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ABSTRACT 

Obesity is a common, complex condition that poses serious health problems world-

wide. It is also a known critical risk factor for some non-communicable diseases includ-

ing cancers. Different anthropometric measures such as body mass index (BMI) and 

waist-to-hip ratio (WHR) have been used to assess obesity. The latter is an index for 

central or abdominal obesity while the former represents total or overall obesity. Epi-

demiological studies provide evidence that central and overall obesity measures may 

relate to cancer risk differently. The exact physiological mechanisms that enable the 

obesity and cancer co-morbidity remain unclear. However, certain factors such as in-

sulin-like growth factors, hyperglycaemia, dysregulated lipid profile and adipokine fac-

tors have been hypothesised. Genome-wide association studies (GWAS) have identi-

fied numerous common genetic variations for obesity and cancer phenotypes. How-

ever, these variations provide only modest clues as to the underlying comorbidity. Nev-

ertheless, output from GWAS can be applied to statistical methods such as polygenic 

scores and Mendelian randomization that aid in the unravelling of shared determinants. 

In this PhD project, I assessed the impact of overall and central obesity on the risk of 

cancers including overall breast, post-menopausal breast, prostate, colorectal, lung 

and pancreatic cancers. I defined the genetic correlation between BMI/WHRadjBMI 

and cancers using the UK Biobank dataset. I then used established BMI and 

WHRadjBMI genome-wide loci to create obesity polygenic scores which were then 

tested for association with cancer phenotypes in the UK biobank. Further, using estab-

lished genetic variants associated with these phenotypes, I performed MR between 

the two obesity phenotypes and three cancers (breast, prostate and colorectal) to in-

vestigate the causal relationships between them.  
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RÉSUMÉ 

L'obésité est une affection courante et complexe qui pose de graves problèmes de 

santé dans le monde entier. Elle est également un facteur de risque critique connu 

pour certaines maladies non transmissibles, dont les cancers. Différentes mesures 

anthropométriques telles que l'indice de masse corporelle (IMC) et le rapport taille-

hanche (RTH) ont été utilisées pour évaluer l'obésité. Ce dernier est un indice de 

l'obésité centrale ou abdominale, tandis que le premier représente l'obésité totale ou 

globale. Des études épidémiologiques fournissent des preuves que les mesures de 

l'obésité centrale et de l'obésité globale peuvent avoir un rapport différent avec le 

risque de cancer. Les mécanismes physiologiques exacts qui permettent la 

comorbidité entre l'obésité et le cancer restent flous. Cependant, certains facteurs tels 

que les facteurs de croissance analogues à l'insuline, l'hyperglycémie, la dérégulation 

du profil lipidique et les facteurs adipokines ont fait l'objet d'hypothèses. Les études 

d'association pangénomique (GWAS) ont identifié de nombreuses variations 

génétiques communes pour les phénotypes de l'obésité et du cancer. Cependant, ces 

variations ne fournissent que de modestes indices sur la comorbidité sous-jacente. 

Néanmoins, les résultats des études d'association pangénomique peuvent être 

appliqués à des méthodes statistiques telles que les scores polygéniques et la 

randomisation Mendélienne (MR) qui aident à démêler les déterminants communs. 

Dans ce projet de doctorat, j'ai évalué l'impact de l'obésité globale et centrale sur le 

risque de cancers, notamment le cancer du sein, le cancer du sein post-

ménopausique, le cancer de la prostate, le cancer colorectal, le cancer du poumon et 

le cancer du pancréas. J'ai défini la corrélation génétique entre l'IMC/l’RTH et les 

cancers en utilisant l'ensemble des données de la UK Biobank. J'ai ensuite utilisé des 

loci génomiques établis pour l'IMC et l’RTH afin de créer des scores polygéniques 
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d'obésité dont l'association avec les phénotypes de cancer a ensuite été testée dans 

la UK Biobank. En outre, à l'aide de variantes génétiques établies associées à ces 

phénotypes, j'ai effectué une MR entre les deux phénotypes d'obésité et trois cancers 

(sein, prostate et colorectal) afin d'étudier les relations causales entre eux. 



9 

 

ABBREVIATIONS 

AGE – Advanced Glycation End products 

BCAC – Breast Cancer Association Consortium 

BMI – Body Mass Index 

CPRD – Clinical Practice Research Datalink 

GIANT – Genetic Investigation of ANthropometric Traits 

GLUT1 – Glucose Transporter 1 

GLUT4 – Glucose Transporter 4 

GWAS – Genome-Wide Association Studies 

HDL – High Density Lipoprotein 

IGF-IIR – Insulin-like Growth Factor 2 Receptor 

IGF-IR – Insulin-like Growth Factor 1 Receptor 

IGFBP – Insulin-like Growth Factor Binding Proteins 

IR – Insulin Receptor 

LDL – Low Density Lipoprotein 

LDSC – Linkage Disequilibrium Score 

MAF – Minor Allele Frequency 

MR – Mendelian randomization 

ObR – Leptin Receptor 

PGS – Polygenic Score 



10 

 

RAGE – Receptor for Advance Glycation End products 

SNP – Single Nucleotide Polymorphism 

T2D – Type 2 Diabetes 

UKBB – UK Biobank 

WC – Waist Circumference 

WHR – Waist-to-Hip Ratio 

WHRadjBMI – BMI adjusted WHR  



11 

 

1. INTRODUCTION 

 

1.1 Obesity and cancer 

 

Overweight and obesity are common and complex conditions defined by excessive fat 

accumulation in adipose tissue that pose a threat to health. 

Globally, obesity continues to become a health concern affecting not just developing 

countries, but also in low- and middle-income countries. Worldwide, an estimated 13% 

of adults in 2016 were obese and furthermore, 2.8 million deaths yearly are attributed 

to being overweight and obese1. Additionally, excess body weight has been 

established as a risk factor for several non-communicable diseases including cancers1. 

Cancer refers to a disease characterised by abnormal and uncontrolled cell growth that 

has potential of spreading to other parts of the body. According to a recent international 

cancer research study, the top five common cancer types in the world are female 

breast, lung, colorectal and prostate cancers2. An estimated 19.3 million new cancer 

cases were reported in 2020 with this number projected to exceed 28 million by 20402. 

Moreover, cancer is the second leading cause of mortality worldwide, after 

cardiovascular disease, with nearly 10 million deaths attributed to cancer as of 20203. 

 

1.2 Measures of obesity 

Since its development in the mid-1800s, the body mass index (BMI) is the most 

common anthropometric measure use in clinical and research settings to indirectly 

assess adiposity. It is computed by dividing someone’s weight in kilograms by the 

square of their height in meters (kg/m2). Based on the World Health Organization 
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(WHO) guidelines, BMI is used to define four main weight categories1. Specifically, 

normal healthy weight includes BMI between 18.5 and 24.9 kg/m2, while BMI less than 

18.5 kg/m2 is considered underweight. Individuals with BMI greater than or equal to 25 

kg/m2, but below 30 kg/m2 are considered overweight. BMI greater than or equal to 30 

kg/m2 defines the obese category. 

Despite being a routine measure of adiposity, BMI falls short of being a perfect 

measure for several reasons. For instance, BMI may not accurately define obesity 

since it does not distinguish between lean and fat mass4. Additionally, individuals who 

may be metabolically unhealthy can be classified in the normal weight category5. 

Adipose tissue distribution, which is a significant risk factor in type 2 diabetes (T2D), 

cardiovascular disease, and cancer, is also not captured using BMI. Therefore, other 

anthropometric measures that assess adipose tissue distribution and improve clinical 

evaluation of metabolic health have been developed including waist circumference 

(WC) and the waist-to-hip (WHR) ratio (unitless measure). WHR is defined by dividing 

someone’s WC, measured in cm, to their hip circumference, in cm. According to the 

WHO, a healthy WHR is 0.8 or lower for women and 0.95 or lower for men6. A WHR 

of 0.86 and greater is considered a high health risk for women, while for men, a WHR 

equal to or greater than 1.0 poses high health risk6. 

While BMI is considered an index for overall/total adiposity, WC and WHR assess 

central/abdominal/visceral adiposity. Central adiposity correlates to insulin resistance, 

dyslipidaemia, hypertension which comprise the metabolic syndrome7–9. It thus follows 

that overall and central adiposity measures may relate to disease risk/prevalence 

differently, with cancer being the disease of interest for my research. 
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1.3 Epidemiological associations 

The relationship between cancer and obesity has been a growing topic of research 

over the last three decades. In fact, recent global estimates on obesity and cancer risk 

have indicated that among adults aged 30 and above, approximately 3.6% of all new 

cancer cases can be linked to high BMI10. 

From multiple studies examining the relationship between body weight and cancer 

incidence and mortality, it appears that the link between the two is gender-, site-, age- 

and menopause status-specific11–13. 

For instance, in large prospective study among 900,053 cancer-free adults (404,576 

men and 495,477 women) at baseline in the United States of America (USA), the 

authors defined the relationship between obesity and cancer mortality following a 16-

years follow-up period11. More specifically, they tested for epidemiological association 

between overweight and obesity (measured using BMI) and the risk of death caused 

by overall cancer at cancer-specific sites in the body, highlighting the following. 1) For 

both men and women with BMI > 40 kg/m2, the overall mortality due to all cancers was 

52% and 62% higher, respectively, than their counterparts of normal BMI range (23 

kg/m2 – 29 kg/m2)11. 2) Additionally, high BMI was associated with a higher risk of death 

due to cancer of the colon, rectum, liver, oesophagus, gall bladder, kidney and 

pancreas in both men and women11. 3) The association between high BMI and cancer 

mortality was gender specific for specific cancer types11. For men with a BMI higher 

than 35 kg/m2, the authors observed an increased risk of death due to cancers of the 

prostate and stomach, compared to men within normal BMI range. Similarly, women 

with BMI higher than 40 kg/m2 had significant risk of death due to cancers of the ovary, 

cervix, uterus, and breast. Overall, this study demonstrated, by leveraging on large 
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scale data, that overweight and obesity was associated with greater risk of death from 

all cancers in both men and women. 

While the study above focused on the relationship between obesity and the risk of 

death by cancer, others have assessed the relationship between obesity and cancer 

incidence12,13. 

