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Introduction

GENERAL INTRODUCTION TO RADIOTHERAPY

Radiotherapy is a cancer treatment that has always been associated for
a long time with medical imaging. By definition, radiotherapy involves
the use of high doses radiation to kill cancer cell or slows their growth
and shrink tumors by damaging their DNA.

Even if the benefits of ionizing radiation have been proven (Mor-
gan, 1969; Kogel, Joiner, and Van der Kogel, 2009), their harmfulness
remains a concern; the dosimetry was born. Radiation dosimetry is
the measurement, calculation and assessment of the ionizing radiation
dose absorbed by the human body. It allows an optimization of dose
delivery in radiotherapy. The physical unit used to predict the effects
of radiation on cells is called the ionizing energy deposited in the tis-
sues per unit mass, also called dose and measured in Gray!. To ensure
accurate treatment planning, work was done to reduce uncertainties
in the dose delivered in tumor while decreasing the dose delivered in
healthy tissues. To maintain an acceptable level of complication, the
total dose delivered to the tumor, and by extension to nearby healthy
tissues, must be limited and spread over time, according to radiobio-
logical criteria dependent on tumor characterization, anatomical loca-
tion, and treatment technique. External beam radiotherapy includes
all treatments in which the source of ionizing radiation is external
to the human body. On the other hand, brachytherapy uses internal
sources of ionizing radiation.

TECHNIQUES OF IRRADIATION

Various types of techniques can be used in radiotherapy. In most of
the cases, a linear particle accelerator (Linac, see Figure 1) is used to
deliver a photon beams.

Inside the Linac, an electron beam is generated by a source and then
accelerated by several electronic oscillators. The high speed beam, by
hitting a tungsten target will produce a divergent photon beam?.

At the beginning of radiation therapy, the photon beam was shaped
at the end of the Linac with a basic collimator resulting in the irra-
diation of the target together with a significant volume of healthy tis-
sues. Nowadays, radiotherapy devices include a multi-leaf collimator
(MLC, see Figure 2 for comparison) enabling conformational radio-
therapy with intensity modulation (IMRT) in which the photon beam
is shaped in conformance with the target by moving the leafs during
the emission of the beam. An illustration in term of treated volume is
shown in Figure 3.
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Figure 1: Cyberknife linear par-

ticle accelerator (Accuray Inc.,

Sunnyvale, CA).

2Bremsstrahlung X-rays: electrons by
decelerating lose kinetic energy, which
is converted in radiation i.e., photons.
X-rays penetrate more deeply, but the
dose absorbed decreases exponentially
along thickness
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(a) Circular field collimators.

(b) multi-leaf collimator.
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(a) Conformal treatment. (b) IMRT.

Other types of radiation can be used and are based on particle
beams such as protons or heavier positive ions. In hadron therapy the
dose deposit is maximum near the end of the range of the particule.
This kind of treatment requires to a much heavier equipment.

RADIOTHERAPY IN CLINICAL WORKFLOW

Between the radiotherapy treatment prescription and the first irradi-
ation, the patient undergoes several steps. These steps are illustrated
in Figure 4 and explained below

Pretreatment imaging The patient is placed in treatment position
with specific immobilization devices in order to optimize the repro-
ducibility of positioning during the treatment sessions. A CT (com-
puted tomography) is then acquired. This imaging modality provides
a map of the physical densities of the internal tissues of the patient in
Hounsfield unit (HU).

Image registration Complementary informations can be added to this
simulation CT by merging the benefits of other imaging modalities.
For instance higher contrast image or a functional imaging of the tu-
mor, this can be done with the use of the MRI (Magnetic Resonance
Imaging) or PET (positron emission tomography). The overlaying
mitigates the weakness of each technique by using image registration
algorithms. Rigid registration is most commonly used in clinical prac-
tice, only translations and rotations are allowed. In contrast, non-rigid
(deformable) registration uses geometric transformation that does not

preserve the Euclidian distance between every pair of points.

Figure 2: Different type of Cy-
(a) Cir-

(b) A
each leaf can be posi-

berknife collimators:

cular fixed collimators.
MLC,
tioned independently.

Figure 3: Illustration of a con-
formal treatment compared to
a beam intensity modulation.
Target in red and in green an or-
gan to protect.

1. Pre-treatment imaging CT

"'“g

2. Registration MR/PET to CT

3. Target and OAR delineation

4. Treatment planning

!

5. Treatment delivery

Figure 4: Treatment course in
radiotherapy.



Delineation This step consists of localizing the tumor volume and
the organs-at-risk (OARs) that must be protected during treatment.
They are delineated by a radiation oncologist on the CT or on other
modalities. Conventions were defined by International Commission on
Radiation Units and Measurements (ICRU) in order to standardize
the definition of the target. The report clearly defines three volumes
of interest. The gross tumor volume (GTV) corresponds to the tu-
mor visible on the imagery. Then the clinical target volume (CTV)
that encompasses the GTV with a margin taking into account regions
known to carry malignant cells. Finally, the planning target volume
(PTV) taking into account positioning uncertainties of the patient and
the movement of the target by adding a margin to the CTV. Figure 5
represents the ROIs.

Treatment planning In order to plan a radiotherapy treatment and
to calculate the dose distribution inside the patient, a virtual simula-
tion including the modeling of the patient and the treatment beams is
performed on a treatment planing system (TPS) by a dosimetrist or
a medical physicist. During the virtual treatment planning, the beam
arrangement, the collimator arrangement, and the active beam time
are to be determined, either manually (direct planning) or automat-
ically (inverse planning), in order to design the treatment plan. The
treatment plan is established in accordance to the prescribed dose to
the PTV while limiting the irradiation to the OARs. The patient is
modeled from the previously acquired CT scan. This image, in ad-
dition to providing information on the patient geometry, allows the
calculation of the dose by the TPS algorithm thanks to the informa-
tion in HU contained in the voxels. CT is thus the reference modality
for any radiotherapy treatment. Dose-volume histograms (DVHs) rep-
resenting the dose received to a percentage of each of the ROIs and the
dose distribution in 3D are used in combination during optimization

and for the evaluation of the treatment (see Figure 6).

Treatment During each session, the patient must be correctly posi-
tioned, using the lasers andor skin markers. Motion restriction is car-
ried out by the same immobilization devices as in the pre-treatment

INTRODUCTION 13
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TT— OAR

Figure 5: Different target vol-
umes in radiotherapy.

Figure 6: Typical interface of
a TPS. Left is a visualiza-
tion of the CT with the iso-
dose lines superimposed in col-
ors, the legend represents the
ROIs. Right is the DVHs curves
for each of the ROIs: the tar-
gets appear as steep lines at
the right of the graph (homoge-
neous doses), whereas the OARs
show smoother curves with var-
ious dose levels depending on
the sparing reached for this
specific plan (RayStation, Ray-
Search Laboratories).
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imaging. Then an image is acquired using a Linac-based on-board or
an in-room imaging system enabling a comparison with the images
from the simulation. If no major changes, the treatment is then deliv-
ered.

The accuracy of dose delivery is prone to several errors and uncer-
tainties related to the workflow introduced above.

MAGNETIC RESONANCE IN RADIOTHERAPY

Since its introduction in the late 70s until now, MRI is more and more
used in radiotherapy. It is particularly appreciated for its superior soft
tissue contrast compared with CT (Figure 7).

(a) CT. (b) MRL

As a result, MRI helps to better discern tumors than a CT, and has
therefore been integrated into radiotherapy practices as a diagnostic
image. Tumor volume is delineated more precisely on MRI compared
with CT, whether in the case of prostate tumors (Debois et al., 1999;
Rasch et al., 1999), brain lesions(Prabhakar et al., 2007), or head and
neck tumors (Lemort, Canizares, and Kampouridis, 2006). These stud-
ies have shown that MRI was able to reduce inter-observer variability
during the delineation. In practice, after the MRI acquisition, ROIs
are contoured directly on this image by a radiation oncologist. Since
the simulation CT serves as the basis for dose calculation, the contours
drawn on the MRI are propagated to the CT by using a registration
algorithm. This step is considered in the community as the weakest
link in radiotherapy workflow (Rasch et al., 1999; Njeh, 2008). The
image registration introduces spatial uncertainties more or less signifi-
cant depending the localisation. They are due to inter-scan differences
in positioning between the two examinations or anatomical changes
of deformable organs such as the filling of the rectum and/or bladder
which influences the position of the prostate. The total uncertainty
was estimated at 3.7 mm (head-foot direction) for prostate treatment
by Nyholm et al. (2009), meaning that ”virtual” target can therefore
be shifted a few millimeters from the “real” target. In addition, they
have also estimated the total uncertainty at 2.9 mm by using a MRI-
only workflow. The idea behind is to replace the CT simulator by an
MRI simulator, reducing systematic spatial uncertainties introduced
by the inter-scan differences. The removal of a CT acquisition in the
workflow allows to eliminate the registration error but also the tissue
density informations needed for dose calculation.

MRI does not map tissue density, this issue will be the focus of

Figure 7: Comparison of axial
CT (a) and T2 weighted MRI

(b).
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the current thesis, different solutions, based on the conversion of MRI
images into so-called synthetic CT (sCT). In a sCT image, HU or
tissue densities are mapped from MRI intensities.

DESCRIPTION OF THE PROJECT

The genesis of this thesis stems from the European INTERREG Coop-
erative Brachytherapy (CoBra) project. This project aims to improve
the quality of both diagnosis and treatment of localized cancers, by de-
veloping a new medical robot prototype for brachytherapy and biopsy
under MRI guidance.

The goal is to achieve an adaptive tumor tracking and dose control
in real-time and to reach the overall objective, which is to enhance
quality of life for patients and reduce cancer mortality.

Co-financed by the European Regional Development Fund in the
2 Seas area, CoBra is a cross-border cooperation with partners from
coastal areas of England, France and the Netherlands.

The lead partner is the university of Lille which is in charge of
building the robot. Core partners are TU Delft in charge of developing
specific steerable needles and Demcon which is a company working
on ther biopsy guidance devices. All these tasks are meant to be
solved under MRI control. NHS Portsmouth and the university of
Portsmouth work on the time optimization of the treatment plan.

The present study falls within the range of dose calculation under
MRI. This task has to be fast since the treatment plan needs to be
optimized on the fly. The workflow can be split in three steps: ideally,
the sCT should be generated along with the delineation of the ROIs.
With these two at hand, one can compute a dose distribution according
to a treatment plan given by an optimization algorithm. All of these
steps must be performed in real time.

PROBLEM STATEMENT AND CONTRIBUTIONS

The original ambition of this thesis was to develop a dose calcula-
tion method based solely on the MRI as part of the CoBra project.
This task implies CT image synthesis and segmentation as well as
dose calculation. All of these sub-tasks are non trivial scientific chal-
lenges. Among them, segmentation is probably the one that received
the greatest attention from the medical image processing community.
Consequently, it was decided to focus on the other two with a focus
on sCT generation as it is the starting point of the desired pipeline.

In this thesis, we tackle generalization problem related to deep learn-
ing methods in sCT generation task.

Recent advances in deep learning have made it possible to simplify
the sCT generation workflow. Less and less pre and post-processing
while being fast and accurate. These methods rely on a dedicated MRI
sequence (or a set) as an input; conflicting with the magnetic resonance
(MR) intensities variability in clinical reality. In some extent, a model
is fitted for one MRI sequence.

INTRODUCTION 15
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In an attempt to generalize the idea of a model not only dedicated to
a single sequence, we investigated a way to induce the MR intensities
variability in the training of a deep learning model. This will allow in
the future to generate a sCT without the need of a dedicated dataset.

BELOW IS A LIST OF OUR CONTRIBUTIONS.
Journal paper (cf. Chapters 3 and /)

K. N. B. Boni, J. Klein, L. Vanquin, A. Wagner, T. Lacornerie, D. Pasquier, and N. Reynaert. 2020. MR
to CT synthesis with multicenter data in the pelvic area using a conditional generative adversarial network.
Physics in Medicine & Biology.

K. N. Brou Boni, J. Klein, A. Gulyban, N. Reynaert, and D. Pasquier. 2021. Improving generalization
in MR-to-CT synthesis in radiotherapy by using an augmented cycle generative adversarial network with
unpaired data. Medical Physics.

Collaboration in journal paper

A. Wagner, K. B. Boni, E. Rault, F. Crop, T. Lacornerie, D. Van Gestel, and N. Reynaert. 2020. Integration
of the M6 Cyberknife in the Moderato Monte Carlo platform and prediction of beam parameters using machine
learning. Physica Medica.

