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Résumé

Etablir l’ordre temporel entre les événements et résoudre les anaphores associatives sont

cruciaux pour la compréhension automatique du discours. La résolution de ces tâches

nécessite en premier lieu une représentation efficace des événements et de mentions

d’entités. Cette thèse s’attaque directement à cette problématique, à savoir la conception

de nouvelles approches pour obtenir des représentations d’événements et de mentions

plus expressives.

Des informations contextuelles et de sens commun sont nécessaires pour obtenir de

telles représentations. Cependant, leur acquisition et leur injection dans les modèles

d’apprentissage est une tâche difficile car, d’une part, il est compliqué de distinguer le

contexte utile à l’intérieur de paragraphes ou de documents plus volumineux, et il est

tout aussi difficile au niveau computationnel de traiter de plus grands contextes. D’autre

part, acquérir des informations de sens commun à la manière des humains reste une

question de recherche ouverte. Les tentatives antérieures reposant sur un codage manuel

des représentations d’événements et de mentions ne sont pas suffisantes pour acquérir

des informations contextuelles. De plus, la plupart des approches sont inadéquates

pour capturer des informations de sens commun, car elles ont à nouveau recours à

des approches manuelles pour acquérir ces informations à partir de sources telles que

des dictionnaires, le Web ou des graphes de connaissances. Dans notre travail, nous

abandonnons ces approches inefficaces d’obtention de représentations d’événements et

de mentions.

Premièrement, nous obtenons des informations contextuelles pour améliorer les

représentations des événements en fournissant des n-grams de mots voisins de l’événement.

Nous utilisons également une représentation des événements basée sur les caractères

pour capturer des informations supplémentaires sur le temps et l’aspect de la structure

interne des têtes lexicales des événements. Nous allons aussi plus loin en apprenant

les interactions sur ces représentations d’événements pour obtenir des représentations

riches de paires d’événements. Nous constatons que nos représentations d’événements

améliorées démontrent des gains substantiels par rapport à une approche qui ne re-

pose que sur les plongements de la tête lexical de l’événement. De plus, notre étude
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d’ablation prouve l’efficacité de l’apprentissage d’interactions complexes ainsi que le rôle

des représentations basées sur les caractères.

Ensuite, nous sondons les modèles de langage de type transformer (par exemple BERT)

qui se sont révélés meilleurs pour capturer le contexte. Nous étudions spécifiquement les

anaphores associatives pour comprendre la capacité de ces modèles à capturer ce type de

relation inférentielle. Le but de cette étude est d’utiliser ces connaissances pour prendre

des décisions éclairées lors de la conception de meilleurs modèles de transformer afin

d’améliorer encore les représentations des mentions. Pour cela, nous examinons individu-

ellement la structure interne du modèle puis l’ensemble du modèle. L’examen montre

que les modèles pré-entraînés sont étonnamment bons pour capturer des informations

associatives et que ces capacités dépendent fortement du contexte, car elles fonctionnent

mal avec des contextes déformés. De plus, notre analyse qualitative montre que BERT

est capable de capturer des informations de base de sens commun mais ne parvient pas

à capturer des informations sophistiquées, qui sont nécessaires pour la résolution des

anaphores associatives.

Enfin, nous combinons à la fois des informations contextuelles et de sens commun

pour améliorer encore les représentations des événements et des mentions. Nous injec-

tons des informations de sens commun à l’aide de graphes de connaissances pour les

tâches de classification des relations temporelles et de résolution d’anaphores associatives.

Notre approche pour acquérir de telles connaissances se fonde sur des plongements de

nœuds de graphe appris sur des graphes de connaissances pour capturer la topologie glob-

ale du graphe, obtenant ainsi des informations externes plus globales. Plus précisément,

nous combinons des représentations basées sur des graphes de connaissances et des

représentations contextuelles apprises avec des plongements uniquement textuels pour

produire des représentations plus riches en connaissances. Nous évaluons notre approche

sur des jeux de données standard comme ISNotes, BASHI et ARRAU pour la résolution

des anaphores associatives et MATRES pour la classification des relations temporelles.

Nous observons des gains substantiels de performance par rapport aux représentations

uniquement textuelles sur les deux tâches démontrant l’efficacité de notre approche.



Abstract

Establishing temporal order between events and resolving bridging references are

crucial for automatic discourse understanding. For that, effective event and mention rep-

resentations are essential to accurately solve temporal relation classification and bridging

resolution. This thesis addresses exactly that and designs novel approaches to obtain

more expressive event and mention representations.

Contextual and commonsense information is needed for obtaining such effective

representations. However, acquiring and injecting it is a challenging task because, on

the one hand, it is hard to distinguish useful context itself from bigger paragraphs or

documents and also equally difficult to process bigger contexts computationally. On the

other hand, obtaining commonsense information like humans acquire, is still an open

research question. The earlier attempts of hand engineered event and mention repre-

sentations are not sufficient for acquiring contextual information. Moreover, most of the

approaches are inadequate at capturing commonsense information as they again resorted

to hand-picky approaches of acquiring such information from sources like dictionaries,

web, or knowledge graphs. In our work, we get rid of these inefficacious approaches of

getting event and mention representations.

First, we obtain contextual information to improve event representations by provid-

ing neighboring n-words of the event. We also use character-based representation of

events to capture additional tense, and aspect information from the internal structure

of event headwords. We also go a step further and learn interactions over these event

representations to get rich event-pair representations. We find that our improved event

representations demonstrate substantial gains over an approach which relied only on

the event head embeddings. Also, our ablation study proves the effectiveness of complex

interaction learning as well as the role of character-based representations.

Next, we probe transformer language models (e.g. BERT) that are proved to be better

at capturing context. We investigate specifically for bridging inference to understand the

capacity of these models at capturing it. The purpose of this investigation is to use these

understandings for making informed decisions at designing better transformer models

to further improve mention representations. For that, we examine the model’s internal

structure individually and then the whole model. The investigation shows that pre-trained

models are surprisingly good at capturing bridging information and these capabilities

are highly context dependent, as they perform poorly with distorted contexts. Further,

our qualitative analysis shows that BERT is capable of capturing basic commonsense
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information but fails to capture sophisticated information which is required for bridging

resolution.

Finally, we combine both contextual and commonsense information for further improv-

ing event and mention representations. We inject commonsense information with the

use of knowledge graphs for both temporal relation classification and bridging anaphora

resolution tasks. We take a principled approach at acquiring such knowledge where we

employ graph node embeddings learned over knowledge graphs to capture the overall

topology of the graph as a result gaining holistic external information. Specifically, we

combine knowledge graph based representations and contextual representations learned

with text-only embeddings to produce knowledge-aware representations. We evaluate our

approach over standard datasets like ISNotes, BASHI, and ARRAU for bridging anaphora

resolution and MATRES for temporal relation classification. We observe substantial gains

in performances over text-only representations on both tasks proving the effectiveness of

our approach.
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Chapter 1

Introduction

1.1 Automatic discourse understanding

Discourse is a bigger chunk of language than a sentence such as paragraph, document,

etc., which often comprises multiple sentences. The sentences can be uttered by a single

person or multiple people with the constraint that discourse as a unit produces coherent

communication (Hobbs, 1979; Scha et al., 1986). A coherent communication conveys a sin-

gle core subject with multiple discourse elements producing continuous sense by relating

to previously mentioned elements. On the contrary, a random sequence of sentences that

does not possess such continuity of senses can not be a discourse (De Beaugrande and

Dressler, 1986; Mann and Thompson, 1986). A discourse can be between writer–reader

(text) or speaker–listener (dialogue). In this work, we concentrate on the written text so

that discourses are monologues that communicate with the reader.

In discourse, linguistic units are connected by different relations to maintain coherence

and deciphering these relations is a part of discourse understanding (Stede, 2011; Webber,

2019). The linguistic units such as sentences, clauses, or events (smaller linguistic units

that indicate situations within clauses) can be temporally related to each other (Bramsen

et al., 2006). Temporal relations between them denote the chronological order in which

they occur (e.g. precedence, succession, concurrence, etc.). In addition to temporal

relations, a relation on a semantic or pragmatic level can link clauses, sentences, or larger

portions of discourse to each other. These relations are known as discourse relations (also

called as coherence or rhetorical relations). The exact number of discourse relations

varies depending on the postulated granularity but generally they indicate consequence,

explanation, elaboration, or contrast between discourse units (Carlson et al., 2001; Prasad

et al., 2008; Stede, 2011). Apart from these relations, there can be expressions in different

sentences which link to previously mentioned expressions either directly or indirectly.
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We are talking specifically about mentions that refer to real or abstract entities. Mentions

are either named (e.g. Barack Obama), nominal (e.g. the chairman, a car, the driver) or

pronominal (e.g. he, she) expressions. They exhibit certain relations with each other.

Mentions can hold either bridging relation where mentions refer to different entities

but are associated with each other (e.g. the driver-a car) or coreference relation where

mentions refer to the same entity (e.g. He-Barack Obama).

Let us explain this further with a following simple discourse (modified from Hobbs

(1979)):

This discourse tells a reader that Paul traveled in the first-class compartment of the

train from Paris to Istanbul and he enjoyed the ride. After that Paul traveled in a boat to

reach Cyprus. This understanding is possible because a human reader unravels various

relations from the discourse:

• “the first-class compartment” indicates the first-class of the train in which Paul

traveled. (bridging relation between “a train” and“the first-class compartment”)

• Both instances of the pronouns, “He”, “He” refer to “Paul”. (Coreference relation)

• Paul’s journey was pleasant “because” the seats were comfortable. (causal Discourse

relation )

• Paul traveled to Cyprus “after” the train journey from Paris to Istanbul. (Temporal

relation)

Uncovering these relations is essential for automatic discourse understanding. Out

of these relations, temporal and bridging relations are relatively less studied in NLP

than discourse relations (Braud and Denis, 2015; Dai and Huang, 2018; Ji and Eisenstein,

2015; Lin et al., 2009; Liu et al., 2020; Liu and Li, 2016; Marcu and Echihabi, 2002; Pitler

et al., 2008; Saito et al., 2006; Shi and Demberg, 2019; Varia et al., 2019; Wang and Lan,

2015; Wellner et al., 2006) and coreference relations (Clark and Manning, 2015, 2016a,b;

Daumé III and Marcu, 2005; Denis and Baldridge, 2008; Durrett and Klein, 2013; Finkel
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and Manning, 2008; Joshi et al., 2020; Lee et al., 2017; Luo et al., 2004; Soon et al., 2001;

Wiseman et al., 2015, 2016; Zhang et al., 2019a). Consequently, we specifically concentrate

on temporal relation classification and bridging resolution tasks, which automatically

detect the temporal and bridging relations from text. The following sections discuss in

detail about them.

1.2 Temporal processing and bridging resolution

Temporal processing Automatic temporal analysis is critical to perform automatic pro-

cessing and understanding of discourse. Detecting temporal relations between events

accurately unravels the intended meaning conveyed by the writer. For instance, consider

two events from a discourse: people were furious and police used water canons. Assigning

two different temporal relations to them affects the meaning of the discourse: police

used water canons before people were furious means people became furious because of

police’s action, whereas police used water canons after people were furious conveys police

used water canons to placate angry people. Additionally, the temporal relations help to

establish discourse relations between clauses (Wang et al., 2010), which can be seen from

the previous example, where police used water canons causes people were furious given

that it happens before, whereas after temporal relation reverses causality. This shows a

clear need to establish accurate temporal relations to extract the overall intended meaning

out of discourse.

Besides its significance in discourse understanding, temporal analysis has important

practical implications. In document summarization, knowledge about the temporal order

of events can enhance both the content selection and the summary generation processes

(Barzilay et al., 2002; Ng et al., 2014). In question answering (QA), temporal analysis is

needed to determine “when” or “how long” a particular event occurs and temporal order

between them (Meng et al., 2017; Prager et al., 2000). The temporal modeling can also

help machine translation systems (Horie et al., 2012). In addition, temporal information

is highly beneficial in the clinical domain for applications such as patient’s timeline

visualization, early diagnosis of disease, or patients selection for clinical trials (Augusto,

2005; Choi et al., 2016; Jung et al., 2011; Raghavan et al., 2014).

For a given discourse, the temporal processing task can be divided into two main

parts: 1. Detecting temporal entities such as events and time expressions (TimEx)1, and

2. Establishing temporal ordering between these temporal entities. The latter task is

1Time expressions are phrases that indicate moment, intervals or other time regions. The phrases such
as 15 Aug. 1947, two weeks or today fall into this category. We detail this in the next chapter.
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called temporal relation classification which particularly determines temporal relations

between event-event, event-TimEx and TimEx-TimEx pairs. In this work, we are focusing

on the temporal relation classification for event-event pairs because it is challenging

in comparison to other pairs. But, the proposed methods can be easily extended for

determining relations between the other two pairs as well.

Bridging resolution Mentions also possess certain relations between each other like

temporal relations between sentences, clauses, or events. Specifically, an anaphor is a spe-

cial mention that depends on previously appeared mention(s), referred to as antecedent(s),

for its complete interpretation. As stated previously, anaphor-antecedent can be related

to each other either by a bridging or coreference relation. Bridging relation indicates an

association between anaphor and antecedent but non-identical relation (e.g. the first-class

compartment–a train) whereas coreference denotes identical relation (e.g. He–Paul). Au-

tomatically identifying bridging relations is more challenging than coreference resolution

as bridging encodes various abstract relations between mentions as opposed to identical

relations in coreference. These context-dependent abstract relations also require world

knowledge to make a connection between them. Additionally, the annotated corpora

for bridging are smaller in comparison increasing the difficulty level further. Bridging

relations are the second topic of focus in this work, as even though difficult, realizing

bridging relations is crucial for discourse comprehension.

Identifying bridging relations is also beneficial for various tasks such as textual en-

tailment, QA, summarization, and sentiment analysis. Textual entailment establishes

whether a hypothesis can be inferred from a particular text, and bridging can be used in

determining this inference (Mirkin et al., 2010). For QA system, (Harabagiu et al., 2001)

resolved a subset of bridging relations (meronymic) in the context for better accurately

identifying answers. Resolving bridging relations is important for summarization, as differ-

ent sentences can be combined based on it (Fang and Teufel, 2014). Bridging resolution is

also of help in aspect-based sentiment analysis (Kobayashi et al., 2007), where the aspects

of an object, for example, the zoom of a camera, are often bridging anaphors.

Computational task for identifying bridging relations is called bridging resolution.

That can be further broken into two main tasks: bridging anaphora identification which

identifies bridging anaphors from documents, and bridging anaphora resolution which

links them to appropriate antecedents. This work focuses on the second task of anaphora

resolution.
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1.3 Event and mention representations

Importance of context and commonsense information Automatic processing of tem-

poral and bridging relations is difficult which can be seen from the low state-of-the-art

results. However, humans perform these tasks very easily. We hypothesize that the reasons

might be that human readers can access contextual information from the given discourse

itself as well as use their prior experience in the form of commonsense knowledge to figure

out these relations.

A context2 is important for establishing temporal ordering between linguistic units

and making bridging associations. In fact, it is crucial for overall discourse understanding,

for instance, in the previous example, we can not understand “from where he went to

Cyprus?” if the last sentence “He went by boat from there to Cyprus” is read without the

earlier sentences. To specifically see the importance of context for temporal relations, let

us look at the following examples that are adapted from Lascarides and Asher (1993):

(1) Max switchede1 on the light. The room was pitch darke2 .

(2) Max switchede1 off the light. The room was pitch darke2 .

From the discourse in example 1, a human reader can understand that the room was

dark before Max switched on the light. But, in example 2, the room was dark after Max

switched off the light. The chronology of events switching and room becoming dark is

changed depending on the context in which they are used.

Similarly, context is significant for establishing bridging relations, which can be under-

stood from the following examples:

(3) A car is more fuel efficient than a rocket as the engine requires less fuel.

(4) A car is more fuel efficient than a rocket as the engine requires more fuel.

In example 3, the engine refers to the car engine as it requires less fuel and we said that

cars are more fuel efficient that rockets. But, because of change in the context, when we

say the engine requires more fuel in 4, here, the engine refers to the rocket engine and not

the car engine.

2Throughout this thesis, context refers to linguistic context. Context can be derived from different sources
such as physical context depends on the place of discourse deliverance, participants in communication
having similar background knowledge share epistemic context, or social context is derived from same social
conducts of participants. But, here we are referring to linguistic context where communication is built on
the previous text and a meaning is derived from them.
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Commonsense3 information is equally important as contextual information for de-

termining temporal and bridging relations. This is especially useful when there are no

explicit surface clues present in the context. Let us see some examples:

(5) A thief robbede3 the national bank. The investigatione4 showed that $1 million are

stolen.

(6) The driver rushed out of his car as the diesel tank was leaking.

In example 5, to determine the temporal ordering of events robbery and investigation,

it is crucial to possess the commonsense information that an investigation happens after

the crime has been committed. Hence, e4 is after e3. Similarly for bridging relation in

example 6, the diesel tank refers to the diesel tank of his car as generally cars have diesel

tanks and not related to the previous expression – The driver.

Effective representation learning A representation associates linguistic objects to typi-

cally a high-dimensional vector. Obtaining this representation of events and mentions is

essential for automatic identification of temporal and bridging relations because machine

learning models used to solve them require a mathematical object (typically a vector) as

an input. More than just a mathematical object, the representation should also capture as

much relevant information needed to solve these tasks. Following the discussion from the

last section, we believe contextual and commonsense information should be encoded in

the representation for being effective.

Identifying the relevant features required for the task is a challenging aspect in getting

an effective representation. One way of obtaining these features is with the use of human

expertise and prior knowledge about the task. The earlier approaches for temporal relation

classification (Bethard, 2013; Bethard et al., 2007; Boguraev and Ando, 2005; Chambers;

D’Souza and Ng, 2013; Laokulrat et al., 2013; Lapata and Lascarides, 2004; Mani et al.,

2003, 2006) and for bridging anaphora resolution (Lassalle and Denis, 2011; Poesio et al.,

2004; Poesio and Vieira, 1998; Poesio et al., 1997) used hand-engineered features. However,

manually designing features is labor-intensive and tedious work that requires task-specific

knowledge. Also, there is a possibility of error in obtaining such features because of noisy

data. Moreover, if the domain of the data is changed the effort of obtaining relevant

features needs to be repeated. For example, the wording used in finance, sports, or law

differs subtly and can require a different set of features to solve the task. The problem

3We refer to any knowledge that can not be easily derived from the given text as commonsense knowledge.
This means, it encompasses both linguistic knowledge (e.g. lexical semantic knowledge) as well as world
knowledge (e.g. factual or encyclopedic knowledge).
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of designing features becomes more difficult if the language of the text is changed. As a

result, it is critical to learn these relevant features rather than relying on manually designed

representation.

The recent approaches based on neural networks attempt to remedy issues of manually

designed features by automatically learning these representations but these approaches

are few. In the case of temporal relation classification, either approaches ignored context

completely (Mirza and Tonelli, 2016) or added syntactic tree preprocessing burden to

encode contextual information (Cheng and Miyao, 2017; Choubey and Huang, 2017; Meng

et al., 2017) 4. Also, the approaches proposed to encode commonsense information relied

on certain hand-designed features (Ning et al., 2018a) or used a portion of knowledge

source (Ning et al., 2019). Similarly, for bridging anaphora resolution recently proposed

bridging-specific embeddings (Hou, 2018a,b) ignored context whereas BERT based ap-

proaches (Hou, 2020a; Yu and Poesio, 2020) neglected commonsense information.

As stated earlier, an effective representation learning should capture contextual and

commonsense information as they are important for both tasks, but incorporating these

two types of information poses various challenges. The major problem in injecting con-

textual knowledge is to understand what kind of context to provide and how much. It

is possible, that humans derive context from previous sentences, paragraphs, or even

documents. But including this context in the learning models is difficult because of the

limited processing abilities of the models as well as the overall capacity to decipher the

useful context. On the other hand, commonsense information inclusion poses other type

of problems. Since humans acquire commonsense knowledge from various sources, in

general from their world experiences, it is not easy to replicate them in computational

approaches. In recent years, studies based on both contextual and commonsense knowl-

edge are gaining traction, as approaches using various sources of external knowledge like

knowledge graphs (Faruqui et al., 2015; Mihaylov and Frank, 2018; Shangwen Lv and Hu,

2020), images (Cui et al., 2020; Li et al., 2019; Rahman et al., 2020), videos (Huang et al.,

2018; Palaskar et al., 2019), or crowdsourced resources (Krishna et al., 2016) have been

proposed.

1.4 Research questions and contributions

From this discussion, we see that the previously proposed approaches fail to simultane-

ously capture both contextual information and commonsense information effectively.

4We are talking about the period before the proposal of our system (Pandit et al., 2019), significant
improvements have been made since then.
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We intend to fill this gap. Our aim in this thesis is to design efficient approaches for

learning effective event representations for temporal relation classification and mention

representations for bridging anaphora resolution. We include both contextual as well as

commonsense knowledge because of their importance in these representations. We argue

that the amount of commonsense information that can be learned from only text-based

approaches is limited. Hence, there is a need to complement text-based information with

commonsense information learned from external knowledge sources. This understanding

leads to different objectives and contributions:

Contextual event representation We encode the contextual information present in the

neighboring words of events to improve event representation. We believe this context can

capture the important tense, aspect, and necessary temporal information. We develop a

Recurrent Neural Network (RNN) based model to learn this representation. We provide a

context in the window of n-words of event head to RNN where each word is represented

with distributed word embeddings. To complement this contextual information, we

also inject morphological information into the representation. For that, we concatenate

these embeddings with character-based embeddings of the event-head word to capture

morphology information of the event. We empirically show the effectiveness of the

approach on the standard datasets.

Complex event interactions Besides event representations, combined representation

of event pairs was not explicitly studied barring the exception of Mirza and Tonelli (2016)

where they used deterministic functions to get interactions between events. We argue

that complex interactions between event representations can capture effective event-pair

representations. To achieve that, we proposed a Convolution Neural Network (CNN) based

approach to capture these event interactions to produce rich event-pair representation.

Our analysis shows that this approach is more effective than obtaining simple linear

interactions.

Investigation of transformer language models for bridging inference The recently pro-

posed transformer-based language models (e.g. BERT) are potent at capturing required

contextual information (Devlin et al., 2019; Liu et al., 2019b). The previously proposed

approaches based on BERT (Hou, 2020a; Yu and Poesio, 2020) proved to be effective at

bridging anaphora resolution. But the specific reasons behind the success of transformer

language models are still unknown. This lack of understanding hampers the further effi-

cient improvement of the architecture. Hence, we believe it is an essential initial step to
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investigate these transformer models for bridging information because with that under-

standing mention representations can be further improved. Specifically, we want to probe

how capable are these transformer models at capturing bridging inference and which

layers of these big models are focusing on bridging. Importantly, we also check what kind

of context is required for these models to produce decent results. We design our probing

methods keeping these objectives in mind.

We employ two approaches for this investigation. First, we probe individual attention

heads of the transformer models for bridging inference. Our investigation shows that the

higher layers better capture bridging information than the middle and lower layers. Sec-

ond, we go a step further to investigate whole transformer model so as to understand how

effectively they perform cumulatively. We design a novel Of-Cloze test, a fill-in-the-blank

test that scores candidate antecedents for each anaphor and selects the highest scoring

mention as predicted antecedent. This Of-Cloze formulation produces competitive results

for bridging anaphora resolution indicating transformer models’ ability at capturing bridg-

ing information. Finally, we investigate the importance of context by providing a different

set of contexts to Of-Cloze test. We also, qualitatively investigate BERT to assess its ability

at capturing commonsense information required for bridging, which shows insufficiency

of BERT at them.

Knowledge-aware mention and event representation Our investigation of transformer

language models suggests that they are good at capturing contextual information but

inadequate at capturing commonsense information which is in line with the previous

studies (Da and Kasai, 2019; Park et al., 2020). So, we design approaches to inject such

knowledge for mention and event representations, and propose to use knowledge graph

node embeddings for this purpose. We claim that this way of injecting knowledge is more

effective than designing features based on external knowledge. However, this approach

poses a few challenges: First, mapping mentions or events to graph nodes is a non-trivial

task as they are inherently different objects (nodes can be abstract concepts whereas

mentions are linguistic units containing tokens). Second, the mapping can lead to multiple

nodes (due to the several meanings of the word) or no node at all (due to the absence of

knowledge from the graph). We propose simple approaches to address these questions

that can be applied over for any knowledge graph. Specifically, we use two knowledge

graphs separately, WordNet (Fellbaum, 1998), and TEMPROB (Ning et al., 2018a), and

empirically show the effectiveness of these proposed methods for both tasks, followed by

analysis for a better understanding.
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1.5 Organization of the dissertation

The remainder of the document is mainly divided into three parts. First, we introduce the

background information and prior work. The next three chapters detail our contributions

and finally, we conclude by noting down our findings and future directions.

Chapter 2 describes necessary task definitions, the corpora used in the experiments,

and evaluation strategies. Further, we briefly introduce artificial neural networks that

are used extensively in the thesis as a base model. Next, the chapter details the different

word representation approaches that are central to our work. Finally, we describe different

knowledge graphs, and graph node embeddings framework.

Chapter 3 explores related work for both temporal relation classification and bridging

resolution. For both tasks, we focus on the previous event and mention representation

approaches while briefly discussing model and inference related work.

Chapter 4 details our rich event representation and complex interaction learning

approach used for temporal relation classification. We understand from previous studies

that less attention is given to capture context for event representations. To remedy that,

we propose RNN based model to get event representation and CNN to capture complex

interactions. We detail our proposed neural model in this chapter, and we present results

from experiments to prove the efficacy of our approach. We also provide ablation studies

to understand the importance of different components in our system.

Chapter 5 focuses on the probing of transformer models for bridging inference. This

chapter talks about three important things: first, the ability of individual attention heads

at capturing bridging signal, second, our novel Of-Cloze test that checks the potency of the

whole transformer model, and third, the effect of context on their ability of understanding

bridging. The detailed error analysis is also done to understand the shortcomings of

transformer models as well as of our formulation.

Chapter 6 proposes an approach for obtaining knowledge-aware mention and event

representations. We first describe the challenges posed by the process of injecting com-

monsense information with the use of knowledge graphs. Then we propose a unifying

strategy to inject such knowledge for bridging anaphora resolution and temporal relation

classification. We provide empirical evidence of the effectiveness of our approach and a

detail analysis of our results.

Finally, Chapter 7 provides a formal conclusion of the thesis and a discussion of

promising future directions.
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Background

This chapter serves as a background for the rest of the thesis. It describes three important

items: (i) task definitions of both temporal relation classification and bridging anaphora

resolution, components of supervised approaches used to solve them including essential

factors: event, and mention representation, corpora used in the work, and evaluation

strategies, (ii) artificial neural networks which are popularly used for representation

learning and modeling, and (iii) representation learning and related fields, previously

proposed approaches to learn word representations, several composition functions over

them to obtain representations of word sequences (phrases, sentences, or paragraphs),

and knowledge graphs and graph node representations.

Section 2.1 details two central tasks of the thesis: temporal relation classification and

bridging anaphora resolution. For both tasks, we first provide formal definitions, then

specify three main components of supervised learning approaches used to solve them:

event and mention representations, models, and inference strategies. Further, we detail

corpora used for training and evaluating proposed approaches, and evaluation schemes.

In recent years, Artificial neural networks have been used ubiquitously for represen-

tation learning as well as modeling. Due to their potency, we also used them to improve

representations and for modeling. Therefore, we provide brief introduction of them in

Section 2.2. We explain the fundamental element of these models (neuron), activation

functions, hyperparameters, and optimization strategies. Further, we describe some of the

regularly used neural network architectures such as Feed-forward neural networks (FFNN),

Recurrent neural networks (RNN), and Convolutional neural networks (CNN).

The remaining chapter focuses on representation learning and various popularly

employed approaches to learning representations of words, word sequences, and graph

nodes. Section 2.3 discusses representation learning and related fields like metric learning,

and dimensionality reduction. Next, in section 2.4 we look at different distributional
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and contextual approaches of obtaining word representations. We first describe popular

distributional embeddings such as Word2vec (Mikolov et al., 2013a), Glove (Pennington

et al., 2014), and FastText (Bojanowski et al., 2017) which are used in the thesis, followed by

recently proposed contextual embeddings like ELMo (Peters et al., 2018), and BERT (Devlin

et al., 2019). Further, in section 2.5 we look at different ways of combining these word

embeddings to obtain representations of word sequences i.e. bigger chunks of language

than words like phrases, sentences, paragraphs, or documents. At last, we brief about

knowledge graphs and describe WordNet (Fellbaum, 1998) and TEMPROB (Ning et al.,

2018a), followed by details of conceptual framework and two broad families of node

embeddings approaches in Section 2.6.

2.1 Tasks

In this thesis, we focus on two discourse tasks: temporal relation classification and bridg-

ing anaphora resolution. We detail about them in this section.

2.1.1 Temporal relation classification

Time is a critical part of a language that is grasped from either explicitly or implicitly

present temporal information in the text, and automatically extracting such temporal

information is necessary for discourse understanding. In a discourse, various types of

linguistic units can be related temporally to each other such as sentences, clauses, or

smaller linguistic units like events, and expressions (TimEx) (Bramsen et al., 2006). Events

and TimEx, the granular units compared to sentences and clauses, are fundamental

for temporal information in language (Moens and Steedman, 1988). Hence, all recent

approaches consider these temporal entities, events and TimEx, as the ordering units for

establishing temporal relations (Bethard, 2013; Bethard et al., 2007; Chambers; D’Souza

and Ng, 2013; Laokulrat et al., 2013). We also follow a similar definition in our work.

In the following sections, we formally define temporal relation classification task (Sec-

tion 2.1.1.1), describe main components of common supervised learning approaches used

to solve them (Section 2.1.1.2), detail on corpora used in the experiments (Section 2.1.1.3),

and specify evaluations schemes (Section 2.1.1.4).

2.1.1.1 Definition

Temporal relation classification establishes temporal relations between temporal entities

such as events, and time expressions (TimEx) present in the given document. Events
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Relation Symbol Symbol for
inverse

Pictorial
view

X before Y b a XXX YYY

X meets Y m mi XXXYYY

X overlaps Y o oi XXX
YYY

X during Y d di XXX
YYYYYY

X starts Y s si XXX
YYYYY

X finishes Y f fi XXX
YYYYY

X equal Y = = XXX
YYY

Table 2.1 Allen’s interval temporal relations (Allen, 1983).

denote actions, occurrences, or reporting and can last for longer period of time or com-

plete in a moment (Pustejovsky et al., 2003b). Events are often expressed with verbs (e.g.

raced, declared), and sometimes with noun phrases (e.g. deadly explosion), statives (e.g.

he is an idiot), adjectives (e.g. the artist is active), predicatives (e.g. Biden is the presi-

dent), or prepositional phrases (e.g. soldiers will be present in uniform) may also indicate

events (Steedman, 1982). The second temporal entity, TimEx denotes exact or relative

pointer of time (e.g. now, last week, 26 Jan. 1950). It can be a moment, or an interval that

can state unambiguous time like 26 Jan. 1950 or a reference from the utterance such as

last week, now.

In this thesis, we consider temporal entities (events and TimEx) as intervals of time

that have start-point and end-point where start-point occurs before end-point (Hobbs

and Pan, 2004). This interval perspective holds true even in the case of a moment because

it still has start-point and end-point, albeit, not far from each other. Based on this interval

notion of temporal entities, Allen (1983) defined 13 possible temporal relations that can

be assigned between pair of temporal entities as shown in Table 2.1.

For the given document, temporal relations between temporal entities can be pre-

sented with the use of a graph where nodes are temporal entities and edges denote

temporal relations between them. This graph formed over temporal entities with temporal

relations between them is called temporal graph. Figure 2.1 shows the temporal graph

generated over a sample text. The figure also illustrates the complete process of temporal
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Fig. 2.1 Temporal relation identification over a sample text. From the given text (a), events
and TimEx are extracted (b), bold-faced words denote events and underlined words
are TimEx and then, temporal relations are assigned between events/TimEx to create a
temporal graph (c) with nodes as event or TimEx and edge denoting temporal relation.
Temporal graph shows edges as John studied (e1) before joined (e3), interned (e2) during in
2010 (t1) where both these happened during studied (e1).

relation extraction, first from the given raw text events and are extracted and then, a

temporal graph is formed over them.

Over these temporal relations, logical rules like symmetry and transitivity can be

applied as they possess algebraic properties (Allen, 1983). Suppose A, B and C are some

arbitrary events, then the rule of symmetry over temporal relations states that if A is before

B then B must be after A, because before and after are inverse temporal relations. This

symmetric rule can be generalized to other relations and their inverse relations mentioned

in Table 2.1. Formally, a symmetry rule Si , j between a r, r̄ inverse relation pair can be

given as:

Si , j : ri , j → r̄ j ,i (2.1)

where i , j denote any temporal interval and ri , j , r̄ j ,i denote respectively temporal relations

r , r̄ between i , j and j , i .

In addition to rules of symmetry, several transitivity rules can be applied over temporal

relations, for instance, if A meets B and B overlaps C, then A must be before C as illustrated

in Fig. 2.2. Here, we mentioned single transitivity rule over a specific pair of temporal

Fig. 2.2 (A m B)∧ (B o C ) → (A b C ).

relations: meets, and overlaps, but similar transitivity rules can be applied over all possible
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pairs of relations which is detailed in (Allen, 1983). Formally, a generic transitivity rule

Ti , j ,k can be given as:

Ti , j ,k : ri , j ∧ r̂ j ,k → r ′
i ,k (2.2)

where i , j ,k are any temporal intervals and ri , j , r̂ j ,k ,r ′
i ,k respectively denote temporal

relations r, r̂ ,r ′ between i − j , j −k, and i −k, and r ′ is the relation obtained by composing

r and r̂ .

Unknown temporal relations can be inferred from other known relations with the

application of these logical rules. Consider the above example, if the temporal relation

between A and C was unknown, then the transitivity rule over known relations between

A-B and B-C could easily tell us that A occurs before C. The process of applying these

transitivity rules to infer all the possible temporal relations from a temporal graph is known

as temporal graph saturation or temporal closure. As a consequence, temporal relations

between certain pair dictate relations between all other pairs because of propagation of

constraints (Allen, 1983). Therefore, it is mandatory for a pair present in the temporal

graph to obey the constraints put by other pairs. The temporal graph which follows all the

constraints is called consistent temporal graph. Conversely, if some of the constraints can

not be enforced in the temporal graph then such a graph is called inconsistent temporal

graph. The inconsistent temporal graph is practically useless for any downstream task

as it can not convey any useful information. Also, given an inconsistent temporal graph,

it is impossible to point out the wrong temporal relation that introduced inconsistency.

To illustrate that, let us again consider the previous example, suppose now a temporal

graph shows A meets B and B overlaps C but A is after C, then all the temporal orderings

are useless as it is impossible to find out the wrong relation from them.

Formally, suppose a given document D contains set of events, E = {e1,e2, · · · ,ene },

TimEx, T = {t1, t2, · · · ,ent }, and R = {r1,r2, · · · ,rnr } be the set of possible temporal rela-

tions. Then the temporal relation classification generates a consistent temporal graph

G = (V ,E) where V ,E are nodes and edges such that V = E ∪T and E = {(i , j ,ri j )|i , j ∈
V ,ri j ∈R} with the condition that all the temporal constraints C are obeyed in G , where

C = {Si , j ,Ti , j ,k |∀i , j ,k ∈ V }, Si , j denote symmetry constraints as shown in Eq. 2.1, and

Ti , j ,k denote set of transitivity constraints similar to Eq. 2.2.

Even though the complete definition of temporal relation classification involves find-

ing relations between event-event, TimEx-TimEx, and event-TimEx pairs, previously

proposed approaches frequently concentrated only on event-event pair relation assign-

ments, as it is the most challenging task among them. Besides the solution proposed for

it can be easily extended to other temporal entity pairs (Ning et al., 2017). Thus, going



16 Background

forward we only target event pairs with the assumption that the solution proposed for

them can be extended to TimEx-event as well as TimEx-TimEx pairs.

2.1.1.2 Supervised learning approach

In our proposed approach, we cast temporal relation classification as a supervised learning

problem. It consists of three main components: event and event-pair representations,

models, and inference. We discuss them in the following paragraphs.

Event and event-pair representation The essential part of supervised learning approaches

for temporal relation classification is a representation of events. Event representations as-

sociate a set of events present in a document to a real-valued vector, which acts as an input

for the models. A generic function ZE is designed to map an events to a de -dimensional

vector:

ZE : E →Rde (2.3)

ei 7→ZE (ei )

where ei ∈ E .

Next, it is equally important to combine the event representations to get event-pair

representations, as temporal relation is a binary relation (between pair of events). Suppose

for ei ,e j ∈ E representations obtained with ZE are ei := ZE (ei ),ej := ZE (e j ), then an

effective event-pair representations is modeled as:

ZP : Rde ×Rde →Rd ′
e (2.4)

(ei,ej) 7→ZP (ei,ej)

In this thesis, we learn these functions (ZE ,ZP ) to obtain better event and event-pair

representations to solve the task more accurately. In the next chapter (Section 3.1.1), first

we detail about the previously proposed approaches to obtain these functions and then in

Chapters 4 and 6 we present our approach.