In a landmark systematic review and meta-analysis of prospective observational 

studies, Renehan et al. evaluated the relationship between incremental increase in 

BMI and the risk of cancer incidence for both men and women12. In total, they analysed 

data from 141 articles spanning 221 datasets comprising 282,137 incident cancer 

cases (154,333 men and 127,804 women). They reported that for every 5 kg/m2 

increase in BMI among men, there was significant increase in risk of cancers of the 

colon, rectum, thyroid, kidney as well as oesophageal adenocarcinoma, non-Hodgkin’s 

lymphoma, and leukaemia12. In contrast, they report a significant decrease incidence 

of lung cancer and squamous cell carcinoma of the oesophagus associated with every 

5 kg/m2 BMI increase12. In women, similar BMI increments were associated with 

increased incidence of endometrial, renal, thyroid, post-menopausal breast, pancreatic 

and colon cancers as well as oesophageal adenocarcinoma and leukaemia12. Increase 

in BMI was however associated with a decreased risk of lung and premenopausal 

breast cancers and squamous cell carcinoma of the oesophagus. Additionally, the 

authors highlighted several points based on their analyses. 1) For post-menopausal 

breast cancer, the direct association observed with increased BMI was consistent in 

studies that included post-menopausal women only and those that included both pre- 

and post-menopausal breast cancer12. 2) The association between increased BMI and 

cancer differed between the sexes for some cancers12. For instance, in colon cancer, 

the associations with increased BMI were stronger in men than in women. However, 
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for rectal cancer, the associations with increased BMI were stronger in women than 

men. The association with increased BMI and pancreatic cancer appeared similar in 

both men and women12. 3) Despite the association between increased BMI and most 

cancers being consistent across different populations, for some cancer sites the risk 

estimates varied from one population to the other12. Case in point, the authors show 

that despite North America, European and Australian populations having an inverse 

association between increased BMI and premenopausal cancer, in Asia-Pacific 

populations the association was positive12. 

Finally, in a more recent study based on routinely collected primary care records, the 

authors investigated the relationship between BMI and site-specific cancers in the 

United Kingdom (UK)13. The UK Clinical Practice Research Datalink (CPRD) captures 

a wide range of computerised primary care data from general practitioners in the UK. 

Data available in the CPRD include hospital admissions and referrals, primary and 

secondary diagnosis, information regarding lifestyle factors (e.g., smoking status) and 

body measurements such as height and BMI. In this cohort study, the authors present 

results for 22 cancers among 5.24 million individuals with BMI data and highlight 

several findings. 1) Higher BMI was associated with an increased risk of uterine, 

gallbladder, kidney, cervical, thyroid, liver, colon, ovarian, post-menopausal breast 

cancers, and leukaemia while inverse associations were shown between high BMI and 

lung, oral cavity, premenopausal breast and prostate cancers13. 2) For colon and liver 

cancers, the associations with BMI were stronger in men than women13. 3) There was 

a positive association between BMI and both pre- and post-menopausal breast 

cancers at BMI levels less than 22 kg/m2.  However, above this BMI cut-off, the risk of 

premenopausal breast reduces13. 4) A similar pattern was seen for prostate cancer in 

men where the risk associated with BMI peaked at 24 kg/m2, after which the risk of 
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prostate cancer reduces markedly13. 5) Low BMI was associated with higher risk for 

lung, oral cavity, and stomach cancers but only among current and former smokers13. 

 

1.3.1 Limitations of observational studies 

Despite their usefulness in highlighting the associations between obesity and cancer, 

several limitations of epidemiological studies need to be considered. 

Results from epidemiological studies often suffer from bias and confounding by factors 

that are either inaccurately or completely accounted for in the study design. A classic 

confounder that has emerged in almost all studies is smoking. Several studies have 

reported the inverse association between BMI and lung, oral cavity and stomach 

cancers11–14. This association, however, only holds among current and former 

smokers, and is not seen in those who have no history of smoking. Moreover, similar 

apparent confounding by smoking has been reported in oesophageal cancer12. High 

BMI is shown to be associated with higher risk of oesophageal adenocarcinoma but is 

inversely associated with squamous cell carcinoma of the oesophagus which is more 

associated with smoking. Indeed, it has been shown that for the same sex and age, 

smokers tend to have lower BMI than their non-smoking counterparts15. Therefore, the 

interpretation of such observational findings, as well as the study design, needs careful 

consideration of such factors. 

Epidemiological studies assessing the relationship between obesity and cancer have 

focused mostly on overall obesity. As such, there are far fewer studies assessing the 

relationship between measures of central/abdominal obesity and cancers such as WC 

and WHR. BMI is shown to be an imperfect measure of obesity and it follows that other 

anthropometric measures such as those assessing central adiposity need addressing. 
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In fact, for some cancers such as of the prostate, central obesity appears to be a better 

predictor of cancer risk than overall BMI16,17. Additionally, central obesity and other 

components of the metabolic syndrome have been shown to be elevate the risk of 

pancreatic, colon and breast cancers18–20. More studies are therefore needed to 

quantify the relationship between central obesity and cancers. 

 
 

1.4 Mechanisms linking obesity and cancer 

Several mechanisms have been suggested to play a role in the manifestation of the 

obesity-cancer co-morbidity. 

 

Figure 1. Mechanisms linking obesity and cancer. The liver, adipose and muscle tissues play 

a role in the link between obesity and cancer. The mechanisms involved include insulin and 

insulin-like growth factors, hyperglycaemia, dyslipidaemia and adipokines. 

(Source: Adapted from Gallagher and LeRoith. Physiological Reviews (2015) 95(3) 727-748) 
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1.4.1 Insulin and insulin-like growth factors 

The insulin-like growth factor system comprises of the insulin receptor (IR), insulin-like 

growth factor 1 and 2 receptors (IGF-IR/IGF-IIR) and their ligands: insulin, IGF-I, IGF-

II and insulin-like growth factor binding proteins (IGFBP)21. Circulating 

hyperinsulinemia, leading to insulin resistance has been associated with an increase 

in cancer22,23. Overexpression of IGF-IR has been shown in breast, colorectal, liver 

and prostate cancers24 with a loss of tumour suppressor genes BRCA1, p53 and PTEN 

potentially driving the increased cancer risk25,26. Hyperinsulinemia driven by IR 

overexpression on tumour cells may also lead to tumour growth and progression in 

breast, colon, lung and prostate cancers21,23. The IR has two isoforms: IR-A and IR-B. 

IR-A lacks exon 11 of the IR gene and is mainly expressed in cancer cells increasing 

their affinity for IGF-II and insulin, providing a possible link between the cancer-

promoting effects of hyperinsulinemia seen in individuals with obesity21. Dysregulated 

signalling in tumour cells often leads to differential expression of splice factors (e.g., 

SRSF3) which leads to increased IR-A/IR-B ratio responsible for the effects of 

hyperinsulinemia on tumour development21,27. C-peptide levels, a more stable marker 

of insulin secretion, have been associated with increased incidences of breast and 

colorectal cancer28,29 but have not been associated with prostate cancer30–32. 

 

 

1.4.2 Hyperglycaemia 

Cancer cells preferentially use glycolysis for energy production over oxidative 

phosphorylation; a hallmark of cancer cells33. Metabolic tissues (skeletal and adipose) 

use the glucose transporter 4 (GLUT4) to take up glucose into their cells. However, 
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most cancer cells use the GLUT1 with increased affinity for glucose34. This promotes 

aerobic glycolysis in those cells which provides the precursors needed for lipid, amino 

acid and nucleotide synthesis33. Increase in HbA1c levels, a marker for circulating 

glucose levels, has been associated with a higher risk for breast and colorectal cancer 

but no correlation has been observed with prostate cancer35. Circulating 

hyperglycaemia also leads to production of advanced glycation end products (AGEs) 

and their receptors (RAGEs)36. AGEs are formed when sugars such as glucose non-

enzymatically react with the free amino groups on proteins, lipids, and nucleic acids36. 

Individuals with obesity and T2D have higher levels of AGEs and RAGEs. Oxidative 

stress and inflammation which arise from the interaction of RAGEs and their ligands 

lead to promoter tumour growth, angiogenesis, and metastases37. 

 

 

1.4.3 Dyslipidaemia 

Obesity is characterised by elevated levels of low-density lipoprotein (LDL) – 

cholesterol and low levels of high-density lipoprotein (HDL) – cholesterol. Elevated 

levels of total cholesterol, triacylglycerides (TAGs) and low levels of HDL-cholesterol 

have been associated with up to 20% increase in cancer risk38. In addition, 

polymorphisms in genes associated with hyperlipidaemia (APOE, APOA-1) have been 

associated with an increased breast cancer risk39. Cholesterol plays a chief role in 

cancer growth and progression through increased PI3K/AKT signalling as shown in 

vitro in breast, colon and prostate cancer cell lines which leads to increased cell 

proliferation40–42. Cholesterol is also a precursor for progesterone, oestrogen, and 

androgen. Studies have shown that human prostate cancers are able to synthesise 

their own androgens, including testosterone, from cholesterol43,44. 
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1.4.4 Adipokines 

Adipose tissue factors (adipokines), inflammatory cytokines and enzymes produced by 

adipose tissue are abnormally regulated in obesity and T2D promoting tumour growth 

and metastases. The adipose tissue presents a vital organ in tumour development and 

progression in many organs as it not only surrounds many organs (e.g. heart, kidney) 

but is also abundant in organs where cancer develops, such as breast. The adipose 

tissue provides a local environment that enables cancer cells proliferation. Various 

adipokines and cytokines are relevant to cancer including leptin, adiponectin, resistin, 

TNF-α and interleukin 6 (IL-6)45–49. Leptin is a pro-inflammatory adipokine that is a 

regulator of appetite50 that binds the leptin receptor (ObR). Higher ObR expression is 

observed in breast tumours51 and is associated with poor prognosis. Binding of the 

ObR by leptin activates key intracellular pathways that promote tumour growth and 

metastases. These pathways include those involved in cell growth and survival 

(PI3K/AKt, cyclin D1), inflammation response (NF-κβ, COX-2), angiogenesis (STAT4, 

VEGF) and differentiation (Notch, Wn)46,51–54. Adiponectin (an anti-inflammatory 

adipokine) plasma protein levels have been shown to be low in individuals who are 

obese and is associated with increased cancer risk47,55. The protective role of 

adiponectin signalling in cancer progression is mediated through phosphorylation of 

the AMPK which antagonises leptin signalling55. Resistin is another pro-inflammatory 

adipokine associated with insulin resistance and is elevated in obesity and T2D. 

Resistin mediates the effects of insulin resistance (described in hyperglycaemia above) 

by activating the suppressor of cytokine signalling 3 (SOCS3) that interferes with 

insulin signalling48. Resistin is highly expressed in prostate cancer and promotes its 
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proliferation via the P13K/AKt signalling pathways56. TNF-α and IL-6 are pro-

inflammatory cytokines that are overexpressed in obesity. The pro-inflammatory 

environment created by such cytokines promotes insulin resistance by blocking 

adipocyte insulin action49. The ensuing insulin resistance can promote tumour 

development as illustrated earlier. Inflammatory cytokines also promote cancer 

development via activation of NFκβ and Stat3 signalling pathways involved in 

angiogenesis giving the cancer cells metastatic properties57. 

 

1.5 Genome-wide association studies 

Genome-wide association studies (GWAS) are instrumental in dissecting the 

associations between common genetic variation (single nucleotide polymorphisms 

[SNPs] with a minor allele frequency [MAF] > 5%) and diseases or traits of interest. 

GWAS help unravel specific positions on a chromosome where a particular DNA 

variant or other genetic marker associated with a disease or trait is located. The 

identification of these positions on a chromosome, referred to as loci (singular locus), 

has enabled the successful elucidation of the genetic architecture of complex traits and 

diseases (https://www.ebi.ac.uk/gwas/). Since the first hallmark GWAS was conducted 

in the early 2000s58, there have been significant advances in GWAS. Notably, there 

has been an increase in the study sample sizes involved and the number of common 

SNPs amenable for association analysis. Equally, the downstream application of 

GWAS output has seen remarkable improvements. 
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1.5.1 GWAS of obesity phenotypes 

The largest-to-date GWAS of obesity phenotypes have been realised in-part through 

the Genetic Investigation of Anthropometric Traits (GIANT) consortium (GIANT 

consortium - Giant Consortium (broadinstitute.org)). 

