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Résumé

L’essor du deep learning et I'accés croissant a des volumes massifs de données médicales —
diagnostics, traitements, informations génétiques, antécédents cliniques, imagerie ou encore
comptes rendus textuels — transforment profondément la recherche biomédicale. Cette abondance
ouvre des perspectives inédites pour la médecine de précision : identifier des patients présentant
des profils similaires, anticiper I’évolution des pathologies et adapter les prises en charge de fagon
individualisée. Néanmoins, exploiter efficacement ces données reste un défi majeur. Leur
hétérogénéité et leur complexité exigent de concevoir des représentations capables de refléter
fidelement les similarités et dissimilarités entre individus, tout en restant exploitables dans un cadre
clinique.

Dans ce contexte, les espaces latents offrent un cadre méthodologique particulierement pertinent.
En projetant des données médicales complexes dans des espaces de dimension réduite, ils
permettent de condenser I'information tout en préservant sa structure essentielle. Le
développement d’espaces latents structurés et interprétables, adaptés au domaine médical,
constitue le coeur de cette thése. De plus, comme les données médicales sont par nature
hétérogenes, I'intégration progressive de la multimodalité en représente un prolongement naturel.

La premiere partie introduit les fondements conceptuels des espaces latents et les principales
méthodes permettant de les construire, d’abord dans un cadre unimodal puis multimodal. Une
attention particuliere est portée a leur structuration, une condition essentielle pour concilier fidélité,
généralisation et interprétation clinique. Une bréeve revue des applications existantes en
neuroimagerie vient compléter cette mise en contexte.

La deuxiéme partie s’appuie sur le modele BrainAGE afin de démontrer qu’un espace latent appris
de maniére supervisée peut encoder des dimensions cliniquement pertinentes. Cette approche a
permis d’identifier des sous-groupes de patients dans la maladie d’Alzheimer a début précoce,
indépendamment des caractéristiques cliniques conventionnelles, mettant en évidence le potentiel
des représentations latentes a saisir la complexité des dimensions phénotypiques.

Les troisiéme et quatrieme parties présentent le PatientSpace, un cadre méthodologique destiné a
construire des espaces latents interprétables dans le contexte des maladies neurodégénératives.
Appliqué initialement a I'imagerie par résonance magnétique (IRM) de patients atteints de
démences fronto-temporales (DFT), le PatientSpace a permis d’identifier des sous-groupes
cohérents tout en fournissant une explicabilité clinique des regroupements. L’approche a ensuite été
étendue a plusieurs démences, notamment Alzheimer et DFT, et enrichie d’'une dimension
multimodale en intégrant a la fois des données IRM et de tomographie par émission de positons
(TEP). Ces travaux ont démontré la robustesse de la méthode et sa capacité a capturer la variabilité
interindividuelle tout en restant exploitable dans un cadre clinique.

Enfin, la cinquiéme partie explore un cadre multimodal plus hétérogéne, appliqué a la prédiction du
pronostic fonctionnel a trois mois apres un AVC chez des patients candidats a une thrombectomie.
En combinant des séquences IRM (FLAIR et DWI), des comptes rendus radiologiques et des données
cliniques, les espaces latents ont été structurés de maniere a mettre en évidence le role et les



interactions de chaque modalité dans la prédiction du mRS a 3 mois. L'intégration de ces sources via
des mécanismes d’attention et de gating a non seulement amélioré la performance prédictive, mais
aussi permis de quantifier I'apport spécifique de chaque modalité, fournissant ainsi une
interprétation directement exploitable en pratique clinique.

Ces travaux apportent des avancées dans I'exploitation et la structuration des espaces latents en
contexte médical, ouvrant la voie a des représentations interprétables et pertinentes pour la
pratique clinique, et favorisant le développement de nouvelles approches de diagnostic, de
pronostic et de médecine personnalisée.



Abstract

The rise of deep learning and the increasing availability of large-scale medical data—diagnoses,
treatments, genetic information, clinical histories, imaging, and textual reports—are profoundly
transforming biomedical research. This abundance opens unprecedented opportunities for precision
medicine: identifying patients with similar profiles, anticipating disease progression, and tailoring
individualized care. However, effectively leveraging these data remains a major challenge. Their
heterogeneity and complexity require the design of representations capable of accurately reflecting
similarities and differences between individuals, while remaining clinically actionable.

In this context, latent spaces provide a particularly relevant methodological framework. By
projecting complex medical data into lower-dimensional spaces, they allow information to be
condensed while preserving its essential structure. The development of structured and interpretable
latent spaces, specifically adapted to the medical domain, constitutes the core of this doctoral
research. Moreover, as medical data are inherently heterogeneous, the progressive integration of
multimodal sources represents a natural extension of this approach.

The first part introduces the conceptual foundations of latent spaces and the main methods for their
construction, initially in a unimodal and then in a multimodal framework. Particular attention is
given to their structuring, which is essential to balance fidelity, generalization, and clinical
interpretability. A brief review of existing applications in neuroimaging complements this context.

The second part builds on the BrainAGE model to demonstrate that a supervisedly learned latent
space can encode clinically relevant dimensions. This approach enabled the identification of patient
subgroups in early onset Alzheimer’s disease independently of conventional clinical features,
highlighting the potential of latent representations to capture the complexity of phenotypic
dimensions.

The third and fourth parts present PatientSpace, a methodological framework for constructing
interpretable latent spaces in the context of neurodegenerative diseases. Initially applied to
magnetic resonance imaging (MRI) of patients with frontotemporal dementia (FTD), PatientSpace
enabled the identification of coherent subgroups while providing clinical interpretability of the
clusters. The approach was then extended to multiple dementias, including Alzheimer’s and FTD,
and enriched with a multimodal dimension by integrating both MRI and positron emission
tomography (PET) data. These studies demonstrated the robustness of the method and its ability to
capture inter-individual variability while remaining clinically interpretable.

Finally, the fifth part explores a more heterogeneous multimodal setting, applied to predicting three-
month functional outcomes after stroke in patients eligible for thrombectomy. By combining MRI
sequences (FLAIR and DWI), radiology reports, and clinical data, latent spaces were structured to
highlight the role and interactions of each modality in predicting the three-month modified Rankin
Scale (mRS). Integration of these sources through attention and gating mechanisms not only
improved predictive performance but also allowed quantification of the specific contribution of each
modality, providing interpretations directly actionable in clinical practice.
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Overall, these works advance the exploitation and structuring of latent spaces in medical contexts,
paving the way for interpretable and clinically relevant representations, and supporting the
development of novel approaches for diagnosis, prognosis, and personalized medicine.
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Introduction

1. Les modeles normatifs

1.1. Définition
Les modeles normatifs constituent une approche puissante pour analyser et interpréter les
différences individuelles au sein d'une population. Contrairement aux méthodes traditionnelles
fondées sur des moyennes de groupe, ces modeles visent a capturer la variabilité naturelle des
caractéristiques biologiques, comportementales ou cliniques dans une population de référence.
Cette « norme » ainsi définie sert ensuite de point de comparaison pour évaluer dans quelle mesure
un individu s’en écarte, en permettant d’identifier des profils atypiques ou pathologiques (Figure 1).
(Rutherford et al., 2022).
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1. Figure 1.

Les courbes de taille et de poids des enfants constituent des références normatives. L’écart observé par rapport
a la population de référence permet de quantifier des critéres tels que la maigreur, le surpoids ou I'obésité
(image provenant de https://cress-umr1153.fr/fr/courbes-de-croissance-de-reference-du-carnet-de-sante/
05/08/2025)

L’intérét principal de cette approche est qu’elle permet de détecter des variations propres a un
individu, ouvrant ainsi la voie a une médecine plus personnalisée et précise (Rutherford et al.,
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2022).Dans un premier temps, un modele de référence est élaboré a partir de données issues d’'une
population saine, ce qui permet de définir des profils attendus. Dans un second temps, les écarts
individuels par rapport a cette norme sont quantifiés. Cette approche méthodologique a démontré
son efficacité dans le domaine médical, ou elle s’avere particulierement pertinente pour I'étude de

la complexité et de I’hétérogénéité des pathologies (Kang et al., 2024; Pinaya et al., 2021; Tabbal et
al., 2025).

2. Les modeles normatifs en neuroimagerie

2.1. Intérét

Bien que les modeéles normatifs soient couramment utilisés dans certains domaines médicaux, tels
que la pédiatrie avec les courbes de taille et de poids, ils commencent seulement a étre adoptés en
neuroimagerie, notamment pour I'étude du développement cérébral, du vieillissement et des
démences (Bozek et al., 2023).

L'un des principaux atouts des modeles normatifs réside dans leur capacité a intégrer
I’hétérogénéité naturelle de la population au sein des cohortes cliniques. lls permettent ainsi
d’obtenir un diagnostic individualisé, centré sur le patient plutét que sur un groupe. L’analyse ne
repose plus sur la moyenne d’un groupe de patients, mais exclusivement sur I'échelle individuelle, ce
qui permet de s’affranchir de I’'hétérogénéité de la population cible. Cet aspect est particulierement

pertinent dans le domaine médical, ou I’hétérogénéité constitue un facteur déterminant (Marquand
et al., 2016).
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2. Figure 2

Intérét des modeéles normatifs (image et légende issues de (Marquand et al., 2016)). L’approche classique cas-
témoins suppose que les cas et les témoins forment chacun un groupe bien défini (A). Cette hypothése peut étre
raisonnable dans certains contextes, mais de nombreuses autres configurations sont possibles en pratique. La
population clinique peut étre constituée de plusieurs sous-groupes présentant chacun une pathologie distincte
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(B) ; la variabilité liée a la maladie peut s’inscrire au sein méme de la variabilité observée chez les sujets sains
(C); ou encore, le groupe clinique peut apparaitre diffus et hétérogéne en raison d’erreurs diagnostiques, de
comorbidités ou de I'agrégation de pathologies différentes (D).

Dans le scénario idéal, I'approche cas-témoins permet de distinguer clairement deux groupes (Figure
2A). Toutefois, la réalité est souvent bien différente, en raison des variations propres a la population
générale mais aussi de I’hétérogénéité au sein du groupe clinique étudié. Plus largement, les
approches normatives offrent la possibilité de caractériser finement les différences
interindividuelles, ce qui favorise une compréhension plus nuancée de I'expression des pathologies
et permet un suivi plus personnalisé des patients.

Elles s’inscrivent pleinement dans le cadre de la médecine de précision, dont I'objectif est d’adapter
les traitements au profil spécifique de chaque individu (Marquand et al., 2019).

Un autre avantage réside dans leur accessibilité en termes d’interprétabilité : il suffit en effet de
définir des seuils pour quantifier les variations et, par conséquent, interpréter les résultats.

2.2. Les modeles normatifs en neuroimagerie : aspects pratiques
Deux grandes approches de modéles normatifs peuvent étre distinguées.
La premiere repose sur des caractéristiques dérivées directement des données d’intérét, comme les
volumes cérébraux ou les épaisseurs corticales. La seconde utilise I'imagerie compléete afin de
générer un espace latent normatif.

2.2.1. Modeéle normatif par région d’intérét
Dans cette approche, le cerveau est représenté a travers des mesures régionales (volumes,
épaisseurs corticales, etc.). L'objectif est de prédire ces mesures a partir de covariables telles que
I’age, le sexe ou encore des attributs cognitifs et psychiatriques. La prédiction repose sur des
modeles capables d’estimer une distribution, tels que les processus gaussiens (Gaussian Process
Regression, GPR), la régression linéaire bayésienne, la régression hiérarchique bayésienne ou encore
les modeéles additifs généralisés (GAMLSS) (Bozek et al., 2023; Dinga et al., 2021; Fraza et al., 2021,
Marquand et al., 2016).

2.2.2. Modele normatif sur 'imagerie
De maniéere analogue, mais sans passer par des caractéristiques régionales, il est possible de
modéliser directement les distributions issues de I'imagerie compléte (unimodale ou multimodale).
Ces approches s’appuient notamment sur les autoencodeurs variationnels (VAE), ainsi que sur des
architectures plus complexes telles que les produits, les mélanges ou les produits de mélanges
d’experts (Pinaya et al., 2018). Dans ce cadre, les scores de déviation sont généralement calculés
sous la forme :

OU x est la valeur observée, 1 la moyenne prédite et o I'écart-type estimé.

2.2.3. Exemple d’application
Dans le cadre de la maladie d’Alzheimer, des modéles normatifs entrainés sur plusieurs milliers de
sujets sains issus de la UK Biobank ont permis de détecter de maniére sensible les altérations
cérébrales chez des patients présentant un trouble cognitif Iéger (MCI), stade précoce de la maladie,
ainsi que chez des patients atteints d’Alzheimer a un stade plus avancé. Ces modeéles ont montré que
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les individus malades s’écartent significativement de la norme, 'ampleur de cette déviation reflétant
la sévérité des altérations cérébrales (Verdi et al., 2024).

3. Vieillissement cérébral et modeéle normatif : I'approche BrainAGE

3.1. Définition
Le modele Brain Age Gap Estimation (BrainAGE) est congu pour prédire I’age chronologique d’un
individu appartenant a une population de référence a partir de variables spécifiques, telles que des
IRM cérébrales de sujets sains ou encore des volumes cérébraux régionaux. L'écart entre I'age
cérébral estimé et I'age réel, appelé Predicted Age Difference (PAD), fournit un indicateur quantitatif
de la déviation par rapport a un vieillissement cérébral typique.
Le modele BrainAGE part du principe que, chez les individus en bonne santé, I'age cérébral estimé a
partir des images correspond a I’dge chronologique réel. Bien que développé pour le cerveau, ce
concept peut étre étendu a d’autres organes (Cole et al., 2019, 2017; Franke and Gaser, 2019; Seitz-
Holland et al., 2024).

3.2. Intérét du BrainAGE
L'intérét principal du modele BrainAGE ne réside pas uniqguement dans sa capacité a estimer I'age
cérébral chez des sujets sains, mais surtout dans son application a des populations cliniques,
notamment les patients atteints de démence ou d’autres pathologies cérébrales telles que les
maladies neurologiques et psychiatriques (Dias et al., 2025; Franke and Gaser, 2019) .Plusieurs
études ont en effet montré que, chez ces patients, I'age cérébral prédit par le modele est en
moyenne plus élevé que I'age chronologique. Cette surestimation traduit une accélération du
vieillissement cérébral liée a la pathologie (Smith et al., 2019).
En pratique, le BrainAGE apprend a exploiter des biomarqueurs associés a I'age, tels que la
diminution progressive de la matiére grise ou I'augmentation du volume de liquide cérébrospinal.
Lorsqu’il est appliqué a des patients présentant une atrophie cérébrale anormale, comme c’est le cas
dans les démences, ces caractéristiques pathologiques sont interprétées comme un vieillissement
prématuré, conduisant a une surestimation de I’age cérébral. Le BrainAGE constitue alors un
indicateur quantitatif de la déviation par rapport a un vieillissement cérébral typique. Ce score a été
utilisé comme biomarqueur potentiel pour évaluer la sévérité ou la progression de différents types
de démence, offrant ainsi une mesure continue et objectivable a partir de I'imagerie cérébrale
(Abeyasinghe et al., 2025).
Au-dela de la simple mesure d’une déviation individuelle, I'approche BrainAGE permet de comparer
les profils de différents patients. Des individus présentant un méme BrainAGE ou des schémas
d’atrophie similaires peuvent étre regroupés, révélant ainsi des trajectoires communes de
vieillissement cérébral. Cette capacité a mettre en évidence les similarités et différences entre
patients contribue directement a une médecine plus personnalisée, en facilitant I'identification de
sous-groupes cliniquement pertinents.
Dans cette optique, la recherche de patients similaires — c’est-a-dire partageant des caractéristiques
cliniques, biologiques ou structurelles — s’inscrit comme un prolongement naturel de la
modélisation normative.
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4. A larecherche de patients similaires
Avec I'’émergence du deep learning et du big data, un volume massif de données spécifiques aux
patients — incluant diagnostics, traitements, informations génétiques ou encore antécédents
médicaux — est devenu accessible. Cette explosion de données ouvre la voie a une amélioration
significative de la prise en charge médicale, via des outils d’aide a la décision, des modéles prédictifs
de progression de la maladie, ou encore des analyses comparatives de I'efficacité des traitements.
Dans ce contexte, I'identification de similarités ou de dissimilarités entre patients devient une
ressource précieuse pour optimiser les parcours de soins (Parimbelli et al., 2018).

4.1. Extraire des similarités
Cette section vise a présenter de maniere non exhaustive les méthodes et algorithmes permettant
d’identifier des similarités entre patients.

4.1.1. Distance, dissimilarité et similarité
Mathématiquement, une distance est une application d vérifiant les propriétés suivantes

V(x,y) EE%d(x,y) =0 ©x=y (P1)
V(x,y) €E?d(x,y) =d(y,x) (P2)
V(x,y,z) € E3d(x,y) < d(x,2)+d(zy) (P3)
V(x,y) € E?,d(x,y) =0 (P4)

Cette distance permet de mesurer la dissimilarité entre deux entités x ety :
Sid(x,y) = 0, alors x et y sont identiques
Plus d(x, y) est grande, plus x ety sont différents

Une mesure de dissimilarité peut étre vue comme une distance relaxée, ol I'inégalité triangulaire
(P3) n’est pas nécessairement respectée. L'idée reste similaire : deux objets sont identiques si leur
dissimilarité est nulle, et plus la dissimilarité est élevée, plus les objets sont différents.

Par extension, une mesure de similarité évalue la ressemblance entre deux objets. Pour une
similarité s, on a typiquement les propriétés suivantes

V(x,y) € E% s(x,y) <s(x,x)
V(x,y) € E?,s(x,y) =s(y,x)
La positivité de la similarité
V(x,y) €EE?s(x,y) =0

est souvent conservée pour faciliter I'interprétation mais elle n’est pas obligatoire.

Par exemple, la similarité cosinus
<xy>

s(x,y) =
HxlHIyll

peut prendre des valeurs entre [—1;1].

Il est possible de passer d’une mesure de similarité a une mesure de dissimilarité, et inversement, ce
qui permet de relier les deux notions de maniére simple et cohérente.

16



Ainsi, si s est la similarité cosinus, alors

d(x,y) = 1-=s(x,5)

définit une mesure de dissimilarité.
Inversement, si d est une mesure de dissimilarité, alors

1
d(x,y) +€’
avec €,y > 0, définissent une mesure de similarité.

s(x,y) =

d(x, y))
— )

ou s(x,y)=-exp <—

Parmi les fonctions respectant ces propriétés, les distances classiques comme la distance
euclidienne, la distance de Manhattan ou la distance Mahalanobis sont couramment utilisées pour
mesurer des dissimilarités, tandis que des mesures telles que la similarité cosinus sont fréquemment
employées pour évaluer des similarités.

En pratique, si I'on considére deux vecteurs représentant |'épaisseur corticale de deux patients x et
v, la similarité ou dissimilarité entre ces patients peut étre estimée par la distance euclidienne entre
ces vecteurs.

4.1.2. Algorithme de clustering
Les mesures de similarité permettent de comparer des patients de maniére individuelle, mais elles
ne fournissent pas directement de structure globale au sein de la population. Les algorithmes de
clustering ont pour objectif de regrouper les patients en fonction de leurs profils, en minimisant
certaines fonctions de co(it ou en maximisant des criteres de cohésion. Parmi les méthodes
classiques, on peut citer :

e K-means, qui cherche a partitionner les patients en groupes en minimisant la variance intra-
cluster (Lloyd, 1982);

e Clustering hiérarchique, qui construit un arbre hiérarchique de regroupement basé sur des
distances successives (Murtagh and Contreras, 2012);

e Algorithmes de détection de communautés (par exemple Louvain), particulierement adaptés
aux structures en réseau (Blondel et al., 2008);

e Modeéles de mélange gaussien, qui supposent que les données proviennent d’une
combinaison de distributions gaussiennes et permettent d’estimer des sous-groupes
probabilistes.

Ces algorithmes permettent d’extraire des sous-groupes de patients partageant des caractéristiques
similaires dans I'espace des vecteurs de données, qu’il s’agisse d’indices cliniques, d’épaisseurs
corticales ou d’autres mesures neuroimageries. L’utilisation d’'une mesure de similarité adaptée ou
d’un algorithme de clustering approprié constitue ainsi une étape clé pour I'identification de profils
patients homogenes et I’étude de la variabilité interindividuelle.

Par exemple, une étude a généré des vecteurs d’atrophie basés sur des modeles normatifs et les a
stratifiés a I'aide d’'un modéle de mélange gaussien pour identifier des sous-groupes au sein d’'une
population de patients atteints de la maladie d’Alzheimer (Kang et al., 2024). Dans une autre
approche, la théorie des graphes a été utilisée pour extraire des communautés de patients
partageant des épaisseurs corticales cérébrales similaires (Park et al., 2017).
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4.2. Sous typage de maladie
Les similarités inter-patients peuvent notamment étre exploitées pour identifier des sous-types de
pathologies. Dans le cas des maladies neurodégénératives, et en particulier d’Alzheimer, certaines
études (Kang et al., 2024; Poulakis et al., 2022) ont mis en évidence des clusters de patients
présentant des phénotypes d’atrophie distincts. Appliqués a une population MCI, ces sous-types
révélaient des vitesses différentes de progression vers la démence. D’autres travaux, comme celui de
Ferreira et al. (Ferreira et al., 2020), ont montré que la maladie d’Alzheimer pouvait étre décrite
selon deux axes : la sévérité de la maladie et sa typicité. Identifier des patients similaires permettrait
alors de mieux positionner un individu au sein de ces axes, et de mieux comprendre comment il
s’inscrit dans un spectre clinique déja connu.

4.3. Aide au diagnostic et pronostic
Un autre domaine ou la similarité entre patients peut jouer un réle central est celui du diagnostic et
du pronostic. Les modeéles d’intelligence artificielle montrent déja une forte efficacité pour la
classification diagnostique ou la prédiction de trajectoires de maladie (Arbabshirani et al., 2017;
Rathore et al., 2017). Toutefois, ils souffrent souvent du probléme de "boite noire", rendant leur
interprétation difficile pour les cliniciens. L’approche par similarité, fondée sur I'identification de
patients proches dans I'espace latent, apporte une solution plus interprétable : elle permet de
raisonner par analogie, en comparant un patient a d'autres aux trajectoires connues. Cela peut
contribuer a renforcer la confiance des praticiens et a rendre la décision médicale plus transparente.

4.4. Combler les données manquantes avec des patients de références
Enfin, dans le domaine médical, il est fréquent de faire face a des données manquantes. Les critéres
de similarité peuvent ici aussi jouer un réle important : en identifiant des patients de référence —
dont les données sont completes — il devient possible de compenser les données manquantes d’un
patient incomplet en s’appuyant sur les profils des plus proches voisins (Beretta and Santaniello,
2016; Jazayeri et al., 2020). Cette approche ouvre la voie a des analyses robustes, méme en présence
d’informations partielles.

4.5. Limitations
Malgré ses bénéfices, I'approche fondée sur la similarité entre patients comporte plusieurs limites
importantes.
La qualité et ’lhomogénéité des données (scanners IRM, données cliniques, génétiques, historiques)
restent cruciales : des variations de protocole ou des biais d’échantillonnage peuvent altérer la
définition de la similarité et biaiser les regroupements.
En termes d’imputation, le recours a des profils de patients similaires pour combler des données
manquantes peut introduire des erreurs ou amplifier les biais existants si la similarité n’est pas
rigoureusement définie (Azur et al., 2011).
Par ailleurs, I'interprétation clinique de ces similarités impose une prudence : deux patients pergus
comme similaires selon certains criteres d’imagerie peuvent diverger sur d’autres dimensions
(comorbidités, traitement), limitant la robustesse des conclusions.
La généralisation constitue un autre défi majeur : les clusters identifiés dans une cohorte spécifique
peuvent ne pas se reproduire dans d’autres populations, particulierement si I'échantillon est
restreint ou peu diversifié (Matta et al., 2024).
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5. Objectif de la these

Cette thése vise a développer des méthodes pour apprendre des espaces latents structurés et
interprétables, qu’ils soient unimodaux ou multimodaux, dans le contexte de 'analyse
neuroimagerie. L'objectif principal est d’étudier comment ces espaces peuvent étre organisés pour
capturer les similarités et dissimilarités entre patients, en tenant compte de la complexité des
données cliniques, démographiques et d’imagerie. Tout au long de ce manuscrit, la structuration de
I’espace latent sera au cceur des travaux. En effet, cette structuration influence directement la
maniere dont on identifie des patients similaires, ce qui peut orienter le diagnostic, le pronostic ou
encore le phénotypage pathologique. Cette structuration est cependant délicate : une organisation
trop naive de I'espace latent peut conduire a des regroupements peu informatifs (par exemple des
patients du méme age ou avec le méme diagnostic, sans que leurs profils cliniques ou d’imagerie ne
soient véritablement proches), tandis qu’une structuration trop complexe peut nuire a la
généralisation des modeéles ou a leur interprétabilité clinique. De plus, I'intégration ou non de
certaines modalités (cliniques, démographiques, ou multimodales en imagerie) a un impact direct
sur la nature des similarités induites dans I’espace latent. Une réflexion approfondie est donc
nécessaire sur la maniére de construire ces représentations pour qu’elles soient a la fois fidéles,
robustes et exploitables en pratique clinique. C’'est autour de ces enjeux — structuration pertinente
d’espaces latents et mesure de similarité interindividuelle — que s’articulent les contributions de
cette thése.

Le manuscrit suit alors le plan suivant :

1. Chapitre 1: L’espace latent, une représentation réduite de données médicales. Ce chapitre
introductif présente les fondements conceptuels des espaces latents, leur intérét pour
représenter de maniere compacte et interprétable des données médicales complexes, ainsi
que les enjeux liés a leur structuration.

2. Chapitre 2. Article « BrainAGE latent representation clustering is associated with
longitudinal disease progression in early-onset Alzheimer's disease ». Nous explorons ici la
capacité d’un espace latent appris en supervision a capturer des informations au-dela de la
tache ciblée (prédiction de I’age), a travers I'exemple du modele BrainAGE. Nous montrons
gue cet espace encode des dimensions cliniquement pertinentes, révélant une structuration
implicite utile a la caractérisation des pathologies.

3. Chapitre 3. PatientSpace : un espace latent structuré. Nous développons un espace latent
structuré et interprétable, construit a partir d’'une architecture de VAE conditionnel prenant
en entrée I'age et les imageries cérébrales. Cet espace sert a caractériser les démences

fronto-temporales (DFT). Pour en améliorer la structuration et I'interprétation, nous
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introduisons un critére de similarité fondé sur une approche contrastive, permettant
d’organiser les représentations latentes. Cette organisation autorise ensuite I'analyse fine
des profils d’imagerie et des données cliniques des patients, en s’appuyant sur la méthode
des plus proches voisins.

Chapitre 4. Article “PatientSpace: An interpretable graph -based latent space for
multimodal neuroimaging biomarker learning in Alzheimer’s Disease and Frontotemporal
Dementia”. Nous étendons I'approche précédente a un cadre multimodal combinant IRM
T1lw et FDG-TEP. L’age du patient conditionne désormais le prior du VAE, introduisant une
régularisation temporelle de I'espace latent, de maniére a refléter la progression de la
maladie. Le critére de similarité est maintenu mais formulé selon une approche non
contrastive. Ce PatientSpace multimodal permet ainsi d’explorer la similarité multimodale
entre patients et d’enrichir I'explicabilité clinique des regroupements.

Chapitre 5. Prédiction du pronostic fonctionnel aprés AVC ischémique dans les Hauts-de-
France grace a une approche vision-langage. Dans la continuité des chapitres précédents,
nous élargissons la multimodalité a des données hétérogénes en combinant imagerie, texte
et données cliniques. Les séquences IRM (FLAIR et DWI), les comptes rendus radiologiques
et les données cliniques tabulaires sont intégrés dans un modele d’attention et de fusion
pour prédire le devenir fonctionnel a trois mois (mRS) chez des patients victimes d’un AVC et
candidats a une thrombectomie mécanique. Cette étude constitue une premiere étape
exploratoire vers une intégration explicable et robuste de modalités multiples dans un cadre
prédictif.

Discussion générale et perspectives autour des travaux de these
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Chapitre |
L’espace latent, une représentation
réeduite des données médicales

I.1. Espace latent

I.1.1. Espaces latents : définition et cadre conceptuel

Dans les systémes d’apprentissage automatique, comprendre et manipuler les représentations
internes des données est un enjeu central. C'est dans ce cadre qu’émerge la notion d’espace latent :
un espace vectoriel de dimension inférieure, non directement observable, dans lequel les données
sont projetées afin de révéler des structures sous-jacentes plus simples ou plus pertinentes. Ce
concept joue un réle fondamental, tant dans les méthodes classiques de réduction de dimension que
dans les architectures profondes modernes.

Cette section retrace |'évolution du concept d’espace latent, des techniques linéaires initiales aux
représentations apprises automatiquement par des réseaux neuronaux.

1.1.2. Réduction de dimension et variables latentes

Dans de nombreux domaines de I'apprentissage automatique, les données brutes sont souvent de
tres haute dimension. A titre d’exemple, une séquence 3D T1 en écho de gradient génere une image
de plusieurs millions de voxels. Travailler directement dans ces espaces pose plusieurs défis : un co(t
computationnel élevé, la présence de bruit, ainsi que des difficultés d’interprétation. Une approche
courante pour remédier a ces problemes consiste a projeter les données dans un espace de
dimension réduite qui conserve I'information essentielle : c’est ce que I'on appelle un espace latent.
L'un des premiers algorithmes de réduction de dimension est I'analyse en composantes principales
(ACP) (Hotelling, 1933) qui propose projection linéaire maximisant la variance des données. Cette
technique permet de représenter I'information principale dans un espace réduit facilitant ainsi
I’exploration et la visualisation (Gewers et al., 2021; Jolliffe, 2002).

La notion de variable latente s’est ensuite développée dans les modéles probabilistes, tels que les
mixtures de Gaussiennes (GMM). Dans ce cadre, on suppose que les données sont générées a partir
d’une combinaison de distributions gaussiennes. Les variables latentes correspondent alors a des
facteurs cachés : les paramétres des composantes des gaussiennes (la moyenne et la matrice de
covariance) et I'appartenance probabiliste de chaque observation a chaque gaussienne (Reynolds,
2015). Un autre exemple majeur est celui des machines de Boltzmann restreintes (RBM), qui ont
joué un réle pionnier dans le développement des autoencodeurs profonds, dont nous reviendrons
dessus. Ces modeles génerent des représentations latentes en apprenant, a partir des données
observées, des structures cachées gouvernées par une distribution probabiliste particuliéere (Hinton,
2012; Larochelle and Bengio, 2008).

1.1.3. Apprentissage profond et exploitation des espaces latents
Comme mentionné précédemment, travailler directement dans I'espace brut des données n’est pas
toujours optimal. Les méthodes classiques de réduction de dimension sont efficaces pour des
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données tabulaires, elles s’averent moins adaptées aux modalités complexes telles que I'image, le
texte ou I'audio. Cette limitation tient notamment a la structure intrinsequement non-linéaire de ces
données, ainsi qu'a la forte dépendance locale et contextuelle entre leurs éléments.

L'émergence de I'apprentissage profond a permis de surmonter ces limites. Grace a des
architectures adaptées, ces méthodes peuvent apprendre automatiquement des représentations
latentes pertinentes. Par exemple, les réseaux de neurones convolutifs (CNN) sont capables
d’extraire hiérarchiquement des caractéristiques visuelles pertinentes a partir d’'images. Chaque
couche du réseau transforme progressivement les données en représentations de plus en plus riches
et compressées. Ces représentations apprises ont conduit a des avancées majeures, a la fois pour
I"analyse, la compréhension et la génération de données complexes.

1.2. Méthode d’apprentissage et impact sur I’espace latent

La construction d’un espace latent peut s’appuyer sur trois grandes familles d’apprentissage.
Chacune de ces approches influence la qualité, la structure et la richesse des représentations
latentes générées.

1.2.1. Méthodes d’apprentissage

1.2.1.1. Apprentissage supervisé

3. Figure I-1. Apprentissage supervisé.
Une imagerie TEP est traitée par un réseau de neurones convolutif (CNN) afin de prédire, a partir de I'espace
latent, si le patient est sain (CN) ou atteint de la maladie d’Alzheimer (MA).

L’apprentissage supervisé (Figure I-1) consiste a apprendre une fonction de prédiction a partir d’'un
jeu de données annoté. Cette approche est couramment utilisée pour des taches de classification ou
de régression. Dans ce cadre, I'espace latent issu d’un apprentissage supervisé est optimisé pour
discriminer les différentes classes, en extrayant des caractéristiques spécifiques a chaque catégorie
plutot que des attributs globaux.

Un exemple pertinent en neuroimagerie concerne la classification des démences a partir d’'images
cérébrales (Figure I-1). Par exemple, Rogeau et al (Rogeau et al., 2024) utilisent I'imagerie TEP-FDG
pour distinguer les sujets sains, les patients atteints de la maladie d’Alzheimer et ceux souffrant de
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démence fronto-temporale. L'espace latent appris permettait de faire émerger des patterns
spécifiques a chaque catégorie par une méthode d’occlusion.

Cet apprentissage est relativement simple a mettre en ceuvre, néanmoins, mais il présente plusieurs
limites : il nécessite un jeu de données richement annoté, ce qui représente un colt important, et
I’espace latent ainsi construit est souvent étroitement lié a la tache supervisée, ce qui limite sa
capacité de généralisation a d’autres types d’analyses.

1.2.1.2. Apprentissage non supervisé

£

- - | 0

4. Figure I-2. Apprentissage non supervisé.
Une image TEP est encodée dans un espace latent par un encodeur, puis cet espace latent est décodé par un
décodeur afin de régénérer I'image TEP d’origine.

Contrairement a I'apprentissage supervisé, I'apprentissage non-supervisé (Figure |-2) ne requiert pas
d’annotations. Dans ce contexte, les architectures les plus courantes sont les autoencodeurs, qui
apprennent a encoder une donnée dans un espace latent puis a la reconstruire a partir de cette
représentation (Hinton and Salakhutdinov, 2006). Cette approche permet de capturer des structures
inhérentes aux données sans supervision explicite, et d’extraire des caractéristiques a la fois globales
et spécifiques. Les variantes probabilistes, telles que les autoencodeurs variationnels (VAE),
permettent d’obtenir en outre un espace latent structuré, comme nous le verrons dans la section
suivante.

Dans le domaine de la neuroimagerie, les autoencodeurs sont utilisés pour extraire des
représentations compactes d’'images cérébrales, facilitant par la suite des taches telles que la
détection d’anomalie. Luo et al (Luo et al., 2023) entrainent un autoencodeur sur une base de sujets
sains puis ils 'appliquent sur une base de sujet avec AVC pour segmenter les lésions. Toutefois, bien
gue ces méthodes ne nécessitent pas d’annotations, les espaces latents obtenus sont souvent
difficiles a interpréter directement et peuvent capturer des caractéristiques non informatives a
certaines taches sous-jacentes.

1.2.1.3. Apprentissage auto-supervisé

L’apprentissage auto-supervisé consiste a définir, a partir des données elles-mémes, des taches
auxiliaires permettant d’entrainer un modele sans supervision explicite. Cette stratégie exploite la
structure intrinseque des données pour guider I'apprentissage. Deux grandes approches se
distinguent :

e Le contrastive learning consiste a rapprocher, dans I'espace latent, les représentations de
données similaires tout en éloignant celles correspondant a des données différentes. (Figure
I-3)
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e Le non-contrastive learning vise a apprendre des représentations stables a partir de
différentes augmentations artificielles d’'une méme donnée, sans recourir a des exemples

négatifs explicites. (Figure I-4).

