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Abstract

Even with the advancement in Finite Element Method (FEM), contact remains a difficult

problem to solve in engineering analysis. The main difficulty is due to the non-smoothness that

arises from the inequality contact constraints as well as the geometric discontinuities inherent

to classical FEM due to mesh generation in the standard C0 Finite Elements Analysis (FEA).

Specifically, the geometric discontinuities of the contact surface in FEM may lead to numerical

instabilities including : (1) non-uniqueness of the unit normal vector and the projection point

in the local contact search, and (2) non-physical oscillations of the contact forces especially in

sliding conditions.

An interesting alternative to partially overcome these difficulties is the use of the Isogeometric

Analysis (IGA). Indeed, in IGA the same smooth higher order basis are used for both the

geometry and the analysis. The computational geometry is no longer approximate yielding a

more robust discretization and more accurate results in comparison to traditional FE approaches.

However, IGA is not without drawbacks, the most flagrant being : (1) lack of local refinement

capabilities due to the tensor product nature of the NURBS/BSplines basis, (2) data structures

non-compatible with existing FE codes due to higher inter-element continuity of the basis

functions, (3) solution is sought at the control points which do not necessarily interpolate the

geometry and thus can complicate the imposition of boundary conditions, and (4) the significant

computation cost as a result of the high regularity of the basis functions.

In this thesis we aim to develop a numerical scheme based on the IGA that can accurately

capture the contact stresses arising from surface/surface interactions. This numerical scheme

addresses the above mentioned drawbacks in a holistic manner by developing a Bézier-based

isogeometric finite element formulation that is both (1) suitable for existing FE codes and (2)

able to compute the solution directly at the physical geometry. In doing this, the model then

allows for the use of the more simple and more versatile, but accurate and more robust, Node to

Surface (NTS) contact formulation frequently featured in FEM for practical applications. This

numerical tool is then fully implemented using MATLAB.

The entry point of this Bézier-based method is BSplines basis functions. First, the method takes

advantage of the Bézier extraction operator, which allows for an IGA element data structure to

be incorporated into existing FE codes. This is then coupled with the full transformation method,

using the inverted Bézier transformation matrix, to transform the computational domain from

that of control mesh to the physical mesh similar to classical FEM. The Bézier transformation

matrix, and its inverse, is computed once and stored for later use. Inspiration from the IGA

collocation method is taken when selecting the locations at which the Bézier transformation

matrix is computed.



The developed scheme is then used for the treatment of static contact problems (rigid/deformable

and deformable/deformable contact interactions), with and without friction, and the numerical

model validated against the analytical solution. The results obtained were in good agreement

with the analytical solutions. Compared to classical FEM, the scheme was found to be more

accurate, on a per-degree-of-freedom basis. Moreover, the model is extended for the treatment

of impacted plates by a small sphere, using explicit time integration, to simulate both vibratory

and acoustic response. Again, we found that even with a relatively coarse mesh, the IGA based

scheme can sufficiently capture the characteristics of the plate response. Finally, the results

obtained for the impacted plates were used to interpret and characterize the radiated acoustic

field of forced vibrating plate, embedded in a rigid baffle, due to a moving force excitation.
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Résumé

Malgré les avancées de la méthode des éléments finis (MEF), le contact reste un problème

plus difficile à résoudre en analyse technique. La principale difficulté est attribuable à la

non-lissabilité qui résulte des contraintes d’inégalité du contact ainsi qu’aux discontinuités

géométriques inhérentes à la MEF classique en raison de la génération du maillage dans l’analyse

par éléments finis (AEF) standard C0. Plus précisément, les discontinuités géométriques de la

surface de contact dans la MEF peuvent conduire à des instabilités numériques, notamment :

(1) la non-unicité du vecteur normal unitaire et du point de projection dans la détection locale

du contact, et (2) des oscillations non physiques des pressions de contact, en particulier dans

des conditions de frottement.

Une bonne alternative pour résoudre partiellement ces difficultés est l’utilisation de l’analyse

isogéométrique (IGA). En effet, dans IGA, les mêmes bases lisses d’ordre supérieur sont utilisées

à la fois pour la représentation de la géométrie et l’analyse. La géométrie de calcul n’est plus

une approximation, ce qui permet une discrétisation plus robuste et des résultats plus précis

par rapport aux approches d’éléments finis traditionnelles. Cependant, l’IGA n’est pas sans

inconvénients, les plus flagrants étant : (1) le manque de capacités de raffinement local en raison

à la nature de produit tensoriel de la base NURBS/BSplines, (2) les structures de données non

compatibles avec les codes d’éléments finis existants en raison de la continuité inter-éléments plus

élevée des fonctions de base, (3) la solution est recherchée aux points de contrôle qui n’interpolent

pas nécessairement la géométrie et peuvent donc compliquer l’application des conditions aux

limites, et (4) le coût de calcul significatif en raison de la régularité élevée des fonctions de base.

Dans cette thèse, nous visons à développer un schéma numérique basé sur l’IGA qui peut

capturer avec précision les contraintes de contact provenant des interactions surface/surface. Ce

schéma numérique aborde les inconvénients mentionnés ci-dessus d’une manière holistique en

développant une formulation d’éléments finis isogéométriques basée sur Bézier qui est à la fois

(1) adaptée aux codes d’éléments finis existants et (2) capable de calculer la solution directement

à la géométrie physique. Ce faisant, le modèle permet d’utiliser la formulation du contact entre

nœuds et surfaces (« NTS »), un formulation plus simple et plus polyvalente, mais plus précise

et plus robuste, fréquemment utilisée dans les MEF pour des applications pratiques. Cet outil

numérique est ensuite implémenté entièrement à l’aide de MATLAB.

Le point d’entrée de cette méthode basée sur Bézier est les fonctions de base BSplines. Tout

d’abord, la méthode tire parti de l’opérateur d’extraction de Bézier, qui permet d’incorporer une

structure de données d’éléments IGA dans les codes d’éléments finis existants. Ceci est ensuite

couplé à la méthode de transformation complète, utilisant la matrice de transformation de Bézier

inversée, pour transformer le domaine de calcul de celui de la maille de contrôle à la maille

physique similaire à la MEF classique. La matrice de transformation de Bézier, et son inverse,



est calculée une fois et stokés pour une utilisation ultérieure. La sélection des emplacements où

la matrice de transformation de Bézier est évaluée s’inspire de la méthode de collocation IGA.

Le schéma développé est ensuite utilisé pour le traitement de problèmes de contact statique

(interactions de contact rigide/déformable et déformable/déformable), avec et sans frottement,

et le modèle numérique est validé par rapport à la solution analytique. Les résultats obtenus

étaient en bon accord avec les solutions analytiques. En comparaison avec la MEF standard,

le schéma s’est avéré plus précis, sur une base par degré de liberté. De plus, le modèle est

étendu au traitement des plaques impactées par une petite sphère, en utilisant une intégration

temporelle explicite, pour simuler la réponse vibratoire et acoustique. Encore une fois, nous

avons observé que même avec un maillage relativement grossier, le schéma basé sur l’IGA peut

capturer suffisamment les caractéristiques de la réponse de la plaque. Enfin, les résultats obtenus

pour les plaques impactées ont été utilisés pour interpréter et caractériser le rayonnement du

champ acoustique d’une plaque vibrante forcée, encastrée dans un baffle rigide, en raison de

l’excitation d’une force en mouvement.
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1
Introduction

1.1 Motivation

Contact is the notion of interactions between separate bodies coming in touch and exchanging

loads and energy. This exchange happens without the bodies becoming rigidly attached. Take

for instance a simple action such as holding a pen or this manuscript in your hands, there is a

contact interaction taking place between your hand and a pen or the pages and fingers. In the

case of a book, to page through the document, a certain amount of contact force is required.

This contact force between the pages and hand surface will depend on factors such as properties

of the surface and material of the pages, i.e. choice of paper, the application of this contact (the

point at which fingers interact with the paper), and the angle of application of the force [1].

Moreover, a certain degree of friction is required to prevent slip. Indeed, contact is a phenomenon

of every day life, i.e. walking is impossible without frictional contact, in the same way that cars

and trains rely on this type of grip to propel themselves forwards [3].

Mechanical loads arise from an interaction between two mechanical entities in contact with

each other, for this reason contact interactions practically exist in all structural and mechanical

systems [2–6]. These contact interactions may be intentional, such as rolling-element bearings

that transmit loading while reducing friction in moving machinery, bridge like structures load

carrying capacity, tractive effort generated in wheel/rail contact, braking components, to name a

few. Even though these interactions are intentional, they may yet, inadvertently, lead to adverse

effects as a result of instabilities (vibrations) specifically in dynamic systems. These include : (1)

friction-induced vibrations which may result in squeal, a phenomena common in sliding contact,

and also may lead into chatter, and chaos [7–9], (2) structural vibrations leading to fatigue

damage failure, (3) impact like events leading to noise pollution that can be detrimental not

only to the structure (in terms of operational safety), but also harmful to the environment and

hazardous to human health and safety [9–11].

On the other hand we may have unintentional contact interactions. These can include actions

like bird strikes on aeroplanes, vehicle crashes, or accidental interactions such as stone striking a
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window. Whether we are concerned with increasing efficiency in the case of intentional contact

or decreasing the adverse effects if the interaction is unintentional or in the case of dynamic

and frictional instabilities, the contact problem, its comprehension and resolution, is of high

importance. Essentially, to characterize these mechanical systems in engineering analysis requires

the understanding of the contact process.

The phenomenon of contact is governed by complex physics due to its multi-scale and multi-

physical nature. Contact constraints arising from this interaction are a set of inequalities and

cannot simply be replaced by ordinary boundary conditions imposed on the contacting surfaces

[2, 6]. Moreover, the contact interface cannot be considered as an internal surface. This then

leads to a great deal of difficulty in deriving analytical solutions, that is if they exist. However,

the existence and great strides that have been made in computer aided design, more specifically

the numerical technique Finite Element Method (FEM), have allowed for the resolution of these

complex problems with somewhat relative ease, however complex the process can be.

In standard Finite Elements Analysis (FEA) the geometry is packaged in CAD (Computer

Aided Design) systems and the mesh is generated from the CAD data - effectively the geometry

is replaced by an approximate one [12, 13]. In doing this, the geometric approximation which is

essential in the mesh generation can bring about accuracy problems. A major contributing factor

to these inaccuracies is the lower order polynomial approximation that are usually employed

in standard FEA. Naturally one would think to remedy this limitation increasing the order

of the polynomials might provided a fix. Szabos et al. [14] explored the use of fixed higher

order polynomials (p-FEM) and found that as the solution polynomial order is increased, the

error plateaus at some point and can not be reduced further. This can be counter-intuitive

as increasing the polynomial order also increases the computation cost. For most engineering

problems, like contact problems, the boundaries of the bodies studied are an important location

with regards to the physics of the problem.

Often times in classical FEM, boundaries are hot-spots for geometric errors. These geometric

errors arise from the facetization induced by meshing in standard C0 FEA - see figure 1.1 :

the smooth CAD geometry, typically described with NURBS/BSplines basis is converted into

simple polygons using the Lagrange basis approximation. Invoking the isoparametric concept,

the unknown solution fields, such as the displacement field u, are approximated in the same

way. To capture the boundaries of the geometry accurately then a fine discretization is needed

which leads to prohibitively large numerical models. These require tremendous computation

resources in terms of storage and resolution time. A good quality mesh is time consuming and

costly in terms of memory resources. Moreover the facetization of the contact surface can lead

to numerical instabilities, sub-optimal convergence rates, non-physical behavior and jumps in

velocity in the case of dynamic problems [15, 16]. To remedy this, contact formulation can be

enriched with smoothing techniques. Several contact smoothing techniques have been used in

literature including traditional splines, Bézier surfaces, and NURBS enrichments [6, 15–21],

however this can lead to more complex and computationally inefficient methods [22].

Even with the advancement of numerical techniques, particularly in FEM, contact remains a

3
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Figure 1.1 – Discretization of a mechanical problem [1] : from the continuum model which

describes the mechanics of the problem, to its geometry CAD (smooth) representation, and

finally the discrete form which makes up the computaional model (Lagrange basis functions

for the FEA model and NURBS/BSplines basis for the IGA model) of the problem with the

isoparametric concept invoked.

difficult problem to solve in engineering analysis. The main difficulty is due to the non-smoothness

that arises from the inequality contact constraints as well as the geometric discontinuities inherent

to classical FEM (facetization due to mesh generation in the standard C0 FEA [22, 23] - fig. 1.1).

As already mentioned, the geometric discontinuities of the contact surface in FEA may lead

to numerical instabilities. These instabilities typically result from the non-uniqueness of the

outward normal vector, and subsequently the projection point in the local contact search, thus

causing non-physical oscillations of the contact forces especially in sliding conditions and large

deformation problems [15, 16, 22]. Hence the reason Isogeometric Analysis (IGA) approach is

an interesting alternative for the numerical analysis of contact problems.

Isogeometric Analysis, first introduced by Hughes et al. [12], has been established as an advan-

tageous alternative to classical C0 Finite Elements (FE) discretization techniques for various
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classes of problems [24]. This is particularly the case for those problems in which the ability to

accurately capture the geometry greatly influences the accuracy of the numerical scheme, i.e.

geometric errors have a significant influence on the quality of the solution [22, 25]. In IGA the

same smooth higher order basis functions used for the representation of the CAD model are

used for the analysis [12, 13], hence the name isogeometric - see fig. 1.1.

This approach, IGA, has been shown to have an increased accuracy and robustness [12, 26, 27],

in comparison to standard FEA in many applications, including, but not limited to : cohesive

zone modeling and debonding [28–30], fatigue and interfacial cracks, and progressive damage

with extended isogeometric analysis (XIGA) [31, 32], fluid structure interactions [33], structural

vibration, acoustics and wave propagation problems [34–36]. Amongst those classes of problems

that IGA has been shown to be advantageous is the treatment of contact problems. The inherent

higher-order continuity of the NURBS/BSplines basis in IGA leads to a smooth representation

of the contact surfaces. This then yields a more robust discretization and consequently more

accurate results in comparison to traditional FE approaches [1, 30, 37–42].

1.2 State of the Art

In the same way as in standard FEA, treatment of contact problems in IGA entails in three

main phases, namely : (1) the contact search and detection phase - creating contact elements

containing the proximal components of surfaces that may come into contact during resolution,

(2) discretization of the contact interface - the parameterization of the contact interface, it

predetermines the structure of the contact elements, (3) the contact resolution phase : the

choice of method for the regularization and enforcement of contact constraints, and (4) temporal

discretization in the case of dynamic contact.

In fact, contact formulations in the IGA setting originate from the more well-established contact

algorithms available in classical FEM. For this reason they tend to inherit the favorable and

unfavorable aspects of their classical FEM counterparts. De Lorenzis et al. [22] gives a nice

detailed review and comparison of isogeometric contact algorithms, and has highlighted how

these compare to their FEA counterparts. De Lorenzis et al. [23] is also a good reference,

particularly for frictional static problems in standard FEA, advantages and limitations of contact

algorithms in classical FEM and how IGA can be a remedy for said limitations. In terms of the

implementation aspects of numerical contact problems, the works of Laursen [5] and Wriggers

[3], as well as Zhong [4] specifically for contact impact problems, are good material sources.

Kikuchi and Oden [43] provides the mathematical framework.

Even though contact detection, contact search to be precise, is a crucial step in the numerical

treatment of contact problems - this phase is strongly connected to the nature of contact being

studied, the type of contact interface discretization and the differential geometry, and finally

the efficiency and robustness of the contact algorithm highly depends on contact detection - it

does not form part of our scope. However, this subject has been researched by many authors in
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literature and interested readers may consult the works of Wriggers [3], Zhong [4] and Yastrebov

[6].

Enforcement of contact constraints amounts to addressing how the penetration of the bodies in

contact is prevented (bodies in contact cannot overlap) and the modeling of the generated contact

tractions on the contact interface due to this resistance to penetration. Contact constraints

are formulated as a set of inequalities [3, 5, 6], something unusual for mechanical Boundary

Value Problems (BVP). Due to the nature of these constraints, the rigorous construction of the

variational form of the contact BVP writes as a varational inequality. To facilitate treatment

of this variational form with existing numerical techniques available for variational equalities

requires a regularization of the non smooth contact constraints. Primary methods for this

regularization that are available include [3–5] : the (1) Lagrange Multipliers Method, (2) penalty

method, and (3) some form of combination of these two methods such as the Augmented

Lagrange Multipliers method. The advantage of using the Lagrange multipliers method is the

exact enforcement of contact constraints, both for penetrations and contact tractions [6, 23].

However, this method introduces additional degrees of freedom (DOFs) and thus increasing

the size of the problem. The penalty method on the other hand does not introduce additional

DOFs in the system, however the contact constraints are only enforced in an approximate sense.

Moreover the penalty method may lead to nonphysical penetrations, and with increasing penalty

parameter, the ill-conditioning of the system of equations [6, 23].

With respect to the parameterization of the contact surfaces, their discretization and how these

are incorporated into the variational formulation, different techniques exist to achieve this,

namely (see fig. 1.2) : (1) Node to Node (NTN) discretization only suitable for small deformation

and conforming surface meshes, stable and passes the contact patch test [2, 44], (2) the versatile,

multipurpose Node to Surface (NTS) discretization technique suitable for non conforming surface

meshes [45], however does not pass the patch test [44] and (3) the stable and robust, however

implementationally cumbersome Surface to Surface (STS) discretization [5, 46] . Essentially the

contact surface discretization techniques fall into two categories : contact integrals collocated

at the nodes/points with penetration conditions satisfied point-wise (NTN, NTS), or contact

integrals satisfied in a weak sense and the penetration constraints satisfied in an average sense

(STS, mortar methods).

Within the framework of small deformation, linearized mechanics, assumptions of a NTN

contact may hold. However, in a general context when non linear kinematics is involved, a more

sophisticated approach is required, hence the multi purpose NTS approach. Indeed, in the NTS

discretization, the penetration constraints are fulfilled point-wise between a node of the first body

(denoted as the slave) and the surface/segment of the second body (denoted as the master). The

implementation of this method was pioneered by Hughes et al. [45] and Hallquist [47], primarily

to address the limitations of the NTN discretization in the large deformation contact formulation

framework. Since then the NTS discretization has been widely featured in the FEA treatment

of contact problems [48–51]. Unlike the NTN discretization which is stable and robust, NTS

formulation was shown not to pass the contact patch test. Moreover, it is a biased technique,
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Figure 1.2 – Contact interface discretization techniques (Yastrebov, 2011) : (a) Node to Node

discretization, (b) Node to Surface discretization, and (c) Surface to Surface discretization.

in a sense that results are highly dependent on the choice of slave/master - see fig. 1.2b which

shows the NTS contact elements (green patches). Another drawback of the NTS discretization

arises as a result of the piece wise linear discretization in standard FEA which leads to numerical

instabilities, particularly in sliding contact conditions, and consequently spurious oscillations of

contact tractions. Introducing the smoothing techniques already discussed above was shown to

improve the stability of this method. Simple yet highly robust due to its practicality and despite

all the drawbacks mentioned, NTS formulation is still the most frequently implemented and

used method, specifically in commercial codes.

To address the shortcomings of the NTS formulations, methods that no longer collocate contact

integrals at the nodes but rather enforce the contact constraints in a weak sense (as an integral)

have been developed. Moreover, the non penetration condition in no longer fulfilled point-wise,

but rather in an averaged sense. STS which typically employs a so-called intermediate surface

(see fig. 1.2c) over which contact quantities are defined and discretized (segmentation), first

proposed by Simo et al. [46] for a two dimensional (2D) case, is one such method. Zavarise and

Wriggers [52] presents a consistent linearization of the contact equations for this formulation.

With sufficient segmentation of the intermediate surface, this formulation passes the contact

patch test. The Gauss-Point-to-Surface (GPTS) formulation, exhibits the same character to an

extent, in that : the contact terms contribution to the weak form is integrated in a straightforward

manner by locating a predetermined number of Gauss-Legendre quadrature points of the slave

contact surface (only at active contact points) [53, 54], however segmentation is not necessary.

The GPTS formulation passes the patch test to within integration error. A version of the GPTS

that passes the patch test to machine precision (termed the GPTS-2hp) can be found in Sauer

[18], Papadopoulos et al. [55] and Sauer and De Lorenzis [56].

Even more further improvement on the contact surface discretization techniques was achieved

through the introduction of the mortar methods, an approach inspired by domain decomposition

methods [57]. In a similar manner to STS, with mortar formulations contact constraints are

enforced in a weak sense. Though, the strength of the mortar methods lies with the rigorous

mathematical background thus allowing for a variationally consistent treatment of the contact

constraints, in terms of the fulfillment of the non penetration condition and sliding conditions
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in frictional contact interactions, therefore guaranteeing optimal convergence rates [23]. Early

applications of mortar methods for the treatment contact problems in small deformation

framework can be found in Belgacem et al. [58] for friction-less contact and McDevitt and

Laursen [59] for frictional contact. Extension into large deformation framework can be found

in Puso and Laursen [60], Yang et al. [61] for frictional contact and Puso and Laursen [62]

for three dimensional (3D) friction-less contact. Weißenfels [63] gives a detailed compilation

and comparison of many mortar based formulations, and more details on this method and its

implementation aspects can be found in Wriggers [3].

Mortar methods satisfy both the contact patch test, up to machine precision (they are exact

with segmentation), and stability conditions if properly designed [62], and therefore are more

accurate and more robust than the other aforementioned contact formulations [6, 62]. However,

mortar methods are notorious for their heavy computational resources requirement, in terms

of computational costs. Moreover they are highly complex ; mortar integrals contain a set of

functions of both surfaces (slave/master, or as it is often called in this formulation, mortar and

non-mortar surfaces) and therefore can be cumbersome to implement [1, 22, 23]. Segmentation

is required for exact computation of the integrals which contributes to the high computation

costs [23, 62].

As mentioned, contact formulations in IGA originate from the existing FEM formulations

discussed above. In what follows we discuss these contact formulations in the IGA framework.

Node to surface in the IGA setting is tricky to implement as this is a point-wise approach and in

IGA, control points which serve the same role as nodes do not necessarily interpolate the physical

geometry - see fig. 1.1, thus rendering the actual physical contact boundaries inaccessible at

times. The question then becomes, if we are to use this formulation, where do we collocate

the integrals ? Matzen et al. [37] proposed a work around for this : a point to surface (PTS)

method for the treatment of friction-less and frictional contact problems in large deformation,

with NURBS as a basis and Lagrange multipliers for contact constraints enforcement. This PTS

formulation collocates the contact integrals at the Greville and Botella points. Collocating the

integrals at the Greville points was shown to yield better results for the classical Hertz problem,

especially for the contact area near the patch boundary. They found the smoothness of the

NURBS basis functions to alleviate the major difficulties of the classical NTS method. Even so,

the scheme does not pass the patch test, however a two pass version of this scheme, termed PTS+

method, was shown to pass the contact patch test to machine precision [1]. Naturally, some form

of smoothing was needed to avoid the oscillations of contact tractions at the contact-no-contact

transition zone. In another application, Zhao et al. [64] coupled the NTS, collocated at the

Greville points, with the Nitsche’s method for contact constraints enforcement, to simulate

friction-less 2D contact problems in large deformation. Again, it was found that the approach is

more stable and robust compared to its FEA counterpart.

Temizer et al. [38] developed a version of the GPTS-2hp, called the knot to surface (KTS)

formulation, with application to various 2D/3D finite deformation thermomechanical contact

problems. The KTS formulation delivered satisfactorily results and an even superior convergence
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rate, with respect to standard FEA, for 2D deformable bodies in large deformation friction-

less sliding contact. However, this formulation is over constrained and thus leads to spurious

oscillations of contact tractions, especially close to the contact boundary region. These oscillations

due to mechanical contact being over constrained were also observed in De Lorenzis et al. [42]

GPTS-2hp formulation with penalty method (the magnitude of the oscillations increased with

the penalty parameter), Dimitri et al. [29] coupled the penalized GPTS-2hp formulation with the

smoothing post processing scheme of Sauer [18] to reduce the oscillations. Lu [40] also evaluated

both the GPTS-2hp and its two pass version.

Even though the GPTS is a good alternative to the non trivial NTS, at least in the IGA setting,

that requires the collocation of contact at physical points, this formulation renders the system

over constrained which leads to appearance of oscillations in the contact tractions. An alternative

is perhaps to reduce the number of Gauss points involved through a patch-wise placement of

quadrature points. Doing this results in a fewer points, however this may lead to an under

constrained system [40]. Mortar formulations on the other hand provide a consistent treatment

of the contact constraints. Here, the mortar projected penetration and traction are computed at

each control point of the slave surface. Unlike in the FEM setting, these mortar constraints do

not possess an immediate physical meaning due to the non interpolatory nature of the control

points, however this has no bearing on the consistent performance of the algorithm. The mortar

formulation in IGA setting has been presented in Temizer et al. [38], Kim and Youn [65] for

friction-less contact in 2D setting, Temizer et al. [39], De Lorenzis et al. [42, 66], Dittmann et al.

[67] for frictional contact in both 2D and 3D setting, and Seitz et al. [68] presents the more

efficient dual mortar isogeometric formulation for the the treatment of friction-less contact.

The trade off of using these far superior, in terms of accuracy, and highly smooth NURBS/BSplines

based isogeometric finite element methods is computational cost, they are more expensive to

process. In the efforts to reduce the computational cost of these methods, a non Galerkin

isogeometric collocation (IGA-C) method was developed by Auricchio et al. [69] and extended

into multi-patch framework in Auricchio et al. [70] - see Schillinger et al. [71] for the cost

comparison of the IGA-C methods to Garlekin IGA and the standard C0 FEA. This method has

been used for treatment of contact problems : De Lorenzis et al. [72] used the collocation method

for the treatment of Neumann boundary conditions and enforcement of contact constraints -

they proposed a GPTS-2hp formulation enhanced collocation approach that passes the patch

test to machine precision which delivered accurate result, improved robustness, even for highly

non uniform meshes (unlike the original IGA-C) - , Kruse et al. [73] used the enhanced IGA-C,

with a GPTS-2hp and penalty method, for large deformation frictional problems, Nguyen-Thanh

et al. [74] developed an isogeometric meshfree collocation method, with Greville collocation

points, and applied it to frictional contact problems.

Other interesting contributions in IGA, especially from the implementation point of view, which

are useful for numerical simulation of contact problems : (1) Nguyen et al. [75] gives an overview

of the IGA method and the aspects of the computational implementation, these include the

discretization techniques discussed above, the collocation methods, and the implementationally
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friendly NURBS/BSplines that are suitable for existing FE codes derived via the Bézier extraction

operator first introduced in Borden et al. [76], Borden [77], (2) to facilitate local refinement

capabilities TSplines based IGA methods have been developed by Dimitri et al. [29], and also

TSplines coupled with the Bézier extraction operator to formulate a data structure suitable for

existing FE codes were developed in Scott et al. [78], Dimitri [79], de Borst and Chen [80], and

applied to contact problems by Matzen [1].

Where impact-contact is concerned, the contact interaction is dynamic. Therefore, in addition

to the spatial discretizations described above, a temporal discretization of the equations of

motion is required. The books of Zhong [4], Laursen [5], Wriggers [3] provide a good fundamental

knowledge on the numerical implementation of these problems. In most dynamic problems, the

most useful information is contained within the transient phase which typically lasts a duration

of a few microseconds, i.e. car crash and blast type loads. For these type of applications, the

conditionally stable explicit time integration schemes are recommended. In fact, even if the

unconditionally stable implicit schemes are used, a minimum time step size is still imposed to

prevent the risk of failure to capture crucial transient characteristics of the solution. Implicit

Newmark schemes may be appropriate for low frequency dynamic problems, like vibration of

machines or structures under earthquake excitations [3]. More information on friction-less and

frictional contact impact problems can be found in Laursen [5], Hughes et al. [81], Laursen and

Chawla [82], Armero and Petocz [83] to name a few. Some applications of contact-impact in

IGA framework include : a NURBS based continuum approach developed in Lu and Zheng [84]

for cloth simulation with an explicit time integration scheme for the dynamic response of the

contact impact problem, and Otto et al. [85] developed an explicit contact formulation, based

on 3D spectral elements for the bulk domain with an auxiliary NURBS layer in between the

bodies to allow for a smooth contact formulation, for treatment of the impact problem and the

subsequent wave propagation.

1.3 Objectives

As mentioned is section 1.1, many technical devices exhibit the phenomena of contact. In

industrial applications the characterization of these devices, in terms of optimization of the

efficiency or reducing adverse effects, requires a good understanding of the contact problem.

From the numerical simulation standpoint, a sufficiently accurate recovery of the contact stresses

distribution, is paramount. Access to these stresses is an important entry point, especially in

quantifying adverse effects that may be detrimental, for simulating phenomena such as initiation

and propagation of vibrations induced by friction, generation and acoustic radiation of noise.

The use of isogeometric approaches proves advantageous for these applications. Hence the

main objective of this work : to develop an advanced isogeometric based numerical tool for the

resolution of contact problems, and thus allowing us access to good quality, accurate contact

stresses.
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However, since in IGA the computation mesh is not necessarily on the physical geometry

(typically the solution is computed on the control points and these points may not necessarily

live on the physical geometry), methods that require collocation of contact integrals on the

physical points (i.e. NTS) can be limiting. Moreover, the higher inter-element continuity in

NURBS/BSplines based IGA leads to the overlapping of the basis and interior computation

points being shared among-st neighboring elements. For this reason IGA can be cumbersome

to implement and its data structures do not fit into existing FE codes. In this work we aim

to address these drawbacks in a holistic manner, and propose a scheme not only with data

structures suitable for existing FE codes, but also capable to accommodate the more simple and

flexible, from the practicality point of view, point collocation contact formulations.

1.4 Scope of Work

The thesis is split into two parts. The first part, which comprises of chapters 2 and 3, is dedicated

to the development of the isogeometric based numerical scheme for the treatment of contact

problems. In the second part, the remainder of the thesis, the main focus is on the application

of the developed numerical scheme.

Unlike classical FEM and Boundary Element Method (BEM), which are based on the notion

of elements and nodes, IGA requires the consideration of control points and knots. Familiarity

with the numerical aspects of this method and its application for structural problems is essential.

Hence the interest of chapter 2 of this manuscript in which an in-depth review of the IGA method,

from its fundamental geometric computer aided design point of view, and its characteristics

from the numerical analysis point of view, is conducted. With the aim to specifically address the

shortcomings of the NURBS-based IGA, particularly for surface/surface interaction problems,

we propose a Bézier based scheme, suitable for existing FE codes. Essentially the geometry

is discretized with Bézier elements. To study the characteristics of this Bézier based scheme,

the scheme is used for the resolution of some classical problem in linear statics. The developed

Bézier based scheme is compared to a BSplines (NURBS with identity weights) IGA approach,

in terms of its performance, the computational efficiency and quality of the solution.

Chapter 3 entails first the review of the general formulation of contact problems, from the

governing equations to the constitutive behavior in the contact interface. Next we detail the

variational formulation derivation for the full frictional contact/impact problem, which is then

followed by regularization and enforcement of contact constraints and a discussion of the

important aspects of contact problems with regards to numerical implementation. Based on this

review of contact computational mechanics conducted in sections 3.2 to 3.5, section 3.6 mainly

entails the development of the contact algorithm based on the Bézier approach. A full, detailed

discrete form, and its linearization is given here. From the geometry spatial discretization with

Bézier elements, the time discretization of the friction law, contact interface discretization with

NTS, the local search algorithm (contact pairs) and the projection point algorithm, and finally
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the global temporal discretization, is given.

In chapter 4 we use the developed contact algorithm for the treatment of friction-less and

frictional problems in 2D, with the models verified and validated against analytical solutions.

The results obtained using the Bézier based approach are also compared to numerical results

obtained using the standard C0 FEA. This versatility and usefulness of this developed scheme is

demonstrated in the penultimate chapter (chapter 5) where the developed scheme is extended

to vibro-acoustics for the analysis of dynamics, explicit, and acoustic response of mechanical

structures, particularly a forced-vibrating plate. Here, the NTS contact formulation scheme

developed is coupled with the Rayleigh integral equation to analyze the vibratory behavior of

impacted plates and the resulting acoustic radiation. In chapter 6 the forced vibrating plate

considered in chapter 5 is again studied, but now with an implicit integration scheme coupled

with an analytical contact force. The results obtained are used to correlate the full complete

model used in the simulation in chapter 5. The model is then extended to the treatment of

acoustic radiation due to a moving force. Finally, in chapter 7 we summarize the characteristics

of the developed scheme, as well some findings from the numerical simulations conducted. A

brief discussion on some of the limitations of this scheme, and how we could address these in

the future, is also included here.
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Development of Bézier-based
Isogeometric Analysis



2
Finite Element Method based on

Isogeometric Analysis

2.1 Introduction

In classical FEM framework the mesh is created from CAD. This leads to adopting a completely

different geometric description for analysis. The implication is that the geometry is often replaced

by one that is only approximate. Once the mesh is generated should the user desire refinement,

communication with the CAD system during each refinement iteration is required and often

times this link is unavailable [12, 13]. This perhaps explains why mesh construction is a costly,

time consuming process. Furthermore the geometric approximation during mesh generation can

lead to accuracy problems as a result of geometric errors.

Isogeometric analysis was introduced by Hughes et al. [12] with the primary goal to be geometri-

cally exact no matter how coarse the mesh. This method also aimed to simplify mesh refinement

by eliminating the need to communicate with the original CAD geometry, as well as to enable a

tighter connection between CAD and FEA (see fig. 2.1 [86]). Within the IGA framework, the

same higher order and smooth basis functions used for the representation of the exact CAD

geometry are used for the approximation of the solution fields - hence the term isogeometric

[12, 13].

This chapter will serve as an introduction into the IGA framework and how this method fits

into the existing more familiar standard C0 FEA. First we detail the fundamentals of IGA

[12, 13, 24, 75] which includes a study on the different parameterization techniques of this

method as well the Bézier extraction concept of Borden et al. [76], Borden [77] which allows for

the development of the implementationally friendly isogeometric methods which are suitable

for existing FE codes data structures. This is followed by the finite element formulation of the

isogeometric methods and the development of the Bézier-based IGA approach in Khanyile et al.

[87] which couples the Bézier extraction concept of Borden et al. [76] and the full transformation

method of Kamoso [88]. Finally we demonstrate this Bézier-based IGA approach and compare



2.2 Isogeometric Analysis Fundamentals

CAD

(NURBS/BSplines)
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Figure 2.1 – Hughes’ Proposal : the link between actual geometry and analysis geometry for

both IGA and classical FEM, ie, IGA refinement vs classical FEM.

this method, in terms of performance, to the BSplines-based IGA approach.

2.2 Isogeometric Analysis Fundamentals

Isogeometric analysis is geometrically driven and was inspired by CAD. Therefore to fully

comprehend this method it is paramount to have a clear understanding of Computer Aided

Geometric Design (CAGD) related discretization technology. More specifically, Bézier, BSplines

and NURBS parameterization or rather geometric design techniques, are studied as these are

the most commonly used in geometric design [12, 13]. It is worthwhile to note irrespective of

the type of technique used in construction of CAD, there exist common characteristics in design

of curves, surfaces or solids, namely [89, 90] :

• Control points - preselected by the user ; the polyline joining these points, the control

polygon (control net 2D, a polyhedron in 3D), is an exaggerated shape of the desired

curve/surface/solid - see fig. 1.2.

• Basis functions - these are the blending functions of the model

The aim of this section is to outline the fundamentals of IGA, more specifically the important

characteristics of this method, and how this method fits into the existing standard FEA framework.

For a more broader and detailed introduction into IGA interested readers are referred to the

work of Hughes et al. [12], Cottrell et al. [13], and the work of Nguyen et al. [75] and Agrawal

and Gautam [24] for a simplified approach and implementation aspects. Farin [89] and Piegl and

Tiller [90] provide a comprehensive review of the underlying geometric concepts and algorithms,

particularly for the geometric CAD, an important basis for IGA.
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2.2.1 Bézier and Bernstein Polynomials

Bézier parameterization uses Bernstein polynomials as a basis. The univariate Bernstein basis of

order p is defined by

Bp
i (ξ) =

(
p

i

)
ξi(1− ξ)p−i (2.1)

where ξ ∈ [0,1] represents the parameter space and the binomial coefficient in eq. (2.1) is given

by eq. (2.2) (
p

i

)
=


p!

i!(p−i)! if 0 ≤ i ≤ p

0 otherwise
(2.2)

An important property of the Bernstein polynomials is that they satisfy the recursion given by

eq. (2.3) with condition in eq. (2.4).

Bp
i (ξ) = (1− ξ)Bp−1

i (ξ) + ξBp−1
i−1 (ξ) (2.3)

B0
0(ξ) ≡ 1 (2.4)

Additionally, Bernstein polynomials form a partition of unity. That is,

ncpts∑
i=1

Bp
i (ξ) ≡ 1 (2.5)

A Bézier curve of the same order p can then be defined as

C(ξ) =
ncpts∑
A=1

Bp
A(ξ)PA (2.6)

In eq. (2.6) PA contains coordinates of the control points, and ncpts = p + 1 is the number of

control points in eqs. (2.5) and (2.6).