Conference papers

%5 K. N. Brou Boni, A. Wagner, L. Vanquin, J. Klein, D. Pasquier, and N. Reynaer. 2019b. High-Resolution
Synthetic-CT Generation with Conditional Generative Adversarial Networks, in Magnetic Resonance in
Radio-Therapy. MRinRT 2019, Toronto, Canada, July 2019.

%5 K. Brou Boni, A. Wagner, L. Vanquin, J. Klein, N. Reynaert, and D. Pasquier. 2019a. Génération de
tomodensitométrie synthétique par apprentissage profond pour la radiothérapie du cancer de la prostate
basée sur 'IRM seule. 30e Congres national de la Société francaise de radiothérapie oncologique, Can-
cer/Radiothérapie.

Workshop papers

%5 K. B. Boni, J. Klein, L. Vanquin, D. Pasquier, and N. Reynaert. 2019. Génération d’un CT synthétique d
partir d’une séquence IRM avec un réseau antagoniste génératif en radiothérapie. In GRETSI 2019.

OUTLINE OF THE MANUSCRIPT

THIS THESIS is an attempt to provide some key elements to the dis-
semination of dose calculation on MRI in clinical routine.

CHAPTER 1 introduces the ingredients for a proper comprehension of
this subject. In particular, imaging and irradiation techniques related
to our work. The indicators for comparing the respective performances
of sCT generation methods are presented in the last section.

CHAPTER 2 discusses several methods available to generate an accu-
rate sCT. The trade-offs of each type of method are summarized at
the end of this chapter.

CHAPTER 3 explores the first attemps to use a multi-centric cohort in
order to induce MR intensities variability in a deep learning model. Im-
portantly the approach does not require any type of MRI histograms
normalization. Hence it demonstrates promissing results but suffer
from the need of non-rigid registration for the training, which is time


https://iopscience.iop.org/article/10.1088/1361-6560/ab7633/meta
https://iopscience.iop.org/article/10.1088/1361-6560/ab7633/meta
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.14866?casa_token=fCHh3c125FAAAAAA%3AecbPtZG48pl737CVSPZwUNIwdsFuHtnTi6wTpTlebdC17rp2_oqpL2ptU5vD8fZJrclCoQvCq8f-Jg6J
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.14866?casa_token=fCHh3c125FAAAAAA%3AecbPtZG48pl737CVSPZwUNIwdsFuHtnTi6wTpTlebdC17rp2_oqpL2ptU5vD8fZJrclCoQvCq8f-Jg6J
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.14866?casa_token=fCHh3c125FAAAAAA%3AecbPtZG48pl737CVSPZwUNIwdsFuHtnTi6wTpTlebdC17rp2_oqpL2ptU5vD8fZJrclCoQvCq8f-Jg6J
http://dx.doi.org/https://doi.org/10.1016/j.canrad.2019.07.022
http://dx.doi.org/https://doi.org/10.1016/j.canrad.2019.07.022
http://dx.doi.org/https://doi.org/10.1016/j.canrad.2019.07.022

consumming. This chapter includes material accepted to an interna-
tional journal (Boni et al., 2020).

CHAPTER 4 goes further by presenting a method that does require
only rigid registration, thus alleviating once again the workflow. This
chapter includes material accepted to an international journal (Brou
Boni et al., 2021).

THE FINAL CHAPTER in page 75 presents conclusions and a discus-
sion on the state of the work in the continuation of this thesis.

INTRODUCTION 17
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1.1.1

Tools and theoretical aspects

In this chapter, the medical imaging techniques used in this thesis
are presented with the key concept of dose. MRI and CT, which were
briefly described in the introduction, will be explained in more details
from their basic physics concepts to image property. Secondly, the key
indicators for comparing the respective performances of sCT genera-
tion methods will also be introduced. Since this thesis focuses mainly
on convolutional neural networks (CNN) solutions, we will finish this
chapter with the key concepts concerning this type of neural net.

ENERGY TRANSPORT AND DEPOSIT

This section presents the mechanism of transport and interaction be-
tween a photon beam and the medium. This explanation will help us
to understand how the dose is deposited in the body.

Photons, the carriers

The photon has zero mass and zero electric charge. Contrary to
charged particles, its displacement does not necessarily imply an in-
teraction with the environment and can therefore just cross a body
without any interaction. The probability p that a photon interacts
through a linear section dzx is given by

p=v-dz (1.1.1)

where v is the linear attenuation coefficient (em~!) and depends on
the energy of the photon and the electron density of the material.

When a photon interacts with an atom, a transfer of energy towards
an electron (e7) of this atom is made. This transfer of energy has the
effect of setting the electron in motion outside the electronic cloud
(ionization). This interaction is called the photoelectric effect (Figure
1.1).

The second possible interaction is the Comptom scatter. The in-
cident photon will set in motion an electron of the peripheral layers
outside the electronic cloud (ionization). The incident photon is de-
viated from its initial trajectory, it is scattered (Figure 1.2). It is the
predominant effect in radiotherapy.

Last inelastic phenomenon is pair production occurring only at
higher energy level. Near a nucleus, the incident photon is absorbed
and a positron-electron pair is produced (Figure 1.3). Ultimately, the
positron (e™) will meet an electron. The two particles will annihilate
each other by emitting two annihilation photons of equal energy in
opposite directions (concept used in PET scan).

All these interactions imply a transfer of energy and not a deposit

1
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Dose distribution and Monte Carlo
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Figure 1.1: Photoelectric effect.

., e e~ ejected
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Figure 1.2: Compton scattering.

Figure 1.3: Pair production.
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of energy. Photon beam is an indirectly ionizing radiation. It is the
released electrons that will deposit their kinetic energy on their path
by Coulombic interactions in the medium.

Electrons, the ionizers

Unlike photons, electrons are charged particles. They are therefore
subject to many more interactions with the medium, which has the
effect of quickly slowing them down, until they stop completely.

Electrons passing through the medium can interact with an elec-
tronic cloud. The collision between the incident electron and one at
equilibrium will cause sometimes just a excitation or the ejection of
this one (ionization, Figure 1.4), at the cost of a loss of energy of the
incident electron.

This is called inelastic collision. A hole appears on the electronic
cloud which is quickly filled by an electron from a neighboring layer
generating a X-ray. The emitted energy is characteristic of the differ-
ence in energy between two electronic level. An electron of sufficient
energy has to interact inelastically several hundred times before losing
all its kinetic energy. The succession of ionization is the main source
of biological damage due to localized radiation (ionization).

Less often, the electron is slowed down and it is deviated while
passing in the vicinity of a nucleus. The energy lost by the electron
is carried away by a photon, called secondary (Bremsstrahlung X-ray,
Figure 1.5).

Electrons tend to lose kinetic energy continuously as trey travel, the
rate of energy lost is called the stopping power! and is related to the
two previous phenomenons.

The energy lost E by the collision of electrons in an infinitesimal
sample OV of density p is related to the dose received in the sample

p= 2 __F (11.2)
p-0V.  m

where m is the mass of the infinitesimal sample. Other phenomenons
of increasing complexity can alter the dose deposit, we just give a brief

explanation.

Inverse-square law The fluence which is the number of crossing pho-
tons over a defined surface area is inversely proportional to the square
of the distance from the source.

Heterogeneity and interfaces When several materials compose the
medium, the dose distribution takes a less regular form. The greater
the electronic density of the medium, the more the electron interacts,
and the shorter its range.

Dose distribution and Monte Carlo

Several algorithms calculate a dose distribution in the patient accord-
ing to the established treatment plan, i.e. a unique set of beam param-

. O~ -
\
\.
e~ Jeviated

Figure 1.4: Electron collision.

_ qeviated
¢~ devi

Figure 1.5: Bremsstrahlung ef-
fect.

!Similar to the attenuation coefficient
but for charged particles.
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eters (number of beams, orientation, MLC). Among the current dose
calculation algorithms, Monte Carlo (MC) algorithms are considered
to be the most accurate, because tissue heterogeneity and other com-
plex interactions are fully taken into account for the dose calculation.

MC algorithms are stochastic methods for solving numerical prob-
lems for which no analytical formulation is defined?. From the proba-
bility distributions governing the interactions of electrons and photons,
the transport of these particles in medium are simulated. The resulting
physical quantities, such as the deposited dose, can be calculated by
generating a very large number of simulated particles, called histories.
The system uses the physical properties of the radiation in combina-
tion with random number generators to determine when the particles
will interact in the medium, and the type of interaction. Each history
can be summarize in two successive steps

Straight line motion the particle (photon or electron) moves in a
straight line and without any interaction. The length of its path is ob-
tained by a random draw on the probability distribution of the length
of the path of a particle. We can therefore know the position where
the particle interacts (or not).

Interaction The position of the interaction having been simulated, its
type and characteristics must be determined. The type of interaction
is first determined by random draw, from the probabilities of each in-
teraction. Then the interaction itself is simulated, new random draws
give the energy loss and the new direction of the incident particle, but
also the characteristics of any secondary particle created. These sec-
ondary particles then enter in the Straight line motion step.

However, a large number of histories have to be simulated to obtain
an acceptable level of uncertainty. The calculations can therefore take
several hours. The distribution probability of the different interactions
depends mainly on the energy of the particle, as well as on the elec-
tronic density of the medium. Their description is out of scope of this
thesis.

Figure 1.6: Dose calculated on
the TPS compared to a MC dose
re-calculated on Moderato (Rey-
naert et al., 2016).

2Monte Carlo typically allows to ob-
tain an estimate of an intractable in-
tegral I = [ fdp where f is some (in-
tegrable) function of interest and p a
probability measure. The approxima-
tion is I = ﬁZZil f (a:(k)) where
the 2(*) are drawn from pu. The es-
timator is consistent, i.e. asymptoti-
cally correct when the number of sam-
ples nj goes to infinity, a property
arising from the law of large numbers.

3Practical aspects of Monte Carlo sim-
ulation by Salvat et al. (1999) is a good
start.
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MAGNETIC RESONANCE IMAGING

Nuclear magnetic resonance

Magnetic Resonance Imaging is based on the fundamental concept of
nuclear magnetic resonance (NMR). As its name indicates, this process
relates to atom nucleus, here the hydrogen nucleus. The hydrogen
nucleus contains only a proton? and is widely represented in the human
body because it is a component of fat or water molecules. A proton is a
positive charged particle and it is animated by a movement of rotation
on itself (often referred to as spin) and thus induces a magnetic field
of very small amplitude. This magnetic field is characterized by the
nuclear magnetic moment® /7 which is proportional to its quantum spin
number S = {-1/2,1/2}

fi = vhS (1.2.1)
where ~ is the gyromagnetic ratio, a constant equal to 42.6 MHz/T
for an hydrogen nucleus and # the reduced Planck constant.
The average nuclear magnetic moment from all the protons in a
volume V is called net magnetization M

ii (proton) (1.2.2)

- 1
M= —

where # denotes the set cardinality operator. Outside any external
magnetic field, the magnetic moments of the protons are completely
arbitrary and tend to compensate each other on average, i.e. M =0.
Inside an external magnetic field B}, protons precess® around this field
and the magnetic moments will orient themselves according to the rules
of quantum mechanics. They tend to sort themselves into either an
aligned state (lower energy and same direction as EO) or an unaligned
state (higher energy and opposite direction of §0)~ The energy of a
particular energy level is given by

E=—ji- By. (1.2.3)
The exact distribution of magnetic moments into aligned or un-
aligned states can be predicted by the Boltzmann distribution

(1.2.4)

where N~ and N7 are respectively the number of proton in aligned
and unaligned state, AE the energy gap between two nuclear spin
state, k is the Boltzmann’s constant equal to 1.380649 x 10723 J/K
and T is the absolute temperature. This result states that only a few
spins per million participate in the effective magnetization M aligned
with §0.7 At equilibrium, for total number of spins NV, the amplitude

4Because a proton is the sole sub-
atomic particle inside hydrogen nu-
cleus, the words proton and hydrogen
atom are often used interchangeably in
the MRI literature.

5The nuclear magnetic moment can be
pictured as a tiny compass needle that
will align with stronger magnetic fields
when placed in one such field.