1.5.1.1 BMI GWAS 

In the most recent and largest GWAS of BMI to-date59, the authors meta-analysed 

previous GWAS of BMI by GIANT consortium60 and UK biobank (UKBB) BMI GWAS. 

Altogether, there were 681,275 participants in this meta-analysis. Leveraging on this 

sample size, there were 670 genome-wide significant loci (P<5X10-8) associated with 

BMI (Figure 1). The proportion of phenotypic variance in BMI attributable to common 

SNPs (SNP heritability was 22.4% (standard error (SE)=0.037). 

 

 

 

Figure 2. Manhattan plot of BMI GWAS meta-analysis performed by GIANT consortium 

(Source: Yengo et al. Human Molecular Genetics (2018) 27:20) 
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1.5.1.2 WHR/WHRadjBMI GWAS 

Similarly, as with BMI GWAS, the largest WHR and BMI adjusted WHR (WHRadjBMI) 

GWAS was a meta-analysis performed by the GIANT consortium61. They meta-

analysed studies included previous WHR/WHRadjBMI GWAS62 and UKBB GWAS on 

WHR/WHRadjBMI. In total, there were 697,734 and 694,649 study participants in the 

meta-analysis for WHR and WHRadjBMI respectively. There were 316 and 346 

genome-wide significant loci associated with WHR and WHRadjBMI respectively 

(Figure 2). The SNP heritability of WHR and WHRadjBMI was 19.4% (SE=0.002) and 

17.4% (0.002) respectively. 

 

Figure 3. Manhattan plot of WHR and WHRadjBMI GWAS meta-analysis conducted by 
GIANT consortium 

(Source: Pulit et al. Human Molecular Genetics (2019) 28:1) 
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1.5.2 Cancer GWAS 

In the same way as with obesity GWAS, concerted efforts through working groups and 

consortia led to the discovery of common genetic variation associated with different 

cancers. 

1.5.2.1 Breast cancer 

According to the WHO, the most common cancer in the word in terms of new cases 

was breast cancer63. The most recent and largest GWAS of breast cancer was 

achieved through a meta-analysis of 82 breast cancer studies across 20 countries 

under the Breast Cancer Association Consortium (BCAC)64. The total sample size in 

the meta-analyses included 133,384 cases and 113,789 controls (N=247,173) of 

European ancestry. This meta-analysis brought the total number of genome-wide 

significant loci associated with breast cancer to 201. 

1.5.2.2 Prostate cancer 

Prostate cancer is the most common cancers among men. The largest GWAS to date 

of prostate cancer is a meta-analysis composed of 52 studies65. In total, there were 

79,148 cases and 61,106 controls (N=140,254) of European ancestry. From this effort, 

the resultant number of genome-wide significant loci for prostate cancer was 248. 

1.5.2.3 Colorectal cancer 

Recent global data on cancer suggest that colorectal cancer is the second leading 

cause of cancer deaths. The most recent GWAS of colorectal cancer comprises a 

meta-analysis of 16 studies66. This study had 34,627 cases and 71,379 (N=106,006) 

controls of European ancestry. Currently, there are 137 genome-wide significant loci 

associated with colorectal cancer. 
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1.5.2.4 Pancreatic cancer 

Pancreatic cancer is a leading cause of cancer-related mortality worldwide. In fact, in 

America, it ranks third after lung and colon cancers in terms of cancer-related deaths. 

The largest GWAS of pancreatic cancer comprises of 9,040 cases and 12,946 controls 

(N=21,536) of European ancestry67. The two consortia involved in this meta-analysis 

were the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer 

Case-Control Consortium (PanC4). Currently, there are 22 genome-wide significant 

loci for pancreatic cancer. 

1.5.2.5 Lung cancer 

Globally, lung cancer ranks first among the leading cause of cancer-related deaths63. 

The largest GWAS to date of lung cancer included 27,065 study participants of 

European ancestry (14,803 cases and 12,262 controls)68. This meta-analysis identified 

18 susceptibility loci associated with lung cancer. 

 

Table 1. Summary of the cancer GWAS studies to date 

Cancer Cases Controls Total Number of 

associated 

Loci 

PubMed ID 

Breast 133,384 113,789 247,173 201 32424353 

Prostate 79,148 61,106 140,254 248 29892016 

Colorectal 34,627 71,379 106,006 137 31089142 

Pancreatic 9,040 12,946 21,536 22 29422604 

Lung 14,803 12,262 27,065 18 28604730 

Legend: loci=number of genome-wide significant loci 
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1.5.3 Limitations of GWAS 

GWAS have been pivotal in broadening our understanding of complex diseases over 

the last decade. However, several limitations have hampered the utility of GWAS in 

understanding the pathophysiology underlying most complex, polygenic phenotypes. 

GWAS study design focuses mostly on SNP of common allele frequency (MAF>5%). 

The majority of common SNPs tend to have moderate to small effects sizes on a 

phenotype. 

 

 

Figure 4. Graph highlighting the relationship between effect size estimates and the minor allele 
frequency 

(Source: Roten et al. BMC Pregnancy and Childbirth (2015) 15:319) 

 

Consequently, individual associations from typical GWAS often have modest effect 

sizes, while attaining to the strict significance thresholds set up for multiple testing 
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correction. The proportion of phenotypic variance explained by genetic factors is 

referred to as heritability69,70. Narrow-sense (h2) and broad sense (H2) heritability, 

usually defined from pedigree studies, refer to the phenotypic variance explained by 

additive and total (additive and non-additive) genetic effects respectively69,70. SNP 

heritability (h2
SNP) on the other hand refers to the proportion of variance explained by 

genome-wide significant loci from GWAS71. 

Since the advent of GWAS, there has emerged the so-called “issue of missing 

heritability”, where h2
SNP estimates are usually much less than h2 estimates71,72. One 

explanation suggested to account for the “missing heritability” is the lack of coverage 

of rare and low-frequency variation in genotyping arrays, as seen in most GWAS of the 

past decade60,62,73. Other explanations proposed include the existence of gene-by-

gene, or gene-by-environment interactions71–73. 

The results from individual GWAS studies offer little in elucidating potential shared 

pathophysiology between related phenotypes. For any two related phenotypes, such 

as obesity and cancer, their individual GWAS results provide association results 

independent of each other. The genetic correlation and/or heritabilities between such 

traits is not taken into consideration in typical GWAS pipelines. However, there are 

methods that have been developed to jointly analyse phenotypes in GWAS74–76 and 

are described in Section 1.5.4.3. 
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1.5.4 Application of GWAS outputs 

The above-mentioned limitations notwithstanding, output from GWAS can be 

incorporated in downstream analyses that enhance the utility of GWAS. 

 

1.5.4.1 Polygenic (risk) scores (PGS) 

 

Figure 5. Polygenic scores analyses overview 

(Source: Choi et al. Nature Protocols (2020) 15 :2759-2772) 
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As highlighted previously, GWAS identified numerous genetic variations associated 

with complex, polygenic phenotypes. However, independently these variants have 

modest effect sizes thus limiting their utility in predictive analyses. Statistical genetics 

methods such as polygenic scores (PGS, continuous phenotypes) or polygenic risk 

scores (PRS, binary phenotypes) have been developed to combine the effects of 

multiple variants across the genome to improve their predictive power77,78. 

A polygenic score (PGS) refers to the weighted sum of (genome-wide) risk variants 

associated with a particular phenotype. The variants are weighted by their effect sizes 

and are derived from the most informative GWAS, usually the largest. Summary 

statistics from GWAS (effect sizes and their p-values), through which the PGS are 

based on, constitute what is referred to as the base data. On the other hand, target 

data refers to the genotype-phenotype data for the individuals used to calculate the 

PGS. It is important to ensure that the base and target data are independent with no 

sample overlap. The independence of datasets reduces the inflation of the association 

between the PRS and phenotypes of interest. At the same time, the predictive ability 

of PGS also depends on the ancestral similarity between base and target datasets79. 

Both the base and target data must undergo further quality control steps78. The base 

pair positions in both base and target data should be from the same genome build. 

Additionally, strand ambiguous SNPs which cannot be resolved using allele 

frequencies, and duplicated SNPs should be excluded from the analysis. Strand-

flipping of mismatching alleles between the base and target data is performed as part 

of most PGS software pipelines. Otherwise, unresolved mismatching SNPs should be 

excluded from the analyses. 

PGS calculation can be done using various platforms including Plink80 and dedicated 

PRS software such as LDpred81 and PRSice-282. Once constructed, PGS can be used 
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to test for association with phenotypes of interest, disease status prediction among 

other uses77,78. 

 

 

1.5.4.2 Mendelian randomization 

 

 

Figure 6. Mendelian randomization framework and assumptions. G represents the genetic 
variants (SNPs), X is the exposure, Y is the outcome, and U represents confounders. Ɣ is the 
SNP-exposure association. β is the causal effect estimate of the exposure on the outcome. 

(Source: Adapted from Bowden and Holmes. Research Synthesis Methods (2019) 10(4)486-
496) 

 

Another application of GWAS output has been in Mendelian randomization (MR) 

studies. Genetic variants associated with the exposure constitute the “instrument”; their 

distribution in the populations is random, given the random nature of inheritance 

patterns and fixation of alleles at the point of conception. In MR analyses, genetic 

variants (typically SNPs from GWAS) are used as instrumental variables83 (IVs) (G) to 

assess the causal relationship between a risk factor (exposure, X) and a health 

outcome of interest Y (Figure 5)84. 

Three core IV assumptions exist (Figure 5)84,85: 
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1. G should be associated with the exposure. 

2. G should be independent of confounders of the exposure-outcome association 

3. G is associated with the outcome only through the exposure 

In most MR studies, the relationship between an exposure and an outcome, plus the 

reverse is investigated. This gives rise to bi-directional MR studies. Leveraging on 

GWAS summary statistics of both the exposure and the outcome, researchers are able 

to perform two-sample bi-directional MR through software such as the TwoSampleMR 

R package86. 

In a recent MR study, the authors investigated the relationship between two obesity 

related traits (BMI and WHR) and breast, colorectal, ovarian, prostate and lung 

cancers87. They used cancer GWAS summary statistics from the Genetic Associations 

and Mechanisms in Oncology (GAME-ON) Consortium which constituted 51,537 cases 

and 61,600 controls across the cancers analysed. 77 and 14 SNPs of BMI and WHR 

respectively derived from published GWAS60,88 were used as instrument variables in 

the one-sample MR study. They reported a statistically significant inverse relationship 

between BMI and both overall and oestrogen-receptor (ER)- negative breast cancer. 

