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1 Summary of thesis in french (Résumé de la thèse en français) 

Le diabète de type 2 (DT2) est une maladie multifactorielle caractérisée par une 

hyperglycémie chronique, et causée par des facteurs génétiques et 

environnementaux, tels que le vieillissement. Alors que les études d'association 

pangénomique (GWAS) ont commencé à identifier les causes génétiques du DT2, les 

études d'association épigénomique (EWAS) ont rencontré un succès limité dans la 

caractérisation de l'impact de l’environnement en raison de la taille très réduite des 

échantillons étudiés et du manque d'études fonctionnelles. De plus, l'ampleur de 

l'interaction entre la variation génétique et épigénétique reste mal comprise. 

L'objectif de cette thèse était de contribuer à notre compréhension de la façon dont 

les facteurs environnementaux influencent la pathogenèse du DT2 et sa progression 

vers des complications associées, notamment l'adénocarcinome canalaire 

pancréatique (PDAC). 

Dans le premier projet, nous avons étudié l'interaction entre les modifications 

épigénétiques associées au DT2 et l'âge, et la variation génétique dans les îlots 

pancréatiques de 124 individus, dont 16 atteints de DT2. Nous avons développé une 

approche intégrative combinant la méthylation de l'ADN, l'expression génique et le 

génotypage pour identifier des associations en triade, en examinant si les variations 

génétiques et épigénétiques s'influencent mutuellement. Nous avons identifié 301 et 

743 CpG associés à l'âge et au DT2, qui influencent l'expression des gènes voisins. 

Parmi ceux-ci, moins de 10 % étaient influencés par des variants génétiques, 

suggérant que les modifications épigénétiques induites par l'environnement sont 

indépendantes de la variation génétique. Notamment, seuls trois gènes, SIX3, 

ST6GAL1 et TIPIN, se colocalisaient avec des variants de risque du GWAS du DT2 et 

étaient également sous régulation épigénétique. La caractérisation des gènes régulés 

épigénétiquement a mis en évidence des candidats clés du DT2, notamment OPRD1 

et MEG3. Finalement, nous montrons que l'ajout de scores de risque épigénétique 

aux scores de risque polygénique a amélioré la prédiction du risque de DT2. Nos 



résultats suggèrent que la plupart des gènes sont régulés soit par des facteurs 

génétiques, soit par des facteurs épigénétiques, mais rarement par les deux. 

Dans le deuxième projet, nous avons exploré l'influence épigénétique du DT2 sur le 

pancréas exocrine afin de comprendre pourquoi les individus atteints de DT2 sont 

plus à risque de développer le PDAC, l'un des cancers les plus mortels. Nous avons 

réalisé une EWAS pour le DT2 (25 individus atteints de DT2 et 116 non-diabétiques) 

et identifié une seule hyperméthylation dans cg15549216, située dans le gène 

Pancreatic Lipase Related Protein 1 (PNLIPRP1), qui était corrélée à une diminution de 

l'expression du gène. L'inhibition de Pnliprp1 dans la lignée cellulaire acinaire de rat 

AR42J a augmenté les niveaux de cholestérol, réduit la prolifération et induit une 

métaplasie acino-canalaire (ADM), caractéristiques des premiers stades du PDAC. Il 

est à noter que cet effet a été inversé par un traitement avec des statines, mettant en 

évidence le potentiel translationnel de ces résultats. De plus, une analyse de variants 

rares à partir de la UK Biobank a lié PNLIPRP1 au cholestérol LDL, confirmant les 

résultats fonctionnels. Nous proposons un modèle où les mécanismes épigénétiques 

et génétiques agissent indépendamment mais synergisent pour favoriser les lésions 

du pancréas et la progression de la maladie. 

Cette thèse souligne l'importance d'étudier la méthylation de l’ADN pour identifier 

les facteurs environnementaux qui contribuent à la maladie. Nos résultats révèlent 

que ces altérations épigénétiques sont en grande partie indépendantes des facteurs 

génétiques, soulignant leur rôle complémentaire dans la pathogenèse du DT2. De 

plus, PNLIPRP1 illustre comment les études épigénomiques peuvent identifier de 

nouveaux biomarqueurs à pertinence translationnelle, offrant de nouvelles 

perspectives sur le DT2. 

 

 



2 Résumé de thèse vulgarisé pour le grand public en français 

 

Le diabète de type 2 (DT2) est une maladie caractérisée par un excès de sucre 

sanguin, causée par des facteurs génétiques et environnementaux comme le 

vieillissement, une alimentation riche, l'obésité et la sédentarité. Cette thèse vise à 

comprendre comment l'environnement contribue au DT2 et ses complications. Dans 

le premier projet, nous avons étudié comment le vieillissement et le diabète affectent 

l'ADN des cellules productrices d'insuline. Nous avons découvert que le diabète et 

l'âge entraînent des modifications de l'ADN, altérant le fonctionnement des gènes 

régulant le sucre sanguin. Ensuite, nous avons exploré l'impact du diabète sur le 

pancréas exocrine. Le gène PNLIPRP1 est sous-exprimé chez les diabétiques. En 

laboratoire, sa modification induit des changements similaires aux débuts du cancer 

du pancréas, mais ces effets sont inversés avec des médicaments comme les statines. 

Comprendre ces changements pourrait aider à prévenir ou traiter le DT2 et ses 

complications. 

 

3 Thesis summary 

Type 2 diabetes (T2D) is a multifactorial, complex disease characterised by chronic 

elevated blood glucose, and caused by genetic and environmental factors, such as 

ageing. While genome-wide association studies (GWAS) have successfully identified 

the genetic causes of T2D, epigenome-wide association studies (EWAS) have had 

limited success in capturing the environmental impact due to the tissue-specificity of 

epigenetic changes, very small sample sizes, and the lack of functional studies. 

Furthermore, the extent of the interaction between genetic and epigenetic variation 

remains poorly understood. The objective of this thesis was to contribute to our 

understanding of how environmental factors contribute to T2D pathogenesis, and its 

progression towards related complications, notably pancreatic ductal 

adenocarcinoma (PDAC).  



In the first project, we investigated the interplay between age and T2D-associated 

epigenetic changes and genetic variation in pancreatic islets of 124 individuals, of 

which 16 had T2D. We developed a novel integrative approach combining DNA 

methylation, gene expression, and genotyping to identify triad associations, 

examining whether genetic and epigenetic influence each other. We identified 301 

and 743 CpGs associated with age and T2D, respectively, which impacted nearby 

gene expression (within a 2 Mb window). Of these, less than 10 % were influenced by 

nearby genetic variants, suggesting that environmentally-driven epigenetic changes 

operate largely independently of genetic variation. Notably, only three genes, SIX3, 

ST6GAL1, and TIPIN, were found to co-localise with T2D GWAS risk variants, and were 

also under epigenetic regulation. Characterisation of the epigenetically-regulated 

genes highlighted key T2D candidates, including OPRD1 and MEG3. Importantly, 

adding methylation risk scores (MRS) to polygenic risk scores (PGS) improved T2D risk 

prediction, underscoring the additive value of epigenetic studies. Our findings suggest 

that most genes are regulated either by genetic or epigenetic factors, but rarely both. 

In the second project, we explored the epigenetic influence of T2D in the exocrine 

pancreas, to explore why T2D individuals are at a higher risk of developing pancreatic 

disease, notably PDAC, one of the deadliest cancers. We performed an EWAS for T2D 

(25 T2D individuals and 116 non-diabetic) and identified a single hypermethylation in 

cg15549216, located in the Pancreatic Lipase Related Protein 1 (PNLIPRP1) gene, 

which was corelated with a decreased expression of the gene. Knockdown of Pnliprp1 

in the rat acinar cell line AR42J increased cholesterol levels, reduced proliferation, 

and induced acinar-to-ductal metaplasia (ADM), hallmarks of the early stages of 

PDAC. Notably, this effect was reversed by treatment of statin, highlighting the 

translational potential of these findings. Additionally, a rare variant analysis using the 

UKBiobank linked PNLIPRP1 to LDL-cholesterol, confirming the functional results. We 

propose a model where epigenetic and genetic mechanisms act independently but 

synergise to promote pancreas injury and disease progression.  



This thesis underscores the importance of studying DNA methylation as an unbiased 

approach for identifying environmental factors that contribute to disease. Our 

findings reveal that these epigenetic alterations are largely independent of genetic 

factors, underscoring their complementary role T2D pathogenesis. Additionally, 

PNLIPRP1 serves as an example of how epigenomic studies can indeed identify novel 

biomarkers with a translational relevance, offering new insights into disease 

mechanisms and progression. 

4 Thesis summary for the general public 

Type 2 diabetes (T2D) is a disease characterised by high blood sugar levels, caused by 

genetic and environmental factors like aging, high-calorie diets, obesity, and lack of 

physical activity. This thesis explores how the environment contributes to diabetes 

and its complications. The first project investigated how ageing and diabetes interact 

with DNA in insulin-producing pancreatic cells. We found that both diabetes and 

ageing lead to specific DNA modifications that alter blood sugar regulating genes. In 

the second project, we explored how T2D impacts other parts of the pancreas. We 

identified a gene (PNLIPRP1) modified in diabetics. Lab experiments showed that 

modifying this gene caused changes similar to early pancreatic cancer, but these 

effects can be reversed with drugs like statins. This research shows that 

environmental factors can alter DNA in ways that influence diseases. Understanding 

these changes may lead to new ways to prevent or treat T2D and its complications. 
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7 Introduction 

7.1 Diabetes  

Diabetes refers to a group of metabolic diseases characterised by chronic elevated 

blood glucose levels, or hyperglycaemia (Karamanou et al. 2016), as a result of 

insufficient insulin production by insulin-secreting pancreatic β-cells (Abel et al. 2024). 

In 2021, an estimated 529 million individuals were afflicted with diabetes (Home et al., 

n.d.), and projections estimate 642 million and 1.31 billion cases in 2035 and 2050, 

respectively (Abel et al. 2024; Home et al., IDF diabetes atlas). Diabetes poses a 

significant burden, leading to reduced quality of life and a shorter life expectancy for 

those affected (Ahmad et al. 2022). Economically, the impact is substantial; in France, 

healthcare expenditure for diabetes has been sharply increasing, from 7.69 billion 

euros in 2015, to 8.59 billion, or 5.1% of total healthcare expenditures in 2019 (Rachas 

et al. 2022). Similar trends are observed worldwide (Figure 1). This growing challenge 

is further amplified by the increasing prevalence of an aging population, which 

contributes to rising healthcare demands. As a result, diabetes and related conditions 

represent a major healthcare challenge of the 21st century (United Nations, World 

Population Prospects Report, 2015). 

Diabetes is a heterogeneous disease, which is broadly classified into several subtypes: 

type 1 diabetes (T1D), monogenic diabetes, and type 2 diabetes (T2D).T1D is 

characterised by an autoimmune-mediated destruction of pancreatic β-cells, leading 

to an absolute deficiency in insulin production (Saberzadeh-Ardestani et al. 2018). 

Additionally, there are over 40 currently identified rare monogenic forms of diabetes, 

including maturity-onset diabetes of the young (MODY) and neonatal diabetes, which 

result from highly penetrant heterozygous mutations in genes crucial for β-cell 

function, leading to impaired insulin secretion (Skoczek, Dulak, and Kachamakova-

Trojanowska 2021; Bonnefond et al. 2023). Finally, T2D, the most prevalent type of 

diabetes, which is characterised by progressive loss of insulin secretion by pancreatic 

β-cells, combined with insulin resistance (IR) in peripheral tissues (Abel et al. 2024).  



   

Figure 1: Estimated worldwide healthcare spending on diabetes in 2015 and 2040. 
Light red indicates 2015 and dark red indicates 2040. Size of the circles represent 
nominal healthcare spending. Adapated from (“Infographic: The Global Cost Of 
Diabetes” 2016). 
 

7.1.1 Type 2 diabetes 

T2D currently accounts for an estimated 96% of cases (Abel et al. 2024), and is the 

most rapidly increasing type of diabetes in terms of prevalence (Figure 2) (Ong et al. 

2023). T2D is a multifactorial disease driven by both environmental and genetic 

factors. Key environmental contributors include ageing, obesity, physical inactivity, 

and sedentary lifestyles—all of which have played a significant role in the rising global 

incidence of T2D (Chatterjee, Khunti, and Davies 2017). Moreover, emerging 

evidence suggests that mental health and psychological well-being are also crucial 

risk factors, with chronic stress, depression, and anxiety linked to the development 

and progression of the disease (Kelly and Ismail 2015).  

 



 

Figure 2: Type 1 and type 2 diabetes prevalence up to 2050. Type 1 diabetes 
incidence has remained largely stable through the years whilst type 2 diabetes 
incidence is rapidly increasing. Adapted from (Ong et al. 2023). 

 

 

7.1.1.1 T2D pathophysiology 

T2D is heterogenous and results from varying degrees of deficient insulin secretion 

and insulin sensitivity (Galicia-Garcia et al. 2020). The most prevalent model for the 

development of T2D involves a gradual increase in IR, often driven by obesity or 

elevated BMI which occurs in conjunction with loss of β-cell function (Reed, Bain, and 

Kanamarlapudi 2021) (Figure 3). In the context of decreased insulin sensitivity, a 

temporary glycaemic balance can be maintained as β-cells compensate by increasing 

in number and size—obesity can increase β-cell size by an estimated 50%—and 

consequently secrete greater volumes of insulin (hyperinsulinemia) to maintain 

normoglycaemia (Fonseca 2009; Linnemann, Baan, and Davis 2014). However, 

elevated insulin secretion and increased β-cell activity are not sustainable and can 

lead to various forms of stress, including oxidative stress, endoplasmic reticulum 

stress, dyslipidaemia, amyloid accumulation, and inflammation (Corkey, Deeney, and 

Merrins 2021). These stressors collectively contribute to the dysfunction and 



eventual death of β-cells, culminating in the onset of T2D (Boland, Rhodes, and 

Grimsby 2017). Importantly, T2D  

In practice, T2D manifestation is a combination of relative pancreatic islet function 

and peripheral IR owing from an interplay of environmental exposures and genetic 

backgrounds. For instance, obesity promotes T2D through IR, whereas ageing 

contributes to T2D primarily via β-cell decline (Reed, Bain, and Kanamarlapudi 2021; 

Tudurí et al. 2022). This heterogeneity has been defined into four distinct clusters. 

Severe Insulin Deficient Diabetes (SIDD), Severe Insulin Resistant Diabetes (SIRD), 

Mild Obesity-Related Diabetes (MOD), and Mild Age-Related Diabetes (MARD), all of 

which present with varying degrees of insulin deficiency and insulin resistance 

(Ahlqvist, Prasad, and Groop 2020). Notably, the heterogeneity of the disease 

highlights the need of diverse cohorts which capture each of the subtypes to properly 

identify the underlying physiological alterations driving each of these groups.  



 

Figure 3 : Overview of the aetiology and pathophysiology of type 2 diabetes. Several 
environmental factors impact both insulin secretion, and its action, including BMI, 
physical activity and smoking. These environmental factors can be exacerbated by 
disease-favourable genetic profiles, leading to the development of T2D. (Zheng, Ley, 
and Hu 2018). 
 

7.1.1.2  Complications of T2D 

T2D is associated with numerous chronic complications stemming from deficient 

insulin secretion and insulin resistance, significantly contributing to disease mortality. 

These complications are broadly categorised into microvascular and macrovascular 

complications, which represent the majority of T2D-associated morbidity and 

mortality. 



7.1.1.3 Microvascular and macrovascular complications 

Microvascular and macrovascular complications represent the majority of T2D-

associated complications and deaths. Indeed, T2D presents with hyperglycaemia, 

which damages large blood vessels (i.e., macrovascular), and small blood vessels (i.e., 

microvascular). Macrovascular complications attributed to diabetes amounted to 179 

million deaths in the US, or 53% of all diabetes-related deaths (Parker et al. 2024). 

Meanwhile, microvascular complications represented an estimated 26.8% of 

diabetes-related deaths (W. Ling et al. 2020). HbA1C, glycated haemoglobin, which is 

a measure of average blood glucose, is heavily correlated to diabetes complication 

incidence and mortality. Indeed, each 1% decrease in HbA1C levels results in a 34% 

reduction in microvascular complication incidence (Stratton et al. 2000). Similarly, 1% 

decreases in HbA1C lowers the risk of myocardial infarctions, strokes, and heart 

failure by 14%, 12%, and 16% respectively (Stratton et al. 2000). Finally, a 1-point 

reduction in HbA1C lowers diabetes-related deaths by 21% and all-cause mortality by 

17%, highlighting the importance of preventing and managing T2D to limit the 

occurrence of complications (Stratton et al. 2000). 

 

7.1.1.4 Cancers 

T2D is also a known risk factor for certain cancers (Cannata et al. 2010). A pooled 

analysis indicated that the relative risk (RR) for 19 different cancers in individuals with 

T2D is 1.15 (S. Ling et al. 2020). These included the liver, which features a RR of 2.23, 

and the kidney, which features a RR of 1.32, both of which are insulin target tissues 

(S. Ling et al. 2020). Notably, the RR for pancreatic ductal adenocarcinoma (PDAC) is 

substantially higher, at 2.09, highlighting a strong association between T2D and PDAC 

development (S. Ling et al. 2020; Yan Li et al. 2019). This association was recently 

reinforced by a mendelian randomization (MR) which showed a causal role for T2D in 

PDAC initiation (Maina et al. 2023). PDAC is a rapidly lethal and one of the most 

difficult to treat form of cancer, due to its late diagnosis.  While the exact 

mechanisms linking T2D to PDAC remain unclear, factors such as hyperinsulinemia, 



hyperglycaemia, and chronic inflammation are correlated with an increased risk of 

PDAC (Yan Li et al. 2019). Acinar cells, which undergo acinar-to-ductal metaplasia 

(ADM) in response to stress, are exposed to high levels of insulin in states of 

hyperinsulinemia (Egozi et al. 2020). These cells express the insulin receptor (INSR) 

and are responsive to insulin signalling, which can influence their function and 

morphology (Pandol 2011). Indeed, exposure of acinar cells to excessive insulin 

triggers increases in cell sizes and transcriptional alterations, which may induce 

stress, thus promoting ADM (Egozi et al. 2020). Excessive ADM is one of the hallmarks 

of PDAC initiation (Shu Li and Xie 2022). 

 

7.2 The pancreas  

The pancreas plays a central role in both insulin production and glucose homeostasis, 

as well as in the secretion of digestive enzymes, underscoring its critical importance 

in the pathophysiology of T2D and overall metabolic regulation (Leung 2010). 

Structurally, the pancreas consists of two anatomically and functionally distinct 

compartments: the endocrine pancreas, which comprises the islets of Langerhans 

responsible for hormone secretion, and the exocrine pancreas, which produces 

digestive enzymes (Figure 4). Despite their distinct roles, there is significant evidence 

supporting a bidirectional relationship between these compartments. Indeed, 

dysfunction in the endocrine pancreas can induce exocrine dysfunction, and vice 

versa. As described above, T2D increases PDAC risk (Tan et al. 2017). Conversely, 

PDAC onset often triggers new-onset T2D (Tan et al. 2017). 

 

 



 

Figure 4: Overview of the pancreas. The exocrine compartment forms the majority of 
the organ and is composed of enzyme-secreting acinar cells and ductal cells. 
Pancreatic islets are dispersed throughout the exocrine pancreas and are composed 
primarily of insulin and glucagon secreting β- and α-cells respectively. Adapted from 
(Röder et al. 2016). 
 

7.2.1 The endocrine pancreas 

Pancreatic islets of the endocrine pancreas constitute only 1–2% of the pancreas and 

are crucial for maintaining glucose homeostasis throughout the body. This is achieved 

by orchestrating the production and secretion of two antagonistic hormones: insulin, 

produced by β-cells, and glucagon, produced by α-cells (Walker et al. 2021). In 

addition to these primary hormones, the islets produce somatostatin, secreted by δ-

cells; pancreatic polypeptide (PP), secreted by PP cells (also known as γ-cells); and 

ghrelin, secreted by ε-cells. These additional hormones modulate the activity of α- 

and β-cells, contributing to the fine-tuning of glucose homeostasis (Walker et al. 

2021). Pancreatic islets are predominantly composed of β-cells, which account for 55-

75% of the islet volume, followed by α-cells, which make up 30-45% of the volume 

(Cabrera et al. 2006). In contrast, δ-cells, γ-cells, and ε-cells together comprise less 

than 10% of the total islet cell population (Cabrera et al. 2006).  



 

7.2.2 Pancreatic β-cells and insulin secretion 

Pancreatic β-cells are extensively studied due to their crucial role in regulating 

glucose homeostasis through insulin secretion. Insulin, encoded by the INS gene, is 

initially produced as preproinsulin, a precursor molecule. The Golgi apparatus and 

endoplasmic reticulum process preproinsulin into insulin and C-peptide, which are 

stored in vesicles ready for secretion by β-cells. Insulin secretion is initiated through 

glucose-stimulated insulin secretion (GSIS), a tightly regulated process which is 

enabled by the ability of β-cells to detect changes in plasma glucose levels and 

respond according to the body's metabolic needs (Figure 5) (Suckale and Solimena 

2008). GSIS is triggered by an increase in extracellular glucose levels, resulting in the 

entrance of glucose into β-cells through glucose transporter 2 (GLUT2). Next, glucose 

is phosphorylated into glucose-6-phosphate (G6P) by glucokinase. Glucokinase acts as 

the key censor for glucose in β-cells, indeed, its activity is continuous and directly 

proportional to intracellular glucose levels (Suckale and Solimena 2008). G6P is 

utilised as fuel and converted into pyruvate by the glycolytic pathway for use in the 

tricarboxylic acid cycle pathway (TCA) (Suckale and Solimena 2008). TCA pathway 

activity increases ATP generation in the mitochondria. An increase in intra-cellular 

ATP concentrations causes the Kir6.2 channel ATP-dependant potassium channels, 

encoded by KCNJ11 and ABCC8, to close (Seino et al. 2000). The importance of this 

channel is evidenced in monogenic diabetes caused by mutations in KCNJ11 and 

ABCC8 (Babenko et al. 2006; L. Liu et al. 2013). Kir6.2 closing induces a depolarisation 

of the plasma membrane, which results in the opening of voltage-dependent calcium 

(Ca2+) channels. Calcium influx causes the insulin and C-peptide containing vesicles to 

fuse with the plasma membrane, releasing the peptides into the bloodstream. Insulin 

secretion is biphasic, whereby initial GSIS induces the secretion of 1% of insulin-

containing vesicles present in β-cells and triggers a secondary, longer-lasting, phase 

of insulin secretion (Campbell and Newgard 2021). This secondary phase of insulin 



secretion allows for the steady secretion of insulin for hours following GSIS (Campbell 

and Newgard 2021).    

 

 

Figure 5: Overview of the glucose stimulated insulin secretion pathway. Glucose 
enters the cell via the glucose transporter GLUT2. Glucose is then processed the 
enzyme glucokinase to glucose-6-phosphate (G6P). G6P is used in glycolysis for ATP 
generation. An increase in ATP tiggers the closing of ATP sensitive K+, depolarising the 
membrane, leading to the opening of Ca2+ channels, triggering insulin vesicle 
exocytosis (Kasper et al. 2018). 
 
