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Abstract ix

Lagrangian Particle Dynamics in Ocean Submesoscale Turbulence

Abstract

Turbulent flows at the ocean surface deviate from geostrophic equilibrium at scales
smaller than 10 km, which are important for vertical transport, heat distribution, and
plankton dynamics. Although measuring velocity fields at these small scales is chal-
lenging, new high-resolution satellite altimetry is beginning to detect them. However,
since the satellite-derived velocities primarily represent the geostrophic flow component,
understanding the influence of unresolved ageostrophic motions on particle dispersion
is essential for accurately characterizing Lagrangian transport properties. This study
uses numerical simulations to explore fine-scale ocean turbulence with a model account-
ing for ageostrophic corrections based on a Rossby-number expansion of the primitive
equations, reducing to the surface quasi-geostrophic model at zero Rossby numbers.
Additionally, we analyze Lagrangian particle trajectories using LLC4320 velocity fields,
a high-resolution general circulation model that captures both low- and high-frequency
ocean processes. First, we examine the effect of ageostrophic dynamics on the pair-
dispersion and clustering properties of Lagrangian tracer particles for varying Rossby
numbers. The results show that while long-term pair separation is weakly affected
by ageostrophic motions, these motions drive temporary particle aggregation, with its
intensity increasing with the Rossby number. Lagrangian tracers preferentially accumu-
late in cyclonic frontal regions, consistent with observations and other modeling studies.
Second, we focus on the predictability of particle dynamics by comparing trajectories
advected by the full flow and its geostrophic component, analogous to the velocity field
derived from satellites. We find that geostrophic-only advection overestimates the pair-
separation rate and introduces trajectory bias, with the effect increasing with the Rossby
number. Moreover, clustering induced by ageostrophic motions can be significant, even
for small flow compressibility, due to the interplay between compressibility and persis-
tent flow structures. Third, we examine particle advection in the Kuroshio Extension, a
region characterized by energetic fine scales, during February and August 2012, using
LLC4320 velocity fields. In February, dispersion is local and driven by mesoscale and
submesoscale motions. The geostrophic approximation effectively captures the kinetic
energy spectra from sea surface height, with a slight overestimation of energy. In Au-
gust, the situation is more complex, but our analysis suggests that dispersion becomes
nonlocal while still being driven by mesoscale and submesoscale motions. Although
internal gravity waves are energetically significant during summer, they do not appear
to affect dispersion. Both the wave dispersion relation and geostrophic approximation
are required for an accurate approximation of kinetic energy spectra from sea surface
height. These findings provide insights into turbulent transport at ocean fine scales and
are particularly relevant given the recent availability of new high-resolution satellite
data on surface velocity fields.

Keywords: Lagrangian transport, turbulence, ocean submesoscales, numerical models
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Polytech’ Lille, Bâtiment ESPRIT – Avenue Paul Langevin – 59650 Villeneuve-
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x Abstract

Dynamique lagrangienne dans la turbulence océanique à sous-mésoéchelle

Résumé

Les écoulements turbulents de surface dévient de l’équilibre géostrophique à des échelles
inférieures à 10 km, essentielles pour le transport vertical, la distribution de la chaleur
et le plancton. Bien que mesurer ces vitesses soit difficile, de nouvelles altimétries satelli-
taires haute résolution commencent à les capter. Toutefois, comme elles reflètent surtout
l’écoulement géostrophique, comprendre l’impact des mouvements âgéostrophiques
non résolus est crucial pour bien caractériser le transport Lagrangien. Cette étude uti-
lise des simulations numériques pour explorer la turbulence à petite échelle à l’aide
d’un modèle tenant compte des corrections agéostrophiques, basé sur une expansion du
nombre de Rossby des équations primitives, se réduisant au modèle quasi-géostrophique
pour des nombres de Rossby nuls. De plus, nous analysons les trajectoires des particules
lagrangiennes avec les champs de vitesse LLC4320, un modèle de circulation générale
haute résolution capturant les processus océaniques de basse et haute fréquence. Pre-
mièrement, nous analysons l’impact des dynamiques agéostrophiques sur la dispersion
par paires et le regroupement des particules pour différents nombres de Rossby. Les
résultats montrent que, bien que la séparation des paires à long terme soit peu affectée,
ces dynamiques provoquent une agrégation temporaire, dont l’intensité augmente avec
le nombre de Rossby. Les particules s’accumulent préférentiellement dans les régions
frontales cycloniques, en accord avec les observations et d’autres études. Deuxièmement,
nous comparons les trajectoires advectées par l’écoulement complet et sa composante
géostrophique, analogue au champ de vitesse dérivé des satellites. L’advection géo-
strophique surestime le taux de séparation des paires et introduit un biais dans les
trajectoires, cet effet augmentant avec le nombre de Rossby. De plus, le regroupement
induit par les dynamiques agéostrophiques peut être significatif, même avec une faible
compressibilité, en raison de l’interaction avec des structures d’écoulement persistantes.
Troisièmement, nous examinons l’advection des particules dans l’extension du Kuroshio
en février et août 2012 avec les champs de vitesse LLC4320. En février, la dispersion est
locale et dominée par les mouvements à mésoéchelle et sous-mésoéchelle, et l’approxi-
mation géostrophique capture bien les spectres d’énergie cinétique de la hauteur de la
surface de la mer, avec une légère surestimation de l’énergie. En août, la situation est
plus complexe, mais notre analyse suggère que la dispersion devient non-locale, tout en
restant dominée par les mouvements à mésoéchelle et sous-mésoéchelle. Bien que les
ondes de gravité internes soient importantes en été, elles n’affectent pas la dispersion. La
relation de dispersion des ondes et l’approximation géostrophique sont nécessaires pour
une approximation précise des spectres d’énergie cinétique à partir de la hauteur de la
surface de la mer. Ces résultats fournissent de nouvelles perspectives sur le transport
turbulent à petite échelle et sont pertinents avec l’arrivée de données satellitaires haute
résolution sur les champs de vitesse de surface.

Mots clés : transport Lagrangien, turbulence, sous-mésoéchelles océaniques, modèles
numériques
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Introduction

“How inappropriate to call this planet Earth when clearly it is Ocean” remarked

Arthur C. Clarke, the renowned fiction and science writer, emphasizing the

vastness of the ocean. In fact, the ocean covers around 71% of Earth’s surface.

It plays a significant role on the Earth’s climate. Notably, it is responsible for

storing and redistributing heat and carbon via ocean circulation. This occurs

through various processes interacting across vastly different spatial and temporal

scales. However, our knowledge of these processes is still incomplete. What

complicates our understanding of this body of water is its inherent turbulent

nature and the interactions between its different scales. Turbulence is a widely

studied phenomenon that governs the behavior of most, if not all, fluids in

nature. Richard Feynman described turbulence as "the most important unsolved

problem of classical physics".

In this thesis, we particularly focus on the transport of Lagrangian particles

in ocean submesoscale turbulence. Our study can be divided into two key

areas of interest: Lagrangian transport and ocean submesoscales. The former is

essential for our understanding of transport in the ocean, whether of physical

properties such as temperature and salinity or material transport like nutrients,

plankton, and pollutants. For example, after the Deepwater Horizon oil spill

in 2010, oil spread across the Gulf Coast of the United States (as shown in

Fig. 1), impacting the coastline from Louisiana to Florida. This endangered a

vast amount of marine life and disrupted ecosystems. Consequently, efforts to

extract and clean up the oil began, making it crucial to understand how the Gulf

of Mexico currents transported it. Ocean submesoscale processes significantly

influenced the oil’s movement and spread [1]. These submesoscale structures,

occurring at horizontal scales between O(1) and O(10) km with a temporal

1
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Figure 1: Picture of oil gathering above the Deepwater Horizon wellhead taken on May 6, 2010
by Daniel Beltrá and published in The New Yorker.

variation of about 1 day, have been the focus of many oceanographic studies due

to their significant role in ocean dynamics, mixing, and transport. Characterized

to some extent by quasi-two-dimensional turbulent dynamics, they represent

scales where conventional balances that apply at larger scales break down. This

breakdown gives rise to important vertical velocities and other phenomena that

influence Lagrangian transport properties.

This work is also motivated by the Surface Water Ocean Topography (SWOT)

mission, a satellite launched at the end of 2022, which has started to provide

sea surface height at unprecedented spatial resolution, capturing submesoscales

(Fig. 2). However, as mentioned earlier, motions become unbalanced at the

submesoscale level, rendering the geostrophic approximation, typically used

https://www.newyorker.com/magazine/2011/03/14/the-gulf-war
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Figure 2: Schematic of the SWOT data cycle, illustrating how satellite observations capture
oceanic and inland water properties, which are then transformed into high-resolution data
products. These products are essential for addressing critical societal challenges, such as water
resource management and climate monitoring (source: NASA)

to derive surface currents, inadequate or, at least, questionable. Therefore,

evaluating the accuracy of SWOT signals is essential. The main question we seek

to answer in this thesis is: how do ageostrophic (non-geostrophic) motions affect

Lagrangian particle transport at the ocean submesoscale?

To that end, we use numerical simulations to investigate the spreading of

Lagrangian tracer particles at the ocean surface in a model of upper-ocean turbu-

lence. The adopted model can be seen as an extension of the quasi-geostrophic

framework, conceived to account for some ageostrophic processes and, then,

to capture the dynamics at submesoscales more accurately. To complete the

picture, we also use data from a high-resolution general circulation model to

examine the effect of other, faster ageostrophic processes that the previous model
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cannot describe. Using the first model, we aim to reproduce Lagrangian con-

vergence events observed from drifters and quantify their significance. We also

characterize the dispersion of Lagrangian tracers by increasing the intensity of

non-geostrophic motions to evaluate their effects. Subsequently, we re-examine

these questions using the general circulation model to assess the potential im-

pacts of faster processes, such as internal gravity waves and tides.

This thesis is divided into three parts. Part I introduces ocean phenomena,

focusing on meso and submesoscale turbulence and their modeling. In Chap-

ter 1, we describe oceanic scales, ranging from the smallest to the largest, before

delving into the details of ocean submesoscales, where we discuss their char-

acteristics and review relevant numerical and experimental observations. In

Chapter 2, we introduce several prominent models used to study oceanic flows

and their turbulent properties, namely 2D turbulence and quasi-geostrophic

dynamics. We then explore the Surface Quasi-Geostrophic model, a special

case of the Quasi-Geostrophic approximation, which is particularly effective

in describing energetic submesoscale processes. Afterward, we introduce the

model used in this study, which is based on the Surface Quasi-Geostrophic but

extends it to account for non-geostrophic motions, known as the SQG+1 model.

Finally, we introduce the main properties of Lagrangian dispersion in turbulent

flows since our main interest is Lagrangian transport in upper-ocean turbulence.

Part II outlines the methodology. In Chapter 3, we describe the numerical imple-

mentation of the SQG+1 model and the Lagrangian particle dynamics.

Part III contains the core results of this study. In Chapter 4, we examine the

effect of slow non-geostrophic motion intensity on the Eulerian flow properties

and Lagrangian statistics. In Chapter 5, we more directly compare Lagrangian

statistics for tracer particles advected by either the full, agesotrophic flow or

its geostrophic component. Then, in Chapter 6, we use data from a general

circulation model to study the effects of seasonal variability and internal waves

on Lagrangian particle transport within the Kuroshio Extension, characterized

by energetic submesoscales.

Finally, a comprehensive conclusion summarizing the main findings is presented.



Part I

Ocean Scales and Modeling





Chapter1
Ocean Fine Scales: Mesoscales and

Submesoscales

The ocean contains about 97% of the Earth’s water. It is home to about 242000

marine species to date. It produces more than half of our planet’s oxygen,

sustaining terrestrial and marine life. Its circulation plays a vital role in shaping

marine ecosystems. Additionally, through its interactions with the atmosphere,

the ocean contributes to regulating the Earth’s climate, impacting the response

to climate change. The ocean’s vast resources and ecosystems are critical for

food security, providing livelihoods for millions of people, and supporting

biodiversity, making its preservation and sustainable management essential

for our planet’s and future generations’ health. To achieve this, we must first

understand the mechanisms and dynamics that govern the ocean’s circulation.

This chapter will briefly introduce the stages of oceanic circulation, covering

scales from planetary to microscale (see Sec. 1.1). Specifically, in Sec. 1.2, we

will focus on ocean submesoscales, presenting examples of campaigns and

simulations aimed at measuring their characteristics, discussing the associated

limitations, and highlighting the importance of newly emerging technology.

7
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1.1 Ocean Scales

Flow structures of different horizontal scales are present in the ocean. One com-

mon way to identify them is through satellite images of phytoplankton blooms,

as shown in Fig. 1.1. In this image, we see structures of various sizes: some

are bigger than the Falkland Islands, and others are smaller. For reference, the

distance from coast to coast for this island is around 200 km. These structures

appear in the form of eddies and filaments. This image reveals the complexity of

the ocean scales but does not account for all scales involved in the general ocean

circulation.

Figure 1.1: Multiple phytoplankton blooms off the coast of the Falkland Islands (South Atlantic
Ocean) captured by one of the Copernicus Sentinel-3 satellites on 26 November 2022.

Figure 1.2 shows a schematic of all the intervening scales in the oceanic general

circulation. Starting with the largest scales, the planetary scale of horizontal size

of O(103) km evolves at a temporal scale of O(1) year. This scale is characterized

by gyres, which are large rotating currents. They are mainly driven by global

wind patterns, continental boundaries, and buoyancy forcing [2]. The planetary

scale is also subjected to climate forcing, related to the energy balance in the
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Earth’s atmosphere [3]. The Rossby Number is a well-known dimensionless

number used to characterize geophysical flows. It is the ratio of inertial force to

the Coriolis force, defined as:

Ro =
U
Lf

(1.1)

where U and L are the characteristic velocity and length scales, respectively, and

f is the Coriolis frequency. At the largest scales, Ro tends to zero; the Coriolis

force plays a vital role on the dynamics of the flows. Events at those scales are

relatively easy to detect using satellite altimetry. This is evident through the

propagation of Rossby waves (also known as planetary waves) that was observed

in the Southern Ocean using altimetry from TOPEX/POSEIDON and ERS-1 [4]

(two satellites launched in the 1990’s). In addition to being measurable, they are

modeled quite well using the Boussinesq Navier-Stokes equations in a rotating

reference frame, which will be discussed in more detail in Chapter 2.

On the other end of the scale spectrum are the smallest scales, known as the

microscale (see Fig 1.2). These scales are clearly understood and modeled by

the 3D Navier-Stokes equations. Here, the Rossby number is very large, and the

system does not feel the Coriolis force. At these scales, the viscous forces of the

fluid dissipate the energy input into the global system. Their horizontal scale is

of O(1) mm with a very fast temporal evolution of O(1) second.

The planetary and microscale are relatively well understood compared to the

intermediary scale, named mesoscale and submesoscale. The primary energy

sink of the large planetary scales is the mesoscale balanced instabilities; balance

refers to the hydrostatic and geostrophic balances, which are present in scales

larger than approximately 100 km due to the ocean’s high vertical stratification

and the Earth rotation [5]. The hydrostatic balance is the balance between the

gravitational acceleration and the vertical component of the pressure gradient

force, and the geostrophic balance is the balance between the Coriolis force and

the horizontal component of the pressure gradient force. We will discuss these

balances further in Chapter 2. We mainly see mesoscale structures in Fig. 1.1.

They span O(10− 100) km, evolve over a few weeks, and manifest as eddies and
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Figure 1.2: Stages in the oceanic general circulation from planetary-scale forcing to microscale
dissipation and mixing (adapted from [3]).

fronts. Geostrophic eddies account for most of the total kinetic energy in the

ocean [6–8]. These coherent mesoscale features have been carefully analyzed

using sea-surface height (SSH) fields from satellite data by measuring their geo-

graphical distribution, lifespan, and size, among other characteristics [7]. An

interesting conclusion of such studies is that these eddies can trap and advect

water masses. These eddies and fronts not only confine water parcels but also

stir their surroundings through horizontal advection. Consequently, they play

a crucial role in mixing tracers, such as temperature, nutrients, and carbon. In

addition, mesoscale processes impact the Earth’s response to climate change

through the surface heat and momentum transfer between the ocean and atmo-

sphere; this interaction influences both the ocean and the atmosphere [9]. Recent

advancements in experimental and numerical technologies have significantly

improved our understanding of oceanic mesoscale. However, the scales at the

lower end of the mesoscale range remain less understood.

1.2 Ocean Submesoscales

Ocean submesoscales, named for their smaller size than larger mesoscale eddies,

play an important role in ocean dynamics. These structures are characterized by

a horizontal size of O(1−10) km, and a vertical one of O(10−100) m. They evolve
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relatively rapidly, over time periods of O(1) day [3, 10]. At these scales, Ro can

reach values of O(1). The inertial force becomes important, and the geostrophic

balance breaks. They are characterized by intense vertical velocities reaching

100 m/day [10, 11]. These currents can be important in transporting nutrients

from the deep ocean to the surface while transporting phytoplankton from the

surface to deeper layers [12]. Additionally, they can transport heat with fluxes of

(20− 100) W/m2 in winter, which is more than 5 times larger than mesoscale

vertical fluxes, contributing significantly to the global air-sea heat transfer [13].

Figure 1.3 shows a snapshot of the relative vorticity at the ocean surface, ζ =

∂xv − ∂yu where u and v are the velocity components of the horizontal flow,

calculated from the LLC4320 simulation. The LLC4320 is a numerical simulation

performed using the Massachusetts Institute of Technology general circulation

model (MITgcm) on a Latitude-Longitude polar Cap (LLC) grid. It has a ∼
2 km resolution and can reasonably reproduce submesoscale dynamics. The

model validation is achieved by comparing LLC4320 sea surface temperature

(SST) with real SST observations [14]. Focusing on the zoomed-in views in

Fig. 1.3, it becomes clear that seasonality influences the intensity of these small

structures. As a quick reminder, when it is winter in the Northern Hemisphere, it

is summer in the Southern Hemisphere, and vice versa. During winter, the flow

is dominated by intense small eddies and filaments. Conversely, in summer, the

flow is significantly smoother and characterized by larger eddies with smaller

values of relative vorticity.

The flow structure observed in winter aligns with what is typically expected

from submesoscale currents: strong vortices, elongated filaments, and, par-

ticularly, fronts [3]. A front is the boundary between two water masses with

sharp differences in their properties, such as temperature, salinity, or nutrient

content. For example, fronts can be observed in satellite SST images where

cold and relatively hotter water meet. These structures are abundant in the

submesoscale range and are also observed in chlorophyll concentration satellite

data, as in Fig. 1.4. The visible patterns in the phytoplankton concentration

field are formed by surface convergence lines, typical of submesoscales. These

convergence zones significantly influence the concentration and distribution of

biological material. Continuous observation is needed to track the development
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Figure 1.3: Global simulation snapshot of ocean surface relative vorticity (s−1) at ∼ 2 km
resolution. Panel (a) and (b) show the relative vorticity on the first day of March and September,
respectively. Each panel includes a global map with two zoomed-in views: one on a region in
the Northern Hemisphere and the other on a region in the Southern Hemisphere (adapted from
[13]).

of such events properly.

However, because of their small size and fast temporal evolution, subme-

soscales are notoriously challenging to measure. Conventional altimeter ob-

servations capture SSH for scales larger than 100 km. As mentioned previ-

ously (Sec. 1.1), these scales are in geostrophic balance; therefore, their velocity

fields can be derived from SSH fields measured by satellites [5]. A key dif-

ference between mesoscale and submesoscale dynamics is the breakdown of

the geostrophic balance in submesoscales. This presents two problems: first,

conventional instruments cannot spatially resolve submesoscales, and second,

there is no theoretical way to derive their velocity fields from SSH since they are

not in geostrophic balance. Another general problem of remote sensing is cloud
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Figure 1.4: Landsat 8 false-color image of large cyanobacteria bloom in the Baltic Sea on 11
August 2015. Panel (b) is a zoomed-in view of the indicated box region in (a). The reference
length bars for panels (a) and (b) are 10 km and 1 km, respectively (source: Landsat Image
Gallery and [3]).

coverage [15]. Clouds hinder the satellite’s ability to capture high-resolution

SST and chlorophyll measurements, as they rely on infrared electromagnetic

radiation, which cannot penetrate clouds, leading to gaps in data and potential

challenges in observing the fast-evolving submesoscale processes. In contrast,

SSH, obtained via radar altimetry, is not impacted by cloud cover since radar

signals can penetrate through clouds.

To address the shortcomings of conventional altimetry, the Surface Water and

Ocean Topography (SWOT) satellite was launched on December 15, 2022. This

http://landsat.visibleearth.nasa.gov/view.php?id=86449
http://landsat.visibleearth.nasa.gov/view.php?id=86449
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satellite is a collaborative mission between the National Aeronautics and Space

Administration (NASA) and the National Center for Space Studies (CNES), with

contributions from the Canadian Space Agency (CSA) and the UK Space Agency.

SWOT is the first-ever instrument capable of globally monitoring volumetric

changes in inland waters, providing data on freshwater. Additionally, it can

measure SSH at an unprecedented resolution, resolving scales of about 1 km,

which is a two-order-of-magnitude improvement. Its advanced sensors make this

unique capability possible: a Ka-band radar interferometer (KaRIn) accompanied

by two synthetic-aperture radar SAR antennas [16]. The SAR antennas provide

2D measurements across two wide swaths, supplementing the traditional 1D

nadir measurement — a significant enhancement over traditional altimeters that

offer only 1D data along the nadir track.

Figure 1.5: Comparison of the observations made by a combination of 7 radar altimeters [panel
(a)] with the observations made by SWOT [panel (b)] over a stretch of the ocean in the Gulf
Stream region off Cape Hatteras [16]. The reference length bars for panels (a) and (b) are 50 km.

This remarkable improvement is clearly seen in Fig. 1.5 where sea surface height

anomaly (SSHA) measurements made by conventional altimetry are compared

to those made by SWOT. In panel (a), the resulting SSHA field is quite pixelated

and discrete; the combination of data from 7 altimeter mission barely resolves

scales of 100 km, which is inadequate for detailed meso and submesoscale
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observations. The details of the flows are hard to discern, with only the sharp

differences in height being noticeable. In contrast, the SWOT measurements in

panel (b) provide a much finer field image where the details of the flow are clear

at scales smaller than 50 km. Based on what is observed in Fig. 1.5 and on along-

track wavenumber spectra of SSH from SWOT data [16], it is evident that SWOT

is capable of resolving submesoscales, revealing details of their characteristic

eddies and fronts. However, these small scales evolve rapidly over time, making

continuous data collection challenging since SWOT has a 21-day repeat period.

It is worth noting that during its first six months, SWOT operated on a 1-day

orbit to calibrate and validate its measurements. As mentioned previously, the

geostrophic balance breaks down at fine enough scales, and determining the full

flow field from SSH becomes challenging.

So far, we have only examined remote sensing Eulerian measurements at

the ocean surface. However, due to the abovementioned difficulties, these mea-

surements cannot fully resolve submesoscales or capture the complete flow.

Complementary measurements, such as those from Lagrangian drifters and

in-situ moorings, provide additional high-temporal-resolution data, aiding in

the reconstruction of the full flow. Drifters are instruments that float freely on

the ocean surface to investigate currents via location tracking. They can also

be equipped with sensors to measure various quantities such as temperature,

pressure, and salinity. These drifters provide wide spatial coverage and fast sam-

pling, which serve as a basis for Lagrangian transport studies in the ocean [17].

Unlike drifters, moorings are fixed to maintain position by attachment to the sea

floor or through other stabilizing methods; as they sample the flow (at different

depths) at a fixed position in space, they fall under the Eulerian measurement

category.

In this work, our primary focus is on Lagrangian transport at the ocean

surface, making drifters particularly relevant to our study. While studying the

trajectories of drifters deployed in the Gulf of Mexico, a remarkable phenomenon

was observed: drifters spreading over 20 km (Fig. 1.6A) align following a fila-

mental structure (Fig. 1.6C), and spiral in anti-clockwise direction until they

gather into a 60 m wide cluster (Fig. 1.6D). This event takes about 10 days to

unfold [18]. Such clustering events have also been observed in ocean general
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Figure 1.6: Evolution of a drifter array in the northern Gulf of Mexico in February 2016 over 24
days. Panels A to F show the drifter positions at selected times. Inset E zooms in on a 60 m-wide
cluster of 127 drifters (in magenta). Each panel is centered on the magenta drifters. Drifters in
white eventually exit the frame. The grey tails (solid grey lines) show a 125-minute trail of the
drifters’ motion [18].

circulation and primitive-equations-based simulations of submesoscales [19–21].

This means that while, globally, Lagrangian particles spread over time, every

now and then, many of them are brought together in regions of very limited size.

Such convergence events are associated with large vorticity (and divergence)

values highlighting the departure from geostrophic balance - meaning that the

Rossby number, roughly estimated by Ro = ζ/f (with ζ relative vorticity and f

Coriolis frequency), is not negligibly small - and with the onset of important

vertical velocities. Positive (cyclonic) vorticity is stronger in the surface layer

due to finite Ro-effects of vortex stretching in the vorticity evolution equation

∂tζ ≈ (f + ζ)∂zw + ... (with w the vertical velocity component), ageostrophic

instabilities and loss of balance that limits anticyclonic vorticity amplitudes to

ζ/f ≳ −1 [3]. This leads to an asymmetry of vorticity statistics, with cyclones pre-

vailing over anticyclones. This cyclone-anticyclone asymmetry, with a cyclonic

dominance, has been observed in both in-situ measurements and numerical

simulations of submesoscales [22–24]. The intensification of positive vorticity

can be understood, to some extent, through frontogenesis, the dynamical pro-

cess that generates sharp density gradients (including horizontal gradients of

surface buoyancy) through the large-scale deformation field, thus forming and

strengthening fronts [25]. Figure 1.7 shows sketches of strain-induced fronto-

genesis produced by a large-scale deformation flow for a buoyancy front and

a dense filament. For a front (Fig. 1.7a), the flow features a circulation cell

with upwelling and surface divergence on the lighter side and downwelling and
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Figure 1.7: Sketches of surface-layer frontogenesis induced by a large-scale deformation flow:
for a front [panel (a)] and a dense filament [panel (b)]. The along-axis flow v(x,z) is partly
geostrophic, and the secondary circulation (u,w) is ageostrophic (adapted from [3]).

surface convergence on the denser side. In the weakly stratified upper layer,

where ∂zw < 0 is most pronounced in z, vortex stretching generates anticyclonic

vorticity on the light side of the front and cyclonic vorticity on the dense side.

