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Abstract

In this thesis, we address various tasks within the fields of affective computing and surgical
data science that have the potential to enhance medical simulation. Specifically, we focus
on four key challenges: stress detection, emotion recognition, surgical skill assessment, and
surgical gesture recognition. Simulation has become a crucial component of medical train-
ing, offering students the opportunity to gain experience and refine their skills in a safe, con-
trolled environment. However, despite significant advancements, simulation-based train-
ing still faces important challenges that limit its full potential. Some of these challenges
include ensuring realistic scenarios, addressing individual variations in learners’ emotional
responses, and, for certain types of simulations, such as surgical simulation, providing ob-
jective assessments. Integrating the monitoring of medical students’ cognitive states, stress
levels and emotional states, along with incorporating tools that provide objective and per-
sonalized feedback, especially for surgical simulations, could help address these limitations.
In recent years, deep learning has revolutionized thewaywe solve complex problems across
various disciplines, leading to significant advancements in affective computing and surgical
data science. However, several domain-specific challenges remain. In affective computing,
automatically recognizing stress and emotions is challenging due to difficulties in defin-
ing these states and the variability in their expression across individuals. Furthermore, the
multimodal nature of stress and emotion expression introduces another layer of complexity,
as effectively integrating diverse data sources remains a significant challenge. In surgical
data science, the variability in surgical techniques across practitioners, the dynamic nature
of surgical environments, and the challenge of effectively integrating multiple modalities
highlight ongoing challenges in surgical skill assessment and gesture recognition. The first
part of this thesis introduces a novel Transformer-based multimodal framework for stress
detection that leverages multiple fusion techniques. This framework integrates physiolog-
ical signals from two sensors, with each sensor’s data treated as a distinct modality. For
emotion recognition, we propose a novel multimodal approach that employs a Graph Con-
volutional Network (GCN) to effectively fuse intermediate representations from multiple
modalities, extracted using unimodal Transformer encoders. In the second part of this the-
sis, we introduce a new deep learning framework that combines a GCNwith a Transformer
encoder for surgical skill assessment, leveraging sequences of hand skeleton data. We eval-
uate our approach using two surgical simulation tasks that we have collected. Additionally,
we propose a novel Transformer-based multimodal framework for surgical gesture recog-
nition that incorporates an iterative multimodal refinement module to enhance the fusion
of complementary information from different modalities. To address existing dataset limi-
tations in surgical gesture recognition, we collected two new datasets specifically designed
for this task, on which we conducted unimodal and multimodal benchmarks for the first
dataset and unimodal benchmarks for the second.
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Résumé

Dans cette thèse, nous abordons diverses tâches dans les domaines de l’informatique affec-
tive et de la science des données chirurgicales qui ont le potentiel d’améliorer la simulation
médicale. Plus précisément, nous nous concentrons sur quatre défis clés : la détection du
stress, la reconnaissance des émotions, l’évaluation des compétences chirurgicales et la re-
connaissance des gestes chirurgicaux. La simulation est devenue un élément important
de la formation médicale, offrant aux étudiants la possibilité d’acquérir de l’expérience et
de perfectionner leurs compétences dans un environnement sûr et contrôlé. Cependant,
malgré des avancées significatives, la formation basée sur la simulation fait encore face à
d’importants défis qui limitent son plein potentiel. Parmi ces défis figurent la garantie de
scénarios réalistes, la prise en compte des variations individuelles dans les réponses émo-
tionnelles des apprenants, et, pour certains types de simulations, comme les simulations
chirurgicales, l’évaluation objective des performances. Intégrer le suivi des états cogni-
tifs, des niveaux de stress et des états émotionnels des étudiants en médecine, ainsi que
l’incorporation d’outils fournissant des retours objectifs et personnalisés, en particulier
pour les simulations chirurgicales, pourrait aider à pallier ces limitations. Ces dernières
années, l’apprentissage profond a révolutionné notre façon de résoudre des problèmes com-
plexes dans diverses disciplines, entraînant des avancées significatives en informatique af-
fective et en science des données chirurgicales. Cependant, plusieurs défis spécifiques à ces
domaines subsistent. En informatique affective, la reconnaissance automatique du stress et
des émotions est difficile en raison des problèmes de définition de ces états et de la variabil-
ité de leur expression chez les individus. De plus, la nature multimodale de l’expression du
stress et des émotions ajoute une couche de complexité supplémentaire, car l’intégration
efficace de sources de données diverses demeure un défi majeur. En science des données
chirurgicales, la variabilité des techniques chirurgicales entre les praticiens, la nature dy-
namique des environnements chirurgicaux, et l’intégration de plusieurs modalités soulig-
nent les difficultés pour l’évaluation automatique des compétences chirurgicales et la recon-
naissance des gestes. La première partie de cette thèse propose un nouveau cadre de fusion
multimodale basé sur le Transformer pour la détection du stress, en exploitant plusieurs
techniques de fusion. Ce cadre intègre des signaux physiologiques provenant de deux cap-
teurs, chaque capteur étant traité comme une modalité distincte. Pour la reconnaissance
des émotions, nous proposons une approche multimodale innovante utilisant un réseau de
neurones convolutifs sur graphes (GCN) pour fusionner efficacement les représentations in-
termédiaires de plusieurs modalités, extraites à l’aide de Transformer encoders unimodaux.
Dans la deuxième partie de cette thèse, nous introduisons un nouveau cadre d’apprentissage
profond qui combine un GCN avec un Transformer encoder pour l’évaluation des com-
pétences chirurgicales, en exploitant des séquences de données de squelettes de mains.
Nous évaluons notre approche en utilisant des données issues de deux tâches de simulation
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chirurgicale que nous avons collectées. Nous proposons également un nouveau cadre mul-
timodal basé sur le Transformer pour la reconnaissance des gestes chirurgicaux, intégrant
un module itératif de raffinement multimodal afin d’améliorer la fusion des informations
complémentaires entre différentes modalités. Pour pallier les limitations des ensembles
de données existants en reconnaissance des gestes chirurgicaux, nous avons collecté deux
nouveaux ensembles de données spécifiquement conçus pour cette tâche, sur lesquels nous
avons effectué des benchmarks unimodaux et multimodaux pour le premier ensemble de
données et des benchmarks unimodaux pour le second.
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1.1 Thesis Objectives

The integration of simulation-based training in medical education has been driven by the
need to enhance the learning experience of medical students. Medical simulations offer
a controlled and immersive setting where students can refine their skills, make decisions
under pressure, and learn from their mistakes without real-world consequences. Yet, as
these simulations become more sophisticated, several challenges remain unaddressed.

The growing complexity of simulation-basedmedical training brings to light several key
challenges that limit its full potential. These challenges include ensuring realistic training
scenarios that mirror the pressures of real-life clinical settings, effectively monitoring cog-
nitive load and psychological states during training, and providing objective and person-
alized feedback to medical students, particularly in simulations such as surgical training.
Addressing these issues is crucial to advancing the effectiveness of simulation-based train-
ing.

Particularly in the context of surgical simulations, the main challenges revolve around
the lack of objectivity in performance assessment and the difficulty in providing precise,
actionable feedback. Current evaluation methods often rely on subjective ratings from se-
niors surgeons, which comewith several limitations, such as being time-consuming, having
inconsistent evaluation standards, introducing bias, and potentially intimidating medical
students. In addition, while existing surgical simulation tools can provide procedure-level
assessments that offer a broad overview of a trainee’s capabilities, they often lack the ability
to deliver gesture-level evaluations that could provide more detailed insights. This level of
granularity is important for effective skill development in surgical training, as it enables
targeted feedback that can identifie precise areas where medical students face difficulties,
leading to more focused skill improvement and accelerated learning.

In response to these challenges, there is growing interest in leveraging advanced tech-
nologies such as deep learning to enhance both educational outcomes and the personal-
ization of simulation-based training. The objective of this thesis is to develop novel deep
learning models targeting two important domains in healthcare that could significantly
benefit medical simulations: affective computing and surgical data science.

Affective Computing: One focus of my research is the improvement of existing stress
detection and emotion recognition state-of-the-art methods. Building on the foundational
work of Yujin Wu [1], a former PhD student from our research lab, whose approach was
integrated into simulation-based software, my role was to explore more advanced machine
learning models and improve the performances of her proposed methodologies. Although
the models were validated using public datasets not directly linked to medical simulation,
the findings demonstrate the relevance of these methods and underscore their potential
applicability in medical training environments. The developed models could be integrated
into simulation environments to monitor trainees’ emotional and stress levels in real time,
allowing for the dynamic adjustment of training scenarios based on each student’s psycho-
logical state. This capability would support personalized training experiences, enhancing
the overall learning process and better preparing students for high-pressure, real-world
medical situations.
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It is important to note that while this thesis broadly addresses emotion recognition,
leveraging a public dataset that includes a range of affective states, including pain, the
work presented in Chapter 5 is specifically articulated around pain detection. This focus is
primarily driven by the existing research landscape, where this dataset is commonly used
for evaluating and comparing novel methods for pain detection. The choice of focusing on
pain for classification is intended purely for benchmarking purposes, ensuring meaningful
comparisons with state-of-the-art approaches. However, any other affective state from the
dataset could have been selectedwithout significantly altering the technical approach or the
applicability of the models. The underlying techniques and models developed are versatile
and applicable to the wider array of emotional states present in the dataset, including the
non-pain class, which comprises multiple emotions.

Surgical Data Science: My research in this domain focuses on surgical skill assessment
and surgical gesture recognition. The accurate evaluation of a trainee’s proficiency dur-
ing simulation exercises, as well as the ability to automatically recognize surgical gestures
during surgical procedures, is important for offering actionable feedback. By integrating
these capabilities into simulation-based training, learners can receive more targeted rec-
ommendations to refine their techniques and improve their overall competency in surgical
practices. This approach promises to elevate the quality of surgical education by providing
data-driven insights that align with best practices and real-world expectations.

Overall, the models developed in this thesis aim to provide key insights, whether about
the stress and emotional states of medical students during any kind of medical simulation
scenario or in more specialized simulations like surgical-based ones by providing key per-
formance metrics, to enhance the simulation experience.

1.2 Thesis Challenges

The development of robust deep learning models regarding the tasks previously discussed
is not without challenges. In the following, we will outline the key challenges specific to
each domain:

1.2.1 Affective Computing

Automatic stress detection and emotion recognition face several challenges due to the com-
plexity of human emotions and the limitations of current technology. Below, we present
the main challenges associated with these tasks:

Multimodal Fusion: Affective computing tasks benefit greatly from multimodal learning
because human emotions are inherently complex and often expressed through a combina-
tion of cues across multiple modality, such as facial expressions, vocal tones, body language,
and physiological signals. Despite this advantages, multimodal fusion presents several key
challenges. First, aligning data from different modalities with varying temporal resolutions
and structures is complex, as it requires precise synchronization to ensure corresponding
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features are correctly associated. Furthermore, while some modalities provide complemen-
tary insights, others may introduce noise or irrelevant information, making it essential to
balance feature correlation and minimize redundancy to enhance performance. Managing
missing or noisy data is another critical issue, especially in real-world scenarios where one
modality may be unreliable or unavailable. Additionally, selecting the appropriate level of
fusion, whether at the input level (early fusion) or decision level (late fusion), is crucial, as
each approach involves trade-offs in terms of model complexity and performance. To fully
exploit the strengths of different modalities, it is often essential to develop more advanced
fusion techniques that go beyond traditional methods.

Emotion Complexity and Labeling: Emotions are dynamic, multifaceted, and often am-
biguous, making them difficult to define and categorize accurately. Traditional categorical
emotion labels capture only a limited range of the full emotional spectrum. More sophisti-
cated approaches, such as continuous dimensions (e.g., valence-arousal) can provide a more
comprehensive representation but complicate the labeling process. Furthermore, annotat-
ing emotional data remains a challenge, largely due to the subjectivity involved, different
annotators may interpret the same expression differently, leading to inconsistencies. Addi-
tionally, emotions change over time and across contexts, requiring time-sensitive annota-
tions to capture transitions between emotional states accurately.

Behavior Variability: Behavioral variation poses significant challenges for automatic
stress detection and emotion recognition systems due to the inherent variability in how
emotions and stress are expressed bothwithin and between individuals. On an intra-subject
level, emotional responses and stress behaviors can differ significantly for the same person
depending on the context, time, and situation. On an inter-subject level, people express
emotions and stress in highly diverse ways, often influenced by personality, culture, and
individual coping mechanisms. While one person might react to stress with visible signs
like facial expressions or gestures, another might internalize stress with few external in-
dicators, making it harder for the model to generalize across different individuals. This
variation is especially critical when aiming for personalized and accurate predictions.

Dataset Constraints: Existing datasets in affective computing are often limited in size,
lack diversity, biased toward specific demographics, and collected in controlled environ-
ments. Emotional expressions in these datasets are frequently exaggerated or artificial,
diverging from the natural behavior observed in real-world settings. This reduces the ef-
fectiveness of models when applied outside controlled conditions. Addressing these issues
requires large-scale, ecologically valid datasets that capture authentic emotional expres-
sions across a broad demographic spectrum.

1.2.2 Surgical Data Science

Surgical skill assessment and surgical gesture recognition faces several challenges due to
the complexity of surgical procedures and the diverse sources of data involved. Below, we
present the main challenges associated with this domain:

Multimodal Fusion: Similar to affective computing tasks, surgical-based recognitionmod-
els can benefit significantly from multimodal learning, as different data sources, such as
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video recordings and kinematics data, capture different aspects of the surgical procedure.
However, integrating these heterogeneous data types presents significant challenges. Sur-
gical data modalities differ in temporal resolution, data structure, and representation format
(e.g., video sequences, kinematic signals), making synchronization and alignment complex.
Feature correlation and redundancy must be carefully managed to avoid noise, while still
capturing complementary information from different data sources. To address these chal-
lenges, advanced fusion techniques are often required to effectively integrate surgical data
modalities.

Variability in Surgical Techniques: Surgical skill assessment and gesture recognition
face the challenge of significant variability among surgeons in how they perform the same
procedure. This variability can be due to individual differences in training, experience,
and preferred techniques. Models must be robust enough to account for these variations
while still identifying the key factors that differentiate skill levels. Developing models that
generalize across different surgeons, procedures, and skill levels is a non-trivial task.

Complex Surgical Environments: Surgical environments are dynamic and often involve
numerous challenges such as motion artifacts, occlusions, and the presence of multiple
instruments. Real-time assessment requires models to deal with cluttered scenes where
instruments might overlap or where the surgeon’s hands and tools are partially obscured.

Annotation Complexity in Surgical Skill Assessment: Surgical skill assessment faces
several challenges that complicate the accurate evaluation of a surgeon’s performance. One
significant issue is the lack of objective and standardized metrics for skill evaluation. While
traditional assessments often rely on subjective evaluations by senior surgeons, these can be
inconsistent and biased, varying based on the evaluator’s experience and personal criteria.
This subjectivity creates a need for more objective, data-driven measures that can provide
consistent and reproducible assessments.

Annotation Complexity in Surgical Gesture Recognition: Annotating datasets for
surgical gesture recognition is challenging due to the complexity of gestures, the need for
expert annotators, and the time-consuming, costly nature of the process. Annotators must
label the beginning and end of each gesture in the videos, which often involve subtle, con-
tinuous movements that are difficult to segment, leading to high inter-annotator variability.
Ambiguous gesture boundaries and visual noise, and occlusions further complicate the task,
affecting annotation precision and model accuracy.

1.3 Thesis Contributions

Building on the challenges outlined in the preceding section, this thesis makes several key
contributions to the fields of affective computing and surgical data science, with the aim
of advancing simulation-based medical education. The contributions are focused on the
development of novel deep learning models that address key challenges in stress detec-
tion, emotion recognition, surgical skill assessment, and surgical gesture recognition. The
primary contributions of this research are outlined below:
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Multimodal Fusion for Affective Computing: We introduces two key innovations in
the domain ofmultimodal learning for the tasks of stress detection and emotion recognition:

• For stress detection, we propose a novel multimodal fusion framework based on the
Transformer [2] model that leverages multiple fusion techniques to integrate physi-
ological signals from two sensors attached to the human body, treating each sensor’s
data as a distinct modality. We outperformed the litterature by a large margin.

• For emotion recognition, we propose MMGT, a novel deep learning multimodal fu-
sion framework that leverages Graph Convolutional Networks (GCNs) [3] to model
interactions across different levels of modality-specific representations derived from
multiple data sources, including facial landmarks, facial action units, and physiolog-
ical data. These representations are first extracted using unimodal Transformer en-
coders, and the relationships between them are captured using a graph-based struc-
ture. Our proposed approach achieves state-of-the-art performance.

Surgical Skill Assessment: We propose a novel deep learning framework, STGFormer,
for evaluating surgical skills using hand skeleton data sequences. To the best of our knowl-
edge, this is the first framework to leverage hand skeleton sequences for the automatic
assessment of surgical expertise. STGFormer integrates a GCN to learn spatio-temporal
representations of hand movements by exploiting the natural graph structure of the hand
skeleton. Additionally, it incorporates a Transformer encoder to capture long-range de-
pendencies within these representations. Our framework achieves state-of-the-art perfor-
mance on two simulation-based surgical tasks, effectively distinguishing between the per-
formances of attending surgeons and surgical residents in surgical simulated procedures.

Surgical Skill Assessment Datasets: We present two novel datasets specifically designed
for the assessment of surgical skills in two simulated tasks: circular cutting and needle pass-
ing. These datasets provide high-quality video data for evaluating surgical skills, supporting
the development and validation of methods in this domain. The first dataset includes circu-
lar cutting tasks performed on the VirtaMed medical simulator by 4 attending surgeons and
12 surgical residents. The second dataset comprises needle passing exercises conducted by
7 attending surgeons and 22 surgical residents using the same simulator.

Multimodal Fusion Framework for Surgical Gesture Recognition: We proposeMGR-
Former, a novel attention-based multimodal framework specifically designed for surgical
gesture recognition. Our approach introduces an iterative multimodal refinement module
that enhances the fusion of complementary information from both kinematic and video
modalities at the refinement level. Unlike previous work on surgical gesture recognition,
which lacks a refinement mechanism, MGRFormer is, to the best of our knowledge, the
first to explore multimodal fusion at the refinement stage, facilitating a more context-aware
and temporally coherent understanding of surgical gestures. The multimodal refinement
module iteratively improves predictions, allowing the model to correct errors and better
capture subtle gesture nuances. By refining predictions in a multimodal context, the model
effectively learns cross-modal dependencies and resolves ambiguities that might arise when
using either modality in isolation. MGRFormer significantly outperforms classical multi-
modal fusion techniques and state-of-the-art methods by a substantial margin.
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Surgical Gesture Recognition Datasets: We present two novel surgical simulation
datasets specifically designed for surgical gesture recognition, addressing the limitations
of existing datasets. The first dataset consists of multiple executions of the peg transfer
task performed by attending surgeons and surgical residents. This dataset includes videos
of the procedures alongside corresponding surgical tool trajectories, tracked using a state-
of-the-art deep learning-based object detection model. The second dataset focuses on a
suturing task performed multiple times by attending surgeons and medical students. It
includes first-person video recordings that capture the entire field of vision during the su-
turing procedure. Subsequently, we conducted both unimodal and multimodal surgical ges-
ture recognition benchmarks for the peg transfer dataset and performed unimodal surgical
gesture recognition benchmarking for the suturing dataset.

1.4 Thesis Outline

The manuscript is organized as follows. Chapter 2 covers the necessary background on
deep learning techniques and methodologies that are essential for understanding the novel
approaches introduced in this thesis. Chapter 3 provides the theoretical foundation on
human emotions, presenting multiple emotion models, the different modalities through
which emotions are expressed, and a literature review of methods for emotion recognition
using these modalities. Chapters 4 and 5 introduce our proposed multimodal deep learning
frameworks for stress detection and emotion recognition, respectively. Chapter 6 presents
a novel deep learning framework for surgical skill assessment along with two newly col-
lected datasets specifically designed for evaluating this framework. Chapter 7 proposes
a Transformer-based multimodal framework for surgical gesture recognition, followed by
Chapter 8, which presents two newly collected datasets specifically for the aforementioned
task. Finally, Chapter 9 summarizes the work presented in this thesis and discusses poten-
tial directions for future research. Themanuscript is divided into two parts: Part I: Affective
Computing (Chapters 3, 4, and 5) and Part II: Surgical Data Science (Chapters 6, 7, and 8).
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1.5 Publications

The research conducted for this thesis has led to several peer-reviewed publications, which
serve as the basis for this manuscript. These publications are listed below:

Kevin Feghoul, Deise Santana Maia, Mohamed Daoudi, Ali Amad. MMGT: Multimodal
Graph-based Transformer for Pain Detection. 31st European Signal Processing Conference
(EUSIPCO 2023), pp. 556-600.

Kevin Feghoul, Deise Santana Maia, Mehdi El Amrani, Mohamed Daoudi, Ali Amad.
Spatial-Temporal Graph Transformer for Surgical Skill Assessment in Simulation Sessions.
26th Iberoamerican Congress on Pattern Recognition (CIARP 2023), pp. 287-297.

Kevin Feghoul, Deise Santana Maia, Mohamed Daoudi, Ali Amad. Transformer multimodal
pour la détection du stress. 22ème édition de la conférence COmpression et REprésentation
des Signaux Audiovisuels (CORESA 2023).

Kevin Feghoul, Deise Santana Maia, Mehdi El Amrani, Mohamed Daoudi, Ali Amad. MGR-
Former: A Multimodal Transformer Approach for Surgical Gesture Recognition. The 18th
IEEE International Conference on Automatic Face and Gesture Recognition (FG 2024).
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This chapter provides essential background on key deep learning techniques that are
fundamental to the approach proposed in the thesis.

We begin in Section 2.1 by introducing the Transformer architecture, which has become
the backbone of many state-of-the-art models for sequential data processing across various
domains. Next, in Section 2.2, we present the Graph Neural Networks architecture, which
have gained prominence for their ability tomodel relational data and learn over graph struc-
tures. Finally, in Section 2.3, we provide an overview of the field of Multimodal Machine
Learning. As modern intelligent applications increasingly involve processing and integrat-
ing information frommultiple sources, such as text, images, and signal, understanding how
to effectively combine and reason across multiple modalities is critical.

2.1 The Transformer

2.1.1 Introduction

The rapid advancement in natural language processing (NLP) over the past decade has been
largely driven by the development of sophisticated neural network architectures. Tradi-
tional sequence models, such as Recurrent Neural Networks (RNNs) and Long Short-Term
Memory networks (LSTMs), have demonstrated their capability to handle sequential data
by maintaining a hidden state (memory) that captures the information from previous time
steps. The hidden state ht at time step t is computed as:

ht = f(ht−1, xt)

where f is a nonlinear function, typically implemented as a neural network, and xt is
the input at time step t.

Despite their effectiveness, RNNs suffer from several limitations:

• Vanishing and Exploding Gradients: During training, gradients can become very
small (vanish) or very large (explode), making it difficult to learn long-range depen-
dencies.

• Sequential Processing: RNNs process input sequences one element at a time, which
hinders parallelization and leads to inefficient training, especially for long sequences.

• Long-Term Dependencies: Capturing dependencies over long sequences is chal-
lenging, as the influence of earlier inputs diminishes over time.

The introduction of the Transformer architecture in the paper "Attention is All You
Need" [2] marked a paradigm shift in sequence modeling. Unlike RNNs and LSTMs, the
Transformermodel relies entirely on a attentionmechanism to capture global dependencies
between input and output sequences. This architecture not only enhances the ability to
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model long-range dependencies but also allows for significantlymore parallelization during
training and testing, leading to drastic improvements in both performance and efficiency.

The Transformer model has since become foundational in a wide range of NLP tasks,
including machine translation, text generation, and sentiment analysis. Its architecture has
inspired subsequent developments such as BERT [4] and the GPT series—GPT [5], GPT-2
[6], and GPT-3 [7]. Among these advancements, ChatGPT, built on the GPT-3 architecture,
exemplifies the practical application of these models in generating human-like conversa-
tional responses, showcasing the significant potential of Transformers in creating interac-
tive AI systems.

The impact of Transformer-based models extends beyond NLP. In computer vision, Vi-
sion Transformers (ViTs) [8] have achieved state-of-the-art performance on image clas-
sification tasks. Moreover, Transformers have demonstrated state-of-the-art performance
across various other domains, including speech recognition [9], computational biology [10],
reinforcement learning [11], time-series forecasting [12], and multimodal learning [13],
among others.

2.1.2 Model Architecture

The Transformer architecture consists of an encoder and a decoder, each composed of a
stack of identical layers. The encoder processes the input sequence and produces a contin-
uous representation, while the decoder generates the output sequence from this represen-
tation. Figure 2.1 illustrates the overall structure of the Transformer architecture. In the
following sections, we will delve deeper into each component of the Transformer.

Encoder-Decoder Blocks

Below is a breakdown of the components of the encoder and decoder:

• Encoder: The encoder is composed of a stack of N identical layers, each consisting
of two main sub-layers: a multi-head self-attention mechanism and a position-wise
fully connected feed-forward network. Furthermore, residual connections are applied
around each of these sub-layers, followed by layer normalization. Both sub-layers and
the embedding layers produce outputs of dimension dmodel.

• Decoder: Similarly, a stack of N identical layers, but each layer has an additional
multi-head attention mechanism that performs attention over the encoder’s output.
Like the encoder, residual connections and layer normalization are used around each
sub-layer.
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Figure 2.1: The Transformer architecture [2].

Attention

The attention mechanism was first introduced by Bahdanau et al. [14] in the context of
machine translation. Their approach allowed the model to selectively focus on specific
parts of the input sequence while generating each element of the output sequence. The
attention mechanism was designed to enhance the performance of deep learning models
by enabling them to identify and concentrate on the most relevant portions of the input
data. This innovation has significantly boosted performance across various tasks, including
machine translation, text summarization, and question answering. Prior to the introduction
of attention mechanisms, models like RNNs and LSTMs faced challenges such as vanishing
gradients and difficulty in capturing long-range dependencies in sequences. The attention
mechanism addresses these issues by enabling models to dynamically prioritize different
parts of the input sequence as they produce each output element.

The core idea behind attention is to compute a weighted sum of values (V), where the
weights are determined by a compatibility function between a query (Q) and a set of keys
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(K). This allows the model to dynamically attend to different parts of the input sequence,
depending on the context, and thus capture more complex dependencies. In the context of
the Transformer model, attention mechanisms play a central role in processing input data,
making it possible to handle long-range dependencies efficiently.

Scaled Dot-Product Attention: The Scaled Dot-Product Attention is the fundamental
building block of the attention mechanism in Transformers. It operates on queries and keys
of dimension dk, and values of dimension dv, which are all vectors derived from the input
sequences. The process can be broken down into the following steps:

1. Dot Product: Compute the dot product between the query and all keys to obtain a set
of scores. These scores indicate how much focus the model should place on each key-value
pair.

Scores = QKT

2. Scaling: Scale the scores by the square root of the dimension of the keys (dk) to
prevent the dot products from growing too large, which can lead to very small gradients.
This scaling factor stabilizes the training process.

Scaled Scores = QKT

√
dk

3. Softmax: Apply the softmax function to the scaled scores to obtain the attention
weights. The softmax function normalizes the scores into probabilities, which sum to one.

Attention Weights = softmax
(
QKT

√
dk

)
4. Weighted Sum: Compute the weighted sum of the values, using the attention

weights. This produces the output of the attention mechanism, which is a combination
of the input values, weighted by their importance.

Output = Attention Weights · V

In summary, the Scaled Dot-Product Attention mechanism allows the model to focus
on different parts of the input sequence dynamically, improving its ability to capture de-
pendencies and relationships within the data.

Multi-Head Attention: While the Scaled Dot-Product Attention provides a mechanism
for focusing on relevant parts of the input, it might still be limited in its ability to capture di-
verse patterns of relationships within the data. Multihead Attention extends this capability
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by allowing the model to jointly attend to information from different representation sub-
spaces at different positions. The Multihead Attention mechanism involves the following
steps:

1. Linear Projections: The input queries, keys, and values are linearly projected h
times with different, learned linear projections matrices. This results in h different sets of
queries, keys, and values:

Qi = XWQ
i , Ki = XWK

i , Vi = XW V
i for i = 1, . . . , h

where X is the input, WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , and W V
i ∈ Rdmodel×dv are

the projection matrices for the i-th head.

2. Parallel Attention: Each set of projected queries, keys, and values is then passed
through the Scaled Dot-Product Attention mechanism in parallel, resulting in h different
outputs:

headi = Attention(Qi, Ki, Vi)

3. Concatenation: The outputs from the h attention heads are concatenated and lin-
early projected with a learned projection matrix to produce the final output:

MultiheadOutput = WO [head1; head2; . . . ; headh]

where WO ∈ Rhdv×dmodel is the outpout projection matrix.

By using multiple attention heads, the model can capture a richer set of dependencies
from different subspaces of the input. Each head can focus on different aspects of the input
data, providing a more comprehensive representation.

In the original paper, the authors set dmodel = 512 and h = 8 attention heads, with the
dimensions of the key and value vectors fixed at dk = dv = dmodel/h = 64.

Position-Wise Feed-Forward Networks

Each encoder and decoder layer also includes a position-wise feed-forward network, which
consists of two linear layer with a ReLU activation in between:

FFN(x) = max(0, xW1 + b1)W2 + b2

This feed-forward network is applied independently to each position in the sequence,
providing non-linear transformations that enhance themodel’s capacity to capture complex
patterns.

The purpose of the second linear layer is to map the activated output from a higher-
dimensional space back to the original input dimension (or some other output dimension).
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In most Transformer architectures, the dimensionality of the input and output of the FFN
remains the same. The intermediate hidden layer (activated by ReLU) typically has a higher
dimensionality, allowing for a richer representation before reducing back to the original
dimensionality.

Layer Normalization and Residual Connections

To stabilize and accelerate training, each sub-layer in the encoder is followed by layer nor-
malization and employs residual connections. The output of each sub-layer can be described
as:

LayerNorm(x+ Sublayer(x))

where x is the input to the sub-layer, and Sublayer(x) represents the output of the
multi-head attention or feed-forward network sub-layer.

Residual connections help address challenges related to training deep networks by al-
lowing the model to learn incremental updates rather than entirely new transformations,
which stabilizes training and allows for faster convergence. Additionally, layer normaliza-
tion further enhances stability by ensuring a consistent distribution of activations across
layers.

Input Embeddings

To process textual data, as the original Transformer was designed to do, input tokens are
first converted into dense vectors known as embeddings. Each token in the input sequence
is mapped to a high-dimensional vector space. This is achieved using an embedding matrix
E, where each token t is transformed into its corresponding embedding E(t).

However, the Transformer architecture can also process other types of data sequences.
For instance, in the case of multimodal signal data, where each timestep has 6 data signal
points, a typical processing step involves employing a learnable linear layer to project the
data at each timestep into a higher-dimensional space. This projection allows the model to
effectively perform multi-head attention on the input signals.

Positional Encodings

One of the critical challenges in sequence modeling with the Transformer architecture is
the lack of inherent mechanisms to capture the order of input tokens. Unlike RNNs, which
process tokens sequentially and naturally incorporate positional information through their
recurrence mechanisms, Transformers operate on sets of tokens simultaneously. This char-
acteristic makes the Multi-Head Attention block permutation-equivariant, meaning it can-
not distinguish whether an input comes before another in the sequence.
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In tasks like language understanding, the position of words within a sentence is cru-
cial for accurate interpretation. For example, in the sentence "The cat sat on the mat," the
meaning is highly dependent on the order of the words. Therefore, the Transformer model
requires a way to integrate positional information into its computations.

To address this, positional encodings are introduced to the input embeddings. These
encodings have the same dimension as the embeddings, allowing them to be summed di-
rectly with the input features. By adding positional encodings to the input embeddings,
the model is provided with information about the position of each token in the sequence,
enabling it to consider the order of words during processing.

The positional encoding PE for each position pos and dimension i is defined as:

PE(pos,2i) = sin
( pos

100002i/dmodel

)

PE(pos,2i+1) = cos
( pos

100002i/dmodel

)
where dmodel is the dimension of the embeddings. These sine and cosine functions at

different frequencies allow the model to learn the relative positions of the tokens.

2.1.3 Attention Mechanism in the Transformer:

In the Transformer architecture, attention mechanisms are employed in various forms to
capture dependencies and relationships within and across sequences. The three main types
of attention in the Transformer are self-attention in the encoder, masked self-attention in
the decoder, and cross-attention (encoder-decoder attention).

Self-Attention in the Encoder

In the encoder, each layer employs a multi-head self-attention mechanism. Self-attention
allows each element in the input sequence to attend to all other elements, enabling the
model to capture both local and global dependencies. The process involves computing at-
tention scores for each element with respect to all other elements in the sequence. Since
this attention is applied within the same sequence, it is referred to as “self-attention.” The
output is a weighted combination of the values based on these attention scores, allowing
each element to incorporate information from every other element in the sequence.

In the encoder, there is no restriction on which elements can be attended to; every
element can attend to every other element. This enables the model to effectively capture
context across the entire input sequence.
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Masked Self-Attention in the Decoder

The decoder also uses self-attention, but with an important distinction: it is masked. This
masking ensures that when predicting the next element in a sequence, the model only
considers the elements processed up to that point and does not see future elements. This is
crucial for autoregressive tasks, such as sequence generation, where the model should not
have access to future elements that it is supposed to predict.

The mask is implemented by setting the attention scores for future elements to negative
infinity, effectively zeroing out the corresponding attention weights after applying the soft-
max function. This ensures that the model only attends to past elements (and the current
one), allowing it to generate sequences in a left-to-right manner.

Cross-Attention

In addition to the masked self-attention mechanism, the decoder has another attention
mechanism known as cross-attention. This attention layer allows the decoder to attend
to the output of the encoder, integrating information from the input sequence. During the
computation of cross-attention, the queries come from the decoder, while the keys and val-
ues come from the encoder’s output. This mechanism enables the decoder to align and
incorporate relevant information from the input sequence while generating the output se-
quence.

2.1.4 Conclusion

The introduction of the Transformer architecture has revolutionized the waywe solve com-
plex problems acrossmany disciplines, particularlywithin the domain of NLP. The attention
mechanism in the Transformer addresses many limitations faced by previous architectures
such as RNNs and LSTMs. By eliminating the need for sequential data processing, the
Transformer model achieves unprecedented levels of parallelization, significantly improv-
ing training efficiency and scalability.

In this chapter, we have explored the fundamental components of the Transformer ar-
chitecture. The multi-head attention mechanisms and the positional encoding are impor-
tant components responsible for enhancing the model’s ability to capture complex depen-
dencies and for learning contextual information within sequences. Those architectural in-
novation has set new benchmarks in various NLP tasks and inspired the development of
numerous variants and enhancements, such as BERT and GPT.
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2.2 Graph Neural Networks

2.2.1 Introduction

In the rapidly evolving field of machine learning, traditional methods like Convolutional
Neural Networks (CNNs) have demonstrated state-of-the-art performance on structured,
grid-like data such as images and videos. However, these models struggle with non-
Euclidean data types, such as graphs, where the underlying structure is irregular, and rela-
tionships between entities are complex and unstructured. This limitation presents signif-
icant challenges when applying standard neural network architectures to domains where
data is naturally represented as graphs, such as social networks, molecular chemistry, and
transportation networks.

Graph Neural Networks (GNNs) have emerged as a powerful solution to these chal-
lenges, extending the principles of neural networks to graph-structured data. Unlike CNNs,
which rely on a regular grid structure to apply convolutions, GNNs are designed to operate
on graphs by leveraging the inherent connectivity and relationships between nodes. This
capability allows GNNs to capture complex patterns and dependencies that are crucial in
graph-based applications. GNN has proven highly effective in various domains, including
molecular property prediction [15, 16, 17], social network analysis [18, 19, 20], computer
vision [21, 22], and cybersecurity [23, 24], where understanding the relationships and in-
teractions between entities is paramount.

One of the most prominent types of GNNs is the Graph Convolutional Network (GCN),
which generalizes the concept of convolution to graphs. GCNs enable the aggregation of
information from a node’s neighbors, effectively propagating and transforming features
across the graph.

In this section, we begin by introducing the foundamental concepts of graph theory and
spectral graph theory, which form the basis for understanding GNNs. Next, we delve into
the specifics of GCNs, exploring how they extend traditional neural network methods to
effectively process graph-structured data. Finally, we conclude with a summary of the key
concepts and insights covered in this section.

2.2.2 Graph Theory

A graph is a fundamental data structure used to model relationships between pairs of ob-
jects. Formally, a graph G is defined as a pair G = (V,E), where:

• V is a set of nodes (or vertices), defined as V = {v1, v2, . . . , vn}.

• E is a set of edges, whereE ⊆ V ×V . Each edge e = (vi, vj) represents a connection
or relationship between two distinct nodes vi and vj , where vi, vj ∈ V .

Depending on how these relationships are represented, graphs can be classified into
various types, including:
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• Undirected Graphs: Edges have no direction, i.e., (vi, vj) is identical to (vj, vi).

• Directed Graphs: Edges have a direction, i.e., (vi, vj) is not the same as (vj, vi).

• Weighted Graphs: Edges have weights, representing the strength or capacity of the
connection.

• Unweighted Graphs: All edges are treated equally, i.e., the weights are not consid-
ered.

2.2.3 Spectral Graph Theory

Spectral Graph Theory provides a way to define convolution on graphs through the eigen-
values and eigenvectors of matrices associated with the graph, such as the adjacencymatrix
or the Laplacian matrix.

Graph Laplacian

The Graph Laplacian is a matrix representation of a graph that plays a central role in spec-
tral graph theory. For a graph G with an adjacency matrixA and a degree matrixD (where
Dii =

∑
j Aij), the unnormalized Laplacian matrix L is defined as:

L = D−A

The Laplacian matrix L is symmetric and positive semi-definite, meaning it can be di-
agonalized as:

L = UΛU⊤

Here:

• U is an orthogonal matrix containing the eigenvectors of L as columns.

• Λ is a diagonal matrix containing the eigenvalues λ1, λ2, . . . , λn of L.

The eigenvalues and eigenvectors of the Laplacian matrix L provide a spectrum for the
graph, analogous to the Fourier basis in signal processing. The eigenvectors form a basis in
which the graph signal (a function defined on the nodes of the graph) can be decomposed,
and the eigenvalues provide the frequencies of the corresponding components.
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Graph Signal

A graph signal is a function that assigns a value (or set of values) to each node in a graph.
Mathematically, if we have a graph G = (V,E) with n nodes, a graph signal is a vector
x ∈ Rn where each element x(i) corresponds to the signal value at node i.

Graph signals are analogous to time-series signals or image pixels, but instead of being
defined over a regular domain (like time or a 2D grid), they are defined over the nodes of
a graph. The structure of the graph (i.e., the relationships between nodes encoded in the
edges) often provides important contextual information that influences the signal values.

Example of a graph signal: Let’s consider a simple social network graph where each
node represents a person, and each edge represents a friendship between two people. Sup-
pose we have a scenario where we want to analyze the influence of a certain product’s
popularity in this social network. A graph signal in this context could represent the level of
interest or opinion about the product, with each node’s signal value indicating how much
interest the corresponding person has.

Let’s construct a simple example with a graph G of 4 nodes:

• Graph Structure:

– Nodes: V = {1, 2, 3, 4}
– Edges: E = {(1, 2), (2, 3), (3, 4)}
– Adjacency Matrix A:

A =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0


• Graph Signal Representation:

– Suppose the signal x represents how interested each person is in a new product,
with values ranging from 0 (no interest) to 10 (very interested).

