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Résumé

Un des défis majeurs de l’apprentissage par renforcement est d’explorer efficacement un environnement
afin d’apprendre une politique optimale par une méthode à base d’essai-erreur. Pour y parvenir, l’agent
doit être capable d’apprendre efficacement de ses expériences passées, ce qui lui permet d’estimer
la performance de certaines actions par rapport à d’autres. En outre, une problématique évidente
mais centrale est que ce qui n’est pas connu doit être exploré, et la nécessité d’explorer d’une manière
sûre ajoute un autre niveau de difficulté au problème. Ce sont les principales questions que nous
abordons dans cette thèse de doctorat. En déconstruisant la méthode acteur-critique et en développant
des formulations alternatives du problème d’optimisation sous-jacent via la notion de variance, nous
explorons comment les algorithmes d’apprentissage par renforcement profond peuvent résoudre plus
efficacement les problèmes de contrôle continu, les environnements d’exploration difficiles et les tâches
exposées au risque. La première partie de la thèse se concentre sur la composante du critique de
l’approche acteur-critique, ou fonction de valeur, et sur la façon d’apprendre plus efficacement à contrôler
les agents dans les domaines de contrôle continu par des utilisations distinctes de la variance dans les
estimations de la fonction de valeur. La deuxième partie de la thèse s’intéresse à la composante acteur
de l’approche acteur-critique, aussi appelée politique. Nous proposons l’introduction d’un troisième
élément au problème d’optimisation que les agents résolvent, en introduisant un adversaire. L’adversaire
est de même nature que l’agent RLmais il est entraîné à suggérer des actions qui imitent celles de l’acteur
ou qui vont à l’encontre des contraintes de notre problème. Il est représenté par une distribution de
politique moyenne avec laquelle l’acteur doit différencier son comportement, encourageant finalement
l’acteur à mieux explorer dans les tâches où une exploration efficace constitue la difficulté majeure, ou à
prendre des décisions de façon moins risquée.

Abstract

One major challenge of reinforcement learning is to efficiently explore an environment in order to learn
optimal policies through trial and error. To achieve this, the agent must be able to learn effectively from
past experiences, enabling it to form an accurate picture of the benefit of certain actions over others.
Beyond that, an obvious but central issue is that what is not known must be explored, and the necessity
to explore in a safe way adds another layer of difficulty to the problem. These are the main issues that
we address in this Ph.D. thesis. By deconstructing the actor-critic framework and developing alternative
formulations of the underlying optimization problem using the notion of variance, we explore how
deep reinforcement learning algorithms can more effectively solve continuous control problems, hard
exploration environments and risk-sensitive tasks. The first part of the thesis focuses on the critic
component of the actor-critic framework, also referred to as value function, and how to learn more
efficiently to control agents in continuous control domains through distinct uses of the variance in the
value function estimates. The second part of the thesis is concerned with the actor component of the
actor-critic framework, also referred to as policy. We propose the introduction of a third element to the
optimization problem that agents solve by introducing an adversary. The adversary is of the same nature
as the RL agent but trained to suggest actions that mimic the actor or counteract the constraints of our
problem. It is represented by some averaged policy distribution with which the actor must differentiate
his behavior by maximizing its divergence with it, eventually encouraging the actor to explore more
thoroughly in tasks where efficient exploration is a bottleneck, or to act more safely.
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Part I

Learning to Control

1





Chapter 1

Introduction

Of several responses made to the same situation,
those which are accompanied or closely followed by satisfaction,
are more firmly connected with the situation,
so that, when it recurs,
they will be more likely to recur.

The Law of Effect, Edward Thorndike (1911).

Where to begin? In this chapter, we shall cover the motivations behind the problem of
Reinforcement Learning. We will touch on the rise of Deep Learning over the last several years
and what characterize the improvements it can bring to our work. We will then consider what
we would like our computers to learn considering the problems of main interest in this thesis,
before discussing the contributions that will be presented in the following chapters, with their
results and the potential new questions they raise.
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Introduction

1.1 Reinforcement Learning

Reinforcement Learning (RL) is a discipline of Machine Learning (ML) concerned with learn-
ing to make a sequence of decisions to maximize some score, later described as rewards,
in different situations. Machine software can employ this technique to find the best pos-
sible strategy to solve any problem that could be formulated as an RL problem. Some ex-
amples of applications with immediate use include healthcare problems (Schaefer, Bailey,
Shechter, et al., 2005; Yu, Liu, and Nemati, 2019), general visual question answering on
complex scenes (Antol, Agrawal, Lu, et al., 2015; de Vries, Strub, Chandar, et al., 2017),
energy management problems (Dimeas and Hatziargyriou, 2007; Levent, Preux, Pennec,
et al., 2019) and task scheduling problems in high performance computing systems (Mao,
Alizadeh, Menache, et al., 2016; Grinsztajn, Beaumont, Jeannot, et al., 2020). Other no-
table achievements include board games (Tesauro, 1995; Silver, Huang, Maddison, et al.,
2016), video games (Mnih, Kavukcuoglu, Silver, et al., 2013; Berner, Brockman, Chan, et al.,
2019; Vinyals, Babuschkin, Czarnecki, et al., 2019), or robot control (Kober, Bagnell, and
Peters, 2013; Heess, Tirumala, Sriram, et al., 2017; Andrychowicz, Baker, Chociej, et al., 2020).

actions

rewards

observations

Agent

Environment

Figure 1.1 – Agent-environment interaction.

The general RL problem considers an agent
taking the decisions and an environment
where the agent operates. At each timestep,
the agent takes an action and gets a reward
and an observation. As an illustrative exam-
ple, Figure 1.1 depicts the agent as a dog that
must complete a sequence of actions to re-
turn the Frisbee to its owner, who plays the
role of the environment. The dog observes its
owner’s movements and is motivated by the
satisfaction of playing and receiving a treat at the end. In this setting, an RL algorithm uses
a trial-and-error learning process to maximize a decision-making agent’s total reward in a
previously unknown environment. As an example, in robotics, the observations would be the
camera images or joint angles, the actions would be the joint torques, and the rewards would
involve navigating to a target location, successfully reaching it and staying balanced.

1.2 Deep Learning Representations

Representation learning is the process of learning to transform or extract features from input
data in order to solve a task. Machine Learning is mainly concernedwith function learning from
data. Deep learning is concernedwith coupling function learning fromdatawith representation
learning. Deep learning has the same practical purpose as Machine Learning, except that it

4



1.3 Deep Reinforcement Learning

benefits from a generally more expressive function approximator (a feature that has been
measured in previous work using the notion of trajectory length (Raghu, Poole, Kleinberg,
et al., 2017)), namely a deep neural network trained by successive steps of gradient descent.
A deep neural network is an input-to-target mapping composed of a sequence of simple data
transformations called projection layers (simple matrix multiplications) aggregated together
and combined with non-linearities.

Such deep learning models often involve tens or, at times, hundreds of successive layers of
representations learned from exposure to training data where long causal chains of compu-
tational stages transforms the aggregate activation of the neural network. Some remarkable
empirical findings have arisen from this technique, particularly in speech recognition (Dahl, Yu,
Deng, et al., 2012), image recognition (Krizhevsky, Sutskever, and Hinton, 2012), and natural
language processing (Vaswani, Shazeer, Parmar, et al., 2017).

1.3 Deep Reinforcement Learning

Where simpler ML models with fewer parameters and lack of compositionality may fail, deep
learning can be the appropriate technique for complex tasks involving highly dimensional data
such as natural language or images and videos. Deep Reinforcement Learning (deep RL) is
the discipline of Reinforcement Learning using neural networks as function approximators
and is appropriate for sequential decision-making problems where the agent’s inputs and
outputs (observations and actions) involve high-dimensional data. For example, Tesauro’s
TD-Gammon (Tesauro, 1995) combined an RL algorithm with a neural network to learn to
play backgammon, a stochastic game with approximately 1020 states, and played at the level of
top human players. Around the same period of time, Rummery and Niranjan (1994) learnt
a semi-gradient Sarsa with function approximation adding to the work of Gullapalli (1990)
and Lin’s and Tham’s PhD thesis (Lin, 1992a; Tham, 1994) which explored the combination of
various RL algorithms with neural networks.

Two decades after Tesauro’s seminal work, deep RL emerged as a promising approach for
experience-driven autonomous learning due to their ability to acquire complex strategies and
process high-dimensional complex sensory inputs (Jaderberg, Mnih, Czarnecki, et al., 2017).
Such algorithms could learn to play several Atari 2600 video games at a superhuman level
solely from image pixels (Mnih, Kavukcuoglu, Silver, et al., 2013). Some other achievements
have been the development of a Monte-Carlo Tree Search (MCTS) planning system coupled
with a deep RL module (Silver, Huang, Maddison, et al., 2016) that defeated a world champion
Go player, or also the learning of control policies for robots directly from camera inputs in the
real world (Levine, Finn, Darrell, et al., 2016; Zhu, Mottaghi, Kolve, et al., 2017; Levine, Pastor,
Krizhevsky, et al., 2018).
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Introduction

In deep RL, the neural networks are used to approximate functions that implement a
mapping from states to probabilities of selecting each possible action (called policies), functions
that estimate how good it is for the agent to be in a given state (called value functions), dynamics
models or other functions needed by the RL algorithm. In particular, the multi-step bootstrap
targets (Sutton, 1988) used in asynchronous advantage actor-critic (Mnih, Badia, Mirza, et al.,
2016) has shown strong results using gradient policy on a wide range of tasks. Distributional Q-
learning (Bellemare, Dabney, and Munos, 2017) learns a categorical distribution of discounted
returns instead of estimating the mean. Rainbow (Hessel, Modayil, Hasselt, et al., 2018)
meticulously combines several improvements to the DQN (Mnih, Kavukcuoglu, Silver, et al.,
2013) algorithm to provide improved performance on the Atari 2600 benchmark in terms of
data efficiency and final performance. Schulman, Levine, Abbeel, et al. (2015), Schulman,
Wolski, Dhariwal, et al. (2017), Lillicrap, Hunt, Pritzel, et al. (2016), Haarnoja, Zhou, Abbeel,
et al. (2018) and Fujimoto, Hoof, and Meger (2018) explored different kinds of policy gradient
methods with a focus on high performance, low sample utilization, and stability improvements.

1.4 Choosing what to Learn

System Dynamics 
Known ?

Dynamic 
Programming

Learn Dynamics 
Model ?

Model-based RL Model-free RL

Parameterize 
Value Function ? Actor-Critic Policy Gradient

Deep Q-learning Tabular 
Q-learning

Yes No

Learn
Value Function

No

Learn
Policy FunctionLearn

Both Functions

Yes

NoYes

Figure 1.2 – Taxonomy of RL algorithms.

Usually, in Reinforcement Learning, the agent’s actions are based on the most recent version
of the policy being learned. During updating, data from the interaction with the environment is
used to derive sample-based objective functions, in which the policy and value approximators
are updated by gradient descent. In deep RL, the approximators are deep neural networks.
The success of those algorithms depends on the trajectories discovered during the interaction
phase: if the data includes trajectories with high rewards, then those are reinforced by the
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1.4 Choosing what to Learn

update and become more likely under the newly updated policy. As such, the interaction
with the environment and the updating of the approximators are closely related and highly
dependent. Therefore, a central question when designing new deep RL algorithms is what
should be approximated, and how. Figure 1.2 shows a high-level taxonomy of RL algorithms. At
the top level, we have Dynamic Programming (DP) algorithms that can be used to compute
optimal policies given a perfect model of the environment. DP algorithms (e.g. Policy Iteration
and Value Iteration) are, in fact, archetypal model-based algorithms: these all use the model’s
predictions or distributions of the next state and reward in order to calculate optimal actions.
Specifically, in Dynamic Programming, the model must provide state transition probabilities
and expected reward from any state-action pair. Note that, contrary to most other model-based
RL algorithms, the model is rarely a learned model.

Conversely, model-free RL algorithms do not estimate the underlying system dynamics
and aim to optimize a policy directly. Policy-based methods explicitly build and learn a policy
mapping states to probabilities of selecting possible actions and store the policy approximator
in memory during learning for later use. Value-based methods do not store explicit policies
but instead learn a value function. The policy is implicit and derived from the value function by
picking the action with the best value. As to actor-critic methods, they are part of a framework
combining elements from both value- and policy-based methods.

The choice of which method to use depends mainly on the specification of the problem (e.g.
system dynamics complexity), the context in which it is to be solved (e.g. policy optimality),
and the experimental specifications (e.g. time or resources budget). For instance, model-based
RL methods usually speed up learning at the cost of a lack of scalability to problems where the
dynamics are complex. They generally learn a system dynamics model, the controller, and use
it for planning. Such methods can learn successful controllers with high sample efficiency in
low-dimensional continuous control problems (Deisenroth and Rasmussen, 2011; Moldovan,
Levine, Jordan, et al., 2015; Zhang, Vikram, Smith, et al., 2019). Another application of such
approach is AlphaGo (Silver, Huang, Maddison, et al., 2016; Silver, Schrittwieser, Simonyan,
et al., 2017), which effectively tackled the problem of Computer Go by using a Monte-Carlo
Tree Search (MCTS) planning module to capitalize on the knowledge of the game dynamics.

In this thesis, we focus our research efforts on the data-efficiency of model-free methods
which directly learn a stochastic policy function using gradient-basedmethods in the actor-critic
framework. An advantage with stochastic policies is that they allow for infinitesimal small
changes in the policy when moving in the parameter space, whereas a comparable shift would
potentially drastically change the policy in case of deterministic policies. The coupling between
parameters and policy seems therefore to be more controllable in general and especially for a
discrete action space. Another asset of stochastic policies is their inherent exploration nature by
essentially sampling Gaussian noise to add to a deterministic base policy. Lastly, the complex
dynamic characteristics of the problems of main interest in this thesis (continuous control
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Introduction

tasks, procedurally-generated tasks, and continuous control tasks with safety constraints) also
encouraged us to adopt a model-free setting, without the need for assumptions about the
environment, specifications or domain knowledge.

1.5 Outline and Contributions

Part III
variance in the actors

(chapters 7,8,9)

Part II
variance in the critics

(chapters 3,4,5,6)

Part IV
Conclusion

Part I
Introduction

ACTOR-CRITIC

sample-efficiency
exploration

stability and safety

Figure 1.3 – Outline of this thesis structured around the actor-critic components.

Before diving into this thesis, we must ask ourselves what problems we would like to
address and what questions remain to be answered. Some sources of difficulty that motivate
the work of this thesis can be described as follows:

• Optimization and evaluation of (deep) RL methods are usually based solely on a proxy
for the sum of future rewards. Alternative statistics from supervised or statistical learning
could be leveraged as additional performance metrics.

• In some continuous control problems or tasks with sparse rewards, policy gradient esti-
mates may have low amplitude and be unstable, potentially leading to sample inefficiency.
An RL agent may learn more effectively from some transitions than others, therefore
filtering transitions seems a natural idea to consider.

• Variance reduction methods, such as baseline subtraction, exhibit discrepancies between
what motivates the conceptual framework of these algorithms and what is implemented
in practice to estimate the critic component in the actor-critic framework. More efficient
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1.5 Outline and Contributions

and robust objective functions are needed to estimate the value function represented by
the critic.

• Stateswith rewards often have to be visitedmany times, especiallywith on-policymethods
in tasks with sparse rewards, for the agent to learn anything of significance. The value
function estimation must be sensitive to these extreme values and capture the (sometimes
rare) signals corresponding to the rewards as efficiently as possible.

• With exploration induced by stochastic policies, the likelihood of visiting states with
rewards in sparse rewards tasks will be infinitesimally small if these states are far from
the departure point. Some form of memory needs to be maintained by using, for example,
a moving average of previous policies and thus avoid repeating the same trajectories that
did not result in relevant learning.

• Building on the same idea, an interesting question is whether a similar prior could be
constructed by learning, instead of a mixture of previous policies, how to break the safety
constraints to represent a probabilistic unsafe region that the agent should avoid.

All these cases fall under the same umbrella: in this thesis, we attempt to develop policy
gradient methods that are more stable and sample-efficient than previous methods by (i)
leveraging the information given by self-performance statistics and using alternative ways
of learning function estimates which are more adapted to policy gradient methods, and (ii)
introducing a third protagonist to the actor-critic duo which serves as a repulsive average
distribution from which the policy must distance itself. The keystone of this thesis is the actor
critic framework, illustrated in Figure 1.3. We tackle both sides of it, starting by the critic
and then the actor, through the prism of variance: variance in the value function estimates
calculated using the variance explained and the residual variance, and variance in the policy
candidates derived from an adversarial prior maintaining an averaged mixture of policies.

This thesis concludes the research contributions of four previously published papers. The
organization follows the order in which the work was published with some reorganized ele-
ments. In order to give the thesis a more coherent structure and improve its readability, we
have divided it into two parts. Part I introduces the problem of Reinforcement Learning from
a general point of view. We develop the perspective adopted by this thesis regarding some of
the difficulties of the RL problem and detail the issues we have chosen to address as part of
this thesis and the motivation behind their study.

Part II is devoted to more efficiently learning to control agents in continuous control
problems. In Chapter 3, we introduce the problem of learning continuous control policies
and present the inference scheme for learning deep neural network representations in high-
dimensional continuous state and action space. In Chapter 4, we propose the use of more
statistical objects as auxiliary losses when learning to solve a task. In particular, we identify
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the explained variance of the value function estimates as a tool with interesting properties
and propose a generally applicable framework with encoder sharing to speed up the learning
of policy gradient agents. Chapter 5 develops the simple but effective idea that an RL agent
will learn more effectively from some experience data than others. We employ the statistics
of self-performance assessment introduced in Chapter 4 to develop a modification to policy
gradient algorithms where samples are filtered out when estimating the policy gradient. In
Chapter 6, motivated by recent studies indicating that traditional actor-critic algorithms do not
succeed in fitting the value function and calling for the need to identify a better objective for the
critic, we introduce a method to improve the learning of the critic in the actor-critic framework.

Part III concerns the other side of the keystone in Figure 1.3: a formulation of the variance
in the context of actor policies by introducing a third protagonist to the actor-critic framework.
This new protagonist serves as an adversarial prior by maintaining an averaged mixture of
policies from which the policy distribution should be repulsed. After the introduction of the
problem of learning in environments with more real-world features such as safety constraints
or where efficient exploration is a bottleneck in Chapter 7, in Chapter 8 and 9 we develop a
form of variance in the policy candidates in maintaining an adversarial prior as a mixture of
previous policies (Chapter 8) and as a mixture of risk-seeking policies (Chapter 9).

Finally, we give an epilogue to the thesis in Part IV, with a discussion of progress and future
horizons.
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Chapter 2

Background

The only thing that makes life possible is
permanent, intolerable uncertainty;
not knowing what comes next.

Dialogue between Faxe and Genry, Ursula Le Guin (1969).

After a general introduction to the concepts involved in this work, Chapter 2 charts the
technical landscape that will serve us throughout this thesis. We begin with reviewing core
concepts of reinforcement learning and deep learning, which will enable us to introduce
the discipline of deep reinforcement learning and its different problem formulations. The
remainder of the chapter is devoted to generalization and minimum experimental protocol
requirements for the application of RL in the real world.
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2.1 Markov Decision Processes

The general framework of Reinforcement Learning is typically formalized using a Markov Deci-
sion Process (MDP) (Puterman, 1994). An MDP is a mathematical object to model discrete-time
sequential decision making problems in which an agent interacts with a stochastic environment.
It is defined by a 4-tuple (S,A, T ,R) where:

• S is a set of states;

• A is a set of actions;

• T is a transition probability distribution mapping state-action pairs to the conditional
probability distribution on the resulting state. If we write P(S) the set of probability
distributions on the set S, we have:

T : S ×A → P(S)

(s, a) 7→ Pr(· | s, a)

• R is the reward function, mapping state-action-next-state tuples to real-valued rewards:

R : S ×A× S → R(
s, a, s′) 7→ R (s, a, s′)

A fundamental feature of anMDP is theMarkov property, which states that for a sequence of ran-
domvariables {Xn},Pr (Xk = sk | Xk−1 = sk−1, Xk−2, · · · , X1) = Pr (Xk = sk | Xk−1 = sk−1).
In other terms, this indicates that when taking action a ∈ A in state s ∈ S , the transition proba-
bility to s′ ∈ S is independent of previously encountered state-action pairs and only conditioned
by the pair (s, a). This enables us to predict the next state and expected next reward given the
current state-action pair.

Remark 2.1 (Theoretical Guaranties). The theoretical guarantees given by the MDP framework
on the performance of algorithms are systematically lost when using nonlinear function approxima-
tions, and successfully combining such approximations and theoretical guarantees is still a major
challenge facing our field.

2.2 Trajectory, Policy, Return

In an MDP, the description of the dynamics of the interaction process between an agent and
an environment yields a sequence of states and actions. Later in this thesis, we refer to this
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sequence as a trajectory, or an episode, or a rollout. By referring to st, at ∈ S×A as the state-action
pair of time step t, we denote τ = (s0, a0, r0, s1, a1, r1, . . .) a trajectory experienced by an agent
acting in an MDP. We also define terminal states as specific states that have the property to end
the realization of a trajectory before reaching the horizon of the MDP.

A policy π is a decision rule. A stochastic policy gives a probability distribution over actions
and an agentmay take a decision by sampling an action according to this probability distribution.
In general terms, a policy π is conditioned on a history of observations of the agent-environment
interactions. However, in this thesis, we will restrict ourselves to stationary policies that depend
only on the current state. By definition, a stationary stochastic policy is a mapping:

π : S → P(A)

s 7→ π(· | s).

From here, let µ(s) denote the probability of starting in state s and T the length of trajectory τ ,
meaning the time at which the trajectory ends. The probability distribution over trajectories,
which depends on both the policy (the agent) and theMDP (the environment) is given as:

P (τ | π) = µ (s0)
T−1∏
t=0

π (at | st) T (st+1 | st, at) . (2.1)

The return is the cumulative reward over many timesteps of interaction. Let us now denote
rt+1 = R (st, at, st+1). It is usual to define the return of a trajectory R(τ) as the sum of all
collected reward along trajectory τ = (s0, a0, r0, s1, a1, r1, . . .) of finite horizon trajectory that
ends at time T :

R(τ) =
T−1∑
t=0

rt+1.

In the infinite horizon case, where T =∞, trajectories are assumed to have infinite length. In
order to properly define a non-diverging series for the return, we generally introduce a discount
factor γ ∈ [0, 1) which acts as a weighting parameter in the now discounted return:

R(τ) =
∞∑
t=0

γtrt+1.

For all time steps t, we may also write Rt(τ) the return received after time step t:

Rt(τ) = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞∑
k=0

γkrt+k+1.
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2.3 RL Optimization Problem

In RL,we are interested in finding a policy π thatmaximizes the expected return over trajectories.
First, let us express the expected return over trajectories:

J(π) = E
τ∼π

[R(τ)],

with τ ∼ π indicating that the distribution over τ is given by Equation 2.1. Denoting Π the
space of policies, the optimization problem RL aims to solve is:

π∗ = arg max
π∈Π

J(π). (2.2)

2.4 Value Function

The value of a state or of a state-action pair is the expected return if the agent starts in that state
or state-action pair, and then acts according to its policy forever after. The state value function
V π(s) of a policy π is defined as:

V π(s) = E
τ∼π

[R(τ) | s0 = s] .

Similarly, the state-action value function Qπ(s, a) of a policy π is defined as:

Qπ(s, a) = E
τ∼π

[R(τ) | s0 = s, a0 = a] .

Using the definition ofRt(τ), a fundamental property of value functions in RL is that they satisfy
recursive relationships. Taking the example of the state value function, the following consistency
condition holds between the value of all s ∈ S and the value of its possible successor states:

V π(s) = E
τ∼π

[Rt(τ) | st = s]

= E
τ∼π

[rt+1 + γRt+1(τ) | st = s]

=
∑
a

π(a | s)
∑
s′

T
(
s′ | s, a

) [
rt+1 + γ E

τ∼π

[
Rt+1(τ) | st+1 = s′]]

=
∑
a

π(a | s)
∑
s′

T
(
s′ | s, a

) [
rt+1 + γV π (s′)] . (2.3)

Equation 2.3 is the Bellman equation (Bellman and Kalaba, 1957) for V π and expresses a re-
lationship between the value of a state and the value of its successor states. The two value
functions (state value function and state-action value function) are connected through the following
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equations:

V π(s) = E
a∼π(·|s)

[Qπ(s, a)] ,

Qπ(s, a) = E
s′∼T (·|s,a)

[
R
(
s, a, s′)+ γV π (s′)] .

Advantage Function. Let us define the advantage function, which quantifies how an action a
is better than the average action in state s (following policy π):

Aπ(s, a) = Qπ(s, a)− V π(s).

2.5 Learning with Deep Learning

In Reinforcement Learning, agents can approximate a policy or a value function using a variety
of Machine Learning methods, ranging from SVMs, to decision trees, to neural networks. In
this thesis, we will focus our attention on neural networks only: we study Deep Reinforcement
Learning where deep comes from Deep Learning. The ultimate goal in RL is to learn an optimal
policy for the MDP. The learning procedure is to learn from experience by using the collected
data to learn the shape of certain functions to that purpose. Such functions are for instance
defined in Section 2.2, 2.3 and 2.4. Neural networks are versatile function approximators that
are composed of layers of parameterized transformations: networks with more layers are
comparatively deeper (Goodfellow, Bengio, Courville, et al., 2016). They are not necessarily
the best solution to every problem: neural networks are very data intensive and difficult to
interpret. However, neural networks are also one of the most powerful function approxima-
tions available, and their performance is often the best in large scale problems or when the
vector representations becomes computationally intractable. For instance, deep neural net-
works have been successful at advancing research in many areas including natural language
processing (Malinowski, Rohrbach, and Fritz, 2015; Brown, Mann, Ryder, et al., 2020), image
classification (He, Zhang, Ren, et al., 2016; Mahajan, Girshick, Ramanathan, et al., 2018), speech
recognition (Hannun, Case, Casper, et al., 2014; van den Oord, Dieleman, Zen, et al., 2016),
and neural machine translation (Cho, Merriënboer, Gulcehre, et al., 2014; Sutskever, Vinyals,
and Le, 2014). In RL, neural networks will be used when a linear or a tabular representation is
not adequate to the task at hand.

2.5.1 Neural Networks

In this thesis, we use Artificial Neural Networks (ANN) as multi-layered non-linear function
approximators loosely inspired by the biological neural networks in animal brains. An ANN is
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Input
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Output

Each node: summation + activation function

Each edge: weighted (learned parameter) connection

Target

ErrorLoss 
Function

Figure 2.1 – Illustration of a feed-forward multi-layer network.

not an algorithm, but a structure composed of multiple layers of mathematical transformations
applied to input values. A characteristic example of a neural network is aMulti-Layer Perceptron
(MLP) or multi-layer neural network. First , let us consider the most classical case of a single
hidden layer neural network, from vector-valued inputs to vector-valued outputs (e.g. for
regression):

g(x) = b+Wa(c+ V x).

In this equation,
• x is a d-vector (the input);

• V is an k × dmatrix (called input-to-hidden weights);

• c is a k-vector (called hidden units offsets or hidden unit biases);

• b is anm-vector (called output units offset or output units biases);

• W is anm× k matrix (called hidden-to-output weights);

• a is a threshold-like (non-linear) activation function differentiable almost everywhere (e.g.
the Sigmoid, Tanh, or ReLU function) applied element-wise.

The vector-valued function h(x) = a(c+ V x) is called the output of the hidden layer and we call
hidden units the elements of the hidden layer. The weights and biases in the neural network
form the set of all learnable parameters. Fundamentally, the type of operation calculated by h(x)
can be applied to h(x) itself, but with different parameters (different biases and weights). This
would give rise to a feed-forward multi-layer network with two hidden layers. More generally,
one can build a deep neural network by stacking more such layers and each of these layers
may have a different dimension (k above). For instance, Figure 2.1 illustrates a feed-forward
neural network with 4 layers. In this thesis, we will usually denote the full set of learnable
parameters in a function approximator by a lowercase greek letter, e.g. θ or ω. A common
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variant is to have skip connections, i.e. a layer can take as input not only the layer at the previous
level but also some of the lower layers. Residual neural networks accomplish this by using skip
connections to jump over some layers, for instance, ResNets (He, Zhang, Ren, et al., 2016),
HighwayNets (Srivastava, Greff, and Schmidhuber, 2015) or DenseNets (Huang, Liu, Maaten,
et al., 2017). Silver, Schrittwieser, Simonyan, et al. (2017) and Espeholt, Soyer, Munos, et al.
(2018) are examples of RL methods using a deep residual network structure.

The layer parameters are learnable: they are adjusted by an algorithm until the network
approximates a target function at an acceptable level of fidelity. This adjustment process is
referred to as learning or training. Although many algorithms have been proposed for training
MLPs, the most widely used in practice are based on gradient descent (Goodfellow, Bengio,
Courville, et al., 2016).

