parallelism and the
intra-loop parallelism. See Figure.4.2.

Chapter 4

 68

Figure 4.2. Parallelism in the block-based Gauss-Jordan algorithm

Next, we will analyze those parallel relationships one by one.

4.3.1 Intra-step based parallelism

4.3.1.1 The Inter-loops based parallelism

The inter-loops parallelism refers to operations between loops. There are
dependable relationships which determine when those operations between loops
can be executed. In the sequential BbGJ algorithm, we identify three ones: 1) the
second, third, fourth and seventh operation (see the number marked in sequential
BbGJ algorithm) can’t be executed before knowing the value of block Ak

k,k; 2) the
loop of the fifth operation depends on the third one because its input (the block
Ak

k,j) is the output of the third operation; 3) the sixth operation is dependent on
the fourth operation because its input (the block Bk

k,j) is the output of the fourth
operation.

4.3.1.2 The Intra-loop based parallelism

The intra-loop parallelism consists of executing each of the five loops (operations
‘3’, ‘4’, ‘5’, ‘6’ and ‘7’) of the algorithm in parallel. They all belong to SPMD
(single program multi data) paradigm. The work units for these loops are of two
kinds: matrix product and matrix triadic respectively X×Y and Z-X×Y, where X,
Y and Z are sub-matrix blocks. Moreover, to get higher performance in a certain
platform, the granularity of tasks is very important. Here we can balance the
computing time and communication time through choosing appropriate block-size
of sub-matrix. The experiment part of this chapter will show us the influence on

A New Parallel Paradigm for Block Based Gauss Jordan Algorithm

 69

the efficiency of algorithm caused by changing the block-size and block-count of
matrix.

4.3.2 Inter-steps based parallelism

Next, we will take the data-dependence between step k and step k+1 as example
to show the inter-step parallelism in the BbGJ algorithm. Getting the value Ak,j
(k=1…q; j=k+1…q) (respectively Bk,j in which k=1…q; j=1…k-1) of k+1 step in
the third operation (respectively the fourth) needs get the value of block Ak,j (k
=1…q; j=k+1…q) (respectively Bk,j in which k=1…q; j=1…k-1) of k step. As to
the fifth operation, we must know that block Ai,j (i=1…q and i≠k; j=k+1…q) and
Ai,k (i=1…q and i≠k; k=1…q) of k step before we compute the value Ai,j (i
=1…q and i≠k; j= k+1…q) of k+1 step. The situation in the sixth operation is
just like that in the fifth, we can compute the value Bi,j (i=1,…,q and i≠k;
j=1…k-1) of step k+1 after we getting the value Bi,j (i =1…q and i≠k; j=1…k -1)
and Ai,k (i =1…q and i≠k; k=1…q) of step k. As to the operation ‘7’, to get the
value Bi,k (i=1…q and i≠q; k=1…q) of k+1 step, we must know the value Ai,k
(i=1…q and i≠q; k=1…q) of step k.

4.4 Description of data dependence

We have analyzed all the possible data dependence in the BbGJ algorithm, but it
is hard to understand and find the regularity. So in this part an intuitive method
(using tables) is presented to express data dependence.

4.4.1 Description of Intra-step based data dependence

Then we can describe the data dependence in sequential BbGJ algorithm using
Figure 4.3 and Figure 4.4.

Chapter 4

 70

Figure 4.3. Block based operation at the 2ed iterative step with q is 5

Figure 4.4. Block based operation at the 3rd iterative step with q is 5

In those figures the italic font (in blue) represents the read operation (a value will
be read from the block as data output) and black font with underline donates the
write operation (a value will be written into the block as data input). For example,
the italic font ‘5’ in the first row, second column of matrix A in Figure 4.3

A New Parallel Paradigm for Block Based Gauss Jordan Algorithm

 71

represents that: to this block, the first operation is ‘5’ (see the number marked in
sequential BbGJ algorithm) which is a read operation, i.e. operation ‘5’ will read
the data from this block as its input. The same way we can know that the black
font with underline ‘1’ in the second row, second column of matrix A in Figure
4.3 represents that: the operation ‘1’ will assign a new value to this block. Next
we will take the block in the second row, first column of matrix B in Figure 4.3 as
example to show all the related operations executed in this block. From the Figure
4.3, we can know three operations executed in this block, of which italic fonts ‘4’
and ‘6’ are read operations and black font with underline ‘4’ is write operation. To
this block, operations will be executed from up to down, i.e. the read operation ‘4’
will read from this block as its data input at first, then write operation ‘4’ assigns a
new value to this block as its data output. Finally, read operation ‘6’ will read the
value of this block as its data input. After that, no more operations are made on
this block in this iterative step. Figure 4.3 shows us all the operations happened at
the second iterative step with q is 5 in the BbGJ algorithm. We can also get all the
operations information at the third iterative step with q is 5 from the Figure.4.4.
Through the analysis, we can summarize the intra-step based data dependence
using Figure4.5.

Figure 4.5. Intra-step based data dependence

4.4.2 Description of inter-steps based data dependence

We have presented the intra-step data dependence through the Figure.4.3 and
Figure.4.4. Now we will analyze the inter-steps based data dependence. To do that,
we define “directed arc” as follows: a directed arc from block “X” to block “Y”
(X, Y are blocks of matrix) signifies that the operation on block “Y” can’t be
executed before the operation on block “X” finishes. See directed arc in
Figure.4.6.

Chapter 4

 72

Figure 4.6. Inter-steps based data dependence

There are two operations in ‘loop 1’, which are ‘2.5’ and ‘3.1’. ‘2.5’ represents the
fifth operation in second iterative step of BbGJ, while ‘3.1’ stands for the first
operation in the third iterative step of BbGJ. ‘Loop 1’ in the Figure.4.6 shows us
data dependence between operation ‘1’ at second iterative step and operation ‘5’
at the third iterative step. And it means the operation ‘5’ at third iterative step
can’t be executed until the finishes of operation ‘1’ at second iterative step. In the
same way, we can analyze the data dependence represented by ‘loop n’ (n is 1, 3,
4, 5, 6, 7). Figure.4.6 shows us all the inter-steps based data dependence existing
between step 2 and step 3 with q is 5.

A New Parallel Paradigm for Block Based Gauss Jordan Algorithm

 73

4.4.3 Description of all the data dependences

From the Figure.4.5, we can know all the intra-step based data dependence and
Figure.4.6 show us all the inter-steps based data dependence. Then we can
summarize all the data dependence existing in BbGJ algorithm using the
Figure.4.7.

Figure 4.7. All the data dependences in the Algorithm

4.5 Formal description of data dependence

From Figure 4.3 and Figure 4.4, we can find that each iterative step of the
algorithm has the same number of write operations and the number is q. To the
matrix A ,the write operation on it are operations ‘1’, ‘3’ and ‘5’, while operations
‘4’, ‘6’ and ‘7’ act on matrix B. It is the similarities existing in write and read

Chapter 4

 74

operation on matrix A and matrix B that we can take matrix A and matrix B
together into account as an augmented matrix. The method/idea of formal
description can be refered to [122].

Definition 1:

Let

AB(i,j) = A(i,j) i=1…q; j=1…q
AB(i,j+q) = B(i,j) i=1…q; j=1…q

ABk
i,j represents the block ABi,j at step k for k = 1,…, q. In the BbGJ algorithm,

one block (ABk
i,j) is modified once and only once per iterative step. Let’s use a

three-tuple (k,i,j) to represent ABk
i,j . Then we can use the three-tuple (k,i,j)

{k,i=1,...,q and j=k+1,...,k+q} to mark the status of sub-matrix’s operations
(operation ‘1’ to ‘7’ in sequential BbGJ algorithm), i.e. the three-tuple (k,i,j)
means that at the iterative step k, the operation will be made on the row i and
column j of the augmented matrix ABi,j.

For a fixed step, a set of three-tuples can be utilized to represent the status of
operations on augmented matrix AB. Consequently we can use those three-tuples
as global signals to control all the operations decided by data dependence in the
algorithm.

Definition 2:

Let the binary relation be defined as follows: X ≯ Y: (X, Y is the block of
matrix) if and only if there is an edge from X to Y in the Figure 4.7. The data
dependence can thus be represented by the three-tuple presented in definition 1.
For all the data dependence existing in Figure 4.7, we have:

Intra-step based data dependence can be written as follows:

 (k, k, k)≯(k, k, j) k=1… q; j=k+1… q
 (k, k, k)≯(k, k, j+q) k=1… q; j=1…k-1
 (k, k, j)≯(k, i, j) k=1…q ; j=k+1…q ; i=1…q and i≠k
 (k, k, j+q)≯(k, i, j+q) k=1… q; j=1…k-1 ; i=1…q and i≠k
 (k, k, k)≯(k, i, k+q) k=1…q; i=1…q and i≠k

Inter-steps based data dependence can be summarized as follows:

 (k-1, k, k)≯(k, k, k) k=2… q
 (k-1, k, j)≯(k, k, j) k=2…q; j= k+1…q

A New Parallel Paradigm for Block Based Gauss Jordan Algorithm

 75

 (k-1, k, j+q)≯(k, k, j+q) k=2… q; j=1…k-1
 (k-1, i, k)≯(k, i, j) k=2…q; j=k+1…q; i=1…q and i≠k
 (k-1, i, j)≯(k,i, j) k=2…q; j= k+1… q; i=1…q and i≠k
 (k-1, i, j+q)≯(k, i, j+q) k=2…q; j=1… k-1; i=1… q and i≠k
 (k-1, i, k)≯(k, i, j+q) k=2… q; j=1…k-1; i=1… q and i≠k
 (k-1, i, k)≯(k, i, k+q) k=2…q; i=1…q and i≠k

Now we will summarize binary relation obtained above according to operation
marked in sequential algorithm of BbGJ and make the executable rules for each
operation as follows:

 (k, k, k)≯(k, k, j) k=1… q; j=k+1…q
Ak

k,k ← (Ak-1
k,k)-1 Bk

k,k ← Ak
k,k

 (k, k, k)≯(k, k, j) and (k-1, k, j)≯(k, k, j) k=2…q; j=k+1… q
 Ak

k,j ← Ak
k,k Ak-1

k,j

 (k, k, k)≯(k, k, j+q) and (k-1, k, j+q)≯(k, k, j+q) k=2… q; j=1… k-1
 Bk

k,j ← Ak
k,k Bk-1

k,j

 (k, k, j)≯(k, i, j) and (k-1, i, k)≯(k, i, j) and (k-1, i, j)≯(k,i, j) k=2…q;

j=k+1…q; i=1…q and i≠k
 Ak

i,j ← Ak-1
i,j - Ak-1

i,k Ak
k,j

 (k, k, j+q)≯(k, i, j+q) and (k-1, i, j+q)≯(k, i, j+q) and (k-1, i, k)≯(k, i, j+q)

k=2…q; j=1…k-1; i=1…q and i≠k
 Bk

i,j ← Bk-1
i,j - Ak-1

i,k Bk
k,j

 (k, k, k)≯(k, i, k+q) and (k-1, i, k)≯(k, i, k+q) k=2…q; i=1…q and i≠k
 Bk

i,k← - Ak-1
i,k Ak

k,k

4.6 A new parallel programming adapted version of

BbGJ

There is no simple recipe for designing parallel algorithms. However, it can
benefit from a methodological approach that maximizes the range of options, that

Chapter 4

 76

provides mechanisms for evaluating alternatives, and that reduces the cost of
backtracking from wrong choices [124]. The design methodology allows the
programmer to focus on machine independent issues such as concurrency in the
early stage of design process, and machine-specific aspects of design are delayed
until late in the design process. As suggested by Ian Foster [125], this
methodology organizes the design process into four distinct stages which are:
partitioning, communication, agglomeration and mapping. Next we will design
the parallel paradigm of Gauss-Jordan algorithm according to those four steps
presented above.

Because large scale matrix inversion is hard to be executed directly, so
partitioning is the first thing to do. In this chapter, large scale Matrix A has been
partitioned into q*q blocks. After partitioning, the objects of all the operations in
the algorithm focus on sub-matrices, which make a more complex problem to be
decomposed into some easy-to-solve sub-problems. No communication between
different small sub-problems exists during the process of program execution. The
communication is just between matrix A and its sub-matrix. The operation on
sub-matrix can read from (or write back to) the corresponding block of Matrix A.
We can design this stage of paradigm according to parallel divide and conquer
model in which the sub-problems can be solved at the same time, giving sufficient
parallelism.

Analysis in the Section 4.2 tells us that inter-steps and intra-step parallelism exist
in this algorithm and these parallelisms rest on the data dependence. In this
algorithm, data dependence on different blocks determines the sequence of
different operations on a sub-matrix. As to inter-step data dependence in Matrix A,
there are (n-1)*(n-k) blocks (k is the number of steps) which have the same
write-operation (operation ‘5’). They have the same operation and sequence of
that and there is no communication between them. This means that the sub-tasks
of the algorithm are independent and each processor can execute one part of them.
So this kind of operations can use single program multi-data paradigm model to
deal with. As to Figure 4.6, the operation represented by “loop 1” shows us that
before the execution of operation ‘1’ in step 3 begins, the operation ‘5’ in step 2
must finish. This kind of parallelism we can use data pipelining paradigm to deal
with them.

All the write-operations of the algorithm are based on sub-matrix and the results
will be returned to the Matrix A. So when all the operations on sub-matrix are end,
agglomeration is finished. Hybrid parallel paradigm can generate sub-tasks as
many as possible, so you can use any kind of schedule stratagem to map the
sub-tasks to computing resources.

Next, a Flow-chart of hybrid parallel paradigm can be seen in Figure 4.8.

A New Parallel Paradigm for Block Based Gauss Jordan Algorithm

 77

Figure 4.8. Flowchart of new parallel paradigm of BbGJ

Left part is the flowcharts of the paradigm execution and the right part is the corresponding
data block operation. Q steps needed to execute in the paradigm and the execution between
step ‘k’ and step ‘k+1’ is described. In the right parts, ‘many arrows’ represents these data can
be executed simultaneously.

According to formal description, a set of three-touples as the global signals are
used to control the execution of algorithm. Through the Figure 4.8, we can know
the flowchart of algorithm execution. Then the hybrid parallel paradigm of BbGJ
can be presented as follows: (the signal // is meaningless in the algorithm. We just

Chapter 4

 78

want to use this signal to divide the whole program into several sub-program
sections. And those subprogram sections can be executed in parallel on the basis
of their conditions are met.)

--

New Parallel Paradigm of BbGJ
Input: A,B ←I (n,n), q

 the logical value of (0,1,1) is set to be true;

for(i=1;i<=q;i++) the logical value of (0,1,i) is set to be true;
for(i=1;i<=q;i++) the logical value of (0,i,1) is set to be true;
for(i=1;i<=q;i++)

for(j=1;j<=q;j++)
the logical value of (0,i,j) is set to be true;

Output: B=A-1

--

if the logical value of (k, k, k) is true
then Ak

k,k ← (Ak-1
k,k)-1

the logical value of (k, k, j) is set to be true;
end if

//
if the logical value of both (k, k, k) and (k-1,k,j) are true

then Ak
k,j ← Ak

k,k Ak-1
k,j (k=2,...,q; j=k+1,...,q)

the logical value of (k, k, j) is set to be true;
end if

//
if the logical value of both (k, k, k) and (k-1,k,j+q) are true

then Bk
k,j ← Ak

k,k Bk-1
k,j (k=2,...,q; j=1,...,k-1);

the logical value of (k, k, j+q) is set to be true;
end if

//
if the logical value of (k, k, j) and (k-1,i,k) and (k-1,i,j) all are true

then Ak
i,j ← Ak-1

i,j - Ak-1
i,k Ak

k,j (k=2,...,q; j=k+1,...,q; i=1,...,q and i≠k)

the logical value of (k, i, j) is set to be true;
end if

//
if the logical values of (k, k, j+q) and (k-1,i,j+q) and (k-1,i,k) all are true

then Bk
i,j ← Bk-1

i,j - Ak-1
i,k Bk

k,j (k=2,...,q; j=1,...,k-1; i=1,...,q and i≠k)

the logical value of (k, i, j+q) is set to be true.
end if

//
if the logical value of both (k, k, k) and (k-1,i,k) are true

then Bk
i,k← - Ak-1

i,k Ak
k,k (k=2,...,q; i=1,...,q and i≠k)

the logical value of (k, i, k+q) is set to be true.
end if

A New Parallel Paradigm for Block Based Gauss Jordan Algorithm

 79

4.6.1 Comparison of different parallel versions of BbGJ

In order to state conveniently we call our new parallel paradigm of BbGJ as
“Max-par BbGJ” for its achieving maximum-degree parallelism in the BbGJ
algorithm and Melab’s and Aouad’s version of BbGJ [121] [120] [127] [123] [126]
as “Par-par BbGJ” for its just considering partial degree parallelism in the BbGJ
algorithm.

1. Max-Par BbGJ is a new parallel programming adapted version for block based
gauss Jordan algorithm and it can adapt to any kinds of programming interface
very easily. For example, it can suit for MPI, RPC based interface, high level
programming interface and workflow based programming interface. Two kinds of
programming methods which adapt to RPC based interface and workflow based
interface are adopted in this dissertation. This is the key point in which Max-par
BbGJ is different from algorithm in [122] [121] [120]. [122] suits for MIMD
based supercomputer architecture and [121][120] suits for MARS which is a kind
of network of workstations.

2. Max-Par BbGJ achieves the maximum-degree parallelism of each operator in
the BbGJ algorithm. Just described in section 4.2, two kinds of parallelisms which
are inter-steps based parallelism and intra-step based parallelism are considered.
To algorithm in [121] [120] [127] [123] [126], they just take intra-step based
parallelism into consideration.

Intra-step based parallelism means the operations in next iterative step can’t be
executed before any operation in this iterative step finishes, i.e. if the “operation
5” finishes, but “operation 1” in next iterative step must wait for “operation 7” and
“operation 6” until they both finish (see Figure 4.5). But to Max-par BbGJ
algorithm, “operation 1” in next iterative step can be executed immediately once
the “operation 5” finishes (see Figure 4.7). So less wait/synchronization time is
needed in Max-par BbGJ algorithm. As a result, the greatest degree of parallelism
on tasks is achieved in Max-par BbGJ algorithm.

4.6.2 Theoretical analysis on BbGJ

In Max-par BbGJ, matrix A is partitioned into a matrix of q*q blocks of
dimension n and n=N/q. There are q+1 operations in each iterative step and n*n
elements in each sub-matrix. The nature of the Gauss Jordan algorithm makes that
even if the initial matrix to be inverted is sparse and it becomes dense matrix after
no more than one step [120]. Each sub-matrix has n2 elements and its storage
space should be n2*64 bits. The tasks in BbGJ is based on 2 or 3 or 4 sub-matrix,
so data migration from one task to another is 2n2 or 3n2 or 4n2 (64 bits).

Chapter 4

 80

Next we will analyze the number of “operation l” (l =1, 2, 3, 4, 5, 6, 7 see the
detail numbers in sequential algorithm of BbGJ) in the k iterative step (k=1, … , q)
during the process of algorithm execution.

 The number of “operation 1” is 1.
 The number of “operation 2” is 1.
 The number of “operation 3” is q-k.
 The number of “operation 4” is k-1.
 The number of “operation 5” is (q-k)*(q-1).
 The number of “operation 6” is (k-1)*(q-1).
 The number of “operation 7” is q-1.

According to Figure 4.8, there are data dependence between “operation 3” and
“operation 5”. So under the condition of ensuring full concurrency of “operation
3” and “operation 5”, the number of computing peers needed is Max {(q-k);
(q-1)*(q-k)} = (q-1)*(q-k). In the same way we can get the number of computing
peers needed for other operations. The number of computing peers needed can be
summarized as follows:

 To “operation 1” and “operation 2”, the number of computing peers
needed is 1.

 To “operation 3” and “operation 5”, the number of computing peers
needed is Max {(q-k); (q-1)*(q-k)} = (q-1)*(q-k).

 To “operation 4” and “operation 6”, the number of computing peers
needed is Max {(k-1); (k-1)*(q-1)} = (k-1)*(q-1).

 To “operation 7”, the number of computing peers needed is (q-1).

According to the analysis above, we can get N_cp (the minimum number of
computing peers) and V_dm (total volume of data migration during the process of
algorithm execution; here, V_dm is got without the help of optimal technology on
data migration).

N_cp = Max {(q-k); (q-1)*(q-k)} + Max {(k-1); (k-1)*(q-1)} + (q-1)
 = (q-1)*(q-k) + (k-1)*(q-1) + (q-1)
 = (q-1)*(q-k+k-1+1)
 =q*(q-1)

V_dm= q*2n2 + q*(q-k)*3n2 + q*(k-1)*3n2 + q*(q-1)*(q-k)*4n2 +

q*(k-1)*(q-1)*4n2 + q*(q-1)* 3n2
 = n2 * (2q + (q-k) (3q+4q*(q-1)) + (k-1) (3q + 4q*(q-1)) +3*q*(q-1))
 = n2 * (2q + q*(q-k) (3+4(q-1)) + q*(k-1) (3 + 4*(q-1)) +3*q*(q-1))
 = n2 * q (2 + 3*(q-k) + 3*(k-1) + 4*(q-1)*(q-k) + 4*(k-1)*(q-1) + 3*(q-1))
 = n2 * q (4*(q-1)2 + 6*(q-1) + 2)
 = 2*n2 *q (2*(q-1)2+ 3*(q-1) + 1)
 = 4*q2*(q-1)* n2 (64 bits)

A New Parallel Paradigm for Block Based Gauss Jordan Algorithm

 81

4.7 Evaluation of Max-par BbGJ

This section will evaluate the performance of Max-par BbGJ and we will compare
Max-par BbGJ with Par-par BbGJ [121] [127] [126].The experimental
environments can be described as follows:

Table 4.1. Parts of resources in Grid’5000 platform.

Site Nodes CPU/Memory
Nancy 120 2 × Inter xeon , 1.6GHz/2GB
Nancy 47 2 × AMD opteron, 2GHz/2GB
Lyon 70 2 × AMD opteron, 2.4GHz/2GB

Bordeaux 93 2 × AMD opteron, 2.6GHz/2GB
Orsay 216 2 × AMD opteron, 2.0GHz/2GB

Rennes 99 2 × AMD opteron, 2.0GHz/2GB

4.7.1 Block-size fixed and block-count changed

Experiment motivation: test the performance of Max-par BbGJ with block-size
fixed and block-count changed. Experiment environments: 100 nodes used of
cluster bordereau in Bordeaux site, France. Experiment data: the block-size of
matrix is fixed as 500*500 and 1500*1500. We change the block-count as follows:
2*2, 3*3, 4*4, 5*5, 6*6, 7*7 and 8*8.

