UNIVERSITÉ DE LILLE

ÉCOLE DOCTORALE DE BIOLOGIE-SANTÉ

LABORATOIRE PRISM – INSERM U1192

THÈSE DE DOCTORAT

Étude des microARNs dans les vésicules extracellulaires microgliales : signatures et neuroprotection

Thèse préparée et soutenue publiquement par

QUENTIN LEMAIRE

Le 30 septembre 2019

Pour obtenir le grade de Docteur en Biologie Cellulaire de l'Université de Lille

Devant le jury composé de :

Président du Jury	Mme Clotilde Théry	Directeur de recherche (Institut Curie)
Rapporteur Rapporteur	Mme Laurence Colleaux Mr Alexandre Favereaux	Directeur de recherche (INSERM) Maître de conférence (Université de Bordeaux)
Examinateur	Mme Morvane Colin	Maître de conférence (Université de Lille)
Directeur de thèse	Mr Christophe Lefebvre	Professeur (Université de Lille)

UNIVERSITÉ DE LILLE

ÉCOLE DOCTORALE DE BIOLOGIE-SANTÉ

LABORATOIRE PRISM – INSERM U1192

THÈSE DE DOCTORAT

Étude des microARNs dans les vésicules extracellulaires microgliales : signatures et neuroprotection

Thèse préparée et soutenue publiquement par

QUENTIN LEMAIRE

Le 30 septembre 2019

Pour obtenir le grade de Docteur en Biologie Cellulaire de l'Université de Lille

Devant le jury composé de :

Président du Jury	Mme Clotilde Théry	Directeur de recherche (Institut Curie)
Rapporteur Rapporteur	Mme Laurence Colleaux Mr Alexandre Favereaux	Directeur de recherche (INSERM) Maître de conférence (Université de Bordeaux)
Examinateur	Mme Morvane Colin	Maître de conférence (Université de Lille)
Directeur de thèse	Mr Christophe Lefebvre	Professeur (Université de Lille)

Microglie. Río-Hortega, 1919

« La vie est un mystère qu'il faut vivre, et non un problème à résoudre » **- Gandhi**

REMERCIEMENTS

Je tiens en premier à remercier le Professeur Michel Salzet, directeur du laboratoire PRISM et le Professeur Isabelle Fournier, co-directrice du laboratoire, pour m'avoir accueilli et donné l'opportunité de faire partie du laboratoire pendant ces 3 années.

Je tiens à remercier mon directeur de thèse, le Professeur Christophe Lefebvre, qui a tout d'abord accepté d'être mon maitre de stage en master 2, puis d'être mon directeur de thèse durant ces 3 années. Merci d'avoir cru en moi et de m'avoir fait confiance pour travailler sur ce projet. J'ai énormément appris à tes cotés et j'espère être capable de le faire également avec d'autres personnes. Merci pour ton aide et ta motivation au cours de tous ces moments de réflexion, de doute, tu as su trouver les mots justes à chaque situation.

Je remercie les docteurs Laurence Colleaux et Alexandre Favereaux, qui ont accepté d'être les rapporteurs de ce travail. Merci également d'avoir suivi avec attention mes travaux de thèse au cours de ces 3 années en participant à mes comités de suivi de thèse. Je remercie également les docteurs Morvane Colin et Clotilde Théry de faire partie de mon jury de thèse et d'évaluer mon travail.

Je tiens à remercier les Docteurs Pierre-Eric-Sautière, Jacopo Vizioli et Françoise Le-Marrec pour l'aide et les conseils qu'ils m'ont apporté durant ces 3 années. Je tiens à remercier également Annie et Christelle, les « mamans du labo » pour l'aide, les conseils et le soutien qu'elles ont fait preuve à mon égard.

Je tiens à remercier aussi les Docteurs Maxence Wisztorski et Julien Franck pour leur aide et leur soutien ainsi que pour tous les moments lors des repas du midi à parler de foot, coupe du monde, tour de France....

Je tiens à remercier tous les membres du laboratoire que j'ai connu durant ces 4 ans et qui m'ont permis de faire de belles rencontres. Antonella, Tristan, Philippe, Tanina, Marie, Irène, Raphael, Robin, Franck, Céline, Marina, Mélanie, Flore, Lauranne, Soulaimane, Jean-Pascal,

Lucie, Benoit, Jusal, Mariano et Corentin. Merci pour les moments passés ensemble qui font que je me souviendrai de cette expérience.

Je tiens également à remercier ma famille et ma belle-famille, pour m'avoir soutenu au cours de mes études et de m'avoir écouté parler de mon travail avec mes « bébêtes ». Merci à mes parents qui m'ont fait devenir ce que je suis et qui m'ont toujours soutenu et qui continuent à le faire. Merci également à mon « frérot » Corentin pour ton soutient et tout ce qu'on a vécu ensemble. Merci à mon parrain, ma tata Estelle, marraine, tonton, Charlotte, Zoé, mes grandsparents et Kimberley qui m'aident et me soutiennent. Merci également à Mohamed et Edith mes « futurs » beaux-parents, Sania, Benoit, Sofía, Mehdi, Georges, Yvette et Pepito « le chat » pour le soutien qu'ils m'apportent.

Je tiens à remercier mes amis, « la bande », qui depuis le lycée Diderot a bien évolué mais avec qui je m'amuse toujours autant et qui m'ont aidé et soutenu au cours de ces 3 années.

Je tiens à remercier tout spécialement Alissa, ma meilleure amie, mon « sac de boxe », et surtout le plus important ma chérie et fiancée pour m'avoir soutenu et supporté au cours de ces 3 ans. Tu as toujours été là quelle que soit la situation, bonne ou mauvaise. Merci car tu as toujours cru en moi même dans les moments où je doutais. Si je suis ici aujourd'hui c'est aussi grâce à toi.

Je tiens à respectueusement exprimer ma gratitude auprès de la région Hauts-de-France et l'Université de Lille pour m'avoir permis, tous deux par leur soutien financier, de réaliser ce travail de doctorat.

Finalement, je tiens à remercier toutes les personnes que j'ai croisé durant ces 3 années, avec qui j'ai discuté, échangé et qui m'ont aussi appris énormément.

PUBLICATIONS

Publications acceptées

Raffo-Romero A, Arab T, Al-Amri IS, Le Marrec-Croq F, Van Camp C, <u>Lemaire Q</u>, Salzet M, Vizioli J, Sautiere PE, Lefebvre C. Medicinal Leech CNS as a Model for Exosome Studies in the Crosstalk between Microglia and Neurons. Int J Mol Sci. 2018 Dec 19;19(12). pii: E4124. doi: 10.3390/ijms19124124.

Arab T, Raffo-Romero A, Van Camp C, <u>Lemaire Q</u>, Le Marrec-Croq F, Drago F, Aboulouard S, Slomianny C, Lacoste AS, Guigon I, Touzet H, Salzet M, Fournier I, Lefebvre C, Vizioli J, Sautière PE. Proteomic characterisation of leech microglia extracellular vesicles (EVs): comparison between differential ultracentrifugation and Optiprep[™] density gradient isolation. J Extracell Vesicles. 2019 Apr 23;8(1):1603048. doi: 10.1080/20013078.2019.1603048.

Raffo-Romero A, Arab T, Van Camp C, <u>Lemaire Q</u>, Wisztorski M, Franck J, Aboulouard S, Le Marrec-Croq F, Sautiere PE, Vizioli J, Salzet M, Lefebvre C. ALK4/5-dependent TGF- β signaling contributes to the crosstalk between neurons and microglia following axonal lesion. Sci Rep. 2019 May 3;9(1):6896. doi: 10.1038/s41598-019-43328-x.

Publications en soumission

Lemaire Q, Duhamel M, Raffo-Romero A, Salzet M, Lefebvre C. Characterization of immune cell-derived extracellular vesicles: functional impact on cell environment. J Vis Exp

Lemaire Q, Arab T, Raffo-Romero A, Van Camp C, Drago F, Forte S, Gimeno JP, Begard S, Colin M, Vizioli J, Sautière PE, Salzet M, Lefebvre C. Microglia-derived extracellular vesicles : miRNA signatures and neuroprotection. J Extracell

Communication orale

Lemaire Q, Raffo-Romero A, Arab T, Van Camp C, Le Marrec-Croq C, Vizioli J, Sautière P-E, Salzet M and Lefebvre C. Study of EV microRNAs from microglia involved in the crosstalk to neurons. ISEV2018 Annual Meeting, 2-6 May 2018, Barcelone, Espagne.

Communications affichées

Lemaire Q, Raffo-Romero A, Arab T, Van Camp C, Le Marrec-Croq C, Vizioli J, Sautière P-E, Salzet M and Lefebvre C. *Study of exosomal and ectosomal miRNAs from microglia involved in neuroprotection in Hirudo medicinalis*, EURON PhD days, 13-14 Octobre 2016, Lille, France.

Lemaire Q, Raffo-Romero A, Arab T, Van Camp C, Le Marrec-Croq C, Vizioli J, Sautière P-E, Salzet M and Lefebvre C. Study of vesicles microRNAs from microglia involved in

neuroprotection in Hirudo medicinalis, EURON PhD days, 25-26 Octobre 2017, Kerkrade, Pays-Bas.

Lemaire Q, Raffo-Romero A, Arab T, Van Camp C, Le Marrec-Croq C, Vizioli J, Sautière P-E, Salzet M and Lefebvre C. *Study of vesicles microRNAs from microglia involved in neuroprotection in Hirudo medicinalis*, FSEV, 6-7 Novembre 2017, Paris, France.

Lemaire Q, Raffo-Romero A, Arab T, Van Camp C, Le Marrec-Croq C, Vizioli J, Sautière P-E, Salzet M and Lefebvre C. Study of vesicular microRNAs from microglia involved in neuroprotection in *Hirudo medicinalis*, EMBO Workshop Microglia, 18-21 March 2018, Heidelberg, Allemagne.

Lemaire Q, Raffo-Romero A, Arab T, Van Camp C, Drago F, Forte S, Le Marrec-Croq F, Salzet M and Lefebvre C. Study of vesicular microRNAs from microglia involved in neuroprotection in *Hirudo medicinalis*. Journée Andre Verbert 2018, 13 Septembre 2018, Lille, France.

Lemaire Q, Raffo-Romero A, Arab T, Van Camp C, Drago F, Forte S, Le Marrec-Croq F, Salzet M and Lefebvre C. Study of EV microRNAs from microglia involved in the crosstalk to neurons. Société Fédératrice Régionale Technologies de Santé et Médicament, 10 Décembre 2018, Lille, France (Prix de la meilleure présentation).

Organisation de congrès

Comité d'organisation étudiant : EURON PhD meeting – Université de Maastricht, 2017.

Encadrements

Mariano Dara (2^{ième} année de Master – 6 mois)

Corentin Dumortier (1^{er} année de BTS – 2 mois et 2^{ième} année de BTS – 2 mois)

Quentin Avenin (3^{ième} année Licence biologie – 1 mois)

RESUME

Étude des microARNs dans les vésicules extracellulaires microgliales : signatures et neuroprotection

Dans le Système Nerveux Central (SNC), les cellules gliales influencent les activités neuronales. Les cellules microgliales, cellules immunitaires résidentes du SNC, contrôlent grandement l'état neuroinflammatoire. Ce contrôle est particulièrement important dans les fonctions physiologiques et s'avère souvent défectueux dans les neuropathologies. Les cellules microgliales sont en relation avec le microenvironnement cérébral et communiquent avec les autres types cellulaires (astrocytes, oligodendrocytes et neurones) afin de contrôler l'état neuroinflammatoire. Parmi les différents modes de communication intercellulaire au sein du SNC, les vésicules extracellulaires (VEs) interviennent largement dans les processus physiologiques (développement, homéostasie...) et pathologiques (maladies neurodégénératives...). C'est pourquoi, ce mode de communication a été étudié dans le dialogue entre la microglie et les neurones chez la sangsue Hirudo medicinalis. Cet annélide est un modèle intéressant de neurobiologie grâce à la structure linéaire de son système nerveux et à l'organisation de ses types cellulaires. Il permet l'étude du dialogue entre les cellules microgliales et les neurones au niveau d'une lésion expérimentale. Dans un premier temps, les résultats ont montré que les cellules microgliales interagissent avec les neurones lors d'une lésion du SNC et que des VEs sont libérées au niveau de cette lésion. De plus, les cellules microgliales produisent des VEs qui interagissent avec les neurones et délivrent un effet neurotrophique in vitro sur des neurones de sangsue et de rat. Dans un deuxième temps, la complexité des composés vésiculaires ainsi que des impératifs d'efficacité liés aux méthodes d'isolement nous ont conduits à développer l'analyse protéomique non ciblée et à grande échelle afin de valider les fractions positives en VEs mais aussi identifier leurs signatures protéiques biologiquement actives. Dans une dernière partie, nous nous sommes intéressés aux microARNs (miARNs) contenus dans les VEs microgliales. Les résultats ont permis l'identification de 6 miARNs dans les VEs microgliales, dont un seul, miR-146a, est décrit à ce jour dans le SNC chez les mammifères. Dans un contexte de dialogue neuroprotecteur entre VEs microgliales et neurones, les analyses neuronales ont prédit des ARNm potentiellement régulés par les miARNs contenus dans les VEs. Ces 6 miARNs ont également été identifiés dans les VEs issues de microglie de souris, de rat et humaine. Dans leur ensemble, les résultats montrent que les cellules microgliales chez la sangsue produisent des VEs, ayant un effet neurotrophique sur les neurones, y compris des neurones de rat. L'identification des molécules présentes dans ces VEs (protéines et miARNs) a permis de soulever des perspectives sur les mécanismes neuroprotecteurs supportant ce dialogue microglie-neurone qu'il sera intéressant d'examiner chez les mammifères dans un contexte de lésion nerveuse.

<u>Mots clés</u>: Microglie, Vésicules extracellulaires, miARNs, Sangsue *Hirudo medicinalis*, Neuroprotection.

SUMMARY

Study of miRNAs in microglial extracellular vesicles: signatures and neuroprotection.

In the Central Nervous System (CNS), the glial cells influence neuronal activities. The microglial cells, resident immune cells of the CNS, greatly control the neuroinflammatory state. This control is particularly important in physiological functions and is often defective in neuropathologies. The microglial cell activities depend on the brain microenvironment and they communicate with other cell types (astrocytes, oligodendrocytes and neurons) to control the neuroinflammatory state. Among the different mechanisms of intercellular communication within the CNS, extracellular vesicles (EVs) play a major role in physiological processes (development, homeostasis, etc.) and pathological processes (neurodegenerative diseases, etc.). Therefore, this mode of communication was studied in the dialogue between microglia and neurons in the leech Hirudo medicinalis. This annelid is an interesting model of neurobiology thanks to the linear structure of its nervous system and the organization of its cell types. It allows the study of the dialogue between microglial cells and neurons at the level of an experimental lesion. At first, the results showed that microglial cells interact with neurons during CNS injury and that EVs are released at the level of this lesion. In addition, microglial cells produce EVs that interact with neurons and deliver a neurotrophic effect in vitro on leech and rat neurons. In a second step, the complexity of the vesicular compounds as well as efficiency requirements related to the isolation methods led us to develop the nontargeted proteomic analysis on a large scale in order to validate the positive EV fractions but also to identify their biologically active protein signatures. In a last part, we were interested in the microRNAs (miRNAs) contained in microglial EVs. The results allowed the identification of 6 miRNAs in microglial EVs, of which only one, miR-146a, is described to date in the mammalian CNS. In a context of neuroprotective dialogue between microglial EVs and neurons, the analysis of neuronal protein signatures predicted mRNAs potentially regulated by miRNAs contained in EVs. These 6 miRNAs were also identified in EVs derived from mouse, rat and human microglia. Overall, the results show that microglial cells in the leech produce EVs, exerting a neurotrophic effect on neurons, including rat neurons. The identification of the molecules present in these microglial EVs (proteins and miRNAs) made it possible to raise perspectives on the neuroprotective mechanisms supporting this microglia-neuron dialogue that will be interesting to examine in mammals in a context of nerve injury.

<u>Keywords</u>: Microglia, Extracellular vesicles, miRNAs, Leech *Hirudo medicinalis*, Neuroprotection.

SOMMAIRE

REMERCIEMENTS	I
PUBLICATIONS	.111
RESUME	. v
SUMMARY	VII
LISTE DES FIGURES	.XI
AVANT-PROPOS	1
INTRODUCTION	5
I- LE SYSTEME NERVEUX CHEZ LES MAMMIFERES	6
1- INTRODUCTION GENERALE	6
2- LES DIFFERENTES CELLULES D'ORIGINE NEURONALE	7
a- Les neurones	7
<i>b</i> - <i>Les astrocytes</i>	8
c- Les oligodendrocytes	9
3- LES CELLULES D'ORIGINE NON NEURONALE : LA MICROGLIE	9
a- Introduction Générale	9
<i>b-</i> Ontogénie des cellules microgliales	11
c- Différentiation des cellules microgliales	13
<i>d-</i> Fonctions microgliales en condition physiologique	14
e- Fonctions microgliales en condition pathologique	17
II- LA SANGSUE MEDICINALE HIRUDO MEDICINALIS	19
1- INTRODUCTION GENERALE	19
2- LE SYSTEME NERVEUX CENTRAL DE LA SANGSUE MEDICINALE	20
3- LA MICROGLIE : ACTEUR DE LA REGENERATION AXONALE	23
a- Description des cellules microgliales	23
b. Recrutement des cellules microgliales à la lésion	24
III- LES VESICULES EXTRACELLULAIRES	28
1- BIOGENESE DES VESICULES EXTRACELLULAIRES	28
a- Biogenèse des Exosomes	28
<i>b-</i> Biogenèse des microvésicules	30
2- COMPOSITION DES VESICULES EXTRACELLULAIRES	30
3- METHODES D'ISOLEMENT DES VESICULES EXTRACELLULAIRES	34
a- Ultracentrifugation (UC)	35
b- Ultracentrifugation avec un gradient de densité	36
c- Chromatographie d'exclusion stérique	36
<i>d- Méthodes utilisant le changement de solubilité ou l'agrégation des vésicules</i>	37
Précipitation utilisant les polymères hydrophiles	37
Précipitation des VEs utilisant l'acétate de sodium	38
Précipitation des protéines avec des solvants organiques	38
e- Isolement des VEs utilisant les interactions par affinité	38
<i>f</i> - Conclusion sur l'isolement des VEs	39
4- INTERNALISATION DES VES PAR LES CELLULES RECEVEUSES	40
a- Endocytose des VEs médiée par la clathrine	41

b- Endocytose indépendante de la clathrine	42
La macropinocytose	
La pnagocytose Endocytose dépendante de la cavéoline	42
Endocytose médiée par les radeaux linidiques	43
Fusion des VEs avec la membrane plasmique	43
IV- COMMUNICATION MEDIEE PAR LES VES AU SEIN DU CERVEAU	44
V- LES MICROARNS	45
1- GENERALITES	45
2- VOIES DE BIOSYNTHESES DES MIARNS	46
a- La voie de synthèse canonique	46
b- La voie de synthèse non-canonique	48
3- FONCTIONS ET MODES D'ACTION DES MICROARNS	50
4- CONCLUSION GENERALE SUR LES MIARNS	51
VI- LES MIARNS ET LES VES DANS LA NEUROINFLAMMATION	51
1- Les vesicules extracellulaires et implications dans la neuroinflammation	52
2- ROLES DES MIARNS DANS LA NEUROINFLAMMATION	53
OBJECTIFS DES TRAVAUX DE THESE	57
RESULTATS	59
PARTIE I	60
INTRODUCTION DE LA PARTIE I	61
PUBLICATION 1	62
Résumé	63
PUBLICATION 2	86
Résumé	
CONCLUSION DE LA PARTIE I	125
PARTIE II	126
INTRODUCTION DE LA PARTIE II	127
PUBLICATION 3	
Résumé	
PUBLICATION 4	158
	188
	190
PUBLICATIUN 5 Résumé	191 107
RESULTATS PRELIMINAIRES ET PERSPECTIVES DE LA PARTIE III	
DISCUSSION - CONCLUSION	
BIBLIOGRAPHIF	
	299
,	

LISTE DES FIGURES

FIGURE 1: FONCTIONS NEURONALES ET IMMUNITAIRES DES CELLULES MICROGLIALES
FIGURE 2: ONTOGENIE DES CELLULES MICROGLIALES
FIGURE 3: FONCTIONS DES MICROGLIES DURANT LE STADE PRENATAL
FIGURE 4: FONCTIONS DES MICROGLIES DURANT LE STADE PERINATAL15
FIGURE 5: FONCTIONS DES MICROGLIES DURANT LE STADE POSTNATAL16
FIGURE 6 : FONCTIONS DES MICROGLIES DURANT LE STADE ADULTE
FIGURE 7: PRESENTATION DE LA SANGSUE HIRUDO MEDICINALIS
FIGURE 8: MISE EN EVIDENCE DU MARQUEUR HMIBA1 APRES L'ACTIVATION DES CELLULES MICROGLIALES PAR DE L'ATP
FIGURE 9: OBSERVATION DES CELLULES MICROGLIALES ET DES NEURONES DE SANGSUE
FIGURE 10: INHIBITION DE L'ACCUMULATION MICROGLIALE ET DE LA REPOUSSE AXONALE PAR L'ATP
FIGURE 11: BIOGENESE DES EXOSOMES
FIGURE 12: BIOGENESE DES MICROVESICULES
FIGURE 13: COMPOSITION MOLECULAIRE DES VESICULES EXTRACELLULAIRES
FIGURE 14: INTERNALISATION DES VESICULES EXTRACELLULAIRES PAR LES CELLULES RECEVEUSES
FIGURE 15: MODE D'ACTION DES MIARNS
FIGURE 16: VOIE DE BIOSYNTHESE CANONIQUE DES MIARNS
FIGURE 17: VOIES DE BIOGENESES NON-CANONIQUES DES MIARNS
FIGURE 18. IVIECANISMES DE REGULATION DES ARINM PAR LES MIARINS.
FIGURE 18: MECANISMES DE REGULATION DES ARIVIM PAR LES MIARINS
FIGURE 18: MECANISMES DE REGULATION DES ARIVIM PAR LES MIARINS
FIGURE 18: MECANISMES DE REGULATION DES ARIUM PAR LES MIARINS
FIGURE 18: MECANISMES DE REGULATION DES ARNIM PAR LES MIARNS
FIGURE 18: MECANISMES DE REGULATION DES ARNIM PAR LES MIARNS
FIGURE 18: MECANISMES DE REGULATION DES ARMM PAR LES MIARNS
FIGURE 18: MECANISMES DE REGULATION DES ARNIM PAR LES MIARNS
FIGURE 18: MECANISMES DE REGULATION DES ARMM PAR LES MIARNS
FIGURE 18: MECANISMES DE REGULATION DES ARNIM PAR LES MIARNS
FIGURE 19: ANALYSE NTA DES FRACTIONS SEC ISSUES SOIT D'UNE CULTURE MICROGLIALE DE SOURIS (BV2) OU HUMAINE (CHME3)
FIGURE 18: MIECANISMIES DE REGULATION DES ARNIM PAR LES MIARNS

AVANT-PROPOS

De nombreuses neuropathologies du système nerveux central (SNC) sont liées à l'état neuroinflammatoire. C'est un mécanisme complexe qui est de plus en plus considéré, mais toujours mal compris car les processus immunitaires sont divers et dépendent de l'environnement cellulaire. Cette neuroinflammation va pouvoir être supportée dans un premier temps par les cellules immunitaires résidentes du SNC, les cellules microgliales, qui représentent entre 5 et 10 % des cellules du SNC. En revanche, quand l'intégrité de la barrière hémato-encéphalique (BHE) est compromise, une infiltration de cellules immunitaires d'origine sanguine intervient. Dans ce contexte, la discrimination de la microglie résidente et des cellules immunitaires ayant infiltré le SNC reste compliquée à établir tant dans leurs sous-populations que dans leurs rôles respectifs (neurotoxiques *vs*. neuroprotecteurs) dans la balance neuroinflammatoire [1].

La régulation de cet état neuroinflammatoire s'effectue grâce à une communication entre les cellules immunitaires résidentes du SNC, la microglie et les autres types cellulaires (neurones et cellules gliales dérivées des neurones : les astrocytes et les oligodendrocytes) [2]. Les cellules microgliales ont été décrites pour la première fois en 1919 par del Rio-Hortega comme le troisième élément du cerveau avec les neurones et les astrocytes [3]. Ce n'est que plusieurs décennies plus tard que l'origine de ces cellules sera démontrée. En effet, les cellules microgliales ont une origine myéloïde et proviennent du sac vitellin au cours de l'hématopoïèse primitive, tandis que les macrophages sanguins proviennent du foie fœtal et sont apparus au cours de l'hématopoïèse définitive [4]. Les cellules microgliales interagissent avec toutes les cellules présentes dans le SNC afin d'aider aux processus développementaux, à l'homéostasie du cerveau et à la réparation tissulaire mais peuvent aussi contribuer aux pathologies neurologiques. En condition physiologique, les cellules microgliales ont une morphologie étoilée et adoptent un statut d'immunosurveillance garantissant l'homéostasie du SNC. A la suite de signaux d'activations, ces cellules changent progressivement de morphologie en perdant leurs filopodes pour adopter une structure amiboïde [5]. La microglie est la première ligne de défense contre les pathogènes dans le SNC. Elles ont un rôle clé dans la régulation de la réponse aux pathogènes, en répondant par la production et la diffusion de facteurs solubles comme des cytokines et des radicaux libres [6]. Les cellules microgliales contribuent ainsi de manière essentielle à l'homéostasie cérébrale. Leurs rôles divers et parfois subtils en interaction étroite avec les activités et les plasticités neuronales les montrent désormais comme un acteur important dans la physiologie normale et dans les processus pathologiques du cerveau.

La communication intercellulaire entre les différentes cellules du SNC est essentielle au bon développement du cerveau et pour ses nombreuses fonctions. Les cellules peuvent communiquer entre elles sur de courtes distances grâce des contacts cellules-cellules ou par la sécrétion paracrine de molécules. Mais, les cellules du SNC peuvent aussi communiquer par l'intermédiaire de vésicules extracellulaires (VEs), permettant par ailleurs d'entretenir des dialogues spécifiques et complexes sur de plus longues distances [6]. Cette forme de communication a été rapportée à la fin des années 1960 par la description de structures membranaires plus petites que l'échelle cellulaire [7]. Depuis lors, ce mode de communication a été décrit dans de nombreux processus physiologiques mais aussi pathologiques, y compris dans le système nerveux et dans la balance de la neuroinflammation [8]. Comme décrit auparavant, les cellules microgliales sont les cellules immunitaires résidentes du SNC. De nombreux travaux ont mis en évidence la production de VEs par les cellules microgliales [6,9]. En effet, il a été montré que les VEs microgliales ont une implication dans la propagation des tauopathies [10]. Cependant, d'autres travaux montrent que les VEs microgliales peuvent aussi induire une neuroprotection. Lors d'un traumatisme crânien par exemple, les cellules microgliales sécrètent des VEs qui réduisent l'inflammation et contribuent à la croissance neuritique [11]. La discrimination des réponses microgliales médiées par les VEs est donc possible mais elle reste compliquée tant les effets neurotoxiques et neuroprotecteurs peuvent s'exprimer au sein d'un même tissu. Il est donc intéressant de décrypter le contenu et les effets médiés par ces VEs d'origine microgliale dans un contexte physiologique mais aussi pathologique. Les VEs, quelles que soient les cellules qui les produisent, contiennent de nombreuses molécules comme des protéines, des lipides et des acides nucléiques (ADN, microARN (miARN) et ARN messager (ARNm)) [12]. Ce contenu peut tout de même varier en fonction de l'origine cellulaire mais aussi selon l'état d'activation de la cellule. La découverte de composés spécifiques des VEs peut donc permettre de mettre en évidence des biomarqueurs de pathologies. Dans les maladies du cerveau par exemple, la découverte des composés vésiculaires permettrait également de mieux comprendre les processus

physiopathologiques et ainsi concevoir de nouvelles thérapies. Une notion toute particulière au système nerveux concerne l'accessibilité des tissus. La BHE constitue un obstacle à prendre en compte lorsqu'on administre une molécule thérapeutique. La perspective d'une utilisation de VEs thérapeutiques est déjà à l'étude et offre désormais une possibilité de franchissement de cette barrière tout en maintenant un cocktail thérapeutique intact et un adressage spécifique vers les zones pathologiques.

C'est d'abord dans un contexte de recherche fondamentale dédiée à l'étude des réponses microgliales que le laboratoire a utilisé le modèle d'étude invertébré Hirudo medicinalis. Cette sangsue médicinale possède de nombreuses cellules microgliales. Sans établir un parallèle naturel et complet avec les réponses microgliales observées chez les mammifères, cet organisme développe des échanges entre la microglie et les neurones en réponse notamment à des situations de lésions neuronales. Le neurobiologiste espagnol Pio del Rio-Hortega, élève de Ramón y Cajal, a historiquement découvert et baptisé les cellules microgliales, en utilisant entre autre le SNC de la sangsue avec d'autres modèles tels que le chat et le lapin. Le SNC de sangsue présente des capacités intéressantes de réparation fonctionnelle de ses lésions axonales en restaurant les connexions synaptiques à l'identique de celles présentes avant la lésion [13]. Les cellules microgliales peuvent être suivies chez la sangsue grâce au même marqueur microglial Iba1 (pour Ionized calcium binding adaptor molecule 1) reconnu dans la microglie chez les mammifères [14,15]. De plus, d'autres travaux réalisés au laboratoire ont montré que seules les cellules microgliales peuvent répondre à des molécules chimiotactiques et migrer jusqu'au point de lésion [16–20]. Enfin, Il a été montré que cette microglie résidente joue un rôle primordial dans le processus de régénération nerveuse chez la sangsue. Si l'accumulation microgliale est compromise, la repousse axonale est significativement ralentie [21]. Les cellules sanguines participeraient à la formation d'une cicatrice gliale autour des cellules endothéliales périphériques mais n'infiltrent pas la chaine nerveuse [22]. Cette réponse microgliale résidente exerce des effets favorisant la repousse axonale et la synaptogenèse.

Dans ce contexte, notre étude s'est orientée vers la caractérisation des contenus des VEs issues de la microglie. Les premiers travaux du laboratoire dédiés aux VEs microgliales, auxquels j'ai contribué, ont mis en évidence la production importante de VEs par la microglie dont les effets *in vitro* permettent d'augmenter la croissance neuritique (**Publications 1 et 2**)

3

[20,23]. La complexité des composés vésiculaires ainsi que des impératifs d'efficacité liés aux méthodes d'isolement nous ont conduits à développer l'analyse protéomique non ciblée et à grande échelle afin de valider les fractions positives en VEs mais aussi identifier leurs signatures protéiques biologiquement actives (Publications 3 et 4) [24,25]. Mon travail principal a ensuite consisté à focaliser l'analyse des VEs microgliales sur leur contenu en miARNs (Publication 5). En effet, les miARNs sont décrits comme des régulateurs importants de l'état neuroinflammatoire [26]. Il est donc intéressant de préciser ces signatures en miARNs afin de mieux comprendre l'importance des VEs dans les réponses microgliales régulant l'état neuroinflammatoire du système nerveux. Après avoir mis en évidence la présence de miARNs dans les VEs microgliales de sangsue médicinale, dont certains n'ont jamais été décrits chez les animaux, les préparations de VEs microgliales ont fait l'objet d'une validation par la recherche protéomique non ciblée de marqueurs de VEs. Les préparations vésiculaires sont comparées pour leur effet in vitro sur la croissance neuritique de neurones primaires de rat. Enfin, sur ces neurones primaires mis en présence ou non de VEs microgliales de sangsue, une étude protéomique à grande échelle a été effectuée afin de déterminer les bouleversements protéiques mis en jeu dans la croissance neuritique. Parmi ces changements, certaines protéines peuvent résulter d'ARNm potentiellement régulés par les miARNs présents dans les VEs, ce qui éclairera davantage la compréhension d'un tel dialogue entre microglie et neurones. Nous avons également recherché dans une étude préliminaire les similitudes dans les VEs issues d'une culture microgliale primaire de rat et des lignées microgliales immortalisées (BV2 de souris et CHME3 humaine). Cette comparaison de signature ne s'est portée arbitrairement que sur les 6 miARNs initialement décrits dans les VEs microgliales de sangsue. Les préparations vésiculaires issues des 4 types différents de cellules microgliales commencent à être comparées pour leur effet in vitro sur la croissance neuritique de neurones primaires de rat.

INTRODUCTION

I- Le système nerveux chez les mammifères

1- Introduction générale

Le système nerveux est divisé en deux parties, le système nerveux central (SNC) et le système nerveux périphérique (SNP).

Le SNP est composé des nerfs spinaux répartis dans le corps et des nerfs crâniens. Les nerfs spinaux sortent de la moelle épinière au niveau de chaque espace intervertébral. Ils sont constitués d'une racine antérieure motrice et d'une racine postérieure sensitive. Les nerfs crâniens proviennent directement du cerveau et du tronc cérébral.

Le SNC comprend l'encéphale ainsi que la moelle épinière, ces deux composants sont protégés par le liquide cérébro-spinal qui les entoure. Celui-ci protège des chocs traumatiques entre le cerveau et la boite crânienne et entre la moelle épinière et les vertèbres. Le tout est protégé par des méninges composées de 3 couches : La dure-mère qui est adhérente à la boite crânienne, l'arachnoïde et la pie-mère qui sont adhérentes à l'encéphale. Ce dernier comprend 3 organes qui sont le cerveau, le cervelet et le tronc cérébral. Tous ces éléments sont situés au sein de la boite crânienne. A la sortie de la boite crânienne commence la moelle épinière. Elle est située dans le canal rachidien, qui résulte de la superposition des vertèbres de la colonne vertébrale, elle se termine au niveau de la vertèbre lombaire L1. En dessous de cette vertèbre lombaire et jusqu'au sacrum, le canal rachidien est occupé par les racines des nerfs spinaux issus de la moelle lombaire appelée plus communément « la queue de cheval ». Le SNC peut être divisé en deux tissus : la matière grise et la matière blanche. La matière grise est composée de corps cellulaires neuronaux, de l'arborisation dendritiques ainsi que de certaines cellules gliales. La matière blanche est quant à elle composée des axones des neurones. Elle doit sa couleur blanche à la gaine de myéline provenant des oligodendrocytes qui recouvre les axones. Dans le cerveau, la matière grise est située dans la zone externe et la matière blanche dans la zone interne du cerveau. Dans la moelle épinière, cette organisation est inversée. Le rôle du SNC est de recevoir, enregistrer et interpréter les signaux qui parviennent de la périphérie pour ensuite organiser la réponse à envoyer.

2- Les différentes cellules d'origine neuronale

Le SNC est composé de deux grands types de cellules : les neurones et les cellules gliales. Ces dernières sont soit d'origine neuronale: les astrocytes et les oligodendrocytes, soit d'origine non neuronale : les cellules microgliales (ou microglie) qui seront traitées dans le chapitre suivant. Les neurones permettent la réception, le traitement ainsi que la transmission de l'information par l'intermédiaire de signaux électriques ou par des molécules chimiques [27]. Les neurones, les astrocytes et les oligodendrocytes partagent la même origine neuroépithéliale et apparaissent lors de l'embryogenèse d'une façon bien définie. Les cellules souches neurales (CSN) vont d'abord se diviser afin de donner soit des précurseurs de neurogène à gliogénique. Les mécanismes qui permettent ce changement phénotypique existent dans les cellules souches ainsi que dans les cellules souches pluripotentes induites [28]. Une combinaison de facteurs externes et épigénétiques permet d'activer la formation des trois populations.

a- Les neurones

Le cerveau est composé d'environ 100 milliards de neurones représentant environ 10% du nombre total des cellules du cerveau. Les 90% restants sont composés par les cellules gliales. Les neurones sont l'unité fondamentale du SNC, ils sont les garants de l'émission et de la propagation de l'information nerveuse. Sur le plan morphologique, les neurones sont constitués de trois parties : les dendrites, le corps cellulaire et l'axone. Les dendrites reçoivent les informations qui sont ensuite transmises au corps cellulaire, puis elles sont retransmises vers l'extérieur par l'intermédiaire de l'axone.

Les neurones communiquent entre eux par les synapses, soit électrique, soit chimique. La synapse électrique a lieu après un alignement des canaux ioniques. Cet alignement permet la formation d'un pore par lequel les ions diffusent du neurone présynaptique vers le neurone postsynaptique [29]. Dans le cas de la synapses chimique, il n'y a pas de jonction comme pour les synapses électriques mais un espace entre deux neurones appelé fente synaptique. Le neurone présynaptique libère au niveau de la fente, des vésicules synaptiques qui contiennent les neurotransmetteurs. Ensuite, les canaux ioniques situés sur le neurone postsynaptique,

s'ouvrent ou se ferment avec comme impact la possibilité de générer ou bloquer un potentiel d'action, en fonction de la nature excitatrice ou inhibitrice du neurotransmetteur.

Il existe de nombreux marqueurs immunohistochimiques pour identifier les neurones. Les plus utilisés sont : Les protéines associées aux microtubules 2 (MAP2), la synaptophysine, l'énolase spécifique des neurones (NSE), le neurofilament et l'antigène nucléaire neuronal (ou NeuN) [30–32].

b- Les astrocytes

Les astrocytes représentent environ 20 à 40 % du nombre total des cellules du cerveau chez les mammifères. Les astrocytes ont une morphologie étoilée (préfixe astro = astre). Ils sont en relation très étroite avec les neurones au sein du cerveau grâce à leurs nombreuses ramifications et peuvent être classés en deux sous-populations : les astrocytes fibrillaires et les protoplasmiques. Les astrocytes fibrillaires interagissent avec les fibres axonales myélinisées et les vaisseaux sanguins alors que les astrocytes protoplasmiques interagissent avec les synapses des neurones [33]. Le ratio neurones/astrocytes varie en fonction de la zone du cerveau. Dans le cortex cérébral, le nombre d'astrocytes est supérieur aux neurones alors que dans le cervelet, les neurones seront beaucoup plus nombreux que les astrocytes. Les astrocytes assurent la protection des neurones et entre autre assurent le support neurotrophique. Ils aident à la maturation des synapses, induisent la myélinisation et la synaptogenèse et enfin participent au support interne (côté tissu nerveux) de la barrière hémato-encéphalique (BHE) [34]. Ils ont un rôle dans l'homéostasie ionique, l'élimination des neurotransmetteurs, la formation et l'élimination des synapses, l'intégrité et la perméabilité de la BHE ainsi que la réponse inflammatoire. [33,35–39]. Les astrocytes jouent un rôle actif dans la neuroinflammation et leurs réponses peuvent être bénéfiques ou délétères à la réparation tissulaire, en fonction du type de stimuli présent lors de l'inflammation [40]. Sur ce principe, ils contribuent par des changements regroupés sous le terme de réaction astrocytaire à la libération de molécules apparentées à celles impliquées dans l'inflammation. Ils contribuent aux changements de propriétés de la BHE et au passage de cellules immunitaires d'origine sanguine aggravant l'état inflammatoire et la pathogenèse de certaines maladies comme la sclérose en plaque [41]. Le marqueur histologique le plus couramment utilisé, même s'il ne semble pas être exclusif aux astrocytes ni même marquer tous les astrocytes, est la protéine acide fibrillaire gliale (ou GFAP) [42].

c- Les oligodendrocytes

Les oligodendrocytes représentent environ 5 à 10 % des cellules gliales dans le SNC. Il en existe deux types : les oligodendrocytes et les oligodendrocytes satellites. Les oligodendrocytes satellites sont situés autour des neurones et régulent leur microenvironnement. Ils sont différents des astrocytes sur plusieurs points : leur plus petite taille, la plus grande densité du cytoplasme et du noyau, l'absence de filaments intermédiaires (fibrilles) et de glycogène dans le cytoplasme et la présence d'un grand nombre de microtubules dans leurs processus. Les oligodendrocytes sont les cellules qui produisent la myéline, permettant ainsi d'accélérer la transmission de l'influx nerveux le long de l'axone. Ils vont organiser la myéline en couches autour de certains axones des neurones. Il peut y avoir jusqu'à 300 couches de myéline autour d'un axone [43]. Un oligodendrocyte peut myéliniser jusqu'à 50 axones. Le développement des oligodendrocytes s'effectue différemment entre la moelle épinière et le cerveau. Dans le cerveau, trois vagues successives se succèdent pour coloniser les différentes régions du cerveau, en commençant par le télencéphale et se terminant dans le cortex postnatal [44]. Si une vague de colonisation est bloquée, les cellules précurseurs des oligodendrocytes (CPOs) d'une autre vague de colonisation combleraient les zones vacantes sans aucune conséquence sur la distribution spatiale des oligodendrocytes et sur leurs fonctions [44]. Dans la moelle épinière, les oligodendrocytes dérivent d'un domaine particulier de la zone ventriculaire ventrale. Cette zone donne d'abord naissance aux motoneurones et ensuite aux CPOs qui migrent dans toutes la moelle épinière et deviennent des oligodendrocytes [45,46].

3- Les cellules d'origine non neuronale : la microglie

a- Introduction Générale

Le SNC a longtemps été considéré comme un organe immuno-privilégié dû à son manque de drainage lymphatique et sa capacité réduite à présenter des antigènes. La réponse immunitaire au sein du SNC est assurée par les cellules immunitaires résidentes du SNC qui sont les cellules microgliales ainsi que les macrophages méningés, périvasculaires et ceux du plexus choroïde. Les cellules microgliales sont les seules cellules immunitaires du parenchyme

cérébral. Elles sont essentielles à l'homéostasie du SNC et une dérégulation de leurs fonctions donnerait lieu à de nombreuses pathologies neurologiques [47].

En 1913, Ramon y Cajal décrit les oligodendrocytes et les cellules microgliales comme le « troisième élément » du SNC. Ce n'est que quelques années plus tard, en 1919, que Pio Del Rio-Hortega, ancien disciple et collaborateur de Ramon y Cajal, caractérise les cellules microgliales. Il les définit comme les seules cellules immunitaires du parenchyme nerveux [3,48]. Les cellules microgliales représentent environ 5 à 10 % du nombre total des cellules du SNC et environ 5 à 20 % du nombre total de cellule gliales. Les cellules microgliales sont les « macrophages » résidents du SNC et sont les principales cellules conduisant la réponse immunitaire permettant ainsi de réguler les fonctions neuronales. Elles sont à l'interface des fonctions immunitaires mais aussi neurologiques (**Figure 1**).

Figure 1: Fonctions neuronales et immunitaires des cellules microgliales. Les cellules microgliales vont être à l'interface entre les fonctions immunitaires (production de cytokines, présentation d'antigène, phagocytose...) et neuronales (Neurogenèse, formation et maturation du SNC...) [49].

Les cellules microgliales sont dispersées dans tout le SNC. En condition physiologique, les microglies présentent un statut d'immunosurveillance afin d'assurer l'homéostasie du SNC. Lors d'un traumatisme, les microglies modifient leur morphologie étoilée pour adopter une conformation amiboïde sans filopode, signe d'une activation microgliale [5]. La microglie constitue alors la première ligne de défense cellulaire dans les pathologies du SNC, même si elle peut être soutenue par d'autres cellules immunitaires d'origine sanguine telles que les lymphocytes et les macrophages. Les cellules microgliales sont impliquées dans de nombreux

processus physiologiques tout au long de la vie de l'organisme et ce, dès le début de l'édification du SNC puisqu'elles contribuent à l'élagage synaptique post-natal permettant de remodeler les synapses [50,51]. Elles participent ensuite à l'homéostasie tissulaire en phagocytant les débris des cellules en apoptose lors de la senescence ou au cours de maladies neurodégénératives, permettant ainsi la mise en place de réponses anti-inflammatoires [52]. En revanche, dépendamment des signaux d'activation, des sous-populations microgliales peuvent être impliquées lors de processus pathologiques comme dans les maladies neurodégénératives, les pathologies inflammatoires mais aussi dans les pathologies psychiatriques [53].

Des études récentes montrent que des éléments jusque-là négligés comme le sexe, le microbiome de l'individu ou les facteurs épigénétiques ont une influence essentielle sur la microglie [54]. Ainsi, comme toutes les autres populations cellulaires du cerveau, il reste encore beaucoup à découvrir sur ce type cellulaire tant dans leurs implications physiologiques que pathologiques.

b- Ontogénie des cellules microgliales

L'origine des cellules microgliales a longtemps été discutée. Les premières hypothèses suggéraient une origine neurectodermique ou encore sanguine. Récemment, plusieurs séries d'expériences avec notamment le suivie de lignées ont démontré l'origine des cellules microgliales. Les expériences de Ginhoux *et al.* en 2010 ont définitivement montré que les cellules microgliales proviennent du sac vitellin lors de l'hématopoïèse primitive et non du foie fœtale [4].

Chez les rongeurs, il existe 3 vagues successives d'hématopoïèse qui se chevauchent partiellement, ce qui est l'une des raisons pour lesquelles l'ontogénie de la microglie et des macrophages du SNC a toujours été difficile à déterminer (**Figure 2**). La première vague se déroule dans le sac embryonnaire au 7^{ème} jour de développement embryonnaire. Les cellules progénitrices se forment à partir de la plaque postérieure du mésoderme du sac embryonnaire. Ces progéniteurs se différencient en progéniteurs érythromyéloïdes (PEM) et en macrophages du sac embryonnaire. Ils expriment le récepteur du facteur stimulant les colonies (ou CSF1R) et sont indépendants de l'activateur transcriptionnel MYB. Ces PEM vont ensuite devenir des macrophages du sac embryonnaire A1 et ensuite A2 (ou prémacrophages). Ces cellules sont positives pour le récepteur à la chimiokine CX₃C (ou CX₃CR1).

Entre les stades embryonnaires 8.5 et 9.5, les macrophages du sac embryonnaire vont ensuite coloniser tout l'embryon, y compris le SNC. La colonisation du cerveau donnant lieu à la microglie va s'effectuer tout d'abord dans le mésenchyme céphalique au stade embryonnaire 9.0 et ensuite dans le neuro-épithélium au stade embryonnaire 9.5 [4,55]. Le transport de ces cellules s'effectue vraisemblablement par le biais de la circulation sanguine [4]. La dispersion de ces macrophages du sac embryonnaire nécessite le récepteur CX₃CR1. L'invalidation expérimentale de ce récepteur déclenche d'ailleurs un stockage des macrophages du sac embryonnaire et indique que d'autres molécules permettent la migration de ces cellules. Parmi ces signaux, la lysophosphatidylcholine et des nucléotides libres libérés par les neurones en apoptose peuvent servir de signaux chimioattractants pour les macrophages du sac embryonnaire dans le cerveau [56,57].

Au stade embryonnaire 8.25, une deuxième vague d'hématopoïèse se produit à partir de l'endothélium du sac embryonnaire et génère les PEM secondaires. Ces PEM secondaires n'expriment pas le récepteur CSF1R mais sont dépendants du facteur MYB. Cela indique que ces cellules ont des propriétés moléculaires et/ou un potentiel de différentiation différents. Ces PEMs secondaires migrent dans le foie fœtal au stade embryonnaire 9.5 et deviennent des progéniteurs myéloïdes du foie. Au stade embryonnaire 12.5, ils vont avoir une haute capacité de prolifération et devenir des monocytes du foie fœtal. Au stade embryonnaire 14.5, ces monocytes envahissent tous les tissus embryonnaires sauf le cerveau car, avec la formation de la BHE au stade embryonnaire 13.5, elle empêche leur entrée dans le cerveau [48]. La troisième vague d'hématopoïèse génère des cellules souches hématopoïétiques (CSH) immatures à partir de l'endothélium hématogène dans la région splanchno-pleurale paraaortique au stade embryonnaire 10.5. Ces CSH, en plus de donner les monocytes de la moelle osseuse, rejoignent progressivement dans le foie les progéniteurs myéloïdes générés lors de la deuxième vague d'hématopoïèse. Par conséquent, les microglies sont uniquement produites à partir des PEM primaires. Les monocytes dérivés des PEM secondaires et les monocytes dérivés de CSH contribuent à tous les autres macrophages tissulaires.

12

Figure 2: Ontogénie des cellules microgliales. Deux modèles vont différer concernant les origines précises de la microglie et d'autres macrophages tissulaires. Ces modèles vont aussi différer sur les contributions relatives des macrophages du sac vitellin (Yolk sac) et des monocytes du foie fœtal (Fetal liver) aux macrophages résidents du tissu périphérique (Peripheral tissues). Il est indiqué sur la figure les marqueurs de surface et la signature cellulaire à chaque étape intermédiaire. De la même façon, sont marqués au-dessus certaines flèches les protéines clés. Les signaux importants spécifiques aux tissus pour la différenciation et la maturation d'une population de macrophages sont indiqués par des symboles colorés sur certaines flèches. Les signaux d'origine cérébrale pour le développement des cellules microgliales sont encore inconnus (étoile rouge)[48].

c- Différentiation des cellules microgliales

Après la migration des macrophages du sac embryonnaire dans le SNC, ces cellules vont acquérir des signatures spécifiques après la colonisation. Des gènes spécifiques de la microglie comme SALL1 (pour spalt like transcription factor 1) sont exprimés par les macrophages du sac embryonnaire colonisateurs à partir du stade embryonnaire 10.25. D'autres facteurs comme le facteur de croissance de type TGF- β (pour transforming growth factor β) se révèle être un signal cérébral crucial pour la différentiation des cellules microgliales [58,59]. En effet, une culture de microglie primaire traitée avec du CSF1 et TGF- β présente une augmentation d'expression des gènes microgliaux par rapport à une culture primaire traitée avec le CSF1 seul. De plus, une étude récente montre que le TGF- β , le cholestérol et le CSF1 sécrétés par les astrocytes permettent de maintenir la survie des microglies *in vitro* [58]. Le facteur de transcription spécifique de la microglie SALL1 et le régulateur négatif des espèces réactives de l'oxygène (ou NRROS) se montrent impliqués dans la quiescence des cellules microgliales. Une perte de l'expression de SALL1 amène à une disparition rapide de la signature microgliale et une augmentation des gènes associés aux macrophages tissulaires. Une perte de l'expression de NRROS conduit aussi à la disparition de la signature microgliale mais une augmentation des gêne associés macrophages périvasculaires [60,61]. NRROS et SALL1 sont donc très importants pour la maturation des cellules microgliales. En revanche, chez l'adulte le facteur de transcription SALL1 est nécessaire pour maintenir l'identité microgliale, alors que NRROS n'est pas requis [48]. Ces différentes données montrent que les facteurs environnementaux sont essentiels pour la spécification et le maintien de l'identité des cellules microgliales.

d- Fonctions microgliales en condition physiologique

Les cellules microgliales interviennent tout au long de la vie de l'organisme dès la période prénatale. Au cours de cette période, les microglies exercent de nombreux rôles dans l'édification du SNC. Elles vont promouvoir la mort cellulaire. En effet, des expériences menées lors du développement de la rétine chez le poulet montrent que les microglies vont exprimer le facteur de croissance des nerfs (ou NGF) qui induira l'apoptose des cellules de la rétine via sa liaison au son récepteur le NGFR. De plus, les microglies promeuvent la fasciculation des axones dans le corps calleux dorsal grâce à la molécule DAP12 (pour DNAX activating protein of 12 kDa). Les microglies contribuent également à l'assemblage des circuits neuronaux en régulant la croissance de certains axones et en aidant au positionnement des neurones au sein des différentes couches. Enfin, les microglies peuvent participer à l'architecture vasculaire cérébrale en favorisant la fusion des cellules endothéliales dans le cerveau postérieur (**Figure 3**).

Figure 3: Fonctions des microglies durant le stade prénatal. Les microglies vont être impliquées dans de nombreux processus comme la mort ciblée de certains neurones, la fasciculation des axones, la limitation de la croissance axonale, augmenter la complexité de la vascularisation cérébrale et réguler le positionnement des neurones en couches [48].

Ensuite au stade périnatal, les microglies peuvent intervenir en favorisant la survie neuronale par la sécrétion de facteur de croissance analogue à l'insuline (ou IGF) qui se liera aux cellules afin de favoriser la survie des neurones en développement de la couche V [48]. Elles pourront aussi promouvoir la mort cellulaire ainsi que la phagocytose (i) de précurseurs des cellules neurales au stade embryonnaire 20, (ii) des neurones de l'Hippocampe au stade post-natal P0 et (iii) des cellules de Purkinje dans le cervelet au stade post-natal P3. Contrairement à la phagocytose des cellules nécrotiques, la phagocytose des cellules apoptotiques, plus efficace, provoque des réponses anti-inflammatoires (**Figure 4**).

Figure 4: Fonctions des microglies durant le stade périnatal. Les cellules microgliales vont participer à la survie des neurones de la couche V en sécrétant de l'IGF. Les microglies vont aussi promouvoir la mort cellulaire et la phagocytose des neurones et des précurseurs neuronaux dans différentes régions du cerveau en développement [48].

Lors du stade de développement post-natal, la plasticité synaptique remarquable conduira à la maturation et au remodelage synaptique. Il a été montré que les cellules microgliales y sont fortement impliquées au stade post-natal P15 dans l'hippocampe. Les microglies réalisent l'élagage synaptique, phénomène qui fait intervenir les facteurs du complément C1q et C3. Ces molécules marquent les synapses à éliminer et attirent les microglies exposant leur récepteur spécifique de façon à ce qu'elles phagocytent les prolongements aberrants. Enfin les cellules microgliales travaillent également avec les oligodendrocytes en sécrétant des facteurs permettant leur survie et leur différentiation (**Figure 5**).

Figure 5: Fonctions des microglies durant le stade postnatal. Les cellules microgliales vont favoriser la maturation et le remodelage des synapses, elles vont également favoriser la différentiation et la survie des oligodendrocytes [48].

Enfin au cours de la phase adulte de l'organisme, les cellules microgliales continuent à porter des rôles dans le contrôle de l'activité neuronale directement au niveau des synapses ou par la phagocytose de la myéline et de certains précurseurs des cellules neurales (**Figure 6**).

Figure 6 : Fonctions des microglies durant le stade adulte. Les microglies vont maintenir un pool de précurseurs des oligodendrocytes ainsi qu'en phagocytant la myéline. Les microglies vont également contrôler la neurogenèse et l'activité des cellules neuronales [48].

Ces différentes données montrent que la microglie possède de nombreux rôles bénéfiques tout au long de la vie, essentiels au bon fonctionnement du SNC mais qui pourraient être dérégulés lors de pathologies créant ainsi un environnement excessivement pro- ou antiinflammatoire délétère pour l'organisme.

e- Fonctions microgliales en condition pathologique

Au cours de la vie, l'homéostasie tissulaire est essentielle. Dans le cerveau, les cellules microgliales assurent ces fonctions d'élimination des débris cellulaires. Longtemps perçues comme très sollicitées dans les maladies neurodégénératives par exemple, leur suractivité prenait l'image d'une conséquence pathologique. Désormais, la microglie est également vue comme un contributeur à la progression de nombreuses neuropathologies (tumeurs cérébrales, sclérose en plaque, maladie d'Alzheimer, maladie de Parkinson...) et peut représenter une cause pathologique.

Lors du développement d'une tumeur cérébrale comme les gliomes, les cellules cancéreuses vont sécréter des facteurs comme CSF1, MCP-1 (pour monocyte chemoattractant protein 1), CXCL12 (pour C-X-C Motif Chemokine Ligand 12) et GDNF (pour glial cell line derived neurotrophic factor) qui auront pour but d'attirer les cellules microgliales mais aussi les macrophages périphériques infiltrants afin de favoriser la croissance tumorale. Parmi ces facteurs sécrétés par la tumeur, le CSF1 qui est impliqué dans la différentiation des cellules microgliales, permet le recrutement des cellules microgliales et macrophagiques au niveau de la tumeur et les convertit en cellules immunitaires pro-tumorales. Ces macrophages associés à la tumeur (ou TAMs) vont alors sécréter des facteurs comme le TGF- β , STI, EGF (epidermal growth factor), l'interleukine 6 (IL-6) et l'interleukine 1 β (IL1- β) permettant à la tumeur de s'accroitre et envahir d'autres régions cérébrales. La sécrétion du TGF- β par les TAMs va déclencher la libération par les cellules tumorales de versican et de la métalloprotéase 2 inactive (pro-MMP2). La libération du versican va stimuler l'expression de la MT1-MMP (ou matrix metalloproteinase-14), enzyme qui activera la MMP2. Cette MMP2 active dégrade alors la matrice extracellulaire permettant l'invasion tumorale [53,62].

Dans la sclérose en plaques (SEP), maladie inflammatoire du SNC, la gaine de myéline entourant les neurones est progressivement détruite, ce qui compromet la transmission de l'influx nerveux. Les principaux responsables sont les lymphocytes T qui pénètrent les tissus nerveux à la suite d'une perméabilité de la BHE et surtout à la suite de leur chimioattraction par des chimiokines d'origine microgliale et macrophagique. Les lymphocytes T sont alors en coopération étroite avec les macrophages infiltrants et les cellules microgliales qui en retour pourront plus ou moins efficacement éliminer les débris de myéline et contribuer à une forte capacité de remyélinisation. Dans les cas les plus sévères, les lymphocytes T ne permettent

17

pas une activation appropriée de la microglie, ce qui affecte l'ensemble de la cascade de réparation [63].

Les cellules microgliales présentent aussi un rôle dans les pathologies neurodégénératives. Ces pathologies sont caractérisées par le dépôt de protéines agrégées et mal repliées en fonction de l'âge. La microglie va exprimer à sa surface des récepteurs de reconnaissance des pathogènes (ou PRR) qui vont reconnaitre soit des modèles moléculaires associés aux agents pathogènes (ou PAMPs) ou des modèles moléculaires associés à des dommages (ou DAMPs). Parmi ces DAMPs reconnus par la microglie, se trouvent les protéines mal repliées, les protéines agrégées ou les acides nucléiques. Ces DAMPs contiennent par exemple les agrégats des : peptide amyloïde A β , α -synucléines, huntingtine mutante, superoxyde dismutase 1 (SOD1) et chromogranine. Ces molécules activent donc les PRRs et entrainent la mort cellulaire, favorisent la neurodégénérescence et par conséquent la progression de la pathologie. L'implication des cellules microgliales dans la maladie d'Alzheimer n'est pas totalement démontrée car il reste difficile encore aujourd'hui de discriminer les altérations des fonctions microgliales liées à l'âge (diminution des capacités de nettoyage par exemple) de celles liées à la pathologie elle-même. Il existerait probablement une liaison étroite entre ces deux phénomènes. Des études récentes montrent que la microglie pro-inflammatoire est localisée autour des plaques amyloïdes Aβ [64,65]. Le microenvironnement situé autour des plaques amyloïdes attire la microglie via des facteurs comme MCP-1 α/β , l'interleukine 8 (IL-8) et MCSF (ou CSF1). Ces facteurs chimioattractants augmentent l'afflux microglial associé aux plaques amyloïdes. Si les cellules microgliales sont normalement des cellules mobiles qui surveillent en permanence le SNC, celles qui sont accumulées autour des plaques Aβ, dans la maladie d'Alzheimer, sont moins mobiles, moins réactives et probablement davantage proinflammatoires. Encore une fois, leur importance dans la pathophysiologie reste floue mais l'association de l'âge et de l'accumulation microgliale aux abords des dépôts amyloïdes est une étape clé de la pathologie qu'il faudra comprendre [66].

II- La sangsue médicinale Hirudo medicinalis

1- Introduction générale

La sangsue Hirudo medicinalis est un invertébré annélide d'eau douce hématophage. Elle appartient au groupe des hirudinées. Cet animal, très utilisé par le passé, retrouve un intérêt dans un nombre croissant de services hospitaliers, en France et à l'étranger, car il apporte de nombreux effets bénéfiques dans le traitement de maladies inflammatoires comme l'arthrose ou bien comme dispositif de nettoyage des cicatrices après certaines opérations chirurgicales. Ces « hirudothérapies » consistent à disposer une ou plusieurs sangsues sur la peau. Les animaux peuvent à la fois consommer le sang coagulé qui forme un obstacle à la bonne cicatrisation, et en même temps libérer les nombreuses molécules contenues dans leur salive [67]. Les substances bioactives les plus connues sont les antistasines, la guamérine, l'hirudine (longtemps utilisée par les médecins pour empêcher la formation de caillot sanguin avant la découverte de l'héparine), la saratine, les bdellines, le complément et les inhibiteurs de la carboxypeptidase. Ces molécules ont des fonctions analgésique, anti-inflammatoire, d'inhibition plaquettaire, anticoagulante, antimicrobienne, ainsi que des effets sur la dégradation de la matrice extracellulaire. Ces propriétés salivaires ont été développées naturellement par cet animal hématophage pour se prémunir d'une réaction de coagulation et d'une réaction inflammatoire dans son propre système digestif après un repas de sang [67]. Au niveau scientifique, les recherches fondamentales ont donc porté sur les contenus salivaires [68,69]. La sangsue médicinale s'est également illustrée comme modèle expérimental en neurosciences. Son système nerveux est décrit depuis plusieurs décennies et a très tôt fait l'objet d'études histologiques en raison de la grande taille de ses neurones [70]. Gustav Retzius, neuro-histologiste suédois (1891), a même dessiné le système nerveux de la sangsue médicinale. Plusieurs décennies plus tard, les travaux de Kuffler, l'un des pères des neurosciences modernes, ont étudié les propriétés des cellules gliales [71]. Ces études ont permis de contribuer à la découverte des propriétés électrophysiologiques des cellules nerveuses chez les vertébrés [72]. Les travaux d'électrophysiologies menés sur le système nerveux de la sangsue médicinale ont également permis de cartographier de façon précise les cellules nerveuses [73–75]. Enfin, le système nerveux de la sangsue a représenté un modèle intéressant pour l'identification des cellules microgliales. La sangsue est considérée comme le premier modèle de recherche sur les cellules microgliales [76]. Pio del Rio-Hortega a notamment utilisé le SNC de la sangsue pour décrire historiquement les cellules microgliales en utilisant une coloration au carbonate d'argent [3,76]. Cet organisme présente la capacité de régénérer ses axones après une blessure avec une grande précision et de récupérer sa capacité locomotrice [77]. C'est pourquoi, plusieurs études portant sur la régénération axonale ont été menées avec succès sur ce modèle [78–81].

2- Le système nerveux central de la sangsue médicinale

Le système nerveux central de la sangsue est situé dans une capsule fibreuse elle-même située au sein du sinus sanguin ventral. Il est constitué d'une série de ganglions cérébroïdes situés en arrière de la ventouse péribuccale (partie céphalique), de 21 ganglions segmentaires et enfin de sept ganglions caudaux fusionnés innervant la ventouse postérieure. Les ganglions adjacents qui créent une chaine d'une extrémité à l'autre de l'animal sont reliés entre eux par deux tissus connectifs. De chaque ganglion segmentaire sortent les racines latérales qui permettent d'innerver les tissus périphériques [14].

Chaque ganglion contient environ 400 neurones dont les axones se projettent en grande majorité dans les tissus connectifs adjacents. Les cellules microgliales sont situées dans tout le SNC. Chaque ganglion contient environ 10 000 cellules microgliales et chaque connectif inter-ganglionnaire en contient environ 2 000. D'autres cellules sont présentes dans le SNC : une cellule macrogliale qui entoure les axones et située dans chaque connectif, deux cellules gliales géantes localisées dans le neuropile et six cellules gliales du paquet par ganglion qui entourent les corps cellulaires neuronaux (**Figure 7**).

Figure 7: Présentation de la sangsue Hirudo medicinalis. (A) Images de L'incision ventrale du tégument et des muscles donne accès au sinus sanguin ventral qui abrite la chaine nerveuse comme cela est représenté sur le schéma annoté. Il est ensuite possible de prélever tout ou fragment de cette chaine afin de la maintenir ex vivo. Les lésions expérimentales de tissus connectifs pourront être réalisées sur ces prélèvements. (B) Schéma du système nerveux central de la sangsue. Le schéma de gauche montre la structure générale du système nerveux. Le schéma de droite montre un fragment de 2 ganglions nerveux. La structure d'un ganglion est la suivante : les cellules gliales géantes du neuropile, les cellules gliales du paquet (4 visibles sur les 6) enveloppant les corps cellulaires neuronaux et entourées de cellules microgliales. Les axones sont projetés à travers le neuropile jusque dans les connectifs adjacents. De même, il est représenté entre ces deux ganglions, une accumulation de la microglie consécutive à une lésion des connectifs [20].

Il n'existe pas de type cellulaire morphologiquement comparable aux astrocytes ou aux oligodendrocytes chez la sangsue. Les cellules gliales présentes au sein du SNC, en dehors de la microglie, assurent des fonctions qui ne sont pas encore précisées à ce jour. Grace à un tissu nerveux facilement accessible, ainsi que la capacité de pouvoir rapidement isoler les cellules microgliales et les neurones, la sangsue médicinale offre en tant que modèle expérimental des facilités pour l'étude du dialogue entre microglie et neurones. En outre, les deux populations cellulaires, une fois prélevées, sont aisément maintenues en culture primaire dans des conditions particulièrement avantageuses, à température ambiante et sans apport de CO₂. Les méthodes de séparation par leur taille respective permettent soit des co-cultures, soit des cultures spécifiques. Des études ont démontré que les axones régénèrent et rétablissent complètement leur connexion synaptique pour aboutir à une restauration complète des fonctions locomotrices, observable par un retour complet du comportement natatoire [77]. Cette régénération axonale, a été démontrée in vitro et in vivo par plusieurs études électrophysiologiques et études de comportement. In vivo, les neurones sensoriels individuels sont capables suite à une lésion de développer de nouvelles connexions synaptiques. Il a été montré que cette reconnexion synaptique est un processus bien organisé de telle façon que les axones lésés, présentent une capacité de repousse grâce à de nombreuses molécules de guidage, puis de synaptogenèse leur permettant de retrouver exactement les mêmes cellules initialement connectées [13,82]. Il a aussi été démontré que même lorsque le neurone cible est volontairement éliminé, l'axone régénère normalement vers le site habituel sans former pour autant d'autres connexions [80,83]. L'organisation tubulaire de ce SNC expliquerait probablement cette cohérence dans l'orientation des mécanismes de régénération. Une autre caractéristique du SNC de la sangsue vient du fait qu'il ne semble pas autoriser l'infiltration de cellules sanguines, bien qu'il soit logé dans le sinus sanguin ventral. Des études ont montré que les types cellulaires sanguins peuvent gagner la face externe de l'endothélium sans pour autant pénétrer au travers de la capsule conjonctive autour des neurones [22,84]. La compréhension des fonctions microgliales associées à ces capacités neurorégénératrices est donc d'autant plus intéressante.

3- La microglie : acteur de la régénération axonale

a- Description des cellules microgliales

Del Rio-Hortega a décrit les cellules microgliales grâce la méthode du carbonate d'argent, effectuée entre autre grâce au SNC de la sangsue [14]. Depuis, de nombreuses études ont été réalisées sur ces cellules. Des travaux menés au sein du laboratoire ont mis en évidence la présence d'un marqueur des cellules microgliales décrit aussi chez les mammifères qui est une molécule de liaison au calcium, Iba1 [15]. Il a été démontré que les cellules microgliales sont positives pour *hm*Iba1 (pour *hirudo medicinalis* Iba1) et que ce signal augmente lorsque les cellules sont stimulées en présence d'ATP (**Figure 8**).

Figure 8: **Mise en évidence du marqueur hmlba1 après l'activation des cellules microgliales par de l'ATP.** Les fragments de chaine nerveuse hemi-lésés sont incubés dans de l'ATP. (**A**) Les analyses révèlent une activation des cellules microgliales positives pour hmlba1 autour des corps cellulaires neuronaux (n), mais aussi au niveau de la lésion (flèche) (B) [15].

De plus, les capacités phagocytaires des cellules microgliales ont aussi été révélées *in vitro*. Les cellules microgliales mises en présence de bactéries rendues fluorescentes sont capables de les phagocyter après seulement 10 minutes [14]. Les cellules microgliales sont les seules cellules capables de migrer au sein du SNC de l'animal. Il a été évoqué que les cellules microgliales augmentaient leur nombre sur un site de lésion expérimentale effectuée dans les tissus connectifs [85]. Cette augmentation significative au site de lésion ne repose pas sur la prolifération des cellules microgliales locales mais sur l'accumulation des cellules microgliales répandues dans les connectifs et qui gagnent le site de la lésion par un processus de recrutement chimiotactique élaboré [84,86]. Comme décrit précédemment, au sein des connectifs, en plus de la microglie et de la cellule macrogliale, seuls les axones des neurones sont présents puisque les corps cellulaires neuronaux sont restreints aux ganglions. Une lésion expérimentale dans les connectifs n'altèrerait donc que les axones et maintiendrait les corps cellulaires neuronaux intacts, offrant ici une opportunité de suivre spécifiquement les mécanismes de repousse axonale et de synaptogenèse. En plus de l'absence de recrutement des cellules sanguines déjà évoquée plus haut, il a été montré que la destruction chimique des cellules macrogliales n'a aucune conséquence sur la capacité de régénération des axones à l'inverse des traitements inhibant le recrutement microglial [78].

b. <u>Recrutement des cellules microgliales à la lésion</u>

Les cellules microgliales chez la sangsue sont faciles à prélever et mettre en culture primaire en grand nombre et sans manipulations chimiques et mécaniques trop longues. Contrairement aux cellules microgliales des mammifères, leur maintien en culture primaire est effectué à température ambiante et sans apport de CO₂. Enfin, seules cellules recrutées à la lésion, leur observation est donc possible par l'utilisation de marqueurs nucléaires vitaux à la fois *in vivo*, dans la chaine nerveuse entière mais aussi sur des fragments de chaine lésée maintenus en culture *ex vivo* (**Figure 9**). Sans fixation des tissus, il est donc possible de réaliser des expériences dynamiques. Comme énoncé précédemment, les cellules microgliales sont recrutées lors d'une lésion dans les connectifs. Si leur recrutement à la lésion est ralenti ou bloqué par une dose trop importante d' adénosine triphosphate (ATP), ceci entraine un retard dans la repousse axonale [21]. Cette observation démontre que le processus de recrutement microglial à la lésion est crucial dans la régénération axonale à l'inverse des cellules macrogliales [78].

Afin de mieux comprendre le recrutement microglial qui s'effectue à la lésion, plusieurs études ont permis de mettre en évidence des signaux chimiotactiques qui sont impliqués. Parmi eux, le monoxyde d'azote (NO) semble intervenir dans le recrutement en tant que médiateur diffusible. La présence de la NO synthétase endothéliale (eNOS) à la lésion suggère la production de NO et son implication dans le recrutement des cellules microgliales [87].

24

Figure 9: Observation des cellules microgliales et des neurones de sangsue. Après dissection de la chaine nerveuse de la sangsue (schéma du centre), les neurones sont remis en culture primaire et sont facilement observables au microscope photonique (image de gauche). Les cellules microgliales sont facilement observables sur des fragments de chaine lésée maintenus en culture ex vivo par l'utilisation d'un marqueur nucléaire vital (image de droite).

De plus, un inhibiteur du NO réduit le nombre de cellules microgliales présentes à la lésion [86]. Cette molécule va agir sous forme d'un gradient diffusible. De faibles concentrations (NO éloigné du site de lésion) vont attirer les cellules microgliales alors que de fortes concentrations (NO proche du site de la lésion) vont stopper la migration des cellules microgliales. Si un traitement de la chaine nerveuse est réalisé avec un chélateur de NO, supprimant le gradient présent, les cellules microgliales présenteraient un mouvement désorganisé [88]. Une autre molécule impliquée dans le recrutement des cellules microgliales est l'ATP [21,88,89]. Même si son récepteur chez la sangsue n'a pas été précisément caractérisé, un inhibiteur des récepteurs purinergiques provoque une diminution de la migration des cellules microgliales et suggère donc un mécanisme analogue à celui existant chez les mammifères [90]. Enfin, un inhibiteur spécifique de l'ATP crée lui aussi un ralentissement de la migration microgliale [88]. Toutes ces expériences montrent que l'ATP permet de recruter les cellules microgliales à la lésion. Le NO serait quant à lui davantage nécessaire pour orienter correctement le recrutement des microglies. De façon intéressante,

comme cela a été mentionné précédemment, si des concentrations élevées d'ATP (3 mM) sont appliquées, ceci réduit significativement l'accumulation microgliale à la lésion et retarde *in fine* la repousse axonale (**Figure 10**) [21].

Figure 10: Inhibition de l'accumulation microgliale et de la repousse axonale par l'ATP. Les graphes à gauche montrent que l'ajout d'ATP en concentration élevée diminue significativement l'accumulation microgliale et la croissance axonale. Les images de droite montrent la diminution de l'accumulation de microglies à la lésion (images A et D) simultanément à la réduction de la croissance axonale (images B et E) [21].

D'autres molécules ont été mises en évidence dans le recrutement des cellules microgliales à la lésion. Parmi elles, le complexe p43 / polypeptide II activant les monocytes endothéliaux (ou EMAPII) a été caractérisé dans le SNC de la sangsue sous le nom de *Hm*EMAPII (pour *Hirudo medicinalis* EMAPII) [19]. Cette molécule a été décrite chez les mammifères comme une cytokine pro-inflammatoire produite dans les microglies activées lors de lésion au niveau du SNC [91,92]. De façon intéressante, la molécule EMAPII humaine présente un effet chimioattractant sur des cellules microgliales de sangsue suggérant qu'elle agirait de la même manière chez la sangsue en reconnaissant un récepteur analogue au CXCR3 présent chez les mammifères [19].

L'interleukine 16 (IL-16) a aussi été caractérisée chez la sangsue (*Hm*IL-16 pour *Hirudo medicinalis* IL-16) [16]. Chez les mammifères, cette molécule est une cytokine proinflammatoire découverte initialement dans les lymphocytes T CD8+ comme facteur chimioattractant pour les lymphocytes T CD4+ [93–95]. Dans le cerveau humain, cette molécule est constitutivement produite par les microglies et attire les lymphocytes T CD4+ au travers de la BHE dans certaines conditions pathologiques [96]. Chez la sangsue, elle est produite par les neurones naïfs mais peut aussi y être rapidement induite lors d'une lésion axonale. Transportée le long des axones jusqu'à la lésion, elle participe au recrutement des cellules microgliales à la lésion. En parallèle, les cellules microgliales de sangsue sont capables de produire cette cytokine 72h après la lésion, probablement afin de maintenir dans le temps un phénomène chimiotactique entretenant les cellules microgliales à la lésion [16]. De façon intéressante, l'utilisation d'un milieu conditionné riche en *Hm*IL-16 est capable de recruter *in vitro* des lymphocytes CD4+ humains, de manière CD4 dépendante, CD4 étant le récepteur naturel de cette cytokine chez les mammifères. Ces données suggèrent que la cytokine de sangsue puisse reconnaitre une telle molécule et qu'il existerait un analogue chez la sangsue. D'ailleurs, cette hypothèse est confirmée par le fait que les cellules microgliales de sangsue sont également recrutées *in vitro* sous l'effet de l'IL-16 humaine [16].

Le facteur du complément C1q est également l'un des facteurs caractérisés dans les neurones chez la sangsue (*Hm*C1q) pour être impliqué dans le recrutement microglial [17]. Deux récepteurs de *Hm*C1q ont été caractérisés. Des expériences ont montré que le récepteur gC1qR (ou C1qBP) est impliqué à la surface des cellules microgliales dans le chimiotactisme dépendant de *Hm*C1q [18]. Ce récepteur n'est présent que dans une sous-population microgliale, ce qui suggère que toutes les cellules microgliales ne soient pas réactives aux mêmes molécules chimioattractantes dans le processus de recrutement à la lésion. L'implication d'un second partenaire, cC1qR ou calréticuline (*Hm*CalR) chez la sangsue a été mis en évidence dans le mécanisme de recrutement microglial dépendant de *Hm*C1q [97]. Il semble que ces deux récepteurs de *Hm*C1q ne soient pas conjointement utilisés par les mêmes cellules microgliales.

Ces études ont permis de révéler certains mécanismes moléculaires expliquant en partie le recrutement microglial. Plus récemment, d'autres travaux de recherche auxquelles j'ai participé et menés par Antonella Raffo-Romero ont complété ces données en précisant l'implication d'un membre de la famille TGF- β dans le recrutement microglial. Traité en partie sur un plan chronologique, ce recrutement suggère des vagues successives de cellules microgliales à la lésion et montre la part importante de vésicules extracellulaires dans la réponse à la lésion chez la sangsue (**Publication 2**) [20] comme cela avait été montré peu de temps auparavant (**Publication 1**) [23].

III- Les Vésicules Extracellulaires

Le terme de vésicules extracellulaires (VEs) définit les exosomes, les microvésicules mais aussi les corps apoptotiques. Les premières descriptions ont été faites à la fin des années 1960 par la description de gouttelettes plus petites que les cellules et munies d'une structure membranaire [98]. D'autres travaux ont ensuite décrit des éléments impliqués dans la coagulation du plasma sanguin ou la calcification des os, nommés respectivement des poussières de plaquettes ou des vésicules de la matrice [7,99]. Des VEs d'origine inconnue ont réellement été décrites pour la première fois en 1981 comme étant libérées par des cellules et ayant une activité 5'-nucléase, à partir de trois lignées cellulaires et deux types de cultures primaires [100]. En parallèle, plusieurs séries de travaux ont décrit des vésicules générées à partir de cellules saines ou tumorales et détectées dans les fluides biologiques [100–105].

1- Biogenèse des vésicules extracellulaires

Bien que les exosomes et les microvésicules partagent de nombreuses caractéristiques (marqueurs moléculaires et diamètre en autre). Elles suivent des voies de biogenèse différentes. En effet, les exosomes sont générés via le système endosomal et la fusion des corps multivésiculaires (ou MVBs) avec la membrane plasmique alors que les microvésicules, sont issues du bourgeonnement de la membrane plasmique des cellules [106].

a- Biogenèse des Exosomes

Les exosomes sont nommés ainsi seulement lorsqu'ils sont libérés dans le milieu extracellulaire. Lorsqu'ils sont produits et stockés dans les endosomes multivésiculaires (EMV), ils sont appelés vésicules intra-luminales (ou ILVs). Les exosomes sont générés par invaginations de la membrane des endosomes durant leur maturation en EMV [12]. La biogenèse des exosomes peut être dépendante ou non de la machinerie ESCRT (endosomal sorting complex required for transport). La machinerie ESCRT est composé d'environ 20 protéines, assemblées en 4 complexes différents (ESCRT-0, -1, -II et -III). Ces 4 complexes ont des protéines associées comme VPS4 (Vacuolar Protein Sorting-associated protein 4), Alix (Apoptosis-Linked gene 2-Interacting protein X), VTA-1 (Vps Twenty Associated 1) et ATPase (Adenosin TriPhosphatase) [107,108]. Lorsque la biogenèse des exosomes dépend de la voie

ESCRT, les complexes ESCRT-0 et ESCRT-I sont impliqués dans la reconnaissance et le recrutement de protéines au sein de microdomaines des EMV. Ensuite, ces deux complexes recrutent les complexes ESCRT-II et ESCRT-III afin de permettre l'invagination de la membrane des EMV et la fission des microdomaines pour former les ILVs (**Figure 11**).

Outre le fait que la biogenèse des exosomes soit dépendante de la machinerie ESCRT, il est aussi montré que la biogenèse peut passer par une voie indépendante. En effet, des expériences ont démontré que lors d'une déplétion de composants de la machinerie ESCRT, il existe toujours une formation d'exosomes [108]. Les exosomes générés indépendamment de la machinerie ESCRT auront besoin de céramide provenant de l'hydrolyse de la sphingomyéline. Cette réaction est réalisée grâce à la sphingomyélinase de type 2. Si cette enzyme est inhibée, la quantité d'exosomes libérés serait réduite [109]. De plus, les tétraspanines, protéines transmembranaires enrichies dans les VEs, jouent un rôle dans la formation des exosomes selon cette voie indépendante de la machinerie ESCRT [110]. Les mécanismes dépendants et indépendants de la machinerie ESCRT ne sont pas entièrement séparés et peuvent avoir lieu en même temps. Cela permet d'aboutir à la formation de souspopulations exosomales portant des contenus différents et pouvant ainsi contribuer à la diversité des exosomes secrétés.

Figure 11: *Biogenèse des exosomes*. Deux voies principales vont mener à la production de vésicules intraluminales (ou ILVs). La première voie va impliquer les protéines du complexe ESCRT alors que la deuxième voie sera indépendante de ce complexe [12].

b- Biogenèse des microvésicules

A la différence des études portant sur la biogenèse des exosomes, celles des microvésicules sont plus récentes. Les microvésicules ont été décrites sous plusieurs noms comme ectosomes, oncosomes ou encore microparticules. A la différence des exosomes, les microvésicules présentent une gamme de taille plus importante : de 50 à 500 nm et récemment étendu jusqu'à 1 µm. Elles sont issues du bourgeonnement de la membrane plasmique, ce qui requiert un réarrangement lipidique et protéique au sein de microdomaines de la membrane plasmique [12]. Ce réarrangement entrainera le bourgeonnement de la membrane plasmique qui aboutira à la formation de microvésicules et leur libération dans le milieu extracellulaire (**Figure 12**) [111]. Les mécanismes qui régissent la production des microvésicules sont nombreux et diversifiés. Ils peuvent parfois se confondre avec ceux intervenant dans la biogenèse des exosomes. En effet, des microvésicules enrichies pour des protéines membranaires montrent l'implication de sous-unités de la machinerie ESCRT décrite dans la biogenèse des exosomes [112,113].

Figure 12: Biogenèse des microvésicules. Un regroupement de protéines membranaires et de lipides s'effectue au sein de la membrane plasmique. Ce réarrangement ainsi que le réarrangement des feuillets lipidiques va provoquer le bourgeonnement de la membrane plasmique et la formation de microvésicules [12].

2- Composition des vésicules extracellulaires

Depuis environ trois décennies, il a été montré que le contenu de VEs est biologiquement actif et peut avoir des conséquences sur les cellules receveuses. La nature des molécules présentes dans les VEs est très variée. Elles peuvent contenir des protéines, des lipides mais aussi des acides nucléiques (ADN et ARN). La figure 13 répertorie l'ensemble des molécules qui sont spécifiquement adressées dans les exosomes ainsi que dans les microvésicules [12]. Il est important de noter que la composition moléculaire des VEs peut varier en fonction de leur origine cellulaire et de l'état physiologique ou pathologique de la cellule productrice. La nature des stimuli reçus par la cellule impactera donc les mécanismes qui aboutissent à leur biogenèse [114].

L'empaquetage de ces différentes molécules dans les VEs n'est pas réalisé selon un phénomène aléatoire mais par différents mécanismes qui sont encore aujourd'hui mal compris bien que très étudiés. L'empaquetage des cargos moléculaires a lieu lors de la formation des VEs (formation des ILVs pour les exosomes et bourgeonnement de la membrane plasmique pour les microvésicules).

Figure 13: Composition moléculaire des vésicules extracellulaires. La composition des vésicules extracellulaires a révélé qu'elles peuvent contenir différentes molécules, notamment des protéines, des lipides et des acides nucléiques. Cette composition peut varier considérablement selon le type de cellule et les conditions. La composition particulière des VEs affectera directement le sort et la fonction des vésicules extracellulaires, renforçant ainsi l'importance de l'étude complète des composés dans les VEs [12].

Les effecteurs moléculaires présentés précédemment pour contribuer à la formation des VEs sont aussi impliqués dans l'adressage de certaines molécules au sein des VEs. Certains mécanismes contrôlant l'adressage des cargos moléculaires dans les VEs seront décrits de façon non exhaustive en y incluant un intérêt tout particulier pour les miARNs.

Les premières molécules mises en évidence dans les VEs ont été les protéines. En effet, des expériences menées au début des années 1980 ont démontré que le récepteur à la transferrine est adressé dans des VEs lors de la maturation des réticulocytes [115]. Certaines protéines participant à la biogenèse des VEs sont également présentes comme ALIX, TSG101, VPS4 [12,114]. Depuis les travaux de Pan et Johnstone, de nombreuses molécules ont été mises en évidence. Ces listes de protéines identifiées ont été regroupées dans des bases de données en ligne comme Vesiclepedia (www.microvesicles.org), EVpedia (www.evpedia.info) et ExoCarta (www.exocarta.org). Pour ne citer que quelques protéines retrouvées dans les VEs, les protéines de choc thermique (Hsp70 et Hsp90), les protéines du cytosquelette (actines, cofiline-1, ezrine/radixine/moesine, profiline-1 et tubulines), les protéines ribosomales, les tétraspanines (CD9, CD63 et CD81), les annexines, les intégrines, les enzymes métaboliques (énolases, glycéraldéhyde 3-phosphate déshydrogénase, peroxirédoxines et pyruvate kinase) et les protéines liées au trafic cellulaire (TSG101, Alix, ESCRT, RAB, syntenin-1) sont les plus fréquemment identifiées.

Par ailleurs, la composition lipidique des VEs est particulière car elle est différente de celle de la cellule productrice elle-même. En effet, lors de la formation des VEs il y a un réarrangement des lipides membranaires comme décrit précédemment [12,108,111]. Les principaux lipides retrouvés dans les VEs sont la phosphatidylsérine et les sphingolipides même si d'autres lipides comme le cholestérol, les céramides ou la phosphatidylétanolamine peuvent aussi être présents dans des populations vésiculaires plus spécifiques. Par ailleurs, des listes de lipides ont été incluses dans les bases de données comme Vesiclepedia ou EVpedia. A ce jour, peu de lipides sont décrits dans les VEs. Des études lipidomiques à plus grande échelle seront nécessaires afin de mieux comprendre le rôle de ces constituants essentiels dans la biogenèse et les fonctions biologiques des VEs.

Plus récemment, les acides nucléiques ont fait l'objet d'études dans les vésicules extracellulaires. En effet, en 2007, Valadi et ses collaborateurs ont mis en évidence la présence d'acides ribonucléiques (ARNm et miARN) dans des exosomes issus de mastocytes murins. De

plus, ils ont montré que les ARNm étaient fonctionnels puisqu'ils étaient traduits dans des cellules receveuses après l'internalisation des VEs [116]. Dans les VEs, les ARNs existent sous différentes formes : soit liés à des complexes protéiques, soit sous forme libre. Il est également important de souligner qu'à l'image des protéines et des lipides, les ARNs peuvent aussi être présents dans le milieu extracellulaire et donc co-isolés avec les VEs. Afin de vérifier et valider leur localisation vésiculaire, un traitement par la RNase A est nécessaire pour éliminer les ARNs libres non-vésiculaires [117].

Les mécanismes qui permettent l'adressage de ces ARNs, et plus particulièrement des miARNs, vers les VEs restent encore mal compris. Cependant, des études très récentes ont mis en évidence plusieurs mécanismes. Tout d'abord, les miARNs peuvent se lier à certaines ribonucléoprotéines hétérogènes nucléaires ou (hnRNPs) et plus particulièrement hnRNPA2B1 ou hnRNPQ. La liaison de ces miARNs à ces protéines s'effectue selon des motifs nucléotidiques spécifiques (ou exomotifs) présents dans la séquence des miARNs. Ensuite, ce complexe miARN-protéine interagira avec l'ubiquitine ligase E3 et AP2A1 afin d'être dirigé vers les VEs [118,119]. Le deuxième mécanisme mis en évidence est la régulation passive par les ARNm endogènes de la cellule. Puisque les miARNs ciblent de très nombreux ARNm, ces derniers présents dans la cellule contribuent à l'adressage passif des miARNs dans les VEs [120,121]. Cependant, il reste encore beaucoup à comprendre dans l'orientation des miARNs vers les VEs. Plusieurs séries d'expériences ont également démontré la présence d'ADN chromosomique et mitochondrial au sein des VEs [122,123]. L'ADN transporté par les VEs peut par ailleurs constituer un marqueur intéressant des mutations opérées dans les cellules tumorales parentales. Ceci illustre le potentiel significatif des VEs en tant que biomarqueurs translationnels même si l'importance physiologique de l'adressage d'ADN dans les VEs reste actuellement inconnue [124].

Qu'il s'agisse de protéines, de lipides ou d'acides nucléiques, la compréhension de ces différents mécanismes d'adressage vers les VEs permettra de mieux les contrôler et ainsi d'enrichir ou de supprimer certaines molécules dans les VEs. Leur manipulation ouvre déjà des perspectives de nouvelles approches utilisant les VEs comme agent thérapeutique. La compréhension plus complète de la composition moléculaire des VEs constitue aussi une partie du défi à relever. La compréhension des mécanismes d'adressage spécifique et d'internalisation des VEs vers les cellules receveuses est là encore une autre partie de l'énigme

33

à élucider car un usage thérapeutique dépendra des cellules ciblées et nous savons désormais que l'effet porté par les VEs dépend aussi de leur voie d'internalisation.

3- Méthodes d'isolement des vésicules extracellulaires

De plus en plus d'études s'intéressent aux VEs pour leurs effets sur des cellules cibles. Cela exige des méthodes d'isolement fiables et efficaces de façon à attribuer spécifiquement l'effet observé aux seules VEs, mais aussi dans le but d'identifier les molécules vésiculaires en les distinguant des éléments extérieurs potentiellement co-isolés. L'origine des VEs isolées peut provenir de différentes sources : Milieu conditionné de culture, fluides biologiques (sang, urine, liquide cérébro-spinal...) ou tissus. La composition moléculaire de ces sources de vésicules reste complexe tant elle peut varier quantitativement et qualitativement en terme de molécules. Si l'objectif de l'étude qui est menée est de caractériser les VEs par leur composition ou leurs effets, il faut donc séparer les VEs des composants non-vésiculaires présents dans les différentes sources de vésicules (agrégats protéiques, acides nucléiques libres, lipoprotéines...). Il n'existe pas d'approche universelle pour isoler ou enrichir les VEs. Jusque-là, de nombreuses publications ont présenté des résultats issus de sources biologiques et de contextes physiopathologiques très variés en attribuant des effets à des VEs sans qu'un nombre suffisant de contrôles de pureté ne soit systématiquement réalisé au préalable. Une connaissance plus juste de la composition de l'échantillon est donc nécessaire afin d'isoler correctement les VEs. Ces étapes d'isolement sont si déterminantes que la Société Internationale des Vésicules Extracellulaires (ou ISEV) a entrepris en 2014 de publier périodiquement des recommandations sur les exigences expérimentales minimales à suivre pour l'étude des vésicules extracellulaires et leurs fonctions. Ces recommandations ont été mises à jour en 2018 avec la contribution des membres de la société ISEV [125,126]. Parmi toutes les méthodes, la technique la plus utilisée actuellement est l'ultracentrifugation différentielle comme première séparation des VEs. Elle peut être couplée à d'autres techniques comme : le gradient de densité, la chromatographie d'exclusion stérique, la précipitation, la filtration ou l'immunocapture. Beaucoup d'autres techniques ont été utilisées mais sont restées plus confidentielles dans le domaine des VEs. Sans pour autant les expliquer, nous pouvons citer ici la filtration à flux tangentiel, le fractionnement d'écoulement de champ (FFF), le fractionnement d'écoulement de champ par écoulement asymétrique (AFFF), le flux viscoélastique, l'électrophorèse en courant alternatif, l'acoustique, des variations de la

chromatographie d'exclusion stérique (SEC), la chromatographie par échange d'ions, la microfiltration, le tri par cytométrie en flux (FACS, notamment pour les VEs de grande taille, y compris les grands corps apoptotiques et les grands oncosomes), les réseaux de déplacement latéral déterministe (DLD), les nouvelles immunocaptures, les technologies d'isolement par affinité lipidique, la dialyse par filtration hydrostatique, les méthodes à haut débit et haute pression telles que la chromatographie liquide à haute performance (FPLC/HPLC). La méthodologie est un champ d'étude en soi et reste par conséquent en perpétuelle évolution. En revanche, nous nous concentrerons par la suite sur les techniques les plus utilisées à ce jour pour isoler les VEs [127].

a- Ultracentrifugation (UC)

Les principaux avantages de l'UC est qu'elle est reproductible et que de grands volumes de matériels biologiques peuvent être utilisés pour séparer les VEs. De plus, cette méthode peut être employée comme étape préliminaire à d'autres méthodes d'isolement. Afin de séparer les VEs des autres composés, plusieurs étapes de centrifugations sont nécessaires [128]. En effet, des étapes de centrifugation préalables sont souvent nécessaires pour éliminer les composés de plus grande densité comme les cellules, les débris cellulaires ou bien les corps apoptotiques s'ils ne sont pas étudiés. Ces étapes sont effectuées à des vitesses d'environ 300-400 x g pour éliminer les cellules. Les corps apoptotiques et les débris cellulaires seront séparés du mélange avec des vitesses autour de 2000 x g. Le surnageant de ces centrifugations, désormais débarrassé de ces composés de grande densité, est ensuite ultracentrifugé pour séparer les VEs des composants de plus faible densité présents dans le milieu. Cette étape utilise des vitesses de l'ordre de 100 000 x g pendant 1h à 2h. Le culot récupéré lors de cette étape contient les VEs et les composés de même densité. Des étapes supplémentaires comme un lavage du culot suivi d'une nouvelle ultracentrifugation ou bien une filtration du culot récupéré peuvent être réalisées afin d'augmenter la pureté de l'échantillon et éliminer les molécules non vésiculaires [128]. Toutefois, cette étape de lavage qui augmente la pureté en vésicules de l'échantillon va aussi engendrer une perte importante de VEs. Le choix du protocole de centrifugation et d'ultracentrifugation sera donc fait en fonction de la question posée et des expériences à réaliser avec ces échantillons [127]. Même si les vitesses et les temps énoncés sont des ordres de grandeur, la limite à l'utilisation unique de cette technique reste le co-isolement de nombreux contaminants dans les préparations. Il est donc très intéressant de coupler cette technique à d'autres méthodes.

b- Ultracentrifugation avec un gradient de densité

Le couplage de l'UC à la technique de gradient de densité de lodixanol (Optiprep[™], ou ODG) permet de séparer les contaminants non-vésiculaires des VEs récupérés après l'ultracentrifugation. Les VEs ont une densité comprise entre 1.1 g/mL et 1.19 g/mL et inférieure à celles des contaminants. Il est possible de réaliser un gradient de densité continu ou discontinu composé soit de sucrose ou de iodixanol [129,130]. L'iodixanol est préféré pour former le gradient de densité car il permet de former des gradients de densités différentes et isosmotiques. Cette propriété permet de conserver la taille et la forme des VEs ainsi que le maintien de leurs propriétés biophysiques en cas d'utilisation pour des applications fonctionnelles. Cette méthode de séparation est considérée comme la meilleure technique pour séparer les VEs car elle permet d'atteindre une pureté de l'échantillon très importante [129]. En revanche, un inconvénient à son utilisation est la perte importante de VEs et le temps nécessaire à sa réalisation (environ 2 jours).

c- Chromatographie d'exclusion stérique

La chromatographie d'exclusion stérique (ou SEC pour Size-Exclusion Chromatography) permet de séparer les VEs et les autres molécules en fonction de leur taille. Cette technique est largement utilisée pour la séparation de polymères (protéines, polysaccharides, protéoglycanes...). La phase stationnaire (ou immobile) se compose de billes sphériques poreuses dont la taille des pores est calibrée. Les plus grosses molécules, exclues de ces pores, sortent de la colonne plus tôt alors que les petites molécules dont le cheminement au travers des pores est autorisé, sortent plus tardivement. Elle permet de séparer les VEs des molécules contenues dans le milieu [131]. Un prétraitement ainsi que la concentration de l'échantillon sont nécessaires avant d'utiliser la SEC dans le but d'éliminer le plus d'impuretés possible dans l'échantillon. Toutefois, des colonnes commerciales ont été développées pour simplifier l'isolement des VEs en une seule étape. Outre la rapidité de la méthode, des études comparatives révèlent que cette technique conserve la morphologie, l'intégrité ainsi que l'activité biologique des VEs [132]. Cette méthode peut évoluer en fonction de la longueur de

la colonne qui améliore la résolution, tandis qu'une augmentation du diamètre permet d'analyser des échantillons de volume plus important. Cependant, il est important de savoir que l'efficacité de séparation des VEs est liée au volume d'échantillon analysé. Ce volume ne doit pas excéder entre 1/20^{ième} et 1/15^{ième} du volume de la phase immobile. Comme les propriétés hydrodynamiques des protéines et des vésicules sont différentes, peu de protéines non vésiculaires sont co-isolées avec les VEs. Il reste donc à élaborer, pour les plus bricoleurs, des colonnes « faites maison » pour pallier aux couts des colonnes commerciales et utiliser un nombre important de fractions d'élution pour ne pas trop diluer les VEs récoltées pour la suite des analyses [127].

d- <u>Méthodes utilisant le changement de solubilité ou l'agrégation des</u> <u>vésicules</u>

Précipitation utilisant les polymères hydrophiles

Cette technique d'isolement utilise la solubilité des VEs par l'ajout d'un composé comme le polyéthylène glycol (PEG). Ensuite, une centrifugation à faible vitesse (1500 x g) permet de culoter les VEs qui seront ensuite suspendues de nouveau dans le volume et le tampon adaptés. Cette technique peut être améliorée par l'ajout d'un autre composé comme la protamine. Les vésicules étant chargées négativement, l'utilisation de la protamine étant chargée positivement permet d'agréger et isoler les VEs. L'utilisation du PEG ou de la protamine seuls permet d'isoler correctement les VEs mais leur utilisation simultanée augmente encore l'efficacité de l'isolement. Bien que rapide et respectueuse de la morphologie des vésicules, la précipitation des VEs s'accompagne d'une co-précipitation de nucléoprotéines et de protéines non-vésiculaires comme notamment l'albumine, l'apolipoprotéine E ainsi que des immunoglobulines. La fraction vésiculaire ainsi obtenue peut contenir des biopolymères susceptibles d'interférer avec l'analyse ultérieure de l'échantillon (spectrométrie de masse, analyse protéomique et dosage de l'ARN). Ces impuretés peuvent être éliminées de l'échantillon par couplage d'autres techniques comme la centrifugation, la filtration ou bien l'utilisation d'une SEC [127].

Précipitation des VEs utilisant l'acétate de sodium

Cette méthode utilise les charges négatives des VEs pour les précipiter. En neutralisant les charges avec de l'acétate de sodium, cela va interférer avec l'hydratation de la surface vésiculaire et permettre l'agrégation des VEs via des interactions hydrophobes. Après des centrifugations permettant d'éliminer les cellules, les débris et les corps apoptotiques, le surnageant est mélangé avec de l'acétate de sodium. La solution est ensuite centrifugée pour culotter les VEs, débarrassée ensuite de l'acétate de sodium. Le culot obtenu après ce lavage peut être utilisé pour les analyses ultérieures. Cette méthode permet d'isoler des VEs à partir de grand volume d'échantillons et ne requiert pas beaucoup d'équipements spécifiques. Il reste néanmoins l'inconvénient d'une forte présence de contaminants non vésiculaires, ce qui est particulièrement le cas lorsque les échantillons analysés sont issus des fluides biologiques comme le sang ou l'urine [127].

Précipitation des protéines avec des solvants organiques

Cette méthode aussi appelé PROSPR (Protein Organic Solvent Precipitation) est basée sur la précipitation des protéines avec l'utilisation d'un solvant organique. Celui qui est souvent utilisé est l'acétone. A la suite d'une simple centrifugation, les protéines culottées sont séparées du surnageant contenant les VEs. Ce dernier pourra ensuite être filtré dans un plus petit volume si nécessaire [133]. L'avantage de cette technique est qu'elle permet d'obtenir une pureté satisfaisante de vésicules et une faible contamination protéique non-vésiculaire. L'identification des composés moléculaires est donc permise. En revanche, elle n'est utilisable que pour de petits volumes d'échantillons et l'utilisation de l'acétone interfère avec les propriétés fonctionnelles des membranes vésiculaires provoquant une fusion des VEs en structures multivésiculaires [132].

e- Isolement des VEs utilisant les interactions par affinité

De nombreuses molécules comme les lipides, les polysaccharides ou les protéines sont exposées à la surface des VEs comme par exemple les protéines de type tétraspanines ou bien le complexe majeur d'histocompatibilité (CMH) [12]. Des anticorps peuvent être utilisés pour se lier spécifiquement à ces molécules afin d'isoler ensuite les VEs. Ces anticorps vont pouvoir être couplés de manière covalente à une phase fixe afin de retenir les VEs. Ces phases fixes peuvent être des billes magnétiques, des surfaces plastiques, des fibres de cellulose ou bien des membranes d'affinité. L'utilisation d'anticorps permet un gain de temps pour l'isolement des VEs, permet d'augmenter la pureté des préparations vésiculaires et enfin permet de récolter des fractions spécifiques de VEs en fonction de la molécule ciblée. D'autres approches utilisent la présence de phosphatidylsérine (PS) dans les membranes des VEs pour les isoler. L'incubation peut se réaliser avec des billes magnétiques recouvertes d'annexine 5 ou encore Tim4 (pour T-cell immunoglobin mucin 4), deux protéines qui se lient par affinité à la PS. Lorsque les VEs accrochées aux billes magnétiques sont isolées du reste de l'échantillon, un tampon sera utilisé afin de séparer les VEs des billes [127].

Cette technique a toutefois quelques limites. L'isolement de VEs à partir de grands volumes est plus difficile. De plus, les billes magnétiques revêtues d'anticorps ou de partenaires spécifiques sont efficaces pour isoler les VEs à partir d'un milieu de culture cellulaire mais beaucoup moins à partir de tissu sanguin ou de fluides corporels plus complexes en raison par exemple de l'interférence de la liaison anticorps-antigène causée par d'autres molécules. Enfin, il ne faut pas écarter le risque d'une adsorption aspécifique de contaminants à la surface des billes magnétiques ou des supports en plastique [127].

f- Conclusion sur l'isolement des VEs

La description non exhaustive de ces différentes techniques pour séparer les VEs montre qu'il n'existe pas de technique universelle pour isoler les VEs. Chaque procédure possède ses propres avantages et inconvénients. En outre, il est nécessaire avant d'isoler des VEs à partir d'une nouvelle source, de prendre en compte les propriétés de l'échantillon à analyser. Lorsqu'on utilise une méthode pour isoler les VEs, le protocole doit être adapté aux caractéristiques spécifiques de l'échantillon, telles que la viscosité (lors de l'analyse du plasma sanguin et du sérum), la présence de protéines spécifiques (protéine de Tamm–Horsfall ou THP dans l'urine, par exemple), la concentration des VEs. Il doit aussi tenir compte du type d'utilisations ultérieures des VEs. Certaines méthodes peuvent entraîner l'isolement de différentes sous-populations de VEs et même leur transformation. Ces paramètres doivent être considérés pour la suite des analyses.