2.5.2 Training

In the standard set-up for gradient descent, we consider the general problem of minimizing a
loss function L : Rm → R:

min
θ
L(θ),

which takes as input the parameter of the neural network fθ and returns a scalar valuemeasuring
howwell the network represents the target function. Given access only to first-order evaluations
of L, the parameters θ are iteratively updated by stepping in the opposite direction of the
gradient until convergence:

θk+1 ← θk − αk∇θkL.

Here, k is the index of the update iteration and αk is the learning rate. The procedure for com-
puting gradients in the case of feed-forward multi-layer networks is called the back-propagation
algorithm (Kelley, 1960; Werbos, 1974; Rumelhart, Hinton, and Williams, 1985; LeCun, 1988).
In Deep Learning, and thereby in Deep Reinforcement Learning, we often put ourselves in
the stochastic setting (Robbins and Monro, 1951), where only noisy gradient evaluations are
given. The issue of how to choose the learning rate is less clear than in the exact gradient
setting (Bertsekas, 1997; Nocedal and Wright, 2006). There are different guidelines for setting
the learning schedule: the classical Robbins/Monro theory (Robbins and Monro, 1951) asserts
that if the learning rate is chosen such that:

∞∑
k=1

αk =∞ and
∞∑
k=1

α2
k <∞,
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Figure 2.2 – Loss surfaces as a function of network weights in a two-dimensional subspace (Garipov,
Izmailov, Podoprikhin, et al., 2018). Left (3D): for ResNet-20 (He, Zhang, Ren, et al., 2016) on the
ImageNet dataset (Deng, Dong, Socher, et al., 2009). Middle (2D): three optima for independently
trained networks. Right (2D): a quadratic Bezier curve connecting the lower two optima on the middle
figure along a path of near-constant loss.

and if the loss function is sufficiently smooth, then limk→∞ E
[
∥∇L (θk)∥2

]
= 0 (Bottou, Curtis,

and Nocedal, 2018). In addition, if the loss function is strongly convex, then the stochastic
gradient (gk) update θk+1 ← θk − αkgk will converge in expectation to the minimizer.

Generally, two fundamental concerns guide the different strategies employed for MLP
training: (i) training as efficiently as possible, i.e. reducing the training error while avoiding
getting stuck in narrow valleys or poor local minima of the cost function (a visualization of
such cost function valleys is shown in Figure 2.2), and (ii) controlling the expressiveness of the
neural network subject to the amount of training data so as to avoid overfitting, i.e. minimize
the generalization error.

2.5.3 Optimization

Properly adjusting the neural network structure, fine-tuning the hyperparameters, defining
a suitable regularization of the loss function are some key elements to consider before the
training of neural networks. Such critical design choices are essential, yet subtle and potentially
undeclared in scientific papers.

For instance, the difficult task of training deep neural networks is strongly affected by the
choice of network initialization (Goodfellow, Bengio, Courville, et al., 2016). In other terms,
correctly defining the initial values for the parameters in neural network models. Some popular
initialization techniques includeGlorot and Bengio (2010) andHe, Zhang, Ren, et al. (2015), and
all depend on the neural network design choices (network structure and activation functions).

Moreover, as mentioned in Section 2.5.2, there exists different guidelines for setting the
learning rate, and in most instances it is not set fixed since problems can occur when gradients
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become either too large or too small. By automatically adjusting the learning rate, one can
hope to keep the gradients in favorable ranges which avoid problems of plateaus in the error
landscape (gradient is too small), or may overstep local minima preventing the goal of finding
good solutions (gradient is too large). Adam optimization (Kingma and Ba, 2015) builds
upon the idea of adaptive learning rates from AdaGrad (Duchi, Hazan, and Singer, 2011) and
RMSProp (Tieleman and Hinton, 2012). Formally, the adaptive gradient update rule is defined
as follows:

mk+1 = β1 ·mk + (1− β1) · ∇θkL

sk+1 = β2 · sk + (1− β2) · ∇θkL⊙∇θkL

θk+1 = θk − η ·
mk+1
1− βk1

⊘
√

sk+1
1− βk2

+ ε

where ⊙ denotes the point-wise multiplication and ⊘ the point-wise division between vectors.
η is the initial learning rate, β1, β2 ∈ [0; 1[ are respectively decay rates for first-order and second-
order moments of the gradient, βk1 should be understood as “β1 to the power k” and ε ∈ R+ is
a smoothing term. Note that intuitively, mk and sk are interpreted as exponentially moving
averages of the first and second raw moment of the gradient. A more detailed discussion of
Adam as well as a comparison to other optimization methods can be found in Ruder (2016).
When not specified otherwise, we use Adam as our optimization method for all the course of
this thesis.

2.6 What to Learn

Now that we understand how to learn a function using a neural network for function approxima-
tion, we need to choosewhich function to learn, with a common final objective to learn an optimal
policy of the MDP. In other terms, with the availability of modern computational resources,
the question is not so much how to use large and deep neural network representations but for
what purpose. The choice of the function to be learned and the objective function to train it forms
an important part of the work presented in this thesis.

First, one could seek to learn directly an optimal policy π∗ by optimizing the expected
reward with respect to the policy’s parameters. Examples are Derivative-Free Optimization
algorithms (Rastrigin, 1963; Goldberg and Holland, 1988; Sun, Wierstra, Schaul, et al., 2009)
and policy gradient methods (Williams, 1992; Sutton, McAllester, Singh, et al., 2000; Kakade,
2002). We refer to these methods as policy-based.

A second approach focuses on learning optimal value functions which predict how much
rewards an agent will obtain from a state (V ∗) or from a state-action pair (Q∗), then derive an
optimal policy from those functions. Examples include value iteration algorithms benefiting

21



Background

from learning Q-functions (Watkins and Dayan, 1992; Mnih, Kavukcuoglu, Silver, et al., 2015;
Hessel, Modayil, Hasselt, et al., 2018). We refer to these methods as value-based.

Third, some methods primarily learn the dynamics model, i.e. the transition and reward
functions of the MDP. They usually use that model of the environment to plan in the estimated
MDP by deriving an optimal policy π∗. For instance, Ghadirzadeh, Maki, Kragic, et al. (2017)
train perception and behaviour networks in simulations and learn only a low-dimensional
intermediate layer from real-world interactions. Other examples include Deisenroth and
Rasmussen (2011), Moldovan, Levine, Jordan, et al. (2015), and Levine, Finn, Darrell, et al.
(2016) when the use of such methods is relevant where the dynamics are relatively simple but
the optimal policy is complex. We refer to these methods as model-based.

Finally, actor-critic methods refer to methods that both learn a policy and a value function.
Namely, the critic updates the value function parameters, be it the state value function V or the
state-action value function Q. On the other hand, the actor updates the policy parameters in a
direction recommended by the critic.

2.6.1 Value-based Methods

A common value-based method to exactly solve an MDP with a finite number of states and
actions is value iteration. This process eventually finds the optimal value function by iteratively
computing and updating the state-action value function, or Q-value function, represented by
Q(s, a). However, for more complex MDPs, value functions are facing a different scale, up
to thousands or millions of dimensions, including images. In addition, in most real-world
scenarios, the agent does not know the state transition probabilities or rewards. In such
problems, these algorithms can be combined with function approximation in different ways,
adding to the splendour ofQ-learning, exemplified by the highly popular deep Q-network (Mnih,
Kavukcuoglu, Silver, et al., 2013, 2015) and its variants double DQN (Hasselt, Guez, and
Silver, 2016), IQN (Dabney, Ostrovski, Silver, et al., 2018) and TQC (Kuznetsov, Shvechikov,
Grishin, et al., 2020). Inherently, Q-learning is designed to find deterministic policies. Thus, for
environments with a continuous action space requiring a policy with a distribution over actions
as an output from which to sample, it is preferable to use other methods that fit more naturally
under a continuous action space, such as policy gradient or actor-critic methods. Furthermore,
the inherent randomness of a stochastic policy leads to exploration, so although we often prefer
a deterministic policy at convergence, a stochastic policy is desirable for exploration, which is
crucial for many learning problems.
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2.6.2 Policy-based Methods

In this thesis, we will typically use parameterized stochastic policies. Stochastic policies have
several advantages. For instance, the inherent randomness of stochastic policies leads to
exploration, which is crucial for most learning problems. In other RL methods where the policy
is deterministic, randomness usually has to be artificially added in some other way, e.g. using
the naive exploration policy ε-greedy, which takes random actions at a fixed frequency. In
addition, while policy-based methods simply increase the probability of actions associated
with high rewards whilst decreasing the probability of actions associated with low rewards,
value-based methods need the value function and thus also need to actually learn and compute
values, adding additional layers of potential estimation errors. Moreover, Q-functions exhibit
problematic issues such as overestimation bias (Thrun and Schwartz, 1993) requiringmitigation
strategies such as learning two Q-value estimates (van Hasselt, 2010; Hasselt, Guez, and Silver,
2016) or regularization(Bahdanau, Brakel, Xu, et al., 2017). When choosing a parameterized
model for the policy πθ, Equation 2.2 becomes an optimization problem with respect to θ ∈ Rd:

π∗
θ = arg max

θ
J(πθ). (2.4)

Derivative-Free Policy Optimization Methods. There exists a kind of methods where the
parameters of the policy are perturbed incrementally in different directions where the perfor-
mance improves. Remarkably, these methods provide a means to train agents with high return
without estimating any gradient at all. Nevertheless, only a few of these methods (Mania, Guy,
and Recht, 2018; Pourchot and Sigaud, 2019) succeed in competing against gradient-based
methods. Indeed, in practice, the policies of the derivative-free methods require few parameters
and often suffer from a lack of scalability as the number of parameters increases. For instance,
the cross-entropy method (Szita and Lörincz, 2006; Gabillon, Ghavamzadeh, and Scherrer,
2013) is a derivative-free optimization method treating the problem of transforming a Gaussian
policy parameter θ = (µ, σ) into a rewardR as a black-box process. We illustrate in Algorithm 1
how an evolutionary algorithm is used to find good candidate parameters using the cross
entropy method.

Other methods include natural evolution strategies (Wierstra, Schaul, Peters, et al., 2008)
and covariance matrix adaptation (Wampler and Popović, 2009; Wang, Fleet, and Hertzmann,
2010). This class of algorithms is discussed with more details by Deisenroth, Neumann, and
Peters (2013) and Sigaud and Stulp (2019).

Policy Gradient Methods. Policy-based methods use an estimator function from a space of
parameterized stochastic policies Πθ =

{
πθ | θ ∈ Rd

}
mapping states to action probabilities.

Such algorithms iteratively estimate the policy’s performance with respect to its parameters
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Algorithm 1 Cross Entropy Method (CEM).
1: Input number of parameter vectors n, proportion ρ ≤ 1, noise η
2: Initialize µ ∈ Rd and σ ∈ Rd
3: for iteration = 1, 2, . . . do
4: Generate a random sample of n parameter vectors θi ∼ N (µ, diag(σ))
5: For each θi perform one episode and collect reward Ri
6: Select ⌊ρn⌋ parameters with the highest score θ′

1 . . . θ
′
⌊ρn⌋

7: Update µ(j) = 1
⌊ρn⌋

∑⌊ρn⌋
i=1 θ′

i(j) and σ2(j) = 1
⌊ρn⌋

∑⌊ρn⌋
i=1 [θ′

i(j)− µ(j)]2 + η

8: Return µ

and update the weights according to Equation 2.4 by gradient ascent. In practice, the vanilla
policy gradient algorithm alternates between two phases: (i) exploration where trajectories are
generated from actions sampled from the current policy and (ii) update where the trajectories
are used to estimate the gradient of policy performance and perform a gradient ascent step.

In the following, we derive a simple formulation of the vanilla policy gradient algorithm
(VPG). Let us denote x a random variable with probability density p(x|θ) and f a scalar-valued
function f , which will be the reward in our case, but can more generally denote a score function.
We would like to compute the score function gradient∇θEx [f(x)]:

∇θEx [f(x)] = ∇θ
∫
p(x|θ)f(x) dx

=
∫
∇θp(x|θ)f(x) dx

=
∫
p(x|θ)∇θ log p(x|θ)f(x) dx

= Ex [f(x)∇θ log p(x|θ)] .

Let us now apply the expectation above to the problem of Reinforcement Learning in which
the random variable x translates into a sequence of state and actions resulting in a trajectory
τ = (s0, a0, r0, s1, a1, r1, . . . , sT ). p(x|θ) will be the probability occurrence of trajectory τ under
policy parameters θ, and the score function f(x) will be the total reward R(τ) of the trajectory.
Next, we derive p(τ |θ):

p(τ |θ) = µ (s0)
T∏
t=0
T (st+1 | st, at)πθ (at | st) ,

where µ is the initial state distribution. The expectation above can be estimated with a sample
mean, that is, by taking the logarithm of p(τ |θ) we obtain the following score function gradient
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2.6 What to Learn

Score Function Gradient Estimator: Intuition

ĝi = f (xi)r✓ log p(xi | ✓)Model-free RL: trial and error learning

• What if we didn’t need a model?
• Intuition: trial and error learning
• Much slower
• Often more general
• Coming up next!

Figure 2.3 – Illustrations of the score function gradient estimator mechanics. From Schulman (2017)
and Levine (2017).

estimate ĝ:

ĝ = 1
|D|

∑
τ∈D

T∑
t=0
∇θ log πθ (at|st)R(τ), (2.5)

with D = {τi}i=1,...,N a set of N trajectories collected in an environment by an agent acting
following πθ. Intuitively,R(τ) gives a clue about if and howmuch one shouldmove in parameter
space in the direction that increases log πθ (at|st) (see Figure 2.3). Notably, there is no need
to compute the value of states or state-action pairs exactly, contrary to value-based methods.
Learning such a parameter representation of the policy can be relevant in practice: in the
Breakout Atari game for instance, aiming to follow the ball appears to be much more efficient
compared to going left, right or still because it will eventually give a return of 3.5, while other
actions have returns 2.5 and 0.

From here, we would like to reinforce actions based on their consequences and not based
on all rewards obtained in the trajectory. Equation 2.5 can be rewritten as:

ĝ = 1
|D|

∑
τ∈D

T∑
t=0
∇θ log πθ (at|st)

T∑
t′=t

rt′+1.

Now, to improve stability, Weaver and Tao (2001) show that subtracting a baseline (Williams,
1992) can be very beneficial in reducing variance without damaging the bias. Intuitively,
adjusting an action’s probability based on a trajectory performance without comparing it to
previous returns means that if a particular action was in a path to a positive return, you will
still increase its probability even if other actions might have done better. Instead, it is less naive
to compare the return to what you might have done: this is the purpose of a baseline. We
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subtract b(st) from the empirical returns:

∇θEτ [R(τ)] = Eτ

[
T∑
t=0
∇θ log πθ (at | st)

(
T∑
t′=t

rt′+1 − b(st)
)]

.

The equality in the last equation follows from the fact that Ea∇θ log πθ (a | s) = 0 (Williams,
1992). Themost-common choice for b(st) is the state-value functionV π(st)which near-optimally
reduces the variance of the sample estimate of the policy gradient (Greensmith, Bartlett, and
Baxter, 2004). The resulting term,∑T

t′=t rt′+1 − V π(st), is an estimate of the advantage function
Aπ(st, at) defined previously, and the resulting policy gradient estimate ĝ formulation enjoys
faster and more stable policy learning. In practice, V π(st) needs to be estimated: a canonical
way of doing it is using a neural network to approximate it and minimizing the mean-squared-
error objective against the empirical returns. Algorithm 2 illustrates the resulting vanilla policy
gradient algorithm where the policy and value function parameters are typically updated via
stochastic gradient ascent/descent or Adam (Kingma and Ba, 2015) optimization.

Algorithm 2 Vanilla Policy Gradient (VPG).
1: Initialize policy parameter θ and value function parameter ϕ
2: for iteration = 1, 2, . . . do
3: Collect a set of trajectories D = {τi}i=1,...,N by running the current policy
4: At each timestep in each trajectory compute Rt =

∑T
t′=t rt′+1 and Ât = Rt − Vϕ(st)

5: Fit the value function estimate by minimizing ∥Vϕ(st)−Rt∥2 over all timesteps in D
6: Compute the policy update by summing∇θ log πθ (at|st) Ât over all timesteps in D

Some disadvantages of such defined policy-based methods (Williams, 1992; Jaakkola,
Jordan, and Singh, 1994; Sutton, McAllester, Singh, et al., 2000) is that they generally take
longer to converge and tend to converge to local optima rather than the global optimum due
to premature convergence to a near-deterministic policy that obtains sub-optimal rewards.
Fortunately, this problem can be alleviated by using alternativeways of estimating the advantage
function, or by using entropy regularization in the policy update.

Remark 2.2 (Control Variates). This technique of adding a baseline is sometimes referred to as an
additive control variate (Nelson, 1990; Greensmith, Bartlett, and Baxter, 2004), a generic approach
to reducing the variance of Monte Carlo estimators by using a function with known mean whose
behavior is correlated with a function of interest. A second application of control variates is developed
in the following under the name of actor-critic methods and consists of using a learnt value function
instead of the discounted value function estimate.
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2.6.3 Actor-Critic Methods

When policy-gradient methods use an estimation of the value function in the estimation of the
returns, they generally are granted with another name: actor-critic methods. In this case, the
policy and value function are intertwined and optimized jointly: the policy is referred to as the
actor, and the value function as the critic. This joint optimization formulation often combined
with bootstrapping is preferred when working with large-scale RL problems where training
either of the estimators to convergence is at best challenging.

Recall that an unbiased estimator of the policy gradient can be written as:

ĝ = 1
|D|

∑
τ∈D

T∑
t=0

Âπ(st, at)∇θ log πθ (at|st) ,

where Âπ is an estimation of the advantage function. For very long trajectories, we can further
reduce the variance by using a discount factor, which reduces variance at the cost of bias:
Âπ(st, at) =

∑T
t′=t γ

t′−trt′+1 − V̂ π(st) where in this case the value function should estimate the
discounted sum of rewards by minimizing some notion of distance between the value function and
the true discounted value function. Some examples of such approximation techniques include
TD (Sutton, 1988), LSTD (Bradtke and Barto, 1996) or more recently Generalized Advantage
Estimators (Schulman, Moritz, Levine, et al., 2016).

Advantage FunctionEstimation. Following an idea first encountered in the literature inKimura
and Kobayashi (1998) and Wawrzyński (2009), and popularized as Generalized Advantage
Estimators (GAE) (Schulman, Moritz, Levine, et al., 2016), we can form a k-step advantage
function estimator:

Â(k) (st, at) =
k−1∑
i=0

γirt+i + γkV̂ (st+k)− V̂ (st) ,

where k ∈ {1, 2, . . . ,∞} and V̂ (s) is a value function estimator. Early adoption of such esti-
mators in the policy gradient are observed in advantage actor-critic methods (Mnih, Badia,
Mirza, et al., 2016; Schulman, Moritz, Levine, et al., 2016) such as A2C and A3C. Since the
value function will often have a non-negligible estimation error, there will always be some bias
in the gradient estimator, and a delicate choice of k will further balance the bias-variance ratio.

Exploration and Off-Policy. Other actor-critic methods address the problem of premature
convergence to sub-optimal policies due to a lack of exploration: they use entropy regularization
in the policy update. For instance, Soft Actor-Critic (SAC) (Haarnoja, Zhou, Abbeel, et al.,
2018; Haarnoja, Zhou, Hartikainen, et al., 2018) is a method based on the maximum entropy
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framework which objective encourages policy stochasticity by augmenting the reward with the
entropy at each step. Notably, SAC is an off-policy actor-critic algorithm, meaning it is able to
efficiently reuse old data leading to potential instability. On the contrary, on-policy methods
estimate the return for state-action pairs assuming the current policy continues to be followed.
Deep Deterministic Policy Gradient (DDPG) (Silver, Lever, Heess, et al., 2014; Lillicrap, Hunt,
Pritzel, et al., 2016) and Twin Delayed DDPG (TD3) (Fujimoto, Hoof, and Meger, 2018) are
other off-policy algorithms which interleave learning a Q-function and a policy, with TD3
tackling the overestimation of the Q-values in DDPG.

TrustRegionOptimization. Similar to SAC, Trust Region PolicyOptimization (TRPO) (Schul-
man, Levine, Abbeel, et al., 2015) can be viewed as a policy iteration scheme but where the
greedy step is penalized with a Kullback-Leibler (KL) penalty between two consecutive poli-
cies (generally a previous “old” policy and the current policy), instead of the entropy of the
current policy. This mechanism, known as trust region optimization, allows the policy to be
improved as much as possible by taking a gradient step in the policy parameter space without
deviating too much from the current policy and avoiding a potentially irrecoverable drop in
performance. While TRPO uses a resource-intensive second-order method for trust region
optimization, Proximal Policy Optimization (PPO) (Schulman, Wolski, Dhariwal, et al., 2017)
takes its inspiration from TRPO, natural policy gradient (Kakade, 2002; Peters and Schaal,
2008a) and conservative policy iteration (Kakade and Langford, 2002) to introduce a simpler
to implement first-order method. TRPO and PPO also resemble Mirror Descent (Beck and
Teboulle, 2003) in that they use a linearization of the objective function with a proximity term
which restricts two consecutive updates to be “close” to each other. In the same vein, Actor
Critic using Kronecker-Factored Trust Region (ACKTR) (Wu, Mansimov, Grosse, et al., 2017)
uses Kronecker-factored natural gradient approximations to tackle the scalability shortcomings
of TRPO in learning in very high-dimensional observation space, e.g. directly from raw pixel
observations.

2.7 RL in the Real World

Although we do not address the application of RL to real-world conditions until the final part
of this thesis, it is generally admitted that this ultimate goal must, from the outset, be part of the
way in which RL research is advanced. Furthermore, the possibility of re-use of our work by
fellow researchers should serve as a guiding framework for the experimental protocol, scientific
paper writing and access to code. We will discuss this topic further next. On a more practical
note, applying the current state-of-the-art in RL directly in the real world is challenging, in
part because most of the algorithms cannot be safely deployed in real-world systems. For
instance, when all training occurs in a simulator, the translation of behaviour to the real world,
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or sim-to-real transition, often fails because of the inherent domain-shift between the simulation
and the real world. This can be prone to causing damage to the physical world or not being
suitable for the application environment. One might then legitimately ask why not train our
agents directly in the real world. Indeed, part of the problem is the large sample sizes required
by many RL algorithms, requiring tens of thousands of trials in the real world, which can be
technically unsustainable and potentially very expensive.

In this thesis, we specifically work on methods to improve the sampling efficiency of deep
RL algorithms through the prism of actor-critic methods. So far, all the methods we have
described in this chapter are referred to as model-free methods. But there are other approaches
to make RL more efficient in terms of sampling, such as model-based methods, which mostly
rely on the estimated dynamics to derive the corresponding optimal controls, and imitation
learning (or learning from demonstration) methods, where an agent learns from an expert who
demonstrates the desired behaviour rather than directly learning the policy by trial-and-error.
In the following sections, we discuss how achieving a level of generalization in deep RL is a
big step towards applying it to the real world, and we address the question of the extent to
which the promises of Hierarchical RL could help. Appendix E includes additional examples
of projects not presented in the thesis that aim to make a positive contribution to open research
and education.

2.7.1 Generalization in Deep RL

Several works (Packer, Gao, Kos, et al., 2018; Zhang, Ballas, and Pineau, 2018; Zhang, Vinyals,
Munos, et al., 2018) acknowledge there is a sort of a “replication crisis” in the domain of Deep
Reinforcement Learning and observe a growing demand for generalization in particular in
robotics via the concept of reality gap where real-world problems certainly involve intrinsic
noise and uncertainty with novel conditions encountered (Sünderhauf, Brock, Scheirer, et al.,
2018). Although this thesis does not focus on generalization in deep RL, we provide directions
towards the development of new exploration methods that can generalize well to unseen
scenarios by evaluating our agents on procedurally-generated environments in Chapter 8, and
we propose an approach to learning risk-averse agents in real-world inspired tasks in Chapter 9.

Standardized and Reproducible Evaluations. A well-designed evaluation protocol is the
cornerstone of research and is naturally inseparable from research in Artificial Intelligence.
In 2019, NeurIPS conference was the first to introduce a Machine Learning Reproducibility
checklist (Pineau, Vincent-Lamarre, Sinha, et al., 2020) as part of the submission process and
other conferences including ICLR and ICML have followed by introducing reproducibility
programs. Those programs are designed to improve the standards of machine learning research.
As an example, most of the time, deep RL algorithms are compared based on training return.
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In fact, standard deviation of returns and average return are generally considered to be the
most stable measures used to compare the performance of the algorithms being studied (Islam,
Henderson, Gomrokchi, et al., 2017). Nevertheless, they can be of high variance hence a
non-rigorous experimental protocol will lead to uninterpretable results (Henderson, Islam,
Bachman, et al., 2018). One necessary but not sufficient step is to use a sufficient number of
random seeds to allow reliable comparison among algorithms (Colas, Sigaud, and Oudeyer,
2018; Pineau, 2018; Zhang, Ballas, and Pineau, 2018). Another important component for
contributing meaningfully to a study is to use a standardized evaluation protocol. In the
context of deep RL, this means choosing standard environment models and benchmarks, and
preferably open source code bases whenever possible.

Experimental Protocol and Best Practices. In this part, we consider a few useful good prac-
tices developed by the research community for the research community which we learned to
apply during the course of this thesis. In general, a safe way to ensure that one compares two
algorithms fairly is to keep all other things equal. This can be done for example by using similar
neural network architectures for our method and baselines. For the case of one-dimensional
input vectors, researchers usually pick a two- or three-layered Multi-Layer Perceptron with
maximum hidden sizes of 256 or 512. For the case of two-dimensional input images a structure
equivalent to the convolutional architecture of the Nature paper of DQN (Mnih, Kavukcuoglu,
Silver, et al., 2015) seems to be preferred. In any cases, it is generally a good practice to ensure
this information is given in the paper, or the code provided (open-source software is a good
practice to help reproducible research). Another critical aspect of research is to engage in fair
comparisons between one’s newmethod and baselines. Whether it is a personal implementation
or (official) code published on GitHub, it is always worth checking the performance of the code
against that reported in the original paper. In addition, it is paradoxically quite complicated to
keep a method simple. Sometimes, when a new method finally shows interesting results, it is
almost more challenging to dry it out and make it as lean as possible. One way of doing this
is to dissect the components of the method and do ablative studies to see the impact of each
component on performance. Being able to justify each part of the method will then become
easier and make the work stronger as a whole. Needless to say that a final good practice is to
not consider random seeds as hyperparameters. These elements of best practices are discussed
in more details in the following works (Whiteson, Tanner, Taylor, et al., 2011; Baker, 2016; Islam,
Henderson, Gomrokchi, et al., 2017; François-Lavet, Henderson, Islam, et al., 2018).

2.7.2 Hierarchical Reinforcement Learning

Real-world applications also calls for more interpretable methods. The Hierarchical Reinforce-
ment Learning setting is often based on the options framework (Sutton, Precup, and Singh, 1999)
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or contextual policies (Kupcsik, Deisenroth, Peters, et al., 2013; Schaul, Horgan, Gregor, et al.,
2015). Both use the concept of temporal abstraction which allows representing knowledge about
courses of action that take place at different time scales. In this case, we talk about temporally
extended actions. The options framework combines low-level policies with a top-level policy
that invokes individual sub-policies and contextual policies generalize options to continuous
goals. For more details on Hierarchical RL methods, refer to Schmidhuber and Wahnsiedler
(1993), Dayan andHinton (2000), Barto andMahadevan (2003), Nachum, Gu, Lee, et al. (2018),
and Nachum, Tang, Lu, et al. (2019). Fundamentally, such methods are interesting for real-
world applications because of their interpretability: high-level actions often correspond to more
semantically meaningful behaviors. In addition, many real-world tasks may be decomposed
into natural hierarchical structures (Flet-Berliac, 2019), further opening the door to reusable
models, multi-task learning and pre-training of general-purpose neural networks (Haarnoja,
Hartikainen, Abbeel, et al., 2018; Shu, Xiong, and Socher, 2018; Li, Wang, Tang, et al., 2019;
Zhou, Yu, Chen, et al., 2019). However, in addition to a generally increased sample complexity,
challenges such as the non-stationarity generated by updating the levels of a hierarchical agent
require more effort in implementation and introduce additional hyperparameters.
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Chapter 3

Dynamic Control Problems

One of the most gratifying results
of intellectual evolution
is the continuous opening up
of new and greater prospects.

Electrical Possibilities in Coal and Iron, Nikola Tesla (1915).

Part II studies continuous control problems in which we focus on the design of sample-
efficient learning algorithms. In this chapter, we introduce the problem of learning continuous
control policies and present the inference scheme that allows it to be used with deep neural
network representations in high-dimensional continuous state and action spaces.