Attraction

5. Figure I-3. Contrastive Learning.
Chaque modalité d’imagerie est encodée dans un espace latent, puis les représentations issues d’imageries
similaires sont rapprochées tandis que celles provenant d’imageries dissimilaires sont éloignées

6. Figure I-4. Non-contrastive learning.
Deux images TEP transformées sont générées a partir de I'imagerie d’origine, puis leurs espaces latents sont
rapprochés.

Ces méthodes sont couramment utilisées pour le pré-entrainement des modeéles dits de fondation.
Toutefois, elles requierent généralement des bases de données de grande taille — en particulier
dans le contrastive learning, ol un nombre important d’exemples négatifs est nécessaire — et
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présentent une optimisation complexe. Dans le cas du non-contrastive learning, ce probleme peut se
traduire par un effondrement de I'espace latent, ol toutes les représentations convergent vers une
représentation unique.

1.2.1.4. Visualisation des espaces latents et synthése des méthodes

Nous avons généré des espaces latents pour chaque approche afin de comparer les résultats
obtenus. Les méthodes comprenaient : une approche supervisée pour classifier le diagnostic MA ou
CN d’un patient, un autoencodeur pour la méthode non supervisée, et une approche auto-
supervisée combinant contrastive learning et non-contrastive learning. Dans cette derniére, deux
transformations étaient générées a partir d’'une méme imagerie ; leurs espaces latents étaient
rapprochés entre eux et éloignés de ceux des autres imageries.

. Supervised Learning Unsupervised Learning ) Contrastive Self-Supervised Learning

*1 Diagnosis . . Diagnosis Diagnosis .
= N ) . P wl W oo A
. MA . . mMa . oMa*

tSNE 2
.
tSME 2
t-SNE 2
.
.
.

ESNEL

A. Apprentissage supervisé B. Apprentissage non supervisé C. Apprentissage auto-supervisé

7. Figure I-5. Espaces latents.

Espace latent obtenu aprés apprentissage supervisé (en haut), non supervisé (milieu) et auto-supervisé (en
bas). Chaque point représente un patient, et la couleur indique le diagnostic : contréle (CN, bleu) ou maladie
d’Alzheimer (MA, rouge).

Comme indiqué précédemment, I’espace latent généré par I'apprentissage supervisé est
principalement discriminatif : les deux groupes sont clairement séparés (Figure I-5 A), contrairement
a 'apprentissage non supervisé (Figure I-5 B), qui ne révéle aucune structure apparente et présente
un mélange des données. L’apprentissage auto-supervisé produit un espace latent similaire a celui
de I'apprentissage non supervisé, mais avec une distinction entre les diagnostics, comme dans
I"apprentissage supervisé, sans que le modele ait été explicitement entrainé pour différencier MA et
CN (Figure I-5 C).
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1.2.2. Apprentissage multimodal

4 '\ /'

Fusion

Alignement Fission

8. Figure I-6. Apprentissage multimodal.

Les trois cercles en bas représentent trois modalités différentes. Lors de I'alignement, un espace latent est
extrait en ne conservant que lI'information commune a chaque modalité. Lors de la fusion, I’espace latent
extrait contient I’'ensemble des informations disponibles, sans distinguer ce qui est spécifique ou commun aux
modalités. Enfin, lors de la fission, les données sont décomposées en espaces latents spécifiques a chaque
modalité et en espaces latents partagés entre modalités.

L’apprentissage multimodal vise a intégrer différentes sources de données — comme le texte, les
images, I'audio ou encore les tableaux — dans un espace latent commun. Ce paradigme est
particulierement pertinent en médecine, ou les données sont naturellement multimodales :
imagerie cérébrale (IRM T1, FLAIR, TEP), comptes- rendus cliniques en texte libre, ou encore des
variables démographiques et cliniques structurées (age, sexe, scores coghnitifs, etc.).

Cette section présente les principales méthodes de génération d’un espace latent a partir de
données multimodales.

Trois stratégies sont distinguées et illustrées dans la Figure I-6.

1.2.2.1. Fusion de modalité

La premiére approche repose sur la fusion des modalités, ou les informations provenant de
différentes sources sont combinées dans un espace latent commun. Cette fusion s’effectue souvent
directement dans I'espace latent via des opérations telles que la concaténation ou la somme des
représentations encodées. Punjabi et al (Punjabi et al., 2019) proposent une fusion de données TEP
et IRM dans un espace latent commun, dans le but de prédire le diagnostic clinique avec davantage
de précision.

1.2.2.2. Alignement de modalité

Une seconde stratégie repose sur I'alignement des modalités, visant a rapprocher les
représentations latentes issues de modalités différentes lorsqu’elles décrivent une méme entité.
Chaque modalité est alors projetée indépendamment dans I'espace latent, mais de fagon a refléter
des facteurs sous-jacents communs. Cette approche s’inspire des principes de I'apprentissage auto-
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supervisé. Le modéle MERLIN exploite I'alignement modalité-image/texte pour générer des comptes
rendus a partir d’'imagerie médicale, et organiser les données selon leur similarité, facilitant ainsi une
stratification automatique des patients (Blankemeier et al., 2024).

1.2.2.3 Fission de modalité

Enfin, une troisieme approche dite de fission des modalités consiste a structurer I'espace latent en
plusieurs sous-espaces : certains spécifiques a chaque modalité, d’autres partagés entre elles. Cette
organisation permet de préserver a la fois les informations propres a chaque source de données et
celles utiles a leur analyse conjointe.

1.2.2.4. Complexité des données multimodales

Bien que l'intégration de données multimodales soit prometteuse dans le domaine médical — ou la
majorité des données sont effectivement de nature multimodale — elle souléve de nombreux défis
méthodologiques. Le choix de I'approche (fusion, alignement ou fission) dépend étroitement de la
nature des modalités et de leur degré de recouvrement. L’alignement est efficace pour extraire des
représentations partagées, mais incapable de capter des informations spécifiques a chaque
modalité. Si les modalités ne présentent aucun chevauchement, I'apprentissage d’un espace latent
aligné devient impossible. La fusion est attrayante par sa capacité a intégrer a la fois des
caractéristiques spécifiques et communes. Toutefois, cette approche est difficile a interpréter (effet
boite noire), et une modalité dominante peut occulter les autres. Enfin, la fission ressemble a la
fusion, mais avec une structuration explicite entre les parties spécifiques et partagées. Cette
méthode permet une meilleure interprétabilité, mais devient rapidement colteuse en calcul (le
nombre de sous-espaces latents croit exponentiellement avec le nombre de modalités : 2™ — 1 dans
le pire des cas).

Enfin, on peut aussi évoquer le probleme du multimodal collapse dans lequel une ou plusieurs
modalités sont prédominantes par rapport aux restes, incitant le modéle a oublier certaines
modalités (Huang et al., 2022).

1.2.3. Conclusion

Nous avons évoqué dans cette sous-section comment extraire un espace latent. Nous avons aussi vu
que les stratégies d’apprentissage ainsi que I'intégration de données multimodales ou non pouvaient
influencer la nature de I'espace latent extrait. Dans le domaine médical, deux critéres sont cruciaux :
I'interprétabilité (comprendre la structure de I'espace) et I'informativité (retrouver les
caractéristiques clés des populations étudiées, comme une atrophie hippocampique chez les
patients Alzheimer). Ces exigences rendent la structuration de I'espace latent particulierement
délicate.

I.3. Structuration de I’espace latent

Dans cette sous-partie, nous examinons les principales approches permettant de structurer un
espace latent de maniére a le rendre a la fois informatif et interprétable. Nous commencerons par
présenter le fonctionnement des autoencodeurs variationnels (VAE), puis nous aborderons les
principes du disentanglement learning, qui visent a isoler les facteurs de variation sous-jacents dans
I’espace latent. Enfin, nous décrirons des stratégies destinées a renforcer I'interprétabilité des
représentations latentes, notamment par I'introduction de criteres de similarité ou de consistance.
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1.3.1. Autoencodeur variationnel

Le VAE est un modele génératif probabiliste dans lequel chaque donnée n’est plus représentée par
un point fixe dans I'espace latent, mais par une distribution aléatoire contrainte par un prior, en
général une gaussienne multivariée centrée réduite. Cette formulation induit un espace latent
continu et régularisé (Kingma and Welling, 2019, 2013).

1.3.1.1. Apprentissage et fonction de colit

L’apprentissage des VAE repose sur la minimisation de la fonction ELBO (Evidence Lower Bound) (Eq.
I-1) qui combine deux termes : (1) la vraisemblance de reconstruction, notée Eg(, | ) [Inp(x | 2)],
qui mesure la capacité du modeéle a reconstruire fidélement les données ; (2) la divergence de
Kullback-Leibler (KL) entre la distribution latente apprise et le prior.

ELBO = —Eq( 0 [Inp(x | )] + KL(q(z | ) || p(2)) (Eq.-1)

En ajustant la pondération entre ces deux composantes, on contréle le compromis entre qualité de
reconstruction et régularisation de I'espace latent (Figure 1-7).
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9. Figure I-7. Impact de la pondération.

Influence de la pondération entre les deux termes de la fonction de perte. A gauche, la reconstruction est
priorisée. A droite, une régularisation plus forte contraint I’espace latent a suivre une distribution gaussienne
standard en deux dimensions. (Image issue de FIDLE : https://cloud.univ-grenoble-
alpes.fr/index.php/s/wxCztjYBbQ6zwd6 ?dir=undefined&openfile=959404079 05/08/2025)

1.3.1.2. Role et choix du prior

Le choix du prior est un élément déterminant dans la structuration de I'espace latent. Si I'on utilise
classiguement une gaussienne centrée réduite, plusieurs travaux ont montré qu’un prior plus
flexible peut améliorer la qualité des représentations latentes. Le posterior agrégé (aggregated
posterior) — une mixture des distributions q(z | x) obtenues pour différentes observations — a ainsi
été proposé comme une approximation optimale dans certains cas (Tomczak and Welling, 2018).
Plus récemment, des approches ont proposé d’apprendre directement le prior a partir des données,
en le rendant adaptatif ou conditionné (llse et al., 2020; Klushyn et al., 2019; Sohn et al., 2015). Dans
ces cas, le prior dépend d’informations supplémentaires, comme des variables discrétes (diagnostic)
ou continues (age), injectées dans la distribution p(z | y) (llse et al., 2020; Zhao et al., 2019a).
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1.3.1.3. Information contenue dans I'espace latent

Un défi majeur dans I'entrainement des VAE est I'appauvrissement de la représentation latente. Une
régularisation trop forte, via le terme de divergence KL, peut entrainer un posterior collapse, c’est-a-
dire une situation ou les représentations latentes deviennent non informatives (Alemi et al., 2018;
Dieng et al., 2019). Pour éviter ce phénomeéne, plusieurs stratégies ont été proposées, consistant a
découpler temporairement I'apprentissage de I'encodage et la régularisation de I'espace latent. Ces
approches visent a maintenir un équilibre entre expressivité des représentations et qualité de
reconstruction (Fu et al., 2019; Klushyn et al., 2019; Rezende and Viola, 2018).

1.3.2. Extensions du VAE et disentanglement learning

Dans cette sous-partie, nous présentons certaines extensions du VAE. D’autres extensions existent
évidemment, mais celles-ci ont été utilisées dans le cadre des travaux et doivent donc étre
introduites. Avant cela, il convient d’étudier la notion de disentanglement learning (apprentissage
désenchevétré).

1.3.2.1. Disentanglement learning : principe et définition

Le disentanglement learning (apprentissage désenchevétré) a pour objectif de structurer I'espace
latent afin que chaque dimension encode un facteur de variation distinct et indépendant, reflétant
une caractéristique spécifique de la donnée (Figure 1-8).
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10. Figure I-8. Disentanglement learning.
Chaque dimension de I'espace latent contréle une caractéristique des données initiales. (Image de gauche issue
du dataset 3D Shapes : https://qithub.com/qoogle-deepmind/3d-shapes/tree/master 05/08/2025).

1.3.2.2. B-VAE et biais inductifs

Le B-VAE constitue une extension du VAE classique, dans laquelle un facteur B > 1 est introduit dans
la fonction de perte ELBO (Eq. I-2) (Higgins et al., 2022). Ce paramétre permet d’accentuer la
régularisation en forcant chaque dimension de I'espace latent a suivre une distribution normale
centrée réduite, avec une covariance diagonale (souvent I'identité). Cette contrainte favorise une
séparation explicite des dimensions latentes, en imposant une variance diagonale et donc une
indépendance entre elles, ce qui rend I'espace latent plus structuré et facilite un éventuel
désenchevétrement.

ELBO = —Eq »lnp(x| 2]+ B KL(q(z | x) || p(2)) (Eq.1-2)
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Toutefois, il a été démontré qu’un désenchevétrement totalement non supervisé est théoriquement
impossible sans hypothéses fortes, soit sur la distribution des données, soit sur I'architecture du
modele (Locatello et al., 2019). L'introduction de biais inductifs est donc devenue une stratégie
incontournable. Ces biais peuvent étre incorporés a différents niveaux : dans la structure du modele
(ex. séparation explicite de sous-espaces), dans la fonction de co(t (ex. pénalisation spécifique), ou
dans le jeu de données (ex. en contrélant les sources de variation). Dans le cas des autoencodeurs
variationnels (ou méme dans la conception des espaces latents en général), on suppose une
indépendance conditionnelle entre différents facteurs (espaces latents), chacun étant guidé par un
attribut particulier (Eq. I-3).

p(ZAGE'Zdiagnostic I AGE, diagnOStiC) = p(ZAGEl AGE )p(zdiagnostic | diagnOStiC) (Eq' |'3)

Dans I'exemple ci-dessus, I'espace latent z,;5 est explicitement contrdlé par I'age, tandis que
Zgiagnostic €St controlé par le diagnostic. De plus, aucun des deux ne peut a priori contréler le

facteur de I'autre.

1.3.2.3. VAE conditionnel

Dans le VAE conditionnel, I'espace latent (Figure 1-9 et Eq. I-4) ou la reconstruction (Figure 1-10 et Eq.
I-5) est conditionné(e) par des variables auxiliaires. Ces variables peuvent étre utilisées lors de
I’encodage de I'espace latent, mais leur utilisation n’est pas obligatoire.

Dans les exemples présentés, elles sont utilisées pour I'encodage, ce qui permet d’établir une
analogie avec les méthodes multimodales présentées dans la section 1.2.2. Contrairement au VAE
classique dont I'objectif est d’approximer p(x), celui du VAE conditionnel est d’approximer p(x | y)
ol y correspond a des variables auxiliaires.

Conditionnement sur
Uespace latent

AGE ]
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11. Figure I-9. VAE conditionnel sur I'espace latent.
Dans cet exemple, les variables cliniques et I'imagerie sont encodées afin de générer un espace latent commun.
Les variables cliniques sont ensuite réutilisées pour conditionner cet espace latent commun.
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12. Figure I-10. VAE conditionnel sur la reconstruction.
Dans cet exemple, les variables cliniques et I'imagerie sont encodées afin de générer un espace latent commun.
Les variables cliniques sont ensuite réutilisées pour conditionner la reconstruction de I'imagerie.

ELBO; = —Eqz | xylinp(x | 2)]+ B KL(q(z | x,¥) [ p(z | ¥)) (Eq.1-4)
ELBO, = —Eq(; | xy[np(x | 2,9)] + B KL(q(z | x,y)|| p(2)) (Eq.I-5)

Au cours de cette these, nous étudierons |'utilisation de ces deux méthodes de conditionnement et
leur impact sur I'espace latent, ainsi que les situations dans lesquelles les données auxiliaires doivent
étre incluses en entrée du modele.

1.3.2.4. Domain Invariant Variational Autoencoder (DIVA)

Comme vu précédemment avec le B-VAE, I'introduction de biais inductifs constitue une stratégie
incontournable pour désenchevétrer I'espace latent. En supposant des espaces latents
désenchevétrés et guidés par des critéres supervisés, les probabilités entre les encodeurs sont
considérées comme indépendantes, de méme que les probabilités entre les priors.

L'idée centrale est de définir explicitement les facteurs de variation que I'on souhaite voir émerger,
ce qui est a la base de I'architecture DIVA (llse et al., 2020). Les auteurs divisent I'espace latent en
trois sous-espaces distincts : I'un induit par la classe de la donnée, un autre par le site d’acquisition,
et un dernier dédié aux variations résiduelles. Cette structuration permet d’isoler les sources de
variation connues de celles qui ne sont pas pertinentes pour la tache ciblée (Figure 1-11).

On note également que I'architecture DIVA integre le concept de conditionnement de I'espace latent
présenté précédemment.
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13. Figure I-11. Modele DIVA.

Trois espaces latents indépendants sont générés par trois encodeurs. Deux de ces espaces sont guidés par la
classification et le conditionnement sur le site et le diagnostic, tandis qu’un espace latent est régularisé par une
gaussienne centrée réduite classique. Les trois espaces latents sont ensuite utilisés pour décoder I'image
d’origine.

La méthode DIVA présente plusieurs avantages. Grace a I’architecture VAE, le modéle bénéficie
d’une régularisation naturelle, liée a la continuité de I'espace latent ainsi qu’a I'aspect multitache. Le
critére de disentanglement est également intégré en séparant explicitement les sous-espaces
latents. De plus, le modele renforce le conditionnement des espaces latents en ajoutant une tache
de supervision. Toutefois, cette approche présente un inconvénient majeur : elle nécessite un
nombre croissant d’encodeurs lorsque I'on souhaite introduire davantage de critéres
désenchevétrés, ce qui augmente considérablement la dimension de I'espace latent ainsi que les
colits mémoire et computationnels.

1.3.3. Favoriser l'interprétation : intégrer des critéres de similarités

En complément des contraintes probabilistes ou architecturales, il est possible de renforcer
I'interprétabilité de I'espace latent en y intégrant des criteres de similarité. Inspirées des approches
auto-supervisées, ces régularisations visent a organiser les représentations latentes en fonction de
relations sémantiques, morphologiques ou cliniques — en particulier dans les contextes médicaux.
L'intégration d’un critére de consistance, appliqué entre des données brutes ou des versions
transformées de ces données, permet d’ajuster la structure de I'espace latent en rapprochant les
représentations de données partageant des caractéristiques communes, et en éloignant celles qui
sont dissemblables. Dans une premiere formulation, ce critére imposait que la distribution latente
d’une donnée transformée soit incluse dans celle de la donnée d’origine (Sinha and Dieng, 2022). Ce
mécanisme contribue a stabiliser les représentations tout en préservant leur expressivité.
Néanmoins, une pondération excessive de ce critére peut altérer la structure naturelle des données,
en réduisant des variations informatives ou en rigidifiant I'espace latent. Il est donc essentiel de
calibrer finement ce type de régularisation. De maniere plus générale, ces criteres de consistance,
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tout comme d’autres formes d’auto-supervision, peuvent étre définis soit de fagon explicite, par
exemple a partir d’un diagnostic connu (supervision partielle), soit de maniere implicite, en
s’appuyant sur la structure interne des données elles-mémes.

1.4. Les espaces latents en neuroimagerie

Les espaces latents sont devenus un outil central en neuroimagerie pour traiter la complexité et la
diversité des données cérébrales. lIs permettent de capturer les principales sources de variation
d’intérét. Plusieurs grandes catégories d’applications émergent dans la littérature.

1.4.1. Harmonisation de séquence IRM

L'une des utilisations les plus répandues concerne I’harmonisation inter-sites. Les images cérébrales
acquises dans différents centres ou sur des scanners distincts sont sujettes a des variations
techniques qui peuvent biaiser les analyses. Les modeéles d’apprentissage utilisent alors deux
espaces latents : I'un dédié au contenu biologique de I'image, I'autre au style, représentant les
spécificités liées au site d’acquisition. Cette séparation permet de neutraliser les effets non
biologiques tout en préservant les informations d’intérét (Caldera et al., 2025; Liu and Yap, 2024;
Zuo et al., 2023).

1.4.2. Désenchevétrement de pattern de maladie

Un second champ d’application concerne le désenchevétrement des facteurs pathologiques dans les
données d’imagerie cérébrale. L'objectif est d’isoler les composantes associées a la maladie de celles
reflétant des variations normales (age, sexe, variabilité interindividuelle). Une stratégie fréquente
consiste a utiliser une base de sujets sains comme référence. Les différences observées chez les
patients permettent alors de dégager des signatures pathologiques spécifiques (Figure 1-12).
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14. Figure I-12. SMILE-GAN.

llustration du disentanglement learning appliqué au pattern de maladie. (Image issue de SMILE-GAN
https://qithub.com/zhijian-yang/SmileGAN/blob/main/datasets/Smile-GAN.png). Le modéle apprend & séparer
les variations liées a la pathologie de celles observées dans une population saine.

SMILE-GAN utilise des réseaux antagonistes génératifs (GANs) pour combiner des images de sujets
sains et des informations issues d’un cluster pathologique, générant ainsi une image artificielle
correspondant a un patient malade (Yang et al., 2021). Dans une approche similaire, SepVAE adopte
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une approche VAE utilisant deux encodeurs distincts : I'un apprend un espace latent partagé entre
sujets sains et malades, tandis que I'autre capture spécifiguement les variations liées a la pathologie
(Louiset et al., 2024). Enfin, Kang et al. (Kang et al., 2024) adoptent une approche indirecte : elle
utilise des vecteurs d’atrophie dérivés d’un modele normatif, puis applique un apprentissage auto-
supervisé pour construire un espace latent structuré. Ce dernier permet d’identifier quatre sous-
types d’atrophie : diffus, pariétal, temporo-médial et minimal.

1.4.3. Etude de progression de maladie

Les espaces latents offrent également un cadre pertinent pour modéliser la progression des
maladies neurodégénératives. L'évolution temporelle de la pathologie peut ainsi étre décrite comme
une trajectoire au sein de cet espace, a partir de données d’'imagerie — longitudinales ou
transversales — enrichies de variables cliniques. Comme mentionné précédemment, le modeéle
BrainAGE a pour objectif d’estimer I’age chronologique d’un individu sain a partir de son imagerie
cérébrale. Or, il a été montré que les patients atteints de pathologies neurodégénératives
présentent fréquemment un age cérébral prédit supérieur a leur age réel. En outre, plusieurs études
ont mis en évidence que I'espace latent exploité pour I'estimation de I’adge contient également des
informations cliniques pertinentes, allant au-dela de la seule prédiction de I’adge (Cole et al., 2017;
Leonardsen et al., 2022). D’autres modeles cherchent a dissocier vieillissement normal et
progression pathologique. L'étude de Ouyang et al (Ouyang et al., 2022) propose de structurer
I’espace latent selon deux axes indépendants : I'un pour le vieillissement naturel et I'autre reflétant
la sévérité de la pathologie (Figure 1-13). En s’appuyant sur des hypothéses fortes (indépendance des
deux processus, constance du vieillissement), ces modeles apprennent a projeter chaque sujet dans
un espace permettant une lecture conjointe et séparée de ces dynamiques. Cette structuration
repose souvent sur des VAE et I'analyse de cohortes longitudinales.
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15. Figure I-13. Vieillissement naturel et progression de la maladie.
lllustration des hypotheéses de modélisation du vieillissement normal et de la progression pathologique (Figure
I1-13.b), affectant la structure cérébrale de maniére indépendante. (Image issue de (Ouyang et al., 2022)).

1.4.4. Association compte rendu image

Dans |’association des images aux comptes rendus, I'espace latent généré correspond a un espace
latent commun aux deux modalités.

Dans un premier temps, une bréve introduction sera consacrée aux modeles de traitement du texte,
puis sera présentée I'utilisation des Large Language Models (LLMs) dans les comptes rendus ainsi
gue dans la construction des espaces latents. Cette section n’a pas pour objectif de présenter
I’ensemble des modeles de langage, mais simplement d’en exposer les concepts généraux.
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1.4.4.1. Large Language Models (LLMs)

Depuis quelques années, les LLMs constituent I'état de I’art en traitement du langage naturel. Cette
section présente de maniére générale leur fonctionnement, en suivant les principales étapes : la
conversion du texte en tokens, le role du mécanisme d’attention, I'utilisation du token spécial [CLS],
et enfin la prise en compte de I'ordre des tokens.

Du texte au vecteur

La premiere étape consiste a transformer le texte en une représentation numérique exploitable par
un modele de deep learning. Schématiquement, le processus se déroule en trois temps : (1)
extraction des tokens a partir du texte ; (2) association de chaque token a un ID unique dans le
vocabulaire ; (3) récupération du vecteur numérique correspondant a cet ID dans la table
d’embeddings, utilisé ensuite par le modele. Un token peut représenter un mot, une sous-partie de
mot, un groupe de mots, voire un ensemble de caracteres.

Les couches de Self Attention

Le coeur des LLMs repose sur les couches Transformers (Vaswani et al., 2023), dont le mécanisme
central est I'attention. Celui-ci permet de modéliser les relations entre tokens et d’enrichir leur
représentation contextuelle.

Ce processus repose sur trois composantes : (1) la query (Q), qui définit ce que I'on cherche dans la
séquence ; (2) la key (K), qui permet d’identifier I'information pertinente ; et (3) la value (V), qui
correspond a la valeur extraite lorsque la correspondance entre query et key est trouvée.

Le score d’attention entre une query Q et une key K est obtenu par un produit scalaire entre Q et K,
normalisé par la racine carrée de la dimension d;, de la key, puis passé par une fonction softmax (Eq.
I-6). Ce score indique la force de la relation : une valeur proche de zéro traduit une absence de lien,
tandis qu’une valeur élevée reflete une dépendance forte. Les valeurs (V) sont ensuite pondérées
par ces scores afin de produire la représentation finale des tokens.

Enfin, pour capturer simultanément plusieurs types de relations contextuelles, le mécanisme est
décliné en plusieurs tétes d’attention indépendantes (multi-head attention), dont les résultats sont
concaténés. Cela permet au modele d’extraire différents points de vue sur la méme séquence
textuelle et d’obtenir une représentation plus riche et expressive.

K -
Attention = Softmax(QT) (Eq. I-6)

k

Comprendre la séquence entiére : le token [CLS]

Le traitement d’'une séquence par un LLM génére une matrice de taille (N_tokens, D_embeddings),
ou chaque ligne correspond a I'embedding contextuel d’un token. Cependant, pour des taches
comme la classification, il faut obtenir une représentation unique de la séquence entiere.

C'est le r6le du token [CLS] (classification token). Placé en début de texte, il est entrainé pour
agréger I'information issue de tous les tokens via les couches de Transformers. A la sortie, son
embedding constitue une représentation condensée de la séquence, directement exploitable pour
des taches supervisées telles que la classification de texte. Plus largement, il peut aussi étre utilisé
dans d’autres contextes nécessitant un espace latent global, par exemple pour I'association entre
imagerie et compte rendu.
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Préserver I’ordre des tokens

Un dernier élément essentiel est la prise en compte de I'ordre des tokens, indispensable pour
comprendre correctement le texte. Comme les Transformers ne possedent pas de notion
intrinseque de séquentialité, il faut ajouter un encodage positionnel aux embeddings.

Cet encodage peut étre : fixe et déterministe, comme dans I'architecture originale des Transformers,
ou les positions sont codées par des combinaisons sinusoidales de différentes fréquences, ou appris
conjointement avec les embeddings.

Ces vecteurs de position sont additionnés aux embeddings des tokens avant leur passage dans les
couches de self-attention.

1.4.4.2. Extension des transformers aux images

Les modeles Transformers, initialement développés pour le traitement du texte dans les LLMs, ont
ensuite été généralisés a d’autres types de séquences, notamment les images. On parle alors de
Vision Transformers (ViTs)(Dosovitskiy et al., 2020). Dans ce cas, I'image est découpée en patchs de
taille fixe, chacun étant considéré comme un token. Ces tokens visuels sont ensuite traités par le
modeéle de la méme maniére que les tokens textuels dans les LLMs.

1.4.4.3. Association texte-image

Les méthodes d’apprentissage texte-image s’appuient sur des principes proches de ceux du
contrastive learning. L'idée est de rapprocher une image et son texte associé tout en éloignant les
autres associations possibles (Figure I-15)
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16. Figure I-14. Association texte-image.

Image provenant du modéle CLIP (Radford et al., 2021). Dans ce cas, I'objectif est de contraindre la matrice
d’association a se rapprocher d’une matrice identité, de facon a aligner chaque image uniquement avec son
texte associé.

En neuroimagerie, une voie de recherche particulierement prometteuse consiste a apprendre des
espaces latents partagés entre imagerie médicale et texte clinique. Ces approches reposent sur
I"alignement multimodal et visent a construire une représentation conjointe des données visuelles
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(IRM, TEP, etc.) et textuelles (comptes rendus, observations cliniques). Ce type d’apprentissage est
au ceeur du développement des modeles de fondation biomédicaux, a I'instar des modeles
multimodaux vision-langage utilisés dans d’autres domaines. L'objectif est de tirer parti de cette
représentation commune afin d’améliorer des taches telles que le diagnostic assisté, le suivi
longitudinal des patients ou encore leur stratification (Blankemeier et al., 2024).

I.5.Rappel des objectifs de these

Comme précisé dans lI'introduction, cette these a pour objectif de développer des méthodes
d’apprentissage d’espaces latents structurés, qu’ils soient unimodaux ou multimodaux, dans le
contexte de I'analyse en neuroimagerie.

Le chapitre Il explore dans quelle mesure un espace latent appris en supervision peut extraire non
seulement les informations directement liées a la tache cible, mais également des dimensions plus
générales, révélant ainsi une structuration implicite et informative au-dela de la supervision
explicite.

Le chapitre lll présente la conception d’un espace latent structuré et interprétable reposant sur une
architecture de type DIVA, intégrant I'adge et I'imagerie cérébrale comme variables d’entrée. Cet
espace est exploité pour analyser les démences fronto-temporales (DFT) a travers une approche par
plus proches voisins, permettant d’explorer conjointement les profils d'imagerie et les
caractéristiques cliniques des patients.

Le chapitre IV étend cette approche a un cadre multimodal en combinant IRM T1w et FDG-TEP.
L'espace latent y est structuré selon une logique différente, I’dge du patient servant a conditionner
le prior du VAE afin d’introduire une régularisation temporelle et de refléter la progression de la
maladie. Cette méthode est appliquée a des cohortes comprenant des témoins cognitivement
normaux, des patients atteints de la maladie d’Alzheimer et des patients atteints de DFT.

Enfin, le chapitre V constitue une ouverture prospective. Il explore I'extension de la multimodalité a
des sources d’information plus hétérogenes, incluant des séquences IRM FLAIR et DWI, les comptes
rendus radiologiques et les données cliniques tabulaires. Ces modalités sont intégrées dans un
modele multimodal de type vision-langage, ou des mécanismes d’attention assurent la fusion des
informations. L’objectif est de prédire le devenir fonctionnel a trois mois chez des patients victimes
d’un AVC ischémique et traités par thrombectomie mécanique.
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Chapitre Il

Article « BrainAGE latent representation
clustering is associated with longitudinal
disease progression in early onset
Alzheimer’s disease

Le chapitre | a posé les bases théoriques des espaces latents, en détaillant leurs propriétés et leur
intérét pour I'analyse de données complexes. Dans le chapitre Il, nous passons de la théorie a
I"application : un modele BrainAGE pré-entrainé sur une population saine est utilisé pour extraire un
espace latent sur des patients atteints de la maladie d’Alzheimer a début précoce. Cette approche
illustre comment les espaces latents peuvent capturer la complexité des dimensions phénotypiques
et permet d’identifier des sous-groupes de patients par clustering, montrant ainsi le potentiel
concret de ces représentations pour la compréhension de la maladie.
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II.1. Introduction

La maladie d'Alzheimer (MA) est un trouble neurodégénératif complexe et hétérogene, caractérisé
par une variabilité interindividuelle significative dans son apparition, sa progression et ses
manifestations cliniques. Cette hétérogénéité est évidente dans I'éventail de symptomes, les
rythmes de déclin cognitif et les caractéristiques neuropathologiques observés chez les patients.
Comprendre cette hétérogénéité est crucial pour améliorer la précision des outils diagnostiques
dans la MA et développer des approches thérapeutiques plus personnalisées (Devi and Scheltens,
2018).

Parmi les facteurs contribuant a cette hétérogénéité, I'age d’apparition joue un role critique. Les
patients atteints de la forme précoce de la MA (EOAD, Early-Onset Alzheimer’s Disease) sont plus
susceptibles de connaitre une progression plus rapide (Mendez, 2017) et présentent souvent des
caractéristiques cliniques atypiques, généralement sous forme de symptémes non mnésiques
(Koedam et al., 2010). Cependant, stratifier des patients atteints d’EOAD en fonction de la
progression de leur maladie demeure difficile, en grande partie en raison de la résilience individuelle
face au développement neuropathologique (réserve cérébrale) et de la capacité a compenser le
déclin cognitif (réserve cognitive).

Ainsi, I'établissement de biomarqueurs cliniquement disponibles permettant d’identifier les
individus présentant des vitesses de progression similaires est d’une importance capitale pour la
médecine clinique et de précision. L'imagerie par résonance magnétique (IRM) pourrait constituer
un outil puissant pour identifier I’atrophie neuroanatomique étroitement associée a la distribution
de la neuropathologie tau (Therriault et al., 2021; Xia et al., 2017). L’atrophie corticale globale est
plus prononcée dans I'EOAD comparée a la MA a début tardif (Aziz et al., 2017; Migliaccio et al.,
2015). Mais des profils d’atrophie focale ont été associés a des sous-types biologiques distincts de la
maladie (Ossenkoppele et al., 2015a). Une évaluation approfondie de la structure cérébrale est donc
nécessaire, ce qui peut étre réalisé grace a I'application de techniques d’intelligence artificielle (IA).
L'lIA, y compris I'apprentissage automatique et I'apprentissage profond, a la capacité de détecter des
motifs complexes et subtils dans les images IRM.

Récemment, plusieurs modeles d’IA, regroupés sous le terme de BrainAGE (Brain Age Gap
Estimation), ont été développés pour évaluer les écarts de la structure cérébrale par rapport a la
trajectoire normale du vieillissement chez les individus cognitivement sains (Franke and Gaser, 2019;
Guo et al., 2024). Ces méthodes consistent a entrainer un algorithme a prédire I’dge d’un individu
sain a partir des images IRM de son cerveau. Le score BrainAGE, défini comme la différence entre
I’age cérébral estimé et I’age chronologique, peut refléter la résilience ou la vulnérabilité du cerveau.
Un score plus jeune peut indiquer une plus grande résilience face au déclin cognitif et a la
progression de la maladie, tandis qu’un score plus agé pourrait suggérer une résilience réduite et un
risque accru de troubles cognitifs, reliant directement le modeéle a la fois a la résilience cérébrale et a
la santé cognitive. Le score BrainAGE, appris a partir de modéles d’apprentissage profond, encode
une série de caractéristiques hiérarchiques au travers de couches convolutionnelles. Ces
caractéristiques capturent et condensent I'information essentielle des images IRM pour estimer
I’age du sujet. Les caractéristiques condensées obtenues forment une représentation encodée des
images IRM. En raison de sa haute dimension, cette représentation encodée peut également
contenir des informations supplémentaires pour le phénotypage cérébral individuel au-dela de
I’estimation de I’adge (Leonardsen et al., 2022).
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Dans une étude précédente, nous avons démontré que le score BrainAGE était associé a la sévérité
du déficit cognitif chez les patients atteints d’EOAD, et dans une moindre mesure, a leurs
phénotypes neuropsychologiques (Gautherot et al., 2021). L’objectif de cette étude était de
développer un cadre d’IA basé sur le modele BrainAGE et I'IRM structurelle afin de réaliser une
stratification des patients atteints d’EOAD. Nous faisons I’"hypothése que les représentations
encodées apprises par le modele BrainAGE constituent un biomarqueur de la résilience cérébrale
face a la progression de la maladie, et que I'application d’un algorithme de regroupement a ces
représentations permettra d’identifier des groupes de patients présentant des rythmes distincts de
progression de la maladie, indépendamment de leur phénotype.