 
 
 
 
Post release, insulin enacts its glucose-lowering action by binding to the INSR in the 

liver, adipose tissue, and skeletal muscle. Insulin binding to INSR induces a molecular 

cascade that their promotes glucose uptake in the skeletal muscle adipose tissue, or a 



reduction in glucose production by the liver (Dong et al. 2006; Petersen and Shulman 

2018).  

Insulin production is tightly regulated and highly dependent upon proper β-cell and 

overall pancreatic islet function. Mutations in a number of key islet transcription 

factors (TF), such as HNF1A, or K+ channels result in MODY (Anık et al. 2015). 

Mutations in HNF1A lead to MODY3, characterised by progressive dysfunction of 

pancreatic β-cells and loss of insulin production, ultimately causing hyperglycaemia 

(Anık et al. 2015). These individuals can be treated with insulin therapy. Mutations in 

KCNJ11 and ABCC8 result in deficient insulin secretion owing to permanent K+ 

opening. These are better treated by sulphonylureas, which close K+ channels and 

restore proper insulin secretion in response to glucose levels (Bowman et al. 2020) 

This is a powerful example of personalised medicine and the importance of 

understanding the underlying causes of diabetes.  

 

7.2.3 The exocrine pancreas 

The exocrine pancreas constitutes approximately 95% to 98% of the entire pancreas 

and is composed mainly of acinar cells (about 82%) along with ductal cells. The 

primary function of acinar cells is to produce and secrete digestive enzymes: amylase 

for carbohydrates, lipase for lipids, and proteases for proteins. Ductal cells support 

acinar cells in two primary ways: (1) by forming ducts through which acinar secretions 

flow into the gastrointestinal tract, and (2) by producing and secreting sodium 

bicarbonate (HCO₃⁻) to neutralise stomach acid in the duodenum. The ducts are 

connected to clusters of acinar cells via centroacinar cells, which possess both acinar 

and ductal characteristics (Leung 2010). Together, the acinar and centroacinar cells 

form the functional unit of the exocrine pancreas, known as the acinus. Each acinus is 

connected to the ductal system, which converges into the main pancreatic duct, 

ultimately transporting pancreatic secretions into the gut (Leung 2010).  

 



7.3 The genetics of type 2 diabetes 

7.3.1 The heritability of type 2 diabetes and early genetic studies 

Early family studies demonstrated a strong genetic component to the development of 

T2D (Turner et al. 1995). This was later confirmed by two twin-studies, with cohorts 

sizes of 5,810 and 34,166 individuals, which showed a heritability of the disease 

ranging from 31% to 72%, respectively (Almgren et al. 2011; Willemsen et al. 2015). 

Therefore, huge efforts were aimed at unravelling the genetic causes of T2D. Early 

genetic investigations using family pedigrees identified highly penetrant single 

variants that co-occurred with disease. This approach identified several genes, 

including glucokinase, encoded by the GCK gene, and the TF HNF4α (Fajans, Bell, and 

Polonsky 2001; Froguel et al. 1993). However, T2D is a complex polygenic disease, 

caused by several genetic variants with modest effect sizes. To detect these variants, 

association studies, composed of many individuals to ensure sufficient power, are 

required. Early targeted association studies were successful in identifying candidate 

genes for T2D including KCNJ11 and PPARG, but were limited in scope because of the 

technology available at the time (Altshuler et al. 2000; Gloyn et al. 2003). 

 

7.3.2 Genome wide association studies  

Genome wide association studies (GWAS) revolutionised the genetics of T2D. GWAS 

are very large genetic case-control studies that utilise microarrays to identify single 

nucleotide polymorphisms (SNPs) associated with a given trait or disease. The first 

GWAS in T2D was published in 2007, and utilised a cohort of 1275 individuals, 

identifying 5 SNPs associated with the disease, including in the previously known 

TCF7L2 gene, but also in SLC30A8, now an established T2D gene (Sladek et al. 2007; 

Flannick et al. 2014). Since then, a further 158 GWAS for T2D have been published, 

with gradually increasing sample sizes and number of SNPs being tested. This 

increase was due to the advancements in array technologies as well as reference 

panels, such as HapMap or the 1000 genome project, which enable the imputation of 



variants not present in genotyping arrays (International HapMap Consortium 2003; 

Auton et al. 2015). Today, very large multi-ethnic cohorts have been assembled and 

continue to grow, with the most recent cohort including 428,452 cases and 2,107,149 

million non-diabetic controls, which identified 1,289 genetic variants associated with 

T2D (Suzuki et al. 2024). Indeed, GWAS has been extremely successful in uncovering 

genetic variation involved in T2D risk (Figure 6). 

 

 

 

Figure 6: Cumulative number of loci associated with type 2 diabetes per year by 
genome-wide association studies. The number of loci associated with the disease 
has increased exponentially through the years, primarily due to very large sample 
sizes. Adapted from: (Shojima and Yamauchi 2023). 
 
  



7.3.3 GWAS: limitations and drawing mechanistic insights from associations 

Although GWAS have been extremely successful in identifying genetic variants 

associated with T2D, they feature several important limitations. Most SNPs identified 

by GWAS lie in non-coding regions of the genome, making it difficult to link a variant 

to a specific gene and, thereby, to understand the biological mechanisms associated 

with the T2D risk variant. When a SNP is located within a gene and impacts the amino 

acid sequence, it is relatively straightforward to identify the gene driving the 

association, as is exemplified by rs17887074 and rs1801282, which are located within 

the coding regions of the SLC30A8 gene and the PPARG gene, respectively 

(Kreienkamp et al. 2023), both of which are implicated in insulin secretion. However, 

the vast majority of SNPs (> 90 %) lie in non-coding region of the genome (Tak and 

Farnham 2015). These SNPs do not directly impact protein sequences, rather, they 

may alter the expression pattern of target genes. In T2D GWAS (and more generally, 

GWAS for polygenic traits), many SNPs lie in promoter or enhancer regions (Miguel-

Escalada et al. 2019; Suzuki et al. 2024). 

To gain biological insight from GWAS findings, a powerful tool known as expression 

quantitative trait loci (eQTL) was developed. eQTL integrates genotyping data with 

gene expression data, e.g., RNA sequencing, to ascertain associations between SNPs 

and gene expression levels to identify genes targeted by genetic variants. Typically, 

cis-eQTL analyses focus on nearby genes—within a 500 kb or 1 Mb window—whilst 

trans-eQTL analyses examine genes located more than 5 Mb away from the genetic 

variant (Bryois et al. 2014). Since gene expression data is tissue-specific, it is essential 

that eQTL studies are performed in the tissue relevant to the disease being studied 

(Arvanitis et al. 2022).  

The largest eQTL study to date in human islets was conducted in 514  organ donors, 

which identified over 1 million associations in 21,115 genes (Alonso et al. 2021). To 

focus on T2D GWAS signals, colocalisation analyses, which rely on Bayesian inference 

to identify shared causal signals between GWAS and eQTL SNPs, were performed. 

Using this approach, this study identified 53 distinct genes target genes of previously 



reported T2D-associated SNPs, including  known T2D candidate genes such as CCND2 

and SIX3, as well as novel genes such as RMST (Bevacqua, Dai, et al. 2021; Yaghootkar 

et al. 2015; Alonso et al. 2021). Furthermore, by integrating their findings with the 

Genotype-Tissue Expression (GTEx) project, a large eQTL database spanning of 54 

tissues, they demonstrated that pancreatic islet specific eQTLs were overrepresented 

relative to other tissues (Alonso et al. 2021), and were particularly enriched in 

previously identified islet-specific regulatory regions (Miguel-Escalada et al. 2019). 

These results underscore that a significant portion of T2D heritability arises from 

genetically driven physiological changes in pancreatic islets and highlight the 

importance of investigating biologically relevant tissues. 

Another approach is functional validation, where genes of interest are investigated 

and characterised in pancreatic β-cell or animal models. For instance, an eQTL study 

found a novel gene ZMIZ1, and found that this gene was indeed involved in insulin 

secretion (Bunt et al. 2015). Another eQTL study found that the FCHSD2 gene was the 

target genes of the ARAP1 locus (Khamis et al. 2019). Further functional validation in 

the EndoC-βH1, a β-cell model, revealed that the deletion of the enhancer region 

resulted in the decreased expression of the FCHSD2 gene and the reduction in insulin 

secretion (Hu et al. 2021; Pasquali et al. 2014). Similarly, another recent study 

validated functionally validated the rs12712929 SNP, which had been previously 

linked to the SIX3 gene in eQTL studies (Spracklen et al. 2018). Crispr-Cas9 editing in 

human islets of the genetic variant impaired gene expression of SIX3 and nearby SIX3-

AS1, and reduced insulin secretion (Bevacqua, Dai, et al. 2021). Overall, these studies 

have identified novel contributors of insulin secretion and are gradually translating 

GWAS signals into concrete mechanistic insights into the pathophysiology of T2D. 

  



7.3.4 Leveraging GWAS to predict disease risk, cause, and consequence 

In addition to identifying the genetic contribution of common disease, GWAS 

associations have been leveraged to predict disease risk and predisposition through 

polygenic risk scores (PGS) (Padilla-Martínez et al. 2020). PGS aggregate the presence 

of alleles from predefined loci (T2D GWAS loci for instance) to generate scores for 

individuals being tested, with higher scores indicating greater genetic predisposition 

to the disease being assessed. Several PGS models, incorporating different numbers 

of SNPs, have been developed T2D. Weedon et al. (2006) generated the first PGS for 

T2D using three SNPs associated to the key T2D genes: KCNJ11, PPARG, and TCF7L2. 

The score featured a predictive power of an area under the curve (AUC) value of 0.58. 

Importantly, individuals carrying all six risk alleles of these SNPs had an odds ratio of 

5.71 for developing the disease (Weedon et al. 2006). Subsequent studies 

incorporated risk factors alongside their PGS to enhance predictive power.  Khera et 

al. (2018) utilised 7 million SNPs, and the resulting PGS improved the AUC of clinical 

variables from 0.66 to 0.73. Similarly, Läll et al. (2017) leveraged 1000 SNPs, and 

improved the AUC of clinical variables alone from 0.718 to 0.767. Although PGS 

improve risk prediction for T2D only modestly, they hold significant clinical value. PGS 

enable patient stratification into low- and high-risk groups, facilitating targeted 

preventive interventions and personalised healthcare strategies (Khera et al. 2018). 

Finally, GWAS have also been leveraged to better understand the epidemiological 

links between several risk factors, including BMI and smoking, and T2D, through MR. 

MR is a powerful tool used to determine the causality of one trait, the exposure, or 

another trait, the outcome. MR assesses causality based on the principle that genetic 

variation is determined at birth and remains constant, thus serving as an 

unconfounded proxy for environmental exposures. MR exploits SNPs associated with 

an exposure (typically identified through GWAS), such as BMI, to determine whether 

these same SNPs contribute to the risk of an outcome—in this case, T2D. To date, MR 

studies have demonstrated a causal role of obesity in T2D incidence, as well as in 

glycaemic traits, such as impaired insulin sensitivity and insulin secretion (T. Wang et 



al. 2018). Similarly, MR has been used to confirm the causality of T2D in the 

development of certain cancers, such as pancreatic and kidney cancer, but not liver 

or breast cancer (Yuan et al. 2020). Appropriately designed MR isolate the exposure 

as the sole contributor to the outcome, indicating that T2D-specific alterations are 

driving certain outcomes, providing important information for the management of 

T2D complications.  

Overall, the development of SNP arrays and GWAS has significantly advanced our 

understanding of T2D pathophysiology by identifying candidate genes, improving 

disease prediction, and uncovering factors contributing to both the incidence and 

progression of the disease. 

 

7.4 Epigenetics  

Whilst GWAS have been successful in characterizing the genetic component of T2D, 

they currently explain only about 20% of the overall genetic risk (Suzuki et al. 2024). 

This falls short of the heritability estimates, which range from approximately 31% to 

71% (Almgren et al. 2011; Willemsen et al. 2015). Furthermore, GWAS do not capture 

the contribution of environmental factors. To address these issues, and continue 

characterising T2D, studies have now begun exploring the contribution of epigenetics 

to disease susceptibility. Epigenetic marks, particularly DNA methylation, are altered 

by environmental factors, such as ageing, hence epigenetic may mediate the 

contribution of environmental risk factors to T2D susceptibility. These modifications 

can affect gene expression and contribute to disease development (Smith, Hetzel, 

and Meissner 2024). Indeed, risk factors for T2D identified by epidemiological studies 

including obesity and ageing have been associated with epigenetic modifications 

which subsequently impact gene expression (Zheng, Ley, and Hu 2018; Charlotte Ling 

and Rönn 2019). Therefore, these factors and their contribution to T2D can be 

explored using epigenetic variation as a proxy for environmental factors that 



contribute to disease, offering a complementary approach to GWAS to understand 

the mechanisms underlying T2D pathophysiology. 

 

7.4.1 Overview of epigenetics 

Epigenetics is defined by Cavalli and Heard (2019) as “the study of molecules and 

mechanisms that can perpetuate alternative gene activity states in the context of the 

same DNA sequence”, i.e., the modification of gene expression without modifying the 

genome.  These molecules and mechanisms, such as DNA methylation, histone 

modifications, and non-coding and small RNAs, are stable over time and through 

cellular division, and can be passed down to future generations. In multicellular 

organisms, this stability allows for the existence of distinct cellular states (Cavalli and 

Heard 2019). The epigenome, however, can be influenced by environmental stimuli. 

For instance, infections, heat shock and undernourishment have all been shown to 

induce epigenetic alterations in C.elegans with functional consequences on 

physiological outcomes (Klosin et al. 2017; Rechavi, Minevich, and Hobert 2011; 

Rechavi et al. 2014). Consequently, studying the epigenome offers valuable insight 

into how environmental exposures influence gene expression and contribute to 

disease susceptibility. Recent technological advances—particularly in high-

throughput DNA methylation arrays—have revolutionised the field of epigenetics. 

These tools enable comprehensive analysis of epigenetic modifications across the 

genome, providing new opportunities to explore their roles in gene regulation and 

disease. 

 

7.4.2 Fundamentals of DNA methylation 

DNA methylation is an epigenetic modification characterised by the addition of a 

methyl group to the 5th carbon on a cytosine residue to form 5-methylcytosine 

(Moore, Le, and Fan 2013). While all cytosines—approximately 25% of nucleotides—

can be methylated, the vast majority (about 98%) of DNA methylation occurs at 



cytosines followed by guanine nucleotides, known as CpG dinucleotides (Jin, Li, and 

Robertson 2011). DNA methylation patterns are established during early 

development, particularly at implantation, following a global demethylation event in 

the zygote (Smith, Hetzel, and Meissner 2024). This process sets the foundational 

methylome, which is then dynamically modified throughout the organism's lifespan. 

DNA methylation is crucial for proper development, contributing to genomic 

imprinting, X-chromosome inactivation, regulation of repetitive element 

transcription, and other essential processes (Jin, Li, and Robertson 2011).   

The process of DNA methylation is governed by the DNA methyltransferases (DNMT) 

family of enzymes.  DNMT3A and DNMT3B are de-novo methylators which target 

unmethylated CpG dinucleotides (Figure 7). Mice with Dnmt3a knockout (KO) die at 4 

weeks of age, whilst Dnmt3b KO are embryonic lethal (E14.5-E18.5), highlighting the 

importance of DNA methylation to development (E. Li 2002; Okano et al. 1999). 

DNMT1 is primarily responsible for maintaining existing methylation patterns by 

methylating hemimethylated CpGs—sites where only one DNA strand is 

methylated—during DNA replication (Jin, Li, and Robertson 2011). Hemi-methylated 

CpGs occur during DNA replication, as the daughter strand is replicated without the 

DNA methylation pattern of the father strand. Dnmt1 KO mice are embryonic lethal 

(Jin, Li, and Robertson 2011). Despite the high variability in DNA methylation patterns 

among species, DNMT enzymes are highly conserved throughout evolution (Law and 

Jacobsen 2010). This conservation suggests strong selective pressure on these genes, 

highlighting the critical role of DNA methylation in the organismal survival. 



 

Figure 7: Application and maintenance of DNA methylation marks. A) De novo 
methylation is applied to cytosines preceding a guanine residue by DNMT3A or 
DNMT3B. B) DNMT1 replicates DNA methylation marks from the parental strand onto 
the newly synthesised daughter strand during DNA replication. Figure generated in 
BioRender. 
 

7.4.3 Distribution of CpGs throughout the genome 

CpG dinucleotides are not evenly distributed throughout the genome. Assuming a 

random distribution of nucleotides, CpG dinucleotides should occur at a frequency of 

1 in 16 dinucleotides, given the four possible nucleotides (A, T, C, G) and the 16 

possible dinucleotide combinations. Early on, it was observed that CpG dinucleotides 

occur only at 21% of the expected frequency or roughly every 1/100 dinucleotide pair 

in the genome (Illingworth and Bird 2009; McClelland and Ivarie 1982).  Despite this 

overall depletion, there are regions known as CpG islands—typically ranging from 200 

to 2,000 base pairs—that are rich in CpG dinucleotides (Illingworth and Bird 2009). 

These CpG islands are mostly unmethylated and are overrepresented in the 5′ 

untranslated region (5′ UTR) of genes. Approximately 70% of all human gene 

promoters contain CpG islands, underscoring their significance in gene regulation 

(Illingworth and Bird 2009). The remaining CpGs, located outside of islands, are 

isolated and found in repetitive elements (REs) and transposable elements (TEs) 



which make up the bulk (70%) of the genome and are typically packaged in 

heterochromatin (Koning et al. 2011). These CpGs are most often methylated, unlike 

CpG islands, and contribute to the silencing of REs and TEs (Pappalardo and Barra 

2021).  

 

7.4.4 The contribution of DNA methylation to transcriptional regulation 

As CpG dinucleotides are overrepresented in regions critical for regulating gene 

expression (i.e., promoters), several studies have investigated the role of DNA 

methylation in this process. Early models suggested that hypermethylation in 

regulatory regions, particularly promoters and enhancers, prevents TF binding, 

therefore, repressing gene expression (Figure 8A). In this context, changes in 

methylation levels of CpG islands within promoters can either activate or repress the 

expression of tumour suppressors implicated in cancer (Zhu, Wang, and Qian 2016). 

This model, which suggests that hypermethylation leads to downregulation and 

hypomethylation results in upregulation, often affecting the gene closest to the CpG, 

has remained prevalent in the field, perhaps because of its mechanistic simplicity. 

However, it has become increasingly clear that the regulation of gene expression by 

DNA methylation is more complex. For instance, a genome-wide methylation study in 

cancer demonstrated a positive correlation between the methylation of many CpG 

sites and gene expression (Irizarry et al. 2009). Certain TF are able to bind methylated 

DNA, offering a mechanistic explanation for the observed positive correlations 

between DNA methylation and gene expression (Zhu, Wang, and Qian 2016). A classic 

example is MECP2, which contains a methyl-CpG binding domain (MBD). MECP2 acts 

as both a transcriptional activator or repressor, depending on the context (Figure 8B) 

(Chahrour et al. 2008). Importantly, certain TFs, such as KLF4, SMYM3, AP2α, exhibit a 

greater DNA-binding affinity when their target motif features methylated CpGs. This 

provides a mechanism through which DNA hypermethylation can enhance TF activity, 

whether they function as repressors or activators (Spruijt et al. 2013). To date, over 

100 TFs have been identified that bind methylated DNA in vitro, and several have 



been validated in vivo (Zhu, Wang, and Qian 2016). Beyond regulatory regions, DNA 

methylation regulates heterochromatin conformation (Grewal 2023). Loss of 

methylation results in chromatin decompensation, exposing previously inactive DNA, 

and in particular REs, which are overly represented in heterochromatin (Figure 8C) 

(Pappalardo and Barra 2021). Heterochromatin disruption impacts normal expression 

patterns, genomic stability and chromosomal organisation (Bodega and Orlando 

2014; Pappalardo and Barra 2021; Shapiro and von Sternberg 2005). Genes encoding 

all types of RNAs are present in REs and TEs and are expressed upon heterochromatin 

decompensation (Toubiana et al. 2018). In cancer, global hypomethylations in REs 

and TEs are observed, particularly in the TEs LINE1s (Long interspersed nuclear 

element-1). The degree of LINE1 hypomethylation is correlated to tumour 

progression (Igarashi et al. 2010). Beyond disrupting transcriptional patterns, RE 

exposure increases the occurrence of recombination events, leading to deletions, 

insertions, translocations, and inversions, all of which are linked to disease and 

promote genomic instability (George and Alani 2012).  

 



 

 

Figure 8: Overview of the mechanisms by which DNA methylation contributes to 
gene expression. A) STAT1 binds a matching promoter, activating gene expression. 
Subsequent DNA methylation of the promoter prevents STAT1 binding and therefore 
represses expression. B) MECP2 features a methylation binding domain and cannot 
bind unmethylated promoters. Methylation of the promoter enables MECP2 binding 
and initiates transcription. C) DNA methylation maintains heterochromatin structure. 
Hypomethylation of chromatin results in transcriptionally active euchromatin. 
Generated in BioRender. 
 

 

7.4.5 Modification of DNA methylation patterns 

Changes in DNA methylation are categorised into hypermethylations and 

hypomethylations, owing to the distinct mechanisms which drive these processes. 

DNA hypermethylation, which refers to an increase in the proportion of the 

methylation of a given CpG dinucleotide in a given sample, is an active process 

mediated by the DNMT enzyme family (Jeltsch and Jurkowska 2014). DNA 

hypermethylation occurs primarily in tissue specific CpG rich promoters, actively 



transcribed gene bodies, and intragenic and intergenic enhancers (Ehrlich, 2019). 

Paradoxically, hypermethylations are not targeted at exact CpGs, but specific CpGs 

are consistently hypermethylated in different tissues and physiological contexts 

(Jeltsch and Jurkowska 2014). This may be explained by the transcriptional alterations 

driven by hypermethylations, which could enhance cellular fitness and therefore be 

propagated as cellular replication occurs (Jeltsch and Jurkowska 2014). Indeed, in 

adrenocortical carcinoma, hypermethylation of specific promoters is associated with 

cancer progression and escape from the immune system (Rauluseviciute, Drabløs, 

and Rye 2020). Overall, a combination of DNMT activity and histone marks define 

hypermethylation patterns (Yinglu Li, Chen, and Lu 2021). In adrenocortical 

carcinoma, DNMT1 and DNMT3A are both overexpressed and their expression levels 

are correlated to the hypermethylation of promoters (Rauluseviciute, Drabløs, and 

Rye 2020). In conjunction, DNMTs show greater affinity for regions marked by 

H3K9me2/3 histones than regions marked by H3K27me3 histones (Yinglu Li, Chen, 

and Lu 2021). Importantly, histone marks are not randomly distributed and, 

therefore, partly direct DNA methylation patterns (Yinglu Li, Chen, and Lu 2021). 