Contents
3.1 Physics Engines for Robotics Applications . . . . . . . . . . . . . . . . . . . . 36

3.2 General Solutions for Continuous Control tasks . . . . . . . . . . . . . . . . 37
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10.1. Episodic Semi-gradient Control 245

!1.2

Position

0.6

Step 428

Goal

Position

4

0

!
.0
7

.0
7

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

Position

Position

Position

0

27

0

120

0

104

0

46

Episode 12

Episode 104 Episode 1000 Episode 9000

MOUNTAIN   CAR Goal

Figure 10.1: The Mountain Car task (upper left panel) and the cost-to-go function
(�maxa q̂(s, a,w)) learned during one run.

can build up enough inertia to carry it up the steep slope even though it is slowing down
the whole way. This is a simple example of a continuous control task where things have
to get worse in a sense (farther from the goal) before they can get better. Many control
methodologies have great di�culties with tasks of this kind unless explicitly aided by a
human designer.

The reward in this problem is �1 on all time steps until the car moves past its goal
position at the top of the mountain, which ends the episode. There are three possible
actions: full throttle forward (+1), full throttle reverse (�1), and zero throttle (0). The
car moves according to a simplified physics. Its position, xt, and velocity, ẋt, are updated
by

xt+1
.
= bound

⇥
xt + ẋt+1

⇤

ẋt+1
.
= bound

⇥
ẋt + 0.001At � 0.0025 cos(3xt)

⇤
,

where the bound operation enforces �1.2  xt+1  0.5 and �0.07  ẋt+1  0.07. In
addition, when xt+1 reached the left bound, ẋt+1 was reset to zero. When it reached
the right bound, the goal was reached and the episode was terminated. Each episode
started from a random position xt 2 [�0.6,�0.4) and zero velocity. To convert the two
continuous state variables to binary features, we used grid-tilings as in Figure 9.9. We
used 8 tilings, with each tile covering 1/8th of the bounded distance in each dimension,

Figure 3.1 – Negative of the empirical value function (−maxa Q̂
π(s, a)) learned on a single run by an

agent in the Mountain Car task (illustrated in the upper left panel). Each other panel shows what
happens while learning to solve the task using semi-gradient Sarsa. Taken from Sutton and Barto (1998).

3.1 Physics Engines for Robotics Applications

Recently, the deep RL community has generally been using a set of benchmark problems
inspired by the MuJoCo physics engine (Todorov, Erez, and Tassa, 2012) and integrated
with OpenAI Gym (Brockman, Cheung, Pettersson, et al., 2016). In most cases, the optimal
control problem for these tasks is to make the simulation of a robot (creature or humanoid) to
walk/move as fast as possible (i.e. using as few actions as possible) in one direction. In those
tasks, the robots interact with environments by the contact force. Some tasks are simpler than
others to learn, depending on the degrees of freedom of the simulated robot. For instance, the
Mountain Car task is a simplified physics environment illustrated in Figure 3.1 which has only
3 degrees of freedom, meaning the dimension of the action space A of the task is 3, with the
following actions: full acceleration forward, full acceleration reverse and zero acceleration. On
the contrary, the Humanoid robot learning task is more challenging since it has 17 degrees of
freedom.

MuJoCo (Todorov, Erez, and Tassa, 2012) stands for Multi-Joint dynamics with Contact. It
is a proprietary physics engine for efficient rigid body simulations with contacts and is widely
used by the deep RL community as a benchmark for robotics applications. PyBullet (Coumans
and Bai, 2016) is another rigid body simulation platform that simulate contact dynamics with a
difference that it has an open-source Zlib license. We will use MuJoCo and PyBullet extensively
in this thesis. Roboschool (Klimov and Schulman, 2017) is another environment platform
made for controlling robots in simulation. It was initially built as free alternatives to MuJoCo
implementations with modifications to make themmore physically realistic. Roboschool is also
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3.2 General Solutions for Continuous Control tasks
Benchmarking Deep Reinforcement Learning for Continuous Control

(a) (b) (c) (d)

(e) (f) (g)

Figure 1. Illustration of locomotion tasks: (a) Swimmer; (b) Hop-
per; (c) Walker; (d) Half-Cheetah; (e) Ant; (f) Simple Humanoid;
and (g) Full Humanoid.

servable tasks for each of the five basic tasks described in
Section 3.1, leading to a total of 15 additional tasks. These
variations are described below.

Limited Sensors: For this variation, we restrict the obser-
vations to only provide positional information (including
joint angles), excluding velocities. An agent now has to
learn to infer velocity information in order to recover the
full state. Similar tasks have been explored in Gomez &
Miikkulainen (1998); Schäfer & Udluft (2005); Heess et al.
(2015a); Wierstra et al. (2007).

Noisy Observations and Delayed Actions: In this case,
sensor noise is simulated through the addition of Gaussian
noise to the observations. We also introduce a time de-
lay between taking an action and the action being in effect,
accounting for physical latencies (Hester & Stone, 2013).
Agents now need to learn to integrate both past observa-
tions and past actions to infer the current state. Similar
tasks have been proposed in Bakker (2001).

System Identification: For this category, the underly-
ing physical model parameters are varied across different
episodes (Szita et al., 2003). The agents must learn to gen-
eralize across different models, as well as to infer the model
parameters from its observation and action history.

3.4. Hierarchical Tasks

Many real-world tasks exhibit hierarchical structure, where
higher level decisions can reuse lower level skills (Parr &
Russell, 1998; Sutton et al., 1999; Dietterich, 2000). For in-
stance, robots can reuse locomotion skills when exploring
the environment. We propose several tasks where both low-
level motor controls and high-level decisions are needed.
These two components each operates on a different time
scale and calls for a natural hierarchy in order to efficiently
learn the task.

(a) (b)

Figure 2. Illustration of hierarchical tasks: (a) Locomotion +
Food Collection; and (b) Locomotion + Maze.

Locomotion + Food Collection: For this task, the agent
needs to learn to control either the swimmer or the ant robot
to collect food and avoid bombs in a finite region. The
agent receives range sensor readings about nearby food and
bomb units. It is given a positive reward when it reaches a
food unit, or a negative reward when it reaches a bomb.

Locomotion + Maze: For this task, the agent needs to learn
to control either the swimmer or the ant robot to reach a
goal position in a fixed maze. The agent receives range
sensor readings about nearby obstacles as well as its goal
(when visible). A positive reward is given only when the
robot reaches the goal region.

4. Algorithms
In this section, we briefly summarize the algorithms im-
plemented in our benchmark, and note any modifications
made to apply them to general parametrized policies. We
implement a range of gradient-based policy search meth-
ods, as well as two gradient-free methods for comparison
with the gradient-based approaches.

4.1. Batch Algorithms

Most of the implemented algorithms are batch algorithms.
At each iteration, N trajectories {⌧i}N

i=1 are generated,
where ⌧i = {(si

t, a
i
t, r

i
t)}T

t=0 contains data collected along
the ith trajectory. For on-policy gradient-based methods,
all the trajectories are sampled under the current policy. For
gradient-free methods, they are sampled under perturbed
versions of the current policy.

REINFORCE (Williams, 1992): This algorithm estimates
the gradient of expected return r✓⌘(⇡✓) using the likeli-
hood ratio trick:

\r✓⌘(⇡✓) =
1

NT

NX

i=1

TX

t=0

r✓ log ⇡(ai
t|si

t; ✓)(R
i
t � bi

t),

where Ri
t =

PT
t0=t �

t0�tri
t0 and bi

t is a baseline that only
depends on the state si

t to reduce variance. Hereafter, an as-

Figure 3.2 – Examples of continuous control tasks. From left to right: Humanoid (MuJoCo), Reacher
(PyBullet), AntGather (rllab) and LunarLander (Box2D).

providing several more challenging environments, which we will use in this thesis. Fortunately,
RL researchers can still use Roboschool but the project has been deprecated by its creators
during the course of this thesis, and now recommend using PyBullet instead1. Box2D (Catto,
2011) is another rigid body simulation library, mainly for games, and rllab (Duan, Chen,
Houthooft, et al., 2016) is another framework similar to OpenAI Gym for developing and
evaluating RL algorithms.

3.2 General Solutions for Continuous Control tasks

Manydynamic control tasks have a continuous state space and often continuous action variables.
More traditional RL algorithms assume discrete states and actions and are not directly suited to
these tasks. One solution is to use discretization of the continuous variables (Millán, Posenato,
and Dedieu, 2002; Kimura, 2007). However, depending on the quality of the discretizedmodels,
this can lead to unrecoverable errors in the training model, prevent generalization capabilities
across similar states or be excessively expensive, especially in very high-dimensional action
spaces. Therefore, while these lookup tables work well in an environment with a finite number
of states and actions, they are not suitable for MPDs with continuous states and actions due to
the curse of dimensionality. In the case of a high-dimensional MDP, function approximation is
generally used for its ability to handlemulti-dimensional continuous variables and to generalize
across similar states.

Value-based methods have remained under-explored RL methods in continuous control,
illustrated by the optimization problem maxa Q̂π(s, a), which is generally difficult to solve if the
action space is continuous: the learned value function Q̂π(s, a) may have many local maxima
and saddle points (Lim, Joseph, Le, et al., 2019). Policy-based methods have therefore typically
been preferred for these kinds of problems. In general, a neural network is used as a function
approximation for the policy whose structure depends on the observation (S) and action (A)
spaces. In practice, the size of the input layer will correspond to the size of the observation space.
Moreover, in the context of continuous control problems, the use of the Gaussian distribution

1Roboschool implementation GitHub Commit.
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as a stochastic policy has been widely studied and applied since Williams (1992), mainly
because the Gaussian distribution is easy to sample and its gradients are simple to calculate.
Furthermore, since we generally assume that the action dimensions are independent, we will
use fully-factored Gaussian policies where the means of the action distributions will be the
outputs of the neural network and the variances will be separate trainable parameters.
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Chapter 4

Use Variance in the Value Function
estimates as an auxiliary loss

Γνῶθι σεαυτόν

–
Know thyself.

Pronaos of the Temple of Apollo, Socrates.

Earlier work in deep RL makes use of domain knowledge to improve the sample efficiency
of existing algorithms. While promising, previously acquired knowledge is often costly and
challenging to scale up. Instead, we address problem knowledge using signals from quantities
relevant to solve any task. In this chapter, we propose to use the coefficient of determination of
the value function estimates as an additional objective function (auxiliary loss) in the learning
algorithm of policy gradient methods. The first work of this thesis consists in proposing
a method theoretically applicable to any deep RL algorithm for learning complementary
diagnostic signals of self-performance assessment. The approach is motivated by the prospect
of using an auxiliary loss predictive of the variance in the value function estimates to help
differentiate the representations of known or unknown areas of the state space1.
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4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 MERL: Framework for Self-Performance Assessment . . . . . . . . . . . . . . 44

4.5 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1This chapter is based on Flet-Berliac and Preux (2019b) presented at the Deep Reinforcement Learning workshop at
the 33rd conference on advances in Neural Information Processing Systems (NeurIPS).
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4.1 Motivation

In Part I, we have introduced the problem of learning how to act optimally in an unknown dy-
namic environment and developed the many research efforts it has generated for decades (Wer-
bos, 1989; Nguyen and Widrow, 1990; Schmidhuber and Huber, 1991) and until recently
with work in Deep Reinforcement Learning (Silver, Huang, Maddison, et al., 2016; Burda,
Edwards, Storkey, et al., 2018; Espeholt, Soyer, Munos, et al., 2018; Ha and Schmidhuber, 2018).
Nonetheless, current algorithms tend to be fragile and opaque (Iyer, Li, Li, et al., 2018): they
require a large amount of training data collected from an agent interacting with a simulated
environment where the reward signal is often critically sparse. Collecting signals that will
make the agent more efficient is, therefore, at the core of the algorithms designers’ concerns.
Previous work in RL (Clouse and Utgoff, 1992; Lin, 1992b; Ribeiro, 1998; Moreno, Regueiro,
Iglesias, et al., 2004) use prior knowledge to reduce sample inefficiency. While promising and
unquestionably necessary, the integration of such priors into current methods is likely costly
to implement, it may cause undesired constraints and can hinder scaling up. Therefore, we
propose a framework to directly integrate non-limiting constraints in current RL algorithms
while being applicable to any task. The agent should learn from all interaction data, not just
the rewards. Indeed, if the probability of receiving a reward by chance is arbitrarily low, then
the time required to learn from it will be arbitrarily long (Whitehead, 1991). This barrier to
learning will prevent agents from significantly reducing learning time. One way to overcome
this barrier is to learn complementary and task-agnostic signals of self-performance assessment
and accurate expectations from different sources, in a similar vein to Schmidhuber (1991) and
Oudeyer and Kaplan (2007), whatever the task to master.

Our contributions are the following: from the above considerations and building on existing
auxiliary task methods, we design a framework that integrates problem knowledge quantities
into the learning process. In addition to providing amethod technically applicable to any policy
gradient algorithm or environment, the central idea of MERL is to incorporate a measure of the
discrepancy between the estimated state value and the observed returns as an auxiliary loss.
This discrepancy is formalized with the notion of fraction of variance explained Vex (Kvålseth,
1985). One intuition that can be developed is that MERL transforms a reward-focused task
into a task regularized with dense problem knowledge signals. Figure 4.1 below provides
a preliminary understanding of MERL assets: an enriched actor-critic structure with a lightly
modified learning algorithm places the agent amidst task-agnostic auxiliary quantities directly
sampled from the environment. In the sequel of this chapter, we use two problem knowledge
quantities to demonstrate the performance of MERL: Vex, a measure of self-performance, and
future states prediction, commonly used in auxiliary taskmethods. One objective of this chapter
is to encourage the introduction of many other relevant signals. We show that while being able
to correctly predict the quantities with the different MERL heads (each minimizing an auxiliary
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loss), the agent outperforms the baseline that does not use the MERL framework on various
continuous control tasks. We also show that, interestingly, our framework has the potential to
take advantage of encoder sharing to allow for better transfer learning on several Atari 2600
games.

4.2 Preliminaries

We consider a Markov Decision Process (MDP) with states s ∈ S, actions a ∈ A, transition
distribution st+1 ∼ P (st, at) and reward function r(s, a). Let π = {π(a|s), s ∈ S, a ∈ A} denote
a stochastic policy and let the objective function be the traditional expected discounted reward:

J(π) ≜ E
τ∼π

[ ∞∑
t=0

γtr (st, at)
]
, (4.1)

where γ ∈ [0, 1) is a discount factor (Puterman, 1994) and τ = (s0, a0, s1, . . . ) is a trajectory
sampled from the environment. Policy gradient methods aim at modelling and optimizing
the policy directly (Williams, 1992). The policy π is generally implemented with a function
parameterized by θ. In the sequel, we will use θ to denote the parameters as well as the policy.
In deep RL, the policy is represented by a neural network called the policy network and is
assumed to be continuously differentiable with respect to its parameters θ. When the policy
is represented by such a parameterized function, hence by an approximation of a policy, the
MDP theory basically breaks down.

4.2.1 Fraction of Variance Explained

The fraction of variance that the value function V explains about the returns corresponds to the
proportion of the variance in the dependent variable V that is predictable from the independent
variable st. We define Vexτ as the fraction of variance explained for a trajectory τ :

Vexτ ≜ 1−
∑
t∈τ

(
R̂t − V (st)

)2

∑
t∈τ

(
R̂t −R

)2 , (4.2)

where R̂t and V (st) are respectively the return and the expected return from state st ∈ τ ,
and R is the mean of all returns in trajectory τ . In statistics, this quantity is also known as
the coefficient of determination R2 and it should be noted that this criterion may be negative
for non-linear models (Kvålseth, 1985), indicating a severe lack of fit of the corresponding
function:

• Vexτ = 1: V perfectly explains the returns - V and the returns are correlated;
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• Vexτ = 0 corresponds to a simple average prediction - V and the returns are not correlated;

• Vexτ < 0: V provides a worse fit to the outcomes than the mean of the returns.
Following this definition, one can have the intuition that Vexτ close to 1 implies that the

trajectory τ provides valuable signals because they correspond to transitions sampled from an
exercised behavior. On the other hand, Vexτ close to 0 indicates that the value function is not
correlated with the returns, therefore, the corresponding samples are not expected to provide
as valuable information as before. Finally, Vexτ < 0 corresponds to a high mean-squared error
for the value function, which means for the related trajectory that the agent still has to learn to
perform better. In Flet-Berliac and Preux (2019c), policy gradient methods are improved by
using Vex as a criterion to dropout transitions before each policy update. We will show that
Vex is also a relevant indicator for assessing self-performance in the context of MERL agents.

4.2.2 Policy Gradient Method: PPO with Clipped Surrogate Objective

In this chapter, we consider on-policy learning2 primarily for its unbiasedness and stability
compared to off-policy methods (Nachum, Norouzi, Xu, et al., 2017). On-policy is also empiri-
cally known as being less sample efficient than off-policy learning hence this issue emerged as
an interesting research topic. However, our method can be applied to off-policy methods as
well, and we leave this investigation open for future work.

Introduced by Schulman, Wolski, Dhariwal, et al. (2017), PPO is among the most commonly
used and state-of-the-art on-policy policy gradient methods. Indeed, PPO has been tested on a
set of benchmark tasks and has proven to produce impressive results in many cases despite
a relatively simple implementation. For instance, instead of imposing a hard constraint like
TRPO (Schulman, Levine, Abbeel, et al., 2015), PPO formalizes the constraint as a penalty in
the objective function. In PPO, at each iteration, the new policy θnew is obtained from the old
policy θold:

θnew ← argmax
θ

E
st,at∼πθold

[
LPPO (st, at, θold, θ)

]
. (4.3)

We use the clipped version of PPO whose objective function is:

LPPO(st, at, θold, θ) = min
(
πθ(at|st)
πθold(at|st)

Aπθold (st, at), g(ε,Aπθold (st, at))
)
, (4.4)

where
g(ε,A) =

{
(1 + ε)A,A ≥ 0
(1− ε)A,A < 0.

(4.5)

2We apply MERL in the off-policy policy gradient setting using the DDPG algorithm in Appendix A.1 and A.3.1.
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A is the advantage function, A(s, a) ≜ Q(s, a)− V (s). The expected advantage function Aπθold
is estimated by an old policy and then re-calibrated using the probability ratio between the
new and the old policy. In Equation 4.4, this ratio is constrained to stay within a small interval
around 1, making the training updates more stable.

4.3 Related Work

Auxiliary tasks have been adopted to facilitate representation learning for decades (Sud-
darth and Kergosien, 1990; Klyubin, Polani, and Nehaniv, 2005), along with intrinsic motiva-
tion (Schmidhuber, 2010; Pathak, Agrawal, Efros, et al., 2017) and artificial curiosity (Schmid-
huber, 1991; Oudeyer and Kaplan, 2007). The use of auxiliary tasks to allow the agents to
maximize other pseudo-reward functions simultaneously has been studied in a number of
previous work (Dosovitskiy and Koltun, 2016; Shelhamer, Mahmoudieh, Argus, et al., 2016;
Burda, Edwards, Pathak, et al., 2018; Du, Czarnecki, Jayakumar, et al., 2018; Riedmiller, Hafner,
Lampe, et al., 2018; Kartal, Hernandez-Leal, and Taylor, 2019), including incorporating unsu-
pervised control tasks and reward predictions in the UNREAL framework (Jaderberg, Mnih,
Czarnecki, et al., 2017), applying auxiliary tasks to navigation problems (Mirowski, Pascanu,
Viola, et al., 2016), or for utilizing representation learning (Lesort, Dıéaz-Rodrıéguez, Goudou,
et al., 2018) in the context of model-based RL. Lastly, in imitation learning of sequences pro-
vided by experts, Li, Li, Gao, et al. (2016) introduces a supervised loss for fitting a recurrent
model on the hidden representations to predict the next observed state.

Our method incorporates two key contributions: a multi-head layer with auxiliary task
signals both environment-agnostic and technically applicable to any policy gradient method,
and the use of Vexτ as an auxiliary task to measure the discrepancy between the value function
and the returns in order to allow for better self-performance assessment and eventually more
efficient learning. In addition, MERL differs from previous approaches in that its framework
simultaneously addresses the advantages mentioned hereafter: (i) neither the introduction of
new neural networks (e.g. for memory) nor the introduction of a replay buffer or an off-policy
setting is needed, (ii) all relevant quantities are compatible with any task and is not limited to
pixel-based environments, (iii) no additional iterations are required, and no modification to
the reward function of the policy gradient algorithms it is applied to is necessitated. The above
reasons make MERL generally applicable and technically suitable out-of-the-box to most policy
gradient algorithms with a negligible computational cost overhead.

From a different perspective, Garcıa and Fernández (2015) give a detailed overview of
previous work that has changed the optimality criterion as a safety factor. But most methods
use a hard constraint rather than a penalty; one reason is that it is difficult to choose a single co-
efficient for this penalty that works well for different problems. We are successfully addressing
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this problem with MERL. In Lipton, Azizzadenesheli, Kumar, et al. (2016), catastrophic actions
are avoided by training an intrinsic fear model to predict whether a disaster will occur and
using it to shape rewards. Compared to both methods, MERL is more scalable and lightweight
while it successfully incorporates quantities of self-performance assessments (e.g. variance
explained of the value function) and accurate expectations (e.g. next state prediction) leading
to an improved performance.

4.4 MERL: Framework for Self-Performance Assessment
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Figure 4.1 – Schematic overview of MERL system.

The multi-head structure and its associated learning algorithm are directly applicable to
most state-of-the-art policy gradient methods implying a simple augmentation of the training
process. Let h be the index of each MERL head: MERLh. Below, we review two of the quantities
predicted by these heads and derive how to practically incorporate them into PPO.
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4.4.1 From Policy and Value Function Representations to MERLh

In deep RL, the policy is generally represented by a neural network called the policy network,
with parameters θ, and the value function is parameterized by the value network, with parame-
ters ϕ. Each MERL head MERLh takes as input the last embedding layer from the value network
and is constituted of only one layer of fully-connected neurons, with parameters ϕh. The output
size of each head corresponds to the size of the predicted MERL quantity. We introduce below
the Vex estimation and the prediction of future states as two quantity predicted by the method.

4.4.2 Estimation of Vex

First, let us write MERLVE the MERL head with parameters ϕVE responsible for predicting an
estimate of the fraction of variance explained in trajectory τ . Its objective function is defined as:

LMERLVE(τ, ϕ, ϕVE) = ∥MERLVE(τ)− Vexτ ∥22. (4.6)

4.4.3 Estimation of Future States

Auxiliary task methods based on next state prediction are, to the best of our knowledge, the
most commonly used in the RL literature. We include such auxiliary task into MERL, in order
to assimilate our contribution to the previous work and to provide a enriched evaluation of
the proposed framework. At each timestep, one of the agent’s MERL heads predicts a future
state s′ from s. While a typical MERL quantity can be fit by regression on mean-squared error,
we observed that predictions of future states are better fitted with a cosine-distance error. We
denote MERLFS the corresponding head, with parameters ϕFS, and S the observation space size
(size of vector s). We define its objective function as:

LMERLFS(s, ϕ, ϕFS) = 1−
∑S
i=1 MERLFS

i (s) · s′
i√∑S

i=1(MERLFS
i (s))2

√∑S
i=1(s′

i)2
. (4.7)

4.4.4 Problem-Constrained Policy Update

Once a set of MERL heads MERLh and their associated objective functionsLMERLh have been defined,
we modify the gradient update step of the policy gradient algorithms. The objective function
incorporates all LMERLh . Of course, each MERL objective is associated with its coefficient ch. It is
worthy to note that we used the exact same MERL coefficients for all our experiments, which
demonstrate the framework’s ease of applicability without the need for further hyperparameter
tuning. Algorithm 3 illustrates how the learning is achieved. In Equation 4.9, only the boxed
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MERL objectives parameterized by ϕ are added to the value function update and modify the
learning algorithm.

Algorithm 3 MERL coupled with PPO.
Initialize policy parameters θ0
Initialize value function and MERLh functions parameters ϕ0

for k = 0,1,2,... do
Collect set of trajectories Dk = {τi}with length T by running policy πθk
Compute MERLh estimates
Compute advantage estimates At based on the current value function Vϕk
Compute sum of future rewards R̂t

Gradient Update

θk+1 = argmax
θ

∑
τ∈Dk

T∑
t=0

min
(
πθ (at|st)
πθk (at|st)

Aπθk (st, at) , g (ε,Aπθk (st, at))
)

(4.8)

ϕk+1 = argmin
ϕ

∑
τ∈Dk

T∑
t=0

(
Vϕk (st)− R̂t

)2
+

H∑
h=0

chL
MERLh (4.9)

4.5 Experimental Study

4.5.1 Methodology

We evaluate MERL in multiple high-dimensional environments, ranging from MuJoCo (Todorov,
Erez, and Tassa, 2012) to the Atari 2600 games (Bellemare, Naddaf, Veness, et al., 2013) (we
describe these environments in detail in Appendix A.4). The experiments in MuJoCo allow
us to evaluate the performance of MERL on a large number of different continuous control
problems. It is worthy to note that the universal characteristics of the auxiliary quantities
we design ensure that MERL is directly applicable to any task. Other popular auxiliary task
methods (Mirowski, Pascanu, Viola, et al., 2016; Jaderberg, Mnih, Czarnecki, et al., 2017; Burda,
Edwards, Pathak, et al., 2018) are not applicable out-of-the-box to continuous control tasks like
MuJoCo . Therefore we compare the performance of our method with PPO (Schulman, Wolski,
Dhariwal, et al., 2017) where MERL heads are not used. Later, we also experiment with MERL on
the Atari 2600 games to study the transfer learning abilities of our method on a set of diverse
tasks.

Implementation. For the continuous control MuJoCo tasks, the agents have learned using
separated policy and value networks. In this case, we augment the value network’s structure to
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incorporate the heads. On the contrary, when playing Atari 2600 games from pixels, the agents
learn using a CNN (Krizhevsky, Sutskever, and Hinton, 2012) shared between the policy and
the value function. In that case, MERLh heads are embedded to the last embedding layer of the
shared network. In both configurations, the outputs of MERLh heads are the same size as the
quantity they predict: for instance, MERLVE is a scalar whereas MERLFS is a state. We provide
further implementation details in Appendix A.2. The code for our method is released and
open-source: github.com/yfletberliac/merl.

Hyperparameters. Weused the same hyperparameters as in themain text of the corresponding
paper. We made this choice within a clear and objective protocol of demonstrating the benefits
of using MERL. Hence, its reported performance is not necessarily the best that can be obtained,
but it still exceeds the baseline. Using MERL adds as many hyperparameters as there are heads
in the multi-head layer and it is worth noting that MERL hyperparameters are the same for all
tasks. We report all hyperparameters in Tables 4.1 and 4.2.

Table 4.1 – Hyperparameters used in PPO+MERL
Hyperparameter Value
Horizon (T ) 2048 (MuJoCo), 128 (Atari 2600)
Adam stepsize 3 · 10−4 (MuJoCo), 2.5 · 10−4 (Atari 2600)
Nb. epochs 10 (MuJoCo), 3 (Atari 2600)
Minibatch size 64 (MuJoCo), 32 (Atari 2600)
Number of actors 1 (MuJoCo), 4 (Atari 2600)
Discount (γ) 0.99
GAE parameter (λ) 0.95
Clipping parameter (ε) 0.2 (MuJoCo), 0.1 (Atari 2600)
Value function coef 0.5

Table 4.2 – MERL hyperparameters
Hyperparameter Value
MERLVE coef cVE 0.5
MERLFS coef cFS 0.01

Performance Measures. We examine the performance across a large number of trials (with
different seeds for each task). Standard deviation of returns, and average return are generally
considered to be the most stable measures used to compare the performance of the algorithms
being studied (Islam, Henderson, Gomrokchi, et al., 2017). Thereby, in the rest of this work,
we use those metrics to establish the performance of our framework quantitatively.
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4.5.2 Single-Task Learning: Continuous Control

We apply MERL to PPO in several continuous control tasks, where using auxiliary tasks has not
been explored in detail in the literature. Specifically, we use 9 MuJoCo environments for which
we show 6 graphs from varied tasks in Figure 4.2. The complete set of 9 tasks is reported in
Table 4.3, and the rest of the figures in Appendix A.3.1.

Table 4.3 – Average total reward of the last 100 episodes over 7 runs on the 9 MuJoCo environments.
Boldfacemean± std indicate statistically better performance.

Task PPO PPO+MERL
Ant 1728± 64 2157± 212
HalfCheetah 1557± 21 2117± 370
Hopper 2263± 125 2105± 200
Humanoid 577± 10 603± 8
InvertedDoublePendulum 5965± 108 6604± 130
InvertedPendulum 474± 14 497± 12
Reacher −7.84± 0.7 −7.78± 0.8
Swimmer 93.2± 8.7 124.6± 5.6
Walker2d 2309± 332 2347± 353

The results show that using MERL can lead to better performance on a variety of continuous
control tasks. Moreover, learning seems to bemore sample efficient for some tasks. This suggests
that MERL can take advantage of its heads to learn relevant quantities from the beginning of
learning, when the reward signals may be sparse. Interestingly, by looking at the performance
across all 9 tasks, we observed better results by predicting only the next state and not the
subsequent ones.

4.5.3 Transfer Learning: Atari 2600 Domain

Because of training resource constraints, we consider a transfer learning setting where, after
the first 106 training steps, the agent switches to a new task for another 106 steps. The agent is
not aware of the task switch. Atari 2600 has been a challenging testbed for many years due to
its high-dimensional video input (210 x 160) and the discrepancy of tasks between games. To
investigate the advantages of MERL in transfer learning, we choose a set of 6 Atari 2600 games
with an action space of 9, which is the average size of the action space in the Atari 2600 domain.
This experimental choice is beneficial in that the 6 games provide a diverse range of game-play
while sticking to the same size of action space.

