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Spécialité : Mécanique des milieux fluides

Simulation numérique directe de la turbulence de paroi
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Abstract

The main objective of this work is to analyze the effects of a moderate adverse
pressure gradient on the dynamics of turbulent boundary layer flows. For that pur-
pose, a direct numerical simulation (DNS) of the turbulent boundary layer (TBL)
subjected to a moderate adverse pressure gradient (APG) out of equilibrium has
been performed using the open-source code Incompact3d up to a Reynolds num-
ber of 8000 based on momentum thickness. A large database resolved in time and
space was collected and used to analyze the turbulence statistics. Special attention
has been paid to the existence and evolution of the outer peak of Reynolds stresses
observed in APG wall-bounded flows. Different velocity scalings have been inves-
tigated and tested against the numerical results. The velocity scale based on the
shear stress is shown to scale all the Reynolds stresses profiles for different Reynolds
numbers, indicating that all Reynolds stresses are associated with a single dynamics
of turbulent structures.

The large-scale coherent structures of the streamwise velocity fluctuations have
been investigated using two-point spatial correlation. A comparison with a zero pres-
sure gradient case at an equivalent Reynolds number allows us to further investigate
the effect of the pressure gradient on the size and inclination of attached coherent
structures. A deeper investigation of the coherent structures was also performed,
where each structure was detected separately based on a thresholding method to
distinguish between the effects of large and small scales and to better understand
the mechanisms controlling the dynamics of these structures. The contribution of
large-scale motions (LSM) on the Reynolds stresses comparing with ZPG case was
also analyzed.

Keywords: turbulence, direct numerical simulation, turbulent boundary layers
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Résumé

L’objectif principal de ce travail est d’analyser les effets d’un gradient de pression
défavorable modéré sur la dynamique d’écoulement d’une couche limite turbulente.
Dans ce contexte, une simulation numérique directe (DNS) de la couche limite tur-
bulente (TBL) soumise à un gradient de pression défavorable modéré (APG) hors
équilibre a été réalisée jusqu’à un Reynolds de 8000 en utilisant le code open-source
Incompact3d. Une large base de données résolues en temps et en espace a été collectée
et utilisée pour analyser les statistiques de la turbulence. Une attention particulière
a été consacrée à l’existence et à l’évolution du pic de contraintes de Reynolds ob-
servé dans la zone externe de la couche limite. Différentes échelles de vitesse ont
été étudiées, testées et confrontées aux résultats numériques. L’échelle de vitesse
basée sur la contrainte de cisaillement permet de mettre à l’échelle tous les pro-
fils de contraintes de Reynolds pour plusieurs nombres de Reynolds, ce qui indique
que toutes les contraintes de Reynolds sont associées à une dynamique unique des
structures turbulentes.

Les structures cohérentes à grande échelle des fluctuations de vitesse longitudi-
nales ont été étudiées en utilisant la corrélation spatiale en deux points. Une com-
paraison avec un cas sans gradient de pression à un nombre de Reynolds équivalent
nous permet d’étudier l’effet du gradient de pression sur la taille et l’inclinaison des
structures cohérentes attachées. Une étude approfondie sur les structures cohérentes
a également été réalisée, où chaque structure a été détectée séparément en utilisant
une méthode de seuillage afin de distinguer les effets des grandes et petites échelles
et de mieux comprendre les mécanismes qui contrôlent la dynamique de ces struc-
tures. La contribution des mouvements de grande échelle (LSM) sur les contraintes
de Reynolds en comparaison avec le cas ZPG a également été analysée.

Mots clés : turbulence, simulation numérique directe, couches limites turbu-
lentes
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Nomenclature

Abbreviations

2D Two-dimensional

3D Three-dimensional

APG Adverse pressure gradient

CFL Courant-Fiedrichs-Lewy number

DNS Direct numerical simulation

FFT Fast Fourier Transform

FPG Favorable pressure gradient

HW Hot-wire

LES Large-Eddy Simulation

LSM Large-scale motions

PIV Particle image velocimetry

PTV Particle tracking velocimetry

TBL Turbulent boundary layer

TKE Turbulent kinetic energy

VLSM Very large-scale motions

ZPG Zero pressure gradient

Greek Symbols

β Clauser’s non-dimensional pressure gradient parameter

δ Boundary layer thickness, δ99

δ1 Displacement thickness
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δν Viscous length scale, ν/uτ
ε Dissipation rate of turbulent kinetic energy

η Kolmogorov length scale

κ Von Kármán constant

µ Dynamic viscosity of the fluid

ν Kinematic viscosity of the fluid, µ/ρ

ρ Density of the fluid

τw Wall shear stress

θ Momentum thickness

Roman Symbols

Cf Skin friction coefficient

H Shape factor

h Channel half-width

kx, kz Streamwise and spanwise wavenumber

Lx, Ly, Lz Computational domain size in the spatial directions

Nx, Ny, Nz Number of computational mesh nodes in the spatial directions

P Pressure

Reτ Reynolds number based δ and uτ

Reθ Reynolds number based θ and Ue

t Time

U Instantaneous streamwise velocity

u Streamwise fluctuating velocity

Ue Free stream velocity

UZS Zagarola-Smits outer velocity scale

uτ Friction velocity

V Instantaneous wall-normal velocity

v wall-normal fluctuating velocity

W Instantaneous spanwise velocity

w Spanwise fluctuating velocity

x Streamwise coordinate
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y Wall-normal coordinate

z Spanwise coordinate

Special symbols

(.)+ Variable in wall-units, normalized using uτ and ν

(.)ref Reference position such that Reθ = 7240

〈.〉 Average in the homogeneous directions
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Chapter 1
Introduction

1.1 Background

Turbulence is among the most difficult problems of physics. Turbulent flows are
highly disordered as such they are unpredictable. Most flows in nature are turbu-
lent, starting from smoke of a cigarette, breaking of ocean wave as well as atmo-
spheric flows. High energy consumption of vehicles (e.g. airplanes, cars, ships and
submarines) results from the turbulent state. The theory of turbulence phenomenon
is yet incomplete. As Navier-Stokes equations (equations describing fluid motion)
are non-linear, non-stationary and non-local, analytical solutions corresponding to a
turbulent state are still unknown and will probably remain for most of the turbulent
flows. As the hope to find analytical solutions of the governing equations is very
low, the main challenge is to understand the mechanism of turbulence in order to
derive efficient models which could be used to reduce the very large degree of free-
dom associated with turbulent flows. One can distinguish between free turbulence
and wall turbulence, the latter being generated and affected by the presence of one
or more solid surfaces (wings of an airplane, turbine blade, . . . ). Therefore, wall
turbulence is present in most if not all industrial flows.

Boundary Layer is the thin layer that appears near the wall due to skin fric-
tion. Improvement of the safety and performance of vehicles depends on detailed
knowledge of the turbulence within the boundary layer. The book of Schlichting
and Gestern [127] presents a complete review about wall-bounded flow theory.

A big challenge in investigating turbulence is to transfer complex turbulent mo-
tions into simpler motions called coherent structures. Over the past decades, a
large effort has been devoted to study the coherent structures in turbulent flows.
Efforts were exerted on the understanding of the nature and origin of the coher-
ent structures, as well as the lifespan and the way of their development besides
other statistics. Most of the studies focus on the case of boundary layer on a flat
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plate without pressure gradient as it is the simplest academic case of wall-bounded
flows. However, in industrial applications, the flows are usually bounded by curved
geometries and therefore exposed to an adverse pressure gradient leading to flow de-
celeration and change in behavior compared to the zero pressure gradient boundary
layer.

The constant increase of computing resources enables numerical simulations with
more and more degrees of freedom. In parallel the progress in experimental tech-
niques allows us to investigate a wide range of length and time scales of turbulent
flows. These new capabilities associated with advanced post-processing of the large
databases facilitate a detailed description of turbulent flows which is the first and
necessary step to build efficient models. Academic ideal turbulent flows such as
turbulence in a periodic box were the first to be simulated. However, high fidelity
numerical simulations of wall-bounded turbulent flows are now commonly performed
but for a restricted number of academic cases.

This study is dedicated to fill a gap in the numerical studies of turbulent bound-
ary layers subjected to moderate adverse pressure gradient for a case of Reynolds
number higher than that taken in previous studies.

1.2 Objectives

The overarching objective of the present work is to further understand the effect
of adverse pressure gradient on the turbulent boundary layer. For that purpose, a
large database well-resolved in time and space was performed. The database will
allow several future studies in our research team. This database can be compared
with available numerical and experimental databases (with or without pressure gra-
dient) in order to check the validity and the universality of turbulence theories and
scalings. Furthermore, the current non-equilibrium boundary layer contributes to
testing models proposed for equilibrium wall-bounded flows.

The first part of the work focuses on the outer region of the turbulent boundary
layer since it is strongly affected by the presence of an adverse pressure gradient. The
goal is to find the link between the Reynolds stresses and the turbulent production
rate. To do so, it is essential to clarify the causes of the strong turbulent activity in
the outer region, whether it is the Reynolds number, adverse pressure gradient or
both of them.

The second part of the work is dedicated to understand the large-scale motions
of the streamwise velocity fluctuations and their sensitivity to a moderate adverse
pressure gradient. The objective is to examine the geometric characteristics of the
structures in terms of shape, dimension and arrangement. Besides, efforts were made
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to investigate the dominance between low- and high-momentum structures along the
boundary layer.

1.3 Organization of the thesis

This thesis is composed of six chapters organized as follows:
The background of the current work and objective of the study are introduced

in Chapter 1. In Chapter 2, a review of the literature focused on the turbulent
boundary layer flows and the organization of coherent structures populating these
flows, is presented. Investigations of the effect of an adverse pressure gradient on
TBL and coherent structures are also reviewed.

Chapter 3 reveals some specifications of the numerical solver and the parameters
used for the simulation. Some statistics that represent the characteristics of the
current DNS are also outlined. The statistical results of the TBL are presented in
Chapter 4. Statistics of Reynolds stresses are presented with a special emphasis
on the peak appearing in the outer region. Different types of velocity scaling are
discussed and tested using the current database.

Chapter 5 is devoted to the analysis of coherent structures. The average statistics
and the detection technique of the three-dimensional structure based on the strong
negative and positive streamwise velocity fluctuations are shown.

Finally, the main conclusions and future work of this investigation are summa-
rized in Chapter 6.
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Chapter 2
Turbulent Boundary Layers

This chapter provides an overview of the theories of wall-bounded flows and focuses
on the zero pressure gradient turbulent boundary layer and how it is organized.
Various types of coherent structures along the boundary layer are reported. The
effect of the pressure gradient on the boundary layer is then discussed.

2.1 Governing equations

The equations governing a fluid flow are functions of the properties of the flow. A
significant change of pressure and temperature may change the density ρ and the
flow becomes compressible. In this case, the variation of density in time or space can
not be neglected. When the Mach number (dimensionless number that expresses the
ratio between the characteristic velocity of the fluid and the local speed of sound) is
less than 0.3, the flow is usually considered to be incompressible. In this case, the
density is considered to be constant as the pressure and the temperature doesn’t
have important variation.

The viscosity of fluid noted µ characterizes the resistance against any force that
tends to move the fluid layers over each other. The ideal fluids are considered as non-
viscous fluids. When the fluid density ρ and the dynamic viscosity µ are supposed
to be constant and not affected by the temperature, the flow will be considered as
isothermal. In most applications including aeronautics applications, the fluids are
considered as Newtonian fluid which means that at every point the viscous stresses
arising from the flow are linearly related to the local strain rate.

The fundamental conservation laws of the fluid flow are expressed by partial
differential equations based on the continuum hypothesis. The conservation laws
are expressed for a closed control volume V of the fluid domain. The boundary of
V is considered as a closed control surface S with a normal unit vector n directed
towards the outside of V.
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2.1.1 Conservation laws

The conservation of mass law includes the rate of accumulation of mass in a volume
V that ensures the balance between mass entering and leaving V across its boundary
S; it is expressed in the following equation:

∂

∂t

∫
V
ρdV +

∫
S
ρn.UdS = 0, (2.1)

where t is the time and U is the instantaneous fluid velocity vector. By applying
the Gauss’ divergence theorem1. Then, by integrating over an arbitrary volume, we
obtain the continuity equation:

∂ρ

∂t
+∇. (ρU) = 0 (2.2)

In an incompressible fluid, the density ρ is considered as constant in both space
and time. After neglecting all density-dependent terms, the conservation of mass
equation gives us the flow incompressibility condition which is noted as the following:

∇.U = 0 (2.3)

The conservation of momentum involves the rate of accumulation of momentum
in V , and the momentum flux passing through S must be equivalent to the momen-
tum gain due to body forces and surface stresses. It is represented mathematically
as

∂

∂t

∫
V
ρUdV +

∫
S
ρ (n.U) UdS =

∫
V
ρfdV +

∫
S

n.σdS (2.4)

where f is the body forces and σ is the stress tensor. By applying the same procedures
of (2.2) and using the continuity equation, the previous equation leads to

ρ

(
∂U
∂t

+ U.∇U
)

= ρf +∇.σ (2.5)

For an incompressible fluid with constant viscosity, the stress term has been
reduced and replaced in the conservation of momentum equation. We finally obtain
the most frequently used governing equation in fluid dynamics which is known as
the incompressible Navier-Stokes equation

∂U
∂t

+ U.∇U = −1
ρ
∇P + ν∆U + f (2.6)

1Let F be a continuously differentiable vector field defined in the volume V and S is a closed
boundary of V , we have

∫
S

F.ndS =
∫

V
∇.FdV
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where P represents the static pressure and ν = µ/ρ is the kinematic viscosity.

2.1.2 Boundary layer assumptions

In the current work, isothermal flows of a Newtonian fluid are investigated. Like
many other sufficiently low-speed flows, the flow can be described by the incompress-
ible Navier-Stokes equations. They are represented by the aforementioned continuity
(2.3) and conservation of momentum (2.6) equations.

By considering density, viscosity and temperature as constants, the physical
properties that are computed are pressure and the three components of velocity.
We denoted hereafter x, y, and z as the positions in the streamwise, wall-normal,
and spanwise directions respectively. U , V and W are considered as the relevant
instantaneous velocity components.

The three-dimensional continuity equation (2.7) is presented with the momentum
equation of the three components of velocity (2.8) where i and j = 1, 2, 3.

∂Ui
∂xi

= 0 (2.7)

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1
ρ

∂P

∂xi
+ ν

∂2Ui
∂x2

j

(2.8)

In order to simplify and understand the complex motion of the fluid flow, each
component of the instantaneous velocity is decomposed into its mean and its fluc-
tuating parts Ui = 〈Ui〉 + ui [117], where 〈.〉 is the average of the relevant quantity
in the homogeneous directions.

Taking the average of the NS equations (2.7) and (2.8) and considering that
the spanwise direction is a homogeneous direction, one can simplify the equation
for the mean velocity as the spanwise velocity and all derivatives with respect to
the spanwise direction are suppressed. Furthermore, as the fluid properties are
considered as constant over time and the boundary conditions are fixed, the flow
over the boundary layer will be considered as steady and the time-dependent terms
must be neglected. Moreover, it is known that in the boundary layer the flow grows
slowly in the streamwise direction, but is subjected to strong velocity gradients
in the wall-normal direction in order to reach the free-stream velocity outside the
turbulent region. For that purpose, the x-derivatives are neglected in comparison to
those in the y-direction in the momentum equations.

Based on the previous assumptions, equations (2.7) and (2.8) are reduced to the
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boundary layer equations for the mean flow:

∂〈U〉
∂x

+ ∂〈V 〉
∂y

= 0 (2.9)

〈U〉∂〈U〉
∂x

+ 〈V 〉∂〈U〉
∂y

= −1
ρ

∂P

∂x
+ ν

∂2〈U〉
∂y2 −

∂〈uv〉
∂y

(2.10)

0 = 1
ρ

∂P

∂y
+ ∂〈vv〉

∂y
(2.11)

Further details on the boundary layer assumptions are summarized in the books
of Schlichting and Gestern [127] and Pope [113].

2.1.3 Turbulent flows parameters

Due to the no-slip condition, the 3 velocity components at the wall are zero. The
mean streamwise velocity increases far from the wall to reach asymptotically a con-
stant free-stream velocity (Ue) at the outer edge of the boundary layer.

The boundary layer thickness (δ) is generally defined as the wall-normal position
at which the mean streamwise velocity is equal to 99% of the free-stream velocity.
Other definitions have been proposed in the literature to estimate δ [159].

Another measure for the boundary layer thickness is the displacement thickness
δ1 (also denoted δ∗). It tells us how much the streamlines of the outer flow are
displaced by the effect of the boundary layer [127]. For example, the mass flow is
lost due to wall friction, and its deficit is equivalent to the mass flow rate for an
inviscid boundary layer at the same free-stream velocity up to δ1.

The integral form of the displacement thickness is given by

δ1 =
∫ δ

0

(
1− 〈U〉

Ue

)
dy (2.12)

The momentum thickness θ (also denoted δ2) is another integral parameter that
corresponds to the required thickness of an inviscid boundary layer to retain the
same momentum. It is defined by:

θ =
∫ δ

0

〈U〉
Ue

(
1− 〈U〉

Ue

)
dy (2.13)

The ratio between the last two thicknesses is called the shape factor

H = δ1

θ
(2.14)

In a laminar boundary layer flow (Blasius boundary layer) H ' 2.6, whereas,
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H = 1.3− 1.4 in the ZPG turbulent boundary layer and it increases with the effects
of the adverse pressure gradient. In the strong APG boundary layer of Gungor et
al. [47], H = 3.43 was found at the edge of separation.

The skin-friction coefficient Cf defined as

Cf = τw
1
2ρU

2
e

(2.15)

is the non-dimensional measurement of the friction at the wall. It tends to zero
when the flow is separated from the wall. Where τw is the wall shear stress which is
defined as

τw = µ
∂〈U〉
∂y
|y=0 (2.16)

The friction velocity uτ is the characteristic velocity scale near the wall, and it
is related to τw by

uτ =
√
τw/ρ (2.17)

The non-dimensional Reynolds number [117] represents the relative importance
of inertial forces in comparison to viscous ones. It is commonly used as a good
indicator of fluid turbulence, where the increase in Reynolds number represents a
transition from laminar to turbulent flows. Reynolds number can be defined based
on different length scales (e.g. δ, δ1 and θ) and various velocity scales such as, Ue
and uτ .

In turbulent boundary layers, several Reynolds numbers can be defined. The
most commonly used are the Reynolds number based on the momentum thickness

Reθ = Ueθ

ν
(2.18)

and the Reynolds number based on the friction velocity

Reτ = uτδ

ν
(2.19)

2.2 Zero pressure gradient wall-bounded flows

There are very old studies that were conducted to study the internal flows; for
example, the channel and pipe flows. Common features were observed between
internal flows and flows over a flat plate. The existence of a free-stream region far
from the wall makes the study of boundary layers more complicated than that of
internal flows. This is due to the growth of the boundary layer thickness in the
streamwise direction.

Turbulent Boundary Layer is the simplest case of flows over a flat plate for which
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zero pressure gradient cases implies that the pressure is constant in the streamwise
direction and the term ∂P/∂x is neglected in (2.10).

The main characteristics of the ZPG turbulent boundary layer are summarized
below.

2.2.1 TBL organization

In canonical wall-bounded flows, we can generally distinguish two regions, where
different physical processes dominate, namely the inner and outer regions.

The inner region is a layer close to the wall (up to y ' 0.1δ), and it is the region
in which viscous forces are effective.

In the very near-wall region, the convective terms of the momentum equation
can be neglected with respect to the diffusive terms and the equation (2.10) reduce
to

ν
∂2〈U〉
∂y2 −

∂〈uv〉
∂y

= 0 (2.20)

Integration of (2.20) in wall-normal direction leads to the total mean shear stress
that is constant and must be equal to the wall shear stress. It is defined with its
viscous and shear terms as follows:

τ = µ
∂〈U〉
∂y
− ρ〈uv〉 = τw = ρu2

τ (2.21)

This region is classified into three layers based on the dominance between both
terms of (2.21):

(i) Viscous sublayer is located in the very near-wall zone y+ < 5, where viscosity
is dominant due to the wall proximity, and the viscous term becomes dominant
on the Reynolds stress one in (2.21) (µ∂〈U〉

∂y
� ρ〈uv〉). Here, the mean velocity

profile is characterized by the linear law

U+ = y+ (2.22)

where the superscript (+) represents the scaling by unit-walls, i.e., uτ as
velocity-scale and δν = ν

uτ
as a length-scale. The wall-law is considered as

being independent from Reynolds number.

(ii) Buffer layer (5 < y+ < 30), in which both terms of τ become equivalents and
the energy production has its maximum value and represented by a peak in
the production rate profile at y+ ' 15. Also, a peak in the streamwise velocity
fluctuation profile at the same wall-normal position appeared.



11 Chapter 2. Turbulent Boundary Layers

(iii) Overlap (logarithmic) region, which is generally located at δν � y � δ.
This extent shows that both wall-units and outer scaling (by Ue and δ) are valid
in this region. Matching of both scalings leads to the famous Von Karman’s
logarithmic law of the mean velocity profile

U+ = 1
κ0

log y+ + C (2.23)

with κ0 and C are empirical constants. κ0 is of the order of 0.41 but has
been observed to vary slightly around this value for different flow types. The
lowest value of κ0 was found to be 0.38 using experimental ZPG boundary
layers up to Reθ = 70000 [102, 101] and the highest was obtained in pipe flow
experiment of Zagarola and Smits [171] as 0.45 for Reynolds numbers from
31× 103 to 35× 106.

The log layer is present only at sufficiently high Reynolds number and extends
up to 0.1− 0.2δ. There is no agreement on the lower bound of the log region
as a meso-layer can be defined between the buffer and the log region (30 .

y+ . 170) [42].

The outer layer is composed of the upper part of the overlap layer and the wake
region up to the edge of the boundary layer. In this region, the viscous forces are
negligible as compared with the Reynolds stress terms that reach their maximum
in this region. The large-scale structures, containing the highest level of energy, are
also located in the outer layer. Maciel et al. [89] mentioned that the lower limit
of the outer region is considered approximately y = 0.15δ. The wake law that is
proposed by Coles [24] is appropriate to give a description of this region.

As the viscous effect is almost negligible in this region, it is inappropriate to
represent the mean velocity using the wall-unit which is based on viscous quantities.
Outer characteristic length and velocity scales (Ue and δ) were used to define the
velocity defect law (2.24), which is generally used to describe the streamwise velocity
profile in the outer part up to the edge of the boundary layer.

Ue − U
uτ

= f
(
y

δ

)
(2.24)

The different layers of the TBL are illustrated in Fig. 2.1 on a mean streamwise
velocity profile obtained from the DNS of Sillero et al. [131] over a flat plate TBL
corresponding to Reτ = 1990.
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Fig. 2.1. The various regions of boundary layer are presented on a mean velocity
profile of a flat plate TBL of Sillero et al. [131] at Reθ = 6500 (Reτ = 1990).

2.2.2 Experimental and numerical studies of canonical flows

Numerous numerical and experimental techniques are used to visualize and study
the flow motion in a TBL. Traditional measurement techniques (dye, smoke) [116]
were previously used to visualize the coherent structures in turbulent flows. But
these techniques provide mainly qualitative observations.

