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Abstract

From formal solutions of ordinary or partial differential equations, one

may give different sums by different summation processes. This phenomenon

occurs for functional equations such as difference or 𝑞-difference equations.

In this thesis, we shall consider the heat equation with a singular initial

condition 𝜑(𝑧) = 1
1−𝑒𝑧

, 𝑧 ∈ ℂ ∖ {2𝜋ℤ𝑖}. The aim is to give three sums

of a divergent formal solution to this Cauchy problem: Borel-sum based on

known results in [26] and two 𝑞-Borel sums obtained by means of Heat kernel

and Jacobi theta function respectively (cf. [50] and [42, 51]) and establish

relations among them. More specifically, this thesis consists of the following

six chapters.

In Chapter 1, we introduce some known results on summability of formal

solutions, state our problem and main conclusions, and recall how to solve

Cauchy problem for the real Heat equation with Heat kernel.

In Chapter 2, we introduce the classic Borel-Laplace summation and

show the theorem on the finely Borel sum of divergent solutions of the com-

plex Heat equation by Lutz, Miyake and Sch𝑎̈fke (cf. [26]), and obtain the

finely Borel sum of the formal solution to our problem.

In Chapter 3, we introduce the so-called G𝑞-summation (cf. [50]). By

variable substitutions, we can transfer the divergent formal solution to our

Cauchy problem into a 𝑞-series. Then we obtain a 𝑞-Borel sum based on

Heat kernel and compare the sum function defined in the previous sections.

In Chapter 4, we firstly prove some properties of the Jacobi theta func-

tion and introduce a method of summation based on Jacobi theta function

(cf. [51]), and then get the other 𝑞-Borel sum of the 𝑞-series.

In Chapter 5, we study integral functions which have been considered
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by Riemann, Kronecker, Lerch, Hardy, Ramanujan, Mordell and many other

mathematicians. We say that Mordell’s theorem (cf. [34, 35]) about these

integrals can be deduced from one of our main theorems. And we can apply

our ideas mentioned above to the more general cases.

In Chapter 6, we sum up in a few sentences and provide some unsolved

problems.

Key Words: Gevrey asymptotic expansion, Borel summability, 𝑞-

difference equation, 𝑞-Gevrey asymptotic expansion, G𝑞-summability, Heat

kernel, Jacobi theta function, Mordell’s theorem.
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Chapter 1 Introduction

§1.1 Background and basic notations

§1.1.1 Background

Asymptotic expansions have been an important and very successful tool

to understand the structure of solutions of ordinary and partial differential

(or difference) equations. By now the classical part of this theory has been

presented in many books on differential equations in the complex plane or

related topics, by such distinguished authors as Wasow [47], Sibuya [44], and

many others. Personally, one of the most important results in this context

is the Main Asymptotic Existence theorem: it states that to every formal

solution of a differential equation, and every sector in the complex plane of

sufficiently small opening, one can find a solution of the equation having

the formal one as its asymptotic expansion. This solution, in general, is not

uniquely determined, and the proofs given for this theorem do not provide

a truly efficient way to compute such a solution, say, in terms of the formal

solution. In fact, to prove this result, even for linear, but in particular

non-linear equations, and to determine sharp bounds for the opening of the

sector is not an easy task and many researchers have made contribution to

the proofs; see, e.g., Ramis and Sibuya’s paper on Hukuhara domains [40] of

1989, or Jurkat’s discussion of asymptotic sectors [25].

In the general theory of asymptotic expansions, the analogue to the Main

Asymptotic Existence theorem is usually called Ritt’s theorem, and is much

easier to prove: given any formal power series and any sector of arbitrary

(but finite) opening on the Riemann surface of the logarithm, there exists

a function, analytic in this sector and having the formal power series as its
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asymptotic expansion. This function is never uniquely determined - not even

when the power series converges. To overcome this non-uniqueness, Watson

(cf. [48, 49]) in 1911/12, and Nevanlinna (cf. [36]) in 1918, introduced a spe-

cial kind of asymptotic expansions, now commonly called 𝐺𝑒𝑣𝑟𝑒𝑦 𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐

𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛𝑠 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝑘 > 0. These have the property that analogue to Ritt’s

theorem holds for sectors of opening up to 𝜋/𝑘, in which cases the function

again is not uniquely determined. However, if the opening is large than 𝜋/𝑘,

a function which has a given formal power series as its Gevrey asymptotic

expansion of order 𝑘 > 0 may not exist, but if it does, then it is uniquely

determined. In case of existence, the function can be represented as Lapalce

transform of another function, which is analytic at the origin, and whose

power series expansion is explicitly given in terms of the formal power series.

In 1978/80, Ramis (cf. [38, 39]) introduced his notion of 𝑘-𝑠𝑢𝑚𝑚𝑎𝑏𝑖𝑙𝑖𝑡𝑦

of formal power series. Applying this to linear systems of (meromorphic)

ODE, he proved that every formal solution to every such equation can be

factored into a finite product of power series (times some explicit functions),

so that each factor is 𝑘-𝑠𝑢𝑚𝑚𝑎𝑏𝑙𝑒, with 𝑘 depending upon the factor. This

factorization of formal solutions is not truly effective, so that this result

did not really give a way to compute the resulting function from the formal

series. Then Ecalle (cf. [15, 16]) presented a way to achieve this computation,

introducing his definition of 𝑚𝑢𝑙𝑡𝑖𝑠𝑢𝑚𝑚𝑎𝑏𝑖𝑙𝑖𝑡𝑦. In a way, his method differs

from Ramis’ definition of 𝑘-summability by cleverly enlarging the class of

functions to which Laplace transform, in some weak form, can be applied.

Here to better understand this theory, we give the most simple example:

the Euler series

𝑦(𝑥) =
∑
𝑛≥0

(−1)𝑛𝑛!𝑥𝑛+1,

which is a divergent formal solution to the following linear ODE of first order

𝑥2𝑦′ + 𝑦 = 𝑥.
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The power series is Gevrey of order 1 and 1-summable (or Borel summable).

We know that its Borel sum is defined by∫ ∞𝑒𝑖𝑑

0

𝑒−𝜉/𝑥

1 + 𝜉
𝑑𝜉

over an open sector

𝑆(𝑑, 𝜋) := {𝑥 ∈ ℂ∗ ∣ ∣arg 𝑥− 𝑑∣ < 𝜋

2
},

for any direction 𝑑 ∈ (−𝜋, 𝜋). The integral function admits the Euler series

as its Gevrey asymptotic expansion of order 1 and is also a solution of the

above ODE.

By now, it is well known that every formal solution to an ordinary

differential equation are multisummable (see Braaksma [2], Basler [7] and

Ramis and Sibuya [41]). The multisummbility index can be calculated by

means of the Newton polygon associated to the linearized equation along the

formal power series solution. Further, the Gevrey type expansion solutions

and summability or multisummability have be studied for other functional

equations: finite difference equations, 𝑞-difference equations, in particular

partial differential equations, etc. But for partial differential equation this

problem is more complicated. Only a few results are obtained about the

summability of the divergent formal series. The first result on summability

of formal solutions was from Lutz, Miyake and Sch𝑎̈fke (cf. [26]). They

showed that the formal solution to the Cauchy problem for the 1-dimensional

homogeneous complex heat equation is 1-summable (or Borel summable) in a

sector of direction 𝜃 and opening angle more than 𝜋 if and only if the Cauchy

data can be analytically continued to infinity in a domain consisting two

sectors of directions 𝜃/2 and 𝜋 + 𝜃/2, and the continuation is of exponential

growth of order at most 2. In their case, the Newton polygon admits a unique

strictly positive slope 1. Analogous result for more general initial data was

given by Balser (cf. [4]). The multidimensional homogeneous heat equation
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was investigated by Balser and Malek (cf. [6]) and by Michalik (cf. [30, 31]).

And Hibino [22], Ichinobe [23, 24], 𝑂̄uchi [37] and others studied more general

classes of linear partial differential equations. In [9, 10, 11, 18, 27], Gérard,

Tahara, Chen, Luo and Zhang considered Cauchy problems of a class of non-

linear first order or even higher order, PDEs with irregular singularities on the

complex domain ℂ𝑡 × ℂ𝑥. They proved respectively that the corresponding

formal solutions are holomorphic, or have a calculable Gevry index, or are

𝑘-summable, when these PDEs satisfies different conditions.

In the last fifteen years, analogous summation theories for 𝑞-difference

equations have been developed (cf. [50, 29, 51, 42, 43, 12, 46, 52]). Tr-

jitzinsky, Ramis, Sauloy, Zhang and so on have done a lot of work in this

field. For a calss of singular 𝑞-difference equations, their formal solutions

can be expected to be 𝑞-𝐺𝑒𝑣𝑟𝑒𝑦 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 (𝑜𝑝𝑡𝑖𝑚𝑎𝑙) 𝑠, introduced by Bézivin

[8]. Ramis and Zhang gave some notions of 𝑞-Gevery asymptotic expan-

sion and G𝑞-summability. Di Vizio and Zhang (cf. [13]) replaced, in the

classical Laplace integral, the exponential function by using a 𝑞-exponential

function or Jacobi theta function. Then they got four different 𝑞-Borel sums

of a 𝑞-deformation of the Euler series, by using a usual integral or a dis-

crete 𝑞-analogue. And they also studied the relations between the different

kind of 𝑞-Borel sums considered in the literature. As they said, their work

is a first step towards the proof of a general result for a divergent solution

of a 𝑞-difference equations, having a Newton polygon with more than one

slope. Later on, Ramis, Sauloy and Zhang classified analytically isoformal

𝑞-difference equations based on the theory of summation.

§1.1.2 Basic notations

We use the following notations:

ℝ𝑛: the set of n-dimensional real vectors;
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ℝ+: the set of nonnegative real numbers;

ℂ: the set of complex numbers;

ℂ∗: the set of complex numbers except for {0};

ℕ: the set of natural numbers;

ℕ∗: the set of natural numbers except for {0};

ℤ: the set of of integers;

ℂ̃∗: the Riemann surface of the logarithm;

𝐶(ℝ𝑛): the set of continuous functions on ℝ𝑛;

𝐶∞(ℝ𝑛): the set of smooth functions on ℝ𝑛;

𝐿∞(ℝ𝑛): the set of essentially bounded measurable functions on ℝ𝑛.

The definitions of other notations appeared later will given in corre-

sponding chapters.

§1.2 Problems and main results

From formal solutions of ordinary or partial differential equations, one

may give different solutions by different summation processes. This phe-

nomenon occurs for functional equations such as difference or 𝑞-difference

equations. Our motivation is to reveal the relationship existing between dif-

ferent sums of a divergent power series which is related to a Cauchy problem

of the Heat equation and which may also be viewed as a solution to a sin-

gular 𝑞-difference equation. And we also want to use our results in more

complicated cases.

More precisely, let us consider the following Cauchy problem for the
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complex heat equation ⎧⎨⎩ ∂𝜏𝑢− ∂2𝑧𝑢 = 0,

𝑢(0, 𝑧) = 𝜑(𝑧) = 1
1−𝑒𝑧

,
(1.1)

where (𝜏, 𝑧) ∈ ℂ×ℂ, and 𝜑(𝑧) is defined on ℂ ∖ {2𝜋ℤ𝑖} (:= ℂ ∖ {2𝑘𝜋𝑖 ∣ 𝑘 =

0,±1,±2, ⋅ ⋅ ⋅ }). It has a unique formal power series solution

𝑢̂(𝜏, 𝑧) :=
∞∑
𝑛=0

𝜑(2𝑛)(𝑧)

𝑛!
𝜏𝑛, (1.2)

which is divergent in 𝜏 and holomorphic in 𝑧. On the other hand, if we

consider the series expansion 𝜑(𝑧) :=
∞∑
𝑛=0

𝑒𝑛𝑧 of 𝜑(𝑧) in 𝑒𝑧, then Problem

(1.1) has a formal solution
∞∑
𝑛=0

𝑒𝑛
2𝜏+𝑛𝑧,

which takes the form of
∞∑
𝑛=0

𝑞−𝑛2
𝑥𝑛 and then satisfies the 𝑞-difference equation

𝑥

𝑞
𝑦(
𝑥

𝑞2
)− 𝑦(𝑥) = −1, (1.3)

provided that 𝑞 = 𝑒−𝜏 and 𝑥 = 𝑒𝑧. If suppose that Re(𝜏) > 0, then 0 < ∣𝑞∣ <
1 and the 𝑞-series

𝑦(𝑥, 𝑞) :=
∞∑
𝑛=0

𝑞−𝑛2

𝑥𝑛 (1.4)

is divergent for all 𝑥 ∈ ℂ∗. Utilizing the results from [50] and [42, 51] on

the singular 𝑞-difference equation, one can give two different 𝑞-Borel sums of

𝑦(𝑥, 𝑞): 𝑓𝛼(𝑥, 𝑞) and 𝑔𝜆(𝑥, 𝑞) (see (3.2) and (4.3)), by which one shall get two

sums of 𝑢̂(𝜏, 𝑧), denoted by 𝐹𝛼(𝜏, 𝑧) and 𝐺𝜆(𝜏, 𝑧) (see (3.5) and (4.5)).

Following the classical Borel summation method with respective to 𝜏 ,

one can obtain the Borel sum of the power series 𝑢̂(𝜏, 𝑧) (cf. [26]). Here,

we only give the definition of the fine Borel sum 𝑈𝑘(𝜏, 𝑧) (see (2.11)) in the

direction of the real axis, where Re(𝜏) > 0 and

𝑧 ∈ Ω𝑘 := {𝑧 ∈ ℂ ∣ 2𝑘𝜋 < Im(𝑧) < 2(𝑘 + 1)𝜋} for some 𝑘 ∈ ℤ.

8



Then our main results are summarized as follows.

Proposition A (Proposition 2.3.4) Given 𝑘 ∈ ℤ. For Re(𝜏) > 0 and

𝑧 ∈ Ω𝑘, we define

𝑈𝑘(𝜏, 𝑧) =
1√
4𝜋𝜏

∫ +∞

−∞
𝑒−

𝑠2

4𝜏
1

1− 𝑒𝑧+𝑠
𝑑𝑠.

Then we have

(i) 𝑈𝑘(𝜏, 𝑧) is holomorphic over {𝜏 ∈ ℂ ∣ Re(𝜏) > 0} × Ω𝑘.

(ii) 𝑈𝑘(𝜏, 𝑧) is the unique solution of (1.1) which admits 𝑢̂(𝜏, 𝑧) =
∞∑
𝑛=0

𝜑(2𝑛)(𝑧)
𝑛!

𝜏𝑛

as asymptotic expansion in the sense: for some compact subset 𝑂′ of

{𝜏 ∈ ℂ ∣ Re(𝜏) > 0} and some compact subset Ω
′
𝑘 of Ω𝑘, there exist pos-

itive constants 𝐶, 𝐾 and 𝛿, such that the following asymptotic estimates

hold: ∣∣∣∣∣𝑈𝑘(𝜏, 𝑧)−
𝑁−1∑
𝑛=0

𝜑(2𝑛)(𝑧)

𝑛!
𝜏𝑛

∣∣∣∣∣ ≤ 𝐶𝐾𝑁𝑁 ! ∣𝜏 ∣𝑁 ,

(𝜏, 𝑧) ∈ 𝑂′ × Ω
′
𝑘,

for all 𝑁 = 1, 2, 3, . . ..

Theorem B (Theorem 3.2.4) For any given 𝑘 ∈ ℤ, we have 𝑈𝑘(𝜏, 𝑧) =

𝐹𝛼(𝜏, 𝑧) where 𝛼 ∈ (2𝑘𝜋, 2(𝑘 + 1)𝜋), Re(𝜏) > 0 and 𝑧 ∈ Ω𝑘.

Theorem C (Theorem 5.2.1) The following relation holds for all 𝛼 ∈
(−2𝜋, 0), 𝜆 ∈ ℂ∗ ∖ {𝑞2ℤ} and 𝑥 ∈ ℂ∗ ∖ {−𝜆𝑞2ℤ+1}:

𝑓𝛼(𝑥, 𝑞) = 𝑔𝜆(𝑥, 𝑞)− 𝑖

√
𝜋

log 1/𝑞
𝑒

(log 𝑥)2

4 log 𝑞 𝑔𝜆∗(𝑥∗, 𝑞∗),

where 𝑞∗, 𝑥∗ and 𝜆∗ are the modular variables defined by

𝑞∗ = 𝑒𝜋
2/ log 𝑞, 𝑥∗ = 𝑒−𝜋𝑖 log 𝑥

ln 𝑞 , 𝜆∗ = 𝑒−𝜋𝑖 log 𝜆
log 𝑞 .
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Replacing 𝜆 by 1
𝑞
𝑒𝜋𝑖 in Theorem B, one can get the following Mordell’s

result in [35]:

Corollary D (Corollary 5.2.2) (Mordell’s theorem) Let 𝑓 be the

integral function of 𝑥 defined by the series and 𝜃11 be the following Jacobi

theta function

𝑖𝑓(𝑥, 𝜔) =
±∞∑

𝑚 𝑜𝑑𝑑

(−1)
1
2
(𝑚−1)𝑞

1
4
𝑚2
𝑒𝑚𝜋𝑖𝑥

1 + 𝑞𝑚
,

𝑖𝜃11(𝑥, 𝜔) =
±∞∑

𝑚 𝑜𝑑𝑑

(−1)
1
2
(𝑚−1)𝑞

1
4
𝑚2

𝑒𝑚𝜋𝑖𝑥.

Then ∫ ∞

−∞

𝑒𝜋𝑖𝜔𝑡
2−2𝜋𝑡𝑥

𝑒2𝜋𝑡 − 1
𝑑𝑡 =

𝑓( 𝑥
𝜔
,− 1

𝜔
) + 𝑖𝜔𝑓(𝑥, 𝜔)

𝜔𝜃11(𝑥, 𝜔)
,

where the path of integration may be taken as a straight line parallel to the

real axis of 𝑡 and below it at a distance less than unity.

Finally, we shall treat some more general integral functions

𝐼𝑘(𝜈, 𝜒) = 𝐼𝑘(𝜈, 𝜒;𝜔) = − 1√
(−𝑖𝜔)𝑒

−𝜋𝜒2

𝑖𝜔

∫ ∞

−∞

𝑒
𝜋𝑡2

𝑖𝜔
+ 2𝜋𝜒𝑡

𝜔

(𝑒2𝜋𝑡 − 𝑒2𝜋𝜈)𝑘
𝑑𝑡,

where 𝑘 ∈ ℕ, 𝜈 ∈ ℂ with Im(𝜈) ∈ (−1, 0] and the path of integration may

be any straight line parallel to the real axis of 𝑡 and just below the point 𝜈

at a distance less then unity, i.e., (−∞+ 𝜈 − 𝑖𝜖,∞+ 𝜈 − 𝑖𝜖), 𝜖 ∈ (0, 1), and

obtain similar conclusions.

§1.3 Real Heat equation

In this section, we will recall how to get the Heat kernel on the real

space and to structure a 𝐶∞ solution to Cauchy problem for the real heat

equation.
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§1.3.1 Fourier transform

Definition 1.3.1. The set of rapidly decreasing functions is defined by

𝒮(ℝ𝑛) = {𝑓 ∈ 𝐶∞(ℝ𝑛) ∣ sup
ℝ𝑛

∣∣𝜍𝛼𝐷𝛽𝑓(𝜍)
∣∣ < +∞,∀𝛼, 𝛽}.

Definition 1.3.2. Let 𝑓(𝜍) ∈ 𝒮(ℝ𝑛). Define its Fourier transform by

𝑓(𝜉) = 𝐹 (𝑓)(𝜉) =

∫
ℝ𝑛

𝑒−𝑖𝜍⋅𝜉𝑓(𝜍)𝑑𝜍,

where 𝜍 ⋅ 𝜉 =
𝑛∑

𝑗=1

𝜍𝑗𝜉𝑗.

Obviously, the above integral on the right hand is convergent. Moreover,

we can prove that 𝑓(𝜉) ∈ 𝒮(ℝ𝑛), and the mapping 𝐹 : 𝒮(ℝ𝑛) → 𝒮(ℝ𝑛) has

the following properties:

Theorem 1.3.3.

(1) For any 𝛼 ∈ ℝ and ∀𝑓, 𝑔 ∈ 𝒮(ℝ𝑛),

𝐹 (𝛼𝑓 + 𝑔) = 𝛼𝐹 (𝑓) + 𝐹 (𝑔).

(2) For any 𝛼 ∈ ℝ and ∀𝑓 ∈ 𝒮(ℝ𝑛),

𝐹 (𝐷𝛼𝑓)(𝜉) = 𝜉𝛼𝑓(𝜉),

𝐷𝛼
𝜉 𝑓(𝜉) = 𝐹 [(−𝑥)𝛼](𝜉).

So we know that the mapping 𝐹 : 𝒮(ℝ𝑛) → 𝒮(ℝ𝑛) is linear and contin-

uous. In fact, it is a linear isomorphism, so the inverse mapping 𝐹−1 exists

and continues. Before giving the definition of 𝐹−1, we need the following

lemma:

Lemma 1.3.4. For the Gauss function 𝑒−∣𝜍∣2/2, its Fourier transform∫
ℝ𝑛

𝑒−𝑖𝜍⋅𝜉𝑒−∣𝜍∣2/2𝑑𝜍 = (2𝜋)𝑛/2𝑒−∣𝜉∣2/2.
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Furthermore, we have

Theorem 1.3.5. The mapping 𝐹 : 𝒮(ℝ𝑛) → 𝒮(ℝ𝑛) has a continuous inverse

mapping 𝐹−1 : 𝒮(ℝ𝑛) → 𝒮(ℝ𝑛);𝑔 7→ 𝑔, where

𝑔(𝜍) = 𝐹−1(𝑔)(𝜍) = (2𝜋)−𝑛

∫
ℝ𝑛

𝑒𝑖𝜍⋅𝜉𝑔(𝜉)𝑑𝜉.

A linear continuous functional defined on the space 𝒮(ℝ𝑛) is called the

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, and the set of temperate distributions is denoted by

𝒮′(ℝ𝑛). We can define the Fourier transform on 𝒮′(ℝ𝑛) by transferring the

Fourier transform into the test function space. Firstly, for a ”good” function

𝑓 ∈ 𝒮(ℝ𝑛), we define

⟨𝑓, 𝑔⟩ =

∫ ∫
𝑒−𝑖𝜍⋅𝜉𝑓(𝜍)𝑑𝜍𝑔(𝜉)𝑑𝜉

= ⟨𝑓, 𝑔⟩, ∀𝑔 ∈ 𝒮(ℝ𝑛).

