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Etude de nouveaux facteurs moléculaires régulant la migration de neurones à GnRH, leur 

ciblage axonales et leur neurosécrétion: aperçues dans l'acquisition de la compétence 

reproductive. 

Chez les mammifères, la reproduction est regulée par des neurones spécifiques qui sécrètent 

le neuropeptide GnRH (Gonadotropin Releasing Hormone). Ces cellules naissent au stade 

prénatal dans la placode nasale et migrent dans l'hypothalamus, le long des nerfs olfactifs 

voméro-nasaux, pour devenir des membres à part entière de l'axe hypothalamo-hypophyso-

gonadique. Un certain nombre de pathologies de la reproduction humaine sont associées à la 

perturbation soit de la migration neuronale des cellules à GnRH ou soit de la sécrétion de la 

GnRH. 

L'objectif général de ma thèse était d'identifier de nouveaux facteurs moléculaires régulant la 

migration des cellules à GnRH, leur ciblage axonale à l'éminence médiane, mais aussi leur 

neurosécrétion au cours de la vie reproductive. 

Les événements complexes du développement correcte du système à  GnRH sont strictement 

régulés par l'expression spatio-temporelles des molecules de guidage et des molécules de la 

matrice extracellulaire, dont les fonctions,  sont en partie médiées par leur liaison avec la β1-

intégrine (Itgb1). La première partie de mon travail a été d’étudier le rôle biologique de ces 

protéines de surface dans la reproduction. La technologie Cre/loxP a été utilisée pour 

générer des souris conditionnelles GnRH spécifiques KO pour la β1-intégrine (GnRH-Itgb1-/-). 

La perte d’activité de la β1-intégrine altére la migration des neurones à GnRH, leur extension 

axonale à l’eminence mediane et la fertilité de ces souris. Ces résultats mettent en évidence 

que la β1-intégrine  joue un rôle important dans le développement normal du système GnRH 

et dans l'acquisition de compétences reproductives normales chez les rongeurs. 

Dans la deuxième  partie de ma thèse de doctorat, j'ai identifié de nouveaux  facteurs 

moléculaires qui pourraient être responsables de l'apparition du syndrôme des ovaires 

polykystiques (SOPK). Cette maladie est présente chez près de 10 % des femmes. Il s’agit 

d’une hyperandrogénie associée à une oligo-anovulation chronique, une morphologie 

ovarienne polykystique et d'autres situations cliniques de transition d'un état endocrinien à 
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un autre. Chez les patientes atteintes du SOPK, le niveau d'hormone antimüllérienne (AMH)  

est élevé et indique clairement que l'AMH pourrait  est un marqueur possible dans le 

diagnostic et le traitement du SOPK. Une autre manifestation du syndrome est une  élévation 

des sécrétions du GnRH provoquant une augmentation des taux de LH et un rapport LH/FSH 

élevés, qui stimulent la production d'androgènes ovariens. Toutefois, jusqu'à présent cette 

maladie a été considérée principalement comme une pathologie gonadique et des 

régulations possibles plus élevées au niveau du système nerveux central ou des interactions 

avec ce dernier n'ont pas été étudiées. En particulier, des informations concernant les effets 

extra-ovariens possibles de l'AMH sur l'axe hypothalamo-hypophyso-gonadique manquent 

actuellement.  

Mon projet de recherche a été  d’étudier le rôle encore méconnu de l'AMH dans la régulation 

de la  physiologie du système à GnRH. Mes études ont permis d’identifier un nouveau rôle 

extra-ovarien pour l'AMH, et notamment comme un puissant activateur de la neurosécrétion 

de la GnRH. 
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Study of new molecular factors regulating GnRH migration, axonal targeting and 

neurosecretion: insights into the acquisition of reproductive competence. 

 

Reproduction in mammals is dependent on specific neurons secreting the neuropeptide 

Gonadotropin-Releasing Hormone (GnRH). These cells originate prenatally in the nasal 

placode and migrate into the hypothalamus apposed to the olfactory-vomeronasal nerves to 

become integral members of the hypothalamic-pituitary-gonadal axis. A number of 

reproductive disorders in humans are associated with the disruption of either the GnRH 

neuronal migration occurring during embryonic development or of GnRH secretion.  

The overall purpose of my PhD was to identify new molecular factors regulating GnRH 

migration, axonal targeting to the median eminence, but also neurosecretion during the 

reproductive life. 

The complex developmental events leading to the correct establishment of the GnRH system 

are tightly regulated by the specific spatiotemporal expression patterns of guidance cues and 

extracellular matrix molecules, the functions of which, in part, are mediated by their binding 

to β1-subunit-containing integrins. In the first study, I have investigated the biological role of 

these cell-surface proteins in reproduction. Cre/LoxP technology was used to generate GnRH 

neuron-specific β1-integrin conditional KO (GnRH-Itgb1-/-) mice. Loss of β1-integrin signalling 

impaired migration of GnRH neurons, their axonal extension to the ME, timing of pubertal 

onset, and fertility in these mice. These results identify β1-integrin as a gene involved in 

normal development of the GnRH system and demonstrate a fundamental role for this 

protein in acquisition of normal reproductive competence in female mice. 

In the second study presented in my PhD thesis, I have identified new molecular 

determinants that might be responsible for the onset of Polycystic Ovary Syndrome (PCOS), 

the most common female reproductive disorder affecting up to 10% of all women in 

reproductive age. It is a hyperandrogenic disorder associated with chronic oligo-anovulation, 

polycystic ovarian morphology and other clinical situations of transition from one endocrine 

status to another. In patients with PCOS, Anti-Müllerian Hormone (AMH) levels are elevated 
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and this clearly indicates that AMH could have a potential relevance in PCOS diagnosis and 

management. Another hallmark of the syndrome is a high GnRH pulse frequency resulting in 

elevated LH levels and LH/FSH ratio, stimulating ovarian androgen production. However, so 

far this disease has been considered mainly as a gonadal pathology and possible higher 

regulations from the central nervous system or interactions with it have not been 

investigated. In particular, information regarding the possible extra-ovarian effects of AMH 

on the hypothalamic-pituitary-gonadal axis is currently lacking.  

My research project was to investigate the as-yet unexplored role of AMH in the regulation 

of GnRH system physiology and led to the identification of a novel function for AMH as a 

potent activator of the GnRH neurosecretion.  
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1. Reproduction and Hypothalamic-Pituitary-Gonadal axis (HPG) 

To understand reproductive function and all associated abnormal phenotypes it is necessary 

to have clear in mind the apparently simple organization of the hypothalamic pituitary 

gonadal axis (HPG), the connection between the central nervous system and the periphery. 

In mammals the HPG consists of three main components: 1) the hypothalamus, 2) the 

pituitary and 3) the gonads. In a very simplistic vision, the function of the HPG axis is the 

production of hormones required for sexual development and fertility, but of course is also 

implicated in many connected behaviors.  

The hypothalamus is the main integrating center of reproduction, here is produced the 

decapeptide Gonadotropin Releasing Hormone (GnRH), from the neurons that take its name. 

GnRH neurons receive inputs from other parts of the brain and their release is seasonal, 

circadian and pulsatile depending on the species (Gore, 2002). GnRH neuropeptide is 

transported, by the portal venous system, to the pituitary gland, where it regulates synthesis 

and secretion of Luteinizing Hormone (LH) and Follicle-Stimulating Hormone (FSH). LH and 

FSH are two glycopeptides that are produced in both sexes and act mainly at the level of the 

gonads, where they control steroidogenesis, sex hormone release and maturation of the 

gonads. This axis is strictly regulated by negative and positive feedback loops from the 

gonads that sense the hormones concentration in the bloodstream and act back on the 

pituitary and hypothalamus to maintain a physiological balance (Figure 1).  
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Figure 1: Neurobiology of the hypothalamic-pituitary-gonadal (HPG) axis. Schematic presentation of 

the neuroendocrine axis controlling reproduction. Hypothalamic GnRH neurons release GnRH to the 

portal blood system reaching the pituitary gland, where they regulate the pulsatile secretion of 

gonadotropins LH and FSH. At turn, LH and FSH regulate the maturation and functions of the gonads, 

ovaries and testis. From the gonads we observe a positive and negative feedback loops to the 

pituitary and hypothalamus. Abbreviations: (T) Testosterone, (E2) estradiol, (P) progesterone  

(Modified from (Pinilla et al., 2012)). 
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1.1 The History of GnRH  

GnRH was discovered in the early 70s when two groups, Dr Schally’s and Dr Guillemin’s, 

respectively, published the primary structure of a decapeptide, named Luteinizing Hormone 

Releasing Hormone (LHRH) and capable to release LH. This discovery was rewarded with the 

Nobel Prize few years later (1977). As this molecule was able also to induce Follicle-

Stimulating Hormone (FSH) release, it was called GnRH for gonadotropin-releasing hormone 

and mGnRH specifically in the case of the mammalian peptide. Pioneer experiments had 

already started to put in evidence the importance of the GnRH system in the control of 

reproduction, even before its discovery by Schally and Guillemin. In fact, in 1950s, Donovan 

and Harris demonstrated that cutting the pituitary stalk in female ferret caused the loss of 

cyclicity, and regeneration of the connections of the portal vessels between median 

eminence and pituitary reversed this condition (DONOVAN and HARRIS, 1954). The 

expression pattern of GnRH peptide was evidenced by the production of the first GnRH 

antibody that permitted the presence of GnRH fibers at the level of median eminence 

(Dubois and Barry, 1974).  

The most interesting observations were delivered by Knobil’s group that described the cyclic 

oscillations of circulating LH and correlated it with GnRH stimulation of the pituitary.  These 

results highlighted the existence of a GnRH pulse generator (Dierschke et al., 1970; Belchetz 

et al., 1978; Wildt et al., 1981) (reviewed by (Christian and Moenter, 2010).  

 

1.2 The GnRH family of peptides  

The GnRH variants are 24 known forms; at the beginning the peptides were called after the 

species of the discovery, for example the chicken was the cGnRH (King and Millar, 1982; 

Miyamoto et al., 1984), or the salmon sGnRH (Sherwood et al., 1983). Right now, 14 variants 

have been found in vertebrates, nine in tunicates and one in Octopus (reviewed by (Kah et 

al., 2007).  
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The cloning of GnRH has permitted to regroup phylogenetically the peptide in three 

branches: type 1/2/3. Type 1 GnRH system, typically hypothalamic, is species-specific and 

variable, but it has been found in mammals, birds, amphibians and fish, and it is implicated in 

reproductive functions. GnRH-1 neurons originate in the nasal placode during embryonic 

development and they migrate into the presumptive hypothalamic areas along olfactory and 

vomeronasal axons (Schwanzel-Fukuda et al., 1989; Wray et al., 1989a). Disruption of GnRH 

neurons migration or GnRH secretion results in absent or reduced fertility (Hardelin et al., 

2000). GnRH system 2 is represented mainly by the chicken II GnRH form, an ancient form of 

GnRH. It is localized in the tegmentum of the midbrain and its function is still not clear. In the 

teleosts it is present a third system that originates differently and resides in the 

telencephalon and in the terminal nerve (Whitlock et al., 2003) . Type 3 GnRH system 

includes sea bream GnRH, similar to the mammals GnRH structure except for a serine in 

position 8. The presence of more GnRH forms suggests gene changing during evolution. 

GnRH genes probably acquired structural diversity and were initially specified for different 

functions, giving rise to ontogenetically and functionally divergent GnRH system.  

 

1.3 The ontogenesis of GnRH neurons 

GnRH neurons originate during development from the olfactory placode (OP), in the nasal 

compartment, and only in a second moment migrate to reach the hypothalamus (Schwanzel-

Fukuda et al., 1989; Wray et al., 1989a, 1989b). GnRH neurons’ birth occurs during 

embryogenesis, in mice around E11.5 (Wray et al., 1989b), while in humans around 42 days 

of gestation (Kim et al., 1999; Schwanzel-Fukuda et al., 1989). As soon as GnRH neurons can 

be visualized, either by immunocytochemistry or in situ hybridization, are already post-

mitotic; it has been shown in proliferation studies that GnRH fate specification happens 

before the beginning of migration, in mouse around E9.5/E10.5 in the medial ventral OP 

(Wray et al., 1989b). Indications of GnRH brain-ectopic origins are supported also by clinical 

observations from persons affected by a genetic reproductive disorder named Kallmann’s 

syndrome (KS), KS individuals are not only lacking GnRH neurons within the brain but also the 
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ability of smell, functions that derives from the OP (Cariboni and Maggi, 2006; Wray, 2010). 

Moreover, if OP is ablated in mice and chicken there are less GnRH cells (Daikoku and Koide, 

1998; Daikoku-Ishido et al., 1990). Another interesting hypothesis is an alternative GnRH 

progenitors’ origin, that would support the ontogenesis of a subpopulation of GnRH neurons 

within the neural crest (el Amraoui and Dubois, 1993; Forni and Wray, 2012; Forni et al., 

2011). Indeed, recent works have shown that about 30% of GnRH neurons migrating in the 

nasal region during early embryonic development have a common genetic lineage with cells 

arisen in the neural crest, whilst the other 70% seem to be generated from canonical OP 

progenitors, yet to be identified. This is coherent with a great number of genetic mouse 

mutations which affect consistently 30% of the GnRH population. Another proof supporting 

the neural crest origin of GnRH neurons derives from previous observations demonstrating 

that GnRH neurons do not express common olfactory markers, while they are positive for 

nestin, a marker of CNS system and neural crest progenitor cells (Kramer and Wray, 2000). 

More in-depth lineage tracing studies are required to fully identify the GnRH progenitors but 

these studies are complicated at the moment due to the lack of specific cell precursor’s 

markers.     

 
1.4 The GnRH migratory pathway  

In mammals, GnRH neurons are distributed in a continuum from the olfactory bulbs to the 

hypothalamus but, as mentioned above, they are generated in extra-encephalic areas and 

more precisely in the developing vomeronasal organ.  From this region, GnRH neurons 

undertake an axophilic migration, which occurs along olfactory and vomeronasal axon, and 

they eventually reach their final hypothalamic areas before birth (Wray, 2010) (Figure 2). 

GnRH migration has been reported in different species, and failure of this process during 

development is associated with different reproductive syndromes, such as hypogonadotropic 

hypogonadism (HH) (Iovane et al., 2004; Schwanzel-Fukuda et al., 1989).  

GnRH neuronal migration occurs early during development. Four specific stages characterize 

the whole migratory process (Tobet and Schwarting, 2006; Tobet et al., 2001): 1) GnRH 
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neurons emerge from the presumptive vomeronasal organ (in the mouse at E11.5), attached 

to the vomeronasal fibers and start their migration across the nasal mesenchyme, 2) at the 

level of the cribriform plate, the vomeronasal nerve splits in two branches and GnRH neurons 

momentarily cluster at this region at E14.5; 3) GnRH neurons attach to the caudal branch of 

the vomeronasal nerve and migrate ventrally to reach the ventral forebrain; 4) GnRH neurons 

detach from their axonal guides, stop migrating and extend axons to contact the median 

eminence. Usually migration is complete before birth in all vertebrates but the system 

remains quiescent until puberty onset. 

GnRH migration is axophilic in nature, in fact GnRH cell bodies use vomeronasal and olfactory 

fibers as scaffold to migrate (Marín and Rubenstein, 2003; Wray, 2001). The vomeronasal 

axons express different molecules important to mediate this axophilic migration, such as 

PSA-NCAM, laminin, DCC and TAG1, an axonal surface glycoprotein (Fueshko and Wray, 

1994; Murakami et al., 2000; Tobet et al., 1993). This close relationship is necessary to the 

correct migration, in fact if the olfactory fibers do not reach the final destination, GnRH 

neurons display an aberrant migration and are found in ectopic position (MacColl et al., 

2002). Moreover, GnRH migration is also assisted by the olfactory ensheathing glia cells 

(OEG), that create a permissive environment from the nasal compartment to the entry in the 

adult mammalian brain (Cummings and Brunjes, 1995; Franceschini et al., 2010).  
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Figure 2: The GnRH neuronal migratory route. Schematic representation of the head of a mouse 

embryo at E14.5, GnRH neurons migrate from the vomeronasal organ (vno) across the 

nasal/forebrain junction (n/fb j) into the forebrain using the scaffold of vomeronasal/terminal nerve 

fibers. Abbreviations: VNN, vomeronasal nerve; nm, nasal mesenchyme; oe, olfactory epithelium; 

vno, vomeronasal organ; n/fb j, nasal/forebrain junction; aob, accessory olfactory bulb; mob, main 

olfactory bulb; vfb, ventral forebrain, (from (Messina and Giacobini, 2013)). 

 

1.5 Molecular mechanisms regulating GnRH migration  

There are lots of molecules that influence GnRH migration. In order to simplify their 

description/role, I will analyze some of the most relevant molecules, classified on the basis of 

their nature or role in specific time/locations of the migratory route. 

During the first important step of migration, GnRH neurons have to attach to the 

olfactory/vomeronasal fibers, event that is mediated by adhesion molecules. These include   

proteins and glycoproteins expressed by the olfactory/vomeronasal axons as well as by GnRH 

migratory neurons. PSA-NCAM (polysialic acid form of neural cell adhesion molecule) is an 

homophilic binding glycoprotein expressed on the surface of neurons; in this context, 

removal of PSA by enzymatic digestion blocks GnRH migration in vitro. However, PSA-NCAM 
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deficient mice do not present any defects in GnRH neuronal development suggesting the 

existence of compensatory mechanisms (Yoshida et al., 1999). Anosmin, the product of the 

Kal1 gene, is an extracellular matrix glycoprotein important for adhesion and expressed by 

the olfactory nerves. It was the first protein identified in X-linked KS-affected individuals and 

in neuronal migration (Legouis et al., 1991), indicating an indirect role on GnRH and 

migration (Cariboni et al., 2004). In the second class there are different guidance molecules 

that can act as attractant or repellent cues, influencing GnRH neurons in both direct and 

indirect manners. Ephrins, cell surface molecules which action is mediated by tyrosine kinase 

receptors (EphA and EphB), are mainly involved in axon guidance during brain development 

(Gamble et al., 2005). The analysis of mice overexpressing EphA receptor showed a damaged 

migration with disordered clumps of GnRH cells along the olfactory neurons, in this case only 

10% of GnRH neurons reached the brain causing the impaired females sexual maturation and 

abnormal LH level (Herbison et al., 2008). NELF (Nasal embryonic LHRH factor) discovered by 

Kramer and Wray (Kramer and Wray, 2000) is expressed by migrating GnRH cells specifically 

in the nasal region and not in the forebrain, plus by the olfactory neurons. It has been shown 

that silencing of NELF can cause a decrease of GnRH neurons in vitro. In this class there are 

also neurotransmitters, represented basically by two important molecules, γ-Aminobutyric 

acid (GABA) and Chlecystokinin (CCK). GABA is an excitatory/inhibitory neurotransmitter, 

widely expressed in the brain and produced by GAD67 (glutamic acid decarboxylase 67) 

enzyme. GnRH neurons express GABAAreceptor (Fueshko et al., 1998a), and female mice 

overexpressing GAD67 in GnRH neurons exhibit altered estrus cycle and pregnancy rates 

(Heger et al., 2003). Moreover, GAD67 KO have an increased number of GnRH neurons at 

E14.5 and E17.5 out from the nasal placode, suggesting GABA inhibitory role on migration 

(Lee et al., 2008). CCK is a peptide hormone, implicated in different roles, among these, 

females’ sexual behaviors.  It transmits its action by a G-protein coupled receptor (CCK1R and 

CCK2R), whereof only the type 1 is expressed by GnRH neurons and modulate its migration.  

Mice CCK1R KO showed an increase number of GnRH neurons at E14.5 in the brain, 

proposing a role as inhibitory modulator of migration (Giacobini et al., 2004), however in 

adult KO mice the number and distribution of GnRH neurons were normal. Additionally, the 
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same group showed that CKK and its receptors are present in olfactory/vomeronasal neurons 

during development, inhibiting olfactory axons outgrowth, and, GnRH neurons that 

selectively express CKKR1 migrate along the CKK positive axons.  Moreover, class 2 contains 

also growth, transcription factors and G protein receptor. Among growth factor, FGF8 and its 

receptor FGFR1 are fundamental for neuron development and functionality, indeed FGF KO 

mice is lethal (Kim et al., 2008). FGF8 has a role in olfactory system development and its 

mutations are associated with Kallmann syndrome, in addition FGFR1 overexpressing or 

dominant negative mice conditionally in GnRH neurons have a decreased number of GnRH 

cells and abnormal projections to median eminence (Gill and Tsai, 2006; Tsai et al., 2005). 

The G-protein receptor, Prokineticin 2 receptor (PROKR2), and its ligand PROK2 have been 

shown to regulate GnRH migration and consequently reproductive functions (Matsumoto et 

al., 2006). Indeed, PROKR2-KO mice display less GnRH neurons in the hypothalamus and 

during development at E13.5, this is due to the fact that the lack of PROKR2 caused an 

alteration of the olfactory fibers on which GnRH neurons migrate. This indirect effect on 

GnRH neurons was confirmed also by mutations of these proteins connected with Kallmann 

syndrome (Dodé et al., 2006). Ebf2 belongs to the transcription factor group. It is implicated 

in neural development and expressed by migrating GnRH neurons (Corradi et al., 2003). Ebf2 

KO mice retained GnRH cells in the nasal mesenchyme in cluster, the effect is direct on GnRH 

neurons, because the olfactory system is not affected.   

Class 3 includes the guidance molecules that guide the vomeronasal nerves (VNNs) and 

GnRH neurons toward the forebrain. Netrin1/DCC (Deleted in Colon Cancer) is a 

chemoattractant molecule that regulates vomeronasal nerves to turn caudally in the 

forebrain, for this indirect effect, GnRH neurons in DCC KO mice fail to turn ventrally in the 

brain, and deviate to reach the cerebral cortex (Schwarting et al., 2001). Semaphorin/Plexin 

is another fundamental protein family for GnRH migratory pathway. Semaphorins are 

secreted and membrane-bound proteins that act as axonal growth cone guidance molecules. 

Semaphorins have been widely studied in recent years in the development of the 

GnRH/olfactory system. These studies have been fully reviewed by Messina and Giacobini 

(Messina and Giacobini, 2013) and here I will briefly mention few works. 
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Sema 4D is a membrane-bound semaphorin proteolytically cleaved that binds to the PlexinB1 

receptor expressed at the level of the olfactory placode and along the migratory route 

(Giacobini et al., 2008). In the same work, the authors demonstrated that PlexinB1 KO mice 

have a defective GnRH migration, with an accumulation of neurons in the nasal regions, 

while in adults the innervations of median eminence was decreased compared to wild type 

littermates. In vitro experiments conveyed that GnRH neurons migration is modulated by a 

crosstalk between different complex of ligand/receptor, like HGF/Met (described after) or 

Sema4D/PlexB1 (Giacobini et al., 2008). The other important type of complex formed by 

Semaphorin is represented by the one with Neuropilin. Among them, Sema 3A has been of 

particular interest, it mediates its action by Npn2 and observation of Npn2 KO mice has 

elucidated its role. In fact, mice lacking Npn2 display less GnRH neurons in adulthood due to 

defasciculation problems that affect vomeronasal axons (Cariboni et al., 2007). Recently, it 

has been shown that mice lacking a functional semaphorin-binding domain in neuropilin-1, 

an obligatory coreceptor of semaphorin-3A, have a Kallmann phenotype, with abnormal 

development of the peripheral olfactory system and defective embryonic migration of  GnRH 

cells (Hanchate et al., 2012a) For reviewed (Giacobini and Prevot, 2013; Messina and 

Giacobini, 2013). Reelin family is also implicated in GnRH migration, in fact despite the fact 

that only a small percentage of GnRH neurons express Reelin receptor, this loss causes a 

decreased of GnRH neurons in the forebrain and impaired fertility (Cariboni et al., 2005). Last 

class, the molecules implicated in helping GnRH to cross the cribriform plate, mainly growth 

and transcription factors. Hepatocyte growth factor, HGF is a heterodimeric glycoprotein 

which action is mediated by Met, a tyrosine kinase receptor. Among its numerous roles as 

mitogenic, migratory and chemoattractant factor, HGF has been demonstrated to act in 

GnRH migration in vitro and in vivo (Giacobini et al., 2002, 2007). In fact, HGF not only 

increases the distance of cell migration in mouse nasal explants, but its inhibition causes a 

reduce GnRH and olfactory axons outgrowth, being involved in direct and indirect roles. AXL 

and TYRO3 belong to the family of tyrosine kinase receptors, and as before, are implicated in 

crossing the cribriform plate and entrance in the brain. Consequently, KO mice display 

decreased number of GnRH cells at the level of the OVLT, despite unvaried number in the 
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nose (Pierce et al., 2008), this comports females mice estrus cycle abnormalities. SDF1, 

stroma derived factor 1, via its G protein receptor CXCR4, is a small cytokine that accelerate 

GnRH migration. CXCR4 KO mice have a severely impaired GnRH migration, at E12 almost all 

the cells are still in the nose, and anyone reach the hypothalamus (Schwarting et al., 2006). 

Recently, it has been demonstrated that SDF1 acts synergically with GABA to promote a 

linear rather than random movement of GnRH cells (Casoni et al., 2012). Last, Nhlh2, a 

transcription factor with a helix loop helix structure that achieves similar role. Mice Nhlh2 KO 

have a loss of GnRH cells in adulthood, and delayed first estrus (Cogliati et al., 2007).For 

review (Messina and Giacobini, 2013; Wierman et al., 2011). 

The migration process has been studied with a great variety of techniques in vivo and in vitro, 

for examples immunohistochemistry at different stages of development, DiIO labeling, 

olfactory ablation (reviewed by (Tobet and Schwarting, 2006) , immortalized cell line, mouse 

nasal explants, slice cultured method and transgenic GnRH-GFP animals. All these methods 

have allowed to improve our knowledge of this pathway, but the main problem is that GnRH 

neurons cross very different anatomical region with their own molecular environment, 

suggesting different regulation by transcription and guidance factors, acting directly or 

indirectly on GnRH. Additionally, we have also to consider that all these different regions are 

crossed by GnRH in a very precise temporal window, suggesting that many factors could also 

be spatiotemporal regulated. The migration mechanism, as I explained before, is influenced 

by a great variety of molecules, and even the loss of a small percentage  of GnRH neurons  is 

often associated with defective phenotype, as it has been observed by the big variety of KO 

and conditional KO that affects GnRH migration or physiology (Messina and Giacobini, 2013).  
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1.6 GnRH physiology 

1.6.1 Role of GnRH at puberty  

Puberty is the process triggered by the activation of the hypothalamic-pituitary-gonadal axis, 

in which the body matures and begins to be capable of sexual reproduction. It is initiated by 

the hormonal signals in the central nervous system that led the maturation of the gonads 

and culminates with the production of gametes (Ojeda et al., 2006). It is a very dynamic 

event, in which different components work together to create a permissive timing, that is not 

just dependent on chronological age, but on a great variety of factors. First of all, the body, in 

any species, undergoes to rapid changes in size, shape, and composition, all of which are 

sexually dimorphic. This growth is determined by genetic, environmental factors and 

nutrition. In fact the energy balance and metabolic state are fundamental in the control of 

puberty, and, the initiation of sexual development and the maintenance of reproductive 

functions required a minimum energy store. If the equilibrium between energy intake and 

energy expenditure is disrupted, conditions like obesity or undernutrition are observed, 

where time of puberty is delayed or accelerated respectively, and fertility is impaired. The 

energy balance and body maturation are in association with hormonal changes, which occurs 

at a central and peripheral level all over the body, sending to GnRH neurons information 

about energy balance, development, season and social environment. There are many 

hormones involved in puberty onset, but only few have been demonstrated to be 

fundamental. At a peripheral level, besides sex steroids, two hormones have been shown to 

be essential: leptin and ghrelin. These hormones are secreted by the adipose tissue and 

stomach respectively, serve to signal to the brain the body’s energy stores; acting as 

antagonists they maintain a balance to regulate food intake. Leptin increases energy 

expenditure and mutation of this hormone or its receptor cause altered pubertal 

development and infertility (review by (Elias and Purohit, 2013)). Ghrelin controls growth 

hormone secretion and food intake, reduces GnRH secretion in the pre-pubertal period 

(Lebrethon et al., 2007), moreover, it has been shown that chronic ghrelin administration 

partially prevented puberty onset in male. Similarly, different central neuropeptides are 

fundamental to modulate this process. Kisspeptin seems to be crucial for the onset of 
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puberty, switching on GnRH secretion at the right time. Human and mice with mutation for 

kiss or its receptor display hypogonadotropic hypogonadism (Roux et al., 2003; Seminara et 

al., 2003), while chronic central administration of Kisspeptin advances puberty in immature 

females (Navarro et al., 2004a).  

GnRH neurons play a central role for puberty initiation because the increase in pulsatile 

release of GnRH from the hypothalamus is indispensable for this event to occur (Ojeda et al., 

2006). Before puberty, GnRH neurons are maintained under inhibitory inputs to release 

minimum amount of GnRH peptide in the portal pituitary system until “the perfect timing 

comes“ (Terasawa and Fernandez, 2001). In rodents, GnRH neurons have to maturate to 

acquire the reproductive phenotype that reach the apices with the first ovulation (Knobil and 

Neill; Ojeda et al., 2006; Terasawa and Fernandez, 2001).  

In these species, puberty can be simplified in 4 stages: in females, the first is the neonatal 

period, immediately after birth, until P7, when the gonads are still primitive and do not 

require GnRH or LH/FSH to develop. Immediately after, for the first 2/3 weeks of life, starts 

the infantile period, here the ovarian follicles begin to be responsive to FSH. The FSH 

increases over LH reaching a peak at P12, and after it declines. This is also called minipuberty 

and it is the first activation of the GnRH system, required for preantral follicles development. 

Also the LH secretion increases, but it remains less compared to FSH, because GnRH has no 

yet a high frequency capable to sustain high LH level. The third is the juvenile period, FSH 

level decreases and LH remains low, but GnRH pulse frequency begins increasing. In this 

period the sensitivity to the positive estradiol increases reaching a peak at P30. This 

stimulatory effect of estradiol on LH release involves GnRH activation. This is also the period 

in which the hypothalamic pituitary axis becomes sensible to low estradiol level produced 

from the gonads. Last phase is the peripubertal stage, whose transition is regulated by 

morning –afternoon serum LH concentration. LH levels and its amplitude increase from basal 

level, but not its frequency. This period is still not driven by the gonads, but it is a centrally 

driven gonad independent action. At puberty, the ovary acquires the ability to secrete high 

level of estrogens for at least 24h, triggering the first GnRH/LH surge. This elevated level of 

estrogens permits the GnRH release that causes the proestrus LH surge. Progesterone also 
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increases on the day of proestrus facilitating the stimulatory effect of estrogens on GnRH 

release. This occurs at around 1 month of life, in rodents, and is announced by the vaginal 

opening, and climax with the first ovulation. In contrast to infantile/juvenile and peripubertal 

period where the GnRH change are gonad independent, the onset of the preovulatory surge 

of gonadotropins is centrally driven (GnRH) gonad-dependent (estrogens) (Figure 3). 

