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ABSTRACT

Obesity is a common, complex condition that poses serious health problems world-
wide. Itis also a known critical risk factor for some non-communicable diseases includ-
ing cancers. Different anthropometric measures such as body mass index (BMI) and
waist-to-hip ratio (WHR) have been used to assess obesity. The latter is an index for
central or abdominal obesity while the former represents total or overall obesity. Epi-
demiological studies provide evidence that central and overall obesity measures may
relate to cancer risk differently. The exact physiological mechanisms that enable the
obesity and cancer co-morbidity remain unclear. However, certain factors such as in-
sulin-like growth factors, hyperglycaemia, dysregulated lipid profile and adipokine fac-
tors have been hypothesised. Genome-wide association studies (GWAS) have identi-
fied numerous common genetic variations for obesity and cancer phenotypes. How-
ever, these variations provide only modest clues as to the underlying comorbidity. Nev-
ertheless, output from GWAS can be applied to statistical methods such as polygenic
scores and Mendelian randomization that aid in the unravelling of shared determinants.
In this PhD project, | assessed the impact of overall and central obesity on the risk of
cancers including overall breast, post-menopausal breast, prostate, colorectal, lung
and pancreatic cancers. | defined the genetic correlation between BMI/WHRadjBMI
and cancers using the UK Biobank dataset. | then used established BMI and
WHRadjBMI genome-wide loci to create obesity polygenic scores which were then
tested for association with cancer phenotypes in the UK biobank. Further, using estab-
lished genetic variants associated with these phenotypes, | performed MR between
the two obesity phenotypes and three cancers (breast, prostate and colorectal) to in-

vestigate the causal relationships between them.



RESUME

L'obésité est une affection courante et complexe qui pose de graves problémes de
santé dans le monde entier. Elle est également un facteur de risque critique connu
pour certaines maladies non transmissibles, dont les cancers. Différentes mesures
anthropomeétriques telles que l'indice de masse corporelle (IMC) et le rapport taille-
hanche (RTH) ont été utilisées pour évaluer I'obésité. Ce dernier est un indice de
I'obésité centrale ou abdominale, tandis que le premier représente I'obésité totale ou
globale. Des études épidémiologiques fournissent des preuves que les mesures de
l'obésité centrale et de l'obésité globale peuvent avoir un rapport différent avec le
risque de cancer. Les mécanismes physiologiques exacts qui permettent la
comorbidité entre l'obésité et le cancer restent flous. Cependant, certains facteurs tels
que les facteurs de croissance analogues a l'insuline, I'hnyperglycémie, la dérégulation
du profil lipidique et les facteurs adipokines ont fait I'objet d'hypothéses. Les études
d'association pangénomique (GWAS) ont identifié de nombreuses variations
geénetiques communes pour les phénotypes de I'obésité et du cancer. Cependant, ces
variations ne fournissent que de modestes indices sur la comorbidité sous-jacente.
Néanmoins, les résultats des études d'association pangénomique peuvent étre
appligués a des meéthodes statistiques telles que les scores polygéniques et la
randomisation Mendélienne (MR) qui aident a déméler les déterminants communs.

Dans ce projet de doctorat, j'ai évalué I'impact de I'obésité globale et centrale sur le
risque de cancers, notamment le cancer du sein, le cancer du sein post-
meénopausique, le cancer de la prostate, le cancer colorectal, le cancer du poumon et
le cancer du pancréas. J'ai défini la corrélation génétique entre I'MC/I'RTH et les
cancers en utilisant 'ensemble des données de la UK Biobank. J'ai ensuite utilisé des

loci génomiques établis pour I'IMC et I'RTH afin de créer des scores polygéniques



d'obésité dont I'association avec les phénotypes de cancer a ensuite été testée dans
la UK Biobank. En outre, a l'aide de variantes génétiques établies associées a ces
phénotypes, j'ai effectué une MR entre les deux phénotypes d'obésité et trois cancers

(sein, prostate et colorectal) afin d'étudier les relations causales entre eux.



ABBREVIATIONS

AGE - Advanced Glycation End products

BCAC — Breast Cancer Association Consortium
BMI — Body Mass Index

CPRD - Clinical Practice Research Datalink

GIANT — Genetic Investigation of ANthropometric Traits
GLUT1 — Glucose Transporter 1

GLUT4 — Glucose Transporter 4

GWAS — Genome-Wide Association Studies

HDL — High Density Lipoprotein

IGF-IIR — Insulin-like Growth Factor 2 Receptor
IGF-IR — Insulin-like Growth Factor 1 Receptor
IGFBP — Insulin-like Growth Factor Binding Proteins
IR — Insulin Receptor

LDL — Low Density Lipoprotein

LDSC - Linkage Disequilibrium Score

MAF — Minor Allele Frequency

MR — Mendelian randomization

ObR - Leptin Receptor

PGS - Polygenic Score



RAGE - Receptor for Advance Glycation End products
SNP — Single Nucleotide Polymorphism

T2D — Type 2 Diabetes

UKBB — UK Biobank

WC — Waist Circumference

WHR — Waist-to-Hip Ratio

WHRadjBMI — BMI adjusted WHR
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1. INTRODUCTION

1.1 Obesity and cancer

Overweight and obesity are common and complex conditions defined by excessive fat

accumulation in adipose tissue that pose a threat to health.

Globally, obesity continues to become a health concern affecting not just developing
countries, but also in low- and middle-income countries. Worldwide, an estimated 13%
of adults in 2016 were obese and furthermore, 2.8 million deaths yearly are attributed
to being overweight and obese'. Additionally, excess body weight has been

established as a risk factor for several non-communicable diseases including cancers’.

Cancer refers to a disease characterised by abnormal and uncontrolled cell growth that
has potential of spreading to other parts of the body. According to a recent international
cancer research study, the top five common cancer types in the world are female
breast, lung, colorectal and prostate cancers?. An estimated 19.3 million new cancer
cases were reported in 2020 with this number projected to exceed 28 million by 20402
Moreover, cancer is the second leading cause of mortality worldwide, after

cardiovascular disease, with nearly 10 million deaths attributed to cancer as of 20203.

1.2 Measures of obesity

Since its development in the mid-1800s, the body mass index (BMI) is the most
common anthropometric measure use in clinical and research settings to indirectly
assess adiposity. It is computed by dividing someone’s weight in kilograms by the

square of their height in meters (kg/m?). Based on the World Health Organization

11



(WHO) guidelines, BMI is used to define four main weight categories®. Specifically,
normal healthy weight includes BMI between 18.5 and 24.9 kg/m?, while BMI less than
18.5 kg/m? is considered underweight. Individuals with BMI greater than or equal to 25
kg/m?, but below 30 kg/m? are considered overweight. BMI greater than or equal to 30

kg/m? defines the obese category.

Despite being a routine measure of adiposity, BMI falls short of being a perfect
measure for several reasons. For instance, BMI may not accurately define obesity
since it does not distinguish between lean and fat mass*. Additionally, individuals who
may be metabolically unhealthy can be classified in the normal weight category®.
Adipose tissue distribution, which is a significant risk factor in type 2 diabetes (T2D),
cardiovascular disease, and cancer, is also not captured using BMI. Therefore, other
anthropometric measures that assess adipose tissue distribution and improve clinical
evaluation of metabolic health have been developed including waist circumference
(WC) and the waist-to-hip (WHR) ratio (unitless measure). WHR is defined by dividing
someone’s WC, measured in cm, to their hip circumference, in cm. According to the
WHO, a healthy WHR is 0.8 or lower for women and 0.95 or lower for men®. A WHR
of 0.86 and greater is considered a high health risk for women, while for men, a WHR

equal to or greater than 1.0 poses high health risk®.

While BMI is considered an index for overall/total adiposity, WC and WHR assess
central/abdominal/visceral adiposity. Central adiposity correlates to insulin resistance,
dyslipidaemia, hypertension which comprise the metabolic syndrome’°. It thus follows
that overall and central adiposity measures may relate to disease risk/prevalence

differently, with cancer being the disease of interest for my research.
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1.3 Epidemiological associations

The relationship between cancer and obesity has been a growing topic of research
over the last three decades. In fact, recent global estimates on obesity and cancer risk
have indicated that among adults aged 30 and above, approximately 3.6% of all new

cancer cases can be linked to high BMI'°.

From multiple studies examining the relationship between body weight and cancer
incidence and mortality, it appears that the link between the two is gender-, site-, age-

and menopause status-specific''-"3.

For instance, in large prospective study among 900,053 cancer-free adults (404,576
men and 495,477 women) at baseline in the United States of America (USA), the
authors defined the relationship between obesity and cancer mortality following a 16-
years follow-up period’!. More specifically, they tested for epidemiological association
between overweight and obesity (measured using BMI) and the risk of death caused
by overall cancer at cancer-specific sites in the body, highlighting the following. 1) For
both men and women with BMI > 40 kg/m?, the overall mortality due to all cancers was
52% and 62% higher, respectively, than their counterparts of normal BMI range (23
kg/m?—29 kg/m?)'". 2) Additionally, high BMI was associated with a higher risk of death
due to cancer of the colon, rectum, liver, oesophagus, gall bladder, kidney and
pancreas in both men and women''. 3) The association between high BMI and cancer
mortality was gender specific for specific cancer types''. For men with a BMI higher
than 35 kg/m?, the authors observed an increased risk of death due to cancers of the
prostate and stomach, compared to men within normal BMI range. Similarly, women
with BMI higher than 40 kg/m? had significant risk of death due to cancers of the ovary,

cervix, uterus, and breast. Overall, this study demonstrated, by leveraging on large
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scale data, that overweight and obesity was associated with greater risk of death from

all cancers in both men and women.

While the study above focused on the relationship between obesity and the risk of
death by cancer, others have assessed the relationship between obesity and cancer

incidence'213,

In a landmark systematic review and meta-analysis of prospective observational
studies, Renehan et al. evaluated the relationship between incremental increase in
BMI and the risk of cancer incidence for both men and women'2. In total, they analysed
data from 141 articles spanning 221 datasets comprising 282,137 incident cancer
cases (154,333 men and 127,804 women). They reported that for every 5 kg/m?
increase in BMI among men, there was significant increase in risk of cancers of the
colon, rectum, thyroid, kidney as well as oesophageal adenocarcinoma, non-Hodgkin’s
lymphoma, and leukaemia'. In contrast, they report a significant decrease incidence
of lung cancer and squamous cell carcinoma of the oesophagus associated with every
5 kg/m? BMI increase'. In women, similar BMI increments were associated with
increased incidence of endometrial, renal, thyroid, post-menopausal breast, pancreatic
and colon cancers as well as oesophageal adenocarcinoma and leukaemia'?. Increase
in BMI was however associated with a decreased risk of lung and premenopausal
breast cancers and squamous cell carcinoma of the oesophagus. Additionally, the
authors highlighted several points based on their analyses. 1) For post-menopausal
breast cancer, the direct association observed with increased BMI was consistent in
studies that included post-menopausal women only and those that included both pre-
and post-menopausal breast cancer'2. 2) The association between increased BMI and
cancer differed between the sexes for some cancers'2. For instance, in colon cancer,

the associations with increased BMI were stronger in men than in women. However,
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for rectal cancer, the associations with increased BMI were stronger in women than
men. The association with increased BMI and pancreatic cancer appeared similar in
both men and women'2. 3) Despite the association between increased BMI and most
cancers being consistent across different populations, for some cancer sites the risk
estimates varied from one population to the other'?. Case in point, the authors show
that despite North America, European and Australian populations having an inverse
association between increased BMI and premenopausal cancer, in Asia-Pacific

populations the association was positive'2.

Finally, in a more recent study based on routinely collected primary care records, the
authors investigated the relationship between BMI and site-specific cancers in the
United Kingdom (UK)'3. The UK Clinical Practice Research Datalink (CPRD) captures
a wide range of computerised primary care data from general practitioners in the UK.
Data available in the CPRD include hospital admissions and referrals, primary and
secondary diagnosis, information regarding lifestyle factors (e.g., smoking status) and
body measurements such as height and BMI. In this cohort study, the authors present
results for 22 cancers among 5.24 million individuals with BMI data and highlight
several findings. 1) Higher BMI was associated with an increased risk of uterine,
gallbladder, kidney, cervical, thyroid, liver, colon, ovarian, post-menopausal breast
cancers, and leukaemia while inverse associations were shown between high BMI and
lung, oral cavity, premenopausal breast and prostate cancers'3. 2) For colon and liver
cancers, the associations with BMI were stronger in men than women'3. 3) There was
a positive association between BMI and both pre- and post-menopausal breast
cancers at BMI levels less than 22 kg/m?. However, above this BMI cut-off, the risk of
premenopausal breast reduces'®. 4) A similar pattern was seen for prostate cancer in

men where the risk associated with BMI peaked at 24 kg/m?, after which the risk of

15



prostate cancer reduces markedly'3. 5) Low BMI was associated with higher risk for

lung, oral cavity, and stomach cancers but only among current and former smokers™3.

1.3.1 Limitations of observational studies
Despite their usefulness in highlighting the associations between obesity and cancer,

several limitations of epidemiological studies need to be considered.

Results from epidemiological studies often suffer from bias and confounding by factors
that are either inaccurately or completely accounted for in the study design. A classic
confounder that has emerged in almost all studies is smoking. Several studies have
reported the inverse association between BMI and lung, oral cavity and stomach
cancers'™4. This association, however, only holds among current and former
smokers, and is not seen in those who have no history of smoking. Moreover, similar
apparent confounding by smoking has been reported in oesophageal cancer'. High
BMI is shown to be associated with higher risk of oesophageal adenocarcinoma but is
inversely associated with squamous cell carcinoma of the oesophagus which is more
associated with smoking. Indeed, it has been shown that for the same sex and age,
smokers tend to have lower BMI than their non-smoking counterpartss. Therefore, the
interpretation of such observational findings, as well as the study design, needs careful

consideration of such factors.

Epidemiological studies assessing the relationship between obesity and cancer have
focused mostly on overall obesity. As such, there are far fewer studies assessing the
relationship between measures of central/abdominal obesity and cancers such as WC
and WHR. BMI is shown to be an imperfect measure of obesity and it follows that other

anthropometric measures such as those assessing central adiposity need addressing.
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In fact, for some cancers such as of the prostate, central obesity appears to be a better
predictor of cancer risk than overall BMI'®7, Additionally, central obesity and other
components of the metabolic syndrome have been shown to be elevate the risk of
pancreatic, colon and breast cancers'®2°. More studies are therefore needed to

quantify the relationship between central obesity and cancers.

1.4 Mechanisms linking obesity and cancer
Several mechanisms have been suggested to play a role in the manifestation of the

obesity-cancer co-morbidity.

Obesity

AL _
AL
Liver Muscle

Insulin and insulin-like
growth factors Hyperglycaemia Dyslipidemia Adipokines

TIGF-IR TGLUT1 1 LDL-Cholestrol T Leptin
TIR-A/IR-B TAGE TLDLR TNAMPT
t C-Peptide TRAGE TEstrogen TTNF
1IGFBP1/2 TInsulin 1 HDL-Cholestrol TIL-6
Tinsulin 4 Adiponectin
ail o)
L3 )
CR
Cancer

Figure 1. Mechanisms linking obesity and cancer. The liver, adipose and muscle tissues play
a role in the link between obesity and cancer. The mechanisms involved include insulin and
insulin-like growth factors, hyperglycaemia, dyslipidaemia and adipokines.

(Source: Adapted from Gallagher and LeRoith. Physiological Reviews (2015) 95(3) 727-748)
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1.4.1 Insulin and insulin-like growth factors

The insulin-like growth factor system comprises of the insulin receptor (IR), insulin-like
growth factor 1 and 2 receptors (IGF-IR/IGF-1IR) and their ligands: insulin, IGF-I, IGF-
Il and insulin-like growth factor binding proteins (IGFBP)?'. Circulating
hyperinsulinemia, leading to insulin resistance has been associated with an increase
in cancer?223. Overexpression of IGF-IR has been shown in breast, colorectal, liver
and prostate cancers?* with a loss of tumour suppressor genes BRCA1, p53 and PTEN
potentially driving the increased cancer risk?>26. Hyperinsulinemia driven by IR
overexpression on tumour cells may also lead to tumour growth and progression in
breast, colon, lung and prostate cancers?'?3. The IR has two isoforms: IR-A and IR-B.
IR-A lacks exon 11 of the IR gene and is mainly expressed in cancer cells increasing
their affinity for IGF-Il and insulin, providing a possible link between the cancer-
promoting effects of hyperinsulinemia seen in individuals with obesity?'. Dysregulated
signalling in tumour cells often leads to differential expression of splice factors (e.g.,
SRSF3) which leads to increased IR-A/IR-B ratio responsible for the effects of
hyperinsulinemia on tumour development?'?7. C-peptide levels, a more stable marker
of insulin secretion, have been associated with increased incidences of breast and

colorectal cancer?®2° but have not been associated with prostate cancer3?-32.

1.4.2 Hyperglycaemia
Cancer cells preferentially use glycolysis for energy production over oxidative
phosphorylation; a hallmark of cancer cells33. Metabolic tissues (skeletal and adipose)

use the glucose transporter 4 (GLUT4) to take up glucose into their cells. However,
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most cancer cells use the GLUT1 with increased affinity for glucose®*. This promotes
aerobic glycolysis in those cells which provides the precursors needed for lipid, amino
acid and nucleotide synthesis®. Increase in HbA1c levels, a marker for circulating
glucose levels, has been associated with a higher risk for breast and colorectal cancer
but no correlation has been observed with prostate cancer®. Circulating
hyperglycaemia also leads to production of advanced glycation end products (AGEs)
and their receptors (RAGEs)%¢. AGEs are formed when sugars such as glucose non-
enzymatically react with the free amino groups on proteins, lipids, and nucleic acids®®.
Individuals with obesity and T2D have higher levels of AGEs and RAGEs. Oxidative
stress and inflammation which arise from the interaction of RAGEs and their ligands

lead to promoter tumour growth, angiogenesis, and metastases®’.

1.4.3 Dyslipidaemia

Obesity is characterised by elevated levels of low-density lipoprotein (LDL) —
cholesterol and low levels of high-density lipoprotein (HDL) — cholesterol. Elevated
levels of total cholesterol, triacylglycerides (TAGs) and low levels of HDL-cholesterol
have been associated with up to 20% increase in cancer risk3. In addition,
polymorphisms in genes associated with hyperlipidaemia (APOE, APOA-1) have been
associated with an increased breast cancer risk®°. Cholesterol plays a chief role in
cancer growth and progression through increased PI3K/AKT signalling as shown in
vitro in breast, colon and prostate cancer cell lines which leads to increased cell
proliferation#®42. Cholesterol is also a precursor for progesterone, oestrogen, and
androgen. Studies have shown that human prostate cancers are able to synthesise

their own androgens, including testosterone, from cholesterol*344.
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1.4.4 Adipokines

Adipose tissue factors (adipokines), inflammatory cytokines and enzymes produced by
adipose tissue are abnormally regulated in obesity and T2D promoting tumour growth
and metastases. The adipose tissue presents a vital organ in tumour development and
progression in many organs as it not only surrounds many organs (e.g. heart, kidney)
but is also abundant in organs where cancer develops, such as breast. The adipose
tissue provides a local environment that enables cancer cells proliferation. Various
adipokines and cytokines are relevant to cancer including leptin, adiponectin, resistin,
TNF-a and interleukin 6 (IL-6)*4°. Leptin is a pro-inflammatory adipokine that is a
regulator of appetite®® that binds the leptin receptor (ObR). Higher ObR expression is
observed in breast tumours®' and is associated with poor prognosis. Binding of the
ODbR by leptin activates key intracellular pathways that promote tumour growth and
metastases. These pathways include those involved in cell growth and survival
(PIBK/AKTt, cyclin D1), inflammation response (NF-k, COX-2), angiogenesis (STAT4,
VEGF) and differentiation (Notch, Wn)*6:51-54 Adiponectin (an anti-inflammatory
adipokine) plasma protein levels have been shown to be low in individuals who are
obese and is associated with increased cancer risk*’%5. The protective role of
adiponectin signalling in cancer progression is mediated through phosphorylation of
the AMPK which antagonises leptin signalling®®. Resistin is another pro-inflammatory
adipokine associated with insulin resistance and is elevated in obesity and T2D.
Resistin mediates the effects of insulin resistance (described in hyperglycaemia above)
by activating the suppressor of cytokine signalling 3 (SOCS3) that interferes with

insulin signalling*®. Resistin is highly expressed in prostate cancer and promotes its
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proliferation via the P13K/AKt signalling pathways®®. TNF-a and IL-6 are pro-
inflammatory cytokines that are overexpressed in obesity. The pro-inflammatory
environment created by such cytokines promotes insulin resistance by blocking
adipocyte insulin action*®. The ensuing insulin resistance can promote tumour
development as illustrated earlier. Inflammatory cytokines also promote cancer
development via activation of NFkB and Stat3 signalling pathways involved in

angiogenesis giving the cancer cells metastatic properties®’.

