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0.1 General introduction to radiotherapy

Radiotherapy is a cancer treatment that has always been associated for

a long time with medical imaging. By definition, radiotherapy involves

the use of high doses radiation to kill cancer cell or slows their growth

and shrink tumors by damaging their DNA.

Even if the benefits of ionizing radiation have been proven (Mor-

gan, 1969; Kogel, Joiner, and Van der Kogel, 2009), their harmfulness

remains a concern; the dosimetry was born. Radiation dosimetry is

the measurement, calculation and assessment of the ionizing radiation

dose absorbed by the human body. It allows an optimization of dose

delivery in radiotherapy. The physical unit used to predict the effects

of radiation on cells is called the ionizing energy deposited in the tis-

sues per unit mass, also called dose and measured in Gray1. To ensure 11 Gy = 1 J.kg−1

accurate treatment planning, work was done to reduce uncertainties

in the dose delivered in tumor while decreasing the dose delivered in

healthy tissues. To maintain an acceptable level of complication, the

total dose delivered to the tumor, and by extension to nearby healthy

tissues, must be limited and spread over time, according to radiobio-

logical criteria dependent on tumor characterization, anatomical loca-

tion, and treatment technique. External beam radiotherapy includes

all treatments in which the source of ionizing radiation is external

to the human body. On the other hand, brachytherapy uses internal

sources of ionizing radiation.

0.2 Techniques of irradiation

Various types of techniques can be used in radiotherapy. In most of

the cases, a linear particle accelerator (Linac, see Figure 1) is used to

deliver a photon beams.

Figure 1: Cyberknife linear par-

ticle accelerator (Accuray Inc.,

Sunnyvale, CA).

Inside the Linac, an electron beam is generated by a source and then

accelerated by several electronic oscillators. The high speed beam, by

hitting a tungsten target will produce a divergent photon beam2.

2Bremsstrahlung X-rays: electrons by

decelerating lose kinetic energy, which
is converted in radiation i.e., photons.
X-rays penetrate more deeply, but the

dose absorbed decreases exponentially
along thickness

At the beginning of radiation therapy, the photon beam was shaped

at the end of the Linac with a basic collimator resulting in the irra-

diation of the target together with a significant volume of healthy tis-

sues. Nowadays, radiotherapy devices include a multi-leaf collimator

(MLC, see Figure 2 for comparison) enabling conformational radio-

therapy with intensity modulation (IMRT) in which the photon beam

is shaped in conformance with the target by moving the leafs during

the emission of the beam. An illustration in term of treated volume is

shown in Figure 3.
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(a) Circular field collimators. (b) multi-leaf collimator.

Figure 2: Different type of Cy-

berknife collimators: (a) Cir-

cular fixed collimators. (b) A

MLC, each leaf can be posi-

tioned independently.

(a) Conformal treatment. (b) IMRT.

Figure 3: Illustration of a con-

formal treatment compared to

a beam intensity modulation.

Target in red and in green an or-

gan to protect.

Other types of radiation can be used and are based on particle

beams such as protons or heavier positive ions. In hadron therapy the

dose deposit is maximum near the end of the range of the particule.

This kind of treatment requires to a much heavier equipment.

0.3 Radiotherapy in clinical workflow

Between the radiotherapy treatment prescription and the first irradi-

ation, the patient undergoes several steps. These steps are illustrated

in Figure 4 and explained below

Figure 4: Treatment course in

radiotherapy.

Pretreatment imaging The patient is placed in treatment position

with specific immobilization devices in order to optimize the repro-

ducibility of positioning during the treatment sessions. A CT (com-

puted tomography) is then acquired. This imaging modality provides

a map of the physical densities of the internal tissues of the patient in

Hounsfield unit (HU).

Image registration Complementary informations can be added to this

simulation CT by merging the benefits of other imaging modalities.

For instance higher contrast image or a functional imaging of the tu-

mor, this can be done with the use of the MRI (Magnetic Resonance

Imaging) or PET (positron emission tomography). The overlaying

mitigates the weakness of each technique by using image registration

algorithms. Rigid registration is most commonly used in clinical prac-

tice, only translations and rotations are allowed. In contrast, non-rigid

(deformable) registration uses geometric transformation that does not

preserve the Euclidian distance between every pair of points.
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Delineation This step consists of localizing the tumor volume and

the organs-at-risk (OARs) that must be protected during treatment.

They are delineated by a radiation oncologist on the CT or on other

modalities. Conventions were defined by International Commission on

Radiation Units and Measurements (ICRU) in order to standardize

the definition of the target. The report clearly defines three volumes

of interest. The gross tumor volume (GTV) corresponds to the tu-

mor visible on the imagery. Then the clinical target volume (CTV)

that encompasses the GTV with a margin taking into account regions

known to carry malignant cells. Finally, the planning target volume

(PTV) taking into account positioning uncertainties of the patient and

the movement of the target by adding a margin to the CTV. Figure 5

represents the ROIs.

Figure 5: Different target vol-

umes in radiotherapy.

Treatment planning In order to plan a radiotherapy treatment and

to calculate the dose distribution inside the patient, a virtual simula-

tion including the modeling of the patient and the treatment beams is

performed on a treatment planing system (TPS) by a dosimetrist or

a medical physicist. During the virtual treatment planning, the beam

arrangement, the collimator arrangement, and the active beam time

are to be determined, either manually (direct planning) or automat-

ically (inverse planning), in order to design the treatment plan. The

treatment plan is established in accordance to the prescribed dose to

the PTV while limiting the irradiation to the OARs. The patient is

modeled from the previously acquired CT scan. This image, in ad-

dition to providing information on the patient geometry, allows the

calculation of the dose by the TPS algorithm thanks to the informa-

tion in HU contained in the voxels. CT is thus the reference modality

for any radiotherapy treatment. Dose-volume histograms (DVHs) rep-

resenting the dose received to a percentage of each of the ROIs and the

dose distribution in 3D are used in combination during optimization

and for the evaluation of the treatment (see Figure 6).

Figure 6: Typical interface of

a TPS. Left is a visualiza-

tion of the CT with the iso-

dose lines superimposed in col-

ors, the legend represents the

ROIs. Right is the DVHs curves

for each of the ROIs: the tar-

gets appear as steep lines at

the right of the graph (homoge-

neous doses), whereas the OARs

show smoother curves with var-

ious dose levels depending on

the sparing reached for this

specific plan (RayStation, Ray-

Search Laboratories).

Treatment During each session, the patient must be correctly posi-

tioned, using the lasers andor skin markers. Motion restriction is car-

ried out by the same immobilization devices as in the pre-treatment
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imaging. Then an image is acquired using a Linac-based on-board or

an in-room imaging system enabling a comparison with the images

from the simulation. If no major changes, the treatment is then deliv-

ered.

The accuracy of dose delivery is prone to several errors and uncer-

tainties related to the workflow introduced above.

0.4 Magnetic Resonance in Radiotherapy

Since its introduction in the late 70s until now, MRI is more and more

used in radiotherapy. It is particularly appreciated for its superior soft

tissue contrast compared with CT (Figure 7).

(a) CT. (b) MRI.

Figure 7: Comparison of axial

CT (a) and T2 weighted MRI

(b).

As a result, MRI helps to better discern tumors than a CT, and has

therefore been integrated into radiotherapy practices as a diagnostic

image. Tumor volume is delineated more precisely on MRI compared

with CT, whether in the case of prostate tumors (Debois et al., 1999;

Rasch et al., 1999), brain lesions(Prabhakar et al., 2007), or head and

neck tumors (Lemort, Canizares, and Kampouridis, 2006). These stud-

ies have shown that MRI was able to reduce inter-observer variability

during the delineation. In practice, after the MRI acquisition, ROIs

are contoured directly on this image by a radiation oncologist. Since

the simulation CT serves as the basis for dose calculation, the contours

drawn on the MRI are propagated to the CT by using a registration

algorithm. This step is considered in the community as the weakest

link in radiotherapy workflow (Rasch et al., 1999; Njeh, 2008). The

image registration introduces spatial uncertainties more or less signifi-

cant depending the localisation. They are due to inter-scan differences

in positioning between the two examinations or anatomical changes

of deformable organs such as the filling of the rectum and/or bladder

which influences the position of the prostate. The total uncertainty

was estimated at 3.7 mm (head-foot direction) for prostate treatment

by Nyholm et al. (2009), meaning that ”virtual” target can therefore

be shifted a few millimeters from the “real” target. In addition, they

have also estimated the total uncertainty at 2.9 mm by using a MRI-

only workflow. The idea behind is to replace the CT simulator by an

MRI simulator, reducing systematic spatial uncertainties introduced

by the inter-scan differences. The removal of a CT acquisition in the

workflow allows to eliminate the registration error but also the tissue

density informations needed for dose calculation.

MRI does not map tissue density, this issue will be the focus of
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the current thesis, different solutions, based on the conversion of MRI

images into so-called synthetic CT (sCT). In a sCT image, HU or

tissue densities are mapped from MRI intensities.

0.5 Description of the project

The genesis of this thesis stems from the European INTERREG Coop-

erative Brachytherapy (CoBra) project. This project aims to improve

the quality of both diagnosis and treatment of localized cancers, by de-

veloping a new medical robot prototype for brachytherapy and biopsy

under MRI guidance.

The goal is to achieve an adaptive tumor tracking and dose control

in real-time and to reach the overall objective, which is to enhance

quality of life for patients and reduce cancer mortality.

Co-financed by the European Regional Development Fund in the

2 Seas area, CoBra is a cross-border cooperation with partners from

coastal areas of England, France and the Netherlands.

The lead partner is the university of Lille which is in charge of

building the robot. Core partners are TU Delft in charge of developing

specific steerable needles and Demcon which is a company working

on ther biopsy guidance devices. All these tasks are meant to be

solved under MRI control. NHS Portsmouth and the university of

Portsmouth work on the time optimization of the treatment plan.

The present study falls within the range of dose calculation under

MRI. This task has to be fast since the treatment plan needs to be

optimized on the fly. The workflow can be split in three steps: ideally,

the sCT should be generated along with the delineation of the ROIs.

With these two at hand, one can compute a dose distribution according

to a treatment plan given by an optimization algorithm. All of these

steps must be performed in real time.

0.6 Problem statement and contributions

The original ambition of this thesis was to develop a dose calcula-

tion method based solely on the MRI as part of the CoBra project.

This task implies CT image synthesis and segmentation as well as

dose calculation. All of these sub-tasks are non trivial scientific chal-

lenges. Among them, segmentation is probably the one that received

the greatest attention from the medical image processing community.

Consequently, it was decided to focus on the other two with a focus

on sCT generation as it is the starting point of the desired pipeline.

In this thesis, we tackle generalization problem related to deep learn-

ing methods in sCT generation task.

Recent advances in deep learning have made it possible to simplify

the sCT generation workflow. Less and less pre and post-processing

while being fast and accurate. These methods rely on a dedicated MRI

sequence (or a set) as an input; conflicting with the magnetic resonance

(MR) intensities variability in clinical reality. In some extent, a model

is fitted for one MRI sequence.
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In an attempt to generalize the idea of a model not only dedicated to

a single sequence, we investigated a way to induce the MR intensities

variability in the training of a deep learning model. This will allow in

the future to generate a sCT without the need of a dedicated dataset.

Below is a list of our contributions.

Journal paper (cf. Chapters 3 and 4)

N K. N. B. Boni, J. Klein, L. Vanquin, A. Wagner, T. Lacornerie, D. Pasquier, and N. Reynaert. 2020. MR

to CT synthesis with multicenter data in the pelvic area using a conditional generative adversarial network.

Physics in Medicine & Biology.

N K. N. Brou Boni, J. Klein, A. Gulyban, N. Reynaert, and D. Pasquier. 2021. Improving generalization

in MR-to-CT synthesis in radiotherapy by using an augmented cycle generative adversarial network with

unpaired data. Medical Physics.

Collaboration in journal paper

N A. Wagner, K. B. Boni, E. Rault, F. Crop, T. Lacornerie, D. Van Gestel, and N. Reynaert. 2020. Integration

of the M6 Cyberknife in the Moderato Monte Carlo platform and prediction of beam parameters using machine

learning. Physica Medica.

Conference papers

� K. N. Brou Boni, A. Wagner, L. Vanquin, J. Klein, D. Pasquier, and N. Reynaer. 2019b. High-Resolution

Synthetic-CT Generation with Conditional Generative Adversarial Networks, in Magnetic Resonance in

Radio-Therapy. MRinRT 2019,Toronto, Canada, July 2019.

� K. Brou Boni, A. Wagner, L. Vanquin, J. Klein, N. Reynaert, and D. Pasquier. 2019a. Génération de

tomodensitométrie synthétique par apprentissage profond pour la radiothérapie du cancer de la prostate

basée sur l’IRM seule. 30e Congrès national de la Société française de radiothérapie oncologique, Can-

cer/Radiothérapie.

Workshop papers

� K. B. Boni, J. Klein, L. Vanquin, D. Pasquier, and N. Reynaert. 2019. Génération d’un CT synthétique à

partir d’une séquence IRM avec un réseau antagoniste génératif en radiothérapie. In GRETSI 2019.

0.7 Outline of the manuscript

This thesis is an attempt to provide some key elements to the dis-

semination of dose calculation on MRI in clinical routine.

Chapter 1 introduces the ingredients for a proper comprehension of

this subject. In particular, imaging and irradiation techniques related

to our work. The indicators for comparing the respective performances

of sCT generation methods are presented in the last section.

Chapter 2 discusses several methods available to generate an accu-

rate sCT. The trade-offs of each type of method are summarized at

the end of this chapter.

Chapter 3 explores the first attemps to use a multi-centric cohort in

order to induce MR intensities variability in a deep learning model. Im-

portantly the approach does not require any type of MRI histograms

normalization. Hence it demonstrates promissing results but suffer

from the need of non-rigid registration for the training, which is time

https://iopscience.iop.org/article/10.1088/1361-6560/ab7633/meta
https://iopscience.iop.org/article/10.1088/1361-6560/ab7633/meta
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.14866?casa_token=fCHh3c125FAAAAAA%3AecbPtZG48pl737CVSPZwUNIwdsFuHtnTi6wTpTlebdC17rp2_oqpL2ptU5vD8fZJrclCoQvCq8f-Jg6J
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.14866?casa_token=fCHh3c125FAAAAAA%3AecbPtZG48pl737CVSPZwUNIwdsFuHtnTi6wTpTlebdC17rp2_oqpL2ptU5vD8fZJrclCoQvCq8f-Jg6J
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.14866?casa_token=fCHh3c125FAAAAAA%3AecbPtZG48pl737CVSPZwUNIwdsFuHtnTi6wTpTlebdC17rp2_oqpL2ptU5vD8fZJrclCoQvCq8f-Jg6J
http://dx.doi.org/https://doi.org/10.1016/j.canrad.2019.07.022
http://dx.doi.org/https://doi.org/10.1016/j.canrad.2019.07.022
http://dx.doi.org/https://doi.org/10.1016/j.canrad.2019.07.022
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consumming. This chapter includes material accepted to an interna-

tional journal (Boni et al., 2020).

Chapter 4 goes further by presenting a method that does require

only rigid registration, thus alleviating once again the workflow. This

chapter includes material accepted to an international journal (Brou

Boni et al., 2021).

The final chapter in page 75 presents conclusions and a discus-

sion on the state of the work in the continuation of this thesis.
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In this chapter, the medical imaging techniques used in this thesis

are presented with the key concept of dose. MRI and CT, which were

briefly described in the introduction, will be explained in more details

from their basic physics concepts to image property. Secondly, the key

indicators for comparing the respective performances of sCT genera-

tion methods will also be introduced. Since this thesis focuses mainly

on convolutional neural networks (CNN) solutions, we will finish this

chapter with the key concepts concerning this type of neural net.

1.1 Energy transport and deposit

This section presents the mechanism of transport and interaction be-

tween a photon beam and the medium. This explanation will help us

to understand how the dose is deposited in the body.

1.1.1 Photons, the carriers

The photon has zero mass and zero electric charge. Contrary to

charged particles, its displacement does not necessarily imply an in-

teraction with the environment and can therefore just cross a body

without any interaction. The probability p that a photon interacts

through a linear section dx is given by

p = ν · dx (1.1.1)

where ν is the linear attenuation coefficient (cm−1) and depends on

the energy of the photon and the electron density of the material.

When a photon interacts with an atom, a transfer of energy towards

an electron (e−) of this atom is made. This transfer of energy has the

effect of setting the electron in motion outside the electronic cloud

(ionization). This interaction is called the photoelectric effect (Figure

1.1).

Figure 1.1: Photoelectric effect.

The second possible interaction is the Comptom scatter. The in-

cident photon will set in motion an electron of the peripheral layers

outside the electronic cloud (ionization). The incident photon is de-

viated from its initial trajectory, it is scattered (Figure 1.2). It is the

predominant effect in radiotherapy.

Figure 1.2: Compton scattering.

Last inelastic phenomenon is pair production occurring only at

higher energy level. Near a nucleus, the incident photon is absorbed

and a positron-electron pair is produced (Figure 1.3). Ultimately, the

positron (e+) will meet an electron. The two particles will annihilate

each other by emitting two annihilation photons of equal energy in

opposite directions (concept used in PET scan).

