
THÈSE
Présentée à l’Université de Lille

École doctorale 632 : Science de l’ingénierie et des systèmes

en vue d’obtenir le grade de

DOCTEUR
en

Électronique,Microélectronique, Nanoélectronique et

Micro-ondes

Mixed-Signal In-MemoryMatrix-VectorMultiplication for

Ultra-LowPower EmbeddedMachine Learning

Multiplication de vecteur-matrice à signauxmixtes dans lamémoire à très

faible consommation pour l’apprentissagemachine embarqué

Présentée et soutenue publiquement par :

KévinHÉRISSÉ
le 16 Décembre 2022

Jury

M. IanO’CONNOR Pr. - École Centrale de Lyon Rapporteur, Président du jury

M. Yong LIAN Pr. - YorkUniversity Rapporteur

Sylvain SAIGHI Pr. - Université deBordeaux Examinateur

MmeÉdith BEIGNÉ DR -Meta Examinatrice

M. Sylvain CLERC Ingénieur - STMicroelectronics Examinateur

MmeAndreia CATHELIN Dr. HDR -STMicroelectronics Examinatrice

M. Benoit LARRAS Dr. - Junia, Université de Lille Invité

M. Antoine FRAPPÉ Dr. HDR - Junia, Université de Lille Co-Directeur de Thèse

M. AndreasKAISER DR - Junia, Université de Lille Directeur de Thèse

2

Acknowledgements

This manuscript is the result of 4 years of work. I was fortunate enough
to be able to go through this thesis thanks to all the people around me
that support me and push me higher and I would like to thank them.

First, I would like to thank all the members of my jury, it was
an honour to present you my work. I want to give special thanks to
Pr. Ian O’Connor and Pr. Yong Lian who read this manuscript, your
comments help me to do better work, thank you for this.

None of this work could have been possible without the support of
my thesis directors Antoine Frappé, Andreas Kaiser, and my advisor
Benoit Larras. I’m grateful to have you by my side during this Ph.D.,
I wish more Ph.D. students could have an advisor team like you.

I want to thank my colleagues for their support, their humour, and
their kindness. You were once my teachers and I’m happy to know
you more. Thanks to Bruno, Jean-Marc, Florence, Jean-François, Em-
manuel, Axel, Valérie, Justine and, Etienne.

A special thanks to my Ph.D. colleagues, Julien, Mathieu, Antoine,
Nicolas, Jean-Baptiste and Soufiane. You were great support and an
incredible team to work with.

During these 4 years, I was glad enough to have been surrounded by
great people. Great friends like Pierre-Raphaël, Marie-Jeanne, Emma
G., Perrine, Quentin T., Mathilde, Quentin L., Raphaël, Alexis, Axelle,
Claire, Jeremie, Meline, Marwane, Sarah, and Augustin.

i

I got the chance to work on other projects alongside the thesis with
my friends Thomas, Eric and Marie-Camille. I learned a lot by your
side.

Of course, my family was a great support. First, my parents, Is-
abelle and Franck they support me and push me to follow my instinct
since I’m born. My sister, Margaux, was an equally great support.
Thank you for everything.

A special thanks to my grandparents, Maurice and Marie-Thérèse,
for their support during my studies. Romain, Louise, Cathy, Jean-
Pierre, Jacky, Brigitte, Martine, Laurent, and all the family members I
can’t name, thank you for listening to me, making me laugh, and lifting
my spirit when needed.

Finally, I will end this acknowledgment and thank my girlfriend
Coralie. She is the only one who knows really what the thesis was like
for me. She’s great, she’s brilliant and was and still is a great support
in life. Thank you for everything. I love you.

I should probably thank my therapist, but I’m not sure it’s some-
thing that we do.

ii

Remerciements

Ce manuscrit est le résultat de 4 années de travail. J’ai eu la chance de
pouvoir mener à bien cette thèse grâce à toutes les personnes de mon
entourage qui me soutiennent et me tirent vers le haut et je tiens à les
remercier.

Tout d’abord, je tiens à remercier tous les membres de mon jury,
ce fut un honneur de vous présenter mon travail. Je tiens à remercier
tout particulièrement le Pr. Ian O’Connor et Pr. Yong Lian qui ont lu
ce manuscrit, vos commentaires m’ont aidé à faire un meilleur travail,
je vous en remercie.

Aucun de ces travaux n’aurait été possible sans le soutien de mes
directeurs de thèse, Antoine Frappé, Andreas Kaiser, et de mon encad-
rant Benoit Larras. Je suis reconnaissant de vous avoir eu à mes côtés
durant ce doctorat, je souhaite que plus de doctorants puissent avoir
une équipe d’encadrants comme vous.

Je tiens à remercier mes collègues pour leur soutien, leur humour
et leur gentillesse. Vous avez été mes professeurs et je suis heureux
de vous connaître davantage. Merci à Bruno, Jean-Marc, Florence,
Jean-François, Emmanuel, Axel, Valérie, Justine et Etienne.

Un merci spécial à mes collègues de doctorat, Julien, Mathieu, An-
toine, Nicolas, Jean-Baptiste et Soufiane. Vous avez été d’un grand
soutien et une équipe incroyable avec laquelle travailler.

iii

Durant ces 4 années, j’ai eu le bonheur d’être entourée de personnes
formidables. De grands amis comme Pierre-Raphaël, Marie-Jeanne,
Emma G., Perrine, Quentin T., Mathilde, Quentin L., Raphaël, Alexis,
Axelle, Claire, Jérémie, Méline, Marwane, Sarah, et Augustin.

J’ai eu la chance de travailler sur d’autres projets, accompagnés de
mes amis Thomas, Eric et Marie-Camille. J’ai beaucoup appris à vos
côtés.

Bien sûr, ma famille a été d’un grand soutien. Tout d’abord, mes
parents, Isabelle et Franck, ils me soutiennent et me poussent à suivre
mon instinct. Ma sœur, Margaux, a été un soutien tout aussi impor-
tant. Merci pour tout.

Un merci particulier à mes grands-parents, Maurice et Marie-Thérèse,
pour leur soutien durant mes études. Louise, Romain, Cathy, Jean-
Pierre, Jacky, Brigitte, Martine, Laurent et tous les membres de la
famille que je ne peux pas nommer, merci de m’écouter, de me faire
rire et de me remonter le moral quand il le faut.

Enfin, je terminerai en remerciant ma compagne Coralie. Elle est la
seule à savoir réellement ce qu’a été la thèse pour moi. Elle est géniale,
elle est brillante et a été et est toujours un grand soutien dans la vie.
Merci pour tout. Je t’aime.

Je devrais probablement remercier ma psy, mais je ne sais pas si
c’est quelque chose qui se fait.

iv

Abstract

The applications for embedded artificial intelligence are numerous and
cover multiple domains, such as consumer electronics, home automa-
tion, health, and industry. They require dedicated chips bringing intel-
ligence close to the sensor while maintaining a low energy consumption.
Although many types of neural networks (NN) exist, they all rely on
the same basic computations which are Matrix-Vector Multiplications
(MVM) composed of Multiply-and-Accumulate (MAC) operations. Op-
timizing the energy efficiency of MAC operations is a great lever to
reduce global power consumption. In a classic Von Neumann archi-
tecture, the limitation implied by data access caps the efficiency at 10
TOPS/W considering a 50 fJ/byte energy consumption for data move-
ment. In-memory computing (IMC) helps reduce the energy overhead
for accessing data by processing them close to where they are stored.
This thesis analyses the state-of-the-art NN architectures and the works
for Voice Activity Detection (VAD) and Keyword Spotting (KWS), to
show that energy consumption and accuracy are more important pa-
rameters than throughput for embedded applications. Furthermore,
analysis of the state-of-the-art of IMC shows that the available time to
perform NN operations can be advantageously leveraged. This work
presents a time- and current-based analog IMC concept, where current
sources charge/discharge a capacitive line during a time pondered by
the product of two numbers, therefore performing multi-bit MAC oper-

v

ations through time. An implementation of the proposed architecture
in a 28 nm FDSOI CMOS technology is presented. The integrated
circuit prototype integrates 4 neurons with 100 inputs and 5-bit in-
puts and weights. The structure performs the multi-bit MVM using
the proposed time- and current-based analogue IMC method within
a maximum latency of 4.5 µs, perfectly suitable with most embedded
applications. The measured energy efficiency allows envisioning >50
TOPS/W if deployed over a 100-neuron array.

vi

Résumé

Les applications de l’intelligence artificielle embarquée sont nombreuses
et couvrent de multiples domaines, tels que l’électronique grand pub-
lic, la domotique, la santé et l’industrie. Elles nécessitent des puces
dédiées apportant l’intelligence à proximité du capteur tout en main-
tenant une faible consommation d’énergie. Bien qu’il existe de nom-
breux types de réseaux neuronaux (Neural Networks - NN), ils reposent
tous sur les mêmes calculs de base, à savoir des multiplications ma-
tricielles et vectorielles (MMV) composées d’opérations de multiplica-
tion et d’accumulation (MAC). L’optimisation de l’efficacité énergé-
tique des opérations MAC est un excellent levier pour réduire la con-
sommation énergétique globale. Dans une architecture Von Neumann
classique, la limitation liée à l’accès aux données plafonne l’efficacité à
10 TOPS/W en considérant une consommation d’énergie de 50 fJ/byte
pour le déplacement des données. Le traitement en mémoire (In-
Memory Computing - IMC) permet de réduire la surcharge énergétique
liée à l’accès aux données en les traitant à proximité de l’endroit où elles
sont stockées. Cette thèse analyse l’état de l’art des architectures NN
et les travaux pour la détection d’activité vocale (Vocal Activity De-
tection - VAD) et le repérage de mots-clés (Keyword Spotting - KWS),
pour montrer que la consommation d’énergie et la précision sont des
paramètres plus importants que le débit pour les applications embar-
quées. En outre, l’analyse de l’état de l’art de l’IMC montre que le

vii

temps disponible pour effectuer les opérations du NN peut être avan-
tageusement exploité. Ce travail présente un concept d’IMC analogique
basé sur le temps et le courant, où des sources de courant chargen-
t/déchargent une ligne capacitive pendant un temps pondéré par le
produit de deux nombres, réalisant ainsi des opérations MAC multi-
bits à travers le temps. Une mise en œuvre de l’architecture proposée
dans une technologie FDSOI de 28 nm est présentée. Le prototype
de circuit intégré intègre 4 neurones avec 100 entrées et des entrées et
poids de 5 bits. La structure exécute le MMV multi-bits en utilisant
la méthode IMC analogique proposée, basée sur le temps et le courant,
avec une latence maximale de 4,5 µs, parfaitement adaptée à la plupart
des applications embarquées. L’efficacité énergétique mesurée permet
d’envisager une efficacité supérieure à 50 TOPS/W s’il est déployé sur
un réseau de 100 neurones.

viii

Contents

Acknowledgements i

Abstract v

Résumé vii

Associated Publications xxv

Introduction 1

1 Neural Networks 5
1.1 Introduction . 6
1.2 The perceptron and MAC operation 8

1.2.1 The perceptron 8
1.2.2 MAC Operations 9

1.3 Basic Neural Networks and Learning Principle 10
1.3.1 Feedforward . 10
1.3.2 Backpropagation 11
1.3.3 Metrics to evaluate Neural Networks 12

1.4 Convolutional Neural Network 14
1.5 Long Short-Term Memory 16
1.6 Datasets . 18

1.6.1 Google Speech Command Dataset 18

ix

1.6.2 TIMIT . 19
1.6.3 MNIST . 19
1.6.4 CIFAR . 20
1.6.5 ImageNet . 21

1.7 Conclusion . 21

2 Embedded Machine Learning for Audio Applications 23
2.1 Introduction . 24
2.2 Hierarchical Architectures 26

2.2.1 Preprocessing Unit 26
2.2.2 An example of a vocal assistant 27

2.3 Detailed composition of a vocal assistant 30
2.3.1 Voice Activity Detection 30
2.3.2 Keyword Spotting 35

2.4 Speaker Verification
and Automatic Speech Recognition 37
2.4.1 Speaker Verification 37
2.4.2 Automatic Speech Recognition 38
2.4.3 Conclusion . 38

2.5 Optimization of Neural Network 39
2.5.1 Reducing the number of operations 39
2.5.2 Reducing the consumption of one operation . . . 41

2.6 Conclusion . 42

3 In-Memory Matrix-Vector Multiplication 45
3.1 Introduction . 46
3.2 SRAM-Based Digital In-Memory Computing 47
3.3 Non-Volatile Memory Approaches 48

3.3.1 Phase-Change Memory 49
3.3.2 Spin-transfer-torque and Magnetic RAM 49
3.3.3 RRAM-Based Analog In-Memory Computing . . 50
3.3.4 FeFET . 51

x

3.4 SRAM-Based Mixed-signal IMC 51
3.4.1 Charge-Based Analog IMC 51
3.4.2 Time- and Current-Based Analog IMC 53

3.5 Comparison of IMC architectures 54
3.6 Conclusion . 57

4 Time-Based Multiplication Concept 59
4.1 Introduction . 60
4.2 Multiplication to Time Conversion 61
4.3 Parallel and iterative architecture comparison 62

4.3.1 Parallel architecture 63
4.3.2 Iterative architecture 64
4.3.3 Constraints defined by applications 64

4.4 Proposed high-level architecture 66
4.5 Evaluation of non-idealities and mismatch for time and

current-based Analog in-memory Computing 68
4.5.1 Simulation of the time and current-based compu-

tation . 70
4.5.2 NN robustness to deviation 72

4.6 Conclusion . 76

5 Circuit Implementation in 28 nm FDSOI 77
5.1 Introduction . 78
5.2 Current sources . 80

5.2.1 Current mirror architecture 80
5.2.2 Transistor Mismatch 81
5.2.3 Output impedance 82
5.2.4 Current Sources Consumption 83

5.3 Switches . 84
5.3.1 Settling time . 84
5.3.2 Charge injection 85
5.3.3 Switch Consumption 86

xi

5.4 X LOGIC and W LOGIC 87
5.4.1 Block architecture 87
5.4.2 Logic Blocks Consumption 88

5.5 Accumulation lines . 89
5.5.1 Accumulation line capacitance 89
5.5.2 Accumulation line non-linear capacitance 89
5.5.3 Charge sharing effect 90
5.5.4 Charge-sharing mitigation 91
5.5.5 Operational Amplifiers 92
5.5.6 Operational Amplifiers Consumption 94

5.6 Consumption Summary 94
5.7 Corner Analysis . 96
5.8 Conclusion . 96

6 IC measurement results 99
6.1 Introduction . 100
6.2 Test environment . 100
6.3 Chip characterization . 102

6.3.1 Chip presentation 102
6.3.2 OA Characterization 102
6.3.3 Current source Characterization 107
6.3.4 Capacitive line evaluation 109

6.4 Accumulation Line behavior 110
6.4.1 Bandwidth limitation 111
6.4.2 System functioning 111

6.5 Error Evaluation . 114
6.6 Consumption summary 116
6.7 Comparison with State-of-the-art 117
6.8 Conclusion . 120

Conclusion and Future Work 123

xii

Bibliography 127

A Keyword Spotting System using Low-complexity Fea-
ture Extraction and Quantized LSTM 143

xiii

xiv

List of Figures

1.1 Perceptron . 8
1.2 Activation Functions . 9
1.3 2 Hidden Layers Feed Forward Neural Network 11
1.4 CNN. 15
1.5 LSTM Neural Network 17
1.6 LSTM Neural Network With Feed Forward and Softmax

Layers . 18
1.7 MNIST Dataset Example 19
1.8 CIFAR10 Dataset Example 20

2.1 Classic architecture, consuming a lot of energy. 26
2.2 Preprocessing unit architecture. 27
2.3 Example of a Vocal Assistant Architecture. 29
2.4 An example of a decision tree from [15]. 32
2.5 Von Neumann Architecture 42
2.6 Comparison of digital implementation versus In-memory

implementation from [39]. 43

3.1 DIMC from [44] . 48
3.2 Example of RRAM-AIMC 50
3.3 Example of Charge-Based Mixed-signal IMC 52
3.4 In-memory current source 54

xv

3.5 Comparison of multibit ASIC and FPGA from [73] . . . 56

4.1 Left: Block diagram of a neuron implemented using time
and current analog in-memory computing method. Right:
Schematic of a neuron. 60

4.2 Command signal for a current source. 63
4.3 Current source parallel architecture. 63
4.4 Current source iterative architecture. 64
4.5 Time pulses created for the matrix array. PX[i] signals

will be masked by the corresponding X[i] bit of the input
and PW[j] signals will be masked by the corresponding
W[j] bit of the weights. 67

4.6 Pattern broadcast and time masking architecture. 69
4.7 Distribution of the final output voltage of a computation

with a 20% current mismatch, resulting in a standard
deviation of 2.8 mV. 73

4.8 Detailed architecture of the Feed Forward NN. 74
4.9 Detailed architecture of the Feed Forward NN. 75

5.1 Global architecture. Where CS is Current Source, SW is
Switches, RST is Reset, and OA for Operational Amplifier. 79

5.2 Current output for PMOS and NMOS current sources
with cascoded architecture for 800n by 800n transistors. 81

5.3 Simulated mismatch value from 200 points Montecarlo
analysis with a W = 800nm for different L. 82

5.4 Architecture of the current sources. 83
5.5 Passgate and dummy switches. 85
5.6 Simulation of two switches on an accumulation line with

and without mitigation with dummy transistor. 86
5.7 Logic blocks X and W. 87
5.8 Accumulation line capacitance created by switches par-

asitic caps. 89

xvi

5.9 Evolution of the capacitive line value depending on the
position of all the switches. 90

5.10 PE block diagram with the dummy line. 91
5.11 Charge sharing effect. 92
5.12 Operational amplifier schematic. 93
5.13 OA A Offset vs. Body Biasing Bias on Vbsn and Vbsp

voltage. 93
5.14 Accumulation line readout circuit. 94
5.15 Power consumption repartition. 96
5.16 Accumulation Line Behavior with corner analysis. 97

6.1 Photograph of the test bench. 101
6.2 Photo of the die. 102
6.3 Block diagram of the circuit and its I/Os. 103
6.4 Measurement steps of OA B. 105
6.5 Measurement steps of OA A. 105
6.6 Impact of body biasing on the offset of OA A and B,

body biasing only impacting OA A. 106
6.7 OA A and B offset for different VBSP. 107
6.8 Offset of OA B. 108
6.9 Offset of OA A. 108
6.10 Current source bias tree. 109
6.11 Measurement of the capacitance value for a constant cur-

rent of 40 nA charging the capacitive line. 110
6.12 Observation of bandwidth limitations with a constant

current of 300 pA for different clock frequencies. 112
6.13 Observation of current limitations with a constant fre-

quency of 10MHz and different reference current values. 112
6.14 Example of computation with all the X equal to 8 and

W equal to 15. 113

xvii

6.15 Example of computation with all the X equal to 10 and
W equal to 15. 113

6.16 Example of computation with random values for X and
W. 114

6.17 Error value. 115

xviii

List of Tables

2.1 Comparison of VAD integrated circuits 34
2.2 Comparison of KWS integrated circuits 36

3.1 Comparison of IMC architecture 55

4.1 GOPS and KWS Latency for different sizes parallel ar-
chitecture running a 64 hidden units LSTM and 1 feed
forward layer . 65

4.2 GOPS and KWS Latency for different sizes iterative ar-
chitecture running a 64 hidden units LSTM and 1 feed
forward layer . 65

4.3 Evolution of the output precision in function of current
mismatch value, the number of LSB corresponds to a full
precision LSB of 8.8µV (see computation details at the
beginning of the section). 72

4.4 Accuracy VS Mismatch 75

5.1 Consumption and energy of the current source block. . . 84
5.2 Consumption and energy of one switch block. 86
5.3 Consumption and energy of the logic blocks. 88
5.4 Consumption and energy of the Operational Amplifiers. 95
5.5 Summary of the consumption. 95

xix

6.1 Measured consumption and energy of the Operational
Amplifiers. 104

6.2 Measured consumption and energy of the Current Sources.109
6.3 Summary of the measured consumption. 116
6.4 Comparison with prior work 118
6.5 Evolution of the efficiency compared to the number of bit.120

xx

Acronym

ADC Analog to Digital Converter.

AI Artificial Intelligence.

AIMC Analog In-Memory Computing.

ASR Automatic Speech Recognition.

BEOL Back-end of line.

BPF Band Pass Filter.

CNN Convolution Neural Network.

CPU Central Processing Unit.

DAC Digital to Analog Converter.

DIMC Digital In-Memory Computing.

DNN Deep Neural Network.

DTX Discontinuous transmission.

FDSOI Fully Depleted Silicon On Insulator.

fefet Fe Field Effect Transistor.

xxi

FEOL Front-end of line.

FFT Fast Fourier Transform.

FPGA Field-Programmable Gate Array.

GOPS Giga Operation Per Second.

GPU Graphic Processing Unit.

HMM Hidden Markov Model.

IAF Integrate And Fire.

IMC In-Memory Computing.

IoT Internet of Things.

IROC Instant Rate Of Change.

KWS Keyword Spotting.

LNA Low Noise Amplifier.

LSTM Long Short-Term Memory.

MAC Multiplication and Accumulation.

MVM Matrix-Vector Multiplication.

OA Operational Amplifier.

PCM Phase change Memory.

RRAM Resistive Random-Access Memory.

SNR Signal to Noise Ratio.

xxii

SPI Serial Peripheral Interface.

SRAM Static Random-Access Memory.

STTRAM Spin-transfer-torque Random-Access Memory.

TinyML Tiny Machine Learning.

TOPS Tera Operation Per Second.

VAD Voice Activity Detection.

WL Wordline.

xxiii

xxiv

Associated Publications

Conferences

Kévin Hérissé et al. ”Mixed-Signal In-Memory Multi-bit Matrix-
Vector Multiplication”. In: 15ème Colloque National du GDR SOC2.
Rennes, France: Jun. 2021.

Kévin Hérissé et al. ”Mixed-Signal In-Memory Multi-bit Matrix-
Vector Multiplication”. In: IBM IEEE CAS/EDS – AI Compute Sym-
posium. Virtual, United States: Oct. 2021.
Award of the third best poster at IBM IEEE CAS/EDS - AI Compute
Symposium 2021.

Kévin Hérissé et al. ”Keyword Spotting System using Low-complexity
Feature Extraction and Quantized LSTM”. In: 2021 28th IEEE Inter-
national Conference on Electronics, Circuits, and Systems (ICECS).
Dubai, United Arab Emirates: IEEE, Nov. 2021.
Paper present in Appendix A.

xxv

Patent

Patent application for the time- and current-based mixed-signal princi-
ple. Kévin Hérissé, Benoit Larras, Antoine Frappé, Andreas Kaiser.