Then, similarly,

Definition 1.3.6. Let 𝑓(𝜍) ∈ 𝒮′(ℝ𝑛). Define its Fourier transform 𝑓(𝜉) ∈
𝒮′(ℝ𝑛) as follows:

⟨𝑓(𝜉), 𝑔(𝜉)⟩ = ⟨𝑓(𝜍), 𝑔(𝜍)⟩, ∀𝑔 ∈ 𝒮(ℝ𝑛).

If only take the Fourier transform with respect to the space variable 𝜍,

it is called the 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚, i.e.,

𝐹𝜍(𝑝)(𝑡, 𝜉) = 𝑝(𝑡, 𝜉) =

∫
ℝ𝑛

𝑒−𝑖𝜍⋅𝜉𝑝(𝑡, 𝜍)𝑑𝜍,

for 𝑝(𝑡, 𝜍) ∈ 𝒮(ℝ1+𝑛
𝑡,𝜍 ). Apparently, we have 𝑝(𝑡, 𝜉) ∈ 𝒮(ℝ1+𝑛

𝑡,𝜉 ), i.e., 𝐹𝜍 :

𝒮(ℝ1+𝑛
𝑡,𝜍 ) → 𝒮(ℝ1+𝑛

𝑡,𝜉 ). Then, as before, we can also define

⟨𝑝(𝑡, 𝜉), 𝑞(𝑡, 𝜉)⟩ = ⟨𝑝(𝑡, 𝜍), 𝑞(𝑡, 𝜍)⟩, ∀𝑞 ∈ 𝒮(ℝ1+𝑛
𝑡,𝜉 ),

for 𝑝(𝑡, 𝜍) ∈ 𝒮′(ℝ1+𝑛
𝑡,𝜍 ). And 𝑝(𝑡, 𝜉) ∈ 𝒮′(ℝ1+𝑛

𝑡,𝜉 ).

12



Here we introduce the Dirac delta function 𝛿(𝜍) on ℝ𝑛:

𝛿(𝜍) =

⎧⎨⎩ 0, if 𝜍 ∕= 0,

∞, if 𝜍 = 0,

and it satisfies ∫
ℝ𝑛

𝛿(𝜍)𝑑𝜍 = 1.

Lemma 1.3.7. The partial Fourier transform of Dirac delta function 𝛿(𝑡, 𝜍)

on ℝ1+𝑛
𝑡,𝜍 : 𝛿(𝑡, 𝜉) = 1 ⋅ 𝛿(𝑡).

Proof. In fact, for any 𝑞(𝑡, 𝜉) ∈ 𝒮(ℝ1+𝑛
𝑡,𝜉 ),

⟨𝛿(𝑡, 𝜉), 𝑞(𝑡, 𝜉)⟩ = ⟨𝛿(𝑡, 𝜍), 𝑞(𝑡, 𝜍)⟩ = 𝑞(0, 0)

=

∫
ℝ𝑛

𝑒−𝑖𝜍⋅𝜉𝑞(𝑡, 𝜉)𝑑𝜉 ∣(𝑡,𝜍)=(0,0)

=

∫
ℝ𝑛

𝑞(0, 𝜉)𝑑𝜉

= ⟨1 ⋅ 𝛿(𝑡), 𝑞(𝑡, 𝜉)⟩.

So

𝛿(𝑡, 𝜉) = 1 ⋅ 𝛿(𝑡).

This completes the proof. ⊛

§1.3.2 Derivation of the fundamental solution on (0,∞)× ℝ𝑛

Suppose 𝐸(𝑡, 𝜍) to be the generalized function that is the fundamental

solution of the Heat equation on (0,∞)× ℝ𝑛. So

(∂𝑡 −Δ𝜍)𝐸(𝑡, 𝜍) = 𝛿(𝑡, 𝜍). (1.5)

We take the Fourier transform with respect to the space variable 𝜍 on both

sides of (1.5) and note 𝐸̃(𝑡, 𝜉) := 𝐹𝑥(𝐸)(𝑡, 𝜉). Then by Lemma 1.3.7

𝑑𝐸̃(𝑡, 𝜉)

𝑑𝑡
+ ∣𝜉∣2 𝐸̃(𝑡, 𝜉) = 1 ⋅ 𝛿(𝑡). (1.6)
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Multiply the both sides of (1.6) by 𝑒∣𝜉∣
2𝑡 and notice that 𝑓(𝜍)𝛿(𝜍) = 𝑓(0)𝛿(𝜍).

Then
𝑑

𝑑𝑡
(𝑒∣𝜉∣

2𝑡𝐸̃(𝑡, 𝜉)) = 𝛿(𝑡).

Because of integrability, we have lim
𝑡→−∞

𝑒∣𝜉∣
2𝑡𝑑𝐸̃ = 0. Then

𝑒∣𝜉∣
2𝑡𝐸̃(𝑡, 𝜉) =

∫ 𝑡

−∞
𝛿(𝜏)𝑑𝜏 := 𝐻(𝑡),

𝐸̃(𝑡, 𝜉) = 𝐻(𝑡)𝑒−∣𝜉∣2𝑡.

By the inverse Fourier transform with respect to 𝜉 and Lemma 1.3.4, we

obtain

𝐸(𝑡, 𝜍) = (4𝜋𝑡)−
𝑛
2𝐻(𝑡)𝑒−

∣𝜍∣2
4𝑡 .

Here with the appearance of the function 𝐻(𝑡), when 𝑡 < 0, 𝐸(𝑡, 𝜍) ≡ 0. It

means that making use of initial data, we only solve Cauchy problem of the

Heat equation when 𝑡 > 0.

In the case of the real space, we can employ the fundamental solution

𝐸 to fashion a solution to the Cauchy problem

⎧⎨⎩ ∂𝑡𝑢−Δ𝜍𝑢 = 0,

𝑢(0, 𝜍) = 𝜓(𝜍),
(1.7)

where (𝑡, 𝜍) ∈ (0,∞)× ℝ𝑛, and 𝜓(𝜍) is defined on ℝ𝑛.

It has been proved that the convolution

𝑢(𝑡, 𝜍) =

∫
ℝ𝑛

𝐸(𝑡, 𝜍 − 𝜇)𝜓(𝜇)𝑑𝜇 (1.8)

=
1

(4𝜋𝑡)𝑛/2

∫
ℝ𝑛

𝑒−
∣𝜍−𝜇∣2

4𝑡 𝜓(𝜇)𝑑𝜇 (𝑡 > 0, 𝜍 ∈ ℝ𝑛) (1.9)

is the solution of (1.7).

Theorem 1.3.8. (Solution of Cauchy problem) Assume 𝜓 ∈ 𝐶(ℝ𝑛)
∩
𝐿∞(ℝ𝑛),

and define 𝑢 by (1.9). Then
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(i) 𝑢 ∈ 𝐶∞((0,∞)× ℝ𝑛),

(ii) ∂𝑡𝑢(𝑡, 𝜍)−Δ𝜍𝑢(𝑡, 𝜍) = 0 (𝑡 > 0, 𝜍 ∈ ℝ𝑛),

(iii) lim
(𝑡,𝜍)→(0,𝜍0)

𝑢(𝑡, 𝜍) = 𝜓(𝜍0) for each point 𝜍0 ∈ ℝ𝑛.

Proof. 1. Since the function 1
𝑡𝑛/2 𝑒

− ∣𝜍∣2
4𝑡 is infinitely differentiable, with

uniformly bounded derivatives of all orders, on [𝛿,∞) × ℝ𝑛 for each 𝛿 > 0,

we see that 𝑢 ∈ 𝐶∞((0,∞)× ℝ𝑛). Furthermore

∂𝑡𝑢−Δ𝜍𝑢 =

∫
ℝ𝑛

[(∂𝑡𝐸 −Δ𝜍𝐸)(𝑡, 𝜍 − 𝜇)]𝜓(𝜇)𝑑𝜇

= 0 (𝑡 > 0, 𝜍 ∈ ℝ𝑛),

since 𝐸 itself solves the Heat equation.

2. Fixed 𝜍0 ∈ ℝ𝑛, 𝜖 > 0. Choose 𝛿 > 0 such that∣∣𝜓(𝜇)− 𝜓(𝜍0)
∣∣ < 𝜖 if

∣∣𝜇− 𝜍0
∣∣ < 𝛿, 𝜇 ∈ ℝ𝑛. (1.10)

Then if ∣𝜍 − 𝜍0∣ < 𝛿
2
, we have, according to the following lemma,∣∣𝑢(𝑡, 𝜍)− 𝜓(𝜍0)
∣∣ =

∣∣∣∣∫
ℝ𝑛

𝐸(𝑡, 𝜍 − 𝜇)[𝜓(𝜇)− 𝜓(𝜍0)]𝑑𝜇

∣∣∣∣
≤

∫
𝐵(𝜍0,𝛿)

𝐸(𝑡, 𝜍 − 𝜇)
∣∣𝜓(𝜇)− 𝜓(𝜍0)

∣∣ 𝑑𝜇
+

∫
ℝ𝑛−𝐵(𝜍0,𝛿)

𝐸(𝑡, 𝜍 − 𝜇)
∣∣𝜓(𝜇)− 𝜓(𝜍0)

∣∣ 𝑑𝜇
=: 𝐼 + 𝐽.

Now

𝐼 ≤ 𝜖

∫
ℝ𝑛

𝐸(𝑡, 𝜍 − 𝜇)𝑑𝜇 = 𝜖,

owing to (1.10) and the following lemma. Furthermore, if ∣𝜍 − 𝜍0∣ ≤ 𝛿
2
and

∣𝜇− 𝜍0∣ ≥ 𝛿, then ∣∣𝜇− 𝜍0
∣∣ ≤ ∣∣𝜇− 𝜍0

∣∣+ 𝛿

2

≤ ∣∣𝜇− 𝜍0
∣∣+ 1

2

∣∣𝜇− 𝜍0
∣∣ .
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Thus ∣𝜇− 𝜍∣ ≥ 1
2
∣𝜇− 𝜍0∣. Consequently

𝐽 ≤ 2 ∥ 𝜓 ∥𝐿∞

∫
ℝ𝑛−𝐵(𝜍0,𝛿)

𝐸(𝑡, 𝜍 − 𝜇)𝑑𝜇

≤ 𝐶

𝑡𝑛/2

∫
ℝ𝑛−𝐵(𝜍0,𝛿)

𝑒−
∣𝜍−𝜇∣
4𝑡 𝑑𝜇

≤ 𝐶

𝑡𝑛/2

∫
ℝ𝑛−𝐵(𝜍0,𝛿)

𝑒−
∣𝜍0−𝜇∣

16𝑡 𝑑𝜇

=
𝐶

𝑡𝑛/2

∫ ∞

𝛿

𝑒−
𝑟2

16𝑡 𝑟𝑛−1𝑑𝑟 → 0, as 𝑡→ 0+.

Hence if ∣𝜍 − 𝜍0∣ ≤ 𝛿
2
and 𝑡 > 0 is small enough, ∣𝑢(𝑡, 𝜍)− 𝜓(𝜍0)∣ < 2𝜖. ⊛

Lemma 1.3.9. (Integral of fundamental solution) For each time 𝑡 > 0,∫
ℝ𝑛

𝐸(𝑡, 𝜍)𝑑𝜍 = 1.

For more details, refer to Evans [17].

§1.4 Contents

The organization of the thesis is as follows:

In Chapter 1, we introduce some known results on summability of formal

solutions to ordinary differential equations, partial differential equations and

𝑞-difference equations. After stating our problem and main conclusions, we

recall how to solve Cauchy problem for the real Heat equation with Heat

kernel.

In Chapter 2, we introduce the classic Borel-Laplace summation and

show the theorem on the finely Borel sum of divergent solutions of the com-

plex Heat equation by Lutz, Miyake and Sch𝑎̈fke (cf. [26]). And making use

of it, we obtain the Borel sum of the formal solution to our problem.
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Next, in Chapter 3, we introduce the so-called G𝑞-summation which

is used to treat 𝑞-Gevrey power series of order 1 (cf. [50]). By variable

substitutions, we can transfer the divergent formal solution to our Cauchy

problem into a 𝑞-series. Then a 𝑞-Borel sum based on Heat kernel will be

obtained. And also we compare the sum functions defined in the previous

sections and get one of our main theorems.

In Chapter 4, we firstly prove some properties of the Jacobi theta func-

tion and introduce a method of summation based on Jacobi theta function

(cf. [51]). Then we get the other sum of the 𝑞-series, which is entirely uniform

but admits a spiral of simple poles.

In Chapter 5, after giving some motivations of the study of a integral

function fromMordell’s point of view, we say that his theorem can be deduced

from our other main theorem on the relations of the two sums of the 𝑞-series

as a corollary. And we can apply our ideas mentioned above to the more

general cases.

Finally, in Chapter 6, we sum up in a few sentences and list some prob-

lems in consideration.
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Chapter 2 Classical Borel-Laplace

Summation

In this chapter, we will get the fine Borel sum of the divergent solution

𝑢̂(𝜏, 𝑧) defined by (1.2).

§2.1 Borel summability

Here we summarize the fundamentals on Gevrey asymptotic expansions

and the Borel summability for Gevrey type formal power series without the

proofs, since they are essentially the same with one variable cases studied by

many authors (see [39, 28, 3]). In fact, the only difference with them is that

we consider the formal power series over the ring of analytic functions, not

over just the complex numbers.

§2.1.1 Formal power series

𝒪(𝑟) is the ring of analytic functions on 𝐵(𝑟) := {𝑧 ∈ ℂ∣ ∣𝑧∣ ≤ 𝑟}.
𝒪(𝑟)[[𝜏 ]] is the ring of formal power series in 𝜏 over the ring 𝒪(𝑟), and we

define 𝒪[[𝜏 ]] by

𝒪[[𝜏 ]] :=
∪
𝑟>0

𝒪(𝑟)[[𝜏 ]].

An element 𝑢̂(𝜏, 𝑧) ∈ 𝒪[[𝜏 ]] is written as

𝑢̂(𝜏, 𝑧) =
∞∑
𝑛=0

𝑢𝑛(𝑧)𝜏
𝑛, 𝑢𝑛(𝑧) ∈ 𝒪(𝑟) for some 𝑟 > 0.

§2.1.2 Gevrey formal power series

𝒪(𝑟)[[𝜏 ]]1, which is called to be Gevrey of order one, is the subring of

𝒪(𝑟)[[𝜏 ]] whose coefficient satisfy the following inequalities for some positive
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constants 𝐶 and 𝐾,

max
∣𝑧∣≤𝑟

∣𝑢𝑛(𝑧)∣ ≤ 𝐶𝐾𝑛𝑛!, for 𝑛 = 0, 1, 2, . . . .

Also we define 𝒪[[𝜏 ]]1 by

𝒪[[𝜏 ]]1 :=
∪
𝑟>0

𝒪(𝑟)[[𝜏 ]]1.

§2.1.3 Sectorial domain

For 𝜃 ∈ ℝ, 𝛼 > 0 and 0 < 𝑇 ≤ +∞, we denote by 𝑆(𝜃, 𝛼;𝑇 ) a sectorial

domain defined by

𝑆(𝜃, 𝛼;𝑇 ) := {𝜏 ∈ ℂ∣ ∣arg(𝜏)− 𝜃∣ < 𝛼/2, 0 < ∣𝑟∣ < 𝑇}.

Here 𝜃, 𝛼 and 𝑇 are called the direction, opening angle, and radius of the

sectorial domain 𝑆(𝜃, 𝛼;𝑇 ), respectively. If the radius 𝑇 is not so important

to identify, we will sometimes suppress it and denote the sector by 𝑆(𝜃, 𝛼)

for simplicity. A sectorial domain 𝑆 ′ is called a proper subsector of 𝑆(𝜃, 𝛼;𝑇 )

if its closure is contained in 𝑆(𝜃, 𝛼;𝑇 )
∪{0}.

§2.1.4 Gevrey asymptotic expansion

Let 𝑢(𝜏, 𝑧) be analytic on
∩

𝛼′<𝛼

𝑆(𝜃, 𝛼′)×𝐵(𝑟(𝛼′)), where 𝑟(𝛼′) may tend

to 0 as 𝛼′ → 𝛼. Then 𝑢̂(𝜏, 𝑧) ∈ 𝒪[[𝜏 ]]1 is called a 𝐺𝑒𝑣𝑟𝑒𝑦 𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐

𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 of 𝑢(𝜏, 𝑧) as 𝜏 → 0 in 𝑆(𝜃, 𝛼) or shortly in 𝑆(𝜃, 𝛼) if for any

proper subsector 𝑆 ′ ∈ 𝑆(𝜃, 𝛼;𝑇 ) (with sufficiently small radius), there exist

positive constants 𝐶, 𝐾 and 0 < 𝑟1 < 𝑟, such that 𝑢̂(𝜏, 𝑧) ∈ 𝒪(𝑟1)[[𝜏 ]]1 and

max
∣𝑧∣≤𝑟1

∣∣∣∣∣𝑢(𝜏, 𝑧)−
𝑁−1∑
𝑛=0

𝑢𝑛(𝑧)𝜏
𝑛

∣∣∣∣∣ ≤ 𝐶𝐾𝑁𝑁 ! ∣𝜏 ∣𝑁 , (2.1)

𝜏 ∈ 𝑆 ′, 𝑁 = 1, 2, 3, . . . .

The relation is denoted by

𝑢(𝜏, 𝑧) ∼1 𝑢̂(𝜏, 𝑧), in 𝑆(𝜃, 𝛼).
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An analytic function 𝑢(𝜏, 𝑧) is said to be Gevrey asymptotic expandable

in 𝑆(𝜃, 𝛼) if it has a Gevrey asymptotic expansion 𝑢̂(𝜏, 𝑧) ∈ 𝒪[[𝜏 ]]1.

Let us denote by 𝒜1(𝑆(𝜃, 𝛼)) the set of analytic functions which are

Gevrey asymptotic expandable in 𝑆(𝜃, 𝛼). We denote a mapping 𝐽 (1) by

𝐽 (1) : 𝒜1(𝑆(𝜃, 𝛼)) → 𝒪[[𝜏 ]]1, (2.2)

where 𝐽 (1)(𝑢(𝜏, 𝑧)) = 𝑢̂(𝜏, 𝑧) is the Gevrey asymptotic expansion 𝑢̂(𝜏, 𝑧) of

𝑢(𝜏, 𝑧).

Now the following result is known as an analogue of Borel-Ritt’s theorem

for Gevrey asymptotic expansions (cf. [39, 28, 3]).

Theorem 2.1.1.

(1) The mapping 𝐽 (1) defined by (2.2) is surjective but is not injective for

any 𝜃 ∈ ℝ and 𝛼 with 𝛼 ≤ 𝜋.

(2) For any 𝛼 with 𝛼 > 𝜋, the mapping 𝐽 (1) is not surjective but is injective

for any 𝜃 ∈ ℝ.

§2.1.5 Formal Borel transform

To get an element 𝑢(𝜏, 𝑧) ∈ (𝐽 (1))−1(𝑢̂) for 𝑢̂ ∈ 𝒪[[𝜏 ]]1, an effective way

is to introduce the 𝑓𝑜𝑟𝑚𝑎𝑙 𝐵𝑜𝑟𝑒𝑙 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑣(𝑠, 𝑧) of 𝑢̂(𝜏, 𝑧) defined by

𝑣(𝑠, 𝑧) :=
∞∑
𝑛=0

𝑢𝑛(𝑧)
𝑠𝑛

𝑛!
.

By the definition of 𝒪[[𝜏 ]]1, 𝑣(𝑠, 𝑧) is analytic in a neighborhood of the origin

(𝑠, 𝑧) = (0, 0), and so we assume that it is analytic on {∣𝑠∣ < 𝑟} × {∣𝑧∣ < 𝑟}
(∃𝑟 > 0). Now for any 𝜃 ∈ ℝ, we fix a positive constant 𝜌 such that 0 < 𝜌 < 𝑟,

and we define

𝑢(𝜃,𝜌)(𝜏, 𝑧) :=
1

𝜏

∫ 𝜌𝑒𝑖𝜃

0

𝑒−𝑠/𝜏𝑣(𝑠, 𝑧)𝑑𝑠, ∣arg(𝜏)− 𝜃∣ < 𝜋/2.
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Then it can be proved (cf. [3]) that 𝐽 (1)(𝑢(𝜃,𝜌)(𝜏, 𝑧)) = 𝑢̂(𝜏, 𝑧) in 𝑆(𝜃, 𝜋).

Here, the arbitrariness of 𝜌 shows the non uniqueness of functions 𝑢(𝜏, 𝑧)

such that 𝐽 (1)(𝑢) = 𝑢̂ in 𝑆(𝜃, 𝜋).

§2.1.6 Borel summability

According to the assertion (2) of Theorem 2.1.1, we know that if the

opening angle of the sector 𝑆 is large than 𝜋, for 𝑢̂(𝜏, 𝑧) ∈ 𝐽 (1)(𝒜1(𝑆)),

there exists 𝑢(𝜏, 𝑧) ∈ 𝒜1(𝑆) such that 𝐽 (1)(𝑢) = 𝑢̂ is unique. Then we

say that 𝑢(𝜏, 𝑧) is called the 𝐵𝑜𝑟𝑒𝑙 𝑠𝑢𝑚 of 𝑢̂(𝜏, 𝑧), and 𝑢̂(𝜏, 𝑧) is said to be

𝐵𝑜𝑟𝑒𝑙 𝑠𝑢𝑚𝑚𝑎𝑏𝑙𝑒 in 𝑆. The Borel summability of 𝑢̂(𝜏, 𝑧) ∈ 𝒪[[𝜏 ]]1 can be

characterized (with respect to its formal Borel transform) as follows:

Theorem 2.1.2. A formal series 𝑢̂(𝜏, 𝑧) ∈ 𝒪[[𝜏 ]]1 is Borel summable in

𝑆(𝜃, 𝛼) (𝛼 > 𝜋) if and only if its Borel transform 𝑣(𝑠, 𝑧) is analytic on

𝑆(𝜃, 𝛼− 𝜋;∞)×𝐵(𝑟) and satisfies a growth condition of exponential type as

𝑠→ ∞ in 𝑆(𝜃, 𝛼−𝜋;∞), i.e., for any proper subsection 𝑆 ′ ⊂ 𝑆(𝜃, 𝛼−𝜋;∞)

of infinite radius there exists 0 < 𝑟1 < 𝑟 such that

max
∣𝑧∣≤𝑟1

∣𝑣(𝑠, 𝑧)∣ ≤ 𝐶𝑒𝛿∣𝑠∣, 𝑠 ∈ 𝑆 ′

for some positive constants 𝐶 and 𝛿. Finally, the Borel sum (𝐽 (1))−1(𝑢̂) in

𝑆(𝜃, 𝛼) is represented by the Laplace integral,

𝑢𝜑(𝜏, 𝑧) :=
1

𝜏

∫ ∞𝑒𝑖𝜑

0

𝑒−𝑠/𝜏𝑣(𝑠, 𝑧)𝑑𝑠, (2.3)

where the path of integration is taken over the ray 𝑒𝑖𝜑ℝ+ = {𝑟𝑒𝑖𝜑∣𝑟 ≥ 0} for

𝜑 such that ∣𝜑− 𝜃∣ < 𝛼−𝜋
2
.

