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ABSTRACT

The increasing complexity of engineering designs, particularly in sectors like construction,
automotive, and aerospace, demands efficient computational methods to simulate dynamic
behaviors. In particular, considerable computational burden arises from the dependence of
the solution fields on both the space and time variables. As new design spaces are explored,
including variations in geometry and mass distributions, the need to accurately model dynamic
effects, such as vibration and damping, becomes critical.

This thesis proposes Reduced-Order Modeling techniques, focusing on computational
efficiency, structure preservation, and the ability to parametrize the reduced model with
respect to damping parameters. The Proper Generalized Decomposition (PGD) method is
first revisited using the Hamiltonian formalism and then extended to enable the construction
of parameterized reduced models for viscoelastic materials under transient loads. Initially, a
displacement-momentum formulation was introduced to enhance robustness. Further, the
PGD solver was adapted in a space-discrete, time-continuous Hamiltonian framework, to
tackle the preservation of the symplectic structure with respect to the time variable. An
approximation inspired by Modal Analysis was formulated to build the reduced basis efficiently,
complemented by convergence acceleration techniques. Finally, the PGD framework was
extended to allow for efficient parametrization of the reduced model using Rayleigh damping
parameters. The PGD reduced basis was subsequently employed as a surrogate to determine
optimal damping coefficients with respect to a given snapshot using the Particle Swarm
Optimization algorithm. Several numerical experiments demonstrate the performance of the
proposed methodology.

Keywords: Reduced-Order Modeling, Proper Generalized Decomposition, Structural Dynam-
ics, Iterative Solver, Symplectic Structure, Damped Surrogate.
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RÉSUMÉ

La complexité croissante des conceptions en ingénierie, notamment dans des secteurs tels que la
construction, l’automobile et l’aérospatiale, exige des méthodes de calcul efficaces pour simuler
les comportements dynamiques. En particulier, la simple dépendance des champs solution
par rapport aux variables d’espace et de temps engendre une charge de calcul considérable.
Alors que de nouveaux espaces de conception sont explorés, incluant des variations dans
la géométrie et la répartition des masses, la nécessité de modéliser avec précision les effets
dynamiques, tels que les vibrations et l’amortissement, devient cruciale.

Cette thèse propose des techniques de Réduction de Modèle, avec pour objectifs l’efficacité
du calcul, la préservation des structures mathématiques et la capacité à paramétrer le modèle
réduit vis-à-vis de l’amortissement. La méthode de Décomposition Propre Généralisée (PGD)
est d’abord revisitée en utilisant le formalisme hamiltonien, puis étendue pour permettre
la construction de modèles réduits paramétrés pour les matériaux viscoélastiques soumis à
des chargements transitoires. Initialement, une formulation déplacement-moment conjugué
a été introduite afin d’améliorer la robustesse. Puis, le solveur PGD a été adapté dans un
cadre hamiltonien discrétisé en espace et continu en temps, pour traiter la préservation de la
structure symplectique par rapport au temps. Une approximation inspirée de l’Analyse Modale
a été formulée pour construire efficacement la base réduite, complétée par des techniques
d’accélération de convergence. Enfin, le solveur PGD a été étendu pour inclure les coefficients
d’amortissement de Rayleigh comme variables du modèle réduit. La base réduite PGD est
ensuite utilisée comme méta-modèle par un algorithme d’Optimisation par Essaim Particulaire
pour déterminer des coefficients d’amortissement optimaux à partir d’un échantillon donné.
Plusieurs expériences numériques illustrent les performances de la méthodologie proposée.

Mots-clefs: Réduction de modèle, Décomposition Propre Généralisée, Dynamique des Struc-
tures, solveur itératif, structure symplectique, meta-modèle amorti.
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CHAPTER 1 INTRODUCTION

1.1 Computational Mechanics and scope of the thesis

The last half-century has seen the emergence of computing hardware as a medium for scientific
experimentation. Before then, except for a few attempts to automate computations, computers
were none other than human beings themselves. Mathematical and modeling tools already had
well established foundations. As a matter of fact, all the formulations in this manuscript are
based on variational calculus, from which the Principle of Least Action stems, and were known
at the time. It was also common to use numerical approximations to solve initial and boundary-
value problems that were not analytically solvable. Astronomy is undoubtedly a remarkable
application of these methods, as it has never ceased to fascinate humankind throughout the
ages and across civilizations. It was that same fascination that led to space exploration and
sparked off the computational era. Indeed, if approximation methods were well mastered,
human computers faced a problem of efficiency in achieving ever finer approximations. In
particular, trajectory calculation was an essential work at the National Aeronautics and Space
Administration (NASA). A too coarse approximation inevitably led to dramatic deviations,
which cannot be allowed especially for inhabited flights. Approximation refinement required
to perform so many operations that tasks exceeded human capabilities. In 1959, NASA
acquired the IBM 7090 computer. It was capable of 24 thousand multiplications per second.
This computing power was phenomenal at the time, but there was still the challenge of
figuring out how to operate the computer. It required a very specific set of skills: programs
were written in languages such as Fortran or COBOL, the source code was punched onto
cards using keypunch machines, then cards were fed into the card reader in a specific order
to schedule the job for execution. Subsequently, outputs were collected for analysis. This
laborious process was inherently prone to error, so much that most engineers and astronauts
distrusted it [1]. A lot of effort was put into making these tools reliable, which indisputably
contributed to make the space program a success. Essentially, hardware computers provided
engineers with the necessary computing power to numerically experiment and predict flight
missions that could not be tested otherwise. After many years of progress, the mindset
regarding numerical simulation changed radically: it would nowadays be inconceivable not
to numerically experiment before manufacturing and proceed to real testing [2]. It is the
result of a joint effort between the mathematics, computer science and mechanical engineering
communities. Eventually, this fruitful collaboration gave birth to the discipline commonly
referred to as Computational Mechanics (CM), a term coined by J. T. Oden (1936 – 2023),
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and later as Computational Sciences and Engineering.

Mechanical
Engineering

Computer
Science

Applied
Mathematics

Figure 1.1 Venn diagram of the disciplines that made Computational Mechanics.

Among the immense variety of tools that are now available, Finite Element (FE) modeling
has stood out as a tried-and-tested method. The FE Method (FEM) is particularly appreciated
for its error convergence properties, versatility and automation, although none of these are
without fault. For instance, many open-source and commercial FE packages or software
have been successfully developed over the years: NASTRAN, Code_Aster [3], deal.II [4],
FEniCS [5], FreeFEM [6], to cite a few. The sub-fields of Validation and Verification also
played a crucial role in the adoption of numerical tools [2]. Validation is focused on whether
the equations used to model a phenomenon are suitable. In other words, the predictions of the
model are compared with real observations and experimental measurements [2]. It addresses
the question: are we solving the right equations? On the other hand, Verification aims to
check the quality of the numerical result against the solutions to the model equations, which
one solves in an approximated manner, e.g. considering a FE approximation. It involves the
construction of error estimators that quantitatively measure the quality of the approached
solution [7]. It answers the question: are we solving the equations right?

Not only CM has provided predictive tools to tackle existing problems but it has also
opened an avenue to explore novel, more complex models. As a result, the complexity of the
problems that are tackled have substantially increased, e.g. in design, control, optimization
and uncertainty quantification [8]. Accounting for the variation of parameters that govern
simulations has become essential, driven by the need to finely study physical behaviors
and improve the predictive capacity of computational tools. These include, for example,
variations in boundary or initial conditions, material and geometric parameters. It has led to
a drastic increase in the number of calculations to be performed, due to the so-called curse
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of dimensionality [9]. Despite advances in computing hardware, conventional CM methods
have become obsolete to deal with the demanding simulations mentioned above. Yet again,
reaching the limits of simulation capabilities has motivated a surge of interest from the
scientific community. Model reduction methods have emerged in this context, introducing
innovative strategies tailored to solve such high-dimensional problems.

The mere dependence of the fields on both the space and time variables is a source of
computational burden to simulate transient phenomena. Applications in structural dynamics
often require fast methods to efficiently estimate solutions for real-time simulations, digital
twinning, uncertainty quantification analyses or multi-query optimization. In mechanical
engineering, e.g. in the construction, automotive and aerospace industries, advancements in
materials and manufacturing have led to optimized designs with reduced masses. This effort is
driven by environmental demands. In the long run, lighter structures require less material and
energy to be manufactured, and in the case of transportation, energy consumption in operation
would be decreased as well. In transportation, as well as in energy production or storage, the
quest for performance can lead to the exploration of new rotor regimes for engines, water or
wind turbines. All these innovations give a major importance to dynamic effects. Furthermore,
damping control is a fundamental issue for the performance of vibrating structures. The
application of model reduction techniques to transient dissipative behaviors would enable the
automatic construction of damped meta-models, hence improving the predictive capabilities
of numerical simulation. Thus, in addition to space and time, model parameters related to
damping may be considered as variables, which substantially increases the difficulty of the
computation.

Over the last decade, Reduced-Order Modeling for structural dynamics has significantly
progressed. Traditional methods like modal superposition and dynamic substructuring remain
key in engineering for reducing computational costs. Data-driven methods, such as the Proper
Orthogonal Decomposition, have achieved significant advancements in efficiently capturing
system dynamics by identifying the dominant modes from snapshots. Reduced-Order Models
(ROM) dedicated to preserve the symplectic structure have generated interest for problems
that can be described in terms of the canonical Hamilton’s equations. The preservation of
this feature by the ROM is guaranteed by Proper Symplectic Decomposition methods and
is especially relevant for accurate long-term predictions. Additionally, Proper Generalized
Decomposition provides a versatile framework for constructing parameterized ROMs with
respect to model parameters such as material properties, geometry, and boundary conditions,
to cite a few. These advancements are supported by a substantial body of literature and have
been applied across various fields in engineering sciences.
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Despite significant advancements, ROM for structural dynamics still faces several challenges.
One major shortcoming is the limited ability of many ROMs to accurately capture nonlinear
and non-stationary behavior, which is common in real-world applications. Most models also
struggle with scalability, particularly when applied to large-scale or highly complex systems.
Reduction always involves a trade-off between accuracy and computational efficiency, making
it difficult to develop models that are both precise and fast. Another issue is the lack of robust
error estimation and adaptive refinement techniques, which are crucial for ensuring reliability
across diverse applications. Finally, the integration of ROMs into existing industrial workflows
can be problematic due to the intrusive nature of some techniques, compatibility issues and
the need for specialized knowledge to implement these advanced methods effectively.

The general objective of this thesis is to propose novel ROM implementations that
specifically improve robustness, scalability, and enable parametrization with respect to
damping model parameters. Chapter 1 introduces thereafter some fundamental principles
related to Reduced-Order Modeling, as well as a literature review focused on its applications
to structural dynamics. The main objective and specific objectives of the thesis will be stated
at the end of this chapter. Chapter 2 presents the initial implementation of the proposed
ROM, based on the Proper Generalized Decomposition, and highlights improvements in
robustness compared to previously published methods. It includes a specific study on the
operator’s condition numbers and the use of different metrics for the orthogonalization of the
computed modes. Chapter 3 focuses on enhancing scalability and offers an interpretation of
the ROM in terms of the canonical Hamilton’s equations. This chapter also proposes a PGD
framework that is adapted to the preservation of the symplectic structure with respect to the
time variable. Chapter 4 incorporates parametric damping and explores the use of surrogate
modeling for damping optimization purposes. Finally, Chapter 5 provides concluding remarks,
discusses the limitations of the current work, and outlines potential directions for future
research.

1.2 Reduced-Order Modeling

1.2.1 Context and stakes with a playful analogy

The underlying idea of Reduced-Order Modeling (ROM1) is that a volume of information,
whether finite or infinite, structured or unstructured, can be approximately represented using
a finite set of elementary patterns. From a storage perspective, a reduced model is considered
successful if its set of elementary patterns are contained in a much smaller volume than that of

1In this thesis, ROM will refer to either Reduced-Order Modeling or Reduced-Order Model
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the original, full-order information. Moreover, its proficiency is assessed based on how accurate
it can represent the original data. The most widespread application is file compression. For
example, .zip and .png are formats that support lossless data compression. They are optimal
in the way they provide lighter files without any loss of information. Alternatively, the .jpeg
file format allows for lighter files with lossy compression techniques. It will cause a loss of
information, characterized by the presence of artifacts in the compressed image files. The
main point is that the image may become pixelated, yet its content is still recognizable. Toy
building blocks illustrate well a lossless reduction process (see Figure 1.2). The assembled
pumpkin is made of 102 building blocks. However, the assembly can be summed up by no more
than 11 unique classes of blocks. It essentially means that the knowledge of 11 building blocks
is sufficient to have a complete understanding of the assembly. This would represent about a
10% memory gain. Furthermore, it is worth noting the similar shapes and colors between the
assembled pumpkin and the building blocks. It highlights feature preservation between the
full-order and reduced-order representations. The meaning of structure preservation in physics
is an essential topic in ROM and will be discussed later. The question of the uniqueness of
the reduced model will be tackled as well.

Figure 1.2 Three levels of representation (from left to right): reduced-order pumpkin, assembled
pumpkin [10] and a real pumpkin [11].

Computing complexity is another crucial issue in ROM. Two procedures must be defined:

1. Reduction or encoding: from the full-order representation, find the elementary patterns
that capture most or all the given information. This stage is commonly referred to as
the offline phase;

2. Decoding, i.e. the inverse operation: from the elementary patterns, reconstruct an
approximation of the full-order representation. This is the online phase.

It is clear that the second operation is the easiest: given the block components and user
instructions, it is rather easy to build the pumpkin. For instance, in the case of image
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compression, one needs the appropriate piece of code or reader to open the compressed file.
Strictly speaking, when one opens an image, the operating system calls the appropriate
algorithm to decode the compressed file and displays it. Conversely, it is not trivial to
determine a minimal set of blocks that constitutes the assembled pumpkin or an image.
Whether the offline and online phases can be performed efficiently determines the success of
the ROM as well.

Furthermore, the diagram on the right of Figure 1.2 completes the analogy with the relation
between a real-world observation and a model. It can be considered that the assembled
pumpkin models a real pumpkin. Again, features that are essential such as colors, overall
shape and carvings are preserved by the model. The other way around, given the assembled
pumpkin, one would eventually be able to tell it is meant to represent a pumpkin – although
this may be contingent to social and cultural influences (the decoder). The key ideas are as
follows: the information is abstracted and reduced from the right to the left with losses along
the way; yet, if the major features were purposely preserved and given the proper decoder, it
will be possible to use the left-most representation to infer characteristics of the real object.
Furthermore, it is essential to explain how these concepts transpose when it comes to describe
physics.

1.2.2 Formal context in linear elastodynamics

In the context of this thesis, we shall consider the model of linear elastodynamics in d spatial
dimensions under the assumption of infinitesimal deformation (d = 1, 2, or 3). Let Ω be an
open bounded subset of Rd, with Lipschitz boundary ∂Ω, and let I = (0, T ) denote the time
interval. The boundary ∂Ω is supposed to be decomposed into two portions, ∂ΩD and ∂ΩN ,
such that ∂Ω = ∂ΩD ∪ ∂ΩN . The displacement field u : Ω̄× Ī → Rd satisfies the following
partial differential equation2:

ρ
∂2u

∂t2
−∇ · σ(u) = f, ∀(x, t) ∈ Ω× I, (1.1)

where, in the case of infinitesimal deformation, the stress tensor σ(u) and strain tensor ε(u)
are given by:

σ(u) = E : ε(u), ∀(x, t) ∈ Ω× I, (1.2)

ε(u) = 1
2

(
∇u+

(
∇u

)T)
, ∀(x, t) ∈ Ω× I, (1.3)

2Parameters others than space and time are not considered as variable here for the sake of clarity in the
presentation. Extra-parameter dependence will be tackled in Chapter 4.
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and is subjected to the initial conditions:

u(x, 0) = u0(x), ∀x ∈ Ω, (1.4)
∂u

∂t
(x, 0) = v0(x), ∀x ∈ Ω, (1.5)

as well as to the boundary conditions:

u(x, t) = 0, ∀(x, t) ∈ ∂ΩD × I, (1.6)

σ(u) · n = gN(x, t), ∀(x, t) ∈ ∂ΩN × I. (1.7)

The functions f : Ω × I → Rd, u0 : Ω → Rd, v0 : Ω → Rd, and gN : ∂ΩN × I → Rd are
supposed to be sufficiently regular to yield a well-posed problem. Equations (1.1) to (1.7)
constitute the model, our main goal being the description of the displacement field u on Ω̄×Ī.
The medium occupied by Ω̄ is assumed to have local material properties described by the tensor
of elasticity E and density ρ. Moreover, E is assumed to be symmetric. In the following, we
will denote the first and second time derivatives by u̇ = ∂u/∂t and ü = ∂2u/∂t2.

Key point Thereby, the information of interest is that of the displacement field u (and
potentially some of its time derivatives). The purpose is twofold, as we want both to
compress the representation of u and to reduce the computational complexity associated
with the model simulation.

Further, we consider here the semi-weak Finite Element formulation with respect to the
spatial variable. A thorough presentation of this development will be given in the subsequent
chapters. For now, let us admit the following semi-weak formulation of the problem:

Find u = u(·, t) ∈ V , for all t ∈ Ī, such that:∫
Ω
ρü · u∗ + ε(u) : E : ε(u∗) dx =

∫
Ω
f · u∗ dx+

∫
∂ΩN

gN · u∗ dx, ∀u∗ ∈ V, ∀t ∈ I,
(1.8)

and:

u(x, 0) = u0(x), ∀x ∈ Ω, (1.9)
∂u

∂t
(x, 0) = v0(x), ∀x ∈ Ω, (1.10)

where V is the vector space of vector-valued functions defined on Ω:

V =
{
v ∈

[
H1(Ω)

]d
: v = 0 on ∂ΩD

}
.
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Remark There are many ways to obtain a semi-weak formulation (not unique) for the
strong formulation stated above, such as the Principle of Virtual Work or the Principle
of Least Action. The latter principles are mathematically equivalent, yet we will see
that they lead to different semi-weak formulations that present different advantages and
drawbacks.

The domain is partitioned into Ne elements, denoted by Ke, such that Ω = ∪Ne
e=1Ke and

Int(Ki) ∩ Int(Kj) = ∅, ∀i, j = 1, . . . , Ne, i ̸= j. We then associate with the mesh the
finite-dimensional Finite Element space W h, with dim(W h) = s, of scalar-valued continuous
and piecewise polynomial functions defined on Ω, that is:

W h = {vh : Ω→ R : vh|Ke ∈ Pk(Ke), e = 1, . . . , Ne} ,

where Pk(Ke) denotes the space of polynomial functions of degree k on Ke. Let ϕi, with
i = 1, . . . , s, denote the basis functions of W h, i.e. W h = span{ϕi}. We then introduce the
finite element subspace V h of V such that:

V h =
[
W h

]d
∩ V,

and search for finite element solutions uh = uh(·, t) ∈ V h, ∀t ∈ Ī, in the form:

uh(x, t) =
s∑
i=1

ϕi(x)qi(t),

where the vectors of degrees of freedom (DOFs), qj ∈ Rd, depend on time. The above problem
can be conveniently recast in compact form as3:

M q̈(t) +Kq(t) = f(t), ∀t ∈ I, (1.11)

q(0) = u0, (1.12)

q̇(0) = v0, (1.13)

where M ∈ Rn×n and K ∈ Rn×n are the global mass and stiffness matrices, respectively, both
being symmetric and positive definite. f(t) is the load vector at time t, q(t) is the global
vector of DOFs and u0 and v0 are the initial vectors. The integer n is the number of global
DOFs in space, that is n = d × s. Let us consider for now that d = 1. The finite element

3The development leading to this form is omitted for the sake of conciseness. The corresponding details
can be found in Sections 2.2.2, 3.1.3 and 4.1.3 of the following chapters.
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solution can be rewritten as:
uh(x, t) = ϕh(x)q(t),

with ϕh such that:
ϕh(x) =

[
ϕ1(x) ϕ2(x) . . . ϕn(x)

]
.

The development presented here is a classic FE formulation. It is interesting to interpret
it as a kind of model reduction. Indeed, in the space-time continuous strong formulation, a
solution u is sought for in V , whose dimension is infinite. The FE formulation proposes to
search for an approximation of u, denoted by uh, in V h, whose dimension is finite. Given a
mesh, the basis functions ϕi are known and the qi are the time-dependent unknowns of the
problem. The basis functions are defined on Ω but are typically chosen with a small support,
i.e. they are non-zero only locally, more precisely, ϕi is non-zero only in the patch of elements
that share node i4. Therefore, it is intuitively understood that each DOF carries a rather
small amount of information regarding uh. Moreover, the quality of the FEM depends directly
on the mesh size, as the errors should converge to zero as it goes to zero5. Finer meshes lead
to a high number of basis functions. For that reason, the FEM cannot be truly considered as
a ROM.

The goal of ROM is to find a new set of basis functions, which could be defined in terms
of the FE basis functions. The combined functions, usually called modes, allow to express an
approximation ur of uh, such that:

uh(x, t) ≈ ur(x, t) =
r∑
i=1

φi(x)ψi(t),

with r ⩽ n, r being called the rank of the approximation. Formally written, modes are defined
as:

∀i ∈ {1, . . . , r}, ∃(α1,i, . . . , αn,i) ∈ Rn, s.t. φi(x) =
n∑
j=1

αj,iϕj(x), ∀x ∈ Ω.

As a result, modes have possibly a larger support on Ω so that the approached solution can
be computed with a reduced number of DOFs. Although fewer in number, each DOF carries
more information regarding ur: there should be a duality between the size of the reduced basis
and the information each mode allows to express. Additionally, if ur is a good approximation
of uh for r ≪ n, that is the rank r of the ROM is a lot smaller than the original number of
DOFs n, then the ROM is considered to be successful. The main purpose of model reduction

4For nodal FE spaces.
5Additionally, the choice of basis functions is also crucial to accurately capture the physics being modeled,

e.g. avoid issues such as shear locking.
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techniques is to provide a method or heuristic to determine the coefficients (α1,i, . . . , αn,i).
This process is referred to as the offline phase. One can define the reduced counterparts of ϕh
and q, respectively, denoted thereafter by ϕr and qr, such that:

ur(x, t) = ϕr(x)qr(t),

where:
ϕr(x) =

[
φ1(x) φ2(x) . . . φr(x)

]
,

qr(t) =
[
ψ1(t) ψ2(t) . . . ψr(t)

]T
.

Given the definition of the reduced basis functions, one can define a transformation matrix
Φr ∈ Rn×r that concatenates the coefficients such that:

ϕr(x) = ϕh(x)Φr

where:

Φr =


α1,1 α1,2 α1,r

... ... . . .
...

αn,1 αn,2 αn,r


In the end, one substitutes ur(x, t) = ϕh(x)Φrqr(t) and u∗

r(x, t) = ϕh(x)Φrq
∗
r(t) for u and

u∗, respectively, in (1.8). And, as previously with (1.11)–(1.13), the problem can be recast in
compact form in terms of qr, such that q = Φrqr, as:

Mrq̈r(t) +Krqr(t) = f r(t), ∀t ∈ I,

qr(0) = Φ†
ru0,

q̇r(0) = Φ†
rv0,

(1.14)

with Φ†
r the left pseudo-inverse of Φr. Moreover, Mr ∈ Rr×r, Kr ∈ Rr×r, and f r : R → Rr

are given by:
Mr = ΦT

rMΦr,

Kr = ΦT
rKΦr,

f r = ΦT
r f .

The formulation (1.14) may be referred to as the reduced-order model. It is the projection of
the full-order model equations onto the reduced subspace spanned by the column vectors of Φr.
An approximation of the solution of the problem can now be found with r time-continuous
DOFs instead of n, with r ≪ n. One can notice that the FE formulation is the particular
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case where r = n and αi,j = δij
6, i.e. Φr = In.

Remark Formally, the dynamic equilibrium equation is given in terms of the reduced
vector of DOFs as:

MΦrq̈r(t) +KΦrqr(t) = f(t) + r(t), (1.15)

where r(t) is a time-dependent residual. This residual highlights the fact that an error
is committed with respect to the full-order equilibrium equation (1.11). At this point, a
distinction may be made between the reduced transformation matrix Φr and a projection
matrix Φp. The projection matrix Φp is usually built considering the Petrov-Galerkin
projection [12], such that it is orthogonal to r(t), i.e. ΦT

p r(t) = 0, and ΦT
p Φr is invertible.

Thus, the projection of the equilibrium equation reads:

ΦT
pMΦrq̈r(t) + ΦT

pKΦrqr(t) = ΦT
p f(t).

The first equation of (1.14) is the particular case where the Galerkin projection is
considered, i.e. Φp = Φr.

The purpose of the next section is to describe the existing ROM techniques and the specific
features of the transformation matrix Φr they compute.

1.3 Literature review

Several model reduction approaches have been put forth for applications in structural dynamics.
Emerging approaches based on Machine Learning are certainly worth being mentioned,
e.g. Physics-Informed Neural Networks (PINNs) [13]. However, the present review primarily
addresses widely adopted projection-based approaches [8, 14] and the Proper Generalized
Decomposition (PGD), which stands out as a distinct approach. This literature review mainly
focuses on applications to structural dynamics. For each method, the properties of the reduced
basis being built will be emphasized, as well as its advantages and drawbacks.

1.3.1 Modal Analysis

The Rayleigh-Ritz method is considered as one of the earliest and foundational model reduction
methods in linear dynamics [15]. It typically involves solving an eigenvalue problem and
projecting the full-order problem on a basis made of relevant eigenvectors (or eigenmodes).
Given the stiffness and mass matrices, one solves the generalized eigenvalue problem Ku =

6δij denotes the Kronecker delta, that is δij = 1 if i = j and δij = 0 otherwise.



12

λMu; such λ ∈ R and u ∈ Rn, u ̸= 0, are respectively the eigenvalues and eigenvectors. It
undoubtedly remains the most popular technique among engineering analysis tools. If we
select r eigenpairs (λi,ui) ∈ R× Rn, i = 1, . . . , r, they satisfy the following properties:

uTi Kuj = kiδij,

uTi Muj = miδij,

where ki ∈ R+ and mi ∈ R∗
+, i = 1, . . . , r, can be interpreted as the equivalent stiffness

and mass coefficients, respectively, associated with the ith eigenvector. The eigenvectors are
orthogonal to each other with respect to both the mass and stiffness operators. As a result,
the mass and stiffness operators are diagonal in the subspace spanned by the eigenvectors.
Eigenvectors are unique up to multiplication by a non-zero scalar. Thus, they are usually
normalized with respect to the mass operator, such that:

uTi Kuj = ω2
i δij,

uTi Muj = δij.

with ωi the eigen pulsations, such that ω2
i = ki/mi = λi, associated with the retained

eigenmodes. Eigenvectors are now unique up to the sign. In practice not all the eigenpairs
are computed and approaches, such as the shifted block Lanczos algorithm, can be used to
compute eigenvectors in the vicinity of an eigenvalue of interest, the latter being used as the
shift [16]. Then, Modal Analysis proposes the following choice for Φr:

Φr =
[
u1 . . . ur

]
.

In consequence, the reduced-order system is diagonal and can be written component-wise,
such that:

ψ̈i + ω2
iψi = fr,i, i = 1, . . . , r.

Therefore, not only this method reduces the size of the system to solve, but the components
of the reduced vector of DOFs are decoupled.

Yet, eigenvectors only depend on the geometry and material parameters of the structure,
hence the reduced model mainly describes the natural response, i.e. when f = 0. Consequently,
not all eigenvectors are necessarily relevant to obtain the structural response under external
loads. Or, conversely, it may introduce a large number of these vectors to describe the
mechanical behavior, which is not desirable in reduced-order modeling.



13

1.3.2 Dynamic Substructuring

Later, Component Mode Synthesis [17] techniques were developed. Among them, the Craig
and Bampton method [18] has been one of the most prolific. It combines features from modal
decomposition and static condensation to construct a reduced-order model that accurately
represents the dynamic behavior of substructures or assemblies. Nodes are partitioned into
two domains, such that the dynamic equilibrium equation reads:Mii Mib

Mbi Mbb

q̈i(t)
q̈b(t)

+
Kii Kib

Kbi Kbb

qi(t)
qb(t)

 =
f i(t)
f b(t)

 ,
where vectors subscripted by i and b denote interior and interface boundary DOFs, respectively;
operators subscripted by ii and bb denote material properties associated to interior and interface
DOFs, while subscripts ib and bi stand for the coupling between DOFs of the two partitions.
The choice made in the Craig-Bampton methodology is given by:

Φr =
[
Ψb Ψi

]
, with :

Ψb =
−K−1

ii Kib

Ibb

 ,
Ψi =

Φ
0

 ,
where Ibb is the identity matrix whose dimension is the number of interface DOFs and Φ
is the matrix that concatenates a set of eigenvectors of the interior structures. Assuming
the interface boundaries to be clamped, the eigenvectors are the solutions to the generalized
eigenvalue problem Kiiu = λMiiu. Ψb and Ψi are commonly referred to as the constraint
modes and the fixed-interface normal modes, respectively. The retained eigenvectors define
the frequency bandwidth on which such a ROM is valid [19]. This particular mapping Φr

leads to a block diagonal reduced stiffness matrix:

Kr = ΦT
rKΦr =

Kbb −KbiK
−1
ii Kib 0

0 Ω2
ii


where Ωii is the diagonal matrix of the retained eigen pulsations of the interior partition. This
structure highlights the orthogonality of the constraint modes with the fixed-interface normal
modes with respect to the stiffness operator. As a result, Kr is mostly sparse. This property
is leveraged to efficiently compute large numbers of eigenpairs [20] with the Automated
Multilevel Substructuring Method (AMLS).

Nonetheless, it can be observed that the dimension of the reduced model is driven by the
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number of DOFs on the interface, rather than by the actual behavior of the structure [21].

1.3.3 Proper Orthogonal Decomposition

An alternative approach that circumvents the latter shortcoming is the POD. This data-driven
approach builds a reduced model generally obtained by the Singular Value Decomposition
(SVD) performed on snapshots describing the evolution of the states of the system. It can be
viewed as an a posteriori approach, in the sense that it takes the state of the full-order model
at different time-steps7 as an input, the so-called snapshots, in order to extract the dominant
modes in the data. Given a snapshot matrix S ∈ Rn×m, such that:

S =
[
q(t1) . . . q(tm)

]
,

the following optimization problem has to be solved [22]:

minimize
Φr∈Rn×r

∥S − ΦrΦT
r S∥,

subject to ΦT
r Φr = Ir,

where ∥ · ∥ is the Frobenius norm. The Schmidt-Mirsky-Eckart-Young theorem [23] states
that the truncated SVD of S gives the solution to the above minimization problem. The
SVD8 computes a factorization of S as:

S = UΣV T ,

where, with r ⩽ min(n,m), U ∈ Rn×r, Σ ∈ Rr×r and V ∈ Rm×r verify the following properties:

– UTU = Ir and V TV = Ir, i.e. U and V are semi-orthogonal;

– Σ is diagonal with strictly positive numbers.

The reduced basis is then defined with the column vectors of U :

Φr = U.