Models To solve temporal relation classification task, commonly two types of models are

used: local models and global models. The local models learn model parameters without

considering temporal relation between other pairs (Chambers et al., 2007; Mani et al.,

2006). This makes the task a pairwise classification problem where a confidence score

corresponding to each temporal relation is predicted for a given pair of events. Generally a
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local model learns a function of the form: PL,θ : Rd ′
e →R|R| where d ′

e -dimensional vector

representation obtained from ZP , and R is a set of possible temporal relations. On the

contrary, global models learn parameters globally while considering temporal relations

between other pairs, thus, the learning function takes all event-pair representations and

outputs confidence scores corresponding to each pair, modeled as: PG ,φ : Rn×d ′
e →Rn×|R|

where n is number of event pairs.

Inference Both these models produce a confidence score corresponding to each tem-

poral relation for all the event pairs. Therefore, a strategy must be designed to get the

temporal graph from these scores. The most straightforward strategy is to choose the

temporal relation for a pair that has the highest confidence score. But, this strategy may

lead to inconsistent temporal graph prediction. Therefore, a more global strategy needs to

be designed. Initially, greedy approaches (Mani et al.; Verhagen and Pustejovsky, 2008)

were used. These strategies start with the empty temporal graph, then either add a node

or an edge while maintaining the temporal consistency of the graph. Though they pro-

duce temporally consistent graphs, they fail to produce optimal solutions. For this, the

constraints were converted into Integer Linear Programming (ILP) problem and an op-

timization objective is solved to produce the graph (Denis and Muller, 2011; Mani et al.,

2006; Ning et al., 2017).

In our work, we used a local model with a simple inference strategy to obtain rich

event-pair representations in Chapter 4, and a global model with ILP based inference

approach in Chapter 6 where commonsense knowledge is integrated with contextual

information. We also briefly discuss several previously proposed approaches for modeling

and inference in the next chapter in Section 3.1.2.

2.1.1.3 Corpora

The corpora for temporal relation classification is annotated with events, time expressions

(TimEx), and temporal relations between them. TimeML (Pustejovsky et al., 2003b) is the

most widely used annotation scheme for denoting this temporal information in docu-

ments. Popular corpora that are used in the thesis such as TimeBank (Pustejovsky et al.,

2003a), AQUAINT (Graff, 2002), TimeBank-Dense (Cassidy et al., 2014), TE-Platinum (Uz-

Zaman et al., 2013), and MATRES (Ning et al., 2018b) are all based on TimeML annotation

scheme that contains three core data elements EVENT, TIMEX, and TLINK1. Event tokens

present in the document are denoted by EVENT whereas time expressions are denoted

1There are other elements defined by TimeML such as SIGNAL, SLINK,etc. which are not widely used for
the task.
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TimeML Relations Allen’s Interval Relations

BEFORE before
AFTER after
INCLUDES contains
IS_INCLUDED during
IBEFORE meets
IAFTER met by
BEGINS starts
BEGUN_BY started by
ENDS ends
ENDED_BY ended by
DURING during | equals
DURING_INV contains | equals
SIMULTANEOUS equals
IDENTITY equals

Table 2.2 TimeML temporal relations and corresponding Allen’s interval relations. Note
that there is no equivalent of Allen’s overlaps and overlapped by relations in TimeML.

by TIMEX, and temporal relations between them are denoted by TLINK. In the scheme,

events and TimEx are represented as time intervals, so temporal relations can have thir-

teen possible types that almost resemble Allen’s interval relations, Table 2.2 shows the

correspondence between them. Now, with this brief understanding of TimeML annotation

scheme, let us look at several corpora that are used in the thesis.

TimeBank TimeBank (Pustejovsky et al., 2003a) is the largest dataset available for tempo-

ral relation classification containing 183 news documents (the New York Times, Wall Street

Journal, Associated Press). It is a human annotated dataset based on TimeML annotation

scheme with 7935 EVENTs, and 6418 TLINKs, Table 2.3 shows further distribution over each

temporal relation.

AQUAINT AQUAINT (Graff, 2002) contains 73 documents and have similar temporal rela-

tions annotated as TimeBank. It contains 4431 EVENTs and 5977 TLINKs. The distribution

of TLINKs with different temporal relations can be seen in column 3 of Table 2.3.

TE-Platinum TempEval-3 (UzZaman et al., 2013) provided TE-Platinum dataset contain-

ing twenty documents for evaluating the systems. This is also a human annotated corpus

based on TimeML, similar to previous two datasets (Table 2.3 Column 4).
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TimeBank AQUAINT TE-PT TimeBank-Dense MATRES

Documents 183 73 20 36 276
Events 7935 4431 748 1729 12366
TLINK s 6418 5977 889 12715 13558

– BEFORE 1408 2507 330 2590 6874
– AFTER 897 682 200 2104 4570
– INCLUDES 582 1051 89 836 –
– IS_INCLUDED 1357 1172 177 1060 –
– SIMULTANEOUS 671 63 93 215 470*
– VAGUE 0 0 0 5910 1644
– IDENTITY 743 283 15 – –
– DURING 302 37 2 – –
– ENDED_BY 177 22 2 – –
– ENDS 76 17 3 – –
– BEGUN_BY 70 22 3 – –
– BEGINS 61 65 2 – –
– IAFTER 39 17 10 – –
– IBEFORE 34 39 8 – –
– DURING_INV 1 0 1 – –

Table 2.3 Corpora statistics. *MATRES contains EQUAL temporal relation and not SIMUL-
TANEOUS but both are treated as equivalent.

These three datasets are annotated with the same fourteen temporal relations (Ta-

ble 2.3). However, recently proposed systems have classified temporal relations over a

truncated set of relations instead of all the annotated relations (Chambers et al., 2014;

Mirza and Tonelli, 2016; Ning et al., 2017). They obtained this truncated list of possible

temporal relations by mapping a few relations to their corresponding approximate rela-

tions. Temporal relations mentioned after the dashed line in Table 2.3 are mapped to the

temporal relations from the set of relations above the dashed line as shown in Table 2.4.

The main reason for these mappings is the rarity of annotations of such relations which

leads to class-imbalance making the classification difficult. For instance, distinguishing

between relations like BEFORE and IBEFORE (immediately before), AFTER and IAFTER

(immediately after) can complicate an already difficult task. In these cases, IBEFORE ,

IAFTER can be respectively considered as special cases of BEFORE and AFTER . Simi-

larly, relations such as ENDS and BEGINS are special cases of IS_INCLUDED whereas

ENDED_BY and BEGUN_BY are mapped to INCLUDES . Besides, added benefits of using

these fine-grained temporal relations are not clear (Chambers et al., 2014). Next, TimeML

IDENTITY relation indicates event coreference which means the two events are mentions
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Original Relation Mapped To

ENDED_BY INCLUDES
BEGUN_BY INCLUDES
ENDS IS_INCLUDED
BEGINS IS_INCLUDED
IAFTER AFTER
IBEFORE BEFORE
IDENTITY EQUAL
SIMULTANEOUS EQUAL
DURING EQUAL
DURING_INV EQUAL

Table 2.4 Ambiguous as well as rare relations mapped to coarse-grained relations.

of the same event, whereas SIMULTANEOUS relation indicates that two events are occur-

ring at the same time. These two relations are mapped to EQUAL. At last, DURING and

DURING_INV relations intuitively seem closer to IS_INCLUDED and INCLUDES , but

are not clearly defined (Chambers et al., 2007; Derczynski, 2016; Derczynski et al., 2013),

and are interpreted as SIMULTANEOUS (UzZaman et al., 2013).

TimeBank-Dense While annotating previously mentioned corpora such as TimeBank,

AQUAINT, annotators were not asked to annotate all the temporal entity pairs. This

leads to sparse temporal relation annotations which can be problematic, as it makes

temporal relation extraction difficult because of class imbalance as annotators frequently

annotated BEFORE or IS_INCLUDED relations than any other relations (Table 2.3).

Besides that, systems trained on such a dataset can be penalized at the evaluation step

for predicting relations that annotators might have missed. To solve this issue, Cassidy

et al. (2014) annotated relations between all events within a certain token window over 36

documents from TimeBank corpus. Following the argument from the previous paragraphs,

they considered the truncated set of temporal relations: BEFORE , AFTER , INCLUDES ,

IS_INCLUDED , and SIMULTANEOUS . They also annotated pairs with VAGUE relation if

no relation can be assigned from this list. The details of these annotations can be seen in

column 5 of Table 2.3.

MATRES The low inter-annotator agreement in TimeBank, AQUAINT, and the large

number of VAGUE relations in TimeBank-Dense, indicate ambiguity of temporal relations

between certain pairs. Ning et al. (2018b) reason that some of the pairs are not temporally

related which leads to this ambiguity. They propose a multi-axis annotation scheme to
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solve these problems. The first step of their annotation scheme involves anchoring events

depending on their types to a specific axis such as main axis, intention axis, opinion axis,

etc. Next, only events that are on the same axis and in the window of two sentences are

eligible for assigning temporal relations. Also, their annotations differ from the previous

datasets, as they assign temporal relation between start-points of the events instead

of the whole time intervals of events. As a result, possible temporal relations in the

dataset are BEFORE , AFTER , EQUAL or VAGUE, because only these relations can be

assigned between two points. Additionally, instead of relying on expert annotators, they

crowdsourced the annotation effort. They initially annotated only 36 documents from

TimeBank-Dense dataset but recently extended annotations over all the documents from

TimeBank, AQUAINT, and TE-Platinum. As a result, MATRES contains 276 documents

and cumulative EVENTs as shown in Table 2.3.

2.1.1.4 Evaluation

The obvious way of evaluating temporal relation classification systems is a direct compari-

son of system predicted relations with reference relations i.e. for a given pair of events

from the gold annotations, predicted relation of the same event pair is compared. But,

evaluating a temporal classification system based on this simple assessment is not suffi-

cient as the same temporal information can be presented in different ways. This makes

the evaluation of temporal systems non-trivial.

A B

C

A B

C

A B

C

=

<

=

<

=

<<

Reference
graph

System predicted
graph

Temporal closure
on graph

Fig. 2.3 Three equavalent but different representations (Setzer et al., 2002).

Consider the case presented in Fig 2.3 where the human annotated reference graph

contains temporal relations which says events A−B are occurring simultaneously and B

occurs before C and certain system asserted that A−B are are occurring simultaneously but

A is before C . Here, if we measure the system’s performance only by the direct comparison

of the graphs, the system will get a non-perfect evaluation score despite predicting all

relations correctly. Because, from the annotated relations B occurs before C can be easily
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inferred with transitivity. This demonstrates that evaluation schemes must do more than

just a pairwise comparison to assess a system.

Due to which several evaluation schemes have been proposed. Earliest work (Setzer

et al., 2002) proposed a graph based evaluation for limited number of relations such

as before, simultaneous and includes. They performed graph closure over both system

predicted graph and reference graph to calculate recall and precision. This method was

generalized over all temporal relations in (Muller and Tannier, 2004) due to which system

with all Allen’s relations can be evaluated with this measure. In SemEval’07 campaign (Ver-

hagen et al., 2007) proposed another temporal evaluation metric which was very specific

to the dataset used in the shared tasks. After that, Tannier and Muller (2011) proposed a

promising evaluation scheme that compares transitively reduced temporal graphs over

the end-points of events. Further, temporal awareness evaluation metric is proposed by

UzZaman et al. (2013) which is widely used for evaluating temporal relation classification

systems.

In our work, for direct comparison of our systems with previous approaches, we

evaluated our systems with the same two evaluation schemes that they used (Mirza and

Tonelli, 2016; Ning et al., 2017): direct evaluation and temporal awareness. We discuss them

in the following paragraphs. While explaining these evaluation schemes, we use common

notations where for a given document, we denote the true reference (gold-annotated)

temporal graph as K and system predicted temporal graph as G . The total number of

edges of the graph x are denoted as |x| and |x ∩ y | denote the number of common edges

in the two graphs x, y .

Direct Evaluation This is the most straightforward evaluation metric that measures the

precision of a system as a ratio of the number of pairs with correct temporal relation

predictions to the number of all the pairs for which temporal relation is predicted. Next,

it calculates the recall as a ratio of the number of pairs with correct temporal relations

predictions to the number of pairs with true reference relations. Finally, F1-score is

calculated by considering the harmonic mean of precision and recall as:

P = |G ∩K |
|G| R = |G ∩K |

|K | F1 = 2PR

P +R
(2.5)

Temporal Awareness Similar to the previously proposed approaches (Setzer et al., 2002;

Tannier and Muller, 2008), temporal awareness evaluation (UzZaman et al., 2013) also per-

forms temporal closure over reference and system predicted graphs but do not compare

these graphs directly. Instead, it compares the accuracy of core relations, relations which
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K A B C D E
< < < <

<
<

< < <

G A B C D E
< <

<
<

Fig. 2.4 Reference graph K and predicted
graphs G . In the graphs thick connected
edges show actual annotation, whereas dot-
ted lines denote inferred relations, and the
symbol < indicates before relation.

Evaluation scheme P R F1

Direct Evaluation 75.0 60.0 66.67
Temporal Awareness 100.0 50.0 66.67

Table 2.5 Evaluation results of G with re-
spect to K with two different schemes.

can not be derived from other relations. It performs graph closure over system produced

graph G and reference graph K to get G+, K +, respectively. Conversely, the redundant

relations are removed from the original graphs G and K to construct reduced graphs as

G−, K −, respectively, that contain only core relations.

Then, precision calculates the percentage of core relations identified accurately, and

recall checks the percentage of actual core relations identified by the system. Finally,

compact temporal awareness score is calculated as F1-score:

P = |G−∩K +|
|G−| R = |G+∩K −|

|K −| F1 = 2PR

P +R
(2.6)

Difference of evaluation schemes The difference between these two evaluation schemes

can be illustrated with a simple example shown in Fig. 2.4. Suppose, we are given anno-

tated document D containing five temporal entities: A,B ,C ,D, and E , and true temporal

relations between them. Let the graph K shown in Fig. 2.4 be the reference graph obtained

from D, and G be the predicted temporal graph from some arbitrary system. In the graphs,

actual annotations are shown with thick edges, whereas inferred relations are denoted

with dotted lines. The evaluation of graph G with the two evaluation schemes, Direct Eval-

uation (DE) and Temporal Awareness (TA) is shown in Table 2.5. We see, precision drops

with DE even though all the predictions are accurate, because without temporal closure of

graph K , the relation between A−E can not be determined. Next, recall scores are also

different as DE considers all five annotated relations (thick lines in K ) equally important

and calculates recall 60% as only 3 out of 5 relations are predicted accurately. On the other

hand, TA calculates recall as 50% as it assigns no score for predicting temporal relations

between A−D , A−E as they can be inferred from other temporal relations.
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2.1.2 Bridging anaphora resolution

Bridging is an essential part of discourse understanding (Clark, 1975). The reader may

have to bridge the currently encountered expression to a previously known information

either from the text or from her memory. In his pioneering work, Clark (1975) considered

this broad phenomenon as bridging, which connects any expressions that can not be

understood without the context to previously appearing phrases. The expression which

can not be interpreted without the context is called as anaphor, and the phrase on which

it depends for meaning is referred to as antecedent. The earlier definition of bridging

included an identical relation between anaphor and antecedent, which is commonly

known as coreference. But, over the period, the scope of bridging has changed, so now

bridging refers to any association between anaphor and antecedent except coreference.

Also, another difference is that, in bridging defined by Clark (1975), an antecedent can be

a sentence or a clause that can be useful for interpretation of an anaphor. But, in this work,

we are considering only those anaphor-antecedent pairs which are noun phrases (NP) (as

practiced by recent researchers). Apart from Clark, Hawkins (1978); Prince (1981, 1992)

also studied bridging but referred to this phenomenon differently. Hawkins (1978) termed

it as associative anaphora and only considered definite NPs as anaphors, whereas Prince

(1981) referred to anaphors which can be inferred from previously mentioned expressions

as inferrables.

With this understanding of bridging, we describe the computational task which identi-

fies it automatically: bridging anaphora resolution, in the coming sections. Section 2.1.2.1

formally defines the task, Section 2.1.2.2 discusses main components of supervised learn-

ing approaches of solving it, next Section 2.1.2.3 details corpora used in this work, and

finally, Section 2.1.2.4 presents an evaluation metric.

2.1.2.1 Definition

Bridging resolution is the computational task corresponding to the bridging phenomenon.

It consists of two tasks, bridging anaphora recognition which identifies all the bridging

anaphors from a given document, and bridging anaphora resolution which connects these

bridging anaphors to their antecedents. We are solving the latter task.

Mention is a term used to denote named entities, and NPs, or pronominals that refer to

entities. For instance, entity such as Barack Obama, and NP references like the president,

the senator, or pronominal reference like he, him, are mentions. We are considering

only those anaphors and antecedents that can be NPs in our work, so can be considered

as sub-type of mentions. Consequently, bridging resolution task can be visualized as
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Fig. 2.5 Bridging resolution over a sample text. From the given text (a), all the mentions
are detected (b), bold-faced words denote mentions, in next step bridging anaphors are
found out (c), the underlined words are bridging anaphors and finally, bridging anaphora
resolution is executed to link these anaphors to antecedents (d). In the generated graph
(d) thick line denotes bridging relation. The size, the living room and the garden are all
specifically related to a new house. So, bridging anaphors b1,b2,b3 are linked to the same
antecedent m2. Then another bridging anaphor his children are related to the person
who bought the house, He, thus, showing bridging relation between b4 and m1. Note that
there is no bridging relation between antecedents m1 - m2 as well as between bridging
anaphors - b1,b2,b3,b4.

pipeline where first mentions are detected, from this set of mentions bridging anaphors

are identified in bridging anaphora recognition, and finally bridging anaphora resolution

connects these anaphors to corresponding antecedents. This is depicted with a sample

text in Fig. 2.5.

Formally, let D be a given document containing set of mentions: M = {m1,m2, · · · ,mnm },

and bridging anaphors :A = {a1, a2, · · · , ana }. Then the bridging anaphora resolution gen-

erates a set of anaphor and predicted antecedent pairs as: {(ai , yi )|∀ai ∈A , yi ∈M }.
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2.1.2.2 Supervised learning approach

Similar to temporal relation classification, in this task as well we are taking supervised

learning approach to solve bridging anaphora resolution. This involves three important

components: mention representations, models and inference. We detail them here.

Mention representations As both anaphors and antecedents are assumed to be a subset

of mentions, obtaining mention representations becomes essential. For that, a generic

function ZM is found out as follows:

ZM : M →Rdm (2.7)

mi 7→ZM (mi )

where mi ∈ M . We develop an approach to learn this function where contextual and

commonsense information is acquired (Chapter 6). Before that, in the next chapter, we

detail previously proposed approaches to get this function in Section 3.2.1.

Models Similar to temporal relation classification, local models and global models are

used for bridging anaphora resolution as well. In the local models for bridging anaphora

resolution, a confidence score for bridging anaphor and a previously occurring mention is

predicted (Markert et al., 2003; Poesio et al., 2004). Formally, these models learn a function

of the form: BL,θ : Rdm ×Rdm → R. On the contrary, global models find corresponding

antecedents for anaphors simultaneously (Hou et al., 2013b). This work with global

modeling approach did not explicitly find the mention representations but employed

Markov Logic Networks (MLN) (Domingos and Lowd, 2009) for global inference.

Inference In bridging anaphora resolution, infererence is not as complicated as in tem-

poral relation classification, as it does not follow any complex symmetry or transitivity

constraint. The inference step in local models is similar to the best-first clustering. Initially,

antecedent candidates are arranged depending on the confidence scores predicted from

the model, then the highest scoring candidate antecedent is selected as the predicted

antecedent for the bridging anaphor. In case of a global model, Hou et al. (2013b) put

some linguistic constraints such as anaphor have less probability of being antecedent,

or antecedents have higher probability for being antecedent for other anaphors, in her

inference strategy and obtained global inference with MLN. We provide more details about

it in the next chapter.
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ISNotes BASHI
ARRAU

RST TRAINS PEAR GNOME

Documents 50 50 413 114 20 5

Domain news news news dialogues spoken
narratives

medical

Bridging
anaphors

663 459 3777 710 333 692

Mentions 11272 18561 72013 16999 4008 6562

Table 2.6 Bridging corpora used in the thesis.

We used local model to solve bridging anaphora resolution but applied different

strategy while learning, instead of casting it as classification problem we employed ranking

strategy. Next, we used simple inference strategy where top ranking candidate antecedent

is selected from the list of candidates for the anaphor. We detail about this in Section 6.4.2.

2.1.2.3 Corpora

ISNotes Markert et al. (2012) annotates 50 documents from the Wall Street Journal (WSJ)

portion of OntoNotes corpus (Weischedel et al., 2013) with bridging information which

contains 663 bridging anaphors (Table 2.6). These are all referential bridging anaphors

which means they strictly require the context for interpretation (Kobayashi and Ng, 2021;

Roesiger et al., 2018). All the anaphors are NPs, whereas antecedents are either enti-

ties or events (verb phrases (VPs) or clauses). Out of all 663 anaphors, 622 anaphors

have NPs as antecedents and the remaining are events. ISNotes also categorizes these

anaphor-antecedent pairs based on the relations they possess: set/membership (45),

part-of/attribute-of (92), action (16), though most of the relations are unspecified and

marked as Other (530) relation.

BASHI Roesiger (2018a) annotated 50 documents (different set of documents than IS-

Notes) from OntoNotes with bridging information (Table 2.6). The corpus contains 459

bridging anaphors where they categorize them as: definite (275), indefinite (114), and

comparative (70). Out of these 70 comparative anaphors, 12 have more than one link

to antecedents. Also, similar to ISNotes all the anaphors are referential type and NPs,

whereas antecedents can be entity or event.
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ARRAU The first version of ARRAU was created by Poesio and Artstein (2008), recently

Uryupina et al. (2019) proposed the latest version. The corpus contains documents from

four different domains: news (RST), spoken narratives (PEAR), dialogues (TRAINS), and

medical (GNOME). In total it consists of 5512 bridging pairs, Table 2.6 shows division

of these pairs. The type of bridging is different than ISNotes and BASHI as most of the

anaphors are lexical bridging (e.g. Europe-Spain) that do not strictly depend on the context

for interpretation whereas some are of referential (Kobayashi and Ng, 2021; Roesiger et al.,

2018). Also, antecedents are only entities and anaphors are NPs. Bridging pairs from RST

portion of the corpus are annotated with relations such as subset, comparative, possessive,

element, and inverse of these relations. The pairs which can not be categorized into

these relations are marked as underspecified. Addition to bridging, ARRAU consists of

annotations for coreference as well as discourse deixies.

2.1.2.4 Evaluation

The quality of prediction is assessed with accuracy measure, the ratio of correctly linked

anaphors with their respective antecedents to the total number of anaphors. We consider

an anaphor linking correct if it is linked to any mention of the true antecedent entity. If

there are na number of anaphors and out of those, for nc
a number of anaphors antecedents

were correctly found then the accuracy is calculated as:

A = nc
a

na
(2.8)

2.2 Artificial neural networks

So far, we detailed the tasks that are tackled in this thesis. Now, we briefly introduce

artificial neural networks which are powerful at learning representations as well as potent

at modeling many tasks.

Artificial neural networks are computational systems inspired from the biological

neural networks, and neurons are the fundamental computation unit in them. A neuron

processes inputs by applying pre-designed function (generally, non-linear function known

as activation functions) to produce output. Further, a number of neurons are aggregated

into a layer where the first layer of the network always receives input and the final layer

produces output, and there can be any number of layers in between which are called

hidden layers. The neurons, in turn, layers, are interconnected to produce a network or

graph, where neurons are nodes and edges denote a connection between them, hence

the name neural network. The connections are directed labeled edges that indicate the
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Fig. 2.6 Simple neural network. Fig.(a) shows a simple neural network with three layers -
input layer, hidden layer, and output layer where information flows from input layer to
hidden layer and finally to output layer. The nodes denote neurons, and edges show a
weighted connection between them. A single neuron is detailed in Fig. (b). It takes input
from the previous layer and calculates weighted sum which is passed through activation
function a to produce output.

direction and weight of the signal. These weights control the connection and are adjusted

at the training step of the network.

A simple neural network is shown in Fig. 2.6, which contains three layers − input, hid-

den, and output layer, respectively having four, two, and one neurons. A neuron produces

output based on the inputs, the associated weights, biases and the activation function (Fig.

2.6 (b)), where weights and biases are called parameters of the network and are learned at

the training step. A neural network can have any number of layers, any number of neurons

in them, and different kinds of connections between them. These are hyperparameters2

which depend on the type of problem the neural network solves. In any neural network,

the produced output depends on the input and the various transformations applied to

it at each layer. Hence, the output ŷ obtained from a neural network as a (non-linear)

transformation on input x, controlled by parameters θ is given as:

ŷ = fθ(x) (2.9)

2Learning rate, learning algorithm, epoch (number of iteration of training), activation function, dropout
are some other hyperparameters.
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where fθ is composition of different (non-linear) transformations at various layers: fθ =
f1 ◦ f2 ◦ · · · ◦ fl .

Training of neural network determines the values of parameters. At the beginning of

this step, all the parameters, i.e. weights and biases, are randomly initialized. Then the

training adjusts these parameters values so as to produce the desired output. The differ-

ence between the desired and actual output is measured with a loss function. Suppose,

D = {(xi , yi )n
i=1} is training data where xi denote input features and yi shows associated

label. The cumulative loss is given as:

L (θ) = ∑
(xi ,yi )∈D

l (yi , ŷi ) (2.10)

where l is a error function which gives difference between true output yi and predicted

output ŷi := fθ(xi ). Then, following optimization objective is solved to get appropriate

parameters:

min
θ

L (θ) (2.11)

The objective function L (θ) is non-convex function because of non-linear activation

functions and obtaining analytical solution is difficult.

Gradient descent algorithms are commonly used for minimizing this objective. The

algorithm updates parameters of the network iteratively and the parameter values are

reduced by the value proportional to the gradient of the loss function with respect to the

parameter. The update rule at (t +1)th iteration is given as:

θt+1 ← θt −γ ∂L (θ)

∂θ
(2.12)

where θt denotes the parameters of the neural network at iteration t in gradient descent,

and learning rate.

However, obtaining a gradient with respect to each parameter in the network is a

computationally expensive operation. Backpropagation (backward propagation of errors)

algorithm (Goodfellow et al., 2016; Kelley, 1960; Rumelhart et al., 1986b) is used to calculate

the gradient of the error function with respect to the neural network’s weights. The

gradient calculation proceeds in the backward direction, i.e. first the gradient of the error

is calculated with the final layer, then, these values are propagated with the chain rule

to obtain gradients with parameters from the previous layers. This produces efficient
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computation of the gradient at each layer versus the naive approach of calculating the

gradient of each layer separately.

Additionally, to speed up the learning process different variants of gradient descent

algorithms such as batch, mini-batch, and stochastic gradient descent are used. Recently,

various improvements have also been proposed for the gradient descent algorithms:

Adagrad (Duchi et al., 2011), Adadelta (Zeiler, 2012), RMSProp (Tieleman and Hinton,

2012), Adam (Kingma and Ba, 2017), etc.

Different types of neural networks produce different transformations of the input data.

We describe few popular neural networks that are used in this work as well.

• Feedforward networks: In these networks, the information flows from the input neu-

rons to hidden neurons to output neurons (example Fig. 2.6). Formally, the output of

i th layer having ni neurons, hi ∈Rn
i is given as:

hi =ψi (W T
i hi−1 +bi ) (2.13)

where hi−1 ∈Rni−1 is output from (i −1)th-layer, Wi ∈Rni−1×ni ,bi ∈Rni are weights and

biases, and ψi is activation function for i th-layer. Here, i ∈ {1,2, · · · , l } for l-layered

feed-forward network and h0 denotes input to the network.

• Convolutional neural network (CNN): CNN (Lecun et al., 1998) is a special type of

feed-forward network which commonly consists of convolution layer, application of

non-linear activation function, and followed by pooling-layer. The input is convolved

with weight matrices that are learned, called filters or kernels. Intuitively, in convolution

operation, the filter slides over the input, obtains element-wise products, and sums

them. Formally, for a given input3 X ∈Rdh×dw and filter F ∈Rd f ×d f , result is given as:

Rm,n =∑
i

∑
j

X(m−i ),(n− j )Fi , j (2.14)

where R ∈Rdch
×dcw , dch = dh − f +1, dcw = dw − f +1. Next, non-linear projection with

activation is given as:

R ′ =ψ(R) (2.15)

3CNNs are used often over images that are stored with two or more dimensional data. Hence, we are
considering 2-dimensional input, but convolutions over 1-dimensional input can be obtained in the similar
way with filter sliding over only one dimension.
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Finally, it is passed through pooling-layer ϕ to get the final output as:

Y =ϕ(R ′) (2.16)

commonly, ϕ is max-pooling layer or average-pooling layer.

• Recurrent neural network (RNN): Unlike feed-forward networks, RNNs (Rumelhart

et al., 1986a) have loops. Because of this feedback mechanism, the output depends

on the current as well as the previous input which also leads to a sequential behavior

where different states produce different outputs. There are many variants of RNNs: Long

Short-term Memory (LSTM) (Hochreiter and Schmidhuber, 1997), Gated Recurrent Unit

(GRU) (Cho et al., 2014), etc. We present a simple RNN (Elman, 1990; Jordan, 1997)

which is extended to produce these more advanced variants.

ht =ψh(W T
h xt +U T

h ht−1 +bh) (2.17)

yt =ψy (W T
y ht +by ) (2.18)

where ht ,ht−1 ∈Rnh are hidden states at t , t −1, respectively, xt ∈Rnx and yt ∈Rny are

input and output at time t , Wh ∈Rnx×nh ,Wy ∈Rny×nh ,Uh ∈Rnh×nh are weight matrices,

bh ∈Rnh ,by ∈Rny are biases, and ψh ,ψy are activation functions.

2.3 Representation learning

In Section 2.1, we detailed task definitions of two tasks that are addressed in this thesis.

Then in the previous section, we introduced artificial neural networks which are used

widely to solve many tasks especially for learning effective representations. In this section,

we discuss representation learning and related fields. This discussion sets a base for the

various representation learning approaches described in the next section.

Most NLP models require real valued vectors (or tensors in general) as an input. These

numeric representations of linguistic objects are either designed or automatically learned

for the purpose of inputting to machine learning models. Converting any type of data into

vectors, i.e. obtaining representation, is an important part of the whole process of applying

a machine learning algorithm. Not only that, it is crucial to obtain a good representation

so that the task of the machine learning algorithm in the pipeline becomes easier. A good

representation should capture as many relevant features present in the original data that

are required for solving the underlying NLP task.
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Feature engineering is one way of obtaining such relevant features which are designed

by experts of the field. But, feature engineering is an arduous job which requires task-

specific knowledge and immense human effort. Besides, the noisy data can induce errors

in obtaining such features. Moreover, changes in the domain of underlying data can

lead to a repetition of efforts on the new data. This is especially severe for NLP tasks

where domain changes are quite frequent. For instance, wordings used in a political

discourse are different from a corporate discourse which is again different from a medical

discourse, as a result, the solutions designed for one domain may not be effective for other

domains. The problem aggravates in the case of language change which may require

different experts of the language to design new features. To address these drawbacks of

feature engineering, it is necessary to automatically discover features. Representation

learning or feature learning does exactly that and retrieves relevant features from the data

automatically without the need of any human expert.

Representation learning approaches for text can be divided into two categories: 1.

Supervised representation learning, and 2. Unsupervised representation learning. Su-

pervised representation learning approaches are generally applied to get the task-specific

representations of the linguistic units. These approaches assume that text data containing

labels are available for training. Let us suppose n-data samples, D = {(xi , yi )}n
i=1 are given,

where xi is the linguistic object and yi the corresponding label. Let X be the generic set of

these linguistic objects such that xi ∈X as well as Y be the set of possible labels, yi ∈Y .

Then the supervised task-specific representation learning algorithm learns a parameterized

function which maps each linguistic object to corresponding vector representation while

encoding the label-related information as:

fY ,θ : X →Rd (2.19)

where θ are parameters to be learned. Most of the neural network based approaches used

to solve a specific task fall into this category such as the recently proposed approach for

temporal relation classification (Han et al., 2019a,b) or bridging resolution (Hou, 2020a;

Yu and Poesio, 2020).

On the other hand, unsupervised representation learning approaches obtain generic

representations with unlabeled texts. These representations are not task-specific so can

be used as a base representations for other tasks. The commonly used word embeddings

such as Word2vec (Mikolov et al., 2013a), Glove (Pennington et al., 2014) can be considered

as unsupervised representation approaches. Formally, these approaches learn parameters
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θ only from an unlabeled data D = {(xi )}n
i=1 as:

fθ : X →Rd (2.20)

Representation learning shares resemblance with metric learning (Bellet et al., 2013)

in the sense that metric learning projects similar data samples on similar vectors 4. This

is governed by learning distance metric between two data samples, d :Rd ×Rd →R. The

whole idea in the metric learning algorithms is to learn appropriate distance measure d

so that it correctly produces small distances between similar objects and bigger distances

for dissimilar objects. One of the examples of this distance measure is Mahalanobis

distance (Mahalanobis, 1936), which calculates the distance between two objects x, x ′ as:

dM (x, x ′) =
√

(x −x ′)T M(x −x ′) (2.21)

Following this, various methods (Bellet et al., 2013) are proposed that learn matrix M to

get the distance between data-points based on above-mentioned similarity constraint (i.e.

similar object pairs should have smaller distance and dissimilar pairs bigger distance).

After learning this distance metric, it is applied to the unseen data to accurately predict the

output. In other words, metric learning can be seen as weakly supervised representation

learning with the additional condition of learning metric which measures the distance be-

tween data points. Consequently, metric learning can be used to improve the performance

of classification (Meyer et al., 2018; Weinberger and Saul, 2009) for ranking in information

retrieval (Cakir et al., 2019; McFee and Lanckriet, 2010), for recommending relevant items

to users (Hsieh et al., 2017), etc.

Dimensionality reduction (Xie et al., 2018) is another sub-field that shares similarity

with representation learning. But, the fundamental goal in the two tasks is different where

on one hand representation learning approaches concentrate on finding the meaningful

representations, on the other hand, dimensionality reduction approaches compress the

representation while preserving as much original information as possible. The necessity

of reducing the dimensions of the representation rises due to the high-dimensional input

representations. Because having a higher number of features to represent the data can be

detrimental to the generalization of machine learning models. Additionally, dimensional-

ity reduction provides numerous advantages such as a reduction in the computational

cost (both in space and time) of the algorithms used over the data, or the removal of

the possible noise introduced when picking up the data. Due to these benefits, usually,

it is a good idea to reduce the feature space (dimensions of the input representation)

4It generally holds true, but more specifically depends on properties of matrix M (Eq. 2.21).
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while preserving the relevant information. Dimensionality reduction approaches obtain

functions that project higher dimension data into lower dimensional space fd :Rk →Rd

where k ≫ d . Broadly there are two approaches to achieve this: feature selection (Chan-

drashekar and Sahin, 2014) where certain important features are selected from the original

set of features that are useful for the further task and other is feature extraction (Dara and

Tumma, 2018; Khalid et al., 2014) which combines given features into smaller features.

Many methods have been proposed to reduce dimension with feature extraction, such as

matrix factorization approaches: Principle Component Analysis (PCA) (Jolliffe, 2011), Sin-

gular Value Decomposition (Golub and Reinsch, 2007), recently proposed deep learning

methods: autoencoders (Baldi, 2011), etc.

2.4 Word representations

In any text, words are considered as core constituents and treated as the lowest meaningful

units of a language5. It is also assumed that meanings of the bigger units of language

such as phrases, sentences, or documents can be derived from the constituent words.

Besides, often some form of text (i.e. a sequence of words) is an input for several NLP

tasks. Therefore, it is essential to obtain a meaningful representations of words to solve

NLP tasks.

The ideal word representation algorithm should map all the words in a language to

its vector representation. However, obtaining all the words in the language is difficult as

language is evolving and new words are added constantly. This is addressed by creating a

huge vocabulary containing millions or billions of words and getting a vector representa-

tion for each word in the vocabulary. A word representation learning algorithm finds a

map from each word in vocabulary to their corresponding d-dimensional vector. Let us

assume that the vocabulary of words be V , then the algorithm finds following map f :

f : V →Rd (2.22)

One of the simplest ways of word representations is one-hot vector representation

which is quite intuitive. The algorithm assigns one-hot vector to each word from the

vocabulary V which contains 1 only at the position of the word otherwise 0. Formally, for

a word w which occurs at l th position in V , the corresponding one-hot vector w is given

as w = {0,1}|V |, and vector element wl = 1.