This experiment is based on the situation that there are enough computing
resources to be used. This is to say, all the tasks can be executed immediately
when its executable condition is met. 100 nodes are enough for the situation of
block-count is 8*8 and the reason is that 8*(8-1) < 100. The Figure 4.9 and Figure
4.10 show us the relationship between the elapsed time and the different
block-counts of sub-matrix. We can conclude that the elapsed time of Max-par
BbGJ is shorter than that of Par-par BbGJ whether the block-size of sub-matrix is
fixed on 500*500 or 1500*1500. We also can know that with the increase of
block-count, the better performance can be obtained using Max-par BbGJ than
that using Par-par BbGJ. The reason is that with the increase block-count of
matrix, the number of iterative steps augments. More wait time is needed to
synchronize at the end of each iterative step in the Par-par BbGJ, while no wait
time is needed in Max-par BbGJ Algorithm. From those figures, we also know
that with the increase of block-size, the better performance can be achieved for

Chapter 4

 82

Max-par BbGJ. We can explain that with the increase of block-size, the
computing time of processing those sub-matrix becomes longer and more time is
needed to wait for synchronize at the end of each iterative step.

Figure 4.9. Elapsed time with block-count changed and block-size fixed as 500*500

Figure 4.10. Elapsed time with block-count changed and block-size fixed as 1500*1500

A New Parallel Paradigm for Block Based Gauss Jordan Algorithm

 83

4.7.2 Block-count fixed and block-size changed

Experiment motivation: test the performance of Max-par BbGJ with block-size
changed and block-count fixed. Experiment environments: 100 nodes used of
cluster of grelon in Nancy site, France. Experiment data: the block-count of
matrix is fixed on 6*6. We change the block-size of sub-matrix from 250*250,
500*500, 1000*1000, 1250*1250 and 1500*1500.

Figure 4.11. Elapsed time with block-size changed and block-count fixed as 6*6

This experiment is based on the situation that there are enough computing
resources to be used. This is to say, all the tasks can be executed immediately
when its condition is met. 100 nodes are enough for the situation of block-count is
8*8 and the reason is that 8*(8-1) < 100. From the Figure 4.11, we can find when
the block-size is not large, the elapsed time of Max-par BbGJ is almost the same
with that of Par-par BbGJ. The reason is that when the block-size is small,
communication time plays an important role in the overall consumed time. Less
time for synchronization is needed and the advantage of Max- par BbGJ algorithm
is not obvious. But when the block-size is more than 500*500, the performance of
Max-par BbGJ is better than Par-par BbGJ and with the increase of block-size, the
advantage of Max-par BbGJ becomes more obvious. The reason is that, less wait

Chapter 4

 84

time is needed in Max-par BbGJ algorithm comparing to that in Par-par BbGJ
algorithm. (refer to analysis in the second point of section 4.6.1)

4.7.3 Block-count changed and block-size changed

Experiment motivation: test the performance of Max-par BbGJ with block-size
changed and block-count changed. Experiment environments: 100 nodes used of
cluster of grelon in Nancy site, France. Experiment data: change the block-count
of sub-matrix from 2*2, 3*3, 4*4, 5*5, 6*6, 7*7 and 8*8 and change the
block-size of sub-matrix from 500*500, 1000*1000 and 1500*1500.

Figure 4.12. Time difference between two algorithms with block-size changed and block-count changed

This experiment is based on the situation that there are enough computing
resources to be used. This is to say, all the tasks can be executed immediately
when its condition is met. 100 nodes are enough for the situation of block-count is
8*8 and the reason is that 8*(8-1) < 100. The Figure 4.12 shows us the general
trends of time difference with changing block-size and block-count of sub-matrix.
With the same block-size, the time difference becomes larger with increasing

A New Parallel Paradigm for Block Based Gauss Jordan Algorithm

 85

block-count of sub-matrix. The reason is analyzed through Figure 4.11. Another
trend is that the time difference also becomes larger with the increase of
block-size of sub-matrix. The reason is that the larger dimension of sub-matrix
will cost more computing time. As a result, more wait time is needed to
synchronize in Par-par BbGJ. Through the Figure 4.12 we can know the gap
becomes larger with the increase of block-count and block-size. What we want to
emphasize here is when the dimension of matrix is very large (whether through
adding block-count or enlarging block-size of sub-matrix), the advantage of
Max-par BbGJ becomes more obvious.

4.7.4 Situation of no enough computing resources

Experiment motivation: test the performance of Max-par BbGJ under the situation
of no enough computing resources. Experiment environments: 20 nodes used of
cluster of grelon in Nancy site, France. Experiment data: change the block-count
of sub-matrix as follows: 2*2, 3*3, 4*4, 5*5, 6*6, 7*7 and 8*8 and block-size of
sub-matrix is fixed on 500*500.

Figure 4.13. Situation of no enough computing resources

Chapter 4

 86

This experiment is based on the situation that there are not enough computing
resources available to be used. This is to say, not all the tasks can be executed
immediately when its condition is met. 20 nodes are enough for the situation of
block-count is below 6*6 and the reason is that 6*(6-1) > 20 and 5*(5-1) ≤ 20.

The Figure 4.9 shows us the Max-par BbGJ has better performance that Par-par
BbGJ under the condition of that there are enough computing resources can be
used. The Figure 4.13 demonstrates the comparison between Max-par BbGJ and
Par-par BbGJ under the situation of no enough computing resources. When there
are not enough computing resources, the advantage of Mar-par BbGJ which is
achieving maximum parallelism between tasks, can’t be made full use of. Thus
the performance of Max-par BbGJ is almost the same with that of Par-par BbGJ.

4.7.5 Performance in Grid environment

Experiment motivation: test the performance of Max-par BbGJ algorithm in the
grid environment. Experiment environments: 100 nodes used. Grelon cluster,
Nancy site; Paravent cluster and Paraquad cluster in Rennes site; Sagittaire cluster
in Lyon site; Bordereau cluster in Bordeaux site. 20 nodes cores are used in each
cluster. Experiment data: the block-size of matrix is fixed on 1500*1500 and we
change block-count as follows: 2*2, 3*3, 4*4, 5*5, 6*6, 7*7 and 8*8.

Figure 4.14. Performance comparison between cluster and Grid environment

A New Parallel Paradigm for Block Based Gauss Jordan Algorithm

 87

From the Figure4.14, we can know clearly that the same conclusion can be made
in the Grid environment, and the reason is the same. But the elapsed time is longer
on Grid than that on cluster, which is determined by the character of Grid
environments (lower speed network than cluster, more complex schedule
stratagem than cluster). An interesting case is that computation time of Par-par
BbGJ based on cluster is longer than that of Max-par BbGJ on Grid. Two reasons
can explain that. On one hand, the performance of Max-par BbGJ is far better than
that of Par-par BbGJ. On the other hand, it is that high speed network between
sites in Grid’5000 platform makes Max-par BbGJ algorithm have better
performance.

4.8 Conclusion

This Chapter makes further research on parallelism of BbGJ based on former
researches. The key point of our research is that we analyze all the possible
parallelisms in BbGJ and based on those available parallelisms, a new parallel
programming adapted version of BbGJ which can adapt to any programming
interface very easily and make full use of computing resources, is proposed in this
chapter.

The detail of how to realize that can be described as follows: the chapter takes all
the parallelisms which are intra-iterative step based parallelism and inter-iteratives
step based parallelism, into consideration. Analysis has been made on data
dependence between operations. Based on works done above, we propose a
three-tuple to describe those data dependences. According to those three-tuples, a
series of executable rules for each operation in BbGJ are made. Finally, we
present a parallel paradigm according to rules made above and design model of
parallel programming. The advantage of our parallel paradigm is that it can make
operations in BbGJ can be concurrent fully and thus improve the efficiency of
parallel BbGJ. The parts of experiment testify our viewpoint.

Block based Gauss Jordan algorithm are widely used in large scale scientific
computing and it will be used as an example to test our experiment environment
in the following chapter of this dissertation.

Chapter 4

 88

Large Scale Scientific Computing on Grid and Desktop Grid Environment

 89

Chapter 5

Large scale scientific computing on Grid and
Desktop Grid environments
—— with block based Gauss Jordan as an example

5.1 Motivation

This chapter is to make further research on large scale scientific computing on
Grid and Desktop Grid environments. The related issues include programming
method, overhead of middleware, data anticipate migration, the influence from
parallel granularity of tasks on different experiment environments and schedule
mechanism. Block based Gauss Jordan algorithm as a real example of large scale
scientific computing, is used to evaluate those issues presented above. Three
middlewares which are OmniRPC for Grids, XtremWeb for Desktop Grids and
YML a workflow based high level programming framework, are adopted.

Chapter 5

 90

5.2 Programming model

As well known to us all, programming method is a key issue of scientific
computing. In fact, early supercomputer has its owner programming interface and
it is hard to transplant developed code to other supercomputers. The emergence of
MPI library has changed the programming method of high performance systems.
It is MPI that makes code migration be possible. Then with the development of
programming language, RPC based programming interface are popular for
making large scale scientific computing. The section will present three kinds of
programming interfaces and compare with them.

5.2.1 Programming with YML

YML has a simple and high level interface. The development of an YML
application is based on components approach and three kinds of components are
needed to develop when running an application program based on YML. The
three components are “Graph component”, “abstract component” and “implement
component”. “Abstract component” defines the communication interface with the
other components. This definition gives the name and the communication
channels with other components. Each channel corresponds to a kind of data
operation type which can be data input, data output or both. “Implementation
component” is the implementation of an “abstract component”. The
“implementation component” is developed using common languages like C or
C++ or Java. Those two parts of works can be done by computer engineers in
advance or invoke public-domain libraries such as ScaLAPACK, LAPACK and
BLAS3. Once those components are registered in YML, they can be reused at any
time. Graph component carries a graph expressed in YvetteML and it provides the
parallel and sequential parts of an application and the synchronization events
between dependent components. It is pseudo code based program interface for end
users and it is very easy way for scientific researchers to develop their application.

To understand the description above, we will use block based Gauss Jordan
algorithm as a real example to explain it. There are seven operations in BbGJ
algorithm. To adapt BbGJ algorithm to YML, three kinds of components for the
seven operations are needed to develop and those operations can be divided into
four kinds:

 inversion: to inverse one matrix block. (Operation 1)
 prodMat: to compute the two blocks product.(operation 3; operation 4)
 mProdMat: to compute the negative of two blocks product (operation 7)

Large Scale Scientific Computing on Grid and Desktop Grid Environment

 91

 ProdDiff: to compute the difference between one block and a block matrix
product (operation5; operation6).

We will take the “matrix multiplication” (operation 3 and operation 4 in
sequential BbGJ algorithm) as an example to show that.

As just described, abstract component is just to define the communication
channels with other components and in this program, suiting for YML can be
written as follow:

<?xml version="1.0" ?>
 <component type="abstract" name="prodMat" description="Compute the product of two matrix"
>
 <params>
 <param name="matrixBkk" type="Matrix" mode="in" />
 <param name="matrixAki" type="Matrix" mode="inout" />
 <param name="blocksize" type="integer" mode="in" />
 </params>
 </component>

From the example, we can know more details in how to develop abstract
component. The operation of “matrix multiplication” has three parameters which
are “matrixBkk”, “matrixAki” and “blocksize”. The parameter modes of
“matrixBkk” and “blocksize” are input. The mode of parameter “matrixAki” is
input and output. The type of parameters is also needed to mark and it should be
supported by YML. In summary, abstract component is just to tell YML the
properties of operation and doesn’t show how to execute the operation in detail.

As to how to execute the operation, it can be dealt with by “implementation
component”. There is an “implementation component” which is one-to-one
correspondence with “abstract component”. An “implementation component” can
be developed using C, C++ or java. An example of “matrix multiplication”
developed using C can be written as follows:

<?xml version="1.0"?>
<component type="impl" name="prodMat" description="Implementation component of prodMat"
 abstract="prodMat">
 <impl lang="CXX">
 <header> </header>
 <source>
 <![CDATA[
 The detail program developed using special programming language such as C, C++ or
Java
]]>
 </source>
 <footer >
 </impl>
</component>

Chapter 5

 92

In the framework of “implementation component”, we should point out its type
and name. Here what we should stress is the parameter of “abstract” and it must
be the name of the parameter of “name” in “abstract component”. You should
point out what language you will choose to develop the component in the
parameter of “lang”. Then, you can develop the detail program using the language
you chose. Here is an example about matrix multiplication developed using c.

int i,j,k;
double ** tempMat;
tempMat = (double **)malloc(blocksize * sizeof (double *));
 for (i = 0 ;i < blocksize ; i++)
 { tempMat[i] = (double *)malloc(blocksize *sizeof (double));
 for (j = 0 ;j < blocksize ; j++)
 tempMat[i][j] = 0.0; }
 for(k = 0 ; k< blocksize ; k++)
 for (i = 0 ;i <blocksize ; i++)
 for (j = 0 ;j <blocksize ; j++)
 tempMat[i][j] = tempMat[i][j] + matrixBkk.data[i][k] * matrixAki.data[k][j];
 for (i = 0 ;i < blocksize ; i++)
 for (j = 0 ;j < blocksize ; j++)
 matrixAki.data[i][j] = tempMat[i][j];
for (i = blocksize-1 ; i>=0 ; i--)
 free(tempMat[i]);
 free(tempMat);

So far, we have developed “abstract component” and “implementation
component”. But we want to stress two points:
1. The developed components can be reused very easily. It can be used not only

in block based Gauss Jordan algorithm, but also in other algorithm which
includes matrix multiplication. This is to say, the developed components have
nothing to do with application program.

2. If you are not good at programming, you can let programmer help to develop
those components. Or you also can invoke the related functions from public/
third party libraries.

We have developed the “abstract component” and “implementation component”.
Those two components are just for “operation 3” and “operation 4” of BbGJ
algorithm. Other three kinds of components in BbGJ can be developed in the same
way. The next thing to consider is the executable way of those operations. This is
to say, those operations should be executed in parallel or in sequence and if in
parallel, how and when to execute each operation is what we must consider.

The “Graph component” is the interface for users to control how to execute the
application program. The interface is based on YvettML language which is a
XML based description language. It can control when to execute the “operations”
in BbGJ algorithm through “wait” and “notify” events. YML tells computer how
to execute the “operations” in BbGJ algorithm through its series of control

Large Scale Scientific Computing on Grid and Desktop Grid Environment

 93

structures such as “structure parallel”, “structure sequence”, “condition” and
“structure loop”. An example of “matrix multiplication” developed using
YvettML can be written as follows:

<?xml version="1.0"?>
<application name="gauss_jordan">
<graph>
par
 par(k:=1; blockcount-1) (j:=0; blockcount-1)
 do
 if (k gt j) then
 wait(flag[k][k][k] and flag[k-1][k][j+blockcount]);
 compute prodMat(A[k][k],B[k][j],blocksize);
 notify(flag[k][k][j+blockcount]);
 endif
 enddo
endpar
</graph>
</application>

In fact, users just use the statement “compute prodMat(A[k][k], B[k][j], blo cksize);” to
invoke “implementation component”. It is a very simple task to finish and users
even need know nothing about programming knowledge. The event “wait” and
“notify” is decided by parallel algorithm of BbGJ algorithm. Different parallel
algorithm has different events which are used to decide how to execute
“operations” in BbGJ algorithm. Figure 5.1 shows us all the events of Par-par
BbGJ during its executable process and Figure 5.2 describes all the events of
Max-par BbGJ during its running process. According to those events and “control
structure” provided by YvettML, users can program very easily. See pseudo code
based program developed using YML in appendix A (at the end of this
dissertation). Through comparison the program in appendix A and new parallel
programming version in Chapter 4.6, you can find the advantage of programming
in higher level interface. Next, we will show some other program interfaces
provided by XtremWeb and OmniRPC.

Chapter 5

 94

Figure 5.1. Events and execution in Par-par BbGJ

Large Scale Scientific Computing on Grid and Desktop Grid Environment

 95

Figure 5.2. Events and execution in Max-par BbGJ

Chapter 5

 96

5.2.2 Programming with XtremWeb

Desktop Grids are to collect idle cycle of Internet connected computers which
may be widely distributed across the world and more and more scientific
researchers tend to use Desktop Grids for its huge process power and lower cost.
XtremWeb is a middleware for Desktop Grid environment. It is based on
Client-Coordinator-Worker model. Client is to submit requests, worker is for
executing them and coordinator plays the role of intermediary between clients and
workers. To XtremWeb, coordinator encapsulates different services (scheduler,
results server, applications repository). To make application run on the XtremWeb,
users need to know the following information:

1. Application management with the XtremWeb client
wapps: list the applications present in the platform. This parameters need no
argument.
--xwaddapp <Application Name> <CPU> <OS> <binary> insert a new
application binary in the platform;
--xwrmapp <Application Name> removes an application and all its associated job
from the platform;

2. Jobs management with the XtremWeb client.
Here are the client parameters dedicated to job management.
--xwstatus [jobUID, jobUID...] : list job status.
--xwtasks [jobUID, jobUID...] : list status of job instances.
--xwsubmit <Application Name> [--xwenv <zip file>] [--xwlabel <label>]
[application parameters] [<input file>] : insert a new job.
--xwrm [jobUID, jobUID...] : delete jobs.

3. Results management with the XtremWeb client.
Here follow the client parameters dedicated to results management.
--xwresult [jobUID, jobUID...]: retrieve job results.

4. Jobs management with the XtremWeb client.
Here follow the client parameters dedicated to job management.
--xwstatus [jobUID, jobUID...] : list job status.
--xwtasks [jobUID, jobUID...] : list status of job instances (i.e. job and associated
running worker).
--xwsubmit <Application Name> [--xwenv <zip file>] [--xwlabel <label>]
[application parameters] [<input file>] : insert a new job.
--xwrm [jobUID, jobUID...] : delete jobs.

So many parameters for submit tasks and much information of platform are
necessary to know about for users. So it is complex for users to run their
applications on XtremWeb based platform. Also developing programming based

Large Scale Scientific Computing on Grid and Desktop Grid Environment

 97

on XtremWeb is not easy. We still want to take “operation 3” in BbGJ algorithm
as example to show that. The program can be written as follows:

Int nojob=0

 For (int l=step+1; l<block-size; l++)
 String[] inresults=new String[] {“A_”+step+1, “B_”+step+step};
 Zipper.setFilename (“A_”+step+1+”.zip”);
 Zipper.zip(inresults);
 String cmdline= “A_”+step+1+ “ ” + “B_”+step+step+ “” + “A_” +step+1;
 Nt[nojob]= new MobileWork (“prodMat _” + nojob +step);
 Nt[nojob].setServer (GaussJordan.config.getCurrentServer());
 Nt[nojob].serApplicationName (“prodMat”);
 Nt[nojob].setCmdLine (cmdline);
 Nt[nojob].setDirin (“./”, “A_” +step+1+ “.zip”);
 If (GaussJordan.comm.submitJob(nt[nojob], session.getName(), group.getName()) == Null)

{ System.out.println (“can’t submit ” + nt[nojob].getUID());
 Debug.Info (“job” + nt[nojob].getUID() + “ : can’t submit ”);
}

 Else
 { System.out.println(“job” + nt[nojob].getUID() + “ submitted ”);
 Debug.Info (“submitted” + nt[nojob].getUID());
 Nojob++;

}

From the example above, we can find it is not easy for end users to develop
application program using XtremWeb interface directly. And to YML, users just
write an invoke function and it is very simple for users to use, especially for
non-professional computer users.

5.2.3 Programming with OmniRPC

OmniRPC is designed to allow easy development and implementation of parallel
scientific applications for distributed and Grid environments. OmniRPC is an
evolution of Ninf, since it inherits the API and basic structure from it. It is mainly
designed for multi-threaded clients based on a master-worker structure. Its
implementation is through a thread-safe based remote procedure call.

The architecture of OmniRPC is composed of a client application and various
remote computational hosts, which execute the remote procedures. Remote
locations can be connected via a local area network or over a wide-area network.
The client application can be written in various different languages, such as
FORTRAN, C and C++, and the parallel execution in the client can be obtained
by using direct thread libraries, such as the POSIX thread, or the OpenMP API.
The interface to a remote function is described by the Ninf IDL. In OmniRPC, the
remote executions are managed by the use of remote shell (rsh) for local
distributed environments and by the use of Globus and ssh for Grid environments.

Chapter 5

 98

To program with OmniRPC, the following steps have to done:

 On the remote host, create a remote executable program of the remote
function and register it. It can be divided into 3 parts which are:

1. create the IDL file which defines interfaces.
2. generate a remote executable module from the IDL file with the

“omrpc-cc” program.
3. register with omrpc-register.

 On the client host, create hosts.xml which describes the remote host.
 Write the client program, and compile with omrpc-cc.
 Execute the client program, specifying hosts.xml.

We still use the matrix multiplication as an example to show how to program with
OmniRPC.

First, write remote executable program:

1. Write a IDL for matrix multiplication as follows:

Define prodMat(IN int size, INOUT double C[size][size],IN double A[size][size], IN double B[size][size])
{
 int i = 0; int j = 0; int k = 0;

tempMat = (double **)malloc(size * sizeof (double *));
 for (i = 0 ; i < size ; i++)
 { tempMat[i] = (double *)malloc(size * sizeof (double));
 for(j=0; i < size ; j++)
 tempMat[i][j] = 0;
 }

for(k = 0 ; k < size ; k++)
{ for(i = 0 ; i < size ; i++)

 { for(j = 0 ; j < size ; j++)
 {
 tempMat[i][j] = A[i*size+k] * B[k*size+j] + tempMat[i][j] ;
 }
 }

}
for (i = 0 ; i < size ; i++)

 for (j = 0 ;j < size ; j++)
 C[i*size+j] = tempMat[i][j];

for(i=size-1; i>=0; i--)
 free(tempMat[i]);

free(tempMat);
}

2. generate a remote executable module from the IDL file:

 omrpc-cc prodMat.idl –lm
 Then generate the file “prodMat.rex”

Large Scale Scientific Computing on Grid and Desktop Grid Environment

 99

3. register with omrpc-register

 omrpc-register -register prodMat.rex

Second, write client program:

To write the client program, it is necessary for users to learn and use those
OmniRPC APIs. Some APIs are:

void OmniRpcInit(int *argc, char **argv[]);
void OmniRpcFinalize(void);
int OmniRpcCall(char *entry_name,...);
int OmniRpcCallV(char *entry_name,va_list ap);
OmniRpcRequest OmniRpcCallAsync(char *entry_name,...);
void *OmniRpcCallAsyncV(char *entry_name,va_list ap);
void OmniRpcWait(OmniRpcRequest req);
int OmniRpcProbe(OmniRpcRequest req);
void OmniRpcWaitAll(int n, OmniRpcRequest reqs[]);
int OmniRpcWaitAny(int n, OmniRpcRequest reqs[]);

Then, the client program will be developed based on those APIs. The client
program can be:

int main(int argc, char * argv[])
{
 OmniRpcRequest reqsProdMatA[blockcount];
 OmniRpcRequest reqsProdMatB[blockcount];

typedef double Matrix[blocksize][blocksize];
 omrpc_debug_flag = 0
 for(i=k+1; i < blockcount; i++)
 { if(i==(k+1))
 {OmniRpcWait(reqsInvers[k]);}
 reqsProdMatA[i]=OmniRpcCallAsync("prodMat",blocksize,B[k][k],A[k][i]);
 }

fprintf(stderr,"End Gauss-Jordan\n");
end=time(NULL);

fprintf(stderr,"Time of run %f\n",difftime(end,begin));
 for(i=blockcount-1; i >=0; i--)
 { free(B[i]); free(A[i]);
 }
 free(B); free(A);
 OmniRpcFinalize();
 return 0;
}

Then, compile the program with command “omrpc-cc”

Chapter 5

 100

 omrpc-cc –o prodMat.exe prodMat.c

Third, specify hosts.xml and execute the client program:

hosts.xml can be created as follows:

<?xml version="1.0" ?>;
<OmniRpcConfig>;
 <Host name=" " />;
</OmniRpcConfig>;

Then use the following command to execute the program:

prodMat.exe --hostfile hosts.xml

From the process of programming with OmniRPC, we can find that it still difficult
for end users to program using OmniRPC directly. Before using OmniRPC, users
need cost long time to learn how to use it. But YML provide an intuitive way to
program and users can adapt their application program to Grids/Desktop Grids
environments more easily.