In the past century, the hot-wire anemometer was invented as a new single-point
technique to measure the flow velocity [25]. A lot of studies were conducted using
the hot-wire method for various wall-bounded flows. In the late 20th century, the
innovation of experimental techniques provided a multi-dimensional measurement
method such as, particle image velocimetry (PIV) and Tomo-PIV which allows us
to obtain multi-dimensional velocity fields in a 2D or 3D domain with a good spatial
resolution.

Recently, Lagrangian particle tracking methods were developed, and it is known
as Particle Tracking Velocimetry (PTV) that gives 3D trajectories up to several
hundred of thousands of particles either in a small volume in order to access a very
high spatial resolution down to the dissipative scales [30] or a large field of view
using bigger Lagrangian tracers [36].

Through experiments, it is usually possible to obtain a realistic Reynolds number
and flows around a complex shape similar to aeronautical applications. In spite of
the great technical innovation, experiments are not able to reach sufficient spatial
and time resolutions combines with a large field of view - particularly in the near-
wall region - suitable for the identification of complex small-scale and large-scale
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interactions.
Parallel to the experimental techniques and due to the technological innovation in

computers, simulation of turbulent flows became possible in the last decades. Based
on the accuracy and cost of simulation, three main approaches can be distinguished.

The first one is known as direct numerical simulation (DNS) where the turbulence
is entirely resolved for all scales. The Navier-Stokes equations are accurately solved
and high resolutions are used in all spatial directions. In addition, a small time step
allows us to identify the 3D complex and/or small-scale motions and follow them
along the flow through time. The fine spatial and temporal resolutions with the
high order numerical schemes used in DNS lead us to catch the turbulence scales
down to Kolmogorov dissipative scale. But these types of simulations need large
computing resources accessible through supercomputers.

DNS of TBLs at high Reynolds number similar to the ones accessible exper-
imentally in large facilities is not yet possible due to the limitation of available
computational resources. Furthermore, very accurate simulations such as DNS of
flows around complex shapes are extremely difficult to perform. DNS of flat channel
flow up to Reτ ≈ 5200 are now available [81] and DNS over a flat plate have been
performed for a wide range of Reynolds number [131, 132, 125] but are limited to
Reτ ' 2000 up to now.

Large Eddy Simulations (LES) were proposed to overcome the extremely high
cost of DNS. The meshing and time resolutions required for LES are reduced, as
only the most energetic large-scale turbulence motions are explicitly resolved and
the smaller ones are modeled. LES gives accurate results suitable to different studies
with a much lower cost compared to DNS. So, in theory a higher Reynolds number
can be reached.

However, the main difficulty to perform LES of wall-bounded flows comes from
the simulation of the near-wall region which requires a high spatial resolution to
accurately resolve the scales responsible of the kinetic energy peak. To overcome
this important cost, the near-wall region is usually modeled instead of fully resolved.
However, the main difficulty comes from the fact that it is very difficult to derive
universal dynamical models for this near-wall region where the flow dynamics is
rather complex. This is particularly true for wall-bounded turbulence on curves or
complex geometries. For more details about the LES implementation strategies and
sub-grid scale models, the reader can refer to Sagaut [122].

The last approach is the Reynolds Averaged Navier-Stokes (RANS) method. This
method significantly reduces the computational costs and gives approximate time-
averaged solutions for the Navier-Stokes equations. In this approach turbulence
at all relevant scales is fully modeled, and prevents to simulate the dynamics of
turbulent structures. The RANS equations are obtained by applying a Reynolds
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decomposition, which decomposes an instantaneous velocity and pressure into its
time-averaged and fluctuating parts. These equations are similar to the original
Navier-Stokes equations but include additional terms in the momentum equations,
the Reynolds stress tensor, which is unknown and needs to be modeled.

Several families of models have been proposed depending on the strategy to
model these Reynolds stress terms. The most popular models are the eddy viscosity
models (EVM) based on Boussinesq’s hypothesis. One can distinguish several cat-
egories of EVM models based on the number of additional equations to solve. The
one-equation RANS models solve one turbulent transport equation, usually the tur-
bulent kinetic energy however other choices are possible as for the model proposed
by Spalart and Allmaras [142] which solves a transport equation for a viscosity-like
variable (other models can be found in [8, 48, 114]). The most popular methods
are within the family of the two-equation models which require solving two extra
equations for two quantities (traditionally linked to the kinetic energy and the dis-
sipation). In order to prevent the use of the turbulent viscosity hypothesis, the
Reynolds stress models solve an equation of each component of the Reynolds stress
tensor and usually an extra equation for the dissipation. In spite of the number of
equations to solve the cost of a RANS simulation usually remains much less than
for an LES as the equation are solved on a much coarser mesh. It is important to
note that RANS modeling is enough for most engineering applications that need the
prediction of the mean flow and the effects of turbulence. An overview of RANS
models can be found in Wilcox et al. [164].

Hybrid methods combining LES and RANS have been developed to retain the
accuracy and time dependence of LES in the regions away from the walls but with
reduced computational cost. This approach can take into account the unsteadiness
of turbulence in engineering applications, for example, the prediction of noise prop-
agation and dynamic loads in the aeronautical industry. RANS models are used
in regions where LES requires very fine grid resolutions, especially near the walls.
Several possibilities exist to link the RANS and LES domain. An explicit coupling
can be used to define a-priori the domain in which the RANS and LES are solved.
An alternative is the DES methods [141] for which the model is able to switch from
a RANS formulation to an LES one based on a local property of the grid and/or of
the flow.

2.2.3 Townsend-Perry theory

Townsend [152] developed a theory to scale the Reynolds stress tensor components,
in which it is the wall-attached eddies of size proportional to the wall-distance y that
contribute to the turbulent flow motion. The author assumed that the majority of
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energy-containing motion is provided by the contributions of these attached eddies
with similar velocity distributions. This theory starts from the hypothesis that an
inertial range must exist within the turbulent boundary layer; for δν � y � δ,
which is independent of both ν and δ. This range is generally located in the overlap
region.

A first approximation was proposed by the author, based on the momentum equa-
tion, in which the Reynolds shear stress is considered as a constant 〈uv〉 = −u2

τ . In
order to ensure the turbulence equilibrium hypothesis (P = ε), the dissipation rate
is taken to be inversely proportional to the distance from the wall. The previous ap-
proximation leads to impose a mixing length-scale proportional to the wall distance
via wall-attached eddies. The attached eddies correspond to large energy-containing
scales responsible for turbulent mixing (not for turbulent dissipation which occurs
at scales close to the Kolmogorov scale slowly increasing with increasing wall dis-
tances).

The contribution of the wall-attached eddies to the Reynolds shear stresses is
given in Townsend [152], as an integral formula based on the probability density of
finding eddies with size ya; where δν � ya � δ. As 〈vv〉 and 〈uv〉 are constrained
by the wall and the author proposed that the eddy probability density function is
inversely proportional to the eddy size. Hence, the Reynolds stress terms are given
by:

〈uu〉 = u2
τ

(
C∞ + C0 ln

(
δ/y

))
〈vv〉 = E0

〈ww〉 = u2
τ

(
D∞ +D0 ln

(
δ/y

))
〈uv〉 = −u2

τ (2.25)

where C∞, C0, E0, D∞, and D0 are constants which depend on the shape of the
relevant eddy.

Perry and Chong [110] and Perry et al. [111] showed that the energy spectrum of
streamwise velocity fluctuation at a wall-distance y, in agreement with Townsend’s
attached eddy hypothesis, scales as E11(k1) ∼ u2

τk
−1
1 in the range 1/δ < k1 < 1/y,

where k1 is the streamwise wavenumber. For higher wave numbers range, 1/y <
k1 < 1/η, where η is the Kolmogorov microscale that refers to the small scales. The
turbulent motion follow Kolmogorov’s law which states that E11 is proportional to
ε2/3k

−5/3
1 with ε is the turbulence dissipation rate. The largest scales of the flow are

located in the low wave number range, where k1 < 1/δ, being independent of y and
k1.

Nickels et al. [107] stated that a −1 power law behavior in the energy spectra
would occur when both inner scaling (based on the wall-normal distance y) and
outer scaling (based on δ) are simultaneously valid over the same wavenumber range.
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However, an extensive range of k−1 is not clearly visible in the very high Reynolds
number experiments of Vallikivi et al. [154] in the Princeton superpipe data [93].
Moreover, the k−1 behavior was not observed in the fully developed pipe flow of
Morrison et al. [97] (5.5 × 104 ≤ ReD ≤ 5.7 × 106). These results were interpreted
by Nickels et al. [108] as being because their measurements were not close enough
to the wall; the authors stated that it is necessary to approach closer to the wall in
order to observe the k−1 behavior.

Using the superpipe data at high Reynolds number of Princeton, Vassilicos et
al. [156] proposed a new model that include a new k−m range, E11(k1) ∼ u2

τδ(k1δ)−m

with 0 < m < 1, at the lower bound (largest scales) of the traditional Townsend-
Perry range, 1/δ < k1 < 1/δ1. This new range would exist only for the very large
Reynolds Number and in a limited near-wall region y < y∗ where y∗ is function
of the Reynolds number. This new range could be associated with the very large-
scale structures of streamwise fluctuating velocity. This new predictive model was
validated by several high-Reynolds-number turbulent boundary layer in Laval et
al. [75].

The attached eddy structures proposed by Townsend and Perry have been the
subject of many studies over the last few years. The main challenge is to identify a
family of coherent structures associated with the concept of attached eddies. Perry
and Chong [110] proposed a model based on a hierarchy of Λ-vortices which has been
extended by Perry and Marušić [112] (see Fig. 2.2). However, Srinath et al. [145]
have shown that the Townsend Perry k−1 range can be simply explained by a much
simpler on-off model of streamwise fluctuating velocity structures as soon as their
spacial distribution is space filling.

2.2.4 Coherent structures

Turbulent motions are characterized by a random interaction between a wide range
of scales. Different models introduced the notion of turbulent eddies. Bradshaw [11],
Kline et al. [68], and Townsend [152] were among the first to highlight the role
of coherent structures. Nowadays, coherent structures are considered to play an
important role and are the focus of many investigations in turbulence research.

Different types of coherent (or quasi-coherent) structures are summarized in the
literature. They are located along the boundary layer covering a wide range of
length scales. A brief overview of the commonly identified coherent structures is
presented below.



17 Chapter 2. Turbulent Boundary Layers

Fig. 2.2. Schematic of a typical hierarchies of eddies randomly distributed in groups
or packets of hairpin vortices. (Reproduced from Silva et al. [133]).

Near-wall streaks

Streaks of high- and low-speed fluid, that are generally observed in the near-wall
region of wall-bounded turbulent flows, are one of the earliest signs of the existence
of coherent structures. Using a hydrogen bubble generating wire, Kline et al. [68]
confirmed the existence of low-speed streaks in the buffer layer of turbulent boundary
layers. They are also proposed mechanisms of the low-speed streaks formation and
break-up as well as the interaction of the near-wall streaks with the outer part of
the flow. The authors mentioned that “streaks interact with the outer portions of
the flow through a process of gradual lift-up; then, sudden oscillation, bursting, and
ejection”. Here, bursting describes the interaction between near-wall streaks and the
outer parts of the flow by a violent breakup of a low-speed streak after it is lifted
from the wall.

Using experimental data, Kim et al. [63] showed the importance of low-speed
streaks in generating turbulent kinetic energy. The production of turbulent energy
in a region up to y+ = 100 occurs during bursting times. The authors described
the bursting process in three stages: lifting of the low-speed streaks, the growth
of an oscillatory motion followed by breakup accompanied by a return to the wall.
They are also associated with the essential energy transfer from the mean flow to
the fluctuations during the oscillatory motion.

Using an instantaneous streamwise-spanwise plane, Robinson et al. [119] showed
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that the low-speed streaks are more elongated (in the streamwise direction) and
thinner (in the spanwise direction) than the high-speed ones.

In the literature, streaks are defined as being located in the near-wall region
(y+ < 10) and to have a height of the order of 50+. In the streamwise direction,
they are elongated from 500+ to 2000+ and have a spanwise width between 20+ and
60+ [15]. For more details about their statistics, one can refer to the experimental
study of Lin et al. [84].

Using data from DNS of turbulent channel flow, Jiménez and Moin [61] investi-
gated large-scale structures that are convected several thousand wall-units, during
a very long timescale. The authors state that these observations imply that such
structures are very stable and suggest that this may be related to the very long
extent of the near-wall streaks in the streamwise direction observed in experiments.

A very detailed study of the characteristics of the near-wall streaks is made
possible with the use of DNS. The near-wall streaks are known to play a significant
role in the near-wall cycle of coherent structures generation and breakup in the buffer
region. Schoppa and Hussain [128] conducted a very detailed stability analysis of a
model of near-wall streaks to explain the streaks breakup.

Quadrants

Four distinct types of motions based on the decomposition of the Reynolds shear
stress were introduced by Wallace et al. [161]. According to the signs of the stream-
wise and wall-normal velocity fluctuations, four quadrants are defined. The second
quadrant motions (u < 0 and v > 0) and the fourth one (where u > 0 and v < 0)
were associated with the ejection and sweeps motions.

A probability density function analysis of the components of velocity fluctua-
tions shows that the probability of spending time in the second (Q2) and fourth
(Q4) quadrants (where the product uv is negative) is much more than the others
quadrants. In both quadrants, the negative product uv implies that these events
produce turbulent energy, where the production of turbulent kinetic energy was de-
fined as P = −〈uv〉∂〈U〉/∂y. Hence, Q2 and Q4 are considered as the significant
turbulence producing motions.

Corino and Brodkey [26] realized that the main generation and dissipation of
turbulence energy occur in the generation region of 5 ≤ y+ ≤ 70 and the origin of
the fluid ejections was located in this region. They observed experimentally that
these motions play an essential role in turbulence production and found that the
size of the eddies increases with increasing distance from that region. The ejection
motions always terminate with fluid entering from upstream towards the wall, which
corresponds to the sweep event.
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From hot-wire anemometry and conditional averaging, Wallace et al. [161] showed
that sweeps contribute more to the production of turbulent kinetic energy in com-
parison to ejections in the region (y+ < 15) and less as we move away from the
wall y+ > 15. Using a probability density function of the velocity, Jiménez and
Hoyas [59] suggested that the increase in streamwise fluctuating velocity is caused
by stronger ejections coming from the wall, rather than stronger sweep motions.

As defined in the previous section that ejection events are a process of lifting
streaks from the wall. Kline et al. [68] declared that the fluid ejection from the wall
is considered to be the main mechanism of energy transfer between the near-wall
and outer regions. It was noticed by Robinson et al. [119] that strong ejections seem
to originate from the central part of streaks more often than from either end. The
authors also showed that spanwise extent of the outer-region ejections ranges up to
200+.

Vortices

A vortex is defined by Robinson et al. [119] as a coherent structure that exhibits
instantaneous spiral or circular streamlines in a plane normal to its core. Vortical
structures are commonly observed in all regions of turbulent flow but in various
forms. They play an important role in the dynamics of the turbulent boundary
layers.

Back to 1950s, Theodorsen [149] presented horseshoe-shaped vortices (also called
hairpins) as “molecules” of turbulence. He represented the shape of the horseshoe
vortex by a sketch showing its two legs attached to the wall and its head tilted and
pointing downstream (see Fig. 2.3 reproduced from his paper).

Townsend [151] later published observation of coherent structures by interpreting
the spatial correlations of the streamwise velocity fluctuation and concluded that
the dominant structures near the wall are tilted eddies. He also proposed wall-
attached vortices in the streamwise direction which are considered to be the legs of
Theodorsen’s horseshoe vortices.

Küchemann [70] described vortical motions as “the sinews and muscles of fluid
motions”, where they play an important role in the turbulence generation as well
as in the exchange between the boundary layer regions. Ejections and sweeps have
been shown to be associated with quasi-streamwise vortices located in the near-wall
region of turbulent flows. The near-wall low-speed streaks are also associated with
quasi-streamwise vortices that pushed the low-speed fluid away from the wall and
induced the ejection events [10, 137].

Counter-rotating vortices that are oriented and inclined downstream are shown
by Robinson [118] enclosing the wall layer. He also suggested that these vortices
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Fig. 2.3. Horseshoe vortex sketched by Theodorsen [149].

create and lift the near-wall streaks by creating cross-flows very close to the wall.

Smith et al. [138] proposed a model based on hairpin vortices by describing the
fluid dynamics of the momentum exchange in the near-wall region of a turbulent
flow. This model explains the processes of generation of new vortices and their
growth to larger scales moving towards the outer region. They also noted that the
majority of vortices in a TBL are asymmetric or single-legged hairpin vortices, while
symmetric vortices rarely appear. The low-speed streaks were defined as traces of
vortex interaction with the fluid in the wall-layer. More detailed eddy models are
available in [110, 111, 112].

It was noted that the shape and size of hairpins depend on the Reynolds number
as mentioned in Adrian et al. [2] and Head and Bandyopadhyay [49].

Various vortex identification methods have been proposed to distinguish vortex
motions from other structures including vorticity. Several methods were summarized
in Zhou et al. [173]. Hunt et al. [53] noted that the second invariant of the velocity
gradient tensor, which is known as Q-criterion, can be used to identify vortices which
measures the dominance of vorticity over strain. Another method, based on local
pressure minima, was also proposed where the pressure in the vortex core is lower
than that outside the vortex boundary. Chong et al. [19] investigated a vortex core
in relation to complex eigenvalues of the velocity gradient tensor. These complex
quantities imply that the local streamline is closed or spiral shaped.
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Large-scale motions

Using temporal correlation of the streamwise velocity fluctuation, Townsend [151]
has investigated large-scale structures in wall-bounded flows. In the boundary layers,
these structures can be classified into two categories: large-scale motions (LSM) and
very large-scale motions (VLSM), where LSMs elongate in the streamwise direction
from 1 to 3δ and VLSMs are larger than 3δ [65]. LSMs are generally located in
the logarithmic and lower wake regions of TBL [55, 33]. Recently, several studies
have been devoted to such structures which contribute significantly to the turbulent
kinetic energy as well as to the Reynolds stresses for high Reynolds number turbulent
flows [40, 58, 168].

The study of these structures and their organization is therefore essential to
understand the physics of wall turbulence and to improve turbulent flow models.
Using single-plane PIV measurements of a turbulent boundary layer on a flat plate,
Adrian et al. [2] linked the origins of LSMs to the streamwise alignment of hairpin
vortices in the form of packets that move forward with the same convective velocity
and induce large regions of low speed between their legs, (see Fig. 2.4).

The existence of large-scale structures is linked with various observations and
changes in the turbulent boundary layer behavior. Above the near-wall peak that
appeared in the streamwise velocity fluctuation profiles, a local minimum or flattened
region was observed at sufficient Reynolds numbers in the logarithmic region around
y+ = 100 [52, 55, 145]. This constant region is followed by a second outer peak that
appears in the wake region as the Reynolds number increases. This outer peak
is generally associated with large-scale structures [55]. The intensity of the outer
peak largely depends on the Reynolds number and grows with increasing Reynolds
number, whereas the inner peak is less affected by the Reynolds number variation.

A DNS of a channel flow with a sufficiently high Reynolds number (Reτ =
5200) has been achieved by Lee and Moser [81]. However, the implementation of
a DNS of a turbulent boundary layer on a flat plate is still more complicated and
therefore restricted to moderate Reynolds numbers. The behavior of very large-
scale structures obviously depends on the Reynolds number, and they are expected
to have an increasing impact on the flow dynamics at very high Reynolds numbers.
However, these very large Reynolds numbers are not yet accessible by DNS. But
DNS remains an essential tool for studying the spatial and temporal organization of
these structures at moderate Reynolds numbers [34, 125, 131] large enough to see
the emergence of these very large-scale structures. As an alternative to DNS, higher
Reynolds numbers have been achieved using wall-resolved large eddy simulations
(LES) [115], but the spatial resolution was not sufficient to study coherent structures
down to the buffer region.
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Fig. 2.4. Conceptual model of nested packets of hairpins vortices growing up from
the wall. (Reproduced from Adrian et al. [2]).

Observations based on space-time velocity correlation are commonly used to
highlight the presence of large-scale motions. Two-point velocity correlation has been
widely used to present a mean statistic of large-scale structures. The isocontours of
the two-point correlation always exhibit an elliptical shape with a downstream tilt
angle. Based on this average quantities the average angle of the LSMs is found in
the literature to be from 9◦ to 33◦ [13, 20, 26, 37, 44, 62]. This large variation in the
mean angle depends on the importance of the Reynolds number and the history of
the pressure gradient, knowing that an adverse pressure gradient can significantly
increase the angle of the LSMs (Comparison of the two-point spatial correlation
between ZPG and APG cases is presented and discussed in Chapter 5).

Lee et al. [80] investigated the large-scale motions using DNS of turbulent channel
flows (Reτ = 930). They have related the production of VLSM to the merging of
the LSMs. Balakumar and Adrian [7] found that VLSMs in pipe, channel and
boundary layer flows have almost the same behavior, implying that they result from
similar mechanisms. They also highlighted the importance of LSM and VLSM in
the transfer of kinetic energy and shear stress. A significant portion of the kinetic
energy (40− 65%) and Reynolds shear stress (30− 50%) is contributed by VLSMs
in canonical flows [7, 45, 58, 77].

Using spectral information and probability density function from channel flow
simulations up to Reτ = 2000, Jiménez and Hoyas [59] investigated the velocity
fluctuations in the logarithmic and outer layers of turbulent channel flow. They
have stated that the long-wavelength range of the streamwise and spanwise energy
spectra scales with the half-width channel and associated these wavelengths with
the very long structures. Del Álamo and Jiménez [31] observed in turbulent channel
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flows VLSMs which extend up to 20h, where h corresponding to the half-width
channel.

In order to investigate TBL at an extremely large Reynolds number, Hutchins
and Marušić [55] analyzed hot wire measurement in an atmospheric boundary layer.
They found very large structures extending up to 20δ and largely located in the
logarithmic region [55]. The very large-scale motions have been shown by Mathis
et al. [92] to have a footprint down to the near-wall region. Using this observation
of the correlation between the inner and the outer region they developed a model
based on the concept of a universal inner region that is modified through modulation
and superposition of the large-scale outer motions [91].

The large-scale coherent motions in boundary layers were investigated in [132]
to focus on the large-scale structures in the outer layer and their influence on the
near-wall motions. A three-dimensional representation of the two-point correlation
of the streamwise velocity fluctuations for a boundary layer is reproduced from [132]
in Fig. 2.5 where the reference point is located in the outer region (y = 0.6δ). The
middle elliptical shape represents the high-speed motion and the white ones corre-
sponding to low-speed motions. In order to compare the characteristics of different
turbulent flows, the two-point correlation Cuu conditioned on different intensities of
u from channel and boundary layer flows was compared with the pipe flow simula-
tion of Lee and Sung [77]. The authors found that far from the wall in channel flows,
low-momentum structures are substantially longer than high-momentum ones, while
both lengths are similar in pipe and boundary layer flows.

Large-scale motions have been considered to be responsible for the k−1
x behavior

of the streamwise velocity spectrum [139] and thought to be the attached eddies
discussed in the model of Townsend [152] (this model is detailed in section 2.2.3).
Using spectral coherence analysis for relatively high Reynolds number TBL flows,
universal wall-attached structures have been identified in [5]. The authors emphasize
the need for an unobstructed view of a k−1

x scaling that is consistent with such a
self-similar wall-attached eddy structure.

Although the general extent of large-scale structures is almost kept for a long
time, the detail of the complex shape of these structures may evolve more rapidly.
For this purpose, several methods have been used to identify the existence of large-
scale motions and to detect their shape accurately. Spectral decomposition method
is used in Abreu et al. [1] to extract the coherent structures from DNSs of Pipe flow
at Reτ = 180 and 550.