Properties of a Bézier curve include [89] :

(1) geometry invariance property - a consequence of partition unity leading to shape invariance

under affine transformations

(2) convex hull property - for all ξ in the parameter space the Bézier curve lies within the

convex hull of the control polygon

(3) variation diminishing property - no plane can intersect with the Bézier curve more than

it intersects the control polygon - this however has not been proven for surfaces/solids

(4) endpoint interpolation - in a similar manner to Lagrange polynomial commonly used in

standard FEM, Bézier curve is interpolatory at the extremities - Figure 2.2 demonstrates

this property
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Figure 2.2 – A construction of a cubic Bézier curve with the corresponding basis functions,

ncpts = 4, p = 3 : (a) Bernstein basis functions, and (b) the constructed Bézier curve.

Furthermore, it is worth noting that a derivative of a Bézier curve is a Bézier curve, and the

first derivative of the Bernstein polynomials is given by eq. (2.7)

dBp
i (ξ)

dξ = p
[
Bp−1
i−1 (ξ)−Bp−1

i (ξ)
]

(2.7)

with eq. (2.8) holding

Bp−1
−1 (ξ) ≡ Bp−1

p (ξ) ≡ 0 (2.8)

One major advantage of the Bézier technique is the relative easeness when it comes to the

implementation. However this technique can be restrictive as the order of the basis functions

(Bernstein polynomials) is strongly tied to the number of control points (p = ncpts−1), which can

be disadvantageous. Moreover this technique has a global support across the parameter space ;

changing one control point changes the entire curve - see fig. 2.3 where a small perturbation

of the upper right control point has resulted in the complete change of the shape of the curve

(from green curve to blue curve). Another disadvantage of Bézier parameterization, like any

parameterization based on polynomials, it cannot exactly represent circles, ellipses and conical

shapes [89]. Multivariate Bernstein basis functions are formed from a tensor product of the

univariate basis. Suppose a d-dimensional parametric space is considered and univariate basis

functions in each parametric direction d are denoted by Bp
i,pd

, multivariate basis functions are

obtained from eq. (2.9)

Bp
i (ξ) =

nd∏
d=1

Bp
i,pd

(ξd) (2.9)

where nd = 2 (bivariate) or nd = 3 (trivariate). Multivariate basis function inherit the key

properties of the univariate basis. Surfaces and volumes, similar to curves, are then obtained

from a linear combination of the multivariate basis functions and the corresponding control

points.
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Figure 2.3 – Bézier discretization global support demonstration on a cubic Bézier curve, ncpts = 4,

p = 3.

2.2.2 BSplines

In terms of design freedom, Bézier curves can be restrictive because the number of control points

drives the order of the curve. This means that higher order curves are required to satisfy a

large number of constraints, in this case the number of control points required (ncpts = p+ 1).

Numerically, higher order polynomials are inefficient to process, stiff from the design point of

view, and can be quite unstable [12, 22]. BSplines, which are piecewise polynomials, are then an

appropriate alternative to remedy this limitation of the Bézier technique [89].

In order to construct a BSplines curve, a knot vector is required. A knot vector is a sequence of

parameter values, non-decreasing set, that determine where and how the control points affect

the BSplines defined shape/curve. Equation (2.10) defines a univariate knot vector.

Ξ =
{
ξ1, ξ2, ξ3, · · · ,ξncpts+p+1

}
(2.10)

Again ncpts is the number of basis functions as well as control points, and p is the order of

the polynomial basis function. Each knot span [ξi ξi+1], with ξi 6= ξi+1, serves the same role

as elements in classical FEM. Unlike Bézier basis functions which have a global support over

a single curve, BSplines basis functions are defined globally on a patch [89, 90]. A patch is a

collection of a number of elements which is equal to the number of knot spans in a knot vector

i.e. eq. (2.10) defines a single patch.

For a given knot vector Ξ, the corresponding BSplines basis functions Np
i (ξ) are defined by the

Cox-de-Boor formula in a recursive manner, such that

Np
i (ξ) = ξ − ξi

ξi+p − ξi
Np−1
i (ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
Np−1
i+1 (ξ) (2.11)
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In eq. (2.11) the fractions of 0/0 are defined as zero, and

N0
i (ξ) =

1 if ξi ≤ ξ < ξi+1

0 otherwise
(2.12)

Properties of BSplines basis functions include (1) partition of unity, (2) linearly independent,

(3) each basis function is supported by p+ 1 knot spans over the interval [ξi ξi+p+1].

An important characteristic to note about BSplines basis functions is that they are non in-

terpolatory at the control points. They exhibit a Cp−k-continuity across knots ξi, where k

is the multiplicity of the knot entry (i.e. how many times the specific knot entry appears

in a knot vector). In practice, usually open knots - knot vectors within which the first and

last entry have a multiplicity k = p + 1, are used [13, 89]. This then means that the desi-

gned BSplines curve is interpolatory at the extremities - this is what is known as a clamped

BSplines curve. For example consider quadratic BSplines basis function (p = 2), knot vector

Ξ =
{

0 0 0 1
4

1
2

3
4 1 1 1

}
- fig. 2.4 demonstrates how the continuity of the basis function

decreases as the knots are repeated.

A BSplines curve of order p is then defined as

C(ξ) =
ncpts∑
A=1

Np
A(ξ)PA = PTN (2.13)

Similar to Bézier curves, BSplines curves also possess geometry invariance property, strong

convex hull property, as well variation diminishing property. In general they are non-interpolatory

on the interior control points, and will interpolate the extremities if the knot vector is open

(clamped BSplines). Unlike Bézier curves, BSplines have quasi-local support, that is, if change

is made on a specific control point, only the section of the curve that is in the vicinity will be

changed [89] - this is the quasi-local modification property. Moreover, similarly to Bézier basis

functions, BSplines basis are polynomials and therefore cannot exactly represent conic sections.

Figure 2.5a shows an example of a quadratic (p = 2) BSplines curve and fig. 2.5b shows its basis

functions. It can be seen from fig. 2.5a that the BSplines curve does not interpolate interior

control points (interior knots have multiplicity of 1) ; the ends of the curve however are clamped.

Multivariate Bsplines basis functions are obtained from a tensor product as well. Figure 2.6

shows an example of a BSplines surface.

Moreover, Bézier is a special case of BSplines with all knots in the vector repeated p+ 1-times.

In essence, a BSplines curve can be seen as a composite Bézier curves [89]. The use of composite

Bézier curves, rather than a single Bézier curve, can elevate the major drawback of the Bézier

technique - the tight dependence of polynomial order to the number of control points : if a curve

to be modeled has a highly complex shape, its Bézier representation will have a prohibitively

high order [89].
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Figure 2.4 – Effect of knot multiplicity on the continuity of basis functions, p = 2 : (a) Ξ ={
0, 0, 0, 1

4 ,
1
2 ,

3
4 , 1, 1, 1

}
, (b) Ξ =

{
0, 0, 0, 1

4 ,
1
4 ,

1
2 ,

3
4 , 1, 1, 1

}
, (c) Ξ =

{
0, 0, 0, 1

4 ,
1
4 ,

1
2 ,

1
2 ,

3
4 , 1, 1, 1

}
,

and (d) Ξ =
{

0, 0, 0, 1
4 ,

1
4 ,

1
2 ,

1
2 ,

3
4 ,

3
4 , 1, 1, 1

}
.

Thus, for any given BSplines control polygon, a composite Bézier can be derived therefore yielding

a composite Bézier representation of said curve. Farin [89] demonstrated this transformation

for C1 and C2 BSplines curves. Figure 2.7 shows how the BSplines global parametric space (ξ)

transforms to the local Bézier parameter space (ξ̂).

An added advantage of transforming from BSplines control polygon to composite Bézier is that

the represented curve will enjoy the local control property exhibited by Bézier curve (BSplines

have a quasi local support - the support spreads over several knot spans - whereas the Bézier

representation will have global control on a single knot span). Naturally more effort will be

required for composite Bézier representation in terms of geometry preparation as will be seen

from the Bézier decomposition algorithm that describes the process of transforming a BSplines

geometry into a composite Bézier geometry detailed in section 2.2.4. In fig. 2.8 we can see how a

highly complex BSplines curve is transformed into composite Bézier curves.
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Figure 2.5 – Quadratic Bsplines curve with its basis functions, Ξ =
{

0, 0, 0, 1
3 ,

2
3 , 1, 1, 1

}
and

p = 2 : (a) a BSplines curve, and (b) BSplines basis functions.

(a) (b)

Figure 2.6 – BSplines surface with Ξ =
{

0,0,0,0,13 ,
2
3 ,1,1,1,1

}
in both ξ,η-direction : (a) the

control net, and (b) the constructed surface, cubic polynomials used in both directions.

For the example shown in fig. 2.8, the BSplines representation consists of : 16 knots in the open

knot vector Ξ =
{

0〈p+1〉,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1〈p+1〉
}

(therefore 9 knot spans ; (•)〈p+1〉

implies knot with p+ 1 multiplicity), 12 control points, the order of the basis is cubic, and the

parameter space is ξ = [0, 1]. In transforming this curve into a composite Bézier curve, the

number of control points increases from 12 to 28. Each knot span supports a single cubic Bézier

curve with a local parameter space ξ̂ = [0, 1].

2.2.3 Non Uniform Rational BSplines (NURBS)

Even though BSplines elevate the stiffness, in terms of design flexibility, of the Bézier discretization

due to the tight constraints between the number of control points and the order of the basis
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ξ0 ξ1 ξ2 ξ3 ξ4 ξ5

ξ̂ = 0 ξ̂ = 1

Figure 2.7 – Decomposition of BSplines curve onto composite/piecewise Bézier curves.
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Figure 2.8 – Transformation of a BSplines curve into composite Bézier curves (p = 3) : (a)

BSplines curve representation, and (b) the composite Bézier curve representation.

functions, they are still polynomials and therefore are not capable of exact construction of conic

sections. NURBS (Non Uniform Rational BSplines), a projective transformation of BSplines,

can elevate the aforementioned restriction. A univariate NURBS basis function is given by

Rp
i (ξ) = Np

i (ξ)wi∑n
j=1N

p
j (ξ)wj

= Np
i (ξ)wi
W (ξ) (2.14)

where Np
i (ξ) are the BSplines basis functions (see eq. (2.11) and eq. (2.12)) and wi > 0 are

the corresponding weights. Weights indicate the effect of corresponding control points (and

therefore the basis) to the final shape of the constructed geometry ; weights are an additional

parameter for shape modification [13, 89, 91]. BSplines are a specific case of NURBS with unity

weights. NURBS basis functions inherit key properties of BSplines basis, namely : partition of

unity, non-negativity, Cp−k-continuity across knots ξi, and quasi local support [89]. Similarly
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to Bézier and BSplines, multivariate NURBS basis functions are obtained in a tensor product

form. Figure 2.9 shows quadratic and cubic NURBS basis functions, with w =
{

1, 1√
2 ,1
}

and

w =
{

1,13
(
1−
√

2
)
,13

(
1 +
√

2
)
,1
}

, respectively.
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Figure 2.9 – NURBS basis functions : (a) quadratic basis, Ξ = {0,0,0,1,1,1}, and (b) cubic basis,

Ξ = {0,0,0,0,1,1,1,1}.

A NURBS curve is constructed from a linear combination of basis functions and control points

as

C (ξ) =
ncpts∑
A=1

Rp
A (ξ) PA (2.15)

NURBS curves also exhibit the same characteristics as BSplines curves : continuity, convex hull

property, local modification property, as well as the variation diminishing property [89].

Figure 2.10 shows a quarter circle analytical shape with its reconstruction using NURBS (weights

and knot vectors are those used in fig. 2.9) and a BSplines reconstruction achieved by setting the

weights to unity (w = 1), for p = 2 and p = 3. It can be seen that NURBS exactly represent the

quarter circle (generated shape coincides with the analytical shape), whereas the BSplines curve

is only exact at the extremities. As is traditionally observed, increasing the polynomial order

improves the approximation ; the cubic BSplines representation is much closer to the analytical

shape.

It is however possible to minimize the BSplines approximation error at the interior points.

This can be achieved through the least squares interpolation - forcing the BSplines curve to go

through a set of predetermined points that live on the analytical shape in this case the quarter

circle in fig. 2.10. This then entails in finding corresponding control points to ensure that the

curve will go through the chosen physical points. For an exact interpolation, p + 1 physical

points are sufficient. Inverting the relation in eq. (2.13) amounts to

P = N−1(ξ)C(ξ) (2.16)
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Figure 2.10 – The comparison of NURBS and BSplines approximation of a quarter circle,

together with the analytical shape : (a) quadratic approximation, and (b) cubic approximation.

The basis functions N(ξ) and the analytical shape physical points (indicated by C(ξ)) are

evaluated at the same parameter values (uniformly distributed over [0,1] for this example). Fi-

gure 2.11 shows the reconstructed shape using the exact interpolation. A significant improvement

is observed in terms of approximation error, albeit the representation is still not exact.
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Figure 2.11 – BSplines reconstruction of a quarter circle using the exact interpolation : (a)

quadratic approximation, and (b) cubic approximation.

As is observed in fig. 2.10, in line with literature, elevating the order of the polynomial basis

functions (BSplines) further improves the approximation. This is what is known as the degree

elevation which is analogous to the p-refinement in standard FEM [13, 75, 89, 90]. Another

possibility to improve the approximation is through knot insertion (refining the knot vector) ;

this is analogous to the h-refinement in standard FEM [13, 75, 89, 90]. There exists another

refinement technique unique to IGA, known as the k-refinement, which is a combination of

the knot insertion and degree elevation [13, 75]. In essence, it is possible to obtain an excellent
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discretization by simply using BSplines with refinements, however this can be at the expense of

resolution time efficiency as this can increase the number of degrees of freedom in the system.

Even though NURBS provide the most advantage with regards to exact construction of the

geometry, they are quite cumbersome, in terms of information required, to implement. A lot of

effort is required for the problem setup. BSplines, with the right combination of refinements, can

be a viable option for achieving acceptable accuracy levels with a little less effort required on

problem setup as compared to NURBS. However, the most significant drawback of both NURBS

and BSplines, due to their overlapping nature (Cp−k-continuity between elements), they can not

fit into existing FE data structures automatically [77, 76].

Table 2.1 shows the interaction of basis functions and control points on each knot span for

Bézier, BSplines, and NURBS.

Element Bézier BSplines/NURBS

1
2
...

nelem − 1
nelem

P0 P1 P2 P3

P3 P4 P5 P6
...

...
...

...

Pncpts−6 Pncpts−5 Pncpts−4 Pncpts−3

Pncpts−3 Pncpts−2 Pncpts−1 Pncpts

P0 P1 P2 P3

P1 P2 P3 P4
...

...
...

...

Pncpts−4 Pncpts−3 Pncpts−2 Pncpts−1

Pncpts−3 Pncpts−2 Pncpts−1 Pncpts

Table 2.1 – Support for the basis functions (Bézier, BSplines/NURBS), p = 3.

Borden et al. [76] proposed an implementationally convenient NURBS (which can be adapted to

BSplines) FE data structures derived from the Bézier extraction concept. In a similar manner as

in fig. 2.7, the Bézier extraction operator allows for the extraction of Bézier elements which only

have global control on each element from NURBS/BSplines. Essentially the NURBS/BSplines

topological and global smoothness information are localized to the element level and can be

processed in the similar manner as the standard FEM Lagrange basis. In doing this, only the

shape function routine requires modification and the rest of the finite element program remains

unchanged. This is further discussed in the next section.

2.2.4 Bézier Extraction Operator

One characteristic that is shared amongst the IGA discretization technologies discussed above is

the partition of unity of the basis functions as well as non-negativity. The geometries constructed

using the 3 techniques also enjoy a strong convex hull property as well as variation diminishing

property in terms of one dimensional geometries. Where, similarly to Lagrange basis in FEM,

Bézier basis functions have a C0-continuity across elements, BSplines and NURBS have a Cp−k-

continuity. Bézier discretization interpolates inter-elemental boundary control points whereas

BSplines and NURBS interpolate the patch boundary.
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Figure 2.12 displays a comparison of basis functions for the IGA discretizations and standard

FEM Lagrange basis for a 2-elements patch defined by knot vector Ξ = {0,0,0,0.5,1,1,1}
[22, 24]. As discussed, the undesirable characteristic of NURBS and BSplines with regards to

implementation, is that the basis functions are smooth on the patch level which makes them

hard to integrate into existing FE codes. In this section, we discuss Borden’s proposal [76] for

an element structure for IGA that can be incorporated into the existing FE codes through the

use of a Bézier extraction operator.
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Figure 2.12 – Comparison of IGA discretization technology with the classical FEM Lagrange

polynomials : a) Lagrange basis functions, b) Bernstein basis functions, c) BSpline basis functions,

d) NURBS basis functions with w = {1,0.3,0.5,1}.

The Bézier extraction operator maps piecewise Bernstein basis onto BSplines basis thus allowing

for the use of C0 Bézier elements as the FE representation of NURBS/BSplines. Bézier elements

of a NURBS geometry are computed through the use of the Bézier decomposition process (see

Piegl and Tiller [90] for the algorithm), which typically requires all interior knots be repeated

until they have a multiplicity k = p + 1. However for C0-continuity, multiplicity k = p is

sufficient.

To perform the Bézier decomposition - suppose Ξ =
{
ξ1, ξ2, ξ3, · · · ,ξncpts+p+1

}
is a given knot

vector and it is desired to insert a knot ξ̄ ∈ [ξr,ξr+1[ with r > p ; it follows that :
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- ncpts + 1 new basis functions are required for the new knot vector

Ξ =
{
ξ1, ξ2, ξ3, · · · ,ξr,ξ̄,ξr+1, · · · ,ξncpts+p+1

}
- m = ncpts + 1 new control points are derived from the original control points as follows

P̄A =


P1 if A = 1
αAPA + (1− αA) PA−1 if 1 < A < m

Pn if A = m

(2.17)

where

αA =


1 if 1 ≤ A ≤ r − p
ξ̄−ξA

ξA+p−ξA
if r − p+ 1 ≤ A ≤ r

0 if A ≥ r + 1

(2.18)

To compute the Bézier extraction operator for a given knot vector of size ncpts + p+ 1 and ncpts

control points that define a BSplines curve : first each interior knot must be repeated p-times.

Suppose {ξ̄1,ξ̄2, · · · , ξ̄m} is a set knots to be inserted to produce a Bézier decomposition ; for

each new knot ξ̄j, define αjA, A = 1,2, · · · , ncpts + j to be the Ath α as is defined in eq. (2.18).

Defining Cj ∈ R(ncpts+j−1)×(ncpts+j) as

Cj =



α1 1− α2 0 · · · 0
0 α2 1− α3 0 · · · 0
0 0 α3 1− α4 0 · · · 0
...

0 · · · αncpts+j−1 1− αncpts+j


(2.19)

To compute corresponding new control points created by knot refinement eq. (2.17) can be

rewritten in matrix form as

P̄j+1 =
(
Cj
)T

P̄j (2.20)

with P̄1 = P the first/original set of control points and the final set of control points for the Bézier

decomposition are given by Pbez = P̄m+1, respectively. Defining CT = (Cm)T (Cm−1)T · · · (C1)T ,

Bézier elements controls points then can be computed as

Pbez = CTP (2.21)

It follows then that

N = CBbez (2.22)

where N is the matrix containing BSplines basis functions, Bbez the matrix containing the Bézier

basis functions, and C is the Bézier extraction operator. The computation of C requires only

the knot vector. The Bézier extraction operator therefore does not depend on the control points

or basis functions. Note that in practice the global extraction operator C is never computed,

rather algorithms utilize local, element form, extraction operators Ce.
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For surface and volume elements, the univariate element extraction operators in the ξ, η, and ζ

direction are Ci
ξ, Cj

η, and Ck
ζ . The multivariate element extraction operator then becomes

Ce
A = Ci

η ⊗Cj
ξ (2.23)

and

Ce
A = Ci

ζ ⊗Cj
η ⊗Ck

ξ (2.24)

for surfaces and volumes, respectively.

A demonstration of the Bézier extraction process as well as its application to NURBS is detailed

in Borden et al. [76]. Figure 2.13 shows a quadratic 4-elements BSplines surface representation

of a quarter annulus and its decomposition into Bézier elements using the extraction operator.
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Figure 2.13 – Demonstration of Bézier extraction process of a 4-element BSplines quadratic

surface : (a) the original BSplines surface, and (b) extracted Bézier elements.

2.3 The Isogeometric Finite Element Formulation

The purpose of performing Bézier extraction is to obtain an element structure that can be

incorporated into existing FE codes [76]. In this section we present the isogeometric finite

elements formulation, particularly the Bézier elements extracted as detailed in the previous

section and how these fit into the more standard FEM. In the formulation presented we go

one step further and address the limitations of the isogeometric methods stemming from the

non-interpolatory nature of the basis functions : that is, typically in IGA, control points at

which we seek the solution do not necessarily live on the actual geometry. This, as a result, can

lead to difficulties during treatment of boundary conditions.
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2.3 The Isogeometric Finite Element Formulation

2.3.1 Bézier Elements and the Finite Element Framework

Recalling that in IGA the analysis geometry, in terms of the discretization, adopts the same

mapping as the CAD geometry description, the physical points of the discretized geometry are

then defined by the mapping :

x(ξ) =
ncpts∑
A=1

PANA(ξ) (2.25)

Note : control points ( PA ) serve the same role as nodes in standard FEM.

The entry point for FEM is the weak form of the problem. Suppose U is the space of admissible

solutions and U0 is the space of weighting functions w, the weak formulation writes as

Find u ∈ U such that

a(w,u) = b(w), ∀w ∈ U0 (2.26)

where a( · , · ) and b( · ) are bi-linear and linear forms, respectively.

Garlekin’s method is then used to construct finite-dimensional approximations of U and U0 as

subspaces Uh ⊂ U and Uh0 ⊂ U0 from the geometric basis. The Garlekin formulation writes as :

Find uh ∈ Uh such that

a(wh,uh) = b(wh), ∀wh ∈ Uh0 (2.27)

Invoking the isoparametric concept, the fields uh and wh can be written as

wh =
ncpts∑
A=1

cANA (2.28)

uh =
ncpts∑
B=1

uBNB (2.29)

cA and uB are control variables (coefficients at the control points). Substituting the above into

the Garlekin formulation, we get

a(NA,NB) = b(NA) (2.30)

in matrix form, the problem writes as

Ku = F (2.31)

where

K = a(NA,NB) (2.32)

u = {uB} (2.33)

F = b(NA) (2.34)

K is the global stiffness matrix and F is the global force vector (these can be computed

by numerical integration - i.e. through Gaussian quadrature - over each Bézier element and

assembling the elemental contributions into their global counterparts), and u is the solution

vector (computed at the control points).
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2.3 The Isogeometric Finite Element Formulation

In standard FEM integration is performed on the parent element space, usually a bi-unit element

in 2D or a unit cube in 3D, and then mapped onto the physical space. In isogeometric framework

integrals are first pulled back on to the parameter space, and then to the parent space [13, 75, 76]

as is shown in fig. 2.14. Therefore the evaluation of the global basis functions and their derivatives,

as well as the Jacobian determinant of the mapping from the physical space to the parent space,

is required for each quadrature Gauss point in the parent element.

Control points PA

ξ̃

η̃

−1
−1

1

1 S(ξ,η) = ∑ncpts
A=1 N

p
A(ξ,η) PA

Ξ = {ξ1,ξ2,ξ3,ξ4,ξ5,ξ6,ξ7}
= {0,0,0,1/2,1,1,1}

H
=
{η

1,
η 2
,η

3,
η 4
,η

5,
η 6
,η

7}
=
{0
,0
,0
,1
/2
,1
,1
,1
}

Np
A(ξ)

N
p A
(η

)

ξ

0 0.5 1

η

0
0.

5
1

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7

η1

η2

η3

η4

η5

η6

η7

INDEX SPACE

PARAMETER SPACE

PHYSICAL/CONTROL SPACEPARENT SPACE

Classical FEM

Control

mesh

Physical

mesh

Figure 2.14 – Different spaces considered in the context of BSplines-based IGA : from the

physical space to control space to parameter space finally the parent space.

Recall that the global shape functions may be computed from the Bernstein basis and extraction

operator as N = CBbez. In elemental form this becomes

Ne = CeBe
bez (2.35)

and the derivatives with respect to the parametric coordinates given by eq. (2.36)

∂Ne

∂ξ
= Ce∂Be

bez

∂ξ
(2.36)
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2.3 The Isogeometric Finite Element Formulation

Derivatives of the basis functions with respect to the physical coordinates are computed as

∂Ne

∂x
= ∂Ne

∂ξ

∂ξ

∂x
(2.37)

with
∂ξ

∂x
=
[
∂x
∂ξ

]−1

=
[
Ce∂Be

bez

∂ξ
PT

]−1

(2.38)

Finally the determinant of the Jacobian detJ is computed as

detJ =
∣∣∣∣∣∂x
∂ξ

∂ξ

∂ξ̃

∣∣∣∣∣ (2.39)

If the Bernstein basis are redefined in an interval [−1,1], recursively they write as [76] :

Bp
i (ξ) = 1

2 (1− ξ)Bp−1
i (ξ) + 1

2 (1 + ξ)Bp−1
i−1 (ξ) (2.40)

with

B0
1(ξ) ≡ 1

and

Bp
i (ξ) ≡ 0 if i < 1 or i > p+ 1

With eq. (2.39) the mapping from parameter space into parent space is an identity. Finally the

determinant of the Jacobian is computed as

detJ =
∣∣∣∣∣∂x
∂ξ

∣∣∣∣∣ (2.41)

With this formulation detailed above, the solution is computed at control points which do

not necessarily interpolate the actual geometry and as previously mentioned this can pose

some difficulties during treatment of boundary conditions. In the next section, we introduce a

computational domain transformation method that allows us to directly compute for the actual

physical solution instead of the control solution.

2.3.2 Bézier-based Isogeometric Analysis

As mentioned in the previous section, in the IGA framework the solution is sought out at the

control points which do not necessarily live on the physical geometry. An additional step is then

required to recover the actual physical solution and this can be done through the mapping :

uphy =
ncpts∑
A=1

ucntrl
A NA (ξ) (2.42)

However, this non-interpolatory nature of IGA may pose some difficulties during the imposition

of boundary conditions. This is particularly the case when boundary conditions are prescribed

on boundaries not interpolated by the control points [13, 37, 72, 75, 92], for instance, the inner

and outer boundaries of the quarter annulus shown in fig. 2.13. Writing the system of equations
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2.3 The Isogeometric Finite Element Formulation

Ξ,H =
{

0,0,0,12 ,1,1,1
}

N(ξ) = C Bbez(ξ)

Pbez = CTP

ξ

0 0.5 1

η

0
0.

5
1

ξ

0 0.5 1

η

0
0.

5
1

Bézier Extraction

Figure 2.15 – Demonstration of the Bézier extraction process on a single patch 2D quadratic

(p = 2) BSplines surface containing 4 elements : ◦ - BSplines control points, • - additional control

points generated for the Bézier elements.

in eqs. (2.30) to (2.34) in terms of the physical solution can alleviate this difficulty. Taking

inspiration from the work of Kamoso [88] : suppose we have Bézier elements obtained through

the Bézier extraction process of a BSplines surface outlined in section 2.2.4 - see fig. 2.15.

Instead of computing the solution at the Bézier elements control points in fig. 2.15, here the

aim is to compute the solution directly at the physical points by performing a full computation

space transformation [93] - see fig. 2.16.

Bézier Transformation

Bphy
bez (ξ) =

[
Bbez

ˆ(ξ)
]−1

Bbez(ξ)

Figure 2.16 – Bézier transformation from the control mesh (left) to the physical mesh (right).
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2.3 The Isogeometric Finite Element Formulation

Using Bernstein polynomials as a basis, recalling that the physical variables can be obtained

from control variables as follows

uphy = Bbezucntrl (2.43)

Inverting the relation in eq. (2.43), for each element we can write the control variables in terms

of the physical quantities as

ucntrl = [Bbez]−1 uphy (2.44)

[Bbez]−1 is the Bézier inverse matrix. To demonstrate how the Bézier inverse matrix is incorpo-

rated in the system of equations : consider linear static equilibrium equations in weak form, for

each Bézier element this writes as∫
Ωe
σ : ε(δucntrl) dΩ−

∫
Γe

(δucntrl)T · t̄F dΓ = 0 (2.45)

Substituting eq. (2.44) into eq. (2.45), we then have∫
Ωe

[Bbez]−T
(
σ : ε(δuphy)

)
dΩ−

∫
Γe

(
[Bbez]−1 δuphy

)T
· t̄F dΓ = 0 (2.46)

Resolution of eq. (2.46) amounts to seeking the solution at physical points and with this

formulation, boundary conditions can be imposed directly. It remains however to define the

Bézier inverse matrix, that is, at which parameter values ξ is this matrix evaluated ?

To evaluate the Bézier inverse matrix, we can take inspiration from the isogeometric collocations

methods (IGA-C) where typically the BSplines Greville and Botella abscissae are used as

collocation points [70, 72, 94]. This is because the number of Botella and Greville points equals

to that of the control points. These points are defined as follows :

• Greville points are computed from the following

ξ̂i = ξi+1 + · · ·+ ξi+p
p

(2.47)

• Botella points ξ̂i are the abscissae of the maxima of the BSplines basis functions

with ξ̂i ∈ [0,1]. In fig. 2.17 we show the Greville and Botella points together with knot values of

a quadratic, p = 2, BSplines supported on knot vector Ξ =
{

0,0,0,13 ,
1
2 ,

2
3 ,1,1,1

}
.

Once we have the Greville and Botella points, we need to derive the equivalent of these points

for the Bézier description. To do this, recall that in the design of BSplines, the control polygon

has vertices
(
ξ̃i,di

)
where di are the control points [89]. Moreover BSplines possess the affine

invariance property, that is, the parameter space will transform at the same ratio as the physical

space. Since from Bézier extraction process we have

Pbez = CTP
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Figure 2.17 – Botella and Greville abscissae of BSplines basis supported on knot vector Ξ ={
0,0,0,13 ,
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2 ,
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3 ,1,1,1

}
.

The Bézier equivalent of the Greville and Botella points can be obtained through the same

transformation (Bézier extraction). Using the Bézier extraction operator CT , we can compute

the Bézier equivalent Greville and Botella points from eq. (2.48) as follows :

ξ̂bez = CT ξ̂ (2.48)

Finally, we perform a linear mapping of the obtained ξ̂bez on to [−1,1] preferred parameter space.

The resulting points are then be used to compute the Bézier inverse matrix.

To show an example of these Bézier equivalent points, again consider the BSplines basis in

fig. 2.17 consisting of 4 knot spans which is equivalent to 4 elements. We computed both the

Greville and Botella equivalent points for the clamped knot vector with quadratic basis functions

as well as with cubic basis functions. Table 2.2 and table 2.3 summarizes the results obtained.

Order Element1 Element 2 Element 3 Element 4

Quadratic, p = 2 −1 0 1 −1 0 1 −1 0 1 −1 0 1

Cubic, p = 3

−1
−1

3
+1

3
+1

−1
−1

3
+1

3
+1

−1
−1

3
+1

3
+1

−1
−1

3
+1

3
+1

Table 2.2 – Bézier equivalent Greville points computed from knot vectors Ξ =
{

0,0,0,13 ,
1
2 ,

2
3 ,1,1,1

}
for p = 2 and Ξ =

{
0,0,0,0,13 ,

1
2 ,

2
3 ,1,1,1,1

}
for p = 3.
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2.4 Application of Isogeometric Analysis to Linear Statics

Order Element1 Element 2 Element 3 Element 4

Quadratic, p = 2 −1 0.2 1 −1 −0.1952 1 −1 0.1952 1 −1 −0.2 1

Cubic, p = 3

−1
−0.2386
+0.4205

+1

−1
−0.3026
+0.3470

+1

−1
−0.3507
+0.3020

+1

−1
−0.4178
+0.2401

+1

Table 2.3 – Bézier equivalent Botella points computed from knot vectors Ξ =
{

0,0,0,13 ,
1
2 ,

2
3 ,1,1,1

}
for p = 2 and Ξ =

{
0,0,0,0,13 ,

1
2 ,

2
3 ,1,1,1,1

}
for p = 3.

From the results in table 2.2 and table 2.3, it is observed that with Greville collocation points,

the Bézier equivalent points remain the same for all elements. On the other hand, the Botella

equivalent points are changing for each element. The implication is then with Greville equivalent

points we can compute the Bézier inverse matrix once and then store it for use. However with

Botella equivalent points, the Bézier matrix has to be evaluated and inverted for each element,

which can then increase the global matrices assembly time.

Once the Bézier inverse matrix is known, we can proceed as in section 2.3.1, however in this

case the control points are extracted. This matrix can be incorporated directly into the shape

functions routine.

It is important to note that this entails in localizing the global smooth topology (patch level) to

the Bézier elemental level. In fact, here, the link to the BSplines is maintained, and therefore

at any instance we can always recover the BSplines geometry. More over, due to the affine

invariance property of the Bernstein basis (any translation, rotation, expansion, and contraction

applied in the physical space, the parameter space is scaled in the same way and vice versa) the

Bézier elements automatically satisfy the patch test requirements [12, 13].

2.4 Application of Isogeometric Analysis to Linear Statics

The objective of this section is to demonstrate how to apply isogeometric finite element method

to linear elasticity Dirichlet Boundary Value Problem and to study the performance of the

proposed Bézier-based IGA method. Two methods with BSplines global geometry description

are implemented, namely :

(1) BSplines-based isogeometric analysis

Outlined in section 2.3.1

- the solution is sought out at the global BSplines control points ; we solve for ucntrl.
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2.4 Application of Isogeometric Analysis to Linear Statics

The physical solution is obtained through a mapping

uphy =
ncpts∑
A=1

ucntrl
A NA(ξ)

- basis functions are computed through the Bézier extraction operator, that is for each

element

Ne = CeBe
bez

(2) Bézier-based isogeometric analysis

Outlined in section 2.3.2

- requires computation of Bézier control points from the global BSplines ones through

the use of Bézier extraction operator

Pbez = CTP

- through the use of the Bézier inverse matrix, we solve directly for the physical solution

uphy

For improved accuracy in the geometry description, the global geometry is constructed from

control points that are computed using the exact interpolation method described in section

2.2.3.

2.4.1 Problem Description

Consider a 2D quarter of an annulus geometry under plane stress conditions, with inner radius

rint = 1 m and outer radius rext = 2 m, depicted in fig. 2.18, to be occupying a domain Ω, with

its boundary denoted by Γ. The body is assumed to be linear elastic with isotropic material

properties : Young’s modulus E = 10000 Pa, Poisson’s ratio ν = 0.25.

There are no body forces acting on domain Ω. The boundary of the domain Γ is decomposed into

disjoint parts ΓF and ΓD on which tractions tF and displacements uD are imposed, respectively.

In this case only Dirichlet boundary conditions are present : the left edge is fixed (homogeneous

Dirichlet boundary conditions, that is u(0 , y) = 0), and the bottom horizontal edge is subjected

to uniform displacements ū = 0.001 m in the x-direction.

The strong formulation writes as follows : find stress field σ, strain field ε, and displacement u,

such that :

div σ = 0 in Ω (2.49a)

σ = D : ε in Ω (2.49b)

ε ' 1
2
(
∇u +∇uT

)
in Ω (2.49c)

u = uD on ΓD (2.49d)
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ū

y

x

Figure 2.18 – Schematic of 2D quarter of an annulus geometry under prescribed displacement

load ū.

D the elasticity tensor. The weak form of the problem detailed in eqs. (2.49a) to (2.49d) writes

as ∫
Ω

(∇w)T : σ dΩ = 0, ∀w ∈ U0 (2.50)

In plane stress conditions the stress field and strain field can both be reduced to vectorial fields

and the elasticity tensor reduces to a 2D tensor as shown in eq. (2.51) below.

σ =


σ11

σ22

σ12

 , D = E

1− ν2


1 ν 0
ν 1 0
0 0 1− ν

 , ε =


ε11

ε22

ε12

 (2.51)

In classical FEM the above problem solves as

Ku = F

In the next sections we will demonstrate how this problem solves in an IGA setting. For readability,

we use square brackets for matrix form quantities and braces for vector form quantities.