4- Internalisation des VEs par les cellules receveuses

Les VEs produites et libérées dans le milieu extracellulaire peuvent être internalisées par des cellules receveuses pour y délivrer leur contenu. L'internalisation des VEs par les cellules cibles aura des conséquences et induira des changements qu'il est nécessaire de comprendre. Les travaux de Valadi et al. ont montré le transfert d'ARNm et de miARNs depuis des VEs provenant d'un rongeur vers des cellules humaines. Ainsi, les protéines de rongeur ont été produites dans les cellules humaines ayant reçu les VEs [116]. D'autres travaux ont montré que si des ARNs antisens (ou siARNs) étaient introduits dans les VEs, l'expression du gène cible étaient diminuée [134]. La spécificité de l'internalisation des VEs reste dépendante de la liaison entre les VEs et la surface des cellules cibles. Elle est effectuée par la liaison des protéines vésiculaires de surface sur leurs récepteurs exposés sur les cellules receveuses. Ceci donne lieu à un tropisme des VEs vers des populations cellulaires spécifiques. Par exemple, les VEs produites par la lignée cellulaire de neuroblastome N2a sont internalisées par les neurones ou les cellules gliales alors que des VEs provenant de neurones primaires après une activation synaptique ne sont internalisés que par des neurones exclusivement [135]. Ceci montre que dépendant de la source cellulaire des VEs, l'internalisation des VEs va pouvoir aussi être spécifique. Ce mécanisme de spécificité d'adressage existe pour d'autres cellules comme les cellules dendritiques ou les cellules épithéliales intestinales [136,137].

La prise en charge des VEs par les cellules receveuses est effectuée selon différents processus (**Figure 14**). Il existe 2 grandes voies d'endocytose pour l'internalisation des VEs: La voie dépendante de la clathrine et la voie indépendante de la clathrine. Cette dernière regroupe la macropinocytose, la phagocytose, l'endocytose médiée par la cavéoline et l'endocytose médiée par les radeaux lipidiques.

Figure 14: Internalisation des vésicules extracellulaires par les cellules receveuses. Les VEs sont internalisées par les cellules selon un mécanisme d'endocytose dépendant de la clathrine ou par un mécanisme indépendant. Ce dernier regroupe la macropinocytose, la phagocytose, l'endocytose médiée par la cavéoline et l'endocytose médiée par les radeaux lipidiques [138].

a- Endocytose des VEs médiée par la clathrine

L'endocytose médiée par la clathrine est une des voies majeures d'internalisation utilisées par les cellules. Elle va mettre en jeu de nombreuses protéines menant à l'invagination de la membrane plasmique de la cellule et à l'internalisation du contenu fixé. Il a été démontré que les VEs utilisent également cette voie. En effet, si par exemple des cellules cancéreuses ovariennes sont traitées avec de la Chlorpromazine, molécule qui empêche la formation du manteau de clathrine, il y a une diminution de l'internalisation des VEs par ces cellules [139]. D'autres travaux ont aussi mis en évidence l'utilisation de cette voie d'endocytose par les VEs. L'utilisation de siARNs dirigés contre l'ARNm codant la chaine lourde de la clathrine provoque une diminution de l'internalisation de VEs. Enfin, l'utilisation de shARNs dirigés contre l'ARNm codant µ2, sous-unité du complexe de l'adaptateur de la clathrine AP2, induit là encore une diminution de l'internalisation des VEs [140]. Ces différents résultats démontrent que l'endocytose médiée par la clathrine est une voie d'internalisation importante mais ce n'est pas la seule. En effet, lorsque cette voie est inhibée, l'internalisation de VEs est toujours active. Cela suggère que d'autres mécanismes interviennent pour compenser cette inhibition et/ou que les VEs utilisent d'autres voies parallèles pour pénétrer à l'intérieur des cellules.

b- Endocytose indépendante de la clathrine

La macropinocytose

La macropinocytose est un mécanisme d'endocytose qui s'effectue par invagination de la membrane plasmique pour former une poche qui ensuite se pince pour former un macropinosome. Le remplissage de cette poche est non spécifique. La formation de la poche nécessite l'implication de Rac1, de l'actine, du cholestérol mais aussi de la pompe Na+/H+ [141]. Si une inhibition de cette voie est réalisée par inhibition de la pompe Na+/H+ ou par l'inhibition de Rac1, l'internalisation des VEs dérivées des oligodendrocytes par les microglies sera diminuée [142]. De plus, si une inhibition de la macropinocytose est effectuée par l'introduction de siARNs dirigés contre les ARNm codant Rac1 ou PAK1, deux molécules impliquées dans la macropinocytose, l'internalisation des VEs sera diminuée [143]. La macropinocytose n'intervient pas systématiquement dans l'internalisation des VEs. Cette voie d'internalisation est peut-être spécifique à certains types cellulaires ou à certaines conditions physiologiques [144,145].

La phagocytose

La phagocytose est un processus par lequel les cellules vont internaliser des particules de taille assez large (supérieure à 500 nm). Elle est généralement effectuée par des types cellulaires particuliers comme les macrophages [146]. Mais, des études ont mis en évidence que la phagocytose peut aussi avoir lieu sur des particules de plus petite taille (environ 90 nm), ce qui permet d'émettre l'hypothèse que les VEs peuvent être internalisées par ce mécanisme [147]. Or des phagosomes - organites formés dans la cellule suite à la phagocytose – peuvent être co-localisés avec des VEs après leur mise en contact avec les cellules [144]. La colocalisation des VEs avec un indicateur fluorescent de pH spécifique aux phagosomes (pHrodo) démontre l'utilisation de la phagocytose comme processus d'internalisation [148]. Enfin, la phosphatidylsérine, très présente dans la membrane des VEs, est aussi impliquée dans l'initiation de la phagocytose des corps apoptotiques. Si le récepteur Tim4, impliqué dans la phagocytose dépendante de la phosphatidylsérine, est bloqué, une diminution de l'internalisation des VEs est montrée [144].

Endocytose dépendante de la cavéoline

L'endocytose dépendante de la cavéoline s'effectue par la formation de cavéole qui est une forme de radeau lipidique. Ces cavéoles sont enrichies en cholestérol, en sphingolipides et en protéines comme la cavéoline [138,149]. Le blocage de la dynamine 2, protéine impliquée dans la formation de la vésicule d'endocytose, réduit l'internalisation des VEs [138].

Endocytose médiée par les radeaux lipidiques

La dernière voie d'internalisation est l'endocytose des VEs médiée par les radeaux lipidiques indépendants de la cavéoline. Les radeaux lipidiques sont des microdomaines membranaires qui ont une composition lipidique différente du reste de la membrane plasmique. Ils sont enrichis en récepteurs protéiques membranaires et en sphingolipides comme la sphingomyéline. Une co-localisation entre les VEs et la toxine B du choléra, molécule qui utilise cette voie pour pénétrer dans les cellules, a été démontrée. De plus, un traitement des cellules receveuses avec des agents séquestrant le cholestérol permet de détruire les radeaux lipidiques et conduit *in fine* à la diminution de l'internalisation des VEs. Il peut toutefois s'agir ici d'une dégradation de l'intégrité membranaire ce qui aboutit par un effet indirect à la diminution de l'internalisation.

Fusion des VEs avec la membrane plasmique

La dernière voie d'internalisation que peuvent utiliser les VEs repose sur la fusion directe entre les VEs et la membrane plasmique des cellules receveuses. Les bicouches lipidiques des VEs et de la cellule se rapprochent, les feuillets externes entrent en contact direct, provoquant leur hémi-fusion puis un pore de fusion s'ouvre et les extrémités hydrophobes se réarrangent pour donner une structure cohérente. Plusieurs protéines peuvent participer à ce processus, comme les protéines SNAREs (pour Soluble N-ethylmaleimide-sensitive factor Attachment protein REceptor), les protéines RAB et des protéines impliquées dans la transmission synaptique comme SEC1/MUNC-18 (pour mammalian uncoordinated-18). La mise en évidence de l'utilisation de cette voie est possible par l'utilisation de VEs provenant de cellules marquées avec des lipides fluorescents. Elle a permis de montrer que des vésicules utilisent cette voie pour pénétrer les cellules [151]. Toutes ces expériences montrent que les VEs peuvent pénétrer dans les cellules receveuses selon différents mécanismes. Une proposition d'internalisation universelle à toutes les cellules est impossible à ce jour car chacune possède ses propres mécanismes d'internalisation et ils peuvent varier en fonction de son état. Un point qui n'a pas été abordé dans cette partie mais qui a une importance particulière est l'effet des VEs internalisées sur l'internalisation elle-même. Les VEs internalisées vont-elles modifier l'efficacité de l'internalisation ? Cette question reste importante afin de comprendre le dialogue qui s'établit entre deux cellules dépendamment de VEs. Enfin, la description de ces différents mécanismes n'est pas exhaustive. La meilleure compréhension de ces mécanismes par l'utilisation de nouvelles techniques plus résolutives permettra de mieux aborder les mécanismes d'internalisation. Ce dernier point est là encore important dans la perspective d'une approche thérapeutique basée sur des VEs « dessinées » pour un adressage particulier.

IV- Communication médiée par les VEs au sein du cerveau

Depuis plusieurs années, les VEs dans le cerveau ont émergé comme un nouvel aspect de la communication cellulaire. La compréhension croissante de ce processus dans le cerveau aura probablement une influence considérable sur les connaissances actuelles de la coopération intercellulaire permettant des activités neuronales, le contrôle de l'état neuroinflammatoire ou encore les processus physiopathologiques liés au vieillissement. Tous les types cellulaires présents dans le cerveau sécrètent des VEs mais leur discrimination reste un énorme challenge. Après une excitation, les neurones libèrent des VEs contenant plusieurs marqueurs connus comme les molécules alix ou flotilline-2 [152]. Les neurones communiquent également avec les astrocytes dans l'espace pré-synaptique via les VEs. Les VEs libérées par les neurones vont être capturées par les astrocytes afin d'augmenter le niveau de la protéine transportrice d'acide aminé excitateur 2 (EAAT2). Cette protéine est impliquée dans la coordination des signaux neuronaux et des fonctions astrocytaires au niveau des synapses [153].

Les Oligodendrocytes libèrent aussi des VEs qui contiennent des lipoprotéines, de la myéline et des protéines associées à la protection contre le stress oxydatif [154]. Les corps multivésiculaires des oligodendrocytes qui contiennent les futurs exosomes fusionnent avec la membrane plasmique lors d'une libération de glutamate par les neurones [155]. Les oligodendrocytes sécrètent également des VEs qui inhibent la différenciation des CPOs en oligodendrocytes ainsi que la formation de myéline. Cette auto-inhibition est partiellement bloquée par l'incubation de cellules gliales avec un milieu conditionné issus d'une culture de neurones, ce qui suggère que ce mécanisme auto-inhibiteur sert à contrôler la biogenèse prématurée de la myéline en l'absence de neurones [156].

Les astrocytes libèrent également des VEs qui auront une influence sur les neurones. La synapsine 1, protéine contenant de l'oligomannose, est libérée dans les VEs par des astrocytes et pourrait avoir des fonctions neuroprotectrices dans des conditions de stress oxydatif, d'ischémie et dans des niveaux de dépolarisation élevés des neurones [157].

Les cellules microgliales produisent également des VEs dans le but de communiquer avec les autres types cellulaires du cerveau. Les VEs produites par les microglies régulent les fonctions synaptiques des neurones. Si des VEs issues d'une culture de microglie primaire de rat ou d'une lignée cellulaire sont appliquées sur une culture de neurones, elles entrainent une augmentation de la probabilité de libération de vésicules synaptiques par les terminaisons présynaptiques [158].

Ces données indiquent que les neurones et les cellules gliales produisent et libèrent des VEs et que celles-ci participent à la modulation de l'activité électrique neuronale, à la réparation ainsi qu'à la protection contre le stress cellulaire. Nous aborderons par la suite l'implication des VEs lors de processus neuroinflammatoires.

V- Les microARNs

1- Généralités

Les microARNs (miARNs) sont des ARNs appartenant à la famille des petits ARNs, de taille comprise entre 18 et 22 nucléotides (nt). Ils régulent l'expression des gènes au niveau post-transcriptionnel en contrôlant la disponibilité des ARNm pour la machinerie de traduction, ce qui aura un impact direct sur le protéome de la cellule (**Figure 15**) [159].

Figure 15: *Mode d'action des miARNs.* Le miARN va venir se fixer sur l'ARNm cible et en contrôler sa disponibilité. Cela pourra se manifester par la dégradation de l'ARNm, ne permettant plus sa traduction.

Le premier miARN a été mis en évidence en 1993 chez le vers nématode *Caenorhabditis elegans*. En effet, les travaux de Lee *et al.* ont montré qu'un petit ARN produit par le gène *lin-4* régule de manière post-transcriptionnelle l'ARNm provenant du gène *lin-14* [160,161]. Depuis, 48 860 miARNs matures ont été découverts chez 271 organismes différents à ce jour. Chez l'Homme, 2654 miARNs matures ont été mis en évidence [162]. Il est estimé qu'il existe plus de 45 000 sites, cibles potentielles pour des miARNs dans les séquences 3' non traduites (ou UTR 3') des ARNm humains, et qu'environ 60% des ARNm chez l'Homme contiennent au moins un site de liaison pour les miARNs [163].

2- Voies de biosynthèses des miARNs

Les gènes codant pour les miARNs sont issus de différents types d'organisation géniques. Ils peuvent être présents soit (i) dans des régions intergéniques, (ii) soit situés dans les introns de gènes annotés ou (iii) situés entre un exon et un intron d'un gène non codant [164]. La biogenèse des miARNs matures s'effectue selon deux voies principales : la voie canonique et la voie non canonique.

a- La voie de synthèse canonique

La biogénèse des miARNs selon la voie canonique est résumée dans la figure 16. La plupart des gènes des miARNs sont transcrits par l'ARN polymérase II afin de produire un miARN primaire (ou pri-miARN) contenant des structures tiges-boucles [159,165]. Ensuite, le primiARN est maturé par un complexe microprocesseur hétérotrimérique composé d'une unité de l'endonucléase Drosha et de deux unités de DGCR8 (pour DiGeorge syndrome chromosomal region 8). Cette maturation du pri-miARN produira un pré-miARN. Un primiARN peut contenir plusieurs miARNs, ils seront alors traités indépendamment les uns des autres. Le pré-miARN possède la forme d'une d'épingle à cheveux et une taille d'environ 70 nt. De plus, ce dernier possède deux nucléotides sortants à l'extrémité 3' [159,166]. Les prémiARNs sont ensuite reconnus par la protéine Exportine 5 assurant leur transport vers le cytoplasme. Des expériences d'invalidation génique pour l'exportine 5 montrent une réduction importante du nombre de pré-miARNs exportés mais pas la suppression totale du mécanisme, ce qui suggère que des transport alternatifs sont possibles [159,166,167]. Le prémiARN sera ensuite reconnu dans le cytoplasme par la ribonucléase Dicer qui va le cliver au niveau de la boucle pour générer un duplexe miARN. Ce complexe possédera à ses extrémités 3' deux nucléotides supplémentaires [166]. Ce complexe de miARNs potentiellement matures sera ensuite associé à la protéine argonaute et un seul des brins sera conservé tandis que l'autre sera dégradé [165]. Si l'on estime que la plupart des miARNs sont produits à partir de la voie canonique, il a été démontré que des mécanismes n'utilisant pas cette voie sont possibles. En effet, il a été démontré que des miARNs peuvent être produits en contournant une ou plusieurs étapes de la voie de synthèse canonique. Ces miARNs sont nommés miARNs non canoniques.

Figure 16: Voie de biosynthèse canonique des miARNs. Les miARNs vont être transcrits en pri-miARN. Ce pri-miARN est ensuite clivé par les nucléases Drosha et DGCR8 pour produire le pré-miARN. Ce pré-miARN est ensuite exporté dans le cytoplasme grâce à l'exportine 5. Des mécanismes de transports alternatifs vers le cytoplasme existent. Ce pré-miARN sera finalement clivé par la nucléase DICER pour produire un duplexe miARN. Un seul des deux brins sera conservé et chargé dans le complexe RISC [159].

b- La voie de synthèse non-canonique

Plusieurs voies de biosynthèse différentes de la voie canonique ont été découvertes. Ces voies sont appelées voies non-canoniques [166]. Néanmoins, même si ces miARNs ne sont pas synthétisés selon la voie classique, l'enzyme Dicer reste indispensable à la production des miARNs. Ces différentes voies sont représentées dans la figure 17.

La première voie est celle des mirtrons. Elle ne fait pas intervenir les protéines Drosha et DGCR8. Elle a été découverte chez la drosophile ainsi que chez le vers *C. elegans* [168,169]. Lors de l'épissage des introns, l'intron est libéré sous forme d'un lasso qui adopte une

structure de tige-boucle comme les pré-miARNs. Ensuite, ces mirtrons/pré-miARNs seront exportés vers le cytoplasme par l'exportine 5 et suivront la même voie de maturation que les miARNs produits par la voie canonique [165–167]. Une autre source non canonique de miARNs repose sur les ARNs non codants comme les petits ARNs nucléolaires (snoARNs). Les miARNs produits à partir des petits ARNs nucléolaires peuvent suivre la voie canonique ou bien être produits indépendamment du complexe Drosha/DGCR8. Les ARNs en épingle à cheveux constituent aussi une source de miARNs produits sans l'action du complexe microprocesseur. Enfin, les ARNs de transfert (ARNt) forment de petits ARNs en épingle à cheveux (shARNs) et sont aussi une source de production de miARNs [170].

Si ces miARNs sont produits par les voies non canoniques, ils nécessitent la prise en charge du pré-miARN par la ribonucléase Dicer, indispensable à la maturation en duplexe miARN. Cependant, il a été décrit la production de miARNs indépendamment de cette ribonucléase. C'est le cas pour miR-451 dont le pri-miARN est clivé par le complexe microprocesseur pour générer un pré-miARN très court (environ 18 nt). Celui-ci est trop court pour être pris en charge par l'enzyme Dicer. Il est directement pris en charge par la protéine Argonaute (AGO) afin de participer au complexe RNA-induced silencing complex (ou RISC) [170].

<u>Figure 17:</u> Voies de biogenèses non-canoniques des miARNs. Les miARNs non canoniques peuvent provenir de différentes voies comme les mirtrons (région inter-exons, dans la région 5' ou bien dans la région 3' des gènes), les petits ARNs non codants comme les snoARNs et les ARNs de transferts [171].

3- Fonctions et modes d'action des microARNs

Les fonctions des miARNs ne peuvent pas être supportées par les miARNs eux-mêmes. Ils font partie d'un complexe ribonucléoprotéique appelé RISC. Ce complexe est composé de la ribonucléoprotéine Argonaute et du miARN mature [172]. La plupart des études sur les modes d'action des miARNs se focalise sur le brin 5p des miARNs qui se fixe dans l'UTR 3' des ARNm afin de permettre leur répression transcriptionnelle. Mais, il a été démontré que le brin 3p des miARNs peut aussi être actif et se fixer dans les séquences 5' non traduites (ou UTR 5') des ARNm. De plus, la région codante et les régions promotrices des gènes peuvent aussi être des régions de fixation des miARNs [173]. La reconnaissance de l'ARNm par le miARN s'effectue grâce aux nucléotides 2 à 8 appelés la région « seed » du miARN. Cependant, il existe des exceptions où le miARN va pouvoir interagir avec ses cibles indépendamment de la région « seed » [174].

Plusieurs mécanismes seront engendrés à la suite de la fixation du miARN dans l'UTR 3' de l'ARNm (Figure 18). Tout d'abord, lorsque la complémentarité entre la région « seed » du miARN et la région cible de l'ARNm est parfaite, l'ARNm est dégradé par la fonction endonucléase de la protéine du complexe RISC. Cependant, cette situation n'est pas la plus fréquente. En effet, dans la majorité des cas, la complémentarité entre la « seed » du miARN et la région cible de l'ARNm est incomplète. Il s'opère alors une désadénylation de la queue Poly(A) située dans la région 3' de l'ARNm et une perte de la coiffe située dans sa région 5'. L'ARNm sera ensuite dégradé par l'action de nucléases [172,175]. Le miARN peut induire une inhibition de la traduction. En effet, la protéine AGO va interagir avec les facteurs d'initiation de la traduction comme eIF4F. De plus, la protéine GW182 qui peut être associée au complexe RISC recrutera des protéines qui inhiberont l'initiation de la traduction. Le dernier mécanisme d'action des miARNs est l'activation de la traduction médié par le complexe RISC. La protéine GW182 sera remplacée par la protéine FXR1 (pour Fragile X Mental Retardation Syndrome-Related Protein 1) ce qui permettra d'activer la traduction de l'ARNm [175,176].

Figure 18: Mécanismes de régulation des ARNm par les miARNs. Il existe plusieurs mécanismes de régulation des ARNm par les miARNs. Les miARNs vont pouvoir soit dégrader l'ARNm, soit entrainer une désadénylation et une dégradation de l'ARNm, soit une inhibition de la traduction de l'ARNm en protéine et enfin une activation de la traduction de l'ARNm [175].

4- Conclusion générale sur les miARNs

Depuis leur découverte à la fin des années 1990, les miARNs se sont révélés dans nombreux processus à la fois durant le développement embryonnaire ainsi que tout au long de la vie des organismes. Les miARNs interviennent au cours de processus physiologiques mais aussi pathologiques. Dans le cas de certaines pathologies et plus précisément dans les neuropathologies, ces miARNs peuvent être considérés comme des biomarqueurs potentiels, de futures cibles thérapeutiques ou bien de futurs agents thérapeutiques. Bien que des progrès aient été réalisés dans la compréhension de leurs rôles dans la neuroinflammation, les miARNs restent mal compris dans de nombreuses pathologies.

VI- Les miARNs et les VEs dans la neuroinflammation

L'inflammation est un processus de réponses suite à une infection et/ou un traumatisme subis par les cellules ou tissus. Cette réponse inflammatoire est nécessaire et bénéfique par le recrutement actif de cellules immunitaires dans la zone lésée ou infectée afin d'engager un processus de réparation. Il arrive que ce processus aboutisse à une progression non contrôlée de l'inflammation ce qui mène à des phénomènes pathologiques. L'inflammation au niveau du système nerveux (ou neuroinflammation) peut donc être délétère quand elle est activée de façon aigue ou chronique par des signaux d'alerte sous forme de débris cellulaires ou d'éléments pathogènes sans qu'il puisse exister des mécanismes de rétrocontrôle [177]. La neuroinflammation implique toutes les cellules du SNC et peut parfois dans le cas de la rupture de la BHE recruter les cellules immunitaires sanguines comme les macrophages et les lymphocytes. Les cellules microgliales décrites précédemment y jouent un rôle clé. Les premières indications montrent en effet que les mécanismes inflammatoires sont d'abord conduits à la suite d'une activation microgliale [178]. L'état neuroinflammatoire est une caractéristique importante de nombreuses maladies neurodégénératives liées au vieillissement (maladies d'Alzheimer et de Parkinson) ou à l'autoimmunité (Sclérose en plaque). La neuroinflammation liée à la microglie est également impliquée dans des pathologies neuropsychologiques comme les troubles autistiques [177].

1- Les vésicules extracellulaires et implications dans la neuroinflammation

Comme tous les autres mécanismes de communication intercellulaires tels que les contacts synaptiques et les facteurs libres, les VEs jouent un rôle important et sont sécrétées par tous les types cellulaires du SNC. Elles interviennent lors du développement, dans le maintien de l'hémostasie mais aussi lors de conditions pathologiques [8]. Lors de traumatismes cérébraux, les phases aiguës et chroniques de la neuroinflammation utilisent notamment les VEs d'origine microgliale. Le miR-124 a été révélé comme particulièrement présent dans ces VEs. Les VEs qui contiennent ce miARN ont un effet bénéfique sur les neurones en favorisant la croissance neuritique [11]. En revanche, d'autres VEs peuvent avoir des effets négatifs lors des processus neuroinflammatoires. Plusieurs études ont montré que l'alpha-synucléine (α syn), la protéine tau et le peptide amyloïde β (A β) connus pour être impliqués dans la pathogenèse des maladies de Parkinson (α -syn) et d'Alzheimer (tau et A β) sont véhiculés via des VEs accumulées dans les zones lésées [6]. Des expériences in vitro montrent que des cellules microgliales de souris de la lignée BV2 traitées avec l' α -synucléine sécrètent davantage de VEs exprimant à leur surface le CMH-II ainsi que le tumor necrosis factor- α (TNF- α). Ces VEs, une fois mises en contact avec une culture de neurones vont induire des mécanismes apoptotiques, ce qui supporte l'idée que ces VEs peuvent être des médiateurs importants de la maladie de parkinson [179]. L'activation de ce même type cellulaire par des lipopolysaccharides (LPS) entraine un changement de la composition moléculaire des VEs produites et sécrétées, créant ainsi des messages différents vers les cellules environnantes, constitués notamment de cytokines pro-inflammatoires. Ces VEs présentent en effet une augmentation des niveaux de TNF- α et d'IL-6 par rapport à une population de VEs issue de cellules non traitées [180]. En parallèle, des VEs dérivées des astrocytes et des motoneurones ont également une influence pro-inflammatoire sur la sclérose latérale amyotrophique par le transfert de la SOD1 aux autres cellules [181].

Les enjeux de la recherche sur l'implication des VEs dans le neuroinflammation sont nombreux tant ce niveau de communication supplémentaire complique davantage notre compréhension de l'état neuroinflammatoire dans les neuropathologies. Il est intéressant de savoir si ces VEs sont impliquées dans les stades successifs de la pathogenèse et si elles peuvent constituer de nouveaux biomarqueurs permettant de grader la pathologie. De plus, l'identification de leurs rôles pro- ou anti-inflammatoires favoriserait la conception de nouvelles thérapies médiées par les VEs. Cette connaissance passe par la mise en évidence des signatures moléculaires à la surface mais aussi à l'intérieur de ces vésicules (lipides, protéines, ARN et ADN). Dans ce contexte, la famille des miARNs, présents dans les VEs, influence la neuroinflammation.

2- Rôles des miARNs dans la neuroinflammation

Les miARNs sont présents dès le développement embryonnaire et persistent tout au long de la vie [182]. Ils régulent la plupart des mécanismes biologiques tels que la prolifération et la différentiation cellulaires, ou encore l'apoptose. Un défaut de maturation des miARNs peut induire des malformations du SNC mais aussi d'autres organes [183]. Il est estimé chez les mammifères que 50 % des miARNs sont exprimés au niveau du cerveau [184]. Les miARNs interviennent dans le cerveau lors de processus physiologiques liés au développement, l'homéostasie du SNC, la croissance neuritique mais aussi lors de processus pathologiques comme les maladies neurodégénératives ou neuropsychologiques. La balance entre les différents miARNs exerce une influence directe sur l'état neuroinflammatoire.

Parmi les miARNs particulièrement bien décrits, miR-155 porte une activité proinflammatoire. Plusieurs études montrent que sa production est induite, sous l'effet de p53, dans les macrophages, les monocytes et la microglie en réponse à plusieurs stimuli proinflammatoires comme le lipopolysaccharide (LPS), l'interféron- gamma (IFN- γ) et le TNF- α [185–187]. Sachant que les miARNs régulent négativement l'utilisation de certains ARNm cibles, celui codant le facteur de transcription c-Maf, conduisant une activité antiinflammatoire dans les cellules myéloïdes, est sous l'influence directe de miR-155 [188]. La dégradation de l'ARNm de c-Maf dans les microglies entraine à l'inverse des fonctions microgliales pro-inflammatoires pouvant être nocifs pour les cellules neurales environnantes. Les études de miR-155 dans les pathologies neurologiques, chez les patients atteints de sclérose en plaques, ont montré son accumulation au niveau des lésions cérébrales ainsi que dans le sérum. L'inhibition ou la délétion de ce miR-155 chez un modèle rongeur mimant cette pathologie permet d'induire une neuroprotection et une atténuation des troubles neurologiques [189]. Dans un autre contexte, celui de la trisomie 21, il existe un risque de développer une démence comme la maladie d'Alzheimer. Chez les patients trisomiques atteints d'une démence, une corrélation a été clairement établie avec l'augmentation du taux de miR-155 [190]. Enfin, miR-155 intervient dans la maladie de parkinson et joue là encore un rôle central dans la réponse neuroinflammatoire médiée par les microglies en réponse à l'alpha-synucléine [191].

D'autres miARNs comme miR-27b, miR-326 et let-7 sont aussi connus pour promouvoir une activité pro-inflammatoire. D'abord, l'une des cibles de miR-27b est l'ARNm codant la molécule PPAR-γ (pour peroxisome proliferator-activated receptor) qui est un régulateur transcriptionnel. Dans les macrophages, PPAR-y oriente la réponse vers un phénotype antiinflammatoire en inhibant la production de cytokines pro-inflammatoires. L'induction de miR-27b par les LPS permet de réprimer la traduction de PPAR-γ et finalement soutient la capacité des macrophages à produire des cytokines pro-inflammatoires comme l'IL-6 ou le TNF- α [192]. D'ailleurs, chez les malades d'Alzheimer, l'expression de PPAR-y est compromise dans les cellules microgliales pendant que l'expression de miR-27b est augmentée, ce qui en fait un acteur majeur. Ensuite, à l'image de miR-155, miR-326 montre aussi une implication dans les processus neuroinflammatoire lié à la sclérose en plaque. Dans le modèle murin de l'encéphalomyélite auto-immune expérimentale (ou EAE), ces deux miARNs joueraient un rôle majeur dans la physiopathologie en exacerbant la réponse inflammatoire [193,194]. Enfin, le miARN let-7 est libéré dans le milieu extracellulaire par les neurones en apoptose. Une fois lié au Toll-like receptor 7 (TLR7) à la surface des microglies et macrophages, il les active vers une réponse neurotoxique [195]. Toutefois, ses ARNm cibles ne semblent pas tous être dédiés à une réponse pro-inflammatoire. Let-7 serait surexprimé après un accident vasculaire cérébral, agissant sur le contrôle de l'ARNm codant la caspase 3 ce qui diminue la neurotoxicité [195].

A l'inverse, des miARNs sont décrits pour conduire nettement une réponse antiinflammatoire, par exemple miR-124, miR-146a et miR-21. D'abord, miR-124, considéré comme un miARN spécifique du cerveau, est impliqué dans la différentiation neuronale. Très exprimé dans les cellules microgliales, il semble absent des macrophages sanguins en condition normale. En revanche, lors d'une stimulation de ces macrophages par des cytokines comme l'IL-2 et l'IL-10, miR-124 sera induit significativement pour conduire un phénotype anti-inflammatoire [196,197]. Dans les cellules microgliales, miR-124 régule négativement les ARNm codant le TNF- α , le CMH-II ainsi que des espèces réactives de l'oxygène [198]. Il conduit également ce profil anti-inflammatoire dans la maladie de parkinson en contrôlant la traduction des ARNm codant p62 (ou sequestosome 1) et p-p38 (pour phospho-p38 mitogen activated protein kinase), ce qui diminue la sécrétion de cytokines pro-inflammatoires et augmente l'autophagie microgliale [199]. Dans la maladie d'Alzheimer, par un mécanisme encore inconnu, la production de miR-124 est réduite, ce qui coïncide avec une augmentation de la protéine BACE 1 (beta-site APP cleaving enzyme 1) permettant la formation du peptide Aβ. Il a été montré que mir-124 contrôle l'ARNm codant la protéine BACE 1. D'ailleurs, l'inhibition de cette dernière permet d'atténuer la sécrétion du peptide Aβ [200–202]. Ensuite, miR-146a est très présent dans le SNC et plus particulièrement dans les microglies, les neurones et les astrocytes. L'activation de la voie NF-kB induit l'expression de miR-146a qui en cascade pourra cibler des ARNm codant les protéines IRAK1 (pou Interleukin-1 receptorassociated kinase 1) et TRAF6 (pour TNF receptor associated factors), éléments clés de la voie NF-kB (pour nuclear factor-kappa B). Ce rétrocontrôle négatif effectué par miR-146a permet de limiter l'activation excessive de cette voie de signalisation et contribue ainsi au contrôle de l'inflammation [190]. En réduisant l'activation de la voie NF-kB, miR-124a réduit aussi l'adhésion des cellules T en ciblant des ARNm codant RhoA (pour Ras homolog gene family, member A), Nfat5 (nuclear factor of activated T cells), IRAK1 et TRAF6 ce qui limite l'infiltration des cellules immunitaires ainsi que la neuroinflammation [195]. Lors d'une inflammation du SNC, une diminution de l'expression de miR-146a entraine une activation excessive de la voie NF-kB et *in fine* l'augmentation de la transcription des gènes sous son contrôle codant entre autre pour des cytokines pro-inflammatoires [203]. Enfin, miR-21, également modulé par l'activation de la voie NF-kB, permet son rétrocontrôle négatif à l'image de miR-146a et permet d'induire la production de l'IL-10, cytokine anti-inflammatoire [190,204]. Après un traumatisme crânien, l'expression de miR-21 est augmentée dans les cellules endothéliales. Il est même détecté dans les VEs circulantes. Considéré comme neuroprotecteur dans ce type de lésion, miR-21 favorise la réparation de la BHE ainsi que l'angiogenèse [190].
OBJECTIFS DES TRAVAUX DE THESE

Comme énoncé précédemment, de nombreuses activités du SNC ainsi que de nombreuses neuropathologies sont corrélées à l'état neuro-inflammatoire. Cet état inflammatoire est en grande partie régulé par les cellules immunitaires du SNC : les cellules microgliales. Elles constituent la première ligne de défense cellulaire dans les pathologies du SNC, même si dans des cas particuliers, elles peuvent être soutenues par d'autres cellules immunitaires sanguines telles que les lymphocytes et les macrophages. Dans ce contexte, la discrimination de la microglie résidente et des macrophages ayant infiltré le SNC reste compliquée à établir tant dans leurs sous-populations que leurs rôles respectifs (neurotoxiques vs. neuroprotecteurs) dans la balance neuroinflammatoire [1]. A la différence des vertébrés, le système nerveux de la sangsue médicinale Hirudo medicinalis présente une organisation linéaire permettant d'étudier plus facilement les phénomènes de régénération axonale et de synaptogenèse après une lésion. Le rôle des cellules microgliales dans les mécanismes de réparation axonale est essentiel. En effet, si une inhibition de l'accumulation des cellules microgliales est réalisée, la réparation axonale sera sensiblement ralentie [21]. En raison de l'infiltration insignifiante des cellules sanguines immunitaires dans le SNC de la sangsue après une lésion, les cellules microgliales résidentes portent ainsi, à elles seules, un message inflammatoire crucial vers les neurones lésés qu'il nous faut déchiffrer. La communication entre les cellules du SNC chez les mammifères consiste en des communications intercellulaires et extracellulaires. Les VEs constituent l'une des voies de communication extracellulaire. Une fois libre dans le milieu extracellulaire, les VEs vont interagir avec leurs cellules cibles pour en modifier leurs fonctions [205]. Au sein du SNC des mammifères, toutes les cellules sécrètent des VEs. En particulier, les cellules microgliales produisent des VEs dans le but de communiquer avec les autres types cellulaires du cerveau afin de réguler de nombreuses fonctions. Par exemple, les VEs produites par les microglies régulent les fonctions synaptiques des neurones [158], les fonctions astrocytaires [206] ou encore les fonctions des oligodendrocytes [207]. Naturellement, les cellules microgliales sont elles-mêmes influencées par les productions vésiculaires des autres types cellulaires. En ayant connaissance de l'implication de VEs dans le métabolisme neuronal chez les mammifères, nous nous sommes attachés à regarder si ce mécanisme de communication existe également chez notre modèle invertébré. Au-delà de leur production, la caractérisation des molécules contenues dans ces VEs est déterminante dans la compréhension des mécanismes permettant, en particulier, de mesurer l'influence des cellules microgliales sur le métabolisme des neurones.

Mon travail de thèse s'est orienté sur l'étude du dialogue entre les neurones et les microglies médié par les VEs d'origine microgliale. Ce travail s'est intéressé tant aux contenus de ces VEs qu'à leurs effets sur des cellules receveuses comme les neurones. Dans un premier temps, j'ai participé à l'étude générale du dialogue qui s'établit entre les neurones et les cellules microgliales lors d'événements inflammatoires chez notre modèle *Hirudo medicinalis*. Ce travail s'est en particulier focalisé sur les toutes premières observations de VEs dans les tissus nerveux de la sangsue et sur l'utilisation d'une première méthode d'isolement de VEs dans le but de les utiliser dans des tests de croissance neuritique *in vitro*. Nous avons recherché à savoir si une partie du dialogue entre ces deux populations cellulaires peut s'effectuer via les VEs. Puis lors d'une deuxième étude, nous avons confirmé que le recrutement dynamique de la microglie vers les axones lésés expérimentalement s'accompagne d'une accumulation de VEs dans la zone de blessure.

Dans un deuxième temps, mon travail de thèse s'est orienté sur le développement et l'optimisation de méthodes d'isolement des VEs. La purification ou l'enrichissement des VEs sont deux procédés très importants pour les analyses ultérieures. Les protocoles décrits dans la littérature sont soumis à discussion dans la communauté scientifique. C'est pourquoi, mon travail a porté en parallèle sur l'utilisation de procédures différentes afin de mener à des résultats fiables dans l'identification de contenus des VEs microgliales. J'ai tout d'abord contribué au développement ainsi qu'à la validation d'une méthode combinant l'ultracentrifugation et le gradient de densité Optiprep™ chez la sangsue. Ensuite, j'ai développé et validé une seconde méthode associant l'ultracentrifugation et la chromatographie d'exclusion stérique.

Dans une dernière partie, qui a constitué la majeure partie de mon travail de thèse, je me suis consacré à la caractérisation des miARNs dans les VEs microgliales. Là encore, dans le souci de vérifier que les méthodes d'isolement permettent de maintenir l'intégrité des VEs et *in fine* leurs propriétés biologiques, j'ai tenu à montrer les effets de VEs microgliales sur la neuroprotection. Les résultats ont montré que les VEs microgliales de sangsue contiennent des miARNs dont certains n'ont jamais été décrits chez les mammifères. Dans une vision translationnelle, nous avons commencé à étudier ces miARNs identifiés chez la sangsue à l'intérieur des VEs microgliales issues de cellules microgliales/macrophages de mammifères.

58

RESULTATS

PARTIE I

Production de vésicules extracellulaires par la microglie de sangsue et leurs implications dans le dialogue avec les neurones

Introduction de la partie I

De nombreuses pathologies du système nerveux central (SNC) sont liées à l'état neuroinflammatoire. Ce dernier est un mécanisme complexe de plus en plus considéré mais encore mal compris. Il est aujourd'hui établi que les évènements pro-inflammatoires dans le SNC vont mener à des pathologies neurodégénératives ainsi qu'à un déclin cognitif. Au sein du SNC, la régulation des processus inflammatoires est grandement assurée par les cellules immunitaires résidentes : la microglie [2]. La mise en place d'un dialogue entre les neurones et les cellules microgliales va permettre de maintenir l'homéostasie ainsi que l'intégrité du SNC. Ce dialogue s'effectue selon différents modes comprenant l'utilisation de vésicules extracellulaires [208,209]. Ce mode de communication est impliqué dès le développement du SNC et ce tout au long de la vie de l'organisme. Les cellules microgliales produisent et libèrent des VEs en conditions physiologiques mais aussi pathologiques [210].

Comme nous l'avons précédemment expliqué, la sangsue médicinale (*Hirudo medicinalis*) est un modèle intéressant pour étudier le dialogue qui s'établit entre les neurones et les cellules microgliales. L'organisation de la chaine nerveuse permet aux microglies en fonction de leurs localisations, d'interagir avec soit les corps cellulaires neuronaux soit les axones. De plus, grâce à cette organisation du SNC, il est possible de ne léser que les axones afin d'étudier les mécanismes qui interviennent et participent à la repousse axonale ainsi qu'à la synaptogenèse. La description de la production de vésicules extracellulaire (VEs) par les cellules microgliales chez les mammifères et leur implication dans les processus neuroinflammatoires a fait émerger l'hypothèse de la production de VEs par les cellules microgliales chez notre modèle invertébré.

Au cours de nos deux premières études (**Publications 1 et 2**), nous nous sommes intéressés à la production des VEs par les cellules microgliales chez la sangsue et à leur accumulation dans la zone de lésion axonale, en parallèle du recrutement microglial.

PUBLICATION 1

Medicinal leech CNS as a model for exosome studies in the crosstalk between microglia and neurons

Antonella Raffo-Romero, Tanina Arab, Issa S. Al-Amri, Francoise Le Marrec-Croq, Christelle Van Camp, <u>Quentin Lemaire</u>, Michel Salzet, Jacopo Vizioli, Pierre-Eric Sautiere, Christophe Lefebvre

International Journal of Molecular Sciences. 2018 Dec 19;19(12). doi: 10.3390/ijms19124124.

<u>Résumé</u>

Les résultats présentés dans la **publication 1** à laquelle j'ai participé montrent que lors d'une co-culture de neurones et de microglies, il est possible d'observer de très petites structures en relation avec les neurites. Ces données préliminaires ont d'abord posé de nombreuses questions qui ont progressivement suggérer la possibilité de la production de VEs par les cellules nerveuses du SNC de la sangsue. Afin de confirmer cette hypothèse, nous nous sommes engagés dans la caractérisation de ces structures à l'aide de marqueurs vésiculaires. La recherche de margueurs des VEs dans les bangues de données chez la sangsue a permis de révéler entre autre un ARNm codant pour un homologue de la molécule Alix (Apoptosis-Linked gene 2-Interacting protein X) chez notre modèle. Alix est aujourd'hui considérée comme un marqueur spécifique des VEs [211]. L'analyse in silico de cette molécule, nommée HmAlix (pour Hirudo medicinalis Alix), a permis la mise en évidence de domaines spécifiques de la protéine Alix tels que décrits chez d'autres organismes. De plus, son alignement en acides aminés avec la forme humaine de la protéine Alix révèle une identité de séguence de 49 % et une homologie de séquence de 68 %. En tenant compte de ces homologies, nous avons utilisé un anticorps polyclonal dirigé contre la forme humaine pour nos analyses. Une analyse par western-blot sur un extrait protéique total de chaines nerveuses montre que cette molécule est produite chez la sangsue. Des analyses utilisant cet anticorps par immunofluorescence sur des fragments isolés de SNC lésé montrent des nanostructures positives pour HmAlix au niveau de la lésion mais aussi autour des corps cellulaires neuronaux. Ces résultats suggèrent que les nanostructures présentes sur les neurites lors de la co-culture de neurones et de microglies observés précédemment puissent correspondre à des VEs. A ce stade de l'étude, nous ne pouvons pas certifier de l'origine cellulaire ces VEs. Pour confirmer la production de VEs par les cellules microgliales, des analyses par microscopie électronique à transmission (MET) ont été réalisées à partir de cellules microgliales fraichement isolées et maintenues en culture primaire. Ces observations ont soit été effectuées sur les cellules elles-mêmes, soit à partir de leur milieu de culture menant à l'isolement de VEs. Les résultats montrent que les cellules microgliales produisent des corps multivésiculaires et qu'ils contiennent des exosomes démontrant ainsi que les microglies de sangsue produisent au moins des exosomes. De plus, les résultats de l'observation en MET à partir de fractions d'isolement des VEs microgliales confirment que les cellules microgliales libèrent des VEs dont la taille est comprise entre 50 nm et 300 nm. Un marquage de ces VEs isolées avec l'anticorps polyclonal anti-Alix s'est révélé positif, ce qui consolide notre mise en évidence.

Afin de vérifier l'hypothèse d'une interaction de VEs microgliales avec les neurones, des expériences de co-culture neurones-microglies ont de nouveau été réalisées. De façon à écarter la détection de VEs par les neurones et donc suivre des VEs d'origine microgliale uniquement, les expériences ont utilisé un anticorps dirigé contre la gliarine, un marqueur spécifique des cellules gliales représentées ici par la microglie. Cette molécule de la famille des lamines est un filament intermédiaire nucléoplasmique et n'est pas produite par les neurones. La gliarine a été détectée par western-blot dans les cellules microgliales, comme attendue, mais aussi dans les VEs microgliales ce qui nous autorise son utilisation. Cet anticorps a donc été utilisé par immunofluorescence sur une co-culture primaire de neurones et de microglies et sur une culture primaire de neurones seuls. Lorsque des neurones sont cultivés seuls, aucun signal n'est détecté. En sachant que les cellules microgliales produisent un grand nombre de VEs révélées ici par la gliarine, un signal ponctiforme (vert) est en revanche observé en interaction avec les neurites, ce qui confirme la capacité *in vitro* des VEs microgliales à interagir avec les neurones. La dernière étape dans cette étude a été de montrer que les VEs microgliales produisent un effet sur les neurones. La mise en présence de VEs microgliales avec une culture primaire de neurones permet d'augmenter la croissance neuritique par rapport à une culture sans les VEs microgliales. De façon très intéressante, l'effet des VEs microgliales de sangsue est également le même sur un modèle reconnu de différentiation neuronale, la lignée cellulaire PC-12 de rat. Bien qu'il ne s'agisse pas de neurones, ces résultats démontrent toutefois que ce dialogue dépendant des VEs utilise probablement des échanges moléculaires qui auraient été conservés au cours de l'évolution.

64

En parallèle, de façon concomitante, d'autres travaux ont montré l'implication de la voie TGFβ (pour Transforming Growth factor beta) dans le recrutement microglial. Ces résultats ont fait l'objet de la **publication 2** à laquelle j'ai participé et dont je présenterai les détails dans le chapitre suivant. En bref, l'étude de la voie TGF- β dans la réponse microgliale à la lésion a donné lieu à l'observation d'une production importante de VEs au niveau la lésion (**Publication 2**). Nous avons donc souhaité examiner un membre de la famille TGF- β dans cette publication 1 consacrée au dialogue entre microglies et neurones dépendamment des VEs. Les analyses par western-blot ont révélé que ce membre de la famille TGF- β , le nGDF (pour Growth Differentiation Factor), est présent dans les VEs microgliales. De plus, des expériences d'immunofluorescence réalisées sur des fragments de chaines nerveuses ont montré un marquage ponctiforme autour des corps cellulaires neuronaux. Un double marquage antinGDF et anti-Alix a montré que les deux signaux co-localisent, suggérant que le marquage pour le nGDF est à l'intérieur de certaines VEs. Enfin, un test in vitro de croissance neuritique, réalisé sur une culture primaire de neurones de sangsue, a montré des effets neurotrophiques portés par les VEs microgliales et une diminution significative de la croissance neuritique en présence des VEs et d'un inhibiteur de la voie de signalisation liée au récepteur du TGF-β. Ces résultats montrent ainsi une corrélation possible entre les propriétés neurotrophiques de VEs microgliales et la présence du nGDF.

Article Medicinal Leech CNS as a Model for Exosome Studies in the Crosstalk between Microglia and Neurons

Antonella Raffo-Romero^{1,†}, Tanina Arab^{1,†}, Issa S. Al-Amri², Francoise Le Marrec-Croq¹, Christelle Van Camp¹, Quentin Lemaire¹, Michel Salzet¹, Jacopo Vizioli¹, Pierre-Eric Sautiere^{1,*} and Christophe Lefebvre^{1,*}

- ¹ U1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Univ. Lille, INSERM, F-59000 Lille, France; anto_aqp@hotmail.com (A.R.-R.); tanina.arab@univ-lille.fr (T.A.); francoise.croq@univ-lille.fr (F.L.M.-C.); christelle.van-camp@univ-lille.fr (C.V.C.);
- quentin.lemaire@univ-lille.fr (Q.L.); michel.salzet@univ-lille.fr (M.S.); jacopo.vizioli@univ-lille.fr (J.V.)
 DARIS Centre for Scientific Research and Technology Development, University of Nizwa, P.O. Box 33, Birkat Al-Mouz, PC 616 Nizwa, Oman; issa.alamri@unizwa.edu.om
- * Correspondence: pierre-eric.sautiere@univ-lille.fr (P.-E.S.); christophe.lefebvre@univ-lille.fr (C.L.); Tel.: +33-320-434-127 (C.L.)
- + These authors contributed equally to this work.

Received: 27 October 2018; Accepted: 17 December 2018; Published: 19 December 2018

Abstract: In healthy or pathological brains, the neuroinflammatory state is supported by a strong communication involving microglia and neurons. Recent studies indicate that extracellular vesicles (EVs), including exosomes and microvesicles, play a key role in the physiological interactions between cells allowing central nervous system (CNS) development and/or integrity. The present report used medicinal leech CNS to investigate microglia/neuron crosstalk from ex vivo approaches as well as primary cultures. The results demonstrated a large production of exosomes from microglia. Their incubation to primary neuronal cultures showed a strong interaction with neurites. In addition, neurite outgrowth assays demonstrated microglia exosomes to exhibit significant neurotrophic activities using at least a Transforming Growth Factor beta (TGF- β) family member, called nGDF (nervous Growth/Differentiation Factor). Of interest, the results also showed an EV-mediated dialog between leech microglia and rat cells highlighting this communication to be more a matter of molecules than of species. Taken together, the present report brings a new insight into the microglia/neuron crosstalk in CNS and would help deciphering the molecular evolution of such a cell communication in brain.

Keywords: microglia; exosomes; neurite outgrowth; leech

1. Introduction

Brain disorders have a growing impact on human disability and morbidity worldwide. Although the etiology of most brain diseases is poorly described, it is clear that pro-inflammatory events in the central nervous system (CNS) lead to neurodegenerative mechanisms and cognitive decline. The neuroinflammatory state in the CNS is a broad process involving microglia cells as resident immune cells [1]. Blood immune cells can be recruited in turn into the brain as a consequence of the blood brain barrier disrupture. But the interactions between microglia subpopulations and neurons basically represent a key process of CNS integrity and neuroinflammatory regulations [2–5].

The medicinal leech (*Hirudo medicinalis*) CNS is an interesting model in this regard because microglia cells can be studied in close relation with either neuronal cell bodies or axons. Indeed, neuronal cell bodies are concentrated in ganglia and project the axons into the connective tissues [6,7].

Microglia subpopulations are located in ganglia as well as connective tissues so that they can distinctly interact with neuronal cell bodies or axons, respectively. Thus, it is possible to only injure axons in the middle of connectives to study the responses of the neuronal cell bodies leading to the axonal sprouting and synaptogenesis. As their mammalian counterparts, microglia cells in leech can be followed using iba1 as a specific marker [8]. They change their morphology from ramified to amoeboid shape upon activation, thus facilitating their recruitment towards lesioned areas [7]. Microglia are the only migrating cells to be recruited at the injury site within 24 h post-lesion [9,10] and promote a regenerative process [11,12]. Indeed, if microglia accumulation is delayed at lesions, the axonal sprouting is consequently affected [13]. It shows the importance of a neuroprotective crosstalk between damaged neurons and activated microglia in connectives. Numerous chemotactic signals including adenosine triphosphate (ATP), complement factor C1q, endothelial-monocyte-activating polypeptide II (EMAPII), and interleukin-16 (IL-16) play a role in this microglia accumulation [14–19]. However, the specific functions of recruited microglial cells throughout the response to injury are still to be elucidated. Otherwise, in response to injury, other microglial cells naturally located in ganglia simultaneously dialog with neuronal cell bodies [8].

Consequently, elucidating the processes contributing to the crosstalk between neurons and microglia will help to understand the chronological events following a lesion and would give a new insight into the refinement of microglia-neuron interactions. In this context, the present report describes the production of extracellular vesicles (EVs) from microglia and their potential role in neuron–microglia crosstalk.

Extracellular vesicles are lipid bilayered membrane vesicles, presenting a diameter from 30 to 1000 nm, involved in cell-to-cell communication. Two EV populations are currently described: exosomes and microvesicles [20]. Exosomes are 30–100 nm in diameter and are synthesized within the endosomal system and then secreted by fusion of multivesicular bodies with plasma membrane. Microvesicles, also known as ectosomes, are 50–1000 nm in diameter and result from a budding process of plasma membrane [21]. Extracellular vesicles are considered as molecular cargos including proteins, lipids, and nucleic acids [22–24]. Because exosomes and microvesicles have an overlapping size and present molecular similarities, they remain difficult to be structurally and biologically discriminated [25]. There is at present a growing interest either in physiological or in pathological ways to better understand their ability to affect recipient cells, especially in CNS functions [26]. Because they reflect the functional profile of producing cells, EVs can be used as biomarkers for pathologies [27,28]. Their modification would also lead to create original therapeutic cargos able to cross the blood brain barrier [27,29].

Recent studies indicate that EVs play a key role in the physiological interactions between glia cells and neurons leading to a correct CNS development and/or integrity [26,30,31]. Of interest, microglia have also been described to generate and release EVs in physiological and pathological conditions [32,33]. In this context, understanding the functions of EVs from microglia may contribute to specify the role of microglia subpopulations in the control of neuroinflammation. The present study shows the production and release of EVs from microglia in the leech CNS. Those EVs closely interact with neurons and exhibit neurotrophic properties in vitro, especially using a member of the TGF- β family. Taken together, the results also show the evolutionary conservation of EV-mediated dialog between leech microglia and rat recipient cells.

2. Results

The structural features of the nerve chain in *H. medicinalis* facilitate interaction studies between microglia and neurons by taking into account that there are no comparable glial cells such as astrocytes or oligodendrocytes [6]. Moreover, since this annelid does not regulate its body temperature, freshly collected and dissociated cells show a high resistance in vitro and can be maintained in primary culture at room temperature and without the use of CO₂. Experiments to characterize neuron- or microglia-associated secretory products were carried out in primary culture to collect conditioned

medium. In neuron-microglia co-culture, very small structures were observed. They were comparable in size to vesicle-like structures and were closely in association to neurites developed by neurons (Figure 1). This observation suggests the possibility that such vesicles are produced and released by nerve cells. This preliminary result incited to perform the following experiments in order to confirm this hypothesis.

Figure 1. Neurons and microglia primary co-culture. (a) During the co-culture, adherent neurons exhibit neurite outgrowth while activated microglial cells are still floating. The renewal of the culture medium washed away the microglial cells while maintaining the neurons and some products released from both cell populations. (b) Enlargement showing vesicle-like structures (white arrows as examples) interacting with neurites. Scale bars correspond to $50 \ \mu m$.

These observations and recent studies showing the production of EVs in the CNS motivated to look at such structures in the leech nerve chain by using antibodies directed against EV-specific molecules. Among those molecules, the analysis of leech databases allowed identifying a sequence coding for a *Hirudo medicinalis* (*Hm*) form of the EV marker Alix [34], a cytoplasmic protein previously demonstrated to be highly present in exosomes [35]. *Hm*Alix is a protein of 873 amino acids (~97 kDa) from a mRNA of 2281 nucleotides (Figure 2a). The protein is composed of N-terminal Bro1 (IPR038499) and Alix V-shaped (IPR025304) domains in accordance to Alix molecules from other organisms [36]. *Hm*Alix exhibits an amino acid sequence 49% identical and 68% homologous to its human counterpart (Figure 2b). Similar homologies were observed to Alix sequences from other animal organisms.

Figure 2. Molecular characterization of *Hirudo medicinalis* (*Hm*) Alix. (a) *Hm*Alix is a protein of 873 amino acids (~97 kDa) from a mRNA of 2281 nucleotides. *Hm*Alix protein is composed of N-terminal Bro1 (IPR038499, light grey) and Alix V-shaped (IPR025304, dark grey) domains, as observed in counterparts from other organisms. (b) The sequence alignment between *Hm*Alix and *Homo sapiens* Alix forms shows high and low consensus homologies (red and blue residues, respectively) which allows using polyclonal anti-human Alix antibodies to detect the protein in the leech central nervous system (CNS).

Based on the sequence homology, mouse polyclonal anti-human Alix antibodies were used in further studies. The immunoblot results showed the detection of a unique 97 kDa product in the leech CNS corresponding to the expected size of the predicted protein (Figure 3a). Then, ex vivo studies were made in isolated fragments of CNS (see diagram) after an axonal lesion and allowed locating Alix-positive vesicles. Indeed, the results showed Alix-positive nanostructures at lesions (Figure 3b) as well as in ganglia between neuronal cell bodies (Figure 3c). No signal was observed using secondary antibody alone as negative control (Figure 3d) confirming the specificity of the immunodetections (Figure 3a–c). Thus, the results corroborate the hypothesis previously emitted

(Figure 1) suggesting that some nanostructures released by neurons or microglia are indeed EVs. Of interest, the immunopositive signal for Alix in connectives was collocated to the microglia recruitment at the injury site (Figure 3b) and was also observed in interneuronal spaces, the natural location of ganglionic microglia (Figure 3c,c').

Figure 3. *Hm*Alix immunodetection in the leech CNS. (**a**) Western blotting analyses from leech CNS protein extracts using mouse polyclonal anti-human Alix antibodies reveals a 97 kDa protein (lane 1) compared to secondary antibody alone (lane 2) as a negative control. This membrane was stripped and incubated with anti-Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) antibody as a loading control (lane 3). Molecular weights of ladder lanes (M) are reported. (**b**–**d**) From nerve cord fragment (see diagram), confocal microscopy analyses using mouse polyclonal anti-human Alix antibodies were performed 24 h following a connective crush. (**b**) In connectives, the immunofluorescence (green) showed a signal at lesioned axons where microglia may be recruited as shown using nuclear counterstaining with Hoechst 33342 (blue) (see arrows as examples). (**c**,**c'**) In ganglia, the immunofluorescence (green) showed a signal in interneuronal spaces (see 3.7-fold magnification in c'). A few microglia nuclei are visible at this focal plane (arrows). (**d**) No signal was detected in CNS treated only with secondary antibody as negative control. Cell nuclei were counterstained in blue. Scale bars correspond to 50 μm.

Ultrastructural studies using transmission electron microcopy (TEM) were performed from primary microglia cultures. The results revealed the presence of multivesicular bodies, typical of exosomal biogenesis, in those cells demonstrating at least the production of exosomes in microglia

(Figure 4a,b). Extracellular vesicles released from primary microglial cells were subsequently purified. The EV-enriched fractions showed vesicle populations ranging from 50 to 300 nm (Figure 4c) with a higher population around 100 nm (Figure 4d). The EV-enriched fractions obtained by differential centrifugation were frozen and sectioned for immune-electron microscopy treatment. The observation of cryosections by TEM (Figure 4e,f) confirmed the presence in the sample of EVs having different sizes, as described for Figure 4c. The immunogold staining was performed using primary anti-human Alix antibodies. Results showed some positively labeled EVs confirming that Alix is a cargo component of leech microglial EVs. Control experiments were performed using the secondary antibodies alone (Figure 4f). Therefore, microglia are able in the leech CNS to produce and release a high number of extracellular vesicles, some of which being exosomes.

Figure 4. Transmission electron microcopy (TEM) of leech microglial EVs. (**a**,**b**) Cryosections of isolated microglia containing into the cytoplasm multivesicular bodies (braces), structures typical of exosome biogenesis. (**c**,**d**) Morphological analyses of microglia-released extracellular vesicles collected by differential centrifugation of primary microglia conditioned medium. These EV-enriched fractions revealed the presence of vesicles from 50 nm (arrows) to 300 nm (arrowheads) in diameter (**c**), most of which are around 100 nm (**d**). Immuno-gold labeling performed on cryosections from the extracellular vesicles (EV)-enriched samples showed the presence of some EVs positive to primary anti-human Alix antibodies (**e**). Negative controls were performed incubating EV sections with secondary antibodies alone (**f**).

In order to assess their functional involvement and especially the possible use of microglial EVs in a specific dialog towards neurons, in vitro primary cultures of neurons were performed in naïve vs. microglia-activated conditions. In these experiments, due to a possible EV production by neurons, microglial EVs were not detected with Alix but using specific antibodies against gliarin, an intermediate filament protein specific in leech glial cells, a marker for microglia [8,37]. The microscopic observation of microglia-activated neurons showed a massive population of gliarin-positive EVs aggregated to neurons, especially along growing neurites (Figure 5a). No gliarin-positive nanostructure was observed in interaction with neurites in naïve neuron primary culture, demonstrating the microglial specificity and origin of those EVs (Figure 5b). Finally, the negative control only using secondary antibodies

presented no EV signal in neuron cultures (Figure 5c). The controls only revealed a non-specific signal into the neuronal cell bodies (Figure 5b,c). Western blotting analyses were performed from leech microglia EV (lanes 2, 5, and 8) and leech microglia cell (lanes 3, 6, and 9) protein extracts. The use of mouse monoclonal anti-gliarin primary antibody revealed a ~75 kDa protein in both extracts (lanes 2 and 3) compared to secondary antibody alone (lanes 5 and 6) used for negative control. This membrane was then stripped to remove the immunostaining and incubated with anti-Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) antibody as a loading control (lanes 8 and 9). Thus, the results show the presence of this glial marker in microglia EVs and demonstrate that microglia-specific EVs have an ability to strongly interact with neurons.

Figure 5. Immunofluorescence analyses of leech nerve cell cultures. (a) Neuron-microglia co-cultures immunostaining with mouse monoclonal anti-gliarin antibody revealed the presence of positively stained vesicles (green) associated to neurites. (b) The immunostaining with anti-gliarin did not reveal the presence of immunopositive vesicles in a culture of leech neurons alone. (c) No specific signal was observed in the same culture treated with the secondary antibody alone as control. Neuron cell bodies were counterstained with rhodamine-conjugated phalloidin (red). Scale bars correspond to 20 μ m. (d) A unique 75 kDa positive signal was immunodetected in microglia-derived EV (lane 1) as well as in microglial cell (lane 2) protein extracts, confirming the presence of gliarin-positive EVs. No signal was observed on the same samples using secondary antibodies alone as negative control (lanes 3 and 4). Western blot analysis was performed on the same control membrane using anti-GAPDH antibody as a loading control (lanes 5 and 6). Molecular weights (M) are reported.

Leech microglia were primarily cultured to collect conditioned medium. Following the enrichment procedure, we investigated the effect of EV-enriched fraction on neurite outgrowth assays from different models. Using primary leech neurons, the results showed a significant increase of neurite outgrowth under microglial EV exposure compared to control supernatant (Figure 6a,b). Of great interest, leech microglial EVs exhibited similar effects on rat PC12 cells (Figure 6c,d). Even though these cells are not considered as adult neurons, their treatment with EVs significantly increased the production of long processes known as neurite varicosities compared to EV-free control supernatant (Figure 6c,d). These rat PC12 cells used as a model for neuronal differentiation were consequently reactive to leech microglia EVs demonstrating the evolutionary conservation of such a molecular dialog in the CNS.

Figure 6. Influence of leech microglia EVs in neurite outgrowth assays. (**a**,**b**) Leech neurons were primarily cultured with either EV-enriched fractions or control supernatants from enrichment procedure. (**a**) The measures of neurite length were independently made on individual neurons at days 6, 13, and 20 showed a significant outgrowth throughout the culture under EVs and a higher outgrowth at day 20 in EV-activated condition compared to control. (**b**) The images show the same cells under EVs from day 6 to day 20. (**c**,**d**) Rat PC12 cells were cultured for only 7 days including a treatment at day 2 with either EV-enriched fractions or control supernatants. (**c**) The measures of neurite length were overall made on cell population and significantly showed a higher outgrowth under EVs compared to control. (**d**) The images show cells after 6 days treatment in control (top frame) and EV-activated (main frame) conditions. Scale bars correspond to 20 µm. Significance (* *p* < 0.05, ** *p* < 0.01, *** *p* < 0.001) was calculated by ANOVA paired *t*-test (bar represents standard errors of mean).

We started investigating the molecular contents from microglial EVs triggering neurite outgrowth. Current studies in the laboratory demonstrated the involvement of Transforming Growth Factor beta (TGF-β) signaling in the crosstalk between microglia and neurons. That is why we focused on nervous Growth/Differentiation Factor (nGDF), a leech form of TGF- β family member. The q-PCR analyses showed the increase of ngdf mRNA level in 24-h cultured microglia cells compared to freshly dissociated ones (T0h) (Figure 7a). To assess the presence of nGDF protein in leech CNS submitted to connective lesion and cultured ex vivo, we performed immunostaining analyses using anti-human TGF-B1 antibodies. No signal for nGDF was observed on freshly dissected nerve chains (T0h) (Figure 7b). Of interest, confocal analyses showed the immunodetection of nGDF protein in punctate nanostructures (green) in close relation to neuronal cell bodies in nerve chains cultured 6- and 24-h post lesion (Figure 7c,d). These results are in accordance to the natural position of ganglionic microglia suggesting these EV-like structures to be of microglial origin. No signal in the negative control using secondary antibody alone was observed (Figure 7e). To assess the origin of nGDF-positive vesicles, microglia EVs were enriched from isolated cells and analyzed by immunoblot using anti-TGF- β 1 antibodies (Figure 7f). A unique 55 kDa positive signal was immunodetected in microglia-derived EV (lane 1) as well as in microglial cell (lane 2) protein extracts, confirming the origin of nGDF-positive EVs. No signal was observed on the same samples using secondary antibodies alone as negative control (lanes 3 and 4). Western blot analysis was performed on the same membrane using an anti-GAPDH antibody as a loading control (lanes 5 and 6). A double

immunostaining was performed to establish a possible colocation of nGDF with Alix in nerve cord T24-h post lesion. Of interest, most of the EVs surrounding a neuron cell body resulted positive for nGDF (Figure 7g) as well as Alix (Figure 7h). The merge of both images demonstrates that the punctate signal immunopositive for nGDF is indeed related to EVs (yellow, Figure 7i). Some red structures are still visible suggesting that some EVs in ganglia would not contain nGDF.

Figure 7. Induction of ngdf mRNA level and immunolocalization of nGDF protein. (a) q-PCR results indicate that *ngdf* mRNA is present in freshly dissociated (T0h) microglial cells and significantly increases in cultured microglia (T24h). Significance (** p < 0.01) was calculated by ANOVA paired t-test (bar represents standard errors of mean). (b–e) Confocal immunofluorescence analyses using rabbit polyclonal anti-human TGF- β 1 antibodies on nerve cords freshly dissected (T0h) (b) or cultured ex vivo 6 h (c) and 24 h (d) following a connective crush. In ganglia, the nGDF immunostaining (green) showed a punctate signal in interneuronal spaces in accordance to the natural place of ganglionic microglia highlighted by nuclei counterstaining with Hoechst 33342 (blue). Inset in (d) shows a ~2-fold magnification of nGDF immunopositive vesicles surrounding neuron cell bodies. No signal was detected in nerve cord treated only with secondary antibody as negative control (e). Scale bars correspond to 50 µm. (f) Western blotting analyses from leech microglial EVs (lanes 1, 3, and 5) and cell (lanes 2, 4, and 6) protein extracts. The use of rabbit polyclonal anti-human TGF- β 1 primary antibodies revealed a ~55 kDa protein in both extracts (lanes 1 and 2) compared to secondary antibody alone (lanes 3 and 4) used for negative control. This membrane was then stripped to remove the immunostaining and incubated with anti-GAPDH antibody as a loading control (lanes 5 and 6). Molecular weights of ladder lanes (M) are reported. (g-i) Double immunostaining using anti-TGF-ß1 and anti-Alix antibodies on a nerve cord T24h post lesion. Several EVs surrounding a neuron cell body resulted positive for nGDF (green) (g) and Alix (red) (h). Both signals colocalize (yellow) in most of the vesicles (i). Cell nuclei are counterstained by Hoechst as indicated above. Scale bars correspond to 10 μm.

To study the importance of nGDF in the EV-dependent dialog from microglia to neurons, neurite outgrowth assays using leech primary neurons compared the effects of microglia EVs under TGF- β signaling inhibition. Compared to control condition, the neurite outgrowth of leech neurons (day 6 to day 20) increased in the presence of microglia EVs (Figure 8). Of interest, the neurite outgrowth significantly decreased when neurons were submitted to a specific TGF- β type I receptor inhibitor although incubated with EVs. Thus, the results show that microglia EV-specific nGDF might be involved in microglia EV-mediated neurotrophic process.

Figure 8. Influence of nGDF-dependent EVs in neurite outgrowth assays. Leech neurons were primarily cultured with either EV-enriched fraction, EV-enriched fraction + TGF- β signaling pathway inhibitor (SB431542) or control supernatants from enrichment procedure. After measures of neurite length, the EV-activated condition showed a significant higher outgrowth at day 20 compared to the control. The presence of SB431542 inhibitor in cells submitted to EV-activated condition showed a significant lower outgrowth at day 20 compared to EV-enriched fraction alone. Significance (* *p* < 0.05, *** *p* < 0.001) was calculated by ANOVA paired *t*-test (bar represents standard errors of mean).

3. Discussion

Extracellular vesicles (EVs) are gaining worldwide interest due to their presence in biological fluids, including urine [38,39], saliva [40], plasma [41,42], and cerebrospinal fluid [43,44]. They are produced by almost all cell types and organisms. Both exosomes and microvesicles (ectosomes) share common biologically active molecules, including proteins, lipids, and nucleic acids [22–24], and biogenesis mechanisms [25,45]. Therefore, this novel research field in cell-to-cell communication was investigated to better understand their ability to inform/affect recipient cells either in physiological or in pathological conditions. Addressing questions in basic research of this field may be quickly improved towards EV studies as biomarkers or therapeutic agents [27,28]. As mentioned before, in CNS, crosstalk between glia and neurons is crucial for brain integrity. Glia and neurons can communicate by releasing and receiving extracellular vesicles, which allows a synchronized regulation across long distances [46–49]. In this natural strategy, microglia play a crucial role [50].

In the present report, the results showed that the leech CNS produces and releases an important population of EVs, as revealed using Alix biomarker [34]. Alix is a cytosolic protein of the endosomal sorting complex. Its Bro1 domain binds with multivesicular body components (endosomal sorting complexes required for transport ESCRT-III proteins) which involves Alix in EV biogenesis [51]. The large production of EVs is at least exerted by microglia suggesting their important capacity to crosstalk with neighbor cells, including neurons. Indeed, the use of an intermediate filament, Gliarin, as a specific marker for glial cells [37] demonstrated that microglia-derived EVs strongly interact with neurons in vitro. The control experiments carried out in addition to anti-gliarin immunolabeling were specifically dedicated to highlight areas of the sample that can be revealed in a nonspecific manner. The single neuron culture (Figure 5b) and the secondary antibody alone as another control (Figure 5c) showed that the culture coating as well as the neuron cell body present a nonspecific signal. None of the two controls showed recognition of the extracellular vesicles interacting with the neurites, which demonstrates the specificity of these structures for the anti-gliarin antibody. An additional Western blot analysis using anti-gliarin definitely demonstrated that microglia-enriched EVs are actually positive for gliarin. Because gliarin is a glial marker in the leech [37] and because the experiments only used microglia, as glial population, in primary co-culture with neurons, all signals being immunopositive for gliarin are specific for microglial cells and the products that result therefrom. This glial marker was also used in this regard to exclude any observation of neuron-derived EVs, which would naturally occur in a paracrine manner. Thus, the present report showed a neuron-specific tropism of microglia EVs in vitro. Leech microglia are similar to vertebrate ones since they change their morphology for migrating towards lesions [14]. Under several chemotactic signals [14–17], microglia cells are the only cell type to reach the injury site then contributing to a specific axonal sprouting [13]. Therefore, elucidating interaction mechanisms between microglia and neurons is crucial to better understand neuroprotective events leading to nerve regeneration. In the tubular architecture of the leech nerve chain, the neuronal cell bodies are only located in ganglia while their axons are projected in connective tissues. Thus, a mechanical lesion in the middle of connectives allows the study of a specific crosstalk between accumulated microglia at the lesion site and damaged axons [7]. Other microglial cells, residing in ganglia, can dialog with neuronal cell bodies [8]. This strong interaction between microglia and neurons can be easily observed ex vivo and investigated in vitro by collecting and maintaining both cell types in primary cultures. In this context, the EV populations that are produced from activated microglia represent important molecular cargos supporting functional activities into recipient cells. The present report showed that leech microglia EVs might deliver neurotrophic messages to leech neurons. Even if EV-enriched fraction exhibits a higher effect than that of control supernatant on neurite outgrowth, we cannot assert that supernatant after the enrichment procedure are free of microglia-derived cytokines or trophic factors. These microglia-derived molecules might exert a positive effect in the control throughout the culture. However, we can confirm that such potential compounds from the supernatant do not artificially contaminate the EV-enriched pellet since this fraction was obtained after a supplementary washing and ultracentrifugation step. That is why,

the EV fraction permitted to evaluate the natural neurotrophic effect of microglia through its EV release with no microglia-derived secretome. In physiological conditions, these microglia-derived products, including soluble factors and EVs, would synergistically exert a regulative effect on neurons. This communication is even more important since leech microglia EVs triggered a significant increase of rat PC12 cell differentiation. This EV-mediated dialog between leech and rat cells shows a possible recognition and use of common molecular mediators. This EV impact across species has already been observed between rat and human cells [52] and even between plant cells and murine intestinal macrophages [53]. Although the recognition and internalization processes need to be elucidated in those cross-species communications, both cases showed the regulation of specific target genes in recipient cells. It interestingly suggests that interactions between cells are more a matter of molecules than of species. Thus, it becomes possible to use the leech CNS as an alternative model to enrich EVs and characterize their contents. In this report, a member of TGF- β family has been identified in leech as a microglia EV content for in vitro regulation of neurite outgrowth. The results obtained by quantitative PCR show the presence of the *ngdf* transcript in freshly dissected leech microglial cells (T0h). Although the *ngdf* gene is constitutively expressed, the protein is not detectable at T0h either in microglial cells or in extracellular vesicles in ganglia ex vivo. The ngdf mRNA is still present in cultured (T24h) primary microglia. The increase of this transcript observed by q-PCR might be simply due to the mRNA accumulation or to a maturation state of cultured cells. It could also be linked to the stress induced by mechanical tissue dissociation and culture conditions. Interestingly, the presence of the ngdf transcript in the hours following cell dissociation is consistent with the appearance of a high amount of nGDF-positive EVs in ganglia cultured ex vivo for 6 and 24 h post-lesion. These data suggest that the in vivo production of nGDF by microglia and the release of their nGDF-positive EVs could be involved in neuron-microglia crosstalk upon stress conditions. The results also showed that Alix-positive EVs in ganglia would not always contain nGDF suggesting the presence of EVs with other functions and/or other cell origin. It is likely that vesicular populations may be modified as a result of time and cell activation conditions. Subsequent studies might specify the extent to which the vesicles are naturally modified even if the present study already measures their consequence on neurite outgrowth. Further studies will be dedicated to characterizing other proteins and RNA molecules in order to better understand the functions of microglia EVs in neuroprotective events following injury. Future studies would also specify whether nGDF-related molecules could be involved in the EV-dependent communication across species. Current studies in the laboratory have already identified protein and miRNA compounds from those leech EVs and investigate their influence in the dialog with neurons. It will help to identify a molecular cocktail involved in the neuroprotection. Those mechanisms, if shared with mammalian nerve cells, would bring a new insight into cell communications in healthy or pathological brains. Because EVs represent a powerful diagnostic and therapeutic approach, leech data would contribute to the experimental use of EVs as one strategy to detect or impact CNS pathologies.

4. Materials and Methods

4.1. Leech Central Nervous System Dissection

All protocols regarding the use of leeches were carried out in strict accordance with the French legislation and European Treaty, and in compliance with the Helsinki Declaration. The adult leeches *Hirudo medicinalis* were obtained from Biopharm (Hendy, UK). After anesthesia in 10% ethanol at $4 \,^{\circ}$ C for 20 min, CNS were dissected out in a sterile Ringer solution (115 mM NaCl, 1.8 mM CaCl₂, 4 mM KCl, 10 mM Tris maleate, pH 7.4) under a laminar flow hood. The CNS were then placed in 3 successive baths of Leibovitz L-15 medium (Invitrogen, Carlsbad, CA, USA), containing antibiotics (100 UI/mL penicillin, 100 µg/mL streptomycin, and 100 µg/mL gentamycin) for 15 min each and further incubated for 15 min in complete medium made of L-15 medium complemented with 2 mM

L-glutamin, 100 UI/mL penicillin, 100 µg/mL streptomycin, 100 µg/mL gentamycin, 0.6% glucose, 10 mM Hepes.

4.2. Neuron and Microglial Cell Preparation

The whole CNS was placed in 35-mm Petri dishes with 200 μ L of complete medium. Each ganglion was carefully decapsulated by removing the collagen layer enveloping the nerve cord with micro-scissors. The nerve cells, neurons (6–70 μ m), and microglia (3–5 μ m) were mechanically collected by gentle scraping and filtered through different size of filters for separating the population according to size. First, the dissociated tissue was filtered using a 100- μ m mesh size strainer (PluriSelect[®], Dominique Dutscher, Brumath, France) in order to eliminate tissue debris. Then, the eluate was filtered through 40, 20, and 6 μ m strainers to separate large, medium, and small size neurons, respectively, and to collect microglial cells in the flow-through.

4.3. Cell Primary Culture

Nerve cells were centrifuged at $1200 \times g$ to eliminate cell debris remaining in the dissociation medium. The pellet was resuspended in complete medium supplemented with 10% exosome-depleted fetal bovine serum (FBS) Media (SBI System Bioscience, Palo Alto, CA, USA), and nerve cells were placed in a culture chamber (Lab-Tek chambered cover glass 4 well, Thermo Fisher Scientific, Waltham, MA, USA) coated with poly-D-lysine (Sigma-Aldrich, Saint Louis, MO, USA). They were maintained for at least 15 days in a humid environment at 15 °C, conditions routinely used for leech nerve cord or primary cell cultures. Half medium was carefully changed every 4 days.

4.4. Immunohistochemistry on Nerve Cord

After dissection, the nerve cord was cut into fragments of 4 ganglia. Each fragment was injured by crushing the two connectives between the 2nd and 3rd ganglia [7]. The nerve cord fragments were maintained for 24 h in culture in complete medium supplemented with 10% exosome-depleted FBS Media. The nerve cords were fixed with 4% paraformaldehyde at room temperature (RT) for 1 h. Tissues were then washed 3 times in PBS and permeabilized by a 24 h incubation at 4 °C in a 1% Triton $\times 100$ solution diluted in phosphate buffered saline (PBS). To avoid nonspecific background staining, the nerve cord fragments were pre-incubated in blocking buffer (1% Triton, 3% Normal Donkey Serum (NDS) and 1% BSA/ovalbumin in PBS/glycine 0.1 M) for 8 h at 4 °C. They were then incubated overnight at 4 °C with specific primary antibody diluted in blocking buffer: either mouse polyclonal anti-human Alix antibody (dilution 1:500, ab88743, Abcam, Cambridge, UK) or rabbit polyclonal anti-human TGF-β1 antibody (dilution 1:100, ab92486, Abcam, Cambridge, UK). After 3 washes for 15 min in blocking buffer, the nerve cords were incubated 1 h at 37 $^{\circ}$ C in secondary antibody diluted in blocking buffer: donkey anti-rabbit immunoglobulin G (IgG) antibody conjugated to Alexa Fluor 488 (dilution 1:2000, Invitrogen, Carlsbad, CA, USA). They were then rinsed for 15 min three times in PBS and cell nuclei were counterstained by Hoechst 33342 fluorescent dye (dilution 1:10,000, Invitrogen, Carlsbad, CA, USA) for 20 min at 4 °C. Finally, nerve cords were mounted on slide with Dako Fluorescent Mounting Medium (Agilent Dako, Santa Clara, CA, USA). Control experiments were performed following the same immunostaining protocol without the primary antibody incubation.

4.5. Immunofluorescence on Nerve Cells

Primary culture at 15 days (neurons with or without microglial cells) were rinsed with PBS before fixation with 4% paraformaldehyde during 20 min and then washed 3 times in PBS. The poorly adherent microglial cells were lost during these multiple steps of washing. Nerve cells were incubated in blocking buffer (0.05% Triton, 1% Normal Donkey Serum (NDS) and 1% BSA/ovalbumin in PBS/glycine 0.1 M) for 30 min at 4 °C to avoid nonspecific background staining. Neurons were then incubated overnight at 4 °C with mouse monoclonal anti-gliarin antibody diluted in blocking buffer (dilution 1:500, kindly gifted by J. Johansen (Iowa State University, IA, USA)). After 3 washes for

10 min in blocking buffer, the nerve cells were incubated for 1 h at 37 °C with secondary donkey anti-mouse IgG antibody conjugated to Alexa Fluor 488 diluted in blocking buffer (dilution 1:2000, Invitrogen, Carlsbad, CA, USA). Neurons were rinsed with PBS and counterstained with phalloidin tetramethylrhodamine B for 30 min at 4 °C (5 μ g/mL, sc 301530, Santa Cruz Biotechnology, Santa Cruz, CA, USA). Finally, after a last PBS washing, cells were mounted on a slide with Dako Fluorescent Mounting Medium (Agilent Dako, Santa Clara, CA, USA). Control experiments were performed following the same immunostaining protocol without the primary antibody incubation.

4.6. Image Acquisition

Slides, kept at 4 °C in the dark, were observed with a Zeiss LSM700 confocal microscope connected to a Zeiss Axiovert 200 M equipped with an EC Plan-Neofluar $40 \times /1.30$ numerical aperture and an oil immersion objective (Carl Zeiss AG, Oberkochen, Germany). The image acquisition characteristics (pinhole aperture, laser intensity, scan speed) were the same throughout the experiments to ensure comparability of the results. Processing of the images was performed using Zen software and applied on the entire images as well as on controls.

4.7. Molecular Characterization

A Hirudo medicinalis draft genome was characterized in a Hirudinea Genomics Consortium as previously described [54]. Sequences were assembled from paired short reads using Velvet and PHRAP/CONSED algorithms [55,56] and managed with GlimmerHMM to get the predicted mRNA database [57]. The predicted mRNA sequences were submitted to a Local BLAST program using a human Alix amino acid sequence as reference [58]. The candidate sequence was then submitted to SwissProt databases using BLAST in order to specify similarities. From the putative mRNA sequence, specific primers were designed to get the natural and complete sequence by RACE-PCR from CNS total RNAs. Total RNAs were extracted from the CNS of 10 leeches. Dissected nerve cords were incubated in TRIzol® reagent (Thermo Fisher Scientific, Waltham, MA, USA) and homogenized using tissue homogenizer (Precellys, Ozyme, Yvelines, France). The extraction of the total RNA was performed according to the manufacturer's protocol and resuspended in RNase-free water. The extracted total RNAs were treated with RNA qualified (RQ1)-DNase1 (Promega, Madison, WI, USA) to prevent any contamination by genomic DNA. By using SMARTer[®] RACE 5'/3' Kit (Takara Bio, Mountain View, CA, USA), 2 µg of total RNA were used to construct 5' and 3' cDNA libraries according to the manufacturer's instructions. Then nested PCR amplification reactions respecting Takara instructions were performed using a combination of forward and reverse primers framing Alix mRNA sequence (Fw 5'TAGATCGTGAATTGTTTTCAAATCATTC3'; Rw 5'TTATTTGTTAAGCCAAACCTTTAAATAATAATAAG3'). The reaction cycles were performed as follows: 94 °C for 1 min, followed by 40 cycles of 30 s at 94 °C, 30 s at 53 °C, and 2 min at 72 °C. The PCR products were ligated into the pGEM T-easy vector (Promega, Madison, WI, USA) and cloned into JM109 cells according to the manufacturer's instructions. Finally, products were sequenced using BigDye Terminator v3.0 polymerization kit before detection on Genetic Analyzer (Applied Biosystems, Foster City, CA, USA). *Hm*Alix is now referenced as Genbank Accession Number MK060007.

4.8. Gene Expression Analysis

The microglia cells were collected, as described above, from the CNS of 10 leeches for each experimental condition and incubated in complete medium. Total RNAs were extracted with TRIzol[®] reagent (Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer's protocol and resuspended in RNase-free water. Total RNAs were treated with RQ1-DNase1 (Promega, Madison, WI, USA) to prevent any contamination by genomic DNA. The cDNA library was generated from 2 µg of total RNA using random primers and Superscript III Reverse Transcriptase kit (Invitrogen, Carlsbad, CA, USA) in a final volume of 20 µL following the manufacturer protocol. The cDNAs were treated with RNase H (Promega, Madison, WI, USA) to optimize the amplification reaction product.

Real-time quantitative PCR (q-PCR) were performed with the Platinum SYBR Green qPCR SuperMix (Invitrogen, Carlsbad, CA, USA) by combining 2 μ L of cDNA template, 2 μ L of primer mix (10 mM), and 25 μ L of Platinum SYBR Green qPCR SuperMix-UDG in a final volume of 50 μ L. Regarding leech *ngdf* gene, (Genbank Accession Number MH346328) specific primers were designed for the qPCR analyses (5'-TGCTTGTGGTTCTCGGACTC-3' and 5'-TTTCGCTCTGATCTGCTGCA-3'). Specific primers were also designed for leech 18s ribosomal RNA (5'-GGAGGAGCGCGTTTATTAAG-3' and 5'-GGGCACACACTTGAAACATC-3') used as normalizer. The qPCR reactions were conducted on CFX 96 Real-Time System (Bio-Rad, Hercules, CA, USA) with the following conditions: 2 min at 50 °C (1 cycle), 2 min at 95 °C (1 cycle), 30 s at 95 °C, 30 s at 58 °C, and 30 s at 60 °C (39 cycles) followed by a final melting curve to control the amplified specificity. The expression level of the *ngdf* gene was compared between microglial cells 15 min (T0h) and 24 h post lesion (T24h). Experiments were done on triplicate samples in different sets of cDNA template. The analysis of *ngdf* relative gene expression was calculated using the 2^{- $\Delta\Delta$ Ct} method [59]. Statistical analyses were performed by Paired *t*-test using GraphPad Prism 6.0 software. Statistical differences were considered to be significant if the *p*-value < 0.05.

4.9. Extracellular Vesicle Isolation

Centrifugations for extracellular vesicle isolation were all performed at 4 °C. Importantly, to limit degradation, isolated EVs were freshly processed without any frozen step. The content of each microglial cell culture well was transferred into 1.5 mL low-binding Eppendorf® tubes (Hamburg, Germany) and centrifuged at $1200 \times g$ for 10 min to remove any cells. The supernatants (S1) were transferred to sterile tubes and centrifuged at $1200 \times g$ for 20 min to eliminate apoptotic bodies. This step was followed by filtration through a 0.22-µm filter to eliminate large vesicles and some apoptotic bodies possibly remaining in the supernatant. In order to pellet the EVs, the supernatants (S2) from all samples were pooled and transferred into a 10.4-mL polycarbonate bottle with cap assembly tubes (Beckman Coulter, Brea, CA, USA). The tubes were completed with PBS to a final volume of 9 mL and samples were ultra-centrifuged at $100,000 \times g$ for 90 min in a 70.1 Ti rotor, k-factor 36 (Beckman Coulter, Brea, CA, USA). Supernatants were removed (S3) and the EVs pellets were resuspended in 200 μ L of PBS. The tubes were again filled with PBS to a final volume of 9 mL and samples were ultra-centrifuged at $100,000 \times g$ as previously described. Supernatants were removed and the EVs pellets (UC samples) were resuspended in 200 μ L of PBS for further analyses. Nanoparticle tracking analysis was performed using a NanoSight NS300 instrument (Malvern Panalytical Ltd, Malvern, UK) according to the manufacturer's instruction in order to visualize and count EVs.

4.10. Protein Extract

Microglial cell and EV protein extractions were performed with RIPA buffer (150 mM NaCl, 50 mM Tris, 5 mM EGTA, 2 mM EDTA, 100 mM NaF, 10 mm sodium pyrophosphate, 1% Nonidet P-40, 1 mM PMSF, $1 \times$ protease inhibitor) 30 min at 37 °C or at RT. Cell debris were removed by centrifugation at 1200× *g* for 20 min at RT. The supernatants were collected and the protein concentrations were measured using a Protein Assay (Bio-Rad, Hercules, CA, USA).

4.11. SDS-PAGE and Western Blotting

Protein extracts (30 µg) were homogenized (v/v) in 2× Laemmli sample buffer and loaded on a 12% polyacrylamide gel. Protein migration was conducted in TGS buffer (25 mM Tris pH 8.5, 192 mM Glycine, and 0.1% SDS) at 70 V for 15 min and 120 V for 45 min. The separated proteins were transferred on nitrocellulose membranes (AmershamTM HybondTM-ECL, GE Healthcare, Little Chalfont, UK). The membranes were incubated for 1 h at RT in blocking buffer (0.05% Tween 20 w/v, 5% milk powder w/v in 0.1 M PBS, pH 7.4) and then overnight at 4 °C with specific primary antibody diluted in blocking buffer: either mouse polyclonal anti-human Alix antibody (dilution 1:500, ab88743, Abcam, Cambridge, UK) or rabbit polyclonal anti-human TGF- β 1 antibody (dilution 1:200, ab92486, Abcam, Cambridge, UK). A mouse monoclonal anti-rabbit GAPDH antibody (dilution 1:500, ab8245, Abcam, Cambridge, UK) was also used as loading control for secondary antibody membranes (see below). Membranes were washed three times in blocking buffer for 15 min, before incubation for 1 h at RT in secondary antibody diluted in blocking buffer (goat polyclonal anti-rabbit IgG antibody conjugated with horseradish peroxidase, dilution 1:20000, Jackson Immunoresearch, Cambridgeshire, UK). Finally, after two washes in PBS-0.05% Tween 20 and another one in PBS, immunolabelled proteins were revealed using the ECL Kit SuperSignal West Dura Chemiluminescent Substrate (Thermo Fisher Scientific, Waltham, MA, USA). Chemiluminescence acquisitions were performed with ImageQuant LAS-4000 mini system (Fujifilm, Tokyo, Japan). Negative controls were performed using secondary antibody alone. The control membranes with secondary antibody were then stripped. The membranes were rinsed three times with 0.05% PBS-Tween 20 for 5 min and incubated in stripping solution (0.2 M citric acid) for 30 min at RT. Then membranes were rinsed five times with 0.05% PBS-Tween 20 for 5 min to go to the incubation in the blocking buffer and were probed with a mouse monoclonal anti-rabbit GAPDH antibody (dilution 1:500, ab8245, Abcam, Cambridge, UK) as a loading control to confirm the properly loading of the protein extracts on the control experiments.

4.12. Transmission Electron Microscopy (TEM)

After microglial cell preparation (see above), cells were centrifuged at $1200 \times g$ for 10 min and included in 3.5% agarose (Low Melt agarose, Bio-Rad, Hercules, CA, USA). Cells were then impregnated overnight with 2.3 M saccharose in PBS at 4 °C to preserve cytoplasmic contents, and frozen under liquid nitrogen. Microglial cell blocks were cut in serial thin cryosections of 90 nm using a Leica AFS2 system (Leica Microsystems, Vienna, Austria) and collected on Formvar-carbon coated grids. Samples were finally included and contrasted for 15 min on ice with a 4% uranyl acetate and 2% methylcellulose mixture (1:9, v/v) and dried overnight. Concerning EV-enriched fractions from microglia cells (see enrichment method above), the samples were fixed in Karnovsky's fixative (2% glutaraldehyde + 2% paraformaldehyde buffered with 0.1 M sodium cacodylate, 0.01% CaCl₂, 0.01% MgCl₂, 2% sucrose) and sample were deposited on Formvar-carbon coated grids by 3 adsorptions of 20 min in a wet environment. The grids were then stained with 4% uranyl acetate and 2% methylcellulose mixture (1:9, v/v) and dried overnight. Samples were observed on a JEOL JEM-2100 transmission electron microscope, respectively, at 75 kV or 200 kV (JEOL, Akishima, Tokyo, Japan). The acquisitions were made with GatanOrius SC200D camera. For immuno-electron microscopy, extracellular vesicles were purified by differential ultracentrifugation (see above) and the pellet frozen under liquid nitrogen. Sample sections and grids preparation were performed as described above. After 30 min of incubation in blocking solution (5% donkey serum, 0.2% BSA in PBS buffer), samples were exposed overnight at room temperature in mouse polyclonal anti-human Alix antibodies (1:100 in PBS/0.1%BSA, Ab88743). Control sections were incubated in the same buffer without primary antibodies. After washing in PBS, samples were incubated for 2 h at room temperature in appropriate secondary gold-conjugated anti-mouse IgG antibodies (particle size 10 nm; Jackson ImmunoResearch) diluted 1:100 in PBS. Following washing steps in a droplet of water, samples were stained in 0.5% uranyl acetate for 10 min. Electron microscopy observations were performed as indicated above.

4.13. Neurite Outgrowth Assays on Rat PC12 Cell Line

The rat PC12 adrenal pheochromocytoma cell line was purchased from the American Type Culture Collection (ATCC, Manassas, VA, USA). PC12 cells were cultured in a humidified atmosphere with 5% CO₂ at 37 °C, in high glucose Dulbecco's Modified Eagle's Medium (DMEM) and supplemented with 2 mM L-glutamin, 10% heat-inactivated fetal horse serum (FHS), 5% heat-inactivated fetal bovine serum (FBS), 100 UI/mL penicillin, 100 μ g/mL streptomycin (multiplication medium). Triplicate experiments were performed in 24-well plates, on cover glass coated with poly-D-lysine. PC12 cells were plated in multiplication medium (260,000 cells/well) for 24 h. Then the medium was changed for differentiation medium, where FHS concentration was reduced to 0.1% in DMEM supplemented with

17 of 20

L-glutamin, penicillin and streptomycin, with or without (control experiments) presence of microglia EVs. At culture day 4, all the wells were completed with 100 μ l of fresh differentiation medium. PC12 cells were then fixed at day 7 with 4% paraformaldehyde 20 min and counterstained with phalloidin tetramethylrhodamine B for 30 min at 4 °C to evaluate neurite length. Finally, after a last PBS washing, cells were mounted on a slide with Dako Fluorescent Mounting Medium and kept in the dark before acquisition. The neurite length was measured with Neurite Tracer ImageJ software program.

4.14. Neurite Outgrowth Assays on Leech Neurons

In order to perform statistically relevant experiments, the neurons were collected from 20 individual leeches at the same developmental stage and pooled in a homogeneous cell preparation to avoid individual polymorphism. From this cellular pool, the cells were distributed, homogeneously and in the same quantity, and were primarily cultured in individual plates in previously described conditions, in a complete exosome-depleted medium L15. After a 6-day culture, neurons were exposed to 10^6 EVs/well, control S3 supernatant, or EVs + TGF- β signaling pathway inhibitor (20 μ M SB431542, R&D Systems, Minneapolis, MN, USA) [60]. A complete medium renewal was done every 4 days. S3 permits to verify an eventual presence of neurotrophic factors in the microglia-conditioned medium. Image acquisition was realized with a microscopy station Nikon Eclipse Ti2 (Nikon, Minato, Tokyo, Japan). This station, equipped with a perfect focus system which automatically rectifies focus control for drift, was adapted for real time analysis. Acquisitions were realized at day 6, 13, and 20 of culture, each well was totally scanned, and a mosaic image was created for each condition. Only neurons presenting neurites at the 3 acquisition times were selected for neurite length measurement. The experiments performed in this study considered the neurite length of each neuron individually (n = 25) instead of only one global counting coming from all cells present in the culture chamber. Measures were independently performed using ImageJ software program on individual neurons so that every cell can be followed time after time. Measures were then analyzed with GraphPad software using a statistic test "two way ANOVA", to compare different experimental conditions over time.

Author Contributions: P.-E.S., J.V. and C.L. designed the study. A.R.-R., T.A., and C.V.C. performed the leech dissection, cell and vesicle preparations. A.R.-R., and Q.L. carried out the molecular characterizations. I.S.A.-A. performed TEM analyses. T.A., A.R.-R., and C.V.C. performed in vitro experiments and immunofluorescence analyses. C.V.C. and F.L.M.-C. cultured the cells. C.L., P.-E.S., F.L.M.-C., and C.V.C. wrote the paper. M.S. financially supported the study. J.V. and M.S. contributed to important intellectual content and critically revised the manuscript. All authors read and approved the final manuscript.

Funding: This research received no external funding.

Acknowledgments: The presented work was supported by the Ministère de L'Education Nationale, de L'Enseignement Supérieur et de la Recherche and INSERM. We gratefully acknowledge Christian Slomianny, Etienne Dewailly, Anne-Sophie Lacoste, Loic Brunet, and Elodie Richard from the BICeL—Campus Cité Scientifique Facility for access to microscopy instruments and technical advices. We gratefully acknowledge Terry Gaasterland and Lee Edsall from Scripps Institution of Oceanography; Michael Baker and Eduardo Macagno from Section of Cell & Developmental Biology in University of California San Diego, for providing the *Hirudo medicinalis* assembled genome (http://genomes.ucsd.edu/hirmed1/).

Conflicts of Interest: The authors declare no conflict of interest.

