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Abstract
Faculté des Sciences et Technologies

Doctor of Philosophy in Fluid Mechanics

Phytoplankton Vertical Dynamics in the Presence of Advection

by Vinicius BELTRAM TERGOLINA

Plankton organisms are of paramount importance for aquatic ecology and climate
due to their participation in biogeochemical cycles. They supply the planet with
more than half of the total oxygen production, taking part in the carbon-dioxide
exchanges with the atmosphere, and they are at the base of the marine food web.
Turbulence has been recognized as a crucial factor for the survival or extinction of
phytoplankton species, however, dealing with its multiscale nature in models of cou-
pled fluid and biological dynamics is a complex task. Turbulent transport in aquatic
media can manifest in different ways, involving a broad range of processes, going
from large-scale eddy transport to smaller scale wave breaking and bubble forma-
tion phenomena, which are all thought to be relevant for plankton dynamics

In this thesis I revisit a theoretically appealing model for phytoplankton vertical
dynamics, and numerically investigate how different fluid motions affect the sur-
vival conditions and the spatial distribution of the biological population. For this
purpose, I first present a literature review of the main existing theories previously
developed to explain phytoplankton survival conditions and blooms. The numerical
work, subsequently reported, relies on realistic parameter values and on a kinematic
flow model, allowing to account for different spatial and temporal scales of turbu-
lent motions. The dynamics of the population density are described by an advection-
reaction-diffusion model with a vertically heterogeneous growth term proportional
to sunlight availability. The numerical methodology is thoroughly documented, be-
fore the results are illustrated.

Therefore I explored the role of fluid transport by progressively increasing the
complexity of the flow in terms of spatial and temporal scales. I found that, due to
advection by large and persistent structures, phytoplankton accumulates in down-
welling regions and its growth is reduced. An explanation of the observed phe-
nomenology is provided in terms of a plankton filament model. Moreover, by con-
trasting the results in the different flow cases that I examined, I could show that the
large-scale coherent structures have an overwhelming importance. Indeed, smaller-
scale motions were found to only quite weakly affect the dynamics, without altering
the general mechanism identified.
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The results reported in the present thesis bring indications that are relevant for pa-
rameterizations in numerical models of phytoplankton life cycles in realistic oceanic
flow conditions. The thesis ends with an illustration of preliminary results from an
extension of the previous model taking into account also horizontally heterogeneous
light conditions, and with an exposition of different possible directions for future re-
search in the field.
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Résumé
Faculté des Sciences et Technologies

Doctorat en Mécanique des Fluides

Dynamique Verticale du Phytoplancton en Présence d’Advection

par Vinicius BELTRAM TERGOLINA

Le phytoplancton et le plancton jouent un rôle primordial dans le maintien de la
vie sur Terre à travers les cycles biogéochimiques. Ils fournissent à la planète plus
de la moitié de la production totale d’oxygène, ils régulent le climat et sont à la base
de la chaîne alimentaire marine. La turbulence a été reconnue comme un facteur
d’importance cruciale pour la survie ou l’extinction des espèces de phytoplancton.
Cependant, traiter de sa nature multi-échelle dans les modèles de dynamique cou-
plée des fluides et de la biologie est une tâche complexe. Le transport turbulent dans
les milieux aquatiques peut se manifester sous de nombreuses formes, des courants
d’advection à grande échelle aux déferlements de vagues et formations de bulles à
plus petite échelle, tous reconnus pour jouer un rôle dans la survie du phytoplanc-
ton.

Dans cette thèse, je revisite un modèle pour la dynamique verticale du phyto-
plancton et j’étudie numériquement comment différents mouvements de fluide af-
fectent les conditions de survie et la distribution spatiale de la population biologique.
A cet effet, je présente dans un premier temps une revue de la littérature des princi-
pales théories existantes précédemment développées pour expliquer les conditions
de survie et les blooms du phytoplancton. Le travail numérique, rapporté par la
suite, repose sur des valeurs de paramètres réalistes et sur un modèle d’écoulement
"kinematic", permettant de prendre en compte différentes échelles spatiales et tem-
porelles des mouvements turbulents. La dynamique de la densité de population est
décrite par un modèle d’advection-réaction-diffusion avec un terme de croissance
verticalement hétérogène proportionnel à la disponibilité de la lumière solaire. La
méthodologie numérique est minutieusement documentée avant que les résultats
soient illustrés.

J’ai donc exploré le rôle du transport des fluides en augmentant progressivement
la complexité de l’écoulement en termes d’échelles spatiales et temporelles. J’ai dé-
couvert qu’en raison de l’advection par les grandes structures persistantes, le phyto-
plancton s’accumule dans les régions de flux descendant et sa croissance est réduite.
Une explication de la phénoménologie observée est fournie en termes d’un mod-
èle de filament de plancton. De plus, en contrastant les résultats dans les différents
cas d’écoulement que j’ai examinés, j’ai pu montrer que les structures cohérentes à
grande échelle ont une importance primordiale. En effet, les mouvements à plus pe-
tite échelle n’affectent que très faiblement la dynamique, sans altérer le mécanisme
général identifié.
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Les résultats rapportés dans la présente thèse apportent des indications perti-
nentes pour les paramétrisations dans les modèles numériques des cycles de vie
du phytoplancton dans des conditions réalistes d’écoulement océanique. La thèse se
termine par une illustration des résultats préliminaires d’une extension du modèle
précédent prenant également en compte les conditions d’éclairage horizontalement
hétérogènes, et par un exposé des différentes directions possibles pour la recherche
future dans le domaine.
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Chapter 1

Introduction

In phytoplankton ecology, biological and fluid dynamics are tightly linked, rul-
ing how planktonic populations interact with their environment and other organ-
isms. Interdisciplinary work aiming to establish relations between plankton biology
and the underlying physical factors has refined our understanding of plankton, and
phytoplankton, ecology [1]. Theoretical progress in the field goes in parallel with ad-
vancements in methodology and instrumentation, with the later allowing for higher
resolution measurements and sampling of smaller scales than previously possible.
The studies in the domain are fed by both scientific and societal interests, as it can
be understood, e.g., considering the relevance of plankton for both water resource
quality [2], and climate through its role in the carbon pump [3].
Within this broad framework, this thesis focuses on the influence of physical effects,
such as turbulence and light absorption in aquatic environments, on phytoplank-
ton growth dynamics. More specifically, studying phytoplankton affected by light
limitation implies the need of information as a function of depth, and which is not
possible to obtain at a global scale from satellite observations. Similarly, data from
ship measurement campaigns have limited coverage. Furthermore, the link between
the surface and the deep ocean is still poorly known, which critically limits the cur-
rent understanding of carbon transport to and from the interior [4].

FIGURE 1.1: Lagoa dos Patos, Rio Grande do Sul, Brazil. Suspended
sediment, phytoplankton, submerged aquatic vegetation, and col-
ored dissolved organic matter all contribute to the many colors ob-

served, https://oceancolor.gsfc.nasa.gov/.
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While a considerable quantity of data of horizontal properties of oceans is becom-
ing available thanks to satellites images (Figure 1.1) and drifters with good spatial
and temporal resolution, at least to some extent, this is still not the case for mea-
surements along the vertical. The latter are sparse in space, as already mentioned,
but also often discontinuous in time. Collecting ocean measurements (Fig. 1.2),
for example, mandates adequate weather conditions, as if the latter are severe one
deals with limited possibilities to perform research campaigns from instrumented
vessels. Theoretical and numerical studies can therefore reveal particularly useful.
As a matter of fact, in some situations they may represent the only viable possibility
for investigation.

FIGURE 1.2: Measuring equipment being deployed in the English
Channel from the CNRS research vessel Sepia (based in Boulogne-
sur-Mer) during a campaign to which the author participated in 2020.
The objective of the campaign was to sample temperature, salinity,
chlorophyll, PAR (radiation), ocean kinetic energy dissipation rate
and velocity in multiple locations. Unfortunately due to the restricted
number of sampling days under the pandemic of 2020/2021 the data

obtained was insufficient for analysis.

A major question in plankton dynamics concerns the development and evolution
of blooms, meaning the phases characterized by a rapid increase of the population.
A notable example is the North Atlantic spring bloom. The problem is still a subject
of debate. The seminal work by Riley [5] was perhaps one of the first theoretical
studies addressing the mathematical modeling of blooms and proposing a mecha-
nistic explanation for their occurrence. Among the many different subsequent de-
velopments, I would like to cite, here, those by Huisman and collaborators (see, e.g.,
[6, 7, 8]), which provided a more complete picture in terms of the relevant physical
parameters, particularly addressing the role of turbulence intensity, and which have
been instructive as a term of comparison for the work performed in this thesis.

It is in this context of public and scientific interest that I developed this work on
phytoplankton population dynamics in turbulent aquatic environments, hoping to
contribute some of the unanswered questions present in the field. I present this
thesis in the subsequent manner:



Chapter 1. Introduction 3

• In Chapter 2 I introduce turbulence and the main fluid transport processes rel-
evant to phytoplankton populations, from a general perspective. In particular,
I will discuss the basic properties of diffusive motion, turbulent transport and
the concept of eddy diffusivity. The focus is put on statistical features. Both Eu-
lerian and Lagrangian approaches are shortly presented, for future reference
in subsequent chapters. The chapter ends with a concise overview of mixing
processes, driven by either wind or buoyancy effects, in real aquatic environ-
ments.

• Chapter 3 is devoted to biological dynamics. Its aim is to present the modeling
framework, in terms of advection-reaction-diffusion equations, that led to the
main predictions about phytoplankton survival conditions, and which consti-
tutes the basis for the numerical work I performed. A historical review of the
most influential theories is also presented, from the pioneering work of Riley
[5], to more recent studies and currently open questions.

• Chapter 4 illustrates the numerical methodology utilized through this thesis.
It starts with an overview on advection-reaction-diffusion equation’s solution
techniques, that is then presented in a more specific manner to what was cho-
sen for the thesis problem. There I will specifically detail how the advective
and diffusive terms are dealt with in the advection-reaction-diffusion equation
describing vertical phytoplankton dynamics in a stirred, two-dimensional, ver-
tical fluid layer. The results of validation tests are also reported at the end of
the chapter.

• In Chapter 5 I report on the main part of the research work I conducted. The
primary goal of the latter was to add a more explicit representation of fluid
motions to the description provided by the previous theoretical models men-
tioned above, in relation to the conditions allowing for a bloom. Here, I focus
on the interplay between biological dynamics and fluid transport by a flow
characterized by the presence of both small-scale turbulence and large-scale co-
herent structures. In spite of the idealized nature of the flow model employed,
both these features are encountered in turbulent flows in realistic aquatic en-
vironments. The complexity of the flow is added incrementally, in terms of
temporal and spatial scales, in the model I adopted. Such an approach allowed
me to quantify, by means of numerical simulations, the relative importance of
flow features on different scales, and to provide indications about the relevant
role, hindering phytoplankton growth, of large-scale persistent motions.

• Lastly, Chapter 6 presents the work’s general conclusions and perspectives.
The latter include both a preliminary study of an extension of the previous
model, taking into account also horizontally heterogeneous light conditions,
and a discussion of other possible extensions of the work reported in this the-
sis.
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Chapter 2

Turbulence and Turbulent
Transport

Collectively turbulence and turbulent transport present one of the greatest chal-
lenges in physics, as a problem it is often considered as the last open one in classical
mechanics. The difficulty is based on its non-linear multiscale characteristics, as one
can glimpse by examining the sketches of Leonardo da Vinci (Figure 2.1) describing
turbulent phenomena in a cascade, resulting in vortices of multiple sizes dispersed
in a seemingly disorganized manner. Despite the introduction of the Navier-Stokes
equation ruling the evolution of fluid flows almost two century ago, its understand-
ing is still far from complete. A general analytic solutions of the Navier-Stokes for
turbulent flows is still not achieved to date, the only available predictive theory for
fully developed turbulence has been proposed by A. N. Kolmogorov in 1941 (which
we will latter discuss in this chapter). Even though not all fluid transport seen in
oceans, rivers and lakes is turbulent, mathematically it is the turbulent transport
that present the unpredictability, that is the high sensitivity of the solution to very
small perturbations that are always present in real physical systems or numerical
simulations. Hence the fascination and difficulty around this concept.

FIGURE 2.1: Studies of turbulent water shows Leonardo’s under-
standing of how vortices move [9].

In this chapter we will present the basic concepts of fluid transport and turbulence
which were necessary for the development of this thesis. We start by laying the fun-
damentals of diffusive transport in the form of a review of stochastic processes and
the equation of diffusion. Then we discuss turbulence in a compact manner consid-
ering some fundamental concepts such as the Navier-Stokes equations, Kolmogorov
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theory and the energy cascade picture. Then we appraise the topic of fluid transport
by considering both the Eulerian and the Lagrangian approaches as we character-
ize tracer dispersion. We then come back to the topic of diffusion when we discuss
turbulent diffusivity and its usefulness in the modelling framework. Finally, we end
the chapter by presenting some basic real fluid flow phenomena in oceans and lakes.

2.1 Diffusion

In day to day life we associate diffusion to the tendency of a initially closely con-
centrated group of something (particles, animals, people...) to spread out in time,
slowly occupying a larger area around the initial point. Still, this process is not nec-
essarily controlled by the same rules as the formal theory of diffusion. Formally
diffusion represents the transport due to the irregular thermal motion at molecular
scales, in spite of that, other types of irregular motion may also be modelled by diffu-
sion [10]. In this sense, the theory can be used to represent a phenomenon by which
an initial group as a whole spreads according to the irregular motion of each indi-
vidual [11]. In this picture, diffusion arises when we look at the total group or the
statistical majority and we observe regularity. This way diffusion is easily associated
with the macroscopic behaviour of stochastic variables.

2.1.1 Stochastic Processes

A stochastic or random variable refers to a variable whose values are specified
only in terms of probabilities. The classical example is the result of a coin flip, it is not
possible to predict weather we will get heads or tails if we are using a "fair" coin, but
the probability of getting either is 50%. The same can logic can be stretched to study
a variety of processes in fluids, such as fluid molecule’s trajectories under thermal
motion. As random variables each individual jump of a molecule is unpredictable,
but their bulk behaviour is not, and as we will see mathematically, the probability
that a initially close group of molecules will remain that way is much smaller than
the probability it will disperse. The theory that dictates the unpredictable trajectories
of particles or molecules in a diffusion process is referred to as Brownian motion or
random walk.

The Random Walk theory is based on the irregular motion of the individual pollen
particles, studied by botanist, Robert Brown in 1828 (hence Brownian motion). Al-
though the theory rely on randomness there are other forms of random walk that do
not behave in the same way as the pollen particles. Trajectories in a random walk
can be correlated in the sense that each step has a higher probability of maintain-
ing its direction, this is a process that has been used to analyze the movement of
insects in nature [12]. Trajectories can also be biased, meaning that the probability
of traveling in a certain direction is higher, this can be a factor of space variability,
like chemical gradients, or an individual decision for each step, in figure 2.2 a poor
drunk man tries to arrive home despite his precarious state. In here we focus on the
isotropic random walk as the fluid particles we will be modelling later do not follow
any biased or correlated direction.

If we consider a line (Figure 2.3) where a particle is able to perform a 1D isotropic
random walk, every singular step over the line is a coin flip. In mathematical terms
at every time step τ the particle has a probability p(τ) = 1/2 of going to the left or
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FIGURE 2.2: A drunk man returning home is an effective
metaphor of a biased random walk, although his preferred di-
rection is the one pointing to his house his inebriated state
is likely to throw him off the path in an unpredictable man-
ner. https://prakhartechviz.blogspot.com/2019/09/random-walk-term-

weighting-for-text.html.

to the right (x± 1). After one time step, the particle can either be at a distance x = 1
or x = −1, with probability 1/2 each. After the next time step (2τ), the particle
will either be at a distance x = 2 or x = −2 (with probability 1/4 each) or will have
returned to the origin (with probability 1/2). Therefore the probability that a particle
arrives at x = n or x = −n after a time t = nτ gets lower as n increases, being that
the number of possible trajectories is 2n.

FIGURE 2.3: A 1D lattice with 2n steps of size 1. In an isotropic ran-
dom walk the probability p(τ) that a particle will go to the left or the

right, in a time step τ, is 50%.

The probability that the particle arrives at a point m after n steps is described by
a binomial distribution:

p(m, n) =
(

1
2

)n n!
{(n + m)/2}!{(n−m)/2}! . (2.1)

If the above variables are considered continuous, i.e., nτ = t and m = x, the proba-
bility density function random walk in the continuous limit is:

p(x, t) =
1

2(πDt)1/2 exp(−x2/4Dt). (2.2)

Where D is called the coefficient of diffusion and it is related to the size of the random
walk length steps δx and time steps τ. D is obtained as δx and τ approach zero in a
way that their ratio becomes constant:
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D = lim
δx,τ→0

δx2

2τ
. (2.3)

Equation 2.2 describes a Gaussian or Normal distribution which implies the ran-
dom walk has finite variance and central mean (in the center of the distribution).
This means that, both in our lattice-particle problem, and in a multiple coin flip situ-
ation, we would have the same result in a probabilistic frame since the random walk
is a good description for a wide variety of random variable problems. The problem
here was presented in a Lagrangian frame, but the interest in the random walk can
be further explored when we go to the Eulerian frame and study the transport of
matter by diffusion.

2.1.2 The Equation of Diffusion

Diffusion represents the transport due to the irregular thermal motion at molecu-
lar scales [10]. In spite of that, there are other processes that can be modelled by dif-
fusion, the lattice-particle problem we were discussing for example can be modelled
by 1D diffusion in the continuous limit. Later in this chapter we will take advantage
of this assertion to explain how sometimes turbulent transport can be modeled by a
diffusive process, but before we have to understand the simplest problem in diffu-
sive transport. For this reason we start with Fick’s equation of diffusion. According
do Fick’s law the transport amount of matter across a unit of length x in a unit of
time t (the flux Jx) is proportional to the gradient of the concentration of matter [11]:

∂θ(x, t)
∂t

= −∂Jx

∂x
=

∂

∂x

(
D

∂θ(x, t)
∂x

)
. (2.4)

Where θ(x, t) is the concentration of matter and D the diffusivity. Considering an
initial condition θ(x, t = 0) = δ(x− x0) (where all matter is concentrated in a point
x0 at the initial time) and boundary conditions of the form θ(x → ±∞, t) → 0, the
solution for D = constant has the form:

θ(t, x) =
exp

(
−(x− x0)2/4Dt

)
√

4πDt
. (2.5)

Not surprisingly it is very similar to equation 2.2 as it was discussed that diffu-
sion transport behaves as a random walk. This shows that the result of the diffu-
sion process starting from a localized concentration or density patch is a growing
isotropic concentration cloud [10] whose width, or second moment is

σ2 ≡
∫

x2θ(x, t)dx∫
θ(x, t)dx

, (2.6)

and expands as,

σ2 ≈ 2Dt. (2.7)

The same result as equation 2.3 as expected from a random walk in the continuous
limit. So as we can see that diffusion transport is not that far from a drunk walk after
all. Using a computer code with a semi-Lagrangian scheme (which we will further
explore in the next chapter), we can simulate for example the diffusion of a initially
concentrated patch in one dimension in an one dimensional grid. In Figure 2.4 we
show that by using a sufficiently high number of grid points i.e., by decreasing δx,
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a discrete numerical solution can achieve results very close to the continuous one of
equation 2.5.

45 50 55
x (m)

0,01

0,1

1

 θ
 (

t)

Initial Condition
Code T = 15.5h
Code T = 93h
Theoretical Result T = 93.h
Theoretical Result T = 15.5h

FIGURE 2.4: Example of discrete vs. continuous solution of Fick’s law
for one dimension, here D = 0.01m2h−1.

When thermal motion is the only mechanism contributing to diffusion, D is pro-
portional to the temperature and is ruled by Einstein’s relation D = KbT/(6πrη),
where T is the temperature, Kb is Boltzmann’s constant, r is the diffused particle
radius and η the dynamic viscosity of the fluid. In addition, relation 2.7 can be gen-
eralized for d dimensions as D ≈ σ2/2td. As stated, in the following sections we
will take advantage of the knowledge presented here to refer to a simple but effec-
tive way to model the turbulent transport of plankton cells in oceans and lakes. But
first we shall explain the basis of the concept of turbulence.

2.2 Turbulence

Da Vinci’s drawing description of turbulent waters as a highly unorganized mul-
tiscale phenomenon is not far from what we can verify by opening a tap to the max-
imum in a full bathtub or blowing a cloud of vapor from a hot cup of tea. Disregard-
ing his artistic genius, and in the simplest of forms: When a fluid flows in an orderly
fashion, the flow is called laminar when the fluid flows in an irregular fashion with
mixing, the flow is called turbulent (figure 2.5).

FIGURE 2.5: A schematic representation of laminar flow (a) and a
turbulent flow (b).
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In fact this is not far from what observed on the first systematic work on turbu-
lence carried out by Osborne Reynolds in 1883 [13]. When injecting a thin stream of
dye into a flow of water (through a tube) Reynolds observed that at low flow rates
the dye would follow a well-defined straight path in parallel lines (laminae) with no
macroscopic motion across layers, a laminar flow. As the flow rate was increased
the dye stream broke up into irregular motion and spread throughout the section
of the tube, indicating the presence of macroscopic mixing motions perpendicular
to the direction of the flow, a turbulent flow. Then he demonstrated that the tran-
sition from laminar to turbulent flow always occurred when the non dimensional
rate Ud/ν ∼ 3000, where U was the flow velocity, d the tube diameter and ν the
fluid’s kinematic viscosity. The ratio would be later baptized by Sommerfeld as the
Reynolds number:

Re =
UL
ν

(2.8)

with L as the flow’s characteristic size (in the case of Reynolds the tube diame-
ter). This allows us to present the following characterization: Turbulence is high
Reynolds number flow, dominated by non-linearity, with both spatial and temporal
disorder [14]. The mathematical characterisation of turbulence is ultimately shaped
by the Navier-Stokes equation.