Indeed, the H3K27me3 and H3K4me3 marks, for which DNMTs have low affinity, are 

predominantly located in CpG islands and contribute to their maintenance in a 

hypomethylated state (Yinglu Li, Chen, and Lu 2021). Meanwhile, H3K9me3 marks are 

enriched in heterochromatin regions to preserve their hypermethylated state (Yinglu 

Li, Chen, and Lu 2021). DNA hypomethylations are largely stochastic, indeed they are 

thought to result from a lack of DNA methylation maintenance in a context of cellular 

stress or elevated cellular proliferation without adequate compensation in the 

expression of DNMTs. Consequently, hypomethylated CpG sites are less replicable 

than hypomethylated sites (Tarkhov et al. 2024).  

 

7.4.6 Measuring and studying DNA methylation 

DNA methylation, has only recently begun receiving significant attention, despite the 

concept of epigenetics being first been described over 80 years ago (Waddlngton 



1942). Early studies utilised bisulfite sequencing, a method that involves chemically 

converting DNA using sodium bisulfite to detect DNA methylation (Figure 9) During 

this process, unmethylated cytosines are deaminated by sodium bisulfite and 

converted into uracil. However, methylated cytosines are resistant to this conversion 

and remain unchanged. When the DNA is then amplified through polymerase chain 

reaction (PCR), the uracils are copied as thymines, while the methylated cytosines 

remain as cytosines. This enables the possibility to distinguish between methylated 

and unmethylated cytosines by comparing the sequences after bisulfite treatment. 

Early studies performed bisulfite conversion followed by polymerase chain reaction 

(PCR) to measure DNA methylation at specific promoters, such as the INS promoter, 

but generally they were limited in scale, and could only assess a few promoters or 

target regions per analysis (Paz et al. 2003; B. T. Yang et al. 2011).  

 

Figure 9: Bisulfite conversion of DNA. Treatment of DNA with sodium bisulfite 
converts cytosines with no methylation to uracils, whilst methylated cytosines are 
unchanged. Uracils are substituted to thymines during DNA synthesis. Adapted from: 
Diagenode.com 
 
 
The development of DNA methylation arrays over the last decade has revolutionised 

the field, enabling genome-wide screening of methylation sites. The state-of-the-art 



platforms for studying methylation include the Illumina 450k and EPICv1 arrays, 

which cover 450,000 and 850,000 CpGs, respectively, out of the approximately 28 

million CpGs in the genome (Mansell et al. 2019). A more recent addition, the EPICv2 

array, which covers 930,000 CpGs, has recently been released. These arrays 

specifically target CpG sites that are located within regulatory regions, including CpG 

islands, promoters, enhancers, and transcription factor binding sites. 

Methylation arrays measure DNA methylation at each CpG site again by leveraging 

bisulfite conversion of DNA. In the Infinium MethylationEPIC array, two separate 

probes per CpG site—one for the methylated (C) state and one for the unmethylated 

(T) state are used. Each probe ends immediately before the CpG site. During single-

base extension, a labelled nucleotide complementary to the target base is 

incorporated (Figure 10). Fluorescent dideoxynucleotides (green for methylated and 

red for unmethylated DNA) are used to quantify methylation as a beta value, ranging 

from 0 (unmethylated) to 1 (fully methylated). For instance, a beta value of 0 means 

no methylation at a given CpG site for the sample being measured, while 1 indicates 

complete methylation at this CpG.  

Methylation arrays have facilitated a more global approach, similar to GWAS, for 

identifying DNA methylation changes associated with a given trait. These epigenome-

wide association studies (EWAS) have been studied in various contexts, and the EWAS 

Catalog, a database referencing studies with more than 100 samples and at least 

100,000 tested CpGs, currently contains 407 entries.  

 

 

 

 

 



 
Figure 10: Overview of DNA methylation array technology. To discriminate between 
methylated and unmethylated CpGs, DNA is bisulfite-converted, whereby 
unmethylated cytosines are converted to uracil. DNA is then enzymatically 
fragmented and applied to the array. For each CpG quantified in the array, there are 
two probes, one which hybridises with the sequence containing a CG, and another 
with the sequence containing UG, corresponding to methylated and unmethylated 
DNA, respectively. DNA methylation at a given CpG is then quantified by the relative 
fluorescence emitted by each of the two probes. Adapted from: Bibikova et al. 2011 
 

7.4.7 DNA methylation studies in T2D and related exposures 

In recent years, EWAS have uncovered DNA methylation changes associated with T2D 

risk, particularly in genes related to insulin secretion, glucose metabolism, and 

inflammation (Rönn et al. 2023; Bacos et al. 2023). These findings suggest that DNA 

methylation may mediate the effects of environmental factors on T2D development. 

Moreover, risk factors like obesity, ageing, and hyperglycaemia have been shown to 

drive specific methylation changes, further linking epigenetic modifications to T2D 

progression and its complications (X. Wang et al. 2010; Bollati et al. 2009). These 

studies are crucial for identifying potential biomarkers and therapeutic targets for 

T2D and related metabolic disorders. 

 



7.4.8 DNA methylation and T2D 

Methylation studies for T2D are limited. Initial small-scale studies of DNA methylation 

in the context of T2D were focused on specific regions linked to T2D, including the 

promoters of INS, PDX1, GLP1R, and PPARGC1A, and their expression in pancreatic 

islet tissue (Hall et al. 2013; C. Ling et al. 2008; B. T. Yang et al. 2011; Beatrice T. Yang 

et al. 2012). Since then, several EWAS for T2D have been performed. In blood, 

Chambers et al. (2015), identified five CpG methylation sites associated with incident 

T2D, highlighting the potential value of DNA methylation to disease prediction and 

characterisation. However, the focus has shifted towards metabolically relevant 

tissues, especially pancreatic islets, as blood DNA methylation changes do not 

consistently replicate in these tissues, hindering the understanding of the underlying 

molecular mechanisms in disease (de Mello et al. 2014). Early EWAS in pancreatic 

islets faced challenges due to limited sample sizes. Volkmar et al., (2012) analysed 5 

cases and 11 controls, and  identified 276 differentially methylated CpGs linked to 

gene expression changes, enriched in oxidative stress pathways, a component of T2D 

pathophysiology (Volkmar et al. 2012). Similarly, Dayeh et al., (2014) found 1,649 

differentially methylated CpGs in a cohort of 49 pancreatic islets (15 cases), with 

genes linked to genes with a role in T2D, notably CDKN1A, a gene later implicated in 

T2D development (Dayeh et al. 2014; Muhammad et al. 2021). The most recent EWAS 

in pancreatic islets for T2D, which encompassed 100 samples (25 T2D cases), 

identified 7260 differentially methylated CpGs (Rönn et al. 2023).  

In addition, several studies have explored DNA methylation in other metabolic 

tissues. In the liver, Nilsson et al., (2015) identified 251 differentially methylated CpGs 

associated with T2D. These CpGs were linked to changes in the expression of 29  

genes (Nilsson et al. 2015). Studies in skeletal muscle and adipose tissue are more 

limited. Ribel-Madsen et al., (2012) performed an EWAS in 11 skeletal muscle and 5 

adipose tissue samples of monozygotic twins discordant for T2D (Ribel-Madsen et al. 

2012). In skeletal muscle, only one differentially methylated CpG was identified, 

whilst none were found in the adipose tissue, likely due to limited sample sizes (Ribel-



Madsen et al. 2012). Generally, in the liver and pancreatic islets, a global 

hypomethylation was observed, with more targeted hypermethylation in promoters, 

coherent with methylation patterns observed in disease, notably cancer (Nilsson et 

al. 2015; Rönn et al. 2023). 

Although EWAS have successfully identified DNA methylation changes associated to 

traits, in order to gain biological insight, these alterations must be linked to 1) 

transcriptomics (or other biological effectors, such as proteomics or metabolomics), 

and 2) functionally validated. Emerging studies have begun translating these EWAS 

signals into candidate genes for T2D. Recent studies have integrated DNA 

methylation with transcriptomics, and have identified OPRD1 and PAX5 as epi-

genetically regulated target genes in T2D (Rönn et al. 2023; Bacos et al. 2023). 

Further functional validation, through siRNA silencing of these genes in healthy 

human islets, reduced insulin secretion (Bacos et al. 2023). These results highlight 1) 

the potential of epigenetics to offer insights that extend beyond traditional 

biomarkers, and 2) the ability of epigenetics to complement genetics studies in 

characterisation of the molecular architecture of T2D (Bacos et al. 2023). However, 

while candidates are beginning to be identified, studies which linking DNA 

methylation to transcriptomics remain limited in scope, as they focus solely on genes 

in close proximity to the differentially methylated CpG. This approach fails to capture 

the complexity of the impact of on transcriptomic alterations (Rönn et al. 2023).  

 

7.4.9 DNA methylation in T2D related exposures  

DNA methylation has been widely studied in the context of BMI, due to its 

contribution to disease susceptibility. Initial DNA methylation studies for BMI were 

performed in blood. The first study, composed of 7 obese and 7 lean individuals, 

assessed with the HumanMethylation27 chip, composed of 27,000 CpG probes, 

identified a hypermethylation in the UBASH3A gene, and a hypomethylation in the 

TRIM3 gene, but drew no further biological conclusions regarding the consequences 



of these alterations (X. Wang et al. 2010). A subsequent study by Demerath et al. 

(2015), in 2097 individuals identified 8 BMI-associated CpGs. Notably, they found 

BMI-associated CpGs located in proximity to the HIF3A, CPT1A, and ABCG1 genes. 

These genes have since been characterised and shown to contribute to BMI or 

associated traits, including T2D. HIF3A inhibition promotes white adipocyte tissue 

(WAT) browning, a process which protects from both obesity but also T2D (Cuomo et 

al. 2022). Meanwhile, ABCG1 expression in humans is correlated to BMI, a finding 

reinforced by mice Abcg1 silencing, which exhibited reduced fat mass development 

(Frisdal and Le Goff 2015). Importantly, ABCG1 deficiency also impairs insulin 

secretion from β-cells (Harris et al. 2018). Finally, CPT1A was found to promote fatty 

acid oxidation in the liver, and its dysregulation promotes IR (Weber et al. 2020; 

Sarnowski et al. 2023). Demonstrably, these DNA methylation changes appear to 

either promote obesity or downstream consequences of the disease. This was 

confirmed by Wahl et al. (2017), who performed a large EWAS (10,261 samples) for 

BMI in blood. They leveraged transcriptomics and mendelian randomization to 1) link 

DNA methylation changes to transcriptomic alterations, 2) show that DNA 

methylation were both cause and consequence of BMI exposure, and 3) that these 

methylation changes could predict later risk of T2D (Wahl et al. 2017).  

 

7.4.10 DNA methylation and age 

Age is a major risk factor for age-related disease, including T2D (Fazeli, Lee, and 

Steinhauser 2019). Ageing is particularly significant as it leads to a gradual, systemic 

decline in physiological functions across the body. Understanding the molecular 

mechanisms of ageing is crucial not only for developing therapies to treat age-related 

diseases but also for potentially slowing down the ageing process itself. Therefore, 

DNA methylation in the context of ageing has attracted significant interest, as 

"epigenetic alterations" have been identified as one of the key hallmarks of ageing 

(López-Otín et al. 2023).  



An early methylation study for age, which targeted 1,413 CpG sites identified a 

several trends which have since become wide accepted: 1) DNA methylation is 

strongly correlated to age, 2) DNA methylation in CpG islands increases with age, and 

decreases outside of these regions, and 3) DNA methylation changes are highly tissue 

specific (Christensen et al. 2009). A subsequent EWAS identified 37,911 differentially 

methylated CpGs in the monocytes of 1264 individuals associated with age (Reynolds 

et al. 2014). This study confirmed that ageing induces a global hypomethylation, with 

fewer targeted increases in specific regions, including CpG islands, transcription 

factor binding sites, and enhancers (Reynolds et al. 2014). Additionally, they 

identified increases in methylation in genes, such as ELOVL2 (cg16867657) and FHL2 

(cg06639320), which have since been replicated in several tissues, such as blood, 

pancreatic islets, liver, and kidney (Reynolds et al. 2014; Bacos et al. 2016a; Bysani et 

al. 2017; Slieker et al. 2018). A similar trend was observed in other tissues, for 

instance, in human brain with age, the  majority were hypomethylated, but a 

hypermethylation trend was observed in CpG islands, and hypomethylation in other 

regions (J. Yang et al. 2015).   

An EWAS for age in pancreatic islets identified 241 differentially methylated sites, all 

of which were hypermethylated and enriched for CpG islands (Bacos et al. 2016a). 

Moreover, differentially methylated CpG sites in proximity to ELOVL2 and FHL2 were 

differentially methylated, furthering the observation that there are specific age-

associated alterations which are ubiquitous across diverse tissues (Bacos et al. 

2016a). This observation led to the classification of age-associated CpGs into two 

categories: the first are “co-regulated”, which are consistent across individuals and 

species, while the second category are stochastic and poorly correlated between 

individuals and species (Tarkhov et al. 2024). Co-regulated CpG sites are strongly 

correlated to chronological age  (Horvath and Topol 2024). This finding has facilitated 

the development of DNA methylation clocks that utilise a select number of CpGs to 

predict biological age (Figure 11) (Horvath and Raj 2018). These clocks not only 

predict biological age in blood, but also across several tissues, including the brain, 



liver, and skin (Horvath and Raj 2018). Additionally, DNA methylation change with age 

were shown to correlate with clinical characteristics, such as visceral fat level and 

liver density (A. T. Lu et al. 2019). Accordingly, DNA methylation age can predict time 

to death (remaining lifespan) more accurately than chronological age (A. T. Lu et al. 

2019; Horvath and Topol 2024). This is supported by observations that deviations of 

biological age from chronological age—referred to as age acceleration—are 

associated with earlier disease onset  (Bell et al. 2019). For example, a longitudinal 

study demonstrated that individuals with an older DNA methylation age at baseline 

were more likely to develop cancer earlier (Bartlett et al. 2019).  

 

Figure 11: Overview of DNA methylation clocks. A radar plot describes the 
performance of three DNA methylation clocks in calculating biological age in different 
human tissues: Horvath’s (blue line), Hannum’s (red line), and Levine’s (green line) 
DNA methylation clocks. Each clock features distinct performance owing to the CpGs 
selected for inclusion in the clocks. AA stands for age acceleration; therefore, BMI vs 
AA blood denotes age acceleration in blood in the context of BMI. Adapted from 
(Horvath and Raj 2018) 
 



Given the correlation between DNA methylation and lifespan, researchers have 

investigated whether lifestyle interventions associated with increased lifespan and 

health span could slow biological ageing. A 2-year diet intervention (plant rich, low 

meat, low glycemic load foods) in 219 women resulted in a deceleration of biological 

ageing, as computed by the DNAmGrimAA clock (Fiorito et al., 2021). Further studies 

have found that all conventional “healthy” and “common-sense” lifestyle actionables, 

such as eating fish regularly, low alcohol intake, exercise (Figure 12), and healthy 

weight are all associated with biological ageing (Quach et al., 2017). The study of DNA 

methylation in ageing holds great promise. These results highlight that 1) we can 

utilise DNA methylation to identify the exposures that promote or limit ageing, 2) we 

can pinpoint individuals at a greater risk of developing disease. However, it remains 

unclear whether these age-associated alterations are functional or merely 

consequences of various exposures. 

 



 

Figure 12: Comparison of biological age relative to chronological age between 
individuals who exercise or not. Biological age was calculated using the DNAm Grim 
age DNA methylation clock. The X-axis shows chronological age in years, and the y-
axis shows DNA methylation age calculated with the DNAm Grim age DNA 
methylation clock. Adapted from (Horvath and Topol 2024). 
 

7.4.11 The interactions of genetics and DNA methylation 

DNA methylation is also under genetic regulation. Methylation quantitative trait loci 

(mQTL) link genetic variation, primarily SNPs, to changes in target CpG methylation. 

Current estimations propose that 10%-45% of the human methylome is under 

influence by nearby genetic variants (Villicaña and Bell 2021). mQTLs have been 

linked to various diseases, including cardiovascular disease, and T2D (R.-K. Liu et al. 

2021; Huan et al. 2019). Recently, Stefansson et al. (2024) observed that CpGs under 

the influence of a genetic variant were more likely to impact gene expression. 

Furthermore, they proposed a model where SNPs impact DNA methylation which 

subsequently impacts gene expression, highlighting the importance of considering 



DNA methylation in the context of genetic studies to fully capture the heritability of 

the disease (Stefansson et al. 2024). However, it is currently unclear whether the 

CpGs under the influence of genetic variants are the same CpGs targeted by 

environmental variables such as age.  

 

7.4.12 The state of DNA methylation today: lessons learnt and limitations 

To date, DNA methylation studies have successfully identified alterations associated 

with a wide variety of traits and diseases across several tissues. A revolution is 

currently underway in the field of ageing following the development of ageing clocks, 

which offers promise for strategies aimed at slowing ageing and preventing disease 

(Horvath and Topol 2024). Additionally, in the context of T2D, EWAS have led to the 

identification of novel candidate genes (Bacos et al. 2023; Cuomo et al. 2022).  

However, the potential of EWAS for T2D has yet to be fully realised. First, only four 

EWAS for T2D or age have been published in pancreatic islets (Table 1). Second, 

sample sizes remain limited, and only a single EWAS with over 100 samples has been 

published (Rönn et al. 2023). Second, as demonstrated by BMI based EWAS, DNA 

methylation changes can induce alterations which promote complications, such as 

T2D, yet only study Bacos et al (2016), has investigated the contribution of a known 

T2D risk factor to DNA methylation in a biologically relevant tissue. Another limitation 

of EWAS, similar to GWAS, is that most DNA methylation sites are located in non-

coding regions, making it difficult to pinpoint the causal gene. Additionally, most 

studies have not properly integrated transcriptomic data to DNA methylation studies 

to determine the target genes and their biological consequences. For instance, the 

most recent EWAS for T2D focused on genes located within 10 kb of a differentially 

methylated CpG (Rönn et al. 2023), despite a recent study demonstrating that many 

CpG-gene interactions occur beyond a 10 kb window (Kim et al. 2023). Moreover, 

many EWAS continue to be performed in blood, rather than in biologically relevant 

tissues. Of the 10 EWAS for BMI published since 2020, only two were performed in 

adipose tissue, while the remaining eight being performed in blood (Keller et al. 



2023). Finally, genetics contributes significantly to DNA methylation variation, yet it is 

rarely controlled for in EWAS, which fundamentally assess environmental exposure. 

This oversight may lead to potentially spurious associations (Hawe et al. 2022).  

 

Table 1: Published EWAS performed in pancreatic islets for age and T2D 

Reference Sample size Trait Significant CpGs 

Volkmar et al., 2012 16 (5 cases) T2D 276* 

Dayeh et al., 2014 49 (15 cases) T2D 1649 

Ronn et al., 2023 100 (25 cases) T2D 7260 

Bacos et al., 2016 87 Age 241 

*276 sites reaching unadjusted p < 0.01 and > 5% change in methylation level. T2D: 

type 2 diabetes 

7.5 Project aims 

The aim of this PhD project was to gain a biological understanding of epigenetic 

regulation in the context of age and T2D within the endocrine and exocrine pancreas. 

We sought to perform in-depth multi-omic analyses and functional characterisation 

to derive functional insights from epigenomic studies. In the first study, we 

conducted integrative multi-omic analyses in pancreatic islets assess the degree of 

interaction between genetic variants and epigenetic modifications and to identify the 

functional consequences of DNA methylation changes associated with age and T2D. 

In the second study, we aimed to identify epigenetic changes associated with T2D in 

the exocrine pancreas, that could explain why individuals with T2D have an increased 

risk of developing pancreatic disease. These studies build upon existing literature, 

addressing the limitations in the current state of epigenetic research related to T2D 

and contributing to a better understanding of the complex cis-regulatory architecture 

of DNA methylation and genetics. 



8 Project 1:  Environment-mediated DNA methylation changes 

operate independently of genetic variation to impact the 

expression of key pancreatic islet genes 

8.1 Introduction 

T2D is characterised by chronic hyperglycaemia, primarily due to the inability of 

pancreatic β-cells to secrete sufficient insulin to meet the body's needs (Galicia-

Garcia et al. 2020). The decline in β-cell function arises from a complex interplay 

between genetic and environmental factors. A comprehensive understanding of how 

genetic and environmental factors influence these molecular changes is critical for 

unravelling the pathogenesis of T2D. This requires a detailed investigation into the 

cellular events occurring in human tissues, as these interactions shape physiological 

traits and disease development. Gaining insights into how these molecular features 

interact with each other is key to developing effective therapies, interventions, and 

diagnostic tools for conditions like T2D. 

GWAS have been instrumental in identifying the genetic contribution to T2D, 

revealing over 1,000 genetic variants associated with the disease (Suzuki et al. 2024). 

In parallel, epigenetic studies in pancreatic islets have shed light on how ageing 

contributes to T2D pathophysiology. Some research has demonstrated that genetic 

variants associated with T2D can be linked to changes in nearby DNA methylation 

that affect gene expression. For instance, one study proposed that the presence of a 

T2D risk allele allows FOXA1/FOXA2 transcription factors to bind enhancer regions, 

thereby reducing DNA methylation at the CAMK1D promoter and increasing its 

expression, which may elevate the risk of T2D (Xue, Wu, Zhu, Zhang, Kemper, Zheng, 

Yengo, Lloyd-Jones, Sidorenko, Wu, Consortium, et al. 2018). To confirm this, a recent 

study using nanopore sequencing in blood highlighted that genetic variation often 

serves as the primary driver behind the correlation between methylation and gene 

expression, identifying thousands of allele-specific methylation quantitative trait loci 

(Stefansson et al. 2024). These indicate an intricate relationship between genetics 



and DNA methylation. Conversely, certain genes, such as CPT1A, are 1) epigenetically 

dysregulated by an environmental exposure (obesity), and 2) are not under the 

influence of any genetic variant (Weber et al. 2020; Hirota et al. 2007). Similarly,  

many EWAS have linked environmental exposures to robust epigenetic modifications, 

particularly in ageing, where CpGs in proximity to ELOVL2 are consistently 

hypermethylated (Slieker et al. 2018). Together, these studies suggest that epigenetic 

modifications can both be dependent and independent of genetic regulation. 

While much of the existing literature has focused on the influence of general genetic 

variation on methylation and gene expression, we took a systematic approach by first 

mapping the epigenetic landscape of pancreatic islets in response to both ageing and 

T2D. We then integrated these epigenetic changes with genotyping and 

transcriptomic data from the same individuals within a single model. This approach 

was developed to explore the extent to which epigenetic changes associated with age 

and T2D are influenced by genetic factors or primarily driven by environmental 

exposures. Our results revealed that the epigenetic alterations linked to age and T2D 

are largely distinct from genetic regulation. These insights provide a deeper 

understanding of the cis-regulatory architecture involved in pancreatic islet function 

and the molecular mechanisms underpinning β-cell decline in T2D. 