5It is not true in the stricter sense as words can be further broken into morphemes, but for the scope of
this discussion, we consider words as the lowest units.
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Though it is a simple approach to obtain word representation, it has multiple disad-

vantages. The main drawback of this method is the failure at encoding any semantic or

syntactic information of the word. For example, in this way of representation, “dog” and

“cat” are equally unrelated as “dog” and “machine”. This is evident from the dot product of

vectors corresponding to these words, as for all the pairs of different words the similarity

will be 0. This method also suffers from producing high-dimensional sparse vectors,

because each vector will be of the size of the vocabulary. This sparse representation is not

so useful for the downstream tasks.

2.4.1 Distributed representations

The drawbacks of one-hot vector representations are solved with the distributed represen-

tations of words. On the contrary to high-dimensional one-hot vector representations,

distributed representations use continuous low-dimensional vectors as word representa-

tions and encode semantic information related to the word in the corresponding vector.

These approaches produce a dense representation which means multiple dimensions may

capture one concept and each dimension in the vector may capture multiple concepts.

These dense distributed representations of words are commonly derived from the

words’ context and are based on the distributional hypothesis of linguistic objects (Firth,

1957; Harris, 1954): Linguistic units possessing similar text distribution have similar

meanings. It implies, the more similar two linguistic objects are the more distributionally

similar they will be. In turn suggesting that semantically similar linguistic objects occur

in similar linguistic contexts. By applying this hypothesis specifically to words, it can be

stated that words that occur in a similar context tend to possess a similar meaning.

Though the words distributed (representations) and distributional (hypothesis) sound

similar, they are not strictly related. The only relation they possess is that generally the

distributional hypothesis is used to obtain a distributed representation. The embed-

dings which are obtained with the use of distributional hypothesis are a specific type of

distributed embeddings which are also called distributional embeddings (Ferrone and

Zanzotto, 2020). However, it is possible to obtain distributed representations without

the use of distributional hypothesis. For instance, obtaining word representations based

on the semantic networks is distributed but not distributional (Baroni and Lenci, 2010).

Semantic network contains concepts as nodes, and edges as semantic relations between

them, for instance, WordNet (Fellbaum, 1998) is a specific example of semantic network 6.

Thus, the word representations obtained only with the use of WordNet are called dis-

6We will use embeddings learned over WordNet as well in this work which will be introduced later.
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tributed but not distributional. In this section, we focus on the distributed embeddings

which are obtained based on the distributional hypothesis as those are widely used for

word representations.

Several models have been proposed based on this hypothesis to produce continuous

valued vectors (Elman, 1990; Hinton et al., 1986; Rumelhart et al., 1986a). Before the

popularity of the neural models to obtain word representations, dimensionality reduction

techniques such as PCA, SVD are used over the co-occurrence matrix to get the low

dimensional vector representations (Dhillon et al., 2015; Lebret and Collobert, 2014). A

promising approach based on neural network (Bengio et al., 2003) learned language model

and continuous vector representation words simultaneously.

Most of these word representation algorithms make use of language modeling objec-

tive to produce the embeddings. Let us brief about language modeling task before diving

into these embedding algorithms. Language modeling (LM) finds probability distribution

over a sequence of words. It gives a likelihood of a sequence of words appearing in a

language. Formally, for a sequence of words w1, w2, · · · , wN , LM produces joint probability

by considering the tokens that appeared before the current token as:

p(w1, w2, · · · , wN ) =ΠN
i=1p(wi |w1, w2, · · · , wi−1) (2.23)

Calculating exact joint probability for all the sequences is computationally infeasible, so

Markov assumption is applied. The assumption simplifies the calculation as it curtails the

dependence of the current word to only n prior words. The approximate joint probability

is given as:

p(w1, w2, · · · , wN ) ≈ΠN
i=1p(wi |wi−n , wi−n+1, · · · , wi−1) (2.24)

Word embedding algorithms learn parameterized joint probabilities while learning the

word representations to optimize the LM objective. With this brief understanding of LM,

we discuss different popular word embeddings algorithms in the coming sections.

2.4.1.1 Word2vec

The basic idea in Word2vec (Mikolov et al., 2013a,b,c) is to produce vectors depending on

the context of words (distributional hypothesis). Their approach uses simple feed-forward

neural networks with a single hidden layer to reconstruct either a word from the given

context (Continuous bag-of-words (CBOW)), or the context from a given word (skip-gram)

and the output from the hidden layer is considered as a Word2vec representation for

words.
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Fig. 2.7 Two neural models - (a) continous bag-of-words (CBOW) which takes input as a
context of words and predicts the word, on othe hand (b) skip-gram predicts context of
words from the given of word.

Continuous Bag-of-Words (CBOW) based neural model predicts a word from its con-

text. The architecture is shown in Fig. 2.7(a). The input to the model is all the words in the

window of some randomly chosen number. In the figure, a window of 2 is used, therefore,

two words prior to the word and two words after the word are given as an input to the

feed-forward model. Then each word is projected onto the same space with the use of

a single layer perceptron and then all these vectors are added. This sum of vectors is

multiplied with weight matrix and then passed through a softmax to get the probability

score.

Let w j−l , w j−l+1, · · · , w j , · · · , w j+l−1, w j+l be the context of word w j in the window of

l -words. CBOW model produces conditional probability of w j given the context as:

P (w j |wt (|t− j |≤l ,t ̸= j );Θ) = es j∑|V |
j ′=1 es j ′

(2.25)

where s j is a j th element of vector s ∈R|V | which denotes confidence score for word w j

being the context of wt (|t− j |≤l ,t ̸= j ). The confidence score s for each word in vocabulary is

calculated as:

s = M T
∑

|t− j |≤l ,t ̸= j
H T wt (2.26)
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where M ∈Rm×|V | and H ∈R|V |×m are hidden layer projection matrices learned by neural

network, and wt ∈R|V | be the V -dimensional one-hot vector of word wt (where V is the

vocabulary of words).

The parametersΘ are learned to minimize negative log probabilities :

L (Θ) =−∑
j

P (w j |wt (|t− j |≤l ,t ̸= j );Θ) (2.27)

Skip-gram is opposite in the functionality to CBOW. It produces probability for context

words given a target word. It is depicted in the section (b) of Fig. 2.7. Consider the same

context as mentioned in CBOW, w j−l , w j−l+1, · · · , w j , · · · , w j+l−1, w j+l , for which the skip-

gram model produces probabilities for all the words wt where |t − j | ≤ l , t ̸= j in the

context of a given word w j as:

P (wt |w j ;Θ) = est∑|V |
t ′=1 est ′

(2.28)

Here, st denotes confidence score of context word wt given the target word w j which

subtly differs from CBOW. The score s ∈ R|V | for each word in vocabulary denoting the

compatibility with word w j is given as:

s = M T H T wj (2.29)

where similar to CBOW, M ∈Rm×|V | and H ∈R|V |×m are hidden layer projection matrices,

and wj ∈R|V | be the V -dimensional one-hot vector of word w j .

Similar to CBOW, the parametersΘ are learned by reducing sum of negative log proba-

bilities:

L (Θ) =−∑
j

∑
|t− j |≤l ,t ̸= j

P (wt |w j ;Θ) (2.30)

Negative sampling and Hierarchical softmax The above approach of finding probabili-

ties suffers from huge time complexity because of softmax calculation (Eq. 2.25 and 2.28),

because for probability calculation of a single word, all the words have to be considered.

Word2vec proposed two approaches to solve them, Negative sampling and Hierarchical

softmax.

In negative sampling, instead of considering all the words to calculate the softmax

probability only a few words (n) are considered as negative samples. These are selected

based on the word co-occurrence frequency, with which top-n words having the smallest



40 Background

Fig. 2.8 Hierarchical softmax.

frequency are chosen. This simple approximation reduces the calculation from |V | words

to only n +1 words.

Hierarchical softmax approximation approach is inspired from the binary trees pro-

posed by Morin and Bengio (2005). The actual softmax calculation can be considered as

a tree of depth 1 where all the words are leaves in this tree. Then probability estimation

requires |V | calculations because it has to go over all the nodes. But, in hierarchical soft-

max the balanced binary tree is created which has log2(|V |) depth. Consider the example

in Fig. 2.8, the softmax calculation is similar to the one-depth tree shown in (a) part of

the figure, and the hierarchical softmax approximation (b) shows words arranged in the

balanced tree. This formulation enables the decomposition of probability calculation

of one word to a sequence of probability calculation of words in the path of the word.

Specifically, the probability for each word is calculated by multiplying all probabilities on

the path from root to the word, so for instance, the probability for word w3 is given as

p0 ×p01 ×p010. So the overall, calculation reduces from |V | to log2(|V |).

Once the models are trained with these approximations, the embeddings for a given

word are obtained from the hidden layer of the network. Precisely, the weight matrix H of

the hidden layer produces m-dimensional Word2vec vector representation as: H T wj.

2.4.1.2 Global vector (Glove)

Word2vec embeddings are capable of capturing the semantics of words but they only

use local context to learn these embeddings. Because CBOW predicts a word given its

context, whereas the skip-gram objective predicts a word’s context given the word itself.

As a result, global statistical information is ignored which can be crucial for deriving word

representations. Global Vectors (Glove)(Pennington et al., 2014) solve this problem by
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obtaining global co-occurrence matrix X where each Xi j indicates the frequency of word

wi co-occurring with w j .

They optimize following loss function which reduces the difference between actual

and predicted co-occurrence frequency as:

J (θ) =
V∑

i , j=1
f (Xi j )(wT

i +w′
j +bk +b′

j − log (Xi j ))2 (2.31)

where wi ∈Rd is a d-dimensional word vector for wi , w′
j ∈Rd is a d-dimensional context

word embeddings of w j , bk and b′
j are bias terms, and f (x) is weighting function. The

weighting function f (x) in the paper is defined as:

f (x) =
{

( x
β )α if x <β

1 otherwise

where α,β are pre-defined scalars which are set to α= 1 and β= 100.

2.4.1.3 FastText

Word representation algorithms like Word2vec and Glove capture the general semantics

of words using their co-occurrence context. However, these methods neglect the internal

structure of the word. Hence, they lack in finding representations for words which occur

rarely but are morphologically similar (those words which possess a similar sequence of

characters) because there is no parameter sharing between words which have overlapping

character patterns. For example, vectors for words “eat” and “eaten” are distinct even

though they have overlapping internal structures. These problems are especially severe

for morphologically rich languages. Moreover, these methods fail at producing vectors for

out-of-vocabulary (OOV) words.

FastText (Bojanowski et al., 2017) remedies both these issues as it generates embed-

dings for character n-grams instead of directly producing the word representation. The

word representation is obtained by summing all the vector representations of character

n-grams present in the word. Thus, retaining morphological information in the represen-

tation as well as solving the OOV problem.

They achieve this by extending the continuous skip-gram (Mikolov et al., 2013b)

method with subword information (Section 2.4.1.1), where each word is considered as a

bag of character n-grams. Before creating these character n-grams for a word, markers “<”

and “>” are added as prefix and suffix, respectively. Plus, in addition to all the character

n-grams, embeddings for actual word is also added to the list of these n-grams. Let us see
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this with an example, for word learn with n=3, all character n-grams are:

< le, lea, ear, ar n, ar n, r n >, < l ear n >

Suppose, for a word w , Mw is the corresponding set of character n-grams, then in this

model, a scoring function s(w,c) measures the confidence of word c being in the context

of w as:

s(w,c) = ∑
m∈Mw

um
T vc (2.32)

where um is vector representation of characters m and vc is vector representation of word

c. Based on this confidence score, the objective function is optimized which is similar to

skip-gram negative sampling objective mentioned in Eq.2.30.

2.4.2 Contextual word representations

A word can have multiple meanings, polysemy. Therefore, there should be different repre-

sentations of the same word depending on the meaning in which it is present. However,

the previous distributed representations produce one vector per word irrespective of

the meaning. For instance, in these algorithms, a word “Bank” will have a single vector

independent of its meaning: financial institute or river-side. The contextual word repre-

sentation methods remedy this as they learn context-dependent representations where

they produce distinct word representations.

In the recent years, ELMo and BERT have been two popular approaches which produce

contextual embeddings, let us look at them here.

2.4.2.1 ELMo

Embeddings from Language Models (ELMo) (Peters et al., 2018) produces representa-

tions with the use of forward and backward language model: bidirectional Language

Model (biLM). The forward language model (FLM) is similar to the language model men-

tioned in Eq.2.23 where for sequence of words w1, w2, · · · , wN produces joint probability

by considering the tokens appeared before the current token as:

p(w1, w2, · · · , wN ) =ΠN
i=1p(wi |w1, w2, · · · , wi−1) (2.33)
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Conversely, the backward language model (BLM) gives joint probability by considering

the tokens appearing after the current token, which is given as:

p(w1, w2, · · · , wN ) =ΠN
i=1p(wi |wi+1, wi+2, · · · , wN ) (2.34)

ELMo combines these probabilities to jointly maximize the log-likelihood of the forward

and backward language models as:

L (Θ) =
N∑

i=1
log p(wi |w1, w2, · · · , wi−1;Θc ,Θ f )+ log p(wi |wi+1, wi+2, · · · , wN ;Θc ,Θb)

(2.35)

whereΘc are common parameters between forward and backward LMs whereasΘ f are

specific to FLM, andΘb correspond to BLM.

Separate LSTMs are trained for FLM and BLM. Typically, learning L-layers of LSTMs

produces L+1 representations for each word wk as :

Hk = {hk, j | j = 0,1, · · · ,L}

where hk, j at j = 0 is token input representation and otherwise concatenation of vectors

from the two LSTMs at j th layer, can be given as:

hk, j =
{

hk,0 if j = 0

h f
k, j ⊕hb

k, j otherwise

where h f
k, j , hb

k, j are j th-layer output from forward and backward LSTM, respectively

and ⊕ denotes concatenation. Finally, to get the representation of the word wk all the

representations from the set Hk are weighted as :

wt ask
k = γt ask

L∑
j=0

a j hk, j (2.36)

where a j are softmax normalized weights for layer j which are learned depending on the

task and γt ask is task-dependent scaling factor.

2.4.2.2 BERT

Bidirectional Encoder Representations from Transformer (BERT) (Devlin et al., 2019)

learns parameters jointly conditioned on the bidirectional language model (biLM) ob-

jective. The subtle difference between ELMo and BERT is that ELMo learns separate
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Fig. 2.9 BERT architecture (Devlin et al., 2019).

parameters for forward and backward language models as separate LSTMs are learned, on

the other hand, BERT learns only a single set of parameters for biLM.

BERT achieves this with masked language modeling (MLM) objective. The task is simi-

lar to Cloze task (Taylor, 1953) i.e. fill-in-the-blanks formulation where the model predicts

masked word appropriately depending on its context. For this, the model randomly masks

some tokens from the given sequence of words and attempts to predict them accurately.

Further, the authors think that the MLM does not capture relevant sentence level relations

which are useful for NLP tasks such as Question Answering, Natural Language Inference

(NLI), etc. For that, they use next sentence prediction (NSP) objective where for given two

sentences the model predicts whether the second sentence can truly be the next sentence

after the first one.

The input to BERT can be either single sentence or pair of sentences. The input

sentence is tokenized with WordPiece tokenizer (Wu et al., 2016) and input tokens can

only be from pre-defined dictionary of 30,000 tokens. Further, input to BERT always

starts with special token “[CLS]” and in case of two sentences, the sentence boundary is

indicated by token “[SEP]”. “[SEP]” token can also be used to indicate the end of input.

This is depicted in Fig. 2.9 with an example of pair of input sentences. Two sentences, “my

cat is cute” and actual next sentences “she likes playing”, are tokenized and tokens are

provided as an input with special tokens “[CLS],[SEP]”. Note from the figure that all the

words except “playing” of the given sentences are present in the dictionary because of

which they are not further tokenized but “playing” is divided into two tokens, “play” and

“ing”.
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Fig. 2.10 Internal components of encoder (Vaswani et al., 2017).

Once the tokenization is done, the m-dimensional vector representation for each

input token is obtained by summing their token embeddings, sentence embeddings, and

positional embeddings (as shown in Fig. 2.9). The token embeddings are randomly ini-

tialized for each token in the dictionary whereas sentence embeddings for each token

are determined based whether the token belongs to first or second sentence (denoted

as A and B in the figure). In addition to that, BERT considers the position of the to-

ken in the sentence by learning positional embeddings. All these embeddings are of

m-dimension so that they can be summed to produce vector xi ∈ Rm for i th token. Let

the m-dimensional vector representation of n tokens be arranged as row of the matrix

X ∈ Rn×m as X = [x1,x2, · · · ,xn−1,xn]T . This matrix X is passed through l-layers of en-

coders to obtain the final representation. BERT is trained with two different values of l :

BERT-base with l = 12 encoder layers and bigger BERT-large model with l = 24 encoders.

An encoder layer contains multiple attention heads as well as feed forward network as

shown in Fig. 2.10. Let us look at these parts one by one.

• Multi Head Attention: An encoder consists of multiple attention heads, i.e., number

of separate single attention heads. An attention head captures different interaction

between all the tokens. Here, the number of attention heads is pre-decided, let that

number be denoted as h. Let us look at the mathematical operations happening in a
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single attention head to understand it better. Initially, the input matrix representation

X ∈ Rn×m is projected with three different matrices: W K ∈ Rm×dk ,W V ∈ Rm×dv ,W Q ∈
Rm×dk to get key, value, and query. The dimensions are set to dk = dv = m/h where m

is input dimension. At each layer, each attention head in multi-head attention, learns

different set of matrices, in turn yielding different key, query, and value. For instance,

for i th attention head, key, query, and value matrices are obtained as:

Ki = X W K
i (2.37)

Qi = X W Q
i (2.38)

Vi = X W V
i (2.39)

where Ki ∈Rn×dk ,Vi ∈Rn×dv ,Qi ∈Rn×dk .

With the use of key and query matrices, n ×n attention weight matrix between every

token is calculated as:

Ai =σ(
Qi K T

i√
dk

) (2.40)

where row-wise softmax function σ normalizes scores. This is the crucial part of the

encoder architecture where different attention heads capture various interaction be-

tween input tokens. This attention matrix Ai ∈Rn×n is used to weight the embeddings

captured by the value matrix as:

Hi = Ai Vi (2.41)

Then these weighted embeddings output of each attention head is concatenated to

produce the H as:

H = [H1, H2, · · · , Hh] ∈Rn×(h.dv ) (2.42)

Finally, projection matrix Wo ∈R(h.dv )×m is learned to get the output M ∈Rn×m dimen-

sion from multi-head attention same as input dimension with the following operation:

M = HWo (2.43)

• Feed-forward network: This matrix M is passed through two layers as:

F = max(0, MW1 +b1)W2 +b2 (2.44)

where W1 ∈ Rm×d f ,W2 ∈ Rd f ×m are weights, b1 ∈ Rn×d f ,b2 ∈ Rn×m are biases, and F ∈
Rn×m .
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• Add & norm: The output from the multi-head attention or the feed-forward network is

passed through this layer (green rectangle in Fig. 2.10). The relation between input I

and output O obtained from this layer is given as:

O =ψ(I +ϕ(I )) (2.45)

where ψ is layer normalization function, and ϕ is either feed-forward or multi-head

attention output.

As shown in Fig. 2.9, these multiple encoders are stacked upon each other and the output

of the underneath layer is passed to the above encoder. Finally, the output of the l th layer

encoder is used for predicting the masked tokens as well as next sentence. The output

corresponding to the index of the masked token is used to predict the token whereas the

output of “[CLS]” token is used to predict if B is the next sentence of A. The whole BERT

model is trained by minimizing the sum of loss on MLM and NSP tasks.

L =LMLM +LN SP (2.46)

Loss for masked language modeling, LMLM , is calculated by considering the probabil-

ities over the masked token prediction. Let us assume that the i th position in the sentence

is masked and wi be the m-dimensional vector representation obtained from the last layer.

Then the predicted probability over all the tokens in the dictionary is given as:

q =σ(WMLM wi ) (2.47)

where WMLM ∈ R|V |×m is a learned projection matrix and σ denotes softmax function.

Then the loss is calculated as

LMLM =−
|V |∑
j=1

p j log q j (2.48)

Next sentence prediction loss, LN SP , is calculated as a cross entropy between pre-

dicted, ŷ and true label y ∈ 0,1 where 1 denotes next sentence and 0 otherwise.

LN SP = y log (p(ŷ |x;Θ))+ (1− y) log (1−p(ŷ |x;Θ)) (2.49)

where predicted probability is calculated as p(ŷ |x;Θ) = σ(hnsp .w[C LS]), hnsp ∈ Rm is

learned weight vector, w[C LS] is the vector representation corresponding to [CLS] token,

and σ is sigmoid function.
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The word representation is obtained after pre-training BERT model on large unlabeled

text. Sentences containing words for which we want representations are given as an

input to BERT and then the output from the last layer of encoders is considered as a

vector representation for each word. In some of the cases, the last l-layers output is also

combined either by summing or concatenating to get the representation for each word.

2.5 Composing word representations

In most of the NLP tasks, we are interested in obtaining representations of word sequences,

in other words, for bigger linguistic units such as phrases, sentences, paragraphs, or

documents rather than words. In these cases word representations are of little use directly,

for example, consider the task of sentence classification where we want to assign a certain

class to a sentence then it is beneficial to get the sentence representation, or consider the

task of assigning topics such as Sports, Finance, Medicine, etc. to documents which will

also require document representations.

It is usually assumed that linguistic structures are compositional i.e. simpler elements

are combined to form more complex ones. For example, morphemes are combined into

words, words into phrases, phrases into sentences, and so on. Therefore, it is reasonable

to assume that the meanings of bigger linguistic chunks such as phrases, sentences,

paragraphs, and documents are composed of the meaning of constituent words (Frege’s

principle). This compositional principle is used to obtain the representation of these

bigger chunks by composing the representations of constituent words7.

Suppose u is any bigger linguistic unit (phrase, sentence or document) containing se-

quence of words as w1, w2, · · · , wl and w1,w2, · · · ,wl is their corresponding representation.

Then representation u for linguistic unit u is obtained as :

u = f (w1,w2, · · · ,wl ) (2.50)

One of the important things while acquiring function f is that the syntax of the unit

u should be considered. Because the meaning of word sequence is derived not only

from the meaning of its constituent words but also from the syntax in which they are

combined (Partee, 1995). For example, if the syntax of the sentence is not considered

then the meaningful sentence “I ate pizza” will get a similar representation as “ate I pizza”.

7The representations of bigger linguistic units can be obtained without explicitly composing representa-
tions of constituent units, we omitted that, as it is not relevant to the present discussion.
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Hence, the composition function f should consider the syntactic information S in Eq.

2.50.

In addition to the syntactic information, the meaning of the word sequence also

depends on the additional knowledge which is outside of the linguistic structure. This

additional information includes both knowledge about the language itself and also knowl-

edge about the real world. For example, the sentence “Let’s dig deeper.” can mean either

digging the soil further or making the extra efforts8. So, the composition function f needs

to be changed again to incorporate this additional knowledge K . The modified composi-

tion function which includes syntactic information S and knowledge K is given as:

u = f (w1,w2, · · · ,wl ,S,K ) (2.51)

This composition function f can be either designed (fixed composition functions)

or can be learned (learned composition functions). We look at them separately in the

following paragraphs.

2.5.1 Fixed composition functions

These functions generally ignore the information K ( Eq. 2.51) while obtaining the repre-

sentation. Also, it is assumed that vector representations of word sequences lie in the same

vector space of the constituent words. Because of these assumptions, simple addition,

average, or multiplicative functions can be used to get the composite representation (Foltz

et al., 1998; Landauer and Dumais, 1997; Mitchell and Lapata, 2010; Zanzotto et al., 2010)9.

usum =
i=l∑
i=1

wi (2.52)

uav = 1

l

i=l∑
i=1

wi (2.53)

uw av =
i=l∑
i=1

αi wi (2.54)

umul = w1 ⊙w2 ⊙·· ·⊙wl (2.55)

Equation 2.52 is an additive function that produces representation for the linguistic unit

u with summation of the representations of all the constituent words. This is slightly

8These are the most common meanings of this phrase. There are other multiple meanings, again
depending on the context.

9Mitchell and Lapata (2010) focused only on the composition of two constituent vectors but these
composition functions can be extended over more than two constituent words.
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changed in equations 2.53 and 2.54 where unweighted and weighted averages are taken to

get the final representation. Hadamard product of the constituent words is taken in Eq.

2.55 to produce the composite representation.

2.5.2 Learned composition functions

The previous approach of combining the constituent word representations puts a lot of

constraints while designing the function, for instance these approaches assume that a

vector of word sequences also lies in the same space as word vectors, which may not hold

in reality. Also, often the functions designed are not effective because of their simplistic

way of combination. Because of this, instead of manually designing these functions,

functions are parameterized and the parameters governing the function are learned. The

general definition of these functions is slightly different from Eq. 2.51 which is given as:

u = f (w1,w2, · · · ,wl ;Θ) (2.56)

Here, parametersΘ are learned with machine learning models. It is important to learnΘ in

such a way that they can capture the syntactic information present in the unit u. Generally,

these parameters also capture a small amount of additional knowledge because of the

context but these methods also largely ignore the external knowledge while acquiring

the composite representation. Commonly, the parameters Θ are learned either in the

task-agnostic or task-specific fashion.

In the task-agnostic methods, the parameters are usually trained by unsupervised

or semi-supervised learning and can be served as features for many other NLP tasks

such as text classification and semantic textual similarity. This includes recursive auto-

encoders (Socher et al., 2011), ParagraphVector (Le and Mikolov, 2014), SkipThought

vectors (Kiros et al., 2015), FastSent (Hill et al., 2016), Sent2Vec (Pagliardini et al., 2018),

GRAN (Wieting and Gimpel, 2017), transformer based models like BERT (Devlin et al.,

2019).

On the other hand, in task-specific approach, the representation learning is combined

with downstream applications and trained by supervised learning. Different deep learning

models are trained to solve certain NLP tasks, FFNNs (Huang et al., 2013), (Chung et al.,

2014; Hochreiter and Schmidhuber, 1997), CNNs (Kalchbrenner et al., 2014; Kim, 2014;

Shen et al., 2014), and recursive neural networks (Socher et al., 2013).

Overall, the approaches based on the deep learning techniques have shown promising

performance for learning these parameters. Socher et al. (2012) show the efficiency of

deep learning approaches by comparing them with the simple average of word vectors,
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elementwise multiplication, and concatenation. Further, similar results were observed

in (Socher et al., 2013).

2.6 Knowledge graphs and representations

In previous sections, we looked at various approaches of obtaining word embeddings

and several composition methods to get word sequences representations from them.

However, these word embedding algorithms use only text data to learn representations, as

a result, they fail to adequately acquire commonsense knowledge like semantic and world

knowledge. To address that limitation, various methods have been proposed to enrich

word embeddings with commonsense knowledge (Faruqui et al., 2015; Osborne et al.,

2016; Peters et al., 2019; Sun et al., 2020; Yu and Dredze, 2014).

As we also make use of such external knowledge in our work, in this section, we

describe one of the popular sources of commonsense knowledge: Knowledge Graph,

and approaches of representing knowledge held by them. Specifically, in Section 2.6.1,

we describe knowledge graph and look at the popular lexical knowledge source: Word-

Net (Fellbaum, 1998), which is used in this work. We also describe another knowledge

source, TEMPROB (Ning et al., 2018a), which is specifically constructed to store proba-

bilistic temporal relations information, and used for temporal relation classification in

this work. Next, in Section 2.6.2, we explain the problem of graph representations which is

a challenging task, as the information present in the whole topology of the graph should

be captured in the representation. Node embeddings learned over graphs proved to be

effective at capturing such knowledge (Hamilton et al., 2017) so we describe their general

framework and two prominent families of approaches in the subsequent subsections.

This background of node embeddings framework will be beneficial for understanding

specific node embedding algorithms used over WordNet and TEMPROB in Chapter 6.

2.6.1 Knowledge graphs

Commonsense knowledge is generally stored in a graph-structure format, commonly

called as Knowledge Graphs. In knowledge graphs, nodes denote real-world entities or

abstract concepts, and edges show relations between them. Because of this broad def-

inition, knowledge graphs can be found with a variety of data. Broadly speaking, they

can be categorized as open-domain or domain-specific knowledge graphs. For example,

popular knowledge graphs such as YAGO (Hoffart et al., 2011), DBpedia (Lehmann et al.,

2015) contain open-domain information as the nodes can be people, organizations, or
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places, and multiple relations between them are denoted with edges. On the other hand,

some knowledge graphs are designed for specific domains: language, specifically lexical

resources, WordNet (Fellbaum, 1998), FrameNet (Ruppenhofer et al., 2006), Concept-

Net (Speer et al., 2018), geography (Stadler et al., 2012), media (Raimond et al., 2014), and

many more.

Formally, let G = (V ,E ,R) be any knowledge graph where V , E denote nodes and edges

of the graph and R is a set of possible relations between nodes. Then, graphs can possess

different information depending on the types of edges. An unlabeled knowledge graph

contains edges that only have tuples of nodes: E = {(u, v) : u, v ∈V }. Next, the edges of a

knowledge graph with labels are set of triples: E = {(u,r, v) : u, v ∈V ,r ∈ R}. On the other

hand, for a probabilistic graph, in addition to relations there is a scalar value denoting

strength of the edge: E = {(u,r, v, s) : u, v ∈V ,r ∈ R, s ∈R}.

In this work, we used two knowledge graphs: WordNet (Fellbaum, 1998) and TEM-

PROB (Ning et al., 2018a). Let us look at them in the following sections.

Fig. 2.11 A subset of WordNet related to the four senses of book. Figures (1) book.n.01
and (2) book.n.02 show two noun senses of book and their hyperonyms and hyponyms.
Similarly, figures (3) book.v.01 (4) reserve.v.04 show two verb senses and their related
synsets.
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2.6.1.1 WordNet

WordNet (Fellbaum, 1998) is a large lexical database that stores possible senses of words

and semantic relations between them 10. The senses of words that have similar meanings

are grouped and referred to as synset (synonym set). Each synset stores a simple definition

explaining the meaning of the synset as well as examples depicting the use of the word in

sentences. Further, each sense of the word is assigned its POS tag and a unique number to

differentiate between multiple senses of the same word. For instance, Fig. 2.11 depicts

multiple senses of word book: book.n(oun).01, book.v(erb).01, etc. Formally, WordNet

graph GW = (VW ,EW ,RW ) contains nodes, VW , which are synsets, RW , the set of semantic

relations, and EW , the set of edges consisting of triples having two synsets and semantic

relation between them: EW = {(u,r, v) : u, v ∈VW ,r ∈ RW }.

The set RW contains lexical semantic relations such as synonymy, antonymy, hyper-

onymy, hyponymy, meronymy, holonymy, etc. Where synonymy, antonymy indicates

similarity or dissimilarity between senses. Hyperonymy and hyponymy indicate “ISA”

relation between synsets. If X is a generic term for Y, then X is a hyperonym of Y. At the

same time, Y is a hyponym of X, as Y is a specific type of X. For example, animal is hyper-

onym of dog and dog is hyponym of animal. Whereas, meronymy and holonymy indicate

part-whole relation. If X is a part of Y, then X is a meronym of Y, conversely, Y is a holonym

of X. For instance, wheel is a meronym of car and car is a holonym of wheel.

In total, WordNet (English) contains 117,000 synsets where a synset can have POS tag

as noun, verb, adjective or adverb. However, the major portion of synsets is either nouns

or verbs. We show a small subset of WordNet concerning the word book in Fig. 2.11. For

the word book, WordNet contains 11 different senses, out of which 7 are nouns and 4 are

verbs (only two of each are shown in the figure). A book (noun) can mean a written or

published work: book.n.01, a physical object consisting of a number of pages: book.n.02, a

written version of play: script.n.01, a commercial record: ledger.n.01, or seven other senses

such as Bible, Quoran, etc. Also, book as verb has multiple meanings, engage someone

(artist) for performance: book.v.01, reserve a seat or ticket: reserve.v.04, etc. We show a

subset of these senses as well as their semantic relations (hyperonymy or hyponymy) with

other synsets in Fig. 2.11.

2.6.1.2 TEMPROB

Temporal relation probabilistic knowledge base (TEMPROB) (Ning et al., 2018a) is specially

constructed to hold prior temporal relation probabilities (frequencies) between semantic

10In the stricter sense, WordNet is not a graph but many graphs are constructed over it for the use.
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Verb1 Verb2 Temporal Relation Frequency

chop.01 taste.01 after 9
chop.01 taste.01 before 285
chop.01 taste.01 undef 44
conspire.01 kill.01 after 6
conspire.01 kill.01 before 117
conspire.01 kill.01 equal 3
conspire.01 kill.01 included 3
conspire.01 kill.01 undef 30
dedicate.01 promote.02 after 6
dedicate.01 promote.02 before 71
dedicate.01 promote.02 equal 1
dedicate.01 promote.02 included 3
dedicate.01 promote.02 undef 9

Table 2.7 A portion of TEMPROB where each row is a quadraple in the graph. Frequency
indicates likelihood of temporal relation, in case of chop and taste high frequency is for
before relation, indicating chopping of food comes before taste. Similarly, in most of the
cases conspire occurs before killing, and dedicated efforts are before promotion.

verb frames. Suppose GT = (VT ,ET ,RT ) denotes TEMPROB, then VT are the set of semantic

verb frames, RT is the set of temporal relations, and the edges store quadruples: ET =
{(u, v,r, fu,v,r ) : u, v ∈VT ,r ∈ RT , fu,v,r ∈R}.

Now, let us look at different parts of graph GT to understand TEMPROB. Nodes VT , are

a set of semantic verb frames where each verb frame denotes the meaning of the verb in a

specific environment (frame). This notion is based on frame semantics (Fillmore, 1976)

that derives lexical meaning from prototypical situations captured by frames. For instance,

verb sew means stitching clothes in the frame corresponding to textile, cotton, fabrics,

whereas it also can mean stitching wounds in the medical frame containing doctors,

nurses, syringe, etc. Next, RT is a set of temporal relations which consists of after, before,

includes, included, or undef (vague). At last, the frequency fu,v,r denotes the number of

times relation r existed between semantic verb frames (u, v). Specifically, the frequency

measures the number of predictions of certain relations only over the pairs that appeared

in the corpus (1 million NYT times articles) considered while constructing TEMPROB. The

assumption is that these statistics can be generalized over other datasets, as a result, in

general, a higher frequency of certain temporal relation for the pair can be considered as

a higher likelihood of that relation. Overall, TEMPROB contains such 51 thousand nodes,

80 million temporal relations between them, and corresponding frequencies. The small

portion of TEMPROB is shown in Fig. 2.7.
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Now, we detail the procedure of TEMPROB construction which can be beneficial for

gaining further insights. To construct TEMPROB, first, temporal relation classification

system is trained which is used over NYT articles to predict temporal relations between

detected event pairs. The aggregated frequency of the prediction of temporal relations for

each event-pair over all the documents is stored to form the knowledge base. Let us look

at these steps of the construction of TEMPROB separately:

1. Temporal relation classification system: Pairwise classification models to predict

temporal relations are trained. Specifically, two averaged perceptrons (Freund and

Schapire, 1998) each for event-pairs occurring in the same sentence, and adjacent

sentences are trained (rest of the event-pairs are not considered). TBDense (Cassidy

et al., 2014) dataset containing 36 documents is used in the experiment with Train

(22 docs), Dev (5 docs), and Test (9 docs) split. Further, simple hand-crafted features

such as POS tags of verbs and three surrounding words, number of tokens between

verbs, presence of modal verbs (e.g. would, might, may) and temporal indicators

(e.g. before, since), etc. are used in the model.

2. Event detection: After training the temporal relation classification system, the next

step is to apply it over the NYT articles. But, these documents do not contain

annotations for events. For this reason, they used an off-the-shelf Semantic Role

Labeling (SRL) system to detect events. Then, events that are nominals are deleted

from the list and only verbs (semantic verb frames) are kept.

3. Inference: Next, each article is considered separately where event pairs appearing in

the same sentences, and adjacent sentences are separated. First temporal relations

for verb pairs appearing in the same sentences are predicted and then verb pairs

from the adjacent sentences. Greedy strategy is used for inference where after the

addition of new temporal relation temporal graph closure is performed over the

document. The preference is given to the relation obtained from the graph closure

over the prediction such that relation is not at all predicted if it is already deduced.

4. Graph construction: Temporal graphs over each article are obtained, and the fre-

quencies for the verb pairs are aggregated to form the final knowledge base.

Out of these two knowledge graphs, we used WordNet for bridging anaphora resolution,

since it contains semantic relations which are beneficial for bridging inference such as

meronymy relations are especially useful (Hou, 2018b; Hou et al., 2013b). Next, we also

used it in temporal relation classification because semantic relations like hyperonymy
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Fig. 2.12 Overview of graph node embeddings: A conceptual encoder-decoder frame-
work (Hamilton et al., 2017). Given the graph, encoder encodes the node a to low-
dimensional vector va . Encoder takes into consideration node’s structure in the graph
while projecting it into vector space. Then the decoder retrieves the original graph struc-
ture of the node given its vector representation. The node embeddings are learned in this
encoder-decoder framework where they are optimized simultaneously.

can indicate event-subevent relations which can be beneficial for the task. In addition to

WordNet, for temporal relation classification, we separately used TEMPROB to exploit the

prior knowledge about events. We further detail about this in Section 6.2.