8The external magnetic field generates
a force and the proton will start mov-
ing accordingly. But remember that
a proton is already (somewhat) spin-
ning, so when moving an object which
already has a rotational inertia, one
gets an oscillating movement. This os-
cillation is called precessing. It is a
similar kind of movement that a spin-
ning top will have when gravity tries
to have it falling.

“At body temperature, % << 0,
+

therefore %—_ ~1- % < 1. One

can understand % as the proportion

of spin in excess.
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of the net magnetization can be denoted M

= SN N = (v N2
_YhRNT AE _ ~yhN™ yhBy
T2V KT T2V kT
~2H2 N A212
T v D0 g o

where p is the number of protons per unit volume or spin density
and A the reduced Plank constant equal to 1.054 x 10734 Js. It is this
magnetization or signal (1.2.5) which is measured in NMR because it

My

(1.2.5)

Q=

is proportional to the number of protons present in the sample and
also to the amplitude of the magnetic fields.

Besides, a magnetic moment is animated by a precession movement
around the 50 axis. The precession frequency fr, is directly related
to the amplitude of the magnetic fields and the gyromagnetic ratio by
the Larmor relationship

(b) WL

2 YL B, 1.2.6
fr = 5-=7Bo (1.2.6)

Even if all the individual nuclei are precessing, M isnot. It possesses
only a longitudinal component Mz which is not measurable in that
direction. The goal here is to tilt M in the transverse plane (xy)
in order to have a measurable value. This is done by using a radio-
frequency coil B, rotating around the body at the Larmor frequency
in the transverse plane. When transmitting, the induced signal will
cause M to precess in the transverse plane near the Larmor frequency.
When the radio-frequency coil stop transmitting, M will still precess
while returning® to its equilibrium state. The net magnetization has
now three time varying components, a longitudinal M, (t) and two
transverses My(t), M, (t). Bloch (1946) has described the behavior of
these components when returning to equilibrium by introducing two
relaxation time constants 17 and 15

M. (t) = Moef%z sin(wrt) (1.2.7a)
M, (t) = Moe™ T cos(wit) (1.2.7b)
M. (t) = My(1 — e~ 7). (1.2.7¢)

Ty is the longitudinal relaxation time and is associated with the
exponential regrowth of the longitudinal component M, (t). T5 is the
transverse relaxation time and is associated with the exponential de-
cays of the transverse components M, (t) and M,(t). An illustration
of the trajectory of the tip of M back to equilibrium is proposed in
Figure 1.7. These times are characteristic of the immediate surround-
ing of the nuclei, and vary from a few microseconds (7% in cortical
bone) to several seconds (77 in cerebrospinal fluid) in the human body.
These time lapses are the pieces of information allowing to provide ul-
timately tissue contrast in the image that will be reconstructed from
these recordings.

(a) N =~ 2N~ the total number of pro-
tons.

(b) The cyclic frequency is denoted f,
while the angular frequency is denoted
wr, .

8In general, protons are represented
only in a state “up” or “down” but
people often tend to forget that there
is a gradual transition between these
two states. This result in the fact that
the net magnetization amplitude M
does not fully develop instantly.

‘a6
My

B
>

Figure 1.7: The trajectory of the
tip of M is a spiral pattern. Pa-
rameters are My =, T}y = 4,
T5 =2 and wy, = 10.
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The transverse magnetization produces a signal in the form of an
electromagnetic wave at the Larmor frequency which can be collected
by a receiver coil placed (or almost) in contact with the patient. The
origin of this signal comes from the rotational movement of the mag-
netization through a receiver coil according to the Faraday’s laws of
induction. The shape of the signal collected after the magnetization
has been tilted in the transverse plane is called the free induction decay
(FID) signal. The resulting signal follows a sine wave with an expo-
nentially decaying amplitude according to the Bloch equations, as in
Figure 1.8.

The real MR signal is obtained by using the FID of the two or-
thogonal directions (fid,, fid,). The representation of the signal as a
complex number

signal = fid, + 1 - fidy (1.2.8)

of magnitude ,/fid% + fid2 and phase arctan }czg’ It is the mag-
nitude which is used in clinical MRI.

Image reconstruction

Up until now, the MR signal have arisen from a single voxel in an
homogeneous sample. Indeed, the signal received is the global mag-
netization of the human body, which is not spatially localized. To
produce an image from the NMR mechanism, it is necessary to encode
the information spatially. This is the role of magnetic field gradients
which produce a linear variation of the magnetic field in the three pos-
sible dimensions which is added to the main field By. With the right
timing, it is possible to differentiate each voxel on a slice.

The simultaneous transmission of the radio-frequency pulse and the
z-gradient allows to select the slice. Only the protons in the slice
generate a signal. The phase gradient is then activated for a given time,
which assigns the protons varying phases along the y-axis. Finally, the
frequency gradient comes into play during the measurement of the
signal, so that when the information is recorded, the rotation speeds
vary along the x-axis. An illustration is given in Figure.

The FID for a slice will be the superposition of several signals with
different amplitudes, frequencies and phases. The 2D image is re-
constructed by using two successive Fourrier tansforms. Each voxel
represents the magnitude of the signal received at this position. The
term sequence in MRI refers to a set of periodically repeated radio
frequency pulses, magnetic field gradients, and signal acquisition win-
dows that put the magnetization to a desired state, and fill the Fourier
space integrally.

An important remark on MR image reconstruction is that the values
of the voxels will have different meanings depending on parameter
choices made by the MR technician. These parameters are the echo
time and the repetition time. Depending on their values, the voxels
values will be closely related to 71, To or M. Each of these choices
produce tissue contrasted images of much different aspects. These

Figure 1.8: FID oscillating at
Larmor frequency but damped
by the T, decay.
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categories of MR images are often referred to as “sequences” and are
a great source of variability among MR images®.

COMPUTED TOMOGRAPHY
X-ray tomography

CT is based on the same principle as radiology, i.e. the use of an X-ray
source and a detector on each side of the body. It allows a 3D image
reconstruction by simultaneously rotating and translating the X-ray
source and the detector around the body.

X-ray transmission depends on the linear attenuation coefficients v
of the tissue along its path. The attenuation coefficient reflects how
easily a tissue can be penetrated by the X-ray. The source intensity I
is attenuated exponentially in the x-axis by:

I = Ipe S @)z (1.3.1)

where I is the initial beam intensity and dx is the cross section.

A set of projections at different angles allows to compute the at-
tenuation coefficient at each position. The reconstructed 2D image is
a mapping of these attenuation coefficients normalized to the water
attenuation coefficient fiyqter in the Hounsfield unit according to the
formula

HU = 1000(—~

—1). (1.3.2)

Vwater
It is an inverse problem solved by the Radon transform. The trans-
lation of the source will lead to the reconstruction of the 3D image.
Because each tissue has a different attenuation coefficient, a tissue
contrasted image volume is thus obtained.

In radiotherapy planification

In radiotherapy, the HU has an important property. Indeed, the HU
and the tissue mass density are bilinearly correlated. This relation
(when known) implies that the density of a tissue can be determined
from a CT image. This physical quantity is precisely the one necessary
for the dose calculation algorithms. The relationship between the HU
and the mass density is dependent on the energy spectrum of the
beam used inherently by each scanner. For this reason, a relationship
between the HU and the mass density must be established for each
machine and also over the time. This relationship is represented by
a calibration curve, also called image value to density table (IVDT).
Basically, to determine the calibration curve, the following protocol is
run: several test objects are acquired and these objects have known
homogeneous densities covering the range of density encountered in
human tissue. The CT number of an object measured on the image
is then assigned to the density of this object, thus composing a data
set of about a dozen points depending on the test objects used. A

9There is obviously an inter-class vari-
ability but also an intra-class one. In-
deed, for a same patient, two techni-
cians might go for slightly different pa-
rameters even if they target the same
MR sequence. In addition, the sur-
rounding magnetic field is also subject
to variations over time. All this ac-
counts for the limited reproducibility
of MR images which is one of its draw-
back compared to other modalities.
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Figure 1.9: Tissue classification
on the HU scale.
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linear regression in two segments is then performed to extrapolate the
calibration curve. A visual representation in Figure 1.10.

CT to density

PERFORMANCE COMPARISON INDICATORS

In order to evaluate the accuracy of a sSCT generation method, we first
have to see the different comparison metrics used to compare a CT with
a sCT. There are several of them because none of them is uniformly
better than the others in every aspects. Basically, independently they
give us just few hints but their their combination brings us deeper
insights into their relative qualities.

Voxelwise comparison

The mean absolute error (MAE) and the mean error (ME) are two
global indicators of the correspondence between the HU of each voxel
in two CT images, typically an sCT and the associated CT image
of the patient. The latter is considered as the reference since the
image is actually produced during a CT examination. The respective

formulas!® for the mean absolute error and the mean error are

N

MAE = % > et (i) — set(i)]
=0 (1.4.1)
1 N
ME = ¥ ;ct(i) — sct(i)

where N is the total number of voxels and i the voxel index. They
are both expressed in HU.

These indicators do not take into account the spatial distribution of
the error, but rather the amplitude and the occurrence of these errors.
They are often introduced in the field of sCT generation to summarize
the overall performance of a method. It is a good trade-off when it is
difficult to perform a dosimetric comparison.

On the one hand, ME is more permissive as it allows the errors of
one area to compensate the errors of another one even if they are not
adjacent. On the other hand, unlike ME, MAE!! is more compelling as
does not allow such compensations between adjacent areas. A better
exploitation of their results will be to use them on the different ROIs
instead of the whole body.

Figure 1.10: Acquisition of an
IVDT: a phantom containing in-
serts of known variable densities
(upper left) is scanned to ob-
tain a CT image (lower left) in
which the HU of each insert is
measured, providing a bilinear
correlation between the HU and
the mass density (curve on the
right).

19The formulas are given as if im-
age volume tensors had been flattened
to vectors and can be indexed using
only one integer 7 instead of the usual
(3, j, k) triplet used to index a voxel.

HMAE is also known as the Manhat-
tan distance or the L1 norm distance.
ME cannot qualify as a distance be-
cause ME = 0 does not imply that
sct = ct.
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Dose volume histogram

The final interest of sCT generation methods is to produce an accurate
dose distribution in regard to the one computed on the real CT. It is
therefore essential to study the dosimetric impact of sCT generation
methods.

One tool commonly used in radiotherapy for plan evaluation or com-
paring different plans is the DVHs. It is a decreasing cumulative his-
togram counting the number of voxels that received at least a given
dose level. DVHs are usually given for different ROIs (tumour or organ
at risk). Because it is more convenient to convert the number of voxels
into a volume, the volume of each ROIs receiving each dose level is
known. The axes are displayed either in absolute (cubic centimeters
and Gray) or in relative (% volume and % max or prescribed dose).

To compare the doses computed on the CT and the sCT, one may
uses some DVHs points. They are expressed as Dz, where x represents
a percentage volume. The value of Dz is therefore the minimum dose
that x receives or equivalently the pseudo-inverse of the DVH for a
given volume. The DVHs parameters studied through the different
studies are the following: D98, D50 and D2. Once again, this indicators
discards all spatial information. The comparison is done by computing
the relative difference on these DVHs parameters

Dz — Dxges

ADzy, = 100(—5
p

) (1.4.2)

where D, is the dose prescribed.

Vozxelwise dose difference

The difference between two dose distributions is a qualitative analysis
of the spatial difference. It is a visual tool which is the most direct
and informative. However, there is a huge amount of information to
process as we are dealing with 3D images. The relative dose difference
is simply given by

N . .
ADy, = % > DC'*(Z)DPDS“(’) ~ % > ADzy, (1.4.3)
=0 T
where D.; and Dy are respectively the dose distribution computed
on the CT and sCT, N is the total number of voxels, i the voxel index
and Gr the number of dose levels considered in the body. Similarly
as the ME, this measure allows error compensations therefore for a
qualitative assessment, D.;—Dg.; may be displayed as an image thereby
revealing which regions received an overdose / underdose depending
the sign of the difference.

Gamma dose distribution evaluation tool

The gamma index (Low, 2010) is used to quantitatively compare two
dose distributions, in our case D. and Dy.. For each pair of voxel

27
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positions (vet, vset) inside the sCT and CT respectively, the gamma
index is given by

[Dct(UZt) — Daget (Us_ét)]z
AD?