Journal

In preparation : Kévin Hérissé et al. ”A 99.2 TOPS/W In-memory
Vector Multiplication Macro using Mixed-signal Incremental Time-Based
MACs”. In: IEEE Transactions on Circuits and Systems I: Regular Pa-
pers.

xxvi

This work was supported in part by the French National Research
Agency under Grant ANR-18-CE24-0006-01 LEOPAR and in part by
the Nano 2022 - IPCEI program.

xxvii

xxviii

Introduction

1

The applications for embedded artificial intelligence are numerous and
cover multiple domains, such as consumer electronics, home automa-
tion, health, and industry. They require dedicated chips bringing intel-
ligence close to the sensor while maintaining a low energy consumption.
Although many types of neural networks (NN) exist, they all rely on
the same basic computations which are Matrix-Vector Multiplications
(MVM) composed of Multiply-and-Accumulate (MAC) operations. Re-
ducing the number of operations, and quantizing the weights of the
NN can offer some efficiency gain. However, optimizing the energy
efficiency of MAC operations is a great lever to reduce global power
consumption. In a classic Von Neumann architecture, the limitation
implied by data access caps the efficiency at 10 TOPS/W considering
a 50 fJ/byte energy consumption for data movement. In-memory com-
puting (IMC) helps reduce the energy overhead for accessing data by
processing them close to where they are stored.The contributions of
this thesis are the following :

• Analysis of state-of-the-art NN architectures, highlighting that
the main computation blocks of artificial intelligence algorithms
are MVM and MAC operations.

• Analysis of state-of-the-art works for Voice Activity Detection
(VAD) and Keyword Spotting (KWS) applications. One of the
outcomes of this analysis is that, for embedded applications, en-
ergy consumption and accuracy are more important parameters
than throughput. This is a fundamental difference with acceler-
ators for deep learning.

2

• Analysis of state-of-the-art works on IMC. One of the outcomes of
this analysis is that the time available to perform the operations
can be advantageously leveraged for embedded applications. A
time-based multiplication scheme and a concurrent current com-
bination for performing multi-bit MAC operations are then pro-
posed, with promising efficiency levels.

• Description of the time- and current-based analogue IMC, where
current sources charge/discharge an accumulation line during a
time weighted by the product of two numbers, therefore perform-
ing multi-bit MAC operations through time.

• Implementation of the proposed architecture in a 28 nm FDSOI
CMOS technology. The integrated circuit prototype integrates 4
neurons with 100 inputs and 5-bit coding of inputs and weights.
The structure performs the multi-bit MVM using the proposed
time- and current-based analogue IMC method within a max-
imum latency of 4.5 µs, perfectly suitable for most embedded
applications. The measured energy efficiency allows envisioning
a 99.2 TOPS/W if deployed over a 100-neuron array.

The manuscript is structured as follows:
In Chapter 1 we will introduce machine learning by presenting the ba-
sic structure of a perceptron neuron, the matrix-vector multiplication
and the multiply and accumulate (MAC) operation. This informative
chapter will then describe how a simple neural network such as the Feed
Forward neural network can learn. Finally, more advanced networks
like CNN and LSTM will be presented as well as the different datasets
used to benchmark them.
Thanks to this information, Chapter 2 will introduce the TinyML
environment and describe how a complex system can be built for inte-
gration on energy-constrained devices. The work especially focuses on
audio applications such as Voice Activity Detection (VAD) and Key-

3

word Spotting (KWS), how the feature extraction and the computation
are performed and highlight the need for low-consumption neural net-
works.
The Chapter 3 present an overview of the State-of-the-art works on
IMC, from Digital to Mixed-Signal architecture and identifies the pro
and cons of each solution. This highlight the promising perspective of
the proposed time- and current-based analog IMC architecture. This
time- and current-based concept is presented in Chapter 4 and its
implementation in 28 nm FDSOI is detailed in Chapter 5. The mea-
surement results are presented in Chapter 6 where the functioning of
the circuits is validated against Matlab simulations and efficiency and
accuracy are compared to the State-of-the-art.
Finally, we conclude this work with future perspectives of improvements
of the system in terms of accuracy and energy consumption.

4

Chapter 1

Neural Networks

5

1.1 Introduction

Artificial Intelligence (AI) is used in a lot of applications in our everyday
life. AI algorithms are used on social networks for targeted advertising.
They are running on our phones to predict the next word we will type,
or search for a specific object inside our photo library. They are used to
drive autonomous cars, behind Instagram filters, and to identify skin
cancer from a picture of a patient’s back. Either for entertainment
or more pragmatic applications, AI is everywhere. These applications
work thanks to Machine Learning (ML), which is a field of AI where a
computer can learn to perform a task without specific instructions, only
from datasets. ML allows neural networks to learn how to predict or
classify data. There are mainly three different approaches to training
a neural network:

• Supervised Learning
This algorithm works with an input dataset and the correspond-
ing classes of this data. With each data going through the net-
work, the algorithm will compare the prediction to the target
class. The parameters will then be updated so that the predic-
tion is closer to the target class.

• Unsupervised Learning
This algorithm works with datasets where we don’t have the tar-
get class. Unsupervised learning is mainly used to create a clus-
ter of data. This type of learning allows segmenting a set of
customers, for example.

• Reinforcement Learning
The reinforcement learning algorithm consists of learning contin-
uously by trial and error, trying to reach the highest reward value
inside a set environment. Through multiple experiences, it will
try to find the best behavior that maximizes the reward.

6

Complex networks, with millions of parameters like AlexNet [1], uses
supervised learning and can classify images with 15.3% top-5 error rates
among 1,000 classes, meaning that 84.7% of the time the right class is
in the top-5 predictions on an image. Others can classify audio signals
and are able to identify 10 keywords, silence, and background noise
with 93.09% accuracy [2]. Neural networks are also used to identify
cancerous lungs cells with 94% accuracy from images [3].
The variety of architectures available to classify and predict data makes
it difficult from an application point of view to spot how we can re-
duce the consumption of such a network to implement it on ASIC. By
studying different architectures, it is possible to identify one common
block we can optimize for better efficiency. In this chapter we will:

• Study the main building blocks of neural networks and introduce
the Multiply and Accumulate (MAC) and the Matrix-Vector Mul-
tiplication (MVM) operations.

• Study the Feed Forward Neural Network and the backpropaga-
tion principle with the gradient descent algorithm that allows the
training of the networks.

• Present the different metrics used to compare neural networks.

• Present different types of Neural Networks: CNN, LSTM, and
describe their architecture.

• Present the datasets used for benchmarking Neural Networks in
this work.

7

1.2 The perceptron andMACoperation

1.2.1 The perceptron

Figure 1.1: Perceptron

The perceptron is the basic neuron structure used in most neural
networks. Figure 1.1 shows the basic structure of a 4-input perceptron.
The input values X1 to X4 are first multiplied by the respective weights
W1 to W4. These values are then accumulated before going through
an activation function, often noted σ, that can be ReLU (equation
1.1), Sigmoid (Figure 1.2a), hyperbolic tangent (Figure 1.2b), or similar
functions. Finally, the output is sent to the input of the next layer. The
weights values are learned by the network to classify data.

ReLU(x) =

{
x, x ≥ 0

0, x < 0
(1.1)

8

(a) Sigmoid function (b) Tanh function

Figure 1.2: Activation Functions

1.2.2 MACOperations

The main computation of a perceptron is called a MAC (Multiply and
ACcumulate). Figure 1.1 presents a 4-MAC perceptron. This compu-
tation could also be presented as the multiplication of two vectors. In
the case of a layer of multiple perceptrons in parallel, the computa-
tion consists of an input vector multiplied by a weights matrix. This
operation is called Matrix-Vector Multiplication (MVM) and the main
operator of an MVM is a MAC.

layer output vector = σ(
[
X1 X2 X3 X4

]

W11 ... W1n

W21 ... W2n

W31 ... W3n

W41 ... W4n

)
(1.2)

This is the basic operation that we can find in nearly all neural
networks, including Feed Forward, CNN, and LSTM.

9

1.3 BasicNeural Networks and Learning Principle

1.3.1 Feedforward

Feed-forward neural networks are composed of one input layer, one out-
put layer, and multiple hidden layers. This neural network is one of
the most basic and ancient models used to classify data [4]. Each layer
itself is composed of neurons that are perceptrons. They are Fully Con-
nected (FC), meaning that each neuron composing a layer is connected
to all the neurons of the next layer but not to the neurons inside the
layer. A larger number of hidden layers allow finer processing of the
information, therefore the number of layers depends on the complexity
of the application. The connections between the neurons are weighted
and unidirectional, hence the name feed forward. Figure 1.3 presents an
example of a two hidden layers feed-forward neural network with two
outputs, that is able to discriminate input data between two classes.

The feed-forward neural network can be defined by the following
equations:

zL1 = x×WL1 + bL1 (1.3)

αL1 = σ(zL1) (1.4)

zL2 = αL1 ×WL2 + bL2 (1.5)

αL2 = σ(zL2) (1.6)

zL3 = αL2 ×WL3 + bL3 (1.7)

αL3 = σ(zL3) (1.8)

With x the inputs vector, WL∗ the weight matrix of a layer (the weighted
connection), and bL∗ the biases that are added to the weights (not rep-
resented in Figure 1.3 for simplicity). zL∗ is the result of the accumu-
lation of each neuron and αL∗ is the output of the neurons after going
through an activation function. L1 is the first hidden layer, L2 is the
second one and L3 is the output layer.

10

Figure 1.3: 2 Hidden Layers Feed Forward Neural Network

1.3.2 Backpropagation

Backpropagation algorithms are used to update the weights of a net-
work [5, 6]. The principle is to define an error function and use gradient
descent to find weights that optimize performance for a particular task
which can be measured thanks to the error function. To update weight
values, we will compute the gradient of the error with respect to the
weight. Here is an example of a feed-forward neural network. We have
an error function ϵ (that can be cross-entropy, for example, see Section
1.3.3), and we will compute the local gradient for WL3 thanks to the
partial derivative:

∂ϵ

∂WL3
=

∂ϵ

∂αL3

∂αL3

∂zL3

∂zL3

∂WL3
(1.9)

11

The chain rule allows us to compute the gradient of the error with
respect to the weight with a set of intermediary derivatives. This value
is then subtracted from the actual weight value, scaled by a factor called
the learning rate that will allow smoothing the weight variations:

WL3 = WL3 − learning rate × ∂ϵ

∂WL3
(1.10)

By going backward and propagating the gradient through the network
using partial derivatives and chain rule, we are able to update all the
weights and biases of the network and minimize the error. This method
is called the gradient descent algorithm.

1.3.3 Metrics to evaluateNeural Networks

To compare and evaluate different networks for a specific application,
we need metrics. We already used a pretty obvious one, the classifica-
tion accuracy. The following list presents other metrics that will help
to understand how neural network works and how they learn.

ClassificationAccuracy

accuracy =
Number of correct predictions

Number of predictions (1.11)

The classification accuracy is relevant only if there is an equal number
of samples in each class for the training dataset.

Logarithmic Loss

Logarithmic Loss works well for multi-class prediction. According to
the training set distribution, each sample is given a probability to be-
long to a class. The Logarithmic Loss is given by

loss = −1

N

N∑
i=1

M∑
j=1

yij × log pij (1.12)

12

where N is the number of samples and M is the number of classes. yij

indicates if the sample i belongs to class j or not, and pij indicates
the probability i belongs to class j. The logarithmic loss has a range
[0,∞). A value close to zero indicates a high accuracy.

MeanAbsolute Error (MAE)

The mean absolute error indicates how far the prediction is from the
actual target. It is the average difference between the target value and
the predicted one. However, there is no information about whether we
under or over-predict the data. The MAE is defined as

MAE =
1

N

N∑
j=1

|yi − ŷi| (1.13)

where N is the number of samples, yi is the target value and ŷi is the
predicted value.

MeanSquared Error (MSE)

The mean squared error is quite similar to MAE, the only difference
is that this metric uses the square of the difference between the actual
value and the predicted value:

MSE =
1

N

N∑
j=1

(yi − ŷi)
2 (1.14)

Cross-Entropy

The cross-entropy function is useful as a loss function because the loss
is high for bad prediction and close to zero for good prediction. It helps
the gradient descent algorithm used in the backpropagation process to
converge toward accurate precision. It is given by

Xentropy = −(y log(p) + (1− y) log(1− p)) (1.15)

13

where y is a binary indicator (0 or 1) if the class label is the correct
classification for observation and p is the predicted probability obser-
vation.

Number of operations

The number of operations needed to classify an input is a comparison
point of the size and complexity of the neural network classifying the
same data with equivalent accuracy. It is to note that the bit width of
the operations needs to be associated with this metric. Performing a
binary multiplication is not equivalent to an 8-bit multiplication. An
important metric for the efficiency of a system is Tera Operation Per
Second Per Watts (TOPS/W), it is noted that a MAC is counted as
two operations, one multiplication, and one addition. It is a more
hardware-oriented metric but still a good indicator of the complexity
of a system.

1.4 Convolutional Neural Network

In 1989, LeCun [5] presented a Convolutional Neural Network (CNN)
trained thanks to backpropagation and gradient descent algorithms.
This network was able to classify handwritten zip-code digits from the
MNIST dataset (See Section 1.6.3). As suggested by the name, CNN
uses convolutional layers (Conv Layer). The parameters of a Conv
Layer are learnable filters (Kernels) that have a small receptive field
but that are convolved across the input dimensions. Figure 1.4a shows
an example of the convolution process. The 3 by 3 kernel convolves the
input by moving the kernel by one ”pixel” at a time which is called the
stride value. The input value is sometimes padded to allow the kernel
to have the input’s edge pixel centered. The resulting feature maps are
6 by 6 and are used as the input of the next convolutional layers. In
addition to conv layers, CNNs often use pooling layers that are used to

14

(a) Example of a convolution

(b) LeNet CNN

Figure 1.4: CNN.

15

reduce the data dimensions. The two common poolings are max pool-
ing and average pooling that are outputting the max or average value
of a small cluster of the feature maps. Figure 1.4b presents LeNet, the
network used by LeCun to recognize hand-written digits. The last lay-
ers of the networks are 3 Fully Connected feed-forward neural network
layers. The output classes are digits from 0 to 9. This type of network
is well suited to classify images and find specific objects or people in
an image.

1.5 LongShort-TermMemory

Long Short-Term Memories (LSTM) are recurrent neural networks.
The output of the inference is used as an input in the next inference.
They were introduced in 1997 by Hochreiter and Schmidhuber [7]. They
perform well on sequential data thanks to their capacity to store in-
formation in time. LSTMs are composed of intermediate sets of feed-
forward neural networks called gates: the input gates it, the forget
gates ft, the candidate gate gt, and the output gate ot. These gates
are arranged according to the schematic of Figure 1.5. The new input
data and the last hidden vector of the network are fed to the gates,
and the outputs of those gates are combined to form the state vector
ct and hidden vector ht. The equations of the LSTM are as follows:

ft = σs(Wfxt +Rfht−1 + bf) (1.16)

it = σs(Wixt +Riht−1 + bi) (1.17)

ot = σs(Woxt +Roht−1 + bo) (1.18)

gt = σh(Wgxt +Rght−1 + bg) (1.19)

ct = ft ◦ ct−1 + it ◦ gt (1.20)

ht = ot ◦ σh(ct) (1.21)

16

Figure 1.5: LSTM Neural Network

where W∗ and R∗ are weight matrices for each gate and b∗ biasing
values that are obtained by training the neural networks. σs and σh

are sigmoid and hyperbolic tangent activation functions respectively.
◦ indicates an element-wise multiplication. The states and hidden vec-
tors allow storing information in time at each inference, giving LSTM
the faculty to remember some information that will influence the out-
put. In many cases, the LSTM is followed by a Feed Forward and a
Softmax layer. The Feed Forward allows classifying the data thanks
to the hidden vector of the LSTM, and the Softmax layer computes
the probability of the input data belonging to a certain class. Figure
1.6 presents a schematic of this network. Increasing the number of
hidden units (increasing the length of the internal vectors) generally
increases the accuracy of the NN. Reducing this number allows a shal-

17

Figure 1.6: LSTM Neural Network With Feed Forward and Softmax
Layers

lower network which is easier to implement on hardware. The number
of hidden units is chosen by keeping in mind the balance between the
number of operations and the accuracy which is mainly constrained by
the application.

1.6 Datasets

Multiple datasets emerge and are used to benchmark neural networks
on different tasks, such as keyword spotting, image recognition and
handwritten digit recognition. This section presents a list of common
datasets that are used in state-of-the-art works.

1.6.1 Google SpeechCommandDataset

This dataset [8] is composed of 65,000 one-second long utterances of
30 short words pronounced by 1,000 different peoples. The number of
keywords varies but one common task to perform using this dataset is
to classify 10 keywords, unknown and background noise.

18

1.6.2 TIMIT

The TIMIT [9] corpus of read speech is designed to provide speech data
for acoustic-phonetic studies. The dataset contains recordings of 630
speakers of eight major dialects of American English, each reading ten
phonetically rich sentences. The TIMIT corpus includes time-aligned
orthographic, phonetic, and word transcriptions as well as a 16-bit,
16 kHz speech waveform file for each utterance. It is used for Voice
Activity Detection or for Keyword Spotting.

1.6.3 MNIST

The Modified National Institute of Standards and Technology database
is composed of 60,000 training images and 10,000 testing images of
handwritten digits (see Figure 1.7. This dataset is used to compare
neural networks on simple image classification applications [10].

Figure 1.7: MNIST Dataset Example

19

1.6.4 CIFAR

The CIFAR-10 dataset consists of 60,000 32x32 color images in 10
classes, with 6,000 images per class. There are 50,000 training images
and 10,000 test images. CIFAR-100 is the same as CIFAR-10 except it
has 100 classes containing 600 images each.

Figure 1.8: CIFAR10 Dataset Example

20

1.6.5 ImageNet

ImageNet is a dataset of millions of images that are classified by nouns,
there are more than 20,000 classes in 2022. This dataset, regularly
updated, is a reference for large neural network image classification.
AlexNet [1] was the first to use a GPU during training and reached
15.3% top-5 error rates among 1,000 classes, meaning that 84.7% of
the time, the right class is in the top-5 predictions on an image.

1.7 Conclusion

Artificial Intelligence and especially Machine Learning allow Neural
Networks to predict and classify data in a wide range of applications.
With a training dataset, the networks are able to learn how to clas-
sify data thanks to backpropagation and gradient descent algorithms.
Different architectures, like CNNs, are well suited to classify images.
LSTMs are well suited to classify sequential data like audio. Simple
networks, like feed-forward NNs, are often used inside complex archi-
tectures to perform dimension reduction. Although built with different
architectures, they are all based on Matrix-Vector Multiplication. The
MAC operations performed to compute MVM constitute the founda-
tional blocks of such structures. In the next chapter, we will introduce
the Tiny Machine Learning environment and explore new ways to com-
pute MAC operations.

21

22

Chapter 2

EmbeddedMachine Learning

for Audio Applications

23

2.1 Introduction

Neural networks are able to classify data and make predictions in a wide
variety of application fields. Recent developments in IoT require oper-
ating these neural networks on battery-constrained and computation-
limited devices. Therefore, artificial intelligence on embedded devices
relies on connectivity, local computing, or a combination of both to per-
form prediction. The neural network algorithms can be run on three
different environments:

• The Cloud environment is constituted of data centers that are
distributed across the world to store and compute information.
They have computational power allowing them to run resource-
demanding AI models. These servers are equipped with Graphic
Processor Units (GPU) or specific hardware to accelerate the
training of AI algorithms. They can be used to evaluate large
image datasets or to detect objects in images at a rate suitable
for video applications, for example. They are used to run and
train algorithms.

• The On-Device environment represents any phone, tablet, or
IoT device that runs on batteries. They are able to run and train
medium-sized models, thanks to robust Central Processing Units
(CPU) or specific hardware accelerators used to compute tasks lo-
cally, such as Augmented Reality (AR) or typing prediction. The
models operating on these devices need to be chosen according to
user usage and battery capacity.

• The Tiny Machine Leaning (TinyML) environment includes
ultra-low consumption application-specific integrated circuits.
They perform only one task and are designed to be deployed
close to the sensor. It aims at specific application fields that
require low maintenance and long battery life. Dedicated chips

24

for specific applications allow for fine-tuned architectures which
in turn allow for ultra-low consumption. These models can be
used to perform sound/noise detection, voice activity detection,
and keyword spotting and can also be used in health applications
for electrocardiogram (ECG) monitoring and heart arrhythmia
detection. TinyML is used for inference only, the training of the
model is done on a CPU/GPU and transferred to the chip when
reaching suitable accuracy.

This work addresses the Tiny Machine Learning environment, specifi-
cally studying ultra-low power integrated circuits. This new trend has
not been deployed yet in an industrial context, but already presents
promising results in terms of consumption and accuracy. On the one
hand, the number of operations performed in a neural network needs
to be reduced, without sacrificing accuracy. On the other hand, each
operation itself needs to be energy efficient. To address this matter, in
the following pages, we will:

• Present the advantages of ultra-low power integrated circuits and
TinyML as a preprocessing unit.

• Explore how neural networks are implemented on chips and how
they compare in terms of accuracy and power consumption.

• Introduce the memory-wall bottleneck and explore new ways of
implementing efficient MAC operations to overcome it.

The demonstration will be based on audio applications, as many de-
vices are now voice-activated [11]. This example offers a great overview
of a complex system relying on on-device computation and connectivity
(4G/5G, WiFi, etc.) to send data to the cloud for complex computa-
tions.

25

2.2 Hierarchical Architectures

2.2.1 PreprocessingUnit

In an architecture composed of multiple sensors and one processor, the
processor always needs to be on to process the input signals. However,
the main processor is consuming a lot of energy. Figure 2.1 illustrates
this example with an audio signal as an input. The processor needs to
digitize the signal and send the data to the cloud to be processed and
classified on algorithms running inside data centers.

The neural network could be implemented on the processor. How-
ever, this method is not efficient and still consumes a lot of energy, as a
large amount of data need to be moved between memory and processor
(more details in Section 2.5). A solution to improve the efficiency of a
system is using a preprocessing unit that will process and classify the
data locally, as seen in Figure 2.2. The main processor is in standby

Figure 2.1: Classic architecture, consuming a lot of energy.

26

mode most of the time, while the preprocessing unit is always on. It
exploits a specific architecture for feature extraction and classification.
When the preprocessing unit detects or classifies a relevant pattern on
the input data, the main processor is woken up to take over. A classic
RISC-V processor embeds 47 instructions, neural networks need only
two: multiplication and accumulation. We can therefore leverage novel
solutions to perform MAC operations at high efficiency.

Figure 2.2: Preprocessing unit architecture.

