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Résumé 

L’essor du deep learning et l’accès croissant à des volumes massifs de données médicales — 

diagnostics, traitements, informations génétiques, antécédents cliniques, imagerie ou encore 

comptes rendus textuels — transforment profondément la recherche biomédicale. Cette abondance 

ouvre des perspectives inédites pour la médecine de précision : identifier des patients présentant 

des profils similaires, anticiper l’évolution des pathologies et adapter les prises en charge de façon 

individualisée. Néanmoins, exploiter efficacement ces données reste un défi majeur. Leur 

hétérogénéité et leur complexité exigent de concevoir des représentations capables de refléter 

fidèlement les similarités et dissimilarités entre individus, tout en restant exploitables dans un cadre 

clinique. 

Dans ce contexte, les espaces latents offrent un cadre méthodologique particulièrement pertinent. 

En projetant des données médicales complexes dans des espaces de dimension réduite, ils 

permettent de condenser l’information tout en préservant sa structure essentielle. Le 

développement d’espaces latents structurés et interprétables, adaptés au domaine médical, 

constitue le cœur de cette thèse. De plus, comme les données médicales sont par nature 

hétérogènes, l’intégration progressive de la multimodalité en représente un prolongement naturel. 

La première partie introduit les fondements conceptuels des espaces latents et les principales 

méthodes permettant de les construire, d’abord dans un cadre unimodal puis multimodal. Une 

attention particulière est portée à leur structuration, une condition essentielle pour concilier fidélité, 

généralisation et interprétation clinique. Une brève revue des applications existantes en 

neuroimagerie vient compléter cette mise en contexte. 

La deuxième partie s’appuie sur le modèle BrainAGE afin de démontrer qu’un espace latent appris 

de manière supervisée peut encoder des dimensions cliniquement pertinentes. Cette approche a 

permis d’identifier des sous-groupes de patients dans la maladie d’Alzheimer à début précoce, 

indépendamment des caractéristiques cliniques conventionnelles, mettant en évidence le potentiel 

des représentations latentes à saisir la complexité des dimensions phénotypiques. 

Les troisième et quatrième parties présentent le PatientSpace, un cadre méthodologique destiné à 

construire des espaces latents interprétables dans le contexte des maladies neurodégénératives. 

Appliqué initialement à l’imagerie par résonance magnétique (IRM) de patients atteints de 

démences fronto-temporales (DFT), le PatientSpace a permis d’identifier des sous-groupes 

cohérents tout en fournissant une explicabilité clinique des regroupements. L’approche a ensuite été 

étendue à plusieurs démences, notamment Alzheimer et DFT, et enrichie d’une dimension 

multimodale en intégrant à la fois des données IRM et de tomographie par émission de positons 

(TEP). Ces travaux ont démontré la robustesse de la méthode et sa capacité à capturer la variabilité 

interindividuelle tout en restant exploitable dans un cadre clinique. 

Enfin, la cinquième partie explore un cadre multimodal plus hétérogène, appliqué à la prédiction du 

pronostic fonctionnel à trois mois après un AVC chez des patients candidats à une thrombectomie. 

En combinant des séquences IRM (FLAIR et DWI), des comptes rendus radiologiques et des données 

cliniques, les espaces latents ont été structurés de manière à mettre en évidence le rôle et les 
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interactions de chaque modalité dans la prédiction du mRS à 3 mois. L’intégration de ces sources via 

des mécanismes d’attention et de gating a non seulement amélioré la performance prédictive, mais 

aussi permis de quantifier l’apport spécifique de chaque modalité, fournissant ainsi une 

interprétation directement exploitable en pratique clinique. 

Ces travaux apportent des avancées dans l’exploitation et la structuration des espaces latents en 

contexte médical, ouvrant la voie à des représentations interprétables et pertinentes pour la 

pratique clinique, et favorisant le développement de nouvelles approches de diagnostic, de 

pronostic et de médecine personnalisée. 
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Abstract 

The rise of deep learning and the increasing availability of large-scale medical data—diagnoses, 

treatments, genetic information, clinical histories, imaging, and textual reports—are profoundly 

transforming biomedical research. This abundance opens unprecedented opportunities for precision 

medicine: identifying patients with similar profiles, anticipating disease progression, and tailoring 

individualized care. However, effectively leveraging these data remains a major challenge. Their 

heterogeneity and complexity require the design of representations capable of accurately reflecting 

similarities and differences between individuals, while remaining clinically actionable. 

In this context, latent spaces provide a particularly relevant methodological framework. By 

projecting complex medical data into lower-dimensional spaces, they allow information to be 

condensed while preserving its essential structure. The development of structured and interpretable 

latent spaces, specifically adapted to the medical domain, constitutes the core of this doctoral 

research. Moreover, as medical data are inherently heterogeneous, the progressive integration of 

multimodal sources represents a natural extension of this approach. 

The first part introduces the conceptual foundations of latent spaces and the main methods for their 

construction, initially in a unimodal and then in a multimodal framework. Particular attention is 

given to their structuring, which is essential to balance fidelity, generalization, and clinical 

interpretability. A brief review of existing applications in neuroimaging complements this context. 

The second part builds on the BrainAGE model to demonstrate that a supervisedly learned latent 

space can encode clinically relevant dimensions. This approach enabled the identification of patient 

subgroups in early onset Alzheimer’s disease independently of conventional clinical features, 

highlighting the potential of latent representations to capture the complexity of phenotypic 

dimensions. 

The third and fourth parts present PatientSpace, a methodological framework for constructing 

interpretable latent spaces in the context of neurodegenerative diseases. Initially applied to 

magnetic resonance imaging (MRI) of patients with frontotemporal dementia (FTD), PatientSpace 

enabled the identification of coherent subgroups while providing clinical interpretability of the 

clusters. The approach was then extended to multiple dementias, including Alzheimer’s and FTD, 

and enriched with a multimodal dimension by integrating both MRI and positron emission 

tomography (PET) data. These studies demonstrated the robustness of the method and its ability to 

capture inter-individual variability while remaining clinically interpretable. 

Finally, the fifth part explores a more heterogeneous multimodal setting, applied to predicting three-

month functional outcomes after stroke in patients eligible for thrombectomy. By combining MRI 

sequences (FLAIR and DWI), radiology reports, and clinical data, latent spaces were structured to 

highlight the role and interactions of each modality in predicting the three-month modified Rankin 

Scale (mRS). Integration of these sources through attention and gating mechanisms not only 

improved predictive performance but also allowed quantification of the specific contribution of each 

modality, providing interpretations directly actionable in clinical practice. 
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Overall, these works advance the exploitation and structuring of latent spaces in medical contexts, 

paving the way for interpretable and clinically relevant representations, and supporting the 

development of novel approaches for diagnosis, prognosis, and personalized medicine. 
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Introduction 

1. Les modèles normatifs 

1.1. Définition 

Les modèles normatifs constituent une approche puissante pour analyser et interpréter les 

différences individuelles au sein d'une population. Contrairement aux méthodes traditionnelles 

fondées sur des moyennes de groupe, ces modèles visent à capturer la variabilité naturelle des 

caractéristiques biologiques, comportementales ou cliniques dans une population de référence. 

Cette « norme » ainsi définie sert ensuite de point de comparaison pour évaluer dans quelle mesure 

un individu s’en écarte, en permettant d’identifier des profils atypiques ou pathologiques (Figure 1). 

(Rutherford et al., 2022). 

 

1. Figure 1. 
Les courbes de taille et de poids des enfants constituent des références normatives. L’écart observé par rapport 
à la population de référence permet de quantifier des critères tels que la maigreur, le surpoids ou l’obésité 
(image provenant de https://cress-umr1153.fr/fr/courbes-de-croissance-de-reference-du-carnet-de-sante/ 
05/08/2025) 

L’intérêt principal de cette approche est qu’elle permet de détecter des variations propres à un 

individu, ouvrant ainsi la voie à une médecine plus personnalisée et précise (Rutherford et al., 

https://cress-umr1153.fr/fr/courbes-de-croissance-de-reference-du-carnet-de-sante/
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2022).Dans un premier temps, un modèle de référence est élaboré à partir de données issues d’une 

population saine, ce qui permet de définir des profils attendus. Dans un second temps, les écarts 

individuels par rapport à cette norme sont quantifiés. Cette approche méthodologique a démontré 

son efficacité dans le domaine médical, où elle s’avère particulièrement pertinente pour l’étude de 

la complexité et de l’hétérogénéité des pathologies (Kang et al., 2024; Pinaya et al., 2021; Tabbal et 

al., 2025). 

2. Les modèles normatifs en neuroimagerie 

2.1. Intérêt 

Bien que les modèles normatifs soient couramment utilisés dans certains domaines médicaux, tels 

que la pédiatrie avec les courbes de taille et de poids, ils commencent seulement à être adoptés en 

neuroimagerie, notamment pour l’étude du développement cérébral, du vieillissement et des 

démences (Bozek et al., 2023). 

L’un des principaux atouts des modèles normatifs réside dans leur capacité à intégrer 

l’hétérogénéité naturelle de la population au sein des cohortes cliniques. Ils permettent ainsi 

d’obtenir un diagnostic individualisé, centré sur le patient plutôt que sur un groupe. L’analyse ne 

repose plus sur la moyenne d’un groupe de patients, mais exclusivement sur l’échelle individuelle, ce 

qui permet de s’affranchir de l’hétérogénéité de la population cible. Cet aspect est particulièrement 

pertinent dans le domaine médical, où l’hétérogénéité constitue un facteur déterminant (Marquand 

et al., 2016). 

 

2. Figure 2 
Intérêt des modèles normatifs (image et légende issues de (Marquand et al., 2016)). L’approche classique cas-
témoins suppose que les cas et les témoins forment chacun un groupe bien défini (A). Cette hypothèse peut être 
raisonnable dans certains contextes, mais de nombreuses autres configurations sont possibles en pratique. La 
population clinique peut être constituée de plusieurs sous-groupes présentant chacun une pathologie distincte 
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(B) ; la variabilité liée à la maladie peut s’inscrire au sein même de la variabilité observée chez les sujets sains 
(C) ; ou encore, le groupe clinique peut apparaître diffus et hétérogène en raison d’erreurs diagnostiques, de 
comorbidités ou de l’agrégation de pathologies différentes (D). 

Dans le scénario idéal, l’approche cas-témoins permet de distinguer clairement deux groupes (Figure 

2A). Toutefois, la réalité est souvent bien différente, en raison des variations propres à la population 

générale mais aussi de l’hétérogénéité au sein du groupe clinique étudié. Plus largement, les 

approches normatives offrent la possibilité de caractériser finement les différences 

interindividuelles, ce qui favorise une compréhension plus nuancée de l’expression des pathologies 

et permet un suivi plus personnalisé des patients.  

Elles s’inscrivent pleinement dans le cadre de la médecine de précision, dont l’objectif est d’adapter 

les traitements au profil spécifique de chaque individu (Marquand et al., 2019). 

Un autre avantage réside dans leur accessibilité en termes d’interprétabilité : il suffit en effet de 

définir des seuils pour quantifier les variations et, par conséquent, interpréter les résultats. 

2.2. Les modèles normatifs en neuroimagerie : aspects pratiques 

Deux grandes approches de modèles normatifs peuvent être distinguées. 

La première repose sur des caractéristiques dérivées directement des données d’intérêt, comme les 

volumes cérébraux ou les épaisseurs corticales. La seconde utilise l’imagerie complète afin de 

générer un espace latent normatif. 

2.2.1. Modèle normatif par région d’intérêt 

Dans cette approche, le cerveau est représenté à travers des mesures régionales (volumes, 

épaisseurs corticales, etc.). L’objectif est de prédire ces mesures à partir de covariables telles que 

l’âge, le sexe ou encore des attributs cognitifs et psychiatriques. La prédiction repose sur des 

modèles capables d’estimer une distribution, tels que les processus gaussiens (Gaussian Process 

Regression, GPR), la régression linéaire bayésienne, la régression hiérarchique bayésienne ou encore 

les modèles additifs généralisés (GAMLSS) (Bozek et al., 2023; Dinga et al., 2021; Fraza et al., 2021; 

Marquand et al., 2016). 

2.2.2. Modèle normatif sur l’imagerie 

De manière analogue, mais sans passer par des caractéristiques régionales, il est possible de 

modéliser directement les distributions issues de l’imagerie complète (unimodale ou multimodale). 

Ces approches s’appuient notamment sur les autoencodeurs variationnels (VAE), ainsi que sur des 

architectures plus complexes telles que les produits, les mélanges ou les produits de mélanges 

d’experts (Pinaya et al., 2018). Dans ce cadre, les scores de déviation sont généralement calculés 

sous la forme :  

𝑑 =  
𝑥 − 𝜇

𝜎
 

où 𝑥 est la valeur observée, 𝜇 la moyenne prédite et 𝜎 l’écart-type estimé. 

2.2.3. Exemple d’application 

Dans le cadre de la maladie d’Alzheimer, des modèles normatifs entraînés sur plusieurs milliers de 

sujets sains issus de la UK Biobank ont permis de détecter de manière sensible les altérations 

cérébrales chez des patients présentant un trouble cognitif léger (MCI), stade précoce de la maladie, 

ainsi que chez des patients atteints d’Alzheimer à un stade plus avancé. Ces modèles ont montré que 
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les individus malades s’écartent significativement de la norme, l’ampleur de cette déviation reflétant 

la sévérité des altérations cérébrales (Verdi et al., 2024). 

3. Vieillissement cérébral et modèle normatif : l’approche BrainAGE 

3.1. Définition 

Le modèle Brain Age Gap Estimation (BrainAGE) est conçu pour prédire l’âge chronologique d’un 

individu appartenant à une population de référence à partir de variables spécifiques, telles que des 

IRM cérébrales de sujets sains ou encore des volumes cérébraux régionaux. L’écart entre l’âge 

cérébral estimé et l’âge réel, appelé Predicted Age Difference (PAD), fournit un indicateur quantitatif 

de la déviation par rapport à un vieillissement cérébral typique. 

Le modèle BrainAGE part du principe que, chez les individus en bonne santé, l’âge cérébral estimé à 

partir des images correspond à l’âge chronologique réel. Bien que développé pour le cerveau, ce 

concept peut être étendu à d’autres organes (Cole et al., 2019, 2017; Franke and Gaser, 2019; Seitz-

Holland et al., 2024). 

3.2. Intérêt du BrainAGE 

L’intérêt principal du modèle BrainAGE ne réside pas uniquement dans sa capacité à estimer l’âge 

cérébral chez des sujets sains, mais surtout dans son application à des populations cliniques, 

notamment les patients atteints de démence ou d’autres pathologies cérébrales telles que les 

maladies neurologiques et psychiatriques (Dias et al., 2025; Franke and Gaser, 2019) .Plusieurs 

études ont en effet montré que, chez ces patients, l’âge cérébral prédit par le modèle est en 

moyenne plus élevé que l’âge chronologique. Cette surestimation traduit une accélération du 

vieillissement cérébral liée à la pathologie (Smith et al., 2019). 

En pratique, le BrainAGE apprend à exploiter des biomarqueurs associés à l’âge, tels que la 

diminution progressive de la matière grise ou l’augmentation du volume de liquide cérébrospinal. 

Lorsqu’il est appliqué à des patients présentant une atrophie cérébrale anormale, comme c’est le cas 

dans les démences, ces caractéristiques pathologiques sont interprétées comme un vieillissement 

prématuré, conduisant à une surestimation de l’âge cérébral. Le BrainAGE constitue alors un 

indicateur quantitatif de la déviation par rapport à un vieillissement cérébral typique. Ce score a été 

utilisé comme biomarqueur potentiel pour évaluer la sévérité ou la progression de différents types 

de démence, offrant ainsi une mesure continue et objectivable à partir de l’imagerie cérébrale 

(Abeyasinghe et al., 2025). 

Au-delà de la simple mesure d’une déviation individuelle, l’approche BrainAGE permet de comparer 

les profils de différents patients. Des individus présentant un même BrainAGE ou des schémas 

d’atrophie similaires peuvent être regroupés, révélant ainsi des trajectoires communes de 

vieillissement cérébral. Cette capacité à mettre en évidence les similarités et différences entre 

patients contribue directement à une médecine plus personnalisée, en facilitant l’identification de 

sous-groupes cliniquement pertinents. 

Dans cette optique, la recherche de patients similaires — c’est-à-dire partageant des caractéristiques 

cliniques, biologiques ou structurelles — s’inscrit comme un prolongement naturel de la 

modélisation normative. 
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4. A la recherche de patients similaires 
Avec l’émergence du deep learning et du big data, un volume massif de données spécifiques aux 

patients — incluant diagnostics, traitements, informations génétiques ou encore antécédents 

médicaux — est devenu accessible. Cette explosion de données ouvre la voie à une amélioration 

significative de la prise en charge médicale, via des outils d’aide à la décision, des modèles prédictifs 

de progression de la maladie, ou encore des analyses comparatives de l’efficacité des traitements. 

Dans ce contexte, l’identification de similarités ou de dissimilarités entre patients devient une 

ressource précieuse pour optimiser les parcours de soins (Parimbelli et al., 2018). 

4.1. Extraire des similarités 

Cette section vise à présenter de manière non exhaustive les méthodes et algorithmes permettant 

d’identifier des similarités entre patients.  

4.1.1. Distance, dissimilarité et similarité 

Mathématiquement, une distance est une application 𝑑 vérifiant les propriétés suivantes 

∀(𝑥, 𝑦) ∈ 𝐸2, 𝑑(𝑥, 𝑦) = 0 ⇔ 𝑥 = 𝑦 (P1) 

∀(𝑥, 𝑦) ∈ 𝐸2, 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) (P2) 
∀(𝑥, 𝑦, 𝑧) ∈ 𝐸3, 𝑑(𝑥, 𝑦) ≤  𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) (P3) 

∀(𝑥, 𝑦) ∈ 𝐸2, 𝑑(𝑥, 𝑦) ≥ 0 (P4) 
 

Cette distance permet de mesurer la dissimilarité entre deux entités 𝑥  et 𝑦 :  

 Si 𝑑(𝑥, 𝑦) = 0, alors 𝑥 et 𝑦 sont identiques 

 Plus 𝑑(𝑥, 𝑦) est grande, plus 𝑥  et 𝑦 sont différents 

Une mesure de dissimilarité peut être vue comme une distance relaxée, où l’inégalité triangulaire 

(P3) n’est pas nécessairement respectée. L’idée reste similaire : deux objets sont identiques si leur 

dissimilarité est nulle, et plus la dissimilarité est élevée, plus les objets sont différents. 

Par extension, une mesure de similarité évalue la ressemblance entre deux objets. Pour une 

similarité 𝑠, on a typiquement les propriétés suivantes 

∀(𝑥, 𝑦) ∈ 𝐸2, 𝑠(𝑥, 𝑦) ≤ 𝑠(𝑥, 𝑥)  
∀(𝑥, 𝑦) ∈ 𝐸2, 𝑠(𝑥, 𝑦) = 𝑠(𝑦, 𝑥) 

 

La positivité de la similarité  

∀(𝑥, 𝑦) ∈ 𝐸2, 𝑠(𝑥, 𝑦) ≥ 0 

est souvent conservée pour faciliter l’interprétation mais elle n’est pas obligatoire. 

Par exemple, la similarité cosinus 

𝑠(𝑥, 𝑦) =  
< 𝑥, 𝑦 >

||𝑥|| ||𝑦||
 

peut prendre des valeurs entre [−1; 1 ]. 

Il est possible de passer d’une mesure de similarité à une mesure de dissimilarité, et inversement, ce 

qui permet de relier les deux notions de manière simple et cohérente. 
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Ainsi, si 𝑠 est la similarité cosinus, alors  

𝑑(𝑥, 𝑦) = 1 − 𝑠(𝑥, 𝑦) 

définit une mesure de dissimilarité. 

Inversement, si 𝑑 est une mesure de dissimilarité, alors 

𝑠(𝑥, 𝑦) =  
1

𝑑(𝑥, 𝑦) + 𝜖
,    ou     𝑠(𝑥, 𝑦) = exp (− 

𝑑(𝑥, 𝑦)

𝛾
) , 

 avec 𝜖, 𝛾 > 0, définissent une mesure de similarité. 

Parmi les fonctions respectant ces propriétés, les distances classiques comme la distance 

euclidienne, la distance de Manhattan ou la distance Mahalanobis sont couramment utilisées pour 

mesurer des dissimilarités, tandis que des mesures telles que la similarité cosinus sont fréquemment 

employées pour évaluer des similarités. 

En pratique, si l’on considère deux vecteurs représentant l’épaisseur corticale de deux patients 𝑥  et 

𝑦, la similarité ou dissimilarité entre ces patients peut être estimée par la distance euclidienne entre 

ces vecteurs. 

4.1.2. Algorithme de clustering 

Les mesures de similarité permettent de comparer des patients de manière individuelle, mais elles 

ne fournissent pas directement de structure globale au sein de la population. Les algorithmes de 

clustering ont pour objectif de regrouper les patients en fonction de leurs profils, en minimisant 

certaines fonctions de coût ou en maximisant des critères de cohésion. Parmi les méthodes 

classiques, on peut citer :  

• K-means, qui cherche à partitionner les patients en groupes en minimisant la variance intra-

cluster (Lloyd, 1982); 

• Clustering hiérarchique, qui construit un arbre hiérarchique de regroupement basé sur des 

distances successives (Murtagh and Contreras, 2012); 

• Algorithmes de détection de communautés (par exemple Louvain), particulièrement adaptés 

aux structures en réseau (Blondel et al., 2008); 

• Modèles de mélange gaussien, qui supposent que les données proviennent d’une 

combinaison de distributions gaussiennes et permettent d’estimer des sous-groupes 

probabilistes. 

Ces algorithmes permettent d’extraire des sous-groupes de patients partageant des caractéristiques 

similaires dans l’espace des vecteurs de données, qu’il s’agisse d’indices cliniques, d’épaisseurs 

corticales ou d’autres mesures neuroimageries. L’utilisation d’une mesure de similarité adaptée ou 

d’un algorithme de clustering approprié constitue ainsi une étape clé pour l’identification de profils 

patients homogènes et l’étude de la variabilité interindividuelle. 

Par exemple, une étude a généré des vecteurs d’atrophie basés sur des modèles normatifs et les a 

stratifiés à l’aide d’un modèle de mélange gaussien pour identifier des sous-groupes au sein d’une 

population de patients atteints de la maladie d’Alzheimer (Kang et al., 2024). Dans une autre 

approche, la théorie des graphes a été utilisée pour extraire des communautés de patients 

partageant des épaisseurs corticales cérébrales similaires (Park et al., 2017). 
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4.2. Sous typage de maladie 

Les similarités inter-patients peuvent notamment être exploitées pour identifier des sous-types de 

pathologies. Dans le cas des maladies neurodégénératives, et en particulier d’Alzheimer, certaines 

études (Kang et al., 2024; Poulakis et al., 2022) ont mis en évidence des clusters de patients 

présentant des phénotypes d’atrophie distincts. Appliqués à une population MCI, ces sous-types 

révélaient des vitesses différentes de progression vers la démence. D’autres travaux, comme celui de 

Ferreira et al. (Ferreira et al., 2020), ont montré que la maladie d’Alzheimer pouvait être décrite 

selon deux axes : la sévérité de la maladie et sa typicité. Identifier des patients similaires permettrait 

alors de mieux positionner un individu au sein de ces axes, et de mieux comprendre comment il 

s’inscrit dans un spectre clinique déjà connu. 

4.3. Aide au diagnostic et pronostic 

Un autre domaine où la similarité entre patients peut jouer un rôle central est celui du diagnostic et 

du pronostic. Les modèles d’intelligence artificielle montrent déjà une forte efficacité pour la 

classification diagnostique ou la prédiction de trajectoires de maladie (Arbabshirani et al., 2017; 

Rathore et al., 2017). Toutefois, ils souffrent souvent du problème de "boîte noire", rendant leur 

interprétation difficile pour les cliniciens. L’approche par similarité, fondée sur l’identification de 

patients proches dans l’espace latent, apporte une solution plus interprétable : elle permet de 

raisonner par analogie, en comparant un patient à d'autres aux trajectoires connues. Cela peut 

contribuer à renforcer la confiance des praticiens et à rendre la décision médicale plus transparente. 

4.4. Combler les données manquantes avec des patients de références 

Enfin, dans le domaine médical, il est fréquent de faire face à des données manquantes. Les critères 

de similarité peuvent ici aussi jouer un rôle important : en identifiant des patients de référence — 

dont les données sont complètes — il devient possible de compenser les données manquantes d’un 

patient incomplet en s’appuyant sur les profils des plus proches voisins (Beretta and Santaniello, 

2016; Jazayeri et al., 2020). Cette approche ouvre la voie à des analyses robustes, même en présence 

d’informations partielles. 

4.5. Limitations 

Malgré ses bénéfices, l’approche fondée sur la similarité entre patients comporte plusieurs limites 

importantes. 

La qualité et l’homogénéité des données (scanners IRM, données cliniques, génétiques, historiques) 

restent cruciales : des variations de protocole ou des biais d’échantillonnage peuvent altérer la 

définition de la similarité et biaiser les regroupements. 

En termes d’imputation, le recours à des profils de patients similaires pour combler des données 

manquantes peut introduire des erreurs ou amplifier les biais existants si la similarité n’est pas 

rigoureusement définie (Azur et al., 2011). 

Par ailleurs, l’interprétation clinique de ces similarités impose une prudence : deux patients perçus 

comme similaires selon certains critères d’imagerie peuvent diverger sur d’autres dimensions 

(comorbidités, traitement), limitant la robustesse des conclusions. 

La généralisation constitue un autre défi majeur : les clusters identifiés dans une cohorte spécifique 

peuvent ne pas se reproduire dans d’autres populations, particulièrement si l’échantillon est 

restreint ou peu diversifié (Matta et al., 2024). 
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5. Objectif de la thèse 
Cette thèse vise à développer des méthodes pour apprendre des espaces latents structurés et 

interprétables, qu’ils soient unimodaux ou multimodaux, dans le contexte de l’analyse 

neuroimagerie. L’objectif principal est d’étudier comment ces espaces peuvent être organisés pour 

capturer les similarités et dissimilarités entre patients, en tenant compte de la complexité des 

données cliniques, démographiques et d’imagerie. Tout au long de ce manuscrit, la structuration de 

l’espace latent sera au cœur des travaux. En effet, cette structuration influence directement la 

manière dont on identifie des patients similaires, ce qui peut orienter le diagnostic, le pronostic ou 

encore le phénotypage pathologique. Cette structuration est cependant délicate : une organisation 

trop naïve de l’espace latent peut conduire à des regroupements peu informatifs (par exemple des 

patients du même âge ou avec le même diagnostic, sans que leurs profils cliniques ou d’imagerie ne 

soient véritablement proches), tandis qu’une structuration trop complexe peut nuire à la 

généralisation des modèles ou à leur interprétabilité clinique. De plus, l’intégration ou non de 

certaines modalités (cliniques, démographiques, ou multimodales en imagerie) a un impact direct 

sur la nature des similarités induites dans l’espace latent. Une réflexion approfondie est donc 

nécessaire sur la manière de construire ces représentations pour qu’elles soient à la fois fidèles, 

robustes et exploitables en pratique clinique. C’est autour de ces enjeux — structuration pertinente 

d’espaces latents et mesure de similarité interindividuelle — que s’articulent les contributions de 

cette thèse. 

Le manuscrit suit alors le plan suivant :  

1. Chapitre 1 : L’espace latent, une représentation réduite de données médicales. Ce chapitre 

introductif présente les fondements conceptuels des espaces latents, leur intérêt pour 

représenter de manière compacte et interprétable des données médicales complexes, ainsi 

que les enjeux liés à leur structuration. 

2. Chapitre 2. Article « BrainAGE latent representation clustering is associated with 

longitudinal disease progression in early-onset Alzheimer's disease ». Nous explorons ici la 

capacité d’un espace latent appris en supervision à capturer des informations au-delà de la 

tâche ciblée (prédiction de l’âge), à travers l’exemple du modèle BrainAGE. Nous montrons 

que cet espace encode des dimensions cliniquement pertinentes, révélant une structuration 

implicite utile à la caractérisation des pathologies. 

3. Chapitre 3. PatientSpace : un espace latent structuré. Nous développons un espace latent 

structuré et interprétable, construit à partir d’une architecture de VAE conditionnel prenant 

en entrée l’âge et les imageries cérébrales. Cet espace sert à caractériser les démences 

fronto-temporales (DFT). Pour en améliorer la structuration et l’interprétation, nous 
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introduisons un critère de similarité fondé sur une approche contrastive, permettant 

d’organiser les représentations latentes. Cette organisation autorise ensuite l’analyse fine 

des profils d’imagerie et des données cliniques des patients, en s’appuyant sur la méthode 

des plus proches voisins.  

4. Chapitre 4.  Article “PatientSpace: An interpretable graph -based latent space for 

multimodal neuroimaging biomarker learning in Alzheimer’s Disease and Frontotemporal 

Dementia”. Nous étendons l’approche précédente à un cadre multimodal combinant IRM 

T1w et FDG-TEP. L’âge du patient conditionne désormais le prior du VAE, introduisant une 

régularisation temporelle de l’espace latent, de manière à refléter la progression de la 

maladie. Le critère de similarité est maintenu mais formulé selon une approche non 

contrastive. Ce PatientSpace multimodal permet ainsi d’explorer la similarité multimodale 

entre patients et d’enrichir l’explicabilité clinique des regroupements.  

5. Chapitre 5. Prédiction du pronostic fonctionnel après AVC ischémique dans les Hauts-de-

France grâce à une approche vision-langage. Dans la continuité des chapitres précédents, 

nous élargissons la multimodalité à des données hétérogènes en combinant imagerie, texte 

et données cliniques. Les séquences IRM (FLAIR et DWI), les comptes rendus radiologiques 

et les données cliniques tabulaires sont intégrés dans un modèle d’attention et de fusion 

pour prédire le devenir fonctionnel à trois mois (mRS) chez des patients victimes d’un AVC et 

candidats à une thrombectomie mécanique. Cette étude constitue une première étape 

exploratoire vers une intégration explicable et robuste de modalités multiples dans un cadre 

prédictif. 

6. Discussion générale et perspectives autour des travaux de thèse 
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Chapitre I 
L’espace latent, une représentation 
réduite des données médicales 

I.1. Espace latent 

I.1.1. Espaces latents : définition et cadre conceptuel 

Dans les systèmes d’apprentissage automatique, comprendre et manipuler les représentations 

internes des données est un enjeu central. C’est dans ce cadre qu’émerge la notion d’espace latent : 

un espace vectoriel de dimension inférieure, non directement observable, dans lequel les données 

sont projetées afin de révéler des structures sous-jacentes plus simples ou plus pertinentes. Ce 

concept joue un rôle fondamental, tant dans les méthodes classiques de réduction de dimension que 

dans les architectures profondes modernes. 

Cette section retrace l’évolution du concept d’espace latent, des techniques linéaires initiales aux 

représentations apprises automatiquement par des réseaux neuronaux. 

I.1.2. Réduction de dimension et variables latentes 

Dans de nombreux domaines de l’apprentissage automatique, les données brutes sont souvent de 

très haute dimension. A titre d’exemple, une séquence 3D T1 en écho de gradient génère une image 

de plusieurs millions de voxels. Travailler directement dans ces espaces pose plusieurs défis : un coût 

computationnel élevé, la présence de bruit, ainsi que des difficultés d’interprétation. Une approche 

courante pour remédier à ces problèmes consiste à projeter les données dans un espace de 

dimension réduite qui conserve l’information essentielle : c’est ce que l’on appelle un espace latent. 

L’un des premiers algorithmes de réduction de dimension est l’analyse en composantes principales 

(ACP) (Hotelling, 1933) qui propose projection linéaire maximisant la variance des données. Cette 

technique permet de représenter l’information principale dans un espace réduit facilitant ainsi 

l’exploration et la visualisation (Gewers et al., 2021; Jolliffe, 2002). 

La notion de variable latente s’est ensuite développée dans les modèles probabilistes, tels que les 

mixtures de Gaussiennes (GMM). Dans ce cadre, on suppose que les données sont générées à partir 

d’une combinaison de distributions gaussiennes. Les variables latentes correspondent alors à des 

facteurs cachés : les paramètres des composantes des gaussiennes (la moyenne et la matrice de 

covariance) et l’appartenance probabiliste de chaque observation à chaque gaussienne (Reynolds, 

2015). Un autre exemple majeur est celui des machines de Boltzmann restreintes (RBM), qui ont 

joué un rôle pionnier dans le développement des autoencodeurs profonds, dont nous reviendrons 

dessus. Ces modèles génèrent des représentations latentes en apprenant, à partir des données 

observées, des structures cachées gouvernées par une distribution probabiliste particulière (Hinton, 

2012; Larochelle and Bengio, 2008). 

I.1.3. Apprentissage profond et exploitation des espaces latents 

Comme mentionné précédemment, travailler directement dans l’espace brut des données n’est pas 

toujours optimal. Les méthodes classiques de réduction de dimension sont efficaces pour des 
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données tabulaires, elles s’avèrent moins adaptées aux modalités complexes telles que l’image, le 

texte ou l’audio. Cette limitation tient notamment à la structure intrinsèquement non-linéaire de ces 

données, ainsi qu'à la forte dépendance locale et contextuelle entre leurs éléments. 

L’émergence de l’apprentissage profond a permis de surmonter ces limites. Grâce à des 

architectures adaptées, ces méthodes peuvent apprendre automatiquement des représentations 

latentes pertinentes. Par exemple, les réseaux de neurones convolutifs (CNN) sont capables 

d’extraire hiérarchiquement des caractéristiques visuelles pertinentes à partir d’images. Chaque 

couche du réseau transforme progressivement les données en représentations de plus en plus riches 

et compressées. Ces représentations apprises ont conduit à des avancées majeures, à la fois pour 

l’analyse, la compréhension et la génération de données complexes. 

I.2. Méthode d’apprentissage et impact sur l’espace latent 
La construction d’un espace latent peut s’appuyer sur trois grandes familles d’apprentissage. 

Chacune de ces approches influence la qualité, la structure et la richesse des représentations 

latentes générées. 

I.2.1. Méthodes d’apprentissage 

I.2.1.1. Apprentissage supervisé 

 

3. Figure I-1. Apprentissage supervisé. 
Une imagerie TEP est traitée par un réseau de neurones convolutif (CNN) afin de prédire, à partir de l’espace 
latent, si le patient est sain (CN) ou atteint de la maladie d’Alzheimer (MA). 

L’apprentissage supervisé (Figure I-1) consiste à apprendre une fonction de prédiction à partir d’un 

jeu de données annoté. Cette approche est couramment utilisée pour des tâches de classification ou 

de régression. Dans ce cadre, l’espace latent issu d’un apprentissage supervisé est optimisé pour 

discriminer les différentes classes, en extrayant des caractéristiques spécifiques à chaque catégorie 

plutôt que des attributs globaux. 

Un exemple pertinent en neuroimagerie concerne la classification des démences à partir d’images 

cérébrales (Figure I-1). Par exemple, Rogeau et al (Rogeau et al., 2024) utilisent l’imagerie TEP-FDG 

pour distinguer les sujets sains, les patients atteints de la maladie d’Alzheimer et ceux souffrant de 
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démence fronto-temporale. L’espace latent appris permettait de faire émerger des patterns 

spécifiques à chaque catégorie par une méthode d’occlusion. 

Cet apprentissage est relativement simple à mettre en œuvre, néanmoins, mais il présente plusieurs 

limites : il nécessite un jeu de données richement annoté, ce qui représente un coût important, et 

l’espace latent ainsi construit est souvent étroitement lié à la tâche supervisée, ce qui limite sa 

capacité de généralisation à d’autres types d’analyses. 

I.2.1.2. Apprentissage non supervisé 

 

4. Figure I-2. Apprentissage non supervisé. 
Une image TEP est encodée dans un espace latent par un encodeur, puis cet espace latent est décodé par un 
décodeur afin de régénérer l’image TEP d’origine. 

Contrairement à l’apprentissage supervisé, l’apprentissage non-supervisé (Figure I-2) ne requiert pas 

d’annotations. Dans ce contexte, les architectures les plus courantes sont les autoencodeurs, qui 

apprennent à encoder une donnée dans un espace latent puis à la reconstruire à partir de cette 

représentation (Hinton and Salakhutdinov, 2006). Cette approche permet de capturer des structures 

inhérentes aux données sans supervision explicite, et d’extraire des caractéristiques à la fois globales 

et spécifiques. Les variantes probabilistes, telles que les autoencodeurs variationnels (VAE), 

permettent d’obtenir en outre un espace latent structuré, comme nous le verrons dans la section 

suivante. 

Dans le domaine de la neuroimagerie, les autoencodeurs sont utilisés pour extraire des 

représentations compactes d’images cérébrales, facilitant par la suite des tâches telles que la 

détection d’anomalie. Luo et al (Luo et al., 2023) entrainent un autoencodeur sur une base de sujets 

sains puis ils l’appliquent sur une base de sujet avec AVC pour segmenter les lésions. Toutefois, bien 

que ces méthodes ne nécessitent pas d’annotations, les espaces latents obtenus sont souvent 

difficiles à interpréter directement et peuvent capturer des caractéristiques non informatives à 

certaines tâches sous-jacentes. 

I.2.1.3. Apprentissage auto-supervisé 

L’apprentissage auto-supervisé consiste à définir, à partir des données elles-mêmes, des tâches 

auxiliaires permettant d’entraîner un modèle sans supervision explicite. Cette stratégie exploite la 

structure intrinsèque des données pour guider l’apprentissage. Deux grandes approches se 

distinguent : 

• Le contrastive learning consiste à rapprocher, dans l’espace latent, les représentations de 

données similaires tout en éloignant celles correspondant à des données différentes. (Figure 

I-3) 
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• Le non-contrastive learning vise à apprendre des représentations stables à partir de 

différentes augmentations artificielles d’une même donnée, sans recourir à des exemples 

négatifs explicites. (Figure I-4). 