2.2.1 Navier Stokes Equations

In here we summarize the importance of the Navier-Stokes set of equations to
the theory of turbulence. These, if solved, can exactly describe the motion of any
incompressible Newtonian fluid:

∂

∂t
u + u · ∇u = −1

ρ
∇p + ν∇2u + f (2.9)

∇ · u = 0, (2.10)

where u is the fluid speed, p its pressure and f represents the external body or
volume forces acting on the fluid. Equation 2.10 is the continuity equation repre-
senting the mass conservation of the incompressible fluids and equation 2.9 is the
fluid’s momentum equation. In there we have represented the inertial or non-linear
term (u · ∇u), responsible for the transfer of kinetic energy, the pressure gradients
(∇p/ρ) and the viscous dissipation of energy (ν∇2u). One can take advantage of the
Reynolds number (Eq. 2.8) to make equation 2.9 non-dimensional:

∂

∂t
u + u · ∇u = −∇p +

1
Re
∇2u + f. (2.11)

The Navier-Stokes (NS) equations require boundary and initial conditions to be
solved, as any partial differential equation. An idealized but practical choice is to
adopt periodic boundary conditions to simulate the NS equations in an infinite space
(such as u(x, y, z) = u(x + aL, y + bL, z + cL), where L is the simulation box size and
(a, b, c) integers, this comes with the advantage of maximum symmetry. Despite of
the choice of boundaries, it is in symmetry that relies the onset of turbulence from
the NS equations point of view, more specifically, in the breaking of symmetries. NS
equations are characterized by multiple symmetries; space translations, time transla-
tions, scale invariance, between others. As the Reynolds number of a fluid increases
symmetries are broken, laminar flows break into vortices (Fig. 2.5), fluctuations in
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velocity increase as we look into smaller scales (becoming scale dependent), until
we have fully developed turbulence. That said, for large enough Re symmetries are
statistically restored at sufficiently small scales far from boundaries. So a good def-
inition is: turbulence is characterized by the presence of significant scale separation
between energy injection and dissipation, with injection at large scales and dissipa-
tion at small scales for three dimensional (3D) turbulence.

2.2.2 Energy Cascade and K41 Theory

The statement about energy injection and dissipation above was coined by Lewis
Richardson in his first book in 1922 [15], there he proposed that turbulent kinetic
energy is transferred from large to small eddies, until it is consumed by viscous
dissipation (figure 2.6).

FIGURE 2.6: A schematic representation of the turbulence cascade
proposed by Richardson.

Even though figure 2.6 provides us a good illustration of the process, in real-
ity eddies can vary a lot in shape and the smaller ones are actually embedded in
the larger ones. In spite of that, the idea of spectral energy cascade is at the heart
of our present understanding of 3D turbulent flows. We thus have to think about
turbulence as an intrinsically multi-scale system where energy is contained in the
large scale eddies that, via non-linear processes, generate smaller eddies that keep
reducing in size until they are dissipated by viscous processes.

The work of Richardson was almost ignored until 20 years after when the idea of a
spectral cascade took quantitative shape in the hands of Kolmogorov and Obukhov
in Russia. Kolmogorov, generally regarded as the greatest probabilist of the 20th
century took advantage of the unpredictable behaviour of turbulence to express its
general attributes in a statistical frame. The Russian mathematician hypothesized
that the statistics of small scales are isotropic and depend only on two parameters,
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viscosity ν and the energy flux ε [16]. Following [14] we can take advantage of
Kolmogorov’s work to better understand the energy cascade. If we decompose a
flow velocity field into Fourier components in a finite domain:

u(x, y, z, t) = ∑
kx ,ky,kz

ũ(kx, ky, kz, t)ei(kxx+kyy+kzz). (2.12)

Where ũ is the Fourier transformation of the velocity field u, k(kx, ky, kz) = 2πnx,y,z/Lx,y,z,
with nx,y,z as integers and Lx,y,z the domain size. The kinetic energy in the fluid (per
unit mass) is given by:

Ê =
1

2V

∫
|u|2dV =

1
2 ∑ |ũ|2dk, (2.13)

using Parseval’s theorem, where Ê is the total energy and E is the energy per unit of
volume V. This leads to:

Ê ≡
∫

E(k)dk, (2.14)

where E(k) is the energy spectral density, or energy spectrum. Here we represent
homogeneous isotropic turbulence (statistically invariant under translations and ro-
tations of the reference frame). The statistical characteristics of the flow are described
by the spectrum E(k):

E(k) =
1
2
< |ũ(k)|2 >|k|=k . (2.15)

Here <>|k|=k is averaged over spherical shells of radius |k| = k.

The relation 2.15 is valid in a range where forcing and dissipation are negligible,
in this range one can then expect that E(k) = f (ε, k). Also here energy is passed
from large scales to small scales unaltered, so the energy injection rate εi (at large
scales) is equal to the energy flux ε (from large scales to small scales) and the energy
dissipation rate εν (at small scales). Dimensional reasoning can then be made here,
if E(k) has dimensions (lenght3/time2) and ε has dimensions (length2/time3) then

E(k) = Ckε2/3k−5/3, (2.16)

where Ck is a dimensionless constant. The range where this relation is valid would
be later baptized as the inertial range. The result was exposed by Kolmogorov in
1941 and would present such importance in the following era in the turbulence field
that even the abbreviation K41 became of common use. The inertial range came to
complete the energy spectrum cascade picture in between the energy injection and
the viscous dissipation (figure 2.7 ).

We can also derive the scale that separates the inertial range from the dissipation
range, the Kolmogorv scale η, by considering the eddy turnover time τk. This is
the time needed for a parcel with velocity uk to move a distance 1/k, where uk is
the velocity associated with the scale k = 1/L. On dimensional consideration uk =
(kE(k))1/2 so that:

τk = (k3E(k))−1/2 (2.17)

and so,

τk ∼ ε−1/3k−2/3. (2.18)
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FIGURE 2.7: Schema of energy spectrum in three-dimensional turbu-
lence, according to Kolmogorov’s theory. The inertial range is situ-
ated between the large scale L0 and the Kolmogorov length scale η.
Energy is injected at rates εi and transferred at rates ε from the in-
jection range to the dissipation range (where it is dissipated at rates
εν). According to Kolmogorov εi = ε = εν, this leads to the ’Kol-

mogorov’s - 5/3 spectrum’.

Representing the inertial time scale. At some small length scale viscosity becomes
important and the inertial range scaling we presented will fail to predict the proper
energy spectrum. The reason for that is because in the inertial range viscosity is
ignored since the timescales on which it acts are too long for consideration, it does
becomes important when τk ∼ 1/(k2ν) and in combination with Eq. 2.18 we get:

kη ∼
( ε

ν3

)1/4
, (2.19)

τη ∼
(ν

ε

)1/2
. (2.20)

where Eq. 2.19 represents the dissipation wavenumber. Therefore for k << kη iner-
tial effects dominate and for k >> kη viscous dissipation dominates. The number of
degrees of freedom (number of scales) is given by:

L0/η = (Re)
3
4 , (2.21)

Re→ ∞ illustrates the multiscale nature of the phenomenon.

These results were extensively checked and reproduced by laboratory and nu-
merical experiments [17]. They thus constitute a kind of ’boundary condition’ on
theories of turbulence: such theories, to be acceptable, must either satisfy them, or
explicitly violate the assumptions made in deriving them. Moreover, this so found
scaling characteristics of turbulence are also of great value for the understanding of
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dispersion processes as we will see in the next session. This allows us to make as-
sumptions that permit us to rely on Lagrangian dynamics, which are simpler to deal
with in contrast to the Navier-Stokes equation.

2.3 Cellular Flow

A cellular flow is described by the presence of cellular motion usually in the form
of vortices of similar size, a visualization is available in Fig. 2.8. The cellular flow
mathematical form was originally conceived to describe the trajectory of particles of
different settling velocities in thermal convection cells [18], and it has the form (in 2
dimensions):

Ψ(x, y) = Ψ0sin(kx)sin(ky), (2.22)

where k = 2π/L, with L as the vortices sizes. As a consequence of incompressibility
the velocity field is:

ux = −∂yΨ ; uy = ∂xΨ (2.23)

Later in this chapter we will explain how a flow field of this form allows for a sim-
plified description of buoyancy and wind-driven currents [19] such as convective
currents and Langmuir circulations, often encountered in the upper layers of oceans
and lakes. But first it is interesting to notice that if we force the NS equations with
a forcing term f (x, y) ∼ sin(kx)sin(ky) we obtain a velocity field corresponding to
the streamfunction of Eq. 2.22. The procedure can be demonstrated by expressing
the NS equations through vorticity (ω):

ω = ∂xuy − ∂yux (2.24)

So taking the curl (z component) of Eq. 2.9 and considering the 2D incompressible
flow, ω(∇ · u) = 0, leaving us with:

∂

∂t
ω + (u · ∇)ω = ν∇2ω + fω (2.25)

where fω = (∇× f)z = ∂x fy − ∂y fx is the vorticity forcing. Finally, if the velocity
field has the form of Eq. 2.23, u = (ux, uy) and we see that (ux∂xω + uy∂yω) = 0, we
also see that the vorticity is not time dependent ∂tω ∼ 0 and we are left with:

fω = −ν∇2ω = 2νk2ω. (2.26)

The result shows that the vorticity forcing has the same functional form as the vor-
ticity field. The same type of proportionality relation holds for the forcing f and the
velocity field u from the original Navier-Stokes equation. We obtain the numeri-
cal solution of the NS equations forced by a cellular forcing via Lattice-Boltzmann
method [20] and plot the velocity field in Fig. 2.8 .

The velocity field in this case was stable and time independent. It is known from
multiscale analysis that the 2D cellular flow is linearly unstable with respect to the
large scale perturbation, meaning much larger than 1/k [21]. This solution is in
agreement with what we obtained later on in Chapter 5 with a kinematic method for
the solution of our model. As we will further discuss, our approach did not rely on
the solution of the NS equations but on a Lagrangian procedure for the calculations
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FIGURE 2.8: Solution of the Navier-Stokes equation (in non-
dimensional units) via Lattice-Boltzmann method [20] with a forcing
of the form of Eq. 2.23 for a grid size of 600X300 cells. Here the color
code represent u intensity and the black arrows the the direction of

the velocity field.

of phytoplankton concentrations in flow fields. This was due to the high numerical
cost of adding small scales in direct numerical simulations using a realistic domain
size, relevant for phytoplankton in oceans and lakes.

2.4 Transport and Dispersion in Fluids Flows

Here we discuss transport in fluids in regards to the choice of approach (Eu-
lerian/Lagrangian), and we disclose the characteristics of the different transport
regimes for passive tracers inside turbulence . Passive tracers, in opposition to active
ones, have no influence in the properties of the fluid flow velocity field.

2.4.1 Eulerian and Lagrangian Approaches

The study of scalar fields is a topic of great interest in physics and engineering.
From the study of aerosol dispersion in the atmosphere [22] to the vertical stratifi-
cation of temperature in lakes and oceans [14], the number of problems that fit the
classification is enormous. These passive fields are described by defined values at
every point in a region. The Eulerian approach concerns with the the evolution of a
scalar field θ(x, t) at each point in space and at each instant in time t (Eq. 2.27), this
typically contain a molecular diffusion term D and a velocity field u(x, t) [23] which
may be given or dynamically determined by the Navier-Stokes equations. On the
other hand, the Lagrangian approach deals with the trajectory of particles released into
the fluid by following individual particles positions xi in time. Analogous to the Eu-
relian frame these particles are subject to advection, but this time by a velocity field
u(xi, t) measured at the particle position. The Langevin equation 2.28 representing
this approach also accounts for diffusion by using a random vector ζ(t) (δ-correlated
in time, with unity variance and zero mean) modelling the distribution of equation
2.5.

∂θ(x, t)
∂t

= D∇2θ(x, t)−∇.(u(x, t)θ(x, t)), (2.27)
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dxi

dt
= u(xi, t) +

√
2Dζ(t). (2.28)

Note that although the equations presented are useful as an illustration of the ap-
proaches used in fluid mechanics, the Eulerian counterpart for the Langevin equa-
tion corresponds to a Fokker-Plank equation for the probability density function of
finding particle i at position xi and time t. One can study scalar fields using Eulerian
and Lagrangian approaches, choosing between one or both according to precision
and convenience. In summary, either they deal with a fluid flow field in the space
and time domains (Eulerian) or they deal with the trajectory of each fluid particle
in time (Lagrangian). Furthermore, it is common in both experimental and numer-
ical approaches to study fluid flow properties trough tracers. Tracers are point-like
particles with density and velocity equal to the fluid. They may also be divided in:
Non-reactive tracers which are not subject to any chemical or biological reaction and
are usually employed in the study of fluid motions, as they behave in the exact same
manner as the medium [24], or reactive tracers, which are tracers that undergo some
type of chemical or biological reaction during their dynamics in a flow-field. Exam-
ples go from the study of chemical reactions to the phytoplankton dynamics we are
presenting in this thesis. The reaction characteristic here also means that, in contrast
to the passive tracers, the interest in the reactive ones is in the interplay between
transport and reaction dynamics, presenting a further degree of complexity.

2.4.2 Relative Dispersion in Turbulent Flows

Our interest for the Lagrangian approach comes from the fact that relative disper-
sion in turbulent flows can be conveniently used to explore transport and mixing
properties of turbulent flows. This approach has been widely utilized by authors
in the fields of mixing, transport, oceanography and meteorology [25, 26, 27, 28],
particularly through the study of tracers dispersion. In the following the main theo-
retical expectations for relative dispersion will be discussed with reference to a tur-
bulent flow in homogeneous isotropic conditions. The separation distance at time t
between a pair of particle is given by R(t) = |x2(t)− x1(t)|, where x1,2 represents the
position of particles 1 and 2. Chaos is a common manifestation of nonlinear dynam-
ics associated with a strong sensitivity to infinitesimal errors on the initial conditions
[28]. Therefore, chaotic trajectories are to be expected in a turbulent flow assuming
an initially infinitesimally small difference in the positions of two particles, relative
dispersion should be exponentially felt in time:〈

R2(t)
〉
∼
〈

R2(0)
〉

e2λt, (2.29)

where λ is known as the maximum Lyapunov exponent (MLE). However, turbu-
lence is characterized by a multiplicity of scales, and the expected behavior for〈

R2(t)
〉

depends on how the initial separation compares to the turbulent length
scale.

Recalling that the length scales η (the Kolmogorov scale below where energy dissi-
pation is dominating and the flow becomes smooth) and L0 (where energy is injected
into the system) are respectively the smallest and the largest ones, three regimes are
expected. The first regime is the exponential one described by Eq. 2.29, which is
valid when typical separation is small,

〈
R2(t)

〉1/2 � η.
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If
〈

R2(t)
〉1/2 � L0, instead, we expect a diffusive regime, particle velocities are prac-

tically uncorrelated and their trajectories perform diffusive motion:〈
R2(t)

〉
' 2DEt, (2.30)

where DE is the effective diffusivity, dominated by the turbulent contribution, which
is much larger than the coefficient of molecular diffusivity D. In other words, only
when the distance between two particles is sufficiently larger than the correlation
length of the velocity field, the relative velocity can be approximated by a stochastic
process. Between the diffusive and the chaotic regime, in the range of scales cor-
responding to the turbulent inertial range, relative dispersion is expected to have a
power law dependence on time in the presence of a direct energy cascade from large
to small eddies [23], hence: 〈

R2(t)
〉
= CRεt3, (2.31)

where ε is the energy dissipation rate and CR is the non-dimensional Richardson
constant. This equation is known as Richardson law and it describe the superdif-
fusive behaviour of turbulent dispersion. The regimes presented here are not by
coincidence analogous to the ones presented in the past section as dispersion is an-
other way of expressing the Richardson cascade [17].

2.5 Turbulent Diffusion

As we saw in the previous section, when we examine the tracer dispersion phe-
nomenon at sufficiently large scales the general behavior is equivalent to isotropic
diffusive motion. Indeed this relation has been widely used in geophysical and bi-
ological models under the name of turbulent diffusion or eddy diffusion to approx-
imate the complex dispersion generated by turbulence eddies over large scales of
space and time. In spite of that, the key factor here is that molecular diffusion is a
process of random motion that affects particles at very small scales, typical mean
time scales for molecular motion are 10−10s for air and 10−12s for water, and typical
length scales are 10−7m for air and 10−9m for water [11]. Since these values are con-
siderably smaller than our typical time and length scales of observation, molecular
diffusion can be safely considered to correspond to a random motion. However, the
typical time and length scales of turbulence in oceans and lakes are of the same or-
der of magnitude as typical time and length scales of observation. For this reason we
have no guarantee that a simple analogy with the random walk process is applicable
to turbulent flows.

In addition to that, in geophysical or biological fluid models one wants to repre-
sent the macroscopic effect of turbulence as a diffusion process through the use of a
diffusivity DE = DT + D (that can be space dependent as well), in the same man-
ner as in the diffusion equation. Nonetheless, in terms of macroscopic dispersion
turbulent diffusion DT is much more efficient than the molecular diffusion as it is
associated with a flow of much larger scales. Due to the wide range of eddy scales
involved, DE should vary with the considered scale `. Estimating the required eddy
diffusivity Ka may not be obvious [29, 30], particularly for what concerns its scale de-
pendence [15]. Perhaps the most commonly accepted measure of effective diffusiv-
ity comes in terms of tracer concentration variance σ2 over time Ka ≡ (1/2)dσ2/dt.
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This was first measured by Richardson in 1926 and repeated by Okubo [31] (Fig. 2.9)
and it provides evidence that Ka scales with the scale of interest ` as `4/3. In other
terms, Ka, as estimated from Eulerian measurements, scales as the relative diffusivity
that can be estimated from Lagrangian measurements, (1/2)d

〈
R2〉 /dt. This result

means that as ` becomes larger more and more eddies participate in diffusion and
the effective diffusivity increases. The 4/3 law does not always apply but it is a good
general approximation.

FIGURE 2.9: Okubo measures properties of ocean diffusion through
the use of dye experiments. He thus verified that the 4/3 law is locally
valid, given that the rate of turbulent energy dissipation varies with
the time and length scales in which one is interested. Figure extracted

from [31].

Another way to look into an expression for the diffusivity is to examine eddy
fluxes in a tracer concentration field c [32]. The eddy flux is the average of the prod-
uct of fluctuations in both the concentration field c and the flow velocity field u, and
it relates to the eddy/turbulent diffusivity tensor as:

D(i,j)
T ≡ −F(i)

∇(j) < c >
= −< |u(i) ′c′| >

∇(j) < c >
, (2.32)

where F(i) represents the ith component of the eddy flux and the primes fluc-
tuations with respect to the mean in their respective fields. This approach can be
used for estimations of DT but it presents clear disadvantages. First one has to have
access to sufficiently resolved measurements of the tracer concentration and the ve-
locity field, which may not be easy to obtain, and second one has to count on the
concentration field being sufficiently stratified in space as if not the measurement
of D diverges. Alternatively historically scientists estimate diffusivity via dye dis-
persion experiments as Ka = (1/2)dσ2/dt [31] where an initial portion of dye can
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be measured multiple times as it spreads, which provide good estimations for small
scale experiments but it is obviously unfeasible for large length scales. Still the most
applied technique in measuring diffusivity are experiments with drifters where one
can estimate diffusivity either by measuring their dispersion or eddy kinetic energy
for example. The advantage is that one can follow drifters for many kilometers, al-
lowing large domains to be explored, on the other hand these are usually floaters
and therefore unusable for vertical diffusivity measurements. In fig. 2.10 we see an
example of an apparent horizontal diffusivity map made from eddy kinetic energy
measurements through drifters.

FIGURE 2.10: A map of the apparent horizontal diffusivity (K) in the
Atlantic obtained through measurements of eddy kinetic energy by

drifters. Figure extracted from [33].

Moreover, the study of vertical diffusivity in the oceans is considerably less ex-
plored than lateral diffusivity given the increased difficulty to perform such experi-
ments. These usually require scientific boat expeditions for many hours in multiple
periods of time for proper water probing with depth. In addition to the arguments
presented in the introduction where we expressed the convenience of ocean surface
monitoring through satellite images, numerous experiments with floating drifters
deployed by research institutes are available for scientists, whereas constant time
series depth probing experiments are significantly more difficult to find. Never-
theless, we can mention some comparisons, for example, horizontal diffusivity is
several orders of magnitude larger than the vertical diffusivity. In many cases the
influence of the fluid density distribution is more important in determining the ver-
tical diffusivity than the scale of the phenomenon. In the next section we will discuss
some examples of physical vertical mixing processes in oceans and lakes, there we
can better clarify the problem of anisotropic turbulence in vertical mixing processes.
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2.6 Vertical Mixing Processes in Oceans and Lakes

It is beyond the scope of this work to describe in detail the intricate complexity of
vertical mixing processes in aquatic environments. Instead, we will present a short
summary of the theory behind some of these mechanisms with the goal of better re-
lating the numerical simulations and observations we will later expose in this thesis
to what is known for these processes from the theoretical and experimental litera-
ture and observations. The number of processes that govern vertical movement in
the ocean is very numerous. Fig. 2.11 provides a representation of some small and
large scale ocean flow processes. The physical phenomena that originates them is
also vast, to cite some; thermal processes, topological features, mechanical forcing
(wind for example), salinity gradients... In this thesis we are concerned with the ones
that occur in length scales < 1km as this scale coincides with what can be expected
for the mixed layer depth. Even though large geophysical currents can affect ocean
dynamics locally [32], we will abstain from talking about them as it is not the objec-
tive of this work. That said, we can divide the physical process that originates the
fluid flow in the aforementioned range into two categories: wind driven currents,
and buoyancy driven currents (both effects are often concomitant, so the category is
defined by the dominant one).

FIGURE 2.11: Pictorial representation of ocean flows at various scales,
increased mixing is represented by stippling. Figure extracted from

[19].

2.6.1 Buoyancy driven currents

The density of fluids has fundamental effects on their dynamics and also on the
genesis and nature of turbulence. Forces can originate from the variations of den-
sity in fluids lying within gravitational fields. Differences in density lead to pressure
differences that, if unopposed, drive movement. These forces are named buoyancy
forces and are linked to temperature or salinity gradients, or driven by heat fluxes
at the boundaries of fluids, they are the cause of a wide range of turbulence related
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phenomena [19]. The buoyancy force on a water parcel is determined by its buoy-
ancy anomaly:

b = −g
(ρ− ρamb)

ρ0
, (2.33)

where g is the acceleration of gravity, ρ the parcel density, ρamb the surroundings
density and ρ0 is a constant reference density equal to 1000kg/m3 [34]. In fluid me-
chanics one usually associates the buoyancy term to the Boussinesq approximation
to the Navier-Stokes equation, which allows for the calculation of the dynamics of
a fluid velocity field by exploring smallness of density variations in many liquids.
In aquatic environments complications arise because the density of water can de-
pend on temperature T, salinity S and, although very weakly, on pressure p, i.e.
ρ = ρ(T, S, p). However, a simplified equation of state can be adopted:

ρ = ρ0[1− αT(T − T0) + βS(S− S0)], (2.34)

with αT and βS being respectively the thermal expansion and haline contraction co-
efficients, and T0 and S0 are reference temperature and salinities. In here pressure
can be neglected due to the almost incompressible nature of water. The equation
is not valid for low temperatures as these coefficients will not be constant anymore
and will vary with T and p [34] (for example the sign of the thermal expansion co-
efficients reverts for temperatures below 4oC in unsalted water). Density gradients
will typically be the origin of convection currents, although wind forcing also has a
important role in this.