1.5 Genome-wide association studies

Genome-wide association studies (GWAS) are instrumental in dissecting the
associations between common genetic variation (single nucleotide polymorphisms
[SNPs] with a minor allele frequency [MAF] > 5%) and diseases or traits of interest.
GWAS help unravel specific positions on a chromosome where a particular DNA
variant or other genetic marker associated with a disease or trait is located. The
identification of these positions on a chromosome, referred to as /oci (singular locus),
has enabled the successful elucidation of the genetic architecture of complex traits and
diseases (https://www.ebi.ac.uk/gwas/). Since the first hallmark GWAS was conducted
in the early 2000s%8, there have been significant advances in GWAS. Notably, there
has been an increase in the study sample sizes involved and the number of common
SNPs amenable for association analysis. Equally, the downstream application of

GWAS output has seen remarkable improvements.
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1.5.1 GWAS of obesity phenotypes
The largest-to-date GWAS of obesity phenotypes have been realised in-part through
the Genetic Investigation of Anthropometric Traits (GIANT) consortium (GIANT

consortium - Giant Consortium (broadinstitute.orq)).

1.5.1.1 BMI GWAS

In the most recent and largest GWAS of BMI to-date®, the authors meta-analysed
previous GWAS of BMI by GIANT consortium® and UK biobank (UKBB) BMI GWAS.
Altogether, there were 681,275 participants in this meta-analysis. Leveraging on this
sample size, there were 670 genome-wide significant loci (P<5X108) associated with
BMI (Figure 1). The proportion of phenotypic variance in BMI attributable to common

SNPs (SNP heritability was 22.4% (standard error (SE)=0.037).

Meta-analysis of Locke of al. (2015)
with GWAS of BMI In UK Blobank
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Figure 2. Manhattan plot of BMI GWAS meta-analysis performed by GIANT consortium
(Source: Yengo et al. Human Molecular Genetics (2018) 27:20)
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1.5.1.2 WHR/WHRadjBMI GWAS

Similarly, as with BMI GWAS, the largest WHR and BMI adjusted WHR (WHRadjBMI)
GWAS was a meta-analysis performed by the GIANT consortium®!. They meta-
analysed studies included previous WHR/WHRadjBMI GWAS®? and UKBB GWAS on
WHR/WHRadjBMI. In total, there were 697,734 and 694,649 study participants in the
meta-analysis for WHR and WHRadjBMI respectively. There were 316 and 346
genome-wide significant /oci associated with WHR and WHRadjBMI respectively
(Figure 2). The SNP heritability of WHR and WHRadjBMI was 19.4% (SE=0.002) and

17.4% (0.002) respectively.

b. Analysis of waist-to-hip ratio
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c. Analysis of waist-to-hip ratio adjusted for body mass index
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Figure 3. Manhattan plot of WHR and WHRadjBMI GWAS meta-analysis conducted by
GIANT consortium

(Source: Pulit et al. Human Molecular Genetics (2019) 28:1)
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1.5.2 Cancer GWAS
In the same way as with obesity GWAS, concerted efforts through working groups and
consortia led to the discovery of common genetic variation associated with different

cancers.

1.5.2.1 Breast cancer

According to the WHO, the most common cancer in the word in terms of new cases
was breast cancer®®. The most recent and largest GWAS of breast cancer was
achieved through a meta-analysis of 82 breast cancer studies across 20 countries
under the Breast Cancer Association Consortium (BCAC)®. The total sample size in
the meta-analyses included 133,384 cases and 113,789 controls (N=247,173) of
European ancestry. This meta-analysis brought the total number of genome-wide

significant loci associated with breast cancer to 201.

1.5.2.2 Prostate cancer

Prostate cancer is the most common cancers among men. The largest GWAS to date
of prostate cancer is a meta-analysis composed of 52 studies®. In total, there were
79,148 cases and 61,106 controls (N=140,254) of European ancestry. From this effort,

the resultant number of genome-wide significant /oci for prostate cancer was 248.

1.5.2.3 Colorectal cancer

Recent global data on cancer suggest that colorectal cancer is the second leading
cause of cancer deaths. The most recent GWAS of colorectal cancer comprises a
meta-analysis of 16 studies®®. This study had 34,627 cases and 71,379 (N=106,006)
controls of European ancestry. Currently, there are 137 genome-wide significant /oci

associated with colorectal cancer.
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1.5.2.4 Pancreatic cancer

Pancreatic cancer is a leading cause of cancer-related mortality worldwide. In fact, in
America, it ranks third after lung and colon cancers in terms of cancer-related deaths.
The largest GWAS of pancreatic cancer comprises of 9,040 cases and 12,946 controls
(N=21,536) of European ancestry®’. The two consortia involved in this meta-analysis
were the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer
Case-Control Consortium (PanC4). Currently, there are 22 genome-wide significant

loci for pancreatic cancer.

1.5.2.5 Lung cancer

Globally, lung cancer ranks first among the leading cause of cancer-related deaths®3.
The largest GWAS to date of lung cancer included 27,065 study participants of
European ancestry (14,803 cases and 12,262 controls)®. This meta-analysis identified

18 susceptibility /oci associated with lung cancer.

Table 1. Summary of the cancer GWAS studies to date

Cancer Cases Controls Total Number of PubMed ID
associated
Loci

Breast 133,384 113,789 247 173 201 32424353
Prostate 79,148 61,106 140,254 248 29892016
Colorectal 34,627 71,379 106,006 137 31089142
Pancreatic 9,040 12,946 21,536 22 29422604
Lung 14,803 12,262 27,065 18 28604730

Legend: loci=number of genome-wide significant loci
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1.5.3 Limitations of GWAS
GWAS have been pivotal in broadening our understanding of complex diseases over
the last decade. However, several limitations have hampered the utility of GWAS in

understanding the pathophysiology underlying most complex, polygenic phenotypes.

GWAS study design focuses mostly on SNP of common allele frequency (MAF>5%).

The majority of common SNPs tend to have moderate to small effects sizes on a

phenotype.
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Figure 4. Graph highlighting the relationship between effect size estimates and the minor allele
frequency

(Source: Roten et al. BMC Pregnancy and Childbirth (2015) 15:319)

Consequently, individual associations from typical GWAS often have modest effect

sizes, while attaining to the strict significance thresholds set up for multiple testing
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correction. The proportion of phenotypic variance explained by genetic factors is
referred to as heritability®®7°. Narrow-sense (h?) and broad sense (H?) heritability,
usually defined from pedigree studies, refer to the phenotypic variance explained by
additive and total (additive and non-additive) genetic effects respectively®®70. SNP
heritability (h?sne) on the other hand refers to the proportion of variance explained by

genome-wide significant loci from GWAS'".

Since the advent of GWAS, there has emerged the so-called “issue of missing
heritability”, where h?sne estimates are usually much less than h? estimates’’-"2. One
explanation suggested to account for the “missing heritability” is the lack of coverage
of rare and low-frequency variation in genotyping arrays, as seen in most GWAS of the
past decade®’6273, Other explanations proposed include the existence of gene-by-

gene, or gene-by-environment interactions”'-73.

The results from individual GWAS studies offer little in elucidating potential shared
pathophysiology between related phenotypes. For any two related phenotypes, such
as obesity and cancer, their individual GWAS results provide association results
independent of each other. The genetic correlation and/or heritabilities between such
traits is not taken into consideration in typical GWAS pipelines. However, there are
methods that have been developed to jointly analyse phenotypes in GWAS74-7¢ and

are described in Section 1.5.4.3.
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1.5.4 Application of GWAS outputs

The above-mentioned limitations notwithstanding, output from GWAS can be

incorporated in downstream analyses that enhance the utility of GWAS.

1.5.4.1 Polygenic (risk) scores (PGS)
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Figure 5. Polygenic scores analyses overview
(Source: Choi et al. Nature Protocols (2020) 15 :2759-2772)
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As highlighted previously, GWAS identified numerous genetic variations associated
with complex, polygenic phenotypes. However, independently these variants have
modest effect sizes thus limiting their utility in predictive analyses. Statistical genetics
methods such as polygenic scores (PGS, continuous phenotypes) or polygenic risk
scores (PRS, binary phenotypes) have been developed to combine the effects of
multiple variants across the genome to improve their predictive power’”-78.

A polygenic score (PGS) refers to the weighted sum of (genome-wide) risk variants
associated with a particular phenotype. The variants are weighted by their effect sizes
and are derived from the most informative GWAS, usually the largest. Summary
statistics from GWAS (effect sizes and their p-values), through which the PGS are
based on, constitute what is referred to as the base data. On the other hand, target
data refers to the genotype-phenotype data for the individuals used to calculate the
PGS. It is important to ensure that the base and target data are independent with no
sample overlap. The independence of datasets reduces the inflation of the association
between the PRS and phenotypes of interest. At the same time, the predictive ability
of PGS also depends on the ancestral similarity between base and target datasets’®.
Both the base and target data must undergo further quality control steps’®. The base
pair positions in both base and target data should be from the same genome build.
Additionally, strand ambiguous SNPs which cannot be resolved using allele
frequencies, and duplicated SNPs should be excluded from the analysis. Strand-
flipping of mismatching alleles between the base and target data is performed as part
of most PGS software pipelines. Otherwise, unresolved mismatching SNPs should be
excluded from the analyses.

PGS calculation can be done using various platforms including Plink® and dedicated

PRS software such as LDpred®! and PRSice-282. Once constructed, PGS can be used
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to test for association with phenotypes of interest, disease status prediction among

other uses’’-78,

1.5.4.2 Mendelian randomization

e _—

(3)

Figure 6. Mendelian randomization framework and assumptions. G represents the genetic
variants (SNPs), X is the exposure, Y is the outcome, and U represents confounders. Y is the
SNP-exposure association. B is the causal effect estimate of the exposure on the outcome.

(Source: Adapted from Bowden and Holmes. Research Synthesis Methods (2019) 10(4)486-
496)

Another application of GWAS output has been in Mendelian randomization (MR)
studies. Genetic variants associated with the exposure constitute the “instrument”; their
distribution in the populations is random, given the random nature of inheritance
patterns and fixation of alleles at the point of conception. In MR analyses, genetic
variants (typically SNPs from GWAS) are used as instrumental variables®? (IVs) (G) to
assess the causal relationship between a risk factor (exposure, X) and a health

outcome of interest Y (Figure 5)4.

Three core IV assumptions exist (Figure 5)8485:
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1. G should be associated with the exposure.
2. G should be independent of confounders of the exposure-outcome association

3. G is associated with the outcome only through the exposure

In most MR studies, the relationship between an exposure and an outcome, plus the
reverse is investigated. This gives rise to bi-directional MR studies. Leveraging on
GWAS summary statistics of both the exposure and the outcome, researchers are able
to perform two-sample bi-directional MR through software such as the TwoSampleMR

R package®®.

In a recent MR study, the authors investigated the relationship between two obesity
related traits (BMI and WHR) and breast, colorectal, ovarian, prostate and lung
cancers®’. They used cancer GWAS summary statistics from the Genetic Associations
and Mechanisms in Oncology (GAME-ON) Consortium which constituted 51,537 cases
and 61,600 controls across the cancers analysed. 77 and 14 SNPs of BMI and WHR
respectively derived from published GWAS®%.88 were used as instrument variables in
the one-sample MR study. They reported a statistically significant inverse relationship
between BMI and both overall and oestrogen-receptor (ER)- negative breast cancer.
Additionally, BMI was causal for ovarian, lung and colorectal cancers. WHR MR tests
were not significant for any cancer tests. However, there were an inverse association
between WHR and overall breast cancer that was marginally outside significance
threshold. The reverse direction, cancers to obesity phenotypes, was however not
investigated. Given the limited number of instrument variables for BMI and WHR, as
well as the cancer sample sizes, the statistical power was limited in this analysis.
Therefore, larger sample sizes and more instrument variables would boost the findings

of such analysis.
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1.5.4.3 Multi-phenotype GWAS
Conventional GWAS analyse diseases and phenotypes independently. Therefore, the
association results from standard GWAS offer little in explaining underlying genetic

determinants between related traits.

By jointly taking into account information from related traits, multi-phenotype GWAS
approaches help improve the power for loci discovery, improve the accuracy of effect
size estimates and provide potential indicators of multi-phenotype effects such as
pleiotropy. Several tools exist to perform multi-phenotype analyses of GWAS using
either individual level or summary level data’*"6. GWAS summary statistics of related
traits can thus be jointly analysed to unravel underlying genetic co-morbid

determinants.

1.5.4.4 Genetic correlation

The proportion of phenotypic variance between two phenotypes that is attributable to
genetic causes is referred to their genetic correlation (rg). Genetic correlation estimates
range from O to 1 with O signifying no genetic correlation and 1 suggesting complete

genetic correlation.

Tools such as the linkage disequilibrium score (LDSC) regression tool have enabled
the efficient computation of genetic correlation estimates between phenotypes? using
GWAS summary statistics. Genetic correlation between phenotypes may be the result

of linkage disequilibrium, biological pleiotropy or underlying confounding®.
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2 PROBLEM STATEMENT

There is growing evidence from observational studies of the link between obesity and
risk of cancer incidence and mortality. Several mechanisms that potentially contribute
to the emergence of the two diseases have over the years been postulated. However,

our understanding of the co-morbidity remains limited.

As sample sizes in GWAS increase, numerous SNPs have been identified for both
obesity and cancer phenotypes. However, individually these GWAS contribute
modestly to explaining the shared genetic determinants between obesity and cancer.
Various tools that leverage on GWAS output have been developed including PGS and
MR. However, existing studies have been limited in statistical power due to limited
number of published variants and low sample sizes at the time these studies were

conducted.

As most GWAS studies make their summary statistics publicly available, and the
emergence of large biobanks such as the UK biobank, researchers can design more

powerful studies leveraging on improved statistical power.
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3 HYPOTHESIS AND AIMS

We hypothesize that there are shared genetic determinants between obesity and
cancer that can be elucidated using polygenic scores and Mendelian randomization

analyses applied to large scale genetic data.
The present project includes the following aims:

1. To define the genetic correlation between overall (BMI) and central
(WHRadjBMI) obesity and cancers in the UK Biobank resource. These cancers
included overall and post-menopausal breast, prostate, colorectal, pancreatic
and lung cancers

2. To construct BMI and WHRadjBMI polygenic scores from the largest GWAS of
these phenotypes and test for their association with the above-mentioned
cancers defined in the UK Biobank

3. To assess the causal relationships between the two obesity phenotypes (BMI
and WHRadjBMI) and breast, prostate, pancreatic and colorectal cancers to

perform a two-sample bi-directional Mendelian randomization approach
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4 FIRST ARTICLE

“‘Abdominal obesity is a more important causal risk factor for pancreatic cancer than

overall obesity”

(Brief communication article: Accepted by the European Journal of Human Genetics)
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ABSTRACT

Obesity and type 2 diabetes (T2D) are associated with increased risk of pancreatic
cancer. Here we assessed the relationship between pancreatic cancer and two distinct
measures of obesity, namely total adiposity, using BMI, versus abdominal adiposity,
using BMI adjusted waist-to-hip ratio (WHRadjBMI) by utilising polygenic scores (PGS)
and Mendelian randomization (MR) analyses. We constructed z-score weighted PGS
for BMI and WHRadjBMI using publicly available data and tested for their association
with pancreatic cancer defined in UK biobank (UKBB). Using publicly available
summary statistics we then performed bi-directional MR analyses between the two
obesity traits and pancreatic cancer. PGSgwmi was significantly (multiple testing-
corrected) associated with pancreatic cancer (OR[95%CI]=1.0804[1.025-1.14],
P=0.0037). The significance of association declined after T2D adjustment
(OR[95%CI]=1.073[1.018-1.13], P=0.00904). PGSwHRradjgmi @ssociation with pancreatic
cancer was at the margin of statistical significance (OR[95%CI]=1.047[0.99-1.104],
P=0.086). T2D adjustment effectively lost any suggestive association of PGSwhRradjsmi
with pancreatic cancer (OR[95%CI]=1.039[0.99-1.097], P=0.14). MR analyses showed
a nominally significant causal effect of WHRadjBMI on pancreatic cancer
(OR[95%CI]=1.00095[1.00011-1.0018], P=0.027) but not for BMI on pancreatic
cancer. Overall, we show that abdominal adiposity measured using WHRadjBMI, may
be a more important causal risk factor for pancreatic cancer compared to total

adiposity, with T2D being a potential driver of this relationship.