In the case of dynamics, the column vectors of V can be used as a reduced basis for time
functions and are referred to as temporal modes.

7In the case where the time variable is considered to be the parameter (time-domain POD).
8The real, compact SVD variant is described here.



15

The performance of the POD has been demonstrated for both linear and nonlinear dynamics
subjected to transient loads [24–26], and most notably, within a goal-oriented framework
for elastodynamics, in the cases of either space-time approximation [27] or parametrized
problems [28]. One well-known shortcoming of the Proper Orthogonal Decomposition (POD) is
that it requires snapshots computed in an offline stage by an expensive high-fidelity solver, e.g.
the Finite Element Method. In [29, 30], the snapshots are evaluated at a given time-step only
if the estimated error exceeds a given threshold and reduced bases are subsequently enriched
in an adaptive manner. Such an approach allows one to mitigate the cost in evaluating the
full-order model. Similarly, the so-called Reduced Basis (RB) technique provides a snapshot
selection strategy designed to minimize the error committed by the reduced model [31,32].

The reduced mapping Φr computed therein is chosen semi-orthogonal by convention with
respect to the Euclidean norm. Depending on the mechanical properties, e.g. heterogeneity,
this norm may not allow one to capture the physics being modeled. In that regard, energy
norms may be preferred instead [25, 33]. Furthermore, the authors in [8] pointed out that
the offline phase is somewhat suboptimal when the goal is to use the ROM for optimization.
Indeed, the offline phase involves an exploration of the parametric space, but it is not known
a priori whether the explored regions will subsequently be exploited throughout the online
phase (optimization); or worse, the optimization process could lead to assess the response of
the system in some regions where the offline phase did not gather enough information about
the system’s behavior. This remark especially applies to methods like the POD, where the
exploration is contingent to costly, full-order solutions [34].

1.3.4 Proper Symplectic Decomposition

The PSD is specifically concerned with the preservation of the symplectic structure of the
full-order model. This structure arises in the context of Hamiltonian systems, which will be
introduced thereafter.

The structural dynamics problem that we are interested in can be described in terms of
the Hamiltonian functional. The Hamiltonian formalism consists in modeling the motion of
the system along a trajectory in the phase space by introducing the generalized coordinates q
and their generalized (or conjugate) momenta p as independent variables. For the problem at
hand, the Hamiltonian functional h reads:

h(q,p, t) = 1
2q

TKq + 1
2p

TM−1p− qTf . (1.16)

The equilibrium equation (1.11), restated in terms of the Hamiltonian, is equivalent to the



16

so-called Hamilton’s equations [35,36]:

q̇ = ∇p h,

ṗ = −∇q h.

Let us introduce the canonical coordinates z that vertically concatenates q and p such that:

z =
q
p

 .
The gradient of the Hamiltonian (1.16) then reads:

∇z h =
∇q h
∇p h

 =
Kq − f
M−1p

 .
In the symplectic framework, the dynamics of the structure is modeled by the trajectory
in the symplectic vector space (R2n, ω) of dimension 2n for linear systems, where ω is the
so-called symplectic form defined as:

∀z =
q
p

 ∈ R2n, ∀z′ =
q′

p′

 ∈ R2n, ω(z, z′) = qTp′ − q′Tp = zTJ2nz
′,

with J2n the skew-symmetric operator such that:

J2n =
 0 In

−In 0

 ,
and J2

2n = −I2n. It is then possible to recast (1.11) as:

ż = ∇ωh,

where ∇ω = J2n∇z is defined as the symplectic gradient. The Hamiltonian can be written as
a sum of a quadratic form on R2n and the external energy term:

h(z, t) = 1
2z

THz − zTf z,

with H the Hessian operator of h and f z such that:

H =
K 0

0 M−1

 , f z =
f

0

 .
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We now introduce the notion of symplectic mapping. A symplectic mapping is a linear
transformation that preserves the symplectic form ω, i.e.:

A ∈ R2n×2n is symplectic if ω(Az, Az′) = ω(z, z′), ∀(z, z′) ∈ R2n × R2n.

As a consequence, such a mapping A verifies:

ATJ2nA = J2n.

The notion can actually be generalized to rectangular matrices with the symplectic Stiefel
manifold, denoted Sp(2r, 2n), such that:

Sp(2r, 2n) =
{
A ∈ R2n×2r : ATJ2nA = J2r

}
. (1.17)

Let (R2r, γ), with r ≪ n, be a symplectic vector space, A ∈ Sp(2r, 2n) a symplectic mapping,
and y ∈ R2r such that z = Ay. One can define a Hamiltonian for the reduced canonical
coordinates y:

g(y) = 1
2y

TGy − yTf y,

with G its Hessian operator and f y the projection of the external loads onto the symplectic
subspace (in the case r ⩽ n), such that:

G = ATHA, and f y = ATf z.

The system to be solved is governed by the reduced Hamiltonian g, whose Hessian G can be
interpreted as the reduced counterpart of the Hessian operator H. The preservation of the
symplectic structure implies that y is governed by Hamilton’s canonical equations, expressed
hereinafter in terms of γ (symplectic form on R2r) and g such that:

ẏ = ∇γg,

with ∇γ = J2r∇y.

In Hamiltonian mechanics, symplecticity-preserving methods are especially relevant because
they exhibit good accuracy. Symplectic integrators are particularly robust to compute long-
time evolution of Hamiltonian systems [37–39]. In addition, symplectic methods were found
proficient for the treatment of elastodynamics problems that involve large rotations and small
strains [39].

SVD-based methods, such as the cotangent lift and complex SVD techniques, are prominent
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in generating symplectic bases [40, 41]. The cotangent lift method involves performing
the SVD on covariance matrices for generalized coordinates and conjugate momenta. It
effectively preserves the symplectic structure of the original system. The complex SVD
method, which represents the Hamiltonian system in a complex form and applies the SVD to
this representation, is useful for systems with oscillatory behavior or complex-valued states
but may introduce additional computational complexity. In the case of periodic solutions, a
recent work shows that the POD of canonizable Hamiltonian systems naturally leads to a
symplectic basis [42]. Aside, the greedy approaches were applied to construct a symplectic
basis iteratively, selecting basis vectors that maximize the energy content or minimize an error
with respect to a chosen criterion [40,41]. This method is adaptable and efficient in capturing
significant modes of the Hamiltonian system, but it requires careful selection of the criterion
and stopping condition to ensure optimal performance. Like most greedy approaches, the
basis vectors must be orthonormalized. Yet, the classic orthonormalization algorithms do not
preserve the symplectic structure [43]. Therefore, the symplectic Gram-Schmidt method [44]
is considered instead. On another note, Hamiltonian operator inference involves learning a
reduced-order model directly from data by inferring the reduced Hamiltonian operator [45].
The strategies described above require to project the full-order model onto the symplectic
subspace, as shown in Eq. (1.14). Conversely, Hamiltonian operator inference solely relies
on data and removes the need of a complete knowledge of the full-order model operators.
In that regard, this technique is said to be nonintrusive. Another data-based PSD draws
upon modal analysis. The data is interpreted in terms of the symplectic formalism to define
two intertwined eigenvalue problems whose solutions are the PSD modes [46]. Like other
a posteriori methods, these approaches may become computationally intensive with the
full-order data generation for large-scale systems.

1.3.5 Proper Generalized Decomposition

The PGD [47,48] constructs a reduced basis on-the-fly, eliminating the need for prior knowledge
of the solution to the problem. In that respect, the PGD method is used as an a priori
approach and can be assimilated as a solver: one simultaneously solves the problem and
constructs a reduced approximation subspace. The PGD strategy is akin to the method of
separation of variables, in the sense that one assumes that the solutions to differential equations
are separable with respect to the independent variables and/or the model parameters. Without
accounting for model parameters, one would assume that the solutions to the elastodynamics
equation are space-time separable. In other words, that the fields can be approximated by a
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sum of products of functions in space by functions in time, such that:

uh(x, t) ≈ ur(x, t) =
r∑
i=1

φi(x)ψi(t),

where φi and ψi, i = 1, . . . , r, are referred to as spatial and temporal modes, respectively. This
representation of the approximate solution is actually common to all the methods previously
mentioned. Yet, the PGD differs from those methods as the assumed separated representation
for ur is injected into the weak formulation: the φi and ψi become the new unknowns of the
problem. The Galerkin-based definition of the PGD is detailed thereafter.

Let us consider a problem under the following residual form:

Find u ∈ VR, such that: R(u, u∗) = F(u∗)− B(u, u∗) = 0, ∀u∗ ∈ V ∗
R,

where F is linear, B is bilinear, and VR and V ∗
R are the spaces of trial and test functions,

respectively. They depend on the residual operator R. The PGD reduced model is iteratively
computed, usually with one enrichment at a time. Let us begin with the first enrichment u1,
sought for as:

u1(x, t) = φ(x)ψ(t),

and test functions are considered in the form:

u∗(x, t) = φ∗(x)ψ(t) + φ(x)ψ∗(t).

The substitution of u by u1 and u∗ by the expression above in the residual operator reads:

Find (φ, ψ) ∈ SR × TR, such that:

R(φψ, φ∗ψ + φψ∗) = 0,

⇔ R(φψ, φ∗ψ) +R(φψ, φψ∗) = 0, ∀(φ∗, ψ∗) ∈ S∗
R × T ∗

R,

(1.18)

where SR, TR, S∗
R, and T ∗

R are appropriate function spaces. As a result, the new formulation
of the problem is no longer linear in the unknowns. Such a problem could be solved by means
of a nonlinear solver like the Newton-Raphson’s method. However, the fixed-point iteration is
generally preferred. It consists in solving the problem in two steps:

1. Solve (1.18) for φ with ψ known. This step is referred to as the spatial problem and
reads:

R(φψ, φ∗ψ) = 0, ∀φ∗ ∈ S∗
R. (1.19)
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2. Solve (1.18) for ψ with φ known. This step is referred to as the temporal problem and
reads:

R(φψ, φψ∗) = 0, ∀ψ∗ ∈ T ∗
R. (1.20)

Steps 1 and 2 are repeated until a convergence criterion is fulfilled. We can see here the
advantage of the fixed-point scheme, as one parameter dependency is treated at a time. The
theoretical complexity of PGD solvers also decreases compared to conventional solvers. Indeed,
according to [48], one observes that the complexity of conventional solvers scales exponentially
with the dimensions of the problem, while that of PGD solvers scales linearly. For example,
considering n spatial DOFs and nt temporal DOFs, the global dimension of the problem
is n × nt. The combination of the PGD strategy with a fixed-point iteration leads to two
subproblems (1.19) and (1.20), whose complexities are solely subject to the dimensions n
and nt, respectively: it reduces high-dimension problems into subproblems of lower dimensions.
Conversely, the Newton-Raphson algorithm tackles the problem in a coupled fashion and does
not allow for such a complexity reduction.

Once the fixed-point iteration has converged, the product of modes φ and ψ is the first
enrichment of the PGD approximation and will be written φ1ψ1. Then, subsequent enrichment
terms can be computed. Let m ∈ N, m > 1, be such that the mth enrichment is computed
considering that the first m− 1 pairs of modes are known. The mth pair of modes is sought
for such that um, the decomposition of rank m, writes:

um(x, t) =
m−1∑
i=1

φi(x)ψi(t)︸ ︷︷ ︸
known decomposition

+ φ(x)ψ(t),︸ ︷︷ ︸
new enrichment

and the following fixed-point iterations are subsequently solved for as many enrichment terms
as needed:

R(φψ, φ∗ψ) = −
m−1∑
i=1
R (φiψi, φ∗ψ), ∀φ∗ ∈ S∗

R,

R(φψ, φψ∗) = −
m−1∑
i=1
R (φiψi, φψ∗), ∀ψ∗ ∈ T ∗

R.

In other words, for a given decomposition, the computation of a new enrichment is based on
a residual that assesses the error committed by the current ROM. In that regard, enrichment
terms are interpreted as corrections: new modes are meant to retrieve missing information or
figuratively “fill the blanks”. The rank r of the decomposition is defined as the final number of
enrichment m. As an example, for a one-dimensional medium Ω with density ρ and Young’s
modulus E, the insertion of the first enrichment into the continuous dynamic equilibrium
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equation (1.1) reads (with φ′′ = d2φ/dx2):

ρφ1(x)ψ̈1(t)− Eφ′′
1(x)ψ1(t) = f(x, t) + r1(x, t), ∀(x, t) ∈ Ω× I,

where r1 : Ω×I → R is a space-time strong residual that characterizes the error committed by
the ROM with respect to the full-order equilibrium equation. For a given rank m, 1 ⩽ m ⩽ r,
the expression above writes:

ρ
m∑
i=1

φi(x)ψ̈i(t)− E
m∑
i=1

φ′′
i (x)ψi(t) = f(x, t) + rm(x, t), ∀(x, t) ∈ Ω× I,

with rm the mth strong residual. Thus, further enrichment terms are computed such that
∥ri∥ → 0 as i increases, in the sense of a chosen norm ∥ · ∥.

Ultimately, the PGD also allows one for computing separated representations for fields
that depends on parameters other than space and time [14], e.g. with ℘ ∈ N extra-parameters,
such that:

uh(x, t, p1, . . . , p℘) ≈ ur(x, t, p1, . . . , p℘) =
r∑
i=1

φi(x)ψi(t)
℘∏
j=1

µji (pj),

and the fixed-point iteration described above can be generalized, with one subproblem per
parameter to be solved for the modes µji .

Several efforts have been deployed in the last decade towards building separated approxima-
tions of solutions governed by second-order hyperbolic equations. However, the performance
of the PGD approach using a space-time separation for transient structural dynamics has
often been considered unsatisfactory [49, 50]. One reason is that the fixed-point algorithm
employed by Galerkin-based PGD solvers tends to exhibit poor convergence, if it converges
at all [49]. In fact, it is open to question whether the PGD framework using space-time
separability is suitable for solving second-order hyperbolic problems. Of particular interest
is the fact that low rank decomposition of high-order tensors, i.e. whenever the order is
higher than unity, inevitably leads to ill-posed formulations [51]. This is mainly due to
non-uniqueness of such separated representations [52]. This issue has been overcome with the
implementation of a greedy rank-one strategy, where one mode per parameter is computed,
combined with an update of formerly computed temporal modes [53]. The PGD does not
inherently compute spatial modes with a specific structure; it is up to the user to enforce
any desired structure for the spatial modes. Their normalization and/or orthogonalization by
means of any Gram-Schmidt process usually improves the robustness of the algorithm [54].
The authors in [49, 55] have also proposed an alternative to the Galerkin-based PGD, namely
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the minimal residual PGD, with an emphasis on optimal norms for the PGD in elastodynamics.
The minimal residual PGD consistently converges, a proof of which is given in [56]. Different
approaches have also been proposed in order to circumvent the difficulty one encounters when
using a separated representation in space and time. For instance, an approach that assumes a
good space separation, was presented in [57]. It consists in estimating, in an adaptive manner,
the number of spatial modes at each time step. Alternatively, space-frequency separated
representations were developed for a fairly wide range of applications: 2D acoustics [58,59],
nonlinear soil mechanics [60], linear and nonlinear structural dynamics [61,62] and transient
electronics [63]. The space-frequency separation was shown to be particularly efficient if
additional parameters (material, geometric, etc.) were accounted for. In this respect, the
advantage of PGD solvers seems clear when geometric or material parameter separation is at
stake, offering a considerable reduction of the computational complexity [48,50]. However,
the space-frequency formulation does not necessarily provide direct insights into the transient
behavior of the system. While it can determine its response at specific frequencies, it may
fail to accurately capture time-dependent loads or dynamical events. Recent works have
introduced a variant of the PGD, called sparse PGD (sPGD). The latter is at the core of a
multi-parametric approach in the context of digital twins [64]. The sPGD method was used
in an a posteriori setting with scarce input data and in combination with a Harmonic-Modal
Hybrid (HMH) solver and the Discrete Empirical Interpolation Method (DEIM). Furthermore,
the PGD framework has also been extended to perform basic operations (multiplications,
divisions) as well as more complex operations, such as solving linear systems of algebraic equa-
tions, leveraging the principle of variable separation. The authors in [65] have thus created a
versatile toolbox for PGD algebraic operators, which has been used in a non-intrusive manner
to solve parametric eigenproblems arising, for instance, in automotive applications [66,67].

1.3.6 Viscous damping in ROM for structural dynamics

In the case of viscous damping, the equilibrium equation of the full-order model becomes:

M q̈(t) + Cq̇(t) +Kq(t) = f(t), ∀t ∈ I,

where C is the global damping matrix. Similar to the stiffness and mass operators, C is
assembled based on a tensor that represents the viscous local properties of the medium Ω.
However, characterizing the local viscous properties remains challenging [68]. Therefore, the
assumption of a proportional damping is often employed to model the structure’s damping,
that is the damping matrix C is written as C = αK + βM [68–70], with α, β ∈ R+. This
damping formulation is also called Rayleigh damping and α and β are referred to as the
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Rayleigh damping parameters. These coefficients do not have a clear physical interpretation
regarding the materials [69, 70]. Their estimation remains nevertheless an active research
topic in both the experimental and numerical communities [71, 72], as the control of damping
phenomena is a critical issue in the construction, automotive, or aerospace industries.

This hypothesis is particularly convenient in Modal Decomposition since the damping
operator is also diagonal in the eigenspace. The reduced-order system can still be written
component-wise, such that:

ψ̈i + 2ξiωiψ̇i + ω2
iψi = fr,i, i = 1, . . . , r,

with ξi being the modal damping coefficients, given by:

ξi = 1
2

(
αωi + β

ωi

)
.

Thus, the same eigenvalue problem as for the undamped equation, i.e. Ku = λMu, allows
one to estimate the damped behavior of a structure for any values of α and β. One can see
that the modal damping term ξi is proportional to the modal pulsation ωi with respect to
α; conversely, it is inversely proportional to the modal pulsation with respect to β. As a
result, proportional damping may produce underdamped or overdamped behaviors in certain
frequency ranges [68] (although this may be convenient in some cases). In practice, the
goal is to optimize parameters α and β around a pulsation of interest. Similarly to Modal
Decomposition, several methods based on Krylov subspaces have been developed to build
proportionally damped reduced models [73–75]. However, both Modal Decomposition and
Krylov-based methods operate in two steps:

1. Build a ROM for the undamped equation;

2. Project the damped equation onto the reduced basis for given values of α and β.

Hence, the reduced model is actually not parametrized with respect to the damping parameters.

1.4 Thesis objective and contributions

None of the methods presented above stands out as an indisputable candidate for structural
dynamics. Some oppositions can be highlighted: the POD is robust and weakly intrusive but
full-order solves are costly; on the other hand, the PGD may suffer from convergence issues,
but its framework is versatile and removes the burden of full-order solves. On another note, the
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PSD specifically tackles the preservation of the symplectic structure of the original problem
but, like the POD, suffers from costly evaluations when applied to large-scale full-order
models.

Main objective The main objective of the thesis is to propose novel implementations
that offer:

1. Robustness, computational efficiency, and preservation of the symplectic structure
of the problem (when applicable);

2. The parametrization of the ROM with respect to the Rayleigh damping parameters.

In the light of this literature review and the scope of this work, the framework provided
by the PGD seems to be the most appealing. The method is versatile regarding:

– The strategy to obtain the solutions to the subproblems (linear solver, time integration,
etc.);

– The constraints or properties imposed on the modes (e.g., normalization and/or orthog-
onalization and the choice of a metric);

– The parameters to be accounted for.

One should take advantage of this flexible framework and tune it towards the main objective
of the thesis. To this end, three specific objectives SO1, SO2, and SO3 were set as follows.

SO1: Investigate the convergence issue of the Galerkin-based PGD formula-
tion and develop a robust implementation
Drawing upon the work presented in [49,50,55], the lack of convergence of the space-time
Galerkin-based PGD was investigated. An algorithm was implemented following a greedy
rank-one strategy with an orthonormalization of the spatial modes [54] and an update
of the temporal mode after each enrichment [53]. The novelty of this work lied in the
development of weak formulations of the PGD problems based on the Lagrangian and
Hamiltonian Mechanics, the objective being to devise numerical methods that are numer-
ically stable and energy conservative. The solver based on the Hamiltonian formulation
was showed to offer better stability and energy conservation properties than that based
on the Lagrangian formulation.
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This objective led to the following scientific communications:

– Peer-reviewed article

C. Vella, S. Prudhomme, “PGD reduced-order modeling for structural dynamics applica-
tions”, Computer Methods in Applied Mechanics and Engineering, Vol. 402, p. 115736,
2022, https://doi.org/10.1016/j.cma.2022.115736.

– Conference presentation (∗: speaker)

C. Vella∗, S. Prudhomme, “On the stability of PGD reduced-order models for structural
dynamics applications”. Oral presentation at the 8th European Congress on Computational
Methods in Applied Sciences and Engineering (ECCOMAS) in Oslo, Norway, on June
5–9, 2022.

SO2: Extend the base implementation towards higher scales and the preser-
vation of the symplectic structure with respect to the time variable
The second specific objective primarily focuses on enhancing the computational efficiency
of the previously introduced PGD solver based on the Hamiltonian formalism. The
novelty of this development lied in the implementation of a solver that is halfway between
Modal Decomposition and the conventional PGD framework, to specifically reduce the
cost of the spatial solver. The original idea consists in preprocessing the eigenpairs
approximations of the operators, namely the Ritz pairs, that provide a subspace in
which the problem in space remains diagonal throughout the fixed-point iterations. All
computations are then carried out in the subspace spanned by the Ritz vectors, hence
drastically decreasing the computational burden. Additional procedures such as Aitken’s
delta-squared process and mode-orthogonalization are incorporated to ensure convergence
and stability of the algorithm. Numerical results regarding the ROM accuracy, time
complexity, and scalability were provided to demonstrate the performance of the new
solver when applied to dynamic simulation of a three-dimensional structure.

This objective led to the following scientific communications:

– Peer-reviewed article

C. Vella, P. Gosselet, S. Prudhomme, “An efficient PGD solver for structural dynamics
applications”, Advanced Modeling and Simulation in Engineering Sciences, Vol. 11, 2024,
https://doi.org/10.1186/s40323-024-00269-z.

https://doi.org/10.1016/j.cma.2022.115736
https://doi.org/10.1186/s40323-024-00269-z
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– Conference presentations (∗: speaker)

C. Vella∗, S. Prudhomme, “Symplectic formulation of PGD reduced-order models for
structural dynamics applications”. Poster presentation at the Model Reduction and
Surrogate Modeling (MORE) conference in Berlin, Germany, on September 19–23, 2022.

C. Vella, P. Gosselet, S. Prudhomme∗, “On an efficient PGD solver for structural
dynamics applications”. Oral presentation at the 6th International Workshop on Model
Reduction Techniques (MORTech 2023) in Paris-Saclay, France, on November 22–24,
2023.

SO3: Develop a parametrized PGD reduced model with respect to Rayleigh
damping coefficients and enhance the efficiency and accuracy of the spatial
solver
The third and final objective focuses on the development of a PGD reduced model that
is parametrized by Rayleigh damping coefficients. The proposed approach incorporates
damping modes to construct a damped surrogate model effectively. A novel method
has been introduced to solve the problem in space: during the offline phase, the spatial
problem is initially projected onto the subspace spanned by the Ritz vectors of the system
to provide an efficient prediction of the spatial modes. The prediction is then refined
using a MinRes iterative solver. This two-step process, akin to a prediction-correction
method, reduces the computational cost of a full-order solution while improving the
accuracy of the reduced model. The resulting PGD surrogate has been subsequently
employed within a Particle Swarm Optimization algorithm to determine optimal damping
coefficients based on a given snapshot. Numerical experiments has demonstrated the
effectiveness of the proposed approach.

This objective led to the following scientific communications:

– Peer-reviewed article

C. Vella, S. Prudhomme, “PGD surrogate modeling with application to the identification
of Rayleigh damping parameters”, submitted to Computers & Structures.

– Conference presentation (∗: speaker)

C. Vella∗, S. Prudhomme, “On an efficient PGD solver for damped elastodynamics
optimization”. Oral presentation at the 16th World Congress on Computational Mechanics
(WCCM) and 4th Pan American Congress on Computational Mechanics (PANACM) in
Vancouver, Canada, on July 21–26, 2024.
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CHAPTER 2 ON A GALERKIN-BASED PROPER GENERALIZED
DECOMPOSITION FOR THE 1D WAVE EQUATION: DEVELOPMENT OF A

ROBUST DISPLACEMENT-MOMENTUM APPROACH

In this chapter, novel space-time separated representations are developed for the wave equation
with the objective of devising numerical methods that are stable and energy conservative.
Particular attention is paid to the derivation of weak formulations, at the continuous level,
following the application of the Hamilton’s Weak Principle [76]. The first formulation is based
on the Lagrangian description of Mechanics [77], where only the displacement field is considered
as an unknown of the problem. The second one is based on the Hamiltonian theory [35,36], in
which both the displacement field (generalized coordinates) and the conjugate field (generalized
momenta) are treated as unknown fields. We thus derive two weak formulations that allow us
to implement the Galerkin-based version of the PGD, which will be referred to as L-PGD
and H-PGD, respectively. In particular, the Hamiltonian approach naturally leads to a
mixed weak formulation that allows one to introduce two separated representations, one
for the displacement field and the other for the conjugate field, in a manner similar to the
MF-PGD [49], but using the Galerkin-based PGD.

Regarding the discretization in time, several integration schemes have been adapted to
linear elastodynamics [15, 78, 79]. Only stable, energy conservative discretization schemes
are considered here, namely the Crank-Nicolson method [80–82] (also known as the implicit
trapezoidal rule), and the Newmark method [83] with γ = 1/2 and β = 1/4. Moreover, we
apply two post-processing procedures that aim at improving the convergence of the Galerkin-
based version of the PGD [53,54], namely 1) the orthogonalization of the spatial modes via
a modified Gram-Schmidt algorithm, and 2) the update procedure of the temporal modes.
These procedures are applied to both the L-PGD and H-PGD. We will show in the numerical
examples that the H-PGD solver has a better numerical stability and produces solutions
with better energy conservation than the L-PGD, and this for all implemented test cases.
One reason is that the orthonormalization and update procedures for the H-PGD truly work
in synergy. Moreover, we propose an adaptive fixed-point algorithm for the H-PGD that
independently controls, and thus accelerates, the convergence of the fields. Finally, we will
show through a numerical example that the methodology can be extended in a straightforward
manner to the case of the wave equation involving a linear damping term.

The chapter is organized as follows: in Section 2.1, we describe the model problem and
provide an analytical solution by the method of separation of variables for a specific set of
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initial and boundary conditions. In Section 2.2, we present the weak formulations of the
problem based on the Lagrangian and Hamiltonian formalisms and derive discrete counterparts
using the Finite Element method in space and numerical integration schemes in time. The
L-PGD and H-PGD approaches are described in Section 2.3 along with the orthogonalization
and updating procedures as well as the fixed-point algorithms. Numerical experiments are
presented in Section 2.4 to illustrate the performance of the proposed approaches. We finally
provide some concluding remarks in Section 2.5.

2.1 Model problem

2.1.1 Strong formulation

The model problem we shall consider consists of a 1D bar in traction or compression under
the assumption of infinitesimal deformation. The bar has density ρ, Young’s modulus E,
length ℓ, and cross-sectional area A. We will assume that E and A are constant but that ρ
could possibly vary in space. Let Ω = (0, ℓ) be the open interval in R occupied by the bar
and let I = (0, T ) denote the time interval. The displacement u = u(x, t) is governed by the
1D wave equation:

ρA
∂2u

∂t2
− EA∂

2u

∂x2 = f, ∀(x, t) ∈ Ω× I, (2.1)

and subjected to the initial conditions:

u(x, 0) = u0(x), ∀x ∈ Ω, (2.2)
∂u

∂t
(x, 0) = v0(x), ∀x ∈ Ω, (2.3)

as well as to the boundary conditions:

u(0, t) = 0, ∀t ∈ I, (2.4)

EA
∂u

∂x
(ℓ, t) = g(t), ∀t ∈ I, (2.5)

where the functions f = f(x, t), u0 = u0(x), v0 = v0(x), and g = g(t) are supposed sufficiently
regular to yield a well-posed problem. In the following, we will denote the time derivatives
by u̇ = ∂u/∂t and ü = ∂2u/∂t2 and the space derivatives by u′ = ∂u/∂x and u′′ = ∂2u/∂x2.
Moreover, we introduce the wave speed as c =

√
E/ρ.
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2.1.2 Analytical solution

In the case that the speed c is chosen constant, it is well known that the general solution to
the homogeneous wave equation (2.1) in an infinite domain, i.e. with f(x, t) = 0 and Ω = R,
can be recast, using the d’Alembert formula, as u(x, t) = φ(x + ct) + ϕ(x − ct), where φ
and ϕ are identified from the initial data u0 and v0. The solution is therefore interpreted as
two waves with constant velocity c moving in opposite directions along the x-axis. In the
particular case that v0(x) = 0, the solution is given by u(x, t) = (u0(x+ ct) + u0(x− ct))/2.
It follows that the solution may not always be represented in a separated form with respect
to both space and time depending on the choice of u0.

We nevertheless provide the analytical solution in the case of a simple problem, that is,
taking f(x, t) = 0, v0(x) = 0, g(t) = 0, and c constant. Moreover, the initial condition on
the displacement is chosen as u0(x) = Fx/(EA), which corresponds to the equilibrium state
of the bar when subjected to a force F at x = ℓ. The displacement u satisfies the following
system of equations:

ü− c2u′′ = 0, ∀(x, t) ∈ Ω× I, (2.6)

u(x, 0) = u0(x), ∀x ∈ Ω,

u̇(x, 0) = 0, ∀x ∈ Ω,

u(0, t) = 0, ∀t ∈ I,

EAu′(ℓ, t) = 0, ∀t ∈ I.

Using the method of separation of variables, we search for solutions in the separated form:

u(x, t) = χ(x)ψ(t).

Substituting the above expression for u in (2.6) yields:

χ′′(x)
χ(x) = 1

c2
ψ̈(t)
ψ(t) , ∀(x, t) ∈ Ω× I.

It follows that one has to find constants λ ∈ R such that the function χ(x) satisfies the
eigenvalue problem:

χ′′(x) + λχ(x) = 0, ∀x ∈ Ω,

χ(0) = 0,

χ′(ℓ) = 0,

(2.7)
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and such that the function ψ(t) satisfies the ordinary differential equation:

ψ̈(t) + c2λψ(t) = 0, ∀t ∈ I. (2.8)

The solutions to the eigenvalue problem (2.7) consist of the eigenvalues λk and associated
eigenfunctions χk:

λk =
[

(2k − 1)π
2ℓ

]2

, χk(x) = sin
(√

λkx
)
, ∀k = 1, 2, . . .

while the solution to (2.8) for each eigenvalue λk is given as:

ψk(t) = αk cos
(
c
√
λkt

)
+ βk sin

(
c
√
λkt

)
.

The general solution to the problem thus reads:

u(x, t) =
+∞∑
k=1

χk(x)ψk(t) =
+∞∑
k=1

sin (2k − 1)πx
2ℓ

[
αk cos (2k − 1)πct

2ℓ + βk sin (2k − 1)πct
2ℓ

]
.