11.2. Matériels et méthodes

11.2.1. Population EOAD

Dans la présente étude, des données acquises prospectivement ont été analysées
rétrospectivement. Les patients atteints d’EOAD ont été recrutés et examinés au Centre Mémoire de
Ressources et de Recherche du Centre Hospitalier Universitaire de Lille, France. Ces participants
faisaient partie de la cohorte COMAJ (Maureille et al., 2017). Les critéres d’inclusion étaient les
suivants : apparition des symptémes a 60 ans ou plus t6t, et respect des criteres NIA-AA (McKhann
et al., 2011). Ces évaluations comprenaient antécédents médicaux, examens neurologiques et
neuropsychologiques, génotypage, imagerie par résonance magnétique (IRM) et imagerie au 18TEP
FDG, suivi de progression de la maladie ainsi que dosage des biomarqueurs du liquide céphalo-
rachidien (LCR). Les patients ont été suivis annuellement pendant une période de 6 ans, avec des
évaluations cliniques, neuropsychologiques et par IRM. Pour les besoins de la présente étude, les
participants présentant une mutation génétique ou une forme familiale ont été exclus. L’étude a
recu I'approbation du comité d’éthique local (CPP lle-de-France VI Groupe Hospitalier Pitié-
Salpétriére ; référence 110-05). Un consentement éclairé écrit a été obtenu aupres de tous les
participants.

11.2.2. Acquisition et prétraitement des IRM

Des images pondérées T1 tridimensionnelles (3D T1) en écho de gradient ont été acquises sur un
scanner IRM 3T (Achieva, Philips, Best, Pays-Bas), utilisant une antenne téte a 8 canaux et une
antenne corps entier pour la transmission (champ de vue = 256 x 256 x 160 mm?3, taille de voxel
isotropique 1 x 1 x 1 mm3, TR =9,9 ms, TE = 4,6 ms et angle de bascule = 8°) pour I'évaluation initiale
et le suivi. Les images ont été corrigées des effets d'inhomogénéité du champ magnétique et le
crane a été retiré a I'aide du logiciel VolBrain (Manjén, 2016). Ensuite, les images 3D-T1 prétraitées
ont été enregistrées linéairement dans I’espace MNI et rééchantillonnées a 1 mm? a I'aide du logiciel
SPM (https://www.fil.ion.ucl.ac.uk/spm/software/). Une normalisation d’intensité a été effectuée

par normalisation min-max.

11.2.3. Modele BrainAGE

Nous avons utilisé le modéle BrainAGE pré-entrainé décrit par Gautherot et al.(Gautherot et al.,
2021) comme extracteur de caractéristiques (Figure 1I-1), développé sur 3 227 IRM-T1 provenant de
2 065 participants sains. Une approbation éthique a été obtenue pour tous les sites de collecte de
données, et un consentement éclairé a été obtenu aupres de chaque participant. Tous les individus
ont été confirmés exempts de maladies neurologiques ou psychiatriques conformément aux
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protocoles locaux des études. Les détails de la base de données utilisée pour entrainer le modéle
BrainAGE sont fournis dans le Tableau II-1. Des détails supplémentaires comparant la population
EOAD et la base d’entrainement sont présentés dans la Figure [I-S2 et le Tableau II-S1.

Etude N Age, années Age Femme, n SCANNER Website
étendue (%)

IXI 181 46.87 +16.73 20-81 94 (51%) PHILIPS https://brain-development.org/

HCP 1783 28.76 £3.7 22-37 968 (54%) SIEMENS https://www.humanconnectome.org/

COBRE 238 38.18 +11.53 18-65 64 (6%) SIEMENS https://www.mrn.org/common/cobre-phase-
3

MCIC 264 33.60+12.21 18-60 80 (30%) SIEMENS https://www.nitrc.org/projects/mcic/

NmorphCH 141 31.37+£8.42 20-46 66 (46%) SIEMENS http://schizconnect.org/

NKIRS 620 42.62 +18.27 18-85 406 (65%) SIEMENS http://fcon_1000.projects.nitrc.org/indi/enha
nced/

1. Tableau II-1 Informations sur les sujets de la base d’entrainement du modéle BrainAGE.
L’dge est indiqué en moyenne + écart-type. L’intervalle d’dge est indiqué en valeurs minimale et maximale. Les
variables catégorielles sont rapportées sous la forme nombre sur le nombre total (pourcentage).

Le modele BrainAGE était basé sur une architecture de réseau de neurones convolutifs
tridimensionnels (3D-CNN) (Cole et al., 2017; Gautherot et al., 2021). L’architecture CNN se
composait de cing blocs répétés suivis d’'une couche flatten et d’'une couche linéaire pour prédire
I’age cérébral. Chaque bloc comprenait une convolution 3D, une activation ReLU, une convolution
3D, une normalisation par lot 3D, une activation ReLU et une opération de max-pooling.
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17. Figure II-1. Pipeline de la méthode.

Haut : le modéle BrainAGE est entrainé sur une population saine afin de générer une représentation encodée de
I'IRM capable de prédire I’dge.

Bas : le modele BrainAGE est utilisé pour extraire la représentation encodée de I'IRM de chaque patient de la
population EOAD, représentation ensuite soumise a un regroupement pour identifier des sous-groupes distincts
d’EOQAD.

La donnée dentrée était une IRM pondérée T1 3D prétraitée avec des dimensions de 182 x 218 x 182
voxels. L’entrainement du modele a été optimisé a I'aide de I'algorithme de descente de gradient
stochastique (SGD) avec un taux d’apprentissage de 0,001, un momentum de 0,1 et un
décroissement du taux d’apprentissage de 5e-05 (Sutskever et al., 2013). La fonction de co(t était
I’erreur absolue moyenne (MAE), et I'entrainement a été réalisé sur 150 époques avec une taille de
lot de 8. Un arrét précoce a été appliqué en fonction de la MAE de validation afin d’éviter le
surapprentissage. Des techniques d’augmentation des données, incluant des translations et des
rotations, ont été appliquées pendant I'entrainement pour limiter le surapprentissage et pour
améliorer les performances, comme cela a été empiriquement observé (Shorten and Khoshgoftaar,
2019).

L'age cérébral estimé par le modéle BrainAGE a été corrigé du phénomene de régression vers la
moyenne (Barnett et al., 2005). Ce phénomeéne peut induire un biais systématique — dans notre cas,
une surestimation de I’dge des participants les plus jeunes et une sous-estimation de celui des plus
agés. Pour pallier ce probléme, nous avons ajusté I’age prédit en utilisant le modéle de correction
suivant (Liang et al., 2019) :

regressed age predicted = intercept + a X age + error (Eq.1I-1.)
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Comme notre analyse utilisait le modéle BrainAGE développé par Gautherot et al. (Gautherot et al.,
2021), nous avons repris leur paramétrisation. La valeur de a a été sélectionnée par validation
croisée k-fold sur leur jeu de test, utilisé exclusivement pour ajuster les hyperparametres du modele
BrainAGE et a été estimée a a = 0,13.

11.2.4. Algorithme de clustering

La Figure lI-1 illustre le pipeline utilisé pour I’analyse de clustering. Les représentations encodées de
I'IRM de la population EOAD ont été extraites en utilisant le modéle BrainAGE pré-entrainé sur une
cohorte saine. Ces représentations ont ensuite été utilisées comme entrée pour un algorithme de
regroupement k-means (Lloyd, 1982). L’algorithme k-means a été exécuté avec la bibliotheque
Python scikit-learn (Pedregosa et al., 2011), avec une initialisation k-means++ (Arthur and
Vassilvitskii, 2007). Pour surmonter la haute dimension de la représentation encodée (19 200
caractéristiques), le k-means a été exécuté 150 fois et nous avons retenu le regroupement ayant la
plus faible somme des carrés intra-classe. Le nombre optimal de clusters a été déterminé a I'aide de
guatre métriques : le Gap Statistic, le score de Silhouette, les valeurs de Calinski-Harabasz et de
Davies-Bouldin (Petersen et al., 2024).

I1.2.5. Evaluation neuropsychologique

Afin de prendre en compte la sévérité de la maladie, le déclin cognitif et les phénotypes cliniques des
participants au sein des clusters ont été collectés. Le score CDR-SoB (Clinical Dementia Rating — Sum
of Boxes) a été utilisé comme marqueur de sévérité de la maladie. Si le CDR-SoB n’était pas
disponible mais que le CDR avait été évalué, une valeur de CDR-SoB était attribuée a partir du score
CDR correspondant, conformément aux recommandations d’O’Bryant et al.(O’Bryant et al., 2008b).
Le score MMSE (Mini-Mental State Examination) a également été utilisé comme marqueur de
sévérité de la maladie (Folstein et al., 1985). Si le score MMSE était supérieur a 10, une évaluation
neuropsychologique détaillée était réalisée, couvrant quatre grands domaines cognitifs : la mémoire
épisodique (évaluée avec le Visual Association Test (VAT) (Lindeboom et al., 2002)); le langage (test
de dénomination DO80 avec 80 images); la fonction visuospatiale (test Beery VMI de Beery-
Buktenica (Lim et al., 2015)); et les fonctions exécutives (fluences verbales catégorielles (animaux) et
phonémiques (lettre P)). Concernant les phénotypes cliniques, des réunions rétrospectives
multidisciplinaires ont été organisées pour déterminer I'atteinte cognitive initiale et la plus marquée
des patients, sur la base de (i) I'anamnése rapportée par I'aidant au moment du diagnostic et (ii) le
profil neuropsychologique a I'inclusion. Conformément aux criteres NIA-AA modifiés pour la maladie
d’Alzheimer probable (McKhann et al., 2011), les déficits cognitifs initiaux et prédominants (apres
I'amnésie) concernaient le langage, les fonctions visuospatiales ou exécutives. Par conséquent, dans
cette étude, les phénotypes non mnésiques ont été catégorisés selon la présence de troubles du
langage, des fonctions visuospatiales ou exécutives, correspondant respectivement a la variante
logopénique de "aphasie primaire progressive (Gorno-Tempini et al., 2011), a I'atrophie corticale
postérieure (Crutch et al., 2017), et au variant comportemental/dysexécutif de la MA (Ossenkoppele
et al., 2015b).

11.2.6. Analyses volumétriques et morphométriques

Afin d’évaluer les facteurs neuroanatomiques appris par notre approche de regroupement basée sur
le modele BrainAGE, plusieurs analyses volumétriques et morphométriques cérébrales ont été
effectuées. Les volumes cérébraux (substance grise, hippocampe, substance blanche et LCR) ont été
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estimés a I'aide du logiciel VolBrain (Manjén and Coupé, 2016) et normalisés par le volume
intracranien.

De maniére analogue aux phénotypes cognitifs (mnésique et non mnésique), nous avons défini des
phénotypes d’atrophie cérébrale basés sur le ratio volume hippocampique/volume cortical
(HV:CTV). Le phénotype Limbic-predominant (LP) correspondait a un HV:CTV inférieur au 25¢
percentile, le phénotype Hippocampal sparing (HpSp) a un HV:CTV supérieur au 75¢ percentile, et le
Typical AD (tAD) correspondait a un HV:CTV situé entre le 25¢ et le 75¢ percentile (Kuchcinski et al.,
2023; Risacher et al., 2017). La signature corticale de la MA (Dickerson et al., 2009; Dickerson and
Wolk, 2012) et la signature de résilience cognitive (Arenaza-Urquijo et al., 2019) ont été évaluées en
moyennant I'épaisseur corticale de régions d’intérét spécifiques issues de I'atlas de Destrieux

(Destrieux et al., 2010) (Figure 1I-2). L’épaisseur corticale a été estimée avec le logiciel Freesurfer
(v.7.1.0, https://surfer.nmr.mgh.harvard.edu/).

U Overlap

18. Figure lI-2. Régions d’intérét pour les signatures corticales de I’AD et cognitives

Signature corticale de la MA : gyrus frontal supérieur et inférieur — gyrus supramarginal — gyrus pariétal
supérieur — gyrus précuneus — gyrus parahippocampique — gyrus temporal inférieur

Signature de résilience cognitive : gyrus cingulaire antérieur — gyrus angulaire — gyrus temporal moyen
Chevauchement entre la signature AD et la signature de résilience : péle temporal

. Cognitive resilience signature . Cortical AD signature

1.2.7. Analyses statistiques

Les analyses statistiques des données démographiques, biologiques et cliniques ont été menées afin
de différencier les caractéristiques des patients au sein de chaque cluster. Ces analyses ont été
effectuées a I'aide du logiciel R (v.4.2.2, https://www.r-project.org/). Le seuil de significativité

statistique a été fixé a p < 0,05, corrigé pour comparaisons multiples a I'aide du False Discovery Rate
(FDR).
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11.2.7.1. Analyse a l'inclusion

Afin de comprendre les bases biologiques des clusters BrainAGE, nous avons évalué les différences
intergroupes a l'inclusion concernant les données démographiques et biologiques entre les clusters
en utilisant une régression linéaire pour les variables continues et une régression logistique pour les
variables catégorielles. Les variables significatives ont été incluses comme covariables dans un
modele de régression linéaire pour comparer les différences intergroupes des scores
neuropsychologiques et des mesures volumétriques en IRM.

11.2.7.2. Analyse longitudinale

Pour estimer la valeur pronostique des clusters BrainAGE, nous avons conduit une analyse
longitudinale des marqueurs de sévérité de la maladie, ajustée sur la sévérité a I'inclusion. Les
différences entre clusters pour les scores neuropsychologiques et les mesures volumétriques en IRM
ont été examinées a I'aide de modeles linéaires mixtes univariés (LME). Cette approche offre
flexibilité et puissance pour analyser des données longitudinales, en tenant compte des données
manquantes, de temps de suivi non uniformes et en incluant des participants ne disposant que
d’une seule mesure temporelle, afin de caractériser des différences spécifiques a la population. Les
modeles LME ont été ajustés avec (i) des effets fixes, incluant I'dge chronologique a I'inclusion, le
sexe, le groupe de cluster, l'interaction groupe x temps de suivi et (ii) des effets aléatoires limités a
I'intercept, car I'objectif était d’étudier les effets des clusters entre les groupes plutét que sur les
patients individuellement.

La valeur prédictive de la représentation encodée de BrainAGE a été comparée a celle de la
différence entre age prédit et age chronologique (PAD) et de la réserve cérébrale (BR). Les analyses
longitudinales ont été répétées avec les groupes PAD et BR. Le PAD a été calculé comme la
différence entre I’age chronologique et I'age cérébral prédit corrigé (Gautherot et al., 2021;
Leonardsen et al., 2022). La BR a été estimée a I'aide du volume intracranien (ICV) (Stern et al., 2019;
Sumowski et al., 2013). Les groupes ont été créés en fonction de la médiane de chaque
biomarqueur. Nous avons ensuite construit un vecteur de caractéristiques manuellement pour
chaque sujet afin de fournir un autre point de comparaison — au-dela de la simple stratification de
la population par PAD ou BR — pour notre méthode d’IA. Ce vecteur incluait les volumes normalisés
de substance grise, de substance blanche, de LCR, de I'hippocampe, ainsi que I'dge du sujet. Nous
avons ensuite appliqué I'algorithme de clustering k-means afin de regrouper les sujets en deux
clusters distincts sur la base de ces caractéristiques.

11.3. Résultats

11.3.1. Participants

De 2009 a 2017, un total de 217 participants répondant aux criteres de MA probable ont été inclus
dans cette étude. Sur la base de la disponibilité et de la qualité des données IRM, 142 participants
sans mutation génétique ni forme familiale ont été retenus a I'inclusion (d4ge moyen 59,33 + 4,00
ans, niveau d’éducation moyen 9,88 + 2,94 ans ; 57 %).

A V'inclusion, tous les participants avaient un score MMSE. Les autres évaluations
neuropsychologiques variaient, avec des données disponibles pour 136 participants pour le CDR-SoB
et 97 participants pour le test de Beery. De plus, 124 participants disposaient d’analyses de
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biomarqueurs du LCR et 132 participants avaient un génotype APOE €4. Globalement, les
participants présentaient une sévérité de maladie modérée et un déficit cognitif modéré (score
médian CDR-SoB 6,00 ; MMSE moyen 16,45 + 6,52) avec un age au début des symptomes de 54,28 +
3,55 ans et une durée de la maladie de 5,11 + 2,78 ans. Parmi les participants, 50 % présentaient un
phénotype non mnésique.

Le nombre de participants a diminué au fil du temps, atteignant 5 participants a I'année 6 (Figure II-
3).

Enrollment NIA-AA criteria for « probable AD » (n = 217)

EOAD participant

Excluded (n =79)
+  NotAD (n=17)

Familial form (n = 25)

No MRI T1w or poor quality MRI (n = 33)
Allocation Included participants (n = 142)

A
Baseline (n = 142) Year 1 (n=93) Year 2 (n=72) Year 3 (n = 50) Year 4 (n=22) Year 5 (n=12) Year 6 (n=5)

19. Figure II-3. Diagramme de flux de la population

11.3.2. Clustering

Le clustering a été réalisé uniquement a I'inclusion, et les patients ont conservé leur affectation de
cluster tout au long de I'analyse longitudinale. La solution optimale basée sur nos métriques variait
entre deux et trois clusters (Figure 1I-S1). Cependant, la solution a trois clusters a donné un cluster
ne contenant que trois patients. Nous avons donc opté pour la solution a deux clusters.
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BrainAGE score

A p <0.001

20

-20

BrainAGE- BrainAGE+

20. Figure II-4. Distribution des scores BrainAGE entre les clusters.
L’abscisse correspond au cluster associé a la distribution. L’ordonnée correspond au score BrainAGE (dge
cérébral corrigé — Gge chronologique). p-value < 0.001.

Pour assurer la pertinence des clusters et des représentations encodées par le modeéle, nous avons
comparé les scores BrainAGE des patients dans chaque cluster (Figure 1l-4). Le cluster #1 comprenait
63 sujets avec un age cérébral prédit moyen de 63,44 + 7,21 ans, tandis que le cluster #2 comprenait
79 sujets avec un age cérébral prédit moyen de 75,66 *+ 4,38 ans. Les scores BrainAGE différaient
entre les clusters (5,44 = 8,13 ans pour le cluster #1 et 15,25 + 5,11 ans pour le cluster #2, p < 0,001)
; sur la base de ces résultats, nous avons désigné le cluster #1 comme BrainAGE- et le cluster #2
comme BrainAGE+.

11.3.3. Différences démographiques, biologiques et cliniques au départ

Les différences démographiques, biologiques et cliniques entre clusters sont présentées dans le
tableau II-2. Les clusters ne présentaient des différences que pour I’age et le sexe, qui ont donc été
inclus comme covariables dans les analyses statistiques suivantes. Les patients du cluster BrainAGE+
étaient plus agés et plus susceptibles d’étre de sexe masculin.

Variable N BrainAGE- BrainAGE+ FDR f? effect
corrected p-
value

Démographie

Age, année 142 57.99+4.33 60.42+336 0.001 0.10
Education, 129 9.98+3.12 9.79+281 0.72 0.001
année (# de (# de

manquant, manquant,

n=7) n=6)
Durée de la 139 463+281 555+273 0.07 0.03
maladie, (# de (# de
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année manquant, manquant,
n=2) n=1)
Odd Ratio
Femme, n 142 45/63 (71%) 37/79 (46%) 0.007 2.83
Biologie f? effect
Total TAU, 125 799.08 + 724.71 0.32 0.008
pg/mL 451.67 387.32
(# de (# de
manquant, manquant,
n=6) n=11)
p-TAU / AB42 126 0.23+0.14 0.21+0.14 0.64 0.003
(# de (# de
manquant, n  manquant, n
=7) =9)
Odd Ratio
APOE ¢4 138 34/60 (57%) 39/78 (50%) 0.49 0.77
(# de (# de
manquant, manquant,
n=3) n=1)

2. Tableau II-2. Différences démographiques et biologiques a l'inclusion.
Les variables continues sont présentées sous forme de moyenne + d'écart-type. Les variables catégorielles sont
indiquées comme le nombre sur le nombre total (pourcentage). APOE €4, au moins un allele APOE €4. Le
nombre de valeurs manquantes est présenté sous la forme # de valeurs manquantes. Les valeurs p significatives
corrigées du FDR sont en gras. Les valeurs p sont corrigées séparément entre les parties démographies et

biologies.

11.3.4. Différences neuropsychologiques et de volumes cérébraux a l'inclusion
Les différences neuropsychologiques, de volumes et d’épaisseur corticale sont présentées dans le

tableau II-3.

Variable BrainAGE- BrainAGE+ FDR corrected  f2 effect
p-value

Scores cognitifs
MMSE 19.32 + 4.62 14.14 + 6.93 < 0.001 0.16
CDR-SoB (médiane -IQR)  5-[3.5-6.62] 7-[5-11] 0.002 0.09
VAT 3.52+3.78 3.96 + 3.84 0.35 0.01
D080 71.02 £ 9.50 64.71 + 14.66 0.01 0.08
Beery 19.06 + 4.01 18.08 + 4.20 0.27 0.03
Letter fluency 11.52 +7.92 8.23+6.28 0.07 0.05
Categorical fluency 14.77 £ 6.45 11.28 + 7.09 0.004 0.10
Volumes cérébraux (pourcentage de volume)
Substance grise 0.35+0.03 0.32+£0.02 < 0.001 0.36
Substance blanche 0.28 £ 0.02 0.27 £ 0.03 0.96 0.004
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Hippocampe 4.77e-03 £ 4.40e-03 + 7.44e-04 0.40 0.01
6.65e-04
LCR 0.26 £ 0.03 0.30+0.04 <0.001 0.21
Phénotype cognitif Odd Ratio
Amnésique 33/60 (55%) 38/77 (49%) 0.51 0.80
Phénotype d'atrophie
Typical AD, n 35/63 (55%) 35/79 (46%) REF
Hippocampal sparing, n 14/63 (22%) 22179 (27%) 0.76 1.95
Limbic predominant, n 14/63 (22%) 22179 (27%) 0.95 0.95
Epaisseur corticale totale de la surface (mm) f? effect
cortical AD signature 231+0.11 2.20+£0.12 < 0.001 0.20
cortical resilience signature  2.43 £ 0.13 2.29+£0.12 <0.001 0.23

3. Tableau II-3. Différences neuropsychologiques, volumétriques cérébrales, d’atrophie et de phénotypes

cliniques a l'inclusion.

Les variables continues sont présentées sous forme de moyenne * d'écart-type. Les variables catégorielles sont
indiquées comme le nombre sur le nombre total (pourcentage). Les valeurs p significatives sont en gras. IQR :

Ecart interquartile.

Le cluster BrainAGE+ avait des scores MMSE plus faibles (p-value corrigée FDR < 0,001) et des scores
CDR-SoB plus élevés (p-value corrigée FDR < 0,001) par rapport au cluster BrainAGE-.

Concernant les tests neuropsychologiques détaillés, le cluster BrainAGE+ présentait des
performances inférieures dans les fonctions exécutives (test de fluence catégorielle, p-value corrigée
FDR =0,004) et le langage (test DO80, p-value corrigée FDR = 0,01). De plus, le cluster BrainAGE+
présentait une moindre quantité de substance grise et des volumes de LCR plus importants.

Le type de cluster n’était associé a aucun phénotype cognitif (mnésique vs non mnésique) ni a un
pattern d’atrophie (typical AD vs hippocampal sparing vs limbic predominant). Cependant, une
épaisseur corticale plus faible dans les zones correspondant a la signature corticale AD et a la
signature de résilience cognitive a été observée dans le cluster BrainAGE+.
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11.3.5. Différences entre clusters dans I'analyse longitudinale

MMSE score CDR SoB score

A

30 20 .

15

20

10

years years
0 2 4 6 2 4 B

21. Figure II-5. Evolution cognitive par cluster.
Le cluster BrainAGE+ est représenté en rouge, le BrainAGE- en bleu. Les p-values pour la différence de pente
sont respectivement 0.02 (MMSE) et 0.03 (CDR-SoB).

L'analyse longitudinale a été conduite sur tous les scores cognitifs et volumes cérébraux, ajustée
pour le sexe et I'age a I'inclusion. Les sujets du cluster BrainAGE+ ont présenté un déclin cognitif plus
rapide sur le MMSE et une progression plus rapide du CDR-SoB (Figure II-5). Le volume de LCR a
augmenté plus rapidement dans le cluster BrainAGE+, le volume de I’hippocampe a diminué plus
rapidement dans le cluster BrainAGE-, tandis que les autres volumes cérébraux n’ont pas montré de
différences dans les taux de progression (Tableau II-4).

BrainAGE- BrainAGE+ p-value

Scores de sévérité

MMSE, pts / année -2.35+/-0.15 -3.02 +/- 0.25 0.02
CDR-SoB, pts / année 1.58 +/-0.10 1.99 +/- 0.16 0.03
Volumes cérébraux

Substance grise, % / année -8.37e-03 £+5.68e-04 -6.52e-03 £+9.33e-04 0.14
Substance blanche, % / année -7.88e-03 £ 9.89e-04 -4.56e-03 +1.61e-03 0.16
Hippocampe, % / année -1.76e-04 + 8.18e-06 -1.42e-04 +1.35e-05 0.03
LCR, % / année 1.72e-02 + 1.28e-03 1.16e-02 + 2.09e-03 0.02

4. Tableau lI-4. Taux de déclin entre les clusters en termes de sévérité et de volumes cérébraux.

Contrairement aux clusters BrainAGE, les groupes PAD et BR ou les clusters basés sur le vecteur créé
a la main n’ont montré aucune différence dans la variation du MMSE ou du CDR-SoB (Tableaux 11-S2,
1-S3 et 11-S4).

11.4. Discussion

Dans cette étude, nous avons appliqué une approche de clustering sur la représentation encodée du
BrainAGE dans une population atteinte d’EOAD. Deux clusters ont été identifiés et caractérisés par
des différences significatives du BrainAGE. Les patients classés BrainAGE+ étaient plus agés et plus
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souvent de sexe masculin. Les évaluations neuropsychologiques ont révélé une moindre efficacité
cognitive globale, une sévérité de la maladie plus élevée et une performance réduite aux tests de
dénomination et de fluence verbale. L’analyse IRM a montré une diminution du volume
hippocampique chez ces patients. Les analyses longitudinales ont démontré un déclin plus marqué
dans le cluster BrainAGE+.

Des études antérieures appliquant le BrainAGE a la maladie d’Alzheimer a début tardif (LOAD) ont
systématiquement montré un dge cérébral prédit plus élevé par rapport aux sujets sains (Franke et
al., 2010). Chez les patients présentant un déficit cognitif |éger (MCl), le BrainAGE s’est révélé étre
un prédicteur précis de la conversion vers la maladie d’Alzheimer, chaque année supplémentaire de
BrainAGE étant corrélée a un risque accru de 10 % de développer la maladie sur une période de suivi
de 36 mois (Gaser et al., 2013). Des analyses longitudinales ont également montré une accélération
du BrainAGE chez les patients MCI converters, ainsi que chez les patients MA (Léwe et al., 2016). A
ce jour, les analyses du BrainAGE chez les patients a début précoce restent limitées. Dans une étude
précédente, nous avions observé une augmentation du BrainAGE dans I'EOAD et son accroissement
significatif au cours du suivi longitudinal (Gautherot et al., 2021). Sa corrélation avec le déclin
cognitif longitudinal n’avait pas été évaluée auparavant.

La nouveauté de la présente étude réside dans I’exploitation de la représentation encodée du
BrainAGE, spécifiguement la sortie de la derniere couche flatten du modele. Conformément aux
recherches antérieures mettant en évidence I'utilité des représentations internes dans les modeéles
de BrainAGE pour les taches de classification (Leonardsen et al., 2022), nos résultats montrent que le
clustering basé sur la représentation encodée du BrainAGE est associé au déclin cognitif longitudinal.
Comparées a d’autres approches — telles que le PAD, les représentations absolues ou le vecteur créé
a la main — ces représentations dérivées du BrainAGE capturent plus efficacement I’hétérogénéité
spatiale des patterns d’atrophie cérébrale.

Nos résultats fournissent des preuves supplémentaires en faveur de la pertinence biologique des
méthodes BrainAGE. Comparée a la LOAD, 'EOAD se caractérise par un phénotype hétérogéne avec
une prévalence plus élevée de présentations atypiques. Selon Ferreira et al. (Ferreira et al., 2020), le
spectre de la MA peut étre décrit selon deux axes principaux : I'un relatif a la typicité et I'autre a la
sévérité. Dans notre étude, la représentation encodée du BrainAGE était associée a des
biomarqueurs multimodaux de sévérité, incluant I'atrophie corticale de la matiere grise et
|’altération cognitive globale. Cependant, les clusters BrainAGE ne différaient pas significativement
en termes de présentation clinique (mnésique vs non-mnésique) ni de patterns d’atrophie IRM
(hippocampal sparing vs limbic predominant vs typical AD).

Fait intéressant, les clusters différaient non seulement par leurs caractéristiques a I'inclusion, mais
aussi par leur valeur prédictive du déclin cognitif sur une période de suivi de six ans. Par exemple, la
diminution du MMSE et I'augmentation du CDR-SoB étaient respectivement de 0,7 point/an et 0,4
pts/an plus rapides dans le cluster BrainAGE+. En revanche, I'augmentation longitudinale du volume
de LCR était plus rapide dans le cluster BrainAGE-. Cette apparente divergence peut s’expliquer par
un effet plafond chez les patients BrainAGE+ présentant déja une atrophie cérébrale sévere.

Le déclin cognitif dans la maladie d’Alzheimer est principalement influencé par la charge en amyloide
et tau (Cody et al., 2024; Zhou et al., 2024). Pour une quantité donnée de lésions
neuropathologiques, la sévérité clinique est modulée par la réserve cognitive et cérébrale. Dans
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cette étude, nous n’avons trouvé aucune association entre le niveau d’éducation, proxy de la réserve
cognitive, et la représentation encodée du BrainAGE. Dans I'ensemble, nos résultats suggérent que
la représentation encodée du BrainAGE pourrait servir de biomarqueur de la réserve cérébrale. La
réserve cérébrale fait référence a la capacité du cerveau a tolérer des dommages
neuropathologiques tout en maintenant sa structure (Stern et al., 2023). Elle est influencée par
divers facteurs, incluant la génétique, I’éducation, I'activité sociale, cognitive et physique, ainsi que
les facteurs liés au mode de vie.

Conformément au modele de différenciation renforcée proposé par Bocancea et al. (Bocancea et al.,
2023), les différences a l'inclusion des performances cognitives entre clusters sont amplifiées au fil
du temps. Cet effet protecteur dans le cluster BrainAGE- peut s’expliquer par deux mécanismes.

Premierement, les différences a I'inclusion de BrainAGE peuvent refléter une combinaison de
facteurs génétiques et développementaux contribuant a une structure cérébrale plus résiliente.
Deuxiemement, I'effet protecteur supplémentaire sur le taux de déclin cognitif durant le suivi
longitudinal peut étre porté par des mécanismes compensatoires plus actifs, incluant le recrutement
accru de réseaux neuronaux alternatifs, la régulation a la hausse des facteurs neurotrophiques ou un

remodelage synaptique plus efficace (Aron et al., 2022).

Cette hypothese est renforcée par les associations a I'inclusion avec les facteurs démographiques
(age plus jeune, sexe féminin) et les résultats de I'imagerie cérébrale (signature corticale de

« résilience cérébrale ») déja liées a la réserve cérébrale (Ossenkoppele et al., 2020). L’effet
protecteur du sexe féminin pourrait impliquer plusieurs mécanismes, incluant une atténuation des
altérations liées a I’age de I'expression génique énergétique, une activation renforcée du systéme
immunitaire chez les femmes par rapport aux hommes, ainsi que des réponses inflammatoires
spécifiques au sexe face aux lésions neuropathologiques dues a des déficiences en hormones
stéroides sexuelles (Zhu et al., 2021). Un age plus jeune a également été associé a une plus grande
résilience cérébrale, attribuable a une moindre prévalence de comorbidités cérébrales telles que les
maladies cérébrovasculaires et a des mécanismes de réparation neuronale plus efficaces (Kirkwood,
2005).

Ces résultats ont des implications pour I'application clinique du BrainAGE. Si le BrainAGE reflete de
maniere fiable la réserve cérébrale, il pourrait constituer un outil précieux pour la stratification des
patients dans les essais cliniques, ainsi que pour la planification personnalisée du traitement et du
suivi. L'identification précoce des patients ayant une réserve cérébrale faible pourrait permettre des
interventions ciblées, ralentissant potentiellement le déclin cognitif. Ceci est particulierement
critique dans 'EOAD, ol de nombreux patients sont encore actifs professionnellement, soulignant la
nécessité de stratégies de prise en charge proactives et efficaces.

La représentation encodée de I'IRM par le BrainAGE présente des avantages distincts répondant aux
principales limitations de la prédiction de maladie basée sur I'imagerie. Une force majeure réside
dans son indépendance vis-a-vis de la maladie. Alors que les modeles deep learning ont montré leur
utilité pour prédire la progression de la maladie a partir de données IRM et TEP (Bringas et al., 2020;
Li et al., 2019; Singh et al., 2017), ils sont généralement entrainés pour des catégories diagnostiques
spécifiques. Ce design spécifique limite leur généralisabilité et requiert des annotations expertes
étendues pour assurer la qualité des labels, ce qui freine leur applicabilité a grande échelle et inter-
maladies. En revanche, BrainAGE fournit un biomarqueur transdiagnostique et indépendant de la
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maladie (Abeyasinghe et al., 2025; Eickhoff et al., 2021; Gaser et al., 2013) , adapté aux populations
cliniques hétérogenes et aux études a large échelle sans nécessiter d’ajustement spécifique.

Une autre force majeure de BrainAGE réside dans sa capacité a extraire automatiquement des
caractéristiques pertinentes et robustes a partir des données IRM. Contrairement aux approches
traditionnelles basées sur des caractéristiques extraites a la main, qui peuvent passer a c6té de
patterns subtils mais cliniquement significatifs, BrainAGE exploite le deep learning pour capturer des
marqueurs complexes et de haute dimension associés au vieillissement cérébral et a la sévérité de la
maladie.

Notre étude présente certaines limites. Premierement, étant une étude monocentrique, la
reproductibilité de nos résultats dans d’autres centres reste a tester (Pruvo et al., 2025). La conduite
d’études multicentriques renforcerait la robustesse de nos conclusions. Deuxiemement, notre
population était principalement constituée de patients EOAD modérés a sévéres. Il est donc
essentiel d’étendre notre méthode aux patients EOAD a un stade précoce pour évaluer son
applicabilité a la sélection de patients pour les essais cliniques. Enfin, bien que I’'on puisse
argumenter que nos clusters représentent des variations de stade de maladie plutét que de réserve
cérébrale, notre analyse longitudinale — ajustée sur les différences a I'inclusion — démontre que
I"attribution au cluster influence indépendamment le déclin cognitif, indépendamment de la sévérité
a l'inclusion. Enfin, notre modéle de deep learning BrainAGE repose uniquement sur des IRM-T1w,
capturant lI'information structurelle. L’exploration d’une approche neuroimagerie multimodale serait
précieuse, différentes modalités pouvant fournir des informations complémentaires (Cole, 2020).

I1.5. Conclusion

Dans cette étude, nous avons montré que la représentation encodée de BrainAGE peut distinguer
des groupes de patients caractérisés par des taux distincts de déclin cognitif, indépendamment de
leur phénotype. Ces résultats soulignent le potentiel d’utilisation de BrainAGE comme biomarqueur
pour mieux comprendre et gérer I'EOAD.

53



11.6 Annexes

Clustering Metrics
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22. Figure 1I-S1. Sélection du nombre optimal de clusters.
En haut : Evaluation de la qualité du cluster sur différents nombres de cluster a l'aide de quatre métriques de
performance. En bas : les tracés de silhouette pour les solutions a deux et trois groupes sont illustrés. Pour les
deux, un cluster refléte la continuité de la représentation encodée par IRM utilisée pour le clustering, comme
l'indiquent les valeurs de silhouette négatives, suggérant que certains sujets se trouvent pres de la limite entre

les clusters.