2.4.2 BSplines-based Isogeometric Analysis

Similarly to classical finite element method, in an IGA framework the isoparametric concept is

invoked ; that is :

w =
ncpts∑
A=1

ccntrl
A NA(ξ) = [N]{ccntrl} (2.52)

u =
ncpts∑
B=1

ucntrl
B NB(ξ) = [N]{ucntrl} (2.53)

37



2.4 Application of Isogeometric Analysis to Linear Statics

In eqs. (2.52) and (2.53)
{
•cntrl

}
denotes a control quantity, and N are the BSplines basis

functions computed for each element using the extraction operator as in eq. (2.54) :

N = CeBbez (2.54)

where Bbez is the Bernstein basis. From the weak formulation in eq. (2.50), we compute the

derivative of the test function as

∇w = ∇([N]{c}) (2.55)

Since {c} are coefficients at the control points, eq. (2.55) then becomes

∇w =


∂
∂x

0
0 ∂

∂y
∂
∂y

∂
∂x

 [N]

︸ ︷︷ ︸
[B]

{c} = [B]{c} (2.56)

In eq. (2.56), matrix [B] contains the spatial gradients of the basis functions. From eq. (2.49b)

and eq. (2.49c), we can write the stress field as

σ = [D] [B]
{
ucntrl

}
(2.57)

Substituting eq. (2.56) and eq. (2.57) into the weak form in eq. (2.50) we get

{c}T
([∫

Ω
[B]T [D] [B] detJ dη dξ

] {
ucntrl

}
+
[∫

Ω
[B]T [D] [B] detJ dη dξ

]
{uD}

)
= 0 (2.58)

and since {c}T are arbitrary, eq. (2.58) reduces to :[∫
Ω

[B]T [D] [N] detJ dη dξ
] {

ucntrl
}

+
[∫

Ω
[B]T [D] [B] detJ dη dξ

]
{uD} = 0 (2.59)

In short notation eq. (2.59) can be written as

Kucntrl = KuD (2.60)

where

K =
∫

Ω
[B]T [D] [B] detJ dη dξ (2.61)

is the stiffness matrix.

The storage of the degrees of freedom follows the convention below (ncpts is the control points,

2ncpts total number of DOFs)

ucntrl =



u1
...

uncpts

v1
...

vncpts


(2.62)
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Defining the force FD as

FD = −KuD

We then seek to solve the system


K1,1 · · · · · · K1,2ncpts

...
. . .

...
...

. . .
...

K2ncpts,1 · · · · · · K2ncpts,2ncpts





u1
...

uncpts

v1
...

vncpts


=



FD1
...

FDncpts
FDncpts+1

...

FD2ncpts


(2.63)

Similarly to standard FEM, the integration of the stiffness matrix in eq. (2.61) is performed in

the parent element space (through numerical integration specifically Gauss quadrature). Each

elemental contributions are then assembled on to the global stiffness matrix in eq. (2.63). The

elemental stiffness matrix is computed as :

ke =
∑
GPs

[B]T [D] [B] detJ wGPs (2.64)

Now to compute B and detJ , for each element first compute the Jacobian matrix J as follows

J =
· · · ∂Na(ξ)

∂ξ
· · ·

· · · ∂Na(ξ)
∂η

· · ·

 [Px Py

]
, a = 1, . . . ,necpts (2.65)

Px, Py are vectors containing the x and y position of the control points and necpts are the number

of control points in each element. Finally the spatial derivatives matrix B is computed as :

B =


· · · Na,x · · · 0 · · · 0
0 · · · 0 · · · Na,y · · ·
· · · Na,y · · · · · · Na,x · · ·

 = [J]−1

· · · ∂Na(ξ)
∂ξ

· · ·
· · · ∂Na(ξ)

∂η
· · ·

 (2.66)

and detJ = det([J]).

Since for the problem considered here the displacement boundary conditions are specified on

the edges at which the control points are interpolated by the physical geometry, they can be

imposed directly to the control points. See fig. 2.19 which demonstrates the location of the

BSplines control points (which serve the same role of ’nodes’ in standard FEM) with respect to

the actual geometry for a 3× 3 mesh.

The BSpilnes approach described above is then applied to solve the problem described in fig. 2.18.

50 quadratic (p = 2) elements are used to discretize the geometry (10 elements in the ξ-direction,

and 5 elements in the η-direction, 10× 5 mesh), with a total 168 DOFs. Results obtained are

shown in fig. 2.20 and fig. 2.21 below.

Figure 2.20 shows the horizontal component (fig. 2.20a) and vertical component (fig. 2.20b) of

the displacement field obtained. The maximum displacement is observed in the right bottom tip

of the beam.
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Figure 2.19 – BSplines computation points location with respect to the actual physical geometry,

with a 3× 3 mesh.
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Figure 2.20 – Displacement field [m] obtained from the BSplines approach : (a) x-component of

the diplacement field, and (b) y-component of the displacement field.

In fig. 2.21 we show the normal stress distribution (fig. 2.21a) and Von Mises stress distribution

(fig. 2.21b). As is typical of bending problems compressive stresses are observed on the inside

of the beam and the outside of the beam is in tension. In this problem compressive stresses

are more superior than the tensile stresses, hence the non symmetry of the Von Mises stress

distribution (curved beam). Maximum Von Mises stress is observed on the inside of the beam.
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Figure 2.21 – Stress field distribution [Pa] obtained from the BSplines approach : (a) normal

stress distribution, σ11, and (b) Von Mises stress distribution.

2.4.3 Bézier-based Isogeometric Analysis

The Bézier based approach also invokes the isogeometric and isoparametric concept however

now with Bernstein polynomials as a basis, that is :

w =
ncpts∑
A=1

ccntrl
A BbezA(ξ) = [Bbez]{ccntrl} (2.67)

u =
ncpts∑
B=1

ucntrl
B BbezB(ξ) = [Bbez]{ucntrl} (2.68)

For this approach, the departure point is the BSplines geometry description, as detailed in

section 2.3.2, with control points P. The Bézier control points Pbez (local/element-level) are

then derived through the Bézier extraction process as follows :

Pbez = CTP (2.69)

Note that in using the Bézier based approach, it amounts to solving a larger model in terms of

number of DOFs in the system compared to the BSplines based approach (see fig. 2.13 that

demonstrates the extraction of Bézier elements from a BSpline surface). To build the system of

equations to be solved, first the derivative of the test function is computed as

∇w = ∇([Bbez]{c}) (2.70)

which then becomes

∇w =


∂
∂x

0
0 ∂

∂y
∂
∂y

∂
∂x

 [Bbez]

︸ ︷︷ ︸
[B]

{c} = [B]{c} (2.71)

The storage of the degrees of freedom follows the convention described in the BSplines based

approach (see eq. (2.62)). To compute the spatial derivatives matrix, first compute the Jacobian
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matrix as :

J =
· · · ∂Bbeza (ξ)

∂ξ
· · ·

· · · ∂Bbeza (ξ)
∂η

· · ·

 [Pbezx Pbezy

]
, a = 1, . . . ,necpts (2.72)

Pbezx , Pbezy are the x, y coordinates of the Bézier elements control points. Accordingly, the

spatial derivatives matrix B follows as :

B =


· · · Bbeza,x · · · 0 · · · 0
0 · · · 0 · · · Bbeza,y · · ·
· · · Bbeza,y · · · · · · Bbeza,x · · ·

 = [J]−1

· · · ∂Bbeza (ξ)
∂ξ

· · ·
· · · ∂Bbeza (ξ)

∂η
· · ·

 (2.73)

and finally detJ = det([J]).

As detailed in section 2.3.2, with this approach we solve directly for the physical solution uphy.

This is achieved through writing the control solution in eq. (2.60) in terms of the physical

solution by inverting the mapping in eq. (2.68), consequently introducing the Bézier inverse

matrix into the formulaion [88]. For each element, the control solution then writes as :

ucntrl = [Bbez]−1
{
uphy

}
(2.74)

Substituting eq. (2.74) into eq. (2.60), the elemental stiffness matrix then becomes :

ke =
∑
GP

[Bbez]−T [B]T [D] [B] [Bbez]−1 detJwGP (2.75)

The Bézier equivalent Greville and Botella points, which are derived using eq. (2.48), are used

to evaluate the Bézier inverse matrix.

This method was also implemented and then used to solve the problem in fig. 2.18. Similarly to

the BSplines-based model, the geometry is discretized with 50 quadratic Bézier elements, with a

total of 462 DOFs. Figure 2.22 demostrates how the computation points in this method differ

from those typical in isogeometric analysis (control mesh) for a 3× 3 mesh.

Both the Greville points and the Botella points were used to compute the Bézier inverse matrix

during the resolution process. The solution obtained, the displacement field and the stress field,

is shown in Figures 2.23 to 2.26 using the Bézier Greville points and Botella points, respectively.

It can be seen that both these approaches yield the same solution. With Bézier inverse matrix

computed from both the Greville points and Botella points, we found that :

• the maximum deflection is observed on the right bottom tip of the beam, with displacement

magnitude of 1.4581× 10−3 m, vertical displacement −1.0611× 10−3 m

• maximum compressive stress of 3.9276 Pa is obtained on the inner side of the beam, and

maximum tensile stress of 2.6423 Pa on the outside

• the maximum von Mises stress is found to be 4.0029 Pa
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Figure 2.22 – Bézier control mesh and physical mesh comparison, (p = 2, 3× 3-elements) : (a)

control mesh, and (b) physical mesh.
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Figure 2.23 – Bézier based approach with Greville points solution fields : (a) x-component of

the displacement, and (b) y-component of the displacement.

It is important to note that the solution obtained with this method is equivalent to the solution

obtained using the BSplines-based approach. In actual fact, the highlighted maximum values for

the displacement and stresses are exactly the same. However, we can observe that the stress

distribution obtained from the Bézier-based approach is considerably smoother compared to

the BSplines based approach stress distribution. This finer distribution can be attributed to

the presence of more computation points in the Bézier approach which play a significant role

particularly for the stresses.

Even though the choice of collocation points for the Bézier inverse matrix does not influence the

solution, further inspection on the resolution times show that use of the Botella points increases

the computation time. This increase arises from the stiffness assembly CPU time : using Botella

points for collocation we found the stiffness assembly CPU time to be approximately 3 times
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Figure 2.24 – Bézier based approach with Greville points solution fields : (a) normal stress, σ11,

distribution, and (b) Von Mises stress distribution.
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Figure 2.25 – Bézier based approach with Botella points solution fields : (a) x-component of the

displacement, and (b) y-component of the displacement.

that of the stiffness time when using Greville points. This is because with Botella points, the

Bézier inverse matrix is recomputed for each assembly loop whereas with Greville points this

matrix is computed once and stored for use during the assembly.

Moreover, it is important to recall that the Bézier-based approach leads to a larger model, in

terms of number of DOFs, compared to the BSplines-based approach model. This is reflected

on the solver time for which was 0.45 ms for the BSplines-based method, and 2.19 ms for the

Bézier based approach, both with Greville and Botella points. A study on solver computational

(CPU) time evolution as a function of the number of elements in the discretization shows a

quadratic evolution for BSplines-based approach and cubic evolution for Bézier-based approach

- see fig. 2.27a. For this problem specifically, we found that even with a course mesh, we can

capture fine stress distribution as well as displacement fields. Therefore a fine mesh was not a
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Figure 2.26 – Bézier based approach with Botella points solution fields : (a) normal stress, σ11,

distribution, and (b) Von Mises stress distribution.
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Figure 2.27 – Comparison of the solver CPU time [s] and the global stiffness assembly time for

the BSplines-based approach and the Greville Bézier-based approach : (a) solver CPU time, and

(b) stiffness matrix assembly CPU time.

However, the added advantage of using the Bézier-based approach is that it is much easier to

implement. It requires less operations for the problem setup and computation of quantities

involved in the global assembly of the system. Through the use of Bézier approach, we do not

necessarily lose that much in terms of accuracy but there is a whole lot to gain in terms of

efficient implementation.

Another important advantage of using the Bézier-based approach is the data structures identical

to standard finite elements methods. Moreover this method greatly simplifies the application of

boundary conditions to the numerical model. With this method we have access to computation
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points located on the geometry and therefore can directly apply the boundary conditions.

2.5 Summary

The objective of this chapter was to become familiar with fundamentals of Isogeometric-based

FEM and to introduce the Bézier-based isogeometric finite element method which, unlike the

typical isogeometric analysis methods, solves directly for the physical solution. The scope of

this chapter included first an in depth study of the three main parameterization techniques in

isogeometric analysis, namely : (1) Bézier, (2) BSplines, and (3) NURBS. Secondly we detailed

isogeometric analysis method in the finite elements framework, which was then followed by a

practical demonstration on isogeometric analysis based FEM by modeling a simple structural

problem.

Each parameterization technique was explored to study its characteristics (properties, advantages

and drawbacks) when used as a discretization tool. We found that even though NURBS offer

the most advantages with regards to geometry representation accuracy and design freedom,

they tend to be implementationally laborious. Contributing factors to this is firstly the amount

of information required for NURBS representation, and secondly their inability to allow for

local refinement/control due to their tensor product nature (a trait shared by BSplines as

well). However we found that BSplines, with the right combination of refinements, can produce

sufficiently accurate geometry representations ; they are a valid alternative to the cumbersome

NURBS, hence the use of BSplines for the global modeling of the quarter of an annulus studied

here.

As mentioned, BSplines lack the local refinement/control capabilities. Borden et al. [76] Bézier

extraction concept allowed us to formulate an isogeometric analysis problem compatible with

existing finite elements data structures. Since in the isogeometric analysis framework the solution

is usually sought out at the control points which are not necessarily on the physical geometry,

imposing boundary conditions is not as straight forward as is in classical finite element method.

For the specific structural problem studied in this chapter, imposing boundary conditions was

a trivial process because of the type of the boundary conditions as well as the location of the

boundaries of interest. It is worthwhile to note that imposition of boundary conditions will

become very significant in the chapters to come when we have to deal with contact constraints,

hence the reason we developed the Bézier-based approach [87].

The Bézier-based approach [87] which directly solves for the physical solution instead of the

control solution addresses the above mentioned limitation. Essentially, this approach transforms

the BSplines-based problem with control network as computation points, into a larger (in terms

of DOFs) Bézier problem with computation points located on the geometry (in a similar manner

as in classical finite element method) through the use of the Bézier inverse matrix introduced in

section 2.3.2. In effect the data structures are identical with the difference only in the shape

functions subroutine. The Bézier inverse matrix which is introduced in the discrete setting of the
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system of equations, allows us to express the physical solution in terms of the control solution.

The solution field is then obtained at specific computation points which live on the actual

geometry. This is achieved though evaluating the Bézier inverse matrix at preselected parameter

values corresponding to the specific computational points. These parameter values are chosen as

the Bézier equivalent of the familiar BSplines Greville and Botella points. Introduction of this

matrix in the weak formulation then allows for the boundary conditions to be applied directly.

It is also worth noting that due to the simplicity of the geometry of the structural problem

solved here, a single patch model was sufficient to model the computational domain. In practice

however it can be a necessity to describe the domain with multiple patches ; for instance, if

different material or physical models are to be used at different parts of domains [13]. This can

also be the case for complex geometries, i.e. geometries with inclusions, holes, domains that

differ topologically from a cube in 3D, etc. For contact problems this is particularly interesting

as it permits the possibility to model the contact interface as a single patch. In doing this, it

simplifies the contact detection process as it can be carried out patch-wise thus eliminating a

great deal of bookkeeping which is a consequence of element-wise searches in classical FEM

[22, 23, 37, 40, 95].
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3
Contact Problem and its General

Formulation

3.1 Introduction

Any mechanical structure or system may exhibit the phenomenon of contact [43]. This contact

phenomenon may be in the form of intentional interaction such that structures like a bridge,

can sustain applied mechanical loads or in the case of wheel/rail interaction resulting in the

generation of traction effort necessary to propel trains [2–4, 6, 43, 96, 97]. There are also instances

where this phenomenon may be unintentional such as vehicle crash or squeal propensity in

braking components [23, 96]. Whether we are concerned with increasing efficiency in the case of

intentional contact or decreasing the adverse effects that may arise in non-intentional contact

[4, 6], it is imperative we gain an understanding of the process of these interactions. For this

reason, contact is very important in the mechanics of solids and its engineering applications.

The contact interactions between components or bodies of a mechanical system is a static

phenomenon if the bodies in contact are in static equilibrium. Otherwise, the contact is said

to be a dynamic phenomenon which often is much more complex than static contact. In real

engineering applications most contact processes are ”dynamic in a restrictive sense”, however for

simplicity, many of them may be regarded as static [2, 4]. Moreover, even though the contact

phenomenon always involves friction in the interaction [3], the friction effects may be neglected

for cases where the frictional forces are sufficiently small.

Contact problems are characterized by their discontinuities. Contact occurs at the interface of

two separate continuous bodies/entities. This interaction (in terms of contact constraints) is non

smooth and cannot merely be regarded as ordinary boundary conditions imposed on both the

interacting surfaces [2, 5]. Furthermore, the contact interface cannot be considered as an internal

surface ; effectively, we can see it as a zero thickness layer which can only sustain compressive

tractions in the normal direction (tensile tractions equate to separation and therefore a vanishing

contact interface) [2]. If the contact is frictionless this layer does not sustain tangential efforts,



3.1 Introduction

however, these may arise in the case of frictional contact and require a more sophisticated

treatment of the contact state.

Due to the extreme complexity involved in the contact phenomena, to rigorously account

for contact effects in conventional engineering analysis is a cumbersome task [43]. This high

complexity of mechanical contact problems can be attributed to their inherent non linearity.

These problems involve unknown boundary conditions unlike other mechanical problems ; the

actual contacting surface as well as the stresses and displacements are all unknown a priori

[2, 3, 5, 23, 43].

Additionally the presence of friction can raise the degree of complexity even more. This is

because a rigorous model of contact with friction is quite difficult as friction depends on many

factors, including [2, 4] :

• surface topography

• physical and chemical properties

• type of motion

• temperature of contacting surfaces

As a result, a rigorous analysis of the contact problem while taking into account all the

aforementioned complex aspects remains an extremely difficult task. Owing to the advancements

of numerical techniques, particularly the FEM, many of these contact problems can now be

solved to within useful accuracy [3, 5]. In engineering numerical simulations, the enforcement

of contact constraints is incorporated through ad-hoc elements and algorithms that have been

developed in the last few decades [2, 3, 5, 23, 97]. Nevertheless, the computational solution of

contact is often very challenging and poses many numerical difficulties.

A large number of mechanical problems can be formulated as a Boundary Value Problem (BVP).

This formulation, the strong form, necessitates the governing differential equations to be fulfilled

in the bulk domain Ω under essential boundary conditions applied on its boundary Γ [5, 23]. The

weak form of these BVPs, which is a basis of the construction of structural FEM, is obtained by

writing the balance of virtual works. On the contrary, contact constraints are formulated as a set

of inequalities and cannot be easily incorporated in the weak form [2, 3, 5, 23]. The construction

of their weak form then leads to a variational inequality in place of the classical variational

equality. Consequently, new solution procedures to handle this mathematical structure are

required.

Difficulties may also arise in the rigorous description of the contacting surfaces [2]. The contacting

bodies may penetrate each other or there can be separation of a previously established contact.

This can then lead to loss of one-to-one mapping between points on the contacting surfaces.

Moreover, the weak formulation of contact problems requires the second order variations and

therefore access to the differential geometry. With classical FEM (typically a C0 discretization),
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the geometry is rendered into piece-wise smooth surfaces and therefore loss of access to the

differential geometry [22]. This then induces mathematical and numerical difficulties. Hence the

reason why IGA is an interesting alternative to classical FEM in that, with the IGA all difficulties

tied to non smooth discretization can be avoided. IGA offers access to smooth, higher and

tailorable continuity basis functions which is very advantageous for the description of interacting

surfaces [13, 22, 23]. The smooth representation of surfaces as a result of the use of IGA in

contact problems has been shown to be more accurate compared to the standard FEM approach

[22, 37–41, 85, 92].

The aim of this chapter is to review the contact problem in its entirety and discuss some of the

important numerical implementation aspects for this problem. In section 3.2 we review the general

formulation of the contact problem, including both the normal and tangential contact conditions.

Without loss of generality, we consider a two body contact system, deformable/deformable

contact interaction. A full mechanical problem is briefly outlined, however we are more concerned

with contact problem, hence the emphasis and broader discussion of the contact contributions.

First we detail the contact problem statement, show the derivation of contact constraints and

discuss the contact constitutive laws to formulate the governing equations (section 3.2 and

section 3.3). This is then followed by the mathematical formulation of the contact variational

form from its strong form. Section 3.4 focuses on contact resolution methods entailing the

contact constraints enforcement methods, and finally for completeness, in section 3.5 we review

some of the contact interface discretization techniques which we have already touched on in

chapter 1.

The final section of this chapter (section 3.6) is dedicated to the development of the Node to

surface contact discretization using the Bézier based IGA approach. That is, first give a brief

summary of the Bézier based IGA approach proposed in chapter 2. This is followed by the

time discretization of the frictional quantities as well as the Node to Surface discretization of

the contact term with the penalty method used for the enforcement of contact constraints. For

a more generic approach, we develop the discretization for deformable on deformable contact

system, naturally the Signorini problem discretization is simply a special case of the more general

problem. Finally, we detail the solution algorithm for both quasi static contact system (an

implicit, static resolution) and the global time integration (in the case of dynamic contact, the

inertial effects non negligible) of this two body contact system with friction.

3.2 Governing Equations of the Contact Problem

In this section we write the description of the mechanical contact problem, its boundary value

problem and the contact constraints. All quantities are written in the current configuration.

This is because in contact problems two points that are distinct in the reference configuration

can in the current configuration occupy the same position. Therefore contact conditions have to

be formulated with respect to the current configuration [23].
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In general, to detect the occurrence of contact between bodies two steps have to be performed.

These steps include first the global search for contact and secondly the setting up the local

kinematical relations which are needed to formulate the contact constraints. Our main focus

will be on the latter. Step one, which typically involves search algorithms is outside the scope of

our discussion. Readers interested by this topic can refer to the works of [3–6].

3.2.1 Problem Description

Without loss of generality, we suppose our contact system consists of two elastic deformable

bodies. The Signorini problem, the contact between a deformable body and a rigid body, is then

a special case of the more general contact problem.
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Figure 3.1 – Deformation of a two-body contact system from the reference configuration to the

current configuration : body Ω1 the slave body, body Ω2 the master body

Let us consider the two-body contact system depicted in fig. 3.1. The two bodies occupy

domains 0Ωi, i = 1,2, the reference configuration corresponding to time t = 0. We denote the

closure/boundary of tΩi with tΓi which can be decomposed as follows.

tΓi = tΓiD ∪ tΓiF ∪ tΓi0 (3.1)

where, in eq. (3.1), tΓiD is the Dirichlet boundary, tΓiF is the Neumann boundary, and tΓi0 part

of the boundary where contact may occur.
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Each body is subjected to body forces and prescribed boundary loads from time t = 0. The

bodies deform to occupy new domains tΩi in the current configuration at time t > 0. The bodies

occupy the Rnd Euclidean space (nd = 2 specify a 2D space, and nd = 3 specify a 3D space).

Again, for generality, unless otherwise specified, we will consider a 3D setting and a 2D setting

will be simplification of the generic case. Note : the notation t(•)i means the quantity (•) is

defined for body i at time t.

We denote the position vector of a point in a body by tx and 0x is denoted by X. The total

displacement of the two bodies at any time instance t > 0 is given by eq. (3.2)

tui = txi − Xi (3.2)

The motion of the bodies occupying tΩi is governed by eq. (3.3)

div tσi + tbi = ρi tüi (3.3)

where tσi is the Cauchy stress field, tbi are the volume forces, ρi is the mass density assumed to

be constant, and tüi is the acceleration field. The stress-strain is governed by the Hooke’s law

such that
tσi = D : tεi (3.4)

where D is the fourth order elasticity tensor, and tεi is the strain field which is related to the

displacement tui through the strain-displacement relation ship in eq. (3.5)

ε = 1
2
(
∇u +∇uT

)
= ∇su (3.5)

∇s indicates the symmetric part of the deformation gradient. Prescribed Dirichlet and Neumann

boundary conditions can expressed as follows :

u(x,t) = uD(x,t) x ∈ ΓD (3.6)

σ(x,t)~n = tF (x,t) x ∈ ΓF (3.7)

where ~n is the outward unit normal vector on the boundary and uD(x,t) and tF (x,t) are the

prescribed displacements and boundary traction, respectively. The initial conditions are expressed

in eq. (3.8) and eq. (3.9), where u̇ denotes the velocity field.

u(x,0) = u0 x ∈ 0Ωi (3.8)

u̇(x,0) = v0 x ∈ 0Ωi (3.9)

u0 and v0 are initial displacements and initial velocities, respectively.

Moreover, since all quantities are expressed in current configuration, we drop the t from the

convention t(•). Furthermore, as is typical in the expression of contact constraints the notion

of slave/master surfaces is adopted ; subsequently we take body Ω1 as a slave and the second

body (Ω2) as the master. The master surface is parameterized using the convective coordinates

ξα = [ξ1,ξ2]. We then define the covariant vectors, non unit and generally non-orthogonal

vectors that are tangent to the master contact surface, as τα = x2
,α, where (•),α = ∂(•)

∂ξα
. The
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contra-variant vector τα is induced from the inverse of the metric tensor components mαβ as

τα = mαβτβ, with mαβ = τα · τβ. The curvature tensor, which is symmetric, then follows from

kαβ = τα,β · ~n2. Here, the Greek letters indices refer to the tangent directions in the surface

coordinate system, and take values α,β = 1,2 in 3D, and reduces to 1 in the case of 2D contact

problems. As is standard, repetition of the indices imply summation.

3.2.2 Normal Contact

The study of contact problems entails in predicting the behavior of the contact system from time

t = 0 to time t = T . This behavior is governed by 3 main groups of equations, namely : equations

of motion, constitutive equations, and boundary conditions [3, 5, 98]. Boundary conditions

may be in the form of prescribed boundary conditions which are deformation independent.

However boundary conditions may also be in the form of unknown boundary conditions which

are deformation dependent, and among those are the contact conditions and these characterize

this study [5]. In this section we will outline the governing equations of contact and formulate

its boundary conditions, specifically in the normal direction. Consideration of the tangential

contact follows in section 3.2.3.

We now denote Γi0 as Γic, the contact boundary or rather the boundary at which the contact

conditions must be satisfied.

3.2.2.1 Contact Constraints in the Normal Direction

Consider slave point x1 to be in contact with master point x2 as depicted in fig. 3.2.

The unit vectors at the two points are such that :

~n1
j = −~n2

j j = 1,2,3 (3.10)

with unit vectors in 2,3 - direction the tangential units vectors, and ~ni1 the outward unit normal

vector. If the contact traction vector at the contacting points, for the two bodies, is denoted by

ti, Newton’s third law states that

t1 = −t2 (3.11)

If we adopt the notation ~nij = nij, we can obtain the components of the contact traction vector

at the slave and master body as :

tij = ti · nij i = 1,2 and j = 1,2,3 (3.12)

We distinguish between the three traction vector components and adopt the subscript (•)N
for the normal component and subscript (•)Tα , α = 1,2, for the tangential components. The

traction vector can then be decomposed as follows :

t = tN + tT , tN = tNn, tT = tαTτα = tTατ
α (3.13)

53



3.2 Governing Equations of the Contact Problem
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Figure 3.2 – Contacting points and their associated unit vector at the boundary.

Since only compressive stresses are supported on the contact interface in the normal direction

and tensile tractions are not allowed, then :

tN ≤ 0 (3.14)

The condition expressed in eq. (3.14) is referred to as the mechanical contact condition.

Tangential components are related to the normal traction through the friction and can have an

arbitrary sign, however they must vanish in the case of frictionless contact [23]. In addition to

the mechanical contact constraint, physical constraints require that :

Ω1 ∩ Ω2 = ∅ (3.15)

that is, the two bodies in contact may not penetrate each other. The condition in eq. (3.15) is

referred to as the kinematic contact condition. In the normal direction, this condition defines

the contact pairing points of the slave/master surfaces (points that will come into contact with

each other) as well as the normal gap between them. If we denote the normal gap function, a

function that defines the gap between the contacting slave/master surfaces, as gN(x,t), such

that :

gN(x,t) =
(
x1 − x2

)
· n2

1 (3.16)

The kinematic contact condition enforcement, formulated as the non penetration condition of

each point of the slave surface into the master body, is then written as an inequality of the

normal gap function in eq. (3.16). Denoting the outward unit normal vectors (both to the master
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and slave surfaces) ni1 as simply ni, where i = 1,2 ; it follows :

gN(x,t) =
(
x1 − x2

)
· n2

=
(
x2 − x1

)
· n1

≥ 0

(3.17)

Equation (3.17) forms part of the contact constitutive behavior at the interface, as will be seen

later.

As mentioned, this kinematic contact constraint facilitates the definition of the master/slave

contact pairs. That is, for each slave point we must find the corresponding master contact point,

that the slave is likely to come into contact with. The master contact pair will be the master

point closest to the slave point. This closest point is found through the closest point projection

algorithm which is detailed in the next section. The normal gap function is then evaluated at

this projection point and the value obtained is used to determine the contact state.

3.2.2.2 The Closest Point Projection Algorithm

The aim of the closest point projection (CPP) algorithm is, for each given slave point x1, to find

its closest point projection x̄2 on the master surface - see fig. 3.3. This algorithm is described in

multiple works including [6, 23, 37, 85, 99], to name a few. For completeness we discuss this

algorithm, based on the work in [23], below.

To find the closest point projection, we first define a function that describes the distance between

a given slave point x1 on Γ1
c and an arbitrary point located at x2 = x̂2(ξ) on Γ2

c , the master

surface. Here, ξ = ξα = (ξ1,ξ2) are the convective coordinates that parameterize the master

surface. This distance function is defined as follows

d(x1,ξ) =
∥∥∥x1 − x̂2

∥∥∥ (3.18)

If the master surface is, at the very least, locally convex ; the closest point projection is the point

x̄2 = x̂2(ξ̄) that minimizes eq. (3.18). That is, at every point x1, we can relate point x̄2 = x̂2(ξ̄)
through the minimum distance problem :

x2(ξ̄) = arg min
ξ∈D

d(x1,ξ) (3.19)

D is the domain of definition of the convective coordinates ξ, and ξ̄ are convective coordinates

at the closest point projection. The necessary condition for eq. (3.19) is that :

d
dξ d(x1,ξ) = x1 − x̂2(ξ̄)∥∥∥x1 − x̂2(ξ̄)

∥∥∥ · x̂2
,ξ(ξ̄) != 0 (3.20)

x̂2
,ξ(ξ̄) is a non unit tangent vector. This implies that the solution to eq. (3.20) requires orthogo-

nality between the distance vector
[
x1 − x̂2(ξ̄)

]
and the tangent vector x̂2

,ξ(ξ̄). Thus the closest

point projection associates the orthogonal projection of each slave point onto the master surface.
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Figure 3.3 – Master/Slave closest point projection.

Once the closest point projection x̄2 of a given slave point is known, we can compute the normal

gap as :

gN =
(
x1 − x̄2

)
· n̄2 (3.21)

In eq. (3.21) (•̄) denotes quantities evaluated at the closest point projection. It is important

to note that it may exist instances where the master surface may be non convex, or any

other situation that will render the distance function locally non differentiable, leading to non

existence and lack of uniqueness of this projection. This is particularly observed in the case

of C0 continuous FE elements which are only piece-wise continuous, a limitation that may be

alleviated through the use of IGA. This is also the case when the model has sharp corners/edges.

For these type of problems, a more sophisticated algorithm is then required to obtain the slave

points projection [6, 22, 23, 40].

3.2.2.3 Constitutive Laws for the Contact Interface in the Normal Direction

The final ingredient for the description and formulation of normal contact and its contribution

to the contact boundary value problem is the contact interface constitutive law. Two different

approaches for the definition of the constitutive behavior of contact have been established

[3, 5, 23]. These may be :
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3.2 Governing Equations of the Contact Problem

• constitutive laws based purely on the geometric enforcement of contact constraints

• physically motivated constitutive laws based on empirical knowledge or driven by multi-

scale models (higher level of complexity)

In this chapter we will consider the geometric based constitutive behavior. With this constitutive

law the relationship between the normal contact tractions and the normal gap is deduced from

the constraints equation detailed in section 3.2.2.1. In the normal direction, it follows that :

• contacting bodies may not penetrate each other, that is : gN ≥ 0

• only compressive tractions are permitted on the contact interface, tN ≤ 0

• normal tractions will vanish when the gap is open and they are negative when the gap is

closed : tN = 0 if gN ≥ 0
tN ≤ 0 if gN = 0

(3.22)

Therefore, in the contact interface we have :

gN ≥ 0 tN ≤ 0 tN gN = 0 (3.23)

In eq. (3.23) are what is known as the Hertz-Signorini-Moreau conditions in contact mechanics

and they correspond to the Karush–Kuhn–Tucker (KKT) complementarity conditions typical in

constrained problems optimization theory. These conditions lead to a non smooth relationship

between the normal gap and the contact pressure as depicted in fig. 3.4 (a) - the red line

represents the feasibility region.

Treatment of this non smooth contact law requires appropriate numerical methods. However,

there is possibility to regularize this law as it is usually done with penalty methods - see fig. 3.4

(b) - which will be discussed further in section 3.4.

3.2.3 Tangential Contact

When two bodies come into contact in the absence of friction, the behavior in the contact

interface is solely governed by the normal contact equations. However, for frictional contact

interaction, tangential tractions will arise and therefore we need the governing equations for

this contribution. In the tangential direction on the contact interface, we generally need to

distinguish between the two cases : the first case is the so called stick state and the second case

is the sliding/slip state [3, 5, 23]. We first discuss the kinematics of tangential contact, including

the forces exchanged in this direction during contact. This is followed by the discussion of the

laws that govern the tangential behavior in the contact interface.

57



3.2 Governing Equations of the Contact Problem

(a)

tN

gN

(b)

tN

gNεN

(1)

(2)

Figure 3.4 – Contact constitutive law in the normal direction : (a) non smooth constitutive law

based on geometric enforcement of the non penetration condition ; (b) non-linear constitutive

law (1) and a linear regularized law (corresponding to the penalty method)(2).

3.2.3.1 Stick Condition

In the stick state the two points in contact, the slave point and its projection point on to the

master surface, exchange the tangential forces without any relative sliding in the tangential

direction [3, 5, 23]. The mathematical condition for the stick case simply follows from the

observation that if the two points in contact do not experience any relative movement in the

tangential direction, i.e. the two points stick to each other, then the convective coordinates of

the projection point ξ̄α do not change with time. That is :

˙̄ξα = 0 (3.24)

Note the convention : ˙(•) = ∂(•)
∂t

, where t is the time and could possibly be a fictitious parameter

in quasi-static conditions [23]. From eq. (3.24), it follows that the relative displacement in the

tangential direction should be zero, therefore we can formulate this condition as :

gT = gTατ
α = 0 with gTα =

(
x1 − x̄2

)
· τα (3.25)

where in eq. (3.25) gT denotes the relative displacement in tangential direction and τα, τ
α are

evaluated at the projection point and are given by :

τα = x̄2
,α

τα = mαβτβ
(3.26)

3.2.3.2 Sliding Condition

In the sliding/slip state, a tangential force is exchanged between the two points in contact results

in relative movement in the tangential direction along the contact interface [3, 5, 23]. Essentially,
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3.2 Governing Equations of the Contact Problem

we have that ˙̄ξα 6= 0, that is, the projection point convective coordinates will change over time.

The projection point of the slave surface can now slide over the master surface - see fig. 3.5

which depicts the path of this motion beginning from time t0 to final time tn. In fig. 3.5 dgT is

the incremental tangential relative displacement or the slip vector.

t0

tn

dgT
τ1

τ2
t

n̄

Γ2
c

Figure 3.5 – Relative motion of the projection point x̄2 of the slave point on the master surface,

from a time t0 to a final time tn.

The path of the slave point on the master surface is not known a priori, arbitrary and may, in

some instances, even cross itself. For this reason, we cannot make any assumptions of this path

during the computations, all that is known is the relative velocity of the sliding point (the rate

at which the slave point x1 slides on the master surface, in this case the dgT ) [3]. To obtain the

path of x1 on the master surface we have to integrate its relative velocity (dgT ). From eq. (3.25),

the incremental tangential relative displacement can be derived as :

dgT = ταdξ̄α

= x̄2
,α dξ̄α

= x̄2
,α

˙̄ξα dt

(3.27)

and its length given by dgT = ‖dgT‖. The length of the sliding path of x̄2 is obtained by

integrating eq. (3.27) which results in :

gT =
∫ t

t0

∥∥∥∥x̄2
,α

˙̄ξα
∥∥∥∥ dt (3.28)

In eq. (3.28) the expression of ˙̄ξα is still unknown. To compute this time derivative, first we

perform the material time derivative of the orthogonality condition mentioned in section 3.2.2.2

(the necessary condition for the CPP algorithm - see eq. (3.20)). This orthogonality condition

writes as : (
x1 − x̄2

)
· τα =

(
x1 − x̄2

)
· x̄2

,α = 0 (3.29)

Taking the material time derivative of eq. (3.29) yields(
v1 − v̄2 − τβ ˙̄ξβ

)
· τα +

(
x1 − x̄2

)
·
(
v̄2
,α + x̄2

,αβ
˙̄ξβ
)

= 0 (3.30)
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where in eq. (3.30) vi = ∂xi
∂t

. Solving eq. (3.30) for ˙̄ξβ, we get

˙̄ξβ = Hαβ
[(

v1 − v̄2
)

· τα + gN n̄ · v̄2
,α

]
(3.31)

with Hαβ the inverse of the auxiliary variable Hαβ, given in eq. (3.32), computed from the metric

tensor and components of the curvature tensor

Hαβ = τα · τβ − gN n̄ · x̄2
,αβ = mαβ − gNkαβ (3.32)

and

n̄ = n̄2 = −n̄1 (3.33)

3.2.3.3 Constitutive Laws in the Contact Interface for Tangential Contact

Note that in this work, we restrict ourselves to the more simple friction formulations which results

in the frictional constitutive equations for dry friction, in particular the classical Coulomb’s law

of friction.