In males, in the neonatal period the gonads develop independently from the HP axis. This is 

controlled by testosterone produced by fetal Leydig cells, which, in contrast to the Leydig 

cells that develop postnatally, do not require LH for their proliferation or differentiation. At 

P5, FSH level increases while LH remains constant. Infantile/juvenile and peripubertal period 

start at 2 weeks of life, FSH level begin to elevate and reach a maximum around P30/40 

GnRH pulse frequency gradually increases until puberty. Male puberty is characterized by 

presence of motile sperm and capacity of sexual reproduction.  
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Figure 3: The phases of pubertal activation of the HPG axis in female mouse. Schematic 

diagrams illustrating the centrally-driven gonad-independent and gonad-dependent changes in 

hormonal profiles during female postnatal development: 1) in neonatal/infantile stage GnRH 

and LH are low, but FSH shows a peak at P12, 2) juvenile stage LH release is higher in the 

afternoon compare to the morning, 3) peripubertal stage ends with the first ovulation.  

 

1.6.2 Role of GnRH at adulthood  

GnRH neurons are a relative small population of neurons (800-1000 in the mouse), scattered 

from the olfactory bulb to the rostral pre-optic area until the caudal hypothalamus (Wray and 

Hoffman, 1986). Most of the GnRH soma are located at the level of the medial septum and 

the organum vasculosum of the lamina terminalis (OVLT), a circumventricular organ (Figure 

4). However, few cells are also located in the olfactory bulb or in the median eminence. 

Independently of their location, the majority of GnRH cells send their axons to the median 

eminence, where the terminals release GnRH peptide close to the fenestrated capillary bed 
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of the hypophyseal portal blood, allowing GnRH to be transported to the pituitary gland. 

GnRH binds to its receptor GnRHR at the level of the adenohypophysis and stimulates the 

transcription and secretion of luteinizing hormone (LH) and follicles stimulating 

hormone(FSH) (Dalkin et al., 1989). Gonadotropins act at the level of the gonads, to permits 

maturation, steroidogenesis and sex hormone secretion. Interestingly, the release of LH and 

FSH is driven by two different secretory modes, tonic and phasic. Indeed it has been 

postulated that with higher GnRH pulse frequencies, LH secretion increases more than FSH, 

whereas at low pulse frequency is the FSH that is favored (reviewed by (Constantin, 2011). 

This underlines a very particular GnRH pulsatile pattern, fundamental for the correct release 

of the gonadotropins and the correct operating of the ovary. It is well established that the 

lack of a pulsatile pattern of GnRH release and constant stimulation by GnRH suppress LH 

secretion. The balance between the secretory frequencies depends on hormonal feedback 

from gonads.   

Another important factor that changes during life is the morphology of GnRH neurons. GnRH 

neurons morphology has a bipolar shape, with long extended axons that have to reach the 

median eminence for distance over 1000 um. Their axons projections have a very particular 

intermediate phenotype, because they possess spines like dendrites for all the surface, but 

actively conducts action potentials to targets, for that reason some groups have called them 

“dendron” (Herde et al., 2013). The number of spines increases at puberty (Campbell et al., 

2005; Wray and Hoffman, 1986) indicating plasticity to maintain the raise of synaptic inputs 

that accompany maturity and synchronization of secretion (Herde et al., 2013).    
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Figure 4: GnRH neurons distribution. Atlas sections defining the anatomical regions—medial septum 
OVLT in which are located the majority of GnRH neurons.   
 
 
 
 
 

1.7 GnRH from gene to peptide 

GnRH is a 10 aa peptide produced in specialized neurons of the hypothalamus, containing 4 

short exons separated by 3 large introns. Exon 1 specifically is responsible for 5’ UTR region, 

while exon 2 for the signal peptide, GnRH decapeptide and the first aa of the GnRH-

associated peptide (GAP). Finally, exons 3 and 4 finish to codify GAP peptide plus the 3’ UTR 

(reviewed by (Clarke and Pompolo, 2005) and from (Knobil and Neill).  

The GnRH transcript is processed by post translational modification from a large precursor 

polypeptide, pre-pro GnRH consisting of 92 aa, it undergoes to different proteolytic steps. 

The first is the creation of a pro-hormone, constituted by GnRH and GAP that is sequent 

separated by an endopeptidase on a cleavage-site, creating an intermediate GnRH and 

mature GAP. GnRH intermediate is processed afterwards on its C terminal basic residues by a 

carboxypeptidase. The final step to create a biologically active decapeptide required the 

conversion of a N terminal glutamine in pyroglutamate. Some studies say that this last 

processing occurs in vesicles during its transport down to the axon and in the nerve terminals 

(Knobil and Neill).  
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The cleavage products, GnRH and its associated peptide called GAP, are transported down to 

the axons and secreted in the portal circulation. A physiologic role for GAP has not been 

established so far. Interestingly, GnRH peptide is packaged and stored in granules by the 

Golgi apparatus, where the final cleavage is thought to happen (reviewed by (Millar, 2005). 

The vesicles can be of two types, dense core with a diameter of 100 nm and clear vesicles 

with a diameter smaller of 30-40 nm.  The hormone is released in a synchronized manner, 

with frequency that varies along the ovarian cycle, for example is highest at the ovulatory LH 

surge and lowest during the luteal phase of the ovarian cycle, and LH and FSH release result 

from these changes. The degradation of this hormone, like its processing, is triggered by 

different enzymes, the most implicated are the zinc metalloendopeptidase and propyl 

endopeptidase (Knobil and Neill).  

 

1.4.2 GnRH transduction pathway 

Once reached the pituitary, GnRH binds its specific receptor GnRH R to initiate the 

downstream pathway (Naor, 1990). GnRH R, first cloned from the mouse pituitary 

gonadotrops cell line (Tsutsumi et al., 1992), belongs to a G-protein coupled receptors 

(GPCRs). Like most of this family, it uses its extracellular domain to bind the peptide hormone 

and the intracellular to transduce the signal by interacting with G-proteins (reviewed by 

(Millar, 2005). The GnRH R is coupled to Gq/11 protein to activate phospholipase C which 

transmits its signal to diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG 

activates the intracellular protein kinase C (PKC) pathway and IP3 induces a rise in 

intracellular calcium concentration (Naor, 2009), which, for this reason, can be used as 

marker for GnRH neurons activation. In addition to the classical Gq/11, Gs coupling is 

occasionally observed in a cell-specific manner. Signalling downstream of protein kinase C 

(PKC) leads to activation of mitogen-activated protein kinases (MAPKs), including 

extracellular-signal-regulated kinase (ERK), Jun N-terminal kinase (JNK) and p38 MAPK. Active 

MAPKs translocate to the nucleus, resulting in activation of transcription factors and rapid 

induction of early genes. (reviewed by (Anderson, 1996).  
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Surprisingly, functional GnRHR has been found also in several brain regions, even though its 

role has never been studied (Wen et al., 2011) (Figure 5).  

 

 

 

Figure 5: GnRH transduction pathway. GnRH peptide binds to its protein G coupled receptor (GnRH 

R) and induces the activation of different intracellular signal transduction cascades. Activation of the 

receptor stimulates phospholipase C (PLC) activity to generate inositol triphosphate (IP3) and 

diacylglycerol (DAG). Increases of these signal messengers lead to the activation of protein kinase C 

(PKC) and an increase in intracellular Ca2+ concentration from the endoplasmic reticulum (ER). PKC 

pathway activates the MAPK family that regulates the transcription of genes of interest. 
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1.8 GnRH Neuromodulators: neural inputs to GnRH neurons 

Reproduction in mammals is a process requiring a lot of physiological cost, direct, like energy 

expenditure and nutrients demand, and indirect, like all the other physiological events that 

the animals choose to shut off to attend reproduction (Speakman, 2008). Moreover, at the 

time of reproduction and after, many physiological changes and reorganizations happen in 

the body, suffice to think to pregnancy or lactation. GnRH is only the first step of this huge 

process that takes place to grant species survival, but despite this, it is strictly and highly 

regulated to permit right timing and best conditions.  

There is a large number of different neurotransmitters, direct and indirect, involved in 

modulating the behavior of the GnRH neurons (Todman et al., 2005) and their physiology 

through life. In the following chapters I am going to describe the most relevant ones and 

those which have obtained a general consensus on their mode of action (Figure 6). 

 

1.8.1 Estrogens  

Estrogens are fundamental dowels in the intricate mechanism that controls reproduction and 

preparation of the reproductive function. They are released from the gonads of both sexes. 

In females, the primary sources of estrogens are theca and granulosa cells of the ovary, even 

if the “two cell” theory of estrogen synthesis states that androgens are secrete by theca cells 

and after in granulosa cells are aromatized in estrogens, there are now clues of synthesis in 

both the cell types. In females, they promote the maturation of secondary sexual 

characteristic and the regulation of the estrous cycle, in males they are important for the 

maturation of the sperm cells (Hess, 2003). In male mice, testosterone, the main androgen, 

produced by testis, is responsible not only for sexual development, but also for the 

masculinization of the brain when it is converted in estradiol by the enzyme aromatase 

(McCARTHY, 2008). Moreover, estrogens also act specifically at the level of pituitary and 

hypothalamus to modulate GnRH activity. Since estrogens are steroidal hormone, they can 

passively pass through the phospholipid membranes of cell, their action is mediated by 
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different receptors, the most known are nuclear estrogen receptor alpha (ERα) and beta 

(ERβ), that after complexing with estrogen, transduce the signal by binding to a specific 

estrogen response elements (EREs)that regulates transcription (McDevitt et al., 2008). ER 

knock-out mice have provided invaluable evidence for the biological functions of ERα and 

ERβ (Krege et al., 1998; Lubahn et al., 1993). Despite the number of receptors, ERα is the one 

most studied in the reproductive axis because KO mice show aberrant phenotype compared 

to ERβ, which lack any reproductive phenotype (Couse and Korach, 1999). In fact females 

ERα KO are infertile displaying hypoplastic uteri, no corpora lutea in ovaries, and altered 

hormone levels, like high level of testosterone (Couse and Korach, 1999; Lubahn et al., 1993).  

 

 

 

1.8.2 Estrogen Negative and Positive Feedbacks Controlling GnRH 

Estrogen has a bimodal effect on the hypothalamus with both an inhibitory and stimulatory 

influence on GnRH secretion (Radovick, 2012). GnRH neurons are regulated by estrogens by 

in an indirectly way, by kisspeptin neurons, because they possess only ERβ and no ERα 

(Radovick, 2012), that is the receptor responsible for positive/negative feedback (Tassigny 

and Colledge, 2010). During the estrous cycle the plasma level of estrogen, exactly 17 β-

estradiol, are low, inhibiting GnRH secretion and maintaining low its pulse frequency 

(Herbison, 1998; Levine, 1997). However during the pre-ovulatory period estradiol secretion, 

from the preovulatory follicles, increases reaching a peak responsible for GnRH neurons 

stimulation (Christian and Moenter, 2010). This is the positive feedback, that happens in the 

late follicular phase in humans and in the afternoon of proestrus in rodents (Herbison, 1998; 

Levine, 1997; Simerly, 2002). Estrogens arrive at the level of the hypothalamus where they 

activate GnRH neurons to secrete GnRH peptide, it starts at this point a chain reaction 

through the LH surge  that triggers ovulation (Clarke et al., 1987; Moenter et al., 1991; Pau et 

al., 1993). This estrogen feedback is involved in different anatomical regions in the 
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hypothalamus, mainly where Kisspeptin neurons are located: the negative feedback takes 

place in the Arcuate nucleus and median eminence, while the positive feedback occurs in the 

preoptic area, exactly in the AVPV and suprachiasmatic nucleus (reviewed by (Radovick, 

2012)). The main transducer is Kisspeptin that regulates GnRH neurons via activation of ERα.  

 

1.8.3 Progesterone feedback 

Progesterone is another important ovarian steroid present in the circulation during all the 

estrous cycle. Its action on GnRH neurons is both inhibitory and facilitatory (reviewed by 

Levine, 2001), depending on the stage of the cycle. During the lutheal phase it inhibits the 

GnRH and LH secretion, decreasing GnRH pulse frequency, but when it is administrated in 

concomitance of estrogens it has a positive effects on GnRH amplifying and advancing the 

surge (reviewed by (Levine et al., 2001). Moreover, it has been shown that in rodents it acts 

to facilitate females sexual behaviour, including lordosis, when administrated with estrogen 

(reviewed by (Levine et al., 2001).  

 

1.8.4 The Role of Kisspeptin  

Kisspeptin’s significant role in reproduction was discovered by two independent groups in 

2003, when it was put in evidence its importance in GnRH regulation (Roux et al., 2003; 

Seminara et al., 2003), and the deleterious consequences of its mutations, in humans and 

mice. In fact, they found deletions/mutations of Kisspeptin or Kiss receptor in patients with 

idiopathic hypogonadotropic hypogonadism (IHH) (Funes et al., 2003; Seminara et al., 2003), 

and mice KO for Gpr54/Kiss1r or Kiss1 do not undergo pubertal development, and both sexes 

are infertile. Kisspeptin signals through its receptor GPR54, a G protein coupled receptor, 

that has been shown to be present in most of GnRH neurons (Han et al., 2005), once 

bounded it activates a transduction pathways that culminates with the depolarization of 

GnRH neurons and GnRH peptide secretion (reviewed by (Tassigny and Colledge, 2010). 

Indeed, central or peripheral injection of kisspeptin stimulates gonadotropin secretion in 
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most species, including rodents (Gottsch et al., 2004; Navarro et al., 2005). GnRH 

responsiveness to kisspeptin is regulated during development; in fact the number of GnRH, 

that actually responds to kiss, increases in adult age compared to prior stages. This is also 

accompanied by an increase of hypothalamic Kiss mRNA in rodents at the time of sexual 

maturation (Clarkson and Herbison, 2006; Han et al., 2005; Navarro et al., 2004b). In contrast 

with the current prevailing view of Kisspeptin’s essential role in regulating puberty, a very 

provocative recent study demonstrated that female mice, with specifically targeted ablation 

of Kisspeptin or GPR54 cells by diphtheria toxin A (DTA), can initiate and complete 

reproductive maturation suggesting that the essential effects of this hormone can be 

compensated for early in development (Mayer and Boehm, 2011).     

Two populations of Kisspeptin neurons have been identified in different  hypothalamic nuclei 

using in situ hybridization and immunohistochemistry, one located in the Arcuate nucleus 

and the other in the anteroventral periventricular nucleus (AVPV), both in proximity of sex 

steroids feedback (Clarkson and Herbison, 2006; Clarkson et al., 2009). Estrogens modulated 

Kisspeptin activity in a negative and positive manner depending on the hypothalamic area, it 

has been suggested that kiss populations in the arcuate nucleus mediate negative feedback, 

while kiss in the AVPV convey the positive one (Smith et al., 2005, 2006; Wintermantel et al., 

2006), by the presence of ERα (and some ERβ). This estrogenic effect on Kisspeptin is 

confirmed by the fact that in gonadectomized animals Kiss1 mRNA increases in the Arcuate 

conversely to kiss in the AVPV, and sex steroids replacement restores the normal levels 

(Smith et al., 2005, 2006). Kisspeptin soma located in the AVPV send their axons to the 

medial preoptic area in close apposition with GnRH perikarya to regulate the GnRH surge in 

rodents (Gu and Simerly, 1997), while the one in the arcuate nucleus has been proposed to 

contact GnRH axons at the level of the median eminence to modulate GnRH pulsatility. These 

are fundamental for controlling GnRH neurons, and the time specificity of the ovulation 

(Popolow et al., 1981). Kisspeptin neurons are sexually dimorphic for what concern cell 

number and transcriptional activity, with a greater number of kisspeptin neurons in females 

compared with males in AVPV (Clarkson and Herbison, 2006), but not in the Arcuate, where 

the number and density of neurons are the same between sex, at least in rodents. Recently, 
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Kisspeptin neurons in the Arcuate have been found to colocalize with other two 

neuropeptides that play central roles in reproduction, namely Dynorphin (DYN) and 

Neurokinin B (NKB). These neurons, now called KNDy (Kisspeptin, Dynorphyn and Neurokinin 

B) neurons, are the major targets for steroid hormones and have direct projections to GnRH 

cell bodies and terminals (reviewed (Lehman et al., 2010)). 

 

1.9 Neurotransmitters in the regulation of GnRH neuronal activity 

1.9.1 Involvement of Glutamate in the regulation of reproduction  

Glutamate is established as the principal and more abundant excitatory neurotransmitter 

used by neurons in the central nervous system, which action is transmitted by different types 

of receptors: ionotropic and metabotropic receptors. Ionotropic receptors are ionic channels 

that act by modulating cations passage. They are present at the postsynaptic density and 

usually transmit a fast response (Kew and Kemp, 2005). Metabotropic receptors act by a G-

protein-stimulated release of intracellular Ca2+ or modulation of adenylate cyclase activity 

and mediate slower modulation (Kew and Kemp, 2005).  

GnRH neurons are receptive to glutamate, indeed they express both ionotropic and 

metabotropic glutamate receptors. Between ionotropic receptors GnRH express 3 types: 

AMPA, NMDA, Kainate type receptors, concentrated at the postsynaptic terminals (for 

review (Maffucci and Gore, 2009). The site of action for NMDA receptor seems to be the 

preoptic area where GnRH cell bodies reside, while AMPA and kainate appear to act primarily 

at the level of arcuate nucleus/median eminence, the site of GnRH axons (Wintermantel et 

al., 2006)(Maffucci and Gore, 2009). For what concerns the expression of metabotropic 

receptor, it remains unclear if mGlu are present or not on GnRH neurons, through the 

controversial studies with agonist, in which mGluR binding seems to excite GnRH neurons 

(Dumalska et al., 2008) or have not effects (Chu and Moenter, 2005). Glutamate seems to 

exert its function on GnRH through NMDA, that it is one of the more expressed, around 50% 

of adult GnRH neurons express it in rodents (Gore et al., 2002; Jennes et al., 2002; Ottem et 

al., 2002). Glutamate receptors expression change during lifespan in GnRH neurons, in fact in 
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early development NMDAR is not expressed by GnRH neurons, and the ability of Glut to 

affect GnRH system is probably due to an indirect action from other NMDAR expressing cells, 

moreover expression of GlutR increase during puberty (Gore et al., 1996). Later during 

postnatal development, the number of NMDA receptors increases creating a permissive time 

for puberty (Herbison et al., 2001). At that time, it is clear that glutamate play a role in the 

maturation of HPG axis, in fact infusion of NMDA antagonist can delay puberty onset 

(MacDonald and Wilkinson, 1990; Urbansky and Ojeda, 1990) or LH secretion (Brann and 

Mahesh, 1991), while NMDAR agonist cause advancement in the timing of pubertal hallmarks 

(Urbanski and Ojeda, 1987) (review by (Maffucci and Gore, 2009) and induction of precocious 

puberty (Macdonald and Wilkinson, 1992; Smyth and Wilkinson, 1994). Moreover, increase 

of synthesis of glutamate happens in concomitance with increase of GnRH pulsatile release 

(Bourguignon et al., 1995), and, in adulthood NMDA agonist administration can cause LH 

increase (Carbone et al., 1992). Furthermore, these receptors are present not only on GnRH 

soma, but also in a number of hypothalamic nuclei implicated in GnRH secretary control, like 

the anteroventral periventricular nucleus (AVPV), arcuate nucleus (ARC), and median 

eminence (ME)(Gu et al., 1999; Mahesh and Brann, 2005), indicating that the glutamate 

affects GnRH in a direct but also indirect mechanism.  

 

1.9.2 GABA Action  

GABA is the dominant inhibitory amino acid neurotransmitter in the brain, including the 

hypothalamus, (Decavel and Van den Pol, 1990), like Glutamate, its action is transmitted by 

two types of receptors, inotropic GABA A (Farrant and Kaila, 2007) and C, and metabotropic, 

GABA B (Kerr and Ong, 1995). During development GABA exerts an excitatory activity, until it 

switches in the first to second postnatal weeks preferring an inhibitory role (Cellot and 

Cherubini, 2013). 

This shift is due to reversed chloride gradient mediated by two types of cation chloride 

cotransporters, differently expressed from development to adulthood. In adult cells, KCC2 is 

the cotransporters more expressed, mediating mainly Cl-1 extrusion and maintaining a low 
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intracellular Cl- concentration. The binding of GABA to GABAA R causes a Cl- entrance that 

hyperpolarizes the membrane, inhibiting action potential. In immature cells, the situation is 

reversed, with high Cl- intracellular concentration thanks to NKCC1 cotransporter which 

mediates mainly Cl- uptake, so the GABA binding provokes a net efflux of Cl-, depolarizing the 

cells. With development the quantity of NKCC1 decrease and KCC2 increase reversing the 

effect (Reviewed by (Stein and Nicoll, 2003)). GABA levels, GABA receptors, receptor subunits 

and synapses experienced fundamental changes during hypothalamic development, it is 

known that GABA profile undergoes a developmental switch from excitatory to inhibitory 

(Ben-Ari, 2002). GnRH neurons express GABAA receptor subunits (DeFazio et al., 2002) from 

early embryonic development through to adulthood, like it has been shown by expression 

profile studies that have indicated GABAA in embryonic, prepubertal and adult rodents (Pape 

et al., 2001; Sim et al., 2000; Temple and Wray, 2005). GABA participates in different step of 

GnRH physiology, during embryogenesis it has a depolarizing role on GnRH (Kusano et al., 

1995) that already express GABAA receptor, and is necessary for correct migration (Fueshko 

et al., 1998b; Wray, 2001). At puberty, around P20/P30, it has been proposed a shift of the 

GABA activity from excitatory to inhibitory phenotype on the HPG axis (Brann et al., 1992; 

Moguilevsky et al., 1991; Szwarcfarb et al., 1994), hypothesis confirmed by the observation 

that a fall in GABA release is implicated in the generation of the preovulatory GnRH/LH surge 

in the female (Herbison and Dyer, 1991). Moreover, other studies have shown that the 

activation of GABA system was connected with an inhibition of GnRH release in vitro, LH 

release in vivo and the onset of puberty (Feleder et al., 1999). This inhibitory role in 

reproductive physiology has been changed in the last years because many groups have 

shown a persistent excitatory role of GABA also during adulthood. In the work of De Fazio et 

al. (DeFazio et al., 2002) activation of GABAA  receptor on GnRH neurons showed an 

excitatory response regardless of sex, time of day or age both on cell and perforated patch 

recordings. This was confirmed by second studies in which GABAA R activation was exciting 

GnRH neurons cultured from rat GnRH-eGFP model, exerting a dose-dependent depolarizing 

action (Yin et al., 2008). Moreover, a recent work demonstrated stimulatory effect of GABAA 

receptor activation on intracellular Ca2+ level in 70% adult GnRH neurons (Constantin et al., 
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2010). Additionally, mRNA and protein of NKCC1 have been found in murine GnRH neurons, 

indicating that these neurons actively accumulate chloride, necessary condition for 

depolarizing/excitatory response to GABA. Considering GABA just inhibitory or excitatory is a 

simplification of a more complex response in this system, where other neurotransmitters in 

the vicinity play a role, for example Glutamate. It is also possible that GABA action on its 

receptor had different effects depending on the location on GnRH neurons, soma versus 

dendrites, and, some hypotheses have been raised regarding a possible synchronizing role in 

GnRH neurons (reviewed by (Herbison and Moenter, 2011).  

 

1.9.3 Nitrogen Monoxide  

Another important molecule that is implicated in the control of reproduction is the nitrogen 

monoxide (NO), which is a gaseous molecule generated by the conversion of L-arginine to L-

citrulline. The production of NO is catalyzed by nitric oxide synthase (NOS) enzyme, of which 

are known three isoforms: two constitutives: neural-type NOS (nNOS) and endothelial-type 

(eNOS), and one inducible NOS II (iNOS) isoform (Förstermann et al., 1994). nNOS are 

expressed in the preoptic area (Dawson et al., 1991; Yamada et al., 1996) in close proximity 

with GnRH perikarya (Clasadonte et al., 2008; Herbison et al., 1996), while at the level of the 

median eminence nNOS immunoreactivity is distant from GnRH fibers indicating an indirect 

modulation (Herbison et al., 1996) (reviewed by (Prevot et al., 2000). These different 

anatomical organizations reflect a dual role on GnRH neurons, direct and indirect. In fact, NO 

synthesis and secretion are necessary for basal secretion of GnRH/LH from GnRH terminals 

(Knauf et al., 2001; Kohsaka et al., 1999; Moretto et al., 1993; Rettori et al., 1993) and i.c.v. 

administration of NO precursors stimulated LH secretion (Bonavera et al., 1993, 1994, 1996) 

while injections of NOS antisense nucleotide suppress the surge (Aguan et al., 1996). This 

indicates an indirect action of NO on GnRH terminals (Herbison et al., 1996). Controversy, NO 

acts directly at the level of soma to inhibit GnRH neuronal activity (Clasadonte et al., 2008; 

Sortino et al., 1994), how it has been demonstrated by injections of L-NAME i.p., a NOS 

inhibitor, that resulted in an increase of LH comparable to proestrus level (Hanchate et al., 
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2012b). During diestrus the role of NO is to maintain a tonic inhibition of GnRH neurons, 

keeping LH level low. There is also to consider that nNOS neurons, at the level of the OVLT, 

are directly regulated by different hormones, like Kisspeptin, which after binding to GPR54 

increase the phosphorylation/activation of nNOS (Hanchate et al., 2012b), or, leptin, which 

activates nNOS neurons increasing circulating LH levels (Bellefontaine et al., 2014). The 

hypothesis proposed is that nNOS neurons are able to sense signals required for reproductive 

axis, and, NO inhibitory action is needed to synchronize GnRH release from all GnRH nerve 

terminals (Clasadonte et al., 2008; López et al., 1997), hypothesis corroborated by the fact 

that NO production in the preoptic region varies during the estrous cycle. Moreover, the 

amplitude of NO effluxes is elevated in proestrous, when plasma estrogen are highest, and it 

stimulates endothelial NO release at ME facilitating a rapid and synchronized GnRH secretion 

and leading to the preovulatory GnRH/LH surge (reviewed by (Bellefontaine et al., 2011; 

Prevot et al., 2000). Further proof of NO implication in reproductive function is given by 

nNOS KO mice, that show hypogonadic phenotype, confirming the fundamental role of this 

enzyme in fertility (Gyurko et al., 2002). 
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Figure 6: Regulators of GnRH neuron activity. Schematic drawing illustrating the synaptic 

mechanisms that modulate GnRH neurons. Kisspeptin neurons mediate estradiol positive and 

negative feedbacks respectively from AVPV and Arcuate Nucleus transmitting the information 

to GnRH neurons. In addition, there are excitatory, glutamatergic and GABAergic neurons, 

which contact GnRH neurons, modulating their frequency. nNOS neurons surround GnRH 

perikarya and they are apposed to Kisspeptin fibers, being another key components of this 

intricate net of inputs.  
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GnRH aberrant migration or secretion is often associated with reproductive syndromes. 

Below I will describe two human reproductive disorders deriving respectively from a 

defective migration of GnRH neurons and from alterations in GnRH pulsatility and secretion 

at adult stage, respectively. 

 

2.1 Hypogonadotropic Hypogonadism 

Congenital hypogonadotropic hypogonadism (CHH) is a rare disorder defined by complete or 

partial failure of pubertal development due to an impaired secretion of gonadotropins and 

consequently low sex steroid levels, (Seminara et al., 1998). The prevalence of people 

affected by this disease is not well known, due to the great heterogeneity of this disease: Its 

phenotype varies with age of appearance (congenital vs. acquired) and with severity 

(complete vs. partial). Usually, in male the diagnosis is easier for the presence of micropenis 

at birth or for the lack of puberty during adolescence. Diagnosis is normally performed using 

the Tunner scale for adolescence patients and measures of plasma GnRH/LH, and the 

treatment, in most cases, consists in hormone therapy replacement, estrogen and 

testosterone, for females and males respectively. Usually, we can refer to isolated CHH when 

the deficiency involves the gonadal axis and or the hypothalamus or pituitary. Idiopathic 

hypogonadotropic hypogonadism (IHH) can be associated with the absent or reduced sense 

of smell, which defines the condition known as Kallmann syndrome. If HH individuals do not 

present perturbations of the olfactory system, they are referred to as normosmic IHH (nIHH) 

(Seminara et al., 1998). 

 

2.1.1 Kallmann Syndrome (KS) 

Kallmann syndrome is a type of CHH associated with anosmia, the lack of olfactory function, 

due to abnormal migration of embryonic GnRH neurons (Seminara et al., 1998). This 

syndrome was described for the first time in 1856 by Dr Maestre de San Juan, that observed 

by an autopsy, the absence of olfactory nerves in an hypogonadic individual (Maestre, 1856). 
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Later in 1944, Franz Kallmann asserted the presence of an hereditary hypogonadic syndrome 

associated with anosmia (Kallmann et al., 1944), while De Morsier added neuropathological 

details. Only more than 30 years later, with the discovery of GnRH, Kallmann syndrome was 

actually associated to a hypothalamic-gonadal syndrome. It is a very complex disorder 

because there is an abnormal olfactory system development and a lack of gonadotropins. In 

mammals, the olfactory system originates during embryonic development when olfactory 

and vomeronasal neuroephitelia arise from the olfactory placode (reviewed by (Cariboni and 

Maggi, 2006), the neurons project their axons to the main and accessory olfactory bulb 

where they form connections creating a very complex organization that permits to codify the 

external stimuli and transduce the signals to a central level (Mori et al., 1999). As I 

mentioned before also GnRH neurons arise from the same area and after they migrate to 

acquire adult phenotype, so it appears obvious that a failure of development of the 

olfactory/vomeronasal nerves cause a fail of migration of  these neurons (reviewed by 

(Cariboni and Maggi, 2006). Kallmann syndrome has a prevalence of around 1 in 8,000 in 

male and 1/40,000 females, even if probably is underestimated; the mode of inheritance can 

be X-linked, for example Kal1 located on X chromosome, autosomal dominant and recessive 

(Bose and Sarma, 1975), even if some case remain sporadic (Dodé and Hardelin, 2009). The 

most studied genetic mutations responsible for Kallmann syndrome are monogenic, but 

recently, it has been shown that this syndrome can be caused also by oligogenetic mutations, 

in which the phenotype is created by two or more mutated genes (Sykiotis et al., 2010). 

Below I have listed the KS causal genes identified so far. 

Kal 1 gene encodes a 680-amino acid secreted extracellular-matrix glycoprotein called 

anosmin-1, this is a secreted multi-domain protein important for the formation of the 

olfactory guidance platform for GnRH neuronal migration. Human KS fetuses lacking this 

protein have an arrest of GnRH neuronal migration at the cribriform plate, indicating that in 

absence of anosmin-1 GnRH lost their trajectory to the hypothalamus (Franco et al., 1991; 

Legouis et al., 1991). FGF8 and its receptor (FGFR1) are involved in Kallmann syndrome. 

Mutations of tyrosine kinase receptor FGFR1 during development disrupt formation of 

olfactory neurons, similar phenotype is triggered by its ligand FGF8, found in the olfactory 
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placode (Falardeau et al., 2008; Trarbach et al., 2010). Prokineticin 2 PROK2, and its receptor 

PROKR2 encode respectively for a secreted bioactive protein and its G protein coupled 

receptor. They have been shown to play a role in the normal development of the olfactory 

bulb, indicating an indirect effect on GnRH migration process (Dodé et al., 2006). WDR11 

gene encodes a member of the WD repeat protein family, in Kallmann syndrome patients 

missense mutations have been found (Kim et al., 2010). HS6ST1 protein encoded by this gene 

is a member of the heparan sulfate biosynthetic enzyme family and mutations in HS6ST1 

contribute to Kallmann syndrome presumably through synergistic effects with mutant alleles 

of other disease-associated genes (Tornberg et al., 2011). CHD7 gene encodes for the 

chromodomain helicase DNA binding protein 7 expressed in the olfactory epithelium, 

hypothalamus and pituitary; originally mutations of this protein were identified in CHARGE 

syndrome patients, a severe form of KS, but recently it has been shown an association also 

with Kallmann syndrome (Kim et al., 2008). NELF, the nasal embryonic LHRH factor, was 

found mutated by screening of Kallmann patients demonstrating an impaired functionality 

(Xu et al., 2011). Loss of function mutation in Sema 3A locus has been found also implicated 

in Kallmann syndrome, confirming its role in the development of the olfactory system and in 

controlling puberty (Hanchate et al., 2012a; Young et al., 2012). In the last years, two others 

genes have been identified by Sanger sequencing, SOX 10 and Sema 7A; SOX 10 plays 

important roles, among them in particular, differentiation and development of neural crest, 

and loss of function mutations are present in 1/3 of Kallmann individuals with deafness 

(Pingault et al., 2013). Sema 7A, is also involved in this clinical condition, even if it is not 

sufficient alone, but in concomitance with others genes can modify the phenotype 

(Känsäkoski et al., 2014). Reviewed by (Buck et al., 1993).   
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Table: KS genes. List of Kallmann genes selected from literature. Abbreviations: KS Kallmann Syndrome.  