Silhouette Coefficient

54



Number of images

23. Figure 1I-S2. Répartition par dge de I'ensemble d'entrainement du BrainAGE (bleu) et de la population EOAD

(orange).

BrainAGE entrainement

EOAD population

Age étendue 18- 81 49 - 68

Femme, n (%) 1678 (52%) 81 (57%)

SCANNER, n (%) SIEMENS 3046 (94%) 0 (0%)
PHILIPS 181 (6%) 142 (100%)

5. Tableau II-S1. Caractéristiques de I'ensemble des d'entrainement du BrainAGE et de la population EOAD.

BR- BR+ FDR corrected p-
value

Scores de sévérité
MMSE, pts/années -3.05+0.24 -2.44 +£0.28 0.11
CDR-So0B, 1.81 +0.15 1.69+0.18 1.
pts/années
Volumes cérébraux
Matiére gris, %/ans -7.16e-03 + 8.73e- -7.94e-03 + 1.02e- 1.

04 03
Matiere blanche, -2.70e-03 + 1.44e- -8.73e-03 + 1.70e- 0.001
%/années 04 03
Hippocampe, -1.56e-04 + 1.28e- -1.66e-04 + 1.49e- 1.
%/années 05 05

LCR, %/années 9.41e-03 + 1.88e-03 1.74e-02 + 2.20e-03 0.001

6. Tableau II-S2. Taux de déclin entre les groupes basés sur le BR en fonction de la sévérité et du volume
cérébral.

PAD- PAD+ FDR corrected p-

value
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Scores de sévérité

MMSE, pts/années  -2.44 +0.16 -2.80 £ 0.26 0.50

CDR-SoB, 1.53+0.1 2.03+0.16 0.99

pts/années

Volumes cérébraux

Matiere gris, %/ans -8.06e-03 + 5.73e- -6.92e-03 + 9.35e- 0.67
04 03

Matiere blanche, -7.39e-03 + 9.92e- -5.21e-03 + 1.61e- 0.71

%/années 04 03

Hippocampe, -1.73e-04 + 8.26e- -1.46e-04 + 1.35e- 0.17

%/années 06 05

LCR, %/années 1.64e-03 +1.29e-03 1.26e-02 + 2.10e-03 0.21

7. Tableau 11-S3. Taux de déclin entre les groupes basés sur le PAD en fonction de la gravité et du volume
cérébral.

Cluster#1 Cluster#2 FDR corrected p-
value
Scores de sévérité
MMSE, pts/années -2.79+0.35 -2.55+0.13 0.95
CDR-So0B, 1.60 £ 0.23 1.74 £ 0.08 1.
pts/années

8. Tableau 11-S4. Taux de déclin entre les clusters de vecteurs "handcrafted" en fonction de la sévérité.
Les vecteurs sont composés de volumes normalisés en matiere grise, de matiere blanche normalisée, de LCR
normalisée, d'hippocampe normalisée et d'dge.



Chapitre Il

PatientSpace : un espace latent
interprétable pour I'apprentissage de
biomarqueurs de neuroimagerie dans la
démence fronto-temporale

Dans le chapitre Il, nous avons montré que les espaces latents apprennent des structures inhérentes
aux données, comme en témoigne la capacité de BrainAGE a différencier des sous-groupes de
patients dans une population EOAD. Dans le chapitre Ill, nous présentons le PatientSpace, un espace
latent structuré et interprétable construit a partir d’'IRM T1w et de données cliniques. Cet espace
organise les sujets de maniere a séparer les patients atteints de démences fronto-temporales (DFT)
des témoins cognitivement normaux (CN), tout en rapprochant les individus présentant des profils
neuroanatomiques similaires, offrant ainsi une représentation cliniquement informative et
interprétable.
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lll.1. Introduction

Les démences fronto-temporales (DFT) constituent un groupe hétérogene de maladies
neurodégénératives rares, caractérisées par une atteinte progressive des lobes frontaux et
temporaux. Trois phénotypes cliniques majeurs sont classiquement décrits : le variant
comportemental (bvFTD), I'aphasie progressive non fluente (PNFA) et le variant sémantique (SV)
(Ljubenkov and Miller, 2016).

Le bvFTD, le plus fréquent, représente environ 50 % des cas et se manifeste principalement par des
perturbations comportementales de type dysexécutif incluant désinhibition, apathie, inertie et perte
d’empathie (Rascovsky et al., 2011). Le PNFA est marqué par des troubles praxiques de la parole, un
agrammatisme, une expression non fluente et des difficultés syntaxiques, tandis que le SV se traduit
par un discours fluent mais vidé de sens, associé a une perte progressive des connaissances lexicales
et conceptuelles (Gorno-Tempini et al., 2004).

Malgré des critéres diagnostiques établis, la distinction entre sous-types reste difficile en pratique
clinique, en raison du chevauchement progressif des symptémes au cours de I'évolution de la
maladie. Ainsi, un patient bvFTD peut présenter une diminution de la fluence verbale, conduisant a
une confusion avec un PNFA. De plus, des symptomes similaires s’observent dans d’autres
pathologies neurodégénératives telles que la paralysie supra-nucléaire progressive, les syndromes
cortico-basal ou encore la maladie d’Alzheimer (Battista and Gallucci, 2017; Ljubenkov and Miller,
2016).

L'imagerie cérébrale constitue un outil central pour le diagnostic des DFT. L'imagerie par résonance
magnétique (IRM) permet d’associer des profils d’atrophie cérébrale aux présentations cliniques : le
bvFTD se caractérise par une atrophie fronto-temporale diffuse, le SV par une atrophie asymétrique
du lobe temporal antérieur, et le PNFA par une atrophie frontale inférieure gauche avec atteinte de
I'insula antérieure (Peet et al., 2021). Cependant, la variabilité entre centres et observateurs
demeure un obstacle majeur. Une étude pionniére a mis en évidence un faible accord inter-
observateurs (kappa moyen = 0,34) lors de I'évaluation qualitative de I’atrophie a I'IRM (Scheltens et
al., 1997). Dans ce contexte, des méthodes d’analyse automatisées apparaissent comme une
approche prometteuse pour améliorer la reproductibilité et la sensibilité du diagnostic.

Les méthodes d’apprentissage automatique, et plus particulierement I'apprentissage profond, ont
montré un fort potentiel pour la classification des maladies neurodégénératives, y compris la DFT
(Kim et al., 2019; Metz et al., 2025). Toutefois, la majorité des modéles reposent sur des
architectures complexes de type réseaux de neurones profonds, souvent qualifiées de « boites
noires », difficiles a interpréter et donc limitées pour un usage clinique (Holzinger et al., 2019). Pour
pallier cette limite, de nouvelles approches visent a construire des espaces latents interprétables,
capables de représenter I’'hétérogénéité des patients de maniére intelligible. Cette stratégie a
récemment été appliquée a la maladie d’Alzheimer, avec la création d’espaces latents permettant
d’expliquer la variabilité des profils d’atrophie cérébrale (Kang et al., 2024).

Dans cette étude, nous présentons le PatientSpace, un espace latent structuré et interprétable,
construit a partir d'IRM T1w et de données cliniques de patients atteints ou non de DFT. Cet espace
organise les sujets selon deux axes principaux : le premier distingue les patients DFT des témoins
cognitivement normaux (CN), tandis que le second rapproche les individus présentant des profils
neuroanatomiques similaires.
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111.2. Matériels et méthodes

111.2.1. Base de données
Les données analysées proviennent de la cohorte Frontotemporal Lobar Degeneration Neuroimaging
Initiative (FLTDNI, http://memory.uscf.edu/research/studies/nifd). Cette étude longitudinale

recueille des données cliniques, biologiques et d’'imagerie cérébrale de patients atteints de DFT ainsi
qgue des CN. Dans ce travail, nous avons utilisé les IRM pondérées en T1, ainsi que les variables
démographiques associées (age, sexe, niveau d’éducation). Les scores cognitifs et cliniques étaient
également disponibles, incluant le clinical dementia rating (CDR), et le CDR sum of boxes (CDR-SB).
Les critéres d’inclusion reposaient sur les recommandations établies par Rascovsky et al. (Rascovsky
et al., 2011) pour le variant comportemental, et par Gorno-Tempini et al. (Gorno-Tempini et al.,
2004) pour les formes aphasiques. Les témoins sains ne présentaient ni lésions cérébrales ni
antécédents de maladies neurodégénératives.

111.2.2. Prétraitement des images

Les images ont été prétraitées suivant le pipeline IGUANe (Roca et al., 2025). Le prétraitement
comprenait (1) extraction du cerveau grace a HD-BET (Isensee et al., 2019); (2) une correction
d’'inhomogénéité de champ avec I'algorithme N4ITK (Tustison et al., 2010); (3) un recalage dans
I’'espace MNI de 1mm?2 avec FSL-FLIRT (Jenkinson et al., 2002); (4) un recadrage de taille 160 x 192 x
160 voxels; (5) une normalisation d’intensité par IGUANe sur la base de référence SALD (Wei et al.,
2018) afin de corriger les effets sites puis (6) une normalisation z-score intra cranienne. Un controle
qualité a été effectué sur I'ensemble des données afin d’exclure les images de mauvaise qualité.

111.2.3. Dataset

Afin d’entrainer et d’évaluer notre modele, les données ont été divisées en trois sous-ensembles : un
ensemble d’entrainement (60 %), un ensemble de validation (20 %) et un ensemble de test (20 %).
Pour garantir I'indépendance des ensembles, les IRM issues d’'un méme patient ont toujours été
regroupées dans un méme sous-ensemble. Une stratification a été appliquée afin d’assurer un
équilibre entre les groupes cliniques, les tranches d’age et les scores cognitifs (CDR-SB). Cette
stratégie visait a garantir la représentativité des sous-ensembles et a limiter les biais lors de
I’entrainement.

111.2.4. Modele de deep learning
Une visualisation globale du modeéle est illustrée Figure IlI-1.
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24. Figure IlI-1. Architecture du modele.

Le modéle se compose en 2 encodeurs : un unimodal prenant en entrée seulement I'image et un encodeur
prenant I’dge et I'image en entrée. L’espace latent associé a I'encodeur résiduel n’est utilisé que pour la
reconstruction. L’espace latent dérivé de I'Gge et de I'IRM est utilisé a la fois pour la reconstruction et la
prédiction du diagnostic. Enfin le vecteur associé a I’dge est utilisé pour générer I'espace latent du PatientSpace
et la reconstruction de I'image.

Architecture

Le modeéle proposé repose sur une architecture inspirée du Domain Invariant Variational
autoencoder (DIVA) (llse et al., 2020), enrichie par une régularisation consistante inspirée des
travaux de Sinha et Dieng (Sinha and Dieng, 2022). L’objectif était d’apprendre un espace latent
structuré par le diagnostic et contraint par un critére de similarité, de facon a capturer a la fois la
séparation entre patients sains et DFT, et la proximité morphologique entre profils
neuroanatomiques similaires. Le modele intégrait deux encodeurs : un encodeur combinant I'IRM et
I’age congu pour capturer les caractéristiques directement liées a la maladie, et un encodeur
unimodal basé uniquement sur I'IRM destiné a extraire les caractéristiques morphologiques
indépendantes de la maladie. Chaque encodeur unimodal adoptait la méme architecture, composée
de blocs résiduels 3D (He et al., 2016) intégrant des convolutions 3D, une normalisation de groupe
(GN) (Wu and He, 2018)— choisie pour ses performances optimales avec de petits lots — et une
fonction d’activation ReLU. Le sous-échantillonnage reposait sur des convolutions a pas 2, doublant
le nombre de filtres, suivies d’'une activation ReLU. La sortie de chaque encodeur était flatten puis
transformée par des couches linéaires pour produire les représentations latentes, conformément a
Kingma and Welling (Kingma and Welling, 2019).

Le décodeur reprenait la structure des encodeurs : un suréchantillonnage trilinéaire 3D doublait
d’abord les dimensions spatiales, suivi de convolutions 3D, puis d’un bloc résiduel 3D. La derniére
couche de chaque décodeur appliquait une convolution 3D avec un noyau de 1 x 1 x 1, tandis que
toutes les autres convolutions utilisaient des noyaux de 3 x 3 x 3.
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Fonction de perte.
L’entrailnement reposait sur une fonction de perte multitache, combinant reconstruction,
classification et régularisation. La perte globale était définie comme suit (Eq llI-1) :

L = Avag Lvag + AceLce + AsimBcLsim (Eq 111-1)
Les différentes fonctions de perte étaient spécifiées de la maniére suivante.

La perte du VAE reprenait la formulation de la B-VAE introduite par llse et al (llse et al., 2020) :

Lyar = (IRM — IRM‘)Z + Be Dk (Zirm [ N(O, D) (Eq. 11-2)
+ BcDk(Zage+irm || P(Zage+irm | diagnostic)

Ici, IRM désignait I'image initiale et TRM I'image reconstruite, N(0,!) correspondait & une distribution
gaussienne multivariée centrée et de covariance identité. p(Zacr+rm | diagnostic) représentait le
prior conditionnel appris en fonction du diagnostic. Le facteur 8. pondérait la divergence de KL
selon une regle cyclique (Fu et al., 2019).

La perte de classification reposait sur I’entropie croisée. Enfin, la perte de régularisation minimisait
la similarité entre la représentation multimodale de I'image originale Zyg;¢ et celle de la version
transformée Z,y , tout en maximisant la dissimilarité avec des représentations issues d’images
différentes Zp;rr. Inspirée de Yeh et al (Yeh et al., 2022), cette perte était implémentée comme suit

_ S(ZoricrZave) S(Zoric, Zpirr) (Eq. 11-3)
Lsim = - L, T log exp(f)
1 ZpIFF
Avec S(a,b) = —2(Dgi(a |l b) + Dk, (b || @) ) la mesure de similarité entre a et b, et Dy, la

divergence de KullBack-Leibler entre a et b.

Procédure d’entrainement.

La procédure d’entrainement s’inspirait de celle décrite par Sinha and Dieng (Sinha and Dieng, 2022),
appliquant la fonction de perte du VAE aussi bien aux images originales qu’aux images transformées.
Pour réduire le risque de surapprentissage, la classification n’était effectuée que sur les données
transformées. Afin d’obtenir une représentation latente plus représentative, une méthode cyclique
était utilisée pour pondérer simultanément la perte de KL et la perte de similarité. Les poids de ces
pertes augmentaient progressivement de 0 a 1 sur 13 époques, puis restaient constants jusqu’a la
25¢€ époque, avant d’étre réinitialisés a 0, le cycle se répétant ensuite. (Figure 111-S1).

Les méthodes d’augmentation de données reposaient sur la bibliotheque MONAI (Cardoso et al.,
2022) et incluaient : une translation aléatoire (+ 10 voxels sur chaque axe), une rotation aléatoire (+
0,4 radians) et un zoom aléatoire (facteur d’échelle compris entre 0,9 et 1). L’augmentation par
retournement était exclue afin de préserver les asymétries potentielles liées aux phénotypes de la
maladie. De plus, un bruit gaussien était ajouté aux entrées, qui étaient ensuite débruitées lors de la
reconstruction, conformément a des travaux ayant montré que cette stratégie améliore la
robustesse des caractéristiques extraites (Vincent et al., 2008).

111.2.5. Représentation par graphe de I’espace latent — PatientSpace
A partir des représentations latentes issues de 'encodeur prenant en entrée 'imagerie et I’age, nous
avons construit une représentation sous forme de graphe appelé PatientSpace, définie comme G =
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(V,E,A) ouV correspond a I'ensemble des nceuds représentant les patients, E a I'ensemble des
arétes connectant ces noeuds, et A a la matrice d’adjacence pondérée. Chaque nceud v; € V
correspond a un patient, et la pondération des arétes encode la similarité morphologique entre
patients dans |'espace latent.

La mesure de similarité reposait sur la mesure de dissimilarité utilisée dans la perte de consistance
décrite dans la section précédente (Lg;y ). Pour chaque paire de sujets (i, ), la pondération a;; de la
matrice d’adjacence était définie de la maniere suivante :

PN
— ——, sij estunvoisinde i
ay =GN/ Lo @R (Eq I1l-4)

0, sinon
Ou d(i,j) représente la mesure de dissimilarité entre v; et v; définie comme

1
a(,j) = E(DKL(vi I1v;) + Dir(vj 11 v:)) (Eq.lIL.5)

Et N (i) représente les voisins de v;. Le nombre K optimal est détaillé section IIl.6. S2.2.
11.2.6. Expérimentations

111.2.6.1. Analyse du graphe

Deux analyses ont été menées pour étudier les propriétés structurelles du PatientSpace. La premiére
s'est concentrée sur la topologie globale en identifiant les clusters dans le graphe. La seconde a mis
I'accent sur les connaissances au niveau local en effectuant une analyse de voisinage au niveau du
patient individuel.

Clustering du PatientSpace. Le PatientSpace a été regroupé a l'aide d'un clustering agglomératif
utilisant le critére de Ward, en préservant la structure du graphique. Chaque regroupement a
ensuite été décrit en fonction du statut diagnostique (DFT ou CN), de la distribution des ages, du
sexe, du niveau d’éducation ainsi que du score cognitif CDR-SB corrigé pour ces covariables. Les
comparaisons statistiques s’appuyaient sur un test du Khi-deux pour les variables catégorielles et un
test de Kruskal-Wallis pour les variables continues, avec une correction pour test multiple par la
méthode du False discovery rate proposée par Benjamini et Hochberg (BH-FDR) (Benjamini and
Hochberg, 1995). Afin de relier ces regroupements aux substrats neuroanatomiques, une analyse
morphométrique basée sur la Voxel-Based Morphometry (VBM) a été réalisée, permettant
d’identifier les patterns d’atrophie significatifs associés a chaque cluster (section Il1.6. S3).
PatientSpace au niveau individuel. Le PatientSpace a aussi été examiné au niveau du patient en
prédisant le diagnostic, le phénotype ainsi que les CDR-SB dans la base de test. Pour tous les patients
non vus, la probabilité d’étre assigné au diagnostique D était estimé par :

argmaxp P(ﬁ?{i = D) = Zaijl(DXj = D) (Eq. - 6)

j
Ou DX; est le diagnostique du sujet v;.

Le CDR-SB a été estimé de la méme maniere que le diagnostic. Les scores CDR-SB ont ensuite été
catégorisés selon le degré de démence comme suit : pas de démence (CDR-SB = 0) ; légére démence
(CDR-SB entre 0.5 et 4) ; démence moyenne (CDR-SB entre [4.5 —9]) ; démence modérée (CDR-SB
entre [9.5 — 15.5]) et démence sévere (CDR-SB entre [16 — 18]) (O’Bryant et al., 2008a).

Pour tous les patients non vus, la probabilité d’étre assigné au CDR-SB c a été estimée par :
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argmax.P(CDRSB, = ¢) = Z a;;1(CDRSB; = ) (Eq. 111.7)

J

Les résultats obtenus a partir des approches basées sur les graphes sont désignés sous le nom
PatientGraph et ceux obtenus par le classifieur natif du réseau sous le nom DL-classifier dans les
sections suivantes.

111.2.6.2. Classification

Enfin, la robustesse du modeéle a été évaluée en comparant les deux approches de classification :
d’une part le classifieur de deep learning utilisant uniquement la sortie du réseau, et d’autre part
|"approche PatientGraph, qui exploite les similarités locales dans I'espace latent. Les performances
ont été mesurées par I'aire sous la courbe ROC (AUC), la sensibilité et la spécificité, avec des
intervalles de confiance a 95 %. Les analyses ont été réalisées sur 'ensemble de test interne, distinct
des données d’entrainement (désigné comme INTERNE), ainsi que sur une base externe de patients
DFT provenant du Centre Mémoire de Lille et du National Alzheimer’s Coordinating Center (NACC,
https://naccdata.org/), désignée comme EXTERNE. Une description détaillée de ces populations est

fournie en section III.6. S1.

111.3. Résultats

111.3.1. Démographie

La démographie des ensembles d’entrainement, de validation et de test est résumée dans le Tableau
IlI-1. L’age moyen différait significativement entre les groupes (p < 0,0001), les sujets BV étant plus
jeunes que les CN, PNFA et SV. Le niveau d’éducation était plus élevé chez les sujets CN que chez les
patients (p = 0,0002). Les scores CDR-SB reflétaient une gradation claire de sévérité cognitive : CN =
0,PNFA=1,5,SV=43etBV=6,5.

Ensemble d’entrainement

CN BV PNFA SV Total

Nombre d’images 203 126 69 80 536

Site

UCSF 100 % 66,7 % 92,8 % 90 % 83,8 %

MGH 0% 7,9 % 7,2% 7,5% 4,1%

MAYO 0% 25,4 % 0 2,5% 12,1%

Age, années 65,5 (7,9) 62,7 (5,9) 67,2 (7,2) 65,6 (6,1) p < 0,0001 PNFA =
CON =SV > BV

Sexe féminin 53,7% 30,2% 56,5 % 35%

Education 17,8 (1,8) 16,7 (2,7) 16,7 (2,7) 16,4 (2,6) p =0,0002 CON >
BV = PNFA =SV

CDR-SB 0(0-0) 6,5 (4,5-10) 1,5(0,5-3) 4,3 (2,5-7) p < 0,0001 CON <

PNFA < SV < BV

Ensemble de validation

Nombre d’images 61 (41%) 37 (25%) 25 (17%) 25 (17%) 148

Site

UCSF 100 % 70,3 % 100 % 88 % 90,5 %

MGH 0% 0% 0% 12 % 2%

MAYO 0% 29,7 % 0% 0% 7,5%

Age, années 65,25 (8,4) 61,9 (6,6) 71,6 (7,3) 62,3 (6,5) p < 0,0001 PNFA >
CON > BV; PNFA >
SV

Sexe féminin 68,8 % 40,5 % 52 % 36 %

Education 17,5(1,4) 13,78 (2,0) 15,36 (2,5) 17,9 (1,8) p <0,0001 CON >
PNFA > BV; SV >
PNFA > BV
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CDR-SB 0 (0-0) 6 (5-10,3) 1,5 (0,5-3) 4(2,6-5,7) p <0,0001 BV >

PNFA > CON; SV >
CON

Ensemble de test (INTERNE)

Nombre d’images 75 40 18 23 156

Site

UCSF 100 % 85% 83,3% 82,6 % 91,7%

MGH 0% 0% 16,7 % 17,4 % 4,5%

MAYO 0% 15 % 0% 0% 3,8%

Age, années 65,7 (7,1) 63,0(5,9) 73,8 (5,6) 61,44 (5,3) p <0,0001
CON < PNFA

Sexe féminin 65,3 % 27,5% 44,4 % 47,8 %

Education 16,7 (1,9) 14,9 (2,7) 15,1 (2,5) 15,6 (3,1) p =0,0006 CON >
BV

CDR-SB 0 (0-0) 8 (5,5-12) 4,5 (3-8,5) 4,5 (3,1-6,3) p < 0,0001 CON <
SV < BV; CON <
PNFA

9. Tableau Ill-1. Démographie des bases entrainement, validation et test.

111.3.2. Interprétation du PatientSpace

111.3.2.1. PatientSpace clusters

La Figure 1lI-2 illustre le PatientSpace, composé de six clusters : deux regroupant des sujets CN et
quatre regroupant des patients atteints de démence. Les caractéristiques démographiques et
cliniques de ces clusters sont résumées dans le Tableau IlI-2.

Le cluster 1 rassemblait principalement des patients bvFTD (88,9 %), tandis que le cluster 2 était
constitué en grande majorité de patients SV (85,9 %). Les clusters 3 et 4, en revanche, présentaient
des profils plus hétérogenes, incluant des patients bvFTD, PNFA et une minorité de SV. Les sujets du
cluster 2 étaient significativement plus dgés (age moyen : 66,1 ans) que ceux du cluster 3 (63,9 ans ;
p = 0,04) et du cluster 1 (63,5 ans ; p = 0,005). Concernant la sévérité clinique, le cluster 1 affichait
un score médian de CDR-SB de 6,8, significativement plus élevé (p < 0,001) que ceux du cluster 2
(4,5), du cluster 3 (3,0) et du cluster 4 (3,5). Le score du cluster 2 restait toutefois significativement
plus élevé que celui du cluster 3 (p = 0,015). Aucune différence significative n’a été observée
concernant le niveau d’éducation entre les clusters.

L’analyse des données de neuroimagerie a permis de dégager quatre profils distincts. Le cluster 1
présentait une atrophie diffuse, particulierement marquée au niveau des cornes frontales et de la
partie centrale des ventricules latéraux. Les gyri insulaires étaient fortement atteints, avec une
atteinte plus prononcée a gauche. Une atrophie frontale asymétrique, prédominante a gauche,
concernait également les gyri frontaux inférieurs, moyens et médians. Le cluster 2 montrait un profil
caractéristique des SV, avec une atrophie localisée et asymétrique, prédominant sur I’hémisphere
gauche. L’atteinte concernait principalement le lobe temporal, avec une atteinte particulierement
marquée de I'uncus, du gyrus parahippocampique et du gyrus fusiforme gauche. Le gyrus temporal
supérieur gauche et I'insula gauche étaient également séverement atteints, tandis que le lobe
temporal droit et les ventricules latéraux présentaient une atteinte plus modérée. Le cluster 3 se
distinguait par une atrophie globalement faible en comparaison avec les autres clusters, localisée
principalement a I'insula gauche et a la portion antérieure du gyrus temporal supérieur. Une
dilatation symétrique des cornes frontales des ventricules latéraux était également observée. Enfin,
le cluster 4 se caractérisait par une atrophie tres diffuse mais moins sévere que celle observée dans
les clusters 1 et 2, avec une atteinte plus marquée au niveau des cornes frontales et de la partie
centrale des ventricules latéraux, associée a une atteinte modérée des lobes frontaux et temporaux.
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total
Effectifs 81 64 63 65 273
Phénotypes
BV 72 (88,9 %) 4 (6,3 %) 24 (38,1 %) 26 (40 %) 126 (46,1 %)
PNFA 9 (11,1 %) 5 (7,8 %) 28 (44,4 %) 27 (41,5 %) 69 (25,3 %)
Y, 0 (0 %) 55 (85,9 %) 11 (17,5 %) 12 (18,5 %) 78 (28,6 %)

Données cliniques

Age [moyenne (écart-type)] 63,5 (6,1) 66,1 (5,9) 63,9 (7,6) 65,4 (6,5) p = 0,02
Cc3<C2
cl<cC2

Genre féminin 30,9 % 422 % 55,5 % 27,7 %

Education [moyenne (écart-type)] 16,8 (2,7) 16,5 (2,7) 17,1 (2,3) 16,0 (2,9) p=0,18

CDR-SB 6,8 4,5 3 3,5 p < 0,0001

[médiane (quartiles)] (1,1-4,9) 15-7) C3<C2<C1

(4,9-10,6) (2-7) C4<Cl

10. Tableau llI-2. Caractéristiques des clusters

L’dge et le niveau d’éducation sont exprimés en moyenne (écart-type), la proportion de femmes est indiquée en
pourcentage, et le CDR-SB est présenté en médiane avec l'intervalle interquartile (Q1-Q3).
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25. Figure IlI-2. Visualisation du PatientSpace et des clusters.
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111.3.2.2. Caractérisation individuelle et classification

AUC Sens Spec
INTERNE DL-classifer 0.931[0.890 - 0.889[0.820 - 0.920[0.859 -
0.972] 0.957] 0.981]
PatientGraph 0.905 [0.856 - 0.889[0.820 - 0.840[0.757 -
0.953] 0.957] 0.923]
EXTERNE DL-classifier 0.892[0.848 - 0.705 [0.621 - 0.847 [0.780 -
0.935] 0.790] 0.914]
PatientGraph 0.834[0.780 - 0.786 [0.710 - 0.829 [0.759 -
0.887] 0.862] 0.899]

11.Tableau IlI-3. Performances des modéles sur les bases INTERNE et EXTERNE.
Les résultats sont rapportés en valeur [IC95%].

Les résultats sur la base interne et la base externe sont rapportés dans le tableau IlI-3. Sur la base
interne, DL-classifier et PatientGraph ont présenté des performances comparables, avec une
sensibilité similaire, bien que la spécificité ait été légerement plus élevée pour DL-classifier. Sur la
base externe, les performances générales ont été légerement réduites pour les deux modeéles, DL-
classifier ayant conservé une meilleure spécificité tandis que PatientGraph a montré une sensibilité
|légérement supérieure. Globalement, les résultats ont indiqué une bonne cohérence des modéles,
mais une généralisation plus limitée sur la base externe.

Confusion Matrix

35
9 0 0 0
30
. - 9 11 7 0 0
[0.5 - 4.0] s
o) - 20
|§ [4.5 -9.0]1 0 13 10 2 0
- 15
[9.5 - 15.5] - 0 2 12 10 0
- 10
-5
[16.0 - 18.0] 0 0 1 0 0
. . 0

0  [0.5-4.0] [4.5-9.0][9.5 - 15.5]16.0 - 18.0]
Predicted

26. Figure IlI-3. Prédiction des CDR-SB par la méthode PatientGraph (base INTERNE).
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Les résultats de la prédiction du CDR-SB sont présentés dans la Figure IlI-3. Dans la majorité des cas,
les prédictions des classes du CDR-SB correspondaient a la classe réelle ou a une classe adjacente. Il
est important de souligner qu’aucun cas de démence sévére n’a été classé comme absence ou forme
|égere de démence ; réciproquement, aucun sujet indemne ou atteint d’'une démence légére n’a été
classé en démence séveére.

lll. 4. Discussion

Dans cette étude, nous avons introduit le PatientSpace, une représentation par graphe d’un espace
latent capable de différencier les phénotypes de neuroimagerie et de caractériser la sévérité de la
DFT. Construit a partir du modele DIVA (llse et al., 2020) entrainé sur des IRM T1w et I'dge des
patients, le PatientSpace permet une analyse interprétable des patients, en s’appuyant sur le
voisinage des sujets dans I'espace latent.

11.4.1. Méthodologie

Le PatientSpace repose sur le modéle DIVA, enrichi par plusieurs innovations méthodologiques. La
structuration de I'espace latent a nécessité I'introduction de biais inductifs, notamment la
classification supervisée et un critere de similarité, afin de contraindre la représentation latente
(Locatello et al., 2019). La séparation entre sujets sains et DFT a permis de donner une premiere
structure a I’espace, mais ne suffisait pas a capturer la diversité des sous-types cliniques de la DFT,
caractérisés par des patterns d’'imagerie hétérogénes (Peet et al., 2021). Pour renforcer
I'interprétabilité, nous avons ajouté une perte de consistance, rendant I'espace latent plus robuste
aux variations phénotypiques et permettant la construction d’un graphe ou la proximité refléte une
ressemblance biologique.

111.4.2. Performance classification diagnostique

La projection de nouveaux sujets dans I'espace latent, combinée a une classification par voisinage, a
permis d’obtenir des performances raisonnables. La généralisation sur la base externe a été
globalement satisfaisante, bien qu’une baisse de 'AUC et de la sensibilité ait été observée.

Cette limite peut s’expliquer par deux facteurs principaux. Premierement, contrairement aux
approches contrastives classiques nécessitant un grand nombre d’exemples négatifs (Yeh et al.,
2022), notre modéle a été entrainé avec un nombre restreint, ce qui a probablement limité sa
capacité a apprendre des représentations discriminantes robustes.

Deuxiemement, I'hétérogénéité intrinséque des DFT entre bases de données — liée aux différences
cliniques, pathologiques, génétiques, mais aussi aux protocoles d’acquisition et criteres
diagnostiques — complique la généralisation des modeles (Ma et al., 2024). Ainsi, un modeéle
entrainé sur une base donnée risque de ne pas couvrir toute la variabilité de la maladie, limitant sa
transférabilité externe.

111.4.3. Sous-types et interprétation des clusters

L'analyse du PatientSpace a révélé quatre clusters de patients atteints de démence, caractérisés par
des profils cliniques et biologiques distincts. Deux d’entre eux correspondaient majoritairement a
des phénotypes connus : le cluster 1 regroupait principalement des patients bvFTD (88,9 %), plus
jeunes mais présentant des scores cliniques élevés, tandis que le cluster 2 comprenait surtout des
patients SV (85,9 %), d’age intermédiaire avec des CDR-SB modérés. Les profils d’atrophie associés a
ces clusters étaient conformes aux descriptions de la littérature : atteinte frontale prédominante
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chez les bvFTD et atteinte temporale asymétrique, surtout gauche, chez les SV (Rohrer et al., 2015;
Whitwell, 2019).

Les clusters 3 et 4 étaient plus hétérogénes, reflétant la diversité clinique et biologique des DFT.
L'atrophie y était plus modérée et plus diffuse, touchant notamment les ventricules et les régions
insulaires. Ces clusters pourraient correspondre a des formes atypiques ou précoces de la maladie,
ou encore a des profils pour lesquels I'IRM ne révele pas encore d’atrophie spécifique. Leur
positionnement, a proximité des sujets sains ou entre les clusters typiques, suggére que le
PatientSpace capture potentiellement la dynamique de progression de la maladie, bien que cette
hypothese doive encore étre confirmée par des données longitudinales.

111.4.3. Interprétation au niveau individuel

Au-dela des clusters, le PatientSpace a également permis une caractérisation individuelle des
patients, tant en termes de diagnostic que de sévérité. L’analyse des voisinages dans le graphe a
montré que la prédiction du CDR-SB était correcte dans la majorité des cas, les erreurs étant limitées
a des classes adjacentes et sans inversion extréme (par exemple, une démence sévéere prédite
comme légere). Cette capacité a représenter les caractéristiques individuelles confere au modele
une meilleure interprétabilité et une pertinence clinique renforcée.

111.4.4. Limites et perspectives

Plusieurs limites doivent étre soulignées. Premierement, I'absence de suivi longitudinal empéche de
confirmer la progression des patients entre clusters, rendant leur positionnement dans le
PatientSpace encore hypothétique. Deuxiemement, malgré I’"harmonisation des données
multicentriques, des divergences persistent entre les centres (protocoles d’acquisition, critéres
cliniques, caractéristiques démographiques), ce qui peut limiter la généralisation du modéle.
Troisiemement, la taille de la base de données reste modeste et certaines informations cruciales,
notamment histopathologiques et génétiques, n’étaient pas disponibles pour tous les sujets.
L'intégration de ces données pourrait améliorer la robustesse du modele en capturant la variabilité
biologique et phénotypique des DFT.

Malgré ces limites, le PatientSpace constitue une approche interprétable et flexible, adaptée a
I'analyse a la fois individuelle et a I’échelle des groupes. Les perspectives incluent I'optimisation de la
fonction de perte afin d’exploiter davantage d’exemples négatifs dans le calcul de similarité,
I'intégration de données longitudinales et multimodales (imagerie, génétique, histopathologie), ainsi
gue le développement de méthodes plus robustes pour prendre en compte I’'hétérogénéité des DFT,
dans le but d’améliorer la généralisation et la précision clinique du modele.

l11.5. Conclusion

En conclusion, le PatientSpace offre un espace latent interprétable et cliniquement pertinent pour
I'analyse des imageries cérébrales chez les patients atteints de DFT. En combinant I'apprentissage
profond et analyse basée sur un graphe de similarité, il permet a la fois la découverte de sous-types
a I'échelle de la population et une interprétation individualisée des patients, avec des applications
potentielles en diagnostic et suivi de la sévérité de la maladie.
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Ill. 6. Annexes

I11.6. S1. Dataset externe
Base externe

DFT CN Total
Nombre de sujets 112 111 223
Age (Moyenne, écart 69,4 (9) 62,9 (8,7) p <0,0001
type) DFT > CN

12. Tableau 11I-S1. Démographie de la base de données externe.

Les participants provenaient majoritairement de la base de Lille (74 %), et dans une moindre mesure
de la base NACC (26 %). Les scores CDR-SB n’étaient pas disponibles pour les sujets issus de la base
de Lille. Concernant la répartition des phénotypes, la majorité des patients présentaient une forme
bvFTD (57 %), tandis que les autres correspondaient a des phénotypes PNFA (4 %), SV (4 %), ou
restaient non précisés (35 %).