KEY WORDS: Pancreatic cancer, obesity, polygenic scores, type 2 diabetes,

Mendelian randomization

37



a7

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

INTRODUCTION

Pancreatic cancer is rare form of cancer, associated with poor prognosis and low
survival rates(1). Furthermore, epidemiological evidence from observational studies
suggests obesity and type 2 diabetes (T2D) are major risk factors for pancreatic
cancer(2,3). Body mass index (BMI) and waist-to-hip ratio (WHR) are two common
metrics used to assess total and abdominal adiposity. However, despite being a routine
measure of adiposity in clinical and research settings, BMI is an imperfect measure of
metabolic health. Alternatively, WHR represents abdominal adiposity which has a
stronger correlation to the metabolic syndrome compared to total adiposity(4). To date,
only 22 genome-wide significant signals are established in genome-wide association
studies (GWAS) for pancreatic cancer(5). In contrast, more than 600 and 300 signals
have been reported for BMI and WHR, respectively(6,7). These individual associations
from GWAS, however, do not explain the shared co-morbidity between obesity and
pancreatic cancer. Nevertheless, genomic loci identified in GWAS could be
implemented in methods such as polygenic scores (PGS)(8) and Mendelian
randomization (MR)(9). PGS can be used to define the shared genetic component
between epidemiologically related phenotypes, while MR uses genetic variants as
instruments to assess causality in relationships between phenotypes. In the present
study, the impact of total and abdominal adiposity on pancreatic cancer risk was
examined through PGS analyses, using publicly available GWAS of obesity traits data
and information about pancreatic cancer within UK biobank. Moreover, using
established genetic variants, we conducted a bi-directional MR between two adiposity

traits and pancreatic cancer to assess the causal relationships between them.
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MATERIALS AND METHODS
UK Biobank

The UK Biobank (UKBB) resource (www.ukbiobank.ac.uk) was used to define
adiposity and cancer phenotypes for this study. We used the BMI data collected at the
time of recruitment (UKBB field 21001). WHR data was computed by dividing waist
circumference (UKBB field 48) by hip circumference (UKBB field 49) measured at
baseline. BMI and WHR data were available for 457,270 individuals (Supplementary
Figure 1). For pancreatic cancer, we used a combination of hospital admissions data,
the tenth revision of the International Classification of Disease (ICD-10) codes and self-
report data. Individuals with an ICD-10 code (code C25) and who self-reported to have
a pancreatic cancer diagnosis (code 1026) were set as cases, while individuals with
no cancer diagnosis were set as controls. In total, there were 1,416 cases and 455,854
controls (n=457,270) for pancreatic cancer. To limit confounding by ancestry, only
individuals of European ancestry were included in our analyses (Supplementary

Methods, Supplementary Figure 1).
UKBB GWAS

We performed single phenotype GWAS in UKBB using the BOLT-LMM software(10).
BOLT-LMM applies a linear mixed model while age, sex, genotyping array and six
principal components (PCs) were used as covariates for pancreatic cancer and BMI.
BMI was an extra covariate in WHR GWAS to obtain WHRadjBMI analyses. The

statistical threshold for genome-wide significant SNPs used was P<5x10-5.
Genetic correlation estimation

To estimate the genetic correlation (rG) between adiposity phenotypes
(BMI/WHRadjBMI), T2D (Supplementary Methods) and pancreatic cancer in UKBB,

4
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we used the linkage disequilibrium (LD) score (LDSC) regression approach and

tool(11).
Polygenic scores

To construct BMI and WHRadjBMI PGS, we used risk increasing alleles at 567 and
274 SNPs respectively. The SNP list was obtained from recent large scale GWAS me-
ta-analyses by GIANT consortium(6,7). However, as the target data for PGS analysis
was the UKBB, which was part of the GIANT meta-analyses, we used weights from
the study which did not include UKBB in the meta-analyses(12,13) (Supplementary
Figure 2). We used the PLINK software(14) to generate the PGS. We used sex, age,
genotyping array and six PCs as covariates in the regression model. As a sensitivity

analyses, we ran a regression model with T2D as an extra covariate.
Mendelian Randomization

To assess causality between the two adiposity measures and pancreatic cancer, we
performed bi-directional MR using the TwoSampleMR R package(15). We obtained
the genetic instrument for BMI (666 SNPs) and WHRadjBMI (278 SNPs) from the
GIANT consortium(6,7). The genetic instruments for pancreatic cancer (16 SNPs) were
obtained from Klein et al(5). The causal effect estimate was derived from the inverse-
variance weighted (IVW) method(16). The MR-Egger, simple mode, weighted mode
and weighted median tests were used as sensitivity analyses(17). We excluded
palindromic SNPs from the exposure-outcome pairs and matched alleles between
summary statistics as part of the TwoSampleMR pipeline. Outliers were removed after
inspection of scatter plots and leave-one-out results. Heterogeneity among the genetic

instruments was evaluated using the Cochran’s Q test.
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RESULTS

UKBB GWAS and genetic correlation estimates

In UKBB GWAS, we identified 998, 1,014 and 4 significant independent SNPs at 901,
718, 4 loci for BMI, WHRadjBMI and pancreatic cancer respectively (Figure 1). The
four /oci identified for pancreatic cancer were TERT, ABO, KLF and ZFP1 (Figure 1C)
in line with recently published GWAS of pancreatic cancer(5). None of the obesity
signals were shared with pancreatic cancer in the UKBB. However, 3 of the 22
established pancreatic cancer loci by Klein et al(5) were shared with WHRadjBMI in
UKBB and had same direction of effect. These were NR5A2, ETAA1 and ZNRF3.
Conversely, only ETAA1 from Klein et al(5) was shared with BMI in the UKBB.
Additionally, there was positive genetic correlation between both obesity measures and
pancreatic cancer, but the estimates did not meet statistical significance (rGsm=0.472,
P=0.479, rGwradiam=0.098, P=0.671) (Supplementary table 1). Similarly, the genetic
correlation between T2D and pancreatic cancer in the UKBB was underpowered and

did not meet statistical significance (rG=-0.0139, P=0.961) (Supplementary Table 1).
Effects of obesity variants on pancreatic cancer via polygenic scores

We identified a significant (Bonferroni multiple testing corrected P=0.05/2 tests=0.025)
direct association between BMI PGS and pancreatic cancer
(OR[95%CI]=1.0804[1.025-1.14], P=0.0037). We also identified a direct association
between WHRadjBMI PGS and pancreatic cancer, however, this association was not
statistically significant (OR[95%CI]=1.047[0.99-1.104], P=0.086) (Table 1). To
determine if the association between adiposity PGS and pancreatic cancer was driven
by T2D, we adjusted for T2D in the association tests. After T2D adjustment, the

significance of the association for both BMI and WHRadjBMI PGS declined suggesting
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that T2D could be acting via adiposity in pancreatic cancer risk
(ORswmi_Pcs[95%Cl]=1.073[1.018-1.13],,=0.00904);

ORwHRadigmi_pas[95%CI1]=1.039[0.99-1.097], P=0.14). Notably, the decline in
association after T2D adjustment was more for WHRadjBMI PGS than BMI PGS

(Table 1).

Causality results using Mendelian randomization

We report a causal effect of WHRadjBMI on pancreatic cancer at nominal significance
(OR[95%C]I]=1.00095[1.00011-1.0018], P=0.027) based on the IVW method,
indicating a weak but positive causal effect estimate (Figure 2). However, none of the
other MR tests for this direction were significant. The Cochran’s Q test indicated
absence of heterogeneity among the genetic instruments (Qnvw=258.08, P=0.787). On
the contrary, we have not identified any causal effect (Bonferroni P=0.05/4
tests=0.0125) of BMI on pancreatic cancer in either of the MR tests performed
(Supplementary Table 2). There was no evidence of a causal effect from pancreatic
cancer to WHRadjBMI (ORww(P)=0.143(0.604). The results from pancreatic cancer to
BMI were less informative with large standard errors despite nominal significance in
some of the sensitivity MR tests (ORweightedMedian[99%CI1]=58.105[3.997-844.69],

P=0.003) (Supplementary Table 2).
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DISCUSSION

In this study, using large scale datasets and a multi-method approach, we show that
abdominal obesity assessed using WHRadjBMI is a causal risk factor for pancreatic

cancer, in line with epidemiological evidence(18).

The mechanisms underlying the obesity-pancreatic cancer co-morbidity remain
unclear. However, several factors such as inflammation, insulin resistance and
hyperinsulinemia are potential mechanisms linking obesity to cancers including that of
the pancreas(3,19). Notably, majority of these factors are hallmarks of the metabolic
syndrome which correlate with abdominal obesity(20). Therefore, it is not surprising
that our Mendelian randomization results show that WHRadjBMI rather than BMlI is a
more important causal risk factor for pancreatic cancer. Furthermore, the metabolic
syndrome is considered a predictor of T2D(21). In our polygenic score analyses, we
show that after adjusting for T2D status, the significance of the association declined
modestly for PGSgw While any evidence of association in PGSwhradigwi On pancreatic
cancer risk was effectively lost. Taken together, our polygenic analyses and Mendelian
randomization suggest that the metabolic syndrome proxied by abdominal obesity may
be a causal risk factor for pancreatic cancer. Additionally, obesity associated T2D(22)
may be a potential cause driver of the metabolic syndrome underlying pancreatic

cancer progression in obesity(3).

Several limitations in our present studies should be considered. Pancreatic cancer is
a rare form of cancer characterised by low sample sizes as compared to other more
common cancers. Consequently, there is less power in GWAS to identify genetic loci
amenable for statistical analyses. Additionally, the causal effect identified in MR is only
nominally significant and therefore interpretation of our findings should consider this.

Future work will focus on validating our results in larger datasets, especially for

8
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pancreatic cancer to improve statistical power of the analyses. Moreover, further
analyses to properly control for T2D would be needed due to the complex relationship
between obesity and T2D, more so in Mendelian randomization. Additional analyses
to include components of the metabolic dysfunction such as fasting glucose levels will

be part of future direction of this effort.

In conclusion, we show that abdominal adiposity measured through WHRadjBMI, may
be a more important risk factor for pancreatic cancer, compared to total adiposity. Our
results highlight the relationship between the metabolic syndrome component and a
higher risk for pancreatic cancer, with T2D being a potential driver of this association.
Furthermore, we demonstrate the importance and therefore encourage the
assessment of diverse measures of obesity in clinical practice and research in the
context of pancreatic cancer risk. Additionally, health care providers should emphasize
the need for patients to monitor their visceral weight gain and not just overall weight

gain to minimise the risk for pancreatic cancer.
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FIGURE LEGENDS

Figure 1. Manhattan plots of (A) BMI, (B) WHRadjBMI and (C) pancreatic cancer
GWAS in UK Biobank. The red horizontal line shows genome-wide significance
threshold (P<5x10-8). The dashed grey line shows suggestive significance threshold

(P<1x10%)

Figure 2. (A) Scatter and (B) forest plots for the WHRadjBMI to pancreatic cancer MR
test. The scatter plot includes the intercepts of the various MR methods used while the

odds ratio plot shows the MR effect estimate for each MR method used
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Table 1. Association between adiposity polygenic scores and pancreatic cancer

Unadjusted model

T2D adjusted model

Adiposity trait OR (95%Cl) 3 OR (95%Cl) 3
BMI 1.0804 (1.025-1.14) 0.0037 | 1.073 (1.018-1.13) 0.00904
WHRadjBMI 1.047 (0.99-1.104) 0.086 | 1.039 (0.99-1.097) 0.14

Legend: OR(95%CI)=0dds ratio of association and the lower and upper 95%

confidence intervals (Cl)
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4.1 Supplementary data

Pancreatic cancer definition in UKBB

Pancreatic cancer in UKBB was defined using a combination of the tenth revision of
the International Classification of Disease (ICD-10) codes and self-report data. Addi-
tionally, hospital admissions data, recently made available to researchers by UKBB,
were used to supplement the number of cases. Individuals with an ICD-10 code (C25)
and those who self-reported to have a pancreatic cancer diagnosis (code 1026) were
set as cases. In total, there were 629 cases and 458,987 controls of European ancestry
for pancreatic cancers after exclusions (Supplementary Figure 1). 1,340 European
pancreatic cancer cases were defined from hospital admissions data (ICD-10 code
C25). 544 of these cases were shared with the 629 cases defined using ICD-10 and
self-report data only. 85 cases (self-reported) from the 629 cases defined earlier were
added to the 1340 hospital admissions cases. 796 controls which had case status in
the hospital admissions data were excluded from controls. In total, after all exclusions
were applied, there were 1,416 cases and 455,854 controls of European ancestry for

pancreatic cancer (Supplementary Figure 1).

Type 2 diabetes definition in UKBB

To determine the role of type 2 diabetes (T2D) in the relationship between obesity and
pancreatic cancer, we sought to first define the genetic correlation between T2D and
pancreatic cancer. Secondly, we included T2D as an additional covariate in our poly-
genic scores (PGS) analyses. A T2D case in UKBB was defined if a participant self-
reported a diabetes diagnosis made by a doctor, were on insulin medication one-year

post-diagnosis and were at least 40 years old by the time the diagnosis was made.
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T2D controls included individuals who did not meet the case criterion. From both cases
and controls, we excluded individuals with gestational diabetes (UKBB field 4041,
code=1), individuals on insulin medication within the first year of diagnosis (UKBB field
2986) and individuals who were younger than 40 years old at the time of diagnosis
(UKBB field 2976). In total, we had 19,344 cases and 463,641 controls of European

ancestry.

Genetic correlation estimation in UKBB

We used the LDSC regression tool® to estimate the genetic correlation between BMI,
WHRadjBMI and pancreatic cancer in UKBB. UKBB GWAS summary statistics were
filtered based on the following parameters: imputation score > 0.9, minor allele
frequency (MAF) > 0.01 and 0.1 = P-value > 0. Strand ambiguous, duplicated SNPs
and variants that did not represent SNPs (e.g., indels) were removed. The Bonferroni
corrected significance threshold to determine significant genetic correlation estimates
was set as P<0.025 (0.05/2, the number of genetic correlation tests done in our
analyses; one for BMI and one for WHRadjBMI). Nominal significance threshold was

setat 0.05=P > 0.025.

Table 2. Genetic correlation between adiposity measures, type 2 diabetes and pancreatic
cancer in UKBB

BMI WHRadjBMI Type 2 diabetes
rG rG rG V4
Y4 Z
Cancer (SE) score P (SE) score P (SE) Score P
Pancreatic 0.472 0.708 0.479 0.098 0.425 0.671| -0.0139 -0.0484 0.961
(0.667) (0.230) (0.287)

Legend: rG(SE)=genetic correlation estimate and the standard error, Z score=rG/SE
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Polygenic score analyses

The SNP lists for BMI and WHRadjBMI were obtained from GIANT consortium’s meta-

analyses®%®'. The meta-analyses included previous GIANT studies®%%? and UKBB.

Since we used the UKBB as the target data (testing cohort for our PGS), we use the

weights from the studies that did not include UKBB in the meta-analyses. The workflow

for PGS analyses is shown in Figure 7.

Locke et al 2015
(BMI)
+ GIANT
+ N=339,224
* Index SNPs=97

Yengo et al 2018
(BMI)
* GIANT + UKBB

+ N=681,275
* Index SNPs=670

+ N=696,649

Pulit et al 2018
(WHRadjBMI)

* GIANT + UKBB

* Index SNPs=346

Shungin et al 2015
(WHRadjBMI)
* GIANT

+ N=224,459
* Index SNPs=49

S 7
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Figure 7. (A) BMI and (B) WHRadjBMI polygenic score analyses pipeline. A two-sample
approach was used to construct our PGS base data. The SNPs used for the PGS were from
GIANT’s latest BMI and WHRadjBMI meta-analyses. Since the meta-analyses comprised of
the UK Biobank (our target data), we used weights from the non-UK Biobank study in GIANT’s

meta-analyses.
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Mendelian randomization (MR)

We assessed the causal relationships between BMI, WHRadjBMI and pancreatic
cancer using bi-directional MR. The TwoSampleMR R package® was used for this
analysis. We tested the effect of obesity (BMI and WHRadjBMI) as an exposure for
pancreatic cancer (outcome), and the reverse direction with pancreatic cancer as a
risk factor for obesity (BMI and WHRadjBMI) using summary statistics from
independent datasets. The genetic instruments for BMI (670 SNPs) and WHRadjBMI
(346 SNPs) were obtained from GIANT consortium®%8'. Additionally, the pancreatic
cancer genetic instruments (22 SNPs) were obtained from a recent large-scale meta-

analysis by Klein et al®’.
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Table 3. Detailed results of the Mendelian randomization results between adiposity

phenotypes and pancreatic cancer

Q statistic
Exposure Outcome MR Method NSNPs OR(95%Cl) P value (P value)

BMI PanC MR Egger 566 0.999 (0.997-1.001) 0.389  500.41 (0.974)

BMI PanC Weighted median 566 1.000 (0.999-1.002) 0.561 NA

BMI PanC Inverse variance 566 1.001 (1.000-1.001) 0.090 502.99(0.971)
weighted

BMI PanC Simple mode 566 1.001 (0.997-1.004) 0.714 NA

BMI PanC Weighted mode 566 1.000 (0.998-1.002) 0.802 NA

WHRadjBMI  PanC MR Egger 278 1.001 (0.999-1.0032) 0.268 258.035 (0.774)

WHRadjBMI  PanC Weighted median 278 1.0012 (0.9998-1.0027) 0.095 NA

WHRadjBMI  PanC Inverse variance 278 1.00095 (1.00011-1.0018) 0.027 258.078(0.787)
weighted

WHRadjBMI  PanC Simple mode 278 0.9998 (0.997-1.0032) 0.927 NA

WHRadjBMI  PanC Weighted mode 278 1.0009 (0.9987-1.0031) 0.417 NA

PanC BMI MR Egger 16 0.444 (0.000-11023.55) 0.877 99.368

(6.27x10-15)

PanC BMI Weighted median 16 58.105 (3.997-844.69) 0.003 NA

PanC BMI Inverse variance 16 58.526 (0.301-11367.20) 0.130 108.025

weighted (3.86x10-16)

PanC BMI Simple mode 16 70.019 (3.66-1341.18) 0.013 NA

PanC BMI Weighted mode 16 91.921 (7.73-1092.50) 0.003 NA

PanC WHRadjBMI MR Egger 16  21.142 (0.00-64574354.85) 0.695 32.171

(3.79x10E-03)

PanC WHRadjBMI Weighted median 16 0.070 (0.000-74.001) 0.454 NA

PanC WHRadjBMI Inverse variance 16 0.143 (0.000-222.403) 0.604 33.487

weighted (4.018x10-03)

PanC WHRadjBMI Simple mode 16 1.057 (0.000-11211.818) 0.991 NA

PanC WHRadjBMI Weighted mode 16 0.137 (0.000-99.21) 0.563 NA

Legend: PanC=pancreatic cancer, NSNPs=number of SNPs/genetic instruments
used to estimate causality, OR(95%CI) =0dds ratio and the lower and upper 95%
confidence intervals (ClI).
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4.2 Insights

In this article prepared in brief communication format for EJHG, | presented the results
dissecting the relationship between two obesity phenotypes and pancreatic cancer. |
showed that central/abdominal obesity is potentially a more important causal risk factor
pancreatic cancer than overall obesity. Additionally, we show that after adjusting for
T2D in our polygenic scores analyses, the association between central obesity and
pancreatic cancer was lost. This suggests that T2D could be the driver of the

association between the metabolic syndrome and pancreatic cancer.

The findings presented in this article provide evidence of the need to stratify obesity
into discrete categories when assessing the contribution of obesity in the risk of

pancreatic cancer. Both in research and clinical contexts.

Several limitations that have been highlighted in this study should also be taken into
perspective when interpreting our findings. Future studies will focus on utilising larger
sample sizes for pancreatic cancer in order to improve statistical power. Additionally,
as more GWAS studies consortia make their summary statistics public, the instruments
variables for pancreatic cancer will get stronger and provide an opportunity to validate

our findings.

Overall, the study presented suggests that central obesity independent of BMI is
associated with the risk of pancreatic cancer with T2D possibly driving this association.
Therefore, there is need to maintain a healthy weight and minimising the risk of T2D
as the two factors may predispose an individual to pancreatic cancer. Future work
leveraging on larger samples sizes for pancreatic cancer is needed to confirm our

findings.
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“Genetic relationships and causality between overall and central adiposity and breast,
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STUDY IMPORTANCE (up to 3 bullet points answers for each of the questions
below)

What is already known about this subject?

o Observational studies suggest obesity is associated with higher risk of certain
cancers and at the same time is protective of other cancers. The direction of
association is in part influenced by the anthropometric trait used to assess
obesity.

e Higher BMI appears protective from prostate, breast and lung cancers but is a
risk factor for post-menopausal breast, pancreatic and colorectal cancers.

What are the new findings in your manuscript?

o We implement Mendelian randomization approach using large scale datasets
and show a protective causal effect of higher BMI from prostate cancer but
suggest that higher WHRadjBMI is causal for prostate cancer.

e We also show nominal evidence of WHRadjBMI being causally protective
from breast cancer.