5.2.4 Summary and conclusion

From the description, we can summarize that:

Programming with OmniRPC and XtremWeb require users to know about their
APIs and computing environments they want to use. This is to say, user have to
deal with something before gridificating their application. Firstly, users must
know how to adapt their application to Grid /Desktop Grid environment through
APIs OmniRPC/ XtremWeb provided. Secondly, users also must know more
information about platforms. They need to know the status of computing
resources and how to allocate tasks to related computing resources. The process of
using XtremWeb/ OmniRPC is complex for end users. Last, but not the least, it is
hard to reuse the developed code.

YML provides end users a higher level programming interface which is
pseudo-code based. The advantage of YML is that it succeeds in separating
“operation functions” from “control flow”. “Operation functions” (for example
“operation 3” in BbGJ algorithm) can be developed by third party or invoke
related function from common libraries. At the same time, this separation make

Large Scale Scientific Computing on Grid and Desktop Grid Environment

 101

those “operation functions” can be reused very easily. End users need not know
about how to program those “operation functions”. The interface of YML is just
to describe the “control flow” of application program and it is independent of
program language and underlying execution environments. So, if users know
more detail about application itself, it is very easy for end users to program with
YML which provides a description based programming interface.

From the analysis above, we can conclude that YML provide end users with a
very easy-of-use interface. The components developed in YML can be reused
very easily. Programming with YML can save lot of costs in time (high level
interface makes program be very easier) and money (reused component, once
develop and many use) for end users. Here we also have to point out that, YML is
based on OmniRPC/ XtremWeb and some overheads are added to the platform. In
the next section, we will discuss the overhead by adopting YML framework.

5.3 Overhead of middleware

From the description in the last section, we can know about two points:

 YML supports the separation of “control flow” and “executable functions”
and it helps end users just focus on parallel algorithm itself without
considering how to adapt their application to detail executable environments.
Based on xml based description programming language, YML provides a
high level programming interface which is very easy to use.

 YML is based on some middleware. YML compiler will generate a schedule

table through parse pseudo code based application program developed using
YvetteML. Then, YML scheduler will allocate appropriate tasks to available
YML workers. YML worker will put available tasks to related computing
resources according to its local scheduler. Now it can support two
middlewares: XtremWeb and OmniRPC.

From the summary, we can know that it is reasonable for YML to have some
overhead. The overhead comes from two aspects:

 YML need to invoke related “implementation components” from YML server.
While, OmniRPC invoke their related “implementation functions” from local
server.

 YML server has to deal with “scheduler table” when each event happens.

Even when the scheduler table is very big, the overhead will become larger.

Paper [126] had some basic experiments based on Par-par BbGJ algorithm to
evaluate the overhead of YML. Its conclusion shows that the overhead of YML
was not important when the scheduler is not overloaded to solve the data

Chapter 5

 102

dependences. Also YML’s overhead can be reduced through some technology
such as out of core.

This section will present another case to show that YML can be a good choice for
end users to reduce time to solution. Here we will make a series of experiments to
testify that.

Experiment environments: 100 nodes used in cluster of grelon, Nancy site, France.
Experiment data: we change the block-count of sub-matrix from 2*2, 3*3, 4*4,
5*5, 6*6, 7*7 and 8*8. We also change the block-size of sub-matrix from
500*500, 1000*1000 and 1500*1500.

From Figure5.3, we can find the overhead of YML on OmniRPC through
comparing Par-par BbGJ algorithm on YML and on OmniRPC. Its conclusion is
the same with that of paper [126]. But here, what I want to emphasize is that, the
performance of Max-par BbGJ algorithm on YML is very close to that of Par-par
BbGJ algorithm on OmniRPC. At the same time, we know programming Max-par
OmniRPC with YML is very easy (see the detail program in appendix A) and it is
more difficult to program Max-par algorithm on OmniRPC. The reason is that
there are more complex control events which are used to deal with concurrency of
application program, during the process of execution. The complex control events
make programming using OmniRPC become more difficult. In other words, YML
can reduce the time to solution of running a new algorithm through its easy-to-use
interface and it also can reduce cost to solution through components reuse. So
YML can be a good choice for end users making large scale scientific computing.

Large Scale Scientific Computing on Grid and Desktop Grid Environment

 103

Figure 5.3. Overhead of YML on OmniRPC

Table 5.1 Computing resources used in Hohai platform

Site Nodes Bandwidth CPU/Memory
Lab 303 16 100MB/s Inter , 2.66GHz/512M
Lab 101 64 100MB/s AMD, 1.8GHz/512M

Table 5.2. Overhead of YML on XtremWeb

 XtremWeb YML+ XtremWeb overhead
1500*2 608 727.88 119.88
1500*4 3675 3943.7 268.7
1500*6 8943.67 9704.47 760.8
1500*8 17633.4 19736.2 2102.8

Chapter 5

 104

We discussed that YML can be a good choice of achieving less time to solution.
Now we want to emphasize another feature of YML which is its portability
between different kinds of platforms. This feature is unique and little middleware
can posse this kinds of capability and it can make sure the program develop with
YML can be run on Grid platform and Desktop Grid platform without any change.
It is appealing for scientific researchers who want to use volunteer computing
resources to reduce their costs. So we made some experiments based on
XtremWeb using Par-par BbGJ algorithm on Hohai platform.

Experiment data: we change the block-count of sub-matrix from 2*2, 4*4, 6*6
and 8*8. We also change the block-size of sub-matrix from is fixed on 1500*1500.
The bandwidth between lab1 and lab3 are 1GB/s. The detail environment can be
described using Table 5.1.

Through running the program for XttremWeb based Desktop Grid platform, we
can get the results presented in Table 5.2. Here we don’t want to compare the
middleware XtremWeb with the middleware of OmniRPC, because there is no
comparability between the two middlewares which suit for different environments.
What we want to emphasize is that YML can adapt its program to different
environments (Grid environment or Desktop Grid environment) and this feature
is specia l for YML . With the success of Seti@home, more and more scientific
computing will try to use volunteer computing resources for its lower costs and
huge processing power. So YML is a very successful attempt to make program
migrate between different environments without any change. Through the
experiments, we also conclude that YML has an acceptable overhead and it can
help to reduce costs on time and money for users through high level programming
interface and reusable components.

To summary, YML can be a good choice for scientific researchers to make large
scale computing and the excuses can be described as follows:

 YML has an acceptable overhead and it can help users to reduce time to
solution through its high level program interface.

 The separation of “implementation component” from “control flow” make

developed code reuse very easily, which help users to reduce cost-to-solution
through components reuse.

 YML support program migration between different executable environments

(for example Grid, Desktop Grid, Cluster) without changing the developed
code. This is very special and important character for YML and little other
middleware can do this.

Large Scale Scientific Computing on Grid and Desktop Grid Environment

 105

5.4 Characters of different environments

The previous sections have testified that YML is a good choice for end users to
make large scale computing and one of reasons is that it can supports different
environments. As well known to us all, the different environments have different
characters. In this section, we will talk about some issues which can help users to
utilize the environments better. Those issues range from “task granularity”, “data
transfer model” and “schedule mechanism”.

5.4.1 Task granularity

First, we have proved that fine-grain based parallel algorithm can achieve better
performance in high speed network based environments (see detail in Chapter 4).
But to the low speed network based environment, fine-grain based parallel
algorithm can’t always achieve better performance. Let’s see the following
experiments on Ploytech Lille platform.

Table 5.3 computing resources in PolyTech Lille platform

Number of PCs CPU Memory
32 AMD athlon 2.2, GHz 2G
16 AMD athlon 2.7 GHz 2G
16 Pentium 2.6 GHz 2G
16 Inter celon 2GHz 1G
16 AMD athlon 2.3 GHz 2G
4 Intel Pentium 2.4GHz 512M
8 Intel Celeron 1.4GHz 512M

Table 5.4 Block-size is 100*100 on PolyTech Lille platform

Block-count Algorithm
2*2 3*3 4*4 5*5

Max-par 32.52 64.37 129.88 230.11
Par-par 30.53 67.91 133.29 238.24

Table 5.5 Block-size is 2000*2000 on PolyTech Lille platform

Block-count Algorithm
2*2 3*3 4*4 5*5

Max-par 5234.8 8456.9 11897.4 15270.8
Par-par 5429.6 9897.5 13260.4 18938.38

Chapter 5

 106

The experiments are made on Polytech Lille platform. The software is YML and
OmniRPC. The main difference between Polytech Lille platform and Grid5000 is
bandwidth of network. Grid5000 is connected by special high speed network and
Ploytech Lille platform is connected by 100M based Ethernet network. We also
ensure there are enough computing resources in the experimental environment.

As we know, Max-par BbGJ algorithm can make more tasks executed
concurrently. At the same time, there are more communications between each
operation. When making scientific computing in such an environment, a key issue
is to balance the communication time and computation time. In this experiment,
when block-size is 100*100, computation time has the small proportion of the
total time and communication time becomes a more important factor. To low
speed network based environment, fine-grain based parallel algorithm can’t
achieve better performance. So the performance of Max-par BbGJ algorithm is
little worse than that of Par-par BbGJ algorithm. When the block-size is
2000*2000, the computation time becomes more important in overall time. The
fine-grain task based parallel algorithm shows its advantage. And the results in
Table 5.5 testify our viewpoint.

To summary: A key character of Desktop Grid environment is its low speed
network. So fine-grain task based parallel algorithm can’t always achieve better
performance. Only the proportion of computation time is larger than that of
communication time, the better performance of fine-grain tasks based parallel
algorithm can achieve better performance.

5.4.2 Data transfer model

From the last section, we know in the low speed network based environment,
communication time is a key issue in making large scale computing. Then, is there
any way to optimize communication when making large scale scientific
computing? The answer is absolutely, yes. Because the data transfer model of
many middlewares is based on Data server-Worker model. So improving the data
transfer model becomes an important way to improve the performance of low
speed network based environment. And much effort is made to improve it. In this
section, we just try to simulate the data persistent and uncover the potential of
improving the performance.

The simulation method is that: we will generate as little as communication during
the process of program execution. If a data migration is needed in the program, we
will not transfer the related data from the data server to target machine, but
generate the same volume data on target machine. Thus, less communication is
needed.

Large Scale Scientific Computing on Grid and Desktop Grid Environment

 107

The experiment environment is based on Polytech Lille platform described in
Table 5.1. And we will run Max-par BbGJ algorithm on low speed network based
PCs. See Table 5.6

Another experiment environment is based on Grid5000 which is special high
speed network based platform. We also make the experiment using Max-par BbGJ
algoritm. See Table 5.7.

Table 5.6 Block-count is 5*5 on PolyTech Lille platform

Block-size Algorithm
100*100 200*200 300*300 400*400 500*500

With DP 123.25 198.45 251.46 368.98 563.87
No DP 214.87 328.87 498.13 760.33 1073.60
Gain 42% 40% 49.5% 51.5% 47.5%

Table 5.7 Block-count is 5*5 on Grid5000 platform

Block-size Algorithm
100*100 200*200 300*300 400*400 500*500

With DP 6.27 9.87 12.31 37.74 52.33
No DP 4.19 5.98 7.48 21.04 32.56
Gain 33% 39.4% 39.2% 43.2% 37.8%

From the simulation based experiments, we can conclude that with data
persistence the performance can improve almost 50% in Desktop Grid
environment and about 40% in Grid environment. Especially in Desktop Grid
environment, data persistence technology can help to save a lot of time. So how to
realize data anticipate migration is a key issue of improve the performance of
platform in Desktop Grid environment. Further research will be made on this
point in the next chapter.

5.4.3 Schedule mechanism

We have talked about the influences from “task granularity” and “data
persistence”. Now we will explore another factor, schedule mechanism which
plays very important role in the process of making large scale scientific
computing.

Schedule mechanism in Gird/Desktop Grid environment is complex for their
characters of those environments. As described in chapter 2, heterogeneous is the
key character of those environments. Heterogeneous includes a wide range from
network, CPU, memory to core. In Desktop Grid environment, volatility is

Chapter 5

 108

another important key issue which influences the performance of platform greatly.
In this section, we just want to show the influence on schedule mechanism from
character of heterogeneous.

The experiment environment is based on Polytech Lille platform described in
Table 5.1. And we will run Max-par BbGJ algorithm on low speed network based
PCs. In this experiment, we choose 5 nodes from different clusters in the first case
and those machines are heterogeneous. The second case, we will select 5 nodes
from the same cluster and those machines are homogenous. The detail result can
see Table 5.8.

Table 5.8 Block-count is 5*5 on PolyTech Lille platform

Block-count Nodes
100*100 200*200 300*300 400*400

Same cluster 229.07 335.72 568.35 920.75
Five clusters 248.93 376.70 587.6 1021.3

From the experiment, we can find the time using 5 nodes from 5 clusters is a little
longer than that using 5 nodes from the same cluster. The case using 5 nodes from
5 different clusters represents the situation in which the heterogeneous isn’t taken
into consideration during scheduling tasks to computing nodes. In this experiment,
we use the average time of ten independent experiments. Many times based
experiments can make sure those tasks which need more time to be executed will
not always be allocated to more powerful computers. This helps to makes the
situation (“unreasonable schedule”) happen. So facing the heterogeneous
environment, the best way is to allocate tasks to appropriate computing resources
according to task’s requirement. Condor can deal with this kind of situation, but
now it mainly suit for Grid environment and it doesn’t support the Desktop Grid
environment. In the next chapter, further research will be made on this point.

5.5 Conclusion

In this chapter, we have discussed some related issues about large scale computing
on Grid and Desktop Grid environments. The aim of this discussion is to find an
easy way to make large scale scientific computing on different computing
environments. At the same time, costs on time and money for developing
application program as another important factor, also should be taken into
consideration. According to this goal, we made further research on different kinds
of middleware and environments. Grids as the main stream architecture for high
performance computing system should be given more attention. At the same time,

Large Scale Scientific Computing on Grid and Desktop Grid Environment

 109

volunteer computing based Desktop Grid environment arouse more attention from
scientific researchers for its huge process power and very lower costs. In recent
years, many tools to make large scale computing based on Grid and Desktop Grid
environment have been developed. Facing so many choices, it is hard for end
users to find appropriate tool to make large scale scientific computing on different
environments. To deal with that, related researches ranging from programming
model, data transfer model, task granularity to schedule mechanism, are made and
some conclusions can be described as follows:

 From the section 5.2, we can know about YML is workflow based framework
which provides end users with a very easy-to-use and high level programming
interface. OmniRPC and XtremWeb both provide high level programming
interface, but YML’s interface is much higher level. Its interface is pseudo
code based and platform/middleware/system independent.

 From the section 5.3, we can know YML is based on other middlewares such

as XtremWeb and OmniRPC. Overhead is unavoidable. The section presents
YML has an acceptable overhead. Besides, the code for YML can be
migrated between Grid environment and Desktop Grid environment without
any change. As far we know, this advantage is special for YML. Also, YML
supports the separation of “control flow” and “implementation component”
and this helps end users just to focus on application itself without considering
the detail underlying execution environment. The separation also makes the
developed code reused very easily.

 In the section 5.4, some factors which play important roles in making large

scale scientific computing are discussed. Programming in low speed network
based Desktop Grid environment should take the balance between
communication time and computation time into consideration. We can
balance that through changing task granularity. Data persistence is another
key aspect for large scale scientific computing. The simulations in this part
testify the performance of platform can be improved greatly through adopting
appropriate data transfer model. Last but not least, schedule mechanism is
very important aspects in high performance systems. In this part, we made
researches on the influence from heterogeneous computing resources in Grid
and Desktop Grid environment. Experiments show that it helps to improve
the performance of platform for end users to take the properties of
heterogeneous computing resources into consideration when scheduling tasks
in Desktop Grid environment.

To summary, YML can be a good choice for end users to make large scale
scientific computing for its many appealing features. It also can help users to
reduce the time/money to solution for their applications.

Chapter 6

 110

A Reference Architecture Based on Workflow for Building Scientific Private Clouds

 111

Chapter 6

A Reference Architecture Based on Workflow for
Building Scientific Private Clouds

6.1 Motivation

Cloud computing arouses great interests from scientific researchers and IT
enterprises. A lot of people present their understanding on Cloud computing and
many products have been launched by some famous IT enterprises such as Google,
IBM, Amazon and Microsoft. But up to now, no agreement on what Cloud
computing is. This chapter will try to find the essence of Cloud computing from
different existing Cloud paradigms. Then try to explore the difference between
Grid computing and Cloud computing in scientific computing area. Based on that,
some common features of Cloud computing are summarized. According to these
feathers, we present our viewpoint on scientific Cloud computing systems and
some hottest research points. Then, according to our understanding on Clouds,
lessons learned from gridification and our experiences of scientific computing on
Grids, we will try to propose a solution to build Private Clouds for scientific
computing.

Chapter 6

 112

6.2 Introduction

Cloud computing has arose more attentions from its born. Those attentions come
not only from news (news reference volume) but also from scientific researchers
(search volume index), see detail in Figure 6.1. Many famous IT enterprises such
as Google, Microsoft, IBM, Sun, Amazon have launched their products/models of
Cloud computing. At the same time, huge interests have also been arose among
scientific computing domain. More and more famous scientists from Grid area
[131] [132] [133] and web 2.0 [129] [130] also put forward their understandings
on Cloud computing.

Figure 6.1. Cloud computing received more attention

About what Cloud computing is, there is still no clear definition which can be
generally accepted. According to Gartner [128], Cloud computing is a style of
computing where massively scalable IT-related capabilities are provided as a
service across the Internet to multiple external customers. According to IBM18, a
Cloud is a pool of virtualized computer resources that hosts a variety of different
workloads and allows them to be deployed and scaled-out through the rapid
provisioning of virtual machines or physical machines. It also supports redundant,
self-recovering, highly scalable programming models and resource usage
monitoring in real time to enable rebalancing of allocations when needed. The
viewpoint from some industries is to take Cloud systems as narrow Grids. To
Cloud systems, its powerful services and applications are being integrated and
packaged on the web [134]. Paper [135] thinks the emergence of Cloud computing
as a new potential super structure or the third generation internet based structure
for enterprise and academic computing. From the viewpoint of [136], Cloud
computing is an emerging model of computing where machines in large data
centers can be dynamically provisioned, configured, and reconfigured to deliver

18 http://www.ibm.com/ibm/cloud/

A Reference Architecture Based on Workflow for Building Scientific Private Clouds

 113

services in a scalable manner, for needs ranging from scientific research to video
sharing to email. [131] defines Cloud computing as a large scale distributed
computing paradigm that is driven by economies of scale, in which a pool of
abstracted, virtualized, dynamically scalable, managed computing power, storage,
platforms, and services are delivered on demand to external customers over the
internet. [132] proposes Cloud computing is a new and promising paradigm
delivering IT services as computing utilities. Clouds are designed to provide
services to external users and providers need to be compensated for sharing their
resources and capabilities. [137] supposes Clouds characteristically expose a
minimal set of system semantics required to support the Cloud’s usage modes.
Brown thinks Cloud computing is a data-processing infrastructure in which the
application software and often the data itself are stored permanently not on your
PC but rather a remote server that’s connected to the Internet [138]. Cloud
computing is about moving services, computation and/or data to an internal or
external, location-transparent, centralized facility for cost and business advantage.
By making data available in the Clouds, it can be more easily and ubiquitously
accessed, often at much lower cost, increasing its value by enabling opportunities
for enhanced collaboration, integration, and analysis on a shared common
platform [139]. Bragg thinks the key concept behind the Clouds is web
application. Many find it’s now cheaper to migrate to the web Clouds than invest
in their own server. So in near future, perhaps it is a desktop/Web browser for
people without a computer under the help of matured Cloud technology [140].
Kaplan’s viewpoint is that a broad array of web-based services aimed at allowing
users to obtain a wide range of functional capabilities on a ‘pay-as-you-go’ basis
that previously required tremendous hard- ware/software investments and
professional skills to acquire. Cloud computing is the realization of the earlier
ideals of utility computing without the technical complexities or complicated
deployment worries... [141].

There are still other definitions from different domain scientists. No definition is
totally agreed by all. Differences are more or less. Then what is exact definition of
Cloud computing? In the following section, we will look through the existing
Cloud computing platform presented by Google, Amazon, IBM and Microsoft and
further research on famous Cloud middleware is also made. Through those
explorations, we hope we can find some common features behind the different
shapes of Clouds.

6.3 Different shapes of Clouds

6.3.1 Cloud computing from Google

Google is the most important and most watched Internet company today. Search
engine rankings indicate Google’s market share is nearly two-thirds of the total

Chapter 6

 114

search market, versus approximately 20% for Yahoo and 10% or less for
Microsoft. With its expertise running the world’s most popular search engine and
its vast, industry-leading infrastructure to support the world’s most visited Internet
site, expanding into Cloud computing services is a natural fit.

Google’s Cloud computing is mainly to support its search engineer and provide
search service for end users. And now it expands to other service such as Google
earth, Google trend, Google desktop… According to its problem to be solved
(data process in large scale unstable computing resources based platform), it takes
three key technologies to support their services.

 Google File System [142] is a scalable distributed file system for large
distributed data-intensive applications. It provides fault tolerance while
running on inexpensive commodity hardware, and it delivers high aggregate
performance to a large number of clients.

 Map Reduce [143] is a programming model and an associated implementation

for processing and generating large data sets. Users specify a map function
that processes a key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate values associated
with the same intermediate key.

 Big table [144] is a distributed storage system for managing structured data

that is designed to scale to a very large size: petabytes of data across
thousands of commodity servers. Many projects at Google store data in
Bigtable, including web indexing, Google Earth, and Google Finance.

Its general architecture can be described through Figure 6.2.

Figure 6.2. Cloud computing from Google

A Reference Architecture Based on Workflow for Building Scientific Private Clouds

 115

Google’s App Engine is one of the most prominent examples a
platform-as-a-service Cloud offering. App Engine provides a single, pre-built
solution for constructing very large scale web-based applications hosted on
Google’s infrastructure. And the core technology of Google’s app engine is based
on the three key technologies described above.

6.3.2 Cloud computing from Amazon

Amazon.com19 is a quintessential brand name in electronic commerce. In the
decade since its founding, it has transformed once from an online book-seller to a
general retail platform and again to the industry leading Cloud computing
provider.