Figure 1.3: Pair production.

All these interactions imply a transfer of energy and not a deposit
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of energy. Photon beam is an indirectly ionizing radiation. It is the

released electrons that will deposit their kinetic energy on their path

by Coulombic interactions in the medium.

1.1.2 Electrons, the ionizers

Unlike photons, electrons are charged particles. They are therefore

subject to many more interactions with the medium, which has the

effect of quickly slowing them down, until they stop completely.

Electrons passing through the medium can interact with an elec-

tronic cloud. The collision between the incident electron and one at

equilibrium will cause sometimes just a excitation or the ejection of

this one (ionization, Figure 1.4), at the cost of a loss of energy of the

incident electron.

Figure 1.4: Electron collision.

This is called inelastic collision. A hole appears on the electronic

cloud which is quickly filled by an electron from a neighboring layer

generating a X-ray. The emitted energy is characteristic of the differ-

ence in energy between two electronic level. An electron of sufficient

energy has to interact inelastically several hundred times before losing

all its kinetic energy. The succession of ionization is the main source

of biological damage due to localized radiation (ionization).

Less often, the electron is slowed down and it is deviated while

passing in the vicinity of a nucleus. The energy lost by the electron

is carried away by a photon, called secondary (Bremsstrahlung X-ray,

Figure 1.5). Figure 1.5: Bremsstrahlung ef-

fect.Electrons tend to lose kinetic energy continuously as trey travel, the

rate of energy lost is called the stopping power1 and is related to the 1Similar to the attenuation coefficient
but for charged particles.two previous phenomenons.

The energy lost E by the collision of electrons in an infinitesimal

sample ∂V of density ρ is related to the dose received in the sample

D =
E

ρ · ∂V
=
E

m
(1.1.2)

wherem is the mass of the infinitesimal sample. Other phenomenons

of increasing complexity can alter the dose deposit, we just give a brief

explanation.

Inverse-square law The fluence which is the number of crossing pho-

tons over a defined surface area is inversely proportional to the square

of the distance from the source.

Heterogeneity and interfaces When several materials compose the

medium, the dose distribution takes a less regular form. The greater

the electronic density of the medium, the more the electron interacts,

and the shorter its range.

1.1.3 Dose distribution and Monte Carlo

Several algorithms calculate a dose distribution in the patient accord-

ing to the established treatment plan, i.e. a unique set of beam param-
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eters (number of beams, orientation, MLC). Among the current dose

calculation algorithms, Monte Carlo (MC) algorithms are considered

to be the most accurate, because tissue heterogeneity and other com-

plex interactions are fully taken into account for the dose calculation.

Figure 1.6: Dose calculated on

the TPS compared to a MC dose

re-calculated on Moderato (Rey-

naert et al., 2016).

MC algorithms are stochastic methods for solving numerical prob-

lems for which no analytical formulation is defined2. From the proba- 2Monte Carlo typically allows to ob-

tain an estimate of an intractable in-
tegral I =

∫
fdµ where f is some (in-

tegrable) function of interest and µ a

probability measure. The approxima-
tion is I ≈ 1

nk

∑nk
k=1 f

(
x(k)

)
where

the x(k) are drawn from µ. The es-

timator is consistent, i.e. asymptoti-

cally correct when the number of sam-
ples nk goes to infinity, a property

arising from the law of large numbers.

bility distributions governing the interactions of electrons and photons,

the transport of these particles in medium are simulated. The resulting

physical quantities, such as the deposited dose, can be calculated by

generating a very large number of simulated particles, called histories.

The system uses the physical properties of the radiation in combina-

tion with random number generators to determine when the particles

will interact in the medium, and the type of interaction. Each history

can be summarize in two successive steps

Straight line motion the particle (photon or electron) moves in a

straight line and without any interaction. The length of its path is ob-

tained by a random draw on the probability distribution of the length

of the path of a particle. We can therefore know the position where

the particle interacts (or not).

Interaction The position of the interaction having been simulated, its

type and characteristics must be determined. The type of interaction

is first determined by random draw, from the probabilities of each in-

teraction. Then the interaction itself is simulated, new random draws

give the energy loss and the new direction of the incident particle, but

also the characteristics of any secondary particle created. These sec-

ondary particles then enter in the Straight line motion step.

However, a large number of histories have to be simulated to obtain

an acceptable level of uncertainty. The calculations can therefore take

several hours. The distribution probability of the different interactions

depends mainly on the energy of the particle, as well as on the elec-

tronic density of the medium. Their description3 is out of scope of this 3Practical aspects of Monte Carlo sim-

ulation by Salvat et al. (1999) is a good
start.

thesis.
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1.2 Magnetic resonance imaging

1.2.1 Nuclear magnetic resonance

Magnetic Resonance Imaging is based on the fundamental concept of

nuclear magnetic resonance (NMR). As its name indicates, this process

relates to atom nucleus, here the hydrogen nucleus. The hydrogen

nucleus contains only a proton4 and is widely represented in the human 4Because a proton is the sole sub-

atomic particle inside hydrogen nu-
cleus, the words proton and hydrogen

atom are often used interchangeably in

the MRI literature.

body because it is a component of fat or water molecules. A proton is a

positive charged particle and it is animated by a movement of rotation

on itself (often referred to as spin) and thus induces a magnetic field

of very small amplitude. This magnetic field is characterized by the

nuclear magnetic moment5 ~µ which is proportional to its quantum spin 5The nuclear magnetic moment can be
pictured as a tiny compass needle that

will align with stronger magnetic fields

when placed in one such field.

number S = {−1/2, 1/2}

~µ = γ~~S (1.2.1)

where γ is the gyromagnetic ratio, a constant equal to 42.6 MHz/T

for an hydrogen nucleus and ~ the reduced Planck constant.

The average nuclear magnetic moment from all the protons in a

volume V is called net magnetization ~M

~M =
1

#V

∑
proton∈V

~µ (proton) (1.2.2)

where # denotes the set cardinality operator. Outside any external

magnetic field, the magnetic moments of the protons are completely

arbitrary and tend to compensate each other on average, i.e. ~M = ~0.

Inside an external magnetic field ~B0, protons precess6 around this field 6The external magnetic field generates

a force and the proton will start mov-
ing accordingly. But remember that

a proton is already (somewhat) spin-

ning, so when moving an object which
already has a rotational inertia, one

gets an oscillating movement. This os-

cillation is called precessing. It is a
similar kind of movement that a spin-

ning top will have when gravity tries

to have it falling.

and the magnetic moments will orient themselves according to the rules

of quantum mechanics. They tend to sort themselves into either an

aligned state (lower energy and same direction as ~B0) or an unaligned

state (higher energy and opposite direction of ~B0). The energy of a

particular energy level is given by

E = −~µ · ~B0. (1.2.3)

The exact distribution of magnetic moments into aligned or un-

aligned states can be predicted by the Boltzmann distribution

N+

N−
= exp(−∆E

kT
) (1.2.4)

where N− and N+ are respectively the number of proton in aligned

and unaligned state, ∆E the energy gap between two nuclear spin

state, k is the Boltzmann’s constant equal to 1.380649 × 10−23 J/K

and T is the absolute temperature. This result states that only a few

spins per million participate in the effective magnetization ~M aligned

with ~B0.7 At equilibrium, for total number of spins N , the amplitude 7At body temperature, ∆E
kT

<< 0,

therefore N+

N−
≈ 1 − ∆E

kT
< 1. One

can understand ∆E
kT

as the proportion
of spin in excess.
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of the net magnetization can be denoted M0

M0 =
1

V
(N− −N+)µ =

1

V
(N− −N+)

γ~
2

≈ γ~N−

2V

∆E

kT
≈ γ~N−

2V

γ~B0

kT
(a)
≈ γ2~2

4kT

N

V
B0 ≈

γ2~2

4kT
ρB0

(1.2.5)

(a) N ≈ 2N− the total number of pro-

tons.

where ρ is the number of protons per unit volume or spin density

and ~ the reduced Plank constant equal to 1.054× 10−34 Js. It is this

magnetization or signal (1.2.5) which is measured in NMR because it

is proportional to the number of protons present in the sample and

also to the amplitude of the magnetic fields.

Besides, a magnetic moment is animated by a precession movement

around the ~B0 axis. The precession frequency fL is directly related

to the amplitude of the magnetic fields and the gyromagnetic ratio by

the Larmor relationship

fL
(b)
=
ωL
2π

= γB0. (1.2.6) (b) The cyclic frequency is denoted fL
while the angular frequency is denoted

ωL.Even if all the individual nuclei are precessing, ~M is not. It possesses

only a longitudinal component MZ which is not measurable in that

direction. The goal here is to tilt ~M in the transverse plane (xy)

in order to have a measurable value. This is done by using a radio-

frequency coil ~B1 rotating around the body at the Larmor frequency

in the transverse plane. When transmitting, the induced signal will

cause ~M to precess in the transverse plane near the Larmor frequency.

When the radio-frequency coil stop transmitting, ~M will still precess

while returning8 to its equilibrium state. The net magnetization has

8In general, protons are represented

only in a state “up” or “down” but

people often tend to forget that there
is a gradual transition between these

two states. This result in the fact that

the net magnetization amplitude M
does not fully develop instantly.

now three time varying components, a longitudinal Mz(t) and two

transverses Mx(t),My(t). Bloch (1946) has described the behavior of

these components when returning to equilibrium by introducing two

relaxation time constants T1 and T2

Mx(t) = M0e
− t

T2 sin(ωLt) (1.2.7a)

My(t) = M0e
− t

T2 cos(ωLt) (1.2.7b)

Mz(t) = M0(1− e−
t

T1 ). (1.2.7c)

Figure 1.7: The trajectory of the

tip of ~M is a spiral pattern. Pa-

rameters are M0 =, T1 = 4,

T2 = 2 and ωL = 10.

T1 is the longitudinal relaxation time and is associated with the

exponential regrowth of the longitudinal component Mz(t). T2 is the

transverse relaxation time and is associated with the exponential de-

cays of the transverse components Mx(t) and Mz(t). An illustration

of the trajectory of the tip of ~M back to equilibrium is proposed in

Figure 1.7. These times are characteristic of the immediate surround-

ing of the nuclei, and vary from a few microseconds (T2 in cortical

bone) to several seconds (T1 in cerebrospinal fluid) in the human body.

These time lapses are the pieces of information allowing to provide ul-

timately tissue contrast in the image that will be reconstructed from

these recordings.
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The transverse magnetization produces a signal in the form of an

electromagnetic wave at the Larmor frequency which can be collected

by a receiver coil placed (or almost) in contact with the patient. The

origin of this signal comes from the rotational movement of the mag-

netization through a receiver coil according to the Faraday’s laws of

induction. The shape of the signal collected after the magnetization

has been tilted in the transverse plane is called the free induction decay

(FID) signal. The resulting signal follows a sine wave with an expo-

nentially decaying amplitude according to the Bloch equations, as in

Figure 1.8.

Figure 1.8: FID oscillating at

Larmor frequency but damped

by the T2 decay.

The real MR signal is obtained by using the FID of the two or-

thogonal directions (fidx, fidy). The representation of the signal as a

complex number

signal = fidx + i · fidy (1.2.8)

of magnitude
√
fid2

x + fid2
y and phase arctan fidx

fidy
. It is the mag-

nitude which is used in clinical MRI.

1.2.2 Image reconstruction

Up until now, the MR signal have arisen from a single voxel in an

homogeneous sample. Indeed, the signal received is the global mag-

netization of the human body, which is not spatially localized. To

produce an image from the NMR mechanism, it is necessary to encode

the information spatially. This is the role of magnetic field gradients

which produce a linear variation of the magnetic field in the three pos-

sible dimensions which is added to the main field B0. With the right

timing, it is possible to differentiate each voxel on a slice.

The simultaneous transmission of the radio-frequency pulse and the

z-gradient allows to select the slice. Only the protons in the slice

generate a signal. The phase gradient is then activated for a given time,

which assigns the protons varying phases along the y-axis. Finally, the

frequency gradient comes into play during the measurement of the

signal, so that when the information is recorded, the rotation speeds

vary along the x-axis. An illustration is given in Figure.

The FID for a slice will be the superposition of several signals with

different amplitudes, frequencies and phases. The 2D image is re-

constructed by using two successive Fourrier tansforms. Each voxel

represents the magnitude of the signal received at this position. The

term sequence in MRI refers to a set of periodically repeated radio

frequency pulses, magnetic field gradients, and signal acquisition win-

dows that put the magnetization to a desired state, and fill the Fourier

space integrally.

An important remark on MR image reconstruction is that the values

of the voxels will have different meanings depending on parameter

choices made by the MR technician. These parameters are the echo

time and the repetition time. Depending on their values, the voxels

values will be closely related to T1, T2 or M0. Each of these choices

produce tissue contrasted images of much different aspects. These
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categories of MR images are often referred to as “sequences” and are

a great source of variability among MR images9. 9There is obviously an inter-class vari-

ability but also an intra-class one. In-
deed, for a same patient, two techni-

cians might go for slightly different pa-
rameters even if they target the same

MR sequence. In addition, the sur-

rounding magnetic field is also subject
to variations over time. All this ac-

counts for the limited reproducibility

of MR images which is one of its draw-
back compared to other modalities.

1.3 Computed tomography

1.3.1 X-ray tomography

CT is based on the same principle as radiology, i.e. the use of an X-ray

source and a detector on each side of the body. It allows a 3D image

reconstruction by simultaneously rotating and translating the X-ray

source and the detector around the body.

X-ray transmission depends on the linear attenuation coefficients ν

of the tissue along its path. The attenuation coefficient reflects how

easily a tissue can be penetrated by the X-ray. The source intensity I

is attenuated exponentially in the x-axis by:

I = I0e
−

∫
ν(x)dx (1.3.1)

where I0 is the initial beam intensity and dx is the cross section.

A set of projections at different angles allows to compute the at-

tenuation coefficient at each position. The reconstructed 2D image is

a mapping of these attenuation coefficients normalized to the water

attenuation coefficient µwater in the Hounsfield unit according to the

formula

HU = 1000(
ν

νwater
− 1). (1.3.2)

Figure 1.9: Tissue classification

on the HU scale.

It is an inverse problem solved by the Radon transform. The trans-

lation of the source will lead to the reconstruction of the 3D image.

Because each tissue has a different attenuation coefficient, a tissue

contrasted image volume is thus obtained.

1.3.2 In radiotherapy planification

In radiotherapy, the HU has an important property. Indeed, the HU

and the tissue mass density are bilinearly correlated. This relation

(when known) implies that the density of a tissue can be determined

from a CT image. This physical quantity is precisely the one necessary

for the dose calculation algorithms. The relationship between the HU

and the mass density is dependent on the energy spectrum of the

beam used inherently by each scanner. For this reason, a relationship

between the HU and the mass density must be established for each

machine and also over the time. This relationship is represented by

a calibration curve, also called image value to density table (IVDT).

Basically, to determine the calibration curve, the following protocol is

run: several test objects are acquired and these objects have known

homogeneous densities covering the range of density encountered in

human tissue. The CT number of an object measured on the image

is then assigned to the density of this object, thus composing a data

set of about a dozen points depending on the test objects used. A
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linear regression in two segments is then performed to extrapolate the

calibration curve. A visual representation in Figure 1.10.

Figure 1.10: Acquisition of an

IVDT: a phantom containing in-

serts of known variable densities

(upper left) is scanned to ob-

tain a CT image (lower left) in

which the HU of each insert is

measured, providing a bilinear

correlation between the HU and

the mass density (curve on the

right).

1.4 Performance comparison indicators

In order to evaluate the accuracy of a sCT generation method, we first

have to see the different comparison metrics used to compare a CT with

a sCT. There are several of them because none of them is uniformly

better than the others in every aspects. Basically, independently they

give us just few hints but their their combination brings us deeper

insights into their relative qualities.

1.4.1 Voxelwise comparison

The mean absolute error (MAE) and the mean error (ME) are two

global indicators of the correspondence between the HU of each voxel

in two CT images, typically an sCT and the associated CT image

of the patient. The latter is considered as the reference since the

image is actually produced during a CT examination. The respective

formulas10 for the mean absolute error and the mean error are 10The formulas are given as if im-

age volume tensors had been flattened
to vectors and can be indexed using

only one integer i instead of the usual

(i, j, k) triplet used to index a voxel.MAE =
1

N

N∑
i=0

|ct(i)− sct(i)|

ME =
1

N

N∑
i=0

ct(i)− sct(i)

(1.4.1)

where N is the total number of voxels and i the voxel index. They

are both expressed in HU.

These indicators do not take into account the spatial distribution of

the error, but rather the amplitude and the occurrence of these errors.

They are often introduced in the field of sCT generation to summarize

the overall performance of a method. It is a good trade-off when it is

difficult to perform a dosimetric comparison.

On the one hand, ME is more permissive as it allows the errors of

one area to compensate the errors of another one even if they are not

adjacent. On the other hand, unlike ME, MAE11 is more compelling as 11MAE is also known as the Manhat-
tan distance or the L1 norm distance.