The large-scale motions of streamwise velocity fluctuations u are detected in
Solak and Laval [140] using a method based on simple threshold of u. The data was
extracted from DNS of flat plate TBL up to Reθ ∼ 2500. In order to investigate the
effect of detecting meandering large-scale structures from 1D hot-wire measurement
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Fig. 2.5. Three-dimensional representation of the correlation of the streamwise
velocity fluctuations, for a boundary layer at y = 0.6δ corresponding to y+ = 1530.
(Reproduced from Sillero et al. [132]).

or 2D PIV, statistics of 2D and 3D detection methods are compared and a good
equivalence was shown between the two methods.

2.3 Effect of pressure gradient

Although turbulent boundary layers subjected to an adverse pressure gradient are
present in a large variety of flows in many industrial problems, the majority of studies
have been performed on canonical wall-bounded flows with zero or low pressure
gradient. This is mainly due to the complexity of studying flows subjected to an
APG compared to canonical ZPG flows. The presence of a pressure gradient in wall-
bounded flows is mainly caused by the wall curvature. Since the pressure gradient
in the streamwise direction dominates in other directions, we only consider the
streamwise pressure gradient in our studies. At the edge of the boundary layer, a
relationship between external velocity Ue and pressure Pe has been established by
Bernoulli’s equation:

∂Pe
∂x

= −ρUe
∂Ue
∂x

(2.26)

In addition to the ZPG case, two cases of pressure gradient occur. Firstly, the
favorable pressure gradient (FPG) corresponds to a decrease in pressure (∂Pe

∂x
< 0)

and an acceleration of the flow (∂Ue
∂x

> 0). The FPG tends to reduce turbulence
and a strong FPG can change a turbulent flow to laminar. Secondly, the adverse
pressure gradient (APG) case, ∂Pe

∂x
> 0 leads to decelerated flow and an increase in

turbulence. For example, in the aeronautical industry, the forward part of an airfoil
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corresponds to the FPG case, but its downstream part is subjected to APG. One
effect of an APG is to increase the growth rate of the boundary layer thickness.

A non-dimensional pressure gradient parameter is defined by Clauser [23] as

β = (δ1/τw)∂Pe/∂x. (2.27)

This parameter represents the “intensity” of pressure gradient normalized by
inner variables. This parameter can be interpreted physically as the ratio between
the pressure forces and the shear stress. Also, the three categories of TBL can be
related to β, where β = 0 in the absence of pressure gradient (ZPG), β < 0 in
FPG cases and for an APG, β > 0. When a TBL is exposed to a very strong
APG (β → ∞), the flow separates from the wall. This flow separation is generally
undesired to achieve good aerodynamic performance in aeronautical applications.
Reverse flows have been observed close to the wall in turbulent channel and boundary
layer flows with zero or small pressure gradient [166, 167] and up to the log layer
for a strong adverse pressure gradient TBL [12].

Detailed studies of the effects of APG on the various parameters of TBL have
been proposed by Mellor and Gibson [95] and Mellor [94]. The APG is represented
by the pressure gradient parameter β and the exponent of the power law which
states that the streamwise velocity (U) far from the wall changes proportional to
the streamwise position x, this law is given as

U(x) ∼ xm (2.28)

where the exponent m changes depending to the intensity of the pressure gradient.
The effects of both m and β on the velocity defect was shown for a wide range of
pressure gradient (−0.5 < β <∞) using several experimental cases.

In order to better understand the effects of APG on the turbulence properties
of a boundary layer, a lot of experimental and numerical studies were performed
for a wide range of Reynolds numbers and pressure gradients. However, due to the
difficulty to implement a well defined APG in numerical simulations more DNSs are
available in the literature on a flat plate with ZPG.

The first DNS with APG was produced by Spalart and Watmuff [144]. A non-
self-similar attached APG TBL up to Reθ = 1600 was simulated with β = 2. The
Reynolds stress profiles and the momentum balance were compared with experimen-
tal data. A comparison of the mean velocity profile shows that a favorable pressure
gradient shifts up the U+ profile in the buffer and lower log region, and down in
APG TBL. They also stated that there is no way to distinguish a buffer-layer effect
from one that persists in the logarithmic layer because of the low Reynolds number
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obtained in the DNS.
As the parameter β is directly linked to the exponent of power law m of the

decelerating velocity in a TBL with APG, Tennekes and Lumley [148] proposed the
relationship (2.29) between these two parameters based on a linear analysis

m = − β

1 + 3β (2.29)

Non-linear analysis of the TBL equations was performed by Skote et al. [136]
in order to relate both previous parameters with the shape factor which is also
used to identify the importance of a pressure gradient. Equation (2.30) was found,
and better agreement than the previous formula is reported. In this study, the
turbulent statistics of two APG cases are compared with a reference ZPG case. The
APG data are obtained from two DNS at low Reynolds numbers (up to Reθ =
690) of self-similar TBL that is subjected to low APG (β ≈ 0.24 and β ≈ 0.65).
The constant streamwise pressure gradient is obtained by changing the freestream
velocity according to the power law.

m = − β

H (1 + β) + 2β (2.30)

Skote and Henningson [135] suggested a method to impose an APG by adapting
the boundary condition for numerical simulations of flat plate TBL. This condition
was validated by performing a DNS of attached TBL and another one which sepa-
rates over a large part of the domain. Through an analysis of the turbulent kinetic
energy and its production at several streamwise positions, the authors show that
the near-wall flow depends mainly on local parameters rather than on the history
of TBL.

Kitsios et al. [67] performed a DNS of flat plate TBL at Reynolds number up to
Reθ = 13800 that is subjected to a strong APG at the edge of separation (β = 39).
As the use of a curved wall in high accuracy simulations is difficult, the authors
obtained APG by applying a wall-normal velocity suction at the top of the compu-
tational domain opposite to the wall. The velocity suction is calculated based on
a potential flow solution of an expanding duct. The detail of this method will be
summarized in chapter 3. The effects of increasing pressure gradient are shown in
the mean streamwise velocity profiles and the Reynolds stress terms in comparison
to another mild APG TBL (β = 1) [66] and ZPG one. By analysis of the streamwise
averaged momentum terms for the strong APG TBL, the authors noticed that in the
inner region the viscous term (−ν∂y∂y〈U〉) is positive, the Reynolds stress gradient
(∂y〈uv〉) is negative, and they are balanced with the positive streamwise pressure
gradient. They have explained this by a net transfer of streamwise momentum from
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the mean field to the fluctuating field. They show that a net momentum transfer
from the fluctuating field to the mean field occurs in the outer region. Since the
viscous term becomes negligible and the (∂y〈uv〉) term reaches a positive outer peak
in balance with the convective terms. They also reported that the transfers of the
wall-normal momentum are reversed from those of the streamwise momentum.

An analysis of three large-defect APG TBLs was presented by Gungor et al. [47].
One of them was obtained from a DNS of APG TBL at moderate Reynolds number
Reθ = 1003− 4638 starting from a recycling plane of an auxiliary DNS ZPG TBL.
Their study showed that the transferring of turbulent energy from the mean flow to
turbulence in the outer region is less efficient in large-velocity-defect than in ZPG
cases, since all Reynolds stresses decrease with the increase of the velocity defect in
the outer region.

2.3.1 Influence of APG on TBL statistics

The global organization of boundary layer as discussed in section 2.2.1 is globally
the same in the presence of small to moderate adverse pressure gradient. However,
the range of definition, as well as the property of each approximated law, will be
modified by the presence of a pressure gradient.

According to Durbin and Belcher [35], the separation of the boundary layer into
inner and outer parts, based on relative strength of viscous forces, might not be
valid anymore when the boundary layer is subjected to a strong APG. The authors
emphasized the need for a middle region to match the near-wall region with the
wake layer of the TBL because the overlapping between the inner (with the wall-
unit scaling) and outer region (scaled by the boundary layer thickness δ) leads to
the following contradiction, δ ∼ L, where L is the streamwise length scale.

Since the fluctuations vanish at the outer edge of the boundary layer, integration
in the wall-normal direction of equation (2.11) leads to the formation of the following
equation:

P + ρ〈vv〉 = Pe (2.31)

As the streamwise gradient of wall-normal Reynolds stress is almost negligible,
the streamwise pressure gradient can be substituted by its value at the edge of
boundary layer:

∂P

∂x
≈ dPe

dx
(2.32)

Close to the wall, in the presence of APG, the equation (2.10) can then be
simplified to

µ
∂2〈U〉
∂y2 − ρ

∂〈uv〉
∂y

− dPe
dx

= 0 (2.33)
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Integration in the wall-normal direction of (2.33) by taking into account that
τ = τw = ρu2

τ at the wall, leads to the equation which describes the inner region of
TBL subjected to an APG

µ
∂〈U〉
∂y
− ρ〈uv〉 = dPe

dx
y + ρu2

τ (2.34)

Viscous sublayer

In the viscous sublayer that is very close to the wall, where viscosity dominates the
Reynolds stress term in the left-hand side of (2.34), a significant adverse pressure
gradient makes the linear wall law no longer valid. The new law that represents the
behavior of the mean velocity profile in the presence of an adverse pressure gradient
becomes

U+ = y+(1 + 1
2p

+y+) (2.35)

where p+ is the streamwise pressure gradient scaled by the inner quantities

p+ = ν

ρu3
τ

dPe
dx

(2.36)

The equation (2.35) demonstrates that the second-order derivative of the mean
velocity profile is positive at the wall for adverse pressure gradient (p+ > 0). As
the second-order derivative is necessarily negative in the outer part of the boundary
layer, this implies that the mean velocity profile exhibits at least one inflection point
at some distance from the wall.

Most of RANS models are generally based on the U+ = y+ equation, which only
describes the cases of ZPG and low pressure gradient

(
p+y+2 � 1

)
. As the pressure

gradient term in (2.35) cannot be neglected for a significant pressure gradient, these
RANS models fail to correctly predict such flows.

In addition to the Reynolds number effects on the skin friction noted in [101],
where Cf decreases with increasing in the Reynolds number, Vinuesa et al. [160]
found that an increase of APG also leads to decrease the skin friction by comparing
three turbulent boundary layers (β = 0, 1 and 2).

log-region

The logarithmic law has been derived for very large Reynolds number flows, however
it is able to characterize flows in situations where this condition is not respected.
The universality of this law is still questioned, especially for describing the mean
velocity profile in presence of an adverse pressure gradient.

The effect of the pressure gradient is noticeable on the mean velocity profile in
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Fig. 2.6. Effect of various pressure-gradient on the mean velocity profile in a
boundary layer. (Reproduced from Catris and Aupoix [18]).

the wake region where the deflection from the logarithmic behavior is smooth in
the case of a favorable pressure gradient and becomes steeper with the increase in
adverse pressure gradient. Catris and Aupoix [18] showed a comparison of the mean
velocity profile between favorable, zero and adverse pressure gradient boundary lay-
ers (see Fig. 2.6). The dashed line (FPG: Relam) in the buffer layer corresponds to
a very strong FPG case, where the flow returns to laminar (relaminarization) [103,
104]. The effect of the pressure gradient is clearly shown on the magnitude of the
freestream velocity that must affect the extent of the logarithmic region. Brown and
Joubert [14] and Huang and Bradshaw [51] have also reported an increase of the
wake-region which reduces the extent of the log-layer. Kitsios et al. [67] noted that
an increase of adverse pressure gradient reduces the extent of the logarithmic layer
until the log-layer almost entirely disappears in the presence of a very strong APG.

In agreement with the experiments of Nagano et al. [99] and simulations of
Spalart and Watmuff [144], Catris and Aupoix [18] stated that, in the case of a
moderate pressure gradient, the slope of the logarithmic region κ0 remains constant
and the pressure gradient only affects the intercept of the log-law, C, in eq. (2.23).

However, using low Reynolds number turbulent boundary layers subjected to
strong APG, Nickels [106] noticed that the presence of an APG alters both the
slope and the intercept of the logarithmic region. He suggested a modified log-
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law based on the observation of Clauser [22] that the sublayer grows up to reach a
critical Reynolds number Rec that is approximately the minimum critical Reynolds
number of a laminar boundary layer. A critical wall-distance yc was introduced
which is corresponding to the sublayer edge and it was found to be y+

c ≈ 12. For
adverse pressure gradient, the logarithmic law defined in eq. (2.23) was modified by
Nickels [106] through changing the constant κ0. The relation of the variable slope κp
is given by the following equation (the hypothesis and the derivation can be found
in [106])

κp = κ0√
1 + p+y+

c

(2.37)

where p+ is the streamwise pressure gradient defined in (2.36).
The modified log-law of a boundary layer with APG is then written as follows

U+ = 1
κp

log y+ + C ′ (2.38)

with C ′ is the new intercept of the logarithmic law, which changes simultaneously
with κp as the pressure gradient increases. Moreover, in addition to the high res-
olution required to validate the new law (2.38), George [41] exposed another diffi-
culty related to the Reynolds number to validate this law. They distinguish within
the logarithmic region between the ‘mesolayer’ where the turbulence scales of mo-
tion remain affected by viscosity and the true ‘inertial layer’ where they separate
approximately at y+ = 300. Furthermore, a sufficiently large logarithmic law re-
gion is always required with a sufficiently strong pressure gradient, hence a very
large Reynolds number. The authors concluded that δ+ > 3000 (corresponding to
Reθ > 10000) is a necessary condition to investigate the logarithmic behavior in this
region.

Effects on the Reynolds stress profiles

In addition to the effects of the pressure gradient on the mean velocity in the wall
and log regions, the Reynolds stress profiles were also affected by the presence of the
pressure gradient, especially the adverse one. Besides the near-wall peak that was
observed in the streamwise turbulence intensity profile in all wall-bounded flows,
a second outer peak was also noticed when a boundary layer is subjected to an
adverse pressure gradient even at a moderate Reynolds number. Using a wind tunnel
experiment of TBL subjected to a strong adverse pressure gradient (β ∼ 20) up to
Reθ ' 50000, Sk̊are and Krogstad [134] noticed an outer peak in the turbulence
production rate located at y/δ ' 0.45. They stated that this peak is due to the very
high turbulent shear stresses found in the outer region. Moreover, for sufficiently
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large adverse pressure gradient, this peak of production is associated with the peak
of the Reynolds stresses that appeared at the same wall distance. Using results
from a DNS of self-similar APG TBL, Kitsios et al. [67] noticed that an outer peak
in all of the Reynolds stresses was located at approximately the same wall-normal
position y = 1.3δ1 for the mild APG (β = 1) and at y = δ1 for the strong APG at
the verge of separation. Furthermore, they noticed that this peak coincides with the
outer inflection point of the mean streamwise velocity profile, suggesting instability
of the shear flow. Moreover, the increase in the pressure gradient makes this peak
more noticeable and spatially located.

George et al. [43] stated that the initial conditions and the way of imposing the
APG have a significant influence on the position of the outer peak of the streamwise
Reynolds stress. They also associated the position of this outer peak with the
inflection point occurring in the mean velocity profile at approximately the same
wall-normal distance. The effect of the pressure gradient on the turbulence statistics
will be investigated in more detail in chapter 4 using the results of our new DNS
with moderate pressure gradient.

2.3.2 Coherent structures in presence of APG

Furthermore, while turbulence was initially and mainly studied in canonical wall-
bounded flows, these flows remain less understood than homogeneous or free shear
flows. Hence, the dynamic of non-canonical wall-bounded flows such as APG TBLs is
much less documented. The numerous existing studies on APG TBLs have generally
focused on statistical properties rather than on investigating the coherent structures
and their dynamics.

The near-wall low-speed streaks are still present in TBL with moderate APG as
noticed by Kline et al. [68] in their experiment up to Reθ = 1680. These streaks
appear to be shorter and more wavy in the presence of an adverse pressure gradient.
They also mentioned that a favorable pressure gradient reduces the bursting rate,
while an adverse pressure gradient tends to make these events more frequent and
violent. Lian [82] investigated the coherent structures in APG TBLs using the
hydrogen bubble technique. He noticed that in ZPG the high-speed streaks are
relatively wider than the narrow low-speed ones, in agreement with the observation
of [68]. However, in presence of APG, especially in the vicinity of separation, the
low-speed streaks become wider and their width becomes comparable to that of
the high-speed ones. Consistent with the results found by Na and Moin [98] and
Spalart and Coleman [143], Skote and Henningson [135] noticed in their work that
the near-wall streaks are reduced by the effect of an APG. Furthermore, the authors
stated that even the streaks vanish at separation but they start to develop again
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after reattachment.
A direct numerical simulation of a converging-diverging channel flow was per-

formed by Marquillie et al. [90] at Reynolds number Reτ ≈ 617. It is important to
note that this DNS was the first one that was made using a curved shape to generate
the pressure gradient and nowadays it is still rare to make this type of DNS as it is
very difficult to perform. Just after the onset of the APG zone, regions of high ki-
netic energy production were found on both walls. By performing a streaks stability
analysis, the peak in turbulent kinetic energy was then explained as a result of the
increase of the streaks instabilities in the APG region leading to the generation of
strong vortices (see Fig. 2.7).

In their experimental study, Krogstad and Sk̊are [69] noted that the impor-
tance of the second and fourth quadrants is comparable with the case of ZPG TBL.
Whereas in the APG TBL, the Q4 events (sweep motions) are more frequent and
longer lasting than the motions of the other quadrants near the wall as well as in the
lower part of the outer region. Using HW measurements, Sk̊are and Krogstad [134]
found that large turbulent kinetic energy production occurred in the outer layer of
a strong APG TBL in addition to the near-wall region. These observations are in-
terpreted through the presence of strong turbulent shear stresses in the wake region
(around 0.4δ) where −〈uv〉 achieves ∼ 16+.

Moreover, three cases of strong APG TBLs were investigated in Gungor et
al. [47]. They found that the Reynolds stresses and turbulence production rate
reached their maximum in the middle of the boundary layer and not in the near-
wall region. Investigation of the quadrants of the Reynolds shear stress reveals that
sweeps dominate the ejection events in the near-wall region, whereas the outer region
is dominated by ejections.

Starting from direct numerical simulations of a ZPG turbulent boundary layer
and two equilibrium TBLs subjected to an adverse pressure gradient, Lee and
Sung [79] investigated the statistics of low-momentum regions and hairpin vortex
packets, as well as their sensitivity to the presence of APG. A three-dimensional
analysis shows that the outer layer is populated by streamwise hairpin packets. The
average tilt angle of the hairpin vortices was also evaluated and found to be 13◦ for
the ZPG and 18.5◦ for the APG. Recently, the coherent vortices were identified by
using the swirling criterion (λ2) from the mild Reynolds-number well-resolved LES
of Tanarro et al. [147], for two APG cases (NACA0012 and NACA4412) and one
ZPG.

Several turbulent boundary layers with different moderate APGs (β = 1− 4.75)
have been performed in the experimental study of Monty et al. [96]. In the outer re-
gion, this investigation has shown that large-scale coherent structures of the stream-
wise velocity fluctuation contain more energy than small-scale ones based on a com-
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Fig. 2.7. Visualization of intense vortices generated in the APG region of the flow
from a DNS of converging-diverging channel flow using a positive iso-value of the Q
criterion. (Reproduced from Laval et al. [74]).

parison of the contribution of different scale coherent structures on the mean stream-
wise Reynolds stress (structures with streamwise length less than δ are considered
as small-scale structures).

Furthermore, Lee [76] performed DNS of TBLs subjected to mild, moderate
and strong APG to investigate the large-scale structures of the streamwise velocity
fluctuations in the logarithmic region. Using two-point spatial correlations and
instantaneous flow fields of the streamwise velocity fluctuations, he noted that the
pressure gradient strongly affects the spatial organization of the streamwise velocity
structures in the log layer, where increasing the APG (β > 2) clearly shows a
reduction in the streamwise extent of the u-structures comparing to the mild APG
(β < 2). Moreover, the increase in the spanwise length scale of large-scale structures
for the mild APG TBL flow promotes the merging between the adjacent structures,
which explains the increase in streamwise length scale for these structures in an
APG flow compared to a ZPG one. Also, it was noticed based on skin-friction
analysis that these large-scale structures in the log-region have stronger imprints
on the near-wall region comparing to ZPG. On the other hand, Lee and Sung [79]
have used two-point correlations and linear stochastic estimation to characterize the
low-speed regions in both inner and outer layers in order to also investigate this type
of coherent structures.

Hot-wire measurements of ZPG and three APG TBLs were performed by Vila
et al. [158] to distinguish the effects of both APG and Reynolds number on the
boundary layer. A scale decomposition analysis showed that for a sufficiently high
Reynolds number, a large-scale spectral peak was shown in the outer region of
both ZPG and APG TBLs with a streamwise wavelength of λx/δ99 ≈ 6, which
is associated with high Reynolds numbers and another related to the APG effect
λx/δ99 ≈ 3.

The coherent structures of streamwise velocity fluctuations are also investigated
using data from DNS of an APG TBL (β = 1.43) of Yoon et al. [169] up to Reθ =
5700. The structures have been detected based on the root mean square of the
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velocity fluctuation urms as a function of wall-normal distance y. In order to model
the large-scale motions in the outer layer in TBL, Bross et al. [12] detected the
uniform-momentum zones in an experiment of adverse pressure gradient turbulent
boundary layer using time-resolved PTV measurements with high spatial resolution.
The effects of large-scale motions on the reverse flows are discussed in detail herein,
as well as the interaction between the near-wall and the outer structures.

2.4 Equilibrium boundary layer

Equilibrium boundary layer is considered as important academic case to investigate
even though there is no universal definition of “equilibrium”. This notion was firstly
proposed by Clauser [23, 22], assuming that equilibrium in a boundary layer is
achieved when the pressure gradient parameter β is constant.

Most of the theoretical studies focus on equilibrium TBLs, especially in APG
cases, as it is easier to link it to the Navier-Stokes equations, where all terms of the
governing equations must maintain the same relative weight while the flow develops.
However, most existing turbulent boundary layer flows are out of equilibrium since
it is not easy to obtain and maintain an equilibrium in the flow as length and time
scales vary downstream and TBL parameters are interrelated.

Bradshaw [11] showed that in order to maintain equilibrium in a turbulent
boundary layer, a necessary condition is that the contribution of the pressure gra-
dient to the momentum deficit growth must be proportional to the contribution
of the wall shear stress. Furthermore, it has been shown that this stress im-
plies that the parameter β is constant. Clauser [22] and Lee [76] observed that
a boundary layer in equilibrium state must have a self-similar velocity-deficit profile
(Ue − U)/uτ = f(y/δ). Furthermore, according to the theories of Mellor and Gib-
son [95] and Townsend [150], a sufficient condition for β to be constant is that the
freestream velocity (Ue) distribution follows the power law (2.28).

Skote et al. [136] and Lee and Sung [78] present results from a numerical simu-
lation for an equilibrium boundary layer. They imposed a quasi-constant pressure
gradient along the simulation domain by prescribing a free-stream velocity distribu-
tion following the power-law. Furthermore, self-similarity analysis was done for the
DNS data of the strong APG boundary layer of Kitsios et al. [67], where different
quantities were found to be independent of the streamwise direction.