Figure 4.3 demonstrates that ourmethod can better adapt to different tasks. This can suggest
that MERL heads learn and help represent information that is more generally relevant for other
tasks, such as self-performance assessment or accurate expectations. In addition to adding a
regularization term to the objective function with problem knowledge signals, those auxiliary
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Figure 4.2 – Experiments on 6 MuJoCo environments (106 timesteps, 7 seeds) with PPO+MERL. Red
is the baseline, blue is with our method. The line is the average performance, while the shaded area
represents its standard deviation.

quantities make the neural network optimize for task-agnostic meta-objectives. The full set of
results can be found in Appendix A.3.2.

4.5.4 Ablation Study

We conduct an ablation to evaluate the separate and combined contributions of the two heads.
Figure 4.4 shows the comparative results in HalfCheetah, Walker2d, and Swimmer. Notably,
with HalfCheetah, using only the MERLVE head degrades the performance, but when it is
combined with the MERLFS head, it outperforms PPO+FS. Results of the complete ablation
analysis demonstrate that each head is potentially valuable for enhancing learning and that
their combination can produce remarkable results. In addition, it may be intuited that finding a
variety of complementary MERL heads to cover the scope of the problem in a holistic perspective
can significantly improve learning.
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Figure 4.3 – Transfer learning tasks from 5 Atari 2600 games to Ms. Pacman (2 × 106 timesteps, 6
seeds). Performance on the second task. Orange is PPO solely trained on Ms. Pacman, red and blue are
respectively PPO and our method transferring the learning. The line is the average performance, while
the shaded area represents its standard deviation.
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Figure 4.4 – Ablation experiments with only one MERL head (FS or VE) (106 timesteps, 6 seeds). Blue is
MERL with the two heads, red with the FS head, green with the VE head and orange with no MERL head.
The line is the average performance, the shaded area represents its standard deviation.

4.5.5 Discussion

The experiments suggest that MERL successfully optimizes the policy according to complemen-
tary quantities seeking for good performance and safe realization of tasks, i.e. it does not
only maximize a reward but instead ensures the control problem is appropriately addressed.
Moreover, we show that MERL is directly applicable to policy gradient methods while adding a
negligible computation cost. Indeed, for theMuJoCo and Atari 2600 tasks, the computational
cost overhead is respectively 5% and 7% with our training infrastructure. All of these factors
result in a generally applicable algorithm that more robustly solves difficult problems in a
variety of environments with continuous action spaces or by using only raw pixels for observa-
tions. Thanks to a consistent choice of complementary quantities injected in the optimization
process, MERL is able to better align an agent’s objectives with higher-level insights into how to
solve a control problem. Besides, since many current methods involve that successful learning
depends on the agent’s chance to reach the goal by chance in the first place, correctly predicting
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MERL heads gives the agent an opportunity to learn from useful signals while improving in a
given task.

Chapter conclusion

In this chapter, we propose Vex as a new auxiliary loss to measure the discrepancy between
the value function and the returns. Our results suggest that this quantity helps learn more
efficiently by successfully assessing the agent’s performance. We also proposed MERL, a generally
applicable deep RL framework for learning problem-focused representations using encoder
sharing, whichwe demonstrated the effectivenesswith a combination of two auxiliary tasks. We
established that injecting problemknowledge signals directly in the policy gradient optimization
allows for a better state representation that is generalizable to many tasks. Vex provides a
more problem-focused state representation to the agent, which is, therefore, not only reward-
centric. MERL can be labeled as being a hybridmodel-free andmeta-learning framework, formed
with lightweight embedded representations of self-performance assessment and accurate
expectations. MERL heads introduce a regularization term to the function approximation while
addressing the problem of reward sparsity through auxiliary task learning. Those features
nourish a framework technically applicable to any policy gradient algorithm or environment;
it does not need to be redesigned for different problems and could be extended with other
relevant problem-solving quantities, comparable to Vex, such as prediction of time left until
the end of a trajectory, echoing the work in Pardo, Tavakoli, Levdik, et al. (2018).
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Chapter 5

Use Variance in the Value Function
estimates to filter information

Information is the resolution of uncertainty.

Claude Shannon (1948).

A key mechanism gradient-based methods employ to optimize stochastic policies is to
repeatedly compute a noisy estimate of the gradient of performance to and insert it into a
stochastic gradient descent algorithm. In this chapter, we study the simple but effective idea
that an RL agent will learn more effectively from some transitions than others. We employ
the statistics of self-performance assessment introduced in the previous chapter to develop a
modification to policy gradient algorithms where samples are filtered out when estimating the
policy gradient1.

Contents
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
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1This chapter is based on an article published in the proceedings of the 29th International Joint Conference on
Artificial Intelligence (IJCAI) (Flet-Berliac and Preux, 2020).
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5.1 Motivation

Part I addressed the challenge of learning to control agents in simulated environments and
the recent research efforts led in this direction (Silver, Huang, Maddison, et al., 2016; Espeholt,
Soyer, Munos, et al., 2018; Ha and Schmidhuber, 2018), notably in policy gradient methods (Sil-
ver, Lever, Heess, et al., 2014; Schulman, Moritz, Levine, et al., 2016; Haarnoja, Zhou, Abbeel, et
al., 2018). Despite the undeniable progress, policy gradient algorithms still heavily suffer from
sample inefficiency (Kakade, 2003; Wang, Bapst, Heess, et al., 2017; Wu, Mansimov, Grosse,
et al., 2017). In particular, many of those methods are subject to use as much experience as
possible in the most efficient way. However, quantity is not quality: the quality of the sampling
procedure also determines the learning curve of the agent and its final performance. Hence,
in this chapter, we hypothesize that not all experiences are worth using in the gradient update.
Indeed, some transitions may add noise to the gradient update, diluting relevant signals, and
hindering learning. The central idea of SAUNA is to reject the transitions that are not informative.

It is reasonable to assume that the use of non-informative or misinformative transitions
can only mislead the learning process and waste computational time. In fact, Amari’s natural
gradient (Amari, 1998) concept concerns the geometry of the search space related to the “value
of information”: this has been studied for long in RL since (Kakade, 2002). In this chapter,
we focus our work on a different notion of value of information, and treat it differently: we
evaluate whether a transition conveys useful information and use it only if it is considered
beneficial to learning. For this purpose, we use a measure of the discrepancy between the
estimated state value and the observed returns. This discrepancy is formalized with the notion
of the fraction of variance explained Vex (Kvålseth, 1985), which we defined in Chapter 4 and
that we impregnate here with the idea presented. Transitions for which Vex is close to zero
are those for which the correlation between the value function V and the observed returns is
also close to zero. SAUNA keeps transitions where there is either a strong correlation or a lack of
fit between V and the returns while avoiding the dilution of useful information by removing
useless samples. We consider on-policy methods for their unbiasedness and stability compared
to off-policy algorithms (Nachum, Norouzi, Xu, et al., 2017). However, this method can be
applied to off-policy methods as well, and we leave this investigation open for future work.

In summary, the work presented in this chapter:
1. Proposes to move from a traditional policy-based sampling procedure to a refined sample

selection driven by Vex. We explore how transition filtering simplifies the underlying
state space and affects performance;

2. Hypothesizes that not all samples are useful for learning and that disturbing samples
should be rejected to avoid performance loss. We provide experimental evidence corrob-
orating this claim;
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3. Finally, by combining (1) and (2), we obtain a learning algorithm that is empirically
effective in learning neural network policies for challenging control tasks. Our results
significantly improve the state of the art in using RL for high-dimensional continuous
control.

Section 5.2 recalls basic notions of policy gradient methods in RL and the notion of “fraction
of variance explained” drawn from the statistics literature. Section 5.2.2 sets the contribution
of this chapter within the RL domain. Section 5.4 introduces SAUNA. Section 5.5 provides
experimental evidence of the benefit of using the presented method, and also investigates
various experimental aspects of SAUNA. Section 5.6 further discusses the method. Finally,
Section 5.6.3 concludes and draws some lines of future research.

5.2 Preliminaries

5.2.1 Notations

Recalling the setting used in Chapter 4, we consider a Markov Decision Process (MDP) with
states s ∈ S, actions a ∈ A, transition distribution st+1 ∼ P(st, at) and reward function
rt ∼ R(st, at). Let π(a|s) denote a stochastic policy and let the objective function be the
expected sum of discounted rewards:

J(π) ≜ E
τ∼π

[ ∞∑
t=0

γtr (st, at)
]
, (5.1)

where γ ∈ [0, 1) is a discount factor (Puterman, 1994) and τ = (s0, a0, r0, s1, a1, r1, . . . ) is a trajec-
tory sampled from the environment while the agent is following a given policy π. Let us remind
the notions of the value of a state in the MDP framework. The value V π(s) of a state swhile fol-
lowing a policy π starting in state s is defined by: V π(s) ≜ E

τ∼π

[∑∞
t=0 γ

tr (st, at) |s0 = s
]. Closely

related is the value of a state-action pair: the quality Qπ(s, a) of performing action a in state
s and then following policy π is defined by: Qπ(s, a) ≜ E

τ∼π

[∑∞
t=0 γ

tr (st, at) |s0 = s, a0 = a
].

Finally, the advantage function quantifies how an action a is better than the average action in
state s following policy π: Aπ(s, a) ≜ Qπ(s, a)− V π(s). MDP theory asserts that there exists
an optimal policy π∗ that maximizes J : we denote its value function V ∗. In practice, value
functions are unknown; we denote V , Q, and A their current estimates.

Policy Gradient Methods. Here, we recall that policy gradient methods aim at optimizing
the policy directly (Williams, 1992). The policy π is often implemented with a function param-
eterized by θ: learning a policy boils down to finding the best parameters. In the sequel, we use
θ to denote the parameters as well as the policy. In this chapter, we still consider the on-policy
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policy gradient method PPO (Schulman, Wolski, Dhariwal, et al., 2017) achieving state of the
art performance on a suite of benchmark tasks despite a relatively simple implementation.
Very interestingly, PPO is an evolution of TRPO that builds on the notion of natural gradient,
hence Amari’s notion of “value of information” mentioned above. PPO has been shown to
outperform TRPO experimentally. By building on PPO, this chapter combines two different
ideas related to the notion of the value of information. Recalling previous definitions, at each
episode, PPO collects (st, at, rt) samples using its current policy θk. After some episodes, using
these collected transitions, PPO updates its policy and gets a new one θk+1:

θk+1 ← argmax
θ

E
st,at∼πθk

[LPPO (st, at, θk, θ)] . (5.2)

We use the clipped version of PPO:

LPPO(st, at, θk, θ) = Clip(Aπθk (st, at),
πθ(at|st)
πθk(at|st)

, δ), (5.3)

where

Clip(A,α, δ) =
{

min (αA, (1 + δ)A), A ≥ 0
min (αA, (1− δ)A), A < 0.

A is the advantage function introduced above. Clippingmakes the training updates more stable:
it ensures that the gradient steps do not lead the policy outside of the region of parameter
space where the samples collected are informative.

5.2.2 Vex: Fraction of Variance Explained

Now we recall the key notion introduced in the previous chapter, namely the fraction of
variance explained, still denoted by Vex. As shown previously, a yet elementary use of this
concept improves the performance of policy gradient algorithms. In the following, we present
a completely different use of this quantity. In general terms, Vex gives some information about
the goodness of fit of a model. In statistics, it is also denoted R2, which is a poor notation since
this quantity can be negative for non-linear models (Kvålseth, 1985) (also, in the context of RL,
R usually refers to the return). This quantity is also known as the coefficient of determination.
In a regression setting, assume a model ŷ aims at predicting y from x, given a set of N couples
(xi, yi), Vex is defined by:

Vex ≜ 1− MSE
VAR (5.4)

where MSE is the mean squared error of the model measured on these N couples (MSE =
1
N

∑
i (yi − ŷ(xi))2), and VAR is the variance of the observed targets yi. Vex ≤ 1 and:
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• Vex = 1 means that the model perfectly predicts the data (MSE = 0).

• Vex = 0 means that the model performs as always predicting the average (MSE = VAR).

• Vex < 0 means that the model performs worse than merely predicting the mean value
(MSE > VAR).

5.3 Related Work

SAUNA integrates three key ideas: (i) function approximation with a neural network com-
bining or separating the actor and the critic with an on-policy setting, (ii) transition filtering
reducing information/signal dilution in the gradient update while simplifying the underlying
MDP, and (iii) using Vex as a measure of correlation between the value function and the re-
turns to allow better sampling and more efficient learning. Below, we consider previous work
building on some of these approaches.

Actor-critic algorithms essentially use the value function to alternate between policy evalu-
ation and policy improvement (Barto, Sutton, and Anderson, 1983; Sutton, 1984). In order to
update the actor, many methods adopt the on-policy formulation (Peters and Schaal, 2008b;
Mnih, Badia, Mirza, et al., 2016; Schulman, Wolski, Dhariwal, et al., 2017). However, despite
their important successes, these methods suffer from sample complexity.

In the literature, research has also been conducted in prioritization sampling. While (Schaul,
Quan, Antonoglou, et al., 2015) makes the learning from experience replay more efficient by
using the TD error as a measure of these priorities in an off-policy setting, the presented
method directly selects the samples on-policy. (Schmidhuber, 1991) is related to SAUNA in that
it calculates the expected improvement in prediction error, but with the objective to maximize
the intrinsic reward through artificial curiosity. Instead, the method presented in this chapter
estimates the expected fraction of variance explained and filters out some of the samples to
improve the learning efficiency.
Vex has already been used in (Flet-Berliac and Preux, 2019b) as one of the auxiliary tasks

for self-assessment of performance. Finally, motion control in physics-based environments is a
long-standing and active research field. In particular, there are many prior work on continuous
action spaces (Levine and Abbeel, 2014; Heess, Wayne, Silver, et al., 2015; Lillicrap, Hunt,
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Pritzel, et al., 2016; Schulman, Moritz, Levine, et al., 2016) that demonstrate how locomotion
behavior and other skilled movements can emerge as the outcome of optimization problems.

5.4 SAUNA: Dynamic Transition Filtering

We introduce a general method to filter transitions that contain useful information for policy
gradient updates. In this chapter, we detail how to couple SAUNA with PPO, an on-policy
gradient algorithm achieving state of the art performance. We refer to this combination as
PPO+SAUNA. SAUNA can be coupled with other algorithms, especially with off-policy methods
such as DQN: we leave this for future work. Below we detail how to adapt the notion of Vex to
RL.

5.4.1 Vex applied to RL

The fraction of variance that the current estimate of the value function explains about the
observed returns corresponds to the proportion of the variance in the dependent variable V
that is predictable from st. We define Vexτ as the fraction of variance explained for a trajectory τ :

Vexτ ≜ 1−
∑
t∈τ (Rt − V (st))2∑
t∈τ (Rt − ⟨R⟩τ )2 , (5.5)

whereRt =
∑
k≥0 γ

krt+k, rt is the immediate reward collected at timestep t, V (st) is the current
estimate of the value of state st, and ⟨R⟩τ is the average of the Rt in trajectory τ . This definition
can be extended from a trajectory τ to a batch B of sampled transitions VexB . In the RL context,
the interpretation of VexB is:

• VexB = 1: V perfectly explains the observed returns.

• VexB = 0: V corresponds to a simple average prediction.

• VexB < 0: V provides a worse prediction than the average of the returns.

The intuition is that VexB close to 1 corresponds to well-predicted returns. VexB < 0 corre-
sponds to a rather large prediction error of the value function, meaning that these samples are
useful because the agent has something to learn from. On the other hand, VexB close to 0 means
that the samples do not provide any valuable information to improve the value estimates. We
will demonstrate that Vex is indeed a relevant indicator for assessing self-performance in RL.

5.4.2 Estimating Vex

While sampling the environment, SAUNA rejects transitions for which V (st) is not correlated
with returns that have followed st. Therefore, VexB should be estimated at each timestep and we
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define Vexθ (st) as the prediction of VexB with parameters θ at state st ∈ B. In addition, for shared
parameters configurations, an error term on the value estimation is added to the objective. The
final objective function becomes:

LSAUNA(st, at, θold, θ) = LPPO(st, at, θold, θ)− (5.6)
c1 (Vθ(st)−Rt)2− (5.7)
c2 (Vexθ (st)− VexB )2 , (5.8)

where c1 and c2 are the coefficients for the squared-error losses of respectively the value function
and the fraction of variance explained function. Note that only the term (5.8) is specific to
SAUNA. (5.6) and (5.7) come from PPO. When the network is not shared between the policy and
the value function, SAUNA embeds VexB to the value function network using a single hidden layer.
The rest of the network is unchanged, making SAUNA very easy to use without significantly
increasing the complexity of the underlying algorithm.

5.4.3 SAUNA Algorithm

Algorithm 4 shows the pseudo-code of SAUNA when coupled with PPO. Overall, the resulting
algorithm visits a set of trajectories along which it collects useful samples in the sense explained
above, assessed with regards to Vex. The mechanism may be viewed as analogous to the
method of dropout in deep learning (Srivastava, Hinton, Krizhevsky, et al., 2014; Freeman,
Metz, and Ha, 2019) although here dropout happens in the state space of the underlying MDP
and is directed by Vex. Once a batch B of T such useful samples is collected, SAUNA performs
the usual gradient update following the PPO template.

The gradient update concerns the three quantities estimated by SAUNA: the policy parameters
θ, line 12, the value estimation parameters ϕ, line 13, and the Vex estimation parameters ψ, line
14. The if statement filters the useful samples: Ṽexψk(s0:t−1) denotes the median of Vexψk between
timesteps 0 and t−1, ε0 is a Laplace estimator (set to 10−8), and ρ is the filtering threshold. One
may legitimately ask why not use directly |Vexψk(st)| in the predicate. The rationale is practical:
the ratio is a standardized measure as the agent learns, stabilized by the median, more robust
to outliers than the mean. For better legibility, Algorithm 4 does not share parameters between
the π, V and Vex networks. A version where these parameters would be partially shared is
straightforward.

5.5 Experimental Study

We have forked the stable-baselines repository (Hill, Raffin, Ernestus, et al., 2018) and minimally
modified the code to incorporate our method. The code for our method is released and open-
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Algorithm 4 SAUNA coupled with PPO.
1: Initialize policy parameters θ0, value function parameters ϕ0 and Vex function parameters
ψ0

2: for k = 0, 1, 2, . . . do
3: s0 ← initial state
4: batch B ← ∅
5: while size(B) ≤ T do
6: at ∼ πθk(st)
7: execute action at and observe rt and st+1

8: if
|Vexψk (st)|

|Ṽex
ψk

(s0:t−1)|+ε0
≥ ρ then

9: add
(
st, at, rt, Vϕk(st), st+1,Vexψk(st)

)
to B

10: if st+1 is a final state then
11: st+1 ← initial state
12: θk+1 ← argmax

θ

∑
t∈B LPPO (st, at, θk, θ)

13: ϕk+1 ← argmin
ϕ

∑
t∈B (Vϕ (st)−Rt)2

14: ψk+1 ← argmin
ψ

∑
t∈B

(
Vexψ (st)− VexB

)2

source: github.com/yfletberliac/sauna. Unless otherwise stated, the policy network used for
all tasks is a fully-connected multi-layer perceptron with 2 hidden layers of 64 units. Moreover,
the architecture for the Vex function head is the same as for the value function head.

5.5.1 SAUNA in the Continuous Domain

To assess SAUNA, we compare PPO+SAUNA against its natural baseline PPO.We use six simulated
robotic deterministic tasks from OpenAI Gym (Brockman, Cheung, Pettersson, et al., 2016)
using MuJoCo (Todorov, Erez, and Tassa, 2012). The two hyperparameters required by our
method (ρ = 0.3 from Equation 5.5 and c2 = 0.5 from Equation 5.8) and all the others (identical
to those in (Schulman, Wolski, Dhariwal, et al., 2017)) are exactly the same for all tasks.

We made the choice of not tuning the hyperparameters for each algorithm and for each
task to have a tougher assessment of SAUNA: only SAUNA-specific hyperparameters ρ and c2 have
been tuned by grid-search. Hence, the performance we report for SAUNA is not necessarily the
best that could be obtained with parameter tuning. The graphs reported in Figure 5.1 show
that our method outperforms PPO on all considered continuous control tasks. We also report
in Appendix B.1 a comparison of A2C, a synchronous variant of Mnih, Badia, Mirza, et al., 2016
and less strong version of PPO, with A2C+SAUNA.

We then experiment with the more difficult, high-dimensional continuous domain envi-
ronment of Roboschool (Klimov and Schulman, 2017) with various neural network sizes. In
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Figure 5.1 – Performance of PPO+SAUNA (red) relative to PPO (blue) on 6MuJoCo environments averaged
across 6 seeds. X-axis: number of environment steps. Y-axis: total undiscounted return. Shaded areas:
standard deviation.

Figure 5.2a, the same fully-connected network as for the previous MuJoCo experiments (2
hidden layers each with 64 neurons) is used. In Figure 5.2b, the network is composed of a
deeper and wider 3 hidden layers with 512, 256 and 128 neurons. We trained those agents
with 32 parallel actors. In both experiments, PPO+SAUNA performs better and learns faster at
the beginning. The gap closes with a larger network and our method does as well as PPO. As
resources are limited in terms of the number of parameters and models become less complex,
it seems natural that filtering samples according to their expected informational value helps to
reduce noise in the gradient update and to speed up learning.

5.5.2 Learning with SAUNA

The Advantages of Filtering. We further study the impact of filtering out noisy samples by
conducting additional experiments in predicting Vex while omitting the filtering step: the if
statement (Line 8 of Algorithm 4) is removed and all transitions are kept in the batch B. Indeed,
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Figure 5.2 – Performance of PPO+SAUNA (red) relative to PPO (blue) on the Roboschool environment
averaged across 6 seeds. X-axis: number of environment steps. Y-axis: total undiscounted return.
Shaded areas: standard deviation.

SAUNA may improve the agent’s performance by simply training the shared network to optimize
the Vex head as an auxiliary task. Figure 5.3 demonstrates the positive effects of filtering out the
samples. In addition, we studied the number of filtered out samples per task and its evolution
along the training. On average, SAUNA rejects 5-10% of samples at the beginning of training,
2-6% near the end.
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Figure 5.3 – Performance of PPO+SAUNA (red) relative to PPO (blue) and PPO with the prediction of
Vex but without the filtering out of noisy samples (green) on 3 MuJoCo environments averaged across 6
seeds. X-axis: number of environment steps. Y-axis: total undiscounted return. Shaded areas: standard
deviation.

The Impact of SAUNA on the mini-batch Gradients. Prior to the gradient update, SAUNA re-
moves the useless transitions. By so doing, we hypothesized that information signals from
samples with large Vex would be less diluted by filtering out samples. Figure 5.4 shows that
SAUNA filtering leads to higher magnitude and relatively more stable gradients. As a result,
policy updates make bigger steps, which ultimately seems to translate into better performance.
It is questionable why performance is not negatively affected, since larger gradients could
hinder learning. Experience shows that gradients contain more useful information: as the
relevant signals are less diluted, the gradients are more qualitative and have been partially
denoised.

HalfCheetah: Qualitative Study. In HalfCheetah, a well-known behavior (Lapan, 2018) is that,
for multiple seeds, a PPO agent gets stuck in a local minimum in which the agent moves on
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(a) (b)

Figure 5.4 – Gradients L1-norm from the (a) first layer and (b) last layer of the shared parameters
network for PPO and PPO coupled with SAUNA. Task: HalfCheetah-v2.

its back. However, we observed that SAUNA made it possible to leave from, or at least to avoid
these local minima. This is illustrated in Figure 5.5a where we see still frames of two agents

(a)

(b)

Figure 5.5 – (a) Example of PPO getting trapped in a local minimum (top row) while PPO+SAUNA
reaches a better optimum (bottom row). (b) Vex score for PPO (blue) and PPO+SAUNA (orange).

trained with PPO+SAUNA for 106 timesteps on identically seeded environments. Their behavior
is entirely different. Looking at Vex in Figure 5.5b, we can see that the graphs differ quite
interestingly. The PPO agent seems to find very quickly a local minimum on its back while the
blue agent’s Vex varies much more. This seems to allow the latter to explore more states than
the former and finally to find a better optimum. Supported by the previous study, we can infer
that agents trained with SAUNA are better able to explore interesting states while exploiting with
confidence the value given to the states observed so far.
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5.6 Discussion

Intuitively, during the policy update, the method presented in this chapter will only use
qualitative samples that provide the agent with (i) reliable and exercised behavior (high Vex),
and (ii) challenging states from the point of view of correctly predicting their value (low Vex).
SAUNA algorithm keeps samples with high learning impact, rejecting other noisy samples from
the gradient update.

5.6.1 Filtering Policy Gradient Updates and the Policy Gradient Theorem

Policy gradient algorithms are backed by the policy gradient theorem (Sutton, McAllester,
Singh, et al., 2000). As long as the asymptotic stationary regime is not reached, it is not reason-
able to assume the sampled states to be independent and identically distributed. Therefore, it
seems intuitively better to ignore some of the samples for a certain period, to allow the most
efficient use of information. In addition although this method introduces bias, we think it is
partially corrected by the importance-sampling used in PPO. One can understand SAUNA as
making gradient updates more robust through filtering, especially when the update is low and
the noise can be dominant. Besides, filtering out disturbing samples reduces the bias in the
state distribution.

5.6.2 Learning Vex and the Shared Network Parameters

SAUNA network predicts Vex in conjunction with the value function and the policy. Therefore,
as its parameters are updated through gradient ascent, they converge to one of the objective
function minima (hopefully, a global minimum). This parameter configuration integrates
Vex, predicting how much the value function has fitted the observed samples, or informally
speaking how well the value function is doing for state st. This new objective tends to lead
the network to adjust predicting a quantity relevant for the task. Instead of using domain
knowledge for the task, the method rather introduces problem knowledge by constraining the
parameters directly.

5.6.3 Additional Experimental Results

In this section, we discuss additional experimental results which we think contribute interest-
ingly to the study.
Mean of Vex. Although Ṽex, the median of Vex, is more expensive to calculate, we observe
that it gives better results than if we use its mean in the if statement of Algorithm 4. Using
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the median helps (Kvålseth, 1985) because the distribution of Vex is not normal and includes
outliers that will potentially produce misleading results.

Non-empirical Vex. We also experimented with using the empirical values of Vex in Line 8 of
Algorithm 4 when calculating Ṽex, instead of the predicted ones. This has yielded less positive
results, and it is likely that this is due to the difference between the predicted and actual values
at the beginning of learning, which has the effect of distorting the ratio in the if statement.

Adjusting state count. In order to stay in line with the policy gradient theorem (Sutton,
McAllester, Singh, et al., 2000), we have worked to adjust the distribution of states dπ to
what it truly is, since some states visited by the agent are not included in the batch. We adjusted
it using the ratio between the number of states visited and the actual number of transitions
used in the gradient update, but this did not improve the learning, and instead, we observed a
decrease in performance.

Adjusted Vex. The definition of Vex is biased. An unbiased estimator does exist (known in
statistics as the adjustedR2). We performed the same set of experiments using such an adjusted
Vex: it did not change the experimental performance significantly.

Random filtering. We experimented with dropping out at random, and before each gradient
update, a number of samples corresponding to the same average number of samples that SAUNA
drops. This resulted in a decrease in performance compared to PPO, as one can expect.

Atari 2600 domain. We evaluated SAUNA on theAtari 2600 domain (Bellemare, Naddaf, Veness,
et al., 2013) without observing any improvement in learning: some of the tasks were best
performed by one method and others by the other.

Chapter conclusion

Policy gradient methods optimize the policy directly through gradient ascent. In Chapter 5,
we have introduced a lightweight and agnostic method technically applicable to any policy
gradient algorithm. We have performed some experiments to evaluate the usefulness of Vex
as a measure to filter out samples that are perturbing the policy update: some transitions
might be more or less surprising or redundant. The filtered non-informative or misinformative
samples are ignored by SAUNA with a mechanism controlled by an estimation of the fraction
of variance explained by the value function at each state. The relevant signals being less
diluted, the mechanism improves sampling with a denoising effect on the gradients, ultimately
leading to improved performance. We demonstrated the effectiveness of SAUNA when applied
to PPO, a commonly used state of the art policy gradient method, on a set of benchmark high-
dimensional environments. We also established that samples can be removed from the gradient
update without hindering learning but, on the opposite, can improve it, and we further studied
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the positive impacts that such a modification in the sampling procedure has on learning, by
showing that SAUNA’s filtered sampling can keep the mini-batch gradient at a higher and more
stable magnitude throughout training.
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Chapter 6

Use Variance in the Value Function
estimates as an objective function

Choose that arrangement
which shall tend to reduce to a minimum
the time necessary
for completing the calculation.

Ada Lovelace (1843).