An example of deep sea convection can be seen in Fig. 2.12, here one can see
that when an initially stratified fluid is subject to buoyancy loss from the surface its
surface layer will become denser sinking and driving convective currents in the form
of circular motions. These are similar to eddies, sinking denser water parcels from
the surface and restoring its buoyancy by bringing lighter waters from the bottom.
This persistent structures are one of the motivations of the numerical simulations
that will be exposed in this thesis. This phenomenon can be observed in oceans
[35] and lakes [36] and its origin is mostly dominated by meteorological forcing via
temperature gradients generated by seasonal cooling. As atmosphere temperature
drops the surface of water cools and loses buoyancy in relation to deeper layers,
driving convective currents in the process. It has been even hypothesized that winter
convection is crucial for the survival of phytoplankton in mid and high latitudes by
allowing resting spores and vegetative cells from deep ocean waters to be uplifted
[35]. This comes to add to the variety of ways in which advection by currents and
dispersion by turbulence can affect biological dynamics in the sea.

2.6.2 Wind driven currents

Rarely you will find a aquatic environment in which wind does not plays a role in
mixing dynamics (Fig. 2.13 as example), that said, the quid pro quo in between wind
forcing and fluid dispersion is not at all obvious. Starting from what the eye can see,
when touching the first layer of water turbulent winds tend to produce breaking
surface waves (Fig. 2.11). Even tough these play a role in surface dispersion, At
low wind speeds the sea/lake surface may behave, over much of its area, like a
viscous–conductive boundary layer above a rigid surface, and molecular processes
may dominate the exchanges of some properties across the air–water interface in
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FIGURE 2.12: Pictorial representation of open ocean deep convection,
Buoyancy flux through sea surface is represented by curly arrows,
stratification is represented by continuous lines. (a) precondition-
ing (buoyancy loss at the surface), (b) deep convection (currents are
driven by density gradients), and (c) lateral exchange and spreading

(the phenomenon slowly dissipates). Figure extracted from [34].

sufficiently low wind speeds (typically those less than about 3m/s) [19]. Laboratory
experiments confirm that as much as 40% of the energy lost by breakers may go into
the production of bubbles [37], these are mostly associated with higher turbulence
zones than non bubble zones. But as much as breaking waves are associated with
turbulence, and help in the maintenance of the mixed layer in combination with
buoyancy processes, their penetration in depth is limited by the viscous nature of
the aquatic environment. Between many processes that participate in the production
and regulation of the mixed layer we can cite also shear, convection and Langmuir
circulation.

While flying in an aircraft over the sea, or while one observes a lake from sur-
rounding mountains one can probably observe parallel streaks of foamy water, 30-
50 meters apart, extending hundreds of meters across the water (Fig. 2.14). These
are a direct result of Langmuir circulation, a feature first observed by Langmuir [38].
The phenomenon originates from the drag between the surface water and steady
wind, giving rise to a converging cellular motion in a plane perpendicular to the
wind direction (Fig. 2.11). Beneath them, the downward vertical current speed in-
creases with depth, reaching a maximum of about 1–20 cm/s at a depth of 0.2–0.5
times the mixed layer depth, before decreasing towards the base of the mixed layer
[19]. The beginning of cellular circulation in a previously quiescent fluid was ob-
served to occur at Re′ = 530± 20 and, after the first appearance of surface waves,
at Re′ = 370± 10, where Re′ = U0(t/ν)1/2, U0 is the surface water speed and t is
the time since the onset of wind [39]. Langmuir circulation and its associated turbu-
lence, as well as the mentioned buoyancy and wind driven currents, play a pivotal
role in both climate and biological processes, regulating the mixed layer temperature
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FIGURE 2.13: Photo of the surface of the Garonne river taken by the
author during a stay in Bordeaux, France. A constant flux of wind
over the water surface produced a series of vortical motions with a

life span averaging from a couple of seconds to a minute.

and nutrient availability, as well as helping sinking phytoplankton species to have
access to the euphotic zones.

FIGURE 2.14: Langmuir streaks on Quake Lake, United States. Image
by Wayne Wurtsbaugh - www.aslo.org.

In this chapter we presented a summary for the theories of diffusion, turbulence,
turbulent, diffusive and advective transport, as well as some real flow phenomena in
aquatic environments. We proceed this way because later on, when we present our
advection-reaction-diffusion model for vertical phytoplankton dynamics, we hope
that the reader can understand the origin of the necessary assumptions needed to
build the fluid transport part of the model. As well as the importance of the different
time and length scales that one tries to replicate in order to bring as much realism as
possible to our idealized system.
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Chapter 3

Population Dynamics, Plankton
and Phytoplankton

Population dynamics problems date from even before the the sketches of Da Vinci
seen in Fig. 2.1. Origins can be tracked to a book by Fibonacci in 1202 entitled Liber
abaci (Book of Calculation) in which he describes a recurrence problem where a man
wants to know how many rabbits he will have in a year after buying a pair [40]. Pop-
ulation dynamics is at the intersection of various fields: mathematics, physics, so-
cial sciences (demography), biology (population genetics and ecology) and medicine
(epidemiology).

In this chapter we well briefly review basic biological concepts of plankton and
phytoplankton which are necessary for understanding, both the importance of study-
ing these organisms, and how to properly model their life cycle dynamics in a math-
ematical/numerical framework. First we introduce some basic understanding re-
garding plankton and phytoplankton biology, then we briefly review the basic knowl-
edge behind population modelling problems and situate light-limited growth phy-
toplankton models in this vast field. We finish the chapter by exposing the math-
ematical framework and history behind phytoplankton bloom studies, concluding
the chapter with an overview of some of the knowledge acquired in the past decades
about the subject trough modelling.

3.1 Plankton and Phytoplankton

3.1.1 Plankton

The word Plankton is a classification based on the Greek word planktos mean-
ing errant (drifter). This refers to the fact that planktonic life is considered to be
composed of organisms that are not able to actively control their location but are
rather advected by the surrounding medium (unable to overtake the currents) [41].
The classification can be debated as in fact many forms of planktonic life like the
zooplankton or the phytoplanktonic dinoflagellates are motile species, able to swim
(mostly vertically) hundreds of meters daily. Regardless of the motility of some
species, their movement is nonetheless dominated by current flows and turbulence.
What is remarkable about plankton is their diversity (Figure 3.1), the classifica-
tion embraces organisms from marine viruses smaller than 0.2 µm to the amphi-
pod of tenths of centimeters. In this size range we also find bacteria, algae, crus-
taceans and jellyfish. Each possessing different habits and roles in the maintenance
of aquatic biodiversity. We usually separate the larger species that predate on the
primary producers as grazers or zooplankton (zoo standing for "animal") these will
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ultimately sustain fish and mammals at the top of the food chain. The remaining
planktonic species either receive their energy from chemical reactions through or-
ganic/inorganic compounds and/or photosynthesis, these being referred to as phy-
toplankton (the prefix phyto meaning "plant").

3.1.2 Phytoplankton

Phytoplankton is a generic name for photosynthesizing microscopic organisms
that inhabit the upper sunlit layer of almost all oceans and bodies of freshwater.
These tiny plants, some as small as a micron, use chlorophyll to capture energy from
sunlight to create the organic molecules that make up their bodies, a reaction that
turns them into the fuel that is imperative for sustaining of the aquatic food web.
In other words they are known to control biogeochemical cycles through primary
production and are believed to contribute for about half of the global primary pro-
duction [42]. They are also refereed to as algae (all algae is phytoplankton but not
the inverse). Phytoplankton are mostly too small to be seen by the naked eye, this
means that in a sunlit surface of water every millilitre may contain hundreds of thou-
sands of phytoplankton [32], and therefore collectively their chlorophyll colors the
water in a way that it is easily spotted from cruise ships to satellite images. Figure
3.2 shows some satellite images from NASA’s OceanColor website, in there we see a
set of different physical conditions to which phytoplankton may be subjected, these
range from advection by mesoscale ocean vortices and mixing by turbulent eddy
fields, to increase in population due to eutrophication (enriched nutrient zones).

The number of phytoplankton species that exist in the ocean are very numerous
(hundreds of thousands), between those the most common are the diatoms, then the
cyanobacteria and dinoflagellates. Diatoms refer to a group of phytoplankton that
cannot swim and thus rely on vertical turbulence to oscillate between sunlit and nu-
trient rich zones. The group nonetheless is composed of hundreds of thousands of
species of different shapes. Cyanobacteria are bacteria found in almost every aquatic
environment on earth, from moistened rocks in the desert to rocks in the Antarctica.
They sometimes are described as dangerous because their algae blooms can release
cyanotoxins that may poison and even kill animals. Both groups rely solely on in-
organic nutrients and photosynthesis to survive. Dinoflagellates on the other hand
may combine photosynthesis with grazing, though not all follow this rule. These
organisms differ from the past groups also in the fact that they posses two flag-
ella, an appendage that allows them to swim according to survival strategies (flee
from predators for example). It is far from the scope of this work to cover the many
features of phytoplankton species like sizes, shapes and motion techniques, charac-
teristics that show importance in very small length and time scale scale dynamics
[43, 44], therefore we focus on describing the general properties of these organisms
survival dynamics.

3.1.3 Phytoplankton Life Cycle and Turbulence

Phytoplankton are at the bottom of the food chain: they create fresh organic matter
from dissolved nutrients, carbon dioxide, and energy from sunlight. Unfortunately
for them nutrients and sunlight are in opposite places. While the sunlit layer of the
water (euphotic zone) can extend up to 200m, depending on how clear the aquatic
medium is, usually it only provides enough energy for survival on a fraction of this
(first 20 meters for clear water for example). Nutrients on the other hand (with the
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FIGURE 3.1:
Examples of planktonic microorganisms and macro organisms. (I) On
the left two dinoflagellates (photosynthetic primary producers) and a
tintinnid ciliate (phytoplankton predator) on the right, both are active
swimmers, Thau Lagoon of Sète, France - Uwe Kils. (II) A copepod from
Antarctica, planktonic crustaceans that can be 1mm to 2mm long, Uwe
Kils. (III) Antarctic krill, feeds primarily on phytoplankton and and
it is probably the largest biomass of a single species on the planet,
Professor Dr. Habil, Uwe Kils. (IV) Amphipod a scavenger species,
Uwe kils. (V) A cyanobacterium Prochlorococcus, a photosynthetic or-
ganism and major contributor to atmospheric oxygen, Luke Thompson
from Chisholm Lab and Nikki Watson from Whitehead, MIT. (VI) The sea
sparkle dinoflagellate, an active swimmer species that exhibits biolu-
minescence when disturbed producing the mareel (Milky seas) effect,
Maria Antónia Sampayo, Instituto de Oceanografia, Faculdade Ciências da

Universidade de Lisboa - http://planktonnet.awi.de.
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FIGURE 3.2: (I) A few hundred thousands square kilometers of phy-
toplankton patches in the Southeastern Pacific Ocean, filaments ap-
pear to follow the flow pattern of mesoscale ocean vortices. (II)
Algae patches drawn into thin ribbons by a turbulent eddy field
in the northern area of the Arabic Sea. (III) An image with seven
separate spectral bands to highlight differences in plankton com-
munities on the coast of Patagonia. (IV) The southeast part of Rio
de la Plata shows large floating populations of phytoplankton fa-
vored by the proximity to the metropolis of Buenos Aires and Mon-
tevideo, huge suppliers of nutrients such as nitrate and phosphate.

https://oceancolor.gsfc.nasa.gov/.

exception of coastal zones) are localized in deep ocean (Figure 3.3), and so it comes
that what allows these organisms to thrive in the way we see in satellite images is
turbulence, and more specifically the fluid mixing associated with it. Phytoplank-
ton survival in aquatic environments depends mostly in being trapped in a layer of
active movement where the almost homogeneous mixing in the water column will
allow them to access both the euphotic zone and nutrients, either by bringing the nu-
trients to them or the inverse, this is known as the mixed layer [32]. The definition of
mixed layer is independent on the existence of organisms or sediments, the mixed
layer is present in all oceans and most bodies of water and it possesses a seasonal
evolution that is associated to its genesis mechanisms due to thermal and mechani-
cal processes. In the north Atlantic, for example, the mixed layer known to shoal in
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spring, an event historically associated with phytoplankton spring blooms, and then
regain depth in winter, when phytoplankton populations get smaller. Turbulence
can nonetheless have positive or negative influence over these survival dynamics as
we will see.

FIGURE 3.3: Representation of the elements responsible for phyto-
plankton survival dynamics in aquatic environments. The euphotic
zone is the sunlit layer of the ocean where photosynthesis is viable,
the mixed layer is a region with active movement that mixes waters
in an almost homogeneous way. In an ideal scenario for reproduc-
tion the mixed layer allows phytoplankton to have access to both the

euphotic zone and nutrients.

Apart from what it was mentioned, the influence of turbulence on plankton can
be summarized according to [1]:

• Turbulence increases turbulent diffusion of nutrients, hence contributing to
population growth.

• According to the intensity of turbulence one species or another is favored,
defining the composition of plankton communities.

• Turbulence influences in sedimentation defining the types of particles in sus-
pension.

• It transports zooplankton having a positive or negative effect on the preda-
tor/prey and reproductive dynamics according to the rate of encounters it
generates.

In addition to these, many, if not most plankton species are denser than water
[45], and so they tend to sink. This means that these species depend on turbulence
to rise to the sunlit zones (balance their weight), resulting that in the absence of tur-
bulence they would not have formed a successful part of the phytoplankton commu-
nity in lakes and oceans for millions of years. The role of turbulence will be further
explored in the following sections.
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Biologically the two factors that play a role in phytoplankton survival are photo-
synthesis and respiration. Photosynthesis is the conversion of electromagnetic en-
ergy into chemical energy through the formation of organic molecules[32]:

6CO2 + 6H2O
photons−−−−→ C6H12O6 + 6O2 (3.1)

The chemical reaction turns carbon dioxide and water into glucose and molec-
ular oxygen. The creation of organic matter from inorganic compounds is called
primary production. The reaction is exactly what makes phytoplankton so valuable
for life in planet earth, they not only contribute to about half of the oxygen that
allows us to breath but also assimilate the carbon dioxide in a process that helps reg-
ulate the climate, and, as a bonus, they generate huge quantities of organic matter
that compose the base of the ocean’s food chain. The reverse of this process is the
respiration:

C6H12O6 + 6O2 → 6CO2 + 6H2O + energy (3.2)

By consuming part of the glucose and oxygen generated by photosynthesis, plank-
ton (and not only phytoplankton) can produce the energy that fuels biochemical re-
actions and mechanical work. This process is one of which that can make plankton
blooms dangerous as the extensive consumption of oxygen by a plankton patch can
generate "dead" anoxic (depleted of oxygen) regions in oceans and lakes [46]. In
terms of phytoplankton blooms photosynthesis is considered a production process,
since it generates organic matter, whereas respiration is considered a loss process,
since it consumes. In the ensemble of loss processes we can also add the natural
degradation of organic matter and predating as processes that reduce and can extin-
guish populations. Later in this chapter, when we describe the modelling of phyto-
plankton population dynamics, we will further explore the processes that affect the
life cycles of plankton and phytoplankton. In the last section of this chapter we will
make a summary of some of the models and theories that were coined to represent
phytoplankton dynamics in oceans and lakes. These models approach the represen-
tation of plankton’s life cycles from a number of different parameters; from nutrients
and radiation availability to turbulence and water column depth. We start from the
most minimalist of models and from that we build the complexity of the current and
most refined models.

3.2 Modelling of Phytoplankton Populations

The value of mathematical treatment in ecosystem dynamics is the same as in
classical mechanics or electromagnetism for example, quantitative analysis and pre-
dictions are indispensable. The difference arises in the fact that population models
cannot be compared to Newton’s laws or Maxwell’s equations, the natural environ-
ment has not yet found a firm mathematical basis akin to these. In the words of
Okubo and Levin [11]:

"The mere fact that a mathematical model agrees well with a small amount of data does
not suffice, as the agreement could be coincidental. Moreover, models should not be con-
fused with fundamental equations or laws. Only those hypotheses that have withstood large
amounts of critical scrutiny can be elevated to the status reserved for laws."
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That said, it is expected that a complex field such as ecology will take a very long
time to reach such a goal, making mathematical models an important step in that
direction. In this sense one can crudely separate models into stochastic models or
deterministic models, the first tend to better capture the probabilistic and discrete
nature of biological processes, and the second are useful in the creation of a general
understanding, particularly at the collective level, i.e. as far as populations are con-
cerned (here we will only focus on deterministic models). A straightforward way
to evaluate this is to construct a mathematical model that describes a generic popu-
lation increase/decrease. According to deterministic theory, the rate of population
change, dN/dt, is proportional to the number of individuals at time t, N(t), and to
a coefficient of net growth (birth minus death) r:

dN
dt

= rN. (3.3)

If N(t = 0) = N0, than

N = N0ert, (3.4)

meaning that if r is constant we will get the same result for each experiment in a
deterministic fashion. Regardless of how good of a solution Eq. 3.4 may turn out
to be for the macroscopic behavior of said population, the process of population
growth is usually stochastic, and at a given instant the growth will most likely not
depend solely on rN. Instead we can express our solution in terms of the expected
value, N:

N =
∞

∑
N′=0

N′p(N′, t, a, b, ...) = N0ert, (3.5)

where, p is a growth probability density function that may depend on numerous
factors.

If p represents the growth of phytoplankton for example, a may be related to nutri-
ent availability and b to the position of phytoplankton in the sunlit water column. In
this case the deterministic method expresses the average state (or mean field approx-
imation) of the actual stochastic process, this statement is true for a large number of
individuals with small enough fluctuations in dynamics, but it is not true in general.
Equation 3.4 represents the Malthusian exponential population growth (as long as
birth > death), an example of a mechanism that can stop the Malthusian explosion
is the finiteness of resources, in the biological context it is common to write it as a
logistic model [47]:

dN
dt

= rN
(

1− N
K

)
≡ g(N)N. (3.6)

Here r, the difference between birth and death rates is the maximum growth rate,
since the effective population-dependent growth rate g(N) = r(1− N/K) decreases
with N. K is the carrying capacity, identified with the maximum population that
can be sustained by the available resources, that is the population value at which
growth stops. Fig. 3.4 illustrates the form of the population growth described by the
integration of equation 3.6.
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FIGURE 3.4: Integration of equation 3.6 in non dimensional units, K =
100000, r = 3 · 10−4 and dt = 1.

Also one could cite population growth dynamics known as Allee effects [10],
which reduce individual fitness when population density is small, this effect is in-
troduced to deal with the codependence of individuals in certain situations such as
winter, when animals need to pack close together to avoid death by cold. One could
also enter the next step of modelling by adding predator-prey dynamics through the
coupling of two equations, one representing the prey and another the predators, as
introduced by Volterra in 1926 [48]. But in this work we chose to follow a single pop-
ulation approach for convenience since our main interest is in the interplay between
phytoplankton dynamics and advection diffusion features.

3.2.1 The Advection-Reaction-Diffusion Framework

Before entering the modelling methodology specific to phytoplankton it is inter-
esting to present the mathematical framework that allows to couple the aquatic
transport seen in Chapter 2 with the biological conditions seen in this chapter. To
represent the survival dynamics of these organisms it is common to lay the different
parts standing for the transport and biology of phytoplankton organisms into an
advection-reaction-diffusion equation. The standard advection-reaction-diffusion
model deals with the time evolution of a chemical or biological species in a flowing
medium such as water or air. The mathematical equations describing the evolution
of the model are partial differential equations (PDEs) that can be derived from the
mass action law [49] (for the biological part). One can separate the processes that
compose the general equation as to better explain their function. A classical repre-
sentation of a advection equation is given by the continuity equation:

∂

∂t
θ = −∇ · (vθ) (3.7)

θ can represent either a fluid density or an inert chemical/biological substance con-
centration, v represents the velocity field affecting both the fluid and the inert sub-
stance. θ can be easily generalized as any scalar field, if it was temperature for ex-
ample, Eq. 3.7 would be part of the dynamics involved, e.g, in thermal convection.

The equation of diffusion was already presented in section 2.1.2. We can add here
that if D represents turbulent diffusivity, as seen in Chapter 2, it can be chosen to
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have different constant values depending on different regions for example, some-
thing that is used to represent different layers of mixing in the ocean [50]. We will
talk about grid discretisation later on, but it is worth remarking that it can also be
used to represent sub-grid turbulence [51]. The final piece of the model is the reac-
tion equation, in here for simplicity we express it with a function that is responsible
for expressing local changes due to biological or chemical reactions:

∂

∂t
θ = g (θ) (3.8)

where as said, g can represent any type of biological or chemical reaction kinetics,
from light-limited phytoplankton growth dynamics [52], to combustion reactions
[53]. Meaning that g controls the value of θ accordingly to its definition and in con-
junction to the advection-diffusion processes. In our case, the complete advection-
reaction-diffusion equation is used to describe a passive-reactive scalar, phytoplank-
ton density, in two dimensions:

∂θ(x, z, t)
∂t

= ∇ · (D∇θ(x, z, t))−∇.(v(x, z, t)θ(x, z, t)) + g(θ)θ(x, z, t). (3.9)

Hence θ(x, t) represents the density of phytoplankton cells at point x = (x, z) and
time t. The novelty comes in the form of the reaction term g(θ)θ(x, z, t), this part of
the equation represents a biological reaction (parallel to the growth term of, e.g., Eq.
3.6). Eq. 3.9 no longer obeys the mass conservation principle since now cells are pro-
duced or lost due to the form of the reaction term, this means that the equation relies
solely on its initial condition and on its boundary conditions to be solved for each
time t and coordinates [x, z]. Consequently an advection-reaction-diffusion equation
of this type can be fairly more complicated to solve than the advection-diffusion
equations previously discussed, even for an incompressible velocity flow field. In
reality, they are analytically solvable for phytoplankton dynamics only when a sen-
sible amount of approximations or assumptions are made [6, 45]. Nonetheless, they
have been widely utilized in plankton mathematical modelling studies for more than
50 years [54, 31, 55, 56], but instead of being approached analytically they are mostly
dealt with numerically. This can be done in many ways, the methods utilised in this
thesis will be further discussed in Chapter 4. What remains for us in this chapter is
to understand the form of the reaction growth term g, this can depend on the spatial
position [51], on one or more population densities [57] and subsequently on time.
In the next subsection we will show how g can be used to portray the biological
dependence phytoplankton has on light.