Using the initial condition on the velocity, i.e. u̇(x, 0) = v0(x) = 0, implies that βk = 0
for all k = 1, 2, . . . Moreover, the coefficients αk correspond to the coefficients of the sine
Fourier series associated with the initial displacement u0(x) = Fx/(EA). It follows that the
displacement field reads:

u(x, t) = 8Fℓ
π2EA

+∞∑
k=1

(−1)k+1

(2k − 1)2 sin (2k − 1)πx
2ℓ cos (2k − 1)πct

2ℓ , ∀(x, t) ∈ Ω̄× Ī. (2.9)

We observe in this case that the solution can be represented in a separated form and that the
coefficients of the series decrease with a quadratic rate. We shall use this analytical solution
to assess the accuracy of our calculations in some of the numerical examples.

2.2 Weak formulations of the problem

The construction of weak formulations of the problem is not unique. We present below two
formulations based on the Lagrangian and the Hamiltonian approaches. We first recall the
Hamiltonian’s principle that will be used in the derivation.
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2.2.1 Hamilton’s Weak Principle

Let q denote the generalized coordinates of the system, corresponding here to the displacement
field u, and let tA and tB be two specified times. We note that the principle was originally
stated assuming that the initial and final states of the system under study were known,
q(x, tA) = qA(x) and q(x, tB) = qB(x). Given a Lagrangian functional L of the system, the
action functional of q, denoted by S[q], is defined as [35,36]:

S[q] =
∫ tB

tA
L(q(t), q̇(t), t) dt. (2.10)

The Hamilton’s Weak Principle states that the evolution of q followed by the physical system
between the states qA and qB is a stationary point of the action functional:

S ′[q](q∗) = 0, ∀q∗ ∈ V0, (2.11)

where V0 is the space of perturbations q∗ that vanish at tA and tB. The precise definition of
V depends on the choice of the Lagrangian. Here, S ′[q](q∗) is the Gâteaux derivative of S[q]
defined at q with respect to the perturbation q∗, i.e.

S ′[q](q∗) = lim
θ→0

1
θ

(
S[q + θq∗]− S[q]

)
.

In the particular case where the states q at times tA and tB are unknown, the principle of
least action can be recast as [84]:

S ′[q](q∗) =
[
∂L
∂q̇
q∗
]tB
tA

, ∀q∗ ∈ V. (2.12)

We note here that the perturbations q∗ in V do not necessarily vanish at tA or tB. Later in
the manuscript, all our test cases consider the initial displacement qA to be known while qB
remains unknown.

2.2.2 The Lagrangian formalism

The evolution of the generalized coordinates function q, describing the displacement as a
function of x and t, defines a so-called trajectory of a system in the configuration space. The
trajectory of a physical system is thus entirely determined by the knowledge of q. The objective
of Joseph-Louis Lagrange in his seminal treatise Méchanique Analitique first published in
1788 [77] was to lay down, once and for all, the foundations of analytical mechanics. In fact,
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he introduced as early as 1756 the action functional S as defined in (2.10).

Continuous formulation

For our problem (2.1)-(2.5), the Lagrangian functional L reads:

L(q, q̇, t) = 1
2

∫
Ω
ρAq̇2 dx︸ ︷︷ ︸

Kinetic Energy

− 1
2

∫
Ω
EA

(
∂q

∂x

)2

dx︸ ︷︷ ︸
Potential Energy

+
∫

Ω
fq dx+ g(t)q(ℓ, t)︸ ︷︷ ︸

External Energy

, (2.13)

where the field q satisfies the initial conditions (2.2)-(2.3). In other words, the space of trial
fields q is:

UL = {q ∈ L2(I, H1(Ω)) ∩H1(I, L2(Ω));

q(0, t) = 0, ∀t ∈ I; q(x, 0) = u0(x), q̇(x, 0) = v0(x), ∀x ∈ Ω}.
(2.14)

Requiring that the trajectory q be a stationary point of the action functional S leads to the
so-called Euler-Lagrange equations. Using the Lagrangian (2.13), the Gâteaux derivative of S
is given by:

S ′[q](q∗) = lim
θ→0

1
θ

[ ∫
I
L(q + θq∗, q̇ + θq̇∗, t) dt−

∫
I
L(q, q̇, t) dt

]

= lim
θ→0

1
θ

∫
I

[
L(q + θq∗, q̇ + θq̇∗, t)− L(q, q̇, t)

]
dt

=
∫

I

∫
Ω
ρAq̇∗q̇ − EA∂q

∗

∂x

∂q

∂x
+ q∗f dxdt+

∫
I
q∗(ℓ, t)g(t) dt,

where the space of perturbations q∗ is given by:

VL = {q∗ ∈ L2(I, H1(Ω)) ∩H1(I, L2(Ω));

q∗(0, t) = 0, ∀t ∈ I; q∗(x, 0) = 0, q̇∗(x, 0) = 0, ∀x ∈ Ω}.
(2.15)

Then, using (2.12), we obtain the equation:

∫
I

∫
Ω
ρAq̇∗q̇ − EA∂q

∗

∂x

∂q

∂x
+ q∗f dxdt+

∫
I
q∗(ℓ, t)g(t) dt =

[ ∫
Ω
ρAq∗q̇ dx

]T
0
, ∀q∗ ∈ VL.
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It follows that a weak formulation of the problem reads:

Find q ∈ UL such that∫
I

∫
Ω
ρAq̇∗q̇ − EA∂q

∗

∂x

∂q

∂x
dxdt−

∫
Ω
ρAq∗(x, T )q̇(x, T ) dx

= −
∫

I

∫
Ω
q∗f dxdt−

∫
I
q∗(ℓ, t)g(t) dt, ∀q∗ ∈ VL.

(2.16)

We note that the above formulation is equivalent to the strong form (2.1)-(2.5) of the problem
for sufficiently smooth data. Indeed, integration by parts with respect to the time variable
yields:

∫
I

∫
Ω
ρAq∗q̈ + EA

∂q∗

∂x

∂q

∂x
dxdt =

∫
I

∫
Ω
q∗f dxdt+

∫
I
q∗(ℓ, t)g(t) dt, ∀q∗ ∈ VL. (2.17)

Moreover, following an integration by parts with respect to the space variable, one obtains:

∫
I

∫
Ω
q∗
(
ρAq̈ − EA∂

2q

∂x2 − f
)
dxdt+

∫
I
q∗(ℓ, t)

(
EA

∂q

∂x
(ℓ, t)− g(t)

)
dt = 0, ∀q∗ ∈ VL,

which allows us to recover the strong form of the wave equation (2.1) and the Neumann
boundary condition (2.5).

Discrete formulation

The objective here is to define the discrete problem using a Finite Element method in space and
a finite difference approach in time. In order to do so, we consider the semi-weak formulation
instead of the weak formulation (2.16):

Find q(·, t) ∈ V , ∀t ∈ I, such that∫
Ω
ρ(x)Aq∗(x)q̈(x, t) + EA

∂q∗

∂x
(x)∂q

∂x
(x, t) dx

=
∫

Ω
q∗(x)f(x, t) dx+ q∗(ℓ)g(t), ∀q∗ ∈ V, ∀t ∈ I

and that satisfies the initial conditions

q(x, 0) = u0(x), ∀x ∈ Ω,

q̇(x, 0) = v0(x), ∀x ∈ Ω,

where V is the vector space of functions defined on Ω as:

V =
{
v ∈ H1(Ω) : v(0) = 0

}
.
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We partition the domain into Ne elements, denoted by Ke, such that Ω = ∪Ne
e=1Ke and

Int(Ki) ∩ Int(Kj) = ∅, ∀i, j = 1, . . . , Ne, i ̸= j. We then associate with the mesh a finite
element space V h ⊂ V , dim V h = n, based on continuous piecewise polynomial functions
defined on Ω:

V h = {vh ∈ V : vh|Ke ∈ Pk(Ke), e = 1, . . . , Ne},

where Pk(Ke) denotes the space of polynomial functions of degree k on Ke. Let ϕi, with
i = 1, . . . , n, denote the basis functions of V h, i.e. V h = span{ϕi}. We then search for finite
element solutions in the form:

qh(x, t) =
n∑
j=1

qj(t)ϕj(x)

where the degrees of freedom qj depend on time. The Finite Element problem using the
Galerkin method thus reads:

Find qh(·, t) ∈ V h, ∀t ∈ I, such that∫
Ω
ρ(x)Aϕi(x)q̈h(x, t) + EA

∂ϕi
∂x

(x)∂qh
∂x

(x, t) dx

=
∫

Ω
ϕi(x)f(x, t) dx+ ϕi(ℓ)g(t), ∀i = 1, . . . , n, ∀t ∈ I

and that satisfies the initial conditions

qh(x, 0) = u0,h(x), ∀x ∈ Ω,

q̇h(x, 0) = v0,h(x), ∀x ∈ Ω,

where u0,h and v0,h are interpolants or projections of u0 and v0 in the space V h. The above
problem can be recast in compact form as:

M q̈(t) +Kq(t) = f(t), ∀t ∈ I (2.18)

q(0) = u0,

q̇(0) = v0,

where M and K are the global mass and stiffness matrices, respectively, both being symmetric
and positive definite:

Mij =
∫

Ω
ρAϕiϕj dx, Kij =

∫
Ω
EAϕ′

iϕ
′
j dx, ∀i, j = 1, . . . , n,
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f(t) is the loading vector at time t:

fi(t) =
∫

Ω
ϕi(x)f(x, t) dx+ ϕi(ℓ)g(t), ∀i = 1, . . . , n,

q(t) is the vector of degrees of freedom:

q(t) =
[
q1(t) . . . qn(t)

]T
and u0 and v0 are the initial vectors:

u0 =
[
u0,1 . . . u0,n

]T
,

v0 =
[
v0,1 . . . v0,n

]T
.

A classical approach [80,81] to discretize in time the system of second-order differential
equations (2.18) consists first in rewriting the system as a system of first-order differential
equations by introducing the vector of velocities w = q̇, i.e.

q̇(t)−w(t) = 0, ∀t ∈ I, (2.19)

Mẇ(t) +Kq(t) = f(t), ∀t ∈ I, (2.20)

and then in applying the Crank-Nicolson scheme (also referred to as the implicit trapezoidal
rule) to both (2.19) and (2.20). Dividing the time domain I into nt subintervals In = [tn, tn+1],
n = 1, . . . , nt of size ht = tn+1 − tn, we evaluate qn and wn, n = 0, . . . , nt, such that q0 = u0

and w0 = v0, and:

2(qn+1 − qn)− ht(wn +wn+1) = 0, ∀n = 0, . . . , nt − 1,

2M(wn+1 −wn) + htK(qn + qn+1) = ht(fn + fn+1), ∀n = 0, . . . , nt − 1.

The above system of equations can be conveniently recast in matrix form as:htK 2M

2M −htM


q

n+1

wn+1

 =

−htK 2M

2M htM


q

n

wn

+ ht

f
n + fn+1

0

 , ∀n = 0, . . . , nt − 1,

(2.21)
where we have multiplied the first row by matrix M . It is worth noting that the scheme is not
only implicit and second-order, but preserves the energy of the system over time [80–82]. We
shall compare the scheme to that obtained using the Hamiltonian framework presented below.
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2.2.3 The Hamiltonian formalism

We recall that Lagrange described the evolution of a system in terms of the generalized
coordinates q, and implicitly of its first derivative q̇, in the configuration space. Hamilton
extended the work of Lagrange in 1834 [35] by describing the evolution of the system in the
phase space, introducing the generalized coordinates q and their generalized (or conjugate)
momenta p = ρAq̇ as independent quantities. In order to do so, he applied a Legendre
transform to the Lagrangian with respect to q̇ (with q fixed) and thus defined the Hamiltonian
functional H as [76]:

H(q, p, t) =
∫

I
pq̇ dt− L(q, q̇, t). (2.22)

While the Lagrangian is written in terms of a difference between the kinetic energy and the
potential energy, the Hamiltonian corresponds to the sum of these two energies. In fact, it
actually represents the total energy of the system under study in the case of conservative
systems, see below.

Continuous formulation

The action S (2.10) is defined in terms of the Hamiltonian functional (2.22) as:

S[q, p] =
∫

I
q̇p−H(q, p, t) dt

where the Hamiltonian functional for our problem reads:

H(q, p, t) = 1
2

∫
Ω

1
ρA

p2 dx︸ ︷︷ ︸
Kinetic Energy

+ 1
2

∫
Ω
EA

(
∂q

∂x

)2

dx︸ ︷︷ ︸
Potential Energy

−
(∫

Ω
fq dx+ g(t)q(ℓ, t)

)
︸ ︷︷ ︸

External Energy

The generalized coordinate and momenta are searched in the spaces:

UH = {q ∈ L2(I;H1(Ω)); q(0, t) = 0, ∀t ∈ I; q(x, 0) = u0(x), ∀x ∈ Ω},

WH = {p ∈ L2(I;L2(Ω)); p(x, 0) = ρAv0(x), ∀x ∈ Ω}.

The Hamilton’s Weak Principle then states that the trajectory (q, p) of the system in the
phase space should satisfy:

S ′[q, p](q∗, p∗) =
[ ∫

Ω
q∗p dx

]T
0
,
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where S ′[q, p](q∗, p∗) denotes here the Gâteaux derivative of S[q, p] with respect to a pertur-
bation (q∗, p∗) belonging to the spaces:

VH = {q∗ ∈ L2(I;H1(Ω)); q∗(0, t) = 0, ∀t ∈ I; q∗(x, 0) = 0, ∀x ∈ Ω},

ZH = {p∗ ∈ L2(I;L2(Ω)); p∗(x, 0) = 0, ∀x ∈ Ω}.

We easily compute the Gâteaux derivative of S[q, p] as:

S ′[q, p](q∗, p∗) =
∫

I

∫
Ω
q̇∗p+ p∗q̇ − 1

ρA
p∗p− EA∂q

∗

∂x

∂q

∂x
+ q∗f dxdt +

∫
I
q∗(ℓ, t)g(t) dt,

so that a weak formulation of the problem reads:

Find (q, p) ∈ UH ×WH such that∫
I

∫
Ω
q̇∗p+ p∗q̇ − 1

ρA
p∗p− EA∂q

∗

∂x

∂q

∂x
dxdt −

∫
Ω
q∗(T )p(T ) dx

= −
∫

I

∫
Ω
q∗f dxdt −

∫
I
q∗(ℓ, t)g(t) dt, ∀(q∗, p∗) ∈ VH ×ZH .

(2.23)

Integrating by parts with respect to time and space for sufficiently smooth data, we can
rewrite (2.23) as:

∫
I

∫
Ω
p∗
(

1
ρA

p− q̇
)

+ q∗
(
ṗ− EA∂

2q

∂x2 − f
)
dxdt

+
∫

I
q∗(ℓ, t)

(
EA

∂q

∂x
(ℓ, t)− g(t)

)
dt = 0, ∀(q∗, p∗) ∈ VH ×ZH ,

or, in a decoupled fashion with respect to the test functions q∗ and p∗, as:

∫
I

∫
Ω
p∗
(

1
ρA

p− q̇
)
dxdt = 0, ∀p∗ ∈ ZH ,∫

I

∫
Ω
q∗
(
ṗ− EA∂

2q

∂x2 − f
)
dxdt +

∫
I
q∗(ℓ, t)

(
EA

∂q

∂x
(ℓ, t)− g(t)

)
dt = 0, ∀q∗ ∈ VH .

The Hamiltonian formulation (2.23) can be viewed as a mixed problem for which the coupled
differential equations in strong form are given by:

q̇ = 1
ρA

p, ∀x ∈ Ω,∀t ∈ I,

ṗ = EA
∂2q

∂x2 + f, ∀x ∈ Ω,∀t ∈ I.
(2.24)
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We observe that the system of equations is equivalent to (2.1) by introducing the auxiliary
variable p = ρAq̇. The system of equations (2.24) is usually referred to as the canonical
Hamilton equations. One advantage of the Hamiltonian formalism is that it explicitly informs
one on how to define this auxiliary variable.

Discrete formulation

For convenience, we first recast the weak formulation (2.23) as the system of equations:

∫
I

∫
Ω
p∗
(

1
ρA

p− q̇
)
dxdt = 0, ∀p∗ ∈ ZH , (2.25)∫

I

∫
Ω
q∗ṗ+ EA

∂q∗

∂x

∂q

∂x
dxdt =

∫
I

∫
Ω
q∗f dxdt +

∫
I
q∗(ℓ, t)g(t) dt, ∀q∗ ∈ VH . (2.26)

The objective here is to discretize the set of equations using a Finite Element method in
both space and time. For the spatial discretization, we employ the same mesh and FE space
V h for q and p as the ones used in the Lagrangian formulation. In other words, we search for
Finite Element solutions in the form:

qh(x, t) =
n∑
j=1

qj(t)ϕj(x),

ph(x, t) =
n∑
j=1

pj(t)ϕj(x),

and denote by q and p the vectors of time-dependent degrees of freedom qj and pj , j = 1, . . . , n,
respectively. In the same manner, we consider test functions in the form:

q∗
h(x, t) =

n∑
i=1

q∗
i (t)ϕi(x),

p∗
h(x, t) =

n∑
i=1

p∗
i (t)ϕi(x).

Inserting the trial and test functions in (2.25) and (2.26), one obtains the semi-discrete set of
equations:

∫
I
p∗T (t)

( ¯̄Mp(t)− M̄ q̇(t)
)
dt = 0, (2.27)∫

I
q∗T (t)

(
M̄ ṗ(t) +Kq(t)

)
dt =

∫
I
q∗T (t)f(t) dt, (2.28)
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where the matrices M̄ and ¯̄M are the symmetric positive-definite matrices:

M̄ij =
∫

Ω
ϕiϕj dx,

¯̄Mij =
∫

Ω

1
ρA

ϕiϕj dx, ∀i, j = 1, . . . , n.

In order to approximate the functions q and p with respect to time, we follow an approach
similar to the one proposed in [76]. We thus consider continuous piecewise linear trial functions
on each subinterval In = [tn, tn+1], n = 0, . . . , nt − 1:

q(t) ≈
[
tn+1 − t
ht

]
qn +

[
t− tn

ht

]
qn+1

p(t) ≈
[
tn+1 − t
ht

]
pn +

[
t− tn

ht

]
pn+1

and piecewise constant test functions on each subinterval In, i.e.

q∗(t) = q∗n, p∗(t) = p∗n.

Using the above expressions in (2.27) and (2.28) gives:

nt−1∑
n=0

[p∗n]T
∫

In

¯̄M
([
tn+1 − t
ht

]
pn +

[
t− tn

ht

]
pn+1

)
− M̄

(
qn+1 − qn

ht

)
dt = 0,

nt−1∑
n=0

[q∗n]T
∫

In
M̄

(
pn+1 − pn

ht

)
+K

([
tn+1 − t
ht

]
qn +

[
t− tn

ht

]
qn+1

)
dt

=
nt−1∑
n=0

[q∗n]T
∫

In

[
tn+1 − t
ht

]
fn +

[
t− tn

ht

]
fn+1dt,

which, after integration, yields:

nt−1∑
n=0

[p∗n]T
[
ht
2

¯̄M
(
pn + pn+1

)
− M̄

(
qn+1 − qn

)]
= 0,

nt−1∑
n=0

[q∗n]T
[
M̄
(
pn+1 − pn

)
+ ht

2 K
(
qn + qn+1

)
− ht

2

(
fn + fn+1

)]
= 0.

Since the above equations hold for any arbitrary test fields, the problem consists in solving
for qn and pn, n = 0, . . . , nt, such that q0 = u0 and p0 = ρAv0, and:

2M̄qn+1 − ht ¯̄Mpn+1 = 2M̄qn + ht
¯̄Mpn, ∀n = 0, . . . , nt − 1,

htKq
n+1 + 2M̄pn+1 = −htKqn + 2M̄pn + ht

(
fn + fn+1

)
, ∀n = 0, . . . , nt − 1,
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which can be conveniently recast in matrix form as:htK 2M̄

2M̄ −ht ¯̄M


q

n+1

pn+1

 =

−htK 2M̄

2M̄ ht
¯̄M


q

n

pn

+ ht

f
n + fn+1

0

 , ∀n = 0, . . . , nt − 1.

(2.29)
We note that we would have arrived exactly at the same set of equations if we had chosen
to discretize the problem in time by the finite differences Crank-Nicolson scheme. More
interestingly, we observe that (2.29) has exactly the same structure as (2.21) except for the
fact that matrix M in (2.21) has been replaced by either M̄ or ¯̄M . We shall see in the
following how this slight difference will affect the results within the PGD framework.

Finally, we can conveniently collect the degrees of freedom of the FE solution into the
matrix U of size n× nt:

U =
[
q1 q2 . . . qnt

]
=



q1
1 q2

1 . . . qnt
1

q1
2 q2

2
. . . ...

... . . . . . . ...
q1
n . . . . . . qnt

n

 .

We will use the solutions given by (2.21) and (2.29) as reference solutions when assessing the
results of the PGD. In particular, we will perform some Singular Value Decomposition of U
to identify the principal components or modes of the FE solution.

2.3 PGD reduced-order modeling

The PGD framework aims at searching for an approximation of the given field of interest, e.g.
the generalized coordinate q, in the separated form:

q(x, t) ≈ qm(x, t) = q0(x, t) +
m∑
i=1

λi(t)µi(x),

where the truncation parameter m denotes the number of modes in the representation, the λi’s
and the µi’s stand for the temporal and spatial modes, respectively. q0 is a lift function that
satisfies the non-homogeneous Dirichlet boundary conditions and initial conditions so that
each mode in the separated representation satisfies the corresponding homogeneous boundary
and initial conditions [85].

The PGD solution is often computed based on a greedy algorithm [49,85]. Assuming that
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the qm−1 mode has been computed, the approach consists then in finding the mth enrichment
mode as follows:

qm(x, t) = qm−1(x, t) + λ(t)µ(x),

where the subscript m has been dropped from λm and µm for the sake of clarity in the
notation. Inserting the trial solution qm in the governing differential equations using the
Galerkin method or a residual minimization approach [49,85,86] leads to the solution of a
non-linear system for the unknown functions λ and µ. The problem is usually solved by means
of an appropriate iterative scheme, such as a fixed-point algorithm that will be considered
here, in which one determines in an alternating fashion at each iteration of the algorithm the
solution µ with λ known and then λ with µ known [85,87].

We describe below the derivation of the PGD formulation using the Lagrangian and
Hamiltonian formalism. We will construct first the formulations at the continuous level and
then propose some numerical schemes to discretize the problems.

2.3.1 Lagrangian-based PGD

We consider first the Lagrangian framework. We start from the formulation (2.17) as we will
use a Finite Element approach in space and a Finite Differences approach in time.

Continuous formulation

Substituting qm−1(x, t) + λ(t)µ(x) for qm(x, t) in (2.17), one gets:

∫
I

∫
Ω
ρAq∗λ̈µ+ EA

∂q∗

∂x
λµ′ dxdt

=
∫

I

∫
Ω
q∗(f − ρAq̈m−1)− EA

∂q∗

∂x

∂qm−1

∂x
dxdt+

∫
I
q∗(ℓ, t)g(t) dt, ∀q∗ ∈ VL,

(2.30)

where the vector space VL is defined as in (2.15). In view of using a fixed-point approach, we
now derive the problems for µ and for λ.

We assume first that λ is known and search for µ ∈ V . We thus choose test functions in
the form q∗(x, t) = λ(t)µ∗(x) with µ∗ ∈ V . Equation (2.30) thus reduces to:

∫
Ω
mℓtµµ

∗ + kℓtµ
′µ∗′dx =

∫
Ω
rℓµ(µ∗) dx+

(∫
I
λ(t)g(t) dt

)
µ∗(ℓ), ∀µ∗ ∈ V, (2.31)
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with:

mℓt = ρA
∫

I
λ̈λ dt = ρA

(
λ̇(T )λ(T )−

∫
I
λ̇2 dt

)
,

kℓt = EA
∫

I
λ2 dt,

rℓµ(µ∗) =
(∫

I
fλ dt

)
µ∗ − ρA

(∫
I
q̈m−1λ dt

)
µ∗ − EA

(∫
I

∂qm−1

∂x
λ dt

)
µ∗′,

where mℓt, kℓt, and rℓµ(µ∗) are possibly functions of the spatial variable only.

Similarly, we assume now that µ is known and search for λ = λ(t). Choosing test functions
in the form q∗(x, t) = µ(x)λ∗(t), Equation (2.30) then becomes:

∫
I
λ∗
(
mℓxλ̈+ kℓxλ

)
dt =

∫
I
λ∗rℓλ dt, ∀λ∗, (2.32)

or simply:
mℓxλ̈(t) + kℓxλ(t) = rℓλ(t), ∀t ∈ I, (2.33)

with:

mℓx =
∫

Ω
ρAµ2 dx,

kℓx =
∫

Ω
EA (µ′)2

dx,

rℓλ(t) =
∫

Ω
fµ dx−

∫
Ω
ρAq̈m−1µ dx−

∫
Ω
EA

∂qm−1

∂x
µ′ dx+ µ(ℓ)g(t),

where mℓx and kℓx are constant.

Discrete formulation

As before, we discretize (2.31) by the Finite Element method. In other words, we are looking
for an approximate solution µh ∈ V h of µ:

µ(x) ≈ µh(x) =
n∑
j=1

µjϕj(x),

satisfying:
∫

Ω
mℓtµhϕi + kℓtµ

′
hϕ

′
idx =

∫
Ω
rℓµ(ϕi) dx+

(∫
I
λg(t) dt

)
ϕi(ℓ), ∀i = 1, . . . , n,
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which can be recast in matrix form as:(
Mℓt +Kℓt

)
Uℓµ = Rℓµ. (2.34)

Here, the matrices Mℓt and Kℓt are the modified mass and stiffness matrices, respectively:

Mℓt = M
(∫

I
λ̈λ dt

)
, Kℓt = K

(∫
I
λ2 dt

)
,

and the vector of degrees of freedom Uℓµ and the loading vector Rℓµ are given by:

Uℓµ =


...
µi
...

 , Rℓµ =


...∫

Ω rℓµ(ϕi) dx+ (
∫

I λg(t) dt)ϕi(ℓ)
...

 .

For the time discretization, we again reduce the second-order equation (2.32) to a system
of first-order equations by introducing the new variable ω = λ̇, i.e.:

λ̇(t)− ω(t) = 0, ∀t ∈ I,

mℓxω̇(t) + kℓxλ(t) = rℓλ(t), ∀t ∈ I.

and apply the Crank-Nicolson scheme to each equation. The scheme consists then in finding
the pair (λn, ωn) ∈ R2, n = 1, . . . , nt such that:
htkℓx 2mℓx

2mℓx −htmℓx


λ

n+1

ωn+1

 =

−htkℓx 2mℓx

2mℓx htmℓx


λ

n

ωn

+ ht

r
n
ℓλ + rn+1

ℓλ

0

 , ∀n = 0, . . . , nt − 1,

(2.35)
where we have multiplied the first row by mℓx. We observe that the above system of equations
has naturally the same structure as that in (2.21).

2.3.2 Hamiltonian-based PGD

The proper-generalized decomposition method applied within the Hamiltonian framework
aims at approximating both the generalized coordinates q and their generalized momenta p in
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the separated form:

q(x, t) ≈ qm(x, t) = qm−1(x, t) + λ(t)µ(x),

p(x, t) ≈ pm(x, t) = pm−1(x, t) + ω(t)ν(x).

The goal in this section is to construct the problems that satisfy the enrichment modes
λ(t)µ(x) and ω(t)ν(x) assuming that both qm−1(x, t) and pm−1(x, t) have been calculated. We
present first the continuous formulation of the problems.

Continuous formulation

Replacing q and p in (2.23) by qm and pm, respectively, one straightforwardly gets:

∫
I

∫
Ω
p∗
(

1
ρA

ων − λ̇µ
)
dxdt = −

∫
I

∫
Ω
p∗
(

1
ρA

pm−1 − q̇m−1

)
dxdt, ∀p∗ ∈ ZH , (2.36)∫

I

∫
Ω
q∗ω̇ν + EA

∂q∗

∂x
λµ′ dxdt =

∫
I

∫
Ω
q∗(f − ṗm−1)− EA

∂q∗

∂x

∂qm−1

∂x
dxdt

+
∫

I
q∗(ℓ, t)g(t) dt, ∀q∗ ∈ VH . (2.37)

As in the Lagrangian procedure, we first assume that λ and ω are known and search
for the solutions µ ∈ V and ν ∈ L2(Ω). We therefore choose test functions in the form
q∗(x, t) = λ(t)µ∗(x) and p∗(x, t) = ω(t)ν∗(x). Equations (2.36) and (2.37) thus become:

∫
Ω
mhtνν

∗ − chtµν∗ dx =
∫

Ω
rhν(ν∗) dx, ∀ν∗ ∈ L2(Ω),∫

Ω
dhtνµ

∗ + khtµ
′µ∗′dx =

∫
Ω
rhµ(µ∗) dx+

(∫
I
λg(t) dt

)
µ∗(ℓ), ∀µ∗ ∈ V,

(2.38)

with:

mht = 1
ρA

∫
I
ω2 dt,

cht =
∫

I
λ̇ω dt,

dht =
∫

I
ω̇λ dt = ν(T )λ(T )− cht,

kht = EA
∫

I
λ2 dt,

rhν(ν∗) =
(∫

I
q̇m−1ω dt

)
ν∗ − 1

ρA

(∫
I
pm−1ω dt

)
ν∗,

rhµ(µ∗) =
(∫

I
fλ dt

)
µ∗ −

(∫
I
ṗm−1λ dt

)
µ∗ − EA

(∫
I

∂qm−1

∂x
λ dt

)
µ∗′.
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We remark that cht and dht are constant while mht and kht could possibly depend on the
space variable.

To construct the problem in time, we suppose that µ and ν are known and look for λ
and ω. Choosing the tests functions as q∗(x, t) = µ(x)λ∗(t) and p∗(x, t) = ν(x)ω∗(t) in (2.36)
and (2.37), one obtains:

∫
I
chxλ̇ω

∗ −mhxωω
∗ dt =

∫
I
rhω(ω∗) dt, ∀ω∗,∫

I
chxω̇λ

∗ + khxλλ
∗ dt =

∫
I
rhλ(λ∗) dt+

(∫
I
λ∗g(t) dt

)
µ(ℓ), ∀λ∗,

(2.39)

with:

mhx =
∫

Ω

1
ρA

ν2 dx,

chx =
∫

Ω
µν dx,

khx =
∫

Ω
EA(µ′)2 dx,

rhω(ω∗) =
(∫

Ω

1
ρA

pm−1ν dx

)
ω∗ −

(∫
Ω
q̇m−1ν dx

)
ω∗,

rhλ(λ∗) =
(∫

Ω
fµ dx

)
λ∗ −

(∫
Ω
ṗm−1µ dx

)
λ∗ −

(∫
Ω
EA

∂qm−1

∂x
µ′ dx

)
λ∗.