 

5. Figure I-3. Contrastive Learning. 
Chaque modalité d’imagerie est encodée dans un espace latent, puis les représentations issues d’imageries 
similaires sont rapprochées tandis que celles provenant d’imageries dissimilaires sont éloignées 

 

6. Figure I-4. Non-contrastive learning. 
Deux images TEP transformées sont générées à partir de l’imagerie d’origine, puis leurs espaces latents sont 
rapprochés. 

Ces méthodes sont couramment utilisées pour le pré-entraînement des modèles dits de fondation. 

Toutefois, elles requièrent généralement des bases de données de grande taille — en particulier 

dans le contrastive learning, où un nombre important d’exemples négatifs est nécessaire — et 
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présentent une optimisation complexe. Dans le cas du non-contrastive learning, ce problème peut se 

traduire par un effondrement de l’espace latent, où toutes les représentations convergent vers une 

représentation unique. 

I.2.1.4. Visualisation des espaces latents et synthèse des méthodes 

Nous avons généré des espaces latents pour chaque approche afin de comparer les résultats 

obtenus. Les méthodes comprenaient : une approche supervisée pour classifier le diagnostic MA ou 

CN d’un patient, un autoencodeur pour la méthode non supervisée, et une approche auto-

supervisée combinant contrastive learning et non-contrastive learning. Dans cette dernière, deux 

transformations étaient générées à partir d’une même imagerie ; leurs espaces latents étaient 

rapprochés entre eux et éloignés de ceux des autres imageries. 

 

7. Figure I-5. Espaces latents. 
Espace latent obtenu après apprentissage supervisé (en haut), non supervisé (milieu) et auto-supervisé (en 
bas). Chaque point représente un patient, et la couleur indique le diagnostic : contrôle (CN, bleu) ou maladie 
d’Alzheimer (MA, rouge). 

Comme indiqué précédemment, l’espace latent généré par l’apprentissage supervisé est 

principalement discriminatif : les deux groupes sont clairement séparés (Figure I-5 A), contrairement 

à l’apprentissage non supervisé (Figure I-5 B), qui ne révèle aucune structure apparente et présente 

un mélange des données. L’apprentissage auto-supervisé produit un espace latent similaire à celui 

de l’apprentissage non supervisé, mais avec une distinction entre les diagnostics, comme dans 

l’apprentissage supervisé, sans que le modèle ait été explicitement entraîné pour différencier MA et 

CN (Figure I-5 C). 
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I.2.2. Apprentissage multimodal 

 

8. Figure I-6. Apprentissage multimodal. 
Les trois cercles en bas représentent trois modalités différentes. Lors de l’alignement, un espace latent est 
extrait en ne conservant que l’information commune à chaque modalité. Lors de la fusion, l’espace latent 
extrait contient l’ensemble des informations disponibles, sans distinguer ce qui est spécifique ou commun aux 
modalités. Enfin, lors de la fission, les données sont décomposées en espaces latents spécifiques à chaque 
modalité et en espaces latents partagés entre modalités. 

L’apprentissage multimodal vise à intégrer différentes sources de données – comme le texte, les 

images, l’audio ou encore les tableaux – dans un espace latent commun. Ce paradigme est 

particulièrement pertinent en médecine, où les données sont naturellement multimodales : 

imagerie cérébrale (IRM T1, FLAIR, TEP), comptes- rendus cliniques en texte libre, ou encore des 

variables démographiques et cliniques structurées (âge, sexe, scores cognitifs, etc.). 

Cette section présente les principales méthodes de génération d’un espace latent à partir de 

données multimodales. 

Trois stratégies sont distinguées et illustrées dans la Figure I-6. 

I.2.2.1. Fusion de modalité 

La première approche repose sur la fusion des modalités, où les informations provenant de 

différentes sources sont combinées dans un espace latent commun. Cette fusion s’effectue souvent 

directement dans l’espace latent via des opérations telles que la concaténation ou la somme des 

représentations encodées. Punjabi et al (Punjabi et al., 2019) proposent une fusion de données TEP 

et IRM dans un espace latent commun, dans le but de prédire le diagnostic clinique avec davantage 

de précision. 

I.2.2.2. Alignement de modalité 

Une seconde stratégie repose sur l’alignement des modalités, visant à rapprocher les 

représentations latentes issues de modalités différentes lorsqu’elles décrivent une même entité. 

Chaque modalité est alors projetée indépendamment dans l’espace latent, mais de façon à refléter 

des facteurs sous-jacents communs. Cette approche s’inspire des principes de l’apprentissage auto-
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supervisé. Le modèle MERLIN exploite l’alignement modalité-image/texte pour générer des comptes 

rendus à partir d’imagerie médicale, et organiser les données selon leur similarité, facilitant ainsi une 

stratification automatique des patients (Blankemeier et al., 2024). 

I.2.2.3 Fission de modalité 

Enfin, une troisième approche dite de fission des modalités consiste à structurer l’espace latent en 

plusieurs sous-espaces : certains spécifiques à chaque modalité, d’autres partagés entre elles. Cette 

organisation permet de préserver à la fois les informations propres à chaque source de données et 

celles utiles à leur analyse conjointe. 

I.2.2.4. Complexité des données multimodales 

Bien que l’intégration de données multimodales soit prometteuse dans le domaine médical — où la 

majorité des données sont effectivement de nature multimodale — elle soulève de nombreux défis 

méthodologiques. Le choix de l’approche (fusion, alignement ou fission) dépend étroitement de la 

nature des modalités et de leur degré de recouvrement. L’alignement est efficace pour extraire des 

représentations partagées, mais incapable de capter des informations spécifiques à chaque 

modalité. Si les modalités ne présentent aucun chevauchement, l’apprentissage d’un espace latent 

aligné devient impossible. La fusion est attrayante par sa capacité à intégrer à la fois des 

caractéristiques spécifiques et communes. Toutefois, cette approche est difficile à interpréter (effet 

boîte noire), et une modalité dominante peut occulter les autres. Enfin, la fission ressemble à la 

fusion, mais avec une structuration explicite entre les parties spécifiques et partagées. Cette 

méthode permet une meilleure interprétabilité, mais devient rapidement coûteuse en calcul (le 

nombre de sous-espaces latents croît exponentiellement avec le nombre de modalités : 2𝑛 − 1 dans 

le pire des cas). 

Enfin, on peut aussi évoquer le problème du multimodal collapse dans lequel une ou plusieurs 

modalités sont prédominantes par rapport aux restes, incitant le modèle à oublier certaines 

modalités (Huang et al., 2022). 

I.2.3. Conclusion 

Nous avons évoqué dans cette sous-section comment extraire un espace latent. Nous avons aussi vu 

que les stratégies d’apprentissage ainsi que l’intégration de données multimodales ou non pouvaient 

influencer la nature de l’espace latent extrait. Dans le domaine médical, deux critères sont cruciaux : 

l’interprétabilité (comprendre la structure de l’espace) et l’informativité (retrouver les 

caractéristiques clés des populations étudiées, comme une atrophie hippocampique chez les 

patients Alzheimer). Ces exigences rendent la structuration de l’espace latent particulièrement 

délicate. 

I.3. Structuration de l’espace latent 
Dans cette sous-partie, nous examinons les principales approches permettant de structurer un 

espace latent de manière à le rendre à la fois informatif et interprétable. Nous commencerons par 

présenter le fonctionnement des autoencodeurs variationnels (VAE), puis nous aborderons les 

principes du disentanglement learning, qui visent à isoler les facteurs de variation sous-jacents dans 

l’espace latent. Enfin, nous décrirons des stratégies destinées à renforcer l’interprétabilité des 

représentations latentes, notamment par l’introduction de critères de similarité ou de consistance. 
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I.3.1. Autoencodeur variationnel 

Le VAE est un modèle génératif probabiliste dans lequel chaque donnée n’est plus représentée par 

un point fixe dans l’espace latent, mais par une distribution aléatoire contrainte par un prior, en 

général une gaussienne multivariée centrée réduite. Cette formulation induit un espace latent 

continu et régularisé (Kingma and Welling, 2019, 2013). 

I.3.1.1. Apprentissage et fonction de coût 

L’apprentissage des VAE repose sur la minimisation de la fonction ELBO (Evidence Lower Bound) (Eq. 

I-1) qui combine deux termes : (1) la vraisemblance de reconstruction, notée 𝐸𝑞(𝑧 | 𝑥)[ln 𝑝(𝑥 | 𝑧)], 

qui mesure la capacité du modèle à reconstruire fidèlement les données ; (2) la divergence de 

Kullback-Leibler (KL) entre la distribution latente apprise et le prior. 

𝐸𝐿𝐵𝑂 =  −𝐸𝑞(𝑧 | 𝑥)[ln 𝑝(𝑥 | 𝑧)] + 𝐾𝐿(𝑞(𝑧 | 𝑥) || 𝑝(𝑧)) (Eq.I-1) 

 

En ajustant la pondération entre ces deux composantes, on contrôle le compromis entre qualité de 

reconstruction et régularisation de l’espace latent (Figure I-7). 

 

9. Figure I-7. Impact de la pondération. 
Influence de la pondération entre les deux termes de la fonction de perte. À gauche, la reconstruction est 
priorisée. À droite, une régularisation plus forte contraint l’espace latent à suivre une distribution gaussienne 
standard en deux dimensions. (Image issue de FIDLE : https://cloud.univ-grenoble-
alpes.fr/index.php/s/wxCztjYBbQ6zwd6?dir=undefined&openfile=959404079 05/08/2025) 

I.3.1.2. Rôle et choix du prior 

Le choix du prior est un élément déterminant dans la structuration de l’espace latent. Si l’on utilise 

classiquement une gaussienne centrée réduite, plusieurs travaux ont montré qu’un prior plus 

flexible peut améliorer la qualité des représentations latentes. Le posterior agrégé (aggregated 

posterior) – une mixture des distributions 𝑞(𝑧 | 𝑥)  obtenues pour différentes observations – a ainsi 

été proposé comme une approximation optimale dans certains cas (Tomczak and Welling, 2018). 

Plus récemment, des approches ont proposé d’apprendre directement le prior à partir des données, 

en le rendant adaptatif ou conditionné (Ilse et al., 2020; Klushyn et al., 2019; Sohn et al., 2015). Dans 

ces cas, le prior dépend d’informations supplémentaires, comme des variables discrètes (diagnostic) 

ou continues (âge), injectées dans la distribution 𝑝(𝑧 | 𝑦) (Ilse et al., 2020; Zhao et al., 2019a). 

https://cloud.univ-grenoble-alpes.fr/index.php/s/wxCztjYBbQ6zwd6?dir=undefined&openfile=959404079
https://cloud.univ-grenoble-alpes.fr/index.php/s/wxCztjYBbQ6zwd6?dir=undefined&openfile=959404079
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I.3.1.3. Information contenue dans l’espace latent 

Un défi majeur dans l’entraînement des VAE est l’appauvrissement de la représentation latente. Une 

régularisation trop forte, via le terme de divergence KL, peut entraîner un posterior collapse, c’est-à-

dire une situation où les représentations latentes deviennent non informatives (Alemi et al., 2018; 

Dieng et al., 2019). Pour éviter ce phénomène, plusieurs stratégies ont été proposées, consistant à 

découpler temporairement l’apprentissage de l’encodage et la régularisation de l’espace latent. Ces 

approches visent à maintenir un équilibre entre expressivité des représentations et qualité de 

reconstruction (Fu et al., 2019; Klushyn et al., 2019; Rezende and Viola, 2018). 

I.3.2. Extensions du VAE et disentanglement learning 

Dans cette sous-partie, nous présentons certaines extensions du VAE. D’autres extensions existent 

évidemment, mais celles-ci ont été utilisées dans le cadre des travaux et doivent donc être 

introduites. Avant cela, il convient d’étudier la notion de disentanglement learning (apprentissage 

désenchevêtré). 

I.3.2.1. Disentanglement learning : principe et définition 

Le disentanglement learning (apprentissage désenchevêtré) a pour objectif de structurer l’espace 

latent afin que chaque dimension encode un facteur de variation distinct et indépendant, reflétant 

une caractéristique spécifique de la donnée (Figure I-8). 

 

10. Figure I-8. Disentanglement learning. 
Chaque dimension de l’espace latent contrôle une caractéristique des données initiales. (Image de gauche issue 
du dataset 3D Shapes : https://github.com/google-deepmind/3d-shapes/tree/master 05/08/2025). 

I.3.2.2. β-VAE et biais inductifs 

Le β-VAE constitue une extension du VAE classique, dans laquelle un facteur β > 1 est introduit dans 

la fonction de perte ELBO (Eq. I-2) (Higgins et al., 2022). Ce paramètre permet d’accentuer la 

régularisation en forçant chaque dimension de l’espace latent à suivre une distribution normale 

centrée réduite, avec une covariance diagonale (souvent l’identité). Cette contrainte favorise une 

séparation explicite des dimensions latentes, en imposant une variance diagonale et donc une 

indépendance entre elles, ce qui rend l’espace latent plus structuré et facilite un éventuel 

désenchevêtrement. 

𝐸𝐿𝐵𝑂 =  −𝐸𝑞(𝑧 | 𝑥)[ln 𝑝(𝑥 | 𝑧)] + 𝛽 𝐾𝐿(𝑞(𝑧 | 𝑥) || 𝑝(𝑧)) (Eq. I-2) 

 

https://github.com/google-deepmind/3d-shapes/tree/master
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Toutefois, il a été démontré qu’un désenchevêtrement totalement non supervisé est théoriquement 

impossible sans hypothèses fortes, soit sur la distribution des données, soit sur l’architecture du 

modèle (Locatello et al., 2019). L’introduction de biais inductifs est donc devenue une stratégie 

incontournable. Ces biais peuvent être incorporés à différents niveaux : dans la structure du modèle 

(ex. séparation explicite de sous-espaces), dans la fonction de coût (ex. pénalisation spécifique), ou 

dans le jeu de données (ex. en contrôlant les sources de variation). Dans le cas des autoencodeurs 

variationnels (ou même dans la conception des espaces latents en général), on suppose une 

indépendance conditionnelle entre différents facteurs (espaces latents), chacun étant guidé par un 

attribut particulier (Eq. I-3). 

𝑝(𝑧𝐴𝐺𝐸 , 𝑧𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐  | 𝐴𝐺𝐸, 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐) = 𝑝(𝑧𝐴𝐺𝐸| 𝐴𝐺𝐸 )𝑝(𝑧𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐  | 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐) (Eq. I-3) 

 

Dans l’exemple ci-dessus, l’espace latent 𝑧𝐴𝐺𝐸  est explicitement contrôlé par l’âge, tandis que 

𝑧𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐 est contrôlé par le diagnostic. De plus, aucun des deux ne peut a priori contrôler le 

facteur de l’autre. 

I.3.2.3. VAE conditionnel 

Dans le VAE conditionnel, l’espace latent (Figure I-9 et Eq. I-4) ou la reconstruction (Figure I-10 et Eq. 

I-5) est conditionné(e) par des variables auxiliaires. Ces variables peuvent être utilisées lors de 

l’encodage de l’espace latent, mais leur utilisation n’est pas obligatoire. 

Dans les exemples présentés, elles sont utilisées pour l’encodage, ce qui permet d’établir une 

analogie avec les méthodes multimodales présentées dans la section I.2.2. Contrairement au VAE 

classique dont l’objectif est d’approximer 𝑝(𝑥), celui du VAE conditionnel est d’approximer 𝑝(𝑥 | 𝑦) 

où 𝑦 correspond à des variables auxiliaires. 

 

11. Figure I-9. VAE conditionnel sur l'espace latent. 
Dans cet exemple, les variables cliniques et l’imagerie sont encodées afin de générer un espace latent commun. 
Les variables cliniques sont ensuite réutilisées pour conditionner cet espace latent commun. 



31 
 

 

12. Figure I-10. VAE conditionnel sur la reconstruction. 
Dans cet exemple, les variables cliniques et l’imagerie sont encodées afin de générer un espace latent commun. 
Les variables cliniques sont ensuite réutilisées pour conditionner la reconstruction de l’imagerie. 

𝐸𝐿𝐵𝑂1 =  −𝐸𝑞(𝑧 | 𝑥,𝑦)[ln 𝑝(𝑥 | 𝑧)] + 𝛽 𝐾𝐿(𝑞(𝑧 | 𝑥, 𝑦) || 𝑝(𝑧 | 𝑦)) (Eq.I-4) 

𝐸𝐿𝐵𝑂2 =  −𝐸𝑞(𝑧 | 𝑥,𝑦)[ln 𝑝(𝑥 | 𝑧, 𝑦)] + 𝛽 𝐾𝐿(𝑞(𝑧 | 𝑥, 𝑦)|| 𝑝(𝑧))   (Eq.I-5) 

 

Au cours de cette thèse, nous étudierons l’utilisation de ces deux méthodes de conditionnement et 

leur impact sur l’espace latent, ainsi que les situations dans lesquelles les données auxiliaires doivent 

être incluses en entrée du modèle. 

I.3.2.4. Domain Invariant Variational Autoencoder (DIVA) 

Comme vu précédemment avec le β-VAE, l’introduction de biais inductifs constitue une stratégie 

incontournable pour désenchevêtrer l’espace latent. En supposant des espaces latents 

désenchevêtrés et guidés par des critères supervisés, les probabilités entre les encodeurs sont 

considérées comme indépendantes, de même que les probabilités entre les priors. 

L’idée centrale est de définir explicitement les facteurs de variation que l’on souhaite voir émerger, 

ce qui est à la base de l’architecture DIVA (Ilse et al., 2020). Les auteurs divisent l’espace latent en 

trois sous-espaces distincts : l’un induit par la classe de la donnée, un autre par le site d’acquisition, 

et un dernier dédié aux variations résiduelles. Cette structuration permet d’isoler les sources de 

variation connues de celles qui ne sont pas pertinentes pour la tâche ciblée (Figure I-11). 

On note également que l’architecture DIVA intègre le concept de conditionnement de l’espace latent 

présenté précédemment. 
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13. Figure I-11. Modèle DIVA. 
Trois espaces latents indépendants sont générés par trois encodeurs. Deux de ces espaces sont guidés par la 
classification et le conditionnement sur le site et le diagnostic, tandis qu’un espace latent est régularisé par une 
gaussienne centrée réduite classique. Les trois espaces latents sont ensuite utilisés pour décoder l’image 
d’origine. 

La méthode DIVA présente plusieurs avantages. Grâce à l’architecture VAE, le modèle bénéficie 

d’une régularisation naturelle, liée à la continuité de l’espace latent ainsi qu’à l’aspect multitâche. Le 

critère de disentanglement est également intégré en séparant explicitement les sous-espaces 

latents. De plus, le modèle renforce le conditionnement des espaces latents en ajoutant une tâche 

de supervision. Toutefois, cette approche présente un inconvénient majeur : elle nécessite un 

nombre croissant d’encodeurs lorsque l’on souhaite introduire davantage de critères 

désenchevêtrés, ce qui augmente considérablement la dimension de l’espace latent ainsi que les 

coûts mémoire et computationnels. 

I.3.3. Favoriser l’interprétation : intégrer des critères de similarités 

En complément des contraintes probabilistes ou architecturales, il est possible de renforcer 

l’interprétabilité de l’espace latent en y intégrant des critères de similarité. Inspirées des approches 

auto-supervisées, ces régularisations visent à organiser les représentations latentes en fonction de 

relations sémantiques, morphologiques ou cliniques — en particulier dans les contextes médicaux. 

L’intégration d’un critère de consistance, appliqué entre des données brutes ou des versions 

transformées de ces données, permet d’ajuster la structure de l’espace latent en rapprochant les 

représentations de données partageant des caractéristiques communes, et en éloignant celles qui 

sont dissemblables. Dans une première formulation, ce critère imposait que la distribution latente 

d’une donnée transformée soit incluse dans celle de la donnée d’origine (Sinha and Dieng, 2022). Ce 

mécanisme contribue à stabiliser les représentations tout en préservant leur expressivité. 

Néanmoins, une pondération excessive de ce critère peut altérer la structure naturelle des données, 

en réduisant des variations informatives ou en rigidifiant l’espace latent. Il est donc essentiel de 

calibrer finement ce type de régularisation. De manière plus générale, ces critères de consistance, 
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tout comme d’autres formes d’auto-supervision, peuvent être définis soit de façon explicite, par 

exemple à partir d’un diagnostic connu (supervision partielle), soit de manière implicite, en 

s’appuyant sur la structure interne des données elles-mêmes. 

I.4. Les espaces latents en neuroimagerie 
Les espaces latents sont devenus un outil central en neuroimagerie pour traiter la complexité et la 

diversité des données cérébrales. Ils permettent de capturer les principales sources de variation 

d’intérêt. Plusieurs grandes catégories d’applications émergent dans la littérature.  

I.4.1. Harmonisation de séquence IRM 

L’une des utilisations les plus répandues concerne l’harmonisation inter-sites. Les images cérébrales 

acquises dans différents centres ou sur des scanners distincts sont sujettes à des variations 

techniques qui peuvent biaiser les analyses. Les modèles d’apprentissage utilisent alors deux 

espaces latents : l’un dédié au contenu biologique de l’image, l’autre au style, représentant les 

spécificités liées au site d’acquisition. Cette séparation permet de neutraliser les effets non 

biologiques tout en préservant les informations d’intérêt (Caldera et al., 2025; Liu and Yap, 2024; 

Zuo et al., 2023). 

I.4.2. Désenchevêtrement de pattern de maladie 

Un second champ d’application concerne le désenchevêtrement des facteurs pathologiques dans les 

données d’imagerie cérébrale. L’objectif est d’isoler les composantes associées à la maladie de celles 

reflétant des variations normales (âge, sexe, variabilité interindividuelle). Une stratégie fréquente 

consiste à utiliser une base de sujets sains comme référence. Les différences observées chez les 

patients permettent alors de dégager des signatures pathologiques spécifiques (Figure I-12). 

 

14. Figure I-12. SMILE-GAN. 
Illustration du disentanglement learning appliqué au pattern de maladie. (Image issue de SMILE-GAN 
https://github.com/zhijian-yang/SmileGAN/blob/main/datasets/Smile-GAN.png). Le modèle apprend à séparer 
les variations liées à la pathologie de celles observées dans une population saine. 

SMILE-GAN utilise des réseaux antagonistes génératifs (GANs) pour combiner des images de sujets 

sains et des informations issues d’un cluster pathologique, générant ainsi une image artificielle 

correspondant à un patient malade (Yang et al., 2021). Dans une approche similaire, SepVAE adopte 

https://github.com/zhijian-yang/SmileGAN/blob/main/datasets/Smile-GAN.png
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une approche VAE utilisant deux encodeurs distincts : l’un apprend un espace latent partagé entre 

sujets sains et malades, tandis que l’autre capture spécifiquement les variations liées à la pathologie 

(Louiset et al., 2024). Enfin, Kang et al. (Kang et al., 2024) adoptent une approche indirecte : elle 

utilise des vecteurs d’atrophie dérivés d’un modèle normatif, puis applique un apprentissage auto-

supervisé pour construire un espace latent structuré. Ce dernier permet d’identifier quatre sous-

types d’atrophie : diffus, pariétal, temporo-médial et minimal. 

I.4.3. Etude de progression de maladie 

Les espaces latents offrent également un cadre pertinent pour modéliser la progression des 

maladies neurodégénératives. L’évolution temporelle de la pathologie peut ainsi être décrite comme 

une trajectoire au sein de cet espace, à partir de données d’imagerie — longitudinales ou 

transversales — enrichies de variables cliniques. Comme mentionné précédemment, le modèle 

BrainAGE a pour objectif d’estimer l’âge chronologique d’un individu sain à partir de son imagerie 

cérébrale. Or, il a été montré que les patients atteints de pathologies neurodégénératives 

présentent fréquemment un âge cérébral prédit supérieur à leur âge réel. En outre, plusieurs études 

ont mis en évidence que l’espace latent exploité pour l’estimation de l’âge contient également des 

informations cliniques pertinentes, allant au-delà de la seule prédiction de l’âge (Cole et al., 2017; 

Leonardsen et al., 2022). D’autres modèles cherchent à dissocier vieillissement normal et 

progression pathologique. L’étude de Ouyang et al (Ouyang et al., 2022) propose de structurer 

l’espace latent selon deux axes indépendants : l’un pour le vieillissement naturel et l’autre reflétant 

la sévérité de la pathologie (Figure I-13). En s’appuyant sur des hypothèses fortes (indépendance des 

deux processus, constance du vieillissement), ces modèles apprennent à projeter chaque sujet dans 

un espace permettant une lecture conjointe et séparée de ces dynamiques. Cette structuration 

repose souvent sur des VAE et l’analyse de cohortes longitudinales. 

 

15. Figure I-13. Vieillissement naturel et progression de la maladie. 
Illustration des hypothèses de modélisation du vieillissement normal et de la progression pathologique (Figure 
I-13.b), affectant la structure cérébrale de manière indépendante. (Image issue de (Ouyang et al., 2022)). 

I.4.4. Association compte rendu image 

Dans l’association des images aux comptes rendus, l’espace latent généré correspond à un espace 

latent commun aux deux modalités. 

Dans un premier temps, une brève introduction sera consacrée aux modèles de traitement du texte, 

puis sera présentée l’utilisation des Large Language Models (LLMs) dans les comptes rendus ainsi 

que dans la construction des espaces latents. Cette section n’a pas pour objectif de présenter 

l’ensemble des modèles de langage, mais simplement d’en exposer les concepts généraux. 
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I.4.4.1. Large Language Models (LLMs) 

Depuis quelques années, les LLMs constituent l’état de l’art en traitement du langage naturel. Cette 

section présente de manière générale leur fonctionnement, en suivant les principales étapes : la 

conversion du texte en tokens, le rôle du mécanisme d’attention, l’utilisation du token spécial [CLS], 

et enfin la prise en compte de l’ordre des tokens. 

Du texte au vecteur 

La première étape consiste à transformer le texte en une représentation numérique exploitable par 

un modèle de deep learning. Schématiquement, le processus se déroule en trois temps : (1) 

extraction des tokens à partir du texte ; (2) association de chaque token à un ID unique dans le 

vocabulaire ; (3) récupération du vecteur numérique correspondant à cet ID dans la table 

d’embeddings, utilisé ensuite par le modèle. Un token peut représenter un mot, une sous-partie de 

mot, un groupe de mots, voire un ensemble de caractères. 

Les couches de Self Attention 

Le cœur des LLMs repose sur les couches Transformers (Vaswani et al., 2023), dont le mécanisme 

central est l’attention. Celui-ci permet de modéliser les relations entre tokens et d’enrichir leur 

représentation contextuelle. 

Ce processus repose sur trois composantes : (1) la query (Q), qui définit ce que l’on cherche dans la 

séquence ; (2) la key (K), qui permet d’identifier l’information pertinente ; et (3) la value (V), qui 

correspond à la valeur extraite lorsque la correspondance entre query et key est trouvée. 

Le score d’attention entre une query Q et une key K est obtenu par un produit scalaire entre Q et K, 

normalisé par la racine carrée de la dimension 𝑑𝑘 de la key, puis passé par une fonction softmax (Eq. 

I-6). Ce score indique la force de la relation : une valeur proche de zéro traduit une absence de lien, 

tandis qu’une valeur élevée reflète une dépendance forte. Les valeurs (V) sont ensuite pondérées 

par ces scores afin de produire la représentation finale des tokens. 

Enfin, pour capturer simultanément plusieurs types de relations contextuelles, le mécanisme est 

décliné en plusieurs têtes d’attention indépendantes (multi-head attention), dont les résultats sont 

concaténés. Cela permet au modèle d’extraire différents points de vue sur la même séquence 

textuelle et d’obtenir une représentation plus riche et expressive. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾

√𝑑𝑘

) 
(Eq. I-6) 

 

Comprendre la séquence entière : le token [CLS] 

Le traitement d’une séquence par un LLM génère une matrice de taille (N_tokens, D_embeddings), 

où chaque ligne correspond à l’embedding contextuel d’un token. Cependant, pour des tâches 

comme la classification, il faut obtenir une représentation unique de la séquence entière. 

C’est le rôle du token [CLS] (classification token). Placé en début de texte, il est entraîné pour 

agréger l’information issue de tous les tokens via les couches de Transformers. À la sortie, son 

embedding constitue une représentation condensée de la séquence, directement exploitable pour 

des tâches supervisées telles que la classification de texte. Plus largement, il peut aussi être utilisé 

dans d’autres contextes nécessitant un espace latent global, par exemple pour l’association entre 

imagerie et compte rendu. 
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Préserver l’ordre des tokens 

Un dernier élément essentiel est la prise en compte de l’ordre des tokens, indispensable pour 

comprendre correctement le texte. Comme les Transformers ne possèdent pas de notion 

intrinsèque de séquentialité, il faut ajouter un encodage positionnel aux embeddings. 

Cet encodage peut être : fixe et déterministe, comme dans l’architecture originale des Transformers, 

où les positions sont codées par des combinaisons sinusoïdales de différentes fréquences, ou appris 

conjointement avec les embeddings. 

Ces vecteurs de position sont additionnés aux embeddings des tokens avant leur passage dans les 

couches de self-attention. 

I.4.4.2. Extension des transformers aux images 

Les modèles Transformers, initialement développés pour le traitement du texte dans les LLMs, ont 

ensuite été généralisés à d’autres types de séquences, notamment les images. On parle alors de 

Vision Transformers (ViTs)(Dosovitskiy et al., 2020). Dans ce cas, l’image est découpée en patchs de 

taille fixe, chacun étant considéré comme un token. Ces tokens visuels sont ensuite traités par le 

modèle de la même manière que les tokens textuels dans les LLMs. 

I.4.4.3. Association texte-image 

Les méthodes d’apprentissage texte-image s’appuient sur des principes proches de ceux du 

contrastive learning. L’idée est de rapprocher une image et son texte associé tout en éloignant les 

autres associations possibles (Figure I-15) 

 

16. Figure I-14. Association texte-image. 
Image provenant du modèle CLIP (Radford et al., 2021). Dans ce cas, l’objectif est de contraindre la matrice 
d’association à se rapprocher d’une matrice identité, de façon à aligner chaque image uniquement avec son 
texte associé. 

En neuroimagerie, une voie de recherche particulièrement prometteuse consiste à apprendre des 

espaces latents partagés entre imagerie médicale et texte clinique. Ces approches reposent sur 

l’alignement multimodal et visent à construire une représentation conjointe des données visuelles 
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(IRM, TEP, etc.) et textuelles (comptes rendus, observations cliniques). Ce type d’apprentissage est 

au cœur du développement des modèles de fondation biomédicaux, à l’instar des modèles 

multimodaux vision-langage utilisés dans d’autres domaines. L’objectif est de tirer parti de cette 

représentation commune afin d’améliorer des tâches telles que le diagnostic assisté, le suivi 

longitudinal des patients ou encore leur stratification (Blankemeier et al., 2024). 

I.5.Rappel des objectifs de thèse 
Comme précisé dans l’introduction, cette thèse a pour objectif de développer des méthodes 

d’apprentissage d’espaces latents structurés, qu’ils soient unimodaux ou multimodaux, dans le 

contexte de l’analyse en neuroimagerie. 

Le chapitre II explore dans quelle mesure un espace latent appris en supervision peut extraire non 

seulement les informations directement liées à la tâche cible, mais également des dimensions plus 

générales, révélant ainsi une structuration implicite et informative au-delà de la supervision 

explicite. 

Le chapitre III présente la conception d’un espace latent structuré et interprétable reposant sur une 

architecture de type DIVA, intégrant l’âge et l’imagerie cérébrale comme variables d’entrée. Cet 

espace est exploité pour analyser les démences fronto-temporales (DFT) à travers une approche par 

plus proches voisins, permettant d’explorer conjointement les profils d’imagerie et les 

caractéristiques cliniques des patients. 

Le chapitre IV étend cette approche à un cadre multimodal en combinant IRM T1w et FDG-TEP. 

L’espace latent y est structuré selon une logique différente, l’âge du patient servant à conditionner 

le prior du VAE afin d’introduire une régularisation temporelle et de refléter la progression de la 

maladie. Cette méthode est appliquée à des cohortes comprenant des témoins cognitivement 

normaux, des patients atteints de la maladie d’Alzheimer et des patients atteints de DFT. 

Enfin, le chapitre V constitue une ouverture prospective. Il explore l’extension de la multimodalité à 

des sources d’information plus hétérogènes, incluant des séquences IRM FLAIR et DWI, les comptes 

rendus radiologiques et les données cliniques tabulaires. Ces modalités sont intégrées dans un 

modèle multimodal de type vision-langage, où des mécanismes d’attention assurent la fusion des 

informations. L’objectif est de prédire le devenir fonctionnel à trois mois chez des patients victimes 

d’un AVC ischémique et traités par thrombectomie mécanique. 
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Chapitre II 
Article « BrainAGE latent representation 
clustering is associated with longitudinal 
disease progression in early onset 
Alzheimer’s disease 

Le chapitre I a posé les bases théoriques des espaces latents, en détaillant leurs propriétés et leur 

intérêt pour l’analyse de données complexes. Dans le chapitre II, nous passons de la théorie à 

l’application : un modèle BrainAGE pré-entraîné sur une population saine est utilisé pour extraire un 

espace latent sur des patients atteints de la maladie d’Alzheimer à début précoce. Cette approche 

illustre comment les espaces latents peuvent capturer la complexité des dimensions phénotypiques 

et permet d’identifier des sous-groupes de patients par clustering, montrant ainsi le potentiel 

concret de ces représentations pour la compréhension de la maladie. 
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II.1. Introduction 
La maladie d'Alzheimer (MA) est un trouble neurodégénératif complexe et hétérogène, caractérisé 

par une variabilité interindividuelle significative dans son apparition, sa progression et ses 

manifestations cliniques. Cette hétérogénéité est évidente dans l’éventail de symptômes, les 

rythmes de déclin cognitif et les caractéristiques neuropathologiques observés chez les patients. 

Comprendre cette hétérogénéité est crucial pour améliorer la précision des outils diagnostiques 

dans la MA et développer des approches thérapeutiques plus personnalisées (Devi and Scheltens, 

2018). 

Parmi les facteurs contribuant à cette hétérogénéité, l’âge d’apparition joue un rôle critique. Les 

patients atteints de la forme précoce de la MA (EOAD, Early-Onset Alzheimer’s Disease) sont plus 

susceptibles de connaître une progression plus rapide (Mendez, 2017) et présentent souvent des 

caractéristiques cliniques atypiques, généralement sous forme de symptômes non mnésiques 

(Koedam et al., 2010). Cependant, stratifier des patients atteints d’EOAD en fonction de la 

progression de leur maladie demeure difficile, en grande partie en raison de la résilience individuelle 

face au développement neuropathologique (réserve cérébrale) et de la capacité à compenser le 

déclin cognitif (réserve cognitive). 

Ainsi, l’établissement de biomarqueurs cliniquement disponibles permettant d’identifier les 

individus présentant des vitesses de progression similaires est d’une importance capitale pour la 

médecine clinique et de précision. L’imagerie par résonance magnétique (IRM) pourrait constituer 

un outil puissant pour identifier l’atrophie neuroanatomique étroitement associée à la distribution 

de la neuropathologie tau (Therriault et al., 2021; Xia et al., 2017). L’atrophie corticale globale est 

plus prononcée dans l’EOAD comparée à la MA à début tardif (Aziz et al., 2017; Migliaccio et al., 

2015). Mais des profils d’atrophie focale ont été associés à des sous-types biologiques distincts de la 

maladie (Ossenkoppele et al., 2015a). Une évaluation approfondie de la structure cérébrale est donc 

nécessaire, ce qui peut être réalisé grâce à l’application de techniques d’intelligence artificielle (IA). 

L’IA, y compris l’apprentissage automatique et l’apprentissage profond, a la capacité de détecter des 

motifs complexes et subtils dans les images IRM. 

Récemment, plusieurs modèles d’IA, regroupés sous le terme de BrainAGE (Brain Age Gap 

Estimation), ont été développés pour évaluer les écarts de la structure cérébrale par rapport à la 

trajectoire normale du vieillissement chez les individus cognitivement sains (Franke and Gaser, 2019; 

Guo et al., 2024). Ces méthodes consistent à entraîner un algorithme à prédire l’âge d’un individu 

sain à partir des images IRM de son cerveau. Le score BrainAGE, défini comme la différence entre 

l’âge cérébral estimé et l’âge chronologique, peut refléter la résilience ou la vulnérabilité du cerveau. 

Un score plus jeune peut indiquer une plus grande résilience face au déclin cognitif et à la 

progression de la maladie, tandis qu’un score plus âgé pourrait suggérer une résilience réduite et un 

risque accru de troubles cognitifs, reliant directement le modèle à la fois à la résilience cérébrale et à 

la santé cognitive. Le score BrainAGE, appris à partir de modèles d’apprentissage profond, encode 

une série de caractéristiques hiérarchiques au travers de couches convolutionnelles. Ces 

caractéristiques capturent et condensent l’information essentielle des images IRM pour estimer 

l’âge du sujet. Les caractéristiques condensées obtenues forment une représentation encodée des 

images IRM. En raison de sa haute dimension, cette représentation encodée peut également 

contenir des informations supplémentaires pour le phénotypage cérébral individuel au-delà de 

l’estimation de l’âge (Leonardsen et al., 2022). 



40 
 

Dans une étude précédente, nous avons démontré que le score BrainAGE était associé à la sévérité 

du déficit cognitif chez les patients atteints d’EOAD, et dans une moindre mesure, à leurs 

phénotypes neuropsychologiques (Gautherot et al., 2021). L’objectif de cette étude était de 

développer un cadre d’IA basé sur le modèle BrainAGE et l’IRM structurelle afin de réaliser une 

stratification des patients atteints d’EOAD. Nous faisons l’hypothèse que les représentations 

encodées apprises par le modèle BrainAGE constituent un biomarqueur de la résilience cérébrale 

face à la progression de la maladie, et que l’application d’un algorithme de regroupement à ces 

représentations permettra d’identifier des groupes de patients présentant des rythmes distincts de 

progression de la maladie, indépendamment de leur phénotype. 