In light of recent studies indicating that traditional actor-critic algorithms do not succeed in
fitting the true value function, calling for the need to identify a better objective for the critic, we
introduce a method to improve the learning of the critic in the actor-critic framework. In this
chapter, we explore an alternative loss function for fitting critics in actor-critic RL algorithms.
Instead of using the standard mean squared loss between critic predictions and value estimates,
we propose to change the value function objectives to use a loss function based on the variance
of the value function estimation errors. We first provide a meticulously articulated motivation
and provide experiments to support the proposal which we evaluate on standard benchmarks
for continuous control using popular RL algorithms1.

Contents
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.4 AVEC: Actor with Variance Estimated Critic . . . . . . . . . . . . . . . . . . . . 71

6.5 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

1This chapter is based on an article published in the proceedings of the 9th International Conference on Learning
Representations (ICLR) (Flet-Berliac, Ouhamma, Maillard, et al., 2021). It is joint work with my colleague and friend
Reda Ouhamma.
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6.1 Motivation

Model-free deep reinforcement learning (RL) has been successfully used in a wide range of
problem domains, ranging from teaching computers to control robots to playing sophisticated
strategy games (Silver, Lever, Heess, et al., 2014; Lillicrap, Hunt, Pritzel, et al., 2016; Mnih,
Badia, Mirza, et al., 2016; Schulman, Moritz, Levine, et al., 2016). State-of-the-art policy gradient
algorithms currently combine ingenious learning schemes with neural networks as function
approximators in the so-called actor-critic framework (Sutton, McAllester, Singh, et al., 2000;
Schulman, Wolski, Dhariwal, et al., 2017; Haarnoja, Zhou, Abbeel, et al., 2018). While such
methods demonstrate great performance in continuous control tasks, several discrepancies
persist between what motivates the conceptual framework of these algorithms and what is
implemented in practice to obtain maximum gains.

For instance, research aimed at improving the learning of value functions often restricts the
class of function approximators through different assumptions, then propose a critic formula-
tion that allows for a more stable policy gradient. However, new studies (Tucker, Bhupatiraju,
Gu, et al., 2018; Ilyas, Engstrom, Santurkar, et al., 2020) indicate that state-of-the-art policy
gradient methods (Schulman, Levine, Abbeel, et al., 2015; Schulman, Wolski, Dhariwal, et al.,
2017) fail to fit the true value function and that recently proposed state-action-dependent
baselines (Gu, Lillicrap, Sutskever, et al., 2016; Liu, Feng, Mao, et al., 2018; Wu, Rajeswaran,
Duan, et al., 2018) do not reduce gradient variance more than state-dependent ones.

These findings leave the reader skeptical about actor-critic algorithms, suggesting that
recent research tends to improve performance by introducing a bias rather than stabilizing
the learning. Consequently, attempting to find a better baseline is questionable, as critics
would typically fail to fit it (Ilyas, Engstrom, Santurkar, et al., 2020). In Tucker, Bhupatiraju,
Gu, et al. (2018), the authors argue that “much larger gains could be achieved by instead
improving the accuracy of the value function”. Following this line of thought, we are interested
in ways to better approximate the value function. One approach addressing this issue is to put
more focus on relative state-action values, an idea introduced in the literature on advantage
reinforcement learning (Harmon and Baird III, n.d.) followed by works on dueling (Wang,
Schaul, Hessel, et al., 2016) neural networks. More recent work (Lin and Zhou, 2020) also
suggests that considering the relative action values, or more precisely the ranking of actions in
a state leads to better policies. The main argument behind this intuition is that it suffices to
identify the optimal actions to solve a task. We extend this principle of relative action value
with respect to the mean value to cover both state and state-action-value functions with a new
objective for the critic: minimizing the variance of residual errors.

In essence, this modified loss function puts more focus on the values of states (resp. state-
actions) relative to their mean value rather than their absolute values, with the intuition that
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solving a task corresponds to identifying the optimal action(s) rather than estimating the exact
value of each state. In summary, this paper:

• IntroducesActor withVariance EstimatedCritic (AVEC), an actor-critic method providing
a new training objective for the critic based on the residual variance.

• Provides evidence for the improvement of the value function approximation as well as
theoretical consistency of the modified gradient estimator.

• Demonstrates experimentally that AVEC, when coupled with state-of-the-art policy gra-
dient algorithms, yields a significant performance boost on a set of challenging tasks,
including environments with sparse rewards.

• Provides empirical evidence supporting a better fit of the true value function and a
substantial stabilization of the gradient.

6.2 Related Work

Our approach builds on three lines of research, of which we give a quick overview: policy
gradient algorithms, regularization in policy gradient methods, and exploration in RL.

Policy gradient methods use stochastic gradient ascent to compute a policy gradient estima-
tor. This was originally formulated as the REINFORCE algorithm (Williams, 1992). Kakade and
Langford (2002) later created conservative policy iteration and provided lower bounds for the
minimum objective improvement. Peters, Mulling, and Altun (2010) replaced regularization
by a trust region constraint to stabilize training. In addition, extensive research investigated
methods to improve the stability of gradient updates, and although it is possible to obtain an
unbiased estimate of the policy gradient from empirical trajectories, the corresponding variance
can be extremely high. To improve stability, Weaver and Tao (2001) show that subtracting a
baseline (Williams, 1992) from the value function in the policy gradient can be very beneficial
in reducing variance without damaging the bias. However, in practice, these modifications
on the actor-critic framework usually result in improved performance without a significant
variance reduction (Tucker, Bhupatiraju, Gu, et al., 2018; Ilyas, Engstrom, Santurkar, et al.,
2020). Currently, one of the most dominant on-policy methods are proximal policy optimiza-
tion (PPO) (Schulman, Wolski, Dhariwal, et al., 2017) and trust region policy optimization
(TRPO) (Schulman, Levine, Abbeel, et al., 2015), both of which require new samples to be
collected for each gradient step. Another direction of research that overcomes this limitation
is off-policy algorithms, which therefore benefit from all sample transitions; soft actor-critic
(SAC) (Haarnoja, Zhou, Abbeel, et al., 2018) is one such approach achieving state-of-the-art
performance.
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Several works also investigate regularization effects on the policy gradient (Jaderberg,
Mnih, Czarnecki, et al., 2017; Namkoong and Duchi, 2017; Flet-Berliac and Preux, 2019b;
Kartal, Hernandez-Leal, and Taylor, 2019; Flet-Berliac and Preux, 2020); it is often used to
shift the bias-variance trade-off towards reducing the variance while introducing a small
bias. In RL, regularization is often used to encourage exploration and takes the form of an
entropy term (Williams and Peng, 1991; Schulman, Wolski, Dhariwal, et al., 2017). Moreover,
while regularization in machine learning generally consists in smoothing over the observation
space, in the RL setting, Thodoroff, Durand, Pineau, et al. (2018) show that it is possible
to smooth over the temporal dimension as well. Furthermore, Zhao, Niu, Xie, et al. (2016)
analyze the effects of a regularization using the variance of the policy gradient (the idea is
reminiscent of SVRG descent (Johnson and Zhang, 2013)) which proves to provide more
consistent policy improvements at the expense of reduced performance. In contrast, as we will
see later, AVEC does not change the policy network optimization procedure nor involves any
additional computational cost.

Exploration has been studied under different angles in RL, one common strategy is ε-greedy,
where the agent explores with probability ε by taking a random action. This method, just like
entropy regularization, enforces uniform exploration and has achieved recent success in game
playing environments (Mnih, Kavukcuoglu, Silver, et al., 2013; Hasselt, Guez, and Silver, 2016;
Mnih, Badia, Mirza, et al., 2016). On the other hand, for most policy-based RL, exploration
is a natural component of any algorithm following a stochastic policy, choosing sub-optimal
actions with non-zero probability. Furthermore, policy gradient literature contains exploration
methods based on uncertainty estimates of values (Kaelbling, 1993; Tokic, 2010), and algorithms
which provide intrinsic exploration or curiosity bonus to encourage exploration (Schmidhuber,
2006; Bellemare, Srinivasan, Ostrovski, et al., 2016; Flet-Berliac, Ferret, Pietquin, et al., 2021).

While existing research may share some motivations with our method, no previous work in
RL applies the variance of residual errors as an objective loss function. In the context of linear
regression, Brown (1947) considers a median-unbiased estimator minimizing the risk with
respect to the absolute-deviation loss function (Pham-Gia and Hung, 2001) (similar in spirit to
the variance of residual errors), their motivation is nonetheless different to ours. Indeed, they
seek to be robust to outliers whereas, when considering noiseless RL problems, one usually
seeks to capture those (sometimes rare) signals corresponding to the rewards.

6.3 Preliminaries

6.3.1 Background and Notations

We consider an infinite-horizon Markov Decision Problem (MDP) with continuous states
s ∈ S, continuous actions a ∈ A, transition distribution st+1 ∼ P(st, at) and reward function
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rt ∼ R(st, at). Let πθ(a|s) denote a stochastic policy with parameter θ, we restrict policies to
being Gaussian distributions. In the following, π and πθ denote the same object. The agent
repeatedly interacts with the environment by sampling action at ∼ π(.|st), receives reward rt
and transitions to a new state st+1. The objective is to maximize the expected sum of discounted
rewards:

J(π) ≜ Eτ∼π

[ ∞∑
t=0

γtr (st, at)
]
, (6.1)

where γ ∈ [0, 1) is a discount factor (Puterman, 1994), and τ = (s0, a0, r0, s1, a1, r1, . . . ) is a
trajectory sampled from the environment using policy π. We denote the value of a state s
in the MDP framework while following a policy π by V π(s) ≜ Eτ∼π

[∑∞
t=0 γ

tr (st, at) |s0 = s
]

and the value of a state-action pair of performing action a in state s and then following policy
π by Qπ(s, a) ≜ Eτ∼π

[∑∞
t=0 γ

tr (st, at) |s0 = s, a0 = a
]. Finally, the advantage function which

quantifies how an action a is better than the average action in state s is denoted Aπ(s, a) ≜

Qπ(s, a)− V π(s).

6.3.2 Critics in Deep Policy Gradients

In this section, we consider the case where the value functions are learned using function
estimators and then used in an approximation of the gradient. Without loss of generality, we
consider the algorithms that approximate the state-value function V . The analysis holds for
algorithms that approximate the state-action-value function Q. Let fϕ : S → R be an estimator
of V̂ π with ϕ its parameter. fϕ is traditionally learned through minimizing the mean squared
error (MSE) against V̂ π. At iteration k, the critic minimizes:

LAC = Es
[(
fϕ(s)− V̂ πθk (s)

)2]
, (6.2)

where the states s are collected under policy πθk , and V̂ πθk (s) is an empirical estimate of V
(see Section 6.4.3 for details). Similarly, using fϕ : S ×A → R instead, one can fit an empirical
target Q̂π.

6.4 AVEC: Actor with Variance Estimated Critic

In this section, we introduce AVEC and discuss its correctness, motivations and implementation.

6.4.1 Defining an Alternative Critic

Recent work (Ilyas, Engstrom, Santurkar, et al., 2020) empirically demonstrates that while the
value network succeeds in the supervised learning task of fitting V̂ π (resp. Q̂π), it does not
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fit V π (resp. Qπ). We address this deficiency in the estimation of the critic by introducing an
alternative value network loss. Following empirical evidence indicating that the problem is the
approximation error and not the estimator per se, AVEC adopts a loss that can provide a better
approximation error, and yields better estimators of the value function (as will be shown in
Section 6.5.3). At update k:

LAVEC = Es

[(
(fϕ(s)− V̂ πθk (s))− Es

[
fϕ(s)− V̂ πθk (s)

] )2]
, (6.3)

with states s collected using πθk . Note that the gradient flows in fϕ twice using Equation 6.3.
Then, we define our bias-corrected estimator: gϕ : S → R such that gϕ(s) = fϕ(s)+Es[V̂ πθk (s)−
fϕ(s)]. Analogously to Equation 6.3, we define an alternative critic for the estimation of Qπ by
replacing V̂ π by Q̂π and fϕ(s) by fϕ(s, a).

Lemma 6.1 (AVEC Policy Gradient). If fϕ : S × A → R satisfies the parameterization assump-
tion (Sutton, McAllester, Singh, et al., 2000) then gϕ provides an unbiased policy gradient:

∇θJ (πθ) = E(s,a)∼πθ [∇θ log(πθ(s, a))gϕ(s, a)] .

Proof. See Appendix C.1. This result also holds for the estimation of V πθ with fϕ : S → R.

6.4.2 Building Motivation

Here, we present the intuition behind using AVEC for actor-critic algorithms. Tucker, Bhupatiraju,
Gu, et al. (2018) and Ilyas, Engstrom, Santurkar, et al. (2020) indicate that the approximation
error ∥V̂ π − V π∥ is problematic, suggesting that the variance of the empirical targets V̂ π(st)
is high. Using LAVEC, our approach reduces the variance term of the MSE (or distance to V π)
but mechanistically also increases the bias. Our intuition is that since the bias is already quite
substantial (Ilyas, Engstrom, Santurkar, et al., 2020), it may be possible to reduce the variance
enough so that even though the bias increases, the total MSE reduces.

State-value function estimation. In this case, optimizing the critic with LAVEC can be inter-
preted as fitting V̂ ′π(s) = V̂ π(s)− Es′ [V̂ π(s′)] using the MSE. We show that the targets V̂ ′π are
better estimations of V ′π(s) = V π(s)−Es′ [V π(s′)] than V̂ π are of V π. To illustrate this, consider
T independent random variables (Xi)i∈{1,...,T}. We denoteX ′

i = Xi − 1
T

∑T
j=1Xj and V(X) the

variance of X . Then, V (X ′
i) = V (Xi) − 2

T V (Xi) + 1
T 2
∑T
j=1 V (Xj) and V(X ′

i) < V(Xi) as
long as ∀i 1

T

∑T
j=1 V(Xj) < 2V(Xi), or more generally when state-values are not strongly nega-
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tively correlated2 and not very discordant. This entails that V̂ ′π has a more compact span, and
is consequently easier to fit. This analysis shows that the variance term of the MSE is reduced
compared to traditional actor-critic algorithms, but does not guarantee it counterbalances the
bias increase. Nevertheless, in practice, the bias is so high that the difference due to learning
with AVEC is only marginal and the total MSE decreases. We empirically demonstrate this claim
in Section 6.5.3.
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Figure 6.1 – Comparison of simple models derived when LAVEC is used instead of the MSE.

State-action-value function estimation. In this case, Equation 6.3 translates into replacing
V̂ π(s) by Q̂π(s, a) and fϕ(s) by fϕ(s, a) and the rationale for optimizing the residual variance of
the value function instead of the full MSE becomes more straightforward: the practical use of
the Q-function is to disentangle the relative values of actions for each state (Sutton, McAllester,
Singh, et al., 2000). AVEC’s effect on relative values is illustrated in a didactic regression with
one variable example in Figure 6.1 where grey markers are observations and the blue line is our
current estimation. Minimizing the MSE, the line is expected to move towards the orange one
in order to reduce errors uniformly. Minimizing the residual variance, it is expected to move
near the red one. In fact, LAVEC tends to further penalize observations that are far away from the
mean, implying that AVEC allows a better recovery of the “shape” of the target near extrema. In
particular, we see in the figure that the maximum and minimum observation values are quickly
identified. Would the approximators be linear and the target state-values independent, the
two losses become equivalent since ordinary least squares would provide minimum-variance
mean-unbiased estimation.

It should be noted that, as in all the works related to ours, we consider noiseless tasks, i.e.
the transition matrix is deterministic. As such, there are no outliers and extreme state-action
values correspond to learning signals. In this context, high estimation errors indicate where
(in the state or action-state space) the training of the value function should be improved.

2Greensmith, Bartlett, and Baxter (2004) analyze the dependent case: in general, weakly dependent variables
tend to concentrate more than independent ones.
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6.4.3 Implementation

We apply this new formulation to three of the most dominant deep policy gradient methods to
study whether it results in a better estimation of the value function. A better estimation of the
value function implies better policy improvements. We now describe how AVEC incorporates
its residual variance objective into the critics of PPO (Schulman, Wolski, Dhariwal, et al., 2017),
TRPO (Schulman, Levine, Abbeel, et al., 2015) and SAC (Haarnoja, Zhou, Abbeel, et al., 2018).
Let B be a batch of transitions. In PPO and TRPO, AVEC modifies the learning of Vϕ (line 12 of
Algorithm 5) using:

L1
AVEC (ϕ) = Es∼B

[
(fϕ (s)− V̂ π (s))− Es∼B

[
fϕ (s)− V̂ π (s)

] ]2
,

then Vϕ = fϕ(s) + Es∼B[V̂ π(s) − fϕ(s)], where V̂ π (st) = fϕold(st) + At such that fϕold(st)
are the estimates given by the last value function and At is the advantage of the policy, i.e.
the returns minus the expected values (At is often estimated using generalized advantage
estimation (Schulman, Moritz, Levine, et al., 2016). In SAC, AVECmodifies the objective function
of (Qϕi)i=1,2 (line 13 of Algorithm 8 in Appendix C.4.2) using:

L2
AVEC (ϕi) = E(s,a)∼B

[
(fϕi(s, a)− Q̂π(s, a))− E(s,a)∼B

[
fϕi(s, a)− Q̂π(s, a)

] ]2
,

thenQϕi = fϕi(s, a) +E(s,a)∼B[Q̂π(s, a)− fϕi(s, a)], where Q̂π(s, a) is estimated using temporal
difference (seeHaarnoja, Zhou, Abbeel, et al. (2018)): Q̂π(st, at) = r(st, at)+γEst+1∼π[Vψ̄(st+1)]
with ψ̄ the value function parameter (see Algorithm 8). The reader may have noticed that
L1

AVEC and L2
AVEC slightly differ from Equation 6.3. The residual variance of the value func-

tion (LAVEC) is not tractable since a priori state-values are dependent and their joint law is
unknown. Consequently, in practice, we use the empirical variance proxy assuming indepen-
dence (cf. Appendix C.4.1). Greensmith, Bartlett, and Baxter (2004) provide some support for
this approximation by showing that weakly dependent variables tend to concentrate more than
independent ones. Finally, notice that AVEC does not modify any other part of the considered
algorithms whatsoever, which makes its implementation straightforward and keeps the same
computational complexity.

6.5 Experimental Study

In this section, we conduct experiments along four orthogonal directions: (i) we validate the
superiority of AVEC compared to the traditional actor-critic training, (ii) we evaluate AVEC in
environments with sparse rewards, (iii) we clarify the practical implications of using AVEC by
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examining the bias in both the empirical and true value function estimations as well as the
variance in the empirical gradient, and (iv) we provide an ablation analysis and study the
bias-variance trade-off in the critic by considering two continuous control tasks.
We point out that a comparison to variance-reduction methods is not considered in this chap-
ter: Tucker, Bhupatiraju, Gu, et al. (2018) demonstrated that their implementations diverge
from the unbiased methods presented in the respective papers and unveiled that not only do
they fail to reduce the variance of the gradient, but that their unbiased versions do not improve
performance either. Note that in all experiments we choose the hyperparameters providing the
best performance for the considered methods which can only penalize AVEC (cf. Appendix C.3).
The code for our method is released and open-source: github.com/yfletberliac/avec. In all the
figures hereafter (except Figure 6.3c and 6.3d), lines are average performances and shaded
areas represent one standard deviation.

Algorithm 5 AVEC coupledwith PPO or TRPO. JALGO denotes the policy loss of either algorithm
(described in Schulman, Levine, Abbeel, et al. (2015) and Schulman, Wolski, Dhariwal, et al.
(2017)).
1: Input parameters: λπ ≥ 0, λV ≥ 0
2: Initialize policy parameter θ and value function parameter ϕ
3: for each update step do
4: batch B ← ∅
5: for each environment step do
6: at ∼ πθ(st)
7: st+1 ∼ P (st, at)
8: B ← B ∪ {(st, at, rt, st+1)}

9: for each gradient step do
10: θ ← θ − λπ∇̂θJALGO(πθ)
11: ϕ← ϕ− λV ∇̂ϕL1

AVEC (ϕ)

6.5.1 Continuous Control

For ease of comparison with other methods, we evaluate AVEC on the MuJoCo (Todorov, Erez,
and Tassa, 2012) and the PyBullet (Coumans and Bai, 2016) continuous control benchmarks
(see Appendix C.5 for details) using OpenAI Gym (Brockman, Cheung, Pettersson, et al.,
2016). Note that the PyBullet versions of the locomotion tasks are harder than the MuJoCo
equivalents3. We choose a representative set of tasks for the experimental evaluation; their
action and observation space dimensions are reported in Appendix C.5. We assess the benefits
of AVEC when coupled with the most prominent policy gradient algorithms, currently state-of-

3Bullet Physics SDK GitHub Issue.

75

https://github.com/yfletberliac/actor-with-variance-estimated-critic
https://github.com/bulletphysics/bullet3/issues/1718#issuecomment-393198883


Use Variance in the Value Function estimates as an objective function

Table 6.1 – Average total reward of the last 100 episodes over 6 runs of 106 timesteps. Comparative
evaluation of AVEC with SAC and PPO. ± corresponds to a single standard deviation over trials and (.%)
is the change in performance due to AVEC.

Task SAC AVEC-SAC PPO AVEC-PPO
Ant 3084 3650± 127 (+18%) 972 1202± 148 (+24%)
AntBullet 1193 2252± 82 (+89%) 1174 2216± 99 (+89%)
HalfCheetah 10028 11018± 102 (+10%) 1068 1403± 37 (+31%)
HalfCheetahBullet 1255 1331± 184 (+6%) 1329 2223± 62 (+67%)
Humanoid 4084 4472± 424 (+10%) 391 415± 4.6 (+6%)
Reacher −6.0 −5.0± 0.1 (+20%) −7.4 −5.9± 0.3 (+25%)
Walker2d 3452 4334± 128 (+26%) 2193 2923± 151 (+33%)

the-art methods: PPO (Schulman, Wolski, Dhariwal, et al., 2017) and TRPO (Schulman, Levine,
Abbeel, et al., 2015), both on-policy methods, and SAC (Haarnoja, Zhou, Abbeel, et al., 2018),
an off-policy maximum entropy deep RL algorithm. We provide the list of hyperparameters
and further implementation details in Appendix C.4.1 and C.3.

Table 6.1 reports the results while Figure 6.2 and C.2 show the total average return for
SAC and PPO. TRPO results are provided in Appendix C.2.1 for readability. When coupled
with SAC and PPO, AVEC brings very significant improvement (on average +26% for SAC and
+39% for PPO) in the performance of the policy gradient algorithms, improvement which is
consistent across tasks. As for TRPO, while the improvement in performance is less striking,
AVEC still manages to be more efficient in terms of sampling in all tasks. Overall, AVEC improves
TRPO, PPO and SAC in terms of performance and efficiency. This does not imply that our
method would also improve other policy gradient methods that use the traditional actor-critic
framework, but since we evaluate our method coupled with three of the best performing
on- and off-policy algorithms, we believe that these experiments are sufficient to prove the
relevance of AVEC. Furthermore, in our experiments we do not seek the best hyperparameters
for the AVEC variants, we simply adopt the parameters allowing us to optimally reproduce
the baselines. Alternatively, if one seeks to evaluate AVEC independently of a considered
baseline, further hyperparameter tuning should produce better results. Notice that since
no additional calculations are needed in AVEC’s implementation, computational complexity
remains unchanged.

6.5.2 Sparse Reward Signals

Domains with sparse rewards are challenging to solve with uniform exploration as agents
receive no feedback on their actions before starting to collect rewards. In such conditions
AVEC performs better, suggesting that the shape of the value function is better approximated,
encouraging exploration.
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Figure 6.2 – Comparative evaluation (6 seeds) of AVEC with SAC and PPO on PyBullet (“TaskBullet”)
and MuJoCo (“Task”) tasks. X-axis: number of timesteps. Y-axis: average total reward.
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Use Variance in the Value Function estimates as an objective function

The relative value estimate of an unseen state is more accurate: in Section 6.4.2, AVEC
identifies extreme state-values (e.g., non-zero rewards in tasks with sparse rewards) faster.
In Figure 6.3a and 6.3b, we report the performance of AVEC in the Acrobot and MountainCar
environments: both have sparse rewards. AVEC enhances TRPO and PPO in both experiments.
When PPO and AVEC-PPO both reach the best possible performance, AVEC-PPO exhibits better
sample efficiency. Figure 6.3c and 6.3d illustrate how the agent improves its exploration strategy
in MountainCar: while the PPO agent remains stuck at the bottom of the hill (red), the graph
suggest that AVEC-PPO learns the difficult locomotion principles in the absence of rewards and
visits a much larger part of the state space (green).

This improved performance in sparse environments can be explained by the fact that AVEC
is able to pick up on experienced positive reward more easily. Moreover, the reconstructed
shape of the value function is more accurate around such rewarding states, which pushes the
agent to explore further around experienced states with high values.

0 200000 400000 600000 800000 1000000

500

400

300

200

100

Acrobot

AVEC-PPO
PPO
AVEC-TRPO
TRPO

(a)
0 200000 400000 600000 800000 1000000

200

180

160

140

120

100
MountainCar

AVEC-TRPO
TRPO
AVEC-PPO
PPO

(b)
1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
TRPO
AVEC-TRPO

(c) (d)

Figure 6.3 – (a,b): Comparative evaluation (6 seeds) of AVEC in sparse reward tasks. X-axis: number of
timesteps. Y-axis: average total reward. (c,d): Respectively state visitation frequency and phase portrait
of visited states of AVEC-TRPO (green) and TRPO (red) in MountainCar.

6.5.3 Analysis of the Variance Estimated Critic

In order to further validate AVEC, we evaluate the performance of the value network in more
details: we examine (i) the estimation error (distance to the empirical target), (ii) the approxi-
mation error (distance to the true target), and (iii) the empirical variance of the gradient. (i,ii)
should be put into perspective with the conclusions of Ilyas, Engstrom, Santurkar, et al. (2020)
where it is found that the critic only fits the empirical value function but not the true one. (iii)
should be placed in light of Tucker, Bhupatiraju, Gu, et al. (2018) highlighting a failure of
recently proposed state-action-dependent baselines to reduce the variance.

Learning the Empirical Target. In Figure 6.4, we report the quality of fit (MSE) of the em-
pirical target V̂ π in the methods PPO and AVEC-PPO in the AntBullet and HalfCheetahBullet
tasks. We observe that PPO better fits the empirical target than when equipped with AVEC,
which is to be expected since vanilla PPO optimizes the MSE directly. This result put aside
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Figure 6.4 – L2 distance to V̂ π .

the remarkable improvement in the performance of AVEC-PPO (Figure 6.2) suggests that AVEC
might be a better estimator of the true value function. We examine this claim below because if
true, it would indicate that it is indeed possible to simultaneously improve the performance of
the agents and the stability of the method.
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Figure 6.5 – L2 distance to V π. X-axis: we run PPO and AVEC-PPO and ∀t ∈ {1, 2, 4, 6, 9} · 105 we stop
training, use the current policy to collect 3 · 105 transitions and estimate V π .

Learning the True Target. A fundamental premise of policy gradient methods is that optimiz-
ing the objective based on an empirical estimation of the value function leads to a better policy.
Which is why we investigate the quality of fit of the true target. To approximate the true value
function, we fit the returns sampled from the current policy using a large number of transitions
(3 ·105). Figure 6.5 shows that gϕ is far closer to the true value function half of the time (horizon
is 106) than the estimator obtained with MSE, then as close to it. Comparing Figure 6.5 with
Figure 6.4, we see that the distance to the true target is close to the estimation error for AVEC-PPO,
while for PPO, it is at least two orders of magnitude higher at all times. We further investigate
these results in Figure C.3 in Appendix C.2.3 where we study the variation of the squared
bias and variance components of the MSE to the true target (MSE = Var + Bias2). We find, as
expected, that using AVEC reduces the variance term significantly while slightly increasing the
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Use Variance in the Value Function estimates as an objective function

bias term, which Figure 6.5 confirms is negligible since the total MSE is substantially reduced
(∥gϕ(AVEC)−V π∥2 ≤ ∥Vϕ(PPO)−V π∥2) where Vϕ(PPO) is the value function estimator in PPO.
For completeness, we also analyze the distance to the true target for the Q-function estimator in
SAC and AVEC-SAC in AntBullet and HalfCheetahBullet in Appendix C.2.4, with similar results
and interpretation. We conclude that AVEC improves the value function approximation and we
expect that the gradient is more stable.
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Figure 6.6 – Average gradient cosine-similarity.

Empirical Variance Reduction. We choose to study the gradient variance using the average
pairwise cosine similarity metric as it allows a comparison with Ilyas, Engstrom, Santurkar, et al.
(2020), with which we share the same experimental setup and scales. Figure 6.6 shows that
AVEC yields a higher average (10 batches per iteration) pairwise cosine similarity, which means
closer batch-estimates of the gradient and, in turn, indicates smaller gradient variance. Further
analysis with additional tasks is included in Appendix C.2.5. The variance reduction effect
observed in several environments suggests that AVEC is the first method since the introduction
of the value function baseline to further reduce the variance of the gradient and improve
performance.