Discrete formulation

For the discretization of Problem (2.38) in space, we are looking for finite element solutions
µh ∈ V h and νh ∈ V h of µ and ν, respectively, such that:

µ(x) ≈ µh(x) =
n∑
j=1

µjϕj(x),

ν(x) ≈ νh(x) =
n∑
j=1

νjϕj(x),

that satisfy the system of coupled equations:∫
Ω
mhtνhϕi − chtµhϕi dx =

∫
Ω
rhν(ϕi) dx, ∀i = 1, . . . , n,∫

Ω
dhtνhϕi + khtµ

′
hϕ

′
idx =

∫
Ω
rhµ(ϕi) dx+

(∫
I
λg(t) dt

)
ϕi(ℓ), ∀i = 1, . . . , n,
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which can be equivalently written as: Kht Dht

−Cht Mht


Uhµ
Uhν

 =

Rhµ

Rhν

 . (2.40)

The stiffness and mass matrices are given here as:

Kht = K
(∫

I
λ2 dt

)
, Dht = M̄

(∫
I
ω̇λ dt

)
,

Cht = M̄
(∫

I
ωλ̇ dt

)
, Mht = ¯̄M

(∫
I
ω2 dt

)
,

while the vectors Uhµ and Uhν are the vectors of the degrees of freedom associated with µh and
νh, respectively, and the loading vectors Rhµ and Rhν are the residual vectors corresponding
to rhµ and rhν .

Proceeding as before, the discretization in time of the system of equations (2.39) using
the algorithm described in Section 2.2.3 leads to:htkhx 2chx

2chx −htmhx


λ

n+1

ωn+1

 =

−htkhx 2chx

2chx htmhx


λ

n

ωn

+ ht

r
n
hλ + rn+1

hλ

rnhω + rn+1
hω

 , ∀n = 0, . . . , nt − 1.

(2.41)
We observe that the above system is slightly different from the one obtained by the Lagrangian
approach (2.35).

2.3.3 Updating procedure of the temporal modes and Gram-Schmidt process

Let us consider a separable function q(x, t). At the mth enrichment, the PGD approximation
of q is given by:

q(x, t) ≈ qm(x, t) = q0(x, t) +
m∑
i=1

λi(t)µi(x) = qm−1(x, t) + λm(t)µm(x).

The algorithm used here to construct the modes is based on a greedy approach; namely, each
enrichment step aims at the determination of the new mode (µm, λm). The pair (µm, λm) is
thus computed based on the information contained in (µk, λk)1⩽k⩽m−1. However, the previously
computed modes (µk, λk)1⩽k⩽m−1 do not benefit from the new information introduced by
(µm, λm).

One idea to improve the convergence of the PGD approximation is to update the temporal
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modes in a global manner [53, 54, 88, 89]. In other words, after a new mode is found, the
updating algorithm reevaluates the modes (λk)1⩽k⩽m in order to obtain a better combination
of the spatial modes (µk)1⩽k⩽m.

This procedure will significantly improve the convergence of the PGD at a fairly low
computational cost, which only depends on nt and m [54]. However, this procedure requires
the computation of some matrices that can become ill-conditioned with the increase of the
number of modes. If the later occurs, the procedure causes instabilities.

Lagrangian update

We consider (2.17) and solve for (λk)1⩽k⩽m, with (µk)1⩽k⩽m known, using the following trial
and test functions:

qm(x, t) = q0(x, t) +
m∑
i=1

λi(t)µi(x), q∗(x, t) =
m∑
i=1

λ∗
i (t)µi(x).

After discretization, we obtain the following system of equations:htKℓx 2Mℓx

2M̄ℓx −htM̄ℓx


λ

n+1

ωn+1

 =

−htKℓx 2Mℓx

2M̄ℓx htM̄ℓx


λ

n

ωn

+ ht

r
n
ℓλ + rn+1

ℓλ

0

 , ∀n = 1, . . . , nt − 1,

(2.42)
where:

λ(t) = (λ1(t), λ2(t), . . . , λm(t)),

ω(t) = (λ̇1(t), λ̇2(t), . . . , λ̇m(t)),

rℓλ(t) = (rℓλ1(t), rℓλ2(t), . . . , rℓλm(t)),

and:

Kℓx =
[
UT
ℓµi
KUℓµj

]
1⩽i,j⩽m

,

Mℓx =
[
UT
ℓµi
MUℓµj

]
1⩽i,j⩽m

,

M̄ℓx =
[
UT
ℓµi
M̄Uℓµj

]
1⩽i,j⩽m

.
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Hamiltonian update

We consider here the system (2.23) and solve for (λk, ωk)1⩽k⩽m, with (µk, νk)1⩽k⩽m known,
using the following trial and test functions:

qm(x, t) = q0(x, t) +
m∑
i=1

λi(t)µi(x), q∗(x, t) =
m∑
i=1

λ∗
i (t)µi(x),

pm(x, t) = p0(x, t) +
m∑
i=1

ωi(t)νi(x), p∗(x, t) =
m∑
i=1

ω∗
i (t)νi(x).

Following discretization of the equations, we obtain:htKhx 2Chx

2CT
hx −htMhx


λ

n+1

ωn+1

 =

−htKhx 2Chx

2CT
hx htMhx


λ

n

ωn

+ht

r
n
hλ + rn+1

hλ

rnhω + rn+1
hω

 , ∀n = 1, . . . , nt−1,

(2.43)
where:

λ(t) = (λ1(t), λ2(t), . . . , λm(t)),

ω(t) = (ω1(t), ω2(t), . . . , ωm(t)),

rhω(t) = (rhω1(t), rhω2(t), . . . , rhωm(t)),

rhλ(t) = (rhλ1(t), rhλ2(t), . . . , rhλm(t)),

and:

Khx =
[
UT
hµi
KUhµj

]
1⩽i,j⩽m

,

Mhx =
[
UT
hνi

¯̄MUhνj

]
1⩽i,j⩽m

,

Chx =
[
UT
hµi
M̄Uhνj

]
1⩽i,j⩽m

.

Gram-Schmidt process

The question of the metric with respect to which the spatial basis should be orthogonalized
in the Gram-Schmidt procedure arises: should one orthogonalize with respect to K, M , or
any other symmetric positive definite matrix? The matrices Kℓx, Mℓx, M̄ℓx, Khx, and Mhx

introduced in the previous section have special properties. They are called Gram matrices.
Their coefficients result from scalar products with respect to discrete metrics associated with
the matrices K, M , M̄ , or ¯̄M .

Let A ∈ Rn×n be a symmetric positive definite matrix and let (u1, . . . , um) be a family of
vectors of Rn. One can then associate a scalar product with A such that ⟨ui, uj⟩A = uTi Auj and
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a norm such that ∥ui∥A =
√
⟨ui, ui⟩A. Let G ∈ Rm×m be such that G =

[
⟨ui, uj⟩A

]
1⩽i,j⩽m

, the
Gram matrix associated with A and (u1, . . . , um). By virtue of the scalar product properties,
G is symmetric positive semi-definite and is invertible if and only if the vectors (u1, . . . , um)
are linearly independent.

The update procedures described above strongly rely on the fact that the computed Gram
matrices are well conditioned. Yet, given the properties of the Gram matrices, some choices
regarding the metric in the Gram-Schmidt procedure are more suitable than others. In order
to ensure that the condition numbers of the matrices are kept small, the Gram-Schmidt
procedure is therefore performed as follows:

– For the Lagrangian update: one spatial basis (Uℓµk
)1⩽k⩽m is built and orthogonalized

with respect to K and then normalized. In other words, following the Gram-Schmidt
procedure, Kℓx should be equal to Im, where Im is the identity matrix of size m. Mℓx

and M̄ℓx will not have a particular form but their conditioning numbers should remain
low as long as the basis vectors remain linearly independent;

– For the Hamiltonian update: two spatial bases (Uhµk
)1⩽k⩽m and (Uhνk

)1⩽k⩽m are built for
q and p, respectively. An optimal choice, which, to the best of our knowledge constitutes
a new result, is to orthogonalize (Uhµk

)1⩽k⩽m and (Uhνk
)1⩽k⩽m with respect to K and ¯̄M ,

respectively, and then to normalize the vectors. Following the Gram-Schmidt procedure,
Khx = Mhx = Im and their conditioning remains optimal.

2.3.4 Adaptive fixed-point algorithm

We briefly describe in this section the fixed-point algorithms for the Lagrangian and Hamil-
tonian formulations of the PGD approach. In particular, we propose in the case of the
Hamiltonian formulation an algorithm that allows one to accelerate the convergence toward
the enrichment modes associated with the generalized coordinates and the conjugate fields.

Lagrangian fixed-point iteration

For the sake of simplicity in the notation, we will simply use µ and λ to refer here to the
finite element solution µh (or the vector of degrees of freedom Uℓµ) and discrete solution
(λ0, λ1, . . . , λnt). Moreover, we introduce:

– Sℓ : λ 7→ µ, the operator that solves the system (2.34) for µ with λ given;

– Tℓ : µ 7→ λ, the operator that solves the system (2.35) for λ with µ given.
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Let jmax and ϵ denote the user-defined maximum number of iterations and tolerance. The
fixed-point algorithm for the Lagrangian approach is described as a pseudocode in Algorithm 1.
Note that the norm subscripted with L2 is defined as follows for square-integrable functions:

∥f∥2
L2 =

∫
I

∫
Ω
f(x, t)2 dxdt

Algorithm 1 fixed-point algorithm for the Lagrangian formulation
1: Initialize λ0 and µ0, j ← 0, s← ϵ+ 1

2: while j < jmax and s > ϵ do

3: Increment the iteration counter: j ← j + 1

4: Compute new spatial mode: µj ← Sℓ(λj−1)

5: Normalize: µj ← µj/∥µj∥K

6: Compute new temporal mode: λj ← Tℓ(µj)

7: Calculate the PGD difference ∆← µjλj − µj−1λj−1

and average Σ← 1
2 (µjλj + µj−1λj−1)

8: Evaluate the stagnation coefficient: s← ∥∆∥L2/∥Σ∥L2

9: end while

10: Return the modes λ← λj and µ← µj

Hamiltonian fixed-point iteration

As before, the notations µ, ν, λ, ω will be used to refer to the finite element solutions µh and
νh and the discrete solutions (λ0, λ1, . . . , λnt) and (ω0, ω1, . . . , ωnt). Moreover, we consider
the operators:

– Sh : (λ, ω) 7→ (µ, ν), the operator that solves the system (2.40) for (µ, ν) with (λ, ω)
given;

– Th : (µ, ν) 7→ (λ, ω), the operator that solves the system (2.41) for (λ, ω) with (µ, ν)
given.

We have observed in the numerical experiments that convergence of the pairs (µ, λ) and (ν, ω)
does not necessarily happens at the same time. We therefore propose to decouple the iterative
process as follows:



51

– If convergence is reached on the mode µλ, we fix the values of µ and λ and then
solve (2.44) and (2.45) for ν and ω until convergence is reached:

Mhtν = Chtµ+Rhν (2.44)

htmhxω
n+1 = −htmhxω

n + 2chx
(
λn+1 − λn

)
+ ht

(
rnhω + rn+1

hω

)
, ∀n = 0, . . . , nt − 1.

(2.45)

The operators associated with (2.44) and (2.45) will be denoted by Shν : ω 7→ ν,
Thω : ν 7→ ω, respectively.

– If convergence is reached on the mode νω, we fix the values of ν and ω and then
solve (2.46) and (2.47) for µ and λ until convergence is reached:

Khtµ = −Dhtν +Rhµ (2.46)

htkhxλ
n+1 = −htkhxλn + 2chx

(
ωn − ωn+1

)
+ ht

(
rnhλ + rn+1

hλ

)
, ∀n = 0, . . . , nt − 1.

(2.47)

The operators associated with (2.46) and (2.47) will be denoted by Shµ : λ 7→ µ and
Thλ : µ 7→ λ, respectively.

The fixed-point algorithm for the Hamiltonian approach is detailed as a pseudocode in
Algorithm 2. It is essential to notice that the dimensions of the systems to solve with the
H-PGD are twice as big as the ones with the L-PGD. The advantage of this implementation
is twofold. On the one hand, it allows to control the convergence of the fields separately. On
the other hand, this fixed-point algorithm stops iterating on the field that has converged and
therefore iterates on systems twice as small, i.e. of the same dimension as the L-PGD.

2.4 Numerical results and discussion

2.4.1 Test cases

The objective of this section is to present several numerical examples in order to compare the
PGD solutions obtained using the Lagrangian formulation and the Hamiltonian formulation.
We shall consider in all experiments a one-dimensional bar of length ℓ = 0.2 m with material
properties E = 220 GPa, ρ = 7000 kg/m3, and A = 10−3 m2. Unless stated otherwise, we
will solve the differential equation (2.1) with f(x, t) = 0, ∀x ∈ Ω, ∀t ∈ I, with T = 1.15 ms.
Moreover, we will assume that the bar is always fixed at x = 0, i.e. u(0, t) = 0, ∀t ∈ I.
We shall consider five scenarios, that may differ one from the other by the choice of initial
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Algorithm 2 fixed-point algorithm for the Hamiltonian formulation
1: Initialize λ0, ω0, µ0, and ν0, j ← 0, sq ← ϵ+ 1, sp ← ϵ+ 1
2: while j < jmax and (sq > ϵ or sp > ϵ) do
3: Increment the iteration counter: j ← j + 1
4: if sq < ϵ then
5: Compute new spatial mode: νj ← Shν(ωj−1)
6: Normalize: νj ← νj/∥νj∥M
7: Compute new temporal mode: ωj ← Thω(νj)
8: Calculate the PGD difference ∆p ← νjωj − νj−1ωj−1

9: and average Σp ← 1
2 (νjωj + νj−1ωj−1)

10: Evaluate the stagnation coefficient: sp ← ∥∆p∥L2/∥Σp∥L2

11: Update µj ← µj−1 and λj ← λj−1 (fixed modes)
12: else if sp < ϵ then
13: Compute new spatial mode: µj ← Shµ(λj−1)
14: Normalize: µj ← µj/∥µj∥K
15: Compute new temporal mode: λj ← Thλ(µj)
16: Calculate the PGD difference ∆q ← µjλj − µj−1λj−1

17: and average Σq ← 1
2 (µjλj + µj−1λj−1)

18: Evaluate the stagnation coefficient: sq ← ∥∆q∥L2/∥Σq∥L2

19: Update νj ← νj−1 and ωj ← ωj−1 (fixed modes)
20: else
21: Calculate new spatial modes: (µj, νj)← Sh(λj−1, ωj−1)
22: Normalize: µj ← µj/∥µj∥K and νj ← νj/∥νj∥M
23: Compute new temporal modes: (λj, ωj)← Th(µj, νj)
24: Calculate the PGD differences ∆q ← µjλj − µj−1λj−1

and ∆p ← νjωj − νj−1ωj−1

25: Calculate the PGD averages Σq ← 1
2 (µjλj + µj−1λj−1)

and Σp ← 1
2 (νjωj + νj−1ωj−1)

26: Evaluate the stagnation coefficient: sq ← ∥∆q∥L2/∥Σq∥L2

and sp ← ∥∆p∥L2/∥Σp∥L2

27: end if
28: end while
29: Return the modes λ = λj, ω = ωj, µ = µj, and ν = νj
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conditions u0(x) and v0(x) or the type of boundary condition at the endpoint x = ℓ:

1. In the first case, we will consider homogeneous initial displacements and velocities, that
is u0(x) = 0 and v0(x) = 0, ∀t ∈ I, and the Neumann condition (2.5) at x = ℓ where
g(t) is oscillating for t ⩽ T/2 and vanishes for t > T/2. In these experiments, the PGD
solutions will be computed without performing the updating procedure described in
Section 2.3.3;

2. In this case, we will repeat the same experiment as above but using the updating
procedure of Section (2.3.3) for the calculations of the PGD solutions;

3. In the third case, we keep the homogeneous initial conditions and replace the Neumann
condition at x = ℓ by an oscillating Dirichlet condition;

4. This experiment will simulate the problem presented in (2.6) for which one has the
analytical solution (2.9); however, we will restrict the time interval to T = 0.14 ms
in order to avoid the spurious oscillations that appear due to the discontinuity in the
solution [79,90];

5. The last case will consider the exact same scenario as in Case 2, but for the presence of
an extra linear damping term in the wave equation.

In the following, the PGD solutions obtained from the Lagrangian formalism and the
Hamiltonian formalism will be referred to as “L-PGD” and “H-PGD”, respectively. Moreover,
we consider two versions of the Lagrangian formulation: “L-PGD1” uses the Crank-Nicolson
scheme (also called the implicit trapezoidal rule) for time integration, as presented in the
chapter, while “L-PGD2” replaces the Crank-Nicolson scheme by the Newmark method with
γ = 1/2 and β = 1/4 [15, 83]. The solutions in space will be approximated in terms of
continuous piecewise linear polynomial functions for a total of n = 224 degrees of freedom,
i.e. the domain Ω is decomposed into n = 224 elements of equal size. Likewise, the time
interval I is divided into nt = 1025 sub-intervals of equal size (except in Case 4 where we
take nt = 1300). Those values were chosen so that the discretization errors in space and in
time are kept small with respect to the truncation errors from the PGD formulation.

2.4.2 Comparison method and performance criteria

In order to assess the accuracy of the PGD solutions, we will use as reference solutions, the
finite element solutions that are described in Sections 2.2.2 or 2.2.3 and obtained using the
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same discretization parameters n = 224 and nt = 1025. Given a field u = u(x, t) defined on
Ω× I, we denote by ϵu the relative error in the L2 norm:

ϵu = ∥um − uref∥L2

∥uref∥L2

where um is the PGD approximation of rank m of u and uref is a very accurate reference
solution.

We will study the evolution of the errors with respect to the number of modes m in the
PGD solutions and compare these to the errors that one obtains by performing a posteriori a
Singular Value Decomposition on the reference solutions, except in Case 4 for which we will
directly compare the PGD solutions to the analytical solution of problem (2.9). We will in
particular look at the error in the energy of the bar over time as the energy (Hamiltonian) in
the discrete PGD solution is supposed to remain constant when the external loading vanishes.

Furthermore, we will study the condition numbers of the Gram matrices computed during
the temporal update procedure. Condition numbers of such matrices indirectly indicate how
well the Gram-Schmidt procedure performs. As soon as the linear independence of the spatial
basis is compromised, the procedure does not perform as well and condition numbers may
significantly increase. Indeed, the vectors of the spatial basis are linearly independent if and
only if the Gram matrices are invertible. More particularly, Gram matrices should be equal
to the identity matrix (since the basis vectors are orthonormalized here). Thus, after the
1st enrichment (m = 1), the condition numbers are equal to unity. Then, when additional
enrichments are considered, two scenarios may occur:

1. The Gram-Schmidt procedure performs well, the Gram matrices remain equal to Im
(the identity matrix of size m), and the condition numbers remain equal to unity;

2. Linear independence is compromised and not only some of the off-diagonal coefficients
of the Gram matrices become non-null but the Gram matrices are no longer invertible.
As a result the condition numbers drastically increase.

2.4.3 Case 1: Neumann BC without updating procedure

We approximate in this case Problem (2.1)-(2.5) with u0 = 0, v0 = 0, and the Neumann
boundary condition:

EA
∂u

∂x
(ℓ, t) = g(t) =

F0 (1− cos (ωt)) , ∀t ∈ (0, T/2],

0, ∀t ∈ (T/2, T ).
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Figure 2.1 Case 1. (Top left) Error between the reference displacement field and the SVD or
PGD displacement field. (Top right) Error between the reference conjugate momenta field
and the SVD or PGD conjugate momenta field. (Bottom left) Error between the energy of the
reference system and the energy of the reduced system over time. (Bottom right) Condition
numbers of the matrices introduced in Section 2.3.3.

where F0 = 106 N and ω = 4.4× 104 rad/s.

We observe in Figure 2.1 that the L2 errors in the generalized coordinates and momenta
of the PGD solutions barely decrease, if at all, and that their evolution is non monotonic.
However, the H-PGD solution seems to behave slightly better than the L-PGD solutions,
especially in terms of the absolute error in energy that remains smaller. We also observe that
the condition numbers κ(Kℓx) and κ(M̄ℓx) associated with the matrices Kℓx and M̄ℓx increase
as soon as the 5th for L-PGD1 and as soon as the 8th enrichment for L-PGD2. This indicates
that the Gram-Schmidt algorithm fails to orthogonalize the spatial basis. This is not due
to numerical instability and it therefore cannot be corrected by the modified Gram-Schmidt
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Figure 2.2 Case 1. Absolute errors in space and time between the reference displacement field
and the SVD or PGD displacement field.

algorithm. The increase in the condition number is a consequence of the degeneration of the
basis associated with the spatial modes: the added modes compromise the linear independence
of the modes. In other words, the new modes do not provide any new information that was
not already contained in the previous decomposition.

Figure 2.2 shows the distribution of the errors in space and time for the PGD solutions
while Figure 2.3 illustrates the evolution of the displacement fields over time and of the total
energy for the FEM solution and the different PGD solutions.

2.4.4 Case 2: Neumann BC with updating procedure

We repeat here the same experiment of Case 1 using this time the updating procedure
of Section (2.3.3) for the calculations of the PGD solutions. We show in Figure 2.4 the
errors in L2 norm and energy and the condition numbers of the matrices introduced in
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Figure 2.3 Case 1. (Top four plots) Evolution of the displacement field over time for the
different reduction methods; the displacements are shown at 23 nodes uniformly distributed
along the bar. (Bottom) Evolution of the total energy of the reference and reduced systems
versus time.
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Figure 2.4 Case 2. (Top left) Error between the reference displacement field and the SVD or
PGD displacement field. (Top right) Error between the reference conjugate momenta field
and the SVD or PGD conjugate momenta field. (Bottom left) Error between the energy of the
reference system and the energy of the reduced system over time. (Bottom right) Condition
numbers of the matrices introduced in Section 2.3.3.

Section 2.3.3. We first point out that the updating procedure significantly improves the
convergence. Nevertheless, we observe that in the case of the Lagrangian PGD solutions, the
matrices for L-PGD1 and L-PGD2 become ill-conditioned as soon as the 14 and 45 modes are
reached, respectively. For the L-PGD1 and L-PGD2, the space modes µk are orthogonalized
and normalized with respect to Matrix K. Thus, the condition number of Kℓx remains low for
a dozen of modes (as long as Kℓx = Im) while the condition number of M̄ℓx increases from the
beginning. It follows that the condition numbers diverge for the L-PGD1 and L-PGD2 around
40 and 60 modes, respectively. On the other hand, it is remarkable that the matrices in the
case of the H-PGD solution always remain well-conditioned. This is explained by the fact
that at each enrichment step, H-PGD manages to compute a new mode whose information is
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Figure 2.5 Case 2. Absolute errors in space and time between the reference displacement field
and the SVD or PGD displacement field.

not already contained in the old spatial modes. In other words, the Gram-Schmidt algorithm
manages to enforce Mhx = Im and Khx = Im.

Before divergence of the L-PGD solutions occurs, we observe that the errors ϵq in the L2

norm in the displacement field follow the same behavior for the three PGDs. However, for
L-PGD, the errors in the conjugate momenta ϵp quickly reach a plateau after the calculation
of the first dozen modes due to the fact that the matrices become ill-conditioned. It follows
that the L-PGD approach fails to identify the relevant modes for p. For the H-PGD approach,
we see that ϵp keeps decreasing since the method is explicitly designed to compute separate
decompositions for both q and p. It also implies that the total energy of the system is well
approximated for the 223 modes of the H-PGD solution unlike in the case of the L-PGD
solutions. We actually observe in Figure 2.5 that the distribution of the errors in space and
time for the H-PGD solution remain a few orders of magnitude lower than for the L-PGD
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Figure 2.6 Case 2. (Top four plots) Evolution of the displacement field over time for the
different reduction methods; the displacements are shown at 23 nodes uniformly distributed
along the bar. (Bottom) Evolution of the total energy of the reference and reduced systems
versus time.
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solutions, even after the calculation of the 223 modes.

Finally, we show in Figure 2.6 the evolution of the displacement fields over time and of
the total energy for the FEM solution and the different PGD solutions. We note that we use
in these plots only the first 14 modes for L-PGD1, 45 modes for L-PGD2, and the total of
223 modes for H-PGD. We see that the energy of the system increases as long as the force
applied at the end of the beam is non-zero and remains constant once the end of the beam
becomes free, as expected. In other words, the Hamiltonian of the system, i.e. the total energy
is preserved when the system is conservative.

Figure 2.7 Case 3. (Top left) Error between the reference displacement field and the SVD or
PGD displacement field. (Top right) Error between the reference conjugate momenta field
and the SVD or PGD conjugate momenta field. (Bottom left) Error between the energy of the
reference system and the energy of the reduced system over time. (Bottom right) Condition
numbers of the matrices introduced in Section 2.3.3.
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2.4.5 Case 3: Oscillating Dirichlet BC

Figure 2.8 Case 3. Absolute errors in space and time between the reference displacement field
and the SVD or PGD displacement field.

In this section, we replace the Neumann boundary condition at the end point x = ℓ in the
previous problem by the oscillatory Dirichlet boundary condition:

u(ℓ, t) = U0 (1− cos (ωt)) , ∀t ∈ I,

where U0 = 5 mm and ω = 1.1× 104 rad/s.

We collect the numerical results in Figures 2.7, 2.8 and 2.9. We essentially observe the
same behaviors as in the previous test case, except that the matrices associated with the
Lagrangian approaches become ill-conditioned after a larger number of computed modes than
before and that the relative errors ϵq in the displacement and ϵp in the conjugate momenta
quickly diverge rather than reaching a plateau. It is also clear from these results that the
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Figure 2.9 Case 3. (Top four plots) Evolution of the displacement field over time for the
different reduction methods; the displacements are shown at 23 nodes uniformly distributed
along the bar. (Bottom) Evolution of the total energy of the reference and reduced systems
versus time.
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H-PGD formulation produces superior results in terms of convergence and accuracy.

2.4.6 Case 4: Comparison with analytical solution

Figure 2.10 Case 4. (Top left) Error between the reference displacement field and the SVD or
PGD displacement field. (Top right) Error between the reference conjugate momenta field
and the SVD or PGD conjugate momenta field. (Bottom left) Error between the energy of the
reference system and the energy of the reduced system over time. (Bottom right) Condition
numbers of the matrices introduced in Section 2.3.3.

We solve in this section the problem formulated in (2.6) where the initial displacement
is given by u0(x) = Fx/(EA), ∀x ∈ Ω, with F/(EA) = 0.05. This test case describes a
shock-type wave featuring a discontinuity in the first derivative, see Figure 2.12.

Errors and condition numbers for this test case are shown in Figure 2.10. We observe that
the matrices for the L-PGD approaches eventually become ill-conditioned again. Nevertheless,
the errors for the three PGD seem to decrease at the same rate. In the analytical solution
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Figure 2.11 Case 4. Absolute errors in space and time between the reference displacement
field and the SVD or PGD displacement field.

provided in (2.9), the error in the truncated displacement retaining only the first m modes
is of the order O(1/m2). In comparison, the error in the computed PGDs seems to be
approximately of the order O(1/m 3

2 ).

We show in Figure 2.11 the distribution of the absolute errors in space and time for the
FEM SVD solution, the L-PGD1 and L-PGD2 solutions, and the H-PGD solution. We observe
on the one hand that the errors in the FEM SVD solution are negligible. On the other hand,
the errors in the last three solutions are of the same order and locally concentrated around
the wavefront. These errors are essentially due to the presence of the discontinuity in the
solution, which make them difficult to capture. This is out of the scope of this study but
we mention that the use of a time-discontinuous Galerkin (TGD) integration scheme could
possibly address this issue [49,79]. As a last remark, it seems that the H-PGD solution is less
polluted by the large errors than the L-PGD solutions, especially away from the location of
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Figure 2.12 Case 4. (Top four plots) Evolution of the displacement field over time for the
different reduction methods; the displacements are shown at 23 nodes uniformly distributed
along the bar. (Bottom) Evolution of the total energy of the reference and reduced systems
versus time.
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the discontinuities and in the vicinity of the end point x = ℓ.

2.4.7 Case 5: Damped bar with Neumann BC

Figure 2.13 Case 5. (Top left) Error between the reference displacement field and the SVD or
PGD displacement field. (Top right) Error between the reference conjugate momenta field
and the SVD or PGD conjugate momenta field. (Bottom left) Error between the energy of the
reference system and the energy of the reduced system over time. (Bottom right) Condition
numbers of the matrices introduced in Section 2.3.3.

The last case considers the exact same scenario presented in Section 2.4.4, but for the
presence of an extra linear damping term in the wave equation, i.e.:

ρA
∂2u

∂t2
+ ζ

∂u

∂t
− EA∂

2u

∂x2 = 0, ∀(x, t) ∈ Ω× I,

where ζ = 15× 103 Pl (1 Poiseuille = 1 kg/m/s) is the so-called damping coefficient.
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Figure 2.14 Case 5. Absolute errors in space and time between the reference displacement
field and the SVD or PGD displacement field.

The results are shown in Figures 2.13, 2.14, and 2.15. These are qualitatively very
similar to those presented in Section 2.4.4, except that the total energy of the bar decreases
after t ≥ T/2, as expected. The main objective of this example is to illustrate that the
H-PGD framework is also suitable for the study of linear elasticity problems accounting for
energy dissipation. First, the H-PGD model reduction provides better stability and energy
conservation of the original system than the L-PGD approaches. Moreover, reduced-order
modeling methods for problems with damping based on modal decomposition [15] lead to an
eigenvalue problem that requires a more elaborated treatment [68, 91] than the eigenvalue
problem obtained without damping. The Rayleigh hypothesis is often used to circumvent
the issue introduced by the damping matrix [68]. However, the hypothesis does not have
an unequivocal physical meaning [69, 70] and may produce underdamped or overdamped
behaviors in certain frequency ranges [68] (although this may be convenient in some cases).
In contrast to the modal decomposition, it is not necessary in the PGD framework to resort
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Figure 2.15 Case 5. (Top four plots) Evolution of the displacement field over time for the
different reduction methods; the displacements are shown at 23 nodes uniformly distributed
along the bar. (Bottom) Evolution of the total energy of the reference and reduced systems
versus time.
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to a special treatment in order to account for the damping term in the wave equation.

2.4.8 Further discussion

Non-symmetry and ill-conditioning of the matrices are issues that are also mentioned in [55,
Pages 4 and 15]. The authors briefly discuss the eventual ill-conditioning of the operator
A (non-symmetric), which represents the discretization of the space-time bilinear form of
the problem. This operator is constant and its conditioning results from the fineness of the
space-time discretization and the mechanical properties of the problem (E, ρ, etc.). In our
case, the matrices Kℓx, Mℓx, M̄ℓx, Khx and Mhx (Gram matrices) not only depend on the
discretization and mechanical properties but are also non-constant. Indeed, their size grows
with the number of enrichment m. Their ill-conditioning results mainly from the fact that the
basis vectors may become linearly dependent. In conclusion, the nature of the matrices we
studied is not the same as that of A and the reasons of their bad conditioning are different.