II.2. Matériels et méthodes 

II.2.1. Population EOAD 

Dans la présente étude, des données acquises prospectivement ont été analysées 

rétrospectivement. Les patients atteints d’EOAD ont été recrutés et examinés au Centre Mémoire de 

Ressources et de Recherche du Centre Hospitalier Universitaire de Lille, France. Ces participants 

faisaient partie de la cohorte COMAJ (Maureille et al., 2017). Les critères d’inclusion étaient les 

suivants : apparition des symptômes à 60 ans ou plus tôt, et respect des critères NIA-AA (McKhann 

et al., 2011). Ces évaluations comprenaient antécédents médicaux, examens neurologiques et 

neuropsychologiques, génotypage, imagerie par résonance magnétique (IRM) et imagerie au 18TEP 

FDG, suivi de progression de la maladie ainsi que dosage des biomarqueurs du liquide céphalo-

rachidien (LCR). Les patients ont été suivis annuellement pendant une période de 6 ans, avec des 

évaluations cliniques, neuropsychologiques et par IRM. Pour les besoins de la présente étude, les 

participants présentant une mutation génétique ou une forme familiale ont été exclus. L’étude a 

reçu l’approbation du comité d’éthique local (CPP Ile-de-France VI Groupe Hospitalier Pitié-

Salpêtrière ; référence 110-05). Un consentement éclairé écrit a été obtenu auprès de tous les 

participants. 

II.2.2. Acquisition et prétraitement des IRM 

Des images pondérées T1 tridimensionnelles (3D T1) en écho de gradient ont été acquises sur un 

scanner IRM 3T (Achieva, Philips, Best, Pays-Bas), utilisant une antenne tête à 8 canaux et une 

antenne corps entier pour la transmission (champ de vue = 256 × 256 × 160 mm³, taille de voxel 

isotropique 1 × 1 × 1 mm³, TR = 9,9 ms, TE = 4,6 ms et angle de bascule = 8°) pour l’évaluation initiale 

et le suivi. Les images ont été corrigées des effets d’inhomogénéité du champ magnétique et le 

crâne a été retiré à l’aide du logiciel VolBrain (Manjón, 2016). Ensuite, les images 3D-T1 prétraitées 

ont été enregistrées linéairement dans l’espace MNI et rééchantillonnées à 1 mm³ à l’aide du logiciel 

SPM (https://www.fil.ion.ucl.ac.uk/spm/software/). Une normalisation d’intensité a été effectuée 

par normalisation min-max. 

II.2.3. Modèle BrainAGE 

Nous avons utilisé le modèle BrainAGE pré-entraîné décrit par Gautherot et al.(Gautherot et al., 

2021) comme extracteur de caractéristiques (Figure II-1), développé sur 3 227 IRM-T1 provenant de 

2 065 participants sains. Une approbation éthique a été obtenue pour tous les sites de collecte de 

données, et un consentement éclairé a été obtenu auprès de chaque participant. Tous les individus 

ont été confirmés exempts de maladies neurologiques ou psychiatriques conformément aux 

https://www.fil.ion.ucl.ac.uk/spm/software/
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protocoles locaux des études. Les détails de la base de données utilisée pour entraîner le modèle 

BrainAGE sont fournis dans le Tableau II-1. Des détails supplémentaires comparant la population 

EOAD et la base d’entraînement sont présentés dans la Figure II-S2 et le Tableau II-S1. 

Etude N Age, années Age 
étendue 

Femme, n 
(%) 

SCANNER Website 

IXI 181 46.87 ± 16.73  20-81 94 (51%) PHILIPS https://brain-development.org/ 

HCP 1783 28.76 ± 3.7 22-37 968 (54%) SIEMENS https://www.humanconnectome.org/ 

COBRE 238 38.18 ± 11.53 18-65 64 (6%) SIEMENS https://www.mrn.org/common/cobre-phase-
3 

MCIC 264 33.60 ± 12.21 18-60 80 (30%) SIEMENS https://www.nitrc.org/projects/mcic/ 

NmorphCH 141 31.37 ± 8.42 20-46 66 (46%) SIEMENS http://schizconnect.org/ 

NKIRS 620 42.62 ± 18.27 18-85 406 (65%) SIEMENS http://fcon_1000.projects.nitrc.org/indi/enha
nced/ 

1. Tableau II-1 Informations sur les sujets de la base d’entraînement du modèle BrainAGE. 
L’âge est indiqué en moyenne ± écart-type. L’intervalle d’âge est indiqué en valeurs minimale et maximale. Les 
variables catégorielles sont rapportées sous la forme nombre sur le nombre total (pourcentage). 

Le modèle BrainAGE était basé sur une architecture de réseau de neurones convolutifs 

tridimensionnels (3D-CNN) (Cole et al., 2017; Gautherot et al., 2021). L’architecture CNN se 

composait de cinq blocs répétés suivis d’une couche flatten et d’une couche linéaire pour prédire 

l’âge cérébral. Chaque bloc comprenait une convolution 3D, une activation ReLU, une convolution 

3D, une normalisation par lot 3D, une activation ReLU et une opération de max-pooling. 
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17. Figure II-1. Pipeline de la méthode. 
Haut : le modèle BrainAGE est entraîné sur une population saine afin de générer une représentation encodée de 
l’IRM capable de prédire l’âge. 
Bas : le modèle BrainAGE est utilisé pour extraire la représentation encodée de l’IRM de chaque patient de la 
population EOAD, représentation ensuite soumise à un regroupement pour identifier des sous-groupes distincts 
d’EOAD. 

La donnée dentrée était une IRM pondérée T1 3D prétraitée avec des dimensions de 182 × 218 × 182 

voxels. L’entraînement du modèle a été optimisé à l’aide de l’algorithme de descente de gradient 

stochastique (SGD) avec un taux d’apprentissage de 0,001, un momentum de 0,1 et un 

décroissement du taux d’apprentissage de 5e-05 (Sutskever et al., 2013). La fonction de coût était 

l’erreur absolue moyenne (MAE), et l’entraînement a été réalisé sur 150 époques avec une taille de 

lot de 8. Un arrêt précoce a été appliqué en fonction de la MAE de validation afin d’éviter le 

surapprentissage. Des techniques d’augmentation des données, incluant des translations et des 

rotations, ont été appliquées pendant l’entrainement pour limiter le surapprentissage et pour 

améliorer les performances, comme cela a été empiriquement observé (Shorten and Khoshgoftaar, 

2019). 

L’âge cérébral estimé par le modèle BrainAGE a été corrigé du phénomène de régression vers la 

moyenne (Barnett et al., 2005). Ce phénomène peut induire un biais systématique — dans notre cas, 

une surestimation de l’âge des participants les plus jeunes et une sous-estimation de celui des plus 

âgés. Pour pallier ce problème, nous avons ajusté l’âge prédit en utilisant le modèle de correction 

suivant (Liang et al., 2019) : 

𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑 𝑎𝑔𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝛼 × 𝑎𝑔𝑒 + 𝑒𝑟𝑟𝑜𝑟 (Eq.II-1.) 
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Comme notre analyse utilisait le modèle BrainAGE développé par Gautherot et al. (Gautherot et al., 

2021), nous avons repris leur paramétrisation. La valeur de α a été sélectionnée par validation 

croisée k-fold sur leur jeu de test, utilisé exclusivement pour ajuster les hyperparamètres du modèle 

BrainAGE et a été estimée à α = 0,13. 

II.2.4. Algorithme de clustering 

La Figure II-1 illustre le pipeline utilisé pour l’analyse de clustering. Les représentations encodées de 

l’IRM de la population EOAD ont été extraites en utilisant le modèle BrainAGE pré-entraîné sur une 

cohorte saine. Ces représentations ont ensuite été utilisées comme entrée pour un algorithme de 

regroupement k-means (Lloyd, 1982). L’algorithme k-means a été exécuté avec la bibliothèque 

Python scikit-learn (Pedregosa et al., 2011), avec une initialisation k-means++ (Arthur and 

Vassilvitskii, 2007). Pour surmonter la haute dimension de la représentation encodée (19 200 

caractéristiques), le k-means a été exécuté 150 fois et nous avons retenu le regroupement ayant la 

plus faible somme des carrés intra-classe. Le nombre optimal de clusters a été déterminé à l’aide de 

quatre métriques : le Gap Statistic, le score de Silhouette, les valeurs de Calinski-Harabasz et de 

Davies-Bouldin (Petersen et al., 2024). 

II.2.5. Évaluation neuropsychologique 

Afin de prendre en compte la sévérité de la maladie, le déclin cognitif et les phénotypes cliniques des 

participants au sein des clusters ont été collectés. Le score CDR-SoB (Clinical Dementia Rating – Sum 

of Boxes) a été utilisé comme marqueur de sévérité de la maladie. Si le CDR-SoB n’était pas 

disponible mais que le CDR avait été évalué, une valeur de CDR-SoB était attribuée à partir du score 

CDR correspondant, conformément aux recommandations d’O’Bryant et al.(O’Bryant et al., 2008b). 

Le score MMSE (Mini-Mental State Examination) a également été utilisé comme marqueur de 

sévérité de la maladie (Folstein et al., 1985). Si le score MMSE était supérieur à 10, une évaluation 

neuropsychologique détaillée était réalisée, couvrant quatre grands domaines cognitifs : la mémoire 

épisodique (évaluée avec le Visual Association Test (VAT) (Lindeboom et al., 2002)); le langage (test 

de dénomination DO80 avec 80 images); la fonction visuospatiale (test Beery VMI de Beery-

Buktenica (Lim et al., 2015)); et les fonctions exécutives (fluences verbales catégorielles (animaux) et 

phonémiques (lettre P)). Concernant les phénotypes cliniques, des réunions rétrospectives 

multidisciplinaires ont été organisées pour déterminer l’atteinte cognitive initiale et la plus marquée 

des patients, sur la base de (i) l’anamnèse rapportée par l’aidant au moment du diagnostic et (ii) le 

profil neuropsychologique à l’inclusion. Conformément aux critères NIA-AA modifiés pour la maladie 

d’Alzheimer probable (McKhann et al., 2011), les déficits cognitifs initiaux et prédominants (après 

l’amnésie) concernaient le langage, les fonctions visuospatiales ou exécutives. Par conséquent, dans 

cette étude, les phénotypes non mnésiques ont été catégorisés selon la présence de troubles du 

langage, des fonctions visuospatiales ou exécutives, correspondant respectivement à la variante 

logopénique de l’aphasie primaire progressive (Gorno-Tempini et al., 2011), à l’atrophie corticale 

postérieure (Crutch et al., 2017), et au variant comportemental/dysexécutif de la MA (Ossenkoppele 

et al., 2015b). 

II.2.6. Analyses volumétriques et morphométriques 

Afin d’évaluer les facteurs neuroanatomiques appris par notre approche de regroupement basée sur 

le modèle BrainAGE, plusieurs analyses volumétriques et morphométriques cérébrales ont été 

effectuées. Les volumes cérébraux (substance grise, hippocampe, substance blanche et LCR) ont été 
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estimés à l’aide du logiciel VolBrain (Manjón and Coupé, 2016) et normalisés par le volume 

intracrânien. 

De manière analogue aux phénotypes cognitifs (mnésique et non mnésique), nous avons défini des 

phénotypes d’atrophie cérébrale basés sur le ratio volume hippocampique/volume cortical 

(HV:CTV). Le phénotype Limbic-predominant (LP) correspondait à un HV:CTV inférieur au 25ᵉ 

percentile, le phénotype Hippocampal sparing (HpSp) à un HV:CTV supérieur au 75ᵉ percentile, et le 

Typical AD (tAD) correspondait à un HV:CTV situé entre le 25ᵉ et le 75ᵉ percentile (Kuchcinski et al., 

2023; Risacher et al., 2017). La signature corticale de la MA (Dickerson et al., 2009; Dickerson and 

Wolk, 2012) et la signature de résilience cognitive (Arenaza-Urquijo et al., 2019) ont été évaluées en 

moyennant l’épaisseur corticale de régions d’intérêt spécifiques issues de l’atlas de Destrieux 

(Destrieux et al., 2010) (Figure II-2). L’épaisseur corticale a été estimée avec le logiciel Freesurfer 

(v.7.1.0, https://surfer.nmr.mgh.harvard.edu/). 

 

18. Figure II-2. Régions d’intérêt pour les signatures corticales de l’AD et cognitives 
Signature corticale de la MA : gyrus frontal supérieur et inférieur – gyrus supramarginal – gyrus pariétal 
supérieur – gyrus précuneus – gyrus parahippocampique – gyrus temporal inférieur 
Signature de résilience cognitive : gyrus cingulaire antérieur – gyrus angulaire – gyrus temporal moyen 
Chevauchement entre la signature AD et la signature de résilience : pôle temporal 

II.2.7. Analyses statistiques 

Les analyses statistiques des données démographiques, biologiques et cliniques ont été menées afin 

de différencier les caractéristiques des patients au sein de chaque cluster. Ces analyses ont été 

effectuées à l’aide du logiciel R (v.4.2.2, https://www.r-project.org/). Le seuil de significativité 

statistique a été fixé à p < 0,05, corrigé pour comparaisons multiples à l’aide du False Discovery Rate 

(FDR). 

https://surfer.nmr.mgh.harvard.edu/
https://www.r-project.org/
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II.2.7.1. Analyse à l’inclusion 

Afin de comprendre les bases biologiques des clusters BrainAGE, nous avons évalué les différences 

intergroupes à l’inclusion concernant les données démographiques et biologiques entre les clusters 

en utilisant une régression linéaire pour les variables continues et une régression logistique pour les 

variables catégorielles. Les variables significatives ont été incluses comme covariables dans un 

modèle de régression linéaire pour comparer les différences intergroupes des scores 

neuropsychologiques et des mesures volumétriques en IRM. 

II.2.7.2. Analyse longitudinale 

Pour estimer la valeur pronostique des clusters BrainAGE, nous avons conduit une analyse 

longitudinale des marqueurs de sévérité de la maladie, ajustée sur la sévérité à l’inclusion. Les 

différences entre clusters pour les scores neuropsychologiques et les mesures volumétriques en IRM 

ont été examinées à l’aide de modèles linéaires mixtes univariés (LME). Cette approche offre 

flexibilité et puissance pour analyser des données longitudinales, en tenant compte des données 

manquantes, de temps de suivi non uniformes et en incluant des participants ne disposant que 

d’une seule mesure temporelle, afin de caractériser des différences spécifiques à la population. Les 

modèles LME ont été ajustés avec (i) des effets fixes, incluant l’âge chronologique à l’inclusion, le 

sexe, le groupe de cluster, l’interaction groupe × temps de suivi et (ii) des effets aléatoires limités à 

l’intercept, car l’objectif était d’étudier les effets des clusters entre les groupes plutôt que sur les 

patients individuellement. 

La valeur prédictive de la représentation encodée de BrainAGE a été comparée à celle de la 

différence entre âge prédit et âge chronologique (PAD) et de la réserve cérébrale (BR). Les analyses 

longitudinales ont été répétées avec les groupes PAD et BR. Le PAD a été calculé comme la 

différence entre l’âge chronologique et l’âge cérébral prédit corrigé (Gautherot et al., 2021; 

Leonardsen et al., 2022). La BR a été estimée à l’aide du volume intracrânien (ICV) (Stern et al., 2019; 

Sumowski et al., 2013). Les groupes ont été créés en fonction de la médiane de chaque 

biomarqueur. Nous avons ensuite construit un vecteur de caractéristiques manuellement pour 

chaque sujet afin de fournir un autre point de comparaison — au-delà de la simple stratification de 

la population par PAD ou BR — pour notre méthode d’IA. Ce vecteur incluait les volumes normalisés 

de substance grise, de substance blanche, de LCR, de l’hippocampe, ainsi que l’âge du sujet. Nous 

avons ensuite appliqué l’algorithme de clustering k-means afin de regrouper les sujets en deux 

clusters distincts sur la base de ces caractéristiques. 

II.3. Résultats 

II.3.1. Participants 

De 2009 à 2017, un total de 217 participants répondant aux critères de MA probable ont été inclus 

dans cette étude. Sur la base de la disponibilité et de la qualité des données IRM, 142 participants 

sans mutation génétique ni forme familiale ont été retenus à l’inclusion (âge moyen 59,33 ± 4,00 

ans, niveau d’éducation moyen 9,88 ± 2,94 ans ; 57 %). 

À l’inclusion, tous les participants avaient un score MMSE. Les autres évaluations 

neuropsychologiques variaient, avec des données disponibles pour 136 participants pour le CDR-SoB 

et 97 participants pour le test de Beery. De plus, 124 participants disposaient d’analyses de 
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biomarqueurs du LCR et 132 participants avaient un génotype APOE ϵ4. Globalement, les 

participants présentaient une sévérité de maladie modérée et un déficit cognitif modéré (score 

médian CDR-SoB 6,00 ; MMSE moyen 16,45 ± 6,52) avec un âge au début des symptômes de 54,28 ± 

3,55 ans et une durée de la maladie de 5,11 ± 2,78 ans. Parmi les participants, 50 % présentaient un 

phénotype non mnésique. 

Le nombre de participants a diminué au fil du temps, atteignant 5 participants à l’année 6 (Figure II-

3). 

 

19. Figure II-3. Diagramme de flux de la population 

II.3.2. Clustering 

Le clustering a été réalisé uniquement à l’inclusion, et les patients ont conservé leur affectation de 

cluster tout au long de l’analyse longitudinale. La solution optimale basée sur nos métriques variait 

entre deux et trois clusters (Figure II-S1). Cependant, la solution à trois clusters a donné un cluster 

ne contenant que trois patients. Nous avons donc opté pour la solution à deux clusters. 
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20. Figure II-4. Distribution des scores BrainAGE entre les clusters. 
L’abscisse correspond au cluster associé à la distribution. L’ordonnée correspond au score BrainAGE (âge 
cérébral corrigé – âge chronologique). p-value < 0.001. 

Pour assurer la pertinence des clusters et des représentations encodées par le modèle, nous avons 

comparé les scores BrainAGE des patients dans chaque cluster (Figure II-4). Le cluster #1 comprenait 

63 sujets avec un âge cérébral prédit moyen de 63,44 ± 7,21 ans, tandis que le cluster #2 comprenait 

79 sujets avec un âge cérébral prédit moyen de 75,66 ± 4,38 ans. Les scores BrainAGE différaient 

entre les clusters (5,44 ± 8,13 ans pour le cluster #1 et 15,25 ± 5,11 ans pour le cluster #2, p < 0,001) 

; sur la base de ces résultats, nous avons désigné le cluster #1 comme BrainAGE- et le cluster #2 

comme BrainAGE+. 

II.3.3. Différences démographiques, biologiques et cliniques au départ 

Les différences démographiques, biologiques et cliniques entre clusters sont présentées dans le 

tableau II-2. Les clusters ne présentaient des différences que pour l’âge et le sexe, qui ont donc été 

inclus comme covariables dans les analyses statistiques suivantes. Les patients du cluster BrainAGE+ 

étaient plus âgés et plus susceptibles d’être de sexe masculin. 

Variable N BrainAGE- BrainAGE+ FDR 
corrected p-
value 

𝒇𝟐 effect 

Démographie  

Age, année 142 57.99 ± 4.33 60.42 ± 3.36 0.001 0.10 

Education, 
année 

129 9.98 ± 3.12 
(# de 
manquant, 
n=7) 

9.79 ± 2.81 
(# de 
manquant, 
n=6) 

0.72 0.001 

Durée de la 
maladie, 

139 4.63 ± 2.81 
(# de 

5.55 ± 2.73 
(# de 

0.07 0.03 
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année manquant, 
n=2) 

manquant, 
n=1) 

 Odd Ratio 

Femme, n 142 45/63 (71%) 37/79 (46%) 0.007 2.83 

Biologie  𝒇𝟐 effect 

Total TAU, 
pg/mL 

125 799.08 ± 
451.67 
(# de 
manquant, 
n=6) 

724.71 ± 
387.32 
(# de 
manquant, 
n=11) 

0.32 0.008 

p-TAU / Aβ42 126 0.23 ± 0.14 
(# de 
manquant, n 
= 7) 

0.21 ± 0.14 
(# de 
manquant, n 
= 9) 

0.64 0.003 

 Odd Ratio 

APOE ε4 138 34/60 (57%) 
(# de 
manquant, 
n=3) 

39/78 (50%) 
(# de 
manquant, 
n=1) 

0.49 0.77 

2. Tableau II-2. Différences démographiques et biologiques à l'inclusion. 
Les variables continues sont présentées sous forme de moyenne ± d'écart-type. Les variables catégorielles sont 
indiquées comme le nombre sur le nombre total (pourcentage). APOE ε4, au moins un allèle APOE ε4. Le 
nombre de valeurs manquantes est présenté sous la forme # de valeurs manquantes. Les valeurs p significatives 
corrigées du FDR sont en gras. Les valeurs p sont corrigées séparément entre les parties démographies et 
biologies. 

II.3.4. Différences neuropsychologiques et de volumes cérébraux à l’inclusion 

Les différences neuropsychologiques, de volumes et d’épaisseur corticale sont présentées dans le 

tableau II-3. 

Variable BrainAGE- BrainAGE+ FDR corrected 
p-value 

𝒇𝟐 effect 

Scores cognitifs  

MMSE 19.32 ± 4.62 14.14 ± 6.93 < 0.001 0.16 

CDR-SoB (médiane -IQR) 5 - [3.5 - 6.62] 7 - [5 - 11] 0.002 0.09 

VAT 3.52 ± 3.78 3.96 ± 3.84 0.35 0.01 

DO80 71.02 ± 9.50 64.71 ± 14.66 0.01 0.08 

Beery 19.06 ± 4.01 18.08 ± 4.20 0.27 0.03 

Letter fluency 11.52 ± 7.92 8.23 ± 6.28 0.07 0.05 

Categorical fluency 14.77 ± 6.45 11.28 ± 7.09 0.004 0.10 

Volumes cérébraux (pourcentage de volume) 

Substance grise 0.35 ± 0.03 0.32 ± 0.02 < 0.001 0.36 

Substance blanche 0.28 ± 0.02 0.27 ± 0.03 0.96 0.004 
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Hippocampe 4.77e-03 ± 
6.65e-04 

4.40e-03 ± 7.44e-04 0.40 0.01 

LCR 0.26 ± 0.03 0.30 ± 0.04 < 0.001 0.21 

Phénotype cognitif  Odd Ratio 

Amnésique 33/60 (55%) 38/77 (49%) 0.51 0.80 

Phénotype d'atrophie  

Typical AD, n 35/63 (55%) 35/79 (46%)  REF 

Hippocampal sparing, n 14/63 (22%) 22/79 (27%) 0.76 1.95 

Limbic predominant, n 14/63 (22%) 22/79 (27%) 0.95 0.95 

Épaisseur corticale totale de la surface (mm) 𝒇𝟐 effect 

cortical AD signature 2.31 ± 0.11 2.20 ± 0.12 < 0.001 0.20 

cortical resilience signature 2.43 ± 0.13 2.29 ± 0.12 < 0.001 0.23 

3. Tableau II-3. Différences neuropsychologiques, volumétriques cérébrales, d’atrophie et de phénotypes 
cliniques à l’inclusion. 
Les variables continues sont présentées sous forme de moyenne ± d'écart-type. Les variables catégorielles sont 
indiquées comme le nombre sur le nombre total (pourcentage). Les valeurs p significatives sont en gras. IQR : 
Écart interquartile. 

Le cluster BrainAGE+ avait des scores MMSE plus faibles (p-value corrigée FDR < 0,001) et des scores 

CDR-SoB plus élevés (p-value corrigée FDR < 0,001) par rapport au cluster BrainAGE-. 

Concernant les tests neuropsychologiques détaillés, le cluster BrainAGE+ présentait des 

performances inférieures dans les fonctions exécutives (test de fluence catégorielle, p-value corrigée 

FDR = 0,004) et le langage (test DO80, p-value corrigée FDR = 0,01). De plus, le cluster BrainAGE+ 

présentait une moindre quantité de substance grise et des volumes de LCR plus importants. 

Le type de cluster n’était associé à aucun phénotype cognitif (mnésique vs non mnésique) ni à un 

pattern d’atrophie (typical AD vs hippocampal sparing vs limbic predominant). Cependant, une 

épaisseur corticale plus faible dans les zones correspondant à la signature corticale AD et à la 

signature de résilience cognitive a été observée dans le cluster BrainAGE+. 
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II.3.5. Différences entre clusters dans l’analyse longitudinale 

 

21. Figure II-5. Évolution cognitive par cluster. 
Le cluster BrainAGE+ est représenté en rouge, le BrainAGE- en bleu. Les p-values pour la différence de pente 
sont respectivement 0.02 (MMSE) et 0.03 (CDR-SoB). 

L’analyse longitudinale a été conduite sur tous les scores cognitifs et volumes cérébraux, ajustée 

pour le sexe et l’âge à l’inclusion. Les sujets du cluster BrainAGE+ ont présenté un déclin cognitif plus 

rapide sur le MMSE et une progression plus rapide du CDR-SoB (Figure II-5). Le volume de LCR a 

augmenté plus rapidement dans le cluster BrainAGE+, le volume de l’hippocampe a diminué plus 

rapidement dans le cluster BrainAGE-, tandis que les autres volumes cérébraux n’ont pas montré de 

différences dans les taux de progression (Tableau II-4). 

  BrainAGE-  BrainAGE+  p-value   

Scores de sévérité  

MMSE, pts / année  -2.35 +/- 0.15  -3.02 +/- 0.25  0.02  

CDR-SoB, pts / année  1.58 +/- 0.10  1.99 +/- 0.16  0.03  

Volumes cérébraux  

Substance grise, % / année  −8.37e-03 ± 5.68e-04  −6.52e-03 ± 9.33e-04  0.14  

Substance blanche, % / année  −7.88e-03 ± 9.89e-04  −4.56e-03 ± 1.61e-03  0.16  

Hippocampe, % / année  −1.76e-04 ± 8.18e-06  −1.42e-04 ± 1.35e-05  0.03  

LCR, % / année  1.72e-02 ± 1.28e-03  1.16e-02 ± 2.09e-03  0.02  

4. Tableau II-4. Taux de déclin entre les clusters en termes de sévérité et de volumes cérébraux. 

Contrairement aux clusters BrainAGE, les groupes PAD et BR ou les clusters basés sur le vecteur créé 

à la main n’ont montré aucune différence dans la variation du MMSE ou du CDR-SoB (Tableaux II-S2, 

II-S3 et II-S4). 

II.4. Discussion 
Dans cette étude, nous avons appliqué une approche de clustering sur la représentation encodée du 

BrainAGE dans une population atteinte d’EOAD. Deux clusters ont été identifiés et caractérisés par 

des différences significatives du BrainAGE. Les patients classés BrainAGE+ étaient plus âgés et plus 
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souvent de sexe masculin. Les évaluations neuropsychologiques ont révélé une moindre efficacité 

cognitive globale, une sévérité de la maladie plus élevée et une performance réduite aux tests de 

dénomination et de fluence verbale. L’analyse IRM a montré une diminution du volume 

hippocampique chez ces patients. Les analyses longitudinales ont démontré un déclin plus marqué 

dans le cluster BrainAGE+. 

Des études antérieures appliquant le BrainAGE à la maladie d’Alzheimer à début tardif (LOAD) ont 

systématiquement montré un âge cérébral prédit plus élevé par rapport aux sujets sains (Franke et 

al., 2010). Chez les patients présentant un déficit cognitif léger (MCI), le BrainAGE s’est révélé être 

un prédicteur précis de la conversion vers la maladie d’Alzheimer, chaque année supplémentaire de 

BrainAGE étant corrélée à un risque accru de 10 % de développer la maladie sur une période de suivi 

de 36 mois (Gaser et al., 2013). Des analyses longitudinales ont également montré une accélération 

du BrainAGE chez les patients MCI converters, ainsi que chez les patients MA (Löwe et al., 2016). À 

ce jour, les analyses du BrainAGE chez les patients à début précoce restent limitées. Dans une étude 

précédente, nous avions observé une augmentation du BrainAGE dans l’EOAD et son accroissement 

significatif au cours du suivi longitudinal (Gautherot et al., 2021). Sa corrélation avec le déclin 

cognitif longitudinal n’avait pas été évaluée auparavant. 

La nouveauté de la présente étude réside dans l’exploitation de la représentation encodée du 

BrainAGE, spécifiquement la sortie de la dernière couche flatten du modèle. Conformément aux 

recherches antérieures mettant en évidence l’utilité des représentations internes dans les modèles 

de BrainAGE pour les tâches de classification (Leonardsen et al., 2022), nos résultats montrent que le 

clustering basé sur la représentation encodée du BrainAGE est associé au déclin cognitif longitudinal. 

Comparées à d’autres approches – telles que le PAD, les représentations absolues ou le vecteur créé 

à la main – ces représentations dérivées du BrainAGE capturent plus efficacement l’hétérogénéité 

spatiale des patterns d’atrophie cérébrale. 

Nos résultats fournissent des preuves supplémentaires en faveur de la pertinence biologique des 

méthodes BrainAGE. Comparée à la LOAD, l’EOAD se caractérise par un phénotype hétérogène avec 

une prévalence plus élevée de présentations atypiques. Selon Ferreira et al. (Ferreira et al., 2020), le 

spectre de la MA peut être décrit selon deux axes principaux : l’un relatif à la typicité et l’autre à la 

sévérité. Dans notre étude, la représentation encodée du BrainAGE était associée à des 

biomarqueurs multimodaux de sévérité, incluant l’atrophie corticale de la matière grise et 

l’altération cognitive globale. Cependant, les clusters BrainAGE ne différaient pas significativement 

en termes de présentation clinique (mnésique vs non-mnésique) ni de patterns d’atrophie IRM 

(hippocampal sparing vs limbic predominant vs typical AD). 

Fait intéressant, les clusters différaient non seulement par leurs caractéristiques à l’inclusion, mais 

aussi par leur valeur prédictive du déclin cognitif sur une période de suivi de six ans. Par exemple, la 

diminution du MMSE et l’augmentation du CDR-SoB étaient respectivement de 0,7 point/an et 0,4 

pts/an plus rapides dans le cluster BrainAGE+. En revanche, l’augmentation longitudinale du volume 

de LCR était plus rapide dans le cluster BrainAGE-. Cette apparente divergence peut s’expliquer par 

un effet plafond chez les patients BrainAGE+ présentant déjà une atrophie cérébrale sévère. 

Le déclin cognitif dans la maladie d’Alzheimer est principalement influencé par la charge en amyloïde 

et tau (Cody et al., 2024; Zhou et al., 2024). Pour une quantité donnée de lésions 

neuropathologiques, la sévérité clinique est modulée par la réserve cognitive et cérébrale. Dans 
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cette étude, nous n’avons trouvé aucune association entre le niveau d’éducation, proxy de la réserve 

cognitive, et la représentation encodée du BrainAGE. Dans l’ensemble, nos résultats suggèrent que 

la représentation encodée du BrainAGE pourrait servir de biomarqueur de la réserve cérébrale. La 

réserve cérébrale fait référence à la capacité du cerveau à tolérer des dommages 

neuropathologiques tout en maintenant sa structure (Stern et al., 2023). Elle est influencée par 

divers facteurs, incluant la génétique, l’éducation, l’activité sociale, cognitive et physique, ainsi que 

les facteurs liés au mode de vie. 

Conformément au modèle de différenciation renforcée proposé par Bocancea et al. (Bocancea et al., 

2023), les différences à l’inclusion des performances cognitives entre clusters sont amplifiées au fil 

du temps. Cet effet protecteur dans le cluster BrainAGE- peut s’expliquer par deux mécanismes. 

Premièrement, les différences à l’inclusion de BrainAGE peuvent refléter une combinaison de 

facteurs génétiques et développementaux contribuant à une structure cérébrale plus résiliente. 

Deuxièmement, l’effet protecteur supplémentaire sur le taux de déclin cognitif durant le suivi 

longitudinal peut être porté par des mécanismes compensatoires plus actifs, incluant le recrutement 

accru de réseaux neuronaux alternatifs, la régulation à la hausse des facteurs neurotrophiques ou un 

remodelage synaptique plus efficace (Aron et al., 2022). 

Cette hypothèse est renforcée par les associations à l’inclusion avec les facteurs démographiques 

(âge plus jeune, sexe féminin) et les résultats de l’imagerie cérébrale (signature corticale de 

« résilience cérébrale ») déjà liées à la réserve cérébrale (Ossenkoppele et al., 2020). L’effet 

protecteur du sexe féminin pourrait impliquer plusieurs mécanismes, incluant une atténuation des 

altérations liées à l’âge de l’expression génique énergétique, une activation renforcée du système 

immunitaire chez les femmes par rapport aux hommes, ainsi que des réponses inflammatoires 

spécifiques au sexe face aux lésions neuropathologiques dues à des déficiences en hormones 

stéroïdes sexuelles (Zhu et al., 2021). Un âge plus jeune a également été associé à une plus grande 

résilience cérébrale, attribuable à une moindre prévalence de comorbidités cérébrales telles que les 

maladies cérébrovasculaires et à des mécanismes de réparation neuronale plus efficaces (Kirkwood, 

2005). 

Ces résultats ont des implications pour l’application clinique du BrainAGE. Si le BrainAGE reflète de 

manière fiable la réserve cérébrale, il pourrait constituer un outil précieux pour la stratification des 

patients dans les essais cliniques, ainsi que pour la planification personnalisée du traitement et du 

suivi. L’identification précoce des patients ayant une réserve cérébrale faible pourrait permettre des 

interventions ciblées, ralentissant potentiellement le déclin cognitif. Ceci est particulièrement 

critique dans l’EOAD, où de nombreux patients sont encore actifs professionnellement, soulignant la 

nécessité de stratégies de prise en charge proactives et efficaces. 

La représentation encodée de l’IRM par le BrainAGE présente des avantages distincts répondant aux 

principales limitations de la prédiction de maladie basée sur l’imagerie. Une force majeure réside 

dans son indépendance vis-à-vis de la maladie. Alors que les modèles deep learning ont montré leur 

utilité pour prédire la progression de la maladie à partir de données IRM et TEP (Bringas et al., 2020; 

Li et al., 2019; Singh et al., 2017), ils sont généralement entraînés pour des catégories diagnostiques 

spécifiques. Ce design spécifique limite leur généralisabilité et requiert des annotations expertes 

étendues pour assurer la qualité des labels, ce qui freine leur applicabilité à grande échelle et inter-

maladies. En revanche, BrainAGE fournit un biomarqueur transdiagnostique et indépendant de la 
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maladie (Abeyasinghe et al., 2025; Eickhoff et al., 2021; Gaser et al., 2013) , adapté aux populations 

cliniques hétérogènes et aux études à large échelle sans nécessiter d’ajustement spécifique. 

Une autre force majeure de BrainAGE réside dans sa capacité à extraire automatiquement des 

caractéristiques pertinentes et robustes à partir des données IRM. Contrairement aux approches 

traditionnelles basées sur des caractéristiques extraites à la main, qui peuvent passer à côté de 

patterns subtils mais cliniquement significatifs, BrainAGE exploite le deep learning pour capturer des 

marqueurs complexes et de haute dimension associés au vieillissement cérébral et à la sévérité de la 

maladie. 

Notre étude présente certaines limites. Premièrement, étant une étude monocentrique, la 

reproductibilité de nos résultats dans d’autres centres reste à tester (Pruvo et al., 2025). La conduite 

d’études multicentriques renforcerait la robustesse de nos conclusions. Deuxièmement, notre 

population était principalement constituée de patients EOAD modérés à sévères. Il est donc 

essentiel d’étendre notre méthode aux patients EOAD à un stade précoce pour évaluer son 

applicabilité à la sélection de patients pour les essais cliniques. Enfin, bien que l’on puisse 

argumenter que nos clusters représentent des variations de stade de maladie plutôt que de réserve 

cérébrale, notre analyse longitudinale – ajustée sur les différences à l’inclusion – démontre que 

l’attribution au cluster influence indépendamment le déclin cognitif, indépendamment de la sévérité 

à l’inclusion. Enfin, notre modèle de deep learning BrainAGE repose uniquement sur des IRM-T1w, 

capturant l’information structurelle. L’exploration d’une approche neuroimagerie multimodale serait 

précieuse, différentes modalités pouvant fournir des informations complémentaires (Cole, 2020). 

II.5. Conclusion 
Dans cette étude, nous avons montré que la représentation encodée de BrainAGE peut distinguer 

des groupes de patients caractérisés par des taux distincts de déclin cognitif, indépendamment de 

leur phénotype. Ces résultats soulignent le potentiel d’utilisation de BrainAGE comme biomarqueur 

pour mieux comprendre et gérer l’EOAD. 
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II.6 Annexes 

 

 

22. Figure II-S1. Sélection du nombre optimal de clusters. 
En haut : Évaluation de la qualité du cluster sur différents nombres de cluster à l'aide de quatre métriques de 
performance. En bas : les tracés de silhouette pour les solutions à deux et trois groupes sont illustrés. Pour les 
deux, un cluster reflète la continuité de la représentation encodée par IRM utilisée pour le clustering, comme 
l'indiquent les valeurs de silhouette négatives, suggérant que certains sujets se trouvent près de la limite entre 
les clusters. 
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23. Figure II-S2. Répartition par âge de l'ensemble d'entrainement du BrainAGE (bleu) et de la population EOAD 
(orange). 

  BrainAGE entrainement EOAD population 

Age étendue  18 - 81 49 - 68 

Femme, n (%)  1678 (52%) 81 (57%) 

SCANNER, n (%) SIEMENS 3046 (94%) 0 (0%) 

PHILIPS 181 (6%) 142 (100%) 

5. Tableau II-S1. Caractéristiques de l'ensemble des d'entrainement du BrainAGE et de la population EOAD. 

 BR- BR+ FDR corrected p-
value 

Scores de sévérité  

MMSE, pts/années -3.05 ± 0.24 -2.44 ± 0.28 0.11 

CDR-SoB, 
pts/années  

1.81 ± 0.15 1.69 ± 0.18 1. 

Volumes cérébraux  

Matière gris, %/ans -7.16e-03 ± 8.73e-
04 

-7.94e-03 ± 1.02e-
03 

1. 