§2.1.7 Fine Borel summability

In the definition of Gevrey asymptotic expansion, we always take a

proper subsector 𝑆 ′ ⊂ 𝑆(𝜃, 𝛼). In the case of crucial value of 𝛼 = 𝜋, Nevan-

linna [36] has given a refined form of asymptotic expansion which corresponds
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to taking open disks instead of subsectors as follows. For 𝜃 ∈ ℝ and 𝑇 > 0

we define an open disk 𝑂(𝜃, 𝑇 ) by

𝑂(𝜃, 𝑇 ) := {𝜏 ∈ ℂ∣ ∣∣𝜏 − 𝑇𝑒𝑖𝜃
∣∣ < 𝑇}.

Then we say that 𝑢̂(𝜏, 𝑧) ∈ 𝒪[[𝜏 ]]1 is 𝑓𝑖𝑛𝑒𝑙𝑦 𝐵𝑜𝑟𝑒𝑙 𝑠𝑢𝑚𝑚𝑎𝑏𝑙𝑒 in a direction

𝜃 if there exists an analytic function 𝑢(𝜏, 𝑧) on 𝑂(𝜃, 𝑇 ) × 𝐵(𝑟) (∃𝑇, 𝑟 > 0)

such that for some 0 < 𝑇 ′ < 𝑇 the following inequalities

max
∣𝑧∣≤𝑟

∣∣∣∣∣𝑢(𝜏, 𝑧)−
𝑁−1∑
𝑛=0

𝑢𝑛(𝑧)𝜏
𝑛

∣∣∣∣∣ ≤ 𝐶𝐾𝑁𝑁 ! ∣𝜏 ∣𝑁 , (2.4)

𝜏 ∈ 𝑂(𝜃, 𝑇 ′), 𝑁 = 1, 2, 3, . . . ,

hold for some positive comstants 𝐶 and 𝐾. This relation is denoted by

𝑢(𝜏, 𝑧) ∼1 𝑢̂(𝜏, 𝑧), finely in the direction 𝜃.

For a modern treatment of fine Borel summability, see Malgrange [28].

As in the Borel summable case, it is proved that if 𝑢(𝜏, 𝑧) ∼1 0 finely

in the direction 𝜃 we have 𝑢(𝜏, 𝑧) ≡ 0 (cf. [28]). Hence for 𝑢̂(𝜏, 𝑧) ∈ 𝒪[[𝜏 ]]1,

if there exists 𝑢(𝜏, 𝑧) such that the relation (2.4) holds, it is called the 𝑓𝑖𝑛𝑒

𝐵𝑜𝑟𝑒𝑙 𝑠𝑢𝑚 in the direction 𝜃 of 𝑢̂(𝜏, 𝑧) (see [28]).

To characterize the fine Borel summability we need to define a set

𝐸+(𝜃, 𝑤) by

𝐸+(𝜃, 𝑤) := {𝑠 ∈ ℂ∣𝑑𝑖𝑠𝑡(𝑠, 𝑒𝑖𝜃ℝ+) < 𝑤}.

Now the fine Borel summability is characterized as follows.

Theorem 2.1.3. The formal power series 𝑢̂(𝜏, 𝑧) ∈ 𝒪[[𝜏 ]]1 is finely Borel

summable in a direction 𝜃 if and only if its formal Borel transform 𝑣(𝑠, 𝑧)

is analytic on 𝐸+(𝜃, 𝑤) × 𝐵(𝑟) for some 𝑤 > 0 and 𝑟 > 0, and satisfies a

growth condition of exponential type as 𝑠→ ∞ in 𝐸+(𝜃, 𝑤), that is,

max
∣𝑧∣≤𝑟

∣𝑣(𝑠, 𝑧)∣ ≤ 𝐶𝑒𝛿∣𝑠∣, 𝑠 ∈ 𝐸+(𝜃, 𝑤).
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The fine Borel sum 𝑢𝜃(𝜏, 𝑧) in the direction 𝜃 of 𝑢̂(𝜏, 𝑧) is obtained by the

expression (2.3).

For the proof, see Malgrange [28].

§2.1.8 Function satisfying 𝐽 (1)(𝑢) = 0

The following criterion for analytic functions with 0 Gevrey asymptotic

expansion is used in the latter sections.

Proposition 2.1.4. In order that 𝑢(𝜏, 𝑧) ∼1 0 in 𝑆(𝜃, 𝛼) it is necessary

and sufficient that for any proper subsector 𝑆 ′ ⊂ 𝑆(𝜃, 𝛼) there exist positive

constants 𝑟1, 𝐶 and 𝛿 such that

max
∣𝑧∣≤𝑟1

∣𝑢(𝜏, 𝑧)∣ ≤ 𝐶𝑒−𝛿/∣𝜏 ∣, 𝜏 ∈ 𝑆 ′.

In the case of fine Borel summability in a direction 𝜃, 𝑆 ′ should be

replaced by 𝑂(𝜃, 𝑇 ) for some 𝑇 > 0, and the inequality implies that 𝑢 ≡ 0

by Watson’s lemma (cf. [28]).

§2.2 Properties of Borel summability

Let 𝑟 > 0 and 𝜃 ∈ ℝ be given. By

𝒪(𝑟){𝜏}1,𝜃

we denote the set of all 𝑢̂(𝜏, 𝑧) ∈ 𝒪(𝑟)[[𝜏 ]]1 that are Borel summable in

𝑆 = 𝑆(𝜃, 𝛼) with 𝛼 > 𝜋. And we shall write the Borel sum of 𝑢̂(𝜏, 𝑧) as

𝒮1,𝜃(𝑢̂)(𝜏, 𝑧). Also we define 𝒪{𝜏}1,𝜃 by

𝒪{𝜏}1,𝜃 :=
∪
𝑟>0

𝒪(𝑟){𝜏}1,𝜃.

This set is a differential algebra over the ring of analytic functions. In this

thesis, we only need to use the following properties:
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Theorem 2.2.1. For fixed but arbitrary 𝜃 ∈ ℝ, we have:

(i) If 𝑓 , 𝑔 ∈ 𝒪{𝜏}1,𝜃, then 𝑓 + 𝑔, 𝑓𝑔 ∈ 𝒪{𝜏}1,𝜃, and

𝒮1,𝜃(𝑓 + 𝑔) = 𝒮1,𝜃(𝑓) + 𝒮1,𝜃(𝑔),

𝒮1,𝜃(𝑓𝑔) = (𝒮1,𝜃(𝑓))(𝒮1,𝜃(𝑔)).

(ii) If 𝑓 ∈ 𝒪{𝜏}1,𝜃, then ∂
∂𝜏
𝑓 ,

∫ 𝜏

0
𝑓(𝑤, 𝑧)𝑑𝑤 ∈ 𝒪{𝜏}1,𝜃, and

𝒮1,𝜃(
∂

∂𝜏
𝑓) =

∂

∂𝜏
𝒮1,𝜃(𝑓),

𝒮1,𝜃(

∫ 𝜏

0

𝑓(𝑤, 𝑧)𝑑𝑤) =

∫ 𝜏

0

𝒮1,𝜃(𝑓)(𝑤, 𝑧)𝑑𝑤,

with
∫ 𝜏

0
𝑓(𝑤, 𝑧)𝑑𝑤 denoting the termwise integrated formal power series.

(iii) If 𝑓 ∈ 𝒪{𝜏}1,𝜃, then ∂
∂𝑧
𝑓 ∈ 𝒪{𝜏}1,𝜃, and

𝒮1,𝜃(
∂

∂𝑧
𝑓) =

∂

∂𝑧
𝒮1,𝜃(𝑓).

Proof. It follows the following lemmas. ⊛

Lemma 2.2.2. Given a sector 𝑆, suppose that

𝑓(𝜏, 𝑧) ∼1 𝑓(𝜏, 𝑧), in 𝑆,

𝑔(𝜏, 𝑧) ∼1 𝑔(𝜏, 𝑧), in 𝑆.

Then

𝑓(𝜏, 𝑧) + 𝑔(𝜏, 𝑧) ∼1 𝑓(𝜏, 𝑧) + 𝑔(𝜏, 𝑧), in 𝑆,

𝑓(𝜏, 𝑧)𝑔(𝜏, 𝑧) ∼1 𝑓(𝜏, 𝑧)𝑔(𝜏, 𝑧), in 𝑆.

Lemma 2.2.3. Given a sector 𝑆, suppose that

𝑓(𝜏, 𝑧) ∼1 𝑓(𝜏, 𝑧), in 𝑆.

Then
∂

∂𝜏
𝑓(𝜏, 𝑧) ∼1

∂

∂𝜏
𝑓(𝜏, 𝑧), in 𝑆,
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∫ 𝜏

0

𝑓(𝜏, 𝑤)𝑑𝑤 ∼1

∫ 𝜏

0

𝑓(𝑤, 𝑧)𝑑𝑤, in 𝑆,

∂

∂𝑧
𝑓(𝜏, 𝑧) ∼1

∂

∂𝑧
𝑓(𝜏, 𝑧), in 𝑆.

Balser in [3, 5] gave similar conclusions in the case of formal power series

over the complex numbers, and they are still true about the formal power

series over the ring of analytic functions.

Remark 2.2.4. We say that in the case of fine Borel summability in a

direction 𝜃, these properties remain valid.

§2.3 Fine Borel sum of 𝑢̂(𝜏, 𝑧)

In [26], Lutz, Miyake and Sch𝑎̈fke studied a normalized Cauchy problem

for linear partial differential equations in two variables 𝜏 and 𝑧 with constant

coefficients. The Cauchy problem has formal solutions that are power series

in the variable 𝜏 , with coefficients that are holomorphic functions of 𝑧 in a

disc about the origin. Explicitly, they considered

⎧⎨⎩ ∂𝜏𝑢− ∂2𝑧𝑢 = 0,

𝑢(0, 𝑧) = 𝜙(𝑧),
(2.5)

where (𝜏, 𝑧) ∈ ℂ× ℂ, and 𝜙(𝑧) is assumed to be analytic in a neighborhood

of the origin.

And they have proved

Theorem 2.3.1. Let 𝑣(𝑠, 𝑧) be the formal Borel transform of the formal

solution 𝑢̂(𝜏, 𝑧) =
∑∞

𝑛=0
𝜙(2𝑛)(𝑧)

𝑛!
𝜏𝑛 of (2.5). Then the following two statements

are equivalent:

(i) 𝑣(𝑠, 𝑧) is analytic on 𝐸+(𝜃, 𝑤)× 𝐵(𝑟) for some positive constants 𝑤 and

𝑟, and satisfies the exponential type growth condition as 𝑠→ ∞ in 𝐸+(𝜃, 𝑤).
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(ii) The Cauchy data 𝜙(𝑧) is analytic on Ω(𝜃/2, 𝜔) for some positive 𝜔, and

satisfies the growth condition of exponential order at most 2 as 𝑧 → ∞ in

Ω(𝜃/2, 𝜔), that is, the following inequality holds for some positive constants

𝐶 and 𝛿,

∣𝜙(𝑧)∣ ≤ 𝐶𝑒𝛿∣𝑧∣
2

, 𝑧 ∈ Ω(𝜃/2, 𝜔).

Here,

Ω(𝜃/2, 𝜔) = {𝑧 ∈ ℂ ∣ 𝑑𝑖𝑠𝑡(𝑧, 𝑒𝑖𝜃/2ℝ) < 𝜔}.

Remark 2.3.2. Actually, 𝑣(𝑠, 𝑧) is analytic on 𝐸+(𝜃, 𝑤
′) × Ω(𝜃/2, 𝜔′) for

small 𝑤′ and 𝜔′, and satisfies the growth condition

∣𝑣(𝑠, 𝑧)∣ ≤ 𝐶𝑒𝐴∣𝑠∣+𝐵∣𝑧∣2 , on 𝐸+(𝜃, 𝑤
′)× Ω(𝜃/2, 𝜔′)

for some positive constants 𝐴, 𝐵 and 𝐶. This implies that the Borel sum

𝑢𝜃(𝜏, 𝑧) in the direction 𝜃, which is given by (2.3), is analytic on 𝑂(𝜃, 𝑇 ) ×
Ω(𝜃/2, 𝜔′′) for some positive constants 𝑇 and 𝜔′′.

Theorem 2.3.3. Suppose the formal solution 𝑢̂(𝜏, 𝑧) :=
∞∑
𝑛=0

𝑢𝑛(𝑧)𝜏
𝑛 to be

finely Borel summable in a direction 𝜃 with the Cauchy data 𝑢0(𝑧) = 𝜙(𝑧),

and 𝑢𝜃(𝜏, 𝑧) be its fine Borel sum defined on 𝑂(𝜃, 𝑇 ) × Ω(𝜃/2, 𝜔). Then we

have:

(i) (Gevrey asymptotic estimates) For some 𝑇 ′ < 𝑇 , 𝜔′ < 𝜔, there exist

positive constants 𝐶, 𝐾 and 𝛿 such that the following asymptotic estimates

hold: ∣∣∣∣∣𝑢𝜃(𝜏, 𝑧)−
𝑁−1∑
𝑛=0

𝑢𝑛(𝑧)𝜏
𝑛

∣∣∣∣∣ ≤ 𝐶𝐾𝑁𝑁 !𝑒𝛿∣𝑧∣
2 ∣𝜏 ∣𝑁 , (2.6)

(𝜏, 𝑧) ∈ 𝑂(𝜃, 𝑇 ′)× Ω(𝜃/2, 𝜔′),

for all 𝑁 = 1, 2, 3, . . ..

(ii) (integral expression) The fine Borel sum 𝑢𝜃(𝜏, 𝑧) has the following integral

expression involving the Heat Kernel 𝑒−𝜁2/(4𝜏)/
√
4𝜋𝜏 :

𝑢𝜃(𝜏, 𝑧) =
1√
4𝜋𝜏

∫ ∞𝑒𝑖𝜃/2

−∞𝑒𝑖𝜃/2
𝑒−𝜁2/(4𝜏)𝜙(𝑧 + 𝜁)𝑑𝜁. (2.7)
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Proof. (i) By Theorem 2.3.1, the Cauchy data 𝜙(𝑧) is analytic on

Ω(𝜃/2, 𝜔) for some positive constant 𝜔, and satisfies there a growth condition

of exponential order at most 2. We recall that the fine Borel sum 𝑢𝜃(𝜏, 𝑧)

has an integral expression (cf. (2.3))

𝑢𝜃(𝜏, 𝑧) =
1

𝜏

∫ ∞𝑒𝑖𝜃

0

𝑒−𝑠/𝜏𝑣(𝑠, 𝑧)𝑑𝑠, (2.8)

where 𝑣(𝑠, 𝑧) is the formal Borel transform of 𝑢̂(𝜏, 𝑧), and satisfies (from

Remark 2.3.2) the following inequality

∣𝑣(𝑠, 𝑧)∣ ≤ 𝐶𝑒𝐴∣𝑠∣+𝐵∣𝑧∣2 , (𝑠, 𝑧) ∈ 𝐸+(𝜃, 𝑤
′)× Ω(𝜃/2, 𝜔′),

for from positive constants 𝐴, 𝐵, 𝐶, 𝑤′ and 𝜔′. Hence by Cauchy’s integral

formula, ∣∣∣∣∂𝑛𝑣∂𝑠𝑛
(𝑠, 𝑧)

∣∣∣∣ ≤ 𝐶 ′𝐾𝑛𝑛!𝑒𝐴∣𝑠∣+𝐵∣𝑧∣2 ,

(𝑠, 𝑧) ∈ 𝐸+(𝜃, 𝑤
′′)× Ω(𝜃/2, 𝜔′),

for any 𝑤′′ < 𝑤′ and suitable positive constants 𝐶 ′ and 𝐾.

Now by the repeated use of integration by parts in (2.8), we have

𝑢𝜃(𝜏, 𝑧)−
𝑁−1∑
𝑛=0

𝑢𝑛(𝑧)𝜏
𝑛 = 𝑢𝑁(𝑧)𝜏

𝑁 + 𝜏𝑁
∫ ∞𝑒𝑖𝜃

0

𝑒−𝑠/𝜏 ∂
𝑁+1

∂𝑠𝑁+1
𝑣(𝑠, 𝑧)𝑑𝑠,

for 𝜏 such that Re(𝑒𝑖𝜃/𝜏) > 2𝐴, and 𝑧 ∈ Ω(𝜃/2, 𝜔′). Here, 𝑢𝑛(𝑧) = (∂𝑛𝑣/∂𝑠𝑛)(0, 𝑧).

By restricting 𝜏 as above, the integral part in the above equality is

estimated by

𝐶 ′ ∣𝜏 ∣𝑁 𝐾𝑁(𝑁 + 1)!𝑒𝐵∣𝑧∣2
∫ ∞

0

𝑒−𝐴𝑟𝑑𝑟 = 𝐶 ′𝐴−1 ∣𝜏 ∣𝑁 𝐾𝑁(𝑁 + 1)!𝑒𝐵∣𝑧∣2

≤ 𝐶 ′′𝐾 ′𝑁𝑁 !𝑒𝐵∣𝑧∣2 ∣𝜏 ∣𝑁 ,

for some positive constants 𝐶 ′′ and 𝐾 ′. Here we notice that

{𝜏 ∣ Re(𝑒𝑖𝜃/𝜏) > 2𝐴)} = {𝜏 ∣ ∣∣𝜏 − 𝑒𝑖𝜃/𝐴
∣∣ < 1/𝐴} = 𝑂(𝜃, 1/𝐴).

Combining the results above, we have the desired asymptotic estimates (2.6).
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(ii) Because 𝑢̂(𝜏, 𝑧) is finely Borel summable in a direction 𝜃, by Theorem

2.3.1, 𝜙(𝑧) is analytic on Ω(𝜃/2, 𝜔) for some positive 𝜔, and satisfies the

growth condition of exponential order at most 2 as 𝑧 → ∞ in Ω(𝜃/2, 𝜔).

Then we can deduce that 𝑣(𝑠, 𝑧) has the integral expression

𝑣(𝑠, 𝑧) =
1

2𝜋𝑖

∫
Γ

𝜙(𝑧 + 𝜁)√
𝜁2 − 4𝑠

𝑑𝜁, (2.9)

where Γ is any simple closed piecewise smooth curve surrounding the segment

joining two points {±2
√
𝑠} (𝑠 ∕= 0). We restrict 𝑠 to the ray {𝑟𝑒𝑖𝜃 ∣ 𝑟 ≥ 0},

and put
√
𝑠 :=

√
𝑟𝑒𝑖𝜃/2.

Let 𝑟 > 0 and 𝜁 = 𝜉 + 𝑖𝜂, where ∣𝜉∣ < 2
√
𝑟. Then by noticing√

(𝜉 + 𝑖0)2 − 4𝑟 = 𝑖
√
4𝑟 − 𝜉2,

√
(𝜉 − 𝑖0)2 − 4𝑟 = −𝑖

√
4𝑟 − 𝜉2,

we have

𝑣(𝑠, 𝑧) = 𝑣(𝑟𝑒𝑖𝜃, 𝑧)

=
1

𝜋

∫ 2
√
𝑟

−2
√
𝑟

𝜙(𝑧 + 𝜉𝑒𝑖𝜃/2)√
4𝑟 − 𝜉2

𝑑𝜉, 𝑟 > 0.

Then by substituting this into (2.8), we have

𝑢𝜃(𝜏, 𝑧) =
𝑒𝑖𝜃

𝜋𝜏

∫ ∞

0

exp(−𝑒
𝑖𝜃

𝜏
𝑟)𝑑𝑟

∫ −2
√
𝑟

2
√
𝑟

𝜙(𝑧 + 𝜉𝑒𝑖𝜃/2)√
4𝑟 − 𝜉2

𝑑𝜉

=
𝑒𝑖𝜃

𝜋𝜏

∫ ∞

−∞
𝜙(𝑧 + 𝜉𝑒𝑖𝜃/2)𝑑(𝜉𝑒𝑖𝜃/2)

∫ ∞

𝜉2/4

exp(−𝑒
𝑖𝜃

𝜏
𝑟)

𝑑𝑟

4𝑟 − 𝜉2
.

Now the desired integral expression (2.7) is a consequence of the follow-

ing calculations:∫ ∞

𝜉2/4

exp(−𝑒
𝑖𝜃

𝜏
𝑟)

𝑑𝑟√
4𝑟 − 𝜉2

(𝑥 =
√
4𝑟 − 𝜉2)

=
1

2
exp(−(𝜉𝑒𝑖𝜃/2)2

4𝜏
)

∫ ∞

0

exp(−𝑒
𝑖𝜃

4𝜏
𝑥2)𝑑𝑥 (𝑦 = 𝑥𝑒𝑖𝜃/2/(2

√
𝑟))

= 𝑒−𝑖𝜃/2

√
𝜋𝜏

2
exp(−(𝜉𝑒𝑖𝜃/2)2

4𝜏
).

This completes the proof. ⊛
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Back to our explicit Problem (1.1). Since the initial value 𝜑(𝑧) is not

analytic at the origin, one cannot directly apply results in [26] to get the fine

Borel sum of 𝑢̂(𝜏, 𝑧) =
∞∑
𝑛=0

𝜑(2𝑛)(𝑧)
𝑛!