How might your results change the direction of research or the focus of clinical

practice?
e We demonstrate the importance of partitioning obesity into discrete types
depending on the area of fat deposition rather than using an overall measure.
e Our results show that diverse measures of obesity relate differently to cancer
risk. In fact, even for the same type of cancer, overall and central obesity

measures may impact in opposite direction in terms of risk to cancer.
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ABSTRACT

OBJECTIVE. Diverse measures of obesity relate to cancer risk differently. Here we
assess the relationship between overall and central adiposity and cancer.
METHODS. We constructed z-score weighted polygenic scores (PGS) for two
obesity-related phenotypes; body mass index (BMI) and BMI adjusted waist-to-hip
ratio (WHRadjBMI) and tested for their association with five cancers in the UK
Biobank: overall breast (BrC), post-menopausal breast (PostBrC), prostate (PrC),
colorectal (CrC) and lung (LungC) cancer. We utilised publicly available data to
perform bi-directional Mendelian randomization (MR) between BMI/WHRadjBMI and
BrC, PrC and CrC.

RESULTS. PGSgw had significant multiple testing-corrected inverse association with
PrC (OR[95%CI]=0.97[0.95-0.99], P=0.0012) but PGSwhradsm Was not associated
with PrC. PGSgw was associated with PostBrC (OR[95%CI]=0.97[0.96-0.99],
P=0.00203) while PGSwhragsmi had nominal association with BrC. PGSgm had
nominal positive association with LungC. MR analyses showed significant multiple
testing-corrected protective causal effect of BMI on PrC (OR[95%CI]=0.993[0.988-
0.998], P=4.19x10®). WHRadjBMI had a nominal causal effect on higher PrC risk
(OR[95%Cl]=1.022[1.0067-1.038], P=0.0053). We also report nominal causal
protective effect of WHRadjBMI on breast cancer (OR[95%CI]=0.99[0.98-0.997],
P=0.0068). Neither PGS nor MR analyses were significant for CrC.

CONCLUSIONS. Higher overall adiposity appears protective from PrC while higher

central adiposity is a potential risk factor for PrC but protective from BrC.
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INTRODUCTION

Two common anthropometric measures used to define obesity are body mass index
(BMI) and waist-to-hip circumference ratio (WHR). They represent the body’s overall
and central abdominal adiposity, respectively. Despite being a routine measure of
adiposity, BMI does not accurately capture well body composition as it does not
distinguish lean mass from fat mass(1). Additionally, individuals who are within
normal BMI ranges may be metabolically unhealthy(2), and others with elevated BMI
present normal metabolic parameters. Other measures of adiposity have hence been
used to improve clinical evaluations of metabolic health, including WHR. High WHR
is associated with insulin resistance and contributes to the definition of the metabolic
syndrome(3). Epidemiological evidence suggests BMI is positively associated with
increased cancer risk of post-menopausal breast cancer(4), pancreatic cancer(5),
colorectal cancer(6), while inversely associated with prostate cancer(7), pre-
menopausal breast cancer and lung and oral cavity cancers(4). The relationship
between cancer incidence, its mortality, and WHR is relatively understudied
compared to that with BMI. Despite this, WHR appears to be a better predictor of
cancer risk compared to BMI(8,9). However, correlation observed in epidemiological
studies does not infer causality. Moreover, observational studies are prone to bias by
unadjusted confounders such as tobacco use in lung cancer studies(4). To date,
genome-wide association studies (GWAS) have identified hundreds of genomic loci,
associated with BMI and body fat(10,11) and many loci with WHR adjusted for BMI
(WHRadjBMI)(11) with a relatively small overlap between the two sets of associated
loci. GWAS have also found many loci associated with cancer phenotypes(12—15).
However, one limitation of GWAS is that these loci identified individually for adiposity

and cancer phenotypes offer little evidence of the shared pathophysiology between
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them. Despite the above-mentioned limitation of GWAS, genomic loci identified in
GWAS can be implemented in methods such as polygenic scores (PGS)(16) and
Mendelian randomization (MR)(17). PGS refer to the weighted (by effect size) sum of
risk variants identified from GWAS that an individual has for a particular
phenotype(16). PGS are useful for risk prediction analyses as well as association
testing. In MR analyses, genetic variants identified in GWAS, referred to as
instrument variables, are used to estimate the causal effect of a risk factor
(exposure) on an outcome of interest(17).

In this study, we aimed to assess the impact of overall and central adiposity on
cancer risk. First, we defined the genetic correlation between BMI/WHRadjBMI and
cancers using the UK Biobank (UKBB) dataset. Additionally, we used established
BMI and WHRadjBMI genome-wide loci(10,11) (P<5x10®) to create PGS which were
then tested for association with five cancer phenotypes in UKBB including overall
breast, post-menopausal breast, colorectal, prostate and lung cancer. Further, using
established genetic variants, associated with these phenotypes, we performed MR
between the two adiposity traits and three cancers (breast, prostate and colorectal)
to investigate the causal relationships between them. The MR analyses did not
include post-menopausal breast and lung cancer due to the unavailability of

summary statistics.
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METHODS

UK Biobank

We used the UKBB resource (www.ukbiobank.ac.uk) to define adiposity and cancer
phenotypes. The UKBB includes approximately 500,000 individuals, aged between
40-69 years recruited from 22 centres across the United Kingdom. Phenotypic data
collected from recruited participants includes biological samples, physical
measurements and responses from a questionnaire administered at recruitment.
Genetic data is available for 488,377 individuals who were genotyped using the
UKBB BILEVE array (n=49,979) and the UK Biobank Axiom Array (n=438,398)(18).
457,270 individuals of European ancestry had weight (kg), height (m), waist and hip
circumference (cm) measurements which were used to define the BMI
(weight/[height]? and WHR (waist/hip) phenotypes. Cancer phenotypes were defined
using the criteria described in Table S1. There were 18,676 overall breast cancer,
13,355 postmenopausal breast cancer, 11,825 prostate cancer, 8,201 colorectal
cancer and 4,237 lung cancer cases (Table S2).

Genetic correlation and SNP heritability estimation

We used the LD Score (LDSC) regression approach and tool(19) to estimate the
genetic correlation (rG) between adiposity phenotypes and cancer in the UKBB. The
proportion of genetic variance explained by genome-wide SNPs (h’snp) for each of
our UKBB phenotypes was also computed using the LDSC tool. UKBB GWAS
summary statistics were filtered based on the following parameters: imputation score
> 0.9, minor allele frequency (MAF) > 0.01 and 0.1 > P > 0. Ambiguous strand,
duplicated SNPs and variants that did not represent SNPs (e.g., indels) were
removed. The Bonferroni corrected significance threshold to determine significant

genetic correlation estimates was set as P<0.005 (0.05/10, the number of genetic
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correlation tests done in our analyses; five for BMI and five for WHRadjBMI).
Nominal significance threshold was set at 0.05 > P> 0.005.

Polygenic scores

We used the adiposity-increasing alleles at genome-wide significant variants from
recent large scale meta-analyses of BMI (670 SNPs) and WHRadjBMI (346 SNPs) to
construct PGSs. The SNP sets for BMI and WHRadjBMI PGSs base data were
derived from the latest adiposity GWAS meta-analyses from the GIANT
consortium(10,11). These studies meta-analysed UKBB with previous BMI and
WHRadjBMI studies(20,21). Since the target data (UKBB) was part of the adiposity
meta-analyses which formed the PGS base data in this analysis, we used variant
effect size estimates from earlier studies which has not included UKBB in the meta-
analyses for the weighted PGS(20,21). In total, there 567 and 274 SNPs for BMI
and WHRadjBMI PGS analyses (Figure 1). The PGSs were generated using PLINK
version 1.90b4.1(22). The PGSs were tested for association with five cancers in
UKBB using logistic regression models in RStudio(23). For sex-specific cancers
(breast and prostate), we included age, batch array and six principal components
(PCs) as covariates in the regression model. For all the other cancers, sex was
included as an additional covariate. Additionally, we performed BMI PGS association
tests by splitting UKBB dataset into four BMI categories for each of the cancers
(underweight [BMI < 18.5kg/m?], normal weight [25kg/m? 2 BMI > 18.5kg/m?,
overweight [30kg/m? 2 BMI > 25kg/m?], obese [BMI > 30kg/m?]). The Bonferroni
corrected significance threshold (Bonferroni”®®) to determine significant associations
was set as P<0.005 (0.05/10, the number of association tests done in our analyses;
five for BMI and five for WHRadjBMI). Nominal significance threshold was set at 0.05

2 P > 0.005.
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Mendelian Randomization

To investigate the causality between BMI/WHRadjBMI and cancer, we performed bi-
directional MR using the TwoSampleMR R package version 0.5.6(24). We tested the
effect of adiposity (BMI and WHRadjBMI) as an exposure for cancer outcomes, and
the reverse direction with cancers as risk factors to adiposity (BMI and WHRadjBMI)
using summary statistics from independent datasets. Independent, genome-wide
significant SNPs (P<5x10®) were used as genetic instruments for MR in our
analyses. We obtained the genetic instruments for BMI (670 SNPs) and WHRadjBMI
(346 SNPs) from the GIANT consortium(10,11). Furthermore, the cancer genetic
instruments were derived from recent large-scale GWAS of breast (201 SNPs)(12),
colorectal (137 SNPs)(14) and prostate (248 SNPs)(13) cancers using genome-wide
significant SNPs. The number of SNPs available for each MR test are summarised in
Figure S1. Moreover, the causal effect estimate was obtained using the inverse-
variance weighted (MR-IVW) method(25), which combines the ratio estimates of
individual variants using a random-effect meta-analysis. Sensitivity MR analyses
were performed using MR Egger, weighted median, weighted mode and simple
mode methods(26). Exclusion of palindromic SNPs from the exposure-outcome
pairs, as well as allele matching was performed as part of the TwoSampleMR
pipeline. Additional quality control steps included removal of outliers after inspection
of scatter plots and leave-one-out results also performed using the MR package. We
also performed the Cochran’s Q test as part of the MR pipeline to assess
heterogeneity on our instruments. The Bonferroni corrected significance threshold
(Bonferroni*?) to determine significant associations was set as P<0.0042 (0.05/12,
the number of MR tests done in our analyses; Figure S1). Nominal significance

threshold was set at 0.05 2 P> 0.00442.
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RESULTS

Definition of overlap of the loci between adiposity and cancer phenotypes in the
UKBB

We assessed the overlap of genome-wide significant loci between the cancers and
adiposity phenotypes using the UKBB GWAS summary statistics (Supplementary
data). There was no loci overlap between adiposity phenotypes and either colorectal
and lung cancers. However, we observed overlap between the sex-specific cancers
(BrC, PostBrC and PrC) and both BMI and WHRadjBMI. There were five shared loci
between BMI and BrC in UKBB (Figure 2a): FTO, EBF1, ERBB4, TBX3/MED13L
and CASC16. In contrast, there was no overlap between PostBrC and BMI.
Furthermore, three loci were shared between BMI| and PrC (Figure 2a):
TMEM17/EHBP1, JAZF1 and MIR4686/ASCL2. In relation to WHRadjBMI, eight loci
were shared between BrC (Figure 2b): ZMIiZ1, NRIP1/USP25, EBF1, ESRI,
RAD51B, CASC21/CASC8, CCND1 and FGFR2. Five loci were shared between
PostBrC and WHRadjBMI (EBF1, ESR1, RAD51B, CCND1, CASC21/CASCS).
Further, 11 loci were shared between PrC and WHRadjBMI (Figure 2b): THADA,
HLA-DQB1-AS1, SLC22A3, JAZF1, PRNCR1/CASC19, CASC8, MYEOV, CASC17,
FGFR2, CCND1, CASC21/CASCS.

Genetic correlation and SNP heritability estimates

The UKBB genetic correlation analyses identified nominally significant inverse
genetic correlation between BMI and prostate cancer (rG=-0.076, P=0.0075). Both
BMI and WHRadjBMI had a nominally significant positive genetic correlation with
lung cancer in UKBB (rGgu=0.18, P=0.0014, rGwnradjgm=0.16, P=0.0065). Nominal
inverse genetic correlation was also observed between BMI and post-menopausal

breast cancer (rG=-0.0803, P=0.014), whereas positive genetic correlation was

11

73



medRxiv preprint doi: https://doi.org/10.1101/2022.12.19.22283607; this version posted December 19, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-ND 4.0 International license .

observed between WHRadjBMI and colorectal cancer (rG=0.103, P=0.017) (Figure
3a, Table S3).

The observed SNP heritability estimates (h’syp) for the BMI and WHRadjBMI were
24.59% and 13.43% respectively. Estimates for cancer ranged from 0.36% (lung) to
4.41% (prostate) (Figure 3b and Table S4).

Association analyses with polygenic scores

BMI PGS (567 SNPs) had a significant, after correction for multiple testing, inverse
association with prostate (OR[95%CI]=0.97[0.95-0.99], P=0.0012) and post-
menopausal breast (OR[95%CI]=0.97[0.96-0.99], P=0.00203) cancers (Figure 4,
Table 1). We also identified nominal associations with overall breast cancer
(OR[95%CI]=0.98[0.96-0.99], P=0.0086) and lung cancer (OR[95%CI]=1.044[1.013-
1.076], P=0.0057).

WHRadjBMI PGS (274 SNPs) was not significantly associated with any of the
cancers. However, a nominal association was identified with overall breast cancer
(OR[95%CI]=0.98[0.97-0.99], P=0.021). WHRadjBMI PGS had a trend towards
positive association with prostate cancer (OR[95%CI]=1.018[0.99-1.037, P=0.074)
and colorectal cancer (OR[95%CI]=1.021[0.999-1.044], P=0.062) (Figure 4, Table
1). The direct relationship detected through suggestive association between
WHRadjBMI and prostate cancer is noteworthy as it is contrary to the BMI PGS
results. Additionally, we calculated the associations between BMI PGS and cancer
while stratifying the data by BMI categories. On average, the strength of associations
for BMI PGS was higher for overweight and obese individuals (BMI higher than 25
kg/m2) (Table S5). We then used smoking status as a proxy for tobacco use in the
lung cancer association tests, but we did not identify any significant association

among current and previous smokers (Table S6). However, there was a nominal
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inverse association between WHRadjBMI PGS and lung cancer risk among
individuals who had never smoked (OR[95%CI]=0.92[0.85-1.00], P=0.046).

Causality using Mendelian randomization

In this study we investigated the bi-directional causal relationship between two
adiposity phenotypes and three cancers. Our results demonstrate a significant
protective causal effect of BMI on prostate cancer (ORyw[95%CI1]=0.993[0.988-
0.998], P=4.19x10®, 574 SNPs) (Table 2). Additionally, the sensitivity analysis done
using the weighted median (W.Med) MR method agreed with the MR-IVW results
(ORw .Med[95%CI]=0.993[0.985-0.9996], P=0.039, 574 SNPs). The scatter plot and
odds ratio plots are shown in Figure 5a. The MR Egger intercept test suggested no
evidence of pleiotropy among the selected SNPs in the BMI to prostate cancer test
(Egger intercept =-46.47, P=0.713). The Cochran’s Q test indicated significant
heterogeneity in this association (Quw=863.64, P=3.93x10"*) (Table S$7). However,
in the reverse direction from prostate cancer to BMI, there was no evidence of
causality. All other BMI to cancer direction tests (and their reverse) did not show
evidence of causality (Figure S2 and S3, Table S7).

In contrast, the WHRadjBMI to cancer causal test suggested a nominal causal risk
effect of WHRadjBMI on prostate cancer risk (Table 2) based on the two MR tests
used as sensitivity analyses (ORwMR-Egge]95%CI]=1.016[1.00018-1.032], P=0.048,
284 SNPs; ORw Mode[95%CI]=1.022[1.0067-1.038, P=0.0053, 284 SNPs (Figure 5b,
Table 2). Additionally, there was a nominal causal protective effect of WHRadjBMI
on overall breast cancer based on the MR-IVW test (ORwyw[95%CI]=0.99[0.98-
0.997], P=0.0068, 284 SNPs) (Table 2, Table S7). However, the sensitivity tests
were insignificant. None of the other WHRadjBMI to cancer direction tests (and their

reverse) were significant (Figure S4 and S5, Table S7).
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DISCUSSION

In this study, we provide evidence that higher overall adiposity, measured with BMI,
may confer men a protective advantage against prostate cancer, using genetic
correlation analyses, polygenic scores, and Mendelian randomization. Conversely,
higher abdominal adiposity, determined with WHRadjBMI, may be a risk factor for
prostate cancer in men. We also report a nominal protective causal effect of central
obesity on breast cancer. Additionally, we show nominal genetic correlation between
higher abdominal adiposity and lung cancer. Still, among individuals with no history
of tobacco use, higher abdominal adiposity appears to be protective of lung cancer.
The association between higher BMI and lower prostate cancer risk is in line with
observational studies(7,27). These results are not surprising since it is well-
documented that type 2 diabetes (T2D) appears to be protective of prostate
cancer(28,29), with obesity being a likely risk factor(30) for T2D. The mechanisms
behind the inverse association between prostate cancer and high BMI are yet to be
fully defined but several factors need to be considered when interpreting this finding.
First, the impact of height on BMI must be put into perspective while highlighting the
inverse association between high BMI and prostate cancer risk. BMI is defined by
dividing weight by the square of height and as such, tall men may present with lower
BMI despite having high body weight. Furthermore, height is an established risk
factor for prostate cancer with elevated height linked to increased growth factors
such as the insulin-like growth factor 1 (IGF-1)(31,32). Additionally, it has been
suggested that the low serum testosterone levels typical among obese men(33) may
be responsible as it has been shown that elevated free testosterone levels in men
are associated with an increased risk of prostate cancer(34). Moreover, the

association between higher BMI and prostate cancer may be influenced by tumour
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characteristics. For instance, higher BMI has been shown to increase the risk of
aggressive prostate cancer and mortality(27,35,36), while higher BMI has been
associated with reduced risk of overall prostate cancer and non-aggressive prostate
cancer tumours(27,36).

Conversely, we also show a nominal positive association between higher abdominal
adiposity and prostate cancer, in line with epidemiological evidence(9). Abdominal
adiposity is associated with markers of metabolic dysfunction, such as insulin
resistance and impaired glucose metabolism(3). These results therefore suggest that
while total adiposity appears to be protective of prostate cancer, WHRadjBMI is a
better predictor of prostate cancer risk, similar to epidemiological observations(37).
However, the impact of body height once again warrants a consideration while
interpreting this observation. By adjusting for BMI, the effect of height which is an
established risk factor for prostate cancer(31) is excluded and could potentially
explain the opposite results got for BMI and WHRadjBMI in respect to prostate
cancer.

Furthermore, our results indicate that abdominal adiposity, independent of BMI,
relates to cancer risk in an opposite manner for sex-specific cancers. Particularly,
higher abdominal adiposity in men is a risk factor for prostate cancer, and in
contrast, higher abdominal adiposity in women appears to offer a protective
advantage against overall breast cancer. However, the latter is contrary to what is
seen from observational studies(38). In this study, we considered cross-sectional
adiposity measures, which do not reflect the obesity trajectories in women'’s lifetime,
a factor that might influence the exposure to diverse hormones. Other factors such
as adiposity at age of menarche could have prolonged effects into adulthood and

could in part explain the negative association between central adiposity and breast
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cancer. Indeed, higher BMI in early childhood and adolescence have been
associated with decreased risk of breast cancer(39). Further work to unravel how
early-life adiposity and sex hormones influence risk in an opposite direction for sex-
specific cancers is needed.

In addition, the observation from genetic correlation and polygenic scores that higher
BMI PGS directly relates to increased lung cancer risk is contrary to what is
observed in epidemiological studies(4,40,41). Nevertheless, the significance of this
positive association declined once we adjusted for smoking status as a proxy for
tobacco use that is associated with lower BMI. Interestingly, this data shows that
among individuals who reported to have no history of smoking, higher WHR
independent of BMI was protective of lung cancer risk. Moreover, previous findings
suggest that higher abdominal adiposity is a risk factor for lung cancer among
current smokers(40,41). The mechanism behind this observation is unclear.
However, it has been shown that preclinical lung cancer at baseline among current
smokers may be associated with higher central adiposity(40).