Coulomb’s law of friction states that a point in contact will undergo stick or slip condition

depending on the magnitude of the tangential traction vector tT [5]. With Coulomb’s law, in

addition to the contact KKT conditons in eq. (3.23), the magnitude of the tangential traction

vector is bounded by the product of the friction of coefficient and the normal traction ; that is :

‖tT‖ ≤ µ |tN | (3.34)

and

ġT = λtT , with

λ = 0 if ‖tT‖ < µ |tN |
λ ≥ 0 if ‖tT‖ = µ |tN |

(3.35)

where µ is sliding friction coefficient. Equation (3.35) states that if the magnitude of the

tangential traction vector does not exceed the µ times the normal traction, then the contact

bodies are undergoing stick conditions ; there is no relative movement between the bodies.

‖tT‖ < µ |tN | , ġT = 0⇔ gT = 0 (3.36)

The second condition in eq. (3.35) states that when the tangential tractions reaches the limit in

eq. (3.34), tangential sliding occurs. Furthermore, any slip that occurs must be co-linear with the

tangential tractions exerted by the sliding slave point on the master surface. Figure 3.6 shows

the graphical representation of both stick and slip conditions given by the classical Coulomb law

of friction - again, the red line denotes the feasibility region.

Similarly to the geometrical enforcement of the non-penetration condition in fig. 3.4a, the

classical Coulomb’s law of friction and the geometric stick condition is also non smooth in nature,

therefore a regularization of the law is needed for computational reasons and will be discussed in

section 3.4. Moreover, it can be observed that the behavior of the non-smooth Coulomb’s friction
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‖tT‖

gT

µ|tN |

−µ|tN |

Figure 3.6 – Non-smooth Coulomb’s friction law including the geometrical enforcement of the

stick constraint.

law in fig. 3.6 is analogous with that observed in plasticity, specifically the rigid-perfectly-plastic

constitutive law which is obtained by assuming zero hardening conditions and allowing the

elasticity modulus to tend to infinity [5]. In this case the product µtN may be seen as equivalent

to the yield stress : in the same way that in plasticity plastic deformation occurs when we reach

the yield stress, tangential contact sliding occurs when the exerted traction reaches µtN . For

more information on plasticity theory and plasticity flow rules, the reader is referred to the

work of Crisfield [100] and Simo and Hughes [101]. Laursen [5] also gives a brief discussion of

plasticity constitutive laws.

The analogy between frictional constitutive law and plasticity allows for the reformulation

of the Coulomb’s friction law as a more convenient, in terms of numerical implementation,

non-associative Coulomb’s friction law [3, 5, 23], which writes as follows

Φ(tT ,tN) = ‖tT‖ − µ |tN | ≤ 0 (3.37)

Essentially, the tangential stresses are bounded by the slip function Φ. Equation (3.37) can be

seen as the ’plastic’ slip criterion for a given tN . The evolution equation for the slip then follows

as :

ġT = γ̇
∂Φ
∂tT

= γ̇
tT
‖tT‖

(3.38)

In eq. (3.38), γ̇ corresponds to the plastic multiplier in plasticity, and is related to the magnitude

of the slip in that ‖ġT‖ = |γ̇|. Finally the tangential constraints written as KKT conditions for

Coulomb’s law of friction are given by :

Φ ≤ 0, γ̇ ≥ 0, γ̇Φ = 0, ġT = γ̇
tT
‖tT‖

(3.39)

The frictional law eq. (3.34) now writes in rate form (eq. (3.39)) which implies that the

determination of the tangential stress tractions is path dependent - a time integral is required to

find the current stress levels.
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3.3 The Contact Initial Boundary Value Problem

We consider the two body contact system outlined in section 3.2.1. From the description in the

previous section, the contact problem can be considered as a classical mechanical problem with

additional inequality constraints arising from the contact conditions. Similarly to the classical

mechanical problem, the numerical treatment of contact requires derivation of the weak form

description of the strong form equations. In this section, the formal strong form of the contact

problem is given. The principle of virtual work is then used to obtain the weak form of the

system. We pay special attention to the contact contribution.

3.3.1 The Strong Form

Given prescribed boundary tractions and prescribed body forces at time t = 0, find the solution

displacement u(x,t) for all time period t = [0,T ], such that :

1. The momentum balance

div σ + b = ρa on Ω
a the acceleration field

2. The constitutive equation

σ = D : ε on Ω
where

ε = ∇su

3. The initial conditions
u(X,0) = u0

v(X,0) = v0

 on 0Ω

4. The boundary conditions

u(X,t) = uD on ΓD
σn = tF on ΓF

5. The contact conditions

gN(x,t) = 0 x ∈ Γ1
c

tN ≤ 0 on Γ1
c ∪ Γ2

c

(a) Normal contact constraints (as well as frictionless contact)

gN ≥ 0 tN ≤ 0 tN gN = 0

(b) Tangential contact constraints

Φ ≤ 0, γ̇ ≥ 0, γ̇Φ = 0

Φ given in eq. (3.37)
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3.3.2 The Weak Form

The departure point for the numerical solution procedure, i.e FEM or IGA, of the non linear

contact BVP in section 3.3.1 is the derivation of the weak formulation of the local field equations.

As previously stated, the nature of contact constraints (a set of inequalities) renders this

derivation a more mathematically delicate process as compared to the classical unconstrained

mechanical problems [2, 23]. Contact problems are formulated as variational inequalities.

We consider the principle of virtual work, which states that :

The total virtual work done by the external forces (prescribed forces and contact forces), inclu-

ding inertial forces in the case of a dynamic system, on any kinematically admissible virtual

displacement field equals the total virtual work done by the internal stresses on the virtual strain

field corresponding to that virtual displacement [4]. That is :

δW = δWint − δWinert − δWext − δWc (3.40)

where in eq. (3.40) δWint denotes the work done by the internal stresses, and writes as follows

δWint =
∫

Ω
σ : δε dΩ (3.41)

δWinert is the work done by the inertial forces and writes as follows :

δWinert = −
∫

Ω
ρa · δu dΩ (3.42)

δWext is the work done by the external forces and writes as follows :

δWext =
∫

Ω
b · δu dΩ +

∫
ΓF

tF · δu dΓ (3.43)

and δWc is the work done by the contact forces and writes as follows :

δWc =
∫

Γ1
c

t · δu1
c dΓ +

∫
Γ2
c

t · δu2
c dΓ (3.44)

Taking into account eqs. (3.10) to (3.12), we can rewrite eq. (3.44) as :

δWc =
∫

Γ1
c

tjδu1
c · n̄1

j dΓ +
∫

Γ2
c

tjδu2
c · n̄2

j dΓ j = 1,2,3

=
∫

Γ2
c

tj
(
δu2

c − δu1
c

)
· n̄2

j dΓ
(3.45)

We can decompose eq. (3.45) into its normal and tangential parts. And since in the contact

interface we have Γ1
c ≡ Γ2

c ≡ Γc, we can write the contact contribution into weak from as :

δWc =
∫

Γc
(tN n̄ + tT ατ

α) ·
(
δu1 − δū2

)
dΓ (3.46)

Consolidating all the contributions to the weak form from the internal and external forces,

inertial forces and contact terms, eqs. (3.41) to (3.44), we have :

δW =
∫

Ω
σ : δε dΩ−

∫
Ω

b · δu dΩ−
∫

ΓF
t̄F · δu dΓ · · ·

+
∫

Γc
(tN n̄ + tT ατ

α) ·
(
δu1 − δū2

)
dΓ · · ·

+
∫

Ω
ρa · δu dΩ ≥ 0

(3.47)
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Equation (3.45) can be written in terms of the gap function in the normal direction, and the

relative sliding displacement (tangential slip) in the tangential direction. This requires the

expression for the variation of the normal gap and the variation of the tangential slip.

3.3.2.1 Variation of the Normal Gap

As normal gap is expressed as :

gN n̄ =
(
x1 − x̄2

)
(3.48)

The variation of eq. (3.48) gives :

δgN n̄ + gNδn̄ =
(
δx1 − δx̄2 − x̄2

,αδξ
α
)

· n̄ +
(
x1 − x̄2

)
· δn̄ (3.49)

Taking the dot product of eq. (3.49) with the unit normal vector n̄ and since we have that

x̄2
,α · n̄ = 0 (orthogonality condition), n̄ · n̄ = 1, and n̄ · δn̄ = 0, the virtual variation of the

normal gap then becomes :

δgN =
(
δx1 − δx̄2

)
· n̄ (3.50)

However, δu1 − δū2 = δx1 − δx̄2 [3] ; it follows then that :

δgN =
(
δu1 − δū2

)
· n̄ (3.51)

Substituting eq. (3.51) into eq. (3.46), we obtain :

δWc =
∫

Γc
tNδgN dΓ +

∫
Γc
tT ατ

α ·
(
δu1 − δū2

)
dΓ (3.52)

3.3.2.2 Variation of the Tangential Slip

The variation of the tangential slip gT can be obtained in the same way as its time derivative

computed in eq. (3.27) [3, 5, 6]. We have :

δgT = δξ̄ατα (3.53)

and the variation of ξα in eq. (3.53) follows in the same way as the time derivative in eq. (3.31)

δξ̄β = Hαβ
[(
δu1 − δū2

)
· τα + gN n̄ · δū2

,α

]
(3.54)

In the tangential direction we then have :

δWcT =
∫

Γc
tT · δgT dΓ

=
∫

Γc
tT ατ

α · δξ̄βτβ dΓ

=
∫

Γc
tT αδξ̄

α dΓ

(3.55)

64



3.4 Regularization of the Contact Constraints

Finally, we can write the weak form as follows∫
Ω
σ : δε dΩ−

∫
Ω

b · δu dΩ−
∫

ΓF
tF · δu dΓ · · ·

−
∫

Γc
tNδgN dΓ−

∫
Γc
tT αδξ̄

α dΓ · · ·

+
∫

Ω
ρa · δu dΩ ≥ 0

(3.56)

The derived weak form is still a constrained problem and therefore poses difficulty in its numerical

treatment as it may require different minimization techniques compared to the more conventional

well established unconstrained mechanical BVP [2, 5, 23]. In the next section we will discuss

how we can remedy this limitation.

3.4 Regularization of the Contact Constraints

We suppose that the bodies in contact are elastic and for simplicity we restrict our discussion

to the case of negligible dynamic effects such that the inertial terms may be dropped from

eq. (3.56). In the absence of contact, the solution field of the mechanical problem (denoted as

Gb) is obtained by writing the BVP as an unconstrained minimization problem. That is :

Gb =
∫

Ω
σ : δε dΩ−

∫
Ω

b · δu dΩ−
∫

ΓF
t̄F · δu dΓ = 0 (3.57)

However mechanical contact problems are constrained problems and write as variational in-

equalities (eq. (3.57) no longer holds), and as a consequence, they require new minimization

techniques. To remedy this, nowadays most engineering analysis in contact mechanics are based

on the so called variational equalities which are much easier to introduce in the FE framework

[2]. In doing this, it then permits us to use the already well established minimization techniques.

In order to derive these variational equalities, it is assumed that the contact zone is known. At

the same time, the contact zone depends on the solution, and is actually unknown a priori. This

is why this formulation should be coupled with an active set strategy which is used to identify

the potential contact portions of the boundary and update them as the solution evolves [2].

If the contact zone is known then the non linear constrained problem described in the previous

sections, through the use of the contact constraints treatment methods, can be transformed

into the more familiar, easier to treat unconstrained problem [2]. These contact constraints

treatment methods basically facilitate the incorporation of the contact constraints into the

variational formulation or rather the imposition of the contact constraints on the boundaries.

To do this, two basic methods are available, namely : i) the Lagrange multiplier method, and ii)

the penalty method. Other constraints methods based on these aforementioned methods, such

as the augmented Lagrange method, also exist.

We denote the variational contact contribution by Gc, with

Gc =
∫

Γc
tNδgN dΓ +

∫
Γc
tT αδξ̄

α dΓ (3.58)
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The form of Gc depends on the choice of method used for the incorporation of the contact

constraints in the variational formulation. Next we provide the Lagrange multiplier method

variational form and the penalty method variational form.

3.4.1 The Lagrange Multipliers Method

With this method, Lagrange multipliers are used to add contact constraints to the weak

formulation [3, 23]. The Lagrange multipliers contact contribution, assuming stick conditions,

GLM
c is then given by

GLM, stick
c = −

∫
Γc

[λNδgN + λT · δgT ] dΓ +
∫

Γc
[δλNgN + δλT · gT ] dΓ (3.59)

where the Lagrange multipliers λN ,λT are additional unknowns.

The first integral in eq. (3.59) is the virtual work of the Lagrange multipliers for the variation of

the normal gap function and the variation tangential slip. The second integral results from the

enforcement of kinematic contact constraints and variation of the Lagrange multipliers. The

terms λT · δgT and δλT · gT are associated with tangential stick. In the case of stick the relative

tangential slip gT is zero, this then results in a constraint equation from which λT follows as a

reaction force. In the case of sliding, the tangential traction can be determined from the sliding

conditions constitutive law equation - see eq. (3.39). We can write

λT · δgT ⇒ tT · δgT (3.60)

Then for sliding, the contact contribution becomes

GLM, slip
c = −

∫
Γc

[λNδgN + tT · δgT ] dΓ +
∫

Γc
δλNgN dΓ (3.61)

We see that the Lagrange multipliers correspond to the unknown normal and tangential contact

tractions (see eq. (3.58)). A condition on these multipliers, λN ≤ 0, must be satisfied. In fact,

this method does not completely convert into an unconstrained minimization problem as it still

needs to satisfy the inequality constraints on the Lagrange multipliers λN [23].

The advantage of using the Lagrange multipliers method is that the contact constraints are

enforced exactly. However this method introduces additional unknowns, and therefore additional

degrees of freedom in the system, which increases the computation cost of the model.

3.4.2 The Penalty Method

In this formulation, the contact constraints are regularized with the penalty method. That is,

the normal contact traction is represented as a continuous power function of the penetration :

tN(gN) =

εN (gN)q gN ≤ 0
0 otherwise

(3.62)
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with degree q, and factor εN is a non negative penalty parameter. We can see here that the

impenetrability condition is only fulfilled approximately. The contact tractions increase with

penetration. In actuality, this approximation implies that the contact does not restrict penetration

but rather resists to it and the penalty parameter can be seen as the stiffness of the contact

interface [23]. The impenetrability condition is recovered when εN →∞ - see fig. 3.4b which

shows a linear penalty method function.

Similarly to fig. 3.4b, the frictional law can be regularized by introducing a tangential penalty

parameter εT - see fig. 3.7. The tangential penalty εT is not necessarily equal to εN .

‖tT‖

gT

µ|tN |

−µ|tN |

εT

Figure 3.7 – Penalty regularization of the Coulomb friction law exact conditions.

Performing this regularization of eq. (3.39) leads to :

Φ(tT ,tN) = ‖tT‖ − µ |tN | ≤ 0

ṫT = εT

[
ġT − γ̇

tT
‖tT‖

]
γ̇ ≥ 0

γ̇Φ = 0

(3.63)

Now the regularized Coulomb friction law is analogous to elasto-plasticity behavior, particularly

the elasto-perfectly-plastic constitutive law. Again, the exact representation of the Coulomb

friction law is only recovered when εT → ∞. The penalty method contact contribution GPM
c

then writes as

GPM, stick
c = −

∫
Γc

[εNgNδgN + εTgT · δgT ] dΓ (3.64)

εN , εT > 0. We can see that the normal traction and the tangential tractions are approximated

as tN = εNgN and tT = εTgT , respectively. As it is with the Lagrange multipliers formulation, a

slightly different expressions holds for the sliding case. The constitutive equation in eq. (3.63)

can be used to compute the tangential contact traction. We then have

GPM, slip
c = −

∫
Γc

[εNgNδgN + tT · δgT ] dΓ (3.65)
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tT is obtained from the time discretization of constitutive equations in eq. (3.63), typically the

Backward Euler time discretization which permits the use of the return mapping for resolution.

This is further discussed in section 3.6.2.

The advantage of the penalty method is that it does not require introduction of additional

unknowns, there are no additional degrees of freedom added to the system. The penalty contact

term depends only on the normal gap function, which in turn is a function of the displacement

field. A major drawback of this method is that it leads to an approximate enforcement of contact

constraints ; the exact solution may only be recovered from this formulation in the limit as

εN ,εT → ∞. This is however impossible as large penalty parameter values will result in the

ill-conditioning of the tangent stiffness matrix [2, 23].

3.5 Contact Interface Discretization Techniques

The treatment of contact constraints in numerical modeling entails in the following : (1) the

choice of the method to be used for the enforcement of contact constraints, which we have

discussed in section 3.4, and (2) the choice of contact interface (contact integrals) discretization

[23]. The second aspect is especially important as it tells us how the contact weak formulation

is expressed in discrete form. Different techniques exist for the contact interface discretization,

namely :

• Node-to-Node discretization - this technique is simple and stable, however it is only suitable

for conforming meshes which can only be established for small deformation problems and

infinitely small relative sliding.

• Node-to-Surface in 3D setting or Node-to-Segment in 2D setting - this technique is less

simple but multipurpose and suitable for non conforming meshes. It requires creation of

contact pairs ; that is, contact constraints are enforced between a node of one contacting

body surface (slave surface) and the corresponding surface/segment (master surface). The

integrals are collocated at the slave nodes. However this discretization does not pass the

patch test, meaning that uniform contact pressure can not be obtained at the contact

interface [22]. More over this technique is biased, the solution depends on the choice of the

slave/master surface.

• Surface-to-Surface or Segment-to-Segment - here the integral is no longer collocated in the

slave nodes but rather, the contact constraints are enforced in an integral manner [22].

Unlike NTS, this method passes the patch.

There are also other method available such as the Gauss-Point-To-Surface method (single

pass, and the less bias double pass formulation), and more recently the mortar methods which

simultaneously satisfy the patch test and stability conditions (at the expense of computational

efficiency) [2, 22, 23, 63, 97].
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3.6 Contact Discretization with Bézier-based Isogeometric Analysis

3.6 Contact Discretization with Bézier-based Isogeometric Ana-

lysis

We will consider quasi-static contact problems with implicit methods. This means that we

assume the inertial forces contribution to be negligible, δW i
inert = 0. Our departure point is the

variational formulation shown in section 3.4. We have that :

Gb +Gc = 0 (3.66)

with the form of Gb given in equation (3.57), and the full contact contribution Gc formulated by

the penalty method (combining the stick and slip contributions) is given by eq. (3.67)

Gc =
∫

Γc
εNgNδgN dΓ +

∫
Γstickc

εTgT · δgT dΓ +
∫

Γslipc

tT · δgT dΓ

=
∫

Γc
εNgNδgN dΓ +

∫
Γslip/stickc

tT · δgT dΓ

=
∫

Γnormalc

tNδgN dΓ +
∫

Γtangentc

tT αδξ̄
α dΓ

(3.67)

The boundary conditions are given in section 3.3.1. Equation (3.66) can be rewritten as :

Fint − Fext − Fc = 0 (3.68)

with Fint the internal force vector

Fint =
∫

Ω
σ : ε(δu) dΩ (3.69)

Fext the external force vector

Fext =
∫

Ω
b · δu dΩ +

∫
ΓF

tF · δu dΓ (3.70)

and Fc the contact force vector

Fc =
∫

Γc

(
tNδgN + tT αδξ̄

α
)

dΓ (3.71)

This problem is discretized with the Bézier-based IGA method detailed in the previous chapter.

As the treatment of the internal load vector contribution as well as the external load vectors

has already been discussed, in this chapter we will only highlight the final discrete form of the

internal and external force vectors. Only the development of the contact force contribution is

discussed in detail.

3.6.1 Discretization with Bézier Elements

The Bézier-based IGA approach, detailed in the previous chapter, is used for the numerical

modeling of this problem. Bézier basis function, Bbez, are used for both the geometry discretization
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3.6 Contact Discretization with Bézier-based Isogeometric Analysis

and approximation of the solution fields (isoparametric). Unlike the fundamental IGA methods,

in which the computational domain does not necessary live on the physical geometry ; in this

method, through the use of the Bézier inverse matrix, [Bbez]−1, we directly solve for the physical

solution. This Bézier inverse matrix is evaluated at the Greville points ξ̂, which in the Bézier

approach with the basis space of [−1,1] equate to :

ξ̂ =

[−1,0,1] if quadratic (p = 2)[
−1,− 1

3 ,
1
3 ,1
]

if cubic (p = 3)
(3.72)

The Bézier inverse matrix is computed once and then stored for later us. With this approach,

the existing FEM contact discretizations can be used without any modification. The only change

is in the shape functions subroutine.

Let us denote the Bézier basis functions Bbez(ξ) as φ(ξ), ξ = (ξ, η, ζ). The geometry description

for each Bézier element is :

x(ξ) =
necpts∑
a=1

φa(ξ)xcntrl
a (3.73)

accordingly, necpts is the number of nodes in the element and (•)cntrl implies quantities computed

at the control points. The elemental solution field (displacement) is approximated as :

u(ξ) =
necpts∑
a=1

φa(ξ)ucntrl
a (3.74)

with the solution coefficients at the control points writing as (control solution coefficients) :

ucntrl
a = [Bbez]−1 uphy

a (3.75)

(•)phy indicates a quantity computed at the physical nodes (nodes located on the actual physical

geometry). In matrix form the solution then writes as :

u(ξ) = [Q] [Bbez]−1
{
uphy

}
(3.76)

where

[Q] =


φ1 · · · φnecpts 0 · · · 0 0 · · · 0
0 · · · 0 φ1 · · · φnecpts 0 · · · 0
0 · · · 0 0 · · · 0 φ1 · · · φnecpts

 (3.77)

and

{
uphy

}
=



u1
...

unecpts
v1
...

vnecpts
w1
...

wnecpts



(3.78)
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The strain-displacement relationship writes as :

ε(u) = ∇su
= Qi,ju

= [B] [Bbez]−1 {u}
(3.79)

[B] contains spatial gradients of the Bézier basis functions. The discrete form with numerical

quadrature integration of eq. (3.69) and eq. (3.70), the writes as :

Fint =
∑
nelem


nGP∑
i=1

nGP∑
j=1

[Bbez]−T [B]T {σ} wiwj detJ

 (3.80)

Fext =
∑
nelem


nGP∑
i=1

nGP∑
j=1

[Bbez]-T [Q] {b} wiwj detJ +
nGP∑
i=1

[Bbez]−T {tF}wi

 (3.81)

with wi,wj the weights for each Gauss point in ξ1, ξ2 directions, nGP the number of Gauss points

in each direction, and Q a matrix containing the basis functions as defined in eq. (3.77).

In next sections, we develop the discrete form of the contact force contribution in eq. (3.71),

starting with the time discretization of the incremental friction constitutive law.

3.6.2 Local Time Discretization of the Friction Constitutive Law

The formulation of the tangential constitutive equations in incremental form (eq. (3.63)) leads

to a requirement of a time discretization (even in quasi-static settings). Using the penalty

regularization for the stick conditions permits the use of the return mapping algorithm which is

often used in plasticity problems [3, 5, 23].

Let ∆t = tn+1−tn be the chosen time step size. Using the Backward Euler scheme to approximate

the rate quantities, the frictional constraints equations can be rewritten in the time discretized

setting. The tangential slip defined in incremental form is discretized as follows

˙̄ξα = ξ̄αn+1 − ξ̄αn
∆t → ġT = gT n+1 − gT n

∆t = ξ̄αn+1 − ξ̄αn
∆t τα (3.82)

The constitutive law equations in discretized form then write as

Φn+1 = ‖tT n+1‖ − µ |tNn+1| ≤ 0, ∆γ ≥ 0, Φn+1∆γ = 0, (3.83)

and the time-discretized tangential traction as

tTαn+1 = tTαn + εT

[
mαβ

(
ξ̄βn+1 − ξ̄βn

)
−∆γ

tTαn+1
‖tT n+1‖

]
(3.84)

The slip tangential gap follows as

∆gT slipn+1 = ∆γ tT n+1

‖tT n+1‖
(3.85)
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The frictional sliding traction in the time-discretized setting, which derives from the constitutive

law and must be co-linear with the tangential sliding, is given by

tTn+1 = µ |tNn+1|
gT n+1∥∥∥gT n+1

∥∥∥ (3.86)

For the algorithmic update of the frictional tractions, we follow the predictor/corrector return

mapping algorithm. Similarly to its application in plasticity, the algorithm involves first inte-

grating the evolution equations under zero incremental tangential slip (∆γ = 0) to obtain the

stick state predictor. If the predicted stick state violates the Coulomb’s friction law constitutive

equations (that is, the state predicted is outside the bounds of Coulomb’s friction law, i.e.

Coulomb’s frictional cone), the predicted stick state tangential tractions are then relaxed (here,

mapped on to the surface of the Coulomb’s cone) by iteratively correcting the incremental

tangential slip. This is done as follows (see appendix B for graphical representation of the return

mapping algorithm) :

• The departure point is the computation of the normal traction as

tNn+1 = εNgn+1 (3.87)

• First assume ∆γ = 0, then compute the trial tangential traction

tTα
trial
n+1 = tTαn + εT

[
mαβ

(
ξ̄βn+1 − ξ̄βn

)]
(3.88)

• Using the trial tangential traction in eq. (3.88) and normal traction in eq. (3.87), evaluate

the slip function

Φtrial
n+1 =

∥∥∥tT trialn+1

∥∥∥− µ |tNn+1| ≤ 0 (3.89)

• Based on the stick/slip status from eq. (3.89), update the tangential tractions accordingly

tTαn+1 =


tT
trial
n+1 if Φtrial

n+1 ≤ 0
µ |tNn+1|

tTα
trial
n+1

‖tTtrialn+1 ‖
otherwise

(3.90)

From here on we will express all quantities in the current time step, t = tn+1. We then drop the

subscript n+ 1 for current step quantities, whereas the subscript n referring to quantities in the

previous time step is retained.

3.6.3 Linearization of the Contact Contributions

In general, the solution for the contact problem is sought out iteratively and therefore requires

the linearization of its weak form contribution. The linearization of eq. (3.67) gives us

∆Gc =
∫

Γnormalc

(∆tNδgN + tN∆δgN) dΓ +
∫

Γtangentc

(
∆tT αδξ̄α + tT α∆δξ̄α

)
dΓ (3.91)
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The variations of both the gap function and the convective coordinates are given in eq. (3.51)

and eq. (3.54), respectively. Their linearizations then follows from the variations as :

∆gN =
(
∆u1 −∆ū2

)
· n̄ (3.92)

∆ξ̄α =
[
Hαβ

] [(
∆u1 −∆ū2

)
· τβ + gN n̄ · ∆ū2

,α

]
(3.93)

The linearized normal traction follows from eq. (3.92) and writes as ∆tN = εN∆gN .

It remains now to derive the expressions for the linearized tangential traction, and the linearization

of the variation of the normal gap and the tangetial gap. To obtain the expression of the linearized

tangential traction we need both ∆tT α and ∆tT trialα . To derive ∆tT α we linearize eq. (3.84),

which then gives us eq. (3.94).

∆tT α = µpTα∆tN + µtN∥∥∥ttrialT

∥∥∥∆ttrialTα

[
δβγ − p

β
TpTγ

]
+ µtNpT ·

[
∆ū2

,β + x̄2
,βγ∆ξ̄γ

]
pβTpTα (3.94)

where pT = ttrialT

‖ttrialT ‖
, variable δβγ is the Kronecker delta (an identity matrix), and

pT α = pTτα
pT

α = pTτα
(3.95)

∆tT trialα , derived from eq. (3.88), is given in eq. (3.96).

∆tT trialα = εT
[
mαβ∆ξ̄β + 2

(
x̄2
,βγ · τβ∆ξ̄γ + ∆ū2

,β · τβ
) (
ξ̄α − ξ̄αn

)]
(3.96)

The departure point for obtaining the expressions for ∆δgN and ∆δξ̄α, is the linearization of

eq. (3.49), that is :

∆
{
δgN n̄ + gNδn̄ = δu1 − δū2 − ū2

,αδξ
α
}

(3.97)

Taking the dot product between eq. (3.97) and the normal vector n̄, we can derive the expression

of ∆δgN . Similarly, the dot product of eq. (3.97) with the covariant vector τα gives us ∆δξ̄α. Here,

we will only detail the final expression for both these variables, the full derivation for both these

terms is given the appendix A and can also be found in the works of [2, 3, 5]. Equation (3.98)

gives the expression of ∆δgN and in eq. (3.99) we have the expression for ∆δξ̄α.

∆δgN =−
[
δū,α∆ξα + ∆ū,αδξα + x̄,αβ∆ξαδξβ

]
· n̄

+ gN
mαβ

[
(δū,α + x̄,αγδξγ) n̄⊗ n̄

(
∆ū,β + x̄,βδ∆ξδ

)] (3.98)

(mαβ − gNkαβ) ∆δξ̄β =−
(
∆ū2

,αδξ̄
α + δū2

,α∆ξ̄α
)

· τβ − (τα · τα,β − gN n̄ · τα,αβ) ∆ξ̄γδξ̄γ

− gN
(
∆ū2

,αβδξ̄
α + δū2

,αβ∆ξ̄α
)

· n̄−
(
δū2

,α + τα,γδξ̄γ
)

· τα∆ξ̄β

−
(
∆ū2

,α + τα,γ∆ξ̄γ
)

· ταδξ̄β +
(
δu1 − δū2

)
·
(
∆ū2

,β + τβ,α∆ξ̄α
)

+
(
∆u1 −∆ū2

)
·
(
δū2

,β + τβ,αδξ̄α
)

(3.99)
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3.6.4 Node to Surface Contact Discretization

To cater for the more general non-conforming/non-matching meshes at the contact interface, we

discretize the contact contribution using the Node-To-Surface (NTS) technique. We restrict the

solution u to the discretized contact surface Γc.

If we take body ”1” as the slave and body ”2” as the master surface, in the NTS discretization

technique the computation of the contact contribution integrals in the weak formulation (see

eq. (3.67)) is replaced by the evaluation of these integrals at the slave nodal locations. This is to

say, from the variational stand point, this technique amounts to the collocation of the contact

integrals at the slave nodes [3, 5, 23].

We define the so-called contact element as the elementary unit of the discretization to which the

contact contribution is associated to. Figure 3.8 shows an example of the NTS discretization

with the contact pair made of the slave node and the 3 noded master surface (the violet master

segments and slave node make up the contact element).

gN

Ω1

Ω2

n
τ1

x = x(ξ)

contact element

Figure 3.8 – NTS discretization for linear quadrilaterals elements : ♦ - slave nodes, ◦ - master

nodes, ◦ closest point projection.

The geometry of the contact element is then given by :

x(ξ,η) =
nec∑
a=1

φa(ξ,η)xcntrl
a (3.100)

nec is the number of nodes in each contact element. The solution field of the two bodies is

approximated as follows :

u1 =
nec∑
a=1
φau1cntrl

a and u2 =
nec∑
a=1
φau2cntrl

a (3.101)
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and its variation as

δu1 =
nec∑
a=1
φaδu1cntrl

a and δu2 =
nec∑
a=1
φaδu2cntrl

a (3.102)

Recalling that with this Bézier based approach we solve directly for the physical solution. That

is, we introduce the Bézier inverse matrix into the shape functions routine, which then allows

an implicit map of the solution onto the physical domain, and essentially allows us to have a

discretization similar to that of classical FEM however with the benefits of an exact geometry.

Let us define φ̃, such that :

φ̃i(ξ̄) = φi(ξ̄) [Bbez]−1 (3.103)

with

φ =
[
φ1 φ2 · · · φnpts

]
φ̃i is then used as a basis, and we can substitute this interpolation into the variations and their

linearized counterparts in eqs. (3.92) and (3.93). See eqs. (3.104) to (3.106) for NTS discretization

of the normal gap, its variation and the variation of projetion point parametric coordinates.

gN =
[
φ̃(ξ̄) u2cntrl − u1

]
· n̄ (3.104)

δgN =
[
φ̃(ξ̄) δu2cntrl − δu1

]
· n̄ (3.105)

δξβ = H−αβ
[(
φ̃(ξ̄)δu2 − δu1

)
· τα − gNn · φ̃,α(ξ̄)δu2

]
(3.106)

We can express the linearized contact integrals in a more compact matrix form as is done in [5].

For a 2D case with α = 1 we can define the following NTS vectors :

δu =



δu1

δū2
1

δū2
2

...

δū2
n


∆u =



∆u1

∆ū2
1

∆ū2
2

...

∆ū2
n


N =



−n̄
φ̃1n̄
φ̃2n̄

...

φ̃nn̄


T =



−τ1

φ̃1τ1

φ̃2τ1
...

φ̃nτ1


(3.107)

N1 =



0
φ̃1,1n̄
φ̃2,1n̄

...

φ̃n,1n̄


T1 =



0
φ̃1,1τ1

φ̃2,1τ1
...

φ̃n,1τ1


N11 =



0
φ̃1,11n̄
φ̃2,11n̄

...

φ̃n,11n̄


(3.108)

For full 3D NTS vectors see [5]. The discrete form of the contact variables variations and

linearizations, in a more compact form, then write as

• Normal gap

δgN = δuTN, ∆gN = NT∆u

• Tangential gap

δξ̄ = δuT
{
H−1 [T− gNN1]

}
∆ξ̄ =

{
H−1 [T− gNN1]

}
︸ ︷︷ ︸

D1

T
∆u
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3.6 Contact Discretization with Bézier-based Isogeometric Analysis

• Stick/trial tangential traction

∆tT trial1 = εT
[
m11D1

T + 2
(
φ̃,11x̄2 · τ1D1

T + T1
T
) (
ξ̄ − ξ̄n

)]
∆u

= εT
[
m11D1

T + 2T̃T
1

(
ξ̄ − ξ̄n

)]
∆u

where

T̃1 = T1 + φ̃,11x̄2 · τ1 D1

• Sliding tangential traction

∆tT 1 = µεN sign
(
tT
trial
1

) [√
m11 NT + gN√

m11

(
φ̃,11x̄2 · τ1D1

T + T1
T
)]

∆u

= µεN sign
(
tT
trial
1

) [√
m11 NT + gN√

m11
T̃T

1

]
∆u

• Linearized normal gap variation

∆δgN =− δuT
(
−N1DT

1 −D1NT
1 + k11D1DT

1

)
∆u

+ δuT
gN
m11

(
−k11N1DT

1 + k2
11D1DT

1 −N1NT
1 − k11D1NT

1

)
∆u

define

Ñ1 = N1 − k11D1

then we have

∆δgN = δuT
{
N1DT

1 + D1NT
1 − k11D1DT

1 + gN
m11

Ñ1ÑT
1

}
∆u

= δuTKNδ∆∆u

• Linearized tangential gap variation (detailed in appendix)

H∆δξ̄ = δuT
{
−2

(
T1DT

1 + D1TT
1

)
+
(
3τ1 · φ̃,11x̄2 − gN n̄ · φ̃,111x̄2

)
D1DT

1

}
∆u

+ δuT
{
gN
(
N11DT

1 + D1NT
11

)
+ NÑT

1 + Ñ1NT
}

∆u

+ δuT
{ 1
m11

[
Ñ1

(
T1 − τ1 · φ̃,11x̄2D1

)T
+
(
T1 − τ1 · φ̃,11x̄2D1

)
ÑT

1

]}
∆u

= δuTKTδ∆∆u

• Stiffness and force term for stick conditions

Kstick
c = εNNNT +εNgNKNδ∆ +εTm11D1D1

T +2εTD1T̃T
1

(
ξ̄ − ξ̄n

)
+ tT

trial
1 KTδ∆ (3.109)

Fstick
c = εNgNN + tT

trial
1 D1 (3.110)

• Stiffness and force term for sliding conditions

Kslip
c =εNNNT + εNgNKNδ∆ + µεN sign

(
tT
trial
1

)√
m11 D1NT

+ µεN sign
(
tT
trial
1

) gN√
m11

D1T̃T
1 + tT 1KTδ∆

(3.111)

Fslip
c = εNgNN + tT 1D1 (3.112)
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3.6 Contact Discretization with Bézier-based Isogeometric Analysis

Note that the all discrete contact terms, for both stick condition and slip conditions, detailed

above must be evaluated at the closest projection point of the slave node onto the master surface.

This is achieved through the CPP algorithm introduced in section 3.2.2.2. In the next section we

detail the discrete form of the CPP algorithm as well as the resolution method used to compute

ξ̄.