Townsend [150] also shows that if β is constant, the shape factor H = δ1/θ

must be a constant and δ1 should vary linearly in the streamwise direction. Both
of these results have been verified experimentally by Clauser [23] and Sk̊are and
Krogstad [134]. Castillo and George [16] have shown that most TBLs seem to
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be in equilibrium if the latter is established when the pressure gradient parameter
Λ = constant. The behavior of this parameter has been tested and analyzed in
more detail in section 4.2.1. Other parameters have also been proposed such as the
Clauser factor G defined as

G = H − 1
H
√
Cf/2

. (2.39)

The streamwise pressure gradient parameter scaled by the viscous quantities p+

(2.36) can also be used to identify an equilibrium boundary layer.
In absence of an analytical solution of the Navier-Stokes equations, several sim-

ilarity laws are proposed to describe the boundary layer, which give us a partial
overview. But we still do not know the conditions where these laws are valid for cor-
responding velocity defect, i.e. which pressure gradient parameter is better to use?
in which Reynolds number range? what is the physical meaning of the parameters
used to normalize the TBL quantities? in addition to the effect of upstream condi-
tions. In order to answer the different questions, a lot of studies are dedicated to
the scaling of different wall-bounded turbulent flows. Numerous velocity and length
types of scalings have been proposed in the literature.

The wall-unit scaling based on the friction velocity uτ and the kinematic viscosity
ν is efficient to collapse the profiles of different cases in the inner region, especially in
canonical ZPG flows. However, the important challenge is still to find an appropriate
scaling of the different quantities in the outer layer, where the mean velocity and its
fluctuations depend on the Reynolds number and the presence of adverse pressure
gradient.

A deep investigation will be presented in chapter 4, in which various velocity
scales will be discussed and analyzed in detail.
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Chapter 3
Direct Numerical Simulation

A Direct Numerical Simulation of a turbulent boundary layer on a flat plate sub-
jected to an adverse pressure gradient has been performed up to Reθ ∼ 8000. The
parameters of the simulation were chosen to generate original databases. These
databases will contribute to better access to the effect of mild pressure gradient in
a TBL out of equilibrium. Time-resolved velocity components in a normal plane
from a precursor DNS of ZPG TBL [140] at Reθ ∼ 2250 was used as inlet boundary
conditions for this new DNS. This allows us to reach a fairly large Reynolds number
in the downstream part of the simulation domain.

The present DNS was performed with the open-source code incompact3d1.
The characteristics and the parameters of the code are detailed below. More details
about the code can be found in Laizet and Lamballais [71] and Laizet and Li [72].

Because of the complexity of simulating turbulent boundary layer flows, the
first DNS were understandably performed without pressure gradient. This is only
recently that the first DNS with an adverse pressure gradient have emerged. Some
of these DNS as well as a small selection of relevant experiments are summarized
in Table 3.1 and classified from oldest to newest one. Firstly, the DNS of Spalart
and Watmuff [144] is the first DNS performed for an APG TBL. It has a pressure
gradient coefficient β = 2 comparable to the current study with a lower Reynolds
number. Skote et al. [136] have realized the first DNS of a self-similar boundary
layer subjected to an APG. Recently, due to the increase of computational resources,
much larger Reynolds numbers have become possible. The DNS of Kitsios et al. [66]
presents a TBL subjected to low APG and the second DNS of Kitsios et al. [67]
represents a very strong APG TBL at the verge of separation up to Reθ = 13800
which represents the largest Reynolds number obtained from a boundary layer DNS.
The DNS of Lee [76] and the experiment of Srinath et al. [145] have an APG strength
close to that obtained in the present DNS. The experiment of Bross et al. [12] has

1http://www.incompact3d.com/

http://www.incompact3d.com/
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Table 3.1. Summary of a selection of TBL subjected to an APG.

Authors Year Data β Reθ
Spalart and Watmuff [144] 1993 DNS 2 1600
Skote et al. [136] 1998 DNS 0.65 430− 690
Kitsios et al. [66] 2016 DNS 1 300− 6000
Kitsios et al. [67] 2017 DNS 39 570− 13800
Lee [76] 2017 DNS 2.2 2180
Srinath et al. [145] 2018 Exp. 2 1720− 23430
Bross et al. [12] 2019 Exp. 13.5 11500

a Reynolds number comparable with that achieved in the current study although it
has a stronger pressure gradient, which allows us to distinguish Reynolds number
effects from APG ones.

3.1 Numerical code

incompact3d is an open-source code written in fortran 90 that solves the incom-
pressible Navier-Stokes equations. The code was optimized to work on the massively
parallelized supercomputers using the powerful 2DECOMP&FFT2 library. 2D do-
main decomposition strategy using “pencils” is used to parallelize the computation
as shown in Fig. 3.1 in order to run larger simulations and/or to significantly re-
duce the wall clock time of the simulations [72]. Each variable is flipped from one
configuration to another several times during one time step in order to compute the
derivatives along the direction of the pencils. However, the method which prevents
ALLTOALL communications is very efficient even with a large number of computing
units. Note that this decomposition method does not lead to any changes in the
derivation/interpolation routines or in the solution of the Poisson equation since the
calculations are performed in the same spatial direction at a time. incompact3d
is a high-performance tool that allows to perform DNS with up to O(105) computa-
tional cores through this efficient 2D domain decomposition. The efficiency of the
code was assessed up to 1 million cores on several super-computers using a large
number of simulations [72].

Sixth-order compact finite difference schemes are used to calculate the spatial dif-
ferentiation (derivative and interpolation). Moreover, third-order Adams-Bashforth
explicit scheme was used for the time advancement (third and fourth-order Runge-
Kutta schemes are also available). Furthermore, the explicit type of time discretiza-
tion does not produce any particular problems in terms of adaptation to parallel

2http://www.2decomp.org

http://www.2decomp.org
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Fig. 3.1. 2D domain decomposition strategy used in incompact3d, (a) x-pencils,
(b) y-pencils, and (c) z-pencils. (Reproduced from Laizet and Li [72]).

computation.
Fractional step method [64] is used to ensure the incompressibility condition

and the pressure is computed by solving the Poisson equation. It is important
to note that solving of the Poisson equation in physical space using sixth-order
compact schemes can be computationally very expensive and not necessarily simple
to implement, especially for simulations with several billion computational nodes. To
overcome this problem while preserving sixth order accuracy, the Poisson equation
is solved entirely in spectral space using the Fast Fourier Transform (FFT) libraries.
The library FFTW3 which is a C subroutine for computing the discrete Fourier
transform in one or multiple dimensions was used in the code. The use of FFT
subroutines does not affect the scalability of the code and it is much faster than
solving the pressure in physical space [72].

In order to reduce the oscillations in the pressure field, a staggered mesh is used
where the pressure field mesh is shifted by a half grid distance in each direction
from the velocity one. This staggered mesh for the pressure field, first proposed by
Fortin et al. [38] and then used by Almgren et al. [3] for second order schemes, is
quite simple to implement with the use of sixth order interpolators and fast Fourier
transforms [146, 165].

Using a stretched mesh in one spatial direction is quite simple to implement for a
traditional finite difference scheme. But as the Poisson equation is solved in Fourier
space in the code and a staggered mesh was used, the implementation of a stretched
meshing must also work in Fourier space as well as in physical space. In order to
solve this problem, a new uniform coordinates s is used and related to the physical
coordinates by a stretching function as x = h(s). This function was chosen based on
single parameter βstr (see definition in [71]) to make an equivalence between spectral
and finite difference operators. In the current case, a non-homogeneous (stretched)
grid was used in the wall-normal direction with βstr = 9. The numeric and algorithm

3http://www.fftw.org

http://www.fftw.org
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used in the code is described in more detail in [71, 72].

3.2 Parameters of the DNS

This section includes the numerical setup and parameters that are used in the simu-
lation, the boundary conditions applied to the borders of the computational domain,
as well as the spatial resolution.

As usual, x, y and z are used as the positions in the streamwise, wall-normal
and spanwise directions respectively and U , V and W are the corresponding instan-
taneous velocity components.

3.2.1 Boundary conditions

As in all numerical simulations of TBLs over a flat plate, a no-slip boundary condi-
tion

U |y=0 = 0, V |y=0 = 0, W |y=0 = 0

is applied at the bottom surface (y = 0) which represents the wall over which the
boundary layer will develop. A periodic boundary condition was also applied in the
homogeneous spanwise direction.

3.2.1.1 Far-field wall-normal velocity boundary condition

Several possibilities exist to generate an adverse pressure gradient. One is to simu-
late a flow over a curved wall. This was done for instance by Marquillie et al. [90] for
a channel flow configuration. However, for an accurate description of the near-wall
flow, the mesh should follow the curvature of the wall. In the case of Marquillie
et al. [90], this was done by using a mapping of coordinate combined with an effi-
cient algorithm. For the current study, a more conventional but efficient solver on a
cartesian grid was chosen in order to reach a significant Reynolds number on a large
simulation domain. In this case, the only option is to generate the adverse pres-
sure gradient by prescribing a wall-normal velocity for the top boundary condition
parallel to the wall.

A wall-normal suction velocity at the far-field boundary was proposed by Kitsios
et al. [67]. It is based on a potential flow solution in an expanding duct and was
corrected to compensate the boundary layer growth.

Referring to Mellor and Gibson [95], the outer reference velocity must be pro-
portional to (x − xo)m, where the exponent m = −0.23 in the case of flow at the
edge of separation, and xo is the virtual origin of the boundary layer.
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Fig. 3.2. Configuration of the simulation box.

The stream function along with the centerline of the duct is given by

ψPF (x̂, ŷ) = Arm+1 sin(γ), (3.1)

where the constant A is a scaling parameter, r2 = x̂2+ŷ2, and γ = (m+1) arctan(ŷ/x̂),
with x̂ and ŷ are the streamwise and wall-normal coordinates respectively. The su-
perscript (̂.) has been used here for the potential flow coordinates to distinguish
them from the DNS coordinates used below.

The streamwise (UPF ) and wall-normal (VPF ) components of general potential
flow were calculated by derivation of the stream function (3.1).

UPF (x̂, ŷ) = ∂yψPF = A(m+ 1)[x̂rm−1 cos(γ) + ŷrm−1 sin(γ)], (3.2)
VPF (x̂, ŷ) = −∂xψPF = A(m+ 1)[ŷrm−1 cos(γ)− x̂rm−1 sin(γ)]. (3.3)

As this potential flow solution does not account for the boundary layer growth,
it must be corrected by the displacement thickness which grows linearly along the
TBL as the functional form δ1(x) = K(x − xo), where K is the growth rate of δ1.
In the present case, we choose to evaluate the value of K from experimental PIV
data of Srinath et al. [145]. The mentioned experiment was performed in the LMFL
wind tunnel to study the TBL over a ramp with an inclination of −5◦. A moderate
adverse pressure gradient was obtained and the flow remained attached to the wall
along the ramp. Using the parameters obtained from that study allows us to obtain
an equivalent pressure gradient, which leads to focus on the effect of the APG,
especially in the presence of different Reynolds numbers. However, it is not possible
to obtain a high Reynolds number as in the experiment due to the limitation of
computational resources. The value of K = 0.01121 was obtained by a linear fit of
the displacement thickness profile of [145] as a function of the streamwise position.

Then, the potential flow coordinates (x̂, ŷ) are substituted by the DNS coordi-
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nates (x, y), and the requiring relationship is given by

x̂ = x− xo, and ŷ = y −K(x− xo). (3.4)

The exponent m is chosen to create a moderate adverse pressure gradient. As
mentioned in Skote et al. [136], the power-law exponent m = − β

H(1+β)+2β was defined
with an empirical value of the shape factor H = 2.35 from Mellor and Gibson [95].
m = −0.2075 was used in the boundary conditions of the present DNS to introduce
a pressure gradient comparable to the experiment of Srinath et al. [145].

The virtual origin of the boundary layer xo was estimated by extending back
the streamline from the inlet boundary layer edge at the position (x, y) = (xI , δI),
to obtain xo = xI − δI × U(xI , δI)/V (xI , δI), where (.)I represents the relevant
quantity that is evaluated at the inlet position. xo = −80δ0 is used as the virtual
origin of TBL in the present DNS, where δ0 is the inlet boundary layer thickness of
the precursor DNS of ZPG TBL [140].

The parameter A in (3.2) and (3.3) is calculated using the modified potential flow
solution UPF (x−xo, y−K(x−xo)) that is obtained by substituting the relationships
(3.4) into (3.2). In special case, the inlet position and the edge of boundary layer are
replaced instead of the coordinates (x, y) respectively in the streamwise potential
flow solution UPF . Then, the parameter A was obtained by comparing UPF with
the inlet streamwise velocity at the same coordinates. The careful choice of this
parameter provides a potential flow solution with the same scale as the inlet velocity.

The far-field wall-normal boundary condition as a function of the streamwise
direction (x) is given as

V∞(x) = VPF (x− xo, y∞ −K(x− xo)). (3.5)

The far-field BC along the streamwise direction is computed based on (3.5) and
illustrated in Fig. 3.3 normalized by the free-stream inlet velocity.

The steady far-field wall-normal velocity should be prescribed to ensure the pres-
sure stability which is very sensitive to any small change. On the contrary, the
streamwise velocity must be calculated at each time step based on a zero spanwise
vorticity condition that is applied to the top of the domain to obtain an irrota-
tional flow at the far-field. The following equation was implemented as a Neumann
condition at the top of the computational domain using one order Eulerian scheme.

∂U∞
∂y

= ∂V∞
∂x

(3.6)

Furthermore, using coarse mesh at the far-field can produce strong fluctuations
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Fig. 3.3. Far-field wall-normal velocity boundary condition of the APG TBL DNS
is scaled by the edge velocity at the inlet position. The streamwise position is
normalized with the momentum thickness at the reference streamwise position θref
such that Reθ = 7240.

in the velocity field, especially close to the inlet where the implemented far-field
normal velocity experience a fast decrease downstream as shown in Fig. 3.3. This
provides a strong lack in the streamwise velocity referring to eq. (3.6).

3.2.1.2 Inlet conditions

In an APG case, the growth rate of the boundary layer is much larger than for a
ZPG TBL. This is the reason why the simulation domain was extended two and a
half times in the wall-normal direction in order to avoid any influence of the box’s
limitation on the TBL (this height was estimated based on several tests followed by
TBL extrapolation).

The extent of the domain in the normal direction requires an extrapolation of
the inlet velocity boundary conditions extracted from the precursor DNS. Firstly, a
cubic interpolation in the wall-normal direction of the three velocity components is
performed up to the edge of the boundary layer to adapt the inlet velocity with the
new wall-normal grid, as the number of points and the stretching profile were mod-
ified. Other procedures were performed to adapt the velocity outside the boundary
layer as new boundary conditions have been applied.

Extrapolation in wall-normal direction

In the free-stream region, new velocities are generated as a continuous and smooth
extension of the velocities at the boundary layer thickness with the constraint to
be compatible with the boundary conditions applied to the far-field. So, the in-
terpolation of each velocity component is performed independently for each time
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step.
The zero spanwise vorticity condition at the top of the inlet is imposed by using

∂yU |∞ = ∂xV |∞, where the right side is prescribed to apply a given adverse pressure
gradient. So, a linear interpolation of the wall-normal derivative of the streamwise
velocity was performed in the free-stream region between ∂yU |∞ and ∂yU |δ (com-
puted from the streamwise velocity profile at the edge of the boundary layer). Then,
the profiles of ∂yU are integrated in order to ensure the continuity of the streamwise
velocity profile and its derivative along the wall-normal direction.

Concerning the wall-normal velocity, a potential flow profile based on (3.3) was
added to the interpolated velocity along with the domain’s height in order to obtain
the aforementioned far-field boundary condition at the top of the domain. Also, the
wall-normal velocity is small in the boundary layer region, this procedure ensures
the continuity and the smoothness of the final wall-normal velocity profile.

When no additional treatment is applied to the spanwise inlet velocity, a linear
interpolation was performed starting from its very small values at the edge of the
turbulent part to reach exactly zero at the top of the domain.

This careful interpolation of the 3 velocity components happened to be useful in
order to avoid any discontinuities which could affect all the solutions downstream
at the edge of the boundary layer.

Periodization in spanwise direction

In order to keep the conformity between the dimensions of the simulation box and to
account for the growth of the boundary layer thickness, the simulation domain in the
spanwise direction was extended by a factor 4 (as showing in Fig. 3.2) with respect
to the precursor DNS of ZPG TBL. This factor 4 was estimated such as the spanwise
size of the simulation is at least twice the maximum boundary layer thickness at the
outlet. Because of the increase in domain size, the inlet planes were also duplicated.
As the original inlet conditions were extracted from a simulation using spanwise
periodicity, the extension of the inlet by a factor of 4 is straightforward.

However, to avoid the exact repetition in the results because of duplication of
inlet planes, a spatial-temporal noise of small amplitude was added to the inlet
velocity components;

G(y, z, t) = urms(y)g(z, t), (3.7)

where urms is the root-mean-square of the three velocity fluctuations. The function
noise g(z, t) was chosen to be similar to the numerical forcing used by Schlatter and
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Fig. 3.4. Temporal power spectrum normalized by the total energy of the random
noise super-imposed on the periodized inlet BC.

Örlü [126] and it is defined as

g(z, t) = Af
[
(1− b(t))hi(z) + b(t)hi+1(z)

]
, (3.8)

Af is a normalization amplitude chosen to keep the noise less than 1% of the cor-
responding velocity fluctuation. This amplitude was chosen such that the solution
forgot the periodization procedure after the first half of the simulation domain. The
time evolution is defined with b(t) = 3p2 − 2p3, p = t/ts − i, where i is the integer
part of t/ts.

The spanwise function hi(z) is defined as the following Fourier series

hi(z) = 1√
Nf

Nf∑
j=1

αj cos
(

2πjz
Lz

+ φj

)
, (3.9)

where Nf is the selected number of modes, αj is a random amplitude, and φj is a
random phase shift.

The temporal and spanwise cutoff scale of the signal are fixed at ts = 3.7δ/U∞
and zs = 0.6δ respectively, where δ is the boundary layer thickness at the inlet and
the numbers of modes Nf = Lz/zs = 14 modes. In Fig. 3.4, we show the resulting
temporal spectrum; the spectral energy remains stable until a temporal cutoff is
reached, and then a steep decrease of the energy towards zero, as a consequence of
the third-order polynomial function in g.
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Interpolation in time

The decrease of wall friction in the APG case as well as the free-stream velocity
allows us to use a larger time step than the one used in the ZPG case (0.015 instead of
0.008). As a consequence, a linear interpolation in time (using “interp1d” from scipy
library in python3) was made for the extrapolated inlet planes. The full procedure
produces a 2D time-resolved u(y, z, t) inlet boundary conditions fully adapted to the
new simulation domain and to the boundary conditions.

3.2.1.3 Outlet conditions

Since the pressure is calculated based on the velocity, a temporal fluctuation was
observed in the pressure. These oscillations of the pressure can be due to the tur-
bulent velocity field at the outlet. In order to solve this problem, a fringe region
has been applied on the last 3% of the computational domain in order to ensure
the laminarity of the outgoing flow. This technique firstly proposed by Nordström
et al. [109] consists in the addition of a localized forcing term F in the right-hand
side of the Navier–Stokes Equation (2.6) with

F = λ(x)(Ũ − U) (3.10)

where Ũ is a target velocity field and λ(x) a modulation function allowing a local
activation of the forcing in the region where λ is not zero. Here, the corresponding
fringe region is defined using λ(x) = 1

2(1+tanh(x)) as used by Dairay et al. [28]. The
effects of this condition are only local and do not affect the solution apart from the
region where the forcing is applied. This method was able to improve significantly
the stability of the pressure signal.

3.2.2 Spatial and temporal discretization

As already explained in the description of the inlet condition, the spanwise size was
selected in order to be at least twice the boundary layer thickness at the outlet of
the domain. One of the objectives of the present simulation is to investigate the
large-scale structures of streamwise velocity. These structures have been found to
extend up to one boundary layer thickness in the spanwise direction and more than
one order magnitude more in the streamwise direction. A domain of size at least
2.5δ in the region of interest far enough from the outlet should be enough to not
constrain too much the largest streamwise structures. The streamwise size of the
simulation domain was selected to reach the maximum Reynolds number accessible
with our computing resources. With these constraints, a computational domain of
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Table 3.2. Parameters of the TBL are normalized by the quantities (δmax, uτ )
at the outlet. Nx, Ny, and Nz are the number of grid points in the streamwise,
wall-normal and spanwise direction respectively. In addition, Lx, Ly, and Lz are the
dimensions of the domain. Indeed, ∆y+

δ is the maximum grid spacing at the edge
of boundary layer.

Reθ Nx ×Ny ×Nz (Lx, Ly, Lz)/δmax ∆x+,∆y+
wall,∆y+

δ ,∆z+

2250− 8000 6401× 1025× 1280 23.2, 2.9, 2.3 5.1, 1.0, 4.7, 2.4

Lx = 800δ0, Ly = 100δ0 and Lz = 80δ0 was selected. For a fully resolved DNS, the
spatial and temporal resolutions must be estimated very precisely to obtain correct
results using the minimum computing resources. The spatial resolution must be
adapted to be of the order of the Kolmogorov scale on the full simulation domain,
especially in the region of interest.

When the friction velocity couldn’t be estimated a priori, several test simulations
were performed to estimate the decrease of the friction velocity along with the
streamwise direction. This is done in order to choose the best spatial resolution on
the full domain. The homogeneous spatial resolution in streamwise and spanwise
directions normalized by the wall-units along with the computational domain are
presented in Fig. 3.5a, where the ∆x+ is around 5 in the targeted region after the
transition from ZPG to APG near the inlet, and ∆z+ ∼ 2.5. The grid spacing agrees
with those used in the literature. For instance, Jiménez et al. [60] used a spatial
resolution of 6.1+ and 4.1+ in the streamwise and spanwise directions respectively
in his DNS of zero pressure gradient TBL.

The main parameters of our simulation are summarized in Table 3.2: The number
of grid points in the three directions, the dimensions of the simulation box which
is normalized by the largest boundary layer thickness (achieved at the outlet), and
the spatial resolutions (in wall-units) evaluated at the same position.

As the aim was to generate a database that could be used to study the outer
region of the boundary layer and possibly the turbulent/non-turbulent interface, the
stretching in the normal direction was adapted accordingly. Wall-normal resolution
for DNS of TBL is commonly used to be ≤ 1+ near the wall. For example, Maciel
et al. [88] used a wall-normal resolution which varies from ∆y+ = 0.32 at the wall
to 10.2 at the edge of the boundary layer. Also, Jiménez et al. [60] used ∆y+ = 0.3
at the wall for DNS of ZPG TBL.

The method proposed by Laizet and Lamballais [71] and implemented in incom-
pact3d to stretch the mesh in one direction is based on an analytical stretching
function compatible with the solution of the Poisson equation in spectral space, as
well as in the physical space. In the case of TBL, the stretching is applied in the
wall-normal direction. Moreover, as the stretching is controlled by a single param-
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Fig. 3.5. (a) Variation of streamwise and spanwise spatial resolution as a function
of the streamwise position. (b) Variation of the spatial resolution in the wall-normal
direction as a function of the wall-normal distance scaled by the local boundary
layer thickness. The red line represents the resolution at the inlet, the blue one in
the middle of the domain, and the green one at the reference streamwise position.

eter, a compromise was selected in order to correctly resolve the near-wall region
(y+ = 1) in the region of interest. Fig. 3.5b illustrates the wall-normal resolution
that is used in the present DNS at three streamwise positions (the inlet, the center
of domain, and the reference streamwise position). The grid spacing is around 1+

at the wall in the second half of the domain (in the region of interest), and it does
not exceed 4+ at the edge of the boundary layer. Hence, this allows us to focus on
the turbulent/non-turbulent interface in future work.