Additionally, BMI was causal for ovarian, lung and colorectal cancers. WHR MR tests 

were not significant for any cancer tests. However, there were an inverse association 

between WHR and overall breast cancer that was marginally outside significance 

threshold. The reverse direction, cancers to obesity phenotypes, was however not 

investigated. Given the limited number of instrument variables for BMI and WHR, as 

well as the cancer sample sizes, the statistical power was limited in this analysis. 

Therefore, larger sample sizes and more instrument variables would boost the findings 

of such analysis. 
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1.5.4.3 Multi-phenotype GWAS 

Conventional GWAS analyse diseases and phenotypes independently. Therefore, the 

association results from standard GWAS offer little in explaining underlying genetic 

determinants between related traits. 

By jointly taking into account information from related traits, multi-phenotype GWAS 

approaches help improve the power for loci discovery, improve the accuracy of effect 

size estimates and provide potential indicators of multi-phenotype effects such as 

pleiotropy. Several tools exist to perform multi-phenotype analyses of GWAS using 

either individual level or summary level data74–76. GWAS summary statistics of related 

traits can thus be jointly analysed to unravel underlying genetic co-morbid 

determinants. 

 

1.5.4.4 Genetic correlation 

The proportion of phenotypic variance between two phenotypes that is attributable to 

genetic causes is referred to their genetic correlation (rG). Genetic correlation estimates 

range from 0 to 1 with 0 signifying no genetic correlation and 1 suggesting complete 

genetic correlation. 

Tools such as the linkage disequilibrium score (LDSC) regression tool have enabled 

the efficient computation of genetic correlation estimates between phenotypes89 using 

GWAS summary statistics. Genetic correlation between phenotypes may be the result 

of linkage disequilibrium, biological pleiotropy or underlying confounding90. 
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2 PROBLEM STATEMENT 

There is growing evidence from observational studies of the link between obesity and 

risk of cancer incidence and mortality. Several mechanisms that potentially contribute 

to the emergence of the two diseases have over the years been postulated. However, 

our understanding of the co-morbidity remains limited. 

As sample sizes in GWAS increase, numerous SNPs have been identified for both 

obesity and cancer phenotypes. However, individually these GWAS contribute 

modestly to explaining the shared genetic determinants between obesity and cancer. 

Various tools that leverage on GWAS output have been developed including PGS and 

MR. However, existing studies have been limited in statistical power due to limited 

number of published variants and low sample sizes at the time these studies were 

conducted. 

As most GWAS studies make their summary statistics publicly available, and the 

emergence of large biobanks such as the UK biobank, researchers can design more 

powerful studies leveraging on improved statistical power. 
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3 HYPOTHESIS AND AIMS 

We hypothesize that there are shared genetic determinants between obesity and 

cancer that can be elucidated using polygenic scores and Mendelian randomization 

analyses applied to large scale genetic data. 

The present project includes the following aims: 

1. To define the genetic correlation between overall (BMI) and central 

(WHRadjBMI) obesity and cancers in the UK Biobank resource. These cancers 

included overall and post-menopausal breast, prostate, colorectal, pancreatic 

and lung cancers 

2. To construct BMI and WHRadjBMI polygenic scores from the largest GWAS of 

these phenotypes and test for their association with the above-mentioned 

cancers defined in the UK Biobank 

3. To assess the causal relationships between the two obesity phenotypes (BMI 

and WHRadjBMI) and breast, prostate, pancreatic and colorectal cancers to 

perform a two-sample bi-directional Mendelian randomization approach 
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4 FIRST ARTICLE 

“Abdominal obesity is a more important causal risk factor for pancreatic cancer than 

overall obesity” 

(Brief communication article: Accepted by the European Journal of Human Genetics) 
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4.1 Supplementary data 
 

Pancreatic cancer definition in UKBB 

Pancreatic cancer in UKBB was defined using a combination of the tenth revision of 

the International Classification of Disease (ICD-10) codes and self-report data. Addi-

tionally, hospital admissions data, recently made available to researchers by UKBB, 

were used to supplement the number of cases. Individuals with an ICD-10 code (C25) 

and those who self-reported to have a pancreatic cancer diagnosis (code 1026) were 

set as cases. In total, there were 629 cases and 458,987 controls of European ancestry 

for pancreatic cancers after exclusions (Supplementary Figure 1). 1,340 European 

pancreatic cancer cases were defined from hospital admissions data (ICD-10 code 

C25). 544 of these cases were shared with the 629 cases defined using ICD-10 and 

self-report data only. 85 cases (self-reported) from the 629 cases defined earlier were 

added to the 1340 hospital admissions cases. 796 controls which had case status in 

the hospital admissions data were excluded from controls. In total, after all exclusions 

were applied, there were 1,416 cases and 455,854 controls of European ancestry for 

pancreatic cancer (Supplementary Figure 1). 

 

Type 2 diabetes definition in UKBB 

To determine the role of type 2 diabetes (T2D) in the relationship between obesity and 

pancreatic cancer, we sought to first define the genetic correlation between T2D and 

pancreatic cancer. Secondly, we included T2D as an additional covariate in our poly-

genic scores (PGS) analyses. A T2D case in UKBB was defined if a participant self-

reported a diabetes diagnosis made by a doctor, were on insulin medication one-year 

post-diagnosis and were at least 40 years old by the time the diagnosis was made. 
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T2D controls included individuals who did not meet the case criterion. From both cases 

and controls, we excluded individuals with gestational diabetes (UKBB field 4041, 

code=1), individuals on insulin medication within the first year of diagnosis (UKBB field 

2986) and individuals who were younger than 40 years old at the time of diagnosis 

(UKBB field 2976). In total, we had 19,344 cases and 463,641 controls of European 

ancestry. 

 

Genetic correlation estimation in UKBB 

We used the LDSC regression tool89 to estimate the genetic correlation between BMI, 

WHRadjBMI and pancreatic cancer in UKBB. UKBB GWAS summary statistics were 

filtered based on the following parameters: imputation score > 0.9, minor allele 

frequency (MAF) > 0.01 and 0.1 ≥ P-value > 0. Strand ambiguous, duplicated SNPs 

and variants that did not represent SNPs (e.g., indels) were removed. The Bonferroni 

corrected significance threshold to determine significant genetic correlation estimates 

was set as P<0.025 (0.05/2, the number of genetic correlation tests done in our 

analyses; one for BMI and one for WHRadjBMI). Nominal significance threshold was 

set at 0.05 ≥ P > 0.025. 

 

Table 2. Genetic correlation between adiposity measures, type 2 diabetes and pancreatic 

cancer in UKBB 

Legend: rG(SE)=genetic correlation estimate and the standard error, Z score=rG/SE  

 BMI WHRadjBMI Type 2 diabetes 

Cancer 

rG 

(SE) 
Z 

score P 

rG 

(SE) 
Z 

score P 

rG 

(SE) 

Z 

Score P 

Pancreatic 0.472 

(0.667) 

0.708 0.479 0.098 

(0.230) 

0.425 0.671 -0.0139 

(0.287) 

-0.0484 0.961 
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Polygenic score analyses 

The SNP lists for BMI and WHRadjBMI were obtained from GIANT consortium’s meta-

analyses59,61. The meta-analyses included previous GIANT studies60,62 and UKBB. 

Since we used the UKBB as the target data (testing cohort for our PGS), we use the 

weights from the studies that did not include UKBB in the meta-analyses. The workflow 

for PGS analyses is shown in Figure 7. 

 

 

Figure 7. (A) BMI and (B) WHRadjBMI polygenic score analyses pipeline. A two-sample 

approach was used to construct our PGS base data. The SNPs used for the PGS were from 

GIANT’s latest BMI and WHRadjBMI meta-analyses. Since the meta-analyses comprised of 

the UK Biobank (our target data), we used weights from the non-UK Biobank study in GIANT’s 

meta-analyses. 
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Mendelian randomization (MR) 

We assessed the causal relationships between BMI, WHRadjBMI and pancreatic 

cancer using bi-directional MR. The TwoSampleMR R package86 was used for this 

analysis. We tested the effect of obesity (BMI and WHRadjBMI) as an exposure for 

pancreatic cancer (outcome), and the reverse direction with pancreatic cancer as a 

risk factor for obesity (BMI and WHRadjBMI) using summary statistics from 

independent datasets. The genetic instruments for BMI (670 SNPs) and WHRadjBMI 

(346 SNPs) were obtained from GIANT consortium59,61. Additionally, the pancreatic 

cancer genetic instruments (22 SNPs) were obtained from a recent large-scale meta-

analysis by Klein et al67. 
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Table 3. Detailed results of the Mendelian randomization results between adiposity 

phenotypes and pancreatic cancer 

Legend: PanC=pancreatic cancer, NSNPs=number of SNPs/genetic instruments 
used to estimate causality, OR(95%CI) =Odds ratio and the lower and upper 95% 
confidence intervals (CI). 
 
 
 

  

Exposure Outcome MR Method NSNPs OR(95%CI) P value 

Q statistic 

(P value) 

BMI PanC MR Egger 566 0.999 (0.997-1.001) 0.389 500.41 (0.974) 

BMI PanC Weighted median 566 1.000 (0.999-1.002) 0.561 NA 

BMI PanC Inverse variance 

weighted 

566 1.001 (1.000-1.001) 0.090 502.99 (0.971) 

BMI PanC Simple mode 566 1.001 (0.997-1.004) 0.714 NA 

BMI PanC Weighted mode 566 1.000 (0.998-1.002) 0.802 NA 

WHRadjBMI PanC MR Egger 278 1.001 (0.999-1.0032) 0.268 258.035 (0.774) 

WHRadjBMI PanC Weighted median 278 1.0012 (0.9998-1.0027) 0.095 NA 

WHRadjBMI PanC Inverse variance 

weighted 

278 1.00095 (1.00011-1.0018) 0.027 258.078 (0.787) 

WHRadjBMI PanC Simple mode 278 0.9998 (0.997-1.0032) 0.927 NA 

WHRadjBMI PanC Weighted mode 278 1.0009 (0.9987-1.0031) 0.417 NA 

PanC BMI MR Egger 16 0.444 (0.000-11023.55) 0.877 99.368 

(6.27x10-15) 

PanC BMI Weighted median 16 58.105 (3.997-844.69) 0.003 NA 

PanC BMI Inverse variance 

weighted 

16 58.526 (0.301-11367.20) 0.130 108.025 

(3.86x10-16) 

PanC BMI Simple mode 16 70.019 (3.66-1341.18) 0.013 NA 

PanC BMI Weighted mode 16 91.921 (7.73-1092.50) 0.003 NA 

PanC WHRadjBMI MR Egger 16 21.142 (0.00-64574354.85) 0.695 32.171 

(3.79x10E-03) 

PanC WHRadjBMI Weighted median 16 0.070 (0.000-74.001) 0.454 NA 

PanC WHRadjBMI Inverse variance 

weighted 

16 0.143 (0.000-222.403) 0.604 33.487 

(4.018x10-03) 

PanC WHRadjBMI Simple mode 16 1.057 (0.000-11211.818) 0.991 NA 

PanC WHRadjBMI Weighted mode 16 0.137 (0.000-99.21) 0.563 NA 
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4.2 Insights 

In this article prepared in brief communication format for EJHG, I presented the results 

dissecting the relationship between two obesity phenotypes and pancreatic cancer. I 

showed that central/abdominal obesity is potentially a more important causal risk factor 

pancreatic cancer than overall obesity. Additionally, we show that after adjusting for 

T2D in our polygenic scores analyses, the association between central obesity and 

pancreatic cancer was lost. This suggests that T2D could be the driver of the 

association between the metabolic syndrome and pancreatic cancer. 