 
 
 
 
 
 
 

Gene Gene Product Function Clinical 
phenotype 

Reference  

KAL1 Anosmin 1 Cell 
Adhesion 

KS (Franco et al., 
1991; Legouis et 
al., 1991) 

FGF8 Fibroblast 
growth factor 8 

Ligand of 
FGFR1 

KS (Falardeau et 
al., 2008) 

FGFR1 Fibroblast 
growth factor 
receptor 1 

Tirosine 
Kinase 
receptor 

KS (Dodé et al., 
2003) 

PROK2 Prokineticin 2 Ligand of 
PROK2 

KS (Dodé et al., 
2006) 

PROKR2 Prokineticin 
receptor 2 

GPCR KS (Dodé et al., 
2006) 

WDR11 WD protein Interaction 
with EMX1 

KS (Kim et al., 
2010) 

HS6ST1 heparan sulfate 
6-O-
sulfotransferase 
1 

biosynthetic 
enzyme 

KS (Tornberg et al., 
2011) 

CHD7 Chromodomain 
helicase-DNA 
binding protein 
7 

DNA binding 
protein, neural 
crest 
development 

KS (Kim et al., 
2008) 

NELF Nasal 
Embryonic 
LHRH Factor 

Neuronal 
Migration 

KS (Xu et al., 2011) 

SEMA3A Semaphorin 3A Neuronal 
Migration 

KS (Hanchate et al., 
2012a; 
Känsäkoski et 
al., 2014; Young 
et al., 2012) 

SOX10 SRY-Related 
HMG-Box 
Gene 10 

Transcription 
Factor 

KS (Pingault et al., 
2013) 

SEMA7A Semaphorin 7A Neuronal 
Migration 

KS (Känsäkoski et 
al., 2014) 
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2.1.2 Normosmic IHH (nIHH) 

Normosmic IHH (nIHH), is a similar but etiologically different syndrome to KS, in fact it is 

associated with anomalies of the activation or/and secretion of the GnRH system, but the 

olfactory structure remains untouched. Patients with nIHH display absent puberty due to the 

impaired GnRH secretion or activation or insensitivity to GnRH. Often, this condition is 

associated with genetic mutations that involve GnRH or linked genes. The first mutations that 

were described in 1977 concerned the GnRH receptor gene, GnRH-R was mutated in its 

extracellular loop, decreasing the binding of GnRH peptide, or in an intracellular loop 

diminishing the activation of the downstream pathway (de Roux et al., 1997). Moreover, 

other relevant mutations linked to nIHH are GnRH frameshift mutations that result in an 

aberrant truncated peptide (Bouligand et al., 2009) and Kisspeptin/GPR54 mutations, that 

demonstrate how dysregulation of GnRH release regulators can result in severe phenotype 

(Seminara et al., 2003; Topaloglu et al., 2012). Notable, the same group also showed that 

mutations in the TAC3 and TACR3 gene, coding for Neurokinin B and its receptor, were 

associated with severe congenital gonadotropin deficiency and pubertal failure (Topaloglu et 

al., 2009).  
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2.2 Pathophysiology of PCOS 

I have described above iHH as an example of a reproductive disorder caused by GnRH 

deficiency. However, other reproductive syndromes can also occur when the GnRH neurons 

are perfectly in place but their pulsatility is altered finally affecting normal functioning of the 

gonads. 

Among them, Polycystic Ovary syndrome (PCOS) displays altered gonadotropin levels in 2/3 

of its patients, elevated LH pulse amplitude and frequency and decreased FSH levels 

(Dumesic et al., 2007). The prevalence of the plasmatic LH increase has been reported in 30-

80% of PCOS patients, taking into account the fact that LH synthesis and secretion are 

dependent on the pattern of GnRH pulse stimulation. The critical question that arises is 

whatever the rapid GnRH pulse frequency represents a primary hypothalamic defect or if it is 

rather secondary to other causes; in the following chapter I will try to expose this complex 

syndrome, evaluating the different hypothesis about its etiology. Reviewed by (Marshall and 

Eagleson, 1999).  

 

 
2.2.1 Definition of Polycystic ovary syndrome (PCOS)  

Polycystic ovary syndrome (PCOS) is the most common female reproductive disease, 

affecting up to 10% of all women of reproductive age. The initial descriptions of Stein 

and Leventhal accurately ascertained the complexity of this syndrome that includes 

women with a variegate phenotype: amenorrhea, obesity and polycystic appearance 

ovaries (IF Stein and Leventhal, 1935). Clinical diagnoses of PCOS have historically been 

hindered by the degree of the complexity and heterogeneity of the syndrome and so in 

an effort to better delineate its clinical symptoms, the 2003 Rotterdam congress, in 

which both the society of Human Reproduction and Embryology (ESHRE) and the 

American Society for reproductive Medicine (ASRM) were in attendance, PCOS was 

newly defined as the presence of two of these three hallmarks: hyperandrogenism, 

polycystic appearing ovaries and ovulatory dysfunction (Merino et al., 2011). In 2009, 
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the definition was further simplified to: 1. Hyperandrogenism, 2. Ovarian dysfunction 

(oligo-anovulation and/or polycystic ovaries), and 3. Exclusion of related disorders. 

Unfortunately, this simplified criteria fails to account for the myriad of related 

symptoms; PCOS remains an intricate disorder associated with altered hormone levels, 

including elevated levels of LH and Anti-Müllerian Hormone (AMH), and metabolic 

syndromes such as obesity, acne, hirsutism and hyperinsulinemia – which are not 

sufficiently accounted for by the current diagnostic criteria. 

 

2.2.2 Polycystic ovaries  
The polycystic appearing ovaries are an important criteria in PCOS diagnosis; in fact, 

the disruption to follicular development and the increased recruitment of the growing 

follicles from the primordial pool (due to altered gonadotropin balance) make the 

follicles degenerate and fill with fluid, a condition represented by the cyst. Using 

ultrasound, the presence of numerous small follicles (up to 20 for ovary) and the 

increase of the ovarian volume, can be used to diagnose the syndrome (Dewailly et al., 

2011).  

 

2.2.3 Hyperandrogenism  

Most PCOS women display excessive androgen secretion, including elevated levels of 

testosterone or other cholesterol derivates; this results in the inability to release the 

egg from the ovulatory follicles that therefore remain in the ovary and degenerate, 

developing the cystic phenotype. The secondary effects of these elevated levels result 

in a masculinized phenotype, including hirsutism, acne and alopecia.  

 

2.2.4 Anovulation  

Abnormal menstrual cyclicity is common in PCOS patients, with 10% of PCOS women 

suffering from amenorrhea (also called primary amenorrhea – the total lack of vaginal 

bleeding) and up to 75% of oligomenorrhea or secondary amenorrhea that results in 

sporadic cycles.  These irregular cycles are also interspersed with successful ovulations, 

making the syndrome complex.  
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2.2.5 Altered hormonal profiles 

Along with altered androgen levels, PCOS is also associated with additional hormonal 

imbalances.  The gonadotropin (LH/FSH) ratio is altered, with increased levels of LH 

compared to FSH. Serum LH is elevated in 40/60% of PCOS women (Balen et al., 1995). 

This is linked with the absence of menstrual cycles and infertility but also to the high 

level of testosterone produced by the theca cells in response to LH. Moreover, LH 

secretion also creates a diminished sensitivity to progesterone negative feedback 

(Marshall and Eagleson, 1999). The low level of FSH, on the other hand, does not 

permit follicular development and deregulates the conversion of androgen to 

estrogens by aromatase. Another hormone which has become a prognostic marker for 

the syndrome is Anti-Müllerian Hormone (AMH), whose serum levels are elevated 2/3 

times compared to healthy control (>5 ng/ml) (Dewailly et al., 2011). Moreover, AMH 

acts to control follicular development, blocking the follicles’ maturation and assisting in 

the selection of a “dominant follicle” (Jonard and Dewailly, 2004), therefore high AMH 

levels can completely arrest follicular development. Inhibin B, an ovarian hormone, is 

also increased compounding the situation, stimulating androgen production which 

results in increased inhibin B levels mediated through a positive feedback loop. This 

can be explained in part by the low levels of FSH (Anderson et al., 1998). Progesterone 

levels in PCOS are low, because ovulation does not occur, so it is not produced, it is 

thought that this is also responsible for the lack of negative feedback on the 

hypothalamus. Insulin is also known to play a central role in the pathogenesis of PCOS; 

in fact 50/70% of women are insulin resistance and hyperinsulinemic. It acts 

synergistically with LH, increasing androgen levels and subsequent anovulation. It 

inhibits the serum sex hormone binding globulin (SHBG), which usually binds with 

great affinity to testosterone facilitate its transport in the blood stream. Lack of 

available SHBG increases the concentration of free testosterone (reviewed by 

(Ehrmann, 2005)).   

 

2.2.6 PCOS treatment 

There are different types of treatment depending on the severity of the disease and 

the symptom they cure, and 4 categories of PCOS drugs can be employed. The first is 
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represented by the contraceptive pill, which helps to regulate menstrual cycle and 

lower androgen level, reducing androgen secondary effect, like hair and acne. The 

second are the insulin-sensitizing medicaments, usually used to treat type 2 diabetes, 

have also an important role in PCOS because they normalize menstrual cycle by 

lowering insulin, and coordinate weigh loss in women with insulin resistance. The most 

common used drug of this group is Metformin. The third group is described by the 

ovulation-induction medicaments, used in women that want to get pregnant, these 

drugs allow the release of egg, and there are several different options in this case 

depending on the grade of PCOS: chomiphene citrate, gonadotropins, Metformin, 

weight loss and in vitro fertilization. Finally, the androgen-blockers are also used to 

treat the unwanted secondary symptoms, like excess hair growth and acne.  

 

 

2.2.7 Etiology 

 

2.2.7.1 Genetic basis of PCOS  

Different studies have shown that PCOS is hereditable (Azziz and Kashar-Miller, 2000; 

Ehrmann et al., 1995), underlining different targeted genes. These genes have been 

divided into three main categories: the gene codifying androgen production and 

metabolism, the ones responsible for the secretion and action of insulin, and the one 

related to folliculogenesis. In the first group, the more representative are the genes 

linked to androgen secretion, like LH and its receptor, and the ones connected to 

androgen production, like CYP19, encoding for P450 aromatase. In the second group, 

there are genes related with insulin gene and its receptor, while in the third, genes 

connected with ovaries (for reviewed look (Franks et al., 2001). Notably, it has been 

shown the presence of polymorphism in follistatin genic locus that could result in a 

PCOS phenotype, like reduced FSH level, impaired follicles development and increased 

of androgen (Jones et al., 2007). Others polymorphisms have been found also in the 

anti Müllerian hormone and its receptor, Amh type 2, connected with follicles 

development (Georgopoulos et al., 2013; Kevenaar et al., 2008). Moreover, a recent 

study has also found correlation between vitamin D receptor (VDR) polymorphism and 

increased risk of PCOS (El-Shal et al., 2013), even if another work showed the existence 
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of correlation between genetic variants of VDR and PCOS severity, rather than disease 

risk (Zadeh-Vakili et al., 2013). This genetic phenotype has been reported so far only in 

very small isolated cohort.  

 

2.2.7.2 Developmental origin of PCOS: in uterus hyperandrogenism 

Another etiological hypothesis of PCOS indicates as predisposing factor the androgen 

excess during embryonic life or later at birth. This in uterus hyperandrogenism can have 

different origins like placental aromatase deficiency or elevated free level of 

testosterone. It has been shown that women with PCOS have elevated androgen level 

during pregnancy, with high placental level of enzyme catalyzing androgen production 

and low level of  P450 aromatase activity (Maliqueo et al., 2013). The effects of 

prenatal androgenization (PNA) have been well studied in monkey, sheep and rodents, 

because they mimic PCOS phenotype, but among these it is better to refer to 

androgenized model only in the case of perinatal exposure to dihydrotestosterone 

(DHT), a non-aromatizable androgen, not testosterone (T), since it has the ability to be 

aromatized to estrogen and exert its effects via estrogenic programming. Monkey and 

sheep are the most used animals model for studying PCOS, because they complete 

their ovarian differentiation in uterus, similar to human, and unlike rodents, they are 

not polyovular and show polycystic ovaries. In monkey the exposition to testosterone 

propionate during early gestation caused anovulation, hyperandrogenism, polycystic 

ovaries and LH increase. Moreover, these PNA animals have not only the main 

symptoms of PCOS, but also many metabolic syndromes that are associated, like insulin 

resistance, hyperlipidemia, glucose intolerance, and increased risk of type 2 diabetes. 

Similar phenotype is shown by sheep exposed to testosterone propionato during 

gestation, with the surplus of increases LH pulse frequency. In PNA mice, generated by 

DHT administration late in gestation, it is possible to observe a PCOS phenotype, 

female mice have irregular estrus cycles, with sporadic proestrus stage (Moore et al., 

2013; Roland and Moenter, 2011). Anovulation is associated with altered ovarian 

morphology and low number of corpora lutea (Moore et al., 2013), the level of LH are 

elevated and in some mice also testosterone is increased (Sullivan and Moenter, 2003) 

(reviewed by (Goodarzi et al., 2011; Roland and Moenter, 2014).  
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2.2.7.3 Neurodevelopmental origin of PCOS: new emerging hypotheses 

While PCOS etiology has traditionally been considered only at the gonadal level. The 

failure of intense combined efforts to identify such a causal factor have led to recent 

hypotheses postulating a neurodevelopmental origin of this syndrome. In PCOS 

patients, there is a 3 fold increase in the circulating plasmatic LH, while FSH is low; this 

condition is thought to be responsible for the ovarian problems associated with this 

syndrome such as amenorrhea and cysts. In addition, PCOS women also have an 

increased LH pulse frequency that is likely linked to a hyper acceleration of GnRH 

pulsatility (Figure 8).  

The secretion and transcription of gonadotropins is under the control of GnRH pulse 

generator in the hypothalamus that differentially controls the secretion of LH and FSH 

depending on its amplitude and frequency.  Being the transcription of the LH β-subunit 

controlled by high GnRH pulse frequency whiles the transcription of FSH by low, it has 

been speculated an altered GnRH pulsatility at the basis of these PCOS modified 

hormones levels. It is still not know the cause of this irregularity, if it is due to GnRH 

themselves or by the lack of progesterone negative feedback (reviewed by (Ehrmann, 

2005). Recently, it has been proved in PNA mice that the abnormal prenatal androgen 

exposure caused also consequence at central level, by increasing GABAergic 

neurotransmission to GnRH neurons and so their activation (Sullivan and Moenter, 

2003). This is evidence about a possible central deregulation of GnRH system, in which 

an abnormal central reprogramming could actually alter ovarian development. Other 

experiments are required to better clarify the origin syndrome (ovarian or central), but 

this is certainly complicated by the great heterogeneity of metabolic conditions that 

characterize this syndrome. 
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Figure 8: The hypothalamic-pituitary-gonadal axis in PCOS. PCOS shows abnormalities in the HPG 

axis: an increased frequency of luteinizing hormone (LH) pulse appears to result from an increased 

frequency of hypothalamic gonadotropin-releasing hormone (GnRH) pulses. This can result from an 

intrinsic abnormality in the hypothalamic GnRH pulse generator, favouring the production of luteinizing 

hormone over follicle-stimulating hormone (FSH) in patients with the polycystic ovary syndrome.  

 

 

 

As previously described (in paragraph 2.2), the increase in the number of growing follicles in 

PCOS is primarily reflected by a two or three fold increase in blood Anti Müllerian Hormone 

(AMH) levels. Clinically, AMH can be used in the diagnosis of PCOS and as a marker of patient 

response to treatment. The next chapter will focus on defining its well-studied roles in the 

gonads and its new identified action in the nervous system.  
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3.1 Mammalian Sexual Differentiation   

Sex differentiation in mammals is governed by genetic and hormonal factors; the sexual fate 

is cast at fertilization, but revealed only later during fetal development, in fact gonadal 

differentiation and acquisition of endocrine functions are the necessary conditions for the 

dimorphic phenotypic characteristic of the reproductive system. These processes are not 

essential for the survival of a single individual but rather for the survival of the entire species.  

During development the early mammalian embryo is in a sexually undifferentiated state, in 

which it has the potential to develop either male or female structures.  Undifferentiated 

genital system is made by bipotential gonads with undifferentiated ducts and urogenital sinus 

(Wilhelm et al., 2007). The primitive ducts adjacent to each developing gonad can originate 

either male or female reproductive tracts. The one responsible for male reproductive 

tract are called Wolffian ducts and will give rise to seminal vesicles, epididymis, vas deferens 

and ejaculatory ducts. In females, Müllerian ducts, are the ones answerable to create the 

uterus, upper part of vagina and oviducts (Kobayashi and Behringer, 2003a). The 

dimorphic sex determination is started firstly, in human at 7 weeks after conception, by the Y 

chromosome that contains the SRY gene (Sex-determining Region), this gene initiates the 

correct biochemistry inside the testes to produce specific hormones that permit sexual 

differentiation (Page et al., 1987; Skaletsky et al., 2003). The second important part is 

triggered by sex hormones that are involved in sex 

differentiation: Anti Müllerian Hormone, which induces regression of the Müllerian duct 

and testosterone that induces the Wolffian ducts to differentiate into seminal vesicles, 

epididymis, vas deferens and ejaculatory ducts in male (Tsuji et al., 1992) (Figure 9). In 

female, the lack of Y chromosome and AMH expression makes the Wolffian duct 

regressing passively (Nef and Parada, 2000). This happens around the 8/9 weeks of 

gestational age in human and E13/14 in mice (Dyche, 1979).  
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Figure 9: (a) Undifferentiated gonadal system: male and female embryos have bipotential gonads, possessing 

both Müllerian and Wolffian ducts. (b) Male gonad: Apart the expression on the Y chromosome Sry, the 
bipotential gonads will be transformed in testis, which will secrete different hormones like testosterone and 
Anti Müllerian Hormone. The first will promote Wolffian duct differentiation in epididymis, Vas Deferentia and 
seminal vesicles, while AMH will regress Müllerian ducts. (c) Female gonads: In absence of male hormones the 

bipotential gonads will develop in oviduct, uterus, cervix and upper part of vagina (Modified From (Kobayashi 

and Behringer, 2003b).  

 

 

3.2 History and Discovery of AMH  

The discovery of Anti Müllerian hormone also known as Müllerian Inhibiting substance 

(MIS) was initiated by Professor Alfred Jost, which in 1947, set the idea of a testicular 

factor responsible for Müllerian duct regression.   

In its famous experiments Jost noticed that rabbit embryonic Müllerian duct could 

independently develop in uterus, fallopian tubes and vagina in vivo, when a mysteriously 

substance from testis was absent  (Jost, 1947). Jost gonadectomized during sexually 

undifferentiated stage rabbit embryos and provided different hormonal replacement by 

implanting either ovarian or testicular tissue or testosterone alone. The replacement with 

ovaries or with no gonads led to differentiation in female reproductive tract, while the 
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replacement with testis conducted in the opposite phenotype with differentiation of 

the Wolffian duct and regression of Müllerian duct. The key results arrived when 

he used testosterone and noticed that the Wolffian duct was stimulated to differentiate but 

there was not regression of the Müllerian duct, thus suggesting existence of a testicular 

hormone responsible for Müllerian duct regression. Jost not only revolutionized the current 

idea, at that time, that testosterone was the only responsible for male sexual differentiation 

but also provided a partial explanation for the clinical state of testicular feminization, 

the Freemartin syndrome. The freemartin syndrome is a frequent form of intersexuality 

found in cattle and other species that originates when vascular connections, between the 

placentae of developing heterosexuality twin foeti, permit the exchange of substances; the 

result is masculinization of the female reproductive tract (Padula, 2005).  

In subsequent experiments, the activity of this mysterious substance was tested by co 

culturing rat Müllerian ducts, dissected at E14, with rat fetal testes. Also in this case this 

inhibiting molecule did its job regressing Müllerian ducts (Picon, 1969).  Another disciple 

of Jost, Nathalie Josso showed that it was produced from human and bovine Sertoli cells 

of testis and that was the same active macromolecule capable of regress the 

rat Müllerian ducts if posted in co culture (Josso, 1972). After almost 3 decades, in 1978 

several investigators identified AMH as a 140KDa glycoprotein homodimer (Picard et al., 

1978), it was localized in male embryonic, neonatal and postnatal testis (Donahoe et al., 

1977), but also in granulosa cells of female ovaries (Vigier et al., 1984). Finally in 1986, 

the human and bovine genes for AMH were isolated and sequenced (Cate et al., 1986), while 

the bovine cDNA was cloned (Picard et al., 1986). This was the beginning of new 

investigations aimed at identifying the mechanisms of action of AMH during embryogenesis 

and in postnatal gonads.     
  

 

3.3 AMH in sexual dimorphism 

AMH is essential for normal sexual differentiation as its absence results in a severe phenotype 

in both humans and animals. It can be considered as a dimorphic hormone, indeed its levels, 

are divergent in values if we compare men versus women and are also not matching in time. 

In male it rises rapidly during the first year of life and is highest during late infancy, then 

gradually declines until puberty, while in female AMH is lowest at birth and exhibits an 
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increase throughout the prepubertal years (Lee et al., 1996). 

  

3.4 AMH in Male Physiology 

The initial identification of AMH in males triggered the era of its endocrine relevance in 

sexual differentiation.   

In human testes AMH is secreted during gestational age (8 weeks post amenorrhea) by the 

Sertoli cells of testis, and initiates Müllerian duct regression (Behringer et al., 1994; Mishina 

et al., 1996), which it is completed by week 9 (Taguchi et al., 1984). In rodents, AMH mRNA is 

detected in mouse testis at E 11.5 and in rats at E13 (Tsuji et al., 1992).  

 

The action of AMH on the Müllerian duct is irreversible, in fact when involution of the 

future female ducts begins, it continues even without AMH, showing permanent 

effects (Taguchi et al., 1984). In addition,  it is a time specific event, in fact the duct sensitivity 

to AMH lasts for a precise time windows, called critical period (around E13/14 in mouse): 

before or after this period, regression of the Müllerian duct is not anymore hormone 

dependent (Taguchi et al., 1984; Tsuji et al., 1992). The critical period derives on the 

expression pattern of AMH specific receptor, AMHR2 (Josso et al., 2001), which expression is 

low when Müllerian ducts are no longer sensitive to AMH. 

The Müllerian duct regression is a programmed cell death process (apoptosis) which is 

mediated by AMH via a paracrine mechanism, since the mesenchymal cells surrounding 

the Müllerian ducts express AMHR2 (Baarends et al., 1994; di Clemente et al., 1994; Teixeira 

et al., 1996).  Some groups proposed that this regression takes place at multiple stages. In the 

first moments, coelomic epithelial cells expressing both AMHR2 and the type I 

receptor Alk2 undergo morphological transformation and are induced by AMH to migrate 

and to surround the Müllerian ducts (Zhan et al., 2006). This event does not happen in 

females, since AMH is not expressed in gonads during embryonic life. During the second 

stage, these newly differentiated mesenchymal cells switch their expression of AMH type 1 

receptor, Alk2 to Alk3 (Bmpr1a), and the apoptosis begins (Roberts et al., 1999; Zhan et al., 

2006). In male AMH is expressed also postnatally, even if its level declines progressively 

with the increase in testosterone and concomitant initiation of spermatogenesis (Rey, 

2005). Androgens are in fact potent inhibitors of AMH expression, but this inhibitory action is 

exerted only at puberty (Rey et al., 1993). Indeed, during embryonic development and early 
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postnatal life, we can observe permissive coexistence of high level of AMH and androgens 

due to the lack of androgen receptor expression in Sertoli cells (Al-Attar et al., 1997; Boukari 

et al., 2009; Chemes et al., 2008). AMH plays also a role in postnatal male physiology 

(Matuszczak et al., 2013). Indeed, it has been shown that AMH acts as negative regulator 

of Leydig cells development (Racine et al., 1998). In postnatal testes, Leydig cells differentiate, 

but remain quiescent until puberty, when they start to produce testosterone (Griffin et al., 

2010). This was also confirmed in AMH-KO mice whose testes display Leydig cells hyperplasia 

and absence of postnatally differentiated Leydig cells (Racine et al., 1998). Moreover, the 

analysis of transgenic mice that chronically overexpress human AMH (hAMH), under the 

control of the mouse metallothionein-1 promoter (MT-hAMH mice), showed that AMH blocks 

the differentiation of Leydig cell precursor in the postnatal testis (Racine et al., 1998). 

Additionally AMH is a distinctive marker of immature Sertoli cells and of action on 

the prepubertal testis, in fact low AMH serum correlates with small testis (Lukas-Croisier et 

al., 2003).   

There is an associated disease with AMH or AMH receptors mutation (Behringer et al., 1994; 

Jamin et al., 2002; Mishina et al., 1996), a rare form of internal pseudohermaphroditism 

called Persistent Müllerian Duct syndrome (PMDS). In this syndrome men have male 

reproductive organs as well as uterus, upper part of vagina and fallopian tubes. 

Approximately 45% of cases of persistent Müllerian duct syndromes are caused by mutations 

in the AMH gene and are called persistent Müllerian duct syndrome type 1 

((OMIM): 600957). 

Another 40% of cases are caused by mutations in the AMHR2 gene and are called 

persistent Müllerian duct syndrome type 2((OMIM): 600956). The mutant mice for 

AMH and AMHR2 present the same developmental defects observed in PMDS 

syndrome (Behringer et al., 1994; Mishina et al., 1996).  

 

3.4.1 Paracrine regulation   

It is well established that AMH is regulated by testosterone. Data from clinical studies and 

rodent models proposed the hypothesis that androgens are negative regulators of post-natal 

testicular AMH secretion (Rey, 1998). This is supported by the fact that patients 

with defective androgen production or androgen insensitivity syndrome (AIS: mutation of 

androgen receptor) show abnormally elevated serum levels of AMH (Rey et al., 1994), 
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while MT-hAMH mice, besides being incompletely masculinized, have low level of circulating 

testosterone (Behringer et al., 1990). Moreover, adult rats treated with AMH diminished the 

level of serum testosterone (Sriraman et al., 2001).  

 

3.4.2 Endocrine regulation  

Another important control of AMH during postnatal life is achieved by FSH. FSH is a positive 

regulator of postnatal AMH secretion in Sertoli cells, it stimulates AMH production, indeed 

mice  lacking prepubertal FSH have low level of AMH, but they can recover after 

FSH treatment (Lukas-Croisier et al., 2003). FSH can also activate AMH transcription (Lukas-

Croisier et al., 2003) via adenylate cyclase, cAMP, and protein kinase A but involving a non 

classical cAMP-response pathway. When the negative effect of androgens is absent AMH 

output can be stimulated by FSH (Al Attar et al., 1997). The cellular and molecular 

mechanisms underlying FSH stimulation of AMH production are not known. 

 

 
3.5 AMH in Female Physiology 

In 1984, Vigier and colleagues showed for the first time  that AMH was produced postnatally 

in the ovaries and it was detectable in the follicular fluid of granulosa cells (Vigier et al., 

1984). This ovarian AMH had the same structure/sequence of male AMH and could 

also induce regression of the Müllerian ducts (Vigier et al., 1984). In females, AMH starts to 

be expressed post-natally.   

The isolation of cDNA and genomic clone of mouse AMH clarified the exact timing and 

localization of AMH in female (Hirobe et al., 1992; Munsterberg and Lovell-Badge, 1991; 

Taketo et al., 1993): it was absent in embryonic stage, and it firstly appeared at day 6 after 

birth, in granulosa mouse cells. The expression profile was confirmed by analysis of female 

serum from infancy to adulthood (Lee et al., 1996; Rajpert-De Meyts et al., 1999), in female 

AMH level was lowest at birth and exhibited a minimal increase throughout 

the prepubertal years (Hudson et al., 1990). Lack of expression in early stages guaranteed a 

normal differentiation of the female internal reproductive tract structures, as it is shown by 

female transgenic mice over expressing AMH (Behringer et al., 1990), that are infertile, with 

blind vagina due to the lack of a uterus and oviducts.  

Further analysis of AMH protein expression at different stages of the estrous cycle (Ueno et 
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al., 1989) started to elucidate its role in rodent ovaries, AMH was found in preantral and 

antral follicles in all stages of cycle, with a more intense staining during proestrous in 

granulosa cells located near to the oocytes of preovulatory large antral follicles.  

AMH has a role in folliculogenesis, in fact among different factors that work in a positive and 

negative way, it displays an inhibitory effects, acting in autocrine/paracrine manner. It inhibits 

the initial follicle recruitment, delaying the primordial follicle to initiate to growth (Figure 10) 

(Broekmans et al., 2008; Durlinger et al., 2002), so it reflects the size of the primordial follicle 

pool in mice. Consequently, AMH-KO mice show an early depletion of the primordial follicles 

pool, and enter in menopause earlier compare to WT mice (Behringer et al., 1994; Durlinger 

et al., 2002).  

Moreover, it inhibits the cyclic follicles recruitment, reducing the sensitivity to FSH that 

permits the maturation of the growing follicles and the entrance in the preovulatory stage 

(Broekmans et al., 2008; Durlinger et al., 2002; Visser et al., 2006) (Figure 10). These AMH 

actions are observed also in humans, where it is expressed in the 

growing maturating follicles to allow them to reach the size (diameter bigger than 8mm) and 

the right differentiation state at which they are selected for dominance (Weenen et al., 2004). 

Despite we could expect that its level is modulated during the menstrual cycle, because its 

action is controlled by gonadotropin, AMH fluctuation are still debated. Some group showed 

that AMH level does not significantly change during menstrual cycle (La Marca et al., 

2006), while others, registered significant cyclical fluctuation in AMH level that were lower 

during early luteal phase (Streuli et al., 2009; Wunder et al., 2008)and higher at ovulation 

(Cook et al., 2000). 

In women, AMH plasma level is proportional to the number of developing follicles in the 

ovaries (La Marca and Volpe, 2006), decreasing at menopause, with the end of fertility (de 

Vet et al., 2002). For this reason AMH is used as marker for ovarian reserve and with low 

levels symptomatic of follicular reserve exhaustion (Kevenaar et al., 2006). In contrast, 

clinically elevated levels due to an excess of antral follicles are utilized as a marker for the 

ovarian pathophysiology Polycystic Ovary Syndrome (PCOS) (Cook et al., 2002; Pigny et al., 

2003). 