3.2.2 Light limited growth

The history of phytoplankton light limited growth models is quite rich, starting
from the seminal work of Sverdrup [58], it gained much impetus through the intro-
duction of specific studies on the importance of light limitation for phytoplankton
dynamics [52, 54], reaching the status of a well established methodology in the mod-
ern days [7, 6, 50, 56]. According to Huisman [59] a variety of competition models
lead to the following prediction: if one resource is the main limiting factor for the
survival of multiple species, the species that is able to survive at the lowest resource
density equilibrium value (R∗) competitively excludes all other species. In here he
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also quotes Tilman [60], "light competition is conceptually more complex than nutri-
ent competition. We do not yet have either rigorous theoretical predictions or exper-
imental results that indicate a single number, analogous to R∗, that can predict the
outcome of competition for light." This naturally arises from the fact that in relation
to nutrients, light as a resource present further modelling complications, it can never
be assumed to be distributed homogeneously vertically due to absorption/shading
effects, and the response of micro organisms to such resource are still not fully un-
derstood. With that said, one can start the model construction by considering the
Beer-Lambert law for the attenuation of light due to the water medium with depth:

dI
dz

= −κ I, (3.10)

where κ is the extinction coefficient, I is the light intensity, and z the depth. The
extinction coefficient can consist of two parts:

κ = Kbg + kθ, (3.11)

Kbg is the background extinction coefficient associated to the water turbidity, without
phytoplankton, and k is the specific light attenuation coefficient of the phytoplank-
ton pigments, representing the effect known as self-shading. The introduction of the
self-shading effect is not mandatory for vertical phytoplankton numerical studies
[51], specially when phytoplankton population density is low. In spite of that, it is
known from numerical models [54, 52] that the self-shading effect of phytoplankton
plays an important role, especially in the dynamics of spring algal blooms in coastal
waters. Without self-shading, the plankton concentration would increase rapidly,
making the nutrient limitation apparently too strong. The final form of the light
intensity modulation throughout the water column is then given by:

I(z, t) = Iinexp
{
−
∫ z

0
[Kbg + kθ(z′, t)]dz′

}
, (3.12)

with Iin as the incident light intensity, and θ(z, t) the phytoplankton concentration.
From the form of Eq. 4.22 one can see why the the self-shading effect is not al-
ways taken into account by numerical models. Its inclusion in the complete popu-
lation dynamics with advection and diffusion leads to an integro-differential equa-
tion, making the solution non-trivial for numerical methods and computational re-
sources. The final step is to introduce a growth term analogous to r in Eq. 3.3. This
has to consider the light limitation and death dynamics so it can be later used as a
biological reaction term in a complete population dynamics simulation. Therefore
we can consider a growth rate:

g(I(z, t)) = aI(z, t)− l. (3.13)

with a reproduction rate aI proportional to the local light intensity and constant a,
and a loss term l representing population losses due to respiration, sedimentation,
excretion, between other processes. Eq. 3.13 is a good approximation at low light
intensities, however, due to the physiological limits of the maximal reproduction
rates of organisms, the reproduction rate generally saturates for high light intensi-
ties [6]. Such a behaviour can be modelled by Michaelis-Menten kinetics, originally
introduced to represent the rate of enzymatic reactions [61], in the phytoplankton
modelling field it has the form [62]:
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g(I(z, t)) =
aI

1 + cI
− l, (3.14)

where c is a reproduction saturation constant. For cI � 1, the function reduces
to the approximation of equation 3.13. The mathematical expression from Eq. 3.14
with parameters taken from [45] can be seen in Fig. 3.5. The presented curve is inde-
pendent of phytoplankton population and therefore does not take into account the
self-shading effect (explained in the next section). Even so we can still evaluate that
the depth at which production is equal to loss is quite shallow (17.8m), this means
that for considerably clear water, if the mixing layer has a size of 100 meters (quite
usual for deep lakes and mid latitude oceans [32] in winter), only about 20% of the
water column on which algae are circulating will lead to production large enough
to surpass death. This gets even more complicated with the introduction of the self-
shading effect and sinking dynamics, showing how complex the modelization of the
life of phytoplankton can be.

FIGURE 3.5: Growth term vs. depth from Eq. 3.14, without the self-
shading effect. The red line indicates the compensation depth (when
net growth becomes negative, i.e. when l > aI/(1 + cI)) at z = 17.8m
for Kbg = 0.2m−1, a coefficient of absorption equivalent to clear lakes

or coastal areas.

3.3 Phytoplankton Bloom Dynamics

Scientific observations relating the spatial distribution of algae patches with ocean
currents date from the beginning of the last century. In 1927 for instance, in a cruise
between the United States and England, Langmuir reported that large quantities
of seaweed were arranged parallel to the wind direction [38] in a phenomena that
would later be baptized with his name, the Langmuir circulation. From then to
the current days a lot has been done in the efforts of explaining the behavior of
plankton blooms. Here we describe the critical depth hypothesis, a theory based on
a article [58] that achieved much impetus in oceanography and aquatic ecology [63,
7]. The concept presented there was later thoroughly debated and so refinements
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and alternatives to the theory appeared, the critical turbulence hypothesis is one of
these spawns that we will also discuss in this section.

3.3.1 Critical Depth Hypothesis

In 1935 Gran and Braarud [64] pointed out that phytoplankton production in a
water column could not exceed losses if there existed a deep mixed top layer. In this
one can think of a compensation depth, defined as the depth at which the energy in-
tensity is such that the production by photosynthesis balances losses by respiration.
Therefore the reasoning was that within a well mixed layer the plankton organisms
are about evenly distributed, but a net production takes place only above the com-
pensation depth (Fig. 3.6), whereas below the compensation depth there is a net
loss of organic matter since the light depletion makes production by photosynthesis
smaller than the loss by respiration. The total population cannot increase if this loss
exceeds the net production. This implies that there must exist a critical depth such
that blooming can occur only if the depth of the mixed layer (the water column slice
where a plankton bloom may occur) is less than the critical value. Gran and Braarud
concluded that the critical depth was 5 to 10 times the compensation depth.
From this idea Sverdrup writes his classical article in 1953 [58] creating a model that
will appear in many oceanography text books and will be considered a milestone for
many other models in the field.

FIGURE 3.6: Visualization of the concept of critical depth. Here dr
is the loss rate, dp is the production rate and Dc the compensation
depth. If the area bcDc is larger than the area abDc, production sur-

passes losses. Extracted from [58].

To justify the conclusions Sverdrup arrives in his model he makes the following
assumptions:

1. Within the top layer the turbulence is strong enough to distribute the plankton
organisms evenly through the layer.

2. Production is not limited by lack of plant-nutrition salts.

3. κ, the extinction coefficient of radiation energy is constant in the water column.
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4. The production of organic matter by photosynthesis is proportional to the en-
ergy of the radiation at the level under consideration.

5. Ic, the energy at the compensation depth, is known.

Many of these assumptions were also made before by Riley in 1942 [5] in a model
we will discuss later. In Sverdrup’s case the result was a model for the total produc-
tion and destruction of phytoplankton in a water column based on Beer–Lambert’s
law. Starting from the expression for the total production:

P = m
∫ T

0

∫ 0

−Dz

Iineκzdtdz =
m
k
(1− e−κDz)

∫ T

0
Iin.dt (3.15)

Where m is the production rate constant, Iin is the effective energy at the surface, κ
light depletion constant, T the interval of interest, Dz the mixed layer depth and z
the vertical coordinate. Following the expression for the total losses by respiration:

R = n
∫ T

0

∫ 0

−Dz

dtdz = nTDz, (3.16)

where n is the death rate constant. The condition for an increase in phytoplankton
population is P > R, this happens when the area bcDc in Fig. 3.6 is greater than the
area dabDc. Introducing the average incident light:

Īin =
1
T

∫ T

0
Iindt. (3.17)

Also Ic = n/m, at the compensation depth, the production and loss rates are equal,
m = n, the critical depth results by equating Eq. 3.15 and Eq. 3.16. From these
Sverdrup gave the following expression for the critical depth:

Dcr

1− e−kDcr
=

Īe

κ Ic
. (3.18)

Sverdrup remarked that the speed in which the plankton grows is proportional
to how much the thickness of the top layer deviates from the critical value. The
more it deviates, the faster it grows. Also he stated that the presence of weaker tur-
bulence may affect the critical value as a higher concentration of plankton near the
surface may compensate the destruction under the compensation depth (as we will
see later). Data from the months of March, April and May in Norway in 1949 further
supported his reasoning. In months where the mixed layer was deeper than the crit-
ical depth no increase in population was detected, in months where the mixed layer
was shallower than the critical depth a bloom occurred with intensity proportional
to the deviation from the critical value.

3.3.2 Critical Turbulence Hypothesis

Here we discuss the work used as basis for our phytoplankton model [45]. Even
before Sverdrup presented his study scientists in the field already discussed the im-
portance of phytoplankton vertical stability for production. Riley [5] was the first to
propose a relation for the loss rate of diatoms considering the water column depth:

r = rp
Drp

Drc

− rc − rs (3.19)
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With r as the phytoplankton loss rate, Drp the thickness of the euphotic zone, Drc the
thickness of the vertical turbulence layer, rc the loss by respiration and rs the loss by
grazing and sinking.

Riley coined this based on data collected on four cruises made to Georges Bank in
the United States during the spring of 1941. By analyzing the number of plankton
cells against the vertical stability (density difference between different depths) he
realized that during early spring when the bloom was peaking there was no relation
between the parameters, but in April when the peak was gone there was a positive
relation between them. He finally concluded that if the euphotic zone and the rates
of photosynthesis and respiration are constant, the rate of increase in the plankton
population is a linear function of the reciprocal of the thickness of the zone of vertical
turbulence (mixed layer). Later in 1949 Riley et al. [65] delivered a one-dimensional
(1D) model that represented the vertical processes of diffusion and settling com-
bined with the simple growth-death processes of phytoplankton represented by a
two-layer model:

∂θ

∂t
= p(Iin)θ + D

∂2θ

∂z2 − v
∂θ

∂z
(3.20)

for phytoplankton in the euphotic zone and,

∂θ

∂t
= −lθ + D

∂2θ

∂z2 − v
∂θ

∂z
(3.21)

for phytoplankton below the euphotic zone.

Here θ represents the plankton concentration, p(Iin) the growth rate as a function
of the incident radiation, l the death rate, D the turbulent diffusivity constant, and
v the sinking velocity. Through this Riley was able to derive a simple expression
for the minimal turbulence [65, 66, 67], an important concept that represents the
turbulence necessary to maintain a sinking species of phytoplankton enough time in
the euphotic zone as to have their growth superior to death:

Dmin ≈
v2

4(p(Iin)− l)
. (3.22)

The modelling evolution continued with Shigesada and Okubo [54] who in 1981
built a model which incorporated light-dependent growth rates but neglected light
absorption by the water column. This would be refined a posteriori by Huisman et
al. (1999) through the development of a model [7] that provided a theoretical under-
pinning for observations of Townsend et al. [68] and Eilertsen [69], which challenged
the critical depth hypothesis. The model was a growth-diffusion model in which the
population dynamics of phytoplankton were governed by light-limited growth, lo-
cal phytoplankton losses, and local transport of the phytoplankton by turbulent dif-
fusion. Following Sverdrup [58], Huisman et al. kept the model as simple as possible
in order to have a representation that was close to Sverdrup, but with the consider-
ation of turbulence. Thus, the model neglected many additional complexities like
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nutrient limitation, photo-inhibition (decreased efficiency in photosynthesis), buoy-
ancy, and sinking:

∂θ(z, t)
∂t

= [p(I(z, t))− l]θ(z, t) + D
∂2θ(z, t)

∂z2 , (3.23)

with:

p(I(z, t)) =
pmax I(z, t)
H + I(z, t)

; I(z, t) = Iine−
∫ z

0 kθ(σ,t)dσ−Kbgz. (3.24)

Where θ(z, t) is the population density (cells per unit volume) at depth z and time
t, p(I(z, t)) is the specific production rate as an increasing function of light intensity
I(z, t), l is the specific loss rate, pmax is the maximal specific production rate and D
is the turbulent diffusion coefficient (also known as "vertical eddy diffusivity"). The
light intensity is modeled by the incident light intensity Iin, Kbg is the total back-
ground turbidity (responsible for modelling the water depletion of light), H is the
half-saturation constant of light-limited growth and k is the specific light attenua-
tion, responsible for accounting for the self shading of the plankton. The model also
had no flux boundary conditions:

D
∂θ(z, t)

∂z
= 0, at z = 0 and z = zmax. (3.25)

Where zmax is the domain depth. From simulations utilizing Eq. 3.7 Huisman builds
a diagram (Fig. 3.7) for the existence or non existence of plankton blooms depend-
ing only on the depth of the simulated water column and the diffusivity coefficient.
Here the bloom condition is defined as the state where the phytoplankton popula-
tion grows from an initial state of small uniform density and then reaches a station-
ary state. The no bloom condition is defined as the condition in which the phyto-
plankton population disappears from an initial state equal to the aforementioned
one, after enough simulation time has elapsed.

FIGURE 3.7: Combinations of water-column depth and turbulent dif-
fusion coefficient that allow a phytoplankton bloom and the combi-

nations that prevent a phytoplankton bloom. Extracted from [7].



40 Chapter 3. Population Dynamics, Plankton and Phytoplankton

The line perpendicular to the Turbulent diffusion axis that delimits the bloom and
no bloom regions represents the critical turbulence (or maximal turbulence), a con-
cept that complements the idea of minimal turbulence developed by Riley et. al [65].
This is the key concept of his work, the critical turbulence delimits the maximal tur-
bulence a water environment of defined depth can have to support phytoplankton
blooms.

The turbulence importance in phytoplankton life-cycles, an idea that has been
discussed through theories [6, 70], observations [71, 72] and experimentation [73,
74] gained much momentum through the advancement of phytoplankton dynamics
modelling. The next logical step was for Huisman to include a sinking/buoyancy
velocity for the plankton in the model and that he did in 2002 [45]. By adding a
velocity therm to Eq. 3.23 we have the following partial differential equation (PDE):

∂θ(z, t)
∂t

= [p(I(z, t))− l]θ(z, t) + D
∂2θ(z, t)

∂z2 − v
∂θ(z, t)

∂z
(3.26)

and boundary conditions,

vθ(z, t)− D
∂θ(z, t)

∂z
= 0, at z = 0 and z = zmax. (3.27)

Using a finite volume method and parameters taken from Laboratory of Aquatic
Microbiology, University of Amsterdam, the Netherlands [73, 7] Huisman is able to
solve Eq. 3.26 and build a Figure similar to Fig. 3.7 but with the addition of the
minimal turbulence.

In Fig. 3.8 wee see that the inclusion of sinking speed in the model creates two
thresholds for both turbulence and water column depth. For turbulence we have
the minimal turbulence, the minimal amount of turbulence required to compensate
sinking in order to remain in the euphotic zone enough time to outgrow death, and
the maximum turbulence, the maximum amount of turbulence a water environment
can provide above which the mixing is too strong for the bloom to exist. The critical
depth is the same as described by Sverdrup’s theory and the compensation depth is
the same mentioned before (the depth below which death by respiration surpasses
growth by photosynthesis). The second graph in Fig. 3.8 shows what happens when
the sinking speed is considerably increased. In this scenario the maximal and mini-
mal turbulence limits merge and the system is only weakly affected by the amount
of turbulence, being dominated by the depth of the water column. These results are
important because they suggest clear boundaries for important physical quantities
that affect the phytoplankton life cycle and will be a solid starting point for the study
we carry on in this thesis.

3.3.3 Current Bloom Scientific Debate

We saw that most past theories relied on a handful of approximations but nowa-
days modelling in this field has achieved a much more complex state. As we will
later discuss in the next chapter it has incorporated further dynamics that are very
difficult to include explicitly in these theories, from physical quantities as water tem-
perature and buoyancy [75, 76], to biological factors as predators and nutrients [77].
When we include into these the considerable amount of field data, experiments and
satellite observations that were and are still being performed in the last decades, the
room for discussion has increased.
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FIGURE 3.8: Results analog to Fig. 2 but with the inclusion of sinking
speed in the simulations. Above v = 0.04m/h and below v = 0.4m/h.
Above we see the concepts of maximal turbulence and minimal tur-
bulence represented by the horizontal lines. The critical depth and
the compensation depth are equally represented by vertical lines. Ex-

tracted from [45].

On the topic of plankton bloom dynamics the main debate still is around the
spring bloom observed every year in the north Atlantic [78]. A large part of what
inspired the phytoplankton bloom discussion comes from observations, mostly in
the north Atlantic, where a strong plankton bloom is seen every spring. And so a
debate has formed around the phenomenon that triggers this event. Historically,
it is believed that the phenomenon is a consequence of the shoaling of the mixed
layer during spring, in agreement with the critical depth hypothesis. From the re-
cent theories that have followed the critical depth theory in hopes to better explain
the spring bloom phenomenon we can highlight the hypothesis raised by an arti-
cle by Behrenfeld [79]. In this it is suggested that the critical depth hypothesis has
to be abandoned based on its incompatibility with a nine-year satellite record of
phytoplankton biomass in the subarctic Atlantic that shows that bloom initiation oc-
curs in the winter when mixed layer depths are maximum, not in spring. Further
it is argued that the coupling between phytoplankton growth and losses increases
during spring stratification rather than decreases, and maxima in net population
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growth rates are as likely to occur in midwinter as in spring. As an alternative a
"Dilution–Recoupling Hypothesis" is reported where rather than being triggered by
mixed layer shoaling, the spring bloom is triggered by the dilution of phytoplankton
grazers (predators) when the inverse occurs, the mixed layer increases Fig. 3.9.

FIGURE 3.9: Illustration of the concept behind the "Dilu-
tion–Recoupling Hypothesis". Dilution impact of the winter increase
in mixed layer depth is higher on grazers than on phytoplankton (in
loss rates), resulting in the bloom starting at winter. Extracted from

[80]
.

In another important work Taylor and Ferrari [56] postulate that the onset of a
bloom can also be triggered by a reduction in air–sea fluxes at the end of winter. The
hypothesis is supported by numerical simulations and satellite remote sensing data.
They suggest that when net cooling subsides at the end of winter, turbulent mixing
becomes weak, increasing the time phytoplankton spends in the euphotic zone. The
hypothesis is compatible with the critical depth hypothesis but more complete as it
does not rely simply on the mixing layer depth shoaling but on reduction of atmo-
spheric forcing as a trigger. As we can see, the field is far from reaching a consensus
on what phenomenon causes phytoplankton blooms or extinction. This constitutes
an important motivation for the work presented in this thesis. We hope that we can
provide some interesting insight on the basic features related to the interplay be-
tween biological and fluid dynamics, at the hearth of such a complex problem, in
the next chapters.
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Chapter 4

Numerical Methods

In this chapter I describe the numerical methods adopted in this thesis and report
technical points related to the space and time convergence of the algorithms applied
to the investigated problem (see Sec. 4.4). I finish with the presentation of the model
considered in the numerical work and provide comparisons with literature results
for validation purposes. In the first section I review advection-reaction-diffusion
equations from a numerical point of view and describe the discretization and time
marching schemes. I then describe the specific semi-Lagrangian method chosen for
advection and finally present the method adopted for diffusion solution scheme.

4.1 Advection-Reaction-Diffusion Equations

Here we discuss the advection-reaction-diffusion equation introduced in Chapter
3 from a numerical point of view. The complete equation (see also Eq. 3.9) has the
form:

∂θ

∂t
= D∇2θ −∇ · (vθ) + g(θ)θ. (4.1)

The equation in the above form is quite daunting as one should expect from any
equation representing the time evolution of a scalar field under these different pro-
cesses. In addition to that, one can rarely find an analytical solution for equations
of this type without many assumptions. Indeed it is known that already the pas-
sive scalar problem is highly nontrivial in the presence of advection, even for simple
flows [81]. Here, the presence of a biological reaction adds to the complexity through
its typically nonlinear character, giving rise to very rich dynamics [10]. Nonetheless
one can count on numerical methods to deal with this problem.

One typically starts by discretizing space into cells of size h > 0 (a small number),
this way our once continuous density distribution is represented into cell intervals.
The procedure is described in Fig. 4.1, starting from a continuous 2D scalar density
field θ(x, z, t), one has to make the equivalence between the continuous coordinates
(x, z) and the discrete grid positions given by the indices i and j respectively. The
cell size (in our case h for both directions) and the resolution in terms of the num-
ber of grid points, Nx and Nz, will be chosen based on the value of the largest and
smallest scales of interest. Fluid mechanics numerical methods that rely on grid
discretizations such as DNS (Direct Numerical Simulations), LES (Large Eddy Sim-
ulations), semi-Lagrangian, Lattice-Boltzmann, Finite-Differences, between others,
have strengths and weaknesses related to both their accuracy and their computa-
tional costs. DNS, for example, is usually regarded as a method that provides very
realistic solutions since it is a direct solution of the Navier-Stokes equations, but
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is also computationally costly, often depending on Fourier transforms and no tur-
bulent viscosity approximation, differently from LES. In this thesis the choice for a
semi-Lagrangian method to account for the effect of the velocity flow field was par-
tially justified by the necessity to simulate large physical domains extending over
several meters in order to reproduce realistic setups, something that would have
been impossible in simulation time with DNS.

FIGURE 4.1: Illustration of the discretization process of a continuous
2D density field θ(x, z, t) into a grid of size Nx × Nz, indexes i, j and

cell size h.

Finally, in addition to the spatial discretization, one has to discretize the time evo-
lution in time steps ∆t. The advection-reaction-diffusion equation is integrated in
time at each grid point using standard discretisation algorithms (Euler, Velocity-
Verlet, Runge-Kutta). The method chosen for this thesis was the 4th order Runge-
Kutta, and it was used both for the integration of the reaction term and advection
terms, diffusion was integrated via Crank-Nicholson finite differences method (see
Sec. 4.3). In the next sections we discuss in depth the methodology for the step-by-
step solution of the advection-reaction-diffusion equation of this project.

4.2 Semi-Lagrangian Scheme

During my thesis I worked with a semi-Lagrangian scheme through the use of a
discrete-time map approach for the solution of the advection part of the mentioned
model equation. This involves both the flow field and the sinking velocity of phy-
toplankton. In the first year of the thesis I relied on a so called forward scheme,
that will be explained here, for the solution of both the diffusion and the advection
parts, in which it was easier to implement the no-flux boundary conditions at the
top and bottom sides of the domain. During the second year of PhD, due to the lim-
ited accuracy of the resulting advection-diffusion solution (related to extrapolation
on the grid points and number of noise realizations needed for diffusion), I changed
the algorithm for a backward advection scheme with diffusion by finite differences.
The backward advection method is also explained in this section but the diffusion
solution is presented in the next section. With the new methodology we were able
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to ensure field smoothness, which is clearly an essential prerequisite. The semi-
Lagrangian scheme is very practical to work with for its simplicity and its relative
flexibility to adopt complex boundary conditions. Also, as advection is integrated
in a continuous space, an advantage of this approach is that it does not require so-
phisticated implementations and limiting constraints to deal with transport by fluid
flows.