ME cannot qualify as a distance be-
cause ME = 0 does not imply that

sct = ct.

does not allow such compensations between adjacent areas. A better

exploitation of their results will be to use them on the different ROIs

instead of the whole body.
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1.4.2 Dose volume histogram

The final interest of sCT generation methods is to produce an accurate

dose distribution in regard to the one computed on the real CT. It is

therefore essential to study the dosimetric impact of sCT generation

methods.

One tool commonly used in radiotherapy for plan evaluation or com-

paring different plans is the DVHs. It is a decreasing cumulative his-

togram counting the number of voxels that received at least a given

dose level. DVHs are usually given for different ROIs (tumour or organ

at risk). Because it is more convenient to convert the number of voxels

into a volume, the volume of each ROIs receiving each dose level is

known. The axes are displayed either in absolute (cubic centimeters

and Gray) or in relative (% volume and % max or prescribed dose).

To compare the doses computed on the CT and the sCT, one may

uses some DVHs points. They are expressed as Dx, where x represents

a percentage volume. The value of Dx is therefore the minimum dose

that x receives or equivalently the pseudo-inverse of the DVH for a

given volume. The DVHs parameters studied through the different

studies are the following: D98, D50 and D2. Once again, this indicators

discards all spatial information. The comparison is done by computing

the relative difference on these DVHs parameters

∆Dx% = 100(
Dxct − Dxsct

Dp
) (1.4.2)

where Dp is the dose prescribed.

1.4.3 Voxelwise dose difference

The difference between two dose distributions is a qualitative analysis

of the spatial difference. It is a visual tool which is the most direct

and informative. However, there is a huge amount of information to

process as we are dealing with 3D images. The relative dose difference

is simply given by

∆D% =
100

N

N∑
i=0

Dct(i)− Dsct(i)

Dp
≈ 1

Gr

∑
x

∆Dx% (1.4.3)

where Dct and Dsct are respectively the dose distribution computed

on the CT and sCT, N is the total number of voxels, i the voxel index

and Gr the number of dose levels considered in the body. Similarly

as the ME, this measure allows error compensations therefore for a

qualitative assessment, Dct−Dsct may be displayed as an image thereby

revealing which regions received an overdose / underdose depending

the sign of the difference.

1.4.4 Gamma dose distribution evaluation tool

The gamma index (Low, 2010) is used to quantitatively compare two

dose distributions, in our case Dct and Dsct. For each pair of voxel
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positions ( ~vct, ~vsct) inside the sCT and CT respectively, the gamma

index is given by

Γ( ~vct, ~vsct) =

√
‖ ~vct − ~vsct‖22

∆d2
+

[Dct( ~vct)− Dsct( ~vsct)]2

∆D2
(1.4.4)

where Dct( ~vct) and Dsct( ~vsct) are respectively the doses at this po-

sition on the CT and the sCT, ∆d and ∆D are two operator-imposed

criterion representing the distance to agreement (3, 2 or 1 mm) and

the accepted dose difference (3, 2 or 1%). The minimum value of Γ is

the value of the γ index at this position

γ( ~vct) = min
~vsct∈S

Γ( ~vct, ~vsct) (1.4.5)

where S = {~v : ‖v − ~vct‖2 ≤ ∆d} is a sphere of center ~vct and radius

∆d. The proportion of voxels such that γ ≤ 1 is called the passing

rate. An illustration is given in Figure 1.11.

Figure 1.11: Gamma distribu-

tion between two dose distribu-

tions. Each voxel represents the

γ index.

1.5 Deep learning in computer vision

Computer vision is about software that can interpret images. One im-

portant aspect to consider in computer vision are features. This term

refers to interesting areas/patterns on an image that characterize it.

Features can correspond to contours, points, colors that can constitute

“a lower dimensional representation” of image content. A relevant fea-

ture must be unique enough to be able to differentiate two different

classes of images, and generic enough to be able to easily recognize

images of the same class despite the variability of instances of this

class.

Not so long ago, depending on the given problem, computer vi-

sion scientists used to craft pre-processing steps of learning algorithms

which must rely on carefully chose features in order to solve a task such

as automatic classification or segmentation. Feature engineering is a

tedious job that in some cases jeopardizes the sought level of auton-

omy of machine intelligence. Although these contributions required

hard work and could achieve remarkable results on dedicated appli-

cations, they were time consuming and required constant adaptation

whenever the task evolves (even moderately) which, to some extent, is

reminiscent of the Mechanical Turk, see Figure 1.12.

Figure 1.12: The Mechanical

Turk was a famous hoax built at

the end of the 18th century: it

was an alleged automaton with

the ability to play chess, it was

actually a man hidden inside.

Progress has been made since, but the biggest breakthrough came

in 2012 at the annual ILSVRC12 computer vision competition when a

12Annual challenge to both promote
improvement in computer vision and

benchmark it.

deep learning (DL) algorithm based on a convolutional neural networks

(CNN) architecture called AlexNet killed the competition, by outper-

forming state-of-the-art approaches with a never-seen-before margin.

The key aspect of this breakthrough comes from the ability of deep

learning to find itself the best suited visual features to solve the learn-

ing task.
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1.5.1 The mechanics of machine learning

As humans, we certainly do not have to count the number of legs or

measure the shape of an ear to learn how to recognize a cat. We are

able to do so by seeing several examples and being corrected when we

make the wrong guess. In other words, we do not improve our vision

with a large list of formulas but with examples. As we grow up, our

brain experiences several kinds of stimulations in which its connections

are reinforced or changed in order to assimilate new information.

This learning process has been mimicked by computer vision scien-

tists with machine learning (ML) in which the classical paradigm of AI

has changed. ML allows to efficiently perform complex tasks such as

classification, segmentation or regression (see Figure 1.13) by learning

(instead of following) a set of rules.

Figure 1.13: Example of task

performed by ML in radiother-

apy.

DL is a sub-category of compositional ML models, i.e. such models

are organized in layers which are stacked together to create a more

general mapping from inputs to predicted outputs. Most DL models

are based on neural nets and we will focus on these latter in this

manuscript. Basically, in DL, we shift the burden of feature extraction

from the programmer to the machine. First of all, let us start with a

short review of shallow neural networks, starting with the perceptron.

1.5.2 Perceptron

The perceptron was designed to mathematically mimic the process-

ing of information by biological neural networks. Perceptrons are to a

computer what biological neural networks are to the cortex of mam-

mals.

Figure 1.14: An artificial neuron

with 3 inputs. Its approximation

capacity is therefore necessarily

limited.

The building brick of the perceptron is a neural unit (Figure 1.14)

which simple model allowing to perform a linear combination followed

by a threshold operation usually embodied by the sign function. If a

neural unit belongs to the first layer, it computes a linear combination

of the input plus some intercept/bias constant. For some d-dimensional
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input x = (xi)0<i≤d, the neural unit output is

ŷ = sign(w0 +

d∑
i=1

wixi), (1.5.1)

where the weights w = (wi)0≤i≤d are learnable parameters. If the

network contains only one layer which itself contains one neuron, then ŷ

is the prediction of the perceptron. Because the sign function binarizes

the linear combination, such models were initially used to solve binary

classification tasks. Also, for this model to work, it is necessary to

adjust the weights to appropriate values. Under linear separability

assumption, a simple (and provably converging) learning rule can be

used13.

13As for biological neurons, the

weights of a perceptron are not found
in one try. They are determined us-

ing an iterative rule. This rule con-
sists in adding to the weights x × y

where y ∈ {−1; +1} is the true class

label of input x. This rule must be re-
peated for each (x, y) pair in the train-

ing set. This will guarantee that the

sign of the dot product between any
input and the weights agree with the

true class label.

Obviously, this core neural unit model is not very flexible and more

general versions of it are now preferred. In particular, the sign func-

tion is usually replaced with a differentiable activation function14. Not

14identity for regression, sig-
moid/softmax for classification.

only does this allow to tackle more general problems than binary clas-

sification, but it also make it possible to use more subtle learning rules

whose success is not tied to the linear separability condition. The most

powerful such learning algorithm relies on the definition of a loss func-

tion and the computation of its gradients w.r.t. learning parameters,

hence the need for differentiability.

More formally, for a training set D = (x(j), y(j))0≤j<N containing

N observations, the training loss is defined as

L (w) =

N∑
j=1

`
(
y(j), fw

(
x(j)

))
, (1.5.2)

where fw is the neural network and ` is a loss function that provides

feedback on the ability of the network to produce a relevant prediction

ŷ(j) = fw
(
X(j)

)
compared to the true value y(j). In a classification

task, the network output ŷ(j) is a vector of class membership prob-

abilities. If there are K possible class labels, the most usual loss is

cross-entropy which writes

`
(
y(j), ŷ(j)

)
= −

K∑
k=1

1y=k log ŷ
(j)
k . (1.5.3)

The predicted probability for label k is ŷ
(j)
k so if the true label is

indeed k, the cross-entropy will penalize values of ŷ
(j)
k that are small.

In a regression task, the usual loss is the quadratic loss, in which

case the training loss is often referred to as mean square error (MSE).

In this case, we have

`
(
y(j), ŷ(j)

)
=
(
y − ŷ(j)

)2

. (1.5.4)

This loss obviously penalizes large discrepancies between prediction

and true value.

Now the learning problem of the weights has been cast into an op-

timization problem and the training loss is minimized using stochastic

gradient descent15 (SGD). The opposite direction of the gradient is

15The gradient descent algorithm uses

the gradient of L w.r.t. weights. How-
ever, when N is large and because
differentiation and summation can be
exchanged, it becomes advantageous

to compute the gradient for only one
point, i.e. the gradient of `

(
y(j), ŷ(j)

)
.

This is what the stochastic version
of gradient descent does. Sometimes,

gradients are average on a small subset
of training data called a mini-batch.
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where the loss will be smaller, therefore we update the weights for

each observations (X(i), y(i)) as

wi := wi − η
∂`(y(j), ŷ(j))

∂wi
,∀i ∈ [0, d], (1.5.5)

The partial derivative is carried out
by using the chain rule of differentia-

tion for computational efficiency. It is
thus important that the components

of a neural net are (easily) differen-

tiable functions. The chain rule re-
quires to start the computation of the

derivatives from the predicted output

back to the first layer and the whole
procedure is thus often referred as the

backpropagation algorithm.

where η is an hyperparameter called the learning rate. More re-

cently, advanced update rules are used which provide a form of gra-

dient memory through update steps and will adapt the speed of con-

vergence to the shape of the loss function. The most popular such is

ADAM which was introduced by Kingma and Ba, 2014. Nonetheless,

the learning rate remains the most important hyperparameter of the

rule and deserves great care to be tuned.

When all examples in the training set have been used one time (it-

eratively) as part of the update rule, the algorithm has completed a

so-called epoch. The general convergence of SGD is usually controlled

either in number of epochs or through a more subtle procedure called

early stopping. This latter procedure uses another set of data, called

validation set, and check if the validation loss keeps decreasing. If not,

the training is stopped. Most often, the algorithm is preferably stopped

when the validation increased for several epochs in a row. The num-

ber of epochs in question is often called the patience hyperparameter.

Another possible stopping criterion consists in checking if the gradient

norm is below a given predefined value which usually indicates that

SGD has reached a local minimum16 of the loss function. 16Neural network training does not al-

low in general to reach the optimal val-
ues of the parameters. The obtained

parameters after training are depen-

dent on the initialization of these lat-
ter which is randomized. This is

one notorious drawback of neural net-
works which may not systematically

converge to a function with the same

predictive power.

So far, we have mostly mentioned a basic situation in which a neural

net is organized in a few neural units in parallel that maps the input to

the output which might be a scalar or a vector. Sequential connections

of neural units are usually preferred so that the network can pick a

predictive function from a larger functional space and thus learn more

complicated patterns. These multiple-layer alternatives are presented

in the next subsection.

1.5.3 Multiple layer perceptron

A set of s neural units which map in parallel the same input quantity

to an s-dimensional vector is called a layer. When multiple such layers

are plugged sequentially, the corresponding network is called a multi-

layer perceptron (MLP). The most widely used MLP architecture is

the one-hidden-layer MLP. It comprises

an input layer which just an abstraction where each unit is simply

meant to contain one of the entries of the input x to be processed,

a hidden layer which usually contains several neural units that process

the input in different ways to trigger signals that reveal the presence

of a pattern,

an output layer that maps the intermediate representation issued by

the hidden layer to the desired type of output.

See Figure 1.15 for an illustration of one-hidden-layer MLP archi-

tecture.
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Figure 1.15: How to artificially

learn ? For a given input sam-

ple x the network should pre-

dict an output y. To begin with,

the weights are randomly ini-

tialized. Secondly, we compute

the output of the network y and

the error associated ε. By the

chain rule we compute the par-

tial derivative of ε with respect

to each parameters wk. We fin-

ish by updating the weights us-

ing the gradient descent algo-

rithm. Repeat for each instance.

When one uses several units and layers, there multiple sets of weights

to learn. For a notation simplification purpose, all these weights are

concatenated in a single vector of parameter usually denoted by θ. The

training loss minimizing must thus be solved w.r.t. θ.

Basically, the perceptron (as depicted in the previous subsection)

is a linear model with an approximation capability necessarily lim-

ited. Minsky and Papert (1969) in their book have nipped in the bud

all development by stating that practical applications was futile, dra-

matically decreasing the research by the late 60s even by connecting

multiple perceptrons together17. 17In a re-edition, they contrasted their
words with the technical means of the

time and the lack of basic theory.
Surprisingly, Cybenko (1989) and Hornik (1991) have proven that

an appropriate combination of perceptrons in the form of a one-hidden-

layer MLP can achieve universal approximation and renewed the in-

terest of the community for this class of models. The architecture of

MLPs is more closely related to the functioning of the human brain to

perform the task for which they were developed.

Stacking hidden layers (deeper net) allows to model arbitrarily com-

plex functions. This is what gives deep neural net the predictive power

that makes them so successful today. Although there is no rigorous

definition specifying how many layers is “deep”, networks with only

four or five hidden layers used to be considered very deep and almost

impossible to train in practice as they were involving far too many

trainable parameters.

The concept of convolutional layer and parameter sharing is a game

changer that allowed the actual training of very deep networks and was

the starting point of the success story of deep neural networks. The

following paragraphs give a brief introduction to convolutional archi-

tectures. Note that there are many other neural net architectures than

the one presented here, which allow to model particular types of data

(images, sounds, temporal dependencies...), once again by mimicking

the brain. See Zarándy et al. (2015) for more details.
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1.5.4 Convolutional neural net

CNN (Krizhevsky, Sutskever, and Hinton, 2012) are a class of neu-

ral nets that use convolutional layers. Unlike usual fully connected

layers which are made of neural units with their own private weights,

convolutional layers are made of units that share parameters, thereby

drastically reducing the amount of parameters to be learned. CNN

leverage parameter sharing in order to learn deep models, i.e. net-

works with a lot of layers. In contrast, deep fully connected networks

cannot be trained because the numbers of parameters in them lead to

overfitting18.

18When a learning model is very flex-

ible, it is pretty easy to minimize
the train loss. For example, the

trained model f could be such that

f(x) =

{
y if (x, y) ∈ D
0 otherwise

. Although

this function achieves a zero train loss,
it has no chance to generalize to un-

seen data, i.e. a pair (x, y) that does

not belong to the training set D. This
function also exhibits sharp variations

which are usually indicating a form

of overfitting. A workaround is thus
to forbid the algorithm to learn such

functions with strong variations.

The key idea is that, unlike MLP architectures, a neural unit is not

connected to each single entry of the layer input. Suppose this input is

a multi-dimensional array (or tensor), then the unit will only process

a small sub-array of consecutive cells. Consequently, while an MLP

layer (also called dense layer in this context) has to learn as many

parameters as cells in the array (+1 for the intercept), a convolutional

layer will use only a number of parameters equal to the number of cells

of the sub-array (+1 for the intercept). The convolutional layer then

slides to the next sub-array. To some extent, this like several neural

units were processing each sub-array but were forced to use the same

weights, hence the term parameter sharing.

Parameter sharing units in layer can be reshaped as a mathemat-

ical operation called convolution. Intuitively, convolutions are well

suited to inputs that are signals or images since it has been known for

long that convolutions can filter signals and, for instance disambiguate

noise from informational content. Consequently, neural units are often

called filters or kernels in this context. The output of the convolution

operation is not a scalar in general. It is usually a tensor of the same

size as the input one, also called feature map. The feature map is also

mapped element-wise by a chosen activation function.

In order to reduce the dimensionality of intermediate representa-

tions issued by convolutional layers, one can use a pooling layer. This

layer has no trainable parameters. The feature maps is divided into

small (usually non-overlapping) sub-arrays and each sub-array is re-

placed by a scalar. If the scalar in question if the maximal value in the

neighborhood defined by the small sub-array, then this is max-pooling.

Another possibility is to use the mean of the sub-array (mean-pooling).

The typical architecture of a CNN consists in alternating between

a few convolutional layers and pooling ones. When the dimensionality

of a feature map is small enough, we stop using convolutions and we

plug a small MLP to complete the network (see Figure 1.16).

1.5.5 Generative adversarial net

Generative adversarial networks (GAN, Goodfellow, 2016) are models

that are at the interplay between game theory of neural networks.