(05, vant) = \/||th —veelly (1.4.4)
Ad?
where D¢ (vg:) and Dge(vsee) are respectively the doses at this po-
sition on the CT and the sCT, Ad and AD are two operator-imposed
criterion representing the distance to agreement (3, 2 or 1 mm) and
the accepted dose difference (3, 2 or 1%). The minimum value of T is
the value of the v index at this position

Y(Ver) = min_ (v, veer) (1.4.5)
Vet €S
where S = {7 : ||[v — vzt||]a < Ad} is a sphere of center v and radius
Ad. The proportion of voxels such that v < 1 is called the passing
rate. An illustration is given in Figure 1.11.

DEEP LEARNING IN COMPUTER VISION

Computer vision is about software that can interpret images. One im-
portant aspect to consider in computer vision are features. This term
refers to interesting areas/patterns on an image that characterize it.
Features can correspond to contours, points, colors that can constitute
“a lower dimensional representation” of image content. A relevant fea-
ture must be unique enough to be able to differentiate two different
classes of images, and generic enough to be able to easily recognize
images of the same class despite the variability of instances of this
class.

Not so long ago, depending on the given problem, computer vi-
sion scientists used to craft pre-processing steps of learning algorithms
which must rely on carefully chose features in order to solve a task such
as automatic classification or segmentation. Feature engineering is a
tedious job that in some cases jeopardizes the sought level of auton-
omy of machine intelligence. Although these contributions required
hard work and could achieve remarkable results on dedicated appli-
cations, they were time consuming and required constant adaptation
whenever the task evolves (even moderately) which, to some extent, is
reminiscent of the Mechanical Turk, see Figure 1.12.

Progress has been made since, but the biggest breakthrough came
in 2012 at the annual ILSVRC!2 computer vision competition when a
deep learning (DL) algorithm based on a convolutional neural networks
(CNN) architecture called AlexNet killed the competition, by outper-
forming state-of-the-art approaches with a never-seen-before margin.
The key aspect of this breakthrough comes from the ability of deep
learning to find itself the best suited visual features to solve the learn-
ing task.

Figure 1.11: Gamma distribu-
tion between two dose distribu-
tions. Each voxel represents the
v index.

Figure 1.12: The Mechanical
Turk was a famous hoax built at
the end of the 18th century: it
was an alleged automaton with
the ability to play chess, it was
actually a man hidden inside.

12 Annual challenge to both promote
improvement in computer vision and
benchmark it.
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The mechanics of machine learning

As humans, we certainly do not have to count the number of legs or
measure the shape of an ear to learn how to recognize a cat. We are
able to do so by seeing several examples and being corrected when we
make the wrong guess. In other words, we do not improve our vision
with a large list of formulas but with examples. As we grow up, our
brain experiences several kinds of stimulations in which its connections
are reinforced or changed in order to assimilate new information.

This learning process has been mimicked by computer vision scien-
tists with machine learning (ML) in which the classical paradigm of AI
has changed. ML allows to efficiently perform complex tasks such as
classification, segmentation or regression (see Figure 1.13) by learning
(instead of following) a set of rules.

=)

Benign

.___.
\

Malignant

Regression [PEEgy{lo |

Figure 1.13: Example of task
DL is a sub-category of compositional ML models, i.e. such models performed by ML in radiother-
are organized in layers which are stacked together to create a more apy.
general mapping from inputs to predicted outputs. Most DL models
are based on neural nets and we will focus on these latter in this
manuscript. Basically, in DL, we shift the burden of feature extraction
from the programmer to the machine. First of all, let us start with a
short review of shallow neural networks, starting with the perceptron.

X,
Perceptron
gl

The perceptron was designed to mathematically mimic the process- @-—> 2 IP/
ing of information by biological neural networks. Perceptrons are to a A T
computer what biological neural networks are to the cortex of mam- X, J@ @
mals.

The building brick of the perceptron is a neural unit (Figure 1.14) /

Xy

which simple model allowing to perform a linear combination followed

by a threshold operation usually embodied by the sign function. If a Figure 1.14: An artificial neuron

neural unit belongs to the first layer, it computes a linear combination with 3 inputs. Tts approximation

of the input plus some intercept/bias constant. For some d-dimensional capacity is therefore necessarily

limited.
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input = (;)o<i<d, the neural unit output is

d

9 = sign(wo + Z WiT;),
i=1

(1.5.1)

where the weights w = (w;)o<i<q4 are learnable parameters. If the
network contains only one layer which itself contains one neuron, then ¢
is the prediction of the perceptron. Because the sign function binarizes
the linear combination, such models were initially used to solve binary
classification tasks. Also, for this model to work, it is necessary to
adjust the weights to appropriate values. Under linear separability
assumption, a simple (and provably converging) learning rule can be
used!3.

Obviously, this core neural unit model is not very flexible and more
general versions of it are now preferred. In particular, the sign func-
tion is usually replaced with a differentiable activation function'*. Not
only does this allow to tackle more general problems than binary clas-
sification, but it also make it possible to use more subtle learning rules
whose success is not tied to the linear separability condition. The most
powerful such learning algorithm relies on the definition of a loss func-
tion and the computation of its gradients w.r.t. learning parameters,
hence the need for differentiability.

More formally, for a training set D = (x(j)7y(j))0§j<N containing
N observations, the training loss is defined as

N
Lw)=>¢ (y(j), Fo (m(j))> , (1.5.2)
j=1

where f,, is the neural network and ¢ is a loss function that provides
feedback on the ability of the network to produce a relevant prediction
g9 = f, (XU)) compared to the true value y). In a classification
task, the network output ) is a vector of class membership prob-
abilities. If there are K possible class labels, the most usual loss is
cross-entropy which writes

K
D G -(5)
/ (ym,y(a)) - *;1.@ log 5. (1.5.3)

The predicted probability for label k is Q,(Cj ) 50 if the true label is
indeed k, the cross-entropy will penalize values of gj,(cj ) that are small.
In a regression task, the usual loss is the quadratic loss, in which
case the training loss is often referred to as mean square error (MSE).

In this case, we have

¢ <y(j)7g(j)) _ (y _ g(j))?

This loss obviously penalizes large discrepancies between prediction

(1.5.4)

and true value.
Now the learning problem of the weights has been cast into an op-
timization problem and the training loss is minimized using stochastic

gradient descent!® (SGD). The opposite direction of the gradient is

13As for biological neurons, the
weights of a perceptron are not found
in one try. They are determined us-
ing an iterative rule. This rule con-
sists in adding to the weights = X y
where y € {—1;+1} is the true class
label of input x. This rule must be re-
peated for each (z,y) pair in the train-
ing set. This will guarantee that the
sign of the dot product between any
input and the weights agree with the
true class label.

14identity = for  regression, sig-
moid/softmax for classification.

15The gradient descent algorithm uses
the gradient of L w.r.t. weights. How-
ever, when N is large and because
differentiation and summation can be
exchanged, it becomes advantageous
to compute the gradient for only one
point, i.e. the gradient of ¢ (y<j) , ﬁ(j)).
This is what the stochastic version
of gradient descent does. Sometimes,
gradients are average on a small subset
of training data called a mini-batch.
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where the loss will be smaller, therefore we update the weights for
each observations (X, y() as

ag(y(j)7 g(j))
’77310,; )

where 7 is an hyperparameter called the learning rate. More re-

Vi € [0,d], (1.5.5)

w; ‘= w; —

cently, advanced update rules are used which provide a form of gra-
dient memory through update steps and will adapt the speed of con-
vergence to the shape of the loss function. The most popular such is
ADAM which was introduced by Kingma and Ba, 2014. Nonetheless,
the learning rate remains the most important hyperparameter of the
rule and deserves great care to be tuned.

When all examples in the training set have been used one time (it-
eratively) as part of the update rule, the algorithm has completed a
so-called epoch. The general convergence of SGD is usually controlled
either in number of epochs or through a more subtle procedure called
early stopping. This latter procedure uses another set of data, called
validation set, and check if the validation loss keeps decreasing. If not,
the training is stopped. Most often, the algorithm is preferably stopped
when the validation increased for several epochs in a row. The num-
ber of epochs in question is often called the patience hyperparameter.
Another possible stopping criterion consists in checking if the gradient
norm is below a given predefined value which usually indicates that
SGD has reached a local minimum?!6 of the loss function.

So far, we have mostly mentioned a basic situation in which a neural
net is organized in a few neural units in parallel that maps the input to
the output which might be a scalar or a vector. Sequential connections
of neural units are usually preferred so that the network can pick a
predictive function from a larger functional space and thus learn more
complicated patterns. These multiple-layer alternatives are presented
in the next subsection.

Multiple layer perceptron

A set of s neural units which map in parallel the same input quantity
to an s-dimensional vector is called a layer. When multiple such layers
are plugged sequentially, the corresponding network is called a multi-
layer perceptron (MLP). The most widely used MLP architecture is
the one-hidden-layer MLP. It comprises

an input layer which just an abstraction where each unit is simply
meant to contain one of the entries of the input x to be processed,

a hidden layer which usually contains several neural units that process
the input in different ways to trigger signals that reveal the presence
of a pattern,

an output layer that maps the intermediate representation issued by
the hidden layer to the desired type of output.

See Figure 1.15 for an illustration of one-hidden-layer MLP archi-
tecture.

The partial derivative is carried out
by using the chain rule of differentia-
tion for computational efficiency. It is
thus important that the components
of a neural net are (easily) differen-
tiable functions. The chain rule re-
quires to start the computation of the
derivatives from the predicted output
back to the first layer and the whole
procedure is thus often referred as the
backpropagation algorithm.

16Neural network training does not al-
low in general to reach the optimal val-
ues of the parameters. The obtained
parameters after training are depen-
dent on the initialization of these lat-
ter which is randomized. This is
one notorious drawback of neural net-
works which may not systematically
converge to a function with the same
predictive power.
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When one uses several units and layers, there multiple sets of weights

to learn. For a notation simplification purpose, all these weights are
concatenated in a single vector of parameter usually denoted by 6. The
training loss minimizing must thus be solved w.r.t. 6.

Basically, the perceptron (as depicted in the previous subsection)
is a linear model with an approximation capability necessarily lim-
ited. Minsky and Papert (1969) in their book have nipped in the bud
all development by stating that practical applications was futile, dra-
matically decreasing the research by the late 60s even by connecting
multiple perceptrons together!?.

Surprisingly, Cybenko (1989) and Hornik (1991) have proven that
an appropriate combination of perceptrons in the form of a one-hidden-
layer MLP can achieve universal approximation and renewed the in-
terest of the community for this class of models. The architecture of
MLPs is more closely related to the functioning of the human brain to
perform the task for which they were developed.

Stacking hidden layers (deeper net) allows to model arbitrarily com-
plex functions. This is what gives deep neural net the predictive power
that makes them so successful today. Although there is no rigorous
definition specifying how many layers is “deep”, networks with only
four or five hidden layers used to be considered very deep and almost
impossible to train in practice as they were involving far too many
trainable parameters.

The concept of convolutional layer and parameter sharing is a game
changer that allowed the actual training of very deep networks and was
the starting point of the success story of deep neural networks. The
following paragraphs give a brief introduction to convolutional archi-
tectures. Note that there are many other neural net architectures than
the one presented here, which allow to model particular types of data
(images, sounds, temporal dependencies...), once again by mimicking
the brain. See Zarandy et al. (2015) for more details.

Figure 1.15: How to artificially
learn 7 For a given input sam-
ple =z the network should pre-
dict an output y. To begin with,
the weights are randomly ini-
tialized. Secondly, we compute
the output of the network y and
the error associated e. By the
chain rule we compute the par-
tial derivative of € with respect
to each parameters wy. We fin-
ish by updating the weights us-
ing the gradient descent algo-
rithm. Repeat for each instance.

"In a re-edition, they contrasted their
words with the technical means of the
time and the lack of basic theory.
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Convolutional neural net

CNN (Krizhevsky, Sutskever, and Hinton, 2012) are a class of neu-
ral nets that use convolutional layers. Unlike usual fully connected
layers which are made of neural units with their own private weights,
convolutional layers are made of units that share parameters, thereby
drastically reducing the amount of parameters to be learned. CNN
leverage parameter sharing in order to learn deep models, i.e. net-
works with a lot of layers. In contrast, deep fully connected networks
cannot be trained because the numbers of parameters in them lead to
overfitting!®.