References

- Sankowski, R.; Mader, S.; Valdes-Ferrer, S.I. Systemic Inflammation and the Brain: Novel Roles of Genetic, Molecular, and Environmental Cues as Drivers of Neurodegeneration. *Front. Cell. Neurosci.* 2015, *9*, 28. [CrossRef]
- 2. Spangenberg, E.E.; Green, K.N. Inflammation in Alzheimer's Disease: Lessons Learned from Microglia-Depletion Models. *Brain. Behav. Immun.* **2017**, *61*, 1–11. [CrossRef] [PubMed]
- 3. Schafer, D.P.; Lehrman, E.K.; Kautzman, A.G.; Koyama, R.; Mardinly, A.R.; Yamasaki, R.; Ransohoff, R.M.; Greenberg, M.E.; Barres, B.A.; Stevens, B. Microglia Sculpt Postnatal Neural Circuits in an Activity and Complement-Dependent Manner. *Neuron* **2012**, *74*, 691–705. [CrossRef] [PubMed]

- Salter, M.W.; Stevens, B. Microglia Emerge as Central Players in Brain Disease. *Nat. Med.* 2017, 23, 1018–1027. [CrossRef]
- Zhan, Y.; Paolicelli, R.C.; Sforazzini, F.; Weinhard, L.; Bolasco, G.; Pagani, F.; Vyssotski, A.L.; Bifone, A.; Gozzi, A.; Ragozzino, D.; et al. Deficient Neuron-Microglia Signaling Results in Impaired Functional Brain Connectivity and Social Behavior. *Nat. Neurosci.* 2014, *17*, 400–406. [CrossRef] [PubMed]
- Coggeshall, R.E.; Fawcett, D.W. The Fine Structure of the Central Nervous System of the Leech, Hirudo Medicinalis. J. Neurophysiol. 1964, 27, 229–289. [CrossRef] [PubMed]
- Le Marrec-Croq, F.; Drago, F.; Vizioli, J.; Sautière, P.-E.; Lefebvre, C. The Leech Nervous System: A Valuable Model to Study the Microglia Involvement in Regenerative Processes. *Clin. Dev. Immunol.* 2013, 2013, 274019. [CrossRef]
- Drago, F.; Sautière, P.-E.; Le Marrec-Croq, F.; Accorsi, A.; Van Camp, C.; Salzet, M.; Lefebvre, C.; Vizioli, J. Microglia of Medicinal Leech (Hirudo Medicinalis) Express a Specific Activation Marker Homologous to Vertebrate Ionized Calcium-Binding Adapter Molecule 1 (Iba1/Alias Aif-1). *Dev. Neurobiol.* 2014, 74, 987–1001. [CrossRef]
- McGlade-McCulloh, E.; Morrissey, A.M.; Norona, F.; Muller, K.J. Individual Microglia Move Rapidly and Directly to Nerve Lesions in the Leech Central Nervous System. *Proc. Natl. Acad. Sci. USA* 1989, *86*, 1093–1097. [CrossRef] [PubMed]
- Morgese, V.J.; Elliott, E.J.; Muller, K.J. Microglial Movement to Sites of Nerve Lesion in the Leech CNS. Brain Res. 1983, 272, 166–170. [CrossRef]
- Tasiemski, A.; Salzet, M. Neuro-Immune Lessons from an Annelid: The Medicinal Leech. *Dev. Comp. Immunol.* 2017, 66, 33–42. [CrossRef] [PubMed]
- Schikorski, D.; Cuvillier-Hot, V.; Leippe, M.; Boidin-Wichlacz, C.; Slomianny, C.; Macagno, E.; Salzet, M.; Tasiemski, A. Microbial Challenge Promotes the Regenerative Process of the Injured Central Nervous System of the Medicinal Leech by Inducing the Synthesis of Antimicrobial Peptides in Neurons and Microglia. *J. Immunol.* 2008, *181*, 1083–1095. [CrossRef]
- 13. Ngu, E.M.; Sahley, C.L.; Muller, K.J. Reduced Axon Sprouting after Treatment That Diminishes Microglia Accumulation at Lesions in the Leech CNS. *J. Comp. Neurol.* **2007**, *503*, 101–109. [CrossRef] [PubMed]
- 14. Croq, F.; Vizioli, J.; Tuzova, M.; Tahtouh, M.; Sautiere, P.-E.; Van Camp, C.; Salzet, M.; Cruikshank, W.W.; Pestel, J.; Lefebvre, C. A Homologous Form of Human Interleukin 16 Is Implicated in Microglia Recruitment Following Nervous System Injury in Leech Hirudo Medicinalis. *Glia* **2010**, *58*, 1649–1662. [CrossRef]
- Tahtouh, M.; Garçon-Bocquet, A.; Croq, F.; Vizioli, J.; Sautière, P.-E.; Van Camp, C.; Salzet, M.; Nagnan-le Meillour, P.; Pestel, J.; Lefebvre, C. Interaction of HmC1q with Leech Microglial Cells: Involvement of C1qBP-Related Molecule in the Induction of Cell Chemotaxis. *J. Neuroinflamm.* 2012, *9*, 37. [CrossRef]
- Tahtouh, M.; Croq, F.; Vizioli, J.; Sautiere, P.-E.; Van Camp, C.; Salzet, M.; Daha, M.R.; Pestel, J.; Lefebvre, C. Evidence for a Novel Chemotactic C1q Domain-Containing Factor in the Leech Nerve Cord. *Mol. Immunol.* 2009, 46, 523–531. [CrossRef]
- 17. Schikorski, D.; Cuvillier-Hot, V.; Boidin-Wichlacz, C.; Slomianny, C.; Salzet, M.; Tasiemski, A. Deciphering the Immune Function and Regulation by a TLR of the Cytokine EMAPII in the Lesioned Central Nervous System Using a Leech Model. *J. Immunol.* **2009**, *183*, 7119–7128. [CrossRef] [PubMed]
- 18. Le Marrec-Croq, F.; Bocquet-Garcon, A.; Vizioli, J.; Vancamp, C.; Drago, F.; Franck, J.; Wisztorski, M.; Salzet, M.; Sautiere, P.-E.; Lefebvre, C. Calreticulin Contributes to C1q-Dependent Recruitment of Microglia in the Leech Hirudo Medicinalis Following a CNS Injury. *Med. Sci. Monit.* **2014**, *20*, 644–653.
- 19. Arafah, K.; Croix, D.; Vizioli, J.; Desmons, A.; Fournier, I.; Salzet, M. Involvement of Nitric Oxide through Endocannabinoids Release in Microglia Activation during the Course of CNS Regeneration in the Medicinal Leech. *Glia* **2013**, *61*, 636–649. [CrossRef]
- 20. Cocucci, E.; Meldolesi, J. Ectosomes and Exosomes: Shedding the Confusion between Extracellular Vesicles. *Trends Cell Biol.* **2015**, 25, 364–372. [CrossRef] [PubMed]
- 21. Raposo, G.; Stoorvogel, W. Extracellular Vesicles: Exosomes, Microvesicles, and Friends. J. Cell Biol. 2013, 200, 373–383. [CrossRef] [PubMed]
- 22. Haraszti, R.A.; Didiot, M.-C.; Sapp, E.; Leszyk, J.; Shaffer, S.A.; Rockwell, H.E.; Gao, F.; Narain, N.R.; DiFiglia, M.; Kiebish, M.A.; et al. High-Resolution Proteomic and Lipidomic Analysis of Exosomes and Microvesicles from Different Cell Sources. *J. Extracell. Vesicles* **2016**, *5*, 32570. [CrossRef] [PubMed]

- Kreimer, S.; Belov, A.M.; Ghiran, I.; Murthy, S.K.; Frank, D.A.; Ivanov, A.R. Mass-Spectrometry-Based Molecular Characterization of Extracellular Vesicles: Lipidomics and Proteomics. *J. Proteome Res.* 2015, 14, 2367–2384. [CrossRef] [PubMed]
- Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-Mediated Transfer of MRNAs and MicroRNAs Is a Novel Mechanism of Genetic Exchange between Cells. *Nat. Cell Biol.* 2007, 9, 654–659. [CrossRef] [PubMed]
- 25. Lötvall, J.; Hill, A.F.; Hochberg, F.; Buzás, E.I.; Di Vizio, D.; Gardiner, C.; Gho, Y.S.; Kurochkin, I.V.; Mathivanan, S.; Quesenberry, P.; et al. Minimal Experimental Requirements for Definition of Extracellular Vesicles and Their Functions: A Position Statement from the International Society for Extracellular Vesicles. *J. Extracell. Vesicles* 2014, *3*, 26913. [CrossRef]
- 26. Frühbeis, C.; Fröhlich, D.; Kuo, W.P.; Krämer-Albers, E.-M. Extracellular Vesicles as Mediators of Neuron-Glia Communication. *Front. Cell. Neurosci.* **2013**, *7*, 182. [CrossRef]
- Osier, N.; Motamedi, V.; Edwards, K.; Puccio, A.; Diaz-Arrastia, R.; Kenney, K.; Gill, J. Exosomes in Acquired Neurological Disorders: New Insights into Pathophysiology and Treatment. *Mol. Neurobiol.* 2018, 55, 9280–9293. [CrossRef]
- Jan, A.T.; Malik, M.A.; Rahman, S.; Yeo, H.R.; Lee, E.J.; Abdullah, T.S.; Choi, I. Perspective Insights of Exosomes in Neurodegenerative Diseases: A Critical Appraisal. *Front. Aging Neurosci.* 2017, *9*, 317. [CrossRef] [PubMed]
- Otero-Ortega, L.; Laso-García, F.; Gómez-de Frutos, M.; Fuentes, B.; Diekhorst, L.; Díez-Tejedor, E.; Gutiérrez-Fernández, M. Role of Exosomes as a Treatment and Potential Biomarker for Stroke. *Transl. Stroke Res.* 2018. [CrossRef] [PubMed]
- Krämer-Albers, E.-M.; Bretz, N.; Tenzer, S.; Winterstein, C.; Möbius, W.; Berger, H.; Nave, K.-A.; Schild, H.; Trotter, J. Oligodendrocytes Secrete Exosomes Containing Major Myelin and Stress-Protective Proteins: Trophic Support for Axons? *Proteom. Clin. Appl.* 2007, 1, 1446–1461. [CrossRef]
- 31. Frühbeis, C.; Fröhlich, D.; Kuo, W.P.; Amphornrat, J.; Thilemann, S.; Saab, A.S.; Kirchhoff, F.; Möbius, W.; Goebbels, S.; Nave, K.-A.; et al. Neurotransmitter-Triggered Transfer of Exosomes Mediates Oligodendrocyte-Neuron Communication. *PLoS Biol.* **2013**, *11*, e1001604. [CrossRef]
- Prada, I.; Gabrielli, M.; Turola, E.; Iorio, A.; D'Arrigo, G.; Parolisi, R.; De Luca, M.; Pacifici, M.; Bastoni, M.; Lombardi, M.; et al. Glia-to-Neuron Transfer of MiRNAs via Extracellular Vesicles: A New Mechanism Underlying Inflammation-Induced Synaptic Alterations. *Acta Neuropathol.* 2018, 135, 529–550. [CrossRef] [PubMed]
- Murgoci, A.-N.; Cizkova, D.; Majerova, P.; Petrovova, E.; Medvecky, L.; Fournier, I.; Salzet, M. Brain-Cortex Microglia-Derived Exosomes: Nanoparticles for Glioma Therapy. *ChemPhysChem* 2018, 19, 1205–1214. [CrossRef] [PubMed]
- 34. Mathivanan, S.; Simpson, R.J. ExoCarta: A Compendium of Exosomal Proteins and RNA. *Proteomics* 2009, *9*, 4997–5000. [CrossRef] [PubMed]
- Théry, C.; Boussac, M.; Véron, P.; Ricciardi-Castagnoli, P.; Raposo, G.; Garin, J.; Amigorena, S. Proteomic Analysis of Dendritic Cell-Derived Exosomes: A Secreted Subcellular Compartment Distinct from Apoptotic Vesicles. J. Immunol. 2001, 166, 7309–7318. [CrossRef]
- 36. Fisher, R.D.; Chung, H.-Y.; Zhai, Q.; Robinson, H.; Sundquist, W.I.; Hill, C.P. Structural and Biochemical Studies of ALIX/AIP1 and Its Role in Retrovirus Budding. *Cell* **2007**, *128*, 841–852. [CrossRef]
- Xu, Y.; Bolton, B.; Zipser, B.; Jellies, J.; Johansen, K.M.; Johansen, J. Gliarin and Macrolin, Two Novel Intermediate Filament Proteins Specifically Expressed in Sets and Subsets of Glial Cells in Leech Central Nervous System. J. Neurobiol. 1999, 40, 244–253. [CrossRef]
- Wang, Z.; Hill, S.; Luther, J.M.; Hachey, D.L.; Schey, K.L. Proteomic Analysis of Urine Exosomes by Multidimensional Protein Identification Technology (MudPIT). *Proteomics* 2012, 12, 329–338. [CrossRef]
- 39. De Long, J.; Sullivan, T.B.; Humphrey, J.; Logvinenko, T.; Summerhayes, K.A.; Kozinn, S.; Harty, N.; Summerhayes, I.C.; Libertino, J.A.; Holway, A.H.; et al. A Non-Invasive MiRNA Based Assay to Detect Bladder Cancer in Cell-Free Urine. *Am. J. Transl. Res.* **2015**, *7*, 2500–2509.
- 40. Michael, A.; Bajracharya, S.D.; Yuen, P.S.T.; Zhou, H.; Star, R.A.; Illei, G.G.; Alevizos, I. Exosomes from Human Saliva as a Source of MicroRNA Biomarkers. *Oral Dis.* **2010**, *16*, 34–38. [CrossRef]

- Yang, C.; Ruffner, M.A.; Kim, S.-H.; Robbins, P.D. Plasma-Derived MHC Class II+ Exosomes from Tumor-Bearing Mice Suppress Tumor Antigen-Specific Immune Responses. *Eur. J. Immunol.* 2012, 42, 1778–1784. [CrossRef] [PubMed]
- 42. Kim, S.H.; Bianco, N.R.; Shufesky, W.J.; Morelli, A.E.; Robbins, P.D. MHC Class II+ Exosomes in Plasma Suppress Inflammation in an Antigen-Specific and Fas Ligand/Fas-Dependent Manner. *J. Immunol.* 2007, 179, 2235–2241. [CrossRef] [PubMed]
- Akers, J.C.; Ramakrishnan, V.; Kim, R.; Phillips, S.; Kaimal, V.; Mao, Y.; Hua, W.; Yang, I.; Fu, C.-C.; Nolan, J.; et al. MiRNA Contents of Cerebrospinal Fluid Extracellular Vesicles in Glioblastoma Patients. *J. Neurooncol.* 2015, 123, 205–216. [CrossRef] [PubMed]
- 44. Lee, J.; McKinney, K.Q.; Pavlopoulos, A.J.; Han, M.H.; Kim, S.-H.; Kim, H.J.; Hwang, S. Exosomal Proteome Analysis of Cerebrospinal Fluid Detects Biosignatures of Neuromyelitis Optica and Multiple Sclerosis. *Clin. Chim. Acta* 2016, 462, 118–126. [CrossRef] [PubMed]
- 45. Van Niel, G.; D'Angelo, G.; Raposo, G. Shedding Light on the Cell Biology of Extracellular Vesicles. *Nat. Rev. Mol. Cell Biol.* **2018**, *19*, 213–228. [CrossRef]
- 46. Lai, C.P.-K.; Breakefield, X.O. Role of Exosomes/Microvesicles in the Nervous System and Use in Emerging Therapies. *Front. Physiol.* **2012**, *3*, 228. [CrossRef] [PubMed]
- Rajendran, L.; Bali, J.; Barr, X.M.M.; Court, F.A.; Kra, E.; Picou, F.; Van Der Vos, K.E.; Van Niel, G.; Wang, J.; Breakefield, X.O. Emerging Roles of Extracellular Vesicles in the Nervous System. *J. Neurosci.* 2014, 34, 15482–15489. [CrossRef]
- 48. Budnik, V.; Ruiz-cañada, C.; Wendler, F. Extracellular Vesicles Round off Communication in the Nervous System. *Nat. Rev. Neurosci.* **2016**, *17*, 160–172. [CrossRef]
- 49. Krämer-Albers, E.-M.; Hill, A.F. Extracellular Vesicles: Interneural Shuttles of Complex Messages. *Curr. Opin. Neurobiol.* **2016**, *39*, 101–107. [CrossRef]
- 50. Paolicelli, R.C.; Bergamini, G.; Rajendran, L. Cell-to-Cell Communication by Extracellular Vesicles: Focus on Microglia. *Neuroscience* 2018. [CrossRef]
- 51. Kim, J.; Sitaraman, S.; Hierro, A.; Beach, B.M.; Odorizzi, G.; Hurley, J.H. Structural Basis for Endosomal Targeting by the Bro1 Domain. *Dev. Cell* **2005**, *8*, 937–947. [CrossRef]
- 52. Zhou, Y.; Tian, T.; Zhu, Y.; Jaffar Ali, D.; Hu, F.; Qi, Y.; Sun, B.; Xiao, Z. Exosomes Transfer Among Different Species Cells and Mediating MiRNAs Delivery. J. Cell. Biochem. 2017, 118, 4267–4274. [CrossRef] [PubMed]
- 53. Mu, J.; Zhuang, X.; Wang, Q.; Jiang, H.; Deng, Z.-B.; Wang, B.; Zhang, L.; Kakar, S.; Jun, Y.; Miller, D.; et al. Interspecies Communication between Plant and Mouse Gut Host Cells through Edible Plant Derived Exosome-like Nanoparticles. *Mol. Nutr. Food Res.* **2014**, *58*, 1561–1573. [CrossRef] [PubMed]
- Hsu, C.-C.; Baker, M.W.; Gaasterland, T.; Meehan, M.J.; Macagno, E.R.; Dorrestein, P.C. Top-Down Atmospheric Ionization Mass Spectrometry Microscopy Combined With Proteogenomics. *Anal. Chem.* 2017, *89*, 8251–8258. [CrossRef] [PubMed]
- Gordon, D.; Green, P. Consed: A Graphical Editor for next-Generation Sequencing. *Bioinformatics* 2013, 29, 2936–2937. [CrossRef]
- 56. Zerbino, D.R. Using the Velvet de Novo Assembler for Short-Read Sequencing Technologies. *Curr. Protoc. Bioinform.* **2010**. [CrossRef]
- 57. Majoros, W.H.; Pertea, M.; Salzberg, S.L. TigrScan and GlimmerHMM: Two Open Source Ab Initio Eukaryotic Gene-Finders. *Bioinformatics* **2004**, *20*, 2878–2879. [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2^{-ΔΔCt} Method. *Methods* 2001, 25, 402–408. [CrossRef]
- Inman, G.J.; Nicolás, F.J.; Callahan, J.F.; Harling, J.D.; Gaster, L.M.; Reith, A.D.; Laping, N.J.; Hill, C.S. SB-431542 Is a Potent and Specific Inhibitor of Transforming Growth Factor-Beta Superfamily Type I Activin Receptor-like Kinase (ALK) Receptors ALK4, ALK5, and ALK7. *Mol. Pharmacol.* 2002, 62, 65–74. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

PUBLICATION 2

ALK4/5-dependent TGF- β signaling contributes to the crosstalk between neurons and microglia following axonal lesion.

Antonella Raffo-Romero, Tanina Arab, Christelle Van Camp, <u>Quentin</u> <u>Lemaire</u>, Maxence Wisztorski, Julien Franck, Soulaimane Aboulouard, Françoise Le Marrec-Croq, Pierre-Eric Sautiere, Jacopo Vizioli, Michel Salzet, Christophe Lefebvre.

Scientific Reports. 2019 May 3;9(1):6896. doi: 10.1038/s41598-019-43328-x.

<u>Résumé</u>

Les résultats de la **publication 1** suggéraient l'implication de la voie de signalisation du TGF- β dans la réponse neuroprotectrice délivrée par les VEs microgliales. Dans le cadre d'une meilleure compréhension des signaux moléculaires pouvant organiser le recrutement microglial vers la lésion axonale, Antonella Raffo-Romero a entrepris, en parallèle, la caractérisation de la voie de signalisation du TGF- β . Dans cette étude, j'ai d'abord contribué à la préparation des matériaux biologiques mais aussi à l'analyse de la zone de lésion dans un contexte plus focalisé sur la production de VEs. Des études antérieures ont déjà démontré que cette voie de signalisation liée aux récepteurs de la famille TGF- β RI et II est importante pour la réponse spécifique des cellules microgliales chez les mammifères [58,59].

Les premiers résultats ont mis en évidence chez *Hirudo medicinalis* la présence d'un unique homologue du récepteur du TGF- β de type I (ou TGF- β R1) connu chez les mammifères. Les homologies ainsi que les particularités de certains motifs ont permis de le ranger dans les récepteurs de type ALK4 et/ou ALK5 (pour Activin receptor Like Kinase). Il s'agit du seul récepteur au TGF- β détecté chez la sangsue médicinale. La présence de cet homologue ALK4/5 dans certaines cellules microgliales a suggéré que cette voie puisse intervenir dans leur recrutement à la lésion. Afin d'évaluer cette hypothèse, nous avons réalisé un test de chimiotactisme *in vitro* sur les cellules microgliales primaires de sangsue en présence de la forme humaine recombinante du TGF- β 1, le ligand de ALK4/5 chez les mammifères. Les résultats ont révélé qu'une partie des cellules microgliales (environ 24 %) est réactive au TGF-

 β humain et utiliserait le récepteur ALK4/5. La recherche d'homologues au TGF- β humain a permis de mettre en évidence une protéine apparentée à GDF8 et GDF11, membres de la famille TGF- β et ligands connus pour ALK4 et ALK5. Cette protéine chez la sangsue a été nommée nGDF. Pour la suite des expériences, un anticorps polyclonal dirigé contre la forme humaine du TGF- β et reconnaissant des régions homologues avec nGDF a permis de détecter par western blot une seule et unique protéine à la taille prédite du nGDF et a montré par immunofluorescence sa présence aux extrémités axonales lésées seulement 15 minutes après la lésion, avant même le recrutement des cellules microgliales. La libération de nGDF à la lésion suggère que cette molécule pourrait avoir une implication dans le recrutement des cellules microgliales. Des tests de chimiotactisme in vitro sur les cellules microgliales ont montré que le milieu conditionné issu d'une culture de neurones exerce bien un effet chimiotactique dépendamment de la voie ALK4/5 et de son ligand nGDF, démontrant que ce dernier observé aux extrémités axonales lésées est effectivement d'origine neuronale. Les expériences suivantes montrent que nGDF est impliqué dans le recrutement très précoce des cellules microgliales ALK4/5+ à la lésion mais n'interviendrait plus dans le recrutement microglial à plus long terme. Toutefois, des neurones positifs pour ALK4/5 sont également détectés dans les ganglions nerveux dans la phase tardive de la réponse à la lésion. De façon intéressante, l'inhibition de cette voie ALK4/5 dans les corps cellulaires neuronaux a une répercussion directe, 24h après la lésion, sur le recrutement des cellules microgliales dépendamment du facteur chimiotactique C1q. Ce facteur du complément C1q, lui aussi d'origine neuronale, est responsable d'une part au recrutement microglial chez la sangsue. L'inhibition de la voie ALK4/5 sur certains neurones aurait pour effet de bloquer la production du C1q et *in fine* réduire la phase tardive du recrutement microglial. Cette voie ALK4/5, qu'elle s'exerce au niveau microglial ou neuronal, représenterait alors un mécanisme clé dans la réponse à la lésion et le dialogue entre microglie et neurones.

L'analyse non ciblée et à grande échelle des profils protéiques détectés sur la zone de lésion permettent d'ailleurs d'en attester. Cette approche LESA (pour liquid extraction surface analysis) permet d'extraire les protéines à partir de la seule zone de lésion, au cours du temps (T0h, T6h et T24h après une lésion) et avec la présence ou non d'un inhibiteur de la voie ALK4/5. L'ajout de l'inhibiteur de la voie ALK4/5 a réduit l'identification de protéines associées à la voie de signalisation du TGF- β et a compromis la réponse liée à la régénération axonale, au guidage et à la synaptogenèse. Soucieux à titre personnel de montrer l'importance des VEs

88

dans le dialogue initié entre neurones et microglie, nous avons également mis en évidence de nombreuses molécules associées à la voie exosomale au niveau de la lésion, avec entre autre 59 % des protéines totales détectées à la lésion à T6h. Ces dernières données ont confirmé les résultats de la **publication 1** qui révélaient l'implication primordiale des VEs dans le dialogue microglie-neurones. Ces deux premières études ont ainsi montré que les VEs représentent un mode de communication important au niveau de la lésion de la chaine nerveuse chez la sangsue.

SCIENTIFIC **Reports**

Received: 24 September 2018 Accepted: 15 April 2019 Published online: 03 May 2019

OPEN ALK4/5-dependent TGF- β signaling contributes to the crosstalk between neurons and microglia following axonal lesion

Antonella Raffo-Romero 1,2, Tanina Arab 1,2, Christelle Van Camp^{1,2}, Quentin Lemaire 1,2, Maxence Wisztorski^{1,2}, Julien Franck^{1,2}, Soulaimane Aboulouard^{1,2}, Francoise Le Marrec-Croq^{1,2}, Pierre-Eric Sautiere^{1,2}, Jacopo Vizioli^{1,2}, Michel Salzet^{1,2} & Christophe Lefebvre^{1,2}

Neuronal activity is closely influenced by glia, especially microglia which are the resident immune cells in the central nervous system (CNS). Microglia in medicinal leech are the only cells able to migrate to the injury site within the 24 hours post-lesion. The microglia-neuron interactions constitute an important mechanism as there is neither astrocyte nor oligodendrocyte in the leech CNS. Given that axonal sprouting is impaired when microglia recruitment is inhibited, the crosstalk between microglia and neurons plays a crucial role in neuroprotection. The present results show that neurons and microglia both use ALK4/5 (a type of TGF- β receptor) signaling in order to maintain mutual exchanges in an adult brain following an axonal injury. Indeed, a TGF- β family member (nGDF) is immediately released by injured axons contributing to the early recruitment of ALK4/5⁺ microglia to the lesion site. Surprisingly, within the following hours, nGDF from microglia activates ALK4/5⁺ neurons to maintain a later microglia accumulation in lesion. Taken together, the results demonstrate that ALK4/5 signaling is essential throughout the response to the lesion in the leech CNS and gives a new insight in the understanding of this pathway. This latter is an important signal contributing to a correct sequential mobilization over time of microglia recruitment leading to axon regeneration.

Many activities of the Central Nervous System (CNS) are correlated to the neuro-inflammatory state. It is a complex mechanism increasingly considered but still poorly understood because immune processes are diverse and dependent on the cell environment. Importantly, several recent studies demonstrate that microglia (the resident immune cells of the brain having a myeloid origin) can act both as a cause and a consequence in the regulation of inflammatory events associated with neurodegenerative diseases¹. In physiological conditions, microglia cells have an immunosurveillance status to ensure CNS homeostasis. In trauma, they change their stellate-shaped morphology to adopt an amoeboid conformation². These brain resident cells are really important sentinels constituting a first line of response to injury or inflammatory processes. They strongly interact with other brain cells regulating neural circuits and synaptic transmission^{3,4}. Microglia and macrophages are myeloid cells respectively from primitive or definitive hematopoiesis5. In vivo discrimination of resident microglia and macrophages functions remains difficult in the neuro-inflammatory balance⁶. The present report tackles this issue by using a complementary model, where only resident microglia move towards the lesioned tissue.

The nerve cord from the medicinal leech (Hirudo medicinalis) is an excellent model in this regard. In the medicinal leech, microglial cells are also positive for iba1 marker as its mammalian counterparts. They progressively change their morphology from ramified to an amoeboid shape so that they move to the lesion without any blood cell infiltration^{7,8}. Taking into account the lack of infiltration, blood cells could participate to the glial scar formation around endothelial cells and outside the CNS⁹ while microglia promote directly a regenerative process^{10,11}. Microglia in leech are the only cells able to migrate to an injury site (Fig. 1) depending on chemotactic signals including ATP, C1q, EMAPII and Interleukin-16¹²⁻¹⁷. This recruitment massively occurs within the 24 hours post-lesion^{18,19}. Interestingly, some authors have shown that when *in vivo* microglial accumulation is

¹University Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France. ²EURON – European Graduate School of Neuroscience, Maastricht, The Netherlands. Correspondence and requests for materials should be addressed to C.L. (email: christophe.lefebvre@univ-lille.fr)

Figure 1. Diagram of Leech CNS. Left diagram shows the general structure of the nervous system in a dorsal view. Fused cerebral ganglia and fused caudal ganglia are above and below respectively. Right diagram shows a close-up of a fragment of 2 ganglia with connective fiber between them. The structure of a ganglion shows four of the six packet glial cells enveloping neuron cell bodies, surrounded by microglial cells. The projections of the neuronal axons pass through the neuropil and are prolonged into connectives. Microglial cells are distributed in ganglia and connectives fibers. The neuropil lies dorsomedially and contains two macroglial cells. Likewise, it is represented a lesion and a microglia accumulation following an experimental injury. The nervous system is enclosed in the outer capsule which is covered on the outside by a visceral layer of the endothelium (lining the ventral blood sinus).

......

delayed by aberrant concentration of ATP, the axonal regrowth is consequently slowed down demonstrating that the recruitment of microglia is crucial to initiate the axonal sprouting²⁰. The microglia-neuron interactions constitute an important mechanism as there is neither astrocyte nor oligodendrocyte in the leech CNS. The leech CNS contains microglia in ganglia as well as in their connective tissues (Fig. 1). All neuronal cell bodies are located in ganglia and most project their axons into the connective tissues²¹. Thus, ganglionic and connective microglia sub-populations can respectively interact with neuronal cell bodies or axons. Moreover, the tubular structure of the nerve chain makes possible to carry out a specific mechanical lesion in the middle of connectives to damage only the axons, keeping neuronal cell bodies intact. Because neuronal survival is not affected, it is possible in the leech CNS to study the mechanisms leading to the axonal sprouting and synaptogenesis. Consequently, elucidating the molecular processes involved in the crosstalk between neurons and microglia in leech can give a new insight in the refinement of a microenvironment-dependent response. On an evolutionary plan, the leech CNS gives the opportunity to understand the privileged interactions between neurons and microglia.

In this context, recent studies in murine microglia show that distinct tissue environments can induce high expression of *tgfbr1* and *tgfbr2* mRNAs, respectively coding for TGF- β type I (*alias* Activin receptor Like Kinase 5 or ALK5) and TGF- β type II receptors²². Importantly, TGF- β signaling is an essential driver of the development, maintenance and maturation of microglia populations^{22–24}. In fact, the absence of TGF- β type II results in changes in microglial morphology and elevated expression of CD45. Both indicate a transformation to a blood macrophage profile²⁵. Thus, the expression of TGF- β receptors is a specific signature of resident microglia not shared by blood macrophages. Given that TGF- β receptors regulate neuronal development^{26,27}, we aim to better understand the roles played by TGF- β signaling in the crosstalk between microglia and neurons. In this report, we use an axonal lesion system in the connectives of the leech CNS. It involves the recruitment of microglia

Figure 2. Molecular characterization of ALK4/5: a TGF- β family type I receptor (TGF- β R1). (a) Nucleotide and amino acid sequences of leech ALK4/5. The numbers of nucleotides are indicated in left and of amino acids in right. The five disulfide bridges are highlighted in dark grey. Two regions highlighted in light grey represent the GS domain and the L45 loop structural motif. (b) Protein sequence showing the preserved pattern in leech ALK4/5. Sequence alignment with human TGF- β type I receptor (ALK5, P36897) and Activin type I receptor (ALK4, P36896). High and low consensus homologies are represented by red and blue residues, respectively. (**c**-**g**) Fluorescence *in situ* hybridization on whole mounted leech CNS 24 h after lesion. Confocal microscopy images show mRNA localization using an antisense *alk4/5* riboprobe (green) in the ganglion (**c**) and in the connective (**e**) as framed in the CNS diagrams. (**f**) Arrows show more closely the *alk4/5* mRNA positive microglial cells in the point of injury. (**d**,**g**) No signal was detected with sense probes used as negative controls. Microglia cell nuclei were stained with Hoechst 33342 (blue).

subpopulations over time. After the characterization of a TGF- β type I receptor in the leech microglia and neurons, its involvement in the time-course of microglia recruitment was evaluated following the axonal lesion.

Results

ATGF- β **type I receptor is expressed in microglia cells and neurons.** The analysis of leech-derived databases revealed the presence of a putative sequence coding for a *tgfbr1* orthologue. We characterized a TGF- β family type I receptor in the leech (Genbank Accession Number MH346327) after confirmation by RACE-PCR amplifications using specific primers. This protein presented a high amino acid sequence homology to the human TGF- β type I receptor (*alias* Activin receptor Like Kinase 5 or ALK5, UniProtKB P36897) and Activin type I receptor (*alias* ALK4, UniProtKB P36896) with respectively a 52% and 53% sequence identity (64% and 65% sequence similarity). The same level of sequence similarity was observed when we compared with the counterparts from other mammalian species.

Several features allowed us to identify this leech receptor as an Activin receptor-Like Kinase 4/5 (ALK4/5) orthologue (Fig. 2a). First, while disulfide bridges were common to TGF- β types I and II receptors (including

Figure 3. ALK4/5 in the recruitment of microglial cells at point of lesion. (**a**–**c**) Confocal microscopy analysis of ALK4/5 immunofluorescence using rabbit anti-ALK5 antibodies. (**a**) Detail of stained injured connective (site of lesion) 6 h after lesion. (**b**) Magnification of frame (**a**) showing microglial cells staining observed in the point of lesion (as framed in the CNS diagram). (**c**) No signal was detected in connective treated only with secondary antibody as negative control. Cell nuclei were stained with Hoechst 33342 (blue). (**d**) Chemotactic effect of human TGF- β on leech microglia migration. Chemotaxis assay was made with recombinant TGF- β gradient (0, 0.5, 1, 5, 10 ng/mL).

Cys28-Cys49, Cys43-Cys66, Cys81-Cys95 and Cys96-Cys102), a specific disulfide bond was only present in TGF- β type I (Cys30-Cys36)²⁸. Second, a type I receptors presented a GS domain possessing a SGSGSG sequence embedded in a 30-amino acid long motif. Studies show that this domain is phosphorylated by the type II receptor to play a role in receptor-mediated signaling^{29,30}. Third, the leech protein showed the ADNKDNGTW amino acid sequence. This motif was described in a specific L45 loop in type I receptors (ALK4 and ALK5) necessary to activate the Smad 2/3 pathway (Fig. 2b)^{31,32}.

In the lesioned nerve cord (24 hours post-lesion), a high level of *alk4/5* mRNA was detected in neuronal cell bodies located in ganglia (Fig. 2c) and in some microglia recruited to the lesion (Fig. 2e,f). The analysis of different focal planes suggested that only a small percentage of the microglia population (detected by a nuclear dye) expressed *alk4/5* gene. In both cases the negative control using a sense probe showed no signal (Fig. 2d,g).

ALK4/5 is involved in microglia chemotaxis. The identification of ALK4/5 expression confirmed the presence of an ALK4/5⁺ microglia subpopulation among the whole microglia population recruited to the injury site (Fig. 3a,b). Indeed, ALK4/5-negative microglia were observed in the lesion site within 6 hours post-lesion, suggesting that additional chemotactic signals were involved (Fig. 3b). A negative control using secondary antibody showed no immunopositive signal (Fig. 3c).

To study the possible involvement of this receptor in the microglia recruitment, *in vitro* chemotaxis assays were performed to measure the reactivity of freshly isolated microglia to a gradient of recombinant form of human TGF- β 1, the natural ligand for ALK4/5⁺ microglia. Microglial cells were counted before cell deposition and after their migration to the arrival well. The results showed a dose-dependent chemotactic effect, resulting in a typically bell-shaped curve (Fig. 3d). Indeed, the results significantly showed that about 24% of microglia cells were reactive to the human TGF- β 1 cytokine in an optimal concentration (1 ng/mL). Taken together, the results suggest that the ALK4/5⁺ microglia represent a subset of total collected microglia.

nGDF, a neuronal orthologue of GDF8/11, is fully involved in ALK4/5-dependent microglia recruitment to the lesion. We investigated the existence of TGF- β family members corresponding to ALK4/5 ligands. The use of the human TGF- β 1 (known as natural ALK5 ligand) sequence in a local BLAST of leech databases allowed the detection of a GDF8/11-like sequence (Fig. 4a). Indeed, following a comparison with all human TGF- β family members, the leech amino acid sequence presented typical TGF- β conserved domains (Fig. 4b). It also presented 32% identity and 53% homology with human GDF8 precursor (*alias* myostatin) and 34% identity and 49% homology with human GDF11 precursor. The active peptide region was even more homologous to both molecules (60% and 62% to GDF8 and GDF11, respectively). GDF8 and GDF11 were described to predominantly use ALK4 or ALK5 type I receptors in close interaction with type II receptors (Activin receptor kinase II-A and II-B)³³. In addition, we detected the presence of this unique leech protein band in immunoblot analysis from nerve cord protein extracts (Fig. 4c). No other molecule was detected in the nerve cord. By taking into account these sequence similarities and the existence of the ALK4/5 receptor in the leech nerve cord, the leech TGF- β member was named nGDF (for nervous Growth and Differentiation Factor).

The *in vivo* immunofluorescence analyses showed a fast accumulation of nGDF close to the injured axons only 15 minutes post-lesion (Fig. 4d) before any recruitment of microglia. No signal was observed using only secondary antibody as negative control (Fig. 4e). Importantly, *ngdf* mRNA was significantly up-regulated in primary neurons after a 24 hour culture (Fig. 4f). In addition, freshly dissociated neurons and microglia were separately cultured for 15 minutes in order to collect their respective conditioned-medium (C.M). The chemotaxis assays

Figure 4. Molecular characterization of nGDF (TGF- β family member) in leech. (a) Nucleotide and amino acid sequences of leech nGDF. The numbers of nucleotides are indicated in left and of amino acids in right. The protein sequence of nGDF presents a propeptide and a mature form region, both framed. The nGDF protein sequence contains RRKR cut site and nine conserved cysteine residues, highlighted in dark grey and light grey, respectively. (b) Protein sequence showing the preserved pattern of TGF- β family in leech nGDF and sequence alignment with human GDF8 (O14793) and GDF11 (O95390). High and low consensus homologies are represented by red and blue residues, respectively. (c) Western blotting analysis from CNS protein extract using polyclonal rabbit anti-TGF- β antibodies (lane 1) compared to secondary antibody alone (lane 2) as a negative control (see also Supplementary Fig. S3 to have the overview of both membranes). (d) Immunofluorescence using polyclonal rabbit anti-TGF- β antibodies of nGDF in the point of lesion 15 minutes after-lesion, as framed in the CNS diagram. (e) No signal was detected in connective treated only with secondary antibody as negative control. Cell nuclei were stained with Hoechst 33342 (blue). (f) Real time quantitative RT-PCR of the ngdf mRNA level in neurons from T0 (15 min post-lesion, black) vs. 24 h post-lesion (gray) CNS. A leech 18 S ribosomal RNA was used as internal reference. Significance (*p < 0.05, **p < 0.01 vs. T0) was calculated by paired T-test (bar represents Standard Errors of Mean). (g) Chemotactic effect on microglia cells of conditioned medium (C.M.) from primary culture of microglia (light gray) or neurons (dark gray). The chemotactic effect of C.M. from neurons was also assessed on anti-ALK5-incubated microglia to specifically neutralize ALK4/5 in microglia (dark gray). The chemotactic effect of anti-TGF-\beta-incubated C.M., specifically neutralizing neuronsderived nGDF, was also evaluated on microglia (dark gray). A control medium was used as negative control (black). Significance (*p < 0.05, **p < 0.01, ***p < 0.001) was calculated by ANOVA Dunnett's multiple comparisons test (bar represents Standard Errors of Mean).

(performed to measure the reactivity of freshly isolated microglia) showed that C.M. from neurons presented a potent chemotactic function compared to that from microglia or control medium (Fig. 4g). Interestingly, this neuron-dependent chemotaxis was significantly reduced when target microglia were incubated with anti-ALK5

Figure 5. *Ex vivo* ALK4/5-dependent microglia recruitment assays. (**a**) Confocal microscopy analysis of Iba1 immunofluorescence using rabbit polyclonal anti-Iba1 antibodies 6 h after a lesion (left) or 6 h after no lesion (middle and right). The location of each image is framed in each diagram. The right image corresponds to a negative control using the secondary antibody alone. (**b**) Confocal microscopy analysis of the injured connectives (framed in the diagram) 6 h vs. 16 h and vs. 24 h after lesion. Microglia recruitment was followed by using a fluorescent nuclear dye Hoechst 33342 (blue) because only microglia are able to migrate towards the lesion. As shown in the diagram, before the lesion, rabbit polyclonal anti-ALK5-perfused connectives (below) were compared to rabbit control IgG-perfused connectives (above).

antibody. In addition, after validating the specificity of the anti-human TGF- β 1 antibody to the leech nGDF, this antibody was used in *in vitro* chemotaxis assays to neutralize nGDF in the neuron-conditioned medium. In this condition, the result showed that the recruitment of microglial cells was inhibited as similarly observed in the condition using the anti-human ALK5 antibody (Fig. 4g). Taken together, the results show the neuronal origin of nGDF and its chemotactic property directed to ALK4/5⁺ microglia. Its release from the lesioned axons within the first minutes following the lesion also suggests its high importance in microglia chemoattraction. That is why, the importance of nGDF was evaluated in the time-course of microglia recruitment following injury.

ALK4/5-dependent microglia contribute to the early phase of microglia recruitment. In the leech CNS, the microglia are the only cell population able to migrate towards the injury¹⁹. They were stained and followed using the Iba1 marker (Fig. 5a) as previously described⁸. In the injury site, 6 hours after the lesion, the results showed that only microglia accumulate in the point of the lesion. Therefore, they were studied *ex vivo* throughout their accumulation using only a fluorescent nuclear dye, allowing to avoid any detection of neutralizing antibodies after their perfusion. The lesion site was observed at three different times post-lesion by using perfusions of either anti-ALK5 antibody, to neutralize ALK4/5⁺ microglia, or rabbit IgG as negative control (Fig. 5b). The images, representative of independent triplicates, showed that the ALK4/5 neutralization affected microglia recruitment to the lesion within 6 hours post-injury compared to similar timing with Ig control perfusion. In a later time point (T16h post-lesion), the microglia accumulation was not inhibited but delayed in the migration process after the ALK4/5 neutralization, suggesting that other chemotactic signals could be involved at this time point. Finally, the comparison of both perfusions in T24h post-lesion showed no significant differences, though anti-ALK5 was still perfused in a long term. Taken together the results show that ALK4/5 pathway participated to the early phase of microglia recruitment to the lesion but is no longer used to recruit microglia in the following hours.

Figure 6. Time-course analysis of protein signatures in SB431542- vs. vehicle-conditions. (**a**) Representative image of the LESA procedure at the three points of lesioned nerve cord (in purple) followed by LC-MS/ MS analysis. This procedure was performed in injured nerve cords either in SB431542 inhibitor or vehicle incubation as control. (**b**) Venn Diagrams of the numerical values for common and exclusive proteins comparing SB431542 and vehicle conditions at T0, T6h or T24h. (**c**) MaxQuant and Perseus softwares generate heatmaps of common proteins showing clusters of significantly overexpressed proteins in vehicle (highlighted in orange) and inhibitor conditions (highlighted in blue). (**d**) Analysis of biological pathway Gene Ontology (GO) with exclusive (Venn diagram) and overexpressed proteins (heatmap). The graph shows the percentage of proteins identified into designated GO categories, relative to the total number of proteins, comparing vehicle (shades of orange) to SB431542 conditions (shades of blue). (**e**) The graph shows the percentage of proteins identified into GO category Exosomes, relative to the total number of proteins. See also Supplementary Fig. S1.

Lesion-specific protein signatures in time course- and ALK4/5-dependent manner. Because the results showed the involvement of the ALK4/5 pathway in the crosstalk between microglia and neurons, the protein profiles throughout the microglia recruitment were studied in the lesion site using a Liquid Extraction Surface Analysis (LESA) approach. This spatially- and temporally-resolved proteomic study was performed in the lesion site from isolated fragments of nerve chain respecting the integrity of several ganglia joined by connective tissues (Fig. 6a). The leech nerve cord was injured by cutting one of the two connectives between each pair of ganglia (3 extraction points per fragment). These injured tissues were incubated with a specific inhibitor of ALK4/5 pathway (SB431542) or with its vehicle (100 mM DMSO)³⁴.

Whatever the time and/or conditions, the results identified condition-exclusive protein signatures (Supplementary Fig. S1a) that were listed in Supplementary Table S1. In order to get accurate information about the molecular processes in the lesion site, the common protein signatures were analyzed to only represent those presenting a relative abundance between conditions. The results showed well discriminated clusters of over-represented protein signatures in time-dependent profiles (T0 vs T6h vs T24h) with or without SB431542

(Supplementary Fig. S1b; Supplementary Table S2). The presence of SB431542 led to a relevant decrease in the number of TGF- β signaling-associated proteins in response to the lesion (Supplementary Fig. S1c). In order to highlight the most important molecular events in the lesion site, we investigated the protein signatures by comparing SB431542- vs. vehicle-conditions for each time independently. The results showed exclusive (Fig. 6b) and over-represented (Fig. 6c) protein signatures in each condition. The exclusive protein signatures (SB431542 vs. vehicle) showed more displays in T0 (79 and 26) and T6h (73 and 104) compared to T24h (7 and 16) post-lesion conditions (Fig. 6b). In addition, regarding the common signatures, their analysis showed clusters containing a higher number of over-represented proteins in T0 and T6h compared to T24h post-lesion (Fig. 6c). From exclusive proteins (Supplementary Table S3) and over-represented proteins (Supplementary Table S4), a first analysis consisted in identifying proteins that were specifically detected in only one time post-lesion (represented in bold in Tables S3 and S4). Then, in each time post-lesion, the protein signatures were compared between SB431542and vehicle-conditions in order to highlight the molecular events which could be the consequences of an ALK4/5 inhibition. Some proteins exclusively or over-represented in T0 following the ALK4/5 inhibition were already described to be involved in neurodegenerative diseases. They included for example the succinate-CoA ligase (SUCLG1), the NADH dehydrogenase complex (NDUFA10, NDUFS2), the cytochrome c (CYCS), the oxoglutarate dehydrogenase-like protein (OGDHL), the ATP synthase subunits (ATP5J2, ATP5A1) and the phosphoglycerate kinase 2 (PGK2).

In addition, the exclusive proteins (Supplementary Table S3) were merged to over-represented proteins (Supplementary Table S4) in a global analysis in order to compare functional processes involved throughout the response to the lesion. The most affected biological pathways by ALK4/5 inhibition were associated to (i) CXCR4-mediated signaling events, regulating synaptic function and neuronal survival^{35,36}; (ii) Neurotrophic factor-mediated Trk receptor signaling, leading to axon regeneration³⁷; (iii) Apoptosis; (iv) Cell-cell communication; (v) Axon guidance and (vi) Innate immune reactions (Fig. 6d). The related proteins were detailed in the Tables S3 and S4. These functional mechanisms were down-regulated in the lesion site following ALK4/5 inhibition, excepted for the apoptotic functions. It demonstrated that the ALK4/5 pathway was a key process leading to axon regeneration. Interestingly, when we considered only the vehicle conditions, the comparison between T0/ T6h and T24h post-lesion showed the early involvement (T0/T6h) of CXCR4-mediated signaling whereas the neurotrophic factor-mediated Trk receptor signaling was mainly detected as a later mechanism (T24h). These results highlighted a new hypothesis about the functional time-program of recruited microglia subpopulations. The components associated to exosomes were also an important signature. Indeed, they were highly represented in the response to lesion (Fig. 6e; Supplementary Table S5). As represented in T6h vehicle condition, they represented up to 59% of detected protein signatures (Supplementary Fig. S1d). While the importance of the ALK4/5 pathway were demonstrated in the early phase of microglia recruitment to lesion, the wide time-course proteomic analysis also showed that the ALK4/5 inhibition can modulate early (T0 and T6h) as well as late (T24h post-lesion) biological processes. This logically raised the question of the role of ALK4/5 in the subsequent later response, which prompted us to consider its importance until T24h post-injury. The results suggest that ALK4/5 signaling contributes to a time-program in the nerve repair.

ALK4/5-dependent neurons mediate a late phase of microglia recruitment. The analysis of the ALK4/5 distribution was performed in the connective tissues and demonstrated that the receptor was present in a few injured axons 16 hours post-injury (Fig. 7a). At this time, ALK4/5 was no longer detectable in the accumulated microglia. This result confirmed that the ALK4/5-dependent microglia recruitment only occurred in early hours post-lesion (Fig. 5). In ganglia, the results showed an ALK4/5 signal in only a few symmetric neurons in each ganglion 16 and 24 hours post-injury (Fig. 7b). A stacking of focal plans in the ganglion also revealed the ALK4/5-immunopositive signal in the axons (Fig. 7c,d) as also observed near the lesion in the connectives (Fig. 7a).

Because we showed that the ALK4/5 inhibition led to significant changes in the connective tissue until 24 hours after the lesion, we decided to study the importance of these ALK4/5⁺ neurons in the ganglia, especially their contribution to other chemotactic signals allowing the microglia recruitment.

During the neurogenesis in mammals, the neuronal reactivity through TGF- β receptors induces the neuronal production of C1q and C3 complement factors involved in a microglia recruitment allowing the synaptic prun $ing^{27,38}$. Since neuronal HmC1q was described in the leech microglia recruitment^{13,14,16}, we investigated a possible correlation between the ALK4/5 pathway and C1q production in neurons. The neuronal reactivity was studied *in vitro* by the exposure of primary neurons to a recombinant form of TGF- β 1 (ALK5 natural ligand) during 24 hours. The results showed that *hmc1q* mRNA was significantly induced in TGF-β-activated neurons compared to naïve ones (Fig. 7e). Thus, the ALK4/5⁺ neurons were involved in the production of neuronal C1q that we previously described as one chemotactic signal for C1qBP-dependent microglia accumulation to the lesion site^{13,14}. In order to assess the importance of the ALK4/5 signaling in the HmC1q-activated microglia recruitment, C1qBP⁺ microglia cells were followed in lesioned connectives 24 hours post-lesion under an ALK4/5-specific inhibitor (SB431542) (Fig. 7f,g). Because ALK4/5⁺ microglia were no longer involved in the late phase of the recruitment to the lesion (Fig. 5), the SB431542 inhibitor was directed to ALK4/5⁺ neurons only. The results demonstrated that a SB431542 perfusion specifically reduced the number of the C1qBP+ microglia cells recruited to the lesion (Fig. 7f) compared to a similar tissue perfused with the SB431542 vehicle (Fig. 7g). Taken together, these results demonstrate that ALK4/5⁺ neurons contribute to the accumulation of C1qBP⁺ microglial cells in the later phase of the recruitment to the lesion, by stimulating a neuronal HmC1q production. These ALK4/5⁺ neurons could directly produce HmClq as a chemotactic factor and/or even propagate a larger signal towards other neurons contributing to a wider release of HmC1q in axons at the lesion site.

Figure 7. ALK4/5-dependent neurons mediate the C1qBP+ microglia cells accumulation. (a-d) Confocal microscopy analysis of ALK4/5 immunofluorescence in lesioned nerve cord post-injury using rabbit polyclonal anti-ALK5 antibodies. (a) Injured axons are stained in connective 16 h after lesion. (b-d) Some neuronal cells bodies are stained in ganglia showing the proximal end of axons (c,d). (e) Real time quantitative RT-PCR of hmc1q mRNA level in naive vs. TGF- β -activated neurons. A leech 18 S ribosomal RNA was used as internal reference. Significance (*p < 0.05 vs naive neurons) was calculated by paired T-test (bar represents Standard Errors of Mean). (f,g) Confocal microscopy analysis of C1qBP immunofluorescence using rabbit polyclonal anti-C1qBP antibodies in lesioned nerve cord 24 h post-injury. As shown in the diagram, SB431542 inhibitorinjected nerve cords (F) were compared to vehicle-injected nerve cords (g) as negative control. Microglia cell nuclei were followed using Hoechst 33342 (blue). (h) Western blotting analysis from neuron (lanes 1,3) and microglia (lanes 2,4) protein extracts collected from lesioned nerve cord (24 h post-injury) using rabbit polyclonal anti-TGF-β antibodies (lanes 1,2) compared to secondary antibody alone as a negative control (lanes 3,4) (see also Supplementary Fig. S3 to have the overview of both membranes). (i,j) Fluorescence in situ hybridization on whole mounted leech CNS 24 h after lesion. Confocal microscopy images show ngdf mRNA localization using an antisense riboprobe (green) in ganglionic microglia (i, arrows) and no signal using sense riboprobe as negative control (j). (k) Real time quantitative RT-PCR of the *hmc1q* mRNA level in naïve vs. microglial conditioned medium (CM)-activated neurons. The CM-activated neurons was incubated with either SB431542 inhibitor or vehicle. A leech 18S ribosomal RNA was used as internal reference. Significance (*p<0.05, **p<0.01) was calculated by ANOVA paired T-test (bar represents Standard Errors of Mean). See also Supplementary Fig. S2.

Activated ganglionic microglia also produce nGDF to influence neurons. The only ligand for TGF- β type I receptor that we detected in databases was nGDF. Since ALK4/5⁺ neuronal cell bodies were involved 24 hours post-lesion in the induction of *Hm*C1q (Fig. 7e–g), protein extracts from neurons and microglia were analyzed for nGDF signature (Fig. 7h). The results showed at 24 hours post-lesion the presence of this factor in

microglia but not in neurons. This result was corroborated by a specific ngdf mRNA location in ganglionic microglia close to neuronal cell bodies (Fig. 7i). A negative control using sense riboprobe showed no signal (Fig. 7j). The ability of microglia to induce a neuronal HmC1q production was confirmed using primary microglia and neurons in co-culture experiments. The level of hmc1q mRNA in primarily cultured neurons was significantly induced in the presence of microglia compared to a mono-culture of primary neurons (Fig. 7k). The induction of hmc1q mRNA level in neurons was partially but significantly inhibited when SB431542 inhibitor was added to the co-culture media. This demonstrated that some microglia cells regulated a neuronal HmC1q production through the ALK4/5 pathway. This inhibitor clearly targeted the neuronal ALK4/5 since no microglia in ganglia were able to expose this receptor at any time. The immunofluorescence analyses in the nerve cord also confirmed the nGDF protein location in ganglionic microglia cells, in similar regions to those observed for ngdf mRNA, as well as in interneuronal spaces (Supplementary Fig. S2a) compared to negative control (Supplementary Fig. S2b). Consequently, the results suggest that some microglia cells release nGDF to interact with neuronal cell bodies. These resident microglia cells in ganglia might be functionally orientated to dialog with neuronal cell bodies. It is important to understand how they receive an activation signal to induce their nGDF production in this process. Interestingly, other immunofluorescence analyses in the ganglia revealed that the ganglionic microglia cells did not produce any nGDF when the lesion site was isolated from the ganglia by ligatures (Supplementary Fig. S2c). This suggests that factors released from damaged axons and/or microglia in the connectives could distantly activate ganglionic microglia to interact with corresponding neuronal cell bodies.

Discussion

Microglia are motile sensor cells significantly contributing to the nervous system development. It is crucial to investigate their functions at the crossroads of neuronal and immune pathways. Dysfunctional microglia are more and more correlated to a high level of neuroinflammation leading to neuropathologies^{4,39}. Thus, understanding and controlling microglia activities could bring a novel therapeutic way.

In mammals, the cell diversity and plasticity require discrimination between resident microglia and meningeal as well as plexus choroid macrophages. New microglia-specific markers are investigated, notably revealing the involvement of TGF- β receptors, purinergic receptor P2RY12, scavenger receptor FCRLS and transmembrane protein TMEM119²³. TGF- β receptors are demonstrated as crucial in the regulation of the microglial maturation. A similar observation is performed between microglia and peritoneal macrophages demonstrating a preferential expression of mRNAs encoding TGF- β receptors *tgfbr1* (alias *alk5*) and *tgfbr2* in microglia²². TGF- β ligands are described to exert a privileged effect on the microglia-specific program of gene expression compared to a M-CSF (Macrophage colony-stimulating factor) influence²². Finally, this TGF- β receptor exposure is specified as having an influence on microglia-specific transcription factor Sall1 to maintain a physiological state of the adult micro-glia²⁵. Understanding the use of the TGF- β signaling is hence crucial to specify the physiological functions of microglia. This is why, we investigated the location of such TGF- β receptors in the medicinal leech CNS in order to better understand TGF- β signaling functions.

As described in vertebrates, the leech microglia are also motile cells migrating towards lesions after morphological changes¹². Their study is even more important since we know that their accumulation to the lesion is supported by chemotactic signals^{8,12–15} and is essential to initiate a nerve repair program²⁰. The tubular architecture of the leech CNS and the particular antero-posterior axonal projection of many neurons allow *in vivo* or *ex vivo* studies from isolated fragments of nerve cord. Thus, in the present report, a specific mechanical lesion was carried out in the middle of connectives to damage the axons while the neuronal cell bodies were still intact. This experimental manipulation allowed to study the processes leading to immune reactions, axonal guidance, axonal sprouting and synaptogenesis in close relation to microglia functions.

The results showed in microglia and also in neuron subsets the existence of a TGF- β type I receptor corresponding to an orthologue of ALK4 (Activin type I receptor) and/or ALK5 (TGF- β type I receptor) (Figs 2 and 3). The leech ALK4/5 possesses amino acid residues belonging to the TGF- β family type I receptor^{28,29,31,32}. The present report showed the use of the ALK4/5 pathway in the microglia recruitment and the existence of a member of the TGF- β family similar to GDF8 (*alias* myostatin) and GDF11 both recognizing ALK4 or ALK5^{40,41}. This molecule, named nGDF, was released by injured neurons (Fig. 4) to contribute within the first minutes to the microglia mobilization. But, nGDF was no longer used in the following hours though microglia were still recruited to the lesion (Fig. 5). Taken together, the results demonstrate the early involvement of GDF8/11 orthologue (nGDF) in the microglia recruitment to the axonal lesion. The functions supported by these microglial populations in contact with injured axons are not yet understood. In mammals, GDF11 negatively controls a neuronal proliferation through ALK4/5 type I receptors^{40,41} and *in vitro* assays suggest a comparable role of GDF8 in the brain⁴⁰.

In order to explore this time-program throughout the response to the injury, we used a Liquid Extraction Surface Analysis (LESA) technique in the lesion site (Fig. 6 and Supplementary Fig. S1). A first comparison of time-specific proteins was performed between the ALK4/5 inhibition and control (Supplementary Tables S3 and S4). The analysis of the protein signatures after the ALK4/5 inhibition (T0) allowed the detection of over-represented hypoxia-associated proteins that are related to pro-inflammatory microglia and potentially involved in Alzheimer or Huntington diseases⁴². It included for example the succinate-CoA ligase, the NADH dehydrogenase complex, the cytochrome c, the oxoglutarate dehydrogenase-like protein, the ATP synthase sub-units and the phosphoglycerate kinase 2. Thus, the protein signatures following the ALK4/5 inhibition, only 3 specific proteins were over-represented (SSUH2, TPM2, PPP3CB). In contrast, FLNC, HSPA8 and NTRK2 proteins were stimulated in the control. Because NTRK2 is a natural receptor for neuronal growth factors (BDNF and NTF4), its over-representation in the control suggested the involvement of the ALK4/5 pathway in a neurite outgrowth process^{43,44}. The other analyses involving the detection of biological processes showed the early identification of CXCR4-mediated signaling pathway, really important in T0 and T6h conditions but absent in T24h post-lesion.

In mammals, CXCR4 is known to be expressed by microglia to regulate microglial colonization under CXCL12 influence⁴⁵. This activation is also described as an important signature of the early stage in embryonic microglia⁴⁶. Finally, the CXCR4 signaling could first protect neurons from cell death which is typical of early events after injury prior to later engage sprouting and synaptogenesis mechanisms³⁵. The results showed that this CXCR4 pathway was remarkably downregulated after the ALK4/5 inhibition and revealed its involvement in the early response. Thus, the first hours of the response to the lesion involved a protected environment facilitated by the recruitment of early stage-specific microglia. Interestingly, other biological pathways were significantly increased in the later response to lesion (T24h post-lesion) compared to the earlier ones (T0 and T6h). It included especially the neurotrophic factor-mediated Trk receptor signaling resulting in growth and axon regeneration following injury³⁷. This time-program developing chronological functions throughout the nerve repair was also strongly impaired when ALK4/5 was inhibited as revealed by the significant decrease of axon guidance processes. Conversely, the proteomic analysis of the lesion showed that the ALK4/5 inhibition induced apoptotic events suggesting a cell death after injury. Thus, the ALK4/5 pathway is necessary in this time-dependent process. The detection of differential protein signatures after the ALK4/5 inhibition was expected in the early hours post-lesion. Nevertheless, this study also reveals the longer term importance of the ALK4/5 pathway in the response to lesion (T24h post-lesion).

Another remarkable functional process was demonstrated by the detection of proteins involved in the production and accumulation of Extracellular Vesicles (EVs) such as exosomes and microvesicles to the lesion (Fig. 6 and Supplementary Fig. S1). The relative abundance of these proteins suggested that EVs were released by neurons and/or recruited microglia throughout the response to the injury. Even after the ALK4/5 inhibition, it was possible to observe this EV-derived signature. Consequently, it suggests the EV response to be a privileged mechanism in the crosstalk between microglia and neurons in the leech. As recently described, we contribute to understand the importance of EVs in this crosstalk⁴⁷⁻⁵¹.

The second part of this study showed that ALK4/5 receptor was still expressed in the lesion site 24h post-injury in a few damaged axons and also in ganglionic ALK4/5⁺ neuronal cell bodies, while microglia cells no longer used it (Fig. 7). Previous studies in mammals demonstrate the neuronal exposure of such receptors as essential in differentiation and survival⁵²⁻⁵⁴. The neuronal ALK5 exposure is interestingly described as a regulator of the late stages in adult hippocampal neurogenesis²⁶ and in protecting neurons from degeneration and cell death in Alzheimer pathogenesis⁵⁵⁻⁵⁷. However, the pathways by which these neurons could be regulated remained to be clarified because the sources of TGF- β family ligands could be multiple during the development but also the aging of the nervous system. Particularly, astrocytic TGF- β family members could activate ALK5⁺ neurons in order to produce complement factors during the neurogenesis²⁷. The subsequent release of the neuronal C1q is important because it recruits C1qBP⁺ microglia, necessary in the synaptic pruning during the CNS development³⁸. Since the neuronal C1q is involved in the leech microglia recruitment^{13,14,16}, a possible correlation to the ALK4/5 signaling was investigated. The results showed that neurons were reactive to microglia-derived nGDF and induced a neuronal C1q production. So far, there was no evidence that ALK4/5⁺ neurons were those able to produce *Hm*C1q. Indeed, the ALK4/5⁺ neurons could directly produce HmC1q as a chemotactic factor and/or propagate a larger paracrine signal towards other neighbor neurons contributing to a wider release of HmC1q. This question will be addressed in further studies. Interestingly, the C1q-dependent microglia recruitment at lesion was significantly affected by neutralization of ALK4/5 signaling. These results corroborated the late importance of ALK4/5 pathway acting as a determinant loop in the crosstalk between microglia and neurons. Interestingly, the presence of ligatures preventing any physical exchange between connectives and ganglia led to the inhibition of nGDF release in ganglia. The time-program following the injury thus involved a distant communication between both regions (Fig. 8). The lesion-dependent signal that induced ganglionic microglia to release nGDF and activate neuronal *Hm*C1q production remains to be elucidated.

In conclusion, the ALK4/5 signaling is important during mammalian neurogenesis and participates to the neuronal plasticity. It could also represent a neuroprotective event in the adult CNS. The present report used the leech CNS, as a natural model of nerve regeneration, to study either axon-microglia or neuronal cell body-microglia interactions. The results demonstrate that ALK4/5 signaling is essential throughout the response to the lesion in the crosstalk between microglia and neurons. They may give a new insight into the functions of this pathway as an important signal contributing to a correct sequential mobilization of microglia leading to an axon regeneration. Elucidating the functional impact of ALK4/5 signaling in mammalian brain could help to promote specific microglia subpopulations that, properly recruited, could improve functional repair of the CNS.

Materials and Methods

Leech central nervous system structure. All protocols regarding the use of leeches were carried out in strict accordance with the French legislation and European Treaty, and in compliance with the Helsinki Declaration. The adult leeches *Hirudo medicinalis* were obtained from Biopharm (Hendy, UK). After anesthesia in 10% ethanol at 4 °C for 15 min, the CNS were dissected out in a sterile Ringer solution (115 mM NaCl, 1.8 mM CaCl₂, 4 mM KCl, 10 mM Tris maleate, pH 7.4) under a laminar flow hood. After isolation of CNS, the samples were placed in 3 successive baths of antibiotics (100 UI/mL penicillin, 100 µg/mL streptomycin and 100 µg/mL gentamycin) for 15 min and later incubated in complete medium, made of Leibovitz L-15 medium (Invitrogen, Carlsbad CA, USA) complemented with 2 mM L-glutamin, 100 UI/mL penicillin, 100 µg/mL streptomycin, 100 µg/mL gentamycin, 0.6% glucose, 10 mM Hepes and 10% Exosome-depleted FBS Media Supplement (SBI System Bioscience, Palo Alto CA, USA). *In situ* hybridization and immunohistochemical analyses were performed on injured CNS by crushing the two connectives between the second and third ganglia, from a four ganglia long fragment.

Figure 8. Diagram summarizing the chronological processes after axonal lesion. The ALK4/5-dependent events were described according to three times post-lesion. The early release of neuronal nGDF at lesion (1) allows the recruitment of an ALK4/5⁺ microglia subpopulation (2). Diffusible factors at lesion would distantly inform ganglionic microglia and/or neuronal cell bodies to organize the long term response (3). Some neurons expose ALK4/5 receptor and ganglionic microglia produce nGDF (4). Then, nGDF from ganglionic microglia induces ALK4/5⁺ neurons contributing to a neuronal *Hm*C1q production (5). Then a C1qBP⁺ microglia subpopulation will be recruited at lesion under *Hm*C1q influence (6). The involvement of exosomes derived from microglia and/or neurons is supposed to be remarkably important as well as other chronological signaling pathways (7).

......

Neurons and microglial cell preparation. The whole CNS was placed in 35 mm Petri dishes with $200 \,\mu\text{L}$ of complete medium. Each ganglion was carefully decapsulated by removing the collagen layer enveloping the nerve cords. The nerve cells, neurons (10–70 μ m) and microglial cells (5 μ m), were mechanically collected by gentle scraping and filtered through different size filters for separating the population according to size. Afterwards, the cell debris were eliminated in a 100 μ m pluriStrainer filter (Dominique Dutscher, Brumath, France). Microglia were selected through a filter of 6 μ m pluriStrainer and the neurons were collected in the upper part of this filter.

The enriched microglial cells or neurons were centrifuged at $1,200 \times \text{g}$ for 10 min at Room Temperature (RT). The cell pellet, corresponding to one nerve cord, was resuspended in $200 \,\mu\text{L}$ complete medium for the migration assays. Regarding the preparation of conditioned medium, the pellet, corresponding to 10 nerve cords, was resuspended in $500 \,\mu\text{L}$ complete medium (See Supplementary Method 1). The cell-free supernatant of each of the microglial cells and neurons from 10 nerve cords was used as conditioned medium (CM) in the chemotaxis experiments.

Molecular characterization. In a Hirudinea Genomics Consortium, we contributed to create a *Hirudo medicinalis* draft genome as previously described⁵⁸. Sequences were assembled from paired short reads using Velvet and PHRAP/CONSED algorithms^{59,60} and given to GlimmerHMM to get predicted mRNA database⁶¹. These predicted mRNA sequences was compared in a Local BLAST program with human TGF- β type I receptor and TGF- β 1 amino acid sequences⁶². The candidate sequences was submitted to Swiss-Prot databases using BLAST in order to specify similarities in TGF- β type I receptors and TGF- β superfamily respectively. From putative partial mRNA sequences, specific primers were designed to get the natural and complete sequences by RACE-PCR from CNS total RNAs (Supplementary Methods S2 and 3). PCR products were ligated into the pGEM T-easy vector (Promega, Madison WI, USA) and cloned into JM109 cells according to the manufacturer's instructions. Finally, products were sequenced using BigDye Terminator v3.0 polymerization kit before detection on Genetic Analyzer (Applied Biosystems, Foster City CA, USA). The assembly of 5' and 3' end sequences allowed characterizing the full length mRNA of *tgfbr1* and *ngdf* encoding respectively ALK4/5 (GenBank accession number MH346327) and nGDF (GenBank accession number MH346328) proteins.

Gene expression analysis. The neurons were collected, as described above, from the CNS of 10 leeches for each experimental condition and incubated in complete medium. The total RNA extraction was performed as described in Supplementary Method S2. cDNA library was generated from 2 µg of total RNA using random primers and Superscript III Reverse Transcriptase kit (Invitrogen, Carlsbad CA, USA) in a final volume of 20 µL. cDNAs were treated with RNaseH (Promega, Madison WI, USA) to optimize the amplification reaction product. Real-time quantitative PCR (qPCR) were performed with the Platinum SYBR Green qPCR SuperMix (Invitrogen, Carlsbad CA, USA) by combining 2 µL of cDNA template, 2 µL of primer mix (10 mM) and 25 µL of Platinum SYBR Green qPCR SuperMix-UDG in a final volume of 50 µL. Specific primers were designed for the qPCR analyses, for ngdf gene (5'-TGCTTGTGGTTCTCGGACTC-3', 5'-TTTCGCTCTGATCTGCTGCA-3'), hmc1q gene (5'-GTCTCGGGAGTGCAAGGAAT-3', 5'-TGTATTGTTCCCGACTCGCC-3') and for a leech 18 S ribosomal RNA (5'-GGAGGAGCGCGTTTATTAAG-3', 5'-GGGCACACACTTGAAACATC-3'), used as normalizer. The qPCR reactions were conducted on CFX 96 Real-Time System (BioRad, Hercules CA, USA) with the following conditions: 2 min at 50 °C (1 cycle), 2 min at 95 °C (1 cycle), 30 s at 95 °C, 30 s at 58 °C and 30 s at 60 °C (39 cycles) followed by a final melting curve to control the amplified specificity. The expression level of ngdf gene was compared between neurons 15 minutes (T0) and 24 hours after lesion (T24 h). The expression level of *hmc1q* gene was compared, at first, between naive and stimulated neurons with recombinant human TGF- β (20 ng/mL, Sigma-Aldrich, Saint Louis MO, USA), as ALK5 ligand. In a second time, hmc1q gene was compared between the unstimulated neurons and the neurons in co-culture with the microglia cells, separated thanks to a Transwell® porosity 0.4 µm membrane (Corning, Corning NY, USA), with or without SB431542 (20 µM, R&D Systems, Minneapolis MN, USA), an ALK5-specific and ALK4-relative inhibitor³⁴. Experiments were done on triplicate samples in different sets of cDNA template. The analysis of relative gene expression of hmc1q and ngdf was calculated using the $2^{-\Delta\Delta Ct}$ method⁶³. Statistical analyses were performed by Paired T-test using GraphPad Prism 6.0 software. Statistical differences were considered to be significant if p-value was <0.05.

Fluorescent *in situ* **hybridization (FISH).** Nerve cords were incubated 24 hours post-lesion and fixed for one hour at 4°C in 4% paraformaldehyde. Digoxigenin-UTP-labelled specific antisense and sense riboprobes (negative control) were generated. The riboprobes of *tgfbr1* were generated from 688–1356 nucleotides sequence mRNA (Genbank Accession Number MH346327) (size 668nt) with specific Forward (5'-AAGTGTGGAGGGGTGTATGG-3') and Reverse (5'-CTCTTCGTGCGTTGGATCAG-3') primers and from the 156–592 nucleotides sequence of *ngdf* (Genbank Accession Number MH346328) (size 436nt) with specific primers (5'-CATCATCTTCACCGCCACCT-3', 5'-GTTGGGATCGCTGAGTTTGC-3'). After PCR amplification and the insertion of the product in pGEM-T easy vector system (Promega, Madison WI, USA), the RNA sequence of interest was obtained by *in vitro* transcription using DIG RNA-labeling kit according to the manufacturer's instructions (Roche Diagnostics, Risch-Rotkreuz, Swiss).

The hybridization protocol was performed in nerve cords as listed below⁶⁴, with minor modifications (See Supplementary Method S4). After the hybridization protocol, the nerve cords were mounted on the slide with Dako Fluorescent Mounting Medium (Agilent, Santa Clara CA, USA). Slides were kept at 4 °C in the dark until observation with a Zeiss LSM700 confocal microscope connected to a Zeiss Axiovert 200 M with an EC Plan-Neofluar 40x/1.30 numerical aperture oil immersion objective (Carl Zeiss AG, Oberkochen, Germany). Processing of the images was performed using Zen software and applied on the entire images as well as on controls. The presented pictures are representative of independent triplicates.

Immunohistochemistry. In experiments with rabbit polyclonal anti-human TGF- β 1 (1/100, ab92486, Abcam, Cambridge, UK) and rabbit polyclonal anti-human ALK5 (1/250, ab125310, Abcam, Cambridge, UK) antibodies, analyses were performed on experimentally injured nerve cords, as described above, and incubated in complete L-15 medium 15 minutes (T0), 6 hours (T6 h) or 24 hours (T24 h).

The experiment using anti-human TGF- β 1 was also performed with and without ligation between ganglia 2 and 3, which were tied up with a loop of fine nylon thread to confine the lesion region.

The experiments using rabbit polyclonal anti-human C1qBP (1/500, HPA026483, Sigma-Aldrich, Saint Louis MO, USA) were performed on injured nerve cords, as described above, 24 h after incubation in complete L-15 medium and with injection of SB431542 (20μ M, R&D Systems, Minneapolis MN, USA) as ALK4/5-specific inhibitor, or its vehicle DMSO (100 mM). The injection of the inhibitor was performed in decapsulated ganglia adjacent to the lesioned connective so that it reaches the injury site. For injections, patch pipettes were pulled from borosilicate glass capillaries (outer diameter 1.5 mm, Clark GC 150 F-10) using a two-stage horizontal micropipette puller (model P-97, Sutter Instrument, Novato, CA, USA) (pipette resistance 3 to 5 M Ω).

The experiments using rabbit polyclonal anti-leech Iba1 antibodies (1/5000) were performed on intact or injured nerve cords 6 h after incubation in complete L-15 medium as previously described⁸.

After the different incubation times, the nerve cords were fixed with 4% paraformaldehyde at RT for 1 h. After fixation, tissues were washed 3 times in PBS, permeabilized by a 24 h incubation at 4 °C in permeabilization solution (1% Triton X100 in PBS) and pre-incubated in blocking buffer (in 1% Triton, 3% Normal Donkey Serum (NDS) and 1% ovalbumin in PBS/glycine 0.1 M) for 8 h at 4 °C. Then the samples were incubated overnight at 4 °C with the appropriate primary antibody diluted in blocking buffer. After 3 washes with PBS, samples were incubated 1 h at 37 °C with secondary donkey anti-rabbit antibody conjugated to Alexa Fluor 488 (1:2000, Invitrogen, Carlsbad CA, USA) in blocking buffer. They were rinsed with PBS and the cell nuclei were counterstained by Hoechst 33342 fluorescent dye (1/10000, Invitrogen, Carlsbad CA, USA) for 20 min at 4 °C. Finally the nerve cords were mounted on the slide with Dako Fluorescent Mounting Medium (Agilent, Santa Clara CA, USA). Samples without the addition of primary antibody were used as negative control. Slides were maintained, observed and processed in the same manner as described above. The presented pictures are representative of independent triplicates.

Chemotaxis assays. In vitro chemotaxis assays were performed by using the double-P assay as described by Köhidai, with minor modifications⁶⁵ (Supplementary Method S5). Experiments were performed in triplicates. The results were expressed as the mean percentage of cells migrated, taking into account the starting amount as 100 percent \pm S.E.D. Comparisons between means were made using the Ordinary one-way Anova using GraphPad Prism 6.0 software. Statistical differences were considered significant if p was <0.05.

Either recombinant form of human TGF- β (H8541, Sigma-Aldrich, Saint Louis MO, USA) (0, 0.5, 1, 5 and 10 ng/ml) or conditioned media (CM) containing their respective secretome (microglial cells and neurons collected for 15 min primary cultures, see below) were used as chemotactic factors. CM-dependent chemotaxis assays were performed also with neutralizing antibodies. Microglial cells were preincubated for 1 hour at RT with rabbit polyclonal anti-ALK5 antibody (1/100, ab125310, Abcam Cambridge, UK) to inhibit the receptor prior to assays. In another condition, neuron-conditioned medium was preincubated for 1 hour at RT with rabbit polyclonal anti-human TGF- β 1 antibody (1/100, ab92486, Abcam, Cambridge, UK) to neutralize nGDF prior to assays. In every experiment, negative controls were carried out with complete L-15 medium alone.

Ex vivo microglial cell recruitment assays. The experiment was performed in injured leech connectives (as described above) at different times post-injury (T6 h, T16 h and T24 h) perfused with a rabbit polyclonal anti-ALK5 (1/50, ab125310, Abcam, Cambridge, UK) or with a control rabbit IgG (1/50, SC2027, Santa Cruz TX, USA) at the same dilution. The antibodies were respectively injected (8 μ L) inside the 2nd and 3rd ganglia in a 4 ganglia fragment. The connectives were crushed immediately after injection with fine forceps in the middle side of the two ganglia injected and the tissues were fixed in 4% paraformaldehyde, pH 7.4 for 1 h after T6 h, T16 h and T24 h. Microglial cells recruitment was followed by using a nuclear fluorescent dye Hoechst 33342 (1:10000, Invitrogen, Carlsbad CA, USA) for 20 min at 4°C. Microglial cell movement in response to these different injections was then observed and processed in the same manner as described above. The presented pictures are representative of independent triplicates.

Western blotting. CNS, microglial cells and neurons protein extract analysis were performed from 5 and 10 nerve cords respectively T24 h post-injury with RIPA buffer. For each experimental condition, SDS-PAGE was conducted (4–12% polyacrylamide gel) using 30 μ g of protein extract homogenized (v/v) in 2X Laemmli sample buffer and loaded in the gel wells, further details are found in Supplementary Method S6. After migration of proteins the gel is transferred in a membrane and was incubated for 1 hour at RT in blocking buffer (0.05% Tween 20 w/v, 5% milk powder w/v in 0.1 M PBS, pH 7.4) and then overnight at 4 °C in rabbit polyclonal anti-TGF- β 1 (1/200, Abcam, Cambridge, UK) in blocking buffer. After rinsing three times with PBS-0.05% Tween 20 for 15 minutes, the membrane was incubated for 1 hour at RT in secondary goat anti-rabbit polyclonal antibody conjugated with horseradish peroxidase (1:20,000, Jackson Immunoresearch, Cambridgeshire, UK) in PBS-0.05% Tween 20. Finally, after another rinsing with PBS, immunoreactive bands were revealed using the ECL Kit SuperSignal West Dura ChemoLuminescent Substrate (Thermo Fisher Scientific, Waltham MA, USA). Chemiluminescence analyses were performed by ImageQuant LAS-4000 mini system (Fujifilm, Tokyo, Japan).

In situ micro-extraction of proteins. A large-scale proteomic analysis was developed on the injured connectives from the leech nerve cord. This spatially- and temporally-resolved proteomic study was performed on organotypic culture of isolated fragments of nerve chain respecting the integrity of several ganglia joined by connective tissues. Protein micro-extraction experiments were performed using the TriVersa Nanomate platform (Advion BioSciences, Ithaca NY, USA), with the Liquid Extraction Surface Analysis (LESA) feature⁶⁶ with several modifications as previously described⁶⁷. For our study, a CNS fragment composed by 4 leech ganglia is dissected. Then the leech nerve cord is injured by cutting one of the two connectives between each pair of ganglia (3 extraction points per fragment). The fragments were incubated in complete medium with a specific ALK4/5 inhibitor, SB431542 (20 µM, R&D Systems, Minneapolis MN, USA) or with its vehicle (100 mM DMSO). The fragments were mounted on the Poly-D-lysine slide (Dominique Dutscher, Brumath, France) at different times post-injury 15 minutes (T0), 6 hours (T6 h) and 24 hours (T24 h). The complete details of the LESA method are found in Supplementary Method S7. Proteins coming from cells and intercellular spaces are then extracted and stored in a collection tube. For proteomics analysis, the sample was migrated on an acrylamide gel. Then, the gels band were cut and subjected in gel digestion were the proteins underwent reduction, alkylation and enzymatic digestion (See Supplementary Method S8).

NanoLC-HR-MS/MS. The samples were separated by online reversed-phase chromatography using a Proxeon EasynLC1000 system (Thermo Fisher Scientific, Waltham MA, USA) equipped with a Proxeon trap column ($100 \,\mu$ m ID 2 cm) and a C18 packed-tip column (Acclaim PepMap, 75 μ m ID 50 cm). Peptides were separated using an increasing amount of acetonitrile (5–30% over 120 min) at a flow rate of 300 nL/min. The chromatography system was coupled to a Q-exactive mass spectrometer (Thermo Fisher Scientific, Waltham MA, USA) programmed to acquire the top 10 MSMS in data-dependent mode. All the details of the NanoLC-HR-MS/MS can be found in Supplementary Method S9.

Data analyses. All the MS data were processed with MaxQuant (version 1.5.6.5) software⁶⁸ using the Andromeda search engine⁶⁹. Proteins were identified by searching MS and MS/MS data against a homemade database of *Hirudo medicinalis* All the predicted protein sequences are annotated by homology with the human database. For identification, the FDR at the peptide spectrum matches (PSMs) and protein level was set to 0.01. Label-free quantification of proteins was performed using the MaxLFQ algorithm integrated into MaxQuant with the default parameters. Analysis of the proteins identified were performed using Perseus (version 1.5.6.0) software^{70,71}. Multiple-samples tests were performed using ANOVA test with a p-value of 5% and preserving grouping in randomization. Visual heatmap representations of significant proteins were obtained using hierarchical clustering analysis. Functional annotation and characterization of identified proteins were obtained using PANTHER (version 13.0) software⁷² and STRING (version 9.1)⁷³. The analysis of gene ontology, cellular components and biological processes, were performed with FunRich 3.0 analysis tool⁷⁴. The details regarding the data analysis are found in Supplementary Method S10.

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

- Sankowski, R., Mader, S. & Valdes-Ferrer, S. I. Systemic Inflammation and the Brain: Novel Roles of Genetic, Molecular, and Environmental Cues as Drivers of Neurodegeneration. *Front. Cell. Neurosci.* 9 (2015).
- 2. Kettenmann, H., Hanisch, U.-K., Noda, M. & Verkhratsky, A. Physiology of Microglia. Physiol. Rev. 91, 461–553 (2011).
- 3. Prinz, M., Erny, D. & Hagemeyer, N. Ontogeny and homeostasis of CNS myeloid cells. Nat. Immunol. 18, 385-392 (2017).
- Li, Q. & Barres, B. A. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol, https://doi.org/10.1038/ nri.2017.125 (2017).
- Ginhoux, F. *et al.* Fate mapping analysis reveals that adult microglia derive from primitive macrophages. *Science* 330, 841–5 (2010).
 Ginhoux, F. & Prinz, M. Origin of Microglia: Current Concepts and Past Controversies. *Cold Spring Harb. Perspect. Biol.* 7, a020537
- (2015). 7. Le Marrec-Croq, F., Drago, F., Vizioli, J., Sautière, P.-E. & Lefebvre, C. The leech nervous system: A valuable model to study the
- microglia involvement in regenerative processes. *Clin. Dev. Immunol.* **2013** (2013).
- Drago, F. et al. Microglia of medicinal leech (Hirudo medicinalis) express a specific activation marker homologous to vertebrate ionized calcium-binding adapter molecule 1 (Iba1/alias aif-1). Dev. Neurobiol. 74 (2014).
- Boidin-Wichlacz, C. et al. Morphological and functional characterization of leech circulating blood cells: role in immunity and neural repair. Cell. Mol. Life Sci. 69, 1717–1731 (2012).
- 10. Tasiemski, A. & Salzet, M. Neuro-immune lessons from an annelid: The medicinal leech. Dev. Comp. Immunol. 66, 33-42 (2017).
- Schikorski, D. et al. Microbial challenge promotes the regenerative process of the injured central nervous system of the medicinal leech by inducing the synthesis of antimicrobial peptides in neurons and microglia. J. Immunol. 181, 1083–95 (2008).
- Croq, F. et al. A homologous form of human interleukin 16 is implicated in microglia recruitment following nervous system injury in leech Hirudo medicinalis. Glia 58 (2010).
- Tahtouh, M. et al. Interaction of HmC1q with leech microglial cells: Involvement of C1qBP-related molecule in the induction of cell chemotaxis. J. Neuroinflammation 9 (2012).
- 14. Tahtouh, M. et al. Evidence for a novel chemotactic C1q domain-containing factor in the leech nerve cord. Mol. Immunol. 46 (2009).
- 15. Schikorski, D. *et al.* Deciphering the immune function and regulation by a TLR of the cytokine EMAPII in the lesioned central nervous system using a leech model. *J. Immunol.* **183**, 7119–28 (2009).
- Le Marrec-Croq, F. et al. Calreticulin contributes to C1q-dependent recruitment of microglia in the leech Hirudo medicinalis following a CNS injury. Med. Sci. Monit. 20 (2014).
- Arafah, K. et al. Involvement of nitric oxide through endocannabinoids release in microglia activation during the course of CNS regeneration in the medicinal leech. Glia, https://doi.org/10.1002/glia.22462 (2013).
- McGlade-McCulloh, E., Morrissey, A. M., Norona, F. & Muller, K. J. Individual microglia move rapidly and directly to nerve lesions in the leech central nervous system. Proc. Natl. Acad. Sci. USA 86, 1093–7 (1989).
- Morgese, V. J., Elliott, E. J. & Muller, K. J. Microglial movement to sites of nerve lesion in the leech CNS. Brain Res. 272, 166–70 (1983).
- Ngu, E. M., Sahley, C. L. & Muller, K. J. Reduced axon sprouting after treatment that diminishes microglia accumulation at lesions in the leech CNS. J. Comp. Neurol, https://doi.org/10.1002/cne.21386 (2007).
- Coggeshall, R. E. & Fawcett, D. W. The Fine Structure of the Central Nervous System of the Leech, Hirudo Medicinalis. J. Neurophysiol. 27, 229–289 (1964).
- Gosselin, D. et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159, 1327–40 (2014).
- Butovsky, O. et al. Identification of a Unique TGF-β Dependent Molecular and Functional Signature in Microglia. Nat Neurosci, https://doi.org/10.1038/nn.3599.Identification (2014).
- Attaai, A. et al. Postnatal maturation of microglia is associated with alternative activation and activated TGFβ signaling. Glia 66, 1695–1708 (2018).

- 25. Buttgereit, A. et al. Sall1 is a transcriptional regulator defining microglia identity and function. Nat. Immunol. 17, 1397–1406 (2016).
- He, Y. et al. ALK5-dependent TGF-β signaling is a major determinant of late-stage adult neurogenesis. Nat. Neurosci. 17, 943–952 (2014).
- Bialas, A. R. & Stevens, B. TGF-β signaling regulates neuronal C1q expression and developmental synaptic refinement. *Nat. Neurosci.* 16, 1773–82 (2013).
- Boesen, C. C., Radaev, S., Motyka, S. A., Patamawenu, A. & Sun, P. D. The 1.1 A crystal structure of human TGF-beta type II receptor ligand binding domain. Structure 10, 913–9 (2002).
- Attisano, L., Wrana, J. L., Montalvo, E. & Massagué, J. Activation of signalling by the activin receptor complex. *Mol. Cell. Biol.* 16, 1066–73 (1996).
- Wieser, R., Wrana, J. L. & Massagué, J. GS domain mutations that constitutively activate T beta R-I, the downstream signaling component in the TGF-beta receptor complex. *Embo J.* 14, 2199–208 (1995).
- Persson, U. et al. The L45 loop in type I receptors for TGF-beta family members is a critical determinant in specifying Smad isoform activation. Febs Lett. 434, 83–7 (1998).
- Feng, X.-H. & Derynck, R. A kinase subdomain of transforming growth factor-β (TGF-β) type I receptor determines the TGF-β intracellular signaling specificity. *Embo J.* 16, 3912–3923 (1997).
- 33. Walker, R. G. et al. Biochemistry and Biology of GDF11 and MyostatinResponse to Walker et al. Circ. Res. 118, 1125–1142 (2016).
- Inman, G. J. et al. SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol. Pharmacol. 62, 65–74 (2002).
- 35. Khan, M. Z. et al. The chemokine CXCL12 promotes survival of postmitotic neurons by regulating Rb protein. Cell Death Differ. 15, 1663–1672 (2008).
- Réaux-Le Goazigo, A., Van Steenwinckel, J., Rostène, W. & Mélik Parsadaniantz, S. Current status of chemokines in the adult CNS. Prog. Neurobiol. 104, 67–92 (2013).
- Cheah, M. & Andrews, M. Targeting cell surface receptors for axon regeneration in the central nervous system. *Neural Regen. Res.* 11, 1884 (2016).
- 38. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164-78 (2007).
- Prinz, M. & Priller, J. The role of peripheral immune cells in the CNS in steady state and disease. *Nat. Neurosci.* 20, 136–144 (2017).
 Wu, H.-H. *et al.* Autoregulation of neurogenesis by GDF11. *Neuron* 37, 197–207 (2003).
- Kim, J. et al. GDF11 Controls the Timing of Progenitor Cell Competence in Developing Retina. Science (80-.). 308, 1927–1930 (2005).
- Zhang, F. et al. Acute Hypoxia Induced an Imbalanced M1/M2 Activation of Microglia through NF-κB Signaling in Alzheimer's Disease Mice and Wild-Type Littermates. Front. Aging Neurosci. 9, 282 (2017).
- Levine, E. S., Dreyfus, C. F., Black, I. B. & Plummer, M. R. Brain-derived neurotrophic factor rapidly enhances synaptic transmission in hippocampal neurons via postsynaptic tyrosine kinase receptors. Proc. Natl. Acad. Sci. USA 92, 8074–7 (1995).
- Klein, R. et al. The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell 66, 395–403 (1991).
- Arnò, B. et al. Neural progenitor cells orchestrate microglia migration and positioning into the developing cortex. Nat. Commun. 5, 5611 (2014).
- 46. Thion, M. S. et al. Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific Manner. Cell 172, 500-516.e16 (2018).
- 47. Drago, F. et al. ATP Modifies the Proteome of Extracellular Vesicles Released by Microglia and Influences Their Action on Astrocytes. Front. Pharmacol. 8, 910 (2017).
- Murgoci, A.-N. et al. Brain-Cortex Microglia-Derived Exosomes: Nanoparticles for Glioma Therapy. ChemPhysChem 19, 1205–1214 (2018).
- Arab, T. *et al.* Proteomic characterization of leech microglia extracellular vesicles (EVs): comparison between differential ultracentrifugation and Optiprep[™] density gradient isolation. *J. Extracell. Vesicles* 8, 1603048 (2019).
- Théry, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018).
- 51. Raffo-Romero, A. *et al.* Medicinal Leech CNS as a Model for Exosome Studies in the Crosstalk between Microglia and Neurons. *Int. J. Mol. Sci.* **19**, 4124 (2018).
- Ishihara, A., Saito, H. & Abe, K. Transforming growth factor-beta 1 and -beta 2 promote neurite sprouting and elongation of cultured rat hippocampal neurons. *Brain Res.* 639, 21–5 (1994).
- Yi, J. J., Barnes, A. P., Hand, R., Polleux, F. & Ehlers, M. D. TGF-beta signaling specifies axons during brain development. *Cell* 142, 144–57 (2010).
- Tomoda, T. *et al.* Transforming growth factor-beta is a survival factor for neonate cortical neurons: coincident expression of type I receptors in developing cerebral cortices. *Dev. Biol.* 179, 79–90 (1996).
- Brionne, T. C., Tesseur, I., Masliah, E. & Wyss-Coray, T. Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron 40, 1133–45 (2003).
- Tesseur, I. & Wyss-Coray, T. A role for TGF-beta signaling in neurodegeneration: evidence from genetically engineered models. Curr. Alzheimer Res. 3, 505–13 (2006).
- 57. Tesseur, I. *et al.* Deficiency in Neuronal TGF-β Signaling Leads to Nigrostriatal Degeneration and Activation of TGF-β Signaling Protects against MPTP Neurotoxicity in Mice. *J. Neurosci.* 37, 4584–4592 (2017).
- Hsu, C.-C. et al. Top-Down Atmospheric Ionization Mass Spectrometry Microscopy Combined With Proteogenomics. Anal. Chem. 89, 8251–8258 (2017).
- 59. Gordon, D. & Green, P. Consed: a graphical editor for next-generation sequencing. *Bioinformatics* 29, 2936–2937 (2013).
- Zerbino, D. R. Using the Velvet de novo assembler for short-read sequencing technologies. Curr. Protoc. Bioinforma, Chapter 11, Unit 11.5 (2010).
- Majoros, W. H., Pertea, M. & Salzberg, S. L. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20, 2878–2879 (2004).
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. *J. Mol. Biol.* 215, 403–410 (1990).
 Livak, K. J. & Schmittgen, T. D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2^{-ΔΔCT}
- Method. *Methods* 25, 402–408 (2001).
 64. Dykes, I. M., Freeman, F. M., Bacon, J. P. & Davies, J. A. Molecular basis of gap junctional communication in the CNS of the leech Hirudo medicinalis. *J. Neurosci.* 24, 886–94 (2004).
- 65. Köhidai, L. Method for determination of chemoattraction in Tetrahymena pyriformis. Curr. Microbiol. 30, 251-3 (1995).
- Kertesz, V. & Van Berkel, G. J. Fully automated liquid extraction-based surface sampling and ionization using a chip-based robotic nanoelectrospray platform. J. Mass Spectrom. 45, 252–260 (2010).
- Wisztorski, M. et al. Spatially-resolved protein surface microsampling from tissue sections using liquid extraction surface analysis. Proteomics 16, 1622–1632 (2016).
- Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteomewide protein quantification. Nat. Biotechnol. 26, 1367–72 (2008).
- 69. Cox, J. et al. Andromeda: A peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).

- 70. Tyanova, S. *et al.* The Perseus computational platform for comprehensive analysis of (prote)omics data. *Nat. Methods* **13**, 731–740 (2016).
- Tyanova, S. & Cox, J. Perseus: A Bioinformatics Platform for Integrative Analysis of Proteomics Data in Cancer Research. In Methods in molecular biology (Clifton, N.J.) 1711, 133–148 (2018).
- 72. Mi, H. et al. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 45, D183–D189 (2017).
- 73. Szklarczyk, D. *et al.* STRING v10: protein-protein interaction networks, integrated over the tree of life. *Nucleic Acids Res.* **43**, D447–52 (2015).
- 74. Pathan, M. *et al.* FunRich: An open access standalone functional enrichment and interaction network analysis tool. *Proteomics* **15**, 2597–2601 (2015).

Acknowledgements

This work was supported by grants from the Ministère de L'Education Nationale, de L'Enseignement Supérieur et de la Recherche and INSERM. We gratefully acknowledge Christian Slomianny and the BICeL- Campus Scientific City Facility for access to instruments and technical advices. We are indebted to the Research Federation FRABio (Univ. Lille, CNRS, FR 3688, FRABio, Biochimie Structurale et Fonctionnelle des Assemblages Biomoléculaires) for providing the scientific and technical environment conducive to achieving this work. We gratefully acknowledge Isabelle Guigon and Hélène Touzet from Bilille Platform (https://wikis.univ-lille1.fr/bilille/accueil) in UMR 9189 - CRIStAL laboratory (ULille) for their assistance in database preparation. We gratefully acknowledge Terry Gaasterland and Lee Edsall from Scripps Institution of Oceanography; Michael Baker and Eduardo Macagno from Section of Cell & Developmental Biology in University of California San Diego, for providing the *Hirudo medicinalis* assembled genome (http://genomes.ucsd.edu/hirmed1/). We gratefully acknowledge the University of Lille and Anne-Françoise Delporte for reading the manuscript.

Author Contributions

A.R.-R. and C.L. designed the study. A.R.-R., T.A. and C.V. performed the leech dissection and cell preparations. A.R.-R. and Q.L. carried out the molecular characterizations. A.R.-R. and C.V. performed *in vitro* and *ex vivo* experiments. A.R.-R. performed immunofluorescence analyses. J.F., S.A. and M.W. contributed to LESA approach and/or the interpretation of proteomic raw data. A.R.-R. and C.L. wrote the paper. C.V., Q.L., M.W., J.F., F.L.-C., J.V., P.-E.S. and M.S. contributed to important intellectual content and critically revised the manuscript. All authors read and approved the final manuscript.

Additional Information

Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-43328-x.

Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019

Title: ALK4/5-dependent TGF- β signaling contributes to the crosstalk between

neurons and microglia following axonal lesion

Antonella RAFFO-ROMERO^{1,2}, Tanina ARAB^{1,2}, Christelle VAN CAMP, Quentin LEMAIRE^{1,2}, Maxence WISZTORSKI^{1,2}, Julien FRANCK^{1,2}, Soulaimane ABOULOUARD^{1,2}, Francoise LE MARREC-CROQ^{1,2}, Pierre-Eric SAUTIERE^{1,2}, Jacopo VIZIOLI^{1,2}, Michel SALZET^{1,2} & Christophe LEFEBVRE^{1,2*}

¹Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France ²EURON – European Graduate School of Neuroscience, Maastricht, The Netherlands *Corresponding author: Pr. Christophe Lefebvre, Univ. Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France, <u>http://www.laboratoire-prism.fr/</u> Email: <u>christophe.lefebvre@univ-lille.fr</u> Tel : +33-320-434-127

Supplementary Information includes ten Supplementary Methods (Supplementary Methods S1-S10), three Supplementary Figures (Supplementary Figure S1 related to Figure 6; Supplementary Figure S2 related to Figure 7; Supplementary Figure S3 related to Figures 4 and 7) and 5 Supplementary Tables (Supplementary Table S1-5).

Supplementary Method S1.

Leech CNS-Conditioned Medium (CM) for chemotaxis experiments

For the preparation of conditioned medium from microglial cells and neurons, 10 nerve cords were dissected and cells were separated as previously described. Then, they were placed in fresh complete medium (500 μ L) for 15 minutes (T0) and centrifuged for 20 min at 1,200 × g to eliminate microglial cells or neurons. The cell-free supernatant was then used as CM in the chemotaxis experiments.

Supplementary Method S2.

RNA extraction

Regarding the molecular characterization part of the material and methods, the total RNA have been extracted from the complete nerve cords corresponding to 10 leeches, then incubated in TRIzol® reagent (Thermo Fisher Scientific, Waltham MA, USA) and homogenized using Precellys® tissue homogenizer (Ozyme, Montigny-le-Bretonneux, France). For the gene expression analyses part, the total RNA have been extracted from neurons from the nerve cords of 10 leeches, then incubated in TRIzol® reagent (Thermo Fisher Scientific, Waltham MA, USA). The extraction of the total RNA was performed according to manufacturer's protocol (Thermo Fisher Scientific, Waltham MA, USA) and resuspended in RNase-free water. The extracted total RNAs were treated with RQ1-DNase1 (Promega, Madison WI, USA) to prevent any contamination by genomic DNA.

Supplementary Method S3.

RACE-PCR

RACE-PCR was conducted using SMARTer[®] RACE 5'/3' Kit (Takara, Kusatsu, Japan). Briefly, 2 µg of total RNA were used to construct 5' and 3' cDNA libraries according to the manufacturer's instructions. Then Nested PCR amplification reactions respecting Takara instructions were performed using a combination of forward and reverse primers deduced from TGF- type I receptor putative partial mRNA sequence (Fw1 5'-AATAATCTTCGTCCTCTTGCTTCT-3'; Fw2 5'- TGGTGCCAGCATAGAAAGGTCC-3'; Rv1 5'-CACTGCCCACTCTGTTGTTG-3'; Rv2 5'-CGACTTTATCTGACTCTGAGTCA-3') and from that of TGF- 1 (Fw1 5'-GTGGTTCTCGGACTCTCAAACGC-3'; Fw2 5'-CGGCATCAGAATGCCCAACCTG-3'; Rv1 5'-TCGCCCGTACACGATCTTCATCC-3'; Rv2 5'-GGCACAGCACATGCCTTTGTATTT-3'). The reaction

108

cycles were performed as follows: 94°C for 1 min, followed by 40 cycles of 30 s at 94°C, 30 s at 56°C, and 2 min at 72°C.

Supplementary Method S4.

Hybridization protocol

Fixed CNS were subjected to four washes of 5 min each in PBT and then permeabilized for 10 min by digestion with 10 μ g/ml Proteinase K (Sigma-Aldrich, Saint Louis MO, USA) in PBS. Then, they were washed 5 min in PBT two times, post-fixed for 25 min in 4% paraformaldehyde at RT and washed four times for 5 min each in PBT. They were incubated for 10 min in mixture 50% PBT/50% Hybe⁽⁻⁾ (50% (v/v) formamide, 5X SSC, 0.1 % (h/v) Tween 20 and sterile water pH 6.5) and then for 3 hours in Hybe⁽⁻⁾ at 42 °C.

Hybridization was performed overnight at 42 °C with riboprobes in Hybe⁽⁺⁾ (50 % (v/v) formamide, 5X SSC, 0.1 % (h/v) Tween 20, 500 μ g/ml tRNA, 50 μ g/ml heparin and H₂O). After hybridization, nerve cords were washed through the following series at 42°C : two times for 5 min and three times for 20 min in Hybe⁽⁻⁾, then at RT 10 min in a mixture 50% PBT/50% Hybe⁽⁻⁾ and four times for 5 min in PBS/0.2 M glycine.

Nerve cords followed an incubation with blocking reagent 1/5 in PBT (Roche Diagnostics, Risch-Rotkreuz, Swiss) for 30 min and then incubated with a sheep polyclonal anti-DIG antibody 1/700 (abcam64509, Abcam, Cambridge, UK) for 2 hours at RT. After 4 washings in PBT for 10 min and incubation for 30 min in a solution blocking reagent 1/5 in PBT, samples were incubated with the secondary donkey anti-sheep antibody conjugated to Alexa Fluor 488 (1:1500, Invitrogen, Carlsbad CA, USA) in blocking reagent (Roche Diagnostics, Risch-Rotkreuz, Swiss) and rinsed with PBT before mounting with Fluorescent Mounting Medium (Agilent, Santa Clara CA, USA). The cell nuclei were counterstained by Hoechst 33342 fluorescent dye (1:10000, Invitrogen, Carlsbad CA, USA) for 20 min. The nerve cords were mounted on the slide with Dako Fluorescent Mounting Medium (Agilent, Santa Clara CA, USA).

Supplementary Method S5.

Chemotaxis assays

The chemotaxis assays experiments were performed using Petri dishes with 35 millimeter diameter. The latter were filled with 4 ml of 1% agar and 0.5% gelatin solution. After drying, two 6 mm diameter wells were made, each one presenting a parallel individual channel. One

well was filled with 100 μ l of purified microglial cells (see above) and the second was filled with chemotactic factors or negative controls. A channel was further created perpendicularly to others using a coverslip. One hour later, cells in the well containing chemoattractant were collected. The number of migrating cells was counted on a hemocytometer (five different counts) under Axioskop microscope (Zeiss, Oberkochen, Germany).

Supplementary Method S6.

Western blotting

CNS, microglial cells and neurons protein extract analysis were performed from 5 and 10 nerve cords respectively T24 h post-injury with RIPA buffer (150 mM NaCl, 50 mM Tris, 5 mM EGTA, 2 mM EDTA, 100 mM NaF, 10 mm sodium pyrophosphate, 1% Nonidet P-40, 1 mM PMSF, 1X protease inhibitors). Cell debris was removed by centrifugation (1,200 × g for 20 min, RT); the supernatants were collected and the protein concentrations were measured using a Protein Assay (BioRad, Hercules CA, USA).For each experimental condition, SDS-PAGE was conducted with 4-12% polyacrylamide gel. Protein extract (30 μ g) was homogenized (v/v) in 2X Laemmli sample buffer and loaded on the gel. Migration was performed in TGS buffer pH 8.5 (25 mM Tris, 192 mM glycine, and 0.1% SDS). The gel was run at 70 V for 15 min and at 120 V for 45 min. The separated proteins were transferred to AmershamTM HybondTM-ECL nitrocellulose membranes (GE Healthcare, Little Chalfont, UK).

Supplementary Method S7.

LESA method

The fragments were mounted on the Poly-D-lysine slide (Dominique Dutscher, Brumath, France) at different times post-injury 15 minutes (T0), 6 hours (T6 h) and 24 hours (T24 h) and observed by microscopy to mark the lesion points. The glass slide is then mounted on a universal adapter plate and the precise X–Y position of the extraction site were determined using LESA Points software. A volume of 1.5 μ l of CHAPS solution (3.5% in 0.1M Tris HCl pH 10 and 50mM DTT) was loaded into a tip. A robotic arm moved the tip above the extraction point previously determine. A liquid microjunction is formed between the end of the tip and the lesion point with a volume of 0.4 μ l of solvent. Ten cycles of aspiration/dispense are performed on the lesion without breaking the liquid junction. Proteins coming from cells and intercellular spaces are then extracted and stored in a collection tube. For proteomics analysis,

the sample is deposited on an acrylamide gel and subsequently subjected to reduction, alkylation and enzymatic digestion.

Supplementary Method S8.

In gel Digestion

Band gels were cut into small pieces of 1mm3 and then washed with 300 μ L of distilled deionized water for 15 min, 300 μ L of ACN for 15 min, 300 μ L of NH4HCO3 (100mM, pH8) for 15 min, 300 μ L of NH4HCO3/ACN (1:1, v/v) for 15 min and then 300 μ L of ACN for 5 min. Band gel pieces were dried under vacuum using a speedvac for 5 min. Reduction of cysteines was performed using 50 μ L of a solution of DTT (10mM) in NH4HCO3 (100 mM, pH8) and incubated at 56°C for 1 h. Alkylation of cysteines was performed using 50 μ L of a solution of Cysteines was performed using 50 μ L of a solution of Cysteines was performed using 50 μ L of a solution of rogatine distribution of Cysteines was performed using 50 μ L of a solution of Cysteines was performed using 50 μ L of a solution of IAA (50mM) in NH4HCO3 (100 mM, pH8) and incubated at room temperatureRT in the dark for 30 min. Band gel pieces were washed with 300 μ L of ACN for 5 min. Band gel pieces were then dried in a speedvac for 5min and subjected to enzymatic digestion using a solution of trypsin (12,5 μ g/mL) in NH4HCO3 (20 mM, pH8) and incubated overnight at 37°C. Peptides were subsequently extracted using 50 μ L of acetonitrile (ACN), 150 μ L of 1% formic acid and then 150 μ L of ACN. Supernatants were transferred in a new tube and dried using a speedvac. Peptides were then resuspended in 20 μ L of a solution of 0.1% TFA for a subsequent desalting step.

Supplementary Method S9.

NanoLC-HR-MS/MS

Peptides were desalted and concentrated using a C18 ZipTip (Millipore, Saint-Quentin-en-Yvelines, France), eluted by 80% ACN and dried under vacuum. Dried samples were reconstituted in 20µL of ACN/0.1% aqueous FA (2:98, v/v). The samples were separated by online reversed-phase chromatography using a Proxeon EasynLC1000 system (Thermo Fisher Scientific, Waltham MA, USA) equipped with a Proxeon trap column (100 µm ID 2 cm) and a C18 packed-tip column (Acclaim PepMap, 75 µm ID 50cm). Peptides were separated using an increasing amount of acetonitrile (5–30% over 120 min) at a flow rate of 300 nL/min. The LC eluent was electrosprayed directly from the analytical column and a voltage of 1.7 kV was applied via the liquid junction of the nanospray source. The chromatography system was coupled to a Q-exactive mass spectrometer (Thermo Fisher Scientific, Waltham MA, USA) programmed to acquire the top 10 MSMS in data-dependent mode. The survey scans were done at a resolving power of 70,000 FWHM (m/z 400), in positive mode and using an AGC target of 3 x 10⁶. Default charge state was set at 2, unassigned and 1 charge states were rejected and dynamic exclusion was enabled for 25 s. The scan range was set to 300–1600 m/z. For ddMS2, the scan range was between 200–2000 m/z, 1 microscan was acquired at 17,500 FWHM, an isolation window of 4.0 m/z and a HCD Normalized Collision Energy (NCE) of 30 was used.