6.5.4 Ablation Study

In this section, we examine how changing the relative importance of the bias and the residual
variance in the loss of the value network affects learning. For this study, we choose difficult tasks
of PyBullet and use PPO because it is more efficient than TRPO and requires less computations
than SAC. For an estimator ŷn of (yi)i∈{1,...,n}, we write Bias = 1

n

∑n
i=1(ŷi − yi) and Var =

1
n−1

∑n
i=1(ŷi − yi − Bias)2. Consequently: MSE = Var + Bias2. We denote Lα = Var + αBias2,

with α ∈ R. In Figure 6.7, Bias-α means that we use Lα and Var-α means that we use L 1
α
.

We observe that while no consistent order on the choices of α is identified, AVEC seems to
outperform all other weightings. Note that, for readability purposes, the graphs have been split
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Figure 6.7 – Sensitivity analysis (6 seeds) of AVEC-PPOwith respect to (a,b): the bias; (c,d): the variance.
X-axis: number of timesteps. Y-axis: average total reward.

and the curves of AVEC-PPO and PPO are the same in Figure 6.7a and 6.7c, and in Figure 6.7b
and 6.7d. A more extensive hyperparameter study with more α values might provide even
higher performances, nevertheless we believe that the stability of an algorithm is crucial for a
reliable performance. As such, the tuning of hyperparameters to achieve good results should
remain mild.

Chapter conclusion

In this work, we introduce a new training objective for the critic in actor-critic algorithms to
better approximate the true value function. In addition to beingwell-motivated by recent studies
on the behaviour of deep policy gradient algorithms, we demonstrate that this modification is
both theoretically sound and intuitively supported by the need to improve the approximation
error of the critic. The application of Actor with Variance Estimated Critic (AVEC) to state-of-
the-art policy gradient methods produces considerable gains in performance (on average +26%
for SAC and +39% for PPO) over the standard actor-critic training, without any additional
hyperparameter tuning.

First, for SAC-like algorithmswhere the critic learns a state-action-value function, our results
strongly suggest that state-actions with extreme values are identified more quickly. Second, for
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PPO-like methods where the critic learns the state-values, we show that the variance of the
gradient is reduced and empirically demonstrate that this is due to a better approximation of
the state-values. In sparse reward environments, the theoretical intuition behind a variance
estimated critic is more explicit and is also supported by empirical evidence. In addition to
corroborating the results in Ilyas, Engstrom, Santurkar, et al. (2020) proving that the value
estimator fails to fit V π, we propose a method that succeeds in improving both the sample
complexity and the stability of prominent actor-critic algorithms. Furthermore, AVEC benefits
from its simplicity of implementation since no further assumptions are required (such as
horizon awareness Tucker, Bhupatiraju, Gu, et al. (2018) to remedy the deficiency of existing
variance-reduction methods) and the modification of current algorithms represents only a few
lines of code.

In this chapter, we have demonstrated the benefits of a more thorough analysis of the
critic objective in policy gradient methods. Despite our strongly favourable results, we do
not claim that the residual variance is the optimal loss for the state-value or the state-action-
value functions, and we note that the design of comparably superior estimators for critics in
deep policy gradient methods merits further study. In future work, further analysis of the
bias-variance trade-off and extension of the results to stochastic environments is anticipated;
we consider the problem of noise separation in the latter, as this is the first obstacle to accessing
the variance and distinguishing extreme values from outliers.
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Part conclusion

In the following, we review the problems and questions opened up in Chapter 1 that we have
specified to address. We have proposed an alternative statistics of self-performance assessment
and accurate expectation as additional performance metrics to evaluate an agent’s learning and
improve its sample efficiency and performance (Chapter 4). We have developed the idea that
an RL agent learns more effectively from some transitions than others by filtering transitions
using the variance explained in the value function estimates (Chapter 5). In light of recent
studies indicating that popular variance reduction methods do not actually reduce the gradient
variance and fail to learn value function estimates, we propose an alternative, more efficient and
more robust objective function for estimating the critic (Chapter 6). In addition, the proposed
method of using residual variance to estimate the value function is more sensitive to extreme
values and captures the signals corresponding to the rewards more efficiently (Chapter 6).
Furthermore, for the writing of this thesis, we experimented further by combining AVEC and
SAUNA with PPO as the base algorithm. Unfortunately, the improvements are not as clear as
the individual effects of each method, and we suspect that filtering transitions using SAUNA
negatively affects the learning of a critic with residual variance as its objective function.
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Part III

Diversity in the Policy candidates
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Chapter 7

Hard-Exploration and Real-World
Features Problems

Cujus rei demonstrationem mirabilem sane detexi.
Hanc marginis exiguitas non caperet.
–
I have discovered a quite remarkable demonstration of this.
But my margin is too narrow to contain it.

Grand théorème de Fermat, Pierre de Fermat (1637).

In Part II, we have addressed the problem of learning in high-dimensional continuous
state space with continuous actions by leveraging the variance in the value function estimates
(variance explained or residual variance). Part III examines the problem of learning in environ-
ments with more real-world features such as safety constraints or where efficient exploration
is a bottleneck. In this part, we center our attention on variance in the policy candidates
instead of the variance in the value function estimates, by introducing a third protagonist
to the actor-critic framework which will serve as an adversarial prior from which the policy
distribution should be repulsed. Chapter 8 develops a method where the adversarial prior is
a mixture of previous policies and Chapter 9 employs the formulation of safe RL and learns
a risk-seeking adversary. In this chapter, we introduce the problem of learning in environ-
ments with hard-exploration characteristics and safety constraints and motivate the use of an
actor-critic framework augmented with an adversary.

Contents
7.1 Hard-Exploration Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2 The Real-World RL Challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.3 Adversarial Prior in the Actor-Critic Framework . . . . . . . . . . . . . . . . 91
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7.1 Hard-Exploration Problems

Chapter 8 is devoted to tasks where efficient exploration is a bottleneck. The default approach
to stochastic exploration which traditional actor-critic methods would propose will exhibit
random walk behavior in such environments, but the likelihood of visiting states with rewards
will be rapidly decreasing as the agent moves away from the starting point. In Chapter 8, we
propose a new approach to make learning progress in these tasks, by reaching a new level of
performance, with a more sample-efficient method.

7.1.1 MiniGrid

(a) (b)

(c) (d)

Figure 7.1 – Frames from (a,b) MultiRoom. (c) KeyCorridor. (d) ObstructedMaze.

The MiniGrid environments (Chevalier-Boisvert, Willems, and Pal, 2018) are a set of chal-
lenging sparse-reward gridworlds. There are several different MiniGrid scenarios that we
consider. MultiRoom corresponds to a set of navigation tasks, where the goal is to go from a
starting state to a goal state. In order to go from one room to another, the agent must perform a
specific action to open a door. In KeyCorridor, the agent also has to pick up a key, since the goal
state is behind a door that only lets it in with the key. In ObstructedMaze, keys are hidden in
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boxes, and doors are obstructed by balls the agent has to get out of its way. ObstructedMaze-
Full is the hardest configuration for this scenario, since it has the maximal number of keys,
balls to move, and doors possible. In each scenario, the agent has access to a partial view of
the environment, a 7x7 square that includes itself and points in the direction of its previous
movement, as illustrated in Figure 7.1. Importantly, because the layouts of the environments
are procedurally-generated, the map is constructed differently at each new episode, making
memorization impossible due to the huge size of the state space. Incidentally, the agent must
learn to generalize across the different layouts of the environments. We give more context
about procedurally-generated tasks in the next section.

7.1.2 Procedurally-generated tasks

Procedurally-generated environments (e.g. MiniGrid (Chevalier-Boisvert, Willems, and Pal,
2018), OpenAI Procgen (Cobbe, Hesse, Hilton, et al., 2020)) are now established benchmarks
for testing systematic generalization of RL where agents cannot rely on the determinism and
low size of the observation space of non-procedurally generated MDPs. They seem to be
considered as important problems to be considered when evaluating new RL approaches. For
instance, procedurally-generated tasks have been used in a number of publications (some
concurrent to our work) on generalization (Igl, Ciosek, Li, et al., 2019; Laskin, Lee, Stooke,
et al., 2020; Igl, Farquhar, Luketina, et al., 2021) and exploration (Goyal, Islam, Strouse, et al.,
2019; Raileanu and Rocktäschel, 2019; Campero, Raileanu, Küttler, et al., 2021).

7.1.3 Vizdoom

Figure 7.2 – Frames from the 3-D navigation task VizdoomMyWayHome.

In VizDoom (Kempka, Wydmuch, Runc, et al., 2016), we use the scenario Find My Way
Home where the agent must learn to move along corridors and through rooms without any
reward feedback from the 3-D environment. It also features first-person perspective and high-
dimensional pixel observations, with each of the 9 rooms in the environment composed of
different wall textures, as illustrated in Figure 7.2.
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Cart-Pole Variables: x,θ
Type Constraint
Static Limit range:

xl < x < xr

Kinematic Limit velocity near goal:
|θ| > θL ∨ θ̇ < θ̇V

Dynamic Limit cart acceleration:
ẍ < Amax

Walker Variables: θ,F
Type Constraint
Static Limit joint angles:

θL < θ < θU

Kinematic Limit joint velocities:
maxi

∣∣θ̇i

∣∣ < Lθ̇

Dynamic Limit foot contact forces:
FFoot < Fmax

Quadruped Variables: θ,u,F
Type Constraint
Static Limit joint angles:

θL,i < θi < θU,i

Enforce upright position:
0 < uz

Kinematic Limit joint velocities:
maxi

∣∣θ̇i

∣∣ < Lθ̇

Dynamic Limit foot contact forces:
FFoot < Fmax

Table 7.1 – Some of the safety constraints on Cart-Pole, Walker and Quadruped.

7.2 The Real-World RL Challenge

Many of the achievements in RL research remains difficult to implement in real-world systems
as a result of a series of assumptions that are rarely met in practice. For instance, in the
physical world, safety constraint can be strong and we need to integrate at least a proxy of
them during training, even at the expense of performance, which can be less important than
safety compliance. The real-world RL suite (Dulac-Arnold, Levine, Mankowitz, et al., 2020)
provides continuous control tasks with safety constraints in high-dimensional continuous state
and action spaces that aim to capture the aspects of real-world situations that commonly cause
RL algorithms to fail. Some of the safety constraint for each available domain are given in
Table 7.1 where x denotes a position, θ a joint angle, F a contact force and u some structural
direction. A visual example of the kinematic constraint on Cart-Pole Swing-Up is also illustrated
in Figure 7.3.
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7.3 Adversarial Prior in the Actor-Critic Framework

Figure 7.3 – Frames from the Cart-Pole Swing-Up task constrained on the pole angular velocity to be
below a certain threshold when arriving near the top.

7.3 Adversarial Prior in the Actor-Critic Framework

While previous frameworks use entropy maximization to obtain diverse base policies, those
methods come short when the dimensionality of the state space increases. We observe that the
actor-critic framework would benefit from an additional component which would maintain a
moving average or mixture of previous policies. This formulation will result in an adversary
forcing the agent to move away from the previous policies while remaining close to the current
one with the formation of a trust region. We further develop this idea in Chapter 8 on the type
of tasks described in Section 7.1.1 and 7.1.2.

The adversarial prior is trained using the batch of trajectories samples by the actor. By
imagining an alternative way of maintaining such adversary, one may attempt to train it to
break some constraints. This would technically result into an adversarial prior representing
a probabilistic unsafe region which the agent should avoid. The idea of an adversarial prior
in the actor-critic framework is therefore further developed in the type of tasks described in
Section 7.2.
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Chapter 8

Use Repulsive Priors to motivate
conservatively diversified policies

We can only see a short distance ahead,
but we can see plenty there
that needs to be done.

A Quarterly Review of Psychology and Philosophy, Alan Turing (1860).

Actor-critic methods consider a policy (actor) and a value function (critic) whose respective
losses are built using different motivations and approaches. In this chapter, we introduce a
third protagonist: the adversary. While the adversary mimics the actor by minimizing the
KL-divergence between their respective action distributions, the actor, in addition to learning
to solve the task, tries to differentiate itself from the adversary predictions. This novel objective
stimulates the actor to follow strategies that could not have been correctly predicted from
previous trajectories, making its behavior innovative in tasks where the reward is extremely
rare. Our experimental analysis shows that the resulting algorithm leads to more exhaustive ex-
ploration. Notably, our method extends the state-of-the-art on a set of various hard-exploration
and procedurally-generated tasks1.

Contents
8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.4 AGAC: Adversarially Guided Actor-Critic . . . . . . . . . . . . . . . . . . . . . 97

8.5 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

1This chapter is based on an article published in the proceedings of the 9th International Conference on Learning
Representations (ICLR) (Flet-Berliac, Ferret, Pietquin, et al., 2021). It is joint work with my colleague and friend
Johan Ferret.
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8.1 Motivation

Research in deep reinforcement learning (RL) has proven to be successful across a wide range
of problems (Silver, Lever, Heess, et al., 2014; Lillicrap, Hunt, Pritzel, et al., 2016; Mnih, Badia,
Mirza, et al., 2016; Schulman, Moritz, Levine, et al., 2016). Nevertheless, generalization and
exploration in RL still represent key challenges that leave most current methods ineffective.
First, a battery of recent studies (Farebrother, Machado, and Bowling, 2018; Zhang, Ballas,
and Pineau, 2018; Cobbe, Hesse, Hilton, et al., 2020; Song, Jiang, Du, et al., 2020) indicates
that current RL methods fail to generalize correctly even when agents have been trained in a
diverse set of environments. Second, exploration has been extensively studied in RL; however,
most hard-exploration problems use the same environment for training and evaluation. Hence,
since a well-designed exploration strategy should maximize the information received from a
trajectory about an environment, the exploration capabilities may not be appropriately assessed
if that information is memorized. In this line of research, we choose to study the exploration
capabilities of ourmethod and its ability to generalize to new scenarios. Our evaluation domains
will, therefore, be tasks with sparse reward in procedurally-generated environments.

In this chapter’s work, we propose Adversarially Guided Actor-Critic (AGAC), which recon-
siders the actor-critic framework by introducing a third protagonist: the adversary. Its role is to
predict the actor’s actions correctly. Meanwhile, the actor must not only find the optimal actions
to maximize the sum of expected returns, but also counteract the predictions of the adversary.
This formulation is lightly inspired by adversarial methods, specifically generative adversarial
networks (GANs) (Goodfellow, Pouget-Abadie, Mirza, et al., 2014). Such a link between GANs
and actor-critic methods has been formalized by Pfau and Vinyals (2016); however, in the
context of a third protagonist, we draw a different analogy. The adversary can be interpreted as
playing the role of a discriminator that must predict the actions of the actor, and the actor can
be considered as playing the role of a generator that behaves to deceive the predictions of the
adversary. This approach has the advantage, as with GANs, that the optimization procedure
generates a diversity of meaningful data, corresponding to sequences of actions in AGAC.

This chapter analyses and explores how AGAC explicitly drives diversity in the behaviors of
the agent while remaining reward-focused, and to which extent this approach allows to adapt to
the evolving state space of procedurally-generated environments where the map is constructed
differently with each new episode. Moreover, because stability is a legitimate concern since
specific instances of adversarial networks were shown to be prone to hyperparameter sensitivity
issues (Arjovsky and Bottou, 2017), we also examine this aspect in our experiments.

The contributions of this work are as follows: (i) we propose a novel actor-critic formu-
lation inspired from adversarial learning (AGAC), (ii) we analyse empirically AGAC on key
reinforcement learning aspects such as diversity, exploration and stability, (iii) we demonstrate
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significant gains in performance on several sparse-reward hard-exploration tasks including
procedurally-generated tasks.

8.2 Related Work

Actor-critic methods (Barto, Sutton, and Anderson, 1983; Sutton, 1984) have been extended
to the deep learning setting by Mnih, Badia, Mirza, et al. (2016), who combined deep neural
networks andmultiple distributed actorswith an actor-critic setting, with strong results onAtari.
Since then, many additions have been proposed, be it architectural improvements (Vinyals,
Babuschkin, Czarnecki, et al., 2019), better advantage or value estimation (Schulman, Moritz,
Levine, et al., 2016; Flet-Berliac, Ouhamma, Maillard, et al., 2021), or the incorporation of off-
policy elements (Wang, Bapst, Heess, et al., 2017; Oh, Guo, Singh, et al., 2018; Flet-Berliac and
Preux, 2020). Regularization was shown to improve actor-critic methods, either by enforcing
trust regions (Schulman, Levine, Abbeel, et al., 2015; Schulman, Wolski, Dhariwal, et al., 2017;
Wu, Mansimov, Grosse, et al., 2017), or by correcting for off-policiness (Munos, Stepleton,
Harutyunyan, et al., 2016; Gruslys, Dabney, Azar, et al., 2018); and recent works analyzed its
impact from a theoretical standpoint (Ahmed, Le Roux, Norouzi, et al., 2019; Geist, Scherrer,
and Pietquin, 2019; Vieillard, Kozuno, Scherrer, et al., 2020; Vieillard, Pietquin, and Geist,
2020). Related to our work, Han and Sung (2020) use the entropy of the mixture between
the policy induced from a replay buffer and the current policy as a regularizer. To the best of
our knowledge, none of these methods explored the use of an adversarial objective to drive
exploration.

While introduced in supervised learning, adversarial learning (Goodfellow, Shlens, and
Szegedy, 2015; Miyato, Maeda, Koyama, et al., 2016; Kurakin, Goodfellow, and Bengio, 2017)
was leveraged in several RLworks. Ho and Ermon (2016) propose an imitation learningmethod
that uses a discriminator whose task is to distinguish between expert trajectories and those of
the agent while the agent tries to match expert behavior to fool the discriminator. Bahdanau,
Hill, Leike, et al. (2019) use a discriminator to distinguish goal states from non-goal states
based on a textual instruction, and use the resulting model as a reward function. Florensa,
Held, Geng, et al. (2018) use a GAN to produce sub-goals at the right level of difficulty for the
current agent, inducing a form of curriculum. Additionally, Pfau and Vinyals (2016) provide a
parallel between GANs and the actor-critic framework.

While exploration is driven in part by the core RL algorithms (Fortunato, Azar, Piot, et al.,
2018; Han and Sung, 2020; Ferret, Pietquin, and Geist, 2021), it is often necessary to resort
to exploration-specific techniques. For instance, intrinsic motivation encourages exploratory
behavior from the agent. Some works use state-visitation counts or pseudo-counts to promote
exhaustive exploration (Bellemare, Srinivasan, Ostrovski, et al., 2016), while others use curiosity
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rewards, expressed in the magnitude of prediction error from the agent, to push it towards
unfamiliar areas of the state space (Burda, Edwards, Storkey, et al., 2018). Ecoffet, Huizinga,
Lehman, et al. (2019) propose a technique akin to tree traversal to explore while learning to
come back to promising areas. Eysenbach, Gupta, Ibarz, et al. (2018) show that encouraging
diversity helps with exploration, even in the absence of reward.

Last but not least, generalization is a key challenge in RL. Zhang, Vinyals, Munos, et al.
(2018) showed that, even when the environment is not deterministic, agents can overfit to their
training distribution and that it is difficult to distinguish agents likely to generalize to new
environments from those that will not. In the same vein, recent work has advocated using
procedurally-generated environments, in which a new instance of the environment is sampled
when a new episode starts, to assess generalization capabilities better (Justesen, Rodriguez
Torrado, Bontrager, et al., 2018; Cobbe, Hesse, Hilton, et al., 2020). Finally, methods based on
network randomization (Igl, Ciosek, Li, et al., 2019), noise injection (Lee, Lee, Shin, et al., 2020),
and credit assignment (Ferret, Marinier, Geist, et al., 2020) have been proposed to reduce the
generalization gap for RL agents.

8.3 Preliminaries

We place ourselves in the Markov Decision Processes (Puterman, 1994) framework. A Markov
Decision Process (MDP) is a tupleM = {S,A,P, R, γ}, where S is the state space, A is the
action space, P is the transition kernel,R is the bounded reward function and γ ∈ [0, 1) is the
discount factor. Let π denote a stochastic policy mapping states to distributions over actions.
We place ourselves in the infinite-horizon setting, i.e., we seek a policy that optimizes J(π) =
Eπ[

∑∞
t=0 γ

tr (st, at)]. The value of a state is the quantity V π(s) = Eπ[
∑∞
t=0 γ

tr (st, at) |s0 =
s] and the value of a state-action pair Qπ(s, a) of performing action a in state s and then
following policy π is defined as: Qπ(s, a) = Eπ

[∑∞
t=0 γ

tr (st, at) |s0 = s, a0 = a
]. The advantage

function, which quantifies how an action a is better than the average action in state s, is
Aπ(s, a) = Qπ(s, a) − V π(s). Finally, the entropy Hπ of a policy is calculated as: Hπ(s) =
Eπ(·|s) [− log π(·|s)] .

Actor-Critic and Deep Policy Gradients. An actor-critic algorithm is composed of two main
components: a policy and a value predictor. In deep RL, both the policy and the value function
are obtained via parametric estimators; we denote θ and ϕ their respective parameters. The
policy is updated via policy gradient, while the value is usually updated via temporal difference
or Monte Carlo rollouts. In practice, for a sequence of transitions {st, at, rt, st+1}t∈[0,N ], we use
the following policy gradient loss (including the commonly used entropic penalty):

LPG = − 1
N

t+N∑
t′=t

(At′ log π (at′ |st′ , θ) + αHπ(st′ , θ)),
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where α is the entropy coefficient and At is the generalized advantage estimator (Schulman,
Moritz, Levine, et al., 2016) defined as: At =

∑t+N
t′=t (γλ)t′−t(rt′ + γVϕold(st′+1) − Vϕold(st′)),

with λ a fixed hyperparameter and Vϕold the value function estimator at the previous opti-
mization iteration. To estimate the value function, we solve the non-linear regression problem
minimizeϕ

∑t+N
t′=t (Vϕ(st′)− V̂t′)2 where V̂t = At + Vϕold(st′).

8.4 AGAC: Adversarially Guided Actor-Critic

To foster diversified behavior in its trajectories, AGAC introduces a third protagonist to the actor-
critic framework: the adversary. The role of the adversary is to accurately predict the actor’s
actions, by minimizing the discrepancy between its action distribution πadv and the distribution
induced by the policy π. Meanwhile, in addition to finding the optimal actions to maximize
the sum of expected returns, the actor must also counteract the adversary’s predictions by
maximizing the discrepancy between π and πadv (see Appendix D.2 for an illustration). This
discrepancy, used as a form of exploration bonus, is defined as the difference of action log-
probabilities (see Equation (8.1)), whose expectation is the Kullback–Leibler divergence:

DKL(π(·|s)∥πadv(·|s)) = Eπ(·|s) [log π(·|s)− log πadv(·|s)] .

Formally, for each state-action pair (st, at) in a trajectory, an action-dependent bonus
log π(at|st) − log πadv(at|st) is added to the advantage. In addition, the value target of the
critic is modified to include the action-independent equivalent, which is the KL-divergence
DKL(π(·|st)∥πadv(·|st)). We discuss the role of these mirrored terms below, and the implications
of AGAC’s modified objective from a more theoretical standpoint in the next section. In addition
to the parameters θ (resp. θold the parameter of the policy at the previous iteration) and ϕ
defined above (resp. ϕold that of the critic), we denote ψ (resp. ψold) that of the adversary.

AGAC minimizes the following loss:

LAGAC = LPG + βV LV +βadvLadv.

In the new objective LPG = − 1
N

∑N
t=0(AAGAC

t log π (at|st, θ) + αHπ(st, θ)), AGAC modifies At
as:

AAGAC
t = At + c

(
log π(at|st, θold)− log πadv(at|st, ψold)

)
, (8.1)

with c a varying hyperparameter that controls the dependence on the action log-probability
difference. To encourage exploration without preventing asymptotic stability, c is linearly
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annealed during the course of training. LV is the objective function of the critic defined as:

LV = 1
N

N∑
t=0

(
Vϕ(st)−

(
V̂t + cDKL(π(·|st, θold)∥πadv(·|st, ψold))

))2

. (8.2)

Finally, Ladv is the objective function of the adversary:

Ladv = 1
N

N∑
t=0

DKL(π(·|st, θold)∥πadv(·|st, ψ)). (8.3)

Eqs. (8.1), (8.2) and (8.3) are the three equations that our method modifies (we color in blue
the specific parts) in the traditional actor-critic framework. The terms βV and βadv are fixed
hyperparameters.

Under the proposed actor-critic formulation, the probability of sampling an action is in-
creased if the modified advantage is positive, i.e. (i) the corresponding return is larger than the
predicted value and/or (ii) the action log-probability difference is large. More precisely, our
method favors transitions whose actions were less accurately predicted than the average action,
i.e. log π(a|s)− log πadv(a|s) ≥ DKL(π(·|s)∥πadv(·|s)). This is particularly visible for λ→ 1, in
which case the generalized advantage is At = Gt − Vϕold(st), resulting in the appearance of
both aforementioned mirrored terms in the modified advantage:

AAGAC
t = Gt − V̂ ϕold

t + c
(
log π(at|st)− log πadv(at|st)− D̂ϕold

KL (π(·|st)∥πadv(·|st))
)
,

with Gt the observed return, V̂ ϕold
t the estimated return and D̂ϕold

KL (π(·|st)∥πadv(·|st)) the esti-
mated KL-divergence (estimated components of Vϕold(st) from Equation 8.2).

To avoid instability, in practice the adversary is a separate estimator, updated with a smaller
learning rate than the actor. This way, it represents a delayed and more steady version of the
actor’s policy, which prevents the agent from having to constantly adapt or focus solely on
fooling the adversary.

8.4.1 Building Motivation

In the following, we provide an interpretation of AGAC by studying the dynamics of attraction
and repulsion between the actor and the adversary. To simplify, we study the equivalent of
AGAC in a policy iteration (PI) scheme. PI being the dynamic programming scheme underlying
the standard actor-critic, we have reasons to think that some of our findings translate to the
original AGAC algorithm. In PI, the quantity of interest is the action-value, which AGAC would
modify as:

QAGAC
πk

= Qπk + c (log πk − log πadv),
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with πk the policy at iteration k. Incorporating the entropic penalty, the new policy πk+1 verifies:

πk+1 = arg max
π

JPI(π) = arg max
π

EsEa∼π(·|s)[QAGAC
πk

(s, a)− α log π(a|s)].

We can rewrite this objective:

JPI(π) = EsEa∼π(·|s)[QAGAC
πk

(s, a)− α log π(a|s)]

= EsEa∼π(·|s)[Qπk(s, a) + c (log πk(a|s)− log πadv(a|s))− α log π(a|s)]

= EsEa∼π(·|s)[Qπk(s, a) + c (log πk(a|s)− log π(a|s) + log π(a|s)− log πadv(a|s))− α log π(a|s)]

= Es
[
Ea∼π(·|s)[Qπk(s, a)]− cDKL(π(·|s)||πk(·|s))︸ ︷︷ ︸

πk is attractive

+ cDKL(π(·|s)||πadv(·|s))︸ ︷︷ ︸
πadv is repulsive

+αH(π(·|s))︸ ︷︷ ︸
enforces stochastic policies

]
.

Thus, in the PI scheme, AGAC finds a policy that maximizes Q-values, while at the same time
remaining close to the current policy and far from a mixture of the previous policies (i.e., πk−1,
πk−2, πk−3, . . . ). Note that we experimentally observe (see Section 8.5.3) that our method
performs better with a smaller learning rate for the adversarial network than that of the other
networks, which could imply that a stable repulsive term is beneficial.

This optimization problem is strongly concave in π (thanks to the entropy term), and is
state-wise a Legendre-Fenchel transform. Its solution is given by (see Appendix D.5 for the
full derivation):

πk+1 ∝
(
πk
πadv

) c
α

exp Qπk
α
.

This result gives us some insight into the behavior of the objective function. Notably, in our
example, if πadv is fixed and c = α, we recover a KL-regularized PI scheme (Geist, Scherrer,
and Pietquin, 2019) with the modified reward r − c log πadv.

8.4.2 Implementation

In all of the experiments, we use PPO (Schulman, Wolski, Dhariwal, et al., 2017) as the base
algorithm and build on it to incorporate our method. Hence,

LPG = − 1
N

t+N∑
t′=t

min
(

π(at′ |st′ , θ)
π(at′ |st′ , θold)A

AGAC
t′ , clip

( π(at′ |st′ , θ)
π(at′ |st′ , θold) , 1− ε, 1 + ε

)
AAGAC
t′

)
,

with AAGAC
t′ given in Equation (8.1), N the temporal length considered for one update of param-

eters and ε the clipping parameter. Similar to RIDE (Raileanu and Rocktäschel, 2019), we also
discount PPO by episodic state visitation counts, except for VizDoom (cf. Section 8.5.1). The ac-
tor, critic and adversary use the convolutional architecture of the Nature paper of DQN (Mnih,
Kavukcuoglu, Silver, et al., 2015) with different hidden sizes (see Appendix D.4 for architecture
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details). The three neural networks are optimized using Adam (Kingma and Ba, 2015). Our
method does not use RNNs in its architecture; instead, in all our experiments, we use frame
stacking. Indeed, Hausknecht and Stone (2015) interestingly demonstrate that although recur-
rence is a reliable method for processing state observation, it does not confer any systematic
advantage over stacking observations in the input layer of a CNN. Note that the parameters
are not shared between the policy, the critic and the adversary and that we did not observe
any noticeable difference in computational complexity when using AGAC compared to PPO. We
direct the reader to Appendix D.3 for a list of hyperparameters. In particular, the c coefficient
of the adversarial bonus is linearly annealed.