2.2.2 An example of a vocal assistant

”OK Google” (Google) [12], ”Hey Siri” (Apple), and ”Alexa” (Amazon)
are common words to be heard when using smart speakers, phones, or
watches. They are able to activate only when one of these keywords is
detected and then act accordingly to the user demand. Such a system
always needs to be on to detect the activation keywords; therefore the
energy consumption needs to be low, especially when implemented on
energy-constrained devices. In addition, the system needs to be kept

27

simple to reduce the manufacturing cost, and it relies on connectivity
to transfer complex actions to the cloud, keeping simpler tasks on the
device and using a hierarchical architecture to distribute the computa-
tion load and reduce the overall energy consumption. The idea behind
this architecture is to split the systems into different tasks that can be
power gated. Figure 2.3 presents a vocal assistant architecture example
implementing such a power-gating scheme. The preprocessing unit is
composed of the Voice Activity Detection (VAD) block that will detect
if a voice is present in the input signal. It will wake up the keyword
spotting (KWS) block that is trained to detect specific keywords in
an audio signal. This block will activate the speaker verification (SV)
block which then turns on the main processor if the voice in the sig-
nal is from an authorized user. If the two conditions are met — an
activation keyword has been pronounced and the voice comes from an
authorized user — the remaining sentence will be sent to the cloud
to be computed. The algorithm running in the data center performs
Automatic Speech Recognition (ASR) to transcribe the audio in a sen-
tence, then another algorithm identifies the actions needed to be taken
and returns the information to the device. The whole process takes a
couple of seconds to happen, thanks to the computational power of the
data center. However, the energy consumption of our devices is deeply
impacted by the data transmission to the cloud, therefore reducing the
amount of information sent to the cloud is crucial to lowering global
energy consumption.

In such a configuration, the role of the VAD is preponderant as it is
responsible for the activation of the most consuming tasks of the sys-
tem. Accordingly, the reduction of the consumption of the VAD needs
to be performed without impacting the accuracy. In [13], M. Price
introduces the following equation to model the averaged system power:

PAVG = pV AD + [(1− pM)D + pFA(1−D)]pdownstream

28

F
ig

ur
e

2.
3:

Ex
am

pl
e

of
a

Vo
ca

lA
ss

ist
an

t
A

rc
hi

te
ct

ur
e.

29

where D is the duty cycle of speech, pM is the probability of misses,
pFA is the probability of false alarm, pV AD is the power consumption
of the VAD and pdownstream the power of the bloc activated by the
VAD. In this paper the author adds:

”The coefficient [(1−pM)D+pFA(1−D)] reflects how often
the downstream system is enabled—a duty cycle that can
be far higher than D if PFA is significant. Differences in
this contribution from the downstream system can far ex-
ceed the differences in power consumption between different
VAD implementations.”

For example, a reduction of the consumption of the VAD block by
a factor of 2 leads to a reduction of the average power by only 18%,
keeping the accuracy identical and a speech duty cycle of 60%. As we
will see in the next section, VAD consumption decreased throughout
the years thanks to neural networks, but if the false alarm rate is high,
then the average energy consumption can still be high. Therefore, it is
important to reduce the consumption and keep the accuracy constant
but other parts of the system should not be neglected as they have a
high impact on the average power consumption.

2.3 Detailed composition of a vocal assistant

2.3.1 VoiceActivity Detection

Usage of VAD

Voice activity detectors detect if there is a voice or silence in a signal
that can be disturbed by background noise. It is mainly used to extract
additive noise characteristics on a signal to then be able to subtract it.
It was first used in telecommunication for Discontinuous Transmission

30

(DTX), by detecting if the signal contains silence or voice. Two dif-
ferent coding algorithms were used: active speech codec and silence
suppression. It helped to reduce the average bit rate by compressing
the silences in the conversation. In addition, as we saw in the last sec-
tion, VAD is often used as a power gating block inside more complex
systems.

How itworks

Voice activity detection algorithm uses decision trees, decision rules,
or neural network algorithms. Table 2.1 compares different chips per-
forming VAD and highlights the performance of neural networks in
both accuracy and power efficiency for this task. Features need to be
extracted from the raw audio signal to be computed and understood
by the algorithm. We can discriminate these chips with their feature
extraction method and their classifier model.
Some references [14–16] use decision trees or decision rules models to
classify the audio signal as containing voice or not. The features used
by this type of classifier are either noise estimation, computed in the
digital domain, or signal energy in selected frequency region, computed
in the analog domain. Decision rules work by comparing the chosen
features to thresholds that are fixed or updated according to external
parameters. In a decision tree, there are multiple comparisons of dif-
ferent features to thresholds.
The remaining references in Table 2.1, use deep neural networks (DNN)
to classify the audio signal, meaning Feed Forward neural networks with
a high number of hidden layers. They use features like Mel Frequency
Cepstral Coefficient (MFCC) [13], spikes [17, 18] and Sequential Fre-
quency Scanning [19]. The MFCC is performed in the digital domain,
the audio signal is converted using an ADC before going through digi-
tal processing, and the ADC sampling frequency is set between 16 kHz
and 48 kHz. Fast Fourier Transform (FFT) and Discrete Cosine Trans-

31

Figure 2.4: An example of a decision tree from [15].

form (DCT) are used to compute MFCC. Digital Feature Extraction
(FE) represents a large part of the total consumption of a system, more
than 50% of the total consumption in [14]. To reduce the consumption
of the feature extraction block, other methods are proposed to per-
form the feature extraction in the analog domain, for the most part,
using analog filters and rectifiers allowing using an ADC at the end
of the processing line, requiring lower sampling frequency because it
then depends on the input data latency, improving the efficiency of
the system. Other methods use spikes that are created with Integrate
And Fire (IAF) mechanism. The signal goes through a band-pass filter

32

(BPF), then through a Full-Wave Rectifier (FWR) before integration.
When the resulting voltage crosses a threshold a spike is produced as
an input to the deep neural network. The IAF plays the role of an
event-driven ADC here, which allows for reduced consumption.

Power consumption and number of operations

The references relying on analog feature extraction consume far less en-
ergy than the ones using digitally extracted features. However, unlike
analog feature extractors, digital one allows reconfiguring the systems
as needed, which can motivate their use in some applications despite
higher energy consumption. The mean accuracy is around 90 % speech
rate at 10 dB SNR. DNN seems to allow for better efficiency, regard-
ing accuracy vs. power consumption. Reference [16], which uses a
decision rule model, reaches 99.5 % accuracy at 0.76µW, the result
can’t be compared precisely with the other references since SNR is not
indicated. Nonetheless, references using DNN clearly detached from
the other works reaching 0.115µW [18] in 65 nm, and 0.142µW [19] in
180 nm technology node. This comparison seems to indicate the ad-
vantages to use deep neural networks to perform VAD, reaching high
accuracy in a noisy environment and consuming a low amount of en-
ergy. The number of operations is low for the decision rules model as it
consists mainly of comparisons, counted as one operation. The number
of operations does not seem to be correlated with the accuracy. We
can observe that two binarized DNNs presented by the same authors
in 2019 and 2021 [17, 18] have nearly divided by 2 the number of op-
erations with increased accuracy, which comes mainly from improved
feature extraction and training.

33

R
eference

R
aychow

dhury,
JSSC

’13
[14]

B
adam

i,
JSSC

’16
[15]

C
roce,

C
IC

C
’20

[16]

P
rice,

JSSC
’18

[13]

Y
ang,

JSSC
’19

[17]

Y
ang,

JSSC
’21

[18]

O
h,

JSSC
’19

[19]

Technology
32nm

90nm
180nm

65nm
180nm

65nm
180nm

A
rea

-
3m

m
2

0.14m
m

2
2.08m

m
2

2.52m
m

2
0.9m

m
2

17.5
m
m

2

Feature
E

xtraction
D

igital
A

nalog
A

nalog
D

igital
A

nalog
A

nalog
M

ixed-Signal

Feature
E

xtraction
B

uilding
B

locks
FFT

,M
ult/Filtr,

N
oise

Estim
ation

LN
A

,BPF,
FW

R
,LPF

BPF,PG
A

,
Square

Integrator
FFT

,Log
LN

A
,BPF,

FW
R

,IA
F

LN
A

,BPF,C
LIPA

H
W

R
,IA

F
LN

A
,M

ixer,
LPF,D

SP

Features
N

oise
Estim

ation
Average

Signal
SignalEnergy

M
FC

C
Spike

Spike
SequentialFrequency

Scanning

C
lassifier

M
odel

D
igital

D
ecision

rule
M

ixed-signal
D

ecision
Tree

A
nalog

D
ecision

R
ule

D
igitalFixed-Point

D
N

N
D

igital
Binarized

D
N

N
D

igital
Binarized

D
N

N
D

igital
D

N
N

D
ataset

-
N

O
ISEU

S
-

A
urora

2
A

urora4
+

D
EM

A
N

D
A

urora4
+

D
EM

A
N

D
LibriSpeech

+
N

O
ISEX

-92

A
ccuracy

97%
U

nspecified
SN

R

H
R

Speech
89%

H
R

N
on-Speech

85%
12dB

SN
R

99.5%
U

nspecified
SN

R
10%

EER
7dB

SN
R

H
R

Speech
84%

H
R

N
on-Speech

85%
10dB

SN
R

H
R

Speech
90.9%

H
R

N
on-Speech

90.7%
10dB

SN
R

H
R

Speech
91.5%

H
R

N
on-Speech

90%
10dB

SN
R

Latency
class/s

32,600
-

31.25
100

100
100

1.95

P
ow

er
(F

E
+

C
lassifier)

3
0
0
µ

W
6µ

W
0.76µ

W
8
.5µ

W
1µ

W
0.115

µ
W

0.142µ
W

O
P

/C
lassification

9
7

1
10,800

4606
2368

1568

Table
2.1:

C
om

parison
ofVA

D
integrated

circuits

34

2.3.2 KeywordSpotting

Usage of KWS

To be able to respond only when the user addresses them, voice assis-
tants are activated thanks to a special keyword, such as ”OK Google”,
”Alexa” or ”Hey Siri”. The Keyword Spotting (KWS) block is trained
to detect if the activation keyword is pronounced.

How itworks

Table 2.2 compares multiple chips performing KWS. All the references
presented in this table are using keywords from the Google Speech Com-
mand Dataset (GSCD) [8]. The number of spotted keywords varies
greatly from one reference to another and some models are also trained
to classify 10 keywords plus unknown words and background noise, re-
sulting in 12 output classes. The main feature extracted for KWS is
MFCC, which requires heavy computation: i) FFT, ii) Mel Filtering,
iii) Compute Log, iv) DCT, it takes 50% and 66% of the total power
consumption for [20] and [21] respectively. Unlike VAD, KWS is exclu-
sively performed with neural networks, there are two types of neural
networks used in Table 2.2: CNN and LSTM.

Power consumption and number of operation

It is to note that the power includes the contribution from the feature
extraction block, except for [2, 22]. Reference [23] uses spike-based
IROCs (Instant Rate Of Change) as features, that seem to allow for
reduced consumption compared to [21] despite a gain brought by the
technology node of 180 nm and 28 nm respectively for accuracy of 94 %
and 97.3 %. [20] and [24] share the same amount of output classes,
the first one is using an LSTM neural network in 65 nm tech node
and the latest is using a CNN in 22 nm. In addition, [20] is not only

35

R
eference

Schaefer,
ISC

A
S’21

[22]

G
iraldo,

ISSC
C

’20
[20]

W
ang,

ISSC
C

’21
[23]

Shan,
ISSC

C
’20

[21]

B
ernardo,

T
C

A
D

’20
[2]

Liu,
T

C
A

SI’20
[24]

Technology
32nm

(Sim
ulation)

65nm
180nm

28nm
22nm

22nm

A
rea

-
2.56m

m
2

-
0.23m

m
2

0.2m
m

2
0.6m

m
2

Feature
E

xtraction
M

FC
C

(software)
M

FC
C

Spike-based
IR

O
C

M
FC

C
M

FC
C

(software)
M

FC
C

Task
K

W
S

VA
D

-K
W

S-SV
G

eneralPurpose
W

ake
U

p
K

W
S

K
W

S
K

W
S

Latency
20m

s
16m

s
348m

s
64m

s
100m

s
16m

s

M
odel

LST
M

LST
M

C
N

N
D

SC
N

N
T

C
-R

esN
et

(C
N

N
)

C
N

N

B
itw

idth
5

-6
bit

8
bit

8
bit

Binary
6

-8
bit

16
bit

-Binary

A
ccuracy

90%
90.87%

94%
97.3%

/
94.6%

93.09%
87.9%

N
um

ber
of

classes
12

10-12
1

1/2
10

10

P
ow

er
-

10.6µ
W

0.37
8
µ

W
0.5

1
µ

W
8
.2µ

W
(FE

not
included)

1
5
.1
µ

W

O
P

/C
lassification

131,072
47,432

350,020
47,232

2,480,000
271,080

O
P

/s
6.5

×
10

6
2
.9
×

1
0
6

1
×

1
0
6

0.7
×

1
0
6

2
4
×

1
0
6

1
6
×
1
0
6

Table
2.2:

C
om

parison
ofK

W
S

integrated
circuits

36

performing KWS but also VAD and SV, implementing a hierarchical
architecture as we saw earlier at 10.6µW with 8-bit weights. Overall,
the LSTM network, with 4 to 6 times less operation per second using
6 to 8-bit weights can reach similar accuracy to CNN. The latency
is smaller for the LSTM as we run the model for every new audio
frame, which is not the case for CNN where multiple frames are buffered
to compute the sample. In reality, the computation might take less
time than the latency displayed in the table as this value is set by
the input data frequency. As it is usual for digital processors to reach
high throughput, in the case of TinyML, we can leverage the latency to
explore new ways of performing MAC operations and to take advantage
of this available time. This table shows us that LSTM seems to offer
a great opportunity to reduce consumption of KWS, as they use the
least amount of operation for the same accuracy. However, this neural
network requires a non-linear activation function that can impact this
efficiency.

2.4 Speaker Verification

andAutomatic SpeechRecognition

2.4.1 Speaker Verification

In Figure 2.3, Speaker Verification (SV) is activated by the VAD along-
side the KWS. The role of this block is to detect if the user pronouncing
the activation keyword is an authorized user. As it is possible to use
our voice to perform sensitive tasks (online shopping, event booking,
accessing private data) this security feature allows only the main user
to perform this demand. [20] implements an SV algorithm in their chip
thanks to a Gaussian Mixture Model (GMM) which according to the
author:

37

”offers the lowest computational load while maintaining
high accuracy for typical recognition context.”

GMM is a probabilistic model generated by a sum of multivariate Gaus-
sians, which computes the probability of a feature vector belonging to
a specific class depending on the set of trained parameters. This value
is computed with a Universal Background Model (UBM) trained with
several speakers, which allows them to model the average user. GMM
and UBM are computed together and the difference between the two
models is used to classify if the speaker is the targeted speaker.

2.4.2 Automatic SpeechRecognition

ASR is an algorithm able to transcribe complete sentences from audio.
These highly complex models are performed in the cloud as it would
consume too much power to compute them locally. [13] implements an
on-chip ASR, reaching 7.78 mW for 145k vocabulary using a Hidden
Markov Model (HMM) and Viterbi search algorithm which is able to
approximate the likelihood of the next word in a sentence. The memory
bandwidth of such a network is 15 MB/s and therefore is not suited for
low-cost, low-power embedded devices but is easily achievable on the
cloud.

2.4.3 Conclusion

In this section, we have shown that it is possible to achieve the same
classification with different architecture. Although we’ve shown a re-
duced number of operations for LSTM neural network in the case of
KWS. This conclusion might not be the same for other, more complex,
applications. Therefore, choosing the right neural network is one path
toward dedicated low-consumption ASICs but not the only one. In the

38

next section, the optimization of neural networks to target low-energy
systems is presented. The software and hardware approaches are shown
to be essential for reducing the number of operations and reducing the
consumption of one operation.

2.5 Optimization of Neural Network

Equation 2.1, introduced by Murmann in [25], shows the impact of two
factors.

Power = Rate × Energy
Inference = Rate × Operation

Inference × Energy
Operation (2.1)

The number of operations per inference corresponds to the number of
MAC needed per inference. It is possible to reduce this number by
optimizing the model, compressing the weights, or reducing the bit
width by quantizing the network or pruning some elements. Another
alternative option is to reduce the energy per operation. It means using
an energy-efficient way to perform a MAC operation. In this section,
we will review how an LSTM complexity can be reduced by optimizing
the model and introduce the ”Memory Wall” principle.

2.5.1 Reducing the number of operations

As seen earlier, the neural network is always preceded by a Feature
Extraction block. The role of this block is to transform the input into
a set of features used by the neural network. The feature extraction
block usually represents nearly half of the total consumption of a sys-
tem. In Appendix A, we propose a KWS solution that doesn’t use
energy-intensive feature extraction with a quantized LSTM on 8-9 bits
[26]. This work was presented at the 28th International Conference
on Electronics, Circuits, and Systems (ICECS) in 2021. We reached
an 89.45% accuracy on 10 keywords, silence, and unknown classifica-

39

tion using post-quantization techniques and a filter bank for the fea-
ture extraction. By comparing the different filter scales we highlighted
that Log, Mel, and Bark scales are all suitable. However, the number
of bands has an impact but a filter with more than 16 bands shows
no substantial increase in accuracy. In addition, our 64 hidden units
LSTM with quantized weights compares well with the state-of-the-art
using a simple quantization method that doesn’t require to access the
internal layer of the LSTM.

Other techniques are used to reduce the number of parameters and
therefore the number of operations of neural networks:

• Pruning techniques [27] reduce the size of a neural network by
removing parameters. The algorithm [28] consists of first training
the neural network to convergence. Then each parameter is given
a score and based on its score the weights are pruned.

• Quantization Aware training (QAT) techniques quantized the
weights during training to reduce the complexity of neural net-
works [29]. [30] shows 3-bit weights on ResNet152 [31] with the
same training accuracy as full-precision one and [32] shows 3 and
4-bit weights on MobileNetV2 and MobileNetV3 [33] trained on
ImageNet without significant accuracy loss.

• Post Training Quantization solutions quantized the weights
of fully trained neural networks. Although QAT performs bet-
ter, there are specific cases where it is not possible to perform
QAT, such as in the medical field where the dataset is sensitive
and not available when training. [34–36] shows post-quantization
techniques that allow for reducing the weight precision and show
less than 1% accuracy loss on ResNet50 with 4-bit weights.

40

• Binarization techniques allow reducing the weights of neural
networks to 1-bit but offer a tradeoff with extra memory and
performance [37]. However, they offer opportunities, especially
for digital implementation as seen in [17, 18] for high-efficiency
ASICs.

As the software approach is useful to train smaller networks, with
fewer parameters and less complex activation functions keeping the
accuracy level high. The hardware approach will allow reducing the
energy consumption of one operation, theoretically without affecting
the accuracy, which will be analyzed in the next sections. Being able
to implement configurable multi-bit neural networks is required to fit
a large array of neural network architecture targetting a wide range of
applications.

2.5.2 Reducing the consumption of one operation

In a classic ”Von Neumann” architecture, it is necessary to move the
data stored to do the computation step by step. In [25], the example
of Figure 2.5 is presented. If we want to perform a MAC, we need to
move the data 4 times. If we consider energy for the access around
50 fJ/byte, this is equivalent to 200 fJ/MAC, topping our maximum
system efficiency at 10TOPS/W (1 MAC is counted as 2 operations).

This issue is called the ”memory wall” because the consumption of
our system is topped by the memory access cost (a limitation regarding
access time is also identified [38]). However, it is possible to jump
over the memory wall by introducing In-memory Computing (IMC)
methods. These techniques allow to perform computations inside the
memory and therefore, achieve lower energy consumption thanks to
reduced memory access. Figure 2.6 presents the advantages of an IMC

41

Figure 2.5: Von Neumann Architecture

architecture. Compared to a conventional all-digital implementation,
which requires a huge amount of data transfer to/from the memory,
the IMC implementation performs the computation inside the memory
and therefore reduces greatly the access cost.

2.6 Conclusion

Hierarchical architectures are a great way to reduce the average energy
consumption of a system by conditionally activating successive blocks
so that they are powered only when relevant to the final task. However,
in such a configuration, the accuracy of the always-on part can greatly
impact the average power and therefore needs to be balanced with
the power consumption of this element. We highlight the impact of
the neural networks classifier for VAD and KWS and how the chosen
feature extraction methods can have an impact on power consumption.
The classical ”Von Neumann” architecture prevents us from reaching
high efficiency because of the data access cost. In the next chapter,
a novel approach will be presented to overcome the memory wall and
reach higher efficiency by computing the data inside the memory.

42

Figure 2.6: Comparison of digital implementation versus In-memory
implementation from [39].

43

44

Chapter 3

In-MemoryMatrix-Vector

Multiplication

45

3.1 Introduction

The high energy consumption associated with memory access prevents
classic digital systems to embed neural network architecture on battery-
constrained devices. Although it is possible to reduce the number of
operations needed by a neural network thanks to advanced quantiza-
tion and optimization techniques (see Section 2.5.1) it is possible to
reach higher energy efficiency thanks to hardware optimization to per-
form multi-bit MAC operation required to fit the inference of a wide
range of neural networks.

In-memory computing is a great approach to reducing the energy
consumption of a MAC operation. Solutions are using classic SRAM
architectures with only slight modifications on the bitcell in search of
high-density integration. Other works developed specific macros with
custom processing elements that embed their own local memory. Using
a digital or a mixed-signal approach the terminology used in the liter-
ature are ”In-Memory Computing”, ”Compute In-Memory”, ”Process
In-Memory”, etc. In this document, the term ”In-Memory Comput-
ing” is used without difference between a dense SRAM or the macro
approaches.

This chapter aims to present the range of available In-Memory Com-
puting methods and highlight their advantages and disadvantages with
respect to their target application and neural network architectures.
Therefore we will review:

• The macros that use digital in-memory computing architecture
and highlight the constraints associated with higher precision pa-
rameters (input and weights > 4 5− bit).

46

• The macros using Non-Volatile Memory (NVM) including RRAM,
STTM-RAM, and Fe-FET that try to increase their GOPS/mm²
metrics and mitigate the leakage associated with SRAM bitcell.

• The macros using SRAM charge-based in-memory computing in-
cluding the dense SRAM mixed-signal architectures able to inte-
grate multi-bit MAC operations on classical SRAM arrays.

• The macros using time-domain in-memory computing either with
a fully digital architecture and a time-to-digital conversion or
with a mixed-signal current-based approach requiring an analog-
to-digital conversion.