Supplementary Method S10

Data analyses

All the MS data were processed with MaxQuant (version 1.5.6.5) software using the Andromeda search engine. Proteins were identified by searching MS and MS/MS data against a homemade database of Hirudo medicinalis. This homemade database is based in translated mRNA sequences created from a H. medicinalis draft genome, as it was already described before. All the predicted protein sequences are annotated by homology with the human database. Trypsin specificity was used for the digestion mode with N-terminal acetylation and methionine oxidation selected as the variable. Carbarmidomethylation of cysteines was set as a fixed modification, with up to two missed cleavages. For MS spectra, an initial mass accuracy of 6 ppm was selected, with a minimum of 2 peptides and at least 1 unique peptide per protein, and the MS/MS tolerance was set to 20 ppm for HCD data. For identification, the FDR at the peptide spectrum matches (PSMs) and protein level was set to 0.01. Label-free quantification of proteins was performed using the MaxLFQ algorithm integrated into MaxQuant with the default parameters. Analysis of the proteins identified were performed using Perseus (version 1.5.6.0) software. The file containing the information from identification was used with hits to the reverse database, and proteins only identified with modified peptides and potential contaminants were removed. Then, the LFQ intensity was logarithmized (log2[x]). Categorical annotation of rows was used to define different groups after grouping replicates.

Multiple-samples tests were performed using ANOVA test with a p-value of 5% and preserving grouping in randomization. Visual heatmap representations of significant proteins were obtained using hierarchical clustering analysis. Normalization was achieved using a Z-score

112

with a matrix access by rows. For the statistical analysis, only proteins presenting as significant by the ANOVA test were used. Hierarchical clustering depending protein extract were first performed using the Euclidean parameter for distance calculation and average option for linkage in row. Functional annotation and characterization of identified proteins were obtained using PANTHER (version 13.0) software and STRING (version 9.1). Integrated Venn diagram analysis was performed using "Draw venn diagram"; a web-based tool for the analysis of complex data sets. The analysis of gene ontology, cellular components and biological processes, were performed with FunRich 3.0 analysis tool.

Supplementary Figure S1 (related to Figure 6)

Supplementary Figure S1. ALK4/5-dependent protein signatures in the point of lesion. (a) Venn Diagrams of the numerical values for common and exclusive proteins present in timecourse (T0 in blue, T6h in pink and T24h in green) are represented separately for SB431542 inhibitor and for vehicle conditions. (b) MaxQuant and Perseus softwares were used for the statistical analysis of common protein signatures to generate heatmaps showing overexpressed proteins that were significantly different in T0 vs. T6h vs. T24h in SB431542 inhibitor as well as vehicle conditions. Three clusters in the control condition (vehicle) and four clusters in the inhibitor condition are highlighted (yellow). (c) Analysis of Biological pathway Gene Ontology (GO) terms focused on TGF- β signaling. The proteins detected in the cluster 1 (T0) from SB431542-dependent condition have been collected and compared to those of the cluster 1 (T0) from vehicle-dependent condition using TGF- β signaling-related GO terms in FunRich software. The graph shows the percentage of proteins identified by mass spectrometry that match into this GO term pathway relative to the total number of proteins identified. (d) Network shows proteins into GO extracellular exosome category (red) at T6h post-lesion (vehicle condition) using STRING database.

Supplementary Figure S2 (related to Figure 7)

Supplementary Figure S2. Microglial production of nGDF and its influence in neurons. (a-c) Confocal microscopy analysis of nGDF immunofluorescence in lesioned nerve cord 24h postinjury using rabbit polyclonal anti-TGF- β antibodies with or without any ligature between connectives and ganglia (see diagrams). Some microglia and intercellular spaces are stained in ganglia (a, arrows) whereas conditions with ligatures preventing any relation between connectives and ganglia show no signal (c). (b) No signal was detected in tissues treated only with secondary antibody as negative control. Cell nuclei were stained with Hoechst 33342 (blue).

Supplementary Figure S3 (related to Figures 4 and 7)

Supplementary Figure S3. Preparation of Figure 4c (top) and Figure 7h (bottom) from western blot original image. In the original image, membranes from the blot with primary and secondary antibodies (left) or blot with secondary antibody alone (right) were bridged at the molecular weight marker for imaging. The boxes describe the areas selected for the preparation of each image.

Supplementary Table S1: List of exclusive proteins represented in the Venn diagrams (shown in Supplementary Figure S1a) corresponding to Perseus analysis generated from the samples of different post-injury times with SB431542 or vehicle incubation separately.

Vehicle Exclusives			Inhibitor Exclusives			
т0	T6h	T24h	т0	T6h	T24h	
HGS (014964)	COL6A3 (P12111)	ACLY (P53396)	CRYZ (Q08257)	LGR5 (075473)	ANK3 (Q12955)	
GMPPB (Q9Y5P6)	ANXA7 (P20073)	CRYZ (Q08257)	ATP1B1 (P05026)	PSMB8 (P28062)	HRSP12 (P52758)	
ATIC (P31939)	ANPEP (P15144)	ISOC2 (Q96AB3)	CST4 (P01036)	AHNAK (Q09666)	LAMA2 (P24043)	
BLOC1S6 (Q9UL45)	MAP1S (Q66K74)	CTSL (P07711)	GMPPB (Q9Y5P6)	UGP2 (Q16851)	PMPCB (075439)	
HMOX2 (P30519)	NDUFV2 (P19404)	LAMA2 (P24043)	UGP2 (Q16851)	KLHDC8A (Q8IYD2)	DYNC1H1 (Q14204)	
LCT (P09848)	DLAT (P10515)	LGR5 (075473)	SAR1B (Q9Y6B6)	GNAQ (P50148)	CPNE2 (Q96FN4)	
SLC44A4 (Q53GD3)	PNP (P00491)	PSMA8 (Q81AA3)	SBF2 (Q86WG5)	DLAT (P10515)	EHD3 (Q9NZN3)	
	GNB2L1 (D62244)	DVNC1H1 (014204)			ALDH18A1 (P54880)	
ANK2 (001484)	PCYT2 (099447)	ANK3 (012955)	SYAP1 (096A49)	YKT6 (015498)	ACO2 (099798)	
GMPR2 (Q9P2T1)	LMNA (P02545)	ASAH1 (Q13510)	BLOC1S6 (Q9UL45)	PTGES3 (Q15185)	HIST4H4 (P62805)	
NAMPT (P43490)	RAP2C (Q9Y3L5)	PLEC (Q15149)	GLA (P06280)	SEPHS1 (P49903)	NT5C2 (P49902)	
MGAT5B (Q3V5L5)	MAP3K20 (Q9NYL2)	OAT (P04181)	PTS (Q03393)	PDXK (000764)	ADPRH (P54922)	
RAB18 (Q9NP72)	AQP4 (P55087)	GNAQ (P50148)	PSMA6 (P60900)	AIMP1 (Q12904)	CALR (P27797)	
CNN1 (P51911)	PYCR1 (P32322)	DPYSL4 (014531)	LCT (P09848)	RPS14 (P62263)		
NID1 (P14543)	SELENBP1 (Q13228)	TOM1L2 (Q6ZVM7)	ASAH1 (Q13510)	PSMB5 (P28074)		
PFKL (P17858)	COL6A5 (A8TX70)	ACAT2 (Q9BWD1)	GRK1 (Q15835)	FAH (P16930)		
GLUL (P15104)	RAPIB (P61224)		MDH2 (P12081)			
ANK3 (012955)	HIRA (P54198)	MINPP1 (09UNW1)	RAB1A (P62820)	P4HB (P07237)		
PRKCSH (P14314)	PAICS (P22234)	NT5C2 (P49902)	ANK2 (Q01484)	ACTN1 (P12814)		
TCEB1 (Q15369)	ATP2B2 (Q01814)	DHX9 (Q08211)	PLEC (Q15149)	,,		
GOT1 (P17174)	GRIA1 (P42261)	CDON (Q4KMG0)	GCAT (075600)			
ARPC5L (Q9BPX5)	GCLC (P48506)	PMPCB (075439)	HSPA8 (P11142)			
PIP (P12273)	BPNT1 (095861)	NDUFS7 (075251)	GMPR2 (Q9P2T1)			
PSMD13 (Q9UNM6)	UBA52 (P62987)	PSMD2 (Q13200)	NAMPT (P43490)			
RAB35 (Q15286)	ATP1A1 (P05023)	CCT3 (P49368)	MGAT5B (Q3V5L5)			
	ATP1A3 (P13637)		ACHE (P22303)			
NCS1 (P62166)	ACTN3 (008043)		37500 (015019)			
GLUD2 (P49448)	ACTC1 (P68032)		RAB18 (Q9NP72)			
CAT (P04040)	CPNE6 (095741)		CNPY4 (Q8N129)			
CHL1 (000533)	ATP1B1 (P05026)		CNN1 (P51911)			
SLC9A3R2 (Q15599)	AKR1A1 (P14550)		PFKL (P17858)			
RRAS2 (P62070)	TPRG1L (Q5T0D9)		ATP5J2 (P56134)			
LHPP (Q9H008)	IMPA1 (P29218)		PSMA4 (P25789)			
ADCY9 (060503)	ANXA5 (P08758)		KIAA1161 (Q6NSJ0)			
PΔK3 (075914)	OARS (P47897)		DPYSL4 (014531)			
17110 (073314)	FLNB (075369)		TCEB1 (Q15369)			
	APRT (P07741)		GOT1 (P17174)			
	RAB8A (P61006)		HYOU1 (Q9Y4L1)			
	UBE2L3 (P68036)		ARRB1 (P49407)			
	ATP5H (075947)		ATP1A3 (P13637)			
	CHP1 (Q99653)		GMDS (060547)			
	GBE1 (Q04446)		RBKS (Q9H477)			
	COX411 (P38606)		PIP (P122/3) PSMD13 (OQUNIMA)			
	FLOT1 (075955)		TPD52 (P55327)			
	ACAT1 (P24752)		PMM2 (015305)			
	GDI1 (P31150)		ATP6V1G1 (075348)			
	QSOX1 (000391)		ATP2B1 (P20020)			
	TUBA1A (Q71U36)		DNAJB1 (P25685)			
	NPEPPS (P55786)		CAPZA1 (P52907)			
	GNGT1 (P63211)		PTPRN (Q16849)			
	DC1N3 (075935)		INCST (P02100)	<u> </u>		
	TNIP2 (08NF75)		TBCA (075347)			
	ANK2 (Q01484)		ECE1 (P42892)			
	ACO1 (P21399)		LHPP (Q9H008)			
	ALDH18A1 (P54886)		ADCY9 (060503)			
	ADRBK1 (P25098)		LMNA (P02545)			
	DYNC1H1 (Q14204)		DHX9 (Q08211)			
	SRI (P30626)		NAP1L4 (Q99733)			
	CAPN3 (P20807)		PSMF1 (Q92530)			
			GUU (P15104)			
			PAK3 (075914)			
			NDUFA10 (095299)			

Supplementary Table S2: List of overexpressed proteins identified in specific clusters after Perseus analyses (extracted from the two heatmaps shown in Supplementary Figure S1b) generated from the samples of different post-injury times with SB431542 or vehicle incubation separately.

Vehicle Heatmap		Inhibitor Heatmap			
Cluster 1	Cluster 2	Cluster 3	Cluster 1	Cluster 2	Cluster 3
TPM2 (P07951)	HSPA5 (P11021)	NCAM2 (015394)	TPM2 (P07951)	PEF1 (Q9UBV8)	LETM1 (095202)
HSP90AB1 (P08238)	EHD1 (Q9H4M9)	TSPAN1 (060635)	PRKAR2A (P13861)	CLYBL (Q8N0X4)	FLOT2 (Q14254)
YWHAB (P31946)	HSPD1 (P10809)	EML1 (000423)	TSPAN7 (P41732)	SLC13A5 (Q86YT5)	PAPSS1 (043252)
PABPC1 (P11940)	GSN (P06396)	HAGH (Q16775)	NSF (P46459)	RAB39A (Q14964)	EML1 (000423)
WDR1 (075083)	TPT1 (P13693)	PPP2CA (P67775)	PYGB (P11216)	HSPE1 (P61604)	NEFL (P07196)
FABP5 (Q01469)	LAP3 (P28838)	GNAO1 (P09471)	EHD1 (Q9H4M9)	CDC42 (P60953)	ACTA2 (P62736)
RDX (P35241)	DPYSL2 (Q16555)	PGK2 (P07205)	ATP5A1 (P25705)	ALDH18A1 (P54886)	ATP5B (P06576)
VWA5A (000534)	ANK3 (Q12955)	RPS23 (P62266)	NEFL (P07196)	CMPK1 (P30085)	TNS1 (Q9HBL0)
PYGM (P11217)	CAP1 (Q01518)	CDC42 (P60953)	HSP90AB1 (P08238)	ACHE (P22303)	ACSS2 (Q9NR19)
CSTB (P04080)	GARS (P41250)	CRYZ (Q08257)	ANXA7 (P20073)	GSTA1 (P08263)	SLC25A31 (Q9H0C2)
	CSTA4 (015217)	NDUF33 (075489)	1 WHAB (P31940)		550H2 (Q912WIZ)
TTC38 (05R3I4)	031A4 (013217)	N31 (F40433)	MDH2 (P40926)		
HSPA4L (095757)			AHCY (P23526)		
MAP1S (Q66K74)			CAPN2 (P17655)		
GSN (P06396)			RAB3A (P20336)		
ST13 (P50502)			PDHB (P11177)		
GPI (P06744)			OGDH (Q02218)		
GNB4 (Q9HAV0)			EML2 (095834)		
AHSA1 (095433)			CBR1 (P16152)		
PFN1 (P07737)			PPP3CB (P16298)		
NCS1 (P62166)			BFSP2 (Q13515)		
DBNL (Q9UJU6)			MSN (P26038)		
SARS (P49591)			RDX (P35241)		
SUCLA2 (Q9P2R7)			DLD (P09622)		
REEP5 (Q00765)			VWA5A (000534)		
ARLOA (QSOBINIS)			CSTR (004080)		
			ΔΤΡ1Δ3 (Ρ13637)		
			SUCLA2 (09P2R7)		
			OGDHL (Q9ULD0)		
			ATP6V1E1 (P36543)		
			PDHA1 (P08559)		
			HSPA9 (P38646)		
			LLGL2 (Q6P1M3)		
			SUCLG1 (P53597)		
			SPTB (P11277)		
			SOD1 (P00441)		
			HSP90AA1 (P07900)		
			AMT (P48728)		
			GNAQ (P50148)		
			HSPA4L (095757)		
			NDUFV1 (P49821)		
			VCP (P55072)		
			SDHD (014521)		
			MAP1S (Q66K74)		
			CDC37 (Q16543)		
			BLOC1S6 (Q9UL45)		
			COL1A2 (P08123)		
			LASP1 (Q14847)		
			IDH2 (P48735)		
			PRDX2 (P32119)		
			PARK7 (Q99497)		
			ACAT1 (P24752)		
			PPIA (P62937)		
			UOCRES1 (P47985)		
			SCCPDH (OSNBXO)		
			ATP5C1 (P36542)	1	
			SDHA (P31040)		
			GPI (P06744)		
			CCT6A (P40227)		
			PPP2R1A (P30153)		
			TCP1 (P17987)		
			PFN1 (P07737)		

	IDH3A (P50213)	
	STXBP1 (P61764)	
	ADD1 (P35611)	
	NCS1 (P62166)	
	ANXA2 (P07355)	
	CALR (P27797)	
	DBNL (Q9UJU6)	
	YWHAE (P62258)	
	EIF5A (P63241)	
	CS (075390)	
	ANXA13 (P27216)	
	ALDH2 (P05091)	
	EEF2 (P13639)	
	ATP1A2 (P50993)	
	BPNT1 (O95861)	
	MVP (Q14764)	
	ATP1A1 (P05023)	
	YWHAZ (P63104)	
	VDAC2 (P45880)	
	REEP5 (Q00765)	
	CAPNS1 (P04632)	
	MDH1 (P40925)	

Supplementary Table S3: List of exclusive proteins represented in the Venn diagrams (shown in Figure 6b) corresponding to Perseus analysis generated from the samples of SB431542 vs. vehicle conditions time by time separately. The proteins involved in a biological pathway (Figure 6d) were tagged with different numbers in the table (1) CXCR4-mediated signaling events, 2) Neurotrophic factor-mediated Trk receptor signaling, 3) Apoptosis, 4) Cell-Cell communication, 5) Axon guidance, 6) Innate Immune System).

T0h		T6h		T24h	
Vehicle	Inhibitor	Vehicle	Inhibitor	Vehicle	Inhibitor
ABHD11 (Q8NFV4)	37500 (Q15019)	51776 (Q9NYL2)	AARS (P49588)	ANK2 (Q01484) 6	ACHE (P22303)
ADAD1 (Q96M93)	ACHE (P22303)	ACAT1 (P24752)	ACTN1 (P12814)	DCTN1 (Q14203)	AHNAK (Q09666)
ADPRH (P54922)	AHCY (P23526)	ACO1 (P21399)	AHNAK (Q09666)	GCH1 (P30793)	FAH (P16930)
CAT (P04040)	AKR1A1 (P14550)	ACTN3 (Q08043)	ANK3 (Q12955)	GMDS (060547)	MGAT5B (Q3V5L5)
CBR1 (P16152)	ANK2 (Q01484) 6	ADRBK1 (P25098) 1	ATG3 (Q9NT62)	HARS (P12081)	NPEPPS (P55786)
CD9 (P21926)	ANK3 (Q12955)	ALDH18A1 (P54886)	ATP1B1 (P05026)	LHPP (Q9H008)	
CDC42 (P60953)					
CHI1 (000533) 6	ARPC3 (013145) ASAH1 (013510)	ANN2 (Q01484)	CDON (04KMG0)	MVP (014764)	
EHD3 (Q9NZN3)	ATP1A3 (P13637)	ANXA5 (P08758)	CLIC4 (Q9Y696)	PSMD13 (Q9UNM6) 3	
ESYT2 (A0FGR8)	ATP5J2 (P56134)	ANXA7 (P20073)	CPVL (Q9H3G5)	PTPRN (Q16849)	
FH (P07954)	CAPZA1 (P52907) 6	APRT (P07741)	CRYBG3 (Q68DQ2)	PYCR1 (P32322)	
FLNA (P21333)	CAPZB (P47756)	AQP4 (P55087)	CTSL (P07711)		
HSD17B10 (099714)	CFL2 (09Y281)	ATP1A1 (P05023)	DYNLL2 (Q96FJ2)		
KIF5B (P33176)	CNPY4 (Q8N129)	ATP1A3 (P13637)	ENTPD5 (075356)		
MATN1 (P21941)	CPNE7 (Q9UBL6)	ATP1B1 (P05026)	FAH (P16930)		
MIF (P14174)	CRYZ (Q08257)	ATP2B2 (Q01814)	FKBP1A (P62942) 1		
NSF (P46459)	CST4 (P01036)	ATP5H (075947)	FLNC (Q14315)		
PRKCSH (P14314)	DCTN1 (014203)	ATP6V1G1 (075348)	GLUL (P15104)		
QDPR (P09417)	DHX9 (Q08211)	BPNT1 (095861)	GNAQ (P50148)		
SYNE1 (Q8NF91)	DPYS (Q14117)	CALR (P27797)	HMOX2 (P30519)		
TUBA4A (P68366)	DPYSL4 (014531) 5	CAPN3 (P20807)	HSPA12B (Q96MM6)		
	ECE1 (P42892)	CAPN5 (015484)	KLHDC8A (Q8IYD2)		
	GLA (P06280)	CHP1 (Q99653)	LGR5 (075473)		
	GLUL (P15104)	CNTN1 (Q12860) 5	MAP1S (Q66K74)		
	GMDS (060547)	COL6A3 (P12111)	MINPP1 (Q9UNW1)		
	GPT2 (Q8TD30)	COL6A5 (A8TX70)	MYH3 (P11055)		
	HSPA12B (Q96MM6)	COX411 (P13073) CPNE2 (096EN4)	NDUFS7 (075251) NID1 (P14543)		
	KIAA1161 (Q6NSJO)	CPNE6 (095741)	NSF (P46459)		
	KLC2 (Q9H0B6)	CPNE7 (Q9UBL6)	OTOF (Q9HC10)		
	LAP3 (P28838)	DBNL (Q9UJU6) 18	P4HB (P07237)		
	LRP2 (P98164)	DCTN3 (075935)	PDXK (000764)		
	MTHFD2L (Q9H903)	DYNC1H1 (014204)	PIN4 (Q91237) PIP4K2A (P48426)		
	MVP (Q14764)	EHD1 (Q9H4M9)	PREP (P48147)		
	NDUFA10 (095299)	EHD3 (Q9NZN3)	PRTFDC1 (Q9NRG1)		
	NDUFS2 (075306)	FLNB (075369)	PSMB1 (P20618)		
	NDUFS7 (075251)	GBF1 (075955)	PSMB5 (P28074)		
	PAFAH1B2 (P68402)	GCAT (075600)	PSMD7 (P51665)		
	PCK2 (Q16822)	GCH1 (P30793)	PTGES3 (Q15185)		
-	PLEC (Q15149) 🕄	GCLC (P48506)	RAB35 (Q15286)		
	PMPCB (075439)	GDI1 (P31150)	RPLP0 (P05388)		
	PSMA6 (P60900)	GNGT1 (P63244)	RP314 (P62265) RRAS2 (P62070)		
	PSMA8 (Q8TAA3)	GRIA1 (P42261)	SBSPON (Q8IVN8)		
	PSMD2 (Q13200) 3	HARS (P12081)	SDHD (014521)		
	PSMF1 (Q92530)	HECTD3 (Q5T447)	SEPHS1 (P49903)		
	PTPKN (Q16849) RPLP0 (P05388)	ΗΙΚΑ (P54198) ΙΜΡΔ1 (P29218)	SH3BGK (P55822) SLC44A1 (08W/W/I5)		
	SAR1B (Q9Y6B6)	LRP2 (P98164)	SLC44A4 (Q53GD3)		
	SBF2 (Q86WG5)	MAP1S (Q66K74)	SLC9A3R2 (Q15599)		
	SKI (P12755)	MAPK14 (Q16539)	TMSB15A (P0CG35)		
	SYAP1 (Q96A49)	NAP1L4 (Q99733)	TNS1 (Q9HBL0)		
	IBCA (075347)	NDUFV2 (P19404)	UGP2 (016851)		
	TMSB15A,B (P0CG35)	NPEPPS (P55786)	YKT6 (015498)		
	TPD52 (P55327)	NUDC (Q9Y266)			
	VWA7 (Q9Y334)	PAICS (P22234)			
		PCK2 (Q16822)			
		PDCD6IP (08WUM4)			
		PHYH (014832)			
		PMM2 (015305)			
		PNP (P00491)			
		PRKARZA (P13861) PSMΔ2 (P25787)			
	1	PSMA6 (P60900) 3			
		PTS (Q03393)			

PYCR1 (P32322)		
QARS (P47897)		
QSOX1 (000391)		
RAB1A (P62820)		
RAB8A (P61006)		
RAP1B (P61224)		
005		
RAP2C (Q9Y3L5)		
SELENBP1 (Q13228)		
SRI (P30626)		
STXBP1 (P61764)		
TBCB (Q99426)		
TCP1 (P17987)		
THOP1 (P52888)		
TNIP2 (Q8NFZ5)		
TOM1 (060784)		
TPRG1L (Q5T0D9)		
TUBA1A (Q71U36)		
UBA52 (P62987) 🕄 🔂		
UBE2L3 (P68036)		
UGP2 (Q16851)		
YES1 (P07947) 1		

Supplementary Table S4: List of overexpressed proteins identified in specific clusters after Perseus analyses (extracted from the three heatmaps shown in Figure 6c) generated from the samples of SB431542 vs. vehicle conditions time by time separately. The proteins involved in a biological pathway (Figure 6d) were tagged with different numbers in the table (1) CXCR4mediated signaling events, 2) Neurotrophic factor-mediated Trk receptor signaling, 3 Apoptosis, 4) Cell-Cell communication, 5) Axon guidance, 6) Innate Immune System).

		, ,	,		1 1
T0h		T	5h	T24h	
Vehicle	Inhibitor	Vehicle	Inhibitor	Vehicle	Inhibitor
AMPD3 (Q01432)	ADD1 (P35611) 🕄	ACSS2 (Q9NR19)	BPNT1 (095861)	ACADL (P28330)	PPP3CB (P16298)
CRYBG3 (Q68DQ2)	ATP5A1 (P25705)	ANK3 (Q12955)	C210RF33 (P30042)	CMPK1 (P30085)	SSUH2 (Q9Y2M2)
ENOPH1 (Q9UHY7)	BPNT1 (095861)	ANXA13 (P27216)	CYCS (P99999) 3	FLNC (Q14315) 4	TPM2 (P07951)
FLNC (Q14315) 4	C210RF33 (P30042)	BFSP2 (Q13515)	GSTA1 (P08263)	GYG1 (P46976)	
NARS (043776)	CRYBG3 (Q68DQ2)	CALCOCO2 (Q13137)	MAP1S (Q66K74)	HSPA5 (P11021)	
RAB11A (P62491)	EML2 (095834)	CALR (P27797)	MYH4 (Q9Y623)	HSPA8 (P11142)	
TUBA4A (P68366)	FLII (Q13045)	CAP1 (Q01518) 🗗	PEF1 (Q9UBV8)	NTRK2 (Q16620) 2	
VAT1L (Q9HCJ6)	GNAQ (P50148)	CS (075390)	SCCPDH (Q8NBX0)	PCYT2 (Q99447)	
XPNPEP1 (Q9NQW7)	HSPD1 (P10809)	EHD1 (Q9H4M9)	SDHD (014521)	PDHA1 (P08559)	
LCP1 (P13796)	MVP (Q14764)	ENTPD1 (P49961)	WDR1 (075083)	YWHAZ (P63104) 2	
CLYBL (Q8N0X4)	NDUFS1 (P28331)	FH (P07954)	YWHAZ (P63104) 2		
	NEFL (P07196)	FLII (Q13045)			
	OGDHL (Q9ULD0)	FSCN1 (Q16658)			
	PGK2 (P07205)	GNAO1 (P09471) 🚺			
	PIP4K2A (P48426)	GPI (P06744)			
	PPP3CB (P16298)	HSPA5 (P11021)			
	PYGB (P11216)	HSPB1 (P04792)			
	RPS23 (P62266)	HSPD1 (P10809)			
	RSPH1 (Q8WYR4)	MDH2 (P40926)			
	SDHD (014521)	NARS (O43776)			
	SPTBN1 (Q01082) 5	NDUFS3 (075489)			
	SUCLA2 (Q9P2R7)	NTRK2 (Q16620) 2			
	SUCLG1 (P53597)	PFKL (P17858)			
	UQCRFS1 (P47985)	PKM (P14618)			
	YWHAQ (P27348) 2	PKN1 (Q16512)			
		PRDX2 (P32119)			
		SDHA (P31040)			
		SUCLA2 (Q9P2R7)			
		TPM1 (P09493)			
		TPT1 (P13693)			
		TSPAN1 (060635)			
		VWA5A (000534)			

Supplementary Table S5: List of exosome-related proteins identified into "Exosomes" GO category generated with exclusive (venn diagrams) and overexpressed proteins (heatmaps) from the samples of SB431542 vs. vehicle conditions time by time separately (shown in Figure 6e).

то		T6 h		T24 h	
Vehicle	Inhibitor	Vehicle	Inhibitor	Vehicle	Inhibitor
RAB11A (P62491)	PYGB (P11216)	EHD1 (Q9H4M9)	PEF1 (Q9UBV8)	CMPK1 (P30085)	AHNAK (Q09666)
NARS (043776)	ATP5A1 (P25705)	FSCN1 (Q16658)	WDR1 (075083)	HSPA8 (P11142)	FAH (P16930)
FLNC (Q14315)	SPTBN1 (Q01082)	HSPD1 (P10809)	GSTA1 (P08263)	HSPA5 (P11021)	NPEPPS (P55786)
TUBA4A (P68366)	HSPD1 (P10809)	TSPAN1 (O60635)	YWHAZ (P63104)	FLNC (Q14315)	
LCP1 (P13796)	GNAQ (P50148)	HSPB1 (P04792)	SLC44A4 (Q53GD3)	YWHAZ (P63104)	
FH (P07954)	YWHAQ (P27348)	HSPA5 (P11021)	PSMB8 (P28062)	MVP (Q14764)	
FLNA (P21333)	SUCLA2 (Q9P2R7)	FH (P07954)	AHNAK (Q09666)	GMDS (060547)	
HGS (014964)	NIVP (Q14764)	ENTPD1 (P49961)			
CDC42 (P60953)	CRYZ (008257)	MDH2 (P40926)	UGP2 (016851)		
EHD3 (Q9NZN3)	CST4 (P01036)	PFKL (P17858)	NID1 (P14543)		
CD9 (P21926)	ARPC3 (015145)	PRDX2 (P32119)	CAPZB (P47756)		
CBR1 (P16152)	SYAP1 (Q96A49)	CAP1 (Q01518)	GNAQ (P50148)		
ARPC5L (Q9BPX5)	AHCY (P23526)	GPI (P06744)	GLUL (P15104)		
HSD17B10 (Q99714)	PSMA6 (P60900)	CALR (P27797)	FLNC (Q14315)		
QDPR (P09417)	DPYS (Q14117)	PKM (P14618)	MYH3 (P11055)		
MIF (P14174)	ASAH1 (Q13510)	SUCLA2 (Q9P2R7)	AARS (P49588)		
	CFL2 (Q9Y281)	CS (075390)	PDXK (000764)		
	CCT2 (P78371)	TPM1 (P09/93)	RAB35 (015286)		
	SEPT2 (015019)	COL6A3 (P12111)	RPS14 (P62263)		
	CAPZB (P47756)	PRKAR2A (P13861)	PSMB5 (P28074)		
	AKR1A1 (P14550)	ANXA7 (P20073)	FAH (P16930)		
	LRP2 (P98164)	DBNL (Q9UJU6)	FKBP1A (P62942)		
	HYOU1 (Q9Y4L1)	ATP1B1 (P05026)	RPLP0 (P05388)		
	ATP1A3 (P13637)	ANPEP (P15144)	SLC44A1 (Q8WWI5)		
	GMDS (060547)	IOM1 (060784)	PSMD7 (P51665)		
	EKBP1A (P62942)	PNP (P00491)	RRAS2 (Q13399)		
	TBCA (075347)	GNB2L1 (P63244)	CLIC4 (Q9Y696)		
	RPLP0 (P05388)	RAP2C (Q9Y3L5)	P4HB (P07237)		
	PPP2CA (P67775)	SELENBP1 (Q13228)	ACTN1 (P12814)		
	ECE1 (P42892)	PSMA6 (P60900)			
	PAFAH1B2 (P68402)	RAP1B (P61224)			
	DHX9 (Q08211)	HIRA (P54198)			
	PSMD2 (013200)	ATP2B2 (001814)			
	GLUL (P15104)	TCP1 (P17987)			
		FLOT1 (075955)			
		UBA52 (P62987)			
		RAB1A (P62820)			
		ATP1A1 (P05023)			
		ATP1A3 (P13637)			
		ACTC1 (P68032)			
		TPRG1L (05T0D9)			
		LRP2 (P98164)			
		ANXA5 (P08758)			
		FLNB (075369)			
		PDCD6IP (Q8WUM4)			
		APRT (P07741)			
		CHP1 (000653)			
		GBE1 (Q04446)			
		ATP6V1A (P38606)			
		STXBP1 (P61764)			
		COX4I1 (P13073)			
		ATP6V1G1 (075348)			
		ARF1 (P84077)			
		CAP701 (P24/52)			
		QSOX1 (000391)			
		TUBA1A (Q71U36)			
		NPEPPS (P55786)			

	PSMA2 (P25787)		
	CAPN5 (O15484)		
	NAP1L4 (Q99733)		
	ACO1 (P21399)		
	YES1 (P07947)		
D	VNC1H1 (Q14204)		

Conclusion de la partie I

Nous avons démontré par ces deux études qu'un dialogue s'établit entre les microglies et les neurones chez notre modèle invertébré en partie par la production de VEs. Les résultats de la **publication 1** montrent qu'au moins les cellules microgliales produisent des VEs. En effet, les premiers résultats montrent à l'aide du marqueur *Hm*Alix que des VEs sont présentes dans la chaine nerveuse. Toutefois, il ne nous permet pas de discriminer l'origine cellulaire de ces VEs. C'est pourquoi l'utilisation du marqueur glial, la gliarine, a montré l'origine microgliale de VEs et leur capacité à interagir fortement avec les neurones. Les résultats de cette étude montrent également que des VEs libérées par les microglies vont communiquer avec les neurones lésés afin de favoriser la croissance neuritique, en utilisant des mécanismes moléculaires conservés au cours de l'évolution. Cette étude a suggéré qu'un membre de la famille du TGF- β puisse intervenir dans ce dialogue. Les résultats de la **publication 2** ont montré que les cellules microgliales et les neurones utilisent entre autre la voie de signalisation ALK4/5 afin de communiquer lors d'une lésion et que des VEs sont massivement produites et accumulées à la lésion, ce qui démontre qu'il s'agit d'un mécanisme clé dans la réponse à la lésion.

Toutefois, la caractérisation plus précise des contenus vésiculaires permettrait de mettre en évidence des molécules ayant un intérêt dans la neuroprotection. Il est établi que les VEs peuvent contenir de nombreuses molécules comme des protéines, des lipides mais aussi des acides nucléiques tels que de l'ADN ou des ARNs. Les analyses ultérieures vont donc se concentrer sur l'analyse des composés contenus dans les VEs dans le but de mieux comprendre par quels messages moléculaires les cellules microgliales peuvent influencer le phénomène de régénération axonale dépendamment de leurs VEs.

En parallèle du travail de Thèse réalisé par Tanina Arab au laboratoire, je me suis intéressé aux méthodes d'isolement des VEs dans le but de les discriminer des molécules libres ou agrégées pouvant être co-isolées et donc considérées comme contaminants potentiels. J'ai donc développé conjointement avec Tanina des approches de validations protéomiques non ciblées et à grande échelle afin de certifier l'isolement des VEs à partir de cultures primaires de microglie et mieux comprendre leurs éventuelles fonctions biologiques.

125

Partie II

Développement de méthodes d'isolement des VEs et caractérisation protéomique à grande échelle

Introduction de la partie II

Depuis la mise en évidence de la production de Vésicules Extracellulaires par de nombreux types cellulaires, le nombre de publications portant sur leurs fonctions biologiques n'a cessé d'augmenter. La société internationale pour les vésicules extracellulaires (ou ISEV) s'emploie à améliorer les différents aspects de leur étude, notamment la nomenclature, les applications et la purification des VEs, comme indiqué récemment dans les prises de position de la société ISEV [125,126]. Dans tous les cas, que ce soit pour caractériser les contenus de ces cargos moléculaires (protéines, lipides, acides nucléiques) ou pour évaluer leurs effets biologiques globaux après isolement, il est crucial de maitriser et respecter un ensemble de critères méthodologiques. Ceci signifie d'abord une contamination minimale voire marginale de molécules aspécifiques pouvant être co-isolées telles que les protéines des membranes d'organelles ou bien des protéines cellulaires en agrégats. Dans notre démarche, il est important d'adapter les protocoles d'isolement des VEs afin de ne pas enrichir ces contaminants biologiques mais aussi les autres contaminants issus de l'utilisation d'agents chimiques. En effet, des études ont mis en évidence que l'utilisation de kit commerciaux pouvait causer la présence de co-isolats et/ou de traces d'agents chimiques avec les VEs [132,212]. La technique d'isolement que nous avons utilisée dans un premier temps repose sur l'ultracentrifugation (UC). Cette approche, utilisée seule, est encore aujourd'hui largement préférée dans les publications pour isoler les VEs. Mais, le fait que de nombreux contaminants soient co-isolés avec les VEs représente une limite sérieuse à l'utilisation de l'UC uniquement. Une étape supplémentaire de lavage du culot vésiculaire pourrait être entreprise. Mais, cette étape de lavage qui augmente la pureté des VEs de l'échantillon va aussi engendrer une perte importante. Conscients de ces différents points, nous avons décidé au laboratoire de coupler l'UC à une nouvelle étape de nettoyage du culot vésiculaire, soit par gradient de densité Optiprep[™] (ODG), soit par chromatographie d'exclusion stérique (SEC). Les fractions isolées ont également systématiquement bénéficié d'analyses non ciblées et à grande échelle des contenus protéiques permettant à la fois de valider la présence d'une grande diversité de marqueurs spécifiques de VEs et de détecter de nombreuses protéines potentiellement responsables des fonctions biologiques. Il est important de garder à l'esprit que le contenu protéique des VEs dépendra de leur origine cellulaire et qu'il témoignera également des phénotypes fonctionnels dans lesquelles sont engagées ces cellules. L'analyse du cargo protéique est donc nécessaire afin de pouvoir corréler les protéines identifiées aux effets morphologiques observés.

La seconde partie thématique de ma thèse porte sur le développement de méthodes d'isolement des VEs et de leur analyse protéomique ultérieure. J'ai conjointement utilisé avec Tanina Arab une approche non ciblée couplant la chromatographie liquide de type nano (nLC) et la spectrométrie de masse MS/MS (nLC-MS/MS) afin de rechercher dans les fractions d'isolement la plus grande diversité de marqueurs pour les VEs et ainsi certifier l'efficacité de leur isolement à partir d'une culture primaire de microglie de sangsue.

La première étude à laquelle j'ai participé plus modestement a consisté à comparer l'ajout ou non d'une étape supplémentaire d'isolement par gradient de densité d'Optiprep[™] après l'obtention de culots vésiculaires d'ultracentrifugation. Pour cela, les protéines issues des fractions positives et négatives en VEs ont toutes été caractérisées par nLC-MS/MS (**Publication 3**). Le second objectif a porté sur la mise au point de la technique d'isolement des VEs par l'ultracentrifugation couplée à la chromatographie d'exclusion stérique, en utilisant comme précédemment la validation par analyse protéomique à grande échelle. De plus, ce travail a aussi consisté à observer l'effet de VEs microgliales et macrophagiques isolées, respectivement sur la croissance neuritique et l'invasion gliomale. Cette **publication 4** fait l'objet d'une présentation méthodologique sous forme de manuscrit mais aussi par la production d'une histoire filmée (*Journal of Visualized Experiments*).
PUBLICATION 3

Proteomic characterisation of leech microglia extracellular vesicles (EVs): comparison between differential ultracentrifugation and Optiprep[™] density gradient isolation.

Tanina Arab, Antonella Raffo-Romero, Christelle Van Camp, <u>Quentin</u> <u>Lemaire</u>, Françoise Le Marrec-Croq, Francesco Drago, Soulaimane Aboulouard, Christian Slomianny, Anne-Sophie Lacoste, Isabelle Guigon, Hélène Touzet, Michel Salzet, Isabelle Fournier, Christophe Lefebvre, Jacopo Vizioli, Pierre-Eric Sautière.

J Extracell Vesicles. 2019 Apr 23;8(1):1603048. doi: 10.1080/20013078.2019.1603048.

<u>Résumé</u>

Dans cette étude menée par Tanina Arab, nous avons comparé l'isolement des VEs par la méthode de l'UC seule ou suivie d'un gradient de densité d'Optiprep[™] (UC-ODG). L'efficacité de ces deux protocoles a été évaluée par rapport au nombre de particules récoltées et surtout par la caractérisation des protéines présentes dans les différentes fractions. Les analyses réalisées avec la technologie NTA (pour Nanoparticle Tracking Analysis) montrent que le nombre de particules récoltées lors de la procédure utilisant l'UC-ODG est largement inférieur à celui obtenu lors de la procédure utilisant seulement l'UC.

Après avoir fait l'objet d'une analyse par MET, ces deux procédures ont montré la détection de VEs. Elles ont naturellement été détectées dans le culot d'ultracentrifugation dans un premier temps. Dans la procédure bénéficiant d'un gradient de densité d'Optiprep™ après l'UC, les VEs ont été observées dans les fractions Optiprep™ ayant révélé précédemment avec la technologie NTA un nombre significatif de nanoparticules. Les tailles des VEs sont comprises majoritairement entre 50 et 200 nm bien que certaines aillent jusqu'à 500 nm. Dans les deux procédures d'isolement, il a été parfois observé des VEs sous forme d'agrégats.

Les analyses protéomiques réalisées par nLC-MS/MS sur les VEs isolées par les deux méthodes ont identifié 354 protéines avec la procédure d'ultracentrifugation et 776 protéines avec la procédure utilisant UC-ODG. Si les protéines identifiées entre ces deux conditions sont comparées, 242 d'entre elles sont communes. De plus, la comparaison des fractions Optiprep[™] entre-elles montre que la majorité des protéines identifiées se trouve dans les fractions F4, F5 et F6 avec respectivement 479, 401 et 530 protéines. Ces fractions sont celles qui montrent le plus de particules en NTA et en MET, ce qui confirme les résultats obtenus auparavant.

Afin de déterminer si les protéines identifiées sont bien associées aux VEs, nous avons comparé les signatures protéiques des deux procédures avec les 100 marqueurs protéiques les plus représentés dans les VEs (ExoCarta). Cette analyse révèle que 29 protéines sur 100 sont retrouvées dans la procédure utilisant l'ultracentrifugation alors que 64 protéines sur 100 sont retrouvées dans les fractions F4, F5 et F6 de la procédure utilisant le gradient de densité d'Optiprep[™]. Ces analyses montrent ainsi que l'ajout d'une étape supplémentaire utilisant une UC suivie d'un gradient de densité d'Optiprep™ augmente le nombre de marqueurs de VEs détectés. Mais, l'augmentation de l'identification de ces protéines associées aux VEs dans la procédure utilisant l'UC-ODG ne certifie pas pour autant de l'absence de protéines dites « contaminantes ». Pour cela, nous avons comparé les protéines identifiées dans les extraits vésiculaires issus des deux procédures en termes de localisation cellulaire et d'ontologie des gènes (GO term). Les analyses révèlent une augmentation du nombre de molécules impliquées dans le terme « exosomes extracellulaires », passant de 57,1 % dans la procédure utilisant l'UC seule à 62,4 % dans la procédure utilisant l'UC suivie du gradient de densité d'Optiprep[™]. L'analyse des localisations cellulaires permettant de nous renseigner sur la présence de protéines « contaminantes » révèle une diminution des protéines associées aux mitochondries, à l'appareil de golgi ou au réticulum endoplasmique lorsque la procédure utilise le gradient de densité d'Optiprep™. Ceci montre donc un bénéfice qualitatif dans l'isolement des VEs par l'ajout de cette étape.

Enfin, à l'image de nos études précédentes, nous avons souhaité illustrer la conservation des propriétés biologiques des VEs microgliales par une série de tests de croissance neuritique sur une culture primaire de neurones de sangsue. Nous n'avons pas effectué ces tests avec les VEs isolées par la procédure d'UC seule en raison de la présence de protéines contaminantes susceptibles d'interférer dans les résultats. En revanche, nous souhaitions vérifier que l'isolement plus sélectif de VEs microgliales par la procédure utilisant l'UC couplée au gradient de densité d'Optiprep™ permettait de conserver les capacités naturelles d'interaction avec les neurones. Les résultats ont révélé que la présence des VEs déclenche un effet positif significatif sur la croissance de neurites *in vitro*, ce qui est de notre point de vue la validation d'une première étape vers l'utilisation plus étendue des VEs du système nerveux.

131

OPEN ACCESS OPEN ACCESS

Proteomic characterisation of leech microglia extracellular vesicles (EVs): comparison between differential ultracentrifugation and Optiprep[™] density gradient isolation

T Arab^a, A Raffo-Romero^a, C Van Camp^a, Q Lemaire^a, F Le Marrec-Croq^a, F Drago^a, S Aboulouard^a, C Slomianny^{b,c}, A-S Lacoste^c, I Guigon^d, H Touzet^e, M Salzet^a, I Fournier^a, C Lefebvre^a, J Vizioli ^(b) and P-E Sautière ^(b)*^a

^aU-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse – PRISM, Univ. Lille, Inserm, Lille, France; ^bInserm U1003, PHYCEL Laboratory, Physiologie Cellulaire, Univ Lille, Lille, France; ^cBio Imaging Center Lille, Univ. Lille, Lille, France; ^dCNRS, Centrale Lille, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, Bilille and Univ. Lille, Lille, France; ^eCNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, Univ. Lille, Lille, France; ^eCNRS,

ABSTRACT

In Mammals, microglial cells are considered as the resident immune cells in central nervous system (CNS). Many studies demonstrated that, after injury, these cells are activated and recruited at the lesion site. Leech microglia present a similar pattern of microglial activation and migration upon experimental lesion of CNS. This activation is associated with the release of a large amount of extracellular vesicles (EVs). We collected EVs released by microglia primary culture and compared two different protocols of isolation: one with differential ultracentrifugation (UC) and one using an additional Optiprep[™] Density Gradient (ODG) ultracentrifugation. Nanoparticles tracking analysis (NTA) and transmission electron microscopy (TEM) were used to assess vesicles size and morphology. The protein content of isolated EVs was assessed by mass spectrometry approaches. Results showed the presence of EV-specific proteins in both procedures. The extensive proteomic analysis of each single ODG fractions confirmed the efficiency of this protocol in limiting the presence of co-isolated proteins aggregates and other membranous particles during vesicles isolation. The present study permitted for the first time the characterisation of microglial EV protein content in an annelid model. Interestingly, an important amount of proteins found in leech vesicles was previously described in EV-specific databases. Finally, purified EVs were assessed for neurotrophic activity and promote neurites outgrowth on primary cultured neurons.

ARTICLE HISTORY

Received 27 July 2018 Revised 29 March 2019 Accepted 1 April 2019

KEYWORDS

Hirudo medicinalis; microglia; extracellular vesicles; protein content; ultracentrifugation; Optiprep™; neurite outgrowth

Introduction

Long time considered as waste products released by the cells, in which the unnecessary material can be discarded, extracellular vesicles (EVs) are getting now a worldwide interest [1]. EVs are lipid bilayered membrane vesicles with a diameter range between 30 and 1000 nm, described as critical messengers for cell-tocell communication [2]. Their capacity to transfer information and thereby to affect the functions of the recipient cell, either in physiological or in pathological ways, are now assessed [3]. EVs are investigated in several disciplines including neurobiology [4,5], neuroimmunology [6,7], oncology [8] and nanotechnology [9]. They also get an arouse interest in clinic for their potential uses as biomarkers [10,11]. Their contents, generally indicated as "cargo", are multiple and biologically active [12]. Indeed, EVs carry proteins [13,14],

lipids [15–17] and nucleic acids including RNA [18,19] and DNA [20,21]. EVs are highly heterogeneous, differing in size but also in cell origin so that, in the past decades, authors tried to classify them using these criteria [22]. Therefore, two main EV populations emerged: exosomes and ectosomes [23]. Exosomes are 30-100 nm in diameter and are generated within the endosomal system as intraluminal vesicles and secreted by fusion of multivesicular bodies with cell membrane [23]. In contrast, ectosomes, also known as microvesicles, are 50 nm to 1000 nm in diameter and result from the outward budding of cell membrane [24]. Despite of their differences in size and origin, these two EV populations share common markers [25,26] and so far it is impossible to completely distinguish them. According to this high heterogeneity and because of the unstandardised nomenclature [27], in the present study, the general acronym EVs will be used for

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

CONTACT P-E Sautière Dierre-eric.sautiere@univ-lille.fr 🗈 Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse - PRISM, Univ. Lille, Lille F-59000, France

These two authors equally contributed to the supervision of the work.

B Supplemental data for this article can be accessed here

^{© 2019} The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of The International Society for Extracellular Vesicles.

EVs. The central nervous system (CNS) is a complex machinery in which cell-to-cell communication is essential to maintain homeostasis [28]. Glial cells are implicated in a large panel of CNS functions including development and neuron maintenance. Recent reports indicate that EVs play a crucial role in this glia-neuron cross-talk [6,29,30].

Among glial cells, microglia are described as the resident immune cells of the CNS [31]. They are multitasking cells involved in various functions [32] playing neuroprotective as well as neurotoxic roles [33]. The presence of microglia exerting similar functions was described many years ago in different Protostomia like Molluscs, Arthropods [34] and Annelids [35].

Several studies reported the secretion of EVs by microglia cells [36,37]. Their protein content includes enzymes, chaperones, tetraspanins and membrane receptors, as previously described for B lymphocyteand dendritic cell (DC)-derived exosomes [38]. Upon ATP stimulation, microglia release EVs carrying interleukine (IL)-1ß and the IL-1ß-processing enzyme caspase-1 [39]. EVs secreted by microglial cells were demonstrated to contain MHC-class II antigens following interferon gamma treatment [38]. Taking together these studies showed that, depending on the stimulation, microglia produce EVs differing in content and function.

The leech *Hirudo medicinalis* is a well-known model in neuroscience due to its ability to naturally regenerate the CNS after injury and a valuable model to study microglia involvement in the regenerative mechanisms [40]. Its CNS presents a large microglial cell population surrounding neurons in ganglia and their axonal extensions in connectives [35,41]. These cells express immune markers similar to the mammal ones [42,43]. Interestingly, this invertebrate model does not possess astrocytes or oligodendrocytes [41].

Previous studies in our group showed that, upon injury, microglia were recruited to the lesion site suggesting a strong implication of these cells in repair mechanisms [40,42,44]. This recruitment is associated with the secretion of an important amount of EVs, recently highlighted by immunohistochemistry [45,46]. *In vitro*, these vesicles rapidly adhere to the surface of both neuron bodies and growing neurites, suggesting a role in their outgrowth [45].

In the present work, we isolated and characterised the EVs released by a primary culture of leech microglia. The amount and the size of particles were measured by nanoparticles tracking analysis (NTA) approach. Their morphology was investigated using transmission electron microscopy (TEM). EVs were purified by differential ultracentrifugation (UC) followed or not by an additional Optiprep[™] Density Gradient (ODG) step. Vesicles purified with these two methods were submitted to liquid chromatography tandem mass spectrometry (LC-MS/MS) to address their proteomic contents. By combining all these approaches, we were able to establish an effective strategy to isolate microglial vesicles from our experimental model. Interestingly, this study constitutes to our knowledge the first proteomic analysis of all fractions issued from ODG protocol, and not only of those expected containing EVs. In addition, this work brings a new insight on microglia-released vesicles from an invertebrate model, confirming the presence of a conserved protein signature with mammalian EVs.

Materials and methods

Animals

The study was performed using the annelid leech *Hirudo medicinalis*, in accordance with the French legislation, the European Treaty and with the Helsinki Declaration regarding the use of this species in research. Leeches were purchased from Biopharm, (Hendy, UK). Adult leeches were maintained in artificial pond water for one week before use.

CNS dissection, neuron and microglial cell culture

Leeches (20 individuals) were anesthetised in ethanol 10% for 20 min at room temperature (RT). The CNS was dissected following a longitudinal section on the medioventral side. The freshly removed CNS were washed in sterile ringer buffer (115 mM sodium chloride, 1.8 mM calcium chloride, 4 mM potassium chloride and 10 mM TRIS maleate salt pH 7.4) and then bathed in phosphate buffer saline (PBS), supplemented with antibiotics (penicillin/streptomycin 10,000 U/ml and gentamycin 10 mg/ml) (Invitrogen Life Technologies, Carlsbad, USA). CNS were bathed three times in this solution at different dilutions rates 4X, 2X and 1X for 10 min at RT in each bath. In order to release the cellular content of the CNS, mechanic dissociation was performed using a small clamp and micro-scissors. This step was done in a 35 mm petri dish containing complete L-15 medium (Leibovitz's L-15 medium, Invitrogen Life Technologies, Carlsbad, USA) supplemented with 2 mM L-glutamin, 100 UI/ml penicillin, 100 µg/ml streptomycin, 100 µg/ml gentamycin, 0,6% of glucose, 10 mM Hepes and 10% Exosome depleted Fetal Bovine Serum (Exo-FBS) (Ozyme, Saint-Quentin-en-Yvelines, France) (Figure 1(a)). Because of the difference in size between neurons (6-70 µm) and microglial cells

Figure 1. Extracellular Vesicles (EVs) collection and isolation strategies. (a) Leech CNS were dissected and mechanically dissociated. Microglia were separated from neurons by filtration and primary cultured. (b) Microglial cell and apoptotic bodies were removed from the conditioned medium by successive centrifugation steps. EVs were isolated from conditioned medium by differential ultracentrifugation (UC samples) or submitted to further density gradient ultracentrifugation step. (c) EVs were collected in different fractions after OptiprepTM density gradient separation (ODG fractions).

 $(3-5 \ \mu m)$, filtration steps through sieving devices of different mesh sizes PluriSelect^{*} (Leipzig, Germany) were done to separate the two cell populations. First, the dissociated tissue was filtered using 100- μ m mesh sizes strainer in order to eliminate tissue debris. Then, the eluate was filtered through 20 and 6 μ m strainers to recover small size neurons on the 6 μ m sieve and the microglial cells in the flow through. In order to

eliminate cell debris, complete L15 medium containing neurons and the dissociation medium were centrifuged at 1200 g for 10 min at 15°C. The neuronal pellet was resuspended in complete L-15 medium and placed in 4-wells Lab-Tek* chambered cover glass (Thermo Fisher Scientific, Waltham, MA, USA) coated with poly-D-lysine (Sigma-Aldrich, Saint Louis, MO, USA). The microglial cell pellet was resuspended in 5 ml of fresh complete L-15 medium, split in 500 µl aliquots and plated in 4-wells petri-dishes. Neurons or microglial cells were maintained for 20 or 4 days, respectively, in a humid environment at 15°C, conditions routinely used for leech primary cell cultures.

EV isolation

Centrifugation procedures for EVs isolation were performed at 4°C. Importantly, to limit degradation, isolated EVs were freshly processed without any frozen step. The content of each culture well was transferred into Eppendorf[®] 1.5 ml low binding tubes (Montesson, France) and centrifuged at 1200 g for 10 min to remove microglial cells (Figure 1(b)). The supernatants (S1) were transferred to fresh tubes and centrifuged at 1200 g for 20 min to eliminate apoptotic bodies. This step was followed by filtration through a 0.22 µm filter to eliminate large vesicles and some apoptotic bodies possibly remaining in the supernatant. In order to pellet the EVs, the supernatants (S2) from all samples were pooled and transferred into 10.4-ml polycarbonate bottle with Cap Assembly tubes (Beckman Coulter). The tubes were filled with PBS to a final volume of 9 ml, and samples were ultracentrifuged at 100,000 g for 90 min, 70.1 Ti rotor, k-factor 36, Beckman Coulter. Supernatants were removed (S3) and the EVs pellets (UC samples) were resuspended in 200 µl of PBS for either direct processing (NTA, TEM and liquid chromatography tandem mass spectrometry analyses) or submitted to a further purification step by Optiprep™ Density Gradient (ODG). Briefly, EVs were loaded at the bottom of a discontinuous gradient prepared by diluting in PBS, a stock solution of Optiprep[™] (60% w/ v iodixanol; Sigma Aldrich, Saint-Quentin Fallavier, France) as previously described [47]. The gradients were prepared with 2 ml of Optiprep[™] solutions 40%, 20%, 10% and 5% carefully layered in 14 ml polyallomer Beckman Coulter tubes. Samples were ultracentrifuged at 100,000 g (SW 40 Ti rotor, k-factor 137, Beckman Coulter) for 16h. ODG fractions of 1 ml each were collected from the top of the gradient and resuspended in 30 ml of PBS (Figure 1(c)) for further 90 min of UC at 100,000 g (70.1 Ti, k-factor 36, Beckman Coulter). After supernatants (S4) removal, the pellets (ODG fractions) were resuspended in 30 µl of PBS and used for further analyses as indicated above for the UC samples.

Nanoparticle Tracking Analysis (NTA)

NTA was performed using a NanoSight NS300 instrument (Malvern Panalytical Ltd, Malvern, UK) with a 488 nm laser and automated syringe pump. The NTA 3.2 software was used to process the recorded movies. The script was adapted as follow: samples diluted 1:100 in PBS were loaded using an automated syringe pump. Speed setting was initially fixed to 1000 for sample loading and chamber filling and then decreased to 25 for videos recording. A delay of 15 s was set to stabilise the flow before acquisition. Video captions of 60 s were done in triplicate for each sample with a camera level setting at 14 and a detection threshold at 3. PBS used for EVs recovery was used for negative controls (UC experiments). As a control for ODG experiments, 200 μ l of PBS were loaded at the bottom of the tube that was then processed exactly in the same conditions as the EVs-containing samples.

Transmission Electron Microscopy (TEM)

The observation of EVs by TEM was performed as previously described [48]. Briefly, the isolated EVs were resuspended in 30 μ l of 2% paraformaldehyde (PFA) in PBS. 3 × 10 μ l of sample were deposited on Formvar-carbon-coated copper grids. The adsorption was performed for 3 × 20 min in a wet environment and then the grids were transferred into a drop of 1% glutaraldehyde in PBS for 5 min at RT. After several rinsing steps with ultrapure water, samples were contrasted for 10 or 15 min on ice with a mixture of 4% uranyl acetate and 2% methylcellulose (1:9, v/v). The excess of mixture was removed using Whatman filter paper. After drying, samples were observed under a JEOL JEM-2100 TEM at 200 kV. The acquisitions were made with Gatan Orius SC200D camera.

Proteomics analysis

Proteins extraction and in gel digestion

All experiments were done following three biological replicates. Purified EVs were resuspended in 30 µl of 50 mM bicarbonate buffer containing 4% SDS. Extracted proteins were loaded onto a 12% polyacrylamide gel for separation using a TGS solution (25 mM Tris, 192 mM Glycine and 0.1% SDS) as running buffer. Electrophoresis was performed at 70V for 15 min and then at 120 V for further 15 min. In order to fix proteins, the gel was stained with InstantBlue™ Coomassie protein stain solution (Expedeon, Cambridgeshire, UK) for 20 min. Each gel lane was excised and cut into small pieces of 1 mm³. Trypsin digestion was performed, as previously described by Lemand and colleagues [49]. Basically, gel pieces were washed successively with 300 µl of the following solutions: Milli-Q* water for 15 min, acetonitrile (ACN) for 15 min, 100 mM NH₄ HCO₃ pH 8 for 15 min, ACN/NH₄HCO₃ (1:1, v/v) for

15 min and ACN for 5 min. Reduction was performed with 100 µl of 100 mM NH4HCO3 pH 8 containing 10 mM DTT for 1 h at 56°C. The alkylation was performed with 100 µl of 100 mM NH4HCO3 pH 8 containing 50 mM iodoacetamide for 45 min in the dark at RT. Pieces were washed again with 300 μ l of the following solutions 100 mM NH₄HCO₃ pH 8 for 15 min, ACN/NH4HCO3 (1:1, v/v) for 15 min and ACN for 5 min and then dried completely under vacuum. Proteins digestion was conducted overnight at 37°C with trypsin (Promega, Charbonnieres, France) 12.5 µg/ ml in enough amount ($\approx 50 \,\mu$ l) of 20 mM NH₄HCO₃ pH 8 to cover pieces. The digested proteins were then extracted from the gel by adding 50 µl of ACN for 20 min with a continuous stirring. The following twosteps extraction procedures were repeated two times: 50 µl of 5% trifluoroacetic acid (TFA) in 20 mM NH₄ HCO₃ pH 8 solution and then 100 µl of ACN 100%. The digested proteins were completely dried under vacuum, reconstituted in 20 µl of a 0.1% TFA solution and finally desalted using C18 ZipTips (Millipore, Saint-Quentin-en -Yvelines, France). Briefly, ZipTips cones were washed by 100% ACN and equilibrated using 0.1% formic acid (FA) solution (Biosolve B.V., Valkenswaard, The Netherlands). The peptides were linked to the C18 phase tips and washed with 0.1% FA solution. Finally, peptides were eluted in a fresh tube using ACN:FA 0.1% (80:20, v/v), dried completely under vacuum and recovered with 20 µl of ACN:FA 0.1% (2:98, v/v) for LC-MS/MS analysis.

Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis

For mass spectrometry analysis, samples were separated by online reversed-phase chromatography using a Thermo Scientific Proxeon Easy-nLC1000 system equipped with a Proxeon trap column (75 µm ID x 2 cm, 3 µm Thermo Scientific) and a C18 packed-tip column (Acclaim PepMap, 75 µm ID x 15 cm, Thermo Scientific). The digested peptides were separated using an increasing amount of ACN in 0.1% FA from 2 to 30% for 1 h at a flow rate of 300 nL/min. A voltage of 1.7 kV was applied by the liquid junction in order to electrospray the eluent using the nanospray source. A high resolution mass spectrometer Q-ExactiveTM Thermo ScientificTM was coupled to the chromatography system to acquire in data dependent mode defined to analyse the 10 most intense ions of MS analysis (Top 10). The MS analyses were performed in positive mode at resolving power of 70,000 FWHM (at m/z 400), using an automatic gain control target of 3e6. The default charge state was set at 2 and a maximum injection time at 120 ms. For full scan MS, the scan range was set between m/z 300 and 1600. For ddMS², the scan range was between m/z 200 and 2000, 1 microscan was acquired at

17,500 FWHM, an AGC was set at 5e4 ions and an isolation window of m/z 4.0 was used.

Hirudo medicinalis database

Because of the lack in data regarding leech model, we built a homemade database of putative Hirudo proteins. This database is composed of 22,010 translated CDSs from a draft Hirudo genome [50] satisfying the following property: each predicted proteins have an orthologue in the Swissprot database and a human orthologue in Uniprot. Swissprot [51] is a manually checked protein database, making it a high-confident resource to annotate translated CDSs. It is a subset of Uniprot, which is more likely to contain erroneous sequences, but has a wider coverage. Orthology in Swissprot (release_2017-01) was established through BlastP alignments (version 2.6.0+, command line with default parameters, E-value threshold 0.1, best match) [52]. We then used the API Rest Uniprot tool [53] to find human orthologues in Uniprot (release_2017-10), a necessary step for the need of DAVID proteomic software (version 6.8), in which it is crucial to choose only one species during analysis.

Raw data analysis

All the MS data were processed with MaxQuant [54] version 1.5.1.2 using the Andromeda [55] search engine. Proteins were identified by searching mass spectrometry data against the *H. medicinalis* database described above, combined with 262 commonly detected contaminants. Trypsin specificity was used for the digestion, with up to two missed cleavages. N-terminal acetylation and methionine oxidation were selected as the variable modifications. Carbarmidomethylation of cysteines was set as fixed modification. For MS spectra, an initial mass accuracy of 6 ppm was selected, and the MS/MS tolerance was set to 20 ppm for higher energy collisional dissociation data. For identification, the false discovery rate at the peptide spectrum matches and protein level was set to 1%. A minimum of two peptides of which one unique were defined. The label-free quantifications were realised keeping the default parameters of MaxQuant. The identified proteins were processed by Perseus software [56] (version 1.6.0.7). Three filters were applied (potential contaminant, reverse and only identified by site) on the whole protein matrix. Then, sample groups were defined and Venn diagrams were generated. The protein lists obtained were treated using DAVID proteomic to assess gene ontology (GO) analysis by keeping the default parameters provide by the software. FunRich, a software tool used for functional enrichment and interaction network analysis tool, was used to establish the interactome of selected proteins characterised from ODG fractions.

Neurite outgrowth assays

The CNS of 20 individuals leeches of the same stage of development were dissected, microglia and neurons were separately collected as described above. Neurones were pooled in a homogeneous cell preparation to avoid individual polymorphism and in order to carry out a single, statistically relevant experiment. Neurons were evenly plated in 4-well Labtech culture chambers and were primarily cultured. After 6 days of culture, neurons were exposed to 106 EVs/well from ODG EV-rich fractions (F4 to F6) issued from microglia isolated from the same individuals or to complete L-15 medium for negative control. Medium renewal, with or without EVs, was done every 4 days. Image acquisition on living cells was realised with a microscopy station Nikon Eclipse Ti2 (Nikon, Minato, Tokyo, Japan). This station, equipped with a perfect focus system, which automatically rectifies focus control for drift, is adapted for real time analysis. Images acquisitions were realised at days 6 and 20 of culture to quantify neurites outgrowth in EVs-stimulated vs. control neurons. Each well was totally scanned and a mosaic image was created for each condition. Manual measurement of the length of neurites was performed using ImageJ software only for individual neurons presenting neurites at both 6 and 20 days of culture. Measurements were done for each neuron, independently from the others, and are expressed as a percentage of growth compared to the first day of EVs exposure (= T6days), calculated as follow: [Percentage of growth = ((measure at 20 days*100)/measure at 6 days)/100]. They were then analysed with GraphPad software using a statistic "unpaired t test".

Results

Strategy overview

The aim of the study is to compare the efficiency of simple UC *vs.* density gradient EV isolation methods. To identify the proteome of EVs isolated from leech microglial cells, we considered different complementary experiments as described in Figure 1. Microglia were isolated from freshly dissected leech CNS: after nerve tissue mechanical dissociation, neurons and microglia were separated by filtration. Microglial cells were collected, cleaned by centrifugation, resuspended in fresh medium and cultured for four days to leave them recover and release EVs. Conditioned media from these primary cell cultures were collected, and

EVs were isolated by differential UC (Figure 1(b)). The pellet obtained after this first ultracentrifugation step, from now onwards named UC, was either directly analysed for proteomic content, or loaded on a discontinuous (5%, 10%, 20% and 40%) OptiprepTM Density Gradient (Figure 1(b)). Eight samples were collected from the top of the gradient and will be forward named ODG fractions, numbered from F1 to F8 (Figure 1(c)). In both UC and ODG samples, the particle number was assessed using nanoparticle tracking analysis (NTA) technology. The morphology of EVs was checked using TEM and the proteomic content was investigated using liquid chromatographytandem mass spectrometry (LC-MS/MS).

Extracellular Vesicles (EVs) quantification and morphological analysis

The particle number from both UC sample and ODG fractions was established by NTA using Nanosight instrument (Figure 2). PBS was used as a control for UC samples. For ODG samples, controls were performed loading PBS, instead of EV pellet, at the bottom of the discontinuous OptiprepTM gradient.

Results showed an average of 7.21 \times 10^{10} particles per ml in UC samples (Figure 2(a)), PBS controls revealed a negligible amount of particles (0.05x10⁸/ml). The average of counted particles from single ODG fractions is here reported (Figure 2(b)). An important amount of particles (10.54x108 particles/ml) was observed in F1. A smaller quantity, 2.61×10^8 particles/ml and 5.79×10^8 particles/ml, were detected in F2 and F3, respectively. The amount of particles increased in the following fractions: F4 and F5 showed 9.27 \times 10⁸ and 41.60×10^8 particles/ml, respectively, the highest amount was observed in F6 (66.56×10^8) particles/ml). A comparable level to F4 and F5 was detected in F7 (8.62x10⁸ particles/ml) and F8 (8.05x10⁸ particles/ml). The amount of particles detected in UC samples was at least 10-fold higher than that measured for ODG fractions. In all the ODG control fractions, the number of particles remained very low in comparison with the corresponding samples. Taken together, these data confirm that particles detected by NTA do not derive from the control solutions (PBS and Optiprep[™]) but from the microglial conditioned media.

To assess the morphology of leech microglial EVs, TEM analyses were performed and negative staining protocol was applied on vesicles isolated with the two methods, UC and ODG (Figure 3). Single ODG fractions were assessed for extracellular vesicles presence.

Figure 2. Nanoparticle Tracking Analysis (NTA) on microglial EVs. (a) Particles from UC samples (red dots) were quantified. Vehicle PBS (black triangles) was used as negative control. (b) Particles counting in ODG fractions F1 to F8 for each replicates (blue, red, and yellow dots) were compared to OptiprepTM gradient fractions processed in the same way as control (black triangles). Each circle or triangle represents an individual count. Green and grey bars indicate the average for EVs or control fractions, respectively.

Figure 3. Transmission Electron Microscopy of EVs. (a) Morphology of Optiprep[™] density gradient isolated EVs. Some vesicles are more electron-dense (arrow). (b) EVs purified by simple ultracentrifugation appear flattened. A layer of globular lipids was noticed in the background (arrow heads). (c) EVs aggregates were observed independently of the isolation protocols used.

EVs were mostly detected in F4, F5 and F6 (Figure 3 (a)). The EVs isolated by UC or Optiprep^m gradient showed very heterogeneous diameters ranking from 50 nm to 200 nm, some of them reaching 500 nm. Interestingly, TEM captures highlight dispersion on ODG samples where some EVs appeared more electron-dense than others (arrow). Morphologically, EVs stay mostly spherical in ODG fractions and appear as flattened spheres in UC samples (Figure 3(b)). In the UC samples, the presence of small spherical structures in the background was detected (arrow heads). In both protocols, EVs occasionally appeared as aggregates, which make the appreciation of morphology, size and enumeration quite difficult (Figure 3(c)).

EV proteomic characterisation and gene ontology analysis

To establish the benefit of using an additional ultracentrifugation step with ODG for the EVs isolation, we analysed by LC-MS/MS both UC samples and all ODG fractions. Raw data analysis by MaxQuant software on UC samples permitted the identification of 354 proteins issued from the *Hirudo* database. The same approach performed on ODG fractions showed an important increase in their number with a total of 776 proteins identified (Figure 4(a)).

Interestingly, most of proteins belong to F4, F5 and F6 (EV-rich fractions) containing 479, 401 and 530 proteins, respectively, over biological triplicate (Figure 4(b)). Totally, 329 proteins were common in these three samples while 38,

Figure 4. Venn's diagrams of unique and shared proteins identified in UC and ODG samples. (a) Comparison between UC, ODG EVrich (F4, F5, F6) and ODG EV-poor (F1, F2, F3, F7, F8) fractions. (b) Number of proteins identified in ODG EVrich fraction F4, F5 and F6. (c) Unique and shared proteins identified in ODG EVpoor fractions F1, F2, F3, F7 and F8. (d) Proteins overlap between fractions (F3, F7) physically close to the EV-rich ones (F4 and F6).

54 and 16 proteins overlapped between F4-F5, F4-F6 and F5-F6, respectively. In addition, 58, 18 and 131 proteins were specific to fraction F4, F5 and F6, respectively. As expected, the high amount of proteins in these fractions is consistent with the prediction of EVs accumulation at this classically assigned density gradient range [57].

A total number of 513 proteins were identified in fractions 1, 2, 3, 7 and 8 (EV-poor fractions). Among them, 49, 65, 102 proteins were identified in F1, F2 and F8, respectively (Figure 4(c)). These proteins principally correspond to several cellular components including nucleus, cytosol and cytoplasm (histones family members, apolipoproteins, caspases, actin, tubulin and calcium/calmodulin dependent protein kinase II family members). A higher number of proteins were found in F3 and F7, with 117 and 183 proteins identified, respectively (Supplementary Table S1). Results showed that 89 proteins overlap between F3, F4, F6 and F7 (Figure 4 (d)). Moreover, 109 proteins are common to F3 and F4 and 174 to F6 and F7. Only six are exclusives to F3 and nine to F7. Supplementary Table S1 indicates the

number of peptides identified as well as the percentage of coverage for each protein in the different replicates.

The protein identified in leech EVs were compared qualitatively in both ODG fractions and UC to top 100 proteins described in ExoCarta, a web-based compendium of exosomal cargo [58]. From UC samples, 29 proteins were found in this top 100 list (Table 1), none of them were exclusive to UC sample but all of them were detected in F4, F5 or F6. Considering all the ODG fractions, 64 proteins were identified among the top 100 list, 62 of which were detected at least one time in F4, F5 or F6. Moreover, 13 were present simultaneously in fractions F4, F5 and F6 (e.g. flotillin 1, filamin A and 14-3-3 protein epsilon) and nine were detected at the same time in two of these fractions (e.g. 14-3-3 protein zeta/delta, moesin and Ras-related protein Rab-7a). Interestingly, five typical EV proteins were exclusively found in F6 (e.g. heat shock 70 kDa protein 1A, myosin 9, tubulin alpha-1C chain, ezrin, 14-3-3 protein gamma). The Alpha-2-macroglobulin and the T-complex protein A subunit epsilon were Table 1. EVs proteins recovered from UC samples and ODG fractions (F1 to F8) compared with top 100 proteins from ExoCarta website. Proteins were ranked according to their abundancy of identification in exocarta. Protein IDs and gene names are reported. In bold: proteins found at least one time in EVs issued from leech microglia. Underlined in red: proteins from ODG EV-rich fractions, which are reported in Exocarta as microglial proteins.

						0	DG Fi	ractio	ns		
Protein IDs	Gene name	Protein name	UC	F1	F2	F3	F4	F5	F6	F7	F8
	(D9	(D)				-					
	PDCD6IP	Programmed cell death 6 interacting protein		-					-		
P11142	HSPAR	Heat shock cognate 71 kDa protein		+	+	+	+	+	+	+	+
P04406	GAPDH	Giveraldebude-3-nbochate debudragenace		· ·	+	÷.	÷.	÷.	÷.	÷.	
P 04400	ACTR	Artin attendersis 1	- T	- <u>+</u>	- T	. T	. T			- T	- T
P60709		Actin, cytopiasmic 1	+	+	+	+	+	+	+	+	+
P0/355	CD63	CD62 antigon		÷	+	+	+	÷	÷	+	+
	SDCRP	Syntenin_2		-	-	-	-	-	-	-	-
P06733	FNO1	Alnha-enolase	+	+	+	+	+	+	+	+	÷.
P07000		Host chock protoin HCD 00 slabs	÷.	÷	÷.	-	÷	÷	÷	÷.	
P0/900	TSG101	Tumor suscentibility gene 101 protein	+	+	+		+	+	+	+	÷.
P14618	PKM		+	L.	+	+	+	+	+	+	÷.
D00220		Lastate debudrogenase A chain LDHA	÷.	1.7			÷.	÷	÷.		
P00338		Elongation factor 1-alpha 1	+		-	-	+	+	+		
P63104		14-3-3 nrotein zeta/delta					- -		- +		
P00558	PGK1	Phosphoglycerate kinase 1	-	-	-		+	+	1.1		-
P12620	EEED	Elongation factor 2		11			÷	÷			
P 13039		Elongation lactor 2 Eructore-hisphosphate aldolase A	-		+	+	+	+	+	+	-
P08238	HSP90AR1	Heat shock protein HSP 90-beta	1		+	+				+	
P08758	ANXA5	Annexin A5	+		+	+	+	+	+	+	+
P49327	FASN	Fatty acid synthase	-		-	-	-	-	+		-
P62258	YWHAE	14-3-3 protein epsilon	+		-		+	+	+		-
Q00610	CLTC	Clathrin heavy chain 1	+		-		+	+	+	+	
	CD81	CD81 antigen	-	-	-	-	-	-	-	-	-
	ALB	Serum albumin	-	-	-	-	-	-	-	-	-
P55072	VCP	Transitional endoplasmic reticulum ATPase	+	÷.,	-	- 1	+	+	+	-	
P60174	TPI1	Triosephosphate isomerase	+	÷.,	1.	-	+	+	+	+	
P62937	PPIA	Peptidyl-prolyl cis-trans isomerase A	+	÷.,	- 1	+	+	+	+	•	-
P26038	MSN	Moesin	+	-	-	- 1	+	+	-	-	-
	CFL1	Cofilin-1		ι÷.	-	-	-	-	-	-	-
Q06830	PRDX1	Peroxiredoxin-1	+		+	+	+	+	+	+	+
D(1224	PEN1	Profilin-1	-	÷.,	1	-	-	-	-	-	÷.
P61224	KAP IB	Kas-related protein Kap-Ib	+			+	+	+	+	+	
D11001		Integrin beta-i Endenlasmis raticulum shanarana BiB		÷.	-	1	-	-	-	-	
FIIVZI	SIC3A2	4E2 coll-surface antigen beaux chain 4E2bc	Т	÷.	-		T	T	T	T	T
P62805	HIST1H4A	Histone H4		+	+	+	+	+	+	+	+
1 02005	GNB2	Guanine nucleotide-binding protein		-	-	-	-	-	-	-	-
P05023	ATP1A1	Sodium/potassium-transporting ATPase subunit alpha-1	+		+	+	+	+	+	+	+
P27348	YWHAQ	14-3-3 protein theta	+		+	+	+	+	+	+	-
075955	FLOT1	Flotillin-1	+	-	-	-	+	+	+	-	-
P21333	FLNA	Filamin-A	+	÷.,	-	- 1	+	+	+	÷.,	-
O00299	CLIC1	Chloride intracellular channel protein 1	-	-	-	- 1	+		+	- I	-
P78371	CCT2	T-complex protein 1 subunit beta		11	-	- 1	+	+		÷.,	-
P60953	CDC42	CDC42 small effector protein 1	+	÷.,	-	- 1	+	+	+	÷.,	-
P61981	YWHAG	14-3-3 protein gamma	- C.	-	÷.	-	-	1	+	-	-
P01023	A2M	Alpha-2-macroglobulin, Alpha-2-M		+	-	-	-	-	-	-	-
	IUBA1B	lubulin alpha-18 chain	-	-	-	-	-	-	-	-	-
	KACI	Ras-related C3 botulinum toxin substrate 1	-	-	-	-	-	-	-	-	-
		Galectin-3-binding protein	-	-	-	-	-	1		÷.	-
PODIMV9	CNAD	neat snock / v kDa protein IA Guanina nucleatida hinding protein G(i) cubunit alaba 2	-	-	-	-	-		+		-
P04083		Annexin A1	-	-		+	÷.		+	÷.	-
P61586	RHOA	Transforming protein RhoA	_	-	- 7	- 1	+	+	+		-
101500	MFGE8	Lactadherin	-	-	-	- 1	-	-	-	-	-
P32119	PRDX2	Peroxiredoxin-2	+		-	-	+	+	+	+	-
P50395	GDI2	Rab GDP dissociation inhibitor beta	-	-	-	+	+	+	+	+	
	EHD4	EH domain-containing protein 4	-	-	-	-	-	-	-	-	-
043707	ACTN4	Alpha-actinin-4	-	-	-	- 1	+	- II	+	-	-
P31946	YWHAB	14-3-3 protein beta/alpha	-	÷.,	-	-	-	I	+	-	-
P51149	RAB7A	Ras-related protein Rab-7a	+	-	-	- 1	+	-	+	-	-
	LDHB	L-lactate dehydrogenase B chain	-	-	-	1	-	-	11	-	-
P63092	GNAS	Guanine nucleotide-binding protein G(s) subunit alpha isoforms short	-	-	-		+	+	-	-	-
	RAB5C	Ras-related protein Rab-5C	-	-	-	-	-	-	-	-	-
	AKET	ADP-ribosylation factor GIPase-activating protein 1	-	-	-	-	-	-	-	-	-

Table 1. (Continued)).
------------	------------	----

						0	DG Fi	ractio	ns		
Protein IDs	Gene name	Protein name	UC	F1	F2	F3	F4	F5	F6	F7	F8
	ANXA6	Annexin A6	-	-	-	-	-	-	-	-	-
P50995	ANXA11	Annexin A11	+	÷.,		+	+	+	+	+	÷.,
P63261	ACTG1	Actin, cytoplasmic 2		+	+	+	+	+	+	+	+
	KPNB1	Importin subunit beta-1	-	-	-	-	-	-	-	-	-
	EZR	Ezrin	-	-	-	-	-	-	-	-	-
P09525	ANXA4	Annexin A4	+	- I	-	- 1	+	+	+	- I	-
P53396	ACLY	ATP-citrate synthase	-	-	-		+		-	-	-
Q9BQE3	TUBA1C	Tubulin alpha-1C chain	-	-	-	-	-		+	-	-
P02786	TFRC	Transferrin receptor protein 1	-	-	-	I	+	+	+	- I	-
	RAB14	Ras-related protein Rab-14	-	-	-	-	-	-	-	-	-
P62805	HIST2H4A	Histone H4		+	+	+	+	+	+	+	+
	GNB1	Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1	-	-	-	-	-	-	-	-	-
	THBS1	Thrombospondin-1	-	-	-	-	-	-	-	-	-
	RAN	GTP-binding nuclear protein Ran	-	-	-	-	-	-	-	-	-
	RAB5A	Ras-related protein Rab-5A	-	-	-	-	-	-	-	-	-
	PTGFRN	Prostaglandin F2 receptor negative regulator	-	-	-	-	-	-	-	-	-
P48643	CCT5	T-complex protein 1 subunit epsilon	-	-	-	-	-	-		+	
P49368	ССТЗ	T-complex protein 1 subunit gamma	-		-	- 1	+	+	+		-
P23526	AHCY	Adenosylhomocysteinase	+	- I	-	- 1	+	+	+	- I	-
P22314	UBA1	Ubiquitin-like modifier-activating enzyme 1	-	-	-	- 1	+	+	+		-
	RAB5B	Ras-related protein Rab-5B	-	-	-	-	-	-	-	-	-
	RAB1A	Ras-related protein Rab-1A	-	-	-	-	-	-	-	-	-
	LAMP2	Lysosome-associated membrane glycoprotein 2	-	-	÷.,	-	-	-			-
P23229	ITGA6	Integrin alpha-6		-		+	+	+	+	-	-
P62805	HIST1H4B	Histone H4		+	+	+	+	+	+	+	+
P35613	BSG	Basigin	-	-	-	-		+	-	-	-
	YWHAH	14-3-3 protein eta	-	-	-	-	-	- A.	-	-	11
Q71U36	TUBA1A	Tubulin alpha-1A chain	-	-	-	-	1.1	-	+	+	÷.,
P29401	ткт	Transketolase	-	-	-	-		+	+	- I	-
	TCP1	T-complex protein 1	-	-	-	-	-	-	-	-	-
	STOM	Erythrocyte band 7 integral membrane protein	-	-	-	-	-	-	-	-	-
	SLC16A1	Monocarboxylate transporter 1	-	-	-	-	-	-	-	-	-
	RAB8A	Ras-related protein Rab-8A	-	-	-	-	-	1.1	-	÷.,	-
P35579	MYH9	Myosin-9		11	-	-	÷.,	-	+	-	÷.,
Q14764	MVP	Major vault protein	+	-	-	-	-	+	+	+	-
	Total	100	29	12	19	24	50	48	56	29	14
							6	i4			

the only vesicular proteins specifically detected in fraction F1 and F7, respectively. Finally, nine proteins of the top 100 list were identified in all ODG fractions (e.g. Actin, GAPDH, HSPA8 and Annexin A2). These results strongly suggest that an additional step using an ODG ultracentrifugation significantly increase the yield in proteins related to EVs which seems to be mostly present in fractions 4, 5 and 6.

The subcellular localisation and GO terms of both UC samples and ODG EV-rich fractions (F4, F5 and F6) were investigated by DAVID software. The percentages of coverage for each term linked to EVs (Figure 5) and the *p*-value at which it was detected were lower in UC vs. ODG EV-rich fractions (Supplementary Table S2 and S3). For example, looking at "Extracellular exosomes" term, 57.1% of the recorded genes were classified as part of this component for UC samples against 62.4% genes for ODG EV-rich fractions. In addition, the p-value for this term was $3.8e^{-53}$ for UC samples, while it was more confident for ODG reaching 4.9e⁻¹⁵⁸. On the other hand, contaminants signatures related to term like

mitochondria, Golgi Apparatus (GA) and Reticulum Endoplasmic Lumen (RE-L) were mostly observed in UC samples. In particular, mitochondrial inner membrane term coverage was 15.9% in UC samples while it was only 7.5% in ODG. Concerning GA and RE-L, these GO terms were exclusively detected in UC pellet with 7.3% and 2.9% of coverage, respectively.

EVs assays on neurites outgrowth

The technique used for nerve cell dissociation entails the mechanical disruption of dissected leech nerve cords and the passage of the tissue through a series of strainers. The different giant glial cells present in the CNS are destroyed during the dissociation step. Since either astrocytes or oligodendrocytes are not present in leech CNS [41], the only remaining cells after the treatment are isolated small neurons and microglia. In addition, these cells are centrifuged at lower speed to discard potential remaining cell debris; it permits to

Figure 5. Gene Ontology (GO) analysis of EVs. Comparison between UC and ODG samples in term of number of genes identified for different GO terms.

ascertain the purity of obtained microglia and neurons primary cultures.

Leech microglial EVs from ODG EV-rich fractions were added to primary neuron cultures in order to test their ability to promote neurites outgrowth. Negative control was performed using neurons cultured in complete medium alone. Results after 14 days showed a significant difference (*p*-value of 0.0029) on neurons cultured in presence of EVs (n = 37) where the percentages of outgrowth were higher (average 21,30%) compared to the control (n = 38) (average 5,99%) (Figure 6(a)). Examples of neurite outgrowth after 6 and 20 days of culture without (Control) or in presence of EVs are shown in Figure 6(b and c)

Discussion

In the last decade, an exponential growing publication rate in the field of EVs was reported. The International Society for Extracellular Vesicles (ISEV) is working to improve different aspects of the field, including the purification, the nomenclature and the applications of EVs, as recently reported by the ISEV position papers [25,59].

In any case, for functional effects, cargo (proteins, lipids, nucleic acids) characterisation or further downstream experiments, it is crucial to get pure EVs, meaning a minimal co-pelleted contamination such as organelle membranes or protein aggregates [60]. Several studies were done comparing EV isolation methods including UC, density gradient, size exclusion chromatography and immunoaffinity purification [61,62]. Studies on EV protein content are essentially focused on the EV-rich fractions. For the first time, we present here an exhaustive mass spectrometry proteomic study on all EV fractions produced by leech microglial cells. We compared UC and OptiprepTM density gradient (ODG), two commonly used methods for particles yield, morphology and protein content of EVs. All experiments were done on vesicles released by leech microglial cell primary cultures. Results show that both methods lead to EV isolation, as highlighted by TEM (Figure 3). Nevertheless, by mass spectrometry approaches, we confirmed that ODG permits to obtain the purest EV preparations (Figures 4 and 5). Taking together, these results permitted to establish (i) the presence of EVs in microglia from an annelid model and (ii) their strong similarities to mammalian ones (Table 1), according to the comparison against ExoCarta databases [58].

Nanoparticle tracking analysis was performed on EVs purified by differential UC and ODG fractions (Figure 2). NTA results showed the presence of particles in both UC samples and ODG fractions. As expected, the number of particles was higher in UC samples due to the less stringent purification protocol compared to ODG fractionation. We also noticed variations in particles quantification and standard deviation values for many fractions, caused by the lack in a precise estimation of the microglial cells number used

Figure 6. *In vitro* assays for EVs neurotrophic activity assessment of ODG purified EVs. (a) Outgrowth measurements of leech neurons exposed for 14 days to complete medium (Control, n = 38) or to vesicles from ODG EV-rich fractions (n = 37). Each open circle represents the percentage of neurite outgrowth from individual neurons. Bars indicate the average values for each series of measurements. A significant difference was observed between the two conditions with a *p-value* of 0.0029. (b) and (c) pictures display an example of neurite outgrowth recorded for the same neurone at 6 and 20 days of culture with L15 medium alone (Control) or containing 10^6 EVs/well (ODG EV-rich fractions). Scale bars correspond to 20 µm.

for each replicate, linked to the experimental constraints of the model (Figure 2(b)). The small size of cultured leech microglia ($\leq 5 \mu m$) makes difficult cell counting and the estimation of their viability by conventional trypan blue staining. Therefore, we used the number of dissected nerve chains as a normalisation factor between the three biological replicates instead of the number of viable microglial cells.

To see whether the counted particles were EVs or contaminants, and because the NTA technology does not make any difference between EVs and protein aggregates, all samples were analysed by TEM and by liquid chromatography tandem mass spectrometry (LC-MS/MS). TEM observations confirmed the presence of EVs in UC pellet and mainly in F4, F5 and F6 ODG fractions (Figure 3). In both cases, due to the 0.22 μ m fast filtration step before the 100,000 g ultracentrifugation, large vesicles over 500 nm diameter were not detected. The size range of isolated vesicles appeared quite large (50–500 nm), confirming that the experimental protocols here applied do not permit to separate EVs by size (Figure 3). Some EVs appeared more electron-dense than others, meaning that the

quality and quantity of the cargo are not the same for all EVs, reflecting the heterogeneity of vesicles populations (arrow). We noticed in UC samples the presence of a faint non-specific background noise (arrow heads). These granulations would result by a higher amount of lipids globules like HDL, having a partial overlapping density with the EVs and for this reason partially discarded by ODG ultracentrifugation [63].

TEM analyses revealed either in UC or in ODG fractions, the presence of aggregated vesicles (Figure 3 (c)). The presence of such aggregates in ODG fractions may be simply consequent to the ultracentrifugation steps promoting these accumulations. Indeed, they were also detected by NTA as large particles, inducing an under estimation in vesicles number. These gathers could become problematic for functional assays or for drug delivery approaches, in term of amount EVs normalisation and reproducibility.

LC-MS/MS analyses confirmed the presence of EVs in UC samples and in density gradient fractions. Despite the lower number of particles detected in ODG fractions compared to UC pellet, the quantity of protein identified in these samples was significantly higher. MS analyses were obtained in data-dependent acquisition (DDA) meaning that only the most 10 intense ions were selected and fragmented to obtain MS/MS data and used for protein identification. Proteins like albumin, keratin, and those coming for the Golgi and reticulum are present in higher amount in UC samples and then are preferentially identified. Consequently, only the major proteins in the samples were detected, which could explain the lack of detection of several specific EVs proteins and the identification of a smaller number of proteins in UC samples compared to ODG fractions. Furthermore, the additional purification steps by density gradient allowed the separation of EVs from potential protein contaminants based on their flotation properties. More EV-specific proteins of interest are so selected for fragmentation and then identified by MaxQuant processing. Indeed, fractionation is one of the recommended protocols in mass spectrometry analyses to increase the detection rate in DDA [64].

We identified 354 proteins in UC sample, 242 of which overlapping with the ODG EV-rich fractions F4 to F6. Between the 112 UC-specific proteins, we did not detect well-known molecules associated with the EVs. These proteins belong to several cellular component including nucleus, cytosol and cytoplasm (histones family members, apolipoproteins, caspases, actin, tubulin and calcium/calmodulin dependent protein kinase II family members, NADH subunits, cytochrome C1...). Notably, after the density gradient treatment of the EV pellet these proteins spread in ODG EV-

poor fractions F1, F2, F3, F7 and F8 (Figure 4(a)). However, the presence of few subtypes of EVs outside of F4, F5 or F6 cannot be excluded e.g. in the lightest fraction F1 or alternatively in the densest fraction F8. Our methods to enrich these subtypes should be adapted in order to recover and characterise enough EVs to test their potential activity [65]. These data confirm the interest of the ODG protocol in removing EVs protein contaminants. NTA observations and MS analyses indicated that differential UC did not selectively enrich the sample for EVs proteins but also induced co-isolation of contaminating factors. Some proteins (e.g. actin, GAPDH, HSP family proteins) from the ExoCarta top100 list (Table 1) were identified in all the ODG fractions (F1 to F8). However, these molecules are not strictly EV-specific but may belong to other cellular components and could be involved in different cellular processes/pathways. This is why to assess strictly the presence of EV markers further studies should be performed to establish their precise cellular topology [26].

Mass spectrometry analysis permitted the identificaproteins of 644 in the ODG EVtion rich fractions F4, F5 and F6 observed by TEM (Figure 4(b)). The quantity of protein detected was correlated to the higher number of particles counted by NTA in these fractions (Figure 2(b)). In addition, we observed a considerable enhancement of EV protein signatures highlighted by the comparison with the top 100 proteins described in ExoCarta [58]. Several EV-specific proteins were detected in fractions F3 an F7, physically close to the EV-rich ones (Table 1). EVs are not supposed to be present at the theoretical density of these fractions, 1.078 g/ml and 1.223 g/ml, respectively [57]. The presence of this vesicular signature can be explained by the experimental procedure leading to a partial contamination between gradient layers during fractions collection. Tetraspanins 1, 7 and 11 were also detected in some of the enriched fractions (Supplementary Table S1). In contrast, some markers largely described in EVs like tetraspanins CD9 or CD63 or CD81 were not detected in our proteomic analyses. This can be explained by the fact that the DDA approach permits the detection of the 10 more intense ions, suggesting that these molecules may be present but not detectable regarding their abundance. To assess the presence of these tetraspanins and other markers like Alix or Hsp70 in leech microglia EVs, we performed immunoblot analyses (data not shown). The negative results obtained may be explained either by the low amount of microglial vesicles positive for these markers or by the fact that the leech epitopes are structurally different from their human or rodents homologs and are not recognised by the commercial antibodies tested.

This lack of recognition precludes us from using the commercial purification kits for EVs. This immunoprecipitation approach would not be efficient since leech microglia EVs may harbour specific tetraspanins. Interestingly, local blast for some of these markers in the homemade *Hirudo* database gave positive results, confirming the presence of these genes in leech (Supplementary Figure S1). In another hand, the proteomic analysis in the present work was sufficiently powerful to allow the characterisation of molecules impossible to detect with other conventional tools currently available.

Results here reported, demonstrate that in leech microglia-released EVs are present many of the markers generally described for mammalian vesicles. The absence of microglia-specific proteins [66] in our data (e.g. Iba1) can be explained by the fact that we focused our attention on EVs content and not on whole cell content. We identified molecules belonging to the conventional EVs cartography [64] like transmembrane (tetraspanins family, integrins), intracellular (Rab proteins), membrane trafficking (flotillin, annexin, Rho), associated to multivesicular bodies (Clathrin, ubiquitin), chaperon (Hsp family members), signalling (Arf1, EGFR, CDC42, ß catenin, 14-3-3 family), enzyme (GAPDH, Enolase, ATPase) and cytoskeletal (actin, moesin, keratins) proteins.

According to ExoCarta, mammalian microglia EVs contain 50 proteins belonging to the Top-100 list. Indeed, an EV microglial specific signature was not so far evidenced in mammals, indicating that microglial EVs appear as "classical" vesicles [7]. In ODG EV-rich fractions, we identified 539 proteins, 13 of which, underlined in Table 1, are common with the mammalian microglial EVs reported by ExoCarta. This result confirmed the presence of microglial EVs components in leech but, as observed for mammals, our study did not permit to identify the possible presence of EVs microglia-specific markers. However, we identified in leech EVs gliarin, a glial and microglial-specific intermediate filament protein [67], and neurohemerythrin, a neuroimmune factor [68], demonstrating that these vesicles contain leech neuro-specific markers. In addition, the proteomic analysis revealed the presence in leech EVs of neuronal proteins like BDNF receptor (NTRK2 or TrkB), and NCAM (e.g. fasciclin,), known to be involved in neurite outgrowth. Microglial BDNF, in particular, is considered to mediate neuropathic pain in mammals in contrast with the neuronal one that is required for inflammatory pain [69]. Its receptor TrkB is involved in development and maturation of nervous system through neuron survival, proliferation and homeostasis in general. We did not detect BDNF in leech microglial EVs, but only its receptor NTRK2. It let suppose that also in our experimental model, through EV-release, microglia is involved in BDNF/

Table 2. Nerve cell metabolic pathways from the interactome map designed by FunRich software. Genes, names and IDs of proteins identified or not detected from EVs proteomic analyses are reported in black and red, respectively.

Pathway	Genes	Protein name	Protein ID
Aven evidence		AD 2 complex subunit hote Mussin 0	
Axon guidance	CLTC, EGFR, YWHAB, CDC42, HRAS	AP-2 complex subunit beta, Myosin-9, Growth factor receptor-bound protein 2, Spectrin alpha chain, non-erythrocytic 1, Spectrin beta chain, non-erythrocytic 1, Clathrin heavy chain 1, Epidermal growth factor receptor, 14-3-3 protein beta/ alpha, Cell division control protein 42 homolog, GTPase HRas	P03010, P35379, P02993, Q13813, Q01082, Q00610, P00533, P31946, P60953, P01112
Signalling NGF	HRAS, YWHAB, CLTC, GRB2, YWHAE, AP2B1, TRAF6	GTPase Hras, 14-3-3 protein beta/alpha, Clathrin heavy chain 1, Growth factor receptor-bound protein 2, 14-3-3 protein epsilon, AP-2 complex subunit beta, TNF receptor-associated factor 6	P01112, P31946, Q00610,P62993, P62258, P63010, Q9Y4K3
TGF-B receptor signalling	HSPB1, MAPK13, YWHAZ,MAP3K3, YWHAG, GRB2, SPTBN1, SFN, MAP3K1, CTNNB1, ARRB2, TRAF6, RAN, MYC, YWHAE, YWHAB, YWHAQ, HSPA8, CDC42.	Heat shock protein beta-1, Mitogen- activated protein kinase 13, 14-3-3 protein zeta/delt, Mitogen-activated protein kinase kinase kinase 3, 14-3-3 protein gamma, Growth factor receptor- bound protein 2, Spectrin beta chain-non -erythrocytic 1, 14–3-3 protein sigma, Mitogen-activated protein kinase 1, Catenin beta-1, Beta-arrestin-2, TNF receptor-associated factor 6, GTP-binding nuclear protein Ran, Myc proto-oncogene protein, 14-3-3 protein epsilon, 14-3-3 protein beta/alpha, 14-3-3 protein theta, Heat shock cognate 71 kDa protein, Cell division control protein 42 homolog	P04792, O15264, O15264, Q99759, P61981, P62993, Q01082, P31947, Q13233, P35222, P32121, Q9Y4K3, P62826, P01106, P62258, P31946, P27348, P11142, P60953
Neuronal system	AP2B1, ACTN2, HSPA8,HRAS	AP-2 complex subunit beta, Alpha-actinin-2, Heat shock cognate 71 kDa protein, GTPase HRas	P63010, P35609, P11142, P01112
Neurotrophic	YWHAZ, YWHAG, SFN, DNM1, GRB2, HRAS, YWHAE, YWHAB, YWHAQ, CDC42	14-3-3 protein zeta/delta, 14-3-3 protein gamma, 14-3-3 protein sigma, Dynamin- 1, Growth factor receptor-bound protein 2, GTPase Hras, 14-3-3 protein epsilon, 14-3-3 protein beta/alpha, 14-3-3 protein theta, Cell division control protein 42 homolog	P63104, P61981, P31947, Q05193,P62993, P01112, P62258, P31946, P27348, P60953
NCAM signalling for neurite outgrowth	GRB2, SPTAN1, SPTBN1, HRAS, YWHAB	Growth factor receptor-bound protein 2, Spectrin alpha chain, non-erythrocytic 1, Spectrin beta chain, non-erythrocytic 1, GTPase Hras. 14-3-3 protein beta/alpha	P62993, Q13813, Q01082, P01112, P31946

TrkB signalling pathway and in microglia-neuron crosstalk. This hypothesis is supported by the presence of a gene homologous to human BDNF in a gene bank issued from leech nervous system (Supplementary Figure S1). In addition, the presence of prosaposin in rat [70] and leech microglial EVs indicates the existence of shared neurotrophic functions linked to vesicles release. Recent studies were performed on proteomic characterisation of EVs from mouse [71] and rat [70] microglia primary cultures. Some molecules characterised in these works were also evidenced in leech EVs, nevertheless most of them are associated with cytoskeleton (Actin, Tubulin, Vimentin), immune response or regulation of inflammatory processes (Galectin-3, С3, Lysozyme, GAPDH, alarmins) or other metabolic pathways Elongation (ATP synthase, factor 1-gamma, MVP). The experimental conditions applied to this study (ATP or LPS stimulation of microglia, EVs isolation techniques) make difficult a strict comparison with leech data.

Gene ontology analyses confirmed the presence of EVrelated GO term in UC samples and in ODG fractions. Nevertheless, the number of recorded genes and *p*-values were higher in density gradient purified samples. These data consolidate the higher efficiency of ODG treatment for EVs purification compared to simple UC (Figure 5).

The analyses of some proteins selected from ODG EVrich fractions by FunRich software permitted to design a map of the interactome network associated to these proteins (Supplementary Figure S2). Several pathways associated to nervous system were selected and many proteins were identified (Table 2), suggesting that leech EVs cargo, similarly to the mammal one, is involved in several metabolic processes like axon guidance, neurite outgrowth, nerve cells homeostasis or neuron-microglia crosstalk.

Taken together, these data suggest a general conservation of leech EVs in term of protein content and, more specifically, their potential involvement in events associated to nerve repair.

To assess the potential neurotrophic effect of microglial EVs, we performed *in vitro* assays on leech neurons. The growth level observed for leech neurons in primary culture is consistent with that described by Chiquet and Nicholls (1987) for this model [72]. Results showed that EVs exert a significant neurotrophic effect on neurite outgrowth compared to controls (Figure 6). These assays were performed with ODG-purified vesicles but not with those obtained from UC samples. This choice is linked to the fact that, as indicated above, UC samples contain a certain number of contaminant proteins that might interfere with neurite outgrowth.

Conclusion

Through two different isolation techniques and an exhaustive proteomic study, we characterised the protein content of leech microglial EVs. Data here presented suggest the conservation of many EVs cargo proteins throughout evolution. We demonstrated that ODG allowed the elimination of contaminants and enhanced the quality of EVs analysis. This strategy, when possible, should be applied for any "omics" analysis methods as EVs are cleared out of major contaminants. This optimisation of EVs isolation and purification is a crucial step for further studies and perform new functional assays to establish their role in neuron-microglia crosstalk during neuroinflammation and neuroregenerative processes [73]. We already demonstrated that the activated microglia sub-populations are recruited to the lesion site in leech CNS [74]. Further studies will be developed to evaluate if, during this recruitment, different EV populations with specific targeting and content are chronologically produced at the lesion.

Author's contributions

Conceived and designed the experiments: TA, CL, JV and PES. Leech dissection: TA, ARR, QL and CVC. Proteomic sampling and NTA measurement: TA. Leech databases annotation: IG, HT. Proteomic data analyses TA and SA. Electron microscopy: ASL and CS. Funding and mass spectrometry facilities: MS and IF. Manuscript redaction: TA, JV and PES. Manuscript editing: TA, FLM, CL, FD, JV and PES. All authors have given approval to the final version of the manuscript.

Acknowledgments

TA received a PhD grant from the French Research Minister delivered by Lille University for three years. Authors would like to thank specially Dr Morvane Colin, Dr Etienne Audinat and Dr Guillaume van Niel for their precious advices, Loic Brunet for TEM observation. The TEM observations were performed on a device of the BICeL-Campus CS core facility acquired through a funding from the Agence Nationale de la Recherche, ANR (10-EQPX-04-01). The Bilille platform is affiliated to the French Institute for Bioinformatics and France Genomique. BlastP computations were performed on the HPC cloud of Bilille, supported by University of Lille.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Ministère de l'Enseignement Supérieur, de la Recherche Scientifique et des Technologies de l'Information et de la Communication.