𝜏𝑛 in the direction of the real axis. But

using variable transformation

𝑍 = 𝑧 − (2𝑘 + 1)𝜋𝑖,

one can transfer the strip domain Ω𝑘 with 𝑘 ∈ ℤ, into the domain

Ω̃ := {𝑍 ∈ ℂ ∣ −𝜋 < Im(𝑍) < 𝜋}

which contains the origin 𝑍 = 0. Hence, Problem (1.1) has the equivalent

form: ⎧⎨⎩ ∂𝜏𝑢− ∂2𝑍𝑢 = 0,

𝑢(0, 𝑍) = 1
1−𝑒𝑍+(2𝑘+1)𝜋𝑖 .

(2.10)

Apparently, the initial condition 𝑢(0, 𝑍) is analytic on Ω̃. By Theorem

2.3.3, Problem (2.10) has a solution 𝑢𝑘(𝜏, 𝑍) defined by

𝑢𝑘(𝜏, 𝑍) =
1√
4𝜋𝜏

∫ +∞

−∞
𝑒−

𝑠2

4𝜏
1

1− 𝑒𝑍+𝑠+(2𝑘+1)𝜋𝑖
𝑑𝑠,

where Re(𝜏) > 0 and 𝑍 ∈ Ω̃.

Therefore, one can get a solution of (1.1):

𝑈𝑘(𝜏, 𝑧) = 𝑢𝑘(𝜏, 𝑧 − (2𝑘 + 1)𝜋𝑖)

=
1√
4𝜋𝜏

∫ +∞

−∞
𝑒−

𝑠2

4𝜏
1

1− 𝑒𝑧+𝑠
𝑑𝑠,

where Re(𝜏) > 0 and 𝑧 ∈ Ω𝑘.

Proposition 2.3.4. Given 𝑘 ∈ ℤ. For Re(𝜏) > 0 and 𝑧 ∈ Ω𝑘, we define

𝑈𝑘(𝜏, 𝑧) =
1√
4𝜋𝜏

∫ +∞

−∞
𝑒−

𝑠2

4𝜏
1

1− 𝑒𝑧+𝑠
𝑑𝑠. (2.11)

Then we have

30



(i) 𝑈𝑘(𝜏, 𝑧) is holomorphic over {𝜏 ∈ ℂ ∣ Re(𝜏) > 0} × Ω𝑘.

(ii) 𝑈𝑘(𝜏, 𝑧) is the unique solution of (1.1) which admits 𝑢̂(𝜏, 𝑧) =
∞∑
𝑛=0

𝜑(2𝑛)(𝑧)
𝑛!

𝜏𝑛

as asymptotic expansion in the sense: for some compact subset 𝑂′ of

{𝜏 ∈ ℂ ∣ Re(𝜏) > 0} and some compact subset Ω
′
𝑘 of Ω𝑘, there exist pos-

itive constants 𝐶, 𝐾 and 𝛿, such that the following asymptotic estimates

hold: ∣∣∣∣∣𝑈𝑘(𝜏, 𝑧)−
𝑁−1∑
𝑛=0

𝜑(2𝑛)(𝑧)

𝑛!
𝜏𝑛

∣∣∣∣∣ ≤ 𝐶𝐾𝑁𝑁 ! ∣𝜏 ∣𝑁 , (2.12)

(𝜏, 𝑧) ∈ 𝑂′ × Ω
′
𝑘,

for all 𝑁 = 1, 2, 3, . . ..

Proof. (i) Obviously, the integral is absolutely convergent for {𝜏 ∈ ℂ ∣
Re(𝜏) > 0} × Ω𝑘, and so 𝑈𝑘(𝜏, 𝑧) is holomorphic.

(ii) According to the process of derivation, we know that

𝑈𝑘(𝜏, 𝑧) ∼1 𝑢̂(𝜏, 𝑧), finely in the direction of the real axis.

So from Theorem 2.2.1,

∂𝜏𝑈𝑘 − ∂2𝑧𝑈𝑘 ∼1 ∂𝜏 𝑢̂− ∂2𝑧 𝑢̂ = 0, finely in the direction of the real axis.

Then by Watson’s lemma, we have

∂𝜏𝑈𝑘 − ∂2𝑧𝑈𝑘 ≡ 0,

that is to say, 𝑈𝑘(𝜏, 𝑧) is a solution of the heat equation. In the same time,

we can prove that

lim
𝜏→0

1√
4𝜋𝜏

𝑒−
𝑠2

4𝜏 = 𝛿(𝑠).

Therefore, we know that lim
𝜏→0

𝑈𝑘(𝜏, 𝑧) =
1

1−𝑒𝑧
= 𝜑(𝑧).

Notice that our initial data 𝜑(𝑧) satisfies not only the growth condition

of exponential order at most 2, but also the following growth estimate for
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some positive constant 𝐶,

∣𝜑(𝑧)∣ =
∣∣∣∣ 1

1− 𝑒𝑧

∣∣∣∣ < 𝐶, 𝑧 ∈ Ω
′
𝑘.

So, similarly to the proof of the assertion (i) of Theorem 2.3.3, we can get

(2.12). The result is proved. ⊛

Remark 2.3.5. In fact, we can derive the fine Borel sum of 𝑢̂(𝜏, 𝑧) in the

direction 𝜃 with −𝜋 < 𝜃 < 𝜋 by a similar approach. But notice that then the

variable 𝜏 is defined over {𝜏 ∈ ℂ ∣ ∣arg 𝜏 − 𝜃∣ < 𝜋/2} and 𝑧 over the oblique

strip Ω
𝜃/2
𝑘 := {𝑧 ∈ ℂ ∣ 2𝑘𝜋 < Im(𝑧)− 𝑡𝑎𝑛( 𝜃

2
)Re(𝑧) < 2(𝑘 + 1)𝜋} for 𝑘 ∈ ℤ.
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Chapter 3 Sums Based on Heat Kernel

In this chapter, we introduce a new method summation which is called

G𝑞-summation. Similarly to the theory of Borel summation, we shall give

definitions of 𝑞-Gevrey asymptotic expansion of order 1 in a direction, 𝑞-

Borel transform and 𝑞-Laplace transfom. Then we will make use of them to

get one 𝑞-Borel sum 𝐹𝛼(𝜏, 𝑧) of
∞∑
𝑛=0

𝑒𝑛
2𝜏+𝑛𝑧. And finally, we obtain one of our

main theorem.

§3.1 G𝑞-summation

Let 𝑞 be a real number with 0 < 𝑞 < 1.

Here we firstly present a new notion of asymptotics, which is used to

treat the case of a formal solution belonging to the class of 𝑞-Gevrey power

series of order 1.

We use the notation ℂ[[𝑥]] to be all the formal power series in the vari-

able 𝑥, and denote by ℂ{𝑥} the subspace of ℂ[[𝑥]], in which the radius of

convergence of the power series is positive.

And define

𝑑𝛼 = {𝑥 ∈ ℂ̃∗ : arg 𝑥 = 𝛼} for 𝛼 ∈ ℝ,

𝐷̃(0;𝑅) = {𝑥 ∈ ℂ̃∗ : ∣ 𝑥 ∣< 𝑅} for 𝑅 > 0,

𝑆(𝛼, 𝜀) = {𝑥 ∈ ℂ̃∗ : ∣ arg 𝑥− 𝛼 ∣< 𝜀/2} with 𝛼 ∈ ℝ, 𝜀 > 0.

Denote the principle determination of the logarithm by log and log
ln 𝑞

by

log𝑞 . Namely, for 𝑥 ∈ ℂ̃∗

log 𝑥 := ln ∣𝑥∣+ 𝑖 arg 𝑥,
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and

log𝑞 𝑥 =
ln ∣𝑥∣
ln 𝑞

+ 𝑖
arg 𝑥

ln 𝑞

:= log𝑞 ∣𝑥∣+ 𝑖 arg𝑞 𝑥.

Let 𝑎 ∈ ℂ. Then the notation 𝑥𝑎 is representing the function 𝑒𝑎 log 𝑥:

ℂ̃∗ → ℂ̃∗.

We denote by 𝕆̃ the class of functions defined and analytic on 𝐷̃(0;𝑅)

with 𝑅 > 0 arbitrary.

Definition 3.1.1. Let 𝑓 =
∑
𝑛≥0

𝑎𝑛𝑥
𝑛 ∈ ℂ[[𝑥]]. We define formal 𝑞-Borel

transform of 𝑓 by the series

ℬ̂𝑞;1𝑓(𝜉) :=
∑
𝑛≥0

𝑎𝑛𝑞
𝑛2

𝜉𝑛.

Definition 3.1.2. We will say that 𝑓(𝑥) is 𝑞-Gevrey of order 1 if and only

if ℬ̂𝑞;1𝑓 has a positive radius of convergence in the 𝜉−plane. Denote the set

of 𝑞-Gevrey series of order 1 by ℂ[[𝑥]]𝑞;1.

Remark 3.1.3. In this definition and in the subsequent definitions, we take

𝑞𝑛
2
as a whole and so name them with order 1.

Definition 3.1.4. Furthermore, we denote by ℂ{𝑥}𝛼𝑞;1 the subset of 𝑞-Gevrey

series whose formal 𝑞-Borel transform can be analytically extended to an

analytic function with a 𝑞-exponential growth of order 1 as ∣ 𝜉 ∣→ ∞ in an

open sector 𝑆(𝛼, 𝜀) with 𝜀 > 0 arbitrary, if the analytic function is written

as 𝜑(𝜉), then that is to say, there exist 𝜇 ∈ ℝ and 𝐶 > 0, such that

∣𝜑(𝜉)∣ ≤ 𝐶 ∣𝜉∣𝜇 𝑞− 1
4
log2𝑞 ∣𝜉∣, 𝑓𝑜𝑟 ∣𝜉∣ → ∞ 𝑖𝑛 𝑆(𝛼, 𝜀).

For such a function 𝜑(𝜉), we can define its 𝑞-Laplace transform in the direc-

tion 𝑑𝛼 as follows,

ℒ𝛼
𝑞;1𝜑(𝑥) :=

1√
4𝜋 ln 1/𝑞

∫
𝑑𝛼

𝑞
1
4
(log𝑞

𝑥
𝜉
)2𝜑(𝜉)

𝑑𝜉

𝜉
. (3.1)
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Remark 3.1.5. It is clear that ℂ{𝑥} ⊂ ℂ{𝑥}𝛼𝑞;1 ⊂ ℂ[[𝑥]]𝑞;1.

Definition 3.1.6. Let 𝛼 ∈ ℝ, 𝑓 ∈ 𝕆̃ and 𝑓 =
∑
𝑛≥0

𝑎𝑛𝑥
𝑛 ∈ ℂ[[𝑥]]. We will say

that f admits 𝑓 as 𝑞-Gevrey asymptotic expansion of order 1 in a direction

𝑑𝛼 if and only if there exist 𝐶 > 0, 𝐴 > 0, such that for all 𝑁 ∈ ℕ∗

∣ 𝑓(𝑥)−
𝑁−1∑
𝑛=0

𝑎𝑛𝑥
𝑛 ∣< 𝐶𝐴𝑁𝑞−(𝑁2+ 1

4
arg2𝑞(𝑥𝑒

−𝛼𝑖)) ∣𝑥∣𝑁 ,

where 𝑥 ∈ 𝐷̃(0;𝑅) with 𝑅 > 0 small enough. In this case, we note 𝑓 ∼𝛼
𝑞;1 𝑓 .

Remark 3.1.7. We can deduce that the 𝑞-Gevrey asymptotic expansion of

order 1 𝑓 is unique, and that 𝑓 ∈ ℂ[[𝑥]]𝑞;1.

Denote by 𝔸𝛼
𝑞;1 the subset of 𝕆̃, in which the function has 𝑞-Gevrey

asymptotic expansion of order 1 in a direction 𝑑𝛼. Then we conclude that

the mapping

𝐽𝛼
𝑞;1 : 𝔸𝛼

𝑞;1 −→ ℂ[[𝑥]]𝑞;1

is surjective.

Definition 3.1.8. Let 𝛼 ∈ ℝ, 𝑓 ∈ 𝕆̃ and 𝑓 =
∑
𝑛≥0

𝑎𝑛𝑥
𝑛 ∈ ℂ[[𝑥]]. We will say

that 𝑓 is G𝑞-summable of order 1 in a direction 𝑑𝛼, and 𝑓 is its G𝑞-sum if

there exist 𝜀 > 0, 𝐶 > 0, 𝐴 > 0, such that for all 𝑁 ∈ ℕ∗ and 𝛽 ∈ ]𝛼−𝜀, 𝛼+𝜀[

∣ 𝑓(𝑥)−
𝑁−1∑
𝑛=0

𝑎𝑛𝑥
𝑛 ∣< 𝐶𝐴𝑁𝑞−(𝑁2+ 1

4
arg2𝑞(𝑥𝑒

−𝛽𝑖)) ∣𝑥∣𝑁 ,

where 𝑥 ∈ 𝐷̃(0;𝑅) with 𝑅 > 0 small enough.

Remark 3.1.9. We can deduce that in this case 𝑓 ∈ ℂ{𝑥}𝛼𝑞;1 and the G𝑞-sum

of 𝑓 is unique, which is denoted by 𝒮𝛼
𝑞;1𝑓 .

Lemma 3.1.10. Let 𝛼 ∈ ℝ and 𝑓 ∈ ℂ𝛼
𝑞;1{𝑥}. Suppose 𝜑 be the sum function

of ℬ̂𝑞;1𝑓 , which can be analytically extended and satisfy the growth condi-

tion. Then the G𝑞-sum 𝒮𝛼
𝑞;1𝑓 can be represented by means of the 𝑞-Laplace

transform of 𝜑 in the direction 𝑑𝛼 defined by (3.1).
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§3.2 𝑞-Borel sums of
∞∑
𝑛=0

𝑒𝑛
2𝜏+𝑛𝑧

Using the G𝑞-summation method introduced in the last section, we can

give a G𝑞-sum 𝑓𝛼(𝑥, 𝑞) of 𝑦(𝑥, 𝑞) defined by (1.4). On the other hand, the

function 𝑓𝛼 can also be formulated in terms of Fourier analysis, namely, from

the Gaussian integral, it follows that

𝑞−𝑛2

=
1√

4𝜋 ln 1/𝑞

∫ ∞

−∞
𝑒

𝑡2

4 ln 𝑞
+𝑛𝑡𝑑𝑡,

so the power series
∞∑
𝑛=0

𝑞−𝑛2
𝑥𝑛 may be associated with the integral of the

type:

1√
4𝜋 ln 1/𝑞

∫ ∞

−∞

𝑒
𝑡2

4 ln 𝑞

1− 𝑥𝑒𝑡
𝑑𝑡,

which gives rise to the integral function 𝑓𝛼.

So, if 𝛼 ∈ ℝ∖2𝜋ℤ, we can define

𝑓𝛼(𝑥, 𝑞) =
1√

4𝜋 ln 1/𝑞

∫ ∞

−∞

𝑒
𝑡2

4 ln 𝑞

1− 𝑒𝑡+log 𝑥
𝑑𝑡

=
1√

4𝜋 ln 1/𝑞

∫ ∞+𝛼𝑖

−∞+𝛼𝑖

𝑒
(log 𝑥−𝜉)2

4 ln 𝑞

1− 𝑒𝜉
𝑑𝜉,

for all 𝑥 ∈ ℂ̃∗.

Proposition 3.2.1. For any 𝛼 ∈ ℝ ∖ 2𝜋ℤ and any 𝑥 over the Riemann

surface of the logarithm ℂ̃∗, we define

𝑓𝛼(𝑥, 𝑞) =
1√

4𝜋 ln 1/𝑞

∫ ∞+𝛼𝑖

−∞+𝛼𝑖

𝑒
(log 𝑥−𝜉)2

4 ln 𝑞

1− 𝑒𝜉
𝑑𝜉. (3.2)

Then we have

(i) 𝑓𝛼(𝑥, 𝑞) is holomorphic over ℂ̃∗, and if 𝛼 and 𝛽 belong to a common

interval of the set {𝛼 ∈ ℝ ∖ 2𝜋ℤ}, then 𝑓𝛼(𝑥, 𝑞) = 𝑓𝛽(𝑥, 𝑞).
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(ii) 𝑓𝛼(𝑥𝑒
−2𝜋𝑖, 𝑞)−𝑓𝛼(𝑥, 𝑞) = 𝑖

√
𝜋

ln 1/𝑞
𝑒

(log 𝑥−2𝜋𝑘𝛼𝑖)2

4 ln 𝑞 , where 2𝜋𝑘𝛼 is the integer

between 𝛼 and 𝛼+ 2𝜋.

(iii) 𝑓𝛼(𝑥, 𝑞) is the unique solution of (1.3) which admits
∞∑
𝑛=0

𝑞−𝑛2
𝑥𝑛 as 𝑞-

Gevrey asymptotic expansion at 𝑥 = 0 along the direction (0, ∞𝑒𝛼𝑖).

Proof. (i) By means of variable substitutions, we write

∣𝑓𝛼(𝑥, 𝑞)∣ =
1√

4𝜋 ln 1/𝑞

∫ ∞

−∞

∣∣∣∣∣∣𝑒
(log 𝑥−𝑅−𝛼𝑖)2

4 ln 𝑞

1− 𝑒𝑅+𝛼𝑖

∣∣∣∣∣∣ 𝑑𝑅 (𝜉 = 𝑅 + 𝛼𝑖)

≤ 1√
4𝜋 ln 1/𝑞

∫ ∞

−∞

𝑒Re(
(log 𝑥−𝑅−𝛼𝑖)2

4 ln 𝑞
)

∣𝑒𝑅 − 1∣ 𝑑𝑅

=
𝑒−

(arg 𝑥−𝛼)2

4 ln 𝑞√
4𝜋 ln 1/𝑞

∫ ∞

−∞

𝑒
(ln∣𝑥∣−𝑅)2

4 ln 𝑞

∣𝑒𝑅 − 1∣ 𝑑𝑅.

With 0 < 𝑞 < 1 and the Gaussian integral, we conclude that 𝑓𝛼(𝑥, 𝑞) is

holomorphic over ℂ̃∗.

Suppose that 𝛼 > 𝛽 and 𝛼, 𝛽 ∈ (2𝑘𝜋, 2(𝑘 + 1)𝜋) for some 𝑘 ∈ ℤ. Then

𝑓𝛼(𝑥, 𝑞)− 𝑓𝛽(𝑥, 𝑞) =
1√

4𝜋 ln 1/𝑞
(

∫ ∞+𝛼𝑖

−∞+𝛼𝑖

𝑒
(log 𝑥−𝜉)2

4 ln 𝑞

1− 𝑒𝜉
𝑑𝜉 −

∫ ∞+𝛽𝑖

−∞+𝛽𝑖

𝑒
(log 𝑥−𝜉)2

4 ln 𝑞

1− 𝑒𝜉
𝑑𝜉).

Consider the contour integral

𝐽1 =

∮
𝒞1

𝑒
(log 𝑥−𝜉)2

4 ln 𝑞

1− 𝑒𝜉
𝑑𝜉,

where 𝒞1 is the oriented rectangle, whose vertexes are at the points 𝑅 + 𝛼𝑖,

𝑅+𝛽𝑖, −𝑅+𝛽𝑖, −𝑅+𝛼𝑖 (𝑠𝑜𝑚𝑒 𝑓𝑖𝑥𝑒𝑑 𝑅 ∈ (0,∞)), in a clockwise direction.

Because the contour 𝒞1 encloses none of the singularities of the integrand,
by Cauchy’s theorem we have

𝐽1 = (

∫ 𝑅+𝛼𝑖

−𝑅+𝛼𝑖

+

∫ 𝑅+𝛽𝑖

𝑅+𝛼𝑖

+

∫ −𝑅+𝛽𝑖

𝑅+𝛽𝑖

+

∫ −𝑅+𝛼𝑖

−𝑅+𝛽𝑖

)
𝑒

(log 𝑥−𝜉)2

4 ln 𝑞

1− 𝑒𝜉
𝑑𝜉

= 0.
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However,∣∣∣∣ ∫ 𝑅+𝛽𝑖

𝑅+𝛼𝑖

𝑒
(log 𝑥−𝜉)2

4 ln 𝑞

1− 𝑒𝜉
𝑑𝜉

∣∣∣∣ =

∣∣∣∣ ∫ 𝛽

𝛼

𝑒
(log 𝑥−𝑅−𝑦𝑖)2

4 ln 𝑞

1− 𝑒𝑅+𝑦𝑖
𝑖𝑑𝑦

∣∣∣∣ (𝜉 = 𝑅 + 𝑖𝑦)

≤
∫ 𝛼

𝛽

𝑒
(ln∣𝑥∣−𝑅)2−(arg 𝑥−𝑦)2

4 ln 𝑞

𝑒𝑅 − 1
𝑑𝑦

=
𝑒

(ln∣𝑥∣−𝑅)2

4 ln 𝑞

𝑒𝑅 − 1

∫ 𝛼

𝛽

𝑒
−(arg 𝑥−𝑦)2

4 ln 𝑞 𝑑𝑦 → 0, 𝑎𝑠 𝑅 → ∞,

and in the same way,∣∣∣∣ ∫ −𝑅+𝛼𝑖

−𝑅+𝛽𝑖

𝑒
(log 𝑥−𝜉)2

4 ln 𝑞

1− 𝑒𝜉
𝑑𝜉

∣∣∣∣→ 0, 𝑎𝑠 𝑅 → ∞.

Hence, putting all of these together, we have, as 𝑅 → ∞,

(

∫ 𝑅+𝛼𝑖

−𝑅+𝛼𝑖

+

∫ −𝑅+𝛽𝑖

𝑅+𝛽𝑖

)
𝑒

(log 𝑥−𝜉)2

4 ln 𝑞

1− 𝑒𝜉
𝑑𝜉 → 0.

(ii) For 𝛼 ∈ ℝ∖2𝜋ℤ, we have

𝑓𝛼(𝑥𝑒
−2𝜋𝑖, 𝑞)− 𝑓𝛼(𝑥, 𝑞) = 𝑓𝛼+2𝜋(𝑥, 𝑞)− 𝑓𝛼(𝑥, 𝑞)

=
1√

4𝜋 ln 1/𝑞
(

∫ ∞+(𝛼+2𝜋)𝑖

−∞+(𝛼+2𝜋)𝑖

𝑒
(log 𝑥−𝜉)2

4 ln 𝑞

1− 𝑒𝜉
𝑑𝜉

−
∫ ∞+𝛼𝑖

−∞+𝛼𝑖

𝑒
(log 𝑥−𝜉)2

4 ln 𝑞

1− 𝑒𝜉
𝑑𝜉).