111.6. S2. Détails du modele

111.6. S2.1. Entrainement

Le facteur [, suivait une régle de mise a jour cyclique, comme illustré en figure Ill-S1. Les coefficients
de pondération A ont été fixés respectivement a 0,01 pour la fonction de perte de reconstruction et
a 100 pour la fonction de perte de classification. L'optimisation a été réalisée a 'aide de I'algorithme
AdamW (Loshchilov and Hutter, 2019), avec un taux d’apprentissage initial de 10™* et un paramétre
de weight decay de 107°.

Cyclical KL Annealing (Fu et al., 2019)

1.0

0.8

0.6

0.4 1
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0.0
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27. Figure I1I-S1. Régle cyclique du facteur Bc.
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111.6. S2.2. Nombre de voisins optimal
Le nombre optimal de voisins K a été déterminé en projetant les sujets de validation dans le
PatientSpace et en choisissant la valeur de K qui maximisait I’AUC (K = 10).

l11.6. S3. Voxel based Morphometry

Afin d’analyser les profils d’atrophie entre les différents clusters, les IRM structurelles ont été
prétraitées a I'aide du logiciel SPM (Statistical Parametric Mapping,
https://www.fil.ion.ucl.ac.uk/spm/). Dans un premier temps, les volumes ont été segmentés en

matiere grise, matiére blanche et LCR. Les images de matiéere grise ont ensuite été registrées dans
I’espace MNI, puis lissées a I'aide d’'un noyau gaussien de 8 mm3,

L'analyse statistique a été menée a I'aide de tests t bilatéraux a deux échantillons, en intégrant
comme covariables I'age, le volume intracranien total, ainsi que le sexe des participants. Ces
comparaisons ont permis d’opposer les clusters de patients a des groupes témoins appariés selon
I’dge et le sexe. Les résultats ont été corrigés pour comparaisons multiples par le Family-Wise Error
rate (FWE), avec un seuil de significativité fixé a 0,05.
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Chapitre IV

Article “PatientSpace: An interpretable
graph -based latent space for multimodal
neuroimaging biomarker learning in
Alzheimer’s Disease and Frontotemporal
Dementia”

Dans le chapitre Ill, nous avons présenté le PatientSpace, un espace latent structuré et interprétable
construit a partir d'IRM T1w et de données cliniques, qui organise les sujets de maniére a séparer les
patients atteints de DFT des CN, tout en rapprochant les individus présentant des profils
neuroanatomiques similaires, offrant ainsi une représentation cliniquement informative. Dans le
chapitre IV, nous étendons ce cadre a une approche multimodale, intégrant IRM T1w et TEP-FDG, en
considérant plusieurs diagnostics simultanément (CN, DFT et Alzheimer) et en conditionnant
I’espace latent a I’age afin de capturer une dimension longitudinale reflétant la progression de la
maladie, permettant ainsi de représenter de maniere cliniquement informative la variabilité
interindividuelle.
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IV.1. Introduction

La maladie d’Alzheimer (MA) est un trouble neurodégénératif complexe et hétérogeéne, présentant
une variabilité dans la présentation clinique, la génétique et les caractéristiques en neuroimagerie
(Aziz et al., 2017; Ferreira et al., 2020; Habes et al., 2020; Koedam et al., 2010). Cette hétérogénéité
se manifeste a tous les stades de la maladie, depuis le déficit cognitif Iéger (MCI) prodromal jusqu’a
la MA avancée (Poulakis et al., 2022) , ainsi qu’en fonction de I’dge d’apparition, les formes a début
précoce (EOAD) présentant plus fréquemment des formes non amnésiques impliquant les fonctions
exécutives, visuelles ou langagieres (Koedam et al., 2010; Kuchcinski et al., 2023; Ossenkoppele et
al., 2015a).

Au-dela de la MA, la démence frontotemporale (DFT) présente des syndromes cliniques et des
caractéristiques neuroimagerie qui se chevauchent, compliquant le diagnostic différentiel (Musa et
al., 2020). La DFT comprend des sous-types hétérogenes : la variante comportementale (bvDFT),
caractérisée par une atrophie et un hypométabolisme frontaux (Habes et al., 2020), et des variantes
langagiéres telles que la variante sémantique (SV) et I'aphasie progressive non fluente (PNFA).
Certains sous-types se chevauchent anatomiquement avec la MA dans les régions temporales ou
pariétales (Koenig et al., 2018) , et certaines formes cliniques imitent la MA non amnésique, rendant
nécessaire un cadre unifié pour déméler I’hétérogénéité MA/DFT.

La neuroimagerie a été centrale pour caractériser cette hétérogénéité. L'IRM structurelle identifie
I"atrophie corticale et sous-corticale comme conséquence tardive de la maladie, tandis que la TEP-
FDG détecte le déclin métabolique précoce. Les deux ont révélé des profils anormaux distincts
associés aux sous-types cliniques (Ossenkoppele et al., 2015b). Par exemple, I'IRM structurelle a
permis de délimiter les phénotypes hippocampal-sparing, limbic-predominant et MA typique
(Kuchcinski et al., 2023; Risacher et al., 2017) et des analyses volumétriques basées sur des régions
d’intérét (ROI) ont été utilisées pour distinguer les individus MA, MCI et cognitivement normaux (CN)
(Ferreira et al., 2020; Poulakis et al., 2018). De méme, les caractéristiques volumétriques et
I’épaisseur corticale ont été employées pour sous-typer la DFT (Ma et al., 2024; Peet et al., 2021).
Toutefois, ces approches reposent sur des ROl prédéfinies et risquent de négliger des signatures
pathologiques plus subtiles et distribuées a travers le cerveau.

L'intelligence artificielle (I1A) permet des analyses a I’échelle du cerveau entier, capturant des motifs
complexes au-dela des ROl prédéfinies. Les méthodes d’apprentissage profond ont montré leur
potentiel pour classifier les sujets MA, DFT et CN a partir de la TEP-FDG (Rogeau et al., 2024) ou de
cartes de probabilité d’atrophie basées sur I'lRM (Nguyen et al., 2023). Cependant, les modeles de
classification manquent généralement d’interprétabilité et ne capturent pas I’'hétérogénéité de la
maladie ni les phénotypes atypiques.

La modélisation de I'espace latent répond a ce probléme en réduisant les données neuroimagerie de
haute dimension en représentations compactes conservant les principales caractéristiques
pathologiques. Des études antérieures ont utilisé le clustering pour définir des sous-types de MA
(Kang et al., 2024; Park et al., 2017; Poulakis et al., 2018) ou des réseaux antagonistes génératifs
pour dériver des représentations liées a la maladie (Louiset et al., 2024; Yang et al., 2022, 2020).
Bien que ces méthodes aient révélé des sous-types pertinents de MA, la plupart se concentrent
exclusivement sur la MA, reposent sur une seule modalité et capturent principalement des motifs
structurels globaux, offrant une interprétabilité limitée au niveau du patient. L'IA générative
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présente un avantage supplémentaire en permettant de synthétiser des représentations liées a la
maladie et de déméler la variation pathologique de la variabilité saine, mais reste sous-explorée
dans la recherche multimodale MA/DFT.

Pour dépasser ces limitations, nous proposons le PatientSpace, un cadre basé sur une extension d’un
autoencodeur variationnel (VAE) domaine invariant, intégrant I'|RM T1 et la TEP-FDG dans un espace
latent structuré en graphe et interprétable. Le PatientSpace est congu pour capturer a la fois les
altérations anatomiques et métaboliques, et est organisé selon trois dimensions : (1) la classification
diagnostique en groupes MA, DFT et CN ; (2) I'age, reflétant la progression de la maladie et la
variabilité interindividuelle (Aziz et al., 2017; Koedam et al., 2010) ; et (3) une mesure de similarité
basée sur la neuroimagerie qui positionne les sujets présentant des profils comparables a proximité
dans I'espace latent. En combinant la modélisation générative et la représentation basée sur graphe,
le PatientSpace permet une analyse unifiée de I’hétérogénéité MA et DFT, démélant les sous-types
de la maladie tout en fournissant des informations interprétables au niveau du patient.

IV.2. Travaux connexes

IV.2.1. Apprentissage profond basé sur la neuroimagerie pour la MA et la DFT : de

la classification aux modeéles génératifs multimodaux

Etant donné le chevauchement des caractéristiques cliniques et neuroimagerie de la MA et de la
DFT, de nombreuses études ont exploré des méthodes automatisées de classification et de sous-
typage a partir de la neuroimagerie. Ces travaux fournissent un contexte important pour notre étude
et mettent en évidence a la fois les progres réalisés et les limites encore présentes dans I’utilisation
de I'lA pour étudier I'hétérogénéité des maladies.

Les approches d’apprentissage profond ont été largement appliquées a la classification de sujets
MA, DFT et CN a partir de données neuroimagerie unimodales. Par exemple, Rogeau et al. (Rogeau
et al., 2024) ont utilisé un réseau de neurones convolutif 3D pour classifier MA, DFT et CN a partir de
TEP-FDG, tandis que Nguyen et al. (Nguyen et al., 2023) se sont appuyés sur des cartes de
probabilité d’atrophie dérivées de I'IRM pour la classification. Bien que ces modéles unimodaux
soient efficaces, ils sont principalement congus pour la discrimination diagnostique et offrent peu
d’informations sur I’'hétérogénéité de la maladie ou sur des profils de neuroimagerie atypiques.

Pour aller au-dela de la simple classification, des stratégies de regroupement basées sur les mesures
d’atrophie corticale ou les caractéristiques volumétriques ont été appliquées pour définir des sous-
types de MA (Kang et al., 2024; Park et al., 2017; Poulakis et al., 2018). Des cadres génératifs tels que
SMILE-GAN (Yang et al., 2022, 2020) et SepVAE (Louiset et al., 2024) permettent en outre de
déméler les variations liées a la maladie de celles observées chez les sujets sains en générant des
représentations de type MA a partir de sujets CN. Malgré leur potentiel, la plupart de ces approches
restent limitées a la MA et aux analyses unimodales, négligeant des informations multimodales
complémentaires. Pour pallier cette limitation, Antelmi et al. (Antelmi et al., 2019) ont introduit un
autoencodeur variationnel multicanal intégrant IRM T1, TEP-FDG et TEP-amyloide, démontrant
I'intérét de combiner données structurelles et métaboliques pour le sous-typage de la MA.
Cependant, les approches génératives multimodales ont rarement été étendues a la DFT, et peu
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offrent des espaces latents structurés et interprétables capturant I’hétérogénéité a la fois dans les
populations MA et DFT.

IV.2.2. Vers des espaces latents interprétables en neuroimagerie

Les VAE sont puissants pour extraire des représentations latentes, mais leur interprétabilité reste
limitée. En neuroimagerie, cette interprétabilité est cruciale car elle permet de relier le
comportement du modéle aux mécanismes de la maladie et d’améliorer la confiance clinique. Pour
relever ce défi, le concept de représentations latentes démélées a été introduit, ou chaque
dimension latente correspond idéalement a un facteur génératif distinct de variation (Bengio et al.,
2013; Burgess et al., 2018).

Le démélage est souvent obtenu en introduisant une tache de prédiction auxiliaire ou en
conditionnant les sous-espaces latents sur des variables d’intérét, alignant ainsi certaines
dimensions avec des sources de variation ciblées. Cette stratégie a montré des applications
prometteuses en neuroimagerie. Par exemple, Zhao et al. (Zhao et al., 2019b) ont conditionné
I’espace latent sur I’age chronologique, permettant des reconstructions capturant les modifications
liées a I’age sur I'IRM. De méme, Liu et Yap (Liu et Yap, 2024) ont séparé la variation d’imagerie liée
au site des signaux biologiques, facilitant I’harmonisation des données. D’autres approches ont visé
aisoler la variabilité pathologique : Louiset et al. (Louiset et al., 2024) ont séparé les sous-espaces
latents sains et pathologiques, tandis que Kang et al. (Kang et al., 2024) ont combiné démélage et
regroupement pour révéler des sous-groupes pertinents liés a la maladie.

Ces méthodes exploitent souvent les facteurs démélés pour manipuler les images, par exemple en
fixant ou supprimant une variable lors de la reconstruction afin d’harmoniser les données ou
visualiser des effets spécifiques (age, pathologie) (Ainsworth et al., 2018; Burgess et al., 2018; Li et
al., 2019). Cependant, l'interprétabilité de ces cadres reste principalement liée a des facteurs de
variation globaux (age, site, pathologie) plutét qu’aux différences au niveau du patient.

Notre travail est motivé par cette limitation. Nous visons a construire des espaces latents démélés
ou la variation est guidée non seulement par les sources issues de I'imagerie, mais aussi par la
similarité entre patients. Ce changement rapproche l'interprétabilité du niveau clinique, permettant
d’explorer les différences individuelles entre patients plutét que de se limiter aux facteurs de
variation au niveau populationnel.

IV.3. Matériels et méthodes

IV.3.1. Participants et acquisitions des données

Les données ont été compilées a partir de bases publiques et de bases privées locales. Le jeu de
données provient de bases publiques accessibles : I’Alzheimer’s Disease Neurolmaging Initiative
(ADNI, https://adni.loni.usc.edu/), I’étude longitudinale sur la dégénérescence lobaire

frontotemporale (NIFD, http://memory.ucsf.edu/research/studies/nifd) ainsi que de bases privées
locales du CHU de Lille.

Les participants ADNI comprenaient des individus issus des protocoles ADNI1, ADNI2, ADNIGO et
ADNI3. Les participants devaient disposer a la fois d’'une IRM 3D T1 et d’'une TEP-FDG réalisées lors
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de la méme session et étre diagnostiqués soit CN, soit MA. Les participants présentant un trouble
cognitif Iéger (MCI) dans la cohorte ADNI ont été exclus de I’étude.

De la méme maniere, les participants de la cohorte NIFD devaient disposer d’'une IRM T1lw et d’'une
TEP-FDG réalisées lors de la méme session, et étre diagnostiqués comme CN ou DFT. Le diagnostic
de DFT reposait sur les criteres de Rascovsky et al. (Rascovsky et al., 2011) , complétés par les
criteres de Gorno-Tempini et al. pour les variantes langagieres (Gorno-Tempini et al., 2004).

Le jeu de données du CHU de Lille comprenait des participants diagnostiqués avec la MA ou la DFT,
suivis au Centre de Mémoire de Lille entre 2010 et 2020. Les participants MA ont été inclus sur la
base de la disponibilité d’'une IRM T1 3D et d’'une TEP-FDG réalisées dans un intervalle de 6 mois,
ainsi que d’un diagnostic probable de MA selon les criteres NINCDS/ADRDA (McKhann et al., 1984) ,
conformes aux critéres utilisés dans la cohorte ADNI. Alternativement, les participants présentant un
MCI d a la MA avec probabilité intermédiaire, selon les critéres NIA-AA de 2011 (Albert et al., 2011)
ont été inclus, sans restriction sur le score MMSE au moment de I'IRM. Tous les patients ont
bénéficié d’'une IRM 3D T1 et d’'une TEP-FDG, généralement lors de la premiére année de suivi, dans
le cadre de leur évaluation clinique pour confirmer le diagnostic de MA. Les examens
supplémentaires réalisés ultérieurement, pour des suivis de recherche, le suivi thérapeutique ou
|’évaluation de la progression de I'atrophie cérébrale, notamment chez les patients MCl inclus, ont
également été considérés.

Les sujets DFT ont été inclus sur la base d’un diagnostic probable de DFT selon les criteres de
Rascovsky (Rascovsky et al., 2011), sans restriction sur le score MMSE au moment de I'IRM. Chaque
patient a bénéficié d’'une TEP-FDG cérébrale au cours de la premiére année de suivi, car
I’hypométabolisme frontal ou temporal antérieur constitue un critéere diagnostique de DFT probable.
Les examens supplémentaires réalisés dans le temps ont été inclus pour des raisons similaires a
celles du groupe MA (recherche, suivi thérapeutique, suivi de I'atrophie frontale).

Le détail des informations relatives a chaque IRM T1 et TEP-FDG est fourni en section IV.8. S1. Un
accord écrit a été obtenu de tous les participants du CHU de Lille.

IV.3.2. Prétraitement des images
Les images T1w ont été prétraitées comme suit : (i) correction d'inhomogénéité de champ avec
N4ITK (ii) extraction du cerveau avec SynthStrip (Hoopes et al., 2022), (iii) registration affine vers

I'espace MNI de 1 mm? a I'aide d'outils de normalisation avancée (ANTs,
https://github.com/ANTsX/ANTs), (iv) recadrage a 160 x 192 x 160 voxels, et (v) normalisation du
signal cérébral par z-score.

Les images TEP-FDG ont été prétraitées comme suit : (i) Moyennage des images dynamiques avec
FreeSurfer si non déja effectué (https://surfer.nmr.mgh.harvard.edu/), (ii) extraction du cerveau

avec SynthStrip, (iii) registration linéaire vers I'IlRM T1 avec ANTs, (iv) registration affine vers I'espace
MNI de 1 mm?3 3 l'aide de la transformation T1w a MNI, (v) recadrage a 160 x 192 x 160 voxels et (v)
normalisation du signal cérébral par z-score.

IV.3.3. Ensemble des données
Le jeu de données complet comprenait 1 522 paires de TEP-FDG et d’'IRM T1 3D prétraitées. Les
ensembles d’entrainement, de validation et de test ont été séparés aléatoirement selon une
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répartition 60 % — 20 % — 20 %, stratifiée par diagnostic et distribution d’age. Cette répartition a
abouti a 946 paires de scans pour I'ensemble d’entrainement, 283 paires pour I'ensemble de
validation et 293 paires pour I'ensemble de test. Pour chaque participant, I'age, le sexe, le diagnostic
et le score MMSE ont été enregistrés au moment de I'acquisition de I'IRM (£ 6 mois).

Y
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decode diagnosis
(DX) and age

IV.3.4. Construction et extraction d’un espace latent structuré

1V.3.4.1. Vue d’ensemble de la méthode

Encoder T1w MRI
Multimodal Space

' DR
PET
% Residual Space
S

28. Figure IV-1. Architecture réseau.

Le modéle comprend quatre encodeurs : deux encodeurs unimodaux résiduels, qui géneérent des
représentations latentes unimodales résiduelles (Z_mri et Z_pet), et deux encodeurs unimodaux
supplémentaires enrichis par des blocs MMTM. Les sorties des encodeurs pilotés par les blocs MMTM sont
concaténées et projetées dans un espace latent multimodal partagé (Z_MM). Cette représentation
multimodale, conditionnée par I’dge et le diagnostic, est utilisée conjointement avec les espaces latents
unimodaux pour décoder chaque modalité séparément.

Architecture. Le modeéle utilisé pour construire I'espace latent est une extension du DIVA (Domain
Invariant Variational Autoencoder) (llse et al., 2020), enrichie par une régularisation consistante
(Sinha and Dieng, 2022). L'objectif est d’apprendre un espace latent multimodal Z,,,, structuré par
diagnostic, age et régularisation consistante, ainsi que deux espaces latents résiduels spécifiques aux
modalités (Zyr; et Zpgr). Le modéle comprend trois encodeurs (Figure 1V-1) : deux encodeurs
unimodaux générant Zyg; et Zpgr, et un encodeur multimodal produisant Z;,,. Chague modalité
est ensuite reconstruite par des décodeurs indépendants : la reconstruction IRM est réalisée a partir
de (Zyr1, Zym), tandis que la reconstruction TEP-FDG utilise (Zpgr, Zym)-

Encodeur multimodal. Notre modeéle étend I'architecture décrite par llse et al. (llse et al., 2020) a un
contexte multimodal. Deux encodeurs de caractéristiques spécifiques a chaque modalité sont
couplés a un Multimodal Transfer Module (MMTM) (Vaezi Joze et al., 2020). Les blocs MMTM sont
intégrés dans les trois dernieres couches de chaque encodeur, permettant de capturer des
caractéristiques spécifiques a chaque modalité et d’aligner les informations partagées. La fusion des
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caractéristiques s’effectue ensuite par concaténation des canaux, avant un passage dans un bloc
résiduel 3D (He et al., 2016) qui réduit le nombre de canaux de moitié.

Tous les encodeurs unimodaux suivent le méme design : des blocs résiduels 3D comprenant des
convolutions 3D, une GroupNormalization (GN) (Wu and He, 2018), choisie pour ses performances
sur de petits lots, et une fonction d’activation ReLU. Le sous-échantillonnage est effectué par
convolutions avec stride 2, doublant le nombre de canaux, suivi d’'une activation ReLU. La sortie de
chaque encodeur est aplatie puis passée a travers des couches linéaires pour générer u et log o2
(Kingma and Welling, 2019).

Décodeurs. Les décodeurs reproduisent la structure des encodeurs : un upsampling trilinéaire 3D
double les dimensions spatiales, suivi de convolutions 3D, puis d’un bloc résiduel 3D. La derniere
couche de chaque décodeur utilise des convolutions 3D avec un noyau 1 x 1 x 1, tandis que toutes
les autres convolutions utilisent un noyau 3 x 3 x 3.

Fonction de perte. Le modele est entrainé avec une fonction de perte composite combinant
plusieurs objectifs : reconstruction neuroimagerie, classification diagnostique, prédiction de I'dge et
régularisation de I'espace latent. Selon I'approche d’apprentissage multitache (Caruana, 1993), la
perte globale L,y erqi; €5t définie comme :

Loverann = MW1Lly + AawoLy + Azwsls + A4wyLy (Eq.IV-1)

Chaque L; correspond a la perte d’une tache spécifique. Les constantes A, contrélent I'échelle des
gradients, les différences de magnitude et la priorité des taches. Les poids dynamiques w; ajustent
de maniére adaptative la contribution de chaque tache en fonction de sa vitesse d’apprentissage (Liu
et al., 2019):

4 L _1 (Eq IV-2)
w(e) = (nombre de tiche)(exp (2 Ltff ) / [Z 2 LTT( Ee - ;))‘

OU, e désigne I'époque d’entrainement actuelle, L;(e — 1) et L;(e — 2) sont les pertes spécifiques a
la tache pour les deux époques précédentes, et T désigne I'ensemble de toutes les taches.

Les définitions spécifiques de chaque terme de perte L; sont les suivantes. :

L, constitue une extension multimodale de la perte B-VAE du modele DIVA (lIse et al., 2020) :

- 2
Ly = (XMRI - XMRI) + B DKL[ZMRI” N(O, I)]

o N2
+ (XPET - XPET) + BDk.[Zpgr|| N(O,1)]
+ BDk [Zumll p(Zum | age, diagnosis)]

(Eq IV-3)

ou X est I'entrée pour chaque modalité,X sa reconstruction, N(0,1) la gaussienne multivariée de
moyenne nulle et covariance identité, et B un coefficient positif équilibrant la perte KL et la perte de
reconstruction. p(Zyy | age, diagnosis) correspond au prior conditionnel appris a partir de I'age et
du diagnostic pour récupérer Z .
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L, la perte de classification diagnostique, utilise I’entropie croisée pondérée pour gérer le
2

déséquilibre entre classes : les poids ap assignés a chaque diagnostic D sont définis comme ap =

Neotal
Np x C’

est le nombre total de classes de diagnostic.

oU N;yiq; €St le nombre total de scans, Np est le nombre de scans pour le diagnostic D et C

Pour la perte de prédiction de I'age L3, I'erreur quadratique moyenne (EQM) a été utilisée.

La perte de consistance L, étend la régularisation consistante introduite par Sinha et Dieng en

encourageant l'alignement entre I'espace latent multimodal dérivé de I'image originale ZJRI¢ et

celui calculé 3 partir de sa version transformée aléatoirement Z#4° — obtenue par translation,
rotation, zoom et/ou ajout de bruit gaussien. Elle est définie comme une divergence de Kullback-
Leibler (KL) symétrique :

1 (Eq. IV-4)
Ly = E[DKL(ZI\(/)I}IEIIG 11 Zi) + D (Zigyt 1 Ziaai©)]

ou Dy, désigne la divergence KL. Contrairement a la formulation originale, la perte est symétrisée
pour garantir la robustesse de |'espace latent multimodal. Des détails supplémentaires sur chaque
composante de perte et la procédure d’entrainement sont fournis en matériel supplémentaire
(section 1V.8. S2).

Procédure d’entrainement. La procédure suit celle décrite Sinha et Dieng (Sinha and Dieng, 2022),
en appliquant la perte VAE aux images originales XORI¢ et transformées X4UC. Pour limiter le
surapprentissage, la prédiction de I’age et du diagnostic n’a été effectuée que sur X4U¢.
Conformément aux recommandations d’Alemi et al. (Alemi et al., 2018) pour extraire des
représentations latentes significatives, une pondération constante élevée a été attribuée a la perte
de classification (L,). Les poids associés aux pertes de régularisation de I'espace latent (L, et L,) ont
été augmentés linéairement au cours des dix premieres époques — 8 est passé de 0,1 a 1 pour L, et
A4 de 0,2 a 2 pour L. Des détails supplémentaires sur la procédure d’entrainement sont donnés a la
section 1V.8. S3.1.

Augmentation des données Nous avons appliqué des augmentations aux images IRM et TEP-FDG via
la bibliotheque MONAI (Cardoso et al., 2022). Les transformations comprenaient : translation
aléatoire (+10 voxels sur chaque axe), rotation aléatoire (+0,4 radians), et zoom aléatoire (facteur
0,9-1). Les flips étaient exclus afin de préserver les asymétries potentielles des profils pathologiques
(Madhavan et al., 2013; Whitwell, 2019). Du bruit gaussien (u = 0,0 ~ U(]0,0.15[) a été ajouté,
et les entrées ont été débruitées pendant la reconstruction, conformément a des travaux montrant
gue cette approche améliore la robustesse des caractéristiques (Vincent et al., 2008). Les images
IRM et TEP d’un méme sujet ont subi des augmentations identiques, chacune appliquée avec une
probabilité de 0,95.

Sélection du modéle. Le modele final a été choisi sur la base de la perte minimale combinée pour la
prédiction d’age, la classification et la régularisation consistante sur I’ensemble de validation.
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1V.3.4.2. Représentaton par graphe de I’espace latent — PatientSpace

Nous avons construit une représentation sous forme de graphe appelé PatientSpace, définie comme
G = (V,E,A) ouV correspond a I'ensemble des nceuds représentant les patients, E a I’'ensemble
des arétes connectant ces nceuds, et 4 a la matrice d’adjacence pondérée. Chaque nceud v; € V
correspond a un patient, et la pondération des arétes encode la similarité morphologique entre
patients dans I'espace latent.

Pour chaque paire de sujets (i, ), la pondération a;; de la matrice d’adjacence était définie de la
maniére suivante :

1

1
- /Z ———, sijestun voisindei
ay =GN/ Lo dG@R) (Eq IV-5)

0, Sinon

ou, d(i,j) représente la mesure de la dissimilarité (perte de consistance L,) entre i et j.
N (i)représente les K voisins de i (voir la section IV.8. S3.2 pour le nombre optimal de voisins K)

IV.3.5. Expérimentations

1V.3.5.1. Analyse basée sur le graphe

Deux analyses ont été menées pour étudier les propriétés structurelles du PatientSpace. La premiere
s’est concentrée sur la topologie globale en identifiant des clusters au sein du graphe. La seconde a
mis I’accent sur les informations locales en réalisant une analyse de voisinage au niveau de chaque
patient.

Clustering dans le PatientSpace. Le PatientSpace a été clusterisé en utilisant un algorithme de
clustering agglomératif avec le critere de Ward, tout en préservant la structure du graphe. Les
clusters ont été analysés selon : (i) le nombre de sujets CN, AD et FTD, (ii) la répartition selon I'age et
le sexe, (iii) les volumes cérébraux et le ratio de valeur normalisée d’absorption standardisée (SUVR),
et le score MMSE ajusté pour |’age et le sexe. Les comparaisons statistiques ont été réalisées a |'aide
du test du khi-deux pour les variables catégorielles et du test de Kruskal-Wallis pour les variables
continues, avec correction pour comparaisons multiples via la méthode du faux taux de découverte
de Benjamini-Hochberg (BH-FDR) (Benjamini et Hochberg, 1995). Les profils d’atrophie et de
métabolisme des clusters de maladies ont été comparés via une approche de Voxel-Based
Morphometry (VBM) (voir données supplémentaires 1V.8. S5).

Analyse de PatientSpace au niveau individuel. Le PatientSpace a également été examiné au niveau
du patient en prédisant le diagnostic, les volumes cérébraux, le SUVR et le MMSE chez les sujets de
I’ensemble test. Pour chaque sujet non vu i de I’'ensemble test, la probabilité d’étre assigné au
diagnostic D a été estimée par

argmax, P(DX; = D) = Z a;;1(DX; = D) (Eq 1V-6)

j
ou DX; est le diagnostic du sujet v;.

L'aire sous la courbe (AUC), la spécificité et la sensibilité ont été utilisées pour évaluer la
performance de classification diagnostique.
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Les volumes cérébraux et le SUVR ont été prédits pour des régions d’intérét (ROI) spécifiques
associées a la MA et la DFT. Les ROl liées a la MA incluaient I’"hippocampe, le précunéus, le gyrus
parahippocampique, le cortex entorhinal, le cortex cingulaire, le gyrus temporal moyen latéral, le
gyrus frontal et le gyrus angulaire (Fennema-Notestine et al., 2009; Landau et al., 2011). Les ROI liées
a la DFT comprenaient le cortex insulaire, I'insula antérieure, le péle temporal, le gyrus temporal
moyen, le gyrus frontal moyen, le gyrus frontal supérieur et le gyrus frontal inférieur (Peet et al.,
2021; Risacher and Saykin, 2013; Whitwell, 2019). Nous avons également inclus dans notre analyse
la matiére grise (GM), de la matiére blanche (WM), le liquide céphalo-rachidien (LCR), ainsi que les
régions frontales et temporales. Les volumes cérébraux ont été extraits avec AssemblyNet (Coupé et
al., 2020), et normalisés par le volume intracranien, tandis que le SUVR a été calculé en divisant la
SUV régionale par la SUV totale.

Pour chaque sujet i de I'ensemble de test, non vu lors de I’entrainement, le volume cérébral ou le
SUVR estimé ¥ a été calculé comme la moyenne pondérée des mesures y correspondantes des
sujets voisins, selon la formule suivante :

§, = Z a; y; (Eq IV-7)
J

Le coefficient de corrélation de Pearson a été calculé entre les valeurs réelles et prédites. La force de
la corrélation a été interprétée comme : faible (r < 0.3); modérée (0.3 <r < 0.6); etforte (r =
0.6) (Akoglu, 2018).

Le MMSE a été estimé de maniére similaire au diagnostic. Les scores MMSE ont été catégorisés selon
les stades de démence : absence ou suspicion de démence (MMSE 27-30), démence légere (MMSE
20-26), démence modérée (MMSE 10-19) et démence sévere (MMSE < 10) (Perneczky et al., 2006).
Pour chaque sujet i de 'ensemble de test, non vu lors de I’entrainement, la probabilité d’obtenir un
score MMSE m a été estimée a I'aide de :

argmax,, P(MMSE; = m) = Z a;;1(MMSE; = m) (Eq 1V-8)

J

Les performances MMSE ont été évaluées a I'aide de la précision équilibrée, de la régression
ordinale, ainsi que de la MAE et de la RMSE, optimisées pour les données déséquilibrées (Baccianella
et al., 2009).

Les résultats obtenus a partir des approches basées sur les graphes sont désignés sous le nom
PatientGraph et ceux obtenus par le classifieur natif du réseau sous le nom DL-classifier dans les
sections suivantes.

1V.3.5.2. Validation externe
Classification Nous avons utilisé la base de données SOCRATES pour évaluer les performances de
classification. Une description détaillée de la population étudiée est fournie en section IV.8. S2.2.

Analyse de survie MCI Nous avons utilisé |le jeu de données MEMENTO (numéro d’autorisation 2010
A01394 35) pour étudier la conversion des MCl et suivre la progression de la maladie. Ce jeu
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multicentrique comprenait des individus présentant un MCl, indépendamment de I'étiologie sous-
jacente, telle que la MA, la DFT ou d’autres pathologies. Une description détaillée de la population
est fournie en section 1V.8. S2.2.

L'analyse de survie a été utilisée pour étudier la probabilité de conversion des MCl en démence. La
premiere session des sujets MCl de la cohorte MEMENTO a été projetée dans le PatientSpace et
assignée a un cluster c selon :

argmax, P(Clﬂts?eri = c) = Z a;j 1(Cluster; = c) (Eq 1V-9)
J

Une analyse de survie de Kaplan—Meier a ensuite été appliquée pour examiner les taux de
conversion selon les clusters. Les différences statistiques entre distributions de survie ont été
évaluées via des tests log-rank par paires (Fleming and Harrington, 1981) avec correction BH-FDR
pour comparaisons multiples (Benjamini and Hochberg, 1995). Pour garantir la robustesse des tests,
seuls les clusters contenant plus de dix sujets ont été conservés. Les trajectoires longitudinales des
sujets MCI converters ont été suivies via une matrice de transition. A chaque point temporel ol les
données IRM et TEP-FDG étaient disponibles, 'appartenance au cluster a été réassignée selon
I’équation I'Eq. IV-9.

1V.3.5.3. Comparaison avec des méthodes de référence

Pour évaluer les performances du modeéle, nous avons comparé notre module de classification deep
learning (DL-Classifier) et notre approche PatientGraph a deux méthodes d’apprentissage profond
sur 'ensemble de test : (i) PET-CNN, un classifieur basé sur la TEP-FDG réimplémenté a partir de
Rogeau et al. (Rogeau et al., 2024) (ii) AssemblyNet-AD-FTD, un classifieur basé sur I'IRM T1 décrit
par Nguyen et al. (Nguyen et al., 2023). Nous avons réalisé une classification multiclasse et en avons
dérivé une classification CN vs démence (DEM) a partir des résultats multiclasses pour examiner les
erreurs de classification.

IV.3.6. Etudes d’ablation

Pour évaluer I'impact de notre architecture deep learning et de I'organisation de I'espace latent,
cing variantes ont été mises en place. Deux variantes unimodales ont été implémentées afin
d’évaluer I'influence de la multimodalité sur I'espace latent, appelées respectivement modele TEP et
modele IRM. Pour les autres variantes, I'architecture multimodale a été conservée, mais certaines
composantes ont été supprimées successivement : (1) I'age, (2) la perte de consistance, et (3) le
diagnostic. Ces modeles sont respectivement désignés age ablated, consistency ablated et vanilla
model.

IV.4. Résultats

IV.4.1. Données démographiques

Les caractéristiques démographiques des sujets sont résumées dans le tableau IV-1. L’age était
significativement plus élevé chez les sujets CN, tandis qu’aucune différence significative n’a été
observée entre les groupes MA et DFT dans I'ensemble des jeux de données. La répartition selon le
sexe ne montrait pas de différence significative dans les ensembles d’entrainement et de validation,
mais une différence significative était observée entre les groupes MA et DFT dans I'ensemble de
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test. Les scores de MMSE différaient significativement dans tous les ensembles de données, les

sujets CN obtenant les scores les plus élevés, suivis des DFT, puis des MA.