2.6.2 Graph node embeddings

Until now, we discussed knowledge graphs which are a special type of graphs that contain

useful commonsense information. But, in this section, we are going to consider generic

graph as a point of discussion (without narrowing down to only knowledge graph). The

reason being, the complexity because of graph-structure is prevalent in all graphs and not

specific to only knowledge graphs. Similarly, the proposed approaches are more general

and can be applied to any graph.

Incorporating knowledge possessed by graphs into machine learning models is a

challenging task, due to the difficulty of encoding high-dimensional non-Euclidean infor-

mation of the graph-structure. Because of this complexity, earlier approaches of feature

designing or use of summary statistics of graphs (e.g degree or clustering coefficients)

are rendered inefficient. Moreover, these approaches become computationally expensive

because of huge sizes of the graphs. Therefore, it is beneficial to learn low-dimensional

representations over graphs instead of relying on hand-crafted heuristics to utilize the

information held by graphs.

Graph embeddings achieve exactly that where they may encode the whole graph, sub-

graphs, or nodes into low-dimensional vector spaces. Fundamentally, graph embeddings

must preserve the structural information of the graph, i.e. in the case of graph node
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embeddings, nodes which are in a neighborhood in the actual graph should have closer

representations in the latent space. This is the main constraint while designing the em-

beddings algorithm. In our work as well we resorted to graph node embeddings learned

over knowledge graphs for enriching event and mention representations. Because low-

dimensional node embeddings can encode node-specific information as well as global

structure which is advantageous for the downstream tasks.

Now, we provide an overview of graph node embedding algorithms. First, we describe

a unifying conceptual framework where the process of obtaining graph node embeddings

can be viewed as training of encoder-decoder pair (Hamilton et al., 2017). Further, we

discuss two broad categories of node embeddings approaches: 1. Matrix factorization

based approaches, and 2. Random walk based approaches. This background is useful

to understand the graph node embeddings algorithms presented in Section 6.3.1 over

WordNet and TEMPROB.

2.6.2.1 Unified framework

As stated earlier, node embeddings capture the global position of the node in the topology

as well as local neighborhood information. Let us suppose G = (V ,E) be the graph where

V and E respectively denote vertices, and edges of the graph. Here, we do not make any

assumptions about the type of graph G where it can be directional, unidirectional, labeled,

etc. Then, node embedding encodes structural information by transforming node into

d-dimensional vector space Rd where d ≪|V |.
The node embeddings learning can be thought as a pair of encoder-decoder func-

tions (Hamilton et al., 2017). Let FE ,θ be the encoder function which converts graph

nodes to vectors:

FE ,Θ : V →Rd (2.57)

where Θ denote set of parameters to be learned associated with encoder. Then the

decoder function reconstructs graph properties from the encoded vectors. The embedding

algorithm decides which graph properties to reconstruct and designs a specific decoder

function. Suppose a decoder function FD,Ψ measures pairwise similarity between the

nodes in the actual graph through their embeddings as:

FD,Ψ :Rd ×Rd →R (2.58)

whereΨ are decoder specific set of parameters.

Next, the parametersΘ,Ψ are learned to minimize the reconstruction loss. Suppose

a,b ∈ G and va := FE ,Θ(a), vb := FE ,Θ(b) be their node embeddings. Let s(a,b) be a
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similarity score between nodes a,b obtained from the graph G with user-defined measure.

Then embeddings learning procedure minimizes the following reconstruction loss:

L (Θ,Ψ) = ∑
(a,b)∈V

ℓ(FD,Ψ(va ,vb), s(a,b)) (2.59)

where ℓ : R×R → R is a loss function. The learning algorithms are usually agnostic

about the downstream tasks, as they depend solely on the design of the loss function ℓ

and similarity measure s. Once the parameters Θ,Ψ are learned, the encoder output is

considered as node embeddings of the provided graph node.

Following the discussion from the work (Hamilton et al., 2017), we note that most of

the node embedding algorithms differ in the way the encoder function, decoder function,

pairwise similarity function, or loss functions are designed. Broadly, two kinds of general

settings are prominently used to obtain node embeddings, we look at them separately in

the following sections.

2.6.2.2 Matrix factorization based approaches

These approaches learn node embeddings such that inner product of vector representa-

tions of nodes is closer to the deterministic similarity measure defined by the algorithm.

Hence, roughly they reduce the loss of the following form:

L = ||VT V−S||2 (2.60)

where V is the matrix of node embeddings and S is a pairwise node similarity matrix.

Concretely, the popular embedding algorithms based on this approach, Graph Factor-

ization (Ahmed et al., 2013), GraRep (Cao et al., 2015), and HOPE (Ou et al., 2016) design

their decoder function and loss function as follows:

FD (va ,vb) = vT
a vb (2.61)

L (Θ) = ∑
(a,b)∈V

||FD (va ,vb)− s(a,b)||2 (2.62)

where va ,vb are the learned vector representations for nodes a,b and s(a,b) is the graph

similarity between them. However, these three algorithms differ in the way similarity

between nodes is measured. The Graph Factorization uses adjacency matrix as to get the

similarity − s(a,b) = Aa,b , whereas GraRep uses higher power of adjacency matrix so as

to obtain more general similarity − s(a,b) = A2
a,b , and HOPE measures general similarity

with Jaccard neighborhood overlap. The matrix factorization based approach (Saedi et al.,
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2018), and Path2vec (Kutuzov et al., 2019) used for obtaining WordNet embeddings in

Section 6.3.1 can be considered to be matrix factorization approaches.

2.6.2.3 Random walk based approaches

In comparison to matrix factorization approaches, random walk based approaches differ

in the way the similarity between nodes is measured. The factorization based approaches

produce deterministic similarity scores between nodes, for instance with the use of the

adjacency matrix. On the contrary, the random walk based approaches use a stochastic

approach to obtain the pairwise similarity between nodes. More precisely, the similarity

between two nodes, a,b, is the probability of encountering node b if the random walk

started from node a.

Deepwalk (Perozzi et al., 2014) and Node2vec (Grover and Leskovec, 2016) are the two

popular algorithms based on random walk. In addition to them, a random walk based

graph node embeddings (Goikoetxea et al., 2015) algorithms used over WordNet employ

the similar strategy which is detailed in Section 6.3.1. In these approaches the decoder

function gives the approximate probability of the nodes being in the neighborhood. Hence,

the decoder function in these methods is given as:

FD (va ,vb) = evT
a vb∑

c∈V evT
a vc

(2.63)

The decoder score is approximately equals to the probability of nodes being in the neigh-

borhood i.e. FD (va ,vb) ≈ p(b|a) where p(b|a) is the probability of encountering b if

random walk started from a.

These approaches generate a sequence of nodes by sampling the random walks from

each node. This generated sequence is used as the training data for learning the em-

beddings. The core of these algorithms is Word2vec (Mikolov et al., 2013b) as once the

sequence of nodes is obtained with repeated random walks they can be treated as cor-

pus and then the algorithm is trained. Similar to the Word2vec objective, the following

negative log of probability loss is optimized:

L (Θ) =− ∑
(a,b)∈D

log (FD (va ,vb)) (2.64)

where D is the data generated with random walks and Θ be the learning parameters to

be optimized. Notice that, Eq. 2.63 is similar to the probability calculation equations for

Word2vec (Section 2.4.1.1, Eq. 2.25 and 2.28). Therefore, similar to Word2vec, directly

optimizing Eq. 2.64 is computationally expensive because of the denominator term in
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Eq. 2.63. To solve this problem, deepwalk uses hierarchical softmax approach whereas

node2vec uses negative sampling approach, both of these approaches were introduced in

Section 2.4.1.1.

2.7 Summary

This chapter presented background information needed to understand the rest of the

thesis. First, we described task definitions and three main components of supervised

learning approaches: event and mention representations, local or global models, and

inference. We also described corpora used in the work and evaluation schemes for both

temporal relation classification and bridging anaphora resolution. Next, we briefly in-

troduced artificial neural networks and few popular types which are used in this work.

Further, we discussed representation learning and related fields. Then, we summarized

different distributional and contextual approaches of obtaining word representations.

The word embeddings algorithms such as Word2vec, and FastText are used in Chapters 4

for event representations whereas Chapter 5 probes BERT model. Many distributional

embeddings and BERT embeddings are again used for representations in Chapter 6. After-

ward, we briefly discussed different composition approaches of obtaining word sequences

representations from words which is similar to what we are doing but in task-specific

learning setting. Finally, we explained knowledge graphs and graph node embeddings. We

first discussed different types of knowledge graphs and detailed WordNet and TEMPROB

which are used in the work. Then we described a unified framework view and two families

of graph node embedding approaches. This context will be beneficial at understanding

graph node embeddings used in this work which are presented in Section 6.3.1.

In the next chapter, we detail the previously proposed approaches for event and men-

tion representations, and point out their drawbacks which is beneficial to gain perspective

about our proposed approaches. We also briefly describe some of the prominent models

and inference strategies in the same chapter.



Chapter 3

Related Work

In the previous chapter, we discussed different methods to obtain word representations,

followed by composition methods to obtain word sequences representations. These repre-

sentations learned in a task-agnostic way are insufficient to solve specific tasks. Contrarily,

a task-specific representation can associate with a desired output of the task, as a result pro-

ducing more accurate solutions. In this chapter, we review different approaches designed

to obtain event representations for temporal relation classification and mention repre-

sentations for bridging anaphora resolution. In addition, for both tasks, we also briefly

discuss other systems that did not specifically concentrate on improving representations

but focused more on modeling and inference.

3.1 Temporal relation classification

Earlier research in computational linguistics extensively studied temporal ordering be-

tween discourse units (Lascarides and Asher, 1993; Lascarides and Oberlander, 1993;

Passonneau, 1988; Webber, 1988). These works explored various temporal order defining

linguistic structures and features such as tense, aspect, temporal adverbials, rhetorical

relations, and pragmatic constraints. Then, the construction of annotated corpora, such as

TimeBank (Pustejovsky et al., 2003a) sparked the use of machine learning approaches for

temporal analysis (Boguraev and Ando, 2005; Bramsen et al., 2006; Lapata and Lascarides,

2004; Mani et al., 2003, 2006) and has further accelerated (Bethard, 2013; Bethard et al.,

2007; Chambers; Chambers et al., 2007; Laokulrat et al., 2013; Verhagen and Pustejovsky,

2008) by multiple TempEval campaigns (UzZaman et al., 2013; Verhagen et al., 2007, 2010).

The majority of these approaches employed supervised learning models, barring few

exceptions such as (Mirroshandel and Ghassem-Sani, 2014) which explored unsupervised
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learning methods. In our work too, we focus on supervised machine learning approaches

employed to solve temporal relation classification.

Recall from the previous chapter that supervised learning based temporal relation

classification systems have three main components: representation of events, model,

and inference. Most of the proposed systems generally differ in the way of obtaining

representation, in modeling (local, global models), or inference (e.g. greedy or ILP). In

the following sections, first, we present details about the methods that focus on event

representations, later we briefly discuss the approaches that concentrate on modeling

and inference.

3.1.1 Work on event representations

As a general trend in NLP, initial approaches obtained event representations by manually

designing features and later features were learned automatically with extensive neural

network use. We follow the same chronological order, first summarize manually hand-

engineered works followed by automatic representation learning approaches.

3.1.1.1 Manually designed representations

The initial studies on temporal ordering explored various ordering units: a clause, a

sentence, or an event (Boguraev and Ando, 2005; Lapata and Lascarides, 2004; Mani et al.,

2003). Despite these different discourse units, they resorted to similar lexical, grammatical,

and semantic features to obtain representations. Mani et al. (2003) found reference time

of the clause, and then established temporal order between them. They called reference

time of the clause as Temporal Value (tval) which can be an explicit time such as year 2001

or some implicit time inferred from the text, and it is obtained by employing different

rules, for instance, a number of temporal expressions present in the clause. This tval is

used as one of the features for establishing temporal order between events in addition to

temporal adverbials, sentence number, paragraph number, aspect, and tense. Further,

Lapata and Lascarides (2004) designed features to capture verb tense and aspect as well

as temporal indicators surrounding the verbs. Similar to these approaches, Boguraev and

Ando (2005) also used lexical features such as tokens, capitalization of tokens, headwords,

grammatical features such as POS of the tokens as well as of the words chunk, etc. to

obtain the event representation.

Later on, the prominent approaches (Bethard et al., 2007; D’Souza and Ng, 2013) used

TimeBank (Pustejovsky et al., 2003a) corpus for the analysis, hence, consistently used

event as one of the ordering units and improved the representation by proposing an
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additional set of features. Bethard et al. (2007) concentrated only on the event-pairs which

are present in the verb-clause syntax. They considered the verb from the clause as the first

event and then the head of the clause as another event. Features were designed based on

the words which connect the event words as these connecting words like because, since, as,

while indicate temporal relations, specifically, because, since indicate after relation and as,

while indicate overlap relation. In addition to that, syntactic features were also extracted

such as dependency paths between events to include in their feature-set. Further, they

used all the words in-between events and derived features from them and empirically

showed that among these different features, the syntactic features have helped the most.

Next, D’Souza and Ng (2013) proposed rich linguistic features to further improve

the representation. Their main contribution is the proposal of various pairwise relations

between events. So for instance, to establish temporal relations between two events e1 and

e2, the baseline features mostly concentrate on features related to either e1 or e2 but not

both. They filled this gap by extracting various relations like dependency, lexical, semantic,

and discourse relations between both events to improve pairwise representations. For the

events that are present in the same sentence, they argue dependency relation between

events implies simultaneous, before or after temporal relations. In addition to that, they

claim lexical relations such as antonymy, hyponymy, etc., are useful in capturing temporal

relations. To extract these lexical relations they used Webster dictionary and WordNet

graph. Further, they used semantic relations, particularly predicate-argument relations

such as cause as well as discourse relations: causation, elaboration and enablement. All

these features were evaluated empirically to show that the event-pair relations are crucial

for temporal relation classification.

3.1.1.2 Automatic representation learning

In the previous section, we have discussed the approaches that employed hand-crafted

features to represent events and event-pairs for temporal relation classification. The

process of acquiring representations by manually designing features is laborious and

requires expertise in the task. To mitigate these issues, automatically learned dense vectors

are used to represent events. Then interaction between these vectors is obtained to get

the event-pair representations. The assumption here is that the learned representation

adequately captures relevant features for temporal relation classification.

One of the first works (Mirza and Tonelli, 2016), assessed the effectiveness of the

use of word vectors for event representations that are learned over huge unannotated

texts. Also, they experimented on multiple simple ways of combining them to get the

event-pair representations. In their approach, events were represented with a pre-trained
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Word2vec (Mikolov et al., 2013b) vector of events’ headwords. Suppose ei and e j are the

two events having headwords wi and w j , respectively and wi,wj are the d-dimensional

Word2vec representations corresponding to them, and ei ,e j is the representation of

events. Then, event representations of each event is nothing but its headword embeddings:

ei := wi and e j := wj. This was much more efficient than designing multiple features to

represent an event. Because obtaining Word2vec vectors corresponding to events is fairly

simple as most of the events are either verbs or nouns.

Next, they conducted experiments over different approaches of combining these

event representations. In those experiments, they applied multiple simple ways to obtain

interaction between event-pairs such as concatenation, addition, or subtraction over

event representations. Let fe :Rd ×Rd →Rd ′
be the function which models interactions

between event-pairs. They used different function forms to capture this interaction:

f a
e (ei ,e j ) = ei +e j (3.1)

f s
e (ei ,e j ) = ei −e j (3.2)

f c
e (ei ,e j ) = ei ⊕e j (3.3)

where ⊕ indicates concatenation of vectors, and observed that concatenation (Eq. 3.3) is

more effective in most of the cases.

The event representations obtained by considering the headword of the event was

efficient but still failed at capturing the context of events. The context of the event can

easily indicate the tense and aspect of the event as well as it can also show the presence

of any temporal markers such as before, after etc. As we have seen in the manually de-

signed features, this information is crucial for temporal relation classification. This issue

is partially handled by (Cheng and Miyao, 2017; Choubey and Huang, 2017; Meng et al.,

2017) who use dependency paths between events to obtain event-pair representations. In

these approaches, first dependency parsed trees are generated with the use of previously

proposed methods (e.g. Stanford Parser), and then these parsed trees of the sentences

containing both events are considered to get the context. For that, the common ancestor

between events is found and all the words from both the events up to this common an-

cestor are considered as a context. Next, all these words are represented with Word2vec

vectors and provided to an LSTM (Hochreiter and Schmidhuber, 1997). Finally, the output

of the LSTM is considered as event-pair representations. They observe that event-pair rep-

resentations with such approach is more beneficial than single headword representation

approach of Mirza and Tonelli (2016).
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One of the disadvantages of using dependency trees is that it can not be directly used

for events that are present in different sentences. To circumvent the issue, for both the

events dependency paths from them to roots of the respective sentences in which they are

present is considered and context is derived from these paths. This approach is exclusively

taken for those events which are present in different sentences, in addition to the previous

common ancestor approach for events in the same sentence. This leads to the overhead

of training another LSTM separately for event-pairs that are in the different sentences.

Also, in this approach, instead of all the words in the context, only those words which are

on the dependency tree path are considered. We solve this issue by considering all the

words in the context-window and use RNN to get the representation (Pandit et al., 2019)

which is detailed in the coming chapter.

The work of Han et al. (2019a,b) further improved the representation by including the

whole sentence as the context of the event. It inputs the whole sentence to a BiLSTM (for-

ward and backward LSTMs) where each word is represented by concatenating the word

vectors obtained with BERT (Devlin et al., 2019) model as well as POS vectors of each

word. Let ei be any event present in a sentence containing n words. Here, each k th word

is represented by vector

wk = bk ⊕pk (3.4)

where bk is BERT based representation, pk is POS embeddings of k th word, and ⊕ indi-

cates concatenation of vectors. Then all the words’ representations: w1, · · · ,wk , · · · ,wn are

passed through BiLSTM. The output from the forward LSTM and backward LSTM corre-

sponding to event word is concatenated to get the contextualized event representation.

So, the vector representation corresponding to event ei is obtained as, ei = fi ⊕bi where

fi ,bi are hidden vectors from forward and backward LSTMs corresponding to event ei .

Similarly, for event e j vector representation e j can be obtained. Finally, to get the event

pair representation both these embeddings are concatenated:

ei j = ei ⊕e j (3.5)

Also, these systems learned representations in a global fashion. As we will mention in

the models and inference section, these systems are trained with a deep structured learning

approach where Structured SVM (SSVM) is used to model the global loss. This leads to

more effective representation learning as underline neural networks capture the relations

between other event-pairs as well while training.

Using a different approach, Ning et al. (2018a) developed TEMPROB knowledge re-

source to improve event representations. As discussed in Section 2.6.1.2, TEMPROB
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contains prior probabilities for relations between different verbs, for instance, marry –

divorce have higher probability score for before relation than any other temporal rela-

tion. These prior probability scores between the event-pairs for each temporal relation

are used as one of the features to represent event-pairs. Their approach is conceptually

similar to ours where we also inject commonsense information in addition to text-based

embeddings, but they relied only on the specific prior information, even in that they

just used pairwise probability scores as a feature instead of getting overall information

from the general structure of TEMPROB. This naive method of injecting commonsense

knowledge is further improved in Ning et al. (2019) where they trained auxiliary Siamese

network (Bromley et al., 1993) over TEMPROB and a portion of ConceptNet (Speer et al.,

2018) and included features from this network into their main system.

Further, Wang et al. (2020) combined the previously mentioned BiLSTM based ap-

proach (Han et al., 2019a) and trained a MLP auxiliary network as proposed by Ning et al.

(2019) to include TEMPROB and ConceptNet information to improve the representations.

They used RoBERTa (Liu et al., 2019b) embeddings and external features obtained from

the trained auxiliary network to get event-pair representations. Their approach can also

be described with Eq. 3.4 with the only difference is that instead of bk BERT-based repre-

sentations, rk RoBERTa-based embeddings are used. Also, the pairwise representation

obtained in Eq. 3.5 is further concatenated by the knowledge graph based information,

elementwise multiplication, and subtraction of outputs of BiLSTMs. With this event-pair

representations they solved the broader event-event relation problem instead of just fo-

cusing on temporal relations by addressing event coreference as well as event parent-child

relation in their approach. This joint formulation seems to improve the performance

further.

In addition, some recent works (Han et al., 2020; Lin et al., 2020) have used similar tech-

niques to get the event-pair representations, where they extended these representations

to the biomedical domain temporal relation extraction.

3.1.2 Work on models and inference

So far, we discussed approaches that differed in the way of obtaining event representa-

tions. Now, we review the approaches that focus on the model or inference, the other

component of the supervised temporal relation classification systems. Local temporal

classification models learn temporal relations between temporal entities (event–event,

event–TimEx, TimEx–TimEx) independent of temporal relations between other pairs. The

general framework in these models is to obtain representations of event-pairs, then em-

ploy the machine learning classification models, such as SVM, CRF, or neural networks, to
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assign probability scores for each possible temporal relation. Followed by local inference

strategy to select the highest scoring relation as the predicted temporal relation for that

pair. It is crucial to note that the relations are inferred without considering predictions

between other pairs. The approaches (Bethard, 2013; Bethard et al., 2007; Chambers;

Chambers et al., 2007; Laokulrat et al., 2013; Mani et al., 2006; Verhagen and Pustejovsky,

2008) fall into this category. Despite the simplicity and wide use of these approaches, they

suffer from two major drawbacks. First, the temporal relations between pairs are learned

independent of each other, thus missing out on the available global information. Second,

due to local inference strategies, systems can produce inconsistent temporal relations

between event-pairs. For instance, these systems can predict A before B , B before C , and

A after C , which violates temporal constraints.

To solve the problem of inconsistent temporal relation predictions caused by local

inference, different strategies to impose global constraints were designed. Initially, the

approaches (Mani et al.; Verhagen and Pustejovsky, 2008) proposed greedy inference

strategies to solve the global inference problem. Further improvements in inference are

achieved by formulating inference as integer linear programming (ILP)(Bramsen et al.,

2006; Chambers and Jurafsky, 2008; Denis and Muller, 2011; Do et al., 2012). On similar

lines but a slightly different approach is developed by (Chambers et al., 2014; McDowell

et al., 2017): They employ many hand-crafted rules and machine learned classifiers called

sieves, to form a stack, and predicted temporal relations are passed from one sieve to

another where the consistency is enforced by inferring all possible relations before passing

by using greedy inference strategy similar to (Mani et al.; Verhagen and Pustejovsky, 2008).

Though these approaches solve the problem of inconsistent predictions, they still

learn parameters locally i.e. independent of temporal relations between other pairs.

This issue of local parameter learning is addressed by the global models which apply

structured learning approach to learn temporal relations globally and employ global

inference strategies (Han et al., 2019a,b; Ning et al., 2017; Yoshikawa et al., 2009). Ning

et al. (2017) applied semi-supervised constraint driven learning (Chang et al., 2012) to

learn consistent temporal relations, as they leveraged unlabeled data in their approach

to improve the performance of the system. The approaches (Han et al., 2019a,b) further

improved the performance with the application of deep structured learning. Both works

use the same neural model which consists of a BiLSTM network to learn scoring functions

for pairwise relations, and a SSVM to predict temporal relations that comply with global

constraints. The only difference is that the latter approach (Han et al., 2019b) predicts

events and temporal relations jointly, instead of taking a common approach of relying on

the gold event annotations.
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3.1.3 Summary

We observed that the earlier approaches predominantly employed hand-engineered fea-

tures for event representations. The hand-engineered approaches concentrated on tense,

aspect, modality, and certain grammatical features of the event. These approaches relied

mostly on event specific information, barring works such as (D’Souza and Ng, 2013),

which focused on the broader context to capture semantic and discourse relations be-

tween events. The earlier approaches also attempted to exploit contextual information by

looking for temporal clues like temporal markers such as an explicit mention of year, day,

etc. as well as clause connectors such as because, as, etc. Though these manually designed

representations attempt to leverage contextual information, they still remain inefficient

because of the inherent hand-picky approach taken, because the methods capture only

those features that experts deem important while neglecting broader contextual infor-

mation. This trend has changed with automatic representation learning due to neural

networks. The earliest work (Mirza and Tonelli, 2016) based on automatically learned

word vectors just used headword vectors by ignoring crucial contextual information. The

more recent approaches tried to solve the contextual information problem by using de-

pendency parse based context (Cheng and Miyao, 2017; Choubey and Huang, 2017; Meng

et al., 2017) as well as with window based context (Dligach et al., 2017). We argue that the

former study is difficult to be applied effectively if the events are not present in the same

sentence and latter study is not done on the standard dataset used for temporal relation

classification.

The pairwise representations of events is another necessary part of these approaches

because we are trying to capture the temporal relation between pair of events and not

the events separately. This is a less investigated area in the literature as most of the

works simply concatenated event representations of both events to get the pairwise

representations barring (D’Souza and Ng, 2013; Mirza and Tonelli, 2016). D’Souza and Ng

(2013) designed pairwise features such as pairwise grammatical features, features based

on the different lexical, semantic, and discourse relations, whereas (Mirza and Tonelli,

2016) resorted to linear operations such as summation, multiplication, etc. over event

representations to get the interaction between events.

Further, use of the external knowledge resources for capturing lexical relations is ex-

plored in (D’Souza and Ng, 2013) and in (Ning et al., 2018a) developed external knowledge

source with TEMPROB to capture prior temporal information of the events. However,

both these approaches resorted to hand-picked features for the event representations,

(D’Souza and Ng, 2013) used specific lexical relations where as (Ning et al., 2018a) used

prior temporal relation probability as a feature. The approaches (Ning et al., 2019; Wang
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et al., 2020) attempted to remedy this by training auxilary network instead of relying

on hand-picked features, but it still captured only shallow features. As a result, these

approaches fail to acquire broader commonsense information available in the knowledge

sources encoded by the topology of the graph.

All in all, the representation learning approaches produced superior results in com-

parison to the feature engineering based approaches and seem to be a promising way of

obtaining representations. This was first shown by Mirza and Tonelli (2016) when they

experimented with Word2vec representations and observed absolute performance gain

of around 2 points in F1 score against strong sieve-based CAEVO (Chambers et al., 2014)

on TimeBank-Dense dataset. Further recent approaches (Han et al., 2019a,b; Ning et al.,

2019; Wang et al., 2020) also benefited from the improved representations and shown

gains in performances, albeit the systems were evaluated on different dataset (MATRES)

so direct comparison between earlier hand-crafted feature based approaches and these

approaches is difficult. Though there are improvements in event representations, they

still lack at acquiring some crucial information as discussed above.

In our work, we try to remedy all these shortcomings. We capture the contextual

information for the event representation with the window of n-words context to RNN

and then capture non-linear interaction with CNN between these representations to get

event-pair representation which is detailed in the next chapter (Chapter 4). Next, in the

final chapter (Chapter 6), we explain the work where we combine embeddings learned

over knowledge graphs such as TEMPROB, WordNet with text-based representations to

acquire both contextual and commonsense information.

3.2 Bridging anaphora resolution

Bridging anaphora resolution is a subtask of bridging resolution. Recall from the previous

chapter that bridging resolution involves identifying bridging anaphors which is referred

to as bridging anaphora recognition and linking these bridging anaphors to appropriate

antecedents is called bridging anaphora resolution. We are focusing on the latter task.

In the literature, Cahill and Riester (2012); Hou (2016, 2019); Hou et al. (2013a); Markert

et al. (2012); Rahman and Ng (2012) focused on bridging anaphora recognition, on the

other hand, Hou (2018a,b); Hou et al. (2013b); Lassalle and Denis (2011); Poesio et al.

(2004); Poesio and Vieira (1998); Poesio et al. (1997) studied bridging anaphora resolution,

whereas, Hou et al. (2014, 2018); Roesiger et al. (2018); Yu and Poesio (2020) solved both

problems. We focus on the work which solves the bridging anaphora resolution as that is

the main point of investigation in our study.
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All these works employed a supervised learning approach to solve bridging anaphora

resolution, then similar to temporal relation classification, we can divide them as well

into two broad categories: bridging anaphor and antecedent representations based work,

and task modeling and inference based work. First, we detail the approaches that focused

on the representations, later, we briefly note approaches that focused on models and

inference.

3.2.1 Work on mention representation

In all the models, we have to obtain representations for bridging anaphors, antecedents as

well as antecedent candidates. Recall from the previous chapter that all of these linguistic

objects are a subtype of mentions. Therefore, almost similar features are used to represent

them. In the earlier approaches, similar to all NLP tasks including temporal relation

classification, hand-engineered features were designed to get representations whereas

the latest work has exploited neural networks to learn them. So, first, we summarize the

mention representations obtained with hand-engineered features and then examine the

latest automatic representation learning approaches.

3.2.1.1 Manually designed representation

Most of the earlier approaches (Lassalle and Denis, 2011; Poesio et al., 2004; Poesio and

Vieira, 1998; Poesio et al., 1997) made a strong assumptions on bridging relations either by

considering only definite Noun Phrases (NPs) as bridging anaphors or limiting types of

relations can be held between bridging anaphor and antecedent (e.g. mostly considering

meronymic relations). But recent approaches have got rid of these restrictions and tackled

unrestricted bridging anaphora resolution (Hou, 2018a,b; Hou et al., 2013b).

Poesio et al. (2004) applied a pairwise model combining lexical semantic features

as well as salience features to perform mereological bridging resolution in the GNOME

corpus. They addressed only mereological bridging relations which is one type of bridging

reference. Lexical distance is used as one feature in their approach and WordNet is used

to acquire that distance, but sometimes relation between particular pair is not found

in WordNet, therefore, as an alternative, Google API is used to get the distance between

anaphor-antecedent. Given noun head ha of anaphor a and hm of potential antecedent

m, the query of the form “the ha of the hm” is provided to API to get the number of hits

and from that lexical distance is calculated. After obtaining these features, a multi-layer

perceptron is used for the classification. Their training dataset is constructed by keeping

a window size of 5, i.e., all the NPs occurring before an anaphor in the window of 5
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sentences are considered as negative samples except antecedent. They also apply a data

undersampling strategy for data balancing.

Based on this method of Poesio et al. (2004), Lassalle and Denis (2011) developed

a system that resolved mereological bridging anaphors in French. They argued that

the linguistic resources are scarcer in languages other than English, thus the use of re-

sources like WordNet was difficult in other languages (e.g. French). To mitigate these

challenges, raw texts were used, specifically, the system was enriched with meronymic

information extracted from raw texts where they iteratively collected meronymic pairs and

the corresponding syntactic patterns in a bootstrapping fashion. Finally, they evaluated

their system on mereological bridging anaphors annotated in the DEDE (Gardent and

Manuélian, 2005) corpus.

Deviating from all the previous studies, Hou et al. (2013b) proposed the first work on

unrestricted bridging anaphora resolution. Also, they take a global approach to resolve

bridging anaphora. For that, they designed various new global and local features to get

mention representations. We detail their approach in Section 3.2.2, but for now, note

down the prominent features used by them for the mention representations.

We compile some of the generally used features for mention representations from the

previously proposed approaches (Hou et al., 2013b; Lassalle and Denis, 2011; Poesio et al.,

2004) as follows:

Semantic features

• Semantic class: Mentions are assigned one of the semantic classes (Markert et al.,

2012) e.g. location, organization, GPE (Geo-political Entity), product, language,

and so on, because certain semantic class pairs indicate bridging relation between

the mentions. For instance, suppose a semantic class of anaphor is a professional

role and that of candidate antecedent is organization. Then, they may exhibit

employee-employer relation, indicating bridging.

• Meronym relation: It captures part-of relation between mention pairs. Two ap-

proaches are broadly used to get this information. First, use of external resources like

WordNet which holds information about meronymy relation between nodes (Poesio

et al., 2004). This is done by measuring the shortest path length between an anaphor

and an antecedent candidate among all synset combinations. The inverse value of

this distance produces confidence about the relation between anaphor and can-

didate antecedent. On the other hand, the second approach exploits preposition

patterns like X of Y or possessive structure Y’s X (Hou et al., 2013b). The query

like "anaphor preposition antecedent" which is a generalization of "anaphor of an-
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tecedent" is created and passed to Google API to get the number of hits. This gives

probability of part-of relation between anaphor and candidate antecedent.

• Verb pattern: The compatibility of the anaphor and candidate antecedent is cap-

tured with the verb on which anaphor depends (Hou et al., 2013b). Suppose anaphor

depends on verb v then queries with all candidate antecedents of the subject-verb

and verb-object are searched over a corpus. The hits are transferred into the normal-

ized scores for each anaphor-candidate antecedent pair which indicates likeliness

of them being bridging pair.

Syntactic and lexical features

• Same head: Head of the anaphor and antecedent are rarely same, so it is good to

exclude those pairs (Hou et al., 2013b).

• Word overlap: Check if the anaphor is pronominally modified by the head of can-

didate antecedent (Hou et al., 2013b). For example the mine - mine security, the

headword mine modifies security in anaphor.

• Co-argument: The subject can not be the antecedent of the object anaphor in the

same clause (Hou et al., 2013b). This feature checks if it is the case.

Salience feature

Salient entities are preferred as antecedents. These features are captured by considering

the position of the antecedent candidate in the document.

• Global first mention: It is assumed that global salient entities are presented at the

beginning of the document (Poesio et al., 2004), based on that a binary feature is

designed to indicate if the mention is the first mention in the whole document.

• Local first mention: Binary feature denoting if the mention is the first in the last five

sentences is used (Poesio et al., 2004).

• Utterance distance: It calculates the number of sentences between anaphor and

candidate antecedent (Poesio et al., 2004).

• Document span: This captures the local context of the candidate antecedent, i.e.,

the sentences which contain antecedent (Hou et al., 2013b).
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3.2.1.2 Automatic representation learning

Until now, we discussed hand-crafted features and approaches that proposed them. We

now move to approaches that automatically learn mention representations. There has

been little work (Hou, 2018a,b, 2020a; Yu and Poesio, 2020) on this front because of the

inherent difficulty of the task and more importantly small size of the annotated corpora.

Hou (2018b) learned embeddings_PP, a customized embeddings specifically for bridg-

ing resolution and extended them in (Hou, 2018a). In the first approach, she argues

distributional word embeddings learned in a task-agnostic way (e.g. Word2vec, Glove)

capture both genuine similarity and relatedness between words which is not quite suitable

for resolving bridging relation, as it requires more knowledge of lexical association. There-

fore, she resorts to the prepositional structure of NP, X of Y and possessive pattern Y’X (as

mentioned previously in 3.2.1.1) to acquire non-identical associative relation between

two nouns. On these noun-pairs having part-of relations, she learned embeddings_PP

while completely avoiding the hand-crafted ways of obtaining features. She empirically

showed that embeddings_PP significantly improved the accuracy of bridging resolution in

comparison to the task-agnostic word embeddings (Glove). In the following work (Hou,

2018a), she extended this approach and designed embeddings_bridging that combines

embeddings_PP and Glove (Pennington et al., 2014) embeddings, as embeddings_PP con-

tained representations only for nouns. This enhanced representation further improved

the accuracy of bridging anaphora resolution.

In the latest approaches (Hou, 2020a; Yu and Poesio, 2020), BERT embeddings are used

to get the contextualized representation of bridging anaphor and antecedent candidates.

However, both approaches differ in the way BERT is used. In the former approach, BERT

is fine-tuned for bridging whereas the latter approach uses pre-trained BERT embeddings

in their neural learning model.

BARQA system proposed by Hou (2020a) differs from commonly proposed approaches

in two ways: First, instead of relying on already extracted gold mentions to form the set

of antecedent candidates for bridging anaphors, the system extracts these candidates

itself, followed by selecting the appropriate antecedent from the set. Second, bridging

anaphora resolution is formulated as a question-answering problem where every anaphor

is rephrased as a question, and the answer generated by the system is considered as a

predicted antecedent. Specifically, for a bridging anaphor a, a question of the form “a

of what” is generated and context ca is provided to BERT. The context ca contains the

first sentence of the document, the previous two sentences from anaphor a and the

sentence containing a. Then the system predicts an answer for the question from the

context ca which is treated as predicted antecedent for a. This formulation produced
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effective representations as BARQA system achieved state-of-the-art performance over

ISNotes (Markert et al., 2012) as well as BASHI (Roesiger, 2018a) datasets.

The system proposed by Yu and Poesio (2020) also differs in the way the problem is

formulated. This system solved the more general and harder full bridging resolution task

where both bridging anaphor as well as antecedent candidates are detected and resolved.

Also, they formulated the task differently where they learn bridging and coreference res-

olution in multi-task fashion as both are similar tasks (reference resolution tasks). The

primary reason behind such a formulation is the lack of training data for bridging reso-

lution. Specifically, their system extends state-of-the-art coreference resolution system

(Kantor and Globerson, 2019; Lee et al., 2018) with the addition of a feedforward network

at the end and two different classifiers each for bridging and coreference resolution. They

mainly used part of ARRAU dataset (Uryupina et al., 2019) for training as it contains both

bridging as well as coreference annotations. Further, they evaluated their system on

ARRAU, ISNotes (Markert et al., 2012), BASHI (Roesiger, 2018a), and SciCorp (Roesiger,

2016). Their system achieved substantial improvements over previous best results for full

bridging resolution for all corpora.