3.6.5 The Closest Point Projection Algorithm

To obtain the parameter values ξ̄ at the closest point projection we must find the solution to

eq. (3.20). Using Newton-Raphson method, we have that : suppose f(x) = 0, the solution x to

f(x) is obtained as follows

x = x0 + f(x0)
f ′(x0) (3.113)

Therefore the linearized eq. (3.20) writes as

ξn+1 = ξn +
[
∂x2

∂ξ

∂x2

∂ξ
−
(
x1 − x2(ξ)

)
·
∂2x2

∂ξ2

]−1

ξn

·
[(

x1 − x2(ξ)
)

·
∂x2

∂ξ

]
ξn

(3.114)

We can see that eq. (3.114) requires the first and second derivatives of the basis functions φ(ξ).
These are computed as :

x,ξ =
necpts∑
a=1

φa,ξxa = Q,ξ [Bbez]−1 PT

∂2x
∂ξ2 =

necpts∑
a=1

φa,ξξ
xa = Q,ξξ [Bbez]−1 PT

(3.115)

P a vector containing x coordinates. The solution to eq. (3.114) is then ξ̄. Position x is given by

eq. (3.100). Once ξ̄ is known, we can then evaluate the normal gap function. First we compute

the outward normal vector as :

n̄ =
x̄2
,ξ × x̄2

,η∥∥∥x̄2
,ξ × x̄2

,η

∥∥∥ (3.116)

and compute the normal gap from eq. (3.21). This normal gap is then used to determine the

contact state (whether the current slave node is in contact mode or separation mode).

3.6.6 The Solution Procedure

In this section we highlight the algorithmic treatment of the discrete contact problem detailed

above. Our problem consists of a contact interface discretized with the NTS technique and

contact constraints enforced with the penalty method. The full discrete form of all terms in the

weak form (presented in equations eqs. (3.68) to (3.71)) is given in eqs. (3.80) and (3.81) as well

as eqs. (3.109) to (3.112).
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3.6 Contact Discretization with Bézier-based Isogeometric Analysis

To complete the formulation detailed in the previous sections, we need a method to identify

the active set strategy (a contact search algorithm), which up to this point we have assumed it

has already been established. This forms part of contact detection process, a very important

aspect of computational contact mechanics, more specifically for large deformation problems

[3, 5, 6, 97]. Not only is the contact zone unknown a priori, it may also change considerably

within a load step, and in some cases even with the Newton-Raphson iteration.

The search algorithm then facilitates first the global search for entities/elements that may

possibly come into contact during the load step, and then the contact detection which is a local

search for contact pairs that are actually in contact. Since we are in the IGA framework, we

use the multipatch concept to facilitate the global contact search, that is, based on the type

of problem (geometry, boundary conditions, etc), we can limit all elements that are likely to

come into contact in to a single patch [22, 23]. The local contact detection algorithm is then

invoked during the resolution process to identify the true contact status - based on the distance

function, we obtain the master segment/surface closest to the slave node and then project the

slave node on to this closest master segment using the CPP algorithm detailed in the previous

section. Once we have an active set strategy we can proceed with the resolution process.

3.6.6.1 Newton-Raphson Technique

The penalty method is typically implemented with a combination of the active set strategy and

a Newton-Raphson iterative procedure. First eq. (3.68) is written as a residual vector R(u) :

R(u) = Fint(u)− Fext − Fstick/slip
c (u) (3.117)

which is then linearized as follows :

dR(u)
du

∆u + R(u) =
[
Kint(u) + Kstick/slip

c (u)
]

︸ ︷︷ ︸
KP
c (u)

∆u + R(u) = 0 (3.118)

Kint(u) and Kstick/slip
c (u) are the continuum tangent stiffness matrix and the penalty contact

contribution stiffness matrix, respectively. The Newton-Raphson procedure then consists in

seeking the iterative solution of the linearized equation

KP(uk)∆uk = −RP(uk) (3.119)

where uk is the solution vector at iteration k and ∆uk = uk+1 − uk is the incremental solution

update at iteration k. To solve eq. (3.119), the incremental solution procedure can be used. .

3.6.6.2 Contact/Impact Algorithm : Global Time Discretization

So far we have neglected the inertial effects and therefore assumed quasi static conditions. In

reality, contact problems tend to be dynamic, i.e. an impact event. In this case the problem
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3.6 Contact Discretization with Bézier-based Isogeometric Analysis

then entails in : suppose we have the numerical solution fields displacement un, velocity vn,

and acceleration an, of a dynamic system under contact conditions at time tn, we would like to

find the approximation of these fields un+1, vn+1, an+1 at time tn+1. Here, Unlike in the case

of quasi-static and incremental loading approach, t now represents actual time. The dynamic

governing equation given in its weak form in eq. (3.56), in discrete form now writes as :

Ma︸︷︷︸
Finert

+Fint − Fc = Fext (3.120)

where M is the global mass matrix, computed as follows

M = ρ
∑
nelem


nGP∑
i=1

nGP∑
j=1

[Bbez]−T [Q]T [Q] [Bbez]wiwj detJ

 (3.121)

assuming a non-compressible material, that is the density ρ is constant and uniform - the mass

matrix can be computed at the beginning of the simulation and stored for use. Hilbert-Hughes-

Taylor family of temporal integrators are the most commonly featured schemes for time-stepping

algorithms [3–5]. For a time step ∆t := tn+1 − tn, this algorithm writes as :

Man+1 + Fint(un+α) + Fc(un+α) = Fext(t) (3.122)

with

un+α = αun+1 + (1− α)un

un+1 = un + ∆tvn + ∆t2
2 [(1− 2β)an + 2βan+1]

vn+1 = vn + ∆t [(1− γ)an + γan+1]

(3.123)

where α, β, and γ are algorithmic parameters defining the characteristics of the time integration

method in terms of its stability and accuracy. In this family of temporal integrators we consider

two most prevalent schemes in finite elements [5] : (1) the conditionally stable, explicit, second

order accurate central differences scheme (α = 1, β = 0, γ = 1/2), particularly suitable for high

frequency impact systems, and (2) the implicit, unconditionally stable, second order accurate

trapezoidal rule, also known as the implicit Newmark method (α = 1, β = 1/4, γ = 1/2).

3.6.6.3 Explicit Time Integration : The Central Difference Method

With the algorithmic parameters α = 1, β = 0, γ = 1/2, we obtain the explicit central differencing

time integration scheme, with its discrete form writing as

Man+1 + Fint
n+1 − Fc

n+1 = Fext
n+1 (3.124)

un+1 = un + ∆tvn + ∆t2
2 an (3.125)

vn+1 = vn + ∆t
2 (an + an+1) (3.126)
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3.6 Contact Discretization with Bézier-based Isogeometric Analysis

The set of equation in Equations (3.124) to (3.126) are not presented in a manner convenient

for implementation. The usual form in which this scheme is implemented follows as [3] : the

central differences approximation of the velocity and acceleration fields at time tn are given by

vn = un+1 + un−1

2∆t
an = un+1 − 2un + un−1

∆t2
(3.127)

Substituting the expressions of the velocity and acceleration in eq. (3.127) into eq. (3.124), we

get the discrete form of the balance eaqution at tn as :

M
(un+1 − 2un + un−1

∆t2
)

+ Fint(un)− Fc(un) = Fext
n (3.128)

From eq. (3.128) we obtain a system of equations for the unknown displacements un+1 at time

tn+1

Mun+1 = ∆t2
[
Fext
n − Fint(un) + Fc(un)

]
+ M (2un − un−1) (3.129)

Notice that at the start of the central differences scheme eq. (3.129) needs the displacement

values u−1 (recall that we only have initial conditions specified at time t0). The starting values

u−1 then require special treatment and can be determined from the initial conditions u0 and v0

via the Taylor series expansion at time t−1, that is

u−1 = u0 −∆tv0 + ∆t2
2 a0 (3.130)

With the acceleration a0 computed from eq. (3.124) as follows

a0 = M−1
(
Fext

0 − Fint
0 + Fc

0

)
(3.131)

From eq. (3.129) we can see that the unknown solution un+1 depends only upon known variables

at the previous time step tn. These methods are easy to implement and can be extremely efficient

(no inversion of the costly stiffness matrices), particularly if the mass matrix is approximated by

the diagonal lumped mass matrix (the inverse of a diagonal matrix is trivial). As previously

mentioned, the central differences method is conditionally stable. The implication is, to achieve

stability, the time step size must not exceed the critical time step ∆tcr. The critical time step

which can be estimated either at element level or at structural level [4, 5], must satisfy the

Courant stability limit for a two body system, which writes as

∆ticr ≤
2

ωimax
, i = 1,2 (3.132)

ωimax the highest modal natural frequency in the mesh. In the case of the penalty method,

the critical time step does not only depend on the FE model (mesh density), but also on the

penalty parameter [4]. This is apparent in the contribution of the penalty parameter in the

global stiffness matrix, but not the mass matrix, thus further reducing the critical time step.
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3.6.6.4 Implicit Time Integration : The Newmark Method

If we substitute the algorithmic parameters α = 1, β = 1/4, γ = 1/2 into eqs. (3.122) and (3.123),

we obtain :

Man+1 + Fint
n+1 − Fc

n+1 = Fext
n+1 (3.133)

un+1 = un + ∆tvn + ∆t2
4 [an + an+1] (3.134)

vn+1 = vn + ∆t
2 [an + an+1] (3.135)

Rearranging eq. (3.134) to get the expression of an+1 and then substituting this an+1 into

eq. (3.133), we obtain :

4
∆t2 Mun+1 + Fint

n+1 − Fc
n+1 = Fext

n+1 + M
(
an + ∆tvn + 4

∆t2 un
)

an+1 = 4
∆t2 (un+1 − un)− 4

∆tvn − an

vn+1 = vn + ∆t
2 [an + an+1]

(3.136)

Now we can solve our system of equations eq. (3.136) in the same way as in the quasi static

case (eqs. (3.117) to (3.119)). The dynamic incremental residual writes as :

R(un+1) = Fint
n+1 − Fc

n+1 + 4
∆t2 Mun+1 −M

(
an + ∆tvn + 4

∆t2 un
)
− Fext

n+1 = 0 (3.137)

We can solve eq. (3.137) using the Newton-Raphoson technique. The consistent tangent stiffness

is given by :
dR(un+1)

dun+1
= KP = Kint + Kstick/slip

c + 4
∆t2 M (3.138)

We then solve, iteratively, the following equation :

KP(ukn+1)∆ukn+1 = −RP(ukn+1)
∆ukn+1 = uk+1

n+1 − ukn+1
(3.139)

Once the solver has converged, the velocity and acceleration field are updated as in eq. (3.136).

3.7 Summary

The aim of this chapter was to review and discuss the kinematics of the continuum mechanical

contact problem, with and without friction, in its entirety and to develop the contact discretization

using the Bézier based IGA approach. From the governing equations, the constitutive laws of the

behavior of contact at the interface, and the contact constraints, we have introduced the basic

equations and concepts that are required to build a strong variational form which is necessary

for the development of FE models. The regularization of the contact constraints as well as their
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enforcement, i.e. how the contact constraints are incorporated into the variational form, is also

detailed. This review forms a basis of section 3.6 where the Bézier based IGA approach proposed

in chapter 2 has been used for the discretization of the continuum equations and to formulate a

Node to Surface contact formulation.

In section 3.6 we have developed a node to surface, with the penalty method, Bézier-based isogeo-

metric numerical scheme for the treatment of contact problems with friction. The Bézier-based

approach (introduced in section 2.3.2 and in [87]) was shown to possess the same characteristics,

in terms of mesh and computation points, as the standard FEM and therefore suitable for

existing FE codes data structures. The implication is that we can exploit the smooth higher

order, and tailorable isogeometric basis, and easily integrate the IGA formulation with the more

familiar standard FEM methods. This then allows us to use the contact discretizations developed

specifically for FEM i.e. in the work of Laursen [5] and Wriggers [3], with only modifications in

the shape functions routine. Majority of the work goes towards the geometry preparation to

obtain the elemental structure similar to standard FEA. The contact Newton-Raphson procedure

is shown in algorithm 1, the return mapping algorithm essential for frictional contact interaction

in algorithm 2, and the quasi static global solution procedure is shown in algorithm 3. The

explicit global resolution algorithm for the dynamic system of equations is summarized in

algorithm 4. Application of this developed scheme follows in the next chapter.
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Algorithm 1 Newton-Raphson procedure for contact with penalty method.

Initialize current solution as u(0) = un
Initialize the active/inactive set

Set the penalty parameter εN , εT
loop over iteration k = 1,2, · · · , convergence

Check the contact status : gN
if gN ≤ 0 then

Contact status : True

Compute tN
Return mapping algorithm 2

Compute contact contributions KPM
c and RPM

c

else

Contact status : False

end if

Solve : KP (uk)∆uk = −RP (uk)
Update solution vector : uk+1 = uk + ∆uk

Check for convergence

if
∥∥∥RP(uk+1)

∥∥∥ < tol then

STOP and exit

else

CONTINUE

end if

Update active/inactive sets

end loop

Algorithm 2 Frictional contact : return mapping algorithm.

Compute trial state : ttrialk

T = ttrialk−1
T + ∆ttrial

T

Evaluate friction cone function : Φtrial =
∥∥∥ttrialk

T

∥∥∥− µtN
if Φtrial ≤ 0 then

Stick state : tkT = ttrialk

T

Compute Kstick
c from eq. (3.110)

else

Slip state : Compute tkT from eq. (3.112)

Compute Kslip
c from eq. (3.111)

end if
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Algorithm 3 Global solution algorithm : the incremental solution procedure.

Loop through all load steps

loop over load steps n = 1,2, · · · ,nsteps
Get current applied load/displacement

Compute tangent stiffness Kint

Newton-Raphson procedure, algorithm 1

end loop

Algorithm 4 Global solution algorithm : explicit temporal integration.

Choose ∆t
Initialize u0 and v0

Form M and compute its inverse, store for later use

Compute a0 = M−1(Fext
0 − Fc

0 + Fint
0 )

Compute u−1

Loop through all load steps

loop over load steps n = 1,2, · · · ,nsteps
Get current applied load/displacement, form Fext

n

Compute Fint
n

Invoke contact algorithm : search for contacting nodes

Compute gN(un)
if gN ≤ 0 then

Contact status : True

Compute contact contributions Fc
n

else

Contact status : False

end if

Compute un+1

Update an and vn
end loop
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Part II

Numerical Simulation of Contact
Problems, Dynamics and Acoustic

Radiation



4
Static Contact Problems

4.1 Introduction

In this chapter we demonstrate the quality and accuracy of the numerical scheme developed

in chapter 3.6 for the treatment of contact problems in 2D. First the scheme is used for the

numerical simulation of friction-less unilateral contact problems. The scheme is then extended

to the treatment of contact problems with friction. Numerical results are verified and validated

against analytical solutions (where available) and its performance, in terms of the quality of

the solution, compared to that of standard FEM (in this case solution obtained using contact

models in Abaqus 6.13).

4.2 Application to Frictionless Static Contact Problems

In this section, the aim is to demonstrate the validity of the solution procedure discussed

in chapter 3.6 for the simulation of unilateral contact problems. We consider two numerical

examples, namely : (1) the compression of an elastic sphere by a rigid block onto a rigid

foundation, and (2) the indentation of an elastic body by a rigid punch. For both these problems,

we assume the contact to be quasi-static, frictionless and that the inertial forces are negligible.

Since we consider a contact system consisting of an elastic body in contact with a rigid obstacle,

this is a Signorini contact problem and it is governed by the following equations :

1. Static equilibrium equation

div σ + b = 0 on Ω

2. Prescribed boundary conditions

u = uD on ΓD

σn = tF on ΓF



4.2 Application to Frictionless Static Contact Problems

3. Contact conditions

gN ≥ 0 tN ≤ 0 tN gN = 0 on Γc

The stress-strain relationship remains the Hooke’s law. The weak formulation of the equations

above writes as follows∫
Ω
σ : ε(δu) dΩ−

∫
Ω

b · δu dΩ−
∫

Γ
tF · δu dΓ−

∫
Γc

t · δu dΓ = 0 (4.1)

in discrete form eq. (4.1) writes as

R(u) = Fint − Fext − Fc (4.2)

with

Fint =
∑
nelem

nGPs∑
i=1

nGPs∑
j=1

[Bbez]−T [B]T {σ}wiwj detJ


Fext =

∑
nelem

nGPs∑
i=1

nGPs∑
j=1

[Q] [Bbez]−1 {b}wiwj detJ +
nGPs∑
i=1

[Q] [Bbez]−1 {b}wi



Q is the basis functions matrix given in eq. (3.76). Assuming small deformations state, the

contact force vector (with penalty method and NTS discretization reduces into)

Fc =
∑

nslaves

(∫
Γc
εNgN

(
δū2 − δu1

)
· n̄2 dΓ

)
=

∑
nslaves

εNgNN
(4.3)

and the contact stiffness reduces into

KP
c =

∑
nslaves

(∫
Γc
εNgNNNT dΓ

)
=

∑
nslaves

εNNNT
(4.4)

4.2.1 Compression of an Elastic Ball by a Rigid Block on to a Rigid Foundation

In this application we consider an elastic sphere that is being compressed by a rigid block onto

a rigid foundation depicted in fig. 4.1. The sphere has radius R = 0.05 m, and it’s material

properties : Young’s modulus E = 200 GPa, and Poisson’s ratio ν = 0.3. There are no body

forces present, and a total displacement of ū = 2.7 mm is prescribed at the top rigid block.

This problem is a classical Hertz friction-less contact problem between an elastic sphere and a

rigid plane. It is axisymmetric and therefore the axisymmetrical formulation (2D) can be use to

obtain its solution.

The elastic sphere on a rigid plane contact problem is well known and has an existing analytical

solution and is outlined in [102, 103]. For the prescribed displacement ū = 2.7 mm, the analytical

contact radius a is found to be 8.215 mm, and the maximum contact pressure p0 is found to be

−2.29× 1010 Pa - see appendix I for the detailed analytical solution.
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Figure 4.1 – A sphere compressed by a rigid block on to a rigid foundation.

4.2.1.1 Axisymmetrical Formulation

In the absence of body forces and boundary traction, the residual in eq. (4.2) reduces to

R(u) = Fint − Fc (4.5)

Linearization of eq. (4.5) leads to eq. (4.6)

[K] {∆u}+
{
Fint

}
− {Fc} = 0 (4.6)

As previously mentioned this is an axisymmetric problem, therefore the solution of this problem

can be sufficiently described with only 2 coordinates, see fig. 4.2, namely :

• radial displacements ur in the u-direction

• vertical displacements uz in the w-direction

Since the load is non-rotational, the rotational displacement vanishes, that is uθ = 0. Furthermore,

only the principal direction stress components σr, σθ, σz are present, as well as shear stress σzr.

The strain-displacement relationship is as follows

εr = u,r εθ = u

r
εz = w,z, εrz = u,z + w,r (4.7)

In matrix form, we have

{ε} =


∂
∂r

0
1
r

0
0 ∂

∂z
∂
∂z

∂
∂r


uw

 (4.8)
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x

y

z

P(r,z,θ)
θ

Figure 4.2 – Coordinates and displacement degree of freedom of an axisymmetric model.

with

uw
 =

φ1 φ2 · · · φnecpts 0 · · · 0 0
0 0 · · · 0 φ1 φ2 · · · φnecpts





u1

u2
...

unecpts
w1
...

wnecpts−1

wnecpts



cntrl

(4.9)

The strain matrix [B] is then

[B] =


∂
∂r

0
1
r

0
0 ∂

∂z
∂
∂z

∂
∂r


φ1 φ2 · · · φnecpts 0 · · · 0 0

0 0 · · · 0 φ1 φ2 · · · φnecpts

 = [∂] [Q] (4.10)

The only change with this formulation, compared to the plane stress/strain formulation strain

matrix, is the computation of the εθ field which then adds an extra row in the strain matrix.

Moreover, modifications of the discrete matrices that require volume integration are as follows

[K] =
∑
nelem

{∑
GPs

[Bbez]−T [B]T [D] [B] [Bbez]−1 2π r detJ

}
{
Fint

}
=

∑
nelem

{∑
GPs

[Bbez]−T [B]T {σ} 2π r detJ

}
where r is the actual radius at each integration Gauss point, D is the material matrix and is

given by

[D] = E
(1− ν)

(1 + ν)(1− 2ν)


1 ν

1−ν
ν

1−ν 0
1 ν

1−ν 0
sym 1 0

1−2ν
2(1−ν)

 (4.11)
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4.2 Application to Frictionless Static Contact Problems

Analysis of the problem given in fig. 4.1 is performed below.

4.2.1.2 Numerical Solution

Due to double symmetry, we can model the sphere with a quarter circle - see fig. 4.3. To facilitate

local refinement and the ease of contact search (minimize bookkeeping), a quadratic multi-patch

model is used for the geometry of the sphere. A single patch is used to model the rigid foundation.

(a) (b)

Figure 4.3 – The quarter circle model of the Hertz problem, it’s boundary conditions, and the

multiple patches used for the IGA model : (a) schematic of boundary conditions, and (b) patches

for the IGA model.

The geometry is setup in such a way that slave surface/edge is contained in one patch. This

then means only nodes living on this surface are included in the contact algorithm. The entire

top edge of the rigid foundation makes up the master surface. See fig. 4.4 for the graphical

description. We discretize the model first with quadratic Bézier elements, with the contact patch

containing a 4 × 3 mesh. Each contact pair then contains a single slave node and 3 master

nodes for quadratic elements. Since we are in the small displacement framework, the active

set strategy is predefined (all surface nodes on the contact patch make up the slave nodes set)

and therefore a global contact search algorithm is not necessary. We simply need a contact

status check algorithm (local contact search algorithm) - this is the closest projection algorithm

detailed in section 3.6.5.

To get started, we use a relatively coarse mesh containing a total of 40 Bézier elements (390
DOFs) : 33 elements make up the quarter circle with 12 elements on the contact patch. The

rigid block contains 7 elements - see fig. 4.4. The active set strategy then contains 9 slave nodes

and the whole top edge of the rigid block is taken as the master surface (contains 15 nodes)

with each contact element containing 4 nodes as previously stated. A penalty parameter of

εN = 100E is used in the simulation. The choice of the penalty parameter is based on the contact
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u

Master

surface

Contact

patch

Slave

surface

Figure 4.4 – The Hertz problem quarter model contact pairs : the contact patch (bottom surface

of the contact patch taken as the slave surface) and the master surface on the rigid block -

4× 3× 3 mesh with quadratic elements.

stiffness which in most FEA commercial packages is calculated from the elements modulus and

the characteristic element length. For instance ANSYS and Autodesk (and to an extent Abaqus)

calculates the underlying element contact stiffness as :

kecontact stiffness = E∗

l∗
(4.12)

where E∗ is the effective material stiffness and l∗ is the element characteristic length, which is

defined as

l∗ = V

Ac
(4.13)

V the volume of the element and Ac the contact area for each element (essentially the width

of each element). This approximation of the contact stiffness in eq. (4.12) depends purely on

the material properties and geometry (in terms of the mesh size, the characteristic length in

eq. (4.13)) of the bodies in contact. For the 4× 3× 3 mesh used in the simulation, the calculated

kecontact stiffness = 3.956× 1013 Pa. Hence the reason we set the penalty parameter as εN = 100E.

Finally, the prescribed displacement ū is applied in 50 increments (nsteps = 50). Results obtained,

in terms of the horizontal and vertical components of the displacement field are shown in fig. 4.5,

and fig. 4.6 shows the normal stress distribution (contact pressure) as well as the Von Mises

stress distribution.

The maximum contact pressure is found to be approximately 2.34× 1010 Pa. The contact area

radius is found as ah ≈ 8.21431 mm, a value similar to the analytical contact radius. However

when taking a closer look at the boundary of the contact zone (transition from contact to no

contact region), we can see irregular behavior. We observe more excessive penetration - see

fig. 4.7. In actual fact the permitted penetration across the contact area is order 1 × 10−8
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4.2 Application to Frictionless Static Contact Problems

(a) (b)

Figure 4.5 – The displacement field obtained with a quadratic coarse mesh, εN = 100E : (a)

r-component of the displacement, and (b) z-component of the displacement.

(a) (b)

Figure 4.6 – Stress field obtained with a quadratic coarse mesh, εN = 100E : (a) normal stress

σzz distribution, and (b) Von Mises stress distribution.

(roughly 0.01 µm), however close to the contact zone boundary there is a sharp increase of the

penetration (penetration 0.1 mm). This behavior could be a consequence of the larger mesh size,

with a coarser mesh, the distance between successive nodes is bigger, and therefore may either

under-predict or overshoot the contact area boundary (edge of the contact zone).

To improve the results, we performed first the h-refinement where we refined the knot vectors

in all directions (doubled the number of elements in the 3 patches that make up the quarter

circle). We also performed the p-refinement by raising the basis order from quadratic to cubic,

and finally the k-refinement (a combination of h− and p−). The mesh properties for these 3

cases as well as the solution obtained are summarized in table 4.1. Note that the relative error

is defined as
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4.2 Application to Frictionless Static Contact Problems

Figure 4.7 – Penetration across the contact area - 4× 3× 3 mesh with quadratic elements.

Relative error =
[
solanalytical − solnumerical

solanalytical

]
× 100 (4.14)

where in eq. (4.14) solanalytical denotes the analytical solution and solnumerical denotes the numerical

solution.

Parameter p-refinement h-refinement k-refinement

Total number of elements 40 139 139

Total number of DOFs 832 1228 2674

Contact patch elements 4 8 8

Number of slave nodes 13 17 25

Contact area radius

Contact radius ah [mm] 8.199 8.198 8.190

Relative error [%] 0.21 0.22 0.32

Maximum contact pressure

Max. contact pressure ph0 [×1010 Pa] 2.2771 2.3377 2.3394

Relative error [%] 1 1.64 1.71

Table 4.1 – Properties of the different meshes used for the IGA computation and the results

obtained.

Figure 4.8 shows the comparison of the obtained numerical contact pressure, first using the

coarse and then the finer quadratic mesh, across the contact area to the analytical pressure

distribution.
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4.2 Application to Frictionless Static Contact Problems

(a) (b)

Figure 4.8 – Comparison between the analytical and numerical contact pressure (normalized)

across the contact area, quadratic elements : (a) coarse mesh, and (b) fine mesh.

The results we have obtained are in good agreement with the analytical solution, however the

accuracy of the solution is highly dependent on the model’s ability to capture the contact zone

transition region (edge of contact). More points (nodes) around the region are required in order

to have a better quality solution. We have demonstrated how we can achieve this with refinement

of knot vector as well as degree elevation. It is important to note in this model, we used uniform

knot vectors (each patch has a uniform element size). Another alternative to improve the quality

of the solution would be to use non-uniform knot vectors ; with non-uniform knot-vectors, we

can construct meshes that are finer around the transition zone and coarser away from this region.

In this way, we could reduce the model size and save on computation cost while maintaining

good levels of accuracy.

In the numerical results discussed thus far the penalty parameter has been fixed at εN = 100E, a

choice based on the approximation of the contact stiffness in eq. (4.12). However, this value was

computed specifically for the coarse mesh (4× 3× 3) with quadratic elements. Recall that with

the penalty method the contact constraints are satisfied an approximate sense ; the constraints

are satisfied exactly if penalty tends to infinity. In essence, increasing the penalty value should

improve the quality of the results, however we should be mindful as excessively large penalty

parameters lead to the ill-posedness of the tangent stiffness matrix. Hence, it is interesting to

observe how the relative error, in terms of the quality of the solution, evolves with the increasing

values of the penalty parameter εN . This evaluation is shown in fig. 4.9 and fig. 4.10, where we

show the evolution of the relative error as well as the penetration levels for the course mesh

(4× 3× 3) with quadratic elements and cubic elements, respectively.

From fig. 4.9 and fig. 4.10 we observe that : (1) for both quadratic and cubic mesh, the relative

error on both the contact radius and the contact pressure plateaus at εN ≥ 100E ; the implication

is that increasing the penalty parameter value past 100E will not enrich the numerical solution,

and (2) even with low penalty parameter values, the maximum penetration on the contact area
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Figure 4.9 – The effect of the penalty parameter εN at fixed mesh resolution - 4×3×3 quadratic

mesh : (a) the evolution of relative error on the contact radius with increasing εN , (b) the

evolution of relative error on the contact pressure with increasing εN , and (c) the penetration

levels at different εN .
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Figure 4.10 – The effect of the penalty parameter εN at fixed mesh resolution - 4× 3× 3 cubic

mesh : (a) the evolution of relative error on the contact radius with increasing εN , (b) the

evolution of relative error on the contact pressure with increasing εN , and (c) the penetration

levels at different εN .
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is very low and the penetration levels decrease linearly with the penalty parameter. This then

qualifies the choice made to set the value of the penalty parameter as 100E.

Isogeometric analysis has been proven to have a superior accuracy per degree of freedom in

comparison to standard FEM, therefore it is interesting to compare the results obtained from

the Bézier based approach to that of standard finite elements analysis. To do this, this Hertz

problem was also simulated using Abaqus. For the same model size and element distribution as

the 4× 3× 3 IGA quadratic mesh, in Abaqus the mesh has properties : 160 linear quadrilateral

elements, and 396 DOFs. The contact was modeled using the penalty method and we specified

the same penalty parameters as in fig. 4.9 and fig. 4.10. Note due to the threshold on the

maximum permissible contact stiffness in Abaqus penalty method model (the penalty stiffness

cannot exceed 1000E), we did not include the penalty parameter value 10000E. In fact, Abaqus

has a threshold on acceptable penalty parameter values ; should the penalty parameter exceed

this value the contact model will switch from that of penalty method to Lagrange multipliers

method. The results obtained, in terms of the maximum contact pressure p0 and the maximum

permitted penetration order level, are summarized in table 4.2.

Penalty parameter, εN Max. contact pressure, ph0 [Pa] Penetration level [m]
E - -

10E - -

100E 1.239 1× 10−3

1000E 2.222 1× 10−4

Table 4.2 – The effect of the penalty parameter on the numerical results of the Abaqus FEA

model, in terms of the maximum contact pressure and the permitted penetration, of the classical

friction-less Hertz contact problem.

As we can see from table 4.2 no results were obtained for low values of the penalty values ; the

simulation was unsuccessful as excessive non physical deformation led to convergence failure.

Compared to the IGA results, the maximum contact pressure values are much lower than the

analytical value and the penetration is higher. To circumvent this limitation, we then modeled

the contact interaction using the penalty method with the default setting on the penalty stiffness,

which readily determines the suitable contact constraints models based on the mesh size. In

doing this, it helps facilitates the mesh refinement process while maintaining relatively low

penetrations. The results obtained are shown in table 4.3.

From table 4.3 we see that with 6 slave nodes in the contact interface in the FEA model we

found a maximum contact pressure of 2.325 × 1010 Pa which is in good agreement with the

analytical value (1.51 % error). However the contact radius was found to be 9.110 mm, which is

much higher than the analytical value (∼ 10 % error). The penetrations allowed were of order

1× 10−5 m. With refinements (21 slave nodes) the contact area approximation improved to a

value a = 8.4716 mm (∼ 3 % error), however the maximum contact pressure increases to a value

2.407× 1010 Pa which then increases the relative error to ∼ 4.8 %. From these results it is clear
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4.2 Application to Frictionless Static Contact Problems

Parameter Coarse mesh Fine mesh

Number of slaves 6 21
Contact radius

Contact radius, ah [mm] 9.110 8.4716

Relative error [%] 10 3
Maximum contact pressure

Maximum contact pressure, ph0 [×1010 Pa] 2.325 2.407
Relative error [%] 1.51 4.8

Table 4.3 – Results obtained from Abaqus (default penalty stiffness) for the classical friction-less

Hertz contact problem.

that the Bézier based is more superior and indeed more accurate than FEA on per degree of

freedom basis.

4.2.2 Indentation of an Elastic Half-Space by a Rigid Flat Punch

Here we consider the indentation of an elastic half space by a flat rigid punch. This problem

is depicted in fig. 4.11. There are no body forces present. The elastic half space has a Young’s

modulus E = 200 GPa, and Poisson’s ratio ν = 0.3. The rigid punch has a flat base of width 2a
and it has sharp corners. Furthermore the punch has a thickness (third dimension) much larger

than the dimensions in the x,y dimensions, such that we can assume plane-strain conditions.

To achieve the indentation process the rigid punch is displaced by 2 mm, therefore the indentation

depth d = 2 mm. Similarly to the Hertz problem in the previous section, this problem has a

known analytical solution, and it has been outlined in [102–104]. The contact radius a is equal

to the base of the rigid punch.

4.2.2.1 Plane Strain Formulation

Similarly to the Hertz problem in fig. 4.1, there are no body forces present, such that the residual

in discrete form is given by eq. (4.5) and the linearized form in eq. (4.6). In this case the plane

strain formulation is used, consequently we have :

• The behavior of this contact problem can be sufficiently modeled with 2 coordinates :

displacements degrees of freedom in the u- and v- direction, corresponding to the horizontal

(x) direction and vertical (y) direction, respectively.

• No principal and shear strains in the z-direction ; that is :

εz, εxz, εyz = 0 (4.15)

97



4.2 Application to Frictionless Static Contact Problems

Figure 4.11 – Indentation process of a rigid punch into an elastic half-space.

the non zero strain components are given by

εx = ∂u

∂x
, εy = ∂v

∂y
, εxy = ∂u

∂y
+ ∂v

∂x
(4.16)

and the constitutive equation is given by
σx
σy
σxy

 = E

(1 + ν) (1− 2ν)


1− ν ν 0
ν 1− ν 0
0 0 0.5− ν



εx
εy
εxy

 = D


εx
εy
εxy

 (4.17)

The strain-displacement relationship in matrix form is as follows
εx
εy
εxy

 =


∂
∂x

0
0 ∂

∂y
∂
∂y

∂
∂x


uv
 (4.18)

and the mapping of u,v is given by eq. (4.9). To obtain the strain matrix [B], we replace [∂] in

eq. (4.10) by the expression of [∂] from eq. (4.18). Finally, we have :

[K] =
∑
nelem


nGPs∑
i=1

nGPs∑
j=1

[Bbez]−T [B]T [D] [B] [Bbez]−1wiwj detJ

 (4.19)

{
Fint

}
=

∑
nelem


nGPs∑
i=1

nGPs∑
j=1

[Bbez]−T [B]T {σ}wiwj detJ

 (4.20)

98



4.2 Application to Frictionless Static Contact Problems

4.2.2.2 Numerical Solution

Due to symmetry, a half model is used in the analysis - see fig. 4.12. In the numerical model

the rigid punch has a base of width a = 0.5 m, and the elastic half space has a width of 4a
and a depth of 2a. The analytical contact pressure at x = 0 is found as p0 = 4.3956× 108 Pa -

analytical solution detailed in appendix II.

Figure 4.12 – 2D half model of the rigid punch on to an elastic half space contact problem.

To simulate the indentation process :

• the rigid block is modeled explicitly, at the top edge (contact interface of the rigid block)

both displacement degrees of freedom (u,v) are fixed

• the motion is applied to the elastic half space to achieve the indentation ; symmetry

boundary conditions are prescribed on the left edge of the elastic space - see fig. 4.12

The elastic half space is taken as the slave and the rigid indenter as the master. A single patch

is sufficient to model the rigid indenter. 3 patches are used to model the elastic half space to

allow for targeted refinement around the edge of the contact area - non-uniform knot vectors

are used for the geometry and chosen in such a way that the size of the Bézier elements (knot

spans) gradually increases as move away from the edge of the contact zone. The resulting Bézier

geometry as well as the network of it’s control points (mesh), for a quadratic discretization, are

shown in fig. 4.13.
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(a) (b)

Figure 4.13 – The rigid punch on an elastic half-space numerical model generated using quadratic

Bézier elements : (a) Bézier elements, and (b) mapping of computation points.

We discretize the half space with 14 elements along the x-direction, and 6 elements in the

y-direction. The rigid block contains 4 elements horizontally and a single elements vertically. In

total the model has 808 DOFs with 12 slaves nodes (6 elements on the potential contact zone)

and 10 master nodes. The penalty parameter εN is set to 100E (again this value is based on

the contact stiffness approximation in eq. (4.12), which for quadratic elements was found to be

2.705× 1013). The prescribed displacement is applied in 50 increments (load steps). We found

p0 = 4.2320× 108 Pa. Figure 4.14 shows the x− and y− components of the displacement field.

(a) (b)

Figure 4.14 – The displacement field of the indentation process, p = 2 and εN = 100E : (a) x

component of the displacement, and (b) y component of the displacement.
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Figure 4.15 – Stress distribution in the normal direction for the indentation process, p = 2 and

εN = 100E.

Figure 4.16 – Von Mises stress distribution for the indentation process, p = 2 and εN = 100E.
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In fig. 4.15 we show the normal stress distribution and in fig. 4.16 the Von mises stress distribution.

As expected, we observe a sharp rise of the stresses at the edge of the contact zone (theoretically

the pressure has an infinite value at the edges of the punch (x = ±a) [104]).