Matière blanche, 
%/années 

-2.70e-03 ± 1.44e-
04 

-8.73e-03 ± 1.70e-
03 

0.001 

Hippocampe, 
%/années 

-1.56e-04 ± 1.28e-
05 

-1.66e-04 ± 1.49e-
05 

1. 

LCR, %/années 9.41e-03 ± 1.88e-03 1.74e-02 ± 2.20e-03 0.001 

6. Tableau II-S2. Taux de déclin entre les groupes basés sur le BR en fonction de la sévérité et du volume 
cérébral. 

 PAD- PAD+ FDR corrected p-
value 
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Scores de sévérité  

MMSE, pts/années -2.44 ± 0.16 -2.80 ± 0.26 0.50 

CDR-SoB, 
pts/années  

1.53 ± 0.1 2.03 ± 0.16 0.99 

Volumes cérébraux  

Matière gris, %/ans -8.06e-03 ± 5.73e-
04 

-6.92e-03 ± 9.35e-
03 

0.67 

Matière blanche, 
%/années 

-7.39e-03 ± 9.92e-
04 

-5.21e-03 ± 1.61e-
03 

0.71 

Hippocampe, 
%/années 

-1.73e-04 ± 8.26e-
06 

-1.46e-04 ± 1.35e-
05 

0.17 

LCR, %/années 1.64e-03 ± 1.29e-03 1.26e-02 ± 2.10e-03 0.21 

7. Tableau II-S3. Taux de déclin entre les groupes basés sur le PAD en fonction de la gravité et du volume 
cérébral. 

 Cluster#1 Cluster#2 FDR corrected p-
value 

Scores de sévérité  

MMSE, pts/années -2.79 ± 0.35 -2.55 ± 0.13  0.95  

CDR-SoB, 
pts/années  

1.60 ± 0.23 1.74 ± 0.08 1. 

8. Tableau II-S4. Taux de déclin entre les clusters de vecteurs "handcrafted" en fonction de la sévérité. 
Les vecteurs sont composés de volumes normalisés en matière grise, de matière blanche normalisée, de LCR 
normalisée, d'hippocampe normalisée et d'âge. 
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Chapitre III 
PatientSpace : un espace latent 
interprétable pour l’apprentissage de 
biomarqueurs de neuroimagerie dans la 
démence fronto-temporale 

Dans le chapitre II, nous avons montré que les espaces latents apprennent des structures inhérentes 

aux données, comme en témoigne la capacité de BrainAGE à différencier des sous-groupes de 

patients dans une population EOAD. Dans le chapitre III, nous présentons le PatientSpace, un espace 

latent structuré et interprétable construit à partir d’IRM T1w et de données cliniques. Cet espace 

organise les sujets de manière à séparer les patients atteints de démences fronto-temporales (DFT) 

des témoins cognitivement normaux (CN), tout en rapprochant les individus présentant des profils 

neuroanatomiques similaires, offrant ainsi une représentation cliniquement informative et 

interprétable. 
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III.1. Introduction 
Les démences fronto-temporales (DFT) constituent un groupe hétérogène de maladies 

neurodégénératives rares, caractérisées par une atteinte progressive des lobes frontaux et 

temporaux. Trois phénotypes cliniques majeurs sont classiquement décrits : le variant 

comportemental (bvFTD), l’aphasie progressive non fluente (PNFA) et le variant sémantique (SV) 

(Ljubenkov and Miller, 2016). 

Le bvFTD, le plus fréquent, représente environ 50 % des cas et se manifeste principalement par des 

perturbations comportementales de type dysexécutif incluant désinhibition, apathie, inertie et perte 

d’empathie (Rascovsky et al., 2011). Le PNFA est marqué par des troubles praxiques de la parole, un 

agrammatisme, une expression non fluente et des difficultés syntaxiques, tandis que le SV se traduit 

par un discours fluent mais vidé de sens, associé à une perte progressive des connaissances lexicales 

et conceptuelles (Gorno-Tempini et al., 2004). 

Malgré des critères diagnostiques établis, la distinction entre sous-types reste difficile en pratique 

clinique, en raison du chevauchement progressif des symptômes au cours de l’évolution de la 

maladie. Ainsi, un patient bvFTD peut présenter une diminution de la fluence verbale, conduisant à 

une confusion avec un PNFA. De plus, des symptômes similaires s’observent dans d’autres 

pathologies neurodégénératives telles que la paralysie supra-nucléaire progressive, les syndromes 

cortico-basal ou encore la maladie d’Alzheimer (Battista and Gallucci, 2017; Ljubenkov and Miller, 

2016). 

L’imagerie cérébrale constitue un outil central pour le diagnostic des DFT. L’imagerie par résonance 

magnétique (IRM) permet d’associer des profils d’atrophie cérébrale aux présentations cliniques : le 

bvFTD se caractérise par une atrophie fronto-temporale diffuse, le SV par une atrophie asymétrique 

du lobe temporal antérieur, et le PNFA par une atrophie frontale inférieure gauche avec atteinte de 

l’insula antérieure (Peet et al., 2021). Cependant, la variabilité entre centres et observateurs 

demeure un obstacle majeur. Une étude pionnière a mis en évidence un faible accord inter-

observateurs (kappa moyen = 0,34) lors de l’évaluation qualitative de l’atrophie à l’IRM (Scheltens et 

al., 1997). Dans ce contexte, des méthodes d’analyse automatisées apparaissent comme une 

approche prometteuse pour améliorer la reproductibilité et la sensibilité du diagnostic. 

Les méthodes d’apprentissage automatique, et plus particulièrement l’apprentissage profond, ont 

montré un fort potentiel pour la classification des maladies neurodégénératives, y compris la DFT 

(Kim et al., 2019; Metz et al., 2025). Toutefois, la majorité des modèles reposent sur des 

architectures complexes de type réseaux de neurones profonds, souvent qualifiées de « boîtes 

noires », difficiles à interpréter et donc limitées pour un usage clinique (Holzinger et al., 2019). Pour 

pallier cette limite, de nouvelles approches visent à construire des espaces latents interprétables, 

capables de représenter l’hétérogénéité des patients de manière intelligible. Cette stratégie a 

récemment été appliquée à la maladie d’Alzheimer, avec la création d’espaces latents permettant 

d’expliquer la variabilité des profils d’atrophie cérébrale (Kang et al., 2024). 

Dans cette étude, nous présentons le PatientSpace, un espace latent structuré et interprétable, 

construit à partir d’IRM T1w et de données cliniques de patients atteints ou non de DFT. Cet espace 

organise les sujets selon deux axes principaux : le premier distingue les patients DFT des témoins 

cognitivement normaux (CN), tandis que le second rapproche les individus présentant des profils 

neuroanatomiques similaires. 
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III.2. Matériels et méthodes 

III.2.1. Base de données 

Les données analysées proviennent de la cohorte Frontotemporal Lobar Degeneration Neuroimaging 

Initiative (FLTDNI, http://memory.uscf.edu/research/studies/nifd). Cette étude longitudinale 

recueille des données cliniques, biologiques et d’imagerie cérébrale de patients atteints de DFT ainsi 

que des CN. Dans ce travail, nous avons utilisé les IRM pondérées en T1, ainsi que les variables 

démographiques associées (âge, sexe, niveau d’éducation). Les scores cognitifs et cliniques étaient 

également disponibles, incluant le clinical dementia rating (CDR), et le CDR sum of boxes (CDR-SB). 

Les critères d’inclusion reposaient sur les recommandations établies par Rascovsky et al. (Rascovsky 

et al., 2011) pour le variant comportemental, et par Gorno-Tempini et al. (Gorno-Tempini et al., 

2004) pour les formes aphasiques. Les témoins sains ne présentaient ni lésions cérébrales ni 

antécédents de maladies neurodégénératives. 

III.2.2. Prétraitement des images 

Les images ont été prétraitées suivant le pipeline IGUANe (Roca et al., 2025). Le prétraitement 

comprenait (1) extraction du cerveau grâce à HD-BET (Isensee et al., 2019); (2) une correction 

d’inhomogénéité de champ avec l’algorithme N4ITK (Tustison et al., 2010); (3) un recalage dans 

l’espace MNI de 1mm³ avec FSL-FLIRT (Jenkinson et al., 2002); (4) un recadrage de taille 160 x 192 x 

160 voxels; (5) une normalisation d’intensité par IGUANe sur la base de référence SALD (Wei et al., 

2018) afin de corriger les effets sites puis (6) une normalisation z-score intra cranienne. Un contrôle 

qualité a été effectué sur l’ensemble des données afin d’exclure les images de mauvaise qualité. 

III.2.3. Dataset 

Afin d’entraîner et d’évaluer notre modèle, les données ont été divisées en trois sous-ensembles : un 

ensemble d’entraînement (60 %), un ensemble de validation (20 %) et un ensemble de test (20 %). 

Pour garantir l’indépendance des ensembles, les IRM issues d’un même patient ont toujours été 

regroupées dans un même sous-ensemble. Une stratification a été appliquée afin d’assurer un 

équilibre entre les groupes cliniques, les tranches d’âge et les scores cognitifs (CDR-SB). Cette 

stratégie visait à garantir la représentativité des sous-ensembles et à limiter les biais lors de 

l’entraînement. 

III.2.4. Modèle de deep learning 

Une visualisation globale du modèle est illustrée Figure III-1. 

http://memory.uscf.edu/research/studies/nifd
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24. Figure III-1. Architecture du modèle. 
Le modèle se compose en 2 encodeurs : un unimodal prenant en entrée seulement l’image et un encodeur 
prenant l’âge et l’image en entrée. L’espace latent associé à l’encodeur résiduel n’est utilisé que pour la 
reconstruction. L’espace latent dérivé de l’âge et de l’IRM est utilisé à la fois pour la reconstruction et la 
prédiction du diagnostic. Enfin le vecteur associé à l’âge est utilisé pour générer l’espace latent du PatientSpace 
et la reconstruction de l’image. 

Architecture 

Le modèle proposé repose sur une architecture inspirée du Domain Invariant Variational 

autoencoder (DIVA) (Ilse et al., 2020), enrichie par une régularisation consistante inspirée des 

travaux de Sinha et Dieng (Sinha and Dieng, 2022). L’objectif était d’apprendre un espace latent 

structuré par le diagnostic et contraint par un critère de similarité, de façon à capturer à la fois la 

séparation entre patients sains et DFT, et la proximité morphologique entre profils 

neuroanatomiques similaires. Le modèle intégrait deux encodeurs : un encodeur combinant l’IRM et 

l’âge conçu pour capturer les caractéristiques directement liées à la maladie, et un encodeur 

unimodal basé uniquement sur l’IRM destiné à extraire les caractéristiques morphologiques 

indépendantes de la maladie. Chaque encodeur unimodal adoptait la même architecture, composée 

de blocs résiduels 3D (He et al., 2016) intégrant des convolutions 3D, une normalisation de groupe 

(GN) (Wu and He, 2018)— choisie pour ses performances optimales avec de petits lots — et une 

fonction d’activation ReLU. Le sous-échantillonnage reposait sur des convolutions à pas 2, doublant 

le nombre de filtres, suivies d’une activation ReLU. La sortie de chaque encodeur était flatten puis 

transformée par des couches linéaires pour produire les représentations latentes, conformément à 

Kingma and Welling (Kingma and Welling, 2019). 

Le décodeur reprenait la structure des encodeurs : un suréchantillonnage trilinéaire 3D doublait 

d’abord les dimensions spatiales, suivi de convolutions 3D, puis d’un bloc résiduel 3D. La dernière 

couche de chaque décodeur appliquait une convolution 3D avec un noyau de 1 × 1 × 1, tandis que 

toutes les autres convolutions utilisaient des noyaux de 3 × 3 × 3. 
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Fonction de perte. 

L’entraînement reposait sur une fonction de perte multitâche, combinant reconstruction, 

classification et régularisation. La perte globale était définie comme suit (Eq III-1) : 

𝐿 =  𝜆𝑉𝐴𝐸  𝐿𝑉𝐴𝐸 + 𝜆𝐶𝐸𝐿𝐶𝐸 +  𝜆𝑆𝐼𝑀𝛽𝑐𝐿𝑆𝐼𝑀 (Eq III-1) 
Les différentes fonctions de perte étaient spécifiées de la manière suivante. 

La perte du VAE reprenait la formulation de la β-VAE introduite par Ilse et al (Ilse et al., 2020) : 

𝐿𝑉𝐴𝐸 = (𝐼𝑅𝑀 −  𝐼𝑅𝑀̂)
2

+ 𝛽𝑐  𝐷𝐾𝐿(𝑍𝐼𝑅𝑀 || 𝑁(𝑂, 𝐼))
+ 𝛽𝑐𝐷𝐾𝐿(𝑍𝐴𝐺𝐸+𝐼𝑅𝑀 || 𝑝(𝑍𝐴𝐺𝐸+𝐼𝑅𝑀 |  𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐) 

 

(Eq. III-2) 

Ici, 𝐼𝑅𝑀 désignait l’image initiale et 𝐼𝑅𝑀̂ l’image reconstruite, N(0,I) correspondait à une distribution 

gaussienne multivariée centrée et de covariance identité. 𝑝(𝑍𝐴𝐺𝐸+𝐼𝑅𝑀 |  𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐) représentait le 

prior conditionnel appris en fonction du diagnostic. Le facteur 𝛽𝑐   pondérait la divergence de KL 

selon une règle cyclique (Fu et al., 2019). 

La perte de classification reposait sur l’entropie croisée. Enfin, la perte de régularisation minimisait 

la similarité entre la représentation multimodale de l’image originale 𝑍𝑂𝑅𝐼𝐺  et celle de la version 

transformée  𝑍𝐴𝑈𝐺  , tout en maximisant la dissimilarité avec des représentations issues d’images 

différentes 𝑍𝐷𝐼𝐹𝐹. Inspirée de Yeh et al (Yeh et al., 2022), cette perte était implémentée comme suit 

: 

𝐿𝑆𝐼𝑀 =  −
𝑆(𝑍𝑂𝑅𝐼𝐺 , 𝑍𝐴𝑈𝐺)

𝜏
+ log ∑ exp(

𝑆(𝑍𝑂𝑅𝐼𝐺 , 𝑍𝐷𝐼𝐹𝐹)

𝜏
)

𝑍𝐷𝐼𝐹𝐹

 
(Eq. III-3) 

Avec 𝑆(𝑎, 𝑏) =  −
1

2
(𝐷𝐾𝐿(𝑎 || 𝑏) + 𝐷𝐾𝐿(𝑏 || 𝑎) ) la mesure de similarité entre a et b, et 𝐷𝐾𝐿 la 

divergence de KullBack-Leibler entre a et b. 

Procédure d’entrainement. 

La procédure d’entraînement s’inspirait de celle décrite par Sinha and Dieng (Sinha and Dieng, 2022), 

appliquant la fonction de perte du VAE aussi bien aux images originales qu’aux images transformées. 

Pour réduire le risque de surapprentissage, la classification n’était effectuée que sur les données 

transformées. Afin d’obtenir une représentation latente plus représentative, une méthode cyclique 

était utilisée pour pondérer simultanément la perte de KL et la perte de similarité. Les poids de ces 

pertes augmentaient progressivement de 0 à 1 sur 13 époques, puis restaient constants jusqu’à la 

25ᵉ époque, avant d’être réinitialisés à 0, le cycle se répétant ensuite. (Figure III-S1). 

Les méthodes d’augmentation de données reposaient sur la bibliothèque MONAI (Cardoso et al., 

2022) et incluaient : une translation aléatoire (± 10 voxels sur chaque axe), une rotation aléatoire (± 

0,4 radians) et un zoom aléatoire (facteur d’échelle compris entre 0,9 et 1). L’augmentation par 

retournement était exclue afin de préserver les asymétries potentielles liées aux phénotypes de la 

maladie. De plus, un bruit gaussien était ajouté aux entrées, qui étaient ensuite débruitées lors de la 

reconstruction, conformément à des travaux ayant montré que cette stratégie améliore la 

robustesse des caractéristiques extraites (Vincent et al., 2008). 

III.2.5. Représentation par graphe de l’espace latent – PatientSpace 

À partir des représentations latentes issues de l’encodeur prenant en entrée l’imagerie et l’âge, nous 

avons construit une représentation sous forme de graphe appelé PatientSpace, définie comme 𝐺 =
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(𝑉, 𝐸, 𝐴) où 𝑉 correspond à l’ensemble des nœuds représentant les patients, 𝐸 à l’ensemble des 

arêtes connectant ces nœuds, et 𝐴 à la matrice d’adjacence pondérée. Chaque nœud 𝑣𝑖 ∈ 𝑉 

correspond à un patient, et la pondération des arêtes encode la similarité morphologique entre 

patients dans l’espace latent. 

La mesure de similarité reposait sur la mesure de dissimilarité utilisée dans la perte de consistance 

décrite dans la section précédente (𝐿𝑆𝐼𝑀). Pour chaque paire de sujets (𝑖, 𝑗), la pondération 𝑎𝑖𝑗  de la 

matrice d’adjacence était définie de la manière suivante : 

𝑎𝑖𝑗 = {

1

𝑑(𝑖, 𝑗)
∑

1

𝑑(𝑖, 𝑘)
𝑘∈𝑁(𝑖)

⁄ ,   si 𝑗  est un voisin de  𝑖

0, sinon

 

 

(Eq III-4) 

Où 𝑑(𝑖, 𝑗) représente la mesure de dissimilarité entre 𝑣𝑖 et 𝑣𝑗 définie comme 

𝑑(𝑖, 𝑗) =  
1

2
(𝐷𝐾𝐿(𝑣𝑖 || 𝑣𝑗) + 𝐷𝐾𝐿(𝑣𝑗 || 𝑣𝑖) ) 

(Eq.III.5) 

Et 𝑁(𝑖) représente les voisins de 𝑣𝑖. Le nombre K optimal est détaillé section III.6. S2.2. 

III.2.6. Expérimentations 

III.2.6.1. Analyse du graphe 

Deux analyses ont été menées pour étudier les propriétés structurelles du PatientSpace. La première 

s'est concentrée sur la topologie globale en identifiant les clusters dans le graphe. La seconde a mis 

l'accent sur les connaissances au niveau local en effectuant une analyse de voisinage au niveau du 

patient individuel. 

Clustering du PatientSpace. Le PatientSpace a été regroupé à l'aide d'un clustering agglomératif 

utilisant le critère de Ward, en préservant la structure du graphique. Chaque regroupement a 

ensuite été décrit en fonction du statut diagnostique (DFT ou CN), de la distribution des âges, du 

sexe, du niveau d’éducation ainsi que du score cognitif CDR-SB corrigé pour ces covariables. Les 

comparaisons statistiques s’appuyaient sur un test du Khi-deux pour les variables catégorielles et un 

test de Kruskal-Wallis pour les variables continues, avec une correction pour test multiple par la 

méthode du False discovery rate proposée par Benjamini et Hochberg (BH-FDR) (Benjamini and 

Hochberg, 1995). Afin de relier ces regroupements aux substrats neuroanatomiques, une analyse 

morphométrique basée sur la Voxel-Based Morphometry (VBM) a été réalisée, permettant 

d’identifier les patterns d’atrophie significatifs associés à chaque cluster (section III.6. S3). 

PatientSpace au niveau individuel. Le PatientSpace a aussi été examiné au niveau du patient en 

prédisant le diagnostic, le phénotype ainsi que les CDR-SB dans la base de test. Pour tous les patients 

non vus, la probabilité d’être assigné au diagnostique 𝐷 était estimé par : 

𝑎𝑟𝑔𝑚𝑎𝑥𝐷  𝑃(𝐷𝑋̂𝑖 = 𝐷) =  ∑ 𝑎𝑖𝑗1(𝐷𝑋𝑗 = 𝐷)

𝑗

 (Eq. III- 6) 

Où 𝐷𝑋𝑗 est le diagnostique du sujet 𝑣𝑗. 

Le CDR-SB a été estimé de la même manière que le diagnostic. Les scores CDR-SB ont ensuite été 

catégorisés selon le degré de démence comme suit : pas de démence (CDR-SB = 0) ; légère démence 

(CDR-SB entre 0.5 et 4) ; démence moyenne (CDR-SB entre [4.5 – 9]) ; démence modérée (CDR-SB 

entre [9.5 – 15.5]) et démence sévère (CDR-SB entre [16 – 18]) (O’Bryant et al., 2008a). 

Pour tous les patients non vus, la probabilité d’être assigné au CDR-SB 𝑐 a été estimée par : 
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𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑃(𝐶𝐷𝑅𝑆𝐵𝑖
̂ = 𝑐) =  ∑ 𝑎𝑖𝑗1(𝐶𝐷𝑅𝑆𝐵𝑗 = 𝑐)

𝑗

 

 

(Eq. III. 7) 

Les résultats obtenus à partir des approches basées sur les graphes sont désignés sous le nom 

PatientGraph et ceux obtenus par le classifieur natif du réseau sous le nom DL-classifier dans les 

sections suivantes. 

III.2.6.2. Classification 

Enfin, la robustesse du modèle a été évaluée en comparant les deux approches de classification : 

d’une part le classifieur de deep learning utilisant uniquement la sortie du réseau, et d’autre part 

l’approche PatientGraph, qui exploite les similarités locales dans l’espace latent. Les performances 

ont été mesurées par l’aire sous la courbe ROC (AUC), la sensibilité et la spécificité, avec des 

intervalles de confiance à 95 %. Les analyses ont été réalisées sur l’ensemble de test interne, distinct 

des données d’entraînement (désigné comme INTERNE), ainsi que sur une base externe de patients 

DFT provenant du Centre Mémoire de Lille et du National Alzheimer’s Coordinating Center (NACC, 

https://naccdata.org/), désignée comme EXTERNE. Une description détaillée de ces populations est 

fournie en section III.6. S1. 

III.3. Résultats 

III.3.1. Démographie 

La démographie des ensembles d’entraînement, de validation et de test est résumée dans le Tableau 

III-1. L’âge moyen différait significativement entre les groupes (p < 0,0001), les sujets BV étant plus 

jeunes que les CN, PNFA et SV. Le niveau d’éducation était plus élevé chez les sujets CN que chez les 

patients (p = 0,0002). Les scores CDR-SB reflétaient une gradation claire de sévérité cognitive : CN = 

0, PNFA = 1,5, SV = 4,3 et BV = 6,5. 

Ensemble d’entrainement 

 CN BV PNFA SV Total 

Nombre d’images 203 126 69 80 536 

Site 
UCSF 
MGH 
MAYO 

     

100 % 66,7 % 92,8 % 90 % 83,8 % 

0 % 7,9 % 7,2 % 7,5 % 4,1 % 

0 % 25,4 % 0 2,5 % 12,1 % 

Age, années 65,5 (7,9) 62,7 (5,9) 67,2 (7,2) 65,6 (6,1) p < 0,0001 PNFA = 
CON = SV > BV 

Sexe féminin 53,7 % 30,2 % 56,5 % 35 %  

Éducation  17,8 (1,8) 16,7 (2,7) 16,7 (2,7) 16,4 (2,6) p = 0,0002 CON > 
BV = PNFA = SV 

CDR-SB  0 (0–0) 6,5 (4,5–10) 1,5 (0,5–3) 4,3 (2,5–7) p < 0,0001 CON < 
PNFA < SV < BV 

Ensemble de validation 

Nombre d’images 61 (41%) 37 (25%) 25 (17%) 25 (17%) 148 

Site      

UCSF 100 % 70,3 % 100 % 88 % 90,5 % 

MGH 0 % 0 % 0 % 12 % 2 % 

MAYO 0 % 29,7 % 0 % 0 % 7,5 % 

Age, années 65,25 (8,4) 61,9 (6,6) 71,6 (7,3) 62,3 (6,5) p < 0,0001 PNFA > 
CON > BV; PNFA > 
SV 

Sexe féminin 68,8 % 40,5 % 52 % 36 %  

Éducation  17,5 (1,4) 13,78 (2,0) 15,36 (2,5) 17,9 (1,8) p < 0,0001 CON > 
PNFA > BV; SV > 
PNFA > BV 

https://naccdata.org/
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CDR-SB  0 (0–0) 6 (5–10,3) 1,5 (0,5–3) 4 (2,6–5,7) p < 0,0001 BV > 
PNFA > CON; SV > 
CON 

Ensemble de test (INTERNE) 

Nombre d’images 75 40 18 23 156 

Site 
UCSF 
MGH 
MAYO 

     

100 % 85 % 83,3 % 82,6 % 91,7 % 

0 % 0 % 16,7 % 17,4 % 4,5 % 

0 % 15 % 0 % 0 % 3,8 % 

Age, années 65,7 (7,1) 63,0 (5,9) 73,8 (5,6) 61,44 (5,3) p < 0,0001 
CON < PNFA 

Sexe féminin 65,3 % 27,5 % 44,4 % 47,8 %  

Éducation  16,7 (1,9) 14,9 (2,7) 15,1 (2,5) 15,6 (3,1) p = 0,0006 CON > 
BV 

CDR-SB  0 (0–0) 8 (5,5–12) 4,5 (3–8,5) 4,5 (3,1–6,3) p < 0,0001 CON < 
SV < BV; CON < 
PNFA 

9. Tableau III-1. Démographie des bases entrainement, validation et test. 

III.3.2. Interprétation du PatientSpace 

III.3.2.1. PatientSpace clusters 

La Figure III-2 illustre le PatientSpace, composé de six clusters : deux regroupant des sujets CN et 

quatre regroupant des patients atteints de démence. Les caractéristiques démographiques et 

cliniques de ces clusters sont résumées dans le Tableau III-2. 

Le cluster 1 rassemblait principalement des patients bvFTD (88,9 %), tandis que le cluster 2 était 

constitué en grande majorité de patients SV (85,9 %). Les clusters 3 et 4, en revanche, présentaient 

des profils plus hétérogènes, incluant des patients bvFTD, PNFA et une minorité de SV. Les sujets du 

cluster 2 étaient significativement plus âgés (âge moyen : 66,1 ans) que ceux du cluster 3 (63,9 ans ; 

p = 0,04) et du cluster 1 (63,5 ans ; p = 0,005). Concernant la sévérité clinique, le cluster 1 affichait 

un score médian de CDR-SB de 6,8, significativement plus élevé (p < 0,001) que ceux du cluster 2 

(4,5), du cluster 3 (3,0) et du cluster 4 (3,5). Le score du cluster 2 restait toutefois significativement 

plus élevé que celui du cluster 3 (p = 0,015). Aucune différence significative n’a été observée 

concernant le niveau d’éducation entre les clusters. 

L’analyse des données de neuroimagerie a permis de dégager quatre profils distincts. Le cluster 1 

présentait une atrophie diffuse, particulièrement marquée au niveau des cornes frontales et de la 

partie centrale des ventricules latéraux. Les gyri insulaires étaient fortement atteints, avec une 

atteinte plus prononcée à gauche. Une atrophie frontale asymétrique, prédominante à gauche, 

concernait également les gyri frontaux inférieurs, moyens et médians. Le cluster 2 montrait un profil 

caractéristique des SV, avec une atrophie localisée et asymétrique, prédominant sur l’hémisphère 

gauche. L’atteinte concernait principalement le lobe temporal, avec une atteinte particulièrement 

marquée de l’uncus, du gyrus parahippocampique et du gyrus fusiforme gauche. Le gyrus temporal 

supérieur gauche et l’insula gauche étaient également sévèrement atteints, tandis que le lobe 

temporal droit et les ventricules latéraux présentaient une atteinte plus modérée. Le cluster 3 se 

distinguait par une atrophie globalement faible en comparaison avec les autres clusters, localisée 

principalement à l’insula gauche et à la portion antérieure du gyrus temporal supérieur. Une 

dilatation symétrique des cornes frontales des ventricules latéraux était également observée. Enfin, 

le cluster 4 se caractérisait par une atrophie très diffuse mais moins sévère que celle observée dans 

les clusters 1 et 2, avec une atteinte plus marquée au niveau des cornes frontales et de la partie 

centrale des ventricules latéraux, associée à une atteinte modérée des lobes frontaux et temporaux. 
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 Cluster 1 Cluster 2  Cluster 3 Cluster 4 Total 

Effectifs 81 64 63 65 273 

Phénotypes      

BV 72 (88,9 %) 4 (6,3 %) 24 (38,1 %) 26 (40 %) 126 (46,1 %) 

PNFA 9 (11,1 %) 5 (7,8 %) 28 (44,4 %) 27 (41,5 %) 69 (25,3 %) 

SV 0 (0 %) 55 (85,9 %) 11 (17,5 %) 12 (18,5 %) 78 (28,6 %) 

Données cliniques      

Age [moyenne (écart-type)] 63,5 (6,1) 66,1 (5,9) 63,9 (7,6) 65,4 (6,5) p = 0,02 

C3 < C2 

C1 < C2 

Genre féminin 30,9 % 42,2 % 55,5 % 27,7 %  

Éducation [moyenne (écart-type)] 16,8 (2,7) 16,5 (2,7) 17,1 (2,3) 16,0 (2,9) p = 0,18 

CDR-SB 

[médiane (quartiles)] 

6,8 

(4,9 – 10,6) 

4,5 

(2 – 7) 

3 

(1,1 – 4,9) 

3,5 

(1,5 – 7) 

p < 0,0001 

C3 < C2 < C1 

C4 < C1 

10. Tableau III-2. Caractéristiques des clusters 
L’âge et le niveau d’éducation sont exprimés en moyenne (écart-type), la proportion de femmes est indiquée en 
pourcentage, et le CDR-SB est présenté en médiane avec l’intervalle interquartile (Q1-Q3). 
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25. Figure III-2. Visualisation du PatientSpace et des clusters. 

 



67 
 

III.3.2.2. Caractérisation individuelle et classification 

  AUC Sens Spec 

INTERNE DL-classifer 0.931 [0.890 - 
0.972] 

0.889 [0.820 - 
0.957] 

0.920 [0.859 - 
0.981] 

PatientGraph 0.905 [0.856 - 
0.953] 

0.889 [0.820 - 
0.957] 

0.840 [0.757 - 
0.923] 

EXTERNE DL-classifier 0.892 [0.848 - 
0.935] 

0.705 [0.621 - 
0.790] 

0.847 [0.780 - 
0.914] 

PatientGraph 0.834 [0.780 - 
0.887] 

0.786 [0.710 - 
0.862] 

0.829 [0.759 - 
0.899] 

11.Tableau III-3. Performances des modèles sur les bases INTERNE et EXTERNE. 
Les résultats sont rapportés en valeur [IC95%]. 

Les résultats sur la base interne et la base externe sont rapportés dans le tableau III-3. Sur la base 

interne, DL-classifier et PatientGraph ont présenté des performances comparables, avec une 

sensibilité similaire, bien que la spécificité ait été légèrement plus élevée pour DL-classifier. Sur la 

base externe, les performances générales ont été légèrement réduites pour les deux modèles, DL-

classifier ayant conservé une meilleure spécificité tandis que PatientGraph a montré une sensibilité 

légèrement supérieure. Globalement, les résultats ont indiqué une bonne cohérence des modèles, 

mais une généralisation plus limitée sur la base externe. 

 

26. Figure III-3. Prédiction des CDR-SB par la méthode PatientGraph (base INTERNE). 
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Les résultats de la prédiction du CDR-SB sont présentés dans la Figure III-3. Dans la majorité des cas, 

les prédictions des classes du CDR-SB correspondaient à la classe réelle ou à une classe adjacente. Il 

est important de souligner qu’aucun cas de démence sévère n’a été classé comme absence ou forme 

légère de démence ; réciproquement, aucun sujet indemne ou atteint d’une démence légère n’a été 

classé en démence sévère. 

III. 4. Discussion 
Dans cette étude, nous avons introduit le PatientSpace, une représentation par graphe d’un espace 

latent capable de différencier les phénotypes de neuroimagerie et de caractériser la sévérité de la 

DFT. Construit à partir du modèle DIVA (Ilse et al., 2020) entraîné sur des IRM T1w et l’âge des 

patients, le PatientSpace permet une analyse interprétable des patients, en s’appuyant sur le 

voisinage des sujets dans l’espace latent. 

III.4.1. Méthodologie 

Le PatientSpace repose sur le modèle DIVA, enrichi par plusieurs innovations méthodologiques. La 

structuration de l’espace latent a nécessité l’introduction de biais inductifs, notamment la 

classification supervisée et un critère de similarité, afin de contraindre la représentation latente 

(Locatello et al., 2019). La séparation entre sujets sains et DFT a permis de donner une première 

structure à l’espace, mais ne suffisait pas à capturer la diversité des sous-types cliniques de la DFT, 

caractérisés par des patterns d’imagerie hétérogènes (Peet et al., 2021). Pour renforcer 

l’interprétabilité, nous avons ajouté une perte de consistance, rendant l’espace latent plus robuste 

aux variations phénotypiques et permettant la construction d’un graphe où la proximité reflète une 

ressemblance biologique. 

III.4.2. Performance classification diagnostique 

La projection de nouveaux sujets dans l’espace latent, combinée à une classification par voisinage, a 

permis d’obtenir des performances raisonnables. La généralisation sur la base externe a été 

globalement satisfaisante, bien qu’une baisse de l’AUC et de la sensibilité ait été observée. 

Cette limite peut s’expliquer par deux facteurs principaux. Premièrement, contrairement aux 

approches contrastives classiques nécessitant un grand nombre d’exemples négatifs (Yeh et al., 

2022), notre modèle a été entraîné avec un nombre restreint, ce qui a probablement limité sa 

capacité à apprendre des représentations discriminantes robustes. 

Deuxièmement, l’hétérogénéité intrinsèque des DFT entre bases de données — liée aux différences 

cliniques, pathologiques, génétiques, mais aussi aux protocoles d’acquisition et critères 

diagnostiques — complique la généralisation des modèles (Ma et al., 2024). Ainsi, un modèle 

entraîné sur une base donnée risque de ne pas couvrir toute la variabilité de la maladie, limitant sa 

transférabilité externe. 

III.4.3. Sous-types et interprétation des clusters 

L’analyse du PatientSpace a révélé quatre clusters de patients atteints de démence, caractérisés par 

des profils cliniques et biologiques distincts. Deux d’entre eux correspondaient majoritairement à 

des phénotypes connus : le cluster 1 regroupait principalement des patients bvFTD (88,9 %), plus 

jeunes mais présentant des scores cliniques élevés, tandis que le cluster 2 comprenait surtout des 

patients SV (85,9 %), d’âge intermédiaire avec des CDR-SB modérés. Les profils d’atrophie associés à 

ces clusters étaient conformes aux descriptions de la littérature : atteinte frontale prédominante 
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chez les bvFTD et atteinte temporale asymétrique, surtout gauche, chez les SV (Rohrer et al., 2015; 

Whitwell, 2019). 

Les clusters 3 et 4 étaient plus hétérogènes, reflétant la diversité clinique et biologique des DFT. 

L’atrophie y était plus modérée et plus diffuse, touchant notamment les ventricules et les régions 

insulaires. Ces clusters pourraient correspondre à des formes atypiques ou précoces de la maladie, 

ou encore à des profils pour lesquels l’IRM ne révèle pas encore d’atrophie spécifique. Leur 

positionnement, à proximité des sujets sains ou entre les clusters typiques, suggère que le 

PatientSpace capture potentiellement la dynamique de progression de la maladie, bien que cette 

hypothèse doive encore être confirmée par des données longitudinales. 

III.4.3. Interprétation au niveau individuel 

Au-delà des clusters, le PatientSpace a également permis une caractérisation individuelle des 

patients, tant en termes de diagnostic que de sévérité. L’analyse des voisinages dans le graphe a 

montré que la prédiction du CDR-SB était correcte dans la majorité des cas, les erreurs étant limitées 

à des classes adjacentes et sans inversion extrême (par exemple, une démence sévère prédite 

comme légère). Cette capacité à représenter les caractéristiques individuelles confère au modèle 

une meilleure interprétabilité et une pertinence clinique renforcée. 

III.4.4. Limites et perspectives 

Plusieurs limites doivent être soulignées. Premièrement, l’absence de suivi longitudinal empêche de 

confirmer la progression des patients entre clusters, rendant leur positionnement dans le 

PatientSpace encore hypothétique. Deuxièmement, malgré l’harmonisation des données 

multicentriques, des divergences persistent entre les centres (protocoles d’acquisition, critères 

cliniques, caractéristiques démographiques), ce qui peut limiter la généralisation du modèle. 

Troisièmement, la taille de la base de données reste modeste et certaines informations cruciales, 

notamment histopathologiques et génétiques, n’étaient pas disponibles pour tous les sujets. 

L’intégration de ces données pourrait améliorer la robustesse du modèle en capturant la variabilité 

biologique et phénotypique des DFT. 

Malgré ces limites, le PatientSpace constitue une approche interprétable et flexible, adaptée à 

l’analyse à la fois individuelle et à l’échelle des groupes. Les perspectives incluent l’optimisation de la 

fonction de perte afin d’exploiter davantage d’exemples négatifs dans le calcul de similarité, 

l’intégration de données longitudinales et multimodales (imagerie, génétique, histopathologie), ainsi 

que le développement de méthodes plus robustes pour prendre en compte l’hétérogénéité des DFT, 

dans le but d’améliorer la généralisation et la précision clinique du modèle. 

III.5. Conclusion 
En conclusion, le PatientSpace offre un espace latent interprétable et cliniquement pertinent pour 

l’analyse des imageries cérébrales chez les patients atteints de DFT. En combinant l’apprentissage 

profond et analyse basée sur un graphe de similarité, il permet à la fois la découverte de sous-types 

à l’échelle de la population et une interprétation individualisée des patients, avec des applications 

potentielles en diagnostic et suivi de la sévérité de la maladie. 
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III. 6. Annexes 

III.6. S1. Dataset externe 

Base externe    

 DFT CN Total 

Nombre de sujets 112 111 223 

Âge (Moyenne, écart 

type) 

69,4 (9) 62,9 (8,7) p < 0,0001 

DFT > CN 

12. Tableau III-S1. Démographie de la base de données externe. 

Les participants provenaient majoritairement de la base de Lille (74 %), et dans une moindre mesure 

de la base NACC (26 %). Les scores CDR-SB n’étaient pas disponibles pour les sujets issus de la base 

de Lille. Concernant la répartition des phénotypes, la majorité des patients présentaient une forme 

bvFTD (57 %), tandis que les autres correspondaient à des phénotypes PNFA (4 %), SV (4 %), ou 

restaient non précisés (35 %). 