3.2.2 Work on models and inference

Supervised learning approaches for the task have considered bridging anaphora resolution

as a classification problem and have commonly used two types of models: local and

global. Similar to the models for temporal relation classification, local models predict the

antecedent for anaphor, independent of other anaphor linkings. In a nutshell, the local

models construct a set of antecedent candidates for the anaphor, then formulate anaphor

linking as a classification problem and assign a compatibility score for each antecedent

candidate of the anaphor. At inference, the highest scoring candidate antecedent is

predicted as an antecedent for the anaphor. On the contrary, the learning in the global

models consider other bridging anaphor-antecedent pairs as well, though the dependency

on the other anaphor links is not so complex as temporal relations. The main constraints

in the bridging anaphor resolution are the low probability of bridging anaphor being the

antecedent for another anaphor, high probability of the entity being the antecedent for

another anaphor once it is an antecedent, and certain anaphor being more likely to share

the same antecedents. Because of these simple linguistic constraints to be enforced for

the bridging anaphora resolution, most of the works resorted to local models and simple

greedy inference strategy. Majority of the works (Hou, 2018a,b; Lassalle and Denis, 2011;

Poesio et al., 2004; Poesio and Vieira, 1998; Poesio et al., 1997) employed local models,

whereas (Hou et al., 2013b) used global model to resolve bridging anaphors.
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The model (Hou et al., 2013b) integrates global as well as local features in the Markov

Logic Networks (MLN) (Domingos and Lowd, 2009), thus, differs from previous ap-

proaches where only local features were used to infer antecedent for an anaphor. They

argued that if antecedent candidates for linking anaphors are selected from a particular

window of sentences, it can result in either too many wrong candidates in case of bigger

window size or lose out correct antecedent in case of smaller window size. They solved

this by taking a global approach where candidate antecedents are not restricted to any

window size but all the NPs are considered as candidates. Specifically, in a local approach,

for anaphor a antecedents are selected from set Ea of NPs but in this approach the an-

tecedent is selected at discourse level from E =∪a∈A Ea where A denotes set of anaphors

in the document. Next, in their MLN system, three types of formulas were defined: hard

constraints, discourse level formulas, and local formulas. The hard constraints specified

rules like an anaphor can have only one antecedent, the antecedent of an anaphor should

occur before it, and some other rules. In discourse level formulas, they preferred globally

salient antecedents based on the assumption that similar or related anaphors in one doc-

ument are likely to have the same antecedent. The local formulas are based on previously

proposed local features (Poesio et al., 2004) and few new features proposed by them as

noted in the previous sections.

3.2.3 Summary

Similar to temporal relation classification approaches, the earlier mention representa-

tion approaches for the bridging anaphora resolution paid less attention to context. The

feature-engineered approaches mainly concentrated on semantic, lexical, syntactical,

and salient features, ignoring much of the contextual information. The learning based

approach Hou (2018a,b) that designed custom-tailored embeddings, emb_pp for bridg-

ing anaphors also neglected the broader context of the anaphors. This is changing in

recent approaches based on transformer language models as they leveraged the inherent

context capturing capabilities of these models. These approaches (Hou, 2020a; Yu and

Poesio, 2020) built on the bridging related information captured by pre-trained models.

They trained their models with different objectives, Hou (2020a) formulated bridging

as a question-answering task, on the other hand, Yu and Poesio (2020) jointly resolved

bridging and coreference tasks. However, there is no study done to assess the capability of

pre-trained transformer models at capturing bridging information, which could help at

designing better models for bridging. We think that this kind of study is necessary to get an

effective fine-tuning objective and in turn for an effective proposal of bridging resolution

systems based on transformer models.
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Though these models excelled at capturing contextual information, less attention has

been paid to capture commonsense information. The initial approaches based on manu-

ally designed features have tried to extract some information from WordNet, raw texts or

web(Hou et al., 2013b; Lassalle and Denis, 2011; Poesio et al., 2004). Specifically, they de-

signed features to capture certain semantic relations such as meronymy, hypernymy, etc.

Also, emb_pp (Hou, 2018a,b) leveraged the part-of relation by training these embeddings

over large unannotated corpora. However, these approaches still fail to capture broader

commonsense information encoded in the knowledge graphs which can be beneficial for

bridging anaphora resolution.

Overall, we observe that automatic mention representations produce better results

than manually designed approaches. On ISNotes dataset, the manually designed repre-

sentations with MLN (Hou et al., 2013b) produce accuracy of 41.3%, whereas mention

representation with emb_pp (Hou, 2018a) improves this performance and achieves an

accuracy of 46.5%. The gain is further enhanced by BARQA (Hou, 2020a) system which

achieves 50.7% accuracy on ISNotes. Unfortunately for recently proposed datasets: BASHI

and ARRAU, results with feature engineered approaches are not readily available for bridg-

ing anaphora resolution, so it is not straightforward to do a similar comparison for them.

However, results of full bridging resolution obtained over these datasets by Roesiger et al.

(2018) and performance gain achieved by Yu and Poesio (2020) over their system indicate

the similar trend observed in the case of ISNotes. Yet all these approaches fall short in

some aspects as pointed in the preceding paragraphs.

We fill these gaps in our work. In chapter 5, we investigate the pre-trained transformer

language models for bridging information. We carry out two complementary approaches

where we first probe internal parts of the transformer model individually and in the second

approach, we take a more general view by looking at the model as a whole. In chapter 6,

we present a detailed study on the inclusion of external knowledge for improved bridging

representation. We note challenges in adding such information, followed by proposed

solutions and empirical results.
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Learning Rich Event Representations

and Interactions

In the last chapter, we detailed the shortcomings of previously proposed approaches. We

observed that most existing systems for identifying temporal relations between events

heavily rely on hand-crafted features derived from the event words and explicit temporal

markers. On the other hand, the word embeddings based approach (Mirza and Tonelli,

2016) failed at capturing contextual information. Besides, less attention has been given to

automatically learning contextualized event representations or to finding complex inter-

actions between events. The work presented in this chapter fills this gap in showing that a

combination of rich event representations and interaction learning is essential to more

accurate temporal relation classification1. Specifically, we propose a neural architecture,

in which i) a Recurrent Neural Network (RNN) is used to extract contextual information for

pairs of events, ii) character embeddings capture morpho-semantic features (e.g. tense,

aspect), and iii) a deep Convolutional Neural Network (CNN) architecture is used to find

out intricate interactions between events. We show that the proposed approach outper-

forms most existing systems on commonly used datasets while replacing gold features of

TimeBank with fully automatic feature extraction and simple local inference.

4.1 Introduction

Recall from our task description from Section 2.1.1 that temporal relation extraction is

divided into two main tasks, i) the identification of events and time expressions (TimEx’s),

and ii) the classification of temporal relations (or TLINKs) among and across events and

1This work is an extension of our work (Pandit et al., 2019).
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time expressions. Possible temporal relations for this latter task include temporal prece-

dence (i.e., before or after), inclusion (i.e., includes or is_included), and others inspired

from Allen’s algebra (Allen, 1983). Here, we concentrate on temporal relation classification,

specifically event-event relations, the most frequent type of TLINKs and arguably the most

challenging task.

Previously we have seen that tense, aspect, temporal connectives such as before, during,

and temporal markers such as today, last day are crucial for determining temporal ordering

between events. We hypothesize that the context and morphology of the event capture

this useful temporal information. Consequently, it is important to encode the contextual

and morphological information into the event representations. Next, temporal relations

are determined between pairs of events (binary relations), thus, it is necessary to acquire

pairwise features that can capture the interaction between them. Section 4.2 talks in

more detail about the significance of context, morphology and interaction for effective

event-pair representations.

Based on the hypothesis, in section 4.3 we propose an approach that learns task-

specific event representations from event’s context and morphology. These representa-

tions include information both from the event words and its surrounding context, thus

giving access to the events’ arguments and modifiers. Furthermore, the character-based

model adds another type of information captured by morphology such as tense and aspect

of the event. Plus, we also attempt to learn the potentially rich interactions between events.

Concretely, our learning framework is based on a neural network architecture, wherein: i)

Recurrent Neural Network (RNN) is used to learn contextualized event representations,

ii) character embeddings is used to capture morphological information, hence encod-

ing tense, mood and aspect information, and iii) a deep Convolutional Neural Network

(CNN) architecture is then used to acquire complex, non-linear interactions between

these representations (Fig. 4.1).

Next, we empirically show the potency of our system. We first detail the experimental

setup in section 4.4 and present results in section 4.5. We also perform ablation studies to

see the effectiveness of each component of the system in section 4.6. Finally our findings

and observations are summarized in section 4.7.

4.2 Effective event-pair representations

Importance of context and morphology The fundamental requirement for event repre-

sentations in temporal relation classification is the presence of the event related temporal

information in the representations so that the further algorithms can use that information
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to establish temporal relations accurately. The following are a few prominent factors that

are crucial for temporal analysis of events:

• Tense: The tense of the event provides the most useful temporal signal. It indicates if

the event has occurred in the past, present, or will occur in the future with reference to

the time of writing the text.

• Grammatical aspect2 The grammatical aspect adds granular details to the information

provided by the tense. It tells if the event is still going on (progressive), finished (perfect)

or event is started in the past but has a varying end (perfect progressive) in the given

tense. The presence of auxiliary verbs like will, was, is, etc. provides this information.

• Temporal indicators: The words like before, after which are used to connect different

clauses are also instant give-aways of the temporal relations. Similarly, connecting

words such as because, since, as, while indicate temporal relations − because, since

indicate after relation and as, while indicate overlap relation.

• Temporal markers: The temporal markers like “February”, “Thursday” are definite

indicators of exact time and are crucial for the analysis. In addition to that, the presence

of the words like “yesterday”, “today” as well as the markers like “last”, “next”, “since”

also offer certain reference time.

The earlier approaches (Bethard et al., 2007; Boguraev and Ando, 2005; Lapata and Las-

carides, 2004; Mani et al., 2003, 2006) acquired these features from TimeBank annotations.

In general, they detected the presence of certain words such as auxiliary verbs (e.g. is, was,

will, etc.), temporal markers (dates, days, etc.), temporal indicators (e.g. before, after,etc.)

from the context to acquire these features. Similarly, the event representation learning

approach should also capture these features from the context. However, recently proposed

event representation learning approaches either completely ignored them (Mirza and

Tonelli, 2016) or added extra pre-processing steps in the form of syntactic parsing (Cheng

and Miyao, 2017; Meng et al., 2017).

2Grammatical aspect (Comrie, 1976) is different from lexical aspect (Vendler, 1957). The lexical aspect
divides verbs into four categories: states, processes, accomplishment, and achievements. These distinctions
are mainly based on the temporal properties such as whether the event is ongoing or ended, whether
it occurs at a specified time or over a period. For instance, “running”, “writing” are processes whereas
“knowing” is a state. Generally, these distinctions are independent of the tense in which verbs are used as
they depend on the verb’s inherent meaning. Though, lexical aspect is a fantastic temporal indicator (Costa
and Branco, 2012) it is not readily marked in the corpora. On the other hand, TimeML (Pustejovsky et al.,
2003b) is annotated with different grammatical aspects as progressive, perfect, perfect progressive, none.
Hence, the latter being popularly used as a feature for temporal analysis.
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We argue that in addition to the context, the inflectional suffixes of event headword

can indicate the tense of the event. For instance, tense information can be captured from

context with auxiliary verbs (will, is), and in the absence of these words or in combination

with them, tense and aspect information of the event is expressed with inflectional suffixes

such as -ed, -ing, -en which respectively indicate paste tense, progressive, and paste

participle.

Importance of interaction learning The final goal of the temporal relation classifica-

tion task is to determine the temporal ordering between event-pairs, which makes their

representation indispensable. The first important step in that is to get the effective event

representations which we obtain with the contextual and morphological information.

Then the next equally important step is to acquire meaningful interactions between these

representations, which has been a less studied area in the literature. Mirza and Tonelli

(2016) experimented with simple operations like summation, multiplication, subtraction,

etc. over event representations to get the interactions, but these functions are inadequate

as they are inflexible at dynamically weighting the event representations.

Overall, we argue that though contextual, morphological information, and complex in-

teraction learning are essential for temporal relation classification, less attention has been

paid to acquiring them3. Recently proposed LSTM-based neural network architectures

(Cheng and Miyao, 2017; Dligach et al., 2017; Meng et al., 2017) learn event representa-

tions with the use of the event headwords as well as context. Also, the newly proposed

method (Meng and Rumshisky, 2018) has shown the efficacy of context with the use of

a gated RNN-attention based neural architecture. However, by using only word embed-

dings they fail to capture inflectional morphology of event headword, which includes

crucial linguistic information such as tense, aspect, and mood. Also, they lacked in finding

complicated interaction between events and relied only on the concatenation of event

features. Moreover, they (Cheng and Miyao, 2017; Meng et al., 2017) used syntactically

parsed trees as inputs to the LSTM which adds the burden of pre-processing. We remedy

that by proposing the neural model as described in the following sections.
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Fig. 4.1 Architecture of our proposed model.

4.3 Method

Our proposed neural architecture (Fig. 4.1), consists of two main components: Repre-

sentation Learning and Interaction Learning. In the Representation Learning part, a

bag-of-words based on a fixed size window centered on each event word is fetched and

fed into a RNN to get a more expressive and compact representation of events, as RNNs

have proven to be better at modeling sequential data. Output of the RNN is concate-

nated with the character embedding of the event headword to get the final vector for

each event. This vector representation is then used at the Interaction Learning stage: the

vector representation of each event is fed to a convolution layer and the final pooling

layer outputs an interaction vector between the events. A dense layer is used to combine

the interaction vector before obtaining a probability score for each temporal relation. All

these components are learned end-to-end with respect to the output of the model i.e.

based on the prediction of temporal relation.

4.3.1 Representation Learning

Context-aware Representation Each word is encoded in the event headword window

with word embeddings, as a result, each word is assigned a fixed d-dimensional vector rep-

3We are referring to systems which were proposed before this work, there has been significant improve-
ment at capturing contextual information since then.
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resentation. Suppose wi is the event headword for an event ei , n is the window size such

that n surrounding words from the left and right of wi are considered, then the input given

to RNN is: Wi = [wi−n · · ·wi · · ·wi+n] ∈ R(2n+1)×d , where wk is word embeddings of word

wk (illustrated as Wi and W j for events ei , e j in Fig. 4.1). Also, note that while considering

event contexts we stop at sentence boundaries, and pad special symbols if the context is

less than n words. Further, recall from Section 2.2 that RNN is sequential in nature and

produces outputs corresponding to each input word (Eq. 2.18). We consider the output

vector of the last word of the event context (i+n) as the context-aware representation of

the event, as it captures the complete information about the whole sequence. Then for

events ei ,e j , we denote respective context-aware representations as ci,cj.

Morphological Representation Semantics and arguments of events are captured with

context-aware representations but they do not capture morphological information. The

event headword’s internal construction contains this information, and to acquire this

information we employed a character-based representations of event headwords, which

is obtained with FastText (Bojanowski et al., 2017) embeddings. As discussed in Sec-

tion 2.4.1.3, FastText obtains representations of character n-grams contained by each

word and sums those representations to get the final word representations. Let li and lj be

the morphological representations obtained with this approach corresponding to events

ei , e j , respectively.

Next, the context-aware representation ci and the morphological representation li

are concatenated to obtain the final event representation ei for event ei as: ei = ci ⊕ li.

Similarly, event representation ej = cj ⊕ lj is also obtained for event e j .

4.3.2 Interaction Learning

Next, a Deep Convolution Neural Network (DCNN) is employed to learn nonlinear in-

teractions over event representations ei and ej. Our DCNN contains three CNN layers

stacked on each other where a CNN layer consists of several filters, non-linear projection

layer and max-pooling layer (recall the discussion about CNN from Section 2.2). To get

the interaction between events, we concatenate vectors of event representations to get

xij: xij = ei ⊕ej. This vector representation xij is given to the first layer of DCNN and the

output from the last layer of the DCNN is considered as the interaction between event

representations, given as:

eij = DC N N (xij,θ) (4.1)

where θ are DCNN parameters.
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The output eij captures the interaction between event-pairs and is further fed to a

fully connected dense layer, followed by a softmax function to get a probability score for

each temporal relation class. Next, we use simple local inference strategy and select most

probable temporal relation for any given event-pair.

4.4 Experiments

4.4.1 Datasets and Evaluation

Temporal Relations Following recent work (Ning et al., 2017), a reduced set of tempo-

ral relations: AFTER , BEFORE , INCLUDES , IS_INCLUDED , EQUAL, and VAGUE are

considered for classification.

Evaluation Complying with common practice, a system’s performance is measured over

gold event pairs (pairs for which relation is known). Our main evaluation measure is the

Temporal Awareness metric (UzZaman and Allen, 2011), adopted in recent TempEval cam-

paigns. We also used standard precision, recall, and F1-score to allow direct comparison

with (Mirza and Tonelli, 2016). Further details on the exact calculations of the scores with

these evaluation schemes were presented in Section 2.1.1.4.

Datasets Following the data splits from previous work (Ning et al., 2017) for the direct

comparison of results, we used TimeBank (Pustejovsky et al., 2003a) and AQUAINT (Graff,

2002) datasets for training, TimeBank-Dense (Cassidy et al., 2014) for development and

TE-Platinum (UzZaman et al., 2013) datasets for test. We provided more details about

these datasets in Section 2.1.1.3.

4.4.2 Training details

We used pre-trained Word2vec vectors from Google4, and represented each word in the

context winow with this 300-dimensional vectors. Next, hyperparameters were tuned on

the development set using a simple grid search, where we considered different set of values

for each hyperparameter: window size (n): 3,4,5, number of neurons at RNN (#RNN):

64,128,256,512, number of filters for CNN (#filters): 32,64,128,256, and dropout rates:

0.1,0.2,0.3,0.4. We also explored several optimization algorithms such as AdaDelta (Zeiler,

2012), Adam (Kingma and Ba, 2017), RMSProp (Tieleman and Hinton, 2012) and Stochastic

4https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/
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Gradient Descent (SGD). From our experiments on the validation datasets, we found out

the optimal hyperparameter values: n = 4,#RNN =256, #filters = 64, dropout = 0.4 and

Adam optimizer.5 Then we re-trained multiple models with 50 random seed values on the

combined training and development data and reported the averaged test performances.

4.4.3 Baseline systems

In addition to our main system we implemented a number of baselines for comparison.

Different representations In these baseline systems, we varied the approaches of getting

representations of events as follows:

• (i) Only headwords: First, we re-implemented the system of Mirza and Tonelli (2016).

Recall from the previous sections that event representations in their model is obtained

by considering word embeddings of event headwords. Specifically, word embeddings

wi and wj for events ei and e j are obtained with Word2vec of corresponding headwords.

These embeddings were simply concatenated (wi ⊕wj) as this combination produced

the best results in their experiments. Finally, we used scikit-learn logistic regression

module, using l2 regularization for learning.

• (ii) Addition of context: This is the variation of our system where we consider event

headwords as well as the n-word context to obtain event representations. To achieve

that, from our proposed system, we use only RNN model while removing character em-

beddings and DCNN used for interaction learning. For instance, for events ei and e j , the

event-pair representation in this baseline is obtained as: ci ⊕cj, only by concatenating

the context-aware representations ci,cj.

• (iii) Addition of morphology: We add morphological information in the previous setup

while still removing the interaction learning part obtained with DCNN. So, in this setup

also we use simple concatenation but this time over rich representations that combine

context-aware and morphological representations, to produce even-pair representa-

tions ei ⊕ej for events ei and e j .

Different interactions In this set of baseline systems, we keep the event representations

obtained with RNN and character representations of events in place and just vary the

interaction learning part of the system.

5We tried different unidirectional and bidirectional variations of RNN: LSTM, and GRU, but RNN gave
the best development results.
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• (iv) mlp: First, we used simple multi-layer perceptron (MLP) over rich event representa-

tions, ei,ej, and noted as mlp.

• (iv) cnn: Then, we went a step further to understand the gains produced by cnn over

mlp. Here, we employed simple CNN, noted as cnn.

4.4.4 Ablation setup

In addition to these baseline implementations, we systematically removed some compo-

nents of our system to assess the contributions made by individual components.

• Without morphological information: We remove the morphological information from

the system. To achieve that, we build our system without the character embeddings (Fast-

Text) but keep other components like contextual and interaction learning in place.

• Without rich representation: This system is implemented without contextual as well

as morphological information. Here, we remove the major part of the system, we get rid

of RNNs and character embeddings and only use event headwords to represent events.

The rest of the interaction learning is used to produce event-pair representations only

with headword information.

4.5 Results

4.5.1 Comparison to baseline Systems

We first compare our RNN-Deep CNN approach to various baseline systems to assess

the effectiveness of the learned event representations. Sections (a) and (b) of Table 4.1

summarize the performance of these different systems in terms of pairwise classification

accuracy and temporal awareness scores.

Section (a) of the table presents results with different representation learning strategies.

The first row notes the result obtained with Mirza and Tonelli (2016) system which uses

only event headword for representations (Baseline (i)). Next baseline is a variation of

our system where contextual information is added on top of the event headwords (Base-

line (ii)) and results are presented in the second row (noted as +Context). We further add

morphological information on top of the contextual information in this baseline (Base-

line (iii)), results are shown in the third row of Table 4.1 (noted as +Morphology). Looking

at the first two rows of the table, we see that, as hypothesized, contextually rich features

outperform pre-trained event headword embeddings even when combined with simple
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Systems
Pair Classification Temporal Awareness

P R F1 P R F1
(a) Different representations

Event head 39.3 34.2 35.5 27.1 45.8 34.1
+ Context 35.7 38.9 37.2 36.5 35.9 36.2
+ Morphology 37.6 44.5 40.8 41.2 45.9 43.4

(b) Different interactions
mlp 40.2 46.3 43.0 51.8 42.5 46.7
cnn 38.2 53.7 44.6 41.7 60.1 49.2
dcnn 39.4 58.9 47.2 43.2 70.1 53.4

(c) Comparison with state-of-the-art
ClearTK (Bethard, 2013) - - - 33.1 35.0 34.1
LSTM (Meng et al., 2017) 38.7 43.1 40.5 34.6 51.7 41.4
SP (Ning et al., 2017) - - - 69.1 65.5 67.2
Our model 39.4 58.9 47.2 43.2 70.1 53.4

Table 4.1 Results of baseline and state-of-the-art systems

concatenation. We see improvement from 35.5 points to 37.2 in pairwise classification

evaluation and 34.1 to 36.2 in temporal awareness. A further gain in the performance is

seen with the addition of morphological information. Results from this section establish

the effectiveness of our rich representation learning.

Next, section (b) of the table compares different interaction learning strategies. Firstly,

we observe that the system with mlp (Baseline (iv)) interaction learning outperforms

simple concatenation (noted in the final row of section (a)). There is an improvement from

40.8 to 43.0 in the pairwise classification evaluation and 43.4 to 46.7 in the case of temporal

awareness. This itself establishes the importance of interaction learning over simple

concatenation. Further improvement in the results with the use of cnn (Baseline (v))

and dcnn strengthens our claims. There, the Deep CNN outperforms the single-layer

CNN, with F1 scores of 53.4 and 49.2, respectively in temporal awareness evaluation,

showing similar gains with pairwise classification evaluations. This further confirms the

importance of non-linear interaction learning in the task.

4.5.2 Comparison with state-of-the-art

Finally, we compare the performance of our best system with recently proposed systems

in section (c) of Table 4.1. We compare with two local models, ClearTK (Bethard, 2013),

and LSTM based system (Meng et al., 2017), and a global model based on structured
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prediction (SP) approach (Ning et al., 2017). The local model ClearTK used gold features

to obtain the representation and was the winner of the TempEval 2013 campaign. For

fair comparison, we also compare with a representation learning system which employs

LSTM and syntactic parsed trees to get the context. Additionally, we compared with

SP system as it is the best system to date6. We observe, our system (Table 4.1) delivers

substantial improvements over ClearTK, proving effectiveness of our approach over hand-

crafted approach. In comparison with the LSTM-based system, we also see gains in

performance. However, our system lags in comparison with SP. The reason might be the

difference between learning and inference strategies. SP takes a global learning approach

which learns model parameters while considering relations between all the event-pairs

simultaneously. Further, they also used unlabeled data in their semi-supervised learning

setup.

4.6 Ablation study

Now, we assess the contributions of different components of our system.

Rich event representation: To assess the importance of rich event representations, we

remove both contextual (RNN) and morphological information (character embeddings)

from our system and rely only on the interaction learning part obtained with DCNN. We

compare result of this system (Table 4.2: row 2), with our system (Table 4.2: row 1). We

observe a significant drop in the results compared to our system with the reduction of 9.1

F1 points in the pairwise score and 14.9 points in the temporal awareness score. This drop

indicates the importance of our rich event representations which includes contextual as

well as morphological information.

Interaction learning: Next, we determine the role of interaction learning obtained with

the use of DCNN. For that, we simply concatenate the rich representation of events and

observe the results. The results in the third row of Table 4.2 show the drop of 6.4 F1 points

in pairwise evaluation whereas 10 points drop in temporal awareness. This is a slightly

lesser reduction in the results in comparison to the drop produced because of absence

of rich event representations (the second row of the table). This suggests, even though

the interaction learning is important, it adds less value in-comparison to the rich event

representations.

6This was true at the time we conducted experiments.
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Systems
Pair Classification Temporal Awareness

P R F1 ∆F1 P R F1 ∆F1
Our model 39.4 58.9 47.2 - 43.2 70.1 53.4 -

– Rich representation 39.3 36.8 38.1 -9.1 42.6 35.2 38.5 -14.9
– Interaction learning 37.6 44.5 40.8 -6.4 41.2 45.9 43.4 -10.0
– Morphology 42.4 41.3 41.8 -5.4 46.9 41.5 44.1 -9.3

Table 4.2 Ablation study.

Morphology: Finally, we remove morphology information obtained with character em-

beddings. The final row in Table 4.2 shows the result. The pairwise evaluation F1 score

drops by 5.4 points and temporal awareness score drops by 9.3 points. This is the least

of the reductions in the results in comparison to the previous two ablations. This shows

that character representations play a relatively small role at producing effective repre-

sentations. This again highlights the importance of the other two components of the

representations: contextual information and complex interaction learning.

4.7 Conclusions

We proposed a system to learn rich event representations and complex interactions be-

tween them to produce effective event-pair representations. To achieve that, we used RNN

to capture event-related contextual information from the window of n-words around the

event as well as added morphological information with character-based embeddings. We

used DCNN to further obtain the complex interaction between the rich representations.

Our experimental results prove that the system successfully captures the beneficial

features required to predict temporal relations more accurately. The system outperforms

previously proposed local models either based on hand-crafted representations or auto-

matically learned features, confirming its efficacy. Further, our analysis shows that the

rich event representation plays the biggest role in the system’s success in comparison to

the other components of the system: morphological information with character repre-

sentations and interaction learning. This solidifies our claim that context is required for

obtaining effective event representations. We also found that complex interaction learning

obtained with DCNN always outperformed simple interactions acquired with concate-

nation, MLP, or CNN. This signifies the role of complex interaction learning required to

accurately determine the temporal ordering between events.
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Although the proposed system produces improvement over other local models, it

still misses at including other useful information such as semantic relations between

events, or world knowledge about event pairs. We think, in addition to the event-related

information captured with context and morphology, this information is also crucial for

the task. Also, here, we used a simple inference strategy to obtain final temporal relations

between events, and as pointed in Chapter 2 this may lead to inconsistent temporal graphs.

We work on both these limitations in the work detailed in Chapter 6.





Chapter 5

Probing for Bridging Inference in

Transformer Language Models

In the previous chapter, we developed an effective approach for capturing contextual

information to improve event representation for temporal relation classification. We

intend to design a similar approach to acquire contextual information for bridging res-

olution as well. The recently proposed transformer language models have shown to be

effective at capturing contextual information (Devlin et al., 2019; Liu et al., 2019b). Also,

these transformer language models have been successfully applied for various NLP tasks

(Joshi et al., 2020; Lee et al., 2020; Song et al., 2019; Sun et al., 2019) including bridging

resolution (Hou, 2020a; Yu and Poesio, 2020). In the future, it will be natural to employ

these models to further improve mention representations for bridging resolution. The first

step in this direction is to understand the overall capability of these pre-trained models

at capturing bridging information to design effective architecture and develop better

fine-tuning strategies. Next, if these models are potent at bridging inference then, it will

be interesting to understand what kind of input is required to get these results. We answer

these questions in this chapter 1. We probe pre-trained transformer language models for

bridging inference. We first investigate individual attention heads in BERT and observe

that attention heads at higher layers prominently focus on bridging relations compared

to the lower and middle layers. More importantly, we consider language models as a

whole in our second approach where bridging anaphora resolution is formulated as a

masked token prediction task (Of-Cloze test). Our formulation produces optimistic results

without any fine-tuning, which indicates that pre-trained language models substantially

capture bridging inference. Next, we experiment with different context constructions

to understand the role of context. Our investigation shows that the context provided to

1This chapter is based on our work (Pandit and Hou, 2021).
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language models and the distance between anaphor-antecedent play an important role in

the inference.

5.1 Introduction

Recall from section 2.1.2 that bridging inference involves connecting conceptually related

discourse entities: anaphors and antecedents (Clark, 1975). A bridging anaphor shares

non-identical relation with its antecedent and depends on it for complete interpretation.

Consider the following example:

“In Poland’s rapid shift from socialism to an undefined alternative, environmental

issues have become a cutting edge of broader movements to restructure the economy, cut

cumbersome bureaucracies, and democratize local politics.”

Bridging inference connects the anaphor “the economy” and its antecedent “Poland”

and deduces that “the economy” specifically refers to “the economy of Poland”.

We want to investigate if the pre-trained transformer language models that are known

to be proficient at acquiring contextual information capture any bridging inference in-

formation. We chose transformer models for the investigation, as they are superior to

RNNs (Lakew et al., 2018) that were used to capture the context in the previous chapter.

Because transformers are better at handling long distance dependencies of the given

sequence and can be easily parallelized to take full advantage of modern fast computing

devices such as TPUs and GPUs, as they avoid recursions. Due to these advantages of

transformers over RNNs, we also intend to use them to capture contextual information.

Though transformer based models are better, they are quite complex because of multiple

attention heads and several layers of encoders, resulting in unclarity of exact reasons

behind their success and little understanding of the information held by them. For that

reason, recently there has been an increasing interest in analyzing pre-trained transformer

based language models’ ability at capturing syntactic information (Clark et al., 2019),

semantic information (Kovaleva et al., 2019), as well as commonsense knowledge (Talmor

et al., 2020). There are also a few studies focusing on probing coreference information in

pre-tained language models (Clark et al., 2019; Sorodoc et al., 2020). So far, there has been

no work on analyzing bridging, which is conceptually similar to coreference. We try to fill

this gap in our work. Section 5.2 details previously proposed probing approaches for this

relevant linguistic information as well as few employed probing methods.

Next, section 5.3 clearly states the research questions we are addressing in this chapter.

The section also briefs the dataset used for the investigation as well as specifies the

transformer models used for the experiments.
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We employ two different but complementary approaches for the investigation of

pre-trained transformer language models for bridging inference. Section 5.4 details the

first approach where we investigate the core internal part of transformer models, self-

attention heads, in vanilla BERT (Devlin et al., 2019). We believe understanding which

attention head or group of attention heads at particular layer capture bridging information

will be beneficial for designing better representation learning strategies. We look at the

attention heads of each layer separately and measure the proportion of attention paid

from anaphor to antecedent and vice versa. This captures the magnitude of bridging

signal corresponding to each attention head. We observed that attention heads of higher

layers are more active at attending to bridging relations as well as some of the individual

attention heads prominently look at the bridging inference information.

In the second approach (Section 5.5), we treat pre-trained transformer language mod-

els as a black box and form bridging inference as a masked token prediction task. This

formulation takes into consideration the whole architecture and weights of the model

rather than concentrating on individual layers or attention heads, thus complementing

our first approach where we looked at the individual parts of the transformer model. For

each bridging anaphor, we provide input as “context anaphor of [MASK]” to language

models and get the scores of different antecedent candidates for mask token. We then

select the highest scoring candidate as the predicted antecedent. Surprisingly, the best

variation of this approach produces a high accuracy score of 28.05% for bridging anaphora

resolution on ISNotes (Markert et al., 2012) data without any task-specific fine-tuning of

the model. On the same corpus, the current state-of-the-art bridging anaphora resolution

model BARQA (Hou, 2020a) achieves an accuracy of 50.08%, while a solid mention-entity

pairwise model with carefully crafted semantic features (Hou et al., 2013b) produces an

accuracy score of 36.35%. This shows that substantial bridging information is captured in

the pre-trained transformer language models.

Thus far, our experiments show the decent capability of the transformer models at

acquiring bridging information but could not identify the exact role of the context in

achieving that. The fill-in-the-gap formulation for the antecedent selection task is flexible

enough to easily explore the role of context in their bridging inference ability. We provide

differently constructed contexts to the transformer language models to measure the

impact of the context on the accuracy of Of-Cloze test in section 5.6. Our analysis shows

that, although pre-trained language models capture bridging inference substantially, the

overall performance depends on the context provided to the model.

In the next section, Section 5.7, we analyze the errors incurred by the Of-Cloze test.

The error analysis shows the limitation of the transformer models as well as the inherent
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shortcomings of the Of-Cloze test. The analysis unearths interesting findings about the ca-

pability of transformer models, especially BERT, at acquiring commonsense information.

It reveals that BERT can capture basic commonsense information but fails at capturing

sophisticated commonsense information. With these findings, finally, we conclude in

Section 5.8.

5.2 Probing transformer models

The development of language models based on Transformers (Vaswani et al., 2017) has

been a significant breakthrough for the research in NLP. Specifically, BERT (Devlin et al.,

2019) pushed the state of the art for many NLP tasks (Hou, 2020a; Joshi et al., 2020; Lee

et al., 2020; Song et al., 2019; Sun et al., 2019). Evidently, these models are remarkably

good at capturing long-range dependencies from the given context. As a consequence,

the contextual embeddings produced by these models seem to be more effective than

the static embeddings (e.g. Word2vec, Glove) that fail to accommodate context-specific

information. Besides these prima facie arguments, the specific reasons behind their

success are still unknown. This lack of understanding hampers the further efficient

improvement of the architecture. The huge number of parameters trained in these models

makes this investigation further challenging as it restricts the ability to experiment with

pre-trained models and perform ablation studies. Because of the non-interpretability

of these models, a lot of work has been done to probe these models. These probing

approaches differ in their objectives. Some approaches probe the capability of transformer

models at capturing certain information such as syntactic (Htut et al., 2019; Jawahar

et al., 2019; Lin et al., 2019; Liu et al., 2019a), semantic (Broscheit, 2019; Ettinger, 2020;

Tenney et al., 2019) or world knowledge (Da and Kasai, 2019; Ettinger, 2020; Talmor

et al., 2020). Another set of approaches researched different training objectives and

architectures (Joshi et al., 2020; K et al., 2020; Liu et al., 2019a,b) whereas few others have

focused on overparameterization issue, and approaches to compression (Gordon et al.,

2020; Michel et al., 2019; Voita et al., 2019).

Out of all these approaches, we discuss a few that are relevant to our study. First, we

look at the approaches that investigate different entity reference information, as bridging

resolution also falls into this category. Next, we look for similar studies done on the ability

of BERT at capturing commonsense information as it is crucial for bridging inference.

Afterward, we briefly discuss different probing approaches used for the investigation.

Attention head analysis is the most commonly used approach because attention heads are
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the core elements of the transformer models. Further, because of the masked modeling

objective used to train these models, fill-in-the-gap probing also has been used extensively.

5.2.1 Probing for relevant information

Entity Referential Probing Previous studies on entity referential probing mainly focus

on coreference. Clark et al. (2019) showed that certain attention heads in pre-trained

BERT correspond well to the linguistic knowledge of coreference. Particularly, the authors

found that one of BERT ’s attention heads achieves reasonable coreference resolution

performance compared to a string-matching baseline and performs close to a simple

rule-based system. Sorodoc et al. (2020) investigated the factors affecting pronoun resolu-

tion in transformer architectures. They found that transformer-based language models

capture both grammatical properties and semantico-referential information for pronoun

resolution. Recently, Hou (2020b) analyzed the attention patterns of a fine-tuned BERT

model for information status (IS) classification and found that the model pays more atten-

tion to signals that correspond well to the linguistic features of each IS class. For instance,

the model learns to focus on a few premodifiers (e.g., “more”, “other”, and “higher”) that

indicate the comparison between two entities.

Commonsense Knowledge Probing. A lot of work has been carried out to analyze vari-

ous types of commonsense knowledge encoded in transformer language models. Talmor

et al. (2020) constructed a set of probing datasets and test whether specific reasoning

skills are captured by pre-trained language models, such as age comparison and antonym

negation. Da and Kasai (2019) found that pre-trained BERT failed to encode some ab-

stract attributes of objects, as well as visual and perceptual properties that are likely to be

assumed rather than mentioned.