In the game in question, there are two players (respectively called

the generator and the discriminator) trying iteratively to adapt their
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Figure 1.16: A CNN inspired by

LeCun et al. (1989). Convolu-

tion in yellow, pooling in red,

MLP in green and softmax out-

put in purple.

strategies with respect to the opponent. Goodfellow (2016) uses the

following metaphor

G is a counterfeiter trying to produce undetectable fake currency.

D is the police trying to discriminate true currencies from counter-

feited ones.

In the context of this manuscript, both G and D are CNN and we

are not interested in money but in CT images. The game consists in

training D in an almost usual way, i.e. to maximize the probability

of assigning the correct label to either true training examples or to

counterfeited ones produced by G. Alleging that G = G0 is fixed, this

amounts to solving

max
θd

m∑
i=1

logD
(
ct(i)

)
+ log

(
1−D

(
G0
(
ε(i)
)))

(1.5.6)

where θd is the vector of trainable parameters of the discriminator, m is

the size of a mini-batch of images, ct(i) is a true CT image and noise(i)

a noise vector that G maps to an sCT image. This maximization prob-

lem can be addressed by the usual backpropagation algorithm. Indeed,

multiplying (1.5.6) by −1 gives the usual cross-entropy loss. The ob-

tained solution is not guaranteed to be the optimal solution of the

problem but at least a “good” one if the training went alright. Before

the first iteration, the parameters of G0 are initialized at random. At

the first iteration (k = 1), we thus obtain a discriminator D1 using the

above maximization.

We can now move to the optimization of G assuming that D = D1

is fixed. G is the opponent of D, so it will try to minimize the function

that D strove to maximize. We will now try to solve

min
θg

m∑
i=1

logD1
(
ct(i)

)
+ log

(
1−D1

(
G
(
ε(i)
)))

(1.5.7)

where θg is the vector of trainable parameters of the generator.

Again, backpropagation will optimize this function and we obtain

an updated generator G1 at the end of the first iteration. We can go
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on and iterate several times. From Goodfellow (2016, Proposition 2),

this MinMax game has guaranteed convergence, although this proof

relies on rather ideal assumptions. Note that, in practice, the noise

generation is replaced with dropout19. Also, the discriminator should 19Dropout consists in turning off some

neural units of the network at ran-

dom during training. This forces the
network to be able to provide good

answers even if some information is
“missing”.

be optimized for several epochs before switching to one epoch of gen-

erator optimization.

1.5.6 Feature scaling or normalization

A good rule of thumb with CNN is that inputs and outputs should

be scaled. It is only because the optimization is more stable if the

inputs and ouptuts are centered and white. Mixing images that lie in

[-1000,300] with images that lie in [-1000,2200] will usually result in

failure.

Min-max scaling was chosen as normalization in upcoming studies.

It restricts the range of values in the dataset between any arbitrary

points a and b such as:

scale(X) = a+
(X −Xmin)(b− a)

Xmax −Xmin
. (1.5.8)

This simple pre-processing will be used in both contributions that

will be presented in Chapter 3 and Chapter 4 respectively. Concerning

CT, we scale the features (images) from [-1024,1500] to [-1,1] following

this function:

scale(ct) =
2 · (ct+ 1024)

2524
− 1. (1.5.9)

Likewise, the MR images are scaled per site meaning that if the min

and max intensity over all the patients of site k are mink and maxk,

then the scaling function from [mink,maxk] to [-1,1] for site k is:

scalek(mr) =
2 ·mr

maxk −mink
− 1. (1.5.10)
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Current TPS include both use of MRI and CT for dose calculation.

CT is still needed for an accurate dose calculation, it gives neces-

sary information on attenuation properties of the tissues which can be

converted into mass densities. Contrary to MRI, CT offers a limited

contrast between soft tissues. By synthesizing a CT from a MRI, it

appears to be possible to introduce an MRI-only workflow.

Currently, there are a number of problems impeding the usage of

MRI for treatment planning

• It is not always possible to scan the patient on MRI in treatment

position. The radio frequency coils do not always allow the usage of

fixation/immobilization equipment, such as masks. Recently, most

MRI vendors have introduced systems dedicated to radiotherapy,

allowing to position the patient in treatment position. Additional

efforts are needed though. In brachytherapy, it is difficult to visu-

alize the catheter.

• Some geometrical distortions can be caused by non-linearities in the

magnetic gradients and the static field, by a chemical shift, or by

magnetic susceptibility artifacts. These effects can be minimized

by using actively shielded gradients or by measuring the distor-

tions (Pasquier et al., 2006). A study on MR images of prostate

patients (Kapanen and Tenhunen, 2013) highlighted that even for

large scanning volumes (pelvis), geometrical errors concerning rec-

tum wall and gold seed markers were below 2mm. In open MRI

systems, the magnetic field is more homogeneous and distortions

are less important (Devic, 2012). It can generally be concluded

that the geometrical distortion is no longer a restrictive issue for a

MRI-only workflow (Korhonen et al., 2014).

• Last but not least, there is no direct relation between MRI val-

ues and electron density, which is needed in current TPS for dose

calculation.

The first two problems have been partially solved by the efforts

provided by MRI manufacturers who all now provide solutions specific

for radiotherapy. For the third problem, which is the focus of this

manuscript, different solutions, based on conversion of MRI into sCT,

have been proposed in literature. They are reviewed hereafter.
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2.1 Bulk density method

This method has been used for many years (Pasquier et al., 2007). The

method is based on assigning homogeneous densities in delineated re-

gions. This approximation can be compared to switching off inhomo-

geneity corrections in CT based dose calculations (Jonsson et al., 2010;

Jonsson et al., 2013). In the last 20 years, dose calculation accuracy has

continuously improved, evolving from correction based algorithms to

Pencil Beam, convolution/superposition algorithms. Recently Monte

Carlo calculations are being introduced within commercial TPS, in-

creasing the accuracy even further.

Using bulk densities based on MR images seems to be a major step

back concerning dose calculation accuracy. Obviously, the accuracy of

the bulk density method will be improved by increasing the number

of contoured regions. For the case of prostate treatment, using the

conventional four beam set up (Pasquier et al., 2006) demonstrated

that dose calculations without heterogeneity corrections lead to errors

up to 4 % in the PTV for clinical cases. Automatic contouring of

femoral heads and other pelvic structures, assigning bulk densities,

leads to a much better agreement (within 1 %) with the original CT

based plans. But this is practically not feasible for all localizations,

even when using an automatic contouring tool, and the cases stud-

ied in literature were relatively conventional beams traversing simple

geometries. Korsholm, Waring, and Edmund (2014) determined a cri-

terion to check if for a certain treatment the MRI-only method using

bulk densities would provide a high enough accuracy. This is not a

practical solution though and is a direct consequence of the weakness

of the usage of bulk densities. Stanescu et al. (2008) used an adap-

tive thresholding technique to correct image distortion, atlas-based1 1explained below.

software to auto-segment relevant structures and bulk density assign-

ment for treatment planning of intracranial lesions. They showed that

MRI-based treatment planning for intracranial lesions was as precise

as CT-based planning. Even recently this method is still being con-

sidered for sCT generation (Johnstone et al., 2018).

2.2 Atlas-based method

Another approach is to build an atlas including multiple pairs of CT

and MR images of the same patient and to compute a deformable

registration mapping an MRI in the atlas to the new acquired MRI.

The chosen MRI in the atlas is usually the closest one in the atlas to

the new one. The mapping is then applied to the CT associated to the

selected MRI in the atlas. Various operations on the voxels can then

be applied to the distorted CT atlas. The sCT is therefore a distorted

CT included in the atlas. However, this method has a recognized risk

of failure in case of unconventional patient anatomy. This method is

explained in Figure 2.1.

According to Keereman et al. (2010), the main problem associated

with the atlas-based method, is the need of anatomic reference data.
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Figure 2.1: Atlas-based method

using deformable image registra-

tion. The atlas consists of one

or more pairs of aligned CT and

MRI datasets (step 1). For a

new patient, with only the MRI

available, the MRI dataset is

registered using deformable reg-

istration (step 2). The obtained

deformable vector field (DVF) is

applied to the corresponding at-

las CT (step 3) providing a first

estimate of the sCT. In step 4,

different manipulations can be

performed, ranging from simple

denoising to more advanced cor-

rection methods. The atlas can

consist of one single pair of MRI

and CT, or of a larger number of

patients: multi-atlas approach

(Guerreiro et al., 2017).

Inter-patient differences are often too large to rely on these methods

(Nyholm and Jonsson, 2014). This is why a (post-processing) correc-

tion is often applied. In a study performed by Dowling et al. (2012)

two out of 39 patients needed to be excluded because of this. Con-

sequently, increasing the number of CT cases that have been used to

generate the atlas improves the performance of atlas based sCT gener-

ation (Uh et al., 2014) at the expense of computation time. This is also

the method that was used in the Centre Oscar Lambret in the frame-

work of several scientific projects (Boydev et al., 2017) as described in

Figure 2.1.

2.3 Voxelwise conversion

Preferably, one would like to determine the tissue densities directly

from the MR image contrast (Siversson et al., 2015; Su et al., 2015).

The main problem is the low signal intensity of cortical bone because of

the low hydrogen content2. Because of that, the transverse relaxation 2spin density is directly related to the

signal intensity, see Equation 1.2.5rate (R2 = 1/T2) is very fast and the signal is lost before it is collected.

A number of groups have introduced dual ultrashort time echo (UTE)

MRI sequences to distinguish bone from air regions (Keereman et al.,

2010; Johansson, Karlsson, and Nyholm, 2011; Grodzki, Jakob, and

Heismann, 2012). These sequences are used to image tissues with short

T2 relaxation time like the bones (Reichert et al., 2005). The bone

signal in the first echo is relatively high while it has disappeared in

the second. For other tissues both signal intensities are almost equal.

So the difference between the two signals obtained in the two echoes

will be maximal for bone and minimal for tissue and air (Catana et

al., 2010). The signal intensity of the first echo is used to distinguish

air from soft tissue (Keereman et al., 2010). The noise in the signal

associated with air might complicate this technique, so one needs to

filter the images and even use anatomical information to distinguish
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air from soft tissue.

These methods provide excellent attenuation maps for the MRI sys-

tem, but the usage of three bulk densities (air, tissue, bone) is not

adequate for treatment planning leading to deviations up to 9 % in

organs at risk (Eilertsen et al., 2008). The combination of these UTE

sequences with a spin density scan3 should allow to finetune the tis- 3Sequences set that allow the measure-
ment ρ in a voxel, see Equation 1.2.5sue (composition and density) definition. For the moment the UTE

sequences are only applied in the head but this is evolving (Nyholm

and Jonsson, 2014). One of the problems might be that on UTE im-

ages, the blood vessels are dark (Hsu et al., 2013), so one still needs to

combine with another sequence. Also, the UTE images used to char-

acterize tissues need to be registered to the more conventional images

(T1/T2 e.g.) that are used for delineation, but this is an intra-modality

registration (Nyholm and Jonsson, 2014).

Korhonen et al. (2014) used a conventional T1 Dixon sequence for

direct conversion of intensity levels for prostate patients. This de-

mands a delineation of femoral heads in a semi-automatic way though.

The MRI is then calibrated as a function of HU using two different

calibration curves (bone, soft tissue). This method ignores air cavities

(or they would have to be contoured as well). The method was recently

applied to proton dosimetry (Koivula, Wee, and Korhonen, 2016).

Johansson, Karlsson, and Nyholm (2011) used a T2 weighted 3D

spin echo based sequence and two DUTE sequences and a trained

algorithm to convert MRI into a sCT. They are able to convert on a

voxel by voxel basis, not needing bulk densities. Their method was

successfully applied to the head region, but severe artifacts were still

obtained for pelvis and thorax regions (larger field of view). They also

estimated the uncertainty on the calculated HU in the sCT images

(Johansson et al., 2012), which allows estimating the error on the dose

calculation on the sCT images. Gudur et al. (2014) used a combination

of both MRI intensity and geometry information (atlas based method)

to estimate electron density as both methods are not perfect. They

claim that the conversion method using pixel intensity is not good

enough, but this is because of the usage of a T1 image instead of using

spin density weighted images.

2.4 Machine Learning

As a general rule, MRI-only workflow would require an expert for the

generation of an sCT. An ML approach can tackle this requirement

by using an ML algorithm able to learn a direct end-to-end mapping

from MRI to CT. It is important to note that it is difficult to compare

the different results since a voxel-wise comparison between the CT and

the sCT is not fully representative (because of misalignment) and not

everyone can perform a dosimetric comparison.
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2.4.1 Patch-based

One option is to divide the images into so-called patches that are

matched. A patch is a (usually rather small) sub-region of an im-

age (MRI). An intensity-based nearest neighbor search in the patch

database (MRI-CT atlas) is done in order to find the correspond-

ing CT patch. These methods are becoming more and more popular.

Andreasen et al. (2015) and Andreasen, Van Leemput, and Edmund

(2016) for example, used a KD tree algorithm. The general principle

consists of a comparison of local MRI intensity patterns with that of

multiple MRI of the learning database. The sCT is generated using

atlas CT values using coordinates that are determined using the best

match between MRI images. This method provides dosimetric preci-

sion of 0.5%. This method demands important computing resources

while being slow as the pattern comparison needs to be performed on

multiple patches from several image datasets.

2.4.2 Convolutional neural network

From a training dataset consisting of a large set of CT-MR aligned

image pairs, a direct mapping from MR to CT can be learned by

training a CNN. At test time, this mapping is then applied to new

MRI to generate an sCT. This class of model is the first to achieve an

end-to-end sCT generation. The next paragraphs present recent CNN

based approaches from the literature.

In Roy, Butman, and Pham (2017), a CNN (using patches) was

developed based on dual-echo UTE images using Inception blocks

(Szegedy et al., 2015). Bones and air are now taken in account. The

use of a CNN and dual echo UTE sequence produces very good re-

sults, but there is no dosimetric comparison reported in this article

concerning the brain.

Han (2017) has developed a deep CNN based on a U-Net (Ron-

neberger, Fischer, and Brox, 2015). U-net architectures are encoder-

decoder type of architectures with additional shortcut-connections be-

tween symmetrically opposed layers. The proposed deep CNN method

produced an MAE = 84 HU for all subjects tested, outperforming atlas

based methods MAE = 94 HU.

The first use of 3D convolution (MAE = 41 HU), improving slightly

the result compared to 2D (MAE = 38 HU), came with the study of Fu

et al. (2018) in the pelvic area. However 3D convolutions requires to

learn a lot more parameters than 2D convolutions which may increase

the risk of overfitting or alternatively impose to use more massive

datasets. It may also rise technical issues as this a memory demanding

architecture which is a weakness of most GPUs.

A trade-off between dimensionality and informational content is pro-

posed by Dinkla et al. (2018) who use a 2.5D CNN. They have built a Instead of just an axial image for in-
stance, the net is also fed with the two
additional planes: coronal and sagital.

model based on dilated convolution (Wolterink et al., 2016) allowing

larger receptive fields while keeping the same number of parameters.

This method has a MAE = 67 HU and a mean error dose of 0.05 %.



42 deep learning in mr-guided radiation therapy

The authors demonstrated the accuracy of radiation therapy dose cal-

culations based on brain sCT generated by a dilated CNN. Recently,

another study followed in the head and neck area (Dinkla et al., 2019)

with a gamma pass rate γ2%,2mm = 95%.

Without being fully exhaustive, the above list shows that it is pos-

sible (with a dataset of paired MR and CT images that underwent

non-rigid registration) to generate an accurate sCT in approximately

less than 2 minutes. These methods represent so far the best trade-off

in the conversion of MRI into CT.

2.4.3 Generative adversarial network

By using a GAN, the sCT generation becomes an image-to-image

translation problem. GANs have gained popularity in the past few

years because they succeeded to generate accurate (new) samples in

wide range of applications. Put most simply, they allow a network

to learn to generate data with the same internal structure as other

data, a procedure often referred to as style transfer (Gatys, Ecker, and

Bethge, 2016).

Nie et al. (2017) were the first to use a GAN for sCT generation. A

context model was developed in order to use the spatial information

included in the MRI volume. It offered promising results: MAE =

39 HU for the pelvic area and MAE = 92 HU for the brain area.

Wolterink et al. (2017) proposed an sCT synthesis using unpaired CT-

MR images, it means that they do not use aligned pair of CT-MR

images. Based on a CycleGAN (Zhu, Park, et al., 2017), it seems to

be robust to image misalignment. Their model outperforms paired

model when facing region with air pockets. One major advantage is

the only use of rigid registration in data preparation which is a new

big step since the first use of DL in sCT generation.

As mentioned by Maspero et al. (2018), these two GAN approaches

do not provide dosimetric evaluation. In their work, these other team

of authors have trained a conditional GAN (Isola et al., 2016). They

pre-processed MR image as input by labeling fat and water thanks to

particular MR sequences called T1 Dixon. This sequence produces 4

different images contrasts (Fat, Water, In-phase and Out-of-Phase) in

one-shot acquisition allowing a better segmentation. An image com-

parison gives an MAE = 65 HU for the prostate, MAE = 56 HU for the

rectum and MAE = 59 HU for the cervix. A dose comparison shows

good results too, higher dose (D > 90%) about 0.1 to 0.3 % (dose dif-

ference between CT and sCT) for the prostate and in the worst case

up to -1.6% for the cervix.