ORCID

J Vizioli () http://orcid.org/0000-0002-4310-8033 P-E Sautière () http://orcid.org/0000-0003-4974-7116

References

- Rashed MH, Bayraktar E, Helal GK, et al. Exosomes: from garbage bins to promising therapeutic targets. Int J Mol Sci. 2017;18:538.
- [2] Tkach M, Théry C. Leading edge review communication by extracellular vesicles: where we are and where we need to go. Cell. 2016;164:1226–1232.
- [3] Yuana Y, Sturk A, Nieuwland R. Extracellular vesicles in physiological and pathological conditions. Blood Rev. 2013;27:31–39.
- [4] Pegtel DM, Peferoen L, Amor S. Extracellular vesicles as modulators of cell-to-cell communication in the healthy and diseased brain. Philos Trans R Soc B Biol Sci. 2014;369.
- [5] Rajendran L, Bali J, Barr MM, et al. Emerging roles of extracellular vesicles in the nervous system. J Neurosci. 2014;34:15482–15489.
- [6] Frühbeis C, Fröhlich D, Kuo WP, et al. Extracellular vesicles as mediators of neuron-glia communication. Front Cell Neurosci. 2013;7:182.
- [7] Paolicelli RC, Bergamini G, Rajendran L. Cell-to-cell Communication by Extracellular Vesicles: focus on Microglia. Neuroscience. 2018; https://doi.org/10.1016/ j.neuroscience.2018.04.003. PMID: 29660443.
- [8] Nanou A, Coumans FAW, Van Dalum G, et al. Circulating tumor cells, tumor-derived extracellular vesicles and plasma cytokeratins in castration-resistant prostate cancer patients. Oncotarget. 2018;9:19283-19293.
- [9] Pi F, Binzel DW, Jin Lee T, et al. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression. Nat Nanotechnol. 2018;13:82–89.
- [10] Lener T, Gimona M, Aigner L, et al. Applying extracellular vesicles based therapeutics in clinical trials - An ISEV position paper. J Extracell Vesicles. 2015;4:1–31.
- [11] Van der Pol E, El. ANB, Gool RN. Recent developments in the nomenclature, presence, isolation, detection and clinical impact of extracellular vesicles. J Thromb Haemost. 2016;14:48–56.
- [12] Yáñez-Mó M, Siljander PRM, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:1–60.
- [13] Kowal J, Arras G, Colombo M, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci. 2016;113:E968–77.
- [14] Anderson JD, Johansson HJ, Graham CS, et al. comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogneesis via NFkB signaling. Stem Cell Technol Epigenetics, Genomics, Proteomics Metabonomics. 2016;601–613.
- [15] Vallejo MC, Nakayasu ES, Longo LVG, et al. Lipidomic analysis of extracellular vesicles from the pathogenic phase of Paracoccidioides brasiliensis. PLoS One. 2012;7:e39463.

- [16] Haraszti RA, Didiot MC, Sapp E, et al. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J Extracell Vesicles. 2016;5:32570.
- [17] Kreimer S, Belov AM, Ghiran I, et al. Mass-spectrometrybased molecular characterization of extracellular vesicles: lipidomics and proteomics. J Proteome Res. 2015;14:2367–2384.
- [18] Nolte'T Hoen ENM, Buermans HPJ, Waasdorp M, et al. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. 2012;40:9272–9285.
- [19] Valadi H, Ekström K, Bossios A, et al. Exosomemediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–659.
- [20] Kumar Thakur B, Zhang H, Becker A, et al. Exosomes carry double-stranded DNA 766 Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Nat Publ Gr. 2014;24:766–769.
- [21] Kahlert C, Melo SA, Protopopov A, et al. Identification of double- stranded genomic dna spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem. 2014;289:3869–3875.
- [22] van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–228.
- [23] Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015;25:364–372.
- [24] Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200:373–383.
- [25] Lötvall J, Hill AF, Hochberg F, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the international society for extracellular vesicles. J Extracell Vesicles. 2014;3:26913.
- [26] Cvjetkovic A, Jang SC, Konečná B, et al. Detailed analysis of protein topology of extracellular vesicles-evidence of unconventional membrane protein orientation. Sci Rep. 2016;6:36338.
- [27] Simpson R J, Mathivanan S. Extracellular microvesicles: the need for internationally recognised nomenclature and stringent purification criteria. J Proteomics Bioinform. 2012;05:ii–ii.
- [28] Domingues HS, Portugal CC, Socodato R, et al. Corrigendum: oligodendrocyte, astrocyte and microglia crosstalk in myelin development, damage, and repair. Front Cell Dev Biol. 2016;4:71.
- [29] Krämer-Albers E-M, Fröhlich D, Kuo WP, et al. Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation. Philos Trans R Soc B-Biological Sci. 2014;369:13.
- [30] Krämer-Albers EM, Bretz N, Tenzer S, et al. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: trophic support for axons? Proteomics - Clin Appl. 2007;1:1446–1461.
- [31] Kierdorf K, Prinz M. Microglia in steady state Katrin. J Clin Invest. 2017;127:3201–3209.

- [32] Casano AM, Peri F. Microglia: multitasking specialists of the brain. Dev Cell. 2015;32:469–477.
- [33] Li L, Lu J, Sam S, et al. The function of microglia, either neuroprotection or neurotoxicity, is determined by the equilibrium among factors released from activated microglia in vitro. Brain Res. 2007;1159:8–17.
- [34] Sonetti D, Ottaviani E, Bianchi F, et al. Microglia in invertebrate ganglia. Neurobiology. 1994;91:9180–9184.
- [35] Jahnsen JKS, Nicholls JG. Regeneration and changes in synaptic connections between individual nerve cells in the central nervous system of the leech. Proc Natl Acad Sci. 1972;69:639.
- [36] Verderio C, Muzio L, Turola E, et al. Myeloid microvesicles are a marker and therapeutic target for neuroinflammation. Ann Neurol. 2012;72:610–624.
- [37] Prada I, Furlan R, Matteoli M, et al. Classical and unconventional pathways of vesicular release in microglia. Glia. 2013;61:1003–1017.
- [38] Potolicchio I, Carven GJ, Xu X, et al. Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism1. J Immunol. 2005;175:2237–2243.
- [39] Turola E, Furlan R, Bianco F, et al. Microglial microvesicle secretion and intercellular signaling. Front Physiol. 2012;3:20129.
- [40] Le Marrec-Croq F, Drago F, Vizioli J, et al. The leech nervous system: A valuable model to study the microglia involvement in regenerative processes. Clin Dev Immunol. 2013;2013:274019.
- [41] Coggeshall RE, Fawcett DW. The fine structure of the central nervous system of the leech, hirudo medicinalis. J Neurophysiol. 1964;27:229–289.
- [42] Tahtouh M, Croq F, Vizioli J, et al. Evidence for a novel chemotactic C1q domain-containing factor in the leech nerve cord. Mol Immunol. 2009;46:523–531.
- [43] Drago F, Sautière PE, Le Marrec-Croq F, et al. Microglia of medicinal leech (Hirudo medicinalis) express a specific activation marker homologous to vertebrate ionized calcium-binding adapter molecule 1 (Iba1/alias aif-1). Dev Neurobiol. 2014;74:987–1001.
- [44] Croq F, Vizioli J, Tuzova M, et al. A homologous form of human interleukin 16 is implicated in microglia recruitment following nervous system injury in leech Hirudo medicinalis. Glia. 2010;58:1649–1662.
- [45] Kong M, Alvarez A, Valdivia A, et al. GLIA bilbao 2015: abstracts oral presentations, posters, indexes. Glia. 2015;63:E76–E469. (T08–19A, T12–13A).
- [46] The fifth international meeting of ISEV, ISEV2016, Rotterdam, The Netherlands, 4 – 7 May, 2016. J Extracell Vesicles. 2016;5:31552.
- [47] Graham JM. OptiPrep density gradient solutions for mammalian organelles. ScientificWorldJournal. 2002;2:1440–1443.
- [48] Thery C, Clayton A, Amigorena S. Isolation and characterization of exosomes from cell culture supernatants. Curr Protoc Cell Biol. 2006;Chapter 3:Unit 3.22. doi: 10.1002/0471143030.cb0322s30
- [49] Lab L In-gel digestion of proteins separated by SDS-PAGE. Available at: http://www.lamondlab.com/ newwebsite/ProtocolsforWebsite/In-geldigestion.pdf. cited 2018 Jul 19.

- [50] Hsu CC, Baker MW, Gaasterland T, et al. Top-down atmospheric ionization mass spectrometry microscopy combined with proteogenomics. Anal Chem. 2017;89:8251–8258.
- [51] Boutet E, Lieberherr D, Tognolli M, et al. UniProtKB/ Swiss-Prot. Methods Mol Biol. 2007;406:89–112.
- [52] Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol. 1990;215:403–410.
- [53] UniProtKB. Available at: https://www.uniprot.org/uni prot/. cited 2018 Jul 27.
- [54] Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367–1372.
- [55] Urgen Cox J, Neuhauser N, Michalski A, et al. Andromeda: A Peptide Search Engine Integrated into the MaxQuant Environment. J Proteome Res. 2011;10:1794–1805.
- [56] Tyanova S, Temu T, Sinitcyn P, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13:731-740.
- [57] Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–289.
- [58] Keerthikumar S, Chisanga D, Ariyaratne D, et al. ExoCarta: A web-based compendium of exosomal cargo. J Mol Biol. 2016;428:688–692.
- [59] Gardiner C, Di Vizio D, Sahoo S, et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J Extracell Vesicles. 2016;5:32945.
- [60] Tauro BJ, Greening DW, Mathias RA, et al. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods. 2012;56:293–304.
- [61] Sun Y, Huo C, Qiao Z, et al. Comparative proteomic analysis of exosomes and microvesicles in human saliva for lung cancer. J Proteome Res. 2018;17:1101–1107.
- [62] Rezeli M, Gidlöf O, Evander M, et al. Comparative proteomic analysis of extracellular vesicles isolated by acoustic trapping or differential centrifugation. Anal Chem. 2016;88:8577–8586.
- [63] Witwer KW, Buzás EI, Bemis LT, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;2:1–25.
- [64] Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003;422:198–207.
- [65] Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2019;8:1535750.
- [66] Kannaiyan N, Manrique-Hoyos N, Rossner MJ, et al. Cell type- and brain region-resolved mouse brain proteome. Nat Neurosci. 2015;18:1819–1831.
- [67] Xu Y, Bolton B, Zipser B, et al. Gliarin and macrolin, two novel intermediate filament proteins specifically

expressed in sets and subsets of glial cells in leech central nervous system. J Neurobiol. 1999;40:244-253.

- [68] Vergote D, Sautière PE, Vandenbulcke F, et al. Upregulation of neurohemerythrin expression in the central nervous system of the medicinal leech, Hirudo medicinalis, following septic injury. J Biol Chem. 2004;279:43828–43837.
- [69] Trang T, Beggs S, Salter MW. Brain-derived neurotrophic factor from microglia: a molecular substrate for neuropathic pain. Neuron Glia Biol. 2012;7:99–108.
- [70] Drago F, Lombardi M, Prada I, et al. ATP modifies the proteome of extracellular vesicles released by microglia and influences their action on astrocytes. Front Pharmacol. 2017;8:910.
- [71] Takenouchi T, Tsukimoto M, Iwamaru Y, et al. Extracellular ATP induces unconventional release of glyceraldehyde-3-phosphate dehydrogenase from microglial cells-NC-ND. Immunol Lett. 2015; 167:116–124.
- [72] Chiquet M, Nicholls JG. Neurite outgrowth and synapse formation by identified leech neurones in culture. J Exp Biol. 1987;132:191–206.
- [73] Trotta T, Panaro MA, Cianciulli A, et al. Microglia-derived extracellular vesicles in Alzheimer's Disease: a double-edged sword. Biochem Pharmacol. 2018;148:184–192.
- [74] Lefebvre C. Calreticulin contributes to C1q-dependent recruitment of microglia in the leech Hirudo medicinalis following a CNS injury. Med Sci Monit. 2014;20:644–653.

CD9

>himed1_2016_11_11_CDS_20212_168_nt;4-47,sp|P30409|CD9_CHLAE CD9 antigen OS=Chlorocebus aethiops GN=CD9 PE=2 SV=2:6-47(evalue: 0.0570688, aln_length: 44)

MSCGVTCARILLIAFTSVLSLVGLLILAAGLLTKFGSETILKPFFEKAFEGISSN

>himed1_2016_11_11_CDS_32885_678_nt;27-222,sp|P40241|CD9_RAT CD9 antigen OS=Rattus norvegicus GN=Cd9 PE=1 SV=2:23-216(evalue: 3.17178e-30, aln_length: 196) MPEHGAHGYDSIQCIMDAISSISNKNLLGCAMIGVGIWIKVHPETFSSATKDTQLEVIEK DLSSYGFSNVGAYCLIVVGSFVMIVSFLGCCGAVKESQCMLGMFFMALFVIFSALVGIGI YSIVMKEELKQEISKVLHKKLQDMKNDKSSPNVMKFIEQKFDCCGVDGGIEDFIEHSQCL LGHEKQGCVEKMYEKYSQNIVIIAGVAVGIAAVLVCFRVVVCVKS

>himmed1_2016_11_11_CDS_72719_291_nt;44-96,sp|P21926|CD9_HUMAN CD9 antigen OS=Homo sapiens GN=CD9 PE=1 SV=4:176-228(evalue: 1.57606e-05, aln_length: 53) MLLQRTFLTISFIQLQAHYYIRHTLISKRCFEYYLNVNINITFFSSKGCARKLRDLLEGQ ITLLGGVAIGIVVVKVLGLILALVLACSLRKEYQSV CD63

>himmed1_2016_11_11_CDS_01648_153_nt;14-44,sp|P08962|CD63_HUMAN CD63 antigen OS=Homo sapiens GN=CD63 PE=1 SV=2:53-83(evalue: 0.000348056, aln_length: 31) MKGQSRSTLSFNQIPLLLITSGVFVASVSFLGCCGACSESVCFLGFVGVA

>himed1_2016_11_11_CDS_14654_309_nt;4-75,sp|P28648|CD63_RAT CD63 antigen OS=Rattus norvegicus GN=Cd63 PE=1 SV=2:107-178(evalue: 7.29191e-12, aln_length: 72) MTPFSFQIQNELADSMDKTIPNYNKTDVTVTWNIIQEKLMCCGVNNYTDWEDNEYLSRTD SVPDSCCHNITKGCGYKAVTSGGVNVYKDVSIYYHCYFTLIE

>himed1_2016_11_11_CDS_15222_702_nt;4-231,sp|P08962|CD63_HUMAN CD63 antigen OS=Homo sapiens GN=CD63 PE=1 SV=2:5-236(evalue: 3.15174e-23, aln_length: 228) MTGGGVTCAQIVLTVFNVIQFLFGWLLIIAGAVTKVKAAETPGGTTAGAAIFLIVIGCIL VVVSIIGCLGAWTKNFCLLVTFSIFTAIIFLLVVIALIVAFVGRSKTDETLETGLKEMIQ WNDTSEFEKMQSLVLKLNFKCCGIHNYTDWSLNRRYSDTHNLPPSCCGSQDPTCNYDNAT IYKQGCKTFAVDALKHSLVIIGGIAAACAIVMFLAIFASAYMAHTIRGSYHAV

>himmed1_2016_11_11_CDS_20696_336_nt;5-111,sp|P08962|CD63_HUMAN CD63 antigen OS=Homo sapiens GN=CD63 PE=1 SV=2:131-237(evalue: 2.10247e-12, aln_length: 107) MIQWNDTSAFESMQSQFKCCGVNTYTDWNLNPKYNGTRTLPPSCCESHPGTCNYGDQTIY KQGCKDVLVEAVNYFLVIIGAVTAACAIVLFLAIIAAACMAHSVRTSNYSV

>himed1_2016_11_11_CDS_46890_1674_nt;73-280,sp|P28648|CD63_RAT CD63 antigen OS=Rattus norvegicus GN=Cd63 PE=1 SV=2:8-197(evalue: 2.05812e-08, aln_length: 208) MDLVGVEMPAEDLQIDEQSLNSRESEEYSNISREAENDDYNDIENPLNDESFEARFARLY DLPLNAKESTTWKLISFINFVLSMWCGVGSFAILVMYKNTDRYLRVLENYDNGHLIVILA MIGATACLTFLFGFLTSWVASTRSKRGSMRFLIYVYLGWATGLMFVSIASLIVCVVVYSL LARIFSSGFLVMMQKYKSDLNTREVIHALQADYRCCGNSNYTEWFSVDFSGEYRNTDIGF PSSCCNIVQYSKNDCVSKAAFMQANILTPYKLGCLNILKAKYQSILKYLLAIFSVVILGD CLGLSLTVSNIQASKLHDDFMASEKELLLSLKFRRDKEAKKTILYDKLQQNLKFFTPLSP ERSKEKDELKTSSNPKMPSMTKTNSDDGFSLAKGFKKLKSKLIRKSKFEPDTETLRPLVE TSDVKVENGSTMSRIILFLNLLAFIISLMGVGYVAGKYYRNISYFDIFDGYYGGVILLIT VGVYFVTALISVAGMCWSVINILKIAQESLEVLLHAYIWWTAGLFVMQICVILMANSASE NIDDIFKVFFDFIKIIF

>himmed1_2016_11_11_CDS_48893_840_nt;122-251,sp|P28648|CD63_RAT CD63 antigen OS=Rattus norvegicus GN=Cd63 PE=1 SV=2:115-229(evalue: 6.2017e-08, aln_length: 130)

MAFEESAQMSVVVVIKVLLAIFLLLISVVSSIAYGRFKEFHILLPKFDDGELLGYVIISG FIGTIMEGYGSVVYYLQCDYALKPTIRPSIDILVVWDVAMSLKFASSAVILFYCHLNSGY MFSDGFFVAMSKYRTDEKIRSLLSVIHVTYGCCGNYNYSEWYKVNWRASTSEHVVGFPES CCNKMAAQTLNDMCIAEIPYQEMSKLLPTEVGCLELLRWWYKFYMFSLASLFSVVAFIQS LSLILAGCIMSRTSNIHQDENEKLLQHSAILQLLYRPDL

>himmed1_2016_11_11_CDS_72183_291_nt;9-88,sp|P28648|CD63_RAT CD63 antigen OS=Rattus norvegicus GN=Cd63 PE=1 SV=2:87-168(evalue: 6.73667e-09, aln_length: 80) MLNFLSLIGLFLFFFVLFIVGIFLMGYRERLRLAWMKVMRDAMKEYSVNLNTKVLVDKIQ FEHRCCGAAGHEDWHKTPWLRSGTYPNDENYEDYLA

TSG101

>himmed1_2016_11_11_CDS_48612_363_nt;1-119,sp|Q6IRE4|TS101_RAT Tumor susceptibility gene 101 protein OS=Rattus norvegicus GN=Tsg101 PE=1 SV=1:1-119(evalue: 2.95487e-44, aln_length: 119) MASHEAFLRAALAKYRYHEETKNEIMKIIKSFSDLRPCTNNYVHNNGSTEELVCLEGTIP VTYKGKVYNIPICIYLVLTHPYNPPIIYVKPTPSMQIKPGKHVDTSGRVYLPYLHEWKHV

>himed1_2016_11_11_CDS_48844_432_nt;4-143,sp|Q99816|TS101_HUMAN Tumor susceptibility gene 101 protein OS=Homo sapiens GN=TSG101 PE=1 SV=2:250-390(evalue: 1.32348e-45, aln_length: 140) MALKAEMESLKTTQEDLEKGRHKLDNMLERIEKEQSKLESDMRLLQARDEEISKTLSKMK MSEEVDLDDMINPTAPLYKQILNAYAEEQSIDDAIYYLGEALRKEVIELDVFLKQVRELS RKQFLLRMLINKCRHKAGLPEIY

>himed1_2016_11_11_CDS_49518_213_nt;1-57,sp|Q61187|TS101_MOUSE Tumor susceptibility gene 101 protein OS=Mus musculus GN=Tsg101 PE=1 SV=2:131-186(evalue: 0.00150896, aln_length: 57) MAIVFGEEPPVFARPPGAIQPQRPPYPTNTAMPTPSFNRQPYPPSTQSFYPPTSTGFAQA NAQGPFSELH

HSP70

 $\label{eq:hirmed1_2016_11_11_CDS_18531_861_nt; 1-256, sp|O43301|HS12A_HUMAN \ Heat \ shock \ 70 \ kDa \ protein \ 12A \ OS=Homo \ sapiens \ GN=HSPA12A \ PE=1 \ SV=2:441-674 \ (evalue: \ 8.44528e-83, \ aln_length: \ 256 \)$

MRLMPECMNRLFQPTLDNITVAIANVLNQPDVSGVKHIFLVGGFAESPMLQQEIRKNFAHQARILIPTDV SLTILKGAVLYGIDPSIVVIRKSRLTYGLGVLNRFVGGKHPESKKAMKDGVPWCVDVFDHLVLADQSV ALGSSVIRSYTPAGPSQKFSLFHIYCTENRDVEYVTDNGVVKCGTLRLDLDDYQWELETSPSRPVSQNL HDAEASPVVDGSKRREIQARLTFGDTEIKIIALDVATGNYVRATLDFLNNFTHERITHKEHDQASESCKS ATDDLLNAS

BDNF

comp10900_c0_seq1len=1360path=[1340:0-1359]:

MKPTEFLHSWLLLLIFGVCHSIKEKDHDYSDGVFGRQEKLSPRRFENIYPLDFSGEYLSDQPADNFLETP LNLSGYPLKNASSRMKSGRKKGRKSTQSMANQSANTRRKQGKNVRIQTKGRFRIKSKDLDFLPGFGRI AQRSCPTKYNWLTLERAINIDNSRVDVYQPHVHTLDGLENFSQTFFIESCLNDVGHRDCPGCCKGIDHNI YSSSCKQRMSYVQALVSLPGSGEFFWSHIKVNSSCVCEFALDQP

Current Gene List: UC sample Current Background: Homo sapiens 245 DAVID IDs 92 chart records

Term	Count	P-Value
myelin sheath	60	7,2E-73
extracellular exosome	140	3,8E-53
mitochondrion	72	8,4E-26
mitochondrial inner membrane	39	1,3E-20
mitochondrial matrix	30	2,9E-16
membrane	74	1,1E-14
melanosome	17	2,4E-13
extracellular matrix	22	3,3E-10
focal adhesion	25	3,3E-10
mitochondrial respiratory chain complex I	11	6,0E-10
plasma membrane	96	1,0E-9
cytosol	82	2,5E-9
mitochondrial proton-transporting ATP synthase complex	8	5,7E-9
cell-cell adherens junction	21	9,1E-9
extracellular vesicle	10	1,4E-8
basolateral plasma membrane	15	1,0E-7
sarcolemma	10	1,6E-6
sodium:potassium-exchanging ATPase complex	5	8,6E-6
T-tubule	7	8,8E-6
mitochondrial respiratory chain complex III	5	1,8E-5
cortical actin cytoskeleton	7	1,9E-5
apical plasma membrane	15	2,9E-5
pyruvate dehydrogenase complex	4	4,2E-5
costamere	5	9,3E-5
protein complex	17	1,0E-4
caveola	7	2,0E-4
neuron projection	12	2,9E-4
intercalated disc	6	2,9E-4
mitochondrial nucleoid	6	2,9E-4
extracellular space	34	3,2E-4
cytoskeleton	15	3,7E-4
membrane raft	11	3,8E-4
intracellular membrane-bounded organelle	19	3,9E-4
mitochondrial proton-transporting ATP synthase complex, coupling		
factor F(o)	4	4,4E-4
neuronal cell body	13	9,0E-4
lysosomal membrane	12	9,6E-4
proton-transporting ATP synthase complex, catalytic core F(1)	3	9,9E-4
mitochondrial respiratory chain complex II, succinate dehydrogenase		
complex (ubiquinone)	3	9,9E-4
endocytic vesicle lumen	4	1,1E-3
terminal bouton	6	1,3E-3
mitochondrial membrane	7	1,4E-3
oxoglutarate dehydrogenase complex	3	1,6E-3
phosphopyruvate hydratase complex	3	2,4E-3
chromaffin granule membrane	3	2,4E-3

axon	10	2,6E-3
M band	4	3,2E-3
sarcoplasm	3	3,4E-3
spectrin-associated cytoskeleton	3	4,5E-3
proton-transporting V-type ATPase, V1 domain	3	4,5E-3
cell surface	16	5,0E-3
spectrin	3	5,7E-3
vesicle	7	6,6E-3
perinuclear region of cytoplasm	17	7,5E-3
actin cytoskeleton	9	7,8E-3
endoplasmic reticulum chaperone complex	3	8,6E-3
dense core granule	3	8,6E-3
cell	6	9,9E-3
endosome membrane	8	1,1E-2
perikaryon	6	1,2E-2
dendrite	11	1,3E-2
mitochondrial respiratory chain	3	1,4E-2
cell-cell contact zone	3	2,0E-2
cell-cell junction	7	2,5E-2
respiratory chain complex II	2	2,6E-2
midbody	6	2,7E-2
respiratory chain	3	2,7E-2
endosome	8	2,8E-2
early endosome	8	3,1E-2
synaptic vesicle	5	3,2E-2
neuromuscular junction	4	3,5E-2
endoplasmic reticulum lumen	7	4,0E-2
phagocytic vesicle membrane	4	4,1E-2
smooth endoplasmic reticulum	3	4,5E-2
intermediate-density lipoprotein particle	2	5,1E-2
microtubule	9	5,1E-2
lipid particle	4	5,5E-2
nuclear envelope	6	5,7E-2
postsynaptic membrane	7	5,8E-2
endoplasmic reticulum-Golgi intermediate compartment	4	5,9E-2
Golgi apparatus	18	5,9E-2
intermediate filament	5	6,0E-2
proton-transporting two-sector ATPase complex	2	6,3E-2
Z disc	5	6,8E-2
COP9 signalosome	3	7,6E-2
axon cytoplasm	3	7,6E-2
cytoplasm	79	8,4E-2
dense body	2	8,8E-2
sarcomere	3	9,1E-2
ruffle membrane	4	9,1E-2
lysosomal lumen	4	9,9E-2
clathrin-sculpted gamma-aminobutyric acid transport vesicle	-	0.07.5
membrane	2	9,9E-2
MICOS complex	2	9,9E-2

Current Gene List: EV-rich fractions (F4, F5 and F6)

Current Background: Homo sapiens

548 DAVID IDs

126 chart records

Term	Count	P-Value
extracellular exosome	342	4,9E-158
myelin sheath	70	1,2E-66
cytosol	226	2,3E-43
extracellular matrix	53	6,7E-27
mitochondrion	112	1,8E-26
cell-cell adherens junction	54	6,4E-26
focal adhesion	58	4,0E-25
membrane	137	3,0E-20
melanosome	27	2,5E-18
nucleosome	24	8,8E-16
mitochondrial matrix	41	3,5E-15
cytoplasm	224	8,6E-14
proteasome core complex	12	1,9E-12
extracellular space	84	4,9E-12
nuclear nucleosome	15	7,6E-12
cell body	17	1,2E-11
mitochondrial inner membrane	41	5,7E-11
proteasome core complex, alpha-subunit complex	8	9,8E-11
desmosome	11	3,6E-10
zona pellucida receptor complex	8	4,3E-10
chaperonin-containing T-complex	8	4,3E-10
proteasome complex	15	7,7E-10
cytoskeleton	33	1,7E-8
brush border	13	8,0E-8
blood microparticle	19	2,5E-7
mitochondrial nucleoid	11	3,4E-7
cell-cell junction	19	1,6E-6
actin filament	12	1,6E-6
perinuclear region of cytoplasm	38	1,3E-5
vesicle	15	1,4E-5
stress fiber	10	1,6E-5
cortical actin cytoskeleton	9	2,1E-5
actin cytoskeleton	19	4,2E-5
basolateral plasma membrane	17	4,6E-5
cytoplasmic ribonucleoprotein granule	7	5,1E-5
endocytic vesicle lumen	6	5,6E-5
extracellular vesicle	9	6,6E-5
muscle thin filament tropomyosin	4	8,4E-5
lipid particle	10	8,5E-5
lysosomal membrane	21	9,1E-5
fascia adherens	5	1,1E-4
intracellular ribonucleoprotein complex	14	1,1E-4
endoplasmic reticulum chaperone complex	5	1,7E-4
nucleus	189	2,0E-4

ł

membrane raft	17	2,2E-4
cornified envelope	8	2,6E-4
mitochondrial membrane	11	2,9E-4
cortical cytoskeleton	6	2,9E-4
pyruvate dehydrogenase complex	4	4,0E-4
filopodium	9	7,9E-4
midbody	12	9,8E-4
hemidesmosome	4	1,1E-3
microtubule	20	1,2E-3
spectrin	4	1,6E-3
F-actin capping protein complex	4	1,6E-3
costamere	5	1,7E-3
myosin II filament	3	2,3E-3
mitochondrial proton-transporting ATP synthase complex	5	2,4E-3
sarcolemma	9	2,5E-3
neuron projection	16	2,8E-3
protein complex	23	2,9E-3
nuclear chromatin	14	3,0E-3
lateral plasma membrane	7	3,4E-3
ruffle	9	3,6E-3
cell periphery	6	4,3E-3
mitochondrial respiratory chain complex II, succinate dehydrogenase complex	_	
(ubiquinone)	3	4,5E-3
eukaryotic translation elongation factor 1 complex	3	4,5E-3
plasma membrane	141	4,8E-3
lamellipodium	12	5,3E-3
Z disc	10	5,8E-3
oxoglutarate dehydrogenase complex	3	7,3E-3
intercalated disc	6	8,0E-3
cytoplasmic vesicle membrane	10	8,8E-3
filamentous actin	5	1,0E-2
phosphopyruvate hydratase complex	3	1,1E-2
clathrin coat of trans-Golgi network vesicle	3	1,1E-2
pseudopodium	4	1,1E-2
intermediate filament	9	1,4E-2
myosin II complex	3	1,5E-2
COP9 signalosome	5	1,6E-2
cell projection	7	1,8E-2
proton-transporting V-type ATPase, V1 domain	3	1,9E-2
spectrin-associated cytoskeleton	3	1,9E-2
T-tubule	5	2,1E-2
sarcomere	5	2,3E-2
82	3	2,5E-2
M band	4	2,5E-2
oligosaccharyltransferase complex	3	3,0E-2
apical plasma membrane	15	3,4E-2
smooth endoplasmic reticulum	4	3,5E-2
membrane coat	4	3,5E-2
uropod	3	3,6E-2
sodium:potassium-exchanging ATPase complex	3	3,6E-2
peroxisomal matrix	5	3,9E-2
cleavage furrow	5	4,1E-2

actomyosin	3	4,3E-2
endolysosome membrane	3	4,3E-2
Arp2/3 protein complex	3	4,3E-2
mitochondrial respiratory chain complex I	5	4,7E-2
axon	12	4,7E-2
myosin complex	5	5,0E-2
rough endoplasmic reticulum	5	5,3E-2
respiratory chain complex II	2	5,5E-2
actomyosin, actin portion	2	5,5E-2
proteasome storage granule	2	5,5E-2
intermediate filament cytoskeleton	5	5,7E-2
mitochondrial outer membrane	9	5,7E-2
cell	7	6,1E-2
dendritic spine	7	6,1E-2
endocytic vesicle	5	6,3E-2
intracellular membrane-bounded organelle	23	6,5E-2
clathrin-coated pit	5	6,7E-2
peroxisome	7	7,1E-2
axolemma	3	7,2E-2
external side of plasma membrane	11	7,5E-2
cell-cell contact zone	3	8,0E-2
ciliary pocket membrane	2	8,1E-2
cuticular plate	2	8,1E-2
organelle membrane contact site	2	8,1E-2
Myb complex	2	8,1E-2
monomeric IgA immunoglobulin complex	2	8,1E-2
secretory dimeric IgA immunoglobulin complex	2	8,1E-2
secretory IgA immunoglobulin complex	2	8,1E-2
coated vesicle	2	8,1E-2
cell surface	22	8,2E-2
polysome	4	8,9E-2

Supplementary Figure S2. Gene Ontology analysis of interactions between selected identified protein in ODG EV-rich fractions by FunRich software. Network shows interactions (blue lines) between gene of identified proteins from string database (red) and software-added genes (green) of proteins generally involved in these interactions in mammals.

PUBLICATION 4

Characterization of immune cell-derived extracellular vesicles: functional impact on cell environment.

<u>Quentin Lemaire</u>, Marie Duhamel, Antonella Raffo-Romero, Michel Salzet, Christophe Lefebvre

Article soumis à *Journal of Visualized Experiments* (JoVE) le 11 avril 2019, resoumis après demande de révisions le 31 mai

<u>Résumé</u>

Dans cette étude, nous avons souhaité établir les bases méthodologiques d'une seconde approche permettant l'isolement de VEs à partir de cellules microgliales ou de macrophages. A partir de cultures primaires de cellules microgliales de sangsue, nous avions préalablement constaté que le couplage de l'UC à la chromatographie d'exclusion stérique (SEC) permettait d'isoler davantage de nanoparticules que la méthode UC-ODG. Sans pour autant comparer de façon approfondie les deux approches UC-ODG et UC-SEC, le rendement légèrement plus important mais aussi la rapidité de réalisation de la procédure UC-SEC ont suscité notre intérêt. Afin de présenter les bienfaits de cette démarche expérimentale dans un article de vulgarisation, nous l'avons développée à partir de cultures primaires de microglie et de macrophage de rat et nous y avons proposé une étape de validation systématique par analyse protéomique non ciblée et à grande échelle. Les expériences présentées à titre d'exemple dans ce manuscrit, pour démontrer l'intérêt de cette approche, ont concerné l'analyse des VEs d'origine microgliale de rat et non d'origine macrophagique. Les macrophages ont été uniquement utilisés pour montrer l'efficacité biologique de leurs VEs dans un contexte de dialogue avec des cellules gliomales, ce qui supporte l'idée qu'une réponse immunitaire soit médiée par les VEs.

Sur un plan méthodologique, les culots obtenus par UC et qui renferment les VEs sont repris en solution puis déposés sur une colonne SEC contenant une phase stationnaire de sepharose 2B. L'élution des produits est effectuée dans 20 fractions successives de 250 µL. Chaque fraction SEC est ensuite analysée par NTA de façon à suggérer les zones d'élution vésiculaires. Les résultats montrent un enrichissement en nombre de nanoparticules dans 3 fractions consécutives (F5, F6 et F7) comparées aux précédentes (F1-F4) et aux suivantes (F8-F20). Cette

159

séparation n'empêche pas la possibilité que les fractions F1-F4 et F8-F20 puissent renfermer une faible concentration de VEs, ni même que les fractions potentiellement riches en VEs (F5-F7) puissent contenir des molécules contaminantes. Pour évaluer si des molécules libres peuvent être co-isolées dans les fractions F5, F6 et F7 riches en VEs, nous avons renouvelé la même expérience en ajoutant des standards peptidiques à un culot de VEs issu de l'étape d'ultracentrifugation. Cette préparation a été de nouveau séparée en utilisant la procédure SEC et chaque fraction a été analysée par spectrométrie de masse MALDI (pour Matrix Assisted Laser Desorption Ionisation) afin de détecter les fractions SEC dans lesquelles les standards connus ont été élués. En raison de la gamme de masse, seuls les produits ionisés des standards peptidiques ont été suivis dans cette analyse. Les résultats ont montré que ces protéines solubles issues de l'échantillon biologique seraient éluées dans les mêmes fractions (F10-F20), en dehors de celles qui sont spécifiques aux VEs (F5-F7). Ces résultats ont confirmé l'intérêt de ce couplage UC-SEC pour l'isolement des VEs vis-à-vis des composés non vésiculaires.

En respectant le comptage de nanoparticules obtenu par NTA, les expériences suivantes ont utilisé les fractions SEC selon trois pools d'échantillons de façon à d'abord réduire la durée des analyses moléculaires et simplifier ensuite le nombre d'échantillons pour les études fonctionnelles *in vitro*. Ce regroupement a également été justifié par la difficulté à détecter le plus efficacement possible les composés moléculaires issus de chaque fraction SEC indépendante en raison de leur faible concentration. Les fractions F1 à F4 ont été regroupées en un échantillon appelé 1F-EV-, les fractions F5-F7 ont été regroupées en 2F-EV+ et les fractions F8-F20 en 3F-EV-. Les analyses préliminaires de ces 3 échantillons par western-blot ont permis de mettre en évidence la présence d'un marqueur vésiculaire, la molécule HSP-90 dans 2F-EV+ alors qu'il est absent dans 1F-EV- et 3F-EV-. Pour vérifier l'isolement des VEs, les trois échantillons ont été observés en microscopie électronique. Seul l'échantillon 2F-EV+ a permis l'observation de VEs dans une gamme de taille comprise entre 100 et 400 nm. Les deux autres échantillons n'ont pas permis d'observer de VEs (non présenté).

Ensuite, je me suis intéressé aux contenus protéiques des trois échantillons grâce à une analyse protéomique par nLC-MS/MS. Les résultats ont permis d'identifier des protéines dans les 3 échantillons 1F-EV-, 2F-EV+ et 3F-EV- avec 19, 541 et 124 protéines respectivement. La majorité des protéines identifiées se trouve donc dans 2F-EV+. En fonction de l'identité de

160

chaque molécule, il a été possible de définir les signatures protéiques exclusives à chaque échantillon ainsi que les signatures communes entre 1F-EV- et 2F-EV+, et entre 2F-EV+ et 3F-EV-. Concernant les signatures communes, 19 protéines sont partagées par 1F-EV- et 2F-EV+ et 113 protéines sont partagées par 2F-EV+ et 3F-EV-. Notre approche protéomique permet d'établir une quantification relative de chaque molécule entre les échantillons. Les résultats montrent que les protéines communes entre 1F-EV- et 2F-EV+ sont toutes surreprésentées dans 2F-EV+ et que les protéines communes entre 2F-EV+ et 3F-EV- sont très majoritairement surreprésentées dans 2F-EV+ (108/113 protéines). Seules 5 protéines communes sont plus abondantes dans 3F-EV-. Dans le but de déterminer si les protéines identifiées sont bien connues pour être associées aux VEs, nous avons d'abord, dans chaque échantillon indépendant, cumulé les signatures protéiques exclusives avec les protéines communes à l'autre échantillon mais uniquement celles qui sont surreprésentées. En d'autres termes, cela signifie dans cette expérience que l'échantillon 1F-EV- ne contient aucune molécule (ni exclusivité ni surreprésentation), que 2F-EV+ en contient 536 (428 exclusives et 108 surreprésentées par rapport à 3F-EV-) et enfin que 3F-EV- en contient 16 (11 exclusives et 5 surreprésentées par rapport à 2F-EV+). Ensuite, ces signatures ont été comparées au top 100 de la banque protéique ExoCarta qui référencie les 100 protéines les plus identifiées dans les VEs selon la littérature. Ainsi, en analysant les 536 protéines de l'échantillon 2F-EV+, les résultats ont montré la présence de 86 des 100 protéines les plus référencées dans ExoCarta. Il est intéressant de noter qu'aucune protéine de ce top 100 n'a été identifiée dans les 16 protéines de l'échantillon 3F-EV-. Cette approche permet ainsi de façon très robuste de valider l'utilisation de nos échantillons en tant que vésicules extracellulaires. La question d'un choix arbitraire de quelques anticorps dirigés contre des marqueurs vésiculaires est remplacée par une analyse exhaustive des signatures protéiques. Enfin, la prédiction des interactions protéiques et leur association à des processus biologiques permettent d'appréhender des fonctions probables de nos extraits de VEs. Les résultats ont suggéré la présence dans la fraction 2F-EV+ de médiateurs immunitaires (21%), de protéines impliquées dans le contrôle de la réponse inflammatoire (4,1%). Les protéines identifiées en 2F-EV+ ont également été associées au développement neuronal (16,8%), à la différenciation neuronale (5%) et au contrôle de la mort neuronale (3,8%). Ces prédictions de voies biologiques vont de pair avec la capacité des cellules microgliales à interagir avec l'environnement neuronal. Afin d'illustrer là encore le rôle important des VEs dans une telle communication, les fonctions neurotrophiques des VEs dérivées de la microglie de rat ont été étudiées sur la croissance neuritique de neurones primaires de rat. Les VEs isolées par cette méthode présentent un effet positif sur la croissance neuritique. Dans un autre contexte visant à montrer le rôle immunitaire supporté par les VEs, nous avons également étudié les effets de VEs dérivées d'une culture primaire de macrophages en présence de cellules tumorales gliomales. Les résultats montrent que les VEs dérivées des macrophages réduisent à elles seules de manière significative l'invasion des cellules tumorales. Ce résultat suggère que les macrophages peuvent produire des VEs contenant des facteurs anti-tumoraux et/ou anti-invasifs affectant la croissance du gliome. Cette publication, une fois filmée, aura pour objectif de proposer une méthodologie expérimentale permettant de mieux comprendre les fonctions immunitaires portées par les vésicules extracellulaires d'origine microgliale et/ou macrophagique dans divers contextes pathologiques du système nerveux.

Les passages de texte surlignés en jaune dans ce manuscrit constituent les étapes expérimentales susceptibles d'être filmées par les équipes de production de *Journal of Visualized Experiments*.

1	TITLE:					
2	Microglia/macrophages-derived Extracellular Vesicles as mediators of neuroinflammatory					
3	state.					
4						
5	AUTHORS AND AFFILIATIONS:					
6	Quentin Lemaire ¹ , Marie Du	uhamel ¹ , Antonella Raffo-Romero ¹ , Michel Salzet ¹ , Christophe				
7	Lefebvre ¹ *					
8						
9	¹ U1192-Laboratoire Protéo	mique, Réponse Inflammatoire et Spectrométrie de Masse				
10	(PRISM), Univ. Lille, INSERM	1, F-59000 Lille, France				
11						
12	Email addresses of co-authors	ors:				
13	Quentin Lemaire	(<u>quentin.lemaire@univ-lille.fr</u>)				
14	Marie Duhamel	(<u>marie.duhamel@univ-lille.fr</u>)				
15	Antonella Raffo-Romero	(antonella.raffo-romero@univ-lille.fr)				
16	Michel Salzet	(<u>michel.salzet@univ-lille.fr</u>)				
17						
18	Corresponding author:					
19	Christophe Lefebvre	(christophe.lefebvre@univ-lille.fr)				
20						
21	KEYWORDS:					
22	Neuroinflammation, microglia, mag	crophages, neuron, glioma cells, extracellular vesicles				
23						
24	SUMMARY:					
25	The present report highlights of	chronological requirements for Extracellular Vesicle (EV)				
26	enrichment from microglia or macrophages and their biological influences in the field of					
27	neuroinflammation. Microglia/mac	crophages-derived EVs are functionally evaluated on recipient				
28	cells (neurons or C6 glioma cells) a	s mediators of neuroinflammatory state in neurite outgrowth				
29	or glioma cell invasion respectively	•				
30	ADGTRACT					
31	ABSTRACT:					
32	The neuroinflammatory state of th	le Central Nervous System (CNS) is under the main control of				
33	microgliai cells, the resident immur	te cells in the brain, whose responses are still examined in situ				
34 25	nowadays using phenotypic marke	rs and/or cytokine secretions. It is now accepted that another				
35	approach to understanding microglial functions, depending on their environment, is the					
30 27	collection and enrichment of their extracellular vesicles in order to identify their contents but					
38	also to evaluate their biological effect on recipient cells. Extracellular vesicles (Evs) comprise a wide range of vesicles ranging from 20 to 1000 pm described as evasomes or microvesicles.					
39	according to their hiogenesis and	average size. It is difficult to classify FVs in both subfamilies				
	according to their biogenesis and	average size. It is annealt to classify Evs in both subrammes				

once they have been collected and enriched. Therefore, we will only use the term of EVs in thepresent report. The present data highlight chronological requirements for EV enrichment from

42 microglia cells including ultracentrifugation and Size-Exclusion Chromatography (SEC) steps. The

43 biochemical composition using EV markers was combined to electron microscopy observations

44 to achieve EV identity. Finally, microglia-derived EVs were functionally evaluated on recipient

45 cells (neurons or C6 glioma cells) as mediators of neuroinflammatory state in neurite outgrowth 46 or glioma cell invasion assays respectively. This approach makes it possible to evaluate the 47 microglia functions mediated by their EVs but also to better understand the molecular bases of 48 such communication. This deciphering will allow considering the transformation of natural 49 vesicles and/or the *in vitro* preparation of therapeutic vesicles in order to better control the 50 neuroinflammatory state involved in the CNS pathologies.

51

52 INTRODUCTION:

53 Many neuropathologies are related to the neuro-inflammatory state. It is a complex mechanism 54 that is increasingly considered, but still poorly understood because immune processes are diverse 55 and dependent on cell environment. Indeed, the CNS disorders do not systematically involve the 56 same activation signals and immune cell populations so that the pro- or anti-inflammatory 57 responses are difficult to evaluate as causes as well as consequences of pathologies. The brain 58 resident macrophages called "microglia" appear to be at the interface between nervous and 59 immune system¹. The microglia cells communicate with neurons and neuron-derived glial cells, as astrocytes and oligodendrocytes². Several recent studies have demonstrated that microglia 60 are involved in CNS development, tissue homeostasis but also in the inflammatory state 61 associated with neurodegenerative diseases ^{3, 4}. In both healthy or pathological conditions, they 62 can interact with neuronal and non-neuronal elements ⁵. Microglia have been described for the 63 first time in 1919 by del Rio-Hortega ⁶. Those cells have a myeloid origin and derived from the 64 yolk sac during primitive hematopoiesis whereas blood macrophages derived from the fetal liver 65 during definitive hematopoiesis ⁷. Of interest, whether integrity of blood brain barrier is 66 67 compromised, blood macrophages can infiltrate the nervous tissues. In case of tumor growth, 68 the infiltration of bone marrow-derived macrophages (BMDM) is also involved throughout 69 tumor-dependent angiogenesis mechanisms. Thus, BMDM and brain microglia are both 70 represented within glioblastoma multiforme specimens. The cancer cells exert significant 71 influence on microglia/macrophages leading to immunosuppressive properties and tumor 72 growth⁸. At this moment, in vivo discrimination of resident microglia vs. blood macrophage 73 functions is a great challenge to understand the neuro-inflammatory balance ⁹. Even if the brain 74 integrity is maintained, microglia cells exhibit a large panel of functions according to their 75 microenvironment. Although it is possible in the brain to more accurately monitor resident microglial populations through the discovery of many markers ^{10–14}, it remains difficult to 76 77 understand their functions as their level of maturity and activation signals are diverse ^{15, 16}. The 78 study of RNA signatures revealed that the heterogeneity of microglia subpopulations persists 79 throughout the lifespan and even more during aging ¹⁶. Microglia-associated molecular 80 signatures are thus interesting to apprehend microglia functions in physiological conditions. In 81 this regard, the cell-cell communication between microglia/macrophages and neighbor cells 82 needs to be studied through all mechanisms, including cell-to-cell contact, secreted mediators in 83 paracrine processes and the release of extracellular vesicles (EVs) allowing a longer distance 84 communication. This last pathway is more and more studied in the regulation of neuroinflammation in healthy as well as pathological conditions ^{17, 18}. Two populations of EVs, 85 86 exosomes and microvesicles, can be taken into account. They present different biogenesis and 87 size ranges. The exosomes are about 30-150 nm vesicles which are generated from the 88 endosomal system and secreted during fusion of multivesicular bodies (MVB) with the plasma
membrane. The microvesicles are 100-1000 nm vesicles which are generated by an outward 89 budding from the plasma membrane of the cell ¹⁹. EV-associated communication in the CNS 90 represents an ancestral mechanism since studies showed their involvement in invertebrate 91 species including nematodes, insects or annelids ^{20, 21}. Moreover, the results showing that EVs 92 93 can communicate with cells from different species demonstrate this mechanism to be a key-lock 94 system, based first on surface-molecule recognition between vesicles and recipient cells then allowing the uptake of mediators²¹. Indeed, EVs contain many molecules like proteins (enzymes, 95 signal transduction, biogenesis factor), lipids (ceramide, cholesterol...) or some nucleic acids 96 97 (DNA, mRNA or miRNAs) acting as direct or indirect regulators of the recipient cell activities ¹⁹. 98 That is why, methodological developments were also performed from primary culture of 99 microglia to enrich EVs and fully characterize the protein contents leading to more reliable

100 protein signatures from microglia EVs ^{22, 23}.

101 First studies showed the release of exosomes from primary cultured rat microglia as an inducible 102 mechanism following a Wnt3a- or serotonin-dependent activation ^{24, 25}. Functionally in the CNS, 103 microglia-derived EVs regulate synaptic vesicle release by presynaptic terminals in neurons contributing to the control of neuronal excitability ^{26, 27}. Microglia/macrophages-derived EVs 104 would also propagate cytokines-mediated inflammatory response in large brain regions ^{28, 29}. 105 Importantly, the diverse ligands for Toll-Like Receptor family might activate specific productions 106 of EVs in microglia ³⁰. For example, in vitro studies show that LPS-activated microglia BV2 cell 107 lines produce differential EV contents including pro-inflammatory cytokines ³¹. Therefore, the 108 109 functional diversity of microglia/macrophages subpopulations might be evaluated through their 110 own EV signatures. But recent in vivo studies showed either anti- or pro-inflammatory mediators 111 in microglia/macrophages-derived EVs depending on the time-course of immune responses after a traumatic brain injury (TBI) ^{32, 33}. Thus, neurotoxic or neuroprotective microglia/macrophages 112 may be alternatively or simultaneously activated in a brain region-dependent manner. The 113 114 productions of EVs that support opposite functions illustrate together the complexity of the 115 microglia/macrophages microenvironment but also the nature of the cells used (cell lines vs. 116 primary culture) for EV studies and the type of enriched vesicles which are characterized on a 117 molecular level. By taking into account changes in the microenvironment, the pro- or antiinflammatory properties of microglia/macrophages result in a different EV production. 118 119 Importantly, microglia/macrophages are also sensitive to a vesicular environment coming from 120 neighboring cells. For example, immune responses in CNS tumors, especially in glioblastoma 121 multiforme, are not only supported by microglia cells as the blood brain barrier is reorganized through angiogenic processes and the presence of lymphatic vessels ^{34, 35}. Therefore, resident 122 microglia are joined by BMDM infiltrating the brain tumor ³⁶. As previously described, microglia 123 124 and BMDM present a different ontogenesis leading to a distinct relationship with glioma cells ⁷, 125 ³⁷. Moreover, the coexistence of microglia and infiltrated BMDM creates a specific tumor 126 microenvironment which needs to be better understood. Recent studies showed that BMDM 127 migrating to the tumor site gather the central area of glioblastoma triggering immunosuppressive 128 functions whereas microglia cells only present low immunosuppressive effects and stay at the 129 marginal region of the tumor ³⁸. Moreover, glioblastoma-derived EVs can also interfere with the microglia/macrophages phenotype to a more favorable immune environment that is tolerant to 130 tumor development ³⁹⁻⁴¹. Therefore, as showed in numerous tumors, EV-dependent 131 132 communication is organized in glioma cells to orientate microglia/macrophages functions. But

133	the influence of microglia/macrophages-derived EVs on cancer cell invasion is still unclear. As			
134	previously described, we developed a reliable method to evaluate the functional properties of			
135	microglia/macrophages-derived EVs on a 3D spheroid glioma culture ²³ . In the present report, we			
136	propose to evaluate the effect of microglia/macrophage-derived EVs on the development of			
137	glioma cell aggregates. The preliminary results showed that these EVs significantly reduce tumor			
138	invasion.			
139	Taken together, we propose the use of microglia/macrophages-derived EVs to interact with			
140	neurons and/or glioma cells. The beneficial effects and the molecular deciphering of EV contents			
141	would suggest at this moment their possible manipulation and use as therapeutic agents in brain			
142	disorders.			
143				
144	PROTOCOL:			
145				
146	1. Primary culture of microglia/macrophages			
147				
148	1.1. Primary culture of microglia			
149				
150	1.1.1. Culture a commercial rat primary microglia (2 millions of cells) (see table of materials) in			
151	DMEM supplemented with 10% of exosome-free serum, 100 units of penicillin and 100 μg			
152	streptomycin and 9.0 g/L of glucose at 37 °C/5% CO2.			
153				
154	1.1.2. Collect the conditioned medium after 48h of culture and proceed to the isolation of EVs.			
155				
156	1.2. Primary culture of macrophages.			
157				
158	1.2.1. Culture a commercial rat primary macrophages (1 millions of cells) in the medium provided			
159	by the manufacturer (see table of materials) at 37 °C/5% CO2.			
160				
161	1.2.2. Collect the conditioned medium after 24h of culture and proceed to the isolation of EVs.			
162				
163	2. Isolation of EVs			
164				
165	2.1. Preparation of home-made Size Exclusion Chromatography column (SEC)			
166				
167	2.1.1. Empty a glass column of chromatography (Length: 26 cm ; Diameter: 0.6 cm) (see table of			
168	materials), wash and sterilize it.			
169				
170	2.1.2. Place a 60 μm filter at the bottom of the column.			
171				
172	2.1.3. Stack the column with sepharose CL-2B to create a stationary phase of 0.6 cm of diameter			
173	and 20 cm of height.			
174				
175	2.1.4. Rinse the phase with 50 mL of 0.20 μm filtered phosphate buffer saline (PBS). After this			
176	step the column can be stored at 4 °C to be used after.			

177	
178	2.2. Isolation of EVs from conditioned medium
179	
180 181	2.2.1. Transfer the conditioned medium from steps 1.1.2 or 1.2.2 in conical tube.
182	2.2.2. Centrifuge at 1200 x g for 10 min at room temperature (RT) to pellet the cells.
183	
184 185	2.2.3. Transfer the supernatant into new conical tube.
185	
186	2.2.4. Centrifuge at 1200 x g for 20 min at KT to eliminate apoptotic bodies.
188	2.2.5. Transfer the supernatant into 10.4 ml polycarbonate tube and transfer the tube in a 70.1
189	Ti Rotor.
190	
191 192	2.2.6. Ultracentrifuge at 100 000 x g for 90 min at 4 °C to pellet EVs.
192	2.2.7. Discard the supernatant and resuspend the pellet containing EVs in 200 uL of 0.20 um
194	filtered PBS.
195	
196	2.3. Collection of EVs
197	
198	2.3.1. Put the resuspended EV pellet on the top of the stationary phase of the SEC column.
199	2.2.2. Collect 20 cognential fractions of 250 ut while continuing to put 0.20 um filtered DPS on
200	2.3.2. Collect 20 sequential fractions of 250 μ c while continuing to put 0.20 μ m intered PBS on
201	the top of stationary phase to avoid drying column.
202	2.4 MALDI mass spectrometry analysis
203	
205	2.4.1. Proceed to the EV isolation as described in section 2.2.
206	
207	2.4.2. Resuspend the EV pellet with 200 μL of peptide calibration mix solution (see table of
208	materials).
209	
210	2.4.3. Proceed to EV collection as described in section 2.3.
211	
212	2.4.4. Dry completely the fraction with vacuum concentrator (see table of materials).
215	2.4 E. Beconstitute the fractions with 10 µl of Triflueropeetic acid (TEA) 0.1% colution
214 215	2.4.5. Reconstitute the fractions with 10 μ of finituoroacetic acid (TFA) 0.1% solution.
216	2.4.6. Mix on MALDI MBT polished steel 1 μ L of reconstituted fraction with 1 μ L of α -Cvano-4-
217	hydroxycinnamic acid (HCCA) matrix.
218	
219	2.4.7. Analyze all fractions with a MALDI mass spectrometer.
220	

221	2.4.8. Analyze generated spectra with dedicated software (see table of materials).	
222	3. Characterization of EVs	
224		
225 226	3.1. NTA (Nanoparticles tracking Analysis)	
227	NOTE: The NTA analysis are performed with a nanoparticles tracking analysis instrument (see	
228	table of materials) and an automated syringe pump.	
229		
230	3.1.1. Make a dilution (range of 1:50 to 1:500) of each SEC fraction with 0.20 μm filtered PBS.	
231		
232	3.1.2. Vortex the solution to eliminate EV aggregates.	
233 234	3.1.3. Put the dilution solution in 1 mL syringe and place it in the automated syringe pump.	
235		
236	3.1.4. Adjust Camera setting to screen gain level (3) and camera level (13).	
237		
238	3.1.5. Click on run and launch the following script:	
239		
240	3.1.5.1. Load the sample in analysis chamber (infusion rate: 1000 for 15 s).	
241		
242	3.1.5.2. Decrease and stabilize speed flow for video recording (infusion rate: 25 for 15 s).	
243 244	3.1.5.3. Capture 3 consecutive 60 sec videos of the particles flow.	
245		
246	3.1.5.4. Adjust the camera level (13) and the detection threshold (3) before videos analysis.	
247		
248	3.1.5.5.Click on settings ok to start the analysis and click on export when the analysis is done	
249		
250	3.1.6. Between each fraction analysis, wash with 1 ml of 0.20 μm filtered PBS.	
251		
252	3.2. Electron microscopy (EIVI) analysis	
253	2.2.1. Isolata EV/s as described in section 2	
254 255	5.2.1. Isolate Evs as described in section 2.	
256	NOTE: sterile conditions are not required.	
257	· · · · · · · · · · · · · · · · · · ·	
258	3.2.2. Repeat section 3.1 to quantify EVs.	
259		
260	NOTE: Only positive fractions will be used for EM analysis.	
261		
262	3.2.3. Use a 50 KDa centrifugal filter (see table of materials) to concentrate EV positive SEC	
203	Iracuons.	
204		

265 266	3.2.4. Resuspend concentrated EVs in 30 μl of Paraformaldehyde (PFA) 2%.
267 268	3.2.5. Load 10 μl of sample on carbon coated copper grid.
269 270	3.2.6. Incubate 20 min in a wet environment.
271 272	3.2.7. Repeat steps 3.2.5 and 3.2.6 for a good absorption of the sample on the grid.
273 274	3.2.8. Transfer the grid into a drop of glutaraldehyde 1% in PBS for 5 min at RT.
275 276	3.2.9. Wash the sample with ultrapure water several times.
277 278 279	3.2.10. Contrast the sample for 10 min on ice with a mixture of uranyl acetate 4% and methylcellulose 2% (1:9, v/v).
280 281	3.2.11. Remove the excess of the mixture using Whatman filter paper.
282 283 284	3.2.12. Dry the sample and observe it under a transmission electron microscope at 200 kV (see table of materials).
285 286	3.3.Western Blot analysis
287 288	3.3.1. Protein extraction
289 290	3.3.1.1.Repeat the steps 3.2.1 to 3.2.3 to isolate and concentrate EVs.
291 292 293 294 295 296	3.3.1.2. Mix 50 µL of RIPA buffer (150 mM sodium chloride (NaCl), 50 mM Tris, 5 mM Ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA), 2 mM Ethylenediaminetetraacetic acid (EDTA), 100 mM sodium fluoride (NaF), 10 mM sodium pyrophosphate, 1% Nonidet P-40, 1 mM Phenylmethanesulfonyl fluoride (PMSF), 1X protease inhibitor) with EV sample for 5 min on ice to extract proteins.
297 298	3.3.1.3. Sonicate for 5 s (amplitude: 500 watts) and (frequency: 20 kHz), 3 times on ice.
299 300	3.3.1.4. Remove cell debris by centrifugation at 20 000 x g for 10 min, at 4 °C.
301 302 303	3.3.1.5. Collect the supernatant and measure the protein concentration with Bradford protein assay method
304 305	3.3.2. SDS-PAGE and western blotting
306 307	3.3.2.1. Mix protein extracts (30 μ g) with 2X Laemmli sample buffer (v/v).
308	3.3.2.2. Load the proteins mix on polyacrylamide gel 12%.

309			
310	3.3.2.3. Migrate the proteins in the gel with TGS buffer (25 mM Tris pH 8.5, 192 mM Glycine, and		
311	Sodium Dodecyl Sulfate (SDS) 0.1%), at 70 V for 15 min and 120 V for 45 min.		
312			
313	3.3.2.4. Transfer the proteins on nitrocellulose membrane with semi-dry system, 230 V for 30		
314	min.		
315			
316	3.3.2.5. Saturate the membrane for 1 hour at RT with blocking buffer (0.05% Tween 20 w/v. 5%		
317	milk powder w/v in 0.1 M PBS, pH 7.4).		
318			
319	3.3.2.6. Incubate the membrane overnight at 4 °C with anti-mouse HSP90 antibody (dilution		
320	1/100) diluted in blocking buffer		
320			
321	3.3.2.7 Wash three times the membrane with PRS-Tween (PRS-0.05% Tween 20 w/v) for 15 min		
272			
323 224	2.2.2.8 Incubate the membrane for 1 hour at PT with Hercoradich perovidase conjugated anti-		
324 235	5.5.2.8. Incubate the membrane for 1 hour at KT with Horseraush peroxidase-conjugated anti-		
525 226	mouse igo antibody (dilution 1/10 000) diluted in blocking buller.		
320 227	NOTE Magative control is performed using secondary antibody along		
327 220	NOTE . Negative control is performed using secondary antibody alone.		
328	2,2,2,0 Depend the weshing step (step 2,2,2,7)		
329	3.3.2.9. Repeat the washing step (step 3.3.2.7).		
33U 221	Boycol the membrane with enhanced chemiluminescence (ECI) western bletting substrate kit		
331 333	(as a table of meterials)		
332	(see table of materials).		
333			
334 225	3.4. Proteomic analysis		
335			
336	3.4.1. Protein extraction and in gel digestion		
337			
338	3.4.1.1. Repeat the steps 3.2.1 to 3.2.3.		
339			
340	3.4.1.2. Repeat step 3.3.1 for EV protein extraction.		
341			
342	3.4.1.3. Perform protein migration just in the concentration gel of a polyacrylamide gel.		
343			
344	3.4.1.4. Fix the proteins in the gel with coomassie blue for 20 min at RT.		
345			
346	3.4.1.5. Excise each gel line and cut into small pieces of 1 mm ³ .		
347			
348	3.4.1.6. Wash gel pieces successively with 300 μ L of each solutions: ultrapure water for 15 min,		
349	acetonitrile 100% (ACN) for 15 min, 100 mM ammonium bicarbonate (NH4HCO3) for 15 min, ACN/		
350	100 mM NH₄HCO₃ (1:1, v/v) for 15 min and ACN 100% for 5 min with a continuous stirring.		
351			
352	3.4.1.7.Dry completely gel pieces with vacuum concentrator.		

353	
354	3.4.1.8. Perform proteins reduction with 100 μL of 100 mM NH4HCO3 containing 10 mM of
355	dithiothreitol for 1h at 56°C.
356	
357	3.4.1.9. Perform proteins alkylation with 100 μ L of 100 mM NH ₄ HCO ₃ containing 50 mM of
358	iodoacetamide for 45 min in the dark and at RT.
359	
360	3.4.1.10. Wash the gel pieces successively with 300 µL of each solutions : 100 mM of NH4HCO ₂
361	for 15 min $ACN/20$ mM NH ₄ HCO ₂ (1:1 y/y) for 15 min and ACN 100% for 5 min with a continuous
362	stirring
363	
364	3.4.1.11 Dry completely gel nieces with vacuum concentrator
365	S.4.1.11. Dry completely get pieces with vacuum concentrator.
266	2.4.1.12 Perform protein direction with 50 up of truncin (12.5 ug/ml) in 20 mM of NH-HCO-
267	$3.4.1.12$. Ferrorin protein digestion with 50 μ E of dispsin (12.3 μ g/m) m 20 mm of Nn4(1003)
207	
200	$2.4.1.12$ Extract the directed protoins from the gal with EQ up of ACN 100% for 20 min at 27° C
209	s.4.1.13. Extract the digested proteins from the ger with 50 µL of ACN 100% for 50 min at 57 C
370	and then IS min at RT with a continuous surring.
3/1	2.4.4.4.4. Descriptions the following entry time and the second discussion for the fitter for the former of the second se
372	3.4.1.14. Repeat two times the following extraction procedures: 50 µL of TFA 5% in 20 mivi of
3/3	NH4HCO3 solution for 20 min with a continuous stirring.
374	2.4.1.15 But 100 ull of ACN 100% for 10 min with a continuous stiming.
375	3.4.1.15. Put 100 µL of ACN 100% for 10 min with a continuous stirring.
376	
3//	3.4.1.16. Dry digested proteins with vacuum concentrator and reconstitute it in 20 µL of TFA 0.1%
378	solution.
379	
380	3.4.1.17. Desalt the sample with 10 µL pipette tip with C18 reverse phase media for desalting and
381	concentrating peptides (see table of materials) and elute peptides with ACN:Formic acid (FA)
382	<mark>0.1% (80:20, v/v)</mark> .
383	
384	3.4.1.18. Dry completely the sample with vacuum concentrator and recover it with 20 μ L of
385	ACN:FA 0.1% (2:98, v/v) for Liquid Chromatography tandem mass spectrometry (LC-MS/MS).
386	
387	3.4.2. LC-MS/MS Analysis
388	
389	3.4.2.1. Load the digested peptide into LC-MS/MS instrument and perform sample and data
390	analysis according to parameters described in detail ⁴² .
391	
392	3.4.3. Raw data analysis
393	
394	3.4.3.1. Process mass spectrometry data to identify proteins with dedicated software using
395	standard parameters (see table of materials).

396	
397	3.4.3.2. Compare identified proteins of each fraction with dedicated software using standard
398	parameters (see table of materials).
399	
400	3.4.3.3. Export the list of exclusives and over-represented proteins of EV positive fraction in the
401	functional protein association networks software using standard parameters to predict protein-
402	protein interaction and highlight some biological processes (see table of materials).
403	
404	3.4.3.4. Compare the list of identified proteins in the fractions with the top 100 of proteins
405	identified in EVs (see table of materials).
406	
407	4. Functional EVs effects assay
408	
409	4.1. Neurite outgrowth assay PC-12 cell line
410	
411	4.1.1. Culture PC12 cell line in complete DMEM medium (2 mM L-glutamine, 10% fetal horse
412	serum (FHS), 5% fetal bovine serum (FBS), 100 UI/mL penicillin, 100 μg/mL streptomycin).
413	
414	4.1.2. Coat a 24 well plate with a cover glass coated with poly-D-lysine (0.1 mg/ml) and seed
415	260 000 cells/well.
416	
417	4.1.3. Incubate the cells at 37°C/5% CO ₂
418	
419	4.1.4. After 24h of incubation, change the medium by DMEM differentiation medium (2 mM L-
420	glutamine, 0.1% FHS, 100 UI/mL penicillin, 100 μ g/mL streptomycin) with 1 x 10 ⁶ microglia EVs
421	(from step 1.1.2).
422	
423	NOTE: Control condition is performed without microglia EVs in the differentiation medium.
424	
425	4.1.5. At day 4 after seeding, complete all wells with 100 μ L of complete DMEM medium.
426	
427	4.1.6. At day 7 after seeding, fix the cells with PFA 4% for 20 min at RT and rinse three times (10
428	min each) with PBS.
429	
430	4.1.7. Stain the cells with rhodamine-conjugated phalloidin for 30 min at 4 °C and rinse 3 times
431	(10 min each) with PBS.
432	
433	4.1.8. Stain the cells with Hoechst 33342 (dilution 1/10 000) for 30 min at RT and rinse 3 times
434	(10 min each) with PBS.
435	
436	4.1.9. Mount the cover glass on a slide with fluorescent mounting medium and add a coverslip
437	glass (see table of materials).
438	
439	4.1.10. Analyze the slide with a confocal microscope, take 5 random images of each slide.

441 442			
442	4.1.11. Analyze neurite length with an automated quantification of neurite outgrowth software		
	as described in detail ⁴³ .		
443			
444	4.2. Neurite outgrowth on rat primary neurons		
445			
446	4.2.1. Coat 8 well glass slide with Poly-D-lysine (0.1 mg/ml) and laminin (20 μ g/ml) coating.		
447			
448	4.2.2. Culture a rat commercial primary neurons cells in appropriate culture medium (see table		
449	of materials) and plate 50 000 cells per well.		
450			
451	4.2.3. Incubate the cells at 37°C/5% CO ₂ for 48h.		
452			
453	4.2.4. Add 1 x 10 ⁶ microglia EVs in neurons culture medium and incubate at 37 °C/5% CO ₂ for 48h		
454	more		
455			
456	NOTE: Control condition is performed without microglia EVs in neurons culture medium		
450	No 12. control condition is performed without microgila 243 in neurons culture medium.		
458	4.2.5 Follow steps 4.1.6 to 4.1.8 to fix and stain the cells		
450			
455	4.2.6 Follow steps 4.1.9 and 4.1.11 to analyze the slide		
460			
401	4.3 Glioma cell invasion		
402			
403	4.3.1 Resuspend C6 ratigliana cells in complete DMEM medium (10% EBS, 2mM Laglutamine, 1X		
/16/1			
404	antibiotics) containing 5% of collagen at a final concentration of 8000 cells in 20 ul		
464 465 466	antibiotics) containing 5% of collagen at a final concentration of 8000 cells in 20 μ L.		
464 465 466	antibiotics) containing 5% of collagen at a final concentration of 8000 cells in 20 μ L.		
464 465 466 467	antibiotics) containing 5% of collagen at a final concentration of 8000 cells in 20 μ L. 4.3.2. Place 5 mL of PBS in the bottom of a 60 mm tissue culture dish. Invert the lid and deposit		
464 465 466 467 468	antibiotics) containing 5% of collagen at a final concentration of 8000 cells in 20 μ L. 4.3.2. Place 5 mL of PBS in the bottom of a 60 mm tissue culture dish. Invert the lid and deposit drops of 20 μ L (8000 cells) onto the bottom of the lid.		
464 465 466 467 468 469	antibiotics) containing 5% of collagen at a final concentration of 8000 cells in 20 μ L. 4.3.2. Place 5 mL of PBS in the bottom of a 60 mm tissue culture dish. Invert the lid and deposit drops of 20 μ L (8000 cells) onto the bottom of the lid.		
464 465 466 467 468 469 470	antibiotics) containing 5% of collagen at a final concentration of 8000 cells in 20 μ L. 4.3.2. Place 5 mL of PBS in the bottom of a 60 mm tissue culture dish. Invert the lid and deposit drops of 20 μ L (8000 cells) onto the bottom of the lid. 4.3.3. Invert the lid onto the PBS-filled bottom chamber and incubate the plate at 37 °C/5% CO ₂ for 72b until cell enhancide were formed.		
464 465 466 467 468 469 470 471	antibiotics) containing 5% of collagen at a final concentration of 8000 cells in 20 μ L. 4.3.2. Place 5 mL of PBS in the bottom of a 60 mm tissue culture dish. Invert the lid and deposit drops of 20 μ L (8000 cells) onto the bottom of the lid. 4.3.3. Invert the lid onto the PBS-filled bottom chamber and incubate the plate at 37 °C/5% CO ₂ for 72h until cell spheroids were formed		
464 465 466 467 468 469 470 471 472	antibiotics) containing 5% of collagen at a final concentration of 8000 cells in 20 μ L. 4.3.2. Place 5 mL of PBS in the bottom of a 60 mm tissue culture dish. Invert the lid and deposit drops of 20 μ L (8000 cells) onto the bottom of the lid. 4.3.3. Invert the lid onto the PBS-filled bottom chamber and incubate the plate at 37 °C/5% CO ₂ for 72h until cell spheroids were formed		
464 465 466 467 468 469 470 471 472 473	 4.3.2. Place 5 mL of PBS in the bottom of a 60 mm tissue culture dish. Invert the lid and deposit drops of 20 μL (8000 cells) onto the bottom of the lid. 4.3.3. Invert the lid onto the PBS-filled bottom chamber and incubate the plate at 37 °C/5% CO₂ for 72h until cell spheroids were formed 4.3.4. Add 1 x 10⁸ macrophages EVs (from step 1.2.2) to a 2.2 mg/ml collagen mixture (2 ml of heuring cells and the plate at 37 °C/5% CO₂ and the plate at 37 °C/5% CO₂ for 72h until cell spheroids were formed 		
464 465 466 467 468 469 470 471 472 473 474	 4.3.1. Resuspend containing 5% of collagen at a final concentration of 8000 cells in 20 μL. 4.3.2. Place 5 mL of PBS in the bottom of a 60 mm tissue culture dish. Invert the lid and deposit drops of 20 μL (8000 cells) onto the bottom of the lid. 4.3.3. Invert the lid onto the PBS-filled bottom chamber and incubate the plate at 37 °C/5% CO₂ for 72h until cell spheroids were formed 4.3.4. Add 1 x 10⁸ macrophages EVs (from step 1.2.2) to a 2.2 mg/ml collagen mixture (2 ml of bovine collagen type I solution 3 mg/ml with 250 μl of 10X MEM and 500 μl of 0.1 M sodium budgenide) 		
464 465 466 467 468 469 470 471 472 473 474 475	 4.3.1. Resuspend contragional cells in complete Division mediatin (10% FDS, 200 FPS, 200 FPS, 200 FPS), 200 FPS, 200 FP		
464 465 466 467 468 469 470 471 472 473 474 475 476	 4.3.1. Resuspend contragionna cents in complete Division (10% FDS, 210% E-globalishie, 1X antibiotics) containing 5% of collagen at a final concentration of 8000 cells in 20 μL. 4.3.2. Place 5 mL of PBS in the bottom of a 60 mm tissue culture dish. Invert the lid and deposit drops of 20 μL (8000 cells) onto the bottom of the lid. 4.3.3. Invert the lid onto the PBS-filled bottom chamber and incubate the plate at 37 °C/5% CO₂ for 72h until cell spheroids were formed 4.3.4. Add 1 x 10⁸ macrophages EVs (from step 1.2.2) to a 2.2 mg/ml collagen mixture (2 ml of bovine collagen type I solution 3 mg/ml with 250 μl of 10X MEM and 500 μl of 0.1 M sodium hydroxide). 		
464 465 466 467 468 469 470 471 472 473 474 475 476 477	 4.3.2. Place 5 mL of PBS in the bottom of a 60 mm tissue culture dish. Invert the lid and deposit drops of 20 μL (8000 cells) onto the bottom of the lid. 4.3.3. Invert the lid onto the PBS-filled bottom chamber and incubate the plate at 37 °C/5% CO₂ for 72h until cell spheroids were formed 4.3.4. Add 1 x 10⁸ macrophages EVs (from step 1.2.2) to a 2.2 mg/ml collagen mixture (2 ml of bovine collagen type I solution 3 mg/ml with 250 μl of 10X MEM and 500 μl of 0.1 M sodium hydroxide). NOTE: Control condition is performed without macrophages EVs in the collagen mixture. 		
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478	 antibiotics) containing 5% of collagen at a final concentration of 8000 cells in 20 μL. 4.3.2. Place 5 mL of PBS in the bottom of a 60 mm tissue culture dish. Invert the lid and deposit drops of 20 μL (8000 cells) onto the bottom of the lid. 4.3.3. Invert the lid onto the PBS-filled bottom chamber and incubate the plate at 37 °C/5% CO₂ for 72h until cell spheroids were formed 4.3.4. Add 1 x 10⁸ macrophages EVs (from step 1.2.2) to a 2.2 mg/ml collagen mixture (2 ml of bovine collagen type I solution 3 mg/ml with 250 μl of 10X MEM and 500 μl of 0.1 M sodium hydroxide). NOTE: Control condition is performed without macrophages EVs in the collagen mixture. 		
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479	 4.3.1. Resubpend contarginoma cens in complete Diview mediatin (10% FDS), 2mW E-glutanine, 1X antibiotics) containing 5% of collagen at a final concentration of 8000 cells in 20 μL. 4.3.2. Place 5 mL of PBS in the bottom of a 60 mm tissue culture dish. Invert the lid and deposit drops of 20 μL (8000 cells) onto the bottom of the lid. 4.3.3. Invert the lid onto the PBS-filled bottom chamber and incubate the plate at 37 °C/5% CO₂ for 72h until cell spheroids were formed 4.3.4. Add 1 x 10⁸ macrophages EVs (from step 1.2.2) to a 2.2 mg/ml collagen mixture (2 ml of bovine collagen type I solution 3 mg/ml with 250 μl of 10X MEM and 500 μl of 0.1 M sodium hydroxide). NOTE: Control condition is performed without macrophages EVs in the collagen mixture. 4.3.5. Distribute the collagen mixture containing EVs in 24-well plate for embedding cell sub-provide. 		
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480	 antibiotics) containing 5% of collagen at a final concentration of 8000 cells in 20 µL. 4.3.2. Place 5 mL of PBS in the bottom of a 60 mm tissue culture dish. Invert the lid and deposit drops of 20 µL (8000 cells) onto the bottom of the lid. 4.3.3. Invert the lid onto the PBS-filled bottom chamber and incubate the plate at 37 °C/5% CO₂ for 72h until cell spheroids were formed 4.3.4. Add 1 x 10⁸ macrophages EVs (from step 1.2.2) to a 2.2 mg/ml collagen mixture (2 ml of bovine collagen type I solution 3 mg/ml with 250 µl of 10X MEM and 500 µl of 0.1 M sodium hydroxide). NOTE: Control condition is performed without macrophages EVs in the collagen mixture. 4.3.5. Distribute the collagen mixture containing EVs in 24-well plate for embedding cell spheroids. 		
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481	 antibiotics) containing 5% of collagen at a final concentration of 8000 cells in 20 μL. 4.3.2. Place 5 mL of PBS in the bottom of a 60 mm tissue culture dish. Invert the lid and deposit drops of 20 μL (8000 cells) onto the bottom of the lid. 4.3.3. Invert the lid onto the PBS-filled bottom chamber and incubate the plate at 37 °C/5% CO₂ for 72h until cell spheroids were formed 4.3.4. Add 1 x 10⁸ macrophages EVs (from step 1.2.2) to a 2.2 mg/ml collagen mixture (2 ml of bovine collagen type I solution 3 mg/ml with 250 μl of 10X MEM and 500 μl of 0.1 M sodium hydroxide). NOTE: Control condition is performed without macrophages EVs in the collagen mixture. 4.3.5. Distribute the collagen mixture containing EVs in 24-well plate for embedding cell spheroids. 		
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482	 antibiotics) containing 5% of collagen at a final concentration of 8000 cells in 20 μL. 4.3.2. Place 5 mL of PBS in the bottom of a 60 mm tissue culture dish. Invert the lid and deposit drops of 20 μL (8000 cells) onto the bottom of the lid. 4.3.3. Invert the lid onto the PBS-filled bottom chamber and incubate the plate at 37 °C/5% CO₂ for 72h until cell spheroids were formed 4.3.4. Add 1 x 10⁸ macrophages EVs (from step 1.2.2) to a 2.2 mg/ml collagen mixture (2 ml of bovine collagen type I solution 3 mg/ml with 250 μl of 10X MEM and 500 μl of 0.1 M sodium hydroxide). NOTE: Control condition is performed without macrophages EVs in the collagen mixture. 4.3.5. Distribute the collagen mixture containing EVs in 24-well plate for embedding cell spheroids. 4.3.6. Implant the newly formed cell spheroids in the center of each well. 		

- 484 4.3.7. Incubate the plate for 30 min at $37^{\circ}C/5\%$ CO₂ to solidify the gel.
- 485
- 486 4.3.8. Thereafter, overlay 400 μl of complete DMEM medium on the collagen matrix in each well.
- 488 4.3.9. Incubate the complete system for a total of 6 days.
- 489

487

490 NOTE: Cell invasion out of the spheroid was monitored by digital photography using an inverted 491 light microscope using a 4X/0.10 objective.

- 492
- 493 4.3.10. Acquire images of each well every day.
- 494

495 4.3.11. Process images and quantify invasion of cell spheroids areas using the software as 496 previously described in detail⁴².

497

498 NOTE: Invasion and spheroid areas were normalized for each day to the invasion and spheroid 499 areas measured at day 0.

500

501 **REPRESENTATIVE RESULTS:**

502

503 One of the main challenge to attribute the biologicals effects to extracellular vesicles (EVs) is the 504 capacity to enrich the EVs from the whole culture medium. In this report, we present an EV 505 enrichment method using ultracentrifugation (UC) and size-exclusion chromatography (SEC). To 506 perform the purification microglia/macrophages-derived EVs, the conditioned medium of these 507 cells was collected (Figure 1).

508

[Place Figure 1 here]

509 The medium followed successive centrifugation steps: the first to remove the cells and the 510 second to remove cellular debris and apoptotic bodies. Then, the supernatant was transferred to 511 a new tube to perform an ultracentrifugation at 100 000 x g for 90 min. The vesicles were 512 collected together with the protein aggregates in the final UC pellet. A SEC column was used to 513 separate the compounds according to their size and remove the aggregates (Figure 1).

514 In order to confirm the enrichment of EVs with this SEC column, the nanoparticle tracking analysis

515 of each fraction showed an enrichment of particles in three consecutive SEC fractions (Figures 2

516 A-C).

[Place Figure 2 here]

517 518 EVs were detected in the fractions 5, 6 and 7. Given that non-EV materials may be co-isolated 519 with EVs, it is necessary to follow the time-course elution of the different compounds in the SEC 520 procedure. To do so, control peptide standards were added to a similar UC pellet as previously 521 used. This preparation was again separated using the SEC procedure. Then, a MALDI mass 522 spectrometry analysis was performed in order to detect SEC fractions in which standards were 523 eluted. Due to the mass range, only ionized products from peptide standards were detected in 524 this analysis. The results showed that these products are detectable from the fraction 10, 525 demonstrating that any soluble protein cannot be eluted in the same fractions as the EV ones 526 (fractions 5-7) (Figure 2D). These results confirmed the interest of this approach in the separation 527 of EVs from non-EV components. In the following experiments, the EV positive fractions (fractions

5-7) were combined in a single sample called 2F-EV+ whereas non-EV fractions were processed in two samples called 1F-EV- (fractions 1-4) and 3F-EV- (fractions 8-20). To confirm the presence of EVs in 2F-EV+ sample, a western-blot analysis against HSP90, an EV marker, was performed. A positive signal for HSP90 was detected in 2F-EV+ but not in 1F-EV- and 3F-EV- samples (**Figure 2E**). An additional experiment using electron microscopy only analyzed the 2F-EV+ sample and allowed the observation of EVs with a typical morphology and size heterogeneity (**Figure 2F and 2G**). These results confirmed the good EV enrichment in the previous SEC procedure.

Another key step of validation can be performed with proteomic analysis. Interestingly, we developed in our laboratory a whole mass spectrometry analysis in different objectives: (i) confirm the enrichment of EV markers in the EV positive sample (2F-EV+), (ii) identify contaminant proteins in the EV negative samples (1F-EV- and 3F-EV-) and (iii) characterize the protein content of EVs that can explain their biological activities, for example the inflammation signatures typical of microglia/macrophages responses.

541

[Place Figure 3 here]

542 The proteins of these two samples were extracted and separated by SDS-PAGE. After a short migration in the concentrating gel, the samples were collected by a bands excision and digested. 543 544 The products were separated by online reversed-phase chromatography directly coupled to a Q-545 Exactive mass spectrometer for analysis (Figure 3A). These raw data were interrogated against a 546 rat protein database. As presented in the representative results, a Venn diagram allows the 547 comparison of identified proteins between EV+ and EV- samples. It showed the proteins 548 exclusively identified in the EV+ and EV- samples. In addition, the common signature between 549 EV+ and EV- samples were analyzed by Perseus software to show the over- and down-550 represented proteins in each sample (red and green respectively in figure 3B). In both signatures 551 (exclusive and over-represented proteins) the EV+ sample was supposed to contain EV markers 552 like HSP90, Anxa5, Flot1, 14-3-3 protein theta, filamin A, CDC42, Alix, RHOA, HSP70 and 553 tetraspanins. Conversely, the proteins exclusively identified or over-represented in the EV-554 samples could present contaminant proteins mostly like mitochondrial, golgi-apparatus and 555 endoplasmic reticulum lumen components. Importantly, these EV- samples could also contain 556 other non-EV proteins having a biological involvement in the EV activities. Indeed, the long-term 557 protection and addressing of EVs towards specific recipient cells could require some non-EV 558 proteins that are simultaneously co-released with EVs by producing cells. Thus the strategy that 559 we selected makes possible the access of all these informations including the EV-mediated 560 functions. Finally, in order to highlight the interactions and biological functions, another software 561 like STRING can predict the most representative protein network. In the following example, the 562 over-represented proteins in the EV+ sample showed a major protein network representative of the typical EV compounds. 563

After our strategy confirmed their purification and characterization, microglia/macrophages EVs were then evaluated in biological assays. The neurotrophic functions of microglia EVs were studied on PC-12 cell line and rat primary neurons cultures. The results showed an effect on the

567 neurite outgrowth (Figures 4A and 4B).

568

[Place Figure 4 here]

569 The presence of EVs respectively increased about 6 and 1.5 fold the neurite length in PC-12 and

570 primary neurons compared to a control condition. In another context, we also study the effects

of macrophages EVs on the brain tumour invasion. It was assessed using 3D tumour spheroids

572 embedded in a matrix of collagen. Spheroids generated with C6 rat glioma cells were cultured for 573 6 days in a collagen matrix containing or not EVs purified from rat macrophages culture medium. 574 The collagen matrix provides a structure into which tumour cells can invade and spread out of 575 the spheroid. The growth of spheroids and the invasion of the collagen matrix by the glioma cells 576 migrating out the initial core were therefore easily monitored at intervals starting from t = 0 to t 577 = 6 days. Pictures of the spheroids were taken with an inverted microscope and these pictures 578 were then used for quantification of invasion with the software as previously described⁴². 579 (Figures 4C and 4D). The macrophages EVs impair the growth and invasion of the glioma 580 spheroids. After a 6 day culture, a 50 % decrease of the invasion was observed in EV-treated 581 spheroids compared to the control. This result shows that macrophages can produce EVs with 582 anti-tumoral and/or anti-invasive factors affecting the glioma growth.

583

584 **FIGURE AND TABLE LEGENDS:**

585

Figure 1: Extracellular Vesicle (EV) collection and isolation strategies. The apoptotic bodies and
 the cells debris were separated from the microglia/macrophages-conditioned medium by
 successive centrifugation steps. From the supernatant, EVs were isolated by ultracentrifugation
 (UC). The UC pellet containing EVs was loaded onto column and separated by size-exclusion
 chromatography in 20 different eluted fractions. The EV positive fractions are supposed to be F5,
 F6 and F7.

592

593 Figure 2: Analysis of EV-enriched fractions. (A) Nanoparticle Tracking Analysis (NTA) of SEC 594 fractions. The total number of particles in each SEC fraction is presented with bar charts. The 595 orange bar charts show the three consecutives EV-enriched fractions (F5-F7). (B,C) Screen 596 capture of NTA chamber showing a EV-enriched fraction (B) and EV negative fraction (C). (D) 597 Complementary MALDI mass spectrometry analysis. From another UC pellet containing EVs, a set 598 of protein standards (control) was added before SEC separation in order to validate the 599 performance of the SEC strategy. Each SEC fraction was analyzed with MALDI-TOF to determine 600 standards-positive fractions. In the ten first spectra (fractions 1 to 9), no signal was observed. The 601 detection of these free standards was possible in the following fractions (fractions 10 to 20) 602 confirming the ability of SEC-enrichment methods to separate EVs (F5-F7) from soluble 603 components (F10-F20). (E-F) Electron microscopy analysis of the EV positive sample (2F-EV+). The 604 observation revealed the presence of EVs in a size range around 100 nm (white arrows) and 605 around 400 nm (arrowhead).

606

Figure 3: Proteomic analysis of EV-positive and EV-negative samples. (A) Fractions 1-4 were 607 608 pooled as "1F-EV -", fractions 5-7 were pooled as "2F-EV +" and fractions 8-20 were pooled as 609 "3F-EV -". All samples were loaded on SDS-PAGE and migrated just in the stacking gel to concentrate proteins to realize an in-gel digestion of proteins before their peptide separation. 610 611 The peptides were then analyzed by LC-MS/MS to identify the corresponding proteins. (B) 612 Comparison of identified proteins between fractions 1F-EV- and 2F-EV +. The Venn diagram of 613 identified proteins between these two fractions shows 19 common proteins in both fractions and 614 522 proteins exclusively found in the 2F-EV + fraction. A complementary analysis using Perseus 615 software allowed the identification of the relative representation of the common proteins. The

- 616 results show a heatmap where all common proteins between 1F-EV and 2F-EV + fractions are
- 617 over-represented in the 2F-EV + fraction. **(C)** Comparison of identified proteins between fractions
- 618 2F-EV + and 3F-EV -. The Venn diagram shows 113 common proteins in both fractions (2F-EV +
- and 3F-EV -), 428 proteins were found exclusively in 2F-EV + fractions and 11 proteins were found
- exclusively in 3F-EV fractions. Results of perseus analysis highlight two clusters. One (cluster A)
 with 5 proteins over-represented in the 3F-EV sample and a second (cluster B) with 108 proteins
- 622 over-represented in the 2F-EV + fractions.
- 623

Figure 4: Identification of proteins presents in the 2F-EV + fraction. (A) Molecule symbols of the 86 2F-EV + proteins detected in ExoCarta database. The proteins found in this fraction were compared to the top 100 proteins of ExoCarta database and the results shows 86 proteins from the top 100 detected in the 2F-EV + fraction. (B) Prediction of protein interaction and their involvement in biological processes with STRING software. Results of analysis show that proteins present in the 2F-EV + fraction can be implicated in biological processes such as immune system or neuronal pathway.

631

632 Figure 5: EV-dependent functional assays. The effects of microglia- or macrophages-derived EVs 633 were respectively evaluated on neurite outgrowth (upper frame) or glioma cell invasion (lower 634 frame). (A,B) The neurite length was measured on PC-12 cells (A) (This figure has been modified from Raffo-Romero et al ²¹) or rat primary neurons (B). The results showed a significant 635 outgrowth increase under EVs (+ EVs) compared to control (Ctrl). The scale bar is 20 µm. The 636 637 significance was calculated by ANOVA paired *t*-test (* *p* < 0.05, ** *p* < 0.01), (error bars : standard 638 deviation). (C,D) Time course of C6 glioma spheroid invasion into collagen in presence of rat 639 primary macrophages EVs (C6 + EVs) or vehicle (C6 control). The C6 spheroid 3D invasion into 640 collagen was monitored and quantified up to 6 days. Quantification of tumour cell invasion are 641 shown at 1, 2, 3 or 6 days (C) as observed on representative images (D). The scale bar is 500 μm. 642 The significance was calculated by ANOVA test (*** p < 0.001), (error bars : standard deviation).

643

644 DISCUSSION:

645 The central nervous system (CNS) is a complex tissue in which cell-to-cell communication regulates normal neuronal functions necessary to homeostasis ⁴⁴. The glial cells include neuronal 646 647 (astrocytes and oligodendrocytes) and non-neuronal (microglia) origin cells. They are fully 648 involved to control the synaptic development and promote neuronal activities throughout life. 649 Microglia are the resident macrophages in the brain tissue where they play a key immune role in 650 the management of the microenvironment changes thanks to their high diversity and plasticity. 651 The balance between pro- and anti-inflammatory microglial responses is crucial and allows maintaining the brain integrity. But unregulated pro-inflammatory mechanisms can be supported 652 by activated microglia and lead to CNS disorders ^{45, 46}. Therefore, the deciphering of microglia 653 activities represents a great challenge and novel microglia-based therapeutic strategies could 654 655 protect against pathogenesis. In the context of high grade gliomas including glioblastoma, the 656 tumor-associated macrophages (TAMs) in close relation with glioma cells exhibit a high production of anti-inflammatory molecules ⁴⁷. Because TAMs which are recruited in the tumor 657 658 site are composed of microglia as well as bone marrow-derived macrophages (BMDM), their in 659 vivo analysis is very complex in the glioma pathogenesis. Thus, microglia/macrophages maintain 660 cell-to-cell communication in specific microenvironments according to healthy or pathological 661 conditions. The inflammatory balance is strongly influenced by external signals where pro-662 inflammatory profiles support neurodegenerative processes leading to a neuronal death, and 663 anti-inflammatory pattern are favored by cancer cells for tumor development. The molecular 664 deciphering of these dialogs is one key to understand dysregulated neuro-inflammation and 665 propose new therapeutic strategies.

666

Long regarded as useless material and therefore eliminated, extracellular vesicles (EVs) are now 667 widely studied and described as important messengers for cell-to-cell communication ⁴⁸. EVs are 668 669 lipid bilayered membrane vesicles in a size range between 30 to 1000 nm delivering a cocktail of 670 molecular information in specific recipient cells and thereby affecting their functions in healthy and pathological conditions ⁴⁹. Recent studies indicate that EVs play a crucial role in the CNS ^{28,} 671 ^{50, 51} and especially those from brain immune cells ^{52, 53}. Two main EV populations, exosomes and 672 673 microvesicles, differing in size and biogenesis, are considered ⁵⁴. The discrimination between 674 exosomes and microvesicles being so far impossible after enrichment because of the overlapping 675 size and the common markers. That is why, the current international nomenclature advises using a general acronym of EVs for total extracellular vesicles in biological studies ⁵⁵. Whatever their 676 subtypes, it is important to identify their biologically active contents. Indeed, the EV molecular 677 signatures constitute an important question as they change in activated immune cells according 678 to the microenvironment and the external signals ^{56, 57}. Their contents, presented as 'molecular 679 cargo', are diverse and biologically active ⁵⁸. They include proteins ^{59, 60}, lipids ⁶¹⁻⁶³ and nucleic 680 acids such as RNA ^{64, 65} and DNA ^{66, 67}. Studying their contents is a key step to better understand 681 the in situ communication between microglia/macrophages and neighbor cells, whether neurons 682 683 or cancer cells.

684

685 In this study we present a methodology consisting in a differential ultracentrifugation process as 686 the first step to enrich EV populations from cell debris, apoptotic bodies and conditioned medium 687 combined with size exclusion chromatography. When the EV populations are evaluated in 688 biological assays, it is crucial to discriminate the EV contents from other co-isolated materials. 689 That is why, we improved the technique of size exclusion chromatography to separate EV- from 690 non EV-associated compounds. We were able to eliminate free molecules that may be closely 691 related to vesicular activities. In addition, in our laboratory we developed a double proteomic analysis strategy. First to validate the correct EV fractionation by detecting EV-associated markers 692 in the positive fractions. Then, to characterize the EV- as well as non EV-associated molecular 693 694 patterns in order to better understand the EV content and function. Our strategy was based on 695 protein signatures in this report. But it is obviously essential to consider the other molecule 696 families including lipids, mRNA and microRNAs for example. Current studies in which we 697 participate associate these additional identifications to the protein signatures in order to get a 698 global knowledge of this local interaction. We also wanted to associate the EV characterization 699 to biological assays. Beyond a simple characterization, taking into account the biological effects 700 carried by microglia/macrophages EVs should encourage a better understanding of the 701 interaction mechanisms with recipient cells. Our results show a neurotrophic and anti-tumoral 702 activities supported by microglia/macrophages EVs, respectively. 703

704 Many therapeutic approaches are envisaged in the coming years. Given that the EVs are able to 705 easily cross the blood brain barrier and reach the pathological tissues, these molecular cargos 706 can be used in different ways. One way can be the use of therapeutic EVs containing drugs in 707 order to balance dysfunctional inflammatory mechanisms. Another one could prepare the in vitro 708 production of EVs, as beneficial cocktails, from correctly primed or activated immune cells. In the 709 tissues, the micro-environment has a direct impact on the immune cells and ultimately 710 contributes to shaping the biogenesis of their vesicles. In the case of glioblastoma for example, it 711 has been found that the cancer cells produce their own EVs, thus contributing to the anti-712 inflammatory profiles of neighboring Tumor-associated Macrophages (TAMs) and to their local 713 immunosuppression ^{39, 40}. Further therapeutic strategies could prevent the EV-mediated 714 immunosuppression by controlling the molecular recognition between tumoral EVs and local 715 TAMs.

- 716
- 717 In conclusion, the EV-mediated communication between immune cells and microenvironment is
- a key process allowing a better understanding of pathogenesis and also an innovative conception
- 719 of therapeutic ways.
- 720

721 ACKNOWLEDGMENTS:

722

The presented work was supported by the Ministère de L'Education Nationale, de L'Enseignement Supérieur et de la Recherche and INSERM. We gratefully acknowledge the BICeL-Campus Scientific City Facility for access to instruments and technical advices. We gratefully acknowledge Jean-Pascal Gimeno, Soulaimane Aboulouard and Isabelle Fournier for the Mass spectrometry assistance. We gratefully acknowledge Tanina Arab, Christelle van Camp, Francoise le Marrec-Croq, Jacopo Vizioli and Pierre-Eric Sautière for their strong contribution to the scientific and technical developments.