Using a cubic discretization which also has 12 slave nodes we found ph0 = 4.2687× 108 Pa. We

then compared the numerical contact pressure distribution obtained to the analytical pressure

distribution, and this comparison is shown in fig. 4.17. In fig. 4.18 we show the comparison of

the numerical displacement of the surface outside the punch to the analytical displacement.

(a) (b)

Figure 4.17 – Comparison of the numerical solution, in terms of the contact pressure (normalized

with the analytical mean contact pressure pm) distribution across the contact zone, to the

analytical solution for the quadratic and cubic case, εN = 100E : (a) quadratic mesh, and (b)

cubic mesh.

(a) (b)

Figure 4.18 – Comparison of the numerical solution, in terms of the vertical displacement

of the surface outside the punch, to the analytical solution for the quadratic and cubic case,

εN = 100E : (a) quadratic mesh, and (b) cubic mesh.

The numerical results from the simulation are in good agreement with the analytical solution. A
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relative error (relative to the analytical solution) of 3.7 % on the contact pressure at the center

of contact is obtained with quadratic discretization. With the cubic discretization we have a

2.9 % relative error. Evidently we under predict the maximum contact pressure (pressure at

the edge of the punch). This is because of the stress concentration and would therefore require

a finer mesh to better capture the stresses at this area. Even so, this may seem a futile task

numerically because the stresses are infinite.

Again comparing the results with the Abaqus FEA model using penalty method with the

default penalty stiffness (12 slave nodes on the contact interface, full model with 340 linear quad

elements, and 862 total DOFs), we found the Bézier based method to be more accurate. With

the Abaqus FEA model we obtained p0 = 3.84812× 108 Pa. For the same number of degrees of

freedom in the system, with the FEA model we have a relative error of ∼ 12.6 % in comparison

to the analytical solution. With the Bézier based approach, the error is only ∼ 3.7 %.

4.3 Numerical Simulation of Frictional Contact Problems

In this section we use the developed Bézier-based discretization scheme to simulate frictional

contact. Again the penalty method is used for the enforcement of contact constraints and the

node to surface method for the collocation of contact integrals.

4.3.1 Compression of an Elastic Cylinder on a Rigid Substrate

Consider the frictional contact of an infinitely long elastic cylinder with a rigid plane, schematic

in fig. 4.19.

The cylinder is being compressed by displacement ū = −2.7 mm, has a radius R = 0.05 m, and

is made of a linear elastic isotropic material with a Young’s modulus E = 200 GPa and Poisson’s

ration ν = 0.3, with coefficient of friction µ = 0.8. Taking into account symmetry, the problem

can be modeled in 2D with only a quarter of the geometry, under plane strain assumptions (with

the formulation detailed in section 4.2.2.1 and the discrete elastic stiffness and the internal force

vector in eqs. (4.19) and (4.20)).

The uncoupled analytical solution for this problem has been outlined in [102, 105, 106], assuming

purely stick conditions. This simplified solution approach of course leads into the underestimation

of contact stresses. However, if the friction coefficient is set large enough, which it is in our case, we

can reduce the error arising as a result of the uncoupled approximation of the analytical solution

[105]. Using the uncoupled solution approach, and assuming purely stick conditions, for the

prescribed compressive displacement which is equivalent to a total applied load FN = 1.49×108 N.

The analytical solution is computed in appendix III, and found as :

• the contact area semi width a is found to be 6.5708 mm
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Figure 4.19 – Elastic cylinder compressed on to a rigid plane.

• the subsequent maximum normal contact pressure is p0 = 1.4441× 1010 Pa

• and the maximum tangential contact pressure is 0.32698× 1010 Pa

Under the infinitesimal deformation conditions the contact stiffness terms and its force vector in

eqs. (3.109) to (3.112) reduce into :

Kstick
c = εNNNT + εTm11D1D1

T + 2εTD1T̃T
1

(
ξ̄ − ξ̄n

)
(4.21)

Fstick
c = εNgNN + tT

trial
1 D1 (4.22)

for stick conditions, and

Kslip
c = εNNNT + µεN sign

(
tT
trial
1

) [√
m11 D1NT + gN√

m11
D1T̃T

1

]
(4.23)

Fslip
c = εNgNN + tT 1D1 (4.24)

for sliding conditions.

The stick and slip tangential tractions write as :

ttrialT1 = tT1n + εT
[
m11

(
ξ̄ − ξ̄n

)]
tT1 = −µ |tN |

ttrialT1∥∥∥ttrialT1

∥∥∥
(4.25)
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Figure 4.20 – Quadratic Bézier elements mesh used for the frictional contact problem between

an elastic cylinder and a rigid substrate.

To simulate this interaction, we discretize the geometry with quadratic Bézier basis with the

contact patch mesh of 4× 3 elements ; the mesh used for the computation is shown in fig. 4.20.

We set the tangential penalty parameter εT = 102E and normal penalty parameter εN = 103E.

The prescribed displacement ū is applied in 50 increments. The results obtained - the horizontal

and vertical displacement field as well as the normal and tangential stress distribution - are

shown in fig. 4.21.

The numerical semi width of the contact area was found to be in the vicinity of 6.578 mm, which

is approximately 0.1% relative error, and the maximum normal contact pressure was found to

be 1.46041× 1010 Pa with ∼ 1% relative error. The maximum tangential stress was found to be

0.3875× 1010 Pa, which is much higher than the analytical value (∼ 18.5%). To evaluate the

effect of mesh refinements, we simulate this problem again : first using a 8× 6 quadratic mesh,

using a cubic 4× 3 mesh, and finally a cubic 8× 6 mesh. Results obtained are summarized in

table 4.4.

Contact inter-

face nelems

Max. tangential stress

[×1010 Pa]
Contact area semi

width, a [mm]

Max. normal pressure,

ph0 [×1010 Pa]
Quadratic elements

4 0.3875 6.5780 1.4604
8 0.3862 6.5762 1.5149

Cubic elements

7 0.3899 6.5819 1.5201
13 0.3692 6.5792 1.5582

Table 4.4 – The effects of mesh refinement on the numerical solution for the frictional contact

between an elastic cylinder and a rigid plane.
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Figure 4.21 – Numerical results for the frictional contact of an elastic cylinder and a rigid

plane obtained contact patch mesh 4 × 3 (mesh shown in fig. 4.4) : (a) x-component of the

displacement, (b) y-component of the displacement, (c) normal stress distribution, σ22, and (d)

tangential stress distribution, σ12.

Figure 4.22 shows the comparison of the numerical solution obtained using the Bézier-based IGA

method to the analytical solution and the FEA solution from Abaqus (Abaqus mesh contains 21

slave nodes on the contact interface - model size as given in section 4.2.1.2).

Again the IGA Bézier based method proved to be more accurate that the Lagrange based FEA

method, particularly in terms of the predicted contact area. From the Abaqus solution the

contact area semi width was found to be 7.2785 mm leading to a relative error of ∼ 10.7%,

whereas with IGA the error on the contact semi width is less than 1%. Likewise the quality of

the recovered normal pressure from the IGA method is relatively more accurate, on per degree of

freedom basis, than the normal pressure solution from Abaqus. Furthermore, the approximation

of the tangential stress improves with mesh refinements.
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Figure 4.22 – Comparison of the Bézier-based numerical solution to the analytical solution

(uncoupled approach) and Abaqus solution for the frictional contact between and elastic cylinder

and rigid plane : (a) 4× 3 quadratic mesh, (b) 4× 3 cubic mesh, (c) 8× 2 quadratic mesh, and

(d) 8× 6 cubic mesh.

4.3.2 Frictional Contact Between Deformable Bodies

In this numerical example we consider Hertzian contact, with friction, between a deformable

body with a cylindrical lower surface (upper body) and a deformable plane (lower body) depicted

in fig. 4.23.

Both bodies are made of an elastic isotropic material with a Young’s modulus E = 1 and

Poisson’s ratio ν = 0.3, and a coefficient of friction µ = 0.2. The upper body has a height of

h = 0.3, base width of b = 0.5, and its cylindrical lower surface has a radius R = 1. All units

in SI units standard. The deformable plane has a height h = 0.3 and base width b = 0.5. The

loading history of the problem depicted in fig. 4.23.

During the first analysis step a uniform downward vertical displacement is applied in increments
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Figure 4.23 – Schematic of the frictional contact between a deformable cylinder and a deformable

plane.

Figure 4.24 – Loading history for contact interaction in fig. 4.23.

up to vmax = 2× 10−3 at the top surface of the upper body for time T = [t0,t1]. In the second

analysis step the top surface of the upper body is then loaded in the horizontal direction, again

in increments, with an applied displacement up to umax = 0.75× 10−3 during time T = [t1,t2],
while the vertical displacement is held constant at vmax. The bottom surface of the lower body

is fixed in both x and y direction.

In the resolution of this problem we take the cylindrical surface of the upper body as the slave

surface and upper surface of the plane as the master surface. The slave surface is discretized using

cubic Bézier elements with its mesh containing 12 elements in the x-direction and 6 elements in
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the y-direction. For the slave surface the mesh has been refined around the potential contact

region, through the redistribution of the knot vector entries, such that 80% of the elements

are located within half the total length of the knot vectors. Similarly the master surface is

discretized with cubic Bézier elements (7× 4 mesh), however with uniformly distributed knot

entries both in the x,y-direction. Figure 4.25 shows the mesh used for the simulation.

(a) (b)

Figure 4.25 – The Bézier mesh of the problem in fig. 4.23 (visualization of elements and the

actual location of the computation nodes), 12× 6 mesh for the slave body, 7× 4 mesh for the

master body : (a) visualization of the Bézier elements in the mesh, and (b) the nodal mesh used

for the computation.

The applied displacement in fig. 4.24 amounts to a total reaction force FN = 6.02 × 10−4 N

in the normal direction (y-direction) and FT = 1.08× 10−4 N in the tangential direction. Hills

and Nowell [106] detailed the solution procedure for the analytical solution for this problem

(uncoupled approach which assumes the tangential stresses has no effect on the normal contact

pressure). The solution has been detailed in the appendix IV with the analytical normal and

tangential contact pressure across the contact area shown fig. 4.26.

From fig. 4.26 we can see that contact interaction experiences both stick and slip conditions with

maximum normal contact pressure p0 = 10.2587 × 10−3 Pa. Both the normal and tangential

contact pressure distribution are symmetric about the centre of contact area x = 0. The full

contact area semi width is found to be |a| = 3.73416× 10−2 m and the stick area semi width c

is found to be |c| = 1.18102× 10−2 m. Maximum tangential contact pressure is reached at the

boundaries of the stick zone and is found to be 1.9457× 10−3 Pa. At the centre of the contact

zone the tangential contact pressure is found to be 1.4028× 10−3 Pa.

To obtain the numerical solution ; 50 load-steps are used for both analysis steps. We set both the

normal penalty parameter and tangential penalty parameter to εN , εT = 103E. The displacement

field (horizontal and vertical components) obtained is shown in fig. 4.27.
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Figure 4.26 – Analytical contact pressure for the Hertz contact of the deformable cylinder on a

deformable plane - see appendix IV.

(a) (b)

Figure 4.27 – Displacement field [m] obtained for contact between a deformable cylinder

and deformable plane : (a) x- component of the displacement, and (b) y- component of the

displacement.

Figure 4.28 shows the stress distribution (normal and tangential components) obtained, with

maximum normal stress ∼ 1× 10−2 Pa and maximum tangential stress ∼ 3× 10−3 Pa.

The first observation from the results in fig. 4.27 and fig. 4.28 is the lack of symmetry of not only

the deformation (with respect to the displacement fields), but both the normal and tangential

contact stresses are skewed. This is especially apparent when looking at the comparison (fig. 4.29)

of the contact stresses distribution across the contact area for both the analytical solution and

the numerical solution obtained, as well as the numerical results summarized in table 4.5.
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Figure 4.28 – Normal and tangential stress [Pa] distribution obtained for contact between a

deformable cylinder and deformable plane : (a) normal stress, σ22, distribution, and (b) tangential

stress, σ12, distribution.
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Figure 4.29 – Comparison of the analytical and numerical contact pressure (normalized) for the

Hertz contact between the deformable bodies.

The maximum normal contact pressure was found to be 10.4224× 10−3 Pa.

From fig. 4.27 and fig. 4.28 then we deduce that the presence of slip has an influence of the contact

stresses and therefore the assumption made for the uncoupled solution approach (analytical

solution in fig. 4.26) does not hold ; the analytical solution is only approximate. This effect was

also observed and is even more prominent in the Lagrange basis discretization solution which

was obtained using the Penalty formulation in Abaqus with a default penalty stiffness. For this
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Numerical results Left Right

Contact area semi-width a [×10−2] −3.6520 3.7650
Stick zone semi width c [×10−2] −1.8293 1.2812

Tangential contact pressure at c [×10−3] 1.9295 1.6846

Table 4.5 – The contact area semi width a and the stick zone semi width c (contact between a

deformable cylinder on an elastic plane) obtained using the Bézier-based method.

Abaqus model a 60× 30 linear quads mesh was used for both the slave and master bodies. Again

the mesh was refined in the vicinity of the contact region. Since we know that in standard FEA

the finer the mesh, the closer we will get to the true solution, hence the use of the very fine

mesh for the Abaqus model. This provides us with a good benchmark for verification of our

IGA model specifically for this problem as the analytical solution is only approximate. The

comparison of these results is shown in fig. 4.30 and fig. 4.31.
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Figure 4.30 – Comparison of the analytical and numerical normal contact pressure (normalized)

for the Hertz contact between the deformable bodies.

In table 4.6 we summarize the results in fig. 4.27 and fig. 4.28.

We can see that the total contact area and normal contact pressure, for both IGA and FEA,

are comparable with the analytical solution. However the IGA model is much smaller, in terms

of DOFs, compared to the Abaqus model : IGA model contains 100 elements with a total of

1978 DOFs, and the Abaqus model contains 3600 elements with a total of 7808 DOFs. From

the results we learnt that :

• The numerical p0 is 10.4224× 10−3 Pa using IGA and 10.4× 10−3 Pa using FEA, with a

relative error (with respect to the analytical value) of 1.6% and 1.4%, respectively.
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Figure 4.31 – Comparison of the analytical and numerical tangential contact pressure (normalized)

for the Hertz contact between the deformable bodies.

Left Right Left Right

Method IGA FEA

Contact area semi-width a [×10−2 m] −3.6520 3.7650 −3.940 3.485
Stick zone semi width c [×10−2 m] −1.8293 1.2812 −1.770 1.850

Tangential contact pressure at c [×10−3 m] 1.9295 1.6846 1.870 1.580

Table 4.6 – Results obtained in terms of the contact area semi width a and the stick zone semi

width c (contact between a deformable cylinder on an elastic plane) from both the Bézier-based

method and using Abaqus.

• The total contact area width 2a for both IGA and FEA is within 1% of the analytical

solution : for IGA 2a = 7.417× 10−2 m, for FEA 2a = 7.425× 10−2 m, and the analytical

total contact width is 2a = 7.46832× 10−2 m.

• The numerical total stick zone is however much higher than the analytical 2.36× 10−2 m,

with a width of 2c = 3.1105 × 10−2 m and 2c = 3.62 × 10−2 m, for IGA and FEA,

respectively.

Again as mentioned the numerical tangential contact stress is non-symmetric with a larger slip

zone to the right than on the left side.
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4.4 Summary

In this chapter, we consider the Bézier-based IGA approach in [87] and introduced in chapter 2,

suitable for existing FE codes data structures, which is based on the implementationally friendly

isogeometric finite elements [76] and the transformation method in [88]. The main and interesting

characteristic of this developed scheme is, unlike the standard NURBS/BSplines-based IGA,

computation points now live on the physical geometry. This leads to a mesh identical to that

of standard FEM which then greatly simplifies the application of boundary conditions, and

thereafter the computation of contact integrals which have to be collocated at physicals points.

The Bézier based IGA method was then coupled with the node-to-surface method and developed

in chapter 3.6 for the treatment of penalized contact problems. In this chapter the objective was

to evaluate the performance of this scheme in terms of the quality of the solution as well as its

performance relative to the classical Lagrange based FEA.

First we considered the classical frictionless Hertzian contact problem between an elastic sphere

and a rigid block, under assumed axisymmetric conditions. The results were validated against

the analytical solution. We found that even with a relatively coarse mesh we could predict both

the contact radius and maximum contact pressure to within useful accuracy (less than 0.5%
relative error on contact area radius, and a relative error of ∼ 1.5% on the contact stress), and

quality of the solution was far more superior than the quality of the solution obtained using the

Lagrange based method (Abaqus).

In the second problem we studied the indentation of an elastic half space by a rigid flat punch,

under plane strain assumptions with a quadratic discretization. The results obtained were then

compared to the analytical solution and we found that with the Bézier-based method we could

predict the contact pressure to within 4% of the analytical solution in terms of the contact

pressure at the centre of the contact area. These results were further improved through degree

elevation (cubic elements instead of quadratic discretization while maintaining the same number

of degrees of freedom in the system) ; the relative error reduced from ∼ 4% to just under 3%, a

significant contrast to the ∼ 12% relative error on the Abaqus results.

The third numerical example consisted of a pure stick contact interaction between an elastic

cylinder and a rigid substrate. Again plain strain conditions hold for this problem, and due to

double symmetry a quarter model was sufficient. The uncoupled solution of this problem exist

and has been detailed in [102, 105, 106]. Comparing our numerical solution to the analytical

solution, we found an excellent correlation in terms of the contact area semi width : the numerical

semi width is with < 1% of the analytical value. A relatively good agreement of the numerical

normal pressure and the analytical normal pressure was found as well.

The fourth and final numerical example considers a frictional Hertzian contact interaction

between two deformable bodies (an elastic cylinder on an elastic plane) under partial slip

conditions. The cylinder is first loaded in the vertical direction and then in the horizontal
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direction, such that in the contact area both the stick zone and slip zone are present. This

problem has an existing analytical solution which is given in [105, 106] and given in fig. 4.26.

One major observation from the numerical solution was, contrarily to the analytical solution, the

contact pressure distribution (both the normal and tangential component) are non symmetric,

however this skewness was more prominent in the tangential contact stresses. Consequently,

the contact area is slightly skewed, however the total contact width is still with the 1% of the

analytical total contact width. Furthermore the normal contact pressure was in good agreement

with the analytical solution (relative error ∼ 1.7%). The skewness in the contact pressure was

also observed in the Lagrange FEA solution.

115



5
Explicit Dynamics in Impact Simulation

and Acoustic Radiation

5.1 Introduction

Vibration and noise control is an important subject in industry. Structural vibration is caused by

the unbalanced inertial forces and noise generation is the result of such vibration. Whether it is

the case of structural damaging vibrations, or vibrations generated by machines, moving vehicles,

operational tools, the generated noise is not only detrimental to the machine life itself, but can

also be harmful to the environment and pose a serious health and safety hazard to human life

[8–11]. Hence the strict requirements on manufacturers to comply with the standards limiting

unwanted noise emissions. This is the reason why noise control, and its reduction at the source,

is an important step during the design phase of technical devices due to the impact it can have

on the environment and humans [10, 107]. Consequently, good predictions of vibrations, and the

understanding of the mechanisms of generation and propagation of noise, are so useful in this

field, especially for noise induced by impacted structures. In particular, we consider the acoustic

radiation of forced (excited) vibrating thin elastic plates (these are applicable in many sectors

of industry). This excitation can be localized as typically encountered in impact problems, or

moving as is generated by a passing vehicle.

As already mentioned, the recovery of contact stresses arising from surface/surface interactions

such as impacted structures is the entry point for these type of analysis : noise control begins with

a good prediction of the dynamics of the structure, including a good contact model. Numerical

simulation of contact (static and dynamic), particularly in FEM and IGA, is well established

and has been studied for many years [2, 3, 5, 22, 23, 97]. Similarly, research work dedicated to

plate dynamics is plentiful and rich, ranging from modal analysis [108, 109], impact problems

[10], and moving forces [110–112]. Focus on vibro-acoustics is also well advanced partly due

to the emergence of new numerical techniques other than FEM, particularly the boundary

element method (BEM) [113–115]. However, even with the progress made in research work

for both contact analysis and vibro-acoustics, and despite the real interest from industry in
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terms of impact induced noise control and reduction, very little effort has been made towards

numerical simulation of the acoustic response of impacted structures [116–118]. The impact-

acoustic problem of impacted plates has however been either partially addressed in time domain

[119–121], or completely treated but in frequency acoustic formulation [122, 123] as implemented

in [113, 114].

In transient acoustic response the most useful, sought out information is contained within a short

duration at the begining of the sound signal and for this reason, frequency methods are generally

not sufficient [124]. For these type of problems, time-domain approaches are more appealing.

Moreover, due to its complexity the impact-acoustic problem for plate like structures has been

treated only in part. In fact, in the limited studies of this problem available in literature, the

contact has been assumed to be punctual with the structure dependent contact forces estimated

experimentally [120], analytically using the Hertzian contact law [121], or approximated by a

Dirac pulse [119]. Furthermore, when it comes to predicting the noise generated from forced

vibrating plates, the case studies were mainly limited to the acoustic radiation due to impact

at the center of the plate [10, 118], and focused on the initial transient wave [125]. Hence the

interest in a model that is both accurate and complete in time domain : (1) complete in the sense

that the dynamic analysis of the impact problem based on a contact formulation is carried out

jointly with the calculation of the acoustic response of the problem in time domain, (2) accurate

in the sense that the contact force and the contact area are precisely calculated even for complex

geometries and not only for plate like structures. This is the reason why isogeometric analysis is

an interesting numerical approach for this class of problems [12] : not only has it been used for

contact [37–40] and impact analysis [85], but it has also been used in acoustics [35, 126].

The main scope of this chapter is the analysis of the dynamic response, and the resulting acoustic

radiation, of a forced-vibrating circular plate embedded in a rigid baffle using the Bézier-based

IGA approach developed in chapter 2. The governing equations which constitute both the

dynamic and acoustic behavior of the plate are detailed in section 5.2. This is followed by the

derivation of the discrete model in section 5.3, using the Bézier elements, used for the numerical

solution. In section 5.4 we give some details on the solution procedure and discuss the obtained

results. Lastly, the performance of the complete model is analyzed, in terms of results quality,

order of approximation, computational efficiency, and the effects of the choice of time integration

scheme.

5.2 Problem Description

In this study we consider a circular elastic plate of radius Rp, and thickness h with material

properties Young’s modulus Ep, Poisson’s ratio νp and density ρp, impacted by a small elastic

sphere, as illustrated in fig. 5.1. This sphere has a radius Rs, Young’s modulus Es, Poisson’s

ratio νs, density ρs, and an initial velocity v0. The impact, without friction, is perpendicular to

the center O of the plate. The fluid medium surrounding the plate is assumed to be lossless and
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homogeneous with a sound speed cf and a density ρf smaller than ρp. Further, we assume that

the propagation medium (air) is so light such that it neither alters the modes of the plates nor

shifts its natural frequencies. Moreover, the plate is assumed initially at rest and is embedded in

a rigid baffle thus fulfilling the necessary condition for the use of the Rayleigh integral equation.

Plate

Rigid Baffle

z

x

y

P

ψ

O

r

v0

Sphere

Figure 5.1 – Schematic of the impact of an elastic plate (embedded on a rigid baffle) by an

elastic sphere : v0 the initial velocity of the sphere, and (r,ψ) are the polar coordinates defining

the acoustic field point P .

The aim of this study is to perform numerical simulation of the impact between the plate and

sphere, as well as the calculation of the resulting acoustic radiation in the surrounding fluid

medium. Note that the circular shape chosen for the plate is motivated by the use of IGA which

has been proven to be more accurate than the standard FEM approaches. The application of

IGA for a rectangular plate would have brought very little compared to the standard method

because of the shape of the plate. Moreover, in this problem only the deformation phase of

impact is considered, the restitution phase is disregarded.

5.2.1 Governing Equations

Supposing there are no body forces, initial stresses, or initial strains present, the dynamic behavior

of the elastic and homogeneous two-body system is governed by the following equilibrium and
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boundary conditions equations :

div σi − ρi
∂2ui
∂t2

= 0, in Ωi

σi · ni = t̄Fi , on ΓF i
ui = 0, on ΓDi

(5.1)

where i = p,s (p for plate and s for sphere), and initial conditions

ui(xi,t0) = u0i

vi(xi,t0) = v0i
(5.2)

In eqs. (5.1) and (5.2) u is the displacement field, t the time, n the unit outward normal vector,

and σ the stress tensor which is related to the strain tensor ε through Hooke’s law (σ = D : ε,
with D the elasticity matrix). Homogeneous boundary conditions are prescribed on the Dirichlet

boundary ΓD, with external loads acting on ΓF , and the rest of the boundary Γ is assumed

stress free. Assuming friction-less contact, that is, only normal traction tN (•N denotes a normal

quantity) is taken into account, contact constraints are given by eq. (5.3)

gN ≥ 0, tN ≤ 0, tNgN = 0 (5.3)

with gN the normal gap. Taking the sphere as the slave body and the plate as the master body,

the normal gap gN = (x̄p − xs) · n̄p. Again, •̄ indicate quantities evaluated at the closest point

projection parametric coordinates ξ̄.

The constitutive behavior of the plate is governed by the Reissner-Mindlin theory. With this

plate theory, these main assumptions hold [127] :

• A plate of thickness h can be represented by its reference (middle) plane which is the

xy-plane of surface Ap. The domain Ωp of the plate then takes the form :

Ωp =
{

(x,y,z) ∈ R3 | z ∈
[
−h2 ,

h

2

]
, (x,y) ∈ Ap ⊂ R2

}
(5.4)

• Any transverse loading on the plate induces deflection w (deflection does not vary through

the thickness) and rotations θ1, θ2 of the normals to the reference plane. Moreover, a fiber

initially normal to the reference plane rotates but remains straight after deformation. Thus

the displacement field of any point on the plate is given by :

u1(x,y,z) = z β1(x,y) = z θ2(x,y)
u2(x,y,z) = z β2(x,y) = −z θ1(x,y)
u3(x,y,z) = w(x,y)

(5.5)

• Plane stress hypothesis holds, that is, σ33 = 0
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5.2 Problem Description

The stress-strain relationship, that is the relation of the in-plane strain κ and off-plane strain γ,

to their corresponding stresses σ̃ and τ̃ , respectively, follows as :

σ̃ = zD1κ, τ̃ = D2γ (5.6)

where

σ̃ =


σ11

σ22

σ12

 , τ̃ =

σ13

σ23

 , κ =


∂β1
∂x
∂β2
∂y

∂β1
∂y

+ ∂β2
∂x

 , γ =


∂w
∂x

+ β2
∂w
∂y

+ β1

 (5.7)

and

D1 = Ep
1− ν2

p


1 νp 0
νp 1 0
0 0 1−νp

2

 , D2 = kEp
2(1 + νp)

1 0
0 1

 (5.8)

k is the correction factor and is set to 5/6.

The sphere is assumed to be a 3D solid, with displacement field components us = {us; vs; ws},
and its constitutive behavior described by the Hooke’s law σs = Ds : εs. The stress σs and

strain εs tensor, in vectorial form, write as :

σs =



σ11

σ22

σ33

σ12

σ13

σ23


, εs =



ε11

ε22

ε33

ε12

ε13

ε23


=



∂us
∂x
∂vs
∂y
∂ws
∂z

∂us
∂y

+ ∂vs
∂x

∂us
∂z

+ ∂ws
∂x

∂vs
∂z

+ ∂ws
∂y


(5.9)

And the elasticity tensor Ds given by :

Ds = Es (1− νs)
(1 + νs) (1− 2νs)



1 νs
1−νs

νs
1−νs 0 0 0

νs
1−νs 1 νs

1−νs 0 0 0
νs

1−νs
νs

1−νs 1 0 0 0
0 0 0 1−2νs

1−νs 0 0
0 0 0 0 1−2νs

1−νs 0
0 0 0 0 0 1−2νs

1−νs


(5.10)

For the computation of the acoustic field of the forced-vibrating plate we use the Rayleigh integral

equation, a well established method for calculating the acoustic radiation of flat structures

embedded in an infinite rigid baffle [35, 113, 115, 128–131]. The Rayleigh integral equation

represents a special case of the boundary integral equation, usually discretized using the boundary

element method, in which the normal derivative of the Green’s function is zero due to the

presence of the infinite baffle [35]. This integral equation exists in both frequency and time

domain form and can be formulated in terms of the acoustic pressure p or the acoustic potential φ.

The advantage of using the Rayleigh integral equation is its efficiency in terms of computational

time. Moreover, it does not require any memory as it does not rely on the resolution of a system

of equations, but rather it consists only the evaluation of an integral :

p(ς,t) =
∫

Γ

ρf
2πr(xp,ς)

a3

(
xp, t−

r

cf

)
dA (5.11)
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5.3 Discretization using Bézier Elements

In eq. (5.11), a3 is the normal acceleration r is the distance separating the acoustic field point ς

from the source point xp, and r/cf is the time needed by the acoustic wave to propagate from

source point to the acoustic field point.

5.2.2 Variational Formulation

The weak formulation of the contact-impact elasto-dynamics equations is given in eqs. (5.1)

to (5.3). In what follows we drop the subscript i, however it should be understood that the weak

formulation consists of both the plate and sphere contributions such that Ω = Ωp ∪ Ωs and the

external force term is the contact traction acting on Γc = Γcp = Γcp .∫
Ω
σ : ε (δu) dΩ + ρ

∫
Ω

a · δu dΩ =
∫

Γc
tN (δup − δus) · n dΓ︸ ︷︷ ︸

contact force

(5.12)

where n = np = −ns.

To simplify the contact term in eq. (5.12), we adopt the convention of Zhong [4], where the

contact tractions are replaced by a set of discrete nodal forces fc which are considered as the

primary unknowns. When these nodal forces are known, the contact tractions may be deduced

as follows ∫
Γc
tN (δūp − δus) · n̄ dΓ =

L∑
k=1

[fc (δūp − δus) · n̄]k (5.13)

The notation [•]k in eq. (5.13) denotes the quantity [•] evaluated for each slave node k and L

is the number of active slave nodes obtained through the local search algorithm. The penalty

method is used to model these contact nodal forces, that is, fc ≈ εNgN .

5.3 Discretization using Bézier Elements

In a similar manner to the contact problems in the previous chapter, the system is discretized

with the Bézier-based IGA approach (with the Bézier inverse matrix introduced to allow for

direct computation of physical quantities). If we redefine the element shape functions matrix Q
(defined in section 3.6.1 eq. (3.77)) at each node, as :

Q =


φ(ξ)B−1

bez 0 0
0 φ(ξ)B−1

bez 0
0 0 φ(ξ)B−1

bez

 (5.14)

where φ(ξ) are the Bernstein basis, ξ the parametric coordinates, and B−1
bez is the inverse Bézier

matrix, and 0 is a row vector. It follows then that the discrete form of eq. (5.12) writes as :

KU + MÜ = F (5.15)
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5.3 Discretization using Bézier Elements

where K is the global stiffness matrix, M the mass matrix, U the nodal vector containing physical

displacements, Ü the corresponding nodal acceleration, and F is the force vector containing the

externally applied loads including contact forces. The elemental stiffness matrix ke and mass

matrix me, for both the plate and the sphere, write as :

• the plate, ξ = {ξ,η}

ke = h3

12

∫
Ae

BT
pD1Bp dA + h

∫
Ae

STpD2Sp dA

me = ρp

∫
Ae

QTDQ dA
(5.16)

D1 and D2 are given in eq. (5.8), and

B =


0 Qj,1 0
0 0 Qj,2

0 Qj,2 Qj,1

 , S =
Qj,1 0 Qj

Qj,2 Qj 0

 , D =


h 0 0
0 h3

12 0
0 0 h3

12

 (5.17)

where Qj = φj(ξ)B−1
bez, j = 1, . . . , ncpts

• the sphere, ξ = {ξ,η,ζ}

ke =
∫

Ωes
BT
s DsBs dΩ

me = ρs

∫
Ωes

QT
s Qs dΩ

(5.18)

where Ds the elasticity tensor given in eq. (5.10) and

Bs =



Qj,1 0 0
0 Qj,2 0
0 0 Qj,3

Qj,2 Qj,1 0
Qj,3 0 Qj,1

0 Qj,3 Qj,2


, Qs = QjI6×6 (5.19)

The discrete contact force writes as

fc (δūp − δus) · n̄ = δuTc (QT
c nfc) (5.20)

with

Qc =
[
−I(3×3) Q̄s1 Q̄s2 Q̄s3

]
, Q̄sj =


φj(ξ̄)B−1

bez 0 0
0 φj(ξ̄)B−1

bez 0
0 0 φj(ξ̄)B−1

bez


uc =

[
us1, u

s
2, u

s
3, u

p1
1 , u

p2
1 , · · · , u

pl
1 , u

p1
2 , u

p2
2 , · · · , u

pl
2 , u

p1
3 , u

p2
2 , · · · , u

pl
3

]T
(5.21)
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5.4 Numerical Solution

and I(k×k) is an identity matrix of size k × k.

The Rayleigh integral equation may be discretized in the same way, as is done in Alia [35], with

the discrete acceleration (acceleration history of the plate at time t) writing as :

a3 (xp, t) = Q anodal
3 (5.22)

Equation (5.11) is then solved numerically as a summation of contributions of each element,

however now with the retarded time, using a full Gauss quadrature rule. This acceleration at

retarded time t− r/cf is obtained from a linear interpolation of the acceleration history of the

plate [113].

5.4 Numerical Solution

Here we replicate the problem studied in Akay and Latcha [118] with a steel plate of center O,

which is impacted by a small acrylic ball. The mechanical properties and input parameters of

both the plate and the sphere, as well the radiating medium, are summarized in table 5.1.

Plate Sphere

Radius, Rp [m] 0.25 Radius, Rs [mm] 9.53
Thickness, h [mm] 1.59 Initial velocity, v0 [m/s] 0.22
Young’s modulus, Ep [GPa] 210 Young’s modulus, Es [GPa] 3.1
Poisson’s ratio, νp 0.3 Poisson’s ratio, νs 0.37
Density, ρp [kg/m3] 7850 Density, ρs [kg/m3] 1190

Fluid medium (air)

Density, ρf [kg/m3] 1.021
Sound velocity, cf [m/s] 343

Table 5.1 – Input parameters and mechanical characteristics of the impacted plate and the

impactor sphere as well as the radiating medium.

The plate is modeled with five patches whose central is a square and each patch containing

the same number of elements. The solid sphere is also modeled as multiple patches : seven

patches are used, the central patch is a cube. Recall that with the Bézier-based approach used

in this work, the entry point is a BSplines representation of the geometry patches (NURBS with

unity weights) from which the Bézier elements are derived. BSplines are not exact for conic

sections, hence the reason we have introduced the interpolation in section 2.2.3 eq. (2.16) and

demonstrated in fig. 2.11. For this reason, when the BSplines (patch level interpolation) are used

for the sphere or the plate result in a varying discrete radius for different angles. The implication

is then that bending waves will not arrive simultaneously at the center of the plate after their

reflection at the edge. To remedy this problem, a second interpolation (Bézier) similar to the

patch level interpolation is now performed at element level.
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5.4 Numerical Solution

Cubic Bézier elements are used to discretize both the plate and sphere, with : 320 2D elements

with 2929 control points mesh for the plate, and 56 3D elements with 1651 control points mesh

for the sphere. The acoustic analysis is also conducted using the cubic discretization. The mesh

generated for the numerical model is shown in fig. 5.2.

(a)

(b) (c)

Figure 5.2 – (a) Mesh of the plate and sphere due to Bézier extraction, (b) sphere zoom and (c)

mesh of the half of the sphere.

As both the sphere and plate are elastic, the mass matrix and the stiffness matrix are computed

once at the beginning, and stored for use. For the global time-stepping algorithm, the conditionally

stable central differences scheme is used for time integration. The time step size is set as

∆t = 0.0154 µs. This value is derived using the criteria in Zhong [4], where for central differences

scheme the critical time step size derives from ∆tcr = min [∆tp; ∆ts; ∆ti]i=1, ··· , ndof , with

∆tp = 2/ωpmax , ∆ts = 2/ωsmax , and ∆ti = 2√mii/ωi the critical time step of the ith DOF involved

in contact. The penalty parameter for the contact tractions is chosen as εN = (1/Ep + 1/Es)−1.

It is important to note that the Reissner-Mindlin plate theory is written for the reference plane,

whereas contact interaction takes place on the surface of the plate. This then necessitates an

offset of h/2 be accounted for when computing the penetration. Otherwise, contact will take

place on the reference surface which is incorrect.

The solution procedure for the contact-impact vibro acoustics problem is designed in such a

way, that for each time step t+ ∆t, first we compute the dynamic response (the solution to the

contact-impact) in terms of the displacement, velocity and acceleration calculation. Once the

current time step dynamic solution is obtained, acceleration is used to compute the acoustic

pressure. However before we can compute the acoustic pressure, the plate geometry is updated

(the displacement of the plate u1 and u2 is obtained, it is then added to the nodal positions
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5.4 Numerical Solution

x and y, respectively). Moreover, we also have to introduce the plate thickness h/2 again, to

truncate the spatial position of the nodes to the appropriate radiating upper surface of the plate.