5.2.2 Probing approaches

Attention Analysis. Recently there has been an increasing interest in analyzing attention

heads in transformer language models. Although some researchers argue that attention

does not explain model predictions (Jain and Wallace, 2019), analyzing attention weights

still can help us to understand information learned by the models (Clark et al., 2019).

Researchers have found that some BERT heads specialize in certain types of syntactic

relations (Htut et al., 2019). Kovaleva et al. (2019) reported that pre-trained BERT ’s heads

encode information correlated to FrameNet’s relations between frame-evoking lexical

units (predicates, such as “address”) and core frame elements (such as “issues”). In our
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work, we try to analyze whether certain attention heads in a pre-trained BERT model

capture bridging relations between entities in an input text.

Fill-in-the-gap Probing. One of the popular approaches to probe pre-trained language

models is fill-in-the-gap probing, in which the researchers have constructed various

probing datasets to test a model’s ability on different aspects. Goldberg (2019) found

that BERT considers subject-verb agreement when performing the cloze task. Petroni

et al. (2019) reported that factual knowledge can be recovered from pre-trained language

models. For instance, “JDK is developed by [Oracle]”. Similarly, we apply fill-in-the-gap to

probe bridging by formulating bridging anaphora resolution as a Of-Cloze test.

5.3 Methodology

We mainly investigate the following research questions:

• How important are the self-attention patterns of different heads for bridging anaphora

resolution?

• Do pre-trained transformer language models capture information beneficial for

resolving bridging anaphora in English?

• How do the context and the distance between anaphor-antecedent influence pre-

trained language models for bridging inference?

We designed a series of experiments to answer these questions which will be detailed in

the coming sections. In these experiments, we used the PyTorch (Wolf et al., 2020) im-

plementation of BERT-base-cased, BERT-large-cased, RoBERTa-base and RoBERTa-large

pre-trained transformer language models with the standard number of layers, attention

heads, and parameters. In the attention head-based experiments, we have limited our

investigation only to the BERT-base-cased model as it is relatively smaller compared to

other models and findings of this model can be generalized to other models as well.

Probing Dataset We used ISNotes (Markert et al., 2012) dataset for all experiments. We

choose this corpus because it contains “unrestricted anaphoric referential bridging” anno-

tations among all available English bridging corpora (Roesiger et al., 2018) which covers a

wide range of different relations. Recall from Section 2.1.2 that ISNotes contains 663 bridg-

ing anaphors but only 622 anaphors have noun phrase antecedents, as a small number of

bridging antecedents in ISNotes are represented by verbs or clauses. In our experiments,
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we only consider these 622 anaphors for investigation. For any anaphor, the predicted

antecedent is selected from the set of antecedent candidates. This set is formed by con-

sidering all the mentions which occur before the anaphor. We obtained the candidate

set for each anaphor by considering “gold mentions” annotated in ISNotes. Further, we

observed that only 531 anaphors have antecedents in either previous 2 sentences from

the anaphor or the first sentence of the document. Therefore, in the experiments when

antecedent candidates are considered from the window of previous two sentences plus

the document’s first sentence, only 531 anaphors are considered. In all the experiments,

accuracy is measured as the ratio between correctly linked anaphors to the total anaphors

used in that particular experiment (not total 663 anaphors).

5.4 Probing individual attention heads

Attention heads are an important part of transformer based language models. Each layer

consists of a certain number of attention heads depending on the model design and each

attention head assigns different attention weight from every token of the input sentence

to all the tokens. In our approach, we measure the attention flow between anaphors

and antecedents for each attention head separately. In this experiment we investigate all

the attention heads of every layer one-by-one. Specifically, the BERT-base-cased model

used for probing contains 12 layers and 12 attention heads at each layer. Therefore, we

investigate 144 attention heads for their ability to capture bridging signals.

5.4.1 Bridging signal

We look for two distinct bridging signals − one from anaphor to antecedent and other from

antecedent to anaphor. The bridging signal from anaphor to antecedent is calculated as

the ratio of the attention weight assigned to antecedent and the total cumulative attention

paid to all the words in the input. Similarly, the bridging signal from antecedent to anaphor

is found in a reverse way.

There are two difficulties while getting the attention weights corresponding to anaphor

or antecedent. First, the anaphor or antecedent can be a phrase with multiple words. So,

we need to decide how to aggregate words’ weights. For this, we decide to consider the

semantic heads of both anaphor and antecedent, and get the attention weight between

them. For instance, the semantic head for “the political value of imposing sanction against

South Africa” is “value”. Most of the time, a semantic head of an NP is its syntactic head

word as in the above example. However, for coordinated NPs such as “the courts and
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the justice department”, the syntactic head will be “and” which does not reflect this NP’s

semantic meaning. In such cases, we use the head word of the first element as its semantic

head (i.e., courts).

Secondly, transformer language models use the wordpiece tokenizer to break words

further. This produces multiple tokens from a single word if this word is absent from the

language model’s dictionary. Here, for a bridging anaphor a and its head word ah , we

first calculate the average weight of all word piece tokens of the head word ah to other

words. From these weights, we consider the weight from the anaphor a to its antecedent

(w1). Subsequently, we add weights from ah to all other tokens present in the sentence

and normalize the weight using sentence length (w2). Note that we neglected weights

assigned to special tokens (i.e. [CLS], [SEP], [PAD], etc.,) while calculating both weights as

previous work suggest that these special tokens are heavily attended in deep heads and

might be used as a no-op for attention heads (Clark et al., 2019). Finally, bridging signal is

measured as the ratio between w1 and w2 as mentioned earlier.

5.4.2 Experimental setup

We provide sentences containing a bridging anaphor (Ana) and its antecedent (Ante) to

the pre-trained BERT model as a single sentence without the “[SEP]” token in-between.

However, an anaphor and its antecedent do not always lie in the same or adjacent sen-

tence(s). Therefore, we design two different experiments. In the first setup, we provide

the model with only those sentences which contain Ana and Ante while ignoring all the

other sentences in-between. This setting is a bit unnatural as we are not following the

original discourse narration. In the second setup, we provide the model with sentences

which contain Ana and Ante as well as all the other sentences between Ana and Ante.

Note that in both experiments we add markers to denote the anaphor and its antecedent

in order to get exact corresponding attention weights.

5.4.3 Results with only Ana-Ante sentences

For the input of only sentences containing anaphors and antecedents, we plot the bridging

signals corresponding to each attention head separately (see the heatmaps in Fig. 5.1a).

The left heatmap shows the signals from anaphors to antecedents and the right one shows

the signals from antecedents to anaphors. Both heatmaps are based on the pre-trained

BERT-base-cased model. The x-axis represents the number of attention heads from 1-12

and the y-axis represents the number of layers from 1-12. The darker shade of the color

indicates stronger bridging signals and brighter color indicates a weak signal.



5.4 Probing individual attention heads 99

(a) Without any in-between sentences. (b) Anaphor-antecedent sent. distance 0

(c) Anaphor-antecedent sent. distance 1 (d) Anaphor-antecedent sent. distance 2

(e) Anaphor-antecedent sent. distance be-
tween 3 and 5

(f) Anaphor-antecedent sent. distance be-
tween 6 and 10

Fig. 5.1 Bridging signals in the pre-trained BERT-base-cased model with the input including an
anaphor and its antecedent while providing different sets of context. Different heatmaps are shown
depending on the number of sentences between sentences containing anaphor and antecedent.
Heatmaps in (a) denote bridging signal with only anaphor and antecedent sentences provided as
input. Rest of the heatmaps show signals with the input including all the sentences between an
anaphor and its antecedent. In all the figures, the first heatmap in each row shows the signal from
anaphor to antecedent and the second one from antecedent to anaphor. All the heatmaps present
the attention heads on the x-axis and the layer numbers on the y-axis.

The plot shows that the lower layers capture stronger bridging signal in comparison

with the middle layers with an exception at the first attention head in the fifth layer. Also,

the higher layers pay most attention to bridging relations in comparison to the middle

and lower layers. The observation is consistent in both directions − from anaphors to

antecedents and from antecedents to anaphors.
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5.4.4 Results with all sentences

As stated earlier, for an anaphor, the antecedent can lie in the same sentence or any

previous sentence. This demands a separate investigation of bridging signals depending

on the distance (measured in terms of sentences) between anaphors and antecedents.

Therefore, we plot bridging signals captured by all attention heads depending on the

distance between anaphors and antecedents in Fig. 5.1b-5.1f.

The second plot in the first row (Fig. 5.1b) shows the signals between anaphors and

antecedents where the distance between them is 0 (i.e., they occur in the same sentence).

The plots in row 2 (Fig. 5.1c and Fig. 5.1d) show the bridging signals between anaphors and

antecedents in which the anaphor-antecedent sentence distance is 1 and 2, respectively.

In ISNotes, 77% of anaphors have antecedents occurring in the same or up to two

sentences prior to the anaphor. The remaining anaphors have distant antecedents and

each distance group only contains a small number of anaphor-antecedent pairs. Therefore,

we divide the remaining anaphors into two coarse groups. The plots in Fig. 5.1e and

Fig. 5.1f are plotted by combining anaphor-antecedent pairs which are apart by 3 to 5

sentences and 6 to 10 sentences, respectively. Note that we could not plot attention

signals for bridging pairs with sentence distance longer than 10 sentences because of the

limitation of the input size in BERT.

We observe that the patterns which are visible with only anaphor-antecedent sentences

as the input (Section 5.4.3) are consistent even with considering all the sentences between

anaphors and antecedents. It is clear that higher layers attend more to bridging relations

in comparison with lower and middle layers. Also, the lower layers fail to capture bridging

signal as the distance between anaphors and antecedents increases. Attention weights

assigned by certain attention heads (5:1, 9:12, 11:3 and 12:2-4) are fairly consistent. One

more important thing to observe is that as the distance between anaphors and antecedents

increases the overall bridging signal decreases. This can be observed by looking at all the

heatmaps in Fig. 5.1 as the heatmaps with lower distances are on the darker side.

5.4.5 Discussion

Based on the results from the previous two experiments, we observed that in the pre-

trained BERT model, the higher layers pay more attention to bridging relations in compar-

ison with the middle and the lower layers. This observation is in-line with other studies in

which the authors found that simple surface features were captured in the lower layers

and complex phenomenons like coreference were captured in the higher layers (Jawahar



5.4 Probing individual attention heads 101

Easy Bridging Relations

The move will make the drug available free of charge for a time to children with
the disease and symptoms of advanced infection.

Last year, when the rising Orange River threatened to swamp the course, the same
engineers rushed to build a wall to hold back the flood.

At age eight, Josephine Baker was sent by her mother to a white woman’s house to do
chores in exchange for meals and a place to sleep – a place in the basement with the
coal.

Difficult Bridging Relations

In addition, Delmed, which makes and sells a dialysis solution used in treating
kidney diseases, said negotiations about pricing had collapsed between it and a
major distributor, National Medical Care Inc. Delmed said Robert S. Ehrlich resigned
as chairman, president and chief executive. Mr. Ehrlich will continue as a director
and a consultant.

The night the Germans occupied all of France, Baker performed in Casablanca. The
Free French wore black arm bands, and when she sang “J’ai deux amours” they wept.
Ms.Rose is best on the early years and World War II.

In Geneva, however, they supported Iran’s proposal because it would have left the
Saudi percentage of the OPEC total intact, and increased actual Saudi volume to
nearly 5.3M barrels daily from 5M. Some of the proposed modifications since,
however, call on Saudi Arabia to “give back” to the production-sharing pool a token
23,000 barrels.

Table 5.1 Examples of easy and difficult bridging relations for the prominent heads to
recognize. Bridging anaphors are typed in boldface, antecedents in underscore.

et al., 2019). Also, the overall attention decreases with the increase in the distance between

anaphors and antecedents.

We also observed that there are some prominent attention heads which consistently

capture bridging relations (5:1, 9:12, 11:3 and 12:2-4). In order to check which bridging

relations are easier or harder for these prominent attention heads to capture, we further

investigated qualitatively to identify bridging pairs that get higher or lower attentions in

these attention heads. Specifically, we consider pairs which have the bridging signal ratio

(defined in Section 5.4.1) more than 70% as easier bridging relations for BERT heads to

recognize. If the bridging signal ratio is less than 10%, then the corresponding bridging

relation is considered as difficult for BERT heads to identify. We list a few easy and difficult

examples in Table 5.1. In general, we observe that semantically closer pairs are easy for

prominent heads to identify (e.g., house-basement, disease-infection). On the other hand,
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pairs that are distant and require more context-dependent as well as common-sense

knowledge inference are difficult for the prominent heads to recognize.

5.5 Fill-in-the-gap probing: LMs as Bridging anaphora re-

solvers

The transformer-based language models are trained with an objective to predict the

masked tokens given the surrounding context. Thus, they can also produce a score for

a word which can be placed at the masked token in a given sentence. We make use of

this property of the language models and propose a novel formulation to understand the

bridging anaphora resolution capacity of the pre-trained language models.

5.5.1 Of-Cloze test

The syntactic prepositional structure (X of Y, such as “the door of house” or “the chairman

of company”) encodes a variety of bridging relations. Previous work has used this property

to design features and develop embedding resources for bridging (Hou, 2018a,b; Hou

et al., 2013b).

Inspired by this observation, we formulate bridging anaphora resolution as a cloze

task. Specifically, given a bridging anaphor and its context, we insert “of [MASK]” after

the head word of the anaphor (see Example 7). We then calculate the probability of each

candidate to be filled as the mask token. The highest scoring candidate is selected as the

predicted antecedent for the anaphor. One of the advantages of our formulation is that

we can easily control the scope of the context for each bridging anaphor (e.g., no-context,

local context or global context). This allows us to test the effect of different types of context

for bridging inference.

(7) Original context: The survey found that over a three-year period 22% of the firms said

employees or owners had been robbed on their way to or from work or while on the job.

Seventeen percent reported their customers being robbed.

Cloze test context: The survey found that over a three-year period 22% of the firms said

employees or owners had been robbed on their way to or from work or while on the job.

Seventeen percent of [MASK] reported their customers being robbed.
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5.5.2 Experimental setup

Recall that in our Of-Cloze test, antecedent candidates are provided and the highest

scoring candidate is selected as the predicted antecedent. These candidates are formed by

considering mentions which are occuring prior to the anaphor. We design two different

experiment sets based on the scope of antecedent candidates.

Candidates Scope We consider two different sets of antecedent candidates for an anaphor

a. The first set contains salient and nearby mentions as antecedent candidates. Here,

mentions only from the first sentence of the document, previous two sentences preceding

a and the sentence containing a are considered as candidates. This setup follows previ-

ous work on selecting antecedent candidates (Hou, 2020a). The second set contains all

mentions occurring before the anaphor a from the whole document. The second setup of

forming antecedent candidates is more challenging than the first one because the number

of candidates increases which makes selecting the correct antecedent difficult.

Next, we provide the same context for anaphors in both of the experiments described

above. We construct the context c for the bridging anaphor a. Precisely, c contains the

first sentence of the document, the previous two sentences occurring before a, as well as

the sentence containing a. We replace the head of a as “a of [MASK]”.

We also compare this fill-in-the-gap probing approach with the attention heads-based

approach for resolving bridging anaphors. Specifically, we use the prominent heads in

BERT for identifying bridging relations from Section 5.4. Here, we obtained attention

weights from an anaphor head to all antecedent candidate heads by adding attentions

from prominent heads 5:1, 9:12, 11:3, and 12:2-4. Then the highest scoring candidate is

predicted as the antecedent for the anaphor.

5.5.3 Results and Discussion

5.5.3.1 Results on candidates scope

Table 5.2 shows the accuracy of using only the prominent heads and our Of-Cloze test

approach for bridging anaphora resolution. All experiments are based on the same context

(i.e., the sentence containing an anaphor, the previous two sentences preceding the

anaphor as well as the first sentence from the document).

We find that the Of-Cloze probing approach achieves higher result in comparison to

the prominent attention head approach (31.64% vs. 20.15%) under the same conditions.

One reason might be that although other attention heads do not significantly attend to

bridging relations but cumulatively they are effective.
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Antecedent
Candidate Scope

No.
Anaphors

BERT-
Base

BERT-
Large

RoBERTa-
Base

RoBERTa-
Large

Prominent attention heads
(1) Salient/nearby mentions 531 20.15 - - -

Of-Cloze test
(2) Salient/nearby mentions 531 31.64 33.71 34.08 34.65
(3) All previous mentions 622 26.36 28.78 27.49 29.90

Of-Cloze Test: Anaphors with antecedents in the provided contexts
(4) All previous mentions 531 29.00 30.88 30.32 32.39

Of-Cloze Test: Anaphors with antecedents outside of the provided contexts
(5) All previous mentions 91 10.98 16.48 10.98 15.38

Table 5.2 Result of selecting antecedents for anaphors with two different probing ap-
proaches (Prominent attention heads and Of-Cloze test) based on the same context. Accu-
racy is calculated over a different number of anaphors.

We also observe that in the Of-Cloze test, the results of using salient/nearby mentions

as antecedent candidates are better than choosing antecedents from all previous mentions

(Row (2) vs. Row (3), and Row (2) vs. Row (4)). This is because the model has to choose

from a smaller number of candidates in the first case as the average number of antecedent

candidates are only 22 per anaphor as opposed to 148 in the later case.

We further divide 622 anaphors in Row (3) into two groups (Row (4) and Row (5) in

Table 5.2) depending on whether the corresponding antecedents occur in the provided

contexts. It can be seen that the performance is significantly better when antecedents

occur in the contexts.

Finally, when comparing the results of each language model in each row separately,

it seems that the bigger models are always better at capturing bridging information.

In general, the RoBERTa-large model performs better than other models except when

antecedents do not occur in the provided contexts (Row (5)).

Note that the results in Table 5.2 are not calculated over all 663 anaphors in ISNotes.

Therefore, if the results are normalized over all anaphors then we get the best result with

the RoBERTa-large model (28.05%), which is reasonably fine in comparison with the state-

of-the-art result of 50.08% (Hou, 2020a) given that the model is not fine-tuned for the

bridging task.

5.5.3.2 Results on Ana-Ante distance

We further analyze the results of choosing antecedents obtained using the BERT-base-

cased model with all previous mentions as the antecedent candidate scope in our Of-Cloze
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Distance Accuracy

salient∗ 38.65
0 26.92
1 20.58
2 17.30

>2 10.98

Table 5.3 Anaphor-antecedent distance-wise accuracy with the BERT-base-cased model.
∗ indicates that the antecedent is in the first sentence of the document.

test probing experiment (Row (3) in Table 5.2) to understand the effect of distance between

anaphors and antecedents. The results are shown in Table 5.3.

In general, it seems that the accuracy decreases as the distance between anaphors

and antecedents increases except when antecedents are from the first sentences of the

documents. This is related to the position bias in news articles from ISNotes. Normally

globally salient entities are often introduced in the beginning of a new article and these

entities are preferred as antecedents. The other reason for the lower results in case of

antecedents being away for more than two sentences might be that these antecedents are

absent from the provided context.

5.6 Importance of context: Of-Cloze test

Until now, we provided pre-designed context for the Of-Cloze test, i.e. first sentence of the

document, the previous two sentences occurring before anaphor, as well as the sentence

containing anaphor. This yielded competitive results. Now, we provide a different set of

contexts to measure its impact on accuracy.

5.6.1 Experimental setup

Our goal is to probe the behavior of language models at capturing bridging relations with

different contexts. To achieve that, we experiment with the following four settings:

• a. Only anaphor: in this setup, only the anaphor phrase (with “of [MASK]” being

inserted after the anaphor’s head word) is given as the input to the model.

• b. Anaphor sentence: the sentence containing the anaphor is provided. The phrase

“of [MASK]” is inserted after the head word of the anaphor.
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Context Scope
with
“of”

without
“of”

perturb

only anaphor 17.20 5.62 -
ana sent. 22.82 7.71 10.28
ana+ante sent. 27.81 9.61 10.93
more context 26.36 12.21 11.41

Table 5.4 Accuracy of selecting antecedents with different types of context using BERT-of-
Cloze Test.

• c. Ante+Ana sentence: on top of b, the sentence containing the antecedent is also

included in the context.

• d. More context: on top of b, the first sentence from the document as well as the

previous two sentences preceding the anaphor are included.

Without “of” Context To test the effect of the strong bridging indicating signal “of ”, we

further execute another set of experiments. Specifically, We remove “of” from “anaphorhead

of [MASK]” and instead, provide “anaphorhead [MASK]” for each type of the context de-

scribed above.

Perturbed Context In this setting, we perturb the context by randomly shuffling the

words in the context except for the anaphor and antecedent phrases for each type of the

context mentioned above. Note that we still have the “of ” indicator in this setup.

5.6.2 Results on different contexts

The results of experiments with different types of contexts are shown in Table 5.4. All

experiments are based on the BERT-base-cased model with all previous mentions as the

antecedent candidate scope. We refer to this model as BERT-Of-Cloze in the following

discussion.

In the first column of the table, BERT-Of-Cloze achieves an accuracy score of 17.20%

with only the anaphor information plus “of [mask]”. We can see that the results improve

incrementally with the addition of context. More specifically, the accuracy score improves

from 17.20% to 22.82% by adding sentences containing anaphors. Adding sentences which

contain antecedents (ana + ante sent.) further improves the accuracy score to 27.81%.

Finally, adding more local context and the first sentence leads to an accuracy score of

26.36%. Note that compared to “ana + ante sent.”, “more context” represents a more
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realistic scenario in which we do not assume that the antecedent position information is

known beforehand. In general, the results in the first column of Table 5.4 indicate that

the model can leverage context information when predicting antecedents for bridging

anaphors.

Results reduce drastically when “of” is removed from the “anaphor of [MASK]” phrase

(Table 5.4, column:2) from all context scopes. Without this indicator, the language model

cannot make sense of two adjacent tokens such as “consultant company”.

It is interesting to see that the results reduced drastically as well when we perturb the

context between the anaphor and antecedent (Table 5.4, last column). This establishes

the importance of meaningful context for performing bridging inference effectively in

transformer language models.

5.7 Error analysis: Of-Cloze test

We analyzed anaphor-antecedent pairs that are linked wrongly by the Of-Cloze formulation

and observed some common errors.

Failure at capturing sophisticated common-sense knowledge: We found that the pre-

trained transformer language model such as BERT acquires simple common-sense knowl-

edge, therefore it can link anaphor-antecedent pairs such as “sand–dunes” and “principal–

school”. But it fails at capturing sophisticated knowledge, such as “consultant–Delmed

(a company)” and “pool–OPEC (Organization of petroleum countries)”. This might be

happening because of the rare co-occurrences of these pairs in the original text on which

BERT is pre-trained. Also, BERT has inherent limitations at acquiring such structured

knowledge (Park et al., 2020).

Language modeling bias: In our Of-Cloze test probing, we use pre-trained transformer

language models without fine-tuning. As a result, the model fills masked tokens that

are fit according to the language modeling objective, not for bridging resolution. Thus,

sometimes, the selected token perfectly makes sense in the single sentence but the choice

is incorrect in the broader context. Consider the example, “Only 22% of [MASK] supported

private security patrols [...]”. BERT predicts “police” as a suitable antecedent that pro-

duces a meaningful local sentence. However, the correct antecedent is “correspondents”

according to the surrounding context of this sentence.
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Unsuitable formulation for set-relations: Our Of-Cloze formulation produces awk-

ward phrases for some bridging pairs that possess set-relations. Considering a bridging

pair − “One man - employees”, in this case the model should assign high score for the

phrase − “One man of employees”. But, as this phrase is quite clumsy, BERT naturally

being a language model assigns low scores for these pairs.

5.8 Conclusions

We investigated the effectiveness of pre-trained transformer language models in capturing

bridging relation inference by employing two distinct but complementary approaches.

In the first approach, we probed individual attention heads in BERT and observed

that attention heads from higher layers prominently captured bridging compared to

the middle and lower layers and some specific attention heads consistently looked for

bridging relation. In our second approach, we considered using language models for

bridging anaphora resolution by formulating the task as a Of-Cloze test. We carefully

designed experiments to test the influence of different types of context for language

models to resolve bridging anaphors. Our results indicate that pre-trained transformer

language models encode substantial information about bridging.

We go one step further to analyze the role of context in achieving this bridging in-

formation. We separately provided a different set of contexts such as no context other

than anaphor phrase, removing “Of” from our fill-in-the-blank formulation, and shuffled

words context. We saw a substantial drop in the accuracy in comparison to the case where

provided context was appropriate. This shows BERT’s capability of bridging inference

depends on the input context, the more the appropriate context better the result.

Finally, our error analysis highlighted the crucial limitation of BERT at capturing

commonsense information which is required in bridging inference. We observed BERT

fails to accurately select antecedents for anaphors that required sophisticated common-

sense knowledge. It could easily resolve easy pairs such as “sand–dunes” and “principal–

school” but failed at “consultant–Delmed (a company)” and “pool–OPEC (Organization

of petroleum countries)”. For this reason, we need to design approaches that can fill this

missing commonsense information from BERT. We will look at that in the next chapter.



Chapter 6

Integrating knowledge graph

embeddings to improve representation

Until now we have explored the use of contextual information for both temporal relation

classification and bridging anaphora resolution. We developed an effective neural net-

work based approach for temporal relation classification in Chapter 4, followed by the

investigation of transformer language models for bridging inference in Chapter 5. Now,

we explore the use of commonsense information for both tasks and extend our work (Pan-

dit et al., 2020). To the best of our knowledge, this is the first work where a principled

approach is taken to represent knowledge graphs for bridging and temporal relation

identification. We discuss the significance of world knowledge for these tasks as well as

challenges in extracting them from knowledge graphs and injecting them into bridging

resolution and temporal relation classification systems. To address these challenges, we

design a generic approach that can be applied to both tasks. As a knowledge source, we

explore the use of WordNet (Fellbaum, 1998) for both the tasks and the specially designed

TEMPROB (Ning et al., 2018a) for temporal relation classification. More specifically, we

employ low-dimensional graph node embeddings learned on these knowledge graphs

to capture crucial features of the graph topology and rich commonsense information.

Thereafter, we propose simple methods to map mentions and events to knowledge graph

nodes and disambiguate senses to obtain embeddings corresponding to them. We also

tackle the case of the absence of knowledge from the graph. Once properly identified

from the mention and event text spans, these low dimensional graph node embeddings

are combined with contextual representations to provide enhanced mention and event

representations. We illustrate the effectiveness of our approach by evaluating it on com-

monly used datasets for both tasks where significant accuracy improvements are achieved

compared to standalone text-based representations
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6.1 Introduction

Recall from the task definitions given in Section 2.1 that bridging anaphora resolution

links bridging anaphors to corresponding antecedents and temporal relation classification

determines temporal ordering between event pairs. To successfully solve these tasks,

effective mention and event representation is essential, and commonsense information is

critical to obtain such an effective representation.

Section 6.2 demonstrates the significance of commonsense information for effective

representation and discusses challenges in integrating such knowledge in the bridging

resolution and temporal relation classification systems. We first describe the importance

of this information and motivate it by providing examples. We also review previously

proposed approaches to acquire that information for both tasks. Next, we discuss chal-

lenges of incorporating such knowledge in the systems. The knowledge graphs used as

an external knowledge source contain information over abstract concepts and entities,

whereas mentions and events are linguistic units. This fundamental difference leads to

challenges such as mapping mentions and events to graph nodes, disambiguating distinct

senses due to mapping to multiple nodes, and tackling the instances of non-availability of

knowledge.

Consequently, we propose solutions to these challenges in Section 6.3. We propose

simple heuristics to map mentions and events to the graph nodes. Specifically, we remove

modifiers or use the semantic head of the mention, and lemmatize events to normalize

them. If this normalized form maps to multiple nodes in the graph then we use Lesk (Lesk,

1986) sense disambiguation algorithm or simple average over them, whereas in the case

of mapping to no nodes i.e. absence of knowledge, we use the zero vector. This proposed

approach is generic and can be applied to any knowledge graph. In this work, we specif-

ically evaluate our approach over two knowledge graphs: WordNet and TEMPROB. We

use WordNet to get lexical semantics such as hypernymy, hyponymy, meronymy, etc.,

and general relatedness between nodes, and TEMPROB to capture prior probabilities of

temporal relations between verbs, specifically for temporal relation classification. We use

various previously proposed graph node embedding algorithms to encode them such as

random walk based embeddings (Goikoetxea et al., 2015), Path2vec (Kutuzov et al., 2019),

matrix factorization based (Saedi et al., 2018) for WordNet and Uncertain Knowledge

Graph Embeddings (UKGE) (Chen et al., 2019) for TEMPROB.

Next, we applied these approaches to obtain knowledge-aware mention represen-

tation for bridging anaphora resolution in Section 6.4. We combine knowledge graph

embeddings with distributional text-based embeddings to produce improved mention

representation. As pointed in Section 3.2.2, bridging anaphora resolution is commonly
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considered as a classification problem. In this work, we take a different approach where

we formulate bridging anaphora resolution as a ranking problem instead of classifica-

tion perspective, for it to be less sensitive to class-imbalance, and making it focused on

learning relative scores. Specifically, we train a ranking SVM model to predict scores for

anaphor-candidate antecedent pairs, an approach that has been successfully applied

to the related task of coreference resolution (Rahman and Ng, 2009). We observe that

integrating node embeddings with text-based embeddings produces increased accuracy,

substantiating the ability of graph node embeddings in capturing semantic information.

Afterwards, similar to knowledge-aware mention representation, we combine text-

based representations and knowledge graph embeddings to produce knowledge-aware

event representations for temporal relation classification in Section 6.5. We use current

state-of-the-art (Wang et al., 2020) system based on RoBERTa (Liu et al., 2019b) embed-

dings and LSTMs (Hochreiter and Schmidhuber, 1997) to obtain text-based embeddings

as well as for scoring temporal relations. We combine these text-based embeddings with

graph node embeddings to improve event representation. Next, to train the neural model,

a constrained learning objective that considers the accuracy of temporal relation predic-

tions, as well as global temporal symmetry and transitivity constraint, is optimized. These

constraints are applicable over temporal graph because of temporal algebra as described

in Section 2.1.1.1. Further, we used Integer Linear Programming (ILP) inference to get

globally coherent temporal relation predictions. Improvement in results over the use of

only text-based embeddings also over a system with hand-engineered commonsense

features, establishes the potency of our approach.

6.2 Commonsense knowledge

We refer commonsense as a broad knowledge that can not be easily acquired with only the

given linguistic context. Thus, our definition of commonsense knowledge encompasses

both linguistic and world knowledge. Linguistic knowledge can be any knowledge that

is associated only with the linguistic units of the language. Semantic knowledge can be

called a specific type of linguistic knowledge which involves semantic relations between

words, phrases, or sentences meanings. For example, lexical relations such as synonymy,

antonymy, hypernymy, etc. fall into this type of knowledge. On the other hand, world

knowledge is broader information which is not specific to any language but shared by

people. Factual or encyclopedic knowledge is a part of this kind of knowledge. For exam-

ple, Barack Obama was a president is a world knowledge, independent of any language.

Though making a clear distinction between linguistic knowledge and world knowledge is
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difficult as different researchers define different boundaries to demarcate them (Ovchin-

nikova, 2012). In fact, commonsense knowledge is also a fuzzy term which can mean only

world knowledge but in our work it refers to both linguistic and world knowledge.

Word embeddings like Word2vec (Mikolov et al., 2013a), Glove (Pennington et al.,

2014), BERT (Devlin et al., 2019), etc. are considered to be capturing commonsense

knowledge but only up to some extent (Chen et al., 2013; Da and Kasai, 2019; Ettinger,

2020; Talmor et al., 2020). Hence, various approaches have been proposed to enrich these

unsupervised embeddings with commonsense knowledge contained by knowledge graphs.

The proposed approaches can be broadly divided into two categories: 1. Joint learning of

word embeddings with semantic constraints, and 2. Post-processing (retro-fitting) over

unsupervised word embeddings.

Joint learning models put semantic lexicons as additional constraints while learning

word embeddings. Many approaches fuse Word2vec with synonymy relations that reduce

the distance between similar words (Liu et al., 2015; Yu and Dredze, 2014) whereas few

approaches (Liu et al., 2018) also put constraints based on other lexical relations such

as hypernymy-hyponymy relations from WordNet. Similar ideas have been applied over

Glove by Bollegala et al. (2016), and Osborne et al. (2016). On the other hand, other models

utilize similar words alternatively in the same context and learn models over the original

and added context (Kiela et al., 2015; Niu et al., 2017). Recently, similar enhancements are

also applied over BERT embeddings (Hao et al., 2020; Peters et al., 2019; Sun et al., 2020;

Zhang et al., 2019b)

On the contrary to joint learning models, post-processing approaches take pre-trained

word embeddings and retro-fit them with additional information. Faruqui et al. (2015)

retrofit embeddings with information from WordNet with the addition of synonymy

information, approaches like (Glavaš and Vulić, 2018; Mrkšić et al., 2016) go a step further

and add antonymy information as well to increase the distance between dissimilar words.

In addition to these relations, Vulić et al. (2017) leverage morphological information where

they pull inflectional forms of the same word closer and push derivational antonyms

farther.

So far, we mentioned approaches which produced generic word embeddings without

focusing on solving any particular task. Now, we note a few approaches that learn repre-

sentations with the addition of external knowledge to solve specific tasks. For instance,

machine reading (Yang and Mitchell, 2017), Question Answering (QA) (Bauer et al., 2018;

Sun et al., 2018), natural language inference (Chen et al., 2018), reading comprehension

(Mihaylov and Frank, 2018; Wang and Jiang, 2019), and coreference resolution (Zhang

et al., 2019a). In addition to these approaches, earlier approaches designed hand-crafted
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features to inject commonsense knowledge into systems such as (Emami et al., 2018;

Ovchinnikova, 2012; Rahman and Ng, 2011). Our approach too falls into this line of

research where we inject commonsense knowledge to solve specific tasks.

The linguistic knowledge can be obtained from different sources. For lexical-semantic

knowledge, WordNet (Fellbaum, 1998) is used extensively in NLP. In addition to WordNet,

FrameNet (Ruppenhofer et al., 2006) and ConceptNet (Speer et al., 2018) are other popular

semantic networks. FrameNet is based on frame semantics which briefly states that the

meaning of the words can be understood from knowledge about the other related concepts.

For example, meaning of the word cook is understood from cooking frame which contains

other related concepts such as food, bake, boil, apply heat. FrameNet contains such

1200 frames containing more than 13000 words with different part-of-speech tags. In

addition to that, it also contains semantic relations over frames. Other semantic network,

ConceptNet consists of basic facts and understanding possessed by people. It contains

more than 300,000 nodes and 1.6 million edges between them labeled by one of the 19

binary relations. ConceptNet is constructed by crowdsourced effort instead of manually

creating it as opposed to WordNet and FrameNet.

In addition to these knowledge sources which contain semantic knowledge, knowledge

graphs such DBPedia (Lehmann et al., 2015), YAGO (Hoffart et al., 2011) which are popular

among many others contain generic world knowledge. DBPedia is an automatically

created knowledge source by extracting factual information from Wikipedia pages and

stored in a structured format. It contains all the information related to the entity present

in Wikipedia pages, for instance, date of birth, place, occupation as well as a link to the

Wikipedia page. YAGO is an another such knowledge base which possesses a collection of

commonly known facts and information. It is also an automatically created knowledge

base that uses a lot of other sources to build their knowledge such as Wikipedia, WordNet,

Geonames, the Universal WordNet, and WordNet Domains. It contains knowledge of more

than 17 million entities (like persons, organizations, cities, etc.) and more than 150 million

facts about these entities.

Further, researchers have explored different sources other than knowledge graphs

to acquire such commonsense knowledge like images (Cui et al., 2020; Li et al., 2019;

Rahman et al., 2020), videos (Huang et al., 2018; Palaskar et al., 2019), or crowdsourced

resources (Krishna et al., 2016). We use knowledge graphs among these sources, as they

are specifically developed to hold world knowledge and are highly accurate in-comparison

to other sources.

We discussed so far what we mean by commonsense knowledge, why it is needed for

unsupervised word embeddings as well as for task-specific representation, and finally
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we looked at different sources of linguistic and world knowledge. Now, we discuss why

commonsense knowledge is important for event and mention representations.

6.2.1 Significance for effective representation

In Chapter 3 while discussing previously proposed work, we briefly talked about the

significance of commonsense knowledge for temporal relation classification and bridging

anaphora resolution. We further detail that here.

Temporal relation classification We have seen that temporal relation classification sys-

tems use tense, aspects or temporal markers to accurately predict temporal ordering

between events. Sometimes, this information is not sufficient to make accurate predic-

tions. More than these contextual clues, the system should be able to access the world

knowledge which humans possess while reading the text. This is illustrated in the following

examples:

(8) He graduatede1 with a computer science degree. He joinede2 a reputed software

development firm.

(9) The government confirmed that 10 people diede3 . The explosione4 also damaged

nearby homes.