– Let’s say the signal vector x is:

x =


7
5
2
4


– Here:

∗ Node 1 has a signal value of 7 (high interest).
∗ Node 2 has a signal value of 5.
∗ Node 3 has a signal value of 2 (low interest).
∗ Node 4 has a signal value of 4.
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This graph signal x represents the interest levels of the individuals in the social net-
work. The graph structure (encoded in the adjacency matrix A) can help us understand
how interest might spread or influence other nodes in the network, which is where graph
signal processing and GCNs come into play.

When we have more than one feature associated with each node in the graph, we have
a multidimensional graph signal. For instance, if each node in our social network graph
also has an interest level for a second product, the graph signal would be a matrix where
each row represents a node and each column represents a feature (e.g., interest in Product
A and Product B).

Graph Fourier Transform

The Graph Fourier Transform allows us to analyze a graph signal in the spectral domain,
analogous to the Fourier Transform in signal processing. The Graph Fourier Transform of
a graph signal x ∈ Rn is defined as:

x̂ = U⊤x

WhereU is the matrix of eigenvectors of the Laplacian matrix L. This operation trans-
forms the signal x into the spectral domain, where x̂ represents the coefficients of the signal
in the basis of the eigenvectors of the Laplacian.

The inverse Graph Fourier Transform reconstructs the signal from its spectral compo-
nents:

x = Ux̂

Spectral Graph Convolution

The convolution of a graph signal x with a filter g(L) in the spectral domain is defined as:

y = g(L)x = Ug(Λ)U⊤x

Here:

• g(L) is a function of the Laplacian matrix, which acts as a filter.

• g(Λ) is a diagonal matrix where g(Λ)ii = g(λi), i.e., the filter function applied to
each eigenvalue.

This operation is analogous to applying a filter in the Fourier domain in classical signal
processing.
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Chebyshev Polynomial Approximation

To avoid the computational burden of explicitly computing the eigenvectors U and the
filter function g(Λ), Kipf et al. [3] proposed to approximated the spectral filter g(L) using
Chebyshev polynomials. Chebyshev polynomials can be defined as follows:

g(L) ≈
K∑
k=0

θkTk(L̃)

Where:

• θk are coefficients to be learned during training.

• Tk(L̃) are the Chebyshev polynomials evaluated at the scaled Laplacian L̃.

Chebyshev polynomials are defined recursively as:

T0(x) = 1, T1(x) = x, Tk(x) = 2xTk−1(x)− Tk−2(x) for k ≥ 2

In the context of graph convolution, x is replaced by the scaled Laplacian L̃:

• For k = 0: T0(L̃) = I (the identity matrix).

• For k = 1: T1(L̃) = L̃.

• For k = 2 and higher: Tk(L̃) involves higher-order polynomials of L̃.

Transition to the Simplified GCN

1. First-Order Approximation (K = 1):

• The GCN simplifies the Chebyshev approximation by considering only the first
two terms in the series (i.e., a first-order approximation):

g(L) ≈ θ0T0(L̃) + θ1T1(L̃)

• Substituting T0(L̃) = I and T1(L̃) = L̃, we get:

g(L) ≈ θ0I+ θ1L̃

2. Renormalization Trick:

• Instead of directly using the scaled Laplacian L̃ = I−D−1/2AD−1/2, the GCN
formulation simplifies it by introducing a "renormalization trick." The idea is to
approximate the operation of L̃ by working directly with the adjacency matrix.
The adjacency matrix is adjusted to include self-loops:
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Ã = A+ I

The corresponding degree matrix is:

D̃ii =
∑
j

Ãij

The normalized adjacency matrix is then defined as:
Ãnorm = D̃−1/2ÃD̃−1/2

• This normalized adjacency matrix Ãnorm acts as a simplified substitute for the
scaled Laplacian L̃.

3. Final GCN Expression:

• The final GCN layer can then be expressed as:

H(l+1) = σ
(
ÃnormH

(l)W(l)
)

= σ
(
D̃−1/2ÃD̃−1/2H(l)W(l)

)
• where Ãnorm effectively plays the role of the simplified filter g(L) from the spec-
tral domain, but computed in the spatial domain using normalized adjacency.
Ã = A + I is the adjacency matrix with added self-loops (identity matrix I),
D̃ is the degree matrix corresponding to Ã, with D̃ii =

∑
j Ãij , W(l) is the

learnable weight matrix for layer l, and σ is a non-linear activation function,
such as ReLU.

4. Importance of Normalization:

• Normalization of the adjacency matrix is crucial for the stability of the graph
convolution operation. Without normalization, the features of nodeswith a high
degreewould dominate the aggregation process, leading to numerical instability
and poor model performance. The normalization ensures that the convolution
operation remains stable and that all nodes contribute equally to the aggregation
process, regardless of their degree.

• This normalization is motivated by the desire tomake the convolution operation
invariant to the degree of the nodes. Consider the propagation of features for a
single layer:

H(l+1) = ÃnormH
(l)W(l) = D̃−1/2ÃD̃−1/2H(l)W(l)

• Each element (H(l+1))i of the feature matrix H(l+1) is computed as:

(H(l+1))i =
∑
j

1√
didj

Ãij(H
(l))jW

(l)

• Where di and dj are the degrees of nodes i and j in the graph. This ensures
that the contribution of each neighboring node j to node i’s new features is
scaled by the square root of the product of their degrees, leading to a balanced
aggregation of features.
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2.2.4 Spatial-based GCNs

Spatial-based GCNs define graph convolutions directly in the node’s neighborhood. The
operation involves aggregating feature information from neighboring nodes (and possibly
the node itself) and then applying a transformation.

The general update rule for a spatial-based GCN is:

H
(l+1)
i = σ

(
W (l) · AGGREGATE

({
1

cij
H

(l)
j : j ∈ N (i) ∪ {i}

}))
where:

• H
(l)
i is the feature vector of node i at layer l. This vector represents the current state

or features of node i before the update at layer l + 1.

• N (i) denotes the set of neighbors of node i. This is the set of nodes that are directly
connected to node i by an edge.

• cij is a normalization constant, often chosen as
√

didj where di and dj are the degrees
of nodes i and j, respectively. This normalization helps to balance the influence of
nodes based on their degree, preventing features from being disproportionately in-
fluenced by nodes with many neighbors.

• W (l) is the weight matrix for the l-th layer. This matrix contains the learnable pa-
rameters that will transform the features from the previous layer to the current layer.

• AGGREGATE is the aggregation function. This function takes the set of transformed
feature vectors from the neighbors (and possibly the node itself) and combines them
into a single vector. Common choices for aggregation include:

– Summation: Simply adds the feature vectors together.
– Mean: Takes the average of the feature vectors.
– Max Pooling: Selects the maximum value for each feature across all vectors.
– Attention-based Aggregation: Uses learned attention weights to combine the

feature vectors.

• σ is a non-linear activation function, such as ReLU (Rectified Linear Unit) or sigmoid.
This function introduces non-linearity into the model, allowing it to capture more
complex patterns in the data.

In the case where the AGGREGATE function in the spatial-based method is a weighted
sum (with weights derived from normalized adjacencymatrix entries), the resulting spatial-
based GCN can be mathematically equivalent to the spectral-based GCN derived from the
spectral approximation of [3].
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Specifically, if we use the normalized adjacency matrix Ã = D−1/2(A+ I)D−1/2 in the
aggregation, the spatial-based GCN’s propagation rule:

H(l+1) = σ
(
ÃH(l)W (l)

)
is identical to the propagation rule derived from the spectral approximation.

2.2.5 Applications of GNNs

GNNs have found a lot of applications across a wide range of tasks, including but not limited
to the following:

Node Classification: Node classification involves predicting the label of a node based
on both its features and the structure of the graph. GNNs are particularly effective for
this task as they aggregate information from neighboring nodes, enabling a more holistic
understanding of each node’s role within its graph.

Graph Classification: Graph classification involves predicting the label of an entire
graph based on its structure and the features of its nodes. GNNs are well-suited for this
task as they can capture both global and local graph patterns.

Link Prediction: Link prediction aims to predict the existence or strength of a connec-
tion between two nodes. Examples include recommending friends in social networks, iden-
tifying missing or potential interactions in biological networks, and suggesting relevant
items in recommendation systems.

Graph Clustering: Graph clustering involves partitioning a graph into groups (clusters)
of nodes that share similar properties or roles. This task is critical in community detection
within social networks, grouping proteins with similar functions in biological networks, or
clustering users in recommendation systems.

2.2.6 Conclusion

Graph Neural Networks represent a significant advancement in deep learning, enabling the
processing of graph-structured data in a manner similar to CNNs on images. By leveraging
the spectral properties of graphs or directly operating in the spatial domain, GNNs can
capture complex relationships and patterns in non-Euclidean domains.

The development of GNNs is rooted in spectral graph theory, where the graph convo-
lution operation is derived from the eigenvalues and eigenvectors of the Laplacian matrix.
This allows GNNs to generalize the concept of convolution to graphs, enabling their appli-
cation to a wide range of tasks.
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2.3 Multimodal Machine Learning

2.3.1 Introduction

Multimodal Machine Learning (MML) is an emerging area in AI that focuses on the inte-
gration and processing of data from multiple modalities. A modality refers to a particular
type of data representation, such as text, images, audio, video, or sensor data. MML aims to
leverage complementary information across different modalities to achieve more accurate,
robust, and generalizable models than those using a single modality.

Inspired by the human brain’s ability to integratemultiple sensory inputs, MML seeks to
replicate this processing in machines. The human brain is inherently multimodal, process-
ing and integrating information from various sensory inputs—such as sight, sound, touch,
taste, and smell—simultaneously. This ability allows humans to develop a rich, coherent
understanding of the world. For example, when listening to someone speak, the brain pro-
cesses the auditory information (the words being spoken) along with visual information
(the speaker’s facial expressions and gestures) to interpret the full meaning of the com-
munication. MML aims to replicate this human-like ability in machines, enabling them to
leverage diverse data sources for more accurate and robust decision-making.

The potential of MML has already been demonstrated across a variety of tasks, ranging
from emotion analysis [25, 26] and visual question answering [27, 28] to surgical gesture
recognition [29, 30, 31]. These achievements highlight how MML’s integration of different
data modalities can push the boundaries of unimodal model.

2.3.2 Motivation

While the successes of unimodal learning approaches have driven significant advancements
in AI, real-world data is often multimodal by nature. Single-modality models are limited
in their ability to fully capture the complexity and richness of this data, which can result
in models that are less accurate, less generalizable, and prone to errors when confronted
with diverse, dynamic environments. For instance, in human-computer interaction, relying
solely on text input ignores crucial information from visual cues like facial expressions and
gestures. In autonomous driving, processing only camera images canmiss critical data from
other modalities like LIDAR, radar, and vehicle dynamics, leading to safety risks. MML di-
rectly addresses these limitations by integrating complementary information frommultiple
sources, thereby enhancing the contextual understanding and decision-making capabilities
of models.

2.3.3 Multimodal Learning Tasks

MML involves several fundamental research themes that address how different modali-
ties are represented, aligned, and integrated to build effective multimodal models. These
research themes are critical for understanding the complexities of learning from multi-
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ple information sources and designing systems that can handle the inherent challenges of
multimodal data. In this section, we explore the main research themes: Representation
Learning, Alignment, Co-Learning, and Multimodal Fusion.

Representation Learning

Representation learning in MML focuses on how to encode information from multiple
modalities into meaningful and unified representations. The challenge lies in capturing rel-
evant information from eachmodalitywhile accounting for their diverse structures, dynam-
ics, and scales. In multimodal systems, representation learning typically revolves around
two primary approaches: shared representations and modality-specific representations.

In shared representation learning, the goal is to map different modalities into a common
feature space where their features can be directly compared. By learning a joint embedding
space, the model can capture the correlations and complementarities between the modal-
ities, leading to richer and more robust representations. Canonical Correlation Analysis
(CCA) [32] and its deep learning extension (Deep CCA) [33] are commonly used to learn
such shared spaces by maximizing the correlation between modalities.

On the other hand, modality-specific representations maintain separate feature spaces
for each modality, allowing for more specialized processing that preserves the unique char-
acteristics of each data source. In such systems, cross-modal information sharing can be
achieved through mechanisms like attention layers in cross-modal transformers [34], en-
abling the integration of informationwhile retainingmodality-specific details. This method
is advantageous in scenarios where the modalities are structurally different or where re-
taining distinct information from each modality is crucial for the task at hand.

Alignment

Alignment is a crucial task in MML, focusing on the need to establish correspondences
between different modalities that may have distinct temporal, spatial, or structural char-
acteristics. Misalignment can occur due to differences in timing, sampling rates, or data
structures, making it essential to address these discrepancies for effective integration.

Temporal alignment is particularly important in tasks involving time-dependent data,
such as video and audio. For instance, synchronizing visual frames with corresponding au-
dio signals is a common requirement in applications like video analysis and speech recog-
nition. Ensuring that these sequences are properly aligned allows the model to integrate
information across modalities in a coherent and consistent manner. Techniques such as at-
tention mechanisms [34] and contrastive learning [35] are often employed to address these
challenges.
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Co-Learning

Co-learning addresses how knowledge and signals from onemodality can improve learning
in another, particularly in scenarios where one modality might have limited data or noisy
information. Co-learning is essential for enhancing the robustness and generalization ca-
pabilities of multimodal models, especially in real-world environments where data quality
and availability can vary significantly across modalities.

Common co-learning strategies include co-training [36], wheremodels iteratively refine
each other by exchanging predictions; transfer learning [37], where knowledge is trans-
ferred across modalities; and multi-task learning [38], where a single model is trained on
multiple tasks involving different modalities. These strategies aim to make models more
resilient and generalizable, especially in real-world applications where data may be incom-
plete or noisy.

Multimodal Fusion

Multimodal fusion is the process of integrating information from multiple modalities to
create more comprehensive models. Fusion can occur at various stages of a model’s archi-
tecture and can be broadly categorized into three strategies: early fusion, late fusion, and
intermediate fusion. Early fusion combines features at the input level, allowing the model
to learn joint representations from the outset. Late fusion processes each modality inde-
pendently and combines their outputs at the decision level, which is useful whenmodalities
have distinct characteristics. Intermediate fusion fused modality-specific features at a later
stage, balancing the flexibility of late fusion with the comprehensiveness of early fusion.

In addition to these strategies, there exist more complex fusion techniques that can be
applied at any of these stages, such as tensor fusion [39, 40], attention-based fusion [41,
42], and graph-based fusion [43], which aim to capture higher-order interactions and more
nuanced relationships across modalities. These advanced techniques push beyond simple
concatenation or averaging, enabling richer and more expressive multimodal representa-
tions. These fusion techniques will presented in more details in the following.

2.3.4 Multimodal Fusion

Fusion of multimodal data is a central problem in MML, and several strategies have been
developed to address it. These strategies can be broadly categorized into early fusion, late
fusion, intermediate fusion, tensor fusion, attention mechanisms, and graph-based fusion.

Early Fusion

Early fusion, also known as feature-level fusion, involves merging features extracted from
different modalities at an early stage, typically before feeding them into a learning algo-
rithm. Mathematically, suppose we have two modalities, x1 ∈ Rd1 and x2 ∈ Rd2 , where d1
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and d2 are the dimensions of the feature spaces. In early fusion, the features from the two
modalities are concatenated to form a combined feature vector:

xfused = [x1;x2] ∈ R(d1+d2)

This fused feature vector xfused is then used as input to a learning algorithm, such as a
neural network or a classifier. Early fusion allows the model to learn joint representations
of the data, but it can suffer from high dimensionality and difficulties in capturing complex
interactions between modalities, especially when the feature spaces of the modalities are
very different.

Late Fusion

Late fusion, also known as decision-level fusion, involves processing each modality sep-
arately and then combining the decisions or outputs from each modality. Let f1(x1) and
f2(x2) be the outputs from models trained on each modality separately. The final decision
y can be obtained by combining these outputs, often using a weighted sum or a voting
mechanism:

y = g(f1(x1), f2(x2))

Common choices for g(·) include averaging, weighted sum, votingmechanisms, ormore
complex ensemble methods. Late fusion is simpler and can effectively handle heteroge-
neous modalities, but it might miss potential interactions between modalities that could be
captured in earlier stages of processing.

Intermediate Fusion

Intermediate fusion combines elements of both early and late fusion. In hybrid fusion,
features from different modalities are partially fused at intermediate layers before final
decision-making.

Let h1(x1) ∈ Rm1 and h2(x2) ∈ Rm2 represent the intermediate feature embeddings
learned from each modality. Intermediate fusion involves combining these embeddings:

xfused = g(h1(x1), h2(x2))

where g(·) can be any function that fuses the learned embeddings, such as concatenation
or element-wise addition. This fused representation xfused is then passed through further
layers before making a final prediction. Intermediate fusion aims to balance the benefits of
both early and late fusion, capturing inter-modal interactionswhilemaintainingmodularity
in the model design.
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Tensor Fusion

Tensor fusion expands feature vectors from different modalities into multi-dimensional
tensors to capture higher-order interactions between the modalities. Unlike simpler ap-
proaches that only consider linear combinations of features (like concatenation or element-
wise addition), tensor fusion allows for the modeling of multiplicative interactions between
features across modalities. Consider two modalities with feature vectors x1 ∈ Rd1 and
x2 ∈ Rd2 . In tensor fusion, the outer product ⊗ is used to combine these feature vectors
into a tensor:

T = x1 ⊗ x2 ∈ Rd1×d2

The resulting tensorT represents all pairwise interactions between elements of x1 and
x2, forming a 2D matrix where each entry is calculated as:

Tij = (x1)i · (x2)j

This can be generalized for more than twomodalities. For threemodalities with features
x1 ∈ Rd1 , x2 ∈ Rd2 , and x3 ∈ Rd3 , the resulting tensor T ∈ Rd1×d2×d3 captures all triplet
interactions:

Tijk = (x1)i · (x2)j · (x3)k

Tensor fusion goes beyond linear interactions, capturing complex, multiplicative rela-
tionships between features from different modalities. The resulting tensor contains richer
and more expressive representations that incorporate higher-order correlations across
modalities, which can lead to more accurate and nuanced decision-making. The primary
drawback of tensor fusion is the exponential growth in dimensionality. For instance, for
two feature vectors with dimensions d1 and d2, the resulting tensor will have d1 × d2 ele-
ments. This can quickly become computationally prohibitive, especially when dealing with
more than two modalities.

Attention Mechanisms

Attention-based models dynamically weigh the contributions of different modalities de-
pending on the context or task at hand. Mathematically, attention mechanisms can be
represented as a weighted sum of modality-specific features. For a given modality Xm, an
attention weight αm is computed based on the relevance of the modality to the task:

αm =
exp(em)∑
k exp(ek)
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where em is an alignment score computed using a function that measures the compat-
ibility between the modality and the task, often using a neural network. The final multi-
modal representation Xatt is a weighted sum of the modality-specific features:

Xatt =
∑
m

αmXm

Attention mechanisms allow the model to focus on the most relevant parts of each
modality, leading to more flexible and accurate multimodal representations.

Graph-based Fusion

In cases where relationships between modalities are complex and structured, graph-based
fusion techniques can model these relationships explicitly. A graph G = (V,E) is con-
structed where nodes V represent different modalities or features, and edges E capture the
dependencies between them. The feature representation of each node can be updated using
a message-passing mechanism, where information is aggregated from neighboring nodes:

H
(l+1)
i = σ

 ∑
j∈N (i)

W(l)H
(l)
j


whereH(l)

i is the embedding of node i at layer l,N (i) represents the neighbors of node i,
andW(l) is the weight matrix at layer l. This approach is particularly useful when the rela-
tionships between modalities are complex and need to be explicitly modeled. Furthermore,
GNNs can efficiently handle a large number of modalities and their interactions. However,
some limitations need to be aknowledge. Defining the graph structure (e.g., which nodes
are connected) can be non-trivial and often requires domain-specific knowledge. Addi-
tionally, Deep GNNs can suffer from over-smoothing, where all node embeddings become
indistinguishable after many layers.

2.3.5 Challenges

Despite its promise, MML faces several challenges that complicate the integration and pro-
cessing of multimodal data:

Heterogeneity ofData: Differentmodalities often have distinct data structures, formats,
and statistical properties. For instance, text data is sequential and discrete, while image
data is spatial and continuous. This heterogeneity makes it challenging to develop unified
models that can effectively process and integrate diverse types of data.
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Alignment of Modalities: Aligning data from different modalities is a significant chal-
lenge. For example, in video analysis, aligning spoken words with corresponding visual
cues requires precise temporal synchronization. Misalignment can lead to incorrect or in-
complete interpretation of the data.

Fusion Strategies: Determining the optimal strategy for fusing information from differ-
ent modalities is non-trivial. Simple concatenation of features might not capture complex
interactions between modalities, while more sophisticated fusion techniques might require
significant computational resources and may introduce noise or redundancy.

Missing Data: In many practical scenarios, not all modalities are available at all times.
Handling missing data and ensuring the model remains robust in such situations is a key
challenge in MML.

Scalability: MML systems often require large amounts of data and computational power,
particularly when dealing with high-dimensional data such as images and videos. Ensuring
that MML models scale efficiently with increasing data complexity and volume is crucial.

Interpretability: As with many machine learning models, interpretability remains a
challenge. Understanding how different modalities contribute to the final decision-making
process is important, particularly in applications where transparency is critical, such as
healthcare.

2.3.6 Conclusion

Multimodal Machine Learning represents a significant step forward in the development of
intelligent systems capable of processing and understanding complex, heterogeneous data.
By integrating information from multiple modalities, MML models can achieve superior
performance across a wide range of tasks. However, the field is still in its early stages,
and numerous challenges remain, particularly in areas such as data fusion, representation
learning, and model interpretability.
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Part I

Multimodal Affective Computing
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Chapter 3

Affective Computing
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This chapter provides the theoretical background on the field of affective computing,
offering the necessary context for the methods introduced in Chapters 4 and 5.

Section 3.1 introduces the field of affective computing and its associated challenges.
Next, Section 3.2 discusses the role of emotion in daily life, the categorical and dimensional
emotionmodels, and the various modalities throughwhich emotions are expressed. Finally,
Section 3.3 provides an overview of emotion recognition methods, covering both unimodal
and multimodal approaches employing these modalities.

3.1 Introduction

Affective Computing is a multidisciplinary field at the intersection of computer science,
psychology, and cognitive science, aiming to develop systems and devices that can recog-
nize, interpret, express, and process human emotions. The importance of Affective Comput-
ing lies in its potential to revolutionize how we interact with technology. By incorporating
emotional intelligence into devices and software, technology can become more responsive
to the nuances of human moods, stress levels, and emotional needs. This can enhance user
experience in a wide range of applications, from personalized learning and mental health
monitoring to customer service and entertainment.

For instance, educational software that adapts to a student’s frustration or boredom can
offer alternative explanations, motivating them to persevere. In mental health, wearables
that detect stress or anxiety levels can prompt users to take a break or engage in a calming
activity. Moreover, in customer service, chatbots and virtual assistants that understand and
respond to a user’s emotional state can provide more empathetic and effective support.

Affective Computing leveragesmachine learning and pattern recognition techniques for
processing emotional-based signals , in order to recognize and classifying emotion states.
These emotion-based signals can include facial expressions, body movements, physiolog-
ical signals, speech, or text data. However, emotion recognition is inherently challenging
due to the subjective and context-dependent nature of emotions. Variations in emotional
expression across cultures, individuals, and situations make accurate interpretation diffi-
cult. For instance, emotions like anxiety or frustration may be concealed or exaggerated,
complicating detection.

Moreover, human emotions are also complex, subtle, and multifaceted, often overlap-
ping and difficult to categorize. For example, a person may exhibit signs of multiple emo-
tions simultaneously, further complicating the process of emotional labeling.

In recent years, multimodal approaches have become increasingly popular. These meth-
ods combine diverse emotional cues, such as facial expressions, speech patterns, and phys-
iological data (e.g., heart rate or skin conductance), to improve emotion recognition accu-
racy. The integration of physiological signals is especially valuable as they provide objec-
tive, involuntary indicators of emotional states, offering insights that external expressions
might obscure.

Nevertheless, integrating multiple data modalities presents its own set of challenges.
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Differences in temporal resolution and data structures can complicate the alignment of data
across modalities. Precise synchronization and integration require efficient algorithms and
models capable of real-time emotion recognition. One significant challenge is the effective
fusion of various modalities. Developing advanced fusion techniques tailored to the specific
modalities involved is crucial for maximizing the potential of each modality and improving
overall recognition performance.

3.2 Theoretical Background

3.2.1 Human Emotions

Emotions play a crucial role in our human experience, impacting nearly every aspect of our
lives. They influence our decisions and actions, with positive emotions guiding us towards
beneficial activities, relationships, or goals, while negative emotions often serve as signals
to avoid challenging situations. Emotions are also central to human communication and can
be expressed through facial expressions and body language, allowing us to convey feelings
nonverbally.

Moreover, emotional well-being is closely linked to physical health. Chronic stress,
anxiety, and depression can manifest physically, increasing the risk of conditions such as
heart disease, diabetes, and weakened immune function. Conversely, positive emotions and
emotional resilience can improve physical health and overall well-being.

The complexity and variability of emotional experiences highlight their deeply personal
nature, influenced by a dynamic interplay of cultural, genetic, and experiential factors. Cul-
tural norms, for instance, shape how emotions are expressed and perceived—some cultures
emphasize emotional restraint, while others encourage openness and expressiveness [44].
Genetic predispositions can affect emotional reactivity and vulnerability to mood disor-
ders, revealing the biological foundations of emotions [45]. Additionally, personal experi-
ences, including trauma and life achievements, further shape our emotional responses and
landscapes. This diversity in emotional experiences underscores that, while emotions are
universal, their expression and impact are highly individualized, reflecting a wide range of
human diversity.

3.2.2 Emotion models

The study of emotions has led to the development of various models to categorize and
understand emotional experiences. These models are broadly classified into two categories:
categorical models and dimensional models. Both have contributed significantly to the field
of emotion research, including the development of emotion recognition technology.
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Categorical Models

Categorical models of emotions propose that a limited number of distinct and universal
emotions exist. These models are grounded in the theory that certain emotions are bio-
logically and psychologically fundamental to all humans, regardless of cultural differences
[46, 47]. The most influential work in this area is by Paul Ekman [47], a pioneer in the
study of emotions and their relation to facial expressions. Paul Ekman identified six ba-
sic emotions that he argued were universally recognized and expressed by specific facial
expressions: happiness, sadness, fear, disgust, anger, and surprise. Ekman’s cross-cultural
studies demonstrated that people from diverse cultures could accurately identify these ba-
sic emotions from facial expressions. His work led to the development of the Facial Action
Coding System (FACS) [48], a comprehensive tool for categorizing the physical expression
of emotions through facial movements.

More recently, Cordaro andKeltner, former students of Ekman, have conducted research
suggesting an expansion of the list of universal emotions [49]. Their cross-cultural study
provides evidence for the universal recognition of additional emotions, including amuse-
ment, awe, contentment, desire, embarrassment, pain, and relief, through both facial and
vocal expressions.

Despite these advancements, categorical models have limitations. By focusing on a
finite set of basic emotions, these models may oversimplify the complexity of human emo-
tional experiences, potentially overlooking the broader spectrum of emotions that individ-
uals experience.

Dimensional Models

Dimensional models, on the other hand, view emotions as existing along continuous di-
mensions rather than as discrete categories. Russell proposed the circumplex model of
emotion [50], which represents emotions on a two-dimensional circular space. Valence is
represented on the horizontal axis, with emotions ranging from displeasure to pleasure; it
measures how positive or negative an emotion is. Arousal is represented on the vertical
axis, evaluating the level of arousal associated with an emotion, measuring the intensity of
an emotion, from low to high. Emotions opposite each other on the circle have opposite va-
lence and/or arousal characteristics. For example, happiness (high valence, high arousal) is
opposite to sadness (low valence, low arousal). Furthermore, emotions close to each other
on the circle are similar in nature. For instance, both joy and surprise might share a high
arousal characteristic but differ in their valence.

3.2.3 Emotions related Modalities

Behavior Modalities

Behavioral cues play an important role in how emotions are externally manifested and
interpreted. Humans express emotions through several sensory channels, including facial
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expressions and body movements. These non-verbal and paralinguistic signals are key for
emotional communication and provide crucial data for emotion recognition systems.

Facial Action Units (FAUs): One of the most comprehensive taxonomy for understand-
ing facial expressions is the Facial Action Coding System (FACS), introduced by Ekman and
Friesen [48]. FACS defined a comprehensive set of individual muscles or groups of mus-
cles, known as action units (AUs). By combining AUs, it is possible to encode any facial
expression, enabling the inference of an individual’s emotional state. For instance, AU12 is
related to a lip corner pull, typically associated with smiling, while AU4 (brow lowerer) is
linked to sadness or anger.

Tracking AUs involves both manual and automated techniques. Manual detection re-
quires trained coders to analyze facial movements from images or videos, which can be
labor-intensive and susceptible to inter-coder variability. This method, while accurate, of-
ten struggles with subtle and fleeting expressions and requires significant time investment.
In contrast, automated techniques utilize machine learning and computer vision [51, 52, 53]
algorithms to detect AUs in real-time, enhancing efficiency and scalability. These systems,
however, are not without their challenges; they may be affected by variations in lighting,
occlusions, or differences in individual facial anatomy, which can impact the accuracy of
AU detection.

Facial Landmarks: Facial landmarks are key points on the face (e.g., the corners of the
eyes, mouth, and nose) that capture the geometry of facial expressions. These points can be
tracked and measured over time to assess the intensity and dynamics of facial expressions.

The tracking of facial landmarks has been made possible by advancements in computer
vision. Automated methods, including sophisticated algorithms and deep learning models
[54, 55, 56], enable real-time detection and tracking of these landmarks with high precision.
However, these methods can encounter difficulties in the presence of lighting variations,
facial occlusions, and diverse head poses, which may affect the robustness and reliability
of landmark detection.

Body Movements and Posture: In addition to facial expressions, emotions can also be
expressed through body movements and posture. For instance, slumped shoulders may
indicate sadness, while an upright posture can convey confidence or happiness. Emotion
recognition systems can leverage body movement tracking to detect emotions, with the ad-
vantage that body cues often reflect emotions even when facial expressions are suppressed.

Tracking body movements has traditionally involved motion capture systems, which
provide precise and detailed data but can be cumbersome and impractical for everyday
applications. Recent developments in computer vision, such as pose estimation models
[57], offer a more practical solution by detecting and analyzing body skeletons in real-time.
These methods have made significant strides in accuracy and ease of use, yet they still face
challenges such as sensitivity to environmental conditions and the need for substantial
computational resources.
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Behavioral signals are critical for emotion recognition systems because they reflect how
emotions are consciously or unconsciously expressed in social contexts. The challenge,
however, is that behavioral cues can be intentionally masked or altered, which can reduce
the accuracy of emotion recognition systems that rely solely on these cues.

In the context of one of our primary objectives, which is monitoring the stress levels
and emotional states of medical students during medical simulation training, the real-time
analysis of facial action units, facial landmarks, and body movements will enable precise
emotion recognition. For body movement analysis, using a 3-axis accelerometer (ACC)
will provide a practical and unobtrusive method for capturing dynamic body movements
in real-world scenarios. The accelerometer measures acceleration along three axes (x, y,
and z), enabling detailed tracking of various body movements and postural changes.

Physiological Signals

In addition to behavioral manifestations, emotions also produce distinct physiological
changes in the body. These signals, often less conscious and more difficult to control, offer
an objective measure for emotion recognition. The physiological changes associated with
emotions are grounded in the autonomic nervous system (ANS), the endocrine system, and
the central nervous system (CNS).

Emotions trigger specific physiological responses as part of the body’s fight-or-flight
mechanism. These changes are controlled by the sympathetic and parasympathetic
branches of the ANS. The Sympathetic Nervous System (SNS) is responsible for preparing
the body to respond to stressful or dangerous situations, often referred to as the "fight-
or-flight" response. When activated, the SNS increases heart rate, dilates pupils, enhances
blood flow to muscles, and releases stress hormones like adrenaline, all of which prime the
body for action [58].

In contrast, the Parasympathetic Nervous System (PNS) works to calm the body and
promote relaxation once the threat has passed. Often described as the "rest-and-digest"
system, the PNS decreases heart rate, conserves energy, and facilitates digestion and recov-
ery, helping the body return to a balanced state [58].

The following physiological signals are commonly involved in emotion expression:

• Electrodermal Activity (EDA): Measures the electrical conductance of the skin,
which increases with sweat gland activity during emotional arousal [59].

• Electrocardiogram (ECG): Measures the electrical activity of the heart over time.
It provides detailed information on heart rate and the patterns of heartbeats. This
measurement is a key indicator of emotional expression.

• Blood Volume Pulse (BVP):Measures the blood flow through the peripheral blood
vessels using a photoplethysmograph (PPG) sensor, often placed on the finger or
wrist. Changes in BVP indicate variations in vascular constriction and dilation, which
are influenced by emotional states.
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• Respiration (RESP): This is the number of breaths taken per minute. Increases in
respiratory rate are commonly associated with arousal states such as anxiety, fear,
or excitement. Conversely, a decreased respiratory rate can indicate relaxation or a
calm state. Respiratory rate can be measured using sensors such as respiratory belts
or wearable devices equipped with respiratory sensors.

• Skin Temperature (TEMP): Variations in skin temperature can reflect changes in
the autonomic nervous system’s activity, which is closely linked to emotional re-
sponses. This is because the ANS affects blood flow and sweat production, both of
which influence skin temperature. Several methods can be employed to measure skin
temperature, including thermal imaging and contact-based sensor.

• Electroencephalography (EEG): Measures electrical activity in the brain, provid-
ing insights into a person’s emotional state by analyzing brainwave patterns.

Regarding the objective of this thesis to develop stress detection and emotion recog-
nition models for monitoring medical students’ stress levels and emotional states during
medical simulation scenarios, all the physiological signals mentioned, except EEG, can be
monitored for this purpose. EEG signals require invasive equipment, which limits their
practicality and usability in real-time, non-intrusive applications. In contrast, the other
physiological signals can be monitored using less invasive wearable sensors, enhancing
their feasibility and applicability in such settings.

3.3 Emotion Recognition

Emotion recognition is the process of identifying and classifying human emotions based
on various data modalities, including behavioral cues (e.g., facial expressions, body move-
ments) and physiological signals (e.g., heart rate, skin conductance). This section pro-
vides an overview of emotion recognition methods based on unimodal and multimodal
approaches.

3.3.1 Behavior Modalities

Facial expressions are one of the most commonly used modalities for emotion recognition.
Traditional techniques often relied on manually crafted features and conventional machine
learning methods. For instance, Pu et al. [60] introduced a two-stage facial expression
recognition framework. The first stage involved detecting Facial Action Units (AUs) us-
ing a Random Forest classifier trained on features extracted from the Active Appearance
Model (AAM) and optical flow computations. The second stage involved feeding the de-
tected AUs as inputs to another Random Forest classifier for facial expression recognition,
achieving a 96.38% recognition rate on the Cohn–Kanade (CK+) dataset [61]. Kumar et al.
[62] developed a system that initially detects faces and identifies facial landmarks. Using
these landmarks, the system extracts facial patches and computes Histogram of Oriented
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Gradients (HOG) features for each patch. These features are then concatenated and clas-
sified using a Support Vector Machine (SVM) for facial expression recognition on the CK+
dataset. Abdulrahman et al. [63] proposed a method that extracts features using the Lo-
cal Binary Pattern (LBP) technique and applies Principal Component Analysis (PCA) for
dimensionality reduction, followed by a SVM classifier.

Despite their success, these traditional methods rely heavily on handcrafted features
and can be constrained by the complexity of feature extraction and the need for domain ex-
pertise. Recent advances in deep learning have shifted the focus towards automatic feature
learning. For example, Ouellet [64] combined a pre-trained CNN from ImageNet [65] with
an SVM classifier for facial expression recognition, achieving 94.40% accuracy across seven
emotion classes on the CK+ dataset. Similarly, Li et al. [66] employed a ResNet-50 [67]
architecture for facial expression recognition. In [68], the authors proposed a two-stream
framework for video-based emotion recognition. Their approach integrated a Recurrent
Neural Network (RNN) with sequences of image features extracted from the VGG16 model
[69], alongside a 3D Convolutional Neural Network (CNN), and an audio module that ex-
tracted audio features and then employed SVM for emotion prediction. Each component
was trained independently, producing separate emotion predictions, which were subse-
quently combined using a weighted fusion strategy. Recently, Zheng et al. [70] developed
the POSTER framework, a two-stream pyramid cross-fusion Transformer that processes
both facial landmark and image features, achieving state-of-the-art results across three
benchmark datasets.

3.3.2 Physiological Signals

Early approaches to emotion recognition using physiological signals primarily relied on
handcrafted features and traditional machine learning methods. For instance, Setz et al.
[71] proposed distinguishing stress from cognitive load in an office environment using EDA
signals. From these signals, they extracted 16 time-domain features and employed six dif-
ferent classifiers, including linear discriminant analysis (LDA), SVM with linear, quadratic,
polynomial, and RBF kernels, and the nearest class center (NCC) algorithm. Ragot et al.
[72] compared emotion recognition performance between laboratory and wearable sen-
sors. By recording EDA and cardiac activity from 19 participants using both the Biopac
MP150 and Empatica E4 sensors, they extracted nine features and trained SVM classifiers
to predict valence and arousal. Their results showed that wearable sensors are viable for
non-intrusive emotion recognition, providing similar performance to laboratory sensors.
In [73], the authors proposed training a Random Forest classifier using EDA signals and
blood oxygen level data collected from 101 subjects experiencing various emotions. Hsu et
al. [74] developed an ECG-based emotion recognition framework. They collected ECG sig-
nals while participants listened to music and extracted features through time-, frequency-,
and nonlinear analyses. They employed a least squares SVM (LS-SVM), which achieved
accuracies of 82.78% for valence, 72.91% for arousal, and 61.52% for emotion classification.

Despite these efforts, traditional methods faced challenges such as the need for domain-
specific feature engineering and manual effort, which could lead to suboptimal perfor-
mance. Deep learning approaches have addressed these limitations by automating feature
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extraction and learning hierarchical data representations. Umematsu et al. [75] introduced
a stress level recognition-based forecasting framework that leverages various data types,
including physiological data, mobile phone usage, location information, and behavioral sur-
veys collected overN days from 142 participants. Using Long Short-Term Memory (LSTM)
neural networks, they achieved an accuracy of 83.6% in predicting next-day stress levels.
Similarly, Awais et al. [76] employed a LSTM model to recognize emotions from physio-
logical signals such as respiration, galvanic skin response (GSR), electrocardiogram (ECG),
electromyogram (EMG), and temperature (TEMP). Dar et al. [77] proposed a hybrid ap-
proach combining Convolutional Neural Networks (CNNs) with LSTM networks for emo-
tion recognition. More recently, Wierciński et al. [78] introduced GraphEmotionNet, a
Graph Neural Network framework for emotion recognition using ECG, EEG, and GSR data
from the AMIGOS dataset [79]. Their proposed model achieved accuracies of 69.71% for
valence and 70.75% for arousal. In [80], the authors developed a Transformer-based self-
supervised framework for emotion recognition from ECG signals. Their approach employs
a CNN for feature extraction combined with a Transformer encoder, pre-trained using self-
supervised learning on unlabeled ECG data and fine-tuned on the AMIGOS dataset for
emotion recognition.

3.3.3 Multimodal Learning

Multimodal approaches to emotion recognition aim to combine data from different modal-
ities to leverage the strengths of each to improve accuracy and robustness in classifying
emotions. By combining behavioral cues (e.g., facial expressions, body movements) with
physiological signals (e.g., heart rate, galvanic skin response), these methods can capture
both external manifestations and internal states. Combining these modalities allows for a
more holistic understanding of emotions, as some emotional states may not be fully repre-
sented by observable behavior alone.