2.5 Conclusion

This chapter illustrates that sCT synthesis methods are numerous and

of varying complexities. The frequent changes in procedure from one

study to the other, such as the treatment technique, scanning parame-

ters, the method of evaluation and the statistics of the number of cases
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does not allow a global comparison of these different approaches.

It is difficult to draw conclusions about the dosimetric accuracy

associated with each method, which is often a point discussed as ad-

ditional information but does not constitute a study in its own right,

especially in the atlas and intensity-based methods. In DL, dataset

size matters too, the bigger the better. While some researchers claim

that their method is better than others, the observed discrepancies

may be mostly about dataset size and quality. The size and encoding

of an image is also important, HU accuracy is (virtualy) more easy to

obtain on a smaller image with a narrow HU spectrum. Quantifying

the differences between sCT and CT is an important analysis, but in

the context of radiotherapy, the ultimate goal remains the quality of

dosimetric accuracy.

The first step to a proper comparison is the use of a reference set of

training and/or testing patients depending of the location. One must

admit that this is not as simple as it seems to create an open-cohort

when dealing with medical data. Efforts have been made in order to

create datasets dedicated to research purposes, for instance the ADNI

data4 in the head and the Gold Atlas project in the pelvic area-part 4Alzheimer’s Disease Neuroimaging
Initiative(Nyholm et al., 2018).

When facing clinical reality, some of the quoted references are not

always feasible for many reasons. Some dedicated sequences depends

on the scanner manufacturer or the version and if some license has

been purchased. When possible, the acquisition time can also be a

barrier. The guideline of our research is generalization of sCT synthesis

regardless the MRI sequence chosen.
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This chapter introduces one of the first sCT studies evaluating the

performance of a GAN in a multicentric context with a paired MR-CT

dataset1.

1Paired dataset refers to the need of
deformable registration to obtain pair-

wise aligned MR and CT images of the
same patient.

We focus on the issue of generalization in DL and data unavailabil-

ity. Recall from the previous chapter that dedicated sequences for the

convenience of sCT generation is not always possible in clinical rou-

tine. Moreover, the creation of a database is also a tedious job if one

wishes to train its own DL model.

The presented method overcomes the limitation of a dedicated se-

quence by using standard sequences already in use in radiotherapy

workflow. In addition, we demonstrated that it is also possible to gen-

erate an accurate sCT using MR sequence not included in the training

phase. Our goal and contribution is a turnkey model usable by the

greatest number thanks to its simplicity.

It is also beneficial for the CoBra project to the extent that an an-

other partner is working on a brachytherapy optimized MRI sequence.

As a robust model, we will no longer need to build a dataset for the

chosen sequence.

The material in the next section has been published in Physics in

Medicine & Biology journal

N K. N. B. Boni, J. Klein, L. Vanquin, A. Wagner, T. Lacornerie,

D. Pasquier, and N. Reynaert. 2020. MR to CT synthesis with mul-

ticenter data in the pelvic area using a conditional generative ad-

versarial network. Physics in Medicine & Biology.

While some considerations and definitions are redundant with the

introduction, a few notations are specific to this chapter.

3.1 Introduction

Interest has been rapidly growing in complementing and even replac-

ing Computed Tomography (CT) with Magnetic Resonance Imaging

(MRI) in the field of radiation therapy thanks to a superior soft-tissue

contrast. In addition, an MRI-only workflow avoids extra radiation to

the patient and reduces errors related to inter-modality registration.

Currently, the main challenge is that MRI pixel values are not directly

related to electron density, which is needed in radiation therapy treat-

ment planning systems (TPS) for dose calculation.

This problem is solved by converting an MRI to a so-called synthetic

CT (sCT) or pseudo CT. Many different sCT generation methods have

been proposed in the literature. These techniques recently underwent

significant changes with the emergence of deep learning. Accuracy and

https://iopscience.iop.org/article/10.1088/1361-6560/ab7633/meta
https://iopscience.iop.org/article/10.1088/1361-6560/ab7633/meta
https://iopscience.iop.org/article/10.1088/1361-6560/ab7633/meta
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velocity have dramatically increased (Han, 2017; Dinkla et al., 2018).

Generative Adversarial Networks (GAN) have boosted this trend with

their ability to learn generating any data distribution in a paired(Nie

et al., 2017; Maspero et al., 2018) or unpaired fashion(Wolterink et al.,

2017).

In this chapter, we discuss a new multi-scale approach by using

an existing conditional GAN (cGAN, Wang et al., 2018) with paired

data coming from different sites. This approach is among the first

in the literature to use a deep learning-based method on data from

different medical imaging centers using different CT and MRI. A proof

of concept study is conducted by creating a test set with images coming

from a site not used in the train set. This will allow to cover a wide

range of possibilities (artifact, anatomical malformation, MRI intensity

variability) in the training and thus improve the generalizability of

MRI to CT conversion. Finally, a dosimetric evaluation is performed

to assess the dose accuracy on the sCT.

3.2 A conditional GAN for MR-to-CT synthesis

3.2.1 cGAN baseline

As explained in 1.5.5, GANs are characterized by two networks: the

generator G(ε) with ε a noise vector and a discriminator D(y). For

the current application, y represents a CT image. All CT images are

distributed according to an unknown probability distribution py. G

attempts to transform the vector ε into images so that a sample of

size n, G(ε(1)), . . . , G(ε(n)) follows the probability distribution py. D

attempts to separate the images actually distributed according to py

from those produced by his opponent G. Actually, D(y) is understood

as the probability that image y is a true CT2.

2This is simply a convention (without
loss of generality) for the binary clas-

sification tasks pertaining to the dis-

criminator. If the class label of a con-
tent y is denoted by c ∈ {0; 1} and

c = 1 means y is genuinely sampled

from py , then D(y) = P (c = 1|y).
This must be kept in mind when it

comes to write the GAN loss. D(y) =

p(c = 1|y)

To convert an MRI into a CT, the networks have to be conditioned

with an MR image x. A simple way to achieve this objective is to feed

these two networks with x (as additional input). The generator and

the discriminator therefore become G(x, ε) and D(x, y) respectively

(see Figure 3.1).

Figure 3.1: Conditional genera-

tive adversarial net: the discrim-

inator D learns to classify a real

CT from a synthetic CT while

the generator G learns to fool D

following a min-max game.

As the training progresses, G must be able to generate samples that

are more and more faithful to the distribution py, making it more and
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more difficult for D to detect fakes CT images. G and D are trained

alternately and share the same objective function. The discriminator

tries to maximize it while the generator tries to minimize it. When

both networks must play this game given an additional input x, the

corresponding architecture is called a conditional GAN (cGAN)3. 3The idea of cGANs was already men-

tioned in Goodfellow, 2016.The theoretical objective function of the cGAN is the following ex-

pected cross-entropy

Ex,y[logD(x, y)] + Ex,ε[log(1−D(x,G(x, ε)))]. (3.2.1)

However, as usual, we will work with an empirical version of the

latter based on our paired training set D =
(
ct(j),mr(j)

)
0≤j<N :

∑
j

logD(mr(j), ct(j)) +
∑
j

log(1−D(mr(j), G(mr(j), ε(j)))). (3.2.2)

This network is optimized following the standard approach of Good-

fellow (2016) by alternating the gradient ascent/descent steps between

the generator and the discriminator. Noise instances ε(j) are induced

by dropout (Hinton et al., 2012) in both the training and test phases.

3.2.2 The pix2pixHD network

In the architecture investigated in this chapter, we will use the cGAN

introduced by Wang et al. (2018) whose motivation is to improve pho-

torealism of the outputs when inputs are high resolution images. The

traditional cGAN architecture is modified regarding four important

aspects:

• Coarse-to-fine generator: the generator which has an encoder-decoder4 4A neural architecture, known as

auto-encoder allows to learn a low di-

mensional representation of inputs. It
comprises two sub-networks called en-

coder and decoder. The encoder Enc
maps inputs to their low-dimensional

versions and the decoder Dec then

maps these representations back to the
input space. In this case, the opti-

mized loss is ‖Dec(Enc(x))− x‖ (un-

supervised paradigm). This architec-
ture has proved to be beneficial in a

wide range of applications.

architecture is separated in two sub-networks G = {Gglobal, Glocal}.
The first one is the center of an encoder-decoder architecture and

is thus itself a (smaller) encoder-decoder. It is pre-trained on low

resolution images. The local generator (the entire encoder-decoder

structure) is then fine-tuned on high resolution images.

• Multi-scale discriminators: G has to fight against several discrimi-

nators D = {D1, D2, D3}. Each of these discriminators works at a

different image scale.

• A feature matching loss LFM (Wang et al., 2018) is added in order to

stabilize the training of the generator by promoting a match between

intermediate representations (feature maps) in the different layers

of the discriminators from real and synthesized images. The idea

behind this additional loss term is that the generator will be forced

to produce images with more natural statistics at different scales.

If we denote D
(i)
k the i-th layers of Dk, LFM is then calculated as

LFM (G,D1, .., DK) =
∑
i,j,k

MAE(D
(i)
k (mr(j), ct(j)), D

(i)
k (mr(j), G(mr(j), ε(j)))). (3.2.3)



48 deep learning in mr-guided radiation therapy

• Instead of the usual cross-entropy cGAN loss (3.2.2), the authors

recommend the Least Square GAN (LSGAN) loss (Mao et al., 2017)

which is a quadratic version. This loss address the problem of

vanishing gradient when updating the generator (Arjovsky, Chin-

tala, and Bottou, 2017) using samples lying on the “True” decision

boundary but still far from the real data distribution. LSGAN loss

penalises these samples enabling faster convergence and more real-

istic image generation.

3.2.3 Tailored architecture for sCT generation

In our sCT generation implementation, it proved necessary to make

several adjustments compared to pix2pixHD. First, pre-training the

smaller resolution generator (Glocal) proved to be counterproductive

and led to poorer results. The generator G used in our case follows in-

stead the architecture proposed by Johnson, Alahi, and Fei-Fei (2016)

and learns to synthesize a CT. We chose to work with K = 2 dis-

criminators working at different scales, both of them being trained

to differentiate real and synthesized CT images. The first discrim-

inator D1 operates at standard scale while the second D2 operates

with downsampled images by a factor 2. These discriminators have

identical architectures with different receptive fields. They follow the

PatchGAN architecture (Isola et al., 2016) forcing the generator to

produce consistent images while encouraging finer details. Training

this model tends to produce realistic CT images but regarding HU,

performances do not seem as good as they visually do. To overcome

this difficulty without adding a post-processing step, we propose to add

an additional L1 reconstruction loss (MAE) term between the gener-

ated sCT and the true CT. Finally, the full objective function LcGAN

writes:

LcGAN (G,D1, D2) =
µ

K
LFM +

∑
j,k

[
Dk

(
mr(j), ct(j)

)
− 1
]2

+

[
Dk

(
mr(j), G

(
mr(j), ε(j)

))]2
+λ
∥∥∥ct(j) −G(mr(j), ε(j)

)∥∥∥
1

(3.2.4)

with λ = 10 and µ = 5 are two hand-tuned hyperparameters.

3.3 Experimental material and implementation details

3.3.1 Patient data collection

This study included pelvic MR and CT images of 19 male patients with

prostate or rectal cancer. Images were taken from the public dataset

named the Gold Atlas project (Nyholm et al., 2018) aimed to provide

a source of training and validation for segmentation as well as sCT

generation methods. Patients with locally advanced tumors were not

included in this database. Radiotherapy planning for prostate cancer

was carried out for all patients. Indeed, these were early stage rectal
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cancers that did not deform the pelvic anatomy and allowed realistic

planning of prostate cancer radiotherapy.

Nineteen patients coming from three sites were selected and scanned

in radiotherapy treatment position, T2-weighted MR and CT images

were acquired following clinical protocol. Table 3.1 provides the ac-

quisition settings.

Site 1 Site 2 Site 3

Number of patients 8 7 4

CT

Manufacturer Siemens Toshiba Siemens

Model Somatom Definition AS+ Aquilion Emotion 6

Slice thickness (mm) 3 2 2.5

Kernel B30f FC17 B41s

T2-w

Manufacturer GE Siemens GE

Model Discovery 750w 3T - 1.5T Signa PET/MR 3T

Sequence type FRFSE TSE FRFSE

Slice thickness (mm) 2.5 2.5 2.5

Bandwidth (Hz/pixel) 390 200 390

Encoding direction COL ROW COL

TR (ms) 6000–6600 12000–16000 6000–10000

TE (ms) 97 91–102 65

Table 3.1: Acquisition settings

for the three sites. TSE stands

for Turbo spin echo and FRFSE

for Fast recovery fast spin-echo,

COL for columns.

9 organs were segmented by five experts based on MRI, and con-

sensus contours among the experts are also available. The open source

library ITK (Johnson et al., 2015) was used to perform a deformable

registration on the CT to fit the anatomy of the MRI, enabling the

use of the delineations on the registered CT.

3.3.2 Image pre-processing

A mask excluding surrounding air was obtained on the CT and MRI

using the external ROI option (threshold level based) on Raystation

(v7.0). Voxels outside the body were automatically assigned to -1024

HU for CT and 0 for MR. Inter-scan differences (air pockets and struc-

tures) have not been taken into account in this study. HU were nor-

malized, MR intensities as well patient-wise. Finally, all dicom files

were converted to 16-bit grayscale images compatible with current deep

learning frameworks. The first and last slices were not taken into ac-

count for the training due to aliasing in MRI. This allowed the use of

this dataset consisting of aligned MR-CT as part of an image-to-image

translation problem.

3.3.3 Training of the network

The 19 patients were separated into a training set containing 7 patients

from site 2 and 4 patients from the third one. The 8 patients coming

from the site 1 were used as testing set. 256×256 sub-images were

randomly cropped during training. The network was trained using
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Adam optimizer with an initial learning rate of 0.0002 for 100 epochs,

then for another 100 epochs with a linearly decay learning rate to zero.

Training took on average 17 hours on an Nvidia Quadro P6000 with

a batchsize of 1. Data augmentation was performed by horizontal flip

increasing the size of the training set to 2008 image pairs.

3.3.4 sCT evaluation

Once the network was trained, each sCT was generated using only the

generator on the GPU. The images files created are then converted to

a DICOM format, allowing their use on a treatment planning system.

Image comparison Synthetic CT and registered CT were compared

on a voxel-wise basis using the MAE and the Mean Error (ME). Con-

sidering the voxels within the body contours, MAE and in HU were

calculated for each patient.

A 16-bit implementation of a vanilla pix2pix (Isola et al., 2016;

Maspero et al., 2018) was trained in the same multicentric configura-

tion. MAE and ME of the sCT generated by pix2pix is also calculated

for each patient.

Dose comparison Tomotherapy treatment plans were optimized on

each sCT in Raystation (v7.0) using the Collapsed Cone (v3.5) algo-

rithm on a grid of 1 × 1 × 1mm3. The prescription was 39 × 2 Gy

to the planning target volume (PTV) (prostate with 5 mm uniform

margin). The resulting plans were then recalculated on the CT for

dose comparison.

A dose volume histogram (DVH) analysis was performed after copy-

ing the structures (PTV, femoral heads, bladder wall and rectum wall)

to CT. The chosen DVH points were D98, D50 and D2. Voxel-wise

absolute dose differences in percentage were computed within a dose

threshold of 90%, 50% and 10% of the prescribed dose Dp.

3.4 Results

Figure 3.2: From left to right,

MR image, CT, sCT and differ-

ence (CT – sCT). The images on

top represent the axial plane, on

the bottom, the frontal plane.

Image comparison CT synthesis took on average 7.5 s on GPU. Fig-

ure 3.2 shows an example of one of our test patients. As expected,
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differences are most pronounced in the bone structures. Staircase pat-

terns are visible on the bone in the frontal view. This may be due

to the 2D generation technique used that does not take into account

adjacent slices.

The proposed method produced an average MAE of 48.5±6 HU and

an average ME of −18.3 ± 9 HU for our 8 patients. Vanilla pix2pix

produced an average MAE of 62.0 ± 1 HU and an average ME of

−11.4±2 HU. Table 3.2 provides the average MAE and ME for target

volumes and organs at risk (OAR) for pix2pixHD and pix2pix.

MAE ME

pix2pixHD pix2pix pix2pixHD pix2pix

Bladder wall 49.4 ± 12 61.6 ± 10 -23.9 ± 23 -0.6 ± 31

Rectum wall 101.8 ± 78 109.8 ± 78 -77.6 ± 90 -85.2 ± 80

Anal canal 30.3 ± 14 36.0 ± 13 -24.6 ± 18 -26.4 ± 16

Penile bulb 28.1 ± 9 56.5 ± 16 -19.2 ± 15 38.6 ± 25

Femoral Heads 90.5 ± 9 112.7 ± 23 -25.9 ± 47 45.7 ± 44

Seminal Vesicles 44.7 ± 15 54.8 ± 11 -14.0 ± 26 13.1 ± 19

Prostate 47.1 ± 6 62.3 ± 9 -11.6 ± 12 17.5 ± 29

Table 3.2: Average MAE and

ME in HU (±σ) between sCT

and real CT for different lo-

cations when training with

pix2pixHD based model and

pix2pix.