The key idea is that, unlike MLP architectures, a neural unit is not
connected to each single entry of the layer input. Suppose this input is
a multi-dimensional array (or tensor), then the unit will only process
a small sub-array of consecutive cells. Consequently, while an MLP
layer (also called dense layer in this context) has to learn as many
parameters as cells in the array (41 for the intercept), a convolutional
layer will use only a number of parameters equal to the number of cells
of the sub-array (41 for the intercept). The convolutional layer then
slides to the next sub-array. To some extent, this like several neural
units were processing each sub-array but were forced to use the same
weights, hence the term parameter sharing.

Parameter sharing units in layer can be reshaped as a mathemat-
ical operation called convolution. Intuitively, convolutions are well
suited to inputs that are signals or images since it has been known for
long that convolutions can filter signals and, for instance disambiguate
noise from informational content. Consequently, neural units are often
called filters or kernels in this context. The output of the convolution
operation is not a scalar in general. It is usually a tensor of the same
size as the input one, also called feature map. The feature map is also
mapped element-wise by a chosen activation function.

In order to reduce the dimensionality of intermediate representa-
tions issued by convolutional layers, one can use a pooling layer. This
layer has no trainable parameters. The feature maps is divided into
small (usually non-overlapping) sub-arrays and each sub-array is re-
placed by a scalar. If the scalar in question if the maximal value in the
neighborhood defined by the small sub-array, then this is max-pooling.
Another possibility is to use the mean of the sub-array (mean-pooling).

The typical architecture of a CNN consists in alternating between
a few convolutional layers and pooling ones. When the dimensionality
of a feature map is small enough, we stop using convolutions and we
plug a small MLP to complete the network (see Figure 1.16).

Generative adversarial net

Generative adversarial networks (GAN, Goodfellow, 2016) are models
that are at the interplay between game theory of neural networks.
In the game in question, there are two players (respectively called
the generator and the discriminator) trying iteratively to adapt their

8When a learning model is very flex-
ible, it is pretty easy to minimize
the train loss. For example, the
trained model f could be such that

Fa) = y if (z,y) €D

. Although
0 otherwise
this function achieves a zero train loss,
it has no chance to generalize to un-
seen data, i.e. a pair (z,y) that does
not belong to the training set D. This
function also exhibits sharp variations
which are usually indicating a form
of overfitting. A workaround is thus
to forbid the algorithm to learn such

functions with strong variations.
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strategies with respect to the opponent. Goodfellow (2016) uses the
following metaphor

G is a counterfeiter trying to produce undetectable fake currency.

D is the police trying to discriminate true currencies from counter-
feited ones.

In the context of this manuscript, both G and D are CNN and we
are not interested in money but in CT images. The game consists in
training D in an almost usual way, i.e. to maximize the probability
of assigning the correct label to either true training examples or to
counterfeited ones produced by G. Alleging that G = G© is fixed, this
amounts to solving

e 310D () ¢ (1-0 (6" (<)) (140

where 6, is the vector of trainable parameters of the discriminator, m is
the size of a mini-batch of images, ct(¥ is a true CT image and noise(?)
a noise vector that G maps to an sCT image. This maximization prob-
lem can be addressed by the usual backpropagation algorithm. Indeed,
multiplying (1.5.6) by —1 gives the usual cross-entropy loss. The ob-
tained solution is not guaranteed to be the optimal solution of the
problem but at least a “good” one if the training went alright. Before
the first iteration, the parameters of G° are initialized at random. At
the first iteration (k = 1), we thus obtain a discriminator D' using the
above maximization.

We can now move to the optimization of G assuming that D = D!
is fixed. G is the opponent of D, so it will try to minimize the function
that D strove to maximize. We will now try to solve

in élogpl () 110 (1- D' (G ())) (5

where 6, is the vector of trainable parameters of the generator.
Again, backpropagation will optimize this function and we obtain
an updated generator G! at the end of the first iteration. We can go

Figure 1.16: A CNN inspired by
LeCun et al. (1989). Convolu-
tion in yellow, pooling in red,
MLP in green and softmax out-
put in purple.
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on and iterate several times. From Goodfellow (2016, Proposition 2),
this MinMax game has guaranteed convergence, although this proof
relies on rather ideal assumptions. Note that, in practice, the noise
generation is replaced with dropout®. Also, the discriminator should
be optimized for several epochs before switching to one epoch of gen-

erator optimization.

Feature scaling or normalization

A good rule of thumb with CNN is that inputs and outputs should
be scaled. It is only because the optimization is more stable if the
inputs and ouptuts are centered and white. Mixing images that lie in
[-1000,300] with images that lie in [-1000,2200] will usually result in
failure.

Min-max scaling was chosen as normalization in upcoming studies.
It restricts the range of values in the dataset between any arbitrary

points a and b such as:

(X — Xinin) (b — a)
Xmaw - szn ’

This simple pre-processing will be used in both contributions that

scale(X) =a+ (1.5.8)

will be presented in Chapter 3 and Chapter 4 respectively. Concerning
CT, we scale the features (images) from [-1024,1500] to [-1,1] following
this function:

2. (et +1024)
2524
Likewise, the MR images are scaled per site meaning that if the min

scale(ct) = —1. (1.5.9)

and max intensity over all the patients of site k are ming and maxy,
then the scaling function from [ming, mazy] to [-1,1] for site k is:
2-mr

Scalek(mr) = m — 1. (1510)

9Dropout consists in turning off some
neural units of the network at ran-
dom during training. This forces the
network to be able to provide good
answers even if some information is
“missing”.






Synthesizing CT from MR

images

Current TPS include both use of MRI and CT for dose calculation.
CT is still needed for an accurate dose calculation, it gives neces-
sary information on attenuation properties of the tissues which can be
converted into mass densities. Contrary to MRI, CT offers a limited
contrast between soft tissues. By synthesizing a CT from a MRI, it
appears to be possible to introduce an MRI-only workflow.

Currently, there are a number of problems impeding the usage of
MRI for treatment planning

e [t is not always possible to scan the patient on MRI in treatment
position. The radio frequency coils do not always allow the usage of
fixation/immobilization equipment, such as masks. Recently, most
MRI vendors have introduced systems dedicated to radiotherapy,
allowing to position the patient in treatment position. Additional
efforts are needed though. In brachytherapy, it is difficult to visu-
alize the catheter.

e Some geometrical distortions can be caused by non-linearities in the
magnetic gradients and the static field, by a chemical shift, or by
magnetic susceptibility artifacts. These effects can be minimized
by using actively shielded gradients or by measuring the distor-
tions (Pasquier et al., 2006). A study on MR images of prostate
patients (Kapanen and Tenhunen, 2013) highlighted that even for
large scanning volumes (pelvis), geometrical errors concerning rec-
tum wall and gold seed markers were below 2mm. In open MRI
systems, the magnetic field is more homogeneous and distortions
are less important (Devic, 2012). It can generally be concluded
that the geometrical distortion is no longer a restrictive issue for a
MRI-only workflow (Korhonen et al., 2014).

e Last but not least, there is no direct relation between MRI val-
ues and electron density, which is needed in current TPS for dose
calculation.

The first two problems have been partially solved by the efforts
provided by MRI manufacturers who all now provide solutions specific
for radiotherapy. For the third problem, which is the focus of this
manuscript, different solutions, based on conversion of MRI into sCT,
have been proposed in literature. They are reviewed hereafter.
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BULK DENSITY METHOD

This method has been used for many years (Pasquier et al., 2007). The
method is based on assigning homogeneous densities in delineated re-
gions. This approximation can be compared to switching off inhomo-
geneity corrections in CT based dose calculations (Jonsson et al., 2010;
Jonsson et al., 2013). In the last 20 years, dose calculation accuracy has
continuously improved, evolving from correction based algorithms to
Pencil Beam, convolution/superposition algorithms. Recently Monte
Carlo calculations are being introduced within commercial TPS, in-
creasing the accuracy even further.

Using bulk densities based on MR images seems to be a major step
back concerning dose calculation accuracy. Obviously, the accuracy of
the bulk density method will be improved by increasing the number
of contoured regions. For the case of prostate treatment, using the
conventional four beam set up (Pasquier et al., 2006) demonstrated
that dose calculations without heterogeneity corrections lead to errors
up to 4 % in the PTV for clinical cases. Automatic contouring of
femoral heads and other pelvic structures, assigning bulk densities,
leads to a much better agreement (within 1 %) with the original CT
based plans. But this is practically not feasible for all localizations,
even when using an automatic contouring tool, and the cases stud-
ied in literature were relatively conventional beams traversing simple
geometries. Korsholm, Waring, and Edmund (2014) determined a cri-
terion to check if for a certain treatment the MRI-only method using
bulk densities would provide a high enough accuracy. This is not a
practical solution though and is a direct consequence of the weakness
of the usage of bulk densities. Stanescu et al. (2008) used an adap-
tive thresholding technique to correct image distortion, atlas-based!
software to auto-segment relevant structures and bulk density assign-
ment for treatment planning of intracranial lesions. They showed that
MRI-based treatment planning for intracranial lesions was as precise
as CT-based planning. Even recently this method is still being con-
sidered for sCT generation (Johnstone et al., 2018).

ATLAS-BASED METHOD

Another approach is to build an atlas including multiple pairs of CT
and MR images of the same patient and to compute a deformable
registration mapping an MRI in the atlas to the new acquired MRI.
The chosen MRI in the atlas is usually the closest one in the atlas to
the new one. The mapping is then applied to the CT associated to the
selected MRI in the atlas. Various operations on the voxels can then
be applied to the distorted CT atlas. The sCT is therefore a distorted
CT included in the atlas. However, this method has a recognized risk
of failure in case of unconventional patient anatomy. This method is
explained in Figure 2.1.

According to Keereman et al. (2010), the main problem associated
with the atlas-based method, is the need of anatomic reference data.

lexplained below.
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Pseudo-CT: Atlas method

1 : rigid registration

2 : deformable
registration

3: Apply DVFs

4 : Statistical handling

Inter-patient differences are often too large to rely on these methods
(Nyholm and Jonsson, 2014). This is why a (post-processing) correc-
tion is often applied. In a study performed by Dowling et al. (2012)
two out of 39 patients needed to be excluded because of this. Con-
sequently, increasing the number of CT cases that have been used to
generate the atlas improves the performance of atlas based sCT gener-
ation (Uh et al., 2014) at the expense of computation time. This is also
the method that was used in the Centre Oscar Lambret in the frame-
work of several scientific projects (Boydev et al., 2017) as described in
Figure 2.1.

VOXELWISE CONVERSION

Preferably, one would like to determine the tissue densities directly
from the MR image contrast (Siversson et al., 2015; Su et al., 2015).
The main problem is the low signal intensity of cortical bone because of
the low hydrogen content?. Because of that, the transverse relaxation
rate (Ry = 1/T3) is very fast and the signal is lost before it is collected.
A number of groups have introduced dual ultrashort time echo (UTE)
MRI sequences to distinguish bone from air regions (Keereman et al.,
2010; Johansson, Karlsson, and Nyholm, 2011; Grodzki, Jakob, and
Heismann, 2012). These sequences are used to image tissues with short
T5 relaxation time like the bones (Reichert et al., 2005). The bone
signal in the first echo is relatively high while it has disappeared in
the second. For other tissues both signal intensities are almost equal.
So the difference between the two signals obtained in the two echoes
will be maximal for bone and minimal for tissue and air (Catana et
al., 2010). The signal intensity of the first echo is used to distinguish
air from soft tissue (Keereman et al., 2010). The noise in the signal
associated with air might complicate this technique, so one needs to
filter the images and even use anatomical information to distinguish

Figure 2.1: Atlas-based method
using deformable image registra-
tion. The atlas consists of one
or more pairs of aligned CT and
MRI datasets (step 1).
new patient, with only the MRI
available, the MRI dataset is
registered using deformable reg-
istration (step 2). The obtained
deformable vector field (DVF) is
applied to the corresponding at-

For a

las CT (step 3) providing a first
estimate of the sCT. In step 4,
different manipulations can be
performed, ranging from simple
denoising to more advanced cor-
rection methods. The atlas can
consist of one single pair of MRI
and CT, or of a larger number of
patients: multi-atlas approach
(Guerreiro et al., 2017).

2spin density is directly related to the
signal intensity, see Equation 1.2.5
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air from soft tissue.