 

 

 

 

 

 

 

 



8.2 Materials and methods 

8.2.1 Clinical characteristics of the Epi-Islet organ donor cohort 

Pancreatic islets were obtained from 144 brain-dead organ donors, with an age range 

of 22 to 96 years. The characteristics of the donors are detailed in Table 2. These 

samples were collected from the IMIDIA consortium (Solimena et al. 2018). Of these 

samples, 25 had T2D, based on the American Diabetes Association (ADA) guidelines 

(ADA, 2019). Insulin secretion index (ISI) of the pancreatic islet was assessed from all 

the human islets obtained in this cohort. Differences in clinical characteristics 

between non-diabetic individuals and individuals were assessed using the Wilcoxon 

rank sum test.   Ethical approval was obtained by next-of-kin’s (for organ donors) or 

patient’s (for surgical cases) informed consent, and with the approval of the local 

ethics committees in Pisa.  

 

8.2.2 DNA extraction, methylation arrays and statistical analysis 

DNA was extracted from pancreatic islets samples using the NucleoSpin Tissue kit 

(T740952.50; Mackerey-Nagel). Bisulphite conversion was performed in a total of 500 

ng of DNA from our samples using the EZ DNA Methylation kit (5001; Zymo Research) 

and subjected to Illumina’s 850K EPIC array. Methylation array data was imported 

using the minfi R package (version 1.50.0) (Aryee et al. 2014). QC steps removed CpG 

probes if they were: located on sex chromosomes cross-hybridising, non-cg or had a 

detection threshold p-value of less than 0.01. Probes near or in SNPs were retained. 

Samples with less than 99 % probes with a detection p-value lower than 0.01 were 

excluded. Probe-design biases and batch effects were normalised using R packages 

Enmix (1.40.2) (Z. Xu, Niu, and Taylor 2021) and SVA (version 3.52.0) (Leek et al. 

2012) respectively. Following QC, 809,700 probes remained. Sample call rate 

threshold was set at 95 %. Following QC, 144 samples remained for further analysis.  

 



8.2.3 Principal component analysis 

Principal component analysis (PCA) was employed to assess the influence of clinical 

variables on DNA methylation variation in our dataset and variability across samples. 

This was performed using the flashpcaR R package (version 2.1) (Abraham, Qiu, and 

Inouye 2017). The 10 principal components were computed, and an ANOVA was used 

to test the association of each variable with each PC. Outliers were identified based 

on Euclidean distance from the centre. The squared sum of standardized scores 

across the first 10 principal components was calculated for each sample, and those 

exceeding the 75th percentile plus three times the interquartile range (IQR) were 

flagged as outliers.  

 

8.2.4 Epigenome wide association study (EWAS) 

We applied linear regression models to associate two traits, age and T2D, with CpG 

methylation level at a given probe. Potential confounding variables were identified 

from our PCA analysis, i.e., any variable significantly associated with the first principal 

component (PC1) was flagged as a potential confounder. Based on this, T2D status, 

age, sex and islet purity were associated with PC1 (Supplementary figure 1). 

Therefore, for age, the best model was adjusted for: sex, islet purity, T2D status. For 

T2D, the best model was adjusted for: sex, islet purity and age. Additionally, cellular 

composition, which was estimated using the R package RefFreeEWAS (version 2.2), 

was also included in both models (Houseman et al. 2016), where we adjusted for J- 1 

cell types (where J is the number of cell types defined), and to avoid collinearity, we 

remove the cell type with the lower estimated proportion . The EWAS models are 

highlighted below. 

 

 

 



𝐶𝑝𝐺 (𝑀 𝑣𝑎𝑙𝑢𝑒) ~ 𝑨𝒈𝒆 + 𝑆𝑒𝑥 + 𝑇2𝐷 𝑠𝑡𝑎𝑡𝑢𝑠 + 𝐼𝑠𝑙𝑒𝑡 𝑝𝑢𝑟𝑖𝑡𝑦

+ 𝐶𝑒𝑙𝑙𝑢𝑙𝑎𝑟 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠  

𝐶𝑝𝐺 (𝑀 𝑣𝑎𝑙𝑢𝑒) ~ 𝑻𝟐𝑫 𝒔𝒕𝒂𝒕𝒖𝒔 + 𝑆𝑒𝑥 + 𝐴𝑔𝑒 + 𝐼𝑠𝑙𝑒𝑡 𝑝𝑢𝑟𝑖𝑡𝑦

+ 𝐶𝑒𝑙𝑙𝑢𝑙𝑎𝑟 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 

 

β-values denote methylation levels, where 0 indicates 0 % methylation and 1 

indicates 100 % methylation. For the analyses, β-values were transformed to the 

more statistically robust -M-values (Du et al. 2010). EWAS was conducted using the 

limma R package (Ritchie et al. 2015). The bias- and inflation-corrected P-values were 

then adjusted for multiple testing using the false discovery rate (FDR) method from 

Benjamini-Hochberg. In order to control for false positives due to genomic inflation, 

we measured and handled the potential inflation and bias in our results using the 

bacon method (R package bacon), a Bayesian method based on estimation of the 

empirical null distribution (van Iterson et al. 2017). For all EWAS, a bacon-FDR < 0.05 

was used to determine statistical significance. EWAS identified CpGs were overlapped 

with islet-specific regulatory regions generated by (Miguel-Escalada et al. 2019). The 

enrichment of EWAS-identified CpGs for promoters, inactive and active enhancers, 

and unasigned regions, relative to all CpGs present in the Infinium MethylationEPIC 

array was assessed using a Chi2 test.  

 

8.2.5 RNA-sequencing 

RNA-sequencing was performed in 142 pancreatic islet samples using 200 ng of RNA 

using the KAPA mRNA HyperPrep kit (Roche Sequencing). The librairies were 

sequenced in 2x75 bp paired-end reads using the NovaSeq6000 Illumina system. The 

average read per sample was of 72,000,000. These were mapped to the human 

genome on hg37. Sequence demultiplexing was performed using the bcl2fastq 

Conversion Software (Illumina; version v2.20.0.422). The QC was performed using the 

FastQC software (version v0.11.9). The removal of adaptor sequences and low-quality 



bases was performed with Trimmomatic (version v0.39) (Bolger, Lohse, and Usadel 

2014). Genes were quantified using RSEM (version v1.3.0), read with tximport R 

package (version 1.26.1)  and normalised using the method “vst” from the R package 

DESeq2 (version 1.44.0) (Love, Huber, and Anders 2014). 

 

8.2.6 Genotyping 

Genotyping data was generated from DNA extracted from whole pancreas samples 

from the same study participants. DNA extraction was performed with the DNeasy 

Blood & Tissue kit (Qiagen, Germany). Genotyping was done with the GWAS Illumina 

HumanOmni2.5 arrays on the Illumina iScan. Genotypes were called with 

GenomeStudio software. SNPs were excluded based on the following criteria: call 

rate < 0.9%, MAF < 0.01%, and a Hardy-Weinberg equilibrium p-value < 1 × 10⁻⁴. 

Samples were excluded if they featured: discordant sex, a heterozygosity rate greater 

than four times the standard deviation from the mean heterozygosity rate, or a 

relatedness (determined by identity by descent) > 0.2. QC resulted in the exclusion of 

20 samples and 116,241 SNPs. Imputation was performed with the Haplotype 

Reference Consortium Panel (McCarthy et al. 2016).  

 

8.2.7 eQTL and colocalization analyses 

We combined genotyping and transcriptomics data to identify eQTLs using the 

nominal pass function from the QTLtools software (version 1.2) (Delaneau et al. 

2017). eQTLs were corrected for age, sex, islet purity, and sample origin. A 2 Mb cis-

window was used, which includes 1 Mb on each side between the SNP and 

transcription start site (TSS) of the gene. To detect signals shared between eQTL and 

selected GWAS, colocalization analysis was focused on the following GWAS data: T2D 

(Suzuki et al. 2024), proinsulin (Broadaway et al. 2023), random glucose (Lagou et al. 

2023), and modified Stumvoll ISI (Williamson et al. 2023).  RedRibboncoloc (version 

1.3),R package (Piron et al. 2024), which builds on the coloc (version 5.2.3) 



(Giambartolomei et al., 2014) package, was used. RedRibbon computes the posterior 

probabilities for two key outcomes: (1) the likelihood that a region shares a causal 

variant between the two association summary statistics being tested, and (2) the 

likelihood that each individual variant present in both summary statistics is the causal 

variant. A colocalisation was considered significant when the posterior probability for 

a shared causal variant (PP.H4) exceeded 0.75. 

8.2.8 Methylation quantitative trait loci 

To identify CpGs under genetic influence, we performed genome-wide mQTL analyses 

by integrating genotyping and methylation data. mQTLs were performed with the 

QTLtools software (version 1.2) (Delaneau et al. 2017) using the nominal pass option 

in cis. A 2 Mb window was used (1 Mb distance between SNPs and CpGs on each 

side). The mQTLs were corrected for age, sex, and T2D status. All mQTLs with an FDR 

p-value < 0.05 were considered significant and used in further downstream analyses.  

 

8.2.9 Methylation-Expression adjusted for Genotype Analysis (MEGA) 

To address the contribution of DNA methylation changes to gene expression, we 

regressed all age- or T2D-associated CpGs identified in the EWAS against the 

expression of all genes within a 2 Mb window. The following formulae were applied: 

   

𝐶𝑝𝐺(𝑀 𝑣𝑎𝑙𝑢𝑒) ~ 𝐺𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 + 𝐴𝑔𝑒 (𝑡𝑟𝑎𝑖𝑡) + 𝑆𝑒𝑥 + 𝑇2𝐷 𝑠𝑡𝑎𝑡𝑢𝑠 + 𝐼𝑠𝑙𝑒𝑡 𝑝𝑢𝑟𝑖𝑡𝑦

+ 𝐶𝑒𝑙𝑙𝑢𝑙𝑎𝑟 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 + 𝑆𝑎𝑚𝑝𝑙𝑒 𝑜𝑟𝑖𝑔𝑖𝑛 + 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒   

𝐶𝑝𝐺 (𝑀 𝑣𝑎𝑙𝑢𝑒) ~ + 𝐺𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 +  𝑇2𝐷 𝑠𝑡𝑎𝑡𝑢𝑠 (𝑡𝑟𝑎𝑖𝑡) + 𝑆𝑒𝑥 + 𝐴𝑔𝑒 

+ 𝐼𝑠𝑙𝑒𝑡 𝑝𝑢𝑟𝑖𝑡𝑦 + 𝐶𝑒𝑙𝑙𝑢𝑙𝑎𝑟 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 + 𝑆𝑎𝑚𝑝𝑙𝑒 𝑜𝑟𝑖𝑔𝑖𝑛 + 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒  

 

This resulted in trio associations (SNP-DNAm-gene expression). To determine DNA 

methylation sites that were not associated with nearby gene expression, we focused 

on 1/ significant DNA methylation and gene expression associations, and 2/ removed 



any associations of significant CpGs with nearby genetic variants (genotype). To 

determine the overarching relationship between the trait and gene expression we 

computed the “effect direction”. The effect direction of the association was 

determined by extracting the trait and gene estimate and multiplying the estimate 

signs, yielded positively and negatively regulated genes with age and T2D. 

 

8.2.10 Pathway analysis 

We performed pathway enrichment analysis using the Metascape tool 

(metascape.org), an integrated platform designed to provide comprehensive 

functional analysis of gene lists (Zhou et al. 2019). This tool provides an enrichment of 

pathways based on the following databases: Gene Ontology, Kyoto Encyclpedia of 

Genes and Genomes, and Reactome.   

 

8.2.11 Risk scores 

8.2.12 Methylation risk score 

To assess the ability of DNA methylation changes to predict T2D status in our cohorts, 

we generated methylation risk scores (MRS). For this, we selected CpGs associated 

(bacon FDR p-value <0.05) with age in our cohort that were 1) located in CpG islands, 

and 2) located in regulatory regions, to ensure high likelihood of biological relevance. 

The selected CpGs were intersected with CpGs previously associated with age in 1) a 

previously published article for pancreatic islets and age (Bacos et al. 2016a) and 2) 

associated with blood in several published articles obtained through EWAS Catalog 

(Florath et al. 2014; Reynolds et al. 2014; Tajuddin et al. 2019; McCartney et al. 2019) 

This criteria resulted in 11 CpGs associated in all studies (Supplementary Table 9). To 

generate MRS for each individual, we applied an additive model, whereby the M-

value of each CpG was added. A binary logistic regression was fitted to evaluate the 

association between CpG methylation score as predictor and T2D status 



(cases/controls) as outcome. The resulting MRS was associated to age, ISI, and mean 

glycaemia using linear models.  

 

8.2.13 Polygenic risk score 

To predict T2D status in our cohort using genetic variants, we generated PGS using 

the PRSice-2 tool (Choi and O’Reilly 2019). We utilised summary statistics’ weights 

from a recent T2D GWAS of multiple ancestry (Suzuki et al., 2024, referred to as the 

base dataset), and built PGS in our datasets of 124 individuals of European ancestry 

(referred to as the target dataset). The base and target datasets were strictly 

independent. To maximise the PGS prediction ability, we applied a pruning and 

thresholding (P+T) approach with the following parameters: a clumping window of 

250 kb, a linkage disequilibrium threshold of r² < 0.1, and SNP P-value thresholds 

ranging from 5×10-8 to 0.5. This filtering process resulted in the inclusion of 1,475 

independent SNPs using a genome-wide p-value threshold of 5×10-8. The PGS was 

then computed using an additive model. A binary logistic regression was fitted to 

evaluate the association between PRS as predictor and T2D status as outcome. 

 

8.2.14 Risk score integration 

To assess the predictive ability of PGS, MRS, and risk factors (RFs, including age, sex, 

BMI), we built six classifiers, namely T2D ~ RFs; T2D ~ PGS + RFs; T2D ~ MRS + RFs; 

T2D ~ PGS + MRS; T2D ~ PGS + MRS + RFs;  and evaluated their performance using 

Receiver Operating Characteristic (ROC) curves from the pROC R package (version 

1.18.5) (Robin et al. 2010). As our sample size was limited, we opted for k-fold cross 

validation to limit overfitting. In this process, the dataset was partitioned into ten 

approximately equal subsets. For each of the ten iterations, one subset was held out 

as the validation set, and the remaining nine subsets were used to train the PGS 

model. We reported the AUC with their 95% confidence interval for each classifier to 

quantify their predictive accuracy.   



8.3 Results 

8.3.1 Epi-islets cohort clinical characteristics 

Pancreatic islet samples were obtained from 144 organ donors, including 25 with 

T2D, spanning an age range of 22 to 96 years (Table 2). BMI was not significantly 

associated with T2D status (P = 0.12), and individuals with T2D exhibited higher mean 

glycaemia (P < 0.001) and reduced ISI (P < 0.001). DNA was extracted from pancreatic 

islets and profiled for DNA methylation using the Infinium MethylationEPIC array. The 

resulting data were used to conduct an epigenome-wide association study (EWAS) to 

investigate associations with both age and T2D across the entire cohort.  

Table 2: Clinical characteristics of the epi-islets organ donor cohort 

Characteristic Overall, N = 1441 ND, N = 1231 T2D, N = 211 p-value2 

Age (years) 69 (22, 96) 68 (22, 96) 76 (58, 92) 0.031 

Sex    0.2 

    Female 60 (42%) 54 (44%) 6 (29%)  

    Male 84 (58%) 69 (56%) 15 (71%)  

BMI (kg/m2) 24.5 (23.0, 27.1) 24.5 (22.9, 26.9) 25.8 (23.4, 27.7) 0.12 

Mean glycaemia 
(mmol/l) 

149 (121, 182) 144 (120, 173) 193 (165, 227) <0.001 

insulin secretory index 
(ISI) 

2.34 (1.67, 3.38) 2.57 (1.75, 3.60) 1.80 (1.40, 2.14) <0.001 

1 n (%); Median (IQR) 

2 Wilcoxon rank sum test; Pearson’s Chi-squared test 

 

8.3.2 Epigenome-wide association study for age and T2D 

We identified 1,092 age-associated CpGs (bacon corrected P < 0.05), with 86% 

showing hypermethylations (Figure 13A; Supplementary Table 1). Our results were 

consistent with previous studies, as we replicated 147 CpGs identified in an EWAS for 

pancreatic islets (Figure 13B), and found CpGs which are ubiquitously 

hypermethylated with age across multiple cohorts and tissues in genes like ELOVL2 

and FHL2 (Bacos et al. 2016; Bysani et al. 2017) (Supplementary Table 2) . In contrast, 

3,262 CpGs were associated with T2D, the majority of which were hypomethylated 



(Figure 13C; Supplementary Table 3). Unlike age, the overlap between our results 

and a recent T2D EWAS (Rönn et al., 2023) was minimal (88 CpGs, 0.3%; Figure 13D), 

suggesting the presence of significant variability in the methylation profiles of T2D. In 

accordance with this, we observed substantial heterogeneity in the DNA methylation 

profiles of our individuals with T2D (Supplementary figure 3). 

 

 

 

 

 

 

 

 

Figure 13: Epigenome wide association study reveals genes associated with age 
and T2D. A) Volcano plot showing DNA methylation changes associated with age, 
and B) comparison with Bacos et al., to identify shared CpGs associated with age. 
C) Volcano plot showing DNA methylation changes associated with T2D, and D) 
comparison with Ronn et al., to identify shared CpGs associated with T2D. 



8.3.3 The interplay between DNA methylation, gene expression, and genetic 

variants 

This study aimed to assess the relationship between genetic variants and 

environment-associated DNA methylation changes. To this end, RNA sequencing and 

genotyping data were generated from all individuals, of which 124 passed all QC for 

all generated omics. We developed a linear model to test associations between CpGs 

and nearby gene expression (within a 2 Mb window), and including the nearby 

genetic variants for each specific CpG site. We employed this approach to investigate 

the prevalence of two gene regulatory models. The first model involves genetic 

variants, alongside environmental variables, influencing DNA methylation, which in 

turn impacts gene expression, termed regulatory triads. The second model considers 

environmental factors, such as age or T2D, that directly influence CpG methylation 

and affect gene expression without the involvement of SNPs (Figure 14).  



 

Figure 14: Overview of the project pipeline. 144 organ donors were recruited for 
this study. Methylation, genotyping, and transcriptomic data were generated using 
Illumina methylationEPIC arrays, Omni2.5M genotyping chips, and RNA sequencing, 
respectively. After quality control (QC), 124 individuals remained for further analysis. 
EWAS identified CpGs associated with both age and T2D. These significant CpGs were 
integrated with genotyping and transcriptomic data in a unified model. This model 
aimed to determine whether CpGs associated with nearby gene expression were 
influenced by 1) genetic variants or 2) independent environmental factors, within a 2 
Mb window. 
 



Our results revealed that only 12 triad interactions were detected for the 1092 age-

associated CpGs (Supplementary Table 4), and 57 triads for the 3062 CpGs T2D-

associated CpGs (Supplementary Table 5), which is less than expected, as we found 

15% of all CpGs to be influenced by SNPs in our genome-wide mQTL. These findings 

suggest that SNP-mediated epigenetic regulation, influenced by environmental 

factors, is rare and likely context-specific.  To further investigate genetic contributions 

to gene expression, we performed a colocalisation analysis to identify eQTLs (SNPs 

affecting gene expression) and compared these findings with our triad analysis 

(Supplementary Table 6). This approach allowed us to examine whether SNPs 

influence gene expression independently of CpG methylation. The colocalisation 

analysis specifically focused on genetic variants overlapping with T2D-related GWAS 

signals, highlighting key regulatory SNPs that may contribute to disease risk through 

their impact on gene expression. 

For our T2D-associated CpGs, this resulted in two target genes associated with T2D 

GWAS SNPs, SIX3 and ST6GAL1 (Table 3). These genes are co-regulated by different 

SNPs, with a genetic variant influencing gene expression and another CpG 

methylation. This dual regulation underscores the complex genetic-epigenetic 

interplay contributing to β-cell dysfunction in T2D, positioning both SIX3 and ST6GAL1 

as promising candidates into the molecular mechanisms underlying T2D. For instance, 

we found that the decreased methylation of the cg06478249 CpG, located in an 

inactive enhancer, is associated with T2D (FDR-storey = 2.98 x 10-8; Figure 15A), and a 

decreased methylation is associated with an increased expression of the ST6GAL1 

gene (Figure 15B) Moreover, the rs12632862-GG variant is associated with decreased 

methylation at cg06478249, as demonstrated in our triad analysis (Figure 15C). 

Additionally, the colocalization analysis revealed that the T2D risk variant rs3887925-

TT, located in an active enhancer, is linked to increased ST6GAL1 expression. 

Interestingly, rs12632862-GG and rs3887925-TT are in strong linkage disequilibrium 

(R² = 0.87), suggesting that these two variants work in concert to regulate ST6GAL1 

expression and methylation (Figure 15D).  



 

 

 

  
 
 
 
 
 
 
 
 
 

Figure 15: The relationships between DNA methylation, gene expression, and 
genotypic variation for the ST6GAL1 gene in pancreatic islets. A) Methylation (beta 
values) vs T2D status: compares the methylation of the CpG site cg06478249 
between non-diabetic (ND) and type 2 diabetes (T2D) individuals. B) Methylation vs 
Gene Expression: A scatter plot illustrating the negative association between the 
methylation levels of cg06478249 and ST6GAL1 gene expression (TPM). C) Genotype 
rs12632862 (SNP1) vs Methylation: Boxplot showing the effect of rs12632862 
genotypes (AA, AG, GG) on the methylation levels of cg06478249. D) Genotype 
rs3887925 (SNP2) vs Gene Expression: Boxplot showing the association between 
rs3887925 genotypes (CC, CT, TT) and ST6GAL1 expression. 



Table 3: SNP-CpG-Gene triads with colocalisation signals for T2D or related traits 

SNP Position Association trait Gene 

Name 

GWAS H4 

probability 

SNP effect 

direction 

CpG effect 

direction 

rs3887925 3_186665645_C_T T2D ST6GAL1 T2D 0.999 Increase Increased 

rs12712928 

2_45192080_G_C T2D SIX3-AS1 

Random 

glucose 0.986 Decrease Decreased 

rs12712929 2_45192105_G_T T2D SIX3-AS1 Proinsulin 0.986 Decrease Decreased 

rs12712928 2_45192080_G_C T2D SIX3 Proinsulin 0.967 Decreased Decreased 

rs12712929 

2_45192080_G_C T2D SIX3 

Random 

glucose 0.966 Decreased Decreased 

rs2053005 15_66704449_G_A Age TIPIN T2D 0.844 Increased Increased 

 



Additionally, only one age-associated target gene, TIPIN, was also under genetic 

regulation. The cg06993413, located in an active enhancer, was associated with age 

(Figure 16A), and this CpG was associated with the upregulation of the TIPIN gene 

(estimate = 0.20, FDR-storey = 0.004; Figure 16B). While not forming a triad, 

increased TIPIN gene expression was associated with the recently identified 

rs2053005-AA T2D GWAS risk variant (eQTL p-value = 4.20 x 10-12; Figure 16C). 

Additionally, TIPIN gene expression was significantly increased with mean glycaemia 

in our organ donors, further confirming our results (Figure 16D). This suggests a more 

indirect but potentially important role in gene regulation, particularly in the context 

of ageing and T2D, offering further avenues for understanding its contribution to 

disease mechanisms. 