From a numerical point of view, we would like to emphasize that the only numerical
difference between the Lagrangian update (2.42) and the Hamiltonian one (2.43) is the scaling
factor ρA. One may wonder whether this factor has an influence on the convergence of the
H-PGD solver and the conditioning of the system. Multiple tests were run in the case where
all parameters of the problem were set to unity: E = ρ = A = ℓ = 1. In this case, the scaling
factor is equal to unity and the systems (2.42) and (2.43) are numerically identical. However,
H-PGD remains numerically stable and still provides more accurate solutions than L-PGD.
Therefore, it is not just the Hamiltonian formulation as a standalone formalism that enables
improvements over the Lagrangian approach, but also the new possibilities that it offers in
terms of algorithmic design.

Moreover, it is worth noting that the numerical values of the Young’s modulus E and the
density ρ play a major role in the non-symmetry. The non-symmetry is due to the temporal
derivation. In other words, non-symmetry dominates if inertial effects are preponderant, i.e.
when ρ > E or, similarly, when the velocity c =

√
E/ρ is small. One can find the same

reasoning with the Heat Equation and the thermal diffusivity in [85] (Page 68). Yet, in
structural dynamics, E ≫ ρ in general. For instance, in our test cases, the material properties
are chosen as those of steel with E = 220 GPa, ρ = 7000 kg/m3, similarly to [55]. These
numerical values are actually advantageous because they are not favorable to non-symmetry.
Thus, the case of unitary parameters also enabled us to test our algorithm in examples where
matrices become asymmetric and validate its robustness.

Energy conservation is related to the time integrators. Nevertheless, the computed PGD
modes also play a significant role. This is best illustrated in the case of the problem with a
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Neumann boundary condition (see Figures 2.4 and 2.13). In particular, we observe on the top
right plot that after the 5th enrichment, L-PGD fails at recovering the modes with respect to
the momentum field (i.e., error ϵp). This results in a bad energy conservation. We conclude
from these results that energy conservation is also sensitive to the PGD formulation and that
H-PGD performs better that L-PGD by several orders of magnitude (as shown on the bottom
left plot of the figures).

2.5 Conclusion

Galerkin-based PGD formulations based on the Hamilton’s weak principle have been developed
to derive reduced-order models of second-order hyperbolic systems. One of the objectives
was in particular to compute a reduced model that preserves the energy of the system by
means of stable, energy conservative integration schemes. We have considered in this work
two approaches, namely the L-PDG and the H-PGD. The former is based on the Lagrangian
formalism while the latter follows from the Hamiltonian formalism. The H-PGD approach
describes the system dynamics in terms of the generalized coordinates and the generalized
momenta. The two fields can then be represented as two distinct expansions whose modes
are solutions of coupled problems. The procedure brings some flexibility, in particular, it
enables one to design orthogonalization and updating processes that ensure computational
stability. Moreover, we have designed an adaptive fixed-point algorithm for the H-PGD
approach that controls the convergence of the two fields separately. The combination of these
procedures does improve convergence and eliminates redundancy in the enrichment modes of
the H-PDG approach. As a result, for the test cases considered here, the H-PGD formulation
showed a much better behavior in terms of stability and energy preservation than the L-PGD
formulation.

Nevertheless, the 1D problems that were tackled in this chapter were very small and the
use of a reduced-order method cannot be justified. Actually, the PGD algorithm that was
developed herein was computationally inefficient and exhibited a poor scalability. Furthermore,
the question of the preservation of the symplectic structure in the context of Hamiltonian
systems was not tackled. These aspects will be the object of the next chapter.
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CHAPTER 3 ON AN EFFICIENT, SYMPLECTICITY-PRESERVING
SPACE-TIME PROPER GENERALIZED DECOMPOSITION

The relevance of a reduced-order modeling technique stems from its ability to exceed the
computational efficiency of a conventional Finite Element model, while incurring a relatively
low error with respect to the FE solution of the full model. So far, if space-time PGD solvers
have demonstrated a satisfying level of accuracy with a rather low number of modes, their
computational efficiency is far from being competitive [50]. In this chapter, we develop a
novel space-time PGD solver with a focus on computational efficiency. The integration of
the PGD strategy within the Hamiltonian formalism is revisited and we comment on the
preservation of the symplectic structure on the time parameter by the reduced model. The
Aitken transformation [92] has subsequently been introduced to accelerate the convergence of
the fixed-point algorithm. We will show that it significantly reduces the number of required
iterations for convergence. Additionally, a new orthogonal projection, more robust than
the one formerly implemented, is performed on the spatial modes to enforce their linear
independence and ensure the stability of the algorithm. Yet, the computational cost of such
solvers mainly depends on the problem with respect to the spatial variable, which needs to
be assembled and factorized at each fixed-point iteration. An original approach has been
developed to avoid having to repeatedly factorize matrices. It consists in pre-processing the
eigen-pair approximations of the operators, namely the Ritz pairs [16], that provide a subspace
in which the problem in space remains diagonal throughout the fixed-point iterations. In
the manner of Modal Decomposition, all computations are then carried out in the subspace
spanned by the Ritz vectors [93], hence drastically decreasing the computational burden while
capturing using only a small number of modes most of the information from the full model.
Numerical examples dealing with the dynamical behavior of a 3D structure will be presented
in order to demonstrate the efficiency of the proposed approach.

The chapter is organized as follows: in Section 3.1, we describe the model problem and its
spatial Finite Element approximation. In Section 3.2, we present the Hamiltonian formalism
and its symplectic structure. The PGD approaches are described in Section 3.3 along with
the Aitken acceleration and the orthogonal projectors applied to the fixed-point algorithm,
as well as the projection of the PGD approximation onto the subspace spanned by the Ritz
vectors. The numerical experiments are presented in Section 3.4 to illustrate the performance
of the proposed approach. We finally provide some concluding remarks in Section 3.5.
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3.1 Model problem

3.1.1 Strong formulation

The model problem we shall consider is that of elastodynamics in three dimensions under
the assumption of infinitesimal deformation. Let Ω be an open bounded subset of R3, with
Lipschitz boundary ∂Ω, and let I = (0, T ) denote the time interval. The boundary ∂Ω is
supposed to be decomposed into two portions, ∂ΩD and ∂ΩN , such that ∂Ω = ∂ΩD ∪ ∂ΩN .
The displacement field u : Ω̄× Ī → R3 satisfies the following partial differential equation:

ρ
∂2u

∂t2
−∇ · σ(u) = f, ∀(x, t) ∈ Ω× I, (3.1)

where, in the case of infinitesimal deformation, the stress tensor σ(u) and strain tensor ε(u)
are given by:

σ(u) = E : ε(u), ∀(x, t) ∈ Ω× I, (3.2)

ε(u) = 1
2

(
∇u+

(
∇u

)T)
, ∀(x, t) ∈ Ω× I, (3.3)

and is subjected to the initial conditions:

u(x, 0) = u0(x), ∀x ∈ Ω, (3.4)
∂u

∂t
(x, 0) = v0(x), ∀x ∈ Ω, (3.5)

as well as to the boundary conditions:

u(x, t) = 0, ∀(x, t) ∈ ∂ΩD × I, (3.6)

σ(u) · n = gN(x, t), ∀(x, t) ∈ ∂ΩN × I. (3.7)

The functions f : Ω × I → R3, u0 : Ω → R3, v0 : Ω → R3, and gN : ∂ΩN × I → R3 are
supposed to be sufficiently regular to yield a well-posed problem. The medium occupied by Ω̄
is assumed to be isotropic, with density ρ and Lamé coefficients λ, µ (the material parameters
could possibly vary in space). The constitutive equation (3.2), written above in terms of the
tensor of elasticity E, thus reduces to:

σ(u) = 2µε(u) + λtr (ε(u)) I3,
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where I3 ∈ R3×3 is the identity matrix. In the following, we will denote the first and second
time derivatives by u̇ = ∂u/∂t and ü = ∂2u/∂t2.

3.1.2 Semi-weak formulation

We consider here the semi-weak formulation with respect to the spatial variable in order to
construct the discrete problem in space using the Finite Element method. Multiplying (3.1)
by an arbitrary smooth function u∗ = u∗(x) and integrating over the whole domain Ω, one
obtains: ∫

Ω
ρü · u∗ − (∇ · σ(u)) · u∗ dx =

∫
Ω
f · u∗ dx, ∀t ∈ I. (3.8)

By virtue of − (∇ · σ(u)) · u∗ = σ(u) : ∇u∗ −∇ · (σ(u) · u∗), Eq. (3.8) can be recast as:
∫

Ω
ρü · u∗ + σ(u) : ∇u∗ dx =

∫
Ω
∇ · (σ(u) · u∗) dx+

∫
Ω
f · u∗ dx, ∀t ∈ I.

Since σ(u) is a symmetric tensor:

σ(u) : ∇u∗ = σ(u) : ε(u∗),

and substituting the constitutive equation for σ(u), one gets:

σ(u) : ε(u∗) = (E : ε(u)) : ε(u∗) = ε(u) : E : ε(u∗).

Applying the divergence theorem and the boundary conditions, and choosing the test function
such that u∗ = 0 on ∂ΩD, the semi-discrete formulation of the problem then reads: Find
u = u(·, t) ∈ V , for all t ∈ Ī, such that:
∫

Ω
ρü · u∗ + ε(u) : E : ε(u∗) dx =

∫
Ω
f · u∗ dx+

∫
∂ΩN

gN · u∗ dx, ∀u∗ ∈ V, ∀t ∈ I, (3.9)

and:

u(x, 0) = u0(x), ∀x ∈ Ω, (3.10)
∂u

∂t
(x, 0) = v0(x), ∀x ∈ Ω, (3.11)

where V is the vector space of vector-valued functions defined on Ω:

V =
{
v ∈

[
H1(Ω)

]3
: v = 0 on ∂ΩD

}
.
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3.1.3 Spatial discretization

We partition the domain into Ne elements, denoted by Ke, such that Ω = ∪Ne
e=1Ke and

Int(Ki) ∩ Int(Kj) = ∅, ∀i, j = 1, . . . , Ne, i ̸= j. We then associate with the mesh the
finite-dimensional Finite Element space W h, dim W h = s, of scalar-valued continuous and
piecewise polynomial functions defined on Ω, that is:

W h = {vh : Ω→ R : vh|Ke ∈ Pk(Ke), e = 1, . . . , Ne} ,

where Pk(Ke) denotes the space of polynomial functions of degree k on Ke. Let ϕi, with
i = 1, . . . , s, denote the basis functions of W h, i.e. W h = span{ϕi}. We then introduce the
finite element subspace V h of V such that:

V h =
[
W h

]3
∩ V,

and search for finite element solutions uh = uh(·, t) ∈ V h, ∀t ∈ Ī, in the form:

uh(x, t) =
s∑
j=1

qj(t)ϕj(x),

where the vectors of degrees of freedom, qj ∈ R3, depend on time. We introduce the set of
n = 3s vector-valued basis functions as:

χ3i−2(x) =


ϕi(x)

0
0

 , χ3i−1(x) =


0

ϕi(x)
0

 , χ3i(x) =


0
0

ϕi(x)

 , i = 1, . . . , s.

Using the Galerkin method, the Finite Element problem thus reads:

Find uh(·, t) ∈ V h, such that∫
Ω
ρχi(x) · üh(x, t) + ε(χi)(x) : E : ε(uh)(x, t) dx

=
∫

Ω
χi(x) · f(x, t) dx+

∫
∂ΩN

gN(x, t) · χi(x) ds, ∀i = 1, . . . , n, ∀t ∈ I,

satisfying the initial conditions

uh(x, 0) = u0,h(x), ∀x ∈ Ω,

u̇h(x, 0) = v0,h(x), ∀x ∈ Ω,
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where u0,h and v0,h are interpolants or projections of u0 and v0 in the space V h. The above
problem can be conveniently recast in compact form as:

M q̈(t) +Kq(t) = f(t), ∀t ∈ I, (3.12)

q(0) = u0, (3.13)

q̇(0) = v0, (3.14)

where M and K are the global mass and stiffness matrices, respectively, both being symmetric
and positive definite:

Mij =
∫

Ω
ρχi · χj dx, Kij =

∫
Ω
ε(χi) : E : ε(χj) dx, ∀i, j = 1, . . . , n,

f(t) is the load vector at time t whose components are given by:

fi(t) =
∫

Ω
χi(x) · f(x, t) dx+

∫
∂ΩN

χi(x) · gN(x, t) ds, ∀i = 1, . . . , n,

q(t) is the global vector of degrees of freedom:

q(t) =
[
q1(t) . . . qs(t)

]T
,

and u0 and v0 are the initial vectors:

u0 =
[
u0,1 . . . u0,s

]T
,

v0 =
[
v0,1 . . . v0,s

]T
.

Note that u0,i ∈ R3 and v0,i ∈ R3, i = 1, . . . , s, are vectors whose components are the initial
displacements and velocities in the three spatial directions.

3.2 The Hamiltonian formalism

3.2.1 Hamilton’s Weak Principle

The Hamiltonian formalism consists in modeling the motion of the system along a trajectory
in the phase space by introducing the generalized coordinates q and their generalized (or
conjugate) momenta p as independent variables. For the problem at hand, the Hamiltonian
functional h reads:

h(q,p, t) = 1
2q

TKq + 1
2p

TM−1p− qTf . (3.15)
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Given the Hamiltonian functional h of the system, the action functional, denoted by S[q,p],
is defined as:

S[q,p] =
∫

I
q̇Tp− h(q,p, t) dt

The Hamilton’s Weak Principle then states that the trajectory (q,p) of the system in the
phase space should satisfy:

S ′[q,p](q∗,p∗) =
[
q∗Tp

]T
0
,

where S ′[q,p](q∗,p∗) denotes the Gâteaux derivative of S[q,p] with respect to a variation
(q∗,p∗) ∈ Z × Z such that:

Z =
{
v ∈ [C1(Ī)]n; v(0) = 0

}
.

After Gâteaux derivation and integration by parts with respect to time, we get:
∫

I
p∗T q̇ − q∗T ṗ− q∗TKq − p∗TM−1p+ q∗Tf dt = 0, ∀(q∗,p∗) ∈ Z × Z,

that is,
∫

I
q∗T ṗ− p∗T q̇ + q∗TKq + p∗TM−1p dt =

∫
I
q∗Tf dt, ∀(q∗,p∗) ∈ Z × Z,

or, equivalently, ∫
I
q∗T (ṗ+Kq) dt =

∫
I
q∗Tf dt, ∀q∗ ∈ Z,∫

I
p∗T

(
q̇ −M−1p

)
dt = 0, ∀p∗ ∈ Z.

(3.16)

The last weak formulation of (3.16) leads the so-called Hamilton’s equations:

ṗ+Kq = f ,

q̇ −M−1p = 0.
(3.17)

This formulation is consistent with (3.12) in the sense that if we differentiate with respect
to time the second equation and substitute ṗ for the expression in the first equation, we do
exactly recover (3.12).
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3.2.2 Symplectic structure

Let us introduce z ∈ Z2 that vertically concatenates q and p such that:

z =
q
p

 .
The gradient of the Hamiltonian (3.15) then reads:

∇z h =
∇q h
∇p h

 =
Kq − f
M−1p

 .
In the symplectic framework, the dynamics of the structure is modeled by the trajectory
in the symplectic vector space (R2n, ω) of dimension 2n for linear systems, where ω is the
so-called symplectic form defined as:

∀z =
q
p

 ∈ R2n, ∀z′ =
q′

p′

 ∈ R2n, ω(z, z′) = qTp′ − q′Tp = zTJ2nz
′,

with J2n the skew-symmetric operator such that:

J2n =
 0 In

−In 0

 ,
and J2

2n = −I2n. It is then possible to recast (3.17) as:

ż = ∇ωh,

where ∇ω = J2n∇z is defined as the symplectic gradient. The Hamiltonian can be written as
a sum of a quadratic form on R2n and the external energy term:

h(z, t) = 1
2z

THz − zTf z,

with H the Hessian operator of h and f z such that:

H =
K 0

0 M−1

 , f z =
f

0

 .
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It follows that one can rewrite the weak formulation (3.16) as:
∫

I
z∗T [J2nż +Hz] dt =

∫
I
z∗Tf z dt, ∀z∗ ∈ Z2. (3.18)

We now introduce the notion of symplectic mapping. A symplectic mapping is a linear
transformation that preserves the symplectic form ω, i.e.:

A ∈ R2n×2n is symplectic if ω(Az, Az′) = ω(z, z′), ∀(z, z′) ∈ R2n × R2n.

As a consequence, such a mapping A verifies:

ATJ2nA = J2n.

The notion can actually be generalized to rectangular matrices with the symplectic Stiefel
manifold, denoted Sp(2r, 2n), such that:

Sp(2r, 2n) =
{
A ∈ R2n×2r : ATJ2nA = J2r

}
(3.19)

Let (R2r, γ) be a symplectic vector space, A ∈ Sp(2r, 2n) a symplectic mapping, and y ∈ R2r

such that z = Ay. One can define a Hamiltonian for y:

g(y) = 1
2y

TGy − yTf y,

with G its Hessian operator and f y the projection of the external loads on the symplectic
subspace (in the case r ⩽ n), such that:

G = ATHA, and f y = ATf z.

The preservation of the symplectic structure implies that y is governed by Hamilton’s canonical
equations, expressed hereinafter in terms of γ (symplectic form on R2r) and g such that:

ẏ = ∇γg,

with ∇γ = J2r∇y and Hamilton’s weak principle (3.16) then reads:
∫

I
y∗T [J2rẏ +Gy] dt =

∫
I
y∗Tf y dt, ∀y∗ ∈ R2r.
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3.2.3 Discretization in time of the Hamiltonian problem

The time domain I is divided into nt subintervals I i = [ti−1, ti], i = 1, . . . , nt, of size
ht = ti− ti−1. The Crank-Nicolson method is then applied to (3.17) as detailed in the previous
work [94]. The solutions given by the FEM in space, integrated with Crank-Nicolson in time,
will be used as reference solutions when assessing the results of the PGD solvers.

Although not the primary focus of this article, we acknowledge the relevance of symplectic
integrators in the case of Hamiltonian mechanics. These integrators are particularly robust to
compute long-time evolution of Hamiltonian systems [37–39]. In addition, the preservation
of the symplectic structure by the reduced model is the subject of numerous studies [40–42].
We will also discuss this property on the time parameter with respect to our PGD solver in
Section 3.3.3.

3.3 PGD reduced-order modeling

The proper-generalized decomposition method applied within the Hamiltonian framework
aims at approximating both the generalized coordinates q and their generalized momenta p
in separated form. We are thus searching for a space-time separated representation of z as:

z(t) ≃ zm(t) =
m∑
i=1

Φiψi(t) =
m∑
i=1

Ψi(t)φi,

with:

Φi =
φqi 0

0 φpi

 , ψi =
ψqi
ψpi

 ,
Ψi =

ψqi In 0
0 ψpi In

 , φi =
φqi
φpi

 ,
where Φi is a (2n × 2) matrix and ψi a (2 × 1) vector while Ψi is a (2n × 2n) matrix and
φi a (2n × 1) vector. The two notations are mathematically equivalent and convenient
whether the weak formulation is solved for φ (spatial problem) or ψ (temporal problem). The
vector-valued functions (φqi )1⩽i⩽m and (φpi )1⩽i⩽m provide the spatial bases for the generalized
coordinates and conjugate momenta, respectively:

q(t) ≈ qm(t) =
m∑
i=1
φqiψ

q
i (t),

p(t) ≈ pm(t) =
m∑
i=1
φpiψ

p
i (t).
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For the sake of clarity in the presentation, we shall drop from now on the subscript i and
write the decomposition of rank m of z as:

zm(t) = zm−1(t) + Φψ(t), or zm(t) = zm−1(t) + Ψ(t)φ.

The approach considered here is the so-called greedy rank-one update algorithm, where the
separated representation is computed progressively by adding one pair of modes φ and ψ at
each enrichment. The goal in this section is to construct the separated spatial and temporal
problems that satisfy the enrichment modes φ and ψ, the new unknowns of the problem,
assuming that the previous iterate zm−1 has already been calculated.

3.3.1 Fixed-point strategy

Computing a separated representation of q and p demands an adequate solution strategy
of the weak formulation (3.18). Substituting the trial solution zm for z in (3.18) leads to a
non-linear formulation for the modes φ and ψ. Several iterative schemes could be used to
solve such a problem. The fixed point algorithm is considered here, which proceeds as follows:

1. Solve (3.18) for φ with ψ known. This step is referred to as the spatial problem and is
written in a generic format as:

A(ψ)φ = b(ψ, zm−1), (3.20)

where the matrix A(ψ) and vector b(ψ, zm−1) will be specified in Section Problem in
space. More precisely, in order to enhance robustness, we propose to force the new
spatial mode to preserve the linear independence of the spatial bases (φqi )1⩽i⩽m and
(φpi )1⩽i⩽m, which can formally be written as:

φ = PmA(ψ)−1b(ψ, zm−1)

where Pm is a projector that is orthogonal to the subspace spanned by previous mode
(for a well chosen inner product).

2. Solve (3.18) for ψ with φ known. The temporal problem corresponds to the system of
first-order differential equations:

ψ̇ = fT (ψ,φ, zm−1), (3.21)

where the vector-valued function fT will be explicitly provided in Section Problem in
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time.

Steps 1 and 2 are repeated until a convergence criterion is fulfilled. It is noteworthy that (3.20)
is a linear system of size 2n associated with the space discretization, similar to that of a
steady-state FEM problem. Eq. (3.21) is a system of two first order scalar ordinary differential
equations in time, solved for ψq and ψp. Both problems are described in the next sections.

Problem in space

We assume that ψ is known and search for the new spatial mode φ. We substitute zm−1 +Ψφ
for z in (3.18) and choose test functions in the form z∗ = Ψφ∗. Equation (3.18) reduces to:
∫

I
φ∗TΨT

(
J2nΨ̇φ+HΨφ

)
dt =

∫
I
φ∗TΨT (f − J2nżm−1 −Hzm−1) dt, ∀φ∗ ∈ R2n,

which, since φ∗ and φ are independent of time, can be rewritten as:

φ∗T
[∫

I
ΨTJ2nΨ̇ + ΨTHΨ dt

]
φ = φ∗T

[∫
I

ΨT (f − J2nżm−1 −Hzm−1) dt
]
, ∀φ∗ ∈ R2n.

This leads to the following linear system:

ASφ = bS , (3.22)

with:

AS =
[∫

I
ΨTJ2nΨ̇ + ΨTHΨ dt

]
=
ktK ctIn

dtIn mtM
−1

 ,
bS =

∫
I

ΨT (f z − J2nżm−1 −Hzm−1) dt,

and (see Appendix A for the explicit form of the time operators):

kt =
(∫

I
ψ2
q dt

)
,

ct =
(∫

I
ψqψ̇p dt

)
,

dt = −
(∫

I
ψ̇qψp dt

)
= ct − ψq(T )ψp(T ),

mt =
(∫

I
ψ2
p dt

)
.
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The operator M−1 is not computed explicitly. Instead, the Schur complement of M−1 in AS

is considered. Equation (3.22) can thus be expanded as:

ktK φq + ct φp = bq,

dt φq + mtM
−1 φp = bp,

so that:

[mtktK − ctdtM ]φq = mtbq − ctMbp, (3.23)

φp = 1
mt

M
[
bp − dtφq

]
. (3.24)

Therefore, the solution of (3.22) amounts to solving (3.23) for φq by factorization of the
sparse symmetric matrix:

Aq = mtktK − ctdtM, (3.25)

and inserting the solution φq into (3.24) to determine φp.

For a given mth enrichment, the spatial modes φq and φp are subsequently projected
to ensure that any new mode is searched in a direction that is orthogonal to the subspaces
generated by the previous modes, respectively (φqi )1⩽i⩽m−1 and (φpi )1⩽i⩽m−1. At any given m,
we want (φqi )1⩽i⩽m and (φpi )1⩽i⩽m to be orthogonal with respect to K and M−1, respectively.
Let Sq and Sp be defined as:

Sq =
[
φq1 . . . φqm−1

]
,

Sp =
[
φp1 . . . φpm−1

]
.

A classical approach consists in using the orthogonal projections:

Pq = In − Sq
(
STq KSq

)−1
STq K,

Pp = In − Sp
(
STpM

−1Sp
)−1

STpM
−1.

At any enrichment step, the previous modes (φqi )1⩽i⩽m−1 and (φpi )1⩽i⩽m−1 are orthogonal and
normalized with respect to K and M−1, respectively. Thus, the projectors above simplify as:

Pq = In − SqSTq K,

Pp = In − SpSTpM−1.

Therefore, if we denote by φ◦
q and φ◦

p the modes initially obtained from Eqs. (3.23) and (3.24)
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and by φq and φp the modes that one retains after orthonormalization, the procedure reads:

φ⊥
q = Pqφ

◦
q, φ⊥

p = Ppφ
◦
p,

φq =
φ⊥
q√

φ⊥
q
TKφ⊥

q

, φp =
φ⊥
p√

φ⊥
p
TM−1φ⊥

p

.

It it noteworthy that, in practice, the inverse of M is never evaluated. Instead, one performs a
Cholesky factorization to obtain the decomposition M = LLT . In particular, the normalization
of φp is done by forward and backward substitution, whose cost is negligible with respect to
the overall complexity of the algorithm. Indeed, the main bottleneck is the factorization of
Aq (3.25), which needs to be performed at each iteration of the fixed point algorithm. We
propose below two approaches that aim at:

– Reducing the number of iterations in the fixed point algorithm in order to reach
convergence (see section 3.3.2);

– Avoiding repetitive factorization of Aq by carrying out computations in a subspace
provided by the Ritz vectors, which are approximations of the eigenvectors of the
generalized eigenproblem Ku = λMu (see Section 3.3.4).

Problem in time

We assume here that φ is known and search for a new temporal mode ψ. We substitute
zm−1 + Φψ for z in (3.18) and choose test functions in the form z∗ = Φψ∗, with ψ∗ ∈ Y2,
where:

Y = C0(Ī).

Equation (3.18) reduces in this case to:
∫

I
ψ∗TΦT

(
J2nΦψ̇ +HΦψ

)
dt =

∫
I
ψ∗TΦT (f z − J2nżm−1 −Hzm−1) dt, ∀ψ∗ ∈ Y2,

which simplifies to:

ΦTJ2nΦψ̇ + ΦTHΦψ = ΦT (f z − J2nżm−1 −Hzm−1) .

Above equation is discretized using the Crank-Nicolson time-marching scheme, such that,
given ψ0, one computes the ith iterate (i > 0) as:

ATψ
i = BTψ

i−1 + biT , i = 1, . . . , nt (3.26)
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where:

AT =
htkx 2cx
−2cx htmx

 ,

BT =
−htkx 2cx
−2cx −htmx

 ,

biT = ΦT
[
ht

(
f iz + f i−1

z −H
(
zim−1 + zi−1

m−1

) )
− 2J2n

(
zim−1 − zi−1

m−1

)]
,

and:
kx = φTqKφq,

cx = φTq φp,

mx = φTpM
−1φp.

For each time step, Eq. (3.26) represents a 2× 2 linear system that can be explicitly solved for
ψn. Overall, the time problem is relatively cheap to solve as the cost is linear in the number
of time steps nt. As previously mentioned, φq and φp are normalized after (3.22) is solved,
so that kx = mx = 1 and only cx needs to be updated.

3.3.2 Aitken acceleration

In the context of PGD order-reduced modeling, the number of iterations performed by the
fixed-point algorithm has a direct impact on the efficiency of the approach. We propose here
to employ the Aitken’s ∆2 process to reduce the number of iterations that are necessary to
reach convergence.

Let lin(n) denote the complexity associated with solving one linear system of n algebraic
equations in n unknown variables (lin(n) ≈ O(n3) for fully-populated matrices). In structural
dynamics simulations, the usual approach is to discretize the continuous equations with
respect to the spatial variables using the finite element method and then obtain a system of n
ordinary differential equations in the time variable t ∈ I. The system is thereafter discretized
in time by means of an (implicit) integration scheme (e.g. Euler, Newmark, Crank-Nicolson,
Hilber-Hughes-Taylor, . . . ). The degrees of freedom are then evaluated at each time step by
solving a linear system of size n. In the case of nt time steps, the complexity of the approach
amounts to ntlin(n).

In the PGD framework, the solution of the problems in space and time is decoupled such
that at each fixed-point iteration, one system of size n is solved for the spatial mode (3.23)
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and one system of size two is solved nt times (marching scheme) for the temporal mode (3.26).
The complexity of one fixed-point iteration can be assumed to be of the order of lin(n) + nt.
It follows that the overall complexity of the PGD algorithm will be mkmax(lin(n) + nt), where
m denotes the rank of the decomposition, i.e. the number of modes, and kmax is the maximal
number of iterations allowed in the fixed-algorithm, whether or not convergence is reached. It
can be inferred that a space-time separated PGD algorithm is competitive against a classical
full-order solver whenever the following inequality holds:

mkmax(lin(n) + nt)≪ ntlin(n),

highlighting the fact that the efficiency of the PGD algorithm highly depends on the number
of fixed-point iterations.

The computation of an enrichment mode involves the following operators, formally written,
at any given fixed-point iteration k:

– S(k) : ψ(k−1) 7→ φ(k), the operator that solves the system (3.22) for φ(k) with ψ(k−1)

given;

– T (k) : φ(k) 7→ ψ(k), the operator that solves the system (3.26) for ψ(k) with φ(k) given.

As a result, the fixed-point algorithm computes two sequences for spatial and temporal modes,
i.e.

(
φ(k)

)
1⩽k⩽kmax

and
(
ψ(k)

)
1⩽k⩽kmax

, until convergence. These sequences can be defined by
recurrence relations as follows:

φ(k) = S(k) ◦ T (k−1)
(
φ(k−1)

)
,

ψ(k) = T (k) ◦ S(k)
(
ψ(k−1)

)
.

The fixed-point convergence hinges upon the contraction property of the operators S(k)◦T (k−1)

and T (k)◦S(k) forφ(k) andψ(k) respectively. One common way to improve fixed-point iterations
is by using relaxation techniques. This helps achieve a contraction property and usually
enhances the convergence rate. The introduction of relaxation parameters ωφ and ωψ leads to
the following formulation of a fixed-point iteration:

φ(k) = ωφ S(k) ◦ T (k−1)
(
φ(k−1)

)
+ (1− ωφ)φ(k−1),

ψ(k) = ωψ T (k) ◦ S(k)
(
ψ(k−1)

)
+ (1− ωψ)ψ(k−1).

In practice, it is preferable to adapt ωφ and ωψ at each iteration. The so-called Aitken’s delta
square method provides a useful heuristic for determining the sequences ω(k)

φ and ω
(k)
ψ . One
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can also choose to enforce relaxation on the generalized coordinates modes and the conjugate
momentum modes separately. In the Algorithm 3, Aitken acceleration is applied on the spatial
modes only and separately for φq and φp. Note that steps 15 and 16 of Algorithm 3 are not
implemented in practice. Instead, space-time separation should be leveraged to efficiently
compute stagnation coefficients in step 16.