Despite the lack of statistically significant findings in either PGS and MR analyses for
colorectal cancer, there was a trend towards positive association between
WHRadjBMI and colorectal cancer in PGS analyses whereas with BMI there was no
evidence of association. This is consistent with epidemiological evidence suggesting
that abdominal obesity is a stronger predictor for colorectal cancer than overall body
weight(42,43). Insulin resistance and consequent hyperinsulinemia, and dyslipidemia
associated with metabolic dysfunction have been describes as potential
pathophysiology underlying the association with abdominal obesity and colorectal

cancer risk(44,45).
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This study has some limitations to be considered. Cancer subtypes based on tumour
aggressiveness, or biomarker specificity are not considered based on the cancer
definitions utilised in this study. A range of cancer subgroups would be characterised
by different properties that could relate in different ways to adiposity measures.
Future work on this analysis will work on partitioning adiposity GWAS variants into
groups based on their apparent mechanistic functions. This would aide in explaining
underlying co-morbidity between adiposity and cancer with specific biological
pathways such as insulin resistance, inflammation, lipid metabolism, and immunity,
in mind. Additionally, the low sample sizes for cancers in our analyses undermine the
statistical power for cancer GWAS compared to that of adiposity phenotypes(10—15).
Consequently, the precision of the risk estimates derived from Mendelian
randomization results was affected and as such validation using larger datasets for
cancer phenotypes is required. Finally, due to the lack of publicly available data for
certain cancers such as lung and post-menopausal breast cancers, we did not
assess causality between these cancers and adiposity.

Overall, we highlight the importance of assessing different adiposity measures in the
context of cancer risk by employing analysis of two routine yet different measures of
adiposity, BMI and WHRadjBMI, dissecting the relationships between them. We
conclude that metabolic dysfunction, through WHRadjBMI, rather than just overall
adiposity may be more informative of cancer risk for prostate cancer. However, the
impact of height may play a role in the complex relationship between obesity and
prostate cancer. Additionally, the differences in risk conferred by central adiposity
may occur in opposite direction for sex-specific cancers as seen with prostate and
breast cancer. Validation using larger cancer-focussed datasets would be required to

confirm our findings.
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Table 1. Association results between BMI and WHRadjBMI PGS and cancers in UK

Biobank
BMI PGS WHRadjBMI PGS
Cancer OR(95%Cl) P OR(95%Cl) P
BrC 0.98(0.97-0.99) 0.0086 0.98(0.97-0.99) 0.021
PostBrC 0.97(0.96-0.99) | 0.00203 0.98(0.97-1.0023) 0.089
PrC 0.97(0.95-0.99) 0.0012 1.018(0.99-1.037) 0.074
CrC 0.99(0.97-1.02) 0.73 1.021(0.99-1.044) 0.062
LungC 1.044(1.013-1.076) 0.0057 0.99(0.97-1.027) 0.82

Legend: BrC=breast cancer, PostBrC=post-menopausal breast cancer, PrC=prostate
cancer, CrC=colorectal cancer, LungC=lung cancer, OR(95%Cl)=odds ratio and the
lower and upper confidence intervals
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Table 2. Mendelian randomization results with cancers as the exposure and adiposity measures as the outcome variable using the five

different methods

Inverse variance

weighted MR Egger Weighted median Simple mode Weighted mode
Exposure | Outcome | OR (95% CI) P OR (95% CI) P OR (95% CI) P OR (95% CI) P OR (95% Cl) P
BMI BrC 1.000 0.985 0.996 0.944 0.994
(0.995-1.005) | 0.897 (0.971-1.000) | 0.051 | (0.988-1.003) | 0.266 | (0.968-1.020) | 0.634 (0.977-1.011) 0.462
BMI PrC 0.993 0.995 0.993 0.984 0.995 =
(0.988-0.998) | 0.0042 (0.982-1.009) | 0.473 | (0.985-0.999) | 0.039 | (0.960-1.009) | 0.22 (0.981-1.009) 0.44}
BMI CrC 1.000 1.001 1.000 0.999 1.000
(0.998-1.002) 0.92 (0.996-1.006) | 0.682 | (0.997-1.003) 1| (0.989-1.008) | 0.768 (0.995-1.005) 0.9
WHRadjBMI | BrC 0.990 1.000 0.991 1.003 0.993
(0.983-0.997) | 0.0068 (0.982-1.017) | 0.974 | (0.981-1.002) | 0.105 | (0.974-1.033) | 0.83 (0.978-1.008) 0.3
WHRadjBMI | PrC 1.0046 1.016 1.007 1.018 1.022
(0.998-1.011) | 0.179 | (1.00018-1.032) | 0.048 | (0.999-1.016) | 0.094 | (0.990-1.045) | 0.209 | (1.00067-1.038) | 0.00
WHRadjBMI | CrC 1.002 1.000 (0.995- 1.000 0.995 1.000
(0.994-1.004) | 0.125 1.006) | 0.885 | (0.996-1.004) | 0.917 | (0.984-1.006) | 0.391 (0.994-1.006) 0.9

Legend: BrC=breast cancer, PostBrC=post-menopausal breast cancer, PrC=prostate cancer,

bold.

CrC=colorectal cancer, LungC=lung
cancer, OR(95%Cl)=o0dds ratio and the lower and upper 95% confidence intervals. Causal estimates with P<0.05 are shown in
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Figure 1. BMI (A) and WHRadjBMI (B) Polygenic score analyses pipeline

Legend: A two-sample approach was used to construct our PGS base data. The
SNPs used for the PGS were from GIANT’s latest BMI and WHRadjBMI meta-
analyses. Since the meta-analyses comprised of the UK Biobank (our target data),
we used weights from the non-UK Biobank study in GIANT’s meta-analyses

Figure 2. Venn diagram defining overlapping genome-wide significant loci between
adiposity phenotypes and sex-specific cancers based on UK Biobank GWAS
summary statistics

Legend: A) Loci overlap between BMI and the sex-specific cancers in the UK
Biobank. B) Loci overlap between WHRadjBMI and the sex-specific cancers in the
UK Biobank. BrC= overall breast cancer, PostBrC=post-menopausal breast cancer,
PrC=prostate cancer.

Figure 3. Genetic correlation and SNP heritability estimates of BMI/WHRadjBMI and
cancer in UK Biobank

Legend: A). Genetic correlation estimates between UK Biobank BMI/WHRadjBMI
and cancer. Estimates which withstood Bonferroni corrections (P<0.05/10=0.005)
are marked with triple asterisks (***), double asterisks (**) for 0.05 =2 P > 0.005.
BrC=overall breast cancer, PostBrC=post-menopausal breast cancer, PrC=prostate
cancer, CrC=colorectal cancer, LungC=lung cancer.

B). SNP heritability estimates of BMI/WHRadjBMI and cancer in UK Biobank

Figure 4. The association analysis results between PGS for BMI and WHRadjBMI
and cancer in the UK Biobank

Legend: BrC=overall breast cancer, PostBrC=post-menopausal breast cancer,
PrC=prostate cancer, CrC=colorectal cancer, LungC=lung cancer. Estimates which
withstood Bonferroni corrections (P<0.05/10=0.005) are marked with triple asterisks
(***), double asterisks (**) for 0.05 2 P> 0.005

Figure 5. Scatter and forest plots from Mendelian Randomization analysis for A) BMI
to prostate cancer MR, B) WHRadjBMI to prostate cancer

Legend: The scatter plots on the left also include the intercepts of the various MR
methods used. The forest plots show the MR estimates for each of the methods
used with the odds ratio, 95% confidence intervals and P values annotated. Causal
estimates with P<0.05 are highlighted in bold.
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5.1 Supplementary data

UKBB GWAS

We performed single phenotype GWAS in the UKBB phenotypes using the BOLT-LMM
version 2.3 software®’ which implements a linear mixed model (LMM) association
testing. Consequently, as a result of applying a linear mixed model, related individuals
in the UKBB were included in the association analyses. The standard BOLT-LMM v2.3
infinitesimal model was used. Among the 487,409 individuals with genetic data, the
genetic data was filtered based on MAF > 0.01, imputation score > 0.4, Hardy-
Weinberg Equilibrium (HWE) P-value >1x10® and per SNP variant missingness
<0.015. As a result, 471,095 individuals passed these filters. We included age, sex,
genotyping array and six principal components (PCs) as covariates in the LMM for
BMI, WHRadjBMI, colorectal cancer (CrC) and lung cancer (LungC). For the sex-
specific cancer phenotypes breast (BrC), post-menopausal breast (PostBrC) and
prostate (PrC) cancers, sex was not included as a covariate. Moreover, BMI was
included as an additional covariate in WHR association testing to obtain the
WHRadjBMI phenotype. The threshold for statistically significant genome-wide signals
(SNPs) was P<5x10%. Manhattan plots for the association results are show in

Supplementary Figures 3-6.
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Table 4. Phenotype definition criteria for cancer phenotypes in UKBB

Cancer

UK Biobank field description

ICD-10 Codes

Overall breast
cancer (BrC)

Have been diagnosed with breast
cancer AND Breast cancer is the first
cancer diagnosed OR Death cause is
breast cancer

C50

Post-menopausal
breast cancer (Post-
BrC)

Have been diagnosed with breast
cancer AND Breast cancer is the first
cancer diagnosed OR Death cause is
breast cancer AND Self-reported
menopause status

C50 and X2724
(Menopause status)

Colorectal cancer
(CrC)

Have been diagnosed with colon and
rectal cancer AND colon and rectal
cancers are the first cancers diagnosed
OR Death cause is colon and rectal
cancers

C18-C21

Prostate cancer
(PrC)

Have been diagnosed with prostate
cancer AND prostate cancer is the first
cancer diagnosed OR Death cause is
prostate cancer

C61

Lung cancer
(LungC)

Have been diagnosed with lung cancer
AND lung cancer is the first cancer
diagnosed OR Death cause is lung
cancer

C34
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Table 5. Genetic correlation estimates between BMI/WHRadjBMI and cancer in

UKBB
Genetic
Adiposity correlation

Cancer trait (rG) SE P
BrC BMI -0.035 0.03 0.236
Post-BrC BMI -0.0803 0.03 0.014
PrC BMI -0.076 0.028 0.0075
CrC BMI 0.0089 0.039 0.82
LungC BMI 0.18 0.056 0.0014
BrC WHRadjBMI 0.009 0.028 0.75
Post-BrC WHRadjBMI -0.017 0.035 0.63
PrC WHRadjBMI 0.025 0.03 0.408
CrC WHRadjBMI 0.103 0.043 0.017
LungC WHRadjBMI 0.159 0.058 0.0065
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Table 6. SNP heritability estimates of BMI, WHRadjBMI and cancer in UKBB

Phenotype h2snp SE
BrC 0.0323 0.0041
Post-BrC 0.0215 0.003
PrC 0.0441 0.005
CrC 0.0072 0.0013
LungC 0.0036 0.0011
BMI 0.2459 0.0072
WHRadjBMI 0.1343 0.0066
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Table 7. BMI PRS association with cancer in UKBB by BMI categories

Cancer BMI Class Case/Control OR (95%Cl)
Underweight 83/1775 0.94 (0.78-1.13) 0.497
Normal 4,796/93,114 0.98 (0.96-1.01) 0.178
ore Pre-obesity 5,277/86,114 0.98 (0.95-1.00) 0.053
Obesity 3,164/54,072 0.96 (0.93-0.99) 0.012
Underweight 124,1,734 0.87 (0.70-1.09) 0.242
POSLBIC Normal 6,872/91,058 0.97 (0.94-1.00) 0.029
Pre-obesity 7,188/84,240 0.98 (0.95-1.01) 0.161
Obesity 4,436/52,830 0.96 (0.92-0.99) 0.017
Underweight 18.456 0.90 (0.55-1.47) 0.68
Normal 2,926/48,880 0.98 (0.94-1.02) 0.351
ore Pre-obesity 6,128/97,260 0.98 (0.95-1.00) 0.066
Obesity 2,728/50,611 0.98 (0.94-1.02) 0.412
Underweight 27/2,305 0.89 (0.60-1.32) 0.569
Normal 2,440/147,476 0.98 (0.94-1.02) 0.35
cre Pre-obesity 3,711/191,068 0.99 (0.96-1.03) 0.65
Obesity 2,193/108,380 0.97 (0.93-1.02) 0.215
Underweight 46/2,289 1.13 (0.84-1.50) 0.417
Normal 1,293/148,528 1.04 (0.99-1.10) 0.136

LungC

Pre-obesity 1,763/193,131 1.08 (1.03-1.14) 0.001
Obesity 1,105/109,592 1.01 (0.95-1.07) 0.856

Associations with P<0.05 are shown in bold
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Table 8. Obesity PRS association with lung cancer by smoking status

BMI PRS WHRadjBMI PRS
Smoking status Case/Control/N OR (95%CI) P OR (95%Cl) P

Previous smokers 1,970/160,891
(162,861) 1.02 (0.98-1.07) 0.294 0.99 (0.95-1.04) 0.737

Current smokers 1,652/46,242
(47,894) 1.01 (0.96-1.06) 0.839 1.03(0.98-1.08) 0.281

579/246,273

Never smoked

(246,852) 1.01 (0.93-1.10) 0.759 0.92 (0.85-1.00) 0.046

Previous + current 3,622/207,133
smokers (210,755) 1.02 (0.99-1.05) 0.231 1.01(0.98-1.04) 0.638

Associations with P<0.05 are shown in bold
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5.2 Insights

In this second article submitted to Obesity journal, | implemented genetic correlation,
polygenic scores, and Mendelian randomization approaches to assess how BMI and
WHRadjBMI, used as proxies for overall and central obesity respectively, relate to the

risk of breast, prostate, colorectal and lung cancers.

The polygenic scores analyses indicated that both central and overall obesity relate to
prostate cancer risk in opposite direction. Specifically, overall obesity has an inverse
association with prostate cancer risk while central obesity has a direct association with
prostate cancer risk. Furthermore, Mendelian randomization corroborated these
findings while using published GWAS data from non-overlapping datasets. While the
exact mechanisms underlying this observed paradoxical relationship between obesity
and prostate cancer, factors such as growth factors (IGF-1), androgens (testosterone)
and differences in tumour characteristics may play a role in the manifestation of this
co-morbidity. Further work to characterise in detail how central obesity and other
components of the metabolic syndrome affect prostate cancer risk are needed.
Moreover, the impact of height on prostate cancer needs careful consideration when

interpreting these results.

The polygenic scores and Mendelian randomization analyses of breast cancer indicate
that central obesity has an inverse association with overall breast cancer risk. Several
factors such as sex hormones, menopause status, tumour characteristics, BMI at age
of menarche are potentially involved. More work to unravel the exact involvement of

these and other factors is required.
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Despite nominally significant positive genetic correlation estimates for colorectal
cancer and WHRadjBMI, polygenic scores and Mendelian randomization showed no
significant results for colorectal cancer. Future work will focus on larger sample sizes

for colorectal cancer so as to improve statistical power.

Lung cancer polygenic scores analyses indicated a nominally significant positive
association between BMI and lung cancer risk. On the other hand, WHRadjBMI was
not significantly associated with lung cancer. Sensitivity analyses, however, suggested
that among individuals with no smoking experience, WHRadjBMI may be inversely
associated with lung cancer risk. This is despite evidence that smokers, and not their
non-smoking counterparts, have lower body fat. Consequently, validation of these

findings is needed using larger sample sizes.

Unfortunately, Mendelian randomization analyses could not be performed for lung
cancer and post-menopausal breast cancer due to the unavailability of GWAS
summary statistics. Therefore, the causality between obesity and these cancers

remain unaddressed in this study and thus future studies will aim to fill this gap.

In summary, this article | demonstrates how central and overall obesity have different
risk patterns for different cancers. | also illustrate how different statistical genetics tools
can assist in disentangling the relationship between obesity and cancer. Researchers
and clinical health advisors should thus broaden their definition of obesity in practice

to accurately capture the involvement of adiposity in cancer risk.
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6 THIRD ARTICLE

“Bi-directional Mendelian randomization and multi-phenotype GWAS show causality
and shared pathophysiology between depression and type 2 diabetes” (Preprint link

https://doi.org/10.1101/2022.12.06.22283143)
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48  Abstract (250/250 words)

49  OBIJECTIVE. Depression is a common co-morbidity of type 2 diabetes. However, the
50  causality and underlying mechanisms remain unclear.

51 RESEARCH DESIGN AND METHODS. We applied bi-directional Mendelian
52 randomization (MR) to assess causality between type 2 diabetes and self-reported depression.
53  Using the UK biobank, we performed 1) GWAS, separately, and 2) multi-phenotype GWAS
54  (MP-GWAS) of type 2 diabetes (cases=19,344, controls=463,641) and depression, using two
55  depression definitions—clinically diagnosed major depressive disorder (MDD, cases=5,262,
56  controls=86,275) and self-reported depressive symptoms (PHQ-9, n=153,079). The FinnGen
57  study was used for replication for MDD (n=23 ,424) and type 2 diabetes (n=32,469). Based on
58  the results, we analyzed expression quantitative trait loci (¢QTL) data from public databases
59  to identify target genes in relevant tissues.

60 RESULTS. MR demonstrated a significant causal effect of depression on type 2 diabetes
61  (OR=1.18[1.06-1.32], p=0.0024), but not in the reverse direction. GWAS of type 2 diabetes
62  and depressive symptoms did not identify any shared loci between them, whereas MP-GWAS
63  identified seven shared loci mapped to TCF7L2, CDKALI, IGF2BP2, SPRY2, CCND2-ASI,
64 IRSI1, CDKN2B-AS1. MDD did not yield genome-wide significant loci in either GWAS or
65 MP-GWAS. We found that most MP-GWAS Joci had an eQTL, including SNPs implicating
66  the cell cycle gene CCND?2 in pancreatic islets and brain, and key insulin signaling gene IRS/
67  in adipose tissue, suggesting a multi-tissue and pleiotropic underlying mechanism.

68  CONCLUSION. Our study reveals the complexity in the depression-diabetes relationship and
69  our results have important implications for a more efficient prevention of type 2 diabetes

70  from early adulthood when depressive symptoms usually occur.
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71 INTRODUCTION

72 Type 2 diabetes is a disease characterized by chronic hyperglycemia and depression is a
73  common co-morbidity, potentially due to common shared risk factors, such as lifestyle, early
74  growth environment, psychotropic drugs, and neuro-endocrine dysfunction!. Whether the
75  impact of type 2 diabetes on depression is stronger than the reverse remains to be defined. It
76 has indeed been shown that depression, even at sub-clinical levels, increases the risk of
77  incident type 2 diabetes by 25-60%", whereas others have shown that type 2 diabetes
78  increases the risk of depression by 40-60%".

79  The causality of the associations from observational studies remains unclear due to
80 unmeasured confounding and potential reverse causation. However, this could be
81  circumvented in part through Mendelian randomization, an approach that assesses potential
82  causality between phenotypes using genetic variants as instruments, since genes are allocated
83  randomly at birth and are free of confounding5 . To date, only one MR study from China has
84  reported a possible causal link from type 2 diabetes to depression’, yet the reverse direction
85  of causal link was not examined.

86  Recent large-scale genome-wide association studies (GWAS) for type 2 diabetes and
87  depression have reported 403 and 102 associated genomic /oci for these diseases,
88  respectively’®. Moreover, analyses based on the GWAS results support a positive genetic
89  correlation (1g) between them'®, suggesting shared genetic background. However, the
90  majority of GWAS investigate each disease independently, without considering the genetic
91  correlation between related phenotypes and their heritabilities.