The findings presented in this article provide evidence of the need to stratify obesity 

into discrete categories when assessing the contribution of obesity in the risk of 

pancreatic cancer. Both in research and clinical contexts. 

Several limitations that have been highlighted in this study should also be taken into 

perspective when interpreting our findings. Future studies will focus on utilising larger 

sample sizes for pancreatic cancer in order to improve statistical power. Additionally, 

as more GWAS studies consortia make their summary statistics public, the instruments 

variables for pancreatic cancer will get stronger and provide an opportunity to validate 

our findings. 

Overall, the study presented suggests that central obesity independent of BMI is 

associated with the risk of pancreatic cancer with T2D possibly driving this association. 

Therefore, there is need to maintain a healthy weight and minimising the risk of T2D 

as the two factors may predispose an individual to pancreatic cancer. Future work 

leveraging on larger samples sizes for pancreatic cancer is needed to confirm our 

findings.  
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5 SECOND ARTICLE 

“Genetic relationships and causality between overall and central adiposity and breast, 

prostate, lung, and colorectal cancer” (Under review at Obesity journal. Preprint link 

https://doi.org/10.1101/2022.12.19.22283607) 
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5.1 Supplementary data 

UKBB GWAS 

We performed single phenotype GWAS in the UKBB phenotypes using the BOLT-LMM 

version 2.3 software91 which implements a linear mixed model (LMM) association 

testing. Consequently, as a result of applying a linear mixed model, related individuals 

in the UKBB were included in the association analyses. The standard BOLT-LMM v2.3 

infinitesimal model was used. Among the 487,409 individuals with genetic data, the 

genetic data was filtered based on MAF > 0.01, imputation score > 0.4, Hardy-

Weinberg Equilibrium (HWE) P-value >1x10-6 and per SNP variant missingness 

<0.015. As a result, 471,095 individuals passed these filters. We included age, sex, 

genotyping array and six principal components (PCs) as covariates in the LMM for 

BMI, WHRadjBMI, colorectal cancer (CrC) and lung cancer (LungC). For the sex-

specific cancer phenotypes breast (BrC), post-menopausal breast (PostBrC) and 

prostate (PrC) cancers, sex was not included as a covariate. Moreover, BMI was 

included as an additional covariate in WHR association testing to obtain the 

WHRadjBMI phenotype. The threshold for statistically significant genome-wide signals 

(SNPs) was P<5x10-8. Manhattan plots for the association results are show in 

Supplementary Figures 3-6. 
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Table 4. Phenotype definition criteria for cancer phenotypes in UKBB 

Cancer UK Biobank field description ICD-10 Codes 

Overall breast 
cancer (BrC) 

Have been diagnosed with breast 
cancer AND Breast cancer is the first 
cancer diagnosed OR Death cause is 
breast cancer 

C50 

Post-menopausal 
breast cancer (Post-

BrC) 

Have been diagnosed with breast 
cancer AND Breast cancer is the first 
cancer diagnosed OR Death cause is 
breast cancer AND Self-reported 
menopause status 

C50 and X2724 
(Menopause status) 

Colorectal cancer 
(CrC) 

Have been diagnosed with colon and 
rectal cancer AND colon and rectal 
cancers are the first cancers diagnosed 
OR Death cause is colon and rectal 
cancers 

C18-C21 

Prostate cancer 
(PrC) 

Have been diagnosed with prostate 
cancer AND prostate cancer is the first 
cancer diagnosed OR Death cause is 
prostate cancer 

C61 

Lung cancer 
(LungC) 

Have been diagnosed with lung cancer 
AND lung cancer is the first cancer 
diagnosed OR Death cause is lung 
cancer 

C34 
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Table 5. Genetic correlation estimates between BMI/WHRadjBMI and cancer in 

UKBB 

Cancer 
Adiposity 

trait 

Genetic 
correlation 

(rG) SE P 

BrC BMI -0.035 0.03 0.236 

Post-BrC BMI -0.0803 0.03 0.014 

PrC BMI -0.076 0.028 0.0075 

CrC BMI 0.0089 0.039 0.82 

LungC BMI 0.18 0.056 0.0014 

BrC WHRadjBMI 0.009 0.028 0.75 

Post-BrC WHRadjBMI -0.017 0.035 0.63 

PrC WHRadjBMI 0.025 0.03 0.408 

CrC WHRadjBMI 0.103 0.043 0.017 

LungC WHRadjBMI 0.159 0.058 0.0065 
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Table 6. SNP heritability estimates of BMI, WHRadjBMI and cancer in UKBB 

Phenotype h2SNP SE 

BrC 0.0323 0.0041 

Post-BrC 0.0215 0.003 

PrC 0.0441 0.005 

CrC 0.0072 0.0013 

LungC 0.0036 0.0011 

BMI 0.2459 0.0072 

WHRadjBMI 0.1343 0.0066 

 

  



97 

 

Table 7. BMI PRS association with cancer in UKBB by BMI categories 

Cancer BMI Class Case/Control OR (95%CI) P 

BrC 

Underweight 83/1775 0.94 (0.78-1.13) 0.497 

Normal 4,796/93,114 0.98 (0.96-1.01) 0.178 

Pre-obesity 5,277/86,114 0.98 (0.95-1.00) 0.053 

Obesity 3,164/54,072 0.96 (0.93-0.99) 0.012 

Post-BrC 

Underweight 124,1,734 0.87 (0.70-1.09) 0.242 

Normal 6,872/91,058 0.97 (0.94-1.00) 0.029 

Pre-obesity 7,188/84,240 0.98 (0.95-1.01) 0.161 

Obesity 4,436/52,830 0.96 (0.92-0.99) 0.017 

PrC 

Underweight 18.456 0.90 (0.55-1.47) 0.68 

Normal 2,926/48,880 0.98 (0.94-1.02) 0.351 

Pre-obesity 6,128/97,260 0.98 (0.95-1.00) 0.066 

Obesity 2,728/50,611 0.98 (0.94-1.02) 0.412 

CrC 

Underweight 27/2,305 0.89 (0.60-1.32) 0.569 

Normal 2,440/147,476 0.98 (0.94-1.02) 0.35 

Pre-obesity 3,711/191,068 0.99 (0.96-1.03) 0.65 

Obesity 2,193/108,380 0.97 (0.93-1.02) 0.215 

LungC 

Underweight 46/2,289 1.13 (0.84-1.50) 0.417 

Normal 1,293/148,528 1.04 (0.99-1.10) 0.136 

Pre-obesity 1,763/193,131 1.08 (1.03-1.14) 0.001 

Obesity 1,105/109,592 1.01 (0.95-1.07) 0.856 

Associations with P<0.05 are shown in bold 
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Table 8. Obesity PRS association with lung cancer by smoking status 

  
BMI PRS WHRadjBMI PRS 

Smoking status Case/Control/N OR (95%CI) P OR (95%CI) P 

Previous smokers 
1,970/160,891 

(162,861) 1.02 (0.98-1.07) 0.294 0.99 (0.95-1.04) 0.737 

Current smokers 
1,652/46,242 

(47,894) 1.01 (0.96-1.06) 0.839 1.03 (0.98-1.08) 0.281 

Never smoked 
579/246,273 

(246,852) 1.01 (0.93-1.10) 0.759 0.92 (0.85-1.00) 0.046 

Previous + current 

smokers 

3,622/207,133 

(210,755) 1.02 (0.99-1.05) 0.231 1.01 (0.98-1.04) 0.638 

Associations with P<0.05 are shown in bold 
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5.2 Insights 

In this second article submitted to Obesity journal, I implemented genetic correlation, 

polygenic scores, and Mendelian randomization approaches to assess how BMI and 

WHRadjBMI, used as proxies for overall and central obesity respectively, relate to the 

risk of breast, prostate, colorectal and lung cancers. 

 

The polygenic scores analyses indicated that both central and overall obesity relate to 

prostate cancer risk in opposite direction. Specifically, overall obesity has an inverse 

association with prostate cancer risk while central obesity has a direct association with 

prostate cancer risk. Furthermore, Mendelian randomization corroborated these 

findings while using published GWAS data from non-overlapping datasets. While the 

exact mechanisms underlying this observed paradoxical relationship between obesity 

and prostate cancer, factors such as growth factors (IGF-1), androgens (testosterone) 

and differences in tumour characteristics may play a role in the manifestation of this 

co-morbidity. Further work to characterise in detail how central obesity and other 

components of the metabolic syndrome affect prostate cancer risk are needed. 

Moreover, the impact of height on prostate cancer needs careful consideration when 

interpreting these results. 

 

The polygenic scores and Mendelian randomization analyses of breast cancer indicate 

that central obesity has an inverse association with overall breast cancer risk. Several 

factors such as sex hormones, menopause status, tumour characteristics, BMI at age 

of menarche are potentially involved. More work to unravel the exact involvement of 

these and other factors is required. 
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Despite nominally significant positive genetic correlation estimates for colorectal 

cancer and WHRadjBMI, polygenic scores and Mendelian randomization showed no 

significant results for colorectal cancer. Future work will focus on larger sample sizes 

for colorectal cancer so as to improve statistical power. 

 

Lung cancer polygenic scores analyses indicated a nominally significant positive 

association between BMI and lung cancer risk. On the other hand, WHRadjBMI was 

not significantly associated with lung cancer. Sensitivity analyses, however, suggested 

that among individuals with no smoking experience, WHRadjBMI may be inversely 

associated with lung cancer risk. This is despite evidence that smokers, and not their 

non-smoking counterparts, have lower body fat. Consequently, validation of these 

findings is needed using larger sample sizes. 

 

Unfortunately, Mendelian randomization analyses could not be performed for lung 

cancer and post-menopausal breast cancer due to the unavailability of GWAS 

summary statistics. Therefore, the causality between obesity and these cancers 

remain unaddressed in this study and thus future studies will aim to fill this gap. 

 

In summary, this article I demonstrates how central and overall obesity have different 

risk patterns for different cancers. I also illustrate how different statistical genetics tools 

can assist in disentangling the relationship between obesity and cancer. Researchers 

and clinical health advisors should thus broaden their definition of obesity in practice 

to accurately capture the involvement of adiposity in cancer risk.  
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6 THIRD ARTICLE 

“Bi-directional Mendelian randomization and multi-phenotype GWAS show causality 

and shared pathophysiology between depression and type 2 diabetes” (Preprint link 

https://doi.org/10.1101/2022.12.06.22283143)
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6.1 Insights 

This last paper presents a study investigating the genetic relationship between two 

common disorders: T2D and depression. 

Using publicly available GWAS summary statistics of T2D and depression, I assessed 

the causal relationship between the two diseases using two-sample bi-directional 

Mendelian randomization. The results of this investigation show that depression is 

causal for type 2 diabetes while there was no evidence of the reverse direction being 

significant. 