Due to the finite Ro of submesoscales, the combined effects of ζ∂zw (absent

for vanishingly small Ro) and f ∂zw result in a greater amplification of cyclonic

vorticity compared to anticyclonic vorticity. In the case of a dense filament

(Fig. 1.7b), two counter-rotating secondary circulation cells generate intense

downwelling and surface convergence along the frontal axis, which generates

cyclonic vorticity and positively skews the vorticity statistics, similar to a front.

Additionally, this figure highlights the role of frontogenesis in generating large

vertical velocities and mixing the ocean’s upper layer.

As a result of downwelling and surface convergence, Lagrangian tracers can

be expected to cluster temporarily; however, similar to typical turbulent flows,

they generally separate and disperse over long enough times [17, 26, 27]. At the

submesoscale level, the flow can be highly energetic (especially in winter) [25].

Comparisons between actual drifter data and synthetic drifters from a simulation

with a resolution of 3 km clearly demonstrate that at scales smaller than 10 km,

synthetic drifters underestimate the rate of dispersion, as shown in Fig. 1.8. The

real drifter data suggest that the dispersion process is primarily influenced by

the energetic scales that match the separation distance of the drifters at these
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Figure 1.8: Scale-dependent dispersion rates as a function of separation distance, shown for
real and synthetic drifter launches. Solid points represent real drifter data, while empty points
indicate synthetic drifter data from a 3-km resolution simulation corresponding to the real
launches. The r−2/3 scaling law is the dimensional expectation in the Richardson regime (adapted
from [26]).

scales [26]. This is missed by large-scale ocean numerical simulations, due to the

high dissipation at the grid size the energy is drastically dumped leading to an

underestimation of the energy content at submesoscales.

In conclusion, submesoscales are challenging to measure due to their small

size and rapid evolution. Recent advancements in remote sensing technology

allow us to achieve better-resolved Eulerian measurements of submesoscales.

However, since the derived velocity fields are essentially geostrophic, an as-

sessment is needed to determine how closely they represent the full velocity

fields. A cyclone-anticyclone asymmetry with cyclonic dominance and a nonzero

horizontal divergence characterizes these submesoscales. These flow features

are crucial for vertical mixing, material transport, and heat transfer. This thesis

aims to better understand the effect of submesoscale dynamics on horizontal

Lagrangian transport properties through a minimal model based on the physical

modeling of the flow.



Chapter2
Ocean Modeling

Ocean circulation is a combination of various flow types, with motions rang-

ing from millimeters to kilometers in size and evolving over temporal scales

from seconds to years (see Fig. 1.2). To study the dynamics from the basin to

submesoscales, researchers use a combination of observations, theories, and high-

resolution numerical models. A major challenge is understanding how energy is

transferred from scales of thousands of kilometers, driven by large-scale atmo-

spheric winds and heat fluxes, down to millimeter scales, where energy dissipates

as heat. The first important energy transfer is from large-scale ocean currents

to mesoscale eddies. Large-scale ocean currents are unstable due to baroclinic

instability, generating eddies with scales O(100) kilometers. These mesoscale

eddies then interact, producing submesoscale turbulent filaments ranging from

10 kilometers to 1 kilometer. Planetary scales are primarily horizontal, con-

strained by ocean stratification and rotation, and resemble two-dimensional

turbulent flows. Only around the lower mesoscale and submesoscale range does

the turbulence become quasi-two-dimensional and eventually three-dimensional

at microscales. Physically, as for any fluid, ocean dynamics are governed by

the 3D Navier-Stokes equations. However, simulating them using the latter

by means of Direct Numerical Simulation (DNS) is not feasible because of the

magnitude of the Reynolds Number in the ocean, Re = UL/ν where U , L, ν

are the characteristic velocity and length of the flow and the fluid kinematic

viscosity, respectively. For example, if we consider ocean submesoscales where

19
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U ≈ 0.05 m/s [28], L ≈ 10 km and ν ≈ 10−6 m2/s, we retrieve Re ≈ 5× 108. To

resolve all the scales and given that the Kolmogorov scale is the scale at which

Re = 1 [29], we would need O(1019) grid points, given that Nmin ∼ Re9/4, where

Nmin represents the minimum number of grid points required [30]. To that end,

simpler models that require less computational power were conceptualized to

help enhance our understanding of geophysical flows.

This chapter is organized as follows. In Sec. 2.1, we introduce two-dimensional

(2D) turbulence and its application to modeling the ocean mesoscale range. We

then discuss the Quasi-Geostrophic (QG) theory in Sec. 2.2, which is able to

reproduce large mesoscale dynamics and can be seen as an extension of 2D

Navier-Stokes turbulence to rotating stratified fluids. Next, we cover Surface

Quasi-Geostrophic (SQG) theory in Sec. 2.3, a special case of QG that is often

considered more appropriate for energetic submesoscales. However, SQG cannot

fully reproduce all submesoscale features. To address these limitations, we go

beyond QG theory and introduce the SQG+1 model in Sec. 2.4. To understand

Lagrangian particle behavior in such flows, we present theoretical expectations

for tracer particle motion in turbulent flows in Sec. 2.5 covering both single

particle (Sec. 2.5.1) and two-particle (Sec. 2.5.2) statistics.

2.1 2D Turbulence

Turbulence is everywhere in nature, from the blood flow in arteries to the for-

mation of galaxies. It is typically three-dimensional, and 2D turbulence is

never fully reproduced in nature or the laboratory. Nevertheless, some physical

systems exhibit many features of 2D turbulence. For instance, large motions

in the atmosphere and the ocean (planetary scale in Fig. 1.2) may be approx-

imated as 2D turbulent flows since the large aspect ratio (the ratio of lateral

to vertical length scales) of these systems allows for a first approximation of

this type. Prominent features of 2D turbulence are present in the theory of

geostrophic turbulence [31]. Moreover, vorticity filaments, characteristic of 2D

turbulence, appear in different systems, such as numerical simulations of 2D

Navier-Stokes equations, flowing soap film experiments, and global circulation

simulations [32]. From a theoretical perspective, 2D turbulence is not merely a
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reduced dimensional version of 3D turbulence because new conservation laws

in two dimensions lead to a completely different phenomenology.

For a 2D incompressible flow, the motion is described by the Navier-Stokes

equations, which are based on the conservation of momentum [Eq. (2.1)] and the

conservation of mass [Eq. (2.2)] equations which can be written as

∂u
∂t

+u ·∇Hu = −1
ρ
∇Hp+ ν∇2

Hu , (2.1)

∇H ·u = 0 , (2.2)

where u = (u,v) is the velocity field, ∇H = (∂x,∂y) is the gradient, p is the pressure

in the fluid and ρ is the fluid density. What is interesting in the case of 2D flows

is the fact that vorticity, defined as the curl of the velocity ζ = ∇H ×u, is a scalar

quantity. By taking the curl of Eq. (2.1) and considering only the z-component,

we retrieve the vorticity equation:

∂ζ
∂t

+u ·∇Hζ = ν∇2
Hζ . (2.3)

Since the flow is incompressible, the velocity and vorticity can be derived from a

streamfunction, ψ, such that u = (−∂yψ,∂xψ) and ζ = ∇2
Hψ. A main feature of

2D turbulence is the absence of vortex stretching, as evident from Eq. (2.3).

In classical 3D turbulence, vortex stretching plays an important role in

breaking up large structures, eventually leading to a direct cascade of energy

toward small scales. This cascade was famously theorized in 1941 by considering

homogeneous, isotropic 3D flows of an incompressible fluid [29]. To understand

the energy cascade, it is helpful to analyze the energy spectrum E(k), which is

directly related to the mean flow kinetic energy, E:

E =
1
2
⟨u2⟩ =

∫ ∞
0
E(k) dk , (2.4)

where ⟨·⟩ is the spatial average, E(k) is the kinetic energy spectrum and k is the

wavenumber. Energy can be injected at any scale, but here, we focus on large-

scale energy injection (small wavenumbers), as external forcing often occurs at
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these scales in many geophysical contexts. Note that from here on, whenever

we refer to forcing, we mean localized forcing around a forcing wavenumber kf .

The energy is then transferred through intermediate scales without significant

loss, eventually reaching small scales (large wavenumber), where it is dissipated

as heat. This represents the process at microscales in Fig. 1.2. In the inertial

range at intermediate scales, the energy flux is constant. As a result, through

dimensional arguments, the energy spectrum scales as E(k) ∼ k−5/3, a behavior

known as the direct energy cascade [29]. In this range, kinetic energy is an

inviscid invariant (i.e., ν→ 0).

In 2D turbulence, vortex stretching is absent, and energy is contained in

eddies whose sizes continuously increase as the flow evolves [33]. Instead of

flow structures stretching and breaking down, eddies merge to form larger

eddies. Here, energy is not dissipated at small scales. Instead, an inverse cascade

is observed, where energy is transferred from the forcing scale, kf , to larger

scales, kl , defined as kl =
∫∞

0
E(k)dk/

∫∞
0
k−1E(k)dk. In the energy inertial range

(kl ≪ k≪ kf ), E(k) ∼ k−5/3 [34, 35]. Another important feature is that the mean-

squared vorticity, represented by enstrophy Z (Eq. (2.5)), in addition to the

kinetic energy, becomes an inviscid invariant. The latter is directly related to the

enstrophy spectrum, Z(k), and the energy spectrum:

Z =
1
2
⟨ζ2⟩ =

∫ ∞
0
Z(k) dk =

∫ ∞
0
k2E(k) dk . (2.5)

Enstrophy is transferred from the forced scale kf to the smaller dissipative

scale kη , which corresponds to the viscous scale lν = (ν3/η)1/6, where ν is the

viscosity and η is the enstrophy cascade rate in a homogeneous, isotropic 2D

turbulent flow. At these smaller scales, enstrophy is dissipated by viscous forces.

In the enstrophy inertial range (kf ≪ k ≪ kη), E(k) ∼ k−3 [34, 35]. Thus, in

2D turbulence, two cascades exist: the inverse energy cascade and the direct

enstrophy cascade. A typical energy spectrum as a function of wavenumber is

sketched in Fig. 2.1.

Interestingly, the direct enstrophy cascade was observed by aircraft data near

the tropopause [36]. As shown in Figure 2.2, there is evidence of k−3 scaling

at large scales (> 500 km). Additionally, there is clear evidence of a k−5/3 slope
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Figure 2.1: Sketch of the energy spectrum of a 2D turbulent flow in log-log scale. The green
and blue arrows represent the inverse cascade of energy and the direct cascade of enstrophy,
respectively. The red arrow represents the energy injection into the system.

between 3−300 km that is argued to be an energy cascade. This k−5/3 spectral

slope, at scales smaller than approximately 150 km, was also observed in kinetic

energy spectra obtained from wind velocity data gathered from commercial

flights between Chicago, Los Angeles and Honolulu [37].

After an extensive study, which included data from 5754 airplane flights as part

of the Measurement of OZone by Airbus In-service airCraft (MOZAIC) program,

where structure functions for 2D turbulence were derived and compared to

the in-situ data, it was confirmed that the k−3 scaling can be explained by 2D

turbulence and interpreted as a direct cascade of enstrophy. However, the

k−5/3 scaling cannot be explained by 2D turbulence alone, and we should not

jump to conclusions too quickly by considering it an energy cascade [38]. At

the mesoscale range [O(100) km], the flow dynamics are influenced by Earth’s

rotation and vertical density stratification, making 2D turbulence expectations

insufficient to explain certain phenomena observed in empirical data. Therefore,

quasi-2D turbulence models become necessary to understand mesoscale ocean

dynamics better.
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Figure 2.2: Variance power spectra of wind and potential temperature near the tropopause
from Global Atmospheric Sampling Program (GASP) aircraft data. The meridional wind and
temperature spectra are shifted one and two decades to the right, respectively. [36].

2.2 Quasi-Geostrophic (QG) Theory

QG theory is a simplified theoretical framework in geophysical fluid dynamics

that describes the large-scale flow of the atmosphere and oceans, namely the

large mesoscale [O(100) km] regime. It is an approximation to the Navier-Stokes

equations governing fluid motion. It provides extra levels of complexity that

cannot be explored using 2D turbulence. Jule Charney developed the QG model

based on the work of Carl-Gustaf Rossby [39]. Its primary use at that time was

to forecast the weather.

The QG equations are derived from the primitive equations, which are based

on the Boussinesq approximation, along with the hydrostatic and traditional

approximations. The latter, less commonly known, neglects Coriolis terms in

the horizontal momentum equations involving vertical velocity and smaller

metric terms. In QG theory, the following assumptions are considered. First,
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the deformation radius Ld , which is the length scale at which rotational effects

become as important as buoyancy, should be of the same order as the horizontal

characteristic length scale of the flow, such that L/Ld ≈ 1. Consequently, the

Rossby number is small, and the flow is near-geostrophic balance, i.e., Ro≪ 1.

Second, variations in the Coriolis parameter f are small. Finally, the time scale

of the flow is determined by the horizontal characteristic length and velocity. In

this work, we prefer to show similarities between 2D turbulence and QG theory.

Therefore, we will focus on deriving the potential vorticity q equation, which is

analogous to the relative vorticity ζ equation in 2D turbulence in the absence of

dissipation [Eq. (2.3) with ν = 0]. A detailed derivation of the QG equation from

the primitive equations can be found in [5].

Let us start by writing the horizontal momentum, the hydrostatic equation,

the continuity, and the thermodynamic energy equation; these equations are

known as the Boussinesq equation:

Du
Dt

+ f k×u = −∇Hφ, (2.6)

∂φ

∂z
= b, (2.7)

∇H ·u+
∂w
∂z

= 0 , (2.8)

Db
Dt

+N 2w = 0 , (2.9)

where φ is a geopotential. b = −gδρ/ρ0 = gθ/θ0 is the buoyancy with δρ and

θ are small density and temperature fluctuations, respectively, and ρ0 and θ0

are reference density and temperature, respectively. w is the vertical velocity.

N 2 = ∂zb̄ is the buoyancy frequency (i.e., Brunt–Väisälä frequency) with b̄ a mean

vertical buoyancy profile. D/Dt = ∂t+u·∇+w∂z is the material derivative. To ease

the derivation, a constant Coriolis parameter is assumed [f = constant]; this is

known as the f -plane approximation. Other Coriolis parameter approximations

can be used, such as the β-plane approximation, which considers meridional

variations in f . The latter is used in [5] and leads to the same potential vorticity
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(PV) equation.

As a result of the QG assumptions, the horizontal flow is nearly geostrophic.

Since the horizontal flow is not in absolute geostrophic balance, we decom-

pose the horizontal velocity into a geostrophic part (at lowest order in Ro) and

ageostrophic parts, such that

u = ug +Ro u(1)
ag +Ro2 u

(2)
ag + ... , (2.10)

where ug is the geostrophic part and u
(n)
ag is the ageostrophic part of O(Ron).

Similarly, the variables in Eqs. (2.6) to (2.9) can be expanded as a function of

the Rossby number. The condition Ro≪ 1 allows us to retain only lowest order

terms; therefore, to simplify the notation, we drop the superscript (n) for the

ageostrophic part and the velocity becomes u = ug +Ro uag , with uag the first

order in Ro velocity component. All other variable notations follow the same

convention.

To reduce the order of complexity of the system, we consider the typical scaling

variables (denoted by capital letters), which are also a consequence of the QG

assumptions:

(x,y) ∼ L, z ∼H , (u,v) ∼U , f ∼ f0 , Ro =
U
Lf

,

t ∼ L
U
∼ (Rof )−1 , ρ ∼

ρ0f0UL

gH
,

where L and H are the characteristic horizontal and vertical lengths of the flow,

respectively, and U is its characteristic velocity. ρ0 and f0 represent the reference

fluid density and Coriolis parameter, respectively.

At the lowest order, Eq. (2.8) becomes ∇H ·ug = 0 since the geostrophic velocity

field is nondivergent. Therefore, w is clearly not at the lowest order in Ro. This

requires the vertical velocity to only appear from the next order:

w ∼ Ro HU
L

.

As a consequence the material derivative becomes D/Dt = ∂t +u ·∇+Row∂z.
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Using these relations, we can rewrite the non-dimensional Boussinesq equations:

Ro
Du
Dt

+k×u = −∇Hφ, (2.11)

∂φ

∂z
= b , (2.12)

∇H ·u+Ro
∂w
∂z

= 0 , (2.13)

Ro

[
Db
Dt

+w
]

= 0 . (2.14)

Eqs. (2.12) and (2.14) can be rewritten in terms of temperature instead of buoy-

ancy:
∂φ

∂z
= θ , (2.15)

Ro
[Dθ
Dt

+w
]

= 0 . (2.16)

We will continue using the equations expressed as a function of temperature in

the subsequent analysis.

The geostrophic velocity is derived from the geostrophic balance at the lowest

order:

ug =
−∂φg
∂y

, vg =
∂φg
∂x

, (2.17)

with the geopotential playing the role of a streamfunction. The thermal-wind

balance relates the lowest-order horizontal velocity and temperature:

∂ug
∂z

= −
∂θg
∂y

,
∂vg
∂z

=
∂θg
∂x

, (2.18)

relating the vertical gradient of the horizontal geostrophic flow to the horizontal

gradient of the temperature field.

Taking Eqs. (2.11), (2.13) and (2.16) at next order in Rossby gives the vorticity

and temperature equations:

Dgζg
Dt
−
∂wag
∂z

= 0 , (2.19)
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Dgθg
Dt

+wag = 0 , (2.20)

where Dg /Dt = ∂t +ug ·∇H and ζg = ∇2
Hφg .

Eliminating the vertical motion from the above equations and using Eqs. (2.18),

we retrieve the conservation of potential vorticity:

Dgqag
Dt

= 0 , (2.21)

where the first order potential vorticity qag :

qag = ζg +∂zθg = ∇2
Hφg +∂2

zφg . (2.22)

At zeroth order, potential vorticity is equal to f , which, in nondimensional units,

is 1. In the case of a 2D flow, where the flow is independent of the vertical

direction, the inviscid 2D vorticity equation is recovered [Eq. (2.3) without the

right-hand side term]. In fact, the full potential vorticity is conserved along the

geostrophic flow and can be shown through a longer derivation [Dgq/Dt = 0] [5].

Here lies the importance of QG theory: it wraps up the entire system into a

single equation with a single unknown. Unlike the Navier-Stokes equations,

which provide six nonlinear partial differential equations with six unknowns.

Up to order Ro, the potential vorticity can be in non-dimensional form estimated

as follows

q ≈ qg +Ro qag = 1 +Ro
(
∇2φg +∂2

zφg
)
. (2.23)

The last term on the right-hand side is the vortex stretching term. QG motions

are horizontal, yet they generally vary in the vertical. It is a consequence of

vertical motions and stratification in a water column.

Considering a rigid lid at the upper surface (z = 0) and consequently no normal

flow (wag = 0) along the geostrophic flow, we obtain the conservation of tempera-

ture from Eq. (2.20), which is directly related to the conservation of buoyancy,

such that
∂θ

(s)
g

∂t
+u

(s)
g ·∇Hθ

(s)
g = 0 , (2.24)

where θ(s)
g and u

(s)
g are the temperature and the velocity at the surface at the
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lowest order, respectively.

In this system, the conservation of both the total energy and the potential en-

strophy leads to an inverse total energy cascade and a direct potential enstrophy

cascade, highlighting the connection to 2D turbulent characteristics. The total

energy Etot is defined as

Etot =
1
2

$ (∂ψ∂x
)2

+
(
∂ψ

∂y

)2

+
(
∂ψ

∂z

)2 dxdydz , (2.25)

where ψ = φg . The total energy can be divided into the kinetic energy and

potential energy. The kinetic energy is derived from the horizontal motion of

the flow, while the potential energy is related to buoyancy effects.

The potential enstrophy is defined as

Zpot =
1
2

$
q2 dxdydz . (2.26)

Eqs. (2.25) and (2.26) are a consequence of the conservation of potential vor-

ticity. Energy cascades towards larger scales [inverse cascade] with an energy

spectrum Etot(k) ∼ k−5/3. Conversely, the potential enstrophy cascades toward

smaller scales [direct cascade] with an energy spectrum Etot(k) ∼ k−3 [31]. The

characteristics of QG turbulence are well documented, i.e. [40]. The latter study

highlights similarities between 2D and QG turbulence, such as the presence of an

inverse energy cascade, a direct enstrophy cascade, and the emergence of strong

coherent eddies in both systems. This theory has been applied successfully to

ocean interior dynamics and has proved very successful in understanding energy

exchange between scales and the interaction between oceanic eddies (see [5]).

2.3 Surface Quasi-Geostrophic (SQG) Theory

SQG is a special case of the QG approximation, initially introduced in an atmo-

spheric context [41]. However, it has proven particularly useful for studying

ocean submesoscale processes. Despite its simplifications, the SQG model cap-

tures essential features of surface-driven flows and provides insights into the
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complex interactions that govern geophysical fluid dynamics [25]. In this model,

PV is assumed to be zero in the interior; therefore, the dynamics are controlled

by the advection of buoyancy at the surface [q = 0 in the interior]:

∇2
Hψ +∂2

zψ = 0 , (2.27)

The flow is driven by the evolution of surface temperature (or, equivalently,

buoyancy):
Dgθ

(s)
g

Dt
= 0 , (2.28)

with the superscript (s) denoting quantities at the surface.

In the case of the ocean, we impose vertical boundary conditions on the stream-

function at z = 0 (corresponding to the ocean surface) and z = −∞ such that

θ
(s)
g =

∂ψ

∂z

∣∣∣∣
z=0

, (2.29)

lim
z→−∞

∂ψ

∂z
= 0 , (2.30)

with ψ = φg .

Using Eq. (2.27) and the above boundary conditions, we can relate the stream-

function to the temperature in the horizontal Fourier domain:

ψ̂ =
θ̂

(s)
g

k
ekz , (2.31)

where the hat denotes the horizontal Fourier transform and k for the horizontal

wavenumber modulus. Equation (2.31) indicates that, for each Fourier com-

ponent, the streamfunction decreases exponentially with z (note that z < 0).

Notably, this decrease becomes more rapid for smaller horizontal scales (large

k).

At the surface, the relation between the temperature and the streamfunction in

Fourier space becomes:

θ̂
(s)
g = kψ̂(s) . (2.32)

Similar to 2D and QG systems, SQG systems are characterized by two con-



2.3. Surface Quasi-Geostrophic (SQG) Theory 31

served quantities: the generalized energy EG (also called total energy) and the

generalized enstrophy ZG (also called potential energy) [25, 42], defined as

EG =
1
2

$ (∂ψ∂x
)2

+
(
∂ψ

∂y

)2

+
(
∂ψ

∂z

)2 dxdydz = −1
2

"
ψ(s)θ

(s)
g dxdy , (2.33)

and

ZG =
1
2

"
θ2
gdxdy , (2.34)

At the surface, the kinetic energy E is proportional to the generalized enstrophy

via a horizontal Fourier transform using Eq. (2.31) at z = 0,

E(z = 0) =
1
2

"
|u(s)
g |2 dxdy =

1
2

"
k2|ψ̂(s)|2 dkxdky

=
1
2

"
|θ̂(s)
g |2 dkxdky =

1
2

" (
θ

(s)
g

)2
dxdy = ZG .

(2.35)

In SQG turbulence, generalized energy undergoes an inverse cascade to larger

scales. The surface kinetic energy spectrum and, equivalently, the buoyancy

variance spectrum (due to Eq. (2.35)), in their corresponding inertial range, is

E(k) ∼ k−1 , (2.36)

while the generalized enstrophy undergoes a direct cascade to small scales. The

(surface) kinetic energy spectrum in its corresponding inertial range is

E(k) ∼ k−5/3 . (2.37)

As with 2D and QG turbulence, these predictions are based on dimensional

arguments [25, 42]. The forward and inverse cascades were observed in free-

decaying SQG simulations [43].

SQG dynamics produce energetic small-scale flows, leading to a shallower ki-

netic energy spectrum scaling as k−5/3 in the direct cascade, compared to k−3

in QG. These small-scale flows are considered one of the possible mechanisms

for submesoscale generation via mesoscale straining processes. SQG flows are

characterized by the presence of eddies of different sizes and filamentary struc-
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tures [25]. These structures play an important role on marine ecosystems. Indeed,

using an SQG model coupled with a plankton ecosystem model, it was shown

that phytoplankton preferentially develop in these filamental structures [44].

However, SQG, like QG, assumes a geostrophic and nondivergent velocity

field [Eq. (2.28)]. Consequently, it fails to capture some of the main ocean

submesoscale characteristics, such as a cyclone/anticyclone asymmetry [22–24]

and a divergent horizontal flow [18–21] (see also Sec. 1.2).

2.4 Next order in Rossby Submesoscale Model

To overcome the limitations of the QG framework, an interesting approach

is to extend it to include ageostrophic motions by developing the primitive

equations to the next order in the Rossby number. This extension results in

the QG+1 system, which includes ageostrophic corrections [45, 46] that can

potentially account for the missing submesoscale flow features. When applied to

surface-driven dynamics, this approach leads to the SQG+1 model. Initially intro-

duced in an atmospheric context [47], simulations of freely decaying turbulence

demonstrated that it produces the expected cyclone-anticyclone asymmetry.