CN MA DFT Valeur p
Ensemble
d’entrainement
Nombre de scans 336 504 106 -
Age, années 74.20+7.76 68.31+10.33 65.81+9.19 < 0,001
MA<CN
DFT<CN
Femmes, n (%) 169 (50%) 270 (54%) 45 (43%) 0.11
MMSE 29 (28 - 30) 20 (15 - 23) 25 (21-27) <0,001
MA < DFT<CN
Ensemble de
validation
Nombre de scans 89 155 39 -
Age, années 73,64 £ 6,77 67,68 + 8,97 68,22 + 7,06 < 0,001
MA<CN
DFT<CN
Femmes, n (%) 41 (46%) 58 (37%) 15 (38%) 0.40
MMSE 30 (29-30) 20 (16.5 - 23) 25 (22 - 28) <0,001
MA < DFT <CN
Ensemble de test
Nombre de scans 97 150 46 -
Age, années 74,14 + 6,47 68.18 £9.34 68.76 £ 7.34 <0,001
MA < CN
DFT <CN
Femmes, n (%) 60 (62%) 68 (45%) 11 (24%) 0.03
MMSE 29.5 (29 - 30) 21 (16 - 24) 24 (17.5 - 27) <0,001
MA < DFT <CN

13. Tableau IV-1. Caractéristiques démographiques et cliniques des données.

L’dge est rapporté sous forme de moyenne + écart type, le sexe féminin comme nombre (proportion), et le
MMSE comme médiane avec intervalle interquartile (Q1—Q3). Les comparaisons statistiques ont été réalisées a
I'aide de tests de Kruskal-Wallis pour I’dge et le MMSE, et d’un test du chi-carré pour le sexe. Une valeur de p <
0,05 était considérée comme statistiquement significative.
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IV.4.2. Interprétation du PatientSpace

1V.4.2.1. PatientSpace clusters

CN#3

29. Figure IV-2. Graphe du PatientSpace

Chaque nceud correspond a un sujet et chaque aréte a une connexion binaire (1 si a;; > 0, 0sinon). Les sujets
MA sont représentés en rouge, les DFT en bleu et les CN en vert. Les clusters extraits par classification
hiérarchique agglomérative sont encerclés et nommés.

La figure IV-2 présente le PatientSpace, qui se compose de dix clusters : trois clusters CN, deux
clusters DFT et cing clusters MA. Les caractéristiques des clusters sont présentées dans le tableau IV-
2. Ces clusters présentaient des variations dans la distribution de I’age. Les clusters DFT ne
montraient pas de différences notables selon le sexe, contrairement aux clusters MA, le cluster AD#1
comprenant la proportion la plus élevée de femmes et le cluster AD#5 la plus faible. De plus, AD#1 et
AD#2 présentaient des scores MMSE significativement plus bas que les autres clusters MA. Les sujets
DFT partageaient davantage de liens avec les individus MA, en particulier ceux des clusters AD#3 et
AD#4, tout en ne montrant qu’une seule interaction avec les sujets CN. A I'inverse, les sujets CN
présentaient une plus grande similarité avec les sujets AD#1, AD#2 et AD#3. De maniére
intéressante, le cluster AD#5 apparaissait isolé, sans interaction observée avec les CN ou les DFT.

Age, années Femmes, n ( %) MMSE
AD#1 56.07 £ 3.95 64 (75%) 15(9-19)
AD#2 61,22 £ 4,29 65 (52%) 16 (11 - 20)
AD#3 68.66 £ 6.00 59 (53%) 21.5(18.25 - 23.75)
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AD#4 76.74 £ 4.29 71 (50%) 23 (20 - 25)

AD#5 85,37 + 3,83 11 (27%) 22(20 - 24)
FTD#1 61.61+7.25 23 (38%) 25 (20 - 27)
FTD#2 71.29 + 8.59 22 (47%) 25 (21 - 27.75)
CN#1 62,63 +7,19 23 (60%) 30 (29 - 30)
CN#2 72.95+5.11 106 (53%) 29 (28 - 30)
CN#3 81.25+5.34 40 (41%) 29 (28 - 30)

14. Tableau IV-2. Caractéristiques des clusters.
L'dge est exprimé en moyenne + écart-type, la proportion de femmes est indiquée en effectif (pourcentage) et
le MMSE est présenté en médiane avec l'intervalle interquartile (Q1-Q3).

1V.4.2.2. Modeles spécifiques d'atrophie et d'hypométabolisme

Des profils distincts d’atrophie et d’hypométabolisme ont été observés selon les clusters
pathologiques (figure IV-3). Les clusters AD#1, AD#2, AD#3 et AD#4 présentaient les caractéristiques
classiques de la MA, comprenant un hypométabolisme dans les lobes temporaux et le précuneus,
associé a une atrophie des régions temporales postérieures et médiales ainsi que de I'hippocampe.
Bien que ces clusters partageaient globalement des profils spatiaux similaires, I'hypométabolisme de
la TEP-FDG était plus marqué dans AD#1 et AD#2. Fait notable, AD#1 et AD#2 ne montraient pas
d’hypométabolisme hippocampique. Par ailleurs, le cluster AD#2 présentait une atteinte postérieure
plus prononcée. A I'inverse, le cluster AD#5 montrait peu ou pas d’hypométabolisme détectable et
une atrophie minimale, limitée au lobe temporal gauche.

Le cluster FTD#1 présentait un hypométabolisme caractéristique des lobes frontaux et du noyau
caudé, ainsi qu’une atrophie typique des régions frontales et temporales. En revanche, le cluster
FTD#2 ne présentait quasiment pas d’hypométabolisme détectable dans les régions frontales, avec
une atrophie principalement localisée dans les régions temporales et I'insula.
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30. Figure IV-3. Atrophie et hypométabolisme dans les clusters.

Les rangées représentent les modalités d'imagerie, tandis que les colonnes correspondent aux clusters de démence.
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1V.4.2.3. Caractérisation individuelle de PatientSpace

Le tableau IV-S3 présente les coefficients de corrélation de Pearson entre les volumes cérébraux et
les valeurs SUVR prédits et ceux de référence. La figure IV-4 illustre, a des fins de visualisation, les
régions présentant les corrélations les plus fortes (r 2 0,6). Les mesures prédictives et de référence
de la structure et du métabolisme cérébral étaient généralement bien corrélées, mais l'intensité de
la corrélation variait selon les régions. Pour les volumes cérébraux globaux, les corrélations étaient
systématiquement fortes, en particulier pour le LCR (r = 0,71) et la substance grise (r = 0,64). Dans
les ROl associées a la MA, des corrélations modérées a fortes étaient observées dans I’hippocampe,
le précuneus, le cortex cingulaire antérieur et le gyrus angulaire, tandis que des associations plus
faibles apparaissaient dans les cortex entorhinal et cingulaire postérieur. Dans les ROl associées a la
DFT, I'insula et le gyrus temporal moyen présentaient de fortes corrélations, alors que les gyri
frontaux supérieur et inférieur n’affichaient que de faibles relations.

Concernant les SUVR, les corrélations étaient globalement plus élevées, avec des valeurs
importantes dans le précuneus (r = 0,77) et le gyrus angulaire (r = 0,80), suggérant une prédiction
fiable dans des régions clés de la MA, tandis que des corrélations modérées persistaient dans
I’hippocampe et le cortex entorhinal. Pour les SUVR associés a la DFT, de fortes corrélations étaient
également observées dans l'insula antérieure et le gyrus temporal moyen, mais seulement
modérées dans les régions frontales et temporales inférieures.

La classification du MMSE atteignait une exactitude équilibrée de 0,56, une RMSE de 0,85 et une
MAE de 0,54. Dans la plupart des cas, les prédictions de classe MMSE se situaient dans la catégorie
correcte ou dans une catégorie adjacente (figure IV-5). De maniere importante, aucun cas de
démence sévére n’a été mal classé comme absence/doute de démence, et les cas avec
absence/doute de démence n'ont été que rarement prédits comme modérés, et jamais comme
sévéres.
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31. Figure IV-4. Analyse de corrélation de Pearson entre les volumes cérébraux prédits et la réalité terrain et les
valeurs SUVR.
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32. Figure IV-5. Prédiction du MMSE dans les classes de démence.

IV.4.3. Comparaison avec les méthodes de référence

Les résultats pour les deux taches sont rapportés dans les tableaux IV-3 et IV-4. Dans le cadre
multiclasse, DL-Classifier et PatientGraph ont présenté des performances globalement compétitives,
avec une sensibilité [égerement plus faible pour la DFT par rapport aux méthodes de pointe, et une
AUC légerement plus basse avec PatientGraph. De méme, leur spécificité pour la MA et les CN était
légerement inférieure a celle du PET-CNN. Toutefois, dans la tache de classification CN vs DEM, les
deux méthodes ont montré des performances comparables a celles du PET-CNN. Comparées a
AssemblyNet-AD-FTD, nos méthodes ont surpassé ce dernier sur toutes les autres métriques, a
I’exception de la sensibilité et de I’AUC chez les patients DFT.

CN vs DEM
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DL-Classifier PatientGraph PET-CNN AssemblyNet-AD-

FTD
AUC 0.99[0.98 - 1] 0.98 [0.96 — 0.99] 0.99[0.98 - 1] 0.96 [0.94 — 0.98]
Sens 0.93[0.89 - 0.96] 0.92 [0.88 — 0.96] 0.95[0.92 - 0.98] 0.91 [0.87 - 0.95]
Spec 0.99[0.97-1] 0.99[0.97 -1] 0.95[0.90 - 0.99] 0.87 [0.80 - 0.93]

15. Tableau IV-3. Performances de classification binaire.
Les résultats sont présentés sous forme de valeur [intervalle de confiance 95 %]. AUC : Aire sous la courbe ;
Sens. : Sensibilité ; Spec : Spécificité.

CN vs AD vs FTD
DL-Classifier PatientGraph PET-CNN AssemblyNet-AD-
FTD

CN AUC 0.99 [0.98-1] 0.98 [0.97-1] 0.99 [0.97-1] 0.96 [0.94-0.99]
Sens 0.99 [0.97-1] 0.99 [0.97-1] 0.95 [0.90-0.99] 0.87 [0.80-0.93]
Spec. 0.93 [0.89-0.96] 0.92 [0.88-0.96] 0.95 [0.92-0.98] 0.91 [0.87-0.95]

MA  AUC 0.97 [0.95-0.99] 0.95 [0.92-0.97] 0.97 [0.95-0.99] 0.94 [0.92-0.97]
Sens 0.91 [0.86-0.95] 0.91 [0.87-0.96] 0.91 [0.86—0.95] 0.82 [0.76-0.88]
Spec. 0.92 [0.87-0.96] 0.92 [0.87-0.96] 0.93 [0.89-0.97] 0.87 [0.81-0.92]

DFT AUC 0.95 [0.91-0.99] 0.89 [0.82-0.95] 0.97 [0.93-1] 0.95 [0.91-0.99]
Sens 0.70 [0.56-0.83] 0.67 [0.54-0.81] 0.78 [0.66—0.90] 0.78 [0.66—0.90]
Spec. 0.99 [0.99-1] 0.99 [0.99-1] 0.96 [0.93-0.98] 0.94 [0.91-0.97]

16. Tableau IV-4. Performances de classification multiclasse.
Les résultats sont présentés sous forme de valeur [intervalle de confiance 95 %]. AUC : Aire sous la courbe ;
Sens. : Sensibilité ; Spec : Spécificité.

IV.4.4. Performances de classification du diagnostic sur un ensemble de données

externe

Les méthodes DL-Classifier et PatientGraph ont obtenu de bonnes performances sur le jeu de
données SOCRATES (Tableaux IV-5 et IV-6). Globalement, leurs résultats étaient comparables, avec
certaines différences : PatientGraph surpassait légérement le DL-Classifier dans la prédiction des

groupes pathologiques, tandis que le DL-Classifier montrait de meilleures performances pour les cas

témoins. Les performances sur le jeu de données externe étaient cohérentes avec celles observées

sur le jeu de test interne (Tableaux IV-3 et IV-4). Comparées aux références précédentes, nos

méthodes ont maintenu des valeurs élevées d’AUC, de sensibilité et de spécificité, confirmant leur

robustesse a travers les différents jeux de données.
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CN vs DEM

DL-Classifier PatientGraph
AUC 0.98 [0.94 - 1] 0.98 [0.94 - 1]
Sens 0.93[0.84-1.] 0.98[0.93-1.]
Spec 0.95[0.85-0.1.] 0.80 [0.61 —0.973]

17. Tableau IV-5. Performances de classification binaire sur le jeu de données SOCRATES.

Les résultats sont présentés sous forme de valeur [intervalle de confiance 95 %]. AUC : Aire sous la courbe ;

Sens. : Sensibilité ; Spec : Spécificité.

CN vs AD vs FTD
DL-Classifier PatientGraph
CN AUC 0.98 [0.93 - 1] 0.98 [0.93 - 1]
Sens 0.95 [0.85—-1] 0.79 [0.60-0.97]
Spec. 0.93 [0.85—-1] 0.98 [0.93 - 1]
MA AUC 0.97 [0.95- 0.99] 0.97 [0.91 -1]
Sens 0.85[0.69 — 1] 0.9[0.77 - 1]
Spec. 0.97 [0.93 -1] 0.92[0.84 - 1]
DFT AUC 0.95[0.91-0.99] 0.99[0.95-1.]
Sens 0.90 [0.77 - 1] 0.95 [0.85 - 1]
Spec. 0.95 [0.88 — 1] 0.92 [0.84 - 1]

18. Tableau IV-6. Performances de classification multiclasse sur le jeu de données SOCRATES.

Les résultats sont présentés sous forme de valeur [intervalle de confiance 95 %]. AUC : Aire sous la courbe ;

Sens. : Sensibilité ; Spec : Spécificité.

IV.4.5. Analyse de survie des MCI (MEMENTO Dataset)

1V.4.5.1. Analyse de survie
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33. Figure IV-6. Projection des MCI dans le PatientSpace.

Pour une meilleure visualisation, les MCI stables (d gauche) ont été séparés des converters (a droite). Les carrés
verts représentent les MCI stables, tandis que les carrés rouges représentent les MCI converters. Les cercles
correspondent aux sujets du PatientSpace : vert pour CN, rouge pour MA et bleu pour DFT.

Lors de la session initiale, 61 % (86 sur 141) des MCI converters étaient projetés dans des clusters
liés a la démence, tandis que 89 % (471 sur 532) des MCl stables étaient projetés dans les clusters
CN (Figure IV-6). Fait intéressant, aucun MCI n’était attribué au cluster AD#1 ; un seul converter était
projeté dans AD#2, six dans AD#5, et un dans FTD#1. Ces clusters ont été exclus des analyses de
survie ultérieures en raison de leur taille.

L’analyse de survie de la cohorte de MCI (Figure IV-7) a révélé des trajectoires de conversion
significativement différentes entre les clusters (p < 0,001). Parmi les clusters CN, les MCl initialement
projetés dans CN#1 présentaient le taux de progression le plus faible vers la démence, suivis de
CN#2, tandis que CN#3 montrait un risque intermédiaire, modéré. En revanche, les clusters liés a la
démence présentaient des taux de conversion nettement plus élevés. AD#3 montrait la progression
la plus rapide vers la démence, suivi de’AD#4, tandis que FTD#2 présentait le taux de conversion le
plus bas parmi les clusters liés a la démence.
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34. Figure IV-7. Analyse de Kaplan-Meier pour la conversion vers la démence chez les sujets MCI.

IV.4.5.2. Evolution des MCI converters

La matrice de transition pour les MCl stables montrait qu’ils demeuraient majoritairement au sein
des clusters CN (Figure IV-8). Parmi les sujets MCl stables projetés dans AD#3, 66 % revenaient vers
un cluster CN, alors que seulement 24 % de ceux du cluster AD#4 montraient une telle réversion.

Enfin, les MCl stables associés a FTD#2 présentaient une probabilité de 33 % de réversion vers un
cluster CN.

En revanche, la matrice de transition des MCI converters montrait qu’aucun ne revenait des clusters
liés a la démence vers les clusters CN (Figure IV-7). De plus, les sujets MCl du cluster CN#1 ne
pouvaient que passer au cluster CN#2 avec une probabilité de 67 %, ou rester dans CN#1. Ensuite,
ceux projetés dans CN#2 présentaient une probabilité de 47 % de transition vers un cluster lié a la
démence, tandis que ceux dans CN#3 avaient une probabilité de 79 %.
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Non-converters transition matrix Converters transition matrix

From Cluster
FTD#2 FTD#1 CN#3 CN#2 CN#1 AD#5 AD#4 AD#3 AD#2 AD#1
From Cluster
FTD#2 FTD#1 CN#3 CN#2 CN#1 AD#5 AD#4 AD#3 AD#2 AD#1
Probability

AD#1 AD#2 AD#3 AD#4 AD#5 CN#1 CN#2 CN#3 FTD#1 FTD#2 AD#1 AD#2 AD#3 AD#4 AD#5 CN#1 CN#2 CN#3 FTD#1 FTD#2
To Cluster To Cluster

35. Figure IV-8. Matrices de transition pour les MCl stables (gauche) et converters (droite).
Les valeurs correspondaient aux probabilités de transition pour les sujets MCI converters et les sujets MCI
stables se déplagant entre les clusters au fil du temps.

IV.5. Discussion

Nous avons introduit le PatientSpace, un cadre de représentation latente basé sur un graphe, congu
pour décomposer I’hétérogénéité des maladies neurodégénératives a partir de données de
neuroimagerie multimodale. Fondé sur un VAE structuré entrainé a partir de I'lRM T1w et la TEP
FDG, le PatientSpace permet une analyse interprétable des patients individuellement, via des
comparaisons de voisinage dans |'espace latent. Le modele integre les diagnostics, I’age ainsi qu’un
nouveau terme de régularisation consistante, structurant I'espace latent pour une meilleure
pertinence biologique et clinique. Nos résultats montrent que le PatientSpace capture
I’'hétérogénéité de la maladie chez les individus MA, DFT et CN, offrant des informations
complémentaires sur les sous-types de la maladie, sa sévérité et sa progression.

IV.5.1. Avancées méthodologiques
Le PatientSpace s’appuie sur les techniques existantes de modélisation en espace latent et les étend
en intégrant plusieurs innovations clés.

Au coeur du modeéle se trouve un VAE multimodal qui integre a la fois I'|RM T1w et la TEP FDG,
capturant ainsi les signatures anatomiques et métaboliques complémentaires de la
neurodégénérescence. Plutét que de décomposer explicitement I'espace latent en composants
partagés et spécifiques a chaque modalité (Lee and Pavlovic, 2021), notre architecture multitache
peut implicitement privilégier une modalité par rapport a I'autre. Si ce choix peut retarder
I"apprentissage des caractéristiques provenant de la modalité moins priorisée, il présente I’avantage
de capturer le décalage temporel entre les marqueurs de la TEP FDG et de I'lRM T1 de la
neurodégénérescence. Sur le plan clinique, il est bien établi que la TEP FDG peut détecter des
changements neurodégénératifs plus précocement dans le cours de la maladie, tandis que I'IRM
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refléte principalement I'atrophie structurelle et la sévérité de la maladie aux stades avancés (Del
Sole et al., 2017).

Cependant, obtenir un espace latent a la fois structuré et désentrelacé ne peut se faire uniguement
par apprentissage non supervisé. Des biais inductifs supplémentaires, tels que la supervision, sont
nécessaires pour contraindre la représentation latente (Locatello et al., 2019). A cette fin, I’age et le
diagnostic ont été inclus comme signaux de supervision structurant I’espace latent selon des axes
cliniguement pertinents. Le diagnostic permet de distinguer les différentes maladies
neurodégénératives, tandis que |’age capture la variabilité naturelle et la progression de la maladie.
Ceci est particulierement important étant donné la distinction clinique entre formes a début précoce
et formes a début tardif des maladies (Rossor et al., 2010; Seath et al., 2024; Tellechea et al., 2018)

Néanmoins, se reposer uniquement sur des contraintes supervisées peut limiter I'interprétabilité du
modele et ne pas saisir I’hétérogénéité connue de maladies comme la MA et la DFT, qui présentent
des phénotypes de neuroimagerie divers et des variations dépendantes du stade (Dubois et al.,
2023; Koenig et al., 2018; Musa et al., 2020; Ossenkoppele et al., 2015b). Pour y remédier, un terme
de régularisation consistante a été introduit afin d’améliorer la robustesse et la stabilité des
représentations latentes face a la variabilité phénotypique dérivée de I'imagerie. Cette régularisation
sert de proxy pour la similarité des neuroimageries, permettant la construction d’un graphe ou la
proximité reflete la ressemblance biologique.

Parmi tous les composants, la régularisation consistante a eu I'impact le plus important sur les
performances du modeéle (Tableaux IV-A1l et IV-A2). Cette approche se distingue de la plupart des
modeles existants, qui se concentrent uniquement sur la classification ou le clustering non supervisé,
sans fournir d’interprétabilité explicite ni de pertinence clinique.

IV.5.2. Performances de la classification diagnostique

En projetant de nouveaux sujets dans le PatientSpace et en s’appuyant uniquement sur les
informations provenant des cas voisins, notre modeéle a atteint des performances comparables a
celles des méthodes de référence ainsi qu’a la téte de classification du modele VAE. La
généralisation a été validée a I'aide des images SOCRATES, acquises par TEP-IRM sur un site externe.
Si les résultats étaient compétitifs pour la classification CN versus démence, le PatientSpace a
montré une sensibilité réduite pour différencier MA et DFT. Plusieurs facteurs expliquent
probablement cette limitation.

Premiérement, les cas de DFT étaient sous-représentés (13 % des données), limitant la capacité du
modele a capturer I'’ensemble des profils liés a la DFT. Selon la littérature (Ghosh and Lippa, 2015), la
DFT comprend trois sous-types principaux : le variant comportementale (bvFTD), la forme la plus
fréquente, ainsi que le variant sémantique (SV) et le variant aphasie non fluente progressive (PNFA),
représentant ensemble environ 45 % de tous les cas de DFT (SD : 20-25 %, PNFA : ~25 %). En
revanche, seuls 17 des 106 patients DFT de notre cohorte (16 %) présentaient un profil SV ou PNFA,
indiquant une sous-représentation importante de ces sous-types.

Deuxiemement, le jeu de données multicentrique ne contenait pas la représentation compléete des
diagnostics a chaque site, ce qui peut introduire des biais spécifiques aux sites. Troisiemement,
I'architecture de notre modele n’imposait pas de séparation stricte de I'espace latent entre les
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catégories diagnostiques, ce qui a pu préserver des recouvrements cohérents avec I’'hétérogénéité
clinique observée en pratique.

Pour pallier le déséquilibre de classification, les modeéles futurs pourraient utiliser des classifieurs
hiérarchiques, séparant d’abord CN et démence, puis distinguant la MA de la DFT. Cette approche en
deux étapes a montré son intérét pour des taches similaires (Kim et al., 2019). D’autres stratégies
possibles incluent la repondération de la perte (Cui et al., 2019) ou le hard-sample mining (Lin et al.,
2018). Cependant, les chevauchements dans I'espace latent peuvent également refléter le
continuum biologique entre des présentations atypiques de la MA et de la DFT, en particulier pour
les formes précoces ou non amnésiques (Harciarek and Jodzio, 2005; Mendez, 2006).

IV.5.3. Sous-types de maladies et interprétation des clusters

Le clustering agglomératif du graphe latent, construit sur le jeu d’entrainement, a révélé 7 clusters
liés a la démence présentant une signification clinique et biologique. Parmi ceux-ci, cinq clusters MA
distincts ont émergé. Les clusters AD#1 et AD#2 correspondaient a des EOAD (MA a début précoce),
tandis qu’AD#4 et AD#5 représentaient des LOAD (MA a début tardif). AD#3 apparaissait comme un
cluster intermédiaire entre EOAD et LOAD. Notamment, AD#1 et AD#2 présentaient les scores
MMSE les plus bas, cohérents avec la sévérité plus importante typiquement observée dans I'EOAD
(Koedam et al., 2010).

Deux principaux profils d’atrophie ont été identifiés : un profil d’atrophie typique (AD#1 — AD#4) et
un profil d’atrophie minimale (AD#5), en accord avec des résultats précédents (Kang et al., 2024;
Poulakis et al., 2018). L’hypométabolisme de la TEP-FDG a confirmé ces profils connus (Levin et al.,
2021) : AD#1, AD#2, AD#3 et AD#4 présentaient un hypométabolisme typique, tandis qu’AD#5
montrait un hypométabolisme minimal.

Contrairement aux études antérieures ayant identifié des profils atypiques de MA, nos clusters MA
présentaient majoritairement une atrophie temporo-pariétale et un hypométabolisme typiques.
Plusieurs facteurs peuvent expliquer cette observation. Premiérement, nous avons utilisé
uniguement des données de neuroimagerie, alors que les travaux précédents incorporaient souvent
des données cognitives, génétiques ou extraites de I'imagerie. De plus, notre approche repose sur
des données multimodales, alors que d’autres études se concentraient sur une seule modalité.
Deuxiemement, notre modele se focalise sur I'apprentissage de représentations structurées et non
sur I'optimisation du clustering. En outre, nous avons inclus plusieurs populations pathologiques,
améliorant la pertinence clinique et reflétant mieux les situations diagnostiques réelles.
Troisiemement, I’age chronologique a été explicitement modélisé plutot que régressé, ce qui a pu
orienter I'espace latent selon la variabilité liée a I’age. Enfin, I'inclusion de données issues du centre
de la mémoire de Lille a introduit un spectre plus large de sévérité et de comorbidités par rapport
aux cohortes de recherche comme ADNI.

Au-dela de la MA, deux clusters distincts de DFT ont été identifiés. L'un présentait une atrophie et un
hypométabolisme fronto-temporaux typiques de la bvFTD ; 'autre montrait une atteinte
prédominante des lobes temporaux et incluait la majorité des cas SV et PNFA. Ces résultats sont
cohérents avec les phénotypes de neuroimagerie connus de la DFT (Peet et al., 2021) : la bvFTD
affecte principalement les lobes frontaux, tandis que la SV et la PNFA impliquent les régions
temporales et insulaires.
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Dans I'ensemble, ces résultats soulignent la capacité du PatientSpace a retrouver les phénotypes de
neuroimagerie bien établis de la MA et de la DFT a partir de I'imagerie seule, offrant un outil
précieux pour soutenir le diagnostic différentiel dans des présentations cliniques complexes ou
ambigués.

IV.5.4. Interprétabilité au niveau du patient

En analysant les voisinages locaux du graphe, nous avons montré que le PatientSpace permet une
inférence des biomarqueurs structurels et métaboliques au niveau du patient. Les valeurs prédites et
de référence pour les volumes cérébraux régionaux et les SUVR étaient modérément a fortement
corrélées dans les principales régions d’intérét. Ces résultats indiquent que le PatientSpace capture
non seulement les motifs au niveau du groupe, mais permet également une interprétation
individualisée, cruciale pour un déploiement clinique. La précision des prédictions était la plus élevée
pour les volumes globaux et les régions temporo-pariétales, tandis que des corrélations plus faibles
dans les régions frontales et limbiques suggerent certaines limites de robustesse du modéle.

Par ailleurs, la prédiction du stade MMSE avec le PatientSpace a atteint des performances
acceptables, la majorité des cas étant classés dans le niveau de sévérité correct ou adjacent.
L'absence de classifications grossieres (par exemple, une démence sévéere prédite comme CN)
renforce encore la fiabilité de I'approche.

IV.5.5. Trajectoires longitudinales des sujets MCI
La projection des sujets MCI de la cohorte externe MEMENTO dans le PatientSpace a révélé de
fortes associations entre I'appartenance aux clusters et les taux de conversion vers la démence.

Notamment, aucun MCI n’a été projeté dans le cluster AD#1, un seul dans AD#2, six dans AD#5 et un
dans FTD#1. Cette distribution reflete I'effet de I'age et de la sévérité de la maladie : les clusters
AD#1 et AD#2 sont principalement composés d’individus plus jeunes présentant une démence
modérée a sévere, les placant en dehors de I'age et du stade typiques des patients MCIl. De méme, le
faible nombre de MCI projetés dans FTD#1 provient probablement a la fois de différences d’age et
de discordances neuroimageries — FTD#1 présente un schéma caractéristique d’atrophie et
d’hypomeétabolisme bvFTD, tandis que les MCl de MEMENTO présentent principalement des profils
prodromaux de la MA.

Les MCI projetés dans les clusters liés a la démence avaient tendance a progresser plus rapidement,
tandis que ceux mappés aux clusters CN restaient généralement stables. Ces taux de conversion
étaient cohérents avec les profils de neuroimagerie sous-jacents d’atrophie et d’hypométabolisme
caractéristiques de chaque cluster. Par exemple, le cluster FTD#2, qui présentait le moins d’atrophie
et d’hypométabolisme parmi les clusters liés a la démence, avait également le taux de conversion le
plus faible. Inversement, bien que AD#3 et AD#4 présentent des niveaux similaires d’atrophie et
d’hypométabolisme, AD#3 était associé a une progression plus rapide, probablement en raison de sa
proportion plus élevée de patients EOAD issus du CHU de Lille, cohérente avec les rapports de déclin
plus rapide chez 'EOAD (Seath et al., 2024; Tellechea et al., 2018).

L’analyse des matrices de transition a également montré que I’'appartenance aux clusters était stable
dans le temps, la majorité des patients suivant des trajectoires monotones des clusters CN vers les
clusters liés a la démence. Aucune réversion n’a été observée, reflétant la nature progressive de la
neurodégénérescence. Ces résultats sont en accord avec des travaux précédents (Misra et al., 2009;
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Pagani et al., 2017), confirmant que les MCI converters présentent souvent déja des modifications
cérébrales détectables en termes d’atrophie ou de métabolisme.

Dans I’'ensemble, ces résultats soutiennent |'utilisation du PatientSpace pour le staging et le suivi de
la progression de la maladie dans les populations prodromales.

IV.5.6. Limites et perspectives

Notre approche requiert actuellement des données multimodales compléetes pour chaque sujet,
limitant son applicabilité dans des contextes réels ol les données manquantes sont fréquentes. Les
travaux futurs devraient adapter le PatientSpace pour gérer les modalités partiellement
manquantes, par exemple via I'imputation de modalités ou le modality dropout (Wu et al., 2024).

Malheureusement, aucun centre unique n’a fourni des sujets couvrant les trois catégories
diagnostiques, ce qui aurait permis de minimiser le risque d’apprentissage de biais spécifiques aux
sites. Par exemple, le CHU de Lille n’incluait aucun sujet CN (Tableau IV-S1), car notre base de
données, construite a partir de données cliniques, ne contient pas de témoins sains. Cela refléte un
défi plus large dans I'application de I'lA aux données cliniques : les témoins sains sont généralement
sous-représentés ou absents dans les cohortes hospitaliéres. Dans ce contexte, il est important de
noter que I'augmentation des données, bien que nécessaire pour accroitre la diversité des exemples
d’entrailnement, peut théoriquement accentuer les biais inter-classes (Balestriero et al., 2022).

L'utilisation de I'IRM T1w et de la TEP-FDG comme principaux biomarqueurs peut étre remise en
question, d’autres techniques d’imagerie et biomarqueurs pouvant également aider a distinguer les
maladies neurodégénératives. Par exemple, I'imagerie par tenseur de diffusion (DTI) et I'IRM
fonctionnelle en repos ont montré des résultats prometteurs pour différencier ces pathologies
(Agosta et al., 2017; Goveas et al., 2015; Young et al., 2020). L'imagerie TEP amyloide et tau a
également montré de bonnes performances diagnostiques (Groot et al., 2024; loannou et al., 2025;
Rabinovici et al., 2011; Vandenberghe et al., 2013). Les analyses de LCR et les biomarqueurs sanguins
pourraient aussi étre envisagés. Cependant, le prélevement du LCR nécessite une ponction lombaire
invasive, les biomarqueurs sanguins ne sont pas encore largement utilisés en pratique clinique, la
TEP amyloide colte environ deux fois plus cher que la TEP-FDG (Contador et al., 2023; Teunissen et
al., 2022), et la TEP tau montre une sensibilité limitée aux stades précoces, avec de nombreux sujets
MCI ou certains patients MA amyloide-positifs présentant des scans négatifs (Ossenkoppele and
Hansson, 2021). Enfin, I'IRM T1w et la TEP-FDG restent des outils de référence standard pour le
diagnostic de démence (Young et al., 2020). La TEP-FDG a pris de I'importance dans les diagnostics
cliniques récents (Chételat et al., 2020), et I'IRM T1w est la séquence la plus couramment utilisée
dans les essais cliniques pour suspicion de neurodégénérescence et constitue la référence pour le
staging de la maladie (Del Sole et al., 2017; Young et al., 2020).

Notre étude s’est concentrée exclusivement sur la MA et la DFT. Etendre le modéle & d’autres
syndromes neurodégénératifs, tels que la maladie a corps de Lewy ou les troubles parkinsoniens,
pourrait améliorer son utilité en tant qu’outil de biomarqueurs de neuroimagerie a usage général.

IV.6. Conclusion

En conclusion, le PatientSpace offre un espace latent interprétable et cliniquement pertinent pour
I’analyse des données de neuroimagerie multimodale dans les maladies neurodégénératives. En
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combinant I'apprentissage profond et I'analyse basée sur les graphes, il permet a la fois la

découverte de sous-types au niveau de la population et I'interprétabilité au niveau du patient, avec

des applications potentielles en diagnostic, pronostic et suivi de la progression de la maladie.