Li et al. [81] introduced a multimodal facial expression recognition framework that
integrates features from both EEG signals and facial landmarks at the input level. They
extracted energy feature vectors from EEG signals using the discrete wavelet transform
(DWT) and feature vectors derived from facial landmarks. These features are then concate-
nate and classified using a SVM. Soleymani et al. [25] developed a multimodal framework
combining EEG, pupillary response, and gaze distance features to classify arousal (calm,
moderate, high) and valence (unpleasant, neutral, pleasant) levels using SVM classifiers.
Their study revealed that decision-level fusion outperformed both feature-level fusion and
the use of individual modalities for both arousal and valence classifications. Saffaryazdi
et al. [82] explored the fusion of facial micro-expressions, EEG signals, GSR, and pho-
toplethysmography (PPG) for arousal and valence recognition. They compared individual
modalities withmultimodal fusion using SVM, RandomForest, K-Nearest Neighbors (KNN),
and LSTM classifiers on the DEAP dataset [83] and another dataset collected by the authors.
The multimodal fusion was achieved through either a voting scheme or weighted fusion.
For facial micro-expressions, they employed 3D CNNs to process image sequences, while
features from physiological signals were handled by either LSTM networks or traditional
machine learning models. The fusion of all modalities using LSTM demonstrated superior

– 43 –



accuracy and F-score compared to the use of individual modalities across both datasets.

3.3.4 Discussion

Emotion recognition remains a challenging task due to the complex and dynamic nature
of human emotions. Unimodal approaches relying on either behavioral or physiological
signals offer valuable insights but are often limited by the inherent variability in human
emotion expression. For example, facial expressions can be consciously masked or altered,
while physiological signals can be influenced by non-emotional factors such as physical
activity or health conditions.

Multimodal approaches offer a promising solution by integrating multiple data sources,
capturing both external behaviors and internal physiological states. However, these ap-
proaches require sophisticated algorithms capable of aligning and fusing diverse data
streams. Advances in deep learning and fusion techniques continue to push the bound-
aries of emotion recognition, making real-time, accurate emotion monitoring increasingly
feasible across a variety of applications, from healthcare to human-computer interaction.

Given the importance of considering multiple modalities in emotion expression, the
subsequent chapters will propose leveraging both behavioral and physiological data within
our proposed multimodal frameworks for the tasks of stress detection and emotion recog-
nition.
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Multimodal Transformer for Stress
Detection
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This chapter outlines our contributions to the field of automatic stress detection using
physiological data. We introduce a novel multimodal Transformer framework that inte-
grates various multimodal fusion techniques, including early fusion, intermediate fusion,
and late fusion, to effectively integrate physiological signals from two sensors, treating each
set of signals as a distinct modality. We establish both unimodal and multimodal bench-
marks for automatic stress detection using the WESAD dataset. Additionally, we extend
these benchmarks to the task of affect detection, further validating the effectiveness of our
proposed multimodal framework.

In Section 4.1, we introduce the concept of stress, discuss its impact on health, and
highlight the importance of automated stress detection systems. Section 4.2 provides a com-
prehensive review of the existing literature on automatic stress detection, establishing the
necessary background for our proposed approach. In Section 4.3 we present our proposed
framework. Following this, Section 4.4 presents the WESAD dataset, outlines the prepro-
cessing steps applied to the physiological signals, and presents the results of our unimodal
and multimodal stress and affect detection experiments. Section 4.5 discusses our findings,
examining their implications, limitations, and potential avenues for future research. Lastly,
Section 4.6 concludes the chapter by summarizing its key contributions.

4.1 Introduction

Stress has become a global epidemic and a significant concern, profoundly affecting indi-
vidual lives and society as a whole. Various factors contribute to stress, including work-
related pressures, financial difficulties, relationship issues, and social challenges [84]. Stress
is a multifaceted response that involves physical, mental, and emotional reactions to stimuli
that disrupt the typical state of balance. In response to stress, the body triggers the fight
or flight response, a concept introduced by Walter Cannon [85]. This primal physiological
reaction prepares the individual to either confront or escape the perceived threat.

While the fight-or-flight response is an evolutionary mechanism designed for survival,
modern stressors are often more psychological than physical. Consequently, this response
can become maladaptive in contemporary contexts. Stress can be broadly classified by
duration into two distinct types: (1) acute stress, which is a brief, intense reaction to an
immediate or unusual event or threat, and (2) chronic stress, which is a sustained, long-term
physiological and psychological response to ongoing stressors or unresolved challenges.

In the context of medical education and practice, medical professionals, including stu-
dents and doctors, often face high levels of stress due to the demanding nature of their
education and profession. Stress can impact their overall performance and health. High
levels of stress can impair cognitive functions such as memory, attention, and decision-
making. For medical professionals, this impairment can lead to errors in judgment and
decreased quality of care. Furthermore, chronic stress can increase susceptibility to certain
types of cancer [86], slow wound healing [87], and increase vulnerability to infections [88].

Simulation practice, an integral part of medical training, provides a controlled yet re-
alistic setting to replicate high-stress clinical scenarios. These simulations are designed to
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prepare future healthcare professionals for real-world medical emergencies and decision-
making under pressure. Monitoring stress during these practices can be highly benefi-
cial for understanding how individuals respond to pressure. Additionally, it can provide
valuable feedback on how stress levels impact performance during simulation sessions, en-
abling the development of personalized coping strategies to manage stress more effectively.
These monitoring tools will facilitate targeted interventions and continuous improvements
in medical training.

The physiological basis of stress involves a cascade of hormonal reactions initiated by
the sympathetic nervous system (SNS). This response triggers the release of hormones such
as ACTH, cortisol, and adrenaline, which impact various physiological parameters such as
blood pressure, heart rate, and skin temperature, among others [89]. Monitoring these
physiological parameters is essential for developing effective stress detection systems.

Machine learning and deep learning, have shown great promise for automatic stress
detection using physiological data [90, 91]. In recent years, the Transformer [2] has revolu-
tionized tasks in natural language processing (NLP) and demonstrated state-of-the-art per-
formance across various tasks involving the processing of sequential data. These tasks in-
clude time series forecasting [12, 92, 93], time series classification [94, 95, 96], and anomaly
detection in time series [97, 98, 99]. Furthermore Transformers has shown promising per-
formance in multimodal learning for tasks such as emotion recognition [100], image clas-
sification [101], and action recognition [102], and more. Given its proficiency in handling
sequential data, the Transformer model emerges as a strong candidate for automatic stress
detection through sequences of physiological signals.

Given that stress can manifest through various physiological parameters, and that dif-
ferent physiological sensors can capture distinct types of signals with varying physical
properties, it can be beneficial to consider multimodal approaches for automatic stress de-
tection systems. Combining data from different types of sensors can enhance accuracy and
robustness, as eachmodality can provide complementary information that improves overall
detection performance. For instance, wrist-based sensors canmeasure physiological signals
such as heart rate and skin conductance, while chest-based sensors can capture physiolog-
ical signals like respiratory rate and ECG. This comprehensive data collection can lead to a
more complete understanding of the body’s stress response. Additionally, different sensors
have varying susceptibilities to noise and artifacts, and multimodal data can help mitigate
these issues, resulting in more reliable stress detection. Deep learning models benefit from
the increased feature set provided by multimodal data, enhancing their ability to discrimi-
nate between stress and non-stress states. However, multimodal learning presents multiple
challenges, including multimodal data fusion, synchronization, increased complexity and
cost.

Motivated by the success of Transformermodels for sequential data processing andmul-
timodal learning, we propose a novel multimodal Transformer framework for automatic
stress detection. Our framework incorporates different fusion strategies: early, intermedi-
ate, and late fusion, allowing for a comprehensive integration of physiological signals from
two distinct types of sensors: wrist-based and chest-based. Through extensive experiments
conducted on the WESAD dataset [90], we demonstrate that our approach surpasses all
existing state-of-the-art methods for stress detection. To further validate the effectiveness
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of our framework, we also conduct experiments on the task of affect detection.

The contributions of this work are three-fold and can be summarized as follows:

1. We establish benchmarks for both unimodal and multimodal stress and affect detec-
tion using physiological signals from two different sensors.

2. We propose a multimodal framework that integrates physiological signals from wrist
and chest sensors, treating each set of signals as a separate input modality.

3. Our proposed approach achieves state-of-the-art results on the WESAD dataset.

4.2 Related Work

In recent years, physiological data have gained prominence in automatic stress detection
due to their direct, objective measurements of the body’s response to stress. Unlike video
or voice data, which require interpretation and can be influenced by external factors or
an individual’s ability to conceal emotions, physiological signals provide a straightforward
and objective indicator of physiological arousal related to stress.

TheWESAD dataset, introduced by Schmidt et al. [90], has established itself as a bench-
mark for research in developing methods for automatic stress detection using physiological
data. They included a comprehensive benchmark using signals from a wrist and chest sen-
sor devices, either individually or in combination, to train classical machine learning mod-
els. Subsequent studies have leveraged more advanced methods on the WESAD dataset
to enhance the stress detection performance. For instance, Samyoun et al. [91] proposed
a sensor translation mechanism using Generative Adversarial Networks (GANs), Recur-
rent Neural Networks (RNNs), and Multi-Layer Perceptrons (MLPs) to translate wrist data
into chest-based features, subsequently applying classical machine learning methods for
stress detection. Huynh et al. [103] proposed an optimized deep neural network training
scheme using neural architecture search based on CNNs. In [104], the authors introduced
the H-CNN framework, which comprises two main branches: the first branch processes
handcrafted features, while the second branch incorporates multiple convolutional blocks.
The output features from each branch are then concatenated before the classification stage.
Wu et al. [105] explored the use of symmetric positive definite (SPD) matrices for the ef-
ficient integration of physiological and motion signals. Their method effectively captured
correlation information both within eachmodality and between the two. The study demon-
strated substantial performance improvements when multiple modalities were employed,
compared to the use of a single modality.

Other studies have explored the integration of other types of modalities for automatic
stress detection. Aigrain et al. [106] trained a SVM classifier on body movement features,
facial expressions, and physiological data to identify stress. Mou et al. [107] proposed using
attention mechanisms to fuse features from eye data, vehicle data, and environmental data
for detecting driver stress.

In this chapter, we will present, to the best of our knowledge, the first application of
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Figure 4.1: Illustration of the three main multimodal fusion strategies using Transformer
encoders, namely early fusion (a), intermediate fusion (b), and late fusion (c).

multimodal Transformers for automatic stress detection using physiological data. We pro-
pose treating each set of physiological signals from wrist-based and chest-based sensors as
distinct modalities. We employ a multimodal Transformer framework, incorporating three
fusion strategies: early, intermediate, and late fusion.

4.3 Proposed Approach

The present section outlines the different multimodal fusion techniques that we have em-
ployed for stress detection using the Transformer architecture. These multimodal fusion
techniques include early fusion, intermediate fusion, and late fusion, which are illustrated
in Figure 4.1.

4.3.1 Multimodal Transformer

Early Fusion

Regarding the early fusion strategy, the raw physiological signals from the wrist and chest
sensors are concatenated at the input level. This combined input is then fed into a single
Transformer encoder that learns the joint representation of the multimodal data. Mathe-
matically, if xw and xc represent the input signals from the wrist and chest sensors, respec-
tively, the early fusion input xearly can be expressed as:

xearly = [xw;xc]

where ”; ” denotes the concatenation operation between both input sequences at the
feature level. Next, the Transformer encoder processes the xearly sequence to produce the
following representation:
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zearly = Transformer(xearly)

Intermediate Fusion

Intermediate fusion involves processing each modality independently through separate
Transformer encoders and then combining their outputs at an intermediate layer. Let zw
and zc denote the outputs of the wrist and chest Transformer encoders, respectively.

zw = Transformerw(xw)

zc = Transformerc(xc)

Subsequently, these outputs are fused using a concatenation operation followed by a
fully connected layer to produce the combined representation zinter:

zinter = [zw; zc]

Late Fusion

In the late fusion strategy, the wrist and chest signals are processed separately through
their respective Transformer encoders:

zw = Transformerw(xw)

zc = Transformerc(xc)

Then, each fused representation is projected using a different fully connected layer:

yw = fcw(zw)

yc = fcc(zc)

Mathematically, yw and yc are the logits from the wrist and chest modalities, respec-
tively. Next, the outputs from these two fully connected layers are combined at the logit
level. The combined logit ȳ is calculated as:

ȳ =
yw + yc

2

For the binary stress detection task, the final prediction ŷlate is obtained by applying the
sigmoid function to ȳ:

ŷlate = σ(ȳ) = σ

(
yw + yc

2

)
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4.3.2 Stress Classifier

For the early and intermediate fusion strategies, the stress classifier layer processed the
fused representation, either zearly or zinter to output the stress probability prediction. This
classification head typically consists of a fully connected layer followed by a sigmoid acti-
vation function to produce the probability that the multimodal data sequence is associated
to the stress class.

ŷ = σ(fc(zfusion))

where σ is the sigmoid activation function, fc represents the fully connected layer and
zfusion denotes the fused representation from one of the two fusion strategies (early or
intermediate), and ŷ is the predicted stress probability.

4.4 Experimental Results

In this section, wewill begin by providing a comprehensive overview of theWESAD dataset
used in our experiments. Next, we will detail the different preprocessing steps applied
to the raw physiological signals. Finally, we will present and analyze the results of our
experiments on stress and affect detection tasks.

4.4.1 Dataset

TheWESAD (Wearable Stress and Affect Detection) dataset is a comprehensive multimodal
dataset widely used in research on automatic stress and affect detection using physiolog-
ical data. It includes physiological and motion data from 15 healthy subjects (13 male, 2
female, aged 25-35), collected using two sensor devices: the RespiBAN Professional and the
Empatica E4 wristband.

The Empatica E4 [108] records electrodermal activity (EDA), blood volume pulse (BVP),
body temperature (TEMP), and three-axis acceleration (ACC) at frequencies of 4 Hz for EDA
and TEMP, 64 Hz for BVP, and 32 Hz for ACC. An example of these signals for a given sub-
ject over an entire data collection period is shown in Figure 4.2. The RespiBAN device [109]
measures electrocardiogram (ECG), electromyography (EMG), respiration (RESP), skin tem-
perature (TEMP), EDA, and three-axis acceleration (ACC), all sampled at 700 Hz.

The experimental protocol of the WESAD dataset includes several phases designed to
evoke different emotional responses: a baseline rest period, a stress test via the Trier Social
Stress Test (TSST) [110], an amusement phase with the viewing of amusing videos, and a
meditation phase for relaxation. Each session is annotated with labels corresponding to
these phases (e.g., baseline, stress, amusement, meditation).

In alignment with previous studies [90, 91, 111, 103, 105, 112], we formulate a binary
stress detection task (stress vs. no-stress) by combining the neutral and amusing stimulus
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Figure 4.2: Plot of the electrodermal activity (EDA), blood volume pulse (BVP), body tem-
perature (TEMP), and three-axis acceleration (ACC) data for a subject from the WESAD
dataset. Data collected using the Empatica E4 wristband spans from the start to the finish
of the recording session, with the x-axis representing the time steps.

sequences as the "no-stress" class.

4.4.2 Preprocessing

In the following, we will describe the different preprocessing steps applied to physiological
signals collected from the wrist and chest sensors. The overall pipeline, which include the
Multimodal Transformer framework (MMT), is illustred in Figure 4.3.

Filtering

We applied a low-pass filter to all the physiological signals from both sensors to reduce
noise and preserve the frequencies of interest. Next, we downsampled the signals from
the Empatica E4 wrist sensor to 4 Hz, matching the smallest frequency present in all the
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Figure 4.3: A flowchart illustrating each preprocessing step alongside the proposed stress
classification framework.

signals from this device, which comes from the EDA. For the chest sensor, we retained the
sampling frequency of 700 Hz for all physiological signals. Regarding ourMMT framework,
we downsampled all signals from both sensors to 4Hz, ensuring consistencywith the lowest
frequency present across all signals from both sensors, which is EDA from the wrist sensor.

Segmentation

Next, we segmented all physiological signals into 60-second sliding windows without any
overlap between successive windows.

Normalization

To ensure that the physiological signals are on a comparable scale, we applied Z-score
normalization to all signals. Z-score normalization involves transforming the data so that
it has a mean of zero and a standard deviation of one. This is achieved by subtracting the
mean of each signal from its values and then dividing the result by the signal’s standard
deviation. The formula for Z-score normalization for a given physiological signal is:

Z =
X − µ

σ

where X is the original signal value, µ is the mean of the signal, and σ is the standard
deviation of the signal.
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4.4.3 Implementation Details

To determine the optimal hyperparameters for our proposed framework, we employed a
grid-search strategy, exploring the following hyperparameters with their respective values:

• Dimension of the linear projection layer: 256 and 512
• Number of multi-head attention: 4 and 8
• Number of Transformer encoder layers: 1 and 2
• Dropout rate in the Transformer encoder: 0.0 and 0.2

The batch size was fixed at 32, the maximum number of epochs at 150 with an early
stopping patience criterion set at 70 epochs. The learning rate was varying between 10−3

and 10−5. All models were trained using the Adam optimizer [113], with exponential decay
rates for the first and second moment estimates set at 0.9 and 0.999, respectively. The entire
framework was implemented using the PyTorch library [114].

4.4.4 Evaluation Framework

Following prior works on the WESAD dataset [90, 105, 91, 111, 103, 112], we employ the
Leave-One-Subject-Out Cross Validation (LOSO-CV) evaluation procedure to validate our
models. Given the 15 subjects in our dataset, this procedure involves training our models on
14 subjects and testing on the remaining subject, repeating this process for all 15 subjects.
For evaluation metrics, we used accuracy and weighted average F1-score, and we report
both the mean and standard deviation of these metrics across the 15 folds.

4.4.5 Results

In the following, we will present and analyse our results on both unimodal and multimodal
stress and affect detection. For the affect detection task, the goal is to classify physiological
sequences into one of the three following class: baseline, stress, and amusement.

Stress Detection

Unimodal: The Transformer model outperformed all other methods in terms of accuracy
and F1-score when using wrist-based physiological signals, surpassing the best-performing
model [105] by approximately 1.61% and 2.08%, respectively, as we can see in Table 4.1.
Specifically, the Transformer model achieved an accuracy of 96.26% and an F1-score of
96.07%. Similarly, for chest-based data, the Transformer model achieved the best results
with an accuracy of 97.20% and an F1-score of 97.20%, outperforming the best state-of-the-
art by 0.51% and 0.59% in terms of accuracy and F1-score, respectively.

It is noteworthy that deep learning-based methods [112, 103, 105, 111] consistently out-
performed machine learning-based methods [90, 91] for both types of sensors by a signif-
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Table 4.1: Unimodal stress detection: comparison with state-of-the-art methods.

Wrist Chest

Methodes Acc F1 score Acc F1 score

Schmidt et al.[90] 87.12 84.11 92.83 91.07

Samyoun et al. [91] 89.90 87.60 91.10 90.20

Gil-Martin et al. [111] 92.70 92.55 93.10 93.01

Huynh et al. [103] 93.14 - - -

Wu et al. [105] 94.65 93.99 95.54 94.76

Lai et al. [112] 94.16 93.62 96.69 96.61

Transformer 96.26 ± 5.63 96.07 ± 5.94 97.20 ± 4.44 97.20 ± 4.32

icant margin. This trend highlights the superiority of deep learning models for accurate
stress detection, primarily due to their ability to learn directly from raw data without the
need for manually engineered features. In contrast, machine learning methods [90, 91] rely
heavily on feature engineering, which can limit their performance.

Additionally, the Transformer model demonstrated better performance using physio-
logical signals from the chest sensor compared to those from the wrist sensor. However,
it is important to note that the difference in performance, while present, is not very large,
indicating that wrist-based sensors, despite being less intrusive and more convenient, still
provide highly valuable data for accurate stress detection.

Multimodal: Wepresent the performance of ourMMT framework in Table 4.2. Our three
proposed multimodal architectures, MMT-early, MMT-inter, and MMT-late outperformed
all other state-of-the-art models by a large margin. Specifically, MMT-inter and MMT-late
demonstrated superior performance, achieving the highest accuracy and F1-scores. MMT-
inter showed an improvement of 1.31% in accuracy and 1.33% in F1-score compared to the
best-performing model [112]. MMT-inter achieved an accuracy of 99.06% and an F1-score
of 99.07%.

These results confirm our hypothesis that the use of multimodal models is appropriate
for processing groups of signals from different sensors. The superior performance of the
MMT-inter model indicates that the intermediate fusion strategy, which combines features
from different sensors at a mid-level stage, is particularly effective. This suggests that re-
taining a certain level of independence in the early stages of processing while merging the
information in the intermediate stage allows for better extraction and integration of rel-
evant features from both wrist and chest sensors. Similarly, the results of the MMT-late
model, which employs a multimodal Transformer with a late fusion strategy, highlight the
efficacy of processing each sensor’s data independently until the final stages. This method
can also lead to robust feature extraction and integration. Both approaches underscore the
versatility and effectiveness of multimodal frameworks in leveraging heterogeneous phys-
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Table 4.2: Multimodal stress detection: comparison with state-of-the-art methods.

Wrist + Chest

Methodes Acc F1 score

Schmidt et al.[90] 92.28 90.74

Samyoun et al. [91] 94.70 93.40

Gil-Martin et al. [111] 96.62 96.63

Wu et al. [105] 96.88 96.44

Lai et al. [112] 97.75 97.74

MMT-early (ours) 98.88 ± 2.24 98.90 ± 2.19

MMT-inter (ours) 99.06 ± 1.67 99.07 ± 1.64

MMT-late (ours) 99.06 ± 1.69 99.05 ± 1.73

iological data from multiple sensors for improved performance.

Table 4.5 presents the highest accuracy and F1-score achieved for each subject in the test
set using the MMT-inter architecture. Notably, for the majority of subjects (S2, S4, S5, S6,
S7, S8, S9, S10, S13, S15, S17), the MMT-inter model achieved a perfect score of 100.00% in
both accuracy and F1-score for stress detection. A few subjects (S3, S11, S14, S16) exhibited
slightly lower scores, but they still maintained high accuracy and F1-scores, all exceeding
94%.

Affect Detection

Unimodal: For the affect detection task, the Transformer model significantly outper-
formed all other methods, whether using wrist-based or chest-based physiological data, as
shown in Table 4.3. Specifically, for the wrist-based physiological data, the Transformer
achieved an accuracy of 78.15% and a F1-score of 74.53%, surpassing the best performing
state-of-the-art model by 2.94% and 10.41% in terms of accuracy and F1-score, respectively.
For the chest-based sensor, the Transformer reached an accuracy of 83.92% and a F1-score
of 78.53%, exceeding the best performing state-of-the-art model by 7.42% in accuracy and
6.04% in F1-score.

It is worth noticing that the gap between the accuracy and F1-score is significant for
most state-of-the-art comparison models, indicating that while these models perform well
overall, they struggle with some classes. This contrasts with the Transformer model, which
shows a smaller gap between accuracy and F1-score, suggesting a more balanced perfor-
mance across all classes.

Additionally, similar to the stress detection task, the Transformer performs better when
using chest-based physiological data compared to wrist-based data. However, for the af-
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Table 4.3: Unimodal affect detection: comparison with state-of-the-art methods.

Wrist Chest

Methodes Acc F1 score Acc F1 score

kNN [90] 45.54 37.20 46.18 38.39

Decision Tree [90] 53.98 43.62 57.68 53.06

Random Forest [90] 74.85 62.86 68.76 60.80

AdaBoost [90] 75.21 64.12 74.74 64.89

LDA [90] 70.74 63.24 76.50 72.49

Transformer 78.15 ± 16.11 74.53 ± 16.61 83.92 ± 6.13 78.53 ± 8.01

Table 4.4: Multimodal affect detection: comparison with state-of-the-art methods.

Wrist + Chest

Methodes Acc F1 score

kNN [90] 56.14 48.70

Decision Tree [90] 65.56 58.05

Random Forest [90] 74.97 64.08

AdaBoost [90] 79.57 68.85

LDA [90] 75.80 71.56

MMT-early (ours) 88.28 ± 6.16 85.33 ± 8.69

MMT-inter (ours) 88.03 ± 4.96 84.94 ± 7.51

MMT-late (ours) 88.41 ± 6.04 84.79 ± 9.07

fect detection task, the difference in performance for both evaluation metrics is more pro-
nounced than for the stress detection task between both sensors, with differences of 5.77%
and 4.00% in accuracy and F1-score, in favor of the chest-based sensor.

Multimodal: As shown in Table 4.4, our proposed multimodal methods—MMT-early,
MMT-inter, and MMT-late-far exceeds all state-of-the-art methods. Notably, MMT-late
achieved the highest accuracy, surpassing the best existing method by 8.84%. On the other
hand, MMT-early delivered the best performance in terms of weighted F1-score, with a
score of 85.33%, representing an improvement of 16.48% compared to the best state-of-the-
art method.

Table 4.6 reports the best accuracy and F1-score for each subject in the test set when
employing MMT-late. The highest performance is observed for subject S15 with accuracy
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and F1-score of 97.22% and 97.26% respectively. Several subjects (S6, S9, S17) also exhibit
high scores, particularly above 90%. However, some subjects show lower results, with the
lowest performance observed in subject S6, who has an accuracy of 80.56% and an F1-score
of 74.06%.

Subjects Acc F1
S2 100.00 100.00
S3 94.29 94.08
S4 100.00 100.00
S5 100.00 100.00
S6 100.00 100.00
S7 100.00 100.00
S8 100.00 100.00
S9 100.00 100.00
S10 100.00 100.00
S11 97.22 97.18
S13 100.00 100.00
S14 97.22 97.18
S15 100.00 100.00
S16 97.22 97.25
S17 100.00 100.00

Average 99.06 99.05

Table 4.5: Best accuracy and F1-score for
each subject in the test set using MMT-
inter.

Subjects Acc F1
S2 88.57 86.31
S3 88.57 88.50
S4 82.86 75.45
S5 82.86 76.26
S6 97.14 97.08
S7 82.86 75.45
S8 88.89 86.64
S9 97.14 97.08
S10 83.78 76.78
S11 91.67 90.78
S13 83.33 76.14
S14 80.56 74.06
S15 97.22 97.26
S16 83.33 76.79
S17 97.30 97.23

Average 88.41 84.79

Table 4.6: Best accuracy and F1-score for
each subject in the test set using MMT-
late.

4.5 Discussion

Our findings regarding our proposed framework for automatic stress detection have sig-
nificant implications for both affective computing research and practical health monitoring
applications. In this section, we will discuss the impact of our results, the potential limita-
tions of our study, and future directions for research in this field.

4.5.1 Implications of Findings

One of the key contributions of this research is the establishment of a benchmark for stress
and affect detection using physiological signals collected from both wrist-based and chest-
based sensors. Our approach achieves state-of-the-art performance on theWESAD dataset,
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demonstrating its effectiveness in stress detection. The proposed dual-modality approach
leverages effectively the strengths of each sensor type, resulting in a better understanding of
stress responses. Wrist-based sensors, for instance, provide continuous monitoring of heart
rate and skin conductance, which are critical indicators of stress. Chest-based sensors, on
the other hand, offer precise measurements of respiratory rate and ECG. The combination
of these signals enables the multimodal Transformers to capture a comprehensive profile of
the body’s stress response, thus enhancing the accuracy and reliability of stress detection.

The practical implications of our research are vast. The proposed multimodal Trans-
former framework can be implemented in wearable devices and health monitoring systems
to provide continuous, real-time stress monitoring. Such systems will be able to offer timely
interventions, personalized stress management strategies, and early warnings to prevent
stress-related health issues. This is particularly relevant in high-stress professions, health-
care, and personal wellness, where effective stress management can significantly improve
quality of life and productivity.

4.5.2 Limitations

Our experiments were conducted on the WESAD dataset, which, although comprehensive,
may not fully represent the diversity of stress responses across different populations. Fu-
ture research should include diverse and larger datasets to validate the generalizability of
our framework. Cross-dataset validation is essential for ensuring that the model performs
consistently across various demographic, physiological profiles, and data collection proto-
cols.

Furthermore, the definition and labeling of stress can vary significantly between
datasets, affecting the consistency and comparability of stress detection models. Labeling
strategies range from self-reported assessments, where participants rate their stress levels
using questionnaires, to physiological markers such as EDA, task-induced stress (as used in
the WESAD dataset), and expert-defined labels based on psychological evaluations. Due to
the complexity and subjectivity of stress, criteria from one dataset may not be directly ap-
plicable to another, creating challenges for model training and evaluation. This highlights
the need for standardized definitions and protocols for stress assessment.

Additionally, the performance of our framework relies on the availability and accuracy
of physiological sensors. Variability in sensor quality and placement can affect the relia-
bility of the data, and consequently, the performance of the stress detection model. This
variability in sensor input may degrade the model’s performance, leading to unreliable pre-
dictions and impacting its overall effectiveness, especially in real-world applications where
sensor quality cannot always be guaranteed.

One important limitation is the lack of model prediction interpretability. Although our
multimodal Transformer-based framework demonstrates high accuracy in detecting stress,
the decision-making process of the model remains a "black box." Transformers, and deep
learning models in general, are inherently complex, and it is challenging to explain how
the model arrives at a specific prediction. This limitation can reduce the trust of healthcare
professionals, where understanding the rationale behind a prediction is essential for users
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and healthcare providers. Without interpretability, it is difficult to identify which specific
features or sensor signals (e.g., heart rate, respiratory rate, skin conductance) are driving
the model’s decision, potentially limiting the model’s utility in clinical settings.

Lastly, the computational demands of Transformer models, especially in a multimodal
setup, present another limitation. These models require substantial processing power,
which can be problematic for real-time stress detection applications on wearable devices
with limited computational resources and battery life. The need for high computational
capacity may restrict the framework’s deployment in everyday wearable technologies, re-
ducing its accessibility and effectiveness in real-world, continuous stress monitoring sce-
narios.

4.5.3 Future Directions

Several avenues for future research can build upon our findings. One promising direction is
the inclusion of other sensor modalities such as facial expression analysis, facial landmarks
or even gaze tracking. These could complement physiological signals and provide richer
data for stress detection models, potentially improving the accuracy of stress classification
by leveraging more nuanced markers of emotional states.

Another important area of focus is the development of personalized models. Stress re-
sponses vary widely across individuals due to physiological differences, personal health
conditions, psychological factors, and environmental influences. To address this variabil-
ity, future research should investigate the development of models specifically tailored to
individual users.

To address the limitations of dataset variability, future research should explore the de-
velopment of models capable of cross-dataset generalization. This would involve training
and testing on a diverse range of datasets to improve robustness across different popula-
tions, sensor types, and data collection protocols.

Enhancing the explainability of the model’s predictions will be crucial for gaining user
trust and acceptance, especially in health monitoring systems. Future research should ex-
plore explainable AI (XAI) methods that can highlight which physiological features or sen-
sor signals are most influential in determining stress levels. Providing users and clinicians
with interpretable feedback will foster trust, improve understanding, and support informed
decision-making.

Given the computational complexity of multimodal Transformers, future work should
focus on optimizing these models for real-time stress monitoring in wearable devices. Tech-
niques such as model compression, and pruning can be explored to reduce computational
overhead while maintaining performance. This is essential for deploying these systems in
real-world applications where power consumption and processing limitations are critical
constraints.
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4.6 Conclusion

In this chapter, we introduced a novel multimodal Transformer framework for the tasks
of stress and affect detection, using physiological signals from both wrist-based and chest-
based sensors. Our approach leverages multiple multimodal fusion strategies, including
early, intermediate, and late fusion strategies. The proposed framework achieved state-of-
the-art performance on both tasks using the WESAD dataset.

The success of our framework can be attributed to two key factors. First, the unimodal
Transformer encoder, which achieved state-of-the-art results in stress and affect detection
when using physiological signals from each sensor individually. Second, treating the phys-
iological signals from each sensor as distinct modalities enabled the model to integrate
complementary information from both wrist-based and chest-based sensors in an effective
way, providing a more comprehensive understanding of the body’s stress response.

Our work contributes to the ongoing development of more accurate and reliable stress
detection systems, particularly in contexts where multimodal data can provide a more com-
prehensive understanding of physiological responses. While our approach shows promise,
it also underscores the broader challenges associated with validating automatic stress de-
tection systems. These challenges include the variability in physiological responses across
different populations, the need for robust and diverse datasets, and the difficulty in ensur-
ing that these systems can generalize effectively to real-world scenarios. Addressing these
challenges is crucial for advancing the field and ensuring that stress detection technologies
can be widely and reliably implemented.
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Chapter 5

MMGT: Multimodal Graph-based
Transformer for Pain Detection
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This chapter introduces technical contributions related to multimodal data fusion in the
context of deep learning for automatic pain detection and, more broadly, affective comput-
ing. We propose using a Graph Neural Network to efficiently fuse hierarchical representa-
tions derived from multiple data modalities, including facial landmarks, facial action units,
and physiological signals, which are extracted using the Transformer architecture.

In Section 5.1, we discuss the nature of pain, and the necessity for pain detection sys-
tems. Section 5.2 reviews pertinent studies on both unimodal and multimodal pain detec-
tion, providing a comprehensive background for our proposed methodology. The details
of our multimodal framework are presented comprehensively in Section 5.3. Following
this, we present in Section 5.4 the public dataset used in our study, detail the data prepro-
cessing pipeline, and discuss the results of our unimodal and multimodal pain detection
experiments. Finally, in Section 5.5 we discussed the implications, limitations, and future
directions of our work, and in Section 5.6 we briefly summarize our work.

5.1 Introduction

Pain is a complex, multifaceted experience that significantly impacts our well-being, en-
compassing both physical and psychological aspects. It serves as a sensory and emotional
response to actual or potential tissue damage, acting as a crucial warning system to encour-
age protective actions. However, its subjective nature poses significant challenges in assess-
ment and management, necessitating more objective, reliable, and efficient approaches to
pain detection.

The emotional aspect of pain is a critical dimension that influences how individuals
experience and cope with it. Pain often involves strong negative emotions such as distress,
suffering, and discomfort, which can amplify its perception andmake it more challenging to
endure. Additionally, the anticipation of pain or fear of its recurrence can lead to anxiety,
and past experiences of pain can leave emotional imprints that affect how new pain is
perceived.

Understanding how pain is expressed through various physiological and behavioral re-
sponses is essential in developing automatic pain detection systems. Pain expression in-
volves physiological changes such as heart rate, blood pressure, respiratory rate, skin con-
ductance, pupil dilation, skin temperature, endocrine responses, and brain activity. Addi-
tionally, behavioral responses, including reflexive actions and pain behaviors like grimac-
ing or verbal complaints, play key roles in communicating pain. These expressions provide
essential cues for designing comprehensive pain detection models.

Given that pain is a multimodal experience, designing an effective pain detection model
necessitates the incorporation of multiple modalities, such as physiological signals and fa-
cial expressions. Eachmodality has distinct statistical properties, and examining their inter-
relationships can yield valuable insights for improving pain detection. Integrating multiple
data modalities offers several benefits: increased accuracy through capturing various pain
aspects and enhanced robustness against the limitations or noise of single modalities.
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Recent studies have demonstrated that multimodal interactions between the intermedi-
ate representations of deep neural networks can yield highly successful results across vari-
ous applications. Notably, research indicates that leveraging these intermediate layers may
be as effective, or even more advantageous, than relying solely on final-layer representa-
tions [115, 116, 117]. Building on these insights and inspired by the demonstrated success
of Transformers and Graph Convolutional Neural Networks (GCNs) in multimodal tasks
[118, 43], we propose to explore their potential for pain detection in multimodal settings.

In this work, we introduce a new multimodal fusion framework that leverages the ca-
pabilities of GCNs to explore interactions across various levels of modality-specific repre-
sentations. Our proposed Multimodal Graph-based Transformer (MMGT) is built upon the
intermediate Transformer representations of each modality. Specifically, we model these
interactions through a graph structure where each node corresponds to a feature at a par-
ticular level within a modality. Nodes are connected both within a modality and across
modalities.

The combination of the GCN and Transformer in a complementary setting provide a
powerful framework for capturing both modality-specific and cross-modal relationships.
The Transformer layers focus on modeling intra-modal relationships, while the GCN layers
facilitate the exploration of interactions across different modalities. This synergy enables
our model to better handle the heterogeneity of the input data and uncover complex pat-
terns that would be difficult to capture with traditional fusion techniques for accurate pain
detection.

To verify the effectiveness of our proposed approach, we conducted extensive exper-
iments on the BP4D+ dataset [119]. Our MMGT model outperforms all existing multi-
modal state-of-the-art methods for the task of pain detection using combinations of two
and three modalities, including physiological signals, facial action units, and facial land-
marks (2D/3D/Thermal).

The contributions of this work are three-fold and can be summarized as follows:

1. The proposition of a new multimodal fusion framework that leverages a GCN to ef-
ficiently combine representations extracted by unimodal Transformer encoders from
different modalities.

2. Demonstration of the complementarity between the modalities through benchmark-
ing using single modalities and different combinations of two and three input modal-
ities using our MMGT.

3. To the best of our knowledge, our MMGT is the first multimodal model trained on
facial landmarks, facial action units, and physiological data.

5.2 Related Work

Automatic pain detection is a complex and multifaceted field that leverages various modal-
ities to accurately assess and quantify pain levels in individuals. This section reviews the
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existing body of work in pain detection, categorizing the research into unimodal and mul-
timodal approaches.

5.2.1 Unimodal Pain Detection

Unimodal pain detection involves using a single source of information to identify and assess
pain. This approach can be categorized into static and temporal methods. Static methods
utilize individual data points to detect pain, while temporal methods analyze sequences of
data over time to achieve the same goal.

Static Approaches

Vision-based modalities are highly favored in the design of pain detection systems due to
their ability to capture facial expressions, which are crucial for communicating pain to oth-
ers. The UNBC-McMaster Shoulder Pain dataset [120] has been a pioneering effort towards
the development of pain detection methods from facial expressions. This dataset consists
solely of facial images captured from 129 participants experiencing pain in one of their
shoulders. The facial expressions of the participants were recorded using a digital cam-
era as they underwent eight range-of-motion evaluations on their affected and unaffected
shoulders. Early methods employing this dataset for pain detection relied on handcrafted
features. For instance, Khan et al. [121] extracted both the pyramid histogram of orientation
gradients (PHOG) for shape information and the pyramid local binary pattern (PLBP) for ap-
pearance information from the upper and lower facial regions, which were then combined
and processed using traditional machine learning methods for pain detection. In [122], the
authors proposed a method to recognize pain in images of faces with occlusions by sim-
ulating occlusion in the UNBC-McMaster pain dataset. They extracted the discrete cosine
transform (DCT), local binary pattern (LBP), and histogram of oriented gradients (HOG)
descriptors from a small window around the eye and subsequently employed a linear sup-
port vector machine (SVM) for pain detection. Florea et al. [123] introduced the Histogram
of Topographical (HoT) features to characterize the face, alongside a novel transfer learning
method to estimate pain intensity.

More recent developments in the field have seen a shift towards deep learning-based
approaches, largely due to their impressive performance in extracting complex patterns
from facial expressions. This capability is particularly valuable in pain detection, where
expressions of pain can be subtle and nuanced.