3.2 SRAM-BasedDigital In-Memory Computing

Multi-bit computations have been demonstrated in Digital In-Memory
Computing (DIMC) structures. Local processing elements are imple-
mented close to SRAM bit cells storing the data, minimizing the need
for off-chip memory. They increase efficiency by reusing data and im-
plementing novel data flows [40–42]. Reference [43] uses near-memory
computing and a new design methodology including datatype opti-
mization, pruning, quantization, and active hardware fault detection
to lower the SRAM voltage to reduce the consumption by a factor
of 8. However, the operations are implemented with RTL and are
not explicitly targeted for power reduction. Reference [44] uses SRAM
XOR/NOR gates, adder trees, and shifters and compute 64 4-bit MACs
in parallel with high efficiency (See Figure 3.1). This technique, requir-
ing a high-frequency clock (up to 1.4 GHz), leverages the technology
node (5 nm FinFET) to reduce the consumption and is suitable for
large chips and moderate-resolution applications. Reference [45] uses a
systolic architecture to implement a 1 to 16-bit MAC using an XNOR

47

gate and a full adder. The digital operation offers impressive results
for binary NN and doesn’t suffer from PVT, however, for multi-bit op-
eration (<8 bits) mixed-signal architectures provide better efficiency.

Figure 3.1: DIMC from [44]

3.3 Non-VolatileMemoryApproaches

MVM dataflow at the edge of a Deep Neural Network (DNN) often
requires fixed weights in a dense array to reach high memory capacity.
On-chip non-volatile memories (NVM) are often used in Analog IMC
applications for their high density and to try to mitigate the leakage
of SRAM-based solutions [46]. The back-end of Line (BEOL) memo-
ries like Phase Change Memory (PCM) [47], Spin-transfer-torque RAM
(STTRAM) [48] and Magnetic RAM (MRAM), and Resistive RRAM
[49] are presented as well as a Front-end of Line (FEOL) FEFET tech-
nology [50, 51].

48

3.3.1 Phase-ChangeMemory

PCM is based on the reversible transition between a low and high re-
sistance phase of chalcogenides. In [52], they are able to store up to
16 levels of conductance on an 8T4R bitcell, reaching 1587 GOPS/mm²
and 10.5 TOPS/W with a 256x256 array implemented in 14 nm tech-
nology node. Reference [53] presents a spiking recurrent neural network
with phase change memory neurons. The PCM cell is used as the in-
tegrating elements of a stochastic neuron to solve a Sudoku puzzle in
hardware. The PCM devices are used as a source of true random noise
for generating random spikes in an RNN. The PCM is a promising con-
cept because of the high switching speed and low current operation but
requires high voltages to tune the conductance value. Although com-
patible with CMOS process, they are not standard and widely available.

3.3.2 Spin-transfer-torque andMagnetic RAM

STTRAM improves the writing mechanism of conventional field-switching
MRAM with spin transfer torques. The memory element is a magnetic
tunnel junction (MTJ)with two ferromagnetic layers separated by a
thin oxide. The parallel and antiparallel orientation of the two ferro-
magnetic layers allows tuning the conductance to low and high states
thanks to recent achievements [54]. STTM-RAM solutions [55, 56] al-
lows reaching energy efficiency between 5 and 25 TOPS/W and up to
176 TOPS/W [57] for low precision inputs and binary weights. STTM-
RAM shows promising performance with write speed under 10 ns and
> 1012cycle endurance. However they are sensitive to process variation
and are not yet available on standard CMOS process.

49

3.3.3 RRAM-BasedAnalog In-Memory Computing

The RRAM-based approach uses memristors to store the weights as
conductance values to perform the multiplications in a crossbar array.
The digital input vector is sent as analog voltages across all the rows
of the array. The conductance value of each memristor modulates the
current through an accumulation line. This approach requires DACs
with large output currents, and a current comparator, as highlighted in
[58]. It is possible to perform multi-bit operations with this approach
by using up to 16 states of conductance per RRAM [59]. However, pro-
cess variations prevent reaching a higher number of bits. Furthermore,
in terms of energy dissipation, writing necessitates high current spikes
(around 6 µA in [60]), while inference costs approximately 250 fJ/-
MAC, according to [61]. It is noted that a trade-off exists between
energy consumption and variability.

Figure 3.2: Example of RRAM-AIMC

50

3.3.4 FeFET

The Fe field effect transistor (FeFET) based approach consists in adding
a Metal-FE-Metal (MFM) capacitor on the gate of the transistor. Thanks
to two remnants polarization states caused by the ion displacement in
an FE crystal lattice, it is possible to use MFM to store a bit [62]. Un-
like BEOL memories, FeFET is fabricated in the FEOL with stricter
material requirements. In [63] explore the usage of FeFET for hy-
brid memory solutions such as Ternary Content Addressable Memory
(TCAM) and classic memory behavior. This technology is currently
under development and offers promising high-density, low-leakage, low-
latency and high-endurance memory, but suffers from device-to-device
variations on deeply scaled FEFET that currently prevent their usage
for matrix-vector-multiplication [64].

3.4 SRAM-BasedMixed-signal IMC

3.4.1 Charge-BasedAnalog IMC

In the charged-based approach, the multiplication is based on shar-
ing charges or currents on a capacitive line, usually using SRAM and
XNOR gates for binary multiplication (see Figure 3.3) [65]. Unit capac-
itors are charged according to each binary multiplication and charges
are redistributed across all capacitors on an accumulation line, resulting
in a voltage to be converted by the ADC [66–68]. To perform a multi-
bit operation with switched capacitors, [61] shows a topology similar to
a digital multiplier using one AL for each bit. However, this method
needs additional circuitry to combine all the line’s results, which is ad-
equate for a reduced number of lines (<5) but dominates the power
consumption for higher numbers of bits.

51

Figure 3.3: Example of Charge-Based Mixed-signal IMC

These charged-based SRAM arrays implement MACs as a weighted
average of the bit-line voltage, which is proportional to the digital input
values. The input is converted to a voltage and sent through the WL
of a 6T SRAM bitcell. However, with this conventional approach [69,
70] where multiple wordlines are activated at once, the system suffers
from writing disturbance where bits can be flipped if the level of the
line is too low. Reference [39] proposes a 10T SRAM that decouples
the memory write process and the MAC operation, therefore providing
robustness but increasing the area overhead of the bitcell.

52

3.4.2 Time- andCurrent-BasedAnalog IMC

Reference [71] exploits Time-domain Near-Memory computing archi-
tecture using foundry-provided SRAM, this solution split an 8-b input
into 4 voltage references applied to an edge delay cell that will create
different delay according to the weight bit value, and a time-to-digital
converter is then used to convert this delay in a partial MAC value. By
spanning across the weight bit and using additional adders and shifters,
it is possible to compute the total MAC value. However, high-speed
clock (1GHz) is required, for the system to reach 84.45 TOPS/W with
50% input and weight sparsity. In [72] an SRAM with pulse width and
amplitude-modulated WL access pulses is proposed to generate a bit
line discharge proportional to the weighted sum of the stored weights
bits W. The bit line voltage is then processed to perform the multipli-
cation in time with the input X. The 8-bit multiplication is performed
in two steps with 4 LSB and 4 MSB. The different values are finally
aggregated via charge-sharing techniques and converted digitally. This
method requires a specific PWM driver for each WL and is limited in
weight precision due to the available bit line voltage range. Therefore
increasing the bit width requires to add additional circuitry. Hence,
increasing the area overhead. Current-Based Analog In-Memory Com-
puting architectures use small currents (<1 nA) to charge an accumu-
lation line, thanks to advanced CMOS technology that can drive small
currents with enough precision for performing MVM. As shown in Fig-
ure 3.4, a current source is used to charge/discharge the line depend-
ing on the sign of the multiplication. An array of 100 accumulation
lines, composed of 100 current sources charging a capacitive line with a
100 pA current, operating at 4 GOPS is equivalent to a 4,000 TOPS/W
efficiency by taking into account only the current sources to perform
the accumulation. This top efficiency will be degraded by the associ-
ated elements like the ADC and the gate performing the multiplication.

53

Figure 3.4: In-memory current source

However, this solution allows the computation of only ternary multipli-
cations [1-bit W × (1-bit + sign) X]. To allow for multi-bit operations,
it is possible to modulate the pulse width of the signal on the input
broadcast line to represent the multi-bit multiplication. In this thesis,
we proposed and designed a repetitive stretched pulse technique that
allows performing a multi-bit operation using one current source per
MAC.

3.5 Comparison of IMC architectures

In this section, we compare the pros and cons of the different architec-
ture. The digital approach offers great results for binary MAC but suf-
fers from an area overhead when working with multibit MAC. RRAM
approaches offer the advantage of using the same elements for storage
and computation but don’t use the standard CMOS cell, need high
currents, and are limited to 4 bits per cell (with current technology).

54

Architecture
SRAM DIMC

[40–45]
NVM IMC

[47–50, 52–57, 59, 60, 62, 63]
Charge Mixed-signal IMC

[39, 61, 65–70]
Current + Time Mixed-signal IMC

[71, 72]

Pros
Configurable

Standard CMOS
Scalable

High density Standard CMOS
Standard CMOS

Possible Core Efficiency:
>4000 TOPS/W

Cons High Speed Clock

Non Standard
Technology

High current or voltage needed
for configuration

Writing issues (bit flip)
large area overhead

Sensitive to
PVT variations

Bitwidth limited by Bitcell area Technology Circuit complexity Latency

Table 3.1: Comparison of IMC architecture

Charge-based IMC uses standard CMOS and exploits the WL of an
SRAM bitcell but suffers from bit flipping issues that can be resolved
by adding transistors to the bitcell and therefore increasing the area
overhead too. The current and time approach shows promising effi-
ciency levels, although suffering from PVT can be mitigated through
appropriate training of the NN. Table 3.1 summarizes this information.

Figure 3.5 presents an overview of the recent multibit NN acceler-
ators (2018 to June 2022) and compares their efficiencies. The FPGA
works are the most consuming ones and are nearly all under the 1 TOP-
S/W mark. Digital ASICs consume less power and are able to reach
efficiencies between 1 and 10 TOPS/W with recent work getting close
to 100 TOPS/W. Analog and Mixed ASICs are mainly located between
the 10 and 100 TOPS/W lines. However, two projects go beyond the
100 TOPS/W. With our current and time approach, we take the op-
portunity to use all the available time between two consequent input
data events on a neural network (i.e. 10 ms for KWS). This method
allows reaching a low GOPS but ultra-low power system. Therefore,
the target is an area never explored before for dedicated close to the
application ASIC.

55

F
igure

3.5:
C

om
parison

ofm
ultibit

A
SIC

and
FPG

A
from

[73]

56

The two analogs ASIC over 100 TOPS/W are from [71] and [74].
Reference [71] exploits Time-domain Near-Memory computing archi-
tecture using foundry-provided SRAM, this solution split an 8-b input
into 4 voltage references applied to an edge delay cell that will create
different delay according to the weight bit value, and a time-to-digital
converter is then used to convert this delay in a partial MAC value.
By spanning across the weight bit and using additional adders and
shifters, it is possible to compute the total MAC value. Reference [74]
exploits charge-domain architecture, performing bitwise multiplication
using XNOR and AND gates to drive a capacitor causing charges re-
distribution across a capacitance. Specific mapping and parallelization
techniques allow for further optimization of the efficiency.

3.6 Conclusion

In this chapter, the In-Memory Computing principles were presented
as well as multiple solutions to implement it, from digital to mixed-
signal approaches. The main challenge with In-Memory Computing is
to be able to decrease the energy/operation in a context where neu-
ral networks require lots of operation. TinyML offers the possibility
to scale the performance and create hardware for specific applications
that are matched together. Considering all the approaches, the current
and time-based analog IMC seems to offer promising efficiency results,
benefiting from the time between two input data. In this approach, it
is possible to use a small current (thanks to recent CMOS technology
nodes: 28 nm FDSOI in this work) during a long time to charge an ac-
cumulation line. This thesis work covers the design of an architecture
exploiting the current and time approach and its implementation. The
next chapters will present our approach, its implementation, and the
test of a 28 nm FDSOI CMOS prototype.

57

58

Chapter 4

Time-BasedMultiplication

Concept

59

4.1 Introduction

The time and current-based analog compute in-memory take advan-
tage of the available time between two incoming data of the neural
network layer to perform multi-bit MAC operations. The principle
of our method is to charge a capacitive line with a constant current
during a time proportional to the product of an input and a weight.
Figure 4.1 shows that a neuron is equivalent to multiple current sources
controlled by a temporal signal charging an accumulation line. Each
current source pair, noted processing elements, corresponds to a MAC

Figure 4.1: Left: Block diagram of a neuron implemented using time
and current analog in-memory computing method. Right: Schematic
of a neuron.

60

operation and requires a local command signal that allows the current
to charge the accumulation line during a time proportional to the prod-
uct of X and W, which are multi-bit.
In this chapter we will:

• present the product-to-time conversion principle,

• compare parallel and iterative architectures to identify the one
that is best suited for low latency applications,

• present a global block diagram of the circuit.

4.2 Multiplication to TimeConversion

The goal of our macro is to achieve Matrix-Vector Multiplication by
charging a capacitive line with a constant current during a time pro-
portional to the vector-matrix product. The input vector X is composed
of a elements (Equation 4.1) encoded on nX bit (1-bit for the sign and
nX−1 bit for the magnitude), the weight matrix W is of size a×n with
n the number of accumulation line (Equation 4.2), the matrix elements
are encoded on nW bit, the same way as elements of vector X. The
result output vector is O and is composed of n elements (Equation 4.3)
encoded on NO bit, the same way as the X vector.

X =
[
X1 X2 . . . Xa

]
(4.1)

W =


W1,1 . . . W1,n

...
Wa,1 . . . Wa,n

 (4.2)

O =
[
X1 X2 . . . Xa

]
×


W1,1 . . . W1,n

...
Wa,1 . . . Wa,n

 =
[
O1 O2 . . . 0n

]
(4.3)

61

If we note i ∈ {1, n} corresponding to the column index and j ∈ {1, a}
corresponding to the row index, then we can write.

Oi =

a∑
j=1

Rj,i (4.4)

Rj,i = (

nX−1∑
c=1

2c−1Xj [c])(

nW−1∑
d=1

2d−1Wj,i[d]) (4.5)

Rj,i is a binary multiplication of two numbers of size nX and nW .
Each bit is associated with a ponderation consisting of a power of two
of its range order (ie:20 for the LSB). The resulting voltage across a
capacitance charged by a constant current is described by Equation 4.6.

Vc =
I × T

C
(4.6)

The time needs to be proportional to the product result, the accumu-
lation line final voltage Voi is equal to

Voi =
I × T ×Oi

C
(4.7)

Where T is a time reference calculated according to the maximum
duration of an operation, the capacitance C, and the voltage range
across C. To control the current charging the capacitance, a command
signal used to control a switch is created and presented in Figure 4.2.
With d the Wj,i bit rank and c the Xj bit rank. This signal is then
used to charge/discharge a capacitive line according to the sign of the
multiplication.

4.3 Parallel and iterative architecture comparison

Using the previous technique, each MAC operation needs to have one
command signal to perform MVM. In this section, parallel and iterative
architectures will be analyzed and compared.

62

Figure 4.2: Command signal for a current source.

4.3.1 Parallel architecture

In this type of architecture, presented in Figure 4.3, there are two cur-
rent sources per MAC placed along the accumulation line. To provide
signed operations, there is a current source to charge and another to
discharge the capacitive line. In this configuration, using a time ref-
erence T = 20ns, 100 5-bit MAC would take 4.5µs to be computed,
and 100 8-bit MAC will be performed in 322µs. Thus, in a parallel
architecture, the number of bits limits the throughput.

Figure 4.3: Current source parallel architecture.

63

4.3.2 Iterative architecture

In an iterative architecture, one current source is used for multiple MAC
through time, as shown in Figure 4.4. In this configuration, the number
of bits and the number of MACs will limit the throughput. Of course,
there cannot be a single current source for an entire neural network,
in our case study we state that there is one pair of current sources
per accumulation line. In this configuration, using a time reference
T = 20ns, 100 5-bit MAC takes 450µs to be computed, 100 8-bit
MAC takes 32ms.

Figure 4.4: Current source iterative architecture.

4.3.3 Constraints defined by applications

Considering different sizes of arrays, Table 4.1 presents the resulting
GOPS and the inference time for a parallel architecture running KWS
applications using an LSTM neural network composed of 64 hidden
units and a fully connected layer. The timing used for the elementwise

64

operations and additions is as if we use the array to perform them
resulting in a conservative result in terms of inference time. Table 4.2
presents the same result for an iterative architecture running the same
network.

Array Size
5bit

GOPS
8bit

GOPS

KWS
Inference
5bits (ms)

KWS
Inference
8bits (ms)

64x64 1.82 0.02 0.04 3.22

128x128 7.28 0.10 0.027 1.93

256x256 29.12 0.40 0.013 0.96

Table 4.1: GOPS and KWS Latency for different sizes parallel archi-
tecture running a 64 hidden units LSTM and 1 feed forward layer

Array Size
5bit

GOPS
8bit

GOPS

KWS
Inference
5bits (ms)

KWS
Inference
8bits (ms)

1x64 0.028 0.0004 2.88 206

1x128 0.056 0.0008 1.72 123

1x256 0.113 0.0016 0.86 61

Table 4.2: GOPS and KWS Latency for different sizes iterative ar-
chitecture running a 64 hidden units LSTM and 1 feed forward layer

65

Iterative architecture running 8-bit MAC cannot be used for this
type of application as the inference time is well over 10 ms, which is
the minimum period of incoming inputs frame for KWS application,
as shown in Chapter 2. Parallel architecture running 8-bit MAC can
run KWS applications but their throughput might be limiting for more
resources demanding tasks like image processing. 5-bit MAC offers
suitable throughput for parallel architecture and can run KWS appli-
cations for the iterative architecture, however, in the same way, this
type of architecture although occupying less space will be limiting for
more demanding applications, like video applications that can require
high frame rate for high-resolution images. The parallel architecture
running 5-bit MAC offers promising throughput results, especially for
an array of 128x128 and 256x256 with respectively 7.28 GOPS, and
29.12 GOPS allowing to implement audio applications and low latency
video applications for preprocessing units.

4.4 Proposed high-level architecture

Figure 4.3 shows that a different command signal needs to be created
for each current source pair. Each command signal is a representation
of the multiplication of the input Xj times the weight value Wj,i. The
weight needs to be placed close to the current sources. However, the
input X is shared across multiple accumulation lines. We implemented
a low consumption and configurable way to create a local command
signal by using weighted time pulses that are broadcast across the array
and gated by the Xj and Wj,i values. A fully digital pattern generator
creates these pulses. There is only one generator for the whole array,
therefore amortizing its consumption across all the MACs. Figure 4.5
shows the different patterns created for a 5-bit architecture (Sign +
4bits).

66

F
ig

ur
e

4.
5:

T
im

e
pu

lse
s

cr
ea

te
d

fo
r

th
e

m
at

rix
ar

ra
y.

PX
[i]

sig
na

ls
w

ill
be

m
as

ke
d

by
th

e
co

rr
es

po
nd

in
g

X
[i]

bi
t

of
th

e
in

pu
t

an
d

PW
[j]

sig
na

ls
w

ill
be

m
as

ke
d

by
th

e
co

rr
es

po
nd

in
g

W
[j]

bi
t

of
th

e
we

ig
ht

s.

67

The patterns are created without overlapping so that this masked
signal can be used to command the switches of the current sources.
Figure 4.6 represents what the overall architecture looks like. The PX
patterns are first masked by the input cells. Since the patterns do not
overlap, we can use an AND gate to send the masked signal into one X
signal, which will be sent to the corresponding W rank thanks to the W
patterns. This signal XW will then be masked by the stored W of each
cell along the matrix row before controlling the switch. To perform
signed multiplications, the accumulation line is pre-charged at VDD/2,
and an XOR on the sign is used to control the direction. The voltage
across the AL will then evolve according to the current multiplication
product value. At the end of the multiplication, an ADC per column
converts the value.

4.5 Evaluationofnon-idealitiesandmismatchfortime

andcurrent-basedAnalogin-memoryComputing

One of the main drawbacks of analog domain IMC is the sensitivity of
the architecture to variations and non-linearity, introducing errors in
the MAC operations and degrading the accuracy of the neural network
inference. In this part, the impact of the mismatch on time and current-
based in-memory computing is calculated using a Matlab® model. The
analysis proceeds by studying the impact of other elements on the MAC
operations result. From this results, the robustness of neural networks
to output variation is measured by introducing an error at the output
of the layer composing a CNN and a Feed Forward Neural Network
performing MNIST classification.

68

F
ig

ur
e

4.
6:

Pa
tt

er
n

br
oa

dc
as

t
an

d
tim

e
m

as
ki

ng
ar

ch
ite

ct
ur

e.

69

4.5.1 Simulation of the time and current-based computation

A computation simulation was developed on Matlab® to evaluate the
impact of mismatch, accumulation line capacitance variation, and noise
on the output result. Each error might compensate for the other,
they are evaluated separately first and together in the last part of
this section. Inputs and weights are converted into an array stor-
ing their binary representation (Sign + 4b Magnitude). The error
is expressed in number of full precision LSBs, which is equal to the
voltage dynamic (600mV − 200mV) divided by the number of lev-
els. LSB = 400mV /45000 = 8.8µV , the number of levels is equal to
(24 − 1)2 ∗ 100 ∗ 2 = 45000. At the beginning of each pattern pulse, the
number of contributing current sources is calculated by summing the
number of corresponding bits noted NON for the number of discharging
current sources and PON for the number of charging current sources.
PON and NON are updated at each time step corresponding to a new
pulse. For higher precision, the simulation is performed discretely in
time according to a time step Ts. For each time step, we calculate the
output voltage:

Vout(Ts) = Vout(Ts − 1)− IrefTsNON

Cref
+

IrefTsPON

Cref
(4.8)

Here the current used is equal to a current reference Iref , exported from
Cadence® and used in Matlab thanks to interpolation methods allowing
to choose the reference current according to the voltage level. The dif-
ferent error values are computed for 10,000 random inputs and weights
drawn from a normal distribution. The mean error standard devia-
tion due to the nonlinearity of the current source is equal to 1.36µV

(0.15LSB).

70

Impact ofmismatch

We model a mismatch by drawing current from the following normal
distribution:

Imismatch = N (Iref , σ = Iref × ϵ) (4.9)

with ϵ the mismatch value in percentage of µ. The Imismatch is drawn
once for each element at the beginning of the computation and kept
constant during the computation of the accumulation line. With an
input mismatch of 10%, the mean final error standard deviation is
1.4mV (160LSB).

Impact of accumulation line capacitance non-linearity

We model the variation of the capacitance by retrieving the capacitance
value observed on the output of a processing element from Cadence®

simulation. Figure 5.9 shows the capacitance value of an accumulation
line composed of 100 PE depending on the state of the switch. A mean
capacitance value is calculated, which corresponds to one of the two
switches controlling the two current sources being on and the other off.
By using interpolation we can use a capacitance value at each time
step according to the accumulation line voltage. The error standard
deviation due to capacitance non-linearity is equal to 21µV (2.36LSB).