4.2.1 Discrete-Time Map

Discrete-time maps are widely used in the numerical solution of advection-reaction-
diffusion equations [82, 83], here we can follow a similar procedure to the one de-
scribed by Abel et al. [53] to explain the methodology. The numerical solution
of equation 4.1 for scalar parcels θ(x, z, t) can be separated, we can first calculate
the trajectory followed by the parcel due to diffusive and advective transport in
our simulation box, and then integrate the reaction part according to the reaction
term g(θ)θ, fulfilling the complete scalar time evolution. Hence we establish Ft as
the formal evolution operator for a 2D trajectory described by the position vector
x(t) = (x(t), z(t)), as x(t) = Ftx(0) and Gt as the time evolution operator according
to θ(t) = Gtθ(0). The total dynamics are represented by:

θ(x, z, t) = Gtθ[Ft(x(0), z(0)), 0]. (4.2)

The next step is to introduce the time discretization to the operators in the form
of a Lagrangian map x(t + ∆t) = F∆t(x(t)). This follows a discrete time march of
intervals ∆t. Then Eq. 4.2 can be generalized in this discrete time form in the two
ways that were relevant for my work. The forward advection with diffusion in a
Lagrangian way:

θ(x(t + ∆t), t + ∆t) =
〈

G∆t[θ(F∆t(x(t)) +
√

2D∆tζ(t), t)]
〉

ζ
(4.3)

where ζ(t) is a random vector of zero mean and unity variance (as seen in Chapter
2), and the process has to pass trough an ensemble average <>ζ to represent the
diffusion process. In practice this means multiple implementations of ζ have to be
accounted for and then averaged. The other method I applied is represented by the
backwards advection scheme without diffusion (that is implemented separately via
finite differences):

θ(x(t + ∆t), t + ∆t) = G∆t[θ(F−1
∆t (x(t + ∆t), t)]. (4.4)

The main differences between the schemes represented by equations 4.3 and 4.4
are illustrated in Fig. 4.2: In the Forward case we integrate a scalar parcel trajectory
(via the operator F∆t) starting from a grid point and ending at a different position
(typically not a grid point). Consequently the value of the parcel has to be spread
(or extrapolated) surrounding grid points, the procedure is repeated until all scalar
parcels, each starting from a grid point, have been evolved following their trajecto-
ries. We then have the advected-diffused population field resulting from the sum of
all scalar parcels that were transported and then proportionally divided according
to grid discretization. The final step is to implement reaction (via the operator G∆t)
over the entire population field in accordance to the reaction term g(θ)θ. While in
this case diffusion trajectories are implemented by the ensemble average of multiple
calculations of the random kick

√
2D∆tζ(t) using first order discretisation, both the

advection trajectory and the reactive evolution of the scalar parcels are calculated
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via the 4th order Runge Kutta method. On the other hand, the Backwards scheme
relies on the calculation of trajectories backwards in time. Starting from the future
grid point we calculate the past trajectory that arrived at that point (via the operator
F−1

∆t). The origin of such trajectory is off grid too, therefore interpolation using the
nearest grid points is needed to compute the scalar density at the Lagrangian origin.
The so-determined θ values is then reacted (via the operator G∆t) and the procedure
is repeated for the entire grid. After we have advected the θ field and let it react, we
calculate diffusion via finite differences (explained in the next section). Also here,
both backwards advection and reaction are implemented via the 4th order Runge
Kutta method.

FIGURE 4.2: Illustration of the backwards and forward schemes for
diffusion and advection, respectively corresponding to moving fic-
titious fluid particle in the past and the future. Here a single noise

realization (needed for diffusion) is represented.

4.2.2 Interpolation/Extrapolation

The interpolation used for the backwards advection method was a bilinear one,
meaning employing the nearest neighbours on the grid. The Lagrangian origin
F−1

∆t (x(t + ∆t)) is used to obtain the scalar density θ(F−1
∆t (x(t + ∆t), t) that will be
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advanced in time according to the given reaction dynamic. It is not difficult to see
that the coefficients needed for the interpolation are:

c1 =
(xold − xgrid)(zold − zgrid)

h2 , (4.5)

c2 =
xold − xgrid

h
− c1, (4.6)

c3 =
zold − zgrid

h
− c1, (4.7)

c4 = 1− (c1 + c2 + c3), (4.8)

where (xold, zold) is the Lagrangian origin, (xgrid, zgrid) are the coordinates of one of
the lower left vertex of the square formed by the 4 points on the grid nearest to
(xold, zold) (as depicted by Fig. 4.2), and h is the cell size. The interpolated, pre-
reaction, density field is:

θpre = c4θold(xgrid, zgrid) + c2θold(xgrid + h, zgrid)

+c3θold(xgrid, zgrid + h) + c1θold(xgrid + h, zgrid + h),

(4.9)

where θold is the gridded density field at the previous time step. Boundary condi-
tions can be dealt with by reducing the order of interpolation, or they can be solved
separately via finite differences as well.

The extrapolation process needed for the forward advection scheme follows the
same logic of coefficient calculation as equations 4.5, 4.6, 4.7 and 4.8, but instead of
relying on a scalar parcel interpolated from 4 grid contributions the scalar parcel is
divided between the grid points according to:

θpre(xgrid, zgrid) = c4θold, (4.10)

θpre(xgrid + hx, zgrid) = c2θold, (4.11)

θpre(xgrid, zgrid + hz) = c3θold, (4.12)

θpre(xgrid + hx, zgrid + hz) = c1θold, (4.13)

where the now gridded θpre can receive contributions from multiple particle
based values θold, transported starting from different grid points. This means that the
entire field has to be advected before the reactive dynamics can be evolved. some-
thing that is not necessary in the backwards case. Boundary conditions are imposed
in the same manner as in the backwards case.

When implementing the backwards advection-diffusion technique I was faced
with a problem. Since transport had to be reverted at the no-flux boundaries, reverse
trajectories that were reflected resulted in the θold parcel being taken from a slightly
higher density region at the top boundary due to the phytoplankton sinking. One
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possible solution for this problem would be to rely on very small time steps for the
simulation dynamics, but due to the constraints related to the implementation of the
stochastic term for diffusion, the grid would have to be very fine as well, making the
solution impracticable. The first solution for this problem found in this work was
the discussed forward advection-diffusion scheme, this solved the issue of the La-
grangian origins of grid points close to the top boundary. However a better solution
was implementing diffusion via finite differences in the backwards method, as the
stencil scheme chosen for diffusion with the backwards methodology for advection
also resulted in smoother density fields. The latter was then chosen as the reference
implementation adopted for the simulation code.

An advantage of the semi-Lagrangian implementation of diffusion is that it does
not impose an upper bound on the time step ∆t for stability reasons. To simulate
diffusion on scale h is then enough to respect the condition h ≤

√
2D∆t. Nonethe-

less, a strong limitation of the method with forwards or backwards diffusion (not
through the Eulerian scheme) is the need to perform ensemble averages, which re-
quire tuning for the parameters, namely the number of noise realizations. This can
make computations costly (the needed number of realizations in our case was∼ 50).

4.3 Eulerian Scheme for Diffusion

As we saw in the previous sections the advection-reaction-diffusion equation can
be solved numerically by a splitting approach, in Sec. 4.2 we have shown the so-
lution of the advection and diffusion parts with a semi-Lagrangian scheme with
subsequent reaction integration. Here we show an alternative that is using the
backwards-Lagrangian scheme only for the advection (without changing the reac-
tion integration method), but diffusion dynamics are calculated through a pseudo-
Crank-Nicholson method with spatial finite differences. Starting from the Crank-
Nicholson method, let us introduce the function f representing the right side of the
diffusion equation as:

∂θ

∂t
= D∇2θ = f (θ, D) (4.14)

Then, on our 2D grid indexes (i, j), numerical integration is calculated similarly to
the Euler method as:

θt+∆t
i,j − θt

i,j

∆t
=

1
2

[
f t+∆t
i,j + f t

i,j

]
. (4.15)

The Crank-Nicholson method is a semi-implicit scheme based on the trapezoidal
rule and has second order convergence in time. One could go further and use
the RK4 method for better precision, but the coupling of the method with a finite-
difference scheme for the spatial discretization increase the number of grid elements
to be computed as O(2d2) where d is the number of dimensions. This means that one
has to weight the necessity of better precision, with two or more dimensions calcula-
tions can become quite heavy since the RK4 method requires even more operations.
In our case we found that the a pseudo-Crank-Nicholson method with a second or-
der central finite differences scheme presented satisfactory convergence. So for the
spatial discretization in 2D:

fi,j = D
θi+1,j + θi,j+1 + θi−1,j + θi,j−1 − 4θi,j

h4 (4.16)
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and finally all together:

θt+∆t
i,j − θt

i,j

∆t
=

D
2h4

[
θt

i+1,j + θt
i,j+1 + θt

i−1,j + θt
i,j−1 − 4θt

i,j+

θt+∆t
i+1,j + θt+∆t

i,j+1 + θt+∆t
i−1,j + θt+∆t

i,j−1 − 4θt+∆t
i,j ].

(4.17)

Here a problem arises as the terms originated from the f t+∆t
i,j function are not

known making this an implicit method, these result in the need to solve a system of
linear equations that are highly time consuming. As an alternative I realized that I
could obtain good accuracy by assuming that θt+∆t

i,j is given by the advected-reacted
density field at time t+∆t (as diffusion is implemented last in each time step), hence
one could dub this numerical scheme a pseudo-Crank-Nicholson method. The Eu-
lerian scheme shown here has to respect some constraints [57]; interpolation in-
duces a numerical diffusion of the order Dn ∝ h2/∆t, it is therefore desirable to
have D > Dn. In addition, the stability condition for the Eulerian diffusion step
requires that D∆td/h2 < 1, where ∆td denotes the time step for the diffusion calcu-
lations. Both conditions imply that ∆td < ∆t, so for example, if ∆td = ∆t/10 then
after every advection and reaction steps in the algorithm (that solves the advection-
reaction-diffusion equation) one should run 10 steps of diffusion (our choice in this
work). Regarding the previous boundary problem, here no-flux boundary condi-
tions ([vθ − D∂zθ]z=boundaries = 0) can be better dealt with by being discretized di-
rectly with a 3-points forward (top boundary) or backwards (bottom boundary)
finite-differences scheme (here the terms backwards and forward refers to space,
different from the schemes of the previous section). So after the rest of the grid was
updated we calculate the scalar values at the boundary nodes, this way:

θt+∆t
i,j=0 = D

4θt+∆t
i,j+1 − θt+∆t

i,j+2

2vh + 3D
(top) (4.18)

θt+∆t
i,j=Nz

= D
θt+∆t

i,j−2 − 4θt+∆t
i,j−1

2vh− 3D
(bottom). (4.19)

The difference between methods is that the forward-Lagrangian scheme is more
easily applied to non-divergent flows; otherwise, accumulation of Lagrangian fluid
parcels into convergence regions and rarefaction of the particle concentration in di-
vergence regions can lead to a spatially variable resolution in the scalar concentra-
tion fields [84]. Also the extrapolation adopted for the time evolution in the for-
ward scheme contributes for the generation of less smooth scalar fields. I extensively
tested both the forward-Lagrangian and the Eulerian scheme for the solution of our
problem, confirming the above statement. Fig. 4.3 shows an extreme case for the
model described in Sec. 4.4, where dynamics are calculated with the forward semi-
Lagrangian scheme (a) and the backwards scheme with the Eulerian method for dif-
fusion (b) (both with the same grid resolution). We see that forward method results
in a much more granular density field after interpolation, whereas in the latter the
Eulerian diffusion scheme produces a smooth field. In terms of general results such
as average total population density or growth measurements in time, both methods
behave very similarly, (a) being fairly quicker (around 2 times faster) in computa-
tional time. In spite of that, the necessity for precise spatial analysis makes the field
smoothness indispensable.
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FIGURE 4.3: Example of the comparison between population den-
sity field snapshots calculated for advection-reaction-diffusion dy-
namics corresponding to the model of Sec. 4.4, by the forward semi-
Lagrangian method (a) and the backwards semi-Lagrangian method

with diffusion by the Eulerian scheme (b).

We finish the numerical methods description with a flowchart that summarizes
the two numerical method implementations described so far (Fig. 4.4).

4.4 Phytoplankton Model Dynamics and Numerical Valida-
tion

As expressed in chapter 3 and chapter 2 the history of research on vertical phyto-
plankton dynamics models is quite recent (less than a century) but rather rich. What
is common to many previous studies is that they mainly focused on biological fac-
tors, only quite crudely representing fluid motions. The question of plankton blooms
was particularly addressed. The concept of critical depth was introduced and inves-
tigations explored the role of the mixed-layer depth (MLD) [58, 7], turbulence in-
tensity [5, 45], light-limited growth [52, 54], to cite a few. In addition, the biological
modelling was debated and it still is to some extent when dealing with phytoplank-
ton vertical dynamics. The problem is settled on how to express complex biological
relations into a compact mathematical framework. Between those relations are the
ones referring to phytoplankton survival directly; nutrient limitations, photosynthe-
sis and biomass creation/depletion and predation by zooplankton. In addition, it
is worth stressing once more that mathematical models of biological and physical
dynamics are typically difficult to solve analytically because of their nonlinear char-
acter and coupling. In the following I revise the 1D model [45] that was the basis
for our study and perform a validation study with the numerical methodology pre-
sented so far. In there I also discuss the findings of this 1D study that are relevant
for the comprehension of the 2D work we perform in the next chapter, which can be
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FIGURE 4.4: Flowchart portraying the order of implementation of
the numerical methodology explained in the past sections. The final

method chosen for this thesis is on the right side.

seen as an extension of former. I end this chapter with the 2D extension of the 1D
model and further validation results for the 2D numerical approach.

4.4.1 Light-Limited Sinking Phytoplankton Model

In this extent the work of Huisman and Weissing [59] was of paramount impor-
tance, they assumed that light-limited phytoplankton dynamics could be examined
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TABLE 4.1: Parameters of the biological dynamics.

Parameter Value Meaning
κbg 0.2 m−1 Background turbidity
κ 1.5 · 10−11 m2 cell−1 Specific light attenuation

of phytoplankton
pmax 0.04 h−1 Maximal specific production rate

l 0.01 h−1 Specific loss rate
H 30 µmol photons m−2 s−1 Half-saturation constant of

light-limited growth
Iin 350 µmol photons m−2 s−1 Incident light intensity
v 0.04 m h−1 Phytoplankton sinking velocity

in a mono-culture environment with homogeneous nutrient availability. So by ne-
glecting much of the complexity of real-world systems they [7] later set of param-
eters based on measurements from "average" freshwater phytoplankton species in
the culture collection of the Laboratory for Microbiology, at the University of Ams-
terdam. With this methodology they were able to derive a relatively simple model.
This was done by taking advantage of the well known advection-reaction-diffusion
models.

Our approaches are the ones described in chapter 3, at first we relied solely on the
forward advection technique (Sec. 4.2) to reproduce Huisman 1D results [45] and
to extend them to 2D in the absence of a flow. So recalling the model 1D evolution
equation:

∂θ(z, t)
∂t

= [p(I(z, θ, t))− l]θ(z, t) + D
∂2θ(z, t)

∂z2 − v
∂θ(z, t)

∂z
, (4.20)

where;

p(I(z, θ, t)) =
pmax I(z, θ, t)
H + I(z, θ, t)

, (4.21)

I(z, θ, t) = Iine−
∫ z

0 kθ(σ,t)dσ−Kbgz, (4.22)

and where v is the phytoplankton sinking speed, θ(z, t) as the population density
(cells per unit volume) at depth z and time t, p(I(z, t)) is the specific production rate
as an increasing function of light intensity I(z, θ, t), l is the specific loss rate, pmax is
the maximal specific production rate and D is the turbulent diffusion coefficient. The
light intensity is modeled by the Lambert-Beer law with the incident light intensity
denoted Iin, Kbg is the total background turbidity (responsible for light absorption
by the water medium) [52], H is the half-saturation constant of light-limited growth
and k is the specific light attenuation, accounting for the self shading of plankton
[85]. Additionally the system is subject to no flux boundary conditions:

vθ(z, t)− D
∂θ(z, t)

∂z
= 0, at z = 0 and z = zmax, (4.23)

where zmax refers to the lower boundary of the water column that represents the
mixed layer depth. Furthermore we take advantage of the biological parameters
mentioned at the beginning of the section, reported in table 4.1, these will be used
throughout all studies in this and in the next chapters.
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For illustration purposes a surface representing the specific net growth rate (p(I)−
l) as a function of θ and z) for the parameters of table 4.1, can be appraised in Fig.
4.5 where an arbitrary population distribution is used. There, when the population
density is small, we see that the reaction rate has a form imposed by Beer-Lambert
law, but when the population density increases also the effect of the self-shading
becomes apparent. For higher values of θ, the depth at which growth is positive
shrinks, a factor that may play a role when the total population (biomass) (Ptot(t))

Ptot(t) =
∫ Lz

0
θ(z, t)dz (4.24)

is considered.

FIGURE 4.5: The specific growth rate (p(I) − l) for a 20 meter deep
water column and multiple values of θ. The surface is obtained with

the simulation parameters of table 4.1 and equation 4.20.

4.4.2 Model Exploration in 1D

We move on to investigate the time evolution of equation 4.20 with 4.21 through
computer simulations. We start from a homogeneously distributed population cor-
responding to θ ≈ 106cells/m3, as we expect the asymptotic dynamics not to depend
on the choice of the initial population density (see also [45]), and this choice allowed
us to accelerate the approach to the later time behavior of the system. In Figures 4.6
and 4.7 we see that after a period of exponential growth (for bloom cases) Ptot sat-
urates and maintains a constant value, a consequence of the self-shading presence
(without it population would grow indefinitely). We also performed tests to verify
the convergence of the method for the 1D simulations by measuring Ptot for differ-
ent time steps dt, in Fig. 4.6 we can see an example of such tests. For a depth (zmax)
of 20m we found that dz = 0.133m was an appropriate spatial discretization, given
that the length over which light decreases is 1/Kbg = 5m, we were able resolve well
the light-limited dynamics. We then measured the largest time step we could use
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while still obtaining good convergence. Again, as described in this chapter, the con-
dition required for the stochastic implementation of diffusion is that dz2/D < dt, so
we started from dt = 0.01h and found that until dt = 0.5h we obtained good con-
vergence for the D = 10cm2/s case (small enough to resolve well the reaction time
given by 1/pmax = 25h). In addition, the figure shows that D = 10cm2/s is a bloom
case, in agreement with the diagram of Fig. 3.8 (top), extracted from [45].
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FIGURE 4.6: Total population versus time for dz = 0.133m, zmax =
50m, D = 10cm2/s and multiple time steps dt.

We then performed multiple simulations with several values of D. The results
are reported in Fig. 4.7 for a depth of 20 meters, close to the smallest one for which
the minimal turbulence threshold exists (see Fig. 3.8, top). These results are also in
agreement with the diagram of Fig. 3.8, as we see that when D = 10−2cm2/s we
arrive at the first no bloom case since Ptot decreases after enough time has elapsed.
In the inset we can also see that D = 0.5cm2/s is the optimal case for growth for the
chosen zmax as the steady state value of Ptot is the highest. To complement the code
validation we decided to compare our results to the original ones by reproducing the
full bloom diagram of Fig. 3.8 (top) with an appropriate number of simulations. In
order to efficiently explore the parameter space and limit the use of computational
resources, we performed 25 simulations spanning a a wide range of D and zmax val-
ues as shown in figure 4.8. These simulations were carried out until Ptot reached a
constant steady-state value or a very small one. The first corresponds to a bloom
case where population survives, and the latter to a no bloom case, where population
vanishes. With these results we were able to obtain the same "phase" diagram as in
the original work [45], which proves that our code behaved properly. The horizontal
dashed line in the top part of Fig. 4.8 marks the maximal turbulence (also known as
critical turbulence) for phytoplankton survival, the dashed line in the bottom part of
the diagram instead indicates the minimal turbulence for phytoplankton survival.
The vertical dashed lines indicate the critical values of depth for the given condi-
tions that allow a bloom (the critical depth in the top part of the diagram and the
compensation depth in the bottom part of the figure).

A further comparison can be made through population density vertical profiles,
which are straightforward to obtain in 1D simulations as they correspond to θ(z, t)
at a given time. In Fig. 4.9 we show our vertical profiles in the same conditions as
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FIGURE 4.7: Ptot vs. time (log scale on the vertical axis) for zmax = 20m
and multiple D values. The inset shows a zoom of the top area.

FIGURE 4.8: Reproduction of the bloom diagram in Fig. 3.8 (top),
from [45]. This was done by running multiple simulations for differ-
ent D and zmax values, and measuring the value of Ptot after a suffi-

ciently large time.

the ones of the original work [45]. These are here presented in the exact same form
as in [45] to appreciate the quantitative agreement with those previous results. They
are useful to observe the effect of mixing (turbulent diffusivity) over the population
through depth: as D decreases the population distribution becomes less homoge-
neous and more concentrated in the upper part of the water column, the zone with
the highest growth rate. We can also observe surface population density maxima for
the smaller D cases. They become apparent when growth rates exceed both sinking
rates and mixing rates, and are a manifestation of the interplay between mechanisms
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(light limitation and sinking) acting in opposite directions along the vertical.
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FIGURE 4.9: Population density vertical profiles for different values
of D and zmax = 20m. Results are presented in the same units as in the
original [45]: a) D = 10cm2 s−1, b) D = 1cm2 s−1, c) D = 0.5cm2 s−1

and d) D = 0.1cm2 s−1.

4.4.3 2D Phytoplankton Model Extension and Comparison

It is worth remarking again that our approach led to less smooth vertical profiles
than the original one [45], this is clear from Fig. 4.9 where the curves are some-
how "noisy". We solved this problem when validating the 2D code using the ap-
proach previously described, namely by resorting to backwards advection and to
finite-differences discretization of the diffusion term. Equation 4.20 in 2D reads:

∂θ(x, z, t)
∂t

= [p(I)− l] θ(x, z, t)− v ·∇θ(x, z, t) + D∇2θ(x, z, t), (4.25)

with v = vẑ, where ẑ is the unitary vector pointing downwards in the vertical
direction. We solve equation 4.25 through numerical simulations starting from a
homogeneous θ field, in the same manner as equation 4.20 and, since dynamics are
independent of the horizontal direction x, we expect the same results. In addition to
the previous vertical boundary conditions, we chose periodic boundary conditions
for the horizontal direction.

Repeating the same process specified in the section for the 1D dynamics we again
computed vertical profiles and compared them to the previous results. For this,
we choose the highest and the lowest value of D in Fig. 4.9 and we present the
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comparison with the 1D results in Fig. 4.10. Results show good agreement, which
validates also the 2D code. In addition, it is clear that the chosen method for the 2D
numerical simulations produces much smoother profiles, which revealed essential
for the analysis of the spatial structure of the population density field in the presence
of a flow, as it will be shown in the next chapter.

FIGURE 4.10: Comparison of population density vertical profiles for
the 1D approach and the 2D approach. a) D = 0.1cm2 s−1, b) D =
10cm2 s−1; zmax = 20m in both cases. One can observe that curves in
the 1D case are more noisy due to the stochastic way of calculating

diffusion in the methodology utilized for the 1D simulations.