Additionally, using the UKBB, I implemented a multi-phenotype GWAS approach to 

jointly analyse T2D and depressive phenotypes. The depressive phenotypes included 

in this study were depressive symptoms based on self-report questionnaires, and 

clinically diagnosed major depressive disorder (MDD). Multi-phenotype GWAS 

demonstrated shared genetic loci between T2D and self-reported definitions of 

depression which was not seen in the standard GWAS approach of analysing 

phenotypes independently. Majority of the identified shared loci between T2D and 

depression have a role in insulin secretion pathways. However, T2D and the strictly 

MDD did not reveal shared loci after multi-phenotype GWAS. 

I further sought to establish the target genes associated with both T2D and depression 

using expression quantitative trait loci (eQTL) analysis. Here, I used data from the 

GTEx and TIGER databases. 

From this study I illustrate how genetic determinants that are shared between related 

traits can be revealed through various statistical genetics methods such as Mendelian 

randomization and multi-phenotype GWAS approaches. As with the obesity and 

cancer study, I illustrate how Mendelian randomization utilising publicly available 



132 

 

GWAS summary statistics can aid in the dissection of causal relationships between 

related traits. In addition, and perhaps most importantly, I illustrate the utility of multi-

phenotype GWAS approaches in identifying shared genetic loci between related traits. 
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7 GENERAL DISCUSSION 

In my PhD project, I leveraged on both published GWAS and large-scale biobank data 

to assess the relationship between two distinct measures of adiposity and breast, 

prostate, colorectal, pancreatic and lung cancers. 

By implementing statistical genetics methods that capitalize on GWAS output, such as genetic 

correlation, polygenic scores, and Mendelian randomization, I demonstrated that both central 

and overall measures of obesity relate differently to the risk of certain types of cancers. 

Several considerations are currently in place for future research to build on the present 

work. These considerations include perspectives on the study design as well as 

improvement on various aspects of the methodology. 

The metabolic syndrome and its components, including dyslipidaemia, insulin 

resistance and hypertension, should also be added to future study designs to further 

boost our findings surrounding central adiposity and cancer risk. In the current study, 

the metabolic syndrome is inferred using the WHRadjBMI phenotype. Other potential 

phenotypes to add to our analyses include fasting glucose levels, HDL cholesterol, 

systolic and diastolic blood pressure. To build on our conclusions of a significant 

contribution of the metabolic syndrome in cancer development, it follows logically that 

assessing the impact of the other components of the metabolic syndrome is needed to 

corroborate our findings. 

The definition of the sex-specific cancer cases could be updated to improve the 

specificity of phenotypes. This would involve considering tumour heterogeneity by 

hormone receptor state as well as tumour grade in addition to overall cancer incidence 

definitions. In the case of breast cancer, oestrogen-receptor(ER) and progesterone-

receptor positive breast cancer as well as tumour aggressiveness should be added in 

the case definition criteria. Similarly, for prostate cancer, ERa- and ERb status and 
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tumour aggressiveness could be accounted for. Since hormone receptor status and 

tumour behaviour characteristics data in UKBB may be limited in both sample size and 

detail, there exists an opportunity to collaborate with consortia such as BCAC in 

actualising this study. 

In the PGS and MR analyses, the next step would be to implement hierarchical 

clustering of the obesity SNPs (BMI and WHRadjBMI) to partition these variants into 

mechanistic groups. These mechanistic groups, based on their effects on the 

phenotype, would represent hypothesised mechanisms underlying the obesity-cancer 

mechanisms. The PRS based on these groups would be calculated and tested for each 

cancer. Likewise, I could apply MR to assess the causality between each of these 

groups and cancers. Furthermore, implementation of multi-phenotype GWAS 

approaches, such as those that use individual level data74, could enable better 

definition of loci with pleiotropic effects, latter to be carefully evaluated for the use or 

exclusion from MR analyses for specific phenotype relationships86. 

A key notable strength of this PhD is the large number of BMI and WHRadjBMI variants 

used in both PGS and MR studies. The resultant PGS base data that were therefore 

of higher quality and our conclusions based on their application are thus credible. 

Moreover, the UKBB offers a large database with close to 500,000 individuals with both 

genetic and phenotypic data amenable for analyses. The wide range of phenotypic 

data in the UKBB also allowed for the investigation of potential confounding factors 

such as menopause and smoking status. 

The interpretation of our findings should consider several limitations. Our analyses 

were based on European data due to its availability compared to data of other 

populations. Consequently, generalizability of our results across different populations 

is not recommended. Further, the lack of information of hormone receptor status in the 
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UKBB limited the extent to which the associations between obesity and cancer can be 

performed. The unavailability of public GWAS summary statistics of certain cancers 

such as post-menopausal breast and lung cancers also limited our ability to investigate 

causality using MR. While for some cancers in the UKBB, our sample sizes were low 

and thus GWAS, and subsequent analyses were statistically underpowered. 

 

In conclusion, using large scale genetic data (published GWAS and biobank data), I 

show that central obesity, proxied using WHRadjBMI, may be a more important causal 

risk factor for pancreatic cancer than overall obesity. Additionally, I show an inverse 

association between overall obesity and prostate cancer, while central adiposity has a 

direct association with prostate cancer. These results additionally suggest that central 

obesity may be a causal risk factor for breast cancer. 
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Supplementary Table 1. Detailed results of the Mendelian randomization analyses between obesity and cancer phenotypes 

 
Inverse variance 

weighted 

MR Egger Weighted median Simple mode Weighted mode Heterogeneity MR-Egger Intercept 

Exposure Outcome NSNPs OR 

(95% CI) 

P OR 

(95% CI) 

P OR 

(95% CI) 

P OR 

(95% CI) 

P OR 

(95% CI) 

P Q stat (P) Intercept(SE) P 

BMI BrC 576 1.000 

(0.995-

1.005) 

0.897 0.985 

(0.971-

1.000) 

0.051 0.996 

(0.988-

1.003) 

0.266 0.944 

(0.968-

1.020) 

0.634 0.994 

(0.977-

1.011) 

0.462 755.9 (5.34E-07) 0.0003 (0.0001) 0.034 

BMI PrC 574 0.993 

(0.988-

0.998) 

0.0042 0.995 

(0.982-

1.009) 

0.473 0.993 

(0.985-

0.999) 

0.039 0.984 

(0.960-

1.009) 

0.22 0.995 

(0.981-

1.009) 

0.491 863.64 (3.93E-14) -45.47 (0.0001) 0.713 

BMI CrC 575 1.000 

(0.998-

1.002) 

0.92 1.001 

(0.996-

1.006) 

0.682 1.000 

(0.997-

1.003) 

1 0.999 

(0.989-

1.008) 

0.768 1.000 

(0.995-

1.005) 

0.923 656.59 (0.0094) -20.71 

(0.00004) 

0.689 

BrC BMI 109 0.997 

(0.985-

1.008) 

0.557 1.004 

(0.984-

1.025) 

0.686 1.008 

(0.998-

1.017) 

0.1 1.030 

(0.061-

17.321) 

0.983 1.030 

(0.076-

13.925) 

0.982 510.98 (1.27E-53) -0.006 (0.0007) 0.372 

PrC BMI 74 1.004 

(0.995-

1.014) 

0.333 0.993 

(0.974-

1.102) 

0.471 0.998 

(0.988-

1.007) 

0.639 0.995 (0977-

1.013) 

0.57 0.997 

(0.987-

1.008) 

0.626 194.16 (6.04E-13) 0.001 1 (0.0008) 0.184 

CrC BMI 48 0.752 

(0.368-

1.538) 

0.435 1.648 

(0.352-

7.729) 

0.529 1.031 

(0.473-

2.246) 

0.939 1.153 

(0.021-

62.240) 

0.944 1.153 

(0.035-

38.392) 

0.937 102.89 (4.71E-06) -0.001 (0.0009) 0.268 

WHRadjBMI BrC 284 0.990 

(0.983-

0.997) 

0.0068 1.000 

(0.982-

1.017) 

0.974 0.991 

(0.981-

1.002) 

0.105 1.003 

(0.974-

1.033) 

0.83 0.993 

(0.978-

1.008) 

0.338 529.41 (3.63E-17) -0.0002 

(0.0002) 

0.226 

WHRadjBMI PrC 284 1.0046 

(0.998-

1.011) 

0.179 1.016 

(1.00018-

1.032) 

0.048 1.007 

(0.999-

1.016) 

0.094 1.018 

(0.990-

1.045) 

0.209 1.022 

(1.00067-

1.038) 

0.0053 493.63 (1.32E-13) -0.0002 

(0.0002) 

0.119 

WHRadjBMI CrC 284 1.002 

(0.994-

1.004) 

0.125 1.000 

(0.995-

1.006) 

0.885 1.000 

(0.996-

1.004) 

0.917 0.995 

(0.984-

1.006) 

0.391 1.000 

(0.994-

1.006) 

0.988 410.68 (1.02E-06) 0.00003 

(0.00006) 

0.578 
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BrC WHRadjBMI 117 0.993 

(0.975-

1.012) 

0.495 0.949 

(0.910-

0.991) 

0.018 0.976 

(0.953-

1.001) 

0.056 1.013 

(0.002-

518.382) 

0.997 1.013 

(0.004-

274.794) 

0.997 180.81 (1.11E-04) 0.003 (0.001) 0.022 

PrC WHRadjBMI 81 1.008 

(0.996-

1.021) 

0.211 1.013 

(0.988-

1.039) 

0.324 1.005 

(0.985-

1.026) 

0.616 0.999 

(0.961-

1.038) 

0.947 1.005 

(0.984-

1.025) 

0.655 79.36 (0.499) -0.0005 (0.001) 0.668 

CrC WHRadjBMI 59 1.113 

(0.362-

3.423) 

0.852 11.000 

(1.176-

102.88) 

0.04 1.728 

(0.314-

9.509) 

0.53 2.546 

(0.016-

40.531) 

0.511 2.126 

(0.342-

13.222) 

0.422 68.69 (0.159) -0.003 (0.001) 0.025 



Supplementary Table 2. Independent genome-wide significant signals (P<5x10-8) for 
overall breast cancer in UK Biobank GWAS 
 

CHR BP SNP GENE EA NEA EAF BETA SE P 

1 121280613 rs11249433 EMBP1 A G 0.583 -0.0062 0.00075 1.50x10
-16

 

1 149927034 rs12048493 OTUD7B A C 0.609 -0.0045 0.00078 6.90x10
-09

 

2 121153979 rs13406182 INHBB,LINC01101 T C 0.806 0.0057 0.00094 1.30x10
-09

 

2 121245613 rs12616849 LINC01101,GLI2 G C 0.098 -0.0070 0.00126 2.50x10
-08

 

2 213537460 rs9967727 ERBB4,LINC01878 C G 0.634 -0.0047 0.00077 8.10x10
-10

 

2 217920769 rs4442975 LINC01921,DIRC3-AS1 G T 0.489 0.0087 0.00074 1.00x10
-31

 

2 217954982 rs7587558 LINC01921,DIRC3-AS1 T A 0.965 0.0171 0.00205 6.40x10
-17

 