Due to a fine spatial resolution in the three directions, the simulation can be
considered as well resolved in the full domain. Additionally, it is highly resolved on
the downstream part of the domain and on the full boundary layer thickness. This
allows us to perform detailed and accurate statistics of both large scales and small
dissipative scales.

In order to validate the compatibility of the spatial resolution with the dissipative
scales, a comparison with the Kolmogorov scale was performed. The Kolmogorov
length scale is defined as η = (ν3/ε)1/4, where ε is the dissipation rate of the kinetic
energy and ν is the kinematic viscosity. Fig. 3.6 shows different ways to compare
the spatial resolution with the Kolmogorov scale along the boundary layer. The
comparison was performed at the reference streamwise position such that Reθ =
7240. It is noticed that the maximum spatial resolution in the three directions
represents∼ 5η near the walls to reach∼ 2.5η in the outer region. However, it should
be mentioned, that, in the very near-wall region, the most relevant comparison is
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Fig. 3.6. Comparison of the grid spatial resolution with the Kolmogorov scale
along the wall-normal direction. η and δ are evaluated at the reference streamwise
position. As the mesh is stretched in the wall-normal direction, the comparison is
evaluated using three definitions of the characteristic grid spacing.

with respect to the wall-normal grid spacing which is 5 times smaller than the
streamwise one. Overall, the spatial resolution is adapted on the full simulation
domain and allows us to study statistics down to the dissipative scales.

In order to choose a time step adapted with our simulation taking into account
the minimum computation cost, preliminary tests have shown that the maximum
CFL allowed to stabilize the simulation should be of the order of 0.15. To be
conservative, a constant time step ∆t = 0.015 (corresponding to a maximum CFL
equal to 0.137) was used for the full simulation. Computed in terms of local wall-
units, the time step ∆t+ decreases from 0.04 at the inlet to achieve 0.01 at the outlet
due to the decrease of the friction velocity.

3.3 Description of the databases

The growth of the turbulent boundary layer along the streamwise direction is vi-
sualized in Fig. 3.7a by a snapshot of the instantaneous spanwise vorticity in a
streamwise - wall-normal plane on the full simulation domain. A zoomed region
of the vorticity in the spanwise direction shows that the spatial resolution is well-
adapted down to the small scales corresponding to the vortex filaments. A snapshot
of the streamwise velocity fluctuations is also presented in Fig. 3.7b.

The DNS was performed on a grid with more than 8 billion nodes using 2048
cores. The simulation was effectuated on the Occigen4 supercomputer of CINES
(Intel Xeon E5-2690V3@2.6 GHz) and on the supercomputer Jean-Zay5 of IDRIS

4https://www.cines.fr/calcul/materiels/occigen/
5http://www.idris.fr/jean-zay/

https://www.cines.fr/calcul/materiels/occigen/
http://www.idris.fr/jean-zay/
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(a)

(b)

Fig. 3.7. Snapshot in a streamwise wall-normal plane on the full simulation domain
of (a) the spanwise vorticity and (b) the streamwise velocity fluctuations. The co-
ordinates are normalized with the momentum thickness at the reference streamwise
position θref such that Reθ = 7240.

(Intel Cascade Lake 6248 2.5 GHz). A total cost of ∼ 4 million CPU hours from
the GENCI allocation has been used to perform this simulation.

A large database of more than 100 TB was collected from this simulation after
the transient part. This database includes three types of raw data:

The first one is composed of time-resolved wall-normal spanwise planes of the
three components velocity and the pressure field collected at the three streamwise
positions are represented in Fig. 3.8 by the black vertical lines (corresponding to
Reθ = 6038, 7237 and 7795). They were collected every 5 time-steps (∆t+ '
0.06) that correspond to a half grid spacing displacement in the free-stream region.
These datasets allow us to perform a time-resolved analysis. For example, the time
correlation function was calculated using the middle plane datasets (see section 4.3).

The second dataset is composed of 211 three-dimensional fields of the full sim-
ulation domain for the same previous quantities with a time spacing ∆t+ = 7.8.
This dataset is useful to obtain statistics along the streamwise direction and the
evolution of various quantities downstream.

Furthermore, there are 1315 fields of a 3D restricted domain in the downstream
region of the flow (Reθ = 6818− 7582), for the velocity components, their temporal
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Fig. 3.8. Visualization of the streamwise velocity fluctuation in the full simulation
domain. The three black lines represent the streamwise positions of the 2D time-
resolved planes and the red dashed box corresponding to the borders of the 3D small
fields.

derivative, as well as the pressure. These fields are well-resolved (collected every
1.2 wall-unit time) which allow us to accurately track and analyze the coherent
structures over time in this region. The borders of this domain are shown in Fig. 3.8
using the red dashed box. The position of the middle planes (Reθ = 7240) coincides
with the center of these fields.

This large database was collected over 45 large-scale characteristic times T =
δmax/Ue after the transient part, with δ and Ue evaluated at the outlet position.

The main parameters of the 2D time-resolved planes are summarized in Table 3.3.
The streamwise positions normalized by the momentum thickness at the reference
streamwise position and both Reynolds numbers for the three planes are given.
The evolution of the boundary layer thickness between the three positions is also
presented, as well as the local characteristic time over which the datasets were
collected.

Table 3.3. Parameters of the wall-normal-spanwise time-resolved planes. The
boundary layer thickness δ and the edge velocity Ue are measured at the local
streamwise location x and normalized by θref . T is the total time of the datasets.

x/θref Reθ Reτ δ/δI TUe/δ
76.9 6038 986 2.56 59.47
121.1 7240 1182 3.24 44.38
144.2 7795 1348 3.61 39.23

As mentioned in the previous chapter in section 2.2.4, the Q-criterion was com-
monly used to identify the vortical or swirling motions beside other methods and cri-
teria. For incompressible flows in three-dimensional space, we haveQ = −1

2tr
(
(∇u)2

)
,

where tr(.) is the trace of the relevant tensor and ∇u is the velocity gradient tensor.
In order to give a qualitative indication of the evolution and complexity of the

vortical coherent structures, Fig. 3.9 shows an instantaneous iso-surface of the Q
criterion for a 3D domain downstream (6818 < Reθ < 7582). The threshold used was
adapted to focus on the high values of Q that represent eddies. Further analysis of
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Fig. 3.9. Instantaneous iso-surface of the Q-criterion in the domain such that
6818 < Reθ < 7582. The direction that is directed inwards into the page has been
used as the streamwise direction, the wall-normal direction is perpendicular to the
white plan. The color table is proportional to the distance from the bottom wall.

the temporal evolution of the vortices shows that the 3D database used to calculate
the Q criterion is well resolved in time because of the continuous motion of the
vortices, in addition to the compatible spatial resolution that allows us to identify
the vortex filaments up to the boundary layer edge.

3.4 Boundary layer statistics

It is noticed that in the presence of an adverse pressure gradient the streamwise
velocity is no longer constant in the free-stream non-turbulent region. Additionally,
it will not be possible to define the edge velocity Ue based on the maximum velocity,
particularly in the presence of suction velocity and zero spanwise vorticity conditions
that are applied to the top of the domain. A reference velocity scale, based on the
mean spanwise vorticity, is firstly proposed in Lighthill [83]. Kitsios et al. [67] used
this velocity scale as an outer velocity instead of the classical free-stream velocity.
The new characteristic velocity is given by

Ue(x) = UΩ(x, yΩ), where (3.11)

UΩ(x, y) = −
∫ y

0
〈Ωz〉(x, ỹ)dỹ (3.12)

where 〈Ωz〉 is the mean spanwise vorticity, and yΩ is the wall-normal position at
which 〈Ωz〉 is 0.2% of 〈Ωz〉|y=0.
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When a boundary layer is subjected to an adverse pressure gradient, i.e., the
pressure increases along the streamwise direction; hence, the free-stream velocity
must be decelerated downstream based on Bernoulli’s equation (2.26). Fig. 3.10a
shows the decrease in the edge velocity Ue up to 70% of its initial value at the inlet
position. Ue was calculated based on the mean spanwise vorticity as explained in
(3.11).

The growth of boundary layer thickness along the streamwise direction is also
presented in Fig. 3.10b. Here, δ is calculated using the traditional method where it
is the wall-normal position at which the mean streamwise velocity represents 99%
of the edge velocity Ue. As noticed in the figure, the outlet TBL thickness (δmax)
reaches ∼ 3.5 times of the inlet one where the extent of the simulation domain
downstream represents 23.2δmax evaluated at the outlet position.

The two length scales which describe the boundary layer, the displacement and
momentum thickness, that are detailed early in section 2.1.3 need to be adapted with
the presence of adverse pressure gradient as mentioned in [67]. Since the equations
(2.12) and (2.13) are no longer efficient in the case of a decelerating boundary layer,
Spalart and Watmuff [144] proposed new formula for both thicknesses based on the
mean spanwise vorticity

δ1 = −1
Ue

∫ yΩ

0
y〈Ωz〉dy (3.13)

θ = −2
U2
e

∫ yΩ

0
yUΩ〈Ωz〉dy − δ1 (3.14)

The above definitions have been used to evaluate the corresponding length scales
in our simulation. Moreover, to analyze the growth rate of both thicknesses in
comparison to the boundary layer thickness, the three quantities are plotted in
Fig. 3.10b normalized by their values at the inlet position. It is clearly noticed that
the growth rate of δ1 and θ is greater than this of δ which seems to follow a linear
evolution. To be more specific, a comparison of these thicknesses at two streamwise
positions were performed, where the first one is the inlet position which represents a
ZPG case and the second one is chosen downstream at x = 120θref (corresponding
to Reθ = 7240) inside the APG region in order to focus on the effects of the pressure
gradient. It is noticed that δ1 increases from 0.18δ in ZPG TBL to achieve 0.28δ
in APG domain. And the momentum thickness θ increases from 0.12 to 0.16δ.
The increase of both displacement and momentum thicknesses in comparison to δ
between ZPG and APG cases can be explained as the mean velocity profile in APG
TBL is steeper than ZPG case, where both δ1 and θ are based on the mean velocity
deficit.

The shape factor H = δ1
θ

is also presented in Fig. 3.10c. The value of H increases
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Fig. 3.10. (a) Free-stream velocity Ue; (b) boundary layer thickness δ, displacement
thickness δ1, and momentum thickness θ are plotted normalized by the corresponding
inlet quantities indicated by the superscript (.)I ; (c) shape factor H = δ1/θ. All
quantities are plotted as function of the streamwise position normalized by θref .

downstream to reach a maximum of 1.82 at Reθ ' 5500 followed by a slow decrease
downstream. The range of variation of the shape factor H ∼ (1.7 − 1.8) is usually
associated in the literature to a moderate adverse pressure gradient.

Even the shape factor gives an idea of the pressure gradient but it does not
represent directly the pressure gradient. In order to focus on the evolution of ad-
verse pressure gradient downstream, the pressure gradient parameter proposed by
Clauser [23] as β = δ1∂xPe/τw was presented in Fig. 3.11a, where ∂xPe is evaluated
at the boundary layer edge. The parameter β was commonly used in the experimen-
tal and numerical investigations of turbulent flows subjected to a pressure gradient.
The intensity of APG in the TBL examples summarized in Table 3.1 are evaluated
using the parameter β, where β ' 1 corresponds to mild APG and β ∼ 20−∞ corre-
sponds to strong APG and separated flows. In the current TBL APG, the value of β
presents an increase from 2.2 to reach its maximum at Reθ ∼ 5000 that corresponds
to 20 boundary layer thickness (obtained by integration of the local boundary layer
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Fig. 3.11. (a) Non-dimensional pressure gradient parameter β = δ1∂xPe/τw, where
∂xPe is the pressure gradient at the edge of boundary layer; (b) streamwise pressure
gradient scaled by the inner quantities p+ = ν

ρu3
τ

dPe
dx

.

thickness δ(x)) then it slowly decreases toward the outlet. The steep decreasing
close to the end of the domain is due to the outlet conditions. This non-constant
evolution of pressure gradient parameter β leads that the current APG TBL is out
of equilibrium.

Another indicator of the pressure gradient was also presented in Fig. 3.11b which
is the streamwise pressure gradient scaled by the inner quantities p+ = ν

ρu3
τ

dPe
dx

. p+

was used in the modified formula of the wall-law in presence of APG (see eq. (2.35)).
The value of p+ decreases when moving downstream from ∼ 0.015 down to 0.005
close to the outlet. The present values of p+ are not sufficiently strong to affect
strongly the behavior of boundary layer as a moderate pressure gradient has been
imposed.

In order to study the friction and the viscous forces, the friction velocity (used
in the wall-unit scaling) and the friction coefficient Cf = 2

(
uτ/Ue

)2 are evaluated
at the wall along the streamwise direction. As expected, both quantities decrease
downstream due to the effect of adverse pressure gradient which leads to a deficit
of momentum in the near-wall region with respect to the ZPG case at the same
global Reynolds number. Their evolution is presented in Fig. 3.12a and 3.12b as
function of the streamwise position. The friction velocity uτ reduces to almost 50%
of its value at the inlet. It is also noticed that in the second half of the domain the
friction remains constant at ∼ 0.019. Concerning the friction coefficient, Cf has a
steep decreasing close to the inlet before stabilizing at 1.5× 10−3. For comparison a
friction coefficient of Cf ∼ 2.5×10−3 was obtained by Kitsios et al. [66] in their DNS
of TBL subjected to a mild APG (β = 1) and the value of Cf reduced to 0.5× 10−3

in presence of strong APG (β = 39) [67]. The small increase noticed in the outlet
region is due to the effects of outlet conditions.
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The Reynolds number was presented using two different length and velocity
scales. Firstly, the Reynolds number based on momentum thickness Reθ defined in
(2.18) is shown in Fig. 3.12c. Reθ increases from 2250 at the zero pressure gradient
inlet position up to almost 8000 at the outlet position. A higher Reynolds number
(Reθ = 13800) was achieved in the DNS of APG TBL of Kitsios et al. [67], but
this was with a much stronger pressure gradient (β = 39) for which the increase of
the momentum thickness is much faster. On the other hand, the available DNSs of
TBL subjected to a moderate APG are still limited in terms of Reynolds number,
e.g., Reθ = 2180 is obtained in the DNS of Lee [76] (β = 2.2) and the DNS of
[169] (β = 1.43) has a maximum of Reθ = 5700. The current DNS of APG TBL
reached the biggest Reynolds number obtained with this range of moderate adverse
pressure gradient, which contribute to focus on the effects of moderate APG at
higher Reynolds than previously obtained. The statistics will be compared in the
next chapter with the experiments of Srinath et al. [145] over a ramp (β = 2− 3.7)
at Reynolds number Reθ = 13800 and 23400. The growth of the friction Reynolds
number Reτ from 750 up to 1350 along the streamwise direction is also presented in
Fig. 3.12d. Reτ is evaluated using the friction velocity and δ as mentioned in (2.19).
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Fig. 3.12. (a) Friction velocity uτ ; (b) friction coefficient Cf = 2
(
uτ/Ue

)2; (c)
Reynolds number based on the momentum thickness Reθ = Ueθ/ν; (d) Reynolds
number based on the friction velocity Reτ = uτδ/ν.
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Chapter 4
Statistical analysis

This chapter is devoted to the statistics of the current turbulent APG boundary
layer. The mean streamwise velocity and the Reynolds stresses are presented in
comparison with a ZPG TBL. A deep investigation of the outer peak of Reynolds
stresses was also performed as well as an analysis of the energy balance. Different
types of velocity scaling have been tested, especially in the outer region. Finally,
the spanwise energy spectra of the streamwise velocity fluctuations are presented.

4.1 Statistics of turbulent boundary layer

4.1.1 Mean velocity profiles

The mean streamwise velocity and the Reynolds stresses profiles are plotted in
Fig. 4.1 at several streamwise positions including at the inlet (red line) which cor-
responds to a ZPG case. The wall-unit scaling already defined in chapter 2 was
used to normalize both lengths and velocities. The APG profiles are compared
with ZPG ones at similar Reynolds numbers (both Reθ and Reτ ) from the DNS of
Sillero et al. [131, 132](dash-dotted lines). Fig. 4.1a shows that the mean velocity
profiles collapse close to the wall and follow the U+ = y+ equation as p+ is small
(0.005 < p+ < 0.015) and then the theoretical profile derived in eq. (2.35) taking
into account the pressure gradient is impossible to distinguish from U+ = y+ in the
viscous region. The comparison with ZPG clearly shows the effect of adverse pres-
sure gradient on the logarithmic layer. The profile at Reθ = 3000 which is very close
to the inlet and experiences a fast transition between ZPG inlet condition and APG
exhibits a much steeper log layer. However, moving downstream at Reθ > 4500,
which is close to the maximum of β, the log layer recovers a similar slope as for
ZPG. As already observed for APG TBL, the departure from log-layer to the wake
region, also identified as square root region by Nickels [106], is stronger with APG.
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Fig. 4.1. (a) Mean velocity profiles of the current APG study (solid lines) in
comparison with ZPG profiles from Sillero et al. [131, 132] (dash-dotted lines). (b)
Diagnostic plot at the same streamwise locations as (a). The dashed horizontal lines
correspond to κp computed with eq. (2.37).

To investigate in more detail the log-law scaling in the current APG TBL, a
diagnostic plot was performed at the same locations used earlier (see Fig. 4.1b).
The value of the modified log-law constant κp defined in (2.37) was also expressed
in the same figure using the dashed horizontal lines. To calculate κp, the most
commonly used value of 0.41 is used for κ0 and the critical wall-distance was set
to y+

c = 12 as mentioned in [106]. The normalized pressure gradient p+ has been
evaluated at the corresponding local positions. It is clearly shown that the values of
κp predicted by the model (2.37) do not match with the results. This mismatch is
clearly not linked to the choice of κ0. Furthermore, a logarithmic behavior should
appear as a plateau in (y+ dU+

dy+ )−1 profile, but as shown, the logarithmic range is not
well defined as no plateau is present even at the highest Reynolds. All the profiles
exhibit a maximum which moves toward the wall for the lowest Reynolds number
(Reθ = 3000) under the effect of APG and then moves away from the wall like the
square root of Reθ when moving downstream. This peak does not seem to flatten
for any Reynolds numbers.

4.1.2 Reynolds stresses

In Fig. 4.2a, we presented the streamwise velocity fluctuations at the same stream-
wise positions as the mean velocity profiles. The position of the near-wall peak is
not affected by the APG and is located at y+ ' 12 [52]. The intensity of the near-
wall peak seems slightly increased as compared to the ZPG at equivalent Reynolds
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Fig. 4.2. Reynolds stresses profiles of the current APG study (solid lines) in com-
parison with ZPG profiles from Sillero et al. [131, 132] (dash-dotted lines). The
profiles corresponding to the same Reynolds numbers as Fig. 4.1.

number. However, the main effect of APG is to generate a second peak in the outer
layer even at the moderate Reynolds number, whereas in canonical ZPG flows, an
extremely high Reynolds number is required to produce an outer peak which is much
closer to a plateau even at Reynolds number up to Reτ = 70000 as it was shown by
Vallikivi et al. [155] or at even larger Reynolds number available from atmospheric
boundary layer flows [54]. In the current study, the outer peak increases by moving
downstream up to Reθ ' 6500 before stabilizing despite the increase of Reynolds
number. The intensity of the outer peak appears to be higher than that of the inner
peak when Reθ exceeds 5000. It is also noticed that the wall-normal position of the
outer peak moves away from the wall when increasing the Reynolds number. Fur-
thermore, if this strong outer peak is associated with an enhancement of attached
eddy structures, it is expected that these structures have an impact down to the
buffer region and participate in the increase of the inner peak as it does for extreme
Reynolds numbers ZPG TBL. It will be shown that the outer peak observed in APG
cases is related to an excess in the production rate of turbulent kinetic energy which
exceeds the turbulent dissipation rate at the position of the outer peak.

The Reynolds shear stress, the wall-normal and spanwise Reynolds stress are
also shown in Fig. 4.2. The evolution of the outer peak is clearly shown in all cases
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Fig. 4.3. Evolution of outer peak position of the streamwise Reynolds stress nor-
malized by the wall-unit length scale δν as a function of Reτ .

similar to the streamwise velocity fluctuation and is found at the same wall-normal
positions. This observation leads to think that this peak in all Reynolds stresses
may be associated with a single dynamics of turbulent structures.

As shown previously, the wall-normal position of outer peak y+
peak grows with

increasing of Reynolds number downstream (using the wall-unit scaling). The evo-
lution of this peak position is shown in Fig. 4.3 as a function of Reynolds number
Reτ . The outer peak position is investigated in a quasi-equilibrium region where β
is almost stable and far from the ZPG/APG transition region near the inlet, as well
as far from the outlet effects (corresponding to 870 < Reτ < 1350). The wall-unit
position of this peak increases from 350+ to 600+ with a scaling which can be fit-
ted by 0.052Re1.3

τ . The wavy evolution of the outer peak is due to the insufficient
convergence of the current database but this does not affect the main conclusion on
the Reynolds stresses statistics. Using wall-unit scaling can not scale the position
of the outer peak as this scaling is expected to scale the near-wall region where the
viscosity is dominant.

For further study and to simultaneously analyze the outer peak of the different
Reynolds stresses, the positions of the outer peak of the streamwise and wall-normal
velocity fluctuations as well as the Reynolds shear stress for the current TBL APG
are presented in Fig. 4.4 using the outer length scale δ. However, using a constant
scale (δI or δmax) to normalize the streamwise position is not appropriate in the
APG TBL where the boundary layer thickness grows rapidly. For this purpose, we
used a local scaling based on δ evaluated at the local streamwise position. The local
position x/δloc is obtained by integrating the inverse of the local boundary layer
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thickness in the streamwise direction as follows

x/δloc =
∫ x

0

1
δ(x)dx (4.1)

It is clearly noticed that the position of the outer peak for the three Reynolds
stresses grows similarly, except for the streamwise velocity fluctuation in the region
before x/δloc = 17, where the inner peak is stronger than the outer one. The position
of the outer peak increases downstream for almost 20 local boundary layer thickness
before stabilizing at ypeak ' 0.45δ. In order to compare with the experimental
results, an equivalent plot has been established in Fig. 4.4b for the data of Srinath
et al. [145] at a much higher Reynolds (Reθ = 23000) and a different but comparable
evolution of β. Although this TBL experiment was performed on a ramp of about
4 meters long, it represents only ∼ 23 local boundary layer thickness.

The peak position when scaled with the displacement thickness exhibits a compa-
rable evolution as a function up to 23 local boundary layer thickness (the maximum
values for the experiments). As the DNS domain extends further, one can see that
the position of the peak seems to converge around 1.5δ1. To estimate this value with
a good accuracy would require a much better convergence of the Reynolds stresses
profiles. When scaled with the boundary layer thickness, the position of the peak is
closer to the wall than for the DNS case in the same range of streamwise position
(scaled with δloc). One can see that the position of the peak which is of the order
of 0.25δ still increases linearly at x/δloc = 23 in the experiments when the same
curve starts to flatten in the DNS to converge to a value slightly below 0.5δ at the
end of the simulation domain. This difference can be due to the different shapes
of the boundary layer but also to the accuracy of the computation of the boundary
layer thickness. Srinath et al. [145] have noticed that depending on the definition of
δ (95% or 99% of the position of the mean velocity maximum) its value may vary
from 25%. Taking the δ95 for the estimation of the boundary layer thickness for the
experiments would therefore leads to a better comparison of the evolution of the
position of the peak with the DNS case.