Summary of contributions

The final error contribution, simulated by integrating all the error
sources during computation has a standard deviation equal to 1.4mV

dominated by the current mismatch value. With an available voltage
dynamic ranging from 0.2 V to 0.6 V the number of quantization level
NQ is equal to:

NQ =
0.6− 0.2

0.0014
= 286 (4.10)

71

Current
Mismatch

Standard
Deviation

σ ϵ = σ/µ

Output
Precision

Effective bits

10% 160 LSB (1.4 mV) 0.35% 8.15-bit

20% 319 LSB (2.8 mV) 0.7% 7.15-bit

Table 4.3: Evolution of the output precision in function of current
mismatch value, the number of LSB corresponds to a full precision LSB
of 8.8µV (see computation details at the beginning of the section).

286 quantization levels correspond to 8.15-bit resolution. As the error
is dominated by the current mismatch value, we performed simulations
for different values and listed the corresponding output quantification
in 4.3. The ϵ = σ/µ value is calculated with a µ = 400mV and σ equal
to the error standard deviation, it represents the output deviation of
a 100-element accumulation line with respect to the current mismatch
and random inputs and weights. In the worst-case scenario of a 20%
current mismatch, the error rate on a 7-bit output would be 13%. This
error would drop below 1% in the case of a 5-bit output, as shown in
Figure 4.7, which validates the architecture choices.

4.5.2 NN robustness to deviation

This analysis focuses on finding the effect of an error on the output
of a layer on the accuracy of a neural network. To be complete, the
study of such effects would need to be performed across a wide range
of neural network models. This analysis tries to get a sense of the
accuracy drop associated with an added error on two models: a CNN
and a Feed Forward Neural Network performing MNIST Classification.

72

Figure 4.7: Distribution of the final output voltage of a computation
with a 20% current mismatch, resulting in a standard deviation of
2.8 mV.

A special Error Layer was implemented on Matlab®, the vector X and
the mismatch value ϵ are used as inputs, the output is:

Z = N (X,X × ϵ) (4.11)

Which draws a random number for each element Xi from a normal
distribution N (Xi, Xi × ϵ). The ϵ values are derived from 4.3. This
layer was included in neural network architectures performing MNIST
classification. The first one is a Convolutional Neural Network (CNN)
composed of 3 Convolutional Layers and their respective activations,

73

Batch Normalization layers, and the final Fully Connected and Soft-
max layers (see Figure 4.8). The second one is a simpler Feed Forward
Neural Network composed of two Fully Connected Layer and their re-
spective activations (see Figure 4.9).

Figure 4.8: Detailed architecture of the Feed Forward NN.

Between each layer and their respective activations and normaliza-
tion, the Mismatch Layer is added to simulate the impact of an error
on the output. Table 4.4 shows the accuracy for different mismatch
values used during training. A 20% current mismatch results in a less
than 1% accuracy drop if trained properly and even some increase in
accuracy in some cases, as the introduction of jitter during training can
help to converge [75].

74

Figure 4.9: Detailed architecture of the Feed Forward NN.

Table 4.4: Accuracy VS Mismatch

Current
Mismatch Output Dev

CNN MNIST
Accuracy

FFNN MNIST
Accuracy

0% 0% 99.84% 91.8%

10% 0.35% 99.48% 93%

20% 0.7% 99.52% 92.16%

However, the output deviation resulting from the current mismatch
value is dependent on the number of elements on the accumulation line
and the value of the multiplication. Therefore, it is difficult to link a
specific mismatch to an output deviation. Further studies, achieved by
setting the output deviation to 10% show an accuracy drop of less than
1%, showing the robustness of neural networks to current mismatch.

75

4.6 Conclusion

We propose to use a parallel architecture coupled with a central pattern
generator to provide an efficient way to perform MVM in a mixed-signal
array. The energy consumption of the pattern generator is amortized
across the MAC array, meaning that the efficiency increases with the
number of MAC implemented. The number of bits used for each MAC
is configurable on the pattern generator and the clock frequency can
be changed to suit the capacitance and current ratio according to the
application needs. The analysis of the precision of the time and current-
based in-memory computing compared to the NN robustness shows
that our solution is in line with the targeted applications. In the next
chapter, the implementation of the circuit is presented and each block’s
energy consumption is simulated.

76

Chapter 5

Circuit Implementation in

28 nmFDSOI

77

5.1 Introduction

The proposed time- and current-based architecture was implemented in
28 nm FDSOI CMOS technology from STMicroelectronics. This tech-
nology node includes extended body biasing features compared to stan-
dard CMOS thanks to a buried oxide layer, which isolates the transistor
from the substrate, allowing the body biasing voltage to reach +/- 3 V.
This technology reduces the leakage and allows controlling transistor
threshold voltage. Conventional well configuration is used for Regular
Voltage Threshold (RVT) devices, it is used for leakage optimization.
Low Voltage Threshold (LVT) devices use the flip-well architecture,
which allows NMOS transistors to be fabricated on N-Well and PMOS
transistors to be fabricated on P-Well, they are mainly used for speed
optimization. Polybiased digital RVT and LVT IPs are provided, re-
ducing even further their leakage.
The circuit contains 4 accumulation lines sharing 100 inputs. Its ob-
jective is to validate the product-to-time concept and to measure the
consumption and accuracy of the 5-bit MAC operation. It is mounted
in a JLCC68 package and the ADCs and 50 MHz clock are external for
testing purposes. The circuit block diagram, presented in Figure 5.1, is
composed of four main parts: the Processing Elements (PE) array, the
Intput block, the Pattern Generator, and the Output block. Each PE
includes the weights storage, the logic for the digital-to-time conversion,
the current sources, and the switches. Each PE row is connected to an
element of the Input Block. This block is connected to the Pattern
Generator, a fully digital block that outputs the patterns presented in
Figure 4.5 in the previous chapter. The output block is composed of
the accumulation line and an Operational Amplifier to output the ac-
cumulation line voltage. In this chapter, each element will be detailed
with simulation results and estimated power consumption. Additional
elements will be added to solve issues and tackle design challenges.

78

F
ig

ur
e

5.
1:

G
lo

ba
la

rc
hi

te
ct

ur
e.

W
he

re
C

S
is

C
ur

re
nt

So
ur

ce
,S

W
is

Sw
itc

he
s,

R
ST

is
R

es
et

,a
nd

O
A

fo
r

O
pe

ra
tio

na
lA

m
pl

ifi
er

.

79

5.2 Current sources

5.2.1 Currentmirror architecture

The number of current sources present on an accumulation line corre-
sponds to the number of inputs for the input layer and to the size of
the previous neuron layer for subsequent layers. Current mirrors are
used to provide the reference current to each MAC PE, as shown in
Figure 5.4. In our case, the input layer size is 100. One hundred gates
connected together make the gate leakage quite significant. Leakage
is around 320 fA per transistor for PMOS and 50 fA for NMOS tran-
sistors, reaching a 32 pA decrease on the output of the PMOS current
sources and 5 pA on the NMOS current source for 100 input lines with a
100 pA current reference. This leakage problem is solved by using thick
oxide transistors, lowering the total gate leakage to 5 aA on average
for PMOS and NMOS transistors, for 100 gates in parallel, according
to the DC simulation. Another effect of this current mirror architec-
ture is that the accumulation line voltage may push the transistors in
their linear region causing the output current to drop. This effect pre-
vents the use of the full output voltage range. Figure 5.2 shows that
for a 0.8 V supply voltage the current is constant between 0.2 V and
0.6 V for cascoded current sources and a current reference of 100 pA.
This phenomenon can be advantageously used as an activation func-
tion like Sigmoid and Tanh as the extremities of the available range are
squashed. Furthermore, training NN using Sigmoid, Tanh, and Batch
Normalization techniques gives weights that output Gaussian shapes
activation [76], centered in the linear part of our current sources. Fi-
nally, including this effect during training can help to reduce its effect.

80

Figure 5.2: Current output for PMOS and NMOS current sources
with cascoded architecture for 800n by 800n transistors.

5.2.2 TransistorMismatch

We reach a σ
µ of 18% mismatch using 800 nm by 800 nm PMOS and

6% mismatch for NMOS transistors of the same size. This allows for a
5-bit output according to our simulation from Chapter 4. Taking into
consideration that other errors will add up when implementing other
parts of the circuit. The values are found from a 200 points Montecarlo
analysis with a constant W of 800 nm and a current reference of 100 pA.

81

Figure 5.3: Simulated mismatch value from 200 points Montecarlo
analysis with a W = 800nm for different L.

5.2.3 Output impedance

The output impedance of the current mirror introduces an error in the
product and accumulation result. To reduce this error by increasing
the output impedance of the current mirror, we chose a cascode archi-
tecture. The output impedance goes from 1.30 × 1011Ω with a simple
current mirror to 5.45×1012Ω with the cascode one for the NMOS and
from 1.6×1011Ω with a simple current mirror to 3×1013Ω with the cas-
code one for the PMOS. The maximum output error is reduced from
9.31 mV (2% of the available voltage range) with the simple current
mirror to 0.05 mV with the cascode one, meaning that the mismatch
error is more dominant.

82

Figure 5.4: Architecture of the current sources.

5.2.4 Current SourcesConsumption

The current sources are driven through a bias tree, with an input ref-
erence current of 100 nA and the final current sources drawing 100 pA.
The simulated total power consumption, including the reference cur-
rent mirrors, under 0.8V is 182.4 nW for the 4-by-100 array. For a 5-bit
MAC operation, lasting 4.5µs (time reference T = 20ns), this adds to
an energy of 2.05 fJ/MAC.

83

Power 182.4 nW

Energy/MAC 2.05 fJ/MAC

Table 5.1: Consumption and energy of the current source block.

5.3 Switches

5.3.1 Settling time

Depending on the place of the switch, the settling time varies. Ac-
cording to our simulations, if the switches are placed on the gate of
the current mirror transistors or on their output, the settling time is
greater than 700 ns. This value is too high compared to the reference
time T fixed at 20 ns. To solve this issue, we can steer the current in
a dummy line. As the current is small (< 100 pA according to simu-
lated accumulation line capacitance) its consumption won’t impact the
efficiency of the system. The switches need to be at the output of the
current source to implement the current steering methods. The settling
time is then around 100 ps. As the accumulation line value can range
from 0 V to VDD we use pass gate switches. The power consumption
of the switch mainly comes from the leakage and the dynamic power
dissipation when switching. Considering a gate capacitance value of
Cn = 70 aF for the NMOS and Cp = 70 aF for the PMOS, we have an
equivalent capacitance Ceq = 140 aF . If we take Smax the maximum
number of toggles per MAC, which is equal to 8 for 5-bit inputs and
weights, and Vdd = 0.8V the switching energy per MAC is defined by
equation 5.1:

Eswitch/MAC = SmaxCeqV
2
dd (5.1)

Eswitch/MAC = 0.71 fJ (5.2)

84

If the N and P current sources are matched, the current leakage doesn’t
impact the computation precision. The leakage is around 0.5 pA for
100 nm by 100 nm transistors. Increasing their size to reduce the leak-
age will not reduce the total consumption as the current is steered in
the dummy line, therefore the size is preferably optimized.

5.3.2 Charge injection

Figure 5.5: Passgate and dummy switches.

By placing the switches on the output of the current sources, charge
injection caused by the switches modifies the accumulation line level
value and introduces an error on the product and accumulation result.
To mitigate this effect, dummy transistors are placed on the output
of the switch as shown in Figure 5.5. The final switch size is 100 nm
by 100 nm with dummy transistors’ width divided by two. The effect
of charge injection mitigation is shown in Figure 5.6 where a current
source output is switched off and on.

85

Figure 5.6: Simulation of two switches on an accumulation line with
and without mitigation with dummy transistor.

5.3.3 Switch Consumption

The total energy consumption of the switches is only due to dynamic
power dissipation. A maximum energy of 6.38 zJ is reached for a 5-bit
architecture as shown in Table 5.2 since there are two switches per PE.

Max Energy/MAC 6.38 zJ

Table 5.2: Consumption and energy of one switch block.

86

5.4 X LOGIC andWLOGIC

5.4.1 Block architecture

(a) XLogic block diagram.

(b) WLogic block

Figure 5.7: Logic blocks X and W.

The XLOGIC block receives the pattern PX[0] to PX[nx − 2] that
will be gated by the Xj value, this signal is then sent to be gated to
the corresponding Wj,i line thanks to the PW [0] to PW [nx − 2], we
note this signal XW . In the same way XLOGIC is gating the pattern,

87

WLOGIC gates the XW signals and sends it to the switch controlling
the current source. The blocks have been designed using digital gates
according to Figures 5.7a and 5.7b, the storage elements are flip-flop
registers.

5.4.2 Logic BlocksConsumption

The power consumption of these blocks is extracted from a transient
simulation, performing the maximum number of switches on the CMD+/-
lines. By taking the average current drawn from the supply of the
logic block during 4.5µs, which is the time of a 5-bit MAC. The total
consumption of one WLOGIC cell is simulated at 2.22 nW under 0.8V
with the maximum number of switches to perform. The XLOGIC block
power is simulated at 23 nW with the maximum number of switches.
As the result of XLOGIC being shared across all the array rows, the
energy is calculated for a 100x100 array.

WLOGIC Power 2.22 nW

XLOGIC Power 23 nW

WLOGIC Energy 10 fJ

XLOGIC Energy 1 fJ

Table 5.3: Consumption and energy of the logic blocks.

88

5.5 Accumulation lines

5.5.1 Accumulation line capacitance

The accumulation line capacitance is created by the parasitic capaci-
tance of the switches and by the metal line of the accumulation line,
as seen in Figure 5.8. The capacitance evaluated in the simulation was
around 70fF for the parasitic capacitance and 9 fF for the metal line.

5.5.2 Accumulation line non-linear capacitance

Depending on the state of the switches and the capacitance-voltage
level, the capacitance evolves. Figure 5.9 shows the evolution of the
capacitance without taking into account the metal line. There is a dif-
ference of 50 fF on average between the capacitance with open switches
and closed switches. As the number of opened/closed switches depends

Figure 5.8: Accumulation line capacitance created by switches para-
sitic caps.

89

Figure 5.9: Evolution of the capacitive line value depending on the
position of all the switches.

on the inputs and weights, we introduce the capacitance variation of
the accumulation line on our Matlab model. At each time step, as
the new output voltage is calculated, we interpolate the new value of
the capacitance depending on the number of open and closed switches.
The output error is around 11% to 67% LSB which is in line with our
previous simulation on MNIST where the error can be 1.5 LSB with
an impact on the accuracy inferior to 5%.

5.5.3 Charge sharing effect

Due to the settling time being too long compared to the reference time,
we introduce the use of current steering techniques to have a reliable
fast settling time. Figure 5.10 shows the added dummy line where the
current is steered. As the two opposed switches are not perfectly syn-
chronized, there are a few nanoseconds where the accumulation line
and the dummy accumulation line are connected. Charge sharing oc-
curs during that time and the two lines try to equilibrate to the same
voltage level causing them to lose the product value on the accumula-
tion line as shown in Figure 5.11.

90

Figure 5.10: PE block diagram with the dummy line.

5.5.4 Charge-sharingmitigation

To mitigate the charge-sharing effect, we use one Operational Amplifier
(OA) between the accumulation line and the dummy accumulation line
as a voltage follower so that the lines are at the same level. In our
chosen configuration, the dummy line capacitance has the same value
as the main accumulation line capacitance. However, it is possible to
increase the main accumulation capacitance so that the charge sharing
is reduced, at the expense of increased area and current. The accumu-
lation line level is output from the dummy accumulation line through
a second voltage follower, noted OA B, that works the same way as the
one between the two accumulation lines, noted OA A.

91

Figure 5.11: Charge sharing effect.

5.5.5 Operational Amplifiers

The OA A is used as a voltage follower between the AL and DAL.
It is working between 0.2 V to 0.6 V which corresponds to the max-
imum voltage reachable by the accumulation line (at VDD = 0.8V).
A rail-to-rail OA architecture shown in Figure 5.12 is used with the
two differential pairs composed of transistors P1/P2 and N1/N2. De-
pending on the input level, one of the differential pairs will amplify the
signal. Input transistor mismatch in Operational Amplifier A intro-
duces an offset between the two accumulation lines. Body biasing is
used to reduce this offset. Figure 5.13 shows the impact of body bias-
ing on transistors P2 and N2. The same bias is added to the nominal
body biasing voltage, 0V for PMOS and Vdd for NMOS. Figure 5.15
shows the end of the accumulation line. A second operational ampli-
fier, OA B, is placed as a follower between the dummy accumulation
line and the output pin of the circuit to drive the off-chip capacitance
load. OA B works the same way as OA A with modified sizing and
bias. However, there is no body-biasing to cancel the offset. The offset

92

Figure 5.12: Operational amplifier schematic.

Figure 5.13: OA A Offset vs. Body Biasing Bias on Vbsn and Vbsp

voltage.

is measured once by applying a voltage on VREF_DLN and measuring
the output on the Vout pin and then subtracted from all the measure-
ments. Each accumulation line has a reset switch to charge them to
their initial value. The switch is a passgate sized to limit the leakage.

93

Figure 5.14: Accumulation line readout circuit.

5.5.6 Operational Amplifiers Consumption

The consumption of OA_A is simulated around 66 nW and therefore
gives an efficiency of 2.97 fJ/MAC . With 11.78µW power consumption
OA_B reaches 530 fJ/MAC, but is not included in the final consump-
tion as it is not compulsory for the macro to work, but useful for testing
purposes.

5.6 Consumption Summary

The final simulated consumption is given in Table 5.5 and allows reach-
ing 97.8 TOPS/W. It is to note that the pattern generator efficiency
and the X Logic efficiency are given for a 100 by 100 array. As the
signal is broadcast across all the MAC, we can see that the power con-

94

OA_A Power 66 nW

OA_A Energy/MAC 2.97 fJ/MAC

OA_B Power 11.78µW

OA_B Energy/MAC 530 fJ/MAC

Table 5.4: Consumption and energy of the Operational Amplifiers.

Block Energy Consumption

Current Source 2.05 fJ/MAC

Logic X and W 11 fJ/MAC

OA_A 2.97fJ/MAC

Pattern Generator 4.41 fJ/MAC

Total Energy/MAC 20.43 fJ/MAC

Global Efficiency 97.8 TOPS/W

Table 5.5: Summary of the consumption.

sumption is dominated by the Logic blocks, XLOGIC and WLOGIC,
followed by the Operational Amplifier and the current sources. It is to
note that the logic X and W block consumption is high mainly due to
the registers used to store the inputs and weights which represent 68%
of the consumption of the WLOGIC block.

95

Figure 5.15: Power consumption repartition.

5.7 Corner Analysis

The behavior of one, 100 input, accumulation line in different process
corners with random inputs and weights, was simulated in Cadence and
is shown in Figure 5.16. The maximum final deviation with respect to
the typical (TT) curve is 3mV (less than 1 LSB for a 5-bit output)
for the SS corner. However, as the accumulation line is calibrated for
the right current/time/capacitance ratio at start-up, it has no impact
on the result value after calibration. More frequent calibration of the
line can be made to mitigate also voltage and temperature dependant
variations.

5.8 Conclusion

In this chapter we described the architecture of an In-Memory MVM
array implementing a time- and current-based analog method. This
solution exploits the available time during a computation as well as
the possibility to amortize the most consuming part across the whole

96

Figure 5.16: Accumulation Line Behavior with corner analysis.

array. Our solution was designed to be able to perform MVM with an
error that will have a low impact on a neural network accuracy (< 5%)
reaching 97.8 TOPS/W. In the next chapter, the circuit will be tested.
The behavior of the accumulation line will be shown, and precision and
consumption is measured and compared with the state-of-the-art.

97

98

Chapter 6

ICmeasurement results

99

6.1 Introduction

In this chapter, the results of the measurement performed on the cir-
cuit are presented. The test bench and the software designed for the
tests are featured in the first section. The chip characterization fol-
lows with detailed measurements of the operational amplifiers, the cur-
rent sources, and the accumulation line capacitance. Furthermore, the
transfer function of the system as well as the evaluation of the error is
presented. The chapter ends with a summary of the metrics of the sys-
tem, including power consumption and efficiency, to compare it with
state-of-the-art devices. This comparison shows promising results for
solutions targeting low throughput and high efficiency like preprocess-
ing units for smart wake-up.

6.2 Test environment

The test bench, presented in Figure 6.1, is composed of three Printed
Circuit Boards (PCB), an FPGA development board, and a computer
running Matlab. The first one called the ”daughter board” is the one
that will receive the circuit. It includes 4 voltage followers (ADA4661)
that isolate the accumulation line outputs from the 4 inputs multiplexed
to 2 ADCs in a chip (AD7387) controlled by SPI. Finally, a connector
allows the forwarding of all the signals to the second board. Called the
”Motherboard”, this PCB can receive 8 ”Daughterboards” to parallelize
computation, although this feature is not currently in use in this work.
The motherboard includes all the power inputs and an SPI-controlled
shift register to command the reset signals of the circuit. The body
bias and reference voltages are provided by an external 10µV precision
power unit for all the daughterboards connected to the motherboard.
If different voltages are needed for each chip, the motherboard includes
resistive trimmers that can be tuned to set voltages independently. All

100

Figure 6.1: Photograph of the test bench.

the signals are then connected to the FPGA through a measurement
board that allows observing signals with an oscilloscope. The FPGA
features SPI to command the ADC, Shift Registers, and custom IPs to
load data into the chip register. Finally, the FPGA is controlled via
UART with Matlab code. All the different tools including the oscillo-
scope, multimeter, power units, and clock generator are controlled via
Matlab as well.

101

6.3 Chip characterization

6.3.1 Chip presentation

Figure 6.2 shows a picture of the die, it measures 1.3mm by 1.3mm
(1.69mm2) but the surface of the macro is only 0.48mm2. To be able
to measure the consumption of each block as presented in Chapter 5,
we separated their supply voltage as shown in Figure 6.3.

Figure 6.2: Photo of the die.

6.3.2 OACharacterization

The offset of the OA B is measured by first applying a reference voltage
on the dummy accumulation line and then measuring the output on
the circuit output pin with a multimeter as shown in Figure 6.4. The
offset of the OA A is measured by applying a reference voltage on the
accumulation line and then measuring the output on the circuit pin

102

F
ig

ur
e

6.
3:

Bl
oc

k
di

ag
ra

m
of

th
e

ci
rc

ui
t

an
d

its
I/

O
s.