3 27374101 rs1352944 NEK10 C A 0.525 0.0073 0.00074 9.80x10
-23

 

4 175850605 rs28465148 ADAM29 T G 0.880 0.0071 0.00115 5.60x10
-10

 

5 1294086 rs2736098 TERT C T 0.721 0.0048 0.00083 6.80x10
-09

 

5 44706498 rs10941679 LINC02224,BRCAT54 A G 0.747 -0.0088 0.00086 2.80x10
-24

 

5 45333860 rs55821517 HCN1 T C 0.736 0.0052 0.00086 9.70x10
-10

 

5 56016918 rs12653202 C5orf67,MAP3K1 A C 0.841 -0.0122 0.00102 3.30x10
-33

 

5 158230013 rs11135046 EBF1 G T 0.457 0.0052 0.00075 3.00x10
-12

 

6 151947326 rs11155805 CCDC170,ESR1 A G 0.669 -0.0072 0.00079 6.20x10
-20

 

6 152441587 rs2813550 ESR1 C A 0.242 -0.0050 0.00087 7.00x10
-09

 

8 36859186 rs12681990 KCNU1 T C 0.838 0.0072 0.00101 9.90x10
-13

 

8 128355618 rs13281615 CASC21,CASC8 A G 0.591 -0.0065 0.00075 4.70x10
-18

 

9 110306944 rs10978911 KLF4 G C 0.875 -0.0067 0.00113 2.90x10
-09

 

9 110837073 rs10816625 KLF4 A G 0.936 -0.0087 0.00152 1.20x10
-08

 

9 110893030 rs628931 KLF4 A G 0.377 -0.0063 0.00077 1.70x10
-16

 

10 21799726 rs12256551 SKIDA1 A C 0.644 -0.0044 0.00078 2.10x10
-08

 

10 64258343 rs2393886 ZNF365 C T 0.533 0.0046 0.00075 5.40x10
-10

 

10 80887957 rs10762851 ZMIZ1 A G 0.841 -0.0067 0.00102 3.70x10
-11

 

10 123095209 rs9421410 WDR11,FGFR2 G A 0.684 0.0052 0.00080 1.10x10
-10

 

10 123314462 rs17614209 FGFR2 C G 0.976 -0.0152 0.00254 2.60x10
-09

 

10 123346116 rs2981575 FGFR2 G A 0.396 0.0179 0.00076 3.80x10
-123

 

11 1902097 rs4980383 LSP1 C T 0.547 -0.0056 0.00075 1.00x10
-13

 

11 69331418 rs78540526 CCND1 C T 0.929 -0.0211 0.00145 3.60x10
-48

 

11 129454107 rs10736577 BARX2 A G 0.395 -0.0047 0.00076 7.70x10
-10

 

12 28151609 rs812020 PTHLH,CCDC91 A C 0.737 0.0059 0.00085 5.00x10
-12

 

12 28488886 rs11049539 CCDC91 A T 0.698 0.0045 0.00081 3.40x10
-08

 

12 96026737 rs61938093 PGAM1P5 C T 0.705 0.0075 0.00082 4.60x10
-20

 

12 115834946 rs2133317 TBX3,MED13L C G 0.615 0.0052 0.00076 1.10x10
-11

 

14 37128564 rs34914085 PAX9 C A 0.789 0.0055 0.00091 1.70x10
-09

 

14 68979835 rs11624333 RAD51B T C 0.717 0.0062 0.00083 1.40x10
-13

 

16 52599188 rs4784227 CASC16 C T 0.760 -0.0166 0.00087 3.00x10
-81

 

16 53810686 rs7193144 FTO T C 0.607 0.0056 0.00076 1.80x10
-13

 

16 53861592 rs7184573 FTO G A 0.624 0.0042 0.00077 5.70x10
-08

 

16 54676323 rs8044756 LINC02140,LOC101927480 G A 0.487 -0.0044 0.00075 6.10x10
-09

 

16 80651109 rs17750740 CDYL2 T C 0.795 -0.0052 0.00093 1.70x10
-08

 

17 29206421 rs6505216 ATAD5 G T 0.766 0.0059 0.00091 8.60x10
-11
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18 24481272 rs17621185 AQP4-AS1 A G 0.789 0.0051 0.00091 1.60x10
-08

 

21 16563640 rs2823129 NRIP1,USP25 C T 0.675 0.0052 0.00079 4.40x10
-11

 

22 40935593 rs183387906 MKL1 G A 0.912 -0.0096 0.00134 8.60x10
-13

 

22 41027870 rs73169097 MKL1 C T 0.901 -0.0101 0.00125 5.80x10
-16
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Supplementary Table 3. Independent genome-wide significant signals (P<5x10-8) for 
post-menopausal breast cancer in UK Biobank GWAS 
 

CHR BP SNP GENE EA NEA EAF BETA SE P 

1 121280613 rs11249433 EMBP1 A G 0.584 -0.0042 0.00064 3.90x10
-11

 

1 149927034 rs12048493 OTUD7B A C 0.609 -0.0040 0.00066 1.80x10
-09

 

2 121154536 rs72960863 INHBB,LINC01101 T C 0.806 0.0047 0.00080 5.60x10
-09

 

2 213545357 rs13404902 ERBB4,LINC01878 C T 0.639 -0.0037 0.00066 3.00x10
-08

 

2 217905779 rs13412666 LINC01921,DIRC3-AS1 G A 0.502 0.0059 0.00063 1.40x10
-20

 

2 217957699 rs72951831 LINC01921,DIRC3-AS1 G T 0.964 0.0111 0.00169 6.30x10
-11

 

3 27374101 rs1352944 NEK10 C A 0.525 0.0049 0.00063 2.00x10
-14

 

5 1294086 rs2736098 TERT C T 0.721 0.0041 0.00071 1.00x10
-08

 

5 44706498 rs10941679 LINC02224,BRCAT54 A G 0.747 -0.0062 0.00073 2.00x10
-17

 

5 56016918 rs12653202 C5orf67,MAP3K1 A C 0.841 -0.0088 0.00087 3.70x10
-24

 

5 158230013 rs11135046 EBF1 G T 0.457 0.0038 0.00064 3.00x10
-09

 

6 151969740 rs9371545 CCDC170,ESR1 G A 0.926 -0.0084 0.00121 4.40x10
-12

 

6 152432902 rs910416 ESR1 C T 0.490 -0.0050 0.00064 4.00x10
-15

 

8 36858483 rs13365225 KCNU1 A G 0.836 0.0046 0.00086 7.50x10
-08

 

8 128355618 rs13281615 CASC21,CASC8 A G 0.591 -0.0050 0.00064 6.40x10
-15

 

9 110886840 rs548980 KLF4 C T 0.379 -0.0042 0.00065 1.10x10
-10

 

10 64299890 rs10995201 ZNF365 A G 0.852 0.0052 0.00090 8.60x10
-09

 

10 123346116 rs2981575 FGFR2 G A 0.396 0.0125 0.00065 9.60x10
-84

 

11 69331418 rs78540526 CCND1 C T 0.929 -0.0146 0.00123 1.80x10
-32

 

11 129476405 rs7119897 BARX2 C G 0.430 -0.0040 0.00064 3.60x10
-10

 

12 28139846 rs805510 PTHLH,CCDC91 T C 0.128 -0.0057 0.00095 2.80x10
-09

 

12 96026737 rs61938093 PGAM1P5 C T 0.705 0.0054 0.00070 1.50x10
-14

 

12 115836183 rs1391720 TBX3,MED13L G A 0.582 0.0042 0.00064 5.60x10
-11

 

14 68976059 rs36028293 RAD51B G A 0.720 0.0040 0.00071 1.80x10
-08

 

16 52599188 rs4784227 CASC16 C T 0.760 -0.0116 0.00074 3.50x10
-55

 

16 53810686 rs7193144 FTO T C 0.607 0.0043 0.00065 3.80x10
-11

 

16 80651109 rs17750740 CDYL2 T C 0.795 -0.0051 0.00079 9.40x10
-11

 

22 40935593 rs183387906 MKL1 G A 0.912 -0.0076 0.00115 3.90x10
-11

 

22 41015883 rs5995881 MKL1 A G 0.901 -0.0079 0.00106 9.60x10
-14

 

 

  



150 

 

Supplementary Table 4. Independent genome-wide significant signals (P<5x10-8) for 
prostate cancer in UK Biobank GWAS 
 

CHR BP SNP GENE EA NEA EAF BETA SE P 

1 150940625 rs267738 CERS2 T G 0.7804 -0.00481 0.00085 1.60x10
-08

 

1 204466176 rs4951076 MDM4 G A 0.316 -0.00461 0.00076 1.10x10
-09

 

2 43738173 rs1038822 THADA T C 0.299 0.00561 0.00077 4.00x10
-13

 

2 62766723 rs11904315 TMEM17,EHBP1 C A 0.889 -0.00675 0.00112 1.70x10
-09

 

2 63277843 rs58235267 OTX1 C G 0.512 -0.00673 0.00071 2.10x10
-21

 

2 63443276 rs141301592 WDPCP C G 0.856 0.00552 0.00101 4.00x10
-08

 

2 85788175 rs7568458 GGCX T A 0.545 0.00473 0.00071 2.00x10
-11

 

2 173309402 rs80353656 ITGA6 T C 0.938 0.01297 0.00146 7.00x10
-19

 

2 173363917 rs7596665 ITGA6 A G 0.943 0.01201 0.00152 2.40x10
-15

 

2 202151163 rs3769818 CASP8 A G 0.269 -0.00458 0.00079 8.00x10
-09

 

2 238389739 rs73098849 COL6A3,MLPH G A 0.833 -0.00515 0.00094 4.90x10
-08

 

3 87144004 rs139263101 LINC00506 C T 0.933 -0.01122 0.00143 4.00x10
-15

 

3 113300183 rs2271494 SIDT1 A T 0.582 0.00440 0.00071 6.90x10
-10

 

3 127898501 rs2811476 EEFSEC A C 0.737 -0.00437 0.000799 4.50x10
-08

 

3 170083629 rs61436251 SKIL C G 0.80002 0.00905 0.00088 8.50x10
-25

 

4 95530464 rs12639980 PDLIM5 C A 0.577 -0.00495 0.00071 3.50x10
-12

 

4 106065308 rs10007915 TET2 C G 0.624 0.00643 0.00073 9.50x10
-19

 

5 1282414 rs7725218 TERT G A 0.661 0.00619 0.00074 7.60x10
-17

 

5 1891821 rs10866528 CTD-2194D22.4 A G 0.536 -0.00627 0.00071 1.30x10
-18

 

6 31080471 rs1265052 C6orf15 T C 0.476 0.00411 0.000704 5.40x10
-09

 

6 31783507 rs1043618 HSPA1A G C 0.621 0.00401 0.00072 3.10x10
-08

 

6 32628361 rs9273501 HLA-DQB1-AS1 T A 0.639 -0.00405 0.00073 3.20x10
-08

 

6 41548755 rs6917270 FOXP4 A G 0.720 -0.00565 0.00078 4.70x10
-13

 