When the effective geometry has been recovered, we can then proceed to the Rayleigh integral

equation in eq. (5.11) to compute the acoustic radiation at any point. The dynamic response

and the acoustic response obtained are shown in the next sections.

5.4.1 The Dynamic Response

Figure 5.3 shows the obtained transverse displacement of the plate as a function of the radial

distance r, at different times after impact.

-250 -200 -150 -100 -50 0 50 100 150 200 250

r (mm)

-7

-6

-5

-4

-3

-2

-1

0

1

2

u
3 (

m
m

)

#10-3

 t=0.05 ms
 t=0.12 ms
 t=0.24 ms
 t= 0.34 ms
 t= 0.44 ms
 t=0.74 ms
 t= 0.84 ms

Figure 5.3 – Variation of the transverse displacement with respect to the radial distance for

different times after impact.

From fig. 5.3, we observe that the transverse displacement is composed of : (1) a main deformation

lobe (centered about the axis of the plate) which corresponds to the initial deformation due to

contact, and (2) wavelets symmetric about the z-axis, called ripples by Oulmane and Ross [10]

which correspond to the bending waves propagating through the plate following impact. The

amplitude of the main deformation lobe and the ripples increase with time, with the main lobe

reaching its maximum value. This maximum value is maintained as long as the bending waves

are not reflected at the edges of the plate. When the reflection takes place, the reflected bending

waves propagate until they reach the center of the plate and thus modifying the amplitude of

the main lode due to interference.

The dynamic response of a forced vibrating plate may be seen as not only as forced vibrations
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5.4 Numerical Solution

which gives rise to rapid deformation but also as free vibrations due to propagation of bending

waves [118]. Taking a closer look at the time variation of the transverse displacement and velocity

at different locations of the plate, particularly at the center of the plate, we can distinguish

clearly the previously mentioned different deformation phases of the plate. From fig. 5.4a , at

first we see that during contact the transverse displacement at the center of the plate increases

progressively in the negative direction - this is the initial deformation phase. This first phase is

followed by a constant displacement phase (sustained maximum main lobe displacement so long

as bending waves are not reflected). Following the second phase, oscillations start to appear

which indicates the arrival of the reflected bending waves at the center of the plate. Evolution of

the velocity with time at the same location (fig. 5.4b), center of the plate, shows a first peak,

which is followed by a zero velocity phase before the appearance of the oscillations.
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Figure 5.4 – Variation of the transverse displacement (left) and velocity (right) for the impact

point (a,b), and two points located at 30 mm (c-d), and 130 mm (e-f) from the impact point.

Moreover, we notice that, in both the transverse displacement and velocity, as the observation

points moves away from the axis of impact (z-axis) the intermediate zone (second phase) becomes

smaller and smaller until it completely disappears (fig. 5.4c and fig. 5.4d). This is due to the

overlapping of the bending waves and initial deformation wave. Outside the initial deformation
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zone (the main deformation lobe extent in fig. 5.3), or rather at the regions near the edge of the

plate, only the incident and reflected bending waves reach these points. This is evident in the

lack of distinction between the three phases in fig. 5.4e and fig. 5.4f.

5.4.2 The Acoustic Response

Figure 5.5 shows the radiated acoustic pressure variation, with time, at different observation

points located at a distance z = 60 mm from the plate, and polar angles ψ = {0◦, 25◦, 50◦, 75◦}.

0 0.5 1 1.5 2
-10

-5

0

5

10

P
re

ss
ur

e 
(P

a)

(a) A=0°

0 0.5 1 1.5 2
-5

0

5

10
(b) A=25°

0 0.5 1 1.5 2

Time (ms)

-4

-2

0

2

4

P
re

ss
ur

e 
(P

a)

(c) A=50°

0 0.5 1 1.5 2

Time (ms)

-2

-1

0

1

2
(d) A=75°

Figure 5.5 – Acoustic pressure at field points located at z = 60 mm and polar angles ψ =
{0◦, 25◦, 50◦, 75◦}.

In literature, a similarity between the time variation of the velocity of an impacted plate and

the radiated acoustic pressure has been found in both analytical and experimental studies

[11, 118, 132]. At the observation point located on the z-axis (fig. 5.5a), again, we can discern

three different phases which correlate with the dynamic response in fig. 5.3. The first phase is

the so called initial transient wave which results directly from the contribution of the initial

deformation following the contact. A second phase characterized by an almost zero acoustic

pressure follows after - Troccaz et al. [121] call this the silent phase. The silent phase corresponds

to the propagation of bending waves, of higher frequency than the critical frequency, towards
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the edges of the plate. These waves have an oblique wavefront and therefore do not reach the

observation point located on the z-axis. However, once these waves have been reflected, their

oblique wavefront eventually reaches the on-axis observation point which constitutes the third

phase known as the ringing noise. Off-axis (acoustic pressure variation in fig. 5.5b-d), it becomes

increasingly difficult to distinguish between the three phases as the observation point moves

further away from the axis of symmetry ; these points are reached first by the acoustic wave due

to bending waves before and after reflection at the edges of the plate.

The trends in our findings, in terms of the dynamic response and the acoustic pressure variation,

correlate very well with the findings in literature, particularly in the works of Akay and Latcha

[118], Ross and Ostiguy [132], and Oulmane and Ross [10].

5.4.3 Sensitivity Analysis

In this section we discuss and analyses the numerical implementation aspects for the resolution

of the impact event and the subsequent generated acoustic wave. Bézier elements are used for

the discretization.

5.4.3.1 Discretization Order

To evaluate the accuracy of the model, with respect to the order of the basis used for the

discretization, a study on the error committed on the computation of the first 40 natural

frequencies of the plates was conducted. The error is quantified against the analytical values in

Blanch [133] and Leissa [134], and the estimated error is shown in fig. 5.6a. It can be seen that

the cubic approximation is more accurate than the quadratic approximation. The relative error

on the cubic approximation decreases at a faster rate, compared to the quadratic approximation,

with increasing number of points on the edge nd of each patch of the plate. The error seems to

stabilize from nd ≈ 25, and then plateaus beyond this value.

In order to verify the behavior of the estimated error at nd = 25 and beyond, particularly for the

cubic discretization, we recompute the acoustic radiation pressure field. The plate is discretized

first with nd = 25 and then with nd = 28 which corresponds to 8 and 9 cubic elements per edge

of the patch, respectively. For simplicity, the impact excitation is introduced as an analytical

contact force proposed by Ross and Ostiguy [132], that is :

F (t) ≈ F

 1.1
1 + Λ + 2Λ2 sin (0.97T )1.5 exp

[
− (0.4T )4

]
+
(

1 + 2/Λ
1 + Λ

)(
T

T + 1/Λ

)1.5

exp
(
−TΛ

)
(5.23)

where T = πt/τ , with τ the impact contact duration, and F is Hertzian contact force which

depends on the mass and initial velocity of the sphere, the geometry, and elastic properties of

both the plate and sphere (detailed computation of the magnitude F can be found in Akay and
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Latcha [118]). Parameter Λ is related to the flexibility of the plate and the energy of the impact,

and is defined as :

Λ = 1.15
(
Rs

h

)2 ( v0

CL

)0.2
(
ρs
ρp

)0.6 (
E ′s

E ′s + E ′p

)
, E ′ = E

1 + ν2 (5.24)

with CL the speed of longitudinal waves with the plate (5060 m/s for steel). The resulting

pressure field is shown in fig. 5.6b-c at two observation points at distance z = 50 mm, from the

plate, and polar angle ψ = 0◦ (on-axis) and ψ = 75◦ (off-axis). We can see that the obtained

pressure field variation with time at these observation points, for both nd = 25 and nd = 28,

is similar (effectively superimposed on top of each other). This means that refining the match

beyond 8 cubic elements across the edge of the patch does not enrich the solution nor will it

improve the error any further.
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Figure 5.6 – Effect of the number of nodes nd per patch edge of the plate on : (a) the relative

error committed on the 46 first natural frequencies of the plate for quadratic (n = 2) and cubic

(n = 3) elements, the acoustic pressure (b) on-axis and (c) off-axis.

5.4.3.2 Time Integration Scheme

In section 5.4.1, the dynamic analysis was conducted using the explicit, conditionally stable,

central differences method. According to literature central differences scheme are prone to
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spurious oscillations when used for numerical simulation structural dynamics problems and wave

propagation problems [135, 136]. To evaluate the choice of explicit time integration scheme we

adopt the explicit schemes proposed by Noh and Bathe [135] and Kim and Lee [137], which

appear more suitable for wave propagation problems. The two explicit schemes, abbreviated

NB for Noh and Bathe [135] and KL for Kim and Lee [137], are tested against the central

differences (CD) scheme. For both NB and KL schemes, the computation of the unknown

dynamic fields (displacements, velocities, and acceleration only for NB ; KL scheme does not

require computation of the acceleration) during the time increment ∆t is performed in two steps.

In the NB scheme, the effective displacement and effective loading at t+ q∆t and t+ ∆t, with

0 < q < 1, is calculated via a linear interpolation [135]. On the other hand the KL scheme is

based on an unconventional interpolation technique using three parameters τ1, τ2 and β in which

the displacement and velocity values are given at τ1 and τ2 and then recalculated at t + β∆t
and t+ ∆t [137].

Again the five patch plate model, with nd = 25 (cubic elements) is used. The sphere has seven

patches with each patch edge divided into two cubic elements (small dimension sphere with

respect to the plate size). The time step used is that of central differences method ∆t = 0.0154 µs.

As mentioned in the KL scheme the calculation of the acceleration is not required. Even though

the exclusion of the acceleration term from the computation of the displacement vector allows

for the minimization of the high frequency modes [137], acceleration still remains an important

physical quantity for the computation of the acoustic pressure field in eq. (5.11) - we need the

acceleration field for the computation of the acoustic response. In this case we can then derive

the acceleration from the obtained velocities through the use of a finite difference scheme. We

set parameter values for both NB and KL to those used by the respective authors in their work :

q = 0.54 for NB, and τ1 = 0.2684, τ2 = 0.5, β = 0.4219 for KL. Figure 5.7 shows the comparison

of the displacement and velocity at the center O of the plate (impact point, r = 0) and at an

off-axis points (r = 30 mm) for the three schemes (CD,NB, and KL).

The transverse displacement and velocity variation with time at the two points r = 0 and

r = 30 mm in fig. 5.7, the three schemes are the same. In terms of computational time, the

NB scheme is more efficient compared to KL which requires additional operation to access the

acceleration. However both methods appear more computationally heavy compared to the CD

scheme as the CD scheme does not require any interpolation, whereas the NB and KL schemes

require one and two interpolations, respectively. These difference in computational time is further

compounded by the calculation of the effective loading vector at the next time step, which for

the present contact formulation is unknown thus rendering the interpolation impossible. Indeed,

as the contact force is the only external force taken into account, each interpolation of the force

is replaced by the evaluation of the gap function at the requested intermediate instant ; the

contact force follows then from εNgN . Hence the heavier computational time, particularly for

the KL scheme which is ∼ 3.2 times that of CD, whereas the NB schemes is ∼ 1.3 times the

computational time of the CD scheme.
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Figure 5.7 – Variation of the transverse displacement (left) and velocity (right) for the impact

point (a,b) and at 30 mm from the impact point (c-d) calculated by central difference scheme

(CD), Noh and Bathe (NB), and Kim and Lee (KL) schemes. (CD), (NB) and (KL) curves are

the same.

5.4.3.3 Time Step Size

Thus far all the explicit simulations were conducted using ∆t derived using the central difference

method critical time step criteria in Zhong [4]. Let this be ∆t1 = ∆t = 0.0154 µs. However, if

we use a time step corresponding to the most finely meshed part, here the sphere, the time step

size is then ∆t2 = 0.1243 µs. The results obtained using ∆t2, for the NB and KL scheme, are

shown in fig. 5.8.

From fig. 5.8, we see that for both time steps, the obtained contact force as well as the acoustic

pressure field are similar for both the NB and KL scheme. With ∆t2 we obtain the same results

however in less computational time. The computational time using the NB and KL scheme

was found to be ∼ 0.17 and ∼ 0.46 times that of the original CD scheme (∆t1), respectively.

Essentially, the use of the explicit NB and KL schemes allows for the use of a larger time step

than CD schemes while achieving the same quality of results. This is a great advantage in terms

of computational efficiency.
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Figure 5.8 – Effect of the time step on the contact force between plate and sphere (a-b) and the

acoustic pressure (c-d) when Noh and Bathe (NB) (left) and Kim and Lee (KL) (right) schemes

are used for two time steps ∆t1 and ∆t2.

5.5 Summary

In this chapter we have used the Bézier-based IGA numerical scheme, developed in chapter

2, to calculate dynamics and the acoustic radiation of forced-vibrating plates due to impact

in time domain. Both the plate and sphere are modeled explicitly. The use of IGA allows for

a relatively coarse mesh as already seen in the numerical simulation of contact problems in

the previous chapter. So even though the mesh used for the analysis was relatively coarse, the

mesh quality was still sufficient enough the adequately capture both the dynamic and acoustic

response. The results obtained were in line with the observation from literature [118, 132, 10],

in that, the acoustic radiation on the axis of symmetry (center of the plate), is characterized

by three consecutive phases : the initial transient wave, the silent phase and the ringing phase.

These characteristics correlated with the vibratory response of the plate which constitutes the

initial deformation (localized about the plate center), followed by the propagation of bending

waves and then their reflection at the edges of the plate. However, as the observation point

moves away from the axis of symmetry, the three phases were no longer distinguishable. This is

due to the dispersive character of bending waves.

In the initial complete model, time integration is performed using an explicit central differences

132



5.5 Summary

scheme, which can lead to spurious oscillations particularly for wave propagation problems in

linear FEM. We then adopted the Noh and Bathe [135] (NB) and Kim and Lee [137] (KL)

explicit schemes, which aim to address the drawbacks of the central difference method. We found

all three schemes give the same results, both the dynamic and acoustic response, however the

computational effort required varies for each of the schemes. Though, it is important to note

that here, the impact simulated of a low energy impact. So it could interesting to observe the

behavior of the schemes, but now with high energy impact (high velocities) and the effect of the

mechanical material properties of both the plate and sphere.

Even though the complete model developed allowed us to capture the essential vibratory and

acoustic characteristics of the plate, it still has some limitations. For instance, the model does

not account for large deformations (linear impact assumptions) of the plate which are observed

experimentally at the contact for certain initial velocities of the sphere [120] nor does it account

for plasticity [121, 138] and material damping [124, 139]. Addressing these limitations by taking

into consideration the inelastic effects of impact should improve the robustness of this model

and therefore the quality of the results. Another limitation arises from the use of the Rayleigh

integral equation, which is suitable only under the assumption that the plate is embedded in a

rigid baffle which is not the always case. The idea of using IGA for this impact-acoustic problem

is that it can allow us to study more complex geometries, which can only be possible for a less

limiting method rather than the Rayleigh integral equation used in this work.
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6
Acoustic Radiation of Forced-Vibrating

Plates

6.1 Introduction

In this chapter we study the acoustic radiation of a forced vibrating circular elastic plate in

chapter 5, however now with implicit dynamics. In the fist part (section 5.4) we compute the

vibratory and acoustic response of the plate impacted at its center (localized excitation), with

the contact force estimated using the analytical expression proposed by Ross and Ostiguy [132].

The dynamic response of the plate, computed using the implicit Newmark scheme (section 6.2.1),

is then used to calculate and characterize the acoustic response of the impacted plate using the

Rayleigh integral equation (section 6.2.2). This forms the reference case which is later used to

correlate the complete model in section 6.2.3.

The subject of plate dynamics, from the FEM point of view, has been well researched and

studied by many authors : from modal analysis [108, 109] to impact problems [10] to moving

forces [110–112]. When it comes to predicting the noise generation from forced-vibrating plates,

the cases studied were mainly limited to the acoustic radiation due to impact at the center of

the plate [10, 118], and focused on the initial transient wave [132]. In fact, these studies have

either been experimental [119, 120, 132, 140] or analytical [118, 121, 125, 132]. Certainly noise

generation due to impact is very interesting because of its characteristics, i.e. the large peak

and short duration. However, impact is not the only mechanism that can generate noise within

the plate. Moving excitations, such as a moving force on a plate, have aroused much interest

in dynamics [110–112], however very little has been done from the acoustic point of view [125].

Even with the progress made in FEM in different fields of mechanics, FEM has seldom been

used in this type of application [10]. Hence our main focus in the second part of this chapter -

section 6.3 : we extend our study to the numerical simulation of the dynamic (section 6.3.1)

and acoustic response (section 6.3.2) of the plate but now subjected to a moving force (moving

excitation).



6.2 Application to Impacted Plates

6.2 Application to Impacted Plates

Again, we consider a circular elastic plate of radius Rp, and a thickness h with material properties

Young’s modulus Ep, Poisson’s ratio νp and density ρp, subjected to a localized excitation as

depicted in fig. 5.1. Likewise, the fluid medium surrounding the plate is assumed to be lossless

and homogeneous with a sound speed cf and a density ρf smaller than ρp. Further, we assume

that the propagation medium (air) is so light such that it neither alters the modes of the

plates nor shifts its natural frequencies. Moreover, the plate is assumed initially at rest and is

embedded in a rigid baffle thus fulfilling the necessary condition for the use of the Rayleigh

integral equation. The contact is supposed to be punctual and occurs between a small elastic

sphere and the plate at a point with coordinates (xO, yO). The sphere has a radius Rs, Young’s

modulus Es, Poisson’s ratio νs, density ρs, and an initial velocity v0. Here the contact force is

computed using the expression proposed by Ross and Ostiguy [132] and shown in eqs. (5.23)

and (5.24) with its evolution with time t shown in fig. 6.1a. In fig. 6.1b we sown the initial

patches used for the representation of the plate geometry.

(a) (b)

Figure 6.1 – Illustration of the problems considered : (a) the impact force computed using

eq. (5.1), (b) multi-patch model of the circular plate geometry.

Since now contact force is modeled using an analytical expression, the contact between the

sphere and the plate is no longer of interest. The main interest in this chapter is the plates

dynamics, its vibratory response, and the acoustic radiation as a result. Therefore the system is

still governed by the elasto-dynamics equations in eqs. (5.1) and (5.2), however now only the

plate is considered. Its variational form and its discrete form follow accordingly from eq. (5.12)

and eq. (6.1), respectively. However in eq. (5.12) the contact force is replaced by the analytical

force computed from eqs. (5.23) and (5.24) prescribed as point load, acting at the center point

O.

An unconditionally stable implicit Newmark scheme is used for the time integration of eq. (5.12)

and computation of the dynamic response (the displacement history, and corresponding velocity

135



6.2 Application to Impacted Plates

and acceleration history). Even though the use of implicit methods for structural dynamics

problems allow for a larger critical time step size, for wave propagation problems (essentially

acoustic radiation), a small time step is required in order to accurately track the high frequency

waves in the body [85]. For this reason the time step here is chosen such that it satisfies the

conditions stipulated for the conditionally stable explicit central differences scheme in accordance

with the criteria given by Zhong [4] - see also section 3.6.6.2 and section 5.4. The mechanical

properties and input parameters of both the plate and the sphere, as well the radiating medium,

are summarized in table 5.1, now with initial velocity v0 = 0.22 m/s.

The circular plate is modeled using 5 patches whose central one is a square and all patches

contain the same number of elements. It is discretized with a mesh composed of 720 quadratic

elements with 2929 nodes. For the time integration, a time-step of size ∆t = 0.287 µs is used in

the simulation.

6.2.1 The Dynamic Response

First, we analyze the dynamic response, in terms of the transverse displacement and velocity, for

the on-axis impact problem of the plate. This response is later correlated with the acoustic field

radiated. The obtained variation of the transverse displacement of the plate and its velocity, with

respect to time, at the impact point O and two points P1 and P2 at a distance Rp/10 and Rp/2
from O respectively, is shown in fig. 6.2. Note : calculations were considered for the impacted

side of the plate, hence the negative values of the displacement and later the acoustic pressure.

From fig. 6.2a we distinguish the three phases of the dynamic response, which were also observed

in the previous chapter section 5.4 : (1) during contact, the impact point O moves in the direction

of imposed force until it reaches a certain position at the end of the action of the contact force,

(2) the impact point O sustains its position for a certain time before (3) it experiences oscillations

due to the arrival of the bending waves reflected at the edge of the plate. These phases can also

be distinctly observed from the velocity plot in fig. 6.2b : the initial impulse velocity due to the

rapid (forced) deformation of the plate at O is followed by a range of zero velocity until the

bending waves are reflected back to the impact point O.

Away from the impact point O, specifically at point P1, from the displacement variation (fig. 6.2c)

we observe (1) a time lag in the response compared to that of the impact point O due to the

time required for the waves to reach P1, (2) a slight presence of positive transverse displacement

initially which then becomes negative, and (3) finally an overlap of phase 2 and 3, in both the

transverse displacement and velocity variation in fig. 6.2d. Even more further away at P2, we

can see only the bending waves are observed (only phase 3 present here) - see fig. 6.2e-f.

For a better visualization of the of the generation and reflection of the bending waves in fig. 6.3

we show the variation of the transverse displacement with the radial distance r of the plate

at the different time instants. In the first moments of the impact the transverse displacement
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Figure 6.2 – Variation, with respect to time, of the transverse displacement (left) and velocity

(right) of three points on plate : O (a-b), P1 (c-d) and P2 (e-f).

is characterized by small amplitude main lobes as seen in fig. 6.3a. Even early during impact

we can already see the appearance of the ripples which correspond to the propagation of the

bending waves. The amplitude and spread of the main lobes of deformation and the ripples

increase progressively with time - see fig. 6.3b - this corresponds to phase 1 described above. At

the end of contact action, the main lobe of deformation reaches a maximum value which it then

maintains until the ripples have reached the edge of the plate (fig. 6.3c), this corresponds to the

plateau observed in fig. 6.2a which is phase 2 of the dynamic response. Once the ripples are

reflected back from the edge of the plate, they propagate towards the centre (O), modifying the

amplitude of the transverse displacement and thus reaching phase 3 (fig. 6.3d).

Furthermore, we can see that the transverse displacement remains symmetric about axis of

impact at all time instants. Moreover, the origin of the slight presence of positive displacement

observed at P1 (mentioned above on the analysis of fig. 6.2) becomes apparent. This is because

point P1 is located between the impact point O and the edge of the plate ; it is reached by

bending waves of dispersive nature (ripples) even before the waves are reflected back from the

edge. Indeed after reflection the bending waves will still pass through this point. These results

are in line with the findings in the works of [10, 132, 140] and correlate very well with response

found using the explicit dynamics in fig. 5.3.
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Figure 6.3 – Variation, with respect to the radial distance r, of the transverse displacement of

the plate for different instants.

6.2.2 The Acoustic Response

We have already observed that the acoustic response correlates with the dynamic response, in

terms of the evolution of the being waves and the resulting acoustic field pressure. We again

observed this from the calculated acoustic pressure at different observation points (z = 50 mm)

shown in fig. 6.4. From fig. 6.4a we can distinguish the 3 different phases which are well correlated

with the ones ascertained in the analysis of the dynamic response. At an observation point

located on the impact axis (x = 0 mm, z = 50 mm) the acoustic field is composed of a peak,

the initial transient wave, resulting from the initial rapid deformation of the plate at the impact

point. The initial transient wave is then followed by a silent zone which is not subjected to

the effects of the bending waves propagating towards the edges of the plate. This silent zone

is succeeded by the gradual appearance of oscillations which signify the arrival of the bending

waves reflected from the edge of the plate - the ringing noise.

The three phases of acoustic radiation become increasingly difficult to distinguish off axis, and

even more so with increasing distance from the axis of impact, for the same reasons previously

mentioned in the analysis of the dynamic response - see fig. 6.4b-d. As the observation point moves

away from the impact axis (axis of symmetry), it is reached by the radiation of the bending waves

even before they are reflected from the edges of the plate. Additionally, depending on its position,

the observation point may be reached by the acoustic wave due to the bending waves even before

the arrival of the initial transient wave. To better illustrate this phenomenon, in fig. 6.5 we have
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Figure 6.4 – Variation, with respect to time, of the acoustic pressure for field points located at

a distance z = 50 mm from the plate.

shown the variation of the acoustic pressure for four field points situated at a distance of radius

R = 50 mm (from the center of the plate and polar angle) ψ = {0◦, 30◦, 60◦, 89◦}. Note that

since these points are located at the same distance from the impact point O, they are reached

simultaneously by the initial transient wave.

In fig. 6.5a, at ψ = 0◦, we can see that the initial transient wave is well separated from the

ringing noise by the silent phase. The silent phase continues to exist at ψ = 30◦, however now

the initial transient wave is modified - this implies that the bending waves have already reached

this point. This dispersive effect of the bending waves is even more apparent at ψ = 60◦ and

ψ = 89◦ (fig. 6.5c-d) where the bending waves reach these field point before the initial transient

wave, again corroborating the findings in the dynamic response.

Finally in fig. 6.6 we give an overview of the acoustic field, radiated by the force impacted

plate, in the form of the pressure distribution in the xz-plane. The acoustic pressure distribution

is shown at three different time instants after the beginning of the impact action. Due to

axisymmetry, only half od the xz-plane is represented.

From fig. 6.6a, at t = 24 µs after the impact, far from the impact we observe the development

of an acoustic wave in the vicinity of the plate. This acoustic wave results from the bending

waves rather than the initial rapid deformation of the plate at the point of contact. The bending
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Figure 6.5 – Variation, with respect to time, of the acoustic pressure for field points located at

a distance R = 50 mm from the plate center with different polar angles ψ.

waves have frequencies that exceed the critical frequency and propagate at speeds greater than

those of the acoustic waves in air. This is the reason why the acoustic wave from the bending

waves precedes the arrival of the acoustic wave due to the initial deformation for some points,

particularly points located far enough from the axis of impact. With time, other acoustic waves

of oblique wavefront due to bending waves as well as circular wavefront from the initial transient

wave are observed - see fig. 6.6b. Both waves progress, with time, in the air until the first bending

wave arrives at the edge of the plate, at which point the oblique waves reflect in succession

and interfere with the incident waves - see fig. 6.6c. The interference of the oblique waves and

incident waves makes the interpretation of the field difficult, hence the off-axis pressure pattern

during the ringing phase.

6.2.3 Comparison to Explicit Dynamics

In the previous chapter we found that nd = 25 (8 cubic elements per patch edge of the plate)

was sufficient to capture the acoustic radiation with a relatively good accuracy. To compare the

results obtained using the implicit scheme with the analytical Ross and Ostiguy [132] contact

force (taken as the reference case Ref.) and to our full explicit dynamics (with CD, NB, and

KL schemes in section 5.4.3) and acoustic radiation model, we plot the acoustic pressure field
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Figure 6.6 – Sound pressure distribution in the xz-plane at the vicinity of the plate at three

instants after impact start. Pressure is given in Pa.

variation obtained with time. ∆t = 0.0154 µs for the explicit schemes and ∆t = 0.287 µs for the

implicit scheme. Note that even though the implemented code has the capability to compute

the acoustic pressure based on actual deformation of the plate (the effective geometry), here the

undeformed plate geometry is used for the computations in the effort to reduce computational

time. This choice can be justified by the small deformation of the plate.

Figure 6.7 shows the acoustic pressure field at an on-axis observation (z = 60 mm), variation

with time, obtained from the dynamic response of the three explicit schemes in fig. 5.7. Again, we

observe the three explicit schemes give similar results which is expected we have seen already that

the acoustic wave propagation has the same distribution as the dynamic response, particularly

the velocity. Comparing the three schemes results to the reference case, we notice the duration

of the initial transient wave is longer and that the acoustic pressure in the third zone is lower.

Nevertheless, the amplitude of the initial transient wave is well captured and the oscillations of

the last zone correspond well.

To explain the difference in the acoustic pressure field in fig. 6.7 between that obtained using the

explicit schemes and that of the reference case, we look at the contact force for the three schemes

and that of Ross and Ostiguy [132]. These contact forces are shown in fig. 6.8. Once more, the

three explicit schemes result in a similar contact force with an amplitude larger than that of the

reference case, and a longer contact duration - fig. 6.8a - hence the larger amplitude and longer

duration of the transient acoustic wave for the explicit schemes. In the case of explicit schemes,

the contact is both punctual and elastic which corresponds very well with Hertz contact theory
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Figure 6.7 – Acoustic pressure on-axis at z = 60 mm using central difference scheme (CD),

Noh and Bathe (NB), and Kim and Lee (KL) schemes in comparison to pressure (Ref) due to

applying Ross and Ostiguy contact force directly to the plate without considering the sphere

into calculations. (CD), (NB) and (KL) curves are the same.

in that : the contact force is symmetrical, of finite duration and amplitude greater than that of

an inelastic case.

Looking at the penetration in fig. 6.8b, we note that it is symmetrical (expected as the contact

force is directly proportional to the gap), and sufficiently small relative to the thickness of the

plate (penetration ∼ 0.27% of the plate thickness) ; this is satisfactory for the penalized explicit

scheme applied.

6.3 Application to Vibrating Plates due to a Moving Force

Here, we analyze the dynamic response and the radiated acoustic field thereafter, of a plate

subjected to a moving force, depicted in section 6.3. The radius of plate Rp has been reduced to

0.05 m. The constant amplitude Fimp is taken as the maximum amplitude of the impact force

impulse in fig. 6.1a. We assume Fimp moves along the x-axis from the edge point (−Rp, 0, 0) at

a uniform translation velocity of vm = 100 m/s. The reduced plate radius allows us to analyze
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Figure 6.8 – Contact force between sphere and plate (a) and the effective penetration (b) when

central difference (CD), Noh and Bathe (NB), and Kim and Lee (KL) schemes are used. (Ref)

is the Ross and Ostiguy contact force. (CD), (NB) and (KL) curves are the same.

the acoustic radiation with a duration of 2 ms after the force starts moving ; the force transits

the plate diameter in 1 ms, thus leaving enough time to analyze the behavior of the plate post

passage of the force.

Again, the system is governed by the elasto-dynamics equations in eqs. (5.1) and (5.2), however

now only the plate is considered. Its variational form and its discrete form follow accordingly

from eq. (5.12) and eq. (6.1), respectively. However in eq. (5.12) the contact force is replaced by

the moving force Fimp. In section 6.2 the impact force is applied to a point coinciding with a

node of the discretized geometry, in this case the computation of the force vector F becomes

trivial. We simply assign the value of the applied impact force directly to the corresponding

component in the global force vector. However, if the external force is applied at any point

other than the node, the computation of the force vector becomes a bit more sophisticated, as is

typically done with consistent nodal loads [141]. This is particularly the case for the moving

force.

To compute the force vector for the moving force involves two steps. First we must know the

current position of the moving force, that is, we locate the point of application for the force on

the element. To do this, the closest point projection method typically used for contact problems

[142] is used. Once the parametric coordinates ξ̄ of the closest projection point, or rather the
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Figure 6.9 – Illustration of the problems considered : plate subjected to a moving force. vm
denotes the velocity of the imposed moving force Fimp, (r,ψ) are the polar coordinates of the

field point belonging to the xz-plane.

parametric coordinates of the location of the force, are found, each node belonging to this same

element are involved in the computation of the elemental force vector f e. If we denote by InodFe

the nodes of this element involved and assuming only normal forces are present : the normal

force at the closest point projection fN(ξ̄) can be approximated as follows

f eN
(
ξ̄
)

= φ
(
ξ̄
)

f cntrl
N

= φ
(
ξ̄
)

B−1
bezf

phy
N

= Q
(
ξ̄
)

fphy
N

(6.1)

Finally, for the applied Fimp as shown in fig. 5.1, the normal force contribution for each element

into the global force vector right as :

f e = FimpQ̄T n̄ (6.2)

F (InodFe) = F (InodFe) + f e (6.3)

Note, as previously done in the contact formulation, (•̄) indicates quantities evaluated at the

projection point parametric coordinates ξ̄. The rest of the global matrices follow in the same as

in section 6.2.

In this case we now discretize the plate using 320 quadratic Bézier elements with 1313 nodes for

the simulation. The material properties of the plate are as given in table 5.1, however now with

the reduced radius. The implicit Newmark scheme with time step size ∆t = 0.131 µs is used.

The dynamic and acoustic response are discussed in the next sections.
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6.3 Application to Vibrating Plates due to a Moving Force

6.3.1 The Dynamic Response

Figure 6.10 shows the transverse displacement along the x-axis and y-axis of the plate at different

time instants. From these results we can see that : (1) during the transit of the force, the main

deformation lobe moves in the same direction as the force, (2) in the first milliseconds the

amplitude, of the main deformation lobe, increases with the distance traveled by the force until

it reaches a limit distance at which point it starts to decrease, and (3) the points in the x-axis

appear to vibrate harmonically after the passage of the force. However, this vibration is not

completely harmonic due to the appearance of a transient phase which can be observed in time

instants 0.85 ms and 0.90 ms (fig. 6.10c) at the beginning of each sign change of the transverse

displacement.

Figure 6.10 – Variation, with respect to x (left, y = 0 mm) and y (right, x = 0 mm), of the

transverse displacement of the plate for different instants.

The appearance of the transient phase is further illustrated in the transverse displacement

distribution at different time instants ( fig. 6.11) as well as in the variation of the transverse

displacement at observation point P (25, 0) in fig. 6.12e.

Looking at the variation, with time, of the transverse displacement and velocity shown in fig. 6.12,

we observe the influence of the bending waves during and after the passage of the force. This is

clearly reflected in : (1) the early arrival of the bending waves at the observation point even

before the arrival of the deformation due to the force itself, and (2) the appearance of oscillations

in the velocity even when the transverse displacement seems to smooth. In fact, from the first
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6.3 Application to Vibrating Plates due to a Moving Force

Figure 6.11 – Transversal displacement distribution of plate at different instants after the

movement of the force start. Displacement is given in mm.

time step of the computation, bending waves of small amplitude start to propagate through the

whole plate and also reflect on its edges, as can be seen from fig. 6.13.

At each new position of the moving force new bending waves appear and are reflected, and

in the absence of damping these waves persist in the plate. Their influence depends on their

interference as well as the point at which the velocity is considered - see for instance fig. 6.12d

for which this influence is less prominent compared to fig. 6.12f. The amplitude of these bending

waves can also be seen as a precursor in the transverse displacement and velocity as observed

in fig. 6.12e-f, and sometimes their effect is only visible if we are interested in the velocity and

consequently the acceleration. Moreover, as seen in the variation of velocity of some nodes

(fig. 6.12b, fig. 6.12f), high frequency oscillations are superimposed on the velocity resulting

from the global deformation of the plate. This phenomenon does not occur for the centered

impact problem studied in the previous section. Here, the bending waves are generated at the

same point and are all synchronous, both in their generation and their reflection.

6.3.2 The Acoustic Response

As already observed, the dynamic response of the plate has repercussions on its acoustic response.

In fig. 6.14 we show the acoustic pressure at a field point located at z = 25 mm on the
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6.3 Application to Vibrating Plates due to a Moving Force

Figure 6.12 – Variation, with respect to time, of the transverse displacement (left) and velocity

(right) of three points on the x-axis of the plate (y = 0 mm).

axis ψ0 = 0◦, as well as the normalized spectrum with respect to its maximum. In line with

expectation, we seen a correlation between the acoustic pressure variation and that of the

velocity, in that (fig. 6.14a) : (1) the variation of acoustic pressure is almost harmonic, (2) we see

the appearance of the precursor due to the dispersive effects of the bending waves, and finally

(3) the presence of oscillations in the distribution. Unlike the centered impact problem, here we

notice the lack of the intermediate silent phase. This is due to the continuous movement of the

force, thus leading to the propagation and multiple reflections of the bending waves throughout

the plate from the beginning of the loading. Hence, the acoustic wave originating from the local

deformation (due to the loading force) at a given time is interfered with by the acoustic waves

arising from the propagation of the bending waves of the plate.

Contrary to the centered impact problem, the acoustic pressure is no longer axisymmetric, but

rather, the pressure is symmetric about the xz-plane (see fig. 6.15). This can be seen in fig. 6.15

where we show the acoustic pressure at different field points, located at a distance R = 25 mm

from the center point O and polar angles ψ1 = ±30◦, ψ2 = ±60◦, and ψ3 = ±89◦. Moreover, we

observe the effect of bending waves, in terms of the presence of oscillations, is more pronounced

in the vicinity of the plate (fig. 6.15a and fig. 6.15f). This is particularly the case at observation

points closest to the first point of application of the force - fig. 6.15a. This can also be confirmed

by comparing the peaks from the spectrum of the on-axis point in fig. 6.14b and those of field
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6.3 Application to Vibrating Plates due to a Moving Force

Figure 6.13 – Variation, with respect to x (left, y = 0 mm) and y (right, x = 0 mm), of the

transverse displacement of the plate for t = 6.56 µs.