These methods provide excellent attenuation maps for the MRI sys-
tem, but the usage of three bulk densities (air, tissue, bone) is not
adequate for treatment planning leading to deviations up to 9 % in
organs at risk (Eilertsen et al., 2008). The combination of these UTE
sequences with a spin density scan® should allow to finetune the tis-
sue (composition and density) definition. For the moment the UTE
sequences are only applied in the head but this is evolving (Nyholm
and Jonsson, 2014). One of the problems might be that on UTE im-
ages, the blood vessels are dark (Hsu et al., 2013), so one still needs to
combine with another sequence. Also, the UTE images used to char-
acterize tissues need to be registered to the more conventional images
(T} /T, e.g.) that are used for delineation, but this is an intra-modality
registration (Nyholm and Jonsson, 2014).

Korhonen et al. (2014) used a conventional 77 Dixon sequence for
direct conversion of intensity levels for prostate patients. This de-
mands a delineation of femoral heads in a semi-automatic way though.
The MRI is then calibrated as a function of HU using two different
calibration curves (bone, soft tissue). This method ignores air cavities
(or they would have to be contoured as well). The method was recently
applied to proton dosimetry (Koivula, Wee, and Korhonen, 2016).

Johansson, Karlsson, and Nyholm (2011) used a T weighted 3D
spin echo based sequence and two DUTE sequences and a trained
algorithm to convert MRI into a sCT. They are able to convert on a
voxel by voxel basis, not needing bulk densities. Their method was
successfully applied to the head region, but severe artifacts were still
obtained for pelvis and thorax regions (larger field of view). They also
estimated the uncertainty on the calculated HU in the sCT images
(Johansson et al., 2012), which allows estimating the error on the dose
calculation on the sCT images. Gudur et al. (2014) used a combination
of both MRI intensity and geometry information (atlas based method)
to estimate electron density as both methods are not perfect. They
claim that the conversion method using pixel intensity is not good
enough, but this is because of the usage of a T} image instead of using
spin density weighted images.

MACHINE LEARNING

As a general rule, MRI-only workflow would require an expert for the
generation of an sCT. An ML approach can tackle this requirement
by using an ML algorithm able to learn a direct end-to-end mapping
from MRI to CT. It is important to note that it is difficult to compare
the different results since a voxel-wise comparison between the CT and
the sCT is not fully representative (because of misalignment) and not
everyone can perform a dosimetric comparison.

3Sequences set that allow the measure-
ment p in a voxel, see Equation 1.2.5
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Patch-based

One option is to divide the images into so-called patches that are
matched. A patch is a (usually rather small) sub-region of an im-
age (MRI). An intensity-based nearest neighbor search in the patch
database (MRI-CT atlas) is done in order to find the correspond-
ing CT patch. These methods are becoming more and more popular.
Andreasen et al. (2015) and Andreasen, Van Leemput, and Edmund
(2016) for example, used a Kp tree algorithm. The general principle
consists of a comparison of local MRI intensity patterns with that of
multiple MRI of the learning database. The sCT is generated using
atlas CT values using coordinates that are determined using the best
match between MRI images. This method provides dosimetric preci-
sion of 0.5%. This method demands important computing resources
while being slow as the pattern comparison needs to be performed on
multiple patches from several image datasets.

Convolutional neural network

From a training dataset consisting of a large set of CT-MR aligned
image pairs, a direct mapping from MR to CT can be learned by
training a CNN. At test time, this mapping is then applied to new
MRI to generate an sCT. This class of model is the first to achieve an
end-to-end sCT generation. The next paragraphs present recent CNN
based approaches from the literature.

In Roy, Butman, and Pham (2017), a CNN (using patches) was
developed based on dual-echo UTE images using Inception blocks
(Szegedy et al., 2015). Bones and air are now taken in account. The
use of a CNN and dual echo UTE sequence produces very good re-
sults, but there is no dosimetric comparison reported in this article
concerning the brain.

Han (2017) has developed a deep CNN based on a U-Net (Ron-
neberger, Fischer, and Brox, 2015). U-net architectures are encoder-
decoder type of architectures with additional shortcut-connections be-
tween symmetrically opposed layers. The proposed deep CNN method
produced an MAE = 84 HU for all subjects tested, outperforming atlas
based methods MAE = 94 HU.

The first use of 3D convolution (MAE = 41 HU), improving slightly
the result compared to 2D (MAE = 38 HU), came with the study of Fu
et al. (2018) in the pelvic area. However 3D convolutions requires to
learn a lot more parameters than 2D convolutions which may increase
the risk of overfitting or alternatively impose to use more massive
datasets. It may also rise technical issues as this a memory demanding
architecture which is a weakness of most GPUs.

A trade-off between dimensionality and informational content is pro-
posed by Dinkla et al. (2018) who use a 2.5D CNN. They have built a
model based on dilated convolution (Wolterink et al., 2016) allowing
larger receptive fields while keeping the same number of parameters.
This method has a MAE = 67 HU and a mean error dose of 0.05 %.

Instead of just an axial image for in-
stance, the net is also fed with the two
additional planes: coronal and sagital.
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The authors demonstrated the accuracy of radiation therapy dose cal-
culations based on brain sCT generated by a dilated CNN. Recently,
another study followed in the head and neck area (Dinkla et al., 2019)
with a gamma pass rate 29 2mm = 95%.

Without being fully exhaustive, the above list shows that it is pos-
sible (with a dataset of paired MR and CT images that underwent
non-rigid registration) to generate an accurate sCT in approximately
less than 2 minutes. These methods represent so far the best trade-off
in the conversion of MRI into CT.

Generative adversarial network

By using a GAN, the sCT generation becomes an image-to-image
translation problem. GANs have gained popularity in the past few
years because they succeeded to generate accurate (new) samples in
wide range of applications. Put most simply, they allow a network
to learn to generate data with the same internal structure as other
data, a procedure often referred to as style transfer (Gatys, Ecker, and
Bethge, 2016).

Nie et al. (2017) were the first to use a GAN for sCT generation. A
context model was developed in order to use the spatial information
included in the MRI volume. It offered promising results: MAE =
39 HU for the pelvic area and MAE = 92 HU for the brain area.
Wolterink et al. (2017) proposed an sCT synthesis using unpaired CT-
MR images, it means that they do not use aligned pair of CT-MR
images. Based on a CycleGAN (Zhu, Park, et al., 2017), it seems to
be robust to image misalignment. Their model outperforms paired
model when facing region with air pockets. One major advantage is
the only use of rigid registration in data preparation which is a new
big step since the first use of DL in sCT generation.

As mentioned by Maspero et al. (2018), these two GAN approaches
do not provide dosimetric evaluation. In their work, these other team
of authors have trained a conditional GAN (Isola et al., 2016). They
pre-processed MR image as input by labeling fat and water thanks to
particular MR sequences called T7 Dixon. This sequence produces 4
different images contrasts (Fat, Water, In-phase and Out-of-Phase) in
one-shot acquisition allowing a better segmentation. An image com-
parison gives an MAE = 65 HU for the prostate, MAE = 56 HU for the
rectum and MAE = 59 HU for the cervix. A dose comparison shows
good results too, higher dose (D > 90%) about 0.1 to 0.3 % (dose dif-
ference between CT and sCT) for the prostate and in the worst case
up to -1.6% for the cervix.

CONCLUSION

This chapter illustrates that sCT synthesis methods are numerous and
of varying complexities. The frequent changes in procedure from one
study to the other, such as the treatment technique, scanning parame-
ters, the method of evaluation and the statistics of the number of cases
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does not allow a global comparison of these different approaches.

It is difficult to draw conclusions about the dosimetric accuracy
associated with each method, which is often a point discussed as ad-
ditional information but does not constitute a study in its own right,
especially in the atlas and intensity-based methods. In DL, dataset
size matters too, the bigger the better. While some researchers claim
that their method is better than others, the observed discrepancies
may be mostly about dataset size and quality. The size and encoding
of an image is also important, HU accuracy is (virtualy) more easy to
obtain on a smaller image with a narrow HU spectrum. Quantifying
the differences between sCT and CT is an important analysis, but in
the context of radiotherapy, the ultimate goal remains the quality of
dosimetric accuracy.

The first step to a proper comparison is the use of a reference set of
training and/or testing patients depending of the location. One must
admit that this is not as simple as it seems to create an open-cohort
when dealing with medical data. Efforts have been made in order to
create datasets dedicated to research purposes, for instance the ADNI
data? in the head and the Gold Atlas project in the pelvic area-part
(Nyholm et al., 2018).

When facing clinical reality, some of the quoted references are not
always feasible for many reasons. Some dedicated sequences depends
on the scanner manufacturer or the version and if some license has
been purchased. When possible, the acquisition time can also be a
barrier. The guideline of our research is generalization of sCT synthesis
regardless the MRI sequence chosen.

4Alzheimer’s Disease Neuroimaging
Initiative
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MR to CT synthesis with
paired data

This chapter introduces one of the first sCT studies evaluating the
performance of a GAN in a multicentric context with a paired MR-CT
dataset!.

We focus on the issue of generalization in DL and data unavailabil-
ity. Recall from the previous chapter that dedicated sequences for the
convenience of sCT generation is not always possible in clinical rou-
tine. Moreover, the creation of a database is also a tedious job if one
wishes to train its own DL model.

The presented method overcomes the limitation of a dedicated se-
quence by using standard sequences already in use in radiotherapy
workflow. In addition, we demonstrated that it is also possible to gen-
erate an accurate sCT using MR sequence not included in the training
phase. Our goal and contribution is a turnkey model usable by the
greatest number thanks to its simplicity.

It is also beneficial for the CoBra project to the extent that an an-
other partner is working on a brachytherapy optimized MRI sequence.
As a robust model, we will no longer need to build a dataset for the
chosen sequence.

The material in the next section has been published in Physics in
Medicine & Biology journal

K. N. B. Boni, J. Klein, L. Vanquin, A. Wagner, T. Lacornerie,
D. Pasquier, and N. Reynaert. 2020. MR to C'T synthesis with mul-
ticenter data in the pelvic area using a conditional generative ad-
versarial network. Physics in Medicine & Biology.

While some considerations and definitions are redundant with the
introduction, a few notations are specific to this chapter.

INTRODUCTION

Interest has been rapidly growing in complementing and even replac-
ing Computed Tomography (CT) with Magnetic Resonance Imaging
(MRI) in the field of radiation therapy thanks to a superior soft-tissue
contrast. In addition, an MRI-only workflow avoids extra radiation to
the patient and reduces errors related to inter-modality registration.
Currently, the main challenge is that MRI pixel values are not directly
related to electron density, which is needed in radiation therapy treat-
ment planning systems (TPS) for dose calculation.

This problem is solved by converting an MRI to a so-called synthetic
CT (sCT) or pseudo CT. Many different sCT generation methods have
been proposed in the literature. These techniques recently underwent
significant changes with the emergence of deep learning. Accuracy and
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deformable registration to obtain pair-
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velocity have dramatically increased (Han, 2017; Dinkla et al., 2018).
Generative Adversarial Networks (GAN) have boosted this trend with
their ability to learn generating any data distribution in a paired(Nie
et al., 2017; Maspero et al., 2018) or unpaired fashion(Wolterink et al.,
2017).

In this chapter, we discuss a new multi-scale approach by using
an existing conditional GAN (cGAN, Wang et al., 2018) with paired
data coming from different sites. This approach is among the first
in the literature to use a deep learning-based method on data from
different medical imaging centers using different CT and MRI. A proof
of concept study is conducted by creating a test set with images coming
from a site not used in the train set. This will allow to cover a wide
range of possibilities (artifact, anatomical malformation, MRI intensity
variability) in the training and thus improve the generalizability of
MRI to CT conversion. Finally, a dosimetric evaluation is performed
to assess the dose accuracy on the sCT.

A coNDITIONAL GAN FOR MR-TO-CT SYNTHESIS

cGAN baseline

As explained in 1.5.5, GANs are characterized by two networks: the
generator G(e) with ¢ a noise vector and a discriminator D(y). For
the current application, y represents a CT image. All CT images are
distributed according to an unknown probability distribution p,. G
attempts to transform the vector e into images so that a sample of
size n, G(eM),...,G(e™) follows the probability distribution py. D
attempts to separate the images actually distributed according to p,
from those produced by his opponent G. Actually, D(y) is understood
as the probability that image y is a true CT2.