Consider

𝐽2 =

∮
𝒞2

𝑒
(log 𝑥−𝜉)2

4 ln 𝑞

1− 𝑒𝜉
𝑑𝜉,

where the contour 𝒞2 is the oriented rectangle with vertexes at the points

𝑅′+(𝛼+2𝜋)𝑖, 𝑅′+𝛼𝑖, −𝑅′+𝛼𝑖, −𝑅′+(𝛼+2𝜋)𝑖 (𝑠𝑜𝑚𝑒 𝑓𝑖𝑥𝑒𝑑 𝑅′ ∈ (0,∞)),

in a clockwise direction.

Notice that 𝒞2 encloses only the singularity 2𝜋𝑘𝛼𝑖 of the integrand. Then

similarly, let 𝑅′ → ∞ and use Cauchy residue theorem to find that

(

∫ ∞+(𝛼+2𝜋)𝑖

−∞+(𝛼+2𝜋)𝑖

+

∫ −∞+𝛼𝑖

∞+𝛼𝑖

)
𝑒

(log 𝑥−𝜉)2

4 ln 𝑞

1− 𝑒𝜉
𝑑𝜉 = −2𝜋𝑖𝑅𝑒𝑠(

𝑒
(log 𝑥−𝜉)2

4 ln 𝑞

1− 𝑒𝜉
; 2𝜋𝑘𝛼𝑖).
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So

𝑓𝛼(𝑥𝑒
−2𝜋𝑖, 𝑞)− 𝑓𝛼(𝑥, 𝑞) = 𝑖

√
𝜋

ln 1/𝑞
𝑒

(log 𝑥−2𝜋𝑘𝛼𝑖)2

4 ln 𝑞 .

(iii) We can show that 𝑓𝛼(𝑥, 𝑞) is a solution of the 𝑞-difference equation

(1.3):

𝑥

𝑞
𝑓𝛼(

𝑥

𝑞2
, 𝑞)− 𝑓𝛼(𝑥, 𝑞) =

1√
4𝜋 ln 1/𝑞

(

∫ ∞+𝛼𝑖

−∞+𝛼𝑖

𝑥

𝑞

𝑒
(log 𝑥−𝜉−2 ln 𝑞)2

4 ln 𝑞

1− 𝑒𝜉
𝑑𝜉

−
∫ ∞+𝛼𝑖

−∞+𝛼𝑖

𝑒
(log 𝑥−𝜉)2

4 ln 𝑞

1− 𝑒𝜉
𝑑𝜉)

=
1√

4𝜋 ln 1/𝑞

∫ ∞+𝛼𝑖

−∞+𝛼𝑖

(
𝑒𝜉𝑒

(log 𝑥−𝜉)2

4 ln 𝑞

1− 𝑒𝜉
𝑑𝜉 − 𝑒

(log 𝑥−𝜉)2

4 ln 𝑞

1− 𝑒𝜉
)𝑑𝜉

= −
∫ ∞

−∞

𝑒
(log 𝑥−𝜂−𝛼𝑖)2

4 ln 𝑞√
4𝜋 ln 1/𝑞

𝑑𝜂 (𝜉 = 𝜂 + 𝛼𝑖)

= −1,

where the last equality arises from the following integral:

1√
4𝜋 ln 1/𝑞

∫ ∞+𝑏𝑖

−∞+𝑏𝑖

𝑒
(𝑎+𝜂)2

4 ln 𝑞 𝑑𝜂 = 1,

for 𝑎, 𝑏 ∈ ℝ. This integral can be obtained by means of Cauchy’s theorem

and Lemma 1.3.9.

Due to the assertions (i) and (ii), we only need to consider the asymptotic

behavior of 𝑓𝛼(𝑥, 𝑞) with 𝛼 ∈ (0, 2𝜋).

Let 𝑁 ∈ ℕ∗. Denote formal 𝑞-Borel transform of 𝑦 by 𝜑, i.e., 𝜑(𝜉) =
∞∑
𝑛=0

𝜉𝑛, which is convergent in the unit disc and admits 1
1−𝜉

as its analytic

continuation outsides the unit disc. For all 𝑛 ∈ ℕ∗ and 𝜉 ∕= 1, we have

1

1− 𝜉
= 𝜑𝑛(𝜉) + 𝜓𝑛(𝜉),

with 𝜑𝑛(𝜉) = 1 + 𝜉 + ⋅ ⋅ ⋅+ 𝜉𝑛−1 and 𝜓𝑛(𝜉) =
𝜉𝑛

1−𝜉
.

Notice that from the Gaussian integral, for all 𝛼 ∈ ℝ, 𝑛 ∈ ℕ, and 𝑥 ∈ ℂ̃∗

ℒ𝛼
𝑞;1(𝜉

𝑛) = 𝑞−𝑛2

𝑥𝑛.
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So we have for 𝛼 ∈ (0, 2𝜋)

𝑓𝛼(𝑥, 𝑞)−
𝑁−1∑
𝑛=0

𝑞−𝑛2

𝑥𝑛 =
1√

4𝜋 ln 1/𝑞

∫ ∞𝑒𝛼𝑖

0

𝑞
1
4
(log𝑞(

𝑥
𝜉
))2 1

1− 𝜉

𝑑𝜉

𝜉
−

𝑁−1∑
𝑛=0

𝑞−𝑛2

𝑥𝑛

= ℒ𝛼
𝑞;1(𝜑𝑁(𝜉) + 𝜓𝑁(𝜉))−

𝑁−1∑
𝑛=0

𝑞−𝑛2

𝑥𝑛

= ℒ𝛼
𝑞;1(𝜓𝑁(𝜉))

=
1√

4𝜋 ln 1/𝑞

∫ ∞𝑒𝛼𝑖

0

𝑞
1
4
log2𝑞(

𝑥
𝜉
)𝜓𝑁(𝜉)

𝑑𝜉

𝜉
.

Let 𝐷𝛼 be the distance between the point 1 and the radial 𝑑𝛼, i.e.,

𝐷𝛼 = 𝑑𝑖𝑠𝑡({1}; 𝑑𝛼). Then with the Gaussian integral∣∣∣∣∣𝑓𝛼(𝑥, 𝑞)−
𝑁−1∑
𝑛=0

𝑞−𝑛2

𝑥𝑛

∣∣∣∣∣ =

∣∣∣∣∣ 1√
4𝜋 ln 1/𝑞

∫ ∞𝑒𝛼𝑖

0

𝑞
1
4
log2𝑞(

𝑥
𝜉
) 𝜉𝑁

1− 𝜉

𝑑𝜉

𝜉

∣∣∣∣∣
≤ 𝑞−

1
4
arg2𝑞(𝑥𝑒

−𝛼𝑖)√
4𝜋 ln 1/𝑞

∫ ∞

0

𝑞
1
4
(log2𝑞

∣𝑥∣
∣𝜉∣ )

∣𝜉∣𝑁−1

∣1− 𝜉∣𝑑 ∣𝜉∣

≤ 𝑞−
1
4
arg2𝑞(𝑥𝑒

−𝛼𝑖)

𝐷𝛼

√
4𝜋 ln 1/𝑞

∫ ∞

0

𝑞
1
4
(log2𝑞

∣𝑥∣
𝑟
)𝑟𝑁−1𝑑𝑟

≤ 𝐶𝑞−(𝑁2+ 1
4
arg2𝑞(𝑥𝑒

−𝛼𝑖)) ∣𝑥∣𝑁 .

This completes the proof. ⊛

Let 𝑓−(𝑥, 𝑞) be the function associated with 𝑓𝛼(𝑥, 𝑞) for 𝛼 ∈ (−2𝜋, 0),

then

𝑓−(𝑥, 𝑞) =
1√

4𝜋 ln 1/𝑞

∫ ∞

−∞

𝑒
(log 𝑥−𝜉)2

4 ln 𝑞

1− 𝑒𝜉
𝑑𝜉, (3.3)

where the path of integration may be taken as either the real axis of 𝜉 in-

tended by the lower half of a small circle described about the origin as center,

denoted by the path (−∞, 0, ∞), or as a straight line parallel to the real

axis of 𝜉 and below it at a distance less than 2𝜋.

Remark 3.2.2. Since

𝑓𝛼+2𝜋(𝑥, 𝑞) = 𝑓𝛼(𝑥𝑒
−2𝜋𝑖, 𝑞),
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we get

𝑓−(𝑥𝑞−2𝜋𝑖)− 𝑓−(𝑥, 𝑞) = 𝑖

√
𝜋

ln 1/𝑞
𝑒

(log 𝑥)2

4 ln 𝑞 ,

where the function given in the right hand is infinitely small or said flat as

𝑥→ 0 and is the solution of the homogeneous 𝑞-difference equation associated

with (1.3):
𝑥

𝑞
𝑦(
𝑥

𝑞2
)− 𝑦(𝑥) = 0.

On the other hand, the relation connecting 𝑓−(𝑥𝑞−2𝜋𝑖) and 𝑓−(𝑥, 𝑞) can

be seen as a Stokes phenomenon in the singular direction argument 0 ∈ 2𝜋ℤ

in the Riemann surface of the logarithm function.

Remark 3.2.3. Here we suppose that 𝑞 is a real parameter with 0 < 𝑞 < 1.

But 𝑞 is also a analytic parameter, so by the analytical continuation principle,

all the conclusions remain true for a complex parameter 𝑞 with 0 < ∣𝑞∣ < 1.

Correspondingly, the range of definition of 𝜏 can be taken as the complex

half-plane {𝜏 ∈ ℂ ∣ Re(𝜏) > 0}.

Therefore, we can get one 𝑞-Borel sum 𝐹𝛼(𝜏, 𝑧) of
∞∑
𝑛=0

𝑒𝑛
2𝜏+𝑛𝑧:

𝐹𝛼(𝜏, 𝑧) = 𝑓𝛼(𝑒
𝑧, 𝑒−𝜏 ) (3.4)

=
1√
4𝜋𝜏

∫ ∞+𝛼𝑖

−∞+𝛼𝑖

𝑒−
(𝑧−𝜉)2

4𝜏

1− 𝑒𝜉
𝑑𝜉, (3.5)

for 𝛼 ∈ ℝ ∖ 2𝜋ℤ, Re(𝜏) > 0 and 𝑧 ∈ ℂ.

Theorem 3.2.4. For any given 𝑘 ∈ ℤ, we have 𝑈𝑘(𝜏, 𝑧) = 𝐹𝛼(𝜏, 𝑧), where

𝛼 ∈ (2𝑘𝜋, 2(𝑘 + 1)𝜋), Re(𝜏) > 0 and 𝑧 ∈ Ω𝑘.

Proof. For fixed 𝑘, one have

𝑈𝑘(𝜏, 𝑧) =
1√
4𝜋𝜏

∫ +∞

−∞
𝑒−

𝑠2

4𝜏
1

1− 𝑒𝑧+𝑠
𝑑𝑠

=
1√
4𝜋𝜏

∫ +∞+Im(𝑧)𝑖

−∞+Im(𝑧)𝑖

𝑒−
(𝜉−𝑧)2

4𝜏
1

1− 𝑒𝜉
𝑑𝜉,
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where 𝑧 ∈ Ω𝑘.

We know that putting different 𝑧 ∈ Ω𝑘, the integral path would change,

but the integrand has no singularity along any (−∞+Im(𝑧)𝑖,+∞+Im(𝑧)𝑖).

Therefore, by the assertion (i) of Proposition 3.2.1, one conclude that

𝑈𝑘(𝜏, 𝑧) = 𝐹𝛼(𝜏, 𝑧) for any 𝛼 ∈ (2𝑘𝜋, 2(𝑘 + 1)𝜋).

It proves our theorem. ⊛

Remark 3.2.5. By the assertion (ii) of Proposition 3.2.1 and Theorem 3.2.4,

one can get the analytic continuation of 𝑈𝑘(𝜏, 𝑧) and

𝑈𝑘+1(𝜏, 𝑧)− 𝑈𝑘(𝜏, 𝑧 − 2𝜋𝑖) = 𝑖

√
𝜋

𝜏
𝑒−

[𝑧−2(𝑘+1)𝜋𝑖]2

4𝜏 for 𝑧 ∈ Ω𝑘+1.

In fact, from the assertion (ii) of Proposition 3.2.1, we have

𝐹𝛼(𝜏, 𝑧 − 2𝜋𝑖)− 𝐹𝛼(𝜏, 𝑧) = 𝑖

√
𝜋

𝜏
𝑒−

(𝑧−2𝜋𝑘𝛼𝑖)2

4𝜏 ,

where 2𝜋𝑘𝛼 is the integer between 𝛼 and 𝛼+2𝜋. And by the above theorem,

𝑈𝑘+1(𝜏, 𝑧)− 𝑈𝑘(𝜏, 𝑧 − 2𝜋𝑖) = 𝐹𝛼+2𝜋(𝜏, 𝑧)− 𝐹𝛼(𝜏, 𝑧),

for any 𝛼 ∈ (2𝑘𝜋, 2(𝑘 + 1)𝜋) and 𝑧 ∈ Ω𝑘+1.
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Chapter 4 Sums Based on Jacobi Theta

Function

In this chapter, we shall define a sum of the 𝑞-series 𝑦(𝑥, 𝑞) defined by

(1.4) in a different procedure, which is formed by Jacobi theta function.

§4.1 Preparation

From the Gaussian integral∫ ∞

−∞
𝑒−𝑡2𝑑𝑡 =

√
𝜋,

we can find that if, for convergence, 𝛼 has positive real part, then for 𝛽 ∈ ℂ∫ ∞

−∞
𝑒−𝛼𝑡2+𝛽𝑡𝑑𝑡 =

√
𝜋

𝛼
𝑒
𝛽2/(4𝛼)

,

where the root is taken with a positive real part, and the path of integration

is either the real axis or a line parallel to the real axis.

Lemma 4.1.1. For Re(𝑡) > 0,

∞∑
𝑛=−∞

𝑒−(𝑛+𝑎)2𝜋𝑡 =
1√
𝑡

∞∑
𝑛=−∞

𝑒−𝑛2𝜋/𝑡𝑒2𝜋𝑖𝑛𝑎.

Proof. Denote the left side by 𝑓(𝑎) and notice that 𝑓 has period 1.

Expand 𝑓 as a Fourier series

𝑓(𝑎) =
∞∑

𝑛=−∞
𝐶𝑛𝑒

2𝜋𝑖𝑛𝑎,

where 𝐶𝑛 =
∫ 1

2

− 1
2

𝑓(𝑥)𝑒−2𝜋𝑖𝑛𝑥𝑑𝑥, 𝑛 = 0, ±1, ±2, ⋅ ⋅ ⋅ .

Then

𝐶𝑛 =

∫ 1
2

− 1
2

∞∑
𝑚=−∞

𝑒−(𝑚+𝑥)2𝜋𝑡𝑒−2𝜋𝑖𝑛𝑥𝑑𝑥
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=
∞∑

𝑚=−∞

∫ 1
2

− 1
2

𝑒−(𝑚+𝑥)2𝜋𝑡𝑒−2𝜋𝑖𝑛𝑥𝑑𝑥

=
∞∑

𝑚=−∞

∫ 1
2
+𝑚

− 1
2
+𝑚

𝑒−𝜋𝑡𝑦2𝑒−2𝜋𝑖𝑛𝑦𝑑𝑦

=

∫ ∞

−∞
𝑒−𝜋𝑡𝑦2𝑒−2𝜋𝑖𝑛𝑦𝑑𝑦

=
1√
𝑡
𝑒−𝑛2𝜋/𝑡.

The result is proved. ⊛

Now write ⎛⎝ 𝑛

𝑘

⎞⎠ =
𝑛(𝑛− 1) ⋅ ⋅ ⋅ (𝑛− 𝑘)

𝑘!
=

𝑛!

𝑘!(𝑛− 𝑘)!
,

(𝑎; 𝑞)𝑘 = (1− 𝑎)(1− 𝑎𝑞) ⋅ ⋅ ⋅ (1− 𝑎𝑞𝑘−1),⎡⎣ 𝑛

𝑘

⎤⎦
𝑞

=
(1− 𝑞) ⋅ ⋅ ⋅ (1− 𝑞𝑛)

(1− 𝑞) ⋅ ⋅ ⋅ (1− 𝑞𝑘)(1− 𝑞) ⋅ ⋅ ⋅ (1− 𝑞𝑛−𝑘)
=

(𝑞; 𝑞)𝑛
(𝑞; 𝑞)𝑘(𝑞; 𝑞)𝑛−𝑘

.

Lemma 4.1.2. For ∣𝑥∣ < 1, ∣𝑞∣ < 1,

∞∑
𝑘=0

(𝑎; 𝑞)𝑘
(𝑞; 𝑞)𝑘

𝑥𝑘 =
(𝑎𝑥; 𝑞)∞
(𝑥; 𝑞)∞

,

where (𝑎; 𝑞)∞ =
∞∏
𝑘=0

(1− 𝑎𝑞𝑘).

First Proof. Let

𝑓𝑎(𝑥) =
∞∑
𝑘=0

(𝑎; 𝑞)𝑘
(𝑞; 𝑞)𝑘

𝑥𝑘.

Apply the 𝑞-difference operator △𝑞 to both sides. Then

𝑓𝑎(𝑥)− 𝑓𝑎(𝑞𝑥)

𝑥
=

∞∑
𝑘=0

(𝑎; 𝑞)𝑘
(𝑞; 𝑞)𝑘

(1− 𝑞𝑘)𝑥𝑘−1

= (1− 𝑎)
∞∑
𝑘=1

(𝑎𝑞; 𝑞)𝑘−1

(𝑞; 𝑞)𝑘−1

𝑥𝑘−1
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= (1− 𝑎)
∞∑
𝑘=0

(𝑎𝑞; 𝑞)𝑘
(𝑞; 𝑞)𝑘

𝑥𝑘

= (1− 𝑎)𝑓𝑎𝑞(𝑥),

or

𝑓𝑎(𝑥)− 𝑓𝑎(𝑞𝑥) = (1− 𝑎)𝑥𝑓𝑎𝑞(𝑥). (4.1)

Now consider

𝑓𝑎(𝑥)− 𝑓𝑎𝑞(𝑥) =
∞∑
𝑘=0

(𝑎𝑞; 𝑞)𝑘−1

(𝑞; 𝑞)𝑘
(1− 𝑎− 1 + 𝑎𝑞𝑘)𝑥𝑘

= −𝑎𝑥𝑓𝑎𝑞(𝑥),

or

𝑓𝑎(𝑥) = (1− 𝑎𝑥)𝑓𝑎𝑞(𝑥). (4.2)

Eliminate 𝑓𝑎𝑞(𝑥) from (4.1) and (4.2) to get

𝑓𝑎(𝑥) =
1− 𝑎𝑥

1− 𝑥
𝑓𝑎(𝑞𝑥).

Iterate this relation 𝑛 times and let 𝑛→ ∞ to arrive at

𝑓𝑎(𝑥) =
(𝑎𝑥; 𝑞)𝑛
(𝑥; 𝑞)𝑛

𝑓𝑎(𝑞
𝑛𝑥)

=
(𝑎𝑥; 𝑞)∞
(𝑥; 𝑞)∞

𝑓𝑎(0)

=
(𝑎𝑥; 𝑞)∞
(𝑥; 𝑞)∞

.

This proves the lemma. ⊛

Second Proof. The infinite product (𝑎𝑥;𝑞)∞
(𝑥;𝑞)∞ is uniformly and absolutely

convergent for fixed 𝑎 and 𝑞 in ∣𝑥∣ ≤ 1 − 𝜖 and so represents an analytic

function in ∣𝑥∣ < 1. Consider its Taylor expansion in ∣𝑥∣ < 1,

𝐹 (𝑥) =
(𝑎𝑥; 𝑞)∞
(𝑥; 𝑞)∞

=
∞∑
𝑛=0

𝐴𝑛𝑥
𝑛.
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Clearly,

𝐹 (𝑥) =
(1− 𝑎𝑥)

(1− 𝑥)
𝐹 (𝑞𝑥).

This implies

(1− 𝑥)
∞∑
𝑛=0

𝐴𝑛𝑥
𝑛 = (1− 𝑎𝑥)

∞∑
𝑛=0

𝐴𝑛𝑞
𝑛𝑥𝑛.

Equate the coefficients of 𝑥𝑛 on both sides. Then

𝐴𝑛 =
1− 𝑎𝑞𝑛−1

1− 𝑞𝑛
𝐴𝑛−1

=
(𝑎; 𝑞)𝑛
(𝑞; 𝑞)𝑛

.

This completes the second proof. ⊛

Remark 4.1.3. Set 𝑎 = 𝑞−𝑁 in above lemma. Then

𝑁∑
𝑘=0

⎡⎣ 𝑁

𝑘

⎤⎦
𝑞

(−1)𝑘𝑞(
𝑘
2)𝑥𝑘 = (𝑥; 𝑞)𝑁 = (1− 𝑥) ⋅ ⋅ ⋅ (1− 𝑥𝑞𝑁−1).

§4.2 Jacobi theta function

In this section, we give some important properties of Jacobi theta func-

tion

𝜃(𝑥, 𝑞) = 𝜃00(𝜒, 𝜔) =
∑
𝑛∈ℤ

𝑞𝑛
2

𝑥𝑛,

where we put 𝑞 = 𝑒𝜋𝑖𝜔 with Im(𝜔) > 0 and 𝑥 = 𝑒−2𝜋𝑖𝜒 with 𝜒 ∈ ℂ. Then

0 < ∣𝑞∣ < 1.

By simply observing, we have that 𝜃(𝑥, 𝑞) = 𝜃( 1
𝑥
, 𝑞).

Lemma 4.2.1. (i)The functional equation:

𝑞𝑧𝜃(𝑞2𝑥, 𝑞) = 𝜃(𝑥, 𝑞).
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(ii)The modular relation:

𝜃(𝑥, 𝑞) =

√
𝜋

log 1/𝑞
𝑒−

(log 𝑥)2

4 log 𝑞 𝜃(𝑥∗, 𝑞∗),

where 0 < ∣𝑞∣ < 1 and where 𝑞∗ = 𝑒
𝜋2

log 𝑞 and 𝑥∗ = 𝑒−𝜋𝑖 log 𝑥
log 𝑞 are modular

variables.