III.6. S2. Détails du modèle  

III.6. S2.1. Entrainement 

Le facteur 𝛽𝑐 suivait une règle de mise à jour cyclique, comme illustré en figure III-S1. Les coefficients 

de pondération λ ont été fixés respectivement à 0,01 pour la fonction de perte de reconstruction et 

à 100 pour la fonction de perte de classification. L’optimisation a été réalisée à l’aide de l’algorithme 

AdamW (Loshchilov and Hutter, 2019), avec un taux d’apprentissage initial de 10⁻⁴ et un paramètre 

de weight decay de 10⁻⁵. 

 

27. Figure III-S1. Règle cyclique du facteur βc. 
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III.6. S2.2. Nombre de voisins optimal 

Le nombre optimal de voisins K a été déterminé en projetant les sujets de validation dans le 

PatientSpace et en choisissant la valeur de K qui maximisait l’AUC (K = 10). 

III.6. S3. Voxel based Morphometry 

Afin d’analyser les profils d’atrophie entre les différents clusters, les IRM structurelles ont été 

prétraitées à l’aide du logiciel SPM (Statistical Parametric Mapping, 

https://www.fil.ion.ucl.ac.uk/spm/). Dans un premier temps, les volumes ont été segmentés en 

matière grise, matière blanche et LCR. Les images de matière grise ont ensuite été registrées dans 

l’espace MNI, puis lissées à l’aide d’un noyau gaussien de 8 mm³. 

L’analyse statistique a été menée à l’aide de tests t bilatéraux à deux échantillons, en intégrant 

comme covariables l’âge, le volume intracrânien total, ainsi que le sexe des participants. Ces 

comparaisons ont permis d’opposer les clusters de patients à des groupes témoins appariés selon 

l’âge et le sexe. Les résultats ont été corrigés pour comparaisons multiples par le Family-Wise Error 

rate (FWE), avec un seuil de significativité fixé à 0,05. 

  

https://www.fil.ion.ucl.ac.uk/spm/
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Chapitre IV 
Article “PatientSpace: An interpretable 
graph -based latent space for multimodal 
neuroimaging biomarker learning in 
Alzheimer’s Disease and Frontotemporal 
Dementia” 

Dans le chapitre III, nous avons présenté le PatientSpace, un espace latent structuré et interprétable 

construit à partir d’IRM T1w et de données cliniques, qui organise les sujets de manière à séparer les 

patients atteints de DFT des CN, tout en rapprochant les individus présentant des profils 

neuroanatomiques similaires, offrant ainsi une représentation cliniquement informative. Dans le 

chapitre IV, nous étendons ce cadre à une approche multimodale, intégrant IRM T1w et TEP-FDG, en 

considérant plusieurs diagnostics simultanément (CN, DFT et Alzheimer) et en conditionnant 

l’espace latent à l’âge afin de capturer une dimension longitudinale reflétant la progression de la 

maladie, permettant ainsi de représenter de manière cliniquement informative la variabilité 

interindividuelle. 
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IV.1. Introduction 
La maladie d’Alzheimer (MA) est un trouble neurodégénératif complexe et hétérogène, présentant 

une variabilité dans la présentation clinique, la génétique et les caractéristiques en neuroimagerie 

(Aziz et al., 2017; Ferreira et al., 2020; Habes et al., 2020; Koedam et al., 2010). Cette hétérogénéité 

se manifeste à tous les stades de la maladie, depuis le déficit cognitif léger (MCI) prodromal jusqu’à 

la MA avancée (Poulakis et al., 2022) , ainsi qu’en fonction de l’âge d’apparition, les formes à début 

précoce (EOAD) présentant plus fréquemment des formes non amnésiques impliquant les fonctions 

exécutives, visuelles ou langagières (Koedam et al., 2010; Kuchcinski et al., 2023; Ossenkoppele et 

al., 2015a). 

Au-delà de la MA, la démence frontotemporale (DFT) présente des syndromes cliniques et des 

caractéristiques neuroimagerie qui se chevauchent, compliquant le diagnostic différentiel (Musa et 

al., 2020). La DFT comprend des sous-types hétérogènes : la variante comportementale (bvDFT), 

caractérisée par une atrophie et un hypométabolisme frontaux (Habes et al., 2020), et des variantes 

langagières telles que la variante sémantique (SV) et l’aphasie progressive non fluente (PNFA). 

Certains sous-types se chevauchent anatomiquement avec la MA dans les régions temporales ou 

pariétales (Koenig et al., 2018) , et certaines formes cliniques imitent la MA non amnésique, rendant 

nécessaire un cadre unifié pour démêler l’hétérogénéité MA/DFT. 

La neuroimagerie a été centrale pour caractériser cette hétérogénéité. L’IRM structurelle identifie 

l’atrophie corticale et sous-corticale comme conséquence tardive de la maladie, tandis que la TEP-

FDG détecte le déclin métabolique précoce. Les deux ont révélé des profils anormaux distincts 

associés aux sous-types cliniques (Ossenkoppele et al., 2015b). Par exemple, l’IRM structurelle a 

permis de délimiter les phénotypes hippocampal-sparing, limbic-predominant et MA typique 

(Kuchcinski et al., 2023; Risacher et al., 2017) et des analyses volumétriques basées sur des régions 

d’intérêt (ROI) ont été utilisées pour distinguer les individus MA, MCI et cognitivement normaux (CN) 

(Ferreira et al., 2020; Poulakis et al., 2018). De même, les caractéristiques volumétriques et 

l’épaisseur corticale ont été employées pour sous-typer la DFT (Ma et al., 2024; Peet et al., 2021). 

Toutefois, ces approches reposent sur des ROI prédéfinies et risquent de négliger des signatures 

pathologiques plus subtiles et distribuées à travers le cerveau. 

L’intelligence artificielle (IA) permet des analyses à l’échelle du cerveau entier, capturant des motifs 

complexes au-delà des ROI prédéfinies. Les méthodes d’apprentissage profond ont montré leur 

potentiel pour classifier les sujets MA, DFT et CN à partir de la TEP-FDG (Rogeau et al., 2024) ou de 

cartes de probabilité d’atrophie basées sur l’IRM (Nguyen et al., 2023). Cependant, les modèles de 

classification manquent généralement d’interprétabilité et ne capturent pas l’hétérogénéité de la 

maladie ni les phénotypes atypiques. 

La modélisation de l’espace latent répond à ce problème en réduisant les données neuroimagerie de 

haute dimension en représentations compactes conservant les principales caractéristiques 

pathologiques. Des études antérieures ont utilisé le clustering pour définir des sous-types de MA 

(Kang et al., 2024; Park et al., 2017; Poulakis et al., 2018) ou des réseaux antagonistes génératifs 

pour dériver des représentations liées à la maladie (Louiset et al., 2024; Yang et al., 2022, 2020). 

Bien que ces méthodes aient révélé des sous-types pertinents de MA, la plupart se concentrent 

exclusivement sur la MA, reposent sur une seule modalité et capturent principalement des motifs 

structurels globaux, offrant une interprétabilité limitée au niveau du patient. L’IA générative 
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présente un avantage supplémentaire en permettant de synthétiser des représentations liées à la 

maladie et de démêler la variation pathologique de la variabilité saine, mais reste sous-explorée 

dans la recherche multimodale MA/DFT. 

Pour dépasser ces limitations, nous proposons le PatientSpace, un cadre basé sur une extension d’un 

autoencodeur variationnel (VAE) domaine invariant, intégrant l’IRM T1 et la TEP-FDG dans un espace 

latent structuré en graphe et interprétable. Le PatientSpace est conçu pour capturer à la fois les 

altérations anatomiques et métaboliques, et est organisé selon trois dimensions : (1) la classification 

diagnostique en groupes MA, DFT et CN ; (2) l’âge, reflétant la progression de la maladie et la 

variabilité interindividuelle (Aziz et al., 2017; Koedam et al., 2010) ; et (3) une mesure de similarité 

basée sur la neuroimagerie qui positionne les sujets présentant des profils comparables à proximité 

dans l’espace latent. En combinant la modélisation générative et la représentation basée sur graphe, 

le PatientSpace permet une analyse unifiée de l’hétérogénéité MA et DFT, démêlant les sous-types 

de la maladie tout en fournissant des informations interprétables au niveau du patient. 

IV.2. Travaux connexes 

IV.2.1. Apprentissage profond basé sur la neuroimagerie pour la MA et la DFT : de 

la classification aux modèles génératifs multimodaux 

Étant donné le chevauchement des caractéristiques cliniques et neuroimagerie de la MA et de la 

DFT, de nombreuses études ont exploré des méthodes automatisées de classification et de sous-

typage à partir de la neuroimagerie. Ces travaux fournissent un contexte important pour notre étude 

et mettent en évidence à la fois les progrès réalisés et les limites encore présentes dans l’utilisation 

de l’IA pour étudier l’hétérogénéité des maladies. 

Les approches d’apprentissage profond ont été largement appliquées à la classification de sujets 

MA, DFT et CN à partir de données neuroimagerie unimodales. Par exemple, Rogeau et al. (Rogeau 

et al., 2024) ont utilisé un réseau de neurones convolutif 3D pour classifier MA, DFT et CN à partir de 

TEP-FDG, tandis que Nguyen et al. (Nguyen et al., 2023) se sont appuyés sur des cartes de 

probabilité d’atrophie dérivées de l’IRM pour la classification. Bien que ces modèles unimodaux 

soient efficaces, ils sont principalement conçus pour la discrimination diagnostique et offrent peu 

d’informations sur l’hétérogénéité de la maladie ou sur des profils de neuroimagerie atypiques. 

Pour aller au-delà de la simple classification, des stratégies de regroupement basées sur les mesures 

d’atrophie corticale ou les caractéristiques volumétriques ont été appliquées pour définir des sous-

types de MA (Kang et al., 2024; Park et al., 2017; Poulakis et al., 2018). Des cadres génératifs tels que 

SMILE-GAN (Yang et al., 2022, 2020) et SepVAE (Louiset et al., 2024) permettent en outre de 

démêler les variations liées à la maladie de celles observées chez les sujets sains en générant des 

représentations de type MA à partir de sujets CN. Malgré leur potentiel, la plupart de ces approches 

restent limitées à la MA et aux analyses unimodales, négligeant des informations multimodales 

complémentaires. Pour pallier cette limitation, Antelmi et al. (Antelmi et al., 2019) ont introduit un 

autoencodeur variationnel multicanal intégrant IRM T1, TEP-FDG et TEP-amyloïde, démontrant 

l’intérêt de combiner données structurelles et métaboliques pour le sous-typage de la MA. 

Cependant, les approches génératives multimodales ont rarement été étendues à la DFT, et peu 
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offrent des espaces latents structurés et interprétables capturant l’hétérogénéité à la fois dans les 

populations MA et DFT. 

IV.2.2. Vers des espaces latents interprétables en neuroimagerie 

Les VAE sont puissants pour extraire des représentations latentes, mais leur interprétabilité reste 

limitée. En neuroimagerie, cette interprétabilité est cruciale car elle permet de relier le 

comportement du modèle aux mécanismes de la maladie et d’améliorer la confiance clinique. Pour 

relever ce défi, le concept de représentations latentes démêlées a été introduit, où chaque 

dimension latente correspond idéalement à un facteur génératif distinct de variation (Bengio et al., 

2013; Burgess et al., 2018). 

Le démêlage est souvent obtenu en introduisant une tâche de prédiction auxiliaire ou en 

conditionnant les sous-espaces latents sur des variables d’intérêt, alignant ainsi certaines 

dimensions avec des sources de variation ciblées. Cette stratégie a montré des applications 

prometteuses en neuroimagerie. Par exemple, Zhao et al. (Zhao et al., 2019b) ont conditionné 

l’espace latent sur l’âge chronologique, permettant des reconstructions capturant les modifications 

liées à l’âge sur l’IRM. De même, Liu et Yap (Liu et Yap, 2024) ont séparé la variation d’imagerie liée 

au site des signaux biologiques, facilitant l’harmonisation des données. D’autres approches ont visé 

à isoler la variabilité pathologique : Louiset et al. (Louiset et al., 2024) ont séparé les sous-espaces 

latents sains et pathologiques, tandis que Kang et al. (Kang et al., 2024) ont combiné démêlage et 

regroupement pour révéler des sous-groupes pertinents liés à la maladie. 

Ces méthodes exploitent souvent les facteurs démêlés pour manipuler les images, par exemple en 

fixant ou supprimant une variable lors de la reconstruction afin d’harmoniser les données ou 

visualiser des effets spécifiques (âge, pathologie) (Ainsworth et al., 2018; Burgess et al., 2018; Li et 

al., 2019). Cependant, l’interprétabilité de ces cadres reste principalement liée à des facteurs de 

variation globaux (âge, site, pathologie) plutôt qu’aux différences au niveau du patient. 

Notre travail est motivé par cette limitation. Nous visons à construire des espaces latents démêlés 

où la variation est guidée non seulement par les sources issues de l’imagerie, mais aussi par la 

similarité entre patients. Ce changement rapproche l’interprétabilité du niveau clinique, permettant 

d’explorer les différences individuelles entre patients plutôt que de se limiter aux facteurs de 

variation au niveau populationnel. 

IV.3. Matériels et méthodes 

IV.3.1. Participants et acquisitions des données 

Les données ont été compilées à partir de bases publiques et de bases privées locales. Le jeu de 

données provient de bases publiques accessibles : l’Alzheimer’s Disease NeuroImaging Initiative 

(ADNI, https://adni.loni.usc.edu/), l’étude longitudinale sur la dégénérescence lobaire 

frontotemporale (NIFD, http://memory.ucsf.edu/research/studies/nifd) ainsi que de bases privées 

locales du CHU de Lille. 

Les participants ADNI comprenaient des individus issus des protocoles ADNI1, ADNI2, ADNIGO et 

ADNI3. Les participants devaient disposer à la fois d’une IRM 3D T1 et d’une TEP-FDG réalisées lors 

https://adni.loni.usc.edu/
http://memory.ucsf.edu/research/studies/nifd
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de la même session et être diagnostiqués soit CN, soit MA. Les participants présentant un trouble 

cognitif léger (MCI) dans la cohorte ADNI ont été exclus de l’étude. 

De la même manière, les participants de la cohorte NIFD devaient disposer d’une IRM T1w et d’une 

TEP-FDG réalisées lors de la même session, et être diagnostiqués comme CN ou DFT. Le diagnostic 

de DFT reposait sur les critères de Rascovsky et al. (Rascovsky et al., 2011) , complétés par les 

critères de Gorno-Tempini et al. pour les variantes langagières (Gorno-Tempini et al., 2004). 

Le jeu de données du CHU de Lille comprenait des participants diagnostiqués avec la MA ou la DFT, 

suivis au Centre de Mémoire de Lille entre 2010 et 2020. Les participants MA ont été inclus sur la 

base de la disponibilité d’une IRM T1 3D et d’une TEP-FDG réalisées dans un intervalle de 6 mois, 

ainsi que d’un diagnostic probable de MA selon les critères NINCDS/ADRDA (McKhann et al., 1984) , 

conformes aux critères utilisés dans la cohorte ADNI. Alternativement, les participants présentant un 

MCI dû à la MA avec probabilité intermédiaire, selon les critères NIA-AA de 2011 (Albert et al., 2011) 

ont été inclus, sans restriction sur le score MMSE au moment de l’IRM. Tous les patients ont 

bénéficié d’une IRM 3D T1 et d’une TEP-FDG, généralement lors de la première année de suivi, dans 

le cadre de leur évaluation clinique pour confirmer le diagnostic de MA. Les examens 

supplémentaires réalisés ultérieurement, pour des suivis de recherche, le suivi thérapeutique ou 

l’évaluation de la progression de l’atrophie cérébrale, notamment chez les patients MCI inclus, ont 

également été considérés. 

Les sujets DFT ont été inclus sur la base d’un diagnostic probable de DFT selon les critères de 

Rascovsky (Rascovsky et al., 2011), sans restriction sur le score MMSE au moment de l’IRM. Chaque 

patient a bénéficié d’une TEP-FDG cérébrale au cours de la première année de suivi, car 

l’hypométabolisme frontal ou temporal antérieur constitue un critère diagnostique de DFT probable. 

Les examens supplémentaires réalisés dans le temps ont été inclus pour des raisons similaires à 

celles du groupe MA (recherche, suivi thérapeutique, suivi de l’atrophie frontale). 

Le détail des informations relatives à chaque IRM T1 et TEP-FDG est fourni en section IV.8. S1. Un 

accord écrit a été obtenu de tous les participants du CHU de Lille. 

IV.3.2. Prétraitement des images 

Les images T1w ont été prétraitées comme suit : (i) correction d’inhomogénéité de champ avec 

N4ITK (ii) extraction du cerveau avec SynthStrip (Hoopes et al., 2022), (iii) registration affine vers 

l’espace MNI de 1 mm3 à l'aide d'outils de normalisation avancée (ANTs, 

https://github.com/ANTsX/ANTs), (iv) recadrage à 160 x 192 x 160 voxels, et (v) normalisation du 

signal cérébral par z-score. 

Les images TEP-FDG ont été prétraitées comme suit : (i) Moyennage des images dynamiques avec 

FreeSurfer si non déjà effectué (https://surfer.nmr.mgh.harvard.edu/), (ii) extraction du cerveau 

avec SynthStrip, (iii) registration linéaire vers l’IRM T1 avec ANTs, (iv) registration affine vers l'espace 

MNI de 1 mm3 à l'aide de la transformation T1w à MNI, (v) recadrage à 160 x 192 x 160 voxels et (v) 

normalisation du signal cérébral par z-score. 

IV.3.3. Ensemble des données 

Le jeu de données complet comprenait 1 522 paires de TEP-FDG et d’IRM T1 3D prétraitées. Les 

ensembles d’entraînement, de validation et de test ont été séparés aléatoirement selon une 

https://www.zotero.org/google-docs/?6YgWFI
https://github.com/ANTsX/ANTs
https://surfer.nmr.mgh.harvard.edu/
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répartition 60 % – 20 % – 20 %, stratifiée par diagnostic et distribution d’âge. Cette répartition a 

abouti à 946 paires de scans pour l’ensemble d’entraînement, 283 paires pour l’ensemble de 

validation et 293 paires pour l’ensemble de test. Pour chaque participant, l’âge, le sexe, le diagnostic 

et le score MMSE ont été enregistrés au moment de l’acquisition de l’IRM (± 6 mois). 

IV.3.4. Construction et extraction d’un espace latent structuré 

IV.3.4.1. Vue d’ensemble de la méthode 

 

28. Figure IV-1. Architecture réseau. 
Le modèle comprend quatre encodeurs : deux encodeurs unimodaux résiduels, qui génèrent des 
représentations latentes unimodales résiduelles (Z_mri et Z_pet), et deux encodeurs unimodaux 
supplémentaires enrichis par des blocs MMTM. Les sorties des encodeurs pilotés par les blocs MMTM sont 
concaténées et projetées dans un espace latent multimodal partagé (Z_MM). Cette représentation 
multimodale, conditionnée par l’âge et le diagnostic, est utilisée conjointement avec les espaces latents 
unimodaux pour décoder chaque modalité séparément. 

Architecture. Le modèle utilisé pour construire l’espace latent est une extension du DIVA (Domain 

Invariant Variational Autoencoder) (Ilse et al., 2020), enrichie par une régularisation consistante 

(Sinha and Dieng, 2022). L’objectif est d’apprendre un espace latent multimodal 𝑍𝑀𝑀, structuré par 

diagnostic, âge et régularisation consistante, ainsi que deux espaces latents résiduels spécifiques aux 

modalités (𝑍𝑀𝑅𝐼 et 𝑍𝑃𝐸𝑇). Le modèle comprend trois encodeurs (Figure IV-1) : deux encodeurs 

unimodaux générant 𝑍𝑀𝑅𝐼 et 𝑍𝑃𝐸𝑇, et un encodeur multimodal produisant 𝑍𝑀𝑀. Chaque modalité 

est ensuite reconstruite par des décodeurs indépendants : la reconstruction IRM est réalisée à partir 

de (𝑍𝑀𝑅𝐼 , 𝑍𝑀𝑀), tandis que la reconstruction TEP-FDG utilise (𝑍𝑃𝐸𝑇 , 𝑍𝑀𝑀). 

Encodeur multimodal. Notre modèle étend l’architecture décrite par Ilse et al. (Ilse et al., 2020) à un 

contexte multimodal. Deux encodeurs de caractéristiques spécifiques à chaque modalité sont 

couplés à un Multimodal Transfer Module (MMTM) (Vaezi Joze et al., 2020). Les blocs MMTM sont 

intégrés dans les trois dernières couches de chaque encodeur, permettant de capturer des 

caractéristiques spécifiques à chaque modalité et d’aligner les informations partagées. La fusion des 
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caractéristiques s’effectue ensuite par concaténation des canaux, avant un passage dans un bloc 

résiduel 3D (He et al., 2016) qui réduit le nombre de canaux de moitié. 

Tous les encodeurs unimodaux suivent le même design : des blocs résiduels 3D comprenant des 

convolutions 3D, une GroupNormalization (GN) (Wu and He, 2018), choisie pour ses performances 

sur de petits lots, et une fonction d’activation ReLU. Le sous-échantillonnage est effectué par 

convolutions avec stride 2, doublant le nombre de canaux, suivi d’une activation ReLU. La sortie de 

chaque encodeur est aplatie puis passée à travers des couches linéaires pour générer μ et log σ² 

(Kingma and Welling, 2019). 

Décodeurs. Les décodeurs reproduisent la structure des encodeurs : un upsampling trilinéaire 3D 

double les dimensions spatiales, suivi de convolutions 3D, puis d’un bloc résiduel 3D. La dernière 

couche de chaque décodeur utilise des convolutions 3D avec un noyau 1 × 1 × 1, tandis que toutes 

les autres convolutions utilisent un noyau 3 × 3 × 3. 

Fonction de perte. Le modèle est entraîné avec une fonction de perte composite combinant 

plusieurs objectifs : reconstruction neuroimagerie, classification diagnostique, prédiction de l’âge et 

régularisation de l’espace latent. Selon l’approche d’apprentissage multitâche (Caruana, 1993), la 

perte globale 𝐿𝑜𝑣𝑒𝑟𝑎𝑙𝑙  est définie comme : 

𝐿𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =  𝜆1𝑤1𝐿1 + 𝜆2𝑤2𝐿2 + 𝜆3𝑤3𝐿3 + 𝜆4𝑤4𝐿4 (Eq.IV-1) 

 

Chaque 𝐿𝑡 correspond à la perte d’une tâche spécifique. Les constantes 𝜆𝑡  contrôlent l’échelle des 

gradients, les différences de magnitude et la priorité des tâches. Les poids dynamiques 𝑤𝑡  ajustent 

de manière adaptative la contribution de chaque tâche en fonction de sa vitesse d’apprentissage (Liu 

et al., 2019): 

𝑤𝑡(𝑒) = (𝑛𝑜𝑚𝑏𝑟𝑒 𝑑𝑒 𝑡â𝑐ℎ𝑒)(exp (
𝐿𝑡(𝑒 − 1)

2 𝐿𝑡(𝑒 − 2)
) [∑ exp (

𝐿𝑇(𝑒 − 1)

2 𝐿𝑇(𝑒 − 2)
)

𝑇

]⁄  
(Eq IV-2) 

 

Où, e désigne l’époque d’entraînement actuelle, 𝐿𝑡(𝑒 − 1) et 𝐿𝑡(𝑒 − 2) sont les pertes spécifiques à 

la tâche pour les deux époques précédentes, et T désigne l’ensemble de toutes les tâches. 

Les définitions spécifiques de chaque terme de perte 𝐿𝑡 sont les suivantes. : 

𝐿1 constitue une extension multimodale de la perte β-VAE du modèle DIVA (Ilse et al., 2020) : 

𝐿1 = (𝑋𝑀𝑅𝐼 − 𝑋̂𝑀𝑅𝐼)
2

+ 𝛽 𝐷𝐾𝐿[𝑍𝑀𝑅𝐼|| 𝑁(0, 𝐼)]

+  (𝑋𝑃𝐸𝑇 − 𝑋̂𝑃𝐸𝑇)
2

+ 𝛽𝐷𝐾𝐿[𝑍𝑃𝐸𝑇|| 𝑁(0, 𝐼)]

+  𝛽𝐷𝐾𝐿[𝑍𝑀𝑀|| 𝑝(𝑍𝑀𝑀 | 𝑎𝑔𝑒, 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠)] 

 

(Eq IV-3) 

 

où 𝑋. est l’entrée pour chaque modalité,𝑋.̂ sa reconstruction, 𝑁(0, 𝐼) la gaussienne multivariée de 

moyenne nulle et covariance identité, et β un coefficient positif équilibrant la perte KL et la perte de 

reconstruction. 𝑝(𝑍𝑀𝑀 | 𝑎𝑔𝑒, 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠) correspond au prior conditionnel appris à partir de l’âge et 

du diagnostic pour récupérer 𝑍𝑀𝑀. 
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𝐿2, la perte de classification diagnostique, utilise l’entropie croisée pondérée pour gérer le 

déséquilibre entre classes : les poids 𝛼𝐷 assignés à chaque diagnostic 𝐷 sont définis comme 𝛼𝐷  =

 
𝑁𝑡𝑜𝑡𝑎𝑙

𝑁𝐷 × 𝐶
, où 𝑁𝑡𝑜𝑡𝑎𝑙 est le nombre total de scans, 𝑁𝐷 est le nombre de scans pour le diagnostic 𝐷 et 𝐶 

est le nombre total de classes de diagnostic. 

Pour la perte de prédiction de l'âge 𝐿3, l'erreur quadratique moyenne (EQM) a été utilisée. 

La perte de consistance 𝐿4 étend la régularisation consistante introduite par Sinha et Dieng en 

encourageant l’alignement entre l’espace latent multimodal dérivé de l’image originale 𝑍𝑀𝑀
𝑂𝑅𝐼𝐺  et 

celui calculé à partir de sa version transformée aléatoirement 𝑍𝑀𝑀
𝐴𝑈𝐺  – obtenue par translation, 

rotation, zoom et/ou ajout de bruit gaussien. Elle est définie comme une divergence de Kullback-

Leibler (KL) symétrique :  

𝐿4  =  
1

2
[𝐷𝐾𝐿(𝑍𝑀𝑀

𝑂𝑅𝐼𝐺  || 𝑍𝑀𝑀
𝐴𝑈𝐺)  + 𝐷𝐾𝐿(𝑍𝑀𝑀

𝐴𝑈𝐺  || 𝑍𝑀𝑀
𝑂𝑅𝐼𝐺)] 

(Eq. IV-4) 

 

où 𝐷𝐾𝐿 désigne la divergence KL. Contrairement à la formulation originale, la perte est symétrisée 

pour garantir la robustesse de l’espace latent multimodal. Des détails supplémentaires sur chaque 

composante de perte et la procédure d’entraînement sont fournis en matériel supplémentaire 

(section IV.8. S2). 

Procédure d’entraînement. La procédure suit celle décrite Sinha et Dieng (Sinha and Dieng, 2022), 

en appliquant la perte VAE aux images originales 𝑋𝑂𝑅𝐼𝐺  et transformées 𝑋𝐴𝑈𝐺 . Pour limiter le 

surapprentissage, la prédiction de l’âge et du diagnostic n’a été effectuée que sur 𝑋𝐴𝑈𝐺 . 

Conformément aux recommandations d’Alemi et al. (Alemi et al., 2018) pour extraire des 

représentations latentes significatives, une pondération constante élevée a été attribuée à la perte 

de classification (𝐿2). Les poids associés aux pertes de régularisation de l’espace latent (𝐿1 et 𝐿4) ont 

été augmentés linéairement au cours des dix premières époques – 𝛽 est passé de 0,1 à 1 pour 𝐿1 et 

𝜆4 de 0,2 à 2 pour 𝐿4. Des détails supplémentaires sur la procédure d’entraînement sont donnés à la 

section IV.8. S3.1. 

Augmentation des données Nous avons appliqué des augmentations aux images IRM et TEP-FDG via 

la bibliothèque MONAI (Cardoso et al., 2022). Les transformations comprenaient : translation 

aléatoire (±10 voxels sur chaque axe), rotation aléatoire (±0,4 radians), et zoom aléatoire (facteur 

0,9–1). Les flips étaient exclus afin de préserver les asymétries potentielles des profils pathologiques 

(Madhavan et al., 2013; Whitwell, 2019). Du bruit gaussien (𝜇 =  0, 𝜎 ∼ 𝑈(]0, 0.15[)  a été ajouté, 

et les entrées ont été débruitées pendant la reconstruction, conformément à des travaux montrant 

que cette approche améliore la robustesse des caractéristiques (Vincent et al., 2008). Les images 

IRM et TEP d’un même sujet ont subi des augmentations identiques, chacune appliquée avec une 

probabilité de 0,95. 

Sélection du modèle. Le modèle final a été choisi sur la base de la perte minimale combinée pour la 

prédiction d’âge, la classification et la régularisation consistante sur l’ensemble de validation. 
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IV.3.4.2. Représentaton par graphe de l’espace latent – PatientSpace 

Nous avons construit une représentation sous forme de graphe appelé PatientSpace, définie comme 

𝐺 = (𝑉, 𝐸, 𝐴) où 𝑉 correspond à l’ensemble des nœuds représentant les patients, 𝐸 à l’ensemble 

des arêtes connectant ces nœuds, et 𝐴 à la matrice d’adjacence pondérée. Chaque nœud 𝑣𝑖 ∈ 𝑉 

correspond à un patient, et la pondération des arêtes encode la similarité morphologique entre 

patients dans l’espace latent. 

Pour chaque paire de sujets (𝑖, 𝑗), la pondération 𝑎𝑖𝑗  de la matrice d’adjacence était définie de la 

manière suivante : 

𝑎𝑖𝑗 = {

1

𝑑(𝑖, 𝑗)
∑

1

𝑑(𝑖, 𝑘)
𝑘∈𝑁(𝑖)

⁄ ,  si j est un voisin de i

0, Sinon

 

 

(Eq IV-5) 

 

où, 𝑑(𝑖, 𝑗) représente la mesure de la dissimilarité (perte de consistance 𝐿4) entre i et j. 

𝑁(𝑖)représente les K voisins de i (voir la section IV.8. S3.2 pour le nombre optimal de voisins K) 

IV.3.5. Expérimentations 

IV.3.5.1. Analyse basée sur le graphe 

Deux analyses ont été menées pour étudier les propriétés structurelles du PatientSpace. La première 

s’est concentrée sur la topologie globale en identifiant des clusters au sein du graphe. La seconde a 

mis l’accent sur les informations locales en réalisant une analyse de voisinage au niveau de chaque 

patient. 

Clustering dans le PatientSpace. Le PatientSpace a été clusterisé en utilisant un algorithme de 

clustering agglomératif avec le critère de Ward, tout en préservant la structure du graphe. Les 

clusters ont été analysés selon : (i) le nombre de sujets CN, AD et FTD, (ii) la répartition selon l’âge et 

le sexe, (iii) les volumes cérébraux et le ratio de valeur normalisée d’absorption standardisée (SUVR), 

et le score MMSE ajusté pour l’âge et le sexe. Les comparaisons statistiques ont été réalisées à l’aide 

du test du khi-deux pour les variables catégorielles et du test de Kruskal-Wallis pour les variables 

continues, avec correction pour comparaisons multiples via la méthode du faux taux de découverte 

de Benjamini-Hochberg (BH-FDR) (Benjamini et Hochberg, 1995). Les profils d’atrophie et de 

métabolisme des clusters de maladies ont été comparés via une approche de Voxel-Based 

Morphometry (VBM) (voir données supplémentaires IV.8. S5). 

Analyse de PatientSpace au niveau individuel. Le PatientSpace a également été examiné au niveau 

du patient en prédisant le diagnostic, les volumes cérébraux, le SUVR et le MMSE chez les sujets de 

l’ensemble test. Pour chaque sujet non vu 𝑖 de l’ensemble test, la probabilité d’être assigné au 

diagnostic 𝐷 a été estimée par 

𝑎𝑟𝑔𝑚𝑎𝑥𝐷 𝑃(𝐷𝑋̂𝑖 = 𝐷) =  ∑ 𝑎𝑖𝑗1(𝐷𝑋𝑗 = 𝐷)

𝑗

 (Eq IV-6) 

où 𝐷𝑋𝑗  est le diagnostic du sujet 𝑣𝑗. 

L’aire sous la courbe (AUC), la spécificité et la sensibilité ont été utilisées pour évaluer la 

performance de classification diagnostique. 
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Les volumes cérébraux et le SUVR ont été prédits pour des régions d’intérêt (ROI) spécifiques 

associées à la MA et la DFT. Les ROI liées à la MA incluaient l’hippocampe, le précunéus, le gyrus 

parahippocampique, le cortex entorhinal, le cortex cingulaire, le gyrus temporal moyen latéral, le 

gyrus frontal et le gyrus angulaire (Fennema-Notestine et al., 2009; Landau et al., 2011). Les ROI liées 

à la DFT comprenaient le cortex insulaire, l’insula antérieure, le pôle temporal, le gyrus temporal 

moyen, le gyrus frontal moyen, le gyrus frontal supérieur et le gyrus frontal inférieur (Peet et al., 

2021; Risacher and Saykin, 2013; Whitwell, 2019). Nous avons également inclus dans notre analyse 

la matière grise (GM), de la matière blanche (WM), le liquide céphalo-rachidien (LCR), ainsi que les 

régions frontales et temporales. Les volumes cérébraux ont été extraits avec AssemblyNet (Coupé et 

al., 2020) , et normalisés par le volume intracrânien, tandis que le SUVR a été calculé en divisant la 

SUV régionale par la SUV totale. 

Pour chaque sujet 𝑖 de l’ensemble de test, non vu lors de l’entraînement, le volume cérébral ou le 

SUVR estimé 𝑦̂ a été calculé comme la moyenne pondérée des mesures 𝑦 correspondantes des 

sujets voisins, selon la formule suivante : 

𝑦̂𝑖 =  ∑ 𝑎𝑖𝑗 𝑦𝑗

𝑗

 (Eq IV-7) 

 

Le coefficient de corrélation de Pearson a été calculé entre les valeurs réelles et prédites. La force de 

la corrélation a été interprétée comme : faible (𝑟 <  0.3) ; modérée (0.3 ≤ 𝑟 < 0.6) ; et forte (𝑟 ≥

0.6) (Akoglu, 2018). 

Le MMSE a été estimé de manière similaire au diagnostic. Les scores MMSE ont été catégorisés selon 

les stades de démence : absence ou suspicion de démence (MMSE 27–30), démence légère (MMSE 

20–26), démence modérée (MMSE 10–19) et démence sévère (MMSE < 10) (Perneczky et al., 2006). 

Pour chaque sujet 𝑖 de l’ensemble de test, non vu lors de l’entraînement, la probabilité d’obtenir un 

score MMSE 𝑚 a été estimée à l’aide de : 

𝑎𝑟𝑔𝑚𝑎𝑥𝑚 𝑃(𝑀𝑀𝑆𝐸̂𝑖 = 𝑚) =  ∑ 𝑎𝑖𝑗1(𝑀𝑀𝑆𝐸𝑗 = 𝑚)

𝑗

 (Eq IV-8) 

 

Les performances MMSE ont été évaluées à l’aide de la précision équilibrée, de la régression 

ordinale, ainsi que de la MAE et de la RMSE, optimisées pour les données déséquilibrées (Baccianella 

et al., 2009). 

Les résultats obtenus à partir des approches basées sur les graphes sont désignés sous le nom 

PatientGraph et ceux obtenus par le classifieur natif du réseau sous le nom DL-classifier dans les 

sections suivantes. 

IV.3.5.2. Validation externe 

Classification Nous avons utilisé la base de données SOCRATES pour évaluer les performances de 

classification. Une description détaillée de la population étudiée est fournie en section IV.8. S2.2. 

Analyse de survie MCI Nous avons utilisé le jeu de données MEMENTO (numéro d’autorisation 2010 

A01394 35) pour étudier la conversion des MCI et suivre la progression de la maladie. Ce jeu 
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multicentrique comprenait des individus présentant un MCI, indépendamment de l’étiologie sous-

jacente, telle que la MA, la DFT ou d’autres pathologies. Une description détaillée de la population 

est fournie en section IV.8. S2.2. 

L’analyse de survie a été utilisée pour étudier la probabilité de conversion des MCI en démence. La 

première session des sujets MCI de la cohorte MEMENTO a été projetée dans le PatientSpace et 

assignée à un cluster 𝑐 selon : 

𝑎𝑟𝑔𝑚𝑎𝑥𝑐  𝑃(𝐶𝑙𝑢𝑠𝑡𝑒𝑟̂
𝑖 = 𝑐) =  ∑ 𝑎𝑖𝑗  1(𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑗 = 𝑐)

𝑗

 (Eq IV-9) 

Une analyse de survie de Kaplan–Meier a ensuite été appliquée pour examiner les taux de 

conversion selon les clusters. Les différences statistiques entre distributions de survie ont été 

évaluées via des tests log-rank par paires (Fleming and Harrington, 1981) avec correction BH-FDR 

pour comparaisons multiples (Benjamini and Hochberg, 1995). Pour garantir la robustesse des tests, 

seuls les clusters contenant plus de dix sujets ont été conservés. Les trajectoires longitudinales des 

sujets MCI converters ont été suivies via une matrice de transition. À chaque point temporel où les 

données IRM et TEP-FDG étaient disponibles, l’appartenance au cluster a été réassignée selon 

l’équation l’Eq. IV-9. 