In example 8, to establish temporal order between events e1 and e2, it is crucial to have

commonsense information that people generally join a firm after they graduate. Similarly,

in example 9, knowing that people can die because of explosion is useful in establishing

precedence temporal relation between e4-e3.

Different approaches have been proposed to acquire such commonsense information

for temporal relation classification systems. For better event-pair representations, D’Souza

and Ng (2013) designed features based on WordNet and Webster dictionary. Specifically,

they used four types of WordNet relations, namely hypernymy, hyponymy, troponymy,

and synonymy to create eight binary features. A more advanced approach is taken by Ning

et al. (2018a) by proposing TEMPROB knowledge source containing event verbs and prior

probabilities of temporal relations between them. Ning et al. (2019, 2018a); Wang et al.

(2020) used this knowledge source in their approaches. Ning et al. (2018a) used prior prob-

abilities that are present in TEMPROB directly as one of the features in their system. Going

away from this naive approach of injecting commonsense knowledge, Ning et al. (2019)

trained Siamese network (Bromley et al., 1993) on the event pairs present in TEMPROB

and their prior probabilities to produce embeddings for each verb in the graph. Next,
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Wang et al. (2020) used a similar principle to acquire commonsense knowledge. They used

partial relations from ConceptNet (Speer et al., 2018) in addition to TEMPROB knowledge.

They selected few pairs from ConceptNet that possess “HasSubevent”, “HasFirstSubevent”,

and “HasLastSubevent” relations as these relations encode temporal information. Then

they trained two separate feed-forward networks, one over TEMPROB and the other over

ConceptNet pairs, with contrastive loss to estimate the relations between these pairs.

Once the models are trained verb embeddings are obtained from them and injected into

their systems.

Bridging anaphora resolution Similar to temporal relation classification, common-

sense information is crucial for bridging resolution. Standard text-based features either

hand-crafted or automatically extracted from word embeddings (Mikolov et al., 2013a;

Pennington et al., 2014), are not sufficient for bridging resolution (Hou, 2018b). The diffi-

culty arises because, bridging indicates various relations between anaphor-antecedent

pair for instance part-of relation, set relation, or many abstract relations. Consider the

following examples:

(10) A car had an accident. The driver is safe, highway police reported.

(11) Starbucks has a new take on the unicorn frappuccino. One employee accidentally

leaked a picture of the secret new drink.

In example 10, to establish bridging link between anaphor “The driver” and antecedent

“a car”, it is crucial to know that generally a driver drives a vehicle so “the driver” refers

to “the driver of a car that had an accident” and not any other driver. On the same

lines, in example 11, if the resolution system knows that Starbucks is a company and

companies have employees, then it is easy to establish the link between “Starbucks” and

“One employee”.

Consequently, both rule-based, as well as machine learning-based systems for bridg-

ing resolution, have used external knowledge sources to get commonsense information.

The rule based systems (Hou et al., 2014; Roesiger, 2018b) designed various rules by consid-

ering building parts to get part-of relation, job based rules to capture employee-employer

relation, and meronymic relations from WordNet. The learning-based approaches (Hou

et al., 2013a,b) also designed features with WordNet and Google queries (Poesio et al.,

2004) to capture semantic relations. Recently, bridging-specific embeddings emb_pp

(Hou, 2018b) were proposed by exploiting the preposition pattern (X prep Y ) and posses-

sive pattern (X’s Y ) of NPs. Her approach is better at capturing fine-grained semantics than

vanilla word embeddings such as Word2vec (Mikolov et al., 2013a), Glove (Pennington
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et al., 2014), etc. however, it still depends on the presence of the required noun-pairs in

the corpus. The use of knowledge graphs, either manually or automatically constructed,

can alleviate this problem as they contain general semantic and world knowledge.

All of these approaches, both for temporal relation classification as well as bridging

resolution, extract only shallow features, capturing relations between pairs of nodes

instead of taking advantage of broader information that is present in knowledge graphs.

Moreover, attempting to extend these strategies to take into account a larger amount

of information may translate into learning problems where the input space is of high

dimension. It might be a hurdle especially in the case of bridging resolution due to

moderate size datasets, for instance, ISNotes (Markert et al., 2012) and ARRAU (Uryupina

et al., 2019) respectively contain 663 training pairs and 5512 training pairs. The only

exceptions are approaches (Ning et al., 2019; Wang et al., 2020) proposed for temporal

relation classification. They stand out among all previous approaches as they acknowledge

the drawbacks of hand-designing features, therefore train models to get verb embeddings.

But, their approach also captures shallow features as it only encodes pairwise relations so

missing out on the information encoded by the whole graph topology.

6.2.2 Challenges in integration

We discussed in previous paragraphs that due to the limited capabilities of unsupervised

word embeddings algorithms at acquiring commonsense knowledge various approaches

have been proposed, some of the approaches were task-agnostic like (Faruqui et al., 2015;

Peters et al., 2019; Sun et al., 2020), and some solved specific tasks (Bauer et al., 2018;

Mihaylov and Frank, 2018; Sun et al., 2018; Wang et al., 2019). Our approach falls into the

latter category where we use knowledge graphs specifically to solve the tasks. There lie

some challenges in incorporating such knowledge from knowledge graphs. Though these

challenges are generic and can be faced by any NLP system trying to inject knowledge

from graphs, we focus our discussion on the challenges with respect to the tasks at hand:

bridging anaphora resolution and temporal relation classification.

Integration with linguistic information Integrating knowledge held by knowledge graphs

into NLP systems is not straightforward (recall the discussion in Section 2.6.2). Because the

information in the knowledge graph is stored in a structured way whereas text is relatively

unstructured 1. Generally, knowledge graphs encode information in the form of triplets:

1 We call text unstructured data only in the sense that it’s not stored in pre-defined format, models, or
schema, nor it is easy to process or analyze.
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(h,r, t) where the head(h) and tail(t) are nodes and r denotes relation between them2.

In addition to this, the topology encodes crucial information because of the connection

between different nodes either directly or through other nodes. This whole information

should be captured effectively and injected into the machine learning systems.

Event/Mention normalization The knowledge graph contains information about cer-

tain entities, for example, WordNet is a lexical knowledge graph containing different senses

of words. This means we first have to normalize event or mention to a corresponding

entity so that information about it might be present in the knowledge graph. Then the

entity is used to acquire corresponding knowledge from the graph. However, it is tricky

to get an entity from a given mention as a mention may contain words like quantifiers,

prepositions, or modifiers in addition to the entity. Consider mentions like the wall, one

employee, beautiful lady or the famous scientist Einstein which can not be matched with

the entity in the graph. These should be normalized to wall, employee, lady and Einstein,

respectively. Similarly, this issue exists in the case of events as well. Albeit, it is less severe,

as they are are mostly verb phrases and contain only verbs with inflections (e.g. said,

calling, reported). Though there are some cases of events being noun phrases, for instance

holy war, deadly explosion which should be respectively mapped to war, explosion, they

are relatively fewer.

Word sense disambiguation Once the event or mention is normalized, this normalized

token can map to multiple entries in the knowledge graph, as the same word can possess

different meanings, senses, or refer to multiple real world entities. This issue is pervasive

over all the knowledge graphs, hence needs to be addressed irrespective of which graph

is used. For example, in the case of mentions, bank can refer to an institution related

to finance or the land alongside river, Michael Jordan can refer to the scientist or the

basketball player. On the other hand, event verbs such as book can refer to reserving tickets

or recording a charge in police register, fall can mean descend or precipitate. The different

senses possess different knowledge, in other words different local structures in the graph.

Thus, recognizing the correct sense is crucial to get the accurate information.

Absence of knowledge The opposite situation of the previous case is an absence of any

node corresponding to the normalized event or mention. This can happen due to the

inherent limitation of the knowledge graph or normalization error. It is crucial to handle

these situations gracefully.

2There can be additional information as in TEMPROB where for an edge its strength is also added.
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Choice of knowledge graph One of the least challenging but important aspect is a choice

of the knowledge graph. As mentioned in earlier paragraphs, different knowledge graphs

contain different information. So in a way, it becomes crucial to choose a knowledge graph

that contains relevant information. One simple criterion for knowledge graph selection is

to assess how many events or mentions can be mapped to the graph nodes. Then to select

a knowledge graph which contains a higher percentage of event or mention mappings.

Another aspect of this discussion is the use of multiple knowledge graphs to acquire

commonsense information. Because required commonsense knowledge can be present

in different knowledge graphs, it is prudent to use them all. In this case, the burden of

selecting relevant knowledge falls onto the learning system instead of the designer of the

system.

6.3 Our approach

We detail our approach for solving these challenges in the coming sections. First, we

specify our approach of representing knowledge and specific knowledge graphs used in

our work (Section 6.3.1). Then we describe simple rules used to normalize events and

mentions to map to graph nodes (Section 6.3.2). Next, we proposed simple heuristics

for the case of presence of multiple nodes (Section 6.3.3) or the absence of any node

(Section 6.3.4) in the knowledge graph corresponding to these normalized tokens.

6.3.1 Knowledge graphs: WordNet and TEMPROB

To obtain external knowledge, we used WordNet (Fellbaum, 1998) for both tasks and TEM-

PROB (Ning et al., 2018a) specifically for temporal relation classification. As mentioned

earlier, integrating the knowledge encoded by these graphs into machine learning systems

is not easy. One of the naive ways of capturing information present in knowledge graphs is

to design features or by executing queries over them. But these are inefficient approaches

and do not capture the holistic information present in the graph. To remedy that, graph

node embeddings were proposed to acquire the local and global structure of the graph

effectively, as discussed in Section 2.6.2. Similarly, graph node embeddings learned over

knowledge graphs can capture the encoded knowledge effectively. Therefore, here we

learn graph node embeddings over WordNet and TEMPROB and use them in our systems.

In the following paragraphs, first, we briefly review WordNet, and then summarize

different graph node embedding algorithms used over it, followed by a similar discussion

on TEMPROB.
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6.3.1.1 WordNet

As previously described in Section 2.6.1.1, WordNet (Fellbaum, 1998) primarily consists

of synsets, i.e., a set of synonyms of words. The synsets which refer to the same concept

are grouped together giving it a thesaurus-like structure. Each synset consists of its

definition and small example showing its use in a sentence. The synsets are connected

with different relations such as synonymy, antonymy, hypernymy, hyponymy, meronymy,

etc. In addition, it also includes relations between real world entities like cities, countries,

and famous people. This semantic information is already shown to be effective for bridging

and temporal relations, which makes WordNet obvious choice for the tasks. Subsequently,

the node embeddings learned on this graph automatically capture the commonsense

information associated with the senses.

Now, we discuss different node embedding algorithms that are used to encode Word-

Net in our study. These algorithms are not specially designed for WordNet but have been

proven to be effective at producing representations over it. We use random walk and neu-

ral language model based embeddings (RW) (Goikoetxea et al., 2015), matrix factorization

based embeddings (WNV) (Saedi et al., 2018), and graph-similarity based Path2vec (Kutu-

zov et al., 2019) embeddings. These embeddings differ in learning strategies and more

importantly the way different graphs are constructed over WordNet by varying types of

either nodes or edges. For instance, different graphs can be constructed by considering

actual synsets as nodes or corresponding words as nodes, similarly, in the case of edges,

either by considering semantic relations between nodes or ignoring these relation labels.

Because of these differences in graph constructions, the first two algorithms, RW and

WNV, produce word embeddings whereas Path2vec produces embeddings corresponding

to each synset present in WordNet. Because, RW and WNV conflate all the senses where

they first map them to words, and then learn embeddings over words, thus lose finer

semantic information in the process. But on the upside, they relieve the burden of sense

disambiguation because now the mapping from events or mentions is to words and not to

individual senses.

RW The approach proposed by Goikoetxea et al. (2015) is based on the well-known

neural language model CBOW and Skip-gram (Mikolov et al., 2013c) which we described

in Section 2.4.1.1. The main idea is to produce artificial sentences from WordNet and

to apply the language models on these sentences to produce word embeddings. For

this, they perform random walk starting at any arbitrary vertex in WordNet, then map

each WordNet sense to the corresponding word to produce an artificial sentence. Each

random walk produces a sentence, repeating this process several times gives a collection
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of sentences. Finally, this collection of sentences is considered as the corpus for learning

word embeddings by applying the same objective function as in Mikolov et al. (2013c).

WNV A different approach based on matrix factorization is taken by (Saedi et al., 2018) to

produce these embeddings. The procedure starts by creating the adjacency matrix M from

WordNet graph. The element Mi j in the matrix M is set to 1 if there exists any relation

between words wi and w j . 3 Furthermore, words which are not connected directly but

via other nodes should also have an entry in the matrix, albeit with lower weights than

1. Accordingly, a matrix MG is constructed to get the overall affinity strength between

words. In the analytical formulation, MG can be constructed from the adjacency matrix

M as MG = (I −αM)−1 where I is the identity matrix and 0 <α< 1 decay factor to control

the effect of longer paths over shorter ones. Following that, matrix MG is normalized to

reduce the bias towards words that have more number of senses and finally a Principal

Component Analysis is applied to get vectors.

Path2vec Path2vec (Kutuzov et al., 2019) learns embeddings based on a pairwise similar-

ity between nodes. The fundamental concept is that pairwise similarity between nodes of

the graph should remain the same after their projection in the vector space. The model

is flexible enough to consider any user-defined similarity measure while encoding. The

objective function is designed to produce such embeddings for nodes which reduce the

difference between actual graph-based pairwise similarity and vector similarity. It also

preserves the similarity between adjacent nodes. Formally, for the graph G = (V ,E ) where

V ,E denote a set of vertices and edges, respectively, the objective is:

∑
(a,b)∈V

min
va ,vb

(
(vT

a vb − s(a,b))2 −α(vT
a vn +vT

b vm)
)

where n,m are adjacent nodes of nodes a,b respectively, s(a,b) is the user-defined simi-

larity measure between a,b and va ,vb ,vn ,vm denote the embeddings of a,b,n,m, respec-

tively. In their experiments, to show the ability of their model in adapting to different

pairwise similarity measures, similarity function s(a,b) is obtained with four distinct simi-

larity measures: Leacock-Chodorow (Leacock and Chodorow, 1998); Jiang-Conrath (Jiang

and Conrath, 1997); Wu-Palmer (Wu and Palmer, 1994); and Shortest path (Lebichot et al.,

2018).

3They also experimented by weighting relations differently (e.g. 1 for hypernymy, hyponymy, antonymy
and synonymy, 0.8 for meronymy and holonymy and 0.5 for others) but obtained the best results without
weighting.
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6.3.1.2 TEMPROB

In addition to WordNet, specifically for temporal relation classification, we explored the

use of temporal information specific knowledge source: TEMPROB (Temporal relation

probabilistic knowledge base) (Ning et al., 2018a). Though a detailed description of

TEMPROB is given in Section 2.6.1.2, we quickly review it here. TEMPROB contains

specific prior temporal knowledge. The knowledge is stored in the form of quadruples:

(u, v,r, fu,v,r ) where u, v are semantic verb frame pairs, r is any temporal relation from

set R containing temporal relations after, before, includes, included, and undef (vague),

and fu,v,r is the frequency of temporal relation r appearing between u, v . This frequency

is measured as the number of times the classifier trained while constructing TEMPROB

has predicted relation r for pair u, v on the corpus (1 million NYT articles). Also, recall

that u, v are not verbs but semantic verb frames and there can be multiple semantic verb

frames corresponding to a verb depending on its meaning, for instance, verb sew has

multiple frames such as sew.01, sew.02, and more, depending on whether it is used for

stitching clothes,wounds, or in another sense.

We observed that while constructing TEMPROB, verb pairs are selected as they ap-

peared in the documents, so there are different valued edges between u, v and v,u. We

aggregated them for inverse temporal relation pairs, after–before, includes–included, equal–

equal, and undef–undef. We kept only one pair u, v and calculated frequency for relation

r by adding the frequency of r as well as r ′ (inverse relation) as fu,v,r ← fu,v,r + fv,u,r ′ .

After that we converted these frequencies for each relation into probability with a softmax

function:

pu,v,r = e− fu,v,r∑
r̂∈R e− fu,v,r̂

(6.1)

Then, TEMPROB graph is modified to store quadruples containing these probabilities

in-place of frequencies as (u, v,r, pu,v,r ). This modified graph is further used for obtaining

node embeddings.

Uncertain Knowledge Graph Embeddings (UKGE) We used the UKGE (Chen et al.,

2019) embedding algorithm to obtain TEMPROB node embeddings. The primary reason is

that UKGE learns embeddings over a graph containing probabilistic (weighted) relations

between nodes, while the previously proposed algorithms can only learn over determinis-

tic edges. The graph considered in this algorithm is of the form G = (V ,E ,R) containing set

of vertices V , edges E , and relations R where E = {(l , sl )|l = (h,r, t ),h, t ∈V ,r ∈ R, 0 ≤ sl ≤ 1}.

It is the same as modified TEMPROB graph. The algorithm learns low-dimensional em-

beddings for h, t and r similar to translational models TransE (Bordes et al., 2013) such
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that the predicted score between triplet (h,r, t ) will be closer to the true score sl . This is

the core working of UKGE algorithm. Besides, in addition to the given links, UKGE also

deduces new links with soft logic from the given (seen) links. Subsequently using them to

train the model by calculating the training loss on both seen and deduced links. But while

applying UKGE on TEMPROB, we did not deduce any new links and relied only on the seen

links. Because TEMPROB contains edges which are obtained from the temporal relation

classifier which is inherently error-prone, and by inferring new edges from these links

can lead to further propagation of errors. Finally, the modified loss which is optimized to

produce TEMPROB node embeddings is given as:

L (θ) = ∑
(l ,sl )∈E

| fc (l ;θ)− sl |2 (6.2)

where fc (l ;θ) is the θ-parameterized confidence score based on the learned vector

representations h,t,r ∈Rd as fc (l ;θ) =ψ(g (r · (h⊙ t))) such that · denotes inner product,

⊙ denotes element-wise multiplication, and ψ : R→ [0,1]. The vectors h,t are encoded

with same function of the form fn : V →Rd to produce representations corresponding to

nodes of the graph. Consequently, once the model is trained, function fn is applied over

nodes to get corresponding graph node embeddings.

6.3.2 Normalization: Simple rules and lemma

Mention normalization. A mention can be a phrase containing multiple words, and

from these words we have to obtain an entity that can be mapped to the node in the graph

or a key of the dictionary that contains knowledge graph embeddings. We propose to

normalize them into a single word with the use of simple rules. For this, as a first step,

we remove articles and commonly used quantifiers like the, a, an, one, all etc. from the

mention. If we find an entry in the knowledge graph with this modified word then we

get the corresponding embeddings, otherwise, we go a step further and extract the head

of the mention and try to obtain embeddings for it. Specifically, we use the parsed tree

of the mention, and Collins’ head finder algorithm (Collins, 2003) to get the syntactic

head. Recall the discussion from Section 5.4 where we discussed that the syntactic head

approach fails for coordinated NPs (NPs containing coordinating conjunctions like and),

therefore we used the semantic head in these cases which are obtained with Stanford

CoreNLP toolkit (Manning et al., 2014).

Event normalization Though events could be phrases (verbs or nominals), the dataset

is already annotated with headword of events. For instance, “the deadly explosion” phrase
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is marked with headword “explosion”, “holy war” as “war”. As a result, the process of

normalizing events is much simpler than mention normalization. We use this headword

of event to map to the node in graph. For that, we obtain a lemma of the headword while

considering its part-of-speech tag. This is especially useful in the case of verbs as they are

inflected with suffixes such as -ing, -ed.

6.3.3 Sense disambiguation: Lesk and averaging

Once events and mentions are normalized to a single token4, the string matching is done

to map to graph nodes. This can yield multiple nodes for a single normalized token or no

node at all. The case of multiple nodes arises due to multiple senses of the word. Now, we

describe the solution for the case of multiple nodes and in the next section for the absence

of any node. We devise different strategies depending on the kind of graph embeddings

used.

Lesk We use Lesk algorithm (Lesk, 1986) to select an appropriate sense for a word de-

pending on its context. A simplified variation of Lesk applied specifically to disambiguate

senses present in WordNet relies on the corresponding definitions of senses contained in

WordNet. It calculates the overlap between the context of the word and the definition of

the sense by simply measuring the number of common words, and chooses a sense which

has the highest number of matching words from the senses.

Averaging of all senses A simple heuristic to obtain all possible senses corresponding to

a token and instead of narrowing down the sense of the word is to take an average over

the embeddings of all these senses. We use this as an alternative to the above strategy.

Token matching If the embeddings are generated for the words instead of actual nodes

(senses in case of WordNet) graph then there is no question of sense disambiguation.

This is true in two of the graph node embeddings algorithm we used: RW and WNV.

These embeddings internally map synsets to the words, creating a graph over words from

WordNet and produce embeddings over these words itself. As a consequence, in these

cases, the need for sense disambiguation disappears and with simple string matching,

knowledge graph embeddings can be obtained.

4This is even true for the cases where, ideally we should get multiple tokens. For example, in the cases of
named entities having multiple tokens like Hong Kong, Los Angeles are still mapped to a single token. We
discuss these cases in the error analysis (Section 6.4.5.1).
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6.3.4 Absence of knowledge: Zero vector

The opposite situation of mapping to multiple senses is mapping to no node at all. This

might happen because of the inherent limitation of the knowledge graph or some nor-

malization error. Consequently, it leads to the unavailability of the corresponding node

embeddings. To tackle this, we use the zero vector of the same dimensions.

6.4 Improved mention representation for bridging resolu-

tion

So far, we have discussed the challenges of injecting commonsense knowledge and de-

scribed our proposed approaches to solve them. Now, we apply these methods for improv-

ing mention representation by integrating commonsense knowledge. In Section 6.4.1, we

detail our approach to obtain knowledge-aware mention representation which combines

both text and commonsense information. Next, we describe our ranking model based on

SVM and inference strategy in Section 6.4.2. Further, Section 6.4.3 describes our experi-

mental setup and Section 6.4.4 presents results over various datasets. Lastly, error analysis

is presented in Section 6.4.5.

6.4.1 Knowledge-aware mention representation

We propose a new, knowledge-aware mention representations for bridging resolution.

These representations combine two components: (i) distributional embeddings learned

from raw text data, and (ii) graph node embeddings learned from relational data obtained

from a knowledge graph. Specifically, the final representation mi for a mention mi is

obtained by concatenating the text-based contextual embeddings gi and the knowledge

graph node embeddings hi: mi = gi ⊕hi.

For the distributional embeddings gi, we use off-the-shelf word embeddings such as

Word2vec (Mikolov et al., 2013a), Glove (Pennington et al., 2014), BERT (Devlin et al., 2019),

or embeddings_pp (Hou, 2018b). Except for BERT, we average over embeddings of the

mention’s head word and common nouns appearing in the mention before the head, as

mentioned in Hou (2018a). With BERT, mention embeddings are obtained by averaging

over embeddings of all the words of the mention.

Whereas, for knowledge graph node embeddings hi we use strategies described in the

previous section. Briefly, we first normalize mentions, then map them to nodes in the



6.4 Improved mention representation for bridging resolution 125

knowledge graph, use sense disambiguation strategies in the case of multiple mappings,

and use the zero vector for no mapping.

6.4.2 Ranking model

Let D be the given document containing set of mentions, M = {m1,m2, · · · ,mnm }, and

A = {a1, a2, · · · , ana } be the set of all anaphors such that A ⊂M . Let a be any anaphor in

the set A and j be its position in the set M , then Ea be the set of antecedent candidates

for a which is defined as Ea = {mi : mi ∈ M , i < j }. Let Ta and Fa be the set of true

antecedents and false antecedent candidates of a such that Ta ∪Fa = Ea ,Ta ∩Fa =;. Let

a be the knowledge-aware represention of a, and e be the representation of e ∈ Ea . Then

the goal is to predict a score s(a,e) between anaphor a and antecedent candidate e such

that this score for true antecedent is higher than the wrong one. The score denotes the

possibility of anaphor a having bridging relation with the antecedent candidate e, so a

higher score denotes a higher chance of e being true antecedent.

The model is trained to reduce the ranking loss calculated based on the scores obtained

between anaphor-antecedent candidates. The ranking strategy is fairly obvious: for an

anaphor a high scoring antecedent candidate from Ea is ranked higher than the low

scoring one. Let this prediction ranking strategy be r ′ and true ranking is given by r ∗. For

an antecedent candidate, if the predicted rank is not same as the true rank then it is called

discordant candidate, otherwise concordant. The difference between true and predicted

ranking strategy can be measured with Kendall’s rank correlation coefficient: τ. Formally,

concordant C , discordant D candidates and τ are defined as:

C = ∑
(t , f )∈(Ta×Fa )

Is(a,t)>s(a,f) , D = |Ta ×Fa |−C and τ(r ∗,r ′) = C −D

C +D

where I is an indicator function which takes value 1 if s(a,t) > s(a, f) else 0, t, f are

knowledge-aware mention representations of t , f , respectively, and | · | denotes cardi-

nality of the set. The empirical ranking loss (Joachims, 2002) captures the number of

wrongly predicted ranks which is given as:

L = 1

na

na∑
i=1

−τ(r ∗
i ,r ′

i )

Inference We consider all the anaphors in the test document separately. For each

anaphor, we consider all previously occurring mentions as antecedent candidates and

find out the compatibility score for each anaphor-antecedent candidate pair with the
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above ranking model. We choose highest scoring antecedent candidate as the predicted

antecedent. Formally, let a be any anaphor and Ea denote a set of antecedent candidates

for a. Let s(a,e) be the score between a and e where e ∈ Ea . Let êa be the predicted

antecedent of a which is given as: êa = ar g maxe∈Ea s(a,e)

6.4.3 Experimental setup

Data We used ISNotes (Markert et al., 2012), BASHI (Roesiger, 2018a) and ARRAU (Uryupina

et al., 2019) datasets for experiments. ISNotes and BASHI consist of 50 different OntoNotes

documents, containing 663 and 459 anaphors, respectively. The BASHI dataset annotates

comparative anaphors as bridging anaphors which are 115 in numbers, remaining are ref-

erential anaphors. Following the setup from Hou (2020a), we only consider 344 referential

bridging anaphors in this work as well from the BASHI dataset.

In the experiments over ISNotes and BASHI datasets, we implemented nested cross-

validation to select the best hyperparameter combination. The setup is: first we make

10 sets of train and test documents containing 45 and 5 documents respectively with

10-fold division. Then at each fold, 45 training documents are further divided into 5 sets

of 36-9 actual training and development documents. Each hyperparameter combination

is trained on these 5-sets and evaluated. The highest averaged accuracy over the 5-sets

of development documents gives the best hyperparameter combination. Once the best

hyperparameter setting is obtained the SVM model is re-trained over 45 documents (36+9).

For each fold number of accurately linked anaphors is calculated. The accurately predicted

number of anaphors over each fold is added to get the total number of accurately linked

anaphors from the complete dataset. Thus, the system is evaluated by the accuracy of

predicted pairs (Hou, 2020a).

For ARRAU dataset, the results are separately reported over different genres present:

RST (news articles), PEAR (stories) and TRAINS (dialogues). We followed the similar

setup on these datasets as previous studies (Roesiger, 2018b; Yu and Poesio, 2020). In

that, different experimental setup is used for each genre: RST dataset is relatively big

and there is train, dev, and test partition of dataset so model is trained on train while

hyperparameters are tuned with respect to dev and finally evaluated on test. The samples

for PEAR and TRAINS are small so for training 10-cross validation is done on train/dev set

and final result is reported on test set.

For the training data, we have positive samples where we know true anaphor-antecedent

pairs but no negative samples. We generate these pairs by considering all the noun phrases

(NPs) which occur before the anaphor in the window of some fixed number of sentences.

All the mention pairs which do not hold bridging relations are considered as negative
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samples for training. Similarly, at the test time, for an anaphor, all the previous mentions

in the window size are considered as antecedent candidates. Only the limited number of

antecedent candidates are used instead of all, because in ISNotes 77% of anaphors have

antecedent either in the previous two sentences or the first sentence of the document. So,

considering all the previous mentions (without the restriction of window size) could result

in way more false antecedent candidates and could lead to performance degradation.

Though we use window size to restrict antecedent candidates, the window size is treated

as a hyperparameter and the best value is chosen depending on the validation accuracy.

The list of values are mentioned in the following section.

Implementation We obtained pre-trained 300-dimensional Word2vec (Mikolov et al.,

2013a), 300-dimensional Glove (Pennington et al., 2014), 768-dimensional BERT (Devlin

et al., 2019) and 100-dimensional embeddings_pp (Hou, 2018b) embeddings. For BERT,

we specifically used spanBERT (Joshi et al., 2020) variation to get embeddings in our

experiments as it gave better results for Hou (2020a). Also, we used pre-trained Word-

Net embeddings provided by respective authors of RW (Goikoetxea et al., 2015), WNV

(Saedi et al., 2018), and Path2vec (Kutuzov et al., 2019). In the case of Path2vec (Kutuzov

et al., 2019), 300-dimensional embeddings learned with different similarity measures

such as: Leacock-Chodorow similarities (Leacock and Chodorow, 1998); Jiang-Conrath

similarities (Jiang and Conrath, 1997); Wu-Palmer similarities (Wu and Palmer, 1994); and

Shortest path similarities (Lebichot et al., 2018), are provided. We experimented with all

the four similarity measures and found out that the shortest path based similarity measure

produced better results most of the time, so used those embeddings in the experiments.

We used the Python implementation of Lesk from nltk5 library to select the best sense from

multiple senses of the mention. Two sentences previous to mention, two sentences after

the mention, and the sentence in which the mention occurs are given to this algorithm as

a context for a mention.

Both anaphor and antecedent candidate’s embeddings are obtained as mentioned

above, afterwards, element-wise product of these vectors is provided to the ranking SVM.

We also did preliminary experiments with the concatenation of the vectors but element-

wise product gave better results. We used SVMr ank (Joachims, 2006) implementation for

our experiments. In the experiments with SVM, we did grid search over C = 0.001,0.01,0.1,1,

10,100 with the use of the linear kernel. We also use the random fourier features (rff) trick

proposed by Rahimi and Recht (2008) to approximate non-linear kernels. We found that

the use of non-linear kernels slightly improved results in comparison to linear kernels so

5https://www.nltk.org/_modules/nltk/wsd.html

https://www.nltk.org/_modules/nltk/wsd.html
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we reported only those results. We also varied different widow sizes of sentences: 2,3,4

and all previous sentences, in addition to NPs from the first sentence (salience), to get

antecedent candidates for an anaphor. Out of these settings, the window size of 2 and

salience have yielded the best results which are reported here.

6.4.4 Results

Comparison between distributional and graph embeddings is shown in Table 6.1 of

our experiments section. Each section summarizes the results over datasets used in the

experiment: ISNotes (Markert et al., 2012), BASHI (Roesiger, 2018a), ARRAU: RST, PEARS,

and TRAINS (Uryupina et al., 2019). The first row corresponding to each dataset section

shows the results with only text-based embeddings. We observe that on ISNotes, BASHI,

and RST datasets the best performance is obtained with the use of BERT embeddings

showing the efficacy of these embeddings when only one type of text-based embeddings

is used (underlined values in these sections). It shows that the context of the mention

plays an important role in resolving bridging anaphora, corroborating our observation

from Chapter 5. In the case of ISNotes and BASHI, the second best scores with only

text-based embeddings are obtained with embeddings_pp which are specially designed

embeddings for the task. But this is not true for RST, the reason might be the difference

of bridging types. Because embeddings_pp was designed for ISNotes which contains

different annotations than RST. We also observe further improvement in the results when

two best performing text-based embeddings: BERT and embeddings_pp are combined

(noted as BEP 6 in the Table).

However, these observations do not hold in the case of PEAR and TRAINS datasets

as the performance with BERT degrades drastically in comparison to distributional em-

beddings such as Word2vec or Glove. The best score with only text-based embeddings is

obtained with Word2vec for both the datasets. The primary reason is probably the small

size of these datasets in comparison to RST. TRAINS contains 98 documents whereas PEAR

contains 20 relatively small compared to 413 documents in RST. This might be leading to

the over-fitting of the learning model because of bigger BERT feature dimensions. This rea-

soning conflicts with the work (Yu and Poesio, 2020) where they used BERT successfully in

their experiment over PEAR and TRAINS dataset. But the difference between their system

and ours is of fine-tuning. We relied on the pre-trained BERT because of small training

dataset whereas they fine-tuned BERT specifically for bridging resolution by leveraging

the extra training data from coreference resolution with multi-task setup in their system.

6We combine BERT and embeddings_pp embeddings by concatenating both the vectors
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Data Our Experiments SOTA

WV GV BE EP BEP − SYS ACC

ISNotes

− 25.94 27.60 32.87 31.08 37.10 - PMIII 36.35
+ PL 26.40 28.61 34.39 31.81 43.87∗ 20.06 MMII 41.32
+ PA 24.74 30.92 33.18 33.24 39.82∗ 19.53 EB 39.52
+ RW 27.75 27.6 34.12 33.24 46.30∗ 22.06 MMEB 46.46
+ WNV 21.71 25.13 31.69 26.80 33.28 17.64 BARQA 50.08

BASHI

− 22.92 17.48 31.23 28.51 33.52 - PMIII -
+ PL 30.95 21.49 35.53 29.26 36.68∗ 16.44 MMII -
+ PA 24.07 19.2 35.24 29.48 38.94∗ 17.62 EB 29.94
+ RW 26.64 18.91 34.38 28.91 38.83∗ 15.75 MMEB -
+ WNV 20.92 18.05 26.36 21.20 27.80 12.97 BARQA 38.66

RST

− 34.62 34.74 35.68 30.75 44.8 - PMIII -
+ PL 38.36 33.84 41.11 37.83 48.06∗ 30.42 MMII -
+ PA 40.62 38.42 42.44 37.01 48.81∗ 31.7 EB -
+ RW 39.6 34.95 36.87 33.72 49.28∗ 29.54 RULE 39.8
+ WNV 34.59 33.35 36.17 28.83 41.54 22.98 MULTI 49.3

PEAR

− 42.09 40.6 21.95 20.9 21.95 - PMIII -
+ PL 44.9 41.35 26.03 24.63 22.69 34.01 MMII -
+ PA 49.56 48.23 26.87 27.62 24.93∗ 34.57 EB -
+ RW 54.53∗ 51.24 12.69 26.95 24.18∗ 38.13 RULE 48.9
+ WNV 36.87 32.09 24.03 30.06 22.45 16.39 MULTI 50.9

TRAINS

− 37.92 34.26 15.68 29.86 16.42 - PMIII -
+ PL 43.29 34.33 21.65 37.32 22.39 28.79 MMII -
+ PA 41.05 42.54 18.66 39.56 22.39 28.52 EB -
+ RW 39.56 44.78∗ 26.87 36.72 19.81 25.94 RULE 28.2
+ WNV 34.33 37.32 15.68 28.36 21.79 20.78 MULTI 61.2

Table 6.1 Results of our experiments and state-of-the-art models over popular bridging
datasets: ISNotes, BASHI, ARRAU: RST, PEAR, TRAINS. In Our Experiments section, we
present results for different text-based embeddings: Word2vec (WV), Glove (GV), BERT
(BE), embeddings_pp (EP), BERT + embeddings_pp (BEP) and the last column − shows the
absence of text-based embeddings. Also, in each row except the first row, WordNet node
embeddings based on different algorithms, are added: Path2vec with Lesk (PL), Path2vec
with averaged senses (PA), random walk based (RW) and WordNet embeddings (WNV).
The bold-faced figures denote highest score over respective dataset and underlined figures
indicate best scores only with the use of single text-based embeddings. SOTA section
of the table shows results with previously proposed systems: Pairwise Model III (PMIII),
MLN model II (MMII) (Hou et al., 2013b), embeddings_bridging (EB) (Hou, 2018a), the
combination of embeddings_bridging and MLN model (MMEB) and the latest system,
BARQA (Hou, 2020a). These previously proposed approaches do not have results over
ARRAU, so compared with rule based (RULE) (Roesiger, 2018b) and multitask (MULTI)
learning approach (Yu and Poesio, 2020). The results with ∗ are statistically signficant
in comparison to the results based only on text embeddings with p-value < 10−4 with
McNemar’s test and Wilcoxon signed-rank test.
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The following rows (2-4) of Table 6.1 show the results obtained with the addition

of WordNet information with different embeddings algorithms: Path2vec (PL and PA),

random walk based embeddings (RW) and matrix factorization based embeddings (WNV).

The results from these rows in comparison with the result from the first row prove the

effectiveness of the external information and substantiates our claims. 7 Interestingly,

it also shows that BERT though trained on a huge unlabeled corpus is not inherently

efficient at capturing commonsense knowledge required for bridging anaphora resolution.

Consequently, validating our claims done with qualitative analysis from the previous

chapter. Moreover, external information seems to be complementing embeddings_pp

embeddings which are custom tailored for bridging tasks, further consolidating our claims.

Further, in each row of the second last column of the table, results obtained by combining

external information with BERT embeddings and embeddings_pp show that even the best

performing text-based embeddings can still benefit from the external information. We see

a similar trend over other datasets as well when we compare results from first row of each

dataset section with the rows 2-4.