Zamzmi et al. [124] proposed the Neonatal Convolutional Neural Network (N-CNN)
for assessing neonatal pain. To validate their approach, they collected a dataset consist-
ing of 31 neonates hospitalized and recorded in the Neonatal Intensive Care Unit (NICU).
In addition, they experimented with transfer learning by fine-tuning a VGG-16 [69] and a
ResNet-50 [67]. The authors in [125] fine-tuning a ResNeXt [126] model to detect pain in
the masked faces of patients undergoing procedural sedation in the Interventional Radiol-
ogy department of a hospital. El Morabit et al. [127] fine-tuned the data-efficient image
transformers (DeiT) [128] architecture for pain detection. Yuan et al. [129] recently in-
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troduced a pain assessment framework comprising three modules: an AU-guided module
(AUG), a texture feature extraction module (TFE), and a pain assessment module (PA). The
AUG module is responsible for detecting facial Action Units (AUs) from the unoccluded
regions of the face. The detected AUs are then fed into a linear network that outputs fixed-
size vectors. This module allows the network to learn the expression of pain features more
effectively, enhancing residual feature learning in the presence of occlusion. The TFE mod-
ule utilizes the Mediapipe [130] framework to identify facial landmarks and crop out three
types of patches—prior-knowledge patches, a randomly explored patch, and a global fea-
ture patch—for extracting texture features through convolution modules. These texture
features, along with AU information, are then integrated in the PA module to evaluate a
patient’s current pain status.

Temporal Approaches

Nevertheless, expressions of pain can be complex and subtle, often involving a sequence
of facial movements rather than a single static expression. Analyzing sequences allows the
detection system to capture these dynamic patterns. Szczapa et al. [131] proposed a frame-
work for trajectory analysis on video sequences based on the computation of Grammatrices
from 66 facial points and their velocities for estimating pain intensity. Several studies [132,
133, 134, 135] employed a combination of Convolutional Neural Network and Recurrent
Neural Network for spatio-temporal features learning. Xu et al. [136] introduced the PET
framework, which consists of an initial image encoding module featuring a ResNet-50 com-
bined with an attention block for learning spatial features, and a Transformer module to
learn temporal dependencies among video frames.

Several studies have employed physiological signals to recognize pain, offering the ad-
vantage of being more objective by directly measuring physiological changes associated
with pain. Susam et al. [137] proposed the use of time-scale decomposition (TSD) to ana-
lyze the electrodermal activity (EDA) signal, which measures short- and long-term changes
in time series data. They subsequently applied a linear Support Vector Machine (SVM) to
the extracted features for pain detection. Chu et al. [138, 139] proposed in two successive
studies, the used of EDA, ECG, and BVP for pain intensity estimation. Other studies ex-
plored the use of brain activity for pain recognition using EEG [140, 141], fMRI [142], and
fNIRS [143]. However, there are several drawbacks to many contact-based sensors: (1) they
can be sensitive to motion artifacts or other external interferences, such as electrical noise
or environmental factors; (2) depending on the type of sensor and its placement, wearing
physiological sensors can be uncomfortable and invasive; (3) physiological sensors often
require specialized equipment that can be expensive to procure and maintain.

5.2.2 Multimodal Pain Detection

Pain can be expressed through multiple modalities, such as facial expressions and physi-
ological signals, and body movements. For that reason, multimodal learning can greatly
benefit automatic pain detection. Single-modality approaches in pain detection, such as
using only facial expressions or physiological signals, often fall short in capturing the full
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complexity of pain experiences. Each modality, while useful, has inherent limitations. For
example, facial expressions can provide significant clues about pain but are subject to in-
dividual differences and cultural variations. Similarly, physiological signals offer objective
data but can be influenced by factors unrelated to pain, such as stress or physical activity. By
integratingmultiple data sources, such as facial expressions, and physiological signals, mul-
timodal methods can offer a more comprehensive and accurate assessment of pain. These
approaches not only improves the accuracy and reliability of pain detection but also allows
the strengths of one modality to offset the weaknesses of another.

Zhi et al. [144] proposed a multimodal framework for pain assessment that utilizes mul-
tiple branches to capture spatiotemporal features from facial expressions. This is achieved
using raw facial video frames and optical flow images at different frame rates. These fa-
cial features are then fused with physiological features extracted from an LSTM, and the
combined features are employed for pain assessment. Salekin et al. [145] introduced a
multi-channel deep neural network framework for detecting pain in neonates. Initially,
they employed YOLOv3 [146] for face and body detection. Subsequently, they used a VGG16
for feature extraction from the face, body, and their combination. The extracted features
are concatenated into a single feature vector. To capture temporal correlations, the concate-
nated feature vectors from each frame are processed using an LSTM, which is then followed
by a fully connected layer to perform pain detection. In a subsequent study, Salekin et al.
[147] proposed incorporating neonatal crying sounds alongside facial and body informa-
tion for pain detection. Their results demonstrated that the sound modality significantly
outperformed facial and body modalities in detecting pain, underscoring the value of in-
tegrating all three modalities. They showed that their framework, which utilized all three
modalities, surpassed unimodal methods that relied on any single modality. Hinduja et al.
[148] proposed fusing physiological data and facial action units for pain detection. They
trained a Random Forest classifier on these fusedmodalities and included cross- and gender-
specific experiments. Their results showed that the fusion of both modalities outperformed
unimodal approaches. For a comprehensive review of automatic pain detection, the reader
may refer to [149, 150].

Previous studies on multimodal pain detection have primarily focused on integrating
modalities through conventional fusion techniques, with limited exploration of advanced
fusion methods that can capture intricate cross-modal relationships. Additionally, the po-
tential of leveraging intermediate feature representations across modalities for pain detec-
tion has remained largely unexplored. In this chapter, we present a novel framework that
addresses these gaps by introducing our proposed MMGT architecture. Our framework
employs unimodal Transformer encoders to extract intermediate representations from each
modality. These representations are then structured into a graph and processed through a
GCN to facilitate efficient fusion and discovery of complex patterns across modalities.

To the best of our knowledge, this approach is the first to leverage physiological data, fa-
cial action units, and facial landmarks (2D, 3D, and Thermal) collectively for pain detection.
Moreover, the combination of Transformer encoders and GCNs enables our framework to
simultaneously capture both modality-specific features and cross-modal interactions, of-
fering a more comprehensive understanding of the multimodal data involved in pain ex-
pression.
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Figure 5.1: Illustration of our MMGT framework, which is composed of two main building
blocks: Unimodal Transformer Encoders, and Multimodal Graph Convolutional Network.

5.3 Proposed Approach

This section introduces our MMGT framework. Figure 5.1 illustrates the proposed architec-
ture, which consists of two primary components: (1) unimodal Transformer encoders that
extract m intermediate feature representations for each modality; and (2) a GCN that effi-
ciently fuses these extracted feature representations based on a graph representation that
models the connections between the different representations across the different modali-
ties. In the following, we provide a detailed review of each component.

5.3.1 Unimodal Transformer Encoders

The first stage of our framework involves linearly projecting the data from each input
modality x1, .., xn to embedding vectors, z1, . . . , zn, each with a dimension of dm. These
projections are performed using the following learnable weight matrices Wx1 ∈ Rdx1×dm ,
. . . , Wxn ∈ Rdxn×dm , where dx1 , . . . , dxn denote the dimensions of each respective input
modality. Positional encodings are then added to each embedding vector to preserve the
relative order within the sequences. Since the embeddings vectors and positional encod-
ings share the same dimension, they are directly summed. Subsequently, these updated
embedding vectors are fed into unimodal Transformer encoders, which extract a set of m
intermediate feature representations for each input modality. For instance, for a given input
modality xi, the resulting representations are hi1, . . . , him.

5.3.2 Multimodal Fusion GCN

To effectively capture relationships among feature representations across different input
modalities, we propose a graph-based approach where relationships are represented as con-
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nections in a graph, and a GCN is used to model these interactions.

Graph Construction

Our proposed multimodal framework is based on the construction of a graph G = (V,E),
where V represents the set of nodes, andE denotes the set of edges capturing relationships
between these nodes. The graph is constructed as follows:

• Nodes: Each modality i is represented by m nodes, which are initialized using the
previously extracted feature representations hi1, . . . , him. Given n input modalities,
the notal number of nodes is n×m.

• Edges: The connections among nodes are categorized into intra-modality and inter-
modality relationships. Intra-modality edges connect nodes within the same modal-
ity, capturing internal relationships specific to that modality. Inter-modality edges
connect nodes across different modalities but at the same level of representation, en-
abling cross-modal interaction. The edge sets E are defined as follows:

Eintra =
n⋃

i=1

m⋃
j=1

m⋃
k=1

(hij, hik) (5.1)

Einter =
m⋃
i=1

n⋃
j=1

n⋃
k=1

(hji, hki) (5.2)

E = Eintra ∪ Einter (5.3)

This graph construction approach captures both modality-specific (intra-modality) re-
lationships and cross-modal (inter-modality) dependencies. By linking all nodes within a
modality, the intra-modality structure captures internal correlations and hierarchical de-
pendencies inherent to that modality. On the other hand, the inter-modality connections
allow the model to integrate information from different modalities at the same representa-
tional level, promoting the learning of complementary features.

Graph Learning

Once the graph G is constructed, we trained a GCN to jointly learn intra-modality and
inter-modality relationships. The graph convolution operator as in [3]:

H̃(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l))

where Ã = A + In denotes the adjacency matrix of the undirected graph G with inserted
self-connections, In represents the identity matrix, D̃ii =

∑
j Ãij is the diagonal degree
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Figure 5.2: Plot of a subject’s face from the BP4D+ dataset, including associated facial action
units, 2D landmarks, 3D landmarks, and Thermal landmarks.

matrix, W (l) is a learnable weight matrix, and σ(.) an activation function. H l represents
the matrix of activations in the lth layer; H0 = X , where X is the matrix of input node
feature.

This graph-based learning mechanism allows our model to effectively capture and fuse
information across modalities, leading to a richer and more nuanced feature space that is
critical for addressing the heterogeneity and complexity inherent in multimodal data.

Pain Classifier

As previously discussed, the graph nodes are initialized with the feature representations
extracted from each modality, denoted as h0

11, . . . , h
0
nm. After passing through k layers of

the GCN, the encoded features hk
11, . . . , h

k
nm are gathered into a single feature vector hk:

hk = [hk
11, . . . , h

k
1m, . . . , h

k
n1, . . . , h

k
nm]

These features are then passed through a global average pooling layer, followed by a
fully connected neural network to predict the class label:

ŷ = fc(AvgPool(hk))

Here,AvgPool denotes the global average pooling layer, fc represents the fully connected
layer, and ŷ is the predicted pain probability.

5.4 Experimental Results

5.4.1 Datasets

We conducted our experiments using the BP4D+ multimodal dataset [119], which com-
prises data from 140 subjects (58 male and 82 female) aged between 18 and 66 years old.
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Figure 5.3: Plot of the electrodermal activity (EDA), pulse rate, respiration rate, respiration-
related voltage measurement, blood pressure, diastolic blood pressure, left arm mean blood
pressure, and left arm systolic blood pressure data for a subject from the BP4D+ dataset.
Data is collected from the start to the end of the recording session, with the x-axis repre-
senting time steps. BPM stands for beats per minute for pulse rate and breaths per minute
for respiration rate.

These subjects performed 10 tasks designed to elicit 10 authentic emotions. For detailed in-
formation about the specific tasks performed, please refer to Table 5.1. The dataset provides
various modalities captured for each emotion elicitation task, including 3D face meshes, 2D
RGB videos, thermal videos, facial landmarks (2D, 3D, and Thermal), and eight physiolog-
ical signals: electrodermal activity, diastolic blood pressure, mean blood pressure, systolic
blood pressure, raw blood pressure, pulse rate, respiration rate, and respiration voltage.
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Table 5.1: Overview of the ten emotion elicitation tasks used in the BP4D+ dataset. The
table details the activities performed by the participants and the corresponding emotions
they are intended to evoke.

Task Activity performed Emotion elicited

T1 Listen to a humorous joke during an interview Happiness
T2 Observe a 3D avatar of oneself Surprise
T3 Video clip: 911 emergency phone call Sadness
T4 Experience a sudden burst of loud sound Surprise
T5 Respond to a true or false question in an interview Skeptical
T6 Perform an improvised silly song Embarrassment
T7 Face a simulated physical threat in a game Fear
T8 Immerse hand in ice-cold water Physical pain
T9 Complain about poor performance in an interview Angry
T10 Encounter an unpleasant odor Disgust

Furthermore, facial action units (AUs) were annotated for both occurrence and intensity
by FACS experts for four specific emotion-elicitation tasks: happiness, embarrassment, fear,
and pain. The annotations focused exclusively on the most facially expressive segments of
the video recordings. In this study, we used only the data associated to the annotated most
expressive frames associated with these four emotions.

Since this chapter centers on the automatic pain detection task, sequences eliciting pain
were treated as the positive class, while sequences eliciting the other three emotions served
as the negative class.

5.4.2 Data Preprocessing

For all the facial landmark data (2D, 3D, and Thermal), we calculated the Euclidean distances
between all pairs of landmarks for each time step across the video sequence. This trans-
formation has been shown to improve performance compared to using the raw landmark
coordinates directly.

Regarding the physiological data, which was originally sampled at a frequency of 1000
Hz, we downsampled the signals tomatch the video frame rate of 25 frames per second (fps).
Next, for all data modalities, we segmented the data into non-overlapping sliding windows,
each containing 350 time steps (approximately 14 seconds). If a sequence contained fewer
than 350 time steps, it was padded with the last available data point to reach the required
length.
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Table 5.2: Unimodal pain detection: comparison with a state-of-the-art method on the
BP4D+ dataset.

2D 3D Thermal AUs Physio

Method Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Wu et al. [105] 91.59 89.46 91.27 89.30 83.53 83.37 - - 83.24 82.42

Transformer 92.99 92.93 92.45 92.15 86.81 85.41 92.11 92.15 81.81 80.17

5.4.3 Implementation Details

To determine the optimal hyperparameters of our model, we employ a grid-search strategy,
considering the following hyperparameters and their respective values:

• Dimension of the linear projection layer: 256 and 512

• Number of multi-head attention: 4 and 8

• Number of Transformer encoder layers: 1, 2, 3, and 4

Regarding the GCN component in our framework, we employed two convolutional lay-
ers. The first layer had a hidden dimension of 512, and the second layer had a hidden
dimension of 128. Additionaly, the batch size was fixed to 16, the maximum number of
epochs to 500, and the learning rate to 10−5. All models were trained using the Adam op-
timizer [113], with exponential decay rates for the first and second-moment estimates set
at 0.9 and 0.999, respectively. The entire framework was implemented using PyTorch [114]
and PyTorch Geometric [151].

5.4.4 Results

We conducted both unimodal and multimodal pain detection experiments using the BP4D+
dataset. In line with previous studies [148, 105], we employed a subject-independent 10-fold
cross-validation strategy for model evaluation and calculated accuracy and the weighted
average F1-score as evaluation metrics.

For clarity, we use the terms 2D, 3D, Thermal, and Physio to refer to 2D landmarks, 3D
landmarks, Thermal landmarks, and physiological data, respectively. In multimodal cases,
combination such as 2D + Physio represent the fusion of 2D landmarks and physiological
data. This notation is applied consistently across other modality combinations.

Unimodal Pain Detection

In Table 5.2, we compare the performance of a Transformer encoder model with the method
proposed by Wu et al. [105] for the task of pain detection using the following input modal-
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Table 5.3: Multimodal pain detection using combination of two modalities on the BP4D+
dataset.

2D + Physio 3D + Physio Thermal + Physio AUs + Physio

Method Acc F1 Acc F1 Acc F1 Acc F1

Wu et al. [105] 93.45 91.37 92.66 90.47 89.07 88.96 - -

MMT-early 92.65 92.63 90.99 90.74 85.67 84.49 90.79 90.43
MMT-inter 90.82 90.77 88.51 88.27 79.14 80.15 94.06 94.01
MMT-late 91.02 91.04 87.39 87.79 77.69 78.92 93.89 93.97
MMT-all 93.53 93.38 91.55 91.19 86.35 85.78 93.70 93.74

MMGT-intra 93.53 93.39 91.36 91.11 87.46 86.94 93.17 93.18
MMGT-light 93.01 92.94 92.44 92.29 87.64 87.15 93.36 93.32
MMGT (ours) 93.90 93.82 93.72 93.59 89.45 89.14 94.07 94.10

ities: physiological data, 2D, 3D, and Thermal facial landmarks.

The Transformer model surpasses Wu et al. method in terms of both accuracy and
F1-score across the 2D, 3D, and Thermal facial landmarks modalities. Specifically, for 2D
landmarks, the Transformer model achieved improvements of 1.40% in accuracy and 3.47%
in F1-score. For 3D landmarks, the enhancements are 1.18% in accuracy and 2.05% in F1-
score. For Thermal landmarks, the Transformer model achieves increases of of 3.28% in
accuracy and 2.04% in F1-score. However, when using physiological data, the method by
Wu et al. outperforms the Transformer model, with improvements of 1.43% in accuracy
and 2.17% in F1-score.

Additionally, we reported the performance of the Transformer when employing the
AUs modality. Among the different modalities tested, the best results were achieved using
2D landmarks, while physiological data yields the lowest results. These findings highlight
the superiority of facial expression-based modalities for the task of pain detection in the
BP4D+ dataset.

In the following, we present the results of our proposed MMGT architecture when in-
tegrating multiple modalities (combinations of two and three modalities) from those used
in unimodal pain detection.

Multimodal Pain Detection

Our experiments with multimodal data are summarized in Tables 5.3, 5.4 and 5.5. In these
tables, we evaluate our proposed MMGTmodel against machine learning [148], deep learn-
ing [152, 153], and geometric-based [131, 105] state-of-the-art methods. The pain detection
approaches from [152, 153, 131] were reimplemented and reported in Table 5.3 by [105].

– 75 –



Table 5.4: Multimodal pain detection using combination of three modalities on the BP4D+
dataset.

2D + AUs + Physio 3D + AUs + Physio Thermal + AUs + Physio

Method Acc F1 Acc F1 Acc F1

MMT-early 93.31 93.33 92.03 92.01 92.42 92.23
MMT-inter 93.17 93.31 93.62 93.59 93.66 93.67
MMT-late 93.64 93.79 92.76 92.92 93.62 93.74
MMT-all 94.09 94.00 93.66 93.53 93.39 93.43

MMGT-intra 93.52 93.52 93.51 93.36 92.86 92.85
MMGT-light 94.59 94.56 93.66 93.61 93.04 93.08
MMGT (ours) 94.95 94.91 94.41 94.31 93.87 93.93

We trained ourMMGT architecture using different combinations of themodalities listed
in Table 5.2. Initially, we combined physiological data with each of the other four facial
expression-based modalities (AUs, 2D, 3D, Thermal landmarks), as shown in Table 5.3. For
combinations involving three modalities, we combined AUs and physiological data with all
types of facial landmarks, as detailed in Table 5.4.

Using two modalities, MMGT achieves state-of-the-art results across all tested combi-
nations, as demonstrated in Tables 5.3 and 5.5. Notably, compared to Wu et al. [105], the
most significant improvements are seen with the combination of 3D landmarks and phys-
iological data. Our MMGT framework outperformed their approach by 1.06% in accuracy
and 3.12% in F1-score, as shown in Table 5.3.

Moreover, it is important to highlight that the fusion of physiological data with
other modalities consistently outperforms both unimodal approaches across all combina-
tions, underscoring the synergistic benefits of integrating physiological signals with facial
expression-based features for more accurate pain detection. Among all tested combina-
tions of two modalities, our best results were obtained using AUs and physiological data,
achieving 94.07% of accuracy and 94.10% of F1-score. Compared to Hinduja et al. [148], the
only state-of-the-art method that also combines AUs and physiological data, we observe
an improvement of 4.87% and 13.33% in terms of accuracy and F1-score relative to the pain
class, respectively. For a fair comparison with [148], we reported the F1-score only for the
pain class in Table 5.5. In contrast, to provide a fair comparison with other models, the
remaining F1-scores reported in Tables 5.3, 5.4 and 5.5 are the weighted average F1-scores
for both pain and non-pain classes.

Although the fusion of thermal landmarks and physiological data yields the lowest per-
formance among the two-modality combinations, it still surpasses unimodal Transformer
models trained solely on these modalities, demonstrating the added value of even less ef-
fective modality pairings.
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Table 5.5: Comparison of our pain detection method with state-of-the-art results for the
fusion of AUs and Physio, as well as the fusion of 2D and Physio. ’Early’ and ’late’ refer
to the fusion strategies employed in these state-of-the-art methods, indicating whether the
fusion occurs at an early or late stage in their frameworks.

Method Acc F1

AUs + Physio

Hinduja et al. [148] 89.20 75.00

MMGT (ours) 94.07 88.33

2D + Physio

Szczapa et al. (late) [131] 82.77 76.32

Szczapa et al. (early) [131] 84.32 78.83

Huang et al. (early) [152] 87.94 87.16

Huang et al. (late) [152] 89.36 89.13

Choo et al. (late) [153] 89.08 88.68

Choo et al. (early) [153] 89.80 89.46

Wu et al. [105] 93.45 91.37

MMGT (ours) 93.90 93.82

Given that our best combination of two modalities was achieved with AUs and phys-
iological data, we tested whether we could further improve the MMGT performances by
considering a third modality. This led to the combination of AUs, physiological data, and
each type of facial landmark data (2D, 3D, and Thermal). As shown in Table 5.4, our hy-
pothesis was validated in the cases where 2D and 3D landmarks were considered as a third
modality, but not when thermal landmarks were included. The lower performance with
thermal landmarks can be attributed to their weaker performance in the unimodal bench-
marks, as seen in Table 5.2, where thermal landmarks yielded the poorest results among
all facial landmark types for pain detection. This likely indicates that thermal landmarks
provide fewer and less informative features for effective multimodal fusion.

Notably, the best overall performance was achieved with the combination of AUs, phys-
iological data, and 2D landmarks using the MMGT architecture.

Ablation Study

As part of our ablation study, we found that integrating intermediate representations from
unimodal Transformer encoders across multiple modalities using a GCN outperformed tra-
ditional multimodal fusion techniques, including early, intermediate, and late fusion ap-
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proaches. In Tables 5.3 and 5.4, we present the results obtained with the aforementioned
fusion techniques for different combinations of two and three modalities. Specifically, the
Multimodal Transformer (MMT) approaches are defined as follows: MMT-early performs
fusion at the input level through concatenation; MMT-inter concatenates the final represen-
tation layers from each Transformer and applies a fully connected layer for pain detection;
and MMT-late averages the final decisions from each unimodal Transformer encoder.

As we can see in Tables 5.3 and 5.4, MMGT outperformed all fusion techniques for all
combination of two and three modalities. We attribute this superior performance to two
key factors: (1) the incorporation of intermediate representations from the Transformer
encoders, and (2) the application of a GCN, which effectively fuses these representations to
capture complex cross-modal patterns. Tables 5.3 and 5.4 show that, in general, traditional
fusion techniques result in inferior performance compared to the best-performing modality
used individually, which does not hold true for MMGT. For instance, fusing physiological
data with 2D landmarks using traditional fusion techniques leads to a drop of at least 0.30%
in terms of F1-score compared to 2D landmarks used alone (see Table 5.2). On the other
hand, MMGT improves upon all individual modalities.

The superior performance of MMGT compared to traditional fusion techniques can
be attributed to its ability to capture complex cross-modal interactions by integrating in-
termediate representations from each modality using a GCN. Unlike traditional methods,
which often suffer from information loss or insufficientmodeling ofmodality dependencies,
MMGT effectively retains and leverages richer features across modalities. This approach
leads to better generalization and avoids the performance drop commonly seenwhen fusing
less complementary modalities.

To further examine the role of GCNs in efficiently combining intermediate representa-
tions from multiple modalities, we conducted an ablation study comparing MMGT with a
Multimodal Transformer variant (MMT-all) that does not utilize graphs. Specifically, MMT-
all directly concatenates the intermediate representations h0

11, . . . , h
0
nm, which are then fed

into a fully connected layer for pain detection. As shown in Tables 5.3 and 5.4, MMGT con-
sistently outperforms MMT-all for nearly all two- and three-modality combinations. For
example, when using 3D landmarks and physiological data, we observed improvements of
2.17% in accuracy and 2.40% in F1-score, respectively.

Graph Construction Variations

Furthermore, we explore the impact of different graph construction strategies within our
MMGT framework by evaluating two specific variants: MMGT-intra and MMGT-light.
Each variant adopts a distinct approach to constructing the graph that models the con-
nections among the extracted feature representations from the different modalities.

The MMGT-intra variant focuses exclusively on intra-modality interactions by restrict-
ing edges to connections within a single modality. By isolating modality-specific relation-
ships, MMGT-intra aims to capture detailed interactions within each modality. This ap-
proach contrasts with the original MMGT architecture, which also includes connections
between nodes from differentmodalities at similar representation levels. On the other hand,
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the second variant, MMGT-light, simplifies the overall graph structure by connecting only
the final representations of each modality. This variant links nodes across modalities but
does so only at the highest level of abstraction.

Both MMGT-intra and MMGT-light demonstrate competitive performance, surpassing
traditional fusion techniques for most modality combinations. For instance, MMGT-intra
achieved an accuracy of 93.53% and an F1-score of 93.39% when combining 2D landmarks
and physiological data, closely matching the original MMGT’s performance (93.90% ac-
curacy and 93.82% F1-score). Similarly, MMGT-light performed robustly across different
modality combinations, showing that even a simplified graph structure can retain most of
the benefits of multimodal integration.

However, despite these strengths, MMGT consistently outperforms both variants across
all two- and three-modality combination settings, demonstrating the importance of both
intra- and inter-modality interactions in capturing the full spectrum of multimodal re-
lationships for optimal pain detection performance. For instance, when combining AUs
and physiological data, MMGT achieves an accuracy of 94.07% and an F1-score of 94.10%,
surpassing MMGT-intra’s 93.52% accuracy and 93.45% F1-score, as well as MMGT-light’s
93.53% accuracy and 93.41% F1-score.

Furthermore, the superior performance of MMGT compared to MMGT-light highlights
the value of leveraging intermediate feature representations through our proposed multi-
modal fusion framework. MMGT-light also outperforms all classical fusion techniques for
various combinations, including each type of facial landmark with physiological data, as
well as 2D + AUs + Physio and 3D + AUs + Physio combinations. This further highlights
the effectiveness of the multimodal GCN module.

Our experiments reveal several key insights for graph-based multimodal fusion in pain
detection. First, the performance gap between MMGT and its variants underscores the
importance of capturing both intra- and inter-modality dependencies. Additionally, the
MMGT architecture, which leverages intra- and inter-modality connections, consistently
delivers state-of-the-art results, demonstrating that a balanced approach to graph construc-
tion leads to superior performance. Although MMGT-intra and MMGT-light provide useful
insights into simplifying graph design, the comprehensive integration strategy employed
by MMGT remains the most effective for achieving the best performances.

In summary, the overall findings reveal three key insights for multimodal learning with
our MMGT framework for the task of pain detection: (1) Integrating different modalities
(e.g., combining physiological data with facial expressions) consistently improves pain de-
tection performance, (2) Adding more modalities generally leads to enhanced classification
results, and (3) The way multimodal interactions are handled within the graph structure
significantly influences the final task performance.
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5.5 Discussion

The results from this chapter highlight the potential of the MMGT framework in advancing
the field of automatic pain detection and, more broadly, emotion recognition. This discus-
sion section delves into the implications of these findings, the limitations of our work, and
potential directions for future research.

5.5.1 Implications of Findings

The superior performance of our proposedMMGT architecture underscores the importance
of considering the multimodal nature of pain and designing specialized architectures to
effectively leverage the strengths of each modality. By integrating physiological signals
and facial expression data, our MMGT captures a more comprehensive representation of
the pain experience.

Furthermore, the MMGT’s enhanced detection accuracy highlights the effectiveness of
graph-based models in capturing complex relationships among modality-specific interme-
diate feature representations. This increased accuracy could be particularly valuable in
clinical settings, where precise pain assessment can directly influence patient care.

While our primary focus was pain detection, our study also contributes to the broader
field of emotion recognition, especially given that the BP4D+ dataset encompasses multiple
emotional states. The versatility of our MMGT model extends beyond pain detection, as it
effectively distinguishes between pain and other emotional states. This capability for emo-
tion recognition holds promising applications across various domains, including healthcare,
human-computer interaction, education, among others.

One particularly important application lies in medical simulations training, where rec-
ognizing a range of emotional states could enhance training programs by providing real-
time feedback on medical students’ emotional states, allowing for the dynamic adjustment
of training scenarios. The emotion recognition system will process multimodal data, in-
cluding facial expressions and physiological signals from students during simulations, to
accurately predict their emotional states.

5.5.2 Limitations

Despite the promising results, several limitations need to be acknowledged.

The experiments were conducted on the BP4D+ dataset, which, while comprehensive in
terms of data modalities, may not fully represent the diversity of pain and emotion expres-
sions across different populations. This dataset predominantly features controlled environ-
ments with a specific demographic composition, potentially limiting the generalizability of
our findings. Therefore, cross-dataset validation is necessary to evaluate the generalizabil-
ity of the MMGT across different populations and data collection protocols. More diverse
datasets representing a broader range of individuals and real-world conditions would pro-
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vide a better foundation for training models applicable to more varied contexts.

Labeling of pain and other emotional states in BP4D+ is elicited through specific tasks
designed to induce controlled emotional expressions, which may not fully reflect the com-
plexity of naturalistic pain and emotional states encountered in real-world settings. While
these controlled settings offer consistency in model training, the induced emotions may not
capture the subtle variations and spontaneous expressions seen in everyday situations.

While our MMGT model demonstrates high accuracy within the controlled environ-
ment of the BP4D+ dataset, transitioning to real-world scenarios remains challenging. Dif-
ferences in lighting conditions, camera angles, facial occlusions, and individual pain ex-
pression variations can significantly affect the model’s performance. These uncontrolled
variables in real-world applications, require the model to be robust enough to handle vi-
sual noise and incomplete data.

The use of multiple modalities, such as physiological signals and facial expressions,
can improve the richness of data and enhances pain detection and emotion recognition
accuracy. However, it introduces several challenges, particularly during inference. One of
the primary issues is the availability and synchronization of multimodal data. In real-world
applications, it may not always be possible to capture all modalities simultaneously. During
inference, the absence of certain modalities due to equipment failure, or environmental
limitations could render the model inoperable.

The way we constructed the graph in the MMGT model introduces certain limitations.
While the graph structure allows for capturing relationships between different modality-
specific features, the current designmay not fully optimize the interactions betweenmodal-
ities, particularly when the connections between nodes are predefined rather than learned
dynamically. Additionally, our framework assumes that for each modality we extracted the
same number of intermediate representations. However, this approach may not be opti-
mal, as different modalities might achieve the best performance with varying numbers of
Transformer layers.

The MMGT, like deep learning models in general, is considered a black box model due
to its complexity and the non-transparent nature of their prediction processes. Although
the combination of Transformer and GCN offers high pain detection accuracy, the complex
architecture of these models makes it challenging to understand how they arrive at specific
predictions. Clinicians and other end-users may be hesitant to adopt a model they cannot
fully interpret, particularly in sensitive applications such as pain detection, where decisions
have a direct impact on patient care.

Lastly, our MMGT framework, which incorporates Transformer encoders and GCN, is
computationally intensive. This complexity may limit its real-time applicability in clini-
cal settings or in other type of environment who would benefit from pain and emotion
recognition, without significant computational resources.

5.5.3 Future Directions

The promising results of this study open several avenues for future research.
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Expanding the dataset to include a wider range of pain expressions from diverse de-
mographic groups will improve the model’s robustness and generalizability. Cross-dataset
validation is crucial for evaluating themodel’s performance in real-world settings. By train-
ing and testing the MMGT on multiple datasets with varied conditions and populations, we
can better assess its adaptability and consistency across diverse environments.

To address the challenge of controlled versus naturalistic pain expressions, future re-
search should focus on integrating datasets that capture more spontaneous and nuanced
emotional expressions. Incorporating data from real-world scenarios and less controlled en-
vironments can provide a more comprehensive understanding of pain and emotion, helping
to bridge the gap between controlled experimental conditions and real-world applications.

Improving the graph structure of the MMGT model is another key area for future
work. Dynamic graph construction, where the model learns optimal connections between
modality-specific features, could enhance the fusion of intra- and inter-modality informa-
tion. Incorporating attention mechanisms within the graph could enable the model to focus
on the most relevant interactions, potentially leading to more accurate pain and emotion
detection.

Personalization techniques should also be considered to account for individual differ-
ences in both pain and emotional expression. Models could learn from individual person
over time to better tune to personal pain and emotion indicators, thereby improving accu-
racy. Incorporating adaptive learning mechanisms would allow the model to continuously
refine its predictions based on feedback and evolving patterns in individual behavior.

In future research, enhancing model interpretability will be essential to increasing trust
and usability in real-world applications. Developing techniques tomake theMMGTmodel’s
decision-making process more transparent could facilitate its adoption by clinicians and
end-users. For instance, integrating explainable AI methods could help elucidate how the
model arrive at its predictions. Visualization tools that highlight which features or modal-
ities most influence the model’s outputs could provide valuable insights.

Lastly, addressing the computational intensity of the MMGT framework is crucial for
practical deployment. Research could focus on optimizing the model’s computational effi-
ciency, such as developing lightweight versions of the model to enable real-time applica-
tions in clinical settings and other environments that would benefit from pain and emotion
recognition.

5.6 Conclusion

In this chapter, we introduced the Multimodal Graph-based Transformer (MMGT), a novel
multimodal fusion framework designed for the task of pain detection. The MMGT effec-
tively leverages the strengths of both Transformer encoders and GCN to integrate multi-
ple data modalities, capturing the complex relationships within and across modalities. We
performed extensive benchmark on the BP4D+ dataset, demonstrating state-of-the-art per-
formance across various modality combinations, particularly when integrating 2D facial
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landmarks, facial action units, and physiological data.

Our results highlight several important insights. First, the MMGT’s ability to consis-
tently outperform single-modality models and even combinations of two input modalities
underscores the complementary nature of the data sources employed. This reflects the
inherent complexity of pain as a multimodal experience, where physiological signals and
facial expressions together provide a more comprehensive picture than any one modality
alone. The synergy between these modalities, captured effectively by theMMGT, illustrates
the potential of sophisticated fusion techniques in improving automatic pain detection.

However, despite these promising results, several challenges remain. The model’s gen-
eralizability across diverse datasets and its adaptability to varied, real-world environments
are still open questions that require further investigation. Additionally, the computational
demands posed by the integration of Transformer and GCN architectures may limit the
MMGT’s practical deployment in resource-constrained settings. Addressing these limita-
tions points toward important directions for future research, such as refining the model to
operate more efficiently and exploring adaptive, personalized approaches that can account
for individual variations in pain perception and emotional expression.

In summary, this work demonstrates that by leveraging advanced multimodal fusion
strategies, we can significantly enhance pain detection models, bringing us closer to more
reliable, context-aware systems. Beyond this specific application, the MMGT framework
offers broader implications for advancing emotion recognition technologies, with potential
benefits spanning healthcare, human-computer interaction, and beyond.
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Chapter 6

STGFormer: Spatial-Temporal Graph
Transformer for Surgical Skill
Assessment
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This chapter presents technical contributions to the field of surgical skill assessment.
We propose a novel deep learning framework that combines a Graph Convolutional Net-
work (GCN) with a Transformer encoder for the task of surgical skill assessment. The GCN
has been designed to learn spatio-temporal representations from hand skeleton sequences,
while the Transformer encoder captures long-range dependencies within these representa-
tions. The objective of the proposed framework is to accurately differentiate sequences of
movements of attending surgeons from those of surgical residents based on the analysis of
their hand skeleton sequences, thereby identifying expert-level movements from novice ac-
tions. We tested our framework on two collected surgical simulation tasks: circular cutting
and needle passing.

In Section 6.1, we discuss the task of surgical skill assessment, outline its challenges and
highlight the need for automated solutions in this domain. Section 6.2 provides a detailed
review of current state-of-the-art methods, focusing on approaches that employ kinemat-
ics and video data for surgical skill evaluation. In Section 6.3, we introduce our proposed
framework. Section 6.4 presents the two surgical simulation datasets collected for eval-
uating our framework. Section 6.5 outlines the data preprocessing steps, the evaluation
framework, and our experimental results. Lastly, in Section 6.6, we discuss the implica-
tions of our findings, the limitations of our work, and potential future research directions.
Section 6.7 concludes the chapter by summarizing our contributions.

6.1 Introduction

Assessing surgical skill is a crucial aspect of surgical education and ongoing professional
development. This process involves evaluating and measuring a surgeon’s technical pro-
ficiency and competence in performing surgical procedures. Traditionally, evaluation has
depended largely on subjective assessments by experienced surgeons, utilizing both global
and task-specific checklists [154, 155]. However, these assessment methods present mul-
tiple limitations, such as being biased towards the evaluator, being time-consuming, and
lacking standardization across various surgical tasks.

As surgical procedures become increasingly complex, there is a growing demand for
objective methods to assess surgical skills, particularly through simulation-based training.
Consequently, the development of tools for evaluating surgical skills during the perfor-
mance of surgical tasks has gained significant attention.

Automated assessment systems present several key advantages. Firstly, automated sys-
tems can provide real-time feedback on performance, allowing practitioners to quickly
identify errors and areas for improvement. Secondly, these systems can enable the track-
ing of a practitioner’s learning progress over time, fostering continuous skill develop-
ment. Thirdly, integrating automated assessment into simulations will ensure that trainees
achieve the required competencies before transitioning to actual surgeries. Finally, the scal-
ability of these systems will allow for the simultaneous assessment of multiple trainees,
significantly enhancing the overall training process.

To develop these automated systems, a wide range of data sources can be employed, in-
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cluding kinematic data, instrument trajectories, and video analysis. By analyzing these data
modalities, automated assessment tools can deliver comprehensive feedback on various as-
pects of surgical performance, such as expertise level, speed, and dexterity. Expertise level,
for instance, can be quantified numerically using metrics like the average OSATS score
[154] or categorized into novice and expert levels, providing clear, objective measures of
surgical competence.

In recent years, GCNs have become the de facto choice for modeling relational data due
to their ability to capture both the local and global structure of graphs. This has led to GCNs
achieving state-of-the-art performance across various tasks involving spatiotemporal data,
where the data can be effectively represented as graphs. These tasks include traffic fore-
casting [156, 157], weather forecasting [158], action recognition [159], and gesture recogni-
tion [160]. Similarly, the Transformer architecture [2] has fundamentally transformed the
landscape of natural language processing (NLP), setting new benchmarks across various
NLP tasks. Beyond NLP, Transformers have also achieved state-of-the-art performance in a
wide range of other domains, including skeleton-based action recognition, where they have
demonstrated superior capabilities in capturing spatiotemporal dependencies and complex
patterns [161, 162, 163].

Build on the success of GCNs and Transformers in processing spatiotemporal data, par-
ticularly skeleton-based data, this chapter explores the potential of using hand skeleton
sequences for surgical skill assessment. We propose the STGFormer framework, which
leverages the graph structure of hand skeletons and the dynamic spatiotemporal patterns
inherent in hand movement sequences. By combining the strengths of GCNs for learn-
ing spatial-temporal representations of hand skeleton sequences with the Transformer en-
coder’s ability to capture long-range dependencies, the STGFormer framework models ef-
fectively interactions between hand joints across time for assessing surgical proficiency. To
the best of our knowledge, our approach represents the first attempt to evaluate surgical
proficiency using hand skeleton sequences, presenting a novel and scalable approach to
skill assessment.

To validate the use of hand skeleton sequences and our proposed STGFormer frame-
work for surgical skill assessment, we collected two novel surgical simulation datasets,
each featuring a different surgical task performed by both attending surgeons and surgi-
cal residents. The first dataset includes a circular cutting task, while the second involves a
needle passing task. Both tasks were performed using the VirtaMed medical simulator.

The contributions of this work are three-fold and can be summarized as follows:

1. We propose the use of hand skeleton sequences for the task of surgical skill assess-
ment.

2. We present two newly collected simulation datasets for surgical skill assessment, fea-
turing performances by attending surgeons and surgical residents on two fundamen-
tal tasks.