IV.7. Appendix

IV.7. Al : Résultats complémentaires sur les variantes du PatientSpace

CN vs DEM
IRM+TEP IRM TEP Consistenc Age Vanilla
y ablated ablated
Classifier DL AUC 0.99[0.98 0.96[0.94 0.99[0.98 0.98[0.97 0.99[0.98 0.99[0.98
—1.00] —-0.98] —1.00] -0.99] —1.00] —-1.00]
Sens 0.93[0.89 0.85[0.80 0.95[0.93 0.89[0.84 0.92[0.88 0.96[0.93
—0.96] —0.90] —0.98] —0.93] —0.96] —0.99]
Spec. 0.99[0.97 0.95[0.90 0.97[0.94 0.99[0.97 0.97[094 0.97[0.94
—1.00] —0.99] —1.00] —1.00] —1.00] —1.00]
PatientGraph AUC 0.98[0.96 0.96[0.94 0.98[0.97 0.88[0.85 0.96[0.94 0.95[0.93
—0.99] —0.98] —1.00] -0.92] —0.98] —0.98]
Sens 0.92[0.88 0.85[0.80 0.93[0.89 0.90[0.86 0.89[0.85 0.85[0.80
—0.96] —0.90] -0.97] —0.94] —0.94] —0.90]
Spec. 0.99[0.97 0.95[0.90 0.98[0.95 0.76[0.68 0.93[0.88 0.91[0.85
—1.00] —0.99] —1.00] —0.85] —0.98] —-0.97]

19. Tableau IV-A1. Performances de classification binaire.

Les résultats sont présentés sous forme de valeur [intervalle de confiance 95 %]. AUC : Aire sous la courbe ;
Sens. : Sensibilité ; Spec : Spécificité
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CN vs AD vs DFT

Diagnostique IRM+TEP IRM TEP Consistency Age ablated Vanilla
ablated

DL-Classifier CN AUC 0.99 [0.98-1.00] 0.96 [0.93-0.99] 0.99 [0.97-1.00] 0.98 [0.96-1.00] 0.99 [0.98-1.00] 0.99 [0.98-1.00]
Sens 0.99 [0.97-1.00] 0.95 [0.90-0.99] 0.97 [0.94-1.00] 0.99 [0.97-1.00] 0.97 [0.94-1.00] 0.97 [0.94-1.00]
Spec 0.93 [0.89-0.96] 0.85 [0.80-0.90] 0.95 [0.93-0.98] 0.89 [0.84-0.93] 0.92 [0.88-0.96] 0.96 [0.93-0.99]
MA AUC 0.97 [0.95-0.99] 0.90 [0.86-0.94] 0.95 [0.93-0.98] 0.95 [0.92-0.97] 0.95 [0.93-0.98] 0.97 [0.95-0.99]
Sens 0.91 [0.86-0.95] 0.77 [0.71-0.84] 0.90 [0.85-0.95] 0.79 [0.72-0.85] 0.86 [0.80-0.92] 0.94 [0.90-0.98]
Spec 0.92 [0.87-0.96] 0.90 [0.85-0.95] 0.89 [0.84-0.94] 0.93 [0.89-0.97] 0.91 [0.86-0.96] 0.90 [0.85-0.95]
DFT AUC 0.95[0.91-0.99] 0.88[0.82-0.95] 0.92 [0.86-0.97] 0.91 [0.85-0.97] 0.92 [0.87-0.98] 0.96 [0.92-1.00]
Sens 0.70 [0.56-0.83] 0.63 [0.49-0.77] 0.65 [0.52-0.79] 0.74 [0.61-0.87] 0.61 [0.47-0.75] 0.65 [0.52-0.79]
Spec 0.99 [0.99-1.00] 0.95 [0.93-0.98] 0.96 [0.94-0.99] 0.95 [0.92-0.98] 0.95 [0.92-0.98] 1.00 [1.00-1.00]
PatientGraph CN AUC 0.98 [0.97-1.00] 0.94 [0.91-0.98] 0.98 [0.96-1.00] 0.88 [0.84-0.93] 0.96 [0.94-0.99] 0.95 [0.92-0.98]
Sens 0.99 [0.97-1.00] 0.88[0.81-0.94] 0.98 [0.95-1.00] 0.76 [0.68-0.85] 0.93 [0.88-0.98] 0.91 [0.85-0.97]
Spec 0.92 [0.88-0.96] 0.88 [0.83-0.92] 0.93 [0.89-0.97] 0.90 [0.86-0.94] 0.89 [0.85-0.94] 0.85 [0.80-0.90]
MA AUC 0.95 [0.92-0.97] 0.87[0.83-0.91] 0.95 [0.92-0.97] 0.87[0.83-0.91] 0.94 [0.91-0.97] 0.89 [0.86-0.93]
Sens 0.91 [0.87-0.96] 0.83 [0.77-0.89] 0.92 [0.88-0.96] 0.89 [0.84-0.94] 0.89 [0.84-0.94] 0.83 [0.77-0.89]
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Spec

0.92 [0.87-0.96]

0.80 [0.74-0.87]

0.89 [0.84-0.94]

0.77 [0.70-0.84]

0.92 [0.87-0.96]

0.77 [0.70-0.84]

DFT AUC

0.89 [0.82-0.95]

0.79 [0.71-0.87]

0.88 [0.82-0.95]

0.88 [0.82-0.95]

0.89 [0.82-0.95]

0.88 [0.82-0.95]

Sens

0.67 [0.54-0.81]

0.48 [0.33-0.62]

0.61[0.47-0.75]

0.54 [0.40-0.69]

0.61 [0.47-0.75]

0.37 [0.23-0.51]

Spec

0.99 [0.99-1.00]

0.96 [0.94-0.98]

0.99 [0.98-1.00]

0.97 [0.95-0.99]

0.97 [0.95-0.99]

1.00 [1.00-1.00]

20. Tableau IV-A2. Performances de classification multiclasses.
Les résultats sont présentés sous forme de valeur [intervalle de confiance 95 %]. AUC : Aire sous la courbe ; Sens. : Sensibilité ; Spec : Spécificité.
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IV.8. Annexes

IV.8. S.1. Acquisition des données

IV.8. S.1.1. TEP-FDG

Les scans TEP-FDG issus de la base de données du Centre Hospitalier Universitaire de Lille ont été
acquis sur un PET/CT hybride Biograph mCT-Flow a 4 anneaux (Siemens) avec un scanner CT de 20
coupes et des cristaux de lutétium oxyorthosilicate de 4 x 4 mm?2. La dose moyenne de FDG était de
177 MBq (SD = 19 MBq). Aprés 30 minutes, un CT a faible dose a été réalisé pour la correction
d’atténuation, suivi d’une acquisition PET de 10 minutes. Les données ont été reconstruites a I'aide
d’un algorithme OSEM (8 itérations, 21 sous-ensembles) avec corrections de décroissance, aléatoires
et de diffusion, et un lissage gaussien de 2 mm. Les images finales consistaient en 109 coupes axiales
(FOV =408 x 408 x 221,3 mm?3, matrice = 400 x 400 x 109, taille de voxel = 1,02 x 1,02 x 2,03 mm3).

Pour I'acquisition d'ADNI, le protocole peut étre trouvé a |'adresse suivante
https://adni.loni.usc.edu/wp-content/uploads/2010/05/ADNI2 PET Tech Manual 0142011.pdf. La
dose de traceur FDG était de 185 MBq (+ 10 %), et entre 30 et 60 minutes aprés I'injection, six

acquisitions dynamiques 3D de 5 minutes chacune ont été réalisées. Un scan CT a faible dose a été
acquis pour la correction d’atténuation, ou, pour les scanners TEP seuls, un scan de correction
d’atténuation a été réalisé a I'aide de sources en tige.

Tous les scans FTLDNI ont été acquis au centre Mayo Clinic sur un scanner PET/CT GE Discovery RX.
Les participants ont recu une injection de 185 MBq (+ 10 %) de FDG, et I'acquisition a commencé 30
minutes plus tard, consistant en six frames dynamiques de 5 minutes. Un scan CT, obtenu avant
I'injection de FDG, a été utilisé pour la correction d’atténuation, et la reconstruction a été réalisée
selon la technique de rétroprojection filtrée 3D.

Toutes les images ont été examinées par un expert (Antoine Rogeau) pour le contréle de la qualité
visuelle.

1V.8. S.1.2. IRM pondérée T1

Les scans IRM T1w du Centre Hospitalier Universitaire de Lille ont été acquis sur un scanner 3T
(Achieva Philips, Best, Pays-Bas) avec les paramétres suivants : TR/TE = 9,9 ms / 4,6 ms, angle de
bascule = 8°, taille de voxel = 0,94 x 0,94 x 1,2 mm?.

Pour l'acquisition de I'ADNI, le protocole de chaque IRM peut étre trouvé a I'adresse suivante :
https://adni.loni.usc.edu/data-samples/adni-data/neuroimaging/mri/mri-scanner-protocols/.

Les IRM T1w ont été acquises sur des scanners General Electric Healthcare, Philips Medical Systems
et Siemens Medical Solutions a 3T pour les protocoles ADNI2/GO/3 et a 1,5T pour le protocole
ADNI1.

Toutes les images ont été examinées par un expert (Grégory Kuchcinski) pour le contréle de la
qualité visuelle.

1V.8. S.1.3. Différences entre les sites
Le tableau IV-S1 présente la répartition des diagnostics entre les différents sites.
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CN MA DFT

ADNI 463 379 0
NIFD 59 0 87
CHU de Lille 0 430 104

21. Tableau IV-S1. Répartition des diagnostics entre les sites.
IV.8. S.2. Ensemble des données externes

1V.8. 5.2.1. Jeu de données MEMENTO
Le jeu de données MEMENTO (https://portal.dementiasplatform.uk/) a été utilisé pour évaluer la

conversion des MCI et I'évolution de la maladie au sein du PatientSpace. Les critéres d’inclusion
étaient les suivants : étre agé de 18 ans ou plus ; présenter au moins un léger déficit cognitif, défini
comme un score inférieur d’'une déviation standard a la moyenne (par rapport aux normes d’age et
d’éducation) dans un ou plusieurs domaines cognitifs (cette déviation devant étre identifiée dans les
six mois précédant la date d’inclusion) OU avoir une plainte cognitive isolée, quelle qu’en soit la
durée, sil’age est de 60 ans ou plus (sans déficit cognitif tel que défini ci-dessus) ; CDR < 0,5 et
absence de démence ; acuité visuelle et auditive suffisante pour passer les tests
neuropsychologiques ; avoir signé un consentement éclairé ; et étre affilié a un régime d’assurance
maladie.

Il est a noter qu’aucun des participants issus de la cohorte MCl n’a été inclus dans I’entrainement du

modele.
Jeu de données MEMENTO
Ligne de base
Diagnostic MCI
N balayages 673
Age, années 70.24 +9.10
Femmes, % 381 (57%)
MMSE 28 (27 - 29)
Converters, % 141 (21%)
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22. Tableau IV-S2. Caractéristiques démographiques de I'ensemble de données MEMENTO a l'inclusion.

1V.8. 5.2.2. Jeu de données SOCRATES

Le jeu de données SOCRATES a été utilisé pour évaluer la généralisation de nos méthodes. Tous les
sujets ont été recrutés dans un centre expert universitaire tertiaire de mémoire (Institut de la
Mémoire et de la Maladie d’Alzheimer — Département de Neurologie, Hopital Universitaire Pitié-
Salpétriére) a partir de la cohorte SOCRATES, visant a suivre un groupe de patients diagnostiqués
avec la maladie d’Alzheimer (MA) ou des troubles apparentés, agés de 40 a 80 ans et présentant un
score au Mini-Mental State Examination (MMSE) supérieur a 10 au moment de I'inclusion.

Les critéres d’exclusion comprenaient la démence vasculaire (selon les critéres NINDS-AIREN) ou la
démence mixte (avec un score de Hachinski > 4), toute pathologie neurologique concomitante
significative, un cancer actif, des antécédents de cancer cérébral, une maladie métastatique
cérébrale ou une irradiation cérébrale antérieure.

Le diagnostic de la MA et des troubles apparentés a été établi par une évaluation multidisciplinaire
incluant un examen neurologique, un bilan neuropsychologique complet, ainsi que des analyses
biologiques, génétiques et des neuroimageries.

Les patients ont passé I'examen PET-MR entre 2015 et 2021. Toutes les données PET et IRM ont été
acquises simultanément a I'aide d’un systéme intégré PET/IRM (3T SIGNA PET/MRI, GE Healthcare,
Milwaukee, Etats-Unis) 30 minutes aprés I'injection intraveineuse de 2 MBqg/kg de 18F-FDG. Les
images PET 18F-FDG ont été acquises pendant 15 minutes. Les images PET ont été acquises et
reconstruites de maniére itérative en utilisant I'algorithme OSEM (Ordered Subsets Expectation
Maximization) avec 4 itérations et 28 sous-ensembles, et corrigées des effets de volume partiel. La
résolution finale des images était de 1,17 x 1,17 x 2,78 mm?3. Pour la correction de |’atténuation des
photons, une méthode basée sur un atlas a été mise en ceuvre dans le systéme PET/IRM, en utilisant
soit I'approche VPFXS, soit QCFX. L’acquisition IRM comprenait au moins des images IRM 3D
pondérées en T1.

CN MA DFT
N balayages 19 20 20
Age, années 65.45 +£9.16 69,42 + 7,66 65.14 +9.78
Femmes, % 50% 45% 45%
MMSE - 20 (15 -23) 24.5 (21 -27)

23. Tableau IV-S3. Caractéristiques démographiques de I'ensemble de données SOCRATES.
IV.8. S.3. Détails supplémentaires du modele

IV.8. S.3.1. Entrainement

Au cours des deux premieres époques, les poids w; ont été fixés a 1.

Les autres poids de régularisation ont été fixés comme suit 4; = 0,01,4, = 300,43 = 1.

Pour A4, son impact a été progressivement augmenté de 0,2 a 2 au cours des dix premieres époques.
Nous avons utilisé I'optimiseur AdamW (Loshchilov et Hutter, 2019) avec un taux d'apprentissage de

10~* et un coefficient de régularisation (weight decay) de 1075.
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1V.8. S.3.2. Nombre optimal de voisins
Le nombre optimal de voisins K a été déterminé en projetant les sujets de validation dans
PatientSpace et en sélectionnant la valeur de K qui maximisait la précision équilibrée de la
classification et I'AUC moyenne macro.

IV.8. S.4. Organisation du PatientSpace

ROI Corrélation de IC-95 % Force de corrélation
Pearson r

Volumes globaux du cerveau

GM 0.64 [0.57 - 0.70] Fort

WM 0.56 [0.48 - 0.70] Modéré a Fort

LCR 0.71 [0.64 - 0.76] Fort

Temporal Lobe 0.64 [0.56 - 0.70] Fort

Frontal Lobe 0.61 [0.53 - 0.68] Fort

Volumes de retour sur investissement AD

Hippocampe 0.54 [0.45 - 0.61] Modéré a Fort

Précuneus 0.53 [0.45 - 0.61] Modéré a Fort

Gyrus 0.41 [0.31 - 0.50] Modéré

parahippocampique

Cortex entorhinal 0.38 [0.27 - 0.47] Faible - Modéré

Gyrus cingulaire 0.37 [0.27 - 0.47] Faible - Modéré

postérieur

Gyrus cingulaire 0.53 [0.44 - 0.64] Modéré a Fort

antérieur

Gyrus angulaire 0.60 [0.52 - 0.67] Fort

Gyrus frontal moyen 0.51 [0.42 - 0.59] Modéré

Volumes de retours sur investissement DFT

Cortex insulaire 0.57 [0.48 - 0.64] Modéré a Fort
Insula antérieure 0.60 [0.52 - 0.67] Fort

Gyrus frontal 0.28 [017 - 0.38] Faible
supérieur

Gyrus frontal inf. 0.26 [0.15-0.37] Faible

Pdle temporel 0.51 [0.48 - 0.60] Modéré a Fort
Gyrus temporal 0.70 [0.63 - 0.75] Fort

moyen

Gyrus temporal sup. 0.44 [0.35 - 0.53] Modéré

Inf. gyrus temporal 0.44 [0.37 - 0.55] Modéré

AD ROIs SUVR

Hippocampe 0.46 [0.36 - 0.54] Modéré
Précuneus 0.77 [0.72 - 0.81] Fort

Gyrus 0.51 [0.43 - 0.60] Modéré a Fort
parahippocampique

Cortex entorhinal 0.49 [0.40 - 0.58] Modéré
Gyrus cingulaire 0.66 [0.59 - 0.72] Fort
postérieur

Gyrus cingulaire 0.69 [0.63 - 0.75] Fort

antérieur

Gyrus angulaire 0.80 [0.75 - 0.83] Fort
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Gyrus frontal moyen  0.52 [0.43 - 0.60] Modéré a Fort
VUS DFT ROIs

Insula antérieure 0.62 [0.55 - 0.69] Fort

Gyrus frontal 0.43 [0.33-0.52] Modéré
supérieur

Gyrus frontal inf. 0.46 [0.36 - 0.54] Modéré

Pdle temporel 0.49 [0.39 - 0.57] Modéré
Gyrus temporal 0.61 [0.54 - 0.68] Fort

moyen

Gyrus temporal sup. 0.53 [0.45 - 0.61] Modéré a Fort
Inf. gyrus temporal 0.44 [0.34 - 0.53] Modéré

24. Tableau IV-54. Corrélation de Pearson entre les ROIs des MA et des DFT.
Les corrélations les plus fortes sont en gras. Modéré - Les corrélations modérées sont soulignées.

IV.8. S.5. Voxel based Morphometry

Afin d’analyser les profils d’atrophie entre les différents clusters, les IRM structurelles ont été
prétraitées a I'aide du logiciel SPM (Statistical Parametric Mapping,
https://www.fil.ion.ucl.ac.uk/spm/). Dans un premier temps, les volumes ont été segmentés en

matiere grise, matiére blanche et LCR. Les images de matiére grise ont ensuite été registrées dans
I’espace MNI, puis lissées a I'aide d’'un noyau gaussien de 8 mm3,

L’analyse statistique a été menée a I'aide de tests t bilatéraux a deux échantillons, en intégrant
comme covariables I'age, le volume intracranien total, ainsi que le sexe des participants. Ces
comparaisons ont permis d’opposer les clusters de patients a des groupes témoins appariés selon
I’age et le sexe. Les résultats ont été corrigés pour comparaisons multiples par le Family-Wise Error
rate (FWE), avec un seuil de significativité fixé a 0,05.

106


https://www.fil.ion.ucl.ac.uk/spm/

Chapitre V

Prédiction du pronostic fonctionnel apres
AVC ischémique dans les Hauts-de-
France grace a une approche vision-
langage

Dans le chapitre 1V, nous avons développé le PatientSpace dans une approche multimodale,
combinant IRM T1lw et TEP-FDG pour distinguer plusieurs diagnostics (CN, DFT et Alzheimer). Cet
espace latent structuré et interprétable organise les patients selon leur similarité multimodale (IRM
et TEP), permettant d’explorer la variabilité interindividuelle tout en facilitant I'explicabilité clinique.
Néanmoins, le PatientSpace présente certaines limites : il repose uniquement sur des modalités
similaires (imagerie) et ne permet pas d’identifier quelle modalité contribue a la prédiction
diagnostique, ni de préciser la maniére dont chacune influe sur cette prédiction. Le chapitre V
aborde cette question de l'interprétabilité multimodale a travers une étude préliminaire intégrant
guatre modalités hétérogénes — IRM FLAIR, IRM de diffusion (DWI), comptes rendus radiologiques
et données cliniques — dans le cadre de la prédiction du pronostic fonctionnel aprées accident
vasculaire cérébral (AVC), a I'aide d’une approche vision-langage. Ce travail constitue une premiere
étape exploratoire vers un projet plus ambitieux, ce qui justifie que les résultats et la discussion ne
soient présentés ici qu’a un niveau préliminaire.
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V.1l.Introduction

Les accidents vasculaires cérébraux (AVC) constituent I'une des principales causes de mortalité et de
handicap a long terme dans le monde (Katan and Luft, 2018). On distingue deux grands types d’AVC :
les AVC ischémiques, qui représentent environ 85 % des cas, et les AVC hémorragiques, qui en
représentent environ 15 % (Campbell et al., 2019). Le traitement aigu des AVC ischémiques repose
principalement sur deux stratégies de revascularisation : la thrombolyse intraveineuse et la
thrombectomie mécanique, qui améliorent significativement la survie et 'autonomie fonctionnelle
des patients (Powers et al., 2018). Cependant, malgré ces avancées, un grand nombre de patients ne
parviennent pas a retrouver une qualité de vie similaire a celle précédant I’AVC. Identifier
précocement les patients susceptibles de présenter un bon ou un mauvais devenir fonctionnel
constitue donc un enjeu majeur pour la médecine de précision appliquée aux AVC.

L’évaluation du devenir fonctionnel repose classiquement sur le modified Rankin Scale (mRS), une
échelle ordinale en sept niveaux allant de I'absence de symptome (0) au déces (6) (Broderick et al.,
2017). Dans les études cliniques et en recherche, il est fréquent de dichotomiser ce score afin de
distinguer un bon rétablissement (MRS < 2) d’un mauvais rétablissement (mRS > 2), généralement a
trois mois apres I’AVC (Weisscher et al., 2008). Cette approche standardisée a favorisé le
développement de nombreuses méthodes d’lIA.

De nombreux travaux ont ainsi exploré la prédiction du mRS a 3 mois a partir de différents types de
données. Les facteurs influencant le rétablissement sont multiples : la sévérité initiale de I'AVC, sa
localisation, mais aussi des variables cliniques telles que I'dge, le sexe, le score NIHSS (National
Institutes of Health Stroke Scale) gradant la sévérité des symptomes de 0 a 42 (Chalos et al., 2020),
ou encore des comorbidités comme le tabagisme et I'alcoolisme. Des approches d’apprentissage
automatique ont montré des performances prometteuses. Par exemple, Liu et al. (Liu et al., 2023)
ont combiné données cliniques et d’imagerie acquises entre 1 et 7 jours post-AVC dans une
approche d’ensemble pour prédire le mRS a 3 mois sous forme de régression. Borsos et al (Borsos et
al., 2024) ont proposé un modele de fusion injectant les variables cliniques directement dans le
pipeline de traitement de I'imagerie de perfusion. D’autres travaux, enfin, ont montré qu’il était
possible de se baser uniquement sur I'imagerie post-AVC pour segmenter la lésion et prédire le
pronostic fonctionnel (Nishi et al., 2020).

Cependant, la majorité des algorithmes pronostiques existants exploitent des données collectées
pendant la phase aigué de 'AVC (entre 1 et 7 jours apreés I'événement), notamment a partir
d’imageries de suivi. Si ces informations permettent de mieux caractériser I'étendue finale de la
|ésion et d’étudier les mécanismes de récupération, elles arrivent trop tard pour influencer la
stratégie thérapeutique initiale. A I'inverse, la phase hyperaigué (les premiéres heures suivant I’AVC)
représente une fenétre critique ou les décisions de revascularisation (thrombolyse intraveineuse,
thrombectomie mécanique) doivent étre prises rapidement (Jiang et al., 2025). Dans ce contexte, la
mise a disposition d’outils pronostiques précoces est essentielle pour guider la prise en charge et
anticiper I'évolution fonctionnelle.

Certaines modalités d’imagerie jouent un role clé a ce stade. L'IRM de diffusion (DWI) constitue la
séquence la plus sensible pour détecter précocement une Iésion ischémique, et reste aujourd’hui le
gold standard du diagnostic positif. L'IRM FLAIR (Fluid Attenuated Inversion Recovery) complete
cette information en fournissant des indices sur I’ancienneté des lésions, notamment via I’approche
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du mismatch DWI-FLAIR utilisée pour sélectionner les patients éligibles a une thrombolyse lorsque
I’heure de début des symptomes est inconnue (G et al., 2011). Elle permet également d’évaluer
I’état de santé cérébrale global, en particulier I'atrophie, qui peut influencer le devenir fonctionnel.

Les comptes rendus médicaux de neuroimagerie apportent enfin une dimension interprétative
précieuse. lls synthétisent I'expertise du neuroradiologue en décrivant des éléments cliniquement
déterminants tels que la présence d’une occlusion de gros vaisseau, I'existence de
microsaignements, la trophicité cérébrale ou encore la topographie exacte des lésions. Ces données
« enrichies par I'expert » représentent une source d’information complémentaire aux images brutes.

L'objectif de cette étude est donc d’exploiter conjointement, par un modele vision-langage, plusieurs
sources d’information disponibles a la phase aiglie — I'imagerie FLAIR et DWI, les comptes rendus
médicaux issus des examens de neuroimagerie, ainsi que les données cliniques — afin de construire
un espace latent multimodal interprétable pour la prédiction du mRS a 3 mois.

V.2. Matériels et méthodes

V.2.1. Ethique

L'étude a été approuvée par le Comité de protection des personnes Nord-Ouest IV, qui I'a classée
comme observationnelle le 9 mars 2010. Le Comité de protection des informations personnelles des
patients a validé le protocole le 21 décembre 2010 (référence n° 10.677). Par ailleurs, le service
Délégué a la protection des données (DPO) du CHU de Lille a attesté de la conformité des modalités
de mise en ceuvre du projet avec la réglementation applicable en matiére de protection des données
personnelles, notamment le Réglement général sur la protection des données (RGPD, UE 2016/679).

V.2.2. Participants

Tous les patients admis pour une thrombectomie mécanique consécutive a un AVC ischémique entre
janvier 2015 et décembre 2021 ont été inclus dans I’étude. Les patients ont été pris en charge
conformément aux recommandations internationales en vigueur au moment de leur admission
(Powers et al., 2018).

V.2.3. Prétraitement des données

V.2.3.1. Données cliniques

En plus du score mRS 3 mois aprés I’AVC, des variables cliniques a la phase aiglie de I'AVC, c’est-a-
dire avant le traitement par thrombectomie, ont été collectées : I'age et le score NIHSS comme
variables continues ; le sexe, I'hypertension, le diabete, I’hypercholestérolémie, le tabagisme et la
consommation d’alcool comme variables catégorielles ; et le score mRS comme variable ordinale.
Ces variables ont été normalisées et encodées afin d’étre directement exploitables par les modéles.
Les variables continues ont été centrées et réduites a I'aide d’un z-score. Les variables catégorielles
ont été transformées par un encodage one-hot. La variable ordinale a été encodée de facon
croissante pour respecter son caractere graduel. L'ensemble de ces variables avant thrombectomie a
été concaténé en un vecteur clinique unique. Tous les prétraitements ont été réalisés avec la
bibliothéque scikit-learn (Pedregosa et al., 2011).
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V.2.3.2. Données imageries

L'IRM acquise a la phase aiglie pour le diagnostic de 'AVC a été récupérée pour I'ensemble des
patients. Les imageries FLAIR et DWI ont été prétraitées de la maniére suivante : (1) extraction du
cerveau avec SynthStrip (Hoopes et al., 2022); (2) correction d'inhomogénéité de champ avec N4ITK
(Tustison et al., 2010); (3) alignement rigide sur un cerveau de la base de données pour éviter les
gros changements d’orientation entre les patients avec fsl flirt (Jenkinson et al., 2002); et (4)
normalisation des intensités par z-score intra cerveau.

V.2.3.3. Données textuelles

SQL query
ID of patients @ DBERT
from the cohort —
e > encoding [-1.225, 0.411, ..., -0.541]
[ > |=| > encodng [0.626, 1.809, ..., 0.891]
. _ —E
5 encoding
INclude data
warehouse
Baseline brain Encoded
MRI reports reports

36. Figure V-1. Pré-traitements des données textuelles.

Les comptes rendus radiologiques corresponds a I'IRM ont été extraits de I'entrepot de données de
santé du CHU de Lille (INCLUDE) (Figure V-1). Pour limiter le bruit, seule la section « Résultats » de
chaque rapport a été identifié a I'aide d’un regex et conservée. Les textes ont ensuite été tokenisés a
I’aide du modeéle DrBERT, un modeéle de langage pré-entrainé sur des données biomédicales
francaises (Labrak et al., 2023).

V.2.4. Dataset

L’ensemble de données incluait 719 patients, chacun disposant d’une imagerie FLAIR, d’'une imagerie
DWI, d’'un compte rendu radiologique et des variables cliniques tabulaires. Les patients ont été
répartis de maniere aléatoire en deux sous-ensembles : 80 % pour I'entrainement et 20 % pour le
test, en veillant a maintenir la stratification selon les valeurs du mRS a 3 mois. Pour I'optimisation
des hyperparametres, une validation croisée a 5 plis (5-fold cross-validation) a été appliquée sur la
base d’entrainement. Le modéle final a ensuite été réentrainé sur I’'ensemble de la base
d’entrainement avec les meilleurs paramétres retenus.

V.2.5. Modeles multimodaux et baseline
Dans cette étude, trois modeles multimodaux de type deep learning ont été implémentés et
comparés entre eux, en plus d’'un modele baseline reposant uniquement sur les données cliniques.
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V.2.5.1. Modéle Baseline

Le modele de référence utilisait uniquement les variables cliniques suivantes : 4ge, score NIHSS

avant intervention, sexe, hypertension, diabéte, hypercholestérolémie, tabagisme, consommation

d’alcool et mRS avant intervention.

Ce modéle correspondait a une machine a vecteurs de support (SVM) (Schélkopf and Smola, 2001)

implémentée avec la bibliotheque scikit-learn (Pedregosa et al., 2011). Le noyau utilisé était gaussien
. -1

(RBF), avec un paramétrey = /(nb données X var(données))’

V.2.5.2. Modeéles multimodaux et interprétabilité

V.2.5.2.1. Visualisation du modeéle

Le modéle multimodal complet intégrait les quatre modalités disponibles : imagerie FLAIR, imagerie
DWI, comptes rendus radiologiques et données cliniques tabulaires (Figure V-2).

Les images FLAIR et DWI étaient encodées par deux CNN pour encoder les images, les textes étaient
encodés par DrBERT (Labrak et al., 2023) et enfin, les données cliniques étaient transformées par un
encodeur simple basé sur des couches entierement connectées.

Trois variantes de modeles ont été testée : texte + clinique (référé comme texte), Imagerie (DWI,
FLAIR) + clinique (référé comme imagerie) et enfin le modele complet incluant toutes les modalités
(référé comme texte + image).

mRS = 2

Enrichissement

LITTT

37. Figure V-2. Visualisation du modéle multimodal.
MLP : perceptron multicouche.

V.2.5.2.1. Enrichir les modalités par contexte

Comme illustré dans la figure V-2, chaque modalité était initialement encodée indépendamment des
autres, puis projetée dans un espace latent commun. Cette approche présente toutefois une limite :
avant la fusion, une modalité ne pouvait pas exploiter I'information issue des autres, ce qui risquait
de produire des représentations partielles et peu informatives. Cette difficulté est particulierement
marquée dans le cas des AVC : il est fréquent que certaines modalités révelent une lésion alors
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gu’elle demeure invisible sur d’autres (Chen and Ni, 2012; Kim et al., 2025).

Pour pallier cette limitation, nous avons introduit un mécanisme d’enrichissement intermodal
reposant sur une combinaison de cross-attention et de residual gate mechanism (Savarese and
Figueiredo, 2019; Wei et al., 2020).

Formellement, soit X.;p;. |a représentation latente d’une modalité cible, et X opntext '€nsemble des
autres modalités. L’enrichissement était défini par :

Xenricni = Xcible (Eq. V-1)
+ gate([Xcible; CTOSSAtt(XCible’ Xcontext)]
X CTOSSAtt(Xcible'Xcontext)
Ou I'opérateur gate(.) controle I'intégration adaptative des informations croisées.

Concretement, la cross-attention extrait des informations contextuelles pertinentes a partir des
modalités voisines, tandis que la gate module leur intégration : si le contexte est peu informatif ou
bruité, son poids est réduit ; a I'inverse, s’il apporte une information complémentaire, son
intégration est favorisée.

V.2.5.2.2. Fusionner les modalités

Une fois enrichies, les modalités étaient fusionnées dans un espace latent commun en vue de la
classification. Pour cela, nous avons utilisé une méthode d’attention inspirée du multiple instance
learning (llse et al., 2018).

Chaque modalité m (FLAIR, DWI, texte, clinique) était représentée par un vecteur latent z,,. La
fusion était réalisée selon la formule :

; = Z €z (Eq. V-2)

m
ou a,, correspond au poids d’attention attribué a la modalité m vérifiant ., a,,, = 1. Ces poids

permettaient d’interpréter la contribution relative de chaque modalité dans la décision finale du
modele. Ainsi, le processus de fusion ne reposait pas uniquement sur une concaténation brute, mais
sur une pondération adaptative et interprétable des modalités.

V.2.5.2.3. Classification binaire et ordinale

L'objectif de la tache était de prédire le devenir fonctionnel a 3 mois apres I’AVC, évalué par le score
mRS. Afin d’explorer différentes formulations du probleme, deux types de classification ont été
considérés : (1) Classification binaire : distinction entre bon pronostic (mRS < 2) et mauvais pronostic
(mRS > 2). Cette dichotomisation correspondait a la pratique la plus répandue dans les essais
cliniques et dans les études pronostiques ; (2) Classification ordinale : prédiction directe du score
MRS comme une variable ordinale a 7 niveaux (0 a 6). Cette approche permettait de préserver
I'information contenue dans la structure hiérarchique du score, évitant la perte de granularité
inhérente a la dichotomisation.

Pour la classification binaire, la couche de sortie du réseau consistait en deux neurones, optimisé par
une cross-entropy. Pour la classification ordinale, nous avons implémenté une couche ordinale
proposée par Cao et al. (Cao et al., 2020). Dans ce schéma, le probléme est reformulé en une suite
de comparaisons binaires de type P(mRS > k) avec k € {0, ..., 5}. Chaque seuil k correspondait
ainsi a un classifieur binaire spécifique, ce qui permettait de respecter I'ordre naturel des catégories.
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V.2.6. Entrainement et évaluation

Les modeles ont été entrainés sur la base d’entralnement avec une validation croisée a 5 plis afin
d’optimiser les hyperparametres (taux d’apprentissage, poids de régularisation, dimension des
couches latentes). Pour I'optimisation, nous avons utilisé I'optimiseur AdamW avec un learning rate
initial de 1e-4 et un weight decay de 1le-5 (Loshchilov and Hutter, 2019).

La fonction de perte combinait les taches binaires et ordinales pour favoriser la régularisation et
I"apprentissage multitache. Plus précisément, la perte finale correspondait a la somme pondérée de
la binary cross-entropy pour la classification binaire et de la loss ordinale pour la classification
ordinale. Cette approche permettait au modele de capturer a la fois la séparation grossiere entre
bon et mauvais pronostic et la structure graduelle du score mRS.

Pour évaluer les performances, nous avons utilisé les métriques suivantes : AUC (Area Under the
Curve) de la courbe ROC pour les classifications binaire et ordinale et Sensibilité et spécificité,
calculées avec des intervalles de confiance a 95 % sur les prédictions de la base de test.

Enfin, pour I'interprétabilité du modele, les poids d’attention issus du mécanisme MIL et du module
d’enrichissement cross-modal ont été analysés. Cela a permis de visualiser I'influence relative de
chaque modalité dans la décision finale, tant au niveau individuel qu’au niveau global du cohort. Ces
analyses offrent une perspective fine sur le r6le complémentaire des données cliniques, textuelles et
d’imagerie dans la prédiction du mRS a 3 mois.

V.2.7. Tests statistiques

L'ensemble des tests statistiques a été réalisé de la maniéere suivante : les variables continues étaient
comparées par kruskal and wallis, les variables catégorielles et ordinales par un test khi deux. Les
tests ont été corrigés par la méthode Benjamini Hochberg le seuil de significativité était fixé a p <
0.05 (Benjamini and Hochberg, 1995).

V.3. Résultats

V.3.1. Démographie

La démographie des patients est résumée dans le Tableau V-1. Les valeurs de I'age et du score NIHSS
ainsi que le mRS avant intervention différaient significativement entre les groupes a bon pronostic
(mRS < 2) et mauvais pronostic (mRS > 2). Les autres variables cliniques, comme le cholestérol ou le
sexe, ne présentaient pas de différences significatives dans la base de test.

Base entrainement

mRS > 2 mRS < 2 p-value
Nb scans 355 220 -
Age, années 72.95+14.64 62.06 + 15.06 <0.001
NIHSS 16.99 + 7.85 11.82 +6.83 <0.001
Femme, n (%) 203 (57.2%) 97 (44.1%) <0.001
Hypertension 257 (72.4%) 111 (50.5%) <0.001
artérielle
diabete 94 (26.5%) 34 (15.5%) 0.003
Cholesterole 161 (45.4%) 84 (38.2%) 0.11
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Fumeur 137 (38.6%) 111 (50.5%) 0.007
Alcoolique 42 (11.8%) 42 (19.1%) 0.02
mRS avant 0 165 (46.5%) 181 (82.3%) <0.001
intervention 1 54 (15.2%) 24 (10.9%)
2 43 (12.1%) 15 (6.8%)
3 75 (21.1%) 0 (0.0%)
4 17 (4.8%) 0 (0.0%)
5 1(0.3%) 0 (0.0%)
Base de test
Nb scans 89 55
Age, années 73.13+14.15 66.09 + 14.36 0.005
NIHSS 19.07 £ 8.32 11.76 £ 7.11 <0.001
Femme, n (%) 46 (51.7%) 24 (43.6%) 0.52
Hypertension 68 (76.4%) 34 (61.8%) 0.15
artérielle
diabéte 17 (19.1%) 5(9.1%) 0.24
Cholesterole 40 (44.9%) 23 (41.8%) 0.84
Fumeur 31 (34.8%) 25 (45.5%) 0.35
Alcoolique 7 (7.9%) 6 (10.9%) 0.81
mRS avant 0 39 (43.8%) 46 (83.6%) <0.001
intervention 1 15 (16.9%) 6 (10.9%)
2 14 (15.7%) 3 (5.5%)
3 17 (19.1%) 0 (0.0%)
4 4 (4.5%) 0 (0.0%)
5 0 (0.0%) 0 (0.0%)
25. Tableau V-1. Caractéristiques démographiques de la base d'entrainement et de test.
V.3.2. Performance classification
Classification binaire
Baseline Texte + Clinique Image + Clinigue  Complet
AUC 0.8356 [0.7632- 0.8627 [0.7957- 0.8625 [0.7955- 0.8905 [0.8300-
0.9081] 0.9297] 0.9295] 0.9510]
Sens 0.6545 [0.5289- 0.8182 [0.7162- 0.7273 [0.6096- 0.8364 [0.7386-
0.7802] 0.9201] 0.8450] 0.9341]
Spec 0.8539 [0.7806- 0.7079 [0.6134- 0.9438 [0.8960- 0.7865 [0.7014-
0.9273] 0.8023] 0.9917] 0.8716]
Classification ordinale
AUC 0.8652 [0.7987- 0.8586 [0.7908- 0.8885 [0.8275-
0.9316] 0.9265] 0.9494]
Sens 0.5455 [0.4139- 0.5091 [0.3770- 0.7455 [0.6303-
0.6771] 0.6412] 0.8606]
Spec 0.9438 [0.8960- 0.9663 [0.9288- 0.9101 [0.8507-

0.9917]

1.0038]

0.9695]

26. Tableau V-2. Performance classification binaire et ordinale.
Les résultats sont de la forme valeur [IC95%]. AUC : Aire sous la courbe, Sens : Sensibilité, Spec : Spécificité.
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38. Figure V-3. Courbe ROC.