730

731 **DISCLOSURES:**

732

734

733 The authors have nothing to disclose

735 **REFERENCES:**

- 7361.Thion, M.S., Ginhoux, F., Garel, S. Microglia and early brain development: An intimate737journey. Science. 362 (6411), 185–189, doi: 10.1126/science.aat0474 (2018).
- Sankowski, R., Mader, S., Valdes-Ferrer, S.I. Systemic Inflammation and the Brain: Novel
 Roles of Genetic, Molecular, and Environmental Cues as Drivers of Neurodegeneration.
 Frontiers in Cellular Neuroscience. 9, doi: 10.3389/fncel.2015.00028 (2015).
- 741 3. Chakrabarty, S., Kabekkodu, S.P., Singh, R.P., Thangaraj, K., Singh, K.K., Satyamoorthy, K.
 742 Microglia in health and disease. *Cold Spring Harb. Perspect. Biol.* 43 (3), 25–29 (2015).
- Sankowski, R., Mader, S., Valdés-Ferrer, S.I. Systemic inflammation and the brain: novel roles of genetic, molecular, and environmental cues as drivers of neurodegeneration. *Frontiers in cellular neuroscience*. 9, 28, doi: 10.3389/fncel.2015.00028 (2015).
- Tremblay, M.-E., Stevens, B., Sierra, A., Wake, H., Bessis, A., Nimmerjahn, A. The Role of
 Microglia in the Healthy Brain. *Journal of Neuroscience*. **31** (45), 16064–16069, doi:

- 748 10.1523/JNEUROSCI.4158-11.2011 (2011).
- Sierra, A., de Castro, F., del Río-Hortega, J., Rafael Iglesias-Rozas, J., Garrosa, M.,
 Kettenmann, H. The "Big-Bang" for modern glial biology: Translation and comments on Pío
 del Río-Hortega 1919 series of papers on microglia. *GLIA*. 64 (11), 1801–1840, doi:
 10.1002/glia.23046 (2016).
- 753 7. Ginhoux, F. *et al.* Fate mapping analysis reveals that adult microglia derive from primitive
 754 macrophages. *Science (New York, N.Y.).* 330 (6005), 841–5, doi: 10.1126/science.1194637
 755 (2010).
- 8. Hambardzumyan, D., Gutmann, D.H., Kettenmann, H. The role of microglia and
 macrophages in glioma maintenance and progression. *Nature Neuroscience*. 19 (1), 20–27,
 doi: 10.1038/nn.4185 (2016).
- Ginhoux, F., Prinz, M. Origin of Microglia: Current Concepts and Past Controversies. *Cold Spring Harbor Perspectives in Biology*. 7 (8), a020537, doi: 10.1101/cshperspect.a020537
 (2015).
- Butovsky, O. *et al.* Identification of a Unique TGF-β Dependent Molecular and Functional
 Signature in Microglia. *Nat Neurosci.* doi: 10.1038/nn.3599.Identification (2014).
- Butovsky, O., Weiner, H.L. Microglial signatures and their role in health and disease.
 Nature Reviews Neuroscience. 19 (10), 622–635, doi: 10.1038/s41583-018-0057-5 (2018).
- Gosselin, D. *et al.* An environment-dependent transcriptional network specifies human
 microglia identity. *Science (New York, N.Y.).* 356 (6344), eaal3222, doi:
 10.1126/science.aal3222 (2017).
- 769 13. Gosselin, D. *et al.* Environment drives selection and function of enhancers controlling
 770 tissue-specific macrophage identities. *Cell.* 159 (6), 1327–40, doi:
 771 10.1016/j.cell.2014.11.023 (2014).
- 77214.Buttgereit, A. et al. Sall1 is a transcriptional regulator defining microglia identity and773function. Nature Immunology. 17 (12), 1397–1406, doi: 10.1038/ni.3585 (2016).
- 774
 15.
 Thion, M.S. et al. Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific

 775
 Manner. Cell. 172 (3), 500–516.e16, doi: 10.1016/j.cell.2017.11.042 (2018).
- Hammond, T.R. *et al.* Single-Cell RNA Sequencing of Microglia throughout the Mouse
 Lifespan and in the Injured Brain Reveals Complex Cell-State Changes. *Immunity.* 50 (1),
 253–271.e6, doi: 10.1016/j.immuni.2018.11.004 (2019).
- Rajendran, L. *et al.* Emerging Roles of Extracellular Vesicles in the Nervous System. *The Journal of Neuroscience*. **34** (46), 15482–15489, doi: 10.1523/JNEUROSCI.3258-14.2014
 (2014).
- 782
 18.
 Gupta, A., Pulliam, L. Exosomes as mediators of neuroinflammation. Journal of

 783
 Neuroinflammation. 11 (1), 68, doi: 10.1186/1742-2094-11-68 (2014).
- van Niel, G., D'Angelo, G., Raposo, G. Shedding light on the cell biology of extracellular
 vesicles. *Nature Reviews Molecular Cell Biology*. **19** (4), 213–228, doi:
 10.1038/nrm.2017.125 (2018).
- Budnik, V., Ruiz-cañada, C., Wendler, F. Extracellular vesicles round off communication in
 the nervous system. *Nature Reviews Neurosciences*. **17** (March), 160–172, doi:
 10.1038/nrn.2015.29 (2016).
- Raffo-Romero, A. *et al.* Medicinal Leech CNS as a Model for Exosome Studies in the
 Crosstalk between Microglia and Neurons. *International Journal of Molecular Sciences*. 19

- 792 (12), 4124, doi: 10.3390/ijms19124124 (2018).
- Arab, T. *et al.* Proteomic characterization of leech microglia extracellular vesicles (EVs):
 comparison between differential ultracentrifugation and Optiprep[™] density gradient
 isolation. *Journal of Extracellular Vesicles*. in press (2019).
- Murgoci, A.-N. *et al.* Brain-Cortex Microglia-Derived Exosomes: Nanoparticles for Glioma
 Therapy. *ChemPhysChem.* **19** (10), 1205–1214, doi: 10.1002/cphc.201701198 (2018).
- 798 24. Glebov, K. *et al.* Serotonin stimulates secretion of exosomes from microglia cells. *Glia*. 63
 799 (4), 626–634, doi: 10.1002/glia.22772 (2015).
- Bod 25. Hooper, C. *et al.* Wnt3a induces exosome secretion from primary cultured rat microglia. *BMC Neuroscience.* 13 (1), 144, doi: 10.1186/1471-2202-13-144 (2012).
- 80226.Gabrielli, M. et al. Active endocannabinoids are secreted on extracellular membrane803vesicles. EMBO reports. 16 (2), 213–220, doi: 10.15252/embr.201439668 (2015).
- Antonucci, F. *et al.* Microvesicles released from microglia stimulate synaptic activity via
 enhanced sphingolipid metabolism. *The EMBO Journal.* **31** (5), 1231–1240, doi:
 10.1038/emboj.2011.489 (2012).
- 807 28. Frühbeis, C., Fröhlich, D., Kuo, W.P., Krämer-Albers, E.-M. Extracellular vesicles as
 808 mediators of neuron-glia communication. *Frontiers in Cellular Neuroscience*. 7, 182, doi:
 809 10.3389/fncel.2013.00182 (2013).
- Prada, I. *et al.* Glia-to-neuron transfer of miRNAs via extracellular vesicles: a new
 mechanism underlying inflammation-induced synaptic alterations. *Acta neuropathologica*. **135** (4), 529–550, doi: 10.1007/s00401-017-1803-x (2018).
- Takenouchi, T. *et al.* Extracellular ATP induces unconventional release of glyceraldehyde3-phosphate dehydrogenase from microglial cells. *Immunology Letters*. 167 (2), 116–124,
 doi: 10.1016/j.imlet.2015.08.002 (2015).
- Yang, Y., Boza-Serrano, A., Dunning, C.J.R., Clausen, B.H., Lambertsen, K.L., Deierborg, T.
 Inflammation leads to distinct populations of extracellular vesicles from microglia. *Journal* of Neuroinflammation. 15 (1), 168, doi: 10.1186/s12974-018-1204-7 (2018).
- Kumar, A. *et al.* Microglial-derived microparticles mediate neuroinflammation after
 traumatic brain injury. *Journal of Neuroinflammation*. 14 (1), 47, doi: 10.1186/s12974-0170819-4 (2017).
- Huang, S. *et al.* Increased miR-124-3p in microglial exosomes following traumatic brain
 injury inhibits neuronal inflammation and contributes to neurite outgrowth *via* their
 transfer into neurons. *The FASEB Journal.* **32** (1), 512–528, doi: 10.1096/fj.201700673R
 (2018).
- 826 34. Engelhardt, B., Vajkoczy, P., Weller, R.O. The movers and shapers in immune privilege of
 827 the CNS. *Nature Immunology*. 18 (2), 123–131, doi: 10.1038/ni.3666 (2017).
- 82835.Louveau, A. *et al.* Structural and functional features of central nervous system lymphatic829vessels. *Nature*. **523** (7560), 337–341, doi: 10.1038/nature14432 (2015).
- Bomingues, P. *et al.* Tumor infiltrating immune cells in gliomas and meningiomas. *Brain, Behavior, and Immunity.* 53, 1–15, doi: 10.1016/j.bbi.2015.07.019 (2016).
- 832 37. Bowman, R.L. *et al.* Macrophage Ontogeny Underlies Differences in Tumor-Specific
 833 Education in Brain Malignancies. *Cell Reports.* 17 (9), 2445–2459, doi:
 834 10.1016/j.celrep.2016.10.052 (2016).
- 835 38. Pinton, L. *et al.* The immune suppressive microenvironment of human gliomas depends on

- the accumulation of bone marrow-derived macrophages in the center of the lesion. *Journal for ImmunoTherapy of Cancer.* 7 (1), 58, doi: 10.1186/s40425-019-0536-x (2019).
- van der Vos, K.E. *et al.* Directly visualized glioblastoma-derived extracellular vesicles
 transfer RNA to microglia/macrophages in the brain. *Neuro-Oncology*. **18** (1), 58–69, doi:
 10.1093/neuonc/nov244 (2016).
- 40. de Vrij, J. *et al.* Glioblastoma-derived extracellular vesicles modify the phenotype of
 monocytic cells. *International Journal of Cancer.* 137 (7), 1630–1642, doi:
 10.1002/ijc.29521 (2015).
- Rooj, A.K., Mineo, M., Godlewski, J. MicroRNA and extracellular vesicles in glioblastoma:
 small but powerful. *Brain tumor pathology*. 33 (2), 77–88, doi: 10.1007/s10014-016-02593 (2016).
- B47 42. Duhamel, M. *et al.* Paclitaxel Treatment and Proprotein Convertase 1/3 (PC1/3)
 Knockdown in Macrophages is a Promising Antiglioma Strategy as Revealed by Proteomics
 and Cytotoxicity Studies. *Molecular & Cellular Proteomics*. **17** (6), 1126–1143, doi:
 10.1074/mcp.RA117.000443 (2018).
- 43. Pool, M., Thiemann, J., Bar-Or, A., Fournier, A.E. NeuriteTracer: A novel ImageJ plugin for
 automated quantification of neurite outgrowth. *Journal of Neuroscience Methods*. 168 (1),
 134–139, doi: 10.1016/j.jneumeth.2007.08.029 (2008).
- 44. Domingues, H.S., Portugal, C.C., Socodato, R., Relvas, J.B. Oligodendrocyte, Astrocyte, and
 Microglia Crosstalk in Myelin Development, Damage, and Repair. *Frontiers in Cell and Developmental Biology*. 4, 71, doi: 10.3389/fcell.2016.00071 (2016).
- 45. Prinz, M., Priller, J. The role of peripheral immune cells in the CNS in steady state and disease. *Nature Neuroscience*. **20** (2), 136–144, doi: 10.1038/nn.4475 (2017).
- 46. Li, Q., Barres, B.A. Microglia and macrophages in brain homeostasis and disease. *Nature Reviews Immunology*. doi: 10.1038/nri.2017.125 (2017).
- Kennedy, B.C. *et al.* Tumor-Associated Macrophages in Glioma: Friend or Foe? *Journal of Oncology*. 2013, 1–11, doi: 10.1155/2013/486912 (2013).
- Rashed, M.H. *et al.* Exosomes: From Garbage Bins to Promising Therapeutic Targets. *Int. J. Mol. Sci. Int. J. Mol. Sci.* 18 (18), doi: 10.3390/ijms18030538 (2017).
- Yuana, Y., Sturk, A., Nieuwland, R. Extracellular vesicles in physiological and pathological conditions. *Blood Reviews*. 27 (1), 31–39, doi: 10.1016/j.blre.2012.12.002 (2013).
- Fröhlich, D. *et al.* Multifaceted effects of oligodendroglial exosomes on neurons: Impact
 on neuronal firing rate, signal transduction and gene regulation. *Philosophical Transactions of the Royal Society B: Biological Sciences.* 369 (1652), doi:
 10.1098/rstb.2013.0510 (2014).
- Krämer-Albers, E.-M. *et al.* Oligodendrocytes secrete exosomes containing major myelin
 and stress-protective proteins: Trophic support for axons? *Proteomics. Clinical applications.* 1 (11), 1446–61, doi: 10.1002/prca.200700522 (2007).
- 87452.Verderio, C. et al. Myeloid microvesicles are a marker and therapeutic target for875neuroinflammation. Annals of Neurology. 72 (4), 610–624, doi: 10.1002/ana.23627 (2012).
- Prada, I., Furlan, R., Matteoli, M., Verderio, C. Classical and Unconventional Pathways of
 Vesicular Release in Microglia. *GLIA*. 61, 1003–1017, doi: 10.1002/glia.22497 (2013).
- 87854.Cocucci, E., Meldolesi, J. Ectosomes and exosomes : shedding the confusion between879extracellular vesicles.Trends in Cell Biology.25 (6), 364–372, doi:

880 10.1016/j.tcb.2015.01.004 (2015).

- Théry, C. *et al.* Minimal information for studies of extracellular vesicles 2018 (MISEV2018):
 a position statement of the International Society for Extracellular Vesicles and update of
 the MISEV2014 guidelines. *Journal of Extracellular Vesicles*. 7 (1), 1535750, doi:
 10.1080/20013078.2018.1535750 (2018).
- 885 56. Ilaria Potolicchio, Gregory J. Carven, Xiaonan Xu, Christopher Stipp, Richiard J. Riese,
 886 Lawrence J. Stern, and L.S. Proteomic Analysis of Microglia-Derived Exosomes: Metabolic
 887 Role of the Aminopeptidase CD13 in Neuropeptide Catabolism1. *The Journal of*888 *Immunology*. **175**, 2237–2243 (2005).
- Turola, E., Furlan, R., Bianco, F., Matteoli, M., Verderio, C. Microglial microvesicle secretion
 and intercellular signaling. *Frontiers in Physiology*. **3 MAY**, doi: 10.3389/fphys.2012.00149
 (2012).
- 58. Yáñez-Mó, M. *et al.* Biological properties of extracellular vesicles and their physiological
 functions. *Journal of Extracellular Vesicles*. 4 (2015), 1–60, doi: 10.3402/jev.v4.27066
 (2015).
- Kowal, J. *et al.* Proteomic comparison defines novel markers to characterize
 heterogeneous populations of extracellular vesicle subtypes. *Proceedings of the National Academy of Sciences.* 113 (8), E968–E977, doi: 10.1073/pnas.1521230113 (2016).
- Anderson, J.D. *et al.* Comprehensive Proteomic Analysis of Mesenchymal Stem Cell
 Exosomes Reveals Modulation of Angiogneesis via NFkB Signaling. *Stem Cell Technology: Epigenetics, Genomics, Proteomics and Metabonomics*. 601–613 (2016).
- 901 61. Vallejo, M.C. *et al.* Lipidomic analysis of extracellular vesicles from the pathogenic phase
 902 of Paracoccidioides brasiliensis. *PLoS ONE*. **7** (6), doi: 10.1371/journal.pone.0039463
 903 (2012).
- Haraszti, R.A. *et al.* High-resolution proteomic and lipidomic analysis of exosomes and
 microvesicles from different cell sources. *Journal of extracellular vesicles*. 5, 32570, at
 http://www.ncbi.nlm.nih.gov/pubmed/27863537
- 83. Kreimer, S., Belov, A.M., Ghiran, I., Murthy, S.K., Frank, D.A., Ivanov, A.R. Mass84. Spectrometry-Based Molecular Characterization of Extracellular Vesicles: Lipidomics and
 85. Proteomics. Journal of Proteome Research. 14 (6), 2367–2384, doi: 10.1021/pr501279t
 810 (2015).
- 911 64. Nolte'T Hoen, E.N.M., Buermans, H.P.J., Waasdorp, M., Stoorvogel, W., Wauben, M.H.M.,
 912 'T Hoen, P.A.C. Deep sequencing of RNA from immune cell-derived vesicles uncovers the
 913 selective incorporation of small non-coding RNA biotypes with potential regulatory
 914 functions. Nucleic Acids Research. 40 (18), 9272–9285, doi: 10.1093/nar/gks658 (2012).
- 915 65. Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J.J., Lötvall, J.O. Exosome-mediated
 916 transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between
 917 cells. *Nature cell biology*. 9 (6), 654–9, doi: 10.1038/ncb1596 (2007).
- 91866.Thakur, B.K. et al. Double-stranded DNA in exosomes: a novel biomarker in cancer919detection. Cell Research. 24 (6), 766–769, doi: 10.1038/cr.2014.44 (2014).
- 67. Kahlert, C. *et al.* Identification of doublestranded genomic dna spanning all chromosomes
 with mutated KRAS and P53 DNA in the serum exosomes of patients with pancreatic
 cancer. *Journal of Biological Chemistry.* 289 (7), 3869–3875, doi: 10.1074/jbc.C113.532267
 (2014).

Figure 1

Figure 2

Figure 4

Figure 5

Name of Material/Equipment	Company	Catalog Number
12% Mini-PROTEAN [®] TGX [™] Precast Protein Gels	Bio-rad	4561045EDU
Acetonitrile	Fisher Chemicals	A955-1
Amicon 50 kDa centrifugal filter	Merck	UFC505024
Ammonium bicarbonate	Sigma-Aldrich	9830
HSP90 α/β antibody (RRID: AB_675659)	Santa-cruz	sc-13119
B27 Plus supplement	Gibco	A3582801
BenchMixer V2 Vortex Mixer	Benchmark Scientific	BV1003
Bio-Rad Protein Assay Dye Reagent Concentrate (Bradford)	Bio-Rad	5000006
C18 ZipTips	Merck Millipore	ZTC18S096
C6 rat glioma cell	ATCC	ATCC CCL-107
Canonical tubes	Sarstedt	62.554.002
Centrifuge	Eppendorf	5804000010
CO2 Incubator	ThermoFisher	
Confocal microscope LSM880	Carl Zeiss	LSM880
Cover slip glass	Marienfeld	111580
Culture Dish (60 mm)	Sarstedt	82.1473
Dithiothreitol	Sigma-Aldrich	43819
DMEM	Gibco	41966029
EASY-nLC 1000 Liquid Chromatograph	ThermoFisher	
Electron microscope JEM-2100	JEOL	
Ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid	Sigma-Aldrich	03777-10G
Ethylenediaminetetraacetic acid	Sigma-Aldrich	ED-100G
Exo-FBS	Ozyme	EXO-FBS-50A-1
ExoCarta database (top 100 proteins of Evs)		
Fetal Bovine Serum	Gibco	16140071
Fetal Horse Serum	Biowest	S0960-500
Filtropur S 0.2	Sarstedt	83.1826.001
Fisherbrand™ Q500 Sonicator with Probe	Fisherbrand	12893543
FlexAnalysis	Brucker	
Fluorescence mounting medium	Agilent	S3023
Formic Acid	Sigma-Aldrich	695076

Formvar-carbon coated copper grids Glucose Glutaraldehyde Hoechst 33342 Idoacetamide InstantBlue Coomassie Protein Stain Invert light microscope CKX53 L-glutamine LabTek II 8 wells Laemmli 2X Laminin MaxQuant software (proteins identification software) MBT Polish stell MEM 10X Methylcellulose MiliQ water Milk Mini PROTEAN Vertical Electrophoresis Cell MonoP FPLC column Nanosight NS300 NanoSight NTA software v3.2 NanoSight syringe pump Neurobasal Nitrocellulose membrane Nonidet P-40 Nunc multidish 24 wells Paraformaldehyde PC-12 cell line Penicillin-Streptomycin Peptide calibration mix Peroxidase AffiniPure Goat Anti-Mouse IgG (H+L) Perseus software (Processing of identified proteins) Phalloidin-tetramethylrhodamine conjugate Phenylmethanesulfonyl fluoride Phosphate Buffer Saline pluriStrainer M/ 60 µm Poly-D-lysine Polycarbonate centrifuge tubes Protease Inhibitor PureCol Q-Exactive mass spectrometer rapifleX mass spectrometer Rat cortical neurons Rat Macrophage & Microglia Culture Medium Rat primary macrophages Rat primary microglia Sepharose CL-2B Sequencing Grade Modified Trypsin Slide Sodium Chloride Sodium Dodecyl Sulfate Sodium Fluoride Sodium hydroxide Sodium pyrophosphate SpeedVac Vacuum Concentrator String software (functional protein association networks) SuperSignal West Dura extended Duration Substrate Svringe 1.0 mL Trans-Blot SD Semi-Dry Transfer cell Trifluoroacetic acid

Tris

Tris-Glycine

Ultracentrifuge

Uranyl acetate

Whatman filter paper

Ultracentrifuge Rotor 70.1 Ti

 α -Cyano-4-hydroxycinnamic acid

Tween 20

Agar scientific Ltd AGS162-3 Sigma-Aldrich G8769 Sigma-Aldrich 340855 Euromedex 17535-AAT Sigma-Aldrich 11149 Expedeon ISB1L Olympus Gibco 25030-024 154534 Nunc **Bio-Rad** 1610737 Corning 354232 Brucker 8268711 Gibco 21090-022 Sigma-Aldrich M6385-100G Merck Millipore Regilait REGILAIT300 **Bio-Rad** 1658000FC GE Healthcare Malvern Panalytical NS300 Malvern Panalytical Malvern Panalytical 21103-049 Gibco GE Healthcare 10600007 Fluka 56741 ThermoFisher 82.1473 Electro microscopy Science 15713 ATCC CRL-1721 ATCC Gibco 15140-122 LaserBio Labs C101 Jackson ImmunoResearch 115-035-003 Santa-cruz sc-362065 Sigma-Aldrich 78830 Invitrogen 14190094 pluriSelect 43-50060 Sigma-Aldrich P6407 **Beckman Coulter** 355651 Sigma-Aldrich S8830-20TAB Cell Systems 5005 ThermoFisher Brucker **Cell Applications** R882N-20 R620K-100 **Cell Applications Cell Applications** R8818-10a Lonza RG535 **GE** Healthcare 17014001 Promega V5111 Dustsher 100204 Scharlau SO0227 Sigma-Aldrich L3771 Sigma-Aldrich S7920-100G Scharlab SO0420005P Sigma-Aldrich S6422-100G ThermoFisher ThermoFisher 34075 8SS01H1 Terumo **Bio-Rad** 1703940 Sigma-Aldrich T6508 Interchim UP031657 Euromedex EU0550 Sigma-Aldrich P2287 Beckman Coulter A95765 **Beckman Coulter** 342184 Agar Scientific Ltd AGR1260A Sigma-Aldrich WHA10347510 Sigma-Aldrich C2020-25G

Conclusion de la partie II

Ces deux articles démontrent que les procédures mises en place au laboratoire permettent de séparer correctement les VEs vis-à-vis des protéines libres contenues également dans les milieux extracellulaires. Cette étape est cruciale afin d'étudier les effets biologiques portés par les VEs et identifier les contenus (protéines, lipides, acides nucléiques) qui y contribuent. Le couplage de l'ultracentrifugation à une étape supplémentaire soit par un gradient de densité d'Optiprep™ (UC-ODG) soit par une chromatographie d'exclusion stérique (UC-SEC) a permis d'optimiser qualitativement l'isolement des VEs même s'il est admis que ces séparations supplémentaires occasionnent une perte quantitative des VEs isolées.

La stratégie d'une analyse protéomique à grande échelle des fractions obtenues représente de mon point de vue une amélioration significative dans le protocole d'isolement des VEs. Ces signatures sont non seulement le moyen de vérifier la présence ou non de marqueurs vésiculaires mais offrent également l'intérêt d'accéder aux contenus protéiques participant à l'impact fonctionnel des VEs exercé sur les cellules receveuses. Enfin, l'analyse des voies biologiques dans lesquelles sont impliquées les protéines issues des VEs donnent une indication très fine des profils pro- ou anti-inflammatoires développés par les cellules microgliales ou les macrophages. Comme ces profils sont directement influencés par l'environnement cellulaire, la caractérisation des VEs immunitaires est un indicateur très intéressant du contexte physiologique et potentiellement pathologique dont elles sont issues. Utilisées comme biomarqueurs ou dans un intérêt plus fondamental, les VEs délivrent des messages qu'il est important de déchiffrer. La recherche plus exhaustive et approfondie des molécules présentes dans les VEs aidera à mieux comprendre leurs effets.

PARTIE III

Caractérisation des microARNs dans les VEs microgliales

Introduction de la partie III

Après avoir contribué au cours de ma thèse à l'ensemble des travaux décrivant la production de VEs par les cellules microgliales primaires de sangsue (Publications 1 à 3), j'ai développé sur ces mêmes préparations la méthode d'isolement des VEs par couplage de l'ultracentrifugation et de la chromatographie d'exclusion stérique (UC-SEC) (Publication 4). Dans ce contexte d'optimisation méthodologique, mes travaux de thèse se sont concentrés sur la caractérisation des miARNs dans les VEs microgliales. Les VEs contiennent de nombreuses molécules comme des protéines, des lipides mais aussi des acides nucléiques (ADN, ARN ou miARNs) [12]. Les miARNs sont de petites séguences (18-22 nucléotides) très conservées entre les espèces qui vont contrôler de manière post-transcriptionnelle la disponibilité d'ARNm cibles pour la traduction de la protéine correspondante. Il est estimé chez les mammifères que 50 % des miARNs sont exprimés au niveau du cerveau [184]. Les miARNs interviennent dans le cerveau lors de processus physiologiques liés au développement, l'homéostasie du SNC, la croissance neuritique mais aussi lors de processus pathologiques. Dans le cas de certaines pathologies et plus précisément dans les neuropathologies, ces miARNs peuvent être considérés comme des biomarqueurs, des cibles thérapeutiques ou des agents thérapeutiques.

Les résultats obtenus lors des études précédentes ont montré que les VEs microgliales ont un rôle dans le dialogue entre les cellules microgliales et les neurones chez notre modèle. Il a été décidé d'analyser les ARNs contenus dans ces VEs microgliales. Je me suis ici focalisé sur la caractérisation des miARNs dans les VEs microgliales (**Publication 5**). Cette étude s'est intéressée tout d'abord à l'isolement et la validation des VEs microgliales. Puis, nous avons caractérisé les signatures miARNs et validé leur présence dans les VEs microgliales. Ces dernières ont été à nouveau étudiées sur des neurones, cette fois-ci des neurones primaires de rat, pour évaluer la conservation de leurs propriétés biologiques. Enfin, à la suite de cette étude, des résultats préliminaires ne faisant pas encore partie d'une publication seront présentés au sujet de la conservation des 6 miARNs de VEs microgliales de sangsue chez d'autres espèces, incluant la microglie de souris, de rat et humaine.

PUBLICATION 5

Microglia-derived extracellular vesicles : miRNA signatures and neuroprotection

<u>Lemaire Quentin</u>, Raffo-Romero Antonella, Arab Tanina, Van Camp Christelle, Drago Francesco, Forte Stefano, Gimeno Jean-Pascal, Begard Séverine, Colin Morvane, Vizioli Jacopo, Sautière Pierre-Eric, Salzet Michel, Lefebvre Christophe

Article en soumission dans Journal of Extracellular Vesicles (JEV)

<u>Résumé</u>

Au cours de cette étude, qui a consacré l'essentiel de mon travail de thèse, nous avons étudié la signature des miARNs dans les VEs microgliales chez la sangsue. Une première étape a consisté à effectuer par RNAseq une caractérisation des ARNs présents dans les VEs microgliales. Afin de développer une approche non ciblée, le milieu conditionné a été collecté après une culture primaire de microglie afin d'isoler les VEs après une procédure d'ultracentrifugation simple. Cette procédure représentait une première approche consistant à proposer - après interrogation dans la banque miRBase - une liste préliminaire de 38 séquences candidates. En parallèle de cette mise en évidence de séquences candidates, l'optimisation de l'isolement des VEs à partir de microglie en culture primaire s'est avéré nécessaire. Le développement ainsi que la validation d'une méthode d'isolement par l'association de l'ultracentrifugation et d'un gradient de densité Optiprep[™] (UC-ODG) ont permis d'effectuer les premières expériences sur la vérification des signatures miARNs dans les VEs microgliales. Les résultats de comptage de particules obtenus après des analyses NTA montrent que 3 fractions UC-ODG (F4, F5 et F6) sont enrichies en nanoparticules comme attendu. Dans notre problématique, les miARNs sont dépourvus de queue poly(A) et doivent être polyadénylés in vitro avant l'étape de synthèse de l'ADN complémentaire (ADNc) et de PCR. Afin de suggérer la nature de miARN parmi les 38 séquences candidates, une expérience de contrôle négatif sans étape de polyadénylation a été réalisée et comparée à la préparation normale des extraits (Tailing-RT-PCR). Suite à une amplification PCR réalisée en triplicat utilisant des amorces spécifiques, 17 séquences ont été détectées dans les deux conditions, révélant ainsi un processus naturel de polyadénylation, tandis que les 21 autres séquences de

la taille attendue ont seulement été amplifiées dans l'échantillon polyadénylé in vitro. Ces séquences peuvent correspondre à des miARNs, vésiculaires ou libres, mais peuvent aussi provenir de séquences d'ARNs dégradés se trouvant dans le matériel co-isolé avec les VEs. Afin de nous assurer que les séquences amplifiées sont bien des miARNs d'origine vésiculaire, nous avons ajouté une étape de traitement à la RNase A des fractions contenant les VEs obtenues après la procédure d'isolement UC-ODG. Cette enzyme ne pourra pas atteindre les miARNs contenus dans les VEs et protégés par la double membrane. Une stratégie similaire d'ajout de queue poly(A) et d'amplification a été utilisée sur les 21 séquences d'intérêts et a révélé l'amplification significative de six miARNs: miR-1860, miR-1705, miR-2284y-6, miR-146a, miR-858, et miR-7718. Dans le but d'améliorer la robustesse de notre étude, nous avons développé la méthode d'isolement associant l'UC à la chromatographie d'exclusion stérique (UC-SEC). L'illustration de cette méthode a fait l'objet d'une publication décrite précédemment (Publication 4). Dans cette optimisation, les comptages en NTA ont montré une augmentation du nombre de particules dans les fractions SEC F5, F6 et F7. Les fractions SEC ont ensuite été regroupées en trois nouveaux échantillons nommés : P1-EV- (fractions F1-F4 SEC), P2-EV+ (fractions F5-F7 SEC) et P3-EV- (fractions F8-F20 SEC). Les analyses par Microscopie électronique à Transmission (TEM) ont montré la présence des VEs dans P2-EV+. Les images de TEM ont montré des diamètres très hétérogènes allant de 50 nm à 200 nm. Les analyses protéomiques des 3 fractions P1-EV-, P2-EV+ et P3-EV- ont également révélé l'identification beaucoup plus importante de protéines dans la fraction P2-EV+ contenant les VEs. Parmi les protéines exclusives ainsi que celles qui sont surreprésentées dans l'échantillon P2-EV+, 29 de ces protéines ont été associées au top 100 des protéines de la base de données ExoCarta, qui recense les marqueurs spécifiques présents dans les VEs. Une analyse de ces protéines présentes en P2-EV+ par Ontologie des Gènes (GO) a révélé la faible présence de signatures liées aux contaminants (appareil de Golgi, lumière du réticulum endoplasmique et membrane interne des mitochondries) alors que la grande majorité (70,8%) des signatures ont été associées au terme «exosomes extracellulaires». Cela montre l'efficacité de la procédure UC-SEC dans l'isolement de VEs microgliales. En ce qui concerne les voies biologiques suggérées par l'analyse des signatures protéiques, de nombreux mécanismes semblent être impliqués dans la régulation immunitaire (voie IFN-y, système immunitaire, voie de signalisation médiée par les cytokines et événements de signalisation médiés par le CXCR4) et la survie neuronale (réseaux de signalisation du VEGF et VEGFR et signalisation du

NGF). Après la validation de l'isolement des VEs microgliales par la procédure UC-SEC et par le traitement à la RNAse A, les ARNs totaux ont été extraits à partir de la fraction P2-EV+ et ont suivi l'ajout de la queue poly(A) et les réactions d'amplifications comme décrit précédemment. En utilisant les six amorces spécifiques aux miARNs, cette dernière procédure d'isolement a de nouveau permis d'amplifier les six miARNs dans les VEs microgliales: miR-1860, miR-1705, miR-2284y-6, miR-146a, miR-858 et miR-7718.

Au cours des publications précédentes (**publications 2 et 3**), nous avons montré que les VEs microgliales ont un impact sur la croissance neuritique. Nous avons effectué ces analyses avec des VEs microgliales de sangsue issues de la méthode UC-SEC sur une culture primaire de neurones de rats. Les analyses ont révélé une augmentation significative de la croissance des neurites en présence de 10⁶ et 10⁷ VEs microgliales par rapport au témoin après 24h de traitement. L'effet a été potentialisé après 48h de traitement par 10⁷ VEs. Ensuite, nous avons décidé d'étudier les signatures des protéines neuronales en comparant la condition activée par les VEs microgliales (10⁶ et 10⁷) à la condition contrôle. Les résultats ont montré qu'en présence de VEs microgliales, le pourcentage de protéines neuronales totales est davantage associé à des voies biologiques telles que le développement des neurones, le développement des dendrites, le guidage des axones ou l'assemblage de filopodium. Les catégories des « composants cellulaires » ont été également fortement associées à la projection de neurones, au filopodium et au cône de croissance lorsque les neurones sont sous l'influence des VEs microgliales.

Cette méthode UC-SEC a donc permis d'isoler des VEs microgliales ayant conservé tout leur potentiel neuroprotecteur que nous pouvons désormais corréler, de près ou de loin, à la présence des 6 miARNs identifiés. Cette caractérisation des signatures de miARNs dans les VEs de la microglie est une première étape contribuant à proposer des mécanismes de régulation conduisant à une meilleure plasticité neuronale. Dans le but de focaliser la croissance neuritique observée sur la présence éventuelle de miARNs vésiculaires, une analyse prospective des signatures de protéines neuronales a été entreprise entre les neurones activés par les VEs microgliales et les neurones naïfs. En effet, les variations du protéome neuronal peuvent être le reflet d'une séquestration d'ARNm cibles par des miARNs empêchant ainsi leur traduction. Afin de prédire de telles cibles, toutes les protéines exclusives ou surreprésentées dans les neurones de la condition contrôle ont été sélectionnées. Leurs ARNm correspondants ont été analysés à l'aide de deux programmes indépendants, miRDB et TargetScan, afin de proposer les interactions possibles avec au moins l'un des six miARNs. Les résultats ont suggéré que certains ARNm participant à ces signatures protéiques puissent être ciblés par les miARNs issus des VEs microgliales. Ces mécanismes proposés constituent des perspectives intéressantes à l'étude des 6 miARNs caractérisés dans les VEs microgliales. En gardant à l'esprit que les VEs microgliales de sangsue ont exercé un effet bénéfique sur les neurones primaires de rat, il s'agira ensuite de rechercher des similitudes, incluant les miARNs, dans les VEs produites par les cellules microgliales chez les mammifères.

Title : Microglia-derived extracellular vesicles : miRNA signatures and neuroprotection

- Author : Lemaire Quentin¹, Raffo-Romero Antonella¹, Arab Tanina¹, Van Camp Christelle¹, Drago Francesco², Forte Stefano³, Gimeno Jean-Pascal¹, Begard Séverine⁴, Colin Morvane⁴, Vizioli Jacopo¹, Sautière Pierre-Eric¹, Salzet Michel¹, Lefebvre Christophe^{1*}
- ¹ Laboratoire de Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, F-59000, Lille, France.
- ² Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
- ³ IOM Ricerca srl, Catania, Italy.
- ⁴ Centre de Recherche Jean-Pierre AUBERT (JPArc), INSERM U1172, Université de Lille, F-59000, Lille, France.

*Corresponding author : christophe.lefebvre@univ-lille.fr

Laboratoire de Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, F-59000, Lille, France.

Abstract:

The functional preservation of the central nervous system (CNS) is based on the neuronal plasticity and survival. In this context, the neuroinflammatory state plays a key role and involves the microglial cells, the CNS-resident macrophages. In order to better understand the microglial contribution to the neuroprotection, microglia-derived EVs were isolated and molecularly characterized to be then studied in neurite outgrowth assays.

The medicinal leech CNS was initially used as an interesting model of microglia/neuron crosstalk to isolate microglia-derived EVs. A large-scale and non-targeted proteomic analysis was developed to detect as many EV protein markers as possible and better understand the biologically active proteins. The RNAseq analysis of the microglial EVs was performed while the same EV preparations were also evaluated as mediators of neurite outgrowth on rat primary neurons.

Six different microRNAs were originally identified in microglia-derived EVs including 3 of them known until now in plants only. The *in vitro* assays showed in parallel that the microglia EV-activated neurons present a higher neurite outgrowth than naïve neurons. Finally, the neuronal protein signatures were studied in order to suggest possible miRNA-dependent mechanisms of regulation in this microglia EV-dependent neuroprotection. Taken together, the results showed the leech microglial EVs as a neuroprotective cargo across species and contributed to find original EV-associated miRNAs in the EV-dependent dialog between microglia and neurons.

Keywords: Microglia, Extracellular vesicles, miRNAs, Leech *Hirudo medicinalis*, Neuroprotection. **Introduction**

The integrity of a Central Nervous System (CNS) is based on interactions between glia cells and neurons [1]. As described in Vertebrates, microglia cells play a crucial role to initiate and regulate the neuronal mapping and neuronal activities throughout the life [2,3]. The functions of these brain resident macrophages are involved in the CNS development, tissue homeostasis by maintaining a basal inflammatory state [4,5]. Microglia appear to be at the interface between nervous and immune systems in healthy as well as pathological conditions [2]. They were described for the first time in 1919 by del Rio-Hortega in numerous animal models [6]. In Vertebrates, microglia cells have a myeloid origin and derive from the yolk sac during the embryogenesis [7].

In this study, we used the medicinal leech (*Hirudo medicinalis*) CNS as model in order to study the microglial interactions with neurons. The CNS of this annelid exhibits several advantages. On one hand, the neurons are well mapped in a linear nerve chain composed of 32 ganglia, including cerebroid, segmental and caudal ones (Figure 1). The ganglia are linked by connective tissues. The natural neuronal organization is interesting because cell bodies are located in the ganglia while the axons are mainly projected in the adjacent connective tissues [8–11]. Thus an experimental lesion of the connectives allows the specific injury of axons without compromising the integrity of the cell body. On the other hand, while microglia are distributed in the ganglia and also in the connective tissues, they have the ability to migrate to the injury site. This recruitment occurs within the 24 hours post-lesion [12,13] and allows the use of the leech CNS as an interesting model to study the interactions between activated microglia and lesioned axons [14]. This microglia recruitment depends on several chemotactic signals released from the damaged axons such as ATP, complement factor C1q, cytokines EMAPII and Interleukin-16, and TGF- β family members [15–20]. As there is no blood-derived immune cell infiltration in the leech CNS and no other glial cell type accumulating to the lesion, this model of axonal lesion in the leech interestingly allows studying the interactions between microglia and neurons.

This cell-cell communication can be achieved in living organisms by several extracellular communications, including the contribution of extracellular vesicles (or EVs) as molecular

cargos [21,22]. Two main EV types are usually studied: the exosomes and microvesicles. The exosomes are generated from the endosomal system as intraluminal vesicles (or ILVs) and secreted during the fusion of multivesicular bodies (or MVBs) with the plasma membrane. Regarding the microvesicles, they are generated by an outward budding from the plasma membrane of the cell [23]. In addition, the other criteria of size and molecular profiles are not distinctive enough. Given that the exosomes and microvesicles have respectively a diameter between 50-150 nm and 50-500 nm (up to 1μ m) and possess a large common molecular pattern, some small vesicles could not be fully identified. In this report, the mechanisms of EV biogenesis were not studied so that the results will not distinguish the different EV subtypes. Consequently, the report will only consider the term of EVs instead of exosomes and/or microvesicles.

As described in the CNS of many metazoans, EVs significantly contribute to the physiological functions of the nerve cells [24]. Recent studies in the laboratory showed in the medicinal leech an EV-dependent crosstalk between microglia and neurons [20,25,26]. Indeed, an important population of EVs was observed in the injury site after the axonal lesion. In addition, these data demonstrated that freshly isolated microglia cells can release specific EVs possessing a significant effect in neurite outgrowth. In order to better understand the functions of microglia EVs in their crosstalk with neurons, their molecular profiles have to be characterized. The EVs contain many molecules like proteins (enzymes, signal transduction, biogenesis factor), lipids (ceramide, cholesterol...) or nucleic acids (DNA, mRNA or miRNAs) [23]. MicroRNAs (miRNAs) are small (18-22 nucleotides) and highly conserved non-coding RNAs that control mRNA in a post-transcriptional manner, leading to their differential use in the protein synthesis [27]. The first miRNA, called *lin-4*, was discovered in the nematode C. elegans and presented an expression inversely proportional to the protein lin-14. These results suggested a regulatory activity of *lin-4* on *lin-14* mRNA [28]. Then, miRNAs were found from plants to animals where they are transcribed from genes by RNA polymerase II to give primary-miRNAs (pri-miRNAs). These pri-miRNAs are processed by Drosha and DGCR8 enzymes to generate pre-miRNAs which are then exported from the nucleus to the cytoplasm by exportin 5 [29,30]. The pre-miRNAs are matured by DICER and TRBP proteins to generate mature miRNA/miRNA* duplexes. After this processing, one of the strand of the duplex is assembled into the RNA-induced silencing complex (RISC). The miRNA strand is favored to be more loaded in the RISC complex than the passenger miRNA* strand [31]. Finally, the RISC complex plays a role in mRNA interference. In theory, one miRNA species can target multiple mRNA transcripts [27]. The regulation of the mRNA availability by miRNAs occurs in the CNS in the developmental process, cellular homeostasis but also in CNS disorders [5,27].

In the present report, in parallel to the optimization of their isolation methods, the leech microglia EVs were studied as mediators in the promotion of neurite outgrowth. The goal was to assess the conservation of their biological activities. Then, we aimed to better understand their neuroprotective functions by characterizing their miRNA signatures by RNAseq analyses. Taken together, the results contributed to find original EV-associated miRNAs to propose putative molecular mechanisms involved in the EV-dependent dialog between microglia and neurons.

Materials and methods

Ethics statement

Animals were provided by Janvier Laboratories and had access to food and water ad libitum. Animal experiments were performed in compliance with the approval of the local ethics committee (agreement APAFIS#2264–2015101320441671 from CEEA75, Lille, France), standards for the care and use of laboratory animals, and the French and European Community guidelines.

Leech central nervous system structure and isolation

All protocols regarding the use of leeches were carried out in strict accordance with the French legislation and European Treaty, and in compliance with the Helsinki Declaration. The adult leeches *Hirudo medicinalis* were obtained from Biopharm (Hendy, UK). Ten leeches were anesthetized in ethanol 10% at room temperature (RT) for 15 min, the CNS were dissected out in a sterile Ringer solution (115 mM NaCl, 1.8 mM CaCl₂, 4 mM KCl, 10 mM Tris maleate, pH 7.4) under a laminar flow hood. After isolation of CNS, the samples were placed in 3 successive baths of antibiotics (100 UI/ml penicillin, 100 µg/ml streptomycin and 100 µg/ml gentamycin) for 15 min and later incubated in complete medium, made of Leibovitz L-15 medium (Invitrogen, Carlsbad CA, USA) complemented with 2 mM L-glutamin, 100 UI/ml penicillin, 100 µg/ml streptomycin, 100 µg/ml gentamycin, 0.6% glucose, 10 mM Hepes and 10% exosome-depleted FBS Media Supplement (SBI System Bioscience, Palo Alto CA, USA).

Neuron and Microglial cell preparation

The whole CNS were placed in 35 mm Petri dishes with 500 μ L of complete medium. Ganglia and connectives were carefully decapsulated by removing the collagen layer enveloping the nerve cord. The nerve cells, neurons (10-70 μ m) and microglial cells (5 μ m), were mechanically collected by gentle scraping and filtered through different size of filters to separate the populations according to size. Afterwards, the cell debris were eliminated in a 100 μ m pluriStrainer filter (Dominique Dutscher, Brumath, France). Microglia were selected through a 6 μ m pluriStrainer filter and the neurons were collected in the upper part of this filter. In order to eliminate cell debris, complete medium containing microglial cells or neurons were centrifuged at 1200 × g for 10 min at RT. Regarding the preparation of conditioned medium, the pellet of microglial cells corresponding to 10 nerve cords, was resuspended in 500 μ L of complete medium, and plated in 4-well petri dishes. After 15 min of incubation, the enriched microglial cells or neurons were centrifuged at 1200 x g for 10 min at RT. All the cell cultures (neurons and microglia) are maintained at 18°C in atmospheric conditions.

Primary Embryonic Neuronal Culture

Rat primary embryonic cortical neurons (primary neurons) were prepared from 17–18-dayold Wistar rat embryos as follows. The brain and meninges were removed. The cortex was dissected out and mechanically dissociated in culture medium by trituration with a polished Pasteur pipette. Once dissociated and after blue trypan counting, cells were plated in 6-well plate (800 000 cells/well) or 8-well Labtek plate (50 000 cells/well) (Sarstedt, Nümbrecht, Germany) coated with poly-D-lysine (0.5 mg/mL) and laminin (10 µg/ml). For dissociation, plating, and maintenance, we used Neurobasal medium supplemented with 2% B27 and containing 200 mM glutamine and 1% antibiotic-antimycotic agent (Invitrogen, Carlsbad CA, USA).

Preliminary EV Isolation by Ultracentrifugation (UC)

The supernatants of conditioned medium from leech microglial culture were transferred into canonical tubes and centrifuged at 1200 g for 10 min at RT to pellet the cells. The resulting supernatants were transferred into new tubes and centrifuged at 1200 g for 30 min at RT to eliminate the apoptotic bodies. In order to pellet the EVs, the supernatants from the second centrifugation were transferred into 10.4 ml polycarbonate bottle with Cap Assembly tubes
(Beckman Coulter, Brea CA, USA). The tubes were filled with PBS to a final volume of 9 ml and samples were ultracentrifuged at 100 000 x g for 90 min at 4°C (70.1 Ti rotor, k-factor 36, Beckman Coulter, Brea, CA, USA). The supernatants were carefully removed and the UC pellets were resuspended in 200 μ l of 0.20 μ m filtered PBS (Invitrogen, Carlsbad CA, USA).

EV isolation by UC coupled to Optiprep[™] Density Gradient (ODG)

The UC pellets may have been subjected to a further purification step by Optiprep[™] Density Gradient. Briefly, the pellets were loaded at the bottom of gradient prepared by diluting a stock solution of Optiprep[™] (60% w/v iodixanol; Sigma Aldrich, Saint Louis MO, USA) as previously described [32]. The gradient was prepared by carefully deposite 2 mL of Optiprep[™] solutions: 40%, 20%, 10% and 5% in a 14 mL polyallomer Beckman coulter tubes. The samples were ultracentrifuged at 100 000 x g for 16 h at 4°C (SW 40 Ti rotor, k-factor 137, Beckman Coulter, Brea, CA, USA). The ODG fractions of 1mL were carefully harvested from the top to the bottom and resupended in 8 mL of PBS for 90 min of centrifugation at 100 000 x g at 4°C (70.1 Ti rotor, k-factor 36, Beckman Coulter, Brea, CA, USA). After the supernatant removal, the pellets were resuspend in 100 µL of filtered PBS.

EV isolation by UC coupled to Size-Exclusion Chromatography (SEC)

The UC pellets may also have been subjected to a size-exclusion chromatography (SEC) isolation. SEC were performed using a home-made column with a 0.7 cm diameter and a 26 cm height. Briefly, the glass column was washed with water and ethanol. Subsequently, a 60 μ m filter (pluriselect, Leipzing, Germany) was placed at the bottom of the column which was stacked with sepharose 2B (Sigma Aldrich, Saint Louis MO, USA) to create a 19 cm height stationary phase. Then, 50 mL of PBS were loaded to rinse and equalize the phase. The resuspended UC pellet was loaded at the top of the stationary phase. The eluates were collected in 20 sequential fractions of 250 μ L. For each fraction, the number of particles was determined by NTA. After analysis, each fraction was conserved at -20°C for further analyses.

Nanoparticle Tracking Analysis (NTA)

NTA was performed using a NanoSight NS300 instrument with a 488 nm laser and an automated syringe pump (Malvern Panalytical Ltd, UK). The script was adapted as follows: samples were diluted (1:100) in filtered PBS and loaded using an automated syringe pump.

6

1

The infusion rate was initially fixed to 1000 for sample loading and chamber filling and then decreased to 25 for video recording. A delay of 15 seconds was applied to stabilize the flow before acquisition. Video captions of 60 seconds were performed in triplicate for each sample with a camera level setting at 13 and a screen gain at 3. The NTA 3.2 software was used to process the recorded movies with a camera level setting at 13 and a detection threshold at 3. PBS used for EV recovery was used for negative controls. As a control for ODG experiments, 200 μ l of PBS were loaded at the bottom of the tube that was then processed exactly in the same conditions as the EV-containing samples. As a control for SEC experiments, 250 μ L of PBS were collected before the loading of the sample on the column.

Transmission Electron Microscopy (TEM)

The observation of EVs by TEM was performed as previously described [33]. Briefly, isolated EVs were resuspended in 30 μ L of 2% paraformaldehyde (PFA) in PBS. Then, 3 × 10 μ L of sample were deposited on Formvar-carbon-coated copper grids. The adsorption was performed for 3 × 20 min in a wet environment and the grids were transferred into a drop of 1% glutaraldehyde in PBS for 5 min at RT. After several rinsing steps with ultrapure water, samples were contrasted for 10 min on ice with a mixture of 4% uranyl acetate and 2% methylcellulose (1:9, v/v). The excess of mixture was removed using Whatman filter paper. After drying, the samples were observed under a JEOL JEM-2100 TEM at 200 kV. The acquisitions were made with Gatan Orius SC200D camera.

RNase A treatment of EVs positive fractions

The EV positive fractions (both ODG and SEC isolation methods) were treated with RNase A solution (0.1 mg/mL) (Sigma Aldrich, Saint Louis MO, USA) for 90 min at 37 °C. Then they were transferred into 10.4 ml polycarbonate bottle with Cap Assembly tubes (Beckman Coulter, Brea CA, USA), filled with PBS to a final volume of 9 ml and ultracentrifuged at 100 000 x g for 90 min (70.1 Ti rotor, k-factor 36, Beckman Coulter, Brea CA, USA) to eliminate the RNase A. The EV pellets were resuspended in 200 μ L of PBS for further analyses or directly lysed in TRIzol[®] reagent for RNA extraction.

Total RNA extraction and processing from microglia EVs

The EV samples (from UC, UC-ODG or UC-SEC procedures) were mixed in 300 µL of TRIzol[®] reagent (ThermoFisher Scientific, Waltham MA, USA) and incubated 5 min at RT. Then, 3 µL of cel-mir-39 spike in kit (Norgen, Thorold ON, Canada) was added to the mixture as normalizer for quantitative PCR. RNA were extracted with Direct-zol[™] RNA Miniprep according to manufacturer's protocol (Zymo Research Corp, Irvine CA, USA). The extracted RNAs were analyzed with a Nanospectrophotometer MultiSkan GO (ThermoFisher Scientific, Waltham MA, USA) to evaluate their quantity and quality.

Total RNA extraction from leech microglia and neurons

Total RNAs were extracted from microglia and neurons corresponding to ten leech nerve chains. The cell pellets of the microglia or neurons were resuspended in 1 ml of TRIzol® (Thermo Fisher Scientific, Waltham MA, USA) to be processed according to the manufacturer's instructions. The total RNA pellet were resuspended in 20 µl of DEPC-treated water (Thermo Fisher Scientific, Waltham MA, USA). After their quantification and a quality analysis at 260 nm using a Multiskan Go spectrophotometer (Thermo Fisher Scientific, Waltham MA, USA) the total RNAs were treated with RQ1-DNase1 in 10x RQ1-DNase buffer for 30 min at 37°C (Promega, Madison, WI, USA) to prevent any contamination by genomic DNA. The quality of total RNAs was finally analysed in a 1% agarose gel electrophoresis.

RNA Seq Analysis

The CNS isolation and microglial cell preparation were performed from 60 adult leeches as presented above. In this experiment, the microglia-derived EVs were isolated from the UC procedure as described above. Following the RNA extraction, the quantification and quality controls previously described, 300 ng of RNA extract were fragmented using RNAse III reaction and used to prepare a representative cDNA library according to the manufacturer's instructions (Ion Total RNA-Seq Kit v2, Life Technologies). The library was diluted at 9 pM before a strand-specific RNA sequencing on the Ion Personal Genome Machine[™] system (Ion Torrent chip 318, Ion Torrent Systems, Inc., Life Technologies). Raw fastQ files obtained from RNA sequencing were trimmed and aligned using the web-based platform Galaxy (https://usegalaxy.org/), a custom interface for the online use of bioinformatic tools for manipulating nucleotide sequences [34]. Preprocessed reads were aligned using BWA on the

complete collection of known microRNA precursors (all species) retrieved from miRbase [35]. Reads with a corresponding extended sequence identity to any known microRNA were counted and ranked according to the number of copies. Putative microRNAs having at least 50 reads were selected and then validated as described below.

Reverse Transcription of total RNAs

The total RNAs were reverse transcribed according to the NCode[™] miRNA First-Strand synthesis kit protocol (Invitrogen, Life Technologies, Carlsbad, CA, USA) and used 1 µg of cellular RNA extracts and 500 ng extracellular vesicle RNA extracts. For any sample, the polyadenylation reaction was necessarily performed before the first-strand cDNA synthesis. In order to validate the nature of miRNA, the same amount of RNA extracts were reverse transcribed without the poly (A) tail grafting and were used as negative controls. The reaction mixes were stored at -20°C for subsequent PCR studies.

Gene expression analysis

The cDNAs were amplified by PCR with GoTaq® DNA Polymerase (Promega, Madison WI, USA) according to manufacturer's instructions. The reactions were carried out with a Biorad T100 thermocycler (BioRad, Hercules CA, USA) with the following amplification conditions : 3 min at 95°C, 50 cycles of: 30 sec at 94°C, 20 sec at 51°C and 30 sec at 72°C; and a final step at 72°C for 5 min. The PCR products were loaded on a non-denaturing 12% polyacrylamide gel and migrated in 1X TBE buffer for 15 min at 50 V and then 45 min at 100 V. The gels were revealed after a 10 minute incubation in a TBE-SYBR Gold Nucleic Acid Gel Stain 1X solution (Molecular probes, Invitrogen). The image captures of the gels were performed under a UV camera.

Quantitative gene expression analysis

Real-time quantitative PCR (qPCR) reactions were performed using Platinum[®] SYBR[®] Green qPCR SuperMix-UDG kit (Thermo Fisher Scientific, Waltham MA, USA) on a CFX96TM Real-Time PCR Detection System instrument (Biorad, Hercules CA, USA) with the following program: 2 min at 50°C, 1 min at 95°C, and 50 cycles of: 15 sec at 95°C, 15 sec at 51°C, 20 sec at 60°C. Data were analyzed with the CFX Manager software (Biorad, Hercules CA, USA). The relative gene expression of the different miRNAs of interest were standardized using the miRNA cel-mir-39 spike-in control and were calculated using the $2^{-\Delta\Delta Ct}$ method [36].

Subcloning and Sequencing.

PCR products were extracted with NucleoSpin Gel and PCR clean-up kit (Macherey-Nagel, KG, Düren, Germany) according to the manufacturer's instructions. Extracted PCR products were ligated into the pGEM T-easy vector (Promega, Madison WI, USA) and cloned into JM109 cells according to the manufacturer's instructions. Finally, products were sequenced using BigDye Terminator v3.0 polymerization kit before detection on Genetic Analyzer (Applied Biosystems, Foster City CA, USA).

Protein extraction and mass spectrometry analysis from neurons

Total Protein extraction. Primary neurons were prepared as described before. At DIV7, the cells were exposed to 10⁶, 10⁷ EVs/well or SEC negative fractions (P3-EV-). Each condition was done in triplicate. After a 48h exposure, cells were washed with ice-cold PBS and then lysed with RIPA buffer for total protein extraction (150 mM NaCl, 50 mM Trizma base, 1 mM PMSF, 5 mM EGTA, 2 mM EDTA, 100 mM Sodium Fluoride, 10 mM Sodium Pyrophosphate, 1X protease inhibitors and 1% NP40) for 5 min on ice. The lysate was sonicated twice 10 seconds with a probe sonicator (500 W, 20 kHz). The cell debris were pelleted by centrifugation at 20 000 x g for 10 min at 4°C, and the supernatants containing proteins were collected for subsequent analysis.

Filter-aided Sample Preparation (FASP). Each total protein extract was used for FASP analysis. The FASP procedure used Amicon[®] Ultra-0.5 30 kDa Centrifugal Filter Devices (Millipore, Burlington, VT USA) as previously described [37] before adding trypsin (Promega, Madison WI, USA) for protein digestion (20 μ g/ml in 50 mM NH4HCO3). The samples were incubated with trypsin overnight at 37°C. The peptide digests were collected by centrifugation, and the filter device was rinsed with 100 μ l of 0.5 M NaCl. Next, 5% TFA was added to the digests, and the peptides were desalted with a Millipore[®] ZipTips C18 device (Millipore, Burlington, VT USA). The solution was then dried and solubilized in water/0.1% formic acid/2% ACN before the nLC-MS/MS analysis. The experiments were done in triplicate.

Protein extraction and mass spectrometry analysis from microglia EVs

Total Protein extraction. The SEC fractions were pooled with Amicon[®] Ultra-0.5 50 kDa Centrifugal Filter Devices (Millipore, Burlington, VT USA) and organized in three samples: P1-EV- (fractions 1-4), P2-EV+ (fractions 5-7) and P3-EV- (fractions 8-20). Concentrated samples were lysed with RIPA buffer for total protein extraction.

In-gel digestion of EV proteins. The EV Proteins were loaded onto a 4% polyacrylamide gel for separation using a TGS solution (25 mM Tris, 192 mM Glycine and 0.1% SDS) as running buffer. An electrophoresis was performed at 70V for 30 min to stack the proteins in the stacking gel. In order to fix proteins, the gel was stained with InstantBlue[™] Coomassie protein staining solution (Expedeon, Cambridgeshire, UK) for 20 min. Each gel lane was excised and cut into small pieces of 1 mm³. The strips of gel were washed with a succession of solutions: $300 \,\mu$ l of ultrapure water for 15 min, 300 µl of ACN for 15 min, 300 µl of 100 mM NH₄HCO₃ (pH 8) for 15 min, 300 μ L of NH4HCO3/ACN (1:1) for 15 min, then 300 μ L of ACN for 5 min. The pieces were dried under vacuum for 5 min. The reduction of cysteines was performed using 50 μ l of a solution of 10 mM DTT in 100 mM NH_4HCO_3 (pH 8) and incubated at 56°C for 1 hour. The alkylation of the cysteines was carried out using 50 μ l of 50 mM IAA in 100 mM NH₄HCO₃ (pH 8) at RT in the dark for 30 min. Gel pieces were washed with 300 μ l of 100 mM NH₄HCO₃ (pH 8) for 15 min, 300 μ l of 20 mM NH₄HCO₃ (pH 8) / ACN (1: 1) for 15 min and 300 μ l of ACN during 5 min. The pieces were dried under vacuum for 5 min and subjected to enzymatic digestion using a solution of trypsin (12.5 μ g/ml) in 20 mM NH₄HCO₃ (pH 8) overnight at 37°C. The peptides were then extracted using the following incubations: in 50 µl of ACN allowing the retraction of the gel band and the exit of the peptides; in 50 μ l of 1% TFA in order to inhibit the action of the trypsin remaining in the tube; and finally in 150 μ l of 100% ACN in order to ensure the complete release of the peptides. The supernatants were transferred to a new tube, dried, and then resuspended in 20 μ l of a 0.1% TFA solution for a desalting step as previously described. The sample was finally dried and solubilized in water/0.1% formic acid/2% ACN before the nLC-MS/MS analysis. The experiments were done in triplicate.

NanoLC-HR-MS/MS

Samples were separated by online reversed-phase chromatography using a Thermo Scientific Proxeon EASY-nLC 1000 system equipped with a pre-column (Acclaim Pepmap, 75 μ m ID x 2 cm, Thermo Scientific, Waltham, MA, USA) and a C18 packed-tip column (Acclaim PepMap, 75 μ m ID x 50 cm, Thermo Scientific, Waltham MA, USA). Peptides were separated using a

11

gradient of ACN (5–35% for 120 min) at a flow rate of 300 nL/min. The LC eluent was electrosprayed directly from the analytical column and a voltage of 1.7 kV was applied via the liquid junction of the nanospray source. The chromatography system was coupled to a Thermo Scientific Q-exactive mass spectrometer programmed to acquire in a data-dependent mode Top 10 most intense ion method. The survey scans were done at a resolving power of 70,000 FWHM (m/z 400), in positive mode and using an AGC target of 3e6. Default charge state was set at 2, unassigned and 1 charge states were rejected and dynamic exclusion was enabled for 25 s. The scan range was set to 300–1600 m/z. For ddMS2 , the scan range was between 200–2000 m/z, 1 microscan was acquired at 17,500 FWHM and an isolation window of 4.0 m/z was used.

MS Data Analysis

All the MS data were processed with the MaxQuant (version 1.5.8.3) software using the Andromeda search engine. The proteins were identified by searching MS and MS/MS data against rat database or homemade hirudo medicinalis database described in detail [25]. Trypsin specificity was used for the digestion mode with N-terminal acetylation and methionine oxidation selected as the variable. Carbarmidomethylation of cysteines was set as a fixed modification, with up to two missed cleavages. For MS spectra, an initial mass accuracy of 6 ppm was selected, with a minimum of 2 peptides and at least 1 unique peptide per protein, and the MS/MS tolerance was set to 20 ppm for HCD data. For identification, the FDR at the peptide spectrum matches (PSMs) and protein level was set to 0.01. A label-free quantification of proteins was performed using the MaxLFQ algorithm integrated into MaxQuant with the default parameters. The analysis of the proteins identified was performed using Perseus (version 1.6.2.3) software. The file containing the information from identification was used with hits to the reverse database, and proteins only identified with modified peptides and potential contaminants were removed. Then, the LFQ intensity was logarithmized (log2[x]). Categorical annotation of rows was used to define different groups after grouping replicates. Multiple-sample tests were performed using ANOVA test with a pvalue of 5% and preserving grouping in randomization. The visual heatmap representations of significant proteins were obtained using hierarchical clustering analysis. The normalization was achieved using a Z-score with a matrix access by rows. For the statistical analysis, only proteins presenting as significant by the ANOVA test were used. Hierarchical clustering depending on protein extract were first performed using the Euclidean parameter for distance calculation and average option for linkage in row. An integrated Venn diagram analysis was performed using "Draw Venn diagram", a web-based tool for the analysis of complex data sets. The analysis of gene ontology, cellular components and biological processes were performed with FunRich 3.0 analysis tool.

Prediction of mRNA targets

Predicted mRNA targets were extracted from two independent programs miRDB (http://mirdb.org) [38] and TargetScan (http://www.targetscan.org/vert_72/) [39]. Only common results between the two programs were considered.

Neurite outgrowth assay

The rat primary neurons were prepared as described before and put in 8-well LabTek culture chambers at a concentration of 50 000 cells/well. At DIV 3, the cells were exposed to 10⁵, 10⁶ and 10⁷ EVs/well (from P2-EV+ sample) or to P3-EV- as negative control. Each condition was performed in triplicate. After a 48h exposure, cells were fixed with 4% PFA for 20 min. After 3 washes with PBS, cells were stained with rhodamine-conjugated phalloidin (Santa Cruz, Dallas TX, USA) for 30 min at 4°C to evaluate neurite length. After 3 washes with PBS, the nuclei were stained with diluted Hoechst 33342 (1:10 000) (Euromedex, Souffelweyersheim, France) for 30 min at RT. Finally, after a last PBS washing, cells were mounted on a slide with Dako Fluorescent Mounting Medium (Agilent, Santa Clara CA, USA) and kept in the dark before acquisition. The analyses were conducted using a Zeiss Axiovert 200 M with a 63 x 1.4 numerical aperture oil immersion objective. The neurite length was measured with NeuriteTracer ImageJ software program [40]. For all assays, the significance was calculated by ANOVA paired t-test

Results

Strategy overview

The aim of the study was to characterize miRNA signatures from primary microglia EVs freshly dissociated from the leech CNS. In order to develop a non-targeted approach, the conditioned medium was collected after a primary microglia culture to isolate EVs following a simple ultracentrifugation (UC) procedure. From the UC pellet, the total RNAs were extracted to

perform RNAseq analyses (Figure 2). The raw data representing 5,451,188 total reads (535 million total bases) of a median size of 95 bp were aligned using BWA on the complete collection of known microRNA precursors (all species) retrieved from miRbase [35]. The reads presenting a sequence identity to any known microRNA were counted and ranked according to the number of copies. Only 38 sequences presenting a minimal number of 50 reads were selected for the following steps. This procedure represented a first approach to propose a preliminary list of 38 candidate sequences. At the moment these candidates were revealed, we were involved in the optimization of the EV isolation from primary microglia. That is why, additional efficient methods (UC + ODG; UC + ODG + RNAse A; UC + SEC + RNAse A) allowing a better EV isolation from primary microglia were used in order to validate or not the presence of these 38 candidate sequences by PCR amplification using specific primers (Figure 2).

A first approach of miRNA signatures

The UC procedure was first coupled to an Optiprep[™] Density Gradient (ODG) according to the leech microglia EV isolation we recently described [25]. The UC pellet were resuspended and loaded on a discontinuous (5%, 10%, 20% and 40%) Optiprep[™] Density Gradient. Eight fractions were collected from the top of the gradient and numbered from F1 to F8. From all fractions, the particle number was assessed using nanoparticle tracking analysis (NTA) technology. The results showed in F4, F5 and F6 ODG fractions a number greater than 1 x 10⁹ particles/mL, and up to 2 x 10⁹ particles/mL in F5 (Figure 3A). Because we previously demonstrated that leech microglia EVs were located in these three fractions using this protocol [25], we decided to pool F4, F5 and F6 in order to extract total RNAs from the whole EV population and confirm which candidate sequences are real miRNAs. From the total RNAs, the microRNAs have to be necessarily polyadenylated in vitro prior to the cDNA synthesis step due to the natural lack of poly(A) tail. In order to suggest the nature of miRNA among the 38 candidate sequences, a tailing control experiment was performed. Two different samples -Tailing⁺ vs. Tailing⁻ - were used in oligo(dT)-dependent first-strand cDNA synthesis. Following a triplicate PCR amplification using specific primers, 17 sequences were detected in both samples, revealing a natural polyadenylation process whereas the 21 other sequences of the expected size were amplified in the Tailing⁺ sample only, suggesting these could be 21 miRNAs (Figure 3B).

Validation of miRNA signatures in microglia EVs.

Because this study aims to characterize the miRNA signatures in microglia EVs, it was important to validate the sequences of interest as miRNAs, and discriminate the free miRNAs from the EV ones. Indeed, more and more studies show that miRNAs can be physiologically released in the extracellular spaces to communicate with neighbor cells [41]. In addition, the EV isolation procedure is based on primary cell culture in which damaged cells could have propagated materials as RNAs in the conditioned medium. These artefactual release in the culture medium could concern miRNAs as well as degraded RNAs all the same selected by the tailing control experiment. That is why, our strategy included a RNAse A treatment following the UC-ODG isolation procedure as previously recommended [42]. After pooling of F4-F6, the EV positive sample was digested to degrade all the exposed RNA sequences outside the EVs. An additional UC step collected EVs in order then to extract their specific total RNAs. A similar Tailing-RT-PCR strategy was used on the 21 sequences of interest and revealed the significant amplification of 6 EV-derived miRNAs: miR-1860, miR-1705, miR-2284y-6, miR-146a, miR-858, and miR-7718 (Figure 3C et Supplementary figures S1)

Final validation of miRNA signatures using UC-SEC-RNAse A procedure.

Because the EV isolation methods represent an important bias in the characterization of the molecular profiles, another procedure was used including a UC step coupled to a Size-Exclusion Chromatography (SEC) and RNAse A digestion (Figure 2). In contrast to the UC-ODG method that we previously validated on microglia EVs [25], we used the UC-SEC method for the first time in this study. Therefore, the SEC fractions were subjected to the necessary controls (Figure 4). First, all SEC fractions were analyzed using NTA technology. As negative control, a preliminary analysis was performed with the PBS buffer eluted after washing the column. The counting detected 3.26×10^8 particles/mL. Then, the SEC fraction analysis showed a higher number of particles in F5, F6 and F7 SEC fractions (~10⁹ particles/mL). The highest concentration was observed in F6 with 3.7×10^9 particles/mL whereas most of the fractions (F1-F4 and F8-F20) presented values comparable to the negative control (Figure 4A). Keeping in mind that other EVs could have been eluted in the neighbor fractions, we even so decided to pool the SEC fractions in three samples and named them: P1-EV- (F1-F4 SEC fractions), P2-EV+ (F5-F7 SEC fractions) and P3-EV- (F8-F20 SEC fractions). To assess the morphology and size of the isolated microglia EVs, Transmission Electron Microscopy (TEM) analyses were

performed from these three samples. EVs were detected in P2-EV+ but not in P1-EV- and P3-EV-. The TEM captures from P2-EV+ showed very heterogeneous diameters ranking from 50 nm to 200 nm. Morphologically, most of EVs stayed spherical and occasionally appeared as aggregates (Figure 4B).

Recent guidelines given by the International Society for Extracellular Vesicles (ISEV) recommended to validate the EV isolation procedure by demonstrating the specific presence of EV markers in fractions considered as EV positive. That is why, the three samples P1-EV-, P2-EV+ and P3-EV- were submitted in triplicate to a large scale and non-targeted proteomic analysis in order to characterize most of the EV-associated molecular profiles. The raw data allowed the identification of exclusive proteins in each sample as well as common signatures. The comparison of protein signatures between P1-EV- and P2-EV+ showed the presence of 17 proteins exclusively in P1-EV- and 76 proteins exclusive to P2-EV+. These two samples share 51 common proteins (Figure 4C and Supplementary table S1). As well, the comparison of protein signatures between P2-EV+ and P3-EV- showed 87 proteins exclusive to P2-EV+ whereas P3-EV- only presents 3 exclusive proteins. These two samples share 40 common proteins (Figure 4D and Supplementary table S1). Concerning the common signatures, a relative quantitative analysis from each triplicate sample showed over- and downrepresented proteins after comparison between P1-EV- and P2-EV+, and between P2-EV+ and P3-EV-. Thus, the analysis of the 51 and 40 proteins respectively common between P1-EV- and P2-EV+, and between P2-EV+ and P3-EV- showed a clustering of protein signatures (Figures 4C,D and Supplementary table S2). The clusters demonstrated that most of the proteins were over-represented in P2-EV+ compared to the two other samples. The protein identified in microglia EVs were qualitatively compared to the top 100 proteins described in ExoCarta, a web-based compilation of EV markers [43]. From the exclusive as well as over-represented proteins present in P2-EV+ sample, 29 proteins were identified in this ExoCarta database (Figure 4E). Among these markers, 15 were exclusive to P2-EV+ and 14 were over-represented in P2-EV+ but also detected in P3-EV-. Although it could be possible to suggest the minor presence of EVs in P3-EV-, most of them were isolated in the P2-EV+ sample. Interestingly, a similar submission of exclusive and over-represented proteins from P1-EV- did not allow any identification of EV marker. As well, the 3 proteins exclusive to P3-EV- were not associated to EV markers (not shown). A Gene Ontology (GO) analysis revealed that the P2-EV+ proteins correspond to several cellular components including the signatures related to contaminants

term like Golgi apparatus (2.8%), the endoplasmic reticulum lumen (3.8%) and the mitochondrial inner membrane (7.5%). Importantly, this analysis also revealed that 70.8 % of the protein signatures were associated to the term "extracellular exosomes", also showing by this approach the efficiency of the UC-SEC procedure in the microglia EV isolation (Figure 4F). Although a few contaminant-like proteins were detected in P2-EV+, the RNAse A treatment was added to vigorously degrade extravesicular RNAs and unambiguously characterize the EV miRNAs. Regarding the biological pathways that were suggested by the protein signature analysis, numerous microglia EV mechanisms are involved in the immune regulation (IFN-gamma pathway 27.67%, Immune system 10.7%, Cytokine mediated signaling pathway 8.3% and CXCR4 mediated signaling events 7.1%) and in the neuronal survival (VEGF and VEGFR signaling network 28.57% and NGF signaling 7.1%) (Figure 4G).

Finally, after the validation of the EV isolation by the UC-SEC procedure and their RNAse A digestion, the total RNAs were extracted from RNAse A-treated P2-EV+, and followed the same Tailing-RT-PCR analysis as previously described. By using the six miRNAs-specific primers, this last EV isolation also allowed amplifying all 6 EV-derived miRNAs: miR-1860, miR-1705, miR-8788b, miR-2284y-6, miR-146a, miR-167c, miR-8908c, miR-858, miR-8674c and miR-7718 (Figure 2 and supplementary figure S2).

Functional impact of microglia EVs

In vitro and *in vivo* studies showed that leech microglia EVs can support regenerative processes after an axonal lesion [20,25,26]. Neurite outgrowth assays were previously used to show the neurotrophic properties of microglia EVs after UC or UC-ODG isolation method. The correlation to EV-associated mediators like miRNAs can help to better understand the molecular mechanisms supporting such a neuroprotective effect. In this study, we used similar neurite outgrowth assays to evaluate the conservation of the neuroprotective functions of microglia EVs after a UC-SEC method. Rat primary neurons were cultured with either 10⁵, 10⁶, 10⁷ microglia EVs (P2-EV+) or with P3-EV- as negative control for 9h, 24h and 48h and the measure of neurite length were overall made on cell population (Figure 5). Even if the control neurons developed neurites throughout the culture from T9h to T48h, the results showed after a 24h culture a significant acceleration of the neurite outgrowth in presence of 10⁶ and 10⁷ microglia EVs compared to control. The benefit was conserved after a 48h culture, even if only 10⁷ microglia EVs were able to significantly potentiate in a longer term their effect on

neurite outgrowth compared to 10⁶ microglia EVs. As observed with the negative control, the condition using 10⁵ microglia EVs never showed a positive effect. Because the neurite outgrowth was promoted in presence of 10⁶ and 10⁷ microglia EVs, we investigated the neuronal protein signatures that were modulated in these EV-activated conditions compared to P3-EV- as negative control (Figure 6). We decided to use rat neurons in these experiments to facilitate the molecular discrimination between neuronal proteins and all those brought by the leech microglia EVs. In addition, the cross-species neurotrophic effect supported by leech microglial EVs was recently described [26]. Because the raw data from nanoLC-MS/MS analyses were submitted to a rat protein database, the low homologies on full length sequences limited the probability to mix up with leech proteins. The results compared P2-EV+ (10⁶ or 10⁷ EVs)-activated neurons with control ones (P3-EV-) and showed exclusive proteins in each sample as well as common signatures (Figure 6A and Supplementary table S3). In both amounts of EVs used to activate the neurons (10⁶ or 10⁷ EVs), the comparison led to the identification of a quite similar number of exclusive and common proteins between EVactivated and naïve neurons. In presence of 10⁶ or 10⁷ EVs respectively, 71 or 97 proteins were exclusive to the controls whereas 45 or 37 proteins were exclusive to the EV-activated neurons. The common signatures (1033 and 1004 proteins) were independently used in a relative quantification to highlight clusters of a few proteins significantly over-represented in the EV-activated neurons (blue frames) or in control neurons (yellow frames), as described in the heatmaps (Figure 6B and Supplementary table S4). The exclusive signatures as well as the clusters of over-represented proteins from EV-activated (10⁶ and 10⁷ EVs) and control neurons were used to identify a correlation to biological pathways and cellular components (Figure 6C,D). The results showed that the percentage of total proteins is modulated in Gene Ontology (GO) categories between conditions. The neuronal protein signatures were for example more associated to biological pathways such as neuron development, dendrite development, axon guidance or filopodium assembly when neurons were cultured in presence of microglia EVs compared to controls. The categories of cellular components were also strongly associated to neuron projection, filopodium or growth cone for example under the influence of microglia EVs. This overview based on protein signatures is consistent with the results obtained in the neurite outgrowth assays.

Assessment of EV-associated miRNA signatures in the neuronal metabolism

The EV-dependent acceleration of neurite outgrowth in rat primary neurons is mediated by EV compounds for which no direct evidence is provided so far. The identification of EV protein signatures highlighted the presence of growth factor-associated mechanisms (Figure 4G) but characterizing the miRNA signatures in microglia EVs is another mean to propose regulatory mechanisms leading to a better neuronal plasticity. Indeed, the sequestration of mRNAs by specific interactions with miRNAs significantly modulates the availability of mRNAs in the protein translation and leads to changes in the protein signatures. That is why, a complementary analysis in the protein signatures was undertaken between microglia EVactivated neurons and naïve ones in order to suggest possible miRNA-specific targets (Figure 7A). All the proteins exclusive or over-represented in naïve neurons (control) were affected following the EV-dependent activation. All the mRNAs coding these proteins were selected and analyzed using two independent web-based programs, miRDB [38] and TargetScan [39], in order to predict possible interactions with at least one of the six miRNAs we characterized in microglia EVs. The results suggested that some mRNAs participating to these protein signatures could be targeted by microglia EV miRNAs (Figure 7A). The results proposed a specific mRNA listing for each miRNA. No mRNA target was predicted for miR-8788, miR-146a and miR-858. But three specific mRNA targets were predicted for miR-7718, 2 specific mRNA targets for miR-8908c and also for miR-1705 and 1 mRNA target for miR-1860 and also for miR-2284y6. Only the common predictions between the two programs were considered which can explain the low number of predicted target mRNAs.

Beyond a predictive analysis of their putative targets, these 6 microglia EV miRNAs were also analyzed from cellular RNA preparations. Indeed, the biological context of the EV-dependent dialog between microglia and neurons in the leech CNS means that microglia EVs could bring specific miRNAs that are poorly represented in neurons to finally regulate key mechanisms. That is why, all miRNAs were analyzed from leech microglia vs. leech neuron total RNAs in order to evaluate their relative expression (Figure 7B). The results showed that miR-1860, miR-7718, miR-2284y6 and miR-146a present an expression level in microglia at least 2-fold higher than that of neurons. The relative expression even goes up to near 4-fold concerning miR-1860, miR-2284y6 and miR-146a. In contrast, miR-1705 and miR-858 did not reveal any significant difference in their expression level between microglia and neurons.

Discussion

The conformation of the leech nerve chain allows by crushing of the connective tissues to touch only the axons without compromising the integrity of the neuronal cell bodies (Figure 1). The study of the dialogue between injured axons and microglial cells recruited at the site of injury represents a key step in understanding the axonal regeneration processes of the medicinal leech CNS. Recent studies showed that leech microglia are recruited to lesioned axons to communicate and initiate a regeneration program. This microglia movement towards injury is essential to favor the axonal sprouting [44]. After identifying chemotactic signals allowing an active recruitment of microglial cells within the hours following the lesion of connective tissues [15–17,19,45], we focused on their exchanges with neurons [20]. Among the natural mechanisms that occur to the lesion, the important accumulation of EV populations was simultaneously observed throughout the microglia recruitment. In addition, the first EV isolation methods allowed us to collect a high number of EVs from primary microglia [26]. Taken together, the data suggest that microglia cells bring effectors and mediators of regeneration to the injured axons at least in an EV-dependent manner. Indeed, we showed that leech microglia EVs isolated from a simple UC method or from a UC-ODG method exert a beneficial effect on neurite outgrowth in vitro [25,26]. That is why in this report, the investigation of the miRNA signatures is a way to identify key molecules playing a role in the EV-dependent dialog between microglia and neurons in the leech CNS.

The molecular diversity of these cargo (proteins, lipids, nucleic acids) represents a first challenge to the understanding of their functional effects as it is difficult to exhaustively identify the EV compounds and discriminate the typically vesicular contents from co-isolated materials considered as contaminants [23,42]. The first study we conducted using leech microglial cells was designed to compare two isolation protocols using either ultracentrifugation (UC) alone or UC coupled to Optiprep[™] density gradient separation (ODG). Interestingly, this study also incorporated direct proteomic analysis from harvested fractions [25]. This large-scale, non-targeted analysis of protein signatures has proved very informative in the characterization of EV proteins but also very useful in identifying a large number of EV markers and thus validating fractions as EV positive samples.

In the present study, we used these developments in order to characterize microRNA (miRNA) signatures, one of the molecule families found in EVs. Methods to identify miRNAs were developed in conjunction with the optimization of EV isolation methods. Therefore, the

RNAseq analysis of total RNAs was conducted after EV isolation by UC. The candidate sequences, not yet assigned to miRNAs, were analyzed by a tailing control experiment in order to reveal only sequences that do not correspond to mRNAs. These control steps were performed from total RNAs derived from microglial EVs. The primary microglia cells were always collected from similar conditions of preparation. These new EV preparations used the isolation method coupling UC to ODG. The variation in particle quantification and standard deviation between triplicates (Figure 3) can be due to the lack in a tight estimation of the microglial cell number in each replicate. These cells are really small ($\leq 5 \mu m$) which makes difficult their counting and viability estimation by trypan blue staining. Therefore, the number of nerve chain for each cell preparation was used as normalization factor between triplicates. However, the replicates clearly presented a higher number of particles in the F4, F5 and F6 ODG fractions, as previously described [25]. These three ODG fractions were selected as EV positive sample in the next step. The miRNA amplification technique uses the artificial addition of a poly (A) tail to the 3 'end of the RNAs (*in vitro* polyadenylation) in order to retro-transcribe and amplify their cDNA copies. In order to ensure that the sequences identified and selected in RNAseq are not mRNAs, we added an amplification control without a polyadenylation step. Thus, after their RNA extraction, Tailing+ or Tailing- conditions were used in RT-PCR amplifications and compared. The goal was to unambiguously identify Poly(A)+ RNAs - also amplified from the Tailing- condition - that could have been selected during the raw data analysis in miRBase. The analysis of the results revealed that among the 38 sequences of interests, 17 candidates were re-amplified without the need to add a poly (A) tail, which corresponds to mRNAs. On the other hand, 21 other sequences were potentially miRNAs contained in EVs because they have no natural poly (A) tail. The polyadenylation step was in fact essential for their amplification by RT-PCR. Although this comparison led to the elimination of candidate sequences that may correspond to mRNAs, it is possible that fragments derived from mRNA degradation – after cell death during the culture - may have been co-isolated in the same fractions as the EVs. In this case, the control tailing experiment only cannot be discriminating against miRNAs. Similarly, if they were really miRNAs, it is possible that they were released in free form by the cells in culture and were co-isolated with the EVs as a result of an interaction with their surface. In order to ensure their vesicular presence and their miRNA nature, an additional treatment using RNAse A was performed on EV-enriched ODG preparations to degrade the RNA sequences outside the EVs. This enzyme makes it possible to degrade the free RNAs present outside the EVs. If these "contaminant" molecules are organized into ribonucleoprotein complexes or interact with the EV surface, their digestion will release them into the buffer containing the EVs. A final ultracentrifugation occurred after digestion with RNAse A then allowed to recover the EV pellet without degraded molecules. After extraction of the total RNAs from the EV pellet, the additional PCR experiments, using specific primers, revealed the presence of only 6 miRNAs in the microglial EVs: miR-1860, miR-1705, miR-2284y-6, miR-146a, miR-858 and miR-7718 (Supplementary figure S1). Importantly, rather than exhaustively characterizing all miRNAs, the objective of this study was to rigorously reveal the presence of miRNA signatures that can help to better understand the effects of microglia EVs.

The validation of these signatures was only performed after having certified that the selected preparations correspond to EV-enriched fractions. Therefore, an additional method coupling UC to size exclusion chromatography (SEC) was used, in addition to RNAse A treatment, to extract total RNAs from microglial EVs (Figure 4). The NTA analysis results revealed a significant increase in the number of particles in three SEC elution fractions (F5-F7) compared to the previous (F1-F4) and subsequent ones (F8-F20). The total number of particles obtained by UC-SEC appeared to be slightly larger than that obtained after UC-ODG and the EV elution in the SEC column showed a better concentration in a single elution fraction, up to 3.7×10^9 particles/mL (F5). The variation in particle quantification between triplicates was also more satisfying than that observed in the UC-ODG procedure. These three batches of SEC fractions, F1-F4, F5-F7 and F8-F20, were respectively pooled in P1-EV-, P2-EV+ and P3-EV- samples to be analyzed by electron microscopy. TEM images validated the presence of EVs in the P2-EV+ sample, in a size range between 50 and 200 nm and sometimes showing vesicular aggregates. The samples P1-EV- and P3-EV- were observed but failed to identify the presence of EVs. As described in the previous study of the leech microglial EVs [25], the experimental approach was based on a large scale and non-targeted analysis of the protein signatures in each sample P1-EV-, P2-EV+ and P3-EV-. From our point of view, it is essential to extend the proteomic approach to validate the EV isolation method. Our background on the leech model showed that the molecules nevertheless recognized as EV markers are not always sufficiently preserved to be detected by commercial antibodies. Thus, as simple as Western Blot validation may be, this step can be difficult on poorly represented models such as the leech

as it is now recommended to use a large number of markers. Conversely, a non-targeted proteomic analysis allows the detection of numerous proteins that have significant homologies with the markers. They are perfectly detected here while some antibodies fail. The nanoLC-MS/MS analyses confirmed the presence of different protein signatures in each sample P1-EV-, P2-EV+ and P3-EV-. The interest of this approach is the identification of exclusive proteins as well as over-represented ones after a relative quantification and a comparison between triplicates. Therefore, the specific proteins from each sample can be compared to the top 100 EV markers described in ExoCarta [43]. Interestingly, 29 EV markers were identified in P2-EV+ (Figure 4E). Among these markers, 14 were also present in P3-EV-, but down-represented. Thus the minor presence of EVs cannot be excluded in the P3-EVsample, even if its 3 exclusive proteins were not associated to EV markers at all (not shown). In P2-EV+, the really low representation of protein signatures related to contaminants term like Golgi apparatus (2.8 %), endoplasmic reticulum lumen (3.8 %) and mitochondrial inner membrane (7.5 %) showed the possibility of a low contamination but 70.8 % of the total protein signatures associated to the Gene Ontology (GO) term "extracellular exosomes" also demonstrated a good EV isolation with the UC-SEC method. In addition, the prediction of the biological pathways resulting from the Gene Ontology Analysis of the EV proteins indicates a strong involvement in immune processes (IFN-gamma pathway 27.67%, Immune system 10.7%, Cytokine mediated signaling pathway 8.3% and CXCR4 mediated signaling events 7.1%), well described in microglia [46], and the association to Growth Factor signaling pathways (VEGF and VEGFR signaling network 28.57% and NGF signaling 7.1%) that are crucial to regulate the neurite outgrowth and neuronal survival [47–50]. Consequently, even if the aim of the study was not focused on the EV proteins, the subcellular localization and GO terms allowed investigating the efficiency of the EV isolation method and they gave an insight into the functional orientation of microglia cells and the impact of their EVs on the recipient cells. Therefore, the P2-EV+ sample was unambiguously used as microglia EV sample in the next steps to characterize the miRNA signatures. These developments required many preparations of primary microglial cells in order to validate the robustness of the EV isolates, study their molecular contents and biological functions. The significant acceleration of neurite outgrowth in presence of microglial EVs suggested the EV isolation method to be respectful of their biological properties (Figure 5). The decision to use rat primary neurons as target cells for leech microglia EVs permitted to highlight an interesting evolutionary conservation of EV- associated mechanisms across species in the dialog between microglia and neurons as previously described [26]. The other advantage to use rat neurons is the easier discrimination between rat neuronal proteins and leech EV proteins. Indeed, the large scale analysis of protein signatures was also performed in the EV-activated neurons and naive ones in order to identify biological pathways supporting the measure of the neurite outgrowth (Figure 6). The protein signatures after the microglial EV activation suggested neuronal processes in dendrite development, axon guidance or filopodium assembly which is consistent with the observation in the *in vitro* assays.

After Tailing-RT-PCR experiments, the results allowed again the detection of the 6 miRNAs of interest: miR-2284y6, miR-1705, miR-146a, miR-7718, miR-858 and miR-1860 (Supplementary figure S2). Of these 6 miRNAs present in microglial leech VEs, miR-146a was already described to have many implications in the pathophysiology of the nervous system [41,51]. The present study showed for the first time the involvement of the 5 other miRNAs: miR-2284y6, miR-1705, miR-7718, miR-858 and miR-1860 in nervous processes. Three of them were not even described yet in animals. As stated previously, miR-146a is very widely described especially in the mammalian nervous system. It is very present in microglial cells, neurons and astrocytes. The activation of the NF-kB pathway induces the expression of miR-146a which in cascade will be able to target mRNAs encoding the IRAK1 and TRAF6 proteins, key elements involved in this pathway. This negative feedback by miR-146a limits the excessive activation of this signaling pathway and thus contributes to the control of inflammation [52]. Moreover, during inflammation of the CNS, a decrease in the expression of miR-146a leads to an excessive activation of the NF-kB pathway and the increase of the gene expression for pro-inflammatory cytokines [53]. Then miR-2284y-6 is only described in the bull [54]. This miRNA is expressed in bovine immune cells such as monocytes and alveolar macrophages. It is also described for its involvement in inflammation [55,56]. Concerning miR-1705, it is only described in chicken during embryonic development of the animal and few data are available [57]. The other 3 miRNAs, miR-858, miR-7718 and miR-1860 are not described in animals. The molecules miR-858 is widely described in plants for its involvement in many processes [58], miR-7718 is involved in the reprogramming of leaf growth during water stress in the plant Brachypodium distachyon [59] and miR-1860 is described in rice but lacks information about its functions [60].

The following step was performed to predict mRNA targets potentially regulated by these miRNAs (Figure 7). Indeed, in the context of neurite outgrowth assays conducted on rat neurons to evaluate the effects of microglial leech EVs, the neuronal proteome was characterized. Because miRNAs can sequester target mRNAs, their presence in microglial EVs will therefore have the effect of varying the availability of neuronal transcripts for protein translation. In order to generate a list of mRNA targets potentially regulated by these miRNAs, two target prediction softwares were used: TargetScan and miRDB [38,39]. TargetScan searches for targets by sequence homology between the "seed" sequence that corresponds to nucleotides 2 to 8 of the mature miRNA and the 3'UTR of the target mRNAs. The miRDB prediction software works with an algorithm developed by analyzing thousands of target miRNA-mRNA interactions from high throughput sequencing experiments. The use of two different prediction software and the preservation of only common predictions between these two software makes it possible to bring more robustness in the possible identification of mRNA targets. Among the targets we identified, some even have implications in common biological pathways. The mRNAs encoding the IDH1 and Apaf1 molecules would be regulated respectively by miR-7718 and miR-2284y-6. They are both involved in the apoptosis of neurons. Indeed, an increase in IDH1 in neurons is associated with an increase in apoptosis [61]. In parallel, the inhibition of Apaf1 promotes cellular recovery [62]. Other miRNAs, miR-23a/b and miR-27a/b were described as regulators of Apaf1-encoding mRNA, resulting in decreased apoptosis of neurons [63]. The prediction of these mRNAs as potential targets makes sense in a neuroprotective context mediated by microglial EVs. Other mRNAs predicted as targets in our assays encode proteins involved in neuroprotection or neuronal differentiation. The mRNA encoding the RASGRP2 molecule, also known as CalDAG-GEFI, would be regulated by miR-1705. Importantly, this protein is induced in Huntington's disease. A decrease in the level of this protein makes it possible to induce a neuroprotective effect [64]. Still predicted to be targeted by miR-1705, the mRNA encoding the NUMBL molecule, for Numb-like protein, interacts with the Notch molecule. Many data are available on their role during the neurogenesis [65]. But, these mechanisms do not seem to intervene in the adult state. In addition to the neuronal context, the induction of NUMBL showed inhibition of cell proliferation and even induction of tumor cell apoptosis in colorectal cancer [66]. Its control at the post-transcriptional level would therefore have an opposite effect. Finally, the mRNA encoding the PTBP2 molecule, also known as nPTB, would be regulated by miR-7718. The inhibition of the protein promotes a neuronal maturation and the expression of neuron-specific genes [67].

All of these data from the literature show the expression of these miRNAs as a biological context promoting neuronal survival and neurite outgrowth. However, such predictions require additional experiments to decipher these mechanisms in the dialogue between microglia and neurons. It is impossible so far from this predicted mRNA listing to give a real functional impact to these 6 microglia EV miRNAs. Further studies will evaluate, using luciferase assays, whether the miRNAs of interest are indeed able to bind physically to these predicted mRNAs as target. In addition, they were identified from a whole preparation of microglia EVs but there is no evidence about their relative distribution, neither in number of copy by EV nor in percentage of positive microglial EVs. Whether the overall population of microglial EVs has a beneficial effect on neurite outgrowth, the relative importance of these 6 miRNAs is not yet established. Further studies would therefore use fluorescent molecular beacons based on antisense sequence directed against miRNAs of interest as previously described [68]. This study might measure the number of miRNA-positive EVs and thus estimate the distribution of each one in the total microglial EV population. In order to show the importance of the miRNAs as microglial EV mediators, other studies could potentiate these mechanisms by the use of mimetics or interfere by the use of antisense miRNAs within the EVs. Otherwise, because microglial recruitment in the leech CNS is supposed to provide original EV-mediated neuroprotective messages to the injured axon ends, we evaluated the gene expression of these miRNAs in microglia vs. neurons in leech (Figure 7). From a similar amount of total RNAs for each cell type, the Q-PCR results showed that miR-1860, miR-7718, miR-2284y-6 and miR-146a, are between 2.8-fold and 3.9-fold more expressed in microglia compared to neurons. The other two, miR-1705 and miR-858, presented an equal distribution between the two cell types. The neurons and microglial cells used in this study were derived from freshly dissociated leech chains, responding to a mechanical manipulation which can be related to a lesion process. Although the cellular environment, which induces the expression of each miRNA in vivo in both microglia and neurons, is not comparable, this experiment provides a first glance of the miRNAs that may eventually bring a new EV-dependent message from microglia towards injured neurons.

26

The contribution of the leech CNS is very interesting to understand the EV-dependent communication between microglia and neurons. The microglial EV isolation methods were successful to characterize miRNA as well as protein signatures. The preservation of a leech microglial influence on rat neurons demonstrated that extracellular vesicles could deliver a compatible molecular cocktail across species. Fundamental data from leech miRNAs might help to better understand the functions of microglial EVs in order to promote neuroprotection in a long term therapeutic strategy.

Author's contributions

Conceived and designed the experiments: QL and CL. Leech dissection: TA, ARR and CVC. Primary neuron preparation: MC and SB. Proteomic sampling and NTA measurement: QL. Proteomic data analyses QL, ARR and JPG. Electron microscopy: TA. RNAseq analyses: FD and SF. Funding and scientific discussion: MS. Manuscript redaction: QL and CL. Manuscript editing: QL, CL, JV and PES. All authors have given approval to the final version of the manuscript.

Acknowledgments

The authors would like to thank Loic Brunet and Anne-Sophie Lacoste for TEM observation. The TEM observations were performed on a device of the BICeL-Campus CS core facility acquired through a funding from the Agence Nationale de la Recherche, ANR (10-EQPX-04-01). The authors gratefully acknowledge Terry Gaasterland, Lee Edsall, Michael Baker and Eduardo Macagno from UCSD in la Jolla for providing the Hirudo medicinalis assembled genome. This work was supported by grants from the Ministère de L'Education Nationale, de L'Enseignement Supérieur et de la Recherche, the INSERM agency and the région Hauts-de-France.

Disclosure statement

The authors report no conflicts of interest

Bibliography

 Sankowski R, Mader S, Valdés-Ferrer SI. Systemic Inflammation and the Brain: Novel Roles of Genetic, Molecular, and Environmental Cues as Drivers of Neurodegeneration. Front. Cell. Neurosci. 2015;9.

- [2] Thion MS, Ginhoux F, Garel S. Microglia and early brain development: An intimate journey. Science (80-.). [Internet]. 2018 [cited 2018 Oct 19];362:185–189. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30309946.
- [3] Prinz M, Erny D, Hagemeyer N. Ontogeny and homeostasis of CNS myeloid cells.2017;18.
- [4] Ransohoff RM, Khoury J El. Microglia in Health and Disease. 2015;1–16.
- [5] Sankowski R, Mader S, Valdés-ferrer SI. Systemic inflammation and the brain : novel roles of genetic , molecular , and environmental cues as drivers of neurodegeneration. Front. Cell. Neurosci. 2015;9:1–20.
- [6] Sierra A, Castro F De, Juan R, et al. The "Big-Bang " for Modern Glial Biology : Translation and Comments on P io del R Hortega 1919 Series of Papers on Microglia. 2016;1801–1840.
- [7] Ginhoux F, Greter M, Leboeuf M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330:841–845.
- [8] Coggeshall RE, Fawcett DW. THE FINE STRUCTURE OF THE CENTRAL NERVOUS SYSTEM
 OF THE LEECH, HIRUDO MEDICINALIS. J. Neurophysiol. 1964;27:229–289.
- [9] Elliot EJ, Muller KJ. Synapses between neurons regenerate accurately after destruction of ensheathing glial cells in the leech. Science [Internet]. 1982 [cited 2019 Jun 3];215:1260–1262. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7058345.
- [10] Muller KJ, Scott SA. Correct axonal regeneration after target cell removal in the central nervous system of the leech. Science [Internet]. 1979 [cited 2019 Jun 3];206:87–89. Available from: http://www.ncbi.nlm.nih.gov/pubmed/482931.
- [11] Muller KJ, Scott SA. Removal of the synaptic target permits terminal sprouting of a mature intact axon. Nature [Internet]. 1980 [cited 2019 Jul 14];283:89–90. Available from: http://www.nature.com/articles/283089a0.
- [12] McGlade-McCulloh E, Morrissey AM, Norona F, et al. Individual microglia move rapidly and directly to nerve lesions in the leech central nervous system. Proc. Natl. Acad. Sci.
 U. S. A. [Internet]. 1989 [cited 2018 Oct 5];86:1093–1097. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2915975.
- [13] Morgese VJ, Elliott EJ, Muller KJ. Microglial movement to sites of nerve lesion in the leech CNS. Brain Res. [Internet]. 1983 [cited 2018 Oct 5];272:166–170. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/6616194.

- [14] Sieger D, Peri F. Animal models for studying microglia: The first, the popular, and the new. Glia [Internet]. 2013 [cited 2019 Jun 3];61:3–9. Available from: http://doi.wiley.com/10.1002/glia.22385.
- [15] Tahtouh M, Vizioli J, Sautiere P, et al. Evidence for a novel chemotactic C1q domaincontaining factor in the leech nerve cord. Mol. Immunol. 2009;46:523–531.
- [16] Tahtouh M, Garçon-Bocquet A, Croq F, et al. Interaction of HmC1q with leech microglial cells: Involvement of C1qBP-related molecule in the induction of cell chemotaxis. J. Neuroinflammation. 2012;9.
- [17] Croq F, Vizioli J, Tuzova M, et al. A homologous form of human interleukin 16 is implicated in microglia recruitment following nervous system injury in leech Hirudo medicinalis. Glia. 2010;58:1649–1662.
- [18] Arafah K, Croix D, Vizioli J, et al. Involvement of Nitric Oxide Through Endocannabinoids Release in Microglia Activation During the Course of CNS Regeneration in the Medicinal Leech. 2013;649:636–649.
- [19] Le Marrec-Croq F, Bocquet-Garcon A, Vizioli J, et al. Calreticulin contributes to C1qdependent recruitment of microglia in the leech Hirudo medicinalis following a CNS injury. Med. Sci. Monit. [Internet]. 2014 [cited 2019 May 31];20:644–653. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24747831.
- [20] Raffo-Romero A, Arab T, Van Camp C, et al. ALK4/5-dependent TGF-β signaling contributes to the crosstalk between neurons and microglia following axonal lesion. Sci. Rep. 2019;9:6896.
- [21] Debanne D, Rama S. Astrocytes Shape Axonal Signaling. Sci. Signal. [Internet]. 2011
 [cited 2018 Oct 8];4:pe11-pe11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21364185.
- [22] Yamazaki Y, Hozumi Y, Kaneko K, et al. Modulatory effects of oligodendrocytes on the conduction velocity of action potentials along axons in the alveus of the rat hippocampal CA1 region. Neuron Glia Biol. [Internet]. 2007 [cited 2018 Oct 8];3:325–334. Available from:

http://www.journals.cambridge.org/abstract_S1740925X08000070.

[23] van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. [Internet]. 2018 [cited 2018 Oct 8];19:213–228. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29339798.

- [24] Budnik V, Ruiz-cañada C, Wendler F. Extracellular vesicles round off communication in the nervous system. Nat. Rev. Neurosci. 2016;17:160–172.
- [25] Arab T, Raffo-Romero A, Van Camp C, et al. Proteomic characterisation of leech microglia extracellular vesicles (EVs): comparison between differential ultracentrifugation and Optiprep[™] density gradient isolation. J. Extracell. Vesicles [Internet]. 2019 [cited 2019 Jul 2];8:1603048. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31069026.
- [26] Raffo-Romero A, Arab T, Al-Amri IS, et al. Medicinal Leech CNS as a Model for Exosome Studies in the Crosstalk between Microglia and Neurons. Int. J. Mol. Sci. 2018;19:4124.
- [27] Blandford SN, Galloway DA, Moore CS. The roles of extracellular vesicle microRNAs in the central nervous system. Glia [Internet]. 2018 [cited 2018 Sep 4]; Available from: http://www.ncbi.nlm.nih.gov/pubmed/29726599.
- [28] Arasu P, Wightman B, Ruvkun G. Temporal regulation of lin-14 by the antagonistic action of two other heterochronic genes, lin-4 and lin-28. Genes Dev. 1991;5:1825– 1833.
- [29] Bartel DP. Metazoan MicroRNAs. Cell [Internet]. 2018 [cited 2019 Mar 12];173:20–51.Available from: http://www.ncbi.nlm.nih.gov/pubmed/29570994.
- [30] Winter J, Jung S, Keller S, et al. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat. Cell Biol. 2009;11:228–234.
- [31] Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell
 [Internet]. 2009;136:642–655. Available from: http://dx.doi.org/10.1016/j.cell.2009.01.035.
- [32] Graham JM. OptiPrep density gradient solutions for mammalian organelles.
 ScientificWorldJournal. [Internet]. 2002 [cited 2018 Nov 6];2:1440–1443. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12805930.
- [33] Théry C, Amigorena S, Raposo G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. cell Biol. [Internet].
 2006 [cited 2019 May 11];Chapter 3:Unit 3.22. Available from: http://doi.wiley.com/10.1002/0471143030.cb0322s30.
- [34] Afgan E, Baker D, Batut B, et al. The Galaxy platform for accessible, reproducible and

collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018;46:W537–W544.

- [35] Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42:D68-73.
- [36] Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the $2-\Delta\Delta$ CT Method. Methods. 2001;25:402–408.
- [37] Wiśniewski JR, Ostasiewicz P, Mann M. High Recovery FASP Applied to the Proteomic Analysis of Microdissected Formalin Fixed Paraffin Embedded Cancer Tissues Retrieves Known Colon Cancer Markers. J. Proteome Res. [Internet]. 2011 [cited 2018 Nov 6];10:3040–3049. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21526778.
- [38] Liu W, Wang X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. [Internet]. 2019 [cited 2019 Jul 9];20:18. Available from: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1629-z.
- [39] Agarwal V, Bell GW, Nam J-W, et al. Predicting effective microRNA target sites in mammalian mRNAs. Elife [Internet]. 2015 [cited 2019 Jul 9];4. Available from: https://elifesciences.org/articles/05005.
- [40] Pool M, Thiemann J, Bar-Or A, et al. NeuriteTracer: A novel ImageJ plugin for automated quantification of neurite outgrowth. J. Neurosci. Methods [Internet]. 2008
 [cited 2019 Apr 8];168:134–139. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17936365.
- [41] Prada I, Gabrielli M, Turola E, et al. Glia-to-neuron transfer of miRNAs via extracellular vesicles: a new mechanism underlying inflammation-induced synaptic alterations. Acta Neuropathol. 2018;135:529–550.
- [42] Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles. 2018;7:1535750.
- [43] Mathivanan S, Simpson RJ. ExoCarta: A compendium of exosomal proteins and RNA.Proteomics. 2009;9:4997–5000.
- [44] Ngu EM, Sahley CL, Muller KJ. Reduced axon sprouting after treatment that diminishes

microglia accumulation at lesions in the leech CNS. J. Comp. Neurol. 2007;

- [45] Schikorski D, Cuvillier-Hot V, Boidin-Wichlacz C, et al. Deciphering the immune function and regulation by a TLR of the cytokine EMAPII in the lesioned central nervous system using a leech model. J. Immunol. 2009;183:7119–7128.
- [46] Kettenmann H, Hanisch U, Noda M, et al. Physiology of Microglia. Physiol. Rev. 2011;461–553.
- [47] Castillo X, Melo Z, Varela-Echavarría A, et al. Vasoinhibin Suppresses the Neurotrophic Effects of VEGF and NGF in Newborn Rat Primary Sensory Neurons. Neuroendocrinology. 2018;106:221–233.
- [48] Olbrich L, Foehring D, Happel P, et al. Fast rearrangement of the neuronal growth cone's actin cytoskeleton following VEGF stimulation. Histochem. Cell Biol. 2013;139:431–445.
- [49] Carmeliet P, de Almodovar CR, Carmen R de A. VEGF ligands and receptors: implications in neurodevelopment and neurodegeneration. Cell. Mol. Life Sci. 2013;70:1763–1778.
- [50] Klein R, Nanduri V, Jing SA, et al. The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell. 1991;66:395–403.
- [51] Nguyen LS, Fregeac J, Bole-Feysot C, et al. Role of miR-146a in neural stem cell differentiation and neural lineage determination: relevance for neurodevelopmental disorders. Mol. Autism [Internet]. 2018 [cited 2019 Jul 6];9:38. Available from: https://molecularautism.biomedcentral.com/articles/10.1186/s13229-018-0219-3.
- [52] Slota JA, Booth SA. MicroRNAs in Neuroinflammation: Implications in Disease Pathogenesis, Biomarker Discovery and Therapeutic Applications. Non-Coding RNA
 [Internet]. 2019 [cited 2019 May 14];5:35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31022830.
- [53] Yang Q, Shi Q, Fu J. Applications of cerebrospinal miRNA in the detection and treatment of acute CNS injury. Front. Lab. Med. [Internet]. 2018 [cited 2019 May 18];2:83–88. Available from: https://www.sciencedirect.com/science/article/pii/S2542364918300268.
- [54] Huang J, Ju Z, Li Q, et al. Solexa sequencing of novel and differentially expressed microRNAs in testicular and ovarian tissues in Holstein cattle. Int. J. Biol. Sci. [Internet]. 2011 [cited 2019 Jul 11];7:1016–1026. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/21912509.

- [55] Lawless N, Vegh P, O'Farrelly C, et al. The Role of microRNAs in Bovine Infection and Immunity. Front. Immunol. [Internet]. 2014 [cited 2019 Jul 11];5:611. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25505900.
- [56] Fang L, Sørensen P, Sahana G, et al. MicroRNA-guided prioritization of genome-wide association signals reveals the importance of microRNA-target gene networks for complex traits in cattle. Sci. Rep. [Internet]. 2018 [cited 2019 Jul 11];8:9345. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29921979.
- [57] Glazov EA, Cottee PA, Barris WC, et al. A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res. [Internet]. 2008
 [cited 2019 Jul 11];18:957–964. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18469162.
- [58] Zhu H, Xia R, Zhao B, et al. Unique expression, processing regulation, and regulatory network of peach (Prunus persica) miRNAs. BMC Plant Biol. [Internet]. 2012 [cited 2019 Jul 11];12:149. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22909020.
- [59] Bertolini E, Verelst W, Horner DS, et al. Addressing the Role of microRNAs in Reprogramming Leaf Growth during Drought Stress in Brachypodium distachyon. Mol. Plant [Internet]. 2013 [cited 2019 Jul 11];6:423–443. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23264558.
- [60] Zhu Q-H, Spriggs A, Matthew L, et al. A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res. [Internet]. 2008 [cited 2019 Jul 11];18:1456–1465. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18687877.
- [61] Chen X, Wang H, Yu W, et al. IDH1 Associated with Neuronal Apoptosis in Adult Rats Brain Following Intracerebral Hemorrhage. Cell. Mol. Neurobiol. [Internet]. 2017
 [cited 2019 Jul 11];37:831–841. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27568302.
- [62] Gortat A, Sancho M, Mondragón L, et al. Apaf1 inhibition promotes cell recovery from apoptosis. Protein Cell [Internet]. 2015 [cited 2019 Jul 11];6:833–843. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26361785.
- [63] Chen Q, Xu J, Li L, et al. MicroRNA-23a/b and microRNA-27a/b suppress Apaf-1 protein and alleviate hypoxia-induced neuronal apoptosis. Cell Death Dis. [Internet].