3. We introduce a novel deep learning framework that captures the dynamic spatial-
temporal correlations of hand skeleton sequences. Our framework demonstrates
state-of-the-art performance on the two collected datasets.
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6.2 Related Work

Since the most common data sources for assessing surgical skills are instrument motion
analysis and video data, wewill divide our literature review into two sections, each focusing
on one of these data modalities.

6.2.1 Robotic Kinematics-Based Assessment

Surgical skill assessment has traditionally relied on instrument motion data as a key fea-
ture for evaluating the proficiency of surgeons. Instrument motion data, which includes
the trajectories and movements of surgical tools, provides valuable insights into the the
practitioner’s skills when performing a surgical procedure.

In this regard, the JIGSAWS (JHU-ISI Gesture and Skill Assessment Working Set) [164]
dataset has been introduced as a benchmark for evaluating surgical skill assessment meth-
ods. This dataset comprises data from eight attending surgeons with varying levels of ex-
perience, each performing five trials of three fundamental surgical procedures: suturing,
knot tying, and needle passing, using the da Vinci Surgical System. It includes kinematic
data, capturing the positions, and velocities of the robotic instruments for both the right
and left hands, alongside video recordings of the surgical procedures.

Early approaches for the task of surgical skill assessment using instrument motion data
often relied on handcrafted features and statistical models. One early study introduced the
sparse Hidden Markov Model (sparse HMM) as a variant of the traditional Hidden Markov
Model for skill evaluation [165]. More recently, Fard et al. [166] proposed computing eight
global movement features: task completion time, path length, depth perception, speed, mo-
tion smoothness, and curvature, along with two additional features they introduced: turn-
ing angle and tortuosity. Subsequently, these features were employed to train three clas-
sification models: k-nearest neighbors, logistic regression, and support vector machines
for binary classification to distinguish between expert and novice performance. In another
study, Zia et al. [167] proposed computing a range of features including Sequential Motion
Texture (SMT), Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT), and
Approximate Entropy (ApEn). Each feature set was individually processed using Princi-
pal Component Analysis (PCA) before being employed for surgical skill classification. The
study also introduced a novel weighted feature fusion technique, which combined predic-
tions derived from each feature set. This fusion technique involved solving a least squares
equation.

Recent advancements in deep learning have greatly enhanced the modeling and anal-
ysis of instrument motion data, eliminating the need for manually engineered features.
These techniques leverage end-to-end learning to extract skill-related information directly
from the data. Several studies [168, 169, 170] have utilized Convolutional Neural Networks
(CNNs) to classify surgical skills using raw kinematic data. Additionally, other research
[171, 172] has explored hybrid architectures that combine CNN and Recurrent Neural Net-
work (RNN) branches for spatial and temporal feature learning, respectively. For example,
Wang et al. [171] proposed the SATR-DL framework, which features a dual-branch struc-
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ture: one branch employs a CNN to extract spatial features, while the other utilizes a Gated
Recurrent Unit (GRU) to capture temporal dynamics. The outputs of these branches are
concatenated and employed for skill assessment.

While kinematic data is a valuable tool for assessing surgical skills, it comes with sev-
eral limitations. A significant drawback is the reliance on specialized equipment, such as
surgical robotic systems or advanced technologies, which are often costly and restrict ac-
cess to well-resourced settings. This limits the feasibility of using kinematic assessments
in less equipped environments. Additionally, kinematic data collection in robotic systems
is confined to robot-assisted procedures, excluding many surgeries or surgical simulation
procedures performed manually or with minimal robotic support. Moreover, kinematic
data primarily measures the movements and trajectories of surgical instruments, providing
limited contextual insight. It fails to capture critical elements of surgical performance, such
as tissue handling, hand movements, and the surgeon’s interaction with the surgical envi-
ronment. This narrow scope can result in an incomplete assessment of a surgeon’s overall
skill. Furthermore, the accuracy of kinematic data can be affected by sensor inaccuracies
and environmental noise, leading to potential errors in evaluating surgical proficiency.

6.2.2 Video-Based Assessment

In addition to instrument motion data, video recordings have emerged as a powerful source
of information for surgical skill assessment. Videos capture the entire surgical scene, in-
cluding instrument motion, tissue interactions, and overall procedural context, providing a
holistic view of the surgery that kinematic data alone cannot achieve.

Several studies proposed to computed image features for video-based surgical skill as-
sessment. For instance, in [173] and [174], the authors proposed computing spatiotempo-
ral interest points (STIPs) to identify key regions in the images of a video of the surgical
procedure, subsequently calculated relevant descriptors. Specifically, in [174], the authors
computed three descriptors for each STIP: the histogram of oriented gradients (HoG), the
histogram of optical flow (HoF), and motion boundary histograms (MBHs). Next, they clus-
tered the STIP descriptors within a video using a k-means algorithm to obtain a visual fea-
ture vocabulary and applied TF-IDF to obtain the BoW features. Furthermore, to address
the lack of temporal information in BoW, the authors proposed Augmented Bag of Words
(Aug. BoW) features. Additionally, they computed several other features, including the
Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT), Sequential Motion
Texture (SMT), Approximate Entropy (ApEn), and Cross Approximate Entropy (XApEn).
For classification between experts and novices based on the extracted features, they em-
ployed logistic regression, linear SVM, and multilayer perceptron (MLP) classifiers.

Recently, there has been a shift toward deep learning-basedmethods, which can directly
learn complex features from raw video data and achieve state-of-the-art performance in
assessing surgical skills. In Hira et al. [174], in addition to the previously computed im-
age features, they proposed using a Temporal Convolutional Network (TCN) on predict
instrument keypoints for surgical skill assessment. They also introduced a CNN-LSTM
framework, employing ResNet [67] for image feature extraction and LSTM to learn tempo-
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ral dynamics. Furthermore, they enhanced both the ResNet image encoder and the LSTM
with spatial and temporal attentionmechanisms, respectively. In another study, Funke et al.
[175] proposed using a Temporal Segment Network [176], which involves fine-tuning a pre-
trained 3DConvolutional Neural Network to classify sequences of frames from a video. The
predictions from these sequences are then aggregated using a consensus operator to deter-
mine the overall video classification result. Liu et al. [177] introduced a unified multi-path
framework for automatic video-based surgical skill assessment, which considers various
aspects of surgical skills including surgical tool usage, intraoperative event patterns, and
other skill proxies. To model the relationships between these factors, a path dependency
module was specially designed.

Video-based assessment methods offer several advantages over kinematic data alone.
They provide richer contextual information, including tissue handling techniques, decision-
making processes, and overall surgical strategy. Moreover, video recordings are non-
intrusive and can be obtained using standard surgical cameras, making them applicable
across a wide range of surgical procedures and settings. However, challenges remain, such
as variability in camera viewpoints, lighting conditions, and occlusions, which can affect
the accuracy and robustness of automated video analysis methods.

Unlike existing approaches, we propose assessing surgical skills through hand skeleton
sequences. To achieve this, we have collected two new surgical simulation datasets fea-
turing both Experts (attending surgeons) and Novices (surgical residents) performing the
following tasks: circular cutting and needle passing. Existing publicly available datasets,
such as JIGSAWS, often feature a limited number of subjects, restricting the generalizability
of current approaches. In contrast, our datasets include a larger number of both Experts
and Novices, enhancing the robustness of our findings. Additionally, we introduce a novel
deep learning framework, STGFormer, designed to leverage hand skeleton data sequences
for the task of surgical skill assessment. STGFormer integrates a GCN with a Transformer
encoder to effectively learn spatial-temporal patterns from these sequences, enabling the
differentiation of movement sequences characteristic of Experts versus Novices during the
execution of surgical tasks.

6.3 Proposed Approach

This section presents our STGFormer framework, which is illustred in Figure 6.1. Our
framework consists of two essential components: (1) a Spatial-Temporal Graph Trans-
former, comprising a GCN responsible for learning spatial-temporal representations from
hand skeleton sequences, alongside a Transformer encoder for capturing global temporal
patterns among the previously extracted representations; and (2) a Surgical Skill Classifier,
which classifies the representations generated by the Spatial-Temporal Graph Transformer
into Expert or Novice categories.
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Figure 6.1: Illustration of our STGFormer-based surgical skill assessment framework, which
is composed of two key components: Spatial-Temporal Graph Transformer and Surgical
Skill Classifier.

6.3.1 Spatial-Temporal GCN

To extract higher-level feature representations from hand skeleton sequences, we first con-
structed spatial-temporal graphs based on the connectivity of hand joints. We propose two
types of graph constructions: one using landmarks from a single hand (either left or right)
and the other using landmarks from both hands. A GCN is then applied to process these
graphs. These steps are detailed in the following.

Graph Construction

We constructed an undirected spatial-temporal graphs G = (V,E) to capture both spatial
and temporal relationships between hand joints over a sequence of frames. Two types of
graphs are developed: one for a single hand and an extended version for both hands.

OneHand: In this configuration, the graph G = (V,E) consists ofN joints per hand over
T frames. The set of nodes, V , represents the hand joints across all frames in the sequence,
while the set of edges, E, represents the temporal and spatial connections between these
joints across the different frames of the sequence. The construction process is as follows:

• Nodes: the nodes in the graph consist of all joints in the hand skeleton sequence,
expressed as V = {vti | t = 1, . . . , T, i = 1, . . . , N}. Each node vti is initialized with
its 3D coordinate information. The number of joint per hand, N , is equal to 21.

• Edges: the set of edgesE is defined as the union of intra-skeleton connections,Eintra,
and inter-frame connections, Einter, in the graph, defined as follows:
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Eintra = {vtivtj | (i, j) ∈ H, t ∈ {1, . . . , T}} (6.1)

Einter = {vtiv(t+1)i | i ∈ {1, . . . , N}, t ∈ {1, . . . , T − 1}} (6.2)

E = Eintra ∪ Einter (6.3)

In Equation. 6.1, H represents the set of naturally connected hand joints.

Two Hands: The two-hand graph construction extends the single-hand setup by includ-
ing inter-hand connections to capture interactions between the left and right hands. The
process is outlined as follows:

• Nodes: the nodes in the graph consist of all joints in the hand skeleton sequence
across the two hands, expressed as V = {vti | t = 1, . . . , T, i = 1, . . . , 2N}. Each
node vti is initialized with its 3D coordinate information. The number of joints per
hand, N , is equal to 21, resulting in a total of 2N = 42 nodes for both hands.

• Edges: the set of edgesE is defined as the union of intra-skeleton connections,Eintra,
inter-frame connections, Einter, and inter-hand connections, Ecross, in the graph, de-
fined as follows:

Eintra = {vtivtj | (i, j) ∈ H, t ∈ {1, . . . , T}} (6.4)

Einter = {vtiv(t+1)i | i ∈ {1, . . . , 2N}, t ∈ {1, . . . , T − 1}} (6.5)

Ecross = {vtivt(N+i) | i ∈ {1, . . . , N}, t ∈ {1, . . . , T}} (6.6)

E = Eintra ∪ Einter ∪ Ecross (6.7)

Equation 6.6 introduces inter-hand edges that connect each joint in the left hand with
its corresponding joint in the right hand at the same frame t, enabling the model to capture
interactions between both hands.

Graph Learning

We trained spectral deep GCNs using the previously constructed graph G. The graph con-
volution operator is defined as described in [3]:

H̃(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (6.8)
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Here, Ã = A + In represents the adjacency matrix of the undirected graph G with added
self-connections, where In is the identity matrix. The diagonal degree matrix D̃ is defined
as D̃ii =

∑
j Ãij . The matrix W (l) is a layer-specific learnable weight matrix, and σ(·)

denotes an activation function. The matrix H(l) represents the activations at the lth layer,
with the initial activations H0 corresponding to the input node feature matrix X .

6.3.2 Transformer Encoder

To capture complex temporal dependencies in hand skeleton sequences, we input the high-
level representations obtained from the GCN into a Transformer encoder. For each frame,
joint representations jti are concatenated into a vector h0

t (Equation 6.9), and these vec-
tors are aggregated into h0 (Equation 6.10), which serves as the input for the Transformer
encoder.

h0
t = [jt1, jt2, . . . , jtN ] (6.9)

h0 = [h0
1, h

0
2, . . . , h

0
T ] (6.10)

After the forward pass through the k-th Transformer encoder layer, the model output a
new representation hk

i for each timestep. All these new representations are combined into
a vector hk.

hk = [hk
1, h

k
2, . . . , h

k
T ] (6.11)

6.3.3 Surgical Skill Classifier

The final representation hk (Equation 6.11), is fed into a fully connected neural network for
surgical skill classification, predicting whether the hand skeleton sequence corresponds to
an Expert or Novice skill level.

6.4 Surgical Simulation Datasets

This section introduces two surgical simulation datasets designed for benchmarking sur-
gical skill assessment methods using hand skeleton sequences. The datasets were col-
lected at the PRESAGE (Plateforme de Recherche et d’Enseignement par la Simulation pour
l’Apprentissage des Attitudes et des Gestes) medical simulation center, affiliated with the
Faculty of Medicine at the University of Lille.

The datasets consist of two distinct surgical simulation tasks: circular cutting and nee-
dle passing. These tasks were performed by both attending surgeons and surgical residents
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Figure 6.2: The VirtaMed simulator.

using the VirtaMed medical simulator. The VirtaMed simulator is a state-of-the-art vir-
tual reality training tool that provides high-fidelity graphics and haptic feedback, offering
a highly realistic and immersive environment for medical professionals to practice vari-
ous surgical procedures without involving live patients. Figure 6.2 depicts the VirtaMed
simulator.

For both datasets, the protocol was approved by the Institutional Review Board of the
University of Lille under reference number 2022-626-S108.

6.4.1 Circular Cutting Dataset

We collected side-view video recordings of hand movements from 16 participants, includ-
ing 4 attending surgeons and 12 surgical residents from diverse surgical specialties, while
they performed a circular cutting task on the VirtaMed simulator. Subsequently, the hand
skeletons from the right hand were extracted from the videos using the method described
in [178]. We focused exclusively on right-hand skeletons due to the unreliable detection of
left-hand skeletons and its minor role in the circular cutting task. Figure 6.3 shows a par-
ticipant performing the circular cutting task, alongside the right skeleton detected. Figure
6.4 illustrates the circular cutting task on the simulator screen, and Figure 6.5 presents the
surgical tools associated with the simulator that were used to complete the task.
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Figure 6.3: A side view of a participant performing the circular cutting task on the VirtaMed
simulator.

The task is divided into multiple steps. First, participants entered the virtual environ-
ment using the laparoscope provided by the VirtaMed simulator and adjusted the view as
needed. The laparoscope used is shown in Figure 6.5a. Next, participants utilized the atrau-
matic grasper tool, depicted in Figure 6.5b, to apply tension, and then used scissors, also
shown in Figure 6.5b, to cut between the two circles.

6.4.2 Needle Passing Dataset

We recorded frontal-view videos of hand movements from 7 attending surgeons and 22
surgical residents from various surgical specialties while they performed a needle passing
surgical task using the VirtaMed simulator. Hand skeletons for both the right and left hands
were extracted using the method described in [178]. Figure 6.6 shows a subject performing
the needle passing task, along with the detected hand skeletons of the right and left hands.

The needle passing task comprises several steps. Firstly, participants enter the virtual
environment with the laparoscope and adjust the view to correctly position for the main
phase of the exercise. Next, participants use their dominant hand to grasp the needle at the
designated mark and pass it through the active ring without touching its edges. They then
use their non-dominant hand to grasp the tip of the needle at the marked point and pull
it through the ring. This sequence is repeated with additional rings. An illustration of the
exercise is shown in Figure 6.7.
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Figure 6.4: Illustration of the circular cutting task, captured from the VirtaMed simulator
screen.

6.5 Experimental Results

6.5.1 Data Preprocessing

Hand Landmarks Normalization

To standardize the hand skeleton data and reduce variability due to initial hand position-
ing, we normalized each hand skeleton sequence. The normalization was performed by
subtracting the coordinate of the first wrist joint v00 from the coordinates of all other joints
in the hand skeleton sequence. Mathematically, this is represented as:

v′ij = vij − v00

where vij denotes the spatial coordinate of the i-th joint at the j-th time step, and v00 is
the coordinate of the wrist joint at the 0-th time step. This normalization anchors the hand
movements relative to the wrist, providing a consistent reference point and reducing the
impact of different starting positions.

Segmentation

After the normalization step, we subdivide each sequence of hand skeleton data into non-
overlapping sliding windows of 20 seconds, which was found optimal for both datasets.
With a video frequency rate of 30 frames per second, this result in approximately 600
timesteps for each sub-sequence. As a result, we have a varying number of data sequences
for each participant, which are directly dependent on the time taken to complete the sur-
gical task.

While segmenting the sequences into windows introduces variability between them,
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(a)

(b)

Figure 6.5: (a) Laparoscope; (b) Atraumatic Grasper / Scissors.

this approach offers several advantages. It makes the data more manageable and ensures
consistent input sizes for our proposed framework. Additionally, it effectively increases the
size of both datasets, which is particularly beneficial given the limited number of original
sequences. Despite the inherent variability between windows, our proposed STGFormer
framework achieves satisfactory results, as we will demonstrate later. This indicates that
the model generalizes well across different types of movements involved in completing
either surgical task.

6.5.2 Implementation Details

To determine the optimal hyperparameters for our STGFormer framework, we employ a
grid-search strategy, exploring the following hyperparameters and their respective values:

• Dimension of the linear projection layer: 256 and 512
• Number of multi-head attention: 4 and 8
• Number of Transformer encoder layers: 1 and 2
• Number of convolution layer in the GCN: 1 and 2
• Dimension in each convolution layer: 8, 16, 32, and 64

Additionally, we varied the batch size between 16, 32, and 64. The maximum number of
epochs was set to 150, with an early stopping criterion of 30 epochs. The learning rate was
fixed at 10−4. All models were trained using the Adam optimizer [113], with exponential
decay rates for the first and second moment estimates set at 0.9 and 0.999, respectively. The
entire framework was implemented using PyTorch [114].
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Figure 6.6: A frontal view of a participant performing the needle passing task on the Vir-
taMed simulator.

6.5.3 Evaluation framework

Circular Cutting Dataset

We employed a subject-independent 6-fold cross-validation strategy to evaluate our frame-
work. This means that data sequences from any one participant, whether they are attending
surgeons or surgical residents, are exclusively included in either the training set or the test
set, but not both. This evaluation procedure is crucial because hand movement data from
the same subjects are likely to exhibit correlations. To ensure a fair distribution of the
limited number of attending surgeons across each fold, we generated all possible combina-
tions of two attending surgeons, resulting in six combinations (i.e., six folds). This method
guarantees that each surgeon is equally represented in both the training and test sets. For
the surgical residents, their data were distributed evenly between the training and test sets
across all six folds.

Needle Passing Dataset

For the needle passing dataset, we employed a subject-independent 3-fold cross-validation
strategy to evaluate our architecture. We ensured that the number of sequences associated
to attending surgeons was fairly distributed between the training and test sets across the
three folds.
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Figure 6.7: Illustration of the needle passing task, captured from the VirtaMed simulator
screen.

Evaluation Metrics and Labeling

For both datasets, we used accuracy and weighted average F1-score as evaluation metrics.
Accuracy provides a measure of the overall proportion of correctly classified sequences,
giving an initial sense of model performance. However, to better handle potential class im-
balances between Expert and Novice sequences, we also employed the weighted average
F1-score, which combines precision and recall into a single metric that accounts for both
false positives and false negatives. This approach ensures that the evaluation fairly reflects
the performance across both classes, balancing their contributions to the overall metric. In
this chapter, we consider the practitioner’s category as an indicator of proficiency, classify-
ing hand skeleton sequences from attending surgeons as Expert sequences and those from
surgical residents as Novice sequences. This frames the surgical skill assessment task as a
binary classification problem, where the objective is to distinguish between the two classes.

6.5.4 Results

Circular Cutting

We compared our STGFormer framework against eight state-of-the-art models, including
both traditional deep learning and advanced graph-based methods. The comparison mod-
els comprise deep learning approaches, such as TCN [180], LSTM [181], DeepGRU [182],
and Transformer encoder [2], as well as graph-based deep learning models like GCN [3],
ST-GCN [156], and ASTGCN [157]. The ST-GCN consists of multiple spatial-temporal con-
volutional blocks, each of which includes two temporal gated convolution layers and one
spatial graph convolution layer in the center. The ASTGCN consists of multiple blocks,
each composed of a spatial-temporal attention mechanism and a spatial-temporal convolu-
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Table 6.1: Surgical skill assessment on the circular cutting task: comparison with state-of-
the-art methods.

Method Acc F1

SoCJ-LSTM [179] 80.39 77.55

TCN [180] 80.08 78.25

LSTM [181] 81.21 79.36

DeepGRU [182] 81.42 79.48

Transformer [2] 80.53 78.19

GCN [3] 81.92 80.13

ST-GCN [156] 79.14 79.54

ASTGCN [157] 79.30 79.49

STGFormer (ours) 83.29 81.41

tion that utilizes graph convolutions to capture spatial patterns and standard convolutions
to describe temporal features simultaneously. Additionally, we included the SoCJ-LSTM
approach, which uses SoCJ handcrafted features [179] extracted from the hand skeleton.
These features are then input into a LSTM model.

Table 6.1 presents the performance of our STGFormer alongside state-of-the-art meth-
ods. STGFormer outperforms all other methods on both evaluation metrics, achieving an
accuracy of 83.29% and an F1-score of 81.41%. This represents an improvement of 1.37%
in accuracy and 1.28% in F1-score over the best-performing comparison model. The SoCJ-
LSTM method, which relies on geometric descriptors, achieved the lowest F1-score, high-
lighting its limitations in capturing the dynamic aspects of surgical skills among sequence
of hand landmarks. Even LSTM, which operates directly on raw hand landmarks, performs
better but still falls short in comparison to STGFormer.

STGFormer outperformed both GCN and Transformer models, highlighting the effec-
tiveness of integrating GCN with a Transformer encoder for surgical skill assessment. This
combination leverages the strengths of GCN in capturing spatiotemporal features and the
Transformer encoder in modeling long-range dependencies, demonstrating the powerful
synergy of these components in enhancing overall model performance.

Needle Passing

Table 6.2 shows the performance of our STGFormer framework, alongside the other afore-
mentioned state-of-the-art methods on the Needle Passing dataset. We reported the per-
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Table 6.2: Performance comparison of STGFormer with state-of-the-art methods on the
Needle Passing task across three configurations: left-hand, right-hand, and both-hand
skeletons.

Left Right Both

Method Acc F1 Acc F1 Acc F1

SoCJ-LSTM [179] 82.53 72.51 84.16 77.66 83.45 76.50

TCN [180] 82.81 75.93 87.28 86.06 88.18 87.13

LSTM [181] 80.75 79.81 87.55 86.73 89.07 89.23

DeepGRU [182] 86.62 84.80 87.44 83.56 90.00 88.92

Transformer [2] 87.25 84.74 86.76 85.39 88.57 88.79

GCN [3] 84.89 80.98 88.52 85.43 89.87 90.08

ST-GCN [156] 85.11 80.98 86.17 84.78 89.37 88.29

ASTGCN [157] 84.86 80.64 86.33 83.62 90.35 89.81

STGFormer (ours) 87.23 86.37 88.79 83.69 91.46 91.76

formance of all models under three configurations: using left-hand skeletons, right-hand
skeletons, and combined skeletons from both hands.

For the left-hand skeleton configuration, STGFormer achieved the highest F1-score of
86.37% and an accuracy of 87.23%. Although the Transformer model attained the highest
accuracy of 87.25%, its F1-score was 84.74%, falling short of STGFormer by 1.63%. DeepGRU
also performed well, with an accuracy of 86.62% and an F1-score of 84.80%. Graph-based
methods, such as ST-GCN, also demonstrated competitive performances, achieving an ac-
curacy of 85.11% and an F1-score of 80.98%.

In the right-hand landmarks configuration, STGFormer attained the highest accuracy
of 88.79%. However, the highest F1-score was achieved by LSTM at 86.73%, followed closely
by TCN with an F1-score of 86.06%. GCN also performed well, with an accuracy of 88.52%,
and an F1-score of 85.43%.

When using both hand skeletons, STGFormer outperformed other state-of-the-art mod-
els, achieving the highest accuracy of 91.46% and the highest F1-score of 91.76%. LSTM and
ASTGCN also demonstrated strong performance, with accuracies of 89.07% and 90.35%, and
F1-scores of 89.23% and 89.81%, respectively.

These results consistently demonstrate that STGFormer outperforms other state-of-the-
art methods across all configurations (left-hand, right-hand, and combined skeletons). The
superior performance observed for most models when using both hand skeletons compared
to single-hand configurations highlights the value of incorporating both hands, providing
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Table 6.3: Performance comparison of different STGFormer graph configurations on the
Needle Passing dataset.

Method Acc F1

STGFormer-inter 85.26 82.16

STGFormer-late 86.68 83.13

STGFormer 91.46 91.76

a richer representation for surgical skill classification.

As with the Circular Cutting Dataset benchmark, the STGFormer outperformed both
the GCN and Transformer when using hand data in both hands configuration across all
evaluation metrics. Additionally, it achieved a superior F1-score in the left-hand config-
uration and the highest accuracy in the right-hand configuration. It demonstrates once
again that the combination of GCN and Transformer encoder is effective for surgical skill
assessment.

Graph Construction Variation

Previously, we presented the performance of the STGFormer framework on the Needle
Passing dataset, using sequences of skeleton from both hands. To further explore the im-
pact of hand coordination, we propose comparing STGFormer with two variations that
use an alternative graph construction approaches that exclude joint connections between
the left and right hands. This comparison aims to highlight the importance of incorporat-
ing hand coordination information. To achieve this, we developed two distinct variations:
STGFormer-inter and STGFormer-late.

STGFormer-inter employs two independent GCN-Transformer encoder models to pro-
cess sequences from each hand separately, followed by the fusion of features from both
models at an intermediate level, to classify surgical skill. On the other hand, STGFormer-
late processes each hand using separate STGFormer models up to the point of prediction,
and the final skill classification is achieved by averaging the predictions from both models.

The performance comparisons are presented in Table 6.3. The classical STGFormer,
which connects hand joints from both hands, significantly outperforms both variations.
Specifically, it surpasses the best-performing comparison by 4.78% in accuracy and 8.63%
in F1-score. This superior performance is primarily due to the integration of joint connec-
tions between the hands, enabling our framework to effectively capture spatial-temporal
interactions and dependencies between the left and right hands. These interactions are crit-
ical for accurately assessing surgical skills, as hand coordination plays a crucial role inmany
surgical tasks. By leveraging this interaction data, the model gains a more comprehensive
and nuanced understanding of the surgical procedure. In contrast, the STGFormer-inter
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and STGFormer-late variations, which process each hand independently, fail to capture
this valuable interaction information, leading to a notable decrease in performance.

6.6 Discussion

This section discusses the implications, limitations, and future directions of our study, high-
lighting the significance of the findings and the potential impact of the proposed STG-
Former framework for surgical skill assessment.

6.6.1 Implications of Findings

The findings of this study demonstrate the potential of using hand skeleton sequences for
assessing surgical skills, specifically differentiating between expert and novice practition-
ers.

Using hand skeleton data for surgical skill assessment offers several advantages over
kinematics data and video data. It captures fine motor skills and dexterity by tracking in-
dividual finger and joint movements, providing detailed insights into a surgeon’s manual
technique that robotic kinematics often miss. Unlike kinematics data from surgical robots,
which are limited to robotic-assisted surgeries, hand skeleton data is tool-agnostic and can
be employed across various surgical tasks, including those performed manually. It provides
objective, real-time feedback with less reliance on expensive equipment, enhancing accessi-
bility and reducing costs compared to specialized robotic systems. Unlike video data, hand
skeleton data involves simpler processing, is less affected by visual obstructions or lighting
variations, and addresses privacy concerns by avoiding the complexities of video analysis.
Its compatibility with non-robotic procedures and scalability for assessing multiple trainees
simultaneously further solidifies its practicality in diverse training settings, making it an
ideal choice for comprehensive and efficient surgical skill assessment.

Furthermore, our proposed STGFormer framework achieved state-of-the-art results on
the two surgical simulation datasets. By leveraging the strengths of GCN and Transformer
encoder, STGFormer effectively captures spatial-temporal correlations within hand move-
ments, providing accurate assessments of surgical skills. This approach not only demon-
strated high accuracy in skill differentiation but also showed robustness across different
surgical tasks, reinforcing its adaptability and reliability in various training scenarios.

Our results also confirmed that for all state-of-the-art models, using both hand skeleton
sequences significantly improves classification accuracy compared to using a single hand
configuration, whether left or right. This underscores the richer representation provided
by incorporating both hands in surgical skill assessment. In the case of the STGFormer
framework, the way we leverage the connections between both hands has a significant
impact on performance. Specifically, in our graph construction, we propose connecting
corresponding joints of both hands, which substantially enhances performance.

Subdividing the entire data sequence into non-overlapping 20-second windows allows
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for a more detailed analysis of hand movements by capturing granular skill variations
within a single task performance. This approach reduces the overall length of data se-
quences, making the classification task more manageable and computationally efficient,
especially when dealing with deep learning models. By focusing on shorter segments, the
STGFormer framework can detect subtle differences in hand movement patterns that may
indicate the level of expertise, enhancing the model’s ability to distinguish between Expert
and Novice surgeons effectively. This segmentation strategy also facilitates the augmenta-
tion of the dataset, increasing the number of training samples and improving the robustness
of the model in identifying variations in skill execution across different tasks.

Lastly, the STGFormer framework’s ability to predict expertise levels during surgical
simulation tasks highlights its potential utility in real-world educational settings. This tool
can provide immediate, objective feedback to practitioners, facilitating the enhancement
of surgical simulation training. By automating the assessment process, institutions can ef-
ficiently manage larger cohorts of trainees, reduce dependence on subjective evaluations,
and maintain consistent training standards. This scalability is particularly advantageous
in high-demand specialties where access to expert evaluators is limited, positioning STG-
Former as a valuable addition to modern surgical education.

6.6.2 Limitations

Identifying the limitations of our study helps to frame the findings within the context of
potential challenges and areas for improvement. It is essential to acknowledge these limi-
tations to guide future research efforts and refine the application of the STGFormer frame-
work.

Firstly, the integration of the GCN and Transformer encoder in our proposed STG-
Former framework increases model complexity, leading to higher computational costs,
longer training times, and the need for extensive hyperparameter tuning to optimize per-
formance.

Furthermore, the complex architecture of STGFormer poses challenges for interpretabil-
ity, which is essential in clinical and educational settings where understanding the decision-
making process is critical. This lack of transparency may impede the adoption of the model
by practitioners who need to trust and comprehend the underlying rationale behind the
skill assessments.

Another limitation concerns both collected surgical simulation datasets. The datasets
have a limited number of participants, especially attending surgeons (4 and 7), which may
not adequately represent the expert population. This small sample size can reduced gen-
eralizability of the model. Moreover, each participant performed the task only once for
each dataset. This lack of multiple trials per subject limits the ability to capture variability
in individual performance, which is crucial for assessing consistency and skill. There is
a notable imbalance between the number of attending surgeons and surgical residents in
both datasets. This imbalance can introduce bias in the model training, potentially skewing
results towards the more represented class (Novice).
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Additionally, the binary labeling as either Expert or Novice oversimplifies the assess-
ment by ignoring the spectrum of skill levels within each category. This binary classifica-
tion may oversimplify the assessment, ignoring subtle gradations in skill that are important
for tailored feedback. Moreover, the Expert and Novice labels are based on predefined crite-
ria (e.g., attending surgeons vs. residents), which may not fully account for individual skill
variations within those groups. As a result, there may be significant overlap between the
most skilled Novices and the less proficient Experts, leading to ambiguous classifications
that could affect the model’s accuracy and the reliability of its assessments.

Lastly, the subdivision of data sequences into 20-second non-overlapping windows,
while enabling a detailed analysis of movement patterns, may result in the loss of con-
textual information critical to evaluating overall task performance. Important skill-related
factors, such as continuity and flow of actions, may not be fully captured within these
shorter windows, potentially leading to an incomplete representation of the surgeon’s skill
level. Moreover, the fixed window length could inadvertently segment key transitions or
movements, making it challenging for the model to interpret the complete sequence dy-
namics necessary for accurate classification.

6.6.3 Future Directions

The promising results of the STGFormer framework for surgical skill assessment suggest
several avenues for future research and development. Addressing current limitations and
exploring new possibilities will enhance the framework’s applicability, robustness, and gen-
eralizability in surgical education and beyond.

Futurework should focus on collecting larger andmore diverse datasets, incorporating a
broader range of surgical tasks and participant profiles. Increasing the number of attending
surgeons and including multiple trials per participant would capture a wider spectrum of
skill variability, enhancing the model’s ability to generalize across different individuals and
tasks.

Moving beyond binary classification, future studies should aim to developmulti-class or
continuous scoring models that better reflect the spectrum of surgical skills. Incorporating
a more nuanced evaluation system could enable tailored feedback and more precise skill
assessments, accommodating the subtle differences in performance that exist within the
categories of Expert and Novice. This approach would better support personalized training
and help identify specific areas for improvement.

To facilitate broader adoption in clinical and educational settings, enhancing the inter-
pretability of the STGFormer framework is essential. Future work could explore techniques
such as attention visualization or feature importancemapping tomake the decision-making
process more transparent. This would allow practitioners and educators to understand the
factors driving the model’s assessments, thereby increasing trust and acceptance of the
technology.

The effectiveness of hand skeleton-based assessment relies heavily on the quality of the
extracted skeletal data. Future research should explore advanced preprocessing techniques,
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such as noise reduction, joint alignment correction, and occlusion handling, to ensure ac-
curate data input in the context of surgical training. Additionally, investigating the use of
higher-fidelity sensors or integrating multiple data sources, like wearable sensors alongside
video, could further enhance data reliability and assessment precision.

Given the variability in surgical procedures, future research could explore the use of
transfer learning to adapt the STGFormer framework to new surgical tasks with minimal
retraining. This approach would leverage pre-trained models on existing tasks to accelerate
the learning process for novel tasks, making the frameworkmore versatile and reducing the
need for extensive new data collection.

6.7 Conclusion

In this chapter, we propose using hand skeleton sequences for the task of surgical skill as-
sessment. Our goal is to differentiate between the hand movement patterns of attending
surgeons and those of surgical residents during surgical simulation tasks. To achieve this,
we have collected two novel datasets, which included video recording of hand movements
from both attending surgeons and surgical residents while executing two surgical simula-
tion tasks: circular cutting and needle passing.

In addition, we introduce STGFormer, a novel deep learning framework specifically tai-
lored for processing hand skeleton sequences. STGFormer combines a GCN and a Trans-
former encoder to capture spatiotemporal correlations within hand skeleton sequences for
surgical skill assessment. The proposedmodel achieved state-of-the-art performance across
both datasets. For the circular cutting dataset, STGFormer surpassed existing methods in
the single-hand setting (using the right hand). Additionally, it outperformed previous ap-
proaches in both the single-hand (left and right hand) and dual-hand settings for the needle
passing dataset.

Moreover, our results on the needle passing dataset demonstrate that employing skele-
ton sequences from both hands significantly improves performance compared to single-
hand configurations, underscoring the richer representations afforded by dual-hand input
for surgical skill assessment. Additionally, we show that, for our framework, connecting
corresponding joints between both hands during graph construction significantly enhances
the results, highlighting the importance of incorporating inter-hand connections at the in-
put level.

The strong performance across both datasets highlights the potential of using hand
skeleton sequences for skill level detection. These results suggest the potential of our frame-
work for enhancing surgical simulation training by providing real-time, objective feedback
to surgical residents based on their hand movements during simulation tasks.

Nevertheless, despite encouraging results, several challenges remain. The STGFormer
model is complex and computationally intensive, requiring substantial resources for both
training and inference. This could limit its practical scalability and accessibility. Addition-
ally, there are issues with model interpretability; it is difficult to understand how specific
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hand movements influence skill assessments. The datasets used are relatively small and
may not generalize well to diverse populations or various surgical contexts, partly due to
the limited number of participants, including attending surgeons. Furthermore, the current
binary classification of skills as either expert or novice oversimplifies the nuanced spectrum
of skill levels.

Future research should focus on addressing these limitations by gathering larger, more
diverse datasets, incorporating model interpretability, and adopting a more detailed skill
level classification to better support surgical training.
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Chapter 7

MGRFormer: A Multimodal
Transformer Approach for Surgical
Gesture Recognition

Contents
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2.1 Temporal Action Segmentation . . . . . . . . . . . . . . . . . . . 115

7.2.2 Surgical Gesture Recognition . . . . . . . . . . . . . . . . . . . . 116

7.2.3 RGB-D based Multimodal Gesture Recognition . . . . . . . . . . 117

7.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.3.1 Unimodal Transformer Encoder . . . . . . . . . . . . . . . . . . . 118

7.3.2 Multimodal Refinement Module . . . . . . . . . . . . . . . . . . . 119

7.3.3 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3.4 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . 121

7.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.4.2 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.4.3 Evaluation framework . . . . . . . . . . . . . . . . . . . . . . . . 124

7.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.5 Surgical Gesture Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.5.1 Surgical Performance Metrics . . . . . . . . . . . . . . . . . . . . 131

7.5.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . 133

7.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

111



7.6.1 Implications of Findings . . . . . . . . . . . . . . . . . . . . . . . 140

7.6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.6.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

– 112 –



In this chapter, we present novel contributions to the field of surgical gesture recogni-
tion. Specifically, we introduce a new multimodal deep learning framework that incorpo-
rates an iterative multimodal refinement module design to enhance the fusion of comple-
mentary information from kinematic and video modalities during the refinement stage.

In Section 7.1 we discuss the importance of surgical gesture recognition, particularly in
the context of surgical education, and outlines the challenges associated with this task. Sec-
tion 7.2 provides a comprehensive literature review, establishing the necessary background
and context for introducing our proposed method. Following this, we introduce our MGR-
Former framework in Section 7.3. In Section 7.4, we present and analyze our unimodal
and multimodal benchmarks. Section 7.5 provide comparative statistical analysis between
surgical gestures performed by attending surgeons and medical students during suturing
tasks. Section 7.6 discuss the implications, limitations, and future directions of our work.
Finally, Section 7.7 summarizes our contributions and concludes the chapter.

7.1 Introduction

In recent decades, the field of surgery has experienced remarkable advancements driven
by cutting-edge technologies and innovative techniques that have revolutionized patient
care [183, 184]. As surgical procedures become more complex and precise, the demand for
highly skilled surgeons has never been higher.

Mastery of surgical gestures is a critical aspect of surgical training, essential for en-
suring patient safety, achieving surgical accuracy and efficiency, and building professional
confidence. To develop proficiency in these complex techniques, medical students and sur-
gical trainees often engage in simulation-based training. This type of training allows them
to practice and refine their skills in a controlled, risk-free environment. Simulation-based
training has become a standard approach in surgical education, offering a safe space for
learning and improving surgical skills without compromising patient safety. By incorpo-
rating these advanced training methods, the next generation of surgeons will be better
prepared to meet the challenges of modern surgery.

The emerging field of surgical gesture recognition holds significant promise for advanc-
ing surgical education. Surgical gesture recognition involves classifying automatically the
specific actions performed by a practitioner during a surgical procedure. These systems
can greatly enhance surgical training by providing detailed, objective feedback on various
aspects of a medical student’s performance. For instance, gesture recognition systems can
identify and track specific gestures, such as "passing the needle through the material" or
"cutting the suture" during a suturing task, and offer real-time corrections for any inac-
curacies or inefficiencies. Furthermore, these systems can analyze recognized gestures to
verify that they are performed in the correct order and calculate performance metrics, such
as speed and smoothness, ensuring that students execute each gesture accurately.