The same scaling of the outer peak position of the Reynolds stresses normalized
by the displacement thickness δ1 is also presented in Fig. 4.4. The present evolution
shows that, in both cases, the peak position increases from 0.5 to 1.3δ1 for x ' 23δloc.
However, for the DNS of TBL, the peak position still increases slowly after that
position and does not stabilize contrary to what is observed with normalization by
the boundary layer thickness. Moreover, δ1 can also collapse the outer peak position
for all Reynolds stresses.

These results are in agreement with those obtained by Kitsios et al. [67], where
they found that the outer peak position change from 1.3δ1 for mild APG TBL
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Fig. 4.4. Evolution of the outer peak position of streamwise and wall-normal
velocity fluctuations as well as the Reynolds shear stress. The streamwise position
is normalized by the local boundary layer thickness computed by eq. (4.1). (a) for the
current APG TBL and (b) for the experiment of Srinath et al. [145] at U∞ ' 9m/s.

(β = 1) to ypeak = δ1 with strong APG. They have obtained an almost constant
peak position for each case as the boundary layer is in equilibrium. However, they
have shown that the position of the outer peak is not universal and depends on the
intensity of the adverse pressure gradient. They also noticed that this outer peak
is located approximately at the same position of an inflection point in the mean
streamwise velocity profile.

On the other hand, the intensity of the outer peak of Reynolds stresses is pre-
sented in Fig. 4.5 for the current APG TBL as well as for the experiment of Srinath
et al. [145] as a function of the streamwise position normalized by the local boundary
layer thickness. Wall-unit scaling of the intensity of these peaks in the current DNS
(not shown) presents a fast increase downstream up to a maximum at x ' 30δloc
then the intensity decrease due to the increase of friction velocity close to the out-
let. However, the intensities shown in Fig. 4.5 are normalized by the outer velocity
scale Ue and in both cases all the Reynolds stresses increase downstream almost
linearly except the wall-normal quantities which have a steep increase in the inlet
region. The streamwise Reynolds stress is multiplied by one half to ensure a simple
comparison as its value is much larger than the other quantities. Note that in the
DNS, u2 profile is plotted only in the region where the outer peak dominates the
inner one. Comparing with the experiment, one can notice that the Reynolds stress
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Fig. 4.5. Evolution of the outer peak intensity of streamwise and wall-normal
velocity fluctuations as well as the Reynolds shear stress. The peak intensity is
normalized by the local freestream velocity and the streamwise position is normalized
by the local boundary layer thickness based on eq. (4.1). The streamwise quantities
are multiplied by one half to ensure a simple comparison. (a) For the current APG
TBL and (b) for the experiment of Srinath et al. [145] at U∞ ' 9m/s. Black lines
corresponding to the pressure gradient parameter β.

intensities develop similarly in the region of x < 23δloc with lower intensity for the
experimental profiles, especially for the wall-normal velocity fluctuations which are
∼ 40% less than that of the DNS case. On the other hand, it is not simple to com-
pare both cases even with a comparable magnitude of APG. As shown in Fig. 4.5,
the parameter β has a different behavior between both cases. However, it is clearly
noticed that despite the drop in β in the DNS case, the Reynolds stress intensity
still increases downstream. This may be attributed to the Reynolds number which
is still increasing for a time delay between the effect of the pressure gradient and
the magnitude of the peak. In this case, as the change of pressure gradient is not
sudden it is difficult to distinguish between the two possible effects.

4.1.3 Energy budget

As mentioned in section 4.1.2, the outer peak which appears due to the APG ef-
fect on the Reynolds stress profiles can be related to an excess in the production
rate of turbulent kinetic energy over the turbulent dissipation rate ε. To focus on
this purpose, we investigate the dominance of the turbulent production rate P in
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comparison with ε.
The turbulent production rate and the turbulent dissipation rate are defined by

P = −〈uiuj〉∂j〈Ui〉 and ε = ν〈∂jui∂jui〉 respectively. In order to investigate the
balance of these two quantities, the energy source which represents the difference
between P and ε is also presented in Fig. 4.6a normalized by the wall-unit. The
results from the current APG TBL at Reθ = 6500 are compared with DNS data of
ZPG TBL from Sillero et al. [131, 132] at the same Reθ (APG TBL corresponding
to Reτ = 1100 and 1990 for ZPG TBL). As expected, the turbulent dissipation rate
has its maximum value near the wall due to high viscous effects, then it decreases
away from the wall to reach zero near the boundary layer edge similarly in both
ZPG and APG cases, whilst, in the outer region of APG TBL, the dissipation rate
profile has a plateau before reaching zero at the edge of TBL. Regarding the mean
production rate, a peak has been shown near the wall (y+ ' 10) in both ZPG and
APG TBLs. Its wall-normal position is very close to the inner peak position noticed
in the streamwise turbulence intensity (see Fig. 4.2a). The intensity of the inner
peak of production as well as the maximum dissipation at the wall normalized by
inner variables is slightly larger for the APG case as compared to the ZPG case
despite the higher friction Reynolds number of the ZPG TBL. In the outer region,
an outer peak appears in the production profile only in the APG case.

Focusing on the energy source, the inner peak of production dominates the dis-
sipation rate and the energy source remains positive up to sightly below the lower
bound of the logarithmic region (y+ = 30). Then, in ZPG TBL, a small negative
value has been obtained in the log-layer until reaching zero in the outer region.
However, in the presence of APG, the energy source profile exhibits an inflection
from negative to positive at the upper edge of the logarithmic region to reach a
maximum in the middle of the outer layer near 0.5δ. This peak, which represents
the dominance of production over dissipation rate, leads to excessive turbulence be-
ing produced within this region and at least partly explains the outer peak which
appears in the Reynolds stress profiles. Furthermore, Kitsios et al. [67] noticed that
a net transfer of the mean streamwise momentum from the turbulent fluctuations
to the mean field has occurred in that region.

Further investigation of this outer peak was conducted by comparing the energy
source at different streamwise positions. First, a comparison using viscous scaling
(not shown) shows that the outer peak of the energy source grows with increasing
Reynolds number, in agreement with the results previously found by Cimarelli et
al. [21]. They also noticed that the extent of the production dominance region
expands as the Reynolds number increases. However, scaling of the energy source
using outer quantities such as boundary layer thickness (δ) and freestream velocity
(Ue) seems to almost collapse all curves corresponding to Reθ > 5000 along the
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Fig. 4.6. (a) The energy source, production and turbulent dissipation rate of
turbulent kinetic energy at Reθ = 6500. The ZPG data are from the DNS of Sillero
et al. [131, 132]. (b) The energy source scaled by the outer quantities δ and Ue
collected at several streamwise positions with the corresponding Reynolds number
Reθ and pressure gradient parameter β.

entire outer region (see Fig. 4.6b). The energy source corresponding to Reθ = 4500
presents a different behavior because at this position, the pressure gradient was
not high enough and one can clearly notice that the outer peak of the streamwise
velocity fluctuation at this position is slightly smaller than the inner one. Based on
this observation, we can see that the outer parameters scale this outer peak much
better than viscous scaling, similar to what we have already shown in the scaling of
the outer peak of the streamwise velocity fluctuations.

4.2 Velocity scaling

Finding a good scaling of mean and turbulent quantities is an important challenge
in the turbulent flow, especially those subjected to an APG where the outer region is
more energized than ZPG and an outer peak is found in the Reynolds stresses which
affects the statistics of the boundary layer down to the inner region. Shah et al. [130]
suggested that the outer peak is triggered by the adverse pressure gradient, and has
its origin in an instability of the turbulent boundary layer. This may explain why it
has not been possible to find a universal scaling for APG turbulent boundary layers.

As we noticed previously, the wall-unit scaling works perfectly in the near-wall
region to scale the mean velocity as well as the turbulence intensities using the
friction velocity and the viscous length scale (δν). However, the similarity theory
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developed by Rotta [120], Clauser [22] and Townsend [152] suggested that in the
outer region the velocity deficit and the Reynolds stress quantities normalized by
the friction velocity must be a function of y/∆RC , where ∆RC = δ1Ue/uτ is known
as the Rotta-Clauser length scale [121].

In the case of strong APG and separation, the wall friction vanishes and uτ

no longer corresponds to an appropriate velocity scale. In many APG studies, as
mentioned in [135], a velocity scale based on the pressure gradient has been used
and is defined as uP ≡ (ν 1

ρ
dP
dx

)1/3. Since the pressure velocity is meaningless in the
ZPG case, Skote and Henningson [135] proposed a new mixed velocity scale between
uP and uτ defined as

u2
∗ = u2

τ + u2
Py

P (4.2)

where yP ≡ yuP/ν represents the wall-distance normalized by the pressure velocity
instead of uτ .

Castillo and George [16] (CG) showed that the proper outer velocity scale in
TBL is the freestream velocity Ue based on similarity analysis when the Reynolds
number tends to infinity. They showed that the velocity deficit normalized by Ue

collapses in the outer region using different cases of the pressure gradient. But at
finite and intermediate Reynolds numbers, scaling with Ue is no longer valid for the
entire outer layer. Furthermore, using Ue instead of uτ in the velocity defect law
(2.24) exhibits much better scaling.

Other types of velocity scales are presented and detailed in the following. Data
from the current DNS of the non-equilibrium APG TBL were used to examine the
validity of these velocity scales at moderate Reynolds numbers and medium APG.

4.2.1 Outer scaling

As previously noted, the friction velocity has been successfully used as a velocity
scale in the near-wall region since viscous forces dominate there. On the other hand,
the main challenge of boundary layer scaling is to find an appropriate velocity scale
for the outer part, where viscosity is no longer dominant and large energy transfers
occur in this region.

Further to the freestream velocity proposed in [16], Zagarola and Smits [172] also
introduced an outer velocity scale in pipe flows based on the velocity deficit. This
scaling was observed to better collapse the velocity profiles at different Reynolds
numbers into a single curve in the outer region. Then, the Zagarola and Smits (ZS)
scaling was generalized for all turbulent wall flows as follows

UZS = Ue
δ1

δ
(4.3)



69 Chapter 4. Statistical analysis

This scaling was validated using TBLs subjected to different types of pressure gra-
dients and successfully collapsed the velocity deficit profiles into a single curve.
Castillo and Walker [17] showed the influence of upstream conditions on the devel-
opment of the flow downstream. They have shown that the ZS scaling eliminates
these effects as well as the dependence on the local Reynolds number [16]. The ZS
scaling provides an outer velocity independent of the local Reynolds number as well
as the strength of the pressure gradient.

Maciel et al. [89] investigate in great detail the outer region of TBLs subjected
to an APG. Six APG and one ZPG databases (experimental and numerical) have
been used to investigate the outer scaling of the velocity deficit and the Reynolds
stresses. Four types of velocity and length scales have been compared, to conclude
that the better scaling is obtained with UZS and δ for various velocity-defect. The
ZS scaling is widely used in the literature as an appropriate outer velocity scale [157,
158, 163].

Fig. 4.7 shows a comparison between the CG scaling based on Ue, and the ZS
scaling for our DNS data in a wide range of Reynolds numbers. Both types of
scaling for the mean velocity deficit seem much better than the scaling using the
friction velocity (not shown) which does not work at all to scale the outer part of
TBL. UZS works perfectly to scale the mean velocity deficit where the profiles seem
to almost collapse into a single curve. However, as mentioned in [16], the velocity
deficit profiles are not expected to collapse into a single curve using the CG scaling
as the Reynolds number stays moderate and far from the infinite hypothesis.

The ZS scaling is able to better scale the streamwise fluctuating velocity profiles
of the current APG TBL than the scaling based on Ue. However, it fails to collapse all
the velocity profiles of this APG TBL which is out of equilibrium into a single curve.
Furthermore, the scaling of the Reynolds shear stress clearly shows the importance
of ZS scaling, where the curves are much better collapsed than those scaled by the
free stream velocity, except for the blue curve corresponding to Reθ = 7600 which
may already be affected by the outlet conditions. The black curve corresponding
to a profile relatively close to the inlet shows a different scaling behavior from the
other profiles because it is located in a region with a fast transition between ZPG
and APG, (see Fig. 4.7c to 4.7f).

Gungor et al. [46] introduced a new outer velocity scale that is used for both
TBLs and mixing layer and is defined as twice the velocity deficit at the middle of
the shear layer

Um = 2[Ue − U(y = 0.5δ)] (4.4)

The scope of this scaling is rather limited as it can scale only the region where
y > 0.5δ (not shown), when the efficiency of ZS scaling starts at ∼ 0.2δ. However,
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Fig. 4.7. The mean velocity deficit normalized by (a) Ue and (b) UZS. Streamwise
velocity fluctuations normalized by (c) Ue and (d) UZS. Reynolds shear stress nor-
malized by (e) Ue and (f) UZS. The velocity scales Ue, UZS, and the boundary layer
thickness δ were collected at the corresponding streamwise position.

according to Gungor et al. [47] this mixing-layer-type scaling is expected to scale
the strong APG case.

Based on several observations of the evolution of the freestream velocity as a
function of the boundary layer thickness, Castillo and George [16] noticed that
three basic behaviors can be observed corresponding to ZPG, APG and FPG cases.
This observation leads to define the pressure gradient parameter Λ, where it should
be constant for each case of pressure gradient and almost independent from the
Reynolds number effects. The parameter Λ is defined as following

Λ ≡ δ

ρU2
e dδ/dx

dPe
dx

= − δ

Uedδ/dx

dUe
dx

(4.5)
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Fig. 4.8. Pressure gradient parameter Λ, fitted from δ ∼ U−1/Λ
e for two definition

of the boundary layer thickness. (a) δ95 (b) δ99.

As mentioned before, Λ = constant in each case of TBL flows (Λ = 0 in ZPG
case), and in the presence of pressure gradient (Λ 6= 0). A constant value of Λ leads
to a variation of the boundary layer thickness which goes like δ ∼ U−1/Λ

e . Therefore,
to calculate the value of Λ in the current APG TBL, one must simply determine
the slope of Ue vs δ in a log-log plot. Indeed, for TBL with a pressure gradient,
the boundary layer thickness is not as clearly defined as for ZPG TBL as the mean
velocity profile exhibits a maximum larger than the external velocity. Moreover,
DNS data do not allow us to obtain a very good convergence of the mean velocity
profile. In that case, using the usual definition of δ as being the position such as
U = 0.99Ue can be inaccurate. Srinath et al. [145] have shown with experimental
results that the definition of the boundary layer thickness can modify slightly the
value of the CG parameter. This is why two definitions of boundary layer thickness
(δ95 and δ99) are used to check the sensitivity of Λ to the definition of δ.

As show by Castillo and George [16], Λ is around 0.22 for very strong APG
(close to separation) [105] and increase to 0.23 in a strong APG case [87]. Referring
to different mild and moderate APG results CG found that the value of Λ varies
from 0.189 and 0.279. In our case, we notice two different values in each case of
Fig. 4.8 where the red fit corresponding to the transition region from ZPG to APG
which has a completely different behavior from the APG one obtained by the blue
line. Fig. 4.8 shows that the values of Λ with both definitions of boundary layer
thickness are quite similar in the APG domain far enough from the inlet obtained
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from ZPG and not affected by the outlet condition corresponding to a range of
Reynolds number of Reθ ' 5000 to 7300. In view of the uncertainty of the fit, the
value of 0.24 to 0.25 is very close to the value 0.25 observed by CG in the case of
moderate adverse pressure gradient database of Bradshaw [11] corresponding to a
flow far from separation.

4.2.2 Scaling based on the momentum flux

On the other hand, Lozano-Durán and Bae [85] have hypothesized in their work
that the wall is not the element that organizes the momentum-carrying eddies,
whose intensities and sizes are controlled instead by the mean production rate of
turbulent kinetic energy, i.e, the mean momentum flux and mean shear control these
eddies with no explicit reference to the distance to the wall. As a consequence, they
proposed the following characteristic velocity scale

u∗ ≡
√
−〈uv〉 (4.6)

A characteristic time scale based on the mean shear was also proposed and
interpreted as the average time required for the eddies to extract energy from the
mean shear

t∗ ≡
(
∂〈U〉
∂y

)−1

. (4.7)

An associated length scale is defined as l∗ ≡ u∗t∗.
This scaling has been validated on standard channel flows at Reτ = 550 as well

as forced channel flows to prescribed parametric mean velocity profiles in order to
force the flows to encounter very different dynamics. For all these cases u∗ was
shown to collapse successfully the turbulence intensity profiles into a single curve.
The characteristic velocity u∗ based on the Reynolds shear stress i.e. on the mean
production rate of turbulent kinetic energy shows that the production rate has a
common “footprint” in the three turbulence intensities.

The scaling u∗ was tested on the three turbulence intensities for the present
DNS of APG TBL. The three components of the velocity fluctuations are presented
in Fig. 4.9 (solid lines) at four streamwise positions corresponding to Reθ = 4500,
5500, 6500 and 7600 within a streamwise range where the pressure gradient is not
constant. Scaling of APG TBL was compared with ZPG TBL of Sillero et al. [131,
132] at similar Reynolds numbers (unless Reθ = 7600) and the ZPG curves are
plotted using the dashed lines.

Fig. 4.9b, 4.9d and 4.9f show the evolution of Reynolds stresses normalized by
u∗ as a function of wall-normal distance scaled with the outer length scale δ in order
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Fig. 4.9. Streamwise, wall-normal, and spanwise root-mean-squared velocity fluc-
tuations scaled with (a,c,e) uτ and (b,d,f) u∗, respectively. All the figures are plotted
as a function of wall distance normalized by the boundary layer thickness δ. Solid
lines are for the current APG TBL and the dashed lines for the ZPG case [131, 132].

to focus on the outer layer. Each velocity fluctuations normalized by u∗ collapse
for different Reynolds numbers and have a constant value from the upper part of
the log region (y+ > 100) up to the top of the boundary layer for u and w and up
to 0.8δ for v. These constant values are 2, 1.3 and 1.8 for the streamwise, wall-
normal and spanwise Reynolds stress respectively. u∗ scales the outer region much
better than the wall-unit scaling that presents a clear dependence on the Reynolds
number except in the near-wall region as well as a strong sensitivity to the presence
of adverse pressure gradient. Lozano-Durán and Bae [85] interpreted the increase in
the wall-normal Reynolds stress normalized by u∗ very far from the wall as a lack
of mean shear, where this scaling is no longer applicable there.
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The same quantities were plotted in Fig. 4.10 as a function of wall-unit distance
y+ in order to focus on the efficiency of u∗ scaling in the buffer region. The scaling
using u∗ leads to collapse the fluctuating velocity profiles into a single curve in the
inner part but it is not as accurate in this region except for the normal fluctuating
velocity.

The efficiency of the u∗ scaling, already validated on channel flow [85], to scale
all turbulent intensities of our APG TBL is clearly demonstrated. It is able to scale
both the inner and the outer region in an investigated Reynolds number range. This
scaling gives some indication of the property of the flow. However, the weak point
of this scaling is the dependence of a local internal quantity (Reynolds shear stress)
which varies with boundary layer position and it was not based on external or global
quantities e.g. Ue.

4.2.3 Embedded shear layer scaling

As mentioned in Schatzman and Thomas [124], the existence of an inflection point
(IP) in the mean velocity profile implies the existence of an inviscid instability due
to the instantaneous inflectional profiles. They also pointed out the important effect
of the coherent large-scale spanwise-oriented vorticity located in the shear layer, on
the spatial and temporal development of the flow, especially at a sufficient distance
from the wall.

Regarding the previous observation, the authors have introduced a scaling related
to the shear layer, and the local embedded shear layer vorticity thickness δω has been
proposed as the length scale,

δω ≡
(Ue − U)IP
(dU/dy)IP

, (4.8)

where (.)IP represents the corresponding quantity evaluated at the inflection point
position of the mean velocity profile. Moreover, the local velocity deficit at the
inflection point is taken as the velocity scale of the present scaling

Ud ≡ (Ue − U)IP (4.9)

Similarity variables are defined as

η ≡ y − yIP
δω

, U∗ ≡ Ue − U
Ud

, (4.10)

where η is the distance from the inflection point normalized by local δω, and U∗

is the local velocity deficit normalized by Ud (i.e. normalized by its value at the
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Fig. 4.10. Same quantities as Fig. 4.9 plotted as a function of wall-unit normal
distance.

inflection point).
The shear layer scaling was tested by Schatzman and Thomas [124] over a ramp

boundary layer in presence of a moving airfoil in the freestream region. In this
experiment the APG was varying within a time cycle in a range −3 < β < 5. The
length and velocity scales were tested by plotting the evolution of U∗ as a function of
η at several points in the time cycle which corresponds to different APG behaviors.
All the mean velocity deficit profiles were found to collapse onto a single curve. The
embedded shear scaling was found to better perform than the ZS scaling.

This scaling was tested using data from the current DNS of APG TBL. The ve-
locity deficit at six streamwise positions (corresponding to various APG conditions)
are presented in Fig. 4.11a using the embedded shear layer scaling. It is clearly
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Fig. 4.11. (a) Mean velocity deficit profiles from the current APG TBL at vari-
ous streamwise positions using embedded shear layer scaling defined in (4.10). (b)
Evolution of ∂U/∂y along the boundary layer at six streamwise positions. Small
triangles represent the positions of outer peak of streamwise Reynolds stress.

shown that the profiles of U∗ as a function of η almost collapse into a single curve
especially near the inflection point (i.e. η = 0) as by construction all the curves
cross at this point.

On the other hand, Fig. 4.11b shows the evolution of ∂U
∂y

as function of wall
distance normalized by local δ. Note that the maximum of this profile in the outer
region (y > 0.2δ) corresponds to the desired inflection point. However, one can see
that it is not easy to locate this maximum because the profile is slightly wavy and it
becomes like a plateau when moving downstream (Reθ > 6500). Furthermore, the
aforementioned position of the outer peak of the Reynolds stress is also presented in
the same figure. Despite the difficulty in locating the position of the IP, one can see
that both positions are approximately close which agrees with the results of Kitsios
et al. [67] stating that the outer peak of the velocity fluctuations is located at the
same position of an inflection point in the mean streamwise velocity.

Moreover, the present velocity scale Ud was tested on the streamwise velocity
fluctuation and was compared with the scaling using the freestream velocity Ue at
the same streamwise positions used in the velocity deficit scaling (see Fig. 4.12). The
near-wall profiles are not plotted as these scalings are not supposed to scale the inner
layer. In the experiments of Schatzman and Thomas [124], the embedded shear layer
velocity scale was able to perfectly collapse the streamwise velocity profiles. The
streamwise Reynolds stress normalized by Ud is presented in Fig. 4.12b. Ud encloses
the Reynolds stress curves better than Ue, excluding the dark green line correspond-
ing to Reθ = 4100 which is still affected by the ZPG/APG transition as well as the
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Fig. 4.12. The streamwise Reynolds stress profiles normalized (a) by Ue as function
of y/δ and (b) by Ud as function of η at different Reynolds numbers. The blue
shadowed area represents the streamwise Reynolds stress, normalized by Ud taking
into account the error bar on the position of the inflection point.

blue line (Reθ = 7600) in the vicinity of the outlet which may be influenced by the
outlet conditions. The difficulties in performing the embedded shear layer scaling
come from the high dependence on the position of the mean velocity inflection point
where the length and velocity scales are evaluated. Moreover, the inflection point is
located close to the logarithmic region, which complicates the accurate determina-
tion of its position as shown in Fig. 4.11b. In this study, the inflection point at such
a position is determined by fitting the profile of the second derivative of the mean
velocity (∂2U/∂y2) which strongly oscillates around zero (i.e. IP position), then the
intersection with zero is considered as the inflection point. Therefore, the velocity
scale Ud used to scale the Reynolds stress profiles in Fig. 4.12b was calculated based
on an approximate determination of the location of the inflection point.