PCOS is a very common endocrine disorder in women and although it affects up to 10% of 

female population, its diagnosis can be difficult since it is normally associated with other 

metabolic disturbances such as obesity, diabetes, cardiovascular disease and insulin 
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resistance. For this reason the Rotterdam consensus stated the presence of two of the 

following three criteria to define PCOS: PCO morphology; clinical or 

biochemical hyperandrogenism and sporadic ovulation (reviewed by (Ehrmann, 2005). Even if 

AMH level is not included so far in PCOS diagnostic criteria, in the great majority of cases, 

AMH is 2- to 3-fold higher compared with normal ovaries (Laven et al., 2004; Mulders et al., 

2004; Piltonen et al., 2005). 

Surprisingly, in women AMH does not seem to be fundamental for reproduction since 

analysis of AMH deficient female mice did not report any defects in fertility, besides early 

menopause (Behringer et al., 1994; Durlinger et al., 2002).   

 

 

 

 
 

Figure 10: Schematic model of AMH actions in the ovary. During folliculogenesis, two regulatory selection 

processes happen, the initial follicles recruitment, a first selection where the follicles are recruited from 

dormant primordial pool and cyclic follicles recruitment, where follicles are selected to growth under FSH action. 

AMH, produced by granulosa cells of growing follicles, inhibits both these processes, exerting negative 

regulation also on FSH. modified from (modified from Dewailly et al., 2014). 

 

3.5.1 Paracrine regulation 

FSH exerts an inhibitory effect on AMH. It has previously been shown that FSH treatment 

in prepubertal rats causes downregulation of Amh and Amhr2 mRNA expression in follicles 
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(Baarends et al., 1995). This is also supported by clinical evidence showing that FSH treatment 

of PCOS women prior to in vitro fertilization procedures induces a decrease in AMH plasma 

concentration (Baarends et al., 1995). Conversely, it has been demonstrated, by in vivo and in 

vitro experiments, that AMH reduces follicle’s sensitivity to FSH and their consequent growth 

(Durlinger et al., 2002). Additionally, it blocks aromatase activity and decreased AMH levels 

are correlated with increased estrogen levels (Grynberg et al., 2012).   

Further, it negatively controls LH receptor synthesis in granulosa cells (di Clemente 1994) and 

it downregulates the progesterone synthesis of cultured human granulosa/luteal cells (Kim et 

al., 1992; Seifer et al., 2002).  

 

3.5.2 Curiosity  

In literature there are not cases of women with mutation of AMH or AMHR2 gene and 

strong/visible phenotype compared to men. But in AMH overexpressing transgenic female 

mice the phenotype looks like in Freemartin syndrome, with masculinized ovaries and 

seminiferous tubules (Behringer et al., 1990).  
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3.6 Background: molecular profile  

 

3.6.1 TGFβ superfamily  

AMH belongs to the huge family of Transforming Growth Factor proteins (TGFs), consequently 

it shares homology but also differences with them. TGFs name comes after their ability to 

confer to untransformed fibroblasts functional properties associated with 

neoplastic transformation (de Larco and Todaro, 1978). This family of molecules 

is implicated in different and huge spectrum processes like development, proliferation or 

cellular differentiation (Watabe and Miyazono, 2009). Their functions are often indispensable 

and very heterogeneous during development since in several mutant mice lacking different 

TGF family members (i.e.: TGFβ1 KO) die in uterus or  show abnormal phenotype 

(TGFβ2/3 KO) (Dickson et al., 1995; Kaartinen et al., 1995; Sanford et al., 1997). These 

examples indicate the relevance of this family but also the difficulty of the analysis of this 

class of molecules. Moreover, deregulated expression of or response to TGFβ has been 

implicated in a wide variety of clinical disorders including bone and vascular diseases, 

neurodegenerative disease, and carcinogenesis (reviewed by (Itoh et al., 2000a). TGFs are 

involved in paracrine signaling and can be found in many different tissue types. In human, 

more than 33 proteins including TGFβ, the bone morphogenetic proteins 

(BMPs), activin/inhibin and AMH, have been identified so far, defined by sequence similarity 

and specificity of activated signaling pathway (Massagué, 1998; Massagué and Wotton, 

2000). The superfamily of ligands can be phylogenetically divided into two main groups: the 

TGF-β/Activin and BMP/growth and differentiation factor (GDF) branches (de Caestecker, 

2004) . 

The TGF-β members are synthesized as a dimeric complex containing 

a preproprotein comprising a N-terminal signal peptide, a large proregion, and a smaller 

biologically active mature region, the C-terminal (Massagué, 1990). After dimerization this 

complex is directed by the signal peptide in the RE/Golgi where the pro-region undergo 

posttranslational processing for activation (Massagué, 1998; Kingsley, 1994), exactly is 

cleaved by furin-like endoproteinase, but remains attached by non-covalent bounds 

(Hyytiäinen et al., 2008).    
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3.6.2 TGFs receptors   

TGFs receptor are single pass serine threonine kinase receptors, they exist in 

different isoforms that can be homo- or –heterodimeric (Doré et al., 1998). TGF receptors 

comprise two groups, the type I and the type II serine/threonine kinases. Usually, for the 

signal transmission it is necessary the interaction of two type I and two type II receptors, that 

results in the receptor complex formation. Type I receptors are indicated as the Activin-like 

Kinases (ALKs), while the type II receptors are named after the ligands they bind. ALKs type I 

receptors are from 1 through 7. The type II receptors include activin type II and type 

IIB receptors (ActR-II and ActR-IIB), TGFβ type II receptor (TGFβR-II), BMP type II receptor 

(BMPR-II), and AMH type II receptor (AMHR2). It is theoretically possible that more than 30 

different combinations of type II and type I receptors could occur (Shi and Massagué, 

2003). However, certain type II receptors tend to interact with specific type I receptors, thus, 

the combinations of type II and type I receptors appear to be limited under 

physiological conditions. The numbers of characterized ligands in the TGFβ superfamily is 

greater than the number of identified receptors, suggesting that many receptors are common 

and implicated in different signaling pathways. The type 2 receptor kinases 

are constitutively active/phosphorylated and ligands binding do not seem to affect this status 

(Luo and Lodish, 1997).  After ligand binding, the tetrameric complex is established and type 

2 receptor transphosphorylate a glycine-serine-rich domain of the type I, so the signal is 

propagated downstream, by the Smad proteins. These are usually attached to type 1 

receptor, which phosphorylates them, allowing the detachment and their nuclear 

translocation where they control transcription.    

 

3.6.3 SMAD proteins   

There are 8 distinct Smad proteins, constituting 3 functional classes: the receptor 

regulated Smad (R-Smad), the co-mediator Smad (Co-Smad) and the inhibitory Smad (I-

Smad) (Heldin et al., 1997). R-Smads (1, 2, 3, 5, and 8) are directly phosphorylated and once 

activated by the type I receptor kinases activity form a complex with Co-Smads (Smad 4). This 

complex translocates into the nucleus and regulates transcription of target genes by binding 

to DNA in a direct or indirect manner. The I-Smads (6, 7) negatively regulate TGFβ signaling 

and by competing with R-Smad for the binding to Co-Smad degrade the receptors; they 

actually act as antagonists of TGFβ/BMP signaling inside the cells (Hayashi et al., 1997). The 
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SMAD proteins are constituted by two specific domains: one N-terminal domain 

called Mad homology domain MH1 and a C-terminal domain called MH2, separated by a 

linker region, a proline rich sequence (Shi and Massagué, 2003). The MH1 domain is the 

responsible for DNA binding, while MH2 is important for protein interaction. MH2 is 

fundamental for homomeric and heteromeric complex formation (Itoh et al., 2000b). 

Smad proteins undergo a constant process of nucleocytoplasmic shuttling: from cytoplasm to 

nucleus and the other way around. In the absence of phosphorylation/activation, 

R/Co Smad complex resides in the cytoplasm, where they undergo phosphorylation which 

decreases their affinity for cytoplasmic anchors and increases their affinity for nuclear factors 

(Shi and Massagué, 2003; Xu and Massagué, 2004). Dephosphorylation of Smads causes their 

return to the cytoplasm for another round of receptor-mediated phosphorylation and nuclear 

translocation (Inman and Hill, 2002). This mechanism allows a constant sensing of the 

receptor activation state by the Smad pathway.    

TGFβs and activins signal their transcription responses through Smad2 and Smad3 (Macías-

Silva et al., 1996), whereas bone morphogenetic proteins (BMPs) signal through 

Smad1, Smad 5 and Smad8 (Kretzschmar et al., 1997). Selective recruitment 

of Smad proteins is associated also to specific receptor implying the existence of two major 

signaling pathways: 1) Smad2 or Smad3 are recruited by type I receptors, ALK5 (TβRI) and 

ALK4, and 2) Smad1, Smad5, or Smad8 are recruited by ALK2, ALK3, and ALK6 or so-called 

BMP type I receptors. However, recently has become apparent that TGFβ can activate 

also Smad canonical proteins associated to others members indicating a big versatility 

of Smad proteins in signaling mechanism.   

 

3.6.4 The non-canonical pathways   

There are now proofs of the existence of non-Smad signaling mechanism. These involve the 

MAP kinase signaling (Erk, p38 and JNK MAP kinases) (Zhang, 2009). TGFβ has been shown to 

induce ERK activation and tyrosine phosphorylation (Mulder and Morris, 1992). GTP loading 

of Ras after TGFβ causes recruitment of RAF, a MAP3K to the plasma membrane and leads to 

activation of ERK through MEK1. Activation of ERK after TGFβ was observed in epithelial cells 

and several other cell types (Hartsough et al., 1996). The kinetic of ERK phosphorylation can 

vary in response to TGFβ, with a kinetics of P-ERK ranging from minutes to hours after ligand 

(Olsson et al., 2001). ERK activation by TGFβ is important for epithelial to mesenchymal 
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transition (EMT), when the cells lose epithelial characteristic and acquire the properties of 

mesenchyme, including downregulation of adherens junctions and proteins such as 

E cadherin, induction of actin stress fibers, and acquisition of motile and invasive properties. 

TGFβ induced JNK/p38 activation. Rho like GTPase in TGFβ mediated EMT: TGFβ can 

activate RhoA dependent pathway to induce stress fibers formation 

and mesenchymal characteristics in epithelial cells (Bhowmick et al., 2001). PI3K/Akt pathway 

in TGFβ/Smad mediated response: TGFβ can activate PI3K, as indicated by 

the phosphorylation of Akt (Bakin et al., 2000).  

 

3.7 AMH: from gene to protein   

 

3.7.1 AMH Gene   

AMH gene, cloned first in mouse in 1991 (Munsterberg and Lovell-Badge, 1991), is located 

on chromosome 10 in mouse and on chromosome 19 in human (Cohen-Haguenauer et al., 

1987; King et al., 1991), is 4 Kb long and characterized by a high GC content. It is constituted 

by 5 exons relatively close to each other (Cate et al., 1986), where the first four encode for 

the N-terminal domains of the protein, that is important for enhancing the activity of the C-

terminal domain (Wilson et al., 1993) (Figure 11). Exon 5 encodes for the C-terminal domain, 

which shares homology with TGFβ family, and which is responsible for the bioactivity after 

photolytic cleavage (Pepinsky et al., 1988). No alternative splicing isoform have been so far 

identified (Ensemble, genome).    

 

 
Figure 11: AMH gene. Schematic representation of AMH gene; AMH is constituted by 5 exons, for a total 

distance of 4Kb, exons 1-4 are responsible for the N terminal domain, while exon 5 for the C terminal 

domain.  



                                                                                                                    Introduction: Chapter III 

 

58 
 

 

 

3.7.2 Gene regulation  

It was thought that AMH expression was directly regulated by SRY (Sex determining Region Y), 

to increase AMH promoter activity (Haqq et al., 1994), but subsequent experiments rejected 

the hypothesis of a direct action of SRY on AMH and showed that a combined action 

of multiple transcription factors was required to activate and maintain AMH expression.   

AMH expression in early fetal life is triggered by SOX9 gene, and enhanced by SF1 and WT1, 

independently of gonadotropin control (Lasala et al., 2011; Lee and Donahoe, 1993). In fact 

SOX 9 binds to a specific response element that is essential for the initiation of AMH 

expression in early fetal development (Arango et al., 1999; Morais da Silva et al., 1996). SF1 is 

also involved, and binding to AMH seems to be crucial for AMH promoter activity (Giuili et al., 

1997; Nachtigal et al., 1998), even if it plays its role in cooperation with others transcription 

factors. It was suggested that WT1 association with SF1 results in a synergetic activation to 

enhance AMH promoter (Pelletier et al., 1991) and its transcriptional activity. Two GATA sites 

are also relevant because they can enhance AMH promoter activity by two different 

mechanisms: by directly binding to DNA (Viger et al., 1998) and by cooperatively interacting 

with SF1 (Tremblay and Viger, 1999).  

 

3.7.3 Protein Activation  

AMH is a 140 KDa dimeric glycoprotein (Budzik et al., 1980; Picard et al., 1978), and, as the 

other TGFβ family members, it needs post translational proteolytic processing to generate the 

bioactive C-terminal domain (Pepinsky et al., 1988). In fact, it is 

translated as dimeric precursor protein containing a large N-terminal pro-region and a much 

smaller C-terminal mature domain, which must undergo cleavage to generate 

the bioactive protein. AMH precursor after cleavage generates a 110 KDa N-terminal and 25 

KDa C-terminal homodimers, which remain associated in a noncovalent complex (Pepinsky et 

al., 1988). This complex, differently from TGFβ or BMP, is biologically active (Wilson et al., 

1993). The C-terminal domain is responsible for the main function of AMH, but its action is 

drastically enhanced by the N-terminal domain (Wilson et al., 1993). The cleavage is 

made up by a kex2/substilisin-like member of the prohormone convertase family of proteases 

(Pepinsky et al., 1988; Wilson et al., 1993). The uncleaved form seems to be completely 
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inactive. It is still not clear if AMH is cleaved in loco or at the 

target site; further investigations on enzymes activity are required.   

 

3.7.4 SMAD proteins  

AMH transduces its signal through a heterodimeric receptor complex formed by the 

interaction of AMHR2 and AMH type 1 (next chapter). Once type 1 is activated, it interacts 

transiently with specific receptor-regulated SMAD (R SMAD) and phosphorylates these 

proteins on two serine residues at the C-terminal (Kretzschmar et al., 1997). The 

phosphorylated SMADs translocate into the nucleus complexed with the 

common SMAD4 (Co-SMAD) and regulate the transcription of specific sets of targeted genes 

(Figure 12) (for reviews, see (Attisano and Wrana, 2002; Massagué, 2000; Massagué et al., 

2000). There are indications that support that AMH activated 3 different R-SMADs: 1, 5 and 8 

(Kobayashi and Behringer, 2003a; Zhan et al., 2006)in concomitance with Co-Smad4 (Visser, 

2003).  AMH induces the specific phosphorylation of SMAD1 and promotes SMAD1/SMAD4 

interaction and SMAD1 nuclear accumulation (Clarke et al., 2001a; Gouédard et al., 

2000). Moreover, also SMAD5 is implicated in AMH signaling because mutant SMAD5 

attenuates AMH induced activation in vitro (Visser et al., 2001) and it is expressed in the 

mesenchymal cell surrounding the Müllerian duct. Like others, SMAD8 is prominent 

expressed in the mesenchyme surrounding the male Müllerian duct(Clarke et al., 2001a).   
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Figure 12: AMH transduction intracellular pathway. AMH binds to its receptor Amhr2 and 

phosphorylates AMH type 1, Alk 2/3/6. The activated type 1 receptor phosphorylates R-Smads (Smad1, 

Smad5, or Smad8), which form a heteromeric complex with Co-Smad (Smad4). The heteromeric Smad 

complexes translocate into the nucleus, where they can bind directly or through transcriptional partners 

to specific target genes and regulate their transcription.  
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3.8 AMH receptors  

AMH action is mediated by a heterodimeric receptor formed by AMH type 2 receptor 

(AMHR2) and AMH type 1 (Jamin et al., 2003). AMH binds to AMHR2, which recruits AMH 

type 1 to form the receptor complex and phosphorylates its serine threonine kinase domain. 

Once activated AMH type 1 receptor phosphorylates a receptor-regulated SMAD (R-Smad), 

allowing these proteins to associate with Smad4 and move into the nucleus where they 

control transcription (Massagué, 1998).   

 

3.8.1 AMHR2   

AMHR2 is the main and exclusive receptor for AMH binding (Baarends et al., 1994; Visser, 

2003) and signal transmission (Mishina et al., 1999).  It is a threonine serine kinase receptor 

constitutively active (Wrana et al., 1992), that has been cloned in 1994 by two independent 

groups (Baarends et al., 1994; di Clemente et al., 1994) from a rabbit ovary library and a rat 

testis library respectively. The human gene was isolated shortly after (Imbeaud et al., 1995) 

and it is located on chromosome 12 in human, and 15 in mouse; it is constituted by 11 exons 

divided by a big intron of more than 7Kb. The three first exons encode for the extracellular 

domain, the fourth one for the transmembrane domain, and the last seven exons for the 

intracellular kinase domain. The relevance of this receptor for AMH biological actions was 

proven by the detection of mutations in patients affected by the Persistent Müllerian Duct 

Syndrome (PMDS)(Belville et al., 1999; Imbeaud et al., 1995), and also by the AMHR2-KO 

mice that are hermaphrodite (Mishina et al., 1999) and phenocopy the AMH-deficient mice 

(Mishina et al., 1996).  

 

3.8.1.1 Alternative splicing of AMHR2   

AMHR2 gene undergoes alternative splicing. This was suggested in rabbit (di Clemente et al., 

1994) and in human (Imbeaud et al., 1995) and in both species it has been 

identified an isoform that lacked exon 2, which is necessary for the 

binding. Amhr2Δ2 isoform is non functional, as we can observe in PMDS mutation (di 

Clemente et al., 1994; Imbeaud et al., 1995).  

Recently, it has been showed in rodents the presence of dominant negative alternative 

splicing variants, which could inhibit AMH signaling (Imhoff et al., 2013), these two 

isoforms lack or exon 2 (Amhr2Δ2) or exon 8/9 (Amhr2Δ8/9), which encode respectively for 
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AMH binding domain and kinase domain (Imhoff et al., 2013) (Figure 13). The level of 

Amhr2Δ8/9 mRNA in testis and brain is 5% compared to canonical spliced AMHR2, while 

Amhr2Δ2 is even lower. The role of these isoforms is not yet elucidated, but they could 

actually act as transporter for AMH from gonads to the brain. While the Amhr2Δ2 could have 

a role in a ligand-independent signaling (Imhoff et al., 2013). Unfortunately the current lack 

of proof for these additional activities renders them speculations until such functional 

experiments are conducted. 

 

 

 
 

Figure 13: Amhr2 Alternative splicing. Amhr2 map showing the 11 exons codifying for the extracellular 

(green) and intracellular serine/threonine kinase (blue) domain.  Schematic illustration of 

Amhr2proteins: wild type and 2 isoforms lacking exon 2 or exons 9/10. (from Imhoff et al., 2013). 

 

3.8.1.2 AMH Expression Profile   

AMHR2 expression pattern reflects AMH profile, it is expressed in the Müllerian duct during 

embryonic development (E14 in mice), exactly by the mesenchymal cells surrounding 

the Müllerian duct (Baarends et al., 1994; di Clemente et al., 1994; Teixeira et al., 

1996). Moreover, AMHR2 has been found also in the fetal and adult gonads of both the 

sexes (Durlinger et al., 2002; Teixeira et al., 2001). In male, AMHR2 is expressed in the 

testes from fetal life to puberty, while in female postnatally in granulosa cells 

of preanatral and antral follicles (Baarends et al., 1994). The role of this receptor is to mediate 

the action of AMH, during development it plays a crucial role in the regression of 
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the Müllerian duct, because only Amhr2 positive cells migrate and change their phenotype in 

response of AMH signal (Zhan et al., 2006). In the ovary, AMHR2 signals the paracrine action 

of AMH to regulate follicular development and maturation.  

 

3.8.2 AMH type 1 Receptor 

AMH type 1 receptors belong to the ALKs family and are not specific for AMH but they are 

shared by different ligands. Since the efforts to clone a specific AMH type 1 receptor have 

been fruitless, it has been tested the capacity of AMHR2 to interact with type 1 receptors 

and its coexpression in AMH target tissues (di Clemente and Belville, 2006). Moreover, it has 

been generated a dominant negative version of these receptors as well as total knock-out 

mice to check their effects in vivo.  There are different candidate for AMHR2, namely 

Alk2/3/6, that seem to interact with AMHR2 in a time specific manner, at least in the 

urogenital ridge (Zhan et al., 2006).                                                                                                   

 

3.8.2.1 ALK6   

ALK6 was the first AMH type 1 receptor to be discovered (Gouédard et al., 2000), thanks to its 

ability to interact with AMHR2 (Imbeaud et al., 1995) in an AMH dependent 

manner. Succeeding experiments of co-immunoprecipitation confirmed and highlighted Alk6 

(Gouédard et al., 2000) as another possible candidate (Gouédard et al., 2000). Alk6 mRNA 

was found at low level in urogenital ridges of both sexes, in the epithelial cells layer of 

the Müllerian duct and in adult gonads (Visser et al., 2001), where it was expressed in 

oocytes of small antral follicles and  granulosa cells of large antral follicles (Yi et al., 2001). On 

the other side, Alk6 was neither detected in fetal gonads (Visser et al., 2001) and surrounding 

mesenchymal layer (Clarke et al., 2001a; Dewulf et al., 1995) and, Alk6 mutant mice did not 

show PMDS (Clarke et al., 2001a), but only abnormal seminal vesicles and female infertility (Yi 

et al., 2000). Hence, Alk6 is important for AMH action in the ovary but not required 

for Müllerian duct regression during male sexual differentiation.    

 

3.8.2.2 ALK2   

Despite Alk2 was not detected by co immunoprecipitation in CHO-3W cells (Gouédard et al., 

2000), its expression was more stringent than Alk6 because it overlaps with 

AMHR2 perfectly. In fact, while Alk6 is expressed only at the level of the epithelium of 
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the Müllerian duct, Alk2 is expressed in all AMH target tissues early in development (Zhan et 

al., 2006), like the urogenital (Wang et al., 2005) ridge, gonads at different embryonic stages 

(Visser et al., 2001) and mesenchymal cells adjacent to the Müllerian duct. Moreover, the 

blockage of Alk2 by antisense or siRNA can partially or fully stop AMH induced Müllerian 

duct regression, but also the transition of AMHR2 expression from the coelomic epithelium to 

the mesenchyme, while ALK6 do not (Visser et al., 2006; Zhan et al., 2006). Alk2 KO is lethal 

and die early during development (Gu et al., 1999; Mishina et al., 1999), making difficult to 

speculate possible role in Müllerian duct regression.   

 

3.8.2.3 ALK3   

Although it interacts weakly with AMHR2 (Clarke et al., 2001b), it has been shown that lack of 

expression of Alk3 in the developing gonads leads to persistent Müllerian duct syndrome in 

mice (Jamin et al., 2002). This was determined using a conditional mutant mouse line which 

lacks Alk3 expression in AMHR2-expressing cells, (Alk3LOXP:AMHR2 CRE). Moreover, Alk3 

seems to be regulated spatiotemporally by AMH, because its expression appears later when 

Alk2 decreases and it is restricted to the mesenchyme, suggesting sequential role 

in Müllerian duct regression (Zhan et al., 2006). 
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3.9 AMH in the Central Nervous System   

Until now, AMH has been studied mainly at the level of the gonads, but recently it has been 

found also in different tissues, such as in the endometrium, breast, prostate, cervix in humans 

and fetal lungs of mice. Given the broad expression of AMHR2 in several peripheral organs as 

well as in the postnatal brain, future years will be surely characterized by intense new studies 

focused on AMH role in extra-gonadal tissues.  

 

 

3.9.1 AMH and AMHR2 expression in neurons  

AMH mRNA and proteins are expressed at low levels in the embryonic/developing brain, 

but they increase in rodent’s postnatal brain, where they are broadly expressed by 

distinct neuronal populations in several areas (Wang et al., 2005). This expression pattern 

overlaps in part with that of AMHR2 whose expression in the brain is instead elevated both 

in embryos and postnatal animals. A LacZ reporter mouse driven by AMHR2 promoter 

showed an almost ubiquitous pattern of expression (Wang et al., 2009) in different and 

heterogeneous populations of neurons and some glial cells. In the mouse embryos (E16) 

AMHR2 immunoreactivity was detected in the telencephalic wall and in the developing 

ventricles, especially the ventricular cell layer and the surrounding subventricular zone. Later 

in adulthood, cortex, hippocampus, corpus callosum, cerebellum and brain capillaries are 

immunoreactive for AMHR2, suggesting a fundamental role in the brain. AMHR2 has been 

found also at the level of the pituitary, in gonadotrope cells (Bedecarrats et al., 2003).  

 

 

3.9.2 AMH and AMHR2 role in the brain 

It has been suggested that AMH acts through an autocrine mechanism on motoneurons, 

increasing their survival rate and their neurite branching. Its lack causes a feminization of the 

number of motoneurons, with male AMH KO resembling female WT mice (Wang et al., 2005). 

AMH and AMHR2 expression and functions have been shown also at the level of the pituitary 

(Bedecarrats et al., 2003). Indeed, it has been shown that AMH increases FSHβ transcription, 

and long AMH treatment enhances the basal LHβ promoter activity. Interesting it seems to 

work synergistically with GnRH agonist increasing LH promoter activity. These data open new 

perspectives in AMH regulation also at the central level.  
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Integrin are heterodimeric cell adhesion receptors which mediate attachment of cell to the 

extracellular matrix and cell-cell interactions. Their name comes after their relevant roles in 

maintaining the integrity of the membrane (Hynes, 2004; Tamkun et al., 1986). 

 

4.1 Integrin Structure  

Integrins are constituted by two non covalently associated subunits, α and β, each containing 

a large extracellular domain, a single transmembrane domain and an intracellular tail (Hynes, 

2004), connected by flexible linkers between them. The α subunit contains a seven blanded β 

propeller domain followed by a THIGH, CALF1, CALF2 domains. The β  propeller domain binds 

Ca2+ , that influences the ligand binding. Some, but not all the α subunit possesses also an 

additional domain called α I. The β subunit, is not less complicated, because it also contains 

different ectodomains: a βI inserted in a Hybrid domain, which is included in a Plexin-

Semaphorin-Integrin (PSI) domain, 4 cysteine rich epidermal factor (EGF) modules and last a 

β tail domain (Lee et al., 1995). The ligand is recognized in a specific region between the β 

propeller in α subunit and the β 1 domain, where the α subunit is responsible for the 

specificity of the binding. These domains contain also binding site for cations like Ca2+, Mg+2 

and Mn+2 that are responsible for coordinating the conformational change that precedes the 

receptor activation (Humphries et al., 2003). 

4.2 Activation of Integrin pathway 

Each integrin recognizes one specific ligand or different types, allowing a great diversity of 

biological responses. On the other side the ligands can bind one single receptor or multiple 

ones, activating different intracellular pathways. In vertebrates, 18 α subunits and 18 β 

subunits can combine forming up to 24 different combinations (Takada et al., 2007). They 

can be classified depending on the ligand binding or on the subunits compositions. (for 

review look (Barczyk et al., 2010; Campbell and Humphries, 2011; Kim et al., 2011) (Figure 

14). In the brain, the β 1 and αv classes are the most expressed by neurons, glial and 
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endothelial cells, while β2 is more predominantly expressed by microglia (reviewed by(Milner 

and Campbell, 2002). 

Integrins can transmit signals bidirectionally, from outside of the cell to the cytoplasm, but 

also vice versa. The inside-out signal usually constitutes an activation of the receptor, which 

acquires its activated state, while the outside-in pathway happens when, after ligand binding, 

integrins change conformations. Compared to other kind of receptors, they do not possess 

enzymatic activity. Indeed the information is transduced by the formation of a complex with 

other proteins, i.e., scaffolds or/and adaptors that link integrins to kinase or Src.  

 

4.3 Integrins’ ligands 

The ligands recognized by integrins can be generally divided in two classes belonging to 

extracellular matrix molecules, like laminin or fibronectin, and, cell receptors of the 

immunoglobulin family, such as I CAM1. Depending on the basis of the molecular interaction 

the ligands can be subdivided into 4 categories. The first class of integrins recognizes ligands 

containing an Arg-Gly-Asp (RGD) active site and the second an acidic motif called LDV, 

functionally related to RGD. Further groups contain integrins in which the α and β domain 

combine and form a laminin/collagen-binding subfamily and those that are highly selective 

laminin receptors.  
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Figure 14: the Integrin receptor family. Integrins are αβ heterodimers; the schema shows the 

mammalian subunits and their associations. 8 β subunits can combine with 18 α subunits to 

form 24 distinct integrins, creating several subfamilies based on evolutionary relationships or 

ligand specificity, for example  β2 and β7 integrins restricted expression on white blood cells. α 

subunits with gray color have inserted I domains. Such α subunits are restricted to chordates, 

as are α4 and α9 (green) and subunits β2-β8. In contrast, α subunits with specificity for 

laminins (purple) or RGD (blue) are found throughout the metazoa. Asterisks denote 

alternatively spliced cytoplasmic domains. From (Hynes, 2004).  

 

4.4 Signalling pathway  

One important signalling pathway of integrin depends on a tyrosine kinase protein named 

focal adhesion kinase (FAK), present in the cytoplasm. When integrins interacts with the cell 

matrix, FAK is attached to the complex by anchor proteins, which connect also integrins. FAK 

proteins phosphorylate other kinases, such as Src, that also cross-phosphorylate FAK, 
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creating new binding sites for others ligands. Sometimes, conventional signalling receptors 

can activate integrin pathway to enhance the intracellular response. One example is the 

cooperation between integrin and classic receptors to activate the Ras/MAP kinase pathway. 

 

4.5 Integrins’ Roles  

Integrins are "mechanosensory" receptors that operate in a context-dependent manner; they 

have heterogeneous roles from development to adulthood. In the brain, they play multiple 

roles during brain development, proliferation, migration, axonal guidance, synaptogenesis, 

gene expression (reviewed by (Milner and Campbell, 2002)). In neurons, integrins roles have 

been shown in many areas, where these receptors are spatially and temporally regulated and 

cell-type specific (Schmid and Anton, 2003). They are highly implicated in pathophysiological 

conditions such as in cancer cell biology. In tumor metastasis, integrins mediate the invasion 

and extravasation of cancer cells into a new tissues (Hood and Cheresh, 2002).  

4.6 The integrin adhesome 

Integrins mediated cell adhesion to the extracellular matrix (ECM) forming this “adhesome”, 

a complex of molecules connected among them. The molecules involved can be of two types: 

the scaffolds molecules and the signalling/regulatory molecules, or both. Usually, the binding 

of integrin to the extracellular ligands starts the assembly of this complex, the conformation 

of integrin change exposing the intracellular binding sites to cytoplasmic proteins. There is no 

direct link between integrin and actin, but usually is adapted by specific proteins that 

reinforce the adhesion. This phenomenon has been divided into different steps; the first is 

the creation of the nascent adhesion, small structure under the lamellopodium.  When the 

lamellopodium contacts the matrix, the integrins are activated and cluster to generate the 

initial complex. This nascent adhesion takes place very rapidly and involves only few integrins 

and induces actin polymerization. The next step involves the pull of myosin on this complex, 

which reinforces the adhesion strength, thus creating the focal complex. If it grows becoming 

larger, it evolves in focal adhesion or disassemble. Focal adhesion can become more 

elongated and involve integrin mediated contact with fibronectin fibrils, called the fibrillar 



                                                                                                                       Introduction: Chapter IV 

 

71 
 

adhesion. The interesting characteristic of these complexes of integrin and other molecules 

is the great dynamic and balance between complexing and disassembling (Reviewed by 

(Wolfenson et al., 2013).  