92  Therefore, in this study, we addressed the causal relationship between depression and type 2
93  diabetes by conducting an MR study using summary statistics from recent GWAS of
94 depression8 and type 2 diabetes’. Additionally, we used the UK biobank (UKBB) to perform

95  a multi-phenotype GWAS (MP-GWAS) for type 2 diabetes and depression to identify shared
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96  genetic loci between the two diseases. For depression, we compared two assessment
97  approaches - clinically diagnosed major depressive disorder (MDD) and depressive

98  symptoms based on self-report.
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99 RESEARCH DESIGN AND METHODS

100 Mendelian randomization

101  Summary statistics used

102 To test for causality between type 2 diabetes and depression, we performed a two-sample
103 Dbidirectional MR, first using depression as a risk factor and type 2 diabetes as an outcome,
104  then testing type 2 diabetes as a risk factor and depression as an outcome from two non-
105  overlapping datasets (Supplementary Figure 1). The single nucleotide polymorphisms
106  (SNPs) used as genetic instruments for type 2 diabetes and self-reported depression were
107  from recent large-scale European GWAS meta-analyses of the two diseases’*®.

108  Two-sample bidirectional MR

109  All MR analyses were conducted using the R software package TwoSampleMR v0.5 4°.In the
110  type 2 diabetes GWAS summary statistics used, 95 single nucleotide polymorphisms (SNPs,
111  inclusive of 6 proxy variants with a minimum °>0.8) out of the 102 independent (1’<0.01)
112 depression SNPs were available. We excluded 7 palindromic SNPs (A/T or C/G) with
113 intermediate allele frequencies (minor allele frequency, MAF>45%) to ensure the effects of
114  the SNPs for the two phenotypes were aligned to the same forward strand allele. The genetic
115  instruments for type 2 diabetes included 403 genetic SNPs associated from a recent GWAS’.
116  In the depression summary statistics, 358 (inclusive of 4 proxy variants with a minimum
117 r220.8) out of 403 independent @*<0.01) type 2 diabetes SNPs were available for the analysis.
118  To obtain the causal estimate, we applied the inverse variance weighted IVW) method’. We
119  performed sensitivity MR analysis using weighted median (WM)™, MR-Egger regression’,
120  the simple mode'?, and the weighted mode’? methods to evaluate the potential violations of
121  the MR assumptions (Supplementary Methods) and confirm the robustness of the two-
122 sample MR results from the IVW approach. F-statistic was used to evaluate the instrument

123 strength, where F>10 indicates the presence of a strong instrument. The F-statistics indicated
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124  a good instrument strength for both type 2 diabetes (F-statistics = 61.26) and depression (F-
125  statistics = 43).We assessed heterogeneity between the causal estimates from each SNP using
126 Cochran's Q-test. The sensitivity of causal inference to any individual genetic variant was
127  tested by leave-one-out analysis. We used the STROBE-MR reporting guideline for MR

128  studies to facilitate the readers” evaluation of our results’ (Supplementary Table 1).

130  Genome-wide association studies (GWAS) and Multi-phenotype GWAS (MP-GWAS)

131  Cohorts used

132 1) UK Biobank (UKBB)

133 We used data from the UK Biobank (UKBB, www .ukbiobank.ac.uk), which includes over
134 500,000 individuals from 22 centers across the United Kingdom. Study participants were
135 between 40 and 69 years at recruitment and provided information including body
136  measurements, biological samples, brain imaging data, socio-demographic and lifestyle
137  indicators. Genetic data was available for 488,377 individuals in the UKBB genotyped using
138  the UKBB BiLEVE array (n = 49.979) and the UKBB Axiom Array (n = 438,398)™. The
139 genetic data was imputed using the Haplotype Reference Consortium®, the UK10K'® and
140 1000 Genomes Phase 3"/, resulting in approximately 90 million variants available for
141  association testing. This research has been conducted under application number 35327 and all
142 participants gave informed consent during enrolment.

143  2) FinnGen

144  We utilized the FinnGen summary statistics for replication of our single- and multi-
145  phenotype association results (www.finngen fi/fi). The June 2020 data freeze used in our
146  analysis comprised of 135,638 individuals. Summary statistics for 1,801 phenotypes are
147  publicly available for analysis. FinnGen study participants were genotyped using the Illumina

148  and Affymetrix chip arrays (Illumina Inc., San Diego, and Thermo Fisher Scientific, Santa
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149  Clara, CA, USA, https://www.thermofisher.com/). The data was then imputed using the SISu
150  v3 imputation panel (http://sisuproject.fi) resulting in 16,962,023 variants available for
151  association analysis. FinnGen study participants were genotyped using the Illumina and
152 Affymetrix chip arrays (Illumina Inc., San Diego, and Thermo Fisher Scientific, Santa Clara,
153  CA, USA, https://www thermofisher.cony/). Summary statistics provided for the FinnGen
154  data association analyses were generated using the SAIGE software'®.

155  Phenotype definition

156  Type 2 diabetes

157 In the UKBB, type 2 diabetes cases were defined if individuals self-reported to have a
158  diabetes diagnosis by a doctor, were on insulin medication one year after diagnosis, and were
159  at least 40 years old at the time of diagnosis. Individuals not meeting these criteria were
160  classified as controls. For both cases and controls, we excluded individuals with gestational
161  diabetes (Field 4041, code = 1), those younger than 40 years at the time of diagnosis (Field
162 2976) and individuals on insulin medication within the first year of diagnosis (Field 2986).
163 Sex discordant individuals (genotype vs. reported sex) were also excluded from the analyses.
164  We restricted our analyses to European individuals to limit confounding by ancestry. In total,
165 19,344 cases and 463,641 controls were available (Supplementary Table 2).

166  The GWAS summary statistics in the FinnGen study were based on the ICD10-coded type 2
167  diabetes (ICD code E11) on 32 469 individuals (case/control numbers not available).

168  Depression

169  We defined depression in two ways: ICD-10 coded major depressive disorder (MDD) based

170  on linked data from hospital records and self-reported depressive symptoms using the Patient

171  Health Questionnaire 9 (PHQ-9)".
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172 ICD-coded MDD

173 Individuals with a primary diagnosis of a depressive episode (ICD code F32) and recurrent
174  depression (ICD code F33) were defined as ICD-coded MDD cases (hereinafter referred to as
175 MDD). Individuals who answered “NO” to the questions "Have you ever seen a general
176  practitioner (GP) for nerves, anxiety, tension or depression?" (Field 2090) and "Have you
177  ever seen a psychiatrist for nerves, anxiety, tension or depression?" and “NO™ to either
178  “depressed/down for a whole week™ (Field 4598) or “Ever unenthusiastic/disinterested for a
179  whole week™ were set as controls. Participants were excluded from the study if they had a
180  diagnosis of bipolar disorder (ICD codes F30, F31), mixed and other personality disorder
181  (F61) and schizophrenia (ICD code F20). Participants on antipsychotic medication (Field
182 20003) for 58 drugs were also excluded. In total, 5,262 cases and 86,275 controls were used
183  for the MDD phenotype (Supplementary Table 1). The proportion of MDD participants
184  who had a type 2 diabetes diagnosis are shown in Supplementary Table 3.

185  FinnGen study data had the ICD-10 codes F32 and F33 available for MDD. The GWAS
186  summary statistics on MDD were based on a total of 23 424 individuals (case/control

187  numbers not available).

188  Depressive symptoms

189  In UKBB, self-reported depressive symptoms over the previous two weeks (from the time of
190  study enrolment) were assessed using the (PHQ-9)” questionnaire (Supplementary Table
191  4). It has been shown that the PHQ-9 questionnaire is invariant between people with and
192 without diabetes™ suggesting its interpretation is similar for both diabetes cases and controls.
193  Individuals missing responses for more than three PHQ-9 items were excluded from the
194  analysis. Missing PHQ-9 responses for the remaining individuals were imputed using the
195 ImputeSCOPA  software  (https:/github.com/ImperialStatGen/imputeSCOPA),  which

196  implements a random forest approach to impute missing items. The variables sex, age,
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197  education qualification, body mass index (BMI), Townsend Deprivation Index”! (an area-
198  based measure of deprivation), genotyping array and eight principal components (PCs) were
199  included in the imputation model to improve the predictive accuracy of the imputation
200  (Supplementary Table 5). The sum of all nine PHQ-9 items after imputation for everyone
201 was used for quantitative association analysis. PHQ-9 data were available for 153,079
202  individuals (Supplementary Table 1). The proportion of individuals with PHQ-9 data and a
203  type 2 diabetes diagnosis are shown in Supplementary Tables 3 and 6. Symptom-based

204  depression phenotypes were unavailable in the FinnGen replication dataset.

206 GWAS

207  We performed separate GWAS for type 2 diabetes, MDD and PHQ-9 in UKBB data with
208 BOLT-LMM using a linear mixed model”. We adjusted for age, sex, array, BMI and the first
209 8 PCs. We analyzed common variants (MAF>5%), with imputation scores >0.4, Hardy-
210 Weinberg Equilibrium (HWE) p-value>1x10° and per SNP variant missingness<0.015.
211  Manhattan plots were constructed using the ggplor2 R package23. All analyses were
212 performed on Human genome build 37. The statistical threshold for genome-wide significant
213 SNPs (signals) used was p<5><10'8.

214  Multi-phenotype GWAS

215 We used MTAG (Multi-Trait Analysis of GWAS)*, which implements a generalized
216  inverse-variance weighted meta-analysis, to increase the power for locus identification,
217  improve SNP effect size estimates for type 2 diabetes and depressive phenotypes, and to
218  identify potential multi-phenotype genetic variant effects. We used the summary statistics of
219  the individual GWAS as inputs of MTAG. In UKBB, two MTAG models were tested - one
220  with type 2 diabetes and MDD and another with type 2 diabetes and total PHQ-9 scores. This

221  was to assess the consequence of using two different depression definition criteria (disease

10
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222  diagnosis vs. disease symptoms) in an MP-GWAS approach. In FinnGen, only the first
223  approach was applied due to data availability. For each MTAG model tested, MTAG outputs
224  phenotype specific association statistics. To assess the robustness of MP-GWAS results,
225 MTAG computes a maximum false discovery rate (maxFDR) statistic, a theoretical upper
226  bound limit on the FDR for a GWAS™. Lower maxFDR values (maxFDR<5%) indicate

227  robust results.

228  Expression quantitative trait loci (eQTL) analyses

229  To explore and identify target genes of the identified loci, we utilized several eQTL databases
230 and datasets of relevant tissues. We extracted eQTL data from the GTEx Portal
231  (https://gtexportal.org) for SNPs identified in our MP-GWAS, focusing on type 2 diabetes
232 and depression relevant tissues (i.e., brain, muscle, liver). In addition, as GTEx does not
233  include data from pancreatic islets, a crucial tissue in type 2 diabetes pathogenicity, we
234  utilized recent eQTL data from Tiger T2D Systems (http://tiger.bsc.es) obtained from > 500
235  brain-dead organ donor islets™. We extracted data for the seven shared SNPs identified in our
236  MP-GWAS from both eQTL studies (using nominal significance, p< 0.05).

237  Furthermore, we also used GTEx Version 7 transcriptome data’® from European individuals
238  to identify eQTLs using our MP-GWAS summary statistics. We focused on relevant tissues
239 in 1) type 2 diabetes, namely liver, whole pancreas, muscle, adipose subcutaneous, adrenal
240 gland, whole blood, and 2) depression, including putamen basal ganglia, hippocampus,
241 substantia nigra, frontal cortex, amygdala, anterior cingulate cortex. For each tissue, the
242  predicted expression levels were then correlated with type 2 diabetes and PHQ-9 MTAG
243  summary statistics. P-values were corrected for multiple testing using Bonferroni correction
244  based on the number of genes tested per tissue (Supplementary Table 7). Genes where less
245  than 80% of the SNPs used in the model were found in the GWAS summary statistics were

246  excluded due to low reliability of association results. This analysis focused on type 2 diabetes
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247  and PHQ-9 phenotypes only as the MDD phenotype was underpowered in both GWAS and

248  MP-GWAS.

249 RESULTS

250  Mendelian randomization

251  Our MR analysis revealed that depression was causally and positively associated with type 2
252  diabetes using the IVW method, with an OR of 1.18 (95%CI= 1.06-1.32; p = 0.0024). This
253  result was consistent with the WM sensitivity analyses, which showed an OR of 1.11 (95%CI
254 =100-1.23, p = 0.043) (Figure 1 and Supplementary Figure 2A, Supplementary Table
255 8). The MR-Egger test showed no evidence of directional pleiotropy (p = 0.51), further
256  confirming the validity of the results. Additionally, the leave-one-out analysis showed no
257  outliers, suggesting that the observed association was not changed after removing any single
258  variant (Supplementary Figure 3). The Cochran’s Q statistic for heterogeneity was
259  significant for the IVW method (Q=261.62, p=1.26x10").

260 We found no evidence of causality in the reverse direction between type 2 diabetes and
261  depression, in the primary nor sensitivity analysis IVW: OR = 0.999; CI = 099-101; p =

262  0.843) (Supplementary Figure 2B, Supplementary Table 9).

264  Genome wide association study in type 2 diabetes and depression

265  In order to identify whether type 2 diabetes and depression have a shared genetic etiology, we
266  first performed a GWAS for both phenotypes, separately, using the UKBB. In total, for type
267 2 diabetes, we used 482,958 individuals (19,344 cases; 463,641 controls), and for depression
268  we used 91,537 (5,262 cases; 86,276 controls) for MDD and 153,079 for PHQ-9. For type 2
269  diabetes, we identified 92 independent SNPs at 84 loci, of which 59 were replicated in the
270  FinnGen with nominal significance (p<0.05) and consistent in direction of effect. For
271  depression, we found three independent SNPs and /oci for PHQ-9 and no SNPs associated
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272 with the binary depression MDD trait in the UKBB. None of the GWAS SNPs identified in
273  type 2 diabetes were shared with depression (Supplementary Figure 4, Supplementary

274  Tables 10-12).

276  Multi-phenotype GWAS in UKBB

277  To improve the power to identify shared genetic variants between the two phenotypes, we
278  performed the largest-to-date MP-GWAS of type 2 diabetes and depressive phenotypes in the
279  UKBB using the respective GWAS summary statistics.

280 The MP-GWAS model with type 2 diabetes and MDD did not identify any significant
281  associations for the binary definition of depression (MDD). For type 2 diabetes, we identified
282 71 independent signals at 66 loci (Supplementary Figure 5 and 6, Supplementary Table
283  10). The maxFDR for the type 2 diabetes and MDD MP-GWAS results was 1.5% and 7.7%
284  respectively (Supplementary Table 13), indicating that the MDD results were likely inflated
285 by the higher powered type 2 diabetes GWAS?. In FinnGen, the maxFDR were 11.5% and
286  25.5%, respectively, indicating highly inflated results for both traits.

287 In contrast, in the MP-GWAS model with type 2 diabetes and PHQ-9, we identified eight
288  independent SNPs for PHQ-9 (compared to only three SNPs detected in GWAS) (Figure 2,
289  Supplementary Table 14), suggesting greater power for SNP discovery. Only the
290 CACNA2D2 locus was reported in both GWAS and MP-GWAS analyses for PHQ-9,
291  although with different, yet highly correlated lead SNPs (CACNA2D2, chromosome 2,
292  SNPsp.gwas 1535335661, SNPuvp.gwas 151467916, =0 .99). For type 2 diabetes, MP-GWAS
293  identified 53 SNPs at 50 loci (compared to 92 identified in the single-phenotype GWAS), of
294  which 24 Joci were previously reported7. We replicated 37 type 2 diabetes signals in FinnGen

295  cohort (Supplementary Table 14).
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296 In total, we found seven SNPs shared between type 2 diabetes and PHQ-9: 1s7903146
297  (ICF7L2), 157766070 (CDKALI), 151359790 (SPRY2), 116860235 (IGF2BP2), 1576895963
298  (CCND2-AS1),1s2972144 (IRSI) and 1s10811662 (CDKN2B-AS1) (Table 1, Figure 2). The
299  maxFDR for type 2 diabetes and PHQ-9 after MP-GWAS were 0.98% and 1.8% respectively
300 (Supplementary Table 13), indicating the results are robust and not influenced by the
301  sample sizes of either GWAS.

302 eQTL analyses

303 To explore whether the seven SNPs shared between type 2 diabetes and self-reported
304  depression had a downstream functional impact, we first extracted eQTL data of the seven
305  identified SNPs using the 1) GTEx Portal in relevant tissues, including muscle, liver and
306  brain, and 2) the Tiger Portal for pancreatic islets. We found that of the seven shared SNPs
307  between type 2 diabetes and depression, six SNPs were associated with the expression of
308 nearby genes in relevant tissues (Table 2). This includes 1s2972144-G risk allele associated
309  with a decreased expression of /RSI and RP11-395N3.2 in visceral and subcutaneous adipose
310  and RP11-395N3.1 in subcutaneous adipose tissue. Additionally, the rs76895963-T risk allele
311 was associated with the decreased expression of CCND2 in pancreatic islets, brain
312 cerebellum, skeletal muscle and subcutaneous adipose tissue, the decreased expression of its
313  antisense CCND2-ASI in pancreatic islets, brain cerebellum, basal ganglia and cortex, in
314  addition to CCND2-AS2 in the cerebellum. For pancreatic islets, we found an increased
315  expression of NDUFA9 (Table 2).

316 In addition, using our MP-GWAS summary statistics, we tested in GTEx whether type 2
317  diabetes and PHQ-9 were associated with shared gene expression changes in several target
318  tissues except for pancreatic islets as GTEx does not include data on that. This analysis
319  identified additional target genes associated with both type 2 diabetes and PHQ-9 in eight

320  tissues, consistent in direction of effect for both phenotypes: adipose subcutaneous (IRSI,
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321 NCR3LGI, RP11-395N3.2), amygdala (HSPAIB), frontal cortex (CDKALI), hypothalamus
322 (EIF2S2P3), skeletal muscle (HLA-DRA, RP11-370C19.2), substantia nigra (BETLI), and
323  whole blood (EIF2S2P3, HLA-DRBI) (Supplementary Figure 7, Supplementary Table 7
324  and 15-17). Altogether, our data demonstrates a functional impact of our loci in several
325  related tissues.
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326 CONCLUSIONS

(5
1S}
-

We performed a large comprehensive study to investigate the relationship between type 2
328  diabetes and depression and found evidence for a causal positive association from depression
329  to type 2 diabetes. We also performed a multi-phenotype GWAS of the two diseases,
330  highlighting seven shared loci that target nearby genes in several target tissues. Altogether,
331  our study provides novel insight into the underlying mechanisms linking the two diseases.
332 Our MR analysis, based on recent large-scale GWAS, provides evidence for causality on the
333  previously reported epidemiological associations from depression to type 2 diabetes®, but not
334 in the reverse direction. These findings are consistent with the pathophysiology for these
335  diseases, whereby: 1) depression starts in adolescence or early adulthood” , whereas type 2
336  diabetes usually develops later™, 2) poor health habits among individuals with depression,
337 including smoking, physical inactivity and increased caloric intake (and associated
338 overweight), that are known to facilitate the development of type 2 diabetes®?, 3)
339  antidepressants frequently induce weight gain leading to type 2 diabetes » and 4) the
340  systemic inflammation associated to increased stress hormone levels such as cortisol in the
341  context of depression also favors insulin resistance®.