In this study, we utilize the SQG+1 system to explore surface-ocean turbu-

lence at fine scales, focusing on the direct kinetic energy cascade, a topic that

has not previously been addressed. Our primary objective is to provide a min-

imal model based on fundamental dynamical equations that can account for

these submesoscale features. Additionally, we aim to investigate the impact of

ageostrophic flow on the spatial distribution of tracer particles.

Other models, such as the surface semi-geostrophic model [48], also extend

primitive equations by considering the finite Rossby number effect and suc-

cessfully reproduce both cyclone-anticyclone asymmetries and strong vertical

velocities at fronts. However, we selected the SQG+1 model because many of its

properties are well-documented [47].

The full derivation of the SQG+1 equations starts with the QG+1 model, from

which the SQG+1 system is obtained by setting the interior PV to zero. This

involves a Helmholtz decomposition of the vector V = (k×u,θ) = (v,−u,θ) into

divergent and rotational components, V = ∇φ+∇×A, leading to the horizontal
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flow u = k ×∇Hφ − ∂zA and the temperature field θ = ∂zφ +∇H ·A. Substitut-

ing these into the Boussinesq equations and expanding in Ro yields the QG+1

equations after extensive calculations. For detailed derivations, refer to [45] and

[46].

This section will briefly introduce the mathematical formulation of the SQG+1

model, adapting the original derivation [47] to oceanic conditions. Assuming

the vertical coordinate ranges from −∞ < z ≤ 0, the dynamics are driven by the

lateral advection of temperature (buoyancy) at the surface (z = 0). The main

governing equation retains the same form as in the SQG system (corresponding

to Ro = 0) and expresses the conservation of surface temperature along the

surface flow. This can be written as

∂θ(s)

∂t
+u(s) ·∇θ(s) = 0 , (2.38)

where, again, the superscript (s) indicates quantities evaluated at the surface

(z = 0). For simplicity of notation, we have dropped the subscript g from the

temperature variable in the previous equation. We will continue using θ instead

of θg , since the temperature is always taken at the lowest order. The total velocity

field is the sum of the geostrophic component ug (computed at the lowest order

in Ro) and an ageostrophic component uag (at next order in Ro) as a consequence

of the expansion of Eq. (2.10):

u = ug +Rouag , (2.39)

with the ageostrophic component calculated as the sum of two terms, uφ and ua,

uag = uφ +ua . (2.40)

These velocities are obtained from the (expanded) scalar potentialφ = φg+Roφag
(where φg = ψ) and a vector potential A = RoAag (it can be shown that Ag = 0)

as follows:

ug =
(
−
∂φg
∂y

,
∂φg
∂x

)
, (2.41)
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uφ =
(
−
∂φag
∂y

,
∂φag
∂x

)
, (2.42)

ua = −
∂Aag
∂z

. (2.43)

The functions φg , φag and Aag are related to surface and lower-order quantities

through the following relations:

φ̂g = ψ̂ =
θ̂(s)

k
ekz , (2.44)

φ̂ag =
θ̂2

2
−

�[
θ(s)(∂zθ)(s)

]
k

ekz , (2.45)

Âag = −θ̂ug + (
�
θ(s)u

(s)
g )ekz . (2.46)

Equations (2.44) and (2.45) follow from the requirement of having zero interior

PV at all orders in Ro, while Eq. (2.46) is a form of the omega equation obeyed

by vertical velocities (see also [25, 45, 47]). Note that ua has both a rotational

and a divergent component from (2.46) while uφ is nondivergent.

SQG+1 accounts for frontogenetic ageostrophic motions linked to next-order

corrections to the geostrophic flow. Moreover, its idealized nature and relatively

simple mathematical formulation represent a strong advantage. However, a

notable limitation is its inability to account for other types of ageostrophic

dynamics that deviate further from geostrophic equilibrium. Among these,

high-frequency motions (internal gravity waves and tides), in particular, may

be expected also to play a relevant role on submesoscale turbulence [49–51].

Another limitation, shared with SQG, is the absence of a seasonal cycle due to

the lack of a mixed layer in the model.

2.5 Lagrangian Dispersion in Turbulent Flows

In the previous sections of this chapter, we have presented idealized models

that simulate ocean flows from planetary scales to submesoscales, highlighting
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some of their key characteristics (Sec. 2.1 to 2.3). We also introduced the model

used in this study, which accounts for frontal ageostrophic motions and can

better model ocean submesoscales (Sec. 2.4). These models provide an Eulerian

representation of the flow. However, motivated by the SWOT mission and the

fact that current experimental data on submesoscales come primarily from sur-

face drifters, we shift our focus to Lagrangian statistics. SWOT measures SSH

from which geostrophic velocity fields can be derived [5]. These velocity fields

do not capture the full submesoscale flow, necessitating an assessment of their

accuracy for Lagrangian applications. We address this by exploring the impact

of ageostrophic motions on Lagrangian transport in SQG+1.

Lagrangian dispersion has been investigated in both QG and SQG systems, re-

vealing that large-scale structures dominate dispersion in QG, while in SQG,

it is local due to the presence of smaller energetic scales in the direct cascade

inertial range [52]. However, to our knowledge, there is no comprehensive study

on Lagrangian transport in an idealized model that includes frontal ageostrophic

motions.

Furthermore, understanding the impact of submesoscales on Lagrangian trans-

port could have important applications for problems such as plankton dynamics

(e.g., nutrient distribution) and pollutant dispersal (e.g., after an oil spill or

plastic accumulation).

To address this gap, we analyze the dynamics of Lagrangian tracer particles in

the turbulent flows produced by the model of Sec. 2.4. To qualitatively compare

the main features of our results with those from ocean drifters, we restrict the

motion to the surface. The particles move according to the following equation:

dxi
dt

= u (xi(t), t) , (2.47)

where xi = (xi , yi) is the horizontal position of particle i with i = 1, ...,Np (where

Np is the number of particles) and u(xi , t) is the total velocity, presented in

Eq. (2.39), at its position.

In this section, we examine two main types of dispersion to assess Lagrangian

turbulence: single-particle dispersion, which concerns the diffusion of a particle

from its initial position (Sec. 2.5.1), and pair dispersion, which pertains to the
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relative distance between two particles (Sec. 2.5.2). A comprehensive review of

Lagrangian statistics and their geophysical applications can be found in [17].

Here, we focus on Lagrangian dispersion without delving into the Lagrangian

dynamics related to potential clustering, which will be introduced and discussed

in Chapters 4 and 5.

2.5.1 Single particle statistics

Let us start by defining the absolute dispersion ⟨A2(t)⟩. This is the variance of the

particle displacement relative to the mean position at a given time t, capturing

the spread of particles from their average location over time:

⟨A2(t)⟩ = ⟨[xi(t)− xi(0)]2⟩ − ⟨[xi(t)− xi(0)]⟩2 . (2.48)

where ⟨.⟩ is the average over all particles. In the absence of a mean flow, the

second term on the right-hand side vanishes.

At very short times, when t≪ τL, where τL is the integral Lagrangian time, ⟨A2⟩
is expected to behave as

⟨A2(t)⟩ ≃ σ2
L t

2 , (2.49)

where σ2
L is the total Lagrangian velocity variance. This is known as the ballistic

regime, where trajectories still retain some memory of their initial conditions.

At very large times, when t ≫ τL and all memory of initial conditions is lost,

⟨A2(t)⟩ scales diffusively,

⟨A2(t)⟩ ≃ 2Kabst , (2.50)

where Kabs = 1/2d⟨A2(t)⟩/dt is the absolute diffusion coefficient.

The integral Lagrangian time τL can be estimated by integrating the autocorrela-

tion function of the Lagrangian velocity C(τ) over the time scale over which the

Lagrangian velocities are correlated or as the time of the first zero crossing of

C(τ) with C(τ) defined as

C(τ) =
ui(t + τ) ·ui(t)

u2
i (t)

, (2.51)
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where the overbar denotes an average over time, ui(t) = u(xi(t), t) and τ the time

lag from time t. C(τ) can be averaged over all particles in a homogeneous and

isotropic system. Another interesting property of the autocorrelation function is

its intrinsic connection to the kinetic energy spectrum. The Fourier transform of

the temporal autocorrelation function is directly related to the temporal energy

spectrum E(ω) (where ω is the angular frequency inversely proportional to time).

This is a consequence of the Wiener-Krinchin theorem. Therefore, by calculating

the autocorrelation function, we can also determine E(ω), providing important

information on the frequency distribution of kinetic energy within the system.

An exponentially decaying velocity autocorrelation results in a frequency spec-

trum characterized by an ω−2 decay at high frequencies (i.e., E(ω) ∼ ω−2) and

a white spectrum at low frequencies (i.e., E(ω) is constant), with a transition

frequency of ω = (2πτL)−1 [17].

In fact, the behavior of absolute dispersion was observed using data from La-

grangian drifters released, for example, near the Brazil Current. At short times,

we clearly observe ballistic dispersion where ⟨A2(t)⟩ ∼ t2. At larger times, abso-

lute dispersion passes to the diffusive regime where ⟨A2(t)⟩ ∼ t [27].

2.5.2 Two-Particle statistics

While single-particle statistics provide insights into advective transport, primar-

ily influenced by the largest and most energetic scales of motion, two-particle

statistics offer valuable information about the physical mechanisms operating

across various scales of motion.

In 1926, Richardson attempted to characterize the spreading of weather

balloons in the atmosphere. He showed that particles in the atmosphere exhibit

super-diffusion driven by turbulence; more interestingly, his results suggested

that the mean-square relative displacement between two particles grows in time

as t3 [53]. The latter result came years before the famous Kolmogorov turbulence

theory [29], yet it was shown to be a direct consequence of Kolmogorov scaling,

in the inertial range of scales [54–56].

The mean-square relative displacement between two particles, i.e., relative
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dispersion, is defined as

⟨R2(t)⟩ = ⟨|xi(t)− xj(t)|2⟩ , (2.52)

where the average is computed at time t, over all pairs (i, j) such that at t = 0

(the release time) |xi(0)− xj(0)| = R(0) = R0. Relative dispersion helps identify

dispersion regimes, which is important for characterizing material spreading in

a flow and for inferring flow properties, especially when working with drifter

data.

At very short times, the relative dispersion grows ballistically as t2 [52, 56, 57].

This follows from a Taylor expansion of the relative dispersion around t = 0:

⟨R2(t)⟩ ≃ R2
0 + ⟨(δu0)2⟩t2 , (2.53)

where u0 = u(t = 0). For sufficiently small R0 and assuming that velocity gradi-

ents are square-integrable, the second order structure function can be replaced

by ZR2
0, where Z = ⟨ζ2/2⟩x =

∫
k2E(k)dk is enstrophy; consequently, Eq. (2.53)

can be simplified to ⟨R2(t)⟩ ≃ R2
0(1 +Zt2).

At intermediate times, when pair separations lie in the inertial range of the

flow, relative dispersion should grow exponentially or as a power law, if the

kinetic energy spectrum scales as k−β with β > 3 or β < 3, respectively. The

first case is generally referred to as a nonlocal dispersion regime, meaning that

dispersion is dominated by the largest flow structures, and ⟨R2(t)⟩ ∼ exp(2λLt),

where λL is the maximum Lagrangian Lyapunov exponent, representing the

mean exponential rate of divergence [58], defined as

λL = lim
t→∞

lim
R(0)→0

1
t

ln
(
R(t)
R(0)

)
. (2.54)

In the second case, dispersion is said to be in a local regime, meaning that it

is controlled by flow features of size comparable with the distance between

a pair of particles, and ⟨R2(t)⟩ ∼ t4/(3−β) [17, 52]. At larger times, when the

separation is larger than the largest eddy size, a diffusive scaling is expected

due to uncorrelated particle velocities. In this diffusive regime, ⟨R2(t)⟩ ∼ 2Krelt,
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where Krel = 2Kabs is the asymptotic value of the relative diffusivity [17].

The relative diffusivity can be derived directly from the relative dispersion:

Krel =
1
2
d⟨R2(t)⟩
dt

. (2.55)

In the case of nonlocal dispersion, Krel ∼ ⟨R2(t)⟩, while for local dispersion

Krel ∼ ⟨R2(t)⟩(β+1)/4. In the diffusive regime, relative diffusivity converges to a

constant value, Krel = 2Kabs.

Another two-particle indicator that can be used to identify dispersion regimes is

the kurtosis of the relative distance between particles in a pair [17, 52]:

ku(t) =
⟨R4(t)⟩
⟨R2(t)⟩2

. (2.56)

When dispersion is nonlocal, rapid (exponential) growth of ku(t) is expected.

For local dispersion, the kurtosis should be constant. At larger times, in the

diffusive regime, the kurtosis reaches a constant value equal to 2.

Considering the SQG direct cascade, which is particularly relevant to our study,

where β = 5/3, we retrieve Richardson scaling in the inertial range for the three

indicators above:

⟨R2(t)⟩ ∼ t3 ,

Krel ∼ R4/3 ,

ku(t) = 5.6 .

Note that in Kolmogorov turbulence and the QG and 2D turbulence inverse

cascades, β = 5/3.

These indicators, known as fixed-time indicators, are commonly used in

oceanography to study drifter behavior due to their ease of calculation. However,

they depend highly on the initial separation distance R(0) and the transition

between different regimes. Additionally, capturing the expected local regime

scaling requires a large inertial range spanning several decades [59]. Moreover,

since these statistics are calculated at fixed times, the results can be difficult to

interpret, as different pairs may have significantly different separations at the
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same moment, leading them to follow different dynamical regimes [52, 60].

To address these limitations, fixed-scale indicators were developed, notably

the finite-size Lyapunov exponent (FSLE) [59, 60]. The FSLE is a scale-by-scale

dispersion rate and is defined as

λ(δ) =
ln r
⟨τ(δ)⟩

, (2.57)

where the average is over all pairs and τ(δ) is the time needed for the separation

to grow from δ to a scale rδ (with r > 1). Dimensionally, it is possible to relate

the FSLE to the exponent β of the kinetic energy spectrum. For β > 3 (i.e., in

the nonlocal dispersion regime), the FSLE should be constant, λ(δ) = λL [58,

59]. When dispersion is local (β < 3), it should have a power-law dependence

λ ∼ δ(β−3)/2, while in the diffusive regime one expects λ(δ) ∼ δ−2.



Part II

Methodology





Chapter3
Numerical Method

This chapter provides an overview of the numerical methods employed to simu-

late the SQG+1 flows used to advect Lagrangian tracer particles. This chapter is

divided into two primary sections: the Eulerian implementation in Sec. 3.1 and

the Lagrangian implementation in Sec. 3.2.

3.1 Eulerian Implementation

The Eulerian fields are obtained from a code adapted from the original developed

by [42] and previously utilized in [52, 61, 62]. The model evolution equations

(Sec. 2.4) are numerically integrated using a pseudospectral method.

Fourier mode expansions, using complex exponentials as basis functions, deliver

high accuracy and precision in numerical simulations. A major benefit is that, in

Fourier space, differential operations are simplified to algebraic ones, making

them computationally inexpensive. The high precision of the Fourier spectral

method comes from its effective handling of spatial derivatives, where Fourier

coefficients are multiplied by their corresponding wavenumbers, avoiding trun-

cation errors typically found in finite difference schemes.

Despite this advantage, treating convolutions in Fourier space remains compu-

tationally intensive, with a O(N 2) complexity. While this complexity can be

reduced to O(N 2/2) due to the reality condition on u(x), it remains computa-

tionally demanding. The reality condition states that since u(x) is real, then

43
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û(−k) = û ∗(k), where (u)k is the Fourier coefficient associated with wavenumber

k and the asterisk denotes the complex conjugate. The pseudospectral approach

is used to address this challenge, where linear terms are treated in Fourier space

and nonlinear terms are computed in physical space. This method transforms

the nonlinear terms to physical space for multiplication and then back to Fourier

space, thereby reducing the computational cost to O(N log2N ). This method’s

most computationally expensive part is applying Fast Fourier Transforms (FFTs)

to switch between Fourier space and physical space. When using the Fourier

transform, aliasing can cause high-frequency modes to be misrepresented on

a discrete grid. Only the nonlinear terms are affected, and we address this

through dealiasing. We truncate Fourier modes that lie outside a circle of radius

(2
√

2/3)×(N/2) [63]. The inverse FFT is performed onN/2 points, and the modes

where the Fourier coefficients correspond to k2 ≥ (8/9)× (N/2)2 are zero-padded,

with k the wavenumber modulus.

The equations are integrated on a doubly periodic square domain of side L0 =

2π at resolutionN 2 = 10242, starting from an initial condition corresponding to a

streamfunction whose Fourier modes have random phases and small amplitudes.

We consider the forced and dissipated version of Eq. (2.38):

∂θ(s)

∂t
+u(s) ·∇θ(s) = F +D , (3.1)

where F is a random (δ-correlated in time) forcing acting over a narrow range

of wavenumbers 4 ≤ kf ≤ 6 (and whose intensity is F = 0.02), and D is the

dissipation term. D is composed of a hypofriction term −α∇−2
H θ to remove

energy from the largest scales, and a hyperdiffusion term −ν∇4
Hθ to assure

small-scale dissipation and numerical stability. The addition of forcing and

dissipation allows reaching a statistically stationary flow state. This is verified

by monitoring the energy and enstrophy in each simulation. For the dissipative

terms, we set α = 0.5 and we determine ν based on the condition kmaxlν ≳ 6, with

lν the dissipative scale and kmax =N/2−1 (before dealiasing). These terms are

estimated dimensionally for Ro = 0. This estimation is based on Kolmogorov-like
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arguments [29, 64] applied to SQG such that

ν ∼ l10/3
ν F2/3 . (3.2)

This is based on the consideration that the generalized enstrophy injection rate

at large scales, its flux through the inertial range, and its dissipation rate are

the same. In this system, since forcing is random and δ-correlated in time, the

injection rate is proportional to F2 through stochastic considerations of Eq. (3.1).

These choices correspond to quite large dissipations and will limit the num-

ber of active scales; however, it turned out that they were necessary to control

the numerical stability of the code at the largest Ro value explored. Indeed,

integrating the SQG+1 system is delicate due to the effective compressibility of

the horizontal flow introduced by the ageostrophic corrections, which creates

strong gradients that are difficult to resolve. These parameters were tested at

resolutions N 2 = 2562,5122,10242. Figure 3.1 shows the energy spectra E(k),

computed from the full velocity for Ro = 0.075, at each resolution. As the reso-

lution is increased, the inertial range expands, and smaller scales are resolved.

The spectral slope remains relatively consistent across different resolutions, indi-

cating that the dissipation terms do not significantly influence the inertial range.

Achieving a resolution of N 2 = 20482 was not possible with the condition

kmaxlν ≤ 6. A larger criterion would be required, hence a larger ν. As a re-

sult, the energy spectrum at 20482 closely resembled that at 10242, with only a

few additional scales resolved but at a significantly higher computational cost.

Considering this and the minimal additional physical information gained, we

chose to conduct our simulations at N 2 = 10242 as previously mentioned.

The surface-temperature evolution equation, Eq. (3.1), is advanced in time

using a third-order Adams-Bashforth scheme. It is an explicit method that

requires the knowledge of values at previous times. Considering ∂tu = f (u,x, t),

the third-order Adams-Bashforth scheme can be formulated as:

un+1 = un +
dt
12

(23fn − 16fn−1 + 5fn−2) (3.3)
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Figure 3.1: Kinetic energy spectra, temporally averaged over several flow realizations in the
statistically steady state for Ro = 0.075 at resolutions N2 = 2562,5122,10242.

where the subscript n denotes the current time.

We verified that the results are essentially unchanged when using a fourth-order

Runge-Kutta algorithm. The latter is computationally less efficient, as it requires

the computation of 4 coefficients for each new value, whereas the third-order

Adams-Bashforth method reuses previously calculated values.

The time step was set to the quite small value dt = 10−4, which was verified to

ensure temporally converged results for different values of the Rossby number.

Since this is the main control parameter, we performed different simulations,

increasing it from Ro = 0 to Ro = 0.075 (with 0.0125 increments), the largest

value we can safely reach.

Figure 3.2 shows the kinetic energy [panel (a)] and enstrophy [panel (b)] as a

function of time, excluding the transient part. We see here that the system has

reached a statistically steady state, allowing for studying its turbulent properties

at different Rossby numbers and introducing Lagrangian tracer particles into

the flows.
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Figure 3.2: Kinetic energy (a) and enstrophy (b) as a function of time for the different Rossby
numbers.

3.2 Lagrangian Implementation

We now consider the dynamics of Lagrangian tracer particles, governed by

Eq. (2.47), in the turbulent flows produced by Eq. (3.1), both at Ro = 0 and at

Ro > 0. Equation (2.47) is numerically integrated using a third-order Adams-

Bashforth scheme, analogous to that described for Eq.(3.3), but applied to par-

ticle positions instead of velocity. Bicubic interpolation is used in space for

the velocity field at particle positions [65], utilizing a 4× 4 grid (grey dots) of

surrounding points to interpolate a value within a smaller 2× 2 grid, as shown

by the red dots in Fig. 3.3.

Considering the grid configuration in Fig. 3.3, the interpolation can be performed

using the following equation:

p(x,y) =
3∑
i=0

3∑
j=0

aijx
iyj , (3.4)

where aij are the interpolation coefficients and x,y = −1,0,1,2 are the grid point

coordinates. The function p(x,y) is also known as the interpolated surface.

Except where explicitly stated, we assume that the particle motion occurs

in an infinite domain and use the spatial periodicity of the Eulerian flow to

compute the Lagrangian velocities outside the computational box.

The temporal accuracy of the resulting trajectories was verified by varying
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Figure 3.3: Illustration of a grid for bicubic interpolation. Blue dots are the 4× 4 grid used to
interpolate a value within the smaller 2× 2 grid in red dots.

the time step and using the Lagrangian acceleration criterion proposed in [66],

where its advantages and limitations are detailed. This criterion, L(xi , t) (noted

F(a, t) in [66], but changed here to avoid conflict of notation), is based on the

differential equation governing the temporal evolution of the square of the norm

of the absolute displacement vector. It establishes the relationship between the

displacement, the velocity, and the acceleration of a Lagrangian tracer particle

along its trajectory. L(xi , t) is defined as

L(xi , t) = t
d
dt
A2(xi , t)−A2(xi , t)− t2 |u(xi , t)|2 +

∣∣∣∣∣∣
∫ t

0
τΓ (xi , t)dτ

∣∣∣∣∣∣2 . (3.5)

The bias on the trajectory associated with the Lagrangian numerical scheme,

in our case, the third-order Adams-Bashforth, can be considered negligible if

L(xi , t) ≈ 0. Figure 3.4a shows this criterion, averaged over all particles, for

different values of Ro. Generally, L(xi , t) remains small over time across the

range of Ro values. Another method to quantify this bias is by defining a relative

error εr as follows:

εr =
|L(xi , t)|

1
4

(∣∣∣t ddtA2(xi , t)
∣∣∣+A2(xi , t) + t2 |u(xi , t)|2 +

∣∣∣∣∫ t0 τΓ (xi , t)dτ
∣∣∣∣2) . (3.6)
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The relative error εr , shown in Fig. 3.4b, is of O(10−6), or approximately 0.0001%,
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Figure 3.4: (a) Lagrangian acceleration criterion and (b) its relative error εr , both averaged over
all particles, for different Rossby numbers. In panel (a), for Ro ≤ 0.0375, ⟨L⟩ is sufficiently small
and overshadowed by the larger Rossby numbers.

which is considered very low. This, along with the small value of L(xi , t), indicates

that the bias on the trajectories is negligible.

A total of Np = 49152 particles are seeded in the turbulent flows once the

latter are at a statistically steady state (Fig. 3.2). Their initial positions cor-

respond to a regular arrangement of M = 128 × 128 triplets over the entire

domain. This arrangement mimics the deployment of drifters in the ocean. Each

triplet forms an isosceles right triangle with a particle pair along x and one

along y, characterized by an initial pair-separation R(0) = ∆x/2 (with ∆x the grid

spacing).

To compute dispersion statistics, only original pairs were used, which, in our

case, amounts to 32768 pairs. These original pairs are formed by the particle

pairs initially separated by a distance R(0). The pair separation statistics were

verified to not depend on the pairs’ initial orientation (along x or y direction).

This initial particle configuration also allowed us to confirm that the flow is

isotropic by calculating the relative dispersion along the x and y directions,

denoted ⟨R2
x⟩ = ⟨(xi − xj)2⟩ and ⟨R2

y⟩ = ⟨(yi − yj)2⟩, respectively, as presented in

Fig. 3.5.

Moreover, provided that enough pairs are chosen, the results are mostly

insensitive to their number. Figure 3.6 shows relative dispersion versus time

for different numbers of pairs at Ro = 0.075. It is evident that 32768 pairs are



50 CHAPTER 3. Numerical Method

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
-1

10
0

10
1

〈R
2
x〉

〈R
2
y〉

〈R
2
〉

t

Figure 3.5: Relative dispersion, in the x and y direction, as a function of time for Ro = 0.075.

sufficient for the convergence of relative dispersion. Similarly, other time- and

scale-dependent indicators used in this study have also demonstrated conver-

gence in terms of the number of pairs. While Fig. 3.6 suggests that around 15000

particles (10000 pairs) would have been satisfactory for dispersion statistics,

we opted for a higher number of particles (49152) to visualize particle distri-

butions better and assess clustering. This choice accounts for the sensitivity of

the clustering indicators introduced in the upcoming chapters while balancing

computational time.
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Chapter4
Particle dispersion and clustering in

surface ocean turbulence with

ageostrophic dynamics

This chapter explores the influence of ageostrophic motions on particle dis-

persion and clustering at the ocean surface, providing insights into Lagrangian

transport properties. The research presented here is based on the article “Particle

dispersion and clustering in surface ocean turbulence with ageostrophic dynam-

ics” published in Physics of Fluids and coauthored with Guillaume Lapeyre,

Bastien Cozian, Gilmar Mompean, and Stefano Berti [67].