 

4.7 Integrins’ role in cell migration 

Migration is physically mediated by the alteration of the cytoskeleton, which uses adhesion 

molecules attached to a substrate to pull the cell and move. Integrins play double roles, 

creating contacts between the extracellular matrix and the cellular membrane, necessary to 

tract the cell forward and by organizing the signaling network downstream. There are many 

examples of integrin functions in neural development. During corticogenesis, neurons, born 

in the ventricular zone migrate along the radial glia to reach the cortex and establish the 

different layers (Marín and Rubenstein, 2003). Many publications have demonstrated the 

fundamental involvement of integrin receptors in regulating correct migration. Indeed virus 

injections of antisense mRNA of β1 and α6 integrin reduce cellular migration (Galileo et al., 

1992; Zhang and Galileo, 1998), the inhibition of α3 β1 (Anton et al., 1999) or the absence of 

integrin is responsible for an aberrant phenotype, including the α6 integrin KO mice that 

displays an overmigration in ectopic regions (Georges-Labouesse et al., 1998). Also removal 

of integrin β1 from neurons and glia results in perturbed development of the cerebral cortex 

and the organizations of its layers (Graus-Porta et al., 2001)(for review see (Milner and 

Campbell, 2002).  

Other important populations of neurons with migratory phenotypes include neuroblasts that 

migrate in chains from the subventricular zone (SVZ) to the olfactory bulb in along a specific 

anatomic route, the rostral migratory stream (RMS). This migration unlike that seen in the 

cortex, is a tangential form of migration, where integrins are involved. For example, integrin 

α6β1 is responsible to maintain the direction of neuroblasts and their cohesiveness in chains 

(Emsley and Hagg, 2003), while αv subunit also plays a role in chain migration (Murase and 

Horwitz, 2002). Furthermore, integrin β8 is highly expressed by neuroblasts and genetic 

ablations result in impaired directional migration through the RMS (Mobley and McCarty, 
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2011). Taken together these results emphasize the critical role integrin signaling plays in 

regulating migratory processes. 

GnRH neurons are another example of migratory population of neurons that migrate from 

the nose to inside the brain. These neurons express the integrin family of receptors and 

conditional ablation of β1 integrin in GnRH neurons affects the migratory route during 

development (Parkash et al., 2012). In addition, integrin ligands are also involved in this 

process, among them semaphorin 7A (a ligand of integrinβ1) which regulates the directional 

migration of GnRH neurons during early embryogenesis (Messina et al., 2011).  

 

4.8 Integrins’ role in axonal/neurite elongation 

Neurite growth is a widely regulated mechanism, occurring mainly during development to 

create functional connections between different regions. This process is guided by 

rearrangement of microtubule and actin cytoskeleton at the level of the growth cone in 

response to chemotropic factors in the extracellular microenvironment. Integrins transduce 

the signalling pathway of these molecules to promote neurite growth and guidance, in many 

cell types, and lack of integrin expression/functions has been associated with defective axon 

elongation. There are different papers that highlighted the important role of integrin in axon 

growth and their potential roles in axonal regeneration after trauma. In GnRH neurons lack of 

β1-integrin results into a decrease of the axonal projections at the level of the median 

eminence (Parkash et al., 2012). I will widely discuss this study in the first chapter of my 

results section. Other examples of the involvement of integrins in the axonal and/or neurite 

extension concern the developing retinal ganglion cells, in which inhibition of β1-integrin 

signalling blocks dendritic growth (Lilienbaum et al., 1995), and cortical neurons in which 

integrins promotes dendritic branching and extension (Moresco et al., 2005). Similar effects 

have been reported in a variety of cell types, such as astrocytes (Tomaselli et al., 1988), and 

dorsal root ganglia (DRG)(Andrews et al., 2009) 
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The mammalian reproductive axis is under the control of a specific neuronal population, 

named Gonadotropin Releasing Hormone (GnRH) neurons. These cells originate prenatally in 

the nasal placode and migrate along olfactory/vomeronasal nerves to the ventral forebrain 

to reach their final hypothalamic destination. At the end of their migratory process, GnRH 

neurons extend their axons to the median eminence; however the system remains quiescent 

until the GnRH surge occurs at puberty onset. At puberty, GnRH neurons start releasing the 

GnRH decapeptide into the portal-pituitary circulation. The GnRH neuropeptide then reaches 

the anterior pituitary and acts on GnRH-R expressing cells regulating Luteining Hormone (LH) 

and Follicle Stimulating Hormone (FSH) secretion. The complex developmental events leading 

to the correct establishment of the GnRH system are tightly regulated by the specific 

spatiotemporal expression patterns of guidance cues and extracellular matrix molecules, the 

functions of which, in part, are mediated by their binding to β1-subunit-containing integrins. 

The first aim of my study was to characterize the action of integrin β1 in GnRH migration and 

axonal targeting. Combining in vitro manipulations with mouse genetics (conditional GnRH 

neuron-specific β1-integrin conditional KO (GnRH::Cre;Integrin-β1LoxP/LoxP) mice. We 

determined how the lack of this receptor impacts severely the reproductive function.  

Among reproductive syndromes, Polycystic Ovary Syndrome (PCOS) is certainly the most 

common disorder affecting 10% of women worldwide. The main hallmarks of this common 

disease are high androgen levels, chronic oligo anovulation and polycystic appearing ovaries. 

PCOS endocrine phenotype is characterized by elevated GnRH pulse frequency, which results 

in high LH/FSH ratio. Another hallmark of PCOS is elevated levels of plamsmatic Anti 

Müllerian Hormone (AMH), an ovarian hormone produced by granulosa cells which regulates 

folliculogenesis. During the last few years, AMH receptors have been identified also in the 

central nervous system, suggesting that AMH could potentially act at this level. The second 

aim of my study was to verify this hypothesis, investigating in particular a potential role of 

AMH on the regulation of GnRH neuronal activity and secretion and to identify a possible link 

with PCOS onset.  
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     ABSTRACT 

Reproduction in mammals is dependent on the function of hypothalamic neurons whose 

axons project to the hypothalamic median eminence (ME) where they release gonadotropin-

releasing hormone (GnRH) into a specialized capillary network for delivery to the anterior 

pituitary. These neurons originate prenatally in the nasal placode and migrate into the 

forebrain along the olfactory-vomeronasal nerves. The complex developmental events 

leading to the correct establishment of the GnRH system are tightly regulated by the specific 

spatiotemporal expression patterns of guidance cues and extracellular matrix molecules, the 

             w                                                β -subunit-containing integrins. 

To determine the biological role of these cell-surface proteins in reproduction, Cre/LoxP 

technology was used to generate GnRH neuron-         β -integrin conditional knockout 

(GnRH-Itgb1-/-)               β -integrin signaling impaired migration of GnRH neurons, their 

axonal extension to the median eminence, timing of pubertal onset and fertility in these 

      T                      β -integrin as a gene involved in normal development of the 

GnRH system and demonstrate a fundamental role for this protein in acquisition of normal 

reproductive competence in female mice.  
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INTRODUCTION 

 

Reproductive competence in mammals is centrally regulated through the hypothalamic-

pituitary-gonadal axis and depends on GnRH secretion (Wray, 2010). These neurons project 

to the median eminence of the hypothalamus where GnRH is released into the pituitary 

portal blood for delivery to the anterior pituitary, eliciting the secretion of luteinizing 

hormone (LH) and follicle-stimulating hormone (FSH) (Wray, 2010). GnRH-secreting neurons 

originate in the nasal placode during embryonic development and migrate to the 

hypothalamus apposed to olfactory-vomeronasal nerves (Schwanzel-Fukuda and Pfaff, 1989; 

Wray et al., 1989).  

During the last 20 years, many molecular pathways that guide GnRH migration have been 

identified. However, only a few factors, including fibroblast growth factor-2 (Gibson et al., 

2000; Tsai et al., 2005; Gill and Tsai, 2006), brain-derived neutrophic factor (BDNF) (Cronin et 

al., 2004), and kisspeptin (Fiorini and Jasoni, 2010), are known to affect GnRH axon or neurite 

growth in vitro and/or in vivo. Secreted signaling molecules as well as extra-cellular matrix 

proteins control the activity of cell surface receptors that regulate the interactions of GnRH 

cells with each other, with the olfactory axonal scaffold and with environmental cues (Wray, 

2010). The integrins are a family of heterodimeric transmembrane receptors consisting of an 

α     β          w                             w             w          w                  

extracellular matrix (Reichardt and Tomaselli, 1991; Hynes, 2002). During brain development, 

integrins are involved in migration, axonal guidance, synaptogenesis and peripheral nerve 

regeneration (Pasterkamp et al., 2003; Brakebusch and Fassler, 2005; Gardiner et al., 2005; 

Gardiner et al., 2007; Cingolani and Goda, 2008; Plantman et al., 2008; Moser et al., 2009). 

T   β         -                      β -integrin) represent the largest subgroup of integrins 

    k                       5)     H          x      β -integrin throughout their 

development and Semaphorin 7A signals through this cell surface protein to regulate GnRH 

                                    )                       β -integrin gene in vivo has been 

achieved in mice and results in embryonic lethality (Fassler and Meyer, 1995; Stephens et al., 
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   5)  T    x                                            β -integrin on development of the 

GnRH system and reproduction by generating mice lacking this gene in GnRH neurons using 

the Cre/LoxP binary recombination system (Hamilton and Abremski, 1984; Singh et al., 2009). 

T              β -integrin altered migration of GnRH neurons and targeting of their axons to 

the median eminence, resulting in suboptimal maturation of the GnRH system in the adult 

brain. Examination of fertility revealed tha     k    β -integrin in GnRH neurons caused 

delayed pubertal onset and disruption of estrous cyclicity in female GnRH-Itgb1-/- mice, 

                                T                                             β -integrin in 

GnRH neuronal function and mammalian reproduction. 
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MATERIALS AND METHODS 

Generation of GnRH neuron-specific β1-integrin (Itgb1) conditional KO mice. 

GnRH::Cre mice (Yoon et al., 2005) were kindly provided by Dr. Catherine Dulac (Howard 

H                                     )         x /  x           w      x        β -

integrin is flanked by loxP sites, were purchased from Jackson laboratory (Maine, USA), 

maintained on a controlled 12h : 12h light cycle, provided with food and water ad libitum, 

and genotyped as described earlier (Stephens et al., 1995). The GnRH::Cre; Itgb1loxP/loxP 

mice, designated as GnRH-Itgb1-/- mice, were generated by first mating female GnRH::Cre 

with male Itgb1loxP/loxP mice and then crossing a heterozygous (GnRH::Cre; Itgb1loxP/+) 

female with a heterozygous male to generate six genotype combinations. GnRH::Cre; 

Itgb1loxP/loxP mice represent the homozygous conditional knock-out mice. GnRH::Cre; 

Itgb1+/+ (GnRH-Itgb1+/+) littermates were used as controls for all studies. All the transgenic 

lines were bred in our laboratory on a C57BL/6J;129sv background. 

 

Generation of GnRH::Cre;Itgb1loxP/loxP; GnRH::GFP triple transgenic mice 

GnRH::GFP mice (Spergel et al., 1999) were kindly provided by Dr. Daniel J. Spergel (Section 

of Endocrinology, Department of Medicine, University of Chicago, Chicago, Ill., USA). GnRH-

Itgb1-/- mice were first crossed with GnRH::GFP animals to obtain triple heterozygous 

transgenic mice. Then a heterozygous (GnRH::Cre;Itgb1loxP/+; GnRH::GFP) female was 

crossed with a heterozygous male to generate all genotype combinations.  

 

Genotyping and DNA extraction 

For genotyping, three pairs of primers were used: GnRH-Cre-                        5’- 

CTGGTG TAGCTGATGATCCG - ’               5’-ATG GCT AAT CGC CAT CTT CC- ’      

       x /  x                 5’-CGGCTCAAAGCAGAGTGTCAGTC- ’               5’-

CCACAACTTTCCCAG TTA GCT CTC- ’     H-GFP mice were selected by PCR analysis of mouse 
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     D   w              H 5  5’-GAAGTACTCAACCTACCAACGGAAG- ’ and antisense 

             5’-GCCATCCAGTTCCACGAGAATTGG- ’  w                        D   

fragment in mice transgenic for the GnRH-GFP minigene. 

To obtain the genomic DNA of pups, a clipping from the ear or tail was collected and placed 

in 10% Chelex-100 resin (Bio-Rad) with 0.1% Tween-20 and 0.15 mg/ml proteinase K. 

Samples were incubated at 50°C for 90 min, proteinase K was inactivated at 95°C for 20 min, 

and the solution was cooled to 10°C. PCR reactions were carried out using 7 µl of DNA.  

PCR was performed using a thermocycler (35 cycles: 30 s denaturation at 94°C, 1 min 

annealing at 58–65°C, and 2 min elongation at 72°C). 

 

Animals 

Mice were housed in a room with controlled photoperiod (12 h of light and 12 h of darkness) 

and temperature (21–23°C) with food and water ad libitum, in the animal facility of the Jean-

Pierre Aubert Research Center (JPARC) at the Lille 2 University School of Medicine, France. All 

experiments were performed in accordance with the guidelines for animal use specified by 

the European Communities Council Directive of November 24th, 1986 (86/609/EEC) 

regarding mammalian research and in accordance with National Institutes of Health 

(NIH)/National Institute of Neurological Disorders and Stroke guidelines, and Institutional 

Animal Care and Use Committee approval. 

For immunohistochemical analysis, embryos were obtained from timed-pregnant control or 

-integrin KO mice and anaesthetized with an intraperitoneal (i.p) injection of 

chloral hydrate (8%; 350 mg/kg). Heads from the embryos were washed thoroughly in cold 

0.1M PBS, fixed in fixative solution (4% paraformaldehyde, 0.2% picric acid in 0.1M PBS; pH 

7.4) for 6 to 8 hours at 4°C and cryoprotected in 20% sucrose overnight at 4°C. The following 

day, heads were embedded in OCT embedding medium (Tissue-Tek®, Sakura, Villeneuve 

 ’            )     z                            -80°C until sectioning. Postnatal day 7 pups 

and adult mice (3-5 months old) were anesthetized with chloral hydrate (400 mg/kg, i.p.) and 
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perfused transcardially with 10 ml of saline, followed by 100 ml of 4% paraformaldehyde 

(PFA), pH7.4. Brains were removed and immersed in the same fixative for 2 h at 4°C and 

stored in 0.1M PBS until slicing. Free-                            5 μ -thick) were cut on a 

vibratome (VT1000S; Leica, Wetzlar, Germany) and processed for immunohistochemistry. 

 

Fluorescence-activated cell sorter analysis  

Heterozygous GnRH::Cre;Itgb1loxP/+; GnRH::GFP mutants were crossed to obtain in the 

same litter GnRH::Cre; Itgb1+/+; GnRH::GFP, GnRH::Cre; Itgb1loxP/+; GnRH::GFP and 

GnRH::Cre; Itgb1loxP/loxP; GnRH::GFP. Embryos were harvested at E12.5 from timed-

pregnant GnRH::Cre;Itgb1loxP/+; GnRH::GFP mice, previously anaesthetized with an 

intraperitoneal (i.p) injection of chloral hydrate (8%; 350 mg/kg) and sacrificed by cervical 

dislocation. Nasal regions were dissected from each embryo and dissociated using a papain-

based dissociation protocol previously described (Maric et al., 2003). After dissociation, the 

cells were physically purified using an EPICS ALTRA flow cytometer (Beckman Coulter). Sorted 

GFP-positive cells (yield: 600-800 cells obtained from each E12.5 embryo of the litter) were 

Invitrogen) and subsequently centrifuged for 1 min at 7500 g (maximum) to relocate material 

0.1% Triton X- -treated water; 

Invitrogen) was added. Captured cells were used to synthesize first-strand cDNA using the 

SuperScript III First-Strand Synthesis System for RT-PCR (Invitrogen) following the 

            ’                         w                             w                 

demonstrate the absence of contaminating genomic DNA. RNAs isolated from heads of E12.5 

embryos and GT1-7 cells were also reverse transcribed and used as positive controls. Total 

RNA from GT1-7 cells and E12.5 heads was isolated by extraction with TRIzol (Invitrogen).  

The genotype of embryos was verified after FACS isolation and cDNAs of GnRH-GFP neurons 

isolated either from GnRH::Cre;Itgb1+/+;GnRH::GFP or GnRH::Cre;Itgb1loxP/loxP; GnRH::GFP 

embryos (n = 5 for each genotype) were used for the PCR analysis. PCR was performed for 
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GnRH and Itgb1 at 35 cycles on a thermocycler (30 s denaturation at 94°C, 30 s annealing at 

55–65°C, and 2 min elongation at 72°C). PCR primer pairs were as follows: GnRH forward 

        5’-GCTAGGCAGACAGAAACTTGC- ’     H                 5’-

GCATCTACATCTTCTTCTGCC- ’                      k           )    w            5’- 

CCTGAAGGTCAAAGGGAATGTGTTC- ’                     5 -

GGACAGAGTCTTGATGATCTCCTCC- ’           w            5’-AGGCTTGTGGTGCTTGGGCG-

 ’                        5’-GGAGGTGGGGAGGGTGTCAGG- ’                w                

 x        β -integrin gene, which is floxed in conditional mutant mice when Cre 

recombination takes place. PCR primer pairs were as fo   w            w            5’-

GCAGGGCCAAATTGTGGGTGGT- ’                        5’- GGCCGGAGCTTCTCTGCCAT- ’  

 

Ovarian histology and quantitative analysis 

Ovaries were collected from 3-month-old control and conditional KO mice, fixed in 4% PFA 

solution and stored at 4°C. Paraffin-                 w                       k        5 μ  

(histology facility, University of Lille 2, France) and stained using hematoxylin-eosin protocol. 

The number of corpora lutea, Graafian follicles and atretic follicles were counted on 

photomicrographs from every 10th section throughout the ovary and statistical analysis was 

performed as described below. 

 

Estrous cyclicity 

To examine the possible effects of mutations on estrous cyclicity, vaginal lavage of female 

GnRH::Cre; Itgb1loxP/loxP mice and their control littermates (GnRH::Cre; Itgb1+/+) was 

performed every day (10 a.m. to 1 p.m.) using 0.9 % saline. Smears were observed under the 

microscope and the phase identified as diestrus (M/D) if they predominantly contained 

leukocytes, as proestrus (P) if they predominantly contained basal and cornified nucleated 

cells and as estrous (E) if they predominantly contained cornified epithelial cells. An estrous 
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cycle was considered normal when the vaginal lavage had leukocytes for 2 d followed by 1 d 

of nucleated and 1-2 d of cornified cells. 

 

Gonadal steroid-induced LH surge protocol in ovariectomized animals 

Mice were bilaterally ovariectomized (OVX) and implanted subcutaneously with Silastic 

                      β-estradiol (E2; 1 µg/20 g body weight). Silastic capsules were 

prepared as follows: crystalline E2 was dissolved in absolute ethanol, mixed with Silastic 

medical adhesive (Type A) (Dow Corning) at a concentration of 0.1 mg/ml adhesive and 

injected into Silastic tubing (Dow Corning; internal diameter, 1mm; external diameter, 2.125 

mm) (Bronson, 1981; Clarkson et al., 2008). Six days after OVX, mice received a single 

               )      β-estradiol 3-benzoate (1 µg/20 g of body weight in sesame oil) at 9 a.m. 

On the following day, animals received another injection (s.c.) of progesterone (500 µg/20 g 

body weight in sesame oil) at 9 a.m. Between 7:30 - 8:30 p.m (lights off at 8 p.m.) on the 

same day, mice were anesthetized with an overdose of chloral hydrate (400 mg/kg; i.p.) and 

trunk blood was collected for LH assay. Trunk blood was collected in tubes containing EDTA 

(0.2 M), centrifuged at 6500 rpm for 15 min at 4°C and the supernatant obtained (plasma) 

was stored at -80°C until ELISA for LH. 

 

Luteinizing hormone assay 

Plasma LH was measured using Rodent LH ELISA kit (ERKR7010-A; Endocrine Technologies, 

Newark, CA) with a sensitivity of 0.3 ng/ml and 7% intra-assay and 10% inter-assay 

coefficients of variation.  
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Immunohistochemistry 

Tissues were cryo-                         )       μ                       5 μ          -

floating sections for adult brains. Immunohistochemistry was performed as previously 

reported (Giacobini et al., 2008), using Alexa-Fluor 488- (1:400) and Cy3- (1:800) conjugated 

secondary antibodies (Invitrogen, Molecular Probes). Fluorescent specimens were mounted 

using 1,4-diazabicyclo[2.2.2]octane (DABCO; Sigma-Aldrich). The primary antisera used were 

as follows: rabbit anti-GnRH (1:3000), a generous gift from Prof. G. Tramu (Centre Nationale 

de la Recherche Scientifique, URA 339, Université Bordeaux I, Talence, France) (Beauvillain 

and Tramu, 1980) ; rat anti-β -integrin (1: 500; BD 558741). 

 

Image analysis 

Images were captured using a Nikon microscope (Eclipse 80i) and 2x/0.06 NA, 10x/0.30 NA, 

and 20x/0.50 NA objectives (Nikon) equipped with a digital camera (CX 9000; MBF 

Bioscience). For observation coupled with confocal analysis, a laser-scanning Fluoview 

confocal system (IX70; Olympus) and 10x/0.30 NA, 20x/0.70 NA, and 60x/1.25 NA objectives 

(Olympus) were used. Subsequent analysis of digitized images was performed with ImageJ 

(U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997-

2011) and Photoshop (Adobe) software to process, adjust and merge the photomontages.  

 

Analysis of GnRH neurons in transgenic mice 

Serial sagittal sections (16 µm) from E14.5 GnRH-Itgb1+/+ (n = 4) and GnRH-Itgb1-/- (n = 7) 

mice were cut and immunolabeled for GnRH throughout the head. Quantitative analysis of 

GnRH neuronal number, as a function of location, was performed over three regions (the 

nasal compartment, the nasal/forebrain junction and ventral forebrain). Serial coronal 

           5 μ )             O  T                                 H-Itgb1+/+  (females, 

n = 5; males, n = 3) and GnRH-Itgb1-/- (females, n = 5; males, n = 4) mouse brains were 
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labeled for GnRH. Total number of GnRH cells was calculated for each brain (throughout the 

entire brain) and combined to give group means ± SEM. No ectopic localization of GnRH 

neurons was detected in the brains of mutant mice, both during embryonic development as 

well as at the adult stage, as compared with control animals, suggesting that the GnRH 

neurons were not misrouted.  

The density of GnRH-immunoreactive terminals in the median eminence of control and 

GnRH-Itgb1-/- mice was also evaluated. 2 medial sections per animal (n = 3 each genotype) 

were chosen. Fiber intensity was evaluated with a confocal microscopy, Zeiss LSM 710 (Carl 

Zeiss, Oberkochen, Germany). 24-bit        w              w                        5 μ  

                     5 μ                    x              x                           w    

calculated with ZEN 2009 (Carl Zeiss) algorithms for each series of confocal images that were 

binarized with imageJ software (U. S. National Institutes of Health, Bethesda, Maryland, USA, 

http://imagej.nih.gov/ij/, 1997-2011). A user-defined threshold parameter was employed 

and applied to each section to optimize detection of labeled fibers. The same threshold 

values were applied to all images to avoid subjective evaluation. The density values of 

labeled fibers were calculated based on the number of total pixels in each binarized image 

per area and combined to give group means ± SEM.  

 

Nasal explants 

Embryos were obtained from timed-pregnant animals. Nasal pits of E11.5 NIH Swiss mice 

were isolated under aseptic conditions in Gey's Balanced Salt Solution (Invitrogen) enriched 

with glucose (Sigma-Aldrich) and maintained at 4°C until plating. Explants were placed onto 

glass coverslips coated with 10 µl of chicken plasma (Cocalico Biologicals, Inc.). Thrombin (10 

µl; Sigma-Aldrich) was then added to adhere (thrombin/plasma clot) the explant to the 

coverslip. Explants were maintained in defined serum-free medium (SFM) (Fueshko and 

Wray, 1994) containing 2.5 mg/ml Fungizone (Sigma-Aldrich) at 37°C with 5% CO2 for up to 

30 days in vitro (div). From culture day 3 to 6, fresh medium containing fluorodeoxyuridine (8 

x 10-5 M; Sigma-Aldrich) was provided to inhibit the proliferation of dividing olfactory 
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neurons and non-neuronal explant tissue. The medium was replaced with fresh SFM twice a 

week. 

 

Functional assays in nasal explants 

T                            β-integrin on GnRH cell migration and axon outgrowth, 

pharmacological perturbation was carried out on explants using Echistatin. Echistatin is a 49-

aminoacid protein with an Arg-Lys-Asp (RGD) sequence that is a member of the disintegrin 

family that occurs in the venom of Echis carinatus. It specifically inhib    β -     β -integrins 

(Pfaff et al., 1994). Explants in experimental groups were maintained in SFM or SFM plus 

E               μ  )                        D                   w                       

previous studies (Pasterkamp et al., 2003). Control explant medium was changed, as in the 

treatment group, at 3 and 6 div. At 7 div, explants were processed for immunocytochemistry 

for GnRH and density of the fibers in the periphery of the explants quantified. The main 

tissue mass contained the nasal pit/olfactory epithelial region, surrounding mesenchyme, 

and nasal midline cartilage. The periphery refers to the area surrounding the main tissue 

mass into which cells had spread and/or migrated.  

Quantification of GnRH fiber density was performed on digitized photomicrographs (using a 

20x UPlanFl Phase objective; Olympus I X 50 inverted microscope, Hamburg, Germany, 

equipped with a CCD CoolSNAP-Pro camera, Media Cybernetics, Silver Spring). First, a 

threshold was manually set to specifically demonstrate the network structures in the image. 

The quality and resolution of the images allowed reliable and exclusive threshold of the 

networks without the need of image filtering. Images were then placed in bins and subjected 

       “ k       z ”                        w  e, which excluded the GnRH cell somas from 

the analysis (see Fig. 4d, f). The corresponding density was measured by dividing the mean 

pixel area of GnRH fibers for the total area occupied by the fiber network. This quantitative 

method was chosen because the complex nature of the fiber network prevented the 

quantification of individual fiber length and branching. Three pictures were taken for each 

explant and average density was calculated for each sample to homogenize internal 
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variability. Finally, mean density among treatment groups was calculated. Twelve animals 

were used for the control group (n = 12) and 7 for the treatment group (Echistatin; n = 7). 

The data are presented as means ± SEM. All experiments utilized explants generated from 

different individuals on multiple culture dates.  

 

Statistical analysis  

For comparison of multiple groups, statistical significance was determined using a one-way 

                        O                                 )      w             ’        

significant difference post-hoc analysis test. For comparison between two groups, a 2-tailed 

                ’         w         T                      w            <    5  D               

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                                    Results: Article 1 

 

90 
 

RESULTS 

Generation of conditional KO mice lacking β1-integrin in GnRH neurons 

            w      w          H                x         β -integrin at early stages of 

embryonic development and that Semaphorin 7A regulates the migration of immortalized 

   H               β -integrin activation (Messina et al., 2011). Interestingly, in the same 

w  k                w          H          x        β -integrin at comparable levels in the 

migratory and post-migratory stages, supporting the notion that this molecule might regulate 

several biological processes throughout development. 

               w  k                        β -integrin subunit was inactivated in GnRH 

                       x   β -integrin (Itgb1) mice with LoxP sites flanking exon 3 (Jax mice; 

Fig. 1a) with GnRH::Cre mice (Yoon et al., 2005), which express the Cre recombinase gene in 

GnRH neurons, to obtain GnRH::Cre; Itgb1+/+ (GnRH-Itgb1+/+) and GnRH::Cre; Itgb1loxP/loxP 

(GnRH-Itgb1-/-) mice. Crosses typically displayed Mendelian segregation of the three 

embryonic genotypes: GnRH::Cre; Itgb1loxP/loxP animals, which were homozygous null for the 

Itgb1 gene in GnRH cells and wild-type for this gene in other cell types, GnRH::Cre; Itgb1loxP/+ 

animals which were heterozygous for the Itgb1 gene in GnRH cells, and GnRH::Cre; Itgb1+/+ 

which were wild-type for Itgb1 in all cells, including GnRH cells. To confirm cell-specific 

deletion of Itgb1 in GnRH cells, GnRH::Cre; Itgb1loxP/loxP were crossed with GnRH::GFP 

animals, which express the green fluorescent protein (GFP) under the control of the GnRH 

promoter (Spergel et al., 1999) so that RT-PCR analysis could be performed on embryonic 

GnRH-GFP cells isolated through Fluorescent Activated Cell Sorting (FACS). E12.5 embryos 

were harvested from pregnant triple-mutant mice. At this stage, the majority of the GnRH 

population is located within the nasal region (Fig. 1b, green dots) (Schwanzel-Fukuda and 

Pfaff, 1989; Wray et al., 1989). Therefore, noses were dissected from mutant GnRH::Cre; 

Itgb1loxP/loxP; GnRH::GFP (GnRH-Itgb1-/-;GnRH-GFP) and control GnRH::Cre; Itgb1+/+;GnRH::GFP 

E12.5 embryos (GnRH-Itgb1+/+; GnRH-GFP) and purified GnRH-GFP-positive neurons were 

isolated by FACS (Fig. 1b). RT-PCR experiments were performed on cDNAs of primary GnRH-

GFP neurons, positive controls (GT1-7 cells and E11.5 heads) and negative control cDNAs 
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(water and –RT). Transcripts of the expected molecular size for mouse GnRH and the 

housekeeping gene L19 were found in all samples but negative control (Fig. 1c). Primers 

within the third exon of the Itgb1 gene, which is floxed upon Cre recombination were used. 

RT-PCR analysis revealed expression of Itgb1 in the positive samples and in the GnRH-

Itgb1+/+; GnRH-GFP cells, whereas Itgb1 was lacking in GnRH-Itgb1-/-; GnRH-GFP neurons (Fig. 

1c), confirming cell-specific deletion of Itgb1 in GnRH neurons in conditional-KO mice.  

 

Lack of β1-integrin expression in GnRH neurons leads to defects in their migratory process 

and their axonal targeting to the target tissues 

T              w                      β -integrin signaling in GnRH neurons affects their 

development and migration, the number and distribution of GnRH neurons was examined at 

E14.5 in control (GnRH-Itgb1+/+) and GnRH-Itgb1-/- mice (Fig. 2a-d). The number of GnRH cells 

in the nasal compartment (cells located in the olfactory/vomeronasal epithelia and across the 

nasal mesenchyme), olfactory bulb (ob) and ventral forebrain (vfb) areas of embryos was 

determined (Fig. 2e, upper panel, red boxes). GnRH-Itgb1-/- animals showed a significant 

accumulation of GnRH cells in the nasal compartment as compared with control littermates 

(Fig. 2e, lower panel). Concomitantly, in mutant mice fewer GnRH neurons were located in 

the final brain target area (vfb; Fig. 2c-e), consistent with a migratory defect (one-way 

ANOVA, F(7, 43) = 44.3, p < 0.0001). In order to assess whether this defect was compensated 

after birth, the number and distribution of GnRH neurons was analyzed in brains of postnatal 

day 7 mice. Indeed, the total number of these neuroendocrine cells as well as their 

localization within the brain was unchanged between GnRH-Itgb1-/- and control infantile 

animals (GnRH-Itgb+/+ mice, n = 6, mean GnRH cell number = 873 ± 31; GnRH-Itgb-/- mice, n = 

4, mean GnRH c           =     ± 5                   ’   -test, t(8) = -0.768, p = 0.46). 