Proof. (i) By definition,

𝜃(𝑞2𝑥, 𝑞) =
∑
𝑛∈ℤ

𝑞𝑛
2

(𝑞2𝑥)𝑛

=
1

𝑞𝑥

∑
𝑛∈ℤ

𝑞(𝑛+1)2𝑥𝑛+1

=
1

𝑞𝑥
𝜃(𝑥, 𝑞).

(ii) Firstly, notice that the modular variable can be written as

𝑞∗ = 𝑒
𝜋2

log 𝑞 = 𝑒−
𝜋𝑖
𝜔 , 𝑥∗ = 𝑒−𝜋𝑖 log 𝑥

log 𝑞 = 𝑒2𝜋𝑖
𝜒
𝜔 .

Then

𝜃(𝑥, 𝑞) = 𝜃(𝜒, 𝜔) =
∑
𝑛∈ℤ

𝑒(𝑛
2𝜋𝑖𝜔−2𝑛𝜋𝑖𝜒),

𝜃(𝑥∗, 𝑞∗) = 𝜃(
𝜒

𝜔
,− 1

𝜔
)

=
∑
𝑛∈ℤ

𝑒(−𝑛2𝜋𝑖/𝜔+2𝑛𝜋𝑖𝜒/𝜔)

=
∑
𝑛∈ℤ

𝑒−
𝜋𝑖
𝜔
(𝑛2−2𝑛𝜒)

= 𝑒
𝜋𝑖𝜒2

𝜔

∑
𝑛∈ℤ

𝑒−
𝜋𝑖
𝜔
(𝑛−𝜒)2 .

According to Lemma 4.1.1, we have∑
𝑛∈ℤ

𝑒−
𝜋𝑖
𝜔
(𝑛−𝜒)2 =

√
(−𝑖𝜔)

∑
𝑛∈ℤ

𝑒𝑛
2𝜋𝑖𝜔𝑒−2𝑛𝜋𝑖𝜒,

so

𝜃(
𝜒

𝜔
,− 1

𝜔
) =

√
(−𝑖𝜔)𝑒𝜋𝑖𝜒2

𝜔 𝜃(𝜒, 𝜔).
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That is to say,

𝜃(𝑥∗, 𝑞∗) =

√
log 1/𝑞

𝜋
𝑒

(log 𝑥)2

4 log 𝑞 𝜃(𝑥, 𝑞).

This completes the proof. ⊛

Lemma 4.2.2. For 0 < ∣𝑞∣ < 1 and 𝑥 ∈ ℂ∗,

(𝑥; 𝑞)∞(
𝑞

𝑥
; 𝑞)∞(𝑞; 𝑞)∞ =

∞∑
𝑘=−∞

(−1)𝑘𝑞(
𝑘
2)𝑥𝑘.

Proof. Take 𝑁 = 2𝑛 in Remark 4.1.3 to obtain

(𝑥; 𝑞)2𝑛 =
𝑛∑

𝑘=−𝑛

⎡⎣ 2𝑛

𝑛+ 𝑘

⎤⎦
𝑞

(−1)𝑘+𝑛𝑞(𝑘+𝑛)(𝑘+𝑛−1)/2𝑥𝑘+𝑛.

Then replace 𝑥 by 𝑥𝑞−𝑛 and rewrite (𝑥𝑞−𝑛; 𝑞)2𝑛 as

(𝑥𝑞−𝑛; 𝑞)𝑛(𝑥; 𝑞)𝑛 = (−1)𝑛𝑥𝑛𝑞−𝑛2+𝑛(𝑛−1)/2(
𝑞

𝑥
; 𝑞)𝑛(𝑥; 𝑞)𝑛.

The above identity then becomes

(
𝑞

𝑥
; 𝑞)𝑛(𝑥; 𝑞)𝑛 =

𝑛∑
𝑘=−𝑛

(𝑞; 𝑞)2𝑛(−1)𝑘𝑞𝑘(𝑘−1)/2𝑥𝑘

(𝑞; 𝑞)𝑛+𝑘(𝑞; 𝑞)𝑛−𝑘

.

When let 𝑛→ ∞, this gives

(
𝑞

𝑥
; 𝑞)∞(𝑥; 𝑞)∞ =

∞∑
𝑘=−∞

(−1)𝑘𝑞(
𝑘
2)𝑥𝑘

(𝑞; 𝑞)∞
.

This limiting process can be justified by Tannery’s theorem. The result here

is called the 𝑡𝑟𝑖𝑝𝑙𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦. ⊛

Remark 4.2.3. When replacing 𝑞 with 𝑞2 and 𝑥 with −𝑞𝑥, we get Jacobi’s

triple product formula

𝜃(𝑥, 𝑞) =
∞∏
𝑛=0

(1− 𝑞2𝑛+2)(1 + 𝑥𝑞2𝑛+1)(1 +
𝑞2𝑛+1

𝑥
).

From now on, we assume that 𝜔 ∈ 𝑖ℝ+∖{0}, and then

𝑞 = 𝑒𝜋𝑖𝜔 ∈ (0, 1).
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Lemma 4.2.4. For 𝜖 > 0, define

Ω𝜖 =
∩
𝑛∈ℤ

{𝑥 ∈ ℂ∗ :
∣∣𝑥+ 𝑞2𝑛+1

∣∣ > 𝜖𝑞2𝑛+1}.

Then there exists 𝐶 > 0 such that for all 𝜖 > 0 small enough

∣𝜃(𝑥, 𝑞)∣ ≥ 𝐶𝜖𝜃(∣𝑥∣ , 𝑞), 𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ Ω𝜖.

Proof. In order to make sure that Ω𝜖 ∕= ∅, it is sufficient that 𝜖 ≤ 1.

Furthermore, we suppose that 𝜖 < 1−𝑞2

1+𝑞2
so that Ω𝜖 is connected.

By substituting 𝑞𝑥 for 𝑥, the region Ω𝜖 admits Γ𝜖 as fundamental domain:

Γ𝜖 = {𝑥 ∈ ℂ∗ :
∣∣𝑥+ 𝑞−1

∣∣ > 𝜖𝑞−1,
2𝑞

(1 + 𝑞2)
< ∣𝑥∣ ≤ 2

𝑞(1 + 𝑞2)
}.

Recalling that 𝑞𝑥𝜃(𝑞2𝑥, 𝑞) = 𝜃(𝑥, 𝑞), then we have

∣𝜃(𝑞2𝑥, 𝑞)∣
𝜃(𝑞2 ∣𝑥∣ , 𝑞) =

∣𝜃(𝑥, 𝑞)∣
𝜃(∣𝑥∣ , 𝑞) .

Therefore, we can prove this lemma with Γ𝜖 instead of Ω𝜖.

The function ∣𝜃(𝑥,𝑞)∣
𝜃(∣𝑥∣,𝑞) is continuous and nonzero, so it could attain its

minimum 𝐶 on the compact ring {𝑥 ∈ ℂ∗ : 2𝑞
(1+𝑞2)

≤ ∣𝑥∣ ≤ 2
𝑞(1+𝑞2)

}.

Then with Jacobi’s triple product formula in Remark 4.2.3, we get the

result. ⊛

If one want to know more properties on Jacobi theta function, one can

refer to [1].

§4.3 Other 𝑞-Borel sums of
∞∑
𝑛=0

𝑒𝑛
2𝜏+𝑛𝑧

In this section, we will present another sum 𝑔𝜆(𝑥, 𝑞) of 𝑦(𝑥, 𝑞).

Without confusion, we will denote Jacobi theta function 𝜃(𝑥, 𝑞) =
∑
𝑛∈ℤ

𝑞𝑛
2
𝑥𝑛

by 𝜃(𝑥) for simplicity.
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From the functional equation in Lemma 4.2.1, we deduce that

𝜃(𝑞2𝑛𝑥) = 𝑞−𝑛2

𝑥−𝑛𝜃(𝑥),

so, for any 𝜆 ∈ ℂ∗ ∑
𝑛∈ℤ

1

𝜃(𝜆𝑞2𝑛)
=

∑
𝑛∈ℤ

𝑞𝑛
2
𝜆𝑛

𝜃(𝜆)
= 1,

provided that 𝜃(𝜆𝑞2𝑛) ∕= 0 for all integers 𝑛.

From Jacobi’s triple product formula in Remark 4.2.3, we deduce that

𝜃(𝜆𝑞2𝑛) ∕= 0 holds for all 𝜆 ∈ ℂ∗∖(−𝑞2ℤ+1).

Because of the above deduction, we can get, for any integer 𝑚 ∈ ℤ and

any 𝜆 ∈ ℂ∗∖(−𝑞2ℤ+1),∑
𝜉∈𝜆𝑞2ℤ

𝜉𝑚

𝜃(𝜉)
= 𝑞−𝑚2

∑
𝑛∈ℤ

𝑞(𝑚+𝑛)2𝜆𝑚+𝑛

𝜃(𝜆)
= 𝑞−𝑚2

.

Thus the divergent power series
∑
𝑛≥0

𝑞−𝑛2
𝑥𝑛 may be written as a double

series and by this way we are led to
∑

𝜉∈𝜆𝑞2ℤ
1

1−𝜉𝑥
1

𝜃(𝜉)
.

So, if 𝜆 ∈ ℂ∗∖𝑞2ℤ, we can define

𝑔𝜆(𝑥, 𝑞) =
∑

𝜉∈𝜆𝑞2ℤ

1

1− 𝜉

1

𝜃( 𝜉
𝑥
)

=
1

𝜃(𝜆
𝑥
)

∑
𝑛∈ℤ

𝑞𝑛
2

1− 𝜆𝑞2𝑛
(
𝜆

𝑥
)𝑛,

for all 𝑥 ∈ ℂ∗∖(−𝜆𝑞2ℤ+1).

Proposition 4.3.1. If 𝜆 ∈ ℂ∗ ∖ 𝑞2ℤ, we define

𝑔𝜆(𝑥, 𝑞) =
1

𝜃(𝜆
𝑥
)

∑
𝑛∈ℤ

𝑞𝑛
2

1− 𝜆𝑞2𝑛
(
𝜆

𝑥
)𝑛, (4.3)

for all 𝑥 ∈ ℂ∗ ∖ (−𝜆𝑞2ℤ+1). Then we have

(i) 𝑔𝜆 is holomorphic over ℂ∗ ∖ (−𝜆𝑞2ℤ+1) and admits (−𝜆𝑞2ℤ+1) as a set of

simples poles.
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(ii) 𝑔𝜆(𝑥𝑒
2𝜋𝑖, 𝑞) = 𝑔𝜆(𝑥, 𝑞).

(iii) 𝑔𝜆(𝑥, 𝑞) is the unique solution of (1.3) which admits the power series
∞∑
𝑛=0

𝑞−𝑛2
𝑥𝑛 as asymptotic expansion in the sense: for 𝑥 → 0 in ℂ∗ ∖

(−𝜆𝑞2ℤ+1), there exist 𝐶 > 0 and 𝐴 > 0, such that for all 𝑁 ∈ ℕ∗ and

𝜖 > 0 small enough

∣ 𝑔𝜆(𝑥, 𝑞)−
𝑁−1∑
𝑛=0

𝑞−𝑛2

𝑥𝑛 ∣≤ 𝐶

𝜖
𝐴𝑁𝑞−𝑁2 ∣𝑥∣𝑁 ,

where 𝑥 ∈ ℂ∗ ∖ ∪
𝑛∈ℤ

{𝑞2𝑛−1𝑥 : ∣𝑥+ 𝜆∣ ≤ 𝜖}.

Proof. Firstly, in view of the definition of 𝑔𝜆(𝑥, 𝑞), we know that

𝑔𝜆(𝑥, 𝑞) = 𝑔𝜆𝑞2𝑚(𝑥, 𝑞) for all 𝑚 ∈ ℤ. So it is reasonable to give this proof

with 𝑞 ≤ ∣𝜆∣ < 1.

(i) Note that

𝑔𝜆(𝑥, 𝑞) =
1

𝜃(𝜆
𝑥
)

[∑
𝑛≥0

𝑞𝑛
2

1− 𝜆𝑞2𝑛
(
𝜆

𝑥
)𝑛 +

∑
𝑛<0

𝑞𝑛
2

1− 𝜆𝑞2𝑛
(
𝜆

𝑥
)𝑛
]

:=
1

𝜃(𝜆
𝑥
)
[𝑔𝑛≥0(𝑥) + 𝑔𝑛<0(𝑥)].

Because
∣∣ 1
1−𝑥

∣∣ ≤ 1
1−∣𝑥∣ , for 0 < ∣𝑥∣ < 1 and

∣∣ 1
1−𝑥

∣∣ ≤ 1
∣𝑥∣−1

, for ∣𝑥∣ > 1,

𝑔𝑛≥0(𝑥) or 𝑔𝑛<0(𝑥) represents respectively a function analytic on ℂ∗∪{∞}
or ℂ.

Notice that 𝑔𝜆(𝑥, 𝑞) is a ratio of two analytic functions whose singulari-

ties occur at the zeroes of 𝜃(𝜆
𝑥
), and from Jacobi’s triple product formula, we

know that (−𝜆𝑞2ℤ+1) is the only set of simple zeroes for 𝜃(𝜆
𝑥
). So 𝑔𝜆(𝑥, 𝑞) is

holomorphic over ℂ∗∖(−𝜆𝑞2ℤ+1) and (−𝜆𝑞2ℤ+1) is the set of its simple poles.

(ii) By definition,

𝑔𝜆(𝑥𝑒
2𝜋𝑖) =

1

𝜃( 𝜆
𝑥𝑒2𝜋𝑖 )

∑
𝑛∈ℤ

𝑞𝑛
2

1− 𝜆𝑞2𝑛
(
𝜆

𝑥𝑒2𝜋𝑖
)𝑛 = 𝑔𝜆(𝑥).
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(iii) It is obvious that

𝑥

𝑞
𝑔𝜆(

𝑥

𝑞2
, 𝑞)− 𝑔𝜆(𝑥, 𝑞) =

𝑥

𝑞

∑
𝜉∈𝜆𝑞2ℤ

1

1− 𝜉

1

𝜃( 𝑞
2𝜉
𝑥
)
−

∑
𝜉∈𝜆𝑞2ℤ

1

1− 𝜉

1

𝜃( 𝜉
𝑥
)

=
∑

𝜉∈𝜆𝑞2ℤ

𝜉

1− 𝜉

1

𝜃( 𝜉
𝑥
)
−

∑
𝜉∈𝜆𝑞2ℤ

1

1− 𝜉

1

𝜃( 𝜉
𝑥
)

= −
∑

𝜉∈𝜆𝑞2ℤ

1

𝜃( 𝜉
𝑥
)
, 𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ ℂ∗∖(−𝜆𝑞2ℤ+1)

= −1.

So 𝑔𝜆(𝑥, 𝑞) satisfies the 𝑞-difference equation (1.3).

Finally let us consider the asymptotic behavior of 𝑔𝜆(𝑥, 𝑞) as 𝑥 → 0

in some compact subset 𝐷𝜖 of ℂ∗∖ ∪
𝑛∈ℤ

{𝑞2𝑛+1𝑥 : ∣𝑥+ 𝜆∣ ≤ 𝜖} with 𝜖 ∈
(0, (1−𝑞2)∣𝜆∣

1+𝑞2
).

For all 𝑛 ∈ ℕ∗ and 𝜉 ∕= 1, we note that

1

1− 𝜉
= 𝜑𝑛(𝜉) + 𝜓𝑛(𝜉),

with 𝜑𝑛(𝜉) = 1 + 𝜉 + ⋅ ⋅ ⋅+ 𝜉𝑛−1 and 𝜓𝑛(𝜉) =
𝜉𝑛

1−𝜉
.

Obviously, there exist 𝐶 > 0, 𝐴 > 0, independent on 𝑛, such that

∣𝜑𝑛(𝜉)∣ ≤ 𝐶𝐴𝑛 ∣𝜉∣𝑛 , 𝑖𝑓 ∣𝜉∣ ≥ 1 and ∣𝜓𝑛(𝜉)∣ ≤ 𝐶𝐴𝑛 ∣𝜉∣𝑛 , 𝑖𝑓 ∣𝜉∣ < 1.

And we have

𝑔𝜆(𝑥, 𝑞)−
𝑁−1∑
𝑛=0

𝑞−𝑛2

𝑥𝑛

=
∑

𝜉∈𝜆𝑞2ℤ
(𝜑𝑁(𝜉) + 𝜓𝑁(𝜉))

1

𝜃( 𝜉
𝑥
)
−

𝑁−1∑
𝑛=0

𝑞−𝑛2

𝑥𝑛

=
∑

𝜉∈𝜆𝑞2ℤ

𝜓𝑁(𝜉)

𝜃( 𝜉
𝑥
)

=
1

𝜃(𝜆
𝑥
)

[∑
𝑛≥0

𝜓𝑁(𝜆𝑞
2𝑛)𝑞𝑛

2

(
𝜆

𝑥
)𝑛 +

∑
𝑛<0

𝜓𝑁(𝜆𝑞
2𝑛)𝑞𝑛

2

(
𝜆

𝑥
)𝑛
]
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:= 𝐼 + 𝐽.

With Lemma 4.2.4, we can deduce that for all 𝑥 ∈ 𝐷𝜖

∣𝐼∣ <
𝐶𝐴𝑁 ∣𝜆∣𝑁
𝜖𝜃(

∣∣𝜆
𝑥

∣∣) ∑
𝑛≥0

∣∣∣∣𝑞2𝑁𝜆𝑥
∣∣∣∣𝑛 𝑞𝑛2

<
𝐶𝐴𝑁 ∣𝜆∣𝑁
𝜖𝜃(

∣∣𝜆
𝑥

∣∣) 𝜃(𝑞2𝑁
∣∣∣∣𝜆𝑥

∣∣∣∣)
=

𝐶

𝜖
𝐴𝑁𝑞−𝑁2 ∣𝑥∣𝑁 ,

where 𝐶 and 𝐴 are positive constants independent on 𝑁 .

In order to estimate the contribution coming from 𝐽 , we write

𝐽 =
𝑔𝑛<0(𝑥)

𝜃(𝜆
𝑥
)

−
∑
𝑛<0

𝜑𝑁(𝑞
2𝑛𝜆)

𝜃( 𝑞
2𝑁𝜆
𝑥

)

:= 𝐽1 + 𝐽2.

Since 𝑔𝑛<0(𝑧) is bounded on any compact subset of ℂ, we have by Lemma

4.2.4,

∣𝐽1∣ < 𝐶

𝜖

1

𝜃(
∣∣𝜆
𝑥

∣∣) ,
for 𝑥 ∈ 𝐷𝜖.

Furthermore, for 𝑁 ∈ ℕ∗

∣𝐽1∣ <
𝐶

𝜖
𝑞−𝑁2

(

∣∣∣∣𝜆𝑥
∣∣∣∣)−𝑁 1

𝜃(𝑞2𝑁
∣∣𝜆
𝑥

∣∣)
<

𝐶

𝜖
(
1

𝑞
)𝑁𝑞−𝑁2 ∣𝑥∣𝑁 .

It remains to consider 𝐽2. Remember that ∣𝜑𝑛(𝜉)∣ ≤ 𝐶𝐴𝑛 ∣𝜉∣𝑛, if ∣𝜉∣ > 1.

Then similarly to the case of 𝐼, there exist 𝐶 > 0 and 𝐴 > 0, independent

on 𝑁 ∈ ℕ∗ and 𝑥 ∈ 𝐷𝜖, such that

∣𝐽2∣ < 𝐶

𝜖
𝐴𝑁𝑞−𝑁2 ∣𝑥∣𝑁 .
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Combining all these relations together, we obtain the estimation of∣∣∣∣𝑔𝜆(𝑥, 𝑞)− 𝑁−1∑
𝑛=0

𝑞−𝑛2
𝑥𝑛

∣∣∣∣, which completes the proof. ⊛

Remark 4.3.2. Since 𝜆 7→ 𝑔𝜆(𝑥, 𝑞) is left invariant by 𝜆 7→ 𝑞𝜆, one can

calculate the cocycle 𝑔𝜆 − 𝑔𝜇 as follows:

𝑔𝜆(𝑥, 𝑞)− 𝑔𝜇(𝑥, 𝑞) =
𝐾(𝜆, 𝜇, 𝑥)

𝜃(𝑥)
,

where 𝜆, 𝜇 ∈ ℂ∗∖𝑞2ℤ, 𝑧 ∈ ℂ∗∖((−𝜆𝑞2ℤ+1)
∪
(−𝜇𝑞2ℤ+1)) and

𝐾(𝜆, 𝜇, 𝑥) =
(𝑞2; 𝑞2)3∞𝜃(−𝜆

𝜇
𝑞)𝜃(𝜆𝜇

𝑥
)𝜃( 1

𝑥
)

𝜃(−𝑞𝜆)𝜃(−𝜇
𝑞
)𝜃(𝜆𝑥)𝜃(𝜇

𝑥
)
.

Such elliptic cocycles play the role of Stokes multipliers and allow to classify

the corresponding 𝑞-difference equation.

Remark 4.3.3. In our results, 𝑞 is assumed to belong to the interval (0, 1).

By the standard argument of analytical continuation, the formulae remain

valid for all 𝑞 = 𝑒𝜋𝑖𝜔 with Im(𝜔) > 0.

Therefore, we can get the other 𝑞-Borel sum 𝐺𝜆(𝜏, 𝑧) of
∞∑
𝑛=0

𝑒𝑛
2𝜏+𝑛𝑧:

𝐺𝜆(𝜏, 𝑧) = 𝑔𝜆(𝑒
𝑧, 𝑒−𝜏 ) (4.4)

=
1

𝜃( 𝜆
𝑒𝑧
)

∑
𝑛∈ℤ

𝑒−𝑛2𝜏

1− 𝜆𝑒−2𝑛𝜏
(
𝜆

𝑒𝑧
)𝑛, (4.5)

for 𝜆 ∈ ℂ∗ ∖ 𝑞2ℤ, Re(𝜏) > 0 and 𝑧 ∈ ℂ̃∗ ∖ (log(−𝜆𝑞2ℤ+1)).
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Chapter 5 Generalization of Mordell’s

Theorem

In this chapter, we would like to prove a natural generalization of Mordell’s

theorem by means of Stokes analysis on two sums of 𝑦(𝑥, 𝑞) defined by (1.4).

And we shall generalize our result.