By analyzing performance data, gesture recognition systems can tailor training pro-
grams to address individual weaknesses, recommending targeted exercises and adapting
training modules based on progress. In simulation environments, these systems can create
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realistic scenarios by replicating potential complications resulting from incorrect gestures,
providing interactive and instructive feedback. This real-time feedback can help students
understand the impact of their actions, encouraging them to practice more precise tech-
niques. Additionally, these systems can offer corrective suggestions and allow visualization
of the correct techniques, enhancing the interactivity and instructiveness of the simulation.

However, the development of surgical gesture recognition systems presents multiple
challenges. Variability in surgical environments, such as differences in lighting conditions,
occlusions within the surgical field, and diverse setups and equipment in simulation rooms,
can significantly impact the system’s performance. Moreover, the variability in how differ-
ent surgeons execute the same gesture adds complexity, as each may perform the gesture in
slightly different ways. To create a robust and accurate system, it is essential to ensure that
the dataset encompasses a wide range of surgical simulation procedures, surgeons with
varying skill levels, and varying environments conditions. Additionally, acquiring large
amounts of annotated surgical data poses a significant challenge due to the need for expert
annotation, which is both time-consuming and costly.

To improve the accuracy and robustness of surgical gesture recognition systems, incor-
porating multiple data modalities, such as kinematic data and video recordings of surgical
procedures, can be highly beneficial [29, 30, 31]. These modalities capture distinct yet com-
plementary patterns, offering a more holistic understanding of a surgeon’s actions. By inte-
grating these data sources, correlations between handmovements, instrumentmotions, and
visual cues in the video can be more effectively identified. Additionally, a multimodal ap-
proach enhances fault tolerance; for example, if unpredictable events like occlusions affect
the video, motion sensor data can serve as a backup, ensuring reliable model performance
even under challenging conditions.

Nevertheless, integrating multimodal data comes with its own set of challenges. Key is-
sues include differences in data representation and scale, synchronization difficulties, high
dimensionality, and potential data loss due to sensor failures or occlusions. An important
challenge concerns the effective fusion of different modalities throughmultimodal learning.
This involves determining the optimal stage for data fusion—whether at the early, interme-
diate, or late stages—and the design of advanced fusion techniques to make the most of the
different modalities.

The Transformer architecture [2] has emerged as the predominant choice for a wide
range of tasks due to its ability to handle sequential data, including multimodal learning
[100, 118], and temporal action segmentation [185, 186, 187]. Inspired by the success of the
Transformers in these domains, we introduce MGRFormer, a novel attention-based multi-
modal framework specifically designed for surgical gesture recognition. MGRFormer lever-
ages the complementary information from kinematic and videomodalities at the refinement
stage by incorporating a multimodal refinement module. To the best of our knowledge, this
is the first work to explore multimodal fusion at the refinement stage. We validate the effec-
tiveness of our approach through extensive experiments on the VTS surgical simulation-
based dataset [188].

Additionally, we propose a comparative statistical analysis of the surgical gestures per-
formed by attending surgeons and medical students by calculating multiple performance
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metrics. Our objective is to provide a comprehensive solution for enhancing surgical sim-
ulation training by integrating surgical gesture recognition with the calculation of perfor-
mance metrics. This approach will enable a detailed assessment of the proficiency and
efficiency of medical students.

The contributions of this chapter are three-fold and can be summarized as follows:

1. We propose a novel multimodal fusion framework that exploits the joint relationship
between kinematic and video modalities during the refinement stage.

2. To validate the proposed framework and demonstrate the complementarity between
the kinematics and video modalities, we provide both unimodal and multimodal
benchmarks.

3. OurMGRFormer significantly outperforms other state-of-the-artmethods on the VTS
dataset.

7.2 Related Work

In this section, we will review the key techniques and methodologies that form the founda-
tion of our proposed approach. We start by reviewingmethods for temporal action segmen-
tation, as our approach is fundamentally based on a method originally developed for this
task. Next, we present unimodal and multimodal methods relevant to the task of surgical
gesture recognition. Finally, to provide a broader context for our method, we will discuss
methods in the field of RGB-D based multimodal gesture recognition.

7.2.1 Temporal Action Segmentation

Temporal action segmentation refers to the localization of individual actions within a video
sequence. Traditional methods for identifying actions within video sequences typically in-
volved using a sliding window approach, followed by non-maximum suppression to se-
lect the most relevant candidates [189, 190]. Alternative approaches explore the use of
Bayesian model [191], Conditional Random Fields [192, 193], and Markov models [194].
Modern approaches for modeling long-range dependencies among actions involve the use
of deep neural networks, which encompass a variety of architectures such as Recurrent
Neural Networks [195, 196], Temporal Convolutional Networks [197, 198, 199, 200], Graph
Neural Networks [201, 202], and recent Transformers [185, 203, 204, 205]. Particularly,
the ASFormer [185] has established itself as a state-of-the-art solution for temporal ac-
tion segmentation. It employs a multi-stage process in which an initial stage generates the
initial prediction, followed by subsequent refinement stages responsible for refining and
fine-tuning the initial prediction.

While Transformers have achieved remarkable success in temporal segmentation tasks,
their application in multimodal contexts remains relatively unexplored. In this chapter, we
propose extending the ASFormer for the task of multimodal gesture recognition. We intro-
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duce a novel multimodal refinementmodule, which exploit the complementary information
between two different modalities through the use of multiple Transformer decoders.

7.2.2 Surgical Gesture Recognition

Numerous studies proposed the used of kinematics and video data, either independently or
in combination, for the task of surgical gesture recognition.

Unimodal

The utilization of robotic kinematics data has been a popular approach due to its precision
and the rich set of motion-related features it provides. Early work in this area primarily fo-
cused on traditional machine learning techniques. For instance, variants of hidden Markov
models [165, 206] have been proposed to classify surgical gestures based on kinematic data.

Recent advancements in deep learning have significantly improved performance, with
a rich variety of deep temporal models employed using robotic kinematics data. These
models include Convolutional Neural Networks [207], Temporal Convolutional Networks
[208, 188], Recurrent Neural Networks [209, 210, 188], and Transformers [211].

On the other hand, video-based gesture recognition has become increasingly popular
due to its ability to capture a comprehensive view of the surgical scene. Recent advance-
ments in computer vision and deep learning have significantly improved gesture recog-
nition from video data. For instance, Funke et al. [212] utilized 3D Convolutional Neural
Networks, Zhang et al. [213] employed Symmetric Dilated Convolution, and Liu et al. [214]
used Deep Reinforcement Learning.

Multimodal

Combining robotic kinematics data with video data can potentially leverage the strengths
of both modalities, providing a more comprehensive understanding of surgical gestures.
Several studies [193, 215, 29, 216] have reported consistent improvements when combining
kinematics and video data compared to the two individual modalities. The integration of
these two modalities has been investigated at the input level [216, 215], intermediate level
[217, 31], and prediction level [29]. However, a very limited number of studies have ex-
plored more complex multimodal approaches. In their paper [29], the authors introduced
Fusion-KVE, a novel approach that integrates visual features, kinematics data, and system
events. This method employs individual networks for each input modality and then com-
bines their predictions using a weighted voting scheme. Long et al. [30] proposed MRG-
Net, an approach that leverages the complementary information between kinematics and
visual features using a graph convolutional network. Van Amsterdam et al. [31] introduced
MA-TCN, which utilizes multimodal attention mechanisms to weight kinematic and visual
features.

– 116 –



Unlike the previously mentionedmethods, our approach employs a refinement strategy,
specifically a multimodal refinement module that integrates kinematics and video data. Re-
finement involves enhancing the initial predictions made by a model, typically by applying
additional processing or learning techniques. Surgical gesture recognition is a particularly
complex task because it requires understanding fine-grained, nuanced movements that can
vary significantly between surgeons, procedures, and contexts. A one-stage model, which
processes all information in a single pass, often lacks the capacity to fully capture this com-
plexity. By allowing the model to revisit and re-evaluate initial predictions, refinement
facilitates incremental adjustments that can better manage variability in the data.

7.2.3 RGB-D based Multimodal Gesture Recognition

The field of multimodal gesture recognition is constantly evolving, with numerous studies
exploring various modalities to enhance performance. The integration of RGB and depth
data has been extensively investigated for its potential to significantly improve gesture
recognition systems. This integration provides crucial spatial context by adding depth in-
formation to the RGB data, offering a more comprehensive understanding of gestures. In
their study, Hu et al. [218] introduced a novel deep bilinear framework designed to learn
time-varying information frommultimodal data. Furthermore, for capturing rich modality-
temporal patterns, they proposed a novel action feature representation, which encodes the
context of RGB-D actions into a tensor structure. Zhou et al. [219] introduced a novel
spatial-temporal representation learning framework consisting of decoupled spatial and
temporal representation learning networks, denoted as DSN and DTN, respectively, and a
recoupling representation learning network denoted as RCM. To effectively exploit multi-
modal interactions between unimodal branches, they proposed a cross-modal adaptive pos-
terior fusion module, termed CAPF. Furthermore, building upon the previously mentioned
work, Zhou et al. [220] introduced a new video data augmentation technique, ShuffleMix,
which mask randomly two video pairs along the temporal dimension and then mixes them.
They also enhanced the RCM module with a multi-head mechanism that independently
generates an attention map for each frame. Furthermore, they introduced a novel cross-
modal Complement Feature Catcher (CFCer) for multimodal fusion, aimed at improving
the results of late fusion.

7.3 Proposed Approach

In this section, we will introduce our MGRFormer framework, which has been designed
for the task of surgical gesture recognition. Figure 7.1 provides an overview of the pro-
posed framework, which consists of three key components: (1) a Kinematics Transformer
Encoder, (2) a Vision Transformer Encoder, and (3) a Multimodal Refinement Module.

Initially, kinematic and visual features are extracted using the Kinematics Transformer
Encoder and Vision Transformer Encoder, respectively. Both encoders are designed based
on the ASFormer Encoder [185]. Subsequently, initial predictions from one chosen modal-
ity, along with the extracted features from the other modality, are passed through a series
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Figure 7.1: Illustration of theMGRFormer framework, consisting of twoUnimodal Encoders
and a Multimodal Refinement Module for iterative cross-refinement using the output pre-
dictions of one modality and the Encoder features of the other modality.

of successive decoders to perform iterative cross-refinement via the proposed multimodal
refinement module. This refinement strategy involves progressively enhancing the ini-
tial predictions by integrating complementary information from both modalities to achieve
more accurate and reliable results. The MGRFormer framework has been designed to pre-
dict the probability distributions of surgical gestures for each time step in the data sequence.

7.3.1 Unimodal Transformer Encoder

The first component of our framework includes the Kinematics Transformer Encoder and
the Vision Transformer Encoder, which are responsible for extracting kinematic and visual
features. The Kinematics Transformer Encoder processes input kinematics data, denoted
as xkin, with dimensions T × dkin, while the Vision Transformer Encoder processes visual
features, denoted as xvis, with dimensions T×dvis. Here, T represents the sequence length,
and dkin and dvis represent the dimensions of kinematics and visual features, respectively.

For the visual features, we used either image features extracted from a pre-trained
ResNet-18 [67] or sequence of image features extracted from a pre-trained I3D [221]. The
ResNet-18 features have a dimension of 512, while the I3D features have a dimension of
1024. For the I3D feature, we added the RGB and flow predictions.

The initial stage of our framework involves linearly projecting each input feature, xkin

and xvis, onto embedding vectors zkin and zvis, respectively. This projection adjusts the
dimensionality of the input features. As in the ASFormer model, we have not employed po-
sitional encoding, as it has been shown to decrease model performance. Subsequently, each
embedding vector is passed through a series of encoder blocks. Finally, a fully connected
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layer generates initial predictions for either the kinematics or visual modality, denoted as
ŷkin or ŷvis. It is important to note that in our framework, only one modality is selected to
generate initial predictions.

The encoder is structured as a series of encoder blocks. Each block contains a temporal
convolution layer followed by a single-head self-attention layer. A residual connection is
incorporated around each of these sub-layers, followed by a ReLU activation function and
instance normalization. For more details on the encoder design, refer to [185].

We implemented self-attention using a local window of size w, as proposed in the origi-
nal ASFormer study. This choice was driven by the need to manage the substantial compu-
tational resources required for self-attention calculations in very long videos. The size of
the local window increases exponentially with the number of layers (w = 2i, i = 1, 2, . . .),
enabling a smooth transition from a local to a global focus and expanding the receptive field
to effectively encompass the entire video sequence. Additionally, we doubled the dilation
rate of the temporal convolution layer as the encoder depth increased, ensuring consistency
with the self-attention layer.

7.3.2 Multimodal Refinement Module

Motivation

Iterative refinement is a crucial component of modern state-of-the-art methods for tempo-
ral action segmentation. In this context, refinement refers to the process of progressively
improving a model’s initial predictions by using additional layers or stages that incorporate
more complex and higher-level contextual information. This iterative process involves ad-
justing the initial predictions based on the temporal relationships between different actions,
allowing the model to better understand and capture the sequence’s overall structure. As
a result, the refined predictions become more accurate, coherent, and consistent, aligning
better with the true temporal dynamics of the action sequences.

As discussed in Section 7.2, multimodal learning has the potential to enhance surgical
gesture recognition by the integration of multiple modalities. However, traditional fusion
techniques may not be optimal and could result in subpar performance. For instance, the
early fusion technique, which combines modalities at the input level, may fail to effectively
capture modality-specific patterns and can cause information loss due to discrepancies in
data scales, dynamics, or representations. On the other hand, the late fusion mechanism
presents its own set of challenges. Since the ASFormer generates multiple prediction out-
puts, effectively aggregating these outputs across different modalities can be difficult. A
straightforward approach might involve using an aggregation function to combine outputs
from different modalities at the same level, provided the modalities have an equal num-
ber of decoders. However, this method can lead to segmentation errors and may not fully
leverage the complementary information available between modalities.

To the best of our knowledge, no studies have explored the development of multimodal
fusion techniques specifically at the refinement stage. In this section, we introduce our pro-
posed Multimodal Refinement Module, which employs Transformer decoders to leverage
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the complementary information between kinematics and visual modalities during the re-
finement stage. We will begin by detailing the design of a single decoder and subsequently
explain how this design can be extended to incorporatemultiple decoders for iterative cross-
refinement.

One Decoder

The first decoder takes as input the initial predictions from either the kinematics or the
visual modality. These predictions are then passed through a fully-connected layer to adjust
their dimensions. The decoder itself consists of a series of decoder blocks, each containing
a temporal convolution layer and a cross-attention layer.

In our approach, cross-attention is computed between the encoder features from the
visual modality and the output of the preceding decoder block that refines the kinematic
initial predictions. Similarly, cross-attention is computed between the encoder features
from the kinematics modality and the output of the preceding decoder block that refines
the initial visual predictions.

Drawing inspiration from the decoder design in [185], we form the query (Q) and key
(K) by concatenating the encoder’s output with the previous decoder block’s output. The
value (V ), however, is solely derived from the output of the preceding decoder block. This
cross-attention mechanism allows each position in one modality’s encoder to attend to all
positions in the refinement process of the other modality.

Multiple Decoders

A single decoder might be insufficient to capture the complexity of the data and the intri-
cate relationships between surgical gestures over time. Multiple decoders can increase the
model’s capacity, enabling it to handle more complex patterns and dependencies.

Expanding from a single decoder to multiple decoders enables further iterative re-
finement. Each intermediate decoder computes cross-attention between its features and
the output predictions from the previous decoder. This iterative process allows for pro-
gressively integrating higher-level contextual information and refining predictions at each
stage.

Architecture Variations

We proposed different combinations for performing multimodal refinement using the kine-
matics (k) and video (v) modalities. We denote the process of refining our initial predictions
derived from the kinematics modality using the encoder features from the video modality
as MGRFormerk→v. Conversely, MGRFormerv→k refers to the situation where we refine our
initial predictions from the video modality with the encoder features from the kinematics
modality. As we will demonstrate later, a double refinement process can further enhance
predictions. For instance, we can refine the predictions from MGRFormerk→v using the
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kinematics encoder features, resulting in MGRFormerk→v+k. In Section 7.4, we will report
the performance for all possible combinations of single and double refinement between the
kinematics and video modalities.

7.3.3 Loss Function

The loss function L is composed of two parts: a frame-wise classification loss and a smooth
loss. The frame-wise classification loss is calculated as the negative log-likelihood of the
correct class, and the smooth loss computes the squared error between the probabilities of
successive frames. The loss function is defined as follow:

L =
1

T

∑
t

−log(yt,ĉ) + λ
1

TC

∑
t

∑
c

(yt−1,c − yt,c)
2

Here, yt,ĉ denotes the predicted probability for the ground truth label ĉ at time t. T
represents the total number of points and C the number of distinct surgical gestures. The
regularization term λ is fix at 0.60 in our experiments, balancing the classification loss and
the smooth loss. The smooth loss aims to encourage consistency in the prediction prob-
abilities between successive frames, which is particularly important for surgical gesture
recognition tasks. To train our model, we sum the losses associated with the predictions
from both the encoder and decoders.

7.3.4 Implementation details

Both Transformer encoders and decoders consist of 10 blocks each. Each input modality
is processed by a dedicated Transformer encoder. For single refinement, we employ three
decoders. For double refinement, we employ an additional decoder.

As mentioned previously, the input features xkin and xvis are projected onto the em-
bedding vectors zkin and zvis, whose dimension was fix to 128. Following the approach in
[185], we applied dropout to the input features of the encoder with a rate of either 0.2 or
0.3, which was chosen through empirical experimentation. In all experiments, we trained
our models using the Adam optimizer [113] with a learning rate of 0.0005.

7.4 Experimental Results

In this section, we will start by introducing the VTS dataset used in our experiments. Next,
we will present the evaluation metrics and framework employed to assess the performance
of the trained models. Lastly, we will discuss the results for the unimodal and multimodal
benchmark.
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(a) Frontal view (b) Side view

Figure 7.2: Suturing task performed on a tissue sample, observed from two different per-
spectives. These images have been extracted from the VTS dataset.

7.4.1 Dataset

We conducted our experiments using the Variable Tissue Simulation (VTS) dataset [222],
which consists of 24 participants performing a suturing task on two distinct types of tis-
sue simulators. These simulators were designed to represent different material properties:
tissue paper was used to simulate friable tissue, while rubber balloons were employed to
mimic arterial conditions. Each participant performed the suturing task twice on both sim-
ulators, resulting in a total of 96 recorded procedures. The cohort included eleven medical
students, one resident, and twelve attending surgeons. One left-handed surgeon was ex-
cluded from the study. The duration of each procedure varied from 2 to 6 minutes.

Kinematic data from both hands were captured using electromagnetic motion sensors,
while video data were recorded simultaneously by two cameras: a frontal camera focused
on the simulation material and a wide-angle camera capturing the surrounding environ-
ment, as illustrated in Figure 7.2. Both the sensors and the cameras were synchronized to
ensure simultaneous recording.

The suturing exercises were segmented into six distinct gestures:

• G0: “the background gesture"
• G1: “pass the needle through the material"
• G2: “pull the suture"
• G3: “perform an instrumental tie"
• G4: “lay the knot"
• G5: “cut the suture"

Surgical gesture recognition is framed as a multi-class classification task, where the goal
is to identify, at each time step of the surgical procedure, one of the six defined surgical
gestures.

7.4.2 Evaluation metrics

We evaluated our approach for the task of surgical gesture recognition using two types of
metrics: frame-wise and segmentation metrics.
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Frame-wise Metrics

• Accuracy: This measures the ratio of correctly classified gestures to the total number
of frames. It provides a simple and intuitive way to understand the overall perfor-
mance of the model on a per-frame basis. High accuracy indicates that the model can
correctly identify the gesture in each individual frame.

• Macro F1-score: This is the average of the F1-scores calculated for each gesture class
individually, treating all classes equally. This metric is particularly useful in assessing
the model’s performance across all gesture classes, especially when the classes are
imbalanced.

Segmentation Metrics

• Segmental Edit Score: This metric evaluates the structural similarity between the
predicted sequence of gestures and the actual sequence by counting the number of
operations (insertions, deletions, substitutions) needed to transform the predicted
sequence into the actual sequence.

• Segmental F1-score (F1@k): This metric assesses the overlap between predicted
and actual gesture segments with varying thresholds (10%, 25%, and 50%). The Seg-
mental F1-score is calculated as follows:

1. Define a Matching Criterion: For each threshold k%, a true positive is
counted if the predicted segment overlaps with the ground truth segment by
at least k% of the ground truth segment’s length.

2. Precision and Recall Calculation:
– Precision: The ratio of correctly predicted segments (true positives) to the

total number of predicted segments (true positives + false positives).
– Recall: The ratio of correctly predicted segments (true positives) to the

total number of actual segments (true positives + false negatives).
3. F1-Score Computation: The F1 Score is the harmonic mean of precision and

recall, given by:

F1@k = 2× Precision× Recall
Precision+ Recall

High segmental F1-score indicate that the model not only recognizes gestures cor-
rectly but also precisely identifies when each gesture starts and ends.

By using both frame-wise and segmentation metrics, we can comprehensively evaluate
our approach. Frame-wise metrics provide a detailed view of the model’s performance at
the granular level, ensuring that each frame is correctly classified. Segmentation metrics,
in contrast, offer insights into the temporal structure and boundary accuracy of the gesture
sequences. Together, these metrics ensure a thorough and robust evaluation of the model’s
performance in recognizing surgical gestures.
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Method Modality Features Acc F1-Macro Edit F1@{10,25,50}

LSTM [188] kin ✗ 81.26 77.05 84.69 88.07 83.69 68.13

GRU [188] kin ✗ 82.23 78.20 84.94 88.01 83.82 68.86

MS-TCN++ [188, 200] kin ✗ 82.40 78.92 86.30 89.30 85.79 71.12

ASFormer [185] kin ✗ 82.66 79.46 88.65 91.36 87.68 72.55

MS-TCN++ [200] frontal ResNet-18 77.84 73.34 77.80 81.36 78.21 63.87

MS-TCN++ [200] frontal I3D 82.85 78.85 86.33 89.98 87.39 74.33

ASFormer [185] frontal ResNet-18 79.25 75.20 84.17 87.16 83.86 69.00

ASFormer [185] frontal I3D 82.72 78.90 88.28 91.28 88.35 73.80

MS-TCN++ [200] side ResNet-18 84.45 81.71 82.35 87.01 85.32 77.01

MS-TCN++ [200] side I3D 86.83 84.14 86.68 90.85 89.83 82.48

ASFormer [185] side ResNet-18 85.44 82.87 86.26 90.44 88.98 80.41

ASFormer [185] side I3D 87.43 85.29 89.24 92.89 91.61 85.05

Table 7.1: Unimodal surgical gesture recognition. The terms "kin", "frontal", and "side" refer
to the specific modalities employed: kinematics data, frontal video, and side view video,
respectively.

7.4.3 Evaluation framework

Following prior works [188], we employed a subject-independent 5-fold cross-validation
strategy to train all our models. In each fold, the dataset was split into training, validation,
and test sets, following the methodology described in [188]. For each evaluation metric, we
reported the mean across all folds.

7.4.4 Results

We conducted both unimodal and multimodal benchmarks using kinematic data and video
from frontal and side views. For each video view, we employed features extracted using
ResNet-18 and I3D to evaluate MGRFormer’s capability to effectively handle both image
and video features, alongside kinematics data.

Unimodal

In Table 7.1, we present the performance of theASFormermodel, alongside results from sev-
eral state-of-the-art methods, across three modalities: kinematics, frontal-view, and side-
view video. The ASFormer consistently outperforms other methods across all input modal-
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Method Acc F1-Macro Edit F1@{10,25,50}

Fusion-KV [29] 81.94 77.28 83.33 87.21 83.18 68.25

MGR-Net [30] 77.70 73.87 81.49 85.08 80.64 62.17

MA-TCN [31] 79.91 75.64 82.02 86.21 82.32 66.38

MS-TCN++ (early) 82.01 79.07 82.54 86.65 83.97 71.26

MS-TCN++ (late) 82.77 79.56 86.69 89.32 85.52 70.84

ASFormer (early) 81.15 77.35 85.66 88.59 86.01 72.25

ASFormer (late) 81.85 77.82 84.04 88.12 85.02 71.58

MGRFormer v → k 82.80 79.29 88.06 91.55 88.50 73.61

MGRFormer k → v 83.85 80.35 88.34 91.28 88.12 74.71

MGRFormer v → v + k 80.66 76.69 84.67 87.93 85.31 70.39

MGRFormer k → k + v 83.81 80.47 88.22 91.81 89.14 76.28

MGRFormer v → k + v 82.07 78.46 87.22 90.40 87.43 73.40

MGRFormer k → v + k 84.05 80.66 89.14 92.30 89.80 76.40

Table 7.2: Multimodal surgical gesture recognition: kinematics + frontal view (ResNet-18
features). Regarding the notation for MGRFormer, the prediction derived from the modality
on the left side of the arrow is refined using the modalities on the right side. For instance,
MGRFormerk→v+k denotes the process where the kinematics prediction is first refined with
video features, followed by a subsequent refinement using kinematics features.

ities. Regarding the kinematics modality, we observed significant improvements of at least
0.54%, 2.35%, and 2.06% in terms of macro F1-score, Edit score, and F1@10, respectively. For
both frontal and side view modalities with ResNet-18 features, the ASFormer consistently
outperformed the MS-TCN++ across all types of extracted features. Specifically, for the side
view modality, the ASFormer surpassed the MS-TCN++ by 1.16%, 3.91%, and 3.43% in terms
of the macro F1-score, Edit score, and F1@10, respectively.

TheASFormer exhibits the best performances for all evaluationmetrics by using the side
view modality combined with I3D features. Conversely, the ASFormer shows the poorest
performance when employing the frontal view modality with ResNet-18 features. Further-
more, for both the frontal and side view modalities, we observe that using I3D features
yields superior performance compared to ResNet-18 features. This enhancement can be
attributed to the fact that I3D features are better suited for capturing temporal correla-
tions among adjacent frames. In contrast, ResNet-18 features are extracted from individual
images, neglecting the contextual information provided by neighboring frames.
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Method Acc F1-Macro Edit F1@{10,25,50}

Fusion-KV [29] 81.82 77.70 84.42 87.62 83.32 68.69

MGR-Net [30] 78.88 75.56 81.63 85.93 82.62 64.79

MA-TCN [31] 83.15 80.04 84.50 88.38 85.98 73.33

MS-TCN++ (early) 85.17 83.21 84.77 89.22 88.01 80.05

MS-TCN++ (late) 86.81 83.90 82.83 88.00 86.20 78.35

ASFormer (early) 85.76 83.42 86.93 90.76 89.26 80.80

ASFormer (late) 85.53 83.02 85.69 89.67 88.10 80.11

MGRFormer v → k 85.95 83.47 89.24 92.78 91.16 81.58

MGRFormer k → v 87.40 85.17 89.53 93.08 91.78 84.02

MGRFormer v → v + k 84.97 82.16 86.51 90.19 88.81 79.62

MGRFormer k → k + v 86.75 84.34 88.58 91.91 90.37 82.68

MGRFormer v → k + v 84.81 82.16 86.70 90.43 88.98 80.17

MGRFormer k → v + k 87.61 85.47 89.74 93.40 91.77 85.12

Table 7.3: Multimodal surgical gesture recognition: kinematics + side view (ResNet-18 fea-
tures).

Method Acc F1-Macro Edit F1@{10,25,50}

Vision Encoder 85.49 83.02 81.48 86.73 85.00 76.34

Kinematics Encoder 83.64 80.36 83.09 87.41 83.62 69.12

One Decoder 86.09 83.47 86.54 90.09 88.88 80.36

Two Decoders 86.15 83.75 87.91 91.51 89.97 82.19

Three Decoders (ours) 87.40 85.17 89.53 93.08 91.78 84.02

Four Decoders 85.26 82.71 87.52 91.14 89.79 81.19

Table 7.4: Comparative results from varying the number of decoders in MGRFormerk→v,
using kinematics data and side view video with ResNet-18 features. The performance when
using only vision and kinematics encoders are also included.
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Multimodal

We present the results regarding the fusion of the kinematics and video modalities in Tables
7.2, 7.3, 7.5, and 7.6. We benchmarked our method against several state-of-the-art multi-
modal methods that integrate kinematics with frontal and side view videos, using ResNet-
18 features. These techniques include Fusion-KV [29], MGR-Net [30], and MA-TCN [31].
Specifically for MGR-Net, we re-implemented the entire framework excluding the LSTM
module, as its inclusion leads to lower performance. Our comparison also featured MS-
TCN++ [200], a state-of-the-art approach in action segmentation, which employs an itera-
tive refinement. It should be noted that this particular refinement is different from the one
presented in our work. Furthermore, we tested MS-TCN++ under two classical multimodal
fusion settings: early and late fusion. The results of these comparisons are detailed in Tables
7.2 and 7.3. Our MGRFormer outperformed all the aforementioned state-of-the-art meth-
ods by a large margin in merging kinematics with both video perspectives. Specifically, for
the side view modality, MGRFormerk→v+k exceeded the performance of Fusion-KV, MGR-
Net, and MA-TCN by minimum margins of 5.43%, 5.24%, and 5.02%, respectively, in terms
of macro F1-score, Edit score, and F1@10. It also surpassed both the early and late fusion
variants of MS-TCN++, but to a lesser extent. We observed that both multimodal versions
of MS-TCN++ outperformed the other three baseline models. This enhancement is likely
due to MS-TCN++’s iterative refinement module, which boosts the network’s accuracy by
repeatedly refining gesture segment predictions.

To demonstrate the effectiveness of the multimodal refinement module, we conducted
an ablation study on the number of decoders inMGRFormerk→v, wherewe fused kinematics
and side view video with ResNet-18 features. As shown in Table 7.4, it was found that
selecting three decoders for iterative cross-refinement yielded the best performance across
all metrics. It was observed that adding another decoder beyond three did not lead to further
improvement, while it did add more complexity to the overall model. Furthermore, we
can observe that using at least one decoder significantly improves performance compared
to both the vision and kinematics encoders, which demonstrates the utility of the cross-
refinement module.

TheMGRFormer architecture consistently outperformed eachmodalitywhen used indi-
vidually. When integrating kinematics data and frontal view video features extracted using
ResNet-18, the MGRFormerk→v+k model significantly outperformed each input modality
when used separately, as demonstrated in Table 7.2. We observed enhancements of 1.20%,
0.49%, and 0.94% in terms of macro F1-score, Edit score, and F1@10, compared to the uni-
modal ASFormer trained on the kinematics data. Similarly, improvements of 5.46%, 4.97%,
and 5.14% were noted in comparison to the ASFormer trained with ResNet-18 features from
the frontal view modality. As for the fusion of kinematics data and the side view video with
ResNet-18 features, we observed significant improvements of at least 2.60% in macro F1-
score, 1.09% in Edit score, and 2.04% in F1@10, compared to the best results obtained from
each of the two individual modalities (see Table 7.3). Similar improvements were observed
with I3D features, as shown in Tables 7.5 and 7.6.

When comparing the results of the ResNet-18 and I3D features in combination with the
kinematics modality, theMGRFormer exhibits slightly superior performancewhen utilizing
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Method Acc F1-Macro Edit F1@{10,25,50}

ASFormer (early) 83.62 80.15 88.09 91.66 89.32 76.86

ASFormer (late) 83.73 80.13 86.73 90.20 87.61 74.92

MGRFormer v → k 82.74 79.21 88.00 91.30 88.69 74.92

MGRFormer k → v 83.12 79.77 89.53 92.44 89.48 74.79

MGRFormer v → v + k 82.60 79.07 87.85 91.20 88.41 75.45

MGRFormer k → k + v 83.21 79.29 87.47 90.90 87.86 74.09

MGRFormer v → k + v 83.12 79.57 88.60 91.79 89.05 75.81

MGRFormer k → v + k 82.95 79.44 88.36 92.01 89.30 74.14

Table 7.5: Multimodal surgical gesture recognition: kinematics + frontal view (I3D features).

the I3D features in regard of the side view modality (see Table 7.3 and 7.6). However, the
opposite effect can be observed when employing the frontal view modality (see Table 7.2
and 7.5).

To highlight the effectiveness of our MGRFormer framework compared to conventional
fusion techniques, we performed a comparative analysis against traditional multimodal fu-
sionmethods, including early fusion and late fusion. Specifically, ASFormer (early) concate-
nates the kinematics and video modalities at the input level, while ASFormer (late) adds the
predictions from both the encoders and decoders of the different modalities. For this par-
ticular case, it is worth noting that both ASFormer instances for each input modality must
have the same number of encoders and decoders to add the predictions from both modali-
ties of the same stage. By combining kinematics and side-view modalities with ResNet-18
features, MGRFormer achieved significant improvements over ASFormer (late). Specifi-
cally, we achieved a 2.45% increase in F1-score, a 4.05% improvement in the Edit score, and
a 3.73% enhancement in F1@10 with the configuration MGRFormerk→v+k (see Table 7.3).
Similarly, when compared to ASFormer (early), MGRFormerk→v+k demonstrated improve-
ments of 2.05%, 2.81%, and 2.64% in F1-score, Edit score, and F1@10, respectively.

For the frontal view modality, as shown in Table 7.2, MGRFormerk→v+k demonstrates
an improvement of 2.84%, 5.10%, and 4.18% in F1-score, Edit score, and F1@10, respectively,
compared to ASFormer (late). Furthermore, we observe improvements of 3.31%, 3.48%, and
3.71% in these metrics compared to ASFormer (early). When using I3D features with the
side view modality, there is an improvement over both baselines, albeit to a lesser extent,
as depicted in Table 7.6. However, for the frontal view modality with I3D features, Table 7.5
shows that MGRFormerk→v+k achieves only marginal improvements in Edit score, F1@10,
and F1@25 compared to ASFormer (early) and ASFormer (late).

These results demonstrate the superiority of our proposed method over traditional
multimodal approaches. Despite the notable performance gains, the complexity of our
MGRFormer model remains comparable to that of ASFormer (early). With a single cross-
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Method Acc F1-Macro Edit F1@{10,25,50}

ASFormer (early) 87.62 85.20 88.55 92.23 91.16 84.09

ASFormer (late) 87.68 85.13 86.62 90.83 89.69 82.89

MGRFormer v → k 86.90 84.57 88.26 91.91 90.82 83.86

MGRFormer k → v 88.39 86.03 89.55 93.46 92.38 86.29

MGRFormer v → v + k 87.24 84.47 89.11 92.36 91.23 84.47

MGRFormer k → k + v 87.47 85.31 87.81 91.85 90.32 83.46

MGRFormer v → k + v 87.44 85.09 89.54 92.61 91.51 84.93

MGRFormer k → v + k 88.10 85.89 89.91 93.51 92.40 85.66

Table 7.6: Multimodal surgical gesture recognition: kinematics + side view (I3D features).

refinement stage, MGRFormer requires only one additional encoder, while maintaining the
same number of decoders as ASFormer (early). The double cross-refinement version of
MGRFormer introduces only one extra decoder, resulting in a modest increase in complex-
ity, remaining only slightly more complex than in the single cross-refinement setting. In
contrast, compared to ASFormer (late), our method is significantly more efficient, requiring
only half the number of decoders in regard of the single cross-refinement setting. ASFormer
(late) demands training two separate models, each with one encoder and multiple decoders.

Finally, regarding the various settings associated with our MGRFormer framework, we
observe that the one-stage refinement model, MGRFormerk→v, consistently outperforms
MGRFormerv→k across all combinations of kinematic data and video views when evaluated
with ResNet-18 and I3D features, as shown in Tables 7.2, 7.3, 7.5, and 7.6. For instance, Table
7.6 demonstrates that MGRFormerk→v surpasses MGRFormerv→k in terms of F1-score, Edit
score, and F1@10 by 1.46%, 1.29%, and 1.55%, respectively. These results highlight the su-
perior performance of our framework in leveraging video encoder features to refine initial
kinematic predictions compared to the inverse approach.

The advantage of MGRFormerk→v can be attributed to the richer spatiotemporal con-
text provided by video data, which is critical for iterative refinement. Surgical gestures,
characterized by intricate, fine-grained movements and interactions with various tools and
tissues, are more discernible in video data. This modality captures not only the detailed vi-
sual context of the surgical site, including tool-tissue interactions and surgeon hand move-
ments, but also the subtleties necessary for accurately identifying gestures. In contrast,
while kinematic data is valuable, it lacks the visual nuances essential for distinguishing
between closely related gestures and focuses primarily on motion trajectories.

This observation is further supported by the findings in Table 7.4, where training the
Transformer encoder with side-view video data outperforms training with kinematic data
across several metrics, including accuracy, F1-score, F1@25, and F1@50. These results
demonstrate the superior contextual robustness of video data for gesture segmentation.
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Figure 7.3: Color-coded illustration of surgical gesture recognition on the VTS dataset, com-
paring ground truth with MGRFormerk→v predictions, trained using kinematics data and
I3D features from the side view.

However, kinematic data, which surpasses side-view video in terms of Edit score and
F1@10, can still enhance video-based predictions through our proposed multimodal re-
finement module—though to a lesser extent than when fusing kinematic predictions with
video features.

Furthermore, we reported results for all possible combinations of double refine-
ments involving kinematics and video modalities. As shown in Tables 7.2, 7.3, and 7.6,
MGRFormerk→v+k consistently outperformed the other combinations across each evalua-
tion metric. This finding aligns with expectations, as MGRFormerk→v achieved the best
results for one-stage refinement. When comparing single and double refinements, we ob-
served that MGRFormerk→v+k is more effective than MGRFormerk→v when integrating
kinematics and video data from both views using ResNet-18 features, as evidenced in Tables
7.2 and 7.3. Specifically, for the I3D features, MGRFormerk→v+k achieves superior results
compared to MGRFormerk→v in terms of Edit score, F1@10, and F1@50 when fusing kine-
matics with side view video, as shown in Table 7.6. In contrast, for the fusion of kinematics
data with frontal view video, MGRFormerk→v outperforms MGRFormerk→v+k across all six
evaluation metrics (refer to Table 7.5).

Figure 7.3 presents a visualization of the predictions of our proposed MGRFormerk→v

framework, which integrates kinematic data with I3D features extracted from the side-view
video, compared against ground truth for a sequence in the testing set. This visualization
highlights the temporal consistency of surgical gesture predictions achieved by leveraging
multimodal data with the MGRFormer model.

7.5 Surgical Gesture Analysis

In this section, we present a statistical analysis of the surgical gestures performed by at-
tending surgeons and medical students during suturing tasks, using the kinematics data
from the VTS dataset. Our goal is to assess the proficiency and efficiency of both type of
practioners across the different surgical gestures performed. By combining our proposed
MGRFormer model for surgical gesture prediction during suturing tasks with the calcula-
tion of relevant performance metrics, we aim to provide objective feedback at the level of
surgical gestures.
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This analysis will be particularly valuable for comparing the proficiency of learners to
that of experienced surgeons across different surgical gestures, thereby enabling the devel-
opment of targeted training programs for medical students and less experienced surgeons.
Additionally, these performance metrics will support the continuous monitoring of medical
students’ progress over time.

The performance metrics we will compute include gesture duration, gesture frequency,
path length, gesture speed, gesture acceleration, gesture smoothness, and gesture curva-
ture, which are well-established metrics proven to be effective for surgical skill analysis
[222, 166, 223]. These metrics can provide a comprehensive assessment of both the effi-
ciency and precision of surgical movements.

In the following, we will introduce each of the aforementioned performance metric and
then provide an analysis of the results associated with each metric.