Algorithm 3 Fixed point algorithm with Aitken acceleration
1: Initialization: Set k ← 0

2: Set sq ← ϵ+ 1 and sp ← ϵ+ 1 (with ϵ = 10−9)

3: Set ψ(0) and φ(0)

4: while k < kmax and max(sq, sp) > ϵ do

5: Increment the iteration counter: k ← k + 1

6: Compute new spatial modes: φ← S(k)
(
ψ(k−1)

)
7: Project modes: φq ← Pqφq and φp ← Ppφp

8: Normalize modes: φ(k)
q ←

φq√
φT

q Kφq

and φ(k)
p ←

φp√
φT

p M
−1φp

9: Update spatial residual: r(k)
q = φ(k)

q −φ(k−1)
q and r(k)

p = φ(k)
p −φ(k−1)

p

10: if k > 1 then

11: Aitken ∆2:

φ(k)
q ← ω(k)

q φ
(k)
q +

(
1− ω(k)

q

)
φ(k−1)
q with ω(k)

q = ω(k−1)
q

r
(k−1)
q

T
(
r

(k)
q −r(k−1)

q

)
∥∥∥r(k)

q −r(k−1)
q

∥∥∥2

φ(k)
p ← ω(k)

p φ
(k)
p +

(
1− ω(k)

p

)
φ(k−1)
p with ω(k)

p = ω(k−1)
p

r
(k−1)
p

T
(
r

(k)
p −r(k−1)

p

)
∥∥∥r(k)

p −r(k−1)
p

∥∥∥2

12: end if

13: Compute new temporal mode: ψ(k) ← T (k)
(
φ(k)

)
14: Compute: ∆q ← φ(k)

q ψ
(k)
q −φ(k−1)

q ψ(k−1)
q and Σq ← 1

2

(
φ(k)
q ψ

(k)
q +φ(k−1)

q ψ(k−1)
q

)
15: ∆p ← φ(k)

p ψ
(k)
p −φ(k−1)

p ψ(k−1)
p and Σp ← 1

2

(
φ(k)
p ψ

(k)
p +φ(k−1)

p ψ(k−1)
p

)
16: Evaluate the stagnation coefficients: sq ← ∥∆q∥L2/∥Σq∥L2 and sp ← ∥∆p∥L2/∥Σp∥L2

17: end while

18: Return the modes ψ ← ψ(k) and φ← φ(k)
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3.3.3 Temporal update and symplectic structure

Greedy algorithms generally incorporate an update procedure that consists in updating all
the temporal modes for a given set of spatial modes. For a decomposition of rank m, the
spatial modes can be conveniently stored in the matrix S of size 2n× 2m, defined as:

S =
φq1 . . . φqm 0

0 φp1 . . . φpm

 =
Sq 0

0 Sp

 ,
while the temporal modes can be vertically stored in the time-dependent vector ψ of size
2m× 1, defined as:

ψ =



ψq1
...
ψqm

ψp1
...
ψpm


,

such that the decomposition of rank m of z reads:

zm(t) = Sψ(t).

The temporal update is performed by substituting Sψ for z in (3.18) and choosing test
functions in the form z∗ = Sψ∗. Equation (3.18) thus reduces to:

∫
I
ψ∗TST

(
J2nSψ̇ +HSψ

)
dt =

∫
I
ψ∗TSTf z dt, ∀ψ∗ ∈ Y2m,

which can be rewritten in matrix form, with fψ = STf z, as:

STJ2nSψ̇ + STHSψ = fψ. (3.27)

Time discretization of the above equation using the Crank-Nicolson marching scheme leads to:

AUψ
i = BUψ

i−1 + biU , i = 1, . . . , nt, (3.28)
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with:

AU =
 htKx 2Cx
−2CT

x htMx

 , BU =
−htKx 2Cx
−2CT

x −htMx

 ,

biU = htS
T
(
f iz + f i−1

z

)
,

and:
Kx = STq KSq,

Cx = STq Sp,

Mx = STpM
−1Sp.

The orthonormalization of (φqi )1⩽i⩽m and (φpi )1⩽i⩽m with K and M−1, respectively, results in
Kx = Mx = Im.

The update procedure can be interpreted as projecting Hamilton’s equations onto the
subspace generated by the vectors of S. The system to be solved is governed by the Hamiltonian
g whose Hessian is G = STHS. This Hessian can be interpreted as the rank-2m reduced
counterpart of the Hessian operator H, such that:

g(ψ) = 1
2ψ

TGψ −ψTfψ,

and the full-order vector is given by z ≃ zm = Sψ. Assuming that the Hamiltonian g is
canonical, the Hamilton’s canonical equations of such a reduced-order system read:

ψ̇ = ∇γg,

where the symplectic gradient is given by:

∇γg = J2m∇g = J2m
(
Gψ + fψ

)
.

It follows that the Hamilton’s equations can be written as:

ψ̇ = J2m
(
Gψ − fψ

)
.

Multiplying both sides of this equation by J2m (recall that J2mJ2m = −I2m) and rearranging
the terms leads to:

J2mψ̇ + STHSψ = fψ.

Recalling here Eq. (3.27):
STJ2nSψ̇ + STHSψ = fψ,
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one observes that the two equations are identical if and only if STJ2nS = J2m, i.e. if S is
a symplectic mapping, according to the definition of the symplectic Stiefel manifold (3.19).
However, in general, S is not symplectic nor g is a canonical Hamiltonian. The product
STJ2nS writes:

STJ2nS =
 0 STq Sp

−STp Sq 0

 .
This suggests that the symplectic property could be enforced by biorthogonalization of
(φqi )1⩽i⩽m and (φpi )1⩽i⩽m, such that:

STJ2nS =
 0 Im

−Im 0

 = J2m.

However, this property is not ensured in the current algorithm since we chose to orthogonalize
(φqi )1⩽i⩽m and (φpi )1⩽i⩽m with respect to K and M−1, respectively. Yet, it can be enforced
via a post-processing procedure. Let P and Q be two matrices of size m×m such that:

ŜTq Ŝp = Im, with Ŝq = SqQ, and Ŝp = SpP.

It follows that:
(SqQ)TSpP = QTSTq SpP = Im (3.29)

In other words, the matrices Q and P recombine the columns of Sq and Sp such that (φ̂qi )1⩽i⩽m

and (φ̂pi )1⩽i⩽m form a biorthogonal system. We can readily conceive two approaches, among
others, to enforce (3.29):

– The LU factorization STq Sp = LU allows one to define Q = L−T and P = U−1;

– The Singular Value Decomposition STq Sp = UΣV T allows one to define Q = U−TΣ−1/2

and P = V −TΣ−1/2 (Σ−1/2 is defined as the diagonal matrix whose coefficients are given
by the square root of the inverse of the singular values if different from zero, and zero
otherwise).

We note that the two procedures are computationally efficient since they are performed
on reduced matrices (m ≪ n). Therefore, it is possible to construct a symplectic basis by
post-processing the basis calculated by the PGD solver.

Remark Instead of post-processing the spatial bases, symplecticity can be enforced
throughout the computation. The transformation matrix S can be made symplectic by
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considering the two following projections:

Pq = In − SpSTq ,

Pp = In − SqSTp ,

instead of those proposed in 3.3.1. Furthermore, if we denote by φ◦
q and φ◦

p the modes
initially obtained from Eqs. (3.23) and (3.24) and by φq and φp the modes that one
retains after biorthonormalization, the procedure reads:

φ⊥
q = Pqφ

◦
q, φ⊥

p = Ppφ
◦
p,

φq =
φ⊥
q

∥φ⊥
q ∥2 , φp =

φ⊥
p

φ⊥
p
Tφq

,

with ∥ · ∥ the Euclidean norm. Then, after convergence of the fixed-point iteration,
biorthogonalization can be checked using the following modified Gram-Schmidt algorithm:

φq ← φq −
(
φTq φ

p
j

)
φqj ,

φp ← φp −
(
φTpφ

q
j

)
φpj ,

j = 1, . . . ,m− 1

φq ←
φq
∥φq∥2 ,

φp ←
φp
φTpφq

While this procedure ensures that S is symplectic, the orthonormality of Sq and Sp with
respect to K and M−1, respectively, is removed. In other words, the relation Cx = Im is
enforced but Kx ̸= Im and Mx ̸= Im.

3.3.4 Projection in Ritz subspace

As previously mentioned, the main bottleneck of the PGD solver is the solution of (3.22) that
requires one to factorize the operator Aq at each fixed-point iteration. Even though Aitken
transformation does reduce the PGD solver time, the computational cost of the repeated
factorization makes the solver prohibitively expensive when the dimension of the finite element
space is large.

We recall here the problem in space (3.22), expressed now at a given fixed-point iteration
indexed by parameter k:

A
(k)
S φ

(k) = b
(k)
S



92

with:

A
(k)
S =

[∫
I

Ψ(k−1)TJ2nΨ̇(k−1) + Ψ(k−1)THΨ(k−1) dt
]

=
k(k)

t K c
(k)
t In

d
(k)
t In m

(k)
t M−1



b
(k)
S =

∫
I

Ψ(k−1)T (f z − J2nżm−1 −Hzm−1) dt

where m(k)
t , k(k)

t , c(k)
t and d

(k)
t are computed from the temporal modes ψ(k−1)

q and ψ(k−1)
p , as

defined in Section 3.3.1. In particular:

A(k)
q =

[
m

(k)
t k

(k)
t K − c(k)

t d
(k)
t M

]
Therefore, at each fixed-point iteration, the weights associated with the stiffness and mass
operators K and M , respectively, have to be modified and a new factorization of A(k)

q needs
to be obtained.

Although A(k)
q varies from one iteration to the next, its spectral content remains similar

because the operator is derived from a linear combination of K and M (both remaining
constant). The proposed approach takes advantage of the later observation and consists
in projecting Eq. (3.23) onto the subspace of approximated eigenvectors, namely the Ritz
vectors, which verify the following properties (with m ⩽ r ≪ n):

(
Λ̂, V̂

)
∈ Rr×r × Rn×r, such that V̂ TKV̂ = Λ̂, and V̂ TMV̂ = Ir,

where the Ritz values and the Ritz vectors are:

Λ̂ = diag
(
λ̂1, . . . , λ̂r

)
,

V̂ =
[
v̂1 . . . v̂r

]
.

We now introduce the mapping R:

R =
V̂ 0

0 MV̂

 ,
and remark that R ∈ Sp(2r, 2n), i.e. R is a symplectic mapping. In other words, the structure
of the equations presented above holds, which can be written in terms of ẑ ∈ Rr, that satisfies
z = Rẑ, and the Hamiltonian g defined as:

g(ẑ) = 1
2 ẑ

TGẑ − ẑTf ẑ,
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with:

G = RTHR =
Λ̂ 0

0 Ir

 , f ẑ = RTf z.

For the Hamiltonian g, the problem in space (3.22) using φ(k) = Rφ̂(k) can thus be rewritten
as:

Â
(k)
S φ̂

(k) = b̂
(k)
S , (3.30)

with:

Â
(k)
S = RTA

(k)
S R =

[∫
I

Ψ(k−1)TJ2rΨ̇(k−1) + Ψ(k−1)TGΨ(k−1) dt
]

=
k(k)

t Λ̂ c
(k)
t Ir

d
(k)
t Ir m

(k)
t Ir

 ,

b̂
(k)
S = RTb

(k)
S ,

and (3.23) becomes a diagonal system expressed as:

[
m

(k)
t k

(k)
t Λ̂− c(k)

t d
(k)
t Ir

]
φ̂(k)
q = b̂

(k)
q . (3.31)

The complexity of the spatial problem (3.22) is now linear in terms of the dimension r of the
Ritz subspace. The number of Ritz vectors r has to be chosen sufficiently high with respect
to the expected rank m of the PGD approximation. Depending on the external load, one
can compute the Ritz vectors associated to the Ritz values corresponding to the frequency
band of interest. Here, we chose to retain the Ritz vectors whose Ritz values have the lowest
magnitudes, as conventionally performed in structural dynamics [15].

3.4 Numerical examples and discussion

3.4.1 Test case: asymmetric triangle wave Neumann boundary condition

The test case is inspired by an example found in [29] and has the interest of showcasing a
transient phase followed by a steady-state harmonic regime. A 3D beam is considered, such
that the domain Ω = (0, 6) × (0, 1) × (0, 1) (in meters) is a parallelepiped with a squared
cross-section (see Figure 3.1). Its response to an external load on its top surface is computed
in I = (0, 5) (in seconds):

ρ
∂2u

∂t2
−∇ · σ(u) = 0, ∀(x, t) ∈ Ω× I,
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Figure 3.1 Scheme of the test case.
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Figure 3.2 Evolution in time of the boundary traction gN · n.

with:
σ(u) = 2µε(u) + λtr (ε(u)) I3,

ε(u) = 1
2
(
∇u+ (∇u)T

)
.

Moreover, the beam is subjected to homogeneous initial conditions:

u(x, 0) = 0, ∀x ∈ Ω,
∂u

∂t
(x, 0) = 0, ∀x ∈ Ω,

and to the boundary conditions:

u(x, t) = 0, ∀(x, t) ∈ ∂ΩD × I,

σ(u) · n = gN(x, t), ∀(x, t) ∈ ∂ΩN × I,

σ(u) · n = 0, ∀(x, t) ∈ ∂Ω0 × I.
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Figure 3.3 Number of iterations for 20 modes without and with Aitken acceleration

In other words, the beam is clamped on its left end ∂ΩD = {0} × (0, 1)× (0, 1), an external
load gN · n is applied on its top surface ∂ΩN = (0, 6)× {1} × (0, 1) such that:

gN(x, t) · n =



t

t1
F, if t < t1,

−1
2

(
1− t− t1

t2 − t1

)
F, if t1 ⩽ t < t2,

0, otherwise,

where t1 = 0.625 and t2 = 0.75. In other words, the external load pulls the beam upwards
for t ∈ [0, t1) and pushes it downwards for t ∈ [t1, t2) (see Figure 3.2). Finally, the beam
is free on the remainder of the boundary ∂Ω0 = ∂Ω\(∂ΩD ∪ ∂ΩN). In the space-discrete,
time-continuous Hamiltonian formalism, the problem reads:

ṗ = −Kq + f ,

q̇ = M−1p,

with:
q(0) = 0,

p(0) = 0,

where the stiffness and mass matrices, K and M respectively, result from the enforcement
of the homogeneous Dirichlet boundary conditions by eliminating the corresponding rows
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Figure 3.4 Visualization [95] of the first three temporal modes (normalized) with and without
Aiken acceleration, herein denoted ψ̃qi and ψqi , respectively.

and columns; the right-hand side f is computed from the prescribed Neumann boundary
conditions.

The values of the parameters are chosen as follows:

E = 220 GPa,

ν = 0.3,

ρ = 7000 kg/m3,

F = 0.5 GPa,

and the Lamé coefficients are evaluated as:

µ = E

2(1 + ν) , λ = Eν

(1 + ν)(1− 2ν) .

The time domain I is divided into nt = 4800 sub-intervals of equal size. The space domain
Ω is partitioned into linear tetrahedral elements and five discretizations will be considered
such that the number of spatial DOFs 2n is chosen in {1,302, 6,204, 36,774, 67,032, 244,926}.
The number of Ritz vectors is set to r = 300 regardless of the spatial discretization. Unless
otherwise stated, the reduced-order models are assessed on solutions involving m = 50 modes.
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3.4.2 Comparison method and performance criteria

We shall report the results based on the following four features:

1. The number of fixed-point iterations without and with Aitken acceleration;
2. The accuracy of the PGD approximations with respect to full-order solutions, namely

the FEM solutions described in Section 3.1.3;
3. The actual execution time of the different approaches and algorithms. The time efficiency

of the PGD solvers will be detailed regarding the successive phases of the computation,
namely the pre-processing, the fixed-point algorithm, the Gram-Schmidt algorithm, and
the temporal update procedure.

4. The scalability of the approaches with respect to the size of the spatial discretization.

The relative error ϵROM in the reduced-order approximations with respect to the full-order
solutions computed by the FEM is given by:

ϵROM = ~uFEM − uROM~

~uFEM~

with ~·~ being the energy norm:

~u~ =
√∫

I

∫
Ω

1
2ρu̇ · u̇+ 1

2ϵ(u) : E : ϵ(u) dxdt.

More precisely, in the space-discrete Hamiltonian framework, the energy norm will be evaluated
as follows:

~u~ =
√∫

I

1
2p

TM−1p+ 1
2q

TKq dt.

Note that the full-order solution computed by the FEM is obtained using the same discretiza-
tion parameters.

The reduced-order approximations that will be considered are the Singular Value Decom-
position (SVD) of the full-order solution, the PGD LU that factorizes the space operator
by LU decomposition for each fixed-point iteration and the PGD Ritz that computes the
reduced-order model in the subspace spanned by the Ritz vectors. More precisely, we will
present the errors with respect to the number of modes m in the PGD solutions and compare
these errors to those obtained by subsequently performing an SVD on the full-order solutions.

As far as computer times are concerned, all computations were run on a computer with
the following configuration:

– CPU: AMD Ryzen 7 PRO 4750U @ 1.7 GHz per core (8 cores, 16 threads);
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Figure 3.5 (Left) Error between the reference solutions and the SVD, PGD or Modal Decom-
position approximations for 244,926 spatial DOF with 50 modes. (Right) Error between the
reference solutions and the SVD, PGD or Modal Decomposition approximations for 36,774
spatial DOF with 300 modes. (y-axis has log scale)

– RAM: 38 GB;

– OS: Arch Linux.

The code was written using Python 3.9.17 with NumPy 1.25.0 [96] and SciPy 1.10.1 [97] built
from sources and linked against BLAS/LAPACK and SuiteSparse [98].

3.4.3 Numerical results

Aitken acceleration. The relaxation technique significantly reduces the number of fixed-
point iterations (see Figure 3.3). For 20 modes, Aitken acceleration saves five iterations per
enrichment, on average, and a total of over 100 iterations for the full computation. Moreover,
it is worth highlighting that without Aitken acceleration, the fixed-point procedure sometimes
terminates without reaching convergence. This is the case for example for modes 2, 4, and
6, as shown in Figure 3.3. Indeed, the maximum number of iterations in this example
is set to 35 iterations, so that if convergence is not reached within the 35 iterations, the
fixed-point procedure is aborted and the last computed mode is retained. Thus, not only
Aitken acceleration increases the computational efficiency, but also allows one to reach the
convergence criterion that may not be satisfied otherwise. Eventually, slight discrepancies
in the temporal modes may be noticeable between the results obtained with and without
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Figure 3.6 Real execution time for the full-order model (FEM) and the reduced-order models
(SVD, PGD LU, PGD Ritz) with respect to different spatial discretizations (y-axis has log
scale).

acceleration (see Figure 3.4). On the other hand, there is no significant difference on the
spatial modes, as illustrated in Figure 3.8, with Aitken acceleration when using either one of
the two PGD approaches.

ROM accuracy. Figure 3.5 shows the errors of the reduced-order models with respect to
the FEM solutions for 2n = 244,926 spatial degrees of freedom. We observe that the errors
significantly decrease for both the PGD LU and PGD Ritz approaches during the 20 first
modes. In fact, the accuracy of the PGD Ritz solution is similar to that of the PGD LU
solutions. Moreover, we observe that the convergence of the two PGD approximations is
comparable to that of the SVD, at least for the 20 first modes, before reaching a plateau.

Execution time and scalability. Figures 3.6 and 3.7 show respectively the total and
detailed real execution times of the different methods. We remark that the PGD solver is
not competitive when the number of degrees of freedom remains low. We also observe that,
except in the case with 1,302 spatial degrees of freedom, the PGD Ritz outperforms any other
method. On the one hand, the SVD, as an a posteriori method, requires a full-order snapshot
to build a reduced-order model. Moreover, the extraction of the principal components from
the data takes as much time as the actual full-order computation. On the other hand, the
Ritz version of the PGD solver as an a priori method does not require any prior knowledge
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of the full-order solution and reaches an error comparable to that of the SVD for the first
20 modes. More precisely, the PGD Ritz does not reach an error as low as that of the SVD.
However, the difference in error is small enough in view of the speedup to justify the use
of the PGD Ritz over the SVD (see Table 3.1). Conversely, the use of the PGD LU in this
context cannot really be justified over the SVD.

Regarding the detailed execution times, it seems that the pre-processing phase has compa-
rable computational efficiency. In other words, the computation of a Cholesky factorization
for M is as costly as computing Ritz pairs. Nevertheless, carrying out the PGD computation
in the subspace provided by the Ritz vectors drastically increases the performance of each
of the subsequent phases, namely the fixed-point, Gram-Schmidt, and the temporal update
procedures.

3.4.4 Further discussion

The PGD Ritz solver is overall much more efficient than the other approaches and offers a
remarkably good compromise in terms of error decay. Moreover, this novel approach displays
good scalability with respect to the number of spatial degrees of freedom, with a reasonable
error for a relatively small number of modes, which is highly suitable in model-order reduction.
The PGD Ritz solver could be interpreted as a hybrid approach between classic PGD solvers
and Modal Decomposition methods. In that respect, the relevance of the PGD Ritz over
classic PGD solvers is unequivocal in a space-time separated context. Yet, its advantage over
Modal Decomposition must be discussed, as well as its potential to perform well if separation
with additional parameters (material, geometric, etc.) had to be accounted for.

Around the 20th mode, we observe on Figure 3.5 that the error decay slows down or even

Table 3.1 Time efficiency of the reduced-order models (SVD, PGD LU, PGD Ritz) with
respect to different spatial discretizations and PGD Ritz speedup compared to other methods.

# DOF in space ∆T1 (s)
(FEM & SVD)

∆T2 (s)
(PGD LU)

∆T3 (s)
(PGD Ritz) Gain ∆T1

∆T3
Gain ∆T2

∆T3

1,302 2.32 46.23 24.95 0.09 1.85

6,204 68.99 280.69 32.38 2.13 8.67

36,774 333.26 2,750.84 68.77 4.85 40.00

67,032 760.15 n.a. 115.79 6.57 n.a.

244,926 4,428.65 n.a. 676.87 6.54 n.a.
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Figure 3.8 Visualization of the first three spatial modes (normalized) for the Modal Decom-
position, PGD LU and PGD Ritz on the first, second and third columns, respectively and
undeformed configuration in low opacity.

stagnates for the PGD Ritz. Since computations are carried out in the subspace spanned by
the Ritz vectors, it is intuitively understandable that the quality of the PGD approximation
is bounded by the information contained in the Ritz vectors. Indeed, Figure 3.5 illustrates
this idea: the error in the solution obtained by the PGD Ritz after the first 20 enrichments
matches the error of the response computed by Modal Decomposition (MD) with r = 300
modes (number of Ritz vectors). On the one hand, Ritz vectors are describing the natural
response of the system. Thus, not all the Ritz vectors will be relevant to describe the
structural response under external loads. Mode participation factors or methods such as
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sensitivity analysis or mode shape analysis may provide insights to select a set of vectors
that capture a given dynamic behavior. However, these approaches can be tedious as they
may require user intervention to interpret the results, which makes the process subjective and
less repeatable. On the other hand, the PGD solver inherently accounts for external loads
to compute relevant modes that describe the structural response accurately. In the PGD
Ritz framework, it translates to find linear combinations of the Ritz vectors that satisfy the
PGD spatial formulation (3.22) that derives from the Galerkin finite element formulation.
This is well illustrated by Figure 3.8: the first three modes for Modal Decomposition are the
dominant deformation modes for the beam geometry, respectively vertical bending, lateral
bending, and torsion. However, for the given external load, lateral bending and torsion are
not relevant. We can thus see that, like modal decomposition, the PGD solvers compute a
first mode corresponding to vertical bending, but the subsequent modes also contribute to
the description of vertical bending, which is effectively the dominant mode to describe the
structure’s response to the prescribed load.

Figure 3.5 also shows that while the error in the PGD Ritz solution reaches a plateau, that
in the PGD LU solution eventually keeps decreasing when the number of modes is increased.
Thus, if error stagnation is detected while the accuracy remains above a given tolerance, two
strategies can be considered:

– Restarting the Arnoldi algorithm to find subsequent Ritz vectors (i.e. increase r), so as
to enrich the research space for new PGD modes;

– Switch back to the PGD LU algorithm.

The methodology can be straightforwardly extended to viscoelastic systems modeled with
Rayleigh damping, allowing for the construction of a parametric reduced-order model with
respect to the Rayleigh damping coefficients. Indeed, the damping term does not change the
matrix pattern of the system (3.22) to be solved for the spatial mode. In [67], the parametric
eigenproblem Kµu(µ) = λ(µ)Mµu(µ) is solved for applications in structural dynamics, where
the stiffness Kµ and mass Mµ operators depend on material or geometric parameters µ.
The authors introduce an original method to solve this parametric eigenproblem within the
PGD framework, so as to find approximations of the eigen-pairs (λ(µ),u(µ)) in a parameter-
separated format. Their approach may be considered to provide a parametrized subspace,
onto which the spatial problem (3.22) can be projected to recover a diagonal structure as
in (3.31). The PGD Ritz would optimize the selection of the eigenvectors that contribute to
the structure response. Therefore, the PGD Ritz could present a proficient tool to compute
the dynamic response of structures subjected to time-dependent loads, even in a parametrized
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setting.

Furthermore, the possibility to choose a symplectic time integrator in combination with
the preservation of symplecticity of the spatial modes offers an appropriate foundation for a
potential extension of this work. It may allow for the development of a reduction technique
suited to the treatment of elastodynamics problems that involve large rotations and small
strains as presented in [39]. Finally, the proposed approach allows one to consider the
construction of a PGD Ritz aimed at minimizing an error with respect to a Quantity of
Interest (QoI) [99]. The PGD subproblems would be modified so that combinations of the
Ritz vectors are now sought for as to minimize a residual over a QoI.

3.5 Conclusion

The PGD solver developed here combines good accuracy and efficiency, even with an increased
number of degrees of freedom. The calculation of the PGD modes in the subspace spanned by
the Ritz vectors proves to be proficient, as it substantially accelerates the computation without
introducing a significant approximation error. Aitken acceleration and the orthogonalization
procedures are not as important for computational efficiency, but guarantee convergence and
stability properties that are essential to the solver. In addition, the solver, which is based
on the Hamiltonian formalism, builds reduced models for both the generalized coordinates
and conjugate momenta. It has been shown that it allows the construction of a symplectic
reduced basis, thus respecting the structure of canonical Hamiltonian mechanics. This is an
interesting feature, as it opens up a variety of avenues related to this fundamental structure
in dynamics. The numerical results also show great promise regarding the viability of this
approach for solving linear elastodynamics problems on three-dimensional structures.

While the computational efficiency had been significantly increased, the accuracy of the
ROM was then bounded to the subspace defined by the Ritz vectors. Consequently, the next
development addressed the spatial solver in more detail, introducing a two-step prediction-
correction approach to enhance the precision of the spatial modes. The parametrization of
the ROM with respect to additional damping parameters will also be introduced in the next
chapter.
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CHAPTER 4 EXTENSION OF THE PROPER GENERALIZED
DECOMPOSITION FOR SURROGATE MODELING WITH APPLICATION

TO THE IDENTIFICATION OF RAYLEIGH DAMPING PARAMETERS

In this chapter, the PGD reduced model is parametrized with respect to the Rayleigh damping
coefficients α, β ∈ R+. Their estimation is an active research topic in both the experimental
and numerical communities [71,72], as control of damping phenomena is a critical issue in
the construction, automotive, or aerospace industries. In contrast to Modal Decomposition
or Krylov-based ROM, the proposed reduced model directly incorporates the dependence
on Rayleigh damping parameters in the modes. Each enrichment term includes four modes:
one spatial mode, one temporal mode, and one mode for each of the damping parameters α
and β. The treatment of the problem in space draws upon our previous work. In the offline
phase, computations are initially performed in the subspace spanned by the Ritz vectors
of the system. This approach offers a computationally efficient estimation of the spatial
modes but limits the accuracy of the PGD approximation to the information contained in the
selected Ritz vectors [100]. To enhance accuracy, the estimation is subsequently refined using
a Minimal Residual iterative solver. This two-step, prediction-correction process reduces
the computational cost of a full-order solution while improving the accuracy of the reduced
model. Subsequently, the PGD can be used as a surrogate to perform the optimization of
the damping parameters with respect to a given snapshot. A Particle Swarm Optimization
(PSO) algorithm [101,102] drives the optimization process and queries the PGD surrogate
to estimate the damped response of the structure. The numerical experiment is carried out
with a snapshot generated by FEM, whose damping is modeled according to the Rayleigh
hypothesis. It also assumes the knowledge of the time-dependent external load. The proof of
concept consists in testing the capability of the parametric PGD to: 1) build a ROM that
includes damping modes; 2) employ the surrogate to identify the coefficients that were used to
generate the snapshot (inverse problem). The authors in [8] pointed out that the offline phase
is somewhat suboptimal when the goal is to use the ROM for optimization. Indeed, the offline
phase involves an exploration of the parametric space, but it is not known a priori whether the
explored regions will subsequently be exploited throughout the online phase (optimization);
or worse, the optimization process could lead to assess the response of the system in some
regions where the offline phase did not gather enough knowledge of. This remark especially
applies to methods like the POD, where the exploration is contingent to costly, full-order
solves [34]. It will be shown that the proposed method does not suffer from this issue. The
first reason is that the need for full-order solutions is irrelevant here as the PGD is used as an
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a priori ROM. The second reason, of paramount importance, is that the complexity of the
offline phase weakly depends on the discretization of the damping parameter spaces.

The chapter is organized as follows: in Section 4.1, we describe the model problem in its
parametric form and highlight the computational burden incurred by the use of conventional
FEM solvers. The PGD approach is described in Section 4.2, with a particular focus on both
the complexity of the algorithm and the solution of the problem in space. In Section 4.3, we
describe the combination of the PSO method with the PGD as a surrogate. Some numerical
experiments are presented in Section 4.4 to illustrate the performance of the proposed approach.
We finally provide some concluding remarks in Section 4.5.

4.1 Model problem

4.1.1 Strong formulation

The model problem we shall consider is that of elastodynamics in three dimensions under
the assumption of infinitesimal deformation and linear viscoelastic damping. Let Ω be an
open bounded domain of R3, with Lipschitz boundary ∂Ω, and let I = (0, T ) denote the time
interval. The boundary ∂Ω is supposed to be decomposed into two portions, ∂ΩD and ∂ΩN ,
such that ∂Ω = ∂ΩD ∪ ∂ΩN . The displacement field u : Ω̄× Ī → R3 satisfies the following
partial differential equation:

ρ
∂2u

∂t2
−∇ · σ(u) = f, ∀(x, t) ∈ Ω× I, (4.1)

where, in the case of infinitesimal deformation, the stress tensor σ(u) and strain tensor ε(u)
are given by:

σ(u) = E : ε(u) + D : ε̇(u), ∀(x, t) ∈ Ω× I, (4.2)

ε(u) = 1
2

(
∇u+

(
∇u

)T)
, ∀(x, t) ∈ Ω× I, (4.3)

and is subjected to the initial conditions:

u(x, 0) = u0(x), ∀x ∈ Ω, (4.4)
∂u

∂t
(x, 0) = v0(x), ∀x ∈ Ω, (4.5)
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as well as to the boundary conditions:

u(x, t) = 0, ∀(x, t) ∈ ∂ΩD × I, (4.6)

σ(u) · n = gN(x, t), ∀(x, t) ∈ ∂ΩN × I. (4.7)

The functions f : Ω × I → R3, u0 : Ω → R3, v0 : Ω → R3, and gN : ∂ΩN × I → R3 are
supposed to be sufficiently regular to yield a well-posed problem. The tensors E and D
describe the elastic and viscous local properties, respectively, of the medium occupied in Ω.
The latter is assumed to be isotropic, with density ρ and Lamé coefficients λ and µ (we note
that the material parameters could possibly vary in space). The constitutive equation (4.2)
thus reduces to:

σ(u) = 2µε(u) + λtr (ε(u)) I3 + D : ε̇(u),

where I3 ∈ R3×3 is the identity matrix. In the following, we will denote the first and second
time derivatives by u̇ = ∂u/∂t and ü = ∂2u/∂t2.