Ageostrophic motions significantly influence submesoscale dynamics and

are essential for understanding various associated phenomena. However, decou-

pling these motions from geostrophic ones is challenging, making it difficult

to assess their specific impact on the flow and Lagrangian transport. Using

numerical simulations of the SQG+1 system (see Sec. 2.4), our objective is to

study the processes governing particle behavior in surface ocean turbulence that

include ageostrophic effects.

Our research focuses on how these dynamics impact pair-dispersion and clus-

tering properties of Lagrangian tracer particles at the ocean surface. We per-

formed different simulations by increasing the Rossby number from Ro = 0 to

Ro = 0.075, the largest value we can safely reach (see Chap. 3 for more details).

55
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The findings indicate that while large-scale eddies primarily drive the long-term

pair-separation process, ageostrophic components significantly contribute to the

formation of temporary particle aggregates. These results align with observa-

tional data [18–21] and underscore the importance of considering ageostrophic

motions in models of ocean transport.

The implications of this work are broad, extending to the interpretation of up-

coming high-resolution satellite data, such as that from the SWOT mission,

which will provide unprecedented insights into the fine-scale structure of the

ocean surface. By improving our understanding of particle transport dynamics,

our results contribute to the broader goal of improving predictive models for

marine and climate-related processes.

This chapter is organized as follows. In Sec. 4.1, we discuss the main features

of SQG+1 turbulent dynamics. The results of the analysis of Lagrangian particle

statistics are reported in Sec. 4.2, where we separately characterize the role of

ageostrophic motions on relative dispersion (Sec. 4.2.1) and clustering properties,

as well as their relation with the flow structure (Sec. 4.2.2). Finally, discussions

and conclusions are presented in Sec. 4.3.

4.1 Turbulent flow properties

In the following sections, we present the main characteristics of the turbulent

flows for both Ro = 0 (SQG) and Ro > 0 (SQG+1), which will be of interest for the

dynamics of Lagrangian tracer particles.

4.1.1 Kinetic energy

When the Rossby number increases, starting from Ro = 0, the flow develops

stronger and stronger gradients, and the total kinetic energy grows monoton-

ically with Ro (Fig. 4.1). Its spatial structure is characterized by eddies of

different sizes and, especially, by sharp fronts (see also Sec. 4.2). Note that in

our simulations, 4 ≤ kf ≤ 6 (see Sec. 3.1). Within this range, the kinetic energy is

predominantly influenced by the forcing. To mitigate any biases introduced by
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the forcing, we perform the integration of E(k) between kf = 6 and kmax, thereby

calculating the total energy as E =
∫ kmax
kf

E(k)dk.
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Figure 4.1: Kinetic energy, E, as a function of Ro. Here, the kinetic energy spectra, E(k), are
temporally averaged over several flow realizations in the statistically steady state.

Kinetic energy spectra E(k) computed from the total velocity u, for the small-

est (Ro = 0) and the largest (Ro = 0.075) Rossby number are shown in Fig. 4.2.

They display a scaling close to k−2 (see inset of Fig. 4.2) over about a decade. They

are flatter than in QG barotropic dynamics, where E(k) ∼ k−3. However, they

are slightly steeper than the theoretical prediction k−5/3 for the direct cascade

of buoyancy variance in the SQG system. This steepening effect is essentially

independent of Ro and is more important at low wavenumbers, suggesting that

its origin likely lies in the presence of large-scale persistent structures of size

≈ 2π/kf , as also noted in previous studies of SQG and SQG+1 turbulence [25, 47,

61, 68].

At high wavenumber, the scaling range is limited by the large values of the

dissipation coefficients, which are needed to control the formation of very intense

gradients. At low wavenumbers, we do not observe the k−1 scaling corresponding

to an inverse cascade in SQG, as the forcing acts on large scales and hypofriction

is strong enough to dampen the energy below kf .
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Figure 4.2: Kinetic energy spectra, temporally averaged over several flow realizations in the
statistically steady state for Ro = 0 and Ro = 0.075. The dashed black line in the main panel
corresponds to the expectation for SQG dynamics. Inset: the same spectra compensated by k−2

and rescaled with a coefficient such that, in both cases, the scaling range corresponds to the
wavenumbers for which E(k)k2 ≃ 1.

4.1.2 Vorticity statistics

As mentioned in Sec. 2.4, an important feature of oceanic (and atmospheric)

flows, which is not captured by QG theory, is the asymmetry of vorticity statistics.

This was detected in data from both observations [22, 24] and primitive-equation

simulations [23, 69]. The latter numerical works also highlighted the role of

surface dynamics on the prevalence of cyclonic over anticyclonic flow regions.

Different mechanisms can explain this asymmetry. A first one is related to

nonlinear Ekman pumping. As the stress at the air-sea interface is proportional

to the difference of winds and currents, it creates a surface drag causing the

decay of ocean anticyclones [70, 71]. Another mechanism relies on the vortex-

stretching term in the vorticity equation ∂tζ ∼ (f + ζ)∂zw+ ... for finite Rossby

numbers. Here w is the vertical velocity, f the Coriolis frequency, and relative

vorticity is defined as ζ = ∂xv − ∂yu [where u = (u,v) is the horizontal flow].

As discussed in previous works [3, 11, 47], at fronts, through the ageostrophic

term ζ∂zw, vortex stretching amplifies more cyclonic vorticity (on the heavy
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side of the front) than anticyclonic vorticity (on the light side of the front).

Note that within a purely QG framework vortex stretching would instead give a

contribution to the vorticity growth rate (∂tζ ∼ f ∂zw) that is independent of the

sign of ζ.

Clear asymmetry in favor of stronger cyclones is observed in QG+1 and SQG+1

models in which next-order corrections in Ro to QG equations are included [45,

47]. It was argued that the symmetry is broken because the divergence due to

ageostrophic frontogenesis at small scales accelerates (slows down) the contrac-

tion of dense (light) filaments [47, 72], which gives rise to intense and localized

cyclones, and weaker more broadly spread anticyclones. Moreover, it was shown

that, from the mathematical viewpoint, the asymmetry arises from the quadratic

dependency of the vector potential A [defined by Eq. (2.46)], from which the

divergent velocity is obtained, on the geostrophic streamfunction [46]. In our

forced simulations of SQG+1 turbulence, cyclones prevail over anticyclones

whenever Ro > 0, and vorticity statistics are similar to those in decaying SQG+1

turbulence at fixed Rossby number [47]. The probability density function (pdf)

of ζ, rescaled by its standard deviation sζ and averaged over time, is shown in

Fig. 4.3 for Ro = 0 and Ro = 0.075. As it can be seen in the figure, the right tail of

the pdf (ζ > 0) is much higher than the left one (ζ < 0) when Ro = 0.075, while

the two tails essentially overlap over a whole range of |ζ| values for Ro = 0. The

skewness of the vorticity distribution Sζ = ⟨ζ3⟩/⟨ζ2⟩3/2 grows, approximately

quadratically, with Ro (see inset of Fig. 4.3), indicating that the magnitude of

the asymmetry increases with the intensity of the ageostrophic flow.

Based on the results in this section, the SQG+1 simulations considered here ap-

pear appealing to explore the transport and dispersion properties of Lagrangian

tracers in turbulent flows, relevant for surface-ocean dynamics and possessing

(weakly) ageostrophic components.

4.2 Lagrangian dynamics

We now consider the dynamics of Lagrangian tracer particles in the turbulent

flows produced by the SQG+1 model, both at Ro = 0 and at Ro > 0.

An illustration of typical particle spatial distributions, at a given instant of
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Figure 4.3: Probability density function of vorticity ζ (rescaled by its rms value sζ), temporally
averaged over several flow realizations in the statistically steady state, for Ro = 0 (empty black
points) and Ro = 0.075 (filled red points), with different point types indicating ζ > 0 and ζ < 0.
For reference, the standard Gaussian distribution is also shown (dashed gray curve). Inset:
vorticity skewness Sζ as a function of the Rossby number; the solid green line corresponds to
Sζ ∼ Ro1.87.

time in the statistically steady state of the flow, is shown in Fig. 4.4 for both

Ro = 0 and Ro = 0.075, together with the corresponding vorticity fields. Here,

particles are placed back in the original doubly periodic domain to see the effect

of accumulation in space (while we assume that they leave this domain when

computing dispersion statistics). Independently of the value of Ro, vorticity is

characterized by quite a filamentary structure in addition to almost elliptical

vortices of various sizes. For nonzeroRo cyclonic eddies (ζ > 0) are more coherent

than anticyclonic ones (ζ < 0), and vorticity is globally more intense in root-

mean-square (rms) value (Fig. 4.5). Concerning particles, it is here apparent that

at Ro = 0.075 they do not uniformly spread over the spatial domain (as is the case

for Ro = 0), which highlights the occurrence of clustering. In the following, we

will separately address the characterization of their relative dispersion process

and of their aggregation properties in the flow for varying Rossby number.
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Figure 4.4: Vorticity normalized by its rms value for Ro = 0 (a) and Ro = 0.075 (c) at a fixed
instant of time in statistically stationary conditions. Panels (b) and (d) show a closeup view
of the region in the black rectangle in the main panels (a) and (c), respectively, including the
particle distribution at that time.

4.2.1 Pair-dispersion statistics

In this section, we examine the effect of varying the Rossby number on particle

pair dispersion using both fixed-time and fixed-scale indicators. The latter typi-

cally allows better for disentangling contributions from different flow scales [27,
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Figure 4.5: Root-mean-square of vorticity (ζrms) as a function of the Rossby number, averaged
over several flow realizations in statistically steady conditions. The error is computed as the
difference between the average over the full dataset and over half the dataset.

52, 59, 60]. We then mainly focus on the scale-by-scale dispersion rate by

computing the FSLE [Eq. (2.57)].

As detailed in Sec. 2.5.2, in a nonlocal dispersion regime, which is normally

associated with a steep kinetic energy spectrum of the flow [E(k) ∼ k−β, with

β > 3], the FSLE is expected to attain a scale-independent, constant value. This

is reflected by an exponential growth of the relative dispersion [Eq. (2.52)]. In

a local dispersion regime, associated with turbulent flow possessing energetic

small scales [E(k) ∼ k−β, with β < 3], both the FSLE and relative dispersion are

expected to display power-law behaviors: λ(δ) ∼ δ(β−3)/2 and ⟨R2(t)⟩ ∼ t4/(3−β),

respectively. At separations larger than the largest flow scales, or at very large

times, the FSLE scales as λ(δ) ∼ δ−2 and relative dispersion as ⟨R2(t)⟩ ∼ t. An-

other indicator that may be used to discriminate between different dispersion

regimes is the kurtosis of the separation distance [Eq. (2.56)]. Under nonlocal

dispersion, ku(t) should grow exponentially in time, while for local dispersion, it

should attain a constant value (equal to 5.6 for Richardson dispersion, expected

for β = 5/3) at intermediate times [52, 73]. At very large times, the kurtosis

should in any case converge to ku = 2 corresponding to the diffusive limit of
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dispersion [52, 73].

The FSLE measured in our simulations for different values of the Rossby

number is shown in Fig. 4.6. Independently of Ro, the curves are remarkably

flat at small separations and approach the diffusive behavior at the largest ones

[larger than the flow integral length scale ℓI = 2π
∫∞

0
k−1E(k)dk/

∫∞
0
E(k)dk]. The

slight deviations from the expected δ−2 scaling are here likely due to the limited

inertial range of our turbulent flows. Indeed, previous studies reported similar

observations in simulations with reduced inertial ranges and proposed using

an alternative, pdf-based indicator [74] to improve the agreement with the

large-scale theoretical prediction.

No clear evidence of a power-law scaling λ(δ) ∼ δ−1/2 [following from a

kinetic energy spectrum E(k) ∼ k−2] is detected, except perhaps on a narrow

range of intermediate separations (see inset of Fig. 4.6). This result suggests

that the dispersion process is essentially nonlocal. This is also confirmed by

the temporal evolution of the kurtosis (Fig. 4.7), which displays fast growth

at short times and approaches 2 at large times. At intermediate times, ku(t)

never approaches a constant plateau, corresponding to a local dispersion regime.

This behavior, pointing to nonlocal dispersion while local dispersion would be

expected, may appear quite surprising. Interestingly, it bears some resemblance

to measurements of drifter separation in the Gulf of Mexico [75, 76] once inertial

oscillations are removed. One possibility to explain it is related to the presence

of large-scale coherent structures in the flow, which can provide a dominant

contribution to the dispersion process [68]. To test this hypothesis, we rescale the

FSLE with the flow integral timescale TI = ℓI /
√
E, with E the total kinetic energy.

As it can be seen in Fig. 4.6, for all Ro, the plateau values of the rescaled FSLE

range between 1.1 and 0.8, which are close to 1, supporting this explanation.

The values of FSLE (not rescaled by TI ) at small δ slightly increase with

the Rossby number (inset of Fig. 4.6), consistently with the increase of velocity

gradients with Ro. A similar trend is observed from the short-time behavior

of relative dispersion, which grows faster for larger Ro (inset of Fig. 4.7). At

later times, ⟨R2(t)⟩ does not present a clear scaling, though on a limited time

interval; it may not be far from the t4 theoretical expectation. More interestingly,

its growth slows down when the Rossby number is increased, which hints at
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temporary phases during which some particles aggregate, and thus, the efficiency

of the global separation process is reduced.

We conclude that the Ro-dependence of the different measures of pair sepa-

ration is overall weak, indicating that ageostrophic motions do not substantially

alter pair-dispersion statistics. This suggests that, in this system, when the

Rossby number is increased, large eddies conserve their capacity to drive the

dispersion process.

4.2.2 Particle clustering and relation with the Eulerian flow

structure

While on average, over long times, Lagrangian tracers separate, their spatial

distribution is not homogeneous and clusters can form in the course of time. To

investigate this point, the first quantity we consider is the averaged divergence

experienced by particles along their trajectories, also known as the dilation

rate [19], a numerically efficient single-particle indicator of tracer accumulation.
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Figure 4.8: Velocity divergence sampled by particles, averaged over time and over all particles,
as a function of the Rossby number. Here the error bars correspond to the standard deviation of
the temporal statistics. The black dashed line is proportional to −Roα , with α ≃ 2.07 from a best
fit.
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The divergence of the velocity field ⟨∇·u⟩xi ,t, computed at particle positions xi
and averaged over time and all particles, is shown as a function of Ro in Fig. 4.8.

It is negative for nonzero Rossby numbers and grows roughly quadratically in

Ro in absolute value, indicating that particles aggregate more when ageostrophic

motions are more intense. Due to the compressibility they experience, particles

are attracted to contracting flow regions and, hence, do not homogeneously

sample the phase space. This fact has been shown to give rise to differences

between Lagrangian and Eulerian statistics in other situations, such as that of

time-correlated compressible flows [77, 78]. A qualitative understanding of

what occurs in our experiments can be obtained by looking at the pdf of the

Eulerian divergence, P (∇ · u) (Fig. 4.9). When Ro is increased, the tails of this

pdf rise, highlighting the more likely occurrence of very intense divergence

events. Its shape is remarkably symmetric, though, meaning that positive and

negative values of ∇ ·u are equally probable. The negative sign of the averaged

Lagrangian divergence ⟨∇ ·u⟩xi ,t then results from particles getting trapped in

convergence regions and spending a significant fraction of the time there. This

phenomenon increases in intensity with the increase in Rossby number. The
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Figure 4.9: Probability density function of the Eulerian flow divergence ∇·u, temporally averaged
over several flow realizations in the statistically steady state, for different values of Ro.

occurrence of clustering in our system is clearly demonstrated by the pdf of
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Voronoï normalized cell areas. This statistical tool is often used to characterize

the aggregation of inertial particles in (incompressible) turbulent flows [79, 80].

The cells are constructed by partitioning the spatial domain into regions contain-

ing one particle and all the points closer to that particle than any other [79–81].

The nonhomogeneity of the particle distribution produces deviations of the pdf

P
(
A/⟨A⟩xi

)
(the average being taken over all areas, containing each one parti-

cle) from the corresponding one computed for uniformly random distributed

particles. As it can be seen in Fig. 4.10, for Ro = 0, P
(
A/⟨A⟩xi

)
agrees with the

probability distribution expected for uniformly spread particles in a 2D do-

main [82], f2D
(
A/⟨A⟩xi

)
= 343/15

√
7/(2π)

(
A/⟨A⟩xi

)5/2
exp

(
−7/2A/⟨A⟩xi

)
(solid

gray line in the figure). However, when the Rossby number increases, its left tail

gets monotonically higher, indicating that the probability of finding particles at

small distances and, hence, observing clustering is larger. We can contrast the

case of Ro = 0.075 with one where we advect particles by its geostrophic compo-

nent only. As expected from particle transport in geostrophic turbulence [83],

the pdf corresponding to uniformly distributed particles is recovered [case of

(Ro = 0.075)g in Fig. 4.10], which further proves that this phenomenon is entirely

due to the ageostrophic flow component.

Aiming to understand where particles accumulate, we first look at the fine-

scale properties of clustering. The latter originates from the contraction of

volumes in the phase space (here coinciding with the physical space) of the

dissipative (∇ · u < 0) dynamical system of Eq. (2.38). Consequently, after a

transient, the Lagrangian dynamics take place on a fractal set. A common

quantitative indicator of clustering is the correlation dimension [84], D2, of the

dynamical attractor. A decrease to values D2 < d, with d the dimension of the

physical space (d = 2 in the present case), indicates an increased occurrence of

small distances separating particle pairs. This fractal dimension is defined as:

D2 = lim
rp→0

log[C(rp)]

log(rp)
, (4.1)
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Figure 4.10: Probability density function of Voronoï cell areas, normalized by the averaged cell
area, P (A/⟨A⟩xi ), at an instant of time in the statistically steady flow state, for different values
of the Rossby number. The curve labeled by (Ro = 0.075)g has been obtained from particles
advected by the geostrophic flow only. The solid gray line is the theoretical prediction for
uniformly distributed particles f2D

(
A/⟨A⟩xi

)
(see text).

with the correlation sum C(rp) given by

C(rp) = lim
Np→∞

2
Np(Np − 1)

Np∑
i,j>i

Θ(rp −
∣∣∣xi − xj ∣∣∣),

where Θ is the Heaviside step function, xi and xj are the positions of particles

belonging to pair (i, j), and the distance
∣∣∣xi − xj ∣∣∣ is the shortest one, after taking

into account the 2π-periodicity of the computational box. Equation (4.1) then

means that, for small rp, the probability to find particle pairs separated by a

distance less than rp scales as C(rp) ∼ rD2
p .

Figure 4.11 shows the measurement of the correlation dimension as a func-

tion of the Rossby number. For Ro = 0, as expected, D2 = 2 within statistical

accuracy, which confirms the spatially homogeneous distribution of particles

in the SQG system. Here, the small deviation from the theoretical value 2 may

be attributed to the finite number of particles. At nonzero values of Ro, D2
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decreases monotonically, highlighting that clustering now takes place and that

its intensity grows with the Rossby number. Again, this is a direct consequence

of the transport of Lagrangian tracers by the ageostrophic flow. Indeed, when

advection is realized by the geostrophic velocity only in the SQG+1 model, the

nonhomogeneity of the particle distribution disappears and D2 ≃ 2, as shown

by the blue empty point in the figure for the highest value of Ro explored (but

the same holds for all Ro). Overall, these results suggest that particles aggregate

on flow structures with a dimensionality smaller than that of the physical space

and progressively more unidimensional with increasing Ro.
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Figure 4.11: Correlation dimension D2 as a function of Ro, obtained from data in several
statistically steady flow realizations. Uncertainties are estimated from the standard deviations
of best fits over the range of small distances rp where C(rp) ∼ rD2

p . The empty blue point is for
particles advected by the geostrophic flow component only at Ro = 0.075. The black dashed
line corresponds to the second-order Taylor expansion D2 ≃ 2 + aRo+ bRo2, with a ≃ −2.9 and
b ≃ −50.2 from a fit.

We now discuss in what regions of the flow particles tend to cluster. This

question is of primary importance in oceanography, e.g. to identify areas of

pollutant accumulation in surface flows, or locations of intense vertical velocities

relevant for nutrient upwelling and plankton dynamics.

While inspection of Fig. 4.4d already suggests some tendency of particles

to avoid negative-vorticity (anticyclonic) regions and to concentrate along fila-
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mentary structures, a more quantitative approach is needed. A classical tool to

identify different (2D) flow regions, and to characterize their role in transport

phenomena, is the Okubo-Weiss parameter [85, 86],

Q = σ2 − ζ2, (4.2)

where σ =
√
σ2
n + σ2

s is the total strain (σn = ∂xu −∂yv and σs = ∂xv +∂yu being

the normal and shear strain, respectively) and ζ is vorticity. The parameter

Q allows to discriminate between strain-dominated (Q > 0, i.e., σ > |ζ|) and

rotation-dominated (Q < 0, i.e., σ < |ζ|) regions, and reveals useful, for instance,

to explain the dynamics of tracer-field gradients [87, 88]. Note that a more

refined criterion was obtained in incompressible flows to account for the rotation

of the strain eigenvectors that can affect the straining properties [89]. These

strain and rotation-dominated regions can be related to dispersion properties

through the linearization d(xi − xj)/dt = ui − uj ≃ (∇u)(xi − xj). It is then clear

that velocity gradients will also determine the particle’s small-scale dispersion

or aggregation properties. A similar interpretation can be derived by computing

the eigenvalues of the velocity-gradient tensor, which, for a 2D flow, can be

written as:

µ± =
1
2

(
∆±

√
Q
)
, (4.3)

where ∆ = ∇ · u. From Eq. (4.3), one sees that, independently of the sign of

Q, divergent flow (∆ , 0) determines the decrease (∆ < 0) or increase (∆ > 0)

of the separation distance between pairs of particles. It is also worth noting,

however, that the most important effects for Lagrangian-tracer convergence are

expected when ∆ < 0 and Q > 0 (i.e. for strain overcoming vorticity), in which

case µ− = −(|∆|+
√
Q)/2.

In order to determine the regions where particles preferentially cluster, we

follow [90] and compute the flow divergence conditionally averaged over all grid

points of the domain with given values of vorticity and strain, noted ∆
ζσ

. This is

a robust statistical tool originally introduced to investigate the vertical fluxes of

a passive scalar field in submesoscale turbulence [90]. Figure 4.12a shows its

measurement in our SQG+1 simulations for Ro = 0.075 at the same instant of

time chosen for the visualization of Fig. 4.4d (but it was verified that its features
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Figure 4.12: Mean divergence ∆
ζσ

conditionally averaged over vorticity (ζ) and strain (σ ), from
Eulerian (a) and Lagrangian (b) statistics, at a fixed instant of time in the statistically steady state
of the flow, for Ro = 0.075. For the Lagrangian estimate, the subscript xi indicates that ∆, ζ and
σ are computed at particle positions. In both (a) and (b) the dashed lines correspond to σ = |ζ|.

do not change significantly when a time average is also taken, see Fig. C.1). It

is here apparent that strong divergence (∆
ζσ
> 0) and convergence (∆

ζσ
< 0)

predominantly occur in strain-dominated regions (σ > |ζ|), extending along tails

above the lines σ = |ζ|. The asymmetric shape of the tails is a direct consequence

of the dominance of cyclonic vorticity (see Fig. 4.3) due to ageostrophic dynamics.
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Here, the association of convergence with ζ > 0 values is arguably due to the

same vortex-stretching effects that amplify cyclonic vorticity (Sec. 4.1.2). Note,

too, that in rotation-dominated regions (|ζ| > σ ), the divergence ∆
ζσ

is more

likely to take both positive and negative values that tend to cancel out more.

The above features are generic and also appear at smaller values of Ro (Fig C.1),

except that the tails associated with large positive and negative values of ∆
ζσ

become more symmetric, and divergence is smaller in absolute value, when the

Rossby number is decreased.

To complete the picture, we also show in Fig. 4.12b the divergence, in

vorticity-strain space, computed at particle positions, ∆
ζσ
xi . The Rossby number

and the instant of time are the same as in Fig. 4.12a (and, again, we verified that

averaging over time does not considerably modify the results, refer to Fig. C.2).

By comparing Fig. 4.12a and Fig. 4.12b, it is evident that the Lagrangian and

Eulerian estimates of divergence conditionally averaged over the values taken

by vorticity and strain share the same general characteristics (similarly to what

is found for vertical velocity in [91]). The partial attenuation of extreme events

when using Lagrangian statistics is likely due to the smaller sample. Apart from

this, it can be noted that the patterns from the Lagrangian estimate are sharper

and characterized by a reduced frequency of ∆
ζσ
> 0 events, in comparison with

those from the Eulerian estimate. This is due to the tendency of particles to

aggregate in flow-convergence regions and, hence, to predominantly sample

negative values of divergence. Overall, Fig. 4.12b confirms the preference of

Lagrangian tracers to concentrate in regions of positive vorticity and large strain

(σ > |ζ|). This finding quite nicely matches the spatial organization of particles

that is observed from a closeup view of a portion of the full domain at the same

instant of time (Fig. 4.4d). Indeed, regions of negative vorticity (ζ < 0) tend to be

relatively particle-free. On the contrary, particles are abundant in filamentary,

positive vorticity regions (corresponding to ζ > 0 and σ > ζ), while it is less the

case inside cyclonic eddies (corresponding to ζ > 0 and σ < ζ).