However, in adult animals, a significant 30% reduction was found in the number of GnRH cell 

bodies (Fig. 3a, b) of GnRH-Itgb-/- mice as compared to control littermates, regardless of the 

sex (GnRH-Itgb+/+, n = 8, mean GnRH cell number = 712 ± 33; GnRH-Itgb-/-, n = 9, mean GnRH 

            =     ±                                        ’   -test, t(15) = 7.98, p < 
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0.0001). No differences in the number and bilateral distribution of GnRH neurons was 

observed between males and females brains of the same genotype (GnRH-Itgb+/+ females, n 

= 5, mean GnRH cell number = 672 ± 44; GnRH-Itgb+/+ males, n = 3, mean GnRH cell number = 

    ±  5                  ’   -test, t(6) = -1.81, p = 0.12. GnRH-Itgb-/- females, n = 5, mean 

GnRH cell number = 443 ± 26; GnRH-Itgb-/- males, n = 4, mean GnRH cell number = 427 ± 5; 

                ’   -test, t(7) = 0.52, p = 0.62).  

Notably, the GnRH neurons of GnRH-Itgb1-/- animals displayed shorter neurites than those of 

GnRH-Itgb+/+ mice (see insets in Fig. 3a and b). Consistent with this observation, 

densitometric analysis of immunostaining of the median eminence, the terminal field of 

GnRH neuroendocrine neurons, revealed a marked loss of GnRH fibers in homozygous mice 

when compared with control mice (Fig. 3c, d). The innervation of the median eminence of 

female GnRH-Itgb1-/- mice was reduced by more than 70% when compared with control mice 

(GnRH-Itgb+/+, n = 3, mean density of fibers = 409.8 ± 97; GnRH-Itgb-/-, n = 3, mean density of 

       =      ±  5                  ’   -test, t(15) = 3.12, p < 0.005). Quantitative analysis 

revealed a 33% reduction in the innervation of the median eminence in males (GnRH-Itgb+/+, 

n = 3, mean density of fibers = 410 ± 20; GnRH-Itgb-/-, n = 4, mean density of fibers = 271.3 ± 

                    ’   -test, t(5) = 6.43, p < 0.005), thus evidencing a marked sex difference 

(% reduction of fiber density in males vs. females, p < 0.05). 

 

Inhibition of β1-integrin in vitro disrupts GnRH fibers’ network 

To determine the role of Itgb1 in regulation of GnRH fibers elongation, a nasal explant model 

w                )  Ex       w            w    E               μ )                           β - 

    β -integrins (Pfaff et al., 1994). RT-PCR  x              β -integrin (Itgb3) were 

performed on cDNAs of primary E12.5 GnRH-GFP sorted neurons, GT1-7 cells, which display 

features of mature post-migratory GnRH neurons, and water (Fig. 4b). A transcript of the 

expected molecular size for the mouse Itgb3 was found in GT1-7 cells but not in primary 

migratory GnRH cells and in the negative control (Fig. 4b), indicating that Echistatin could 

only act via Itgb1 signaling in GnRH cells in explants. 
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The application of Echistatin severely restricted the GnRH fiber network in the periphery of 

the explant (Fig. 4c-f). Quantitative analysis revealed a significant reduction in the density of 

the GnRH-                        w  k      w    β -integrin blockage (controls, n = 12, 

mean density of fibers = 0.057 ± 0.005; Echistatin-treated, n = 7, mean density of fibers = 

0.042 ± 0.002. Data are combined values from three independent experiments. n, number of 

 x                        ’   -test, t(17) = 3.06, p < 0.05). The absence of a change in GnRH 

cell number after Echistatin treatment (control: 197 ± 24, n = 12; Echistatin: 220 ± 29, n = 7; 

                ’   -test, t(17) = -0.72, p = 0.48) indicates that this drug does not exert 

mitogenic or survival effects on GnRH neurons in vitro and is consistent with the hypothesis 

     β -integrin regulates neurite sprouting of primary GnRH neurons. 

 

GnRH::Cre;Itgb1loxP/loxP female mice exhibit impaired fertility  

The observation that GnRH-Itgb1-/- mice had a dramatic loss of GnRH innervation in the 

median eminence suggested that fertility could be disrupted. Since alterations in 

neuroendocrine activity are expected to result in impaired reproductive capacity, fertility was 

examined in control and conditional Itgb1 knock-out mice using a continuous mating 

protocol for 90 days. Male reproductive capacity was assessed by breeding young adult (P90) 

GnRH-Itgb1-/- males with confirmed control dams (GnRH-Itgb1+/+) and monitoring the 

occurrence of litters over 3 months. In adult males, all fertility parameters examined: 1) 

number o                                                       ’   -test, t(7) = 0.4, p = 0.7), 

 )               x                   /     )                  ’   -test, t(13) = 0.26, p = 0.79) 

and 3) number of pups/litter, did not differ between control and GnRH-Itgb1-/- mice (Fig. 5a-

                   ’   -test, t(56) = 0.63, p = 0.53). In contrast, female GnRH-Itgb1-/- mice 

showed significant alterations of the reproductive axis. Both the fertility index (one-way 

ANOVA, F(2, 18) = 4.09, p = 0.04) and the number of pups/litter (one-way ANOVA, F(2, 66) = 

5.94, p = 0.004), were significantly reduced in the GnRH-Itgb1-/- females (Fig. 5a-c). Whereas, 

the latency to first pregnancy was not affected in any group analyzed (one-way ANOVA, F(2, 

16) = 0.12, p = 0.9). 
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To determine whether the observed defects were associated with an ovulation deficiency, 

ovarian morphology in 3-5 month-old control and GnRH-Itgb1-/- female mice was evaluated. 

In contrast to control mouse ovaries, which contained large Graafian follicles and several 

corpora lutea, histological inspection of adult conditional null mouse ovaries revealed a 

                                                                      ’   -test, t(8) = 3.1, p = 

0.01), which serves as a confirmation that there are reduced numbers of ovulations (Fig. 5d, 

e). 

 

GnRH::Cre;Itgb loxP/loxP female mice exhibit delayed puberty and abnormal estrous cycles 

             k    β -integrin in GnRH neurons impacted only the reproductive axis in females 

and not in males, female mice were further characterized. Vaginal opening and first estrus 

have been shown to be estrogen-dependent processes, which correlate with the onset of 

puberty in rodents (Ojeda and Skinner, 2006). Thus, weaned GnRH-Itgb1+/+ (n = 12) and 

GnRH-Itgb1-/- (n = 12) female littermates were examined for vaginal opening and first estrus. 

Vaginal opening was significantly delayed by approximately 6 days in GnRH-Itgb1-/- female 

mice as compared to control females (Fig. 6a; GnRH-Itgb1+/+: 29.1 days ± 0.23, GnRH-Itgb1-/-: 

35.4 days ±   5                   ’   -test, t(22) = -10.3, p < 0.0001). Analysis of cumulative 

percentage of vaginal opening within the two groups revealed that whereas, in control 

females, 100% of the mice had vaginal opening by the 28th day of postnatal life, the entire 

population of GnRH-Itgb1-/- displayed vaginal opening at the 37th postnatal day (Fig. 6b). 

Similarly, the first estrus was significantly delayed by approximately 10 days in GnRH-Itgb1-/- 

versus GnRH-Itgb1+/+ mice (Fig. 6a, c; GnRH-Itgb1+/+: 32.5 days ± 0.23, GnRH-Itgb1-/-: 41.9 

     ±   5                   ’   -test, t(22) = -15, p < 0.0001). Daily inspection of vaginal 

cytology in GnRH-Itgb1-/- mice revealed absence of normal estrous cyclicity (Fig. 7a). GnRH-

Itgb1-/- mice exhibited a persistent diestrus state (GnRH-Itgb1+/+ mean percentage time in 

proestrus: 14 ± 2, GnRH-Itgb1-/- mean percentage time in proestrus: 1 ± 0.7, unpaired 

       ’   -test, t(22) = 7, p < 0.0001; GnRH-Itgb1+/+ mean percentage time in estrus: 26.5 ± 

2, GnRH-Itgb1-/- mean p                               5 ±                    ’   -test, t(22) = 
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7, p < 0.0001; GnRH-Itgb1+/+ mean percentage time in diestrus: 59 ± 1; GnRH-Itgb1-/- mean 

                                ±                    ’   -test, t(22) = -15, p < 0.0001) with 

the sporadic occurrence of complete 4-5-d ovarian cycles (Fig. 7c), whereas control 

littermates showed regular estrous cyclicity (Fig. 7a, b). These findings show that GnRH-Itgb1-

/- mice display ovarian cyclicity deficits. 

 

GnRH::Cre;Itgb1loxP/loxP mice do not elevate LH under gonadal steroid positive feedback 

condition 

In female mice, GnRH-induced LH surge stimulates ovulation, which is an essential process in 

fertility and is induced by positive feedback of gonadal steroids on the hypothalamic-pituitary 

axis. To examine the GnRH/LH surge, an OVX-E-P replacement model was used as previously 

described (Hanchate et al., 2012). While OVX GnRH-Itgb1+/+ mice exhibited a LH surge in 

                                                               ’   -test, t(6) = -198, p < 

0.0001), OVX GnRH-Itgb1-/- littermates did not exhibit an LH surge, displaying levels of LH that 

w                                                         ’   -test, t(8) = 0.67, p = 0.52). 
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DISCUSSION 

                             αβ) extracellular matrix (ECM) receptors that are widely 

expressed throughout the mammalian nervous system (Pinkstaff et al., 1999), where they 

regulate development and function of neurons (Anton et al., 1999; Benson et al., 2000; 

Chavis and Westbrook, 2001; Graus-Porta et al., 2001; Huang et al., 2006; Belvindrah et al., 

2007; Webb et al., 2007)                               β1-integrin ablation in GnRH 

neurons we uncovered a fundamental role of integrins in the development of the GnRH 

system, establishment of the hypothalamic-pituitary-gonadal axis and involvement of β1-

integrin signaling in the initiation of puberty and regulation of the preovulatory gonadotropin 

surge.  

RT-PCR analysis on GnRH-sorted cells deriving from triple-mutant embryos 

(GnRH::Cre;Itgb1loxP/loxP; GnRH::GFP) revealed that recombination has already occurred at 

E12.5, when the majority of this population is migrating across the nasal mesenchyme. 

Analysis of conditional mutant embryos at E14.5 shows deficits consistent with the reduced 

migration of GnRH neurons. However, this delay appears to be compensated during later 

developmental stages with the number and distribution of GnRH neurons being unaffected in 

the brain of P7 mutants as compared with control mice. Indeed, many factors controlling the 

precise journey of these neuroendocrine cells from nose to brain have been elucidated 

(Wierman et al., 2011), which could be responsible for such compensatory mechanism. 

 Interestingly, the number of GnRH cells is significantly reduced by approximately a third in 

the brains of adult GnRH-Itgb1-/- mice, implying that cell death might occur within this cell 

population between the infantile and the adult stage. Indeed, it is very well established that 

integrin-mediated signals are necessary in normal cells to control cell survival and apoptosis 

(via PI3-kinase and Akt; Hynes, 2002). However, due to the small size of the GnRH neuronal 

population and the limited temporal window during which apoptosis takes place, it is not 

possible to determine whether this is the case. The loss of GnRH immunoreactive neurons 

has also been reported in other mutant mice, such as neuropilin 2-/-, netrin 1-/- and ephrin 3–
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5-/- mice, but its cause remains undetermined (Schwarting et al., 2004; Gamble et al., 2005; 

Cariboni et al., 2007).  

At the end of the migratory process, GnRH neurons undergo striking structural plasticity, and 

elongate their axons to contact the median eminence. Previous studies have shown that 

many neurons use members of the integrin family of cell surface receptors to respond to 

factors that promote neurite growth and axonal elongation to their final target areas (Hynes, 

2002). Consistently, ablation of Itgb1 gene in GnRH neurons leads to defects in 

neuritogenesis. In fact, GnRH-Itgb1-/- animals display shorter neurites than those of GnRH-

Itgb+/+ mice. In order to verify that such defects were caused by the removal of β1-integrin, 

perturbation of primary GnRH cells was performed in nasal explants. Indeed, inhibition of β1-

integrin significantly disrupted the GnRH fibers network in vitro, further substantiating the 

notion that integrins are required for the proper neurite outgrowth of these neuroendocrine 

cells. 

The selective deletion of Itgb1 in GnRH neurons is also responsible of striking reproductive 

defects in female mice, as evidenced by the delay in the onset of puberty, alterations in 

ovarian morphology and the reduced number and size of litters. GnRH-Itgb1+/- female mice 

did not show any reproductive abnormalities (data not shown) indicating that one Itgb1 allele 

is sufficient to grant normal development of the GnRH axis. 

A very interesting aspect of the present study is the finding that male reproductive function 

was not affected by the disruption of β1-integrin signaling in GnRH neurons, as shown by the 

continuous mating experiments. Notably, both male and female GnRH-Itgb1-/- mice have a 

comparable decrease in the size of the GnRH neuronal population within the brain when 

compared to control mice (30% reduction). However, the extent of reduction in GnRH 

neuronal projections was sexually dimorphic, being milder in male than in female GnRH-

Itgb1-/- mice (33 % reduction in male versus 70 % reduction in female mutant mice). 

Hormonal factors, such as sex steroids including estrogens and testosterone, direct formation 

of sexually dimorphic circuits by influencing axonal guidance and synaptogenesis, 

neurogenesis, cell migration, cell differentiation and cell death, (Simerly, 2002; Tobet et al., 
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2009). Several reports indicate that gonadal steroids are capable of modulating the 

expression of different classes of guidance molecules, which are known to bind β1-integrin to 

activate their intracellular signaling pathway, in physiological as well as in pathological 

conditions (Cullinan-Bove and Koos, 1993; Liu et al., 1994; Nikolova et al., 1998; Pavelock et 

al., 2001; Khan et al., 2005; Nguyen et al., 2011; Richeri et al., 2011). Thus, it is possible that 

gonadal steroids-dependent mechanisms could be responsible of the sex difference observed 

in the GnRH neuronal projections to the median eminence in GnRH-Itgb1-/- mice. 

A strong precedent for this notable sex difference does exist since several gene mutations 

including cyclooxygenase (Lim et al., 1997), progesterone receptor (Lydon et al., 1996), ErbBs 

(Prevot et al., 2005) and FSH (Kumar et al., 1997), cause female infertility but have no effect 

on male reproductive capacity.  

The phasic secretion of LH from the pituitary gland is perhaps the most significant sex 

difference in endocrine physiology (Simerly, 1998). In female rats, plasma levels of estradiol 

increase during the estrous cycle and lead to a massive surge in LH secretion on the 

afternoon of proestrus (Simerly, 1998). Treatment of ovariectomized adult female rats with 

exogenous estradiol causes afternoon surges in LH release, yet treatment of gonadectomized 

male rats fails to cause a similar response due to organizational effect of androgens around 

the time of birth (Jarzab and Dohler, 1984).  

Gonadal steroids via positive feedback to the hypothalamic-pituitary gonadotropic axis, 

control the onset of the LH surge and thus ovulation. After exogenous administration of 

estradiol benzoate and progesterone to ovariectomized GnRH-Itgb1-/- females, GnRH 

neurons failed to induce an LH surge, suggesting that the reproductive dysfunction of these 

animals is due to an attenuated GnRH-system function. We cannot exclude that additional 

defects affecting the development and function of synapses on GnRH dendrites could occur 

in the absence of β1-integrin. Recent studies have demonstrated that the dendritic tree of 

GnRH neurons is subject to marked remodeling during postnatal development (Cottrell et al., 

2006) and that the density of spines along GnRH dendrites increases not only during sexual 

maturation (Cottrell et al., 2006), but also at the onset of the GnRH/LH surge induced by 
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gonadal steroids in ovariectomized adult mice (Chan et al., 2011). Notably, previous works 

have demonstrated the essential role of integrins in synapse maturation and plasticity 

(Benson et al., 2000; Chavis and Westbrook, 2001; Huang et al., 2006; Webb et al., 2007; 

Warren et al., 2012). In addition to these functions, β1-containing integrins have been also 

shown to influence circuit function by controlling dendritic arbor formation and/or stability. 

For instance, inhibiting β1-integrin signaling in developing retinal ganglion cells block 

dendritic growth (Lilienbaum et al., 1995), and plating cortical neurons on integrin substrates 

such as laminin promotes dendritic branching and extension (Moresco et al., 2005). 

Thus, the dysfunction of the GnRH system in β1-integrin mutants likely derive from a 

combination of multiple developmental defects ultimately affecting neuronal activity and 

secretion of GnRH neurons.  

This work demonstrates the critical role of GnRH Itgb1 in the complex developmental 

signaling pathways that control mammalian reproduction.  

Future studies should determine which ligands activating β1-integrin signaling cascade could 

be modulated by sexual hormones within the central nervous system and what effect they 

have on neuronal connectivity and function during critical period of the GnRH network 

activation. 
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Figure 1. Generation of GnRH neuron-specific Itgb1 KO mouse.   ) Ex            β -integrin 

gene (Itgb1) is flanked by two LoxP sites; Cre recombinase expression is regulated by the 

mouse GnRH promoter. GnRH::Cre; Itgb1loxP/loxP mice were crossed with GnRH::GFP animals, 

which express the green fluorescent protein (GFP) under the control of the GnRH promoter, 

to generate triple-transgenic mice. (b) Schematic summarizing the steps of GnRH-         ’ 

isolation. E12.5 embryos were harvested from GnRH::Cre; Itgb1loxP/+; GnRH::GFP pregnant 

mice; the nasal regions were dissected and GnRH-GFP cells were purified by FACS. (c) RT-PCR 

for GnRH and Itgb1 was performed on total RNA isolated from the indicated samples. 

Positive (GT1-7 cells; E11.5 whole heads) and negative controls (water; W) were included in 

the reaction mix.  
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Figure 2. GnRH-Itgb1-/- mice show defective GnRH migration during embryonic development 

(a-d) Confocal photomicrographs showing GnRH immunoreactivity in sagittal sections of 

E14.5 control (a, c) and GnRH-Itgb1-/-  (b, d) embryo heads. Dashed lines indicate the 

boundary between the nose and the forebrain (fb). Analysis of the location of GnRH neurons 

in three regions along the migratory pathway, nasal compartment (nose), olfactory bulb (ob) 

and ventral forebrain (vfb), reveals a significant accumulation of cells in the nasal region of 

GnRH-Itgb1-/- mice when compared with control mice (a, b). Consistently, fewer GnRH 

neurons are located in the vfb of GnRH-Itgb1-/- than of GnRH-Itgb1+/+ embryos (c versus d). 

(e, upper panel) Schematic of a sagittal section of an E14.5 embryo. Red boxes indicate the 

areas of the analysis of GnRH cell distribution. (e, lower panel) Quantitative analysis revealed 

a migratory defect of GnRH neurons at this developmental stage. Data are represented as 

means ± SEM (n, number of e        **  <     5  *  <    5         ’                    

difference post-            )                   )    μ        )         
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Figure 3. T      k    β -integrin in GnRH cells leads to a suboptimal number of GnRH neurons 

and reduced innervation of the median eminence in adulthood. (a-d) Confocal 

photomicrographs showing GnRH-immunoreactivity in coronal sections of adult control (a, c) 

and conditional mutant (b, d) brains. Images show a significant reduction in the number of 

GnRH neurons at the level of the organum vasculosum of the lamina terminalis (OVLT, 

    w     )               β -integrin-KO GnRH neurons also display shorter neurites than 

control cells (insets in a and b, arrowheads). (c, d) The median eminence (me) shows a 

dramatic loss of GnRH-immunoreactive terminals in GnRH-Itgb1-/- mice (d) when compared 

with control littermates (c). III V, third ventricle; me, median eminence. Scale bars: (a, b and 

      )              μ                      )     μ   
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Figure 4. β -integrin inhibition disrupts GnRH fibers network in vitro. (a) Schematic of a nasal 

explant removed from an E11.5 mouse and maintained in serum-free media for 7 div. Ovals 

represent olfactory pit epithelium (OPE); in center is nasal midline cartilage (NMC) and 

surrounding mesenchyme (M). GnRH neurons (dots) migrate from OPE and follow olfactory 

axons to the midline and off the explant into the periphery. Boxed region within schematic is 

area shown in c–f. (b) Representative gel of PCR product         H     β -integrin (Itgb3) 

from GnRH neurons isolated from GnRH::GFP E12.5 nasal regions through Fluorescent 

Activated Cell Sorter (FACS). Positive (GT1-7 cells) and negative controls (water; W) were 

included in the reaction mix. (c, e) Explants in experimental groups were maintained in 

serum-free medium (CNTR) with or without Echistatin (0.1 mM) at 3 div for 72 hours and 

fixed at 7 div for immunocytochemical processing (GnRH, green). (d, f) Representative images 

      z                        “ k       z ”                        w                   -f) 40 

mm. 
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Figure 5. Female GnRH-Itgb1-/- mice exhibit impaired fertility. Fertility in GnRH-Itgb1+/+ and 

GnRH-Itgb1-/- female mice. Matings were carried out for 90 d. (a) The latency to first 

pregnancy was not affected in any group analyzed. (b) The total number of litters per female 

was significantly reduced in conditional mutant female mice as compared to control females 

mated with either GnRH-Itgb1-/- or GnRH-Itgb1+/+ males. (c) Conditional mutant female mice 

gave birth to a reduced number of pups per litter as compared to control females. Data are 

                     ±  E                         *  <              ’                    

difference post-hoc analysis). (d) Morphological analysis of ovaries from 3-5 month-old 

control (GnRH-Itgb1+/+; n = 5) and mutant mice (GnRH-Itgb1-/-; n = 5). Ovary sections (5 µm-

thick) were stained with hematoxylin-eosin. In GnRH-Itgb1-/- females, the ovaries displayed a 

greater number of atretic follicles and a relative paucity of corpora lutea (CL), when 

compared with the ovaries of control littermates in which follicular development was normal. 
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(e) The numbers of corpora lutea, Graafian follicles and atretic follicles were quantified in the 

ovaries of CNTR and KO mice. Data are represented as means ± SEM. ap < 0.05, unpaired 

       ’   -                     μ   
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Figure 6. Female GnRH-Itgb1-/- mice exhibit delayed puberty and abnormal estrous cyclicity. 

(a) Vaginal opening and time of the first estrus were examined daily from postnatal day 21 as 

good indicators of puberty onset in rodents. Vaginal opening in GnRH-Itgb1-/- females was 

delayed by approximately 6 days when compared with control females. Vaginal smears were 

prepared daily following vaginal opening, and the age at first estrus (defined by the presence 

of a majority of cornified epithelial cells) was recorded (n = 12 each group). First estrus was 

delayed by approximately 10 days in GnRH-Itgb1-/- females. Data are represented as means ± 

 E                         *  <                         ’   -test. (b) Analysis of cumulative 

percentage of vaginal opening within the two groups. In control females, 100% of the mice 

displayed vaginal opening by the 28th day of postnatal life, whereas the entire population of 

GnRH-Itgb1-/- mice had vaginal opening by the 37th postnatal day. (c) Analysis of cumulative 
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percentage of the first estrus within the two groups. In control females, 100% of the mice 

had the first estrus by the 34th day of postnatal life, whereas the entire population of GnRH-

Itgb1-/- mice entered puberty at the 44th postnatal day.  
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Figure 7. Female GnRH-Itgb1-/- mice show abnormal estrous cyclicity. Vaginal cytology was 

assessed for 20 d in GnRH-Itgb1+/+ (n = 12) and GnRH-Itgb1-/- mice (n = 12). (a) Time in each 

estrous cycle phase as a percentage of the cycle. GnRH-Itgb1-/- females remained in a 

predominantly diestrus state with the sporadic occurrence of complete ovarian cycles, 

whereas control littermates showed a regular estrous cyclicity. Data are represented as 

      ±  E                         *  <                         ’   -test. M/D: 

metestrus/diestrus; E: estrus; P: proestrus. (b, c), Representative estrous cyclicity of control 

(b) and GnRH-Itgb1-/- mice (c). Control females typically show a regular 4-d ovarian cycles (b), 

whereas GnRH-Itgb1-/- mice are characterized by with highly irregular cycles (c).  
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Figure 8. LH surge in GnRH-Itgb1-/-. Profile of LH surge in ovariectomized mice of the two 

genotypes treated with estrogen and progesterone. Note that while control OVX mice (n = 4) 

exhibited an LH surge in response to gonadal steroid treatment, GnRH-Itgb1-/- littermates (n 

= 5) did not, confirming that estrogen-based positive feedback is disrupted. Data are 

                     ±  E                         *  <                         ’   -test. 
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Polycystic ovary syndrome (PCOS) is the most common cause of female infertility, 

affecting up to 10% of all women worldwide 1,2. It is a clinically heterogeneous reproductive 

disorder associated with both genetic and environmental factors 3. The reproductive 

dysfunction involves persistently rapid gonadotropin-releasing hormone (GnRH) pulsatility, 

which favors the pituitary synthesis of luteinizing hormone (LH) over follicle-stimulating 

hormone (FSH) 4. These observations indicate that elevated GnRH release is an important 

pathophysiological feature in many cases of PCOS, although the origin of this dysregulation 

remains unknown.  

Another hallmark of PCOS is elevated levels of circulating anti-Müllerian hormone (AMH) 

5,6. In addition to the ovaries, AMH and its receptors are expressed in multiple areas of the 

murine central nervous system, indicating that the brain represents another region of AMH 

signaling 7-11. However, the possible extra-ovarian effects of AMH on the hypothalamic-

pituitary-gonadal axis have never been investigated. 

Here, we show that AMH is an important regulator of GnRH neuronal function and 

significantly stimulates the firing activity of GnRH neurons as well as the secretion of GnRH 

and LH, highlighting how aberrant AMH signaling in GnRH neurons might culminate in PCOS. 
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AMH, also known as Müllerian-inhibiting substance (MIS), is a member of the transforming 

growth factor-β (TGF-β) superfamily. It is a homodimeric glycoprotein with a molecular weight 

of 140 kDa, in which the two monomers are linked by disulfide bonds 12. AMH is produced by 

the fetal testis playing an important role during sexual differentiation of the male genital tract 

where it inhibits Müllerian duct development into the female reproductive tract. In the 

absence of AMH or in cases of AMH receptor insensitivity, the Müllerian ducts generate 

fallopian tubes, a uterus and the upper vagina in both sexes 13. In females, AMH is secreted by 

the granulosa cells of ovarian follicles 14 and appears to regulate early follicular development, 

controlling the transition from resting primordial follicles to growing follicles 15. In addition, in 

PCOS women, AMH is suspected to play a significant role in causing anovulation due to its 

inhibitory influence on FSH that normally promotes follicular development from the small 

antral stage to ovulation stage 16. 

AMH binds to a specific type II receptor (AMHR2) 17,18 that heterodimerizes with one of a 

variety of type I receptors (ALK2, ALK3 and ALK6) to transduce its signal 19. The type II receptor 

contains an intracellular kinase domain that phosphorylates serine and threonine residues 

located near the transmembrane region of the type I receptor, in the glycine/serine rich (GS) 

domain, and recruits Smad proteins that are translocated to the nucleus to regulate the 

expression of their target genes 20. 

AMH is the only known ligand of AMHR2, suggesting that tissues that express this receptor 

are likely to be targets of AMH. In females, the distribution and function of AMHR2 have not 

been extensively studied beyond its role in the ovaries, even though it is expressed in 

extragonadal tissues including the developing brain 7,8. In a preliminary analysis, we thus 

examined the expression pattern of AMHR2 protein in the adult (postnatal day P90) female 

mouse brain by labeling sections with a purified polyclonal antiserum to AMHR2 

(Supplementary Fig. 1a, b). AMHR2-immunoreactive cells were widely distributed in several 

brain regions including the cortex (Supplementary Fig. 1a), hypothalamus (Fig. 1e), 

hippocampus and cerebellum (data not shown). Pre-incubation of the antiserum with its 

specific immunogen resulted in an absence of immunoreactivity, indicating its specificity to 

AMHR2 (Supplementary Fig. 1b). This was also confirmed by western blot analysis on protein 
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extracts of ovaries harvested from Amhr2 wild-type and knock-out mice (Supplementary Fig. 

1c). 

In order to determine whether GnRH neurons express AMHR2 during their development 

and maturation, double-immunofluorescence experiments were performed on sections of 

mouse (Fig. 1a-c) and human fetuses (Fig. 1j-m) as well as on sections of the hypothalamus of 

adult female mice (Fig. 1d-i) and humans (Fig. 1n-p). We found that in both mice and humans, 

AMHR2 was expressed in GnRH neurons from early embryonic development, coincident with 

the beginning of the migratory process 21,22, up to adulthood. In adult mice, immunolabeling 

of sections containing the rostral preoptic area, including the organum vasculosum of the 

lamina terminalis (OVLT; n = 5; Fig. 2d-i), revealed that GnRH neurons located in this region 

express AMHR2. 

In order to further study the expression of AMHR2 in these regions, we took advantage of a 

transgenic mouse line (AMHR2::Cre) that expresses the Cre recombinase under the control of 

the AMHR2 promoter 23 and crossed it with a tdTomato reporter line (tdTomatoloxP/STOP) to 

generate fluorescent AMHR2-expressing cells in double-transgenic offspring (AMHR2::Cre; 

tdTomatoloxP/STOP) (Supplementary Fig. 2). Consistent with our immunohistochemical data, 

within the hypothalamus, we observed tdTomato expression cells in GnRH cell bodies 

(Supplementary Fig. 2a-e), as well as in endothelial and ependymal cells of the median 

eminence (ME) (Supplementary Fig. 2f-h), which are known to interact closely with GnRH 

terminals in the ME 24,25. The co-expression of vimentin by many cells in the ependymal layer 

indicated that they are tanycytes, specialized glial cells of the hypothalamus that play 

essential roles in regulating neurohormone secretion by GnRH neurons 26. 

We next took advantage of GnRH::GFP 27 mice to isolate GFP-positive GnRH neurons by 

FACS (Fluorescence-Activated Cell Sorting) 28 and we analyzed by qRT-PCR the expression of 

genes of interest in these neurons isolated at different developmental stages. GnRH neurons 

were harvested respectively from the noses of embryonic day 12.5 (E12.5) embryos, in which 

the majority of the GnRH population is still located in the nasal region (Fig. 2a) 21,22, and from 

the hypothalamic/preoptic area of juvenile (postnatal day 12; P12) and adult female mice, in 

which GnRH neurons have finished their migration into the brain (Fig. 2a). The expression of 

the AMHR2 transcript in GnRH neurons was low during embryonic development but 



                                                                                                                                     Results: Article 2 
 

 120 

significantly increased in juvenile and adult mice (Fig. 2b). In addition to AMHR2, mature 

GnRH neurons expressed the three ALK receptors (Fig. 2c). 

We next performed electrophysiological recordings of GnRH neurons in acute brain-slice 

preparations from the rostral preoptic area of GnRH::GFP mice. AMH at 1, 10 and 100 ng/ml 

concentrations was tested on GnRH-GFP neurons located in the rostral preoptic area by bath 

application. This concentration range is physiological; indeed serum AMH levels in adult mice 

(4-8 months old) have been reported to be about 30 ng/ml 29.  