DVH analysis The absolute difference between the DVH points on

sCT and CT were always below 1.4%. Figure 3.3 shows a boxplot of

the DVH point difference for the PTV and the OARs.

Dose difference Mean absolute dose differences were computed with

several dose thresholds. Differences only appear in high dose regions

and the body contour as shown on Figure 3.4.

The sCTs tend to have higher Hounsfield units (HU) resulting a

global decreased dose inside the body. Inner negative dose differences

are often due to lower HU on the sCT in bone area or air pocket not

generated in sCT.

Table 3.3 reports the statistics in terms of mean dose difference

related to the prescribed dose calculated on a threshold of 10%, 50%

and 90% of the prescribed dose.

3.5 Discussion and Conclusion

Maspero et al. (2018) showed that conditional GANs can synthetize CT

from MRI. In the current work, a good level of performance is achieved

with a limited dataset with a coarse-to-fine approach, by incorporating

a feature matching loss and the use of the Least Square GAN loss.

The approach presented in this chapter is one of the very first allow-

ing to derive a robust neural network trained and tested with data com-

ing from different medical imaging centers. Without ever having seen

an image from the test site, our model learns to synthesize a clinically

acceptable sCT, which may be generalized to different MRI manufac-

turers. This process has the capability to tackle the images variability
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Figure 3.3: VH parameters comparison between dose on CT and sCT for the PTV and OARs.

Figure 3.4: From left to right, dose calculated on CT, sCT and dose difference (CT – sCT).
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Volume |DCT−DsCT |
Dp

Body 0.00± 0.01

[0.01; 0.03]

Dose >10% 0.12± 0.07

[0.00; 0.22]

Dose >50% 0.49± 0.29

[0.03; 0.92]

Dose >90% 0.68± 0.35

[0.19; 1.23]

Table 3.3: Mean dose difference

(±σ) between CT and sCT and

range of values.

problem in clinical practices, since changes can happen in image ac-

quisition parameters or with machine replacement for instance. This

study was done using standard morphological sequence (T2-w Spin

Echo) without the need of any dedicated sequences.

Results look promising although a presence of artifact patterns can

be noted. This may be partially due to the low amount of data and

to the transposed convolutions used in the decoder part in the gener-

ator. The use of a third discriminator seems to get rid of this problem

without improving quantitative results. The average MAE (48.5 HU)

and the dosimetric evaluation (dose differences within 1.4%) obtained

in this study compare similarly with other state-of-the-art single cen-

ter results (Maspero et al., 2018; Nie et al., 2017) in the literature for

the pelvic area. These small differences would be suitable for clinical

implementation. It is a well-known fact that deep learning models can

benefit from more training data, which leads to the expectation that

better results will be obtained when feeding our algorithm with more

datasets. A direct comparison with other studies is not trivial since

distinct datasets are used. The size of the dataset, the sequence(s)

used, the diversity (artifact, specific case, etc.) and the misalignment

between the sCT and the CT are some of the numerous factors that

make a direct comparison difficult.

Improvements need to be introduced in order to mitigate the dis-

continuity across the slices and therefore improve image quality. The

use of 3D convolution leads to questionable results in the community,

since they are greedy and not so effective. As a future perspective,

we plan to improve sCT generation via Recurrent Neural Contextual

Learning. Such models are expensive, and their benefits will have to

be contrasted with the overhead they induce.

Besides, a multi-center study based on the conversion of MR inten-

sities to HU includes uncertainties related to the different image value

to density table (IVDT). Direct conversion to electron density would

avoid these errors but the benefit remains to be studied.

As a final word, an obvious limitation of the model studied in this

chapter is the necessity of a paired dataset to train. This means that
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one must possess a dataset of (CT,MR) pairs each of which was ac-

quired from the same patient. Obviously, this is a drawback in terms

of dataset size as the number of patients undergoing both exams is sev-

eral order magnitude smaller then those performing only one. Also,

many organs are deformable and might exhibit different shapes in the

CT and MR exams. This issue coupled with registration requirement

are somewhat inducing a noise in the training data which hinders the

job of the cGAN. The next chapter will investigate another GAN-type

architecture that can learn from unpaired data thereby circumventing

the above mentioned issues.
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Appendices

3.a Network details

The generator in pix2pixHD is basically a residual net (He et al.,

2016a) with 9 residual block. The discriminators follow the same ar-

chitecture as th PatchGAN (Isola et al., 2016). We follow the naming

convention used in CycleGAN (Zhu, Park, et al., 2017) for their de-

scriptions.

Details of the generator architecture Let c1-k denote a 1 × 1 Convo-

lution with k filters, c7ir-k denotes a 7 × 7 Convolution-IN-ReLU layer

with k filters, Ri-k denotes a IN residual block two 3 × 3 convolutional

layers with the same number of filters on both layers and ct3ir-128 de-

notes a 3 × 3 Transposed Convolution-IN-ReLU layer with 128 filters.

Generator: c7ir-64, c7ir-128, c7ir-256, Ri-256, Ri-256, Ri-256, Ri-

256, Ri-256, Ri-256, Ri-256, Ri-256, Ri-256, ct3ir-128, c3ir-64, c7-64,

tanh.

Details of the on discriminator architecture Let c4-1 denote a 4 × 4

Convolution with one filter and c4il-k denotes a 4 × 4 Convolution-

IN-LeakyReLU layer with k filters.

Discriminator: c4il-64, c4il-128, c4il-256, c4il-512, c4-1.
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We investigate in this chapter the sCT generation with an unpaired

dataset1. We focus once again on generalization but the use of an

1Unpaired dataset refers to the need
of only rigid registration.

unpaired dataset introduces a new challenge. State-of-the-art machine

learning models for this situation are CycleGANs (Zhu, Park, et al.,

2017)2. One major limitation of these models is that they only learn

2This other variant of GANs are ac-

tually relying on two GANs. One
GAN would typically learn to map

MRIs to CTs while the other one will
learn the inverse mapping from CTs to

MRIs. For any image x of an unpaired

dataset, one can leverage a pipeline
of two generators to produce another

image x̃ that should be very close to

x. A so called cycle-consistency loss∑
x
‖x− x̃‖ can be added to the objec-

tion function. Further explanations on

CycleGANs are given in the next sec-
tion.

one-to-one mapping. Such a model assumes that a CT can only be

associated (through a bijective mapping) with a single MRI sequence

which is not correct.

Unpaired datasets have the advantage of being simple to create.

They can be used with an unpaired-data-friendly model directly in

theory without any form of registration between the MR and CT, even

if in practise we chose to perform rigid registration in order to make the

training easier. Moreover, models trained from unpaired data do not

suffer from misalignment like paired model in which a slight voxel-wise

difference can negatively impact the training of the model. However,

unpaired models need more data compared to models trained from

paired data since they basically use twice as many parameters. This

can be balanced with the ease of fueling this unpaired database with

patient not necessarily scanned with both modalities.

The material in the next section has been published in Medical

Physics journal

N K. N. Brou Boni, J. Klein, A. Gulyban, N. Reynaert, and D.

Pasquier. 2021. Improving generalization in MR-to-CT synthesis

in radiotherapy by using an augmented cycle generative adversarial

network with unpaired data. Medical Physics.

While some considerations and definitions are redundant with the

introduction or other sections of the manuscript, a few notations are

specific to this chapter.

4.1 Introduction

Since its introduction in the late 80s, magnetic resonance imaging

(MRI) is being increasingly used in radiotherapy. MRI has been par-

ticularly appreciated for its superior soft-tissue contrast over computed

tomography (CT). As a result, MRI can better discern tumors than

CT images, and has therefore been integrated into the radiotherapy

treatment workflow. In practice, after MR acquisition, regions of in-

terest (ROIs) are contoured directly on the image by a radiation on-

cologist. However, CT is still required since it serves as the basis for

dose calculation because of the need for electron-density information.

The contours drawn on an MR image are propagated to a CT image

https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.14866?casa_token=fCHh3c125FAAAAAA%3AecbPtZG48pl737CVSPZwUNIwdsFuHtnTi6wTpTlebdC17rp2_oqpL2ptU5vD8fZJrclCoQvCq8f-Jg6J
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.14866?casa_token=fCHh3c125FAAAAAA%3AecbPtZG48pl737CVSPZwUNIwdsFuHtnTi6wTpTlebdC17rp2_oqpL2ptU5vD8fZJrclCoQvCq8f-Jg6J
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.14866?casa_token=fCHh3c125FAAAAAA%3AecbPtZG48pl737CVSPZwUNIwdsFuHtnTi6wTpTlebdC17rp2_oqpL2ptU5vD8fZJrclCoQvCq8f-Jg6J
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after co-registration. In the professional community, this step is con-

sidered as the weakest link in the radiotherapy workflow (Njeh, 2008).

The image-registration process introduces spatial uncertainties whose

significance depends on the localization.

To reduce these systematic spatial uncertainties introduced by inter-

scan differences, interest has been rapidly growing in MRI-only radio-

therapy (Nyholm and Jonsson, 2014). However, the main challenge

associated with this modality is that MRI intensities cannot be di-

rectly used to obtain information regarding electron density, which is

required for dose calculation in radiation therapy treatment planning

systems (TPS).

This problem can be partially solved by converting MRI into a so-

called synthetic CT (sCT) which is the focus of this manuscript. As

explained in the previous chapters, several methods for this purpose

have recently emerged with the advent of deep learning, especially

methods using Generative Adversarial Networks (GANs, Mao et al.,

2017; Isola et al., 2016). These networks rely on learning the relation-

ship between MRI and CT images in a paired (Maspero et al., 2018;

Boni et al., 2020) or unpaired fashion (Wolterink et al., 2017; Hiasa

et al., 2018) (see Figure 4.1).

Figure 4.1: In the paired fashion,

the input MR and ground truth

CT slices correspond to the same

patient at the same anatomical

localization. In contrast, mod-

els based on the unpaired fashion

use CT and MR slices of differ-

ent patients at different anatom-

ical localizations during train-

ing.

As discussed in Chapter 3, learning in a paired fashion requires

perfect registration of a set of MR and CT images, a time-consuming

task that often involves deformable registration and consequently re-

introduces geometrical uncertainty (Thor et al., 2013; Nyholm et al.,

2009). Due to their adaptability/flexibility, unpaired models using at

most rigid registration and based on CycleGAN (Zhu, Park, et al.,

2017) have attracted more interest and offer the potential to improve

sCT generation accuracy by using appropriate models such as a 3D

model (Lei, Harms, et al., 2019) or a deeper model (Lei, Wang, et al.,

2019). Nevertheless, these models are not robust to the MR variability

arising in multicentric workflows, highlighting the common generaliza-

tion issues in machine learning when dealing with out-of-distribution

samples. Since a CycleGAN only learns one-to-one mappings (Alma-

hairi et al., 2018) i.e., the model associates each CT with a single MR

sequence, mapping several MRI instances to the same CT image rep-

resents a bottleneck that will become a major limitation in the clinical

implementation of this approach (Fu et al., 2018).

In this chapter, we aim to improve the generalizability of MR-to-CT
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synthesis with unpaired data. We devised an Augmented CycleGAN

(AugCycGAN, Almahairi et al., 2018) that allowed the use of multi-

centric data in both training and testing phases. We evaluated the

accuracy of sCT images obtained with this approach by performing

both image and dosimetric comparisons in order to show that our

model can learn from several MRI distributions.

4.2 From cycle GANs to an augmented cycle GAN

for MR-to-CT synthesis

4.2.1 Unsupervised learning of one-to-many

Unpaired learning Given two distributions pmr(mr) from MRI and

pct(ct) from CT, we assume there exists a mapping between these two

domains only if they are highly dependent, with the same anatomi-

cal localization for instance. To recover this mapping, Zhu, Park, et

al. (2017) used two GANs with cycle consistency. In our MR-to-CT

context, we can define the first GAN as {Gmr2ct : MRI 7→ CT,Dct :

CT 7→ {0, 1}} and the second as {Gct2mr : CT 7→ MRI,Dmr :

MRI 7→ {0, 1}}. These networks follow the standard optimization de-

scribed by Goodfellow (2016) with an adversarial objective (marginal

matching) formulated for the first CT-GAN as follows:

Lmr2ctGAN (Gmr2ct, Dct) =
∑
j

logDct

(
ct(j)

)
+
∑
j′

log
(

1−Dct

(
Gmr2ct

(
mr(j′)

)))
, (4.2.1)

Similarly for the second MR-GAN {Gct2mr, Dmr}, we have:

Lct2mrGAN (Gct2mr, Dmr) =
∑
j′

logDmr

(
mr(j′)

)
+
∑
j

log
(

1−Dmr

(
Gct2mr

(
ct(j)

)))
. (4.2.2)

We use two different indexes j and j′ in these cross-entropy loss terms

to emphasize the fact that the sets of CT and MR images are not paired

and would typically have different sizes. Observe that, compared to

losses from Chapter 3, dropout noise instances ε(j) are no longer used.

This is because one directly attempts to map pmr to pct (or conversely)

instead of mapping a noise distribution to pct having observed a sample

from pmr.

The goal here is that the output of each generator should match

the distribution of the target domain. As usual, each discriminator is

a binary classifier that discriminates genuine samples from generated

ones. The main trick of cycle GANs allowing to learn from unpaired

data is cycle consistency. Simply put, transferring a modality to the

other and then back into it produces a reconstructed image close to

the original. The cycle-consistency loss starting from an MRI slice is

thus given by:

Lmrcyc(Gmr2ct, Gct2mr) =
∑
j′

∥∥∥Gct2mr (Gmr2ct (mr(j′)
))
−mr(j′)

∥∥∥
1
. (4.2.3)
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Similarly, for a CT slice, one has:

Lctcyc(Gct2mr, Gmr2ct) =
∑
j

∥∥∥Gmr2ct (Gct2mr (ct(j)))− ct(j)∥∥∥
1
. (4.2.4)

The global objective function of a CycleGAN is obtained as a weighted

sum of these four loss terms (with appropriate positive weights). As

explained in the next paragraph, this model cannot be applied in our

context therefore we will leverage additional latent variables.

Limitations of CycleGAN In our medical image generation problem,

the learning process of CycleGANs cannot be performed correctly be-

cause we need to learn a one-to-many mapping. Since the CycleGAN

model generates deterministic mappings (Zhu, Zhang, et al., 2017), the

generator Gct2mr cannot be optimized properly when the MR outputs

exhibit substantially differences due to (manufacturer proprietary so-

lutions or sequence types); see Figure 4.2 for an illustration of these

discrepancies in terms of voxel intensity distributions.

Figure 4.2: Distributions on

MR intensity according different

scanners. Zero values were not

taken into account.

The main difficulty is that the cycle consistencies when plugged

together amount to require that Gmr2ct(Gct2mr(ct)) ≈ ct′; therefore,

the generators must be inverse functions of one another and thus bi-

jective: Gmr2ct = G−1
ct2mr, which contradicts the fact that many MR

images must be mapped to the same CT image. To overcome this

modeling problem, we propose to resort to an “augmentation” as pro-

posed by Almahairi et al. (2018) to capture any missing information

that is necessary to generate / reconstruct an MR image from Gct2mr

of a given sub-category (e.g. T1 or T2 category).

Augmented CycleGAN (AugCycGAN) in MR-to-CT Instead of learn-

ing a mapping Gct2mr : CT 7→MRI with a single input, this generator

is augmented by including a latent space ZMRI as an additional input

space that captures missing information (i.e., “style” information char-

acterizing the MRI distribution in terms of sequence type and manu-

facturer). The inverse mapping Gmr2ct causes the loss of this crucial

information needed to synthetize or reconstruct the correct MRI style;

thus, the latent space allows recovery of missing information when

transforming an MRI into a CT. The CT-to-MR mapping becomes a

stochastic mapping Gct2mr : CT ×ZMRI 7→MRI capable of correctly
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optimizing the cycle consistency loss. The proposed model captures

ZMRI by using an encoder Emr : CT ×MRI 7→ ZMRI . To summa-

rize, the AugCycGAN designed for our purpose3 is composed of five 3Because Gmr2ct does not need to
be one-to-many, there is no need for

an extra latent variable for CT style

therefore our model is simpler than the
vanilla version introduced in Alma-

hairi et al. (2018).

networks: two in the first GAN {Gmr2ct, Dct}, two in the second GAN

{Gct2mr, Dmr}, and one encoder {Emr}. A sixth (and final) denoted

by Dzmr network will be necessary to complete the architecture. as

explained in the following paragraphs.