The previous analysis indicates that particle clustering takes place in cyclonic

strain-dominated regions. These correspond mostly to filaments and fronts

outside coherent eddies. Indeed, a straight front along the y direction [with

velocity u = u(x) independent of y (see Fig. 4.13)] is characterized by negative
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Figure 4.13: Sketch of an ideal straight front. The red and green vectors represent the velocity
u(x) and v(x) respectively. x̂ is unit vector in the x direction and ŷ is unit vector in the y direction.
The velocity components in an ideal straight front are independent of y.

divergence (∇ ·u = ∂xu < 0) in its cross-front direction (which sustains the front)

and by strain exceeding vorticity. The fact that σ > |ζ| follows from the relation

σ2 = (∇ · u)2 + ζ2 > ζ2 holding for a velocity field that only depends on the

cross-front coordinate x.

Our findings support those from a recent, more complex modeling study,

which, from an Eulerian perspective, reported on strong vertical velocities and

flow convergence in cyclonic submesoscale fronts [90]. Furthermore, they pro-

vide clear evidence of Lagrangian-tracer clustering in cyclonic regions, also

observed from real surface-drifter data [18, 92], and a possible explanation

of the basic mechanisms controlling the phenomenon in the framework of a

minimal model accounting for ageostrophic dynamics.
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4.3 Conclusions

We studied Lagrangian particle dynamics in an idealized model of surface-ocean

turbulence that includes ageostrophic motions by means of numerical simula-

tions. We particularly focused on the effect of ageostrophy on the spreading

process of tracer particles by examining both relative dispersion and clustering

properties.

The turbulent dynamics were assumed to be described by the SQG+1 system,

which accounts for frontogenetic ageostrophic motions and is obtained from a

development of primitive equations to next order in Ro, with respect to standard

QG models. This approach, originally introduced in an atmospheric context [47],

allowed us to reproduce the cyclone-anticyclone asymmetry, a phenomenon

that is observed in both primitive-equation simulations [23] and data from

observations [22, 24] of ocean turbulence at sufficiently fine scales, but is missed

by QG models. The turbulent flows from our simulations for different Rossby

numbers are characterized by energetic small scales, particularly in the form of

filamentary structures associated with intense gradients. Kinetic energy spectra

are not far from the theoretical expectation in the SQG system (recovered by

setting Ro = 0 in the governing equations), although slightly steeper. Their

scaling behavior is close to E(k) ∼ k−2, as also found at submesoscales in more

realistic simulations [93–95]. In the present case, the steepening of the spectrum

is most likely due to the presence of large-scale coherent structures, a feature

that was already observed in both the SQG [25, 68] and the SQG+1 systems [47].

To explore how ageostrophic fluid motions impact the particle separation

process, we compared the measurements from different indicators of pair dis-

persion as a function of Ro. Given that the total kinetic energy increases when

increasing Ro, we used mostly dimensionless diagnostics, allowing a fair compar-

ison between the different simulations. We found that irrespective of the Rossby

number, dispersion is essentially nonlocal, except perhaps on a narrow range of

separations, as highlighted by the extended region of scale-independent FSLE

and by the fast initial growth in a time of the kurtosis of relative displacements.

As the FSLE, where constant, was found to be close to the inverse large-eddy

turnover time of the flow, we could show that this apparently surprising result is
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due to the presence of large persistent flow structures, which dominate the dis-

persion process. Overall, the general picture emerging from different metrics of

relative dispersion is that, in the present simulations, dispersion only weakly de-

pends on the intensity of the ageostrophic flow dynamics (i.e., Ro). Nevertheless,

when increasing Ro, the latter manifest in a small, but measurable, increase of

the separation rate at short times (and small distances), due to velocity gradients

becoming stronger, and in a subsequent slowdown of relative dispersion at later

times, possibly arising from the formation of temporary particle aggregations.

The occurrence of clustering events was demonstrated by computing the

averaged divergence experienced by particles (the dilation rate [19]), and the pdf

of cell areas from a Voronoï tessellation. The decrease of the dilation rate to more

and more negative values, and the rise of the left tail of the Voronoï cell-area

pdf, indicate that particles are progressively more likely to be at small distances

one from the other when Ro is increased. While this phenomenon is a direct

consequence of the compressibility of the ageostrophic flow component, it is not

straightforward to relate Eulerian and Lagrangian measures of clustering, as

already noted in previous studies of Lagrangian tracer dynamics in compressible

turbulence [77, 78]. Here, at a qualitative level, we argued that clustering arises

from the increased probability of very large flow divergence values at larger Ro,

and hence the longer fraction of time spent by particles in negative-divergence

regions.

Determining where convergence, and thus particle clustering, takes place in

surface-ocean flows is of paramount importance, both to predict the accumu-

lation of biogeochemical substances or pollutants and to identify locations of

large vertical velocities. To address this question, we first computed the corre-

lation dimension of the sets over which particles concentrate, which is directly

related to the probability of finding a pair of them within a given distance.

With increasing Ro, this was found to decrease from D2 = 2 (corresponding to

uniformly distributed particles) to smaller values, indicative of clustering and

pointing to less than 2D aggregates (possibly quasi-one-dimensional ones, for

large enough Rossby numbers). To further understand in what flow regions

clusters can be found, we examined the divergence conditionally averaged over

vorticity and strain. This quantity was recently introduced as a generalization
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of the Okubo-Weiss parameter to divergent flows to partition 2D flows into

regions with different stirring properties [90]. We found that divergence has

an asymmetric distribution in vorticity-strain space that reflects the cyclone-

anticyclone asymmetry. More interestingly, it is predominantly negative and

large (in absolute value) where strain overcomes vorticity, and the latter is pos-

itive, which indicates that clusters form in cyclonic frontal regions. Such a

picture agrees with the results in more realistic simulations of submesoscale

dynamics in the Antarctic Circumpolar Current, focused on the vertical fluxes

of tracer fields [90]. It may also be useful to better understand observations of

surface-drifter clustering in cyclonic regions in the Gulf of Mexico [18].

To conclude, the SQG+1 system revealed a useful minimal model to investi-

gate some basic mechanisms related to ageostrophy, controlling the separation

and clustering of Lagrangian tracer particles at the ocean surface. Ageostrophic

effects only weakly affect the nonlocal relative dispersion, while they are re-

sponsible of non-negligible clustering in filamentary cyclonic regions. This is

remarkably similar to the observations from drifters in the Gulf of Mexico, which

also indicated both nonlocal dispersion [75] and small-scale clustering [18]. Note

that, in addition to ageostrophy, in the real ocean, other processes play a role in

the transport of particles in the surface layer, such as Ekman currents induced

by the wind [96], or Stokes drift due to ocean waves. The dispersion of floating

material may also be affected by inertial effects [97] or by the drag exerted by the

wind (the so-called windage). A natural perspective of this study is to extend

the analysis to simulations from general circulation models to explore the effects

of the ocean’s fast variability, which cannot be accounted for by the modeling

framework considered here (see Chapter 6).

Finally, the present results appear to us interesting in consideration of the

satellite data at high spatial resolution acquired by the SWOT spatial mission [98].

The weak dependence of pair-dispersion indicators on the Rossby number sug-

gests that the geostrophically derived surface velocities may be essentially ac-

curate for relative-dispersion applications. On the other hand, to access finer

details of the particle dynamics, such as clustering phenomena, further informa-

tion on the ageostrophic flow components would clearly be required.



Chapter5
Impact of ageostrophic dynamics on

the predictability of Lagrangian

trajectories in surface-ocean

turbulence

In the previous chapter, we investigated the effect of ageostrophic motions on

Lagrangian tracer trajectories by varying Ro. Here, instead, we artificially filter

the ageostrophic dynamics from the SQG+1 flows by removing, a posteriori, the

ageostrophic component (uag) from Eq. (2.39). Throughout this chapter, we dis-

tinguish between the full flow and the filtered (geostrophic only) flow using the

subscripts f and g, respectively. We focus on Lagrangian predictability, compar-

ing trajectories of particles advected by either the full flow or its geostrophic part

only. The research presented here is based on the article “Impact of ageostrophic

dynamics on the predictability of Lagrangian trajectories in surface-ocean tur-

bulence” published in Physical Review Fluids and coauthored with Guillaume

Lapeyre and Stefano Berti [99].

In this chapter, our primary objective is to dispose of an idealized modeling

framework to assess the accuracy of velocity fields similar to those derived from

satellites like SWOT. While SWOT-derived velocity fields are geostrophic by con-

struct, they may be influenced by ageostrophic processes at submesoscales. This

77
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is somewhat analogous to the dynamic coupling between surface temperature

and velocity fields in the SQG+1 system, leading to the fact that filtering SQG+1

flows is not equivalent to considering flows at Ro = 0.

We systematically compare the turbulent dispersion properties of both types of

trajectories using two-particle statistics, primarily through Lagrangian Lyapunov

exponents of various types. The results align with the findings in Chapter 4,

where we analyzed particle advection in simulations at different Rossby numbers

and observed the weak impact of ageostrophic velocity on relative dispersion.

However, they also reveal that advection by geostrophic-only flow tends to over-

estimate the typical pair-separation rate.

Moreover, we show that filtering the ageostrophic flow causes a bias on trajec-

tories, whose importance increases with Ro, and we quantify the scale-by-scale

dispersion rate between the full and geostrophic-only advection models. We

further provide a characterization of the temporary particle clusters that form

due to ageostrophic motions. In particular, we find that, while compressibility

is always small in our simulations, due to the smallness of the Rossby numbers

explored, the intensity of clustering can be substantial. Our analysis indicates

that, in the SQG+1 system, clustering is essentially due to the interplay between

the (small) flow compressibility and the existence of long-lived structures that

trap particles, increasing their accumulation.

This chapter is structured as follows. In Sec. 5.1, we characterize the main

turbulent features of the full flow and its filtered geostrophic counterpart. Next,

we assess Lagrangian statistics for tracers advected by either the complete ve-

locity field or its geostrophic component. In Sec. 5.2, we discuss the impact

of filtering on the relative-dispersion process, and in Sec. 5.3, we examine the

small-scale particle dynamics using Lyapunov exponents, with a particular focus

on clustering in the full flow. Finally, discussions and conclusions are presented

in Sec. 5.4.
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5.1 Eulerian properties of the turbulent flow and its

geostrophic component

In this section, we present the main characteristics of the turbulent flows for

SQG+1 and (SQG+1)g . This is a first attempt at distinguishing between the full

flow and its geostrophic component.

For nonzero Rossby number, the SQG+1 flow is characterized by well-defined,

mainly cyclonic, eddies of different sizes and sharp gradients along filament-

like structures. This is illustrated in Fig. 5.2a, which shows the (full) vorticity

field ζf = ∂xv −∂yu, normalized by its root-mean-square (rms) value ζrms
f , for

Ro = 0.0625 at an instant of time t∗ in the statistically steady state reached by

the system after a transient. The rms vorticity is found to be close to ζrms
f ≈ 10,

and to slightly grow with Ro but overall to weakly depend on it. It provides an a
posteriori measure of the Rossby number as Roζrms

f ≲ 1 (see Fig. 5.1), suggesting

that the small scales of our flows can be interpreted as submesoscales. The
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Figure 5.1: Rossby number estimated by Roζrms as a function of Ro for the full SQG+1 simula-
tions.

presence of strong gradients in the horizontal flow (as visualized by ζf ) is a

generic feature due to the ageostrophic velocity components [67]. This can be
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deduced from Fig. 5.2b where we show the difference field ∆ζ = ζf − ζg (i.e.

the ageostrophic vorticity), again normalized by ζrms
f . Positive values of ∆ζ

can be seen at the periphery of cyclonic eddies and along extended filaments.

This implies that the full cyclonic vorticity, ζf , is stronger than its geostrophic

component, ζg .

Filtering also has consequences on Lagrangian dynamics (see Fig. 5.2c and

Fig. 5.2d). For instance, when initially uniformly distributed tracer particles are

advected by either the full or the geostrophic-only flow, important qualitative

differences emerge, such as the occurrence of clustering when ageostrophic fluid

motions are included (Fig. 5.2c). For the geostrophic flow, instead, no sign of

clustering is observed (Fig. 5.2d), as expected due to the nondivergent character

of this flow. We will discuss particle dispersion properties and clustering in

Sec. 5.2 and Sec. 5.3.

We now examine the statistical features of the Eulerian flows from a more

quantitative point of view. Figure 5.3 shows the kinetic energy spectrum E(k),

with k the horizontal wavenumber modulus, for three cases: the purely SQG

(Ro = 0) flow, the full SQG+1 flow at Ro = 0.0625 and its geostrophic component

[i.e. filtering uag in Eq. (2.39)]. In all cases, we find that spectra follow power laws

E(k) ∼ k−β over about a decade. In an oceanographic context, this means that our

simulations resolve both the mesoscale range [O(100) km], here corresponding

to spatial scales ℓ ≈ 1/kf , and the submesoscale range down to length scales

of O(10) km, here corresponding to ℓ ≈ 1/(10kf ). For both the Ro = 0 and full

Ro = 0.0625 cases, the exponent β is larger than 5/3, the value expected for

SQG turbulence forced at large scales [25]. This fact is found to be general

and independent of the Rossby number, with spectral exponents in the range

2.2 ≲ β ≲ 2.7 (see Fig. C.3). Its causes are the presence of large persistent

structures (of size comparable with the forcing lengthscale), which are known

to steepen the spectrum [47, 67, 68], but also the important values of the small-

scale dissipation coefficients used [52]. The spectrum of the filtered flow at

Ro = 0.0625 is found to be lower than that of the corresponding full flow (at all

scales), and the same is true for all the Rossby numbers considered (see Fig. C.3).

It is worth remarking, however, the clearly higher similarity with the spectrum

of the full flow (at the same Rossby number) than with that of the Ro = 0 flow.
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Figure 5.2: (a) Vorticity field ζf for the SQG+1 system for Ro = 0.0625 at a specific time t∗ during
the statistically stationary state. (b) Difference field ∆ζ = ζf − ζg , where ζg is the geostrophic
component of vorticity. Panels (c) and (d) show the distribution of particles at time t∗ in the
region corresponding to the black rectangle in (a), for advection realized by either the full flow
(c), or its geostrophic component (d). In (c) and (d), the full and geostrophic vorticity fields are
shown in color, respectively. In all panels, vorticity is normalized by the rms value of ζf .

This provides a first evidence of the fact that, even after filtering, traces of the

influence of the ageostrophic velocities are still discernible in the geostrophic

flow component. In other words, the properties of a genuine, dynamically

constrained geostrophic flow are not fully recovered once ageostrophic motions

are (a posteriori) removed from the complete flow.

The relative difference between the kinetic energy of the filtered and full

flow |Eg − Ef |/Ef grows with increasing Ro and can reach about 40% at the

highest Rossby number (inset of Fig. 5.3). Note that these values do not ap-

preciably change when the contributions from the smallest wavenumbers are

excluded from the computation of Ef and Eg . This difference is clearly due to

the ageostrophic kinetic energy Eag = Ro2⟨|uag |2/2⟩x (with ⟨...⟩x a spatial average),
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Figure 5.3: Kinetic energy spectra, temporally averaged over several flow realizations in the
statistically steady state for Ro = 0, Ro = 0.0625 and (Ro = 0.0625)g (i.e., for the geostrophic
component of the simulation at Ro = 0.0625). The dashed black line corresponds to k−5/3, the
expected spectrum for SQG turbulence. Inset: absolute value of the relative difference of kinetic
energy between the full and filtered flow as a function of Ro.

but also to the positive correlation between the geostrophic and ageostrophic

components of the flow. Indeed, the total velocity is uf = ug +Rouag , so that

Ef = Eg + Eag + Ro⟨ug · uag⟩x. In our simulations, the last term is found to be

always positive (Fig. 5.4), meaning that it contributes to the increase of Ef with

respect to Eg . As it is proportional to Ro, it is also typically larger than Eag due

to the Ro2 dependence of the latter. Additionally, this result confirms that the

filtered, geostrophic flow also depends on the ageostrophic corrections.

A distinctive feature of the SQG+1 model, absent in the QG and SQG systems,

is the asymmetry of vorticity statistics, with cyclones prevailing over anticy-

clones [47, 67]. To further investigate the imprints left by ageostrophic motions

on the filtered flow, we consider the probability density function (pdf) of vortic-

ity. Unlike divergence, which vanishes when ageostrophic terms are filtered out,

no condition is imposed by the filtering procedure on vorticity. Figure 5.5 shows

vorticity skewness (Sζ) as a function of Ro for the total flow and its geostrophic

component. The corresponding pdfs P (ζ) are reported in the inset of Fig. 5.5
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Figure 5.4: Normalized correlation between the geostrophic and ageostrophic flow components

as a function of Ro (where urms
g =

√
⟨|ug |2⟩ and similarly for urms

ag ). Here, the average is over

several flow realizations in statistically steady conditions, and errors bars are computed as the
difference between the average over the full dataset and over half the dataset.

(with ζ rescaled by its rms value sζ) for Ro = 0.0625. Positive skewness, indica-

tive of the predominance of cyclonic structures, characterizes the vorticity pdf

of the full SQG+1 flows, and this effect becomes more important with increasing

Ro. After filtering, Sζ significantly drops to values much closer to zero. However,

it definitely stays positive at large enough Rossby numbers (see also the inset of

Fig. 5.5). This means that the cyclone-anticyclone asymmetry, though strongly

reduced, still persists in the filtered velocity field and highlights, once more, that

the latter is different from a purely SQG flow at Ro = 0.

We conclude this section by noting that the reduction of the vorticity skew-

ness, when taking only the geostrophic flow component, is associated with a

decrease of the right tail (and rise of the left one) of P (ζ). By looking at the

vorticity difference field in Fig. 5.2b, it is possible to see that ∆ζ is predomi-

nantly positive and that a relevant part of the vorticity variation occurs along

filamentary structures. In particular, comparison with Fig. 5.2a shows that the

intensity of cyclonic (ζ > 0) filaments gets lowered by filtering, in qualitative

agreement with the behavior of P (ζ). Such structures play a central role in
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particle clustering. Indeed, drifter studies [18] and realistic simulations [90, 92]

of submesoscale ocean turbulence indicate that flow convergence (and intense

vertical velocities) should take place along cyclonic frontal regions. As discussed

in Chapter 4, the SQG+1 system can be seen as a minimal model capable of ac-

counting for this feature and giving rise to particle clustering. When we compare

the particle distributions in Fig. 5.2c and Fig. 5.2d, obtained from advection

by the full and filtered flow, respectively, it becomes apparent that substantial

variations in the vorticity field reflect in very different particle behaviors. For

instance, in the region defined by π ≲ x ≲ 3π/2 and y ≈ π/2, we see that particles

cluster over an intense positive vorticity filament in the full flow, while this effect

completely disappears in the vorticity-weakened, filtered flow.
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5.2 Lagrangian dispersion

In this section, we compare the particle transport and dispersion properties of

the SQG+1 flows and of the corresponding filtered, (SQG+1)g , ones. Recall that

by (SQG+1)g we mean that only the geostrophic component of the flow is used to

advect the Lagrangian tracers. The analysis presented below relies on both time-

and scale-dependent metrics.

For a comprehensive discussion on Lagrangian statistics and their theoretical

expectations, please refer to Chapter 2, Sec. 2.5 of this manuscript. Here, we

will briefly remind the reader of the key aspects of Lagrangian statistics that are

particularly relevant to the analysis presented in this chapter. This summary

aims to provide the necessary context to better understand the following results

and interpretations.

We focus on two-particle statistics, which depend on velocity-field spatial

increments and allow us to characterize the tracer pair-separation process. The

most natural way to proceed is perhaps to measure ⟨R2(t)⟩ [Eq. (2.52)].

At sufficiently short times, one expects a ballistic behavior of the form

⟨R2(t)⟩ ≃ R2
0(1 + Zt2) [52, 56], where Z = ⟨ζ2/2⟩x is enstrophy. At very long

times, instead, particles typically are at distances much larger than the largest

eddies, and a diffusive scaling is expected, ⟨R2(t)⟩ ∼ t, due to particles experienc-

ing essentially uncorrelated velocities [17]. At intermediate times, when pair

separations lie in the inertial range of the flow, relative dispersion should grow

exponentially or as a power law if the kinetic energy spectrum scales as k−β with

β > 3 or β < 3, respectively. The first case is generally referred to as a nonlocal

dispersion regime, and ⟨R2(t)⟩ ∼ exp(2λLt), with λL the maximum Lagrangian

Lyapunov exponent. In the second case, dispersion is said to be in a local regime,

and ⟨R2(t)⟩ ∼ t4/(3−β) [17, 52].

Another two-particle, fixed-time indicator that can be used to identify disper-

sion regimes is the kurtosis of the relative distance between particles in a pair

[Eq. (2.56)] [17, 52].

When dispersion is nonlocal (i.e., dominated by the largest flow structures),

rapid (exponential) growth of ku(t) is expected. For local dispersion (meaning

controlled by flow features of size comparable with the distance between a
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pair of particles), the kurtosis should be constant; in particular, ku(t) = 5.6 for

Richardson dispersion (the behavior expected for β = 5/3). At larger times, in

the diffusive regime, the kurtosis reaches a constant value equal to 2.

We find that two-particle statistics are affected to a limited extent by ageostrophic

motions (see Fig. 5.6, for Ro = 0.0625). Indeed, the curves of ⟨R2(t)⟩ obtained

using the full and filtered flows (Fig. 5.6a) are close, and the same holds for all

the values of Ro considered (not shown). In both the SQG+1 and the (SQG+1)g
cases, at short times, relative dispersion agrees with the t2 ballistic prediction,

the prefactor being close to the enstrophy of the corresponding flow. At later

times, ⟨R2(t)⟩ is slightly larger in the full flow, but the two curves reach the

diffusive regime with almost identical values; the same trend is observed at all

Rossby numbers. However, its importance decreases as Ro decreases, and it is

hardly detectable for Ro < 0.05. At this level, while the effect is small, one may

speculate that this slowing down of ⟨R2(t)⟩ in the full-flow case is due to particle

trapping in flow convergence regions. At intermediate times, relative dispersion

grows faster than t3, which is consistent with the spectra of the two flows be-

ing steeper than k−5/3, but overall, the data do not allow to draw quantitative

conclusions about the agreement with the predictions for different dispersion

regimes.

The behavior of the kurtosis (Fig. 5.6b) reveals two points. On one side, for

both full and filtered flows, the rapid initial growth (up to values ≈ 350) points

to nonlocal dispersion. Indeed, for a local dispersion regime, one would instead

obtain a stabilization around a constant, much smaller value. As extensively

discussed for SQG+1 flows at varying Rossby numbers in a previous work [67],

this is due to the presence of large-scale coherent flow structures that dominate

the particle spreading process. On the other side, we find that, except perhaps

at the very shortest times, ku(t) grows more rapidly and to higher values in the

geostrophic-only flow. While the difference is small, it is clearly detectable, and

it is observed also at other Rossby numbers (not shown). This implies that the

dispersion regime is more strongly nonlocal when particles are advected by the

geostrophic component of the flow only (a result that is difficult to infer from

relative dispersion alone).

As fixed-scale indicators are often preferred to fixed-time ones to identify
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Figure 5.6: (a) Relative dispersion (after subtraction of the initial value) ⟨R2(t)⟩−R2
0 as a function

of time. The t3 (Richardson dispersion) scaling law is the expectation for a kinetic energy
spectrum E(k) ∼ k−5/3, and the t2 one is the short-time ballistic expectation. Inset: early growth
of relative dispersion ⟨R2(t)⟩ versus time in semilogarithmic scale. (b) Kurtosis of separation
as a function of time on a semilogarithmic scale. The horizontal dashed line is the expectation
ku = 2 in the diffusive regime. The inset shows the same in logarithmic scales. In both (a) and (b)
Ro = 0.0625, the filled red points correspond to advection by the full SQG+1 flow and the empty
blue ones to advection by its geostrophic component only.
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dispersion regimes [59], we now examine the FSLE [Eq. (2.57)] [59, 60] where

the average is over all pairs and τ(δ) is the time needed for the separation to

grow from δ to a scale rδ (with r > 1). Dimensionally, it is possible to relate

the FSLE to the exponent β of the kinetic energy spectrum. For β > 3 (i.e., in

the nonlocal dispersion regime), the FSLE should be constant, λ(δ) = λL. When

dispersion is local (β < 3), it should have a power-law dependence λ ∼ δ(β−3)/2,

while in the diffusive regime one expects λ(δ) ∼ δ−2.

Our measurement of λ(δ) is reported in Fig. 5.7 for Ro = 0.0625, for both

advection by the full and filtered flows. The results confirm those from ku(t):

dispersion is essentially nonlocal [λ(δ) ≃ const] over a broad range of separations,

and the corresponding plateau value (an estimate of λL) is larger for advection

by the geostrophic part of the flow only. This result also qualitatively agrees with

the expectation that particle convergence, due to ageostrophic motions, reduces

the dispersion rate. At the largest separations, the FSLE approaches the diffusive

δ−2 scaling. Qualitatively similar results are found for the other Rossby numbers

considered. From a quantitative point of view, the differences due to filtering

are quite small. However, the overestimation of the small-scale dispersion rate

[the plateau value λ(δ) ≃ const] is not always negligible. Indeed, in the inset of

Fig. 5.7, we see that the relative difference (λg − λf )/λf between those values

computed in the full (λf ) and geostrophic (λg) flow advection cases, grows

monotonically and can reach about 20% at the highest values of Ro. This finding

appears relevant for Lagrangian dispersion applications relying on advection of

synthetic drifters using real data from satellite altimetry, as the latter measures

the geostrophic flow. Moreover, in real oceanic conditions the Rossby number

could be much larger than in the present simulations, and thus this type of

effects may be expected to be much more important.