AMH at 1 ng/ml was applied to 20 GnRH neurons, of which 8 exhibited a mean increase in 

firing rate from 0.82 ± 0.36Hz to 1.76 ± 0.38Hz (p = 0.0142; Wilcoxon Signed Ranks Test for 

paired samples) that lasted 6.12 ± 1.67 min (Fig. 3a, b). The 8 responding cells were then 

tested with 10 ng/ml AMH, which was found to induce a more marked increase in neuronal 

activity (firing rate: 1.25 ± 0.43Hz to 2.75 ± 0.37Hz, p = 0.0142; paired sample Wilcoxon Signed 

Ranks Test for paired samples) with a mean duration of 12.7 ± 1.4 min (Fig. 3a, b). Another 

group of GnRH neurons was tested with 100 ng/ml of bath applied AMH, and 4 out of the 10 

displayed an increase in excitation ranging from 0.93 ± 0.55 Hz to 2.47 ± 0.24 Hz (p < 0.05, 

paired sample Wilcoxon Signed Ranks Test for paired samples), with the duration of enhanced 

activity lasting 13.2 ± 1.2 min. To determine whether the effects of AMH on GnRH neurons 

involve ionotropic amino acid transmission, an amino acid receptor blocker (AAB) cocktail 

consisting of the AMPA/kainate antagonist CNQX, the NMDA receptor antagonist kynurenic 

acid and the GABAA receptor antagonist GABAzine was applied to the bath before AMH 

application. AMH (10 ng/ml) continued to increase GnRH neuronal activation in the presence 

of the AAB cocktail (n = 3, Fig. 3c, d), indicating that the actions of AMH on GnRH neurons are 

independent of ionotropic receptor-mediated presynaptic inputs. We then tested GnRH 

neurons from male (n = 9 cells), diestrous female (n = 11 cells) and proestrous female (n = 24 

cells) mice with the sub-maximal concentration of AMH (10 ng/ml) to determine whether the 

response of GnRH neurons to AMH differed according to sex or estrous cycle phase. In all 

groups, approximately 50% of GnRH neurons responded to AMH (56% in males, 64% in 

diestrous and 49% in proestrous females) with a 70-80% increase in activity that lasted for 10-

17 min (Fig. 3e).  The percentage of cells responding and the magnitude of the increase in 

firing were not different between the three groups (Chi Squared test and ANOVA). However, 
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the duration of the response was significantly reduced in GnRH neurons from proestrous mice 

compared with diestrous animals (p<0.01; Fisher's Least Significant Difference, LSD, Fig. 3e). 

These electrophysiological investigations show that AMH is a potent activator of nearly 50% of 

GnRH neurons, independent of sex. Notably, only 50–70% of all GnRH neurons are thought to 

be involved in controlling pituitary gonadotropin secretion 30,31, indicating that the AMH-

induced increase in the pulsatile secretion of GnRH might indeed be relevant to the regulation 

of LH secretion under physiological and pathological conditions. Remarkably, our results also 

indicate that AMH at subnanomolar concentrations (from 0.01 to 1 nM) can exert potent 

stimulatory effects on GnRH neurons, a property rarely displayed by peptides with respect to 

these neurons, with the exception of kisspeptin 32,33. 

In order to test whether the activatory effect of AMH on GnRH neurons was of functional 

importance, we studied whether AMH could enhance GnRH secretion from nerve terminals in 

rat ME explants (Fig. 3f-h). The ME is one of eight circumventricular organs – regions 

surrounding the cerebral ventricles – in the central nervous system, in which the blood-brain 

barrier is modified by the fenestration of endothelial cells to allow the release of 

neurohormones by neuroendocrine cell terminals into pituitary portal blood vessels for 

delivery to the anterior pituitary 34,35. Plasma AMH could thus access this region through 

fenestrated capillaries and act on GnRH terminals directly to trigger the rapid secretion of the 

neurohormone and/or indirectly via tanycytes or vascular endothelial cells, which also express 

AMHR2 (Supplementary Fig. 2g, h). 

 ME explants, which only contain GnRH axon terminals but not cell bodies, were generated 

as previously described 36-38 from adult female rats during diestrus, when GnRH secretion is 

low, and challenged with AMH (3 g/ml) for 4 hours before using ELISA to measure the 

amount of GnRH secreted into the medium (Fig. 3g). In explants from diestrous rats, 

treatment with AMH resulted in a 4-fold increase in GnRH release when compared to vehicle-

treated explants (Fig. 3g), although further investigations are necessary to determine which 

cell type or types are involved in this increased release. These results were confirmed by 

repeating the same experiments in adult female rats four weeks after they were 

ovariectomized (OVX), to remove the effects of the endogenous gonadal hormones on the 

explant preparations (Fig. 3h).  
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Since AMH is a member of the TGF-β superfamily, we then tested whether TGF-β1 similarly 

elicited GnRH secretion from the ME of OVX rats (Fig. 3h). In agreement with earlier studies 38, 

we found that TGF-β1 treatment was not able to alter GnRH release (Fig. 3h), confirming the 

specificity of the AMH signaling pathway in the increase in GnRH neuronal activity and 

hormone secretion. 

To examine the effects of AMH on gonadotropin secretion in vivo, we next administered 

AMH directly into the lateral ventricle of diestrous female mice, and measured LH secretion, 

an index of GnRH release and function (Fig. 4a). We first analyzed plasma LH concentrations 

15 minutes after administering increasing doses of AMH (Fig. 4b), and found that 3 g/ml of 

AMH injected intracerebroventricularly (i.c.v.) induced the strongest increase in LH release. 

We thus used this concentration in subsequent experiments, and analyzed LH levels 15 and 30 

min after the injection. AMH administration induced a rapid increase in LH secretion 15 min 

after treatment (Fig. 4c), but returned to baseline by 30 minutes, strongly suggesting that this 

action of AMH is not mediated by the canonical Smad proteins, whose activation normally 

requires a few hours, but rather through a fast and non-genomic pathway. Interestingly, the 

effects of AMH treatment on LH secretion were significantly attenuated by the intravenous 

delivery of an ALK 2/3/6 inhibitor (100 µM), suggesting that the AMH-induced rise in LH is 

nevertheless dependent on AMH receptor signaling (Fig. 4c).  

In order to determine whether the actions of AMH administered i.c.v. on GnRH/LH 

secretion were indeed mediated by GnRH neuronal activity and not by a direct effect on the 

pituitary, we administered a GnRH antagonist (cetrorelix acetate; 0.5 mg/Kg), 

intraperitoneally (i.p.) 30 min prior to AMH i.c.v. administration (3ug/1ul per mouse). 

Cetrorelix acetate is known to specifically saturate GnRH receptors at the level of the anterior 

pituitary 39,40, thus preventing LH secretion. The effects of AMH on LH secretion were totally 

blocked by cetrorelix treatment, excluding a direct effect of AMH at the level of the pituitary, 

where both the ligand and its receptor are expressed and active in gonadotropin transcription 

41. This provides further support for the central action of AMH on GnRH neurons (Fig. 4c). 

This work shows for the first time that AMH acts on the central nervous system and in 

particular at the hypothalamic level increasing GnRH neuronal activation and secretion. This is 
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particular relevant since it points to AMH not only as a diagnostic marker of PCOS but also as a 

potential target for PCOS treatment.  

Indeed, we can speculate that elevated AMH levels detected in PCOS women could 

contribute to the dysregulation of the GnRH and LH pulsatility that characterize the syndrome 

(Supplementary fig. 3). In fact, elevated immunoreactive and bioactive LH levels have been 

detected in the serum of about 70% of women with PCOS, and the elevation of LH pulse 

amplitude and frequency induces a two-to-threefold elevation in circulating LH levels when 

compared to FSH 42. 

The intriguing concept that AMH may act as a trigger for GnRH release via AMHR2 at the 

hypothalamic level by targeting GnRH neurons not only in rodents but also in humans (Fig. 2j-

p) raises the thought-provoking idea that certain types of PCOS could primarily be due to a 

hypothalamic dysfunction.  

Interestingly, in a recent study, a role for the AMHR2-482 A>G gene polymorphism in the 

pathogenesis of PCOS has been suggested 44. Notably, Rigon and co-authors 45 have also 

shown that genetic variants of the AMHR2 gene are associated with idiopathic, non-PCOS-

related, female infertility, further supporting the relevance of AMH signaling in the 

hypothalamic-pituitary-gonadal axis in physiological and pathological conditions. 

 

 

 

 

 

 

 

 



                                                                                                                                     Results: Article 2 
 

 124 

ACKNOWLEDGMENTS 

This work was supported by the Institut National de la Sante et de la Recherche Medicale, 

Inserm, France (grant number U837), Agence Nationale de la Recherche, ANR, France (grant 

numbers ANR-2010-JCJC-1404 – 01 to P.G. and ANR-09-BLAN-0267 to V.P.), the Fondation 

pour la Recherche Medicale (Equipe FRM 2005 & DEQ20130326524, France to V.P), the 

Institut de Médecine Prédictive et de Recherche Thérapeutique  (IMPRT-IFR114, France; 

electron microscopy core facility), the University of Lille 2, Lille, France (Appel à Projets du 

Conseil Scientifique de l’Universite Lille 2 to P.G.), the New Zealand Health Research Council 

(A.H and X.L.). We thank Meryem Tardivel (imaging core facility, IMPRT-IFR114), Nathalie Jouy 

(cell sorting core facility, IMPRT-IFR114), Delphine Taillieu and Julien Devassine (animal core 

facility, IMPRT-IFR114) for their expert technical assistance and Dr. S. Rasika for the editing of 

our manuscript. 

AUTHOR CONTRIBUTIONS 

I.C. prepared the original draft of the manuscript and was involved in all aspects of the 

experimental design and research, including execution of rodent surgeries (i.c.v injections), 

dissections, ELISA and immunohistochemical experiments in rodents and part of the 

transcripts’ analyses. F.C. performed immunohistochemistry on human tissues and 

participated in some experimental designs. X.L. performed all electrophysiological recordings. 

A.M. performed FACS sorting and quantitative PCR execution. J.P. performed explant cultures. 

S.P.J. provided the AMHR2::Cre mice. S.J. and D.D. were involved in the interpretation of 

results and preparation of the manuscript. F.C. was responsible for human tissue generation 

and preparation of relevant human subjects’ information. M.B. collected the hypothalamus 

from adult post-mortem brains. A.E.H. was involved in the analysis and interpretation of the 

electrophysiological experiments. V.P. was involved in all aspects of study design and 

interpretation of results. P.G. was involved in all aspects of study design, data analysis, 

interpretation of results, preparation of the manuscript and figures and funded the project. All 

authors discussed the results presented in the manuscript. 

COMPETING FINANCIAL INTERESTS 

The authors declare no competing financial  



                                                                                                                                     Results: Article 2 
 

 125 

REFERENCES 

1. Broekmans, F.J. & Fauser, B.C. Diagnostic criteria for polycystic ovarian syndrome. Endocrine 

30, 3-11 (2006). 

2. Ehrmann, D.A. Polycystic ovary syndrome. The New England journal of medicine 352, 1223-

1236 (2005). 

3. Roland, A.V. & Moenter, S.M. Reproductive neuroendocrine dysfunction in polycystic ovary 

syndrome: Insight from animal models. Frontiers in neuroendocrinology (2014). 

4. Taylor, A.E., et al. Determinants of abnormal gonadotropin secretion in clinically defined 

women with polycystic ovary syndrome. The Journal of clinical endocrinology and metabolism 

82, 2248-2256 (1997). 

5. Piouka, A., et al. Anti-Mullerian hormone levels reflect severity of PCOS but are negatively 

influenced by obesity: relationship with increased luteinizing hormone levels. American journal 

of physiology. Endocrinology and metabolism 296, E238-243 (2009). 

6. Cook, C.L., Siow, Y., Brenner, A.G. & Fallat, M.E. Relationship between serum mullerian-

inhibiting substance and other reproductive hormones in untreated women with polycystic 

ovary syndrome and normal women. Fertility and sterility 77, 141-146 (2002). 

7. Lebeurrier, N., et al. Anti-Mullerian-hormone-dependent regulation of the brain serine-

protease inhibitor neuroserpin. J Cell Sci 121, 3357-3365 (2008). 

8. Wang, P.Y., et al. Mullerian inhibiting substance contributes to sex-linked biases in the brain 

and behavior. Proceedings of the National Academy of Sciences of the United States of America 

106, 7203-7208 (2009). 

9. Wittmann, W. & McLennan, I.S. Anti-Mullerian hormone may regulate the number of 

calbindin-positive neurons in the sexually dimorphic nucleus of the preoptic area of male mice. 

Biology of sex differences 4, 18 (2013). 

10. Wittmann, W. & McLennan, I.S. The bed nucleus of the stria terminalis has developmental and 

adult forms in mice, with the male bias in the developmental form being dependent on 

testicular AMH. Hormones and behavior 64, 605-610 (2013). 

11. Kow, L.M., et al. Development of a sexually differentiated behavior and its underlying CNS 

arousal functions. Current topics in developmental biology 79, 37-59 (2007). 

12. Cate, R.L., et al. Isolation of the bovine and human genes for Mullerian inhibiting substance 

and expression of the human gene in animal cells. Cell 45, 685-698 (1986). 

13. Behringer, R.R., Finegold, M.J. & Cate, R.L. Mullerian-inhibiting substance function during 

mammalian sexual development. Cell 79, 415-425 (1994). 



                                                                                                                                     Results: Article 2 
 

 126 

14. Vigier, B., Picard, J.Y., Tran, D., Legeai, L. & Josso, N. Production of anti-Mullerian hormone: 

another homology between Sertoli and granulosa cells. Endocrinology 114, 1315-1320 (1984). 

15. Durlinger, A.L., et al. Control of primordial follicle recruitment by anti-Mullerian hormone in 

the mouse ovary. Endocrinology 140, 5789-5796 (1999). 

16. Homburg, R. & Crawford, G. The role of AMH in anovulation associated with PCOS: a 

hypothesis. Human reproduction 29, 1117-1121 (2014). 

17. di Clemente, N., et al. Cloning, expression, and alternative splicing of the receptor for anti-

Mullerian hormone. Molecular endocrinology 8, 1006-1020 (1994). 

18. Baarends, W.M., et al. A novel member of the transmembrane serine/threonine kinase 

receptor family is specifically expressed in the gonads and in mesenchymal cells adjacent to 

the mullerian duct. Development 120, 189-197 (1994). 

19. Josso, N. & Clemente, N. Transduction pathway of anti-Mullerian hormone, a sex-specific 

member of the TGF-beta family. Trends in endocrinology and metabolism: TEM 14, 91-97 

(2003). 

20. Visser, J.A. & Themmen, A.P. Anti-Mullerian hormone and folliculogenesis. Molecular and 

cellular endocrinology 234, 81-86 (2005). 

21. Wray, S., Grant, P. & Gainer, H. Evidence that cells expressing luteinizing hormone-releasing 

hormone mRNA in the mouse are derived from progenitor cells in the olfactory placode. 

Proceedings of the National Academy of Sciences of the United States of America 86, 8132-

8136 (1989). 

22. Schwanzel-Fukuda, M. & Pfaff, D.W. Origin of luteinizing hormone-releasing hormone neurons. 

Nature 338, 161-164 (1989). 

23. Jamin, S.P., Arango, N.A., Mishina, Y., Hanks, M.C. & Behringer, R.R. Requirement of Bmpr1a 

for Mullerian duct regression during male sexual development. Nature genetics 32, 408-410 

(2002). 

24. Prevot, V., et al. Neuronal-glial-endothelial interactions and cell plasticity in the postnatal 

hypothalamus: implications for the neuroendocrine control of reproduction. 

Psychoneuroendocrinology 32 Suppl 1, S46-51 (2007). 

25. Giacobini, P., et al. Brain Endothelial Cells Control Fertility through Ovarian-Steroid-Dependent 

Release of Semaphorin 3A. PLoS Biol 12, e1001808 (2014). 

26. Mullier, A., Bouret, S.G., Prevot, V. & Dehouck, B. Differential distribution of tight junction 

proteins suggests a role for tanycytes in blood-hypothalamus barrier regulation in the adult 

mouse brain. The Journal of comparative neurology 518, 943-962 (2010). 



                                                                                                                                     Results: Article 2 
 

 127 

27. Spergel, D.J., Kruth, U., Hanley, D.F., Sprengel, R. & Seeburg, P.H. GABA- and glutamate-

activated channels in green fluorescent protein-tagged gonadotropin-releasing hormone 

neurons in transgenic mice. J Neurosci 19, 2037-2050 (1999). 

28. Parkash, J., et al. Suppression of beta1-Integrin in Gonadotropin-Releasing Hormone Cells 

Disrupts Migration and Axonal Extension Resulting in Severe Reproductive Alterations. J 

Neurosci 32, 16992-17002 (2012). 

29. Kevenaar, M.E., et al. Serum anti-mullerian hormone levels reflect the size of the primordial 

follicle pool in mice. Endocrinology 147, 3228-3234 (2006). 

30. Silverman, A.J., Jhamandas, J. & Renaud, L.P. Localization of luteinizing hormone-releasing 

hormone (LHRH) neurons that project to the median eminence. J Neurosci 7, 2312-2319 

(1987). 

31. Merchenthaler, I., Setalo, G., Petrusz, P., Negro-Vilar, A. & Flerko, B. Identification of 

hypophysiotropic luteinizing hormone-releasing hormone (LHRH) neurons by combined 

retrograde labeling and immunocytochemistry. Experimental and clinical endocrinology 94, 

133-140 (1989). 

32. Pielecka-Fortuna, J., Chu, Z. & Moenter, S.M. Kisspeptin acts directly and indirectly to increase 

gonadotropin-releasing hormone neuron activity and its effects are modulated by estradiol. 

Endocrinology 149, 1979-1986 (2008). 

33. Han, S.K., et al. Activation of gonadotropin-releasing hormone neurons by kisspeptin as a 

neuroendocrine switch for the onset of puberty. J Neurosci 25, 11349-11356 (2005). 

34. Page, R. The anatomy of the hypothalamo-hypophysial complex. In: Knobil E. and Neill J.D., 

editors. Physiology of Reproduction, (New York, Raven Press, 1994). 

35. Langlet, F., et al. Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of 

metabolic signals to the arcuate nucleus in response to fasting. Cell metabolism 17, 607-617 

(2013). 

36. Prevot, V., et al. Estradiol coupling to endothelial nitric oxide stimulates gonadotropin-

releasing hormone release from rat median eminence via a membrane receptor. Endocrinology 

140, 652-659 (1999). 

37. Prevot, V., Cornea, A., Mungenast, A., Smiley, G. & Ojeda, S.R. Activation of erbB-1 signaling in 

tanycytes of the median eminence stimulates transforming growth factor beta1 release via 

prostaglandin E2 production and induces cell plasticity. J Neurosci 23, 10622-10632 (2003). 

38. Ojeda, S.R., Urbanski, H.F., Costa, M.E., Hill, D.F. & Moholt-Siebert, M. Involvement of 

transforming growth factor alpha in the release of luteinizing hormone-releasing hormone 

from the developing female hypothalamus. Proceedings of the National Academy of Sciences 

of the United States of America 87, 9698-9702 (1990). 



                                                                                                                                     Results: Article 2 
 

 128 

39. Halmos, G., Schally, A.V., Pinski, J., Vadillo-Buenfil, M. & Groot, K. Down-regulation of pituitary 

receptors for luteinizing hormone-releasing hormone (LH-RH) in rats by LH-RH antagonist 

Cetrorelix. Proceedings of the National Academy of Sciences of the United States of America 

93, 2398-2402 (1996). 

40. Pinski, J., et al. Chronic administration of the luteinizing hormone-releasing hormone (LHRH) 

antagonist cetrorelix decreases gonadotrope responsiveness and pituitary LHRH receptor 

messenger ribonucleic acid levels in rats. Endocrinology 137, 3430-3436 (1996). 

41. Bedecarrats, G.Y., O'Neill, F.H., Norwitz, E.R., Kaiser, U.B. & Teixeira, J. Regulation of 

gonadotropin gene expression by Mullerian inhibiting substance. Proceedings of the National 

Academy of Sciences of the United States of America 100, 9348-9353 (2003). 

42. Goodarzi, M.O., Dumesic, D.A., Chazenbalk, G. & Azziz, R. Polycystic ovary syndrome: etiology, 

pathogenesis and diagnosis. Nat Rev Endocrinol 7, 219-231 (2011). 

43. Eagleson, C.A., et al. Polycystic ovarian syndrome: evidence that flutamide restores sensitivity 

of the gonadotropin-releasing hormone pulse generator to inhibition by estradiol and 

progesterone. The Journal of clinical endocrinology and metabolism 85, 4047-4052 (2000). 

44. Georgopoulos, N.A., et al. Increased frequency of the anti-mullerian-inhibiting hormone 

receptor 2 (AMHR2) 482 A>G polymorphism in women with polycystic ovary syndrome: 

relationship to luteinizing hormone levels. The Journal of clinical endocrinology and 

metabolism 98, E1866-1870 (2013). 

45. Rigon, C., et al. Association study of AMH and AMHRII polymorphisms with unexplained 

infertility. Fertility and sterility 94, 1244-1248 (2010). 

 

 

 

 

 

 

 

 



                                                                                                                                     Results: Article 2 
 

 129 

 

Figure 1 AMHR2 is expressed in mouse and human GnRH neurons. (a-c) Confocal 

photomicrographs showing GnRH and AMHR2 immunoreactivity in sagittal sections of E12.5 

embryo nasal compartment (E12.5, n = 5). Dashed lines indicate the boundary between the 

vomeronasal organ (vno) and the nasal mesenchyme (nm). GnRH neurons migrating out of the 

vno express AMHR2. (d-i) Confocal photomicrographs showing GnRH (d, g) and AMHR2 (e, h) 

immunoreactivity in coronal sections of adult female hypothalami (P90-120, n = 5). Images 

show a wide expression of AMHR2 at the level of the organum vasculosum of the lamina 

terminalis (OVLT). (g-i) High magnifications images of boxed area in d. Arrows point to GnRH 

neurons expressing AMHR2. (j-m) Representative sagittal section of a 9 weeks post-

amenorrhea (WPA) human fetus immunolabeled for GnRH (n = 3). At this developmental 

stage, the majority of GnRH neurons are still located in the nasal region, at the beginning of 

their migratory process. Double-immunofluorescence shows co-expression of these antigens 

in the same migratory neurons. (n-p) Representative coronal section of an adult 

hypothalamus double-stained for GnRH and AMHR2. Human hypothalami were obtained 
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between 24 and 36 hours postmortem from two autopsied individuals: a 20-year-old female 

and 72 years old male subjects. In both cases, GnRH neurons were found immunopositives for 

AMHR2. Oe: olfactory epithelium; cp: cribriform plate; fb: forebrain; vfb: ventral forebrain. 
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Figure 2 AMH receptors’ transcript expression in GnRH neurons. (a) Schematic summarizing 

the steps of GnRH-GFP cells’ isolation. GnRH-GFP positive cells were isolated by fluorescent 

activated cell sorting from the nasal regions of E12.5 embryos (n = 3) and from the 

hypothalamic preoptic areas of postnatal (P12, n = 3) and adult (P90, n = 3) female mice. (b) 

Real-time PCR analysis of expression levels of Amhr2 mRNAs in GnRH cells sorted at E12.5, P12 

and P90. Amhr2 transcript expression was detectable in GnRH neurons at all stages, although it 

reached the highest expression at P90 as compared to E12.5 and P12. Values are expressed 

relative to E12.5, set at 1, and shown as means ± SEM. One-way ANOVA, F(2,8) = 7.6, p = 0.02. * 

p: < 0.05,  Fischer’s least significant difference post hoc test, between P90 and E12.5 mice and 

P90 versus P12. (c) Relative mRNA expression of AMH type-I receptors (Alk2, Alk3 and Alk6) in 

GnRH neurons isolated from the preoptic regions of adult female mice (P90, n = 3). All 

receptors’ transcripts were detectable in adult GnRH neurons. 
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Figure 3 AMH activates GnRH neuron firing. (a, b) Cell-attached current recordings of two 

GnRH neurons from two GnRH-GFP male mice showing a dose-dependent activation by 1 and 
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10 ng/ml AMH. (c, d) Cell-attached current recordings of two GnRH neurons from two GnRH-

GFP female mice showing that AMH excitation of GnRH neurons is not dependent upon amino 

acid transmission. AAB, amino acid blocker cocktail. (e) Table showing the numbers of cells 

activated by AMH with % in brackets; the mean ± SEM firing frequency before and in response 

to AMH exposure; the percentage increase in firing rate, and duration of increased firing. **P 

< 0.005 Fisher LSD test, compared to diestrus. 

AMH increases GnRH secretion from median eminence explants. (f) Schematic diagram 

illustrating the ME dissection and ME explant preparation. Hypothalamic MEs were 

microdissected from adult diestrous or ovariectomized (OVX) female rats and incubated at 

37°C for 4 hours at 300 rpm until medium collection. (g) Quantification of GnRH secretion 

from ME explants of diestrus rats stimulated or not for 4 hours with AMH (Die, n = 4 ; Die + 

AMH, n = 4, AMH = 3 g/ml). Conditioned medium was collected for each culture condition 

and processed by GnRH Elisa. Explants from the diestrous phase treated with AMH show 

significantly increased GnRH secretion as compared to control cultures (Die). GnRH 

concentrations are represented as means ± SEM. Unpaired Student’s t test, t (6) = -6.01, ***: p 

< 0.001. (h) MEs were dissected from OVX rats one month after the surgery and cultured as 

described above with the indicated treatments (Cntr, n = 4; AMH, n = 4; TGF-1, n = 4; TGF-1 

+ AMH, n = 4). AMH but not TGF-1 induced a strong GnRH release from the hypothalamic 

ME. GnRH concentrations are represented as means ± SEM. One-way ANOVA, F(3,15) = 30.9, p < 

0.0001. *** p: < 0.0001, ** p: < 0.001 Fischer’s least significant difference post hoc test. 
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Figure 4 Intracerebroventricular (i.c.v.) administration of AMH in vivo induces increase in 

plasma LH levels. (a) Schematic representation of AMH injection into the lateral cerebral 

ventricle of diestrous female mice. Animals were sacrificed 15 or 30 minutes after the surgical 

procedure and trunk blood was collected. (b) Following AMH administration (AMH 0.5 g/ml, 

n = 3; AMH 1 g/ml, n = 4; AMH 3 g/ml, n = 6) plasma LH levels significantly increased in a 

dose-dependent manner as compared to the control group (saline-treated, n = 5). Values are 

expressed as means ± SEM. One-way ANOVA, F (3,19) = 6.6, p = 0.004. * p: < 0.01,  ** p: < 0.001, 

Fischer’s least significant difference post hoc test. (c) Adult female mice in diestrus were 

injected into the lateral ventricle (ICV) with 3 g/ml of AMH (n = 20), or sterile saline (n = 7). 

Plasma circulating LH levels were measured following the indicated treatments. LH secretion 

peaked at 15 minutes after AMH injection (n = 20) as compared to control group (saline, n = 7) 

but returned to basal levels 30 minutes after AMH administration (n = 7). To exclude a 

possible role of AMH at the pituitary level, we injected AMH i.c.v in concomitance with 

intraperitoneal administration of the GnRH antagonist and sacrificed the mice 15 minutes 

later (n = 7). GnRH antagonist blunted the AMH-induced LH rise. Also the ALK receptors 

inhibitor (ALK 2/3/6 inhib) treatment prevented the AMH-dependent increase in LH secretion 

(n = 6). One-way ANOVA, F (4,47) = 11.1, p < 0.0001. * p: < 0.01,  *** p: < 0.0001, Fischer’s least 

significant difference post hoc test. 
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METHODS 

Animals 

Sprague Dawley female rats and C57BL/6J mice (Charles River, USA) were housed under 

specific pathogen-free conditions in a temperature-controlled room (21-22°C) with a 12h 

light/dark cycle and ad libitum access to food and water. tdTomatoloxP/STOP mice were 

purchased from the Jackson Laboratories (Bar Harbor, ME). Amhr2-cre knock-in mice have 

been previously characterized 1. Digenic Amhr2-cre+/-; tdTomatoloxP/STOP mice were generated 

in our laboratory. GnRH-GFP 2
 were a generous gift of Dr. Daniel J. Spergel (Section of 

Endocrinology, Department of Medicine, University of Chicago, IL). Animal studies were 

approved by the Institutional Ethics Committees of Care and Use of Experimental Animals of 

the Universities of Lille 2 (France) and the University of Otago School of Medical Sciences, 

Dunedin (New Zealand). All experiments were performed in accordance with the guidelines 

for animal use specified by the European Union Council Directive of September 22, 2010 

(2010/63/EU). 

Human tissues 

Human fetuses (9 weeks post-amenorrhea; n = 3): have been obtained from voluntarily 

terminated pregnancies, with the parent’s written informed consent. Tissues were made 

available in accordance with the French bylaw (Good practice concerning the conservation, 

transformation and transportation of human tissue to be used therapeutically, published on 

December 29, 1998). Permission to utilize human brain tissues was obtained from the French 

agency on biomedical research (Agence de le Biomédecine, Saint-Denis la Plaine, France). The 

fetuses were immersion-fixed in 4% paraformaldehyde in 0.1 M PB (pH 7.4) for 3 weeks, 

cryoprotected in 30% sucrose in PBS for 48 hours, embedded in Tissue Tek (Miles, Elkhart, IN), 

and frozen in liquid nitrogen. Human hypothalami were obtained between 24 and 36 hours 

postmortem from two autopsied individuals: a 20-year-old female subject and a 72 years old 

male subjects, who had donated their body to science in accordance with the French bioethics 

laws. A review of their medical records indicated that they had no known neurological or 
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neuroendocrinological disorders, and the cause of their death was cardiac and respiratory 

failures. The hypothalamus was isolated and immersion-fixed in 4% paraformaldehyde in 0.1 

M PB (pH 7.4) for 1 week, cryoprotected in 20% sucrose in PBS for 48 hours, embedded in 

Tissue Tek (Miles, Elkhart, IN), and frozen in liquid nitrogen. 

Tissue preparation  

For immunohistochemical analysis, embryos (embryonic day 12.5) were obtained after 

cervical dislocation from timed-pregnant C57BL/6J mice. Embryos were washed thoroughly in 

cold 0.1 m PBS, fixed in fixative solution [4% paraformaldehyde (PFA), 0.2% picric acid in 0.1 m 

PBS, pH 7.4] for 4 h at 4°C and cryoprotected in 30% sucrose overnight at 4°C. The following 

day, embryos were embedded in OCT embedding medium (Tissue-Tek), frozen on dry ice, and 

stored at −80°C until sectioning. Adult female mice and rats (3–4 months old) were 

anesthetized with 100 mg/kg of Ketamine-HCl and 10mg/kg Xylazine-HCl and perfused 

transcardially with 20 ml of saline, followed by 100 ml of 4% PFA, pH7.4. Brains were 

collected, postfixed in the same fixative for 2 h at 4°C, embedded in OCT embedding medium 

(Tissue-Tek), frozen on dry ice, and stored at −80°C until cryosectioning.  

Immunohistochemistry  

Tissues were cryosectioned (Leica cryostat) at 16 μm for embryos and at 35μm for free-

floating sections for adult brains. Immunohistochemistry was performed as previously 

reported 3, using Alexa-Fluor 488-conjugated (1:400) and Cy3-conjugated (1:800) secondary 

antibodies (Invitrogen). The primary antisera used were as follows: rabbit anti-GnRH (1:3000), 

a generous gift from Prof. G. Tramu (Centre Nationale de la Recherche Scientifique, URA 339, 

Université Bordeaux I, Talence, France) 4, guinea-pig anti-GnRH (1:10000), a generous gift 

from Dr. Erik Hrabovszky (Laboratory of Endocrine Neurobiology, Institute of Experimental 

Medicine of the Hungarian Academy of Sciences, Budapest, Hungary), chicken anti-vimentin 

(1:2000, AB5733, Millipore), polyclonal rabbit anti-AMHR2 (1:2000, immunogen peptide: 

CELWALAVEERKRPNIPS-NH2, CASLO, Denmark). 
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Immunoblotting 

Protein extracts of each sample were prepared in 100 µl lysis buffer (pH 7.4, 25 mM Tris, 50 

mM β-glycerophosphate, 1.5mM EGTA, 0.5mM EDTA, 1 mM sodium pyrophosphate, 1mM 

sodium orthovanadate, 10µg/ml leupeptin and pepstatin, 10 µg/ml aprotinin, 100 µg/ml 

PMSF, and 1% Triton X-100) by trituration of the fragments through 22 and 26G needles in 

succession. The tissue lysates were cleared by centrifugation at 12,000xg for 15 min and 

protein content was determined using the Bradford method (BioRad, Hercules, CA). We added 

4x sample buffer (Invitrogen) and 10X reducing agent (Invitrogen) to the samples and boiled 

for 5 min before electrophoresis at 150 V for 75 min in precast 3–8% SDS-polyacrylamide Tris-

acetate gels according to the protocol supplied with the NuPAGE system (Invitrogen). When 

necessary, the samples were stored at –80°C until use. 