At each training step, we perform a stochastic optimization step to minimize LAGAC using
stop-gradient:

θ ← Adam (θ,∇θLPG, η1) , ϕ← Adam (ϕ,∇ϕLV , η1) , ψ ← Adam (ψ,∇ψLadv, η2) .

8.5 Experimental Study

In this section, we describe our experimental study in which we investigate: (i) whether the
adversarial bonus alone (e.g. without episodic state visitation count) is sufficient to outperform
other methods in VizDoom, a sparse-reward task with high-dimensional observations, (ii)
whether AGAC succeeds in partially-observable and procedurally-generated environments with
high sparsity in the rewards, compared to other methods, (iii) how well AGAC is capable of
exploring in environments without extrinsic reward, (iv) the training stability of ourmethod. In
all of the experiments, lines are average performances and shaded areas represent one standard
deviation. The code for our method is released and open-source: github.com/yfletberliac/agac.

(a) (b) (c) (d)

Figure 8.1 – Frames from (a,b) the 3-D navigation task VizdoomMyWayHome. (c) MiniGrid-
KeyCorridorS6R3. (d) MiniGrid-ObstructedMazeFull.

Environments. To carefully evaluate the performance of our method, its ability to develop
robust exploration strategies and its generalization to unseen states, we choose tasks that have
been used in prior work, which are tasks with high-dimensional observations, sparse reward
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and procedurally-generated environments. In VizDoom (Kempka, Wydmuch, Runc, et al.,
2016), the agent must learn to move along corridors and through rooms without any reward
feedback from the 3-D environment. TheMiniGrid environments (Chevalier-Boisvert, Willems,
and Pal, 2018) are a set of challenging partially-observable and sparse-reward gridworlds. In
this type of procedurally-generated environments, memorization is impossible due to the huge
size of the state space, so the agent must learn to generalize across the different layouts of the
environment. Each gridworld has different characteristics: in the MultiRoom tasks, the agent
is placed in the first room and should reach a goal placed in the most distant room. In the
KeyCorridor tasks, the agent must navigate to pick up an object placed in a room locked by a
door whose key is in another room. Finally, in the ObstructedMaze tasks, the agent must pick
up a box that is placed in a corner of a 3x3 maze in which the doors are also locked, the keys are
hidden in boxes and balls obstruct the doors. All considered environments (see Figure 8.1 for
some examples) are available as part of OpenAI Gym (Brockman, Cheung, Pettersson, et al.,
2016).

Baselines. For a fair assessment of our method, we compare to some of the most prominent
methods specialized in hard-exploration tasks: RIDE (Raileanu and Rocktäschel, 2019), based
on an intrinsic reward associated with the magnitude of change between two consecutive state
representations and state visitation, Count as Count-Based Exploration (Bellemare, Srinivasan,
Ostrovski, et al., 2016), which we couple with IMPALA (Espeholt, Soyer, Munos, et al., 2018),
RND (Burda, Edwards, Storkey, et al., 2018) in which an exploration bonus is positively cor-
related to the error of predicting features from the observations and ICM (Pathak, Agrawal,
Efros, et al., 2017), where a module only predicts the changes in the environment that are
produced by the actions of the agent. Finally, we compare to most the recent and best perform-
ing method at the time of introducing the method in procedurally-generated environments:
AMIGo (Campero, Raileanu, Küttler, et al., 2021) in which a goal-generating teacher provides
count-based intrinsic goals.

8.5.1 Adversarially-based Exploration (No Episodic Count)

Table 8.1 – Average return in VizDoom at different timesteps.
Nb. of Timesteps 2M 4M 6M 8M 10M
AGAC 0.74± 0.05 0.96± 0.001 0.96± 0.001 0.97± 0.001 0.97± 0.001
RIDE 0. 0. 0.95± 0.001 0.97± 0.001 0.97± 0.001
ICM 0. 0. 0.95± 0.001 0.97± 0.001 0.97± 0.001
AMIGo 0. 0. 0. 0. 0.
RND 0. 0. 0. 0. 0.
Count 0. 0. 0. 0. 0.
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In this section, we assess the benefits of using an adversarially-based exploration bonus and
examine how AGAC performs without the help of count-based exploration. In order to provide a
comparison to state-of-the-art methods, we choose VizDoom, a hard-exploration problem used
in prior work. In this game, the map consists of 9 rooms connected by corridors where 270
steps separate the initial position of the agent and the goal under an optimal policy. Episodes
are terminated either when the agent finds the goal or if the episode exceeds 2100 timesteps.
Importantly, while other algorithms (Raileanu and Rocktäschel, 2019; Campero, Raileanu,
Küttler, et al., 2021) benefit from count-based exploration, this study has been conducted with
our method not benefiting from episodic count whatsoever. Results in Table 8.1 indicate that
AGAC clearly outperforms other methods in sample-efficiency. Only the methods ICM and RIDE
succeed in matching the score of AGAC, and with about twice as much transitions (∼ 3M vs.
6M). Interestingly, AMIGo performs similarly to Count and RND.We find this result surprising
because AMIGo has proven to perform well in the MiniGrid environments. Nevertheless,
it appears that concurrent works to ours experienced similar issues with the accompanying
implementation2. The results of AGAC support the capabilities of the adversarial bonus and
show that it can, on its own, achieve significant gains in performance. However, the VizDoom
task is not procedurally-generated; hence we have not evaluated the generalization to new
states yet. In the following section, we use MiniGrid to investigate this.

8.5.2 Hard-Exploration Tasks with Partially-Observable Environments

We now evaluate our method on multiple hard-exploration procedurally-generated tasks from
MiniGrid. Details about MiniGrid can be found in Appendix D.3.1. Figure 8.2 indicates
that AGAC significantly outperforms other methods on these tasks in sample-efficiency and
performance. AGAC also outperforms the current state-of-the-art method, AMIGo, despite
the fact that it uses the fully-observable version of MiniGrid. Note that we find the same
poor performance results when training AMIGo in MiniGrid, similar to Vizdoom results. For
completeness, we also report in Table D.1 of Appendix D.1.1 the performance results with
the scores reported in the original papers Raileanu and Rocktäschel (2019) and Campero,
Raileanu, Küttler, et al. (2021). We draw similar conclusions: AGAC clearly outperforms the
state-of-the-art RIDE, AMIGo, Count, RND and ICM.

In all the considered tasks, the agent must learn to generalize across a very large state space
because the layouts are generated procedurally. We consider three main arguments to explain
why our method is successful: (i) our methodmakes use of partial observations: in this context,
the adversary has a harder time predicting the actor’s actions; nevertheless, the mistakes of the
former benefit the latter in the form of an exploration bonus, which pushes the agent to explore
further in order to deceive the adversary, (ii) the exploration bonus (i.e. intrinsic reward) does

2AMIGo implementation GitHub Issue.
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not dissipate compared to most other methods, as observed in Figure D.3 in Appendix D.1.4,
(iii) our method does not make assumptions about the environment dynamics (e.g., changes in
the environment produced by an action as in Raileanu and Rocktäschel (2019)) since this can
hinder learning when the space of state changes induced by an action is too large (such as the
action of moving a block in ObstructedMaze).
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Figure 8.2 – Performance evaluation of AGAC.

In Appendix D.1.3, we also include experiments in two environments with extremely sparse
reward signals: KeyCorridorS8R3 and ObstructedMazeFull. Despite the challenge, AGAC still
manages to find rewards and can performwell by taking advantage of the diversified behaviour
induced by our method. To the best of our knowledge, no other method ever succeeded to
perform well (> 0 average return) in those tasks. We think that given more computing time,
AGAC’s score could go higher.
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Figure 8.3 – Sensitivity analysis of AGAC in KeyCorridorS4R3.

8.5.3 Training Stability

Here we want to analyse the stability of the method when changing hyperparameters. The
most important parameters in AGAC are c, the coefficient for the adversarial bonus, and the
learning rates ratio ν = η2

η1
. We choose KeyCorridorS4R3 as the evaluation task because among

all the tasks considered, its difficulty is at a medium level. Figure 8.3 shows the learning curves.
For readability, we plot the average return only; the standard deviation is sensibly the same for
all curves. We observe that deviating from the hyperparameter values found using grid search
results in a slower training. Moreover, although reasonable, c appears to have more sensitivity
than ν.

8.5.4 Exploration in Reward-free Environment
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Figure 8.4 – Average return on N10S6 with and without extrinsic reward.

To better understand the effectiveness of our method and inspect how the agent collects
rewards that would not otherwise be achievable by simple exploration heuristics or other
methods, we analyze the performance of AGAC in another (procedurally-generated) challenging
environment, MultiRoomN10S6, when there is no reward signal, i.e. no extrinsic reward.
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Beyond the good performance of our method when extrinsic rewards are given to the agent,
Figure 8.4 indicates that the exploration induced by our method makes the agent succeed in a
significant proportion of the episodes: in the configuration “NoExtrinsicReward” the reward
signal is not given (the goal is invisible to the agent) and the performance of AGAC stabilizes
around an average return of ∼ 0.15. Since the return of an episode is either 0 or 1 (depending
on whether the agent reached the goal state or not), and because this value is aggregated
across several episodes, the results indicate that reward-free AGAC succeeds in ∼ 15% of the
tasks. Comparatively, random agents have a zero average return. This poor performance is in
accordance with the results in Raileanu and Rocktäschel (2019) and reflects the complexity of
the task: in order to go from one room to another, an agent must perform a specific action to
open a door and cross it within the time limit of 200 timesteps. In the following, we visually
investigate how different methods explore the environments.

8.5.5 Visualizing Coverage and Diversity

Random AGACCount RIDERND

Figure 8.5 – State visitation heatmaps for RND, Count, a random uniform policy, RIDE, and AGAC trained
in a singleton environment (top row) and procedurally-generated environments (bottom row) without
extrinsic reward for 10M timesteps in the MultiRoomN10S6 task.

In this section, we first investigate how different methods explore environments without
being guided by extrinsic rewards (the green goal is invisible to the agent) on both procedurally-
generated and singleton environments. In singleton environments, an agent has to solve the same
task in the same environment/maze in every episode. Figure 8.5 shows the state visitation
heatmaps (darker areas correspond to more visits) after a training of 10M timesteps. We
observe that most of the methods explore inefficiently in a singleton environment and that
only RIDE succeeds in reaching the fifth room while AGAC reaches the last (tenth) room. After
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training the agents in procedurally-generated environments, the methods explore even less
efficiently while AGAC succeeds in exploring all rooms.

Figure 8.6 – State visitation heatmaps of the last ten episodes of an agent trained in procedurally-generated
environments without extrinsic reward for 10M timesteps in the MultiRoomN10S6 task. The agent is
continuously engaging in new strategies.

We now qualitatively study the diversity of an agent’s behavior when trained with AGAC.
Figure 8.6 presents the state visitation heatmaps of the last ten episodes for an agent trained
in procedurally-generated environments in the MultiRoomN10S6 task without extrinsic reward.
The heatmaps correspond to the behavior of the resulting policy, which is still learning from
the AGAC objective. Looking at the figure, we can see that the strategies vary at each update
with, for example, back-and-forth and back-to-start behaviors. Although there are no extrinsic
reward, the strategies seem to diversify from one update to the next. Finally, Figure D.1 in
Appendix D.1.2 shows the state visitation heatmaps in a different configuration: when the agent
has been trained on a singleton environment in the MultiRoomN10S6 task without extrinsic
reward. Same as previously, the agent is updated between each episode. Looking at the figure,
we can make essentially the same observations as previously, with a noteworthy behavior in
the fourth heatmap of the bottom row where it appears the agent went to the fourth room to
remain inside it. Those episodes indicate that, although the agent sees the same environment
repeatedly, the successive adversarial updates force it to continuously adapt its behavior and
try new strategies.

Chapter conclusion

This chapter introduced AGAC, a modification to the traditional actor-critic framework: an
adversary network is added as a third protagonist. The mechanics of AGAC have been discussed
from a policy iteration point of view, andwe provided theoretical insight into the innerworkings
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of the proposed algorithm: the adversary forces the agent to remain close to the current policy
while moving away from the previous ones. In a nutshell, the influence of the adversary makes
the actor conservatively diversified.

In the experimental study, we have evaluated the adversarially-based bonus in VizDoom
and empirically demonstrated its effectiveness and superiority compared to other relevant
methods (some benefiting from count-based exploration). Then, we have conducted several
performance experiments using AGAC and have shown a significant performance improvement
over some of the most popular exploration methods (RIDE, AMIGo, Count, RND and ICM) on
a set of various challenging tasks from MiniGrid. These procedurally-generated environments
have served another purpose which is to validate the capacity of our method to generalize to
unseen scenarios. In addition, the training stability of our method has been studied, showing
a greater but acceptable sensitivity for c, the adversarial bonus coefficient. Finally, we have
investigated the exploration capabilities of AGAC in a reward-free setting where the agent
demonstrated exhaustive exploration through various strategic choices, confirming that the
adversary successfully drives diversity in the behavior of the actor.
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Chapter 9

Use Repulsive Priors to motivate
risk-sensitive policies

It is a good thing to have two ways
of looking at a subject,
and to admit that there are
two ways of looking at it.

The genesis of Maxwell’s equations, James Clerk Maxwell (1860).

Although we have witnessed policy-based methods being effective for a number of sequen-
tial decision-making problems under uncertainty, they still stumble to thrive in real-world
systems where risk or safety is a binding constraint. Using what we have learned in Chapter 8,
in this chapter, we formulate the RL problem with safety constraints as a non-zero-sum game
where an adversary tries to break the safety constraint while the RL agent tries to maximize
the constrained value function given the adversary’s policy. We propose a method which can
address different safety criteria such as safe exploration, mean-variance risk sensitivity, and
CVaR-like risk sensitivity. In each of these variations, we show the agent differentiates itself
from the adversary’s unsafe actions (and satisfies various safety constraints) in addition to
learning to solve the task1.
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1This chapter is based on a collaboration with Debabrota Basu.
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9.1 Motivation

As discussed in Chapter 1 and 2, designing an RL algorithm requires both efficient quan-
tification of uncertainty regarding the incomplete information and the probabilistic decision
making policy, and effective design of a policy that can leverage these quantifications to achieve
optimal performance. Recent success of RL in structured games, like Chess and Go (Silver,
Schrittwieser, Simonyan, et al., 2017), and simulated environments, like continuous control
using simulators (Lillicrap, Hunt, Pritzel, et al., 2016; Degrave, Hermans, Dambre, et al., 2019),
have drawn significant amount of interest.

Still, real-world deployment of RL in e.g. industrial processes, unmanned vehicles, or
robotics does not only require efficiency in terms of performance but also being sensitive to
risks involved in decisions (Pan, You, Wang, et al., 2017; Dulac-Arnold, Levine, Mankowitz, et
al., 2020; Thananjeyan, Balakrishna, Nair, et al., 2021). In this chapter, we are interested inworks
quantifying risks in RL and designing risk-sensitive (or robust, or safe) RL algorithms (Garcıa
and Fernández, 2015; Pinto, Davidson, Sukthankar, et al., 2017; Ray, Achiam, and Amodei,
2019; Wachi and Sui, 2020; Eriksson, Basu, Alibeigi, et al., 2021; Eysenbach and Levine, 2021).

Risk-sensitive RL. In risk-sensitive RL, the perception of risk-sensitivity or safety is embed-
ded mainly using two approaches. The first approach is constraining the RL algorithm to
converge in a restricted, “safe” region of the state space (Geibel and Wysotzki, 2005; Koller,
Berkenkamp, Turchetta, et al., 2018; Ray, Achiam, and Amodei, 2019; Thananjeyan, Balakrishna,
Nair, et al., 2021). Here, the “safe” region is the part of the state space that obeys some external
risk-based constraints, such as the non-slippery part of the floor for a walker. RL algorithms de-
veloped using this approach either try to construct policies that generate trajectories which stay
in this safe region with high probability (Geibel and Wysotzki, 2005), or to start with a conser-
vative “safe” policy and then to incrementally estimate the maximal safe region (Berkenkamp,
Moriconi, Schoellig, et al., 2016).

The other approach is to define a risk-measure on the long-term cumulative return of a
policy for a fixed environment, and then to minimize the corresponding total risk (Howard
and Matheson, 1972; Garcıa and Fernández, 2015; Prashanth and Fu, 2018). A risk-measure is
a statistics computed on the cumulative return which quantifies either the spread of the return
distribution around its mean value or the heaviness of this distribution’s tails (Szegö, 2004).
Example of such risk measures are variance, conditional value-at-risk (CVaR) (Rockafellar and
Uryasev, 2000), exponential utility (Howard and Matheson, 1972), variance (Prashanth and
Ghavamzadeh, 2016), etc. These risk-measures are extensively used real-world applications like
dynamic pricing (Lim and Shanthikumar, 2007), financial decision making (Artzner, Delbaen,
Eber, et al., 1999), robust control (Chen, Aravena, and Zhou, 2005), and other decision making
problems where risk has consequential effects.
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Contributions of this chapter. This chapter unifies both of these approaches as a constrained
RL problem, and further derives an equivalent non-zero sum (NZS) stochastic game formu-
lation (Sorin, 1986) of it. In this NZS game formulation inspired from the AGAC framework
developed in Chapter 8, risk-sensitive RL reduces to a game between an agent and an adversary:
the adversary tries to break the safety constraints, i.e. either to move out of the “safe” region or
to increase the risk measures corresponding to a given policy. In contrast, the agent tries to
construct a policy that maximizes its expected return given the adversarial feedback, which is
a statistics computed on the adversary’s constraint breaking. Note that in Chapter 8, the adver-
sarial guidance is deployed for a trust-region policy gradient in order to enhance exploration
where the adversary is oblivious to risk and maintains only a policy.

We propose a generic actor-critic framework where any two compatible actor-critic RL
algorithms are employed to enact as the agent and the adversary to ensure risk-sensitive
performance. In order to instantiate our approach, we propose in Section 9.4 a specific algorithm,
Safe Adversarially guided Actor-Critic (SAAC), that deploys two Soft Actor-Critics (SAC) (Haarnoja,
Zhou, Abbeel, et al., 2018) as the agent and the adversary. We further derive the policy
gradients for the SACs corresponding to the agent and the adversary, which shows that the
risk-sensitivity of the agent is ensured by a term repulsing it from the adversary in the policy
space. Interestingly, this term can also be used to seek risk and explore more.

In Section 9.5, we experimentally verify the risk-sensitive performance of SAAC under safe
region, CVaR, and variance constraints for continuous control tasks from the real-world RL
suite (Dulac-Arnold, Levine, Mankowitz, et al., 2020). In these tasks, we show that SAAC is not
only risk-sensitive but also outperforms the state-of-the-art risk-sensitive RL and distributional
RL algorithms.

9.2 Preliminaries

In this section, we elaborate the details of the three main components of our work: Markov
Decision Process (MDP), MaxEnt RL, and risk-sensitive RL.

9.2.1 Markov Decision Processes

We continue to consider RL problems that can be modelled as a Markov Decision Process
(MDP) (Puterman, 1994) defined as a tupleM ≜ (S,A,R, T ). S ⊆ Rd is the state space.
A is the admissible action space. R : S × A → R is the reward function that quantifies the
goodness or badness of a state-action pair (s, a). T : S × A → ∆S is the transition kernel that
dictates the probability to go to a next state given the present state and action. The goal of
the agent is to compute a policy π : S → ∆A that maximizes the expected value of cumulative
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rewards obtained by a time horizon T ∈ N. For a given policy π, the value function or the
expected value of discounted cumulative rewards is

Vπ(s) ≜ E
at∼π(st)

st∼T (st−1,at−1)

[
T∑
t=0

γtR(st, at)|s0 = s

]

≜ EπM[ZTπ (s)],

where γ ∈ [0, 1) is the discount factor that quantifies the effect of the reward at present step to
the next one. We refer to ZTπ (s) as the return of policy π up to time T .

9.2.2 Maximum-Entropy RL

In this chapter, we adopt the Maximum-Entropy RL (MaxEnt RL) framework (Eysenbach and
Levine, 2019, 2021), also known as entropy-regularized RL (Neu, Jonsson, and Gómez, 2017;
Geist, Scherrer, and Pietquin, 2019). MaxEnt RL aims to maximize the sum of value function
and the conditional action entropy,Hπ(a|s), for a policy π:

arg max
π

Vπ(s) +Hπ(a|s)

= arg max
π

E
at∼π(st)

st∼T (st−1,at−1)

[
ZTπ (s)− log π(at|st) | s0 = s

]
.

Unlike the classical value function maximizing RL that always has a deterministic policy as
a solution (Puterman, 1994), MaxEnt RL tries to learn stochastic policies such that states
with multiple near-optimal actions has higher entropy and states with single optimal action
has lower entropy. Interestingly, solving MaxEnt RL is equivalent to computing a policy π
that has minimum KL-divergence from a target distribution T ◦ R given a trajectory τ =
{s0, a0, . . . , sT , aT }:

arg max
π

Vπ(s) +Hπ(a|s) = arg min
π

DKL(π(τ)||T ◦ R(τ)). (9.1)

The target distribution T ◦ R is a softmax or Boltzmann distribution on the cumulative re-
wards given trajectory τ : T ◦ R(τ) ∝ p0(s)

∏T
t=0 T (st+1|st, at) exp[ZTπ (s)], the policy distribu-

tion is the distribution of generating trajectory τ given the policy π and MDPM: π(τ) ∝
p0(s)

∏T
t=0 T (st+1|st, at)π(at|st). Thus, in MaxEnt RL, the optimal policy is a softmax or Boltz-

mann distribution over the expected future return of state-action pairs.
This perspective of MaxEnt RL allows us to design SAAC which transforms the robust RL

into an adversarial game in the softmax policy space. MaxEnt RL is widely used in solving
complex RL problems as: it enhances exploration (Haarnoja, Zhou, Abbeel, et al., 2018), it
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transforms the optimal control problem in RL into a probabilistic inference problem (Todorov,
2007; Toussaint, 2009), and it modifies the optimization problem by smoothing the value
function landscape (Williams and Peng, 1991; Ahmed, Le Roux, Norouzi, et al., 2019).

Soft Actor-Critic (SAC) (Haarnoja, Zhou, Abbeel, et al., 2018). Specifically, we use the SAC
framework to solve the MaxEnt RL problem. Following the actor-critic methodology, SAC
uses two components, an actor and a critic, to iteratively maximize Vπ(s) + Hπ(a|s). Given
the collection of transitions in a set D, the critic minimizes the soft Bellman residual with a
function approximation Qϕ:

J(Qϕ) = E(st,at)∼D
[1
2
(
Qϕ (st, at)−

(
R (st, at) + γEst+1∼T (st,at)

[
Vϕ̄ (st+1)

]) )2]
, (9.2)

where Vϕ̄ (st) ≜ Eat∼π
[
Qϕ̄ (st, at)− α log π (at|st)

]
. Equation (9.2) makes use of a target soft

Q-function with parameters ϕ̄ obtained using an exponentially moving average of the soft Q-
function parameters ϕ. Mnih, Kavukcuoglu, Silver, et al. (2015) has demonstrated this technique
stabilizes training. Given the Qϕ, the actor learns the policy parameters θ by minimizing J(πθ):

J(πθ) = Est∼D [Eat∼πθ [α log (πθ (at|st))−Qϕ (st, at)]] . (9.3)

Here, α is called entropy temperature, and regulates the relative importance of the entropy term
versus the reward and produces better results. We use the version of SAC with an automatic
temperature tuning scheme for α (Haarnoja, Zhou, Hartikainen, et al., 2018).

9.2.3 Safe RL

Risk Measure for Safety. Safe or risk-sensitive RL with MDPs is first considered in Howard
and Matheson (1972), where they aim to maximize an exponential utility function over the
cumulative reward: Vπ(s|λ) = λ−1 logE[exp(λZTπ (s))]. This is equivalent to maximizing Vπ(s)+
λV[ZTπ (s)], such that the high variance in return is penalized for λ < 0 and encouraged for
λ > 0. Though this approach of using exponential utility in risk-sensitive discrete MDPs
dominates the initial phase of safe RL research (Marcus, Fernández-Gaucherand, Hernández-
Hernandez, et al., 1997; Coraluppi and Marcus, 1999; Garcıa and Fernández, 2015), with the
invent of coherent risks (Artzner, Delbaen, Eber, et al., 1999)2, researchers have looked into
other risk measures, such as Conditional Value-at-Risk (CVaR)3 (Chow, Tamar, Mannor, et al.,
2015). Also, application of RL to large scale problems (Chow and Ghavamzadeh, 2014; Chow,
Ghavamzadeh, Janson, et al., 2017), tried to make the algorithms scalable and to extend to the

2Variance is not a coherent risk but standard deviation is.
3CVaRλ quantifies expectation of the lowest λ% of a probability distribution (Rockafellar and Uryasev, 2000).
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continuous MDPs (Ray, Achiam, and Amodei, 2019). Our approach is flexible to consider all
these risk measures and both discrete and continuous MDP settings.

Safe Exploration. Another approach is to consider a part of the state-space to be “safe” and
constrain the RL algorithm to explore inside itwith high probability. Geibel andWysotzki (2005)
considered a subset of terminal states as “error” states E ⊆ S and developed a constrained
MDP problem to avoid reaching it:

arg max
π

Vπ(s) s.t. ∀s ∈ S \ E , ρπ(s) ≤ δ. (9.4)

Here, ρπ(s) is the total number of times the agent goes to the terminal error states E and
δ > 0 is a certain threshold. Due to the existence of these error states, even a policy with low
variance can produce large risks (e.g. falls or accidents) (Ray, Achiam, and Amodei, 2019). As
mentioned in Prashanth and Fu (2018) and Chow and Ghavamzadeh (2014), safety constraints
can be adopted to develop a constrained MDP (Altman, 1999) formulation of risk-sensitive RL.

9.3 Problem Formulation: Safe RL as a Non-Zero Sum Game

Safe RL as Constrained MDP (CMDP). All of the aforementioned methods to safe RL can
be expressed as a CMDP problem that aims to maximize the value function Vπ of a policy π
while constraining the total risk ρπ below a certain threshold δ:

arg max
π

Vπ(s) s.t. ρπ(s) ≤ δ for δ > 0. (9.5)

• If Mean-Standard Deviation (MSD) (Prashanth and Ghavamzadeh, 2016) is the risk
measure, ρπ(s) ≜ E

[
ZTπ (s)|π, s0 = s

]
+ λ

√
V [ZTπ (s)|π, s0 = s] (λ < 0).

• If CVaR is the risk measure, ρπ(s) ≜ CVaRλ

[
ZTπ (s)|π, s0 = s

]
for λ ∈ [0, 1).

• For the safe exploration constraint of staying in the “non-error” states S \ E , we choose
ρπ(s) ≜ E

[∑T
t=0 1(st+1 ∈ E)|π, s0 = s ∈ S \ E

]
=
∑T
t=0 Pπ[st+1 ∈ E ] such that s0 = s is a

non-error state.

CMDP as a Non-Zero Sum (NZS) Game. The most common technique to address the con-
straint optimization in Equation (9.5) is formulating its Lagrangian.

L(π, β0) ≜ Vπ(s)− β0ρπ(s), for β0 ≥ 0. (9.6)

114



9.4 SAAC: Safe Adversarial Soft Actor-Critics

For β0 = 0, this reduces to its risk-neutral counterpart. Instead, as β0 →∞, this reduces to the
unconstrained risk-sensitive approach. Thus, the choice of β0 is important. We automatically
tune it as described in Section 9.4.3.

Now, the important question is to estimate the risk function ρπ(s). Researchers have either
solved an explicit optimization problem to estimate the parameter or subspace corresponding
to the risk measure, or used a stochastic estimator of the risk gradients. These approaches are
poorly scalable and lead to high variance estimates as there is no provably convergent CVaR
estimator in RL settings. In order to circumvent these issues, we deploy an adversary that aims
to maximize the cumulative risk ρπ(s) given the same initial state s and trajectory τ as the agent
maximizing Equation (9.6) and use it as a proxy for the risk constraint:

θ∗ ≜ arg max
θ

L(θ, β0) = Vπθ(s)− β0Vπω(s),

ω∗ ≜ arg max
ω

Vπω(s). (9.7)

Here, we consider that the policies of the agent and the adversary are parameterized by θ
and ω respectively. The value function of the adversary Vπω(s) is designed to estimate the
corresponding risk ρπ(s). This is a non-zero sum game (NZS) as the objectives of the adversary
and the agent are not the same and does not sum up to 0. Following this formulation, any
safe RL problem expressed as a CMDP (Equation (9.5)), can be reduced to a corresponding
agent-adversary non-zero sum game (Equation (9.7)). The adversary tries to maximize the
risk, and thus to shrink the feasibility region of the agent’s value function. The agent tries to
maximize the regularized Lagrangian objective in the shrunken feasibility region. We refer to
this duelling game as Risk-sensitive Non-zero Sum (RNS) game.