Amazon’s Cloud offerings fall under a group of complementary products called
“Amazon Web Services” and its infrastructure-level services:

 Elastic Compute Cloud (EC2): EC2 is Amazon’s flagship Cloud offering.
EC2 allows the metered, on-demand rental of virtual machine computing
resources. EC2 is rented in units called instances, each of which represents a
virtual server with particular hardware specifications. From a user’s
perspective, it is like renting physical servers by the hour in any quantity.
There are five differentiated types of instances to rent with varying CPU
power, memory, hard disk space and IO performance. An application needing
a significant amount of RAM or CPU performance can rent more expensive
but more powerful instances, while a network-bound application, like a
web-server, can use cheaper and less powerful instances.

 Elastic Block Store (EBS): Elastic Block Store works in conjunction with

EC2 to provide extra high performance, persistent storage to EC2 virtual
machine instances. EC2 instances have local storage capacity, but such space
is temporary and only available while an instance continues to run. EBS
provides storage like a virtual disk (block storage) which can be attached to a
given EC2 instance; the data will stay available independent of the EC2
instances currently running and can be moved from instance to instance
without the need to explicitly build some sort of higher-level data transfer
mechanism.

 Simple Storage Service (S3): S3 provides robust object storage metered per

gigabyte per month. While EBS provides a virtual disk-like block storage
abstraction to attach to EC2 virtual machine instances, S3 provides a storage
facility which can be accessed independent of EC2 instances. One can use S3
by itself as a storage repository without using EC2; one can also have many
EC2 instances accessing the same data from S3.

19 http://aws.amazon.com/ec2/

Chapter 6

 116

 SimpleDB: SimpleDB is a pseudo-relational data storage service. It stores

data much like a relational database management system, providing a richer
data query and manipulation interface than block or object storage. SimpleDB
is also accessible independent of EC2 instances and presents higher-level
database-like storage accessed using a SQL-like query language.

 CloudFront: CloudFront is a Content Delivery Network (CDN) which works

with data stored in S3. A CDN is designed to enhance the delivery of data
(content) to data consumers (customers / end users) by providing closer “edge
locations” for distribution. By providing many different edge locations, a
content provider can provide end users with lower delivery latency and better
performance.

 Simple Queue Service (SQS): Amazon’s Simple Queue Service provides

reliable messaging between distributed software components. It is often used
in conjunction with EC2 to coordinate the actions of different instances or
distinct components of a bigger application running on EC2.

 AWS Premium Support: AWS Premium Support is not a technical product

offering itself; it is paid support and consulting related to Amazon’s Cloud
services. Amazon will provide help with both operational support and
technical issues related to software development using their Cloud services.

Amazon is the biggest retail seller on line and a huge number of deals have been
made based on its Cloud computing platform (this is the motivation for Amazon
to launch their Cloud platform). Further more, they present theirs talented
products – virtual resources as services to meet all kinds of users with lower costs.
The general idea can be described using Figure 6.3.

Figure 6.3. Cloud computing from Amazon

A Reference Architecture Based on Workflow for Building Scientific Private Clouds

 117

6.3.3 Cloud computing from IBM

IBM20 announced its Blue Cloud initiative on November 11, 2007. In 2008, IBM
unveiled that their “Blue Cloud”, [145] is a series of Cloud computing offerings
that will allow corporate data centers to operate more like the Internet by enabling
computing across a distributed, globally accessible fabric of resources, rather than
on local machines or remote server farms. Blue Cloud, built on IBM’s expertise in
leading massive-scale computing initiatives, will be based on open standards and
open source software supported by IBM software, systems technology and
services. IBM announced today that its Blue Cloud development is supported by
more than 200 IBM Internet-scale researchers worldwide and targets clients who
want to explore the extreme scale of Cloud computing infrastructures quickly and
easily.

The IBM Clouds consists of data center holding multiple processors and local
storage, some components developed by IBM and some open sources software.
Provisioning, management, and monitoring will be handled by IBM Tivoli
Monitoring and Tivoli Provisioning Manger, with access through Websphere
application server, and DB2. On the platform, a virtualized infrastructure based on
Linux and Xen virtualization supports individual applications. Linux with Xen
will be managed by the Tivoli Monitoring agent to provide multiple virtual Linux
machines. Parallel processing is enabled by Hadoop provisioning manager
supporting the Eclipse programming infrastructure, with Google's Map/Reduce
programming model used to create distributed processing loads. See Figure 6.4.

Figure 6.4. Cloud computing from IBM

20 http://www.ibm.com/ibm/cloud/

Chapter 6

 118

IBM Tivoli software that manages servers to ensure optimal performance based
on demand. This includes software that is capable of instantly provisioning
resources across data center to provide users with a seamless experience that
speeds performance and ensures reliability even under the most demanding
situations. Tivoli monitoring checks the health of the provisioned servers and
makes sure they meet service level agreements.

Hadoop is an open source software project under the Apache server project,
designed to run jobs, distribute tasks and store data in a parallel and distributed
fashion on a multiprocessor system. Most programs run on Hadoop are written in
the Map/Reduce style, in which input is broken into small pieces that are
processed independently according to a map. The results of these independent
processes are then collated into groups and reduced to produce a result. IBM is
providing Eclipse, a business development platform, on top of Hadoop, and has
written its own Map/Reduce toolset for Eclipse in support of this.

Xen is high-performance open source virtualization software. It operates through
the Xen hypervisor, which sits between server hardware and operating system
permitting each physical server to run one or more virtual servers. Virtual server
images can be run on any server at any time, and multiple virtual servers can
simultaneously share a single server.

To summary, IBM Blue Cloud is a computing platform with software and
hardware. It is the paradigm which expands enterprise architecture to the Internet
based wide area and move data center to internet environment (this is the driver
for IBM to launch their Cloud platform). In its paradigm, a lot of state-of-art
technologies on large scale computing, service technology, software developed by
IBM are adopted. The key characters of IBM blue Cloud is that Logic partition
can be used through hardware virtual technology, i.e., users can use IBM
enterprise workload manager to manage CPU resources of logic partition. Then it
will distribute appropriate computing resources to corresponding logic partition.
Also software based virtual technology can run another kind of operation system
(Windows for example) on Linux based machine through Xen.

6.3.4 Cloud computing from Microsoft

The Cloud computing platform of Microsoft is based on Azure which is a Cloud
operating system. Many services such as computing, storage, management are
integrated into this operating system. Above the Azure, several kinds of services
(live services, .NET services, SQL services, SharePoint services, Dynamic CRM
services) facing to end users run on the Azure. See Figure 6.5. These services are
the base of next generation Internet service (this is the driver for Microsoft to
launch their Cloud platform). These services have a close connection with
peoples’ daily life and are popular for their easy of use. Live services can provide

A Reference Architecture Based on Workflow for Building Scientific Private Clouds

 119

end users services like blog, picture, MSN. Dot NET’s role is to provide a
common use service such as workflow, service bus, access control and it can be
reused very easily. SQL service is used for data management. Coordination
between services is in charge by SharePoint services. Dynamics CRM services are
used for application level just like Salesforce.com. Microsoft can provide different
level services through different service interfaces. See Figure 6.5

Figure 6.5. Cloud computing from Micosoft

6.3.5 Eucalyptus

Eucalyptus [146], a Cloud enabling infrastructure is the result of a research project
from the University of California, Santa Barbara. Eucalyptus stands for “Elastic
Utility Computing Architecture for Linking Your Programs To Useful Systems”.
It aims to provide a simple way to set up Cloud solution for the research and
development of Cloud driven applications. By combining common web-service,
Linux tools and the Xen Virtual Machine Hypervisor, Eucalyptus successfully
implemented partial functionality of the popular Amazon EC2.

The Eucalyptus infrastructure (Figure 6.6) consists of four main components, the
Cloud Controller (CLC), the Cluster Controller (CC) the Node Controller (NC)
and a storage service called Walrus. These components are implemented as
stand-alone web services. They leverage WS-Security policy for secure
communication via a well-defined WSDL API. They interact via SOAP and
HTTP to dynamically provision Virtual Machines (VMs) or manipulate VM
images. Eucalyptus currently supports only Xen VMs.

Chapter 6

 120

Figure 6.6. Architecture of Eucalyptus

Each physical machine in the cluster capable of hosting VMs is installed with a
NC. The NC starts and stops VM instances and monitors the health of those
instances on that particular machine. The CLC is the interface for external entities
to communicate with the Eucalyptus environment. It receives requests to start or
stop VM instances and forwards these requests to the CC. The CC maintains
resource information about the entire Eucalyptus cluster by periodically polling
the NCs. Based on the global resource availability, the CC then decides which NC
in the cluster should be contacted to start or stop a VM.

Walrus is a storage service similar to that of Amazon S3. The primary use of
Walrus is to store VM images called Eucalyptus Machine Images (EMIs). The
EMI format is used by Eucalyptus to encode images which will in turn be used to
start Xen VM instances. EMI is similar in concept to the Amazon Machine Image
(AMI) format that is used to start EC2 instances. Walrus can be accessed using
Curl, a popular command-line tool for interacting with HTTP services. Other than
storing EMIs, Eucalyptus users can also use Walrus to store raw data the same
way an EC2 user employs S3. Currently, Walrus must be installed on the same
physical machine as the CLC.

6.3.6 Summary

We have introduced some famous and very important Cloud systems in the
previous sections. Some points can be summarized as follows:

 Each enterprise has their special goal to present their Cloud platform. This is
to say, they present the platform to solve some special problems and present
some related key technology to deal with them. The Google’s Clouds is to

A Reference Architecture Based on Workflow for Building Scientific Private Clouds

 121

deal with large scale data retrieval (search engineer) based on web. They
propose their three key technologies which are Google File System, Map
Reduce and Big Table to realize their goals. They gradually propose some
other services based on their Cloud platform. The same way, Amazon is a
book seller on line. They build their large data center to make the on-line
bookstore serve more customers. But they find those computing resources in
data center can’t be made full use of. So a talented idea which is to sell
computing resources is proposed and according to this idea, they present their
Cloud platform based on Virtual technology to maximize utilizing the
computer resources. Microsoft presents Azure OS to support their large scale
on-line services such as Live message, .NET services. Eucalyptus is research
platform for making experiments on EC2 and it present related strategy to
adapt to EC2 environment.

 The key technology for different Cloud systems is different. Cloud layer in

those platforms plays an important role in separating user’s interface and
physical executable environment. In other words, end users need not to know
how/when/where their applications are implemented.

 They all try to make end users get services through Internet at lower cost and

in an easy-to-use way. The general way is to decrease costs through making
full use of computing resources based on virtual technology and to provide a
high level interface to make these services be used by end users in a very
simple way.

 They all provide services on demand to users and those services are very

stable. To make those services be based on SLA, some special technologies
on monitor, fault tolerance, data migration and schedule strategy have to be
adopted.

6.4 From Grids to observe Clouds

We have analyzed some important Cloud platforms in the previous section and
have a general impression on Cloud computing. We also made a survey on Grid
computing in chapter 2. Then a question is aroused which is what’s the relation
between Grids and Clouds. About the difference between Grid computing and
Cloud computing, many scientists proposed their understanding on this question.
Among that, Ian Foster [131], Giacomo [147], buyya [132] and Geoffrey [137]
have made exhaustive analysis on difference between them. In this section, we
want to compare them from the viewpoint of practice. Grids are presented in the
mid 1990s and its aim is to allow consumers to obtain computing power on
demand. The idea of creating computing Grid comes from utility of the electric
power grid. After more than 10 years’ effort, a lot of large scale Grid systems
have been produced. Such as TeraGrid, EGEE, Open Science Grid, LHC

Chapter 6

 122

Computing Grid Seti@Home, Boinc, Grid5000. A lot of applications begin
running on Grid platform. But the influence of Grid on most people engaged in
scientific research is small. Many scientific applications are still running on
clusters and servers (based on cluster computing and distributed computing).
According to paper [148] and our experiences on Grid5000, the reasons of hard
gridification can be summarized from the following two aspects.

6.4.1 Viewpoint from end users

6.4.1.1 Grid platform is hard to utilize for end users

General speaking, Grids expose all the interfaces to users, though a lot of
interfaces is useless to a specific user. And users usually have to spend a lot of
time on finding the interfaces they need to use. Then he needs to learn how to
program using those interfaces. Generally speaking, it is not easy to learn for
non-expert end-users.

Grid platform is a kind of very complex system. End users have to book
computing resources they need and then deploy the environments they want to use.
This is difficult process for non expert users, because users need to know the
infrastructure of the Grid platform and the number of computing nodes they need
and then a series of complexity issues span over programmatic, technology and
management perspectives make users discourage using Grid platform. We will
take using Grid5000 platform as example to show that. Grid5000 [113] is a
national grid platform in France. It is a state of art Grid platform and has
thousands of users. But it is not easy to use it. Users must know how many nodes
their program need in advance. Once these computing nodes are booked, they
can’t be utilized by other users, even they are idle, i.e., the Grid platform is not
based on demand provision. When a large scale computing resources in their
program are needed, the common way is that users need write shell script to book
computing resources and deploy environment they need. Normally, it is not easy
for programmer to do that, not to mention to general end users. So many users
would like to use theirs former platform such as cluster or supercomputer.

6.4.1.2 Grid middleware is hard for end-users to develop application

Grid Computing is evolving to mean the sharing of geographically distributed
resources. A number of Grid middlewares such as Globus, Legion, Alchemi,
Xtremweb, Gridsolve, Netsolve, Ninf and OmniRPC have been presented to adapt
to Grid environment. But to successfully utilize such middlewares, end-users are
required to know Grid platform’s details ranging from resource configuration to
service availability to hardware configuration. When creating Grid applications

A Reference Architecture Based on Workflow for Building Scientific Private Clouds

 123

using middlewares, proper management strategy on underlying resources has to be
selected. Other factors such as resource availability, fault tolerance, load
balancing and scheduling mechanism also have to be taken into consideration.
These requirements significantly increase the burden of Grid users, i.e., Grids
middlewares aren’t able to deliver on the promise of better applications and usage
scenarios, which keeps many users from utilizing Grid middleware.

6.4.2 Viewpoint from Grid system

6.4.2.1 Problem from Grid Scheduler

Most schedulers in Grid middlewares are based on batch scheduler, Such as
Gridsolve, OmniRPC and XtremWeb. This kind of scheduler doesn’t support
adaptive scheduling in Grid system, thus causing the scheduler can’t dispatch
tasks to appropriate computing resources. Normally, scheduler can’t choose
appropriate computing resources from computing resources pool according to
tasks requirements. Users must know how many computing nodes they need to
book for their application. Generally, it is the adequate book that may cause great
waste of computing resources. Grid platform is a heterogeneous environment in
both available time and capability of computing resources. So static and a single
level scheduler can’t meet the requirement of Grid platform. An example from
TeraGrid can testify what we expressed above [147]. The heterogeneous and
distributed nature of TeraGrid implies a “best effort” strategy when providing
supercomputing services. This state of the Grid system is such that only very
specialized researchers can benefit from the Grid computing power, due to the
current design of scheduler is based on batch-queue systems. This makes
interactive supercomputing become more difficult, as results have to wait for
other large parallel jobs.

6.4.2.2 Problem from Grid data transfer model

Most data transfer models are almost based on Serve/Client. All the data are
stored in data server. As Figure 6.7 shows, when “task 1” is to be executed on
“machine 1”, the machine need get the related data from data server and when the
task finishes, the results will be sent back to data server. The same ways will be
executed for “task 2” and “task 3”. Most Grid middleware such as OmniRPC,
Gridsolve, Netsolve, Xtremweb and BOINC, are based on this strategy. Data
persistent and data replication technology can help to deal with that and through
those technologies, a lot of time on unnecessary communication can be saved.
Some efforts are being made in some Grid middleware, such as SmartGridSolve.

Chapter 6

 124

Figure 6.7. Data transfer model in most Grids middleware

6.5 Summary on Clouds

Some issues have been discussed from the limitation of existing Grid systems in
the previous section. To Cloud system, it should overcome those disadvantages of
Grid system. In this section, what kinds of common features should be possessed
for Clouds is discussed. Then classification of Clouds is introduced and some
challenges are listed. Finally, some research hottest point and our definition on
scientific Clouds are presented.

6.5.1 Common features of Clouds

The evolution of Cloud computing has borrowed its basis from several other
computing areas and system engineering concepts. Cluster and Grid Computing
on one hand, and Web 2.0 on the other hand are perhaps the most obvious
predecessor technologies that enabled the inception of Cloud computing. As well
known to us all, Grid computing is proposed in the middle of 1990s. Grid
technology is used to harness huge amount of computing resources from different
administrator domains. As a result, Grids can provide huge computing power than
previous architecture. At the same time, These rising popularity of user-driven
online services, including MySpace, Wikipedia, and YouTube, has drawn
attention to a group of technological developments known as Web 2.0. The rise of
the Web 2.0 such as Web services, peer-to-peer networking, blogs, podcasts, and
online social networks led to the emergence of new web applications or services
which need to store and process large amount of data. In addition, with the
exponential increase of users of Web 2.0, large scale IT platform with good
features such as scalability, easy to use is needed. So when the web 2.0 (the
requirements of large scale process power) meet the Grid computing (can provide
huge process power), the Cloud computing is born. However, several other

A Reference Architecture Based on Workflow for Building Scientific Private Clouds

 125

computing concepts have indirectly shaped today’s Cloud computing technology,
including peer-to-peer (P2P) computing, SOA and autonomic computing, SOC,
Pervasive computing, Mobile computing. So we can conclude that Cloud
computing should based on those technology which can harness a lot of
computing resources and it also can provide an easy of use and high level
interface for end users.

According to the section 6.3, we can take Cloud computing as an easy and fast
solution to a specific problem. The key issue to propose the solution is to define
clearly the problem to be solved exactly. Perhaps that's why people's opinions
vary so much on what’s Cloud computing is. As you know, the problem is totally
different for different people. So the solution to problems is different. I think that's
why defining Cloud computing can be so nebulous. It means the problems to be
solved are totally different to each of us so the approach to build the Cloud
platform is often unique. Though many differences exist in different Cloud
computing, some features are still in common. They can be summarized as
follows:

 Very large scale: the Cloud computing platform of Google has more than
million PCs. Amazon, IBM, Microsoft also have more than 100 thousands
PCs. Even Cloud platform in an enterprise has hundreds of thousands of PCs.
In a word, the Cloud computing platform posses process power on demand.

 Virtualization: virtualization is an essential technological characteristic of

Clouds and it can help to hide the technological complexity from the user and
enable enhanced flexibility. End users can utilize services provided by Cloud
platform without knowing implementation details, i.e., users need not to
know where the services come from and how the services are executed. End
users just need an interface to invoke the services they need.

 High reliability: reliability is considered one of the main features to exploit

Cloud capabilities. Reliability denotes the capability to ensure constant
operation of the system without disruption, i.e. no loss of data, no code reset
during execution etc. Reliability is typically achieved through redundant
resource utilization.

 High scalability: the Clouds can be scale dynamically to meet the dynamic

requirement from increasing number of both tasks and users. Its capability
can be rapidly and elastically provisioned to quickly scale up and rapidly
released to quickly scale down. To end user, the capabilities available for rent
often appear to be infinite and can be purchased in any quantity at any time.

 On demand service: the Cloud platform is a huge computing resource pool

and users utilize computing resources they need. They need not book the
resources in advance (Grids do), just use whenever, wherever they want to
utilize without requiring users’ interaction with each service’s provider.

 Very low cost: the improvement of utilization rate of computing resources

Chapter 6

 126

decreases the cost of Cloud platform. Automatic management pattern in
Cloud computing also saves a lot of money than traditional management
method.

 Location independent resource pool: the provider’s computing resources are

pooled to serve all consumers using a multi-tenant model, with different
physical and virtual resources dynamically assigned and reassigned according
to consumer’s demand. The customer generally has no control or knowledge
over the exact location of the provided resources. Examples of resources
include storage, processing, memory, network bandwidth, and virtual
machines.

 Pay by use: capabilities are charged using a metered, fee-for-service, or

advertising based billing model to promote optimization of resource use.
Examples are measuring the storage, bandwidth, and computing resources
consumed and charging for the number of active user accounts per month.

6.5.2 Classification of Clouds

6.5.2.1 Deployment type

According to Wikipedia21, the deployment models of Clouds can be classified as
follows:

 Public Clouds: Public Clouds or external Clouds describes Cloud computing
in the traditional mainstream sense, whereby resources are dynamically
provisioned on a fine-grained, self-service basis over the Internet, via web
applications/web services, from an off-site third-party provider who shares
resources and bills on a fine-grained utility computing basis.

 Private Clouds: Private Clouds and internal Clouds are neologisms that some

vendors have recently used to describe offerings that emulate Cloud
computing on private networks. These products claim to "deliver some
benefits of Cloud computing without the pitfalls", capitalising on data
security, corporate governance, and reliability concerns. They have been
criticized on the basis that users "still have to buy, build, and manage them"
and as such do not benefit from lower up-front capital costs and less hands-on
management, essentially "lacking the economic model that makes Cloud
computing such an intriguing concept".

 Hybrid Clouds: A hybrid Cloud environment consisting of multiple internal

and/or external providers "will be typical for most enterprises". By integrating
multiple Cloud services users may be able to ease the transition to public

21 http://en.wikipedia.org/wiki/Cloud_computing

A Reference Architecture Based on Workflow for Building Scientific Private Clouds

 127

Clouds services while avoiding issues such as PCI compliance. Another
perspective on deploying a web application in the Clouds is using Hybrid
Web Hosting, where the hosting infrastructure is a mix between Cloud
Hosting for the web server, and Managed dedicated server for the database
server.

 Community Clouds: A community Clouds may be established where several

organizations have similar requirements and seek to share infrastructure so as
to realize some of the benefits of Cloud computing. With the costs spread
over fewer users than a public Clouds (but more than a single tenant) this
option is more expensive but may offer a higher level of privacy, security
and/or policy compliance.

6.5.2.2 Type of Cloud platform

The following list identifies the main types of Clouds (currently in use):

Infrastructure as a Service (IaaS):

The capability provided to the consumer is to rent processing, storage, networks,
and other fundamental computing resources where the consumer is able to deploy
and run arbitrary software, which can include operating systems and applications.
The consumer does not manage or control the underlying Cloud infrastructure but
has control over operating systems, storage, deployed applications, and possibly
select networking components (e.g., firewalls, load balancers). IaaS can be called
Resource Clouds and it also can divide into Data & Storage Clouds and Compute
Clouds according to its main purpose.

Data & Storage Clouds deal with reliable access to data of potentially dynamic
size, weighing resource usage with access requirements and/or quality definition.
Examples: Amazon S3, SQL Azure.

Compute Clouds provide access to computational resources, i.e. CPUs. So far,
such low-level resources cannot really be exploited on their own, so that they are
typically exposed as part of a “virtualized environment”, i.e. hypervisors.
Examples: Amazon EC2, Zimory, Elastichosts.

Platform as a Service (PaaS):

The capability provided to the consumer is to deploy onto the Cloud infrastructure
consumer-created applications using programming languages and tools supported
by the provider (e.g., java, python, .Net). The consumer does not manage or
control the underlying Cloud infrastructure, network, servers, operating systems,
or storage, but the consumer has control over the deployed applications and
possibly application hosting environment configurations. Examples: Force.com,
Google App Engine, Windows Azure (Platform).