7.5.1 Surgical Performance Metrics

The performance metrics will be derived from the barycenter position of each hand, calcu-
lated using the spatial coordinates from the three sensors positioned on each hand. These
metrics will be computed for each defined surgical gesture.

Gesture Completion Time

Description: The total time taken to perform a surgical gesture.
Calculation: Measure the time from the beginning to the end of the surgical gesture.
Equation:

T = tend − tstart (7.1)

Where T denotes the completion time of the gesture perform, with tstart and tend repre-
senting the start and end times of the gesture, respectively.

Gesture Frequency

Description: The number of times each specific gesture is performed within the suturing
task.
Calculation: Count the occurrences of each surgical gesture (G0 to G5) within the suturing
procedure.
Equation:

Fg =
N∑
i=1

I(gi = G) (7.2)

Where Fg is the frequency of surgical gesture G, N is the total number of perform surgi-
cal gestures in the suturing procedure, and I is the indicator function that equals 1 when
gesture gi is G, and 0 otherwise.
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Path Length

Description: The total distance traveled by the hand during the execution of a surgical
gesture.
Calculation: Compute the distance between consecutive barycenter positions of the hand
and sum these distances.
Equation:

L =
N−1∑
i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2 (7.3)

Where L is the path length, (xi, yi, zi) and (xi+1, yi+1, zi+1) are consecutive barycenter of
the hand positions, and N is the number of data points.

Gesture Speed

Description: The average speed of the hand for a given surgical gesture.
Calculation: Divide the total path length by the total duration of the gesture.
Equation:

S =
L

T
(7.4)

Where S is the average speed of execution, L is the path length, and T is the total duration
of the gesture.

Gesture Acceleration

Description: The average absolute rate of change in the speed of the hand.
Calculation: Compute the average acceleration over the duration of the procedure.
Equation:

ai =
|vi+1 − vi|
ti+1 − ti

(7.5)

A =
1

N − 2

N−2∑
i=1

ai (7.6)

Where N is the total number of gestures performed during the suturing task, ai is the
absolute acceleration at time ti, and A is the average acceleration.

Gesture Smoothness

Description: The fluidity of the gesture, often measured by the jerk (rate of change of
acceleration).
Calculation: Compute the standard deviation of the absolute jerk values over time. This
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provides an indication of the variability in the smoothness of the gesture.
Equation:

ji =
|ai+1 − ai|
ti+1 − ti

(7.7)

Where ji is absolute jerk at time ti.

JSD = SD(j) (7.8)
Where JSD is the standard deviation of the absolute jerk values j.

Curvature of Path

Description: How sharply the barycenter’s path deviates from a straight line.
Calculation: Compute the curvature using consecutive position vectors.
Equation:

Curvature = |v1× v2|
|v1| · |v2|

(7.9)

Where:

• v1 is the vector from the barycenter position at time ti to the barycenter position at
time ti+1:

v1 = (xi+1 − xi, yi+1 − yi, zi+1 − zi) (7.10)

• v2 is the vector from the barycenter position at time ti+1 to the barycenter position
at time ti+2:

v2 = (xi+2 − xi+1, yi+2 − yi+1, zi+2 − zi+1) (7.11)

• v1 × v2 denotes the cross product of v1 and v2, which results in a vector perpen-
dicular to the plane formed by v1 and v2.

• |v1| and |v2| are the magnitudes of vectors v1 and v2, respectively.

7.5.2 Performance Analysis

Performance metrics will be calculated separately for attending surgeons and medical stu-
dents for each of the previously defined surgical gestures. For gesture completion time and
frequency metrics, results will be reported for both the tissue and balloon simulators. For
all other performance metrics, results will be presented for both hands but only for the tis-
sue simulator, as including performance data for both simulators would be redundant and
overly detailed.

For each performancemetric, we present a box plot for each practionner type and across
all gesture. Furthermore, the differences in means between the two groups (attending sur-
geons and medical students) were analyzed using an independent two-sample t-test for
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(a) Tissue Simulator

(b) Balloon Simulator

Figure 7.4: Box plots comparing the time spent (in seconds) to complete various surgical
gestures (G0 to G5) during suture procedures by attending surgeons and medical students.
The procedures were performed using two different types of simulators. Significance levels
are indicated as follows: * p-value < 0.05, ** p-value < 0.01, and *** p-value < 0.001.

all gestures. The statistical significance of the differences is indicated in the box plots as
follows: * p-value < 0.05, ** p-value < 0.01, and *** p-value < 0.001. This test was chosen
because it allows for comparing the means of two independent groups to determine if there
is a statistically significant difference between them.

To enhance the clarity of the box plots, especially given the varying spread and the
presence of outliers across different gestures, the plots display data up to the 99th percentile
of the values across all gestures. The 1% of the largest values were omitted to prevent
extreme outliers from distorting the visualization, making the central distribution of data
more interpretable.
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(a) Tissue Simulator

(b) Balloon Simulator

Figure 7.5: Box plots showing the frequencies of different surgical gestures (G0 to G5) dur-
ing suture procedures performed by attending surgeons and medical students using two
types of simulators.

Gesture Completion Time: The box plots in Figure 7.4 illustrate the time spent on each
surgical gesture by both attending surgeons andmedical students on both tissue simulators.
Medical students consistently took longer compared to attending surgeons across nearly all
surgical gestures and tissue simulators. For instance, students spent significantly more time
on gestures such as passing the needle through thematerial (G1) and pulling the suture (G2).

Gesture Frequency: Frequencies associated with each surgical gesture, reported in Fig-
ure 7.5, reveal notable differences between attending surgeons and medical students. Med-
ical students demonstrated a significantly higher frequency of the background gesture (G0)
across both simulators, suggesting a higher level of correction or adjustment during the su-
turing procedure, indicative of their relative inexperience. Conversely, attending surgeons,
due to their extensive experience, performed fewer adjustments and pauses.
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(a) Left Hand

(b) Right Hand

Figure 7.6: Box plots illustrating the normalized path lengths of the left and right hands
across different surgical gestures (G0 to G5) during suture procedures. These procedures
were performed on a tissue simulator by both attending surgeons and medical students.

Path Length: For each surgical gesture presented in Figure 7.6, we reported the nor-
malized path lengths. The comparative analysis between attending surgeons and medical
students across all surgical gestures reveals a nuanced performance difference. While at-
tending surgeons demonstrate significantly shorter path lengths in certain gestures (G0,
G1 for the left hand and G0, G3, G4 for the right hand), medical students show lower path
length for gesture G5 with the right hand. For other gestures, the performance between the
two groups is comparable.

Gesture Speed and Acceleration: Figures 7.7 and 7.8 depict the average normalized
speed and average normalized acceleration, respectively. As expected, attending surgeons
performed most surgical gestures (G1, G2, G3, G4, G5 for the left hand; G0, G1, G2, G4, G5
for the right hand) at a faster pace. Additionally, attending surgeons demonstrated higher
acceleration compared to medical students for gestures G1, G2, G3, G4, and G5 with the left
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(a) Left Hand

(b) Right Hand

Figure 7.7: Box plots illustrating the averaged normalized speeds of the left and right hands
across different surgical gestures (G0 to G5) during suture procedures. These procedures
were performed on a tissue simulator by both attending surgeons and medical students.

hand, and for all surgical gestures with the right hand. These findings clearly indicate the
attending surgeons’ expertise, efficiency, and confidence in performing complex surgical
gestures, likely developed through extensive practice and experience, resulting in refined
and efficient movements.

Gesture Smoothness: The box plots in Figure 7.9 display the gesture smoothness per-
formance metric. Attendingsurgeons exhibit significantly higher values for G1 (passing the
needle through the material), G3 (performing an instrumental tie), and G4 (laying the knot)
with the left hand, as well as for G1 (passing the needle through the material), G2 (pulling
the suture), and G3 (performing an instrumental tie) with the right hand.
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(a) Left Hand

(b) Right Hand

Figure 7.8: Box plots illustrating the averaged normalized accelerations of the left and right
hands across different surgical gestures (G0 to G5) during suture procedures. These pro-
cedures were performed on a tissue simulator by both attending surgeons and medical
students.

Gesture Curvature: We reported the average normalized curvature in Figure 7.10. No
clear pattern was observed across the different surgical gestures for either hand. However,
significantly higher mean values were noted for attending surgeons performing G0 with
the left hand and G0 and G3 with the right hand. Conversely, medical students exhibited
significantly higher mean values for G3 with the left hand and G1 with the right hand.

Summary and Implication for Surgical Training

The overall analysis reveals distinct performance on certain metrics between attending
surgeons and medical students across multiple surgical gestures. Attending surgeons per-
formed most surgical gestures in less time, at higher speeds and accelerations. They also
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(a) Left Hand

(b) Right Hand

Figure 7.9: Box plots illustrating the standard deviation of the gesture smoothness perfor-
mance metric for the left and right hands across various surgical gestures (G0 to G5) during
suturing procedures. These procedures were conducted on a tissue simulator by both at-
tending surgeons and medical students.

exhibited shorter path lengths and demonstrated higher gesture smoothness for certain
surgical gestures. These findings offer valuable insights into the proficiency levels of ex-
perienced surgeons and highlight specific areas where medical students lag. These infor-
mations can directly inform surgical training by developing targeted tools that focus on
improving these specific skills among medical students.

Automatic surgical gesture recognition, combined with performance metric analysis,
can significantly enhance the development of training systems that monitor student per-
formance in real time. As students engage in surgical tasks, the system can automatically
identify and assess their gestures, comparing them to benchmarks set by experienced sur-
geons. For example, if the system identifies that a student’s gestures are slower or less
precise than those of an expert, it can immediately provide tailored feedback, offering spe-
cific adjustments or exercises to target those deficiencies. This real-time feedback loop is
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(a) Left Hand

(b) Right Hand

Figure 7.10: Box plots illustrating the average normalized curvature for the left and right
hands across various surgical gestures (G0 to G5) during suturing procedures. These pro-
cedures were conducted on a tissue simulator by both attending surgeons and medical stu-
dents.

crucial for helping students rapidly correct errors, refine their techniques, and accelerate
their learning process.

7.6 Discussions

7.6.1 Implications of Findings

The proposed MGRFormer framework demonstrates state-of-the-art performance in surgi-
cal gesture recognition, significantly outperforming existing methods on the VTS dataset.
This achievement underscores the importance of leveraging multimodal data, specifically
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the integration of kinematic and video modalities, to enhance surgical gesture recognition
accuracy. By combining these modalities, the MGRFormer framework effectively captures
complementary patterns from both data types, providing a more comprehensive under-
standing of surgical gestures. This capability is particularly valuable for developing ad-
vanced surgical training systems that can provide more accurate surgical gesture predic-
tions.

Furthermore, effectively leveraging multimodal data is crucial for achieving optimal
performance by making the most of each modality. A major contribution of this study is
the introduction of a multimodal refinement module, which significantly enhances model
accuracy. The clear performance gap between methods that use refinement and those that
do not underscores the importance of this technique for accurate surgical gesture recogni-
tion.

The implications of this study extend beyond improved gesture recognition accuracy.
By coupling performance metrics with surgical gesture recognition, the system can provide
objective and targeted feedback, facilitating the identification of specific skill gaps for med-
ical students. This capability will allow for the development of tailored training programs
that can adapt to the individual needs of students.

Moreover, the MGRFormer’s performance on the VTS dataset, which includes vari-
ability in environmental conditions such as lighting, occlusions, and minor camera dis-
placements between recordings, demonstrate its adaptability to real-world surgical envi-
ronments. This ability to perform well under varying conditions suggests that the model
could be effectively adopted for real-world application.

7.6.2 Limitations

Despite the promising outcomes, several limitations need to be acknowledged that could
impact the broader applicability of the MGRFormer framework.

A primary limitation is the computational complexity involved in training MGRFormer.
The model’s architecture, comprising two encoders and multiple decoders, demands sub-
stantial computational resources and time due to the large number of parameters that need
to be optimized. Consequently, training such a model requires specialized hardware, which
could limit its accessibility. Additionally, the model’s complexity may hinder its deploy-
ment on wearable devices that have limited processing power and battery life.

Another significant limitation lies in the dependence on annotated surgical data for
training the models. Acquiring high-quality annotated data is a time-consuming and ex-
pensive process, as it requires domain expertise to ensure the accuracy of the annotations.

A third limitation concerns the reliance on kinematic data for computing performance
metrics to provide objective feedback to medical students on various aspects of their perfor-
mance. In this study, kinematic data was collected using specialized and expensive equip-
ment, such as sensor-based gloves that track handmovements. These devices, while provid-
ing motion data, are often cumbersome and uncomfortable for users, potentially hindering
natural hand movements and interactions during surgical simulations. Additionally, the
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high cost and maintenance requirements of such specialized equipment pose challenges
for widespread adoption in educational settings, particularly for institutions with budget
constraints.

Another significant challenge with the MGRFormer framework is the dependency on
the simultaneous availability of both kinematic and video data for making predictions. In
practice, ensuring that both types of data are consistently available can be difficult, partic-
ularly in real-world or clinical settings where data capture conditions are less controlled.
The absence of either data type at any point can severely impair the model’s ability to
make accurate predictions, highlighting a critical vulnerability of the approach. This de-
pendency can be a major barrier to broader implementation, especially in scenarios where
kinematic data might be missing due to equipment failure, data loss, or limited access to
specialized sensors. The need for both data types to be present and synchronized at all times
complicates the deployment and reduces the robustness of the MGRFormer framework in
environments with inconsistent data availability.

Lastly, the use of static view cameras in capturing video data for surgical gesture recog-
nition. Static cameras, typically positioned at a fixed point in the simulation environment,
limit the field of view and may fail to capture the intricate details of hand movements
and instrument handling from multiple angles. This restricted perspective can result in
occlusions, where critical gestures or tool manipulations are partially or fully obscured,
leading to a loss of valuable visual information necessary for accurate gesture recognition.
These limitations reduce the robustness and reliability of the recognition system in diverse
or dynamic surgical settings where conditions frequently change. As a result, the current
approach’s dependency on static view recordings may not adequately capture the complex-
ity and variability of real-world surgical procedures, limiting its effectiveness in providing
comprehensive feedback in educational or clinical contexts.

7.6.3 Future Directions

To enhance the applicability and effectiveness of the MGRFormer framework, future re-
search should focus on several key areas that address the identified limitations and expand
upon the findings of this study.

Firstly, the MGRFormer model should be evaluated on additional surgical simulation
datasets that encompass different surgical procedures to assess its effectiveness across di-
verse surgical contexts. This evaluation would require the collection of new datasets repre-
senting different surgical tasks, each featuring a large number of participant with varying
surgical skills, and varying environment setting in order to develop generalizable models
and effective models for real-world application.

To address the challenge of computational complexity, future work could explore more
efficient architectures or model compression techniques, such as knowledge distillation,
pruning, or quantization. These approaches could reduce the number of parameters and
computational demands, leading to more efficient inference and deployment on resource-
constrained devices.
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To mitigate the reliance on annotated surgical data, future research should investigate
more the application of unsupervised, or self-supervised learning approaches. These meth-
ods can leverage large amounts of unlabeled data for pre-training the model, which can
subsequently be fine-tuned with a smaller annotated dataset. Such strategies would reduce
the dependency on costly expert-annotated data, making the framework more scalable and
feasible for widespread adoption. For instance, contrastive learning techniques could be
employed to learn useful feature representations from unlabeled video data, enabling the
model to better understand surgical gestures without extensive manual annotation.

Another promising direction involves the used of more advanced data collection meth-
ods, such as first-person view (FPV) perspectives. Current systems relying on static view
cameras are limited by their fixed positions and potential occlusions, which can obscure
critical gestures and tool manipulations. By incorporating FPV cameras mounted on surgi-
cal instruments or practitioners, the system could capture more detailed and dynamic views
of hand movements and instrument handling. This would allow for a richer understanding
of the surgical workflow, ultimately improving the system’s robustness in recognizing and
analyzing surgical actions. Furthermore, FPV setups are particularly beneficial in the con-
text of surgical simulations, where replicating the complexity and variability of real-world
procedures is crucial for effective training. FPV cameras can easily be integrated into simu-
lation environments, capturing detailed and immersive perspectives that closely mimic the
practitioner’s view during surgery. This adaptability makes FPV ideal for advanced sim-
ulations involving complex, multi-step tasks and varied environments, thereby enhancing
the realism and educational value of the simulation. Additionally, FPV can also be rele-
vant for actual surgical operations, providing continuous, real-time perspectives that adapt
to the surgeon’s movements and capturing intricate details that static cameras might miss.
This capability allows for better data collection even in the complex and variable conditions
of live surgeries, supporting more effective training, evaluation, and performance analysis
across both simulated and real-world contexts.

To further enhance the feedback provided to medical trainees, future research should
also focus on developing more specialized performance metrics using advanced computer
vision tools. Current metrics derived from kinematic data often require expensive and
cumbersome equipment, which may not be practical in all settings. Instead, leveraging
computer vision techniques to analyze video data could provide a less intrusive and more
cost-effective way to measure key performance indicators. For instance, hand pose esti-
mation and surgical tool trajectory analysis can be used to compute performance metrics.
Specifically, hand pose estimation can facilitate the design of more advanced metrics, such
as precise hand positioning, finger movement coordination, and joint angle variability dur-
ing critical maneuvers, which are indicative of skill levels and proficiency. These advanced
metrics will allow for a more detailed and nuanced assessment of a medical student’s skills,
capturing subtleties of performance without relying on specialized hardware.
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7.7 Conclusion

This chapter introduces MGRFormer, a novel Transformer-based multimodal framework
designed for the task of surgical gesture recognition. MGRFormer incorporates an innova-
tive multimodal refinement module that effectively leverages the complementary informa-
tion between kinematic and video data during the refinement stage. Extensive experiments
on the VTS dataset demonstrate that MGRFormer outperforms by a large margin existing
multimodal approaches and traditional fusion techniques, achieving state-of-the-art perfor-
mance. Our results highlight superior recognition accuracy across various combinations of
kinematic and video modalities, including frontal and side views, using ResNet-18 and I3D
features.

Our findings underscore the critical role of integrating data frommultiple sources to en-
hance surgical gesture recognition systems, providing a more comprehensive understand-
ing of surgical actions. Moreover, we demonstrate the importance of effectively leveraging
multimodal data tomaximize the contribution of eachmodality. Additionally, we emphasize
the significant impact of incorporating a refinement module in improving the performance
of surgical gesture recognition systems.

We also present a comprehensive statistical analysis comparing the performance of at-
tending surgeons and medical students across key metrics for all defined surgical gestures.
This analysis reveals notable differences in performance on specific metrics for certain ges-
tures, providing insights into varying levels of proficiency. Consequently, combining surgi-
cal gesture recognition systems with performance metrics calculated on the predicted ges-
tures could facilitate the development of educational tools that provide granular, gesture-
level feedback, ultimately enhancing surgical training and skill acquisition.
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This chapter introduces two novel datasets for surgical gesture recognition, addressing
the limitations of existing datasets. The first dataset contains video recordings of attending
surgeons and surgical residents performing the peg transfer task, while the second dataset
features first-person video recordings of suturing tasks performed by both attending sur-
geons and medical students. For the peg transfer dataset, we conducted both unimodal
and multimodal benchmarks. Additionally, we validated the MGRFormer framework, in-
troduced in Chapter 7, within the multimodal benchmark setting. For the suturing dataset,
we performed unimodal benchmark.

In Section 8.1, we discuss the importance of surgical simulation training and highlight
the need for collecting new datasets to advance surgical gesture recognition in this context.
Section 8.2 reviews the existing datasets and their limitations in the context of surgical ges-
ture recognition. Subsequently, Section 8.3 introduces the two collected datasets. Next,
Section 8.4 presents the experimental results for both datasets. Section 8.5 offers a com-
parative statistical analysis of surgical gestures performed by attending surgeons versus
medical students across both datasets. Lastly, Section 8.6 discusses the implications, limi-
tations, and future directions of our work, and Section 8.7 summarizes our contributions.

8.1 Introduction

Medical simulation has become an important part of modern medical education, providing
a safe, controlled environment for medical students and professionals to develop and refine
their skills without risk to patients. This is particularly important in surgical training for
several reasons. First, surgical procedures are becoming increasingly complex, requiring
more hands-on experience. Simulation sessions can help by allowing medical students to
repeatedly perform complex tasks until they achieve the necessary level of dexterity and
confidence. Furthermore, the traditional apprenticeship model of surgical training, often
summarized as "see one, do one, teach one," is no longer adequate in today’s medical land-
scape, where patient safety is paramount. Opportunities for trainees to practice and learn
from mistakes on actual patients are limited. In this regard, simulation bridges the gap by
providing a risk-free environment where errors can occur and be corrected without jeop-
ardizing patient care.

In the preceding chapter, we introduced a novel multimodal deep learning approach for
automatic surgical gesture recognition, which significantly outperformed the state-of-the-
art on the VTS dataset [222]. This chapter serves as a continuation of that work, building
upon the methodological advancements presented earlier. Here, we shift our focus to the
data itself—specifically, the limitations of existing datasets and the need for more diverse
and realistic data to further advance the field.

The incorporation of such advanced technologies into simulation-based training holds
great promise for enhancing educational outcomes by offering objective performance met-
rics and instantaneous feedback. However, the success of these innovations is heavily
dependent on the availability of comprehensive, high-quality datasets. Despite notable
progress, the research community continues to face challenges due to the limited availabil-
ity of diverse public datasets necessary for developing surgical gesture recognition meth-
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ods.

In this chapter, we introduce two new datasets designed to address the limitations of
existing datasets. Collected at the PRESAGE medical simulation center at the University of
Lille, these datasets focus on two surgical tasks: peg transfer and suturing. The peg transfer
task was performed by both attending surgeons and surgical residents multiple times. The
dataset includes videos of the procedures and the corresponding surgical tool trajectories,
tracked using a YOLOv8 model. The second dataset comprises first-person video record-
ings capturing attending surgeons and medical students performing a suturing procedure
multiple times. We conducted unimodal and multimodal benchmarks for surgical gesture
recognition on the peg transfer dataset, as well as a unimodal benchmark for surgical ges-
ture recognition on the suturing dataset.

In both datasets, the ASFormer architecture [185] significantly outperformed state-of-
the-art methods in the unimodal setting. Moreover, our previously introduced multimodal
MGRFormer framework achieved superior performance on the peg transfer dataset for the
multimodal setting.

Additionally, as done in the preceding chapter with the VTS dataset, we conducted a
comparative statistical analysis on the defined surgical gestures across both datasets to eval-
uate performance differences between attending surgeons and medical students. The aim
will be to combine surgical gesture predictions and the computation of performance met-
rics to improve surgical simulation training by providing objective feedback at the gesture
level.

The key contributions of this chapter are summarized as follows:

1. We introduce two datasets focused on peg transfer and suturing tasks, collected at
the PRESAGEmedical simulation center. The peg transfer dataset includes both video
recordings and tool trajectory data, while the suturing dataset features first-person
video recordings.

2. We establish comprehensive unimodal and multimodal benchmarks for surgical ges-
ture recognition on the peg transfer dataset, and a unimodal benchmark on the su-
turing dataset.

3. Our MGRFormer framework demonstrates state-of-the-art performance in the mul-
timodal setting on the peg transfer dataset.

8.2 Related Work

Recent advancements in surgical gesture recognition have been significantly influenced by
the introduction and evaluation of various datasets, each contributing to the field but also
facing distinct challenges and limitations.

The JIGSAWS (JHU-ISI Gesture and Skill Assessment Working Set) [164] dataset is a
widely used benchmark for surgical gesture recognition and surgical skill assessment. It
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consists of kinematic and video data collected on three surgical simulation tasks (suturing,
needle-passing, and knot-tying) performed on a da Vinci robotic surgical system. A key
advantage of this dataset is its multimodal nature, allowing for the development of more
robust and accurate models for surgical gesture recognition by leveraging complementary
data sources. However, the dataset has several limitations. Firstly, the dataset includes only
eight surgeons with varying skill levels (novice, intermediate, expert), significantly limiting
the diversity and representativeness of the data. This small sample size raises concerns
about the generalizability of models trained on this dataset, as these models may be prone
to overfitting and might struggle when applied to data from other surgeons with different
styles or skill levels. Furthermore, the fixed camera perspective in the JIGSAWS dataset
restricts its ability to capture the full range of surgeon gestures and tool interactions—an
especially important factor for complex tasks like suturing.

In [30], the authors evaluated their proposed framework using two public datasets con-
taining both kinematic data and video recordings from a fixed camera perspective. These
datasets, collected using the da Vinci Research Kit (dVRK) platforms at two different cen-
ters, consist of a peg transfer task performed by the same user on each platform, with 12
recorded sequences per site. The small size of the dataset as well as being limited to a sin-
gle user pose significant challenges. The homogeneity of the dataset may not adequately
capture the variability in surgical gestures across different users and environments, po-
tentially leading to overfitting and limited generalizability of the model to other surgeons
with varying techniques and styles. Moreover, the peg transfer exercise in this dataset is a
simplified version of the task described in the Fundamentals of Laparoscopic Surgery (FLS)
program [224]. By limiting the task to the transfer of a single peg from left to right, the
dataset fails to capture the full complexity of the FLS peg transfer task, which involves the
multiple transfers of six pegs. This simplification neglects key aspects of the task, such
as the repetitive nature and the coordination challenges, which are crucial for assessing a
surgeon’s skill. As a result, models developed using these datasets may not be adequately
tested on the broader range of skills required for laparoscopic surgery, potentially limit-
ing their effectiveness and generalizability to more complex surgical tasks and real-world
applications.

Similarly, Gazis et al. [225] introduced two datasets comprising training session videos
on two fundamental laparoscopic tasks: peg transfer and knot tying. These tasks were
performed 2-3 times by a group of 15 surgical trainees, resulting in a total of 40 trials for
each task. The peg transfer task involved the placement of four cylindrical pegs onto a
pegboard. The first two pegs were placed directly on the pegboard using either the left or
right laparoscopic tool, while the remaining two pegs were first transferred between tools
before being placed on the board. This version of the peg transfer task differs in some no-
table ways from the peg transfer exercise included in the FLS program. In the FLS exercise,
the task typically involves six pegs rather than four. Moreover, the FLS exercise is struc-
tured to require that all six pegs be transferred from one side of the pegboard to the other,
using both hands, and then transferred back to their original side. Another limitation is
that the surgical procedures were exclusively performed by surgical trainees, without in-
cluding attending surgeons. This restricts the ability to develop educational tools based on
this dataset that could compare the performance of individual trainees to a benchmark set
by experienced surgeons, which would provide more meaningful assessments and targeted
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guidance, as we proposed to do in the previous chapter.

On the other hand, the VTS dataset [222], previously used in the preceding chapter to
evaluate our proposed multimodal deep learning approach, offers several advantages. No-
tably, it includes a large group of participants: 12 attending surgeons, 11 medical students,
and 1 surgical resident, each performing a suturing procedure twice on two different tissue
simulators—tissue paper and a rubber balloon, resulting in a total of 96 surgical procedures.
The balanced distribution between attending surgeons and medical students facilitates a
comparative analysis of surgical gestures between the two groups across various perfor-
mance metrics, contributing to the development of educational tools for medical students.
Moreover, the dataset features both kinematics data and video data with two different views
(close-up and side view) of the surgical procedures, enabling a richer and more comprehen-
sive analysis. A key strength of this dataset, is that it includes a comprehensive view of the
participants as they perform the suturing tasks. This allows for the observation of the entire
performance, including the participant’s hands, tools, and the complete surgical simulation
environment, providing a more holistic perspective of the procedure. This enables a richer
multimodal analysis, where the interaction between different aspects of the procedure can
improve the accuracy of surgical gesture recognition systems. However, the dataset is not
without limitations. Both cameras are fixed in position, leading to frequent occlusions dur-
ing the procedures. This static camera setup poses challenges when attempting to replicate
the dataset’s conditions in more complex environments, such as an operating room, where
dynamic and variable conditions are common.

These existing datasets have significantly advanced the field of surgical gesture recog-
nition, each bringing valuable insights while also facing inherent limitations. To address
some of these gaps, we introduce two new datasets on two surgical tasks: peg transfer
and suturing. Unlike previous peg transfer datasets [30, 225], our dataset includes a larger
and more diverse participant pool, featuring 11 attending surgeons and 14 surgical resi-
dents, each performing the task between 1 and 4 times, resulting in a total of 68 recorded
procedures. Notably, this dataset exclusively contains video recordings of the exercise, in
contrast to datasets like JIGSAWS, VTS, and those using the dVRK platform, which also
incorporate kinematic data. These existing datasets rely on specialized equipment to cap-
ture kinematic data, such as the da Vinci robotic system or gloves with embedded sensors,
which can impose significant constraints on scalability and generalizability.

Instead, we propose to extract the trajectory of the surgical tools directly from video
recordings using a YOLOv8 deep learning model. This approach is more flexible and less
intrusive, as it avoids the need for expensive robotic systems orwearable sensors, enabling a
more natural and adaptable data collection process. Additionally, our peg transfer protocol
aligns with the standards of the FLS program, involving multiple transfers of six pegs from
left to right and vice versa.

The second dataset that we collected includes video recordings of attending surgeons
and medical students performing a suturing task, captured from a first-person view (FPV).
The inclusion of FPV footage addresses some of the critical limitations associated with fixed
camera perspectives in existing datasets like JIGSAWS and VTS [164, 222]. Traditional
fixed viewpoints often lead to occlusions, limited coverage of fine motor gestures, and a
lack of detailed visualization of hand-tool interactions, all of which are vital for accurate
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gesture recognition and assessment. In contrast, an FPV perspective offers an immersive
view closely alignedwith the surgeon’s visual attention, capturing intricate toolmovements
and subtle hand coordination in a manner that better replicates real-world conditions.

8.3 Datasets

8.3.1 Peg Transfer Dataset

Peg Transfer Task Description

The peg transfer task is a fundamental exercise in the FLS program. It has been designed
to evaluate a surgeon’s dexterity, hand-eye coordination, and precision in using surgical
instruments. During this exercise, participants are required to use two graspers to transfer
six pegs from one side of a pegboard to the other and then back.

The protocol we followed for this dataset aligns with the FLS guidelines: (1) The pegs
are initially placed on the left side of the pegboard. (2) The participant, using their non-
dominant hand, lifts each peg from the left side and passes it to their dominant hand, which
then places the peg on the right side. Once all six pegs have been transferred, the process
is repeated in reverse, with the pegs being moved from the right side back to the left. (3)
The task is considered complete when all pegs have returned to their original positions.

Dataset Overview

The dataset included 25 participants performing a peg transfer exercise between 1-4 times,
resulting in a total of 68 procedures. The participants included, 11 attending surgeons and
14 surgical residents. The duration of each procedure ranges from 1 to 7 minutes. Each
procedure was recorded with high-resolution video, capturing the field of view to ensure
that every movement, gesture, and interaction with the pegs is visible for analysis.

The peg transfer task was subdivised into the following ten distinct gestures:

• G0: "the background gesture"
• G1: "reach for peg with the left grasper"
• G2: "lift the peg with the left grasper"
• G3: "transfer the peg from the left to the right grasper"
• G4: "place the peg into the pegboard with the right grasper"
• G5: "reach for peg with the right grasper"
• G6: "lift the peg with the right grasper"
• G7: "transfer the peg from the right to the left grasper"
• G8: "place the peg into the pegboard with the left grasper"
• G9: "peg drops"

Figure 8.1 presents a sequence of images illustrating the first five surgical gestures in-
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G0: "the background gesture" G1: "reach for peg with the left grasper" G2: "lift the peg with the left grasper"

G4: "place the peg into the pegboard with the 
right grasper" 

G3: "transfer the peg from the left to the right 
grasper" 

Figure 8.1: Illustration of the first five surgical gestures during the peg transfer task, focus-
ing on the movement of pegs from the left to the right side. The depicted gestures include:
(G0) "the background gesture", (G1) "reaching for the peg with the left grasper", (G2) "lifting
the peg with the left grasper", (G3) "transferring the peg from the left to the right grasper",
and (G4) "placing the peg into the pegboard with the right grasper". The images are ordered
progressively to illustrate the procedural flow.

volved in transferring a peg from the left to the right side of the pegboard. These gestures
capture the fundamental actions required to complete half the peg transfer task, segment-
ing the entire procedure into discrete, meaningful actions. This granularity is important
for accurate gesture recognition and analysis, as each gesture reflects specific skills such
as precision, coordination, and control, all of which are important in surgical contexts.
The inclusion of G0 (the background gesture) and G9 (peg drops) is particularly impor-
tant. G0 helps distinguish between meaningful surgical gestures and periods of inactivity
or transitions, reducing noise and improving the clarity of analysis. G9, representing peg
drops, highlights critical errors during the task, offering insight into skill levels and error-
handling strategies. Together, these gestures provide a comprehensive representation of
the peg transfer exercise, aligning with existing protocols in surgical training and making
the dataset directly comparable to other studies and resources.

Surgical Tool Motion Extraction

Motivation: In addition to the recorded videos of the peg transfer procedure, we propose
to extract surgical tool motion data, which offers several advantages for surgical gesture
recognition.

Motion data from surgical tools directly reflects the surgeon’s actions, enabling more
precise and accurate recognition of surgical gestures. Furthermore, performance metrics
derived from this data, such as path length, velocity, smoothness, allow for objective com-
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parisons between attending surgeons and residents on the recognized gestures. This data
facilitates more detailed assessments of surgical skill.

Compared to video data, using motion data for gesture recognition offers several key
benefits. Firstly, motion data is inherently lower-dimensional and involves smaller data
volumes, capturing essential parameters like the position and movement of surgical tools.
On the other hand, video data is high-dimensional, consisting of large volumes of pixel
information across frames, often containing irrelevant or redundant content. Motion data is
more focused and directly correlated with surgical gestures, reducing the need for complex
feature extraction and requiring less computational power. Additionally, unlike video data,
motion data is less susceptible to noise from external factors such as occlusions, lighting
variations, or camera positioning. This makes it a more reliable source for surgical gesture
recognition, contributing to more consistent and accurate model performance.

The combination of both tool motion and video data provides complementary informa-
tion that can enhance the robustness of surgical gesture recognition models. While motion
data offers direct insights into tool trajectories, video data captures contextual informa-
tion, such as the overall surgical environment and interactions between tools and tissue.
Integrating both sources of information can lead to better generalization, improved recog-
nition accuracy, and the ability to handle challenging scenarios like partial occlusions or
ambiguous hand movements that might not be fully resolved by either modality alone. In
this study, we aim to test whether this fusion of modalities leads to better performance than
using each modality separately for surgical gesture recognition, building on our findings
in the preceding chapter, where combining kinematic and video data resulted in significant
performance improvements.

YOLOv8 Model: To achieve accurate tool motion extraction, we employ the YOLOv8
[226] model in conjunction with the ByteTrack tracking algorithm. Released by Ultralytics
in January 2023, the company behind YOLOv5 [227], YOLOv8 offers significant improve-
ments across multiple vision tasks, including object detection, segmentation, pose estima-
tion, tracking, and classification. YOLOv8 is available in five scaled versions: YOLOv8n
(nano), YOLOv8s (small), YOLOv8m (medium), YOLOv8l (large), and YOLOv8x (extra-
large), allowing for tailored performance depending on computational resources and task
complexity. For our study, we employed the YOLOv8m configuration.

YOLO (You Only Look Once) is a well-established family of object detection models
known for its real-time performance and high detection accuracy. It has first been intro-
duced in [228]. Unlike traditional object detection models that involve multiple stages (like
region proposal, classification, and refinement), YOLO is a single-stage detector that di-
rectly predicts bounding boxes and class probabilities from the input image in one go. This
architecture allows it to be extremely fast and efficient, making it suitable for real-time
applications like surgical tool tracking, where high processing speed is essential.

We selected YOLOv8 specifically due to its state-of-the-art performance in both speed
and accuracy. YOLOv8 introduces further optimizations such as dynamic anchor boxes,
adaptive training optimizations, and better handling of edge cases where objects may be
partially occluded or overlap. In our context, this is crucial as surgical tools often interact
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closely, overlap, or move rapidly within the camera’s field of view. YOLOv8’s ability to
maintain detection accuracy under such conditions makes it highly effective for identifying
surgical tools across the frames in our video data.

However, detecting tools in each frame is just one part of the problem. To extract mean-
ingful motion data over time, we need to ensure the detected tools are consistently tracked
across frames. This is where the ByteTrack algorithm comes into play. ByteTrack is a robust
multi-object tracking algorithm that excels in maintaining consistent identities for objects
even in challenging scenarios involving occlusions, fast movements, and varying scales.
It works by integrating both high-confidence and low-confidence detections, effectively
bridging gaps where an object might be momentarily lost due to partial occlusion or rapid
movement. This attribute is particularly valuable in surgical contexts, where the tracking
of tools needs to be uninterrupted despite dynamic interactions and occlusions.

By leveraging YOLOv8 for detection and ByteTrack for tracking, we can reliably gen-
erate smooth and consistent tool trajectories, enabling a detailed analysis of surgical ges-
tures. The resulting motion data provides critical insights into the movement dynamics of
the tools, including metrics like position, speed, and tool trajectories, which directly con-
tribute to recognizing and evaluating surgical gestures.

YOLOv8 Training Settings: For model development, we randomly sampled 985 images
from video recordings of all procedures, capturing a diverse range of tool positions, ori-
entations, and interactions with the environment. This approach ensures the model can
generalize effectively across various scenarios. The images were annotated with bounding
boxes using the CVAT tool, labeling the positions of the graspers. Of the annotated images,
800 were used for training, while 185 were reserved for testing. The model was trained for
1000 epochs with a batch size of 16, employing an early stopping criterion with a patience
of 100 epochs.

YOLOv8 Model Performance: We evaluated the performance of the YOLOv8 model on
several key metrics commonly used in object detection tasks.

Main Evaluation Metrics:

• Precision: Precision measures the proportion of correctly predicted bounding boxes
among all predicted boxes. High precision indicates that the model produces fewer
false positives.

• Recall: Recall measures the proportion of correctly predicted bounding boxes among
all actual boxes. High recall means that the model captures most of the true objects.

• mAP (mean Average Precision): mAP is a widely used metric in object detection
that averages precision across multiple IoU (Intersection over Union) thresholds. It
is a strong indicator of the model’s overall detection accuracy.

The following table summarizes the performance of the YOLOv8 model on the test set:
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Metric Value
Precision 98.44%
Recall 96.54%
mAP@0.5 (IoU = 0.5) 98.66%
mAP@0.5:0.95 (Average) 69.03%

Table 8.1: YOLOv8 Performance Metrics on the Test Set

Discussion of Results: The YOLOv8 model demonstrated excellant performance across
several key metrics. With a precision of 98.44%, the model exhibits a very low rate of false
positives, indicating that nearly all detected bounding boxes correspond to actual surgical
graspers. This high precision is particularly crucial in surgical environments where accu-
racy is paramount.

The recall rate of 96.54% suggests that the model is highly effective at capturing the
vast majority of surgical graspers present in the test set. This high recall ensures that
very few tools are missed, even in challenging conditions like occlusions or complex tool
interactions.

The mAP@0.5 of 98.66% confirms the model’s strong detection accuracy at an IoU
threshold of 0.5, indicating that the bounding boxes predicted by the model closely match
the ground truth. However, the mAP@0.5:0.95, which averages precision across more IoU
thresholds, is 69.03%. This lower value suggests that while the model performs exception-
ally well at a moderate IoU threshold, its accuracy diminishes when required to predict
bounding boxes that must more precisely match the ground truth. This decrease in perfor-
mance at higher IoU thresholds may be attributed to the challenges posed by the variability
in tool sizes, shapes, and overlapping scenarios common in surgical environments.