342 While epidemiological studies also show increased risk of depression in people with type 2
343 diabetes*, we did not find evidence for causality in this relationship. Our evaluation of
344  instrument strength for the MR analysis suggests that the lack of this causal association is not
345 simply an issue of statistical power. A likely hypothesis is that the epidemiologically
346  observed association is confounded via other factors, which are not easily assessed in
347  epidemiological studies, such as psychosocial factors related to the painful management of a
348  middle-age chronic disease. Diabetes distress, the psychological burden caused by dealing
349  with having diabetes and having to care for it, has indeed been linked to depression”.

350 However, a large international longitudinal study of 14 countries has shown that only
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351  depressive symptoms rather than MDD were predicted by diabetes distress one year after
352 diagnosis32.

353  In addition, our multi-phenotype GWAS revealed seven shared SNPs between type 2 diabetes
354  and self-reported depressive symptoms consistent in their directions of effect. It is interesting
355 to note that we did not find any shared SNPs associated with the binary MDD clinical
356  diagnosis and type 2 diabetes which we speculate could be due to several reasons: 1) that the
357  association between type 2 diabetes and depression is due to the less strictly defined
358  symptom-based depressive measures, and 2) the PHQ-9 is a continuous definition of
359  depression, and likely improves power compared to the binary MDD definition. Indeed,
360 previous studies showed that depression defined based on self-reported symptoms (minimal
361  phenotyping) rather than strict diagnostic criteria enables greater power for locus discovery in
362 GWAS™.

363 Our eQTL analysis provided some clues to the underlying mechanisms linking the two
364  diseases. For instance, we found that the 1s76895963-T risk allele was associated with the
365  decreased expression of CCND?2 in the brain and pancreatic islets and insulin target tissues
366  (adipose and skeletal muscle), suggesting a pleiotropic effect of this locus. CCND2 encodes
367  Cyclin D2, which is involved in cell cycle regulation and with a role in pancreatic beta cell
368  proliferation and insulin secretion®*, consistent with our eQTL data showing a decreased
369  expression of the gene in pancreatic islets. Mutations in CCND2 have been described in
370  individuals with brain malformations®, confirming a role in maintaining brain growth, and
371  mouse knockout models of CCND?2 have no brain neurogenesis and showed mild depression-
372 like symptoms that were alleviated by anti-depressant chronic fluoxetine treatment™. In
373  addition, a recent study showed that neurogenesis in the brain may prevent depressive
374  symptoms. Indeed, these studies demonstrate a potential mechanism whereby CCND2 down-

375  regulation may halt this process”. In addition, the inhibition of CCND?2 in adipose tissue has
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376  been shown to dysregulate adipocyte differentiation®® and downregulated in obesity,
377  suggesting a key role in maintaining adipocyte regeneration”. Therefore, we show that
378 CCND2 has a multi-system and pleiotropic effect and could potentially mediate this
379  relationship between type 2 diabetes and depression.

380 In addition, we found that the 1s2972144-G risk allele was associated with decreased
381  expression of IRSI, which encodes insulin receptor substrate 1, in adipose tissue. IRS! is a
382  key signaling molecule necessary for insulin response in insulin target tissues and has been

40

383  shown to be associated with insulin resistance™, a condition linked to both the development

384  of type 2 diabetes and depression‘u.

385  Also, our eQTL analyses revealed further insights into the potential mechanisms underlying
386  the relationship between type 2 diabetes and depression. Lower expression of CDKALI in
387  frontal cortex was associated both with type 2 diabetes and depressive symptoms. Although

388  reported for bipolar disorder**

, variation in CDKALI has been associated with depressive
389  phenotypes only in one previous study*. In addition, although we did not find an eQTL for
390  this locus in pancreatic islets in our study, variation at CDKALI has been implicated in type 2
391  diabetes and shown to reduce insulin secretion®.

392  We also found two target genes implicating the HLA region (HLA-DRA, HLA-DRBI) in the
393  shared pathogenesis of the two diseases, in blood and skeletal muscle. The role of depression
394  treatments, targeting the immune system, is very active®. Type 2 diabetes is also known to
395  have an impact on immune system with high blood glucose levels causing an inflammatory
396 1'esponse47. While trying to underpin the molecular mechanisms within this potential shared
397  pathway, further studies on the type 2 diabetes-depression comorbidity should account also
398 for the role of obesity with its known links with inflammation®®, type 2 diabetes® and

399  suggested with depressionso_
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400  Our results highlight a shared genetic effect between the two phenotypes with plausible
401  biological significance that explain how environmental factors (i.e., stress, lifestyle habits and
402  anti-depressant medication) could lead to the underlying co-morbidity. Therefore, we
403  speculate that our results could hold some clinical significance. For instance, the choice of
404  anti-depressant treatment offered to people with depression at risk of type 2 diabetes should
405 favor those that provide better glycemic control such as selective serotonin reuptake
406  inhibitors (SSRIs)’". Additionally, people with depression should be encouraged, as part of
407  routine clinical care, to promote positive lifestyle habits such as increased physical activity,
408  adequate sleep, and a proper dietary regime.

409  This study exhibits several strengths. We report the first study to investigate the causal
410  relationship of type 2 diabetes and depression in both directions and performed the largest-to-
411 date MP-GWAS for the two diseases. Our investigation highlights the ability of multi-
412  phenotype approaches to reveal the shared associations in co-morbid diseases and further
413  confirms the power of large-scale datasets to uncover phenotype associations, including self-
414  reported and continuous measures of diseases and their symptoms. However, there are some
415  limitations to be considered. Our main UKBB analyses on MDD did not yield any genome-
416  wide significant signals in both GWAS and MP-GWAS and a validation in larger datasets is
417  needed. In addition, to effectively probe the credibility of the MTAG MP-GWAS results,
418  replication using another MP-GWAS method is needed as part of future analyses. Finally, we
419  could only replicate the type 2 diabetes-MDD analyses due to unavailability of publicly
420  available depressive symptoms GWAS and in the FinnGen cohort.

421  In conclusion, the shared loci between depressive symptoms and type 2 diabetes support a
422  pleiotropic role in target tissues, providing insight into their pathophysiology and co-
423  morbidity, boosting our understanding of the pathogenesis of these two diseases.

424  Additionally, self-reported depression/depressive symptoms may offer more in deciphering
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425  the underlying co-morbidity with type 2 diabetes compared to the strictly defined MDD. The

426  causal effect of depression leading to the development of type 2 diabetes has important

427  implications for a more efficient prevention of type 2 diabetes from early adulthood.
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Tablel. Summary statistics of the seven shared loci between type 2 diabetes and PHQ-9 after MP-GWAS

Type 2 diabetes PHQ-9
NEAREST

CHR SNP BP GENE EA NEA EAF| BETA SE P BETA SE P
2 152972144 227101411 IRS1 G A 065| 00031 000038 489x10%| 0065 0012 180x10%
3 1s16860235 185512361  IGF2BP2 A G 028| 00046 000040 141x10®| 0.103 0012 4.19x10"
6 17766070 20686573 ~ CDKALI* A C 026| 00046 000041 7.79x10%| 0103 0014 124x10"
9 1510811662 22134253 CDKN2B-ASI G A 083| 00049 000048  7.88x10% 009 0015 4.30x10%
10 rs7903146 114758349 TCF7L2 T € 029 0011 000040 688x10"®| 021 0012 168x10%
12 1576895963 4384844 CCND2-ASI T G 098 0015 00014  308x107 029 0043 191x10™
13 151359790 80717156 SPRY2 G A 072| 00035 000040 854x10" | 0076 0012 591x10™
* Different SNP for PHQ-9 (152206734, Position-20694884, Effect Allele-G. Non-effect
Allele-C; In high LD with type 2 diabetes SNP=R2=0.544)

561 Legend: CHR=chromosome, BP=base pair position (zenome build 37), EA=effect allele. NEA=non-effect

562  allele, EAF=effect allele frequency

563

25

126



medRxiv preprint doi: https://doi.org/10.1101/2022.12.06.22283143; this version posted December 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

564  Table 2. Target genes of SNPs shared type 2 diabetes and depressive symptoms in relevant target tissues.
565

Organ donors
Nearest Gene
CHR SNP BP gene EA NEA Tissue Effect direction target P
2 rs2072144 227101411 IRS1 G A Adipose - Negative IRS1 2.60x10°®
Subcutaneous
Adipose - Negative RP11-395N3.2 5.70x10%°
Subcutaneous
Adipose - Negative RPI1-395N3.1 1.70x10%"
Subcutaneous
Adipose - Visceral Negative IRS1 2.80x10™
Adipose - Visceral Negative RPI11-395N32 1.6x10°%
3 rs16860235 185512361 IGF2BP2 A G Pancreatic islets Negative IGF2BP2 394x10”
Pancreatic islets Negative C3orf70 0.028
Pancreatic islets Positive EIF4A2 0.045
rs7766070 20686573 CDKALI A c Pancreatic islets Positive LINC005811 0.049
9 rs10811662 22134253 CDKN2A- G A Pancreatic islets Positive MTAP 0.038
ASI
Pancreatic islets Positive CDKN2A 0.00099
Pancreatic islets Positive CDKN2B-AS1 1.54x107
10 rs7903146 114758349  TCF7L2 3 C Pancreatic islets Positive TCF7L2 0.0029
12 rs76895963 4384844 CCND2- T G Pancreatic islets Negative CCND2 1.68 x 10°
ASI
Pancreatic islets Negative CCND2-AS1 0.017
Pancreatic islets Positive NDUFA9 0.039
Brain - Cerebellum Negative CCND2 7.90x10%
Brain - Cercbellum Negative CCND2-ASI 2.10x107¢
Brain - Cerebellum Negative CCND2-AS2 1.00x10%8
Brain - Nucleus Negative CCND2-AS1 2.70x107
accumbens (basal
ganglia)
Brain - Putamen Negative CCND2-AS1 0.000008
(basal ganglia)
Brain - Cortex Negative CCND2-AS1 0.000011
Muscle - Skeletal Negative CCND2 9.30x10"
Adipose - Negative CCND2 2.70x10°1°
Subcutaneous
13 rs1359790 80717156  SPRY2 G A NA NA NA NA

566
567  Legend: CHR=chromosome, BP=base pair position (genome build 37), EA=effect allele, NEA=non-effect
568  allele, EAF=effect allele frequency
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569 Figure legends

570 Figure 1. Forest plot showing the Mendelian randomization analysis results between
571 depression (exposure) and type 2 diabetes (type 2 diabetes). The odds ratio (OR), their
572 95% confidence intervals and P-values are shown.

573 Figure 2. Manhattan plots of type 2 diabetes (A) and PHQ-9 (B) after MP-GWAS in
574 UK Biobank. The red horizontal line shows genome-wide significance threshold
575 (P<5x10®). Grey dashed horizontal lines show suggestive genome-wide significance
576 threshold (P<l><10‘5 ). The shared loci are annotated.
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6.1 Insights

This last paper presents a study investigating the genetic relationship between two

common disorders: T2D and depression.

Using publicly available GWAS summary statistics of T2D and depression, | assessed
the causal relationship between the two diseases using two-sample bi-directional
Mendelian randomization. The results of this investigation show that depression is
causal for type 2 diabetes while there was no evidence of the reverse direction being

significant.

Additionally, using the UKBB, | implemented a multi-phenotype GWAS approach to
jointly analyse T2D and depressive phenotypes. The depressive phenotypes included
in this study were depressive symptoms based on self-report questionnaires, and
clinically diagnosed major depressive disorder (MDD). Multi-phenotype GWAS
demonstrated shared genetic loci between T2D and self-reported definitions of
depression which was not seen in the standard GWAS approach of analysing
phenotypes independently. Majority of the identified shared loci between T2D and
depression have a role in insulin secretion pathways. However, T2D and the strictly

MDD did not reveal shared loci after multi-phenotype GWAS.

| further sought to establish the target genes associated with both T2D and depression
using expression quantitative trait /oci (eQTL) analysis. Here, | used data from the

GTEx and TIGER databases.

From this study | illustrate how genetic determinants that are shared between related
traits can be revealed through various statistical genetics methods such as Mendelian
randomization and multi-phenotype GWAS approaches. As with the obesity and

cancer study, | illustrate how Mendelian randomization utilising publicly available
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GWAS summary statistics can aid in the dissection of causal relationships between
related traits. In addition, and perhaps most importantly, I illustrate the utility of multi-

phenotype GWAS approaches in identifying shared genetic loci between related traits.
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7 GENERAL DISCUSSION

In my PhD project, | leveraged on both published GWAS and large-scale biobank data
to assess the relationship between two distinct measures of adiposity and breast,
prostate, colorectal, pancreatic and lung cancers.

By implementing statistical genetics methods that capitalize on GWAS output, such as genetic
correlation, polygenic scores, and Mendelian randomization, | demonstrated that both central
and overall measures of obesity relate differently to the risk of certain types of cancers.
Several considerations are currently in place for future research to build on the present
work. These considerations include perspectives on the study design as well as
improvement on various aspects of the methodology.

The metabolic syndrome and its components, including dyslipidaemia, insulin
resistance and hypertension, should also be added to future study designs to further
boost our findings surrounding central adiposity and cancer risk. In the current study,
the metabolic syndrome is inferred using the WHRadjBMI phenotype. Other potential
phenotypes to add to our analyses include fasting glucose levels, HDL cholesterol,
systolic and diastolic blood pressure. To build on our conclusions of a significant
contribution of the metabolic syndrome in cancer development, it follows logically that
assessing the impact of the other components of the metabolic syndrome is needed to
corroborate our findings.

The definition of the sex-specific cancer cases could be updated to improve the
specificity of phenotypes. This would involve considering tumour heterogeneity by
hormone receptor state as well as tumour grade in addition to overall cancer incidence
definitions. In the case of breast cancer, oestrogen-receptor(ER) and progesterone-
receptor positive breast cancer as well as tumour aggressiveness should be added in

the case definition criteria. Similarly, for prostate cancer, ERa- and ERp status and
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tumour aggressiveness could be accounted for. Since hormone receptor status and
tumour behaviour characteristics data in UKBB may be limited in both sample size and
detail, there exists an opportunity to collaborate with consortia such as BCAC in
actualising this study.

In the PGS and MR analyses, the next step would be to implement hierarchical
clustering of the obesity SNPs (BMI and WHRadjBMI) to partition these variants into
mechanistic groups. These mechanistic groups, based on their effects on the
phenotype, would represent hypothesised mechanisms underlying the obesity-cancer
mechanisms. The PRS based on these groups would be calculated and tested for each
cancer. Likewise, | could apply MR to assess the causality between each of these
groups and cancers. Furthermore, implementation of multi-phenotype GWAS
approaches, such as those that use individual level data’™, could enable better
definition of loci with pleiotropic effects, latter to be carefully evaluated for the use or
exclusion from MR analyses for specific phenotype relationships®.

A key notable strength of this PhD is the large number of BMI and WHRadjBMI variants
used in both PGS and MR studies. The resultant PGS base data that were therefore
of higher quality and our conclusions based on their application are thus credible.
Moreover, the UKBB offers a large database with close to 500,000 individuals with both
genetic and phenotypic data amenable for analyses. The wide range of phenotypic
data in the UKBB also allowed for the investigation of potential confounding factors
such as menopause and smoking status.

The interpretation of our findings should consider several limitations. Our analyses
were based on European data due to its availability compared to data of other
populations. Consequently, generalizability of our results across different populations

is not recommended. Further, the lack of information of hormone receptor status in the

134



UKBB limited the extent to which the associations between obesity and cancer can be
performed. The unavailability of public GWAS summary statistics of certain cancers
such as post-menopausal breast and lung cancers also limited our ability to investigate
causality using MR. While for some cancers in the UKBB, our sample sizes were low

and thus GWAS, and subsequent analyses were statistically underpowered.

In conclusion, using large scale genetic data (published GWAS and biobank data), |
show that central obesity, proxied using WHRadjBMI, may be a more important causal
risk factor for pancreatic cancer than overall obesity. Additionally, | show an inverse
association between overall obesity and prostate cancer, while central adiposity has a
direct association with prostate cancer. These results additionally suggest that central

obesity may be a causal risk factor for breast cancer.
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Supplementary Table 1. Detailed results of the Mendelian randomization analyses between obesity and cancer phenotypes

Inverse variance MR Egger Weighted median Simple mode Weighted mode Heterogeneity MR-Egger Intercept
weighted
Exposure Outcome NSNPs OR P OR P OR P OR P OR P Q stat (P) Intercept(SE) P
(95% Cl) (95% Cl) (95% Cl) (95% Cl) (95% CI)
BMI BrC 576 1.000 0.897 0.985 0.051 0.996 0.266 0.944 0.634 0.994 0.462 755.9 (5.34E-07)  0.0003 (0.0001) 0.034
(0.995- (0.971- (0.988- (0.968- (0.977-
1.005) 1.000) 1.003) 1.020) 1.011)
BMI PrC 574 0.993 0.0042 0.995 0.473 0.993 0.039 0.984 0.22 0.995 0.491 863.64 (3.93E-14) -45.47 (0.0001) 0.713
(0.988- (0.982- (0.985- (0.960- (0.981-
0.998) 1.009) 0.999) 1.009) 1.009)
BMI CrC 575 1.000 0.92 1.001 0.682 1.000 1 0.999 0.768 1.000 0.923 656.59 (0.0094) -20.71 0.689
(0.998- (0.996- (0.997- (0.989- (0.995- (0.00004)
1.002) 1.006) 1.003) 1.008) 1.005)
BrC BMI 109 0.997 0.557 1.004 0.686 1.008 0.1 1.030 0.983 1.030 0.982 510.98 (1.27E-53) -0.006 (0.0007) 0.372
(0.985- (0.984- (0.998- (0.061- (0.076-
1.008) 1.025) 1.017) 17.321) 13.925)
PrC BMI 74 1.004 0.333 0.993 0.471 0.998 0.639  0.995 (0977- 0.57 0.997 0.626 194.16 (6.04E-13) 0.001 1 (0.0008) 0.184
(0.995- (0.974- (0.988- 1.013) (0.987-
1.014) 1.102) 1.007) 1.008)
CrC BMI 48 0.752 0.435 1.648 0.529 1.031 0.939 1.153 0.944 1.153 0.937 102.89 (4.71E-06) -0.001 (0.0009) 0.268
(0.368- (0.352- (0.473- (0.021- (0.035-
1.538) 7.729) 2.246) 62.240) 38.392)
WHRadjBMI BrC 284 0.990 0.0068 1.000 0.974 0.991 0.105 1.003 0.83 0.993 0.338 529.41 (3.63E-17) -0.0002 0.226
(0.983- (0.982- (0.981- (0.974- (0.978- (0.0002)
0.997) 1.017) 1.002) 1.033) 1.008)
WHRadjBMI PrC 284 1.0046 0.179 1.016 0.048 1.007 0.094 1.018 0.209 1.022 0.0053 493.63 (1.32E-13) -0.0002 0.119
(0.998- (1.00018- (0.999- (0.990- (1.00067- (0.0002)
1.011) 1.032) 1.016) 1.045) 1.038)
WHRadjBMI CrC 284 1.002 0.125 1.000 0.885 1.000 0.917 0.995 0.391 1.000 0.988 410.68 (1.02E-06) 0.00003 0.578
(0.994- (0.995- (0.996- (0.984- (0.994- (0.00006)
1.004) 1.006) 1.004) 1.006) 1.006)




BrC  WHRadjBMI 117 0.993 0.495 0.949 0.018 0.976  0.056 1.013 0.997 1.013 0997  180.81 (1.11E-04) 0.003 (0.001)  0.022
(0.975- (0.910- (0.953- (0.002- (0.004-
1.012) 0.991) 1.001) 518.382) 274.794)