103

with a multimeter subtracting the value of OA B offset, as shown in
Figure 6.5. Unfortunately, the body biasing pins for PMOS and NMOS
are swapped. The body biasing applied to the PMOS is 0V but can’t
go lower than -0.3V which is close to the standard value. However, the
NMOS body biasing is around 0V but can’t go higher than 0.3V. The
standard value being 1V, this is creating an offset. However, we can see
in Figure 6.6 the impact of the body biasing on the NMOS differential
pair of OA A. The offset measured across OA A and OA B is decreasing
when VBSN is increased. Figure 6.7 shows that a body biasing value
of -0.1V on the PMOS differential pair also decreases the value of the
offset. The measurements with the Vbsn at 0.3 V and Vbsp at -0.1 V
are presented on Figures 6.8 and 6.9 Table 6.2 shows the measured
consumption for the OA A and OA B under 0.8V for a 100nA reference
on the OA biasing.

OA_A Power 91.5 nW

OA_A Energy/MAC 3.29 fJ/MAC

OA_B Power 11.8µW

OA_B Energy/MAC 531 fJ/MAC

Table 6.1: Measured consumption and energy of the Operational Am-
plifiers.

104

Figure 6.4: Measurement steps of OA B.

Figure 6.5: Measurement steps of OA A.

105

F
igure

6.6:
Im

pact
ofbody

biasing
on

the
offset

ofO
A

A
and

B,body
biasing

only
im

pacting
O

A
A

.

106

Figure 6.7: OA A and B offset for different VBSP.

6.3.3 Current sourceCharacterization

The current sources are first characterized by measuring the current
drawn on the input AVDD powering the bias tree, presented in Fig-
ure 6.10. According to the schematics, the three current mirrors are
supposed to draw a current given by Equation 6.1:

ITOT = Iref +
Iref
10

× 8 +
Iref
100

× 8 +
Iref
1000

× 400 (6.1)

For Iref =100 nA ITOT is nominally 228 nA. The measure gives us
233 nA. The consumption of all the current sources is measured at
184 nW under 0.8 V.

107

Figure 6.8: Offset of OA B.

Figure 6.9: Offset of OA A.

108

Figure 6.10: Current source bias tree.

Current Sources 184 nW

Current Sources Energy/MAC 2,07 fJ/MAC

Table 6.2: Measured consumption and energy of the Current Sources.

6.3.4 Capacitive line evaluation

The capacitive line evaluation is done by setting the clock frequency to
1MHz with a current reference reduced to 40 nA to ease the observation
of the charge of the capacitive line with an oscilloscope. Figure 6.11
shows the measured output, the capacitance value that was simulated
at 90 fF. At a constant current, we can compute the capacitance value
with the following equation:

C =
I × δT

δV
=

40.10−9 × 10.10−6

0.1
= 400fF

109

The measured capacitance is approximately 400 fF. The difference be-
tween the measurement and the simulated value can come from the
simulation with extracted parasitic that was performed on one PE only
and then scaled to a complete accumulation line. In addition, the OA
A is increasing the capacitance value. Therefore, we need to scale the
current to the actual capacitance value.

Figure 6.11: Measurement of the capacitance value for a constant
current of 40 nA charging the capacitive line.

6.4 Accumulation Line behavior

To validate the functioning of the pattern generator, we needed to be
able to display the different steps of the computation and compare it
with the theory. We included a clock divider in the circuit to be able to
check that the 50MHz external clock was correctly entering the circuit
and the measurement indicates it was the case. In addition, when the
computation is done, a Finish flag is raised and we can observe that the
computation is taking 4.5µs as expected with a 50 MHz clock. However,
it was difficult to display properly each step of the computation. Upon
further investigations, it happens that the OAs are limited in slewrate
and bandwidth.

110

6.4.1 Bandwidth limitation

Figure 6.12 shows the transfer function of the accumulation line for
different clock values and a current reference of 300nA (300 pA for each
current source). The scales have been adjusted for the 25MHz and
10MHz clocks to match the 50MHz product results. We can see that at
50MHz, the curve doesn’t follow the other one. This can be explained
by bandwidth and slew rate limitation from OA A and OA B. As the
measurement is taken on the dummy accumulation line, OA A might be
unable to follow the voltage of the main line fast enough. In addition,
another effect happens when the current is scaled according to the
clock and the capacitance value. Figure 6.13 shows that for the same
frequency, with a lower current we don’t reach the saturation value.
This effect can be related to the current mirrors entering their triode
region, as the current decreases, it prevents reaching saturation value.

6.4.2 System functioning

To be able to observe the different computation steps, we decreased
the clock frequency to 1MHz and scaled the current accordingly around
10 pA. Figures 6.14, 6.15 and 6.16 show different computation compared
to theoretical behaviour. We can see the effect of current mirrors en-
tering the triode region when reaching 0.7V on the accumulation line.
This measurement is obtained with the oscilloscope and transferring
the acquired data in Matlab. To improve the comparison, the signal
was filtered with a moving average with a window of 10 points except
for Figure 6.16 where the number of points was increased. We can see
that the starting point of the computation is around 0.470 V instead of
0.4 V. This is because the charge can’t be kept at the desired value and
goes back to the reset voltage of the accumulation line which is around
0.470 V.

111

Figure 6.12: Observation of bandwidth limitations with a constant
current of 300 pA for different clock frequencies.

Figure 6.13: Observation of current limitations with a constant fre-
quency of 10MHz and different reference current values.

112

Figure 6.14: Example of computation with all the X equal to 8 and
W equal to 15.

Figure 6.15: Example of computation with all the X equal to 10 and
W equal to 15.

113

Figure 6.16: Example of computation with random values for X and
W.

6.5 Error Evaluation

To be able to measure the transistor mismatch value, we will perform
the same computation on each line with all the weight bits set to one
and the first 10 input X values with all the bits set to one. Then we
shift the X value to the next 10 inputs and so on until we cover the 100
inputs. The mismatch measured is around 0.55 % for a current refer-
ence of 300 nA (on IREF_P and IREF_N pins) which offers a better
result than the simulation. It is noted the simulation was performed
with a 100 nA reference.

To measure the error, we performed 200 computations with uniform
distribution of random values of X and W and measured the difference
between the computed and the theoretical values. By selecting uni-
formly distributed values for W and X, the resulting distribution is

114

following a Gaussian shape with a mean of 0, which corresponds to the
reset voltage of the accumulation line. The error was computed for

Figure 6.17: Error value.

a 50MHz clock and 300 pA current and gives a standard deviation of
4.5 mV and therefore 88 quantization levels which corresponds to a 7-
bit quantized output. The values are acquired by the oscilloscope and
the data are filtered with a window of 60 points. Figure 6.17 shows a
histogram of the error. It is to note that filtering might improve the re-
sult. By comparison, the error at 50MHz measured with the ADC gives
a standard deviation of 7.2 mV and a 6-bit precision. Furthermore, as
the result of a uniformly distributed input and weight form a Gaussian

115

shape output distribution around 0 and therefore around 0.4 V on the
accumulation line, the error due to the current mirror transistors en-
tering their triode region doesn’t have an impact. These results allow
to confidently use 5-bit outputs to match the input bitwidth.

6.6 Consumption summary

The consumption of each block was measured and is summarized in
Table 6.3. The circuit is powered under 0.8 V and performs 5-bit MAC
operations with a time reference of 20 ns resulting in a total compu-
tation time of 4.5µs for a 100 elements accumulation line. The pat-

Block Energy Consumption

Iref 100nA 300nA

Current Source 2.07 fJ/MAC 6.2 fJ/MAC

Logic X and W 1.11 fJ/MAC

OA_A 3.29fJ/MAC 8.46 fJ/MAC

Pattern Generator 4.41 fJ/MAC

Total Energy/MAC 10.88 fJ/MAC 20.2 fJ/MAC

Global Efficiency 183.82 TOPS/W 99.2 TOPS/W

Table 6.3: Summary of the measured consumption.

tern generator consumption is estimated from the simulation since the
block shares its voltage supply with the padring and we can’t evalu-
ate the contribution properly. We can also observe that the logic X
and W blocks consume 10 times less than the simulation. The mea-
surements are the same if performed with a source meter or a multi-

116

meter. One cause might be that the signal activity is lower than in
the simulation, in which we are deriving the worst-case scenario. Un-
der a 0.8 V supply, the power consumption of a single accumulation
line is measured at 351 nW, including 100 cell units, the OA, and all
biases. The OA accounts for 188 nW, which is half the power consump-
tion. While performing 100 MAC operations in 4.5 µs, this core (not
including the pattern generator) has an efficiency of 63.4 TOPS/W.
The pattern generator consumes 9.76 µW. The total efficiency drops at
15.8 TOPS/W for a 4-by-100-accumulation line and reaches a theoret-
ical value of 99.2 TOPS/W for 100 and 100 accumulation lines, as the
pattern generator consumption is amortized on a bigger array.

6.7 Comparisonwith State-of-the-art

The measurement results are compared with references using different
architectures for multi-bit MVM in Table 6.4. The works are taken
from recent papers in ISSCC, and publications in JSSC. They tar-
get applications with input and weight precisions similar to our work
(around 5-bit). This table shows the caracteristics and performances of
the macro which performs MVM, except for [77]. Indeed, the RRAM
array in [77] represents 89% of the total power consumption.

The works are compared according to their throughputs (GOPS),
their efficiency (TOPS/W), and their input, weight, and output preci-
sion. Additional metrics are derived for comparison purposes, like the
TOPS-1b/W which is found by multiplying the TOPS/W metrics by
the number of bits used for inputs and weights. The GOPS/mm2 is
showing the density of the studied macro.

Compared to other works, our solution presents the highest effi-
ciency at 2,480 TOPS-1b/W with the consumption scaled to a 10,000
MAC array. However, this result doesn’t account for the ADC con-
sumption needed for a fair comparison with the other works. In the

117

R
eference

[ISSC
C

’22][77]
[JSSC

’22][78]
[JSSC

’19][67]
[ISSC

C
’21][74]

[JSSC
’19][39]

[ISSC
C

’22][71]
O

ur
W

ork

Technology
40nm

65nm
65nm

16nm
65nm

28nm
28nm

M
A

C
O

peration
D

igitalR
R

A
M

D
igitalC

IM
C

harge
D

om
ain

C
harge

D
om

ain
T

im
e

D
om

ain
T

im
e

D
om

ain
T

im
e

and
C

urrent

Supply
(V

)
0.9

0.9
-1.5

0.68
-0.94

-1.2
0.8

0.8
0.65

-0.9
0.8

M
acro

A
rea

(m
m

2)
-

-
12.6

25
-

-
0.048

P
E

A
rea

(µ
m

2)
43,547

-
-

-
-

12.14
-

#
Input

C
hannels

-
64

-
1152

64
64

100

#
O

utput
C

hannels
-

64
-

256
16

256
4

100
100

Input
P

recision
(bit)

4
2/4/6/8

1
1-8

6
4/8

5
5

5

W
eight

P
recision

(bit)
4

4/8
1

1-8
1

4/8
5

5
5

O
utput

P
recision

(bit)
32

5
-

8
-

14/22
5

5
5

G
O

P
S

94.75
2,000

18,876
11,800

(4b)
4

4,256(4b)
0.088

2.22
2.22

T
O

P
S/W

3.79
158.7

(2b
I,4b

W
)

866
121

(4b)
51.3

84.45(4b)
15.8

99.2
a

49.72
ab

G
O

P
S/

m
m

2
-

-
1,498

2,670
-

-
18.34

-
-

T
O

P
S-1b/W

60.64
1,269.6

866
1,936

307.8
1,351.2

395
2,480

a
1,244

ab

aSim
ulated.

b
w

ith
theoretical8-bit

A
D

C
consum

ption
of10fJ/M

A
C

Table
6.4:

C
om

parison
w

ith
prior

work

118

last column of Table 6.4, we added a theoretical 10pJ/conversion 8-bit
ADC that adds a 10fJ/MAC energy consumption if added to our 100
input channel accumulation line. That corresponds to a theoretical 8-
bit, 3.9fJ/conversion-step ADC with a sampling frequency at 222 kHz
(the computation time is equal to 4.5µs with a 20 ns reference time),
which is in line with state-of-the-art ADCs efficiencies [79]. We reach
49.72 TOPS/W and 1,244 TOPS-1b/W efficiency. This shows that our
work still compares well with other references. Additionally, we uses
flip-flop registers to store inputs and weights that can be optimized
with SRAM storage that consumes less static energy and reduces the
area.

For the sake of normalized comparison, we chose the TOPS-1b/W
metrics but it does not reflect the actual consumption of the works
for different resolutions. As we use power of two ponderations with
time in our implementation, reducing the number of bits scales the
computation time and efficiency logarithmically. Table 6.5 shows the
theoretical efficiency of a 10,000 MAC array for different inputs and
weights precision. The length of the computation is equal to Ttot =

(2n−1 − 1)2 ∗ Tref with n the number of bits. Our system is even more
efficient as the number of bits decreases. Due to the presence of a sign
bit, the ”2-bit” case corresponds actually to 3 distinct states, which is
noted as ”1.5 bits” in the table.

Table 6.4 shows the wide variety of architectures that can be used
to reach high-efficiency MAC operations. Our work, fully optimized
for larger arrays of MAC to amortize the most consuming part of the
circuits, shows promising results compared to the recent state of the
art and offers room for greater optimization.

For example, works [71, 74, 78] show higher efficiency. However,
they exploit sparsity (setting some weights to zero) that increases the
efficiency of a given application with proper training. Results presented
in [71] use 50% sparsity of inputs and weights, to reach 1,351.2 TOPS/W.

119

Number of bits Ttot Efficiency

5 4.5µs 99.2 TOPS/W

4 0.98µs 455 TOPS/W

3 0.18µs 2,477 TOPS/W

1.5 0.02µs 22,295 TOPS/W

Table 6.5: Evolution of the efficiency compared to the number of bit.

Reference [74] exploits specific mapping and parallelization techniques
for further optimization of the efficiency. [78] presents a digital CIM
that exploits block-wise sparsity of activation and weights for higher ef-
ficiency. The efficiency presented in Table 6.4 corresponds to a network
performing 0.63 GOPS for MNIST classification with 60.3% of weights
set to zero. Our implementation can’t exploit sparsity because the cur-
rent steering method we use makes the current flow in the dummy line
even if the weights are set to zero. The efficiency we show is therefore
not application dependent. However, this is future optimization that
can be made to our system to further increase efficiency.

6.8 Conclusion

In this chapter, we demonstrate the principle of time- and current-based
analog IMC implemented on-chip using 28 nm FDSOI CMOS technol-
ogy. The macro offers good results in terms of efficiency and accuracy
although an error was introduced by an offset created by a wrong body

120

biasing on the NMOS pair of the OA. We can conclude by saying that
this time- and current-based principle offers very promising results for
low to medium-resolution AI applications. In the next chapter, we will
conclude this work and present some perspectives on future work.

121

122

Conclusion and FutureWork

123

This work shows the implementation of a time- and current-based
analog In-Memory Computing macro able to reach 99.2 TOPS/W for
5-bit matrix-vector multiplications. This architecture is suitable for
low-to-medium resolution embedded AI applications.

In Chapter 1 we presented how neural networks work and show
the perceptron neurons that composed layers, which are Matrix-Vector
Multiplication composed of MAC operations. This operation is there-
fore found in lots of neural networks such as Feed Forward neural net-
works, LSTM and CNN. We highlighted how these networks are able
to learn their parameters to complete a task thanks to backpropagation
and gradient descent algorithms. This leads us to the different metrics
and datasets used to benchmark neural networks.

We then dive into AI audio applications to present the different
levels of AI computing in Chapter 2. The cloud environment allows
computing complex applications with high accuracy but consumes lots
of energy. Edge Computing computes neural networks on embedded
devices but still relies on their connectivity and the cloud to compute
more demanding tasks but consume a medium amount of energy. The
TinyML environment represents dedicated chips for dedicated appli-
cations with ultra-low energy consumption but high accuracy. We’ve
seen that particular architectures including smart progressive wake-up
allow for reducing the embedded system energy consumption. In audio
applications, the VAD algorithm allows waking up the KWS algorithm
only when a voice is heard by the system. The KWS will then wake
up more consuming elements when a specific keyword is found on the
signal. We saw that on this specific application, Neural Networks offer
great accuracy, however classical digital architectures like ”Von Neu-
mann” prevent reaching high efficiency due to the memory access cost.

In Chapter 3, we present In-Memory computing techniques, using
digital and mixed-signal architectures. Digital architectures, although
suitable for binary weights, suffer from an area overhead when working

124

with multibit MAC. RRAM approaches offer the advantage of using
the same elements for storage and computation but don’t use the stan-
dard CMOS cells, need high current, and are limited to 4 bits per cell.
Charge-based IMC uses standard CMOS and exploits the WL of an
SRAM bit cell but suffers from bit flipped issues that can be resolved
by adding transistors to the bit cell and therefore increasing the area
overhead too. Finally, we present the current and time approach that
shows promising efficiency levels, although suffering from PVT that
can be mitigated by training the NN.

Chapter 4 details the principle of time- and current-based IMC.
We show that we can leverage the available time during a computation
to charge a capacitive line with a low current (<400pA). Using parallel
architecture, we can reach sufficient throughput for a wide range of ap-
plications. In Chapter 5, the implementation of this principle on-chip
using 28 nm FDSOI CMOS technology is presented. Finally, the circuit
is tested in Chapter 6, where we were able to show the computation
principle and measure the energy consumption. The measured energy
allows reaching 99 TOPS/W efficiency for a 100x100 array. The most
energy-consuming part of the system relies on the size of the array to
reduce its energy consumption.

Futurework

The next step of this work is to include an ADC at the end of each ac-
cumulation line. Level Crossing ADCs seem particularly suited to the
time- and current-based IMC. In addition, we saw that the usage of OA
between the two accumulation lines increases the energy consumption
per MAC as the block is amortized only across one line. The offset
between the two lines doesn’t seem to have that big of an impact on
the accuracy of the systems. Therefore, we need to explore a configu-
ration where we use no OAs and a level crossing ADC is resetting the

125

accumulation line to its resting level at each LSB crossing. The dummy
accumulation line can be clamped to the resting voltage. The precision
is now shifted on the charge injection and the mismatch of the current
sources. However, as the accumulation line range of possible levels is
now a fixed voltage plus or minus an LSB, we might not need a cas-
code architecture and therefore increase the size of the current mirror
transistors to reduce the mismatch.
The storage of the inputs and weights also needs to be improved as the
register dominates the consumption of the logic block. Using SRAM
with only a writing feature on the driver will allow reducing the energy
consumption. Custom SRAM blocks need to be designed as we want
to place them close to the current sources. The footprint would also
be reduced, allowing it to fit more weights next to a current source.
Therefore, we can implement multiple layers per PE by including a
multiplexer to select the weights.
Increasing the array size to 256x256 or 512x512 will allow running
neural networks-on-chip and adding configurable power to the current
source, which would allow using a custom array size without consuming
energy.
Finally, including mapping techniques and modifying the architecture
to use inputs, and weights sparsity would help to increase the efficiency
for specifically trained applications.

126

Bibliography

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “Im-
ageNet classification with deep convolutional neural networks”.
en. In: Communications of the ACM 60.6 (May 2017), pp. 84–90.
issn: 0001-0782, 1557-7317. doi: 10.1145/3065386. url: https:
//dl.acm.org/doi/10.1145/3065386 (visited on 01/26/2022).

[2] Paul Palomero Bernardo et al. “UltraTrail: A Configurable Ultralow-
Power TC-ResNet AI Accelerator for Efficient Keyword Spot-
ting”. In: IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems 39.11 (Nov. 2020), pp. 4240–4251.
issn: 0278-0070, 1937-4151. doi: 10.1109/TCAD.2020.3012320.
url: https://ieeexplore.ieee.org/document/9216480/ (vis-
ited on 05/04/2021).

[3] Diego Ardila et al. “End-to-end lung cancer screening with three-
dimensional deep learning on low-dose chest computed tomogra-
phy”. en. In: Nature Medicine 25.6 (June 2019), pp. 954–961.
issn: 1078-8956, 1546-170X. doi: 10.1038/s41591-019-0447-x.
url: http://www.nature.com/articles/s41591-019-0447-x
(visited on 01/26/2022).

127

[4] F. Rosenblatt. “The perceptron: A probabilistic model for infor-
mation storage and organization in the brain.” en. In: Psychologi-
cal Review 65.6 (1958), pp. 386–408. issn: 1939-1471, 0033-295X.
doi: 10.1037/h0042519. url: http://doi.apa.org/getdoi.
cfm?doi=10.1037/h0042519 (visited on 06/11/2019).

[5] Y. LeCun et al. “Backpropagation Applied to Handwritten Zip
Code Recognition”. en. In: Neural Computation 1.4 (Dec. 1989),
pp. 541–551. issn: 0899-7667, 1530-888X. doi: 10.1162/neco.
1989.1.4.541. url: http://www.mitpressjournals.org/doi/
10.1162/neco.1989.1.4.541 (visited on 06/11/2019).

[6] Barry J. Wythoff. “Backpropagation neural networks: A tutorial”.
en. In: Chemometrics and Intelligent Laboratory Systems 18.2
(Feb. 1993), pp. 115–155. issn: 0169-7439. doi: 10.1016/0169-
7439(93)80052- J. url: https://www.sciencedirect.com/
science/article/pii/016974399380052J (visited on 03/02/2023).

[7] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term
Memory”. en. In: Neural Computation 9.8 (Nov. 1997), pp. 1735–
1780. issn: 0899-7667, 1530-888X. doi: 10.1162/neco.1997.9.
8.1735. url: http://www.mitpressjournals.org/doi/10.
1162/neco.1997.9.8.1735 (visited on 05/20/2019).

[8] Pete Warden. “Speech Commands: A Dataset for Limited-Vocabulary
Speech Recognition”. In: arXiv:1804.03209 [cs] (Apr. 2018). arXiv:
1804.03209. url: http://arxiv.org/abs/1804.03209 (visited
on 05/05/2021).

[9] TIMIT: acoustic-phonetic continuous speech corpus. English. OCLC:
53222255. Philadelphia, Pa., 1993.

[10] Y. Lecun et al. “Gradient-based learning applied to document
recognition”. In: Proceedings of the IEEE 86.11 (Nov. 1998), pp. 2278–
2324. issn: 00189219. doi: 10.1109/5.726791. url: http://
ieeexplore.ieee.org/document/726791/ (visited on 05/09/2022).

128

[11] The Smart Audio Report. en. url: https://www.nationalpublicmedia.
com / insights / reports / smart - audio - report/ (visited on
01/06/2022).