Most often, Eq. (2.57) is used to characterize the growth of the separation

between two particles starting from different initial positions and evolving in

the same flow. In such a case, λ(δ) is known as the FSLE of the first kind (FSLE-

I). Another possibility is to apply the same computation to pairs of particles

that start from the same position but evolve in two different flows, such as a

reference flow and a perturbed one. This gives the FSLE of the second kind

(FSLE-II), λ̃(δ), which is sometimes used to quantify the effect of unresolved flow
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of λ(δ) for particles advected by either the full flow or the filtered one, as a function of Ro.

components [100, 101]. Initially, particles start from the same position. Hence,

the early growth of their distance is solely controlled by the differences in the

velocity fields they are advected with. When their distance has sufficiently grown,

the spatial increment of the velocity field will also contribute to their separation

and eventually dominate. This means that at large enough separations, λ̃(δ)

should approach λ(δ), while at small enough ones, the two kinds of FSLE should

differ. This yields an estimate of a critical separation scale above which the flow

perturbation has no significant effect on particle dynamics.

Based on the above reasoning, we computed the FSLE of the second kind to

provide a statistical characterization of the scale-dependent dispersion between

the full-flow model and the geostrophic-flow-only model. The results are shown

in Fig. 5.8, for all the Rossby numbers explored. The filled black points are the

average of the λ(δ) values obtained for different Ro (which only weakly vary

when such a control parameter is changed, see Fig. 4.8). As it can be seen, at

large enough separations λ̃(δ) recovers the behavior of λ(δ), while at small ones

it deviates from it to approach a δ−1 scaling. In this range of δ values, the role of
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the ageostrophic flow components, when present, is non-negligible.
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The behavior of the FSLE-II illustrated above can be explained as follows.

First, recall that particle dynamics in the full and geostrophic-only flow are

governed by ẋ = u(x(t), t) = ug(x(t), t) +Rouag(x(t), t) and ẋg = ug(xg(t), t), respec-

tively. Here, x(t) is the position of one of the two particles in a pair, advected

by the total velocity, and xg(t) is that of the other particle in the pair, advected

only by the geostrophic velocity. The particle separation vector ∆x = x − xg then

evolves according to
d∆x(t)
dt

= u(x, t)−ug(xg , t). (5.1)

Adapting a more general derivation [100] to our case, we perform a Taylor
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expansion of u(x, t) around xg :

u(x, t) ≃ ug(xg , t) +
(
∂ug
∂x

)
xg

∆x

+Ro

uag(xg , t) +
(
∂uag
∂x

)
xg

∆x

 , (5.2)

which implies

d∆x(t)
dt

≃
(
∂ug
∂x

)
xg

∆x

+Ro

uag(xg , t) +
(
∂uag
∂x

)
xg

∆x

 . (5.3)

Since particles start from the same position [i.e. ∆x(t0) = 0], at short times

Eq. (5.3) gives
d∆x(t)
dt

≃ Rouag(xg , t). (5.4)

From Eq. (5.4), using dimensional considerations, one has δ/t ∼ Rourms
ag (with

urms
ag =

√
⟨|uag |2⟩). Therefore, the FSLE-II is expected to scale as

λ̃(δ) ∼
Rourms

ag

δ
. (5.5)

As shown in the inset of Fig. 5.8, the different curves are in fairly good agreement

with the prediction in Eq. (5.5), except at the smallest nonzero Rossby number,

and collapse onto each other for Ro ≥ 0.05. At larger times, the separation

distance ∆x is no longer negligible, and eventually, the terms in ∆x on the

right-hand side of Eq. (5.3) dominate. For such large relative displacements,

the particle separation distance evolves as if both particles were in the same

flow, d∆x/dt ≃ (∂xu)xg∆x. As a consequence, for large values of δ one finds

λ̃(δ) ≃ λ(δ), as observed in Fig. 5.8.
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The critical relative displacement δ∗ below which the FSLE-II differs from

the FSLE-I is found to increase with Ro. At the largest value of the latter (Ro =

0.075), we have λ̃(δ) , λ(δ) over all separations, except in the diffusive range.

If we exclude the data for Ro = 0.0125, we observe that when Ro increases

from 0.025 to 0.075, i.e. by a factor 3, δ∗ increases from approximately 0.15

to 0.8, i.e. by a factor of roughly 5. Despite the idealized character of the

present model dynamics, such values suggest caution when performing synthetic-

particle advection in the submesoscale range with velocity fields derived from

satellite altimetry. Indeed, the bias on the simulated trajectories, in terms of

distance from the true ones, may be considerable given the typically larger

Rossby numbers of real ocean submesoscales with respect to those assumed here.

5.3 Small-scale particle dynamics and clustering

In the previous section, we analyzed the separation process of Lagrangian tracers.

However, through the metrics previously used, it is not possible to address the

quantitative characterization of aggregation phenomena. For instance, the FSLE

of the first kind (Fig. 5.7) provides an estimate of the (scale-dependent) pair

separation rate, but it does not allow the exploration of particle convergence

events. Now, we investigate the small-scale particle dynamics for varying Rossby

number, focusing on this aspect. This will also allow us to characterize particle

clustering.

An interesting tool to address this problem is offered by the spectrum of

(asymptotic) Lyapunov exponents λ1,2, with λ1 ≥ λ2, which can be computed

by linearizing Eq. (2.47) in tangent space and are thus related to the velocity

gradient tensor (see Appendix A and [58, 102]). While λ1 measures the expo-

nential divergence rate (and is positive for a chaotic system), λ2 accounts for

the dynamics along the local contracting direction. As the sum of Lyapunov

exponents gives the divergence of the flow, λ1 +λ2 = ∇ ·u, clearly for an incom-

pressible flow it is enough to compute λ1. However, this is no longer the case in

the presence of nonzero compressibility, as in our SQG+1 simulations. In such

a case, it is instructive to separate the Lyapunov exponents into their contribu-

tions from nondivergent (or straining) and divergent processes. To this end, we
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introduce s = λ1 −λ2 and d = λ1 +λ2, so that λ1 = (s + d)/2 and λ2 = (−s + d)/2.

Since we know that the SQG+1 flow is turbulent, with particle pair separations

eventually increasing in time, λ1 should be positive. Due to the occurrence of

clustering at small scales, we also expect d ≤ 0, implying that |λ2| ≥ λ1 and s > 0.

Then, from the expressions of λ1 and λ2 it is possible to see that both Lyapunov

exponents should be reduced by the nonzero divergence, with respect to those

of the incompressible part of the flow.

The Lyapunov exponents computed using the full and filtered flows are

shown in Fig. 5.9a as a function of the Rossby number (see Appendix A and [58,

102, 103] for more details on the computation method). Here, we also present

the values obtained in the simulation of SQG turbulence (i.e., for Ro = 0). The

values of d = λ1 +λ2 and s = λ1 −λ2 versus Ro are shown in Fig. 5.9b [in both

panels (a) and (b) an average over all the different Lagrangian initial conditions

is also taken]. As expected, for Ro = 0, the two Lyapunov exponents sum to

zero, λ2(0) = −λ1(0) [d(0) = 0]. For nonzero and increasing Ro, both λ1,f and

λ2,f grow in absolute value, but λ2,f by a larger amount, so that |λ2,f | > λ1,f

at all Ro (here the subscript f indicates that the full flow is considered). The

mean Lagrangian divergence d (the average being over particles) is consistently

negative, growing in absolute value with Ro (Fig. 5.9b). In the (SQG+1)g case,

the flow is nondivergent by construction, because only the geostrophic velocity

component is retained. As it can be seen in Fig. 5.9b, this constraint is very

well satisfied in our simulations. The mean Lagrangian strain s does not differ

much between the (SQG+1) and (SQG+1)g cases, i.e., sf ≃ sg (the subscript g

indicating that the geostrophic-only flow is considered) for all Rossby numbers.

This implies that filtering only affects the divergent part of velocity gradients

and much less the straining one. Since sf (Ro) ≈ sg(Ro) and df (Ro) ≤ 0, we have

λ1,g(Ro) = sg(Ro)/2 ≈ sf (Ro)/2 ≥ [sf (Ro) + df (Ro)]/2 = λ1,f (Ro) and λ2,g(Ro) =

−sg(Ro)/2 ≈ −sf (Ro)/2 ≥ [−sf (Ro) + df (Ro)]/2 = λ2,f (Ro). This explains why

λi,g(Ro) ≥ λi,f (Ro) (with i = 1,2), as observed in Fig. 5.9a. These arguments

then provide support to the increase of the FSLE-I plateau value after filtering

(Fig. 5.7). Note that the values of [λ1,g(Ro) − λ1,f (Ro)]/λ1,f (Ro) nicely match

those of the FSLE-I relative difference (at not too large separations) shown in

the inset of Fig. 5.7. In addition, these results indicate, once more, that filtering
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the SQG+1 flow to exclude ageostrophic motions does not lead to the same flow

properties of the SQG system (i.e., with Ro = 0).

Lyapunov exponents also provide further information on the clustering of
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Lagrangian tracers. In particular, they can be used to compute the fractal dimen-

sion of the sets over which particles accumulate (when the full flow is considered).

This is known as the Lyapunov dimension DL [58]. While the correlation di-

mension D2, another estimate of the fractal dimension discussed in Sec. 4.2.2,

is derived from the particle distribution and relies solely on particle positions,

the Lyapunov dimension provides more insight into the system dynamics and

is calculated from the Lyapunov exponents, which requires knowledge of the

system’s equations. In the present 2D case, it is given by

DL = 1 +
λ1

|λ2|
. (5.6)

Note that for an incompressible flow (like the geostrophic one) one would have

λ1 = |λ2|, and hence DL = 2, meaning uniformly distributed particles. As in

SQG+1 the geostrophic equilibrium is broken and the flow becomes compressible,

|λ2| > λ1 and DL < 2, implying particle clustering. From Eq. (5.6), when |λ2| ≫ λ1

one has DL ≃ 1, i.e. a one-dimensional (1D) fractal set. Clustering is clearly due

to the compressibility of the horizontal flow being nonzero, and in the following

we will thus discuss the relation betweenDL and this quantity. However, the flow

compressibility alone typically does not allow for full characterization of the

distribution of particles [78, 104]. Different other factors can be also important

and, among these, the flow time correlations play a relevant role [77, 78], as we

shall see below for our system.

The compressibility of the (full) Eulerian flow is quantified by the ratio [77,

78, 104]

C =
⟨(∂xu +∂yv)2⟩

⟨(∂xu)2 + (∂xv)2 + (∂yu)2 + (∂yv)2⟩
, (5.7)

which takes values between 0 and 1, for incompressible and potential flow,

respectively. Providing a theoretical prediction for C from its definition is

generally not an easy task as it requires estimating the correlations of ve-

locity gradients. Indeed, the denominator in Eq. (5.7) can be rewritten as

⟨∆2⟩+ ⟨ζ2⟩ − 2⟨(∂xu)∂yv − (∂xv)∂yu⟩, where the correlations between different

velocity-gradient components are more evident, ∆ is divergence and ζ is vorticity.

However, the structure of the velocity-gradient tensor and its low-order moments
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were recently analyzed for both incompressible [105] and compressible [106]

three-dimensional (3D) turbulence. Using the same derivation as in [106] and

under the assumptions of homogeneity and isotropy, we obtain in the 2D case

⟨(∂xu)∂yv⟩ = ⟨(∂xv)∂yu⟩. This relation is found to be well verified in our simu-

lations for all Rossby numbers (see Appendix B). Compressibility is then given

by

C =
⟨∆2⟩

⟨∆2⟩+ ⟨ζ2⟩
. (5.8)

Considering now that u = ug + Rouag , one has ∆ = ∇ · u = Ro∇ · uag and ζ =

ζg + Roζag . Inserting these expressions in Eq. (5.8), at lowest order we then

obtain the following estimate of C as a function of Ro

C =
Ro2

Ro2 + 1
∼ Ro2. (5.9)

As seen in the inset of Fig. 5.10, our numerical data are in quite good agreement

with Eq. (5.9), supporting this prediction.
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Figure 5.10: Lyapunov dimension DL, for particles advected by the full flow, as a function
of compressibility C; the solid red line is the expectation DL = 2/(1 + 2C) in the compressible
Kraichnan model. Inset: compressibility versus Ro and the prediction C ∼ Ro2 (dashed line).
Uncertainties on DL and C are estimated from the standard deviation using the values taken over
their time series (at large times).
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While here compressibility is always small, due to Eq. (5.9), clustering is

well evident in our flows, as highlighted by the decrease of DL with C (Fig. 5.10).

For the SQG case (Ro = 0 and C = 0), the Lyapunov dimension is very close to

2, in agreement with the nondivergent nature of this flow. As Ro (and then

also C) grows, it decreases monotonically, and its value allows us to quantify

the intensity of clustering. Such decrease is due to |λ2,f | growing faster with

Ro than λ1,f (Fig. 5.9a), meaning to the intensification, and dominance, of the

locally contracting flow direction. These findings indicate that the structures

over which particles accumulate are not space-filling, and tend to be more and

more unidimensional for larger Ro. This, in turn, suggests that clustering should

occur along filaments, which is in line with the observations from Fig. 5.2c and

the discussions in Sec. 4.2.2. By filtering the flow to take only its geostrophic com-

ponent, instead, we retrieve DL = 2 with good accuracy (as shown in Fig. 5.11),

corresponding to particles filling the entire domain (see also Fig. 5.2d). Fig-

ure 5.11 presents the behavior of two estimates of the fractal dimension, DL
and D2, as a function of the Rossby number (for details on the calculation of D2,

refer to Sec. 4.2.2). For the SQG case, D2 and DL are equal to 2 (within statistical

accuracy). As Ro increases, both DL and D2 decrease monotonically, and their

values allow for quantification of the intensity of clustering. By filtering the

flow and only considering its geostrophic component, we retrieve DL = 2 and

D2 ≈ 2, as mentioned previously. We also observe DL ≳ D2, in agreement with

other studies and general arguments about the convexity of the spectrum Dq of

generalized dimensions (of order q) [58], which is reasonable considering that

DL =D1 (also known as information dimension).

On the basis of the persistent structures present in our flows (see Sections 5.1

and 5.2), we argue that the relevant decrease of DL, in spite of the small com-

pressibility, is due to the time correlations in the velocity field. To test this

hypothesis, we compare our results with what one would obtain in a temporally

uncorrelated flow. For this purpose, we consider the 2D compressible Kraichnan

flow, which is white-in-time, and for which the following prediction [77, 78] for

DL is available:

DL =
2

1 + 2C
. (5.10)
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Figure 5.11: Fractal dimension DF as a function of Rossby number; D2 and DL are the correlation
dimension and Lyapunov dimension, respectively. The error bars for DL are of the order of
points size and are obtained from the standard deviation of the temporal statistics, while for
D2, they are obtained from the standard deviation of best fits over the range of small distances r
where C(r) ∼ rD2 . The filled and empty points are for SQG+1 and (SQG+1)g , respectively.

Figure 5.10, where the Kraichnan-model prediction is the solid red line, shows

that in the absence of flow temporal correlations, the fractal dimension is con-

siderably larger than in the SQG+1 system. This indicates that in the present

case, clustering is essentially due to the interplay between the (small) Eulerian

compressibility and the existence of long-lived flow structures that trap particles,

enhancing their aggregation. We note that this finding may also be understood

by considering the evolution equation for the gradients of the particle density

field ρp(x, t). The latter is defined as the number of Lagrangian tracers per area

and is governed by the equation ∂tρp +u ·∇ρp = −ρp∇ ·u. For the gradients of ρp
one then has:

D
Dt
∇ρp = − (∇u)T ∇ρp −∆∇ρp − ρp∇∆, (5.11)

in which D/Dt = ∂t +u ·∇, (∇u)T denotes the transpose of the velocity gradient

tensor and ∆ is divergence. From Eq. (5.11), one can see that ∆, which is due

to ageostrophic corrections, if nonuniform (∇∆ , 0), will create gradients of the

scalar field ρp that will be amplified in convergence regions (∆ < 0), and further
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strengthened by persistent strain [related to the velocity-gradient tensor (∇u)].

Taking the dot product of Eq. (5.11) with ∇u and decomposing the velocity-

gradient tensor into its symmetric and antisymmetric parts, ∇u = S +A, where

S = [∇u+ (∇u)T ]/2 and A = [∇u− (∇u)T ]/2, we obtain:

1
2
D
Dt
|∇ρp|2 = −(∇ρp)T (S −A) ·∇ρp −∆|∇ρp|2 −

1
2
∇ρ2

p ·∇∆ . (5.12)

Since ∇ρp · (A∇ρp) = 0, the equation simplifies to:

1
2
D
Dt
|∇ρp|2 = −∇ρp · (S∇ρp)−∆|∇ρp|2 −

1
2
∇ρ2

p ·∇∆ . (5.13)

Equation (5.13) demonstrates that rotation, represented by A, does not influence

the magnitude of ∇ρp; only strain, via S (the strain rate tensor), and divergence

affect it. As strain is related to the structure of the flow, in the SQG+1 case, its

persistence reflects the time correlations of the velocity field. In the temporally

uncorrelated Kraichnan flow, instead, this effect is not present, which leads to

weaker clustering.

We conclude by noting that the transition to strong clustering, with particles

accumulating over 1D structures, is marked by the Lyapunov dimension reaching

DL = 1. This occurs for a critical compressibility C∗ = 1/2 in the Kraichnan model.

Based on the results in Fig. 5.10, with the numerical data being always below

the theoretical prediction of Eq. (5.10), one may speculate that in the SQG+1

system, the transition occurs for C∗ < 1/2. From C∗, the corresponding critical

Rossby number may then be estimated as Ro∗ ≈ C∗1/2. However, clustering

properties in time-correlated compressible flows strongly depend on the spatio-

temporal details of the velocity field [77]. Indeed, it has been shown that for

Lagrangian tracers at the free surface of a 3D incompressible Navier-Stokes

turbulent flow [78], while the qualitative behavior of DL as a function of C is

similar to that observed here for small C, the transition occurs at C∗ > 1/2. The

determination of the critical compressibility (and Rossby number) for SQG+1

turbulence thus remains an open question, which would require considerably

extending the range of Ro values explored and extensive numerical simulations.
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5.4 Conclusions

We investigated surface-ocean turbulence in the fine-scale range by means of

numerical simulations of the SQG+1 model [47, 67]. This model is derived from

primitive equations and extends the SQG one by including ageostrophic motions

corresponding to first-order corrections in the Rossby number. By construction,

the latter are related to secondary flows due to finite-Rossby effects at fronts.

Note that other ageostrophic processes (, e.g., internal waves), further deviating

from geostrophy, are not represented [107]. As previously shown [67] (refer to

Chapter 4), this approach allows to reproduce both the prevalence of cyclones

over anticyclones and the accumulation of Lagrangian tracers in cyclonic frontal

regions, which are found in observations [18, 20–22, 24] but not captured by

standard QG models. Our main goal was to assess the effect of ageostrophic

motions on Lagrangian pair dispersion, which is relevant for the interpretation

and exploitation of new, high-resolution satellite data [16, 108], as well as to

improve the understanding of material spreading at the surface of the ocean. For

this purpose, we compared Lagrangian statistics for tracer particles advected by

either the full SQG+1 flow or by its filtered, geostrophic counterpart for different

Rossby numbers.

Our results confirm the general expectation, also supported by previous

numerical indications [67], that relative dispersion weakly depends on the

ageostrophic corrections to the flow. From a quantitative point of view, however,

the FSLE-I, a fixed lengthscale indicator of the separation process, reveals that

excluding the ageostrophic velocity leads to an overestimation of the typical

pair-dispersion rate and that the importance of this effect grows with Ro. This

can be understood by analyzing the spectrum of the (asymptotic) Lyapunov

exponents of the particle dynamics. Considering the weak dependence of the

FSLE-I on spatial scales in the present simulations, the latter appears appropriate

for characterizing the small-scale behavior of particles over a significant range

of scales. A decomposition of Lyapunov exponents into the divergent and

nondivergent parts of the velocity-gradient tensor experienced by particles

shows that the absence of flow convergences in the geostrophic-only case is at

the origin of the increase of both exponents and, hence, of the FSLE-I at the
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smallest separations.

In addition, we examined the scale-by-scale dispersion rate for pairs such

that both particles start from the same position but one evolves in the full

flow and the other in the filtered one. We found that such an inter-model

dispersion rate (FSLE-II) differs from the FSLE-I over a range of small separations,

which extends towards larger and larger ones with Ro. The behavior of the

FSLE-II is explained by a simple theoretical argument relying on the different

mechanisms (the differences in the evolution equations and in the particle

positions) controlling the separation process. These results highlight that at

sufficiently small separations particle trajectories are sensitive to ageostrophic

motions and can be biased if advected by the geostrophic velocity only, which

appears relevant to applications using satellite-derived velocity fields to advect

synthetic particles in order to deduce flow transport properties.

Beyond the above quantitative differences, the ageostrophic velocities are

responsible for a major qualitative change in the Lagrangian dynamics, namely

the occurrence of clustering of tracer particles. While this is clearly not captured

by geostrophic flows, which are incompressible by definition, it has important

consequences for the identification of hotspots of pollutant accumulation in

the sea and for marine ecology modeling. We then measured its intensity for

increasing Rossby numbers and characterized the mechanisms controlling it in

the SQG+1 system. We showed that the horizontal-flow compressibility is always

small and grows only quadratically with Ro. Nevertheless, clustering can be

relatively intense, with the Lyapunov dimension clearly decreasing to values

smaller than 2 with increasing Ro (and compressibility). Finally, the comparison

of our numerical results with the prediction for the time uncorrelated Kraichnan

flow [78, 104] revealed that clustering is, in the present case, essentially due

to the interplay between the small compressibility and the important temporal

correlations of the flow.

To conclude, this study indicates that the overall effect of ageostrophic mo-

tions related to fronts on Lagrangian pair dispersion at the ocean surface should

be weak. Nevertheless, it also suggests some caution in particle advection exper-

iments with geostrophically derived flows, as single-particle trajectories should

separate from the true ones, and important phenomena, such as clustering,
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would be missed. An interesting further development of this work is to extend

the analysis to data from general circulation models at the global scale to address

the impact on Lagrangian dynamics of other ageostrophic processes (internal

gravity waves and tides) that are associated with the ocean’s fast variability (see

Chapter 6).



Chapter6
Particle dispersion in a general

circulation model

In Chapters 4 and 5, we explored particle dispersion within the idealized SQG+1

model, introduced in Chapter 2, Sec. 2.4. In this chapter, we use data from

the MITgcm LLC4320 simulation and Lagrangian tracer advection (provided by

Aurélien Ponte, Ifremer) aiming to identify the mechanisms that drive dispersion

when high-frequency motions, absent in the SQG+1 model, are included. We aim

to examine the role of these high-frequency motions in the particle dispersion

process, an aspect that, to our knowledge, remains an unexplored open question.

By doing so, we intend to provide a more complete characterization of dispersion

by encompassing a broader spectrum of oceanic motions. The findings in this

chapter result from a collaboration between Stefano Berti, Guillaume Lapeyre,

Aurélien Ponte, and myself.

Our work investigates the dispersion and clustering properties of Lagrangian

tracer particles in the Kuroshio Extention during winter and summer. The study

area was specifically chosen for its energetic currents with intense submesoscale

activity and its proximity to a SWOT crossover. We also chose two distinct

seasons to explore the effects of seasonal variability. The findings indicate that

in winter, pair dispersion is predominantly influenced by mesoscale and subme-

soscale motions. Additionally, the slope of the kinetic energy spectrum derived

103
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from SSH via geostrophic balance is underestimated, leading to a potential

overestimation of the small-scale pair-separation rate. Conversely, in summer,

when high-frequency motions are more pronounced, the results emphasize the

necessity of considering the full spectrum of oceanic motions and highlight the

importance of selecting appropriate Lagrangian indicators to accurately capture

which processes govern pair-dispersion.

This chapter is organized as follows. Sec. 6.1 describes LLC4320 with the

implementation of Lagrangian particles. Sec. 6.2 provides an overview of in-

ternal gravity waves (IGWs). In Sec. 6.3, we present the Lagrangian transport

properties of the flow in a region near the Kuroshio current, then we relate

them to the Eulerian properties of the flow through spectral analyses in both the

frequency and wavenumber domains, which are discussed in Sec. 6.4. Finally,

discussions and conclusions are presented in Sec. 6.5.

6.1 Model description

As mentioned briefly in Chapter 1, Sec. 1.2, LLC4320 is a simulation performed

using MITgcm on an LLC Arakawa-C grid. It has a horizontal spatial resolution

of 1/48◦, ranging from 0.75 km at the Arctic to 2.2 km at the Equator, with 90

vertical levels of ∼ 1 m spacing near the surface which gradually increases with

depth. The model uses a time step of 25 seconds and outputs data hourly for a

1-year period spanning from 13 September 2011 to 15 November 2012. Given

its spatial and temporal resolutions, LLC4320 can resolve the high-frequency

motions in the ocean. Here, we focus on surface dynamics, using only the surface

velocities and SSH outputs from the simulation.

In addition to the SST validation [14], the LLC4320 simulation has been

validated against in-situ observations to assess its accuracy in reproducing spec-

tral dynamics and kinetic energy across various time and spatial scales. In the

Drake Passage, the model data compare well with Acoustic Doppler Current

Profiler (ADCP) measurements for the rotational and divergent flow components

following a one-dimensional Helmholtz decomposition [109]. Additionally, it

accurately captures the location and amplitude of kinetic energy peaks in the
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Northwestern Pacific [110]. LLC4320 also effectively reproduces diurnal and

semidiurnal tidal variances, and its higher spatial resolution allows better mod-

eling of internal gravity waves, surpassing other models in supertidal frequency

accuracy [111].