In order to analyze the effect of the IP position on this scaling, we focused on
a single streamwise position (corresponding to Reθ = 6200) and we calculated the
velocity scales based on all the possible values of the IP. The streamwise fluctu-
ating velocity at the corresponding streamwise position was normalized using all
the corresponding values of velocity scales Ud. The scaled profiles are plotted in
Fig. 4.12b covering the blue shadowed area. It is clear that the position of IP has
a great impact on the scaling of the Reynolds stress around its position, then the
dependence on the IP position decrease as moving away from it. Furthermore, it is
clearly shown that most of the scaled Reynolds stress profiles are included in this
area that presents the relevance of this scaling when the IP is precisely detected.
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4.2.4 Shear scaling

A new characteristic length scale was proposed by Sekimoto et al. [129] to be a uni-
versal scaling for the large and small scales and free from the definition of boundary
layer thickness δ. The new length scale is based on the non-dimensional shear rate
parameter defined by [27] as

Sc ≡
∂U

∂y

q2

|ε|
, (4.11)

where q2 = 〈uiui〉 = 2K, K is the mean kinetic energy and ε = −ν〈
(
∂jui

) (
∂jui

)
〉

is the pseudo-dissipation rate.
The Corrsin shear parameter Sc illustrates the importance of the interaction

of the mean shear with the energy-containing turbulent structures [57, 47]. The
shear thickness δ∗ was proposed as a relevant length scale and defined as the wall-
normal position of the peak of the Sc profile. The suggested length scale was tested
and validated by Sekimoto et al. [129] using turbulent channel and boundary layer
flows with various pressure gradients. The profile of Sc with respect to δ∗ for all
investigated flows exhibits similar behavior for wall distance y < δ∗. In addition, the
authors distinguished between two regions: y < δ∗ is called an ‘active’ shear-driven
layer and y > δ∗ ‘inactive’ decaying turbulence. This partition is associated with
the effect of the shear which becomes negligible very far from the wall so that a
shear-based scaling is not expected to work in this region.

They also proposed a characteristic velocity scale mixed between the friction and
pressure velocity using a new definition related to the shear-thickness. The pressure
velocity is re-defined as u∗P =

√
δ∗P ′e, where P ′e is the streamwise pressure gradient

at the edge of boundary layer. The Clauser’s pressure gradient parameter is also
noted as, β∗ = (u∗P/uτ)2. As a consequence, the relevant velocity scale is provided
as

u∗ = u∗P

√
1
β∗

+ y

δ∗
(4.12)

u∗ was shown by Sekimoto et al. [129] to scale each Reynolds stress term for the
various flows, except for the near-wall region.

A similar analysis with current APG TBL shows that this scaling does not per-
form well. The main reason is probably because this scaling is designed to scale an
equilibrium wall-bounded flow and our APG boundary layer is out of equilibrium.
Moreover, the current scaling is based on the position of the maximum Corrsin shear
parameter and the determination of this position requires very converged statistics
which is not the case with our DNS results. As shown in Fig. 4.13, the Sc profile
is very disturbed, especially around the position of the peak which makes the exact
determination of δ∗ very difficult and hence the scaling of Reynolds stresses will
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Fig. 4.13. The premultiplied Corrsin shear parameter Sc as function of the displace-
ment thickness δ1 at different Reynolds numbers. The peak position corresponds to
the shear thickness δ∗.

be strongly affected. It is therefore difficult to conclude about the validity of this
scaling.

4.3 Characteristic length scales

In addition to the outer length scale (δ) and the inner one based on the wall-unit (δν)
the Taylor micro-scale and the integral scale are known to play an important role in
turbulent flows. Even if the estimation of these scales requires a very large number
of uncorrelated data, estimations of each of these scales will now be presented.

4.3.1 Taylor micro-scale

The Taylor micro-scale is defined in Larssen and Devenport [73] by λ =
√

15νu2/ε

in isotropic flows, where u2 is the mean streamwise turbulence intensity and ε is the
turbulent dissipation rate. However, in anisotropic turbulence, the term u2 must be
replaced by 2K/3, where K is the turbulent kinetic energy. Then, the mentioned
micro-scale is now defined as λ =

√
10νK/ε.

The evolution of the micro-scale along the boundary layer at a streamwise po-
sition corresponding to Reθ = 6900 is presented and normalized by the outer scale
(δ) in Fig. 4.14a in comparison with the ZPG case of Sillero et al. [131, 132]. In
Fig. 4.14b, the same quantities have been shown using the wall-unit scaling. As pre-
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Fig. 4.14. Taylor micro-scale λ as function of wall-normal positions normalized
by (a) δ and (b) δν . The current APG case is evaluated at a streamwise position
such that Reθ = 6900 (red line) and Reθ = 6500 for a ZPG TBL collected from the
database of Sillero et al. [131, 132] (blue line).

dicted by Dallas et al. [29] on the basis of the number density of fluctuating velocity
stagnation points, which scales as 1/y+ in the region where production approxi-
mately equals dissipation, λ ∼

√
y+ in the log region for the ZPG case. However,

the scaling for the APG case is slightly different in the log region which is shifted
toward low y+.

4.3.2 Integral length scale

The time auto-correlation function is defined in Benedict and Gould [9] by

Ruu(τ) = 〈u(t)u(t+ τ)〉
〈u2(t)〉 , (4.13)

where t is the time and τ is the time interval over which the correlation function is
calculated.

Ruu is calculated over 40 characteristic times based on the outer quantities (Ue
and δ) evaluated at the outlet. It is presented at several wall distances up to y+ =
300 in Fig. 4.15a. The integral time scale is defined in [9] as

Tuu ≡
∫ ∞

0
Ruu(t)dt (4.14)
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Fig. 4.15. (a) The time auto-correlation function of the streamwise velocity fluc-
tuations for the current APG TBL at various wall distances (it is calculated using
the 2D well-resolved planes at Reθ = 7240). (b) The integral length scale as a func-
tion of the wall distance, normalized by the boundary layer thickness δ. The APG
case is evaluated at the streamwise position such that Reθ = 7240 (red line) and
Reθ = 2068 for the ZPG TBL of Solak and Laval [140] (blue line). Fitting of the
integral length scale profile for the APG case is presented in the log-layer and the
lower part of the outer region (green line).

The integral length scale is related to Tuu by the following formula

Luu = Tuu〈U〉, (4.15)

where 〈U〉 is the mean streamwise velocity. In Fig. 4.15b, the integral length scale
normalized by δ of the current DNS of APG TBL (red line) is compared with the
results of ZPG TBL of Solak and Laval [140] (blue line). The results are plotted up
to 0.5δ as the profiles are not well converged in the upper part of the outer region.
Despite this lack of convergence of the integral scale, the best fit was found to be
y0.22 in the log region. This fit is comparable with the fit y1/3 observed in ZPG TBL
at high Reynolds number by Vassilicos et al. [156]. However, the integral scale of
the APG case is significantly lower than for the ZPG TBL DNS at small Reynolds
number (see Fig. 4.15b).
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4.4 Energy spectra of the streamwise velocity fluc-
tuations

4.4.1 Spanwise energy spectra

The energy spectra of the streamwise velocity fluctuations are commonly used to
investigate the energy transfer between different scales. As mentioned in chapter 2,
Vassilicos et al. [156] proposed a modified model from the Townsend-Perry attached
eddy model, by suggesting a new region in which the streamwise energy spectrum
follow a k−mx scaling. However, this model holds only for very large Reynolds num-
bers. In addition, Srinath et al. [145] using an APG TBL experiments have noticed
that (k−1

x ) spectrum is only valid for a single wall-normal distances in the log-layer.
They have shown that the spectra at low wavenumber evolve with E11 ∼ (kxδ)q,
where q is a weak function of the wall distance. This model can be derived from a
very simple on-off model of the large-scale structure of streamwise velocity fluctua-
tion given the hypothesis that these large-scale structures are space filling.

Most of the investigations are based on streamwise energy spectra of streamwise
velocity fluctuations as this quantity is directly accessible by hot-wire measurement
when using the Taylor hypothesis [5, 6, 158]. The important growth of the boundary
layer thickness in our case with APG does not allow a direct calculation of energy
spectra in the streamwise direction. Therefore, the energy spectra in the spanwise
direction have been studied to identify the behavior of different scales of large-scale
structures. Wang et al. [162] showed that the energy spectra of the streamwise fluc-
tuating velocity in the streamwise and spanwise directions have a similar behavior
using data from both ZPG boundary layer and channel flow. They investigated
separately the two spectral peaks located in the inner and outer regions and have
concluded that the outer large scales maintain a “footprint” down to the near-wall
region.

Fig. 4.16 shows log-log plots of pre-multiplied energy spectra kzφ+
uu normalized

by the wall-unit. The energy spectra have been computed from our DNS data over
1315 velocity fields which can be considered as resolved in time and averaged in a
small streamwise domain (corresponding to 0.6δ) around the reference streamwise
position (Reθ = 7240) at various wall distances. The spectrum profiles exhibit a
large dissipative range without accumulation of energy at the largest wavenumbers
which validates that the spatial resolution is enough to resolve small dissipative
scales.

In Fig. 4.16a, the spectra are presented at 4 wall distances in the buffer and lower
logarithmic layers. The spectrum behavior φ+

uu ∼ k−1 proposed in the Townsend-
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Fig. 4.16. Pre-multiplied spanwise energy spectra at different wall distances as
function of wavenumber normalized by δ at Reθ = 7240. The energy spectra were
computed over 1315 streamwise velocity fields in a domain corresponding to 7200 <
Reθ < 7260 which corresponds to approximately 0.6 local boundary layer thickness
at the reference streamwise position. (a) corresponding to positions in the buffer
and lower logarithmic regions (b) for the upper part of the log-layer.

Perry model was not observed in the region corresponding to large scales (corre-
sponding to small wavenumbers) except for a few wall distances around 35+. Then
the slope of the spectra decreases far from the wall. Despite the limited convergence
due to the fact that the velocity fields used for the analysis are time-resolved, it can
be seen that the energy spectrum profile follows k−q as mentioned in [145], where the
exponent q increases when moving from the wall. Further study should be devoted
to the variation of this slope with distance from the wall. The previous observation
is in agreement with the results observed in [81] using streamwise spectra of the
streamwise velocity fluctuation from a DNS of channel flow up to Reτ ≈ 5200. This
can be associated with the self-similar behavior of the large-scale structures as it
will be investigated in section 2.2.3.

On the other hand, Fig. 4.16b shows the energy spectra in the upper part of the
logarithmic layer, where the spectra appear almost similar, and a scaling close to
k−1 cannot be observed.

A deeper analysis of the spectra is proposed in Fig. 4.17 using lin-log plot as
a function of the wavelength. In Fig. 4.17a and 4.17c, λz was normalized by the
boundary layer thickness, and the viscous wall-unit scaling was used in Fig. 4.17b
and 4.17d. The energy spectrum at wall distance y+ = 15 presents a peak corre-
sponding to a wavelength λ+

z ∼ 125, in agreement with the results obtained in [162].
This peak can be related to the inner peak of the streamwise velocity fluctuation
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Fig. 4.17. The same energy spectra of Fig. 4.16 plotted as function of wavelength
normalized by δ and unit wall. (a) and (b) corresponding to positions in the buffer
and lower logarithmic regions; (c) and (d) for the upper part of the log-layer. The
dash-doted black line corresponds to the wavelength of the common peak.

associated to the spacing between near-wall streaks. The use of lin-log plot better
shows that the k−1 law is not valid for this APG TBL and is observed only at few
wall-distances (y+ ∼ 35) on a limited range of wavelength.

Since our inlet conditions were built from a four times duplication of the original
ZPG fields in the spanwise direction, we noticed that a peak appears at all wall-
normal positions and corresponding to a wavelength λz equal to the spanwise width
of the original ZPG domain. The position of these peaks is marked by the vertical
dash-doted line in Fig. 4.17. This peak could be due to a reminiscence of the peri-
odization of the inlet even if a weak random noise was added precisely to avoid this
effect. However, by monitoring the spanwise energy spectra at several streamwise
positions, we observed that the wavenumbers with zero energy at the inlet due to
the periodization were completely filled in the second part of the simulation domain.
Therefore, we expect to see no more effect of the periodization close to the outlet.
The wavelength associated with this peak is of the order of 2/3 of the boundary
layer thickness and could therefore be a meaningful spanwise scale.
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Fig. 4.18. Pre-multiplied time spectra as a function of time, normalized by wall-
units. The spectra were computed over the entire spanwise direction in a streamwise
domain corresponding to 7180 < Reθ < 7270 which corresponds to approximately
0.8 local boundary layer thickness at the reference streamwise position. (a) corre-
sponding to positions in the buffer and lower logarithmic regions (b) for the upper
part of the log-layer.

4.4.2 Time spectra

In parallel with the spatial energy spectra, some investigations were dedicated to
the temporal spectrum [125, 123, 100, 157].

In Fig. 4.18, the pre-multiplied time spectra were presented at same wall-normal
positions as Fig. 4.16. The energy spectra have been calculated using the sufficiently
time-resolved 3D database with time spacing ∆t+ = 1.2. The spectra are converged
using 1280 grid points in the spanwise direction and 200 grid points (∼ 0.8δ) in
the streamwise direction. The time spectra computed from the 3 time-resolved YZ
planes happen to be less converged as only the spanwise direction can be used for
the average.

Based on Townsend-Perry model, it is expected to see a plateau in the pre-
multiplied time spectra which correspond to the −1 slope behavior in the spatial
spectrum profile. As our database is not well converged, important fluctuations
are presented at low frequencies in which the mentioned plateau should be seen.
However, the general evolution of the profiles in Fig. 4.18a shows that only the profile
at y+ = 35 can be considered having a plateau similarly to what has been obtained
using the spanwise spectra. On the other hand, this plateau can not be observed
further away in the upper part of the logarithmic layer even if the convergence of
the spectra does not allow us to be fully affirmative (see Fig. 4.18b).
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Chapter 5
Coherent structures of streamwise
fluctuating velocity

Various types of coherent structures have been described in chapter 2 as well as
the effects of the presence of adverse pressure gradient on the structures motion.
In the present chapter, we will focus on the coherent structures of the streamwise
velocity fluctuations, especially the large-scale structures located in the outer region.
These large-scale motions are widely related in the literature to the hairpin vortex
packets as mentioned in section 2.2.4. Special attention has been devoted to the
investigation of coherent structures to the interactions between the inner and outer
structures [56].

In the current study, we distinguished between low and high momentum regions
of the streamwise velocity fluctuations with a special focusing on the largest scales.
Therefore, a good spatial-temporal resolution is required to carefully investigate
these structures. For that purpose, the 3D time-resolved database collected from the
current DNS has been used to investigate the contribution of the coherent motion to
the Reynolds stresses. As it has been shown for ZPG TBL by Solak and Laval [140],
these large-scale structures have a very complex shape which vary in time.

5.1 Near-wall streaks

In order to investigate the impact of the adverse pressure gradient on the near-wall
coherent structures, a comparison of the positive and negative streamwise velocity
fluctuations between the current DNS of TBL subjected to an APG in a domain
corresponding to Reτ = 970− 1270 and the DNS of the channel flow of Del Álamo
et al. [32] at Reτ = 950 has been performed. For that purpose, planes parallel to
the wall at y+ = 15 with dimensions of 12000+ and 3000+ in the streamwise and
spanwise directions respectively were presented in Fig. 5.1.
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Fig. 5.1. Near-wall streaks represented using streamwise-spanwise planes at y+ =
15 from the current APG TBL (top) and the DNS of channel flow of Del Álamo et
al. [32] (bottom). The streamwise velocity flucuation is normalised by its standard
deviation. The red color corresponds to the high-speed streaks and the blue one to
low-speed streaks.

One can notice that in both cases, the low-speed streaks are thinner and more
elongated than high-speed ones. It is not easy to conclude the effect of the pressure
gradient using a single snapshot but one can notice that the low-speed streaks and
high-speed streaks seem less regular (less elongated) in presence of APG. This is
probably the footprint of more intense large-scale structures responsible for the
outer peak in the Reynolds stress profiles.

5.2 Spatial two-point correlation

The two-point correlation is commonly used to investigate the average statistics of
large-scale structures. The two-point correlation function of the streamwise fluc-
tuating velocity was calculated as following and averaged over the homogeneous
spanwise direction and time.

Ruu(x, y;x0, y0) = 〈u(x− x0, y − y0)u(x, y)〉
〈u(x0, y0)〉2 (5.1)
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where (x0, y0) are the coordinate of the fix point.
The results for the present APG TBL are compared to the same statistics for the

DNS of ZPG TBL over a flat plate at Reθ ' 2000 which was used to generate the
inlet conditions [140]. In all figures of two-point correlation, solid lines are devoted
for the current APG contours and the dash-doted ones for the ZPG case. In Fig. 5.2,
the two-point correlation in the streamwise wall-normal plane normalized by the
outer length scale δ is shown at four wall-normal reference positions (corresponding
to y0/δ = 0.08, 0.1, 0.13 and 0.17). The streamwise position of the reference point
(x0) of the APG case is located at the reference streamwise position (Reθ = 7240)
and corresponding to Reθ = 2068 for the case of ZPG TBL. Unfortunately, it was
not possible to compare the two cases with the equivalent Reynolds number as these
statistics require a large database of raw 3D velocity fields that was not available at
a larger Reynolds number for ZPG. Even in presence of this difference in terms of
Reynolds numbers, the investigation of the APG effects on the large-scale motions is
still possible as the effect of pressure gradient on LSM is more important than those
of Reynolds number and the latter has a large effect on the extent of structures.
Contours levels correspond to iso-values from 0.1 to 0.9 of the correlation function
normalized by the corresponding streamwise Reynolds stress at the reference point
u(x0, y0). The calculation of the two-point correlation function was performed in a
domain extending up to the boundary layer thickness in the normal direction and
around six local boundary layer thicknesses centered at the reference position in the
streamwise direction.

From the comparison between the APG and ZPG correlation functions, one can
notice that large-scale motions in the APG case are more inclined upstream than
those in the ZPG case. The angle of inclination relative to the wall was found to
be around 8◦ for the ZPG case and 15◦ for the TBL subjected to an APG. Kitsios
et al. [67] have compared the two-point correlations from DNS of ZPG and APG
TBLs. They found that the inclination of the major axis of the elliptical shape of
these streamwise structures has an approximate angle of 7◦ for the ZPG case, 14◦

for the mild APG, and 27◦ for the strong APG TBL. The inclination angle seems
to be constant for the four wall-normal reference positions shown in Fig. 5.2. The
exact determination of this angle is however difficult as the two-point correlation
functions are not extremely well converged.

The extend of the low isovalues of the two-point correlation function is associated
with the large-scale motions. According to the comparison of Fig. 5.2, the largest
scale structures scaled with δ extend more downstream for the APG case than for
the ZPG one. By comparing the results at different wall-normal positions, we notice
that the forward part of the elliptical shape clearly reduces as moving away from
the wall in APG TBL contrary to the ZPG case for which the forward part remains
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Fig. 5.2. Comparison of the iso-contours of the two-point correlation function
plotted as function of boundary layer thickness δ between the APG case at Reθ =
7240 (x0 = 0.79Lx) and the ZPG case at Reθ = 2068. The correlation is average
over 211 (respectively 700) times and 1280 (respectively 448) points in the spanwise
direction for the APG (respectively ZPG) cases. y0/δ = 0.08, 0.1, 0.13, 0.17 from
top to bottom respectively.

at almost the same extent for all positions. This indicates that the upstream part
of the large-scale motions seems to be modified under the effect of APG. The tail
observed in the near-wall region backward of the fixed point (x0, y0) is associated
with the near-wall low- and high-speed streaks. In ZPG case, the extent of the tail
increases from −1.8δ to −2.4δ as moving upstream. However, in the APG case, the
extent slowly increases from −1.3δ to −1.6δ.

On the other hand, an important difference between both cases is observed near
the end of the tail, where a steep junction is visible between the inner and outer
regions only in the APG case. This junction is probably responsible for the reduction
of the tail extent in APG TBL. It is however important to point out again that the
results of ZPG and APG are reported at different Reynolds numbers and this could
explain part of the differences between the two correlation functions.

In order to focus on the steep junction in the inner region, the two-point correla-
tion contours were plotted using the wall-unit scaling in Fig. 5.4, as it is not relevant
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Fig. 5.3. Iso-contours of the two-point correlation (XY-plane). The reference
point is located at Reθ = 19100 and its wall distance y = 0.127δ corresponding to
y+ = 890. (Reproduced from Tutkun et al. [153]).

to analyze the near-wall region using outer units. The present results show almost
the same behavior of the steep departure from the near-wall region observed when
the contours are scaled by δ.

In order to address this point, our results can be compared with the two-point
correlations computed by Tutkun et al. [153] from HW rake measurements in the
boundary layer wind tunnel of Lille at Reynolds number Reθ = 19100. When
comparing the iso-value 0.1 in the contours of the two-point correlation reproduced
in Fig. 5.3 at y0 = 0.127δ (which is close to our results at 0.13δ) the iso-contour
extend up to less then 2δ downstream. This is slightly more than for our reference
ZPG case at a lower Reynolds number but much less than the corresponding APG
case. This means that the effect of the Reynolds number is not enough to explain
the difference between our ZPG and APG cases.

The near-wall region (y+ < 100) of the two-point correlations is directly asso-
ciated with the property of the near-wall streaks. One can see from Fig. 5.4 that
the scaling of the streaks differ from the ZPG case. The upstream part is slightly
longer in the APG case for the fix point at 50+ and slightly shorter for y0 = 150+.
The downstream part is harder to analyze as there is no sharp transition between
the near-wall streaks and the outer large-scale structures.

As mentioned before the two-point correlations reflect the average statistics of
the length and height of large-scale structures. Moreover, 3D representation of the
correlations function can represent the width of structures, like in Sillero et al. [132].
In order to focus on the width of large-scale structures, the two-point correlation was
calculated in the wall-normal spanwise plane. In Fig. 5.5, the two-point correlations
scaled by δ are presented at two wall-normal distances (y0 = 0.08δ and 0.17δ)
for the same streamwise reference positions than the one used for the streamwise
normal plane analysis. The structures in the APG case appear to be slightly larger
than the ZPG ones at a reference position located in the upper part of the inner
layer (y0 = 0.08δ), however, in the outer layer (y0 = 0.17δ) the contours in both
cases present a similar extent in spanwise and wall-normal directions. The average
spanwise width of the structures is around 0.4δ with small changes with the wall-
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Fig. 5.4. Comparison of the iso-contours of the two-point correlation function
plotted in wall-units between the APG case at Reθ = 7240 (x0 = 0.79Lx) and the
ZPG case at Reθ = 2068. The correlation is average over 211 (respectively 700)
times and 1280 (respectively 448) points in the spanwise direction for the APG
(respectively ZPG) cases. y+

0 = 50, 100, 150, 200 from top to bottom respectively.

normal distances and the height of APG structures extended from 0.5δ to 0.6δ and
from 0.4δ to 0.5δ in the ZPG case. Despite these small differences, the structures
can be considered to have almost the same extent in the spanwise and wall-normal
directions when an outer scaling is used. On the other hand, the structures in ZPG
present an elliptical shape at all wall distances but, in APG case, a square shape
near the wall is observed especially at y0 = 0.17δ.