Figure 6.14 – (a) Variation, with respect to time, of the acoustic pressure for a field point located

on the plate axis at a distance R = 25 mm from its center (ψ0 = 0◦) and (b) its corresponding

normalized spectrum with respect to its maximum value. The corresponding plate natural

frequencies are indicated by rows in (b) for the more significant peaks.

148



6.3 Application to Vibrating Plates due to a Moving Force

points near the plate at ±ψ3 shown in fig. 6.16.

Figure 6.15 – Variation, with respect to time, of the acoustic pressure for different field points

located in xz-plane at a distance R = 25 mm from the plate center. ψ1 = 30◦, ψ2 = 60◦, ψ3 = 89◦.
The negative values of the angle ψ designate the negative values of the x-coordinate.

From fig. 6.14b we can see only three significant natural frequencies are present in the on-

axis acoustic response. Their contribution with respect to the spectrum amplitude of the first

frequency is almost 18%. At −ψ3, the spectrum shows more high amplitude peaks at high

frequencies compared to ψ3 and ψ0. This point is not only close to the plate like ψ3 but it is

also close to the starting point of the force.

To get a better understanding of the process of generation and reflection of acoustic waves, we

look at the spatial distribution (xz-plane) of the acoustic pressure in the vicinity of the plate

shortly after the beginning of motion of the force and after complete travel of across the plate -

fig. 6.17 and fig. 6.18. At t = 9.4 µs (fig. 6.17a), we observe the development of the acoustic wave

from bending waves downstream of the action field of the moving force (action field indicated by

the circle on the figure). The acoustic wave due to the local deformation of the plate, following

the application of the force, is at this moment small because of the embedding conditions (plate

is embedded into a rigid baffle). Some 0.8 µs later, fig. 6.17b, at the left edge of the plate we

notice the appearance of an acoustic wave of oblique wavefront that is parallel to the wavefront

observed on the right side of the force action field. This implies that the acoustic wave due to

the bending waves has been reflected on the left edge of the plate. At t = 14.6 µs, reflections on

the left edge persist and the acoustic waves due to bending waves continue to propagate towards
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6.3 Application to Vibrating Plates due to a Moving Force

Figure 6.16 – Normalized spectrum, with respect to its maximum value, of the pressure of two

field points located at a distance of 25 mm from the plate center where ψ3 = 89◦. Some plate

natural frequencies are indicated by rows in (a).

the right edge. At this time, however, shortly after the start of force motion, it is impossible to

differentiate between acoustic waves due to the local deformation of the plate and those arising

from the bending waves.

At t = 37 µs, fig. 6.18a, the acoustic wave continues to grow and reaches the right edge of the

plate, where a second reflection of the acoustic wave occurs. During this time instant, we can no

longer interpret the wave-fronts because this is only a plane representation of the phenomenon

and therefore does not show the propagation process outside the xz-plane. After the passage of

the moving force (fig. 6.18b-d), the acoustic wave appears almost harmonic, that is, we have

alternating positive and negative pressure of circular wave-fronts. This corroborates the residual

effect of the bending waves on the acoustic pressure distribution which previously were observed

as oscillations on its time variation. In addition, unlike the acoustic pressure distribution for

the centered impact problem in fig. 6.6, here fig. 6.18b-d clearly show a non-homogeneous

distribution of the acoustic pressure.

Finally, we look into the effect of the time step and mesh size on the oscillations observed in the

variation of acoustic pressure with time. Since the time integration scheme used is unconditionally

stable, we increase the time step to that 10× larger than has been used so far : ∆t2 = 10∆t1.
The results obtained, in terms of the acoustic pressure and spectrum, are shown in fig. 6.19.

From these results we observe (1) the decrease in the acoustic pressure oscillations, (2) the

shift of the spectrum towards the low frequencies, and (3) the decrease in the amplitude of the

most significant peaks of the spectrum. These findings correspond well with the expectations ;

decreasing the time step size allows for the elimination of high frequencies and accordingly the

corresponding bending waves as well as the corresponding acoustic waves.
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6.3 Application to Vibrating Plates due to a Moving Force

Figure 6.17 – Sound pressure distribution in the xz-plane at the vicinity plate at (a) t = 9.4 µs ;

(b) t = 10.2 µs ; (c) t = 14.9 µs after the force start to move. The circles show the current

positions of the force. Pressure is given in Pa.

Figure 6.18 – Sound pressure distribution in the xz-plane at different instants during the

movement of the force (a) and after its passage (b-d). Pressure is given in Pa.

Conversely, increasing the elements size (making the mesh coarse by reducing the number
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6.4 Summary

Figure 6.19 – Effect of the time step (∆t2 = 10∆t1) on the pressure : (a-c) Variation, with

respect to time, of the acoustic pressure for three field points located on xz-plane at a distance

R = 25 mm from its center (ψ0 = 0◦, ψ3 = 89◦) and (d-f) their corresponding normalized spectra

with respect to their maximum values.

of nodes to 1009) while maintaining the same time step ∆t1 increases the amplitude of the

oscillations in the acoustic pressure - see fig. 6.20. The spectrum on the other hand is less rich

in frequencies compared to the spectra in figs. 6.14 and 6.16. This is due to loss of mesh quality,

in terms of precision, compared to the original finer mesh. It is interesting to note that the

overall shape of the acoustic pressure variation with time and its level is preserved for the three

observation points, despite the coarser time step and computation mesh.

6.4 Summary

In this chapter we have used the developed Bézier-based IGA numerical scheme to calculate

dynamics and the acoustic radiation, in time domain, of forced-vibrating plates. A thin elastic

circular plate embedded in a baffle, vibrating first due a localized impact force and then vibrating

due to a moving force, was studied. The Reisnsner-Mindlin plate theory used to model the

plate and the Rayleigh integral equation for the acoustic response. The numerical dynamic and

acoustic analysis mainly focused on the near field acoustic radiation.

In terms of the results obtained, many similarities were found between the two cases, including :

(1) the displacement field constitutes of an initial deformation which is then followed by free
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6.4 Summary

Figure 6.20 – Effect of the mesh (1009 nodes) : (a-c) Variation, with respect to time, of the

acoustic pressure for three field points located on xz-plane at a distance R = 25 mm from its

center ( ψ0 = 0◦, ψ3 = 89◦) and (d-f) their corresponding normalized spectra with respect to

their maximum values.

vibration of the plate, and (2) the presence of dispersive effects due to the generation of bending

waves while the force is acting on the plate. Some differences were also observed, first being in

the case of the moving force the absence of the silent zone and appearance of oscillations that

are superimposed on the global response of the plate, in both the dynamic and acoustic response.

Second, in the case of the localized excitation force, since the initial impact deformation is

localized around the center of the plate, the dispersive effects exhibited by the bending waves

as they propagate through the plate and the resulting acoustic waves are perfectly discernible.

However, due to the size of the plate, lack of damping and the embedding boundary conditions,

the continuous generation of the bending waves and their reflection at the edge of the plate

causes the appearance of high frequency oscillations that are superimposed on the deformation

due to the passage of the force and the free vibration of the plate. These oscillations were found

to be sensitive to the model parameters such as mesh size and time step size.
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7
Summary and Perspectives

Summary

In this thesis we have developed a Bézier-based IGA approach, with data structures suitable

for existing FE codes, for the treatment of contact problems. This scheme couples the im-

plementationally friendly isogeometric finite elements (Bézier extraction concept) with the

Bézier inverse matrix (Bézier interpolation) to transform the computational space from that of

control space to the physical space. The main and interesting characteristic of the Bézier-based

method is, unlike the standard NURBS/BSplines-based isogeometric methods, with this scheme

computation points now live on the physical geometry. The data structures are not only suitable

for existing FE codes but also the computation mesh is identical to the more familiar standard

FEA, thus granting direct access to the physical boundaries which then greatly simplifies the

application of boundary conditions. Note, the connection with the original NURBS/BSplines is

never lost. Just like we have deduced the Bézier form from the BSplines, we can equally recover

the BSplines from the Bézier elements. A comparison of this Bézier based scheme with the

traditional NURBS/BSplines based approach found that, in terms of the quality of the solution,

both methods yield the same results. Naturally, the Bézier-based approach is slightly expensive

as it introduces more DOFs into the system.

The Bézier based IGA approach allows for the use of the NTS contact formulation as now the

contact integrals can be easily collocated at physical points. The full development of the NTS

contact formulation with the penalty method, as well as the solution procedure algorithm is the

main focus of chapter 3.6. In chapter 4 the developed NTS contact discretization scheme is applied

to friction-less and frictional 2D contact problems, with quadratic and cubic discretizations. The

multi-patch framework allowed us the ease to represent the relatively complex geometries as

well as control over the computation meshes such that high density of elements were within

the potential contact area, and a very coarse element distribution away from this area. A small

deformation framework was assumed, thus allowing us to verify and validate our developed

numerical scheme against analytical solutions. We found our scheme to be accurate, even for

coarse meshes, particularly for the friction-less problems and with a cubic discretization. In the



classical Hertz problem we could predict both the contact area and contact stresses to within

∼ 1.5% of the analytical solution, and in the rigid punch problem to ∼ 3% of the analytical

solution. We also compared our formulation to the standard FEA, NTS with penalty method,

solution obtained using Abaqus : we found that for the same number of DOFs in the system, a

relative error of ∼ 10% on the classical Hertz problem with standard FEA, particularly on the

contact area, is committed. This error was even higher for the rigid punch problem. Attempts

to refine the mesh in Abaqus, to improve the results, quickly led to prohibitively large penalty

stiffness. In fact, the Abaqus solver had to switch to Lagrange multipliers as the required penalty

stiffness exceeded the threshold. On the other hand with IGA a penalty parameter of 100E was

sufficient enough for allowed penetrations of order < 1× 10−7. This is because of the coarseness

of the mesh, recall that the penalty stiffness is a function of the surface lengths of the elements.

The smaller the element size, the higher the penalty stiffness required. And as we know with the

penalty method, high penalty parameters lead to ill-conditioning, which leads to instabilities and

poor quality results. Hence the reason with standard FEA model, when the mesh was refined,

the penalty formulation was no longer suitable.

In terms of the frictional contact problems, we compared our results to the ideal uncoupled

analytical solutions. A good correlation, in terms of the contact area radius was found between

our numerical models and analytical solution. A relatively good agreement between the normal

contact tractions was found as well, particularly for the purely stick case. A slight deviation in the

tangential tractions was observed. This deviation is to be expected due to the assumptions made

on the analytical solution - uncoupling the tangential tractions and normal tractions. In fact, for

the frictional problems, a good reference point is the standard FEA results : we know that with

a sufficiently fine mesh, the numerical solution converges towards the true solution. Comparing

our relatively coarse numerical model with a fine mesh resolution in standard FEA, we found

both results, in terms of the distribution of contact stresses across the contact area, to be similar.

This is even more evident in the case of partial slip (deformable on deformable frictional contact

problem), where the analytical solution (again uncoupled, and therefore idealized) predicts a

symmetric distribution of both the normal and tangential contact stresses. However, looking

at both IGA and standard FEA, we observed this not be the case. The stress distribution was

skewed for both normal and tangential stresses. Similarly, the contact area, stick zone and slip

zone were found not to be symmetric. However the total contact area was in good correlation

with the analytical solution. Of course, the results for the IGA model were obtained with a

much coarser mesh, compared to standard FEA Abaqus models. Note : due to the improved

accuracy observed with the cubic discretization in the friction-less contact and purely stick case,

cubic Bézier elements were used for the partial slip case.

Having successfully verified and validated our numerical scheme for the resolution of contact

problems, particularly its ability to recover accurately the contact stresses, Bézier-based method

is then extended into contact-impact vibro-acoustics. This is main subject of the two final

chapter. The Bézier-based scheme was used to calculate, in time domain, the dynamics and

acoustic radiation of forced vibrating plates embedded in a baffle. In chapter 5 we apply the NTS

contact formulation, coupled it with the explicit central differences method and Bézier-based
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IGA, to model the impact of the plate embedded in a rigid baffle, by a small sphere. The

contact was assumed friction-less and therefore unilateral. With this explicit time integration,

the contact force and the dynamic response are computed for each time step, with the dynamics

(acceleration) then used in the evaluation of the Rayleigh integral equation to obtain the acoustic

pressure field. In fact, the code performs a joint contact-impact and acoustic response numerical

simulation. A multi-patch framework again was adopted for the ease of representing the geometry

of the plate and the sphere. The results obtained were similar to that of the reference case

(with analytical contact force and implicit time integration), both for the dynamic response and

the acoustic pressure field. This proves our model, particularly the contact-impact algorithm is

accurate. Again, we found that with the cubic Bézier elements and even with a coarse mesh,

particularly for the contact region, we could still recover good quality results.

The last section of chapter 5 is dedicated towards sensitivity analysis. We have evaluated the

influence of (1) the order of the Bézier elements and mesh size, (2) the choice of the time

integration scheme used, and finally (3) the time step size. For (1) the error committed on

the prediction on the natural frequency was used to characterize the mesh parameters, which

compared the evolution of the error with respect to the number of nodes per patch edge of the

plate as well as the discretization order. The cubic discretization was superior and it was found

that beyond 8 elements across the edge of the patch, the refinement does not bring any more

improvement on the quality of the solution. For the full model (the joint contact-impact and

acoustics) we used the central differences which is prone to spurious oscillations for this class

of problems. This scheme was compared to those proposed by Noh and Bathe [135] (NB) and

Kim and Lee [137] (KL), which are meant to be an improvement of the central differences. Not

much difference was observed in terms of the results obtained for the dynamic response and the

acoustic pressure field, though the two schemes, NB and KL, were found to be more expensive

than the central differences method. However, increasing the time step size, we found that the

NB and KL, gave the same result as the original central differences scheme, in terms of the

calculated contact forces, impact contact duration and the acoustic pressure field, at only a

fraction of the resolution time of the central differences scheme.

In the first part of chapter 6 we characterize the dynamics and visualize the acoustic field : first

of a plate impacted by a small sphere however with the contact force assumed analytical, and

second we simulate the phenomena of a moving force (think of a moving vehicle) and study its

dynamics and the resulting acoustic radiation. The dynamic response was obtained using the

implicit Newmark method, and the acoustic response calculated using the Rayleigh integral

equation. Even though the temporal discretization used is unconditionally stable, due to the

nature of the problem being studied (impact event and wave propagation), we know that a large

portion of the interesting characteristics, in terms of the dynamic response, is contained within a

short duration, and therefore we need fine time steps to capture this transient phase. Hence, the

time step size is still limited by the critical time step of the explicit central differences method

stability criteria. In terms of our findings, in line with literature, the dynamic response correlated

well with the acoustic response, specifically for the observation point at the axis of impact, we

could distinctly discern the three phases of the dynamic response and the resulting acoustic
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radiation : from the propagation of the transient acoustic wave as a result of the initial rapid

deformation of the plate at the impact point, and the appearance of ripples due to generation

and outward propagation of the bending waves, the silent phase (almost zero acoustic pressure)

that follows as the bending waves of higher frequency than the critical frequency propagate

towards the edge of the plate and reflect back, and finally the ringing phase as the reflected

bending waves reach the observation point. These bending waves have an oblique wave front,

which is why they do not reach the on-axis observation point as they propagate towards the edge

of the plate, only once reflected back do they reach the center axis. As the observation point

moves further away from the axis of impact, these three phases becomes increasingly difficult to

distinguish as these points are simultaneously reached by propagating the reflecting bending

waves. This chaotic nature of the acoustic field where propagating and reflected bending waves

simultaneously reach the observation point, is even more amplified in the case of the moving

force - the silent phase is non existent. Where in the case of centered impact there is delay before

the bending waves are reflected back from the edge, with the moving force, almost immediately

after the beginning of the transit of the force, bending waves are being reflected. The information

learned here, particularly for the centered impact part was especially useful and used to verify

the results of chapter 5, where now we explicitly model the impact event instead of using an

analytical contact force. We found that our full model correlated very well with the is reference

case.

Observations and Future Works

Even though the developed scheme gave superior results compared to standard FEA, in particular

for the friction-less case, and offered a better performance on per degree of freedom basis, it is

not without limitations. In the section we highlight some of these drawbacks and propose some

recommendations on how they can be remedied. These include :

• In the implementation the contact search was performed locally, element wise. In fact, even

the closest point projection is conducted element wise. Recall that the Bézier elements are

C0 continuous. The implication of this element wise projection is the possibility of having

the same problem encountered in standard FEA : loss of uniqueness of the normals, thus

leading to numerical instabilities and spurious nonphysical oscillations, particularly in large

deformation sliding conditions. A quick fix for this, without employing contact smoothing

techniques, it to perform the projection at patch level. Remember with this Bézier model,

we have localized the global smooth topology information into the local element level.

However, the Bézier extraction operator allows us to switch between the two levels, it

is the link between the NURBS/BSplines and the local Bézier elements. In the same

way, the Bézier inverse matrix projects the control quantities into the physical geometry.

Therefore, the projection algorithm can be modified to search for contact patch-wise ; once

the projection point is known, it can then be projected back into the Bézier space. Care

would still need to be taken when handling the patch boundaries (these are C0 at patch
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level) in the case of a multi-patch model, should the projection jump across the patch

boundaries.

• The dynamic contact-impact problem considered in this thesis was friction-less, and

therefore both explicit and implicit global time integration schemes were appropriate.

However, dynamic friction, particularly with an explicit scheme, is not trivial. It could be

interesting to evaluate how this scheme behaves under dynamic frictional contact.

• The motivation behind the use of the Bézier-based IGA model for the characterization

of the dynamic and acoustic response, in the full joint model, is the accurate recovery

of contact forces. In doing this, it gives us capabilities of studying even more complex

geometries, compared to the plate/sphere model considered here, where access to the

analytical forces is not a possibility. We have observed that our model is capable of

predicting the physics of this contact-impact vibro-acoustics problem, and this should be

transferable for the more complex geometries undergoing the same contact interaction. So,

it could be interesting to explore more geometries.

• The numerical scheme developed has been designed in such a way that it should easily

fit into existing FE codes, particularly the solvers. In fact, one of the motivation for this

approach is its practicality. Majority of the effort goes towards geometry manipulation

and mesh generation, and finally constructing the data structures to fit into existing FE

codes. If all this is done successfully, and with the appropriate basis functions in the shape

functions routine, this method can be easily integrated into existing codes, i.e. as a plug

in module. This can also be the next step. In this work, we had to write all code, from

geometry and its discretization, to the solver and the post-processing routine. If the scheme

can work in conjunction with commercial code or any FE code, it could open up even

more possibilities.

• Lastly, due to the critical importance of contact in many industries, from civil engineering,

mechanics to environmental and medical applications, the numerical scheme developed in

this thesis could have a wide range of applications. On top of the noise generation and

propagation study conducted here, we envision this method could be extended to, for

instance, friction induced vibrations modeling, progressive damage or premature damage

prediction. In essence, the developed scheme is ultimately applicable to any problem where

the description of contacting surfaces is of high importance. In the future, it could be

interesting to explore the use of this methods for more of these applications.
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A
Linearized Contact Integrals

The linearization of contact integrals in the weak formulation in eq. (3.91) writes as :

∆Gc =
∫

Γnormalc

(∆tNδgN + tN∆δgN) dΓ +
∫

Γtangentc

(
∆tT αδξ̄α + tT α∆δξ̄α

)
dΓ (A.1)

Linearized contact variables ∆δgN and ∆δξ̄α derive from variation of the normal gap. Starting

from eq. (3.48), the gap normal can be rearranged as follows :

x1 − x̄2 = gN n̄ (A.2)

Taking the variation of eq. (A.2) leads to :

δx1 − δx̄2 − x̄2
,αδξ̄

α = δgN n̄ + gNδn̄ (A.3)

The linearization of eq. (A.3) gives us :

∆δx1 −∆δx̄2︸ ︷︷ ︸
=0

−
(
δx̄2

,α∆ξ̄α + ∆x̄2
,αδξ̄

α + x̄2
,αβ∆ξ̄αδξ̄β + x̄2

,α∆δξ̄α
)

= ∆δgN n̄+δgN∆n̄+∆gNδn̄+gN∆δn̄

(A.4)

Taking the dot product of eq. (A.4) and the unit normal vector n̄ gives us the expression for

∆δgN . Since x̄2
,α · n̄ = 0 and identity n̄ · δn̄ = 0, we have :

∆δgN = −
(
δx̄2

,α∆ξ̄α + ∆x̄2
,αδξ̄

α + x̄2
,αβ∆ξ̄αδξ̄β

)
· n̄︸ ︷︷ ︸

Term 1

+ gN n̄ · ∆δn̄︸ ︷︷ ︸
Term 2

(A.5)

All quantities in eq. (A.5) are known except for the quantity ∆δn̄ in Term 2. Variation and

linearization of the projection point convective coordinate ξ̄α have been derived and can be

found in eq. (3.54) and eq. (3.93), respectively. To derive the expression for ∆δn̄, from the

identity n̄ · δn̄ = 0 we can write :

∆ (n̄ · δn̄) = ∆n̄ · δn̄ + n̄ · ∆δn̄ = 0 ⇒ gN n̄ · ∆δn̄ = −gN∆n̄ · δn̄ (A.6)

The linearization and variation of the normal vector follows from the orthogonality condition

x̄2
,α · n̄ = 0, which gives :

δ (n̄ · τα) = n̄ · δτα + δn̄ · τα ⇒ δn̄ = − (n̄ · δτα) τα

= − (n̄ · δτα)mαβτβ
(A.7)
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with

δτα = δx̄2
,α + x̄2

,αβδξ̄
β (A.8)

The linearization ∆n̄ and ∆τα follow in the same way as in eq. (A.7) and eq. (A.8). Finally, we

have :

∆δgN =−
[
δx̄,α∆ξα + ∆x̄,αδξα + x̄,αβ∆ξαδξβ

]
· n̄

+ gN
mαβ

[
(δx̄,α + x̄,αγδξγ) n̄⊗ n̄

(
∆x̄,β + x̄,βδ∆ξδ

)] (A.9)

∆δξ̄α also derives from eq. (A.4) ; we take the product of eq. (A.4) with the tangential vector

τα, which yields :

−mαβ∆δξ̄β =
(
δx̄2

,β∆ξ̄β + ∆x̄2
,βδξ̄

β + x̄2
,βγ∆ξ̄βδξ̄γ

)
· τα︸ ︷︷ ︸

Term 1

+ δgN∆n̄ · τα︸ ︷︷ ︸
Term 2

+ ∆gNδn̄ · τα︸ ︷︷ ︸
Term 3

+ gN∆δn̄ · τα︸ ︷︷ ︸
Term 4

(A.10)

Term 1 in eq. (A.10) is known ; it remains to expand and give expression for Terms 2-3. Starting

with term 3, we need the expression of ∆δn̄ · τα. From :

∆ [δ (τα · n̄)] = ∆ (δτα · n̄ + τα · δn̄) = 0
= ∆δτα · n̄ + δτα · ∆n̄ + ∆τα · δn̄ + τα · ∆δn̄

(A.11)

We can rearrange eq. (A.11) to write τα · ∆δn̄

τα · ∆δn̄ = − (∆δτα · n̄ + δτα · ∆n̄ + ∆τα · δn̄) (A.12)

where

∆δτα = ∆
(
δx̄2

,α + x̄2
,αβδξ̄

β
)

= δx̄2
,αβ∆ξ̄β + ∆x̄2

,αβδξ̄
β + x̄2

,αβγ∆ξ̄βδξ̄γ + x̄2
,αβ∆δξ̄β

(A.13)

It remains to expand on term 2 and term 3 in eq. (A.10) as well as the last 2 components in

eq. (A.12). Since :

∆ [(δgN n̄) · τα] = ∆δgN n̄ · τα︸ ︷︷ ︸
=0

+δgN∆n̄ · τα + δgN n̄ · ∆τα = 0

⇒ δgN∆n̄ · τα = −δgN n̄ · ∆τα
(A.14)

We then have :

(δgN∆n̄ + ∆gNδn̄) · τα − gN (δτα · ∆n̄ + ∆τα · δn̄)
= − [δ (gN n̄) · ∆τα + ∆ (gN n̄) · δτα]

= −
[
δ
(
x1 − x̄2

)
· ∆τα + ∆

(
x1 − x̄2

)
· δτα

]
= −

(
δx1 − δx̄2

)
· ∆τα −

(
∆x1 −∆x̄2

)
· δτα + x̄2

,βδξ̄
β · ∆τα + x̄2

,β∆ξ̄β · δτα

(A.15)
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Substituting eq. (A.8) into eq. (A.15) and then combining with eq. (A.15), we can substitute

the final expressions of terms 2,3,4 in eq. (A.10) to obtain :

(mαβ − gNkαβ) ∆δξ̄α =−
(
∆x̄2

,αδξ̄
α + δx̄2

,α∆ξ̄α
)

· τβ − (τα · τα,β − gN n̄ · τα,αβ) ∆ξ̄γδξ̄γ

− gN
(
∆x̄2

,αβδξ̄
α + δx̄2

,αβ∆ξ̄α
)

· n̄−
(
δx̄2

,α + τα,γδξ̄γ
)

· τα∆ξ̄β

−
(
∆x̄2

,α + τα,γ∆ξ̄γ
)

· ταδξ̄β +
(
δx1 − δx̄2

)
·
(
∆x̄2

,β + τβ,α∆ξ̄α
)

+
(
∆x1 −∆x̄2

)
·
(
δx̄2

,β + τβ,αδξ̄α
)

(A.16)
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B
Return Mapping Algorithm

Consider the graphical representation of the unregularized Coulomb’s friction law in fig. B.1. In

fig. B.1 (a) we have the relation between the tangential traction and the tangential slip velocity ;

the blue line represent stick state and the red line represents the slip state. Figure B.1 (b) shows

the relation between the contact pressure and the tangential contact traction (the Coulomb’s

friction cone) - shaded region represents stick state, its closure represents the stick state.

(a) (b)

µ|tN |

−µ|tN |

tT

tN

Coulomb’s cone

tN 00

µ|tN |

−µ|tN |

‖tT‖

‖ġT‖

Figure B.1 – Unregularized Coulomb’s law of friction : (a) Evolution of the frictional traction

‖tT‖ with the tangential slip velocity ‖ġT‖, and (b) Coulomb’s cone.

A stress-state that fulfills these frictional conditions then corresponds to a unique point either

on the interior of the Coulomb’s cone or its closure. This behavior is analogous to plasticity

formulation, particularly rigid-perfectly plastic constitutive formulation (obtained from elasto

plastic constitutive law by setting the hardening modulus to zero and allowing the elasticity

modulus to tend towards infinity) [5].

Due to the multivariate and non smoothness nature of the friction conditions in fig. B.1, it

is common practice in numerical implementation to regularize these relations to remove this

difficulty. And here we regularize the relations in the same way as elasto-perfectly-plastic

constitutive law - see chapter B - where the stress is bounded by the yield stress σy and at

this point plastic flow may occur (plastic strains are accumulated). Table B.1 summarizes the
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analogy between friction and plasticity.

σ

ε

σy

E

εplastic

(non-

reversible)
εelastic

(reversible)

Figure B.2 – One dimensional schematic of the elasto-perfectly-plastic constitutive law, with σy
the yield strength, E the Young’s modulus.

Plasticity Friction

Yield function : f(σ,σy) ≤ 0 Slip function : Φ(tN ,tT ) = ‖tT‖ − µ |tN | ≤ 0
Plastic flow : ε̇plastic = γ̇ ∂f(σ,σy)

∂σ
Slip rate : ġslipT = γ̇ tT

‖tT ‖

Stress-strain : σ = E(ε− εplastic) Frictional traction : ṫT = εT
(
ġT − γ̇ tT

‖tT ‖

)
Elastic deformation Stick state

Yield surface Coulomb’s cone

Table B.1 – Analogies between friction and plasticity constitutive relations, with γ the plastic

multiplier/slip [2].

The Kuhn-Tucker conditions for the Coulomb friction in the tangential direction write as :

Φ ≤ 0, γ̇ ≥, γ̇Φ = 0 (B.1)

The constitutive relations for friction in table B.1 involve rate quantities which, similarly to

elasto-plasticity may be discretized using the backward Euler integration scheme and therefore

can be solved using the trial state/radial return strategy (return mapping in one dimension). In

this strategy, the departure point is the known normal contact traction in current time step

tn+1
N . Assuming no slip in the time step, we evaluate the time discretized equations thus giving

rise to the trial state. This is then followed by a correction if necessary, the return map, such

the predicted traction is situated in th admissible region.

The graphical representation of the strategy for 2D frictional problems is shown in fig. B.3. As it

can be seen from fig. B.3 (a), the predicted trial states [tn+1
T ]trial is non-admissible, the traction

is located outside the Coulomb’s cone. A correction is then necessary to return the surface of

the slip function as is done in fig. B.3 (b).
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tT

(b)

|tN |

tnN

tn+1
N

tnT [
tn+1
T

]trial

1
µ

[Φn+1]trial > 0 [Φn+1]trial = 0

tn+1
T

tT

(a)

|tN |

tnN

tn+1
N

µ |tnN |−µ |tnN |

µ
∣∣∣tn+1
N

∣∣∣

−µ
∣∣∣tn+1
N

∣∣∣

tnT

[
tn+1
T

]trial

1
µ

Figure B.3 – Return mapping algorithm in the stress space : (a) initial state - trial state, (b)

trial state - solution state.
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C
Analytical Solution for Hertzian Contact

Problems

I Classical Hertz Contact Between an Elastic Sphere and a

Rigid Plane

Here we detail the analytical solution for the friction-less contact between an elastic sphere and

a rigid block. The input parameters for this problem are given in table C.1.

Young’s Modulus, E [GPa] 200
Poisson’s ratio, ν 0.3
Radius of the sphere, R [m] 0.05
Applied displacement, ū [m] 2.7× 10−3

Table C.1 – Input parameters for the contact between an elastic sphere and a rigid plane.

From the Hertzian analytical solution in [102, 103], the contact area radius a can be computed

as follows :

a =
√
R∗d (C.1)

where d ≡ ū is the total prescribed displacement and R∗ the effective radius, R∗ = R
2 . The

contact pressure (normal) distribution across the contact area is given by

p(r) = p0

√
1−

(
r

a

)2
(C.2)

where 0 ≤ r ≤ a, and p0 is the maximum contact pressure computed as :

p0 = 3F
2πa3 (C.3)

with

F = 4
3 E

∗
√
R d

3
2 (C.4)
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II Rigid Punch on an Elastic Half-Space Contact Problem

where
1
E∗

= 2
[

1− ν2

E

]
(C.5)

E∗ is the effective contact stiffness.

The contact radius obtained through the Hertzian solution procedure above is found to be

a = 8.21 mm, the maximum contact pressure is found to be p0 = 2.3× 1010 Pa. Figure C.1

shows the normalized contact pressure distribution across the contact area.

Figure C.1 – The normalized contact pressure of the sphere across the contact area.

II Rigid Punch on an Elastic Half-Space Contact Problem

Consider the contact between a flat ended rigid punch with an elastic half space, schematic in

fig. C.2.

Figure C.2 – Indentation by a cylindrical flat punch.

167



II Rigid Punch on an Elastic Half-Space Contact Problem

The input parameters and material parameters are given in table C.2

Young’s Modulus, E [GPa] 200
Poisson’s ratio, ν 0.3
Half base width, a [m] 0.5
Indentation d [m] 2× 10−3

Table C.2 – Input parameters for the contact between a rigid punch and an elastic half space.

Following the method of dimensionality reduction (MDR) detailed in [104] : the analytical contact

area equals to half the base of the rigid indenter. In our given problem we have a = 0.5 m. To

compute the contact pressure at x = 0, first we compute the effective stiffness E∗ as :

1
E∗

= 1− ν2

E
⇒ E∗ = 2.1978× 1011 Pa (C.6)

The normal contact pressure distribution across the contact area is given by :

p(ρ) = p0√
1−

(
ρ
a

)2
(C.7)

In eq. (C.7) p0 is the contact pressure at ρ = 0 and is computed from

p0 = E∗d

πa
(C.8)

where d in eq. (C.8) is the indentation depth (prescribed as a vertical displacement ū = −2 mm

in the rigid problem in section 4.2.2). Substituting the effective stiffness calculated in eq. (C.6)

and the contact area radius a, we find p0 = 279.83 MPa.

Figure C.3 shows the contact pressure distribution across the contact area.

Figure C.3 – Analytical contact pressure distribution across the contact area due to the

indentation of the elastic half space.

The corresponding normal force is computed from :

FN = 2πa2p0 (C.9)
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III Compression of Elastic Cylinder on a Rigid Substrate

III Compression of Elastic Cylinder on a Rigid Substrate

Consider the schematic in fig. 4.19 : an elastic cylinder in contact with a rigid substrate (frictional

Hertz contact). The material properties and input parameters are given in table C.3.

Young’s Modulus, E [GPa] 200
Poisson’s ratio, ν 0.3
Coefficient of friction, µ 0.8
Dundur’s constant, β0 0.5
Radius of the cylinder, R [m] 0.05
Applied displacement ū [m] 2.7× 10−3

Table C.3 – Input parameters for the frictional contact problem between an elastic cylinder and

a rigid plane.

To obtain the contact pressure distribution as well as the contact area semi width a, we follow

the uncoupled solution approach detailed in [102, 105, 106].

Depending on the value of the tangential forces, the contact area may consist of a mixture of

stick zones (where points in contact adhere to each other) and slip zones (tangential relative

motion occurs between the contacting point). The tangential traction is limited by friction.

Figure C.4 shows the contact interface configuration, made up of the stick zone and slip regions,

for contact for dissimilar cylinders (idealized as plane contact).

Figure C.4 – Contact configuration : stick zone and slip region.

From Coulomb’s law of friction, we have : stick zone : |FT | < µFN , |x| < c

slip zone : |FT | = µFN c < |x| < a
(C.10)
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III Compression of Elastic Cylinder on a Rigid Substrate

Johnson [102] gives a relationship of the extent of slip region of dissimilar solids, based on the

ratio between the Dundurs’ constant β0 and the coefficient of friction µ. With β0 and µ values

in table C.3, we find the ratio c/a > 0.95. Assumption of pure stick conditions (with uncoupled

normal and tangential tractions) may then be sufficient for obtaining a good approximation

of the analytical solution. Of course in theory some slip will occur around the edge of contact

|x| → a.

The normal contact pressure distribution is given by :

p(x) = p0

√
1−

(
x

a

)2
(C.11)

where

κ = 1
R1

+ 1
R2

= 2
R

and A = 2
[

1− ν2
1

E1
+ 1− ν2

2
E2

]
= 2

(
21− ν2

E

)
(C.12)

Using the dimensions and properties give above κ = 40 and A = 1.82× 10−11. For an applied

displacement in fig. 4.19, the total normal reaction force is FN = 1.49055 × 108 N. We can

compute the contact area semi width a as follows :

a =
√

2FNA
πκ

= 6.57083 mm (C.13)

The maximum normal contact pressure follows from

p0 = κa

A
= 1.44414× 1010 Pa (C.14)

For purely stick conditions, the tangential traction is given by :

q(x) = β0p0

πa

[√
a2 − x2 ln

∣∣∣∣a+ x

a− x

∣∣∣∣+ x ln
{
a+
√
a2 + x2

a−
√
a2 − x2

}]
(C.15)

The obtained solution is shown in fig. C.5

0 0.2 0.4 0.6 0.8 1

x/a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
/p

0

Analytical: NORMAL

Analytical: TANGENT

Figure C.5 – Purely stick contact analytical solution.
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IV Hertz Contact Between Deformable Bodies

IV Hertz Contact Between Deformable Bodies

The solution for the problem in fig. 4.23 derives from the analytical solution detailed in [105, 106]

for the case of two elastically similar cylinders, uncoupled (assume that the tangential traction

has no effect on the normal pressure). Here, we have contact under partial slip conditions.

Table C.4 contains the input parameters and material properties for the problem in fig. 4.23.

Young’s Modulus, E [Pa] 1
Poisson’s ratio, ν 0.3
Coefficient of friction, µ 0.2
Radius of the cylinder, R [m] 1
Normal force FN [N] 6.02× 10−4

Tangential force FT [N] 1.08× 10−4

Table C.4 – Input parameters for the frictional Hertz contact between two deformable bodies.

From eq. (C.10) it is apparent that for sliding conditions :

|q(x)| = −µp(x) (C.16)

where the normal pressure is Hertzian (see eq. (C.11)) and p0 as computed from eq. (C.14). The

tangential traction is then the composite of the stick zone shear tractions and slip zones traction

in eq. (C.16).

q(x) =


µp0

√
1−

(
x
a

)2
− µp0

(
c
a

)√
1−

(
x
c

)2
: |x| ≤ c

µp0

√
1−

(
x
a

)2
: c < |x| ≤ a

(C.17)

We compute the ratio c/a as

c

a
=

√√√√1−
∣∣∣∣∣ FTµFN

∣∣∣∣∣ (C.18)

For the total normal and tangential reaction forces obtained from the loading in fig. 4.24, and

the material properties in table C.4, we have :

• Maximum normal pressure p0 = 10.2587× 10−3

• Contact area semi width a = 3.7342× 10−2

• Stick zone semi width c = 1.18102× 10−2
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