When resorting to latent variables, it often proves beneficial to chose

a prior for these variables. Usually, this prior is chosen to make mathe-

matical derivations simpler and/or to induce independence among the

variables. To this end, Almahairi et al. (2018) use a standard Gaussian

prior denoted by pz over ZMRI . They consequently adopt a marginal

matching loss LZMRI

GAN for the latent space in order to encourage the

encoder Emr to produce realistic samples matching pz = N (0, I):

LZMRI

GAN (Gmr2ct, Emr, Dzmr ) =
∑
j′′

logDzmr

(
z(j′′)

)
+
∑
j′

log
(

1−Dzmr

(
Emr

(
Gmr2ct

(
mr(j′)

)
,mr(j′)

)))
,

(4.2.5)

where the samples z(j′′) are drawn from pz. This is where the sixth

network is needed in order to discriminate samples genuinely sample

from pz from those produced by the encoder Emr. Cycle consistency

is also extended to the latent space:

LZMRI
cyc (Gct2mr, Emr) =

∑
j

∥∥∥z(j) − Emr
(
Gct2mr

(
ct(j), z(j)

)
, ct(j)

)∥∥∥
1
.

(4.2.6)

Again z(j) ∼ pz and index j is used because we need as many

latent vectors as CT images. This last cycle consistency loss force the

encoder to extract a latent vector that is the same as the one needed by

generator Gct2mr to produce an MRI with appropriate style properties.

When training this vast architecture, it is simpler to summarize the

optimization process with respect to input flows which respectively

minimize different loss terms. Training in the forward direction CT-

to-MR is done by minimizing the following terms:

Lct2mrGAN (Gct2mr, Dmr) + Lctcyc(Gct2mr, Gmr2ct) + γLZMRI
cyc (Gct2mr, Emr), (4.2.7)

with γ = 0.025, training in the backward direction (MR-to-CT) is

done by minimizing the following remaining terms:

Lmr2ctGAN (Gmr2ct, Dct) + LZMRI

GAN (Gmr2ct, Emr, Dzmr
) + Lmrcyc(Gmr2ct, Emr, Gct2mr), (4.2.8)

The AugCGAN is trained on both objectives simultaneously; Figure

4.3 summarizes both mappings.

For easier reproducibility, it should be emphasized that loss terms

Lct2mrGAN , Lmrcyc and Lctcyc have evolved compared to equations (4.2.2),

(4.2.3) and (4.2.4) because latent variables and the encoder are now

at play. Their updated version are given below:
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Figure 4.3: Augmented Cycle

GAN consists of a forward and

backward cycle in which a gen-

erator is augmented with a la-

tent space to allow a better re-

constructed MR image.

Lct2mrGAN (Gct2mr, Dmr) =
∑
j′

logDmr

(
mr(j′)

)
+
∑
j,j′

log
(

1−Dmr

(
Gct2mr

(
ct(j), Emr

(
mr(j′), ct(j)

))))
,

(4.2.9)

Lmrcyc(Gmr2ct, Gct2mr) =
∑
j,j′

∥∥∥Gct2mr (Gmr2ct (mr(j′)
)
, Emr

(
mr(j′), ct(j)

))
−mr(j′)

∥∥∥
1
, (4.2.10)

Lctcyc(Gct2mr, Gmr2ct) =
∑
j,j′

∥∥∥Gmr2ct (Gct2mr (ct(j), Emr (mr(j′), ct(j)
)))

− ct(j)
∥∥∥

1
. (4.2.11)

4.3 Experimental material and implementation details

4.3.1 Patient data collection

The experimental study carried out in this chapter included pelvic MR

and CT images of 39 patients with prostate or rectal cancer obtained

from 5 different sites. All scans were acquired in the radiotherapy

treatment position. Half of the images were obtained from the public

dataset named Gold Atlas project (GaP), 17 which aims to provide a

source of training and validation images for segmentation as well as

sCT generation. The remaining half were obtained from Institut Jules

Bordet (IJB) and Centre Oscar Lambret (COL).

Table 4.1 provides the acquisition settings for both CT and MRI

and site-wise splitting of the data for network training and evaluation.

Patients with hip implants were included in training and testing.

Observe that different manufacturers and different parameters are used,

thereby making this multicentric experimental setting inappropriate

for cycle GAN without augmentation.

4.3.2 Image pre-processing

To ensure a simple and smooth workflow, patient images underwent

three pre-processing steps:

• Registration: CT images were rigidly registered and resampled to

MR images. CT images were then cropped to match the field of view

(FOV) of MRI. Registration for patients in site 5 was performed in

Raystation (v 9A, RaySearch Laboratories, Sweden) by radiation

oncologists, while the other patients were registered using Elastix

(Klein et al., 2010).
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• Exclusion of surrounding air/noise: A mask excluding surrounding

air or outside structures was obtained on the CT and MR images by

using the external ROI option (threshold level based) on Raystation.

Voxels outside the body were automatically assigned to -1024 HU

for CT and 0 for MR.

• Normalization: Limit values were arbitrarily set at 1500 HU and

depending on the MR constructor 10000 or 15000. HU values were

normalized, MR intensities as well site-wise following the min-max

feature scaling.

4.3.3 Training of the networks

We adapted the AugCycGAN implementation to make it suitable for

radiotherapy image specifications. Modifications over the vanilla Aug-

CycGAN have been made in order to use 16-bit grayscale images,

modify input size, and use data augmentation. The 39 patients were

separated into a training set containing 19 patients from site 1 to 3.

The 19 patients from sites 4 and 5 were used for testing. The net-

work was trained using RMSProp optimizer with an initial learning

rate of 0.0002 for 150 epochs, then for another 150 epochs with a lin-

early decay learning rate to zero. Training took an average of 28h on

an Nvidia Tesla V100 SXM2 (GPU) with a batchsize of 4. Original

images were resampled to 256×256. Then, 128×128 sub-images were

randomly cropped during training. Data augmentation was performed

by horizontal flip, increasing the size of the training set to 3328 image

pairs.

4.3.4 sCT evaluation

In the testing phase, the working image size was 256×256 pixels. sCTs

were generated using only the generator on the GPU (Nvidia Quadro

P6000). The created image files were then converted into DICOM

format by using MICE Toolkit (v1.1.3, NONPI Medical AB, Sweden).

Image comparison sCT and CT were compared on a voxel-wise basis

by using the mean absolute error (MAE) and the mean error (ME).

Considering the voxels within the body contours, MAE and ME in HU

were calculated for each patient on MICE Toolkit. Detailed statistics

by organ are only available for site 5, where delineated structures were

copied and resampled from CT to the sCT.

Dose comparison Halcyon (VMAT) treatment plans were optimized

on each CT image in Raystation by using the Collapsed Cone (v5.1) al-

gorithm on a 3×3×3 mm3 grid. Optimized clinical plans were then re-

calculated on the sCT image for dose comparison. Only the 8 patients

of site 5 underwent this procedure. A dose-volume histogram (DVH)

analysis was performed after copying the structures (PTV, femoral

heads, bladder, and rectum) to sCT. The chosen DVH points were
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D98, D50 and D2. Voxel-wise absolute dose differences in percent-

age were computed within a dose threshold of 90%, 50%, and 10%

of the prescribed dose Dp. Finally, two different gamma pass rates

(γ3%,3mm, γ2%,2mm) of the dose distributions were calculated using four

different lower dose thresholds (0%, < 10%, < 50%, and < 90%).

4.4 Results

CT and MR scans were not necessarily acquired on the same day;

the median interval between the scans was 2 days (range: 1h to 19

days). Interscan differences were therefore not taken into account in

this study. CT synthesis took on average 8.5s on the GPU.

4.4.1 Image comparison

Figure 4.4 shows an example of two test patients from sites 4 and 5.

Differences are most acute in the external geometry and bone struc-

tures.

Figure 4.4: From left to right,

MR, CT, and sCT images, and

the difference (CT–sCT). The

images on top represent the axial

plane, while those on the bottom

represent the frontal plane. (a)

Site 5 and (b) site 4.

The proposed method produced an average MAE of 65.8±9 HU and

an average ME of −5.8± 6 HU for site 4. Patients from site 5 showed

an average MAE of 59.8± 11 HU and an average ME of −0.7± 3 HU,

indicating low variability across sites. Table 4.2 provides the average

MAE and ME by ROIs only for site 5.

MAE ME

Bladder 65.3± 29 −13.4± 20

Rectum 60.3± 25 −10.7± 29

Femoral Head L 178.9± 43 0.1± 49

Femoral Head R 197.1± 43 −1.0± 64

Table 4.2: Average MAE and

ME in HU (±σ) between sCT

and real CT for different loca-

tions in site 5.
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4.4.2 DVH analysis

The differences between several DVH points on sCT and CT were

computed and presented as a boxplot in Figure 4.5. The values are

rescaled to the prescribed dose.

Figure 4.5: DVH parameters

comparison between dose on CT

and sCT for the PTV and OARs

for site 5.

4.4.3 Dose difference

The doses calculated on CT (DCT ) and sCT (DsCT ) along with their

relative differences are presented in Figure 4.6 for three patients.

Mean absolute dose differences ( |DCT−DsCT |
Dp

) were computed with

several dose thresholds. Table 4.3 reports the statistics in terms of

the mean dose difference related to the prescribed dose calculated on

thresholds of 10%, 50%, and 90% of the prescribed dose and the passing

rates of local gamma.

Volume Dose difference (%) γ3%,3mm (%) γ2%,2mm (%)

Body 0.13± 0.07[0.05; 0.28] 99.5± 0.4[9.88; 9.99] 95.5± 2.2[92.5; 98.3]

Dose> 10% 0.20± 0.07[0.08; 0.30] 99.5± 0.5[98.7; 100] 94.8± 2.3[90.7; 97.6]

Dose> 50% 0.48± 0.24[0.24; 0.94] 99.9± 0.2[099.3; 100] 97.6± 1.3[95.6; 99.5]

Dose> 90% 0.70± 0.38[0.28; 1.22] 99.8± 0.4[99.8; 100] 98.8± 0.4[98.8; 100]

Table 4.3: Mean dose difference relative to the prescribed dose and gamma pass rate (±σ) between CT and

sCT and the range of values
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Figure 4.6: From left to right,

doses calculated on CT and sCT

and the relative dose difference

(CT–sCT).

4.4.4 CycleGAN comparison

A CycleGAN (Zhu, Park, et al., 2017) has been trained with the same

data as our AugCycGAN for qualitative comparison purposes.

Training Losses The cycle consistency loss which measures the simi-

larity between two images of the same domain is evaluated in training

phase. As shown in Figure 4.7, the AugCycGAN improves dramati-

cally the minimization and stability.

Images synthesis For site 5 testing patient, the MRI range of values

is close to the ones seen in training. The trained CycleGAN manages

to keep a good HU consistency, however a vertical and horizontal shift

appears on the synthesized images. In addition, the CycleGAN does

not recognize the bladder Figure 4.8 (a).

Contrary to site 5, site 4 MRI distribution is quite different. The

CycleGAN struggles to recognize the shape resulting in a poorer image

quality and appearance of artifacts. The shift is less serious in that

case, Figure 4.9.

4.5 Discussion

In this study, an MR-to-CT synthesis method was proposed to pro-

vide increased generalization performance in comparison with state-

of-the-art approaches. We augmented the CycleGAN approach by
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Figure 4.7: MRI and CT cycle

loss in training phase (3-WMA).

adding a latent space to enable the reconstruction of several MR im-

ages, therefore making the training of this unsupervised model pos-

sible with multicentric data. The results suggest that our model can

learn to synthetize a clinically acceptable sCT while using different

scanners/parameters. With pre-training, this model can address the

limitations of small datasets by finetuning it with a reduced sample.

The use of a vanilla CycleGAN in the same configuration produces

unreliable results (see 4.4.4). A vanilla CycleGAN will not necessarily

fail to converge but will fail to learn an appropriate model because

it simply does not have the capacity to learn one-to-many mappings

while stochastic CycleGANs do.

The average MAE of 65.8 HU and 59.8 HU for both sites were com-

parable to those obtained in a previous paired study (60 HU, Maspero

et al. (2018)) or unpaired study (50.8 HU, Lei, Harms, et al. (2019)).

However, several biases4 in the training data may be observed on sCT. 4Here we mean that the training data

has imperfections that are also unfor-
tunately learned by our model whereas
they are artifacts without genuine

anatomical meaning. This is an-

other source of uncertainty in medi-
cal data that is cumulated with more

usual sources of uncertainty in ML
such training sample finiteness (lack of
knowleddge / epistemic uncertainty)

and noise (randomness / ontic uncer-
tainty).

First, this method may show a tendency to generate higher HU values

due to the different image value-to-density tables. Our model occa-

sionally tries to generate a fiducial marker in the prostate or shows a

higher HU value in the bottom of the bladder due to the presence of

contrast agent. In clinical practice, it will be beneficial to standard-

ize the training data with a clinical protocol by performing additional

modifications, such as directly using the electron density and not HU

values as the output of the model.

This study is the first to show sCT images generated with a Cycle-



mr to ct synthesis with unpaired data 69

Figure 4.8: sCT generated from two site 5 patients.

Figure 4.9: sCT generated from two site 4 patients.
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GAN approach with unpaired multicentric data that underwent dosi-

metric evaluation in the pelvic area. Although interscan differences

certainly influence the recalculation plan for the sCT images, all the

DVH points recalculated on sCT were within ±3% with respect to the

CT images. Maximum relative dose difference in the high-dose region

is 1.2%, which is in consistent with previous studies (Maspero et al.,

2018; Kemppainen et al., 2017). An advantage of increased general-

ization is that it will avoid the need to retrain a model for each new

MR sequence or even a small change in sequence setting. Current

CycleGAN-like models do not take into account MR variability. Col-

lection of new data and retraining a model will substantially impede

the use of deep learning in clinical practice.

4.6 Conclusion

In this chapter, we proposed an augmentation of CycleGAN to gener-

ate synthetic CT images using multicentric data in an unpaired fashion

without the need for a dedicated MR sequence. The possibility of using

several sequences with this approach will allow the development of a

single-body model instead of an anatomy-specific model. Our method

was designed to improve the generalization of MR-to-CT synthesis and

not directly improve the accuracy of HU. Future studies should aim

to further develop AugCycGAN (which shares much with CycleGAN)

with deep learning methods such as 3D or dense blocks to improve

accuracy as well as generalization.
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Appendices

4.a Fiducial markers

The presence of fiducial markers in the prostate or contrast agent in

the training dataset has an effect in testing phase. The trained model

tries sometimes to reconstruct fiducial markers in the prostate, see

Figure 4.A.1 (a). Occasionally, it assigns higher HU in the bottom of

the bladder.

Figure 4.A.1: Bias effect on

AugCGAN generation.
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4.b Network details

An augmented CycleGAN (AugCycGAN, Almahairi et al., 2018) shares

the same architecture as a CycleGAN (Zhu, Park, et al., 2017) con-

cerning the generators and discriminators. Both networks use the same

losses too, the differences between these two networks appears in the

use on Conditional Instance Normalization (CIN, Dumoulin, Shlens,

and Kudlur, 2016) instead of Instance Normalization (IN, Ulyanov,

Vedaldi, and Lempitsky, 2016) in one generator (He et al., 2016b).

Instance Normalization A classical IN follows this formula for a 4D

input tensor (a mini-batch of 2D inputs with additional channel di-

mension) x:

y =
x− E[x]√
V ar[x] + ε

× γ + β, (4.B.1)

expectation E[x] and variance V ar[x] are computed per-dimension

separately for each object in a mini-batches, ε allows to avoid divisions

by zero and γ and β are learnable parameters.

Conditional Instance Normalization in style transfer The learnable

parameters are replaced by the outputs of two linear functions µ and ν

which take a latent variable zmr as input i.e., γ = µ(zmr) for the scaling

factor and β = ν(zmr) for the shifting factor. The latent variable zmr

is the output of the encoder Emr : CT ×MRI 7→ ZMRI in charge of

capturing the missing information when converting an MRI into a CT.

The intuition behind this operation it to apply an affine transfor-

mation specific to each sequence instead of learning an affine transfor-

mation corresponding to several sequences at once.

Details of the encoder architecture We follow the naming convention

used in CycleGAN (Zhu, Park, et al., 2017). Let c1-k denote a 1 × 1

Convolution with k filters, c3r-k denotes a 3 × 3 Convolution-ReLU

layer with k filters and c3br-k denotes a 3 × 3 Convolution-BatchNorm-

ReLU layer with k filters.

Encoder: c3r-32, c3br-64, c3br-128, c3br-256, c3br-512, c3br-1024,

c3br-1024, c1-32.

The scaling factor µ and the shifting factor β are two 1 × 1 Convolution-

ReLU with the same number of filters in the layers where they are

applied.

Details of the augmented generator architecture Let c1-k denote a 1

× 1 Convolution with k filters, c7cr-k denotes a 7 × 7 Convolution-

CIN-ReLU layer with k filters, Rc-k denotes a CIN residual block two

3 × 3 convolutional layers with the same number of filters on both lay-

ers and ct3cr-128 denotes a 3 × 3 Transposed Convolution-CIN-ReLU

layer with 128 filters.
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Augmented Generator: c7cr-64, c7cr-128, c7cr-256, Rc-256, Rc-256,

Rc-256, Rc-256, Rc-256, Rc-256, Rc-256, Rc-256, Rc-256, ct3cr-128,

c3cr-64, c7-64, tanh.

Details of the latent discriminator architecture Let l-k denote a linear

operation of size k, lbr-k denotes a linear-batchsize-LReLU of size k.