In this chapter I described the numerical methodology utilised during this thesis
to solve the advection-reaction-diffusion equation representing the phytoplankton
dynamics vertical model. First I introduced the way of implementing advection
through a Lagrangian scheme. Then I explained two different ways of implementing
diffusion, the first through stochastic kicks and the second through spatial finite
differences. The second method proved more reliable for the production of smooth
scalar fields, necessary for the scalar spatial analysis that will be presented in the
following study. I finished the chapter with a review of the 1D model [45] that served
as basis for the work in this thesis, there I also validated the solution provided by
numerical methods I presented previously through results comparison, both for 1D
and 2D. Now that I established that the chosen numerical methods are appropriate
for the presented problem, I will present an extension to the study last shown in this
chapter [45] in the next chapter.

.
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Chapter 5

Effects of large-scale advection and
small-scale turbulent diffusion on
vertical phytoplankton dynamics

5.1 Introduction

In this chapter we present a study of the different transport mechanisms that can
affect phytoplankton growth and spatial distribution. The chapter is organized as
follows: In the three forthcoming sections we will discuss the same biological model
presented in Chapter 4 but with the inclusion of a kinematic flow field of different
degrees of complexity [86, 27]. This has the objective of investigating both the im-
pact of different scale transport mechanisms on the modelling of turbulence, as well
as the influence of large scale advective coherent structures in the previous purely
turbulent diffusive problem.

Therefore the three upcoming sections will refer to a stationary (Sec. 5.2) flow
case, a time-dependent (Sec. 5.3) flow case and a multiscale (Sec. 5.4) flow case.
These cases are based on a flow configuration with two large scale vortices, that will
be better explained later on, and are respectively characterized by a case where only
the stationary coherent structures (vortices) are present, a case where these structure
are able to oscillate horizontally with time, and a case where we study the men-
tioned oscillating structures with the addition of smaller scale structures (in space),
which are able to oscillate horizontally but also vertically. These worked as an ide-
alized model of flow circulation structures that are seen both in the ocean and lakes
such as the Langmuir circulation and winter convection [19, 14]. With this study
we aim at contributing to a better understanding of the modelling of phytoplankton
vertical dynamics and the importance of the representation of different transport
mechanisms. This improves previous studies where the quantities of interest were
estimated by models that accounted only for turbulence by turbulent diffusivity [50,
6].

5.2 Steady Large-Scale Flow

5.2.1 Introduction

Studies discussing the influence of turbulence and horizontal advection over plank-
ton cycles, patchiness and survival through modelling have shown that advection
has considerable impact over the population evolution and distribution [87, 88].
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Moreover both simulations through Lagrangian tracers transport [35] and large-
eddy simulations (LES) [56] have obtained success in replicating experimental and
remote sensing data with the aid of proper meteorological modelling. A common
feature of the upper ocean is that many buoyancy/wind driven currents such as
Langmuir circulation and convection can be crudely approximated by cellular flow
motions [19], providing a valuable simplification on the study of the general impact
of these currents on phytoplankton populations. With this in mind, in this section
we implement a kinematic flow-field model over the base 2D model described in the
past section.

5.2.2 Phytoplankton dynamics in a Flow Field

Beginning from equation 4.25 we include the flow-field mathematical form inside
the velocity term v, meaning now that advection is realized by a 2D incompressible
flowu = (ux, uz) and thus v = u+ vsinkẑ. More precisely, in this section we consider
advection by a prescribed cellular flow, which on the following sections is intended
to model the presence of eddy fluid motions on different scales, but in this sections
is studied solely for its large scale properties. The velocity field is then obtained as
u =

(
−∂zΨst

L , ∂xΨst
L
)

from a streamfunction that is written as:

Ψst
L (x, z) = −U

k
sin(kx) sin(kz), (5.1)

where the superscript and subscript in Ψst
L (x, z) represent respectively the station-

ary/steady (no time dependency) nature of the flow, and the large scale representa-
tion. This is done to better separate the flow from this study from the ones from the
remaining studies since they will be directly compared. Also k = 2π/Lx = π/Lz,
where Lx and Lz refer respectively to the horizontal and vertical dimensions of the
system and U will be referred to as the flow’s velocity. The plotted streamfunction
can be assessed in Fig. 5.1. Furthermore, in this study and in the remaining ones
in this chapter Lx = 2Lz as to maintain the two large-scale vortices configuration
studied here. Additionally we consider a depth for which the turbulence window
exists for the no-flow system (Lz ≥ 60 m), as documented in [45], and we fix the
turbulent diffusivity to a value that is intermediate between the minimum and max-
imum critical ones for blooming. Due to the computational cost of simulations in
larger spatial domains, we choose a depth value close to the minimum possible one,
namely Lz = 60 m.

A relevant feature of the original model is the existence of a turbulence window
allowing for phytoplankton bloom, for large enough system depths. As cited in
chapter 3, determining an analytical expressions for the critical conditions for popu-
lation survival (i.e. blooming) or extinction is not an easy task, even in such a simple
model. This difficulty is due to the heterogeneity of the environment and is common
to different population dynamics’ models (see, e.g., [89, 66, 90] for other 1D systems).
Adopting some simplifying assumptions, it is possible to obtain an approximate es-
timate of the minimum turbulent diffusivity (the lower bound of the turbulence win-
dow) required to compensate the sinking of phytoplankton, and hence to let the pop-
ulation survive [91, 54, 89, 45]. Nevertheless, for the maximum turbulent diffusivity
(the upper bound of the window), beyond which the population cannot outgrow the
turbulent mixing rate to sustain the bloom in the upper part of the water column, no
simple analytical expression is known [6, 45]. Hence we focus on the upper bound
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FIGURE 5.1: Streamlines of the steady large-scale flow. The color bar
|u(x, z)|/U represents the flow’s velocity absolute value normalized

by its maximum value.

of the turbulence window (taking D ≤ 20 cm2 s−1), for which numerical simulations
reveal more useful.

5.2.3 Effects of Steady Large-Scale Advection

Starting from a homogeneous θ field initial condition we begin our investigation
by varying the flow intensity U in a broad range to examine possible changes of
behavior due to advection by the coherent flow. We started by measuring the 2D
total biomass (per unit of length) Ptot,

Ptot(t) =
∫ Lx

0

∫ Lz

0
θ(x, z, t)dzdx = LxLz〈θ〉(t). (5.2)

where 〈θ〉(t) is the average biomass density. In Fig. 5.2 we first notice that the pres-
ence of the flow field monotonically hinders population growth proportionally to
its intensity. We also notice that simulations did not achieve a stationary converged
values (as in the previous no-flow simulations) for Ptot at reasonable times, with the
exception of the weakest flow intensity U = 0.493m/h.

Moving on we decided to base our measurements on the per-capita growth rate (see,
e.g., [49]):

rp(t) =
1
〈θ〉

∂〈θ〉
∂t

, (5.3)

This was possible for the reason that after an initial transient, the latter quantity
attained a statistically constant value rp, corresponding to exponential growth (rp >
0) or decay (rp < 0) in the early regime before the onset of nonlinear dynamical
effects (due to self-shading). Note that we also use rp to represent time averages
of rp(t) over the entire simulation (this was useful in the time dependent flow cases
from next sections), in simulations of duration T such time average can be expressed
as:

rp =
1
T

ln
(
〈θ〉(T)
〈θ〉(0)

)
. (5.4)
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FIGURE 5.2: Ptot dynamics for D = 10cm2s−1, Lz = 60 m and multiple
values of U (log-scale on the vertical axis).

In Fig. 5.3 we expose the spatial influence of the flow-field for six different cases,
in the first column we have a) no-flow, b) U = 1.24m/h and c) U = 4.93m/h. The
first shows the dynamics of the base model where population accumulates in the
top layer of the system where growth rates surpass sinking and mixing rates. In b)
we see that the spatial effect of the flow is to accumulate population as an elongated
central filament in the convergence area of the rolls. In c) we see that as U increases
the density field appears more well mixed, filling the outskirt zone of the flow’s vor-
tices, this was a no-bloom case (we will later see that the bloom/no bloom transition
is controlled by the advection-reaction time scale ratio). So for the majority of bloom
cases the snapshots of the density field are similar to the b) case, although diffusivity
plays a role on this as well. In d), e) and f) we expose the effect of increasing D on
cases with the same U as b); from top to bottom on the second column the result of
increasing D is shown as more homogenized fields that resemble more the no-flow
case as D increases. One can say that diffusivity partially counterbalances the flow’s
effect in this sense.

Before showcasing the rp behavior for the different study cases, we investigate
the influence of the initial condition on the dynamics we saw in Fig. 5.2. In the origi-
nal base model, results are shown to converge to the same quantities independently
of the initial condition as they depend solely on the biological parameters, D and
the MLD [45]. In Fig. 5.4 results were obtained using a localized initial condition
corresponding to a small patch of population density located in the central-upper
part of the domain (close to z = 0, x = Lx/2), here we verified that the overall phe-
nomenology stays unchanged when considering a uniformly spread initial popula-
tion (Fig. 5.2). The coherent flow reduces the growth of 〈θ〉(t) and eventually causes
an extinction when its intensity is large enough. The growing or decaying temporal
behavior is already established after one large eddy turnover time (here estimated as
2πLz/U, approximating streamlines with perfectly circular orbits of radius Lz, see
vertical lines in Fig. 5.4. Indeed, after this time interval, the initial population den-
sity results to be either increased or decreased, depending on the magnitude of U.
At later times, the total population appears to grow exponentially at a constant rate,
as it is also noticeable in Fig. 5.2. Results then show that the critical flow intensity U
responsible for turning a bloom case into a no-bloom case is measurable with good
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FIGURE 5.3: Instantaneous normalized population density fields
θ(x, z, t∗)/〈θ〉 at a fixed instant of time t∗ = 640h, where 〈θ〉 stands
for the spatial average. The white lines are the isolines θ/〈θ〉 = 1,
black arrows represent the stream function of Eq. 5.1 and t∗ is in the
regime of stationary per-capita growth rate (rp(t) = rp). In a), b) and
c) U = (0, 1.24, 4.93) m h−1 (respectively) and D = 5 cm2 s−1. In d),
e) and f) D = (10, 15, 20) cm2 s−1 (respectively) and U = 1.24 m h−1.

accuracy.

In order to characterize the bloom to no-bloom transition induced by advection,
we measure the per-capita growth rate rp(t) (see Eq. (5.3)). This quantity, normalized
by the intrinsic total (birth minus death) growth rate at the surface rb = Iin/(H +
Iin)pmax − l, versus time normalized by Lz/U is shown in Fig. 5.5a. Here, a uniform
initial population density was chosen. As it can be seen, at large enough times, for
all U, rp(t) approaches an asymptotic constant value rp, confirming the exponential
character of growth or decay of 〈θ〉(t). Furthermore, the large-time limit rp decreases
from positive values (for low U) to negative ones (at larger U), therefore allowing
a robust estimate of the critical flow intensity at the transition. We remark that we
could not detect a transition to a no-bloom regime for D < 5 cm2 s−1, even with
very large values of U, as it can be seen in Fig. 5.5b. There we show that for D =
1 cm2 s−1 the dynamics take longer to achieve a stationary growth regime, a proof
that higher diffusivity simulations homogenize quicker, achieving such state much
faster. Nevertheless it is clear that increasing the flow speed U in this case only
inhibit growth up to a certain value, after which rp/rb tends to converge to similar
values. With this in mind we proceed to run multiple simulations, again, starting
from a homogeneously spread θ initial condition and Lz = 60 m, with 5 cm2 s−1 ≤
D ≤ 20 cm2 s−1 and multiple U values near the transition zone as in Fig. 5.5.
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FIGURE 5.4: Average biomass density 〈θ〉(t), on a logarithmic scale,
versus time, for D = 20 cm2/s, Lz = 60 m and different values of the
advection intensity U in the steady-flow case. Vertical lines indicate

t = 2πLz/U, the time of one flow roll revolution.

As first indicated in [92], where horizontal patchiness was numerically studied
adopting an NPZ (for nutrient-phytoplankton-zooplankton) model in a turbulent
flow, we expect that also in the present case the dynamics are primarily controlled by
the interplay between advection and reaction mechanisms. To quantify the relative
weight of the latter, we consider the ratio of the biological time scale r−1

b to the flow
time scale Lz/U, i.e.:

γ =
U

rbLz
. (5.5)

Figure 5.6 reports the (asymptotic) per-capita growth rate as a function of γ. From
this plot, one can clearly see that the survival/extinction transition caused by the
flow occurs for γ = O(1), in correspondence with rp turning from positive to neg-
ative. Essentially, a bloom can take place (rp > 0) when the biological growth is
faster than the advective transport (γ < 1) to the less favorable deeper part of the
domain. The proximity of the data obtained with different values of D highlights
the generality of this mechanism and confirms the weak effect of the turbulent dif-
fusivity in this picture. In Fig. 5.7 we display the values for the transition velocity
Utransition from bloom to no-bloom for multiple D, taken from the same simulations
as in Fig. 5.6. There it is easier to verify the previous statement as it is clear that
the flow velocity threshold value, that triggers the transition, changes very little as
we increase D, even though it increases monotonically. So for the range of D val-
ues studied we found that both the bloom/no-bloom transition advection intensity
Utransition (Fig. 5.7) and the spatial distribution of the population density (Fig. 5.3)
were only weakly affected by varying the diffusivity. This leads us to search for a
better explanation on how to compare the slight changes reported on the density
spatial distribution of different D and γ cases, and their relation to the transition
bloom/no-bloom.
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FIGURE 5.5: Population per-capita growth rate rp(t), normalized by
the intrinsic net growth rate rb, as a function of time, normalized by
the advective time scale Lz/U of the steady-flow case, for various
values of U and Lz = 60 m. a) D = 20 cm2 s−1 and b) D = 1 cm2 s−1.

5.2.4 The Filament Model

Further insight on the mentioned topic comes from inspection of the spatial struc-
ture of the population density field θ(x, z, t)/〈θ〉 at a given time (Fig. 5.3). While
in the absence of flow the population is uniformly distributed along the horizontal
and decreases with depth, nonzero advection causes an increase of θ in the down-
welling region (at x = Lz). This feature gets accentuated by increasing U, with the
population accumulating in thinner and thinner filaments outside vortices, and par-
ticularly in the one located at x = Lz. Such a behavior points to the relevance of
strain-dominated flow regions for the spatial organization of the population and the
formation of fine structures. In our flow, as it can also be easily seen in Fig. 5.3 (b to
f panels), the latter regions are close to the hyperbolic points corresponding to the
vertices of the squares of side Lz containing the rolls. Among such points, clearly,
a prominent role is played by the point (x, z) = (Lx/2, 0), where the flow locally
compresses the scalar field θ along the x-axis (and stretches it in the z-direction), in
the region of highest growth rate (i.e. at the surface).
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FIGURE 5.6: Asymptotic per-capita growth rate rp, normalized by the
intrinsic net growth rate rb, versus the ratio of reactive to advective

time scales γ, in the steady-flow case, for different values of D.
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FIGURE 5.7: Measurements of the transition flow intensity Utransition
(from bloom to no-bloom) for different D obtained from the simula-

tions of Fig. 5.6.

Relying on the above picture, a useful interpretation of the dynamics observed
in our simulations is offered by an appropriate adaptation of the plankton filament
model [93], originally introduced to describe the formation of fine structures in 2D
flows. To apply this reasoning, we neglect the sinking speed, which is consider-
ably smaller than the advecting velocity close to the transition to extinction, as well
as self-shading, as close to an extinction the population density is low everywhere
and because our main point of interest is at the surface. Under these hypotheses,
Eq. (4.25) (with the flow) becomes:

∂tθ + u ·∇θ =

(
Iin

H + Iin
pmax e−κbgz − l

)
θ + D∇2θ. (5.6)

Since, as argued above, we are interested in the dynamics at the surface, close
to the hyperbolic point at x = Lz, the net growth rate will be rb. Moreover, we can
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write the population density as θ(x, z, t) = θback exp rbt + θ′(x, z, t), where θback is
the background population density and θ′ represents the perturbation determined
by the flow. Using this decomposition, it is not difficult to see that the equation for
θ′ dynamics is the same as Eq. (5.6). Following [93], we can then consider only the
1D dynamics for the population fluctuation in the compressing (or cross-filament)
direction, because along the filament θ′ should vary less due to the stretching op-
erated by the flow. In this region, the flow can be locally approximated as u =
(−λ(x− Lx/2), λz), where λ = kU ≈ U/Lz is the strain rate. Therefore, from
Eq. (5.6), for the cross-filament dynamics one has:

∂tθ
′ − λ (x− Lx/2) ∂xθ′ = rbθ′ + D∂2

xθ′. (5.7)

The solution of the above equation is (see also [93]):

θ′(x, t) = θ′0 e−
(x−Lx/2)2λ

2D e(rb−λ)t, (5.8)

with θ′0 a constant. From this expression we can see that, in the x-direction, the popu-
lation density field keeps the same (Gaussian) shape at different times. The filament
width σ =

√
D/λ does not depend on time and is only determined by the physical

parameters associated with fluid transport. As the flow intensity increases, so does
the strain rate, which explains the thinning of filaments and the more important
localization of the population for higher values of U. Growth or decay over time,
instead, depends on whether rb is larger or smaller than λ, respectively. This simple
model thus provides theoretical support to the survival/extinction criterion based
on the ratio between the biological and flow time scales, γ.

The above model accounts for the dynamics at the surface and, strictly speaking,
it is only there that its predictions should apply. If the population cannot survive at
the surface, however, it should not deeper below either due to the reduced growth
rate, which makes the conclusion appear more general. Considering that, differ-
ently from the 1D filament case, in our fully 2D model both the strain rate and the
growth rate vary with depth, and that sinking and self-shading might also play a
minor role, the comparison between our previous estimate of the control parameter,
γ = U/(Lz rb), and that from Eq. (5.8), λ/rb, seems to us reasonable also from a
quantitative point of view. Regarding the dependence on the vertical coordinate, we
further note that the biological growth rate monotonously decays with z, and that
the strain rate, in absolute value, decreases until half the total depth, before growing
again in the lower half of the domain, but now acting in the opposite way (stretch-
ing instead of compressing the scalar in the x-direction). The combination of these
effects, impacting both the width and the intensity of the filament, can then explain,
in a qualitative way, the tendency, visible in panels b), d), e) and f) of Fig. 5.3, of
this localized downwelling structure to fade around z = Lz/2. Such effect can be
better appraised in Fig. 5.8, there we show multiple population density horizon-
tal profiles θ(x, z∗, t∗) normalized by their mean value 〈θ(x, z∗, t∗)〉, for multiple D
and U = 1.24m/h (these are the same cases exposed in Fig. 5.3 b, d, e and f). It is
clear that, as we approach the flow’s maximum vertical speed region (z = Lz/2), the
profiles present higher population density concentration at x = Lx/2, and then the
filament configuration tends to fade as profiles homogenize for z > Lz/2. Here we
also notice the role of diffusivity in counterbalancing the filament concentration by
promoting more homogeneous horizontal profiles in the higher diffusivity cases.



68
Chapter 5. Effects of large-scale advection and small-scale turbulent diffusion on

vertical phytoplankton dynamics

FIGURE 5.8: Instantaneous normalized population density horizon-
tal profiles θ(x, z∗, t∗)/〈θ(x, z∗, t∗)〉 at a fixed instant of time t∗ =
640h. In (a), (b) (c) and (d) D = (5, 10, 15, 20) cm2 s−1 (respectively)

and U = 1.24 m h−1.

To test the validity of the above argument for our system, we examined the hor-
izontal profiles of population density at z = 0 from simulations with different val-
ues of D and U, once rp(t) converged to its asymptotic value rp. We found that
such profiles are to good extent time independent and that their shape is reason-
ably described by a Gaussian function. In Fig. 5.9a we show an example of the
time invariance of these profiles after the stationary rp regime is achieved, there for
D = 20cm2s−1 and U = 1.01mh−1 we see that the normalized population density
horizontal profiles remain unaltered for multiple non-dimensional times. After ver-
ifying the stationary nature of these profiles, we decided to proceed by performing
a fit through a Gaussian function in a subregion centered around x = Lz of each
profile. We defined a window of x = [50; 70]m for the surface (z = 0) population
density horizontal profiles data and then we estimated the standard deviation of the
Gaussian curves fitted to the mentioned data by a non-linear least squares method
(see Fig. 5.9b for an example). These provided a measure of the filaments widths.

The results are compared to the theoretical prediction in Fig. 5.10, which indicates
a strong correlation between the numerical and theoretical estimations of σ. As one
can observe in the figure, we actually detect a tendency of the numerically estimated
σ to grow slightly faster than the theoretical one. However, such a small difference
seems quite reasonable, taking into account the assumptions made for the theoretical
prediction with respect to the details of our numerical setup. We further mention
that multiple fitting intervals for the horizontal profiles were tried apart from the
final choice of x = (50-70)m ( i.e. x = (0-120)m, (20-100)m and (40-80)m), all present
in Fig. 5.9b.
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FIGURE 5.9: (a) Horizontal profiles of surface population density at
different times (in non-dimensional units), normalized by their av-
erage values, θ(x, z = 0, t)/〈θ(x, z = 0, t), with U = 1.001 m/h and
D = 20 cm2 s−2. (b) Gaussian fitting examples on the data of (a) (here

we use θ′ = θ − θbackerbt) for different interval slices of the profile.

It is worth remarking that at the bottom, due to the similar structure of the deep
and surface flow, the spatial organization of the reactive scalar parallels that found
at the surface but with a more homogeneous distribution as seen in Fig. 5.8. An
analogue reasoning in the straining regions close to x = 0 or x = 2Lz would always
give extinction locally, however, as the prefactor in the exponent of the exponential
involving time would be −l − λ < 0, assuming that the growth rate is negligibly
small there. Hence, the relatively high values of population density at the bottom
appear to be due to fluid transport (including sinking) only and the zero-flux bound-
ary conditions.
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FIGURE 5.10: Filament width, estimated from a fit (in the interval
50 m < x < 70 m) with a Gaussian function of horizontal profiles of
population density from simulations with different values of D and
U, versus its theoretical prediction σ =

√
D/(kU), with k = π/Lz.

The dashed black line corresponds to σnumerical = 0.085 + 1.276σ.

Finally, according to Eq. (5.8), in the limit of very small diffusivity, the filament
width approaches zero while its density amplitude grows exponentially. Conse-
quently, it becomes more and more difficult to observe an advection-driven extinc-
tion. From a practical point of view this is essentially impossible in numerical simu-
lations as it would require an infinite spatial resolution in order to resolve the cross-
filament structure. These are likely the reasons why we could not detect the transi-
tion to no-bloom at sufficiently small values of D.