The LLC4320 surface velocities are utilized to advect Lagrangian tracer parti-

cles using Parcels, a customizable Lagrangian simulator in Python developed

by OceanParcels. The particles are initially uniformly distributed across the

domain in triplets, each arranged in an equilateral triangle inscribed within a

circle of radius 1 km (Fig. 6.1). A total of 1976343 particle triplets, equivalent

to 5929029 particles, are seeded in the LLC4320 flow field and advected over

a 30-day period during both February and August of 2012. Data from this

simulation is outputted hourly. Since the Kuroshio Extension is in the Northern

Hemisphere, February and August represent winter and summer, respectively,

allowing us to explore the effects of seasonal variability.

Figure 6.1: Sketch of the initial configuration of a triplet. Black dots are the particles. The red
dot is the center of mass of the triplet.

The zone studied is a SWOT crossover region, where ascending and descend-

ing satellite tracks intersect, indicated by a red circle in Fig. 6.2. During SWOT’s

fast-sampling calibration-validation phase, the satellite passes over this crossover

zone twice daily, completing daily cycles and achieving higher temporal reso-

lution. The Kuroshio region was specifically selected for its distance from the

https://oceanparcels.org
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coast and its well-documented Eulerian properties [112, 113].

Figure 6.2: SWOT orbit during the fast-sampling phase (adapted from [110]). The red point
indicates the location of the Kuroshio study zone

The Lagrangian dataset, which includes information on all particles, is ap-

proximately 369 GB for a one-month period. To analyze the results, we employed

a parallel computing approach using the Datarmor supercomputer at IFREMER

in Brest. Parallelization was achieved with the Dask and Xarray libraries in

Python. Xarray extends the capabilities of Numpy arrays and Pandas dataframes,

facilitating the manipulation of multidimensional datasets, and is widely used

in atmospheric and oceanographic research. Dask enables efficient parallel com-

puting by allowing users to handle computations that exceed memory limits or

require parallel processing.

Figure 6.3a shows the SST field from the LLC4320 simulation on February 1,

2012, focusing on a restricted area within the Kuroshio zone, indicated by the

white box. An initial distribution of 3600 particles was considered for analysis

in this area. Over time, the particles disperse and sample a region larger than

their initial starting area. Consequently, we decided to focus on the Eulerian

properties of the region that encompasses all the particles at the end of the

observation period. The green box in Fig. 6.3b highlights the studied region.

https://dask.pydata.org/
https://xarray.pydata.org/
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Figure 6.3: Snapshot of the SST field from the LLC4320 simulation of the Kuroshio zone on
February 1, 2012, and 30 days later, in panels (a) and (b), respectively. Each panel includes black
points representing the particles selected for the Lagrangian analysis. The white box in panel (a)
outlines the initial sampling domain, where these particles were initially seeded. The green box
in panel (b) marks the studied domain, which encompasses all particles at the final time of the
study.

6.2 Internal Gravity Waves

Internal gravity waves form due to stratification within the ocean, where the

deeper waters are usually colder, denser, and have higher salinity compared

to shallower waters, which are relatively warm, less dense, and fresher. Such

conditions create fluid layers that, while part of a continuous stratification,
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can be understood by analogy as behaving like separate fluids. These density

variations in the ocean interior generate buoyancy waves, known as internal

gravity waves. As these waves propagate through the denser layers below the

surface, they induce oscillations in the less dense layers above. In turn, they

cause surface water to accumulate over the troughs and to stretch over the crests,

forming alternating lines of smooth and rough water. These dynamics appear in

satellite images as changes in surface texture: calmer areas reflect more light and

thus appear brighter. In comparison, rougher areas scatter light more diffusely

and thus appear darker, as shown in Fig. 6.4. However, since these internal

gravity waves do not always significantly alter surface wave heights, they are

often unnoticeable from boats.

These waves can propagate vertically and horizontally, not limited to the

interfaces between the fluid layers. Buoyancy forces primarily drive these IGWs

in the ocean. In a uniformly stratified fluid, where N , the buoyancy frequency, is

constant, we can assume a plane wave solution [114], and the dispersion relation

is expressed as:

ω2 =N 2cos2Θ , (6.1)

where ω is the wave frequency and Θ is the angle of the wave with the horizontal.

For internal waves in the x-z plane, cos2Θ = k2
x /(k

2
x + k2

z ), where kx and kz are the

wavenumbers corresponding to the x and z directions, respectively. When their

periods approach about a day, they are influenced by Coriolis forces and feel the

Earth’s rotation; these are referred to as inertial waves. The dispersion relation

for IGWs is given by

ω2 = c2k2 + f 2 (6.2)

where c, k, and f are the phase speed of the wave, isotropic horizontal wavenum-

ber, and Coriolis parameter, respectively. A detailed derivation of this dispersion

relation can be found in [114]. This relation can be reformulated to incorporate

the deformation radius Ld , which approximately measures the distance an object

travels at speed c before being influenced by Coriolis forces over a time span

of f −1. Consequently, the deformation radius is approximated as Ld ≈ c/ |f |,
where c =

√
gH in the shallow water limit, with H representing the mean fluid

depth [114]. Thus, the dispersion relation becomes ω2 = f 2 (L2
dk

2 + 1).
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Figure 6.4: Images of the Andaman Sea captured by the Operational Land Imager (OLI) on
Landsat 8 on November 29, 2019. Panel (a) shows a comprehensive view of the sea and coast,
while panel (b) shows a detailed view of the area within the white box shown in panel (a).
The sunglint effect enhances the visibility of internal waves, with color enhancements helping
to distinguish detailed water features. Lighter and darker tones indicate variations in water
depth (darker is deeper) and suspended sediments from nearby rivers (from the NASA Earth
Observatory).

This dispersion relation is important for distinguishing between internal

waves and mesoscale/submesoscale turbulent motions. By performing a spec-

https://earthobservatory.nasa.gov/images/146256/making-waves-in-the-andaman-sea
https://earthobservatory.nasa.gov/images/146256/making-waves-in-the-andaman-sea
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tral analysis of the kinetic energy in the frequency and wavenumber domains,

following the methodologies of [111, 113, 115], we can effectively highlight

the influence of various oceanic processes. The frequency-wavenumber spec-

trum allows us to identify distinct dynamical regimes, including IGWs, high-

frequency submesoscales, low-frequency submesoscales, and the transition from

mesoscale to submesoscale, as shown in Fig. 6.5. Low-frequency motions have

frequencies smaller than fo, the Coriolis frequency, while IGWs lie above the

dispersion relation curve associated with the 10th baroclinic vertical mode. This

mode corresponds to the highest baroclinic mode resolved in the LLC4320 sim-

ulation and is the most relevant one for partitioning motions into balanced

mesoscale/submescale motions and IGWs [113]. This partitioning method is

essential because IGWs and high-frequency submesoscales share similar fre-

quencies, making it difficult to distinguish between them using simple filtering

techniques, such as filtering based solely on fo or M2, the semidiurnal tidal

frequency.

Before computing the ω − k spectrum for a given variable, linear trends in both

space and time are removed. The dataset is then multiplied by a Hanning

window applied across the spatial and temporal dimensions. Next, a discrete

three-dimensional Fourier transform is performed, with two dimensions repre-

senting space and one representing time. The resulting transform is then used

to compute a two-dimensional spatiotemporal spectral density. This process

follows the methodology described in [113] and can be implemented using xrft,

a Python package designed for performing discrete Fourier transforms on Xarray

and Dask arrays.

6.3 Lagrangian Properties

In this section, we evaluate the Lagrangian statistics for the Kuroshio extension

for February and August 2012. To compute these statistics, it is necessary to

calculate distances. Since the particles are advected on the surface of a sphere,

we use the Haversine formula to determine the spherical distance d, defined as:

https://xrft.readthedocs.io
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Figure 6.5: Schematic of the frequency-wavenumber spectrum showing the different dynamical
regimes in the ocean: the low-frequency mesoscale/submesoscales, the high-frequency subme-
soscales, and IGWs. The dispersion relations for the first 4 baroclinic modes (dashed lines)
and the 10th mode (solid line) are plotted. f and M2 are the Coriolis and semidiurnal tidal
frequencies, respectively. M2 is related to the direct gravitational effect of the Moon on the tides
(adapted from [115]).

d = 2r arcsin

√
sin2

φd2 −φd12

+ cosφ1 cosφ2 sin2

λd2 −λd12

 , (6.3)

where, r represents the Earth’s radius, φd1 and φd2 are the longitudes, and λd1
and λd2 are the latitudes of the two points on the globe. The superscript d is

used to distinguish these symbols from those used in Chap. 2. In this chapter,

unless otherwise specified, one-particle and two-particle dispersion statistics are

calculated using the Haversine formula in Eq. (6.3).

For the dispersion statistics in this section, the uncertainty is estimated as



112 CHAPTER 6. Particle dispersion in a general circulation model

the 95% confidence interval of the bootstrapped mean from 1000 samples.

Unlike in Chapters 4 and 5, here we begin with an analysis of the Lagrangian

properties, aiming to follow a methodology similar to that used for analyzing

drifter data. We start by examining the trajectories of the drifters, and then

investigate how various flow features influence their advection.

6.3.1 One-Particle Statistics

We start by considering the single-particle statistics discussed in Chapter 2,

Sec. 2.5.1. Figure 6.6a shows the absolute dispersion ⟨A2⟩, defined by Eq. (2.48).

For both February and August, at short times we find a quite good agreement

with the ballistic prediction, while at large times (roughly t > 5 days) diffusive

scaling sets in. The velocity autocorrelation function, defined by Eq. (2.51),

decreases approximately exponentially (see inset of Fig. 6.6a). The crossover

time between the ballistic and diffusive regime of ⟨A2⟩ is close to the value of

τL estimated from the first zero-crossing of C(τ). The velocity autocorrelation

function is related to the Lagrangian frequency spectrum by a Fourier transform.

At low frequencies, for an exponential decay of C(τ), one expects the kinetic

energy frequency spectrum E(ω) to follow a ω−2 scaling [17]. This behavior

is observed in Fig. 6.6b, where E(ω) ∼ ω−2, particularly in February, while in

August, the slope is steeper for intermediate frequencies, i.e., 10−5 ≲ ω ≲ 10−4.

Additionally, we can distinguish two peaks corresponding to waves with periods

Tf ≈ 20.53 hours and TM2
≈ 12.65 hours, which are the respective periods for

the Coriolis and tidal frequencies. In August, the peaks associated with these

internal waves are more pronounced.

Coherently with previous studies, the kinetic energy in winter is higher than

in summer, leading to higher absolute dispersion in February in the Kuroshio

Extention [13, 113]. This result implies that, while the overall behavior of

absolute dispersion is similar in the two flows, the distance traveled by particles

is, in a mean-square sense, larger under advection in winter.

Next, we can calculate the absolute diffusivity Kabs, which is the time deriva-
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Figure 6.6: (a) Absolute dispersion ⟨A2⟩, for February and August, as a function of time. σ2
L t

2

is the expectation in the short-time ballistic regime, represented by the cyan and black short-
dashed lines for February and August, respectively. The t scaling law (long-dashed line) is the
expectation in the diffusive regime. Uncertainties, estimated as the 95% confidence interval, are
mostly of the order of the point size. Inset: Lagrangian velocity autocorrelation function C(τ)
versus time. The dashed black line corresponds to a decreasing exponential function.
(b) Lagrangian frequency spectrum of the kinetic energy E(ω) for February and August. The
ω−2 scaling law corresponds to an exponential decay of the Lagrangian velocity autocorrelation
function [17].

tive of the absolute dispersion. This is defined by the equation:

Kabs =
1
2
d⟨A2⟩
dt

. (6.4)

As shown in Fig. 6.7, the absolute diffusivity agrees with the trends observed

in the absolute dispersion. In the early ballistic regime, Kabs ∼ σ2
L t. It then

transitions to the diffusive regime, whereKabs becomes constant at approximately

104 m2/s, around a similar crossover time estimated from both the absolute

dispersion and the first zero crossing of C(τ).

6.3.2 Two-Particle Statistics

We now move to two-particle statistics, which depend on velocity-field spatial

increments and provide insight into the tracer pair-separation process. A natural

approach to this analysis is to measure the mean-square relative displacement

between two particles as a function of time, i.e., relative dispersion ⟨R2(t)⟩. Here,

we consider only original pairs, initially separated by a distance R0 ≈ 3.48 km,

with each triplet contributing three pairs (one for each side of the triangle in
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Figure 6.7: Absolute diffusivity Kabs, for February and August, as a function of time. σ2
L t is the

expectation in the short-time ballistic regime, represented by the cyan and black short-dashed
lines for February and August, respectively. In the diffusive regime, Kabs converges to a constant
value. Uncertainties, estimated as the 95% confidence interval, are mostly of the order of the
point size.

Fig. 6.1).

Figure 6.8 shows the normalized relative dispersion after subtracting the

initial value as a function of time. At short times, we observe a t2 scaling law,

indicating a ballistic regime. Specifically, (⟨R2⟩−R2
0)/R2

0 ≈ Zt2, where Z = ⟨ζ2/2⟩x
[52, 56]. This provides the first link between the Lagrangian and Eulerian

properties of the flow, as enstrophy is calculated solely from the Eulerian velocity

gradients. In fact, this holds well for February, when vorticity dominates the

flow. However, in August, a slight deviation is observed, likely due to an increase

in flow divergence [113, 115], making the substitution of ⟨(δu0)2⟩ in Eq. 2.53

with ZR2
0 less reliable. At intermediate times [1 day < t < 10 days], in February,

⟨R2(t)⟩ ∼ follows a behavior close to t3, the Richardson expectation, before a

transition to a t scaling at large enough times. In August, within the same time

range, relative dispersion increases more rapidly with a slightly steeper slope

before eventually transitioning to what appears to be a t3 scaling. However, as

mentioned in Secs.2.5.2, 4.2.1, and 5.2, relative dispersion has its drawbacks
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when interpreting scaling laws in the inertial range, making it difficult to draw

definitive conclusions. At short times (t < 1 day), the relative dispersion in

February is larger than in August, suggesting that the vorticity of the flow is

stronger in winter in the Kuroshio extension.
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Figure 6.8: Relative dispersion normalized by its initial value (after subtracting the initial value)
(⟨R2⟩ −R2

0)/R2
0, for February and August, as a function of time. Zt2 is the expectation in the

short-time ballistic regime, represented by the cyan and black short-dashed lines for February
and August, respectively. The t3 scaling law is the Richardson expectation for a kinetic energy
spectrum E(k) ∼ k−5/3.The t scaling law (long-dashed line) is the expectation in the diffusive
regime. Uncertainties, estimated as the 95% confidence interval, are mostly of the order of the
point size.

From the relative dispersion, we can easily compute the relative diffusivity

shown in Fig. 6.9 as a function of the separation distance ⟨R2⟩1/2. In Febru-

ary, at intermediate scales [10 km < R < 100 km], Krel exhibits a scaling close

to R3/2, which would correspond to a kinetic energy spectrum E(k) ∼ k−2. In

August, however, accounting for uncertainties, Krel follows a behavior closer

to R2, indicating a smooth flow where β > 3. At large scales, relative diffusiv-

ity reaches a constant value. This is clear for February and less so for August,

where Krel ∼ 2Kabs [17]. Instead, in August, beyond the visible dip around 70km,

relative diffusivity approaches R3/2, consistent with the qualitative observation

from relative dispersion, where at large scales, it scales more slowly. In February,
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relative dispersion and diffusion suggest two slightly different behaviors in the

inertial range, with one indicating a scaling law corresponding to β = 5/3 and

the other to β = 2. In August, fitting an exponential law for relative dispersion

that matches the R2 scaling observed in relative diffusion is difficult. How-

ever, accurately determining the scaling from relative dispersion is particularly

challenging when the inertial range is limited [74].
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Figure 6.9: Relative diffusivity Krel , for February and August, as a function of time. The R3/2 and
R2 scaling laws (short-dashed and long-dashed lines) correspond to β = 2 and β > 3, respectively.
In the diffusive regime, the relative diffusivity is constant such that Krel ∼ 2Kabs, represented by
the cyan and black solid lines for February and August, respectively. Uncertainties are estimated
as the 95% confidence interval.

Another indicator used to characterize the dispersion process is the kurtosis

of the pair relative displacement. Unlike the relative dispersion and diffusivity,

the difference in kurtosis behavior between winter and summer is quite evident

(Fig. 6.10). At short times, the kurtosis grows to values an order of magnitude

higher in August than in February and then decreases rapidly. In February, the

kurtosis remains close to ku = 5.6, the Richardson expectation, before decreasing

to ku = 2, in line with the diffusive regime expectation. These observations,

along with those from relative diffusivity, suggest that in February, dispersion

is local, while in August, it is nonlocal. This aligns with the fact that smaller
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structures and the flow in general are more energetic in winter. [13, 113].
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Figure 6.10: Kurtosis of separation ku, for February and August, as a function of time. The
horizontal short-dashed line is the expectation ku = 5.6 in the Richardson regime, while the
horizontal long-dashed line is the expectation ku = 2 in the diffusive regime. Uncertainties are
estimated as the 95% confidence interval.

So far, we have focused on fixed-time indicators, which share similar draw-

backs with relative dispersion; however, fixed-scale indicators are often preferred

for identifying dispersion regimes [59]. A commonly used fixed-scale indicator

is the FSLE (Finite-Scale Lyapunov Exponent), a scale-by-scale dispersion rate

defined by Eq. (2.57). In February, at small scales and up to approximately

100 km, the FSLE follows a δ−1/2 scaling law, corresponding to a kinetic energy

spectrum E(k) ∼ k−2. In contrast, the FSLE remains constant in August with

λ(δ) ≈ 0.15 days−1 across that range of scales. Between 100 and 400 km, both

FSLEs are not too different. This is in line with the relative diffusivity, where

both relative diffusivities grow approximately as R3/2 in a similar range of scales.

Additionally, in relative dispersion, we observe that after 10 days, both cases

follow a t3 scaling. In both cases, the FSLE eventually transitions to a diffu-

sive regime, indicated by a δ−2 scaling law. The high dispersion rate values, in

February, in the submesoscale range indicate that LLC4320 effectively captures

small-scale dynamics, outperforming other ocean circulation models, such as
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the one used in [26] (see Fig. 1.8).
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Figure 6.11: FSLE λ(δ), for February and August, as a function of separation. The δ−1/2 scaling
law (short-dashed line) corresponds β = 2. In the diffusive regime, the FSLE scales as δ−2 (long-
dashed line). Uncertainties are estimated as the 95% confidence interval.

These results demonstrate that in the studied region, the season significantly

influences Lagrangian transport. The coherence observed in both winter and

summer highlights how the dispersion processes vary: in winter (February),

dispersion is local, while in summer (August), it is nonlocal. Notably, the kinetic

energy spectral slope, β, inferred from the FSLE in February, matches the relative

diffusivity. In August, the constant FSLE at scales below 100 km is consistent

with the relative diffusivity scaling law.

Since submesoscales are more intense in winter and IGWs are stronger in

summer, we aim to understand what drives dispersion in each season and

whether IGWs have a prominent effect. This will be further explored in the

following section, where we investigate the influence of internal gravity waves

on the Eulerian flow properties to better understand their impact on Lagrangian

statistics.
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6.4 Eulerian Properties

In this section, we explore the Eulerian properties of the flow in the Kuroshio

Extension (Fig. 6.3) to identify links between the Lagrangian and Eulerian charac-

teristics and to understand the drivers of the dispersion process in this region. As

previously mentioned, LLC4320 models both low- and high-frequency motions,

unlike the SQG framework, which accounts only for low-frequency motions.

First, we analyze theω−k spectrum to better understand the respective contri-

butions of mesoscale/submesoscale motions and IGWs to the total kinetic energy

spectrum E(k,ω). Figure 6.12 shows frequency-wavenumber spectra of the ki-

netic energy for February (Fig. 6.12a) and August (Fig. 6.12b). The distinction be-

tween mesoscale/submesoscale motions and IGWs is made using the dispersion-

relation curve for the 10th vertical mode (dashed-dotted line in Fig. 6.12). Previ-

ous studies have shown this to be an effective method for distinguishing between

the two [113, 115]. In winter, low-frequency mesoscale/submesoscale motions

clearly dominate the flow, whereas, in summer, IGWs become more energetic,

with a significant concentration of energy around the M2, and submesoscale

motions are considerably less energetic. Moreover, it is important to note that in

winter, submesoscale motions also encompass high-frequency motions, while

in summer, IGWs influence high wavenumbers, reaching up to approximately

50 km.

Using the ω−k spectra, we compute the wavenumber spectra of kinetic energy as

E(k) =
∫
E(k,ω)dω, integrated over all frequencies. These wavenumber spectra

are presented in Fig 6.13. The results confirm the inference from the Lagrangian

statistics that the flow in February is more energetic than in August, particularly

at scales < 100 km. In February, the kinetic energy spectrum follows a k−2

scaling, while in summer, the slope steepens to E(k) ∼ k−2.3. Interestingly, the

winter scaling law (β ≈ 2) aligns with the predictions from Lagrangian statistics.

Relative dispersion, while suggesting a slightly different scaling of β = 5/3, is

still close to what is observed here and in the other Lagrangian indicators. In

summer, β ≈ 2.3, which would typically suggest local dispersion. However, the

Lagrangian statistics indicate nonlocal dispersion, prompting us to delve deeper

into the Eulerian statistics to better explore the underlying processes.
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Figure 6.12: Frequency-wave number spectra of kinetic energy E(k,ω) corresponding to the
Kuroshio Extension during February (a) and August (b). The spectra are multiplied by k and
ω, indicating the spectra are variance preserved [113]. The solid and dashed lines represent
the Coriolis and tidal frequencies, respectively, while the dashed-dotted line represents the
dispersion relation of mode-10.

To understand the contribution of IGWs to the total kinetic energy, we sep-

arate the energy from mesoscale/submesoscale motions and IGWs. Using the

dispersion relation for mode-10 and considering LR as the 10th baroclinic de-

formation radius, we partition E(k,ω) into two sections: ω2 < f 2(1 + L2
Rk

2) for

mesoscale/submesoscale motions, and ω2 > f 2(1 + L2
Rk

2) for IGWs. For the re-

mainder of this section, LR will be considered as the 10th baroclinic deformation

radius.
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Figure 6.13: Wavenumber spectra of kinetic energy, calculated from the ω − k kinetic energy
spectrum, where E(k) =

∫
E(k,ω)dω, for February (blue) and August (red). The scaling laws k−2

and k−2.3 represent the fitted slopes for February and August, respectively.

This partitioning reveals that in February (winter; Fig. 6.14a), mesoscale/-

submesoscale motions account for most of the kinetic energy in the surface

flow: the kinetic energy spectrum from these motions is identical to the total

kinetic energy spectrum, both following a k−2 scaling. IGWs contribute relatively

little energy and have a minimal effect on the total energy.

In August (summer; Fig. 6.14b), we observe that at small wavenumbers (i.e.,

scales > 100 km), mesoscale motions dominate, while at large wavenumbers

(i.e., scales < 50 km), submesoscale motions become less energetic and IGWs

dominate the flow. In this range, the IGWs’ kinetic energy spectrum scales as

k−2.3, while the mesoscale/submesoscale kinetic energy spectrum essentially

follows k−3.

Based on these observed slopes, we can argue that in winter, in the Kuroshio

Extension, dispersion is local and primarily driven by mesoscale/submesoscale

motions. In summer, dispersion is nonlocal and also primarily driven by

mesoscale/submesoscale motions. However, it is important to note that the

partitioning was necessary to conclude this, as the full kinetic energy spectrum

shows a k−2.3 scaling law, which would imply a local dispersion regime based on

usual dimensional arguments. By removing the IGW contribution, we retrieve a

k−3 scaling law, consistent with nonlocal dispersion and the Lagrangian statistics.
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Figure 6.14: Wavenumber spectra of kinetic energy E(k) derived from surface velocities: total
kinetic energy (KE in black), and filtered using the mode-10 dispersion relation to isolate
mesoscale/submesoscale motions (in green) and IGWs (in blue), for February (a) and August
(b). In (a), the scaling laws k−2 and k−1.8 represent the fitted slopes for mesoscale/submesoscale
motions and IGWs, respectively. In (b), the scaling laws k−3 and k−2.3 represent the fitted slopes
for mesoscale/submesoscale motions and IGWs, respectively.

Another method of partitioning the kinetic energy is by decomposing it into

rotational (KEζ) and divergent (KE∆) components, using Helmholtz decomposi-

tion [5]. These components are computed as follows:

KEζ =
1
2

∫ ∣∣∣ζ̂(k,ω)
∣∣∣2

k2 dω (6.5)

and

KE∆ =
1
2

∫ ∣∣∣∆̂(k,ω)
∣∣∣2

k2 dω, (6.6)

where ζ̂(k,ω) and ∆̂(k,ω) are the spatiotemporal Fourier transforms of vorticity

ζ and divergence ∆, respectively [113].

To link these components to mesoscale motions and IGWs, mesoscale motions

are typically assumed to be nondivergent [116]. This assumption is not entirely

accurate, as submesoscale motions are known to be divergent [3, 117, 118];

therefore, the divergent component KE∆ accounts for the submesoscale-induced

divergence in addition to the IGW-induced divergence. However, several studies

have shown that this assumption works well to differentiate between mesoscales

and IGWs [109, 113, 116].

To address this limitation, we use the mode-10 dispersion relation and partition
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each component into two sections. KE−ζ and KE−
∆

represent the section where

ω2 < f 2(1 + L2
Rk

2) for mesoscale/submesoscale motions, while KE+
ζ and KE+

∆

correspond to ω2 > f 2(1 +L2
Rk

2) for IGWs.