Latent discriminator: lbr-64, lbr-64, lbr-64, l-1.

Details of the (non-augmented) generator and discriminator architec-

tures Both have the same architecture like those described in the

previous chapter, see Section 3.A.

A visualization of their interaction in the backward cycle is given

in Figure 4.B.1.

Figure 4.B.1: Cycle starting

from an MRI.





Discussion and conclusion

This thesis has developed two new generic approaches for training

a GAN for MR-to-CT synthesis in radiotherapy. The idea is sim-

ple: the sought generalization properties should be achieved through

MR image variability which is induced in the training phase5. To do 5This starts from a simple observa-
tion: the factors of variation that ex-

plain the data should be easier to iden-

tify when the data exhibits sufficient
diversity to cover a significant portion

of the range of these factors. For ex-

ample, suppose you want to learn a
visual model of dogs. If your data con-

tains only images of male chihuahua,
it will be virtually impossible to iden-

tify factors of variations such as size,

gender, hair style and color and to gen-
eralize to other kinds of dogs.

so, we essentially leverage two sources of variability during the train-

ing: different types of MR sequences and/or different medical imaging

centers/acquisition devices. By doing this, we force the neural net

to compose with a global representation of MRI thus alleviating pre-

processing steps to standardize MR images.

The first proposed method was applied into a paired fashion with

a conditional GAN. Unpaired fashion on the other hand was more

challenging. In a second method, an augmentation of a cycle GAN has

been devised in order to use different MR sequences in the training. A

focus has been made in the pelvic area in accordance with the CoBra

project, but this technique is independent from localization.

In the next paragraph, we summarize these two methods and discuss

their respective advantages and limitations. We also provide insight-

ful perspectives regarding the MR-to-CT synthesis task but also with

respect to the more general workflow pertaining to the

A general deep learning approach in MR-to-CT

synthesis in radiotherapy

We decided to plainly use the deep learning capability in finding

automatically appropriate features for our task. The preprocessing

steps were limited to registration and normalization to keep the num-

ber (and level) of non-data-driven steps to a minimum. An illustration

summarizing the workflow used for both studies is shown in Figure 4.2.

Chapter 3 described one of the first synthetic CT generated in a

multicentric context. This proof-of-concept has been proposed for

paired datasets (containing MR/CT pairs of the same patient) with

a conditional GAN initially used for high definition image synthesis,

thus allowing a gain in accuracy. A vanilla conditional GAN has been

used for comparison. Both are able to reach convergence so we can

deduce as a first result that any conditional GAN architecture should

be able to deal with different MR sequences. Special attention was

given to keep the workflow simple while not altering the size and the

quality of the images.

This method is the most accurate and simple of our two approaches.

However, the need of a paired dataset is an obvious limitation as many

medical imaging centers might not have a number of paired exam-

ples. The high-resolution synthesis was first presented in Brou Boni
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Figure 4.2: Illustration of the

workflow used to evaluate our

methods.

et al. (2019b) and the generalization in Boni et al. (2020).

Chapter 4 addressed one issue of vanilla cycle GAN in an unpaired

dataset context. We provide in this chapter a method to counter this

issue by using an augmentation, i.e. providing latent variables as ad-

ditional inputs for the MRI generator. Classical cycle GANs fail to

properly converge since it is not explicit for the generator to know

which sequence it should generate. This results in a poorer cycle loss

optimization. The augmentation is simply done by implicitly giving

the generator this information. This conditioning was done using a

conditional instance normalization6. It was the only effective way to 6It is a Feature wise instance mod-

ulation FiLM. It refers to a model
which is conditioned or modulated by

information extracted from an addi-

tional input. Concatenation is the
most widely use type of FiLM in DL

(see beginning of 4.B for more details).

condition the sequence information in our case.

Compared to our first contribution, this method is more complex

and therefore more data demanding but this is justified by the use of

an unpaired dataset. Hardware requirement forces us to downsample

the images. Results are less accurate compared to the first approach,

we can nevertheless underline some larger differences in sequence pa-

rameters between training and testing sequences.

In conclusion, the two proposed methods have (unsurprisingly) com-

plementary advantages. The first method is more accurate but requires

a higher level of supervision in the construction of the dataset. The sec-

ond method can learn from more general datasets but cannot achieve

the same level of accuracy.

In the following, some open questions related to this thesis are tack-

led. The provided answers are personal views of the author regarding

these remaining challenges.
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One to rule them all ? Assuming that different sequences in

training is no longer a problem, it becomes possible to mix several

anatomical localizations7 to build a multi-localization model. A dedi- 7In general, each localization is asso-
ciated with a different set of sequence.cated model specific to each localization is likely to be more accurate

compared to a global one. On the other side, one can reckon that a

global model provides an alternative to collecting data from different

localizations and then training repeatedly one model for each. We see

this option as a trade-off between time and performance knowing that

even a gain in HU consistency will not affect that much the dosimetric

fidelity. Another compromise between genericity versus accuracy.

Accuracy above all ? One may wonder if MR-to-CT synthesis

is not just about accuracy. Indeed, current studies focus mainly on

the performance of their model and it becomes increasingly difficult to

find clinical relevant difference between a real CT and a synthetic CT.

In my opinion, accuracy is no longer an obstacle to the establishment

of such technique in clinical routine, reliability is. We cannot (at least

not yet) count on our neural nets to explain why sometimes they fail

which is why safe/explainable AI has become a hot trend in the ML

community. Studies must be conducted by stressing out a bit our

model to trigger their weaknesses if they are.

Is my sCT is right or wrong? Unlike semi-automatic task like

segmentation in which an expert is in charge of assessing the prediction,

sCT cannot be assessed by an expert. Another practical challenge to

the establishment of deep learning solutions will be the acceptation.

Quality guarantees must be given for a better acceptance and also for

monitoring.

Within GAN based solutions, the discriminator could be a start.

This network is systematically discarded at test time (because the

original purpose is sCT generation) while it is so far the one which

has the greatest knowledge of what can be right or wrong. We could

associate the sCT with the prediction made by the discriminator as

a first step. Calibration techniques could be employed to the output

probabilities of the discriminator in order to provide more useful in-

formation. However, this process remains tied to a particular choice

of the discriminator architecture and hyperparameters.

We conclude this manuscript with additional comments on two

other tasks involved in the general workflow of the CoBra project,

namely segmentation and dose calculation.

Automatic segmentation

Our recent experiments have taught us how time consuming it is

to deal with the DICOM standard8 for a newbie. We alleviate the 8DICOM is the international standard

to transmit, store, retrieve, print, pro-
cess and display medical imaging in-
formation.

burden of researchers or students by creating a segmentation toolbox

in radiation therapy. segmentation rt� is a python package designed

to easily create a database and train a deep learning model. Inferred

delineations are converted into readable RT Structures dicom.
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� github.com/BrouBoni/segmentation RT
� segmentation-rt.readthedocs.io

Public audience and objectives Several commercial solutions exists for

the auto-segmentation of OARs and PTV in radiotherapy, we do no

plan to compete. We have just leveraged a GAN generator (3D) and

our experience in ”dicomization” to begin with this free framework.

The goal is to automate pre- and post-processing tasks in order

to spare time for more challenging DL tasks. Indeed, raw data in

radiotherapy are in DICOM while current deep learning frameworks

use more conventional formats. When it is time to evaluate our results,

we have to convert into DICOM, a tedious job when it comes to RT

Structures. We therefore propose an end-to-end solution to perform

all these task automatically.

In the world of open science, everyone is free to improve our package

or just use a piece for convenience. It is a high level package divided

in three modules

rs2mask create a deep learning friendly dataset from DICOM data.

dl deep learning module for training and testing.

mask2rs create RT Structure Set from a previously generated masks.

Other such modules already exist but they are organized indepen-

dently to each other, meaning that there is not a smooth workflow to

perform all these tasks without hand-crafted communication code.

Examples in use So far, our package has been used in the case of

head/neck and breast irradiation by a physicist and a medical student.

No quantitative study has been done yet, promising visuals are given

in Figure 4.3 and 4.4.

Dose prediction in brachytherapy

The Centre Oscar Lambret has a long experience on dose calculation

for radiotherapy treatment planning. An in-house MC platform was

developed (Reynaert et al., 2016; Wagner et al., 2017) for validation of

Cyberknife and Tomotherapy plans. The system is currently extended

for conventional IMRT and volumetric modulated arc therapy (VMAT)

treatments (Alhamada et al., 2018). An option would be to introduce

brachytherapy into the system. But again this would only be to provide

a reference method as MC is too slow (double-checking). An analytical

dose calculation based on the report of AAPM9 Task Group-43 (TG- 9The American Association of Physi-

cists in Medicine43, Rivard et al. (2004)) seems to be a more realistic option and are

used by most brachytherapy TPS but self-attenuation is not taken into

account.

Treatment plan optimization is the third brick of the current CoBra

workpackage. In the TPS, the dose distribution is optimized using an

objective function and gradient-descent optimization methods.

For prostate treatment using iodine seeds (low dose rate, LDR)

one can even consider using geometrical optimization as an optimal

https://github.com/BrouBoni/segmentation_RT
https://segmentation-rt.readthedocs.io/en/latest/index.html
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Figure 4.3: Comparison between

generated and real segmentation

for a thoracic, head and breast

case.

Figure 4.4: Breast case imported

in a TPS (Raystation).
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source configuration that automatically that provides an optimal dose

distribution10. In between insertion of different seeds, on-line MR 10This is thanks the low energy of the

emitted gammas, leading to a local
dose deposition, no need of taking into

account electron transport.

images can be used to determine the actual source configuration and

the actual deformed prostate geometry before inserting the next seed

at the optimal position. In this workflow, a single dose calculation is

only needed when all seeds are inserted, no need of an accurate dose

calculation.

On the other hand, for the higher dose rate (HDR) the situation is

more complicated, demanding an optimization of dose and thus inter-

mediate dose calculations (on intermediate sCT images). Providing a

fast enough and on-line adaptive solution can be a challenge for HDR

brachytherapy but not for all localization.

Deep learning speed with MC accuracy MC algorithms are the gold

standard in terms of accuracy but are time consuming. Interest has

been shown in DL to mimic MC precision while being faster. CNN

dose estimation has demonstrated good results both in LDR (Villa

et al., 2021) and HDR (RapidBrachyDL, Mao et al., 2020) in the

prostate. However, in terms of dose difference, MC algorithm com-

pared to TG-43 does not provide a significant clinical gain (Ma et al.,

2015) in prostate HDR. In comparison, there is a relative dose dif-

ference for the prostate D90 of 0.9% between MC/TG-43 and 0.7%

between MC/RapidBrachyDL. There are important differences but

mostly in areas where the doses are very low like the bones.

There is not a clear advantage mimicking MC with DL at least for

HDR in the prostate. Locations with heterogeneities such as the neck

or the presence of material with high atomic number (gynecological

applicator) on the other hand would be more suitable.

Experiments in Centre Oscar Lambret Since the installation last year

of a new MRI (Siemens Magneton Sola 1.5 T) partially dedicated to

the radiotherapy, an effort has been made to find sequences allowing an

MRI-only brachytherapy (HDR) when possible. A set of two sequences

is used, T2 weighted images are used for contouring and a T1 dixon to

reconstruct the needle or catheter11. 11This is needed by the TPS to opti-

mize the source placementHere, we mainly use the MRI for better contrast and we do not seek

accuracy in dose calculation. The dose calculation is performed using

the TG-43 by assigning the water density to all tissues, it is sufficient

in terms of accuracy.

Dose prediction in external radiotherapy

Seeking MC precision in brachytherapy is not a subject of great

interest in medical physics. The clinical benefits are not that significant

because it is a very local treatment in which the treated area are

quite homogeneous. Even in external beam radiotherapy, MC is not

always used because the clinical difference compared to conventional

dose calculation algorithms like the collapsed cone (Ahnesjö, 1989) are

not significant in most cases.
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The other cases, on the other hand, have more interest in being

double-checked with MC. The most challenging treatment machine at

our disposal is the Cyberknife “VSI”, a stereotactic body radiation

therapy system. Higher doses per fraction is delivered to much smaller

target volumes. Strong gradient around the target is made possible by

the use of a very large number of angular incidence.

Dose prediction A preliminary study was conducted using 18 patients

with multiple locatizations. The number of incident beams ranges from

20 to 205 (including non-coplanar angles) with no MLC. The objective

was to refine a dose calculated on the TPS in MC.

The chosen deep learning architecture is a CNN with FiLM. Ba-

sically, the design is the same as our stochastic generator presented

in appendix 4.2.1 or the one from Mao et al. (2020). This archi-

tecture uses 3D convolutions. One of the main reason is the use of

non-coplanar angles. The motivation behind this choice is to main-

tain a consistency in term of dose calculation more than increasing the

learning capacity of the network. An illustration of the net is given in

Figure 4.5.

Currently, a visual inspection gives encouraging results in terms of

convergence. This work will be pursued in the coming months.

Figure 4.5: Dose refinement net: the FiLM encoder predicts parameters describing the patient geometry

and composition. The dose refinement generator is conditioned by the FiLM parameters.
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Deep learning in MR-guided radiotherapy

Modern radiation therapy practices greatly improve treatment success while sparing healthy tissues from

damages as much as possible. This is done by constantly reducing the uncertainties in the treatment

planning workflow. The starting point of the treatment planning is a 3D acquisition of the patient geometry.

In current workflow, we merge the benefits of two imaging modalities. Magnetic resonance imaging (MRI)

which has excellent capabilities of imaging soft tissues and the Computed Tomography (CT) that gives

the attenuation properties of the tissues, needed for dose calculation. The combined used of MRI and CT

requires to perform a registration between these two modalities to merge their respective benefits. However,

the uncertainty introduced during the registration operation is not negligible and its magnitude amounts

to several millimeters. It is generally accepted that it would be very interesting to entirely devise the

treatment based on MRI only. The establishment of an MRI-only workflow in radiotherapy depends on the

ability to convert the MRI intensities in order to get attenuation properties. Many different methods have

been proposed in the literature to solve this problem often referred to as synthetic-CT (sCT) generation.

These methods recently underwent significant changes with the emergence of deep learning. Accuracy and

generation speed have dramatically increased. Generative Adversarial Networks (GAN) have brought new

impulses, with their ability to learn to generate any data distribution. In this thesis, we aimed to improve the

generalizability of MRI-to-CT synthesis using GAN. MRI variability has been induced in the training phase

by mixing images coming from different centers. This training procedure is a way to force the network to be

less attentive to MRI intensities. This process has the capability to tackle the image variability problem in

clinical practices, since changes can happen in image acquisition parameters or with machine replacement

for instance. Two GAN architectures are proposed to either learn from paired or unpaired data.

Keywords: MR-guided radiotherapy, synthetic-CT, generative adversarial networks, dose calculation

Radiothérapie guidée par IRM via réseaux de neurones profonds

Les pratiques modernes en radiothérapie améliorent considérablement le succès des traitements tout en

épargnant autant que possible les tissus sains. Cela se fait en réduisant constamment les incertitudes en

amont du traitement. La planification du traitement débute avec une acquisition 3D de la géométrie du

patient. Actuellement dans le parcours patient, nous fusionnons les avantages de deux modalités d’imagerie.

L’imagerie par résonance magnétique (IRM), qui offre d’excellentes capacités de visualisation des tissus

mous, et la tomodensitométrie (TDM, en anglais computed tomography ou CT), qui donne les propriétés

d’atténuation des tissus, information nécessaire au calcul de la dose. L’utilisation combinée de l’IRM et du

CT nécessite un recalage entre ces deux modalités afin de fusionner leurs avantages respectifs. Cependant,

l’incertitude introduite lors de cette opération est loin d’être négligeable et se chiffre à plusieurs millimètres.

Il est généralement admis qu’il serait très intéressant de planifier le traitement uniquement avec l’IRM. Le

développement d’un parcours patient uniquement basé sur l’IRM en radiothérapie dépend de la capacité à

pouvoir corréler les intensités de l’IRM avec les propriétés d’atténuation des tissus. De nombreuses méthodes

ont été proposées dans la littérature pour résoudre ce problème, souvent sous l’appellation de génération de

pseudo-CT (pCT). Ces méthodes ont récemment connu des changements importants avec l’émergence de

l’apprentissage profond. La précision et la vitesse de génération ont considérablement augmenté. Les réseaux

adverses génératifs (GAN) ont poursuivi cet élan avec leur capacité à apprendre à générer n’importe quelle

distribution de données. Dans cette thèse, nous avons cherché à améliorer la généralisation de la synthèse

IRM-CT en utilisant des GAN. Le caractère variable de l’IRM a été induit en phase d’entrâınement en

prenant des images de différents centres. Cette procédure d’entrâınement est un moyen de forcer le réseau

à être moins attentif aux intensités de l’IRM. Cette méthode permet de s’affranchir du problème de la

variabilité des images en routine clinique puisque des changements peuvent survenir dans les paramètres

d’acquisition ou lors du remplacement d’une machine par exemple. Deux architectures de GAN sont pro-

posées pour apprendre à partir de données appariées ou non.

Mots clés : radiothérapie guidée par IRM, pseudo-CT, réseaux adverses génératifs
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