 

 



 

Figure 16: The relationships between DNA methylation, gene expression, and 
genotypic variation for the TIPIN gene in pancreatic islets. A) Methylation (beta 
values) vs age: compares the methylation of the CpG site cg06993413 with age. B) 
Methylation vs Gene Expression: A scatter plot illustrating the positive association 
between the methylation levels of cg06993413 and TIPIN gene expression (TPM). C) 
Genotype vs gene expression (eQTL): Boxplot showing the effect of rs2053005 
genotypes (GG, GA) on the gene expression levels of TIPIN. D) Gene expression and 
mean glycaemia: Scatterplot showing the association between TIPIN expression and 
mean glycaemia of the organ donors. 
. 

 
 
 
 
 
 



8.3.4 The interplay between DNA methylation and gene expression, independent 

of genetic variation 

Having established that environment-associated CpGs are depleted of genetic 

influence, we sought to assess how these impact nearby gene expression. We 

focused on CpGs associated with age or T2D (FDR p-bacon < 0.05) and with nearby 

gene expression (FDR < 0.05) and excluded CpGs associated with nearby SNPs (FDR > 

0.05). Using this approach, we found that 288 unique CpGs (25%) were associated 

with the expression of at least one nearby gene (Supplementary Table 4). Similarly, 

we found that of the T2D-associated CpGs, 700 CpGs (21%) were associated with a 

nearby gene (Supplementary Table 5). For both T2D and age-associated CpGs, the 

vast majority of CpGs did not target the nearest genes (Supplementary figure 4), and 

no over 40% of CpGs targeted genes at a distance > 500kb for both age and T2D 

(Figure 17A-B). Age-associated CpGs that targeted a nearby gene were enriched for 

CpGs islands (P = 2.368 x 10-12), promoters (P = 2.599 x10-4), inactive enhancers (P = 

2.714 x 10-2), and were depleted in non-regulatory (P = 7.836 x10-10) and open sea 

regions (P = 2.368 x 10-12) (Figure 17C). In contrast, T2D-associated CpGs were 

enriched for open sea regions (P = 4.306 x 10-5), active enhancers (P = 7.489 x 10-4) 

and depleted for CpG islands (P = 4.306 x 10-5) and promoters (P = 5.392 x 10-4) 

(Figure 17D). This suggests that while age impacts gene expression more directly 

through promoters, T2D may lead to broader, less targeted epigenetic dysregulation. 

Additionally, we observed no uniform pattern based on the genomic location of the 

CpGs (Supplementary figure 5).  

 

 
            

 

 

 



 

Figure 17: Target genes of age-and type 2 diabetes (T2D) associated CpGs. A-B) Pie 
charts demonstrating the number the number of CpG-gene associations split by CpG- 
gene distance for age (left), and T2D (right). C) Bar plots showing the count of CpGs in 
the context of their genomic (CpG islands, open sea) or regulatory position (active 
enhancer, inactive enhancer, promoter, unassigned). Purple indicates the proportion 
(%) of significant CpGs associated with a change in gene expression in the age analysis 
located in each region whilst grey indicates the proportion of all CpGs present in the 
Infinium MethylationEPIC array. P-values, as determined by Chi-squared analysis are 
provided above each bar. D) Bar plots showing the count of CpGs in the context of 
their genomic location for T2D. Blue indicates CpGs associated with a change in gene 
expression in the T2D analysis whilst grey indicates the proportion of all CpGs present 
in the Infinium MethylationEPIC array. P-values, as determined by Chi-squared 
analysis. 
 

Among the 300 genes linked to age-associated CpGs, several play important roles in 

epigenetic regulation, including DNMT3B and TET3, which were both downregulated 

with age, potentially indicating a shift in methylation dynamics with age (Figure 18A). 

Furthermore, this analysis highlighted several key genes involved in pancreatic islet 

stress and insulin secretion, including OPRD1, a recently described gene implicated in 

insulin secretion (Meulebrouck et al. 2024), and PRDX3, whose decrease is associated 

with the inhibition of β-cell apoptosis (Wolf et al. 2010). 



For T2D, we identified 552 unique dysregulated genes, which included HES1, 

NEURO1, INSM1, all of which are crucial to β-cell identity and function (Y. Bar et al. 

2012; Jia et al. 2015; Romer et al. 2019; Stancill et al. 2017). (Figure 18C). 

Additionally, genes crucial for β-cell insulin secretion, such as SLC2A2 (encoding 

GLUT2), were downregulated in T2D, reinforcing the link between T2D-associated 

methylation changes and β-cell dysfunction (Sansbury et al. 2012). 

To bring mechanistic insight into DNA methylation changes in age, we performed 

pathway analysis using Metascape (Zhou et al. 2019) for the 271 target genes (Figure 

18A). We found 20 significantly enriched pathways (and 92 sub-pathways) 

(Supplementary table 7). The most significant pathway was the “Intracellular 

signaling by second messengers”, i.e., of which the PI3K/AKT pathway was the most 

enriched sub-pathway. PI3K/AKT activation is necessary for the maintenance of β-cell 

mass and function, notably insulin secretion (Huang et al. 2018). Additionally, we 

found that downstream pathways of this PI3K/AKT activity pathways were also 

significant, including “regulation of cell growth” and “regulation of intrinsic apoptotic 

signalling pathway”. We also observed an enrichment of the TBC/RABGAP pathway, a 

key contributor to insulin secretion in response to glucose uptake in pancreatic β-cells 

(C. Lu et al. 2022). Finally, “regulation of cellular response to stress”, a key driver of 

age-associated β-cell decline (Aguayo-Mazzucato 2020). Together, this highlights an 

epigenetically mediated dysregulation of pathways crucial to β-cell function and 

insulin secretion with age. This suggests that age-associated epigenetic changes may 

lead to a decline in these key regulatory processes (Figure 18C). 

In T2D, the most dysregulated pathways included pathways relevant to pancreatic β-

cell function and insulin secretion, including “regulation of protein-containing 

complex assembly”, “regulation of cell growth” and “microtubule cytoskeleton 

organisation”, and “regulation of cellular component size”. (Figure 18; 

Supplementary table 8).  



Notably, only three enriched pathways overlapped between age and T2D: “regulation 

of protein-containing complex assembly”, “regulation of cell growth”, and “neutral 

lipid catabolic process”, highlighting the distinct consequences of age and T2D-

mediated DNA methylation alterations. Building on this, we identified only 23 genes 

shared between these two analyses, which were under the regulation of distinct 

CpGs. These included key T2D genes, including MEG3, a long non-coding RNA which is 

involved in insulin production and β-cell apoptosis (You et al. 2016), and CDKN1A, 

which is involved in β-cell proliferation (E. E. Xu et al. 2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 18: Analysis of target genes. A) Scatterplot showing the relationship between CpG methylation (age) and gene expression. 
Each point indicates a significant CpG-gene association. The top 10 most significant CpG-gene associations are labelled. Colours 
represent the methylation estimate.  B) Pathway analysis using Metascape. The 10 most significantly dysregulated pathways are 
shown. The x-axis indicates the -Log10 p-value. Colours represent the p-value gradient. C) Scatterplot showing the relationship 
between CpG methylation (T2D) and gene expression. D) Pathway analysis for T2D-associated target genes using Metascape. 



Overall, our findings for both T2D and age are consistent, demonstrating that CpGs 

impacted by environmental factors tend to be independent of nearby genetic 

influence. Furthermore, the target genes are also largely distinct, suggesting that 

genetics and epigenetics operate distinctly one from another (Figure 19) 

 

 

 

 

 

 

 

 

      

 

 

 

 

Figure 19: Summary of genes under the control of CpGs 
(94.7%), CpGs influenced by SNPs (5%) and CpGs and SNPs 
independently (0.3%). Pie chart pools the genes identified in 
the age and T2D analyses.   



8.3.5 Linking epigentically regulated genes to pancreatic islet function 

To explore the functional relevance of our findings, we correlated the identified 

genes with the insulin secretory index (ISI) calculated from our human donor islets, 

an in vitro measure that reflects the functional capacity of pancreatic islets to secrete 

insulin under both basal and glucose challenge condition. Pancreatic islets of 

individuals with T2D in this study exhibited weaker ISI values (P < 0.001; Table 2). We 

found 38 age-associated genes (Supplementary Table 9) significantly correlated with 

ISI, including OPRD1, a gene involved in insulin secretion, and CYP27A1, a key 

regulator of cholesterol metabolism (Figure 20A; Escher et al., 2003; Meulebrouck et 

al., 2024). For T2D, we identified 52 genes impacting ISI (Supplementary Table 10), 

several of which have previously been tied to insulin secretion, including SYT7 and 

SLC2A2 (Figure 20B) (Dolai et al. 2016; Sansbury et al. 2012). Interestingly, five of the 

genes associated with ISI were solute carriers, SLC2A2, SLC5A4, SLC7A4, SLC6A6, and 

SLC8A1. Whilst only SLC2A2 (GLUT2) has an important role in β-cells, solute carriers 

are central to pancreatic islet function and these were all highly expressed in 

pancreatic islets (Alonso et al. 2021; Le et al. 2024). Finally, ST6GAL1, which we 

identified as a triad and colocalised gene was associated with ISI, providing a 

mechanistic explanation for its association with T2D risk variants. Generally, this 

analysis highlighted key players to insulin secretion, further confirming that the 

methylation changes we observed are functionally linked to β-cell failure in T2D 

(Figure 20B).  

 

 

 

 

 

 



 

Figure 20: Epigenetic target genes that are also dysregulated with insulin secretion index (ISI) for the same islets used in this 
study.  A-B) Scatterplot of ISI-gene expression against CpG-gene expression for age and T2D, respectively. The x-axis shows the gene 
expression association with ISI, and the y-axis shows the methylation change estimate with age. Genes labelled in green are also 
dysregulated with T2D in the same cohort.    



8.3.6 Methylation risk scores predict diabetes status and enhance polygenic scores 

Given our observation that epigenetic changes associated with age and T2D are 

largely independent of genetic variation, we hypothesised that integrating DNA 

methylation could improve the predictive power of existing genetic models. To test 

this, we developed methylation risk scores (MRS) using age-associated CpG sites 

identified within our cohort. We focused on CpG sites validated in two independent 

settings: 1) a pancreatic islet cohort of 87 individuals (Bacos et al. 2016) and 2) four 

blood-based cohorts (Florath et al. 2014; Reynolds et al. 2014; McCartney et al. 2019; 

Tajuddin et al. 2019). 

CpG sites were included in the MRS were based on the following criteria: 1) localised 

within a CpG island, 2) positioned in regulatory regions (promoter or enhancer), 3) 

significant in our EWAS for age, and 4) showing a methylation estimate with age 

greater than 0.2. From this, we identified 11 CpGs (Supplementary Table 11). First, 

since DNA methylation is known to correlate with age, and accelerated ageing has 

been linked to various diseases (Horvath and Topol 2024), we confirmed two points: 

1) our MRS could accurately predict chronological age (estimate = 149.90, P = 2.2 × 

10-16 Figure 21A), and 2) individuals with T2D displayed accelerated ageing (P = 1.505 

× 10-6; Figure 21B). Next, we evaluated the predictive power of the MRS for T2D 

status using receiver operating characteristic (ROC) curve analysis, yielding an AUC of 

0.769, comparable to the performance of recently developed PGS for T2D (Ge et al., 

2022; Figure 21C). Moreover, our MRS was significantly associated with clinical and 

metabolic outcomes, including ISI (estimate = -5.26, P = 9.34 × 10-6; Figure 21D) and 

mean glycemia (estimate = 152.04, P = 0.03; Figure 21E). These results validate the 

broader applicability of our MRS. 

 

 

 

 



 

Figure 21: Predictive performance of methylation risk score (MRS), polygenic risk 
scores (PGS). A) ROC curve describing the predictive capabilities of MRS for T2D in 
the Epi-islets cohort. B) Scatter plot showing the relationship between chronological 
age and MRS, with each point representing an individual. C) Scatter plot showing the 
relationship between chronological age and MRS split by diabetes status. Purple dots 
indicate individuals with T2D, while black dots indicate non-diabetic individuals. Solid 
lines represent linear models fitted between chronological age and MRS for each 
group. D-E) Scatter plots displaying the relationships between insulin secretion index 
(ISI) D) and mean glycaemia E) against MRS. The solid lines in each panel represent 
linear models fitted between MRS and either ISI or mean glycaemia. 
 

 

 

 

 

 



To explore whether integrating MRS with genetic data could improve T2D prediction, 

we generated a PGS using the most recent GWAS data for T2D (Suzuki et al., 2024). 

Our PGS achieved an AUC of 0.76 (Figure 22). When integrating PGS with basic clinical 

variables (age, sex, BMI), the model's performance improved to an AUC of 0.87. 

When we combined the MRS with PGS, we observed a significant additive effect, with 

the combined score reaching an AUC of 0.88. The highest predictive accuracy (AUC = 

0.90) was achieved by combining MRS, PGS, and clinical variables (Figure 22).  

 

 

 
 

Figure 22: Predictive performance of methylation risk score (MRS) 
and polygenic risk scores (PGS). ROC curves comparing the predictive 
capabilities of MRS, PGS, risk factors (RFs), and their combinations 
T2D. The area under the curve (AUC) values for each model are 
shown in the bottom right corner of the panel. 



8.4 Discussion 

In this work, we integrated DNA methylation, transcriptomics, and genotyping to 

assess the contribution of genetic variants to environmentally-mediated DNA 

methylation changes in pancreatic islets. Surprisingly, only a fraction of age or T2D 

associated CpGs were under the influence of a nearby genetic variant. Furthermore, 

of the genes targeted by DNA methylation changes, only three were shared with 

colocalised signals for T2D. This suggests that a full understanding of disease and 

physiological processes requires the integrated study of both genetics and 

epigenetics. Indeed, we confirmed this with the observation that combining MRS 

with PGS enhances predictive capabilities for T2D, highlighting the utility of DNA 

methylation in improving genetics-based disease risk prediction. Finally, 

characterisation of genes under CpG regulation detected an enrichment in key 

pancreatic islet pathways, providing insights into the contribution of environmental 

variables to the mechanisms underlying T2D and pancreatic islet function. . 

Consequently, we propose that epigenetic profiling may serve as a powerful 

complementary approach to genetic studies for identifying novel candidate genes. 

 

8.5 The contribution of genetics to epigenetically-mediated changes 

Here, we assessed the extent to which environmentally mediated changes in DNA 

methylation which impact gene expression were under genetic control. Strikingly, 

only a fraction of environment-associated CpGs which impacted gene expression 

were associated with nearby SNPs, indicating that environment-mediated DNA 

methylation changes are acting independently of genetic alterations. While GWAS, 

eQTL, and colocalization have successfully identified a number of T2D loci (Alonso et 

al. 2021; Mandla et al. 2024), our findings suggest that epigenetic alterations, which 

impact the expression of distinct genes, may uncover targets that remain undetected 

through conventional genetic approaches. This presents a unique opportunity to 

characterise traits of interest using DNA methylation-based studies. In contrast to our 



findings, recent work found that CpGs influencing gene expression are predominantly 

enriched for mQTLs, indicating strong genetic regulation (Stefansson et al. 2024). 

However, these correlations were assessed in a phenotype agnostic manner, which 

may overlook environment-specific interactions with DNA methylation. By focusing 

on age or T2D, our study captures these environmental influences. Additionally, it is 

expected that a region containing a CpG and a SNP will contribute to changes in gene 

expression more often than CpGs alone. Notably, despite the observed depletion of 

epigenetic and genetic interactions, the identified triad genes i.e., SIX3, ST6GAL1, and 

TIPIN are of interest in the context of T2D. Indeed, SIX3 is an already well established 

T2D candidate gene, whose expression is key to insulin secretion (Alonso et al. 2021; 

Bevacqua, Dai, et al. 2021). ST6GAL1 s implicated in N-glycosylation and has been 

previously been colocalised with T2D GWAS SNPs in an independent pancreatic islet 

cohort (Alonso et al. 2021; Bevacqua, Lam, et al. 2021; Rudman, Gornik, and Lauc 

2019). N-glycosylation is associated with T2D, and ST6GAL1 expression in β-cells is 

also associated with T1D risk, suggesting a likely role for the gene in T2D given its 

correlation with ISI in our cohort (Rudman et al. 2023). Finally, TIPIN is unknown to 

diabetes, however it is linked to both the circadian rhythm and cell cycle replication 

(Gotter, Suppa, and Emanuel 2007), and the circadian rhythm is associated to all 

facets of T2D (Parameswaran and Ray 2022). 

 

8.6 DNA methylation and gene expression 

DNA methylation alterations are well-established biomarkers for age and age-related 

diseases (Salameh, Bejaoui, and El Hajj 2020). However, it remains difficult to 1) 

discern which CpGs are actively influencing gene expression. To address this, we 

comprehensively integrated DNA methylation to gene expression. In addition, we 

investigated age, which acts upstream of our disease of interest, T2D, to identify 

CpGs and genes which could promote disease incidence.  



Through this approach, we identified numerous differentially methylated age-

associated CpGs associated with gene expression involved in: 1) β-cell proliferation, 

2) β-cell apoptosis, and 3) secondary messenger signaling, particularly PI3K-pAKT 

signaling—all pathways crucial to pancreatic islet function and T2D pathophysiology 

(Galicia-Garcia et al. 2020). Disruptions in these enriched pathways suggest a 

plausible mechanistic link to disease, indicating that at least some DNA methylation 

changes may contribute to T2D initiation or early β-cell dysfunction, which is 

characteristic of ageing  (Tudurí et al. 2022). A weakness of our approach is that our 

model generates mere associations which do not provide certainty whether the DNA 

methylation is a cause or consequence of the transcriptomic alteration. However, our 

model did detect several genes which have previously been implicated in T2D, such 

as CDKN1A, MEG3, OPRD1, and INS, improving our confidence in the biological value 

of our analysis (You et al. 2016; Meulebrouck et al. 2024; Muhammad et al. 2021). 

On this basis, we propose that age-associated DNA methylation contribute to age-

associated physiological decline, leading to T2D. Indeed, by assessing the age-

associated target genes with ISI, we identified several deleterious associations. For 

instance, we found age was associated with decreased KCNB2, and GLRA1 expresion. 

Both these genes positively associated with ISI in our cohort, and have previously 

been shown to promote insulin secretion, yet are downregulated by age (Fu et al. 

2017; C. Ling 2020). Similarly, KANK1, which negatively correlated with ISI and is 

known to impact insulin secretion was upregulated with age (Yin et al. 2024). 

Conversely, we found INS to be upregulated by age and to be positively associated 

with ISI, demonstrating a protective effect of age, which has previously been 

suggested by Bacos et al. (2016). In accordance with this, certain DNA methylation 

alterations are thought to confer selective advantages to cancerous cells, promoting 

their survival and overall tumour progression (Loukas et al., 2023). Certain age-

associated DNA methylation changes may therefore be protective, which is 

consistent with previous propositions of DNA methylation being a mechanism 

enabling environmental adaptation (Flores, Wolschin, and Amdam 2013).  



In our target gene analysis for T2D-associated CpGs, we identified genes distinct from 

the age analysis. However, we again found pathways implicated in the 

pathophysiology of T2D, such as regulation of autophagy, blood vessel development 

and regulation of anatomical structure size (Brissova et al. 2015; Watada and Fujitani 

2015). Importantly, these pathways are generally observed following T2D onset in 

pancreatic islets. For instance, in T2D, islets can temporarily feature increased size to 

enhance insulin secretion capabilities (Watada and Fujitani 2015). In conjunction, 

islets feature defective autophagy (in part resulting from increased B-cell activity 

promoted by increased β-cell size), which contributes to β-cell dysfunction and death 

(Watada & Fujitani, 2015). Finally, T2D islets feature greater vascularization, which is 

correlated to amyloid plaque deposition, a direct consequence of T2D exposure in 

pancreatic islets (Brissova et al., 2015). More importantly, key regulators of 

pancreatic islet cellular identity, ie., HES1, INSM1, NEUROD1, and SLC2A2, all 

implicated in the pathway gland development were downregulated (Romer et al. 

2019; Jia et al. 2015; Stancill et al. 2017; Secco et al. 2022). Demonstrably, T2D 

exposure appears to, at least, alter DNA methylation patterns in a manner which is 

correlated to further aggravations of T2D development in pancreatic islets. 

Corroborating this, we found a decreased expression of SLC2A2 and ENO1, both of 

which positively correlated with ISI in our cohort and previously validated to 

contribute to insulin secretion (Luo et al. 2024; Sansbury et al. 2012).  Interestingly, 

we found five solute transporters epigenetically disrupted by T2D and associated with 

ISI. Solute transporters are fundamental to β-cell nutrient sensing and insulin 

secretion, and could be one of the levers through which these cells adapt to changing 

metabolic conditions (Schumann et al. 2020).  

 

8.7 DNA methylation patterns in age and T2D 

We found that age is associated with an overwhelming hypermethylation of CpG sites 

in pancreatic islets, predominantly located in CpG islands and regulatory elements, 



especially promoters. Consistent with previous findings by Bacos et al. (2016) our 

results indicate a strong correlation between age and DNA hypermethylation in these 

regions. Furthermore, we replicated over 60% of the age-associated CpG sites 

identified in this earlier study (Bacos et al. 2016). These trends are consistent with 

age-associated DNA methylation changes observed in other tissues such as blood, 

liver, and kidney, suggesting a precise and systemic pattern of DNA methylation 

modification with age (Bysani et al. 2017; Jansen et al. 2019; Heylen et al. 2019).  

In contrast to age, T2D was associated with a global hypomethylation. 

Hypomethylations  are generally the result of deficiencies in DNA methylation 

machinery, largely induced by cellular stress (Jeltsch and Jurkowska 2014). Given that 

cellular stress is a hallmark of T2D in pancreatic islets, T2D may induce a state of 

cellular chaos, disrupting the normal regulatory processes that maintain cell function. 

(Alonso et al. 2021; Smith, Hetzel, and Meissner 2024). This state could lead to 

hypomethylation changes large enough to be detected, despite their stochastic 

nature and our limited sample size (Jeltsch and Jurkowska 2014). The stochastic 

nature of these hypomethylations may also explain why only 1% of our T2D-

associated CpG sites were replicated in previously published work on pancreatic islets 

(Rönn et al. 2023). Consequently, T2D-associated DNA methylation patterns in the 

endocrine pancreas likely cannot currently serve as prognostic biomarkers for disease 

initiation or progression in the same manner as age-associated DNA methylation 

changes. An alternative, but likely synergistic explanation, is that T2D is a highly 

heterogenous disease, and the lack of consistent methylation patterns may be the 

result of different cohorts featuring distinct T2D subtypes (Ahlqvist, Prasad, and 

Groop 2020). Indeed, subtypes of colorectal cancer feature distinct methylation 

patterns (Weisenberger, Liang, and Lenz 2018). Hence, it may be of value to assess 

the methylome of the currently described subtypes of T2D to 1) generate markers 

and 2) assess the biological contribution of said marker to the pathophysiology of 

each subtype. This would allow for rapid identification of subtype as well as 

characterisation of the molecular alterations, potentially identifying a methylation 



signature most representative to each subtype’s unique pathophysiology. Indeed, a 

recent study analysed the methylome of T2D subtypes and identified distinct 

methylation patterns for each subtype (Schrader et al. 2022). A complete analysis of 

these subtypes could provide more replicable and better understanding into the 

pathophysiology of T2D. 