2014 [cited 2019 Jul 11];5:e1132–e1132. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24651435.

- [64] Crittenden JR, Dunn DE, Merali FI, et al. CalDAG-GEFI down-regulation in the striatum as a neuroprotective change in Huntington's disease. Hum. Mol. Genet. [Internet].
 2010 [cited 2019 Jul 11];19:1756–1765. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20147317.
- [65] Qian W, Hong Y, Zhu M, et al. Deletion of Numb/Numblike in glutamatergic neurons leads to anxiety-like behavior in mice. Brain Res. [Internet]. 2017 [cited 2019 Jul 11];1665:36–49. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28347671.
- [66] Peng H, Wang L, Su Q, et al. MiR-31-5p promotes the cell growth, migration and invasion of colorectal cancer cells by targeting NUMB. Biomed. Pharmacother.
 [Internet]. 2019 [cited 2019 Jul 11];109:208–216. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30396078.
- [67] Hu J, Qian H, Xue Y, et al. PTB/nPTB: master regulators of neuronal fate in mammals.
 Biophys. reports [Internet]. 2018 [cited 2019 Jul 11];4:204–214. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30310857.
- [68] Hye J, Ah J, Hee M, et al. Biomaterials In situ single step detection of exosome microRNA using molecular beacon. Biomaterials [Internet]. 2015;54:116–125.
 Available from: http://dx.doi.org/10.1016/j.biomaterials.2015.03.014.

Figure 1: Diagram of the leech CNS. Upper diagram shows the location of the leech CNS in the animal. Lower Diagram shows a fragment of two ganglia and connective tissues. Each ganglion contains four packet glial cells enveloping neuronal cell bodies. The axons go through the neuropil and extend into connectives. Microglial cells are distributed in all ganglia and connectives tissues. The neuropil lies dorso-medially and contains two macroglial cells. The nervous system is enclosed in the outer capsule which is covered outside by a visceral layer of the endothelium (lining the ventral blood sinus). In addition, it is represented a lesion in the center of the connective tissues with a microglia recruitment and extracellular vesicle (EV) accumulation. (Adapted from [1])

Figure 2: Strategies of EV isolation and miRNA characterization in microglia. The left panel shows the strategy to isolate EVs from microglia-conditioned medium with ultracentrifugation procedure (UC procedure). After isolation of microglia from leech CNS, the cells are placed in primary culture. Microglia, cells debris and apoptotic bodies were removed from medium by successive centrifugation steps. Supernatant from the last centrifugation step was ultracentrifuged to pellet EVs and molecular aggregates. The right panel shows the different approaches to identify and validate the presence of miRNAs in microglia EVs. From EVs isolated with UC procedure, a RNAseq analysis allowed the identification of 38 RNA candidates. An additional step in the isolation procedure consisting in an OptiprepTM density gradient (ODG) was added. From new microglia EV isolates, tailing control and RT-PCR using RNA-specific primers against 38 RNA candidates selected 21 putative mature miRNAs. The RNAse A digestion of EV-positive ODG fractions identified 6 miRNAs in microglial EVs. A final method using UC coupled to Size Exclusion Chromatography (SEC) and RNase A treatment confirmed the characterization of the 6 miRNAs in the microglial EVs.

miRNAs	PCR product sequences
miR-2284y-6	5' AAAAGTTCGTTCGGGTTTTTCCAAAAAAAAAAAAAAAAA
miR-1705	5' AATCTGGAAGTCAGCACATGCTAAAAAAAAAAAAAAAAA
miR-146a	5' TGAGAACTGAATTCCATAGATGGAAAAAAAAAAAAAAAA
miR-858	5' CT CGTTGTCTGTTCGACCTTGAAAAAAAAAAAAAAAAA
miR-7718	5' CATTTATTCGTCCATGGCGATGGAAAAAAAAAAAAAAAA
miR-1860	5' AGAAAACCAG CTTCCAGATCTAAAAAAAAAAAAAAAAA

Figure 3: **UC-ODG isolation workflow.** (**A**) Nanoparticle Tracking Analysis (NTA) of microglial EVs isolated with UC-ODG procedure from three independent samples. The number of particles/mL for each fraction is presented with a black dot in each replicate. The median value is represented by a green bar. (**B**) The total RNAs were extracted from fractions F4-F6 to perform Tailing+ vs. Tailing- RT-PCR experiments in order to suggest 21 putative miRNAs in microglial EVs. (**C**) From a novel microglial EV isolation with UC-ODG procedure, a RNase A digestion of EV-positive F4-F6 fractions was performed to identify 6 miRNAs in EVs. (**D**) The PCR products were sub-cloned and sequenced in order to validate the miRNA sequence. They represent the miRNA sequence (blue) and the universal reverse primer used in the experiment (red).

Figure 4: Validation of the UC-SEC method to isolate microglial EVs. (**A**) Nanoparticle Tracking Analysis (NTA) of SEC fractions. The number of particles/mL for each fraction is presented with a black dot in each replicate. The median value is represented by a green bar. The Fractions F1-F4, F5-F7 and F8-F20 were respectively pooled in P1-EV-, P2-EV+ and P3-EV- samples. (**B**) Transmission electron microscopy of P2-EV+. The observation revealed the presence of EVs in a size range around 200 nm. EVs aggregates were also observed (white arrow).

(C) Comparison of identified proteins between P1-EV- and P2-EV+. The Venn diagram presents protein signatures showing 51 common proteins and 17 or 76 proteins exclusively found in P1-EV- or P2-EV+. (D) Comparison of identified proteins between P2-EV+ and P3-EV-. The Venn diagram presents protein signatures showing 40 common proteins and 87 or 3 proteins exclusively found in P2-EV+ or P3-EV-. (C,D) A complementary analysis using Perseus software allowed the relative quantification of the common proteins. The heatmaps only represent clusters of differentially represented proteins. The over-represented proteins of P2-EV+ are framed in yellow. (E) Molecule symbols of the 29 P2-EV+ proteins detected in the top 100 ExoCarta database as EV markers. Among these EV markers, are represented in gray the proteins exclusive to P2-EV+. (F-G). Gene Ontology (GO) analysis of biological pathways and cellular components for proteins exclusive to P2-EV+ and proteins over-represented in P2-EV+ compared to P3-EV-. The values are represented in percentage of total proteins.

Figure 5: Influence of leech microglial EVs on neurite outgrowth. (**A**) Rat primary neurons were cultured with either 10⁵, 10⁶, 10⁷ EVs (P2-EV+) or P3-EV- as control condition for 9h, 24h and 48h. The measures of neurite length and number were overall made on cell population and showed a higher outgrowth under 10⁶ and 10⁷ EVs compared to control. (**B**) The images show neurons after T9h, T24h and T48h for each condition. Scale bars correspond to 20 μ m. The significance was calculated by two-way ANOVA test (** *p* < 0.01, *** *p* < 0.001, **** *p* < 0.0001, error bars: standard deviation).

Biological Pathwa

Cellular component

13.21%

14.39%

Figure 6: Analysis of neuronal proteome under the influence of microglial EVs. (A) Venn diagrams showing common and exclusive proteins between neurons treated with either 10⁶ or 10⁷ microglial EVs (P2-EV+) and neurons treated with P3-EV- (control). **(B)** The Perseus software generates heatmaps of common proteins showing only clusters of significantly over-represented proteins in EV-activated neurons (blue frame) and control condition (yellow frame). **(C-D)** Gene Ontology (GO) analysis of biological pathways (C) and cellular components (D) from exclusive and over-represented proteins in EV-activated neurons (shades of blue) vs. control (shades of yellow). The values are represented in percentage of total proteins for each condition.

Figure 7: Predictive analysis of miRNA-mediated target mRNAs in neurons and relative representation of miRNAs in microglia vs. neurons (A) Exclusive proteins from P3-EV- condition (orange circles in Venn diagrams) and over-represented proteins in P3-EV- condition (orange boxes in heatmaps) were compared to a listing of predictive target mRNA for each miRNA. The candidates are shown in the table. (B) Box plot representation of the relative expression of miRNAs between microglia and neurons from three independent experiments. The median value is indicated as a bar inside each box (error bars: standard deviation). The blue line indicates a similar expression level between neurons and microglia. The red line indicates the expression level in microglia 3-fold higher than in neurons.

<u>Supplementary figure S1</u>: Amplification (upper chart) and dissociation curves (lower chart) of qPCR reaction for miRNAs on microglial EVs. Each experiments were done in triplicates. Green curves corresponds to the reaction performed with cDNA matrix and blue curves corresponds to the reaction performed with water as control

Supplementary figure S2: (A) Polyacrylamide gel electrophoresis (PAGE) of PCR reactions for miRNAs in microglial EVs after UC-SEC method and RNAse A digestion. The specific Tailing-RT-PCR products resulting from the miRNA amplification are represented with red arrowheads. The gene-specific primers used in each reaction are represented with blue arrowheads. (B) PAGE of the reverse-transcription primer (RT-primer) alone. Because additional signals were observed on PCR products PAGE (A), the RT-primer was separated alone in order to better discriminate its residual observation in the PCR mix (black arrowheads showing free and dimerized forms of RT-primer). Indeed, it is still possible to observe the residual RT-primer in the PCR mix due to its high concentration in the RT reaction. M: molecular weight (bp), EVs: experimental condition using cDNA mix from Tailing-RT reaction on P2-EV+ total RNAs. H20: Negative control using water as PCR matrix.

Supplementary Table S1: List of exclusive and common proteins represented in the Venn diagrams (shown in figure 4) corresponding to Perseus analysis generated from the analysis of SEC fractions.

Exclusiv	e P1-EV-	Exclusiv	e P2-EV+	Common P1-EV- / P2-EV+	
Uniprot ID	Gene symbol	Uniprot ID	Gene symbol	Uniprot ID	Gene symbol
Q71DI3	CENPA	Q08043	ACTN4	P08758	ACTB
E9PAV3	H32	P63096	SODM	P08670	ANXA2
O43854	DSC1	P35609	MDHM	P60842	TPIS
P68431	NPM	P61224	GNAT3	P0CG47	SAHH
P06748	EDIL3	P30101	FLOT2	P68133	G3P
Q13765	H33	A8MTJ3	UN93A	P13639	TBB5
Q08554	LDHB	075955	G6PI	Q9BQE3	IF4A2
P07195	H31	Q5JWF2	GNAO	P14618	ANXA1
Q6NXT2	H3C	P02549	ACTN3	P07437	DSG1
P84243	H31T	Q08470	GRIA4	P68104	EF1A3
P49450	NACAM	P49411	14332	P81605	HS90A
Q16695	NACA	P11217	GNAQ	P02751	EF1A1
		Q9HAV0	AATM	P08238	COF2
		Q0E908	GNAT1	Q01241	HS90B
		P20073	ACTN1	P04075	UBB
		P80404	PYGM	P63267	ACTA
		P63104	AT2B1	Q5VTE0	VIME
		P11488	RAP1A	P60174	KPYM
		P08754	GNAL	P32119	ACTG
		P40926	ANXA7	Q05639	RS27A
		P11216	CRBG3	P11142	SAHHA
		P04179	TSN7	P25705	ATPA
		Q16P20	AT2B3	P23528	LG3BP
		Q16851	GALNS	P68363	TBA1A
		O43707	SC6A1	P06733	PRDX1
		P62258	GNAI3	P62987	FINC
		P35611	EHD1	P11021	TBA1C
		Q9H0C2	NDUS1	P63261	TBA4A
		P06744	RP1BL	P21333	ALDOA
		Q6UXV4	ATPG	P62805	FLNA
		P36542	CH60	P07355	IF4A1
		P31040	SDHB	P68032	HSP7C
		P04899	HS12A	Q14240	EF1A2
		P10809	GNAS1	Q02413	PLAK
		Q86WB7	GBB4	P0CG48	ACTC
		P50148	RAPA	P62736	H4
		Q16720	GNAI2	P51893	NF70
		P19087	CISY2	P04083	ANXA5
		A6NIZ1	SUCB1	Q06830	ACTS
		P28331	FLOT1	P60709	ACTH
		P20020	SPTA1	P15104	RL40
		Q9BWM7	SFXN1	Q9Y281	COF1
		Q86YT5	EFTU	Q71U36	UBC
		Q01814	GNAS2	P23526	PRDX2
		Q9H4M9	KAP2	P04406	GRP78
		P22694	PYGB	A6NMY6	ATPB
		P41732	ACTN2	Q08380	TBA1B
		P21912	UGPA	P62979	AXA2L

	P09471	PDIA3	P14923	EF2
	P12814	SFXN3	P68366	ENOA
	P63092	RAP1B	P07900	DCD
	Q68DQ2	NDUV1	P06576	GLNA
	P30531	1433E	P08758	ANXA5
	P05091	DESP	P08670	VIM
	P13861	MIC27	P60842	FIF4A1
	014764	14337	P0CG47	UBB
	P09622	ADT4	P68133	ACTA1
	043301	GRP75	P13639	FFF2
	P53597	SUCA	O9BOE3	TUBA1C
	P48058	SDHA	P14618	PKM
	P22123	\$13A5	P07437	TUBB
	P38646	GNAI1	P68104	FFF1A1
	P/19821	GPX8	P81605	
	09P2R7	GABT	P02751	EN1
	080152		P08238	
	D1502/	MVD	P04075	
	01/25/		P63267	
	D38/05	AT282	05VTE0	EEE1 A1 D5
			P60174	
	P00505	SDTB1	P32119	
	P00505		005639	
	P11277		D111/2	
	D24050		P11142	
			P23703	
	020655		P68363	
	DE20033		P06733	ENO
	P02034	LZGL	P62987	
			P1102387	
			P63261	
			P21333	
			P62805	
			P07355	
			P68032	
			014240	
			002413	
			P0CG48	
 			P62736	
			P51902	ACTAZ
 			P04083	
			006830	
 			Q06850	
			P15104	
			P13104	
			0711/26	
			D32526	
			P0//06	
			P62070	
			P14022	
			PC0266	
			100200	I UBA4A

		P07900	HSP90AA1
		P06576	ATP5F1B

Exclusiv	e P2-EV+	Exclusive P3-EV-		Common P2-EV+ / P3-EV-	
Uniprot ID	Gene symbol	Uniprot ID	Gene symbol	Uniprot ID	Gene symbol
Q08043	ACTN3	Q5T749	KPRP	P08670	ACTB
P08758	ANXA5	Q08554	DSC1	P60842	ANXA2
P63096	GNAI1			P0CG47	TPIS
P35609	ACTN2			P68133	SAHH
P61224	RAP1B			P13639	G3P
P30101	PDIA3			P14618	TBB5
A8MTJ3	GNAT3			P07437	IF4A2
075955	FLOT1			P68104	DSG1
Q5JWF2	GNAS			P81605	EF1A3
Q9BQE3	TUBA1C			P08238	HS90A
P02549	SPTA1			P63267	EF1A1
Q08470	l(2)gl			Q5VTE0	COF2
P49411	TUFM			P60174	HS90B
P11217	PYGM			P32119	UBB
Q9HAV0	GNB4			Q05639	ACTA
Q0E908	Hil			P11142	VIME
P02751	FN1			P23528	КРҮМ
P04075	ALDOA			P06733	ACTG
P20073	ANXA7			P62987	RS27A
P80404	ABAT			P63261	SAHHA
P63104	YWHA7			P62805	CH60
P11488	GNAT1			P68032	IG3BP
P25705				P07355	PRDX1
P08754	GNAI3			P10809	IF4A1
P68363	TUBA1B			014240	HSP7C
P40926	MDH2			002413	FF1A2
P11216	PYGB			P0CG48	
P04179	5002			P62736	DESP
016P20	AAFL011789			P51893	
P11021				006830	Ни
016851				P15104	
043707				P10104	
D62259				00709	
004002				D22526	
D25611				P23320	
P06744					
P00744	ELNA			008380	
P21333				Q08380	
000704				P02979	
P36542				P14923	
P31040	SUHA			P15924	GLNA
P04899				P07900	
	ONC93A				
P50148					
Q16/20	ATP2B3				
P19087					
P28331	NDUFS1				
P20020	ATP2B1				
Q9BWM7	SFXN3				

Q86YT5	SLC13A5		
Q01814	ATP2B2		
P04083	ANXA1		
Q9H4M9	EHD1		
P22694	PRKACB		
P41732	TSPAN7		
P21912	SDHB		
P09471	GNAO1		
P12814	ACTN1		
P63092	GNAS		
Q68DQ2	CRYBG3		
P30531	SLC6A1		
P05091	ALDH2		
P13861	PRKAR2A		
P09622	DLD		
Q14764	MVP		
Q71U36	TUBA1A		
P53597	SUCLG1		
O43301	HSPA12A		
P48058	GRIA4		
Q9P2R7	SUCLA2		
P49821	NDUFV1		
P38646	HSPA9		
Q801S2	sdha-b		
Q14254	FLOT2		
P68366	TUBA4A		
P38405	GNAL		
Q9H9B4	SFXN1		
P00505	GOT2		
P11277	SPTB		
Q17770	pdi-2		
P34059	GALNS		
Q8TED1	GPX8		
Q20655	ftt-2		
P06576	ATP5F1B		
P62834	RAP1A		

Supplementary Table S2: List of over-represented proteins identified in specific clusters after Perseus analyses (extracted from the two heatmaps shown in supplementary figures 4C and D) generated from the analysis of SEC fractions.

P	P1-EV- / P2-EV+ heatmap			P2-EV+ / P3-EV- heatmap			
Overrepre	esented in	Overrepr	esented in	Overrepre	sented in	Overrepr	esented in
P1-	-EV-	P2-	EV+	P2-E	V+	P3-	-EV-
Uniprot	Gene	Uniprot	Gene	Gene	Uniprot	Gene	Uniprot
ID	symbol	ID	symbol	symbol	ID	symbol	ID
P02751	FINC	Q9BQE3	TUBA1C	CFL1	P23528	PLAK	P14923
Q08380	LGALS3BP	P11021	HSPA5	EEF2	P13639	DESP	P15924
		P04083	ANXA1	HIST1H4B	P62805	SAHH	P23526
		P62987	UBA52	EIF4A1	P60842	SAHHA	P51893
		P23528	CFL1	VIM	P08670		
		P11142	HSPA8	TUBB	P07437		
		P60842	EIF4A1	TPI1	P60174		
		P07900	HSP90AA1	EEF1A1P5	Q5VTE0		
		P07355	ANXA2	ANXA2	P07355		
		P08238	HSP90AB1	GAPDH	P04406		
		P04075	ALDOA	PKM	P14618		
		P21333	FLNA	GLUL	P15104		
		P60174	TPI1	ACTB	P60709		
		P07437	TUBB	HSPD1	P10809		
		P15104	GLUL	HSPA8	P11142		
		P60709	ACTB	HSP90AA1	P07900		
		P25705	ATP5F1A	HSP90AB1	P08238		
		P06576	ATP5F1B	ENO1	P06733		
		Q5VTE0	EEF1A1P5	CFL2	Q9Y281		
		P04406	GAPDH	EIF4A2	Q14240		
		Q01241	NF70	EEF1A1	P68104		
				ANXA2P2	A6NMY6		
				ACTC1	P68032		
				ACTA2	P62736		
				ACTG1	P63261		
				ACTG2	P63267		
				ACTA1	P68133		
				EEF1A2	Q05639		

<u>Supplementary Table S3</u>: List of exclusive proteins represented in the Venn diagrams (shown in figure 6A) corresponding to Perseus analysis generated from the neurons treated with different EV concentrations (10⁶, 10⁷) or with P3-EV- as control condition.

	EV-treated	conditions		Control condition			
Exclusive	e 10 ⁶ EVs	Exclusive	e 10 ⁷ EVs	Exclusive P3-EV- /10 ⁶ Exclusive P3-EV- /1			P3-EV- /107
				E	Vs	E	EVs
	Gene	Uniprot ID	Gene		Gene		Gene
Uniprot ID	symbol	omprocito	symbol	Uniprot ID	symbol	Uniprot ID	symbol
A0FKI7-2	ACBD5	A0FKI7-2	ACBD5	A1L1I3	NUMBL	A1L1I3	NUMBL
A2VCX1	TIPRL	B2GUV7	EIF5B	B3DMA0	TP53I11	B3DMA0	TP53I11
BOBN86	TMEM11	D4ACX8	DCHS1	D3ZBN0	HIST1H1B	D3ZBN0	HIST1H1B
D4ACX8	DCHS1	F1MA98	TPR	D4AAT7	CARKD	D4AAT7	CARKD
F1LTR1	WDR26	O08679	MARK2	035112	ALCAM	O08678	MARK1
F1MA98	TPR	035217	MINPP1	035760	IDI1	035547	ACSL4
O08835	SYT11	035274	PPP1R9B	O35795	ENTPD2	035795	ENTPD2
035274	PPP1R9B	O35550	RABEP1	055166	VPS52	070436	SMAD2
O35550	RABEP1	054715	ATP6AP1	070441	SYN3	O88483	PDP1
054715	ATP6AP1	P13676	APEH	O88483	PDP1	P01830	THY1
054921	EXOC2	P15943-2	APLP2	088637-2	PCYT2	P07633	PCCB
088278	CELSR3	P18666	MYL12B	P05982	NQO1	P09216	PRKCE
P13676	APEH	P19234	NDUFV2	P09216	PRKCE	P0C643	RASGRP2
P13852	PRNP	P25809	CKMT1	POCC09	HIST2H2AA3	POCC09	HIST2H2AA3
P15650	ACADL	P31399	ATP5H	P10686	PLCG1	P11530	DMD
P15943-2	APLP2	P49134	ITGB1	P11530	DMD	P12007	IVD
P18666	MYL12B	P56536	KIF5C	P11661	MTND5	P13471	RPS14
P19234	NDUFV2	P60905	DNAJC5	P12007	IVD	P19527	NEFL
P20673	ASL	P62628	DYNLRB1	P13471	RPS14	P20069	PMPCA
P22063	CNTN2	P70483	STRN	P19527	NEFL	P20280	RPL21
P25809	CKMT1	P97577	FEZ1	P20069	PMPCA	P24368	PPIB
P31399	ATP5H	Q3T1I4	PRRC1	P24368	PPIB	P28073	PSMB6
P49185	MAPK8	Q4V8I7	LRRC8A	P28073	PSMB6	P29066	ARRB1
P56536	KIF5C	Q5BJT4	TXNDC15	P29066	ARRB1	P29411	AK3
P60905	DNAJC5	Q5PQL2	RQCD1	P29411	AK3	P29457	SERPINH1
P62762	VSNL1	Q5RKH6	OS9	P29457	SERPINH1	P29476-2	NOS1
P85972	VCL	Q5XIG4	OCIAD1	P31647	SLC6A11	P32577	CSK
Q3MHU5	FAM134A	Q62656-3	PTPRZ1	P32577	CSK	P47198	RPL22
Q4QQV3	FAM162A	Q6P6T4-2	EML2	P47198	RPL22	P47861	SYT5
Q5PQL2	RQCD1	Q6PEC1	TBCA	P47861	SYT5	P53042	PPP5C
Q5PQL5	PTDSS1	Q8CFD0	SFXN5	P58405-2	STRN3	P58405-2	STRN3
Q5U318	PEA15	Q9JL55	GDE1	P60868	RPS20	P60868	RPS20
Q5XIG4	OCIAD1	Q9P290	SLC22A17	P62839	UBE2D2	P62839	UBE2D2
Q62656-3	PTPRZ1	Q9WTT6	GDA	P62882	GNB5	P63088	PPP1CC
Q62839	GOLGA2	Q9WV25- 2	PUF60	P63329-2	РРРЗСА	P63329-2	РРРЗСА
Q63228	GMFB	Q9Z2S9	FLOT2	P81377	PRKAR1B	P67874	CSNK2B
Q6PEC1	TBCA	Q9Z2Z8	DHCR7	P85108	TUBB2A	P70541	EIF2B3
Q792l0	LIN7C			P97849	SLC27A1	P70550	RAB8B
Q7TPJ0	SSR1			Q02253	ALDH6A1	P81377	PRKAR1B
Q924K2	FAF1			Q05982	NME1	P85108	TUBB2A
Q9WTT6	GDA			Q1HCL7	NADK2	P97849	SLC27A1
Q9WV25-						07074	CAV
2	PUF60			Q3B8Q1	DDX21	F3/8/4	GAN

Q9Z0W5	PACSIN1		Q3KRD5	TOMM34	Q02253	ALDH6A1
Q9Z2S9	FLOT2		Q497B0	NIT2	Q05982	NME1
Q9Z2Z8	DHCR7		Q4FZU8	FAM65A	Q1HCL7	NADK2
			Q4KM65	NUDT21	Q3B8Q1	DDX21
			Q4V898	RBMX	Q497B0	NIT2
			Q5GFD9	IMPACT	Q4KM65	NUDT21
			Q5I0D5	LHPP	Q505J6	SLC25A18
			0516B8	PIP5K1C	056A27	NCBP1
			05M7A4	UBA5	05BJ06	CSTF1
			05M9G9	TBRG4	O5FIC4	IRF2BPI
			05U2N0	CTPS2	05FV04	MLFC
			062625-2	MAP1IC3B	O5GED9	IMPACT
			062636	RAP1B	0516B8	PIP5K1C
			063151-2		05M744	UBA5
			063537-2	SVN2	05M821	
			06/361		05M969	TBRG/
			068421			TSSC1
				C006	057183	V/DS251
				EDMD1		
			071162			
			09171103		062625-2	
			005552		062151 2	
					Q65151-2	ACSLS
					063560	
				GRIPAPI	Q63569	
			Q9JJIVI9-2	43713	Q63615	VPS33A
			Q9Q281		Q63692	
				PDCDBIP	Q64361	
			090030	AN4		
					Q6P903	
					Q6QLIVI7	KIF5A
					Q6TEK3	
					Q60PR8	ERIVIPI
		 			Q/11G3	IAH1
					Q76EQ0	SKK
		 			Q793F9	VPS4A
		 			Q794E4	HNKNPF
		 			Q/1Q16	UQCRQ
		 			Q8R4A1	ERO1L
					Q8VBU2- 2	NDRG2
					Q91XU1	QKI
					Q9EPV5	APAF1
					Q9ES53	UFD1L
					Q9JHL4-3	DBNL
					Q9JHZ4-2	GRIPAP1
					Q9JJM9-2	43713
					Q9QUH6- 5	SYNGAP1
					Q9QZ81	AGO2

			Q9QZA2	PDCD6IP
			Q9WU34	43711
			Q9WUS0	AK4
			Q9Z1B2	GSTM5

<u>Supplementary table S4</u>: List of over-represented and down-represented proteins identified in specific clusters after Perseus analyses (extracted from the two heatmaps shown in figure 6C-D) generated from the neurons treated with different EV concentrations (10⁶, 10⁷) or with P3-EV- fraction as control condition.

	EV-treated	conditions		Control condition			
Over-repr	esented in	Down-rep	resented in	Over-repr	esented in	Down-rep	resented in
106	EVs	106	EVs	107	EVs	107	'EVs
	Gene		Gene		Gene		Gene
Uniprot ID	symbol	Uniprot ID	symbol	Uniprot ID	symbol	Uniprot ID	symbol
P53042	PPP5C	Q5M7V8	THRAP3	Q9Z1E1	FLOT1	P83953	KPNA1
088917-2	LPHN1	Q9Z1N4	BPNT1	Q99NA5	IDH3A	Q6AYE2	SH3GLB1
Q64350	EIF2B5	P63259	ACTG1	Q62812	MYH9	Q4QR85	WDR77
P97546	NPTN	Q66HF1	NDUFS1	P97527	CNTN5	P11348	QDPR
						Q80WE1-	
P30835	PFKL	P10824	GNAI1	P70615	LMNB1	2	FMR1
070511	ANK3	Q62967	MVD	Q62871-2	DYNC1I2	P50878	RPL4
Q99J86-2	ATRN	Q62784-2	INPP4A	Q00438-2	PTBP1	Q80U96	XPO1
P46101-2	DPP6	P04182	OAT	P28023	DCTN1	P19945	RPLPO
P13221	GOT1	P54311	GNB1	P06685	ATP1A1	P09895	RPL5
Q63083	NUCB1	Q91Y81	43710	Q9EST6	ANP32B	P49242	RPS3A
P97527	CNTN5	P68370	TUBA1A	P26453-2	BSG	Q64559-1	ACOT7
Q62812	MYH9	Q68FQ0	CCT5	P16086	SPTAN1	P83732	RPL24
Q5XI31	PIGS	Q66H20	PTBP2	P51653	GPC2	P04905	GSTM1
Q62871-2	DYNC1I2	035763	MSN	P35213	YWHAB	P63245	GNB2L1
P35053	GPC1	P62919	RPL8	Q80WD1	RTN4RL2	P81128	ARHGAP35
Q9WUC8	PLRG1	P15865	HIST1H1E	Q63610	TPM3	Q505J8	FARSA
P26453-2	BSG	Q63347	PSMC2	Q6PDU1	SRSF2	Q4G061	EIF3B
P19132	FTH1	O88989	MDH1	Q07266	DBN1	Q5U2Q7	ETF1
P0C5X8	TTYH1	Q505J8	FARSA	Q5XIU9	PGRMC2	Q66H20	PTBP2
O35116	CTNND2	P18298	MAT2A	P32736-2	OPCML	P50399	GDI2
P85970	ARPC2	P08644-2	KRAS	Q5U2Z3	NAP1L4	P68370	TUBA1A
				Q63372-		052122	
Q6PDU1	SRSF2	035889-2	MLLT4	11	NRXN1	QSXIZZ	ACAT2
P51653	GPC2	P83732	RPL24	PODP31	Calm3	P38983	RPSA
O88761	PSMD1	Q62950	CRMP1	Q920Q0	PALM	Q6AYK8	EIF3D
Q63610	TPM3	P85834	TUFM	Q9R1K2-3	TENM2	P23514	COPB1
Q07266	DBN1	Q7TP47	SYNCRIP	P21263	NES	P04642	LDHA
Q80WD1	RTN4RL2	Q5U2Q7	ETF1	070257	STX7	Q6MG11	ATAT1
P21263	NES	Q9WVC0	43715	Q99MZ4	GGT7	Q6MG06	GNL1
G3V7P1	STX12	Q9EQX9	UBE2N	P32232-3	CBS	Q6P799	SARS
Q9ES40	ARL6IP5	P49242	RPS3A			Q00715	HIST1H2BB
Q64548	RTN1	P04905	GSTM1			P18484	AP2A2
Q5FVH2	PLD3	Q6MG11	ATAT1			Q5PPJ9	SH3GLB2
Q6RJR6-2	RTN3	Q6RUV5	RAC1			Q3KRE8	TUBB2B
P0DP31	CALM3	Q6MG06	GNL1			P69060	CMAS
P61805	DAD1	P97532	MPST			P62828	RAN
D3ZD32	CHD5	Q9ER34	ACO2			Q4QRB4	TUBB3
		Q08877-9	DNM3			Q63270	ACO1
		P62828	RAN			P35435	ATP5C1
		P35435	ATP5C1			Q9WVC0	43715
		Q6P502	CCT3			O08875	DCLK1
		P10860	GLUD1			Q641Z2	PTPN9
		P63245	GNB2L1			Q08877-9	DNM3

	Q6AYK8	EIF3D		A6JUQ6	CLVS2
	P41562	IDH1			
	P54313	GNB2			
	P17764	ACAT1			
	P07335	СКВ			
	P16446	PITPNA			
	Q3KRE8	TUBB2B			
	Q920L2	SDHA			
	Q4QRB4	TUBB3			
	P12369	PRKAR2B			
	O35567	ATIC			
	Q08602	RABGGTA			
	Q4QR85	WDR77			
	P29476-2	NOS1			
	Q6DGG0	PPID			
	BOBNE5	ESD			

Résultats préliminaires et perspectives de la partie III

Les résultats obtenus dans l'article précédent ont mis en évidence la présence de 6 miARNs dans les VEs microgliales de sangsue. En parallèle, la confirmation que de telles VEs sont capables d'accélérer la croissance neuritique de neurones primaires de rat a suggéré que des mécanismes moléculaires dépendants de ces vésicules extracellulaires puissent être évolutivement conservés. C'est pourquoi, une approche translationnelle a consisté à regarder si les miARNs identifiés dans les VEs microgliales de sangsue sont conservés dans les VEs microgliales issues d'espèces mammifères comme le rat, la souris ou bien l'Homme. Cette étude est d'autant plus intéressante qu'elle concerne la présence de miARNs dont la plupart n'ont jamais été décrits dans le système nerveux des mammifères hormis miR-146a.

Ayant constaté le rendement à la fois quantitatif et qualitatif de la méthode UC-SEC pour la préparation des VEs microgliales de sangsue, nous avons renouvelé cette méthode à partir d'une culture primaire de microglie de rat, à partir de la lignée microgliale de souris BV2, et à partir de la lignée microgliale humaine CHME3, dont les méthodes sont décrites en annexe 8. Ces études sont en cours de réalisation mais nous disposons de résultats préliminaires.

1- Validation par NTA et MET de l'enrichissement des VEs microgliales BV2 et CHME3

Comme pour les analyses précédentes, nous avons commencé par vérifier la qualité de l'isolement des VEs provenant de la méthode UC-SEC. Pour cela, nous avons réalisé les mêmes analyses que précédemment. Une analyse NTA a été effectuée comme pour les analyses menées sur des VEs microgliales de sangsue. Les fractions d'élutions ont été regroupées en échantillons P1-EV-, P2-EV+ et P3-EV- selon le nombre de particules. Ensuite, ont suivi des analyses par MET et une analyse protéomique non ciblée afin d'identifier les signatures protéiques de nos échantillons. Les analyses par NTA montrent les mêmes résultats (**Figure 19**) que ceux obtenus avec les microglises primaires de rat ou de sangsue (**Publications 4 et 5** respectivement). Il existe un enrichissement dans les 3 mêmes fractions SEC F5, F6 et F7. Trois échantillons sont alors générés pour chaque préparation : P1-EV- (F1-F4 SEC), P2-EV+ (F5-F7 SEC) et P3-EV- (F8-F20 SEC). A volume égal de milieu conditionné issu des cultures microgliales, nous détectons plus de particules dans les fractions issues d'une culture de cellules microgliales murines (BV2) avec un total de 1,50 x 10⁹ particules dans les 3 fractions

F5-F7 que pour les cellules microgliales humaines (CHME3) avec 8,10 x 10⁸ particules dans ces 3 fractions. Comme expliqué précédemment, l'analyse par NTA n'est pas suffisante pour déterminer la nature vésiculaire des particules détectées. En effet, le compteur ne fait pas la différence entre des VEs et des agrégats protéiques. Pour confirmer que l'augmentation du nombre de particules dans nos fractions est bien due à des VEs, nous avons réalisé des analyses par MET sur l'échantillon P2-EV+ issu du milieu de culture de BV2 (**Figure 20**). Les mêmes analyses sur les VEs issues d'une culture de CHME3 sont en cours de réalisation. Les résultats de ces analyses portant sur les VEs issues de cultures primaires de microglie de rat ont été montrés précédemment (**Publication 4**).

Figure 19: Analyse NTA des fractions SEC issues d'une culture microgliale de souris (BV2) ou humaine (CHME3). Le nombre total de particules dans chaque fraction SEC issues de la culture microgliale de BV2 (A) ou de CHME3 (B) est présenté sous forme d'un histogramme. Les histogrammes en orange montrent les trois fractions consécutives enrichies en VEs (fractions SEC F5-F7).

<u>Figure 20:</u> Analyse de microscopie électronique à transmission réalisée sur l'échantillon P2-EV+ (fractions SEC F5-F7) issues d'une culture microgliale BV2. Les images montrent une hétérogénéité dans l'isolement de VEs avec des tailles allant de 50 à 400 nm de diamètre.

Les analyses par MET montrent la présence de VEs dans l'échantillon P2-EV+. Il est intéressant de noter que les tailles des VEs observées vont de 50 à 200 nm avec parfois des VEs observées jusqu'à 400 nm. On observe qu'avec ce protocole, les VEs conservent leur morphologie sphérique. Enfin il est intéressant de noter que certaines vésicules sont plus denses aux électrons que les autres. Ceci peut suggérer que la qualité et la quantité de matériel contenu dans les VEs ne sont pas identiques entre toutes les VEs. Cela reflète également l'hétérogénéité des populations vésiculaires.

2- Caractérisation protéique des VEs microgliales humaines (CHME3) par nLC-MS/MS

Pour confirmer si les particules observées en NTA et en MET sont effectivement des VEs, nous avons décidé d'analyser les fractions SEC par chromatographie liquide couplée à un spectromètre de masse. Ces analyses ont déjà été réalisées pour les VEs issues d'une culture de microglie de rat (**Publication 4**) et sangsue (**Publication 5**). Les analyses concernant les VEs issues de la lignée microgliale BV2 de souris sont en cours de réalisation. En revanche, les analyses sont déjà effectuées sur des fractions vésiculaires issues d'une culture de CHME3. Les résultats montrent que des protéines sont identifiées dans les 3 échantillons : 77 protéines sont identifiées en P1-EV-, 628 protéines en P2-EV+ et 99 protéines en P3-EV- (**Figure 21 et Annexes 1 et 2**). Comme on peut s'y attendre, un plus grand nombre de protéines est identifié dans P2-EV+ enrichi en particules (NTA).

<u>Figure 21:</u> Diagrammes de Venn indiquant le nombre de protéines identifiées dans chacun des 3 échantillons.(A) Comparaison du nombre de protéines identifiées entre P1-EV- et P2-EV+. (B) Comparaison du nombre de protéines identifiées entre P2-EV+ et P3-EV-.

Pour nous assurer du bon isolement des VEs, nous avons analysé les protéines identifiées dans les différents échantillons. Pour les protéines communes, une analyse quantitative relative est effectuée sans marquage (ou label free quantification) sur les données générées avec le logiciel MaxQuant pour P1-EV-, P2-EV+ et P3-EV+ par le logiciel d'analyse Perseus. Les résultats de ces analyses sont représentés sous forme de « Heatmap » (**Figure 22**). Ils révèlent que parmi les protéines communes entre P1-EV- et P2-EV+, une seule est surreprésentée dans P1-EV- et toutes les autres sont surreprésentées dans P2-EV+ (**Figure 22A et Annexe 3**). Pour les protéines communes entre P2-EV+ et P3-EV-, il y a une seule protéine surreprésentée dans P3-EV- et toutes les autres sont surreprésentées dans P2-EV+ (**Figure 22B et Annexe 4**). L'analyse des 4 protéines exclusivement retrouvées et de la seule protéine surreprésentée dans P1-EV- les a associées à des mécanismes de contacts cellules-cellules et à la membrane plasmique.

Figure 22: Quantification relative des protéines communes entre (A) P1-EV- et P2-EV+ et (B) P2-EV+ et P3-EV-.

La même analyse, effectuée avec les 27 protéines exclusives et la seule surreprésentée en P3-EV-, a révélé qu'elles seraient en majorité issues de l'espace extracellulaire, ou du lysosome. L'analyse la plus informative a consisté à nous assurer que ces protéines issues de P1-EV- et P3-EV- ne soient pas des marqueurs de VEs. Comparées aux 100 marqueurs les plus représentés dans les VEs (Banque de référence ExoCarta), aucune des 5 protéines de P1-EVn'a été retrouvée et une seule protéine parmi les 27 protéines exclusives de P3-EV- a été détectée (thrombospondine-1). De façon très satisfaisante, l'analyse des protéines exclusives à P2-EV+ (Figure 21B) et surreprésentées dans P2-EV+ par rapport à P3-EV- (Figure 22B) a montré l'identification de 64 protéines sur les 100 marqueurs les plus représentés dans les VEs. La liste de ces protéines communes ExoCarta est résumée dans un tableau en annexe 5. Le détail montre que 36 protéines sur les 64 sont présentes dans les protéines exclusives de P2-EV+ et donc que 28 protéines sur les 64 proviennent des protéines surreprésentées entre P2-EV+ et P3-EV-. Pour nous assurer du bon isolement des VEs vis-à-vis des molécules contaminantes, des analyses supplémentaires ont été réalisées avec le logiciel d'analyse Funrich afin de déterminer la localisation subcellulaire des protéines identifiées (Figure 23A). Le pourcentage de protéines identifiées qui sont impliquées dans le terme « Exosome » est de 79,20 %. Si nous analysons les contaminants potentiels dans les protéines identifiées, nous retrouvons un faible pourcentage pour les protéines associées à la membrane interne des mitochondries et la lumière du réticulum endoplasmique qui est de 0,33% et 1,15 % respectivement. Le pourcentage de protéines associées à l'appareil de golgi est plus important avec une représentation de 12,7 %.

<u>Figure 23:</u> Analyse de la localisation subcellulaire des protéines exclusives et surreprésentées dans P2-EV+. (A) Représentation en pourcentage des protéines totales en fonction de la localisation subcellulaire. (B) Représentation en pourcentage des protéines totales en fonction de la voie biologique dans lesquelles elles sont impliquées.

L'analyse avec le logiciel Funrich des protéines exclusives à P2-EV+ (**Figure 21B**) et des protéines surreprésentées dans P2-EV+ par rapport à P3-EV- (**Figure 22B**) a aussi permis de déterminer leur implication dans les voies biologiques. Les résultats montrent la présence significative de la signalisation du VEGF, de l'IFN- γ ou du TFG- β , mais aussi de mécanismes associés à la réponse immunitaire, au système nerveux et au guidage axonal (**Figure 23B**).

3- Tests fonctionnels des VEs de CHME3 et de BV2 sur la croissance neuritique de neurones primaires de rat

L'évaluation des effets des VEs de sangsue sur la croissance neuritique a montré une augmentation de la croissance neuritique lors de l'ajout des VEs. Cela montre à la fois que la méthode d'isolement a préservé la capacité d'interaction avec les cellules receveuses et aussi que les mécanismes supportés par les VEs microgliales de sangsue sont de nature

neuroprotectrice. Réutiliser la même méthode à partir de microglies BV2 et CHME3 permettra donc de respecter l'intégrité des VEs. En revanche, il s'agira de regarder si celles-ci portent des messages propices à la croissance neuritique. Nous avons donc souhaité réaliser les mêmes expériences avec les VEs microgliales issues des cultures de BV2 et CHME3. Les résultats de ces expériences nous avaient montré précédemment qu'une quantité de 10⁶ et 10⁷ VEs microgliales de sangsue avaient un effet significatif sur la croissance neuritique (Publication 5). Nous avons donc, de façon préliminaire, regardé l'effet de 10⁶ VEs microgliales de BV2 et de CHME3 sur des neurones primaires de rat maintenus en culture pendant 48h (Figure 24). Les résultats montrent que les VEs issues de la culture BV2 ont un effet similaire à 48h à celui obtenu avec les VEs microgliales de sangsue. En revanche, les VEs de CHME3 ne présentent pas de différence avec la condition contrôle. Ces résultats préliminaires sont réalisés à partir d'un triplicat technique utilisant les mêmes sources de VEs, et nécessitent d'être réalisés en triplicat biologique afin de pouvoir véritablement conclure sur les effets observés sur la croissance neuritique. De plus, il sera nécessaire de compléter ces données par une expérience avec une quantité de 10⁷ VEs et sur un temps intermédiaire de 24h. Les VEs issues d'une culture primaire de microglies de rat seront également comparées aux trois autres même si les premiers résultats positifs ont été montrés dans la publication 4.

<u>Figure 24:</u> Comparaison de la croissance neuritique avec des VEs issues d'une culture microgliale murine (BV2) ou humaine (CHME3). Les neurones primaires de rats sont traités pendant 48h avec 10⁶ VEs provenant d'une culture microgliale BV2 ou CHME3. Afin de comparer l'effet des VEs entre-elles, les résulats issues des VEs de sangsue sont rajoutés a titre d'information. Les résulats sont comparés à la condition contrôle où les neurones ne sont pas traités avec les VEs.

Ces résultats préliminaires suggèrent des différences dans la capacité des VEs microgliales à favoriser la croissance neuritique. Dans la continuité de ces résultats, il sera intéressant de regarder les conséquences de VEs provenant de ces différentes sources microgliales sur le protéome des neurones cibles. Comme effectué avec les VEs microgliales de sangsue (**Publication 5**), les mêmes analyses protéomiques seront effectuées avec les VEs issues d'une culture de BV2, CHME3 et d'une culture primaire de rat. La comparaison des molécules présentes dans les VEs, de l'effet différentiel sur la croissance neuritique et les analyses sur les protéomes neuronaux pourront mettre en lumière des mécanismes conservés évolutivement dans ces processus neurotrophiques.

4- Analyse comparative des signatures miARNs dans les VEs microgliales

Après avoir analysé les protéines contenues dans les VEs des CHME3 et pour lesquelles les études sur les BV2 et les cultures primaires de rat sont en cours, nous avons recherché la présence des 6 miARNs d'intérêt identifiés dans les VEs microgliales de sangsue. A partir de préparations de VEs microgliales de BV2, CHME3 et de culture primaire de rat, nous avons effectué la même expérience de Tailing-RT-PCR en utilisant les 6 amorces spécifiques. Les échantillons de VEs ont suivi le même procédé d'isolement, de traitement à la RNase A et d'extraction des ARNs que les VEs microgliales de sangsue. Les résultats de Q-PCR sont présentés par la moyenne des Ct, donnée illustrant la phase exponentielle durant l'amplification (**Figure 25**). Nous n'avons pas établi de quantification relative pour ces miARNs car une seule condition expérimentale a été réalisée pour la préparation de chaque extrait d'ARNs. De façon intéressante, les résultats issus de trois expériences indépendantes montrent que les 6 miARNs sont significativement présents dans les VEs microgliales issues des microgliaes issues de mammifères. Il sera nécessaire de préciser quelles sont les distributions relatives de ces miARNs dans la population globale de VEs microgliales.

В

Figure 25: Analyse de la représentation des 6 miARNs dans les VEs provenant de différentes sources microgliales. La représentation des 6 miARNs est montrée dans les VEs microgliales provenant d'une culture microgliale primaire de rat ou sangsue et de lignées cellulaires microgliales immortalisées murine (BV2) ou humaine (CHME3). (A-C) Courbes d'amplification (graphique du haut) et de dissociation (graphique du bas) des réactions de qPCR pour les 6 miARNs dans chaque source vésiculaire microgliale rat (A), souris (B) et humaine (C). Les expériences sont réalisées en triplicat. Les courbes vertes correspondent à la réaction réalisée avec la matrice d'ADNc et les courbes bleues correspondent à la réaction réalisée avec de

l'eau au lieu de la matrice d'ADNc. (**D**) La valeur moyenne des cycles seuils (Ct) pour chacun des 6 miARNs est représentée pour les différentes sources vésiculaires.

Même si les données présentées dans cette perspective de la partie III sont incomplètes et préliminaires, elles apportent néanmoins une information essentielle au développement translationnel que nous aimerions effectuer depuis la sangsue vers les mammifères. La méthode d'isolement des vésicules extracellulaires de microglie par le couplage UC-SEC, validée par leurs signatures protéiques, permet d'entreprendre des tests fonctionnels sur l'amélioration de la croissance neuritique. Les résultats peuvent être corroborés par l'analyse protéique des neurones de façon à révéler les mécanismes moléculaires qui y sont associés. Enfin, conformément à l'objectif fixé dans cette troisième et dernière partie de mon travail, la mise en évidence de signatures miARNs dans les VEs microgliales de sangsue constitue une opportunité de révéler la présence de nouveaux miARNs dans les VEs microgliales chez les mammifères et d'explorer leur implication dans les processus de neuroprotection.

DISCUSSION - CONCLUSION

L'état neuroinflammatoire est un élément clé de nombreuses pathologies du système nerveux centrale (SNC). Les premières indications montrent que les mécanismes inflammatoires sont d'abord conduits à la suite d'une activation microgliale [178]. L'état neuroinflammatoire est une caractéristique importante de nombreuses maladies neurodégénératives liées au vieillissement (maladies d'Alzheimer et de Parkinson) ou à l'autoimmunité (sclérose en plaque). La neuroinflammation liée à la microglie est également impliquée dans des pathologies neuropsychologiques comme les troubles autistiques [177]. C'est pourquoi, la compréhension ainsi que le contrôle des activités de la microglie sont centraux afin d'apporter de nouvelles voies thérapeutiques. Il est donc essentiel de mieux comprendre les fonctions des cellules microgliales et notamment par le dialogue qu'elles établissent avec leur environnement cellulaire. Cette communication, permettant de réguler très finement l'état inflammatoire, peut s'effectuer selon plusieurs voies telles que des contacts cellules-cellules ou bien des facteurs libres. Mais, depuis plusieurs années, de nombreuses études se sont focalisées sur un mode de communication dont l'importance s'accroit dans la communauté scientifique : les vésicules extracellulaires (VEs) [6,9]. Ce terme définit les exosomes, les microvésicules mais aussi les corps apoptotiques. Les exosomes et les microvésicules partagent de nombreuses caractéristiques (marqueurs moléculaires et diamètre en autre). Elles suivent des voies de biogenèse différentes puisque les exosomes sont générés via le système endosomal et la fusion des corps multivésiculaires (ou MVBs) avec la membrane plasmique alors que les microvésicules sont issues du bourgeonnement de la membrane plasmique des cellules [106].

L'intérêt grandissant de la communauté scientifique pour ce mode naturel de communication intercellulaire est en partie justifié, en recherche fondamentale, par la prise de conscience qu'il s'agit de cargos moléculaires qui permettraient de délivrer des réponses multiples et organisées sur la base de plusieurs familles de molécules. Même si les mécanismes restent à préciser, l'attrait scientifique pour les VEs réside aussi dans la capacité à les réutiliser à des fins thérapeutiques, sous une forme naturelle ou transformée, en gardant à l'esprit qu'il s'agit de vésicules portant des membranes en bicouche lipidique capables de franchir des barrières naturelles telles que la barrière hémato-encéphalique (BHE) [213].

Chez les animaux, plus généralement décrites, les VEs interviennent dans des fonctions physiologiques dès le développement embryonnaire et tout au long de la vie. Dans le cerveau, les VEs jouent un rôle dans des fonctions importantes durant le développement mais aussi au stade adulte dans la transmission synaptique ou la régénération nerveuse. Les enjeux de la recherche sur l'implication des VEs dans la neuroinflammation sont nombreux tant ce niveau de communication ajoute davantage d'inconnues à l'équation et complique notre compréhension de l'état neuroinflammatoire dans les neuropathologies. Les VEs interviennent en effet au cours de pathologies neurologiques comme les maladies neurodégénératives, les tumeurs cérébrales, les maladies liées à l'auto-immunité ou encore les pathologies neuropsychologiques [177,213]. Les cellules microgliales qui ont un rôle important dans le contrôle des événements neuroinflammatoires [181] sont décrites pour libérer des VEs en conditions physiopathologiques [210,214]. Selon les signaux externes activant les cellules microgliales, leurs VEs auront entre autre des rôles dans le contrôle négatif de la neuroinflammation, favorisant la croissance neuritique [11] ou dans l'entretien et la progression de cette neuroinflammation [6].

La compréhension des effets des VEs microgliales est un enjeu important dans notre perception des mécanismes neuroinflammatoires et cela passe naturellement par leur isolement, la caractérisation de leur composition moléculaire et éventuellement leur transformation à des fins thérapeutiques. Chez les mammifères, les études sur les cellules microgliales ne sont pas aidées par l'accessibilité des tissus et la co-localisation périodique avec d'autres cellules immunitaires. En effet, les cellules microgliales ne sont pas les seuls macrophages présents dans le SNC. Il existe dans certaines régions du cerveau les macrophages des plexus choroïdes, les macrophages méningés, et les macrophages périvasculaires [48]. De plus dans certain cas pathologique, la rupture de la BHE causera une infiltration de macrophages sanguins en étroite relation avec la microglie. Il sera alors difficile de différencier fonctionnellement les cellules microgliales résidentes, des cellules ayant infiltré le tissu nerveux [215].

C'est dans ce contexte que le laboratoire a développé l'étude d'un modèle animal invertébré, la sangsue médicinale *Hirudo medicinalis*, pour apporter davantage d'informations sur les cellules microgliales. Ces cellules présentent de nombreuses caractéristiques communes avec leurs homologues chez les vertébrés. Elles présentent des capacités de motilité [84] et de migration vers les sites de lésions après avoir subi des modifications morphologiques en passant d'un stade étoilée à un stade amiboïde [16]. Elles présentent aussi la capacité de pouvoir phagocyter [14]. Les cellules microgliales de sangsue peuvent être suivies dans les tissus grâce à la molécule de liaison au calcium Iba1, aussi décrit comme marqueur microglial

263

chez les mammifères [15]. Enfin, nous savons qu'elles sont essentielles pour initier la repousse axonale chez la sangsue [21] et que leur accumulation au niveau de la lésion est soutenue par des signaux chimiotactiques déjà largement étudiés chez ce modèle invertébré [15–19,88,89]. Les cellules microgliales de sangsue présentent de nombreux avantages. Elles peuvent être dissociées facilement et maintenues en culture primaire sans apport de CO₂ et à température ambiante. De plus, cet avantage est devenu encore plus intéressant, depuis que certaines études menées chez les mammifères ont montré une différence significative entre les lignées immortalisées de microgliale sous des conditions très contrôlées est donc désormais particulièrement recommandée tant les réponses microgliales sont diverses et sensibles au microenvironnement [49,54,216].

1- Production de VEs par les cellules microgliales et effets neurotrophiques

Puisque la structure de la chaine nerveuse chez la sangsue nous permet lors d'une lésion du SNC d'étudier le dialogue entre les extrémités axonales lésées et les microglies accumulées à la lésion, notre stratégie a consisté à appréhender le profil « neuroprotecteur » de la microglie par l'intermédiaire de leurs VEs. En effet, des expériences d'immunofluorescence dirigées contre un marqueur spécifique de VEs, la molécule Alix, avaient préalablement révélé l'accumulation de VEs à la lésion (Publication 1). Ensuite, des analyses par microscopie électronique à transmission (MET) ont révélé la présence de corps multivésiculaires dans les cellules microgliales montrant que ces dernières produisent au moins des exosomes. De plus, des analyses par MET réalisées sur des culots vésiculaires issus d'une culture primaire microgliale ont révélé que les VEs sont libérées et peuvent donc être isolées. Enfin, la coculture de neurones et de microglies montre, à l'aide du marquage glial dirigé contre la gliarine, que les VEs microgliales interagissent étroitement avec les neurites. A ce stade, les parallèles précédemment observés entre microglie de sangsue et microglie de mammifères ne garantissent absolument pas que les réponses moléculaires et les populations de VEs produites soient fondées sur des mécanismes évolutivement conservés. En revanche, les avantages structuraux du tissu nerveux et les capacités de récolter et entretenir la microglie primaire chez H. medicinalis nous ont conduits à explorer les effets de ces VEs microgliales et de les transposer à un contexte de SNC de mammifères. Cette comparaison a d'ailleurs été encouragée par l'effet neurotrophique des VEs microgliales de sangsue observé sur un modèle de différentiation neuronale de rat (la lignée cellulaire PC-12) comme sur les neurones de sangsue. Cette dernière expérience montre que ce dialogue entre les cellules de rat et les VEs microgliales de sangsue peut utiliser la reconnaissance de médiateurs communs. Ces effets inter-espèces ont déjà été montrés entre des cellules humaines et des VEs de rat mais aussi entre des macrophages intestinaux murins et des VEs d'espèces végétales [217,218].

De façon intéressante, au cours de cette étude, nous avons mis en évidence la présence d'un membre de la famille du TGF- β (pour transforming growth factor β), le nGDF (pour growth differentiation factor), dans les VEs microgliales. L'implication du TGF- β dans le métabolisme neuronal a déjà été montrée [219,220]. Alors que les VEs microgliales augmentent la croissance neuritique des neurones de sangsue, il est intéressant de noter qu'elle diminue pourtant lorsqu'on y ajoute un inhibiteur spécifique du récepteur du TGF-β de type I. Ainsi, les résultats montrent que le nGDF pourrait être impliqué dans les processus neurotrophiques médiés par les VEs. D'ailleurs, l'étude plus approfondie du nGDF dans la dynamique du recrutement microglial à la lésion a montré que cette voie de signalisation TGF-ß est déterminante dans la réponse microgliale (Publication 2). Au cours de cette seconde étude, les analyses protéomiques réalisées au niveau de la zone de lésion du SNC de la sangsue ont suggéré la présence importante de VEs. Les signatures protéiques associées aux VEs ont représenté en effet une large part du nombre total de protéines détectées à la lésion. Dans la suite de nos études, il s'agira de préciser les signatures protéiques induites dans les neurones sous l'influence des VEs microgliales. Dès lors, notre approche a consisté à optimiser l'isolement des VEs microgliales et caractériser les contenus vésiculaires.

2- Isolation des VEs et validation

La détection de VEs libérées par les cellules microgliales *in vitro* et *in vivo* et leurs implications dans la neuroprotection chez notre modèle invertébré suggèrent que ces VEs ont une importance dans le dialogue microglie-neurone. C'est pourquoi, nous avons décidé d'analyser plus en détail ces VEs microgliales afin de connaître leurs compositions moléculaires (protéines et acides nucléiques) ainsi que leurs effets sur le métabolisme neuronal.

En parallèle, nous avons entrepris d'optimiser nos techniques d'isolement. En effet, pour la bonne compréhension des effets biologiques mais aussi la caractérisation fiable de la composition moléculaire des VEs, il a été nécessaire de développer des méthodes permettant

de limiter la présence de molécules contaminantes dans nos échantillons vésiculaires. Ces développements, en évolution permanente, sont permis par l'émulation de la communauté scientifique au travers de la Société Internationale des Vésicules Extracellulaires (ISEV) dans le but d'établir une exigence qualitative satisfaisante pour l'étude des VEs [126]. Nous avons donc décidé d'optimiser nos techniques par l'ajout d'étapes supplémentaires à l'étape d'ultracentrifugation (UC) initiale. Nous y avons tout d'abord couplé une séparation par gradient de densité d'Optiprep[™] (UC-ODG) puis ensuite une étape de chromatographie d'exclusion stérique (UC-SEC). A cela, s'est ajouté de façon spécifique un traitement à la RNAse A (pour ribonucléase A) pour la caractérisation des miARNs dont nous parlerons plus bas. De récentes études ont pris position en faveur du couplage UC-ODG, méthode considérée comme la meilleure technique pour séparer les VEs car elle permet d'atteindre une pureté de l'échantillon très importante [129]. En revanche, un inconvénient non négligeable à son utilisation est la perte importante de VEs et le temps nécessaire à sa réalisation (environ 2 jours). La deuxième méthode utilisant le couplage UC-SEC permet de séparer les VEs des molécules contenues dans le milieu [131]. Un prétraitement ainsi que la concentration de l'échantillon sont nécessaires avant d'utiliser la SEC dans le but d'éliminer le maximum d'impuretés dans l'échantillon. Outre la rapidité de la méthode, des études comparatives révèlent que cette technique conserve la morphologie, l'intégrité ainsi que l'activité biologique des VEs [132]. Lors de nos analyses des VEs par NTA (pour Nanoparticle Tracking Analysis), nous avons observé en outre que le nombre de particules est plus élevé dans les échantillons isolés avec l'ultracentrifugation seule comparés aux échantillons obtenus par l'UC couplé à un ODG ou par UC couplé à une SEC. Ceci s'explique par l'ajout d'étapes supplémentaires dans le protocole qui entraine une perte de matériel. De plus, une limite de la technologie NTA est qu'elle ne permet pas de faire la différence entre les VEs, des agrégats et des contaminants protéiques. A titre personnel, dans une logique purement quantitative, j'ai pu constater - à nombre équivalent de chaines nerveuses pour la préparation microgliale - que la méthode UC-SEC permettait d'isoler davantage de VEs que ne l'avait permise la méthode UC-ODG. Les analyses par MET dans les différentes procédures, ont révélé que nous avons isolé des VEs dans nos fractions d'intérêt. L'analyse des images a montré des agrégats de vésicules dans les procédures UC, UC-ODG et UC-SEC. Ceci est cohérent avec l'analyse NTA qui a parfois révélé des particules de grande taille. Ces agrégats sont probablement obtenus par l'utilisation répétée des étapes d'ultracentrifugation dans les procédures d'isolement. Ces agrégats vésiculaires représentent un problème lors de l'utilisation des VEs pour des tests fonctionnels, car le nombre de particules calculé ne correspond pas à la réalité. Les analyses par spectrométrie de masse nLC-MS/MS ont confirmé la présence de VEs dans les procédures UC, UC-ODG et UC-SEC. Bien que le nombre de particules que nous avons obtenues dans les échantillons UC-ODG et UC-SEC ait été inférieur à celui de l'UC, la quantité de protéines identifiées par nLC-MS/MS (pour nano liquid chromatography - MS/MS) a été supérieure. L'ajout d'une étape supplémentaire de purification a donc permis de mieux séparer les VEs et les contaminants protéiques de nos échantillons.

Nous avons généralisé ces études protéomiques à grande échelle qui ont mis en évidence un ensemble de protéines que l'on trouve couramment dans les VEs. Il existe en effet des listes de protéines identifiées comme des marqueurs de VEs et regroupées dans des bases de données en ligne comme Vesiclepedia (<u>www.microvesicles.org</u>), EVpedia (<u>www.evpedia.info</u>) et ExoCarta (<u>www.exocarta.org</u>). La caractérisation de ces signatures protéiques a été essentielle pour valider chaque méthode utilisée pour l'isolement des VEs. En effet, il est important de noter que nous avons révélé un grand nombre de marqueurs spécifiques à l'aide de cette analyse à grande échelle. C'est pourquoi, nous avons souhaité étendre cette étape stratégique d'analyse protéique des VEs isolées à l'ensemble de nos études (Publications 3, 4 et 5). Il est de notre point de vue essentiel de ne pas se limiter pour la validation des fractions d'isolement à l'usage d'analyses en Western Blot utilisant des anticorps dirigés contre des marqueurs reconnus. Cette approche est tout à fait acceptable une fois que les conditions expérimentales aient été standardisées sur un échantillon cellulaire bien identifié et des conditions d'activation données. En revanche, notre expérience du modèle sangsue a montré que les molécules pourtant reconnues comme marqueur vésiculaire ne sont pas toujours suffisamment conservées pour l'utilisation d'anticorps commerciaux. Ainsi, de telles étapes de validation par Western Blot, aussi simples soient-elles, peuvent s'avérer particulièrement délicates sur des modèles d'étude peu représentés comme la sangsue lorsqu'il est recommandé d'utiliser un grand nombre de marqueurs. A l'inverse, une analyse protéomique non ciblée permet après interrogation en banque de données - sangsue et/ou mammifères de détecter de nombreuses protéines apparentées ou présentant des homologies significatives avec les marqueurs. Elles sont ici parfaitement détectées alors que certains anticorps n'y parviennent pas. De plus, si l'analyse est bien menée, le nombre de marqueurs de VEs détectés sera rapidement supérieur à 20 et aisément comparé aux fractions dites négatives en VEs par une quantification absolue et/ou relative.

3- Influence du contenu vésiculaire sur le métabolisme neuronal

Les composés présents dans les VEs et contribuant à délivrer un effet biologique dans les cellules receveuses sont de nature différente. Ces molécules peuvent être des lipides, des protéines mais aussi des acides nucléiques comme des miARNs et des ARNm. Nous nous sommes intéressés à deux familles de molécules en particulier, les protéines et les miARNs. Une analyse approfondie des protéines détectées par nos analyses protéomiques a permis de mettre en évidence des protéines impliquées dans des voies associées à la croissance neuritique (**Publication 3**). En effet, les analyses protéomiques réalisées à partir des VEs microgliales ont révélé la présence de protéines comme le BDNF (Brain-Derived Neurotrophic Factor), NCAM (Neural Cell Adhesion Molecule), la spectrine ou bien RAP1 (Ras-related protein 1). Ces protéines sont décrites pour être impliquées dans la croissance des neurites [221]. Les tests de croissance neuritique effectués sur des neurones de sangsue ont en effet montré un effet bénéfique en présence des VEs microgliales.

Par la suite, nous avons réitéré l'étude des effets neurotrophiques de VEs microgliales de sangsue sur des neurones primaires de rat (**Publication 5**). Les résultats ont là encore montré une accélération de la croissance neuritique sous l'influence des VEs. La caractérisation protéique des VEs a montré la présence d'un nombre important de molécules impliquées dans la voie de signalisation du VEGF (Vascular endothelial growth factor). Cette voie de signalisation favorise la neurogenèse, la structuration neuronale ainsi que la neuroprotection [222]. Enfin, les protéines impliquées dans la voie de signalisation de l'interféron (IFN)-γ sont aussi présentes dans les VEs. Cette voie est également décrite pour avoir un effet sur la croissance neuritique ainsi que dans la neuroprotection [223,224]. Ces deux jeux de données (**Publications 3 et 5**) ont montré que les protéines spécifiquement adressées dans les VEs microgliales de sangsue possèdent un rôle neuroprotecteur. Des études plus approfondies permettraient de valider leur implication dans les mécanismes de croissance neuritique *in vitro*.

La caractérisation des protéines vésiculaires assurant un rôle dans le métabolisme neuronal ne représente qu'une partie de l'étude. Je me suis concentré au cours de ma thèse sur la caractérisation des miARNs présents dans les VEs microgliales de sangsue afin (i) de dresser tout d'abord une liste de médiateurs pouvant réguler en profondeur les processus posttranscriptionnels de la cellule receveuse, de (ii) regarder si ces miARNs peuvent être produits dans les cellules microgliales d'autres espèces, et (iii) d'amorcer leur étude fonctionnelle dans le but de mieux comprendre leur impact dans la neuroprotection.

Les miARNs sont impliqués dans de nombreuses fonctions neuronales. Ils interviennent dans le système nerveux lors de processus physiologiques liés au développement, l'homéostasie du SNC, la croissance neuritique mais aussi lors de processus pathologiques comme les maladies neurodégénératives ou neuropsychologiques. La balance entre les différents miARNs exerce une influence directe sur l'état neuroinflammatoire [190,195]. Les expériences réalisées ont tout d'abord montré par une étude du séquençage des ARNs (ou RNAseq) que les VEs contiennent de nombreux ARNs. Les analyses bio-informatiques ont permis de mettre en évidence la présence potentielle de ces petits ARNs non codants. Ensuite, nous avons vérifié la nature des séquences putatives afin de ne révéler que les miARNs. La technique d'amplification des miARNs utilise l'ajout artificiel d'une queue poly(A) à l'extrémité 3' des ARNs (polyadénylation in vitro) de façon à les rétro-transcrire et amplifier leurs copies ADN complémentaire (ADNc). Afin de nous assurer que les séquences identifiées et sélectionnées en RNAseq ne soient pas des ARNm, nous avons ajouté un contrôle d'amplification sans étape de polyadénylation. Ainsi, l'analyse des résultats révèle que parmi les 38 séquences d'intérêts, 17 candidats ont été réamplifiés sans besoin d'ajouter une queue poly(A), ce qui correspond à des ARNm. En revanche, 21 autres séquences sont potentiellement des miARNs contenus dans les VEs car elles ne présentent aucune queue poly(A) naturelle. L'étape de polyadénylation a en effet été indispensable à leur amplification par RT-PCR. A ce stade, il subsiste deux interrogations. Ces ARNs dépourvus de queue poly(A) peuvent correspondre à des miARNs, mais ils peuvent aussi correspondre à des séquences d'ARNs dégradés qui seraient issus de cellules en souffrance dans la culture primaire et qui auraient été co-isolés avec les VEs. De même, s'il s'agissait réellement de miARNs, il est possible qu'ils aient été libérés sous forme libre par les cellules en culture et qu'ils aient été co-isolés avec les VEs à la suite d'une interaction avec leur surface. Afin de nous assurer de leur présence vésiculaire et de leur nature miARN, une étape déterminante de traitement des VEs par la RNase A a été ajoutée après la méthode d'isolement. Cette enzyme permet de dégrader les ARNs libres présents à l'extérieur des VEs. Si ces molécules « parasites » sont organisées en complexes ribonucléoprotéiques ou sont en interaction avec la surface des VEs, leur digestion permettra de les libérer dans le tampon contenant les VEs. Notons pourtant qu'à l'exception des ARNs interagissant avec la surface des VEs, la possibilité d'avoir co-isolé des formes d'ARNs libres et agrégés a été significativement réduite par l'ajout à l'ultracentrifugation des méthodes de gradient de densité d'Optiprep[™] (ODG) ou de chromatographie d'exclusion stérique (SEC). Ces protocoles auraient normalement déjà séparé VEs et ARNs libres. Pour écarter toute possibilité de contamination, y compris par des molécules « attachées » aux VEs, une ultracentrifugation finale est intervenue après digestion par RNAse A et a ensuite permis de récupérer le culot de VEs sans les molécules dégradées, restées dans le surnageant. Après extraction des ARNs totaux à partir des VEs, les nouvelles analyses réalisées par PCR, à l'aide d'amorces spécifiques, ont révélé la présence de seulement 6 miARNs dans les VEs microgliales : miR-1860, miR-1705, miR-2284y-6, miR-146a, miR-858 et miR-7718.

Comme je l'expliquais auparavant, la caractérisation de ces miARNs a donc dû suivre un schéma expérimental à la façon d'un « entonnoir méthodologique » qui a permis de réduire le nombre de nos séquences candidates jusqu'à l'obtention de signatures fiables. Si la première analyse par RNAseq a été réalisée sur des VEs microgliales isolées par ultracentrifugation (UC), la validation des séquences candidates pour la mise en évidence de véritables miARNs a, quant à elle, suivi une optimisation de l'isolement de VEs en profondeur avec l'utilisation de la méthode couplant UC et ODG, puis UC-ODG en présence de RNAse A, et enfin UC et SEC en présence de RNAse A. Ces développements ont requis de très nombreuses préparations de cellules microgliales primaires dans le but de valider la robustesse de nos isolements vésiculaires, étudier leurs contenus moléculaires et certifier la présence dans les VEs microgliales de ces 6 miARNs.

Parmi ces 6 miARNs présents dans les VEs microgliales de sangsue, miR-146a a déjà été décrit pour avoir de nombreuses implications dans la physiopathologie du système nerveux [210,225]. En revanche, concernant les 5 autres miARNs, il n'existe pas de donnée précise sur leur implication dans des processus nerveux. Trois d'entre eux ne sont même pas encore décrits chez les animaux.

Comme énoncé précédemment, miR-146a est très largement décrit notamment dans le système nerveux des mammifères. Il est très présent dans les cellules microgliales, les neurones et les astrocytes. L'activation de la voie NF-kB (pour nuclear factor-kappa B) induit l'expression de miR-146a qui en cascade pourra cibler des ARNm codant les protéines IRAK1 (pour Interleukin-1 receptor-associated kinase 1) et TRAF6 (TNF receptor associated factors

270

6), éléments clés impliqués dans cette voie. Ce rétrocontrôle négatif effectué par miR-146a permet de limiter l'activation excessive de cette voie de signalisation et contribue ainsi au contrôle de l'inflammation [190]. D'ailleurs, lors d'une inflammation du SNC, une diminution de l'expression de miR-146a entraine une activation excessive de la voie NF-kB et *in fine* l'augmentation de la transcription des gènes sous son contrôle codant entre autre pour des cytokines pro-inflammatoires [203]. Ensuite, miR-2284y-6 est uniquement décrit chez le taureau [226]. Ce miARN est exprimé dans les cellules immunitaires bovines comme les monocytes et les macrophages alvéolaires. Il est également décrit chez la poule lors du développement embryonnaire de l'animal et peu de données sont disponibles [229]. Les 3 autres miARNs, miR-858, miR-7718 et miR-1860 ne sont pas décrits chez les animaux. Le miR-858 est largement décrit chez les plantes pour son implication dans de nombreux processus [230]. Le miR-7718 intervient dans la reprogrammation de la croissance des feuilles lors du stress hydrique chez la plante *Brachypodium distachyon* [231]. Le dernier miARN, le miR-1860 est décrit dans le riz mais sans précision sur ses fonctions [232].

Comment peut-on réellement interpréter ces signatures en partie inédites et que signifientelles dans un contexte de dialogue entre microglie et neurones ? Le fait que trois miARNs soient déjà décrits chez les vertébrés, dont deux dans des mécanismes de régulation inflammatoire, est très intéressant. De plus, les miARNs décrits uniquement chez les plantes à ce jour illustrent le caractère nouveau de la mise en évidence des VEs microgliales chez cet invertébré annélide. La mise en évidence de ces miARNs dans les VEs microgliales de sangsue constitue la première étape d'une possible étude fonctionnelle à plus long terme. Dans le temps imparti, il n'a pas été possible de l'amorcer. Nous avons toutefois réalisé plusieurs expériences afin de mesurer l'intérêt de telles signatures miARNs.

La toute première a consisté à prédire les cibles ARNm potentiellement régulées par ces miARNs. En effet, dans le cadre des tests de croissance neuritique menés sur les neurones de rat pour évaluer les effets des VEs microgliales de sangsue, le protéome neuronal a été caractérisé. En sachant que les miARNs permettent de séquestrer des ARNm cibles, leur présence dans les VEs microgliales aura donc comme conséquence de faire varier la disponibilité des transcrits neuronaux pour la traduction des protéines. Ainsi, le protéome neuronal devrait présenter des différences sous l'effet des VEs microgliales. Des augmentations de protéines peuvent refléter des mécanismes impliqués dans la croissance

neuritique. Mais des baisses significatives voire des disparitions de protéines peuvent aussi refléter l'effet de séquestration que des miARNs auraient pu exercer sur des ARNm cibles dans les neurones. Afin de générer une liste des cibles ARNm potentiellement régulées par ces miARNs, deux logiciels de prédictions de cibles ont été utilisés : TargetScan et miRDB [233,234]. TargetScan recherche les cibles par homologie de séquence entre la séquence « seed » qui correspond aux nucléotides 2 à 8 du miARN mature et les 3'UTR des ARNm cibles. Le logiciel de prédiction miRDB fonctionne avec un algorithme développé en analysant des milliers d'interactions miARN-ARNm cible à partir d'expériences de séquençage à haut débit. L'utilisation de deux logiciels de prédiction différents et la conservation uniquement des prédictions communes entre ces deux logiciels permet d'apporter plus de robustesse dans l'identification possible des cibles ARNm. Parmi les cibles que nous avons identifiées, certaines présentent même des implications dans des voies biologiques communes. Les ARNm codant pour les molécules IDH1 (pour isocitrate déshydrogénases) et Apaf1 (pour apoptotic peptidase activating factor 1) seraient régulées respectivement par miR-7718 et miR-2284y-6. Elles sont impliquées toutes deux dans l'apoptose des neurones. En effet, une augmentation d'IDH1 dans les neurones est associée à une augmentation de l'apoptose [235]. En parallèle, l'inhibition de Apaf1 favorise la récupération cellulaire [236]. D'autres miARNs, miR-23a/b et miR-27a/b, ont été décrits comme régulateurs de l'ARNm codant Apaf1, ce qui engendre une baisse de l'apoptose des neurones [237]. La prédiction de ces ARNm comme cibles potentielles prend tout son sens dans un contexte neuroprotecteur médié par les VEs microgliales. D'autres ARNm prédits comme cibles dans nos analyses codent pour des protéines impliquées dans la neuroprotection ou la différentiation neuronale. L'ARNm codant la molécule RASGRP2, aussi connue sous le nom de CalDAG-GEFI serait régulé par miR-1705. Or cette protéine est induite dans la maladie de Huntington. Une diminution du taux de cette protéine permet d'induire un effet neuroprotecteur [238]. Toujours prédit pour être ciblé par miR-1705, l'ARNm codant la molécule Numbl (pour Numb-like protein), interagit avec la molécule Notch. Or, de nombreuses données sont disponibles sur leur rôle dans l'édification du système nerveux [239]. En revanche, une fois les tissus nerveux formés, ces mécanismes ne semblent plus intervenir à l'état adulte. En dehors du contexte neuronal, l'induction de NUMBL a présenté des capacités d'inhibition de la prolifération cellulaire et même d'induction de l'apoptose des cellules tumorales dans le cancer colorectal [240]. Son contrôle au niveau post-transcriptionnel aurait donc un effet inverse. Enfin, l'ARNm codant la
molécule PTBP2 aussi connue sous le nom de nPTB (pour nervousPTB) serait régulé par miR-7718. L'inhibition de la protéine favorise la maturation neuronale et l'expression de gènes spécifiques aux neurones [241]. L'ensemble de ces données de la littérature présentent l'utilisation de ces miARNs comme un contexte biologique propice à la survie neuronale et la croissance neuritique. Cependant, de telles prédictions posent désormais de nombreuses questions sur ces mécanismes qu'il faudra déchiffrer dans ce dialogue entre VEs microgliales et neurones.

Des expériences de « Luciferase assays » devront d'abord vérifier que les miARNs d'intérêt sont en effet capables de se lier physiquement à ces ARNm prédits comme cible. En bref, la séquence cible de l'ARNm sera sous-clonée dans un vecteur contenant la séquence codant la luciférase. Lorsque le miARN, ajouté comme le vecteur dans la cellule, entrera en interaction avec la partie cible de l'ARNm, la transcription et par la suite la traduction de la protéine luciférase seront impossibles, ce qui confirmera que l'ARNm est une cible du miARN. Ce résultat sera mesurable par bioluminescence.

Concernant la comparaison de neurones naïfs par rapport à ceux mis en présence de VEs microgliales, il s'agira aussi de suivre plus spécifiquement les niveaux de ces transcrits neuronaux par Q-PCR et de vérifier la distribution des protéines correspondantes par Immunofluorescence. Toujours dans l'optique de relier ces bouleversements neuronaux à la présence spécifique de miARNs d'intérêt dans les VEs microgliales, il serait possible de potentialiser ces mécanismes. Par exemple, une approche consistera à transformer l'impact des VEs par la manipulation de miARNs particuliers. L'utilisation de miARNs anti-sens au sein des VEs créerait une invalidation fonctionnelle en s'hybridant de façon covalente à leur miARN complémentaire et permettrait d'évaluer leurs implications dans les VEs, augmentant à l'inverse le nombre de copie pour un même miARN, consisterait aussi une approche intéressante.

Par ailleurs, si le recrutement microglial chez la sangsue est supposé apporter aux extrémités axonales lésées des messages neuroprotecteurs médiés par les VEs, il semblerait plus cohérent que les miARNs d'intérêt soient des éléments régulateurs n'existant pas ou peu naturellement dans les neurones cibles. Nous avons réalisé une expérience qui a donc consisté à estimer la présence de ces 6 miARNs dans les cellules microgliales par rapport aux neurones. A quantité identique d'ARN totaux pour chaque type cellulaire, les résultats de Q-PCR ont

273

montré que 4 miARNs : miR-1860, miR-7718, miR-2284y-6 et miR-146a, sont présents en moyenne entre 2,8 et 3,9 fois plus dans les cellules microgliales comparés aux neurones. Les deux autres : miR-1705 et miR-858, présentent une quantité égale entre les deux types cellulaires. Il est important de préciser que les neurones et les cellules microgliales ayant servi à cette étude sont issues de chaines nerveuses de sangsue prélevées et dissociées. Ainsi, ces cellules ne peuvent être considérées comme naïves car, remises en culture primaire indépendantes, elles répondent à une manipulation mécanique pouvant être apparentée à un phénomène de lésion. Même si l'environnement cellulaire, permettant d'induire *in vivo* dans la microglie comme dans les neurones l'expression de chaque miARN, n'est pas reconstitué, cette expérience donne un premier aperçu des miARNs pouvant éventuellement apporter un message de la microglie vers les neurones lésés par l'intermédiaire des VEs.

Ces perspectives de travail sont importantes dans la compréhension des processus moléculaires dépendants des miARNs vésiculaires. Toutefois, une question centrale subsiste au sujet de ces signatures miARNs. Concernent-elles une part importante des VEs produites et libérées par les cellules microgliales? La caractérisation par RNAseq ainsi que l'amplification par Tailing-RT-PCR de ces séquences à partir de VEs microgliales isolées et traitées par RNAse A ne permet pas de définir le pourcentage de vésicules contenant chacun de ces miARNs. Ainsi, si la population globale de VEs microgliales exerce un effet bénéfique sur la croissance neuritique, l'importance relative de ces 6 miARNs n'est pas encore établie. Une étude suggère que les miARNs sont présents à raison de moins d'une copie par vésicule [242]. Ces données suggèrent également la présence de sous-types vésiculaires pouvant être enrichis en miARNs. Une perspective de travail serait donc d'utiliser des balises moléculaires dirigées contre les miARNs d'intérêts (Figure 26) [243]. Ces balises anti-sens couplées à leurs extrémités respectives avec un fluorochrome et un quencher seraient capables d'émettre un signal fluorescent une fois dépliées et hybridées à leur miARN cible. Une fois internalisées aux VEs, de telles préparations pourraient être visualisées par un système de détection de nanoparticules appropriés afin de mesurer le nombre de VEs positives et ainsi estimer la distribution de chaque miARN dans les VEs totales.

<u>Fiqure 26:</u> Principe d'utilisation des balises moléculaires pour la détection des miARNs dans les VEs. Les balises moléculaires sont introduites dans les VEs et lorsqu'elles sont hybridées avec le miARN complémentaire, leur déploiement permet l'émission d'un signal fluorescent [243].

Par conséquent, mes résultats de thèse ayant permis la détection de microARNs dans les vésicules extracellulaires microgliales ne sont que le début d'un long processus ayant pour objectif de mettre en évidence des mécanismes de régulation délivrés par les VEs microgliales vers les neurones, pour leur survie. Ce travail se positionne dans un contexte plus large car nous avons entrepris d'étendre notre étude à l'analyse de ces miARNs dans des VEs microgliales issues d'autres espèces. Les expériences préliminaires réalisées à partir des VEs issues (i) de cellules microgliales primaires de rat, (ii) d'une lignée microgliale humaine CHME et (iii) d'une lignée microgliale/macrophagique de souris BV2, ont montré que ces 6 miARNs sont tous présents dans ces VEs microgliales. Hormis pour miR-146a et miR-2284y-6, ces premières données montrent pour la première fois que ces miARNs sont conservés chez des mammifères. Des expériences complémentaires seront effectuées notamment sur l'influence de ces VEs sur la croissance neuritique ainsi que l'analyse des protéomes neuronaux comme cela avait été réalisé sous l'influence des VEs microgliales de sangsue. La comparaison des résultats obtenus avec les VEs microgliales de sangsue permettra de mettre en évidence des similitudes ou des différences qui pourront orienter les prochaines études sur des molécules d'intérêts (protéines ou miARNs) dans les phénomènes de contrôle neuroinflammatoire et de survie neuronale médiés par les VEs microgliales.

L'apport d'un modèle alternatif comme la sangsue est selon moi très intéressant pour comprendre les mécanismes de communication médiés par les VEs. La conservation d'une

influence microgliale de sangsue sur des neurones de rat démontre que les vésicules extracellulaires peuvent délivrer un cocktail moléculaire évolutivement compatible au travers de certaines espèces. Toutefois, il restera dans les années futures à démontrer que cet assemblage moléculaire apporté par ces « minuscules cargos voyageurs » représente un message intégré cohérent ou juste une matière première utilisée plus ou moins spécifiquement par la cellule receveuse. Les études qui sont effectuées à partir du modèle *Hirudo medicinalis* peuvent aider à la meilleure compréhension des dialogues cellulaires au sein du système nerveux. L'apport de la sangsue, en tant que modèle, a déjà contribué à la découverte de la microglie par del Rio-Hortega il y a 100 ans maintenant. L'accessibilité de son système nerveux et l'aisance avec laquelle les populations cellulaires sont prélevées et maintenues en culture pourraient également apporter davantage de données fondamentales dans l'étude des VEs microgliales que nous entendrons mettre à profit pour favoriser la neuroprotection dans une vision thérapeutique.

BIBLIOGRAPHIE

- [1] Ginhoux F, Prinz M. Origin of microglia: Current concepts and past controversies. Cold Spring Harb. Perspect. Biol. 2015;7:1–16.
- [2] Sankowski R, Mader S, Valdés-ferrer SI. Systemic inflammation and the brain : novel roles of genetic , molecular , and environmental cues as drivers of neurodegeneration. Front. Cell. Neurosci. 2015;9:1–20.
- [3] Sierra A, Castro F De, Juan R, et al. The "Big-Bang " for Modern Glial Biology : Translation and Comments on P io del R Hortega 1919 Series of Papers on Microglia. 2016;1801–1840.
- [4] Ginhoux F, Greter M, Leboeuf M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330:841–845.
- [5] Kettenmann H, Hanisch U, Noda M, et al. Physiology of Microglia. Physiol. Rev. 2011;461–553.
- [6] Paolicelli RC, Bergamini G, Rajendran L. Cell-to-cell Communication by Extracellular Vesicles: Focus on Microglia. Neuroscience [Internet]. 2019 [cited 2019 Apr 20];405:148–157. Available from: https://www.sciencedirect.com/science/article/pii/S0306452218302549?via%3Dihub.
- [7] Wolf P. The nature and significance of platelet products in human plasma. Br. J. Haematol. [Internet]. 1967 [cited 2019 Apr 20];13:269–288. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6025241.
- [8] Rajendran L, Bali J, Barr XMM, et al. Emerging Roles of Extracellular Vesicles in the Nervous System. J. Neurosci. 2014;34:15482–15489.
- [9] Prada I, Furlan R, Matteoli M, et al. Classical and Unconventional Pathways of Vesicular Release in Microglia. 2013;1003–1017.
- [10] Asai H, Ikezu S, Tsunoda S, et al. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat. Neurosci. [Internet]. 2015 [cited 2019 Apr 20];18:1584–1593. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26436904.
- [11] Huang S, Ge X, Yu J, et al. Increased miR-124-3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons. FASEB J. [Internet]. 2018 [cited 2019 May 11];32:512–528. Available from: http://www.fasebj.org/doi/10.1096/fj.201700673R.
- [12] van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. [Internet]. 2018 [cited 2018 Oct 8];19:213–228. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29339798.
- [13] BAYLOR DA, NICHOLLS JG. Patterns of Regeneration between Individual Nerve Cells in

the Central Nervous System of the Leech. Nature [Internet]. 1971 [cited 2019 Apr 20];232:268–270. Available from: http://www.nature.com/articles/232268a0.

- [14] Le Marrec-Croq F, Drago F, Vizioli J, et al. The leech nervous system: a valuable model to study the microglia involvement in regenerative processes. Clin. Dev. Immunol.
 [Internet]. 2013 [cited 2019 Jul 13];2013:274019. Available from: http://www.hindawi.com/journals/jir/2013/274019/.
- [15] Drago F, Sautière P-E, Le Marrec-Croq F, et al. Microglia of medicinal leech (Hirudo medicinalis) express a specific activation marker homologous to vertebrate ionized calcium-binding adapter molecule 1 (Iba1/alias aif-1). Dev. Neurobiol. 2014;74:987– 1001.
- [16] Croq F, Vizioli J, Tuzova M, et al. A homologous form of human interleukin 16 is implicated in microglia recruitment following nervous system injury in leech Hirudo medicinalis. Glia. 2010;58:1649–1662.
- [17] Tahtouh M, Vizioli J, Sautiere P, et al. Evidence for a novel chemotactic C1q domaincontaining factor in the leech nerve cord. Mol. Immunol. 2009;46:523–531.
- [18] Tahtouh M, Garçon-Bocquet A, Croq F, et al. Interaction of HmC1q with leech microglial cells: Involvement of C1qBP-related molecule in the induction of cell chemotaxis. J. Neuroinflammation. 2012;9.
- [19] Schikorski D, Cuvillier-Hot V, Boidin-Wichlacz C, et al. Deciphering the immune function and regulation by a TLR of the cytokine EMAPII in the lesioned central nervous system using a leech model. J. Immunol. 2009;183:7119–7128.
- [20] Raffo-Romero A, Arab T, Van Camp C, et al. ALK4/5-dependent TGF-β signaling contributes to the crosstalk between neurons and microglia following axonal lesion. Sci. Rep. 2019;9:6896.
- [21] Ngu EM, Sahley CL, Muller KJ. Reduced axon sprouting after treatment that diminishes microglia accumulation at lesions in the leech CNS. J. Comp. Neurol. 2007;
- [22] Boidin-Wichlacz C, Vergote D, Slomianny C, et al. Morphological and functional characterization of leech circulating blood cells: role in immunity and neural repair. Cell. Mol. Life Sci. [Internet]. 2012 [cited 2019 May 31];69:1717–1731. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22159559.
- [23] Raffo-Romero A, Arab T, Al-Amri IS, et al. Medicinal Leech CNS as a Model for Exosome Studies in the Crosstalk between Microglia and Neurons. Int. J. Mol. Sci. 2018;19:4124.
- [24] Arab T, Raffo-Romero A, Van Camp C, et al. Proteomic characterisation of leech microglia extracellular vesicles (EVs): comparison between differential ultracentrifugation and Optiprep[™] density gradient isolation. J. Extracell. Vesicles [Internet]. 2019 [cited 2019 Jul 2];8:1603048. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31069026.

- [25] Lemaire Q, Duhamel M, Raffo-Romero A, et al. Characterization of immune cellderived extracellular vesicles: functional impact on cell environment. J Vis Exp (in Revis. 2019;
- [26] Su W, Aloi MS, Garden GA. MicroRNAs mediating CNS inflammation: Small regulators with powerful potential. Brain. Behav. Immun. [Internet]. 2016;52:1–8. Available from: http://dx.doi.org/10.1016/j.bbi.2015.07.003.
- [27] Caruso Bavisotto C, Scalia F, Marino Gammazza A, et al. Extracellular Vesicle-Mediated Cell–Cell Communication in the Nervous System: Focus on Neurological Diseases. Int. J. Mol. Sci. [Internet]. 2019 [cited 2019 Apr 27];20:434. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30669512.
- [28] Sloan SA, Barres BA. Mechanisms of astrocyte development and their contributions to neurodevelopmental disorders. Curr. Opin. Neurobiol. [Internet]. 2014 [cited 2019 Apr 27];27:75–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24694749.
- [29] Connors BW, Long MA. ELECTRICAL SYNAPSES IN THE MAMMALIAN BRAIN. Annu. Rev. Neurosci. [Internet]. 2004 [cited 2019 Jun 5];27:393–418. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15217338.
- [30] Mullen RJ, Buck CR, Smith AM. NeuN, a neuronal specific nuclear protein in vertebrates. Development [Internet]. 1992 [cited 2019 Jul 7];116:201–211. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1483388.
- [31] Marangos PJ, Schmechel DE, Parma AM, et al. Developmental profile of neuron-specific (NSE) and non-neuronal (NNE) enolase. Brain Res. [Internet]. 1980 [cited 2019 Jul 7];190:185–193. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6769532.
- [32] Huber G, Matus A. Differences in the cellular distributions of two microtubuleassociated proteins, MAP1 and MAP2, in rat brain. J. Neurosci. [Internet]. 1984 [cited 2019 Jul 7];4:151–160. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6198491.
- [33] Vasile F, Dossi E, Rouach N. Human astrocytes: structure and functions in the healthy brain. Brain Struct. Funct. [Internet]. 2017 [cited 2019 Apr 27];222:2017–2029.
 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28280934.
- [34] Liddelow S, Barres B. SnapShot: Astrocytes in Health and Disease. Cell [Internet]. 2015
 [cited 2019 Apr 27];162:1170-1170.e1. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0092867415010430.
- [35] Khakh BS, Sofroniew M V. Diversity of astrocyte functions and phenotypes in neural circuits. Nat. Neurosci. [Internet]. 2015 [cited 2019 Apr 27];18:942–952. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26108722.
- [36] Chapouly C, Tadesse Argaw A, Horng S, et al. Astrocytic TYMP and VEGFA drive blood– brain barrier opening in inflammatory central nervous system lesions. Brain [Internet].
 2015 [cited 2019 Apr 27];138:1548–1567. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/25805644.

- [37] Sofroniew M V. Astrocyte barriers to neurotoxic inflammation. Nat. Rev. Neurosci.
 [Internet]. 2015 [cited 2019 Apr 27];16:249–263. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25891508.
- [38] Pekny M, Pekna M, Messing A, et al. Astrocytes: a central element in neurological diseases. Acta Neuropathol. [Internet]. 2016 [cited 2019 Apr 27];131:323–345. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26671410.
- [39] Verkhratsky A, Nedergaard M, Hertz L. Why are Astrocytes Important? Neurochem. Res. [Internet]. 2015 [cited 2019 Apr 27];40:389–401. Available from: http://link.springer.com/10.1007/s11064-014-1403-2.
- [40] Colombo E, Farina C. Astrocytes: Key Regulators of Neuroinflammation. Trends Immunol. [Internet]. 2016 [cited 2019 Apr 27];37:608–620. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27443914.
- [41] Molofsky A V, Krencik R, Krenick R, et al. Astrocytes and disease: a neurodevelopmental perspective. Genes Dev. [Internet]. 2012 [cited 2019 Apr 27];26:891–907. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22549954.
- [42] Sofroniew M V, Vinters H V. Astrocytes: biology and pathology. Acta Neuropathol.
 [Internet]. 2010 [cited 2019 Jul 14];119:7–35. Available from: http://link.springer.com/10.1007/s00401-009-0619-8.
- [43] Baumann N, Pham-Dinh D. Biology of Oligodendrocyte and Myelin in the Mammalian Central Nervous System. Physiol. Rev. [Internet]. 2001 [cited 2019 Apr 27];81:871– 927. Available from: http://www.physiology.org/doi/10.1152/physrev.2001.81.2.871.
- [44] Kessaris N, Fogarty M, Iannarelli P, et al. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat. Neurosci. [Internet]. 2006 [cited 2019 Jun 3];9:173–179. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16388308.
- [45] Sun T, Pringle NP, Hardy AP, et al. Pax6 Influences the Time and Site of Origin of Glial Precursors in the Ventral Neural Tube. Mol. Cell. Neurosci. 1998;12:228–239.
- [46] Lu QR, Sun T, Zhu Z, et al. Common Developmental Requirement for Olig Function Indicates a Motor Neuron/Oligodendrocyte Connection. Cell. 2002;109:75–86.
- [47] Galea I, Bechmann I, Perry VH. What is immune privilege (not)? Trends Immunol.
 [Internet]. 2007 [cited 2019 May 2];28:12–18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17129764.
- [48] Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol. [Internet]. 2017 [cited 2019 Feb 11];18:225–242. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29151590.
- [49] Silvin A, Ginhoux F. Microglia heterogeneity along a spatio-temporal axis: More

questions than answers. Glia [Internet]. 2018 [cited 2019 May 2];66:2045–2057. Available from: http://doi.wiley.com/10.1002/glia.23458.

- [50] Schafer DP, Lehrman EK, Stevens B. The "quad-partite" synapse: Microglia-synapse interactions in the developing and mature CNS. Glia. 2013;61:24–36.
- [51] Paolicelli RC, Bolasco G, Pagani F, et al. Synaptic Pruning by Microglia Is Necessary for Normal Brain Development. Science (80-.). 2011;333:1456–1458.
- [52] Tremblay M-E, Stevens B, Sierra A, et al. The Role of Microglia in the Healthy Brain. J. Neurosci. [Internet]. 2011 [cited 2018 Oct 5];31:16064–16069. Available from: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.4158-11.2011.
- [53] Wolf SA, Boddeke HWGM, Kettenmann H. Microglia in Physiology and Disease. Annu.
 Rev. Physiol. [Internet]. 2017 [cited 2019 May 1];79:619–643. Available from: http://www.annualreviews.org/doi/10.1146/annurev-physiol-022516-034406.
- [54] Thion MS, Low D, Silvin A, et al. Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific Manner. Cell. 2018;172:500-516.e16.
- [55] Kierdorf K, Erny D, Goldmann T, et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat. Neurosci. [Internet]. 2013
 [cited 2019 Apr 28];16:273–280. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23334579.
- [56] Xu J, Wang T, Wu Y, et al. Microglia Colonization of Developing Zebrafish Midbrain Is Promoted by Apoptotic Neuron and Lysophosphatidylcholine. Dev. Cell [Internet].
 2016 [cited 2019 Apr 28];38:214–222. Available from: https://linkinghub.elsevier.com/retrieve/pii/S153458071630421X.
- [57] Casano AM, Albert M, Peri F. Developmental Apoptosis Mediates Entry and Positioning of Microglia in the Zebrafish Brain. Cell Rep. [Internet]. 2016 [cited 2019 Apr 28];16:897–906. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27425604.
- [58] Butovsky O, Jedrychowski MP, Moore CS, et al. Identification of a Unique TGF-β Dependent Molecular and Functional Signature in Microglia. Nat Neurosci. 2014;
- [59] Gosselin D, Link VM, Romanoski CE, et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell. 2014;159:1327– 1340.
- [60] Buttgereit A, Lelios I, Yu X, et al. Sall1 is a transcriptional regulator defining microglia identity and function. Nat. Immunol. 2016;17:1397–1406.
- [61] Wong K, Noubade R, Manzanillo P, et al. Mice deficient in NRROS show abnormal microglial development and neurological disorders. Nat. Immunol. [Internet]. 2017
 [cited 2019 Apr 28];18:633–641. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28459434.

- [62] Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nat. Neurosci. 2016;19:20–27.
- [63] Bogie JFJ, Stinissen P, Hendriks JJA. Macrophage subsets and microglia in multiple sclerosis. Acta Neuropathol. [Internet]. 2014 [cited 2019 May 1];128:191–213. Available from: http://link.springer.com/10.1007/s00401-014-1310-2.
- [64] Gold M, El Khoury J. β-amyloid, microglia, and the inflammasome in Alzheimer's disease. Semin. Immunopathol. [Internet]. 2015 [cited 2019 May 1];37:607–611. Available from: http://link.springer.com/10.1007/s00281-015-0518-0.
- [65] ElAli A, Rivest S. Microglia in Alzheimer's disease: A multifaceted relationship. Brain. Behav. Immun. [Internet]. 2016 [cited 2019 May 1];55:138–150. Available from: https://linkinghub.elsevier.com/retrieve/pii/S088915911500416X.
- [66] Krabbe G, Halle A, Matyash V, et al. Functional impairment of microglia coincides with Beta-amyloid deposition in mice with Alzheimer-like pathology. Priller J, editor. PLoS One [Internet]. 2013 [cited 2019 May 1];8:e60921. Available from: https://dx.plos.org/10.1371/journal.pone.0060921.
- [67] Sig AK, Guney M, Uskudar Guclu A, et al. Medicinal leech therapy-an overall perspective. Integr. Med. Res. [Internet]. 2017 [cited 2019 May 18];6:337–343. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29296560.
- [68] Salzet M. Leech thrombin inhibitors. Curr. Pharm. Des. 2002;8:493–503.
- [69] Salzet M. Anticoagulants and inhibitors of platelet aggregation derived from leeches. FEBS Lett. 2001;492:187–192.
- [70] Coggeshall RE, Fawcett DW. THE FINE STRUCTURE OF THE CENTRAL NERVOUS SYSTEM OF THE LEECH, *HIRUDO MEDICINALIS*. J. Neurophysiol. 1964;27:229–289.
- [71] Kuffler SW, Potter DD. GLIA IN THE LEECH CENTRAL NERVOUS SYSTEM:
 PHYSIOLOGICAL PROPERTIES AND NEURON-GLIA RELATIONSHIP. J. Neurophysiol. 1964;27:290–320.
- [72] Ransom BR, Sontheimer H. The neurophysiology of glial cells. J. Clin. Neurophysiol.
 [Internet]. 1992 [cited 2019 Jun 3];9:224–251. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1375603.
- [73] Muller KJ, Nicholls JG. Different properties of synapses between a single sensory neurone and two different motor cells in the leech C.N.S. J. Physiol. [Internet]. 1974
 [cited 2019 Jun 3];238:357–369. Available from: http://www.ncbi.nlm.nih.gov/pubmed/4366432.
- [74] Macagno ER. Number and distribution of neurons in leech segmental ganglia. J. Comp. Neurol. [Internet]. 1980 [cited 2019 Jun 3];190:283–302. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7381060.
- [75] Muller KJ, Scott SA. Transmission at a 'direct' electrical connexion mediated by an

interneurone in the leech. J. Physiol. [Internet]. 1981 [cited 2019 Jun 3];311:565–583. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6267257.

- [76] Sieger D, Peri F. Animal models for studying microglia: The first, the popular, and the new. Glia. 2013;61:3–9.
- [77] von Bernhardi R, Muller KJ. Repair of the central nervous system: lessons from lesions in leeches. J. Neurobiol. [Internet]. 1995 [cited 2019 Jun 3];27:353–366. Available from: http://doi.wiley.com/10.1002/neu.480270308.
- [78] Elliot EJ, Muller KJ. Synapses between neurons regenerate accurately after destruction of ensheathing glial cells in the leech. Science. 1982;215:1260–1262.
- [79] Gao WQ, Macagno ER. Axon extension and retraction by leech neurons: severing early projections to peripheral targets prevents normal retraction of other projections. Neuron [Internet]. 1988 [cited 2019 Jun 3];1:269–277. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2483323.
- [80] Muller KJ, Scott SA. Correct axonal regeneration after target cell removal in the central nervous system of the leech. Science. 1979;206:87–89.
- [81] Muller KJ, Scott SA. Removal of the synaptic target permits terminal sprouting of a mature intact axon. Nature [Internet]. 1980 [cited 2019 Jul 14];283:89–90. Available from: http://www.nature.com/articles/283089a0.
- [82] Jansen JKS, Nicholls JG. Regeneration and Changes in Synaptic Connections between Individual Nerve Cells in the Central Nervous System of the Leech. Proc. Natl. Acad. Sci. U. S. A. 1972;69:636–639.
- [83] Muller KJ, Carbonetto S. The morphological and physiological properties of a regenerating synapse in the C.N.S. of the leech. J. Comp. Neurol. 1979;185:485–516.
- [84] Morgese VJ, Elliott EJ, Muller KJ. Microglial movement to sites of nerve lesion in the leech CNS. Brain Res. [Internet]. 1983 [cited 2018 Oct 5];272:166–170. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6616194.
- [85] Elliot EJ, Muller KJ. Long-term survival of glial segments during nerve regeneration in the leech. Brain Res. [Internet]. 1981 [cited 2019 May 31];218:99–113. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7023608.
- [86] McGlade-McCulloh E, Morrissey AM, Norona F, et al. Individual microglia move rapidly and directly to nerve lesions in the leech central nervous system. Proc. Natl. Acad. Sci. U. S. A. [Internet]. 1989 [cited 2018 Oct 5];86:1093–1097. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2915975.
- [87] Shafer OT, Chen A, Kumar SM, et al. Injury-induced expression of endothelial nitric oxide synthase by glial and microglial cells in the leech central nervous system within minutes after injury. Proceedings. Biol. Sci. [Internet]. 1998 [cited 2019 Jun 1];265:2171–2175. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9872006.