Samples were boiled for 5 min after thawing and electrophoresed for 75 min at 150 V for 75 

min in precast 3–8% SDS-polyacrylamide Tris-acetate gels according to the protocol supplied 

with the NuPAGE system (Invitrogen, Carlsbald, CA). After size-fractionation, the proteins 

were transferred onto Nitrocellulose membranes (0.2 µm pore-size membranes; LC2002; 

Invitrogen) in the blot module of the NuPAGE system (Invitrogen) for 75 min at room 

temperature. Blots were blocked for 1 h in TBS with 0.05% Tween 20 (TBST) and 5% non-fat 

milk at room temperature, incubated overnight at 4°C with their respective primary 

antibodies (polyclonal rabbit anti-AMHR2; 1:1000, CASLO, Denmark; goat polyclonal anti-

actin, sc-1616; 1:1000, Santa Cruz) washed four times with TBST before being exposed to 

horseradish peroxidase-conjugated secondary antibodies [anti-rabbit (1:10000); anti-

goat/sheep (1:10000) Sigma] diluted in 5% non-fat milk-TBST for 1 h at room temperature. 

The immunoreactions were detected with enhanced chemiluminescence (NEL101, 

PerkinElmer, Boston, MA).  

GnRH secretion determination 

ME explants were dissected and processed as previously described 5. Briefly, ME explants 

were incubated in artificial cerebrospinal fluid (aCSF) with the following composition (in mM): 

NaCl, 117; KCl, 4.7; NaH2PO4, 1.2; NaHCO3, 25; CaCl2, 2.5; MgCl2, 1.2; glucose, 10, bubbled 

with 95% O2-5% CO2. (pH: 7.4, osmolarity: 304 mOsm). Explants were treated with 
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recombinant human Anti Müllerian Hormone (R&D System, 3ug/ml), recombinant human 

TGF-1 (Millipore, 100 ng/ml) or both, and incubated at 37°C for 4 hours at 300 rpm until 

medium collection. The same concentration of TGF-1 was previously used to evaluate GnRH 

secretion from median eminence explants 6. KCl 0.05 M treatment, performed at the end of 

the incubation time, was applied to confirm viability of the explants. Collected media were 

analyzed for GnRH secretion, before and after the treatments, following a GnRH Elisa protocol 

(Phoenix Pharmaceuticals, Inc California, Catalog no. # FEK-040-02).   

Intracerebroventricular (ICV) Injections 

The mice were placed in a stereotactic frame (Kopf® Instruments, California) under anesthesia 

(isoflurane), and a burr hole was drilled 1.7 mm posterior to the Bregma, according to a 

mouse brain atlas. A 10 μl Hamilton syringe was slowly inserted into the lateral ventricle (5.6 

mm deep relative to the dura), and 1.5 μl of saline or human recombinant AMH (R&D System, 

0,5 ug/mouse, 1 ug/mouse and 3 ug/mouse) was injected using an infusion pump over 5 min.  

LH assay 

Following AMH i.c.v injection, animals were sacrificed by cervical dislocation 15 and 30 min 

after they woke up. Trunk blood was collected in sterile eppendorf and left in ice until 

centrifugation, plasma was frozen and stored at -80°C, until use. Plasma LH was measured 

using a sensitive sandwich ELISA recently described 7 with a theoretical detection range of 

whole blood mLH (in a 1:30 dilution) of 0.117 to 30 ng/ml. The intra- and interassay 

coefficients of variation were 6.05% and 4.29%, respectively. GnRH antagonist (Cetrorelix 

Acetate, SIGMA, 0.5mg/Kg) was injected i.p. one hour before i.c.v. injection, while Alk 

inhibitor (Dorsomorphin dihydrochloride TOCRIS, 100 uM) was injected i.c.v. 2 h before.  

Fluorescence-activated cell-sorter analysis 

Embryos were harvested at E12.5 from timed-pregnant GnRH-GFP mice, previously 

anesthetized with an intraperitoneal injection of 100 mg/kg of Ketamine-HCl and sacrificed by 

cervical dislocation. Juvenile (P12) and adult female mice (3 months old) were anesthetized 

with 50-100 mg/kg of Ketamine-HCl and 5-10mg/kg Xylazine-HCl before being sacrificed by 

cervical dislocation. Microdissections from embryonic nasal region and post-natal/adult 
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hypothalamic preoptic region were enzymatically dissociated using Papain Dissociation 

System (Worthington, Lakewood, NJ) to obtain single-cell suspensions as previously described 

8. After dissociation, the cells were physically purified using a FACSAria III (Beckman Coulter) 

flow cytometer equipped with FACSDiva software (BD Biosciences). The sort decision was 

based on measurements of GFP fluorescence (excitation: 488nm, 50 mW; detection: GFP 

bandpass 530/30 nm, autofluorescence bandpass 695/40nm) by comparing cell suspensions 

from GnRH-GFP and wild-type animals. For each animal, 500 GFP-positive cells were sorted 

directly into 8μl extraction buffer: 0.1% Triton® X-100 (Sigma-Aldrich) and 0.4 U/μl 

RNaseOUT™ (Life Technologies). Captured cells were used to synthesize first-strand cDNA 

using the SuperScript III First-Strand Synthesis System for reverse transcription (RT)-PCR 

(Invitrogen) following the manufacturer's instructions. Controls without reverse transcriptase 

were performed to demonstrate the absence of contaminating genomic DNA.  

Quantitative RT-PCR analyses 

For gene expression analyses, mRNAs obtained from FACS-sorted GnRH neurons were reverse 

transcribed using SuperScript® III Reverse Transcriptase (Life Technologies) and a linear 

preamplification step was performed using the TaqMan® PreAmp Master Mix Kit protocol 

(Applied Biosystems). Real-time PCR was carried out on Applied Biosystems 7900HT Fast Real-

Time PCR System using exon-boundary-specific TaqMan® Gene Expression Assays (Applied 

Biosystems): Gnrh1 (Gnrh1-Mm01315605_m1), Amhr2 (AMH2r-Mm00513847_m1), Alk2 

(Acvr1-Mm01331069_m1), Alk3 (Bmpr1a-Mm00477650_m1), Alk6 (Bmpr1b-

Mm03023971_m1), Smad 1 (Smad1-Mm00484723_m1), Smad 4 (Smad4-Mm03023996_m1), 

Smad 5 (Smad5- Mm03024001_g1) and Smad 8 (Smad8/9-Mm00649885_m1). Control 

housekeeping genes: r18S (18S-Hs99999901_s1); Actb (Actb-Mm00607939_s1). Quantitative 

real-time PCR were performed using TaqMan Low-Density Arrays (Applied BioSystems) on 

Applied BioSystems 7900HT thermocycler using the manufacturer’s recommended cycling 

conditions. Gene expression data were analyzed using SDS 2.4.1 and Data Assist 3.0.1 

software (Applied BioSystems). 
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Electrophysiology 

Adult male and female C57BL/6J homozygous GnRH–GFP mice were housed under 12 h 

light/dark cycles (lights on at 7:00 A.M.) with ad libitum access to food and water. All 

experimentation was approved by the University of Otago Animal Welfare and Ethics 

Committee. The estrous cycle stage of female mice was determined by daily vaginal smear, 

with all male, diestrous and proestrous mice killed for experiments between 10 and 11am. 

Cell-attached electrophysiology was undertaken on 250 μm-thick coronal brain slices obtained 

from GnRH-GFP mice as reported previously 9. AMH (1-100 ng/mL) was added to the 

perifusing (2-3 ml/min; 32±1 C) artificial cerebrospinal fluid (95%O2, 5%CO2; (in mM) 118 NaCl, 

3 KCl, 2.5 CaCl2, 1.2 MgCl2, 11 D-glucose, 10 HEPES, 25 NaHCO3,) for 1-3 min. In some 

experiments the AAB cocktail (kynurenic acid 2 mM, CNQX 20µM and GABAzine 5µM) was 

included in the perfusion medium before adding AMH. Action currents were analyzed by 

determining the number of events per 1s bin across the time of the recording. A cell was 

considered to have changed its firing rate if the mean firing frequency in response to AMH 

(over 2 min) was significantly different to its firing rate in the 2 min control period 

immediately prior to testing with AMH (p < 0.05, paired sample Wilcoxon Signed Ranks Test). 

Differences between groups were assessed using the Mann-Whitney test. 

Statistics  

All analyses were performed using Prism 5 (GraphPad Software) and assessed for normality 

(Shapiro-Wilk test) and variance, when appropriate. Sample sizes were chosen according to 

the standard practice in the field. Data were compared by a two-tailed unpaired Student’s t 

test, one-way ANOVA for multiple comparisons followed by Fischer’s least significant 

difference post hoc test. The significance level was set at p < 0.05. Data groups are indicated 

as mean ± SEM. For comparison between two groups not having a normal distribution, the 

non-parametric tests Wilcoxon Signed Ranks Test was used. A p-value < 0.05 was considered 

to indicate a significant difference. Data groups are indicated as mean ± SEM. The number of 

biologically independent experiments, P values and degrees of freedom are indicated in the 

figure legends. 
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                                       SUPPLEMENTARY FIGURES 

 

               

 

Supplementary fig.1 Specificity tests of anti-AMHR2 antibody 

 (a, b) Specifity control of the immunohistochemistry shows lack of AMHR2-immunoreactivity 

when sections were incubated with anti-AMHR2 antibody together with its specific 

immunogen peptide. (c) Representative western blot experiment for AMHR2 (upper panel) 

and actin (lower panel) in the uterus (Ut) and ovary of Amhr2 wild-type mice and in the ovary 

of Amhr2 null mice (Amhr2-cre). 
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Supplementary fig.2 Lineage tracing of AMHR2 expression in the adult mouse hypothalamus. 

(a-h) Coronal sections represented, from adult AMHR2::Cre+/-;tdTomatoloxP/STOP brains (n = 5 

females, P120), are hypothalamus (organum vasculosum of the lamina terminalis, OVLT, a-e) 

and hypothalamic median eminence (ME)/arcuate nucleus (Arc, f-h). Lineage tracing shows 

AMHR2-expressing cells (AMHR2::Cre+/-;tdTomatoloxP/STOP) in the GnRH neuronal (a-e), 

Arcuate, ependymal cells and endothelial (EC) cell lineages (arrows in g). (h) Representative 

fluorescent labeling image showing the co-expression of AMHR2/Tomato-positive cells lining 

the third ventricle (3V) with the tanycytic cell marker vimentin (green).  
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Supplementary fig.3 Schematic representation of the proposed mechanism of action of AMH 

on the GnRH neurons in normal and PCOS women. In normal women in reproductive age the 

levels of circulating AMH are low and do not significantly fluctuate over the menstrual cycle. 

GnRH neurons express AMHR2 as well as AMH Type-I receptors. Plasmatic AMH could pass 

through the blood-brain barrier through the fenestrated capillaries at the level of the median 

eminence and act on GnRH terminals allowing a rapid secretion of the hormone and/or via the 

intermediacy of tanycytes and vascular endothelial cells, which also express AMHR2. The 

central diagnostic features of PCOS are hyperandrogenemia, hyperandrogenism (hirsutism), 

oligoanovulation and polycystic ovaries. Moreover, in PCOS, AMH levels are 2-3 times higher 

than in normal women and this could lead to a hyperactivation of the GnRH neurons and 

subsequently to an increase in GnRH secretion and pulse frequency, which results in elevated 

LH levels. The altered ratio of LH to FSH is known to be responsible for the ovarian androgen 

production. 

In PCOS, ovarian hyperandrogenism, hyperinsulinemia from insulin resistance and altered 

intraovarian paracrine signaling can disrupt follicle growth. The consequent follicular arrest in 

PCOS is accompanied by menstrual irregularity, anovulatory subfertility and the accumulation 
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of small antral follicles within the periphery of the ovary, giving it a polycystic morphology 10. 

FSH: follicle stimulating hormone; LH: lutenizing hormone. 
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During the last three years I have focused my attention on different signalling molecules 

regulating GnRH system development and function. In the first study I have provided novel 

evidences showing that β1integrin regulates the migratory process of GnRH neurons during 

early embryonic development. Defective β1-integrin signalling in GnRH neurons delays their 

migration, a defect eventually compensated at later post-natal stages. The strongest 

phenotype observed in the GnRH::Cre;Itgb1LoxP/LoxP conditional knock-out mice was an 

impairment in GnRH axonal innervation of the median eminence which resulted in striking 

reproductive defects in female mice, as evidenced by the delay in the onset of puberty, 

alterations in ovarian morphology, and the reduced number and size of litters. Indeed, 

inhibition of β1-integrin significantly disrupted the GnRH fibers network in vitro, further 

substantiating the notion that integrins are required for the proper neurite outgrowth of 

these neuroendocrine cells. Finally, using a novel mouse model of β1-integrin ablation in 

GnRH neurons we uncovered a fundamental role of integrins in the development of the 

GnRH system, establishment of the hypothalamic–pituitary–gonadal axis and involvement of 

β1-integrin signaling in the initiation of puberty and regulation of the pre-ovulatory 

gonadotropin surge.  

In the second study, currently submitted to Nature Medicine, I have challenged the 

hypothesis that AMH could act not only at the level of the ovaries, regulating ovarian 

physiology (see introduction) but also in the central nervous system regulating the neuronal 

activity/secretion of GnRH neurons. Up to now, a direct correlation between AMH and GnRH 

neuronal activity has never been investigated. We confirmed that Amhr2 transcripts are 

widely expressed in several brain regions, including hypothalamus and GnRH neurons. We 

demonstrated that AMH is a potent activator of nearly 50% of GnRH neurons, independently 

of the sex. The second striking observation emerging from this study is that GnRH neurons 

display potent responses to low nanomolar concentrations of AMH. To our knowledge, so far 

only Kisspeptin has been shown to induce such a strong response in GnRH neurons at these 

concentration ranges. 
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In summary, our data suggest that AMH can activate GnRH neurons directly. Future studies 

will identify the transynaptic mechanisms through which AMH acts on GnRH neurons as well 

as the source (autocrine/paracrine versus the circulating AMH) of such stimulus.  

In the discussion below I will provide complementary information, that for space limitations 

were not included in the submitted manuscript. Moreover, I will present some mouse-

genetic work that I have been performing during my PhD with the final goal of generating 

new conditional knock out models to fully address the role of AMH on GnRH-pituitary-

gonadal axis in physiological and pathological conditions. 

 

1 AMH, GnRH and PCOS 

It is known that dysregulation of the GnRH secretion is associated with various human 

fertility disorders, among which the common reproductive disease PCOS. In PCOS, in fact, 

GnRH pulse frequency remains high, favoring LH synthesis and secretion over FSH. Variations 

in GnRH pulse frequency during the cycle are indeed critical for the differential synthesis and 

release of LH and FSH; low frequency pulses favor FSH, and high frequencies favor LH 

(Marshall and Griffin, 1993; Wildt et al., 1981). Our work shed light on AMH signaling as a 

relevant component in the regulation of GnRH/LH secretion. 

In PCOS women, the elevated concentrations of circulating AMH (Kissell et al., 2014) could be 

thus responsible for the deregulated GnRH secretion which characterize these women and  

lead to increased LH secretion and ovarian androgen production. 

The intriguing concept that ovarian AMH may act as a trigger for GnRH release at the 

hypothalamic level by directly targeting GnRH neurons not only in rodents but also in 

humans (see results) raises the thought-provoking idea that certain types of PCOS could 

primarily be due to a hypothalamic dysfunction. This new insight may substantially improve 

our understanding of PCOS and our ability to develop specific diagnostic and therapeutic 

tools. 
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Figure 15: Schematic representation of the proposed mechanism of action of AMH on the GnRH neurons in 

normal and PCOS women. In normal women in reproductive age the levels of circulating AMH are low and do 

not significantly fluctuate over the menstrual cycle. GnRH neurons express AMHR2 as well as AMH Type-I 

receptors. Plasmatic AMH could pass through the blood-brain barrier through the fenestrated capillaries at the 

level of the median eminence and act on GnRH terminals allowing a rapid secretion of the hormone and/or via 

the intermediacy of tanycytes and vascular endothelial cells, which also express AMHR2. The central diagnostic 

features of PCOS are hyperandrogenemia, hyperandrogenism (hirsutism), oligoanovulation and polycystic 

ovaries. Moreover, in PCOS, AMH levels are 2-3 times higher than in normal women and this could lead to a 

hyperactivation of the GnRH neurons and subsequently to an increase in GnRH secretion and pulse frequency, 

which results in elevated LH levels. The altered ratio of LH to FSH is known to be responsible for the ovarian 

androgen production. In PCOS, ovarian hyperandrogenism, hyperinsulinemia from insulin resistance and altered 

intraovarian paracrine signaling can disrupt follicle growth. The consequent follicular arrest in PCOS is 

accompanied by menstrual irregularity, anovulatory subfertility and the accumulation of small antral follicles 

within the periphery of the ovary, giving it a polycystic morphology 36. FSH: follicle stimulating hormone; LH: 

lutenizing hormone. 
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2 Modulation of AMH actions by sex steroids 

AMH and AMHR2 expression levels are sexually dimorphic in the gonads, being elevated 

during embryonic life in males while undetectable in females. During adult life, the opposite 

situation holds true with AMH being higher in the ovaries of women in reproductive age.  In 

adult women, the fluctuation of AMH serum levels during the estrous cycle is still debated 

(Cook et al., 2000; Kissell et al., 2014; La Marca et al., 2006; Streuli et al., 2009; Wunder et al., 

2008)  

At present we do not know whether AMH and AMHR2 expressions in GnRH neurons change 

as a function of gonadal status. Future experiments would be required to analyse transcripts’ 

changes in GnRH neurons isolated through FACS-sorting at diestrus, proestrus and estrus. 

Interestingly, the electrophysiology data indicated that the GnRH cells were activated by 

AMH both in proestrus and diestrus, however the duration of the response was significantly 

reduced in GnRH neurons recorded from proestrous mice compared with diestrous animals.  

This suggests a potential difference in the GnRH response to AMH stimulation during the 

estrous cycle, which deserves further investigation. 

3 Role of AMH in the GnRH physiology 

Glutamate and GABA are regulators of GnRH physiology, both during development and 

adulthood, indeed these two excitatory neurotransmitters are known to modulate the GnRH 

behavioral responses from puberty onset onward (Maffucci and Gore, 2009). Our 

electrophysiological recordings revealed that the aminoacid blocker AAB did not prevent 

GnRH neuronal activation, implying that AMH effect was not mediated by neurotransmitters 

but it rather acts directly on GnRH neurons inducing secretion. In order to dissect the 

mechanism of action of AMH in modulating such response, we performed Ca2+ imaging 

experiments on immortalized GnRH cells, namely the GT1-7 cells, in collaboration with the 

laboratory of Physiology of the University of Turin, Italy. Increase in Ca2+ influx is normally 

associated with elevated neuronal activity and it has been previously used to monitor GnRH 

secretion in vitro (Moore et al., 2002). 
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These experiments clearly showed that AMH (100 ng/ml) significantly increased both the 

number of peaks/cell as well as the peak amplitude of Ca2+ signals in immortalized GnRH cells 

via a fast non-genomic action (without activation of the SMADs signalling).  

                

Fig 16: AMH activates GT1-7. (A) Calcium imaging on GT1-7 cells. (B-D) AMH (100ng/ml) applied to GT1-7 

causes an increase of the peak number and their amplitude compare to the control.  

 

In order to dissect the intracellular signalling pathway activated by AMH stimulation, we 

performed some biochemical studies on GT1-7 cells. Since activation of the ERK pathway is 

known to elicit GnRH release (Perrett and McArdle, 2013), we focused on the 

phosphorylation of these proteins, ERK1/2, upon AMH stimulation. Western-blot analyses 

revealed a significant increase in the ERKs phosphorylation with a peak detectable already at 

10 min after AMH stimulation. This is consistent with our in vivo data showing that i.c.v. AMH 

administration induces potent LH secretion at 15 min. Interestingly, we also collected 

preliminary results showing that AMH rapidly induces GnRH secretion from ME organotypic 
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cultures in a MAPK-dependent manner. Indeed, co-treatment with AMH and the ERKs 

inhibitor (U0126) prevents AMH-mediated GnRH release. 

  

                    

Figure 17 AMH stimulates GnRH secretion through a fast non-genomic action involving activation of the 

MAPK pathway. (A) GT1-7 express AMHR2 protein (green). (B) Western blot quantification showing that when 

GT1-7 are treated with AMH we observe the activation of the MAPK pathway (ERK1/2), inducing 

phosphorylation of ERK1/2 in a dose-dependent manner (with plateau activation at 65 ng/ml), 10 min after the 

treatment and sustained for one hour. (C) Western blot quantification showing the phosphorylation of ERK 

depending on the time. (D) RT-PCR analyses showing the expression of AMH, AMH-type I (ALK 2, 3 and 6) and -

type II receptors (Amhr2) in GT1-7. All these genes except for ALK6 were detected in GT1-7 cells, confirming the 

pertinence of this model. 

 

 

 



                                                                                                                                   Discussion 

 

153 
 

4 Investigation of autocrine/paracrine mechanisms of action of AMH 

The ME is one of eight circumventricular organs – regions surrounding the cerebral ventricles 

– in the central nervous system, in which the blood-brain barrier is modified to allow the 

release of neurohormones by neuroendocrine cell terminals into the pituitary portal blood 

vessels for delivery to the anterior pituitary. Plasma AMH could thus access this region 

through fenestrated capillaries and act on GnRH terminals directly to trigger the rapid 

secretion of the neurohormone and/or indirectly via tanycytes, which also express AMHR2 

and which, moreover, are known to interact closely with GnRH terminals in the ME.  

However, we cannot rule out the possibility that AMH could act in an autocrine/paracrine 

manner on GnRH neurons. Indeed, our q-PCR experiments performed on FACS-sorted GnRH 

neurons revealed that these cells express both ligand and receptor from early embryonic 

development to adulthood (Figure 18). These findings were confirmed also at a protein level 

by immunocytochemistry performed on primary GnRH neuronal cultures (nasal explants) 

(Figure 18). 

The existing Amh and Amhr2 null mouse models (Vigier et al., 1984; Visser and Themmen, 

2005), where all cells lack Amh or its receptor, do not allow discriminating between Amh 

signalling in/by the ovaries and that in GnRH neurons. In order to address this important 

issue, mouse lines harboring a conditional Amhfl/fl allele will be needed in the future in order 

to be crossed with specific mouse lines expressing Cre recombinase under the control of 

GnRH or ovarian promoters.  

Finally, at present, we do not know whether AMH acts directly on GnRH neurons or indirectly 

via tanycytes. In order to address this question, Amhr2fl/fl mice would be needed to 

specifically silence AMHR2 in GnRH cells (by generating conditional GnRH::Cre; Amhr2fl/fl 

mutant mice) or in tanycytes (by injecting the recombinant Tat-Cre protein in the third 

ventricle of Amhr2fl/fl animals; a model previously validated in our laboratory  (Langlet et al., 

2013). In the following two chapters I will briefly describe the work that I have performed in 

order to generate these two novel mouse strains. 
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Figure 18: AMH transcript and protein expression in GnRH neurons. (A) Real-time PCR analysis of expression 

levels of AMH mRNAs in GnRH cells sorted at E13.5, P12 and adult (P90). AMH transcript expression was 

detectable in GnRH neurons at all stages, although it shows the highest expression in postnatal/adult life 

compare to embryonic stage. (B) Mouse nasal explant (E11.5) after 7div, showing the migration of GnRH-GFP 

neurons (green). (C) GnRH-GFP neurons migrate apposed to the olfactory fibers (red), labeled with TUJ1, a 

marker for the cytoskeleton. (D) Immunocytochemistry showing that AMH (red) is expresses from GnRH-GFP 

(green) primary cells. Abbreviations: ope olfactory pit epithelium, nmc nasal midline cartilage.  

 

5  Amhfl/fl mice 

Amhfl/fl animals were not readily available. We thus ordered the mutant embryonic stem (ES) 

cell clones for Amhfl/fl from Eucomm (The European Conditional Mouse Mutagenesis 

Program), which provides vectors, mutant ES cells and mutant mice. 
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We have ordered an embryonic stem cell clone recombined with conditional AMH KO 

targeting vector, to split the possible action in two. This targeting vector can be used to 

specifically delete AMH in GnRH neurons or in the ovary, by crossing it with GnRH-Cre or with 

an ovarian-promoter-dependent-Cre. Moreover, this mouse can be used also as reporter, 

because it contains the LacZ gene, which encodes the bacterial enzyme, β-galactosidase, 

which by an enzymatic reaction produces an insoluble blue dye. 

 

  

Fig 19:  AMH
fl/fl 

ES cell clone with conditional mutation. ES cell clones containing the targeted AMH
fl/fl

 –Neo 

allele. The floxed exons are 2-4, coding the C and N terminal domains.  

 

We have already generated the first chimeras of this transgenic mouse (figure 20); these will 

be breeded with wild type mice to get the heterozygous animals, which will inter-breed to 

generate the homozygous AMHfl/fl mice. We plan to cross the AMHfl/fl with GnRH-CRE animals 

to obtain specific AMH conditional KO in GnRH neurons. This mouse will be used to 

investigate the autocrine/paracrine action of AMH in GnRH neurons and how its lack impacts 

the reproductive system. We will count the number of GnRH neurons to see if the lack of 

central AMH (GnRH-Amh-/-) causes defects in the GnRH development: migration or survival. 

Moreover, we will characterize the reproductive phenotype by measuring the hormonal 

levels and by performing continuous mating protocol experiments. In order to check 

whatever the lack of AMH impacts puberty we will also check the first estrus and the vaginal 

opening by analysing daily the vaginal smears.  
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Figure 20: AMH
fl/fl

 chimera. A chimeric mouse in which the albino and brown skin are derived from either the 

host and targeted embryonic stem cells.  

 

6 AMHR2 Conditional KO mice: Short mission in Germany 

To better elucidate the role of AMHR2 signalling on the GnRH system and in fertility, we will 

employ another transgenic strategy. The animal model that we will analyze is an Amhr2 

conditional KO that I started to generate last year in Germany in the lab of Prof. Dr. Ulrich 

Boehm, in the University of Saarland; this short term mission was sponsored by the COST 

action of GnRH deficiency (www.gnrhnetwork.eu/). In the following paragraph I will explain 

my strategy to flox AMHR2 gene.  By crossing these mice with GnRH-CRE, we will have 

AMHR2 lacking only in GnRH neurons.  

The gene encoding Amhr2 is located on chromosome 15 in the mouse, its coding region 

consists of 11 exons that are distributed to form two exon clusters over 9Kb, which are 

divided by a large intron of over 4Kb. Exons 1 to 3 code for signal sequence and extracellular 

domain, exon 4 corresponds to the transmembrane domain and exons 5 to 11 code for the 

intracellular serine/threonine kinase domains (Figure 21). 

 

 

http://www.gnrhnetwork.eu/
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 Figure 21: Amhr2 wild type locus. Schematic map of the wild type Amhr2 locus showing the 11 exons 

distributed in two clusters divided by a big intron of more than 4Kb.  

 

We have decided to concentrate our analysis on the first cluster of exons, 1-6, and to insert 

the LoxP site in this region; to be sure to disrupt completely the AMH transduction pathway 

after CRE mediated recombination. By screening the DNA sequence, we have noticed a huge 

amount of repetitive sequence flanking the coding region; these make the recombination, 

southern blot probe creation and PCR very problematic. To resolve this problem we have 

planned a very specific strategy. The targeting vector is in total 3Kb, and includes the two 

arms at 5’ and 3’ end homologous to the locus of interest, the two LoxP sites flanking the 

exon of interest (in our case exon 4 and 5) and the FRT sites flanking the neomycin cassette. 

The homology arms are very short; the one at the 5’ end is 1Kb, while the other at the 3’ is 

less than 1Kb. The homology arm at the 5’ end includes the coding region from exons 1 to 3 

and the homology arm at the 3’ end includes exon 6 and part of intron 6-7. The LoxP sites 

flanking exon 4 and 5 correspond to the transmembrane domain and to part of the 

serine/threonine kinase domains (Figure 22). The specific deletion of exon 5 could comport a 

frameshift of the open reading frame and insert a premature stop codon in exon 6, disrupting 

the normal transduction of the protein. As a positive selection marker we used the neomycin 

resistance cassette, flanked by the Flp recombinase recognition (FRT) sites under the 

phosphoglycerate kinase (pgk) promoter. We chose to insert the neomycin cassette inside 

the intron 4-5 with the intent to remove completely the FRT site via CRE mediated 

recombination and also because PGK is a strong promoter and its presence could result in the 

overexpression of genes downstream of the integrated construct.  
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Figure 22: Generation of Amhr2-conditional alleles. Schematic diagram of the Amhr2 wild-type allele, Amhr2-

conditional targeting vector, and Amhr2 targeted locus.  

 

First of all, we will check the GnRH cell number, by counting GnRH in adulthood. We will also 

evaluate the consequences of this lack on puberty onset, by checking vaginal opening and 

first estrus, and reproductive phenotype by daily vaginal smear checking and mating 

experiments. Finally, we will also characterize the hormonal profile, LH/FSH and testosterone 

plasmatic concentrations by Elisa assay.  

Given the broad distribution of AMHR2 in the brain, this mouse model will be particularly 

useful to address the role of AMH in different brain areas during development or at post-

natal stages. 
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Polycystic ovary syndrome (PCOS) is one of the most important social syndromes of our age, 

affecting up to 10% of women of reproductive age and despite efforts to define this 

syndrome, we still remain far from understanding its complex etiology. PCOS is a syndrome 

characterized by altered hormonal profiles, including Luteinizing hormone, levels of which 

are directly determined by GnRH secretion. It is unclear, however, whether the accelerated 

GnRH pulsatility is caused by an intrinsic abnormality in the GnRH pulse generator or by the 

relatively low levels of progesterone resulting from infrequent ovulatory events. Moreover, 

the serum levels of Anti Müllerian Hormone (AMH) are elevated 2/3 times in PCOS patients 

compared to healthy women. We therefore aimed to assess the possible extra-ovarian 

effects of AMH on the hypothalamic system and more specifically, on the regulation of 

gonadotropin release. 

This thesis presents novel data on the central role of AMH in controlling GnRH physiology. 

We have shown for the first time that GnRH neurons express AMH and its specific receptor 

AMHR2. Moreover, we provide evidence demonstrating that AMH regulates GnRH neuronal 

activity and secretion (even at low concentrations) and GnRH/LH secretion, in vitro and in 

vivo. To our knowledge this work provides the first evidence of a central action of AMH, 

specifically in the hypothalamus. These results thereby open new avenues in the study of 

AMH in the regulation of the GnRH system biology in physiological and pathological 

conditions (Figure 15). 
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