Figure 6.15 shows the partitioning for February [panels (a) and (b)] and August

[panels (c) and (d)]. In February, the flow is dominated by intense vorticity

primarily from mesoscale/submesoscale motions. The divergent component con-

tributes minimally to the total energy, with IGWs having relatively small kinetic

energy. Moreover, the divergent component from both motions contributes little

to the overall kinetic energy. In August, the situation is different: at large scales

(i.e., > 100 km), vorticity from mesoscale/submesoscale motions dominates,

while at smaller scales, divergence from IGWs becomes dominant. It is also

worth noting that the vorticity spectrum from both mesoscale/submesoscale

motions and IGWs is comparable at scales of O(10) km, following a k−3 scaling

law, again pointing to nonlocal dispersion. From this decomposition, we can

conclude that dispersion is driven mainly by the rotational component of the

flow, i.e., vorticity, which is primarily due to mesoscale/submesoscale motions in

both cases. Notably, in summer, the rotational component associated with IGWs

may also play a role at scales of O(10) km, as it shows a similar magnitude and

scaling to that of mesoscale/submesoscale motions.

A snapshot of the vorticity field highlights the difference in vorticity intensity

between winter and summer. This is evident in Fig 6.16, where panel (a) shows

the February vorticity field in the Kuroshio Extention, with vorticity present at

both large and small scales, exhibiting relatively large values and sharp gradi-

ents. In contrast, panel (b) shows weaker vorticity in August, mostly confined

to large-scale structures. Additionally, in February, one can clearly observe

submesoscale structures comprising both vortices and filaments, whereas in

August, submesoscales are not visible.

So far, we have examined kinetic energy spectra calculated from surface

velocity, which account for both geostrophic and ageostrophic velocity com-

ponents. However, as mentioned in previous chapters, SWOT measures SSH,

from which we can calculate the kinetic energy spectrum using the geostrophic
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Figure 6.15: Wavenumber spectra of kinetic energy E(k) derived from surface velocities: total
kinetic energy KE (in black), the solenoidal component of kinetic energy KEζ(filled points),
and the divergent component KE∆ (empty points), partitioned based on ω2 < f 2(1 +L2

Rk
2) and

ω2 > f 2(1 + L2
Rk

2), represented by superscripts “−” and “+”, respectively. Panels (a) and (b)
correspond to February, and panels (c) and (d) to August. In (a) and (b), the scaling law k−2

represents the fitted slope for KE−ζ . In (c) and (d), the scaling laws k−3 and k−2.3 represent the
fitted slopes for KE−ζ and KE+

∆
, respectively.

approximation as follows:

E(k,ω) =
1
2
|η̂(k,ω)|2

g2

f 2k
2 , (6.7)

or by using the dispersion relation for IGWs [119]:

E(k,ω) =
1
2
|η̂(k,ω)|2g2f 2 ω2 + f 2

(ω2 − f 2)2 , (6.8)

where η̂(k,ω) is the spatio-temporal Fourier transform of SSH. Integrating the

above over all frequencies gives the corresponding wavenumber kinetic energy
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Figure 6.16: Snapshot of the vorticity, normalized by the Coriolis parameter ζ/f , for the studied
zone in the Kuroshio Extention, for February 15, 2012 (a) and August 15, 2012 (b).

spectra, as shown in Fig. 6.17. Since the geostrophic approximation is primarily

valid at the mesoscale and currently the best available method for submesoscales,

we apply Eq. (6.7) for ω2 < f 2(1 +L2
Rk

2), and Eq. (6.8) for ω2 > f 2(1 +L2
Rk

2).

In February, when mesoscale/submesoscale motions dominate, the geostrophic

approximation (6.7) provides a reasonable estimate of the kinetic energy spec-

trum, slightly underestimating the spectral slope (with β ≈ 1.8) and overes-

timating the kinetic energy (see Fig. 6.17a). This discrepancy arises because

geostrophic velocities derived from SSH tend to overestimate surface velocities

in cyclonic eddies and underestimate them in anticyclonic eddies. In cyclonic

eddies, characterized by depressions in SSH and counterclockwise rotation in the

Northern Hemisphere, the SSH gradients are steeper. The geostrophic approxi-

mation calculates velocity based on these gradients, leading to higher estimated
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velocities and, thus, higher kinetic energy in cyclone-dominated regions. Con-

versely, anticyclonic eddies exhibit elevated SSH and clockwise rotation with

gentler SSH gradients. This results in lower estimated velocities and kinetic

energy in anticyclone-dominated areas. The underlying reason is the interaction

between the centrifugal and Coriolis forces in these eddies. The centrifugal

force, always directed outward and equal in magnitude for both cyclonic and

anticyclonic eddies, affects the force balance differently. In cyclonic eddies, the

centrifugal force adds to the Coriolis force, requiring a stronger pressure gradient

(and greater sea surface depression) to maintain balance. In anticyclonic eddies,

the centrifugal force opposes the Coriolis force, resulting in a smaller pressure

gradient and a less pronounced sea surface elevation [120]. This phenomenon is

illustrated in the schematic of sea level shapes shown in Fig. 6.18. By examining

the probability density function of vorticity in February shown in Fig. 6.19a,

we observe a cyclonic dominance, with the right tail of the pdf (ζ > 0) being

significantly higher than the left (ζ < 0). This cyclonic dominance contributes to

overestimating kinetic energy when using the geostrophic approximation.
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Figure 6.17: Wavenumber spectra of kinetic energy E(k) derived from surface velocities: total
kinetic energy (KE in black), from sea surface height η (geostrophic kinetic energy; green), and
the kinetic energy of IGWs (blue), for February (a) and August (b). In (a), the scaling laws k−1.6

and k−1.7 represent the fitted slopes for the geostrophic kinetic energy and the IGWs kinetic
energy, respectively. In (b), the scaling laws k−3 and k−2.3 represent the fitted slopes for the
geostrophic kinetic energy and the IGWs kinetic energy, respectively.

For August, at large scales (i.e., > 100 km), the geostrophic approximation esti-

mates the kinetic energy well. At smaller scales (i.e., < 50 km), the dispersion

relation best estimates the kinetic energy spectrum slope with β ≈ 2.3 and over-
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Figure 6.18: Schematics of sea level shape and force balance for cyclonic (a) and anticyclonic (b)
Gaussian eddies of the same size (adapted from [120]). The dashed line indicates the geostrophic
case. Fcor (pink arrows), Fcentr (blue arrows), and Fpress (green arrows) represent the Coriolis,
centrifugal, and pressure forces, respectively.

estimated energy. In contrast, the geostrophic approximation, at scales between

20 and 50 km, overestimates the slope (β ≈ 3) and underestimates the energy

(Fig.6.17b). Interestingly, this scaling (β = 3) is similar to that obtained from the

kinetic energy spectrum of mesoscale/submesoscale motions. A cyclonic domi-

nance is also observed in August, as shown in Fig.6.19b. However, the previous

explanation regarding the overestimation and underestimation of velocities from

SSH in cyclonic and anticyclonic eddies does not apply when considering kinetic

energy derived from the wave dispersion relation, as it is fundamentally based

on the geostrophic approximation. Moreover, despite the cyclonic dominance,

the underestimation of the geostrophic approximation at intermediate scales

may be due to the significant contribution of IGWs to the energy of the flow in

summer, in contrast to winter, when their influence is minimal.

We end this section with a final remark on the underestimation of β in

February, which may be relevant for SWOT-derived velocities in winter in the

Kuroshio Extension. Based on both Lagrangian and Eulerian statistics, we can

conclude that the dispersion is local and primarily driven by mesoscale and sub-

mesoscale motions. The small-scale pair-separation rate may be overestimated

as the SSH-derived kinetic energy spectrum underestimates β.
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Figure 6.19: Probability density function of vorticity ζ (normalized by the Coriolis parameter
f ), temporally averaged over 30 days, for February (a) and August (b), with blue dots and red
squares indicating ζ < 0 and ζ > 0, respectively. The shaded areas correspond to the standard
deviation of the temporal statistics.

6.5 Conclusions

We investigated Lagrangian particle dynamics in the Kuroshio Extension during

February and August, using the high-resolution ocean general circulation model,

LLC4320, that incorporates internal gravity waves, which are not accounted for

in the SQG+1 framework. We focused specifically on particle dispersion and

partitioning the flow into mesoscale/submesoscale motions and IGWs to better

understand their impact on Lagrangian transport properties.

LLC4320 surface velocities were used to advect Lagrangian tracers over

a 30-day period in February and August 2012. First, we investigated single-

particle statistics and found that they are only weakly influenced by seasonality.

We then moved to two-particle statistics, which provide insight into the pair-

dispersion process and can be linked to the Eulerian properties of the flow. To

better understand the contributions of the different ocean processes and their

relation to the Lagrangian statistics, the frequency-wavenumber analysis of

kinetic energy spectra, combined with the dispersion-relation curve, proved to

be an effective tool for distinguishing between mesoscale/submesoscale motions

and IGWs.

In February, dispersion is local and driven by mesoscale/submesoscale mo-

tions, with a kinetic energy spectrum E(k) ∼ k−2.



6.5. Conclusions 129

In August, the flow is less energetic, with mesoscale/submesoscale motions dom-

inating at larger scales (i.e., > 100 km) and IGWs at smaller scales. Dispersion

appears nonlocal and dominated by the mesoscale/submesoscale motions, with

E(k) ∼ k−3.

To our knowledge, the effect of IGWs on Lagrangian tracer dispersion remains

open and is not well documented. A study on pair separations in the Gulf of

Mexico [75] noted that the FSLE should be affected by inertial oscillations, which

is not the case in our study. However, a direct comparison is difficult since

the FSLE plot is not shown in [75], and this point is only briefly mentioned

in the corresponding text. Another study on dispersion by oceanic internal

waves [121] shows that in the presence of mixed layer eddies, these eddies dom-

inate dispersion in the mixed layer. Furthermore, while the FSLE is sensitive

to inertial oscillations, this effect is observed at scales smaller than the inertial

oscillation scale V /f , where V is the particle speed. In August, this inertial

oscillation scale, in our case, is 4.59 km, which is close to the first separation

value (δ ≈ 4.17 km) in the FSLE shown in Fig. 6.11. To resolve smaller scales, we

would need a smaller initial separation between pairs (currently R0 ≈ 3.48 km).

Resolving these smaller scales would, in fact, require a more refined simulation

than LLC4320, as the inertial oscillation scale is close to the grid resolution,

where the flow becomes completely smoothed out. Given these limitations, it

seems reasonable that the FSLE does not capture the effect of IGWs and that

dispersion is instead dominated by large eddies, which have higher energy than

IGWs.

After the decomposition of the flow into rotational and divergent components,

we found that in summer, in the inertial range (10 to 100 km), both mesoscale/-

submesoscale motions and IGWs contribute to the rotational component, whereas

in winter, only the former does. Disentangling these processes in summer is chal-

lenging, as they operate on similar scales with comparable kinetic energy [115].

In relation to SWOT, in February, the geostrophic approximation effectively

predicts the kinetic energy spectrum from SSH, with slightly overestimated

energy and an underestimated slope. This underestimation of β is likely due

to the dominance of cyclonic over anticyclonic vorticity and may lead to an

overestimation of the pair-dispersion rates in the submesoscale range [120].
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Another factor contributing to this overestimation is the nondivergent nature

of SSH-derived flow, which allows pairs to disperse without being trapped in

convergence regions that intensify as Ro increases [67]. In August, IGWs play

a significant role, and the geostrophic approximation alone is insufficient to

accurately estimate the kinetic energy spectrum and surface velocities from SSH.

Both the geostrophic approximation and the dispersion relation are needed for

accurate results, with the geostrophic approximation working well at large scales

and the dispersion relation necessary at smaller scales dominated by IGWs.

A valuable perspective would be to expand this study to other regions and

extend it over more months to develop a more comprehensive understanding

of particle dispersion processes at global scales. Additionally, the sensitivity

of Lagrangian statistics to high-frequency motions and internal gravity waves

should be further investigated. An appealing approach that we are currently

undertaking is through a toy model based on kinematic flows (see, e.g., [122])

coupled with synthetic wave fields.



Conclusions

In this work, we presented a comprehensive study on Lagrangian particle dis-

persion in surface ocean turbulence, using numerical simulations of the SQG+1

model and LLC4320 data. We address the question of how ageostrophic motions

affect Lagrangian transport in ocean submesoscales by progressively increasing

complexity. We begin with an idealized framework, the SQG+1 model, where

we vary the Rossby number to investigate the impact of ageostrophic motions

on both Eulerian flow properties and Lagrangian statistics. Next, we compare

the Lagrangian statistics for tracers advected by the full flow, including both

geostrophic and ageostrophic components, and by the geostrophic component

alone in the SQG+1 model. This is motivated by the fact that velocity fields ob-

tained via satellite altimetry (including those from SWOT) essentially represent

the geostrophic part of the flow. Finally, since the SQG+1 model does not account

for high-frequency motions (as IGWs), we use Lagrangian tracers advected by

LLC4320 surface velocity fields to assess the significance of IGWs on particle

dispersion.

In Part III, we presented the results of this study across three chapters. In

the first (Chapter 4), we have shown that the SQG+1 model, in an oceanographic

setup, can account for both the Eulerian and Lagrangian properties that char-

acterize ocean submesoscales. We recover kinetic energy spectra with a scaling

close to E(k) ∼ k−2, a behavior consistent with submesoscales and in reasonable

agreement with observations [25, 109, 112]. Additionally, we find that its dynam-

ics are characterized by a dominance of cyclones over anticyclones. The intensity

of this increases with the Rossby number. Using relative dispersion, kurtosis, and

the FSLE, we found that pair-dispersion properties are only marginally affected

by Ro and that dispersion is nonlocal in our simulations. However, clustering,

131
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driven by ageostrophic motions, intensifies with Ro, as observed through the

computation of the PDF of Voronoï cell areas and the correlation dimension.

In the second chapter (Chapter 5), we adopt again the SQG+1 to explore the

accuracy of velocity fields similar to those from satellites like SWOT. We address

this by comparing trajectories of particles advected by either the full flow or its

geostrophic part only, which should be closer to that measured by satellite al-

timetry. The results are in agreement with those obtained by comparing particle

advection in weakly-ageostrophic-flow simulations at different Rossby numbers

in Chapter 4, highlighting the weak effect of ageostrophic velocity on the pair

separation process. However, they also reveal that advection by the geostrophic-

only flow tends to overestimate the typical pair-separation rate. Moreover, we

show that filtering the ageostrophic flow causes a bias on trajectories, whose

importance grows with Ro, and we quantify the scale-by-scale dispersion rate

between the full and geostrophic-only advection models. We further character-

ize the temporary particle clusters that form due to ageostrophic motions. In

particular, we find that, while compressibility is small in our simulations, the

intensity of clustering can be substantial. Our analysis indicates that, in the

SQG+1 system, clustering is essentially due to the interplay between the (small)

flow compressibility and the existence of long-lived structures that trap particles,

increasing their accumulation.

Finally, in the last chapter (Chapter 6), we shift our analysis from an ide-

alized model to a high-resolution general circulation model (LLC4320). Our

study focuses on a specific area in the Kuroshio Extension during February and

August 2012. This region is particularly interesting because it exhibits energetic

submesoscales and is a SWOT crossover region. We begin by examining the dis-

persion process using single-particle and two-particle statistics. To understand

what drives the dispersion process, we analyze the Eulerian flow properties

in that region by partitioning motions into slower mesoscale/submesoscale

motions and faster IGWs. We find that, in February, dispersion is local and

driven by mesoscale/submesoscale motions. This is consistent with previ-

ous studies showing that submesoscale motions are intensified in winter [13,

113]. However, in August, dispersion is more likely nonlocal but still driven

by mesoscale/submesoscale motions with a steep kinetic energy spectrum,
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E(k) ∼ k−3. Despite the increased intensity of IGWs contributing to the full

kinetic energy of the flow (i.e., associated with both slower and faster processes)

in August, the dispersion statistics showed no significant sensitivity to IGWs,

particularly since the inertial oscillation scale is close to the smallest scale stud-

ied (not far from the grid resolution of LLC4320). Finally, we approximated the

kinetic energy spectrum from SSH. We found that, in winter, the geostrophic

approximation performs reasonably well, though with a slight overestimation of

energy and potential overestimation of the pair-separation rate. In summer, as

IGWs are intensified, both the dispersion relation of waves and the geostrophic

approximation are necessary to achieve a reliable approximation of the kinetic

energy spectrum from SSH.

In conclusion, we demonstrate that the SQG+1 model is well suited for model-

ing ocean submesoscales, as its dynamics exhibit key submesoscale features. The

model generates a flow with cyclone-anticyclone asymmetry and divergent hori-

zontal motion. We find that dispersion is driven by large-scale structures in these

simulations and is only weakly influenced by ageostrophic motions. Additionally,

clustering is attributed to ageostrophic motions and predominantly occurs in

cyclonic frontal regions, consistent with drifter observations [18]. Furthermore,

after filtering SQG+1 flows and advecting particles, we observe that this filtering

results in an increased pair-separation rate compared to particles advected by

the full flow. Importantly, filtering out ageostrophic motions eliminates clus-

tering, suggesting caution is needed when using SWOT-derived velocity fields

for Lagrangian applications. This clustering is further intensified by the flow’s

time correlation and persistent strain. Lastly, when considering a general ocean

circulation model, we observe a seasonal variability effect: during winter, disper-

sion is local, whereas in summer, it becomes nonlocal. In both cases, dispersion

is driven by mesoscale/submesoscale motions, specifically the rotational flow

component (i.e., vorticity).

For future perspectives, we find two possible directions interesting to ex-

plore. The first incorporates internal wave dynamics into the QG, or even the

SQG+1, model. By integrating IGWs into these models, we could investigate the

effects of IGWs within the framework of models that extend the QG approxi-

mation. This enhancement would allow us to study the interactions between
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IGWs and submesoscale processes more comprehensively. It would also facil-

itate decoupling their impact from slower ageostrophic motions, enabling a

clearer understanding of the respective roles of different dynamical processes

in ocean circulation. Such an approach could lead to improved Lagrangian

transport and dispersion modeling at submesoscales, providing more accurate

predictions crucial for applications like pollutant tracking, search and rescue

operations, and understanding nutrient transport in marine ecosystems. The

second perspective involves studying more SWOT crossover regions to gain a

more global understanding of the dispersion process. By expanding our anal-

ysis to multiple SWOT crossover points across different oceanic regions, we

can examine clustering and dispersion within a global-scale framework. This

broader approach would help identify regional variations and commonalities

in submesoscale dynamics, enhancing the generality and applicability of our

findings. Additionally, it would contribute to validating and refining our models

using high-resolution satellite data, improving their accuracy and reliability.

Exploring these additional regions would allow us to capture a wider range

of oceanic conditions and processes, thereby enriching our understanding of

Lagrangian transport and improving our ability to predict and manage oceanic

phenomena on a global scale.
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AppendixA
Lyapunov exponents’ spectrum

Lyapunov’s theory of dynamical systems [58] can be applied to the evolution
equation of Lagrangian tracer particles

dx
dt

= u(x(t), t). (A.1)

The linearized version of Eq. (A.1), in tangent space, is just

dw
dt

= [∇u](x(t), t) w. (A.2)

The above equation is integrated along the Lagrangian path x(t); here [∇u](x(t), t)
is the velocity gradient tensor at position x at time t. Equation (A.2) can be
viewed as the equation for the separation δx between two (infinitesimally) close
Lagrangian trajectories [102].

The Lyapunov spectrum is related to the asymptotic exponential growth rate
of w and is computed as follows [58, 103]. Given an arbitrary unitary initial
vector w1(t0), the first exponent is computed as

λ1 = lim
t→∞

1
t − t0

ln
(
|w1(t)|
|w1(t0)|

)
, (A.3)

The second exponent is computed using a second vector w2(t), initially unitary
and orthogonal to the first one, evolving according to the same equation. The
area A(t) of the parallelogram defined by w1(t) and w2(t) at each time t allows to
introduce Λ such that

Λ = lim
t→∞

1
t − t0

ln
[
A(t)
A(t0)

]
. (A.4)
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Once Λ is known, λ2 can be computed as

λ2 = Λ−λ1, (A.5)

More details about the implementation of this method can be found in [58]. Note
that using an ensemble of particles, we obtain values of λi (i = 1, 2) for each
trajectory, which should be the same assuming ergodicity. In practice, λi values
are further averaged over all trajectories.



AppendixB
Compressibility ratio

The compressibility ratio of Eq. (5.7), C = ⟨(∇ · u)2⟩/⟨(∇u)2⟩, accounts for the
relative strength of divergence and strain. Considering that

(∇u)2 = (∂xu)2 + (∂xv)2 + (∂yu)2 + (∂yv)2,

∆2 ≡ (∇ ·u)2 = (∂xu)2 + (∂yv)2 + 2∂xu∂yv,

ζ2 = (∂xv)2 + (∂yu)2 − 2∂xv∂yu,

one has ∆2 + ζ2 = (∇u)2 + 2(∂xu∂yv − ∂xv∂yu). Therefore, the compressibility
ratio can also be written as

C =
⟨∆2⟩

⟨∆2⟩+ ⟨ζ2⟩ − 2
(
⟨∂xu∂yv⟩ − ⟨∂xv∂yu⟩

) . (B.1)

To further simplify Eq. (B.1), one needs to estimate the correlations of velocity
gradients appearing in the last parenthesis in the denominator. This problem was
addressed in [106] in a broader context to characterize the low-order moments
of velocity gradients of 3D compressible flows. Here, we recall some of the main
points of the reasoning and adapt them to our 2D case. Specifically, we define
A

(2)
ijkl = ⟨∂jui ∂luk⟩, where clearly i, j,k, l = 1,2 (indices 1 and 2 corresponding

to the x and y directions, respectively) in 2D. As shown in [106], assuming
statistical homogeneity (∂i⟨...⟩ = 0) one has

A
(2)
ijji = ⟨∂jui ∂iuj⟩ = ⟨∂iui ∂juj⟩ = A(2)

iijj , (B.2)

where repeated indices are summed over. For isotropic flows, the velocity-
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gradient correlation tensor can be expressed as

A
(2)
ijkl = αδijδkl + β δikδjl +γ δilδjk , (B.3)

with α, β, γ some constants and δij indicating the Kronecker tensor. Using

Eq. (B.3), one gets that A(2)
ijji = 2α + 2β + 4γ and A(2)

iijj = 4α + 2β + 2γ , implying
α = γ thanks to the constraint in Eq. (B.2). This last relation has the following
important consequence:

⟨∂1u1∂2u2⟩ = A(2)
1122 = A(2)

1221 = ⟨∂2u1∂1u2⟩, (B.4)

since A(2)
1122 = α and A

(2)
1221 = γ , from Eq. (B.3). Coming back to our original

notation, this means that

⟨∂xu∂yv⟩ − ⟨∂xv∂yu⟩ = 0. (B.5)

The above relation is very well verified in our numerical simulations for all
Rossby numbers (Fig. B.1) and allows us to write the compressibility ratio as
C = ⟨∆2⟩/

(
⟨∆2⟩+ ⟨ζ2⟩

)
, i.e. as in Eq. (5.8).
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Figure B.1: Velocity-gradient correlations ⟨∂xu∂yv⟩ (filled points) and ⟨∂xv∂yu⟩ (empty points)
as a function of time for the full SQG+1 turbulent flow and different Rossby numbers (different
point types). Inset: ⟨∂xu∂yv⟩ − ⟨∂xv∂yu⟩, temporally averaged in the statistically steady state of
the flow, as a function of the Rossby number.



AppendixC
Further Data and Figures

In this annex, we present supplementary figures that provide additional insights
and support to the discussions and analyses detailed in the main chapters of this
thesis. These figures are referenced within the main text but are included here
to ensure the main manuscript remains concise and focused.

Figure C.1 presents the average Eulerian mean divergence conditionally av-
eraged over vorticity and strain for Ro = 0.0125, Ro = 0.0375, Ro = 0.05, and
Ro = 0.075. At the smallest Ro [panel (a)], the characteristic asymmetric and
elongated, boomerang-like shape is not visible due to the low skewness of vortic-
ity statistics (see inset of Fig .4.3). As Ro increases, the boomerang shape becomes
more pronounced. Across all Ro values, convergence is predominantly observed
in cyclonic frontal regions. This figure also confirms that the averaged quantity
exhibits the same features as those observed at a single time in Fig. 4.12a.

Figure C.2 presents the average Lagrangian mean divergence conditionally
averaged over vorticity and strain for Ro = 0.075. This figure shows that the
averaged quantity exhibits the same features as those observed at a single time
in Fig. 4.12b.

Figure C.3 shows the energy spectra of the full, filtered, and SQG flows at all
the Rossby numbers studied, ranging from 0.0125 to 0.075. The inset presents
the spectra compensated by a power-law (k−β) best fit. The spectral exponents are
in the range 2.2 ≲ β ≲ 2.7. At the smallest Rossby numbers, Ro = 0.0125 [panel
(a)], 0.025 [panel (b)], and 0.0375 [panel (c)], the spectra overlap, indicating that
Ro is too small to visibly affect the full flow in terms of kinetic energy spectra. At
larger Ro, the differences between the three spectra become more pronounced,
with the full and filtered flow spectra remaining more similar to each other than
to the SQG flow. These differences increase as Ro grows.
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Figure C.1: Eulerian mean divergence ∆
ζσ

conditionally averaged over vorticity (ζ) and strain
(σ ), averaged over several flow realizations in statistically steady conditions, for Ro = 0.0125 (a),
Ro = 0.0375 (b), Ro = 0.05 (c) and Ro = 0.075 (d).
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Figure C.2: Lagrangian Mean divergence ∆
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(a) (b)

(c) (d)

(e) (f)

Figure C.3: Kinetic energy spectra temporally averaged over several flow realizations in the
statistically steady state for SQG, SQG+1 and (SQG+1)g (i.e., for the geostrophic component of
the SQG+1 simulation). Panels (a) to (f) show the spectra for Rossby numbers from 0.0125 to
0.075. The dashed black line corresponds to k−5/3, the expected spectrum for SQG turbulence.
Inset: the same spectra compensated by the best-fit power law k−β and rescaled with a coefficient
such that the scaling range corresponds to the wavenumbers for which E(k)kβ ≃ 1
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