5.2.5 Summary

In this section we expanded the 2D phytoplankton dynamics model presented in
the past section by including explicit flow field advection in the form of two large
scale vortical coherent structures. The addition of such structures into the previously
purely diffusive/sinking transport was shown to inhibit growth proportionally to
the flow speed of the flow rolls. The effect presented by these structures was to
monotonically decreased per capita growth rates to the point where phytoplankton
bloom cases (in the no-flow original dynamics) could be turned into no bloom cases
for intense enough flows (for multiple D in the range 5cm2s−1 ≤ D ≤ 20cm2s−1).
The bloom/no bloom transition results were quantified and presented in the form of
the reactive to advective time scales ratio γ, exhibiting that the transition occurred at
γ = O(1) independently of the choice of D, as the diffusivity showed weak influence
over the transition dynamics, mostly dominated by γ.

The influence of the flow structures was also assessed spatially, first through sim-
ulation snapshots and then through horizontal population density profiles. With
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these it was possible to realize that the presence of the flow field triggered the for-
mation of a persistent vertically elongated central plankton filament, localized on
the separatrix between the flow rolls. By means of Gaussian fits we were able to
measure the filament widths and compare them to a theory presented by Martin
[93]. Considering that the original theory accounted for 1D dynamics without sink-
ing, our numerical results presented a good match. This unveiled a more robust
explanation for why the bloom/no bloom transition is controlled by γ, presenting
also an argument for why the bloom/no bloom transition could not be measured for
smaller diffusivities (i.e. D < 5cm2s−1). This now set foot for the next stage of the
work which was to further add complexity to the flow field, in hopes to increase the
realism of the simulations.

5.3 Unsteady Large-Scale Flow

Here we extend our large scale advection study over the phytoplankton light-
limited growth dynamics by including explicit time dependency over the large-
scale advective transport. This is done by allowing for lateral oscillations of the
flow pattern considered in the previous section, which is enough to produce chaotic
Lagrangian trajectories of fluid particles [94, 10]. Numerical studies of plankton
predator-prey dynamics under chaotic flows [55, 95] shown that when time scales
associated to fluid stirring become slower than the ones associated to biological
growth a phytoplankton bloom is sustained. Even though conditions are fairly dif-
ferent from our study (multiple biological species, excitability) it is interesting that
we have shown dependency on the equivalent ratio (for our study) for light-limited
dynamics in the previous section (steady large-scale flow). Consequently, in this sec-
tion we hope to investigate if the phenomena presented in the last section matches
what is observed when chaotic trajectories are added to the advective transport or if
substantial changes are observed.

5.3.1 Adding Flow Time Dependency

Here we follow the same procedure of last section for the inclusion of the large-
scale incompressible flow-field into the base model 2D equations. The difference
here is that the prescribed cellular flow of equation 5.1 now operates under periodic
lateral oscillations, vertical oscillations are not accounted for here to respect the no-
flow boundary conditions of equation 4.23. Hence the velocity field is still described
by a streamfunction as u = (−∂zΨL, ∂xΨL), but now it represents a periodic flow
field:

ΨL(x, z, t) = −U
k

sin {k[x− s sin(ω1t)]} sin(kz), (5.9)

where one can clearly see that when t = 0 we have the same streamfunction of
equation 5.1, so the same visualization as in Fig. 5.1, whereas when t > 0 the flow
rolls start oscillating with amplitude and pulsation respectively set to s = Lz/5 and
ω = πU/Lz, corresponding to a fraction of the roll size and a period comparable to
the advective time scale Lz/U, a choice that has been shown to be optimal to enhance
chaotic diffusion [96, 94, 86, 97]. Note that we took away the superscript of Ψst

L as to
differentiate the streamfunction of this section with the one from the last section. A
visualisation of the flow under the periodical oscillations can be seen in Fig. 5.11.
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5.3.2 Steady vs Time-Dependent Flow Comparison

In order to compare the results of the stationary flow with the ones from this sec-
tion we repeat the analysis made for the first. In Fig. 5.11 we show two snapshots
of the population field at different times in the asymptotic per capita growth rate
regime. These visualizations suggest that the dynamics are fairly similar to the sta-
tionary flow case although horizontal symmetry is now broken due to the lateral
oscillations of the flow. We can notice that the central surface plankton patch re-
mains, but now it is subject to strain in a region that oscillates horizontally as the
flow varies with time.

FIGURE 5.11: Instantaneous population density field, normalized by
its spatial average, in the unsteady-flow case, θ(x, z, t)/〈θ〉 for U =
1.4m/h, D = 5 cm2 s−1, at two different times in panels (a) and (b).
The white line is the isoline θ/〈θ〉 = 1 and the black lines are the

streamlines of the flow field at the considered instants of time.

In Sec. 5.2 we showed that Ptot did not achieve a stationary value at feasible sim-
ulation times like in the purely diffusive transport cases, nevertheless, the per capita
growth rate rp(t) did. Consequently we repeat the same measurements done in Fig.
5.5a, for the same U cases and D = 20cm2s−1 and expose them in Fig. 5.12. There
we see that for all cases rp(t)/rb reaches a statistically stationary value characterised
by small oscillations around a constant value. These oscillations have periodicity
proportional to Lz/U and tend to decrease in amplitude as U increases, they are
clearly a result of the lateral oscillations present in the unsteady flow. The same
type of oscillations around a stationary value were reported on numerical simula-
tions for phytoplankton predator-prey dynamics on open chaotic flows in the form
of biomass measurements [55]. That said, we can see that the overall effect of the
flow over the per capita growth rates is still quite similar to the stationary flow case.
Additionally we do not achieve extinction cases for D < 5cm2s−1.
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The critical advection intensity Utransition determining the bloom/no bloom tran-
sition is found to be slightly higher in the present time-dependent case for all D.
The increase with respect to the previous, steady, case depends on the value of the
small-scale diffusivity (about 6% for D = 20 cm2 s−1 and 18% for D = 10 cm2 s−1),
but the dependency of Utransition on D remains weak. Considering that the explicit
time dependency of Ψ in Eq. (5.9) now gives rise to chaotic diffusion of Lagrangian
fluid particles, and hence to an effective diffusivity larger than D, such an increase
of Utransition seems to us reasonable, from a qualitative point of view.

FIGURE 5.12: Population per-capita growth rate rp(t), normalized
by the intrinsic net growth rate rb, as a function of time, normalized
by the advective time scale Lz/U of the steady-flow case, for various

values of U, D = 20 cm2 s−1 and Lz = 60 m.

A more quantitative assessment of the comparison between the unsteady and
steady flow cases is illustrated in Fig. 5.13. Here we show r̄p/rb of the steady flow
case as a function of r̄p/rb in the unsteady case, for several values of U and D. As
exposed previously, for this comparison we use r̄p (the time average of rp(t) over the
entire simulations) rather than rp (the asymptotic stationary value achieved by rp(t)
in the stationary flow simulations) since we have shown in Fig. 5.12 that the growth
rate rp(t) now oscillates around a stationary value. Finally, Fig. 5.13 illustrates that
over the range of values of D and U explored, the two quantities are almost perfectly
correlated, corroborating the idea that the lateral oscillations do not produce any
major modifications. The analysis indicates that time dependency of such large scale
flow does not have a major impact on the resulting biological dynamics.

5.3.3 Summary

We extended our previous study with advection by two large scale vortex struc-
tures by including time dependency in their dynamics. This was made by allowing
the flow rolls to oscillate in the horizontal direction. Results showed that the oscil-
lation was reflected in the per capita growth rate dynamics as, in comparison with
the past study case, the unsteady flow simulations presented rp(t) curves that still
oscillated around a stationary value after achieving an asymptotic regime (as seen



74
Chapter 5. Effects of large-scale advection and small-scale turbulent diffusion on

vertical phytoplankton dynamics

FIGURE 5.13: Time averaged normalized per-capita growth rate
r̄p/rb of the steady-flow case vs. the corresponding quantity from
the unsteady-flow case. In here we see several values of U and D
are considered. Fitting the data corresponding to a given value of D
[(5, 10, 15, 20) cm2 s−1] with a linear function, we obtain slopes that
are always quite close to 1 (slopes between 0.84 and 0.93). The black

dashed line has unitary slope.

in Fig. 5.12). Both flow study cases displayed were characterized by their large scale
vortex structures dominating transport dynamics as their weak growth dependency
on D indicates. In addition, their dynamics were quite similar, both in terms of
quantifiers (see Fig. 5.13) and spatial distribution (see Fig. 5.11), showcasing that
the addition of time dependency to the flow in the present study case did not sub-
stantially alter the large-scale influence over the biological dynamics in comparison
to Sec. 5.2. Hence, we decided to explore the inclusion of additional flow structures
into the transport dynamics of the simulations with the purpose of understanding if
the picture reflected by these results would remain unaltered.

5.4 Multiscale Flow

5.4.1 Introduction

As specified through this chapter, the assumption of past phytoplankton growth
models [54, 7, 45, 59, 6] was that the multi-scale characteristics of turbulence could be
approximated by a diffusion process in the form of a turbulent diffusivity term D. In
sections 5.2 and 5.3 of this chapter we investigated the influence of an extra element
to this modelling, this was the inclusion of the mentioned large scale structures into
the advective transport. In this section we implement the last step of this chapter’s
goal which was to fully understand the influence of turbulent multiscale transport
into the assumptions of our dummy turbulence model.
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The kinematic model behind our multiscale flow field has already been utilized in
phytoplankton [98] and Lagrangian tracer dynamics [97], mostly to study the trans-
port of these by submesoscale vortices on the ocean surface. In the latter it was
shown that the method is quite accurate in comparison to real drifter trajectories
measurements. Nonetheless, to our knowledge, the application of this technique to
light limited phytoplankton growth models is new. Therefore we present our model
with the final form of the stream function Ψ, representative of our flow field, and
make a series of comparative studies with the objective of disclosing the importance
of the inclusion of multiple smaller scales vortical structures into the turbulence dy-
namics modelling so far presented.

5.4.2 Model

Here again we depart from equation 4.25 with the inclusion of the flow velocity
term to the advection part as u = (−∂zΨ, ∂xΨ). Since in this section the flow field
is time dependent as in Sec. 5.3 we take advantage of the streamfunction defined by
equation 5.9 as the first part of our stream function:

Ψ(x, z, t) = ΨL(x, z, t) + Ψs(x, z, t), (5.10)

where

Ψs(x, z, t) = −
nk

∑
i=2

Ui

ki
sin {ki[x− si sin(ωit)]}

× sin{ki[z− β(z)si sin(ωit)]}.
(5.11)

Here ΨL represents the large scale persistent structure that is allowed to oscillate
in the horizontal, as in Sec. 5.3, and Ψs represents nk smaller scale vortices that
oscillate both in the horizontal and in the vertical. In Eq. 5.11, nk is the number
of modes selected, Li = L1η1−i is the typical length scale of mode i, with η > 1 a
scale separation factor and L1 the largest flow scale, ki = 2π/Li the corresponding
wavenumber, and Ui the typical flow intensity at scale Li. Even though equation
5.9 presents no indexes, it is equivalent to the first mode, e.g. i = 1 (hence why the
sum in equation 5.11 starts at i = 2). In addition, we recall that the first mode is
not allowed to oscillate in the vertical (whereas the subsequent are), oscillation have
amplitudes si = Li/10 and pulsations ωi = πUi/Li (a choice that is analogous to
that of Sec. 5.3, considering that L1 = Lx). It is important to clarify that we will use
U to refer to the flow velocity in spite that it describes only the first mode amplitude
(i.e. U = U1). We choose to account for the explicit time dependency of the flow
field in the form of oscillations with amplitudes si and pulsations ωi, parallel to the
notations of Sec. 5.3. To respect the no-flux boundary conditions in Eq. 4.23 we use
the function:

β(z) =
1
2

[
tanh

(
z− z1

ξ

)
− tanh

(
z− z2

ξ

)]
, (5.12)

to dump vertical oscillations near the vertical boundaries and therefore guar-
antee uz = 0 when z = 0, Lz. Parameters values z1 = 2 m, z2 = Lz − z1 and
ξ = 1 m were shown to be adequate for this purpose, the use of such artifact was al-
ready proposed for chemical reaction simulations in closed domains [99]. We choose
a number of modes that allows spanning the scale range going from the domain
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size L1 = Lx = 120 m to the smallest length scale Lnk = 1 m, corresponding to
≈ 1/(5κbg), where κ−1

bg is related to the growth dynamics, as it is the typical length
over which light is absorbed by the medium. Such small length scale also roughly
corresponds to the scale that can be estimated from Richardson scaling of diffusiv-
ity with length, ` ∼ (2/3)3/4ε−1/4D(`)3/4 [86, 100], using the values of diffusivity
explored in the previous sections, 5 cm2 s−1 < D < 20 cm2 s−1, and values of the
kinetic energy dissipation rate ε ≈ (10−8 − 10−6) m2 s−3 that appear reasonable for
oceanic turbulence [101, 102, 51]. We then set the scale separation factor to η = 2
and the number of modes to nk = 7. Finally, we assume a Kolmogorov scaling of
velocity, Ui = U1(Li/L1)

1/3.

A visualization of the of the multiscale flow field streamlines is available at Fig.
5.14, the isocontours of the streamfunction at the same time (black lines in the fig-
ure), allow to appreciate the presence of eddies of different sizes and the more dis-
ordered spatial structure of the velocity field. There we also display a simulation
where, starting from a localized phytoplankton patch in the top central area of the
system, we let the system evolve until t∗ = 845h (in the asymptotic rp regime) for
U = 1.01m/h and D = 0.1cm2s−1. Both the initial condition and the small diffusiv-
ity setup are chosen for exposition, to allow the reactive scalar to separate into the
multiscale streamlines, exhibiting the smaller scale structures of the flow. Notice that
even in such a setup the evolved system present, to some extent, the localized cen-
tral patch configuration reminiscent of the past sections (Figs. 5.3 and 5.11), although
we can clearly see the scalar being better spread by the smaller scale modes of the
flow. We expose this snapshot in here and not as a result because, maintaining the
coherence of past sections, we only obtain quantifiers for 5cm2s−1 ≤ D ≤ 20cm2s−1.

FIGURE 5.14: Instantaneous population density field, normalized
by its spatial average, in the multiscale flow case, θ(x, z, t)/〈θ〉 for
U = 1.001m/h, D = 0.1 cm2 s−1, at t∗ = 845h. The initial condition
was set as a uniform plankton patch in the central top area of the sim-
ulation box. The black lines are the streamlines of the flow field at the

considered instant of time according to Eq. 5.10.

5.4.3 Results

We start our results section with another snapshot of the population density field
in Fig. 5.15, for a higher diffusivity than what was presented in the model section,
D = 5cm2s−1 and U = 1.021m/h (streamlines isocontours in black). We see here that
in spite of the population density field distribution appearing more irregular than in
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the precedent flow cases (Fig. 5.3 and 5.11), a result of the smaller vortices present in
the flow field, the distribution of θ is more organized in here than in Fig. 5.14. In fact
the signature of the largest-scale flow is much more apparent here, particularly in
the surface θ patch at the center of the domain (x ' Lz = 60m), close to the surface.
This hinted us again that dynamics can be quite similar as they appear to remain
under preeminence of the large scale structures described by ΨL.

FIGURE 5.15: Instantaneous population density field, normalized by
its spatial average, θ(x, z, t)/〈θ〉, in the multiscale-flow case, for U =
1.021 m/h and D = 5 cm2 s−1, in the asymptotic regime rp(t) =
const. The white line is the isoline θ/〈θ〉 = 1 and the black lines are

the streamlines of the flow field at the considered instant of time.

We return to the per capita growth rate analysis in Fig. 5.16a where we expose the
same U, D cases as in the previous sections (Figs. 5.5 and 5.12). Here the dynamics
are quite clearly more chaotic than in the mentioned cases, we can see that growth
rate oscillation amplitudes increase considerably in relation to the unsteady flow
case, although their periods are still proportional to to Lz/U. Also one can question
weather r̄p is still a robust quantifier for these dynamics as we cannot spot as easily
as in the unsteady case whether rp(t) curves are oscillating around a constant value.
In Fig. 5.16b we take the case with the highest oscillation amplitude (U = 2.466)
from Fig. 5.16a and plot its total biomass dynamics vs. time (black), we then use
the first value of the curve as a base point and plot this value multiplied by exp(tr̄p)
with r̄p being extracted from Fig. 5.16a. The result shows that r̄p is still a robust
quantifier for describing the growth dynamics of the simulations.

Moreover we can also identify in Fig. 5.16a that r̄p dependence on U is still that
of monotonic decreasing function, as in Secs. 5.2 and 5.3. Consequently we per-
form the same type of comparison of the last section involving r̄p for the different
cases, so from the quantitative point of view, it is interesting to compare the asymp-
totic growth rate rp/rb measured in this multiscale setting and in the previous ones,
e.g. in the 1-mode unsteady-flow case. As it can be seen in Fig. 5.17, the estimates
from the two cases are still quite correlated, and diffusivity plays a rather weak role
(similarly to the previous comparison, reported in Fig. 5.13). Still we notice that in
Fig. 5.17, for small enough D, it is possible to observe that the multiscale estimate
of the growth rate rp tends to be slightly larger than its counterpart in the absence
of small eddies. We then argue that the latter flow features provide an effect that
partially compensates the deadly action of the large-scale coherent flow, but that is
only measurable for D ≤ 10cm2s−1.
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FIGURE 5.16: (a) Population per-capita growth rate rp(t), normalized
by the intrinsic net growth rate rb, as a function of time, normalized
by the advective time scale Lz/U of the multiscale flow case, for var-
ious values of U and D=20 cm2 s−1. (b) Total biomass curve vs. time
for U = 2.466m/h and D = 20cm2s−1 (in black), in red we see a curve
corresponding to the expression Ptot(t = 0)exp(r̄pt) where Ptot(t = 0)
corresponds to the first point of the black curve and r̄p to the time

averaged per capita growth rate extracted from the black curve.

To further investigate the impact of small-scale fluid motions, we also analyze ver-
tical profiles 〈θ〉x(z) of the phytoplankton distribution (similarly to what was done
in Sec. 4.4 and in [56, 50, 67]), obtained by averaging θ(x, z, t) over the horizontal
coordinate x at fixed instants of time. Such profiles, normalized by the correspond-
ing global spatial averages 〈θ〉, are shown in Fig. 5.18 for all the flow cases studied
(1-mode steady-flow, 1-mode oscillatory flow, multiscale time-dependent flow) at
common given times. Independently of the considered flow or value of D, their
shape is always characterized by a maximum at small, but finite, depth and a de-
crease deeper below the surface, plus a second inflection point close to the bottom
boundary. These features are typical for sinking phytoplankton species [45] (as dis-
cussed in Sec. 4.4), whereas non-sinking ones would display a maximum at the
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FIGURE 5.17: Time averaged normalized per-capita growth rate
r̄p/rb of the multiscale-flow case vs. the corresponding quantity
from the unsteady-flow case. In here several values of U and D are
considered. Fitting the data corresponding to a given value of D
[(5, 10, 15, 20) cm2 s−1] with a linear function we obtain slopes be-

tween 0.86 and 1.21. The black dashed line has unitary slope.

surface [7].

The similarity of the profiles obtained in different configurations (Fig. 5.18) points
to the dominance of advection by the large-scale coherent flow, as including its time
dependence or smaller scales does not alter the general picture substantially. Note,
however, that for sufficiently low D, the addition of small scales favors, to small but
measurable extent, a localization of the population close to the surface, akin to the
vertically non-homogeneous distribution typical of the no-flow case (see Fig. 5.3a)
and increased possibility of survival.

The importance of the large-scale flow can be better appreciated by inspecting
Fig. 5.19. Here, again for a common fixed time (tU1L−1

z = 10) in the asymptotic
growth-rate regime, we show the normalized vertical profiles 〈θ〉x/〈θ〉, for the small-
est and largest value of diffusivity used (D = 5 cm2 s−1 and 20 cm2 s−1 in panels (a)
and (b), respectively), for different flow types. Specifically, we examine the following
different combinations: Ψ = 0 (no flow), Ψ = Ψst

L (large-scale steady flow), Ψ = ΨL
(large-scale time-dependent flow), Ψ = ΨL + Ψs (multiscale time-dependent flow),
Ψ = Ψs (time-dependent flow without the large-scale contribution provided by ΨL,
according to equation 5.11). The last case was explicitly added to test the relevance
of the large-scale advection. It is apparent that whenever ΨL is present the popula-
tion gets homogenized in the vertical direction, with respect to the no-flow case. The
addition of time dependency and small scales to the flow turns out to play only a mi-
nor role, as the corresponding profiles are essentially indistinguishable from the one
obtained with only ΨL. When the latter contribution is removed and the flow only
possesses smaller scales, instead, the population distribution retrieves the vertically
non-homogeneous character typical of the Ψ = 0 case. In such a case, in fact, the



80
Chapter 5. Effects of large-scale advection and small-scale turbulent diffusion on

vertical phytoplankton dynamics

FIGURE 5.18: Vertical population density profiles 〈θ〉x, normalized
by the global spatial average 〈θ〉, for the different stream functions
considered, for D = 5 and 20 cm2 s−1. Panels a-d) correspond
to different instants of time, in the asymptotic growth-rate regime
rp(t) = const, as specified in the plot titles (in units of the advective

time scale Lz/U1).

vertical profile 〈θ〉x approaches the one obtained without flow, as it is particularly
evident in Fig. 5.19b (where D = 20 cm2 s−1). Finally, it seems to us that Fig. 5.19
summarizes in an effective way the main outcome of this work, meaning the out-
standing relevance of advection by the large-scale coherent flow, as the dominant
mechanism controlling phytoplankton dynamics in the present setting.

5.4.4 Summary

In the final section of this chapter we presented the last extension to our series
of flow field studies over the modelling of phytoplankton light-limited dynamics in
turbulent flows. This was carried out by adding smaller scale structures (vortices) to
the time dependent large-scale flow field previously presented in Sec. 5.3, this way
achieving a better representation of turbulence (as described by Richardson cascade,
discussed in chapter 2). In a qualitative way, simulation snapshots showed that the
increment of small scales to the flow field was reflected in the spatial spreading of the
population density θ as irregular distributions (not seen in the past studies presented
in this chapter) were achieved. Nonetheless, quantitative measurements displayed
in the form of the normalized average per-capita growth rates r̄p/rb exposed that
dynamics were quite similar to the past steady and unsteady flow field cases. The
overall phenomenology remained untouched as the transition bloom/no bloom was
still dominated by the large-scale flow field velocity U (r̄p decreasing as U increases)
with a weak dependence on D. And again we did not report bloom/no bloom tran-
sitions for cases with D < 5cm2s−1. At the end of the section we exposed multiple
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FIGURE 5.19: Normalized vertical population density profiles
〈θ〉x/〈θ〉 for Ψ = 0 (no flow), Ψ = Ψst

L (large-scale steady flow),
Ψ = ΨL (large-scale time-dependent flow), Ψ = ΨL + Ψs (multiscale
time-dependent flow), Ψ = Ψs (small-scale time-dependent flow,
without ΨL). Panels (a) and (b) respectively refer to D = 5 cm2 s−1

and D = 20 cm2 s−1. Note the different value ranges on the horizon-
tal axes in (a) and (b). All the profiles here reported are computed at

a common fixed time tU1L−1
z = 10, for which rp(t) = const.

population density depth profiles that furthermore support the argument that dy-
namics are predominantly controlled by the flow field first mode, the largest scale
structure. This was ultimately clarified by the exposition of the 〈θ〉x depth profiles
of cases where the large-scale vortices were not present (but the remainder were)
juxtaposed against the no-flow profiles.