A gauche classification binaire et a droite classification ordinale. La courbe bleue correspond au modéle

baseline, la courbe orange au modele clinique et textuel, la courbe verte au modeéle clinique et imagerie et enfin
la courbe rouge au modele complet.

Les performances des modeles de prédiction du mRS a 3 mois sont présentées dans le Tableau V-2
et la Figure V-3, pour les classifications binaire et ordinale. Les résultats montrent que le modele
baseline, utilisant uniguement les données cliniques, présentait des performances correctes mais
limitées. L'ajout des données textuelles issues des comptes rendus médicaux ou des imageries
améliorait l[égérement les résultats comparés a ceux du modeéle baseline. Le modéle complet,
intégrant toutes les modalités (clinique, texte et images), fournissait les meilleures performances

globales. En comparant les deux types de classification, binaire et ordinale, les résultats étaient
globalement cohérents.
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V.3.2. Interaction multimodale

Attention Head 0 Attention Head 1

FLAIR 4 FLAIR 4

DWI+ DWI 4

Queries
Queries

TEXTE TEXTE 4

CLINIQUE CLINIQUE

Keys
39. Figure V-4. Visualtion de I’attention crossmodal.
En ordonnée, les modalités queries. En abscisse, les modalités keys.
Attention moyenne + écart-type (et min/max) par modalité
061 ® Min

& Max L]

W Moyenne

T =+ écart-type

0.54

0.44

0.3

Poids d'attention fusion

0.2

0.1

0.0

CLINIQUE

40. Figure V-5. Visualisation de I’attention multimodale pour la fusion.

La figure V-4 montre les poids d’attention pour I'enrichissement cross-modal. En ordonnée se
trouvaient les modalités query et en abscisse les modalités key. On observait que le texte et les
données cliniques influengaient fortement I'enrichissement des images, tandis que I'influence des
images entre elles était faible. Pour la modalité clinique, une téte d’attention était surtout
influencée par la DWI et le texte, tandis que I'autre était relativement uniforme vis-a-vis des autres
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modalités. Pour la modalité texte, une téte se concentrait principalement sur la clinique, I'autre
incluait également une faible influence de la FLAIR.

La figure V-5 présente la fusion des modalités dans I'espace latent avant classification. En moyenne,
la modalité clinique et la DWI avaient les poids d’attention les plus élevés, suivies des comptes
rendus médicaux, puis de I'imagerie FLAIR.

V.4. Discussion

Dans cette étude, nous avons développé un modéle multimodal pour prédire le score mRS a 3 mois
aprées un AVC ischémique, en intégrant imagerie (FLAIR, DWI), données cliniques et comptes rendus
médicaux. L'objectif était de construire un espace latent commun interprétable, permettant de
combiner des sources hétérogénes et d’améliorer la précision prédictive du pronostic fonctionnel.

V.4.1. Performance du modéle

Le modeéle complet, intégrant toutes les modalités (FLAIR, DWI, comptes rendus radiologiques et
variables cliniques), a surpassé les approches unimodales et bimodales, confirmant que la
complémentarité des modalités est essentielle pour capturer la complexité des trajectoires post-
AVC. Nos résultats confirment que la fusion multimodale permet de produire des représentations
plus riches et plus robustes, en cohérence avec des travaux récents (Jung et al., 2024; Shurrab et al.,
2024). Un aspect original de notre approche réside dans I'intégration des comptes rendus médicaux,
une modalité rarement exploitée dans les modéles de pronostic post-AVC. En effet, la plupart des
travaux se concentrent sur I'imagerie et les données cliniques tabulaires (Borsos et al., 2024; Isensee
et al., 2019; Liu et al., 2023; Zihni et al., 2020), alors que les textes contiennent des informations
contextuelles complémentaires susceptibles d’affiner la prédiction (occlusion d’un gros vaisseaux,
présence de microsaignements, trophicité cérébrale, etc). Les comptes rendus d’imagerie sont
pourtant une donnée accessible en pratique clinique, ou chaque imagerie pour AVC fait I'objet d’'un
compte rendu rédigé par un radiologue. Nos résultats suggérent que ces données textuelles brutes
apportent un signal pertinent, renforcant la robustesse du modeéle lorsqu’elles sont combinées aux
autres modalités.

V.4.2. Interprétabilité du modele

L'une des forces majeures de notre approche résidait dans I'interprétabilité du modele. Les
mécanismes d’attention appliqués a I’enrichissement cross-modal et a la fusion des modalités ont
permis de visualiser la contribution relative de chaque source d’information a la décision finale pour
chaque patient. Ces analyses ont montré quelles modalités étaient les plus influentes dans
différentes situations, permettant de comprendre comment les informations cliniques, textuelles et
d’imagerie interagissaient.

Le mécanisme de residual gating a renforcé cette interprétabilité en modulant I'intégration des
informations contextuelles provenant des autres modalités. Ce dispositif a permis au modele de
filtrer les informations non pertinentes tout en conservant les apports significatifs pour enrichir la
représentation d’une modalité cible.

Grace a cette approche, il a été possible d’identifier que la DWI et les variables cliniques
contribuaient généralement le plus a la prédiction du mRS, tandis que les comptes rendus médicaux
et la FLAIR apportaient des informations complémentaires selon les cas. Ces observations
confirment que I'apprentissage multimodal, associé a des mécanismes d’attention et de gating, offre
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un niveau d’interprétabilité exploitable pour I’analyse patient-centrée, tout en maintenant de
bonnes performances prédictives

V.4.3. Limites

Malgré les performances prometteuses et I'interprétabilité offerte par notre approche, plusieurs
limites ont été identifiées. Premiérement, la taille de la cohorte était relativement modeste, avec
719 patients, ce qui peut limiter la généralisation du modele a d’autres populations ou centres
hospitaliers.

Deuxiemement, certaines modalités pouvaient contenir du bruit ou des informations redondantes.
Par exemple, la FLAIR a montré un poids d’attention global plus faible et moins consistant, ce qui
suggére que sa contribution était parfois limitée par rapport a d’autres modalités plus
discriminantes.

Troisiemement, bien que le mécanisme d’attention et de gating aient amélioré I'interprétabilité, ils
ne permettaient pas de capturer toutes les interactions complexes possibles entre les modalités. Les
corrélations non linéaires plus subtiles ou les combinaisons de variables rares pouvaient rester sous-
représentées dans |’espace latent.

Enfin, le modeéle prédisait le mRS a 3 mois a partir de données collectées principalement a un temps
précis avant I'intervention. Les événements intermédiaires post-AVC, tels que les complications ou
les variations de traitement, n’étaient pas pris en compte, ce qui peut limiter la précision des
prédictions dans des contextes cliniques plus dynamiques. L'intégration d’informations post-
opératoires, comme le succes de la recanalisation ou d’autres événements cliniques, pourrait
améliorer la qualité des prédictions et la pertinence du modeéle pour le pronostic fonctionnel (Jiang
et al., 2025).

V.5. Conclusion

Cette étude a démontré que l'intégration multimodale de I'imagerie (FLAIR et DWI), des comptes
rendus médicaux et des données cliniques permettait de prédire le score mRS a 3 mois avec de
bonnes performances. Notre modele, basé sur un espace latent commun et des mécanismes
d’attention, offre des prédictions robustes et interprétables. Les résultats mettent en évidence la
valeur prédominante de la DWI et des données cliniques, avec un apport complémentaire des textes
et de la FLAIR. Ces avancées ouvrent la voie a des travaux futurs visant a améliorer la généralisation
et la robustesse des modeles dans des contextes cliniques variés.
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VI. Discussion et conclusion

Au fil de ce manuscrit, nous avons exploré la conception et I'exploitation d’espaces latents appliqués
a I'imagerie cérébrale et aux maladies neurologiques. L’hypothése directrice de cette thése est que
les espaces latents, s’ils sont congus et structurés de maniére adéquate, peuvent constituer une
interface privilégiée entre I'intelligence artificielle et la pratique clinique.

Les premiers travaux (chapitre II) ont montré, a travers I'exemple du BrainAGE, qu’une
représentation latente pouvait constituer un biomarqueur pertinent, capable de différencier des
sous-groupes de patients atteints de maladie d’Alzheimer indépendamment de leur phénotype
clinique. Cette premiere étape illustre le potentiel des représentations latentes a saisir des
dimensions phénotypiques, difficiles a capturer par les approches cliniques conventionnelles.

Nous avons ensuite proposé le PatientSpace (chapitres Il et IV), un cadre méthodologique
combinant apprentissage supervisé, non supervisé et auto-supervisé. L'originalité de PatientSpace
réside dans sa capacité a concilier généralisation, robustesse et explicabilité, répondant ainsi a 'une
des critiques majeures de I'lA en médecine : I'opacité des modeles. Sur la DFT (chapitre lll), le
PatientSpace a permis d’identifier des sous-groupes cohérents tout en rendant les décisions
algorithmiques interprétables. Sur la MA et les DFT (chapitre IV), cette approche a été étendue a une
fusion multimodale intra-imagerie (TEP et IRM) par concaténation des espaces latents. Bien que
“simple”, cette stratégie a démontré la pertinence de la combinaison de modalités de neuroimagerie
pour mieux caractériser la variabilité interindividuelle, tout en confirmant la robustesse du
PatientSpace dans un contexte clinique plus complexe.

Enfin, cette logique a été prolongée dans le chapitre V vers une multimodalité plus hétérogene
(séquences IRM FLAIR et DWI, données cliniques et comptes rendus médicaux), intégrée dans un
espace latent commun par des mécanismes d’attention et de gating. Cette approche a permis non
seulement d’améliorer la performance prédictive pour le pronostic fonctionnel post-AVC, mais aussi
de pondérer explicitement la contribution de chaque modalité, offrant ainsi une interprétation
directement exploitable par le clinicien.

Ces travaux tracent ainsi une progression méthodologique et conceptuelle claire : de I'utilisation
d’un biomarqueur latent unique (BrainAGE), a la structuration d’espaces interprétables pour des
pathologies neurodégénératives (PatientSpace), jusqu’a I'intégration multimodale hétérogéne et
interprétable pour le pronostic de I’AVC. Au-dela de la performance brute des modeles, I'apport
principal de cette these réside dans la démonstration que les espaces latents peuvent étre
structurés, multimodaux et interprétables, ouvrant la voie a une meilleure intégration des approches
d’lA dans la recherche et la pratique clinique.

Dans la suite de cette discussion, nous aborderons successivement : (i) la structuration efficace des
espaces latents, (ii) I'intégration de données multimodales, (iii) la définition et I’exploitation de la
similarité inter-patients, avant de conclure sur les perspectives ouvertes par ces travaux.

VI.1. Structuration efficace des espaces latents

Comme nous I'avons montré au cours de ce manuscrit, les espaces latents constituent des outils
puissants pour réduire la dimensionnalité et extraire des représentations pertinentes de données
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médicales complexes. Cependant, la nature de ces représentations dépend étroitement du
paradigme d’apprentissage employé. Les approches non supervisées et auto-supervisées permettent
de capturer des représentations riches et globales, susceptibles de révéler des structures
émergentes dans les données (Le-Khac et al., 2020). Leur valeur clinique immédiate demeure
toutefois limitée, car elles ne sont pas directement orientées vers une tache médicale spécifique. A
I'inverse, les approches supervisées privilégient des caractéristiques discriminantes alignées sur une
tache définie (par ex. classification diagnostique), mais risquent de réduire la richesse de la
représentation.

La combinaison de ces approches apparait donc essentielle pour obtenir des représentations a la fois
expressives et cliniquement exploitables. Nos travaux ont montré que cet équilibre pouvait étre
atteint grace a des stratégies adaptées, notamment via I'apprentissage multitache et I'intégration
explicite de variables structurantes telles que I'age.

VI.1.1. Structuration par apprentissage multitache

Dans les chapitres Il et IV, nous avons exploré la voie du multitask learning (Caruana, 1993) avec la
conception du PatientSpace, en intégrant simultanément apprentissage supervisé, non supervisé et
auto-supervisé. Le principe est de partager une représentation commune a plusieurs taches, dans
I’espoir d’améliorer la généralisation et la robustesse (Ruder, 2017). Nos résultats sur la DFT
(chapitre IIl) et sur Alzheimer/DFT (chapitre IV) confirment que ce paradigme permet d’extraire des
représentations cohérentes, capables de capturer a la fois des dimensions diagnostiques et des
structures émergentes non spécifiées a priori (par exemple la sévérité de la maladie). Toutefois, ces
approches posent des difficultés bien connues : le negative transfer, ol des taches faiblement liées
se perturbent mutuellement (Standley et al., 2020) , ou encore la compétition entre taches, ol
certaines dominent I'entrailnement au détriment des autres (Crawshaw, 2020). Dans le domaine
médical, ces limites sont particulierement critiques, car un modele trop généraliste peut perdre en
précision et compromettre la fiabilité des décisions cliniques. A Iinverse, un modeéle trop spécialisé
peut manquer de généralisation. Plusieurs stratégies ont été proposées pour pallier ces limites, qu’il
s’agisse de modifier I'architecture des réseaux (Crawshaw, 2020; Guo et al., 2018; Ma et al., 2018),
d’ajuster la fonction de perte ou réguler la rétropropagation du gradient (Chen et al., 2018; Cipolla et
al., 2018; Liu et al., 2019; Yu et al., 2020).

Dans ce contexte, le PatientSpace illustre I'intérét d’un apprentissage multitache adapté aux
spécificités médicales : il permet de concilier généralisation et pertinence clinique, tout en
fournissant une représentation explicable et exploitable par le clinicien.

VI.1.2. L’age, un facteur structurant complexe
Nos travaux ont également mis en lumiere la complexité de I'age comme covariable. Dans le
PatientSpace, nous I'avons intégré de plusieurs manieres :

e comme variable d’entrée (chapitre Ill), permettant de normaliser partiellement les
représentations vis-a-vis de son influence

e comme contrainte latente ou variable prédite (chapitre 1V), favorisant une structuration
longitudinale de I'espace

e comme biomarqueur dérivé a travers le BrainAGE (chapitre Il), qui a montré une corrélation
robuste avec la sévérité clinique.
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Cette diversité d’approches refléte la double nature de I'age : facteur de progression pathologique
(deux patients au méme stade clinique peuvent présenter des profils distincts selon I’dge), mais aussi
facteur discriminant (formes précoces d’Alzheimer versus formes tardives, impliquant des patterns
neuroanatomiques différents ; (Koedam et al., 2010)).

Un espace latent adapté aux maladies neurodégénératives doit donc répondre a trois critéres : (1)
distinguer les formes cliniques connues (différences d’atrophie, d’hypométabolisme, etc.) ; (2)
permettre un suivi longitudinal patient-spécifique, notamment pour le diagnostic précoce et le suivi
des MCI ; et (3) intégrer des métriques dérivées comme le BrainAGE, afin de relier 4ge biologique,
structure cérébrale et progression pathologique.

Ainsi, la structuration des espaces latents ne se résume pas a une simple réduction de dimension,
mais nécessite un design méthodologique réfléchi, intégrant a la fois des contraintes d’apprentissage
et des covariables cliniquement pertinentes.

VI.2. Données multimodales et intégration latente

Les données médicales sont intrinsequement multimodales, combinant imagerie, variables cliniques,
scores cognitifs ou encore biomarqueurs biologiques. Leur intégration est donc essentielle pour
exploiter pleinement leur potentiel et construire des modeles a la fois performants et interprétables.
Comme souligné par Baltrusaitis et al. (Baltrusaitis et al., 2019), une exploitation réfléchie de la
multimodalité permet d’améliorer la qualité des représentations, d’accroitre la robustesse des
modeles et, en contexte médical, de rapprocher les prédictions algorithmiques des réalités cliniques.

VI.2.1. De I'unimodal au multimodal

Dans la littérature, trois stratégies principales d’intégration multimodale sont décrites. La fusion
précoce consiste a concaténer toutes les modalités dés I'entrée du réseau. Cette approche présente
I’avantage de permettre I'apprentissage immédiat des interactions entre modalités, mais elle impose
gue toutes les données soient compatibles dés le départ, ce qui peut étre problématique lorsque des
modalités tres hétérogénes, comme du texte et de I'imagerie, sont combinées. De plus, la fusion
précoce peut limiter la capacité du réseau a extraire des caractéristiques propres a chaque modalité.
La fusion intermédiaire consiste, quant a elle, a traiter chaque modalité indépendamment avant de
les combiner dans un espace latent commun. Cette méthode préserve les informations spécifiques a
chaque modalité tout en permettant, apres enrichissement, de capturer des interactions complexes.
Elle est particulierement adaptée a des architectures capables de gérer des modalités hétérogénes,
bien qu’elle nécessite une architecture distincte pour chaque type de donnée, ce qui peut
augmenter les besoins en mémoire et en calcul.

Enfin, la fusion tardive (late fusion) agrége les sorties finales de chaque modalité pour produire une
prédiction unique. Cette approche, simple a mettre en ceuvre et inspirée de I'ensemble learning,
présente l'inconvénient de ne pas exploiter les interactions intermodales, ce qui peut limiter les
performances dans des contextes ol la complémentarité des données est cruciale.

Dans ce manuscrit, nous avons d’abord exploré une stratégie de fusion intermédiaire par
concaténation (chapitre 1V), combinant les espaces latents issus de I'[RM et de la TEP. Cette
approche a permis d’obtenir de bonnes performances et de confirmer I'intérét d’exploiter la
complémentarité entre modalités d’imagerie pour mieux caractériser la variabilité interindividuelle
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dans les maladies d’Alzheimer et de la DFT. Toutefois, elle présente une limite majeure : elle ne
fournit aucune information sur la contribution respective des modalités, ce qui restreint son
interprétabilité et donc son exploitation clinique. Le chapitre V a marqué une avancée en proposant
une multimodalité plus hétérogene (IRM FLAIR et DWI, données cliniques, comptes rendus
médicaux) intégrée grace a des mécanismes d’attention et de gating. Cette approche a permis non
seulement d’améliorer la performance prédictive du pronostic post-AVC, mais aussi de pondérer
explicitement I'apport de chaque modalité. Les analyses ont montré que la DWI et les variables
cliniques étaient souvent les plus déterminantes, tandis que la FLAIR et les comptes rendus textuels
apportaient une information complémentaire utile dans certains cas. Cette capacité a identifier les
modalités prédominantes ou secondaires constitue un atout majeur pour l'interprétabilité et
rapproche le modele d’une utilisation clinique effective.

VI.2.2. Enrichir les modalités par contexte

Un défi central de la multimodalité est que chaque modalité porte sa propre échelle, sa granularité
et parfois son propre bruit. Fusionner directement ces représentations peut conduire a des espaces
latents déséquilibrés, ou certaines modalités dominent artificiellement.

Pour pallier cette limite, nous avons proposé un mécanisme d’enrichissement cross-modal (chapitre
V), ol chague modalité est augmentée par I'information issue des autres, grace a une attention
croisée résiduelle modulée par une gate. Celle-ci agit comme un filtre, autorisant uniquement les
informations pertinentes tout en limitant I'impact du bruit. Cette approche présente un double
intérét : elle préserve 'identité de chaque modalité et capture les interactions complexes entre
elles, tout en fournissant un mécanisme interprétable sur I'origine de I'information.

Dans le cas de I'AVC, cette stratégie s’est révélée particulierement adaptée : certaines lésions
n’étaient visibles que sur la DWI, tandis que d’autres informations cliniques ou textuelles
apportaient un contexte complémentaire. L’attention croisée a permis de mettre en évidence ces
complémentarités, tout en évitant la dilution du signal spécifique a chaque modalité.

Ainsi, I'intégration multimodale dans un espace latent ne doit pas étre envisagée comme une simple
étape de concaténation, mais comme une véritable opération de négociation d’information entre
modalités. La conception de mécanismes d’enrichissement et de pondération constitue une
condition essentielle pour construire des espaces latents robustes, interprétables et cliniquement
pertinents.

VI.3. Similarité entre patients

Un des fils conducteurs de cette these est la conception d’espaces latents permettant de
représenter la similarité entre patients. En effet, la médecine de précision repose sur la capacité a
identifier des sous-groupes homogenes de patients, que ce soit pour adapter le traitement, affiner le
pronostic ou comprendre la progression des maladies. Dans ce contexte, les espaces latents offrent
une opportunité unique : ils projettent les individus dans un espace continu ou la proximité reflete
un degré de similarité.

Néanmoins, la définition de cette similarité est loin d’étre triviale. Dans le domaine médical, deux
patients peuvent étre similaires sur le plan anatomique (patterns d’atrophie comparables en IRM),
tout en divergeant fortement sur le plan fonctionnel ou biologique. A I'inverse, deux profils cliniques
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proches peuvent reposer sur des mécanismes pathologiques tres différents. Chague modalité porte
donc sa propre structure de similarité, qui n’est pas nécessairement réductible a celle des autres.

Nos travaux illustrent cette tension entre préservation et fusion des similarités. Dans le chapitre I,
nous avons montré qu’un espace latent construit a partir de I'lRM permet de définir une similarité
phénotypique robuste, cohérente avec la littérature clinique sur la DFT. Cette approche unimodale
garantit une interprétation claire : la proximité entre patients correspond directement a des patrons
d’atrophie similaires. Le chapitre IV a exploré une étape supplémentaire en combinant deux
modalités d’'imagerie (IRM et TEP). Cette fusion a permis de mieux caractériser la variabilité
interindividuelle, mais la notion de similarité a changé : elle ne reflete plus exactement celle de
chaque modalité prise séparément, mais correspond a une mesure combinée au sein de I'espace
latent intégré. Ce résultat souligne un point essentiel : la fusion multimodale ne préserve pas les
similarités unimodales, mais en construit une nouvelle, parfois divergente, dont I'interprétation doit
étre soigneusement analysée.

Ces résultats plaident pour une approche méthodologique prudente : plutét que de chercher a
imposer une définition unique de la similarité, il est préférable de préserver d’abord les similarités
propres a chaque modalité. Cette stratégie présente plusieurs avantages. Elle permet de conserver
I'identité unimodale du patient, garantissant que les informations spécifiques a chaque type de
données ne soient pas diluées dans une fusion précoce. Elle ouvre également la voie a une
stratification plus fine : par exemple, il devient possible d’identifier des patients présentant un
pattern pathologique dans une modalité donnée (comme la TEP) mais pas dans une autre (comme
I'IRM), ce qui pourrait refléter des différences de stade ou de progression de la maladie. Ce
raisonnement est particulierement pertinent dans les maladies neurodégénératives, ou certaines
modalités — la TEP, par exemple — détectent des anomalies plus précocement que d’autres,
comme I'IRM structurelle (Del Sole et al., 2017). Une fois ces similarités unimodales établies, leur
combinaison peut ensuite étre explorée a travers des mécanismes explicites et interprétables,
permettant de construire des représentations intégrées tout en conservant tragabilité, flexibilité et
pertinence clinique.

VI.4. Concevoir des espaces latents interprétables

A l'issue des sections précédentes, il apparait que la structuration des espaces latents, I'intégration
multimodale et la définition de la similarité entre patient constituent des axes complémentaires
mais interconnectés. Cette section se propose de synthétiser ces éléments pour proposer une
démarche méthodologique cohérente permettant de concevoir un espace latent a la fois structuré,
multimodal et interprétable, adapté aux besoins cliniques et aux contraintes des données médicales.
La construction d’un tel espace repose sur une progression méthodologique claire similaire a la
conception du PatientSpace, que nous présentons ici sous la forme d’une approche en plusieurs
étapes :

1. Etape initiale — apprentissage des informations générales
Le modeéle est d’abord entrainé pour capturer des informations générales, par exemple en
distinguant les sujets sains des patients atteints de démence. La reconstruction des données
originales sert de régularisation, garantissant que I'espace latent conserve une
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représentation fidele de chaque modalité d’entrée. Cette étape établit des fondations
discriminatives stables et interprétables.

2. Etape intermédiaire — affinage par contraintes complexes
L'espace latent est ensuite affiné par des contraintes plus complexes, telles que la
structuration par similarité/dissimilarité et/ou la structuration longitudinale (via I'intégration
de I'dge ou des intervalles temporels entre examens successifs).

3. Etape de stabilisation — préservation de la robustesse et de I’équilibre
Pour éviter que certaines contraintes dominent I'apprentissage ou que le modele oublie les
attributs fondamentaux, une stratégie cyclique est utilisée (Fu et al., 2019). Cette méthode
réactive périodiquement les objectifs initiaux, garantissant un équilibre entre structuration
avancée et conservation des informations générales.

Lors du passage a la multimodalité, chaque latent unimodal est combiné via des mécanismes
d’attention et de gating, comme présenté dans le chapitre V. Cette intégration permet de maintenir
la similarité entre patient pour chaque modalité, quantifier I'influence relative de chaque modalité
pour enrichir la représentation finale et enfin offrir une interprétation transparente des
contributions de chaque type de données a la tache clinique considérée. En combinant ces étapes, il
devient possible de construire un espace latent structuré, multimodal et interprétable, capable a la
fois d’identifier des patients similaires dans chaque modalité, de capturer les interactions entre
modalités, et de fournir des informations exploitables par les cliniciens pour le diagnostic, le suivi ou
le pronostic.

Avant d’aborder les perspectives, il convient de souligner deux recommandations méthodologiques
issues de cette these.

Tout d’abord, pour préserver 'identité et 'unicité des représentations latentes, il est recommandé
d’utiliser une approche de similarité contrastive. Celle-ci permet d’éviter que les latents ne
s’effondrent vers un vecteur trop générique et de garantir que chaque patient conserve une
représentation discriminante, a la fois pour les analyses unimodales et pour I'intégration
multimodale.

Ensuite, I'age, en tant que covariable critique dans les maladies neurodégénératives, doit étre utilisé
de maniére adaptée au contexte : il peut conditionner I’espace latent lorsqu’un suivi longitudinal est
nécessaire, afin de structurer les trajectoires individuelles, ou simplement étre introduit comme
variable d’entrée lorsque I'objectif n’est pas de modéliser explicitement la progression dans le
temps.

Ces recommandations méthodologiques servent de fondement a la discussion des perspectives, qui
explorent les extensions possibles du PatientSpace et les améliorations a apporter a I'intégration
multimodale et a I'interprétabilité clinique.

VI.5. Perspectives autour des travaux de these

Comme discuté dans les chapitres Il et 1V, le PatientSpace apparait comme un outil prometteur pour
extraire des informations pertinentes a partir de données d’imagerie, notamment en ce qui
concerne les phénotypes, la sévérité et la dimension longitudinale des patients.

Une premiére piste d’amélioration consisterait a renforcer la robustesse des représentations
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unimodales. Il s’agirait d’explorer des latents interprétables, capables de capturer des patterns
spécifiques a chaque modalité avant leur intégration multimodale. Cette approche permettrait de
préserver |'identité unimodale du patient, facilitant ainsi la création de nouvelles stratifications : par
exemple, identifier des patients présentant un pattern pathologique dans une modalité mais pas
dans une autre.

Par ailleurs, I'utilisation de mesures de similarité contrastives pourrait étre plus adaptée que les
approches non-contrastives employées dans nos travaux du chapitre IV. En effet, les patterns
extraits semblaient fortement corrélés a I’'age des patients, probablement parce que la similarité
reposait uniquement sur des exemples positifs. Cette situation pouvait projeter deux patients
phénotypiquement différents mais d’age similaire dans un espace latent proche. Une approche
contrastive, intégrant des exemples négatifs explicites, permettrait de limiter ce biais et de favoriser
des représentations discriminantes, comme observé dans le chapitre lIl.

Une autre perspective majeure concerne I’extension multimodale du PatientSpace, en s’appuyant
sur les méthodes introduites dans le chapitre V. Cela permettrait non seulement d’identifier la
contribution relative de chaque modalité a la prédiction d’un diagnostic, mais aussi de mieux
comprendre pourquoi certaines modalités apportent plus d’information que d’autres. Par exemple,
la TEP peut fournir des signaux précoces de pathologie avant qu’ils ne soient visibles en IRM.
L'intégration de mécanismes d’attention appliqués au sein d’architectures profondes offrirait une
voie intéressante pour quantifier et interpréter ces contributions, dépassant ainsi la simple
concaténation des latents modaux.

Les travaux du chapitre V ouvrent également la possibilité de combiner les approches multimodales
avec le PatientSpace pour d’autres pathologies, comme I'AVC ischémique. Cela permettrait de
projeter les patients dans I'espace latent et d’explorer différents profils de maniére interprétable, a
I’échelle individuelle. Des méthodes de clustering ou de stratification pourraient alors étre
appliquées pour identifier des sous-groupes, par exemple des patients répondant favorablement a la
recanalisation et d’autres moins réactifs. Cette approche rejoint les efforts actuels visant a identifier
des biomarqueurs d’imagerie prédictifs du succes de la recanalisation et du pronostic fonctionnel
post-AVC (Gaviria and Eltayeb Hamid, 2024).

Enfin, un axe d’amélioration concerne le mécanisme d’attention lui-méme. Dans nos travaux, nous
avons utilisé une variante inspirée du Multiple Instance Learning, reposant sur I’hypothése qu’au
moins une instance est discriminante pour établir un diagnostic. Or, dans un contexte clinique
complexe, cette hypothese est réductrice : ce n’est pas une instance isolée, mais souvent une
combinaison de plusieurs observations (au sein d’une modalité ou entre modalités) qui apporte une
information déterminante. Repenser le mécanisme d’attention — par exemple en le focalisant sur
certaines dimensions spécifiques plutot que sur I'ensemble du vecteur latent, ou en explorant des
variantes comme la cross-attention — pourrait améliorer la finesse de I'interprétation et la qualité
des prédictions.

En résumé, les perspectives de cette thése s’articulent autour du renforcement des espaces latents
unimodaux, similarité contrastive, extension multimodale et optimisation des mécanismes
d’attention, visant a construire des modeles plus robustes, interprétables et applicables a la pratique
clinique.
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VI.6. Conclusion

Cette thése a exploré la conception et I'exploitation d’espaces latents structurés pour I'analyse de

données médicales complexes. Le chapitre | a présenté les concepts fondamentaux des espaces

latents et les méthodes de création, posant les bases théoriques pour les travaux suivants. Dans le

chapitre Il, nous avons montré que le BrainAGE constitue un biomarqueur robuste pour différencier
des sous-groupes de patients et mieux comprendre le déclin cognitif dans la maladie d’Alzheimer.

Les chapitres lll et IV ont introduit le PatientSpace, un espace latent interprétable capable de
capturer des phénotypes cliniques et des trajectoires longitudinales. L’aspect multimodal a été
progressivement intégré afin d’évaluer son apport dans la structuration et I'interprétabilité de
PatientSpace.

Le chapitre V a été consacré a I'évaluation du traitement multimodal hétérogene, intégrant
imagerie, données cliniques et textuelles, en utilisant attention et gating pour améliorer la
performance prédictive et I'interprétabilité au niveau patient.

Ces travaux démontrent que la structuration latente, combinée a une intégration multimodale
réfléchie, permet de créer des représentations a la fois robustes, interprétables et cliniquement
pertinentes, ouvrant la voie a des applications en suivi longitudinal, stratification patient et
prédiction de pronostic.
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ANNEXE
Liste des Figures

1. Figure 1. Les courbes de taille et de poids des enfants constituent des références normatives. L’écart observé par rapport
a la population de référence permet de quantifier des critéres tels que la maigreur, le surpoids ou I'obésité (image
provenant de https://cress-umr1153.fr/fr/courbes-de-croissance-de-reference-du-carnet-de-sante/) ........ccoceevvverrveereennen. 12
2. Figure 2 Intérét des modeles normatifs (image et Iégende issues de (Marquand et al., 2016)). L’approche classique cas-
témoins suppose que les cas et les témoins forment chacun un groupe bien défini (A). Cette hypothése peut étre
raisonnable dans certains contextes, mais de nombreuses autres configurations sont possibles en pratique. La population
clinique peut étre constituée de plusieurs sous-groupes présentant chacun une pathologie distincte (B) ; la variabilité liée a
la maladie peut s’inscrire au sein méme de la variabilité observée chez les sujets sains (C) ; ou encore, le groupe clinique
peut apparaitre diffus et hétérogéne en raison d’erreurs diagnostiques, de comorbidités ou de I'agrégation de pathologies
TEIENTES (D). uveeeeetiie it eecee ettt e ettt e ettt eeeteeeeetaeeeeetaeeeeasaeeeasaeeeasaseeeessaeaaassseeesseeeansaeesasseesesseeeansaeesassseeensseeeansaeesansaeeans 13
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24. Tableau IV-S4. Corrélation de Pearson entre les ROls des MA et des DFT. Les corrélations les plus fortes sont en gras.
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ANNEXE
Liste des abréviations

AUC : aire sous la courbe ROC

AVC : accident vasculaire cérébral

BH-FDR : Benjamini et Hochberg False Discovery Rate
BR : réserve cérébrale

bvFTD : variant comportemental de la DFT

CDR : Clinical Dementia Rating

CDR-SoB : Clinical Dementia Rating Scale Sum of Boxes
CNN : réseaux de neurones convolutifs

DEM : démence

DIVA : Domain Invariant Variational autoencoder
DTI : imagerie par tenseur de diffusion

ELBO : evidence lower bound

EQM : erreur quadratique moyenne

EOAD : Early-Onset Alzheimer’s Disease

FDR : False Discovery Rate

FLAIR : Fluid Attenuated Inversion Recovery

FWE : Family-Wise Error rate

GAMLSS : modeles additifs généralisés

GANSs : réseaux antagonistes génératifs

GM : matiére grise

GMM : mixtures de Gaussiennes

HpSp : préservation hippocampique

ICV : volume intracranien

IA : intelligence artificielle

KL : Kullback-Leibler

LCR : liquide cérébrospinal

LOAD : maladie d’Alzheimer a début tardif

LLM : Large language models

LME : modeles linéaires a effets mixtes univariés
LP : limbique prédominant

MCI : trouble cognitif léger

MA : maladie d’Alzheimer

MAE : erreur absolue moyenne

MMSE : Mini-Mental State Examination

MMTM : module de transfert multimodal

MRI / IRM : imagerie par résonance magnétique
mRS : modified Rankin Scale

OSEM : Ordered Subsets Expectation Maximization
PAD : Predicted Age Difference

132



PET / TEP : émission de positons

PNFA : aphasie progressive non fluente
RBM : machines de Boltzmann restreintes
ROI : régions d’intérét

SGD : descente de gradient stochastique
SVM : machine a vecteurs de support
SUV : Standard Uptake Value

SUVR : Standard Uptake Value Ratio

SV : variant sémantique

TE : temps d’écho

TR : temps de répétition

tAD : forme typique de la MA

VAE : autoencodeurs variationnels

ViTs : Vision Transformers

VBM : Voxel-Based Morphometry

VAT : Visual Association Test

WM : matiere blanche
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