 

8.8 Methylation-based risk scores 

We confirmed the ability of DNA methylation to predict T2D by generating a MRS 

based on robust age-associated changes in DNA methylation and demonstrated its 

ability to predict T2D status. Importantly, integration of the MRS to PGS improved 

prediction in an additive manner, surpassing the performance of PGS and traditional 

risk factors alone. This indicates that 1) DNA methylation provides additive predictive 

value beyond conventional PGS approaches, and 2) DNA methylation captures 

environmental variables beyond age, sex, and BMI. Indeed, we observed correlations 

between our MRS and ISI and glycaemia in our cohort. Consistent with this, clinical 

variables have successfully been imputed from DNA methylation data (Kalyakulina et 

al. 2022). Furthermore, our score supports previous findings linking disease states 

with older biological age (Bell et al. 2019). It would be of interest to validate our MRS 

score in age in other cohorts, as this could enable earlier detection of T2D and inform 

preventative strategies.   

8.9 Limitations  

This work features several limitations which are important to consider. First, whilst 

we did integrate ISI in our analysis, our work remains limited to statistical 

associations. Further functional characterisation is necessary to validate the 

identified genes and their mechanistic roles. This would provide a deeper 

understanding of the biological processes involved and confirm the causal 

relationships suggested by our findings. Indeed, we are currently functionally 

validating four genes of our identified genes, SACM1L, FBXO27, STK38L, and USP4. 



These genes have not been previously linked to T2D and were epigenetically 

dysregulated in both the age and T2D analysis. Furthermore, whilst we did improve 

on previous studies, our sample size remains limited. This may have contributed to 

the weak replication of T2D-associated DNA methylation changes and the absence of 

age-related hypomethylation, a well-documented phenomenon in other tissues 

(Salameh, Bejaoui, and El Hajj 2020). Additionally, clinical variables for the cohort 

were limited to age, sex, BMI, and ISI, restricting our ability to link alterations to T2D-

relevant variables such as HOMA2B or HOMA-IR. Although we had access to mean 

glycaemia, it is an imperfect measurement in hospital settings for organ donors, 

hindering our ability to link methylation alterations to more precise T2D-relevant 

indicators. 

8.9.1 Conclusion 

Here, we conducted an extensive DNA methylation and genotyping analysis in 

pancreatic islets to assess the relationship between epigenetics and genetics and to 

identify novel genes implicated in disease, particularly in the context of ageing and 

T2D. This work highlights the potential of integrating epigenetic and genetic data to 

uncover genes and regulatory mechanisms that may not be captured by traditional 

genetic approaches alone. Our findings offer valuable insights into the distinct and 

shared pathways between ageing and T2D, emphasizing the role of environmental 

factors in shaping epigenetic changes. These insights contribute to a deeper 

understanding of disease progression and open new avenues for identifying 

biomarkers and therapeutic targets. Ultimately, we propose a model whereby genes 

are regulated either by genetic or epigenetic factors, but rarely both.  

 

 

 

 



 

 

9 Project 2: DNA methylation investigation of the exocrine 

pancreas identifies PNLIPRP1 as a link between type 2 diabetes 

cholesterol metabolism, and precancerous states 

9.1 Introduction 

The pancreas is viewed as two distinct organs because of the different functions of 

the endocrine and exocrine compartments. The endocrine pancreas secretes a 

variety of hormones, most notably insulin, which is central to T2D pathophysiology. 

On the other hand, the exocrine pancreas primarily consists of acinar cells that 

secrete digestive enzymes, responsible for breaking down large molecules (Pandol, 

2011). Consequently, the majority of research on T2D focuses on the endocrine 

pancreas, whereas the exocrine pancreas, which represents 95% to 98% of the 

pancreas, has remained largely overlooked in the study of T2D (Pandol, 2011). 

However, both compartments are interdependent.  Indeed, the exocrine pancreas 

provides structure, blood flow and contributes to the islet microenvironment (Pandol, 

2011). Furthermore, a recent study demonstrated that acinar cells located in close 

proximity to pancreatic islets are enlarged and may contribute to islet expansion to 

enhance insulin secretion by releasing trypsin to break down the extra-cellular matrix 

that surrounds islets (Egozi et al., 2020). In the other direction, insulin is a critical 

regulator of exocrine homeostasis and, indeed, a lack of trophic insulin induces 

exocrine atrophy, whilst an excess promotes fibrosis (Czakó et al., 2009). 

Furthermore, epidemiological studies show a strong physiological link between the 

two compartments of the pancreas. Indeed, endocrine disease (T2D) causally 

predisposes individuals to developing PDAC, a disease of the exocrine (Yuan et al. 

2020; Maina et al. 2023). Conversely, PDAC is associated with new-onset T2D (Yan Li 

et al. 2019). Recent evidence showed that T2D duration is associated with both ADM 

and PDAC in the exocrine pancreas (Wright et al. 2024). ADM is an important 



initiating step in PDAC development (Marstrand-Daucé et al. 2023). Understanding 

the underlying mechanisms which drive T2D to promote ADM and PDAC is essential 

to the prevention, early detection, and treatment of this hard to detect and deadly 

disease. We hypothesised that T2D (and age) exposure triggers molecular alterations 

which could be detected by assessing the methylome of the exocrine pancreas. This 

project was published and is available in print format the bottom of this document. 

  



9.2 Materials and methods 

9.2.1 DNA methylation measurement of human samples and epigenome-wide 

association study 

We obtained 155 pancreas samples, of which 32 had T2D according to the American 

Diabetes Association (ADA) guideline (ADA, 2019),  from the IMIDIA consortium 

(Solimena et al. 2018b). Next of kin’s consent was obtained for pancreas sample 

collection along with approval from the ethics committees in both Pisa and Hannover.  

To extract DNA, we utilised the NucleoSpin Tissue kit (T740952.50; Mackerey-Nagel). 

We performed bisulphite conversion with 800 ng of DNA using the EZ DNA 

Methylation kit (5001; Zymo Research). Bisulphite converted DNA was applied to 

Illumina’s Infinium methylationEPIC array, which covers a total of 930,000 CpGs. The 

minfi R package was used to import the methylationEPIC array data into Rstudio 

(Aryee et al. 2014). We performed quality control (QC) of array data by removing CpG 

probes which met the following conditions: located in sex chromosomes or SNPs, 

which cross-hybridised, were non-cg probes, or featured a detection threshold p-

value < 0.01. Additionally, any sample with a probe detection threshold lower than 

99% was removed (probe detection p-value = p < 0.01). Finally, two samples with 

discordant sex were also discarded. To correct for probe-design biases as well as 

batch effect, we utilised the packages Enmix and SVA respectively (Z. Xu et al. 2016; 

Leek et al. 2020). Post-QC, 141 samples and 746,912 CpGs were retained for further 

analysis (Table 8). We assessed population structure of our cohort with principal 

component analysis (PCA) using the 1,000 genomes reference panel (Supplementary 

figure 6). 

To perform EWAS, linear regression models were applied to associate age or T2D 

with CpG methylation level at a given probe. Whole pancreatic tissue samples were 

expected to include a variety of cell types and thereby be a potential confounding 

effect on DNA methylation.  Consequently, cell composition was estimated using the 

R package RefFreeEWAS and included in the linear regression to address this 



confounder (Supplementary figure 6) (Houseman et al., 2016). Multiple testing was 

corrected using the Bonferroni method and CpGs with an p-value < 0.05 were 

considered significant. The EWAS models are described below: 

𝐶𝑝𝐺 (𝑀 𝑣𝑎𝑙𝑢𝑒) = 𝐴𝑔𝑒 ~ 𝑆𝑒𝑥 + 𝑇2𝐷 + 𝐵𝑀𝐼 + 𝐶𝑒𝑙𝑙𝑢𝑙𝑎𝑟 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

𝐶𝑝𝐺 (𝑀 𝑣𝑎𝑙𝑢𝑒) = 𝑇2𝐷 ~ 𝑆𝑒𝑥 + 𝐴𝑔𝑒 + 𝐵𝑀𝐼 + 𝐶𝑒𝑙𝑙𝑢𝑙𝑎𝑟 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

 

9.2.2 Comparing the DNA methylation profiles of the exocrine and endocrines 

pancreas: 

To ensure our whole pancreas samples (98% exocrine) were distinct from pancreatic 

islets at the DNA methylation level, we compared our PCA data with pancreatic islet 

data that was obtained from the IMIDIA cohort, utilising a method identical to the 

one described above. Pancreatic islet samples were collected from 144 organ donors, 

ranging in age from 22 to 96 years (average age = 69 years). No significant differences 

were observed in terms of clinical characteristics, notably, age, sex, BMI, or type 2 

diabetes (T2D) status between the two cohorts (Supplementary Table 12). PCA of 

methylation data from both exocrine and pancreatic islets was conducted using beta 

values from each group, with the analysis performed using the flashPCA package in R 

(Supplementary figure 7) (Abraham, Qiu, and Inouye 2017). 

 

9.2.3 Differentially methylated regions (DMR) and enhancers 

The dmrcate package was used to identify differentially methylated regions (DMRs) 

(Peters et al., 2015). A CpG with p-value < 0.05 was considered significant and we 

defined a DMR as a region with at least 2 CpGs within the Gaussian kernel bandwidth 

(lambda) equals to 1 kb.  To determine if specific CpGs and DMRs were situated 

within regulatory regions, we consulted the Genehancer (Fishilevich et al. 2017) and 

dbSUPER (Khan and Zhang 2016) databases.  

 



9.2.4 UK Biobank to identify rare variant associations in PNLIPRP1: 

We consulted exome sequencing data from 191,000 UKbiobank participants to detect 

null variants for a minor allele frequency (MAF) <1% in the PNLIPRP1 gene 

(UKBiobank research application #67575). To assess associations between PNLIPRP1 

null variants and metabolic traits including BMI, glucose and lipids, we applied the 

MiST method (Sun, Zheng, and Hsu 2013), which tests rare variants in a single cluster 

(at the gene scale). A score π represents the average effect of the cluster, while τ 

denotes the effect heterogeneity within the cluster. The overall p-value assesses the 

association between the set of variants and the trait of interest. For each trait, we 

adjusted for relevant covariates. A trait was considered significant if the p-value for 

the direct burden effect of the cluster (π̂ p-value) was less than 0.05, and if the effect 

direction for the variants was consistent, as indicated by a lack of heterogeneity (tau 

p-value or P.value.S.tau > 0.05). 

 

9.2.5 GTEx to determine tissue expression of PNLIPRP1 

The median gene-level Transcript per million (TPM) from RNA-sequencing data by 

tissue from Genotype-Tissue Expression (GTEx) Portal 

(https://gtexportal.org/home/datasets/) was used to identify the expression pattern 

of PNLIPRP1. 

 

9.2.6 Genotyping and Mendelian Randomisation  

To assess the direction of causality between traits of interest (i.e., T2D, LDL-C, and 

CpG methylation), we performed bi-directional two-sample MR. To obtain genetic 

associations for both T2D and LDL-C, we consulted previously published large scale 

European GWAS for T2D (Xue, Wu, Zhu, Zhang, Kemper, Zheng, Yengo, Lloyd-Jones, 

Sidorenko, Wu, eQTLGen Consortium, et al. 2018) and LDL-C (Graham et al. 2021). All 

MR analyses were performed using the TwoSampleMR (version 0.5.7) R software 

package. 



To obtain genetic associations between SNPs and DNA methylation necessary for our 

MR analysis, we genotyped 111 control samples from our organ donors (Illumina 

HumanOmni2.5 arrays) using the Illumina iScan. Genotypes were called using the 

Genome-studio software and single nucleotide polymorphisms (SNPs) were kept for 

further analysis according to the following thresholds: 1) minor allele frequency > 

0.05, 2) Hardy-Weinberg equilibrium > 1 × 10-4 and 3) call rate > 0.95. Imputation was 

based on the Haplotype Reference Consortium Panel. Ancestry clustering was 

performed using the 1000 genome reference panel (Supplementary figure 8) (Auton 

et al. 2015) aFollowing QC, all individuals were suitable for downstream analyses. 

mQTL analysis was performed using the QTLtools software (Delaneau et al. 2017), 

adjusting for age, sex, and BMI. 

We performed bi-directional MR was performed, first by using T2D or LDL-C as the 

exposure and CpG methylation as the outcome (referred to as forward MR), then, by 

using CpG methylation as the exposure and T2D or LDL-C as the outcome (referred to 

as reverse MR). The Inverse Variance Weighted (IVW) methods was reported as the 

main MR method. IVW requires the validity of all genetic instrument, or a balanced 

pleiotropy. To validate this assumption, we conducted other complementary MR 

methods which uses different assumptions, such as simple median, weighted median 

(more robust to outliers), MR Egger (sensitive to outliers, its intercept is a test to 

evaluate horizontal pleiotropy). The F-statistic was used to verify the strength of 

instrument. Linkage disequilibrium was assessed with the ld_clump() function from 

the R software package ieugwasr (version 0.1.5). Finally, the leave-one-out analysis 

was used to verify whether any variant was driving our findings and heterogeneity 

was assessed using the Cochran’s Q test.  

Forward instrument design (T2D/LDL-C to CpG): We extracted genome-wide 

significant SNPs from the aforementioned GWAS.  For T2D to CpG, we obtained 118 

independent signals (LD r2 < 0.2) and 241 independent signals (r2 < 0.2) for LDL-C to 

CpG. We performed a trans mQTL at SNP-CpG pairs of interest as described in the 

above section. 



Reverse instrument design (CpG to T2D/LDL-C): To identify SNPs that act as proxies 

for PNLIPRP1 methylation, we performed a cis-mQTL for cg15549216, cg06606475, 

and cg08580014 with a 50kb window. mQTL signals were FDR-corrected.and SNPs in 

LD were pruned using the ld_clump() function. SNPs with an r2 of < 0.75 and an FDR < 

0.75 were considered to be viable instruments.  

 

9.2.7 RNA expression of PNLIPRP1 in organ donors  

Samples were stored in OCT blocks at -80°C prior to being utilised. OCT was thawed 

at room temperature (RT) and the pancreas sample were cut into chuncks and 

incubated in Trizol (15596-026; Thermofisher), 3% DTT and 5% B-Mercaptoethanol 

and vortexed. The supernatant containing RNA was collected, the RNA was isolated 

using Trizol (15596-026; Thermofisher). The isolated RNA underwent reverse 

transcription using the High-capacity cDNA reverse Transcription Kit (Applied 

Biosystems; 4368814). qPCRs were performed with the QuantStudio Pro 7 (Applied 

Biosystems). Amplication was measured using the SYBRgreen reagent mix (A25918; 

ThermoFisher). Two-tailed t-tests were performed using GraphPad Prism (GraphPad 

software Inc). Eleven samples were processed (six controls and five T2D individuals), 

matched for age, sex and BMI. 

 

9.2.8 Functional characterisation in AR42J 

General cellular culture protocol:  To characterise the role of PNLIPRP1, the AR42J 

acinar cell line was used for all in vitro assays (CRL-1492; ATCC). For growth, cells 

were incubated at 37°C and 5% CO2 with RPMI 1640 Glutamax medium (61870044; 

Gibco), supplemented with 10% FBS (26140079; Gibco), 0.01% 

penicillin/streptomycin (P/S) (15410-122; Life Technologies). Medium was changed 

every 48 hours. 

Diabetogenic treatment: To mimic diabetes exposure, we treated AR42J cells to high 

glucose (20mM), insulin (100 nM) or both, for 72 hours along with 0.1% FBS 



(26140079; Gibco) medium. The cells, 2×105 per well, were plated in 6-well plates. 

Following treatment, RNA from the cells was harvested with Trizol (15596-026; 

Thermofisher) as described above and was quantified by qPCR as described above. 

Akt response and glucose uptake: AR42J cells were plated and serum starved 

overnight, washed with PBS and stimulated with or without 200 nM insulin for 

1 hour. Protein was harvested in RIPA buffer supplemented with protease and 

phosphatase inhibitors. We used anti pAKT (S473; Cell Signaling) and anti-Akt (9272; 

Cell Signaling), and the secondary antibody was goat pAb to Rb igG (Ab205718; 

Abcam). Details of all antibodies utilised in this work are listed in Supplementary 

Table 13. To quantify glucose uptake in AR42J cells, we used the colorimetric glucose 

detection kit (EIAGLUC; Invitrogen), and followed the protocol provided by the 

manufacturer.  

siRNA knockdown: All transfections were performed in AR42J and in suspension with 

the AR42J Transfection Reagent kit (1181; Altogen). We used Pnliprp1 siRNA (M-

099515-01-0010; Dharmacon) or non-targeting control siRNA (D-001810-10-20; 

Dharmacon). Following a 48- or 72-hours period (depending on the experiment or 

assay performed), RNA and protein were harvested as described above. Extracted 

protein from Pnliprp1 knockdown (KD) were quantified with Western blotting. For 

Western blotting, cells were lysed and protein harvested using a RIPA buffer (89900; 

ThermoFisher) and protein levels were quantified using the Pierce BCA Protein Assay 

Kit (23225; ThermoFisher). Protein were separated using a 10% SDS-PAGE gel and 

transferred to a nitrocellulose membrane using the iBlot2 Gel Transfer Device (Life 

Technologies). Membranes non-specific sites were blocked with 5% non-fat dry milk 

or 5% BSA. Incubation was overnight at 4°C. Finally, membranes were incubated with 

secondary antibody for 1 hour at RT. The detection of the secondary antibody was 

carried out using the LI-COR Biosciences imaging system and the results were 

analysed with ImageJ. 



RNA Sequencing: Library preparation from Pnliprp1 KD RNA was performed using the 

KAPA mRNA HyperPrep Preparation Kit (Roche) and sequenced with Illumina’s 

NovaSeq 6000. The mean sequencing depth was of 100 million 100 bp paired-end 

reads per sample. Illumina raw data were demultiplexed using bcl2fastq v2.20.0.422 

(Illumina) and adapters trimming step was performed using cutadapt (version 3.2) 

Reads were mapped with STAR version 2.7.1a to the Rattus norvegicus.Rnor6 

genome. Raw and normalised read counts were generated using RSEM v1.3.0 with a 

GTF file from Ensembl version 102, and gene name annotations from Ensembl v102. 

Differential expression analysis was performed with DeSeq2 in R. Pathway analysis 

was performed using Metascape or EnrichR.  

Immuhistochemistry: Human pancreatic tissue sections, sourced from both control 

and type 2 diabetes (T2D) individuals, were provided by the Inserm UMR1190 unit at 

the University of Lille, France. Sections were carefully examined to ensure the 

absence of fibrotic or pathological changes. Paraffin was removed from the slides 

using 100% xylene, followed by a series of ethanol washes (100% to 50%) for 

rehydration. Antigen retrieval was achieved by incubating the slides in sodium citrate 

buffer (pH 6). To block non-specific binding sites, the slides were treated with a 

solution of 1x PBS, 0.01% Triton X-100, and 5% goat serum for 30 minutes at RT. 

Primary antibodies were applied overnight at 4°C, and secondary antibodies were 

applied for 1 hour at RT. Imaging was performed with a Zeiss LSM 710 NLO confocal 

laser scanning microscope. 

MTS proliferation (197010; Acbam) and Cholesterol Ester-Glo Assay (J3190; Promega) 

methods were performed as per protocol instructions in AR42J following 72 hours 

Pnliprp1 KD. 

  



9.3 Results 

9.3.1.1  Age-associated DNA methylation changes in the exocrine pancreas 

As age is a major risk factor for pancreatic disease, we first aimed to bring insight into 

the epigenetic mechanisms of ageing in the exocrine pancreas (Mellenthin et al. 

2022). For this purpose, we measured DNA methylation in whole pancreas samples 

obtained from 141 organ donors (17-89 years, median of 67 years) of European 

descent, using the Illumina Infinium MethylationEPIC array (Table 4) (Supplementary 

figure 8). To validate that the observed whole pancreas epigenetic profile was indeed 

mainly exocrine tissue, we compared the methylation profile to pancreatic islet 

methylation profiles (via Infinium MethylationEPIC arrays) from 125 individuals from 

the same cohort of organ donors, matched for age, sex and body mass index (BMI) 

(Supplementary Table 12). As expected, we found that the methylation profiles of 

pancreatic islets and whole pancreas were clearly distinct, and this was consistent 

with four pancreatic islet samples extracted and handled in parallel with the exocrine 

preparations (Supplementary figure 7). Additionally, we found that even pancreatic 

islet preparations with low islet purity (i.e., percent of islets compared to other 

pancreatic tissues, such as exocrine), did not overlap with exocrine preparations 

(Supplementary figure 7). 

 

 



 

Figure 23: Overview of the exocrine project study design. DNA from whole pancreas 
tissue was extracted from organ donors and subjected to Illumina’s Infinium 
MethylationEPIC array to perform epigenome wide association studies (EWAS) with 
age and T2D in the cohort. Subsequently, genetic and functional assays were 
performed to assess the function of candidate genes.   
 

 

 

 

 

 

 

 

 



             Table 4: Exocrine organ donor cohort characteristics 
Characteristic Non-diabetics N = 

131 

T2D N = 28 P-value* 

Sex 
  

0.016 

Female 61 (54%) 8 (29%) 
 

Male 52 (46%) 20 (71%) 
 

Age (years)* 67 (53, 76) 74 (69, 79) 0.004 

BMI (kg/m2)* 25 (23.1, 27.1) 26.0 (24.2, 28.2) 0.13 

Mean is represented, along with the first and third quartile for the data 

We then performed an epigenome-wide association study (EWAS) to determine 

methylation sites associated with age. We found that a total of 718 CpGs associated 

with age, of which the vast majority (> 85%) were hypermethylated, which is in 

accordance with our data in pancreatic islets as well blood and other tissues  

(Bonferroni-corrected p < 0.05; Figure 24A; Supplementary Table 14) (Bysani et al. 

2017). Compared with pancreatic islets methylation profile, only 30 % of CpGs (197 / 

718) were shared between endocrine pancreas and exocrine pancreas, but they were 

consistent in direction of effect (Supplementary Table 15). Interestingly, the most 

significant differentially methylated CpGs with age in exocrine tissue were all shared 

with pancreatic islets, and were previously found in several other tissues, including 

liver, kidney and blood: cg23606718 (FAM123), cg16867657 and cg21572722 (both in 

ELOVL2), and cg06639320 (FHL2) (Figure 24B)  (Hastuti and Beandrade 2022; Slieker 

et al. 2018; Fulea et al. 2021). To determine the biological age of our samples, and 

whether T2D induces accelerated ageing in the exocrine pancreas, we utilised the 

Horvath clock, composed of 353 CpGs (Horvath, 2013). DNA methylation age of 

pancreas samples correlated with the chronological age of the donors (R2 = 0.55; p = 

3.7 × 10-41). Surprisingly, we did not find a difference in DNA methylation age among 

patients with T2D compared to controls, despite T2D being strongly associated with 

age (Fazeli, Lee, and Steinhauser 2020) (p = 0.18; Supplementary figure 9).  