4.1.2 Semi-weak formulation

We consider here the semi-weak formulation with respect to the spatial variable in order to
construct the discrete problem in space using the Finite Element method (FEM). Multiply-
ing (4.1) by an arbitrary smooth function u∗ = u∗(x) and integrating over the whole domain
Ω, one obtains:

∫
Ω
ρü · u∗ − (∇ · σ(u)) · u∗ dx =

∫
Ω
f · u∗ dx, ∀t ∈ I. (4.8)

Following the same development as in [100], the semi-discrete formulation of the problem
then reads:

Find u such that for all t ∈ I, u(·, t) ∈ V , and∫
Ω
ρü · u∗ + ε(u) : E : ε(u∗) + ε̇(u) : D : ε(u∗) dx

=
∫

Ω
f · u∗ dx+

∫
∂ΩN

gN · u∗ dx, ∀u∗ ∈ V, ∀t ∈ I,

and

u(x, 0) = u0(x), ∀x ∈ Ω,

u̇(x, 0) = v0(x), ∀x ∈ Ω,

(4.9)
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where V is the vector space of vector-valued functions defined on Ω:

V =
{
v ∈

[
H1(Ω)

]3
: v = 0 on ∂ΩD

}
.

4.1.3 Spatial discretization

We partition the domain into Ne tetrahedral elements Ke such that Ω = ∪Ne
e=1Ke and

Int(Ki) ∩ Int(Kj) = ∅, ∀i, j = 1, . . . , Ne, i ̸= j. We then associate with the mesh the
finite-dimensional Finite Element space W h, dim W h = s, of scalar-valued continuous and
piecewise polynomial functions defined on Ω, that is:

W h = {vh : Ω→ R : vh|Ke ∈ Pk(Ke), e = 1, . . . , Ne} ,

where Pk(Ke) denotes the space of polynomial functions of degree k on Ke. Let ϕi, i = 1, . . . , s,
denote the basis functions of W h, i.e. W h = span{ϕi}. We then introduce the finite element
subspace V h of V such as:

V h =
[
W h

]3
∩ V,

and search for finite element solutions uh satisfying uh(·, t) ∈ V h, ∀t ∈ Ī, in the form:

uh(x, t) =
s∑
j=1

ϕj(x)qj(t),

where the vectors of degrees of freedom, qj ∈ R3, depend on time. We introduce the set of
n = 3s vector-valued basis functions as:

χ3i−2(x) =


ϕi(x)

0
0

 , χ3i−1(x) =


0

ϕi(x)
0

 , χ3i(x) =


0
0

ϕi(x)

 , i = 1, . . . , s.

Using the Galerkin method, the Finite Element problem thus reads:

Find uh such that uh(·, t) ∈ V h, ∀t ∈ Ī, and∫
Ω
ρχi(x) · üh(x, t) + ε(χi)(x) : E : ε(uh)(x, t) + ε(χi)(x) : D : ε̇(uh)(x, t) dx

=
∫

Ω
χi(x) · f(x, t) dx+

∫
∂ΩN

χi(x) · gN(x, t) ds, ∀i = 1, . . . , n, ∀t ∈ I,

satisfying the initial conditions

uh(x, 0) = u0,h(x), ∀x ∈ Ω,

u̇h(x, 0) = v0,h(x), ∀x ∈ Ω,
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where u0,h and v0,h are interpolants or projections of u0 and v0 in the space V h. The above
problem can be conveniently recast in compact form as:

M q̈(t) + Cq̇(t) +Kq(t) = f(t), ∀t ∈ I, (4.10)

q(0) = u0, (4.11)

q̇(0) = v0, (4.12)

where M , C, and K are the global mass, damping, and stiffness matrices, respectively:

Mij =
∫

Ω
ρχi · χj dx,

Kij =
∫

Ω
ε(χi) : E : ε(χj) dx

Cij =
∫

Ω
ε(χi) : D : ε(χj) dx,

, ∀i, j = 1, . . . , n,

f(t) is the loading vector at time t whose components are given by:

fi(t) =
∫

Ω
χi(x) · f(x, t) dx+

∫
∂ΩN

χi(x) · gN(x, t) ds, ∀i = 1, . . . , n,

q(t) is the global vector of degrees of freedom:

q(t) =
[
q1(t) . . . qs(t)

]T
,

where qi ∈ R3, i = 1, . . . , s, and u0 and v0 are the initial vectors:

u0 =
[
u0,1 . . . u0,s

]T
,

v0 =
[
v0,1 . . . v0,s

]T
.

Note that u0,i ∈ R3 and v0,i ∈ R3, i = 1, . . . , s, are vectors whose components are the initial
displacements and velocities in the three spatial directions. Moreover, the above definition
of C is not practical and will be replaced by the model described in the next section.

4.1.4 Damping modeling and parameter discretization

We assume here that damping is “proportional” to K and M , that is, C = αK + βM , where
α, β ∈ R+ are the so-called Rayleigh damping coefficients. Furthermore, we shall rewrite the
damping matrix as follows:

C(α, β) = αᾱK + ββ̄M, (4.13)
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where the constant parameters ᾱ, β̄ ∈ R+ are interpreted as reference parameters while α
and β encapsulate the variability in the parameters. Let Dα and Dβ be spaces for parameters
α, β ∈ R+, respectively, such that:

Dα = [αmin, αmax] ,

Dβ = [βmin, βmax] .

Let D be the global parameter space defined as the tensor product of Dα and Dβ, i.e. D =
Dα×Dβ. Our goal is to compute the mechanical response of a system over Ω×I ×D. Finite
element solutions are sought for in the form:

uh(x, t, α, β) =
s∑
j=1

ϕj(x)qj(t, α, β).

In other words, we aim at modeling the mechanical behavior for multiple pairs of values
(α, β) ∈ D, (α, β) being chosen so that the computed approximations are in the following
solution manifold:

M =
{
vh : D →W h ⊗ L2(I);

∫
D

~vh~
2dµ <∞

}
,

where:

~u~ =
√∫

I

∫
Ω

1
2ρu̇ · u̇+ 1

2ε(u) : E : ε(u) dxdt.

Later on, the parameter spaces Dα and Dβ will be partitioned into (nα − 1) and (nβ − 1)
subintervals, respectively, that is, Dα = ∪nα

i=2[αi−1, αi] and Dβ = ∪nβ

i=2[βi−1, βi]. Here, nα and
nβ denote the numbers of grid points αi, i = 1, . . . , nα, and βi, i = 1, . . . , nβ, chosen in Dα
and Dβ, respectively. We also define ∥·∥M such that:

∀u ∈M, ∥u∥M =
∫

D
~u~

2dµ.

In many applications, it is useful to know the mechanical response for many pairs of
parameters (α, β) in the global parameter space D. However, this entails a substantial
computational burden when using conventional methods, as shown in the next section.

4.1.5 Discretization in time

The time domain I is divided into nt subintervals I i = [ti−1, ti], i = 1, . . . , nt, of size
hi = ti − ti−1. For the sake of simplicity, we assume here that all intervals are of same length
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ht, i.e. hi = ht for all i = 1, . . . , nt. Introducing the vector p(t) = M q̇(t), Eq. (4.10) can be
recast into the system of coupled equations:

ṗ(t) + Cq̇(t) +Kq(t) = f(t), ∀t ∈ I, (4.14)

q̇(t)−M−1p(t) = 0, ∀t ∈ I. (4.15)

The two equations (4.14) and (4.15) are discretized using the Crank-Nicolson scheme (also
referred to as the implicit trapezoidal rule) to obtain, for i = 1, . . . , nt:htK + 2C 2In

2In −htM−1


q

i

pi

 =

−htK + 2C 2In

2In htM
−1


q

i−1

pi−1

+ ht

f
i + f i−1

0

 , (4.16)

with:
q0 = u0,

p0 = Mv0.

Eq. (4.16) can be rewritten as:
htK + 2C 2In

2In −htM−1


q

i

pi

 =

b
i
q

bip

 ,

with
biq = [−htK + 2C] qi−1 + 2pi−1 + ht

(
f i + f i−1

)
,

bip = 2qi−1 + htM
−1pi−1.

Developing above system yields the two equations:

[htK + 2C] qi + 2pi = biq,

2qi − htM−1pi = bip.

Rewriting the second equation as:

pi = 2
ht
Mqi − 1

ht
Mbip,

and substituting pi for this new expression in the first equation leads to:
[
htK + 2C + 4

ht
M
]
qi = biq + 2

ht
Mbip.
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Finally, applying the Rayleigh hypothesis for C (4.13), one has to solve at each time-step the
coupled equations:

[
(ht + 2αᾱ)K +

( 4
ht

+ 2ββ̄
)
M
]
qi = biq + 2

ht
Mbip, (4.17)

pi = 2
ht
Mqi − 1

ht
Mbip. (4.18)

Since K and M are both symmetric and positive-definite, so is the left-hand side matrix
in (4.17). Therefore, the equation can be solved at the cost of one Cholesky factorization
of the matrix A =

[
(ht + 2αᾱ)K +

(
4h−1

t + 2ββ̄
)
M
]

(as long as the time-step ht remains
constant), while all subsequent operations inside one time-step loop will have costs similar to
those of matrix-vector multiplications.

The corresponding algorithm is shown in Algorithm 4. Its complexity depends on the
number of non-zero elements in the matrices that are dealt with and on their sparsity patterns
(note that K and M feature the same number of non-zero elements and sparsity patterns,
properties that are directly inherited by A). As an approximation, if we consider that all
matrices are dense, of size n, the cost of Algorithm 4 is thus proportional to that of a Cholesky
factorization, i.e. O

(
n3
)
, and nt matrix-vector multiplications, each having a cost of O

(
n2
)
.

The resulting complexity of the algorithm is therefore of the order of O
(
n3 + ntn

2
)
. We also

note that the Cholesky factorization is the most expensive operation, but that the integrating
scheme could also be costly if nt becomes large.

Accounting for parameters, the evaluation of the mechanical response over the discrete
global parameter space D by means of Algorithm 4 has complexity of order O

(
nαnβ

(
n3 +

ntn
2
))

. It shows that the complexity of such a task rapidly grows with respect to the number
of parameters. We describe below a reduced-order technique that efficiently tackles the
evaluation of uh when dealing with many parameters. Furthermore, we will denote the
complexity of solving a linear system of n algebraic equations in n unknowns as lin(n). This
notation is used to generalize the complexity, whether a direct or iterative solver is employed,
and regardless of the sparsity pattern of the operators.

4.2 Parametric PGD reduced-order modeling

The Proper Generalized Decomposition method aims at approximating both the generalized
coordinates q and their generalized momenta p in separated form. We are thus searching for
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Algorithm 4 Classic elastodynamics FEM-Crank-Nicolson solver
1: Input: assembled operators K, M and f

2: initial conditions q0 and p0

3: Define A =
[
(ht + 2αᾱ)K +

(
4h−1

t + 2ββ̄
)
M
]

4: Factorize A: L = cholesky(A) see sksparse.cholmod [98] sparse Cholesky

decomposition

5: for i=1, . . . , nt do

6: Update biq and bip
7: Solve qi = L.solve_A(biq + 2h−1

t Mbip) forward / backward substitution for Eq. (4.17)

8: Compute pi Eq. (4.18)

9: end for

10: Output: Q =
[
q0 . . . qnt

]
and P =

[
p0 . . . pnt

]

a space-time separated representation of q and p as:

q(t, α, β) ≈ qm(t, α, β) =
m∑
i=1
φqiψ

q
i (t)ξ

q
i (α)ζqi (β),

p(t, α, β) ≈ pm(t, α, β) =
m∑
i=1
φpiψ

p
i (t)ξ

p
i (α)ζpi (β).

For the sake of clarity in the presentation, we shall drop from now on the subscript i and
write the decompositions of rank m as:

q(t, α, β) ≈ qm(t, α, β) = qm−1(t, α, β) +φqψq(t)ξq(α)ζq(β),

p(t, α, β) ≈ pm(t, α, β) = pm−1(t, α, β) +φpψp(t)ξp(α)ζp(β).

The bold notations z, φ, ψ, ξ, and ζ denote vertical concatenations such that:

z =
q
p

 , φ =
φq
φp

 , ψ =
ψq
ψp

 , ξ =
ξq
ξp

 , ζ =
ζq
ζp

 .
The following weighted residual form of (4.14)–(4.15) is considered:

∫
D

∫
I
q∗T

[
ṗ+

(
αᾱK + ββ̄M

)
q̇ +Kq

]
dtdµ =

∫
D

∫
I
q∗Tf dtdµ, ∀q∗ ∈ L2(I, V h),∫

D

∫
I
p∗T

[
q̇ −M−1p

]
dtdµ = 0, ∀p∗ ∈ L2(I, V h).
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The separated representation is computed in a progressive manner by adding one quadruplet
of modes (φ,ψ, ξ, ζ) at each enrichment, following the so-called greedy rank-one update
algorithm. In other words, we substitute qm and pm for q and p, respectively, so that the modes
(φq, ψq, ξq, ζq) and (φp, ψp, ξp, ζp) become the new unknowns of the problem. Subsequently,
the modes are computed one by one at each enrichment, with zm−1 being known. This
computing paradigm has the virtue of drastically reducing the complexity by splitting the
computational costs into lower dimensional sub-problems.

The goal in this section is to show how the PGD sub-problems are modified in comparison
to our previous work [100] with the introduction of additional modes for parameters α and β.
This development is rather straightforward and is drawn from an example with the transient
diffusion equation in [85], where the diffusivity is considered as an extra-coordinate. The
authors highlight that the analytical solution of the transient diffusion equation cannot be
written in a parameter-separated format. Yet, the PGD strategy is somehow efficient to tackle
the diffusion problem. Likewise, modal superposition does not express the solution of the
problem that is therein dealt with in a separated form [15]. We will show in Section 4.4 that
the PGD was found to be efficient when applied to the problem at hand. Special attention
will be devoted to the way we address the spatial problem and a new resolution strategy will
be presented. The effect of the PGD technique on the complexity will be detailed as well.

4.2.1 Fixed-point algorithm

If the complexity reduction offered by the PGD strategy is appealing, it however leads to a
non-linear formulation for the modes. At each enrichment m, the problem to be solved for
(φ,ψ, ξ, ζ) reads:
∫

D

∫
I
q∗T

[
φpψ̇pξpζp +

(
αᾱK + ββ̄M

)
φqψ̇qξqζq +Kφqψqξqζq

]
dtdµ

=
∫

D

∫
I
q∗Trqm−1 dtdµ, ∀q∗,∫

D

∫
I
p∗T

[
φqψ̇qξqζq −M−1φpψpξpζp

]
dtdµ =

∫
D

∫
I
p∗Trpm−1 dtdµ, ∀p∗,

(4.19)

where rqm−1 and rpm−1 are the mth residuals:

rqm−1 =

f , if m = 1,

f − ṗm−1 −
(
αᾱK + ββ̄M

)
q̇m−1 −Kqm−1, if m > 1,

rpm−1 =

0, if m = 1,

M−1pm−1 − q̇m−1, if m > 1.
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The above problem is solved in an iterative manner using the following fixed point algorithm:

1. Solve (4.19) for φ with (ψ, ξ, ζ) known. This step will be referred to as the spatial
problem and is written in a generic form as:

AS(ψ, ξ, ζ)φ = bS(ψ, ξ, ζ, zm−1), (4.20)

where the 2n× 2n matrix AS and vector bS of size 2n will be specified in Section 4.2.2.

2. Solve (4.19) for ξ with (φ,ψ, ζ) known. This problem consists in solving the 2nα
algebraic equations:

Aξ(α,φ,ψ, ζ)ξ = bξ(α,φ,ψ, ζ, zm−1), (4.21)

where the 2× 2 matrix Aξ and vector bξ of size 2 are explicitly provided in Appendix B.
In other words, there is one 2× 2 linear system to solve for each value of the parameter
α.

3. Solve (4.19) for ζ with (φ,ψ, ξ) known. This problem consists in solving the 2nβ
algebraic equations:

Aζ(β,φ,ψ, ξ)ζ = bζ(β,φ,ψ, ξ, zm−1), (4.22)

where the 2× 2 matrix Aζ and vector bζ of size 2 are explicitly provided in Appendix B.
As for α, there is one 2× 2 linear system to solve for each value of the parameter β.

4. Solve (4.19) for ψ with (φ, ξ, ζ) known. The temporal problem corresponds to the
system of first-order differential equations:

ψ̇ = fT (t,ψ,φ, ξ, ζ, zm−1), (4.23)

where the vector-valued function fT is explicitly provided in Appendix B.

The fixed-point procedure is illustrated in Figure 4.1. It appears that the resulting complexity
of the PGD algorithm is of order O (mkmax (lin(n) + nt + nα + nβ)), with kmax the maximum
number of fixed-point iterations to reach convergence. We will show in the next section that
this complexity can further be decreased by projecting the spatial problem onto a subspace
spanned by Ritz vectors.
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Start fixed-point

Problem in space for φ: lin(n), cf. (4.20)

Problem in parameter α for ξ: O(nα), cf. (4.21)

Problem in parameter β for ζ: O(nβ), cf. (4.22)

Problem in time for ψ: O(nt), cf. (4.23)

convergence?

Stop fixed-point

false
true

Figure 4.1 Flowchart of the conventional fixed-point algorithm with associated computational
complexities.

4.2.2 Problem in space

Projection in Ritz subspace

We assume that (ψ, ξ, ζ) is known and we search for the new spatial mode φ. We choose test
functions in the form q∗ = φ∗

qψqξqζq and p∗ = φ∗
pψpξpζp. Equation (4.19) leads to the linear

system:
ASφ = bS , (4.24)

where:

AS =

kqqK +mqqM cqpIn

cpqIn mppM
−1

 ,

bS =


∫

D

∫
I
ψqξqζqr

q
m−1 dtdµ∫

D

∫
I
ψpξpζpr

p
m−1 dtdµ

 ,
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and the real coefficients are defined in Appendix B. The introduction of viscous damping,
assumed to be proportional to K and M , allows us to write (4.24) in a form similar to that
in our previous work [100]. Therefore, following [100], we can project Eq. (4.24) onto the
subspace of approximated eigenvectors, namely the Ritz vectors, which verify the properties
(with m ⩽ r ≪ n):

(
Λ̂, V̂

)
∈ Rr×r × Rn×r, such that V̂ TKV̂ = Λ̂, and V̂ TMV̂ = Ir,

where the Ritz values and associated Ritz vectors are:

Λ̂ = diag
(
λ̂1, . . . , λ̂r

)
,

V̂ =
[
v̂1 . . . v̂r

]
.

We now introduce the mapping:

R =
V̂ 0

0 MV̂

 .
The problem in space (4.24), using φ = Rφ̂, can thus be rewritten as:

ÂSφ̂ = b̂S , (4.25)

with:

ÂS = RTASR =

kqqΛ̂ +mqqIr cqpIr

cpqIr mppIr

 ,

b̂S = RTbS =

b̂q
b̂p

 .
The structure of ÂS exhibits a coupling of the components of φ̂q and φ̂p. The solution can
be explicitly expressed, component-wise, as:

φ̂q,i = 1
m̂qqmpp − cqpcpq

(
mppb̂q,i − cqpb̂p,i

)
, (4.26)

φ̂p,i = 1
m̂qqmpp − cqpcpq

(
m̂qqb̂p,i − cpqb̂q,i

)
, (4.27)

with:
m̂qq = kqqλ̂i +mqq.
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The complexity of the spatial problem (4.24) is linear in terms of the dimension r of the Ritz
subspace, which results in the overall complexity of order O (mkmax (r + nt + nα + nβ)). It is
noteworthy that part of the complexity of the computation is transferred to the solution of
the generalized eigenproblem, i.e. Ku = λMu. However, the solution of the eigenproblem,
followed by the PGD offline phase, allows one to obtain the solution to the parametrized
problem for all parameter values, in contrast to one FEM solution per pair (α, β) for all
possible values of α and β. Strictly speaking, this method consists in searching for the spatial
modes as a linear combination of Ritz vectors and can be interpreted as an extra reduction
step per se. It will be shown to be extremely efficient computation-wise.

Hybrid space solver

The solution of the projection spatial problem (4.25) involves a trade-off between computational
efficiency and solution accuracy. On one hand, the projection of the system onto a subspace
spanned by Ritz vectors is extremely efficient but introduces additional numerical errors.
Moreover, it was observed that the accuracy of the PGD approximation is bounded by the
information contained in the Ritz vectors. On the other hand, solving the full system (4.24)
does not introduce any extra approximation and thus enables one to keep finding modes that
increase the ROM accuracy. Unfortunately, as it relies on assembling and factorizing the
matrix AS in (4.24) at each fixed-point iteration, this turns out to be prohibitive as soon as
the number of spatial degrees of freedom becomes too large. We refer the reader to [100] for
further details on this issue.

In this section, we propose a compromise, which consists in adaptively searching for spatial
modes either as a linear combination of Ritz vectors, performing a projection (4.25), or as a
linear combination of the full-order FE basis functions, solving for the full problem (4.24). In
fact, the relevant information contained in the Ritz vectors is usually extracted after around
20 modes (see e.g. Figure 4.13). However, when dealing with a problem involving several
parameters, the number of enrichment should be increased to obtain a satisfactory accuracy,
in which case one should consider solving the full-order problem (4.24). As in [100], spatial
modes φq and φp are orthonormalized with respect to K and M−1, respectively. For the
damping parameter modes, they are normalized such that:∫

Dα

(ξqi )
2 dα = 1,

∫
Dα

(ξpi )
2 dα = 1,∫

Dβ

(ζqi )
2 dβ = 1,

∫
Dβ

(ζpi )2 dβ = 1,
i = 1, . . . ,m.
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Start PGD

L = cholesky(M, mode=‘supernodal’, ordering_method=‘nesdis’)

V̂ , Λ̂ = eigsh(K, k=r, M=M, sigma=0., which=‘LM’)

Initialize PGD operators and counters

Ritz prediction: solve ÂSφ̂ = b̂S for φ̂

φ← Rφ̂

do_correction

MinRes correction: solve ASδφ = bS − ASφ for δφ

φ← φ+ δφ

Gram-Schmidt orthonormalization on φq and φp
Aitken’s delta-squared process [100]

Compute ξ(αj) = Pξ(αj,φ,ψ, ζ, zi−1)
Qξ(αj,φ,ψ, ζ) , j = 1, . . . , nα

Normalize ξ

Compute ζ(βj) = Pζ(βj,φ,ψ, ξ, zi−1)
Qζ(βj,φ,ψ, ξ)

, j = 1, . . . , nβ

Normalize ζ

Solve ψ̇ = fT (t,ψ,φ, ξ, ζ, zi−1) for ψ

k ← k + 1

(φ,ψ, ξ, ζ) converged
or k ⩾ kmax

Update PGD operators

i ⩽ m
wi < w1ϵw

and !do_correction

do_correction = true

i ← i + 1

Stop PGD

true
false

false

true

false
true

true

false

Figure 4.2 Flowchart of the PGD offline phase with the hybrid space solver.
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Thus, for each PGD enrichment, a factor wi can be defined in the space-discrete formalism as:

wi =
∫

D

∫
I

(1
2 (ψqi ξ

q
i ζ

q
i )

2 (φqi )
T Kφqi + 1

2 (ψpi ξ
p
i ζ

p
i )2 (φpi )

T M−1φpi

)
dtdµ.

With separability and normalizations, the integral reduces to:

wi = 1
2

∫
I

(ψqi )
2 + (ψpi )

2 dt.

Alike mode participation factors in modal analysis, wi measures the contribution of the ith

mode in the description of the dynamic response. We will hereafter refer to these factors as
“contribution factors”. Their magnitude is expected to decrease as the rank of the enrichment
increases. We thus propose the following adaptive approach (see Figure 4.2):

1. Compute enrichment terms using the Ritz approximation of the problem in space:
solve (4.25) for φ̂ and set φ = Rφ̂. Repeat until wi/w1 < ϵw, a user-defined tolerance,
at which point a MinRes correction will be activated, as described in Step 2;

2. Use the mode φ computed in Step 1 as an initial guess φ0 := φ and solve (4.24) for φ
by means of the Minimal Residual (MinRes) iterative solver. This approach is similar
to a prediction-correction method.

Such an algorithm circumvents the computational burden incurred by the resolution of (4.24).
Furthermore, the prediction of the spatial mode given by φ = Rφ̂ has proved effective when
used as an initial guess, since it significantly decreases the number of MinRes iterations (as
shown in Figure 4.14).

4.3 Parameter identification using Particle Swarm Optimization

The problem we address here deals with the identification of the parameters α and β with
respect to given snapshots u

S
. The goal is to find values (α∗, β∗) ∈ D such that a displacement

field, denoted by uh = uh(α, β) ∈ M and evaluated by means of a chosen computational
method, minimizes a given cost function J : D → R. The problem thus reads:

Find (α∗, β∗) ∈ D such that (α∗, β∗) ∈ argmin
(α,β)∈D

J(α, β).

The cost function measures the deviation between the snapshot u
S

and the computed approx-
imation uh, usually defined with respect to a Quantity of Interest (QoI). In the test case that
will be presented thereafter, we focus on the mechanical response over the boundary ∂ΩN ,
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where Neumann boundary conditions are enforced. The cost function can be formulated as:

J(α, β) =

√∫
I

∫
∂ΩN

1
2ρė(α, β) · ė(α, β) + 1

2ε
(
e(α, β)

)
: E : ε

(
e(α, β)

)
dxdt√∫

I

∫
∂ΩN

1
2ρvS

· v
S

+ 1
2ε (u

S
) : E : ε (u

S
) dxdt

,

with:
e(α, β) = u

S
− uh(α, β),

ė(α, β) = v
S
− u̇h(α, β).

The optimization problem is computationally demanding, particularly if uh(α, β) is evaluated
by a conventional FEM solver. Thus, the use of the PGD as a surrogate model should improve
the efficiency of the process as it provides fast evaluations of uh(α, β) (see Figure 4.3).

Computing hub

Mesher (Gmsh) FE assembly∑
e

∫
Ωe
• dx

Offline PGD

Database

Geometry, material
& other problem data

PGD modes (φ,ψ, ξ, ζ)

Personal computer

PSO

(α∗, β∗) = argmin
(α,β)∈D

J(α, β)

Online PGD

Query (α, β)

Response uh(α, β)

Snapshot (u
S
, v

S
) PGD modes (φ,ψ, ξ, ζ)

uh(α, β) =
∑
m

⊗ ⊗ ⊗...

Figure 4.3 Pseudo flowchart of the deployed solution.

The optimization problem is solved using the Particle Swarm Optimization (PSO) tech-
nique [101,102], which provides an efficient heuristic that does not require gradient information
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of the cost function. Therefore, it stands out as a compelling choice when the gradient is not
readily available. In this framework, one considers nPSO particles individually associated with
a triplet (αp, βp, Jp = J(αp, βp)), with p = 1, . . . , nPSO , that are used to explore in an iterative
manner the search space D. The state of each particle is denoted by xkp =

(
αkp, β

k
p , J

k
p

)
, with

k being the index of the current PSO iteration and p the particle label. The PSO technique
proceeds as follows:

1. Initialization: a population of nPSO particles is randomly initialized within D. Each
particle is assigned a triplet x0

p =
(
α0
p, β

0
p , J

0
p

)
;

2. Individual update: each particle updates its own best state xkp
p , where kp = argmin

1⩽i⩽k
J ip,

for p = 1, . . . , nPSO ;

3. Global update: update the global best state xkpb
, which represents the best solution

found by any particle in the entire swarm at the current iteration, where pb = argmin
1⩽p⩽nPSO

Jkp ;

4. State update: the state of each particle is updated based on its current state, own best
state, and global best state, according to the following equations:

Velocity update


α̇k+1
p = wα̇k+1

p + c1ϵ
k
p

(
αkp
p − αkp

)
+ c2η

k
p

(
αkpb
− αkp

)
,

β̇k+1
p = wβ̇k+1

p + c1ϵ
k
p

(
βkp
p − βkp

)
+ c2η

k
p

(
βkpb
− βkp

)
,

Position update


αk+1
p = αkp + α̇k+1

p ,

βk+1
p = βkp + β̇k+1

p ,

where w, c1, and c2 are three control parameters, namely the inertia weight, the cognitive,
and the social acceleration coefficients, respectively, and ϵkp and ηkp are random perturbations.
These parameters influence the search strategy between exploitation and exploration. The
term exploitation means that one carries out the search around known promising states (own
and global best states, promoted by c1 and c2). A drawback of assigning too much weight to
exploitation is the premature attraction to local optima. Conversely, exploration promotes
the evaluation of states as widely as possible within the search space (promoted by w, ϵkp, and
ηkp). It may in return lead to a higher number of iterations for the algorithm to converge
towards an optimal solution. Consequently, the parameters are to be tuned in order to find
a good trade-off between exploitation and exploration. Steps 2 to 4 are repeated until a
convergence criterion is fulfilled. It is worth noting that evaluating the state of each particle
can be seamlessly performed in parallel.
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4.4 Numerical examples

4.4.1 Test case: parameter optimization with respect to a snapshot

The test case consists of a 3D beam clamped on one end ∂ΩD and subjected to a multiaxial
load on the other end ∂ΩN , see Figure 4.4. The domain Ω = (0, 6)× (0, 1)× (0, 1) (in meters)
is a rectangular parallelepiped with a squared cross-section. Its response to an external load
on its right end is computed over the time interval I = (0, 1) (in seconds). The governing
equations are those introduced in Section 4.1.1 with f = 0. Moreover, the beam is subjected
to homogeneous initial conditions:

u(x, 0) = 0, ∀x ∈ Ω,
∂u

∂t
(x, 0) = 0, ∀x ∈ Ω,

and to the boundary conditions:

u(x, t) = 0, ∀(x, t) ∈ ∂ΩD × I,

σ(u) · n = gN(x, t), ∀(x, t) ∈ ∂ΩN × I,

σ(u) · n = 0, ∀(x, t) ∈ ∂Ω0 × I.