IV.3.5.3. Comparaison avec des méthodes de référence 

Pour évaluer les performances du modèle, nous avons comparé notre module de classification deep 

learning (DL-Classifier) et notre approche PatientGraph à deux méthodes d’apprentissage profond 

sur l’ensemble de test : (i) PET-CNN, un classifieur basé sur la TEP-FDG réimplémenté à partir de 

Rogeau et al. (Rogeau et al., 2024) (ii) AssemblyNet-AD-FTD, un classifieur basé sur l’IRM T1 décrit 

par Nguyen et al. (Nguyen et al., 2023). Nous avons réalisé une classification multiclasse et en avons 

dérivé une classification CN vs démence (DEM) à partir des résultats multiclasses pour examiner les 

erreurs de classification. 

IV.3.6. Etudes d’ablation 

Pour évaluer l’impact de notre architecture deep learning et de l’organisation de l’espace latent, 

cinq variantes ont été mises en place. Deux variantes unimodales ont été implémentées afin 

d’évaluer l’influence de la multimodalité sur l’espace latent, appelées respectivement modèle TEP et 

modèle IRM. Pour les autres variantes, l’architecture multimodale a été conservée, mais certaines 

composantes ont été supprimées successivement : (1) l’âge, (2) la perte de consistance, et (3) le 

diagnostic. Ces modèles sont respectivement désignés age ablated, consistency ablated et vanilla 

model. 

IV.4. Résultats 

IV.4.1. Données démographiques 

Les caractéristiques démographiques des sujets sont résumées dans le tableau IV-1. L’âge était 

significativement plus élevé chez les sujets CN, tandis qu’aucune différence significative n’a été 

observée entre les groupes MA et DFT dans l’ensemble des jeux de données. La répartition selon le 

sexe ne montrait pas de différence significative dans les ensembles d’entraînement et de validation, 

mais une différence significative était observée entre les groupes MA et DFT dans l’ensemble de 
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test. Les scores de MMSE différaient significativement dans tous les ensembles de données, les 

sujets CN obtenant les scores les plus élevés, suivis des DFT, puis des MA. 

 CN MA DFT Valeur p 

Ensemble 
d’entrainement 

    

Nombre de scans 336 504 106 - 

Âge, années 74.20 ± 7.76 68.31 ± 10.33 65.81 ± 9.19 < 0,001 
MA < CN 
DFT < CN 

Femmes, n (%) 169 (50%) 270 (54%) 45 (43%) 0.11 

MMSE 29 (28 - 30) 20 (15 - 23) 25 (21 - 27) < 0,001 
MA < DFT < CN 

Ensemble de 
validation 

    

Nombre de scans 89 155 39 - 

Âge, années 73,64 ± 6,77 67,68 ± 8,97 68,22 ± 7,06 < 0,001 
MA < CN 
DFT < CN 

Femmes, n (%) 41 (46%) 58 (37%) 15 (38%) 0.40 

MMSE 30 (29-30) 20 (16.5 - 23) 25 (22 - 28) < 0,001 
MA < DFT < CN 

Ensemble de test     

Nombre de scans 97 150 46 - 

Âge, années 74,14 ± 6,47 68.18 ± 9.34 68.76 ± 7.34 < 0,001 
MA < CN 
DFT < CN 

Femmes, n (%) 60 (62%) 68 (45%) 11 (24%) 0.03 

MMSE 29.5 (29 - 30) 21 (16 - 24) 24 (17.5 - 27) < 0,001 
MA < DFT < CN 

13. Tableau IV-1. Caractéristiques démographiques et cliniques des données. 
L’âge est rapporté sous forme de moyenne ± écart type, le sexe féminin comme nombre (proportion), et le 
MMSE comme médiane avec intervalle interquartile (Q1–Q3). Les comparaisons statistiques ont été réalisées à 
l’aide de tests de Kruskal-Wallis pour l’âge et le MMSE, et d’un test du chi-carré pour le sexe. Une valeur de p ≤ 
0,05 était considérée comme statistiquement significative. 
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IV.4.2. Interprétation du PatientSpace 

IV.4.2.1. PatientSpace clusters 

 

29. Figure IV-2. Graphe du PatientSpace 
Chaque nœud correspond à un sujet et chaque arête à une connexion binaire (1 si 𝑎𝑖𝑗 >  0 ; 0 sinon). Les sujets 

MA sont représentés en rouge, les DFT en bleu et les CN en vert. Les clusters extraits par classification 
hiérarchique agglomérative sont encerclés et nommés. 

La figure IV-2 présente le PatientSpace, qui se compose de dix clusters : trois clusters CN, deux 

clusters DFT et cinq clusters MA. Les caractéristiques des clusters sont présentées dans le tableau IV-

2. Ces clusters présentaient des variations dans la distribution de l’âge. Les clusters DFT ne 

montraient pas de différences notables selon le sexe, contrairement aux clusters MA, le cluster AD#1 

comprenant la proportion la plus élevée de femmes et le cluster AD#5 la plus faible. De plus, AD#1 et 

AD#2 présentaient des scores MMSE significativement plus bas que les autres clusters MA. Les sujets 

DFT partageaient davantage de liens avec les individus MA, en particulier ceux des clusters AD#3 et 

AD#4, tout en ne montrant qu’une seule interaction avec les sujets CN. À l’inverse, les sujets CN 

présentaient une plus grande similarité avec les sujets AD#1, AD#2 et AD#3. De manière 

intéressante, le cluster AD#5 apparaissait isolé, sans interaction observée avec les CN ou les DFT. 

 Âge, années Femmes, n ( %) MMSE 

AD#1 56.07 ± 3.95 64 (75%) 15 (9 - 19) 

AD#2 61,22 ± 4,29 65 (52%) 16 (11 - 20) 

AD#3 68.66 ± 6.00 59 (53%) 21.5 (18.25 - 23.75) 
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AD#4 76.74 ± 4.29 71 (50%) 23 (20 - 25) 

AD#5 85,37 ± 3,83 11 (27%) 22 (20 - 24) 

FTD#1 61.61 ± 7.25 23 (38%) 25 (20 - 27) 

FTD#2 71.29 ± 8.59 22 (47%) 25 (21 - 27.75) 

CN#1 62,63 ± 7,19 23 (60%) 30 (29 - 30) 

CN#2 72.95 ± 5.11 106 (53%) 29 (28 - 30) 

CN#3 81.25 ± 5.34 40 (41%) 29 (28 - 30) 

14. Tableau IV-2. Caractéristiques des clusters. 
L'âge est exprimé en moyenne ± écart-type, la proportion de femmes est indiquée en effectif (pourcentage) et 
le MMSE est présenté en médiane avec l’intervalle interquartile (Q1-Q3). 

IV.4.2.2. Modèles spécifiques d'atrophie et d'hypométabolisme 

Des profils distincts d’atrophie et d’hypométabolisme ont été observés selon les clusters 

pathologiques (figure IV-3). Les clusters AD#1, AD#2, AD#3 et AD#4 présentaient les caractéristiques 

classiques de la MA, comprenant un hypométabolisme dans les lobes temporaux et le précuneus, 

associé à une atrophie des régions temporales postérieures et médiales ainsi que de l’hippocampe. 

Bien que ces clusters partageaient globalement des profils spatiaux similaires, l’hypométabolisme de 

la TEP-FDG était plus marqué dans AD#1 et AD#2. Fait notable, AD#1 et AD#2 ne montraient pas 

d’hypométabolisme hippocampique. Par ailleurs, le cluster AD#2 présentait une atteinte postérieure 

plus prononcée. À l’inverse, le cluster AD#5 montrait peu ou pas d’hypométabolisme détectable et 

une atrophie minimale, limitée au lobe temporal gauche. 

Le cluster FTD#1 présentait un hypométabolisme caractéristique des lobes frontaux et du noyau 

caudé, ainsi qu’une atrophie typique des régions frontales et temporales. En revanche, le cluster 

FTD#2 ne présentait quasiment pas d’hypométabolisme détectable dans les régions frontales, avec 

une atrophie principalement localisée dans les régions temporales et l’insula. 
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30. Figure IV-3. Atrophie et hypométabolisme dans les clusters. 
Les rangées représentent les modalités d'imagerie, tandis que les colonnes correspondent aux clusters de démence. 
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IV.4.2.3. Caractérisation individuelle de PatientSpace 

Le tableau IV-S3 présente les coefficients de corrélation de Pearson entre les volumes cérébraux et 

les valeurs SUVR prédits et ceux de référence. La figure IV-4 illustre, à des fins de visualisation, les 

régions présentant les corrélations les plus fortes (r ≥ 0,6). Les mesures prédictives et de référence 

de la structure et du métabolisme cérébral étaient généralement bien corrélées, mais l’intensité de 

la corrélation variait selon les régions. Pour les volumes cérébraux globaux, les corrélations étaient 

systématiquement fortes, en particulier pour le LCR (r = 0,71) et la substance grise (r = 0,64). Dans 

les ROI associées à la MA, des corrélations modérées à fortes étaient observées dans l’hippocampe, 

le précuneus, le cortex cingulaire antérieur et le gyrus angulaire, tandis que des associations plus 

faibles apparaissaient dans les cortex entorhinal et cingulaire postérieur. Dans les ROI associées à la 

DFT, l’insula et le gyrus temporal moyen présentaient de fortes corrélations, alors que les gyri 

frontaux supérieur et inférieur n’affichaient que de faibles relations. 

Concernant les SUVR, les corrélations étaient globalement plus élevées, avec des valeurs 

importantes dans le précuneus (r = 0,77) et le gyrus angulaire (r = 0,80), suggérant une prédiction 

fiable dans des régions clés de la MA, tandis que des corrélations modérées persistaient dans 

l’hippocampe et le cortex entorhinal. Pour les SUVR associés à la DFT, de fortes corrélations étaient 

également observées dans l’insula antérieure et le gyrus temporal moyen, mais seulement 

modérées dans les régions frontales et temporales inférieures. 

La classification du MMSE atteignait une exactitude équilibrée de 0,56, une RMSE de 0,85 et une 

MAE de 0,54. Dans la plupart des cas, les prédictions de classe MMSE se situaient dans la catégorie 

correcte ou dans une catégorie adjacente (figure IV-5). De manière importante, aucun cas de 

démence sévère n’a été mal classé comme absence/doute de démence, et les cas avec 

absence/doute de démence n’ont été que rarement prédits comme modérés, et jamais comme 

sévères. 

 

31. Figure IV-4. Analyse de corrélation de Pearson entre les volumes cérébraux prédits et la réalité terrain et les 
valeurs SUVR. 
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32. Figure IV-5. Prédiction du MMSE dans les classes de démence. 

IV.4.3. Comparaison avec les méthodes de référence 

Les résultats pour les deux tâches sont rapportés dans les tableaux IV-3 et IV-4. Dans le cadre 

multiclasse, DL-Classifier et PatientGraph ont présenté des performances globalement compétitives, 

avec une sensibilité légèrement plus faible pour la DFT par rapport aux méthodes de pointe, et une 

AUC légèrement plus basse avec PatientGraph. De même, leur spécificité pour la MA et les CN était 

légèrement inférieure à celle du PET-CNN. Toutefois, dans la tâche de classification CN vs DEM, les 

deux méthodes ont montré des performances comparables à celles du PET-CNN. Comparées à 

AssemblyNet-AD-FTD, nos méthodes ont surpassé ce dernier sur toutes les autres métriques, à 

l’exception de la sensibilité et de l’AUC chez les patients DFT. 

 

 

CN vs DEM 
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 DL-Classifier PatientGraph PET-CNN AssemblyNet-AD-
FTD 

AUC 0.99 [0.98 – 1] 0.98 [0.96 – 0.99] 0.99 [0.98 – 1] 0.96 [0.94 – 0.98] 

Sens 0.93 [0.89 – 0.96] 0.92 [0.88 – 0.96] 0.95 [0.92 – 0.98] 0.91 [0.87 – 0.95] 

Spec 0.99 [0.97– 1] 0.99 [0.97 – 1] 0.95 [0.90 – 0.99] 0.87 [0.80 – 0.93] 

15. Tableau IV-3. Performances de classification binaire. 
Les résultats sont présentés sous forme de valeur [intervalle de confiance 95 %]. AUC : Aire sous la courbe ; 
Sens. : Sensibilité ; Spec : Spécificité. 

CN vs AD vs FTD 

  DL-Classifier PatientGraph PET-CNN AssemblyNet-AD-
FTD 

CN AUC 0.99 [0.98–1] 0.98 [0.97–1] 0.99 [0.97–1] 0.96 [0.94–0.99] 

 Sens 0.99 [0.97–1] 0.99 [0.97–1] 0.95 [0.90–0.99] 0.87 [0.80–0.93] 

 Spec. 0.93 [0.89–0.96] 0.92 [0.88–0.96] 0.95 [0.92–0.98] 0.91 [0.87–0.95] 

MA AUC 0.97 [0.95–0.99] 0.95 [0.92–0.97] 0.97 [0.95–0.99] 0.94 [0.92–0.97] 

 Sens 0.91 [0.86–0.95] 0.91 [0.87–0.96] 0.91 [0.86–0.95] 0.82 [0.76–0.88] 

 Spec. 0.92 [0.87–0.96] 0.92 [0.87–0.96] 0.93 [0.89–0.97] 0.87 [0.81–0.92] 

DFT AUC 0.95 [0.91–0.99] 0.89 [0.82–0.95] 0.97 [0.93–1] 0.95 [0.91–0.99] 

 Sens 0.70 [0.56–0.83] 0.67 [0.54–0.81] 0.78 [0.66–0.90] 0.78 [0.66–0.90] 

 Spec. 0.99 [0.99–1] 0.99 [0.99–1] 0.96 [0.93–0.98] 0.94 [0.91–0.97] 

16. Tableau IV-4. Performances de classification multiclasse. 
Les résultats sont présentés sous forme de valeur [intervalle de confiance 95 %]. AUC : Aire sous la courbe ; 
Sens. : Sensibilité ; Spec : Spécificité. 

IV.4.4. Performances de classification du diagnostic sur un ensemble de données 

externe 

Les méthodes DL-Classifier et PatientGraph ont obtenu de bonnes performances sur le jeu de 

données SOCRATES (Tableaux IV-5 et IV-6). Globalement, leurs résultats étaient comparables, avec 

certaines différences : PatientGraph surpassait légèrement le DL-Classifier dans la prédiction des 

groupes pathologiques, tandis que le DL-Classifier montrait de meilleures performances pour les cas 

témoins. Les performances sur le jeu de données externe étaient cohérentes avec celles observées 

sur le jeu de test interne (Tableaux IV-3 et IV-4). Comparées aux références précédentes, nos 

méthodes ont maintenu des valeurs élevées d’AUC, de sensibilité et de spécificité, confirmant leur 

robustesse à travers les différents jeux de données. 
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CN vs DEM 

 DL-Classifier PatientGraph 

AUC 0.98 [0.94 – 1] 0.98 [0.94 – 1] 

Sens 0.93 [0.84 – 1.] 0.98[0.93 – 1.] 

Spec 0.95 [0.85 – 0.1.] 0.80 [0.61 – 0.973] 

17. Tableau IV-5. Performances de classification binaire sur le jeu de données SOCRATES. 
Les résultats sont présentés sous forme de valeur [intervalle de confiance 95 %]. AUC : Aire sous la courbe ; 
Sens. : Sensibilité ; Spec : Spécificité. 

CN vs AD vs FTD 

  DL-Classifier PatientGraph 

CN AUC 0.98 [0.93 – 1] 0.98 [0.93 – 1] 

 Sens 0.95 [0.85 – 1] 0.79 [0.60 – 0.97] 

 Spec. 0.93 [0.85 – 1] 0.98 [0.93 – 1] 

MA AUC 0.97 [0.95- 0.99] 0.97 [0.91 – 1] 

 Sens 0.85 [0.69 – 1] 0.9 [0.77 – 1] 

 Spec. 0.97 [0.93 – 1] 0.92 [0.84 – 1] 

DFT AUC 0.95 [0.91 – 0.99] 0.99 [0.95 – 1.] 

 Sens 0.90 [0.77 – 1] 0.95 [0.85 – 1] 

 Spec. 0.95 [0.88 – 1] 0.92 [0.84 – 1] 

18. Tableau IV-6. Performances de classification multiclasse sur le jeu de données SOCRATES. 
Les résultats sont présentés sous forme de valeur [intervalle de confiance 95 %]. AUC : Aire sous la courbe ; 
Sens. : Sensibilité ; Spec : Spécificité. 

IV.4.5. Analyse de survie des MCI (MEMENTO Dataset) 

IV.4.5.1. Analyse de survie 
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33. Figure IV-6. Projection des MCI dans le PatientSpace. 
Pour une meilleure visualisation, les MCI stables (à gauche) ont été séparés des converters (à droite). Les carrés 
verts représentent les MCI stables, tandis que les carrés rouges représentent les MCI converters. Les cercles 
correspondent aux sujets du PatientSpace : vert pour CN, rouge pour MA et bleu pour DFT. 

Lors de la session initiale, 61 % (86 sur 141) des MCI converters étaient projetés dans des clusters 

liés à la démence, tandis que 89 % (471 sur 532) des MCI stables étaient projetés dans les clusters 

CN (Figure IV-6). Fait intéressant, aucun MCI n’était attribué au cluster AD#1 ; un seul converter était 

projeté dans AD#2, six dans AD#5, et un dans FTD#1. Ces clusters ont été exclus des analyses de 

survie ultérieures en raison de leur taille. 

L’analyse de survie de la cohorte de MCI (Figure IV-7) a révélé des trajectoires de conversion 

significativement différentes entre les clusters (p < 0,001). Parmi les clusters CN, les MCI initialement 

projetés dans CN#1 présentaient le taux de progression le plus faible vers la démence, suivis de 

CN#2, tandis que CN#3 montrait un risque intermédiaire, modéré. En revanche, les clusters liés à la 

démence présentaient des taux de conversion nettement plus élevés. AD#3 montrait la progression 

la plus rapide vers la démence, suivi de’AD#4, tandis que FTD#2 présentait le taux de conversion le 

plus bas parmi les clusters liés à la démence. 
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34. Figure IV-7. Analyse de Kaplan-Meier pour la conversion vers la démence chez les sujets MCI. 

IV.4.5.2. Évolution des MCI converters 

La matrice de transition pour les MCI stables montrait qu’ils demeuraient majoritairement au sein 

des clusters CN (Figure IV-8). Parmi les sujets MCI stables projetés dans AD#3, 66 % revenaient vers 

un cluster CN, alors que seulement 24 % de ceux du cluster AD#4 montraient une telle réversion. 

Enfin, les MCI stables associés à FTD#2 présentaient une probabilité de 33 % de réversion vers un 

cluster CN. 

En revanche, la matrice de transition des MCI converters montrait qu’aucun ne revenait des clusters 

liés à la démence vers les clusters CN (Figure IV-7). De plus, les sujets MCI du cluster CN#1 ne 

pouvaient que passer au cluster CN#2 avec une probabilité de 67 %, ou rester dans CN#1. Ensuite, 

ceux projetés dans CN#2 présentaient une probabilité de 47 % de transition vers un cluster lié à la 

démence, tandis que ceux dans CN#3 avaient une probabilité de 79 %. 
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35. Figure IV-8. Matrices de transition pour les MCI stables (gauche) et converters (droite). 
Les valeurs correspondaient aux probabilités de transition pour les sujets MCI converters et les sujets MCI 
stables se déplaçant entre les clusters au fil du temps. 

IV.5. Discussion 
Nous avons introduit le PatientSpace, un cadre de représentation latente basé sur un graphe, conçu 

pour décomposer l’hétérogénéité des maladies neurodégénératives à partir de données de 

neuroimagerie multimodale. Fondé sur un VAE structuré entraîné à partir de l’IRM T1w et la TEP 

FDG, le PatientSpace permet une analyse interprétable des patients individuellement, via des 

comparaisons de voisinage dans l’espace latent. Le modèle intègre les diagnostics, l’âge ainsi qu’un 

nouveau terme de régularisation consistante, structurant l’espace latent pour une meilleure 

pertinence biologique et clinique. Nos résultats montrent que le PatientSpace capture 

l’hétérogénéité de la maladie chez les individus MA, DFT et CN, offrant des informations 

complémentaires sur les sous-types de la maladie, sa sévérité et sa progression. 

IV.5.1. Avancées méthodologiques 

Le PatientSpace s’appuie sur les techniques existantes de modélisation en espace latent et les étend 

en intégrant plusieurs innovations clés. 

Au cœur du modèle se trouve un VAE multimodal qui intègre à la fois l’IRM T1w et la TEP FDG, 

capturant ainsi les signatures anatomiques et métaboliques complémentaires de la 

neurodégénérescence. Plutôt que de décomposer explicitement l’espace latent en composants 

partagés et spécifiques à chaque modalité (Lee and Pavlovic, 2021), notre architecture multitâche 

peut implicitement privilégier une modalité par rapport à l’autre. Si ce choix peut retarder 

l’apprentissage des caractéristiques provenant de la modalité moins priorisée, il présente l’avantage 

de capturer le décalage temporel entre les marqueurs de la TEP FDG et de l’IRM T1 de la 

neurodégénérescence. Sur le plan clinique, il est bien établi que la TEP FDG peut détecter des 

changements neurodégénératifs plus précocement dans le cours de la maladie, tandis que l’IRM 
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reflète principalement l’atrophie structurelle et la sévérité de la maladie aux stades avancés (Del 

Sole et al., 2017). 

Cependant, obtenir un espace latent à la fois structuré et désentrelacé ne peut se faire uniquement 

par apprentissage non supervisé. Des biais inductifs supplémentaires, tels que la supervision, sont 

nécessaires pour contraindre la représentation latente (Locatello et al., 2019). À cette fin, l’âge et le 

diagnostic ont été inclus comme signaux de supervision structurant l’espace latent selon des axes 

cliniquement pertinents. Le diagnostic permet de distinguer les différentes maladies 

neurodégénératives, tandis que l’âge capture la variabilité naturelle et la progression de la maladie. 

Ceci est particulièrement important étant donné la distinction clinique entre formes à début précoce 

et formes à début tardif des maladies (Rossor et al., 2010; Seath et al., 2024; Tellechea et al., 2018) 

Néanmoins, se reposer uniquement sur des contraintes supervisées peut limiter l’interprétabilité du 

modèle et ne pas saisir l’hétérogénéité connue de maladies comme la MA et la DFT, qui présentent 

des phénotypes de neuroimagerie divers et des variations dépendantes du stade (Dubois et al., 

2023; Koenig et al., 2018; Musa et al., 2020; Ossenkoppele et al., 2015b). Pour y remédier, un terme 

de régularisation consistante a été introduit afin d’améliorer la robustesse et la stabilité des 

représentations latentes face à la variabilité phénotypique dérivée de l’imagerie. Cette régularisation 

sert de proxy pour la similarité des neuroimageries, permettant la construction d’un graphe où la 

proximité reflète la ressemblance biologique. 

Parmi tous les composants, la régularisation consistante a eu l’impact le plus important sur les 

performances du modèle (Tableaux IV-A1 et IV-A2). Cette approche se distingue de la plupart des 

modèles existants, qui se concentrent uniquement sur la classification ou le clustering non supervisé, 

sans fournir d’interprétabilité explicite ni de pertinence clinique. 

IV.5.2. Performances de la classification diagnostique 

En projetant de nouveaux sujets dans le PatientSpace et en s’appuyant uniquement sur les 

informations provenant des cas voisins, notre modèle a atteint des performances comparables à 

celles des méthodes de référence ainsi qu’à la tête de classification du modèle VAE. La 

généralisation a été validée à l’aide des images SOCRATES, acquises par TEP-IRM sur un site externe. 

Si les résultats étaient compétitifs pour la classification CN versus démence, le PatientSpace a 

montré une sensibilité réduite pour différencier MA et DFT. Plusieurs facteurs expliquent 

probablement cette limitation. 

Premièrement, les cas de DFT étaient sous-représentés (13 % des données), limitant la capacité du 

modèle à capturer l’ensemble des profils liés à la DFT. Selon la littérature (Ghosh and Lippa, 2015), la 

DFT comprend trois sous-types principaux : le variant comportementale (bvFTD), la forme la plus 

fréquente, ainsi que le variant sémantique (SV) et le variant aphasie non fluente progressive (PNFA), 

représentant ensemble environ 45 % de tous les cas de DFT (SD : 20–25 %, PNFA : ~25 %). En 

revanche, seuls 17 des 106 patients DFT de notre cohorte (16 %) présentaient un profil SV ou PNFA, 

indiquant une sous-représentation importante de ces sous-types. 

Deuxièmement, le jeu de données multicentrique ne contenait pas la représentation complète des 

diagnostics à chaque site, ce qui peut introduire des biais spécifiques aux sites. Troisièmement, 

l’architecture de notre modèle n’imposait pas de séparation stricte de l’espace latent entre les 
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catégories diagnostiques, ce qui a pu préserver des recouvrements cohérents avec l’hétérogénéité 

clinique observée en pratique. 

Pour pallier le déséquilibre de classification, les modèles futurs pourraient utiliser des classifieurs 

hiérarchiques, séparant d’abord CN et démence, puis distinguant la MA de la DFT. Cette approche en 

deux étapes a montré son intérêt pour des tâches similaires (Kim et al., 2019). D’autres stratégies 

possibles incluent la repondération de la perte (Cui et al., 2019) ou le hard-sample mining (Lin et al., 

2018). Cependant, les chevauchements dans l’espace latent peuvent également refléter le 

continuum biologique entre des présentations atypiques de la MA et de la DFT, en particulier pour 

les formes précoces ou non amnésiques (Harciarek and Jodzio, 2005; Mendez, 2006). 

IV.5.3. Sous-types de maladies et interprétation des clusters 

Le clustering agglomératif du graphe latent, construit sur le jeu d’entraînement, a révélé 7 clusters 

liés à la démence présentant une signification clinique et biologique. Parmi ceux-ci, cinq clusters MA 

distincts ont émergé. Les clusters AD#1 et AD#2 correspondaient à des EOAD (MA à début précoce), 

tandis qu’AD#4 et AD#5 représentaient des LOAD (MA à début tardif). AD#3 apparaissait comme un 

cluster intermédiaire entre EOAD et LOAD. Notamment, AD#1 et AD#2 présentaient les scores 

MMSE les plus bas, cohérents avec la sévérité plus importante typiquement observée dans l’EOAD 

(Koedam et al., 2010). 

Deux principaux profils d’atrophie ont été identifiés : un profil d’atrophie typique (AD#1 – AD#4) et 

un profil d’atrophie minimale (AD#5), en accord avec des résultats précédents (Kang et al., 2024; 

Poulakis et al., 2018). L’hypométabolisme de la TEP-FDG a confirmé ces profils connus (Levin et al., 

2021) : AD#1, AD#2, AD#3 et AD#4 présentaient un hypométabolisme typique, tandis qu’AD#5 

montrait un hypométabolisme minimal. 

Contrairement aux études antérieures ayant identifié des profils atypiques de MA, nos clusters MA 

présentaient majoritairement une atrophie temporo-pariétale et un hypométabolisme typiques. 

Plusieurs facteurs peuvent expliquer cette observation. Premièrement, nous avons utilisé 

uniquement des données de neuroimagerie, alors que les travaux précédents incorporaient souvent 

des données cognitives, génétiques ou extraites de l’imagerie. De plus, notre approche repose sur 

des données multimodales, alors que d’autres études se concentraient sur une seule modalité. 

Deuxièmement, notre modèle se focalise sur l’apprentissage de représentations structurées et non 

sur l’optimisation du clustering. En outre, nous avons inclus plusieurs populations pathologiques, 

améliorant la pertinence clinique et reflétant mieux les situations diagnostiques réelles. 

Troisièmement, l’âge chronologique a été explicitement modélisé plutôt que régressé, ce qui a pu 

orienter l’espace latent selon la variabilité liée à l’âge. Enfin, l’inclusion de données issues du centre 

de la mémoire de Lille a introduit un spectre plus large de sévérité et de comorbidités par rapport 

aux cohortes de recherche comme ADNI. 

Au-delà de la MA, deux clusters distincts de DFT ont été identifiés. L’un présentait une atrophie et un 

hypométabolisme fronto-temporaux typiques de la bvFTD ; l’autre montrait une atteinte 

prédominante des lobes temporaux et incluait la majorité des cas SV et PNFA. Ces résultats sont 

cohérents avec les phénotypes de neuroimagerie connus de la DFT (Peet et al., 2021) : la bvFTD 

affecte principalement les lobes frontaux, tandis que la SV et la PNFA impliquent les régions 

temporales et insulaires. 
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Dans l’ensemble, ces résultats soulignent la capacité du PatientSpace à retrouver les phénotypes de 

neuroimagerie bien établis de la MA et de la DFT à partir de l’imagerie seule, offrant un outil 

précieux pour soutenir le diagnostic différentiel dans des présentations cliniques complexes ou 

ambiguës. 

IV.5.4. Interprétabilité au niveau du patient 

En analysant les voisinages locaux du graphe, nous avons montré que le PatientSpace permet une 

inférence des biomarqueurs structurels et métaboliques au niveau du patient. Les valeurs prédites et 

de référence pour les volumes cérébraux régionaux et les SUVR étaient modérément à fortement 

corrélées dans les principales régions d’intérêt. Ces résultats indiquent que le PatientSpace capture 

non seulement les motifs au niveau du groupe, mais permet également une interprétation 

individualisée, cruciale pour un déploiement clinique. La précision des prédictions était la plus élevée 

pour les volumes globaux et les régions temporo-pariétales, tandis que des corrélations plus faibles 

dans les régions frontales et limbiques suggèrent certaines limites de robustesse du modèle. 

Par ailleurs, la prédiction du stade MMSE avec le PatientSpace a atteint des performances 

acceptables, la majorité des cas étant classés dans le niveau de sévérité correct ou adjacent. 

L’absence de classifications grossières (par exemple, une démence sévère prédite comme CN) 

renforce encore la fiabilité de l’approche. 

IV.5.5. Trajectoires longitudinales des sujets MCI 

La projection des sujets MCI de la cohorte externe MEMENTO dans le PatientSpace a révélé de 

fortes associations entre l’appartenance aux clusters et les taux de conversion vers la démence. 

Notamment, aucun MCI n’a été projeté dans le cluster AD#1, un seul dans AD#2, six dans AD#5 et un 

dans FTD#1. Cette distribution reflète l’effet de l’âge et de la sévérité de la maladie : les clusters 

AD#1 et AD#2 sont principalement composés d’individus plus jeunes présentant une démence 

modérée à sévère, les plaçant en dehors de l’âge et du stade typiques des patients MCI. De même, le 

faible nombre de MCI projetés dans FTD#1 provient probablement à la fois de différences d’âge et 

de discordances neuroimageries – FTD#1 présente un schéma caractéristique d’atrophie et 

d’hypométabolisme bvFTD, tandis que les MCI de MEMENTO présentent principalement des profils 

prodromaux de la MA. 

Les MCI projetés dans les clusters liés à la démence avaient tendance à progresser plus rapidement, 

tandis que ceux mappés aux clusters CN restaient généralement stables. Ces taux de conversion 

étaient cohérents avec les profils de neuroimagerie sous-jacents d’atrophie et d’hypométabolisme 

caractéristiques de chaque cluster. Par exemple, le cluster FTD#2, qui présentait le moins d’atrophie 

et d’hypométabolisme parmi les clusters liés à la démence, avait également le taux de conversion le 

plus faible. Inversement, bien que AD#3 et AD#4 présentent des niveaux similaires d’atrophie et 

d’hypométabolisme, AD#3 était associé à une progression plus rapide, probablement en raison de sa 

proportion plus élevée de patients EOAD issus du CHU de Lille, cohérente avec les rapports de déclin 

plus rapide chez l’EOAD (Seath et al., 2024; Tellechea et al., 2018). 

L’analyse des matrices de transition a également montré que l’appartenance aux clusters était stable 

dans le temps, la majorité des patients suivant des trajectoires monotones des clusters CN vers les 

clusters liés à la démence. Aucune réversion n’a été observée, reflétant la nature progressive de la 

neurodégénérescence. Ces résultats sont en accord avec des travaux précédents (Misra et al., 2009; 
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Pagani et al., 2017), confirmant que les MCI converters présentent souvent déjà des modifications 

cérébrales détectables en termes d’atrophie ou de métabolisme. 

Dans l’ensemble, ces résultats soutiennent l’utilisation du PatientSpace pour le staging et le suivi de 

la progression de la maladie dans les populations prodromales. 

IV.5.6. Limites et perspectives 

Notre approche requiert actuellement des données multimodales complètes pour chaque sujet, 

limitant son applicabilité dans des contextes réels où les données manquantes sont fréquentes. Les 

travaux futurs devraient adapter le PatientSpace pour gérer les modalités partiellement 

manquantes, par exemple via l’imputation de modalités ou le modality dropout (Wu et al., 2024). 

Malheureusement, aucun centre unique n’a fourni des sujets couvrant les trois catégories 

diagnostiques, ce qui aurait permis de minimiser le risque d’apprentissage de biais spécifiques aux 

sites. Par exemple, le CHU de Lille n’incluait aucun sujet CN (Tableau IV-S1), car notre base de 

données, construite à partir de données cliniques, ne contient pas de témoins sains. Cela reflète un 

défi plus large dans l’application de l’IA aux données cliniques : les témoins sains sont généralement 

sous-représentés ou absents dans les cohortes hospitalières. Dans ce contexte, il est important de 

noter que l’augmentation des données, bien que nécessaire pour accroître la diversité des exemples 

d’entraînement, peut théoriquement accentuer les biais inter-classes (Balestriero et al., 2022). 

L’utilisation de l’IRM T1w et de la TEP-FDG comme principaux biomarqueurs peut être remise en 

question, d’autres techniques d’imagerie et biomarqueurs pouvant également aider à distinguer les 

maladies neurodégénératives. Par exemple, l’imagerie par tenseur de diffusion (DTI) et l’IRM 

fonctionnelle en repos ont montré des résultats prometteurs pour différencier ces pathologies 

(Agosta et al., 2017; Goveas et al., 2015; Young et al., 2020). L'imagerie TEP amyloïde et tau a 

également montré de bonnes performances diagnostiques (Groot et al., 2024; Ioannou et al., 2025; 

Rabinovici et al., 2011; Vandenberghe et al., 2013). Les analyses de LCR et les biomarqueurs sanguins 

pourraient aussi être envisagés. Cependant, le prélèvement du LCR nécessite une ponction lombaire 

invasive, les biomarqueurs sanguins ne sont pas encore largement utilisés en pratique clinique, la 

TEP amyloïde coûte environ deux fois plus cher que la TEP-FDG (Contador et al., 2023; Teunissen et 

al., 2022), et la TEP tau montre une sensibilité limitée aux stades précoces, avec de nombreux sujets 

MCI ou certains patients MA amyloïde-positifs présentant des scans négatifs (Ossenkoppele and 

Hansson, 2021). Enfin, l’IRM T1w et la TEP-FDG restent des outils de référence standard pour le 

diagnostic de démence (Young et al., 2020). La TEP-FDG a pris de l’importance dans les diagnostics 

cliniques récents (Chételat et al., 2020), et l’IRM T1w est la séquence la plus couramment utilisée 

dans les essais cliniques pour suspicion de neurodégénérescence et constitue la référence pour le 

staging de la maladie (Del Sole et al., 2017; Young et al., 2020). 

Notre étude s’est concentrée exclusivement sur la MA et la DFT. Étendre le modèle à d’autres 

syndromes neurodégénératifs, tels que la maladie à corps de Lewy ou les troubles parkinsoniens, 

pourrait améliorer son utilité en tant qu’outil de biomarqueurs de neuroimagerie à usage général. 

IV.6. Conclusion 
En conclusion, le PatientSpace offre un espace latent interprétable et cliniquement pertinent pour 

l’analyse des données de neuroimagerie multimodale dans les maladies neurodégénératives. En 
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combinant l’apprentissage profond et l’analyse basée sur les graphes, il permet à la fois la 

découverte de sous-types au niveau de la population et l’interprétabilité au niveau du patient, avec 

des applications potentielles en diagnostic, pronostic et suivi de la progression de la maladie. 