[12] Assaf Hurwitz Michaely et al. “Keyword spotting for Google as-
sistant using contextual speech recognition”. In: 2017 IEEE Auto-
matic Speech Recognition and Understanding Workshop (ASRU).
Okinawa: IEEE, Dec. 2017, pp. 272–278. isbn: 978-1-5090-4788-8.
doi: 10.1109/ASRU.2017.8268946. url: http://ieeexplore.
ieee.org/document/8268946/ (visited on 03/02/2023).

[13] Michael Price, James Glass, and Anantha P. Chandrakasan. “A
Low-Power Speech Recognizer and Voice Activity Detector Using
Deep Neural Networks”. In: IEEE Journal of Solid-State Circuits
53.1 (Jan. 2018), pp. 66–75. issn: 0018-9200, 1558-173X. doi:
10.1109/JSSC.2017.2752838. url: http://ieeexplore.ieee.
org/document/8082747/ (visited on 12/22/2021).

[14] Arijit Raychowdhury et al. “A 2.3 nJ/Frame Voice Activity Detector-
Based Audio Front-End for Context-Aware System-On-Chip Ap-
plications in 32-nm CMOS”. In: IEEE Journal of Solid-State
Circuits 48.8 (Aug. 2013), pp. 1963–1969. issn: 0018-9200, 1558-
173X. doi: 10.1109/JSSC.2013.2258827. url: http://ieeexplore.
ieee.org/document/6519946/ (visited on 12/22/2021).

[15] Badami. “A 90 nm CMOS, Power-Proportional Acoustic Sens-
ing Frontend for Voice Activity Detection”. In: IEEE Journal of
Solid-State Circuits 51.1 (Jan. 2016), pp. 291–302. issn: 0018-
9200, 1558-173X. doi: 10 . 1109 / JSSC . 2015 . 2487276. url:
http://ieeexplore.ieee.org/document/7315025/ (visited
on 12/04/2018).

129

[16] Marco Croce et al. “A 760 nW, 180 nm CMOS Analog Voice Ac-
tivity Detection System”. In: 2020 IEEE Custom Integrated Cir-
cuits Conference (CICC). Boston, MA, USA: IEEE, Mar. 2020,
pp. 1–4. isbn: 978-1-72816-031-3. doi: 10 . 1109 / CICC48029 .
2020.9075954. url: https://ieeexplore.ieee.org/document/
9075954/ (visited on 12/15/2021).

[17] Minhao Yang et al. “Design of an Always-On Deep Neural Network-
Based 1-μ W Voice Activity Detector Aided With a Cus-
tomized Software Model for Analog Feature Extraction”. In: IEEE
Journal of Solid-State Circuits 54.6 (June 2019), pp. 1764–1777.
issn: 0018-9200, 1558-173X. doi: 10.1109/JSSC.2019.2894360.
url: https://ieeexplore.ieee.org/document/8693834/ (vis-
ited on 10/29/2019).

[18] Minhao Yang et al. “Nanowatt Acoustic Inference Sensing Ex-
ploiting Nonlinear Analog Feature Extraction”. In: IEEE Journal
of Solid-State Circuits 56.10 (Oct. 2021), pp. 3123–3133. issn:
0018-9200, 1558-173X. doi: 10.1109/JSSC.2021.3076344. url:
https://ieeexplore.ieee.org/document/9429864/ (visited
on 12/22/2021).

[19] Sechang Oh et al. “An Acoustic Signal Processing Chip With 142-
nW Voice Activity Detection Using Mixer-Based Sequential Fre-
quency Scanning and Neural Network Classification”. In: IEEE
Journal of Solid-State Circuits 54.11 (Nov. 2019), pp. 3005–3016.
issn: 0018-9200, 1558-173X. doi: 10.1109/JSSC.2019.2936756.
url: https://ieeexplore.ieee.org/document/8834813/ (vis-
ited on 12/22/2021).

130

[20] Juan Sebastian P. Giraldo et al. “Vocell: A 65-nm Speech-Triggered
Wake-Up SoC for 10-μ W Keyword Spotting and Speaker
Verification”. In: IEEE Journal of Solid-State Circuits 55.4 (Apr.
2020), pp. 868–878. issn: 0018-9200, 1558-173X. doi: 10.1109/
JSSC.2020.2968800. url: https://ieeexplore.ieee.org/
document/8978574/ (visited on 05/04/2021).

[21] Weiwei Shan et al. “A 510-nW Wake-Up Keyword-Spotting Chip
Using Serial-FFT-Based MFCC and Binarized Depthwise Sepa-
rable CNN in 28-nm CMOS”. In: IEEE Journal of Solid-State Cir-
cuits 56.1 (Jan. 2021), pp. 151–164. issn: 0018-9200, 1558-173X.
doi: 10.1109/JSSC.2020.3029097. url: https://ieeexplore.
ieee.org/document/9233931/ (visited on 05/04/2021).

[22] Clemens JS Schaefer et al. “LSTMs for Keyword Spotting with
ReRAM-based Compute-In-Memory Architectures”. In: 2021 IEEE
International Symposium on Circuits and Systems (ISCAS). Daegu,
Korea (South): IEEE, May 2021, pp. 1–5. isbn: 978-1-72819-201-
7. doi: 10.1109/ISCAS51556.2021.9401295. url: https://
ieeexplore.ieee.org/document/9401295/ (visited on 05/03/2021).

[23] Zhixuan Wang et al. “12.1 A 148nW General-Purpose Event-
Driven Intelligent Wake-Up Chip for AIoT Devices Using Asyn-
chronous Spike-Based Feature Extractor and Convolutional Neu-
ral Network”. In: 2021 IEEE International Solid- State Circuits
Conference (ISSCC). San Francisco, CA, USA: IEEE, Feb. 2021,
pp. 436–438. isbn: 978-1-72819-549-0. doi: 10.1109/ISSCC42613.
2021.9365816. url: https://ieeexplore.ieee.org/document/
9365816/ (visited on 05/04/2021).

131

[24] Bo Liu et al. “A 22nm, 10.8 � W/15.1 � W Dual Computing Modes
High Power-Performance-Area Efficiency Domained Background
Noise Aware Keyword- Spotting Processor”. In: IEEE Transac-
tions on Circuits and Systems I: Regular Papers 67.12 (Dec.
2020), pp. 4733–4746. issn: 1549-8328, 1558-0806. doi: 10.1109/
TCSI.2020.2997913. url: https://ieeexplore.ieee.org/
document/9106775/ (visited on 05/04/2021).

[25] Boris Murmann. “Mixed-Signal Processing Opportunieties for AI”.
In: ESSCIRC 2020 ().

[26] Kevin Herisse et al. “Keyword Spotting System using Low-complexity
Feature Extraction and Quantized LSTM”. In: 2021 28th IEEE
International Conference on Electronics, Circuits, and Systems
(ICECS). Dubai, United Arab Emirates: IEEE, Nov. 2021, pp. 1–
4. isbn: 978-1-72818-281-0. doi: 10.1109/ICECS53924.2021.
9665486. url: https : / / ieeexplore . ieee . org / document /
9665486/ (visited on 02/20/2022).

[27] Davis Blalock et al. What is the State of Neural Network Pruning?
arXiv:2003.03033 [cs, stat]. Mar. 2020. doi: 10.48550/arXiv.
2003.03033. url: http://arxiv.org/abs/2003.03033 (visited
on 03/13/2023).

[28] Song Han, Huizi Mao, and William J. Dally. Deep Compression:
Compressing Deep Neural Networks with Pruning, Trained Quan-
tization and Huffman Coding. arXiv:1510.00149 [cs]. Feb. 2016.
doi: 10.48550/arXiv.1510.00149. url: http://arxiv.org/
abs/1510.00149 (visited on 03/13/2023).

[29] Markus Nagel et al. A White Paper on Neural Network Quantiza-
tion. en. arXiv:2106.08295 [cs]. June 2021. url: http://arxiv.
org/abs/2106.08295 (visited on 03/13/2023).

132

[30] Eunhyeok Park, Sungjoo Yoo, and Peter Vajda. “Value-Aware
Quantization for Training and Inference of Neural Networks”.
en. In: Computer Vision – ECCV 2018. Ed. by Vittorio Ferrari
et al. Vol. 11208. Series Title: Lecture Notes in Computer Sci-
ence. Cham: Springer International Publishing, 2018, pp. 608–
624. isbn: 978-3-030-01224-3 978-3-030-01225-0. doi: 10.1007/
978-3-030-01225-0_36. url: https://link.springer.com/
10.1007/978-3-030-01225-0_36 (visited on 03/13/2023).

[31] Kaiming He et al. Deep Residual Learning for Image Recognition.
arXiv:1512.03385 [cs]. Dec. 2015. doi: 10.48550/arXiv.1512.
03385. url: http://arxiv.org/abs/1512.03385 (visited on
03/13/2023).

[32] Markus Nagel et al. “Overcoming Oscillations in Quantization-
Aware Training”. en. In: ().

[33] Andrew G. Howard et al. MobileNets: Efficient Convolutional
Neural Networks for Mobile Vision Applications. arXiv:1704.04861
[cs]. Apr. 2017. doi: 10.48550/arXiv.1704.04861. url: http:
//arxiv.org/abs/1704.04861 (visited on 03/13/2023).

[34] Ron Banner et al. “ACIQ: Analytical Clipping for Integer Quan-
tization of neural networks”. en. In: (Feb. 2022). url: https://
openreview.net/forum?id=B1x33sC9KQ (visited on 03/13/2023).

[35] Itay Hubara et al. “Accurate Post Training Quantization With
Small Calibration Sets”. en. In: ().

[36] Markus Nagel and Rana Ali Amjad. “Up or Down? Adaptive
Rounding for Post-Training Quantization”. en. In: ().

[37] Chunyu Yuan and Sos S. Agaian. A comprehensive review of
Binary Neural Network. arXiv:2110.06804 [cs]. Feb. 2022. doi:
10.48550/arXiv.2110.06804. url: http://arxiv.org/abs/
2110.06804 (visited on 03/13/2023).

133

[38] Wm. A. Wulf and Sally A. McKee. “Hitting the memory wall:
implications of the obvious”. en. In: ACM SIGARCH Computer
Architecture News 23.1 (Mar. 1995), pp. 20–24. issn: 0163-5964.
doi: 10.1145/216585.216588. url: https://dl.acm.org/doi/
10.1145/216585.216588 (visited on 03/02/2023).

[39] Avishek Biswas and Anantha P. Chandrakasan. “CONV-SRAM:
An Energy-Efficient SRAM With In-Memory Dot-Product Com-
putation for Low-Power Convolutional Neural Networks”. In: IEEE
Journal of Solid-State Circuits 54.1 (Jan. 2019), pp. 217–230.
issn: 0018-9200, 1558-173X. doi: 10.1109/JSSC.2018.2880918.
url: https://ieeexplore.ieee.org/document/8579538/ (vis-
ited on 06/08/2022).

[40] Caiwen Ding et al. “CirCNN: Accelerating and Compressing Deep
Neural Networks Using Block-CirculantWeight Matrices”. en. In:
Proceedings of the 50th Annual IEEE/ACM International Sym-
posium on Microarchitecture. arXiv:1708.08917 [cs, stat]. Oct.
2017, pp. 395–408. doi: 10.1145/3123939.3124552. url: http:
//arxiv.org/abs/1708.08917 (visited on 03/02/2023).

[41] Changchun Zhou et al. “An Energy-Efficient Low-Latency 3D-
CNN Accelerator Leveraging Temporal Locality, Full Zero-Skipping,
and Hierarchical Load Balance”. In: 2021 58th ACM/IEEE De-
sign Automation Conference (DAC). ISSN: 0738-100X. Dec. 2021,
pp. 241–246. doi: 10.1109/DAC18074.2021.9586299.

[42] Jun-Seok Park et al. “A Multi-Mode 8k-MAC HW-Utilization-
Aware Neural Processing Unit With a Unified Multi-Precision
Datapath in 4-nm Flagship Mobile SoC”. In: IEEE Journal of
Solid-State Circuits 58.1 (Jan. 2023). Conference Name: IEEE
Journal of Solid-State Circuits, pp. 189–202. issn: 1558-173X.
doi: 10.1109/JSSC.2022.3205713.

134

[43] Brandon Reagen et al. “Minerva: Enabling Low-Power, Highly-
Accurate Deep Neural Network Accelerators”. In: 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architec-
ture (ISCA). Seoul: IEEE, June 2016, pp. 267–278. isbn: 978-
1-4673-8947-1. doi: 10.1109/ISCA.2016.32. url: https://
ieeexplore.ieee.org/document/7551399/ (visited on 06/08/2022).

[44] Hidehiro Fujiwara et al. “A 5-nm 254-TOPS/W 221-TOPS/mm
2 Fully-Digital Computing-in-Memory Macro Supporting Wide-
Range Dynamic-Voltage-Frequency Scaling and Simultaneous MAC
and Write Operations”. In: 2022 IEEE International Solid- State
Circuits Conference (ISSCC). San Francisco, CA, USA: IEEE,
Feb. 2022, pp. 1–3. isbn: 978-1-66542-800-2. doi: 10.1109/ISSCC42614.
2022.9731754. url: https://ieeexplore.ieee.org/document/
9731754/ (visited on 03/31/2022).

[45] Hyunjoon Kim et al. “Colonnade: A Reconfigurable SRAM-Based
Digital Bit-Serial Compute-In-Memory Macro for Processing Neu-
ral Networks”. In: IEEE Journal of Solid-State Circuits 56.7 (July
2021), pp. 2221–2233. issn: 0018-9200, 1558-173X. doi: 10.1109/
JSSC.2021.3061508. url: https://ieeexplore.ieee.org/
document/9373949/ (visited on 06/07/2022).

[46] An Chen. “A review of emerging non-volatile memory (NVM)
technologies and applications”. en. In: Solid-State Electronics. Ex-
tended papers selected from ESSDERC 2015 125 (Nov. 2016),
pp. 25–38. issn: 0038-1101. doi: 10.1016/j.sse.2016.07.006.
url: https://www.sciencedirect.com/science/article/
pii/S0038110116300867 (visited on 03/02/2023).

135

[47] Geoffrey W. Burr et al. “Phase change memory technology”. en.
In: Journal of Vacuum Science & Technology B, Nanotechnol-
ogy and Microelectronics: Materials, Processing, Measurement,
and Phenomena 28.2 (Mar. 2010). arXiv:1001.1164 [cond-mat],
pp. 223–262. issn: 2166-2746, 2166-2754. doi: 10.1116/1.3301579.
url: http://arxiv.org/abs/1001.1164 (visited on 03/02/2023).

[48] J. M. Slaughter et al. “High density ST-MRAM technology (In-
vited)”. en. In: 2012 International Electron Devices Meeting. San
Francisco, CA, USA: IEEE, Dec. 2012, pp. 29.3.1–29.3.4. isbn:
978-1-4673-4871-3 978-1-4673-4872-0 978-1-4673-4870-6. doi: 10.
1109/IEDM.2012.6479128. url: http://ieeexplore.ieee.
org/document/6479128/ (visited on 03/02/2023).

[49] I.G. Baek et al. “Highly scalable nonvolatile resistive memory
using simple binary oxide driven by asymmetric unipolar voltage
pulses”. In: IEDM Technical Digest. IEEE International Electron
Devices Meeting, 2004. Dec. 2004, pp. 587–590. doi: 10.1109/
IEDM.2004.1419228.

[50] J. Müller et al. “Ferroelectric Hafnium Oxide Based Materials and
Devices: Assessment of Current Status and Future Prospects”.
en. In: ECS Journal of Solid State Science and Technology 4.5
(2015), N30–N35. issn: 2162-8769, 2162-8777. doi: 10.1149/2.
0081505jss. url: https://iopscience.iop.org/article/10.
1149/2.0081505jss (visited on 03/02/2023).

[51] Ali Keshavarzi et al. “FerroElectronics for Edge Intelligence”. en.
In: IEEE Micro 40.6 (Nov. 2020), pp. 33–48. issn: 0272-1732,
1937-4143. doi: 10.1109/MM.2020.3026667. url: https://
ieeexplore.ieee.org/document/9207822/ (visited on 02/25/2023).

136

[52] R. Khaddam-Aljameh et al. “HERMES Core – A 14nm CMOS
and PCM-based In-Memory Compute Core using an array of
300ps/LSB Linearized CCO-based ADCs and local digital pro-
cessing”. In: 2021 Symposium on VLSI Circuits. ISSN: 2158-5636.
June 2021, pp. 1–2. doi: 10.23919/VLSICircuits52068.2021.
9492362.

[53] Giacomo Pedretti et al. “A Spiking Recurrent Neural Network
With Phase-Change Memory Neurons and Synapses for the Ac-
celerated Solution of Constraint Satisfaction Problems”. In: IEEE
Journal on Exploratory Solid-State Computational Devices and
Circuits 6.1 (June 2020). Conference Name: IEEE Journal on Ex-
ploratory Solid-State Computational Devices and Circuits, pp. 89–
97. issn: 2329-9231. doi: 10.1109/JXCDC.2020.2992691.

[54] Kun Zhang et al. “Rectified Tunnel Magnetoresistance Device
With High On/Off Ratio for In-Memory Computing”. In: IEEE
Electron Device Letters 41.6 (June 2020). Conference Name: IEEE
Electron Device Letters, pp. 928–931. issn: 1558-0563. doi: 10.
1109/LED.2020.2987211.

[55] Hao Cai et al. “Proposal of Analog In-Memory Computing With
Magnified Tunnel Magnetoresistance Ratio and Universal STT-
MRAM Cell”. In: IEEE Transactions on Circuits and Systems I:
Regular Papers 69.4 (Apr. 2022). Conference Name: IEEE Trans-
actions on Circuits and Systems I: Regular Papers, pp. 1519–
1531. issn: 1558-0806. doi: 10.1109/TCSI.2022.3140769.

[56] Peter Deaville et al. “A Maximally Row-Parallel MRAM In-Memory-
Computing Macro Addressing Readout Circuit Sensitivity and
Area”. In: ESSCIRC 2021 - IEEE 47th European Solid State Cir-
cuits Conference (ESSCIRC). Sept. 2021, pp. 75–78. doi: 10.
1109/ESSCIRC53450.2021.9567807.

137

[57] Van-Tinh Nguyen et al. “STT-BSNN: An In-Memory Deep Bi-
nary Spiking Neural Network Based on STT-MRAM”. In: IEEE
Access 9 (2021). Conference Name: IEEE Access, pp. 151373–
151385. issn: 2169-3536. doi: 10.1109/ACCESS.2021.3125685.

[58] S. Cosemans et al. “Towards 10000TOPS/W DNN Inference with
Analog in-Memory Computing – A Circuit Blueprint, Device Op-
tions and Requirements”. In: 2019 IEEE International Electron
Devices Meeting (IEDM). San Francisco, CA, USA: IEEE, Dec.
2019, pp. 22.2.1–22.2.4. isbn: 978-1-72814-032-2. doi: 10.1109/
IEDM19573.2019.8993599. url: https://ieeexplore.ieee.
org/document/8993599/ (visited on 05/05/2021).

[59] E. R. Hsieh et al. “Four-Bits-Per-Memory One-Transistor-and-
Eight-Resistive-Random-Access-Memory (1T8R) Array”. In: IEEE
Electron Device Letters 42.3 (Mar. 2021), pp. 335–338. issn: 0741-
3106, 1558-0563. doi: 10.1109/LED.2021.3055017. url: https:
//ieeexplore.ieee.org/document/9336666/ (visited on 05/17/2021).

[60] Nguyen Cong Dao and Dirk Koch. “Memristor-based Reconfig-
urable Circuits: Challenges in Implementation”. In: 2020 Interna-
tional Conference on Electronics, Information, and Communica-
tion (ICEIC). Barcelona, Spain: IEEE, Jan. 2020, pp. 1–6. isbn:
978-1-72816-289-8. doi: 10.1109/ICEIC49074.2020.9051174.
url: https://ieeexplore.ieee.org/document/9051174/ (vis-
ited on 05/13/2021).

[61] Boris Murmann. “Mixed-Signal Computing for Deep Neural Net-
work Inference”. In: IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems 29.1 (Jan. 2021), pp. 3–13. issn: 1063-
8210, 1557-9999. doi: 10 . 1109 / TVLSI . 2020 . 3020286. url:
https://ieeexplore.ieee.org/document/9197673/ (visited
on 05/08/2021).

138

[62] David Lehninger et al. “Enabling Ferroelectric Memories in BEoL
- towards advanced neuromorphic computing architectures”. In:
2021 IEEE International Interconnect Technology Conference (IITC).
ISSN: 2380-6338. July 2021, pp. 1–4. doi: 10.1109/IITC51362.
2021.9537346.

[63] Cedric Marchand et al. “A FeFET-Based Hybrid Memory Ac-
cessible by Content and by Address”. In: IEEE Journal on Ex-
ploratory Solid-State Computational Devices and Circuits 8.1 (June
2022), pp. 19–26. issn: 2329-9231. doi: 10.1109/JXCDC.2022.
3168057. url: https : / / ieeexplore . ieee . org / document /
9758734/ (visited on 03/03/2023).

[64] Sourav De et al. “Roadmap for Ferroelectric Memory: Challenges
and Opportunities for IMC Applications”. In: 2022 19th Interna-
tional SoC Design Conference (ISOCC). Gangneung-si, Korea,
Republic of: IEEE, Oct. 2022, pp. 167–168. isbn: 978-1-66545-
971-6. doi: 10.1109/ISOCC56007.2022.10031437. url: https:
/ / ieeexplore . ieee . org / document / 10031437/ (visited on
03/06/2023).

[65] Phil C. Knag et al. “A 617-TOPS/W All-Digital Binary Neural
Network Accelerator in 10-nm FinFET CMOS”. In: IEEE Jour-
nal of Solid-State Circuits 56.4 (Apr. 2021), pp. 1082–1092. issn:
0018-9200, 1558-173X. doi: 10.1109/JSSC.2020.3038616. url:
https://ieeexplore.ieee.org/document/9280331/ (visited
on 05/04/2021).

139

[66] Daniel Bankman and Boris Murmann. “An 8-bit, 16 input, 3.2
pJ/op switched-capacitor dot product circuit in 28-nm FDSOI
CMOS”. In: 2016 IEEE Asian Solid-State Circuits Conference (A-
SSCC). Toyama, Japan: IEEE, Nov. 2016, pp. 21–24. isbn: 978-
1-5090-3699-8 978-1-5090-3700-1. doi: 10.1109/ASSCC.2016.
7844125. url: http : / / ieeexplore . ieee . org / document /
7844125/ (visited on 09/06/2020).

[67] Hossein Valavi et al. “A 64-Tile 2.4-Mb In-Memory-Computing
CNN Accelerator Employing Charge-Domain Compute”. In: IEEE
Journal of Solid-State Circuits 54.6 (June 2019), pp. 1789–1799.
issn: 0018-9200, 1558-173X. doi: 10.1109/JSSC.2019.2899730.
url: https://ieeexplore.ieee.org/document/8660469/ (vis-
ited on 06/08/2022).