§5.1 Mordell’s theorem

Mordell begun his paper (cf. [35]) with the following observation:

Professor Siegel in a memoir recently published dealing with the manuscripts

left by Riemann has pointed out that Riemann dealt with some integrals of

the type

𝐼 =

∫ ∞

−∞

𝑒𝑎𝑥
2+𝑏𝑥

𝑒𝑐𝑥 + 𝑑
𝑑𝑥

in his researches on the zetafunction. Not only can the usual functional

equation be thus found, but also an asymptotic formula is obtained for the

zetafunction of which the first term gives the well known approximate func-

tional equation due to Hardy and Littlewood (cf. [19, 20, 21])⋅ ⋅ ⋅ .

The general integral or particular cases have also been considered by

Kronecker, Lerch, Hardy, Ramanujan, van der Corput and Mordell himself.

By taking 𝑎 = 𝜋𝑖𝜔 and 𝑏 = −2𝜋𝜒, it has been already proved in [34] that

the general integral 𝐼 can be reduced to two standard forms. The first is the

integral ∫ ∞

−∞

𝑒𝜋𝑖𝜔𝑡
2−2𝜋𝑡𝜒

𝑒2𝜋𝑡 − 1
𝑑𝑡,

while the second is the integral∫ ∞

−∞

𝑒𝜋𝑖𝜔𝑡
2−2𝜋𝑡𝜒

𝑒2𝜋𝜔𝑡 − 1
𝑑𝑡.
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The path of these integrals will be explained later.

On the other hand, as said by Mordell himself in [35], the starting point

of his investigations was the theory of the positive, definite binary quadratic

form

𝑎𝑥2 + 2ℎ𝑥𝑦 + 𝑏𝑦2,

where 𝑎, ℎ, 𝑏 are integers, so that the determinant of the form is

ℎ2 − 𝑎𝑏 = −𝐷 < 0, 𝑠𝑎𝑦.

Let 𝐹 (𝐷) be the number of uneven classes of forms of given determinant

−𝐷, that is, classes of forms in which 𝑎 and 𝑏 are not both even.

Until now, the formulae for the class number have been more nearly two

centuries old. Dirichlet in 1839 proved that when −𝐷 is negative and has no

squared factors > 1,

𝐹 (𝐷) =
2

𝜋

√
𝐷((

−𝐷
1

) +
1

3
(
−𝐷
3

) +
1

5
(
−𝐷
5

) + ⋅ ⋅ ⋅ ).

Mordell in [33] published his results which states that for all −𝐷 < 0,

𝐹 (𝐷)√
𝐷

=
𝑁(𝑛)

1
− 𝑁(3)

3
+
𝑁(5)

5
− ⋅ ⋅ ⋅ ,

where 𝑁(𝑛) is the number of solutions mod 𝑛 of the congruence

𝑥2 ≡ 𝐷 (mod 𝑛).

Let 𝑞 = 𝑒𝜋𝑖𝜔 with Im(𝜔) > 0 and let

Ω(𝜔) =
∞∑
𝑛=1

𝐹 (𝑛)𝑞𝑛

be the generating function for 𝐹 (𝑛). Mordell in [32] discovered the a simple

generating function for Ω(𝜔):

Ω(𝜔) =
𝑖

4𝜋

𝑓
′
01(0)

𝜃01
,
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where 𝑓01(𝜒) denotes the unique integral function defined by the functional

equations ⎧⎨⎩ 𝑓01(𝜒+ 1) = 𝑓01(𝜒),

𝑓01(𝜒+ 𝜔) + 𝑓01(𝜒) = 𝜃01(𝜒),

and where 𝜃01 = 𝜃01(0, 𝜔), 𝜃01(𝜒, 𝜔) being one of the four Jacobi functions:

𝜃01(𝜒, 𝜔) =
∞∑

𝑛=−∞
(−1)𝑛𝑞𝑛

2

𝑒2𝑛𝜋𝑖𝜒.

In order to express ”modular” relations connecting Ω(𝜔) and Ω(− 1
𝜔
),

Mordell used the integrals
∫∞
−∞

𝑡𝑒𝜋𝑖𝜔𝑡2

𝑒2𝜋𝑡±1
𝑑𝑡:∫ ∞

−∞

𝑡𝑒𝜋𝑖𝜔𝑡
2

𝑒2𝜋𝑡 − 1
𝑑𝑡 = −2Ω(𝜔) +

2

𝜔2

√
(−𝑖𝜔)Ω(− 1

𝜔
) +

1

4
𝜃300(0, 𝜔), (5.1)

∫ ∞

−∞

𝑡𝑒𝜋𝑖𝜔𝑡
2

𝑒2𝜋𝑡 + 1
𝑑𝑡 =

∞∑
𝑛=1

(−1)𝑛𝐹 (4𝑛−1)𝑞
1
4
(4𝑛−1)+

2

𝜔2

√
(−𝑖𝜔)

∞∑
𝑛=1

(−1)𝑛−1𝐹 (𝑛)𝑞𝑛1 ,

(5.2)

where 𝑞1 = 𝑒−𝜋𝑖/𝜔 and 𝜃00(𝜒, 𝜔) being another Jacobi functions:

𝜃00(𝜒, 𝜔) =
∞∑

𝑛=−∞
𝑞𝑛

2

𝑒2𝑛𝜋𝑖𝜒.

So Mordell published his paper [35] about the definite integral
∫∞
−∞

𝑒𝜋𝑖𝜔𝑡2−2𝜋𝑡𝜒

𝑒2𝜋𝑡−1
𝑑𝑡

in 1933:

Theorem 5.1.1. (Mordell,1933) Let Im(𝜔) > 0. Let 𝑓 be the integral func-

tion of 𝜒 defined as follows:

𝑖𝑓(𝜒, 𝜔) =
±∞∑

𝑚 𝑜𝑑𝑑

(−1)
1
2
(𝑚−1)𝑞

1
4
𝑚2
𝑒𝑚𝜋𝑖𝜒

1 + 𝑞𝑚
.

Let 𝜃11 be the following Jacobi theta function:

𝑖𝜃11(𝜒, 𝜔) =
±∞∑

𝑚 𝑜𝑑𝑑

(−1)
1
2
(𝑚−1)𝑞

1
4
𝑚2

𝑒𝑚𝜋𝑖𝜒.

Then ∫ ∞

−∞

𝑒𝜋𝑖𝜔𝑡
2−2𝜋𝑡𝜒

𝑒2𝜋𝑡 − 1
𝑑𝑡 =

𝑓(𝜒
𝜔
,− 1

𝜔
) + 𝑖𝜔𝑓(𝜒, 𝜔)

𝜔𝜃11(𝜒, 𝜔)
, (5.3)
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where the path of integration may be taken as either the real axis of t indented

by the lower half of a small circle described about the origin as center, say

the path (−∞, 0,∞), or as a straight line parallel to the real axis of 𝑡 and

below it at a distance less than unity. Such a path may be denoted by 𝑃0,−1.

Notice that the relation (5.1) follows on differentiating both sides of

(5.3) with respect to 𝜒 and putting 𝜒 = 0.

In the above theorem, the integral function 𝑓 can be uniquely defined

by two equations such as⎧⎨⎩ 𝑓(𝜒+ 1) + 𝑓(𝜒) = 0,

𝑓(𝜒+ 𝜔) + 𝑓(𝜒) = 𝜃11(𝜒).

And ⎧⎨⎩ 𝜃11(𝜒+ 1) = −𝜃11(𝜒),
𝜃11(𝜒+ 𝜔) = −𝑒−𝜋𝑖(2𝜒+𝜔)𝜃11(𝜒).

So, if set 𝑔(𝜒) = 𝑓(𝜒)
𝜃11(𝜒)

, then 𝑔(𝜒) satisfies:⎧⎨⎩ 𝑔(𝜒+ 1) = 𝑔(𝜒),

𝑒−𝜋𝑖(2𝜒+𝜔)𝑔(𝜒+ 𝜔)− 𝑔(𝜒) = −1.

§5.2 Comparison between two sums of
∞∑
𝑛=0

𝑞−𝑛2

𝑥𝑛

In this section, we shall compare the functions defined in the previous

chapters and give a natural generalization of Mordell’s theorem such as

Theorem 5.2.1. The following relation holds for all 𝜆 ∈ ℂ∗ ∖ {𝑞2ℤ} and

𝑥 ∈ ℂ∗ ∖ {−𝜆𝑞2ℤ+1}:

𝑓−(𝑥, 𝑞) = 𝑔𝜆(𝑥, 𝑞)− 𝑖

√
𝜋

log 1/𝑞
𝑒

(log 𝑥)2

4 log 𝑞 𝑔𝜆∗(𝑥∗, 𝑞∗),
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where 𝑓−(𝑥, 𝑞) is defined by (3.3) and 𝑔𝜆(𝑥, 𝑞) by (4.3), and 𝑞∗, 𝑥∗ and 𝜆∗

are the modular variables defined by

𝑞∗ = 𝑒𝜋
2/ log 𝑞, 𝑥∗ = 𝑒−𝜋𝑖 log 𝑥

log 𝑞 , 𝜆∗ = 𝑒−𝜋𝑖 log 𝜆
log 𝑞 .

Proof. To prove the result, we use a simple fact that if 𝑦1 and 𝑦2

are two solutions of (1.3), then 𝑦1 − 𝑦2 will be a solution of the associated

homogeneous equation 𝑥
𝑞
𝑦( 𝑥

𝑞2
)− 𝑦(𝑥) = 0 and be flat or asymptotically zero.

Let us consider

ℎ𝜆(𝑥, 𝑞) :=
1

𝑖

√
log 1/𝑞

𝜋
𝑒−

(log 𝑥)2

4 log 𝑞 (𝑓−(𝑥, 𝑞)− 𝑔𝜆(𝑥, 𝑞)),

where 𝜆 ∈ ℂ∗ ∖ {𝑞2ℤ} and 𝑥 ∈ ℂ∗ ∖ {−𝜆𝑞2ℤ+1}.

Owing to Proposition 3.2.1 and Proposition 4.3.1, we have⎧⎨⎩
𝑥

𝑞
𝑓−(

𝑥

𝑞2
, 𝑞)− 𝑓−(𝑥, 𝑞) = −1,

𝑓−(𝑧𝑒−2𝜋𝑖, 𝑞)− 𝑓−(𝑧, 𝑞) = 𝑖

√
𝜋

log 1/𝑞
𝑒

(log 𝑧)2

4 log 𝑞 ,

and ⎧⎨⎩
𝑥

𝑞
𝑔𝜆(

𝑥

𝑞2
, 𝑞)− 𝑔𝜆(𝑥, 𝑞) = −1,

𝑔𝜆(𝑥𝑒
2𝜋𝑖, 𝑞)− 𝑔𝜆(𝑥, 𝑞) = 0.

So we can find the following relations:⎧⎨⎩
ℎ𝜆(

𝑥

𝑞2
, 𝑞) = ℎ𝜆(𝑥, 𝑞),

𝑒−
𝜋𝑖

log 𝑞
log 𝑥𝑒−

𝜋2

log 𝑞ℎ𝜆(𝑥𝑒
−2𝜋𝑖, 𝑞)− ℎ𝜆(𝑥, 𝑞) = 1.

If set 𝑞∗ = 𝑒
𝜋2

log 𝑞 and 𝑥∗ = 𝑒−𝜋𝑖 log 𝑥
log 𝑞 , then

(
𝑥

𝑞2
)∗ = 𝑥∗𝑒2𝜋𝑖, (𝑥𝑒−2𝜋𝑖)∗ =

𝑥∗

𝑞∗2
.

Now consider

ℎ∗𝜆(𝑥
∗, 𝑞) := −ℎ𝜆(𝑥, 𝑞).

59



It follows that ⎧⎨⎩
ℎ∗𝜆(𝑥

∗𝑒2𝜋𝑖, 𝑞) = ℎ∗𝜆(𝑥
∗, 𝑞),

𝑥∗

𝑞∗
ℎ∗𝜆(

𝑥∗

𝑞∗2
, 𝑞)− ℎ∗𝜆(𝑥

∗, 𝑞) = −1.

Because ℎ𝜆(𝑥, 𝑞) has simple poles (−𝜆𝑞2ℤ+1), ℎ∗𝜆(𝑥
∗, 𝑞) admits simple

poles in the 𝑞-spiral (−𝜆∗𝑞∗2ℤ+1), where 𝜆∗ = 𝑒−𝜋𝑖 log 𝜆
log 𝑞 . And observe that

ℎ∗𝜆(𝑥
∗, 𝑞) is holomorphic over ℂ∗∖(−𝜆∗𝑞∗2ℤ+1).

Therefore, we conclude that

ℎ∗𝜆(𝑥
∗, 𝑞) = 𝑔𝜆∗(𝑥∗, 𝑞∗),

and then get the theorem. ⊛

We say that the function 𝑓−(𝑥, 𝑞) defined by (3.3) is a variant of the

function given by the integral in Mordell’s theorem. Namely, if we set 𝑞 = 𝑒𝜋𝑖𝜔

and 𝑥 = 𝑒−2𝜋𝑖𝜒, then

− 1√
(−𝑖𝜔)𝑒

−𝜋𝜒2

𝑖𝜔

∫ ∞

−∞

𝑒
𝜋𝑡2

𝑖𝜔
+ 2𝜋𝑡𝜒

𝜔

𝑒2𝜋𝑡 − 1
𝑑𝑡 = 𝑓−(𝑥, 𝑞),

so that one can write

−
√

(−𝑖𝜔)𝑒𝜋𝜒2

𝑖𝜔

∫ ∞

−∞

𝑒𝜋𝑖𝜔𝑡
2−2𝜋𝑡𝜒

𝑒2𝜋𝑡 − 1
𝑑𝑡 = 𝑓−(𝑥∗, 𝑞∗),

where 𝑞∗ = 𝑒−
𝜋𝑖
𝜔 and 𝑥∗ = 𝑒2𝜋𝑖

𝜒
𝜔 .

Corollary 5.2.2. Replacing 𝜆 by 1
𝑞
𝑒𝜋𝑖 in Theorem 5.2.1, one can get Mordell’s

theorem.

In fact, recall that

−
√

(−𝑖𝜔)𝑒𝜋𝜒2

𝑖𝜔

∫ ∞

−∞

𝑒𝜋𝑖𝜔𝑡
2−2𝜋𝑡𝜒

𝑒2𝜋𝑡 − 1
𝑑𝑡 = 𝑓−(𝑥∗, 𝑞∗),

and by our main theorem

𝑓−(𝑥∗, 𝑞∗) = 𝑔𝜆∗(𝑥∗, 𝑞∗)− 𝑖

√
𝜋

log 1/𝑞∗
𝑒

(log 𝑥∗)2
4 log 𝑞∗ 𝑔𝜆∗∗(𝑥∗∗, 𝑞∗∗),
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where 𝑞∗∗ = 𝑒
𝜋2

log 𝑞∗ = 𝑞, 𝑥∗∗ = 𝑒−𝜋𝑖 log 𝑥∗
log 𝑞∗ = 1

𝑥
and 𝜆∗∗ = 𝑒−𝜋𝑖 log 𝜆∗

log 𝑞∗ = 1
𝜆
.

Therefore, we can find the following generalization of Mordell’s theorem:

−
√
(−𝑖𝜔)𝑒𝜋𝜒2

𝑖𝜔

∫ ∞

−∞

𝑒𝜋𝑖𝜔𝑡
2−2𝜋𝑡𝜒

𝑒2𝜋𝑡 − 1
𝑑𝑡 = 𝑔𝜆∗(𝑥∗, 𝑞∗)− 𝑖

√
𝜋

log 1/𝑞∗
𝑒

(log 𝑥∗)2
4 log 𝑞∗ 𝑔 1

𝜆
(
1

𝑥
, 𝑞).(5.4)

If 𝜆 = 1
𝑞
𝑒𝜋𝑖, then 𝜆∗ = 𝑞∗𝑒𝜋𝑖 and 𝜆∗∗ = 𝑞𝑒−𝜋𝑖.

Remember that 𝑞 = 𝑒𝜋𝑖𝜔 and 𝑥 = 𝑒−2𝜋𝑖𝜒, so 𝑞∗ = 𝑒−
𝜋𝑖
𝜔 and 𝑥∗ = 𝑒2𝜋𝑖

𝜒
𝜔 .

Substituting all these variables in the above identity, we have∫ ∞

−∞

𝑒𝜋𝑖𝜔𝑡
2−2𝜋𝑡𝜒

𝑒2𝜋𝑡 − 1
𝑑𝑡

= − 1√
(−𝑖𝜔)𝑒

−𝜋𝜒2

𝑖𝜔
1

𝜃∗(𝜆
∗

𝑥∗ )

∑
𝑛∈ℤ

𝑞∗𝑛
2

1− 𝜆∗𝑞∗2𝑛
(
𝜆∗

𝑥∗
)𝑛

+𝑖
1

𝜃(𝑥
𝜆
)

∑
𝑛∈ℤ

𝑞𝑛
2

1− 1
𝜆
𝑞2𝑛

(
𝑥

𝜆
)𝑛, 𝑤ℎ𝑒𝑟𝑒 𝜃∗(

𝜆∗

𝑥∗
) = 𝜃(

𝜆∗

𝑥∗
, 𝑞∗)

= − 1√
(−𝑖𝜔)𝑒

−𝜋𝜒2

𝑖𝜔
1

𝜃∗(−𝑞∗
𝑥∗ )

∑
𝑛∈ℤ

(−1)𝑛𝑞∗(𝑛
2+𝑛)

1 + 𝑞∗(2𝑛+1)
𝑥∗(−𝑛)

+𝑖
1

𝜃(−𝑞𝑥)
∑
𝑛∈ℤ

(−1)𝑛𝑞(𝑛
2+𝑛)

1 + 𝑞(2𝑛+1)
𝑥𝑛

=
− 1√

(−𝑖𝜔)
𝑒−

𝜋𝜒2

𝑖𝜔

±∞∑
𝑚 𝑜𝑑𝑑

(−1)
1
2
(𝑚−1)𝑞∗

𝑚2

4 𝑥∗
1
2
(𝑚−1)

±∞∑
𝑚 𝑜𝑑𝑑

(−1)
1
2
(𝑚−1)𝑞∗

𝑚2

4 𝑥∗
1
2
(𝑚−1)

1 + 𝑞∗𝑚

+
𝑖

±∞∑
𝑚 𝑜𝑑𝑑

(−1)
1
2
(𝑚−1)𝑞

𝑚2

4 𝑥
1
2
(𝑚−1)

±∞∑
𝑚 𝑜𝑑𝑑

(−1)
1
2
(𝑚−1)𝑞

𝑚2

4 𝑥
1
2
(𝑚−1)

1 + 𝑞𝑚

= − 1√
(−𝑖𝜔)𝑒

−𝜋𝜒2

𝑖𝜔
𝑓(𝜒

𝜔
,− 1

𝜔
)

𝜃11(
𝜒
𝜔
,− 1

𝜔
)
+ 𝑖

𝑓(𝜒, 𝜔)

𝜃11(𝜒, 𝜔)
.

Recall that

𝜃11(
𝜒

𝜔
,− 1

𝜔
) = −𝑖

√
(−𝑖𝜔)𝑒−𝜋𝜒2

𝑖𝜔 𝜃11(𝜒, 𝜔).

So ∫ ∞

−∞

𝑒𝜋𝑖𝜔𝑡
2−2𝜋𝑡𝜒

𝑒2𝜋𝑡 − 1
𝑑𝑡 =

1

𝑖
√

(−𝑖𝜔)2
𝑓(𝜒

𝜔
,− 1

𝜔
)

𝜃11(
𝜒
𝜔
,− 1

𝜔
)
+ 𝑖

𝑓(𝜒, 𝜔)

𝜃11(𝜒, 𝜔)
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=
𝑓(𝜒

𝜔
,− 1

𝜔
) + 𝑖𝜔𝑓(𝜒, 𝜔)

𝜔𝜃11(𝜒, 𝜔)
.

§5.3 More general cases

Here we still assume that 𝑞 = 𝑒𝜋𝑖𝜔 with Im(𝜔) > 0. Then 0 < ∣𝑞∣ < 1.

In practical researches, only for a few ideal problems we know the exact

solutions, many parts of which are represented by integral functions or special

functions. To get some useful scientific conclusions from the exact solutions,

and then apply them to the specific engineering designs, researchers often

need to calculate concrete numerical solutions by approximate method. So

people want to establish some relations between series and integral functions

or special functions. In this section, we will explain how to treat the more

general situation such as ∫ ∞

−∞
𝑒

𝜋𝑡2

𝑖𝜔
+ 2𝜋𝜒𝑡

𝜔 Φ(𝑒2𝜋𝑡)𝑑𝑡,

where Φ denotes an analytic function over the complex plane perhaps ex-

cepted a countable number of singular points. Under some reasonable as-

sumptions, we can put the meromorphic function Φ into partial fraction

decomposition and we only need to consider the integral of the type

∫ ∞

−∞

𝑒
𝜋𝑡2

𝑖𝜔
+ 2𝜋𝜒𝑡

𝜔

(𝑒2𝜋𝑡 − 𝑒2𝜋𝜈)𝑘
𝑑𝑡,

where 𝑘 ∈ ℕ and 𝜈 ∈ ℂ. In particular, if Φ(𝜉) = 1
(𝜉;𝑞)∞ , then we meet

Ramanujan’s entire function, which is also called a 𝑞-Airy function in the

literature.

First of all, we introduce the following notation:

𝐼(𝜈, 𝜒) = 𝐼(𝜈, 𝜒;𝜔) = − 1√
(−𝑖𝜔)𝑒

−𝜋𝜒2

𝑖𝜔

∫ ∞

−∞

𝑒
𝜋𝑡2

𝑖𝜔
+ 2𝜋𝜒𝑡

𝜔

𝑒2𝜋𝑡 − 𝑒2𝜋𝜈
𝑑𝑡,
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where 𝜈 ∈ ℂ with Im(𝜈) ∈ (−1, 0] and the path of integration may be any

straight line parallel to the real axis of 𝑡 and just below the point 𝜈 at a

distance less then unity, i.e., (−∞+ 𝜈 − 𝑖𝜖,∞+ 𝜈 − 𝑖𝜖), 𝜖 ∈ (0, 1).