IV.7. Appendix 

IV.7. A1 : Résultats complémentaires sur les variantes du PatientSpace 

 

CN vs DEM 

  IRM+TEP IRM TEP Consistenc
y ablated 

Age 
ablated 

Vanilla 

Classifier DL AUC 0.99 [0.98 
– 1.00] 

0.96 [0.94 
– 0.98] 

0.99 [0.98 
– 1.00] 

0.98 [0.97 
– 0.99] 

0.99 [0.98 
– 1.00] 

0.99 [0.98 
– 1.00] 

Sens 0.93 [0.89 
– 0.96] 

0.85 [0.80 
– 0.90] 

0.95 [0.93 
– 0.98] 

0.89 [0.84 
– 0.93] 

0.92 [0.88 
– 0.96] 

0.96 [0.93 
– 0.99] 

Spec. 0.99 [0.97 
– 1.00] 

0.95 [0.90 
– 0.99] 

0.97 [0.94 
– 1.00] 

0.99 [0.97 
– 1.00] 

0.97 [0.94 
– 1.00] 

0.97 [0.94 
– 1.00] 

PatientGraph AUC 0.98 [0.96 
– 0.99] 

0.96 [0.94 
– 0.98] 

0.98 [0.97 
– 1.00] 

0.88 [0.85 
– 0.92] 

0.96 [0.94 
– 0.98] 

0.95 [0.93 
– 0.98] 

Sens 0.92 [0.88 
– 0.96] 

0.85 [0.80 
– 0.90] 

0.93 [0.89 
– 0.97] 

0.90 [0.86 
– 0.94] 

0.89 [0.85 
– 0.94] 

0.85 [0.80 
– 0.90] 

Spec. 0.99 [0.97 
– 1.00] 

0.95 [0.90 
– 0.99] 

0.98 [0.95 
– 1.00] 

0.76 [0.68 
– 0.85] 

0.93 [0.88 
– 0.98] 

0.91 [0.85 
– 0.97] 

19. Tableau IV-A1. Performances de classification binaire. 
Les résultats sont présentés sous forme de valeur [intervalle de confiance 95 %]. AUC : Aire sous la courbe ; 
Sens. : Sensibilité ; Spec : Spécificité 
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CN vs AD vs DFT 

 Diagnostique  IRM+TEP IRM TEP Consistency 
ablated 

Age ablated Vanilla 

DL-Classifier CN AUC 0.99 [0.98–1.00] 0.96 [0.93–0.99] 0.99 [0.97–1.00] 0.98 [0.96–1.00] 0.99 [0.98–1.00] 0.99 [0.98–1.00] 

Sens 0.99 [0.97–1.00] 0.95 [0.90–0.99] 0.97 [0.94–1.00] 0.99 [0.97–1.00] 0.97 [0.94–1.00] 0.97 [0.94–1.00] 

Spec 0.93 [0.89–0.96] 0.85 [0.80–0.90] 0.95 [0.93–0.98] 0.89 [0.84–0.93] 0.92 [0.88–0.96] 0.96 [0.93–0.99] 

MA AUC 0.97 [0.95–0.99] 0.90 [0.86–0.94] 0.95 [0.93–0.98] 0.95 [0.92–0.97] 0.95 [0.93–0.98] 0.97 [0.95–0.99] 

Sens 0.91 [0.86–0.95] 0.77 [0.71–0.84] 0.90 [0.85–0.95] 0.79 [0.72–0.85] 0.86 [0.80–0.92] 0.94 [0.90–0.98] 

Spec 0.92 [0.87–0.96] 0.90 [0.85–0.95] 0.89 [0.84–0.94] 0.93 [0.89–0.97] 0.91 [0.86–0.96] 0.90 [0.85–0.95] 

DFT AUC 0.95 [0.91–0.99] 0.88 [0.82–0.95] 0.92 [0.86–0.97] 0.91 [0.85–0.97] 0.92 [0.87–0.98] 0.96 [0.92–1.00] 

Sens 0.70 [0.56–0.83] 0.63 [0.49–0.77] 0.65 [0.52–0.79] 0.74 [0.61–0.87] 0.61 [0.47–0.75] 0.65 [0.52–0.79] 

Spec 0.99 [0.99–1.00] 0.95 [0.93–0.98] 0.96 [0.94–0.99] 0.95 [0.92–0.98] 0.95 [0.92–0.98] 1.00 [1.00–1.00] 

PatientGraph CN AUC 0.98 [0.97–1.00] 0.94 [0.91–0.98] 0.98 [0.96–1.00] 0.88 [0.84–0.93] 0.96 [0.94–0.99] 0.95 [0.92–0.98] 

Sens 0.99 [0.97–1.00] 0.88 [0.81–0.94] 0.98 [0.95–1.00] 0.76 [0.68–0.85] 0.93 [0.88–0.98] 0.91 [0.85–0.97] 

Spec 0.92 [0.88–0.96] 0.88 [0.83–0.92] 0.93 [0.89–0.97] 0.90 [0.86–0.94] 0.89 [0.85–0.94] 0.85 [0.80–0.90] 

MA AUC 0.95 [0.92–0.97] 0.87 [0.83–0.91] 0.95 [0.92–0.97] 0.87 [0.83–0.91] 0.94 [0.91–0.97] 0.89 [0.86–0.93] 

Sens 0.91 [0.87–0.96] 0.83 [0.77–0.89] 0.92 [0.88–0.96] 0.89 [0.84–0.94] 0.89 [0.84–0.94] 0.83 [0.77–0.89] 
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Spec 0.92 [0.87–0.96] 0.80 [0.74–0.87] 0.89 [0.84–0.94] 0.77 [0.70–0.84] 0.92 [0.87–0.96] 0.77 [0.70–0.84] 

DFT AUC 0.89 [0.82–0.95] 0.79 [0.71–0.87] 0.88 [0.82–0.95] 0.88 [0.82–0.95] 0.89 [0.82–0.95] 0.88 [0.82–0.95] 

Sens 0.67 [0.54–0.81] 0.48 [0.33–0.62] 0.61 [0.47–0.75] 0.54 [0.40–0.69] 0.61 [0.47–0.75] 0.37 [0.23–0.51] 

Spec 0.99 [0.99–1.00] 0.96 [0.94–0.98] 0.99 [0.98–1.00] 0.97 [0.95–0.99] 0.97 [0.95–0.99] 1.00 [1.00–1.00] 

20. Tableau IV-A2. Performances de classification multiclasses. 
Les résultats sont présentés sous forme de valeur [intervalle de confiance 95 %]. AUC : Aire sous la courbe ; Sens. : Sensibilité ; Spec : Spécificité. 
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IV.8. Annexes 

IV.8. S.1. Acquisition des données 

IV.8.  S.1.1. TEP-FDG 

Les scans TEP-FDG issus de la base de données du Centre Hospitalier Universitaire de Lille ont été 

acquis sur un PET/CT hybride Biograph mCT-Flow à 4 anneaux (Siemens) avec un scanner CT de 20 

coupes et des cristaux de lutétium oxyorthosilicate de 4 × 4 mm². La dose moyenne de FDG était de 

177 MBq (SD = 19 MBq). Après 30 minutes, un CT à faible dose a été réalisé pour la correction 

d’atténuation, suivi d’une acquisition PET de 10 minutes. Les données ont été reconstruites à l’aide 

d’un algorithme OSEM (8 itérations, 21 sous-ensembles) avec corrections de décroissance, aléatoires 

et de diffusion, et un lissage gaussien de 2 mm. Les images finales consistaient en 109 coupes axiales 

(FOV = 408 × 408 × 221,3 mm³, matrice = 400 × 400 × 109, taille de voxel = 1,02 × 1,02 × 2,03 mm³). 

Pour l'acquisition d'ADNI, le protocole peut être trouvé à l'adresse suivante 

https://adni.loni.usc.edu/wp-content/uploads/2010/05/ADNI2_PET_Tech_Manual_0142011.pdf. La 

dose de traceur FDG était de 185 MBq (± 10 %), et entre 30 et 60 minutes après l’injection, six 

acquisitions dynamiques 3D de 5 minutes chacune ont été réalisées. Un scan CT à faible dose a été 

acquis pour la correction d’atténuation, ou, pour les scanners TEP seuls, un scan de correction 

d’atténuation a été réalisé à l’aide de sources en tige. 

Tous les scans FTLDNI ont été acquis au centre Mayo Clinic sur un scanner PET/CT GE Discovery RX. 

Les participants ont reçu une injection de 185 MBq (± 10 %) de FDG, et l’acquisition a commencé 30 

minutes plus tard, consistant en six frames dynamiques de 5 minutes. Un scan CT, obtenu avant 

l’injection de FDG, a été utilisé pour la correction d’atténuation, et la reconstruction a été réalisée 

selon la technique de rétroprojection filtrée 3D. 

Toutes les images ont été examinées par un expert (Antoine Rogeau) pour le contrôle de la qualité 

visuelle. 

IV.8. S.1.2. IRM pondérée T1 

Les scans IRM T1w du Centre Hospitalier Universitaire de Lille ont été acquis sur un scanner 3T 

(Achieva Philips, Best, Pays-Bas) avec les paramètres suivants : TR/TE = 9,9 ms / 4,6 ms, angle de 

bascule = 8°, taille de voxel = 0,94 × 0,94 × 1,2 mm³. 

Pour l'acquisition de l'ADNI, le protocole de chaque IRM peut être trouvé à l'adresse suivante : 

https://adni.loni.usc.edu/data-samples/adni-data/neuroimaging/mri/mri-scanner-protocols/. 

Les IRM T1w ont été acquises sur des scanners General Electric Healthcare, Philips Medical Systems 

et Siemens Medical Solutions à 3T pour les protocoles ADNI2/GO/3 et à 1,5T pour le protocole 

ADNI1. 

Toutes les images ont été examinées par un expert (Grégory Kuchcinski) pour le contrôle de la 

qualité visuelle. 

IV.8. S.1.3. Différences entre les sites 

Le tableau IV-S1 présente la répartition des diagnostics entre les différents sites. 

https://adni.loni.usc.edu/wp-content/uploads/2010/05/ADNI2_PET_Tech_Manual_0142011.pdf
https://adni.loni.usc.edu/data-samples/adni-data/neuroimaging/mri/mri-scanner-protocols/
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 CN MA DFT 

ADNI 463 379 0 

NIFD 59 0 87 

CHU de Lille 0 430 104 

21. Tableau IV-S1. Répartition des diagnostics entre les sites. 

IV.8. S.2. Ensemble des données externes 

IV.8. S.2.1. Jeu de données MEMENTO 

Le jeu de données MEMENTO (https://portal.dementiasplatform.uk/) a été utilisé pour évaluer la 

conversion des MCI et l’évolution de la maladie au sein du PatientSpace. Les critères d’inclusion 

étaient les suivants : être âgé de 18 ans ou plus ; présenter au moins un léger déficit cognitif, défini 

comme un score inférieur d’une déviation standard à la moyenne (par rapport aux normes d’âge et 

d’éducation) dans un ou plusieurs domaines cognitifs (cette déviation devant être identifiée dans les 

six mois précédant la date d’inclusion) OU avoir une plainte cognitive isolée, quelle qu’en soit la 

durée, si l’âge est de 60 ans ou plus (sans déficit cognitif tel que défini ci-dessus) ; CDR ≤ 0,5 et 

absence de démence ; acuité visuelle et auditive suffisante pour passer les tests 

neuropsychologiques ; avoir signé un consentement éclairé ; et être affilié à un régime d’assurance 

maladie. 

Il est à noter qu’aucun des participants issus de la cohorte MCI n’a été inclus dans l’entraînement du 

modèle. 

Jeu de données MEMENTO 

 Ligne de base 

Diagnostic MCI 

N balayages 673 

Âge, années 70.24 ± 9.10 

Femmes, % 381 (57%) 

MMSE 28 (27 - 29) 

Converters, % 141 (21%) 

https://portal.dementiasplatform.uk/
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22. Tableau IV-S2. Caractéristiques démographiques de l'ensemble de données MEMENTO à l'inclusion. 

IV.8. S.2.2. Jeu de données SOCRATES 

Le jeu de données SOCRATES a été utilisé pour évaluer la généralisation de nos méthodes. Tous les 

sujets ont été recrutés dans un centre expert universitaire tertiaire de mémoire (Institut de la 

Mémoire et de la Maladie d’Alzheimer – Département de Neurologie, Hôpital Universitaire Pitié-

Salpêtrière) à partir de la cohorte SOCRATES, visant à suivre un groupe de patients diagnostiqués 

avec la maladie d’Alzheimer (MA) ou des troubles apparentés, âgés de 40 à 80 ans et présentant un 

score au Mini-Mental State Examination (MMSE) supérieur à 10 au moment de l’inclusion. 

Les critères d’exclusion comprenaient la démence vasculaire (selon les critères NINDS-AIREN) ou la 

démence mixte (avec un score de Hachinski > 4), toute pathologie neurologique concomitante 

significative, un cancer actif, des antécédents de cancer cérébral, une maladie métastatique 

cérébrale ou une irradiation cérébrale antérieure. 

Le diagnostic de la MA et des troubles apparentés a été établi par une évaluation multidisciplinaire 

incluant un examen neurologique, un bilan neuropsychologique complet, ainsi que des analyses 

biologiques, génétiques et des neuroimageries. 

Les patients ont passé l’examen PET-MR entre 2015 et 2021. Toutes les données PET et IRM ont été 

acquises simultanément à l’aide d’un système intégré PET/IRM (3T SIGNA PET/MRI, GE Healthcare, 

Milwaukee, États-Unis) 30 minutes après l’injection intraveineuse de 2 MBq/kg de 18F-FDG. Les 

images PET 18F-FDG ont été acquises pendant 15 minutes. Les images PET ont été acquises et 

reconstruites de manière itérative en utilisant l’algorithme OSEM (Ordered Subsets Expectation 

Maximization) avec 4 itérations et 28 sous-ensembles, et corrigées des effets de volume partiel. La 

résolution finale des images était de 1,17 × 1,17 × 2,78 mm³. Pour la correction de l’atténuation des 

photons, une méthode basée sur un atlas a été mise en œuvre dans le système PET/IRM, en utilisant 

soit l’approche VPFXS, soit QCFX. L’acquisition IRM comprenait au moins des images IRM 3D 

pondérées en T1. 

 CN MA DFT 

N balayages 19 20 20 

Âge, années 65.45 ± 9.16 69,42 ± 7,66 65.14 ± 9.78 

Femmes, % 50% 45% 45% 

MMSE - 20 (15 – 23) 24.5 (21 – 27) 
23. Tableau IV-S3. Caractéristiques démographiques de l'ensemble de données SOCRATES. 

IV.8. S.3. Détails supplémentaires du modèle 

IV.8. S.3.1. Entrainement 

Au cours des deux premières époques, les poids 𝑤𝑡  ont été fixés à 1. 
Les autres poids de régularisation ont été fixés comme suit 𝜆1  =  0,01, 𝜆2  =  300, 𝜆3  =  1. 
Pour 𝜆4, son impact a été progressivement augmenté de 0,2 à 2 au cours des dix premières époques. 
Nous avons utilisé l'optimiseur AdamW (Loshchilov et Hutter, 2019) avec un taux d'apprentissage de 

10−4 et un coefficient de régularisation (weight decay) de 10−5. 

https://www.zotero.org/google-docs/?mDAObq
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IV.8. S.3.2. Nombre optimal de voisins 

Le nombre optimal de voisins K a été déterminé en projetant les sujets de validation dans 

PatientSpace et en sélectionnant la valeur de K qui maximisait la précision équilibrée de la 

classification et l'AUC moyenne macro. 

IV.8. S.4. Organisation du PatientSpace 

 

ROI Corrélation de 
Pearson r 

IC-95 % Force de corrélation 

Volumes globaux du cerveau 

GM 0.64 [0.57 - 0.70] Fort 

WM 0.56 [0.48 - 0.70] Modéré à Fort 

LCR 0.71 [0.64 - 0.76] Fort 

Temporal Lobe 0.64 [0.56 - 0.70] Fort 

Frontal Lobe 0.61 [0.53 - 0.68] Fort 

Volumes de retour sur investissement AD 

Hippocampe 0.54 [0.45 - 0.61] Modéré à Fort 

Précuneus 0.53 [0.45 - 0.61] Modéré à Fort 

Gyrus 
parahippocampique 

0.41 [0.31 - 0.50] Modéré 

Cortex entorhinal 0.38 [0.27 - 0.47] Faible - Modéré 

Gyrus cingulaire 
postérieur 

0.37 [0.27 - 0.47] Faible - Modéré 

Gyrus cingulaire 
antérieur 

0.53 [0.44 - 0.64] Modéré à Fort 

Gyrus angulaire 0.60 [0.52 - 0.67] Fort 

Gyrus frontal moyen 0.51 [0.42 - 0.59] Modéré 

Volumes de retours sur investissement DFT 

Cortex insulaire 0.57 [0.48 - 0.64] Modéré à Fort 

Insula antérieure 0.60 [0.52 - 0.67] Fort 

Gyrus frontal 
supérieur 

0.28 [017 - 0.38] Faible 

Gyrus frontal inf. 0.26 [0.15 - 0.37] Faible 

Pôle temporel 0.51 [0.48 - 0.60] Modéré à Fort 

Gyrus temporal 
moyen 

0.70 [0.63 - 0.75] Fort 

Gyrus temporal sup. 0.44 [0.35 - 0.53] Modéré 

Inf. gyrus temporal 0.44 [0.37 - 0.55] Modéré 

AD ROIs SUVR 

Hippocampe 0.46 [0.36 - 0.54] Modéré 

Précuneus 0.77 [0.72 - 0.81] Fort 

Gyrus 
parahippocampique 

0.51 [0.43 - 0.60] Modéré à Fort 

Cortex entorhinal 0.49 [0.40 - 0.58] Modéré 

Gyrus cingulaire 
postérieur 

0.66 [0.59 - 0.72] Fort 

Gyrus cingulaire 
antérieur 

0.69 [0.63 - 0.75] Fort 

Gyrus angulaire 0.80 [0.75 - 0.83] Fort 
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Gyrus frontal moyen 0.52 [0.43 - 0.60] Modéré à Fort 

VUS DFT ROIs 

Insula antérieure 0.62 [0.55 - 0.69] Fort 

Gyrus frontal 
supérieur 

0.43 [0.33 - 0.52] Modéré 

Gyrus frontal inf. 0.46 [0.36 - 0.54] Modéré 

Pôle temporel 0.49 [0.39 - 0.57] Modéré 

Gyrus temporal 
moyen 

0.61 [0.54 - 0.68] Fort 

Gyrus temporal sup. 0.53 [0.45 - 0.61] Modéré à Fort 

Inf. gyrus temporal 0.44 [0.34 - 0.53] Modéré 
24. Tableau IV-S4. Corrélation de Pearson entre les ROIs des MA et des DFT. 
Les corrélations les plus fortes sont en gras. Modéré - Les corrélations modérées sont soulignées. 

IV.8. S.5. Voxel based Morphometry 

Afin d’analyser les profils d’atrophie entre les différents clusters, les IRM structurelles ont été 

prétraitées à l’aide du logiciel SPM (Statistical Parametric Mapping, 

https://www.fil.ion.ucl.ac.uk/spm/). Dans un premier temps, les volumes ont été segmentés en 

matière grise, matière blanche et LCR. Les images de matière grise ont ensuite été registrées dans 

l’espace MNI, puis lissées à l’aide d’un noyau gaussien de 8 mm³. 

L’analyse statistique a été menée à l’aide de tests t bilatéraux à deux échantillons, en intégrant 

comme covariables l’âge, le volume intracrânien total, ainsi que le sexe des participants. Ces 

comparaisons ont permis d’opposer les clusters de patients à des groupes témoins appariés selon 

l’âge et le sexe. Les résultats ont été corrigés pour comparaisons multiples par le Family-Wise Error 

rate (FWE), avec un seuil de significativité fixé à 0,05. 

  

https://www.fil.ion.ucl.ac.uk/spm/
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Chapitre V 
Prédiction du pronostic fonctionnel après 
AVC ischémique dans les Hauts-de-
France grâce à une approche vision-
langage 

Dans le chapitre IV, nous avons développé le PatientSpace dans une approche multimodale, 

combinant IRM T1w et TEP-FDG pour distinguer plusieurs diagnostics (CN, DFT et Alzheimer). Cet 

espace latent structuré et interprétable organise les patients selon leur similarité multimodale (IRM 

et TEP), permettant d’explorer la variabilité interindividuelle tout en facilitant l’explicabilité clinique. 

Néanmoins, le PatientSpace présente certaines limites : il repose uniquement sur des modalités 

similaires (imagerie) et ne permet pas d’identifier quelle modalité contribue à la prédiction 

diagnostique, ni de préciser la manière dont chacune influe sur cette prédiction. Le chapitre V 

aborde cette question de l’interprétabilité multimodale à travers une étude préliminaire intégrant 

quatre modalités hétérogènes — IRM FLAIR, IRM de diffusion (DWI), comptes rendus radiologiques 

et données cliniques — dans le cadre de la prédiction du pronostic fonctionnel après accident 

vasculaire cérébral (AVC), à l’aide d’une approche vision-langage. Ce travail constitue une première 

étape exploratoire vers un projet plus ambitieux, ce qui justifie que les résultats et la discussion ne 

soient présentés ici qu’à un niveau préliminaire. 
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V.1.Introduction 
Les accidents vasculaires cérébraux (AVC) constituent l’une des principales causes de mortalité et de 

handicap à long terme dans le monde (Katan and Luft, 2018). On distingue deux grands types d’AVC : 

les AVC ischémiques, qui représentent environ 85 % des cas, et les AVC hémorragiques, qui en 

représentent environ 15 % (Campbell et al., 2019). Le traitement aigu des AVC ischémiques repose 

principalement sur deux stratégies de revascularisation : la thrombolyse intraveineuse et la 

thrombectomie mécanique, qui améliorent significativement la survie et l’autonomie fonctionnelle 

des patients (Powers et al., 2018). Cependant, malgré ces avancées, un grand nombre de patients ne 

parviennent pas à retrouver une qualité de vie similaire à celle précédant l’AVC. Identifier 

précocement les patients susceptibles de présenter un bon ou un mauvais devenir fonctionnel 

constitue donc un enjeu majeur pour la médecine de précision appliquée aux AVC. 

L’évaluation du devenir fonctionnel repose classiquement sur le modified Rankin Scale (mRS), une 

échelle ordinale en sept niveaux allant de l’absence de symptôme (0) au décès (6) (Broderick et al., 

2017). Dans les études cliniques et en recherche, il est fréquent de dichotomiser ce score afin de 

distinguer un bon rétablissement (mRS ≤ 2) d’un mauvais rétablissement (mRS > 2), généralement à 

trois mois après l’AVC (Weisscher et al., 2008). Cette approche standardisée a favorisé le 

développement de nombreuses méthodes d’IA. 

De nombreux travaux ont ainsi exploré la prédiction du mRS à 3 mois à partir de différents types de 

données. Les facteurs influençant le rétablissement sont multiples : la sévérité initiale de l’AVC, sa 

localisation, mais aussi des variables cliniques telles que l’âge, le sexe, le score NIHSS (National 

Institutes of Health Stroke Scale) gradant la sévérité des symptômes de 0 à 42 (Chalos et al., 2020), 

ou encore des comorbidités comme le tabagisme et l’alcoolisme. Des approches d’apprentissage 

automatique ont montré des performances prometteuses. Par exemple, Liu et al. (Liu et al., 2023) 

ont combiné données cliniques et d’imagerie acquises entre 1 et 7 jours post-AVC dans une 

approche d’ensemble pour prédire le mRS à 3 mois sous forme de régression. Borsos et al (Borsos et 

al., 2024) ont proposé un modèle de fusion injectant les variables cliniques directement dans le 

pipeline de traitement de l’imagerie de perfusion. D’autres travaux, enfin, ont montré qu’il était 

possible de se baser uniquement sur l’imagerie post-AVC pour segmenter la lésion et prédire le 

pronostic fonctionnel (Nishi et al., 2020). 

Cependant, la majorité des algorithmes pronostiques existants exploitent des données collectées 

pendant la phase aiguë de l’AVC (entre 1 et 7 jours après l’événement), notamment à partir 

d’imageries de suivi. Si ces informations permettent de mieux caractériser l’étendue finale de la 

lésion et d’étudier les mécanismes de récupération, elles arrivent trop tard pour influencer la 

stratégie thérapeutique initiale. À l’inverse, la phase hyperaiguë (les premières heures suivant l’AVC) 

représente une fenêtre critique où les décisions de revascularisation (thrombolyse intraveineuse, 

thrombectomie mécanique) doivent être prises rapidement (Jiang et al., 2025). Dans ce contexte, la 

mise à disposition d’outils pronostiques précoces est essentielle pour guider la prise en charge et 

anticiper l’évolution fonctionnelle. 

Certaines modalités d’imagerie jouent un rôle clé à ce stade. L’IRM de diffusion (DWI) constitue la 

séquence la plus sensible pour détecter précocement une lésion ischémique, et reste aujourd’hui le 

gold standard du diagnostic positif. L’IRM FLAIR (Fluid Attenuated Inversion Recovery) complète 

cette information en fournissant des indices sur l’ancienneté des lésions, notamment via l’approche 
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du mismatch DWI–FLAIR utilisée pour sélectionner les patients éligibles à une thrombolyse lorsque 

l’heure de début des symptômes est inconnue (G et al., 2011). Elle permet également d’évaluer 

l’état de santé cérébrale global, en particulier l’atrophie, qui peut influencer le devenir fonctionnel. 

Les comptes rendus médicaux de neuroimagerie apportent enfin une dimension interprétative 

précieuse. Ils synthétisent l’expertise du neuroradiologue en décrivant des éléments cliniquement 

déterminants tels que la présence d’une occlusion de gros vaisseau, l’existence de 

microsaignements, la trophicité cérébrale ou encore la topographie exacte des lésions. Ces données 

« enrichies par l’expert » représentent une source d’information complémentaire aux images brutes. 

L’objectif de cette étude est donc d’exploiter conjointement, par un modèle vision-langage, plusieurs 

sources d’information disponibles à la phase aigüe — l’imagerie FLAIR et DWI, les comptes rendus 

médicaux issus des examens de neuroimagerie, ainsi que les données cliniques — afin de construire 

un espace latent multimodal interprétable pour la prédiction du mRS à 3 mois. 

V.2. Matériels et méthodes 

V.2.1. Ethique 

L’étude a été approuvée par le Comité de protection des personnes Nord-Ouest IV, qui l’a classée 

comme observationnelle le 9 mars 2010. Le Comité de protection des informations personnelles des 

patients a validé le protocole le 21 décembre 2010 (référence n° 10.677). Par ailleurs, le service 

Délégué à la protection des données (DPO) du CHU de Lille a attesté de la conformité des modalités 

de mise en œuvre du projet avec la réglementation applicable en matière de protection des données 

personnelles, notamment le Règlement général sur la protection des données (RGPD, UE 2016/679). 

V.2.2. Participants 

Tous les patients admis pour une thrombectomie mécanique consécutive à un AVC ischémique entre 

janvier 2015 et décembre 2021 ont été inclus dans l’étude. Les patients ont été pris en charge 

conformément aux recommandations internationales en vigueur au moment de leur admission 

(Powers et al., 2018). 

V.2.3. Prétraitement des données 

V.2.3.1. Données cliniques 

En plus du score mRS 3 mois après l’AVC, des variables cliniques à la phase aigüe de l’AVC, c’est-à-

dire avant le traitement par thrombectomie, ont été collectées : l’âge et le score NIHSS comme 

variables continues ; le sexe, l’hypertension, le diabète, l’hypercholestérolémie, le tabagisme et la 

consommation d’alcool comme variables catégorielles ; et le score mRS comme variable ordinale. 

Ces variables ont été normalisées et encodées afin d’être directement exploitables par les modèles. 

Les variables continues ont été centrées et réduites à l’aide d’un z-score. Les variables catégorielles 

ont été transformées par un encodage one-hot. La variable ordinale a été encodée de façon 

croissante pour respecter son caractère graduel. L’ensemble de ces variables avant thrombectomie a 

été concaténé en un vecteur clinique unique. Tous les prétraitements ont été réalisés avec la 

bibliothèque scikit-learn (Pedregosa et al., 2011). 
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V.2.3.2. Données imageries 

L’IRM acquise à la phase aigüe pour le diagnostic de l’AVC a été récupérée pour l’ensemble des 

patients. Les imageries FLAIR et DWI ont été prétraitées de la manière suivante : (1) extraction du 

cerveau avec SynthStrip (Hoopes et al., 2022); (2) correction d’inhomogénéité de champ avec N4ITK 

(Tustison et al., 2010); (3) alignement rigide sur un cerveau de la base de données pour éviter les 

gros changements d’orientation entre les patients avec fsl flirt (Jenkinson et al., 2002); et (4) 

normalisation des intensités par z-score intra cerveau. 

V.2.3.3. Données textuelles 

 

 

36. Figure V-1. Pré-traitements des données textuelles. 

Les comptes rendus radiologiques corresponds à l’IRM ont été extraits de l’entrepôt de données de 

santé du CHU de Lille (INCLUDE) (Figure V-1). Pour limiter le bruit, seule la section « Résultats » de 

chaque rapport a été identifié à l’aide d’un regex et conservée. Les textes ont ensuite été tokenisés à 

l’aide du modèle DrBERT, un modèle de langage pré-entraîné sur des données biomédicales 

françaises (Labrak et al., 2023). 

V.2.4. Dataset 

L’ensemble de données incluait 719 patients, chacun disposant d’une imagerie FLAIR, d’une imagerie 

DWI, d’un compte rendu radiologique et des variables cliniques tabulaires. Les patients ont été 

répartis de manière aléatoire en deux sous-ensembles : 80 % pour l’entraînement et 20 % pour le 

test, en veillant à maintenir la stratification selon les valeurs du mRS à 3 mois. Pour l’optimisation 

des hyperparamètres, une validation croisée à 5 plis (5-fold cross-validation) a été appliquée sur la 

base d’entraînement. Le modèle final a ensuite été réentraîné sur l’ensemble de la base 

d’entraînement avec les meilleurs paramètres retenus. 

V.2.5. Modèles multimodaux et baseline 

Dans cette étude, trois modèles multimodaux de type deep learning ont été implémentés et 

comparés entre eux, en plus d’un modèle baseline reposant uniquement sur les données cliniques. 



111 
 

V.2.5.1. Modèle Baseline 

Le modèle de référence utilisait uniquement les variables cliniques suivantes : âge, score NIHSS 

avant intervention, sexe, hypertension, diabète, hypercholestérolémie, tabagisme, consommation 

d’alcool et mRS avant intervention. 

Ce modèle correspondait à une machine à vecteurs de support (SVM) (Schölkopf and Smola, 2001) 

implémentée avec la bibliothèque scikit-learn (Pedregosa et al., 2011). Le noyau utilisé était gaussien 

(RBF), avec un paramètre 𝛾 =  1
(𝑛𝑏 𝑑𝑜𝑛𝑛é𝑒𝑠 × 𝑣𝑎𝑟(𝑑𝑜𝑛𝑛é𝑒𝑠))⁄ . 

V.2.5.2. Modèles multimodaux et interprétabilité 

V.2.5.2.1. Visualisation du modèle 

Le modèle multimodal complet intégrait les quatre modalités disponibles : imagerie FLAIR, imagerie 

DWI, comptes rendus radiologiques et données cliniques tabulaires (Figure V-2). 

Les images FLAIR et DWI étaient encodées par deux CNN pour encoder les images, les textes étaient 

encodés par DrBERT (Labrak et al., 2023) et enfin, les données cliniques étaient transformées par un 

encodeur simple basé sur des couches entièrement connectées. 

Trois variantes de modèles ont été testée : texte + clinique (référé comme texte), Imagerie (DWI, 

FLAIR) + clinique (référé comme imagerie) et enfin le modèle complet incluant toutes les modalités 

(référé comme texte + image). 

 

37. Figure V-2. Visualisation du modèle multimodal. 
MLP : perceptron multicouche. 

V.2.5.2.1. Enrichir les modalités par contexte 

Comme illustré dans la figure V-2, chaque modalité était initialement encodée indépendamment des 

autres, puis projetée dans un espace latent commun. Cette approche présente toutefois une limite : 

avant la fusion, une modalité ne pouvait pas exploiter l’information issue des autres, ce qui risquait 

de produire des représentations partielles et peu informatives. Cette difficulté est particulièrement 

marquée dans le cas des AVC : il est fréquent que certaines modalités révèlent une lésion alors 
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qu’elle demeure invisible sur d’autres (Chen and Ni, 2012; Kim et al., 2025). 

Pour pallier cette limitation, nous avons introduit un mécanisme d’enrichissement intermodal 

reposant sur une combinaison de cross-attention et de residual gate mechanism (Savarese and 

Figueiredo, 2019; Wei et al., 2020). 

Formellement, soit 𝑋𝑐𝑖𝑏𝑙𝑒 la représentation latente d’une modalité cible, et 𝑋𝑐𝑜𝑛𝑡𝑒𝑥𝑡 l’ensemble des 

autres modalités. L’enrichissement était défini par : 

𝑋𝑒𝑛𝑟𝑖𝑐ℎ𝑖 = 𝑋𝑐𝑖𝑏𝑙𝑒

+ 𝑔𝑎𝑡𝑒([𝑋𝑐𝑖𝑏𝑙𝑒 , 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡(𝑋𝑐𝑖𝑏𝑙𝑒 , 𝑋𝑐𝑜𝑛𝑡𝑒𝑥𝑡)]
×   𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡(𝑋𝑐𝑖𝑏𝑙𝑒 , 𝑋𝑐𝑜𝑛𝑡𝑒𝑥𝑡) 

(Eq. V-1) 

Où l’opérateur gate(.) contrôle l’intégration adaptative des informations croisées. 

Concrètement, la cross-attention extrait des informations contextuelles pertinentes à partir des 

modalités voisines, tandis que la gate module leur intégration : si le contexte est peu informatif ou 

bruité, son poids est réduit ; à l’inverse, s’il apporte une information complémentaire, son 

intégration est favorisée. 

V.2.5.2.2. Fusionner les modalités 

Une fois enrichies, les modalités étaient fusionnées dans un espace latent commun en vue de la 

classification. Pour cela, nous avons utilisé une méthode d’attention inspirée du multiple instance 

learning (Ilse et al., 2018). 

Chaque modalité 𝑚 (FLAIR, DWI, texte, clinique) était représentée par un vecteur latent 𝑧𝑚. La 

fusion était réalisée selon la formule : 

𝑧 = ∑ 𝛼𝑚𝑧𝑚

𝑚

 (Eq. V-2) 

où 𝛼𝑚 correspond au poids d’attention attribué à la modalité 𝑚 vérifiant ∑ 𝛼𝑚𝑚 = 1. Ces poids 

permettaient d’interpréter la contribution relative de chaque modalité dans la décision finale du 

modèle. Ainsi, le processus de fusion ne reposait pas uniquement sur une concaténation brute, mais 

sur une pondération adaptative et interprétable des modalités. 

V.2.5.2.3. Classification binaire et ordinale 

L’objectif de la tâche était de prédire le devenir fonctionnel à 3 mois après l’AVC, évalué par le score 

mRS. Afin d’explorer différentes formulations du problème, deux types de classification ont été 

considérés : (1) Classification binaire : distinction entre bon pronostic (mRS ≤ 2) et mauvais pronostic 

(mRS > 2). Cette dichotomisation correspondait à la pratique la plus répandue dans les essais 

cliniques et dans les études pronostiques ; (2) Classification ordinale : prédiction directe du score 

mRS comme une variable ordinale à 7 niveaux (0 à 6). Cette approche permettait de préserver 

l’information contenue dans la structure hiérarchique du score, évitant la perte de granularité 

inhérente à la dichotomisation. 

Pour la classification binaire, la couche de sortie du réseau consistait en deux neurones, optimisé par 

une cross-entropy. Pour la classification ordinale, nous avons implémenté une couche ordinale 

proposée par Cao et al. (Cao et al., 2020). Dans ce schéma, le problème est reformulé en une suite 

de comparaisons binaires de type 𝑃(𝑚𝑅𝑆 > 𝑘) avec 𝑘 ∈ {0, … , 5}. Chaque seuil k correspondait 

ainsi à un classifieur binaire spécifique, ce qui permettait de respecter l’ordre naturel des catégories. 
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V.2.6. Entraînement et évaluation 

Les modèles ont été entraînés sur la base d’entraînement avec une validation croisée à 5 plis afin 

d’optimiser les hyperparamètres (taux d’apprentissage, poids de régularisation, dimension des 

couches latentes). Pour l’optimisation, nous avons utilisé l’optimiseur AdamW avec un learning rate 

initial de 1e-4 et un weight decay de 1e-5 (Loshchilov and Hutter, 2019). 

La fonction de perte combinait les tâches binaires et ordinales pour favoriser la régularisation et 

l’apprentissage multitâche. Plus précisément, la perte finale correspondait à la somme pondérée de 

la binary cross-entropy pour la classification binaire et de la loss ordinale pour la classification 

ordinale. Cette approche permettait au modèle de capturer à la fois la séparation grossière entre 

bon et mauvais pronostic et la structure graduelle du score mRS. 

Pour évaluer les performances, nous avons utilisé les métriques suivantes : AUC (Area Under the 

Curve) de la courbe ROC pour les classifications binaire et ordinale et Sensibilité et spécificité, 

calculées avec des intervalles de confiance à 95 % sur les prédictions de la base de test. 

Enfin, pour l’interprétabilité du modèle, les poids d’attention issus du mécanisme MIL et du module 

d’enrichissement cross-modal ont été analysés. Cela a permis de visualiser l’influence relative de 

chaque modalité dans la décision finale, tant au niveau individuel qu’au niveau global du cohort. Ces 

analyses offrent une perspective fine sur le rôle complémentaire des données cliniques, textuelles et 

d’imagerie dans la prédiction du mRS à 3 mois. 

V.2.7. Tests statistiques 

L’ensemble des tests statistiques a été réalisé de la manière suivante : les variables continues étaient 

comparées par kruskal and wallis, les variables catégorielles et ordinales par un test khi deux. Les 

tests ont été corrigés par la méthode Benjamini Hochberg le seuil de significativité était fixé à p ≤ 

0.05 (Benjamini and Hochberg, 1995). 

V.3. Résultats 

V.3.1. Démographie 

La démographie des patients est résumée dans le Tableau V-1. Les valeurs de l’âge et du score NIHSS 

ainsi que le mRS avant intervention différaient significativement entre les groupes à bon pronostic 

(mRS ≤ 2) et mauvais pronostic (mRS > 2). Les autres variables cliniques, comme le cholestérol ou le 

sexe, ne présentaient pas de différences significatives dans la base de test. 

Base entrainement 

  𝑚𝑅𝑆 >  2 𝑚𝑅𝑆 ≤ 2 p-value 

Nb scans  355 220 - 

Age, années 72.95 ± 14.64 62.06 ± 15.06 < 0.001 

NIHSS 16.99 ± 7.85 11.82 ± 6.83 < 0.001 

Femme, n (%) 203 (57.2%) 97 (44.1%) < 0.001 

Hypertension 
artérielle 

257 (72.4%) 111 (50.5%) < 0.001 

diabète 94 (26.5%) 34 (15.5%) 0.003 

Cholesterole 161 (45.4%) 84 (38.2%) 0.11 
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Fumeur 137 (38.6%) 111 (50.5%) 0.007 

Alcoolique 42 (11.8%) 42 (19.1%) 0.02 

mRS avant 
intervention 

0 165 (46.5%) 181 (82.3%) < 0.001 

1 54 (15.2%) 24 (10.9%) 

2 43 (12.1%) 15 (6.8%) 

3 75 (21.1%) 0 (0.0%) 

4 17 (4.8%) 0 (0.0%) 

5 1 (0.3%) 0 (0.0%) 

Base de test 

Nb scans  89 55  

Age, années 73.13 ± 14.15 66.09 ± 14.36 0.005 

NIHSS 19.07 ± 8.32 11.76 ± 7.11 < 0.001 

Femme, n (%) 46 (51.7%) 24 (43.6%) 0.52 

Hypertension 
artérielle 

68 (76.4%) 34 (61.8%) 0.15 

diabète 17 (19.1%) 5 (9.1%) 0.24 

Cholesterole 40 (44.9%) 23 (41.8%) 0.84 

Fumeur 31 (34.8%) 25 (45.5%) 0.35 

Alcoolique 7 (7.9%) 6 (10.9%) 0.81 

mRS avant 
intervention 

0 39 (43.8%) 46 (83.6%) < 0.001 

1 15 (16.9%) 6 (10.9%) 

2 14 (15.7%) 3 (5.5%) 

3 17 (19.1%) 0 (0.0%) 

4 4 (4.5%) 0 (0.0%) 

5 0 (0.0%) 0 (0.0%) 
25. Tableau V-1. Caractéristiques démographiques de la base d'entrainement et de test. 