Chapter 6

 128

The main difference between Compute Clouds and PaaS is that Compute Cloud
Providers typically offer the capability to provide computing resources typically
virtualized, in which to execute Cloudified services and applications. PaaS aims to
offer full software stacks to develop and build applications.

Software as a Service (SaaS):

The capability provided to the consumer is to use the provider’s applications
running on a Cloud infrastructure and accessible from various client devices
through a thin client interface such as a Web browser (e.g., email). The end user
does not manage or control the underlying Cloud infrastructure, network, servers,
operating systems, storage, or even individual application capabilities, with the
possible exception of limited user-specific application configuration settings.
Examples: Google Docs, Salesforce.com.

Figure 6.8. Type of Clouds and related examples

A Reference Architecture Based on Workflow for Building Scientific Private Clouds

 129

Overall, Cloud Computing is not restricted to Infrastructure/Platform/Software as
a service, even though it provides enhanced capabilities which act as enablers to
these systems. As such, I/P/SaaS can be considered specific “usage patterns” for
Cloud systems which relate to models already approached by Grids, Web services
etc. Some real example on different Clouds Type can be summarized using Figure
6.8.

6.5.3 Our understanding on Cloud computing

Summary can be made on Cloud computing from the previous sections as that
Cloud computing platform is an automatic problem solving environments which
collect huge computing power and users can get the services they need from
Cloud platform without knowing about any technical details. It not only has the
character of super process capability Grids had, but also include the good features
Web 2.0 possessed such as low cost, easy of use, pay by use.

So based on our understanding, our definition for Cloud computing is presented as
follows:

Cloud computing is a specific problem solving environment based on large scale
resources pool (consist of cluster, Grids, Desktop Grids, super computer or
hybrid platform); It encapsulates all technological details through virtual
technology and can provide end users with on demand provision, non-trivial
quality of service and pay by use, easy of use, high level program interface; End
users can utilize all these services provided by Cloud platform in a very simple
way without knowing where these services come from and on what kinds of
platform/ system/ infrastructure these services run.

According to our understanding on Cloud computing, further research on Cloud
computing in computational science will be made. Our general goal is that: Firstly,
we will build our Private Cloud experimental platform and the Cloud platform
will try to avoid the problems presented in Section 6.4. Secondly, try to develop
some interfaces to make them inter-operate with Public Clouds. The detail
description will be made in the next section.

Chapter 6

 130

6.6 A Reference architecture of scientific Private

Clouds

Cloud computing platforms such as Amazon EC2 provide customers with flexible,
on demand resources at low cost. However, while existing offerings are useful for
providing basic computation and storage resources, they fail to consider these
factors such as security, custom and policy. So many enterprises and research
institutes would not like to utilize those Public Clouds. According to
investigations on real requirements from scientific computing users made in China,
the project “YML-PC” is started to build Private Clouds and hybrid Clouds
environments for them. In this chapter, we will focus on the first step of
“YML-PC” to present a reference architecture based on workflow framework
YML for building scientific Private Clouds. Then some key technologies such as
trust model, data persistence and schedule mechanism in “YML-PC” are
discussed. Finally, some experiments are made to testify the solution presented in
this paper is more efficient.

6.6.1 Introduction

Scientific computing requires an ever-increasing number of computing resources
to deliver for growing sizes of problems in a reasonable time frame and Cloud
computing paradigm holds good promise for the performance hungry scientific
community [149]. Several evaluations have testified better performance can be
achieved with lower cost by using Clouds and Cloud technology than that based
on former technology. For example, papers [150] [151] make an evaluation of
Cloud technology on public Clouds (e.g., EC2). Papers [152] [153] evaluate
Cloud technology based on Private Clouds (e.g. cluster in internal research
institute). And paper [154] shows the potential possibility to utilize volunteer
computing resources to form Clouds. Papers [155][156][157] present some
methods to improve the performance of Desktop Grid platform. Paper [158]
analyzes the cost-benefit of Cloud computing versus Desktop Grids. Papers [159]
[160] [161] introduce some Cloud solutions based on volunteer computing
resources.

An investigation is made on requirements of building their scientific computing
environments for non-large enterprises and research institutes in China. Those
issues can be summarized as follows: First, most of enterprises and research
institutes have their computing environment, but they suffer from shortage of
computing resources. Second, they would not like to spend a lot of money to
expand their computing resources. On the other hand, they hope they can make
full use of wasted CPU cycle of individual PCs in the labs and offices. Third, they

A Reference Architecture Based on Workflow for Building Scientific Private Clouds

 131

need a high level program interface to decrease their costs (time, money) on
developing their applications adapting to computing environments. Last but not
least, they would like to utilize their own computing environments for considering
the importance and security of their data. After all, these data are bought from
other corporate with high cost and they are also required to keep those data a
secret. To meet these requirements mentioned above, a project has been started
between university of science and technology of Lille, France and Hohai
university, China. Its general goal is to build Private Cloud environment which
can provide end users with a high level program interface, and users can utilize
computing resources they need without considering where these computing
resources comes from (i.e., the layer of program interface is independence of the
layer of computing resources).

YML [117] [118] [119] is a large scale workflow programming framework,
developed by PRiSM laboratories at university of Versailles and Laboratoire
d'Informatique Fondamentale de Lille (LIFL, Grand Large Team, INRIA Futurs)
at university of science and technology of Lille. The aim of YML is to provide
users with an easy-of-use method to run parallel applications on different
distributed computing platforms. The framework can be divided into three parts
which are “end-users interface”, “YML frontend” and “YML backend”.
“End-users interface” is used to provide an easy-of-use and intuitive way to
submit their applications and applications can be developed using a workflow
based language YvetteML. “YML frontend” is the main part of YML which
includes “compiler”, “scheduler”, “data repository”, “abstract component” and
“implementation component”. The role of this part is to parse parallel program
into executable tasks and schedule these tasks to appropriate computing resources.
“YML backend” is the layer to connect different Grid and Desktop Grid
middleware through different special interfaces and users can develop these
interfaces very easily. The YML is a component based framework in which
components can interact with each other through well defined interfaces and
researchers can add/modify one or several interfaces for other middlewares to
YML very simply.

Paper [162] presents a method of resource management in Clouds through a Grid
middleware. Here, we want to extend YML to build scientific Private Clouds for
non-big enterprises and research institutes. We call this project as “YML-PC”.
Three steps are needed to make this project become reality. The first step is to
integrate volunteer computing resources into dedicated computing resources
through YML and make them work coordinately. Volunteer computing resources
can be a supplement of dedicated computing resources and volunteer computing
resources based platform have the ability to expand computing resource pool
dynamically by nature. If dedicated computing resources are not enough for users,
volunteer computing resources can be utilized to implement their tasks. Users
don’t know where their tasks are run on dedicated computing resources or
volunteer computing resources, and they needn’t to know. The key issue of this
step is how to allocate tasks to different kinds of computing resources more
reasonably and make those computing resources work coordinately with high
efficiency. The second step is to develop an interface for Hadoop and make it to

Chapter 6

 132

be integrated into YML. Then some evaluations will be made on cluster
environment + Hadoop. The third step is to try to build Hybrid Clouds
environment through combining step one with step two. The solution is that: step
one can stand for a kind of Private Clouds and step two can be deployed on Public
Clouds, then YML as a workflow based framework can harness Private Clouds
and Public Clouds.

In this section, our works focus on the first step. Some research works on
extending YML to YML-PC in this dissertation can be summarized as follows:

• Evaluate the hybrid computing environment (dedicated computing resources
and volunteer PCs) with large scale scientific computing (Gauss Jordan
algorithm as an example). As far as we know, no other evaluation is made using
two different kinds of computing resources at the same time.

• Data flows. It will be added in the application file. Through adding this flow,

data persistence and data anticipated migration can be realized in YML-PC.
And it can help to improve the efficiency of platform greatly.

• Monitor and Trust model. They are introduced to monitor available status of

non dedicated computing resources and predicate their future status. Also a
method to evaluate expected execution time based on standard virtual machine
is adopted. Through this method, heterogeneous computing resources can be
changed into homogeneous computing resources and then can be evaluated.
According to this evaluation and predication on some properties (avaiability,
capability…) of computing resources, tasks can be allocated to appropriate
computing resources.

The following sections will describe the design and implementation of the
YML-based private Clouds in detail. Some basic evaluations also will be made.
Finally some conclusions and future works will be further discussed.

6.6.2 Concept stack of Cloud platform

The part will show a detail design about how to build the environment of Cloud
computing based on previous work from papers [163][131][164] [137]. As shown
in Figure.6.9, generally speaking, Cloud computing can have four main layers.
The base is the layer of “computing resources” and above this layer, “Operating
system” and “Grid middleware” can be used to harness those different kinds of
computing resources. Then “Cloud middleware” layer can help users compose
applications without considering the underlying infrastructure, i.e., this layer hides
different interfaces from different platforms/systems/middleware and provides a
uniform, high level abstraction and easy-of-use interface for end-users. The top

A Reference Architecture Based on Workflow for Building Scientific Private Clouds

 133

layer is “application layer” and Cloud platform will provide different interfaces
according to different detail requirements. Business model helps to support
“pay-by-use” model, and users can get the best services within their budget
through “bidding mechanism”.

Figure 6.9. Concept stack of Cloud platform

Next, detail explanation will be made on those layers one by one:

 Computing Resource pool : this layer consists of different kinds of
computing resources which can be clusters, supercomputer, large data center,
volunteer computing resources and some devices. It aims at providing
end-users with on-demand computing power.

 Grid middlew are and OS : the role of this layer is to harness all kinds of

computing resources in the computing resource pool. Some virtual machines
can be generated through virtual technology (for example, Xen, VMware)
based on cluster (perhaps and to be proved, also can be based on volunteer
computing resources).

 Cloud middleware layer : in the Cloud platform, Cloud middleware can be

divided into three parts according to their roles. Cloud middleware backend

Chapter 6

 134

aims to monitor all kinds of computing resources and encapsulate those
heterogeneous computing resources into homogeneous computing resources.
Cloud middleware frontend is used to parse application program into
executable sub-tasks. Cloud platform always provides end-users with higher
level abstract interface. Through parsing the applications program, this layer
can generate a file in which some necessary services (executable functions,
computing resources, third-part service library) are listed. The core of Cloud
middleware includes a “matchmaker factory” in which appropriate match can
be made based on business model between tasks and computing resources
according to their requirements and properties. Then scheduler allocates those
“executable functions” and “third part services” to appropriate computing
resources.

 Application layer : this layer is generated according to real requirements by

end users based on SOA. And SOA can make sure all the interfaces from
different service providers are common and easy to invoke.

 Business model: this model can support a pay-by-use model to end-users. It

also can help end-users get the best services within their budget.

 End user interface: The interface must be high level abstraction and easy of
use. It is very helpful for non expert computer users to utilize Cloud platform.

6.6.3 Design of YML-PC

The detail design of YML-PC is made based on concept stack of Cloud platform.
See Figure.6.10. As mentioned above, the development on YML-PC can be
divided into three steps. The components with dashed border will be developed in
the second step. In this dissertation, we will focus on the first step. So the detail
description will also focus on the design and implementation of first step of
YML-PC. YML-PC is designed to build Private Clouds for scientific computing
based on workflow. Some features of YML-PC can be summarized as:

 YML-PC can harness two kinds of computing resources at the same time and
this can help to improve computing power greatly through integrating
volunteer computing resources. At the same time, no extra cost is needed to
do that and volunteer computing resources can also help YML-PC to have the
ability of scalability in a dynamic way.

 YML-PC shields the heterogeneity of program interfaces of underlying

middleware/system/ platform and provides a high level abstraction, unique
interface for end-users.

A Reference Architecture Based on Workflow for Building Scientific Private Clouds

 135

 YML-PC can make full use of different kinds of computing resources
according to their properties. To improve the efficiency of YML-PC,
pre-scheduling and “data persistence” mechanisms are introduced into
YML-PC.

Figure 6.10. Reference Architecture of YML-PC

Now, we will explain YML-PC step by step according to its architecture layer
(see Figure 6.10).

 Computing resource pool: The computing resource pool of YML-PC consists
of two different kinds of computing resources: dedicated computing resources
(servers or clusters) and non dedicated computing resources (volunteer PCs).
As well known to us all, cluster is too expensive to scale up for a non big
research institutes and enterprises. At the same time, there are a lot of PCs
whose a lot of CPU cycles are wasted. So it is appealing (from the viewpoint
of both economic and feasibility) to harness these two kinds of computing
resources together. Computing resource pool with a lot of PCs has those
features like low cost, scalability by nature and these features are key points
for Clouds.

 OS: Operating system is the base of installing other software. Now YML-PC

and OmniRPC (used to harness dedicated computing resources) only support
Linux OS. YML-PC and XtremWeb used to collect volunteer computing

Chapter 6

 136

resources can support both Windows OS and Linux OS.

 Grid middleware: The construction of computing resource pool in YML-PC
is based on state-of-the-art technology: Grid and Desktop Grid technology.
To YML-PC, we utilize Gird middleware OmniRPC to harness cluster based
computing resources and Desktop Grid middleware XtremWeb to manage
volunteer computing resources. As well, we can utilize these two
middlewares at the same time to form computing resource pool consisting of
two kinds of computing resources. As well known to us all, traditional
scientific computing mostly run based on cluster or supercomputer and it is
necessary to make full use of this kind of computing resources. At the same
time, the power of volunteer computing is huge and it has been proved by
existed volunteer platform such as Seti@home. It is very meaningful to make
volunteer computing resources to be supplement/extension to the traditional
computing resources.

 Application layer and Interface: The main design goal of YML-PC is for

scientific computing and numerical computing. So to make scientific
computing more simply, a pseudo-code based high level interface is provided
to end-users.

 “YML frontend”, “YML backend” and the “core of YML” will be described

in the next section.

6.6.4 Core design and implementation of YML-PC

The Figure.6.11 will show us the core design and implementation of YML-PC.
We will explain these components in Figure.6.11 one by one.

YML frontend : This part is to provide end-users an easy-of-use interface and
make them only focus on the design of algorithm itself. Users needn’t take low
level software/hardware into consideration when they develop their application
programs. About the program interface of YML-PC, we still adopt the interface of
YML. For those “reusable services” (components described in section 3.2.3 of
chapter 3), two ways can do that: the first method is that users can develop those
“reusable services” by themselves or computer engineers; the second way is to
invoke those functions from common library (e.g. LAPACK, BLAS, we also call
this as “third party services”). Here what we want to emphasize is that both the
pseudo-code based program and those functions developed are reusable and they
both are platform-independent and system independent. System independence
means that users need not to know what kinds of operating system/middleware are
utilized. Platform independence stands for that their code can be run on any
platform (cluster, Grids, Desktop Grids) without any change. This is to say, these
codes developed by users can be reused without caring about the middleware,

A Reference Architecture Based on Workflow for Building Scientific Private Clouds

 137

system and platform “YML backend” utilized. You can use OmniRPC on a
grid/cluster platform or XtremWeb on a Desktop Grid platform or both, but users’
code can be reused without any change.

Figure 6.11. Core Part of YML-PC

The core of YML: Three components are included in this layer: YML register,
YML compiler and YML scheduler.

YML register is used to register “reusable services” and “third party services”.
Once registered, these services can be invoked by “YML scheduler”
automatically.

YML compiler is composed of a set of transformation stages which lead to the
creation of an application file from “pseudo-code” based program. The application
file consists of a series of events and operations. Events are in charge of sequence
of operations. In other words, which operation can be executed in
parallel/sequencial is decided by the events table. Operations refer to those
services registered by “YML register”. One important work made in this chapter
is that “data flow table” is generated in application file. Through the “data flow
table”, data dependence between operations can be found (see “data flow table” in
Figure.6.12). As well know to us all, these data dependences determine the

Chapter 6

 138

execution way (in parallel/sequence) of different operations. According to these
data dependence, pre-scheduling mechanism can be realized (see column “node”
in “IP address table” of Figure.6.12) Then collaborating the “IP address table”
(see it in Figure.6.12), data persistent and data anticipated migration can be
realized. The general idea of this part of work can be described using Figure.6.12.

Figure 6.12. General Idea of “Data Persistence” in YML-PC

YML scheduler is a just-in-time scheduler. Its role is in charge of allocating the
executable “YML services” to appropriate computing resources shielded by
“YML back-end layer”. “YML scheduler” is always executing two main
operations sequentially. First, it checks for tasks ready for execution. This is done
each time when a new event is introduced and leads to allocate tasks to the “YML
back-end”. The second operation is to monitor those tasks currently being
executed. Once tasks have started to execute, the scheduler regularly checks
whether these tasks have changed to the “finished state”. The scheduler will push
new task with its input data set and related “YML services” to underlying
computing node when the node’s state is completion or unexpected error.

To make the process presented above a reality, two parts of works are made in this
chapter. The first is to introduce a monitor and predicate model for volunteer
computing resources. It is well known that volatility is the key character of
volunteer computing resources and if we don’t know the regularity of dynamicity
volunteer computing resources owned, the problem with data dependence between
operations can’t run on Desktop Grid platform. The reason is that frequent task
migration will cause the program can’t be finished for ever. We call this as “dead
lock of tasks”. To avoid this situation, we introduce a monitor and predict model
“TM-DG” [165]. “TM-DG” is used to predict the available probability of
computing nodes in the Desktop Grid during a certain time slot. The time slot
depends on users’ daily behaviours. For example, the availability of computing
nodes in the lab has relation to students’ school timetable. If students go to take

A Reference Architecture Based on Workflow for Building Scientific Private Clouds

 139

classes, their computers in the lab can be utilized to make scientific computing. So
the choice of time slot is related to time slot of classes. It is because two hours is
needed for each class that the time slot in [165] is set as 2 hours and users can
choose appropriate time slot according to its real situation. “TM-DG” collects two
bodies of independence evidence, 1) percentage of completion of the allocated
task, and 2) an active probe by a special test node, based on the time slot.
Considering the “recommendation evidence” from other users, dempster-Shafer's
theory [168] is used to combine these three bodies of evidence to get the degree of
node trustworthy. The result of “TM-DG” can be expressed by a four-tuple <I, W,
H, m(T)>, in which “I” represents the identity of computation node, “W”
represents the day of the week, “H” represents a time interval in a day and “m”
represents the probability of node availability. The four-tuple <node I, Monday, 1,
0.6> represents the time slot is from 0 to 2 a.m. on Monday, the probability of task
successful execution on node “I” during this time slot is 0.6. So in this chapter,
monitor component in “YML-backend” and schedule component in “Core of
YML” are based on this time slot.

The second part of works: to make full use of computing resources, evaluation on
capability of heterogeneous computing nodes has to be made. So a concept of
standard virtual machine (VM) is proposed in this paper. The standard VM can be
set in advance. For example, the VM is set through a series of parameters like that
(Ps, Ms, Ns, Hs), in which “Ps” stands for CPU process power of VM (2.0 Hz
CPU, for example), “Ms” represents memory of VM (1G Memory), “Ns” means
network bandwidth of VM (1G) and “Hs” stands for hard space left (10 G). Users
can add/minus the number of parameters according to real situation. A real
computing node “Rm” can be described as (Pr, Mr, Nr, Hr). The capacity (Crm)
of “Rm” can be presented as follows: “Crm”= a1*Pr/Ps+a2*Mr/Ms+a3*Nr/Ns+a4
*Hr/Hs, in which a1+a2+a3+a4=1. The value of ax (x=1, 2, 3, 4) can be set
according to different influence on final results from different parameters in real
situation. We can set an appropriate value to ax (x=1…n) based on history
information. Through VM, expected execution time of tasks on a computing node
can be estimated.

Scheduler can choose appropriate computing nodes according to predictions of
availability of computing resources (from “TM-DG”) and time needed to execute
a task on this node (from “VM”). Scheduler will get the detail time and form the
“scheduler table” and then schedule tasks to appropriate computing nodes. The
“YML scheduler” mechanism can be described using Fig.6.13. When there is fault
generated, the task will be re-scheduled. Future research about fault tolerance in
YML-PC will focus on two ways: 1) allocate the same task to three or more
volunteer computing nodes (Google always keep three copys for the same data
block); 2) preemptive scheduling based multi-queue schedule mechanism will be
examined.

Chapter 6

 140

Figure 6.13. Description of YML Scheduler

YML backend : YML backend encapsulates different underlying middlewares
and provides consistent executable environment to tasks from the layer “core of
YML”. Concurrently it permits to utilize one or several middlewares through
providing a specific interface for each middleware. The back-end layer consists in
three parts named Monitor, worker coordinator and data manager. In general,
YML backend send requests for executing a task on a computing node and if the
task finishes, it also notifies to scheduler that the task is terminated successfully.
Data manager is a component for managing all data exchanges between nodes
and data server. This component provides two services: distributing appropriate
data to workers and retrieving the final results. Worker coordinator maintains a
list of active requests and a list of finished requests. The status can change
dynamically according to the status of computing nodes. It will allocate those
tasks from “YML scheduler” to appropriate computing nodes in computing
resource pool. Monitor component is used to monitor the status of computing
nodes. The monitoring mechanism is based on users’ daily behavior which is
adopted to predict available time of computing resources and make prediction for
data migration.

A Reference Architecture Based on Workflow for Building Scientific Private Clouds

 141

6.6.5 Primary experiments on YML-PC

In this section, four primary experiments (emulations) are made to show: 1) the
computing resource pool can be scaled very easily; 2) great improvements on
platform efficiency can be achieved through emulating the data persistence; 3)
great improvements on platform efficiency can be made through emulating
appropriate task distribution between different virtual organizations.

Here Max-par BbGJ algorithm [166] [167] is used. According to the algorithm, q2
is the number of block-counts of matrix. And the number of total tasks the
algorithm will be generated is q3. All these experiments are based on
YML+OmniRPC, YML+XtremWeb, YML+OmniRPC and XtremWeb on
Grid’5000 and Polytech Lille platform. In our experiments, the computational
resources can be described as follows:

Table 6.1 computing resources in PolyTech Lille platform

Number of PCs CPU Memory
32 AMD athlon 2.2, GHz 2G
16 AMD athlon 2.7 GHz 2G
16 Pentium 2.6 GHz 2G
16 Inter celon 2GHz 1G
16 AMD athlon 2.3 GHz 2G
4 Intel Pentium 2.4GHz 512M
8 Intel Celeron 1.4GHz 512M

Table 6.2. Parts of resources in Grid’5000 platform.

Site Nodes CPU/Memory
Nancy 120 2 × Inter xeon , 1.6GHz/2GB
Nancy 47 2 × AMD opteron, 2GHz/2GB
Lyon 70 2 × AMD opteron, 2.4GHz/2GB

Bordeaux 93 2 × AMD opteron, 2.6GHz/2GB
Orsay 216 2 × AMD opteron, 2.0GHz/2GB

Rennes 99 2 × AMD opteron, 2.0GHz/2GB

6.6.5.1 YML-PC can get enough computing resources through

collecting Volunteer computing resources

Chapter 6

 142

In this experiment, we will present the performance of YML-PC when it collects
volunteer computing resources as supplement or extension of dedicated
computing resources. To testify this character of YML-PC, we choose the
Polytech Lille platform as our experiments environment. In this experiments, we
will set the block-counts of sub-matrix is 8*8, i.e., at the least 8*(8-1) = 56
computing nodes can make sure all the tasks can be executed in parallel. We
suppose we have 10 dedicated computing resources and clearly, it is not enough to
make tasks totally executed in parallel. So we made two kinds of expansions by
collecting volunteer computing resources. The first one is to use 20 volunteer
computing nodes and the second case is to collect 50 volunteer computing nodes.
We change the block-size as follows: 100*100, 250*250, 500*500 and 750*750.
Of course, dedicated computing resources are harness through OmniRPC and
volunteer computing resources are collected by XtremWeb. YML-PC can support
those two kinds of middleware at the same time through Multi-backend model.