6 117207682 rs339327 RFX6 A G 0.695 0.00666 0.00076 2.40x10
-18

 

6 160581374 rs651164 SLC22A1,SLC22A2 A G 0.297 -0.00421 0.00077 4.20x10
-08

 

6 160835192 rs1112444 SLC22A3 C A 0.695 -0.00501 0.00076 5.30x10
-11

 

7 27976563 rs10486567 JAZF1 G A 0.767 0.00713 0.00083 7.60x10
-18

 

7 97773812 rs11768309 LMTK2 C A 0.464 0.00606 0.000704 7.10x10
-18

 

8 23466880 rs4383983 NKX3-1 G C 0.583 0.00481 0.00071 1.40x10
-11

 

8 23525543 rs13265330 NKX3-1 C T 0.420 0.00719 0.00071 5.70x10
-24

 

8 127924563 rs10441523 FAM84B,PCAT1 C T 0.317 0.00571 0.00076 5.20x10
-14

 

8 128030236 rs144828524 PCAT1 T C 0.969 0.01140 0.00206 3.20x10
-08

 

8 128077146 rs77541621 PCAT1,PCAT2 G A 0.971 -0.04196 0.00219 1.10x10
-81

 

8 128091418 rs72725868 PCAT2 A G 0.913 0.00753 0.00131 8.20x10
-09

 

8 128110814 rs17765137 PRNCR1,CASC19 A G 0.950 0.01232 0.00161 2.20x10
-14

 

8 128117736 rs143368544 PRNCR1,CASC19 C T 0.977 -0.01346 0.00240 2.00x10
-08

 

8 128324147 rs382434 CASC21,CASC8 C T 0.664 0.00810 0.00075 1.80x10
-27

 

8 128409232 rs11985829 CASC8 T C 0.309 0.00841 0.00076 1.90x10
-28

 

8 128444775 rs150869774 CASC8 T C 0.984 -0.01858 0.00284 6.20x10
-11

 

8 128532137 rs10090154 CASC8,CASC11 T C 0.0996 0.02022 0.00117 1.60x10
-66

 

8 128540776 rs12549761 CASC8,CASC11 C G 0.879 0.01087 0.00107 4.20x10
-24
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10 47554493 rs7923435 FAM35DP,ANTXRLP1 A C 0.663 -0.00569 0.00076 5.00x10
-14

 

10 51549496 rs10993994 TIMM23B T C 0.392 0.01100 0.00072 6.90x10
-53

 

10 122798413 rs2420906 WDR11,FGFR2 A G 0.409 0.00418 0.00071 4.80x10
-09

 

10 126710654 rs4109292 CTBP2 G A 0.506 0.00405 0.000704 8.60x10
-09

 

11 2234690 rs10840606 MIR4686,ASCL2 A G 0.822 -0.01133 0.00093 4.30x10
-34

 

11 68870516 rs2924534 TPCN2,LOC338694 C G 0.153 0.00624 0.00098 1.90x10
-10

 

11 68981359 rs12275055 LOC338694,MYEOV A G 0.829 -0.01335 0.00093 2.00x10
-46

 

11 69462856 rs3862792 CCND1 C T 0.973 -0.01394 0.0022 2.60x10
-10

 

11 102396607 rs12285347 MMP7 T C 0.547 0.00434 0.00071 7.60x10
-10

 

11 125144426 rs117015177 PKNOX2 A G 0.982 -0.01580 0.00272 6.60x10
-09

 

12 53303331 rs17120257 KRT8 T C 0.887 -0.01008 0.00112 1.90x10
-19

 

12 133067473 rs28435470 FBRSL1 G A 0.333 0.00431 0.00075 7.70x10
-09

 

13 73714290 rs7996468 KLF5,LINC00392 C T 0.210 0.00563 0.00087 9.00x10
-11

 

14 53418339 rs7158115 FERMT2 G C 0.863 0.00557 0.00102 5.30x10
-08

 

16 1577184 rs12599859 IFT140 A G 0.872 0.00591 0.00105 2.00x10
-08

 

17 618965 rs684232 VPS53 T C 0.645 -0.00496 0.00073 1.40x10
-11

 

17 7803552 rs7224399 CHD3 C T 0.940 -0.01095 0.00149 1.70x10
-13

 

17 36080165 rs17138469 HNF1B G C 0.824 0.00684 0.00093 1.70x10
-13

 

17 36099952 rs10908278 HNF1B T A 0.485 -0.01092 0.00071 1.30x10
-53

 

17 46810586 rs145922598 HOXB13,TTLL6 C T 0.968 -0.01200 0.002001 2.00x10
-09

 

17 47459877 rs76778410 LOC102724596,PHB A T 0.918 -0.00816 0.00129 2.20x10
-10

 

17 69104938 rs7222314 CASC17 A G 0.459 0.00770 0.00071 1.30x10
-27

 

19 38740925 rs12981216 PPP1R14A C T 0.536 0.00577 0.000705 2.60x10
-16

 

19 42020112 rs12610088 PCAT19,LINC01480 C T 0.378 -0.00448 0.00072 6.00x10
-10

 

19 51342357 rs12975062 LOC105372441 G A 0.802 -0.00603 0.00090 1.80x10
-11

 

19 51362537 rs62113214 KLK3 T G 0.927 0.01740 0.00135 3.10x10
-38

 

20 62272411 rs6423444 STMN3 G A 0.689 0.00481 0.00077 5.20x10
-10

 

22 43500212 rs5759167 TTLL1,BIK G T 0.502 0.00672 0.000703 1.10x10
-21

 

22 43506635 rs4988372 BIK C T 0.874 0.00640 0.00107 2.10x10
-09
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Supplementary Table 5. Independent genome-wide significant signals (P<5x10-8) for 
colorectal cancer in UK Biobank GWAS 
 
 

CHR BP SNP Gene EA NEA EAF BETA SE P 

1 222218761 rs12135286 HHIPL2 C T 0.806 -0.00236 0.00035 1.40x10
-11

 

3 28450527 rs114717436 ZCWPW2 A G 0.989 -0.00766 0.00138 2.70x10
-08

 

5 1296486 rs2735940 TERT A G 0.510 -0.00158 0.00028 1.40x10
-08

 

5 40280202 rs1445011 LINC00603,PTGER4 T C 0.717 -0.00174 0.00031 1.70x10
-08

 

6 158842827 rs341145 TULP4 C T 0.649 -0.00166 0.00029 9.10x10
-09

 

8 117630683 rs16892766 LINC00536,EIF3H A C 0.920 -0.00346 0.00051 1.10x10
-11

 

8 128413305 rs6983267 CCAT2 G T 0.519 0.00248 0.00028 2.30x10
-19

 

11 111166504 rs12296076 COLCA1 G A 0.327 0.00178 0.00030 2.10x10
-09

 

12 112553032 rs10850001 NAA25,TRAFD1 T A 0.567 0.00153 0.00028 6.70x10
-08

 

15 33001734 rs58658771 SCG5,GREM1 T A 0.820 -0.00322 0.00036 4.40x10
-19

 

18 46448805 rs6507874 SMAD7 T C 0.527 0.00249 0.00028 4.70x10
-19

 

20 6405479 rs13037538 CASC20 A G 0.641 -0.00173 0.00029 2.00x10
-09

 

20 47340117 rs6066825 PREX1 A G 0.635 0.00177 0.00029 7.80x10
-10

 

20 60983973 rs7262524 CABLES2 C T 0.735 0.00193 0.00031 8.40x10
-10
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Supplementary Table 6. Independent genome-wide significant signals (P<5x10-8) for 
pancreatic cancer in UK Biobank GWAS 
 
 

CHR BP SNP GENE EA NEA EAF BETA SE P 

5 1300401 rs2736103 TERT T C 0.581 0.000702 0.00012 3.30x10
-09

 

9 136153875 rs651007 ABO C T 0.793 -0.000829 0.00014 7.60x10
-09

 

13 73916628 rs9543325 KLF5 C T 0.362 0.000712 0.00012 3.90x10
-09

 

16 75234872 rs72802342 ZFP1,CTRB2 C A 0.923 -0.001621 0.00022 2.50x10
-13
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Supplementary Table 7. Independent genome-wide significant signals (P<5x10-8) for 
lung cancer in UK Biobank GWAS 
 
 

CHR BP SNP GENE EA NEA EAF BETA SE P 

5 1306165 rs4404721 TERT T C 0.369 -0.0013 0.0002 8.00x10
-11

 

15 78801394 rs11852372 HYKK A C 0.666 -0.0019 0.0002 3.10x10
-20

 

19 41342842 rs145580088 CYP2T1P,CYP2A6 A G 0.978 0.0037 0.0007 3.90x10
-08
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Supplementary Figure 1. Flowchart showing UK Biobank adiposity and pancreatic 
cancer definition 
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Supplementary Figure 2. Manhattan plot of lung cancer GWAS in UK Biobank. The 
red horizontal line shows genome-wide significance threshold (P<5x10-8). The dashed 
grey line shows suggestive significance threshold (P<1x10-5) 
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Supplementary Figure 3. Manhattan plots of overall breast cancer (top) and post-
menopausal breast cancer (bottom) GWAS in UK Biobank. The red horizontal line 
shows genome-wide significance threshold (P<5x10-8). The dashed grey line shows 
suggestive significance threshold (P<1x10-5) 
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Supplementary Figure 4. Manhattan plots of prostate cancer (top) and colorectal 
cancer (bottom) GWAS in UK Biobank. The red horizontal line shows genome-wide 
significance threshold (P<5x10-8). The dashed grey line shows suggestive significance 
threshold (P<1x10-5) 
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Supplementary Figure 5. Manhattan plot of lung cancer GWAS in UK Biobank. The 
red horizontal line shows genome-wide significance threshold (P<5x10-8). The dashed 
grey line shows suggestive significance threshold (P<1x10-5) 
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Supplementary Figure 6. Manhattan plots of BMI (top) and WHRadjBMI cancer 
(bottom) GWAS in UK Biobank. The red horizontal line shows genome-wide 
significance threshold (P<5x10-8) 
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Supplementary Figure 7. Summary of Mendelian Randomization tests performed for 
BMI/WHRadjBMI and breast, prostate and colorectal cancers, including the number of 
genetic instruments (SNPs) available from published GWAS for each test 
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Supplementary Figure 8. Scatter and forest plots for the BMI to cancer direction 
Mendelian randomization tests. A) BMI to breast cancer. B) BMI to colorectal cancer 
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Supplementary Figure 9. Scatter and forest plots for the cancer to BMI direction 
Mendelian randomization tests. A) Breast cancer to BMI. B) Colorectal cancer to BMI. 
C) Prostate cancer to BMI 
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Supplementary Figure 10. Scatter and forest plots for the WHRadjBMI to cancer 
direction Mendelian randomization tests. A) WHRadjBMI to breast cancer. B) 
WHRadjBMI to colorectal cancer 
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Supplementary Figure 11. Scatter and forest plots for the cancer to WHRadjBMI 
direction Mendelian randomization tests. A) Breast cancer to WHRadjBMI. B) 
Colorectal cancer to WHRadjBMI. C) Prostate cancer to WHRadjBMI 

 
 