V.3.2. Performance classification 

Classification binaire 

 Baseline Texte + Clinique Image + Clinique Complet 

AUC 0.8356 [0.7632-
0.9081] 

0.8627 [0.7957-
0.9297] 

0.8625 [0.7955-
0.9295] 

0.8905 [0.8300-
0.9510] 

Sens 0.6545 [0.5289-
0.7802] 

0.8182 [0.7162-
0.9201] 

0.7273 [0.6096-
0.8450] 

0.8364 [0.7386-
0.9341] 

Spec 0.8539 [0.7806-
0.9273] 

0.7079 [0.6134-
0.8023] 

0.9438 [0.8960-
0.9917] 

0.7865 [0.7014-
0.8716] 

Classification ordinale 

AUC  0.8652 [0.7987-
0.9316] 

0.8586 [0.7908-
0.9265] 

0.8885 [0.8275-
0.9494] 

Sens  0.5455 [0.4139-
0.6771] 

0.5091 [0.3770-
0.6412] 

0.7455 [0.6303-
0.8606] 

Spec  0.9438 [0.8960-
0.9917] 

0.9663 [0.9288-
1.0038] 

0.9101 [0.8507-
0.9695] 

26. Tableau V-2. Performance classification binaire et ordinale. 
Les résultats sont de la forme valeur [IC95%]. AUC : Aire sous la courbe, Sens : Sensibilité, Spec : Spécificité. 
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38. Figure V-3. Courbe ROC. 
A gauche classification binaire et à droite classification ordinale. La courbe bleue correspond au modèle 
baseline, la courbe orange au modèle clinique et textuel, la courbe verte au modèle clinique et imagerie et enfin 
la courbe rouge au modèle complet. 

Les performances des modèles de prédiction du mRS à 3 mois sont présentées dans le Tableau V-2 

et la Figure V-3, pour les classifications binaire et ordinale. Les résultats montrent que le modèle 

baseline, utilisant uniquement les données cliniques, présentait des performances correctes mais 

limitées. L’ajout des données textuelles issues des comptes rendus médicaux ou des imageries 

améliorait légèrement les résultats comparés à ceux du modèle baseline. Le modèle complet, 

intégrant toutes les modalités (clinique, texte et images), fournissait les meilleures performances 

globales. En comparant les deux types de classification, binaire et ordinale, les résultats étaient 

globalement cohérents. 
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V.3.2. Interaction multimodale 

 

39. Figure V-4. Visualtion de l’attention crossmodal. 
En ordonnée, les modalités queries. En abscisse, les modalités keys. 

 

40. Figure V-5. Visualisation de l’attention multimodale pour la fusion. 

La figure V-4 montre les poids d’attention pour l’enrichissement cross-modal. En ordonnée se 

trouvaient les modalités query et en abscisse les modalités key. On observait que le texte et les 

données cliniques influençaient fortement l’enrichissement des images, tandis que l’influence des 

images entre elles était faible. Pour la modalité clinique, une tête d’attention était surtout 

influencée par la DWI et le texte, tandis que l’autre était relativement uniforme vis-à-vis des autres 
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modalités. Pour la modalité texte, une tête se concentrait principalement sur la clinique, l’autre 

incluait également une faible influence de la FLAIR. 

La figure V-5 présente la fusion des modalités dans l’espace latent avant classification. En moyenne, 

la modalité clinique et la DWI avaient les poids d’attention les plus élevés, suivies des comptes 

rendus médicaux, puis de l’imagerie FLAIR. 

V.4. Discussion 
Dans cette étude, nous avons développé un modèle multimodal pour prédire le score mRS à 3 mois 

après un AVC ischémique, en intégrant imagerie (FLAIR, DWI), données cliniques et comptes rendus 

médicaux. L’objectif était de construire un espace latent commun interprétable, permettant de 

combiner des sources hétérogènes et d’améliorer la précision prédictive du pronostic fonctionnel. 

V.4.1. Performance du modèle 

Le modèle complet, intégrant toutes les modalités (FLAIR, DWI, comptes rendus radiologiques et 

variables cliniques), a surpassé les approches unimodales et bimodales, confirmant que la 

complémentarité des modalités est essentielle pour capturer la complexité des trajectoires post-

AVC. Nos résultats confirment que la fusion multimodale permet de produire des représentations 

plus riches et plus robustes, en cohérence avec des travaux récents (Jung et al., 2024; Shurrab et al., 

2024). Un aspect original de notre approche réside dans l’intégration des comptes rendus médicaux, 

une modalité rarement exploitée dans les modèles de pronostic post-AVC. En effet, la plupart des 

travaux se concentrent sur l’imagerie et les données cliniques tabulaires (Borsos et al., 2024; Isensee 

et al., 2019; Liu et al., 2023; Zihni et al., 2020), alors que les textes contiennent des informations 

contextuelles complémentaires susceptibles d’affiner la prédiction (occlusion d’un gros vaisseaux, 

présence de microsaignements, trophicité cérébrale, etc). Les comptes rendus d’imagerie sont 

pourtant une donnée accessible en pratique clinique, où chaque imagerie pour AVC fait l’objet d’un 

compte rendu rédigé par un radiologue. Nos résultats suggèrent que ces données textuelles brutes 

apportent un signal pertinent, renforçant la robustesse du modèle lorsqu’elles sont combinées aux 

autres modalités. 

V.4.2. Interprétabilité du modèle 

L’une des forces majeures de notre approche résidait dans l’interprétabilité du modèle. Les 

mécanismes d’attention appliqués à l’enrichissement cross-modal et à la fusion des modalités ont 

permis de visualiser la contribution relative de chaque source d’information à la décision finale pour 

chaque patient. Ces analyses ont montré quelles modalités étaient les plus influentes dans 

différentes situations, permettant de comprendre comment les informations cliniques, textuelles et 

d’imagerie interagissaient. 

Le mécanisme de residual gating a renforcé cette interprétabilité en modulant l’intégration des 

informations contextuelles provenant des autres modalités. Ce dispositif a permis au modèle de 

filtrer les informations non pertinentes tout en conservant les apports significatifs pour enrichir la 

représentation d’une modalité cible. 

Grâce à cette approche, il a été possible d’identifier que la DWI et les variables cliniques 

contribuaient généralement le plus à la prédiction du mRS, tandis que les comptes rendus médicaux 

et la FLAIR apportaient des informations complémentaires selon les cas. Ces observations 

confirment que l’apprentissage multimodal, associé à des mécanismes d’attention et de gating, offre 
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un niveau d’interprétabilité exploitable pour l’analyse patient-centrée, tout en maintenant de 

bonnes performances prédictives 

V.4.3. Limites 

Malgré les performances prometteuses et l’interprétabilité offerte par notre approche, plusieurs 

limites ont été identifiées. Premièrement, la taille de la cohorte était relativement modeste, avec 

719 patients, ce qui peut limiter la généralisation du modèle à d’autres populations ou centres 

hospitaliers. 

Deuxièmement, certaines modalités pouvaient contenir du bruit ou des informations redondantes. 

Par exemple, la FLAIR a montré un poids d’attention global plus faible et moins consistant, ce qui 

suggère que sa contribution était parfois limitée par rapport à d’autres modalités plus 

discriminantes. 

Troisièmement, bien que le mécanisme d’attention et de gating aient amélioré l’interprétabilité, ils 

ne permettaient pas de capturer toutes les interactions complexes possibles entre les modalités. Les 

corrélations non linéaires plus subtiles ou les combinaisons de variables rares pouvaient rester sous-

représentées dans l’espace latent. 

Enfin, le modèle prédisait le mRS à 3 mois à partir de données collectées principalement à un temps 

précis avant l’intervention. Les événements intermédiaires post-AVC, tels que les complications ou 

les variations de traitement, n’étaient pas pris en compte, ce qui peut limiter la précision des 

prédictions dans des contextes cliniques plus dynamiques. L’intégration d’informations post-

opératoires, comme le succès de la recanalisation ou d’autres événements cliniques, pourrait 

améliorer la qualité des prédictions et la pertinence du modèle pour le pronostic fonctionnel (Jiang 

et al., 2025). 

V.5. Conclusion 
Cette étude a démontré que l’intégration multimodale de l’imagerie (FLAIR et DWI), des comptes 

rendus médicaux et des données cliniques permettait de prédire le score mRS à 3 mois avec de 

bonnes performances. Notre modèle, basé sur un espace latent commun et des mécanismes 

d’attention, offre des prédictions robustes et interprétables. Les résultats mettent en évidence la 

valeur prédominante de la DWI et des données cliniques, avec un apport complémentaire des textes 

et de la FLAIR. Ces avancées ouvrent la voie à des travaux futurs visant à améliorer la généralisation 

et la robustesse des modèles dans des contextes cliniques variés. 
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VI. Discussion et conclusion 

Au fil de ce manuscrit, nous avons exploré la conception et l’exploitation d’espaces latents appliqués 

à l’imagerie cérébrale et aux maladies neurologiques. L’hypothèse directrice de cette thèse est que 

les espaces latents, s’ils sont conçus et structurés de manière adéquate, peuvent constituer une 

interface privilégiée entre l’intelligence artificielle et la pratique clinique. 

Les premiers travaux (chapitre II) ont montré, à travers l’exemple du BrainAGE, qu’une 

représentation latente pouvait constituer un biomarqueur pertinent, capable de différencier des 

sous-groupes de patients atteints de maladie d’Alzheimer indépendamment de leur phénotype 

clinique. Cette première étape illustre le potentiel des représentations latentes à saisir des 

dimensions phénotypiques, difficiles à capturer par les approches cliniques conventionnelles. 

Nous avons ensuite proposé le PatientSpace (chapitres III et IV), un cadre méthodologique 

combinant apprentissage supervisé, non supervisé et auto-supervisé. L’originalité de PatientSpace 

réside dans sa capacité à concilier généralisation, robustesse et explicabilité, répondant ainsi à l’une 

des critiques majeures de l’IA en médecine : l’opacité des modèles. Sur la DFT (chapitre III), le 

PatientSpace a permis d’identifier des sous-groupes cohérents tout en rendant les décisions 

algorithmiques interprétables. Sur la MA et les DFT (chapitre IV), cette approche a été étendue à une 

fusion multimodale intra-imagerie (TEP et IRM) par concaténation des espaces latents. Bien que 

“simple”, cette stratégie a démontré la pertinence de la combinaison de modalités de neuroimagerie 

pour mieux caractériser la variabilité interindividuelle, tout en confirmant la robustesse du 

PatientSpace dans un contexte clinique plus complexe. 

Enfin, cette logique a été prolongée dans le chapitre V vers une multimodalité plus hétérogène 

(séquences IRM FLAIR et DWI, données cliniques et comptes rendus médicaux), intégrée dans un 

espace latent commun par des mécanismes d’attention et de gating. Cette approche a permis non 

seulement d’améliorer la performance prédictive pour le pronostic fonctionnel post-AVC, mais aussi 

de pondérer explicitement la contribution de chaque modalité, offrant ainsi une interprétation 

directement exploitable par le clinicien. 

Ces travaux tracent ainsi une progression méthodologique et conceptuelle claire : de l’utilisation 

d’un biomarqueur latent unique (BrainAGE), à la structuration d’espaces interprétables pour des 

pathologies neurodégénératives (PatientSpace), jusqu’à l’intégration multimodale hétérogène et 

interprétable pour le pronostic de l’AVC. Au-delà de la performance brute des modèles, l’apport 

principal de cette thèse réside dans la démonstration que les espaces latents peuvent être 

structurés, multimodaux et interprétables, ouvrant la voie à une meilleure intégration des approches 

d’IA dans la recherche et la pratique clinique. 

Dans la suite de cette discussion, nous aborderons successivement : (i) la structuration efficace des 

espaces latents, (ii) l’intégration de données multimodales, (iii) la définition et l’exploitation de la 

similarité inter-patients, avant de conclure sur les perspectives ouvertes par ces travaux. 

VI.1. Structuration efficace des espaces latents 
Comme nous l’avons montré au cours de ce manuscrit, les espaces latents constituent des outils 

puissants pour réduire la dimensionnalité et extraire des représentations pertinentes de données 
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médicales complexes. Cependant, la nature de ces représentations dépend étroitement du 

paradigme d’apprentissage employé. Les approches non supervisées et auto-supervisées permettent 

de capturer des représentations riches et globales, susceptibles de révéler des structures 

émergentes dans les données (Le-Khac et al., 2020). Leur valeur clinique immédiate demeure 

toutefois limitée, car elles ne sont pas directement orientées vers une tâche médicale spécifique. À 

l’inverse, les approches supervisées privilégient des caractéristiques discriminantes alignées sur une 

tâche définie (par ex. classification diagnostique), mais risquent de réduire la richesse de la 

représentation. 

La combinaison de ces approches apparaît donc essentielle pour obtenir des représentations à la fois 

expressives et cliniquement exploitables. Nos travaux ont montré que cet équilibre pouvait être 

atteint grâce à des stratégies adaptées, notamment via l’apprentissage multitâche et l’intégration 

explicite de variables structurantes telles que l’âge. 

VI.1.1. Structuration par apprentissage multitâche 

Dans les chapitres III et IV, nous avons exploré la voie du multitask learning (Caruana, 1993) avec la 

conception du PatientSpace, en intégrant simultanément apprentissage supervisé, non supervisé et 

auto-supervisé. Le principe est de partager une représentation commune à plusieurs tâches, dans 

l’espoir d’améliorer la généralisation et la robustesse (Ruder, 2017). Nos résultats sur la DFT 

(chapitre III) et sur Alzheimer/DFT (chapitre IV) confirment que ce paradigme permet d’extraire des 

représentations cohérentes, capables de capturer à la fois des dimensions diagnostiques et des 

structures émergentes non spécifiées a priori (par exemple la sévérité de la maladie). Toutefois, ces 

approches posent des difficultés bien connues : le negative transfer, où des tâches faiblement liées 

se perturbent mutuellement (Standley et al., 2020) , ou encore la compétition entre tâches, où 

certaines dominent l’entraînement au détriment des autres (Crawshaw, 2020). Dans le domaine 

médical, ces limites sont particulièrement critiques, car un modèle trop généraliste peut perdre en 

précision et compromettre la fiabilité des décisions cliniques. À l’inverse, un modèle trop spécialisé 

peut manquer de généralisation. Plusieurs stratégies ont été proposées pour pallier ces limites, qu’il 

s’agisse de modifier l’architecture des réseaux (Crawshaw, 2020; Guo et al., 2018; Ma et al., 2018), 

d’ajuster la fonction de perte ou réguler la rétropropagation du gradient (Chen et al., 2018; Cipolla et 

al., 2018; Liu et al., 2019; Yu et al., 2020). 

Dans ce contexte, le PatientSpace illustre l’intérêt d’un apprentissage multitâche adapté aux 

spécificités médicales : il permet de concilier généralisation et pertinence clinique, tout en 

fournissant une représentation explicable et exploitable par le clinicien. 

VI.1.2. L’âge, un facteur structurant complexe 

Nos travaux ont également mis en lumière la complexité de l’âge comme covariable. Dans le 

PatientSpace, nous l’avons intégré de plusieurs manières : 

• comme variable d’entrée (chapitre III), permettant de normaliser partiellement les 

représentations vis-à-vis de son influence 

• comme contrainte latente ou variable prédite (chapitre IV), favorisant une structuration 

longitudinale de l’espace 

• comme biomarqueur dérivé à travers le BrainAGE (chapitre II), qui a montré une corrélation 

robuste avec la sévérité clinique. 
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Cette diversité d’approches reflète la double nature de l’âge : facteur de progression pathologique 

(deux patients au même stade clinique peuvent présenter des profils distincts selon l’âge), mais aussi 

facteur discriminant (formes précoces d’Alzheimer versus formes tardives, impliquant des patterns 

neuroanatomiques différents ; (Koedam et al., 2010)). 

Un espace latent adapté aux maladies neurodégénératives doit donc répondre à trois critères : (1) 

distinguer les formes cliniques connues (différences d’atrophie, d’hypométabolisme, etc.) ; (2) 

permettre un suivi longitudinal patient-spécifique, notamment pour le diagnostic précoce et le suivi 

des MCI ; et (3) intégrer des métriques dérivées comme le BrainAGE, afin de relier âge biologique, 

structure cérébrale et progression pathologique. 

Ainsi, la structuration des espaces latents ne se résume pas à une simple réduction de dimension, 

mais nécessite un design méthodologique réfléchi, intégrant à la fois des contraintes d’apprentissage 

et des covariables cliniquement pertinentes. 

VI.2. Données multimodales et intégration latente 
Les données médicales sont intrinsèquement multimodales, combinant imagerie, variables cliniques, 

scores cognitifs ou encore biomarqueurs biologiques. Leur intégration est donc essentielle pour 

exploiter pleinement leur potentiel et construire des modèles à la fois performants et interprétables. 

Comme souligné par Baltrusaitis et al. (Baltrusaitis et al., 2019), une exploitation réfléchie de la 

multimodalité permet d’améliorer la qualité des représentations, d’accroître la robustesse des 

modèles et, en contexte médical, de rapprocher les prédictions algorithmiques des réalités cliniques. 

VI.2.1. De l’unimodal au multimodal 

Dans la littérature, trois stratégies principales d’intégration multimodale sont décrites. La fusion 

précoce consiste à concaténer toutes les modalités dès l’entrée du réseau. Cette approche présente 

l’avantage de permettre l’apprentissage immédiat des interactions entre modalités, mais elle impose 

que toutes les données soient compatibles dès le départ, ce qui peut être problématique lorsque des 

modalités très hétérogènes, comme du texte et de l’imagerie, sont combinées. De plus, la fusion 

précoce peut limiter la capacité du réseau à extraire des caractéristiques propres à chaque modalité. 

La fusion intermédiaire consiste, quant à elle, à traiter chaque modalité indépendamment avant de 

les combiner dans un espace latent commun. Cette méthode préserve les informations spécifiques à 

chaque modalité tout en permettant, après enrichissement, de capturer des interactions complexes. 

Elle est particulièrement adaptée à des architectures capables de gérer des modalités hétérogènes, 

bien qu’elle nécessite une architecture distincte pour chaque type de donnée, ce qui peut 

augmenter les besoins en mémoire et en calcul. 

Enfin, la fusion tardive (late fusion) agrège les sorties finales de chaque modalité pour produire une 

prédiction unique. Cette approche, simple à mettre en œuvre et inspirée de l’ensemble learning, 

présente l’inconvénient de ne pas exploiter les interactions intermodales, ce qui peut limiter les 

performances dans des contextes où la complémentarité des données est cruciale. 

Dans ce manuscrit, nous avons d’abord exploré une stratégie de fusion intermédiaire par 

concaténation (chapitre IV), combinant les espaces latents issus de l’IRM et de la TEP. Cette 

approche a permis d’obtenir de bonnes performances et de confirmer l’intérêt d’exploiter la 

complémentarité entre modalités d’imagerie pour mieux caractériser la variabilité interindividuelle 
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dans les maladies d’Alzheimer et de la DFT. Toutefois, elle présente une limite majeure : elle ne 

fournit aucune information sur la contribution respective des modalités, ce qui restreint son 

interprétabilité et donc son exploitation clinique. Le chapitre V a marqué une avancée en proposant 

une multimodalité plus hétérogène (IRM FLAIR et DWI, données cliniques, comptes rendus 

médicaux) intégrée grâce à des mécanismes d’attention et de gating. Cette approche a permis non 

seulement d’améliorer la performance prédictive du pronostic post-AVC, mais aussi de pondérer 

explicitement l’apport de chaque modalité. Les analyses ont montré que la DWI et les variables 

cliniques étaient souvent les plus déterminantes, tandis que la FLAIR et les comptes rendus textuels 

apportaient une information complémentaire utile dans certains cas. Cette capacité à identifier les 

modalités prédominantes ou secondaires constitue un atout majeur pour l’interprétabilité et 

rapproche le modèle d’une utilisation clinique effective. 

VI.2.2. Enrichir les modalités par contexte 

Un défi central de la multimodalité est que chaque modalité porte sa propre échelle, sa granularité 

et parfois son propre bruit. Fusionner directement ces représentations peut conduire à des espaces 

latents déséquilibrés, où certaines modalités dominent artificiellement. 

Pour pallier cette limite, nous avons proposé un mécanisme d’enrichissement cross-modal (chapitre 

V), où chaque modalité est augmentée par l’information issue des autres, grâce à une attention 

croisée résiduelle modulée par une gate. Celle-ci agit comme un filtre, autorisant uniquement les 

informations pertinentes tout en limitant l’impact du bruit. Cette approche présente un double 

intérêt : elle préserve l’identité de chaque modalité et capture les interactions complexes entre 

elles, tout en fournissant un mécanisme interprétable sur l’origine de l’information. 

Dans le cas de l’AVC, cette stratégie s’est révélée particulièrement adaptée : certaines lésions 

n’étaient visibles que sur la DWI, tandis que d’autres informations cliniques ou textuelles 

apportaient un contexte complémentaire. L’attention croisée a permis de mettre en évidence ces 

complémentarités, tout en évitant la dilution du signal spécifique à chaque modalité. 

Ainsi, l’intégration multimodale dans un espace latent ne doit pas être envisagée comme une simple 

étape de concaténation, mais comme une véritable opération de négociation d’information entre 

modalités. La conception de mécanismes d’enrichissement et de pondération constitue une 

condition essentielle pour construire des espaces latents robustes, interprétables et cliniquement 

pertinents. 

VI.3. Similarité entre patients 
Un des fils conducteurs de cette thèse est la conception d’espaces latents permettant de 

représenter la similarité entre patients. En effet, la médecine de précision repose sur la capacité à 

identifier des sous-groupes homogènes de patients, que ce soit pour adapter le traitement, affiner le 

pronostic ou comprendre la progression des maladies. Dans ce contexte, les espaces latents offrent 

une opportunité unique : ils projettent les individus dans un espace continu où la proximité reflète 

un degré de similarité. 

Néanmoins, la définition de cette similarité est loin d’être triviale. Dans le domaine médical, deux 

patients peuvent être similaires sur le plan anatomique (patterns d’atrophie comparables en IRM), 

tout en divergeant fortement sur le plan fonctionnel ou biologique. À l’inverse, deux profils cliniques 
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proches peuvent reposer sur des mécanismes pathologiques très différents. Chaque modalité porte 

donc sa propre structure de similarité, qui n’est pas nécessairement réductible à celle des autres. 

Nos travaux illustrent cette tension entre préservation et fusion des similarités. Dans le chapitre III, 

nous avons montré qu’un espace latent construit à partir de l’IRM permet de définir une similarité 

phénotypique robuste, cohérente avec la littérature clinique sur la DFT. Cette approche unimodale 

garantit une interprétation claire : la proximité entre patients correspond directement à des patrons 

d’atrophie similaires. Le chapitre IV a exploré une étape supplémentaire en combinant deux 

modalités d’imagerie (IRM et TEP). Cette fusion a permis de mieux caractériser la variabilité 

interindividuelle, mais la notion de similarité a changé : elle ne reflète plus exactement celle de 

chaque modalité prise séparément, mais correspond à une mesure combinée au sein de l’espace 

latent intégré. Ce résultat souligne un point essentiel : la fusion multimodale ne préserve pas les 

similarités unimodales, mais en construit une nouvelle, parfois divergente, dont l’interprétation doit 

être soigneusement analysée. 

Ces résultats plaident pour une approche méthodologique prudente : plutôt que de chercher à 

imposer une définition unique de la similarité, il est préférable de préserver d’abord les similarités 

propres à chaque modalité. Cette stratégie présente plusieurs avantages. Elle permet de conserver 

l’identité unimodale du patient, garantissant que les informations spécifiques à chaque type de 

données ne soient pas diluées dans une fusion précoce. Elle ouvre également la voie à une 

stratification plus fine : par exemple, il devient possible d’identifier des patients présentant un 

pattern pathologique dans une modalité donnée (comme la TEP) mais pas dans une autre (comme 

l’IRM), ce qui pourrait refléter des différences de stade ou de progression de la maladie. Ce 

raisonnement est particulièrement pertinent dans les maladies neurodégénératives, où certaines 

modalités — la TEP, par exemple — détectent des anomalies plus précocement que d’autres, 

comme l’IRM structurelle (Del Sole et al., 2017). Une fois ces similarités unimodales établies, leur 

combinaison peut ensuite être explorée à travers des mécanismes explicites et interprétables, 

permettant de construire des représentations intégrées tout en conservant traçabilité, flexibilité et 

pertinence clinique. 

VI.4. Concevoir des espaces latents interprétables 
À l’issue des sections précédentes, il apparaît que la structuration des espaces latents, l’intégration 

multimodale et la définition de la similarité entre patient constituent des axes complémentaires 

mais interconnectés. Cette section se propose de synthétiser ces éléments pour proposer une 

démarche méthodologique cohérente permettant de concevoir un espace latent à la fois structuré, 

multimodal et interprétable, adapté aux besoins cliniques et aux contraintes des données médicales. 

La construction d’un tel espace repose sur une progression méthodologique claire similaire à la 

conception du PatientSpace, que nous présentons ici sous la forme d’une approche en plusieurs 

étapes : 

1. Étape initiale – apprentissage des informations générales 

Le modèle est d’abord entraîné pour capturer des informations générales, par exemple en 

distinguant les sujets sains des patients atteints de démence. La reconstruction des données 

originales sert de régularisation, garantissant que l’espace latent conserve une 
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représentation fidèle de chaque modalité d’entrée. Cette étape établit des fondations 

discriminatives stables et interprétables. 

2. Étape intermédiaire – affinage par contraintes complexes 

L’espace latent est ensuite affiné par des contraintes plus complexes, telles que la 

structuration par similarité/dissimilarité et/ou la structuration longitudinale (via l’intégration 

de l’âge ou des intervalles temporels entre examens successifs). 

3. Étape de stabilisation – préservation de la robustesse et de l’équilibre 

Pour éviter que certaines contraintes dominent l’apprentissage ou que le modèle oublie les 

attributs fondamentaux, une stratégie cyclique est utilisée (Fu et al., 2019). Cette méthode 

réactive périodiquement les objectifs initiaux, garantissant un équilibre entre structuration 

avancée et conservation des informations générales. 

Lors du passage à la multimodalité, chaque latent unimodal est combiné via des mécanismes 

d’attention et de gating, comme présenté dans le chapitre V. Cette intégration permet de maintenir 

la similarité entre patient pour chaque modalité, quantifier l’influence relative de chaque modalité 

pour enrichir la représentation finale et enfin offrir une interprétation transparente des 

contributions de chaque type de données à la tâche clinique considérée. En combinant ces étapes, il 

devient possible de construire un espace latent structuré, multimodal et interprétable, capable à la 

fois d’identifier des patients similaires dans chaque modalité, de capturer les interactions entre 

modalités, et de fournir des informations exploitables par les cliniciens pour le diagnostic, le suivi ou 

le pronostic. 

Avant d’aborder les perspectives, il convient de souligner deux recommandations méthodologiques 

issues de cette thèse. 

Tout d’abord, pour préserver l’identité et l’unicité des représentations latentes, il est recommandé 

d’utiliser une approche de similarité contrastive. Celle-ci permet d’éviter que les latents ne 

s’effondrent vers un vecteur trop générique et de garantir que chaque patient conserve une 

représentation discriminante, à la fois pour les analyses unimodales et pour l’intégration 

multimodale. 

Ensuite, l’âge, en tant que covariable critique dans les maladies neurodégénératives, doit être utilisé 

de manière adaptée au contexte : il peut conditionner l’espace latent lorsqu’un suivi longitudinal est 

nécessaire, afin de structurer les trajectoires individuelles, ou simplement être introduit comme 

variable d’entrée lorsque l’objectif n’est pas de modéliser explicitement la progression dans le 

temps. 

Ces recommandations méthodologiques servent de fondement à la discussion des perspectives, qui 

explorent les extensions possibles du PatientSpace et les améliorations à apporter à l’intégration 

multimodale et à l’interprétabilité clinique. 

VI.5. Perspectives autour des travaux de thèse 
Comme discuté dans les chapitres III et IV, le PatientSpace apparaît comme un outil prometteur pour 

extraire des informations pertinentes à partir de données d’imagerie, notamment en ce qui 

concerne les phénotypes, la sévérité et la dimension longitudinale des patients. 

Une première piste d’amélioration consisterait à renforcer la robustesse des représentations 
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unimodales. Il s’agirait d’explorer des latents interprétables, capables de capturer des patterns 

spécifiques à chaque modalité avant leur intégration multimodale. Cette approche permettrait de 

préserver l’identité unimodale du patient, facilitant ainsi la création de nouvelles stratifications : par 

exemple, identifier des patients présentant un pattern pathologique dans une modalité mais pas 

dans une autre. 

Par ailleurs, l’utilisation de mesures de similarité contrastives pourrait être plus adaptée que les 

approches non-contrastives employées dans nos travaux du chapitre IV. En effet, les patterns 

extraits semblaient fortement corrélés à l’âge des patients, probablement parce que la similarité 

reposait uniquement sur des exemples positifs. Cette situation pouvait projeter deux patients 

phénotypiquement différents mais d’âge similaire dans un espace latent proche. Une approche 

contrastive, intégrant des exemples négatifs explicites, permettrait de limiter ce biais et de favoriser 

des représentations discriminantes, comme observé dans le chapitre III. 

Une autre perspective majeure concerne l’extension multimodale du PatientSpace, en s’appuyant 

sur les méthodes introduites dans le chapitre V. Cela permettrait non seulement d’identifier la 

contribution relative de chaque modalité à la prédiction d’un diagnostic, mais aussi de mieux 

comprendre pourquoi certaines modalités apportent plus d’information que d’autres. Par exemple, 

la TEP peut fournir des signaux précoces de pathologie avant qu’ils ne soient visibles en IRM. 

L’intégration de mécanismes d’attention appliqués au sein d’architectures profondes offrirait une 

voie intéressante pour quantifier et interpréter ces contributions, dépassant ainsi la simple 

concaténation des latents modaux. 

Les travaux du chapitre V ouvrent également la possibilité de combiner les approches multimodales 

avec le PatientSpace pour d’autres pathologies, comme l’AVC ischémique. Cela permettrait de 

projeter les patients dans l’espace latent et d’explorer différents profils de manière interprétable, à 

l’échelle individuelle. Des méthodes de clustering ou de stratification pourraient alors être 

appliquées pour identifier des sous-groupes, par exemple des patients répondant favorablement à la 

recanalisation et d’autres moins réactifs. Cette approche rejoint les efforts actuels visant à identifier 

des biomarqueurs d’imagerie prédictifs du succès de la recanalisation et du pronostic fonctionnel 

post-AVC (Gaviria and Eltayeb Hamid, 2024). 

Enfin, un axe d’amélioration concerne le mécanisme d’attention lui-même. Dans nos travaux, nous 

avons utilisé une variante inspirée du Multiple Instance Learning, reposant sur l’hypothèse qu’au 

moins une instance est discriminante pour établir un diagnostic. Or, dans un contexte clinique 

complexe, cette hypothèse est réductrice : ce n’est pas une instance isolée, mais souvent une 

combinaison de plusieurs observations (au sein d’une modalité ou entre modalités) qui apporte une 

information déterminante. Repenser le mécanisme d’attention — par exemple en le focalisant sur 

certaines dimensions spécifiques plutôt que sur l’ensemble du vecteur latent, ou en explorant des 

variantes comme la cross-attention — pourrait améliorer la finesse de l’interprétation et la qualité 

des prédictions. 

En résumé, les perspectives de cette thèse s’articulent autour du renforcement des espaces latents 

unimodaux, similarité contrastive, extension multimodale et optimisation des mécanismes 

d’attention, visant à construire des modèles plus robustes, interprétables et applicables à la pratique 

clinique. 
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VI.6. Conclusion 
Cette thèse a exploré la conception et l’exploitation d’espaces latents structurés pour l’analyse de 

données médicales complexes. Le chapitre I a présenté les concepts fondamentaux des espaces 

latents et les méthodes de création, posant les bases théoriques pour les travaux suivants. Dans le 

chapitre II, nous avons montré que le BrainAGE constitue un biomarqueur robuste pour différencier 

des sous-groupes de patients et mieux comprendre le déclin cognitif dans la maladie d’Alzheimer. 

Les chapitres III et IV ont introduit le PatientSpace, un espace latent interprétable capable de 

capturer des phénotypes cliniques et des trajectoires longitudinales. L’aspect multimodal a été 

progressivement intégré afin d’évaluer son apport dans la structuration et l’interprétabilité de 

PatientSpace. 

Le chapitre V a été consacré à l’évaluation du traitement multimodal hétérogène, intégrant 

imagerie, données cliniques et textuelles, en utilisant attention et gating pour améliorer la 

performance prédictive et l’interprétabilité au niveau patient. 

Ces travaux démontrent que la structuration latente, combinée à une intégration multimodale 

réfléchie, permet de créer des représentations à la fois robustes, interprétables et cliniquement 

pertinentes, ouvrant la voie à des applications en suivi longitudinal, stratification patient et 

prédiction de pronostic. 
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ANNEXE 
Liste des Figures 

1. Figure 1. Les courbes de taille et de poids des enfants constituent des références normatives. L’écart observé par rapport 

à la population de référence permet de quantifier des critères tels que la maigreur, le surpoids ou l’obésité (image 

provenant de https://cress-umr1153.fr/fr/courbes-de-croissance-de-reference-du-carnet-de-sante/) ................................ 12 
2. Figure 2 Intérêt des modèles normatifs (image et légende issues de (Marquand et al., 2016)). L’approche classique cas-

témoins suppose que les cas et les témoins forment chacun un groupe bien défini (A). Cette hypothèse peut être 

raisonnable dans certains contextes, mais de nombreuses autres configurations sont possibles en pratique. La population 

clinique peut être constituée de plusieurs sous-groupes présentant chacun une pathologie distincte (B) ; la variabilité liée à 

la maladie peut s’inscrire au sein même de la variabilité observée chez les sujets sains (C) ; ou encore, le groupe clinique 

peut apparaître diffus et hétérogène en raison d’erreurs diagnostiques, de comorbidités ou de l’agrégation de pathologies 

différentes (D). ......................................................................................................................................................................... 13 
3. Figure I-1. Apprentissage supervisé. Une imagerie TEP est traitée par un réseau de neurones convolutif (CNN) afin de 

prédire, à partir de l’espace latent, si le patient est sain (CN) ou atteint de la maladie d’Alzheimer (MA). ............................ 22 
4. Figure I-2. Apprentissage non supervisé. Une image TEP est encodée dans un espace latent par un encodeur, puis cet 

espace latent est décodé par un décodeur afin de régénérer l’image TEP d’origine. ............................................................. 23 
5. Figure I-3. Contrastive Learning. Chaque modalité d’imagerie est encodée dans un espace latent, puis les représentations 

issues d’imageries similaires sont rapprochées tandis que celles provenant d’imageries dissimilaires sont éloignées .......... 24 
6. Figure I-4. Non-contrastive learning. Deux images TEP transformées sont générées à partir de l’imagerie d’origine, puis 
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ANNEXE 
Liste des abréviations 

AUC : aire sous la courbe ROC 

AVC : accident vasculaire cérébral 

BH-FDR : Benjamini et Hochberg False Discovery Rate 

BR : réserve cérébrale 

bvFTD : variant comportemental de la DFT 

CDR : Clinical Dementia Rating 

CDR-SoB : Clinical Dementia Rating Scale Sum of Boxes 

CNN : réseaux de neurones convolutifs 

DEM : démence 

DIVA : Domain Invariant Variational autoencoder 

DTI : imagerie par tenseur de diffusion 

ELBO : evidence lower bound 

EQM : erreur quadratique moyenne 

EOAD : Early-Onset Alzheimer’s Disease 

FDR : False Discovery Rate 

FLAIR : Fluid Attenuated Inversion Recovery 

FWE : Family-Wise Error rate 

GAMLSS : modèles additifs généralisés 

GANs : réseaux antagonistes génératifs 

GM : matière grise 

GMM : mixtures de Gaussiennes 

HpSp : préservation hippocampique 

ICV : volume intracrânien 

IA : intelligence artificielle 

KL : Kullback-Leibler 

LCR : liquide cérébrospinal 

LOAD : maladie d’Alzheimer à début tardif 

LLM : Large language models 

LME : modèles linéaires à effets mixtes univariés 

LP : limbique prédominant 

MCI : trouble cognitif léger 

MA : maladie d’Alzheimer 

MAE : erreur absolue moyenne 

MMSE : Mini-Mental State Examination 

MMTM : module de transfert multimodal 

MRI / IRM : imagerie par résonance magnétique 

mRS : modified Rankin Scale 

OSEM : Ordered Subsets Expectation Maximization 

PAD : Predicted Age Difference 
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PET / TEP : émission de positons 

PNFA : aphasie progressive non fluente 

RBM : machines de Boltzmann restreintes 

ROI : régions d’intérêt 

SGD : descente de gradient stochastique 

SVM : machine à vecteurs de support 

SUV : Standard Uptake Value 

SUVR : Standard Uptake Value Ratio 

SV : variant sémantique 

TE : temps d’écho 

TR : temps de répétition 

tAD : forme typique de la MA 

VAE : autoencodeurs variationnels 

ViTs : Vision Transformers 

VBM : Voxel-Based Morphometry 

VAT : Visual Association Test 

WM : matière blanche 
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