To convert an MRI into a CT, the networks have to be conditioned
with an MR image x. A simple way to achieve this objective is to feed
these two networks with x (as additional input). The generator and
the discriminator therefore become G(z,€) and D(z,y) respectively
(see Figure 3.1).

ct
probability

A — -
—

sct

mr
3

As the training progresses, G must be able to generate samples that
are more and more faithful to the distribution p,, making it more and

2This is simply a convention (without
loss of generality) for the binary clas-
sification tasks pertaining to the dis-
criminator. If the class label of a con-
tent y is denoted by ¢ € {0;1} and
¢ = 1 means y is genuinely sampled
from py, then D(y) = P(c = 1|y).
This must be kept in mind when it
comes to write the GAN loss. D(y) =

p(c=1Jy)

Figure 3.1: Conditional genera-
tive adversarial net: the discrim-
inator D learns to classify a real
CT from a synthetic CT while
the generator G learns to fool D
following a min-max game.
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more difficult for D to detect fakes CT images. G and D are trained
alternately and share the same objective function. The discriminator
tries to maximize it while the generator tries to minimize it. When
both networks must play this game given an additional input «, the
corresponding architecture is called a conditional GAN (cGAN)3.

The theoretical objective function of the cGAN is the following ex-
pected cross-entropy

E..,llog D(x, )] + . [log(1 — D(x, G(x,)))]. (3.2.1)

However, as usual, we will work with an empirical version of the

latter based on our paired training set D = (ct(j), mr(j))0<j<N :

> log D(mr?, ctD) + 3 “log(1 — D(mr?, G(mrD, eD))). (3.2.2)
J J

This network is optimized following the standard approach of Good-
fellow (2016) by alternating the gradient ascent/descent steps between
the generator and the discriminator. Noise instances €\) are induced
by dropout (Hinton et al., 2012) in both the training and test phases.

The piz2pizHD network

In the architecture investigated in this chapter, we will use the cGAN
introduced by Wang et al. (2018) whose motivation is to improve pho-
torealism of the outputs when inputs are high resolution images. The
traditional cGAN architecture is modified regarding four important
aspects:

e Coarse-to-fine generator: the generator which has an encoder-decoder?

architecture is separated in two sub-networks G = {G giopal, Glocal } -
The first one is the center of an encoder-decoder architecture and
is thus itself a (smaller) encoder-decoder. It is pre-trained on low
resolution images. The local generator (the entire encoder-decoder
structure) is then fine-tuned on high resolution images.

e Multi-scale discriminators: G has to fight against several discrimi-
nators D = {D;, Do, D3}. Each of these discriminators works at a
different image scale.

o A feature matching loss Ly, (Wang et al., 2018) is added in order to
stabilize the training of the generator by promoting a match between
intermediate representations (feature maps) in the different layers
of the discriminators from real and synthesized images. The idea
behind this additional loss term is that the generator will be forced
to produce images with more natural statistics at different scales.
If we denote D,(f) the i-th layers of Dy, Ly is then calculated as

Lry(G,Dy,..,Dk) = Z MAE(Dl(ci)(mr(j),ct(j)),D,(:)(mr(j), G(mrP) D)),

.3,k

3The idea of cGANs was already men-
tioned in Goodfellow, 2016.

4A neural architecture, known as
auto-encoder allows to learn a low di-
mensional representation of inputs. It
comprises two sub-networks called en-
coder and decoder. The encoder Enc
maps inputs to their low-dimensional
versions and the decoder Dec then
maps these representations back to the
input space. In this case, the opti-
mized loss is ||Dec(Enc(z)) — z|| (un-
supervised paradigm). This architec-
ture has proved to be beneficial in a
wide range of applications.

(3.2.3)
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e Instead of the usual cross-entropy cGAN loss (3.2.2), the authors
recommend the Least Square GAN (LSGAN) loss (Mao et al., 2017)
which is a quadratic version. This loss address the problem of
vanishing gradient when updating the generator (Arjovsky, Chin-
tala, and Bottou, 2017) using samples lying on the “True” decision
boundary but still far from the real data distribution. LSGAN loss
penalises these samples enabling faster convergence and more real-

istic image generation.

3.2.3  Tuailored architecture for sCT generation

In our sCT generation implementation, it proved necessary to make
several adjustments compared to pix2pixHD. First, pre-training the
smaller resolution generator (Gjoeqi) proved to be counterproductive
and led to poorer results. The generator G used in our case follows in-
stead the architecture proposed by Johnson, Alahi, and Fei-Fei (2016)
and learns to synthesize a CT. We chose to work with K = 2 dis-
criminators working at different scales, both of them being trained
to differentiate real and synthesized CT images. The first discrim-
inator D; operates at standard scale while the second Dy operates
with downsampled images by a factor 2. These discriminators have
identical architectures with different receptive fields. They follow the
PatchGAN architecture (Isola et al., 2016) forcing the generator to
produce consistent images while encouraging finer details. Training
this model tends to produce realistic CT images but regarding HU,
performances do not seem as good as they visually do. To overcome
this difficulty without adding a post-processing step, we propose to add
an additional L; reconstruction loss (MAE) term between the gener-
ated sCT and the true CT. Finally, the full objective function L.gan

writes:

Legan(G, Dy, Do) = 2-Lins + Y D (mr?, et ) — 1}2 +
ik (3.2.4)
{Dk (mrm, G (Wm’ E(j))ﬂz Y Hctm e (W(j), e(j)> H1

with A = 10 and p = 5 are two hand-tuned hyperparameters.

3.3 EXPERIMENTAL MATERIAL AND IMPLEMENTATION DETAILS

3.3.1 Patient data collection

This study included pelvic MR and CT images of 19 male patients with
prostate or rectal cancer. Images were taken from the public dataset
named the Gold Atlas project (Nyholm et al., 2018) aimed to provide
a source of training and validation for segmentation as well as sCT
generation methods. Patients with locally advanced tumors were not
included in this database. Radiotherapy planning for prostate cancer
was carried out for all patients. Indeed, these were early stage rectal
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cancers that did not deform the pelvic anatomy and allowed realistic
planning of prostate cancer radiotherapy.

Nineteen patients coming from three sites were selected and scanned
in radiotherapy treatment position, T2-weighted MR and CT images
were acquired following clinical protocol. Table 3.1 provides the ac-
quisition settings.

Site 1 Site 2 Site 3
Number of patients 8 7 4
CcT
Manufacturer Siemens Toshiba Siemens
Model Somatom Definition AS+ Aquilion Emotion 6
Slice thickness (mm) 3 2 2.5
Kernel B30f FC17 B41s
T2-w
Manufacturer GE Siemens GE
Model Discovery 750w 3T - 1.5T Signa PET/MR 3T
Sequence type FRFSE TSE FRFSE
Slice thickness (mm) 2.5 2.5 2.5
Bandwidth (Hz/pixel) 390 200 390
Encoding direction COL ROW COL
TR (ms) 6000-6600 12000-16000 6000-10000
TE (ms) 97 91-102 65

9 organs were segmented by five experts based on MRI, and con-
sensus contours among the experts are also available. The open source
library ITK (Johnson et al., 2015) was used to perform a deformable
registration on the CT to fit the anatomy of the MRI, enabling the
use of the delineations on the registered CT.

Image pre-processing

A mask excluding surrounding air was obtained on the CT and MRI
using the external ROI option (threshold level based) on Raystation
(v7.0). Voxels outside the body were automatically assigned to -1024
HU for CT and 0 for MR. Inter-scan differences (air pockets and struc-
tures) have not been taken into account in this study. HU were nor-
malized, MR intensities as well patient-wise. Finally, all dicom files
were converted to 16-bit grayscale images compatible with current deep
learning frameworks. The first and last slices were not taken into ac-
count for the training due to aliasing in MRI. This allowed the use of
this dataset consisting of aligned MR-CT as part of an image-to-image
translation problem.

Training of the network

The 19 patients were separated into a training set containing 7 patients
from site 2 and 4 patients from the third one. The 8 patients coming
from the site 1 were used as testing set. 256x256 sub-images were
randomly cropped during training. The network was trained using

Table 3.1: Acquisition settings
for the three sites. TSE stands
for Turbo spin echo and FRFSE
for Fast recovery fast spin-echo,
COL for columns.
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Adam optimizer with an initial learning rate of 0.0002 for 100 epochs,
then for another 100 epochs with a linearly decay learning rate to zero.

Training took on average 17 hours on an Nvidia Quadro P6000 with
a batchsize of 1. Data augmentation was performed by horizontal flip
increasing the size of the training set to 2008 image pairs.

3.3.4  sCT evaluation

Once the network was trained, each sCT was generated using only the
generator on the GPU. The images files created are then converted to
a DICOM format, allowing their use on a treatment planning system.

Image comparison Synthetic CT and registered CT were compared
on a voxel-wise basis using the MAE and the Mean Error (ME). Con-
sidering the voxels within the body contours, MAE and in HU were
calculated for each patient.

A 16-bit implementation of a vanilla pix2pix (Isola et al., 2016;
Maspero et al., 2018) was trained in the same multicentric configura-
tion. MAE and ME of the sCT generated by pix2pix is also calculated
for each patient.

Dose comparison Tomotherapy treatment plans were optimized on
each sCT in Raystation (v7.0) using the Collapsed Cone (v3.5) algo-

3. The prescription was 39 x 2 Gy

rithm on a grid of 1 x 1 x 1mm
to the planning target volume (PTV) (prostate with 5 mm uniform
margin). The resulting plans were then recalculated on the CT for
dose comparison.

A dose volume histogram (DVH) analysis was performed after copy-
ing the structures (PTV, femoral heads, bladder wall and rectum wall)
to CT. The chosen DVH points were D98, D50 and D2. Voxel-wise
absolute dose differences in percentage were computed within a dose

threshold of 90%, 50% and 10% of the prescribed dose D,,.

3.4 RESULTS

MRI CcT sCT CT-sCT

I 100

HU

I-mo

Image comparison CT synthesis took on average 7.5 s on GPU. Fig- Figure 3.2: From left to right,

ure 3.2 shows an example of one of our test patients. As expected, MR image, CT, sCT and differ-
ence (CT — sCT). The images on

top represent the axial plane, on
the bottom, the frontal plane.
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differences are most pronounced in the bone structures. Staircase pat-
terns are visible on the bone in the frontal view. This may be due
to the 2D generation technique used that does not take into account
adjacent slices.

The proposed method produced an average MAE of 48.5+6 HU and
an average ME of —18.3 +£ 9 HU for our 8 patients. Vanilla pix2pix
produced an average MAE of 62.0 £ 1 HU and an average ME of
—11.4+2 HU. Table 3.2 provides the average MAE and ME for target
volumes and organs at risk (OAR) for pix2pixHD and pix2pix.

MAE ME
pix2pixHD pix2pix pix2pixHD pix2pix
Bladder wall 494 +12 616+ 10 -239+23 -0.6 £ 31
Rectum wall 101.8 £ 78 109.8 £ 78 -77.6 £90 -85.2 £ 80
Anal canal 303 +14 36.0+13 -246+18 -26.4+ 16
Penile bulb 28.1+9 56.5 £ 16 -19.24+ 15 38.6 £25

Femoral Heads 90.5 £ 9 1127 £ 23 -25.9 £ 47 457+ 44
Seminal Vesicles 44.7 + 15 548 £ 11 -14.0+26 13.1+£19
Prostate 471+ 6 623 £9 -11.6 £12 175 £ 29

DVH analysis The absolute difference between the DVH points on
sCT and CT were always below 1.4%. Figure 3.3 shows a boxplot of
the DVH point difference for the PTV and the OARs.

Dose difference  Mean absolute dose differences were computed with
several dose thresholds. Differences only appear in high dose regions
and the body contour as shown on Figure 3.4.

The sCTs tend to have higher Hounsfield units (HU) resulting a
global decreased dose inside the body. Inner negative dose differences
are often due to lower HU on the sCT in bone area or air pocket not
generated in sCT.

Table 3.3 reports the statistics in terms of mean dose difference
related to the prescribed dose calculated on a threshold of 10%, 50%
and 90% of the prescribed dose.