Figure 6.14. YML-PC can collect VC as the supplement of DC

To state conveniently, we call volunteer computing resources as “VC” and
dedicated compouting resources as “DC”. From the Figure 6.14, we can know the
performance of Max-par BbGJ algorithm using 10 DC and 20 VC is far better
than that of just using 10 DC and adopting 10 DC and 50 VC can get better
performance than that utilizing 10 DC and 20 VC. In summary, we can conclude
that the performance of Max-par BbGJ algorithm can be improved greatly through
collecting more computing power of VC. And this experiment also testifies
YML-PC has the ability to harness two kinds of computing resources to enlarge

A Reference Architecture Based on Workflow for Building Scientific Private Clouds

 143

the computing resources pool.

But here, we want to emphasize two points:

 The first is that, the situation for Max-par BbGJ algorithm in this experiment
is that Max-par BbGJ algorithm can be improved. Just as we have explained
that in the introduction of this experiment. 10 DC is not enough to make all
the tasks executed in parallel. We just use this experiment to show that, when
the DC is not enough for you to make large scale computing, you can choose
YML-PC to collecting VC as the supplement of your DC without any extra
costs. It is a very good solution for scientists to make large scale scientific
computing.

 The second is that, we don’t calculate the speed-up after collecting more VC

into the platform. This experiment is just to show the computing resources of
YML-PC can be expanded through collecting VC and we don’t care about
what the degree of improvement on Max-par BbGJ is. To the degree of
improvement, if necessary, we will evaluate that on real platform in near
future.

Summary: This experiment testifies the YML-PC support to collect VC to be
supplement of DC and it is a good solution for scientific computing. The reason is
that almost no costs are needed for using those VC. As will known to us all, VC
based platform has the ability to support the dynamic scale up/down of computing
resources. So the next experiment, we will present the computing resources of
YML-PC can be scaled up though enlarge the number of VC.

6.6.5.2 YML-PC can be scaled up very easily

In this experiment, we want to express the YML-PC can be scaled up through
increasing or decreasing the number of VC. We use the Grid5000 platform and we
use YML and XtremWeb as our middleware. The reason is that XtremWeb can be
easily scale up for its “pull model” based task allocation mechanism. In this
experiment, we set block-size of sub matrix is 1500*1500.

To state more conviently, “R-B” in Figuer 6.15 represents the computing resource
pool before scaling which has 10 computing nodes, while “R-A” stands for the
computing resources pool scaled up which has 20 computing nodes. The progress
of scale up is made during the process of program execution.

Figure.6.15 shows us that when the block-counts are less than 4*4, little influence
on the elapsed time whether computing resource pool scales up or not. But when
the block-count is more than 4*4, scalability of computing resource pool has an
important influence on the elapsed time. The reason is from the algorithm itself.
When the block-count is small, tasks generated are not much, 10 computing

Chapter 6

 144

resources sometimes are enough for generated tasks. So the influence on the
elapsed time is small. With the increasment of block-count of sub-matrix, the
generated tasks increased greatly. More computing resources are needed. So the
influence on elapsed time becomes more obvious. In a word, from the Figure.6.15,
we can conclude that whether the block count is small or large, scalability of
computing pool can help to improve the efficiency of platform. At the same time,
this experiment testifies YML-PC has the ability of scalability. The scalability
comes from the character of Desktop Grids platform. As well known to us all, in
desktop Grid platform, when the computing resource is idle, it can ask for tasks to
execute and when the computing node leaves from the platform for some reasons,
the tasks executing in this node will be rescheduled. The action of “join” and
“leave” will not influence the overall Desktop Grids platform. YML-PC has the
ability of scalability just inheriting from Desktop Grids platform through provding
a special interface to XtremWeb.

Figure 6.15. Feature of Scalability of YML-PC

6.6.5.3 Data Persistence in YML-PC

In this experiment, we want to show “data persistence” technology can help to
improve the performance of YML-PC. “Data persistence” method has been
introduced in section 6.6.4 of this chapter. To do this experiment, “data flow”
table will be generated through parsing the application program by “YML
Compiler”. Tasks will be scheduled according to “data flow” to make “data

A Reference Architecture Based on Workflow for Building Scientific Private Clouds

 145

persistence” become reality. The general process can be described uing Figure
6.16. Pseudo based program for YML (see appendix A) will be parsed through
“YML Compiler” and then generate a “Data flow” table. The table consists of ID
of computing node, name of operation, input and output. See detail in Figure 6.12.

Figure 6.16. Data Flow Table of YML-PC

In this experiment, we set block-size of sub matrix is 1500*1500 and change the
block-count as follows: 2*2, 3*3, 4*4, 5*5, 6*6, 7*7 and 8*8. The middleware is
YML+OmniRPC. As we know, YML can generate the “data flow” table, but now,
the backend OmniRPC doesn’t support node-to-node based data transfer. So this
experiment is simulation based. The method can be described as follows: when
there is data migration (from data server to computing node) needed during the
process of program running, we will generate a new 1500*1500 sub-matrix in
romote computing nodes instead of transfer related data to them from data server.
When a task is finished in a romote node and the result isn’t the final result, we
will do nothing. We just write the final result to the data server.

Through parsing YML-PC based Max-par BbGJ algorithm, we can get the data
transfer model like Figuer.6.17. The Figure shows the siutaion of data transfer
model in BbGJ algorithm which is divided into 5*5 blocks. From chapter 4, we
know there are five iterative steps during the process of program running and the
Figure shows the data transfer model between step one and step two. Line reprents
the data transfer in the same iterative step and dot line stands for the data transfer
between steps.

Chapter 6

 146

Figure 6.17. Data transfer model in Max-par BbGJ algorithm

A Reference Architecture Based on Workflow for Building Scientific Private Clouds

 147

The final simulation results can be described using Figure.6.18.

Figure 6.18. Data persistence in YML-PC

Figure.6.18 shows that data persistence is very important for scientific computing
platform, especially to scientific computing with much data to deal with. It can
save a lot of time and thus improve the efficiency of platform. With the increase
of block count of sub-matrix, more tasks are generated and therefore a lot of data
transfers between data server and workers are generated. The better performance
can be achieved under the help of “data persistence” technology. So the future
work will focus on develp an interface for the middleware which support
node-to-node based data transfer (as far as we know, SmartGridSolve support
node-to-node data transfer model, so perhaps we will develop a new component
for YML to support the SmartGridSolve in near future).

6.6.5.4 Schedule mechanism in YML-PC

One of most important advantages of YML-PC is it support harnessing two kinds
of computing resources at the same time. As we stated in chapter 5, to volunteer
computing resources based platform, schedule mechanism is very important. So
this experiment will show that appropriate selecting computing resources based on
trust model in YML-PC is also important. In this experiments we set block-size is
1500*1500 and change block-count as follow: 2*2, 3*3, 4*4, 5*5, 6*6 and 7*7.
The middleware is YML+Xtremweb. The experiment is based on Grid5000

Chapter 6

 148

platform.

Suppose, we can get the totally correct information about available time of
volunteer computing resources through “TM-DG” model. In fact, the performance
of “TM-DG” has been proved in paper [165] and [169] and it can achieve better
performance in real Desktop Grid environment. We also create other two
situations through disconnect computing nodes from the platform. Once case is
10% of total computing nodes will leave from the platform and the other is to let
20% of total number of computing nodes be removed from the platform.

Figure 6.19. Schedule mechanism in YML-PC

‘No fault’ in Figure.6.19 represents the no faults happen during the process of
program execution. In other words, the trust model is totally correct. ‘10% faults’
stands for 10% of computing nodes in YML-PC fail during the process of
program execution. In other word, the accurate rate of trust model is 90%. ‘20%
faults’ stands for 20% of computing nodes in YML-PC fail during the process of
program execution. This is to say, the accurate rate of trust model is 80%.

Figure.6.19 testifies appropriate computing resources are chosen to execute tasks
is very important. Improper match making between computing resources and tasks
will decrease the efficiency greatly. So monitoring the volunteer computing
resources in YML-PC is very important and we had better find the regularity of
available computing nodes behind its appearance through monitoring. Trust model
in paper [165] can be utilized in YML-PC which consists of volunteer computing
resources and it can be improved by adopting better behavior model to describe
users’ behavior regularity.

A Reference Architecture Based on Workflow for Building Scientific Private Clouds

 149

6.6.6 Conclusion and future work

Cloud computing has gained great success on search engine, social e-network,
e-mail and e-commercial. Amazon can provide different level computing
resources to users in the way of pay-by-use. Many research institutes, such as
university of Berkeley, Delft University of Technology and so on, have made
evaluations on Amazon Cloud platform. At the same time, Kondo et al try to
evaluate the cost-benefits of public Clouds and Desktop Grid platform. Its
conclusion shows that Desktop Grid platform is promising and it can provide on
demand computing resources for Cloud platform with low costs. So based on the
researches mentioned above and real situation of non-big enterprises and research
institutes in China, this paper extends YML framework and presents YML-PC,
which is a workflow based framework for building scientific private Clouds. The
project YML-PC will be divided into three steps:

 Build private Clouds based on YML through harnessing dedicated computing
resources and volunteer computing resources and make them work
coordinately with high efficiency.

 Extend YML to support Hadoop and run Hadoop on cluster based virtual

machines. Through Hadoop, YML’s application can support Public Cloud
platform (such as Amazon EC2).

 Combine step 1 and step 2, build a Hybrid Clouds based on YML to utilize

computing resources both in Public Clouds and Private Clouds. This paper
focuses on step 1. To improve the efficiency of YML-PC, “trust model” and
“data persistence mechanism” are introduced in this paper. Simulations testify
our idea is on the right way to build YML-PC.

Future works will focus on developing components to make YML-PC a reality.
Then more users’ behavior model will be researched to improve the accuracy of
prediction on available “time slot” of volunteer computing nodes. Fault-tolerant
based schedule mechanism is another key issue of our future work. A new idea,
which is to deploy virtual tool (Xen, VMware for example) on volunteer
computing resources and form several virtual machines on volunteer computing
node, is to be evaluated.

6.7 Conclusion

The works of this chapter can be devided into two parts:

Chapter 6

 150

 The fisrt part is mainly to introduce state of the art technology on Cloud
computing and summarize its common characters. According to the survey of
existing Cloud platforms, viewpoints on Cloud computing from many famous
scientists and our experiences of scientific computing on Grids, we present
our understanding on Cloud computing.

 The second part is to present an reference architecture (YML-PC) for building

Private Cloud platform according to our works in part one and real
requirements from non-big enterprises and research institutes. YML-PC is an
extension of YML project and the main works on extending YML in this
dissertation focus on how to make dedicated computing resources and
volunteer PCs work coordinately. The details can be described as follows:
some evaluations based on two kinds of computing resources are made using
Gauss Jordan algorithm. Then some technologies which help to improve the
efficiency of platform (data persistence, general evaluation on capability of
computing resources, appropriate schedule mechanism) are discussed and
emulated on Grid and Desktop Grid environments.

Cloud computing arouses great interests from scientific researchers and IT
enterprises since 2008. A lot of people present their understandings on Cloud
computing and many products have been launched by some famous IT enterprises
such as Google, IBM, Amazon and Microsoft. But up to now, no agreement is
achieved on what Cloud computing is. This chapter analyzed some famous Cloud
architectures provided by famous enterprises and research institutes and found the
common features behind different apprearances of different Clouds, which are
easy-of-use, low cost, high performance and services on demand… Then a special
view from Grids to observe Clouds is made and summarized a series of problems
exposed in the process of using Grid systems (for example, our experience on
Grid5000 and other experiences on world wide famous Grid projects, such as
TeraGrid, EGEE). Those problems can be summarized as follows: Grids platform
is hard to use; Grid middleware is hard for end users to program; schedule
mechanism in many real Grid systems is the bottleneck of achieving better
performance; data transfer model in many Grid middlewares is based on server-
worker-server model. According to those insignificances presented above of
existing Grid systems, our viewpoint on Cloud computing is proposed and a
definition is made. Our works on Cloud computing is based on this definition. We
also summarized some other viewpoints of Cloud computing on type and
deployment type. Generally speaking, Cloud system can be divided into Private
Clouds, Public Clouds and Hybrid Clouds according to its deployment type. It
also can be classified into Software as a service, Platform as a service and
Infrastructure as a service according to its type. According to our definition and
real requirements from non-big enterprises and research institutes, a kind of
Private Cloud platform which belongs to Platform as a service, will be proposed.
In this Private Cloud platform, we will try to improve the insignificances
presented above of Grid systems.

Based on our research on Cloud computing, YML-PC a reference architecture
based on workflow for build Private Cloud platform, is presented to make

A Reference Architecture Based on Workflow for Building Scientific Private Clouds

 151

scientific computing for end users in a simple way. The most advantage of
YML-PC is that it can harness two kinds of computing resources which are
dedicated computing resouces and volunteer computing resources, at the same
time. Through collecting volunteer computing resources, the computing power
can be improved greatly without any extra costs. Volunteer computing also can
help YML-PC to have the ability of dynamic sacalability. To make sure the two
kinds of computing resources can work coordinately, a trust mode “TM-DG” is
introduced to predicate tha available time of volunteer computing resources. To
improve the performance of YML-PC, data persistent technology is also
introduced into YML-PC. Finally, some primary experiments on our Private
Clouds tesify our viewpoints.

Chapter 6

 152

Conclusion and Future Works

 153

Chapter 7

Conclusion and Future Works

The goal of this dissertation is to find a solution to make large scale scientific
easily and try to reduce time/costs to solution.

To achieve the target, this dissertation makes summary on evolution of large scale
scientific computing platform. Nowadays, Grids and Desktop Grids are two main
technologies for large scale scientific computing. So this dissertation makes a
survery on Grid and Desktop Grid computing and introduces some famous Grid
and Desktop Grid platforms and middlewares.

To evaluate the experimental environments and tools, research on a classical
numerical algorithm Gauss Jordan algorithm which is used to invert large scale
matrix has been made in this dissertation. Through analysis on data dependence
between operations, a new parallel programming adapted version (Max-par BbGJ
algorithm) for block based Gauss Jordan is presented. The advantage of Max-par
BbGJ algorithm is that it considers both intra-iterative step based parallelism and
inter-iteratives step based parallelism, while the tradtional one just takes
intra-iterative step based parallelism into consideration. Max-par BbGJ algorithm
makes sure each operation in algorithm can be executed in parallel when its
executable conditions are met, i.e., all the operations can be executed totally in

Chapter 7

 154

parallel. Experiments testify Max-par BbGJ can achieve better performance than
traditonal one when the computing resoruces are enough. At the same time, BbGJ
algorithm is used to evaluate different experimental environments and tools.

To find a way to make large scale scientific computing easily, research on
programming model on different middlewares has been made. Experiments show
that YML can provide a higher level programming interface which is very easy to
use for end users. What we want to emphasize here is that OmniRPC and
XtremWeb are also provide high level interface, but they are still difficult for end
users to program. But the interface of YML is pseudo code based and user can
develop their application without knowing any knowledge about programming.
Also the code developed using YML can be run both on Grid systems and
Desktop Grid systems. This is very important feature for YML and as far as we
know, no other middleware can support both Grid enviroments and Desktop Grid
environments. Then evaluation on overhead of YML is made and experiments
show YML has acceptable overhead. More importantly, the component in YML
can be reused in different algorithm which can decrease the burden of users’
programming. Users just pay more attention on algorithm itself and develop
pseudo code based program for YML. This will reduce time and costs to solution
of their scientific computing greatly. To summary, YML is a good solution for
making large scale scientific computing. To get better performance, influence
from task granularity on different experimental environment is analyzed and tests
show fine-grain based task parallel programs don’t always achieve better
performance than that of coarse-grain based in Desktop Grid environment.
Experiments also tesify the data persistence technology can help to improve the
performance in both Grid and Desktop Grid environments. Finally, schedule
mechanism should take heterogenous (CPU, network, memory) into consideration.
Only in this way, stable performance can be achieved in Desktop Grid
environment.

Based on analysis on Grid environment and Desktop Grid environment made
above and the characters of Cloud computing, a reference architecture (YML-PC)
for building Private Clouds is proposed in this dissertation. YML-PC is an
extension of YML. The computing resources pool of YML-PC consists of two
kinds of computing resources which are dedicated computing resouces and
volunteer computing resources. Volunteer computing resources can be the
extension/supplement of dedicated computing resurces. There are two
adavantages to do that. First, processing power of volunteer computing resources
is huge and it is easy to scale up/down the capability of platform. Through
collecting volunteer computing resouces, YML-PC can provide computing power
on demand. Second, the costs for utitlizing volunteer computing resouces are very
low and it can decrease the costs of making large scale scientific computing.
YML-PC also inherits a series of good features of YML in its easy-to-use
interface and component reuse. This helps YML-PC to become a good solution
for scientific computing. To make dedicated computing resources and volunteer
computing resources work coordinately and efficiently, “TM-DG” and “monitor”
model are introduced which help to predicate the regularity of avaialbe time of
volunteer node in Desktop Grid environment. To get better performance of

Conclusion and Future Works

 155

YML-PC, “data transfer model” is also discussed and “data persistence”
technology is introduced in YML-PC. Finally, experiments tesifiy the computing
resouces of YML-PC can be scaled up very easily, thus the performance of
platform can be improved greatly. Simulation of data perisitence on YML-PC
show that “data persistence” can help to improve the performance of YML-PC.
Experiments also tesify “TM-DG” and “Monitor” model can help to improve the
performance of platform through allocating tasks to appropriate compouting
resources (the judgement on whether the computing resrouce is appropriate or not
is based on available time predicition from “TM-DG” and general evaluation
based on “VM”).

Future works will focus on making YML-PC a reality.

First, develop an interface for a middleware which supports worker-to-worker
data transfer model. This helps to realize “data persistence” in YML-PC.
Second, make some experiments on volunteer computing resources based on
virtual technology (xen or VMare based). The aim of this work is to judge
whether virtual machine can help to improve the performance of Desktop Grid
environment or not.
Third, develop an interface for Hadoop and thus YML-PC can support Hadoop.
Some experiments based on Public Clouds through Hadoop will be made.
Fourth, Hybrid Clouds based on XtremWeb, OmniRPC and Hadoop can be built
and some evaluations will be made on them.

Appendix

 156

Appendix

 157

Appendix

Max-Par BbGJ for YML

<?xml version="1.0"?>
<application name="gauss_jordan">
 <description> produit matriciel pour deux matrice carree
 </description>
<graph>
 par
 seq(k:= 0; blockcount-1)
 do
 wait(flag[k-1][k][k]);
 compute inversion(A[k][k],B[k][k],blocksize,blocksize);
 compute EvalMat(B[k][k],A[k][k],blocksize);
 notify(flag[k][k][k]);
 notify(flag[k][k][k+blockcount]);
 enddo

//
 par(k:=0; blockcount-2) (j:=k+1; blockcount-1)
 do
 wait(flag[k][k][k] and flag[k-1][k][j]);
 compute prodMat(A[k][k],A[k][j],blocksize);
 notify(flag[k][k][j]);
 enddo
//
 par(k:=1; blockcount-1) (j:=0; blockcount-1)
 do
 if (k gt j) then
 wait(flag[k][k][k] and flag[k-1][k][j+blockcount]);
 compute prodMat(A[k][k],B[k][j],blocksize);
 notify(flag[k][k][j+blockcount]);
 endif
 enddo
//
 par(k:=0; blockcount-1) (i:=0; blockcount-1)
 do
 if (i neq k) then
 wait(flag[k][k][k] and flag[k-1][i][k]);
 compute mProdMat(A[i][k],A[k][k],B[i][k],blocksize);
 notify(flag[k][i][k+blockcount]);
 endif
 enddo
//
 par(k:=0; blockcount-2) (i:=0; blockcount-1) (j:=k+1; blockcount-1)
 do
 if (i neq k) then
 wait(flag[k][k][j] and flag[k-1][i][k] and flag[k-1][i][j]);
 compute prodDiff(A[i][k],A[k][j],A[i][j],blocksize);
 notify(flag[k][i][j]);
 endif
 enddo
//
 par(k:=1; blockcount-1) (i:=0; blockcount-1) (j:=0; k-1)

Appendix

 158

 do
 if (i neq k) then
 wait(flag[k][k][j+blockcount] and flag[k-1][i][k] and flag[k-1][i][j+blockcount]);
 compute prodDiff(A[i][k],B[k][j],B[i][j],blocksize);
 notify(flag[k][i][j+blockcount]);
 endif
 enddo
endpar
</graph>
</application>

Bibliography

 159

Bibliography

[1] Scientific Computing, Editor-in-Chief Gene H. Golub, Springer (1997)

[2] McCormick, B. H. 1988. Visualization in scientific computing. SIGBIO News l. 10, 1 (Mar. 1988), 15-21.

[3] G. S. Almasi and A. Gottlieb. Highly parallel computing. 1989.

[4] D.E.Culler, J.P.Singh, and A.Gupta. Parallel Computer Architecture: A Hardware Software Approach.
Morgan Kaufmann Publishers Inc., August 1998.

[5] M.J. Flynn. Some computer organizations and their effectiveness. IEEE Transactions on Computing,
C-21:948_960, 1972.

[6] Hwang, K. 1992 Advanced Computer Architecture: Parallelism, Scalability, Programmability. 1st. Mc
Graw-Hill Higher Education.

[7]A. Barak and O. La'adan. The mosix multicomputer operating system for high performance cluster
computing. Journal of Future Generation Computer Systems, 13(4/5): 361_372, March 1998.

[9]S. Dwarkadas, P. Keleher, A.L. Cox, and W. Zwaenepoel. An evaluation of software distributed shared
memory for next-generation processors and networks. In Proceedings of the Twentieth Symposium on
Computer Architecture, pages 144_155, May 1993.

[10]P. Keleher, S. Dwarkadas, A.L. Cox, and W. Zwaenepoel. Treadmarks: Distributed shared memory on
standard workstations and operating systems. In Proceedings of the Winter 94 Usenix Conference, pages
115_131, January 1994.

[11] Foster, I. and Kesselman, C. 1999. The Globus toolkit. In the Grid: Blueprint For A New Computing
infrastructure, Morgan Kaufmann Publishers, San Francisco, CA, 259-278.

[12] Foster, I., Kesselman, C., and Tuecke, S. 2001. The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. Int. J. High Perform. Comput. Appl. 15, 3 (Aug. 2001), 200-222.