5.5 Conclusion

In this chapter we numerically investigated the dynamics of sinking phytoplank-
ton in a stirred 2D fluid layer where the vertically decreasing light availability is the
only limiting factor for biological growth. For this purpose we extended a previ-
ous theoretical 1D model [7, 6, 45], where turbulent motions were only described
in terms of an effective diffusivity, by taking into account in an explicit way the
transport operated by a structured fluid flow. The choice to neglect possible hetero-
geneities in the nutrient distribution was motivated by our goal to focus on the role
of transport mechanisms. While clearly this poses some limitations in relation to
real natural environments, where nutrients can also affect biological growth, such a
configuration still appears reasonable for, nutrient-rich, eutrophic habitats, namely
shallow warm lakes or high-latitude oceans.

A major outcome of the simplified theoretical model [45] mentioned above was
was to provide evidence of two transitions between extinction and survival, bloom-
ing, of the population, depending on the turbulent intensity (for deep enough fluid
layers). Our aim, here, was to explore the impact of a more realistic representation
of the advecting velocity field on the survival-to-extinction transition, for which no
analytical prediction is available, occurring at large turbulent intensity when bio-
logical production cannot compensate turbulent mixing to sustain the bloom in the
well-lit region close to the surface. Using realistic parameter values for the biological
dynamics [45], we then considered a domain with a fixed depth representative of the
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mixed layer, in the presence of flows of progressively increasing complexity, relying
on a kinematic-flow approach [86]. We first examined a velocity field possessing a
single large-scale stationary mode, in the form of two recirculating cells spanning
the horizontal extent of the system [18, 96]. Such a spatial structure was intended
to mimic the large-scale features observed in realistic flows, as those arising from
buoyancy driven convection [96, 14] or wind-driven Langmuir circulation [18, 103,
104]. We then added time dependence in the form of lateral oscillations of such a
flow pattern, and finally included spatially and temporally varying smaller scales.

Our results indicate that advection plays a relevant role on the biological dynam-
ics. Indeed, persistent large-scale motions reduce the per-capita growth rate and can
eventually lead to the suppression of the bloom, when the flow is intense enough.
This effect is found to be controlled by the ratio between the characteristic biologi-
cal and flow timescales, similarly to what occurs for plankton horizontal dynamics
stirred by mesoscale ocean eddies [105]. From a general perspective, a similar harm-
ful role of the advecting flow was also put in evidence in previous large-eddy simu-
lations of turbulent thermal convection [56], and in a study considering a steady cel-
lular flow and a matrix-based approach to compute the biological growth rate [51].
However, those studies neglected the phytoplankton self-shading [51] and also sink-
ing [56]. Moreover, in both of them it is less straightforward than in our work to
disentangle contributions from large and small flow scales, either because the latter
are essentially absent [51], or because they dynamically interact with the large-scale
ones [56].

The main finding of the present study is that the large-scale flow dominates the
dynamics, which is only weakly affected by (temporally and/or spatially) more
complex fluid motions. This is revealed by both the strong correlation found for
the critical flow intensities (for the transition), and the similar vertical population
profiles, in the different flow cases. Even in the presence of a multiscale flow, the
velocity field at the largest scale has a strong signature on the dynamics, as it drives
the localization of the population in a patch at the center (with respect to the hori-
zontal coordinate) of the domain. This is a region of phytoplankton downwelling,
corresponding to the location of the straining point associated with the largest-scale
flow mode ( the separatrix between the two largest rolls). A similar accumulation
was observed in [51], and in suspensions of neutrally buoyant particles (compatible
with several phytoplankton species that are only slightly heavier than sea water) in
vortex-like turbulent flows such as Langmuir circulation ones [106, 107].

In the (large-scale) one-mode, steady, flow case, we have been able to rationalize
the picture by adapting the plankton-filament model originally introduced in [93].
This allowed us to provide a quantitative justification for the control exerted by the
biological-to-flow timescale ratio on the transition to extinction. As shown by our
analysis of the multiscale-flow case, the presence of smaller-scale fluid motions tends
to partially disrupt the regular spatial distribution of the population due to the flow
at large scale, and the associated central downwelling filament. This was further
confirmed by the comparison of phytoplankton-density vertical profiles in two mul-
tiscale flows, one of which does not possess the largest-scale mode. Indeed, in the
strain region between the largest eddies, the combined action of the flow and of
small-scale diffusivity vertically homogenizes the population, thus hindering sur-
vival. When only smaller eddies are present, however, the planktonic population
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localizes closer to the surface, and spreads more over the horizontal, giving rise to a
situation resembling that of the no-flow case, which is less prone to extinction.

We hope that the analysis reported here can contribute to the understanding of
the basic mechanisms at the heart of the interplay between fluid transport and phy-
toplankton growth dynamics. The favorable comparison of some of our results with
those obtained in the framework of more realistic fluid models [56] seems to us inter-
esting in light of the reduced computational cost of our approach. Several extensions
can be envisaged, in a rather natural way. On one side, it would be interesting to
consider a 3D extension of our kinematic flow [108, 28], to explore possible links be-
tween the vertical organization of phytoplankton and its horizontal patchiness. On
the other, we believe that accounting for vertical variations of the turbulent inten-
sity, could provide a more realistic representation of real aquatic environments un-
der stirring. Finally, introducing nutrient dynamics could allow investigating new
and more realistic biological phenomena as, e.g., the response of the system to a sud-
den increase of the turbulent intensity [109], as the one generated by the arrival of a
storm.
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Chapter 6

Conclusions and Perspectives

6.1 Conclusions

This thesis presented an overview of some physical processes that affect phyto-
plankton life cycles. More specifically, I focused on vertical dynamics by addressing
light limited growth conditions, advection and turbulent transport, factors that were
shown to be relevant for the mentioned dynamics [7, 35, 54]. Chapter 2 presented an
introduction to the concepts of turbulent transport [17, 10], large scale advection [14]
and some important effects relevant for oceans and lakes [19]. Subsequently, in chap-
ter 3 I introduced the basic features of phytoplankton dynamics [32], its relation to
turbulence [50, 41], modelling frameworks [57, 6, 55] and I discussed different views
on algal blooms [91, 7]. The description of the numerical methodology in chapter
4 had the objective not only of clarifying the author’s approach, but also of docu-
menting how one can proceed to simulate advection-reaction-diffusion dynamics in
a more general framework.That chapter also addresses the validation of the numeri-
cal algorithm adopted, by comparison with literature results [50]. Finally in chapter
5 I presented the thesis’ main results relying on the content presented in the previous
chapters.

The present work aimed to contribute to the understanding of vertical phyto-
plankton dynamics by including a further mechanism in previous models [50, 54,
7]. A discussion on the relevance of diagrams such as the ones displayed in Fig.
3.8 in chapter 3, arises. An attempt to extend the latter with the inclusion of advec-
tion was already made [51], although in a very simple flow setting (essentially the
steady flow case discussed in chapter 5 of this thesis). The representation of those
phase diagrams, obtained by Huisman and coauthors through multiple numerical
simulations, was unique in the sense that it brought a general picture illustrating
the influence of mixing over phytoplankton dynamics in an extremely idealized, but
highly relevant system (see more in chapter 3). The interest to include a flow field,
here was not aimed to extend the mentioned diagram, but rather in understanding
how advection by coherent structures can be important to phytoplankton survival
dynamics. In this sense the filament model [93] prediction revealed particularly use-
ful to gain insight on the role of advection by large-scale flow features, as specified in
the conclusions of chapter 5. In particular, it allowed an understanding of the phyto-
plankton survival/extinction transition in the presence of both mixing by turbulent
diffusion and stirring by coherent structures.

Moreover, one can note that thermal/mechanical exchanges between the atmo-
sphere and oceans/lakes can force convection in the upper layer of the latter, with
limited areas of downward flow (downwelling) and of upward currents (upwelling).
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At sufficiently small scales, we underline as well that persistent wind conditions can
drive Langmuir circulation, as seen in chapter 2. Both processes, on different scales
(convection < 1km, Langmuir circulation < 200m [14]), are examples of large-scale
advection by vortex-like structures that can be accounted for in an idealized man-
ner by the cellular flow configuration adopted in this thesis. Hence I expect that
the work here displayed can be fruitful not only for my future research, in possible
extensions of this project (explained in the next section), but also to other scientists
interested in the fundamental understanding of phytoplankton vertical dynamics.
It is worth stressing that the problem is still open. Even though there is some un-
derstanding of the importance of certain phenomena like convection [110, 111], the
interplay between the multiple factors affecting phytoplankton dynamics (nutrients
availability, predation, light availability, to cite a few) and the transport by com-
plex fluid flows is still not completely understood. A major difficulty is here due to
the broad range of relevant scales. This means that one has to make choices when
studying these systems, it is impossible to take into account all the relevant scales
and parameters of the problem. Therefore mathematical biological models will al-
ways contain gaps of knowledge, but they can be used to explore basic mechanisms.
Furthermore, considering the difficulties related to obtaining field data in aquatic
regions such models may also help to fill gaps in knowledge, by providing general
expectations and new visions on the problem.

6.2 Perspectives

Here I introduce possible perspectives for the work presented in this thesis. They
contain both studies that I would like to pursue in the future of my research and a
work that is underway.

Regarding what I believe would be interesting for the continuation of this thesis,
I start with the extension of the model studied in chapter 5 to a 3D system. First,
one would like to understand how the phytoplankton patchiness on the horizontal
relates to the one on the vertical given the growth dynamics and flow conditions
specified on chapter 5. The idea is very appealing considering the availability of
data about phytoplankton blooms at the ocean’s surface, for comparison purposes.
In practical terms the kinematic cellular flow model can be extended to three di-
mensions, without major conceptual difficulties, as it was done in previous works
[97, 25]. The main difficulties in our case are the interpolation and finite-difference
scheme, as these can become computationally costly in 3D, possibly requiring a shift
in the numerical methodology. One can cite as well the inclusion of nutrient dy-
namics, in order to relate blooms with areas of upwelling, which may be located
inside large eddies or outside of them. Previous studies [57, 84] have shown that
under certain conditions the interplay between upwelling structures and biological
growth leads to plankton blooms inside vortices. It would be interesting to verify if
the same applies to light-limited growth dynamics with a more explicit representa-
tion of vertical transport.

Another continuation that was foreseen during this project was a comparison
between the results of the present study, relying on a kinematic flow model, and
those from a dynamical turbulent flow model. For the latter case, one possibility
would be to couple our biological dynamics to a velocity flow field generated via
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DNS, which provides an accurate description of the multiscale character of turbu-
lent flows. However, this is unfeasible for realistic domain sizes (meaning for mixed-
layer depths of O(10− 100)m). As an alternative, to cope with this limitation, one
could resort to LES. This was already done by Taylor et al. [56], who showed that
meteorological forcing plays a role in the onset of phytoplankton blooms as it drives
convective fluid motions. Another compelling prospect is to move to a turbulent sys-
tem that is more refined than our model but still idealized to some extent, namely to
a 2D model of a convective mixed layer [112]. In the latter a buoyancy-driven flow
is considered by solving the Boussinesq equations. While also in this case it is not
possible to adopt realistic values of the mixed-layer depth, an interesting feature is
the possibility to use boundary conditions such that the system reaches a dynami-
cal equilibrium which could allow investigating statistical features in a reliable way.
After some time, the flow attains a statistically steady state characterized by a verti-
cally inhomogeneous turbulent intensity (higher in the mixed layer and lower below
it). A preliminary, promising, attempt to reproduce such a velocity field was made
by using the same Lattice-Boltzmann code [20] used for the solution of the Navier-
Stokes equations in Fig. 2.8. Simultaneous snapshots of temperature (color coded)
and velocity (arrows) fields are shown in Fig. 6.1.

FIGURE 6.1: Temperature (color) and velocity (arrows) fields at a
common instant of time from preliminary simulations of mixed layer
model [112] obtained using the Lattice-Boltzmann method [20]. Here
one can see the presence of convective plumes in the turbulent flow

field.

Finally, as explained in chapter 1, it was part of the planning of this project to par-
ticipate in a campaign of data collection and analysis in the English Channel. Given
the unfavorable conditions faced during the pandemic of 2020/2021 we could not
proceed with this plan. Even though some measurements of salinity, PAR (radi-
ation), temperature and chlorophyll were obtained, measurements of the vertical
profiles of velocity and of the kinetic energy dissipation rate, could not be obtained.
Consequently there were insufficient data to proceed with this study. Nevertheless,
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it is still in the perspectives of this project to compare the numerical results presented
to real experimental data.

6.2.1 Phytoplankton Dynamics Under Ice

Multiple studies in the Arctic ocean reported under-ice phytoplankton blooms
that were initiated by the onset of ice melt [113, 114]. This phenomenon increases
light transmittance through the ice and induces a shoaling of the mixed layer. An ex-
ample of phytoplankton communities near ice being shaped by turbulent eddies can
be seen in Fig. 6.2, there one can also visualize openings in the ice that may benefit
these organisms. It is not known whether under-ice blooms are controlled by the in-
crease of light transmittance, leads (openings in the ice), upwelling from springtime
convective mixing, biological factors, or other factors (most likely a combination
of more than one). Nonetheless, it was observed that waters beneath sea ice with
leads, had significantly lower phytoplankton biomass, despite high nutrient avail-
ability, than fully consolidated sea ice regions (without leads) [115]. Phytoplankton
blooms beneath snow-covered ice might become more common and widespread in
the future Arctic Ocean, as lead formation becomes more frequent due to increas-
ingly thinner and dynamic ice coverage [116]. This could alter primary production
and consequently the local marine food webs. With this in mind we decided to re-
formulate the model presented in chapters 4 and 5 to account for light obstruction
by obstacles. The latter may be thought as idealized ice coverage, and can be altered
both in size, location and in the intensity of light transmitted. An illustration of our
first numerical setup can be seen in Fig 6.3.

FIGURE 6.2: Satellite image from Suomi-NPP/VIIRS collected on
June 14, 2015 (https://oceancolor.gsfc.nasa.gov/gallery/454/). Phy-
toplankton communities and sea ice limn are shaped by the turbu-
lent flow field between Greenland and Iceland. Openings in the ice
(leads) near the coast, and their influence over vertical phytoplankton

dynamics, are a motivation for this study.

We proceed to obtain results by taking advantage of our advection-reaction-diffusion
model exposed in chapters 4 and 5. As a preliminary study we maintain the same
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FIGURE 6.3: Illustration of the phytoplankton under-ice model setup.
For this study we planned to vary the obstacle position, size and the
fraction of light intensity transmitted by the obstacle. Furthermore,
we will increase the flow field complexity, maintaining the cellular
flow configuration with distinct upwelling and downwelling regions,
in order to see the effect of having upwelling under ice or under a

lead/thinner ice.

biological parameters shown in table 4.1 and the same stationary cellular flow con-
figuration through the use of the streamfunction of Eq. 5.1. Consequently the only
change in the system compared to the previous chapter is the presence of an obsta-
cle of size Lx/2, centered at x = Lx/2, where Lx is the system’s horizontal size. The
obstacle does not transmit light and hence the entire region underneath it is biologi-
cally ruled by a null specific production rate p(I) = 0 since Iin = 0. The production
underneath the lead is still given by Eq. 4.25, so dynamics are controlled by:

∂θ(x, z, t)
∂t

= −lθ(x, z, t)− v ·∇θ(x, z, t) + D∇2θ(x, z, t), (6.1)

under the obstacle, and

∂θ(x, z, t)
∂t

= [p(I)− l] θ(x, z, t)− v ·∇θ(x, z, t) + D∇2θ(x, z, t), (6.2)

under the unobstructed space.

Furthermore, the obstacle is located at the surface z = 0 and does not have any
physical influence over the scalar field or the flow field other than the obstruction of
light. The velocity term v still accounts for phytoplankton sinking and the advective
flow field. Boundary conditions are maintained as before, no flux on the vertical and
periodic on the horizontal. Given that, even in the absence of the flow field, bloom
conditions are not controlled anymore by the diagram of Fig. 3.8, we decided to
consider shallower systems. Our interest is still in the bloom/no bloom transition,
but since production is now globally lower as a result of the blockage of light, the
transition can occur also in shallower systems. Thus one can save computational
resources while still simulating a depth close to the critical depth of the system. So
we begin simulations in a rectangular domain of sides Lx = 60m and Lz = 30m. We
proceed to make qualitative analyses (some quantitative measurements will be also
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displayed) on this preliminary results; these are shown in the regime of stationary
per-capita growth rate rp(t) = rp, according to Eq. 5.3 (as in chapter 5).

FIGURE 6.4: Instantaneous normalized population density fields
θ(x, z, t∗)/〈θ〉 at a fixed instant of time t∗ = 600h, where 〈θ〉 stands
for the spatial average. The obstacle is represented by the black rect-
angle and the dashed lines delimit the light obstruction zone. The
white lines are the isolines θ/〈θ〉 = 1. The solid black lines represent
flow streamlines from Eq. 5.1, with arrows indicating the circulation
direction. Also, t∗ is in the regime of stationary per-capita growth rate
(rp(t) = rp). In a), b) and c) U = (0, 0.71, 1.19) m h−1 (respectively)
and D = 1 cm2 s−1. In d), e) and f) U = (0, 0.71, 1.19) m h−1 (respec-
tively) and D = 10 cm2 s−1. a), d) and e) are bloom cases while b), c)

and f) are no bloom cases.

The first results are presented in Fig. 6.4 in the form of density field snapshots.
There, the influence of the obstacle (represented by the black rectangle) is tested for
a no-flow case and two different flow speeds U. In addition, two different values
of D were considered (corresponding to the different columns in Fig. 6.4). In the
left column we show the D = 1cm2/s set of results. There, the presence of the
obstacle is made clear by the accumulation of phytoplankton in the unobstructed
zones in the absence of advection. Also, for this diffusivity the plankton patches are
localized closer to the surface, in contrast to the D = 10cm2/s no-flow case (right
column). In the higher D no-flow case, the phytoplankton spreads more evenly
through the water column, while horizontally it is still mostly restricted to the lit
zones. In the D = 1cm2/s cases, the flow appears to have a strong influence in the
mixing, allowing the phytoplankton to populate more evenly the entire simulation
domain as U increases. In the D = 10cm2/s cases the increase in flow speed has a
much weaker influence. We notice that curiously the D = 1cm2/s, U = 0 case has
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a very similar configuration to the D = 10cm2/s, U = 0.7m/h case. Both are bloom
cases, although in the first population growth is much higher (see Fig. 6.5).

FIGURE 6.5: Population per-capita growth rate rp(t), normalized by
the intrinsic net growth rate rb, as a function of time in the steady-
flow case, for various values of U and D, with a light obstruction of
size Lx/2 and zero transmitted light, centered at Lx/2, localized at
z = 0. The inset shows the same graph with the addition of the no-

flow cases.

Another remarkable feature seen in Fig. 6.4 is that the phytoplankton patches in
the smaller diffusivity cases break into more irregular shapes, while in the higher
D cases they maintain more regular configurations. Also in this case of light inten-
sity modulation at the surface, the phytoplankton survival hindering effect of the
flow field remains as U increases, in parallel with the results of chapter 5. Here the
flow proves particularly harmful for survival in the D = 1cm2/s cases; when it is
present, net growth rates are always negative, for the values tested here (Fig. 6.5).
This is in contrast with our findings in chapter 5, where for smaller D the transition
bloom/no bloom was never possible. Even though in our previous study the system
was deeper (Lz = 60m), it is only with the presence of the obstacle that we see the
transition. This seems to indicate that the flow field killing action is more effective in
the present setting. This finding is in agreement with a study [115] that shows that
waters beneath loosely consolidated sea ice (with leads) had weak stratification and
were frequently mixed below the critical depth, resulting in these locations having
lower phytoplankton biomass than regions covered by fully consolidated ice.

We conclude by showing more density field snapshots obtained in simulations
with advection by the multiscale flow field. We remind that in this case the flow
corresponds to the streamfunction of equation 5.10. In Fig. 6.6 the signature of the
inclusion of smaller vortices is identifiable in the irregular shapes taken by the phy-
toplankton patches. This is specially true for the D = 1cm2/s case where the advec-
tion action is more dominant, but in both cases we now have horizontal asymmetry.
Nonetheless, the phytoplankton patches are still localized in the unobstructed re-
gions, as in the stationary flow case. What is more interesting in the multiscale flow
cases is that the D = 1cm2/s case now gives rise to a bloom event (see Fig. 6.7). To
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FIGURE 6.6: Instantaneous normalized population density fields
θ(x, z, t∗)/〈θ〉 at a fixed instant of time t∗ = 600h, where 〈θ〉 stands
for the spatial average. The obstacle is represented by the black rect-
angle and the dashed lines delimit the light obstruction zone. The
white lines are the isolines θ/〈θ〉 = 1. The solid black lines represent
flow streamlines from Eq. 5.10, with arrows indicating the circulation
direction. Also, t∗ is in the regime of stationary per-capita growth rate
(rp(t) = rp). In a) and b) U = 0.71 m h−1 and D = (10, 1) cm2 s−1

(respectively). Both are bloom cases.

FIGURE 6.7: Population per-capita growth rate rp(t), normalized by
the intrinsic net growth rate rb, as a function of time in the multiscale
flow case, with a light obstruction of size Lx/2 and zero transmitted

light, centered at Lx/2, localized at z = 0.

understand this, we can recall one of the relevant features identified in chapter 5,
namely that the multiscale flow produces an increase in diffusivity, that counteracts
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the hindering effect of advection in phytoplankton growth. This result illustrates
the beneficial effect of the small turbulent scales on the survival of phytoplankton
in the presence of obstacles to light transmission. The multiscale D = 10cm2/s case
however, presents almost no difference with respect to the corresponding stationary
flow case, again a result that agrees with the study of the previous chapter.

The preliminary results here exposed show a promising continuation for the work
presented in this thesis. The immediate next steps will deal with the study of dif-
ferent obstacle conditions, such as: different localization and size, as well as partial
transmittance of light. We believe that this work could prove complementary to
some of the studies cited in this section [115, 114], providing further evidence of the
importance of fluid motion on phytoplankton survival under ice.
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