PrC  WHRadjBMI 81 1.008 0.211 1.013  0.324 1.005  0.616 0.999 0.947 1.005  0.655 79.36 (0.499)  -0.0005 (0.001)  0.668
(0.996- (0.988- (0.985- (0.961- (0.984-
1.021) 1.039) 1.026) 1.038) 1.025)

CrC  WHRadjBMI 59 1.113 0.852 11.000  0.04 1.728  0.53 2.546 0.511 2126 0.422 68.69 (0.159)  -0.003 (0.001)  0.025
(0.362- (1.176- (0.314- (0.016- (0.342-
3.423) 102.88) 9.509) 40.531) 13.222)
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Supplementary Table 2. Independent genome-wide significant signals (P<5x10-8) for
overall breast cancer in UK Biobank GWAS

CHR BP SNP GENE EA NEA EAF BETA SE
1 121280613 rs11249433 EMBP1 A 0.583 -0.0062 0.00075 1.50x10®
1 149927034 rs12048493 OTUD7B C 0.609 -0.0045 0.00078 6.90x10%
2 121153979 rs13406182 INHBB,LINC01101 T C 0.806 0.0057 0.00094 1.30x10%
2 121245613 rs12616849 LINC01101,GLI2 G C 0.098 -0.0070 0.00126 2.50x10%8
2 213537460 rs9967727 ERBB4,LINC0O1878 C G 0.634 -0.0047 0.00077 8.10x10%°
2 217920769 rs4442975 LINC01921,DIRC3-AS1 G T 0.489 0.0087 0.00074 1.00x103*
2 217954982 rs7587558 LINC01921,DIRC3-AS1 T A 0.965 0.0171 0.00205 6.40x10™"
3 27374101 rs1352944 NEK10 C A 0.525 0.0073 0.00074 9.80x10%
4 175850605 rs28465148 ADAM29 T G 0.880 0.0071 0.00115 5.60x10%°
5 1294086 rs2736098 TERT C T 0721 0.0048 0.00083 6.80x10%
5 44706498 rs10941679 LINC02224,BRCAT54 A G 0.747 -0.0088 0.00086 2.80x10%*
5 45333860 rs55821517 HCN1 T C 0.736 0.0052 0.00086 9.70x10%°
5 56016918 rs12653202 C5o0rf67,MAP3K1 A C 0841 -0.0122 0.00102 3.30x10°%
5 158230013 rs11135046 EBF1 G T 0.457 0.0052 0.00075 3.00x10*2
6 151947326 rs11155805 CCDC170,ESR1 A G 0.669 -0.0072 0.00079 6.20x10%°
6 152441587 rs2813550 ESR1 C A 0.242 -0.0050 0.00087 7.00x10%
8 36859186 rs12681990 KCNU1 T C 0.838 0.0072 0.00101 9.90x10™"3
8 128355618 rs13281615 CASC21,CASC8 A G 0.591 -0.0065 0.00075 4.70x1078
9 110306944 rs10978911 KLF4 G C 0.875 -0.0067 0.00113 2.90x10%
9 110837073 rs10816625 KLF4 A G 0.936 -0.0087 0.00152 1.20x10%
9 110893030 rs628931 KLF4 A G 0.377 -0.0063 0.00077 1.70x10®
10 21799726 rs12256551 SKIDA1 A C 0.644 -0.0044 0.00078 2.10x10%
10 64258343 rs2393886 ZNF365 C T 0.533 0.0046 0.00075 5.40x10%°
10 80887957 rs10762851 ZMIZ1 A G 0.841 -0.0067 0.00102 3.70x10™
10 123095209 rs9421410 WDR11,FGFR2 G A 0.684 0.0052 0.00080 1.10x107°
10 123314462 rs17614209 FGFR2 C G 0.976 -0.0152 0.00254 2.60x10%
10 123346116 rs2981575 FGFR2 G A 0.396 0.0179 0.00076  3.80x107'*
11 1902097 rs4980383 LSP1 C T 0.547 -0.0056 0.00075 1.00x10*3
11 69331418 rs78540526 CCND1 C T 0.929 -0.0211 0.00145 3.60x108
11 129454107 rs10736577 BARX2 A G 0.395 -0.0047 0.00076 7.70x10%°
12 28151609 rs812020 PTHLH,CCDC91 A c 0.737 0.0059 0.00085 5.00x10*2
12 28488886 rs11049539 CCDCI91 A T 0.698 0.0045 0.00081 3.40x10%8
12 96026737 rs61938093 PGAM1P5 C T 0.705 0.0075 0.00082 4.60x10%°
12 115834946 rs2133317 TBX3,MED13L C G 0.615 0.0052 0.00076 1.10x10™
14 37128564 rs34914085 PAX9 C A 0.789 0.0055 0.00091 1.70x10%
14 68979835 rs11624333 RAD51B T c 0.717 0.0062 0.00083 1.40x10"3
16 52599188 rs4784227 CASC16 C T 0.760 -0.0166 0.00087 3.00x10%
16 53810686 rs7193144 FTO T C 0.607 0.0056 0.00076 1.80x10*3
16 53861592 rs7184573 FTO G A 0.624 0.0042 0.00077 5.70x10%8
16 54676323 rs8044756 LINC02140,L0C101927480 G A 0487 -0.0044 0.00075 6.10x10%
16 80651109 rs17750740 CcDYL2 T C 0.795 -0.0052 0.00093 1.70x10%
17 29206421 rs6505216 ATADS G T 0.766 0.0059 0.00091 8.60x10™!



18
21
22
22

24481272
16563640
40935593
41027870

rs17621185
rs2823129
rs183387906
rs73169097

AQP4-AS1
NRIP1,USP25
MKL1
MKL1

O o0 0 >

- > 4 O

0.789
0.675
0.912
0.901

0.0051 0.00091
0.0052 0.00079
-0.0096 0.00134
-0.0101 0.00125

1.60x10%
4.40x10™*
8.60x10™"3
5.80x10%
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Supplementary Table 3. Independent genome-wide significant signals (P<5x10-8) for
post-menopausal breast cancer in UK Biobank GWAS

CHR BP SNP GENE EA NEA EAF BETA SE P
1 121280613 rs11249433 EMBP1 A G 0.584 -0.0042 0.00064  3.90x10!
1 149927034 rs12048493 OTUD7B A C 0.609 -0.0040 0.00066  1.80x10%
2 121154536 rs72960863 INHBB,LINC01101 T C 0.806 0.0047 0.00080  5.60x10%
2 213545357 rs13404902 ERBB4,LINCO1878 c T 0.639 -0.0037 0.00066  3.00x10°®
2 217905779 rs13412666 LINC01921,DIRC3-AS1 G A 0.502 0.0059 0.00063  1.40x10?°
2 217957699 rs72951831 LINC01921,DIRC3-AS1 G T 0.964 0.0111 0.00169  6.30x10™"!
3 27374101 rs1352944 NEK10 cC A 0.525 0.0049 0.00063  2.00x10*
5 1294086 rs2736098 TERT c T 0.721 0.0041 0.00071  1.00x10°®
5 44706498 rs10941679 LINC02224,BRCAT54 A G 0.747 -0.0062 0.00073  2.00x10"
5 56016918 rs12653202 C5o0rf67,MAP3K1 A C 0.841 -0.0088 0.00087  3.70x102*
5 158230013 rs11135046 EBF1 G T 0.457 0.0038 0.00064  3.00x10%
6 151969740 rs9371545 CCDC170,ESR1 G A 0.926 -0.0084 0.00121  4.40x10"?
6 152432902 rs910416 ESR1 c T 0.490 -0.0050 0.00064  4.00x10"
8 36858483 rs13365225 KCNU1 A G 0.836 0.0046 0.00086  7.50x10°®
8 128355618 rs13281615 CASC21,CASC8 A G 0.591 -0.0050 0.00064  6.40x10"°
9 110886840 rs548980 KLF4 c T 0.379 -0.0042 0.00065  1.10x10%°
10 64299890 rs10995201 ZNF365 A G 0.852 0.0052 0.00090  8.60x10*
10 123346116 rs2981575 FGFR2 G A 0.396 0.0125 0.00065  9.60x10%*
11 69331418 rs78540526 CCND1 c T 0.929 -0.0146 0.00123  1.80x10%?
11 129476405 rs7119897 BARX2 cC G 0.430 -0.0040 0.00064  3.60x10°
12 28139846 rs805510 PTHLH,CCDC91 T C 0.128 -0.0057 0.00095 2.80x10*
12 96026737 rs61938093 PGAM1P5 c T 0.705 0.0054 0.00070  1.50x10*
12 115836183 rs1391720 TBX3,MED13L G A 0.582 0.0042 0.00064  5.60x10"!
14 68976059 rs36028293 RAD51B G A 0.720 0.0040 0.00071  1.80x10°®
16 52599188 rs4784227 CASC16 c T 0.760 -0.0116 0.00074  3.50x10°°
16 53810686 rs7193144 FTO T C 0.607 0.0043 0.00065  3.80x10!
16 80651109 rs17750740 CcDYL2 T C 0.795 -0.0051 0.00079  9.40x10!
22 40935593 rs183387906 MKL1 G A 0.912 -0.0076 0.00115  3.90x10™"!
22 41015883 rs5995881 MKL1 A G 0.901 -0.0079 0.00106  9.60x10*
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Supplementary Table 4. Independent genome-wide significant signals (P<5x10-8) for

prostate cancer in UK Biobank GWAS

CHR BP SNP GENE EA NEA EAF BETA SE P
1 150940625 rs267738 CERS2 T G 0.7804 -0.00481 0.00085 1.60x108
1 204466176 rs4951076 MDMA4 G A 0.316 -0.00461 0.00076 1.10x10
2 43738173 rs1038822 THADA T C 0.299 0.00561 0.00077 4.00x10™"3
2 62766723 rs11904315 TMEM17,EHBP1 cC A 0.889 -0.00675 0.00112 1.70x10%
2 63277843 rs58235267 OTX1 C G 0.512 -0.00673 0.00071 2.10x10*
2 63443276 rs141301592 WDPCP C G 0.856 0.00552 0.00101 4.00x1078
2 85788175 rs7568458 GGCX T A 0.545 0.00473 0.00071 2.00x10™
2 173309402 rs80353656 ITGA6 T C 0.938 0.01297 0.00146 7.00x10%
2 173363917 rs7596665 ITGA6 A G 0.943 0.01201 0.00152 2.40x10%
2 202151163 rs3769818 CASP8 A G 0.269 -0.00458 0.00079 8.00x10%
2 238389739 rs73098849 COL6A3,MLPH G A 0.833 -0.00515 0.00094 4.90x1078
3 87144004 rs139263101 LINCO0506 c T 0.933 -0.01122 0.00143 4.00x10"°
3 113300183 rs2271494 SIDT1 AT 0.582 0.00440 0.00071 6.90x10*°
3 127898501 rs2811476 EEFSEC A C 0.737 -0.00437 0.000799 4.50x1078
3 170083629 rs61436251 SKIL C G 0.80002 0.00905 0.00088 8.50x10%
4 95530464 rs12639980 PDLIM5 cC A 0.577 -0.00495 0.00071 3.50x10*
4 106065308 rs10007915 TET2 C G 0.624 0.00643 0.00073 9.50x10™"
5 1282414 rs7725218 TERT G A 0.661 0.00619 0.00074 7.60x10
5 1891821 rs10866528 CTD-2194D22.4 A G 0.536 -0.00627 0.00071 1.30x108
6 31080471 rs1265052 Céorf15 T C 0.476 0.00411 0.000704 5.40x10%
6 31783507 rs1043618 HSPA1A G C 0.621 0.00401 0.00072 3.10x10%8
6 32628361 rs9273501 HLA-DQB1-AS1 T A 0.639 -0.00405 0.00073 3.20x10%8
6 41548755 rs6917270 FOXP4 A G 0.720 -0.00565 0.00078 4.70x10"3
6 117207682 rs339327 RFX6 A G 0.695 0.00666 0.00076 2.40x1078
6 160581374 rs651164 SLC22A1,5LC22A2 A G 0.297 -0.00421 0.00077 4.20x1078
6 160835192 rs1112444 SLC22A3 cC A 0.695 -0.00501 0.00076 5.30x10™
7 27976563 rs10486567 JAZF1 G A 0.767 0.00713 0.00083 7.60x108
7 97773812 rs11768309 LMTK2 cC A 0.464 0.00606 0.000704 7.10x108
8 23466880 rs4383983 NKX3-1 G C 0.583 0.00481 0.00071 1.40x10*
8 23525543  rs13265330 NKX3-1 c T 0.420 0.00719 0.00071 5.70x10%*
8 127924563  rs10441523 FAMB84B,PCAT1 c T 0.317 0.00571 0.00076 5.20x10*
8 128030236 rs144828524 PCAT1 T C 0.969 0.01140 0.00206 3.20x10%8
8 128077146 rs77541621 PCAT1,PCAT2 G A 0.971 -0.04196 0.00219 1.10x10%*
8 128091418 rs72725868 PCAT2 A G 0.913 0.00753 0.00131 8.20x10%
8 128110814 rs17765137 PRNCR1,CASC19 A G 0.950 0.01232 0.00161 2.20x10*
8 128117736 rs143368544 PRNCR1,CASC19 c T 0.977 -0.01346 0.00240 2.00x10%8
8 128324147 rs382434 CASC21,CASC8 c T 0.664 0.00810 0.00075 1.80x10%7
8 128409232 rs11985829 CASC8 T C 0.309 0.00841 0.00076 1.90x102®
8 128444775 rs150869774 CASC8 T C 0.984 -0.01858 0.00284 6.20x10™
8 128532137 rs10090154 CASC8,CASC11 T C 0.0996 0.02022 0.00117 1.60x107®
8 128540776 rs12549761 CASC8,CASC11 C G 0.879 0.01087 0.00107 4.20x10%
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0.00418
0.00405

-0.01133
0.00624

-0.01335

-0.01394
0.00434

-0.01580

-0.01008
0.00431
0.00563
0.00557
0.00591

-0.00496

-0.01095
0.00684

-0.01092

-0.01200

-0.00816
0.00770
0.00577

-0.00448

-0.00603
0.01740
0.00481
0.00672
0.00640

0.00076
0.00072
0.00071
0.000704
0.00093
0.00098
0.00093
0.0022
0.00071
0.00272
0.00112
0.00075
0.00087
0.00102
0.00105
0.00073
0.00149
0.00093
0.00071
0.002001
0.00129
0.00071
0.000705
0.00072
0.00090
0.00135
0.00077
0.000703
0.00107

5.00x10**
6.90x103
4.80x10%°
8.60x10%
4.30x103
1.90x10°
2.00x10
2.60x10%°
7.60x10%°
6.60x10%
1.90x10°
7.70x10%
9.00x10™
5.30x10%8
2.00x10%8
1.40x10*
1.70x103
1.70x102
1.30x10°2
2.00x10%
2.20x10%°
1.30x10?7
2.60x107%®
6.00x10*°
1.80x10*
3.10x10%
5.20x10%°
1.10x10*
2.10x10%
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Supplementary Table 5. Independent genome-wide significant signals (P<5x10-8) for
colorectal cancer in UK Biobank GWAS

CHR BP SNP Gene EA NEA EAF BETA SE P
1 222218761 rs12135286 HHIPL2 c T 0.806 -0.00236 0.00035  1.40x10™
3 28450527 rs114717436 ZCWPW2 A G 0.989 -0.00766 0.00138  2.70x10®
5 1296486 rs2735940 TERT A G 0.510 -0.00158 0.00028  1.40x10®
5 40280202 rs1445011 LINCO0603,PTGER4 T c 0.717 -0.00174 0.00031  1.70x10®
6 158842827 rs341145 TULP4 c T 0.649 -0.00166 0.00029  9.10x10%
8 117630683 rs16892766  LINCO0536,EIF3H A c 0.920 -0.00346 0.00051  1.10x10™
8 128413305 rs6983267 CCAT2 G T 0.519 0.00248 0.00028  2.30x10™%
11 111166504 rs12296076 COLCA1 G A 0.327 0.00178 0.00030  2.10x10%
12 112553032 rs10850001 NAA25,TRAFD1 T A 0.567 0.00153 0.00028  6.70x10®
15 33001734 rs58658771 SCG5,GREM1 T A 0.820 -0.00322 0.00036  4.40x10™%
18 46448805 rs6507874 SMAD7 T c 0.527 0.00249 0.00028  4.70x10™%
20 6405479  rs13037538 CASC20 A G 0.641 -0.00173 0.00029  2.00x10%
20 47340117 rs6066825 PREX1 A G 0.635 0.00177 0.00029  7.80x10*°
20 60983973 rs7262524 CABLES2 c T 0.735 0.00193 0.00031  8.40x107%°
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Supplementary Table 6. Independent genome-wide significant signals (P<5x10-8) for

pancreatic cancer in UK Biobank GWAS

CHR

BP

SNP GENE EA NEA EAF BETA SE P
5 1300401 rs2736103 TERT T C 0.581 0.000702 0.00012 3.30x10%
9 136153875 rs651007 ABO C T 0.793 -0.000829 0.00014 7.60x10%°
13 73916628 rs9543325 KLF5 C T 0.362 0.000712 0.00012 3.90x10%
16 75234872  rs72802342 ZFP1,CTRB2 C A 0.923 -0.001621 0.00022 2.50x10*3
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Supplementary Table 7. Independent genome-wide significant signals (P<5x10-8) for
lung cancer in UK Biobank GWAS

CHR BP SNP GENE EA NEA EAF BETA SE P
5 1306165 rs4404721 TERT T C 0.369 -0.0013 0.0002 8.00x10™*
15 78801394 rs11852372 HYKK A C 0.666 -0.0019 0.0002 3.10x10%°
19 41342842 rs145580088 CYP2T1P,CYP2A6 A G 0.978 0.0037 0.0007 3.90x10
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Supplementary Figure 1. Flowchart showing UK Biobank adiposity and pancreatic

cancer definition
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Supplementary Figure 2. Manhattan plot of lung cancer GWAS in UK Biobank. The
red horizontal line shows genome-wide significance threshold (P<5x10-8). The dashed
grey line shows suggestive significance threshold (P<1x10-°)
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Supplementary Figure 3. Manhattan plots of overall breast cancer (top) and post-
menopausal breast cancer (bottom) GWAS in UK Biobank. The red horizontal line
shows genome-wide significance threshold (P<5x10%). The dashed grey line shows
suggestive significance threshold (P<1x10-°)
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Supplementary Figure 5. Manhattan plot of lung cancer GWAS in UK Biobank. The
red horizontal line shows genome-wide significance threshold (P<5x108). The dashed
grey line shows suggestive significance threshold (P<1x10-°)
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Supplementary Figure 7. Summary of Mendelian Randomization tests performed for
BMI/WHRadjBMI and breast, prostate and colorectal cancers, including the number of

genetic instruments (SNPs) available from published GWAS for each test
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Supplementary Figure 8. Scatter and forest plots for the BMI to cancer direction
Mendelian randomization tests. A) BMI to breast cancer. B) BMI to colorectal cancer
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Supplementary Figure 9. Scatter and forest plots for the cancer to BMI direction
Mendelian randomization tests. A) Breast cancer to BMI. B) Colorectal cancer to BMI.
C) Prostate cancer to BMI
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Supplementary Figure 10. Scatter and forest plots for the WHRadjBMI to cancer
direction Mendelian randomization tests. A) WHRadjBMI to breast cancer. B)
WHRadjBMI to colorectal cancer
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Supplementary Figure 11. Scatter and forest plots for the cancer to WHRadjBMI
direction Mendelian randomization tests. A) Breast cancer to WHRadjBMI. B)

Colorectal cancer to WHRadjBMI. C) Prostate cancer to WHRadjBMI
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