DiscussioN AND CONCLUSION

Maspero et al. (2018) showed that conditional GANs can synthetize CT
from MRI. In the current work, a good level of performance is achieved
with a limited dataset with a coarse-to-fine approach, by incorporating
a feature matching loss and the use of the Least Square GAN loss.
The approach presented in this chapter is one of the very first allow-
ing to derive a robust neural network trained and tested with data com-
ing from different medical imaging centers. Without ever having seen
an image from the test site, our model learns to synthesize a clinically
acceptable sCT, which may be generalized to different MRI manufac-
turers. This process has the capability to tackle the images variability

Table 3.2: Average MAE and
ME in HU (%0) between sCT
and real CT for different lo-
cations when training with
pix2pixHD based model and
pix2pix.
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Figure 3.3: VH parameters comparison between dose on CT and sCT for the PTV and OARs.
CT sCT CT—sCT

Figure 3.4: From left to right, dose calculated on CT, sCT and dose difference (CT — sCT).
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[Dcr—Dsor|

Volume 5,
Body 0.00 +0.01
[0.01;0.03]

Dose >10% 0.12 £0.07
[0.00; 0.22]
Dose >50% 0.49 +0.29
[0.03; 0.92]
Dose >90% 0.68 +0.35

0.19;1.23]

problem in clinical practices, since changes can happen in image ac-
quisition parameters or with machine replacement for instance. This
study was done using standard morphological sequence (T2-w Spin
Echo) without the need of any dedicated sequences.

Results look promising although a presence of artifact patterns can
be noted. This may be partially due to the low amount of data and
to the transposed convolutions used in the decoder part in the gener-
ator. The use of a third discriminator seems to get rid of this problem
without improving quantitative results. The average MAE (48.5 HU)
and the dosimetric evaluation (dose differences within 1.4%) obtained
in this study compare similarly with other state-of-the-art single cen-
ter results (Maspero et al., 2018; Nie et al., 2017) in the literature for
the pelvic area. These small differences would be suitable for clinical
implementation. It is a well-known fact that deep learning models can
benefit from more training data, which leads to the expectation that
better results will be obtained when feeding our algorithm with more
datasets. A direct comparison with other studies is not trivial since
distinct datasets are used. The size of the dataset, the sequence(s)
used, the diversity (artifact, specific case, etc.) and the misalignment
between the sCT and the CT are some of the numerous factors that
make a direct comparison difficult.

Improvements need to be introduced in order to mitigate the dis-
continuity across the slices and therefore improve image quality. The
use of 3D convolution leads to questionable results in the community,
since they are greedy and not so effective. As a future perspective,
we plan to improve sCT generation via Recurrent Neural Contextual
Learning. Such models are expensive, and their benefits will have to
be contrasted with the overhead they induce.

Besides, a multi-center study based on the conversion of MR inten-
sities to HU includes uncertainties related to the different image value
to density table (IVDT). Direct conversion to electron density would
avoid these errors but the benefit remains to be studied.

As a final word, an obvious limitation of the model studied in this
chapter is the necessity of a paired dataset to train. This means that

Table 3.3: Mean dose difference
(+0) between CT and sCT and
range of values.
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one must possess a dataset of (CT,MR) pairs each of which was ac-
quired from the same patient. Obviously, this is a drawback in terms
of dataset size as the number of patients undergoing both exams is sev-
eral order magnitude smaller then those performing only one. Also,
many organs are deformable and might exhibit different shapes in the
CT and MR exams. This issue coupled with registration requirement
are somewhat inducing a noise in the training data which hinders the
job of the cGAN. The next chapter will investigate another GAN-type
architecture that can learn from unpaired data thereby circumventing
the above mentioned issues.
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APPENDICES

3.A NETWORK DETAILS

The generator in pix2pixHD is basically a residual net (He et al.,
2016a) with 9 residual block. The discriminators follow the same ar-
chitecture as th PatchGAN (Isola et al., 2016). We follow the naming
convention used in CycleGAN (Zhu, Park, et al., 2017) for their de-

scriptions.

Details of the generator architecture Let cl-k denote a 1 x 1 Convo-
lution with k filters, c7ir-k denotes a 7 x 7 Convolution-IN-ReL.U layer
with k filters, Ri-k denotes a IN residual block two 3 x 3 convolutional
layers with the same number of filters on both layers and ct3ir-128 de-
notes a 3 x 3 Transposed Convolution-IN-ReLU layer with 128 filters.

Generator: c7ir-64, c7ir-128, c7ir-256, Ri-256, Ri-256, Ri-256, Ri-
256, Ri-256, Ri-256, Ri-256, Ri-256, Ri-256, ct3ir-128, c3ir-64, c7-64,
tanh.

Details of the on discriminator architecture Let c4-1 denote a 4 x 4
Convolution with one filter and c4il-k denotes a 4 x 4 Convolution-

IN-LeakyReLU layer with k filters.

Discriminator: c4il-64, c4il-128, c4il-256, c4il-512, c4-1.






4.1

MR to CT synthesis with

unpaired data

We investigate in this chapter the sCT generation with an unpaired
dataset!. We focus once again on generalization but the use of an
unpaired dataset introduces a new challenge. State-of-the-art machine
learning models for this situation are CycleGANs (Zhu, Park, et al.,
2017)2. One major limitation of these models is that they only learn
one-to-one mapping. Such a model assumes that a CT can only be
associated (through a bijective mapping) with a single MRI sequence
which is not correct.

Unpaired datasets have the advantage of being simple to create.
They can be used with an unpaired-data-friendly model directly in
theory without any form of registration between the MR and CT, even
if in practise we chose to perform rigid registration in order to make the
training easier. Moreover, models trained from unpaired data do not
suffer from misalignment like paired model in which a slight voxel-wise
difference can negatively impact the training of the model. However,
unpaired models need more data compared to models trained from
paired data since they basically use twice as many parameters. This
can be balanced with the ease of fueling this unpaired database with
patient not necessarily scanned with both modalities.

The material in the next section has been published in Medical
Physics journal

K. N. Brou Boni, J. Klein, A. Gulyban, N. Reynaert, and D.
Pasquier. 2021. Improving generalization in MR-to-CT synthesis
in radiotherapy by using an augmented cycle generative adversarial
network with unpaired data. Medical Physics.

While some considerations and definitions are redundant with the
introduction or other sections of the manuscript, a few notations are
specific to this chapter.

INTRODUCTION

Since its introduction in the late 80s, magnetic resonance imaging
(MRI) is being increasingly used in radiotherapy. MRI has been par-
ticularly appreciated for its superior soft-tissue contrast over computed
tomography (CT). As a result, MRI can better discern tumors than
CT images, and has therefore been integrated into the radiotherapy
treatment workflow. In practice, after MR acquisition, regions of in-
terest (ROIs) are contoured directly on the image by a radiation on-
cologist. However, CT is still required since it serves as the basis for
dose calculation because of the need for electron-density information.
The contours drawn on an MR image are propagated to a CT image
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4.2 From cycle GANs to an
augmented cycle GAN for
MR-to-CT synthesis 59

Unsupervised learning of one-to-

many

4.3 Experimental material
and implementation
details 62

Patient data collection

Image pre-processing

Training of the networks

sCT evaluation

4.4 Results 65
Image comparison

DVH analysis

Dose difference

CycleGAN comparison

4.5 Discussion 67

4.6 Conclusion 70
APPENDICES

4.A Fiducial markers 71

4.B Network details 72

!Unpaired dataset refers to the need
of only rigid registration.

2This other variant of GANs are ac-
tually relying on two GANs. One
GAN would typically learn to map
MRIs to CTs while the other one will
learn the inverse mapping from CTs to
MRIs. For any image x of an unpaired
dataset, one can leverage a pipeline
of two generators to produce another
image Z that should be very close to
z. A so called cycle-consistency loss
> |lx — #|| can be added to the objec-
x

tion function. Further explanations on
CycleGANSs are given in the next sec-
tion.
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after co-registration. In the professional community, this step is con-
sidered as the weakest link in the radiotherapy workflow (Njeh, 2008).
The image-registration process introduces spatial uncertainties whose
significance depends on the localization.

To reduce these systematic spatial uncertainties introduced by inter-
scan differences, interest has been rapidly growing in MRI-only radio-
therapy (Nyholm and Jonsson, 2014). However, the main challenge
associated with this modality is that MRI intensities cannot be di-
rectly used to obtain information regarding electron density, which is
required for dose calculation in radiation therapy treatment planning
systems (TPS).

This problem can be partially solved by converting MRI into a so-
called synthetic CT (sCT) which is the focus of this manuscript. As
explained in the previous chapters, several methods for this purpose
have recently emerged with the advent of deep learning, especially
methods using Generative Adversarial Networks (GANs, Mao et al.,
2017; Isola et al., 2016). These networks rely on learning the relation-
ship between MRI and CT images in a paired (Maspero et al., 2018;
Boni et al., 2020) or unpaired fashion (Wolterink et al., 2017; Hiasa
et al., 2018) (see Figure 4.1).

Paired images

MR

As discussed in Chapter 3, learning in a paired fashion requires
perfect registration of a set of MR and CT images, a time-consuming
task that often involves deformable registration and consequently re-
introduces geometrical uncertainty (Thor et al., 2013; Nyholm et al.,
2009). Due to their adaptability /flexibility, unpaired models using at
most rigid registration and based on CycleGAN (Zhu, Park, et al.,
2017) have attracted more interest and offer the potential to improve
sCT generation accuracy by using appropriate models such as a 3D
model (Lei, Harms, et al., 2019) or a deeper model (Lei, Wang, et al.,
2019). Nevertheless, these models are not robust to the MR variability
arising in multicentric workflows, highlighting the common generaliza-
tion issues in machine learning when dealing with out-of-distribution
samples. Since a CycleGAN only learns one-to-one mappings (Alma-
hairi et al., 2018) i.e., the model associates each CT with a single MR
sequence, mapping several MRI instances to the same CT image rep-
resents a bottleneck that will become a major limitation in the clinical
implementation of this approach (Fu et al., 2018).

In this chapter, we aim to improve the generalizability of MR-to-CT

Unpaired images

Figure 4.1: In the paired fashion,
the input MR and ground truth
CT slices correspond to the same
patient at the same anatomical
localization. In contrast, mod-
els based on the unpaired fashion
use CT and MR slices of differ-
ent patients at different anatom-
ical localizations during train-

ing.
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synthesis with unpaired data. We devised an Augmented CycleGAN
(AugCycGAN, Almahairi et al., 2018) that allowed the use of multi-
centric data in both training and testing phases. We evaluated the
accuracy of sCT images obtained with this approach by performing
both image and dosimetric comparisons in order to show that our
model can learn from several MRI distributions.

4.2 FRrRoM cYCLE GANS TO AN AUGMENTED CYCLE GAN
FOR MR-TO-CT SYNTHESIS

4.2.1 Unsupervised learning of one-to-many

Unpaired learning Given two distributions py,,-(mr) from MRI and
pet(ct) from CT, we assume there exists a mapping between these two
domains only if they are highly dependent, with the same anatomi-
cal localization for instance. To recover this mapping, Zhu, Park, et
al. (2017) used two GANs with cycle consistency. In our MR-to-CT
context, we can define the first GAN as {Gyr20 : MRI — CT, D¢y :
CT +— {0,1}} and the second as {Geamr : CT +— MRI, Dy :
MRI — {0,1}}. These networks follow the standard optimization de-
scribed by Goodfellow (2016) with an adversarial objective (marginal
matching) formulated for the first CT-GAN as follows:

LE Gomrzers Det) = 3108 Der (1) + 3108 (1= Dt (Gorzer (mr)) ) g
J 7

Similarly for the second MR-GAN {G¢i2msrs Dy}, we have:

LEN Gotamrs Dnr) = 3 10g Dy (mr07) 3108 (1= Do (Getame (1)) (a.22)
j’ J

We use two different indexes j and j' in these cross-entropy loss terms
to emphasize the fact that the sets of CT and MR images are not paired
and would typically have different sizes. Observe that, compared to
losses from Chapter 3, dropout noise instances €/) are no longer used.
This is because one directly attempts to map py,, to pe (or conversely)
instead of mapping a noise distribution to p.; having observed a sample
from py,;-.

The goal here is that the output of each generator should match
the distribution of the target domain. As usual, each discriminator is
a binary classifier that discriminates genuine samples from generated
ones. The main trick of cycle GANs allowing to learn from unpaired
data is cycle consistency. Simply put, transferring a modality to the
other and then back into it produces a reconstructed image close to
the original. The cycle-consistency loss starting from an MRI slice is
thus given by:

LZZZ(GmTQCtv Getomr) = Z HGCter (Gmcht (mr(j/))) — mrl) L (4.2.3)
J
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Similarly, for a CT slice, one has:

ngc(Gct2mr7 Grmrzet) = Z HGmTQCt (GCt2mT (Ct(j))) —at¥ Hl ’ (4.2.4)
J

The global objective function of a CycleGAN is obtained as a weighted
sum of these four loss terms (with appropriate po