Comparison between different WordNet embeddings We first examine the effective-

ness of external knowledge without any text-based embeddings. These scores are noted in

the last column of our experiments section against each WordNet graph node embeddings.

The overall lower scores in this column in comparison with text-based embeddings reveal

that the features learned with WordNet embeddings are not solely sufficient and should

be complemented with the contextual features. Next, we compare results from Path2vec

Lesk (PL) with Path2vec average (PA) to see which strategy of disambiguation is effective.

But the observations are not conclusive, as in some cases the performance with the use

of averaging strategy is better than choosing the best sense with Lesk. The reason is that

Lesk is a naive algorithm which considers overlapping words in the context to get the

best sense. Further, we consider results from averaged embedding over senses (PA) for

comparing Path2vec with the other two embeddings as it is the closest analogous setting to

correlate. This comparison shows that there is no best algorithm amongst these WordNet

embeddings as sometimes we get better results with Path2vec and sometimes with RW

embeddings. This result is surprising as even after losing some semantic information, RW

7But with the exception with the addition of WNV. Because, results with WNV are mostly inferior in
comparison with only text-based embeddings. Lower coverage for WNV, around 65% as opposed to 90% for
the other two embeddings as only 60,000 words were present in pre-trained WNV embeddings, might be the
possible reason. Also, the vector dimension is significantly higher: 850 in comparison to 300 for the other
two.
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produces competent results compared to Path2vec. This might be happening because of

errors in sense disambiguation with Path2vec (detailed explanation in Section 6.4.5.1).

Comparison with previous studies The results of different state-of-the-art systems on

all the datasets are presented in SOTA section of Table 6.1. We compare our results over

ISNotes and BASHI dataset with results obtained with Pairwise Model III (PMIII) and MLN

model II (MLNII) that are proposed by Hou et al. (2013b), embeddings_bridging (EB) and

EB with MLN model (MMEB) by Hou (2018a), and latest system BARQA (Hou, 2020a).

Results from these systems are not available over RST, PEAR, and TRAINS datasets so

we considered rule based system proposed by Roesiger (2018b) and multi-task learning

system of Yu and Poesio (2020).

We observe that on ISNotes dataset, our model’s performance is better than rule-

based approaches from Pairwise Model III and MLN model II (Hou et al., 2013b), em-

beddings_bridging based deterministic approach from Hou (2018a) and competitive in

comparison with the combination of MLN model and embeddings_bridging but lags to

BARQA model. The reason might be that MLN model combines hand-crafted rules in

addition to carefully crafted embeddings. On the other hand, BARQA system is trained on

additional data obtained by forming quasi-bridging pairs. However, with BASHI dataset

we observe the best results, as the model achieves significant gains in comparison with

embeddings_bridging and moderate gains against BARQA.

Our proposed approach performs substantially better than rule-based (RULE) ap-

proach of Roesiger (2018b) over all the genres of ARRAU dataset. On the other hand, the

results are mixed in comparison to multitask learning approach (MULTI) (Yu and Poesio,

2020). Over PEAR dataset our approach outperforms and yields competitive results over

RST, but lags in TRAINS dataset. We think the noisy text in TRAINS dataset is the reason

behind this gap. TRAINS contains dialogues, as a result, a lot of non-vocabulary words

like “um”, “uhhh” etc. are present in the text. Also few words are repeated as speakers can

sometimes repeat themselves. This lead to noisy context which is completely different

from the grammatically correct text data on which the word embeddings were trained.

This difficulty does not appear in MULTI system because the embeddings are fine-tuned

over this noisy data.
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Dataset Mention Absent from
WordNet (%)

ISNotes 9574 977 (10.20%)
BASHI 5933 482 (8.21%)
ARRAU 52206 3843 (7.39%)

Table 6.2 Number of mentions from the datasets and proportion of them absent in Word-
Net.

6.4.5 Error analysis

6.4.5.1 Mention normalization and sense disambiguation

We analyze the cases where normalized mention has failed to map to any sense in Word-

Net. We noted those numbers for each dataset in Table 6.2. We see that around 7 to 10

percentage of mentions were non-mappable to any WordNet node. There are broadly

two reasons for this: 1. Normalization error, and 2. Inherent limitations of WordNet. We

illustrate some of the examples from each category in Table 6.3. The first three mentions

are wrongly normalized (Los Angeles to Angeles and Hong Kong to Kong) while both

cities are present in WordNet. The cases like U.S.S.R shows a limitation of our simple

normalization approach, the normalization should map U.S.S.R to Soviet Russia which is

present in WordNet. The other three examples show the inherent limitations of WordNet

as those entities are absent from WordNet.

WordNet contains multiple senses for a given word because of which we get on an av-

erage 7 senses for the given mention. We used a simple Lesk algorithm for disambiguation

which takes into account the context of the normalized mention to determine the correct

sense. We present some examples of disambiguation with Lesk in Table 6.3. It correctly

disambiguates in the first three examples but fails for the following three. This is because

of the count of overlapping words between sense’s context and definition in WordNet. For

example, the last example contains words like blood, breeder in the context because of

which it selects sense as a group of organisms and not an organization.

6.4.5.2 Anaphor-antecedent predictions

We analyze a few anaphor-antecedent pairs which were identified incorrectly with BERT-

based mention representations but with the addition of WordNet information, we were

able to correct it. The underlined and bold lettered phrases denote antecedent and

anaphor, respectively.
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Mention Mapping Error Mention Sense Selection

Mention Normalized
Mention

Mention Selected Sense

Los Angeles, Cali. Angeles [...] future generations of
memory chips

electronic
equipment

Hong Kong Kong The move by the coalition
of political parties [...]

organization

U.S.S.R U.S.S.R [...] when the rising
Orange River threatened
to swamp the course [...]

route

IBM IBM [...] U.S. industry to head
off the Japanese, who now
dominate [...]

language

politburo member
Joachim Herrman

Herrman [...] potential investors at
race tracks [...]

magnetic paths

U.S. district judge
Jack B. Weinstein

Weinstein The Thoroughbred
Owners and Breeders
Association [...]

a group of
organisms

Table 6.3 Mention Mapping Error lists examples of mentions for which no entry is found
in WordNet after normalization. The first three mentions are not found because of nor-
malization error but the next three entities are not present in WordNet. Mention Sense
Selection notes a few mentions and their senses selected by Lesk. For the first three
mentions, Lesk disambiguates correctly but fails in the next three. The correct senses of
the last three are Japanese people, racecourse, and organization, respectively.

(12) Staar Surgical Co.’s board said that it has removed Thomas R. Waggoner [...]. [..] that

John R. Ford resigned as a director, and that Mr. Wolf was named a member of the board.

(13) So far this year, rising demand for OPEC oil and production restraint by some mem-

bers have kept prices firm despite rampant cheating by others.

(14) One building was upgraded to red status while people were taking things out, and

a resident who was not allowed to go back inside called up the stairs to his girlfriend,

telling her to keep [...].

WordNet contains company and director with part-of relation. Also, the OPEC oil is

stored as a corporation which in turn is related to prices, and stairs are part of building.
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This information from WordNet has been used for resolving these pairs as opposed to

relying only on the textual information in case of mention representation only with BERT.

Conversely, we also observed a few pairs where the addition of extra information has

been detrimental. The italic faced phrase is the selected antecedent with WordNet based

system but without WordNet correct antecedent (shown with underline) was selected for

boldfaced anaphor.

(15) Within the same nine months, News Corp. [...]. Meanwhile, American Health Partners,

publisher of American Health magazine is deep in debt, and Owen Lipstein, founder[...].

(16) [...] the magnificent dunes where the Namib Desert meets the Atlantic Ocean [...]Since

this treasure chest [...] up a diamond from the sand.

(17) The space shuttle Atlantis landed [...] that dispatched the Jupiter - bound Galileo

space probe. The five astronauts returned [...].

In example 15, News Corporation is closer to founder than Partners as head word is

Partners for the long phrase. Thus, the system assigns higher scores to wrong antecedent

candidate. Similarly, in example 16, the dunes are closer to sand than treasure chest.

In the example 17, WordNet contains Atalantis as legendary island and not as a space

shuttle thus astronauts is closer to space probe than island, thus receiving a higher

score than the correct antecedent. These mistakes can be attributed to the process of

normalizing mentions as well as limitations of WordNet. Interestingly, these examples

show the inadequacy of BERT in capturing the partOf relation but efficacy of capturing

some form of relatedness of the terms.

6.5 Improved event representation for temporal relation

classification

In the previous section we described our approach to obtain knowledge-aware mention

representation for bridging anaphora resolution. Now we apply conceptually similar ap-

proach to improve event representation for temporal relation classification. We combine

text-based and knowledge graph based event representations to obtain knowledge-aware

event representations in Section 6.5.1. We detail our neural model that is based on the

latest work (Wang et al., 2020), learning objective and inference strategy in Section 6.5.2,

our experimental setup in Section 6.5.3, and results in Section 6.5.4.
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6.5.1 Knowledge-aware event representations

Our knowledge-aware event representation consists of two parts similar to the mention

representation: 1. Text-based event representation, and 2. Knowledge-graph based

representation. Let us look at them in the following paragraphs.

Text-based event representation We use state-of-the-art (Wang et al., 2020) BiLSTM

based approach to get text-based embeddings. Let us suppose w1, w2, · · · , wi , · · · , wn

denote the sentence containing n-words. Let ei be the event present in the sentence

and wi be its corresponding event word. This sequence of words is inputed to RoBERTa-

base (Liu et al., 2019b) model to obtain pre-trained embeddings for each word. Let wi be

the RoBERTa embeddings for wi . Additionally, with the use of part-of-speech (POS) tag of

the word wi , one-hot encoded pi is also obtained. These embeddings are concatenated

vi = wi ⊕pi and used as an input to the forward and backward LSTMs. Let fi ,bi be the

output corresponding to i th word from the forward and backward LSTMs, respectively.

Then the text-based event representation gi is obtained by concatenating them: gi = fi ⊕bi .

Knowledge-graph based representation We obtain knowledge graph based representa-

tion for each event as detailed in Section 6.3. Briefly, we normalize event by using lemma

of the event word and then map this normalized token to the graph node. Then corre-

sponding sense embeddings are obtained. In case of multiple senses we averaged over all

possible senses 8. On the other hand, in case of non-availability of the node we used the

zero vector of the same size. Let the knowledge graph-based embedding obtained by this

procedure for an event ei be given as hi .

Event-pair representation For getting event-pair representation, we obtain knowledge-

aware event representation by concatenating the text-based representation and knowl-

edge graph-based representation. For ei it is given as ei = gi ⊕hi . Similarly, we obtain

knowledge-aware event representation for an event e j which is given as e j . Next, to obtain

event-pair representation from these knowledge-aware representations, we follow similar

approach used by Wang et al. (2020). They first concatenated event representations, then

resulting vectors from subtraction and multiplication of event representations also con-

catenated to get the event-pair representation. Suppose, ei ,e j are two events and ei ,e j be

8We have not used Lesk for disambiguation, as we observed in experiments for bridging anaphora
resolution, there was no added advantage of using Lesk over averaged senses. Besides, it can not be directly
applied over semantic verb frames of TEMPROB.
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their knowledge-aware representation. Then the event-pair representation ei j is obtained

as:

em
i j = ei ⊗e j (6.3)

es
i j = ei −e j (6.4)

ec
i j = ei ⊕e j (6.5)

ei j = em
i j ⊕es

i j ⊕ec
i j (6.6)

6.5.2 Neural model

We extended the neural constrained learning model proposed by Wang et al. (2020) with

the addition of knowledge graph-based embeddings. As mentioned earlier, the model is

based on BiLSTM neural network which takes concatenated RoBERTa and POS tags em-

beddings as an input. We inject the commonsense knowledge with the knowledge graph

based embeddings corresponding to each event at the output obtained from BiLSTM.

Finally, this event-pair representation is fed to the scoring function which produces scores

for each temporal relation showing confidence over each relation. This score is used by

the model to optimize the aggregated loss from: pairwise classification loss, symmetry

constraint loss, and transitivity constraint loss. At the inference stage, ILP problem is

solved to produce globally coherent predictions.

Following the same notations from Section 2.1.1.1, we formally define the model as

follows. Let D be the document containing events E = {e1,e2, · · · ,ene } and true temporal

relations between events H = {(ei ,e j ,ri j )|ei ,e j ∈ E ,ri j ∈ R} where R is possible set of

temporal relations, so tuple (ei ,e j ,ri j ) denotes true temporal relation ri j between ei ,e j .

Let the event-pair representation obtained with our approach (Eq. 6.6) be ei j ∈Rd , and

z : Rd → R be the scoring function. Then, the pairwise confidence score parameterized

over θ is given as sr,i , j = z(ei j ;θ)∀r ∈ R . Based on this confidence score the pairwise

classification loss, symmetry constraint loss, transitivity constraint loss, and cumulative

loss is calculated as follows.

6.5.2.1 Constrained learning

Recall from Section 2.1.2.1 that temporal relations possess algebriac property, hence,

symmetry and transitivity rules can be applied over them. The neural model takes into

consideration these temporal constraints while learning model parameters. For that, a

constrained learning approach is taken where in addition to pairwise classification loss,
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losses incurred due to constraint violations are also considered while learning. We look at

those losses one by one.

Pairwise classification loss This is a local loss that calculates the difference between

actual temporal relation between event-pair and predicted temporal relation. The cross

entropy is used to calculate it. The confidence score produced by a scoring function is

used to get the loss. Suppose, (ei ,e j ,ri j ) ∈H and the score produced by neural model for

event-pair ei ,e j is sr,i , j∀r ∈R, the pairwise classification loss is calculated as:

Lp (θ) =− ∑
(ei ,e j ,ri j )∈H

∑
r∈R

yr,i , j log (sr,i , j ) (6.7)

where yr,i , j = 1 if (ei ,e j ,r ) ∈H else 0.

Symmetry constraint loss Temporal relations follow symmetry, therefore, if ei is before

e j , it means that e j is after ei . This is because after and before are inverse to each other,

whereas, equal and vague are inverse to themselves9. Let us suppose Rs = {(r, r̄ )|r, r̄ ∈
R and r, r̄ be symmetric relations}. Based on the symmetry constraint over all the event

pairs, a logical rule with a conjunction (
∧

) of statements is given as:

∧
ei ,e j∈E ,
(r,r̄ )∈Rs

ri j → r̄i j (6.8)

Then the symmetry constrained loss is obtained as:

Ls(θ) =∑
ei ,e j∈E ,
(r,r̄ )∈Rs

| log (sr,i , j )− log (sr̄ , j ,i )| (6.9)

Transitivity constraint loss Temporal relation also exhibit transitivity property, due to

that temporal relations between event-pairs can be obtained by composing temporal

relations (denoted as ◦) of other pairs. For instance, suppose ei is before e j and e j is before

ek , that implies, ei is before ek , ∀ei ,e j ,ek ∈ E . These transitivity rules are summarized in

Table 6.4.

Based on these composition rules, logical conjunction rule can be formed as:

∧
ei ,e j ,ek∈E ,

ri k=ri j ◦r j k ,
∀ri j ,r j k ,ri k∈R

ri j ∧ r j k → ri k (6.10)

9These are the only possible temporal relations between starting points of events.
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◦ a b e v
a a - a -
b - b b -
e a b e -
v - - - -

Table 6.4 Composition rules on end-point relations present in MATRES dataset: (a)fter,
(b)efore, (e)qual, and (v)ague. The temporal relations in the first row are composed with
relations from first column to produce temporal relations at each row.

Opposite logical conjunction can be formulated which indicates non-possibility of

composition: ∧
ei ,e j ,ek∈E ,

r ′
i k ̸=ri j ◦r j k ,

∀ri j ,r j k ,r ′
i k∈R

ri j ∧ r j k →¬r ′
i k (6.11)

Both of these rules are considered while calculating transitivity loss:

Lt (θ) =∑
ei ,e j ,ek∈E ,

ri k=ri j ◦r j k ,
∀ri j ,r j k ,ri k∈R

| log (sri j ,i , j )+ log (sr j k , j ,k )− log (sri k ,i ,k )|+

∑
ei ,e j ,ek∈E ,

r ′
i k ̸=ri j ◦r j k ,

∀ri j ,r j k ,r ′
i k∈R

| log (sri j ,i , j )+ log (sr j k , j ,k )− log (1− sr ′
i k ,i ,k )| (6.12)

Constrained Learning Objective All three losses: pairwise loss (Eq. 6.7), symmetry con-

strain loss (Eq. 6.9), and transitivity constrain loss (Eq. 6.12) are weighted to get constrained

learning objective:

L (θ) =Lp (θ)+αLs(θ)+βLt (θ). (6.13)

where coefficients α,β≥ 0.

6.5.2.2 ILP Inference

To enforce the global consistency over predicted temporal relations, the inference problem

is formulated as an Integer Linear Programming (ILP) objective. The ILP constraints are

again based on the composition rules mentioned in Table 6.4. The formulation is given as:
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maximize
Ir,i , j

∑
ei ,e j∈E ,

r∈R

sr,i , j Ir,i , j (6.14a)

subject to Ir,i , j − I r̄ , j ,i = 0, ∀ei ,e j ∈ E , (r, r̄ ) ∈Rs , (6.14b)

Ir,i , j + Ir ′, j ,k − I r̂ ,i ,k ≤ 1 ∀ei ,e j ,ek ∈ E , r̂ = r ◦ r ′, (6.14c)

Ir,i , j∈ {0,1} ∀ei ,e j ∈ E ,∀r ∈R (6.14d)

6.5.3 Experimental setup

Dataset Following recent work (Han et al., 2019a,b; Wang et al., 2020), we used MATRES

(Ning et al., 2018b) dataset in our experiments, details of which are mentioned in Sec-

tion 2.1.1.3, here we briefly restate them. This dataset is based on previously proposed

TimeBank (Pustejovsky et al., 2003a), and AQUAINT (Graff, 2002) datasets. It annotates

275 documents with temporal relations between starting points of events as BEFORE,

AFTER, EQUAL, or VAGUE. Instead of annotating any event-pair, their annotation process

first divides events between four axes: main, intention, opinion, and hypothetical. And

temporal relations are annotated only between event pairs that lie on the same axes and

appear in the window of two adjacent sentences. These annotated documents are split

into 183, 72, and 20 documents for train, development, and test, respectively. We followed

the same setting for direct comparison with previous results.

Baseline Systems We implemented three baseline systems: 1. Without commonsense

knowledge, 2. Commonsense knowledge injected with simple features, and 3. Common-

sense knowledge learned from both ConceptNet and TEMPROB. All three systems are

variations of our proposed model. The first system does not contain the knowledge graph

embeddings part and relies solely on the context based embeddings learned from RoBERTa

and POS embeddings with BiLSTM. The second system adds simple commonsense fea-

tures such as prior probabilities for the event-pair obtained from TEMPROB on top of the

text-based representation similar to the previous approach (Ning et al., 2018a). The third

system is a much stronger baseline where commonsense knowledge is added from both

ConceptNet (Speer et al., 2018) and TEMPROB graphs. To get the knowledge from both

these knowledge graphs, we used an approach proposed by Wang et al. (2020). In that,

only small portion of ConceptNet is used where only those nodes that are connected with

specific relations such as “HasSubevent”, “HasFirstSubevent”, and “HasLastSubevent” are

selected. These are considered as “positive” training examples, then the equal number
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of node pairs possessing other than these relations are randomly selected and used as

“negative” training samples. Then, auxiliary neural network (specifically, MLP) is trained

to estimate the likelihood of temporal relations between these pairs. Similarly, another

MLP is trained over TEMPROB as well. Once both MLPs are trained, their weights are not

updated while learning the main system and are used only to get the knowledge graph

features.

System with simple concatenation We experiment with another implementation of our

proposed system where instead of obtaining a complex interaction with multiplication,

and subtraction of knowledge graph embeddings, we simply concatenate them. This is

done to understand the effect of complex interaction of knowledge graph embeddings.

Implementation We obtained officially released pre-trained RoBERTa embeddings (Liu

et al., 2019b) and concatenated them with 18-dimensional one-hot encoded POS tag

embeddings. These embeddings are given to two LSTMs, each having 1024 neurons. The

output from LSTMs is concatenated with the knowledge graph-based embeddings to ob-

tain event-pair representation. As mentioned in Section 6.5.2, we relied on WordNet and

TEMPROB separately to capture such information. In the case of WordNet, we used the

same embedding algorithms that were employed in the experiments for bridging anaphora

resolution in the last section. Specifically, we used 300 dimensional vectors for random

walk based (RW) (Goikoetxea et al., 2015), matrix factorization based (WNV) (Saedi et al.,

2018), and Path2vec (PV) (Kutuzov et al., 2019) embeddings. In the case of Path2vec,

embeddings learned with shortest path similarities (Lebichot et al., 2018) are used as

those have produced better results in their paper as well as in our experiments on bridg-

ing resolution. We used officially released RW and WNV embeddings, but in the case of

Path2vec, the officially released embeddings are not trained with verb information so we

retrained the whole WordNet to get embeddings for all nodes. In the case of TEMPROB,

we trained UKGE embeddings with the procedure mentioned by the authors that pro-

duced 300-dimensional vectors corresponding to each semantic verb frame of the graph.

Finally, two fully connected layers with 1024 and 4 neurons are used over the event-pair

representations. The output of the final layer is considered as a score for four temporal

relations.

For training the model, the AMSGrad (Reddi et al., 2018) optimization algorithm is

used with 0.0001 learning rate. We kept the values of α,β (loss coefficients) to 0.2, same as

(Wang et al., 2020). The epoch value is kept at 50 which is sufficient for model convergence.

At the end of each epoch, the model is evaluated against the validation set and parameters
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of the epoch which produce the best validation score are stored. The best performing

model is evaluated against the test set and those results are reported.

Evaluation We report the micro-average of precision, recall, and F1 scores on test set

similar to previous studies (Han et al., 2019a,b; Wang et al., 2020). In addition to that, we

calculate temporal awareness (UzZaman and Allen, 2011) based precision, recall, and F1

score.

6.5.4 Results

Comparison with baseline systems As noted in the previous section, we implemented

three baseline systems: first, without any commonsense information but keeping the same

neural model, in the second system we added commonsense information but only prior

probabilities between event-pairs, whereas in the third system we added commonsense

information by employing a sophisticated approach. The results of the experiments are

shown in the initial three rows of Table 6.5.

Now, we compare results obtained with only text-based embeddings i.e. without addi-

tion of any commonsense information (Table 6.5: row 1) with commonsense knowledge

added with our approach (Table 6.5: section c). We see an increase in pairwise F1 scores

from 70.62 to 72.12, 71.36, 73.39, and 73.67, respectively with RW, PV, WNV, and UKGE

embeddings. This shows that the addition of commonsense information with knowl-

edge graph embeddings is effective over the system with only text-based embeddings,

proving the efficacy of our approach and substantiating our claims for temporal relation

classification task as well.

Second, we compare results obtained with addition of commonsense information

(Table 6.5: row 2 and 3) with the results from our model (Table 6.5: section c). When we

compare results of baseline (Table 6.5: row 2) that adds simple commonsense features

with results from our system (Table 6.5: section c), we see significant improvements. This

further confirms our claims that knowledge graph embeddings encode better information

than simple hand-crafted commonsense features. However, in comparison to the next

baseline (Table 6.5: row 3) where we added sophisticated commonsense features from

two knowledge graphs, we see slight or no improvement in the results. The highest score

obtained with TEMPROB (UKGE) (Table 6.5: section c) is only better by 0.72 F1 points

whereas WNV embeddings over WordNet produce just 0.44 F1 points gain. Further, the

other two embeddings: RW and PV produce lower results than the baseline. We present

reasons of this lower performance in the discussion section 6.5.5.
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Systems
Pairwise Evaluation Temporal Awareness

P R F1 P R F1

(a) Baselines
Without CS 65.81 76.18 70.62 63.76 60.44 62.06
With simple CS 67.31 75.04 70.96 62.53 59.97 61.22
With CS 72.29 73.62 72.95 64.47 62.62 63.53

(b) Simple
concatenation

+ RW 70.44 75.04 72.67∗ 63.52 61.69 62.59
+ PV 70.83 70.93 70.88 59.82 59.35 59.58
+ WNV 71.8 71.49 71.65 60.95 61.06 61.01
+ UKGE 71.94 74.19 73.05∗ 62.89 61.69 62.28

(c) Our model

+ RW 69.43 75.04 72.12∗ 62.34 62.15 62.25
+ PV 70.82 71.92 71.36 61.3 60.6 60.95
+ WNV 71.94 74.9 73.39∗ 63.29 61.69 62.48
+ UKGE 70.47 77.17 73.67∗ 64.42 62.47 63.43

(d) Previous
studies on
MATRES

CogCompTime 61.6 72.5 66.6 - - -
Perceptron 66.0 72.3 69.0 - - -
LSTM+CSE+ILP 71.3 82.1 76.3 - - -
JCL 73.4 85.0 78.8 - - -

Table 6.5 Results of the experiments over baseline systems, systems with a simple con-
catenation of knowledge graph embeddings, our model, and previous studies. Word-
Net embeddings are obtained with three different algorithms random walk based (RW),
Path2vec (PV), and matrix factorization based(WNV) whereas UKGE algorithm is used for
TEMPROB node embeddings. Section d shows results with previously proposed systems:
CogCompTime (Ning et al., 2018c), Perceptron (Ning et al., 2018b), LSTM+CSE+ILP (Ning
et al., 2019), and Joint Constrained Learning (JCL) (Wang et al., 2020). The results with ∗
are statistically significant in comparison to the results obtained without commonsense
information with p-value < 10−3 with McNemar’s test.

The trend remains the same even when we compare the results obtained with the

simple concatenation of knowledge graph embeddings (Table 6.5: section b) with baseline

results (Table 6.5: section a). The performance of the system is better than the system

without any commonsense information (Table 6.5: row 1) but modest in comparison

to systems with commonsense information (Table 6.5: row 2,3). Also, when we com-

pare results with simple concatenation (Table 6.5: section b) and results from with our

model (Table 6.5: section c) we do not see the effectiveness of interaction obtained with

subtraction and multiplication. The reason might be that in both cases the interaction is

obtained with linear operations. Therefore, additional interaction with subtraction and

multiplication does not add more value than simple concatenation. This indicates that
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the complex non-linear interaction learning approach that we developed in Chapter 4 can

be further useful.

Next, we compare two baseline systems with each other (Table 6.5: row 1 and 2), to

check the effect of commonsense in these systems. Recall that the second baseline system

is similar to the first one, the only difference is the addition of commonsense knowledge.

We see a small difference in their performances. The reason might be that only prior

probability information from TEMPROB is added naively. But this improvement is lower

in comparison to the improvement of 5.9 F1 points with pairwise evaluation and 7.1 points

with temporal awareness shown in the original paper (Ning et al., 2018a). The reason

behind these lower gains might be the difference of evaluating datasets, as they evaluated

over TBDense dataset, whereas we evaluated over TE-Platinum. Above all, their text-based

event representation was not as sophisticated as used here, and the learning model was

also weaker, which might be the reason behind their comparatively large gains.

Comparison between different graph node embeddings Now, we compare results ob-

tained with different graph node embeddings with each other to understand which em-

bedding strategy or which knowledge graph is better suitable for temporal relation classifi-

cation. From the results of Section c of Table 6.5, we see TEMPROB and WordNet are both

comparable in the way they capture commonsense information for temporal relation

classification. This also shows that semantic relations such as meronymy, hypernymy,

synonymy, etc. are equally useful for classification as prior probability information en-

coded in TEMPROB. Within WordNet embeddings, WNV and RW approaches produce

slightly better results in comparison to Path2vec. The reason might be that with the use

of Path2vec, there is an explicit need of doing sense disambiguation but as the other two

embeddings produce word embeddings rather than sense embeddings the extra step of

sense disambiguation is not required.

Comparison with previous studies In Table 6.5: section d, we present results of previous

studies done over MATRES: CogCompTime (Ning et al., 2018c), Perceptron (Ning et al.,

2018b), LSTM+CSE+ILP (Ning et al., 2019), and Joint Constrained Learning (JCL) (Wang

et al., 2020). Though our proposed approach performs better than CogCompTime and

Perceptron approach, it lags by more than 2 F1 points in comparison with LSTM+CSE+ILP

and more than 5 points with JCL. One of the reasons might be that both approaches

added sophisticated commonsense knowledge by learning embeddings over TEMPROB

(similar to our baseline 3). In the case of JCL, the original model is jointly trained with

general event relation (e.g. Parent-child, coreference, etc.) classification task. This joint
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training and cross task constraints have been shown to be beneficial in their ablation

studies. In our experiments, we omitted this part of joint learning, as our primary goal was

to assess the effectiveness of commonsense information injected with knowledge graph

embeddings and not to achieve state-of-the-art result.

6.5.5 Discussion

We observe from the results that our approach of injecting commonsense information

with knowledge graph embeddings produces better results in comparison to the system

without any external knowledge as well as with the addition of simple commonsense

features, however, our approach is ineffective in comparison to the carefully learned

commonsense knowledge. To understand the reasons behind this ineffectiveness, we first

checked how many events were mapped to WordNet and TEMPROB nodes. We observed

that out of a total 1019010 events, 195 were missed with WordNet whereas with TEMPROB

only 37 events were missed. This shows high coverage for events in both knowledge

graphs which clears the doubt that the absence of knowledge is not the reason behind the

ineffectiveness. Further, we believe the following factors might have contributed to the

moderate performance gains in comparison with the commonsense injection approach

of Wang et al. (2020).

Firstly, the commonsense knowledge extracted by (Wang et al., 2020) contains knowl-

edge from ConceptNet (Speer et al., 2018) which we have not explored in our experiments.

It might be possible that the event information encoded in ConceptNet is more beneficial

for temporal relation classification than the external knowledge encoded in WordNet or

TEMPROB. In addition to that, they encoded knowledge from multiple sources, i.e. they

used both ConceptNet as well as TEMPROB to get commonsense information. This might

have benefited them as well.

Further, we think the simple heuristics used to circumvent the need for sense disam-

biguation might be another reason. We simply averaged embeddings over all the senses

of the word to get Path2vec WordNet embeddings, similarly in the case of TEMPROB

embeddings. We think learning an appropriate sense of word instead of relying on the

simple heuristics can improve the system performance further.

Lastly, the graph node embeddings that are used in our system are learned in a task-

agnostic way. This means they are not specifically designed to capture information for

temporal relation classification. These embeddings may capture irrelevant information

10Though we have total 12366 events in MATRES, all of them are not unique verbs also not all the event
pairs are annotated with temporal relations. This is the reason behind a small number of events in compari-
son to all events.
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that might not be useful for the task. We think instead of relying on pre-trained static

graph node embeddings, learning them jointly with text-based embeddings in the process

of learning model parameters can be useful for the system.

All in all, we think that the use of other knowledge graphs such as ConceptNet which

encodes event specific information, or Verbocean (Chklovski and Pantel, 2004) which

possess temporal relation between verbs can be beneficial. The other promising way can

be to use multiple knowledge sources instead of relying on a single source of information.

Further, disambiguating senses while training the model for classification can also produce

better results. Lastly, we think the joint learning of knowledge graph embeddings rather

than using pre-trained embeddings can be beneficial.

6.6 Conclusion

We added commonsense knowledge into bridging resolution and temporal relation classi-

fication systems. For acquiring such knowledge, instead of relying on hand-engineered

features or partially selected pairs from knowledge graphs like previous approaches we

used graph node embeddings. We proposed a simple approach for mapping events and

mentions to the nodes of knowledge graphs to obtain corresponding graph node em-

beddings. Specifically, we used WordNet for both tasks, and TEMPROB, particularly for

temporal relation classification.

We observed significant gains in the results with the addition of knowledge graph em-

beddings in the system compared with only text-based representations for both bridging

anaphora resolution and temporal relation classification when evaluated on standard

datasets. This shows that both contextual and commonsense information are needed for

these tasks, establishing our central claim. Secondly, the results prove that word embed-

dings learned with only text data are inadequate at capturing commonsense information,

hence, must be complemented with commonsense information explicitly. This also cor-

roborates our observations from the last chapter. Further, our gains with knowledge graph

embeddings also show that node embeddings learned over knowledge graphs are an

effective way of encoding knowledge graphs in comparison to hand-crafted approach.

Apart from this, we observed similar gains with the use of WordNet and TEMPROB for

temporal relation classification, showing semantic relations such as meronymy, hyper-

nymy, synonymy, etc. encoded by WordNet are equally useful for classification as specific

temporal information present in prior probabilities between events.

Though the systems performed well, there are a number of ways to improve them

further. First, the sophisticated approach for mention and event normalization and
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sense disambiguation instead of heuristics can be beneficial. Next, the use of multiple

knowledge resources instead of depending on a single source of knowledge can be useful

for the system’s performance. Further, we think learning knowledge graph embeddings

and text-based embeddings jointly can be valuable.
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Conclusions

Identifying temporal relations between events and establishing bridging links between

mentions is crucial for automatic discourse understanding. For that purpose, obtaining

effective events and mentions representations is necessary for NLP models employed to

determine these relations. We argued that contextual information and commonsense

information is crucial for such effective representations. The previously proposed compu-

tational approaches to determine these relations were inadequate at capturing both this

information simultaneously. This thesis solved that problem by developing efficient ways

to incorporate contextual and commonsense information to improve event and mention

representations.

We developed a neural network based approach for learning rich event representations

and interactions (Chapter 4). We used the context of the event in the window of n-words

and represented each word as pre-trained word embedding. Then provided this as an

input to RNN to produce context rich event representations. Further, we added morpho-

logical information by concatenating character embeddings of the event headword. At

last, we employed deep CNN to obtain rich interactions between the event representa-

tions. The empirical results proved the efficacy of this approach, as we obtained better

results than local models that relied on only event headword representations or simple

interactions. More importantly, the results demonstrated that contextual information is

needed to accurately predict temporal relations between events. Additionally, the study

showed that interaction learning over event representations is also important for the task.

Next, we investigated pre-trained transformer language models (e.g. BERT, RoBERTa)

for bridging resolution as an alternative way of capturing contextual information (Chap-

ter 5). We developed two complementary approaches to achieve that. First, we investi-

gated each attention head of transformer models individually to assess the amount of

bridging signal captured by them. Then, we developed Of-Cloze test to understand the
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efficacy of the whole model. We found that pre-trained BERT models are significantly

capable of capturing bridging inference though it depends on the provided context. Also,

our qualitative analysis showed that BERT is inadequate at capturing commonsense

knowledge.

Finally, we combined both contextual and commonsense information for better

event and mention representations (Chapter 6). We acquired commonsense information

with knowledge graph embeddings learned over WordNet (Fellbaum, 1998) and TEM-

PROB (Ning et al., 2018a). We used simple methods to get knowledge based representa-

tions for events and mentions based on the node embeddings. Then these representations

are combined with contextual representations to get knowledge-aware event and men-

tion representations. We evaluated our proposed approach over standard datasets for

both bridging anaphora resolution and temporal relation classification. We observed

substantial improvements with the addition of commonsense information in the results

in comparison to only text-based representations for both tasks. These results show that

graph node embeddings learned over knowledge graphs are capable of encoding the

commonsense knowledge required for these tasks. The gains over text-only embeddings

by the addition of knowledge graph embeddings also substantiate the findings from the

investigation of pre-trained transformer models that transformer models lack at capturing

commonsense information. Above all, the results validate our claim that both contextual

and commonsense information is required to effectively represent events and mentions,

which is consequently necessary for accurately solving temporal relation classification

and bridging anaphora resolution.

We can see a few immediate ways of extending our work. From the findings of the

investigation of pre-trained transformer models, we can build a better system for bridging

anaphora resolution. We observed that the last layers and a few individual attention heads

target bridging information, so making specific use of these elements for bridging instead

of whole BERT can be an interesting exploration. Next, we can dynamically learn the

linking of mentions and events to knowledge graph nodes while addressing the issue of

sense disambiguation as well. This procedure can reduce the effects of normalization

and disambiguation errors which we identified in our analysis. Further, we believe that

graph node embeddings learned in task-agnostic way can project nodes that are less

probable to possess bridging relation into nearby space (e.g. cat-dog) because of their

proximity in the actual graph. A similar problem may occur for temporal relations as

well where the generic node embeddings algorithm may encode some noisy information.

Therefore, learning graph embeddings specifically for these tasks can be beneficial for

getting relevant knowledge.



149

More generally, we can extend the findings from this thesis for the other two tasks

of discourse understanding: discourse relation classification and coreference resolution.

These tasks being highly related to the tasks we solved, the insights gained from the thesis

can be useful. In fact, there have been attempts of making use of other relations while

proposing systems for particular relations (D’Souza and Ng, 2013; Ng et al., 2013; Yu and

Poesio, 2020), so it can also be interesting to go a step further to learn all of them jointly

with shared context and commonsense knowledge to exploit learnings from one another.

Apart from that, in our work, we focused on including commonsense knowledge but

have not worked on the reasoning capabilities of the systems. We think in addition to

commonsense knowledge, reasoning over it can lead to further accurate solutions.
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