[13] Foster, I: What is the Grid? A three point checklist. http://www-fp.mcs.anl.gov/~foster/Articles /What Is
The Grid.pdf

[14]David P. Anderson, Gilles Fedak: The Computational and Storage Potential of Volunteer Computing.
CCGRID 2006: 73-80

[15]Foster, I. and Kesselman, C. Globus: A Toolkit-Based Grid Architecture. The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann, 1999, 259-278.

[16]M. Sato, T. Boku, and D. Takahashi, “OmniRPC: a Grid RPC system for Parallel Programming in
Cluster and Grid Environment.” in The 3rd IEEE International Symposium on Cluster Computing and the
Grid, 2003, pp. 206–.

[17]M. Beck, J. Dongarra, and J. S. Plank, “Netsolve: A massively parallel grid execution system for scalable
data intensive collaboration,” IPDPS, vol. 11, p. 223a, 2005

[18]Bernholdt, D., Bharathi, S., Brown, D., Chanchio, K., Chen, M., Chervenak, A., Cinquini, L., Drach, B.,
Foster, I., Fox, P., Garcia, J., Kesselman, C., Markel, R., Middleton, D., Nefedova, V., Pouchard, L.,
Shoshani, A., Sim, A., Strand, G. and Williams, D. The Earth System Grid: Supporting the Next Generation
of Climate Modeling Research. Proceedings of the IEEE, 93 (3). 485-495. 2005.

[19] G. Fedak, C. Germain, V. Neri, and F. Cappello, "XtremWeb: A Generic Global Computing System,"
The 1st IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID 2001): pp.
582-587, May 2001.

Bibliography

 160

[20] D.P. Anderson, BOINC: A system for public-resource computing and storage, The Fifth IEEE/ACM Intl.
Workshop on Grid Computing, GRID'04, Nov. 2004, pp .4-10.

[21]M. Baker, R. Buyya and D. Laforenza The Grid: International Efforts in Global Computing. Proceedings
of the International Conference on Advances in Infrastructure for Electronic Business, Science ,and
Education on the Internet (SSGRR 2000), l`Aquila, Rome, Italy, July 31 - August 6. 2000.

[22]I. Foster, J. Geisler, W.Nickless, W. Smith, and S. Tuecke. Software infrastructure for the I-way high
performance distributed computing experiment. In In Proceedings of the 5th IEEE Symposium on High
Performance Distributed Computing, pages 562-571, 1997.

[23]J. Nabrzyski, J. M. Schopf, J. W. Eglarz Grid Resource Management: State of the Art and Future Trends.
Kluwer Academic Publisher. 2003.

[24]M. D. Brown et al., The International Grid (iGrid): Empowering Global Research Community
Networking Using High Performance International Internet Services, April 1999,
http://www.globus.org/research/papers.html

[25]S. Smallen et al., Combining Workstations and Supercomputers to Support Grid Applications: The
Parallel Tomography Experience, 9th Heterogenous Computing Workshop (HCW 2000, IPDPS), Mexico,
2000

[26]Menascá, D. A. and Casalicchio, E. 2004. QoS in Grid Computing. IEEE Internet Computing 8, 4 (Jul.
2004), 85-87.

[27]Toma, I., Foxvoug, D., Jaeger, M. C., Roman, D., Strang, T., Fensel, D.: Modeling QoS Characteristics in
WSMO. In: the Middleware for Service Oriented Computing Workshop (MW4SOC 2006), Melbourne,
Australia (2006)

[28]Zhang, C., Chang, R.N., Perng, C., So, E., Tang, C., Tao, T.: QoS-Aware Optimization of
Composite-Service Fulfillment Policy. In: IEEE SCC. pp. 11-19. IEEE Press (2007)

[29]M. Baker, R. Buyya, and D. Laforenza, Grids and Grid Technologies for Wide-Area Distributed
Computing, International Journal of Software: Practice and Experience (SPE), Volume 32, Issue 15, Pages:
1437-1466, Wiley Press, USA, December 2002.

[30]Yeo, C.S., Buyya, R., de Assuncao, M.D., Yu, J., Sulistio, A., Venugopal, S., Placek, M.: Utility
computing on global Grids. In: The Handbook of Computer Networks. John Wiley & Sons, New York, USA
(2007)

[31]Vaidy Sunderam: The PVM system: Status, trends, and directions. Parallel Virtual Machine — EuroPVM
'96, springer pages 68-80

[32]V. S. Sunderam, PVM: A Framework for Parallel Distributed Computing , Journal of Concurrency:
Practice and Experience, 2(4), pp. 315–339, December 1990.

[33]V. S. Sunderam, G. A. Geist, J. J. Dongarra, and R. Manchek, The PVM Concurrent Computing
System: Evolution, Experiences, and Trends , Journal of Parallel Computing, 20(4), pp. 531–546, March
1994.

[34]A. Zadroga, A. Krantz, S. Chodrow, V. Sunderam, “An RPC Facility for PVM”, Proceedings —
High-Performance Computing and Networking '96, Brussels, Belgium, Springer-Verlag, pp. 798–805, April
1996.

[35] P. Gray and V. Sunderam. Metacomputing with the IceT system. International Journal of High
Performance Computing Applications, 13(3):241–252, 1999.

[36] Gray,P.A. and Sunderam, V. S. 2002. Collaborative Metacomputing with IceT. J. Supercomput. 23, 2
(Sep. 2002), 139-166.

[37] Foster, I. and Karonis, N. T. 1998. A grid-enabled MPI: message passing in heterogeneous distributed
computing systems. Proceeding of the 1998 ACM/IEEE Conference on Supercomputing. IEEE Computer
Society, Washington, DC, 1-11.

Bibliography

 161

[38]W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the
Message-Passing Interface, MIT Press, 1999.

[39]W. Gropp, E. Lusk, and R. Thakur, Using MPI-2: Advanced Features of the Message-Passing Interface,
MIT Press, 1999.

[40]Geist, A., Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E. L., Saphir, W., Skjellum, T., and Snir,
M. MPI-2: Extending the Message-Passing Interface. Euro-par 96. Lecture Notes In Computer Science, vol.
1123. Springer-Verlag, London, 128-135.

[41] Gropp, W., Lusk, E., Doss, N., and Skjellum, A. A high-performance, portable implementation of the
MPI message passing interface standard. Parallel Computing. 22, 6 (Sep. 1996), 789-828.

[42]G. Burns, R. Daoud, and J. Vaigl. LAM: An Open Cluster Environment for MPI. In Proceedings of
Supercomputing Symposium, pages 379–386, 1994.

[43]A. Lastovetsky and R. Reddy. HeteroMPI: Towards a Message-Passing Library for Heterogeneous
Networks of Computers. Journal of Parallel and Distributed Computing, 66(2):197 – 220, 2006.

[44]G. Fagg, E. Gabriel, G. Bosilca, T. Angskun, Z. Chen, J. Pjesivac-Grbovic, K. London, and J. Dongarra.
Extending the mpi specification for process fault tolerance on high performance computing systems.
International Supercomputing Conference (ISC2004), 2004.

[45]N. Karonis, B. Tonnen, and I. Foster. MPICH-G2: a gridenabled implementation of the message passing
interface. Journal of Parallel and Distributed Computing, 63(5):551–563, May 2003.

[46]Rabenseifner, R. and Schuch, A., “Comparison of DCE RPC, DFN-RPC ONC and PVM”, in Proceedings
of the Workshop on OSF DCE, LNCS, pp. 253-259, Karlsruhe, Germany, October 1993.

[47]R. Rabenseifner, The DFN Remote Procedure Call Tool for Parallel and Distributed Applications, in: In
Kommunikation in Verteilten Systemen - KiVS 95. K. Franke, U. Huebner, W. Kalfa (Editors), Proceedings,
Chemnitz- Zwickau, 1995, pp. 415-419.

[48]Johnson, D. B. and Zwaenepoel, W. 1993. The Peregrine high-performance RPC system. Softw. Pract.
Exper. 23, 2 (Feb. 1993), 201-221.

[49]Chang, C., Czajkowski, G., and Von Eicken, T. 1999. MRPC: a high performance RPC system for
MPMD parallel computing. Softw. Pract. Exper. 29, 1 (Jan. 1999), 43-66.

[50]Djilali, S., Herault, T., Lodygensky, O., Morlier, T., Fedak, G., and Cappello, F. 2004. RPC-V: Toward
Fault-Tolerant RPC for Internet Connected Desktop Grids with Volatile Nodes. In Proceedings of the 2004
ACM/IEEE Conference on Supercomputing. IEEE Computer Society, Washington, DC, 39.

[51]Seymour, K., Nakada, H., Matsuoka, S., Dongarra, J., Lee, C., and Casanova, H. 2002. Overview of
GridRPC: A Remote Procedure Call API for Grid Computing. In Proceedings of the Third international
Workshop on Grid Computing M. Parashar, Ed. Lecture Notes In Computer Science, vol. 2536.
Springer-Verlag, London, 274-278.

[52]Y. Huang: JISGA: A Jini-Based Service-Oriented Grid Architecture, International Journal of High
Performance Computing Applications, 17(3), 2003, pp. 317-327.

[53]N. Furmento, J. Hau, W. Lee, S. Newhouse, and J. Darlington: Implementations of a Service-Oriented
Architecture on top of Jini, JXTA and OGSI. In Second Across Grids Conference, Nicosia, Cyprus, 2004

[54]L. Gong. JXTA: A Network Programming Environment. IEEE Internet Computing,5(3), 2001.

[55]van Nieuwpoort, R. V., Maassen, J., Hofman, R., Kielmann, T., and Bal, H. E. 2002. Ibis: an efficient
Java-based grid programming environment. In Proceedings of the 2002 Joint ACM-ISCOPE Conference on
Java Grande. JGI '02. ACM, New York, NY, 18-27.

[56]Kielmann, T., Bal, H. E., Maassen, J., van Nieuwpoort, R., Eyraud, L., Hofman, R., and Verstoep, K.
2002. Programming environments for high-performance grid computing: the Albatross project. Future Gener.
Comput. Syst. 18, 8 (Oct. 2002), 1113-1125.

Bibliography

 162

[57]Jason Maassen, Thilo Kielmann, and Henri E. Bal. GMI: Flexible and efficient group method invocation
for parallel programming. In Sixth Workshop on Languages, Compilers, and Run-time Systems for Scalable
Computers, Washington DC, March 2002.

[58]I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid Services for Distributed System Integration. IEEE
Computer, pages 37–46, June 2002.

[59]Chris Johnson , Steve Parker and David Weinstein, “Component-Based Problem Solving Environments
for Large-Scale Scientific Computing”, Concurrency and Computation: Practice and Experience Vol. 14,
Grid Computing environments Special Issue 13-14, 2002.

[60] L. Smith and M. Bull. Development of mixed mode mpi/openmp applications. In WOMPAT, 2000.

[61]B. Carpenter et al. MPJ: MPI-like Message-passing for Java. Concurrency: Practice and Experience,
12(11):1019–1038, 2000.

[62]D. Marinescu and C. Lee, editors. Process Coordination and Ubiquitous Computing. CRC Press, 2002.

[63]R. Tolksdorf. Models of coordination and web-based systems. In D. Marinescu and C. Lee, editors,
Process Coordination and Ubiquitous Computing. CRC Press, 2002.

[64]N. Furmento, A. Mayer, S. McGough, S. Newhouse, T. Field, and J. Darlington. An Integrated Grid
Environment for Component Applications. In Second InternationalWorkshop on Grid Computing (Grid 2001),
pages 26–37, 2001. LNCS Vol. 2242.

[65]L. Fischer, editor. The Workflow Handbook 2002. Future Strategies, Inc., 2002.

[66]I. Foster, C. Kesselman. The Globus Project: A Status Report. Proc. IPPS/SPDP '98 Heterogeneous
Computing Workshop, pp. 4-18, 1998.

[67]I. Foster, C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. Intl J. Supercomputer
Applications, 11(2):115-128, 1997.

[68]I. Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems. IFIP International
Conference on Network and Parallel Computing, Springer-Verlag LNCS 3779, pp 2-13, 2006.

[69]Berman F, Wolski . The AppLeS project: A status report. Proceedings of the 8th NEC Research
Symposium, May 1997

[70]H. Casanova, G. Obertelli, F. Berman, R. Wolski, The AppLeS parameter sweep template: user-level
middleware for the Grid, in: Proceedings of SuperComputing 2000 SC’00, November 2000.

[71]Francine Berman , Richard Wolski , Henri Casanova , Walfredo Cirne , Holly Dail , Marcio Faerman ,
Silvia Figueira , Jim Hayes , Graziano Obertelli , Jennifer Schopf , Gary Shao , Shava Smallen , Neil Spring ,
Alan Su , Dmitrii Zagorodnov, Adaptive Computing on the Grid Using AppLeS, IEEE Transactions on
Parallel and Distributed Systems, v.14 n.4, p.369-382, April 2003

[72]S. Wells, Legion 1.8 Basic User Manual. Charlottesville, VA: Dept. Comput. Sci., Univ. Virginia, 2003.

[73]Chapin, S. J., Katramatos, D., Karpovich, J. F., Grimshaw, A. S., Resource Management in Legion,
University of Virginia Technical Report CS-98-09, February 1998.

[74]A. Natrajan, M. Humphrey, and A. S. Grimshaw, “The Legion support for advanced parameter-space
studies on a grid,” Future Gener. Comput. Syst., vol. 18, pp. 1033–1052, 2002.

[75]D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, K. Sagi, Z. Shi, and S. Vadhiyar. Users’
Guide to NetSolve V1.4. Computer Science Dept. Technical Report CS-01-467, University of Tennessee,
Knoxville, TN, July 2001.

[76]H. Casanova and J. Dongarra, NetSolve: A Network Server for Solving Computational Science Problems,
Inernational Journal of Supercomputing Applications and High Performance Computing, Vol. 11, No. 3,
1997.

Bibliography

 163

[77]Asim YarKhan, Jack Dongarra, and Keith Seymour, NetSolve to GridSolve: The Evolution of a Network
Enabled Solver IFIP WoCo9 conference "Grid-Based Problem Solving Environments: Implications for
Development and Deployment of Numerical Software", Prescott, AZ, July 17-21, 2006.

[78]Caron E, Desprez F. DIET: A Scalable Toolbox to Build Network Enabled Servers on the Grid.
International Journal of High Performance Computing Applications, 20(3), 335-352, 2006.

[79]Caron E, Desprez F, Loureiro D. All-in-one Graphical Tool for the management of DIET a GridRPC
Middleware, In CoreGRID Workshop on Grid Middleware (in conjunction with OGF'23), 2008.

[80]Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka, “Ninf-G: A reference
implementation of RPC-based programming middleware for Grid computing,” Journal of Grid Computing,
vol. 1, no. 1, pp. 41–51, 2003.

[81]Nakada H, Sato M, Sekiguchi S. Design and implementation of Ninf: Towards a global computing
infrastructure. Future Generation Computing Systems (Metacomputing Special Issue) October 1999;
15(5–6):649–658.

[82]Tanaka, Y., Takemiya, H., Nakada, H., and Sekiguchi, S. 2004. Design, Implementation and Performance
Evaluation of GridRPC Programming Middleware for a Large-Scale Computational Grid. In Proceedings of
the 5th IEEE/ACM Grid 2004, 298-305.

[83]T. Brady, M. Guidolin, and A. Lastovetsky. Experiments with SmartGridSolve: Achieving Higher
Performance by Improving the GridRPC Model. Grid 2008, Tsukuba, Japan, 29 September - 01 October 2008.
IEEE Computer Society.

[84]M. Guidolin and A. Lastovetsky. ADL: An Algorithm Definition Language for SmartGridSolve. In
Proceedings of the 9th IEEE/ACM International Conference on Grid Computing (Grid 2008), Tsukuba, Japan,
29 September - 01 October 2008. IEEE Computer Society.

[85]M. D. Beynon, R. Ferreira, T. Kurc, A. Sussman, and J. Saltz. DataCutter: Middleware for filtering very
large scientific datasets on archival storage systems. In Proceedings of the Eighth Goddard Conference on
Mass Storage Systems and Technologies/17th IEEE Symposium on Mass Storage Systems, pages 119{133.
National Aeronautics and Space Administration, Mar. 2000.

[86]M. D. Beynon, T. Kurc, A. Sussman, and J. Saltz. Optimizing execution of component-based applications
using group instances. In Proceedings of CCGrid2001: IEEE International Symposium on Cluster Computing
and the Grid, pages 56{63. IEEE Computer Society Press,May 2001.

[87]Gilles Fedak, Haiwu He, Franck Cappello: BitDew: A data management and distribution service with
multi-protocol file transfer and metadata abstraction. J. Network and Computer Applications 32(5): 961-975
(2009)

[88]Fedak, G., He, H., and Cappello, F. 2008. BitDew: a programmable environment for large-scale data
management and distribution. In Proceedings of the 2008 ACM/IEEE Conference on Supercomputing
(Austin, Texas, November 15 - 21, 2008). Conference on High Performance Networking and Computing.
IEEE Press, Piscataway, NJ, 1-12.

[89]Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the Condor experience.
Concurrency and Computation: Practice and Experience 17, 323–356 (2005)

[90]Neubauer, F., Hoheisel, A., and Geiler, J. 2006. Workflow-based grid applications. Future Gener.
Comput. Syst. 22, 1 (Jan. 2006), 6-15.

[91]Qin, J. and Fahringer, T. 2007. Advanced data flow support for scientific grid workflow applications. In
Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (Reno, Nevada, November 10 - 16,
2007). SC '07. ACM, New York, NY, 1-12.

[92] Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E. A., Tao, J., and Zhao,
Y. 2006. Scientific workflow management and the Kepler system: Research Articles. Concurr. Comput. :
Pract. Exper. 18, 10 (Aug. 2006), 1039-1065.

[93]I. Altintas, O. Barney, and E. Jaeger-Frank, “Provenance Collection Support in the Kepler Scientific
Workflow System,” Proc. Int’l Provenance and Annotation Workshop (IPAW ’06), pp. 118-132, 2006.

Bibliography

 164

[94]George Bosilca , Aurelien Bouteiller , Franck Cappello , Samir Djilali , Gilles Fedak , Cecile Germain ,
Thomas Herault , Pierre Lemarinier , Oleg Lodygensky , Frederic Magniette , Vincent Neri , Anton Selikhov,
MPICH-V: toward a scalable fault tolerant MPI for volatile nodes, Proceedings of the 2002 ACM/IEEE
conference on Supercomputing, p.1-18, November 16, 2002, Baltimore, Maryland

[95]Bouteiller, A., Cappello, F., Herault, T., Krawezik, G., Lemarinier, P., and Magniette, F. 2003.
MPICH-V2: a Fault Tolerant MPI for Volatile Nodes based on Pessimistic Sender Based Message Logging.
In Proceedings of the 2003 ACM/IEEE Conference on Supercomputing (November 15 - 21, 2003).
Conference on High Performance Networking and Computing. IEEE Computer Society, Washington, DC, 25.

[96]Djilali, S., Herault, T., Lodygensky, O., Morlier, T., Fedak, G., and Cappello, F. 2004. RPC-V: Toward
Fault-Tolerant RPC for Internet Connected Desktop Grids with Volatile Nodes. In Proceedings of the 2004
ACM/IEEE Conference on Supercomputing (November 06 - 12, 2004). Conference on High Performance
Networking and Computing. IEEE Computer Society, Washington, DC, 39.

[97]Djilali, S. 2003. P2P-RPC: Programming Scientific Applications on Peer-to-Peer Systems with Remote
Procedure Call. In Proceedings of the 3st international Symposium on Cluster Computing and the Grid (May
12 - 15, 2003). CCGRID. IEEE Computer Society, Washington, DC, 406.

[98]D. P. Anderson, "BOINC: A System for Public-Resource Computing and Storage," The Fifth IEEE/ACM
International Workshop on Grid Computing (GRID'04), IEEE CS Press, pp. 4-10, Nov. 2004.

[99]M. Taufer, D. Anderson, P. Cicotti, and C. L. Brooks III, "Homogeneous Redundancy: a Technique to
Ensure Integrity of Molecular Simulation Results Using Public Computing," The 19th IEEE International
Parallel and Distributed Processing Symposium (IPDPS'05), Heterogeneous Computing Workshop (HCW'05),
pp. 119a, Apr. 2005.

[100]A. Chien, B. Calder, S. Elbert, and K. Bhatia, "Entropia: architecture and performance of an enterprise
desktop grid system," Journal of Parallel and Distributed Computing, vol. 63, issue 5, pp. 597-610, May
2003.

[101]A. A. Chien, S. Marlin, and S. T. Elbert, "Resource management in the Entropia System," Chapter 26 in
Grid Resource Management: Sate of the Art and Future Trends, Kluwer Academic, 2003.

[102]D. Thain, T. Tannenbaum, and M. Livny, "Condor and the Grid", in Fran Berman, Anthony J.G. Hey,
Geoffrey Fox, editors, Grid Computing: Making The Global Infrastructure a Reality, John Wiley, 2003

[103]James Frey, Todd Tannenbaum, Ian Foster, Miron Livny, and Steven Tuecke, “Condor-G: A
Computation Management Agent for Multi-Institutional Grids”, Journal of Cluster Computing volume 5,
pages 237-246, 2002

[104]LITZKOW, M. L., MUTKA M. W., 1988, Condor - A Hunter of Idle Workstations, Proc. of the 8th
International Conference of Distributed Computing Systems (ICDCS1988).

[105]B. O. Christiansen, P. Cappello, M. F. Ionescu, M. O. Neary, K. E. Schauser, and D. Wu. Javelin:
Internet-Based Parallel Computing Using Java. Concurrency: Practice and Experience, 9(11):1139–1160,
Nov. 1997.

[106]M. O. Neary, B. O. Christiansen, P. Cappello, and K. Schauser, "Javelin: Parallel computing on the
internet," Future Generation Computer Systems, Special Issue on Metacomputing, vol. 15, issue 5-6, pp.
659-674, Oct. 1999.

[107]M. O. Neary, S. P. Brydon, P. Kmiec, S. Rollins, and P. Cappello, "Javelin++: Scalability Issues in
Global Computing," Concurrency: Parctice and Experience, vol. 12, issue 8, pp. 727-753, Aug. 2000.

[108]M. Neary, A. Phipps, S. Richman, P. Cappello, Javelin 2.0: Java-Based Parallel Computing on the
Internet, Proceedings of European Parallel Computing Conference (Euro-Par 2000), Germany, 2000.

[109] Morrison, J. P., Kennedy, J. J., and Power, D. A. 2001. WebCom: A Web Based Volunteer Computer. J.
Supercomput. 18, 1 (Jan. 2001), 47-61.

Bibliography

 165

[110]Morrison, J.P., Clayton, B, & Patil A. (2002). Comparison of WebCom in the context of Job
Management Systems. International Symposium of Parallel and Distributed Computing (ISPDC 2002), Iasi,
Romania, July 17-20, 2002.

[111]Morrison, J. P., Clayton, B., Power, D. A., and Patil, A. 2004. Webcom-G: grid enabled metacomputing.
Neural, Parallel Sci. Comput. 12, 3 (Sep. 2004), 419-438.

[112]David A. Power, Adarsh Patil, Sunil John, and John P. Morrison. WebCom-G. Proceedings of the
international conference on parallel and distributed processing techniques and applications (PDPTA 2003),
Las Vegas, Nevada, June 23–26, 2003.