 

Figure 24: Epigenome-wide association study of whole pancreas samples for age. A) Volcano plot depicting the differentially 
methylated CpGs associated with age. The 10 most significant CpGs are labelled, with the CpG probe and the gene nearest to the 
probe.  B) Boxplots showing the top 10 differentially methylated CpGs in exocrine (purple) and endocrine (red) pancreas. The X-axis 
represents the β-value and y-axis the age 

 
 



9.3.1.2  T2D-associated DNA methylation changes in the exocrine pancreas  

Next, we conducted an epigenome-wide association study (EWAS) to identify DNA 

methylation changes associated with type 2 diabetes (T2D). Our analysis revealed a 

single CpG site, cg15549216, that showed significant hypermethylation in individuals 

with T2D after Bonferroni correction (p=0.025; Figure 25A). This CpG site is located 

within the gene body of PNLIPRP1, which encodes Pancreatic Lipase Related Protein 

1. It was found to be 11.4% more methylated in T2D patients compared to controls 

(Figure 27B; estimate=0.6; standard error=0.1). Additionally, cg15549216 was 

positively correlated with glucose levels (p = 1.34 × 10^-4; Supplementary figure 10). 

We also identified a differentially methylated region (DMR) associated with an 

increased risk of T2D, which included cg15549216 and two nearby CpG sites, 

cg06606475 and cg08580014 (Figure 25B-D). These flanking CpGs exhibited 

consistent directional effects: cg06606475, located 921 base pairs (bp) upstream of 

cg15549216, was hypermethylated by 9.0% (p = 5.9 × 10^-5; estimate=0.38; SE=0.09), 

while cg08580014, situated 370 bp downstream of cg15549216, showed a 6.3% 

increase in methylation (p = 4.0 × 10^-4; estimate = 0.27; SE = 0.07). Analysis using 

the Genehancer and dbSUPER enhancer databases revealed that this region, 

including and surrounding cg15549216, lies within a 12-kb segment, which is the only 

identified super-enhancer of the PNLIPRP1 gene in human whole pancreas tissue 

(Figure 25E) (Fishilevich et al. 2017; Khan and Zhang 2016). 

On the basis that age is a significant risk factor for T2D, we investigated whether the 

cg15549216 CpG site was associated with age in our cohort (Fazeli, Lee, and 

Steinhauser 2020). We observed a nominal association between age and the 

hypermethylation of the cg15549216 site in all individuals (unadjusted p = 0.010). 

Interestingly, this association was no longer significant following adjustment for T2D, 

indicating an interaction of the disease with the methylation of cg15549216 

(unadjusted p = 0.93). Consequently, we tested an interactive model and asked 

whether both T2D and age contribute to cg15549216 methylation. Our analysis 

revealed that, at the cg15549216 site, methylation levels increased with age among 



T2D individuals compared to non-diabetic controls (M-value estimate = 0.01; p = 4 × 

10^-10; Figure 25F). We found no association between cg15549216 methylation and 

BMI (p = 0.54), sex (p = 0.32), T2D duration (p = 0.39), or statin treatment (p = 0.32). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 25: Epigenome-wide association study in whole pancreas tissue for Type 2 Diabetes (T2D). A) A volcano plot 

illustrating the differentially methylated CpG sites associated with T2D, with the only significant CpG site (Bonferroni 
correction < 0.05) highlighted. The colour gradient represents the absolute estimate (M-values). B) Boxplot showing the 
distribution of methylation levels at cg15549216 in individuals with T2D (orange) compared to non-diabetic controls 
(purple), with the x-axis displaying the percentage methylation (beta-values). C-D) Boxplots depicting the distribution of 
methylation levels at cg06606475 and cg08580014, respectively, in both T2D patients and non-diabetic controls. E) 
Visualisation of the PNLIPRP1 gene, highlighting the differentially methylated region (DMR) in orange, and the enhancer 
region in blue. CpG estimates and p-values for all CpG sites within the PNLIPRP1 gene are also provided. F) Scatterplot 
illustrating the interaction between cg15549216 methylation and age in organ donor individuals, with non-diabetic controls 
represented in purple and T2D patients in orange. 
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9.3.1.3  PNLIPRP1 null variants link the gene to metabolic traits 

To explore the function of PNLIPRP1, we first examined whether rare loss of function 

variants (minor allele frequency [MAF] <1%) in the PNLIPRP1 gene were associated 

with T2D and relevant metabolic traits, including glucose and lipid levels. This was 

predicated on the basis that 1) PNLIPRP1 methylation was associated with T2D, and 

2) the exocrine pancreas is central to overall metabolism (Pandol 2011). Here we 

utilised whole-exome sequencing data from 191,000 participants in the UKBiobank, 

where we identified a total of 44 null variants (i.e., nonsense, frameshift, canonical ±1 

or 2 splice sites) (Supplementary Table 16). 

Our analysis revealed that PNLIPRP1 null variants were associated with increased 

glycaemia (pπ = 1.1 × 10^-3; effect size = 0.13; SE = 0.040; Table 5). Additionally, we 

found significant associations between PNLIPRP1 rare variants and several metabolic 

traits: increased LDL-cholesterol levels (LDL-C; pπ = 0.034; effect size=0.10; SE = 

0.049), HDL levels (pπ=0.026; effect size=0.05; SE = 0.022), waist-to-hip ratio (pπ = 2.7 

× 10^-3; effect size = 0.23; SE = 0.006), waist circumference (pπ=7.6 × 10^-3; effect 

size = 2.19; SE = 0.820), BMI (pπ = 3.1 × 10^-3; effect size = 0.039; SE = 0.011), 

diastolic blood pressure (pπ = 2.02 × 10^-5; effect size = 2.89; SE = 0.677), and systolic 

blood pressure (pπ = 2.9 × 10^-3; effect size = 3.30; SE = 1.112). Interestingly, null 

variants were not associated with disease manifestations of disrupted glucose and 

lipid traits, notably T2D risk (pπ = 0.48), obesity (pπ = 0.29), hypertension (pπ = 0.94), 

or triglyceride levels (pπ = 0.46) (Table 5). Next, we asked if we could reproduce this 

result in common variants. Using the Type 2 Diabetes Knowledge Portal 

(https://t2d.hugeamp.org/), we discovered that common SNPs (MAF >1%) within the 

PNLIPRP1 locus were strongly associated with increased LDL-C levels (p = 2.0 × 10^-

14; Supplementary Tables 5 and 6). Furthermore, common variants in PNLIPRP1 were 

linked to non-high-density lipoprotein (HDL) cholesterol levels and apolipoprotein B, 

with significance after multiple testing correction (p ≤ 2.5 × 10^-6). Interestingly, 

these same variants were not associated with T2D or glucose-related traits in a 

cohort of up to 1.61 million participants (Supplementary figure 11). 



Table 5: Null variants associations with PNLIPRP1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

*BP = blood pressure 

**WHR = waist-hip ratio 

 

 

 

 

 

Trait 
Number of 

individuals 
Pi hat (π) 

Standard 

error 

P value 

(p π) 

Number of 

variants 

Diastolic BP* 168,374 2.889 0.677 2.0 × 10-5 39 

WHR** 190,739 0.023 0.006 2.7 × 10-3 41 

log BMI 187,727 0.039 0.011 3.1 × 10-3 40 

Glucose 159,764 0.133 0.041 1.1 × 10-3 38 

Systolic BP* 168,367 3.303 1.1119 2.9 × 10-3 39 

Waist 

circumference 190,751 2.188 0.820 7.6 × 10-3 41 

HDL 156,077 0.050 0.022 2.6 × 10-2 38 

LDL 169,625 0.104 0.049 3.4 × 10-2 38 

Hba1c  177,038 0.439 0.236 0.06 39 

Obesity 107,219 -0.146 0.138 0.29 31 

Log Triglyceride 169,815 -0.009 0.011 0.46 39 

T2D 171,651 0.177 0.252 0.48 39 

Hypertension 180,290 0.010 0.126 0.94 40 



9.3.1.4  Causal relationship between PNLIPRP1 methylation and T2D-related traits 

To identify whether PNLIPRP1 methylation was causally associated with T2D and LDL-

C, and the reverse, we performed MR. To identify SNPs acting as proxies for PNLIPRP1 

methylation, we genotyped 111 control individuals in our cohort and performed 

mQTLs. For T2D, we used 118 proxy SNPs associated with increased T2D risk and 6 

proxy SNPs for associated with PNLIPRP1 rmethylation (Supplementary Tables 17 

and 18). Using the IVW method, we found evidence that increased T2D risk was 

causal to cg15549216 hypermethylation with an estimate of 0.23 (95% CI = 0.029-

0.43; p = 0.025; Figure 26A). However, we did not find a significant association using 

MR methods following different assumptions, such as the simple median and 

weighted median methods, possibly pointing to the presence of horizontal pleiotropy 

or heterogeneity in our genetic instruments. To ensure the validity of our result, we 

performed another robust MR method, MR-Egger, which showed no evidence of 

causal association (estimate = 0.102; 95% CI = -0.353-0.557; p = 0.659), and ruled out 

the possibility of horizontal pleiotropy (intercept = 0.011; 95% CI = -0.024-0.045; p = 

0.55). In the reverse direction, we found no evidence of a causal effect of PNLIPRP1 

methylation (Figure 26A).  

For LDL-C, we used 9 proxy SNPs to represent PNLIPRP1 methylation and 241 proxy 

SNPs for increased LDL-C levels (Supplementary Table 19 and 20). We found no 

evidence of a causal effect of LDL-C on PNLIPRP1 methylation, however PNLIPRP1 

methylation was associated with increased LDL-C levels, with an estimate of 0.064 

using the IVW method (95% CI=0.024-0.105; p=0.0019) (Figure 26B). This result was 

consistent with the simple median (estimate=0.071; 95% CI=0.043-0.099; p=5.9 x 10-

7) and the weighted median methods (estimate=0.068; 95% CI=0.044-0.091; p=2.2 x 

10-8). The MR-Egger intercept showed no evidence of horizontal pleiotropy 

(estimate=0.000; 95% CI=-0.012-0.012; p=0.31; Figure 26B). In all significant MR 

analyses, the leave-one-out analysis found that no single SNP altered the results, 

suggesting that the observed association was robust (Supplementary Tables 21 and 

22).  Altogether, our data provide some evidence that PNLIPRP1 hypermethylation 



increases LDL-C levels and suggest a trend that T2D status increases cg15549216 

methylation.  

 

 

Figure 26: Mendelian Randomisation (MR) to determine causality. A) Bi-directional 
MR to assess causality between T2D and PNLIPRP1 methylation (CpG), and B) 
between LDL-cholesterol and PNLIPRP1 methylation, using the inverse variance 
weighted, simple median, weighted median and MR-Egger methods. The x-axis 
represents the estimates. The statistically significant associations are shown in black 
text, and non-significant values are shown in grey, depicting the estimate value, as 
well as the 95% CI values in parentheses. 
 

 

 

 

 



9.3.1.5  Linking PNLIPRP1 expression to T2D and methylation of the gene 

Next, we asked if PNLIPRP1 expression is dysregulated in T2D. To this end, we 

quantified PNLIPRP1 gene expression in RNA extracted from whole pancreas tissue 

from a subset of five T2D donors and six non-diabetic controls, matched for age, sex, 

and BMI (Supplementary Table 23). Our analysis revealed that PNLIPRP1 expression 

was downregulated in T2D donors (53% reduction, p=0.011; Figure 27A). No 

association was found between PNLIPRP1 expression and age (p = 0.17). To evaluate 

the impact of methylation on PNLIPRP1 expression, we performed a linear regression 

analysis of methylation levels and PNLIPRP1 gene expression. We observed a 

significant correlation between increased cg15549216 methylation and decreased 

PNLIPRP1 expression (p = 0.042; R2 = 0.35; Figure 27B). 

Given that our samples are whole pancreas, we asked where PNLIPRP1 was being 

expressed to pin-point further characterisation. First, we queried the GTEx database, 

where we found that PNLIPRP1 is exclusively expressed in the whole pancreas and 

not in any of the remaining 53 tissues referenced in the GTEx database 

(Supplementary figure 12) (https://gtexportal.org/home/). The TIGER database, the 

largest repository of pancreatic islets RNA-sequencing data, supplemented with RNA-

seq data from GTex further indicated that PNLIPRP1 is predominantly expressed in 

the whole pancreas (median Transcript per Million [TPM] = 2581) with much lower 

expression in pancreatic islets (median TPM = 36) (Supplementary figure 13). To 

confirm the acinar-specific expression of PNLIPRP1 at the protein level, we conducted 

immunofluorescence staining on human pancreatic tissue for PNLIPRP1, KRT19 (a 

ductal cell marker), and insulin (a marker for pancreatic islets). The results 

demonstrated that PNLIPRP1 protein is exclusively expressed in acinar cells, with no 

expression in pancreatic islets or ductal cells (Figure 27C). 

 



 

Figure 27: Examination of PNLIPRP1 expression and localisation. A) The RNA 
expression levels of the PNLIPRP1 gene were measured in a sample of 11 individuals 
(5 with Type 2 Diabetes (T2D) and 6 without diabetes, matched for age, sex, and 
BMI). A t-test was performed to compare the gene expression levels between the 
T2D group and the non-diabetic controls. Error bars represent the standard error of 
the mean. B) The relationship between the cg15549216 probe and PNLIPRP1 gene 
RNA expression was analysed using qPCR, with results normalised to the 
housekeeping gene RPLP0. Black dots depict non-diabetic subjects, while purple dots 
denote individuals with T2D. C) Immunofluorescence staining of pancreatic tissue 
samples from healthy individuals shows the localization of PNLIPRP1, KRT19 (a 
marker for ductal cells), and INS (insulin, a marker for pancreatic islets). DAPI was 
used to stain the nuclei. 

 

 

 

 

 

 



9.3.1.6 A diabetogenic exposure downregulates Pnliprp1 and promotes acinar-to-

ductal metaplasia in AR42J cells 

Having determined that PNLIPRP1 is associated with glucose and lipid traits, and 

dysregulated in T2D, we performed functional characterisation of the gene. First, we 

verified that T2D dysregulates the gene in the rat acinar cell line AR42J. To this end, 

we first verified that AR42J respond to insulin by measuring phosphorylated AKT 

levels following insulin exposure (Supplementary figure 14). Next, we treated the 

cells to a diabetogenic environment, namely high glucose and high insulin. High 

glucose or high insulin alone did not impact the expression of the gene, but the 

combination of the two resulted in a 35% decrease of Pnliprp1 expression (Figure 

28B). In the skeletal muscle and adipose tissue, insulin induces glucose uptake. We 

asked if this occurs in AR42J as it may explain why only high glucose and insulin 

treatment together induced a downregulation of the gene. We found that the 

medium of cells treated to high glucose and insulin had 19% less glucose, indicating 

uptake by the cells (p < 0.0001; Figure 28B), indicating increased glucose uptake by 

the cells. Given that T2D is associated with ADM in human pancreatic tissue, we 

asked if we could observe a similar phenomenon in our cells (Wright et al. 2024). To 

this end we assayed markers of ADM, namely cellular proliferation, cholesterol, and 

markers of exocrine identity (Grisan et al. 2021; Carrer et al. 2019). An MTS 

proliferation assays confirmed that high glucose and insulin led to a 25% reduction in 

cell proliferation (p = 0.0089; Figure 28C). However, total cholesterol content was not 

impacted (p = 0.1002; Figure 28D). We examined the expression of acinar and ductal 

markers in cells treated with high glucose and insulin. Two acinar markers, Cpa2 (p = 

0.0281) and Ctrl (p = 0.0022), were downregulated, while Prss1 (p = 0.5054) and 

Amy2 (p = 0.7209) remained unchanged. The ductal markers Krt19 (p = 0.0140) and 

Hnf1b (p = 0.0344) were upregulated, indicating ADM following high glucose and 

insulin exposure (Figure 28E). To confirm this, we performed immunofluorescence 

analysis of whole pancreas tissue from individuals with T2D and controls. We did not 

observe notable differences in PNLIPRP1 protein levels, but in some cells KRT19 and 



PNLIPRP1 were found to colocalise, indicating ADM (Supplementary figure 15). 

Together, these results suggest that high glucose and insulin treatment induces a 

downregulation of Pnliprp1, a decrease in proliferation, and ADM in these cells. 

 

 

Figure 28: Exposing AR42J to a diabetogenic environment via high glucose and 
insulin treatment. A) PNLIPRP1 expression following high glucose (HG; 20 mM 
glucose) and insulin (100 nM) treatment compared to untreated controls, as 
determined by qPCR. A two-tailed t-test was performed to assess statistical 
significance. Performed in four biological replicates. B) Glucose uptake by AR42J cells 
following treatment with high glucose (20 mmol/L) and insulin (100 nmol/L), 
compared to non-treated AR42J cells, measured by qPCR. A two-tailed t-test was 
performed to assess statistical significance. Performed in six biological replicates. C) 
MTS proliferation assay after 48 hours of HG and insulin treatment in AR42J cells, 
compared to controls. D) Total cholesterol levels measured after 48 hours of HG (20 
mM glucose) and insulin (100 nM) treatment compared to controls. E) Gene 
expression of acinar and ductal markers in AR42J cells treated with HG and insulin 
compared to controls. A two-tailed t-test was performed to assess statistical 
significance. Performed in three biological replicates 
 

 



 

 

9.3.1.7  Pnliprp1 knockdown induces a dysregulation of the cell cycle, cholesterol 

metabolism, and ADM 

Based on the acinar-specific expression pattern of PNLIPRP1, and the consistent 

pattern of PNLIPRP1 downregulation in vivo and in vitro in the context of T2D, we 

further explored the functional role of Pnliprp1 in AR42J. To this end, we performed a 

KD of Pnliprp1 in AR42J to determine the downstream consequences of the 

dysregulation of gene. First, we validated our KD and observed a 60% reduction in the 

expression of the gene (Figure 28A) and a 34% decrease at the protein level 

(Supplementary figure 16). Next, to obtain a global overview of the consequences of 

knocking-down Pnliprp1, we performed RNA sequencing. We confirmed that Pnliprp1 

was one of the most significant down-regulated genes (FDR = 0.025). To assess the 

pathways dysregulated by the KD, we performed a pathway analysis with enrichR 

using all dysregulated genes but split by differential expression direction (up- or 

downregulated) (nominal p < 0.05) (Supplementary Table 24). In the downregulated 

genes, (587 genes), the cell cycle pathway (adjusted p = 2.21 × 10-12; Supplementary 

Table 25) was the most disrupted, whilst in the upregulated genes, (437 genes) the 

“cholesterol biosynthesis” and “SREBP control of lipid biosynthesis” were the most 

dysregulated pathways (adjusted p = 0.0044; Supplementary Table 26; Figure 28B). 

To valiate this, we assessed proliferation in AR42J following the KD of Pnliprp1 using 

the MTS proliferation and observed a 22% reduction in cellular proliferation (p = 

0.0027; Figure 28C). Next, we quantified total cholesterol content in AR42J following 

Pnliprp1 KD and found a 29% increase (p = 0.0017; Figure 28D). We asked whether 

we could revert this increase in cholesterol with simvastatin, a cholesterol-lowering 

drug and indeed found that the drug was able to rescue the increase in cholesterol 

biosynthesis to levels of the control (Figure 28E). Demonstrably, the dysregulation of 

Pnliprp1 alters both the cell cycle and cholesterol metabolism.  



 

 

Finally to link Pnliprp1 expression to ADM, we assessed the expression of acinar and 

ductal markers. We found that the expression of three acinar markers was 

downregulated: Prss1 (p = 0.0066), Amy2 (p = 0.0029), Cpa2 (p = 0.035) (also 

downregulated by HG + INS). Finally, both Krt19 (p = 0.0010) and Hnf1b (p = 0.020) 

which were upregulated by a diabetogenic environment were also upregulated 

following the KD of Pnliprp1 (Figure 28F). Taken together, these results suggest that 

Pnliprp1 invalidation appears to induce ADM, which was also induced by a 

diabetogenic environment. 

 

 

 

 

 

 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 29: Characterising the downstream consequences of Pnliprp1 downregulation in AR42J. A) Confirmation of Pnliprp1 
knockdown (KD) in four biological replicates using qPCR. A two-tailed t-test was performed to assess statistical significance. B) 
Volcano plot showing the dysregulated genes following Pnliprp1 KD in AR42J. Genes of interest are coloured and highlighted: 
Pnliprp1 (black), cell cycle genes (blue), acinar-to-ductal metaplasia genes (green), and cholesterol metabolism genes (red). 
C) Quantification of AR42J proliferation following KD of Pnliprp1 (72 hours) with the MTS proliferation assay. Performed in three 
biological replicates. D) Measurement of total cholesterol following the 48 hours KD of Pnliprp1 in AR42J. Performed in three 
biological replicates. E) Measurement of total cholesterol following Pnliprp1 KD (48 hours) and statin treatment (24 hours) in 
AR42J cells. DMSO was used as a control for statin treatment. Performed in two biological replicates. Error bars represent the 
standard error. * = p<0.05, *** = p< 0.001. F) Expression level of acinar and ductal markers in AR42J cells following the 72 hours 
KD of Pnliprp1 as measured by qPCR. A two-tailed t-test was performed to assess statistical significance. Performed in four 
biological replicates. 
 



 

9.4 Discussion 

Here we performed the first EWAS for T2D in the exocrine pancreas. We identified a 

single hypermethylation associated with T2D and 718 differentially methylated CpGs 

associated with age. We observed that many age-associated alterations were shared 

between the endocrine and exocrine pancreas. For T2D, the single hypermethylation, 

in cg15549216, was located in a super-enhancer predicted to target the PNLIPRP1 

gene, prompting further functional characterisation which revealed a role for the 

gene in cholesterol. Finally, we reproduce recent data which suggest a role for T2D in 

ADM, an important step in PDAC initiation. 

We propose that PNLIPRP1 may act as a mediator between T2D and various 

metabolic disruptions that promote downstream comorbidities such as PDAC. First, 

we found that the gene was downregulated in individuals with T2D, and that its 

expression was correlated to the methylation status of the hypermethylated 

cg15549216. We found that both rare and common variants of the gene were 

associated with LDL-cholesterol, which we confirmed by 1) MR analysis of 

cg15549216 and LDL-levels, and 2) by KO of Pnliprp1 in AR42J cells. These results 

showed that Pnliprp1 downregulation increases LDL-levels. This is coherent with 

previous studies which proposed that PNLIPRP1 is an inhibitor of Pancreatic lipase 

(PNLIP) which breaks down fats during digestion (Wagner et al. 2022). Further, an 

evolutionary study has linked gene loss of PNLIPRP1 to low fat diets in many species, 

cementing the notion that it is linked to lipid metabolism (Wagner et al. 2022; 

Hecker, Sharma, and Hiller 2019). The relation between PNLIPRP1 and cholesterol is 

of particular interest. Indeed, increased cholesterol levels are known to support PDAC 

carcinogenesis, in part through acinar-to-ductal metaplasia (ADM) which is promoted 

by cholesterol in acinar cells (Grisan et al. 2021). Supporting this observation, we 

found that KD of Pnliprp1 in AR42J cell induced both a reduction in proliferation, 

downregulation of acinar markers, and upregulation of ductal markers, which also 



suggest ADM.  ADM is traditionally reversible, however, in states of sustained stress, 

these cells become predisposed to progression towards PDAC, the tumour with the 

worst prognosis (Neuhöfer et al. 2021; Chuvin et al. 2017; J. Liu et al. 2016; Shi et al. 