Despite this, the model’s overall performance, as indicated by its precision, recall, and
mAP@0.5 scores, suggests it is highly suitable for the task of surgical tool tracking and
motion extraction. The trade-off seen in the mAP@0.5:0.95 metric highlights areas for po-
tential future refinement, such as improving the model’s ability to handle more precise
localization in challenging conditions.

These results underscore the YOLOv8 model’s capability to deliver reliable and accurate
tool tracking in real-time, reinforcing its role as a critical component of our surgical gesture
recognition pipeline.

8.3.2 FPV Suturing Dataset

Dataset Overview

The suturing task is a fundamental component of medical training, particularly for med-
ical students, surgical residents, and other healthcare professionals who need to develop
essential skills in wound closure and surgical procedures.
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Figure 8.2: Pupils Invisible glasses equipped with a camera for first-person video recording.

The dataset includes five participants: two attending surgeons and three medical stu-
dents. Each participant performed the suturing task three times, resulting in a total of 15
procedures. The duration of each procedure ranges from 2 to 4 minutes. The task involved
placing three interrupted sutures on a suture skin model with support, composed of silicone
and foam. For this, each participant was equipped with three tools: a needle driver, surgi-
cal forceps, and suture scissors. Each procedure was recorded from a first-person perspec-
tive using Pupil Invisible glasses, a specialized eyewear designed for capturing first-person
video footage. An illustration of the glasses is provided in Figure 8.2.

We propose to subdivide the suturing task into the following five distinct gestures:

• G0: "the background gesture"
• G1: "pass the needle through the material"
• G2: "pull the suture"
• G3: "perform an instrumental tie"
• G4: "cut the suture"

Figure 8.3 presents a sequence of five images, each depicting a distinct surgical gesture
involved in the suturing task. We follow the same labeling protocol as introduced in the
VTS dataset [222], with the exception that we chose to merge the gestures "perform an
instrumental tie" and "lay the knot" from the VTS dataset into a single gesture, "perform
an instrumental tie." This decision is justified by the fact that these two actions are closely
related and often performed as part of a continuous sequence within the suturing process.
The distinction between "perform an instrumental tie" and "lay the knot" can be ambiguous,
leading to potential inconsistencies in annotations, which can negatively impact model
performance. By consolidating these actions into a single category, we simplify the labeling
process, reduce annotation noise, and maintain the key information needed for accurate
gesture recognition.

Both datasets were labeled throughout the entire duration of each video procedure using
the Computer Vision Annotation Tool (CVAT). Additionally, the protocol for both datasets
received approval from the Institutional Review Board of the University of Lille, under
reference number 2022-626-S108.
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G0: "the background gesture"G1: "pass the needle through the material" G2: "pull the suture"

G3: "perform an instrumental tie" G4: "cut the suture"

Figure 8.3: Illustration of the five surgical gestures during the suturing task. The depicted
gestures include: (G0) "the background gesture", (G1) "pass the needle through thematerial",
(G2) "pull the suture", (G3) "perform an instrumental tie", and (G4) "cut the suture". The
images are ordered progressively to illustrate the procedural flow.

8.4 Surgical Gesture Recognition

8.4.1 Evaluation Metrics

As in the previous chapter, we will evaluate the different models trained on the two datasets
for surgical gesture recognition using frame-wise and segmentation metrics. These metrics
include accuracy, macro F1-score, Edit score, and segmental F1-score at thresholds of 10,
25, and 50.

8.4.2 Evaluation Framework

For the Peg Transfer and FPV Suturing datasets, we employed a subject-independent 5-fold
and 3-fold cross-validation strategy, respectively, to evaluate the trained methods. In each
fold, the datasets were divided into training and testing sets, ensuring that all data from
each participant were exclusively included in either the training set or the testing set for
that fold. We calculated and reported the mean value of each evaluation metric across all
folds.
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Method Modality Features Acc F1-Macro Edit F1@{10,25,50}

LSTM [181] Tools ✗ 79.73 70.92 80.39 83.52 80.20 68.58

GRU [229] Tools ✗ 81.35 72.72 80.47 83.94 81.60 70.56

MS-TCN++ [200] Tools ✗ 63.84 54.24 62.14 67.00 61.71 45.65

ASFormer [185] Tools ✗ 81.51 73.67 85.73 88.25 85.32 73.22

LSTM [181] Video ResNet-18 71.00 62.39 68.11 72.51 68.69 57.82

GRU [229] Video ResNet-18 74.24 66.43 69.07 74.63 71.38 61.08

MS-TCN++ [200] Video ResNet-18 66.28 56.47 59.15 63.51 58.61 43.80

ASFormer [185] Video ResNet-18 80.71 73.38 84.47 86.95 84.33 73.27

LSTM [181] Video I3D 85.24 78.39 76.08 82.79 80.42 73.28

GRU [229] Video I3D 86.73 79.28 78.22 84.04 82.15 74.87

MS-TCN++ [200] Video I3D 80.39 72.52 74.45 80.13 77.63 68.53

ASFormer [185] Video I3D 87.60 81.77 88.70 91.48 90.16 82.32

Table 8.2: Unimodal surgical gesture recognition on the Peg Transfer dataset.

8.4.3 Peg Transfer

We carried out both unimodal and multimodal benchmarks using surgical tools trajectory
and video data. For the video modality, we employed ResNet-18 and I3D extracted features,
as proposed in the preceding chapter.

Unimodal

Table 8.2 presents the performance of four deep learning models: ASFormer, MS-TCN++,
LSTM, and GRU across two modalities: surgical tools trajectory (Tools) and video (using
ResNet-18 and I3D features). ASFormer consistently outperforms the other models across
all evaluation metrics and modalities, demonstrating its robustness and adaptability for the
task of surgical gesture recognition.

For the Tools modality, ASFormer surpassed GRU, the second-best performing model,
by at least 0.95%, 5.26%, and 4.31% in macro F1-score, Edit score, and F1@10, respectively.
There is a noticeable performance improvement when using I3D features compared to
ResNet-18 features for all models in the case of the video modality, suggesting that the
richer temporal features captured by I3D significantly enhance the model’s effectiveness.
For instance, ASFormer’s F1-Macro score increases from 73.38% with ResNet-18 features to
81.77% with I3D features.

The performance of MS-TCN++ across all features and modalities is consistently lower
compared to other models. For the Tools modality, MS-TCN++ achieves the lowest scores
across all metrics, with an accuracy of 63.84%, an F1-Macro of 54.24%, and an Edit score
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Figure 8.4: Color-coded illustration of surgical gesture recognition on the Peg Transfer
dataset, comparing ground truth with MGRFormerk→v predictions, trained using surgical
tools trajectory and I3D features.

of 62.14%, indicating a difficulty to capture the temporal dynamics effectively compared
to other models. When evaluated on video data with ResNet-18 features, MS-TCN++ con-
tinues to underperform, with an F1-Macro of 56.47% and an Edit score of 59.15%, further
demonstrating its limitations in capturing temporal consistency for surgical gesture recog-
nition.

While the performance of MS-TCN++ improves when employing I3D features, achiev-
ing better results than when using either the Tools modality or ResNet-18 features, it still
lags significantly behind the other models, particularly ASFormer. This underscores that
despite some improvement with richer temporal features, MS-TCN++ remains less effective
compared to other models for surgical gesture recognition on the Peg Transfer dataset.

Lastly, it is important to note that although ASFormer performs comparably to GRU
and LSTM in terms of frame-wise metrics like accuracy and F1-Macro, it significantly out-
performs these models in segmentation metrics, which are critical for assessing temporal
consistency and the model’s ability to accurately segment sequences. For instance, in the
Tools modality, while ASFormer and GRU have relatively close accuracy (81.51% vs. 81.35%)
and F1-Macro (73.67% vs. 72.72%), ASFormer shows amarked improvement in the Edit score
(85.73% vs. 80.47%) and segmentation F1 scores, such as F1@10 (88.25% vs. 83.94%). This
pattern is consistent across other feature sets, including ResNet-18 and I3D, demonstrating
ASFormer’s superior capability in modeling temporal dynamics and segmenting surgical
gestures more accurately.

Multimodal

In themultimodal setting, we evaluated the performance of the previously introducedMGR-
Former across all combinations of single and double refinement regarding the fusion of the
Tools modality with ResNet-18 and I3D features. Additionally, we reported the perfor-
mance of ASFormer under multimodal fusion, specifically ASFormer (early) and ASFormer
(late) for early and late fusion strategies, as well as MS-TCN++ (early) andMS-TCN++ (late).
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Method Acc F1-Macro Edit F1@{10,25,50}

MGR-Net [30] 72.87 62.97 66.10 71.21 66.46 53.53

MS-TCN++ (early) 71.58 60.89 60.83 66.29 62.94 49.67

MS-TCN++ (late) 69.31 57.80 62.94 66.81 63.10 49.13

ASFormer (early) 83.78 76.77 85.29 88.69 86.62 76.75

ASFormer (late) 83.43 76.31 78.79 84.17 81.98 72.46

MGRFormer v → k 83.08 76.47 85.77 88.35 86.18 76.31

MGRFormer k → v 85.21 77.92 86.87 89.55 88.06 79.54

MGRFormer v → v + k 82.21 75.66 84.30 87.45 84.91 74.90

MGRFormer k → k + v 84.39 77.13 83.28 87.15 85.24 77.08

MGRFormer v → k + v 82.97 75.44 85.19 87.75 85.64 75.85

MGRFormer k → v + k 85.03 78.40 86.89 89.75 88.12 79.50

Table 8.3: Multimodal surgical gesture recognition on the Peg Transfer dataset: Tools +
ResNet-18.

Method Acc F1-Macro Edit F1@{10,25,50}

MGR-Net [30] 72.57 63.19 66.24 71.44 67.10 54.49

MS-TCN++ (early) 82.79 74.15 78.20 83.10 80.73 72.51

MS-TCN++ (late) 83.55 75.54 77.09 82.81 80.95 72.64

ASFormer (early) 88.73 83.08 88.52 91.35 90.07 83.05

ASFormer (late) 87.46 81.22 80.59 86.25 84.54 77.19

MGRFormer v → k 88.25 82.20 88.58 91.24 89.66 83.57

MGRFormer k → v 88.57 82.40 88.66 91.62 90.29 82.97

MGRFormer v → v + k 88.24 82.06 88.95 91.78 90.44 83.37

MGRFormer k → k + v 88.05 82.00 84.66 88.95 87.33 81.07

MGRFormer v → k + v 88.18 82.17 88.47 91.55 89.87 82.97

MGRFormer k → v + k 88.32 82.18 89.31 92.03 90.70 83.56

Table 8.4: Multimodal surgical gesture recognition on the Peg Transfer dataset: Tools + I3D.
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Figure 8.5: Color-coded illustration of surgical gesture recognition on the FPV Suturing
dataset, comparing ground truth with ASFormer predictions, trained using I3D features.

These were compared alongside MGR-Net [30], a state-of-the-art multimodal deep learning
model for surgical gesture recognition. All performances are reported in Tables 8.3 and 8.4.

For the combination of Tools and video with ResNet-18 features, MGRFormer signif-
icantly outperforms each modality when trained individually with the ASFormer model.
Specifically, MGRFormerk→v+k outperforms ASFormer trained on the Tools modality by
4.73%, 1.16%, and 1.50%, and ASFormer trained on ResNet-18 features by 5.02%, 2.42%, and
2.80%, in terms of macro F1-score, Edit score, and F1@10, respectively. When compared to
MGR-Net, MGRFormer demonstrates a substantial performance gain, specifically outper-
forming MGR-Net by 15.43%, 20.79%, and 18.54% in macro F1-score, Edit score, and F1@10,
respectively. Additionally, MGRFormer surpasses both the early and late fusion versions of
ASFormer, highlighting the effectiveness of our proposed multimodal refinement module
over traditional fusion techniques. It also achieves a significant performance margin over
both early and late fusion versions ofMS-TCN++, further validating its superiormultimodal
learning capabilities.

Among the various configurations of MGRFormer, MGRFormerk→v exhibited the high-
est accuracy and F1@50, while MGRFormerk→v+k achieved the best performance across the
remaining metrics, solidifying its position as the most robust configuration for multimodal
surgical gesture recognition.

For the fusion of surgical tool trajectories with I3D features, MGRFormerk→v+k also
showed superior performance compared to ASFormer models trained on individual modal-
ities. Specifically, MGRFormerk→v+k outperformed ASFormer trained on the Tools modal-
ity by 8.51%, 3.58%, and 3.78%, and ASFormer trained on I3D features by 0.41%, 0.61%, and
0.55%, in macro F1-score, Edit score, and F1@10, respectively. Furthermore, MGRFormer
consistently outperformed MGR-Net again across all evaluation metrics. However, in this
fusion setting, ASFormer (early) marginally outperformed MGRFormerk→v by 0.16%, 0.68%
in terms of accuracy andmacro F1-score (frame-wise metrics). Nonetheless, for the remain-
ing evaluation metrics (segmentation metrics), MGRFormerk→v+k outperformed ASFormer
(early) by 0.79%, 0.68%, 0.63%, and 0.51% in terms of Edit score F1@10, F1@25, and F1@50,
respectively. Once again, MGRFormer maintained a significant performance margin over
both early and late multimodal fusion versions of MS-TCN++.

Among the MGRFormer configurations, MGRFormerk→v exhibited the highest accu-
racy and macro F1-score, with a slight lead over MGRFormerk→v+k, which achieved the
best performance across the remaining segmentation metrics, solidifying its position as the
most robust configuration in terms of segmentationmetrics for multimodal surgical gesture
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Method Modality Acc F1-Macro Edit F1@{10,25,50}

LSTM [181] ResNet-18 67.48 48.81 41.58 46.05 41.30 30.47

GRU [229] ResNet-18 67.35 49.15 30.94 32.18 28.07 19.07

MS-TCN++ [200] ResNet-18 71.53 52.65 40.73 45.41 41.06 31.95

ASFormer [185] ResNet-18 78.96 65.71 72.57 72.52 68.14 59.04

LSTM [181] I3D 74.18 55.27 41.49 45.79 41.96 30.98

GRU [229] I3D 74.56 57.19 42.99 46.04 41.81 30.63

MS-TCN++ [200] I3D 77.48 60.21 48.77 52.85 46.35 33.27

ASFormer [185] I3D 82.41 69.61 82.14 81.99 73.71 61.11

Table 8.5: Unimodal surgical gesture recognition on the FPV Suturing dataset.

recognition.

8.4.4 FPV Suturing

We evaluated the performance of ASFormer, MS-TCN++, LSTM, and GRU models using
ResNet-18 and I3D features. The ASFormer consistently outperformed other models across
all evaluation metrics and feature types, demonstrating its superior ability in surgical ges-
ture recognition within the FPV setting. Notably, we can observed that all models per-
formed better when employing I3D features, highlighting I3D’s enhanced capability to cap-
ture spatiotemporal information.

Using ResNet-18 features, ASFormer achieved the highest scores across all metrics, with
an accuracy of 78.96%, a macro F1-score of 65.71%, and an an Edit score of 72.57%. AS-
Former also performed best across all overlap thresholds for F1 scores. MS-TCN++, the next
best-performing model, showed considerably lower results, with an accuracy of 71.53%, F1-
Macro of 52.65%, and an Edit score of 40.73%.

With I3D features, ASFormer achieved an accuracy of 82.41%, a macro F1-score of
69.61%, an Edit score of 82.14%, and an F1@10 score of 81.99%, significantly outperforming
MS-TCN++, which, despite improved results with I3D features compared to ResNet-18, still
lagged behind ASFormer with an accuracy of 77.48%, macro F1-score of 60.21%, and Edit
score of 48.77%.

The significant difference in segmentation metrics between the ASFormer and other
models across both type of features, highlights ASFormer’s superior segmentation and re-
finement abilities in temporal boundaries, which are critical for precise gesture recognition.

Comparatively, results for the FPV Suturing dataset are generally lower than those for
the Peg Transfer dataset, which is not unexpected given the challenges associated with the
FPV suturing task. It is important to note that the FPV Suturing dataset features a smaller
number of subjects (5 compared to 25 for the Peg Transfer dataset) and involves a first-
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person view of a suturing procedure, which presents additional complexity. Despite these
challenges, the results remain promising, highlighting the robustness of the ASFormer even
under more difficult conditions. This underscores the encouraging potential of the model
to handle complex and realistic surgical tasks, even if the performance metrics do not reach
the levels observed in less challenging scenarios like the Peg Transfer dataset.

Figures 8.4 and 8.5 show the visual comparisons of the predictions generated by our
proposed MGRFormerk→v framework and the ASFormer architecture on the Peg Transfer
and FPV Suturing datasets, respectively, compared to their respective ground truths. The
MGRFormerk→v integrates surgical tools trajectory data with I3D features, while ASFormer
employs only I3D features. These visualizations highlight the temporal segmentation con-
sistency of surgical gesture predictions for both architectures.

Figure 8.6: Box plots comparing the time spent (in seconds) to complete the different surgi-
cal gestures (G1 to G9) during peg transfer procedures by attending surgeons and surgical
residents. Significance levels are indicated as follows: * p-value < 0.05, ** p-value < 0.01,
and *** p-value < 0.001.

8.5 Surgical Gesture Analysis

In this section, we will conduct a comparative analysis of the performance between at-
tending surgeons and medical students across the defined surgical gestures for the two
introduced datasets. This approach follows the methodology applied to the VTS dataset in
the preceding chapter for surgical gesture analysis.

For the Peg Transfer dataset, we report the computation of the gesture duration and
frequency performance metrics for both attending surgeons and surgical residents across
all surgical gestures. Additionally, we compute path length, gesture speed, acceleration,
smoothness, and curvature based on the trajectories of both the left and right graspers.
Note that we did not include performance metrics for the background gesture (G0), as this
gesture typically occurs at the beginning and end of the peg transfer tasks and involves
minimal movement of the graspers.
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Figure 8.7: Box plots showing the frequencies of surgical gestures (G1 to G9) during peg
transfer procedures, performed by both attending surgeons and surgical residents.

In the case of the FPV Suturing dataset, we report only the gesture duration and fre-
quency metrics across all defined gestures due to the lack of data required to compute the
additional performance metrics for both attending surgeons and medical students.

8.5.1 Peg Transfer

Gesture Completion Time: Figure 8.6 presents box plots comparing the time (in sec-
onds) spent by attending surgeons and surgical residents to complete different surgical ges-
ture (G1 to G9) during peg transfer tasks. Attending surgeons consistently demonstrated
significantly shorter completion times compared to surgical residents across most surgical
gestures. Specifically, significant differences were observed for gestures G1, G2, G3, G4, G5,
G7, and G8.

Gesture Frequency: We reported in Figure 8.7, box plots showing the frequency asso-
ciated with each surgical gesture. The plots reveal that surgical residents exhibit a signif-
icantly higher frequency for the gestures of transferring the peg from the left to the right
grasper (G3) and placing the peg into the pegboard with the left grasper (G8).

Path Length: In Figure 8.8, the box plots illustrate the normalized path length across
all surgical gestures. The comparative analysis between the two practitioner types reveals
nuanced performance differences. Attending surgeons exhibited significantly shorter path
lengths for gesture G8 in the left grasper’s trajectory. In contrast, surgical residents demon-
strated significantly shorter path lengths for gesture G7 in the left grasper’s trajectory and
G6 in the right grasper’s trajectory. For other gestures, the performances between the two
groups were comparable.
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(a) Left grasper’s trajectory

(b) Right grasper’s trajectory

Figure 8.8: Box plots illustrating the normalized path length of the left and right graspers
trajectories across the surgical gestures (G1 to G9) during peg transfer procedures, per-
formed by both attending surgeons and surgical residents.

Gesture Speed and Acceleration: Figures 8.9 and 8.10 present box plots showing the
average normalized speed and average normalized acceleration across all surgical gestures,
respectively. Attending surgeons exibit significantly higher gesture speed for gestures G1,
G5, and G7 for the left grasper and G1, G3, G4, G5, and G6 for the right grasper. Conversely,
attending surgeons also show significantly higher gesture accelerations for gestures G1, G5,
and G7 with the left grasper, and for gestures G1, G3, G4, G5, and G6 with the right grasper.

We notice from these results that there are significant differences in the same surgical
gestures across both performance metrics. Specifically, gestures G1, G5, and G7 for the left
grasper and G1, G3, G4, G5, and G6 for the right grasper show significant differences in both
speed and acceleration metrics. This indicates that gestures performed with greater speed
are also those that are performed with the highest acceleration, highlighting a consistent
pattern of high-speed and high-acceleration performance by attending surgeons for these
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(a) Left grasper’s trajectory

(b) Right grasper’s trajectory

Figure 8.9: Box plots illustrating the averaged normalized speed of the left and right
graspers across the different surgical gestures (G1 to G9) during peg transfer procedures,
performed by both attending surgeons and surgical residents.

gestures.

Gesture Smoothness: Figure 8.11 highlights the performance metrics for gesture
smoothness across different gestures and graspers. Gesture smoothness is quantified by the
standard deviation of the jerks, a metric that reflects the variability in acceleration changes
during the execution of surgical gestures. Higher values of this metric indicate less smooth-
ness, or greater variability, in the gestures. We can observe that attending surgeons show
significantly higher values in gestures G1, G5, and G7 for the left grasper and G3 and G5
for the right grasper.
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(a) Left grasper’s trajectory

(b) Right grasper’s trajectory

Figure 8.10: Box plots illustrating the averaged normalized acceleration of the left and right
graspers across the different surgical gestures (G1 to G9) during peg transfer procedures,
performed by both attending surgeons and surgical residents.

Gesture Curvature: We presented the average normalized curvature in Figure 8.12. For
the left grasper, attending surgeons exhibit significantly higher curvature in gestures G1,
G3, G4, G7, and G8, suggesting that these gestures involve more pronounced changes in
direction, possibly indicating less fluidity or control compared to surgical residents. In
contrast, the performance for the right grasper is similar across groups, with no significant
differences.

Summary and Implication for Surgical Training

The analysis reveals substantial differences in performance between attending surgeons
and surgical residents across various surgical gestures. Attending surgeons complete most
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(a) Left grasper’s trajectory

(b) Right grasper’s trajectory

Figure 8.11: Box plots illustrating the standard deviation of the gesture smoothness per-
formance metric for the left and right graspers across the different surgical gestures (G1
to G9) during peg transfer procedures, conducted by both attending surgeons and surgical
residents.

gestures significantly faster, particularly for gestures G1, G2, G3, G4, G5, G7, and G8. In
contrast, surgical residents exhibit higher gesture frequency for G3 and G8, indicating that
they may rely on increased repetition to accomplish the peg transfer tasks.

Additionally, attending surgeons show higher speeds and accelerations for specific ges-
tures compared to surgical residents. Path length differences are nuanced: attending sur-
geons have shorter trajectories for gesture G8 with the left grasper, while surgical residents
show shorter path lengths for gestures G7 and G6 with the left and right graspers, respec-
tively.

The smoothness analysis, as measured by the standard deviation of the jerk, indicates
that attending surgeons exhibit higher variability in gestures G1, G5, and G7 with the left
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(a) Left grasper’s trajectory

(b) Right grasper’s trajectory

Figure 8.12: Box plots illustrating the average normalized curvature for the left and right
graspers across the different surgical gestures (G1 to G9) during peg transfer tasks, per-
formed by both attending surgeons and surgical residents.

grasper, and G3 and G5 with the right grasper. Furthermore, the curvature metric reveals
that attending surgeons exibit significantly higher curvature in gestures G1, G3, G4, G7,
and G8 with the left grasper, suggesting less fluidity.

8.5.2 FPV Suturing

Figures 8.13 and 8.14 depicted the time spent (in seconds) and the frequency of each surgical
gestures, respectively, by attending surgeons and medical students during suturing tasks.
We can see that attending surgeons performed most surgical gestures in less time. Specifi-
cally, significant differences were observed for gestures G0, G1, and G3. Even if there is not
a significant difference for G2, we can see in the box plot that medical students have higher
Q1, Q3, and maximum values compared to attending surgeons, indicating that medical stu-
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Figure 8.13: Box plots comparing the time spent (in seconds) to complete the different sur-
gical gestures (G0 to G4) during suturing tasks by attending surgeons and medical students.
Significance levels are indicated as follows: * p-value < 0.05, ** p-value < 0.01, and *** p-
value < 0.001.

Figure 8.14: Box plots illustrating the frequencies associated with the different surgical ges-
tures (G0 to G4) during suturing procedures, performed by attending surgeons and medical
students.

dents tend to perform this gesture with longer duration. The increased time spent on G0
suggests that medical students may experience more delays or inefficiencies during pauses
between gestures, potentially impacting the overall fluidity and efficiency of their suturing
tasks. Concerning the frequency metric, no significant difference was found between the
two groups of practitioners.
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8.6 Discussion

8.6.1 Implications of Findings

In this chapter, we introduced two new datasets for the task of surgical gesture recognition:
the Peg Transfer dataset and the FPV Suturing dataset. The successful application of these
datasets in model training demonstrates their utility and effectiveness as benchmarks.

The Peg Transfer dataset includes both video recordings and surgical tool trajectory
data, providing a comprehensive understanding of surgical gestures. The MGRFormer,
previously introduced, achieved state-of-the-art performance in the multimodal setting,
emphasizing the importance of integrating multiple data sources to enhance recognition
accuracy. Specifically, we combined left and right grasper trajectories with video data. In
the unimodal benchmark, the ASFormer significantly outperformed other state-of-the-art
methods, further establishing the superiority of Transformer-based architectures with re-
finement modules for surgical gesture recognition.

For the FPV Suturing dataset, which features first-person video recordings of suturing
procedures, the ASFormer also achieved state-of-the-art results, demonstrating a substan-
tial margin over existing methods. This dataset’s unique perspective offers valuable in-
sights into the subtleties of suturing, opening new avenues for surgical gesture recognition
in challenging environments and potential applications in actual surgical operations.

Overall, the strong performance achieved with both datasets, along with their inherent
variability—such as differences in positioning and lighting for the Peg Transfer dataset and
natural variability in first-person views for the FPV Suturing dataset—indicates that the
models trained are well-suited for real-world applications.

8.6.2 Limitations

While the Peg Transfer and FPV Suturing datasets offer significant advancements in surgi-
cal gesture recognition, there are notable limitations to address.

One major limitation shared by both datasets is the time-consuming nature of the an-
notation process. Annotating surgical gestures requires extensive manual effort, which can
be both labor-intensive and prone to inconsistencies. This challenge is prevalent across
most surgical gesture recognition datasets and can impact the overall efficiency of dataset
preparation and model training.

For the FPV Suturing dataset specifically, a notable limitation is the relatively small
number of participants, with only five participants contributing to the dataset. Although the
ASFormer demonstrated strong performance on this dataset, there remains a performance
gap when compared to the Peg Transfer dataset and the VTS dataset. This limitation could
be attributed to the small sample size and to the first-person view, which might not fully
capture the variability and complexity of suturing gestures.

Additionally, the FPV Suturing dataset involves first-person video recordings that re-
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quire participants to wear specialized glasses for data collection. This requirement could
pose challenges for real-world applications, where the use of such equipment might not be
feasible or practical.

8.6.3 Future Directions

Future research should focus on several key areas to address the limitations identified and
further advance the field of surgical gesture recognition.

Firstly, as suggested in the preceding chapter, exploring unsupervised and self-
supervised learning approaches could significantly mitigate the challenges associated with
the time-consuming and labor-intensive nature of manual annotation. These methods can
reduce the reliance on annotated data and improve overall efficiency. Additionally, employ-
ing data augmentation techniques could address limitations posed by small dataset sizes,
thereby enhancing model performances.

For the FPV Suturing dataset specifically, future work should aim to extend the dataset
by including a larger and more diverse set of participants, including both attending sur-
geons and medical students. This expansion will help to capture a broader range of su-
turing techniques and variations, ultimately leading to more comprehensive and represen-
tative models. Furthermore, augmenting the dataset with additional sources of data, such
as tool tracking and hand skeleton tracking, could provide richer contextual information
and improve the accuracy of gesture recognition. As we already demonstrated for the Peg
Transfer and VTS dataset, the combination of surgical tool tracking or handmovement data
with video data has demonstrated superior results compared to unimodal sources of data.

8.7 Conclusion

This chapter introduced two novel datasets designed to address key limitations in existing
resources for surgical gesture recognition. The first dataset consists of video recordings
of peg transfer tasks, performed by both attending surgeons and surgical residents. For
this dataset, the MGRFormer framework outperformed other multimodal approaches by
integrating left and right grasper trajectories with video data. Additionally, the ASFormer
model achieved superior results in unimodal settings across different data modalities.

The second dataset features first-person perspective (FPV) recordings of suturing tasks
performed by both attending surgeons and medical students. Despite challenges such as
a limited number of participants and variability in the first-person view, ASFormer deliv-
ered strong performance, achieving state-of-the-art results using ResNet-18 and I3D fea-
tures. This underscores ASFormer’s capability to handle complex data modalities, even
when faced with visual variability and small sample sizes.

Together, these findings highlight the potential of these datasets and Transformer-based
models to advance surgical gesture recognition in diverse and challenging environments.
Furthermore, we conducted a comparative statistical analysis of the defined surgical ges-
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tures across both datasets, examining performance differences between attending surgeons
and medical students. This analysis revealed statistically significant differences in certain
performance metrics for specific surgical gestures between the two categories of practi-
tioners. The integration of a surgical gesture recognition system with performance metric
computationwill enable granular feedback at the gesture level tomedical students, enabling
targeted recommandations based on their performance.
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Chapter 9

Conclusion and Perspectives
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9.1 Summary of Contributions

In this thesis, we proposed new deep learning frameworks for stress detection, emotion
recognition, surgical skill assessment, and surgical gesture recognition, with the aim of en-
hancingmedical simulation. Firstly, for stress detection, we introduced amultimodal frame-
work that leveraged various fusion techniques to integrate physiological signals from two
distinct sensors. Our method outperformed the state-of-the-art approaches for the stress
and affect detection tasks. Secondly, for emotion recognition, we introduced the Multi-
modal Graph-based Transformer framework, which leveraged Graph Convolution Network
(GCN) to model the interactions among different levels of modality-specific feature repre-
sentations extracted using Transformer encoders. Our framework achieved superior per-
formance compared to existing methods, particularly in combining facial landmarks (2D,
3D, and Thermal) with physiological data, facial action units with physiological data, and
combining facial landmarks with action units and physiological data. Furthermore, for sur-
gical skill assessment, we proposed using hand skeleton sequences to differentiate between
the hand movements of expert and novice practitioners during surgical simulation tasks.
To the best of our knowledge, this was the first study to leverage hand skeleton sequences
for this purpose. Additionally, we introduced a novel method tailored to this task that com-
bines a GCN and a Transformer encoder. Our approach surpassed state-of-the-art methods
across two collected surgical simulation datasets. Lastly, for surgical gesture recognition,
we presented the MGRFormer framework, which incorporated an iterative multimodal re-
finement module designed to enhance the fusion of two different modalities during the
refinement stage. Our framework significantly outperformed current methods on a pub-
lic dataset and is, to the best of our knowledge, the first to explore multimodal fusion at
the refinement stage. Lastly, we introduced two new datasets for surgical gesture recog-
nition to address existing dataset limitations. On the collected peg transfer dataset, our
MGRFormer outperforms other state-of-the-art methods, further validating its efficacy in
leveraging multimodal data for surgical gesture recognition.

9.2 Future Works

While this thesis presents promising advancements in stress detection, emotion recogni-
tion, surgical skill assessment, and surgical gesture recognition, several avenues remain un-
explored that could further enhance the applicability and generalizability of the proposed
frameworks.

9.2.1 Affective Computing

For both stress detection and emotion recognition, our experiments were conducted on
existing datasets that may not fully capture the diversity of stress responses and emotional
expressions across different populations and environments.

To improve the robustness and generalizability of stress detection and emotion recogni-
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tion models, future work should focus on expanding the datasets used for both tasks. In this
thesis, the experiments were performed on public datasets, such as WESAD for stress de-
tection and BP4D+ for emotion recognition. However, these datasets may not fully capture
the diversity of stress responses and emotional expressions across different populations, de-
mographics, environments, and data collection protocols. Future research should focus on
collectingmore diverse, larger datasets, capturing spontaneous and naturalistic expressions
of stress and emotion in real-world settings. Naturalistic data can provide better insights
into how people react in uncontrolled environments.

Moreover, to ensure the generalizability of the developed models, cross-dataset valida-
tion is crucial. This process involves training models on one or multiple datasets and then
evaluating their performance on completely independent datasets with varying conditions
and participant demographics. Cross-dataset validation can reveal how well the model per-
forms beyond the specific context in which it was trained, providing valuable insights into
its robustness and applicability across different real-world scenarios.

Furthermore, the subjectivity inherent in labeling stress and emotion presents a sig-
nificant challenge. Labeling strategies for stress and emotion vary across datasets, from
self-reported questionnaires to physiological markers and expert assessments. Future re-
search should focus on establishing more standardized definitions and protocols for both
stress and emotion labeling, which could improve consistency across datasets, facilitating
more effective cross-dataset validation.

Given the complexity of labeling stress and emotion data and the inherent subjectivity
involved, self-supervised learning (SSL) offers a promising approach to enhance stress de-
tection and emotion recognition. By leveraging large amounts of unlabeled physiological
and behavioral data, SSL enables models to learn from these datasets through pretext tasks
that do not require human annotations. For example, models can learn by reconstructing
parts of the input or predicting relationships between different modalities.

One promising direction is the pretraining of our proposed multimodal framework us-
ing SSL. For instance, in cross-modal alignment of multimodal data (such as physiological
data, facial landmarks, and action units, as seen in the BP4D+ dataset), contrastive learning
[230] can be applied to align feature representations from different modalities. The cen-
tral idea is to bring positive pairs (multimodal data from the same instance or time frame)
closer in the feature space, while separating negative pairs (multimodal data from different
instances or time frames). More precisely, each modality is processed through a separate
network to generate feature embeddings. Positive pairs can be created by pairing physio-
logical data, facial landmarks, and action units from the same time frame or instance (e.g.,
from the same person experiencing stress or an emotional state). Negative pairs are formed
by pairing physiological data from one time frame with facial landmarks or action units
from another time frame. A contrastive loss function, such as InfoNCE, is then used to
ensure that these embeddings are correctly aligned.

In [231], the authors proposed a multimodal emotion recognition framework that incor-
porates a modality-pairwise contrastive loss. In their approach, feature representations are
first extracted from various modalities, such as text, video, facial landmarks, and acoustic
data, using appropriate backbone networks. Subsequently, they computed pairwise con-
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trastive loss to make the embeddings of two modalities from the same sequence (posi-
tives) closer together, while separating the embeddings of two modalities from different
sequences (negatives). The final loss is computed as the sum of the losses obtained from all
pairs of modalities.

Lastly, an important direction for future research is the real-world deployment and test-
ing of stress detection and emotion recognition frameworks in medical simulation environ-
ments. Integrating these models into training sessions will allow us to capture naturalistic
stress and emotional responses from medical students during high-pressure scenarios. The
primary goal will be to assess how these technologies enhance medical simulation training,
with a focus on evaluating their impact on both student performance and overall learning
outcomes.

9.2.2 Surgical Skill Assessment

While our proposed approach for surgical skill assessment using hand skeleton data has
demonstrated significant potential, several directions for future work can be pursued to
further improve its performance and generalizability.

First, our experiments were conducted on two in-house collected surgical simulation
datasets. Future efforts should focus on collecting larger and more diverse datasets, in-
corporating a greater number of attending surgeons and including multiple trials for each
surgical simulation procedure. Additionally, expanding beyond binary classification (expert
vs. novice) to a more fine-grained categorization of skill levels could offer deeper insights
into the nuances of surgical proficiency.

Transfer learning is another promising avenue for enhancing the performance of sur-
gical skill assessment trained methods. For instance, we could leverage pre-trained models
developed for specific surgical tasks as a foundation for training on other simulation tasks,
thereby accelerating training and improving generalizability across different procedures.
In [232], the authors proposed a Transformer-based framework for action recognition, pre-
trained on the NTU RGB+D dataset [233] and fine-tuned on their proposed Tai Chi action
recognition dataset. Their experiments demonstrated that this approach achieved high per-
formance even with a small-scale training dataset, suggesting that similar techniques could
be effectively applied in the context of surgical skill assessment.

Data augmentation techniques represent another potential area for exploration. Hand
skeleton sequences in surgical tasks can exhibit significant variability due to factors such as
camera angles, lighting conditions, and individual differences in hand anatomy andmotion.
To improve the robustness of our model, future work could investigate the use of advanced
augmentation techniques, such as geometric transformations, temporal cropping, and syn-
thetic data generation using generative models. This would enable the model to generalize
better to across different environments.

Lastly, the real-world deployment of our surgical skill assessment framework in educa-
tional settings represents a crucial step for future research. By integrating the model into
surgical training simulations, it will be possible to assess how well the system performs
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in real-time under practical conditions. Continuous assessment of surgical trainees during
simulations could provide invaluable feedback to both instructors and learners, enabling
more personalized training programs. Furthermore, long-term studies could evaluate the
impact of such technologies on the learning curve and the overall competence of surgical
practitioners.

9.2.3 Surgical Gesture Recognition

Firsty, the FPV Suturing dataset introduced in Chapter 8 consists of first-person video
recordings from just five participants: two attending surgeons and three medical students
performing suturing tasks in a simulated environment. Future research should aim to col-
lect a larger and more diverse dataset. The expanded dataset should include a greater num-
ber of participants compared to those in the VTS [222] and Peg Transfer datasets to more
accurately capture the variability present in first-person view recordings.

Moreover, as demonstrated by our proposed MGRFormer with the VTS and Peg Trans-
fer datasets, surgical gesture recognition significantly benefits from multimodal learning.
Therefore, incorporating an additional modality in the FPV Suturing dataset would enhance
the analysis and understanding of surgical gestures. One promising modality could be hand
motion tracking or hand skeleton tracking. For instance, Bkheet et al. [234] demonstrated
that integrating 2D hand poses with I3D features significantly improved state-of-the-art
accuracy in surgical gesture recognition on the VTS dataset. This finding underscores the
potential of combining visual features with hand motion data to boost the precision and
robustness of gesture recognition systems. Thus, integrating hand motion or hand skele-
ton tracking into the FPV Suturing dataset could similarly advance the accuracy of surgical
gesture analysis, offering a more comprehensive understanding of the nuances involved in
surgical techniques.

To address the challenges associated with the labor-intensive and time-consuming pro-
cess of labeling surgical gestures, future research should explore SSL techniques. These
approaches could alleviate some of the bottlenecks in dataset creation by enabling models
to learn useful representations from unannotated data. For instance, contrastive learn-
ing could be employed to align features from different modalities, thereby improving the
model’s ability to distinguish between various surgical gestures without extensive manual
labeling.

Furthermore, exploring data augmentation techniques could enhance the performance
of surgical gesture recognition systems. Methods such as mirroring video recordings, seg-
menting data sequences into multiple parts, and swapping these segments, followed by
training on the modified sequences, can improve model generalizability. These techniques
can make the model more resilient to data variations, thereby boosting overall accuracy
and robustness in gesture recognition systems.

Another promising avenue is exploring the application of diffusion models for surgi-
cal gesture recognition. Recent research has investigated the use of diffusion models in
temporal action segmentation. DifffAct, introduced in [235], iteratively refines action seg-
mentation from pure noise, conditioned on video features extracted using an ASFormer.
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DifffAct also employs a condition masking strategy that utilizes positional, boundary, and
relational priors of human actions to reduce segmentation errors, outperforming the AS-
Former in temporal action segmentation tasks. Since the ASFormer was the foundation for
developing our MGRFormer, investigating diffusion models for surgical gesture recogni-
tion, particularly extensions of DifffAct for integrating multimodal data, could improve the
state-of-the-art.
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