[113]Raphael Bolze, Franck Cappello, Eddy Caron, Michel J. Daydé, Frédéric Desprez, Emmanuel Jeannot,
Yvon Jégou, Stéphane Lanteri, Julien Leduc, Nouredine Melab, Guillaume Mornet, Raymond Namyst,
Pascale Primet, Benjamin Quétier, Olivier Richard, El-Ghazali Talbi, Iréa Touche: Grid'5000: A Large Scale
And Highly Reconfigurable Experimental Grid Testbed. IJHPCA 20(4): 481-494 (2006)

[114] Franck Cappello, Eddy Caron, Michel J. Daydé, Frédéric Desprez, Yvon Jégou, Pascale Vicat-Blanc
Primet, Emmanuel Jeannot, Stéphane Lanteri, Julien Leduc, Nouredine Melab, Guillaume Mornet, Raymond
Namyst, Benjamin Quétier, Olivier Richard: Grid'5000: a large scale and highly reconfigurable grid
experimental testbed. GRID 2005: 99-106

[115]Cappello, F., Djilali, S., Fedak, G., Herault, T., Magniette, F., Néri, V., and Lodygensky, O. 2005.
Computing on large-scale distributed systems: Xtrem Web architecture, programming models, security, tests
and convergence with grid. Future Gener. Comput. Syst. 21, 3 (Mar. 2005), 417-437.

[116]Gilles Fedak , Cecile Germain , Vincent Neri , Franck Cappello, XtremWeb: A Generic Global
Computing System, Proceedings of the 1st International Symposium on Cluster Computing and the Grid,
p.582, May 15-18, 2001

[117]O. Delannoy, N. Emad, and S. G. Petiton.Workflow Global Computing with YML. In The 7th
IEEE/ACM International Conference on Grid Computing, pages 25-32, 2006.

[118]O. Delannoy and S. Petiton. A Peer to Peer Computing Framework: Design and Performance Evaluation
of YML. In Third International Workshop on Algorithms, Models and Tools for Parallel Computing on
Heterogeneous Networks, pages 362-369. IEEE Computer Society Press, 2004.

[119]O. Delannoy, YML: A scientific Workflow for High Performance Computing, Ph.D. Thesis, Septembre
2008, Versailles

[120]N. Melab, E.-G. Talbi, and S. G. Petiton. A parallel adaptive gauss jordan algorithm. The Journal of
Supercomputing, 17(2):167-185, 2000.

[121]N. Melab, E. Talbi, and S. Petiton, A parallel adaptive version of the block-based gauss-jordan
algorithm, in IPPS/SPDP, 1999, pp. 350-354.

[122]S. Petiton, Parallelization on an MIMD computer with realtime Scheduler, Aspects of Computation on
Asynchronous Parallel Processors, North Holland, 1989.

[123]L. M. Aouad and S. G. Petiton. Parallel basic matrix algebra on the grid5000 large scale distributed
platform. In CLUSTER, 2006.

[124] Parallel Programming Models and paradigms: http://www.buyya.com/ cluster/v2chap1.pdf

[125] Designing Parallel Algorithms : http://wwwunix.mcs.anl.gov/dbpp/text/book.html

[126]Maxime Hugues and Serge G. Petiton: A Matrix Inversion Method with YML/OmniRPC on a Large
Scale Platform. VECPAR’2008, Page: 95-108 Jun 24-27, 2008, Toulouse, France

[127]L. M. Aouad, S. Petiton, and M. Sato, Grid and Cluster Matrix Computation with Persistent Storage and
Out-of-Core Programming, in The 2005 IEEE International Conference on Cluster Computing, September
2005. Boston, Massachusetts, 2005.

[128]Vaquero, L. M., Rodero-Merino, L., Caceres, J., and Lindner, M. 2008. A break in the clouds: towards a
cloud definition. SIGCOMM Comput. Commun. Rev. 39, 1 (Dec. 2008), 50-55.

Bibliography

 166

[129]T. Oreilly, “What is Web 2.0: Design patterns and business models for the next generation of software,”
O’Reilly Media, Tech. Rep., 2008. [Online]. Available: http://www.oreillynet.com/pub/a/oreilly/tim/new
s/2005/ 09/ 30/ what-is-web-20.html

[130]S. Murugesan, UnderstandingWeb 2.0. IEEE IT Professional 9(4):34-41, Jul. 2007.

[131]I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing and Grid Computing 360-degree compared,”
in Grid Computing Environments Workshop, 2008, pp. 1–10.

[132]Buyya, R., Yeo, C. S., and Venugopal, S. 2008. Market-Oriented Cloud Computing: Vision, Hype, and
Reality for Delivering IT Services as Computing Utilities. In Proceedings of the 2008 10th IEEE international
Conference on High Performance Computing and Communications (September 25 - 27, 2008). HPCC. IEEE
Computer Society, Washington, DC, 5-13.

[133]Mc Evoy, G. V. and Schulze, B. 2008. Using clouds to address grid limitations. In Proceedings of the
6th international Workshop on Middleware For Grid Computing (Leuven, Belgium, December 01 - 05, 2008).
MGC '08. ACM, New York, NY, 1-6.

[134]Weiss, A. 2007. Computing in the clouds. netWorker 11, 4 (Dec. 2007), 16-25.

[135]Kemal A. Delic , Martin Anthony Walker, Emergence of the academic computing clouds, Ubiquity, v.9
n.31, p.1-1, August 5-11, 2008

[136]P. T. Jaeger, J. Lin, and J. M. Grimes. Cloud computing and information policy: Computing in a policy
cloud? Journal of Information Technology & Politics., 5(3):269{283, 2008.

[137]Jha, S., Merzky, A., and Fox, G. 2009. Using clouds to provide grids with higher levels of abstraction
and explicit support for usage modes. Concurr. Comput. : Pract. Exper. 21, 8 (Jun. 2009), 1087-1108.

[138]Brown, Michael. White paper: Cloud computing. Maximum PC, January 12, 2009. Retrieved March 10,
2009, from maximumpc.com/print/5047.

[139] Cloud Computing: An Overview. Queue 7, 5 (Jun. 2009), 3-4.

[140]Roy Bragg. Cloud computing: When computers really rule. Tech News World, July 2008. Electronic
Magazine, available at http://www.technewsworld.com/story/63954.html.

[141]Jeremy Geelan. Twenty one experts define cloud computing. Virtualization, August 2008. Electronic
Magazine, article available at http://virtualization.sys-con.com/node/612375.

[142]Ghemawat, S., Gobioff, H., and Leung, S. 2003. The Google file system. In Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles (Bolton Landing, NY, USA, October 19 - 22,
2003). SOSP '03. ACM, New York, NY, 29-43.

[143]Dean, J. and Ghemawat, S. 2004. MapReduce: simplified data processing on large clusters. In
Proceedings of the 6th Conference on Symposium on Opearting Systems Design & Implementation - Volume
6 (San Francisco, CA, December 06 - 08, 2004). Operating Systems Design and Implementation. USENIX
Association, Berkeley, CA, 10-10.

[144]Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., Chandra, T., Fikes, A.,
and Gruber, R. E. 2006. Bigtable: a distributed storage system for structured data. In Proceedings of the 7th
USENIX Symposium on Operating Systems Design and Implementation - Volume 7 (Seattle, WA,
November 06 - 08, 2006). Operating Systems Design and Implementation. USENIX Association, Berkeley,
CA, 15-15.

[145]James Staten. IBM’s Play In Cloud Computing? Listening Carefully, July 2008.
http://blogs.forrester.com/it_infrastructure/2008/07/ibms-play-in-cl.html

[146]Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., and Zagorodnov, D.
2009. The Eucalyptus Open-Source Cloud-Computing System. In Proceedings of the 2009 9th IEEE/ACM
international Symposium on Cluster Computing and the Grid (May 18 - 21, 2009). CCGRID. IEEE Computer
Society, Washington, DC, 124-131.

Bibliography

 167

[147]Mc Evoy, G. V. and Schulze, B. 2008. Using clouds to address grid limitations. In Proceedings of the
6th international Workshop on Middleware For Grid Computing (Leuven, Belgium, December 01 - 05, 2008).
MGC '08. ACM, New York, NY, 1-6.

[148]C. Mateos, A. Zunino, and M. Campo, "A survey on approaches to gridification," Software—Practice &
Experience, 38(5), April 2008, pp. 523-556.

[149] Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T., Epema, D.: An early performance
analysis of cloud computing services for scientific computing. Technical Report PDS-2008-006, Delft
University of Technology (December 2008)

[150]M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A.Konwinski, G. Lee, D. Patterson, A. Rabkin, I.
Stoica,M. Zaharia. Above the Clouds: A Berkeley View of Cloud computing. Technical Report, University of
California at Berkley, USA, Feb. 10, 2009.

[151]S. L. Garfinkel. An Evaluation of Amazon’s Grid Computing Services: EC2, S3 and SQS. Technical
Report TR-08-07, Harvard University, August 2007.

[152]de Assuncao, M. D., di Costanzo, A., and Buyya, R. 2009. Evaluating the cost-benefit of using cloud
computing to extend the capacity of clusters. HPDC '09. ACM, 141-150.

[153]Shadi Ibrahim, Hai Jin, Lu Lu, Li Qi, Song Wu, Xuanhua Shi: Evaluating MapReduce on Virtual
Machines: The Hadoop Case. CloudCom 2009: 519-528

[154]David P. Anderson, Gilles Fedak: The Computational and Storage Potential of Volunteer Computing.
CCGRID 2006: 73-80

[155]Eric Martin Heien, David P. Anderson: Computing Low Latency Batches with Unreliable Workers in
Volunteer Computing Environments. J. Grid Comput. 7(4): 501-518 (2009)

[156]Bahman Javadi, Derrick Kondo, JeanMarc Vincent, David P. Anderson, “Mining for Statistical Models
of Availability in Large Scale Distributed Systems: An Empirical Study of SETI@home”, 17th IEEE/ACM
MASCOTS 2009, London, UK, September, 2009

[157]X. Ma, S.S. Vazhkudai, Z. Zhang, “Improving Data Availability for Better Access Performance: A
Study on Caching Scientific Data on Distributed Desktop Workstations”, Journal of Grid Computing Vol. 7,
No. 4, pp. 419-438, December 2009

[158]Derrick Kondo, Bahman Javadi, Paul Malecot, Franck Cappello, David P. Anderson, "Cost-benefit
analysis of Cloud Computing versus desktop grids," ipdps, pp.1-12, 2009

[159]Artur Andrzejak, Derrick Kondo, David P. Anderson: Exploiting Non-Dedicated Resources for Cloud
Computing in the 12th IEEE/IFIP (NOMS 2010), Osaka, Japan April 19-23, 2010.

[160]Domingues, P., Araujo, F., and Silva, L. Evaluating the performance and intrusiveness of virtual
machines for desktop grid computing. (May 23 - 29, 2009). IPDPS 2009. pp1-8.

[161]Vincenzo D. Cunsolo, Salvatore Distefano, Antonio Puliafito, Marco Scarpa: Cloud@Home: Bridging
the Gap between Volunteer and Cloud Computing. ICIC (1) 2009: 423-432

[162]Eddy Caron, Frederic Desprez, David Loureiro, Adrian Muresan, "Cloud Computing Resource
Management through a Grid Middleware: A Case Study with DIET and Eucalyptus," cloud, pp.151-154,
2009

[163]Lizhe Wang, Jie Tao, Marcel Kunze, Alvaro Canales Castellanos, David Kramer, Wolfgang Karl,
"Scientific Cloud Computing: Early Definition and Experience," hpcc, pp.825-830, 2008 10th IEEE
International Conference on HPCC 2008

[164]C. Vecchiola, S. Pandey, and R. Buyya, High-Performance Cloud Computing: A View of Scientific
Applications. 10th International Symposium on Pervasive Systems, Algorithms and Networks (I-SPAN 2009),
Kaohsiung, Taiwan, Dec. 2009.

[165]L. Shang, Z. Wang, X. Zhou, X. Huang, and Y. Cheng, “Tm-dg: a trust model based on computer users’
daily behavior for desktop grid platform,” in CompFrame ’07: Proceedings of the 2007 symposium on

Bibliography

 168

Component and framework technology in high-performance and scientific computing. New York, NY, USA:
ACM, 2007, pp. 59–66.

[166]Shang, L., Wang, Z., and Petiton, S. G. 2008. Solution of Large Scale Matrix Inversion on Cluster and
Grid. In Proceedings of the 2008 Seventh international Conference on Grid and Cooperative Computing
(October 24 - 26, 2008). GCC 2008. 33-40.

[167]Ling Shang, Serge Petiton, Maxime Hugues, "A New Parallel Paradigm for Block-Based Gauss-Jordan
Algorithm," gcc, pp.193-200, 2009 Eighth International Conference on Grid and Cooperative Computing,
2009

[168]Philippe Smets, The transferable belief model and other interpretations of Dempster-Shafer's model,
Proceedings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence, p.375-384, July 27-29,
1990

[169] Karthick Ramachandran: Decentralized Resource Availability for a Desktop Grid. Master Thesis. May
2009. University of Western Ontario, Canana.

[170]M. Sato, M. Hirono, Y. Tanaka, and S. Sekiguchi. OmniRPC: A Grid RPC Facility for Cluster and
Global Computing in OpenMP. In WOMPAT, LNCS 2104, pages 130-136. Springer, 200

Résumé
Les grilles de calcul et les grille de PC sur Internet offrent des al ternatives intéressantes
pour le calcul scientifiq ue à grande éch elle, qui demande des ressources de cal cul
importantes. Toutefois, l’adaptation des applications pour ces systèmes est difficile à cause
des facteurs nombreux tels que l'interface complexe de programmation. L'objectif de cette
thèse est de t rouver une solution pour faciliter le calcul scientifique à grande échelle. Pour
ce fair e, j’ai travaill é sur l’al gorithme de Ga uss Jordan et u ne nouvelle version d’u n
schéma de p arallélisme. Ce sché ma peut exploiter le maximum de parallélisme entre des
opérations. Comme un exempl e exc ellent, l' algorithme de Gauss Jord an e st égalem ent
utilisé pour évaluer des environnements expé rimentaux et des outils diffé rents. L es
expérimentations ave c Y ML, OmniR PC et XtremWeb sur les grilles et l es grilles de PC
montrent que YML peut être une bonne solution pour que les utilisateurs fassent du calcul
scientifique à grande échelle, à cause des bonnes caractéristi ques com me « l’interface
d'abstraction de haut nive au», « les composants réutilisables » et «le surcoût acceptable».
Pour obtenir les me illeures perform ances de cette plate-forme, les questions concernées,
telles que la granularit é des tâches, la persistance des données et le mécanisme
d’ordonnancement, sont égalem ent abordés dans cette thèse. Selon les a nalyses fa ites
ci-dessus et les caractéristiques communes des nuages inform atiques ciblés, YML-PC, une
architecture de référenc e basée sur les work flows pour les constructions de nuage s
informatiques privés scientifique est proposée. YML-PC hérite les bonnes caractéristiques
présentées ci-dessus et des autres technologies clefs telles que « la persistance des données »,
« La prévision du temps disponible » et « l'évaluation sur des nœu ds de calcul
hétérogènes » pour YML-PC, qui sont égal ement abordé es dans cett e thèse. Les
évaluations sur l'algorithme de Gauss Jordan sont réalisées sur les grilles, les grilles de PC
et les nuages informatiques privés qui sont im plantés sur la plate-forme Grid5000, la
plateforme de calcul de Polytech Lille en France et la pl ateforme de calcul de Hohai, en
Chine.

Mots clés: le calcul scient ifique à grande éch elle, l’ algorithme de Gauss Jordan, grilles,
grilles de PC, Nuages informatiques privé, YML, OmniRPC, XtremWeb

Abstract
Grid computing and Des ktop Grid computing provide interesting alte rnatives for large
scale s cientific c omputing which needs ver y large scale computing resour ces. Howe ver
gridification is hard to devel op because of series of factors such as compl ex programming
interface. Th e aim of thi s dissertati on is to find a s olution to make l arge s cientific
computing in an easy way. To do that, research on Gauss Jordan algorithm is made and a
new parallel programming adapted version is presented. The adapted parallel version can
achieve maximum degree pa rallelism between operati ons. Also the Gauss Jord an
algorithm as an excellent example is used to evaluate different experimental environments
and tools. Experiments with YML, OmniRPC and XtremWeb on Grid and Desktop Grid
environments testify Y ML can be a good so lution for end users to mak e lar ge sc ale
scientific c omputing for its series of go od features such as hi gher le vel interface,
component reuse and acceptable overhead. To get better performance of platform, related
issues such as task gr anularity, dat a persistence and schedul e me chanism ar e also
discussed in this dissertation. Accordin g to analysis made above and the common features
of Clouds possessed, YML-PC a reference architecture based on workflow for buildin g
scientific P rivate Cl ouds is proposed. YML- PC inherits those good feature s presented
above and s ome other k ey tec hnologies such as “data persist ence”, “available time
prediction” a nd “ev aluation on hete rogeneous computing nodes” for YML-PC are also
discussed in t his dissertation. Evaluations are made based on Gauss Jord an algorithm on
Grids, Desktop Grids and Private C louds which build on Grid5000, P olytech L ille
platform, France and Hohai platform, China.

Key words: Lar ge scale scientific computin g, Ga uss Jordan a lgorithm, Gr ids, D esktop
Grids, Private Clouds, YML, OmniRPC, XtremWeb

	Titre
	Contents
	List of Figure
	List of Table
	Chapter 1 : Introduction
	1.1 Context
	1.2 Motivation and scope of study
	1.3 Contributions
	1.4 Organisations

	Chapter 2 : The State of the Art
	2.1 Evolution of large scale scientific computing platform
	2.1.1 Classification of architecture
	2.1.1.1 Shared memory systems
	2.1.1.2 Distributed memory systems
	2.1.1.3 Convergence and future systems

	2.1.2 Evolution roadmap of high performance systems

	2.2 Grid Computing
	2.2.1 Introduction
	2.2.2 Programming models on the Grids
	2.2.2.1 Message passing model
	2.2.2.2 RPC and RMI model
	2.2.2.3 Distributed object model
	2.2.2.4 Common component model
	2.2.2.5 Service oriented model
	2.2.2.6 Hybrid model
	2.2.2.7 Coordination model

	2.2.3 Grid projects
	2.2.3.1 Globus
	2.2.3.2 Apples
	2.2.3.3 Legion
	2.2.3.4 Netsolve/Gridsolve
	2.2.3.5 Diet
	2.2.3.6 Ninf/Ninf-G
	2.2.3.7 SmartGridSolve
	2.2.3.8 DataCutter
	2.2.3.9 DAGMan
	2.2.3.10 Kepler

	2.3 Desktop Grid Computing
	2.3.1 Introduction
	2.3.2 Programming method on Desktop Grids
	2.3.2.1 Volatility based message passing model
	2.3.2.2 Fault tolerance based RMI/RPC model

	2.3.3 Desktop Grid projects
	2.3.3.1 Boinc
	2.3.3.2 Entropia
	2.3.3.3 Condor
	2.2.3.4 BitDew
	2.3.3.5 Javalin
	2.3.3.6 Webcom

	2.4 Grids versus Desktop Grids
	2.5 Conclusion

	Chapter 3 : Experimental Tools and Platforms
	3.1 Experimental platforms
	3.1.1 Grid5000
	3.1.2 Polytech Lille and Hohai platforms

	3.2 Experimental tools
	3.2.1 XtremWeb
	3.2.2 OmniRPC
	3.2.3 YML
	3.2.4 Relation between XtremWeb/OmniRPC and YML

	Chapter 4 : A New Parallel Programming Adapted Version for Block Based Gauss Jordan Algorithm
	4.1 Motivation
	4.2 Sequential algorithm of block based Gauss Jordan
	4.3 Parallelism in the algorithm
	4.3.1 Intra-step based parallelism
	4.3.1.1 The Inter-loops based parallelism
	4.3.1.2 The Intra-loop based parallelism

	4.3.2 Inter-steps based parallelism

	4.4 Description of data dependence
	4.4.1 Description of Intra-step based data dependence
	4.4.2 Description of inter-steps based data dependence
	4.4.3 Description of all the data dependences

	4.5 Formal description of data dependence
	4.6 A new parallel programming adapted version of BbGJ
	4.6.1 Comparison of different parallel versions of BbGJ
	4.6.2 Theoretical analysis on BbGJ

	4.7 Evaluation of Max-par BbGJ
	4.7.1 Block-size fixed and block-count changed
	4.7.2 Block-count fixed and block-size changed
	4.7.3 Block-count changed and block-size changed
	4.7.4 Situation of no enough computing resources
	4.7.5 Performance in Grid environment

	4.8 Conclusion

	Chapter 5 : Large scale scientific computing on Grid and Desktop Grid environments
	5.1 Motivation
	5.2 Programming model
	5.2.1 Programming with YML
	5.2.2 Programming with XtremWeb
	5.2.3 Programming with OmniRPC
	5.2.4 Summary and conclusion

	5.3 Overhead of middleware
	5.3 Overhead of middleware
	5.4 Characters of different environments
	5.4.1 Task granularity
	5.4.2 Data transfer model
	5.4.3 Schedule mechanism

	5.5 Conclusion

	Chapter 6 : A Reference Architecture Based on Workflow for Building Scientific Private Clouds
	6.1 Motivation
	6.2 Introduction
	6.3 Different shapes of Clouds
	6.3.1 Cloud computing from Google
	6.3.2 Cloud computing from Amazon
	6.3.3 Cloud computing from IBM
	6.3.4 Cloud computing from Microsoft
	6.3.5 Eucalyptus
	6.3.6 Summary

	6.4 From Grids to observe Clouds
	6.4.1 Viewpoint from end users
	6.4.1.1 Grid platform is hard to utilize for end users
	6.4.1.2 Grid middleware is hard for end-users to develop application

	6.4.2 Viewpoint from Grid system
	6.4.2.1 Problem from Grid Scheduler
	6.4.2.2 Problem from Grid data transfer model

	6.5 Summary on Clouds
	6.5.1 Common features of Clouds
	6.5.2 Classification of Clouds
	6.5.2.1 Deployment type
	6.5.2.2 Type of Cloud platform

	6.5.3 Our understanding on Cloud computing

	6.6 A Reference architecture of scientific Private Clouds
	6.6.1 Introduction
	6.6.2 Concept stack of Cloud platform
	6.6.3 Design of YML-PC
	6.6.4 Core design and implementation of YML-PC
	6.6.5 Primary experiments on YML-PC
	6.6.5.1 YML-PC can get enough computing resources through collecting Volunteer computing resources
	6.6.5.2 YML-PC can be scaled up very easily
	6.6.5.3 Data Persistence in YML-PC
	6.6.5.4 Schedule mechanism in YML-PC

	6.6.6 Conclusion and future work

	6.7 Conclusion

	Chapter 7 : Conclusion and Future Works
	Appendix
	Bibliography
	Résumé - Abstract

	source: Thèse de Ling Shang, Lille 1, 2010
	d: © 2011 Tous droits réservés.
	lien: http://doc.univ-lille1.fr