By making use of a suitable change of variables in the above integral, it

follows that, for any generic value of (𝜆, 𝑥) ∈ ℂ∗ × ℂ̃∗,

𝐼(𝜈, 𝜒) = 𝑒−2𝜋𝜈𝐼(0, 𝜒+
𝜈

𝑖
)

= 𝑒−2𝜋𝜈
∑

𝜉∈𝜆𝑞2ℤ

1

1− 𝑒−2𝜋𝜈𝜉

1

𝜃( 𝜉
𝑥
)

− 𝑖√
(−𝑖𝜔)𝑒

−𝜋(𝜒+ 𝜈
𝑖 )2

𝑖𝜔
−2𝜋𝜈

∑
𝜉∈𝜆∗𝑞∗2ℤ

1

1− 𝑒
2𝜋𝜈
𝜔 𝜉

1

𝜃∗( 𝜉
𝑥∗ )

:= 𝐴(𝜆, 𝜈, 𝜒)− 𝑖√
(−𝑖𝜔)𝑒

−𝜋(𝜒+ 𝜈
𝑖 )2

𝑖𝜔
−2𝜋𝜈𝐵(𝜆, 𝜈, 𝜒)

= 𝐴(𝜆, 𝜈, 𝜒)− 𝑖

√
𝜋

log 1/𝑞
𝑒

(log 𝑥+2𝜋𝜈)2

4 log 𝑞
−2𝜋𝜈𝐵(𝜆, 𝜈, 𝜒)

:= 𝐽(𝜆, 𝜈, 𝑥) = 𝐽(𝜈, 𝑥),

where, as before,

𝑥 = 𝑒−2𝜋𝑖𝜒, 𝑥∗ = 𝑒2𝜋𝑖
𝜒
𝜔 ,

𝑞 = 𝑒𝜋𝑖𝜔, 𝑞∗ = 𝑒−𝜋𝑖 1
𝜔 ,

𝜆∗ = 𝑒−𝜋𝑖 log 𝜆
log 𝑞 , 𝜃∗(𝑥) = 𝜃(𝑥, 𝑞∗).

We can easily check that

𝑒−2𝜋𝑖𝜒−𝜋𝑖𝜔𝐴(𝜆, 𝜈, 𝜒+ 𝜔)− 𝑒2𝜋𝜈𝐴(𝜆, 𝜈, 𝜒) = −1,

𝐵(𝜆, 𝜈, 𝜒+ 𝜔)−𝐵(𝜆, 𝜈, 𝜒) = 0,

and also,

𝑒−2𝜋𝑖𝜒−𝜋𝑖𝜔𝐼(𝜈, 𝜒+ 𝜔)− 𝑒2𝜋𝜈𝐼(𝜈, 𝜒) = −1.

So instead of equation (1.3), in this section, let us consider a 𝑞-difference

equation:

𝑒−2𝜋𝑖𝜒−𝜋𝑖𝜔𝑦(𝜈, 𝜒+ 𝜔)− 𝑒2𝜋𝜈𝑦(𝜈, 𝜒) = −1. (5.5)
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A straightforward formal computation shows that the above equation

has a formal series solution which may be written as

𝑦(𝜈, 𝜒) =
∑
𝑛≥0

𝑒−2(𝑛+1)𝜋𝜈𝑒−𝑛2𝜋𝑖𝜔𝑒−2𝑛𝜋𝑖𝜒.

Then consider the derivatives of 𝐼(𝜈, 𝜒) with respect to 𝜈. So we define

that for any 𝑘 ∈ ℕ∗

𝐼𝑘(𝜈, 𝜒) =
1

𝑘!
(
𝑒−2𝜋𝜈

2𝜋

∂

∂𝜈
)𝑘𝐼(𝜈, 𝜒) = − 1√

(−𝑖𝜔)𝑒
−𝜋𝜒2

𝑖𝜔

∫ ∞

−∞

𝑒
𝜋𝑡2

𝑖𝜔
+ 2𝜋𝜒𝑡

𝜔

(𝑒2𝜋𝑡 − 𝑒2𝜋𝜈)𝑘+1
𝑑𝑡.

(5.6)

It follows that

𝑒−2𝜋𝑖𝜒−𝜋𝑖𝜔𝐼𝑘(𝜈, 𝜒+ 𝜔)− 𝑒2𝜋𝜈𝐼𝑘(𝜈, 𝜒) = 𝐼𝑘−1(𝜈, 𝜒), (5.7)

where 𝐼0(𝜈, 𝜒) := 𝐼(𝜈, 𝜒).

Combining the 𝑞-difference equation (5.5) with the recurrence relation

(5.7), we can deduce that 𝐼𝑘(𝜈, 𝜒) satisfies the following 𝑞-difference equation

of order 𝑘 + 1:

𝑘+1∑
𝑚=0

(−1)𝑚

⎛⎝ 𝑘 + 1

𝑚

⎞⎠ 𝑒−2(𝑘+1−𝑚)𝜋𝑖𝜒

𝑒(𝑘+1−𝑚)2𝜋𝑖𝜔
𝑒2𝑚𝜋𝜈𝑦𝑘(𝜈, 𝜒+ (𝑘 + 1−𝑚)𝜔) = −1,

which also has a divergent formal solution:

𝑦𝑘(𝜈, 𝜒) = (−1)𝑘
∑
𝑛≥0

⎛⎝ 𝑛+ 𝑘

𝑛

⎞⎠ 𝑒−2(𝑛+𝑘+1)𝜋𝜈𝑒−𝑛2𝜋𝑖𝜔𝑒−2𝑛𝜋𝑖𝜒

= (−1)𝑘
1

𝑘!

∑
𝑛≥0

(𝑛+ 1) ⋅ ⋅ ⋅ (𝑛+ 𝑘)𝑒−2(𝑛+𝑘+1)𝜋𝜈𝑒−𝑛2𝜋𝑖𝜔𝑒−2𝑛𝜋𝑖𝜒

=
1

𝑘!
(
𝑒−2𝜋𝜈

2𝜋

∂

∂𝜈
)𝑘𝑦(𝜈, 𝜒).

Therefore, similarly to the analysis in the preceding chapters, we know

that 𝑦𝑘(𝜈, 𝜒) has two sums of different forms, one of which is the integral
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function 𝐼𝑘(𝜈, 𝜒) defined by (5.6). And we also know that 𝐼𝑘(𝜈, 𝜒) can be

represented by factorial series expansion 𝐽𝑘(𝜈, 𝑥):

𝐽𝑘(𝜈, 𝑥) =
1

𝑘!
(
𝑒−2𝜋𝜈

2𝜋

∂

∂𝜈
)𝑘𝐽(𝜈, 𝑥)

=
1

𝑘!
(
𝑒−2𝜋𝜈

2𝜋

∂

∂𝜈
)𝑘(𝐴(𝜆, 𝜈, 𝜒))

−𝑖
√

𝜋

log 1/𝑞

1

𝑘!
(
𝑒−2𝜋𝜈

2𝜋

∂

∂𝜈
)𝑘(𝑒

(log 𝑥+2𝜋𝜈)2

4 log 𝑞
−2𝜋𝜈𝐵(𝜆, 𝜈, 𝜒)),

where, as before,

𝐴(𝜆, 𝜈, 𝜒) = 𝑒−2𝜋𝜈
∑

𝜉∈𝜆𝑞2ℤ

1

1− 𝑒−2𝜋𝜈𝜉

1

𝜃( 𝜉
𝑥
)
,

and

𝐵(𝜆, 𝜈, 𝜒) =
∑

𝜉∈𝜆∗𝑞∗2ℤ

1

1− 𝑒
2𝜋𝜈
𝜔 𝜉

1

𝜃∗( 𝜉
𝑥∗ )

.

Examples. Here we only present explicit formulae for 𝑘 = 1, 2 as two

examples, i.e.,

𝐼1(𝜈, 𝜒)

= − 1√
(−𝑖𝜔)𝑒

−𝜋𝜒2

𝑖𝜔

∫ ∞

−∞

𝑒
𝜋𝑡2

𝑖𝜔
+ 2𝜋𝜒𝑡

𝜔

(𝑒2𝜋𝑡 − 𝑒2𝜋𝜈)2
𝑑𝑡

= 𝐽1(𝜈, 𝑥)

= (
𝑒−2𝜋𝜈

2𝜋

∂

∂𝜈
)𝐽(𝜈, 𝑥)

= −𝑒−4𝜋𝜈
∑

𝜉∈𝜆𝑞2ℤ

1

1− 𝑒−2𝜋𝜈𝜉

1

𝜃( 𝜉
𝑥
)
+
𝑒−4𝜋𝜈

2𝜋

∑
𝜉∈𝜆𝑞2ℤ

∂

∂𝜈
(

1

1− 𝑒−2𝜋𝜈𝜉
)

1

𝜃( 𝜉
𝑥
)

−𝑖
√

𝜋

log 1/𝑞
(
log 𝑥+ 2𝜋𝜈

2 log 𝑞
− 1)𝑒

(log 𝑥+2𝜋𝜈)2

4 log 𝑞
−4𝜋𝜈

∑
𝜉∈𝜆∗𝑞∗2ℤ

1

1− 𝑒
2𝜋𝜈
𝜔 𝜉

1

𝜃∗( 𝜉
𝑥∗ )

−𝑖
√

𝜋

log 1/𝑞

𝑒
(log 𝑥+2𝜋𝜈)2

4 log 𝑞
−4𝜋𝜈

2𝜋

∑
𝜉∈𝜆∗𝑞∗2ℤ

∂

∂𝜈
(

1

1− 𝑒
2𝜋𝜈
𝜔 𝜉

)
1

𝜃∗( 𝜉
𝑥∗ )

= −𝑒−4𝜋𝜈
∑

𝜉∈𝜆𝑞2ℤ

1

1− 𝑒−2𝜋𝜈𝜉

1

𝜃( 𝜉
𝑥
)
− 𝑒−4𝜋𝜈

∑
𝜉∈𝜆𝑞2ℤ

𝑒−2𝜋𝜈𝜉

(1− 𝑒−2𝜋𝜈𝜉)2
1

𝜃( 𝜉
𝑥
)

65



−𝑖
√

𝜋

log 1/𝑞
(
log 𝑥+ 2𝜋𝜈

2 log 𝑞
− 1)𝑒

(log 𝑥+2𝜋𝜈)2

4 log 𝑞
−4𝜋𝜈

∑
𝜉∈𝜆∗𝑞∗2ℤ

1

1− 𝑒
2𝜋𝜈
𝜔 𝜉

1

𝜃∗( 𝜉
𝑥∗ )

−𝑖
√

𝜋

log 1/𝑞

𝑒
(log 𝑥+2𝜋𝜈)2

4 log 𝑞
−4𝜋𝜈

𝜔

∑
𝜉∈𝜆∗𝑞∗2ℤ

𝑒
2𝜋𝜈
𝜔 𝜉

(1− 𝑒
2𝜋𝜈
𝜔 𝜉)2

1

𝜃∗( 𝜉
𝑥∗ )

= −𝑒−4𝜋𝜈
∑

𝜉∈𝜆𝑞2ℤ

1

(1− 𝑒−2𝜋𝜈𝜉)2
1

𝜃( 𝜉
𝑥
)

−𝑖
√

𝜋

log 1/𝑞
(
log 𝑥+ 2𝜋𝜈

2 log 𝑞
− 1− 1

𝜔
)𝑒

(log 𝑥+2𝜋𝜈)2

4 log 𝑞
−4𝜋𝜈

∑
𝜉∈𝜆∗𝑞∗2ℤ

1

1− 𝑒
2𝜋𝜈
𝜔 𝜉

1

𝜃∗( 𝜉
𝑥∗ )

− 𝑖

𝜔

√
𝜋

log 1/𝑞
𝑒

(log 𝑥+2𝜋𝜈)2

4 log 𝑞
−4𝜋𝜈

∑
𝜉∈𝜆∗𝑞∗2ℤ

1

(1− 𝑒
2𝜋𝜈
𝜔 𝜉)2

1

𝜃∗( 𝜉
𝑥∗ )

,

𝐼2(𝜈, 𝜒)

= − 1√
(−𝑖𝜔)𝑒

−𝜋𝜒2

𝑖𝜔

∫ ∞

−∞

𝑒
𝜋𝑡2

𝑖𝜔
+ 2𝜋𝜒𝑡

𝜔

(𝑒2𝜋𝑡 − 𝑒2𝜋𝜈)3
𝑑𝑡

= 𝐽2(𝜈, 𝑥)

=
1

2
(
𝑒−2𝜋𝜈

2𝜋

∂

∂𝜈
)𝐽1(𝜈, 𝑥)

= 𝑒−6𝜋𝜈
∑

𝜉∈𝜆𝑞2ℤ

1

(1− 𝑒−2𝜋𝜈𝜉)2
1

𝜃( 𝜉
𝑧
)
− 𝑒−6𝜋𝜈

4𝜋

∑
𝜉∈𝜆𝑞2ℤ

∂

∂𝜈
(

1

(1− 𝑒−2𝜋𝜈𝜉)2
)

1

𝜃( 𝜉
𝑥
)

− 𝑖

4 log 𝑞

√
𝜋

log 1/𝑞
𝑒

(log 𝑥+2𝜋𝜈)2

4 log 𝑞
−6𝜋𝜈

∑
𝜉∈𝜆∗𝑞∗2ℤ

1

1− 𝑒
2𝜋𝜈
𝜔 𝜉

1

𝜃∗( 𝜉
𝑥∗ )

−𝑖
√

𝜋

log 1/𝑞
(
log 𝑥+ 2𝜋𝜈

2 log 𝑞
− 1− 1

𝜔
)(
log 𝑥+ 2𝜋𝜈

4 log 𝑞
− 1)

𝑒
(log 𝑥+2𝜋𝜈)2

4 log 𝑞
−6𝜋𝜈

∑
𝜉∈𝜆∗𝑞∗2ℤ

1

1− 𝑒
2𝜋𝜈
𝜔 𝜉

1

𝜃∗( 𝜉
𝑥∗ )

− 𝑖

4𝜋

√
𝜋

log 1/𝑞
(
log 𝑥+ 2𝜋𝜈

2 log 𝑞
− 1− 1

𝜔
)

𝑒
(log 𝑥+2𝜋𝜈)2

4 log 𝑞
−6𝜋𝜈

∑
𝜉∈𝜆∗𝑞∗2ℤ

∂

∂𝜈
(

1

1− 𝑒
2𝜋𝜈
𝜔 𝜉

)
1

𝜃∗( 𝜉
𝑥∗ )

− 𝑖

𝜔

√
𝜋

log 1/𝑞
(
log 𝑥+ 2𝜋𝜈

4 log 𝑞
− 1)𝑒

(log 𝑥+2𝜋𝜈)2

4 log 𝑞
−6𝜋𝜈

∑
𝜉∈𝜆∗𝑞∗2ℤ

1

(1− 𝑒
2𝜋𝜈
𝜔 𝜉)2

1

𝜃∗( 𝜉
𝑥∗ )

− 𝑖

4𝜋𝜔

√
𝜋

log 1/𝑞
𝑒

(log 𝑥+2𝜋𝜈)2

4 log 𝑞
−6𝜋𝜈

∑
𝜉∈𝜆∗𝑞∗2ℤ

∂

∂𝜈
(

1

(1− 𝑒
2𝜋𝜈
𝜔 𝜉)2

)
1

𝜃∗( 𝜉
𝑥∗ )
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= 𝑒−6𝜋𝜈
∑

𝜉∈𝜆𝑞2ℤ

1

(1− 𝑒−2𝜋𝜈𝜉)2
1

𝜃( 𝜉
𝑥
)
+ 𝑒−6𝜋𝜈

∑
𝜉∈𝜆𝑞2ℤ

𝑒−2𝜋𝜈𝜉

(1− 𝑒−2𝜋𝜈𝜉)3
1

𝜃( 𝜉
𝑥
)

− 𝑖

4 log 𝑞

√
𝜋

log 1/𝑞
𝑒

(log 𝑥+2𝜋𝜈)2

4 log 𝑞
−6𝜋𝜈

∑
𝜉∈𝜆∗𝑞∗2ℤ

1

1− 𝑒
2𝜋𝜈
𝜔 𝜉

1

𝜃∗( 𝜉
𝑥∗ )

−𝑖
√

𝜋

log 1/𝑞
(
log 𝑥+ 2𝜋𝜈

2 log 𝑞
− 1− 1

𝜔
)(
log 𝑥+ 2𝜋𝜈

4 log 𝑞
− 1)

𝑒
(log 𝑥+2𝜋𝜈)2

4 log 𝑞
−6𝜋𝜈

∑
𝜉∈𝜆∗𝑞∗2ℤ

1

1− 𝑒
2𝜋𝜈
𝜔 𝜉

1

𝜃∗( 𝜉
𝑥∗ )

− 𝑖

2𝜔

√
𝜋

log 1/𝑞
(
log 𝑥+ 2𝜋𝜈

2 log 𝑞
− 1− 1

𝜔
)

𝑒
(log 𝑥+2𝜋𝜈)2

4 log 𝑞
−6𝜋𝜈

∑
𝜉∈𝜆∗𝑞∗2ℤ

𝑒
2𝜋𝜈
𝜔 𝜉

(1− 𝑒
2𝜋𝜈
𝜔 𝜉)2

1

𝜃∗( 𝜉
𝑥∗ )

− 𝑖

𝜔

√
𝜋

log 1/𝑞
(
log 𝑥+ 2𝜋𝜈

4 log 𝑞
− 1)𝑒

(log 𝑥+2𝜋𝜈)2

4 log 𝑞
−6𝜋𝜈

∑
𝜉∈𝜆∗𝑞∗2ℤ

1

(1− 𝑒
2𝜋𝜈
𝜔 𝜉)2

1

𝜃∗( 𝜉
𝑥∗ )

− 𝑖

𝜔2

√
𝜋

log 1/𝑞
𝑒

(log 𝑥+2𝜋𝜈)2

4 log 𝑞
−6𝜋𝜈

∑
𝜉∈𝜆∗𝑞∗2ℤ

𝑒
2𝜋𝜈
𝜔 𝜉

(1− 𝑒
2𝜋𝜈
𝜔 𝜉)3

1

𝜃∗( 𝜉
𝑥∗ )

= 𝑒−6𝜋𝜈
∑

𝜉∈𝜆𝑞2ℤ

1

(1− 𝑒−2𝜋𝜈𝜉)3
1

𝜃( 𝜉
𝑥
)

−𝑖
√

𝜋

log 1/𝑞
[(
log 𝑥+ 2𝜋𝜈

2 log 𝑞
− 1− 1

𝜔
)(
log 𝑥+ 2𝜋𝜈

4 log 𝑞
− 1− 1

2𝜔
) +

1

4 log 𝑞
]

𝑒
(log 𝑥+2𝜋𝜈)2

4 log 𝑞
−6𝜋𝜈

∑
𝜉∈𝜆∗𝑞∗2ℤ

1

1− 𝑒
2𝜋𝜈
𝜔 𝜉

1

𝜃∗( 𝜉
𝑥∗ )

− 𝑖

2𝜔

√
𝜋

log 1/𝑞
(
log 𝑥+ 2𝜋𝜈

log 𝑞
− 3− 3

𝜔
)

𝑒
(log 𝑥+2𝜋𝜈)2

4 log 𝑞
−6𝜋𝜈

∑
𝜉∈𝜆∗𝑞∗2ℤ

1

(1− 𝑒
2𝜋𝜈
𝜔 𝜉)2

1

𝜃∗( 𝜉
𝑥∗ )

− 𝑖

𝜔2

√
𝜋

log 1/𝑞
𝑒

(log 𝑥+2𝜋𝜈)2

4 log 𝑞
−6𝜋𝜈

∑
𝜉∈𝜆∗𝑞∗2ℤ

1

(1− 𝑒
2𝜋𝜈
𝜔 𝜉)3

1

𝜃∗( 𝜉
𝑥∗ )

.
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Chapter 6 Summary and Unsolved

Problems

In our thesis, We obtain three types of sums of a divergent formal solu-

tion to Cauchy problem (1.1) and build two relations between them. One of

them is Theorem 3.2.4. The other one is Theorem 5.2.1, which is deduced

from a Stokes analysis on the singular 𝑞-difference equation (1.3). The for-

mula connecting two fundamental solutions of (1.3) is expressed in terms of

elliptic functions and Gaussian functions (i.e., Heat kernel). And it is also a

generalization of Mordell’s theorem. In the last section, with the same mode

of thought we get some surprising identities on 𝑞-series, which are deduced

from statements in Theorem 5.2.1.

But we still have some problems under consideration. On the one hand,

for the 𝑞-Borel sum 𝐹𝛼(𝜏, 𝑧) defined by (3.5), in view of Theorem 3.2.4 we

know it is also a solution of (1.1); but for the 𝑞-Borel sum 𝐺𝜆(𝜏, 𝑧) defined by

(4.5), because the properties of this summation method need to be further

studied, we do not say that it is a solution of (1.1). On the other hand, for

the 𝑞-series 𝑦(𝑥, 𝑞) defined by (1.4), according to [13] we belief that there

are more different kinds of 𝑞-Borel sums and the relations among them is

unknown. And in this thesis, by variable substitution, the Cauchy problem

(1.1) of the Heat equation, which is a reaction-diffusion equation, corresponds

to the 𝑞-difference equation (1.3). So, are there more correspondences be-

tween reaction-diffusions and 𝑞-difference equations? If there are, do these

correspondences imply more essential connections between the two types of

equations? And in the Riemann-Siegel formula, we can find that the main

integral part is similar to our considered integral function in (5.4). Then

naturally, we think about applying the idea used in this thesis towards the
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study of the Riemann-Siegel integral formula(cf. [14, 45])?
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RESUME  
 
Dans cette Thèse, nous considérons dans le plan complexe l’équation de la chaleur 

avec la condition initiale singulière u(0,z)=1/(1-exp(z)). Ce problème de Cauchy 

possède une unique solution formelle série entière, laquelle peut être sommée par des 

procédés de sommation différents. Le but est d’établir des relations existant entre les 

différentes sommes ainsi étudiées: d’une part la somme de Borel de celle-ci et, de 

l’autre, deux versions q-analogues de la somme de Borel qui sont obtenues 

respectivement avec le noyau de la chaleur et la fonction thêta de Jacobi. Notre 

analyse sur le phénomène de Stokes correspondant nous conduit à une généralisation 

d’un résultat de Mordell sur le nombre de classes des formes quadratiques binaires 

définies et positives. 

 

 

Mots-clés : Développement asymptotique - Borel-sommable - Équation aux 

q-différences - Développement asymptotique q-Gevrey - Gq-sommable - Noyau de 

chaleur - Fonction thêta de Jacobi - Théorème de Mordell. 
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