- [88] Duan Y, Sahley CL, Muller KJ. ATP and NO dually control migration of microglia to nerve lesions. Dev. Neurobiol. [Internet]. 2009 [cited 2019 Jun 1];69:60–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19025930.
- [89] Arafah K, Croix D, Vizioli J, et al. Involvement of Nitric Oxide Through Endocannabinoids Release in Microglia Activation During the Course of CNS Regeneration in the Medicinal Leech. 2013;649:636–649.
- [90] Calovi S, Mut-Arbona P, Sperlágh B. Microglia and the Purinergic Signaling System. Neuroscience. 2019;405:137–147.
- [91] Mueller CA, Richt JA, Meyermann R, et al. Accumulation of the proinflammatory cytokine endothelial-monocyte-activating polypeptide II in ramified microglial cells in brains of Borna virus infected Lewis rats. Neurosci. Lett. [Internet]. 2003 [cited 2019 Jun 1];339:215–218. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12633891.
- [92] Mueller C-A, Schluesener HJ, Conrad S, et al. Lesional expression of a proinflammatory and antiangiogenic cytokine EMAP II confined to endothelium and microglia/macrophages during secondary damage following experimental traumatic brain injury. J. Neuroimmunol. [Internet]. 2003 [cited 2019 Jun 1];135:1–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12576219.
- [93] Center DM, Kornfeld H, Ryan TC, et al. Interleukin 16: implications for CD4 functions and HIV-1 progression. Immunol. Today [Internet]. 2000 [cited 2019 May 31];21:273– 280. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10825739.
- [94] Cruikshank W, Center DM. Modulation of lymphocyte migration by human lymphokines. II. Purification of a lymphotactic factor (LCF). J. Immunol. [Internet].
 1982 [cited 2019 May 31];128:2569–2574. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7042841.
- [95] Center DM, Cruikshank W. Modulation of lymphocyte migration by human lymphokines. I. Identification and characterization of chemoattractant activity for lymphocytes from mitogen-stimulated mononuclear cells. J. Immunol. [Internet].
 1982 [cited 2019 May 31];128:2563–2568. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7042840.
- [96] Schluesener HJ, Seid K, Kretzschmar J, et al. Leukocyte chemotactic factor, a natural ligand to CD4, is expressed by lymphocytes and microglial cells of the MS plaque. J. Neurosci. Res. [Internet]. 1996 [cited 2019 May 31];44:606–611. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8794952.
- [97] Le Marrec-Croq F, Bocquet-Garcon A, Vizioli J, et al. Calreticulin contributes to C1qdependent recruitment of microglia in the leech Hirudo medicinalis following a CNS injury. Med. Sci. Monit. [Internet]. 2014 [cited 2019 May 31];20:644–653. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24747831.
- [98] Patton S, Fowkes FM. The role of the plasma membrane in the secretion of milk fat. J.

Theor. Biol. 1967;15:274-281.

- [99] Anderson HC. Vesicles associated with calcification in the matrix of epiphyseal cartilage. J. Cell Biol. [Internet]. 1969 [cited 2019 May 14];41:59–72. Available from: http://www.jcb.org/cgi/doi/10.1083/jcb.41.1.59.
- [100] Trams EG, Lauter CJ, Salem N, et al. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim. Biophys. Acta [Internet]. 1981 [cited 2019 Apr 1];645:63–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6266476.
- [101] Crawford N. The presence of contractile proteins in platelet microparticles isolated from human and animal platelet-free plasma. Br. J. Haematol. [Internet]. 1971 [cited 2019 Apr 18];21:53–69. Available from: http://www.ncbi.nlm.nih.gov/pubmed/4254312.
- [102] Dalton AJ. Microvesicles and Vesicles of Multivesicular Bodies Versus "Virus-Like"
 Particles. JNCI J. Natl. Cancer Inst. [Internet]. 1975 [cited 2019 Apr 18];54:1137–1148.
 Available from: https://academic.oup.com/jnci/article/933233/Microvesicles.
- [103] Taylor DD, Homesley HD, Doellgast GJ. Binding of specific peroxidase-labeled antibody to placental-type phosphatase on tumor-derived membrane fragments. Cancer Res.
 [Internet]. 1980 [cited 2019 Apr 18];40:4064–4069. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7008934.
- [104] Pan BT, Teng K, Wu C, et al. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J. Cell Biol. 1985;101.
- [105] Poutsiaka DD, Schroder EW, Taylor DD, et al. Membrane vesicles shed by murine melanoma cells selectively inhibit the expression of Ia antigen by macrophages. J. Immunol. [Internet]. 1985 [cited 2019 Apr 18];134:138–144. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2578042.
- [106] Raposo G, Stoorvogel W. Extracellular vesicles : Exosomes , microvesicles , and friends. 2013;200:373–383.
- [107] Colombo M, Moita C, van Niel G, et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J. Cell Sci. [Internet]. 2013 [cited 2019 Apr 2];126:5553–5565. Available from: http://jcs.biologists.org/lookup/doi/10.1242/jcs.128868.
- [108] Stuffers S, Sem Wegner C, Stenmark H, et al. Multivesicular Endosome Biogenesis in the Absence of ESCRTs. Traffic [Internet]. 2009 [cited 2019 Apr 2];10:925–937. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19490536.
- [109] Trajkovic K, Hsu C, Chiantia S, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science [Internet]. 2008 [cited 2019 Apr 2];319:1244– 1247. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1153124.
- [110] van Niel G, Charrin S, Simoes S, et al. The tetraspanin CD63 regulates ESCRT-

independent and -dependent endosomal sorting during melanogenesis. Dev. Cell [Internet]. 2011 [cited 2019 May 14];21:708–721. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21962903.

- [111] Tricarico C, Clancy J, D'Souza-Schorey C. Biology and biogenesis of shed microvesicles. Small GTPases [Internet]. 2017 [cited 2019 Apr 3];8:220–232. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27494381.
- [112] Nabhan JF, Hu R, Oh RS, et al. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc. Natl. Acad. Sci. [Internet]. 2012 [cited 2019 Apr 6];109:4146– 4151. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22315426.
- [113] Bebelman MP, Smit MJ, Pegtel DM, et al. Biogenesis and function of extracellular vesicles in cancer. Pharmacol. Ther. [Internet]. 2018 [cited 2019 Apr 3];188:1–11. Available from: https://linkinghub.elsevier.com/retrieve/pii/S016372581830038X.
- [114] Kalra H, Drummen G, Mathivanan S. Focus on Extracellular Vesicles: Introducing the Next Small Big Thing. Int. J. Mol. Sci. [Internet]. 2016 [cited 2019 Apr 6];17:170. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26861301.
- [115] Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell [Internet]. 1983 [cited 2019 Apr 7];33:967–978. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6307529.
- [116] Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007;9:654–659.
- [117] Hill AF, Pegtel DM, Lambertz U, et al. ISEV position paper: extracellular vesicle RNA analysis and bioinformatics. J. Extracell. vesicles. 2013;1:1–8.
- [118] Villarroya-beltri C, Gutie C, Martin-cofreces N, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. 2013;1–10.
- [119] Lu P, Li H, Li N, et al. MEX3C interacts with adaptor-related protein complex 2 and involves in miR-451a exosomal sorting. Hakami RM, editor. PLoS One [Internet]. 2017 [cited 2019 Apr 7];12:e0185992. Available from: https://dx.plos.org/10.1371/journal.pone.0185992.
- [120] Zietzer A, Werner N, Jansen F. Regulatory mechanisms of microRNA sorting into extracellular vesicles. Acta Physiol. [Internet]. 2018 [cited 2019 Apr 7];222:e13018. Available from: http://doi.wiley.com/10.1111/apha.13018.
- [121] Squadrito ML, Baer C, Burdet F, et al. Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells. Cell Rep. [Internet]. 2014 [cited 2019 Apr 7];8:1432–1446. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2211124714006196.

- [122] Waldenström A, Gennebäck N, Hellman U, et al. Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. Qin G, editor. PLoS One [Internet]. 2012 [cited 2019 Jun 4];7:e34653. Available from: http://dx.plos.org/10.1371/journal.pone.0034653.
- [123] Guescini M, Guidolin D, Vallorani L, et al. C2C12 myoblasts release micro-vesicles containing mtDNA and proteins involved in signal transduction. Exp. Cell Res.
 [Internet]. 2010 [cited 2019 Jun 4];316:1977–1984. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0014482710001618.
- [124] Yáñez-Mó M, Siljander PRM, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles. 2015. p. 1–60.
- [125] Lötvall J, Hill AF, Hochberg F, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J. Extracell. vesicles [Internet]. 2014 [cited 2019 May 11];3:26913. Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v3.26913.
- [126] Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles. 2018;7:1535750.
- [127] Konoshenko MY, Lekchnov EA, Vlassov A V., et al. Isolation of Extracellular Vesicles: General Methodologies and Latest Trends. Biomed Res. Int. [Internet]. 2018 [cited 2019 May 5];2018:1–27. Available from: https://www.hindawi.com/journals/bmri/2018/8545347/.
- [128] Théry C, Amigorena S, Raposo G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. cell Biol. [Internet].
 2006 [cited 2019 May 11];Chapter 3:Unit 3.22. Available from: http://doi.wiley.com/10.1002/0471143030.cb0322s30.
- [129] Van Deun J, Mestdagh P, Sormunen R, et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J. Extracell. vesicles [Internet]. 2014 [cited 2019 May 12];3:24858. Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v3.24858.
- [130] Webber J, Clayton A. How pure are your vesicles? J. Extracell. Vesicles [Internet]. 2013
 [cited 2019 May 12];2:19861. Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v2i0.19861.
- [131] Böing AN, van der Pol E, Grootemaat AE, et al. Single-step isolation of extracellular vesicles by size-exclusion chromatography. J. Extracell. Vesicles [Internet]. 2014 [cited 2018 Sep 4];3:23430. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25279113.
- [132] Gámez-Valero A, Monguió-Tortajada M, Carreras-Planella L, et al. Size-Exclusion

Chromatography-based isolation minimally alters Extracellular Vesicles' characteristics compared to precipitating agents. Sci. Rep. [Internet]. 2016 [cited 2019 May 13];6:33641. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27640641.

- [133] Gallart-Palau X, Serra A, Wong ASW, et al. Extracellular vesicles are rapidly purified from human plasma by PRotein Organic Solvent PRecipitation (PROSPR). Sci. Rep.
 [Internet]. 2015 [cited 2019 May 13];5:14664. Available from: http://www.nature.com/articles/srep14664.
- [134] Alvarez-Erviti L, Seow Y, Yin H, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. [Internet]. 2011 [cited 2019 May 8];29:341–345. Available from: http://www.nature.com/articles/nbt.1807.
- [135] Chivet M, Javalet C, Laulagnier K, et al. Exosomes secreted by cortical neurons upon glutamatergic synapse activation specifically interact with neurons. J. Extracell. vesicles [Internet]. 2014 [cited 2019 Apr 7];3:24722. Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v3.24722.
- [136] Mallegol J, Van Niel G, Lebreton C, et al. T84-intestinal epithelial exosomes bear MHC class II/peptide complexes potentiating antigen presentation by dendritic cells. Gastroenterology [Internet]. 2007 [cited 2019 Apr 7];132:1866–1876. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0016508507004027.
- [137] Nolte-'t Hoen ENM, Buschow SI, Anderton SM, et al. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. Blood [Internet]. 2009 [cited 2019 Apr 7];113:1977–1981. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19064723.
- [138] Mulcahy LA, Pink RC, Carter DRF. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles [Internet]. 2014 [cited 2019 Apr 7];3:24641. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25143819.
- [139] Escrevente C, Keller S, Altevogt P, et al. Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer [Internet]. 2011 [cited 2019 May 9];11:108. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21439085.
- [140] Tian T, Zhu Y-L, Zhou Y-Y, et al. Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J. Biol. Chem.
 [Internet]. 2014 [cited 2019 May 9];289:22258–22267. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24951588.
- [141] Kerr MC, Teasdale RD. Defining Macropinocytosis. Traffic [Internet]. 2009 [cited 2019 May 9];10:364–371. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19192253.
- [142] Fitzner D, Schnaars M, van Rossum D, et al. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J. Cell Sci. [Internet]. 2011 [cited 2019 May 9];124:447–458. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21242314.

- [143] Costa Verdera H, Gitz-Francois JJ, Schiffelers RM, et al. Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis. J. Control. Release [Internet]. 2017 [cited 2019 May 9];266:100–108. Available from: https://www.sciencedirect.com/science/article/pii/S0168365917308520.
- [144] Feng D, Zhao W-L, Ye Y-Y, et al. Cellular Internalization of Exosomes Occurs Through Phagocytosis. Traffic [Internet]. 2010 [cited 2019 May 9];11:675–687. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20136776.
- [145] Christianson HC, Svensson KJ, van Kuppevelt TH, et al. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc. Natl. Acad. Sci. U. S. A. [Internet]. 2013 [cited 2019 May 9];110:17380– 17385. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1304266110.
- [146] Doherty GJ, McMahon HT. Mechanisms of Endocytosis. Annu. Rev. Biochem.
 [Internet]. 2009 [cited 2019 May 10];78:857–902. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19317650.
- [147] Rudt S, Müller RH. In vitro phagocytosis assay of nano- and microparticles by chemiluminescence. III. Uptake of differently sized surface-modified particles, and its correlation to particle properties and in vivo distribution. Eur. J. Pharm. Sci. [Internet]. 1993 [cited 2019 May 10];1:31–39. Available from: https://www.sciencedirect.com/science/article/pii/0928098793900153.
- [148] Montecalvo A, Larregina AT, Shufesky WJ, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood [Internet]. 2012 [cited 2019 May 10];119:756–766. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22031862.
- [149] Parton RG, Simons K. The multiple faces of caveolae. Nat. Rev. Mol. Cell Biol.
 [Internet]. 2007 [cited 2019 May 10];8:185–194. Available from: http://www.nature.com/articles/nrm2122.
- [150] Svensson KJ, Christianson HC, Wittrup A, et al. Exosome Uptake Depends on ERK1/2-Heat Shock Protein 27 Signaling and Lipid Raft-mediated Endocytosis Negatively Regulated by Caveolin-1. J. Biol. Chem. [Internet]. 2013 [cited 2019 May 10];288:17713–17724. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23653359.
- [151] Parolini I, Federici C, Raggi C, et al. Microenvironmental pH Is a Key Factor for Exosome Traffic in Tumor Cells. J. Biol. Chem. [Internet]. 2009 [cited 2019 May 11];284:34211–34222. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19801663.
- [152] Lachenal G, Pernet-Gallay K, Chivet M, et al. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol. Cell. Neurosci.
 [Internet]. 2011 [cited 2019 Jun 2];46:409–418. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21111824.

- [153] Morel L, Regan M, Higashimori H, et al. Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1. J. Biol. Chem.
 [Internet]. 2013 [cited 2019 Jun 2];288:7105–7116. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23364798.
- [154] Krämer-Albers E-M, Bretz N, Tenzer S, et al. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: Trophic support for axons? Proteomics. Clin. Appl. 2007;1:1446–1461.
- [155] Frühbeis C, Fröhlich D, Kuo WP, et al. Neurotransmitter-Triggered Transfer of Exosomes Mediates Oligodendrocyte–Neuron Communication. Barres BA, editor. PLoS Biol. [Internet]. 2013 [cited 2019 Jun 2];11:e1001604. Available from: https://dx.plos.org/10.1371/journal.pbio.1001604.
- [156] Bakhti M, Winter C, Simons M. Inhibition of Myelin Membrane Sheath Formation by Oligodendrocyte-derived Exosome-like Vesicles. J. Biol. Chem. [Internet]. 2011 [cited 2019 Jun 2];286:787–796. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20978131.
- [157] Wang S, Cesca F, Loers G, et al. Synapsin I Is an Oligomannose-Carrying Glycoprotein, Acts As an Oligomannose-Binding Lectin, and Promotes Neurite Outgrowth and Neuronal Survival When Released via Glia-Derived Exosomes. J. Neurosci. [Internet].
 2011 [cited 2019 Jun 2];31:7275–7290. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21593312.
- [158] Antonucci F, Turola E, Riganti L, et al. Microvesicles released from microglia stimulate synaptic activity via enhanced sphingolipid metabolism. EMBO J. 2012;31:1231–1240.
- [159] Gebert LFR, MacRae IJ. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. [Internet]. 2019 [cited 2019 Mar 8];20:21–37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30108335.
- [160] Lee RC. The C . elegans Heterochronic Gene lin-4 Encodes Small RNAs with Antisense Complementarity to & II-14. 1993;75:843–854.
- [161] Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell [Internet]. 1993
 [cited 2019 Mar 8];75:855–862. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8252622.
- [162] Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. [Internet]. 2019 [cited 2019 Mar 8];47:D155–D162. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30423142.
- [163] Friedman RC, Farh KK-H, Burge CB, et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. [Internet]. 2009 [cited 2019 Apr 17];19:92–105. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18955434.
- [164] Olena AF, Patton JG. Genomic organization of microRNAs. J. Cell. Physiol. [Internet].

2010 [cited 2019 Mar 11];222:540–545. Available from: http://doi.wiley.com/10.1002/jcp.21993.

- [165] Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, et al. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol.
 [Internet]. 2019 [cited 2019 Mar 11];234:5451–5465. Available from: http://doi.wiley.com/10.1002/jcp.27486.
- [166] Bartel DP. Metazoan MicroRNAs. Cell [Internet]. 2018 [cited 2019 Mar 12];173:20–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29570994.
- [167] Ha M, Kim VN. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. [Internet]. 2014;15:509–524. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25027649.
- [168] Ruby JG, Jan CH, Bartel DP. Intronic microRNA precursors that bypass Drosha processing. Nature [Internet]. 2007 [cited 2019 Mar 12];448:83–86. Available from: http://www.nature.com/articles/nature05983.
- [169] Jan CH, Friedman RC, Ruby JG, et al. Formation, regulation and evolution of Caenorhabditis elegans 3'UTRs. Nature [Internet]. 2011 [cited 2019 May 14];469:97– 101. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21085120.
- [170] Abdelfattah AM, Park C, Choi MY. Update on non-canonical microRNAs. Biomol. Concepts [Internet]. 2014 [cited 2019 Mar 13];5:275–287. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25372759.
- [171] Castellano L, Stebbing J. Deep sequencing of small RNAs identifies canonical and noncanonical miRNA and endogenous siRNAs in mammalian somatic tissues. Nucleic Acids Res. [Internet]. 2013 [cited 2019 Mar 15];41:3339–3351. Available from: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gks1474.
- [172] Iwakawa H, Tomari Y. The Functions of MicroRNAs: mRNA Decay and Translational Repression. Trends Cell Biol. [Internet]. 2015 [cited 2019 Apr 1];25:651–665. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26437588.
- [173] O'Brien J, Hayder H, Zayed Y, et al. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. (Lausanne). [Internet]. 2018 [cited 2019 Mar 20];9:402. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30123182.
- [174] Lal A, Navarro F, Maher CA, et al. miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to "seedless" 3'UTR microRNA recognition elements. Mol. Cell [Internet]. 2009 [cited 2019 Mar 24];35:610–625. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19748357.
- [175] Cao D-D, Li L, Chan W-Y. MicroRNAs: Key Regulators in the Central Nervous System and Their Implication in Neurological Diseases. Int. J. Mol. Sci. 2016;17:842.
- [176] Vasudevan S, Tong Y, Steitz JA. Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation. Science (80-.). [Internet]. 2007 [cited 2019 Apr

17];318:1931–1934. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18048652.

- [177] Shabab T, Khanabdali R, Moghadamtousi SZ, et al. Neuroinflammation pathways: a general review. Int. J. Neurosci. [Internet]. 2017 [cited 2019 May 11];127:624–633. Available from: https://www.tandfonline.com/doi/full/10.1080/00207454.2016.1212854.
- [178] Carson MJ, Doose JM, Melchior B, et al. CNS immune privilege: hiding in plain sight. Immunol. Rev. [Internet]. 2006 [cited 2019 May 11];213:48–65. Available from: http://doi.wiley.com/10.1111/j.1600-065X.2006.00441.x.
- [179] Chang C, Lang H, Geng N, et al. Exosomes of BV-2 cells induced by alpha-synuclein: important mediator of neurodegeneration in PD. Neurosci. Lett. [Internet]. 2013
 [cited 2019 May 11];548:190–195. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0304394013005569.
- [180] Yang Y, Boza-Serrano A, Dunning CJR, et al. Inflammation leads to distinct populations of extracellular vesicles from microglia. J. Neuroinflammation [Internet]. 2018 [cited 2019 Apr 3];15:168. Available from: https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-018-1204-7.
- [181] Brites D, Fernandes A. Neuroinflammation and Depression: Microglia Activation, Extracellular Microvesicles and microRNA Dysregulation. Front. Cell. Neurosci.
 [Internet]. 2015;9:476. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26733805%5Cnhttp://www.pubmedcentral.ni h.gov/articlerender.fcgi?artid=PMC4681811.
- [182] Alberti C, Cochella L. A framework for understanding the roles of miRNAs in animal development. Development [Internet]. 2017 [cited 2019 Apr 17];144:2548–2559. Available from: http://dev.biologists.org/lookup/doi/10.1242/dev.146613.
- [183] Giraldez AJ, Cinalli RM, Glasner ME, et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science [Internet]. 2005 [cited 2019 May 13];308:833–838. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1109020.
- [184] O'Carroll D, Schaefer A. General Principals of miRNA Biogenesis and Regulation in the Brain. Neuropsychopharmacology [Internet]. 2013 [cited 2019 May 13];38:39–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22669168.
- [185] Arora S, Rana R, Chhabra A, et al. miRNA-transcription factor interactions: a combinatorial regulation of gene expression. Mol. Genet. Genomics [Internet]. 2013
 [cited 2019 May 15];288:77–87. Available from: http://link.springer.com/10.1007/s00438-013-0734-z.
- [186] Bala S, Marcos M, Kodys K, et al. Up-regulation of MicroRNA-155 in Macrophages Contributes to Increased Tumor Necrosis Factor α (TNFα) Production via Increased mRNA Half-life in Alcoholic Liver Disease. J. Biol. Chem. [Internet]. 2011 [cited 2019 May 15];286:1436–1444. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/21062749.

- [187] Wang P, Hou J, Lin L, et al. Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J. Immunol. [Internet]. 2010 [cited 2019 May 15];185:6226–6233. Available from: http://www.jimmunol.org/cgi/doi/10.4049/jimmunol.1000491.
- [188] Su W, Hopkins S, Nesser NK, et al. The p53 Transcription Factor Modulates Microglia Behavior through MicroRNA-Dependent Regulation of c-Maf. J. Immunol. [Internet].
 2014 [cited 2019 May 15];192:358–366. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24319262.
- [189] Koval ED, Shaner C, Zhang P, et al. Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. Hum. Mol. Genet. [Internet]. 2013 [cited 2019 Jun 5];22:4127–4135. Available from: https://academic.oup.com/hmg/articlelookup/doi/10.1093/hmg/ddt261.
- [190] Slota JA, Booth SA. MicroRNAs in Neuroinflammation: Implications in Disease Pathogenesis, Biomarker Discovery and Therapeutic Applications. Non-Coding RNA [Internet]. 2019 [cited 2019 May 14];5:35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31022830.
- [191] Thome AD, Harms AS, Volpicelli-Daley LA, et al. microRNA-155 Regulates Alpha-Synuclein-Induced Inflammatory Responses in Models of Parkinson Disease. J. Neurosci. [Internet]. 2016 [cited 2019 May 16];36:2383–2390. Available from: http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.3900-15.2016.
- [192] Jennewein C, von Knethen A, Schmid T, et al. MicroRNA-27b Contributes to Lipopolysaccharide-mediated Peroxisome Proliferator-activated Receptor γ (PPARγ) mRNA Destabilization. J. Biol. Chem. [Internet]. 2010 [cited 2019 Jun 3];285:11846– 11853. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20164187.
- [193] Zhang J, Cheng Y, Cui W, et al. MicroRNA-155 modulates Th1 and Th17 cell differentiation and is associated with multiple sclerosis and experimental autoimmune encephalomyelitis. J. Neuroimmunol. [Internet]. 2014 [cited 2019 May 16];266:56–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24332164.
- [194] Du C, Liu C, Kang J, et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat. Immunol. [Internet]. 2009 [cited 2019 May 16];10:1252–1259. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19838199.
- [195] Gaudet AD, Fonken LK, Watkins LR, et al. MicroRNAs: Roles in Regulating Neuroinflammation. Neuroscientist [Internet]. 2018 [cited 2019 May 13];24:221–245. Available from: http://journals.sagepub.com/doi/10.1177/1073858417721150.
- [196] Veremeyko T, Siddiqui S, Sotnikov I, et al. IL-4/IL-13-Dependent and Independent Expression of miR-124 and Its Contribution to M2 Phenotype of Monocytic Cells in Normal Conditions and during Allergic Inflammation. Block ML, editor. PLoS One

[Internet]. 2013 [cited 2019 May 18];8:e81774. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24358127.

- [197] Ponomarev ED, Veremeyko T, Barteneva N, et al. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α-PU.1 pathway. Nat. Med. [Internet]. 2011 [cited 2019 May 18];17:64–70. Available from: http://www.nature.com/articles/nm.2266.
- [198] Louw AM, Kolar MK, Novikova LN, et al. Chitosan polyplex mediated delivery of miRNA-124 reduces activation of microglial cells in vitro and in rat models of spinal cord injury. Nanomedicine Nanotechnology, Biol. Med. [Internet]. 2016 [cited 2019 May 18];12:643–653. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26582736.
- [199] Yao L, Zhu Z, Wu J, et al. MicroRNA-124 regulates the expression of p62/p38 and promotes autophagy in the inflammatory pathogenesis of Parkinson's disease. FASEB J. [Internet]. 2019 [cited 2019 May 18];fj.201900363R. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30995872.
- [200] Zhang X, Huang X, Fang C, et al. miR-124 Regulates the Expression of BACE1 in the Hippocampus Under Chronic Cerebral Hypoperfusion. Mol. Neurobiol. [Internet].
 2017 [cited 2019 May 18];54:2498–2506. Available from: http://link.springer.com/10.1007/s12035-016-9845-y.
- [201] Fang M, Wang J, Zhang X, et al. The miR-124 regulates the expression of BACE1/β-secretase correlated with cell death in Alzheimer's disease. Toxicol. Lett. [Internet].
 2012 [cited 2019 May 18];209:94–105. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378427411016511.
- [202] Du X, Huo X, Yang Y, et al. miR-124 downregulates BACE 1 and alters autophagy in APP/PS1 transgenic mice. Toxicol. Lett. [Internet]. 2017 [cited 2019 May 18];280:195– 205. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378427417312717.
- [203] Yang Q, Shi Q, Fu J. Applications of cerebrospinal miRNA in the detection and treatment of acute CNS injury. Front. Lab. Med. [Internet]. 2018 [cited 2019 May 18];2:83–88. Available from: https://www.sciencedirect.com/science/article/pii/S2542364918300268.
- [204] Sheedy FJ, Palsson-McDermott E, Hennessy EJ, et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat. Immunol. [Internet]. 2010 [cited 2019 May 18];11:141–147. Available from: http://www.nature.com/articles/ni.1828.
- [205] Zhang G, Yang P. A novel cell-cell communication mechanism in the nervous system: exosomes. J. Neurosci. Res. [Internet]. 2018 [cited 2019 Jun 15];96:45–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28718905.
- [206] Drago F, Lombardi M, Prada I, et al. ATP Modifies the Proteome of Extracellular

Vesicles Released by Microglia and Influences Their Action on Astrocytes. Front. Pharmacol. [Internet]. 2017 [cited 2019 Jun 15];8:910. Available from: http://journal.frontiersin.org/article/10.3389/fphar.2017.00910/full.

- [207] Peferoen L, Kipp M, van der Valk P, et al. Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology [Internet]. 2014 [cited 2019 Jun 15];141:302–313. Available from: http://doi.wiley.com/10.1111/imm.12163.
- [208] Gabrielli M, Battista N, Riganti L, et al. Active endocannabinoids are secreted on extracellular membrane vesicles. EMBO Rep. [Internet]. 2015 [cited 2019 Jun 24];16:213–220. Available from: http://embor.embopress.org/cgi/doi/10.15252/embr.201439668.
- [209] Szepesi Z, Manouchehrian O, Bachiller S, et al. Bidirectional Microglia-Neuron Communication in Health and Disease. Front. Cell. Neurosci. [Internet]. 2018 [cited 2019 Jun 24];12:323. Available from: https://www.frontiersin.org/article/10.3389/fncel.2018.00323/full.
- [210] Prada I, Gabrielli M, Turola E, et al. Glia-to-neuron transfer of miRNAs via extracellular vesicles: a new mechanism underlying inflammation-induced synaptic alterations. Acta Neuropathol. 2018;135:529–550.
- [211] Théry C, Boussac M, Véron P, et al. Proteomic Analysis of Dendritic Cell-Derived Exosomes: A Secreted Subcellular Compartment Distinct from Apoptotic Vesicles. J. Immunol. [Internet]. 2001 [cited 2019 Jun 22];166:7309–7318. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11390481.
- [212] Paolini L, Zendrini A, Di Noto G, et al. Residual matrix from different separation techniques impacts exosome biological activity. Sci. Rep. [Internet]. 2016 [cited 2019 Jun 22];6:23550. Available from: http://www.nature.com/articles/srep23550.
- [213] Zappulli V, Friis KP, Fitzpatrick Z, et al. Extracellular vesicles and intercellular communication within the nervous system. J. Clin. Invest. 2016;126:1198–1207.
- [214] Murgoci A-N, Cizkova D, Majerova P, et al. Brain-Cortex Microglia-Derived Exosomes: Nanoparticles for Glioma Therapy. ChemPhysChem. 2018;19:1205–1214.
- [215] Prinz M, Erny D, Hagemeyer N. Ontogeny and homeostasis of CNS myeloid cells. 2017;18.
- [216] Erny D, Hrabě de Angelis AL, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 2015;18:965–977.
- [217] Zhou Y, Tian T, Zhu Y, et al. Exosomes Transfer Among Different Species Cells and Mediating miRNAs Delivery. J. Cell. Biochem. [Internet]. 2017 [cited 2019 Jun 30];118:4267–4274. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28422319.
- [218] Mu J, Zhuang X, Wang Q, et al. Interspecies communication between plant and mouse

gut host cells through edible plant derived exosome-like nanoparticles. Mol. Nutr. Food Res. [Internet]. 2014 [cited 2019 Jun 30];58:1561–1573. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24842810.

- [219] Bialas AR, Stevens B. TGF-β signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat. Neurosci. [Internet]. 2013 [cited 2019 Jul 1];16:1773–1782. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24162655.
- [220] He Y, Zhang H, Yung A, et al. ALK5-dependent TGF-β signaling is a major determinant of late-stage adult neurogenesis. Nat. Neurosci. [Internet]. 2014 [cited 2019 Jul 1];17:943–952. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24859199.
- [221] Leshchyns'ka I, Sytnyk V, Morrow JS, et al. Neural cell adhesion molecule (NCAM) association with PKCbeta2 via betal spectrin is implicated in NCAM-mediated neurite outgrowth. J. Cell Biol. [Internet]. 2003 [cited 2019 Jul 6];161:625–639. Available from: http://www.jcb.org/lookup/doi/10.1083/jcb.200303020.
- [222] Rosenstein JM, Krum JM, Ruhrberg C. VEGF in the nervous system. Organogenesis [Internet]. 2010 [cited 2019 Jul 6];6:107–114. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20885857.
- [223] O'Donnell LA, Henkins KM, Kulkarni A, et al. Interferon gamma induces protective non-canonical signaling pathways in primary neurons. J. Neurochem. [Internet]. 2015 [cited 2019 Jul 6];135:309–322. Available from: http://doi.wiley.com/10.1111/jnc.13250.
- [224] Song JH, Wang CX, Song DK, et al. Interferon γ Induces Neurite Outgrowth by Upregulation of p35 Neuron-specific Cyclin-dependent Kinase 5 Activator via Activation of ERK1/2 Pathway. J. Biol. Chem. [Internet]. 2005 [cited 2019 Jul 6];280:12896– 12901. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15695523.
- [225] Nguyen LS, Fregeac J, Bole-Feysot C, et al. Role of miR-146a in neural stem cell differentiation and neural lineage determination: relevance for neurodevelopmental disorders. Mol. Autism [Internet]. 2018 [cited 2019 Jul 6];9:38. Available from: https://molecularautism.biomedcentral.com/articles/10.1186/s13229-018-0219-3.
- [226] Huang J, Ju Z, Li Q, et al. Solexa sequencing of novel and differentially expressed microRNAs in testicular and ovarian tissues in Holstein cattle. Int. J. Biol. Sci. [Internet]. 2011 [cited 2019 Jul 11];7:1016–1026. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21912509.
- [227] Lawless N, Vegh P, O'Farrelly C, et al. The Role of microRNAs in Bovine Infection and Immunity. Front. Immunol. [Internet]. 2014 [cited 2019 Jul 11];5:611. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25505900.
- [228] Fang L, Sørensen P, Sahana G, et al. MicroRNA-guided prioritization of genome-wide association signals reveals the importance of microRNA-target gene networks for complex traits in cattle. Sci. Rep. [Internet]. 2018 [cited 2019 Jul 11];8:9345. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29921979.

- [229] Glazov EA, Cottee PA, Barris WC, et al. A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res. [Internet]. 2008 [cited 2019 Jul 11];18:957–964. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18469162.
- [230] Zhu H, Xia R, Zhao B, et al. Unique expression, processing regulation, and regulatory network of peach (Prunus persica) miRNAs. BMC Plant Biol. [Internet]. 2012 [cited 2019 Jul 11];12:149. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22909020.
- [231] Bertolini E, Verelst W, Horner DS, et al. Addressing the Role of microRNAs in Reprogramming Leaf Growth during Drought Stress in Brachypodium distachyon. Mol. Plant [Internet]. 2013 [cited 2019 Jul 11];6:423–443. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23264558.
- [232] Zhu Q-H, Spriggs A, Matthew L, et al. A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res. [Internet]. 2008 [cited 2019 Jul 11];18:1456–1465. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18687877.
- [233] Liu W, Wang X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. [Internet]. 2019 [cited 2019 Jul 9];20:18. Available from: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1629-z.
- [234] Agarwal V, Bell GW, Nam J-W, et al. Predicting effective microRNA target sites in mammalian mRNAs. Elife [Internet]. 2015 [cited 2019 Jul 9];4. Available from: https://elifesciences.org/articles/05005.
- [235] Chen X, Wang H, Yu W, et al. IDH1 Associated with Neuronal Apoptosis in Adult Rats Brain Following Intracerebral Hemorrhage. Cell. Mol. Neurobiol. [Internet]. 2017 [cited 2019 Jul 11];37:831–841. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27568302.
- [236] Gortat A, Sancho M, Mondragón L, et al. Apaf1 inhibition promotes cell recovery from apoptosis. Protein Cell [Internet]. 2015 [cited 2019 Jul 11];6:833–843. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26361785.
- [237] Chen Q, Xu J, Li L, et al. MicroRNA-23a/b and microRNA-27a/b suppress Apaf-1 protein and alleviate hypoxia-induced neuronal apoptosis. Cell Death Dis. [Internet]. 2014 [cited 2019 Jul 11];5:e1132–e1132. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24651435.
- [238] Crittenden JR, Dunn DE, Merali FI, et al. CalDAG-GEFI down-regulation in the striatum as a neuroprotective change in Huntington's disease. Hum. Mol. Genet. [Internet].
 2010 [cited 2019 Jul 11];19:1756–1765. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20147317.
- [239] Qian W, Hong Y, Zhu M, et al. Deletion of Numb/Numblike in glutamatergic neurons leads to anxiety-like behavior in mice. Brain Res. [Internet]. 2017 [cited 2019 Jul

11];1665:36–49. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28347671.

- [240] Peng H, Wang L, Su Q, et al. MiR-31-5p promotes the cell growth, migration and invasion of colorectal cancer cells by targeting NUMB. Biomed. Pharmacother.
 [Internet]. 2019 [cited 2019 Jul 11];109:208–216. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30396078.
- [241] Hu J, Qian H, Xue Y, et al. PTB/nPTB: master regulators of neuronal fate in mammals. Biophys. reports [Internet]. 2018 [cited 2019 Jul 11];4:204–214. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30310857.
- [242] Chevillet JR, Kang Q, Ruf IK, et al. Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc. Natl. Acad. Sci. U. S. A. [Internet]. 2014;111:14888–14893. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4205618&tool=pmcentr ez&rendertype=abstract.
- [243] Hye J, Ah J, Hee M, et al. Biomaterials In situ single step detection of exosome microRNA using molecular beacon. Biomaterials [Internet]. 2015;54:116–125. Available from: http://dx.doi.org/10.1016/j.biomaterials.2015.03.014.

ANNEXES

Annexe 1: Liste des protéines exclusives représentées dans les diagrammes de Venn correspondant à l'analyse des VEs de CHME3 générée à partir de l'analyse des fractions SEC .

Exclusives P1-EV-		Exclusives P2-EV+		Common P1-EV- / P2-EV+	
Uniprot ID	Gene symbol	Uniprot ID	Gene symbol	Uniprot ID	Gene symbol
P15924	DESP	Q9GZQ8	MLP3B	O00560	SDCB1
Q02413	DSG1	Q99613	EIF3C	015427	MOT4
Q08554	DSC1	O00159	MYO1C	O43707	ACTN4
Q5T749	KPRP	O00186	STXB3	O43854	EDIL3
		O00231	PSD11	Q99880	H2B1L
		O00299	CLIC1	075083	WDR1
		O00410	IPO5	P00338	LDHA
		O00469	PLOD2	P02751	FINC
		O14672	ADA10	P02786	TFR1
		O14745	NHRF1	P04075	ALDOA
		O14786	NRP1	P04083	ANXA1
		O14818	PSA7	P04406	G3P
		O14828	SCAM3	P04899	GNAI2
		O14908	GIPC1	P05023	AT1A1
		O15031	PLXB2	P05556	ITB1
		O15067	PUR4	P06733	ENOA
		015118	NPC1	P07195	LDHB
		O15143	ARC1B	P07237	PDIA1
		O15144	ARPC2	P07355	ANXA2
		O15162	PLS1	P07737	PROF1
		O15400	STX7	P07900	HS90A
		O15484	CAN5	P08133	ANXA6
		O43175	SERA	P08195	4F2
		O43242	PSMD3	P08238	HS90B
		O43657	TSN6	P08670	VIME
		O43759	SNG1	P08758	ANXA5
		O43795	MYO1B	P09382	LEG1
		O60443	GSDME	Q99878	H2A1J
		O60488	ACSL4	P62987	RL40
		O60493	SNX3	P0DMV9	HS71B
		O60701	UGDH	P11021	BIP
		O60716	CTND1	P11142	HSP7C
		O60763	USO1	P12814	ACTN1
		075131	CPNE3	P13639	EF2
		075340	PDCD6	P14618	KPYM
		075367	H2AY	P14923	PLAK
		075369	FLNB	P16189	1A31
		075390	CISY	P18085	ARF4
		075396	SC22B	P21333	FLNA
		075695	XRP2	P23526	SAHH
		075874	IDHC	P23528	COF1
		075923	DYSF	P26006	ITA3
		075955	FLOT1	P26038	MOES
		O95084	PRS23	P29401	ТКТ
		095297	MPZL1	P30101	PDIA3
		095373	IPO7	P30481	1B44

		O95782	AP2A1	P31946	1433B
		O95819	M4K4	P35579	MYH9
		O95865	DDAH2	P43121	MUC18
		P00367	DHE3	P51148	RAB5C
		P00387	NB5R3	P51149	RAB7A
		P00491	PNPH	P60174	TPIS
		P00492	HPRT	P60842	IF4A1
		P00505	AATM	P61224	RAP1B
		P00533	EGFR	P62258	1433E
		P00558	PGK1	P62805	H4
		P01111	RASN	P62826	RAN
		P01112	RASH	P62873	GBB1
		P02452	CO1A1	P62937	PPIA
		P02649	APOE	P63104	1433Z
		P04080	СҮТВ	P63261	ACTG
		P04216	THY1	Q5VTE0	EF1A3
		P04792	HSPB1	P68363	TBA1B
		P04843	RPN1	P68371	TBB4B
		P04844	RPN2	P68431	H31
		P05026	AT1B1	Q00610	CLH1
		P05067	A4	Q01650	LAT1
		P05106	ITB3	001995	TAGL
		P05161	ISG15	006830	PRDX1
		P05198	IF2A	Q08380	LG3BP
		P05362	ICAM1	Q08431	MFGM
		P05388	RLAO	014764	MVP
		P05783	K1C18	09N0C3	RTN4
		P06737	PYGL	000560	SDCB1
		P06744	G6PI	015427	MOT4
		P06753	TPM3	043707	ACTN4
		P06756	ITAV	043854	FDII 3
		P07339	CATD	099880	H2B1I
		P07384	CAN1	075083	WDR1
		P07437	TBB5	P00338	LDHA
		P07686	HFXB	P02751	FINC
		P07947	YES	P02786	TFR1
		P07954	FUMH	P04075	ALDOA
		P08123	CO1A2	P04083	ANXA1
		P08174	DAF	P04406	G3P
		P08183	MDR1	P04899	GNAI2
		P08237	PFKAM	P05023	AT1A1
		P08473	NFP	P05556	ITB1
		P08648	ITA5	P06733	ENOA
		P08754	GNAI3	P07195	LDHB
		P08865	RSSA	P07237	PDIA1
		P08962	CD63	P07355	ANXA2
		P09104	FNOG	P07737	PROF1
		P09211	GSTP1	P07900	HS90A
		P09417	DHPR	P08133	ΑΝΧΑΘ
<u> </u>		P09525	ΔΝΧΔΔ	P08195	ΔF2
		P005/2	CN27	PU8338	
		P00610	PGERR	P08670	VIME
		DU0036		P02752	ΔΝΥΔΕ
		P09930		PU0282	
		P10201		09362	
		10201	ппаз	(330/0	ITZALJ

P10644	KAP0	P62987	RL40
P10768	ESTD	P0DMV9	HS71B
P10809	CH60	P11021	BIP
P11117	PPAL	P11142	HSP7C
P11166	GTR1	P12814	ACTN1
P11169	GTR3	P13639	EF2
P11216	PYGB	P14618	KPYM
P11233	RALA	P14923	PLAK
P11234	RALB	P16189	1A31
P11279	LAMP1	P18085	ARF4
P11413	G6PD	P21333	FLNA
P11586	C1TC	P23526	SAHH
P11766	ADHX	P23528	COF1
P11940	PABP1	P26006	ITA3
P12004	PCNA	P26038	MOES
P12236	ADT3	P29401	ТКТ
P12429	ANXA3	P30101	PDIA3
P12955	PEPD	P30481	1B44
P12956	XRCC6	P31946	1433B
P13010	XRCC5	P35579	MYH9
P13473	LAMP2	P43121	MUC18
P13489	RINI	P51148	RAB5C
P13612	ITA4	P51149	RAB7A
P13667	PDIA4	P60174	TPIS
P13693	TCTP	P60842	IF4A1
P13797	PLST	P61224	RAP1B
P13798	ACPH	P62258	1433E
P13987	CD59	P62805	H4
P14314	GLU2B	P62826	RAN
P14324	FPPS	P62873	GBB1
P14625	ENPL	P62937	PPIA
P14868	SYDC	P63104	1433Z
P15121	ALDR	P63261	ACTG
P15144	AMPN	Q5VTE0	EF1A3
P15151	PVR	P68363	TBA1B
P15311	EZRI	P68371	TBB4B
P15531	NDKA	P68431	H31
P15586	GNS	Q00610	CLH1
P15880	RS2	Q01650	LAT1
P16070	CD44	Q01995	TAGL
P16144	ITB4	Q06830	PRDX1
P16152	CBR1	Q08380	LG3BP
P17174	AATC	Q08431	MFGM
P17812	PYRG1	Q14764	MVP
P17813	EGLN	Q9NQC3	RTN4
P17980	PRS6A		
P17987	ТСРА		
P18124	RL7		
P18206	VINC		
P18669	PGAM1		
P20020	AT2B1		
P20073	ANXA7		
P20340	RAB6A		
P20591	MX1		
P20618	PSB1		

	P20645	MPRD		
	P21281	VATB2		
	P21291	CSRP1		
	P21399	ACOC		
	P21589	5NTD		
	P21796	VDAC1		
	P21926	CD9		
	P22234	PUR6		
	P22314	UBA1		
	P22392	NDKB		
	P23229	ITA6		
	P23284	PPIB		
	P23381	SYWC		
	P23396	RS3		
	P23634	AT2B4		
	P24534	EF1B		
	P25705	ΑΤΡΑ		
	P25786	PSA1		
	P25787	PSA2		
	P25788	PSA3		
	P25789			
	P20232	DI 12		
	P2630	SVTC		
	P26640	SVVC		
	P20040	5170		
	P20041	EF10		
	P27105	310IVI 1422T		
	P27348	14331		
	P27701			
	P27708			
	P27/9/	CALR		
	P27824	CALX		
	P28066	PSA5		
	P28072	PSB6		
	P28074	PSB5		
	P28482	MK01		
	P28838	AMPL		
	P29144	ТРР2		
	P29317	EPHA2		
	P29323	EPHB2		
	P29692	EF1D		
	P29728	OAS2		
	P29966	MARCS		
	P29972	AQP1		
	P29992	GNA11		
	P30040	ERP29		
	P30041	PRDX6		
ļ	P30044	PRDX5		
ļ	P30050	RL12		
	P30086	PEBP1		
	P30153	2AAA		
	P30453	1A34		
	P30530	UFO		
	P30566	PUR8		
	P30825	CTR1		

		P31150	GDIA		
		P31153	METK2		
		P31939	PUR9		
		P55795	HNRH2		
		P31948	STIP1		
		P32004	L1CAM		
		P32119	PRDX2		
		P33527	MRP1		
		P34932	HSP74		
		P35221	CTNA1		
		P35222	CTNB1		
		P35241	RADI		
		P35613	BASI		
		P35998	PRS7		
		P36578	RL4		
		P36873	PP1G		
		P37802	TAGL2		
		P37837	TALDO		
		P38606	VATA		
		P38646	GRP75		
		P39023	RL3		
		P39656	OST48		
		P40121	CAPG		
		P40227	TCPZ		
		P40261	NNMT		
		P40925	MDHC		
		P40926	MDHM		
		P41091	IF2G		
		P42224	STAT1		
		P42892	FCF1		
		P43007	SATT		
		P43490	NAMPT		
		P45880	VDAC2		
		P46776	RI 27A		
		P46777	RI 5		
		P46781	RS9		
		P46821	MAP1B		
		P46926	GNPI1		
		P46940			
		P46977	STT3A		
		P47755	CA7A2		
		P47756	CAP7B		1
		P48449	FRG7		
		P48509	CD151		1
		P48637	GSHB		
		P48643	TCPF		1
		P49189	ΔΙ 9Δ1		1
		P49327	FAS		1
	<u> </u>	P49368	TCPG		1
		P <u>4</u> 9411	FFTII		
		P/0/10			
		D/0580	SVAC		
		D/0501	51AC		
		P/0720			
		D/0755			
	1	F45733	INIEDA	1	

	P49915	GUAA		
	P50148	GNAQ		
	P50281	MMP14		
	P50395	GDIB		
	P50454	SERPH		
	P50502	F10A1		
	P50990	TCPQ		
	P50991	TCPD		
	P50995	ANX11		
	P51153	RAB13		
	P51570	GALK1		
	P51809	VAMP7		
	P52209	6PGD		
	P52292	IMA1		
	P52565	GDIR1		
	P52907	CAZA1		
	P53004	BIEA		
	P53396	ACLY		
	P53621	СОРА		
	P53794	SC5A3		
	P53801	PTTG		
	P53985	MOT1		
	P53990	IST1		
	P54136	SYRC		
	P54289	CA2D1		
	P54709	AT1B3		
	P54920	SNAA		
	P55060	XPO2		
	P55072	TFRA		
	P55209	NP1L1		
	P55290	CAD13		
	P55786	PSA		
	P55884	FIE3B		
	P56537	IF6		
	P57088	TMM33		
	P59998	ARPC4		
	P60033	CD81		
	P60228	FIF3F		
	P60520	GBRI 2		
	P60660	MYL6		
	P60866	R\$20		
	P60891	PRPS1		
	P60900	PSA6		
	P60953	CDC42		
	P60981	DEST		
	P61006	RAB8A		
	P61019	RAR2A		
	P61020	RARSR		
	P61026	RAR10		
	P61020			
	D61106			
	D61152	V6014		
	FUI120	AUL2		
	PC11C2	ΑΓΓΖ ΛΟΤ7		
	F01103			
1	F 04U77		1	

	P61353	RL27		
	P61421	VA0D1		
	P61586	RHOA		
	P61604	CH10		
	P61764	STXB1		
	P61769	B2MG		
	P61978	HNRPK		
	P61981	1433G		
	P62070	RRAS2		
	P62136	PP1A		
	P62140	PP1B		
	P62195	PRS8		
	P62241	RS8		
	P62249	RS16		
	P62280	RS11		
	P62330	ARF6		
	P62333	PRS10		
	P62424	RI 7A		
	P62701	RS4X		
	P67775			
	P62820	RAB1A		
	P02820			
	P02029	CPP2		
	P02073			
	P02917			
	P02942			
	P63000	RACI		
	P63092	GNASZ		
	P63096	GNAIL		
	Q6IS14	IF5AL		
	P63244	RACK1		
	P67809	YBOX1		
	P68133	ACIS		
	P68366	TBA4A		
	Q8NEV1	CSK23		
	P78371	ТСРВ		
	P78417	GST01		
	P81605	DCD		
	P84095	RHOG		
	Q00325	MPCP		
	Q01518	CAP1		
	Q01628	IFM3		
	Q01813	РҒКАР		
	Q02790	FKBP4		
	Q02878	RL6		
	Q03135	CAV1		
	Q03405	UPAR		
	Q04760	LGUL		
	Q04917	1433F		
	Q05682	CALD1		
	Q06210	GFPT1		
	Q06323	PSME1		
	Q07020	RL18		
	Q07021	C1QBP		
	Q07065	CKAP4		
	Q08209	PP2BA		

		Q08722	CD47		
		Q09666	AHNK		
		Q10567	AP1B1		
		Q12765	SCRN1		
		Q12792	TWF1		
		Q12846	STX4		
		Q12959	DLG1		
		Q13098	CSN1		
		Q13131	AAPK1		
		Q13137	CACO2		
		Q13162	PRDX4		
		Q13200	PSMD2		
		Q13277	STX3		
		Q13308	РТК7		
		Q13347	EIF3I		
		Q13443	ADAM9		
		013501	SQSTM		
		Q13530	SERC3		
		013561	DCTN2		
		013637	RAB32		
		013683	ITA7		
		013740	CD166		
		013813	SPTN1		
		014019	COTL1		
		014103	HNRPD		
		014108	SCRB2		
		014152	FIE3A		
		014160	SCRIB		
		014247	SRC8		
		014254	FLOT2		
		014315	FLNC		
		014332	F7D2		
		014344	GNA13		
		014697	GANAB		
		014699	RFTN1		
		014847	LASP1		
		014974	IMB1		
		015019	37500		
		015036	SNX17		
		015043	\$39AF		
		015084	PDIA6		1
		015147	PI CB4		1
		015286	RAR35		1
		015293	RCN1		
		015365	PCBP1		
		015366	PCRP2		1
		015392			
		015631	TSN		1
<u> </u>		015691	MARF1		
		015758	ΔΔΔΤ		
		015833	5TXR2		
		015007			
		016181	20336		
		016222	35520 11AD1		
		016521			
		Q10331	DUBT	1	

	Q16555	DPYL2			
	Q16563	SYPL1			
	Q16643	DREB			
	Q16658	FSCN1			
	Q5VW32	BROX			
	Q5ZPR3	CD276			
	Q6DD88	ATLA3			
	Q6IAA8	LTOR1			
	Q6NZI2	CAVN1			
	Q6P9B6	TLDC1			
	Q6PIU2	NCEH1			
	Q6UVY6	MOXD1			
	Q6ZUX7	LHPL2			
	Q7KZF4	SND1			
	Q7L576	CYFP1			
	Q7Z5G4	GOGA7			
	Q86VP1	TAXB1			
	Q86VP6	CAND1			
	 Q8IV08	PLD3			
	Q8IWA5	CTL2			
	Q8N5I2	ARRD1			
	O8NBI5	S43A3			
	O8NBS9	TXND5			
	08NFJ5	RAI3			
	08NG11	TSN14			
	08TB61	\$35B2			
	08TCT9	HM13			
	08WUM4	PDC6I			
	08WV92	MITD1			
	08WWI5	CTI 1			
	092542	NICA			
	092598	H\$105			
	092692	NECT2			
	092930	RAB8B			
	093050	VPP1			
	0969P0	IGSE8			
	096AC1	FFRM2			
	096BI3	AIDA			
	096FN4	CPNF2			
	Q96FW1	OTUB1			
	096102	ITCH			
	Q96KP4	CNDP2			
	Q96P70	IPO9			
	Q96PD2	DCBD2			
	096008	S38A2			
	0960K1	VPS35			
	096RT1	FRBIN			
	Q96TA1	NIBI 1			
	099497	PARK7			
	099536	VAT1			
	099733	NP114			
	099805				
	 000808	ς29Δ1			
	 099000	T\$101			
	000200				
	C33023	CENT			
		Q99832	ТСРН		
----------	----------	-----------	----------	---	---
		Q9BR76	COR1B		
		Q9BSJ8	ESYT1		
		Q9BTU6	P4K2A		
		Q9BUF5	TBB6		
		Q9BVA1	TBB2B		
		Q9BWD1	THIC		
		Q9BX67	JAM3		
		Q9BZG1	RAB34		
		Q9BZQ8	NIBAN		
		Q9C0H2	TTYH3		
		Q9GZM7	TINAL		
		Q9H0U4	RAB1B		
		Q9H223	EHD4		
		Q9H444	CHM4B		
		Q9H4G4	GAPR1		
		Q9H4M9	EHD1		
		Q9NP72	RAB18		
		Q9NPH2	INO1		
		O9NRV9	HEBP1		
		O9NRX5	SERC1		
		O9NRY6	PLS3		
		09NS93	TM7S3		
		09NTK5	OLA1		
		O9NUM4	T106B		
		O9NUP9			
		09NU09	FA49B		
		O9NVA2	40787		
		09NVI2	ARI 8B		
		09NVM1	FVA1B		
		09NY33	DPP3		
		09NY35	CLDN1		
		09N7M1	MYOF		
		09N7N3	FHD3		
		09N7N4	FHD2		
		09P265	DIP2B		
		09P2B2	FPRP		
		091816	GBG12		
		O9UBV8	PFF1		
		09UGV2	NDRG3		
		0900002	40057		
		090406	CEIP2		1
		0911106			
		09U170	NAGK		
		090006	DBNI		
	<u> </u>	0911663	PARPA		1
	<u> </u>	0911856			1
		0911125	RAR21		1
<u> </u>		09111.1/4	COR1C		
		0911N137			
			ΡΔ2G4		
		000350	RI 11/R3		
		000262	FIE2I		
	l	Q91202	EIFSL	1	

Q9Y265	RUVB1	
Q9Y266	NUDC	
Q9Y281	COF2	
Q9Y2A7	NCKP1	
Q9Y376	CAB39	
Q9Y3L5	RAP2C	
Q9Y490	TLN1	
Q9Y4F1	FARP1	
Q9Y4K0	LOXL2	
Q9Y4L1	HYOU1	
Q9Y617	SERC	
Q9Y639	NPTN	
Q9Y696	CLIC4	
Q9Y6M5	ZNT1	

Annexe 2: Liste des protéines exclusives représentées dans les diagrammes de Venn correspondant à l'analyse des VEs de CHME3 générée à partir de l'analyse des fractions SEC.

Exclusive	es P2-EV+	Exclusiv	es P3-EV-	Common P2	-EV+ / P3-EV-
Uniprot ID	Gene symbol	Uniprot ID	Gene symbol	Uniprot ID	Gene symbol
Q9GZQ8	MAP1LC3B	O00391	QSOX1	O00560	SDCB1
Q99613	EIF3C	O00754	MAN2B1	O14818	PSA7
O00159	MY01C	014773	TPP1	O43707	ACTN4
O00186	STXBP3	O95445	APOM	O43854	EDIL3
O00231	PSMD11	095497	VNN1	O60701	UGDH
O00299	CLIC1	P00966	ASS1	Q99880	H2B1L
O00410	IPO5	P01024	C3	075083	WDR1
O00469	PLOD2	P01033	TIMP1	075874	IDHC
O14672	ADAM10	P02753	RBP4	P00338	LDHA
O14745	SLC9A3R1	P02794	FTH1	P00558	PGK1
O14786	NRP1	P05121	SERPINE1	P02452	CO1A1
O14828	SCAMP3	P07996	THBS1	P02649	APOE
O14908	GIPC1	P09486	SPARC	P02751	FINC
O15031	PLXNB2	POCOL4	C4A	P04075	ALDOA
O15067	PFAS	P11717	IGF2R	P04406	G3P
015118	NPC1	P12109	COL6A1	P06733	ENOA
015143	ARPC1B	P20742	PZP	P06737	PYGL
015144	ARPC2	P28070	PSMB4	P07195	LDHB
015162	PLSCR1	P35442	THBS2	P07339	CATD
O15400	STX7	Q04756	HGFAC	P07355	ANXA2
015427	SLC16A3	Q06828	FMOD	P07437	TBB5
O15484	CAPN5	Q12841	FSTL1	P07686	HEXB
O43175	PHGDH	Q12860	CNTN1	P07900	HS90A
O43242	PSMD3	Q15582	TGFBI	P08123	CO1A2
O43657	TSPAN6	Q6ZMU1	C3P1	P08238	HS90B
O43759	SYNGR1	Q92820	GGH	P08758	ANXA5
O43795	MYO1B	Q9UI42	CPA4	P08865	RSSA
O60443	GSDME			Q99878	H2A1J
O60488	ACSL4			P0DMV9	HS71B
O60493	SNX3			P11021	BIP
O60716	CTNND1			P11142	HSP7C
O60763	USO1			P11216	PYGB
075131	CPNE3			P12814	ACTN1
075340	PDCD6			P13639	EF2
075367	H2AFY			P14618	KPYM
075369	FLNB			P15531	NDKA
075390	CS			P18206	VINC
075396	SEC22B			P18669	PGAM1
075695	RP2			P20618	PSB1
075923	DYSF			P23526	SAHH
075955	FLOT1			P25786	PSA1
095084	PRSS23			P25788	PSA3
095297	MPZL1			P25789	PSA4
095373	IPO7			P26038	MOES
095782	AP2A1			P26641	EF1G
095819	MAP4K4			P28066	PSA5
O95865	DDAH2			P31946	1433B

P00367	GLUD1		P35579	MYH9
P00387	CYB5R3		P49327	FAS
P00491	PNP		P49720	PSB3
P00492	HPRT1		P51570	GALK1
P00505	GOT2		P53396	ACLY
P00533	EGFR		P55072	TERA
P01111	NRAS		P60174	TPIS
P01112	HRAS		P60842	IF4A1
P02786	TFRC		P60900	PSA6
P04080	CSTB		P84077	ARF1
P04083	ANXA1		P62258	1433E
P04216	THY1		P62805	H4
P04792	HSPB1		P62826	RAN
P04843	RPN1		P63104	1433Z
P04844	RPN2		P63261	ACTG
P04899	GNAI2		Q5VTE0	EF1A3
P05023	ATP1A1		P68363	TBA1B
P05026	ATP1B1		P68366	TBA4A
P05067	APP		P68371	TBB4B
P05106	ITGB3		P68431	H31
P05161	ISG15		Q00610	CLH1
P05198	EIF2S1		Q08380	LG3BP
P05362	ICAM1		Q08431	MFGM
P05388	RPLPO		Q14974	IMB1
P05556	ITGB1		Q86VP6	CAND1
P05783	KRT18			
P06744	GPI			
P06753	TPM3			
P06756	ITGAV			
P07237	P4HB			
P07384	CAPN1			
P07737	PFN1			
P07947	YES1			
P07954	FH			
P08133	ANXA6			
P08174	CD55			
P08183	ABCB1			
P08195	SLC3A2			
P08237	PFKM			
P08473	MME			
P08648	ITGA5			
P08670	VIM			
P08754	GNAI3			
P08962	CD63			
P09104	ENO2			
P09211	GSTP1			
P09382	LGALS1			
P09417	QDPR			
P09525	ANXA4			
P09543	CNP			
P09619	PDGFRB			
P09936	UCHL1			
P09972	ALDOC			
P62987	UBA52			
P10301	RRAS			
=		 	I	

P10644	PRKAR1A			
P10768	ESD			
P10809	HSPD1			
P11117	ACP2			
P11166	SLC2A1			
P11169	SLC2A3			
P11233	RALA			
P11234	RALB			
P11279	LAMP1			
P11413	G6PD			
P11586	MTHFD1			
P11766	ADH5			
P11940	PABPC1			
P12004	PCNA			
P12236	SLC25A6			
P12429	ANXA3			
P12955	PFPD			
P12956	XRCC6			
P13010	XRCC5			
P13473	LAMP2			
P13489	RNH1			
P13612	ITG44			
P13667	ΡΟΙΔ4			
P13693	TPT1			
P13797	PLS3			
P13798	ΔΡΕΗ			
P13987	CD59			
P14314	PRKCSH			
P1/32/	FDPS			
P1/625				
D1/969				
P14808				
P14923				
P15121				
D15151				
P15211	F VIX			
P15586	GNS			
P15880	PDC2			
P15000	CD44			
P161//				
P10144				
P16192				
P10105	COT1			
P17174				
P17012	ENG			
P17013				
D17097	TCD1			
D10107	DDI 7			
F 10124	Λ٣L/ ΛΤD2D1			
F 20020				
F200/3				
P20340	KABOA			
P20591				
P20045				
rzizŏi	AILOATR5	1	1	1

P21291	CSRP1		
P21333	FLNA		
P21399	ACO1		
P21589	NT5E		
P21796	VDAC1		
P21926	CD9		
P22234	PAICS		
P22314	UBA1		
P22392	NME2		
P23229	ITGA6		
P23284	PPIB		
P23381	WARS		
P23396	RPS3		
P23528	CFL1		
P23634	ATP2B4		
P24534	EEF1B2		
P25705	ATP5F1A		
P25787	PSMA2		
P26006	ITGA3		
P26232	CTNNA2		
P26373	RPL13		
P26639	TARS		
P26640	VARS		
P27105	STOM		
P27348	YWHAQ		
P27701	CD82		
P27708	CAD		
P27797	CALR		
P27824	CANX		
P28072	PSMB6		
P28074	PSMB5		
P28482	MAPK1		
P28838	LAP3		
P29144	TPP2		
P29317	EPHA2		
P29323	EPHB2		
P29401	ТКТ		
P29692	EEF1D		
P29728	OAS2		
P29966	MARCKS		
P29972	AQP1		
P29992	GNA11		
P30040	ERP29		
P30041	PRDX6		
P30044	PRDX5		
P30050	RPL12		
P30086	PEBP1		
P30101	PDIA3		
P30153	PPP2R1A		
P30453	HLA-A	 	
P30481	HLA-B		
P30530	AXL		
P30566	ADSL		
P30825	SLC7A1		
P31150	GDI1		

P31153	MAT2A		
P31939	ATIC		
P55795	HNRNPH2		
P31948	STIP1		
P32004	L1CAM		
P32119	PRDX2		
P33527	ABCC1		
P34932	HSPA4		
P35221	CTNNA1		
P35222	CTNNB1		
P35241	RDX		
P35613	BSG		
P35998	PSMC2		
P36578	RPI 4		
P36873	PPP1CC		
P37802	TAGEN2		
P37837	TALDO1		
P38606	ATP6V1A		
P38646	HSPAG		
P39023	RPI 3		
P39656			
P40121			
P40121			
P40227			
P40201			
P40925	MDH1		
P40926	MDH2		
P41091	EIF2S3		
P42224	SIAI1		
P42892	ECE1		
P43007	SLC1A4		
P43121	MCAM		
P43490	NAMPT		
P45880	VDAC2		
P46776	RPL27A		
P46777	RPL5		
P46781	RPS9		
P46821	MAP1B		
P46926	GNPDA1		
P46940	IQGAP1		
P46977	STT3A		
P47755	CAPZA2		
P47756	CAPZB		
P48449	LSS		
P48509	CD151		
P48637	GSS		
P48643	CCT5		
P49189	ALDH9A1		
P49368	CCT3		
P49411	TUFM		
P49419	ALDH7A1		
P49588	AARS		
P49591	SARS		
P49755	TMFD10		
P49915	GMPS		
P50148	GNAO	 	
	51010	1	

P50281	MMP14		
P50395	GDI2		
P50454	SERPINH1		
P50502	ST13		
P50990	CCT8		
P50991	CCT4		
P50995	ANXA11		
P51148	RAB5C		
P51149	RAB7A		
P51153	RAB13		
P51809	VAMP7		
P52209	PGD		
P52292	KPNA2		
P52565	ARHGDIA		
P52907	CAPZA1		
P53004	BLVRA		
P53621	COPA		
P53794	SI C5A3		
P53801	PTTG1IP		
P53085			
P53000	IST1		
P 33550			
P54130			
P54269			
P54709			
P54920			
P55060			
P55209			
P55290	CDH13		
P55786	NPEPPS		
P55884	EIF3B		
P56537	EIF6		
P57088	IMEM33		
P59998	ARPC4		
P60033	CD81		
P60228	EIF3E		
P60520	GABARAPL2		
P60660	MYL6		
P60866	RPS20		
P60891	PRPS1		
P60953	CDC42		
P60981	DSTN		
P61006	RAB8A		
P61019	RAB2A		
P61020	RAB5B		
P61026	RAB10		
P61088	UBE2N		
P61106	RAB14		
P61158	ACTR3		
P61160	ACTR2		
P61163	ACTR1A		
P61224	RAP1B		
P61353	RPL27		
P61421	ATP6V0D1		
P61586	RHOA		
P61604	HSPE1		

P61764	STXBP1		
P61769	B2M		
P61978	HNRNPK		
P61981	YWHAG		
P62070	RRAS2		
P62136	PPP1CA		
P62140	PPP1CB		
P62195	PSMC5		
P62241	RPS8		
P62249	RPS16		
P62280	RPS11		
P62330	ARF6		
P62333	PSMC6		
P62424	RPL7A		
P62701	RPS4X		
P67775	PPP2CA		
P62820	RAB1A		
P62829	RPL23		
P62873	GNB1		
P62879	GNB2		
P62917	RPL 8		
P62937	PPIA		
P62942	FKBP1A		
P63000			
P63092	GNAS		
P63096	GNAI		
061514			
D63244			
P67800			
P69122			
P70371			
P76417	03101		
P61005			
P84095	KHUG		
Q00325	SLC25A3		
Q01518	CAP1		
Q01628	IFIIM3		
Q01650	SLC/A5		
Q01813	РЕКР		
Q01995	TAGLN		
Q02790	FKBP4		
Q02878	RPL6		
Q03135	CAV1		
Q03405	PLAUR		
Q04760	GLO1		
Q04917	YWHAH		
Q05682	CALD1		
Q06210	GFPT1		
Q06323	PSME1		
Q06830	PRDX1		
Q07020	RPL18		
Q07021	C1QBP		
Q07065	CKAP4		
Q08209	PPP3CA		

008722	CD47		
009666	AHNAK		
010567	AP1B1		
012765	SCRN1		
012792	TWF1		
012846	STX4		
012959			
013098	GPS1		
013131			
013137			
013162			
013200			
013277	STX3		
013308			
013347	FIE3I		
0134/3			
013501	SOSTM1		
013530	SERINC3		
013561			
013637			
012692			
012740			
012912			
014010			
014019			
014105			
014108			
014152	EIFSA		
014247			
014247			
014234			
014313			
Q14332			
Q14344 014607	GNA13 CANAR		
014697			
Q14099			
Q14764			
Q14847	27500		
Q15019	37500 SNV17		
Q15036			
Q15043	SLC39A14		
Q15084	PDIA6		
Q15147			
Q15280			
Q15293			
Q15365	PCBP1		
Q15366			
Q15392			
015031			
Q15691			
Q15758	SLCIA5		
Q15833			
Q15907	KAB11B		
Q16181	39326		
Q16222	UAP1		
Q16531	DDB1		

Q16555	DPYSL2		
Q16563	SYPL1		
Q16643	DBN1		
Q16658	FSCN1		
Q5VW32	BROX		
Q5ZPR3	CD276		
Q6DD88	ATL3		
Q6IAA8	LAMTOR1		
Q6NZI2	CAVIN1		
Q6P9B6	MEAK7		
Q6PIU2	NCEH1		
Q6UVY6	MOXD1		
Q6ZUX7	LHFPL2		
Q7KZF4	SND1		
Q7L576	CYFIP1		
Q7Z5G4	GOLGA7		
Q86VP1	TAX1BP1		
Q8IV08	PLD3		
Q8IWA5	SLC44A2		
Q8N512	ARRDC1		
Q8NBI5	SLC43A3		
Q8NBS9	TXNDC5		
Q8NFJ5	GPRC5A		
Q8NG11	TSPAN14		
Q8TB61	SLC35B2		
Q8TCT9	HM13		
Q8WUM4	PDCD6IP		
Q8WV92	MITD1		
Q8WWI5	SLC44A1		
Q92542	NCSTN		
Q92598	HSPH1		
Q92692	NECTIN2		
Q92930	RAB8B		
Q93050	ATP6V0A1		
Q969P0	IGSF8		
Q96AC1	FERMT2		
Q96BJ3	AIDA		
Q96FN4	CPNE2		
Q96FW1	OTUB1		
Q96J02	ITCH		
Q96KP4	CNDP2		
Q96P70	IPO9		
Q96PD2	DCBLD2		
Q96QD8	SLC38A2		
Q96QK1	VPS35		
Q96RT1	ERBIN		
Q96TA1	FAM129B		
Q99497	PARK7		
Q99536	VAT1		
Q99733	NAP1L4		
Q99805	TM9SF2		
Q99808	SLC29A1		
Q99816	TSG101		
Q99829	CPNE1		
Q99832	CCT7		

Q9BR76	CORO1B	 	
Q9BSJ8	ESYT1	 	
Q9BTU6	PI4K2A	 	
Q9BUF5	TUBB6		
Q9BVA1	TUBB2B		
Q9BWD1	ACAT2		
Q9BX67	JAM3		
Q9BZG1	RAB34		
Q9BZQ8	FAM129A		
Q9C0H2	TTYH3		
Q9GZM7	TINAGL1		
Q9H0U4	RAB1B		
Q9H223	EHD4		
Q9H444	CHMP4B		
Q9H4G4	GLIPR2		
Q9H4M9	EHD1		
Q9NP72	RAB18		
Q9NPH2	ISYNA1		
Q9NQC3	RTN4		
Q9NRV9	HEBP1		
Q9NRX5	SERINC1		
Q9NRY6	PLSCR3		
Q9NS93	TM7SF3		
Q9NTK5	OLA1		
Q9NUM4	TMEM106B		
Q9NUP9	LIN7C		
Q9NUQ9	FAM49B		
Q9NVA2	40787		
Q9NVJ2	ARL8B		
Q9NVM1	EVA1B		
Q9NY33	DPP3		
Q9NY35	CLDND1		
Q9NZM1	MYOF		
Q9NZN3	EHD3		
Q9NZN4	EHD2		
Q9P265	DIP2B		
Q9P2B2	PTGFRN		
Q9UBI6	GNG12		
Q9UBV8	PEF1		
Q9UGV2	NDRG3		
Q9UHD8	40057		
Q9UHN6	CEMIP2		
Q9UIQ6	LNPEP		
Q9UJ70	NAGK		
Q9UJU6	DBNL		
Q9UKK3	PARP4		
Q9UKS6	PACSIN3	 	
Q9UL25	RAB21	 	
Q9ULV4	CORO1C	 	
Q9UN37	VPS4A	 	
Q9UNE7	STUB1	 	
Q9UNZ2	NSFL1C	 	
Q9UQ80	PA2G4	 	
Q9Y230	RUVBL2	 	
Q9Y262	EIF3L		

Q9Y265	RUVBL1		
Q9Y266	NUDC		
Q9Y281	CFL2		
Q9Y2A7	NCKAP1		
Q9Y376	CAB39		
Q9Y3L5	RAP2C		
Q9Y490	TLN1		
Q9Y4F1	FARP1		
Q9Y4K0	LOXL2		
Q9Y4L1	HYOU1		
Q9Y617	PSAT1		
Q9Y639	NPTN		

Annexe 3: Liste des protéines sur-représentées dans les heat-maps correspondant à l'analyse des VEs de CHME3 générée à partir de l'analyse des fractions P1-EV- et P2-EV+.

Proteins over-represented P2-		Proteins over-represented P2-		Proteins over-represented P1-	
EV+		E	V+	E	V-
Uniprot ID	Gene symbol	Uniprot ID	Gene symbol	Uniprot ID	Gene symbol
P68431	HIST1H3A	P51148	RAB5C	P14923	PLAK
P18085	ARF4	P04406	GAPDH		
P16189	HLA-A	P30101	PDIA3		
P02751	FN1	P61224	RAP1B		
P07900	HSP90AA1	P62873	GNB1		
P68363	TUBA1B	Q99880	HIST1H2BL		
P11021	HSPA5	Q01650	SLC7A5		
P04075	ALDOA	P23528	CFL1		
Q9NQC3	RTN4	P31946	YWHAB		
P07195	LDHB	P07737	PFN1		
P23526	AHCY	P63104	YWHAZ		
P05556	ITGB1	Q06830	PRDX1		
Q08431	MFGE8	P00338	LDHA		
Q5VTE0	EEF1A1P5	P12814	ACTN1		
Q08380	LGALS3BP	P07237	P4HB		
P06733	ENO1	Q14764	MVP		
P11142	HSPA8	P04083	ANXA1		
P05023	ATP1A1	P30481	HLA-B		
P68371	TUBB4B	P62987	UBA52		
075083	WDR1	P04899	GNAI2		
P29401	ткт	P43121	MCAM		
Q00610	CLTC	P14618	РКМ		
P08238	HSP90AB1	Q01995	TAGLN		
P35579	MYH9	O43854	EDIL3		
P08758	ANXA5	P63261	ACTG1		
P02786	TFRC	P07355	ANXA2		
043707	ACTN4	P26006	ITGA3		
P62937	ΡΡΙΑ	P08133	ANXA6		
P21333	FLNA	015427	SLC16A3		
P08195	SLC3A2	P13639	EEF2		
P51149	RAB7A	P60174	TPI1		
P26038	MSN	P60842	EIF4A1		
P0DMV9	HSPA1B	Q99878	HIST1H2AJ		
P62258	YWHAE	P62805	HIST4H4		
P09382	LGALS1	P62826	RAN		
		O00560	SDCBP		

Annexe 4 : Liste des protéines sur-représentées dans les heat-maps correspondant à l'analyse des VEs de CHME3 générée à partir de l'analyse des fractions P2-EV+ et P3-EV-.

Proteins over-represented P2- EV+		Proteins over-represented P2- EV+		Proteins over-represented P3- EV-	
Uniprot ID	Gene symbol	Uniprot ID	Gene symbol	Uniprot ID	Gene symbol
P25789	PSMA4	P18206	VCL	P08123	COL1A2
P28066	PSMA5	P23526	AHCY		
Q08380	LGALS3BP	Q99880	HIST1H2BL		
P02452	COL1A1	P07437	TUBB		
P49327	FASN	075874	IDH1		
P25788	PSMA3	Q00610	CLTC		
P02649	APOE	P35579	MYH9		
Q86VP6	CAND1	P07900	HSP90AA1		
P60900	PSMA6	P07195	LDHB		
060701	UGDH	P00558	PGK1		
P07339	CTSD	043707	ACTN4		
P68431	HIST1H3A	P68363	TUBA1B		
P26641	EEF1G	Q14974	KPNB1		
P06737	PYGL	P68371	TUBB4B		
P49720	PSMB3	P63261	ACTG1		
P60842	EIF4A1	P60174	TPI1		
P08238	HSP90AB1	P07355	ANXA2		
P55072	VCP	P00338	LDHA		
P53396	ACLY	Q08431	MFGE8		
P25786	PSMA1	P14618	РКМ		
P18669	PGAM1	Q99878	HIST1H2AJ		
P26038	MSN	P62258	YWHAE		
014818	PSMA7	P04406	GAPDH		
P15531	NME1	P63104	YWHAZ		
P12814	ACTN1	Q5VTE0	EEF1A1P5		
P20618	PSMB1	P62805	HIST1H4A		
P08865	RPSA	O43854	EDIL3		
075083	WDR1	P06733	ENO1		
P62826	RAN	P11142	HSPA8		
P31946	YWHAB	P08758	ANXA5		
P13639	EEF2	P04075	ALDOA		
P11021	HSPA5	O00560	SDCBP		
P0DMV9	HSPA1B				

Annexe 5: Listes des protéines communes entre P2-EV+ (CHME3) et la base de données Exocarta.

Uniprot ID	Gene Symbol	Uniprot ID	Gene Symbol
P22314	ACTN4	P63104	YWHAZ
P07355	ANXA2	P06733	ENO1
P63000	RAC1	Q04917	YWHAH
P13639	EEF2	P27105	STOM
P61981	YWHAG	Q9P2B2	PTGFRN
P26038	MSN	P17987	TCP1
P22314	UBA1	P13473	LAMP2
Q08431	MFGE8	P14618	РКМ
O00560	SDCBP	075955	FLOT1
P63092	GNAS	P00338	LDHA
P60174	TPI1	P48643	CCT5
P62258	YWHAE	P62820	RAB1A
P11021	HSPA5	P60953	CDC42
P27348	YWHAQ	P23229	ITGA6
P78371	CCT2	Q8WUM4	PDCD6IP
P35579	MYH9	P21926	CD9
P08962	CD63	P04406	GAPDH
Q9H223	EHD4	P62805	HIST1H4A
P61106	RAB14	P09525	ANXA4
P07195	LDHB	P62879	GNB2
Q99816	TSG101	P63261	ACTG1
P61020	RAB5B	P04075	ALDOA
P15311	EZR	O00299	CLIC1
P08238	HSP90AB1	P53985	SLC16A1
P49368	CCT3	Q00610	CLTC
P60033	CD81	P08758	ANXA5
P61586	RHOA	P62826	RAN
P11142	HSPA8	P50995	ANXA11
P23526	AHCY	P35613	BSG
P50395	GDI2	P07900	HSP90AA1
P68363	TUBA1B	P31946	YWHAB
P32119	PRDX2	P61006	RAB8A

Annexe 6: Droits d'auteur des images

Figure 1

JOHN WILEY AND SONS LICENSE TERMS AND CONDITIONS

Jul 03, 2019

This Agreement between Université de Lille -- Quentin Lemaire ("You") and John Wiley and Sons ("John Wiley and Sons") consists of your license details and the terms and conditions provided by John Wiley and Sons and Copyright Clearance Center.

License Number	4621401224080
License date	Jul 03, 2019
Licensed Content Publisher	John Wiley and Sons
Licensed Content Publication	GLIA
Licensed Content Title	Microglia heterogeneity along a spatio-temporal axis: More questions than answers
Licensed Content Author	Aymeric Silvin, Florent Ginhoux
Licensed Content Date	Aug 25, 2018
Licensed Content Volume	66
Licensed Content Issue	10
Licensed Content Pages	22
Type of use	Dissertation/Thesis
Requestor type	University/Academic
Format	Electronic
Portion	Figure/table
Number of figures/tables	1
Original Wiley figure/table number(s)	Figure 1
Will you be translating?	No
Title of your thesis / dissertation	Étude des microARNs dans les vésicules extracellulaires microgliales : signatures et neuroprotection
Expected completion date	Sep 2019
Expected size (number of pages)	200
Requestor Location	Univeristé de Lille 42 rue paul duez
	Lille, 590000 France Attn: Univeristé de Lille
Publisher Tax ID	EU826007151
Total	0.00 EUR

Figure 2 à 6

SPRINGER NATURE LICENSE TERMS AND CONDITIONS

Jul 03, 2019

This Agreement between Université de Lille -- Quentin Lemaire ("You") and Springer Nature ("Springer Nature") consists of your license details and the terms and conditions provided by Springer Nature and Copyright Clearance Center.

License Number	4621410410120
License date	Jul 03, 2019
Licensed Content Publisher	Springer Nature
Licensed Content Publication	Nature Reviews Immunology
Licensed Content Title	Microglia and macrophages in brain homeostasis and disease
Licensed Content Author	Qingyun Li, Ben A. Barres
Licensed Content Date	Nov 20, 2017
Licensed Content Volume	18
Licensed Content Issue	4
Type of Use	Thesis/Dissertation
Requestor type	academic/university or research institute
Format	electronic
Portion	figures/tables/illustrations
Number of figures/tables/illustrations	2
High-res required	no
Will you be translating?	no
Circulation/distribution	<501
Author of this Springer Nature content	no
Title	Étude des microARNs dans les vésicules extracellulaires microgliales : signatures et neuroprotection
Institution name	n/a
Expected presentation date	Sep 2019
Portions	Figure 2 and figure 3
Requestor Location	Univeristé de Lille 42 rue paul duez
	Lille, 590000 France Attn: Univeristé de Lille
Total	0.00 USD
Terms and Conditions	·

Figure 7

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Figure 8-9

JOHN WILEY AND SONS LICENSE TERMS AND CONDITIONS

Jul 12, 2019

This Agreement between Université de Lille -- Quentin Lemaire ("You") and John Wiley and Sons ("John Wiley and Sons") consists of your license details and the terms and conditions provided by John Wiley and Sons and Copyright Clearance Center.

License Number	4626510062085
License date	Jul 12, 2019
Licensed Content Publisher	John Wiley and Sons
Licensed Content Publication	Developmental Neurobiology
Licensed Content Title	Microglia of medicinal leech (Hirudo medicinalis) express a specific activation marker homologous to vertebrate ionized calcium-binding adapter molecule 1 (Iba1/alias aif-1)
Licensed Content Author	Francesco Drago, Pierre-Eric Sautière, Françoise Marrec-Croq, et al
Licensed Content Date	Apr 22, 2014
Licensed Content Volume	74
Licensed Content Issue	10
Licensed Content Pages	15
Type of use	Dissertation/Thesis
Requestor type	University/Academic
Format	Print and electronic
Portion	Figure/table
Number of figures/tables	2
Original Wiley figure/table number(s)	Figure 1 and Figure 5
Will you be translating?	No
Title of your thesis / dissertation	Étude des microARNs dans les vésicules extracellulaires microgliales : signatures et neuroprotection
Expected completion date	Sep 2019
Expected size (number of pages)	200
Requestor Location	Univeristé de Lille 42 rue paul duez
	Lille, 590000 France Attn: Univeristé de Lille
Publisher Tax ID	EU826007151
Total	0.00 EUR
Terms and Conditions	

Figure 10

JOHN WILEY AND SONS LICENSE TERMS AND CONDITIONS

Jul 03, 2019

This Agreement between Université de Lille -- Quentin Lemaire ("You") and John Wiley and Sons ("John Wiley and Sons") consists of your license details and the terms and conditions provided by John Wiley and Sons and Copyright Clearance Center.

License Number	4621411174918
License date	Jul 03, 2019
Licensed Content Publisher	John Wiley and Sons
Licensed Content Publication	Journal of Comparative Neurology
Licensed Content Title	Reduced axon sprouting after treatment that diminishes microglia accumulation at lesions in the leech CNS
Licensed Content Author	Emmanuel Mbaku Ngu, Christie L. Sahley, Kenneth J. Muller
Licensed Content Date	May 4, 2007
Licensed Content Volume	503
Licensed Content Issue	1
Licensed Content Pages	9
Type of use	Dissertation/Thesis
Requestor type	University/Academic
Format	Print and electronic
Portion	Figure/table
Number of figures/tables	3
Original Wiley figure/table number(s)	Figure 4, figure 5 and figure 7
Will you be translating?	No
Title of your thesis / dissertation	Étude des microARNs dans les vésicules extracellulaires microgliales : signatures et neuroprotection
Expected completion date	Sep 2019
Expected size (number of pages)	200
Requestor Location	Univeristé de Lille 42 rue paul duez
	Lille, 590000 France Attn: Univeristé de Lille
Publisher Tax ID	EU826007151
Total	0.00 EUR

Figure 11 à 13

SPRINGER NATURE LICENSE TERMS AND CONDITIONS		
	Jul 03, 2019	
This Agreement between U Nature ("Springer Nature") provided by Springer Natur	niveristé de Lille Quentin Lemaire ("You") and Springer consists of your license details and the terms and conditions re and Copyright Clearance Center.	
License Number	4621420155093	
License date	Jul 03, 2019	
Licensed Content Publisher	Springer Nature	
Licensed Content Publication	Nature Reviews Molecular Cell Biology	
Licensed Content Title	Shedding light on the cell biology of extracellular vesicles	
Licensed Content Author	Guillaume van Niel, Gisela D'Angelo, Graça Raposo	
Licensed Content Date	Jan 17, 2018	
Licensed Content Volume	19	
Licensed Content Issue	4	
Type of Use	Thesis/Dissertation	
Requestor type	academic/university or research institute	
Format	print and electronic	
Portion	figures/tables/illustrations	
Number of figures/tables/illustrations	2	
High-res required	no	
Will you be translating?	no	
Circulation/distribution	<501	
Author of this Springer Nature content	no	
Title	Étude des microARNs dans les vésicules extracellulaires microgliales : signatures et neuroprotection	
Institution name	n/a	
Expected presentation date	Sep 2019	
Portions	Figure 1 et figure 2	
Requestor Location	Univeristé de Lille 42 rue paul duez	
	Lille, 590000 France Attn: Univeristé de Lille	
Total	0.00 EUR	

Figure 14:

Journal of Extracellular Vesicles 2014. © 2014 Laura Ann Mulcahy et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License (http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Figure 16 :

SPRINGER NATURE LICENSE TERMS AND CONDITIONS		
	Jul 03, 2019	
This Agreement between U Nature ("Springer Nature") provided by Springer Natur	niveristé de Lille Quentin Lemaire ("You") and Springer consists of your license details and the terms and conditions re and Copyright Clearance Center.	
License Number	4621420850381	
License date	Jul 03, 2019	
Licensed Content Publisher	Springer Nature	
Licensed Content Publication	Nature Reviews Molecular Cell Biology	
Licensed Content Title	Regulation of microRNA function in animals	
Licensed Content Author	Luca F. R. Gebert et al	
Licensed Content Date	Aug 14, 2018	
Type of Use	Thesis/Dissertation	
Requestor type	academic/university or research institute	
Format	print and electronic	
Portion	figures/tables/illustrations	
Number of figures/tables/illustrations	1	
High-res required	no	
Will you be translating?	no	
Circulation/distribution	<501	
Author of this Springer Nature content	no	
Title	Étude des microARNs dans les vésicules extracellulaires microgliales : signatures et neuroprotection	
Institution name	n/a	
Expected presentation date	Sep 2019	
Portions	Image in the box 1	
Requestor Location	Univeristé de Lille 42 rue paul duez	
	Lille, 590000 France Attn: Univeristé de Lille	
Total	0.00 EUR	

Figure 17:

OXFORD UNIVERSITY PRESS LICENSE TERMS AND CONDITIONS

Jul 03, 2019

This Agreement between Université de Lille -- Quentin Lemaire ("You") and Oxford University Press ("Oxford University Press") consists of your license details and the terms and conditions provided by Oxford University Press and Copyright Clearance Center.

License Number	4621421051155
License date	Jul 03, 2019
Licensed content publisher	Oxford University Press
Licensed content publication	Nucleic Acids Research
Licensed content title	Deep sequencing of small RNAs identifies canonical and non- canonical miRNA and endogenous siRNAs in mammalian somatic tissues
Licensed content author	Castellano, Leandro; Stebbing, Justin
Licensed content date	Jan 15, 2013
Type of Use	Thesis/Dissertation
Institution name	
Title of your work	Étude des microARNs dans les vésicules extracellulaires microgliales : signatures et neuroprotection
Publisher of your work	n/a
Expected publication date	Sep 2019
Permissions cost	0.00 EUR
Value added tax	0.00 EUR
Total	0.00 EUR
Title	Étude des microARNs dans les vésicules extracellulaires microgliales : signatures et neuroprotection
Institution name	n/a
Expected presentation date	Sep 2019
Portions	Figure 1
Requestor Location	Univeristé de Lille 42 rue paul duez
	Lille, 590000 France Attn: Univeristé de Lille
Publisher Tax ID	GB125506730
Total	0.00 EUR

Figure 18:

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

Figure 26:

ELSEVIER LICENSE TERMS AND CONDITIONS

Jul 12, 2019

This Agreement between Université de Lille -- Quentin Lemaire ("You") and Elsevier ("Elsevier") consists of your license details and the terms and conditions provided by Elsevier and Copyright Clearance Center.

License Number	4626500084415
License date	Jul 12, 2019
Licensed Content Publisher	Elsevier
Licensed Content Publication	Biomaterials
Licensed Content Title	In situ single step detection of exosome microRNA using molecular beacon
Licensed Content Author	Ji Hye Lee,Jeong Ah Kim,Min Hee Kwon,Ji Yoon Kang,Won Jong Rhee
Licensed Content Date	Jun 1, 2015
Licensed Content Volume	54
Licensed Content Issue	n/a
Licensed Content Pages	10
Start Page	116
End Page	125
Type of Use	reuse in a thesis/dissertation
Portion	figures/tables/illustrations
Number of figures/tables/illustrations	1
Format	both print and electronic
Are you the author of this Elsevier article?	No
Will you be translating?	No
Original figure numbers	Figure 1
Title of your thesis/dissertation	Étude des microARNs dans les vésicules extracellulaires microgliales : signatures et neuroprotection
Expected completion date	Sep 2019
Estimated size (number of pages)	200
Requestor Location	Univeristé de Lille 42 rue paul duez
	Lille, 590000 France Attn: Univeristé de Lille
Publisher Tax ID	GB 494 6272 12
Total	0.00 EUR

Annexe 7: Portfolio des formations doctorales

Nom / Prénom: LEMAIRE / Quentin ED : ED BSL Université : LILLE Doctorant en 3 année

Inscriptions déjà prises :

	statut de l'inscription	Crédits
18TH EURON RESEARCH & STUDENT DAYS, Présentation d'un poster et une communication orale. <u>session</u> : 13 et 14 Octobre 2016	Définitivement validée	6/ 6 6 / 0
Formations méthodologiques et interdisciplinaires	statut de l'inscription	Crédits
L'éthique et l'intégrité scientifique session : Conférence 20/10/2016 à 17h00	Définitivement validée	2/ 2
	statut de l'inscription	Crédits
Journées Scientifique 2016 de la Plateforme en Biologie-Santé Protéomique et Spectrométrie de Masse de l'Université de Lille <u>session</u> : 9 Novembre 2016	Définitivement validée	2/ 2 2 / 0
	statut de l'inscription	Crédits
Ecole de Printemps de la Société Française de Spectrométrie de Masse <u>session</u> : 20 au 24 Mars 2017	Définitivement validée	8/ 8 8 / 8
Formations spécifiques à l'ED BSL	statut de l'inscription	Crédits
Conference on theLegal & Ethical Challenges of Precision Medicine - Pr. D. Chalmers session : Has the biobank bubble burst? A Translational and Transnational Challenge - 13 juin 2017 - Faculté de Médecine	Définitivement validée	3/ 3
Formations spécifiques à l'ED BSL	statut de l'inscription	Crédits
Atelier BioAddoct : Publication : construire pour durer (Dr. Charabidze) session : le mercredi 14 juin 2017 - 18h00 - Salle EUREKA	Définitivement validée	2/ 2

21st Annual Meeting of the LARC-Neuroscience network, présentation d'un poster lors de cette journée session : 13 Octobre 2017	Définitivement validée	3/ 3 3 / 3
	statut de l'inscription	Crédits
19TH EURON RESEARCH & STUDENT DAYS, Présentation d'un poster et une communication orale. <u>session</u> : 25 et 26 Octobre 2017	Définitivement validée	6/ 6 6 / 6
	statut de l'inscription	Crédits
Congrès FSEV 2017 (Présentation d'un Poster) session : 6 et 7 Novembre 2017	Définitivement validée	5/ 5 5 / 5
	statut de l'inscription	Crédits
EMBO Workshop Microglia 2018 et présentation d'un poster <u>session</u> : 18 Mars 2018 - 21 Mars 2018.	Définitivement validée	7/ 7 7 / 7
	statut de l'inscription	Crédits
Annual Meeting ISEV2018 - Présentation d'une conférence orale session : 2 - 6 Mai 2018	Définitivement validée	11/ 11 11 / 11
	statut de l'inscription	Crédits
Journée André Verbert session : 13 Septembre 2018	Définitivement validée	1/ 1 1 / 1
	statut de l'inscription	Crédits
MOOC - Intégrité scientifique dans les métiers de la recherche session : 3 Janvier 2019 - 6 Février 2019	Définitivement validée	6/ 6 6 / 6

TOTAL : 62 / 60

Annexe 8: Matériels et méthodes utilisés dans les perspectives de la partie III.

Cultures des lignées cellulaires microgliales BV2 et CHME3

La lignée cellulaire BV2 est issue de la transformation de cellules microgliales de souris avec un rétrovirus recombinant. La lignée est cultivée dans un flask T75 cm² (Sartsted, Nümbrecht, Allemagne) avec du milieu composé de RMPI, 10% de sérum de veau fœtal sans exosomes (SBI System Bioscience, CA Palo Alto, USA), L-glutamine (2mM) et 100 UI/ mL de pénicilline, de 100 µg/ml de streptomycine. Une fois les cellules arrivées à confluence, deux rinçages au PBS (Phosphate Buffer Saline) (Thermo Fisher Scientific, Waltham MA, USA) sont effectués, puis les cellules sont détachées à l'aide de trypsine-EDTA 0,25 % (Thermo Fisher Scientific, Waltham MA, USA) pendant 2 min à 37°C, centrifugées à 1000g, comptées en cellules de Malassez et sont ensuite transférées dans un nouveau flask T75 cm² (Sartsted, Nümbrecht, Allemagne) à une quantité finale de 1 million de cellule dans le flask.

La lignée cellulaire CHME3 est issue de l'immortalisation avec un virus d'une culture primaire de microglie dérivée du cerveau fœtal. La lignée est cultivée dans un flask T75 cm² (Sartsted, Nümbrecht, Allemagne) avec du milieu composé de DMEM, 10% de sérum de veau fœtal sans exosomes (SBI System Bioscience, CA Palo Alto, USA), L-glutamine (2mM), de Hepes (10 mM), 100 UI/ mL de pénicilline et de 100 µg/ml de streptomycine. Une fois les cellules arrivées à confluence, deux rinçages au PBS (Thermo Fisher Scientific, Waltham MA, USA) sont effectués, puis les cellules sont détachées à l'aide de trypsine-EDTA 0,25 % (Thermo Fisher Scientific, Waltham MA, USA) pendant 2 min à 37°C, centrifugées à 1200g, comptées en cellules de Malassez et sont ensuite transférées dans un flask T75 cm² (Sartsted, Nümbrecht, Allemagne) à une quantité finale de 1 million de cellules dans un flask T75 cm² (Sartsted, Nümbrecht, Allemagne).

Étude de l'effet des VEs sur la croissance neuritique

Les neurones primaires de rat ont été préparés comme décrit dans la **publication 5** et placés dans une plaque de culture LabTek 8 puits (Nunc, Thermo Fisher Scientific, Waltham MA, USA) à une concentration de 50 000 cellules/puits. A DIV 3, sont ajoutés à la culture de neurones 10⁶ VEs microgliales (BV2 ou CHME3) par puit. Après 48h de culture, les cellules sont fixées

avec du PFA à 4% pendant 20 min. Après 3 lavages avec du PBS, les cellules sont incubées avec de la phalloïdine couplé à la tétraméthylrhodamine B pendant 30 min à 4°C pour évaluer la longueur des neurites. Après 3 lavages avec du PBS, les noyaux sont colorés avec du Hoechst 33342 (1/10 000) pendant 20 min à température ambiante. Enfin, après 3 lavages au PBS, les chambres de cultures sont enlevées et du milieu de montage Dako Fluorescent (Agilent, Santa-Clara, CA,USA) et une lamelle sont ajoutés. Les lames sont maintenues dans l'obscurité jusqu'à l'acquisition des images. Les analyses ont été effectuées à l'aide d'un microscope Zeiss Axiovert 200 M avec un objectif à immersion dans l'huile à ouverture numérique de 63 x 1,4. La longueur des neurites a été mesurée automatiquement par le logiciel NeuriteTracer dans ImageJ.

Résumé

Étude des microARNs dans les vésicules extracellulaires microgliales : signatures et neuroprotection

Dans le Système Nerveux Central (SNC), les cellules gliales influencent les activités neuronales. Les cellules microgliales, cellules immunitaires résidentes du SNC, contrôlent grandement l'état neuroinflammatoire. Ce contrôle est particulièrement important dans les fonctions physiologiques et s'avère souvent défectueux dans les neuropathologies. Les cellules microgliales sont en relation avec le microenvironnement cérébral et communiquent avec les autres types cellulaires (astrocytes, oligodendrocytes et neurones) afin de contrôler l'état neuroinflammatoire. Parmi les différents modes de communication intercellulaire au sein du SNC, les vésicules extracellulaires (VEs) interviennent largement dans les processus physiologiques (développement, homéostasie...) et pathologiques (maladies neurodégénératives...). C'est pourquoi, ce mode de communication a été étudié dans le dialogue entre la microglie et les neurones chez la sangsue Hirudo medicinalis. Cet annélide est un modèle intéressant de neurobiologie grâce à la structure linéaire de son système nerveux et à l'organisation de ses types cellulaires. Il permet l'étude du dialogue entre les cellules microgliales et les neurones au niveau d'une lésion expérimentale. Dans un premier temps, les résultats ont montré que les cellules microgliales interagissent avec les neurones lors d'une lésion du SNC et que des VEs sont libérées au niveau de cette lésion. De plus, les cellules microgliales produisent des VEs qui interagissent avec les neurones et délivrent un effet neurotrophique in vitro sur des neurones de sangsue et de rat. Dans un deuxième temps, la complexité des composés vésiculaires ainsi que des impératifs d'efficacité liés aux méthodes d'isolement nous ont conduits à développer l'analyse protéomique non ciblée et à grande échelle afin de valider les fractions positives en VEs mais aussi identifier leurs signatures protéiques biologiquement actives. Dans une dernière partie, nous nous sommes intéressés aux microARNs (miARNs) contenus dans les VEs microgliales. Les résultats ont permis l'identification de 6 miARNs dans les VEs microgliales, dont un seul, miR-146a, est décrit à ce jour dans le SNC chez les mammifères. Dans un contexte de dialogue neuroprotecteur entre VEs microgliales et neurones, les analyses neuronales ont prédit des ARNm potentiellement régulés par les miARNs contenus dans les VEs. Ces 6 miARNs ont également été identifiés dans les VEs issues de microglie de souris, de rat et humaine. Dans leur ensemble, les résultats montrent que les cellules microgliales chez la sangsue produisent des VEs, ayant un effet neurotrophique sur les neurones, y compris des neurones de rat. L'identification des molécules présentes dans ces VEs (protéines et miARNs) a permis de soulever des perspectives sur les mécanismes neuroprotecteurs supportant ce dialogue microglie-neurone qu'il sera intéressant d'examiner chez les mammifères dans un contexte de lésion nerveuse.

Mots clés : Microglie, Vésicules extracellulaires, miARNs, Sangsue Hirudo medicinalis, Neuroprotection.

Summary

Study of microRNAs in microglial extracellular vesicles: signatures and neuroprotection

In the Central Nervous System (CNS), the glial cells influence neuronal activities. The microglial cells, resident immune cells of the CNS, greatly control the neuroinflammatory state. This control is particularly important in physiological functions and is often defective in neuropathologies. The microglial cell activities depend on the brain microenvironment and they communicate with other cell types (astrocytes, oligodendrocytes and neurons) to control the neuroinflammatory state. Among the different mechanisms of intercellular communication within the CNS, extracellular vesicles (EVs) play a major role in physiological processes (development, homeostasis, etc.) and pathological processes (neurodegenerative diseases, etc.). Therefore, this mode of communication was studied in the dialogue between microglia and neurons in the leech Hirudo medicinalis. This annelid is an interesting model of neurobiology thanks to the linear structure of its nervous system and the organization of its cell types. It allows the study of the dialogue between microglial cells and neurons at the level of an experimental lesion. At first, the results showed that microglial cells interact with neurons during CNS injury and that EVs are released at the level of this lesion. In addition, microglial cells produce EVs that interact with neurons and deliver a neurotrophic effect in vitro on leech and rat neurons. In a second step, the complexity of the vesicular compounds as well as efficiency requirements related to the isolation methods led us to develop the non-targeted proteomic analysis on a large scale in order to validate the positive EV fractions but also to identify their biologically active protein signatures. In a last part, we were interested in the microRNAs (miRNAs) contained in microglial EVs. The results allowed the identification of 6 miRNAs in microglial EVs, of which only one, miR-146a, is described to date in the mammalian CNS. In a context of neuroprotective dialogue between microglial EVs and neurons, the analysis of neuronal protein signatures predicted mRNAs potentially regulated by miRNAs contained in EVs. These 6 miRNAs were also identified in EVs derived from mouse, rat and human microglia. Overall, the results show that microglial cells in the leech produce EVs, exerting a neurotrophic effect on neurons, including rat neurons. The identification of the molecules present in these microglial EVs (proteins and miRNAs) made it possible to raise perspectives on the neuroprotective mechanisms supporting this microglia-neuron dialogue that will be interesting to examine in mammals in a context of nerve injury.

Keywords: Microglia, Extracellular vesicles, miRNAs, Leech Hirudo medicinalis, Neuroprotection.