In Fig. 5.6, the same correlation contours are presented using the wall-unit scal-
ing. As expected, a significant difference in the structures dimensions is observed
when using the wall-unit scaling as the corresponding Reynolds numbers are not
comparable. The width of APG structures extended up to 400+ but it still limited
to 250+ in the ZPG case.

To conclude, the streamwise large-scale structures scaled by outer units are
slightly longer in the APG case as compare to ZPG and this can not be only ex-
plained by the difference of Reynolds number. Moreover, the structure is more
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Fig. 5.5. Outer scaling two-points correlation in wall-normal-spanwise plane. APG
case: x0 = 0.79Lx; it is averaged over 1315 fields and 240 points in streamwise
direction (∼ δ). ZPG case: x0 = 0.75Lx; it is averaged over 700 fields and 60 points
in streamwise direction (∼ 0.7δ).

inclined downstream in the APG case. However, the main difference is noticed in
the upstream part of the structure just above the buffer region where the shape of
the correlation function is quite different which seems to indicate a stronger impact
of the large structures on the wall.

5.3 Detection methods

In order to further investigate the large-scale motion, the coherent structures of
streamwise fluctuating velocity have been detected separately in space. The detec-
tion of structures individually allows the analysis of their characteristics and the
contribution of small and large scales on turbulence statistics.

As the shape of the large-scale streamwise structures is complex, it is required to
use a precise method to identify and detect individually these structures. Different
methods have been proposed for such detection. Solak and Laval [140] used a simple
thresholding technique to detect the structures of the streamwise velocity fluctuation
where the threshold was chosen as the standard deviation of streamwise velocity
fluctuation at y+ = 100 to retain a large fraction of the kinetic energy. Yoon et
al. [169] detected the same type of coherent structures from a DNS of APG TBL
(β = 1.43) using a threshold variable with the wall-normal distance. Other methods
have been used in the literature to detect different types of coherent structures [4,
12]. In the current study, we chose the same method as in Solak and Laval [140] in
order to compare the results and to try to extract the effect of an adverse pressure
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gradient.
As a first step, 3D binary images of negative and positive streamwise fluctuations

are obtained by applying a threshold on each field of streamwise velocity fluctuation.
The formulation can be summarized as

B	 =


1 if u < −Cthrσ100+

u

0 otherwise
(5.2)

B⊕ =


1 if u > Cthrσ

100+

u

0 otherwise
(5.3)

where σ100+
u is the standard deviation of the streamwise velocity fluctuations at

wall-normal position y+ = 100, and Cthr is a constant threshold parameter.
The same reference velocity σ100+

u have been used as in the ZPG case of Solak
and Laval [140]. In the ZPG case, y+ = 100 corresponds approximately to the
beginning of the plateau or the smooth peak which is observed in the outer region of
the boundary layer at high Reynolds numbers. As this outer peak is associated with
the large-scale structures under investigation, taking the standard deviation of the
streamwise velocity fluctuation at this position seems logical to take into account
the effect of the Reynolds number.

When looking at the effect of the threshold, the results seem much closer to the
ZPG case for the lower threshold when a large fraction of the volume is retained
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as part of the structures. However, the results differ when detecting the structures
with a higher threshold (close to 30% more volume, momentum and kinetic energy).
These results seem to indicate that the streamwise velocity structures in the APG
case contain larger values of streamwise velocity fluctuations. However, the results
show that the percentage is quite sensible to the threshold value. It is therefore risky
to draw quantitative conclusions about the proportion of momentum and energy
carried by these structures.

In our APG case, by referring to Fig. 4.2a it is clearly noticed that the σ100+
u

do not has a significant change in the corresponding domain (6818 < Reθ < 7582).
Moreover, the corresponding threshold is located at the crest between the inner
and outer peaks of the streamwise velocity fluctuation and it is always smaller than
the intensity of the outer peak which is widely related to the large-scale motion.
However, the location of the standard deviation used in the binary images (B	 and
B⊕) does not have a large effect on the statistics as using of σ150+

u or σ200+
u instead

of σ100+
u in (5.2) and (5.3) can change the percentages of the retained fractions of

energy, momentum and volume for a maximum of 4%.
In order to see the sensitivity of the results as a function of the threshold value,

the investigation was performed with three constant Cthr (0.5, 1 and 1.5). The
percentages of the retained energy, momentum and volume fractions with different
thresholds are given in Table 5.1 and compared with the same quantities in the ZPG
TBL of Solak and Laval [140]. By comparing the statistics of ZPG and APG of the
three quantities in the detected structures, it is noticed that the percentages in APG
are always larger than those of ZPG as expected from the large outer peak of the
Reynolds stress profiles.

Table 5.1. Streamwise energy, momentum and volume fraction inside the detected
structures B	 and B⊕ from eq. (5.2) and (5.3) in APG and ZPG cases. Three
threshold parameters Cthr are compared using the same reference standard deviation
σ100+
u .

Cthr Case Energy Momentum Volume
⊕ 	 ⊕ ∪	 ⊕ 	 ⊕ ∪	 ⊕ 	 ⊕ ∪	

0.5 ZPG 44% 52% 96% 41% 44% 85% 28% 27% 55%
APG 47% 50% 97% 44% 45% 89% 30% 30% 60%

1.0 ZPG 34% 43% 77% 26% 31% 57% 13% 14% 27%
APG 43% 41% 84% 33% 31% 64% 13% 12% 25%

1.5 ZPG 20% 30% 50% 12% 17% 29% 5% 6% 11%
APG 28% 29% 57% 18% 19% 37% 8% 8% 16%

To go further away from the percentages of the full domain, a similar investiga-
tion using the same detection algorithm was performed to obtain the contribution
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Fig. 5.7. Retained fraction of streamwise (a) momentum and (b) energy in wall-
units after the thresholding process (5.2) and (5.3) as a function of wall distance. 	
corresponding to the fraction retained of B	 and ⊕ for B⊕. Black line represents
the corresponding quantity for the whole domain.

of structures as a function of wall distance. In Fig. 5.7, we show the retained
momentum and energy corresponding to B	 and B⊕ along the boundary layer in
comparison with the corresponding profiles of the total streamwise turbulent inten-
sity. Both figures show that the thresholding procedure retains a fraction of the
momentum and the energy which is almost constant in y. Moreover, both negative
and positive streamwise velocity profiles present similar values with a small change
in shape. However, in Fig. 5.7b, a small shift toward larger y+ appeared between
the energy profiles of positive and negative fluctuations. This is due to the main
effects of sweeps and ejections events as the sweeps (corresponding to B⊕) affect
the momentum closer to the wall and the ejection linked to low-speed structures
transfer momentum toward the top of the boundary layer. This observation is in
agreement with the results of Ganapathisubramani et al. [39] where an analysis
of the small-scale streamwise velocity fluctuations conditioned on high- and low-
momentum shows that low-speed quantities dominate the high-speed ones far from
the wall.

In order to have a qualitative view on the coherent structures, instantaneous
three-dimensional iso-surface of the streamwise velocity fluctuations are shown in
Fig. 5.8 at six different times. The time spacing between these consecutive observa-
tions is ∆t+ = 180 which corresponds to ∆tUe

δ
= 5.6 using outer quantities evaluated

in the middle of the displayed domain. As the streamwise velocity fluctuation has
an important change along the boundary layer, it is not efficient to use a constant
threshold to observe the coherent structures. For that purpose, a variable threshold
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has been used to retain fluctuations such as |u| > uthr(y+) with uthr defined as

uthr(y+) =


2σ5+

u for y+ < 5
2σy+

u for 5 < y+ < 500
2σ500+

u for y+ > 500
(5.4)

This threshold is chosen to be suitable for illustrating coherent structures throughout
the whole boundary layer. Negative fluctuations are represented by the orange color
and the blue color has been used for positive ones. One can see that there are
many very small structures, which indicates the importance of discarding them
during the investigation of large-scale structures as they may have a not negligible
contribution to the statistics. Large-scale structures that extend to the outer region
are prominent. In agreement with the previous observation in Fig. 5.7b, one can
easily see that the near-wall region is more populated by positive fluctuations and
that the negative ones are mostly located in the upper part of the outer region.
On the other hand, continuous observation of these structures using all database
fields shows that the current database is sufficiently resolved to study and track the
temporal coherent structures’ motion since the time spacing between two consecutive
velocity fields is of the order of a wall-unit time.

The previous statistics have been computed with all points of B	 and B⊕ ob-
tained after the thresholding procedure. Therefore, the binary images also include
small structures. In order to extract detailed statistics of individual structures, a
new detection method is applied.

The inner peak that appears in the streamwise velocity fluctuation can affect
the statistics of the structures because its intensity is larger than the threshold used
in the detection and then the near-wall streaks will be detected. For this purpose,
the detection of the structures was performed in a region starting from 20+ which
allows to focus on the highly energetic structures located in the logarithmic and
outer regions.

After removing the near-wall region (y+ < 20) a labeling procedure was applied
on the binary images (B	 and B⊕) where the neighbor grid points connected by a
simple connection in the orthogonal direction are regrouped in a single structure.
Then, the geometrical information (location and dimensions of the bounding box)
which contains the structures and Reynolds stress statistics are calculated for each
structure. Since we are interested in the large-scale structures, the very small struc-
tures of a streamwise length λx < 0.1δ are discarded. This procedure is useful to
reduce the number of detected structures and then to avoid the influence of the
small-scale structures on the statistics of larger ones. Moreover, our interest is ded-
icated to the structures attached to the wall, however, as the fluctuations go to zero
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Fig. 5.8. Instantaneous iso-surface of the streamwise velocity fluctuations evaluated
at 6 different times almost decorrelated (separated by ∆t+ = 180) on a small domain
6818 < Reθ < 7582. Orange iso-surfaces correspond to low-speed motions and blue
ones to high speed ones.

at the wall, it will be impossible to detect such structures close to the wall with the
applied threshold. Furthermore, in order to keep only the attached structures, all
structures with minimum wall distance ymin > 50+ are discarded. After all these
steps, the retained structures are saved in a hierarchic file (HDF5 type) with the
corresponding information. This file will be used to obtain different statistics on
the location and extent of the structures and the relation between the dimensions of
structures. Moreover, during the detection process, the binary volume corresponding
to a specific velocity field was saved where the structures are indexed based on their
streamwise extent. In order to distinguish between the low and high momentum
structures, negative indexes were used for the low speed and positives for the high
ones. These binary volumes allow us to investigate the contribution of structures
on various quantities, e.g., the Reynolds stresses, the production rate of turbulent
kinetic energy, etc. taking into account the length scale of the considered structures.



99 Chapter 5. Coherent structures of streamwise fluctuating velocity

5.4 Analysis of coherent structures

As a first statistic for the detection of coherent structures, we present a 2D proba-
bility density function of the streamwise and wall-normal dimensions of the detected
structures, normalized by the boundary layer thickness δ evaluated at the middle
of the detection domain (corresponding to Reθ = 7240). 2D PDF allows us to in-
vestigate the aspect ratio of the detected structures. The results of the low- and
high-momentum structures of the current APG TBL were compared with those of
the ZPG case already mentioned. In Fig. 5.9 the average height of the detected
structures was presented as function of the streamwise extent. One can easily no-
tice that many high-momentum structures (top figures) extended up to the top of
the boundary layer in both cases but the low-momentum structures are limited to
0.3 − 0.4δ. It should be noted that the present analysis has been conducted on a
domain which is 20δ long for the ZPG and only 5δ long for the APG. This explains
why very long structures can not be observed in the APG case.

The aspect ratios of the high-speed attached structures show an important differ-
ence in presence of APG, where the average height of the structures represents 30%
of the streamwise length instead of 15% in ZPG structures. This is in agreement
with the previous results obtained with a two-point correlation which shows that the
structures are more inclined. However, it seems to be similar for the low-momentum
structures, where the height is around 10% of streamwise extent in both cases. Note
that the structures appeared with a different aspect ratio with a height near δ and
large streamwise length are corresponding to the very large-scale motions that are
clearly shown in the ZPG case due to the large domain of detection. On the other
hand, in addition to the restriction of the detection domain in the APG case, the 2D
PDF are not extremely well converged, which leads to distorted contours, especially
for the large-scale structures. However, the present results seem to show that there
is no strong impact of the moderate APG on the low-momentum structures and the
high-momentum ones become wider in presence of APG.

The two-dimensional PDF of the streamwise and spanwise dimensions of the
coherent structures are shown in Fig. 5.10, normalized by δ. The average spanwise
width seems to be 20% of the streamwise length for low-momentum structures in
ZPG and APG cases like the ZPG high-momentum ones. However, the contours of
the high-momentum structures of the APG case (even if they are not well converged)
show that the spanwise width is closer to 30% of the streamwise length.

The present results show some similarities with those obtained in the Quadrant
investigation of Lozano-Durán et al. [86]. Using data from the DNSs of turbulent
channel flows of Del Álamo et al. [32] at h+ = 934 and Hoyas and Jiménez [50] at
h+ = 2003, the shear stress structures were investigated and the streamwise extent
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Fig. 5.9. Joint PDFs of streamwise wall-normal sizes P (λx/δ, λy/δ) of the detected
structures. Contour lines correspond to 90%, 75%, 50%, 25%, 10%, 5%, 2%, and
0.2% of the detected structures. An indicative ratio between the two sizes of the
joint PDFs are given with dashed lines. Top figures correspond to high momentum
structures and the lower for the low momentum. Left figures for the ZPG case and
the APG case on the right.

of the ejection and sweep events λx seems to be approximately 3 times the height
of the structures λy.
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structures. The percentages of the contours were used like as the previous figure
with the same organization of sub-figures.
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Chapter 6
Conclusions and perspectives

Wall-bounded turbulent flows have great theoretical, technological and environmen-
tal importance. Hence, they have received increasing attention in the last decades.
Through the development and improvement of experimental and numerical tech-
niques, turbulent flows at a wide range of Reynolds numbers have been investigated.
These investigations have failed to solve many unsolved problems of wall turbulence,
however, they provide new challenges and raise several new questions. This high-
lights the complexity of this topic and the importance of further numerical and
experimental research. Furthermore, the majority of the research works have been
conducted on canonical flows such as turbulent boundary layers with zero pressure
gradient, where it was inevitable to start with these simple flows. On the other
hand, it will be necessary to move towards more realistic flows since the canonical
flow behavior does not reflect reality.

In that context, the present thesis aims to contribute to our understanding of the
organization of non-canonical turbulent boundary layer flows and the effects of the
adverse pressure gradient. Turbulent boundary layer flow subjected to a moderate
APG was studied under external flow conditions similar to those found in the flows
around a curved shape such as an airplane wing. The emphasis was on the outer
region of the boundary layer in which the turbulent activity reaches its maximum.

Summary of findings

In the present work, a large database was collected from a DNS of turbulent bound-
ary layer flows with a moderate adverse pressure gradient. The current database is
well-resolved in time and space. 2D time-resolved database allows various temporal
analyses on a single streamwise location and the 3D one leads to investigate the
coherent structures in addition to many other statistics. A relatively high Reynolds
number is achieved in this simulation in comparison with other DNSs subjected
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to a moderate APG. Furthermore, the present turbulent boundary layer is out of
equilibrium which makes this case interesting to test the universality of turbulence
models proposed for equilibrium wall-bounded flows.

A detailed analysis of the logarithmic layer shows that the log-law proposed for
this region in canonical flows does not match with the current mean streamwise
velocity profiles. Even for the highest Reynolds number, the diagnostic plot for the
log law does not develop a plateau but rather a peak moving from 50+ to 80+ as
the Reynolds number increase. This peak is clearly more pronounced than for ZPG
TBL at a similar Reynolds number indicating a stronger departure from a log law.

Several scalings have been tested but none of them seems to correctly scale the
outer region of the mean velocity profiles on the full range of pressure gradient
and Reynolds number. As already observed, the Zagarola and Smits scaling seems
satisfactory in the limited range where the pressure gradient does not vary too much
and far from the inlet with a sudden change of pressure gradient. The other scaling
based on the position of an inflection point could not be fully conclusive as the data
are not converged enough to predict with good accuracy the position of the most
remote inflection point from the wall. Moreover, this inflection point would be very
weak and may not be meaningful.

The Reynolds stress profiles exhibit an outer peak which is stronger than the
inner peak. The position of these peaks evolves with the evolution of pressure gra-
dient and Reynolds number. It has been shown that these outer peaks move away
from the wall when scaled in boundary layer thickness or displacement thickness
to start to stabilize near 1.3δ1 and 0.45δ after a downstream evolution of at least
20 boundary layer thicknesses. These results seem in agreement with experimen-
tal results with a slightly different pressure gradient evolution and a much higher
Reynolds number.

It is presumed that the outer peak of the Reynolds stresses is linked to an excess
of turbulence kinetic energy production with respect to dissipation in the same
region. This energy source, which is negligible for ZPG TBL at similar Reynolds
numbers, seems to scale with the external velocity. This energy source is positive
on a wide outer range from 0.2δ to 0.8δ centered on the position where the outer
peak of Reynolds stresses is observed.

It has been shown that all Reynolds stress profiles can be scaled with the square
root of the shear Reynolds stress u∗ corresponding to the mean momentum flux.
This finding extends the validity of these scaling proposed by Lozano-Duran in
other categories of wall-bounded flows and seems to indicate that the outer peak of
Reynolds stress involves coherent structures (large or small scales) with the same
magnitude of velocity fluctuations.

Concerning the energy spectra, it was confirmed that the Townsend-Perry k−1
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range can be observed only for a single position from the wall near y+ = 35. However,
the limited Reynolds number and the difficulty to extract streamwise spectra as well
as the limited convergence of the time spectra make a deeper analysis of the slope
very difficult. However, it was possible to study the spanwise spectra which are less
documented and which also exhibit a k−1 slope on a limited range. This consolidates
the hypothesis of the presence of self-similar large-scale structures.

The investigation of the two-point correlation of streamwise fluctuating velocity
indicated that the effect of the pressure gradient is to increase the size and lift up of
these coherent structures as already observed in the literature. These correlations
also revealed a different footprint and connection of these structures with the near-
wall streaks. This difference with ZPG could not be fully understood and would
require a deeper analysis.

Perspectives

Further studies can be proposed as future work focusing on the coherent struc-
tures using the current database. The contribution of coherent structures (low- and
high-momentum) on the Reynolds stress terms in the presence of adverse pressure
gradient could be investigated more deeply and be compared with the zero pressure
gradient case. A comparison between the effects of small- and large-scale streamwise
structures could also be examined.

In the present work, we focused on the streamwise structures but the scaling
of the outer peak of all Reynolds stresses shows that the outer structures like the
quadrants may also be as interesting.

Although the detection domain is not long enough to investigate the very long
coherent structures, the good temporal resolution of the database allows us to study
the development of the structures in time and to focus on how they are created
and evolve. Moreover, the simulation and the created database have been designed
to be able to extend the simulation in the streamwise direction if needed. Several
time-resolved planes have been recorded at 3 streamwise positions and could be used
as inlet conditions for new simulation with increasing the Reynolds numbers with
the possibility to modify the pressure gradient. The present simulation has shown
that the strategy is possible and adapted to simulate turbulent boundary layers at
a fairly large Reynolds number.

A comparison with experimental results for a comparable adverse pressure gra-
dient at a higher Reynolds number does not allow to distinguish clearly between
the effect of Reynolds number and that of the adverse pressure gradient, because
the history and evolution of both adverse pressure gradients are not similar. There-
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fore, additional studies which cover a wider range in terms of Reynolds number, are
needed to be able to distinguish between both effects.

The high spatial resolution of the generated databases allows one to design very
different analyses of the turbulence. The present work has been focused on the
statistics but it would be interesting to investigate more the energy transfer using for
instance the Kármán-Howarth equations for the velocity increments which requires
a large database of very well resolved DNS data. The LMFL team already has a
strong experience with using this type of analysis on non-homogeneous turbulence
of channel flows [170].
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Direct Numerical Simulation of Wall Turbulence
subjected to an Adverse Pressure Gradient

The main objective of this work is to analyze the effects of a moderate adverse pressure gradient on
the dynamics of turbulent boundary layer flows. For that purpose, a direct numerical simulation (DNS)
of the turbulent boundary layer (TBL) subjected to a moderate adverse pressure gradient (APG) out
of equilibrium has been performed using the open-source code Incompact3d up to a Reynolds number
of 8000 based on momentum thickness. A large database resolved in time and space was collected and
used to analyze the turbulence statistics. Special attention has been paid to the existence and evolution
of the outer peak of Reynolds stresses observed in APG wall-bounded flows. Different velocity scalings
have been investigated and tested against the numerical results. The velocity scale based on the shear
stress is shown to scale all the Reynolds stresses profiles for different Reynolds numbers, indicating that
all Reynolds stresses are associated with a single dynamics of turbulent structures.

The large-scale coherent structures of the streamwise velocity fluctuations have been investigated using
two-point spatial correlation. A comparison with a zero pressure gradient case at an equivalent Reynolds
number allows us to further investigate the effect of the pressure gradient on the size and inclination of
attached coherent structures. A deeper investigation of the coherent structures was also performed, where
each structure was detected separately based on a thresholding method to distinguish between the effects
of large and small scales and to better understand the mechanisms controlling the dynamics of these
structures. The contribution of large-scale motions (LSM) on the Reynolds stresses comparing with ZPG
case was also analyzed.

Keywords: turbulence, direct numerical simulation, turbulent boundary layers

Simulation numérique directe de la turbulence de paroi
soumise à un gradient de pression défavorable

L’objectif principal de ce travail est d’analyser les effets d’un gradient de pression défavorable modéré
sur la dynamique d’écoulement d’une couche limite turbulente. Dans ce contexte, une simulation numérique
directe (DNS) de la couche limite turbulente (TBL) soumise à un gradient de pression défavorable modéré
(APG) hors équilibre a été réalisée jusqu’à un Reynolds de 8000 en utilisant le code open-source Incom-
pact3d. Une large base de données résolues en temps et en espace a été collectée et utilisée pour analyser
les statistiques de la turbulence. Une attention particulière a été consacrée à l’existence et à l’évolution
du pic de contraintes de Reynolds observé dans la zone externe de la couche limite. Différentes échelles
de vitesse ont été étudiées, testées et confrontées aux résultats numériques. L’échelle de vitesse basée sur
la contrainte de cisaillement permet de mettre à l’échelle tous les profils de contraintes de Reynolds pour
plusieurs nombres de Reynolds, ce qui indique que toutes les contraintes de Reynolds sont associées à une
dynamique unique des structures turbulentes.

Les structures cohérentes à grande échelle des fluctuations de vitesse longitudinales ont été étudiées
en utilisant la corrélation spatiale en deux points. Une comparaison avec un cas sans gradient de pression
à un nombre de Reynolds équivalent nous permet d’étudier l’effet du gradient de pression sur la taille
et l’inclinaison des structures cohérentes attachées. Une étude approfondie sur les structures cohérentes
a également été réalisée, où chaque structure a été détectée séparément en utilisant une méthode de
seuillage afin de distinguer les effets des grandes et petites échelles et de mieux comprendre les mécanismes
qui contrôlent la dynamique de ces structures. La contribution des mouvements de grande échelle (LSM)
sur les contraintes de Reynolds en comparaison avec le cas ZPG a également été analysée.

Mots clés : turbulence, simulation numérique directe, couches limites turbulentes
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