[68] Shihui Yin et al. “XNOR-SRAM: In-Memory Computing SRAM
Macro for Binary/Ternary Deep Neural Networks”. In: IEEE Jour-
nal of Solid-State Circuits (2020), pp. 1–11. issn: 0018-9200,
1558-173X. doi: 10.1109/JSSC.2019.2963616. url: https://
ieeexplore.ieee.org/document/8959407/ (visited on 06/08/2022).

[69] Jintao Zhang, Zhuo Wang, and Naveen Verma. “In-Memory Com-
putation of a Machine-Learning Classifier in a Standard 6T SRAM
Array”. In: IEEE Journal of Solid-State Circuits 52.4 (Apr. 2017),
pp. 915–924. issn: 0018-9200, 1558-173X. doi: 10.1109/JSSC.
2016.2642198. url: http://ieeexplore.ieee.org/document/
7875410/ (visited on 06/09/2022).

[70] Mingu Kang et al. “A Multi-Functional In-Memory Inference Pro-
cessor Using a Standard 6T SRAM Array”. In: IEEE Journal of
Solid-State Circuits 53.2 (Feb. 2018), pp. 642–655. issn: 0018-
9200, 1558-173X. doi: 10 . 1109 / JSSC . 2017 . 2782087. url:
http://ieeexplore.ieee.org/document/8246704/ (visited
on 06/09/2022).

140

[71] Ping-Chun Wu et al. “A 28nm 1Mb Time-Domain Computing-in-
Memory 6T-SRAM Macro with a 6.6ns Latency, 1241GOPS and
37.01TOPS/W for 8b-MAC Operations for Edge-AI Devices”.
In: 2022 IEEE International Solid- State Circuits Conference
(ISSCC). Vol. 65. ISSN: 2376-8606. Feb. 2022, pp. 1–3. doi: 10.
1109/ISSCC42614.2022.9731681.

[72] Sujan K. Gonugondla, Mingu Kang, and Naresh R. Shanbhag. “A
Variation-Tolerant In-Memory Machine Learning Classifier via
On-Chip Training”. In: IEEE Journal of Solid-State Circuits 53.11
(Nov. 2018), pp. 3163–3173. issn: 0018-9200, 1558-173X. doi:
10 . 1109 / JSSC . 2018 . 2867275. url: https : / / ieeexplore .
ieee.org/document/8463601/ (visited on 07/21/2022).

[73] NN Accelerator | NICS EFC Lab. url: https://nicsefc.ee.
tsinghua.edu.cn/network.html (visited on 10/24/2022).

[74] Hongyang Jia et al. “15.1 A Programmable Neural-Network In-
ference Accelerator Based on Scalable In-Memory Computing”.
In: 2021 IEEE International Solid- State Circuits Conference
(ISSCC). San Francisco, CA, USA: IEEE, Feb. 2021, pp. 236–
238. isbn: 978-1-72819-549-0. doi: 10.1109/ISSCC42613.2021.
9365788. url: https : / / ieeexplore . ieee . org / document /
9365788/ (visited on 02/13/2023).

[75] R. M Zur, Y Jiang, and C. E Metz. “Comparison of two meth-
ods of adding jitter to artificial neural network training”. en.
In: International Congress Series. CARS 2004 - Computer As-
sisted Radiology and Surgery. Proceedings of the 18th Interna-
tional Congress and Exhibition 1268 (June 2004), pp. 886–889.
issn: 0531-5131. doi: 10 . 1016 / j . ics . 2004 . 03 . 238. url:
https://www.sciencedirect.com/science/article/pii/
S0531513104006697 (visited on 03/14/2023).

141

[76] Sergey Ioffe and Christian Szegedy. “Batch normalization: Ac-
celerating deep network training by reducing internal covariate
shift”. In: International conference on machine learning. PMLR,
2015, pp. 448–456.

[77] Muya Chang et al. “A 40nm 60.64TOPS/W ECC-Capable Compute-
in-Memory/Digital 2.25MB/768KB RRAM/SRAM System with
Embedded Cortex M3 Microprocessor for Edge Recommendation
Systems”. In: 2022 IEEE International Solid- State Circuits Con-
ference (ISSCC). San Francisco, CA, USA: IEEE, Feb. 2022,
pp. 1–3. isbn: 978-1-66542-800-2. doi: 10.1109/ISSCC42614.
2022.9731679. url: https://ieeexplore.ieee.org/document/
9731679/ (visited on 02/13/2023).

[78] Jinshan Yue et al. “STICKER-IM: A 65 nm Computing-in-Memory
NN Processor Using Block-Wise Sparsity Optimization and Inter/Intra-
Macro Data Reuse”. In: IEEE Journal of Solid-State Circuits 57.8
(Aug. 2022), pp. 2560–2573. issn: 0018-9200, 1558-173X. doi:
10 . 1109 / JSSC . 2022 . 3148273. url: https : / / ieeexplore .
ieee.org/document/9714739/ (visited on 02/13/2023).

[79] Boris Murmann. ADC Performance Survey 1997-2021. 1997. url:
http://web.stanford.edu/~murmann/adcsurvey.html..

142

Appendix A

KeywordSpotting System

using Low-complexity Feature

Extraction andQuantized LSTM

Kévin Hérissé, Benoit Larras, Antoine Frappé, Andreas Kaiser
2021 28th IEEE International Conference on Electronics, Cir-
cuits, and Systems (ICECS)

143

Keyword Spotting System using Low-complexity
Feature Extraction and Quantized LSTM

Kévin Hérissé, Benoit Larras, Antoine Frappé, Andreas Kaiser
Univ. Lille, CNRS, Centrale Lille, Junia, Univ. Polytechnique Hauts-de-France, UMR 8520 – IEMN

Lille, France
{name.surname}@junia.com

Abstract—Long Short-Term Memory (LSTM) neural
networks offer state-of-the-art results to compute sequential
data and address applications like keyword spotting. Mel
Frequency Cepstral Coefficients (MFCC) are the most common
features used to train this neural network model. However, the
complexity of MFCC coupled with highly optimized machine
learning neural networks usually makes the MFCC feature
extraction the most power-consuming block of the system. This
paper presents a low complexity feature extraction method
using a filter bank composed of 16 channels with a quality factor
of 1.3 to compute a spectrogram. It shows that we can achieve
an 89.45% accuracy on 12 classes of the Google Speech
Command Dataset using an LSTM network of 64 hidden units
with weights and activation quantized to 9 bits and inputs
quantized to 8 bits.

Keywords—Keyword Spotting, Machine Learning, Long
Short-Term Memory, MFCC

I. INTRODUCTION
 The latest developments in consumer electronics made

voice-activated devices used every day. The need to embed
Keyword Spotting (KWS) solutions at the edge led to the
development of always-on low-power preprocessing units to
avoid the computation of the audio signal by power-hungry
elements. Figure 1 shows a typical architecture, in which a
preprocessing unit triggers the main processor only if the
analyzed audio signal is a relevant keyword. The unit is
composed of a feature extractor that will divide the audio
signal into multiple frequency bands to compute the per band
energy. A classification neural network uses these features as
inputs to detect if the audio signal corresponds to one of the
predefined classes learned by the classifier. Long Short-Term
Memory (LSTM) [1] neural networks are well-suited
classifiers to manage sequential data. However, LSTMs
require lots of data and computational power and therefore
need to be optimized for integration at the edge. This is
achieved, for example, by training the network with a small
number of hidden units (56 in [2]) or by quantizing weights
(5-bit in [3]). These optimizations are made possible thanks to
the use of input features such as Mel Frequency Cepstral
Coefficients (MFCC). However, MFCC extraction requires
Fast Fourier Transforms (FFT) and Discrete Cosine
Transforms (DCT). For this reason, the feature extraction (FE)
block usually consumes most of the energy of the system. To
tackle this challenge, this paper presents the following
contributions:

− A low-complexity feature extraction technique with
a 16 channels filter bank with a quality factor of 1.3
was used to compute the power spectral density.

− An associated optimized LSTM model with 64
hidden units post-quantized on 8 bits for inputs and
9 bits for weight/activation achieving 89.45%
accuracy on recognition of 12 classes of the Google
Speech Command Dataset (GSCD) [4].

The remainder of this article is structured as follows. Section
II reviews different feature extraction methods and introduces
the proposed filter bank together with simulations using
Matlab®. Section III presents the LSTM neural network and
the method to quantize it. Section IV explores the results in
comparison with the state-of-the-art circuits before section V
concludes this paper.

II. FEATURE EXTRACTION
The GSCD is used as a reference for keyword spotting

applications. It is composed of 60,000 audio files of
approximately 1-second length with recordings of 31 different
keywords. A common test case for comparison is to train
networks using 12 classes (10 selected keywords + unknown
words + silence).

A. Impact of feature extraction on the global consumption
To extract features from this dataset, state-of-the-art

solutions [2], [3], [5], [6] use MFCC features. The MFCC is
computed in this order: (i) FFT of an audio sample window,

This work was supported in part by the French National Research Agency
under Grant ANR-18-CE24-0006-01 LEOPAR.

Fig. 1. Typical architecture of a preprocessing unit

TABLE I. CONTRIBUTION OF FE IN STATE-OF-THE-ART CIRCUITS

Reference [2] [3] [5] [6]

Embedded FE
FE on

software
FE on

software
Real FFT
- MFCC

Serial FFT
- MFCC

Global Consumption
(µW) 5 0.5a 16.1 0.51

Percentage of global
consumption due to

FE

-
(Soft.)

-
(Soft.) 50% 66%

a. Estimation from available metrics

(ii) Mel filtering using a digital high-order filter bank,
(iii) computation of the log of the power for each filter output,
and (iv) DCT of each computed value. The MFCCs are
extracted as the amplitudes of the output spectrum. We can
analyze from the literature (Table I) that the contribution of
the feature extraction is more than half of the global
consumption of the classification system. In [5], the authors
report that the computational power is dominated by the FFT,
which accounts for 72% of the total number of sums and
multiplications of the FE block. To reduce the
computationally expensive MFCC extraction, [7] presents a
32-channel analog filter bank employing a passive N-path
filter topology consuming 800nW, while [8] introduces an
event-driven approach, in which the system simulations show
up to a 4000x lower consumption compared to a conventional
discrete-time system.

B. Proposed feature extraction architecture
The proposed FE architecture is composed of a 16-

channel filter bank, with center frequencies spread from
50 Hz to 5 kHz. The quality factor Q is only 1.3, making this
solution easily realizable in analog or mixed-signal domains.
Table II presents the configuration of our filter bank and
Figure 2 presents the frequency response of the filter bank
according to Mel, Bark, and Logarithmic scales. Mel and
Bark scales are perceptual scales and are created from how
humans hear. Classification results using these scales are
compared in section V.

When the spectral signal is divided into 16 bands, the
energy in each band is calculated as:

𝐸𝐸 = � |𝑦𝑦(𝑡𝑡)²|
𝑡𝑡0+𝑑𝑑𝑑𝑑

𝑡𝑡=𝑡𝑡0

 (1)

with 𝑦𝑦(𝑡𝑡) the filtered audio signal and dt the frame duration
(set to 25 ms with an overlap of 12.5 ms). The filter bank is
simulated in Matlab using Butterworth filters. There is no
logarithmic scaling on the output data, meaning that when the
energy is extracted from each band, it can directly be
converted using an ADC and sent to the classifier.

III. CLASSIFICATION NEURAL NETWORK

A. Long Short-Term Memory
LSTM networks are a type of recurrent neural network

composed of 4 intermediate sets of neurons called gates (input
𝑖𝑖𝑡𝑡 , forget 𝑓𝑓𝑡𝑡 , output 𝑜𝑜𝑡𝑡 , candidate gate 𝑔𝑔𝑡𝑡) (2)-(5) that will
compute a state vector 𝑐𝑐𝑡𝑡 (6) that in turn is used to compute
the hidden vector ℎ𝑡𝑡 (7). This vector will be used in the next
inference together with the next input vector 𝑥𝑥𝑡𝑡.

 𝑓𝑓𝑡𝑡 = 𝜎𝜎𝑠𝑠(𝑊𝑊𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑅𝑅𝑓𝑓ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓) (2)

 𝑖𝑖𝑡𝑡 = 𝜎𝜎𝑠𝑠(𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑅𝑅𝑖𝑖ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖) (3)

 𝑜𝑜𝑡𝑡 = 𝜎𝜎𝑠𝑠(𝑊𝑊𝑜𝑜𝑥𝑥𝑡𝑡 + 𝑅𝑅𝑜𝑜ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓) (4)

 𝑔𝑔𝑡𝑡 = 𝜎𝜎ℎ(𝑊𝑊𝑔𝑔𝑥𝑥𝑡𝑡 + 𝑅𝑅𝑔𝑔ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓) (5)

 𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∘ 𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∘ 𝑔𝑔𝑡𝑡 (6)

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∘ 𝜎𝜎ℎ(𝑐𝑐𝑡𝑡) (7)

where 𝑊𝑊∗ and 𝑅𝑅∗ are weight matrices for each gate and 𝑏𝑏∗
biasing values that are obtained by training the neural
networks. Figure 3 shows a schematic of the LSTM
architecture. The length of the states and hidden unit vectors
allows storing information in time at each loop, meaning that
the LSTM has the faculty to remember what just happened and
therefore modify its outputs knowing this information, making
this type of network a good choice for sequential tasks.

TABLE II. FILTER BANK CONFIGURATION

Number of bands 16

Filter order 3

Frequency range 50 Hz to 5 kHz

Q 1.3

Fig. 3. Schematics of a Long Short-Term Memory neural network

Fig. 2. 16-channel filter bank frequency response according to different
scales. Mel and Bark scales are perceptual scales, used to mimic human
hearing. There is less frequency bands under 100 Hz with these scales.

 LSTM models can be stacked and are followed by one or
more fully connected layers:

 𝑧𝑧𝑡𝑡 = 𝑊𝑊𝑓𝑓𝑓𝑓ℎ𝑡𝑡 (8)

where 𝑊𝑊𝑓𝑓𝑓𝑓 is a weight matrix for the fully connected layer. A
softmax layer is added at the end to perform the prediction as
can be seen in Figure 4. This network is trained using
Stochastic Gradient Descent algorithms.

B. Post-Quantization
Post-quantization techniques are introduced to perform an n-
bit quantization of the LSTM model. The custom LSTM
layers are described in Matlab® and are initialized with the
weights obtained from the full-precision training, to
accelerate the convergence. At each forward propagation, the
results of equations (2)-(7) are quantized using equation (9).

 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞(𝑥𝑥) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(
𝑥𝑥

max(𝑥𝑥) × 2𝑛𝑛−1 − 1) ×
max (𝑥𝑥)
2𝑛𝑛−1 − 1

 (9)

where 𝑛𝑛 is the number of quantization bits. Figure 5 shows
that the weights and activation vectors follow a normal
distribution. Therefore, to improve the internal representation
of the system, clipping can be introduced with little impact.
The introduced method consists of performing iterations with
decreasing clipping values until the accuracy drops by a given
amount. The clipping value associated with the maximum
accuracy is eventually selected. This simple and effective
method is suited to a low-complexity network that allows
exploring several parameters over multiple iterations.
However, for larger and computationally-intensive networks,
more efficient in-training quantization methods such as
PACT [9] have been developed.

IV. SIMULATION RESULTS
To compose the dataset, 10 keywords are chosen from the

GSCD: {“zero”, “one”, “two”, “three”, “four”, “five”, “six”,
“seven”, “eight”, “nine”} (around 1800 samples of each word)
plus 20% of other keywords from the dataset labeled
“unknown” and 4,000 samples of background noise. The
selected dataset is shared between training, validation, and
testing datasets following this repartition: 70%, 15%, and
15%. The simulations are made with an LSTM composed of
64 hidden units. Using the computed spectrograms from the
FE block as described in section II, multiple simulations are
run to observe the impact of the number of bands and the input
bit width on the accuracy. The per-band energy values are
quantized on n bits and are then trained with the basic
LstmLayer model from Matlab® with weights and activation
coded on 32 bits. Figure 6 recapitulates those simulations and
shows that there is no particular scale that stands out and
would give better results than others. However, filter banks
with more than 12 frequency bands offer better results than the
8 band case. An input bit width below 8 bits significantly
decreases the accuracy. The best accuracy obtained for the test
dataset is 90.02% for a 16-channel filter bank using a
logarithmic scale with input data quantized on 8 bits. This
setup is taken as a reference point for the development of the
quantized LSTM model.

1 https://github.com/kevinherisse/leo_lstm

b. Texas Instrument Massachusetts Institute of Technology dataset [10]

A custom LSTM model has been developed to explore the
impact of quantization. Simulating our custom LSTM model
with the previous setup gives a similar reference accuracy
value. The code of our model and the simulation methods are
available on GitHub 1 . The model allows quantizing the
network to n bits using the proposed post-quantization
method. The simulated accuracy is shown in Figure 7. The

Fig. 5. Histograms showing the weights and activation functions
distributions.

Fig. 4. Schematics of the neural network used in this paper.

LSTM Fully
Connected Softmax

TABLE III. COMPARISON WITH SOA

Reference [2] [3] [5] Our Work
Feature

Extraction MFCC MFCC MFCC Power
Spectrum

FFT Yes (soft.) Yes (soft.) DFT No FFT

DCT Yes (soft.) Yes (soft.) Yes No DCT
Number of
channels 39 40 13 16

Quantization
Method

Post
Quantization In-training Post

Quantization
Post

Quantization

Hidden Units 56 128 64 64

Inputs Bit
width 8 5 8 8

Weights Bit
width 8 5 8 9

Activation
Bit width 32 8 8 9

Number of
classes 4 12 12 12

Dataset TIMIT b:
4 KW

GSCD:
10KW

 + unknown
+ silence

GSCD:
10KW

+ unknown
+ silence

GSCD:
10KW

+ unknown
+ silence

Accuracy 91.7% 90% 90.87% 89,45%

quantization only implies an accuracy drop of 0.55% for 8-bit
input and 9-bit activation/weight.

Table III shows a comparison with state-of-the-art
approaches. Similar accuracy is obtained while the feature
extraction method is much less complex than the MFCC
computation. The presented method uses a 16-channel filter
bank, with third-order filters and a quality factor of 1.3 that
could be implemented with low-consumption techniques
such as [7] or [8].

V. CONCLUSION
This paper shows that it is possible to extract relevant audio
features with a simple FE block composed of a 16-channel
third order filter bank. Using a quantized 64-hidden unit
LSTM model, an accuracy of 89.45% on 12 classes of the
GSCD is demonstrated. These results open significant
perspectives on reducing the hardware complexity of the FE
function. Future work will concern the implementation of the
complete processing chain and measurement of the impact on
energy consumption.

REFERENCES
[1] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,”

Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi:
10.1162/neco.1997.9.8.1735.

[2] J. S. P. Giraldo and M. Verhelst, “Laika: A 5uW Programmable LSTM
Accelerator for Always-on Keyword Spotting in 65nm CMOS,” in
ESSCIRC 2018 - IEEE 44th European Solid State Circuits Conference
(ESSCIRC), Dresden, Sep. 2018, pp. 166–169. doi:
10.1109/ESSCIRC.2018.8494342.

[3] C. J. Schaefer, M. Horeni, P. Taheri, and S. Joshi, “LSTMs for
Keyword Spotting with ReRAM-based Compute-In-Memory
Architectures,” in 2021 IEEE International Symposium on Circuits
and Systems (ISCAS), Daegu, Korea (South), May 2021, pp. 1–5. doi:
10.1109/ISCAS51556.2021.9401295.

[4] P. Warden, “Speech Commands: A Dataset for Limited-Vocabulary
Speech Recognition,” ArXiv180403209 Cs, Apr. 2018, Accessed: May
05, 2021. [Online]. Available: http://arxiv.org/abs/1804.03209

[5] J. S. P. Giraldo, S. Lauwereins, K. Badami, and M. Verhelst, “Vocell:
A 65-nm Speech-Triggered Wake-Up SoC for 10-μ W Keyword
Spotting and Speaker Verification,” IEEE J. Solid-State Circuits, vol.
55, no. 4, pp. 868–878, Apr. 2020, doi: 10.1109/JSSC.2020.2968800.

[6] W. Shan et al., “A 510-nW Wake-Up Keyword-Spotting Chip Using
Serial-FFT-Based MFCC and Binarized Depthwise Separable CNN in
28-nm CMOS,” IEEE J. Solid-State Circuits, vol. 56, no. 1, pp. 151–
164, Jan. 2021, doi: 10.1109/JSSC.2020.3029097.

[7] D. A. Villamizar, D. G. Muratore, J. B. Wieser, and B. Murmann, “An
800 nW Switched-Capacitor Feature Extraction Filterbank for Sound
Classification,” IEEE Trans. Circuits Syst. Regul. Pap., vol. 68, no. 4,
pp. 1578–1588, Apr. 2021, doi: 10.1109/TCSI.2020.3047035.

[8] S. Mourrane, B. Larras, A. Cathelin, and A. Frappe, “Event-Driven
Continuous-Time Feature Extraction for Ultra Low-Power Audio
Keyword Spotting,” in 2021 IEEE 3rd International Conference on
Artificial Intelligence Circuits and Systems (AICAS), Washington DC,
DC, USA, Jun. 2021, pp. 1–4. doi:
10.1109/AICAS51828.2021.9458425.

[9] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srinivasan,
and K. Gopalakrishnan, “PACT: Parameterized Clipping Activation
for Quantized Neural Networks,” ArXiv180506085 Cs, Jul. 2018,
Accessed: Jul. 29, 2021. [Online]. Available:
http://arxiv.org/abs/1805.06085

[10] TIMIT: acoustic-phonetic continuous speech corpus. Philadelphia,
Pa.: Linguistic Data Consortium, 1993.

Fig. 7. Accuracy versus quantization weight bit width for multiple
activation quantization

87
87,5

88
88,5

89
89,5

90

7 8 9 10 11

A
cc

ur
ac

y
(%

)

Weights bit width

10-bit Activation 9-bit Activation
8-bit Activation

Fig. 6. Accuracy of the full-resolution network as a function of the input bit
width according to different number of bands. The values are extracted as the
best accuracy found over multiple trainings. The best value obtained during
training is 90.02% with 16-channel and 8-bit input quantization.

70
75
80
85
90
95

100

3 4 5 6 7 8 9 10 11

A
cc

ur
ac

y
(%

)

Input bit width

8 Bands

70
75
80
85
90
95

100

3 4 5 6 7 8 9 10 11

A
cc

ur
ac

y
(%

)

Input bit width

12 Bands

70
75
80
85
90
95

100

3 4 5 6 7 8 9 10 11

A
cc

ur
ac

y
(%

)

Input bit width

16 Bands

Bark Scale Mel Scale Log Scale