2013). Importantly, PNLIPRP1 has already been linked to PDAC. Indeed, it is one of 

the most significantly downregulated gene in the disease (Zhang et al. 2013).  

In addition to a direct impact on cholesterol, PNLIPRP1 appears linked to multiple 

metabolic traits.  Indeed, we found that rare and common genetic variants are 

associated with increased LDL-cholesterol and metabolic traits. Specifically, rare 

variants were associated with LDL-cholesterol, HDL-cholesterol, BMI, glucose levels, 

waist-to-hip ratio, waist circumference, diastolic blood pressure and systolic blood 

pressure. It seems unlikely that PNLIPRP1 is driving all these alterations, rather they 

may be consequences of cholesterol metabolism disruption 

Importantly, we were able to down-regulate Pnliprp1 and replicate the effects of KD 

the gene by exposing our cells to a diabetogenic environment. Indeed, insulin or 

glucose alone did not trigger alterations in Pnliprp1 expression. These results confirm 

previous observations that T2D alters exocrine tissue (Wright et al. 2024). This is 

important not only to PDAC, but other diseases of the exocrine such as pancreatitis. 

Our data further demonstrate the importance of proper endocrine pancreas function 

to exocrine pancreas health. Indeed, in T1D, where insulin is lost, the exocrine 

pancreas undergoes atrophy and fails to secrete sufficient digestive hormones, 

sometimes requiring hormone replacement therapy (Wright et al. 2020).  

Finally, we show that age-associated DNA methylation changes in the exocrine 

pancreas are linear and representative of age. Furthermore, we find that many age-

associated DNA methylation changes in the exocrine pancreas overlap with age-

associated changes in both the endocrine pancreas, and other tissues such as blood. 

Finally, individuals with T2D featured accelerated ageing, confirming observations in 

other tissue whereby accelerated ageing is associated with disease (Horvath and 

Topol 2024; Fafián-Labora and O’Loghlen 2020).  The consistence of age-associated 



DNA methylation changes across tissue suggest that age is a well-controlled 

physiological process. 

It should be noted that this work features several limitations. First, given the extent 

of changes associated with T2D exposure (PDAC, ADM) in the exocrine pancreas, it is 

unlikely that PNLIPRP1 is the only differentially methylated gene, however, lack of 

statistical power likely prevented us from identifying additional alterations. Second, 

our functional characterisation is limited to rat acinar cells, which do not recapitulate 

the full complexity of tissue, and may not be representative of human physiology, 

however, primary human acinar cells rapidly de-differentiate in vitro and are 

therefore a poor model. Finally, to assess the role of cholesterol in inducing ADM, it 

would have been of interest to treat the AR42J cells with cholesterol.  

This work further demonstrates the value of DNA methylation in studying the 

molecular events upstream of disease. Indeed, here we assessed the contribution of 

an exposure, T2D, on DNA methylation. We found that T2D induces a 

hypermethylation in PNLIPRP1, a gene which we link to ADM and may therefore 

contribute to PDAC initiation in the exocrine pancreas, providing important insights 

into the development of the disease. More generally, we reinforce the observation 

that T2D promotes ADM in the exocrine pancreas, likely through both high glucose 

and high insulin exposure. Deciphering the molecular alterations leading to disease is 

essential for advancing our knowledge of both conditions and improving therapeutic 

approaches. Here, we demonstrate that DNA methylation studies are suitable 

vehicles for such investigations.  

 

 

 

 

 



10 Concluding remarks and future perspectives 

10.1 Summary 

In this work, we explored the (epi)genetic landscape of both the endocrine and 

exocrine compartments of the pancreas in the context of age and T2D. Our findings 

reveal significant associations between both traits and DNA methylation changes and 

that these epigenetic changes are largely independent of nearby genetic variants. 

Importantly, we linked these modifications to expression changes in previously 

established genes as well as probable novel candidates for T2D. This underscores the 

utility of DNA methylation in characterizing disease mechanisms and physiological 

processes. Within the endocrine pancreas, we uncovered associations that provide 

clear mechanistic insights into T2D and β-cell function. In the exocrine pancreas, we 

observed hypermethylation that led to the identification and characterization of 

PNLIPRP1, a novel gene that may play a role in T2D-related disruptions of exocrine 

function by modulating cholesterol metabolism. Furthermore, our data strongly 

support a model where genetics and epigenetics contribute independently to traits 

and disease. This is evidenced by the limited influence of genetics in our MEGA 

analyses and by the additive effect of MRS to PGS in predicting T2D. These findings 

highlight the importance of investigating both genetic and epigenetic factors to 

obtain a comprehensive understanding of T2D, and more generally, biology. 

 

10.2 DNA methylation-based studies: a complementary approach to 

traditional eQTL and colocalisation approaches 

Ultimately, the aim of omics studies is to uncover genes and pathways implicated in 

disease. While purely in silico omics approaches cannot definitively establish 

candidate genes and their biological consequences, they provide a valuable starting 

point. GWAS and eQTL analyses for T2D have indeed pinpointed signals that were 

later validated in vitro, such as FCHSD2 (Hu et al. 2021). As environmental 

contributions to T2D are indeed crucial, we propose that DNA methylation studies 



could serve a similar function to genetics-based approaches in identifying novel 

candidate genes. For instance, in our exocrine study, our EWAS revealed a 

hypermethylation of specific CpG site led to the identification of PNLIPRP1, a gene 

with a probable role in T2D-associated alterations in the exocrine pancreas. In the 

pancreatic islets study, we found that changes in DNA methylation were associated 

with alterations in key T2D genes and pathways. Furthermore, we identified genes 

not previously linked to T2D but with a probable role in the disease, such as RBM15, a 

regulator of HES1, a key β-cell identity marker (Bolinches-Amorós et al. 2014). 

However, DNA methylation-based approaches feature two important limitations: (1) 

they detect many dysregulated genes, not all of which are relevant in a disease 

context, and (2) it is challenging to determine which CpG sites are causal rather than 

merely correlated to changes in gene expression. The first limitation can be partially 

addressed by linking the expression of identified genes to relevant phenotypic traits. 

In our work, we linked gene expression to the insulin secretion index (ISI), a direct 

measure of pancreatic islet function. This enabled us to identify probable candidates, 

such as ECHDC2, which regulates glycolysis, a key component of GSIS, but future 

studies should aim to obtain a larger number of clinical variables. The second 

limitation can be addressed with genome-editing strategies, such as CRISPR, which 

have been successfully used to validate eQTL signals, including SIX3 (Bevacqua, Dai, et 

al. 2021; Hu et al. 2021). However, genome editing is an intensive process and 

difficult to scale, meaning that CpG-gene pairs of interest need to be prioritised 

before characterization. Here MR could be leveraged to link target CpGs to traits. 

Exposure SNPs could be generated via mQTL. However, we identified few CpGs under 

genetic influence in the Epi-islets cohort, suggesting that this approach may not be 

widely applicable.  

Alternatively, CpG-gene interactions could be filtered upstream using single-cell DNA 

methylation (scDNAm) and single-cell transcriptomics analyses. Individual cells, of the 

same cell type, could be grouped by the methylation status of a target CpG. Then, 

case-control studies could be performed where individual cells are grouped based on 



the methylation status of the CpG site of interest. The resulting impact on target gene 

expression could then be measured to determine whether a CpG-gene pair warrants 

further characterization. Characterisation of CpG-Gene pairs is important not only in 

the context of gene expression, but also because CpGs which demonstrably impact 

gene expression are likely to be more robust markers of disease.  

DNA methylation also complements GWAS and eQTL analyses because of its distinct 

nature from genetics. SNPs are determined at conception, and their effects are stable 

throughout an individual's lifetime. In contrast, DNA methylation patterns vary over 

time and in response to environmental stimuli (Smith, Hetzel, and Meissner 2024). 

Consequently, other approaches are needed to identify these environmentally 

regulated genes. Indeed, as described in the first project, few of our identified CpG-

gene pairs were under genetic control, either through the SNP-gene axis or the SNP-

CpG-gene axis. This finding underscores the great potential of environmentally 

focused DNA methylation studies to identify novel genes only under epigenetic 

control.  

Finally, DNA methylation alterations cell-type and tissue-specific. This is 

demonstrated by DNA methylation based smoking predictors and age clock, which 

can accurately predict whether individuals smoke and their biological age, based on 

the methylation status of a select few CpG site (Bollepalli et al. 2019; Horvath and 

Topol 2024). Additionally, DNA methylation can differentiate between distinct 

treatments and cell types in the adipose tissue of obese individuals (Macartney-

Coxson et al. 2017). Many age-related diseases are heterogeneous and feature 

distinct pathophysiological clusters. In T2D, which comprises at least five distinct 

clusters, certain groups exhibit greater IR while others are characterised by β-cell 

dysfunction (Ahlqvist, Tuomi, and Groop 2019). Furthermore, each cluster features 

distinct disease progression, with retinopathy and neuropathy being more prevalent 

in insulin deficient patients whilst IR-driven diabetes is enriched in fatty liver disease 

(Ahlqvist, Tuomi, and Groop 2019). Each subtype results from disruptions in different 

genes, pathways, cell types, tissues, and organs. Recent work confirmed the 



heterogeneity of each subtype at the DNA methylation levels (Schrader et al. 2022). 

Integration of each subtype to transcriptomics could shed light into the genes and 

pathways contributing to each of these. At the least, DNA methylation could likely 

improve currently available genetic-based methods for T2D subtypes partitioning 

(DiCorpo et al. 2022)  

 

10.3 General limitations of current methylation-based studies 

10.3.1 Biased and incomplete coverage of the methylome by arrays 

Whilst DNA methylation has proven useful in the identification of biomarkers and 

candidate genes, currently used array-based methods have several limitations. First, 

the largest array, the Infinium MethylationEPIC v2.0, only covers an estimated 3% of 

the 28,000,000 CpGs present in the genome (Lander et al. 2001). Unlike SNPs from 

DNA arrays, it is not possible to impute missing CpGs, and the remaining CpGs remain 

overlooked. This issue is further exacerbated by the non-random selection of CpGs, as 

methylation arrays were initially designed to assess cancer-specific regions of 

interest, and more broadly promoters and enhancer regions (Moran, Arribas, and 

Esteller 2016).  

Additionally, DNA methylation patterns are phenotype specific, as evidenced by 

smoking and age, which can accurately be predicted with a select few CpGs. This 

suggests that despite identifying many associations with the disease, regions relevant 

to T2D may be unscreened in current EWAS studies (Salameh, Bejaoui, and El Hajj 

2020; Bollepalli et al. 2019). Furthermore, arrays, limited to less than a million probes 

are overwhelmingly focused on promoters, enhancers, and open chromatin regions 

identified by the ENCODE project (Moran, Arribas, and Esteller 2016). However, DNA 

methylation is an important regulatory component of compact chromatin regions, or 

heterochromatin (Pappalardo and Barra 2021). CpGs in heterochromatin are typically 

highly methylated and a decrease in their methylation level is associated with 



chromatin deconvolution and transcriptional activation of RE and TE (Pappalardo and 

Barra 2021).  

Activation of RE is linked to oncogene activation (Pappalardo and Barra 2021). In 

various cancers, hypomethylations alter the entire 3D structure of chromatin, 

impacting nucleus size, and DNA spatial organisation (Zeimet et al. 2011; McDonald 

et al. 2011). We and others have clearly demonstrated a trend for global 

hypomethylations in T2D, however, whether these induce a complete remodelling of 

DNA structure is unknown but should be assessed. This could be addressed with 

whole-genome bisulfite sequencing (WGBS), which enables complete and 

comprehensive screening of the genome. In cancer, WGBS has been successfully 

been used to screen heterochromatin regions, which are indeed heavily 

hypomethylated and associated with activation of TEs (D. Bar et al. 2022). However, it 

is important to note that as the number of CpG sites under testing increases, larger 

sample sizes will be necessary to achieve sufficient power to detect meaningful 

changes in DNA methylation accurately. As WGBS becomes more cost-effective, and 

larger cohorts begin to be assembled, WBGS will greatly improve the scope of DNA 

methylation studies.  

10.3.2 CpG effect size and making sense of CpG-gene interactions 

Similar to SNPs, EWAS identified CpGs feature modest effect sizes. Indeed, the largest 

methylation changes we observed (both in T2D) in exocrine tissue was of 11.2% 

(cg15549216), and of 4.08% (cg17240976) in pancreatic islets. As with common 

variants, it is likely that each CpG induces mild changes, which additively contribute 

to phenotypes. An exciting opportunity lies in the characterizing of CpG-Gene 

interactions to develop our understanding of how these modest alterations shape 

transcriptional patterns given the success of GWAS and downstream approaches. This 

is exemplified by PNLIPRP1, which we found to be hypermethylated with T2D. 

Characterisation of the gene demonstrated a role in cholesterol metabolism, with 

important implications in ADM and PDAC. These results demonstrate the utility of 

identifying these single DNA methylation changes that could contribute to disease 



and further our understanding of disease. More generally, with sufficient 

understanding of how DNA methylation shapes expression patterns, we could begin 

developing models which predict, without transcriptomic data, the impact of a CpG 

on gene expression, and largely improve the impact of single-OMIC EWAS.  

10.4 Future opportunities  

As more EWAS focusing on T2D in pancreatic islets are published, meta-analyses 

present an important opportunity to overcome current power limitations and detect 

robust, reproducible associations. To maximise their effectiveness, it is essential to 

standardise methodologies across studies and address potential heterogeneity in 

sample populations and data acquisition techniques. Importantly, studies should aim 

to consider clinical subtypes or include key clinical measures relevant to T2D—such as 

HOMA2B and the ISI —to delineate the relative contributions of the various 

components of T2D, such as insulin secretion and IR to DNA methylation patterns. 

Additionally, integrating multidimensional data can enhance our understanding of 

T2D pathogenesis and aid in the discovery of clinically relevant biomarkers. 

OMICS datasets are becoming larger and more complex. Additionally, integration of 

multiple dataset vastly increases this complexity, especially in biology where systems 

are intimately linked ie., a change in expression impacts DNA methylation which 

impacts gene expression which impacts protein levels. To resolve this, the utilization 

of machine learning is rapidly expanding (in fact, the Nobel prise for physics was 

awarded to ML and AI on the day of writing this). ML is excellent at identifying 

patterns in complex data and multi-dimensional data. ML has not yet been applied in 

the context of T2D and DNA methylation. However, it has successfully been leveraged 

in acute myeloid leukaemia, where it significantly outperformed traditional 

hypothesis-driven association methods in the identification of drug sensitivity 

markers (Lee et al. 2018). 

Finally, proteomics and metabolomics are rapidly becoming more available. These 

omics (especially transcriptomics) directly reflect biological activity and are therefore 



closer to phenotype. Indeed, proteomics and metabolomics captures processes not 

detected by RNA-sequencing. Alzheimer’s disease is driven by long-term Aβ peptide 

accumulation in neurons, a process not detected by transcriptomics owing to the 

short-term nature of RNAs in the cells (Shaomin Li and Stern 2022). Already, DNA 

methylation has been integrated to proteomics to identify biomarkers for 

Alzheimer's, Parkinson’s, and autism (Mahony and O’Ryan 2021; Suhre and Zaghlool 

2021). Integration of additional OMICS is certain to bring us ever closer to the 

characterisation of disease, physiology, and metabolism.  

10.5 A proposition on the fundamental purpose of DNA methylation 

Methylation patterns are predicated by both targeted and stochastic mechanisms 

(Jeltsch and Jurkowska 2014). At the most basic level, we generally observe targeted 

hypermethylations in regulatory regions, primarily promoters, and stochastic 

hypomethylations in non-promoter regions (Smith, Hetzel, and Meissner 2024). In 

addition, we are also aware that CpGs are not normally distributed throughout the 

genome. Indeed, they are enriched in promoters and CpG islands and depleted 

outside of these regions (Smith, Hetzel, and Meissner 2024). Generally, the DNA 

methylation ecosystem features strong evolutionary conversion, indicating an 

important underlying function (Smith, Hetzel, and Meissner 2024). Therefore, 

targeted changes in DNA methylation should provide, at least in some cases, benefits. 

Indeed, this is a well-established phenomenon in cancer cells, where DNA 

methylations enable greater cellular survival and proliferation, relative to healthy 

cells (Timp and Feinberg 2013). Consequently, a function of DNA methylation may be 

that it generates cellular heterogeneity, which is then selected for, or against, by 

various environmental exposures to enhance cellular survival. We observed evidence 

in our data that certain DNA methylation changes appear to be protective of T2D, 

such as a change in DNA methylation which increased INS expression with increasing 

age. Similarly, seemingly deleterious modifications, which impair β-cell function, 

could be a mechanism to prevent cellular damage associated with excessive β-cell 

activity (Cerf 2013; Eizirik, Pasquali, and Cnop 2020). Understanding the fundamental 



function of DNA methylation, and why changes in methylation occur, whether these 

be deleterious or protective, is important. In the future, better study designs to 

comprehensively assess the contribution of this mechanism to physiology are 

important. 

10.6 Conclusion 

DNA methylation in the of T2D and the pancreas is an emerging field of research. Our 

data demonstrates promise for DNA methylation in the characterisation of the 

disease as well as incidence prediction. However, current studies face limitations, 

ranging from sample size to structural shortcomings of arrays, which fail to 

comprehensively assess the methylome. Recent studies have seen a significant shift 

in the ability to identify epigenetic changes associated with complex disease. 

Although methylation studies in isolation have yielded limited results, when 

integrated with other OMICS, they add an interesting perspective in the study of 

complex disease. It is important to note that this journey into investigating epigenetic 

modifications has only recently started and there remains a great deal to examine the 

untapped potential of this field. Further statistical modelling, ML and AI approaches 

will improve and advance this field and aid in the unravelling of molecular 

mechanisms that influence complex disease. This is yet a young field that has 

promising potential future perspectives. By overcoming the limitations described, 

future research can enhance our understanding of the epigenetic mechanisms 

underlying T2D and improve the identification of biomarkers for better diagnosis and 

treatment strategies.  
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Supplementary figure 1: Principal component analysis of cohort characteristics 

against DNA methylation β-values. The first three PCs are represented and ordered 

by the proportion of variance in the data they explain. P-values were computed with 

     PC1      PC2      PC3 



an ANOVA test. Colours gradient represents P-values, with darker colours indicating 

lowers values.  

 

Supplementary figure 2: Pancreatic islet tissue samples estimated cell type 
composition. Cell types were estimated using DNA methylation data with the 
RefFreeEWAS r package (Houseman et al. 2016). Colours are arbitrary and indicate 
different cell types. Each point represents an individual sample. 

 

 



 

Supplementary figure 3: Principal component analysis (PCA) of DNA methylation 
data from pancreatic islets. A-C) PC 1-3 of the pancreatic islet samples. Pancreatic 
islet samples coloured blue originated from control individuals, whilst green indicates 
samples originating from individuals with type 2 diabetes.  
 
 
 
 
 
 
 



 

Supplementary figure 4: Number of CpGs targeting their nearest gene, or not. A-B) 
Bar plots showing the nominal number of CpGs which target the nearest gene or not 
for A) age (purple) and for B) T2D (blue). Grey indicates CpGs targeting distant genes 
for both A) and B). 
 
 
 
 



 

Supplementary figure 5: Bar plots showing the absolute number of CpGs associated 
with gene expression and the direction in which these CpGs influence gene 
expression, split by regulatory region. A) Bar plot for genes dysregulated in the age 
analysis. Purple indicates consistent effect direction ie., an increase in methylation 
increases gene expression, and purple indicates the opposite. B) Bar plot for genes 
dysregulated in the T2D analysis. Blue indicates consistent effect direction, while 
green indicates inconsistent effect direction.  
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Supplementary figure 6: Exocrine tissue estimated cell type composition. Cell types 
were estimated using DNA methylation data with the RefFreeEWAS r package 
(Houseman et al. 2016). 
 

 

 



 
Supplementary figure 7: Principal component analysis (PCA) of DNA methylation 
data from exocrine and endocrine preparations. A-C) PC 1-3 of the pancreas 
samples. Purple indicates high purity endocrine preparations. Dark blue indicates 
exocrine preparations. Teal indicates endocrine preparations that were extracted 
along with exocrine preparations. Light green indicates endocrine preparations of low 
purity (ie., with some exocrine content). 
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Supplementary figure 8: Ancestry clustering of exocrine organ donors using the 
1,000-genome reference panel. Organ donors are in purple. Ad Mixed americans are 
in dark green, East Asians are in teal. South Asian are in yellow. Europeans are in 
green. Africans are in dark blue. 
 

 

 
 
 
 
 
 
 



 
Supplementary figure 9: Biological age estimation using Horvath’s DNA methylation 
age clock.  Upper plot shows the DNA methylation age of all samples. Lower plot 
indicates DNA methylation age split by diabetes status. Purple indicates non 
diabetics, orange indicates individuals with type 2 diabetes. 
 
 
 
 



 
Supplementary figure 10: Relationship between glycaemia and DNA methylation at 

cg15549216. The X axis indicates glycaemia, and the Y axis indicates β-value of 

cg15549216. Purple circle indicate control individuals and green triangles indicates 

individuals with type 2 diabetes. 

 

 
Supplementary figure 11: Phenotype associations for common PNLIPRP1 variants 
from the Type 2 Diabetes Knowledge portal (https://t2d.hugeamp.org/). 
 
 

https://t2d.hugeamp.org/


 
Supplementary figure 12: GTEX gene expression data for PNLIPRP1. Counts indicate 
transcript per million value for the gene. 
 
 

 
Supplementary figure 13: PNLIPRP1 gene expression from the TIGER database. 

PNLIPRP1 is lowly expressed in pancreatic islets, transcript per million (TPM) = 36, 

and highly expressed in whole pancreas tissue, TPM = 2581. 

 
 
 
 



 
Supplementary figure 14: Western blot of Akt and phosphorylated Akt (pAkt) in 
AR42J.  The cells were initially treated with high glucose and insulin for 48 hours. 
Subsequently, medium was removed and replaced along with 200 nM insulin for 1 
hour to stimulate the cells. 
 
 

 
Supplementary figure 15: Immunofluorescence of human whole pancreas tissue. 
The upper row shows healthy whole pancreas tissue whilst the lower row shows 
whole pancreas tissue from an individual with type 2 diabetes. Blue (DAPI) indicates 
nuclei. Green indicates PNLIPRP1. Purple indicates KRT19. Red indicates insulin. 
Arrows indicate sites of PNLIPRP1 and KRT19 co-expression. 
 
 
 
 
 
 
 
 
 



 
Supplementary figure 16: Protein quantification of Pnliprp1 following knockdown 
with siRNA. AR42J cells were treated with siRNA for 48 hours prior to protein 

Supplementary tables 

All supplementary tables are available in the excel document provided with the 

thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 Published article 

 

 



 

 

 

 



 

 

 

 



 

 

 



 

 

 

 



 

 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 



 