The external load gN , applied to the boundary ∂ΩN = {6} × (0, 1)× (0, 1) of the structure, is
described in Figure 4.5 and results in both vertical bending and torsion. The beam is free on
the remainder of the boundary ∂Ω0 = ∂Ω\(∂ΩD ∪ ∂ΩN). The values of the parameters are
chosen as follows:

E = 220 GPa,

ν = 0.3,

ρ = 7,000 kg/m3,

ωB = 160 rad/s,

ex

ey

ez

∂ΩD ∂ΩN

Figure 4.4 Schematic of the 3D beam Ω̄ = [0, 6]× [0, 1]× [0, 1].
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ωT = 875 rad/s,

ᾱ = 10−5 s,

β̄ = 1 s−1,

αmin = βmin = 0.2,

αmax = βmax = 2,

and the Lamé coefficients are evaluated as:

µ = E

2(1 + ν) , λ = Eν

(1 + ν)(1− 2ν) .

The time domain I is divided into nt = 4,800 sub-intervals of equal size. The space domain
Ω is partitioned into linear tetrahedral elements and five meshes will be considered such that
the number 2n of spatial DOFs takes values in {33,990, 147,174, 554,412, 1,408,002, 3,002,406}.
Regardless of the spatial discretization, the number of Ritz vectors is set to r = 300,
corresponding to the smallest Ritz values [15]. The offline phase of the PGD is performed
for m = 100 modes. In the case of the hybrid space solver, the tolerance ϵw is set to 10−6.
The evaluation of the cost function J is carried out using the PGD reduced-order model,
referred to as the online phase. Unless stated otherwise, Dα and Dβ are both discretized using
nα = nβ = 190 values for α and β. Thus, the dimension of the discrete global parameter space
D is 36,100. Note that the evaluation of J is not limited to these discrete parameter values
as it can be evaluated for any pair (α, β) ∈ D by interpolation of the PGD damping modes
ξ and ζ. A linear interpolation will be considered for this purpose. The global best PSO
variant is used with the inertia weight, the cognitive and the social acceleration coefficients
set to w = 0.4, c1 = 0.5, and c2 = 0.3, respectively. The PSO algorithm will run in parallel
with nPSO = 32 particles. Recall that the overall solution process is illustrated in Figure 4.3.

4.4.2 Comparison method and performance criteria

We shall report and compare the results based on the following criteria:

1. The relative error ϵROM of the PGD approximations with respect to the full-order
solutions, namely the FEM solutions described in Section 4.1.3, defined as:

ϵROM =

√√√√∥uFEM − uROM∥M
∥uFEM∥M

.
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gN(x, t) = × sin(ωT t) + × sin(ωBt)

Figure 4.5 Schematic of the boundary multiaxial load σ · n prescribed on ∂ΩN .

For feasibility reasons, ϵROM will be assessed only for a small number of spatial DOF,
i.e. 2n = 36,774, and coarse parameter discretizations nα = nβ = 10 for Dα and Dβ.
Three approaches will be compared for the problem in space: 1) only the Ritz prediction
is performed; 2) an LU factorization is performed at each fixed-point iteration; 3) a
prediction-correction with a MinRes solver is performed, as described in Section 4.2.2.
The three approaches are respectively labeled “Ritz”, “Full”, and “Hybrid” on Figure 4.13.
The evolution of the contribution factors wi will be measured to verify the efficiency of
the hybrid solver. Past these results, only the hybrid solver will be considered;

2. The time speedup factor achieved by the reduced-order model when compared to the
conventional FEM solver, see Algorithm 4. It will include scaling performance with
respect to the size of the spatial discretization. The scaling performance refers to the
offline phase that was performed on a computing hub offering more resources than most
personal computers;

3. The reduction in the cost function evaluated by the swarm particles. The relative errors
in the optimized parameters (αkpb

, βkpb
), with respect to the pair (α

S
, β

S
) employed to

generate the snapshots, are defined as:

ϵkα =
αkpb
− α

S

α
S

, ϵkβ =
βkpb
− β

S

β
S

.

The errors are assessed at every PSO iteration, denoted here by k, for the global best
particle. The snapshots and the offline PGD are computed on the same mesh featuring
2n = 3,002,406 spatial DOFs. The optimization was performed on a personal computer,
using the PGD as a surrogate model (online phase) and the PSO to drive the parameter
search.

As far as computer times are concerned, the configurations of both the computing hub
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and the personal computer are detailed below:

– Computing hub (AWS’ c5.12xlarge instance):

– Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz (24 cores, 48 threads);

– RAM: 96 GB;

– OS: Ubuntu 22.04.4 LTS (Jammy Jellyfish).

– Personal computer:

– CPU: AMD Ryzen 7 PRO 4750U @ 1.7 GHz per core (8 cores, 16 threads);

– RAM: 38 GB;

– OS: Arch Linux kernel version 6.10.6.

The code, written using Python 3.9.19, leverages Intel’s MKL with the Intel Distribution
for Python and SuiteSparse’s CHOLMOD Supernodal Sparse Cholesky Factorization [98].
The MinRes algorithm is SciPy scipy.sparse.linalg.minres [97] with a tolerance for the
relative residual set to tol = 5× 10−8. The offline PGD computation was performed using
the computing hub on 16 cores. The PSO, fed with the PGD surrogate model, was carried
out by the research toolkit PySwarms [103] using the personal computer on 8 cores.

4.4.3 Numerical results

We show in Figure 4.13 the evolution of the relative error ϵROM with respect to the number of
modes, when using the Ritz projection, the full, and the hybrid approaches. We observe that
ϵROM decreases rather fast for about the first 30 enrichments. However, the limitation of the
Ritz projection is clearly highlighted on this test case as we can see that the useful information
contained in the r = 300 Ritz vectors has been thoroughly exploited after 30 enrichments.
The adaptive hybrid solver activates the MinRes correction around the 30th enrichment, after
which an abrupt decrease in ϵROM along with an increase of the contribution factors wi are
observed. One aspect that has not been discussed so far is the loss of information due to the
projection in Eq. (4.25) on the representation of the original right-hand side of Eq. (4.24). In
fact, it is rather difficult to predict in advance up to which rank the representation of the
right-hand side residual in the base formed by the Ritz vectors will be accurate. In particular,
it is likely that high-frequency variations in the residual will not be retained after projection.
This information is however recovered as soon as the hybrid solver switches to the solution of
the full-order spatial problem (4.24). Figure 4.13 also shows the error reduction of the PGD
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Figure 4.6 1st spatial mode.

Figure 4.7 2nd spatial mode.

Figure 4.8 3rd spatial mode.

Figure 4.9 4th spatial mode.
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Figure 4.10 First four temporal modes.
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Figure 4.11 First four α-modes.
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Figure 4.12 First four β-modes.
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solver with LU factorization, labeled “Full”, and it confirms the relevance of the hybrid solver.
Indeed, the hybrid solver mitigates computational costs with an accuracy similar to that of
the “Full” solver. As a point of comparison, for 33,990 spatial DOFs, the offline phase takes
970 seconds when an LU factorization is used to solve the problem in space, compared to
24 seconds with the hybrid strategy. Regarding the latter, Figure 4.14 illustrates the impact
of the prediction-correction scheme, reducing the average number of MinRes iterations per
linear solve (4.24) from 91 to 20. It is also worth mentioning that the Cholesky factorization
of K was tested as a preconditioner for the MinRes solver, but this choice was not retained.
While it reduces the number of iterations to an average of 10, the additional computations
required for the Cholesky forward and backward solves ultimately make this approach slower.

The results about execution time are reported in Tables 4.1 and 4.2. Note that the
execution time for the FEM solver is that of a computation for a single pair (α, β). As
multiple evaluations of the response are needed to proceed with parameter optimization, one
may conclude that the use of a classic FEM solver is prohibitive. Conversely, once the PGD
offline phase is completed, the modes can be used as a surrogate model to quickly assess the
mechanical behavior for any pair (α, β) ∈ D. Figure 4.15 shows the time distribution across
the different phases of the computations. It clearly illustrates that the time marching scheme
is the computationally most expensive phase of the FEM solver. In the case of the PGD
solver, the space problem accounts for the majority of the computational time. The diagram
clearly demonstrates the excellent efficiency of the Ritz estimates, even when including the
time spent to compute the Ritz vectors during the preprocessing stage. Notably, the damping
modes contribute minimally to the overall computational time. Note that the time required
to assemble the operators is included in the diagram slices for each problem, respectively.
Therefore, a possible improvement would be to work on a more efficient method for assembling
the operators for the right-hand side residuals and the left-hand side (when applicable). This
remark especially applies to the problem in space. Indeed, the problems related to time
and damping parameters are purely one-dimensional with respect to the time variable t and
damping parameters α and β. In contrast, the spatial problem does not assume separability
with respect to the three spatial directions, which results in an increased workload.

Figure 4.16 shows the evolution of the cost function evaluated for both the global best and
global worst particles of the swarm as well as the relative errors ϵkα and ϵkβ for the global best
particle. We illustrate in Figure 4.17 the PSO iterative search and in Figure 4.18 the surface
of the cost function near the global minimum. Note that the surface was post-processed
for visualization purposes only as PSO does not require any knowledge other than the one
collected by the swarm particles through their search. One observes in Figure 4.16 that
the best particle reaches an optimal state around the 40th iteration. The convergence of
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Figure 4.13 (Left) Relative error ϵROM between the reference fields and the PGD fields for the
three strategies for the problem in space (y-axis in log scale). (Right) Factor wi of the ith
enrichment for the three strategies for the problem in space (y-axis in log scale).

the swarm towards this optimum is reached around the 55th iteration. The final optimized
damping coefficients achieve errors that are within acceptable bounds, and the value of the
optimized cost function also indicates the effectiveness of the approach. Thus, we consider
that 55 × nPSO = 1,760 evaluations of the cost function, and a fortiori of uh(α, β), were
required to solve the optimization problem. Using the PGD surrogate model (online phase),
the optimization was performed in 322 seconds. If a conventional FEM solver were to be
used instead, this time would have been several orders of magnitude longer. Accounting for
the offline phase, the overall speedup factor is estimated to be 3,800. Beyond time efficiency,

Table 4.1 Time efficiency of the PGD offline phase with respect to different spatial discretiza-
tions with nα = nβ = 190.

# DOF in space 33,990 147,174 554,412 1,408,002 3,002,406
Offline PGD (s) 24 90 360 999 2,317

Table 4.2 Time efficiency of the FEM solver described in Algorithm 4 for one computation.

# DOF in space 33,990 147,174 554,412 1,408,002 3,002,406
FEM (s) 29 188 847 2,431 5,757



130

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

ith mode

0

1000

2000

3000

4000

5000

6000

7000

N
u

m
b

er
of

it
er

at
io

n
s

w/o initial guess

with initial guess

Figure 4.14 Impact of an initial guess on the number of MinRes iterations (cumulative sum of
MinRes iterations per fixed-point iteration).

the memory usage needed to store the results is also an aspect to be accounted for. After
the offline phase, we are provided with separated representations for both the generalized
coordinates and momenta, i.e. 2m modes for the space, time, and damping parameters,
respectively, which amount to a total of 2m(n+ nt + nα + nβ) floating numbers to store. By
contrast, the storage of all FEM solutions amounts to 2n× nt × nα × nβ floating numbers.
Therefore, the PGD approximation also offers a gain in memory by several orders of magnitude.
Table 4.3 summarizes these results, considering that numbers are stored in double precision.
From a computational point of view, the PGD offline phase may be seen as a substantial
overhead with respect to the optimization problem. However, the computational cost of such
an approach is subsequently justified by the gains it enables.

A last noteworthy comment is about the physical interpretation of the results. The
graphical representation of the parameter-separated modes provides a picture of the influence
of each parameter used to simulate the physical phenomena. As a reminder, our simulation
consists of a viscoelastic 3D beam that is clamped on one end and subjected to bending
and torsional, periodic, mechanical efforts on the other end. The bending and torsional
loading functions have different pulsations, denoted by ωB and ωT , respectively. We observe
in Figures 4.6–4.12 that the computed PGD modes are rather consistent with the physics
being modeled. Indeed,

1. The spatial modes {φq1,φq3}, shown in Figures 4.6 and 4.8, and {φq2,φq4}, shown in



131

Preprocess12.5 %

PGD offline phase87.5 %

10.5 %
2 %

4 %

4.5 %

9 %

6 %62 %

0.22 %

PGD solver 4.2
2317 sec

eigsh Damping problems Operator updates Space problem (hybrid solves)
cholesky Others Time problem Space problem (Ritz solves)

0.8 %

99 %

Algorithm 4
5757 sec

cholesky
Forward / backward solves

Figure 4.15 (Left) Time distribution of the developed PGD solver described on Figure 4.2
(2n = 3,002,406 spatial DOFs, nt = 4,800 time-steps and nα = nβ = 190 values for the
damping parameters). (Right) Time distribution of the FEM solver described in Algorithm 4
(2n = 3,002,406 spatial DOFs, nt = 4,800 time-steps for one computation).

Figures 4.7 and 4.9, contribute to the bending and torsion motions, respectively;

2. The temporal modes {ψq1, ψq3}, see Figure 4.10, are clearly related to the bending
frequency ωB, while the modes {ψq2, ψq4} are similar to signals featuring two frequencies.
The slow and fast variations seem to be related to ωB and ωT , respectively. For mode
ψq4, some higher frequencies are visible in the vicinity of t = 0. We interpret them as
small corrections as they do not appear to have a particular physical meaning regarding
the model;

3. Damping modes: their magnitudes tend to decrease as the values of the damping
parameters increase, which is physically sensible.

4.4.4 Further discussion

In this section, we make several comments in relation to the proposed PGD strategy.

We first recall that the estimation of time and memory for the optimization phase with a
conventional FEM solver, as reported in Table 4.3, was based on the fact that one solution
was computed at a time, the solution fields were only stored over ∂ΩN × Ī, and the data
was erased after the cost function was evaluated. Tackling an optimization problem this way
is an energy drain. Conversely, the PGD allows to store once and for all the solution fields
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Figure 4.16 (Left) Values of the global best cost Jkpb
and the global worst cost Jkpw

during the
PSO iterations. (Right) Values of the errors ϵα and ϵβ for the global best particle pb during
the PSO iterations.

over Ω̄× Ī × Dα ×Dβ. The data compression enabled by the PGD allows one to reuse past
computations to carry out new analyses. For instance, if one wanted to study a specific QoI,
e.g. the dissipated energy, the solution is readily available and one could simply skip the
offline phase.

The proposed PGD solver begins with the computation of eigen-pairs approximations,
as in Modal Decomposition. The mechanical behavior of the structure could be efficiently
assessed for several damping parameters using modal superposition instead of PGD. However,
as previously discussed in [100], the drawback of the method is that many of the Ritz vectors
are irrelevant to describe the behavior of the structure, since they do not account for external
loads. We actually computed that, for 2n = 33,990 spatial DOFs, the computation of around
16,000 Ritz vectors (approximately 4 hours on the computing hub) was needed to recover the
same accuracy as that provided by the PGD approach using 100 modes. This shortcoming in
the modal superposition method can be mitigated by considering additional modes, referred
to in the literature as static corrections [15]. In that regard, it also seems interesting to enrich
the subspace spanned by the Ritz vectors with such static corrections in the context of the
PGD approach presented herein.

Finally, it is important to highlight that the success of PGD depends on the separability
of the input data. This is indeed the case here: the external load is explicitly expressed as a
sum of products of space and time functions (recall Figure 4.5), and the damping operator
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Table 4.3 Summary of the time and memory efficiency of the developed PGD solver against
those of a conventional FEM for a computation with 2n = 3,002,406 spatial DOFs, nt = 4,800
time-steps and nα = nβ = 190 values for the damping parameters (the PGD results are
provided by the code while the FEM results are estimated based on the result for a single
computation).

PGD FEM

Offline phase
time (s) 2,317 n.a.

memory (GB) 59 n.a.

Optimization
time (s) 322 107

memory (GB) 2.7 52
Storage 4.8 GB 4,200 TB

is written as a sum of products of the damping parameters with the stiffness and mass
matrices. However, if the input data is not explicitly separable, one can approximate a
separated representation using the SVD or, in the case of geometric parameters for example,
employ morphing techniques with respect to a reference mesh [66]. In general, while these
tasks are essential to the performance of PGD-based solvers, they are not trivial and can be
computationally intensive.

4.5 Conclusion

We have presented in this chapter an extended implementation of the PGD approach to
efficiently parametrize reduced-order models with respect to Rayleigh damping coefficients.
The results demonstrated that the hybrid solver, based on a two-step prediction-correction
process, successfully mitigated computational costs while achieving accuracy comparable to
that of full-order solutions. The spatial modes were initially estimated in the subspace formed
by the Ritz vectors, as long as the contribution of these modes is significant. When this was
no longer the case, the estimates were further refined using a Minimal Residual iterative solver,
thereby capturing additional significant information. This hybrid strategy effectively balanced
the trade-off between computational expense and solution accuracy. Ultimately, the PGD
reduced-basis was integrated as a surrogate in the Particle Swarm Optimization algorithm to
optimize the damping parameters for a given snapshot, demonstrating the effectiveness of the
proposed PGD approach for optimization. The numerical experiments confirmed that the
parametric PGD can accurately build a ROM that includes damping modes and efficiently
identifies the damping coefficients used in the snapshot.
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CHAPTER 5 CONCLUSION

5.1 Summary of Works

We have presented in this thesis some novel methodologies and algorithms to enhance the
performance of the PGD framework for structural dynamics, with a particular emphasis
on applications dealing with the simulation of viscoelastic material subjected to transient
external loads. Focusing on computational efficiency and structure preservation, the PGD
framework has been revisited using the Hamiltonian formalism and was further extended to
incorporate damping parameters as variables of the reduced model.

Initially, the robustness issue of such methods was addressed by developing a PGD solver
based on a displacement-momentum formulation. This approach simultaneously builds two
bases for the displacement and conjugate momentum, allowing for the orthogonalization of
modes using well-chosen metrics to prevent ill-conditioning and divergence. The PGD reduced
model was further extended to a space-discrete, time-continuous Hamiltonian formalism,
ensuring the preservation of the symplectic structure in time. Computational costs are
mitigated by introducing an approximation inspired by Modal Decomposition for solving
spatial problems. Specifically, the spatial modes are computed in the subspace formed by
the Ritz vectors, which approximate the eigenvectors of the structure, rather than in the
basis of the finite element basis functions. Additionally, Aitken’s delta-squared process and
mode-orthogonalization are incorporated into the fixed-point iteration procedure to enhance
convergence and stability.

Building on these developments, the PGD framework was finally extended to efficiently
parametrize the reduced-order model with respect to Rayleigh damping coefficients. The
approach combines a two-step prediction-correction process, using first the Ritz vectors for
initial estimates, and then employing a Minimal Residual iterative solver to improve accuracy
in the spatial solutions. This hybrid strategy balances computational efficiency and solution
precision. The resulting PGD reduced basis was subsequently employed within a Particle
Swarm Optimization algorithm as a surrogate to determine optimal damping coefficients
based on a given snapshot.

Numerous numerical experiments have been presented to illustrate the performance of
the proposed methodologies. They have demonstrated that the PGD framework could tackle
large-scale problems while preserving the original symplectic structure or providing a damped
surrogate model.
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5.2 Limitations and Future Research

The limitations of PGD mainly stem from the validity of the separability assumption. It is
particularly challenging to employ this method in cases where the input data cannot be easily
separated. In the present study, the input data that was prescribed was readily expressed
in a separated format. However, one practical example where such an issue could arise is
the parametrization of periodic external loads with respect to their component frequencies,
i.e. when f is assumed in the form:

f(x, t,ω) =
p∑
i=1

fi(x) sin(ωit),

with ω = [ω1, . . . , ωp] being a vector of p pulsations that are considered as parameters of the
ROM. While the separation with respect to spatial variables is straightforward, it becomes
less trivial when dealing with the time t and pulsations ωi. In such cases, some strategies
where partial separation is applied may come in handy. It would consist in assuming the
solution fields can be written as:

u(x, t,ω) =
r∑
i=1

φi(x)ψi(t,ω),

where the unknown modes ψi would be computed by means of a dedicated solver. The design
of such PGD solvers with partial separation on extra parameters and their efficiency would
have to be studied on a case-by-case basis. Another shortcoming comes directly from the
model itself, with the assumptions of both viscoelastic materials and infinitesimal strains. It
would be interesting to explore the potential of the presented methodologies in the case of
nonlinear problems.

Although the presented work has led to a substantial improvement in efficiency, it was
observed that the problem in space remains a major bottleneck. On one hand, the spatial
problem does not assume separability with respect to the three spatial directions, which is a
strong assumption, that is, solution fields are sought in the form:

u(x, y, z, t, α, β) =
r∑
i=1

φi(x, y, z)ψi(t)ξi(α)ζi(β),

where the dependence on the three spatial coordinates (x, y, z) is explicitly written. On the
other hand, subproblems related to time and damping parameters are purely one-dimensional
with respect to the time variable t and damping parameters α and β. As a result, a tangible
workload difference was observed between the PGD subproblems. The Ritz projection and
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hybrid approaches drastically improved the efficiency of the PGD solver. However, this
improvement came at the cost of the computation of Ritz pairs, i.e. approximated solutions
of the generalized eigenproblem Ku = λMu. A refined approach could involve eliminating
the need to solve the eigenproblem by employing augmented Krylov-based solvers.

An augmented Krylov-based solver becomes highly effective in addressing the observed
limitations, particularly by integrating techniques such as deflation and recycling with pre-
conditioning [93]. Deflation reduces the dimensionality of the spatial problem by subtracting
the contribution of previously computed PGD spatial modes. This is especially beneficial
when earlier modes capture dominant behaviors in the spatial domain. In practice, deflation
ensures that the known modes do not contribute to the residual in future iterations. This is
done by projecting the residual onto the orthogonal complement of the subspace spanned by
the known modes. As a result, the solver’s search directions are orthogonal to the previously
computed modes, effectively speeding up convergence. In the proposed work, this deflation
was applied in the fixed-point iteration at line 7 in Algorithm 3, rather than being integrated
directly into the linear solver. The recycling process further enhances efficiency by reusing
Krylov subspaces generated from previous PGD iterations, avoiding the need to reconstruct
the subspace from scratch. Additionally, preconditioning can improve convergence rates,
although the choice of the preconditioner would require an in-depth study.

Furthermore, while Python provides a modular and user-friendly development environment,
it would be interesting to consider the implementation using a lower-level language such as
C++. It would provide greater control over system resources and would significantly enhance
computational efficiency. Offloading the treatment of the spatial problem to the GPU may
also be considered. GPU offloading would be particularly beneficial for tasks related to
the problem in space (spatial residual updates and spatial solves). However, a successful
implementation requires careful software design, including strategies to keep spatial operators
GPU-resident while other operators remain CPU-resident. Effective management of these
aspects is essential to maximize the benefits of GPU offloading.

The use of a symplectic time integrator along with the symplecticity preservation in
the spatial modes could also provide a strong foundation for extending this work. This
may enable the development of a reduction technique suited to elastodynamics problems
involving large rotations and small strains, as discussed in [39]. Another avenue to improve
efficiency and accuracy could be to include error estimation and adaptivity to construct PGD
approximations tailored to the prediction of quantities of interest, as in [99].

Finally, with the dramatic increase in interest regarding Machine Learning, it is worth not-
ing that a Separable DeepONet (SepDeepONet) framework has been recently proposed [104].
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Like the PGD, SepDeepONet breaks the problem down by handling one-dimensional coordi-
nates individually, with each sub-network dedicated to computing the separated modes for
its respective coordinate. As a result, it reduces both the number of forward passes and the
computational burden of Jacobian matrix calculations. This study has demonstrated that the
SepDeepONet framework also achieves linear scaling of computational cost with increasing
discretization density. This new framework, and Machine Learning methods more generally,
could be a promising area for future research.
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APPENDIX A TIME OPERATORS

The computation of time integrals is required to evaluate the coefficients of the problem in
space presented in Section 3.3.1, i.e. kt, ct, dt, and mt. Let u = u(t) and v = v(t) be two
functions of time and assume they are sufficiently regular. We consider continuous, piecewise
linear approximations of u and v, which read in the case of u, and in a similar manner for v:

u(t) ≃
(

1− t− ti−1

ht

)
u
(
ti−1

)
+ t− ti−1

ht
u
(
ti
)
, t ∈

[
ti−1, ti

]
, i = 1, . . . , nt,

with ht = ti − ti−1. We can now define the vectors u,v ∈ Rnt as:

u =
[
u(t0) . . . u(tnt)

]T
,

v =
[
v(t0) . . . v(tnt)

]T
.

The time integrals are then approximated as:∫
I
uv dt ≃ uTAtv,∫

I
u̇v dt ≃ uTCtv,

with At and Ct the time operators such that:

At = ht
6



2 1
4 . . . [0]

. . . . . .
sym. 4 1

2


,

Ct = 1
2



-1 -1
1 0 . . . [0]

. . . . . . . . .

[0] . . . 0 -1
1 1


.
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APPENDIX B DEFINITIONS OF THE PARAMETRIC PGD
SUBPROBLEMS

The PGD formulation requires the computation of numerous coefficients. Their definitions
are enumerated thereafter:

kx = φTqKφq, kt =
∫

I
ψ2
q dt, kα =

∫
Dα

ξ2
q dα, kβ =

∫
Dβ

ζ2
q dβ,

mx = φTpM
−1φp, mt =

∫
I
ψ2
p dt, mα =

∫
Dα

ξ2
p dα, mβ =

∫
Dβ

ζ2
p dβ,

cx = φTq φp, ct =
∫

I
ψqψ̇p dt = ψq(T )ψp(T )− dt, cα =

∫
Dα

ξqξp dα, cβ =
∫

Dβ

ζqζp dβ,

ξx = φTqMφq, ξt =
∫

I
ψqψ̇q dt = 1

2ψq(T )2, ξα = ᾱ
∫

Dα

αξ2
q dα, ξβ = β̄

∫
Dβ

βζ2
q dβ.

With normalizations, the coefficients kx, mx, kα, mα, kβ and mβ are all set to unity.

Problem in space. The parameters kqq, mqq, cqp, cpq, and mpp are defined as follows:

kqq = ξtξαkβ + ktkαkβ,

mqq = ξtkαξβ,

cqp = ctcαcβ,

cpq = dtcαcβ,

mpp = −mtmαmβ.

Problem in time. We assume that
(
φq, ξq, ζq

)
and

(
φp, ξp, ζp

)
are known and search for

ψq and ψp. We choose test functions in the form q∗ = φqψ
∗
qξqζq and p∗ = φpψ

∗
pξpζp:∫

I
ψ∗
q
T
[
cαcβcxψ̇p + ξαkβkxψ̇q + kαξβξxψ̇q + kαkβkxψq

]
dt =

∫
D

∫
I
q∗Trqm−1 dtdµ, ∀ψ∗

q ∈ C0(Ī),∫
I
ψ∗
p
T
[
cαcβcxψ̇q −mαmβmxψp

]
dt =

∫
D

∫
I
p∗Trpm−1 dtdµ, ∀ψ∗

p ∈ C0(Ī),

which simplifies to:

cαcβcxψ̇p + (ξαkβkx + kαξβξx)ψ̇q + kαkβkxψq = bqT ,

cαcβcxψ̇q −mαmβmxψp = bpT ,
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with:
bqT =

∫
D
ξqζqφ

T
q r

q
m−1 dµ,

bpT =
∫

D
ξpζpφ

T
p r

p
m−1 dµ.

Above equations are discretized using the Crank-Nicolson time-marching scheme, such that,
given ψ0, one computes the ith iterate (i > 0) as:

ATψ
i = BTψ

i−1 + biT , i = 1, . . . , nt,

where:

AT =

htkαkβkx + 2(ξαkβkx + kαξβξx) 2cαcβcx

2cαcβcx −htmαmβmx

 ,

BT =

−htkαkβkx + 2(ξαkβkx + kαξβξx) 2cαcβcx

2cαcβcx htmαmβmx

 ,

biT = ht

b
q,i
T + bq,i−1

T

bp,iT + bq,i−1
T

 .

Problem in damping parameter α. We assume that
(
φq, ψq, ζq

)
and

(
φp, ψp, ζp

)
are

known and search for ξq and ξp. We choose test functions in the form q∗ = φqψqξ
∗
qζq and

p∗ = φpψpξ
∗
pζp:∫

Dα

ξ∗
q (ctcβcxξp + ξtkβkxαᾱξq + ξtξβξxfq + ktkβkxξq) dα =

∫
D

∫
I
q∗Trqm−1 dtdµ, ∀ξ∗

q ∈ C0(Dα),∫
Dα

ξ∗
p (dtcβcxξq −mtmβmxξp) dα =

∫
D

∫
I
p∗Trpm−1 dtdµ, ∀ξ∗

q ∈ C0(Dα),

which simplifies to:

ctcβcxξp + (ξtξβξx + ktkβkx + ξtkβkxαᾱ)ξq = bqξ,

dtcβcxξq −mtmβmxξp = bpξ ,

with:
bqξ =

∫
Dβ

∫
I
ψqζqφ

T
q r

q
m−1 dtdβ,

bpξ =
∫

Dβ

∫
I
ψpζpφ

T
p r

p
m−1 dtdβ.
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The solutions read, with dependencies to α explicitly written:

ξq(α) =
ctcβcxb

p
ξ(α) +mtmβmxb

q
ξ(α)

(ξtξβξx + ktkβkx + ξtkβkxαᾱ)mtmβmx + ctdt(cβcx)2 ,

ξp(α) =
dtcβcxb

q
ξ(α)− (ξtξβξx + ktkβkx + ξtkβkxαᾱ)bpξ(α)

(ξtξβξx + ktkβkx + ξtkβkxαᾱ)mtmβmx + ctdt(cβcx)2 .

Problem in parameter β. We assume that
(
φq, ψq, ξq

)
and

(
φp, ψp, ξp

)
are known and

search for ζq and ζp. We choose test functions in the form q∗ = φqψqξqζ
∗
q and p∗ = φpψpξpζ

∗
p :

∫
Dβ

ζ∗
q

[
ctcαcxζp + ξtξαkxζq + ξtkαξxββ̄ζq + ktkαkxζq

]
dβ =

∫
D

∫
I
q∗Trqm−1 dtdµ, ∀ζ∗

q ∈ C0(Dβ),∫
Dβ

ζ∗
p [dtcαcxζq −mtmαmxζp] dβ =

∫
D

∫
I
p∗Trpm−1 dtdµ, ∀ζ∗

q ∈ C0(Dβ),

which simplifies to:

ctcαcxζp + (ξtξαkx + ktkαkx + ξtkαξxββ̄)ζq = bqζ ,

dtcαcxζq −mtmαmxζp = bpζ ,

with:
bqζ =

∫
Dα

∫
I
ψqξqφ

T
q r

q
m−1 dtdα,

bpζ =
∫

Dα

∫
I
ψpξpφ

T
p r

p
m−1 dtdα.

The solutions read, with dependencies to β explicitly written:

ζq(β) =
ctcαcxb

p
ζ(β) +mtmαmxb

q
ζ(β)

(ξtξαkx + ktkαkx + ξtkαξxββ̄)mtmαmx + ctdt(cαcx)2
,

ζp(β) =
dtcαcxb

q
ζ(β)− (ξtξαkx + ktkαkx + ξtkαξxββ̄)bpζ(β)

(ξtξαkx + ktkαkx + ξtkαξxββ̄)mtmαmx + ctdt(cαcx)2
.
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