Given this RNS formulation of Safe RL problems, we derive a MaxEnt RL equivalent in the
next section, which naturally leads to a dueling soft actor-critic algorithm (SAAC) for executing
safe RL tasks.

9.4 SAAC: Safe Adversarial Soft Actor-Critics

In this section, we first derive a MaxEnt RL formulation of the Risk-sensitive Non-zero Sum
(RNS) game. We show that this naturally leads to a duel between the adversary and the agent
in the policy space. Following that, we elaborate the generic architecture of SAAC, and the
details of designing the risk-seeking adversary for different risk constraints. We conclude the
section with a note on automatic adjustment of regularization parameters.
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9.4.1 Risk-sensitive Non-zero Sum (RNS) Game with MaxEnt RL

In order to perform the RNS game with MaxEnt RL, we substitute the value functions in Equa-
tion (9.7) with corresponding soft Q-functions. Thus, the adversary’s objective is maximizing:

Eπω [Qω(s, ·)] + α0Hπω(πω(.|s))

for πω ∈ Πω, and the agent’s objective is maximizing:

Eπθ [Qθ(s, ·)] + α0Hπθ(πθ(.|s))− β0(Eπθ [Qω(s, ·)] + α0Hπω(πω(.|s))) (9.8)

for πθ ∈ Πθ. Following the equivalent KL-divergence formulation in policy space, the adver-
sary’s objective is:

ω∗ = arg min
ω

DKL
(
πω(.|s)|| exp(α−1

0 Qω(s, ·))/Zω(s)
)
. (9.9)

Similarly, the agent’s objective is:

θ∗ = arg max
θ

Eπθ [Qθ(s, ·)] + α0(1 + β0)Hπθ(πθ(.|s))

+ α0β0 Eπθ [log(πω(.|s))− log exp[α−1
0 Qω(s, ·)]] + α0β0DKL (πθ(·|s)||πω(·|s))

= arg min
θ

DKL
(
πθ(.|s)|| exp((α0(1 + β0))−1Qθ(s, ·))/Zθ(s)

)
− α0β0 Eπθ [log(πω(.|s))− log exp[α−1

0 Qω(s, ·)]]− α0β0DKL (πθ(·|s)||πω(·|s))

= arg min
θ

DKL
(
πθ(.|s)|| exp(α−1Qθ(s, ·))/Zθ(s)

)
− βDKL(πθ(·|s)||πω∗(·|s)). (9.10)

Here,α = α0(1+β0) and β = α0β0. The last equality holds true as the adversary’s optimal policy
πω∗(.|s) = exp(α−1

0 Qω∗(s, ·))/Zω∗(s), and since the optimization is over θ, adding logZω(s) does
not make a change.

Following this reduction, we observe that performing the RNS game with MaxEnt RL
is equivalent to performing the traditional MaxEnt RL for adversary with a risk-seeking Q-
function Qω, and a modified MaxEnt RL for the agent that includes the usual soft Q-function
and a KL-divergence term repulsing the agent’s policy πθ from the adversary’s policy πω. This
behaviour of RNS game in policy space allows to propose a duelling soft actor-critic algorithm,
namely SAAC, to solve risk-sensitive RL problems.
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Figure 9.1 – Schematic overview of the Safe Adversarially guided Actor-Critics (SAAC) algorithm.

9.4.2 The SAAC Algorithm

We propose an algorithm SAAC to solve the objective of the agent (Equation (9.10)) and of the
adversary (Equation (9.9)). In SAAC, we deploy two soft actor-critics (SACs) to enact the agent
and the adversary respectively. We illustrate the schematic of SAAC in Figure 9.1.

As a building block for SAAC, we deploy the recent version of SAC (Haarnoja, Zhou, Abbeel,
et al., 2018) that uses two soft Q-functions to mitigate positive bias in the policy improvement
step in Equation (9.3), which was encountered in van Hasselt (2010) and Fujimoto, Hoof, and
Meger (2018). In the design of SAAC, we introduce two new ideas: an off-policy deep actor-critic
algorithm within the MaxEnt RL framework and a Risk-sensitive Non-zero Sum (RNS) game.
SAAC engages the agent in safer strategies while finding the optimal actions to maximize the
expected returns. The role of the adversary is to find a policy that maximizes the probability
of breaking the constraints given by the environment. The adversary is trained online with
off-policy data given by the agent. We denote the parameter of the adversary policy using ω
(resp. ωold the parameter at the previous iteration). For each sequence of transition from the
replay buffer D, the adversary should find actions that minimize the following loss:

J(πω) = Est∼D [Eat∼πω [α log (πω (at|st))−Qψ (st, at)]] .
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Finally, leveraging the RNS-based reduced objective, SAAC makes the agent’s actor minimize
J(πθ):

J(πθ) = Est∼D
[
Eat∼πθ

[
α log (πθ (at|st))−Qϕ (st, at)−β

(
log πθold(at|st)− log πωold(at|st)

)]]
.

In blue is the repulsion term introduced by SAAC. The method alternates between collecting
samples from the environment with the current agent’s policy and updating the function
approximators, namely the adversary’s critic Qψ, the adversary’s policy πω, the agent’s critic
Qϕ and the agent’s policy πθ. It performs stochastic gradient descent on the corresponding loss
functions with batches sampled from the replay buffer D. We provide a generic description of
SAAC in Algorithm 6.

Algorithm 6 SAAC.
1: Input parameters: τ, λQ, λπ, λα, λβ
2: Initialize adversary’s and agent’s policies and Q-functions parameters ω, ψ, θ and ϕ
3: Initialize temperature parameters α and β
4: D ← ∅
5: for each iteration do
6: for each step do
7: at ∼ πθ(at|st)
8: st+1 ∼ P (st, at)
9: D ← D ∪ {(st, at, rt, st+1)}
10: for each gradient step do
11: sample batch B from D
12: ψ ← ψ − λQ∇̂ψJQ (ψ)
13: ω ← ω − λπ∇̂ωJ(πω)
14: β ← β − λβ∇̂βJ(β)
15: ψ̄ ← τψ + (1− τ)ψ̄
16: ϕ← ϕ− λQ∇̂ϕJQ (ϕ)
17: θ ← θ − λπ∇̂θJ(πθ)
18: α← α− λα∇̂αJ(α)
19: ϕ̄← τϕ+ (1− τ)ϕ̄

Update Adversary

Update Agent

9.4.3 Automating Adversarial Adjustment

Similar to the solution introduced in Haarnoja, Zhou, Abbeel, et al. (2018), the adversary
temperature β and the entropy temperature α are automatically adjusted. Since the adversary
bonus can differ across tasks and during training, a fixed coefficient would be a poor solution.
We use Ā to denote the adversary’s bonus target, which is a hyperparameter in SAAC. By
formulating a constrained optimization problem where the KL-divergence between the agent
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and the adversary is constrained, β is learned by gradient descent with respect to:

J(β) = Est∼D
[
log β ·

(
DKL(πθ(·|st)||πω(·|st))− Ā

)]
.

In addition, we use H̄ as the target entropy (a hyperparameter needed in SAC) and learn the
entropy temperature α by taking a gradient step with respect to the loss:

J(α) = Est∼D
[
logα ·

(
− log πθ (at|st)− H̄

)]
.

9.4.4 Designing the Risk-Seeking Adversary

9.4.4.1 Subspace Constraints

At every step, the environment signals whether the constraints have been satisfied or not. We
construct a reward signal based on this information. This constraint reward, denoted as rc, is 1
if all the constraints have been broken, and 0 otherwise. J(Qψ) is the soft Bellman residual for
the critic responsible with constraint satisfaction:

J(Qψ) = E(st,at)∼D
[1
2
(
Qψ (st, at)−

(
rc (st, at) + γEst+1∼ρ

[
Vψ̄
(
st+1

)]) )2]
, (9.11)

with Vψ̄ (st) = Eat∼πω
[
Qψ̄ (st, at)− α log π (at|st)

]
. Equation 9.11 also makes use of a target

soft Q-function with parameters ψ̄ obtained using a exponentially moving average of the
soft Q-function parameters ψ. The loss functions for the agent’s critic (Equation 9.2) and the
adversary’s critic (Equation 9.11) are similar in essence. They aim to approximate Q-values
obtained from the extrinsic rewards (the task’s rewards) and the constraint rewards (whether
the constraints have been violated or not) respectively. We denote SAAC-Cons as the method
incorporating constraints in SAAC.

9.4.4.2 Coherent Risk Measures

We also design adversary critics to consider two coherent risk measures: Mean-Standard
Deviation (MSD) and CVaR.

Mean-Standard Deviation (MSD). In this case, we consider optimizing a Mean-Standard
Deviation risk (Prashanth and Ghavamzadeh, 2016), which we estimate using:

Qψ(s, a) = Qϕ(s, a) + λ
√
V[Qϕ(s, a)].
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In the equation above, λ < 0 is a hyperparameter that dictates the lower λ− SD considered to
represent the lower tail. In the experiments, we use λ = −1. In practice, we approximate the
variance V[Qϕ(s, a)] using the state-action pairs in the current batch of samples. We refer to
the associated method as SAAC-MSD.

Conditional Value-at-Risk (CVaR). In this case, when given a state-action pair (s, a), the
Q-value distribution is approximated by a number of quantile values at quantile fractions (Eriks-
son, Basu, Alibeigi, et al., 2021) . Let {τi}i=0,...,N denote an ensemble of quantile fractions,
which satisfy τ0 = 0, τN = 1, τi < τj ∀i < j, τi ∈ [0, 1]∀i = 0, . . . , N , and τ̂i = (τi + τi+1) /2. If
Zπ : S ×A → Z denotes the soft action-value of policy π,

Qψ(s, a) = −
N−1∑
i=0

(τi+1 − τi) g′ (τ̂i)Zπθτ̂i (s, a;ϕ),

with g(τ) = min{τ/λ, 1}, where λ ∈ (0, 1). In the experiments, we consider λ = 0.25, i.e. we
truncate the right tail of the distribution approximation by dropping 75% of the topmost atoms.
We call the associated method SAAC-CVaR.

9.5 Experimental Study

Experimental Setup. First, we compare some possible variants of our method. Indeed, as
presented in Section 9.4.4, the adversary has different quantifications of risk to fulfill the
objective of finding actions with high probability of breaking the constraints: SAAC-Cons, SAAC-
CVaR, and SAAC-MSD. Then, we compare our method with best performing competitors in
continuous control problems: SAC (Haarnoja, Zhou, Abbeel, et al., 2018) and TQC (Kuznetsov,
Shvechikov, Grishin, et al., 2020). TQC builds on top of C51 (Bellemare, Dabney, and Munos,
2017) and QR-DQN (Dabney, Rowland, Bellemare, et al., 2018), and adapt the distributional
RL methods for continuous control. Further, they apply truncation for the approximated
distributions to control their overestimation and use ensembling on the approximators for
additional performance improvement. Finally, we qualitatively compare the behavior of our
risk-averse method with that of SAC, using state vectors collected during validation in test
environments. Note that for all the experiments, the agents are trained for 1M timesteps and
their performance is evaluated at every 1000-th step.

Similar to TQC, we implement SAAC on top of SAC and choose to automatically tune the
adversary temperature β (Section 9.4.3) and the entropy temperatureα. Last but not least, using
SAAC on top of SAC introduces only one hyperparameter: the learning rate for the automatic
tuning of β. All the other hyperparameters are the same as for SAC and are available for
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Table 9.1 – Comparison of SAAC variants.
Method Efficiency (xSAC) # Failures ±σ
SAC ×1 65.88± 17.25

SAAC-Cons ×1.33 48.66± 15.99
SAAC-CVaR ×2.02 54.39± 15.37
SAAC-MSD ×2.21 19.31± 3.02

Table 9.2 – In quadruped-upright-walk.
Method Efficiency (xSAC) # Failures ±σ
SAC ×1 8443.93± 696.47
TQC ×0.97 8297.63± 697.88

TQC-CVaR ×1.03 6298.33± 1078.50
SAAC-MSD ×1.19 4632.80± 657.35

Table 9.3 – In quadruped-joint-walk.
Method Efficiency (xSAC) # Failures ±σ
SAC ×1 12583.43± 997.29
TQC ×1.07 11738.57± 995.62

TQC-CVaR ×1.05 9015.82± 1011.31
SAAC-MSD ×1.27 8069.45± 803.42

consultation in Haarnoja, Zhou, Abbeel, et al. (2018, Appendix D). For TQC, we employ the
same hyperparameters as reported in Kuznetsov, Shvechikov, Grishin, et al. (2020).

Description of Environments. To validate the framework of RNS Game with MaxEnt RL,
we conduct a set of experiments in the DM control suite (Tassa, Doron, Muldal, et al., 2018).
More specifically, we use the real-world RL challenge4 (Dulac-Arnold, Levine, Mankowitz,
et al., 2020), which introduces a set of real-world inspired challenges. As was developed at the
beginning of this chapter, we are particularly interested in tasks where a set of constraints are
imposed on existing control domains. In the following, we give a short description of the tasks
and safety constraints used in the experiments, with their respective observation space (S)
and action space (A) dimensions. First, realworldrl-walker-walk (S ×A = 18× 6) corresponds
to the dm-control suite walker task with (i) joint-specific constrains on the joint angles to be
within a range, and (ii) a constrain on the joint velocities to be within a range. Next, realworldrl-
quadruped-joint-walk (S ×A = 78× 12) corresponds to the dm-control suite quadruped task with
the same set of constraints as just described. realworldrl-quadruped-upright-walk has a constrain
on the quadruped’s torso’s z-axis to be oriented upwards, and realworldrl-quadruped-force-walk
limits foot contact forces when touching the ground.

9.5.1 Comparison between Risk Quantifiers of SAAC

First, we compare different variants of SAAC in the realworldrl-walker-walk-returns task. From
Table 9.1 and Figure 9.2a (lines are average performances and shaded areas represent one
standard deviation) we evaluate how our method affects the performance and risk aversion of
agents.

4The code can be found here: github.com/google-research/realworldrl_suite
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Figure 9.2 – Constraints: SAAC vs. baselines.

In addition to the rate at which the maximum average return is reached by each of the
methods compared to SAC, we compare the cumulative number of failures of the agents (the
lower the better). As expected, risk-sensitive agents such as SAAC decrease the probability of
breaking safety constraints. Concurrently, they achieve the maximum average return with
much higher sample efficiency, SAAC-MSD ahead. Henceforth, we use the SAAC-MSD version of
our method to compare with the baselines.

9.5.2 Comparison of SAAC to Baselines

Now, we compare the best performing SAAC variant SAAC-MSD with SAC (Haarnoja, Zhou,
Abbeel, et al., 2018), TQC (Kuznetsov, Shvechikov, Grishin, et al., 2020) and TQC-CVaR, i.e.
an extension of TQC with 16% of the topmost atoms dropped (cf. (Kuznetsov, Shvechikov,
Grishin, et al., 2020, Appendix B Table 6)) of all Q-function atoms. In Table 9.2 and Figure 9.2b,
we evaluate SAAC-MSD in realworldrl-quadruped-upright-walk. In Table 9.3 and Figure 9.2c, we
report the results for realworldrl-quadruped-joint-walk.

Table 9.3 shows that SAAC-MSD performs better than all other baselines both in terms of
final performance and in terms of finding risk-averse policies. Moreover, although TQC-CVaR
exhibits fewer number of failures over the course of learning, it performs slightly worse than
its non-truncated counterpart TQC. Table 9.2 confirms the advantage of using SAAC-MSD as
a risk-averse MaxEnt RL method over the baselines: overall using SAAC allows the agents to
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achieve faster convergence using safer policies during training. Interestingly, TQC achieves the
maximum score of the task a bit later than the SAC agent. Nevertheless, TQC-CVaR, its CVaR
variant, opens the door for better sample efficiency score with much safer policies.

9.5.3 Visualization of Safer State Space Visitation
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Figure 9.3 – Visualization of visited state space at different stages of learning in the realworldrl-walker-walk
task.

In this experiment, we choose SAC, SAAC-Cons and SAAC-MSD to train a relatively wide
spectrum of agents using the same experimental protocol as in Section 9.5.1 and 9.5.2 on the
realworldrl-walker-walk task. We collect batches of states visited during the evaluation phase in
a test environment at different stages of the training. The state vectors are projected from a
18-D space to a 2-D space using PCA. We present the results in Figure 9.3. At the beginning
of training, there is no clear distinction in terms of explored state regions, as the learning has
not begun yet. On the contrary, during the 200k-600k timesteps range, there is a significant
difference in terms of state space visitation. In light of the cumulative number of failures shown
in Figure 9.2a, the results suggest that SAC engages in actions leading to more unsafe states.
Conversely, SAAC seems to successfully constraint the agent to safe regions.
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9.6 Related Work

Safe RL. Performing risk-sensitive or safe RL requires considering either the worst-case out-
comes (Heger, 1994; Nilim and El Ghaoui, 2005; Tamar, Xu, andMannor, 2013) or riskmeasures,
such as CVaR (Chow and Ghavamzadeh, 2014) and variance (Prashanth and Ghavamzadeh,
2016), computed on ZTπ (s). In this chapter, we are only interested in the stochastic setup, and
thus in the risk measures than the worst-case scenarios. (Tamar, Xu, and Mannor, 2013; Chow,
Ghavamzadeh, Janson, et al., 2017) have tried to solve expensive optimization problems to
design safe RL algorithms with such risk measure-based constraints. Since these methods
are slow and often limited to discrete MDPs, Borkar (2002), Garcıa and Fernández (2015),
Kuznetsov, Shvechikov, Grishin, et al. (2020), and Eriksson, Basu, Alibeigi, et al. (2021) have
tried to estimate the risk by approximating the whole return distribution. With the advent of
distributional RL (Bellemare, Dabney, and Munos, 2017; Dabney, Rowland, Bellemare, et al.,
2018), this approach has propelled but accurately estimating the return distribution often
requires ensembles of deep Q-networks or quantile regressors. This can make the computation
heavy and expensive. Alternatively, escaping such issues requires parametric assumptions
on the return distribution (Tang and Kucukelbir, 2017). We avoid this issue by using an ad-
versarial soft actor-critic to seek risk and to estimate it. Additionally, there are other families
of method that aim to avoid “unsafe” parts of the state space. They use constraints to avoid
exploring such “unsafe” states. The RL algorithms developed to do so are typically different in
functionality than the risk measure-based safe RL algorithms. SAAC uses a unified RNS game
based formulation to address both types of safety constraints.

Minimax Games for Safe RL. Game theoretic frameworks have been studied in different
formulations of safe RL. Specifically, Pinto, Davidson, Sukthankar, et al. (2017) proposed the
Robust Adversarial RL (RARL) framework where the reward and the transition depends not
only on the agent’s actions but also on the adversary’s. Thus, the adversary essentially perturbs
the rewards and transitions either at every step (Mandlekar, Zhu, Garg, et al., 2017; Pattanaik,
Tang, Liu, et al., 2017) or at everym steps (Pan, Seita, Gao, et al., 2019) that leads to zero sum
Markov game formulation for safe RL analogous to the robust control (Keel, Bhattacharyya,
and Howze, 1988). This setting is fundamentally different than the risk measure and subspace
constraint based settings that we consider. Recently, Zhang, Yang, and Wang (2021) extended
the zero sumMarkov game based formulation to exponential utility based risk-sensitive RL.
Their work is specific to linear-quadratic control, whereas it is known that solving such zero
sum minimax games with dynamic programming has exponential complexity in the number
of actions (Perolat, Scherrer, Piot, et al., 2015). In this chapter, we differ from the traditional
zero sum game formulation, which is restrictive to include the risk measures and subspace
constraints. In our knowledge, SAAC is the first method to propose a non-zero sum game
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formulation of risk-sensitive RL that provides a flexibility to design and update the risk-seeking
adversary.

MaxEnt RL for Safety. We adopt the MaxEnt RL framework to reduce RNS games to a
duelling SAC game between an adversary and an agent with repulsive policies, and thus to
develop the SAAC algorithm. Recently, Eysenbach and Levine (2021) have first shown that
MaxEnt RL can be used to enhance robustness against adversarial perturbations in rewards
and transitions. But in best of our knowledge, we are the first to develop MaxEnt RL algorithm
to address the safe RL problem under risk measures and subspace constraints.

Chapter conclusion

In this chapter, we touched on the problem of risk-sensitive RL under safety constraints and
coherent risk measures. We proposed that maximizing the value function under risk or safety
constraints is equivalent to playing a risk-sensitive non-zero sum (RNS) game. In the RNS
game, an adversary tries to maximize the risk of a decision trajectory while the agent tries to
maximize a weighted sum of its value function given the adversary’s feedback. Specifically,
under the MaxEnt RL framework, this RNS game reduces to deploying two soft-actor critics
for the agent and the adversary while accounting for a repulsion term between their policies.
This allowed us to formulate a duelling SAC-based algorithm, called SAAC. We instantiated
our method for subspace, mean-standard deviation, and CVaR constraints, and also experi-
mentally tested it on various continuous control tasks. This algorithm translates into better
risk-sensitive performance than SAC and the risk-sensitive distributional RL baselines in all
these environments.
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Part conclusion

In this part conclusion, we review again the problems and questions opened up in Chapter 1 that
we have proposed to address. In environments where rewards are non-zero at most timesteps
and where the layouts are procedurally-generated at each episode, noise-based exploration
strategies and to some extent count-based exploration tend to be insufficient and inadequate.
We have developed a general framework for discrete and continuous action spaces to maintain
an adversarial prior of a mixture of previous policies from which the agent should distance
itself from. This method successfully helps the RL agent engage in conservatively diversified
policies and extends the state-of-the-art in tasks where efficient-exploration is a bottleneck
(Chapter 8). Finally, instead of reasoning on the need to explore states that have not yet been
discovered, we employ the framework developed in Chapter 8 from the perspective of the
requirement to remain in a safe region of the state space. To that end, the adversary learns how
to break safety constraints and results in the representation of a probabilistic unsafe region
which the agent should avoid (Chapter 9).
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Chapter 10

General Conclusion and Perspectives

Experience is not what happens to you;
it’s what you do with what happens to you.

Aldous Huxley (1932).

10.1 Epilogue

In this thesis, we proposed a range of solutions for building more sample-efficient RL methods
that push the boundaries in problems with continuous states and action spaces, including in
a setting with safety compliance needs, and extended the scope of capabilities of RL agents
in environments of hard-exploration in which agents must have the ability to generalize to
unseen scenarios. These methods have been built on two tracks that come together under the
umbrella of the actor-critic framework and the derivation of variance. The first track, in Part II,
concerns the use of variance in the value function estimates while the second track, in Part III,
regards the distributional distance between the agent’s policy and some adversarial distribution
representing a mixture of either previous policies or risk-seeking policies. The following is a
reminder of the issues we have highlighted and a review of the solutions proposed to address
them.

Alternative statistics of performance. The optimization and evaluation of RL methods is
generally based solely on the sum of future rewards. In Chapter 4, we developed a general
framework theoretically applicable to any actor-critic algorithm or environment, which relies
on a set of auxiliary losses to be integrated into the learning process. In addition to metrics of
accurate expectation (future states prediction), we introduced the fraction of variance explained
by the value function, equivalent to the coefficient of determination. This variance-based metric
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indicates the performance of the supervised learning task that the value estimator is trying to
solve.

Filter misinformative data. It is reasonable to assume that the use of non-informative or
misinformative transitions can only mislead the learning process and waste computational
time. Indeed, an RL agent may learn more effectively from some transitions than others. In
Chapter 5, we evaluated the simple yet effective idea of filtering some of the transitions that
would otherwise be used in estimating the policy gradient. As a criterion for this transition
filtering, we use again the same (explained) variance in the value function estimates metric
defined in Chapter 4, and filter out the variance-neutral samples.

Critics optimize the residual variance. We have seen that previous studies empirically
demonstrate that while the value network succeeds in the supervised learning task of fitting
the empirical value of a state or state-action pair, it does not fit the actual state or state-action
value. In addition, the variance reduction methods studied do not actually reduce the variance.
With the objective of proposing a more efficient and robust objective function for estimating
the critic, or at least to opening the door to additional work on the subject, Chapter 6 develops
a technique to learn value functions in actor-critic methods using the residual variance as an
objective function. In addition, we have studied the better estimations of the value function in
case of continuous control sparse reward tasks where a greater sensitivity to extreme values
and rare signals corresponding to rewards is beneficial.

Actors are repulsed by their past policies. In the challenging environments introduced in
Chapter 7 in which agents are confronted with partially-observable and procedurally-generated
tasks, simple exploration induced by stochastic policies or count-based techniques is not
sufficient to discover and learn from highly-sparse rewards. In Chapter 8, we propose a method
with dynamics of attraction and repulsion between the actor and an adversary. The approach
leads the actor’s policy to increase its distance from a mixture of previous policies, which
incidentally adds to the variance of successive candidate policies.

Actors are repulsed by their risk-seeking alter-ego. In continuous control taskswhose safety
features inspired by the real-world constraints, it may be challenging to restrict the agent to a
safe region or to quantify a risk-measure to be calculated on the cumulative return relevant to
the task. For instance, the safe region may not be clear to delineate. In Chapter 9, we combined
the two ideas of safe region and risk-measure by representing the unsafe region using an
adversary derived from the method in Chapter 8. Instead of learning a mixture of previous
trajectories, the adversary learns to break the safety constraints and successfully represents a
probabilistic unsafe region that the agent must avoid. The actor maximizes its divergence from
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the adversary’s distribution, resulting in increased sample efficiency, better performance and
safer trajectories.

10.2 Frontiers

Recent work in the field of deep reinforcement learning, including this thesis, address many
challenges, namely, how to develop reinforcement learning algorithms that are sample efficient,
scalable, and reliable. In the following, we take more liberty in imagining what would be the
points of difficulty to overcome in order to go even further in the practicality and reusability of
the methods developed and their application in even more complex environments, with the
real world as focal point.

Reusing representations. Each time a new agent is trained to accomplish a certain task on a
given environment, RL practitioners usually start from scratch and use randomly initialized
function approximation at the beginning of training. In image classification, generation, or
natural language processing tasks, it is common practice to warm-up a particular predictive
application with general-purpose pre-trained models1. The predictive nature of deep RL
approaches is an important reason for their success, but research on the topic of improving,
sharing and reusing representations has yet to flourish despite the use of identical benchmarks
by the community. Nevertheless, on a similar topic, inspiring work (Ha and Schmidhuber,
2018) propose the use of a pre-trained Variational Auto-Encoder (VAE) to encode each frame
of a pixel-based environment into low dimensional latent vectors by following a random policy.
Such “world models” have initiated several other work (Oh, Guo, Lee, et al., 2015; Hafner,
Lillicrap, Fischer, et al., 2019; Kaiser, Babaeizadeh, Miłos, et al., 2020). We also see efforts to
improve access to data collected from a diverse range of tasks (e.g. the Atari benchmark and
the real-world RL challenge) with recent releases of offline data to help research on offline RL,
increase reproducibility of experiments and attempt to address problems related to limited
computational budget (Gulcehre, Wang, Novikov, et al., 2020).

Dynamically adjusting hyperparameters. The choice of adjusting a hyperparameter online
during training is a research direction that is attracting some interest in deep RL. In Xu, Hasselt,
and Silver (2018), it is used to adjust the discount factor and the length of bootstrapping
intervals. In Haarnoja, Zhou, Hartikainen, et al. (2018), it is used to automatically adjust the
entropy coefficient. Such technique allows to adaptively adjust critical parameters during
training making hyperparameter search unnecessary, save time and computational resources,
and allowing to propose more general methods that does not need to be tuned for each task.

1Dozens of pre-trained models are freely available online for computer vision or NLP applications.
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Admittedly, methods with adaptively calibrated hyperparameters often require an additional
hyperparameter to learn that calibrated parameter, but instead of setting a fixed value, the
surrogate parameter can be a relaxed lower bound for some metric (e.g. a lower-bound on
the entropy term (Haarnoja, Zhou, Hartikainen, et al., 2018)). In the case of the AVEC method
introduced in Chapter 6, we can for instance anticipate further work on a method to adaptively
control bias and variance in the value estimate.

Closing the gap with reality. RL practitioners already have at their disposal a variety of
games and environments (Todorov, Erez, and Tassa, 2012; Bellemare, Naddaf, Veness, et al.,
2013; Coumans and Bai, 2016; Chevalier-Boisvert, Willems, and Pal, 2018; Dulac-Arnold, Levine,
Mankowitz, et al., 2020), some of which we have used intensively in this thesis, that require
learning a variety of behaviors, in high dimensionality, sometimes with delayed rewards,
stochasticity, partial observability or non-stationary dynamics. Nevertheless, it seems that there
is still a lot of work to be done in order to integrate the characteristics of our real systems into
our simulations, which calls for the need to use and developmore benchmarks addressingmore
facets of the risk specifications of an AI model deployed in the real world, such as standardized
criteria for evaluating the safety characteristics of models and risk assessment procedures.

Learning from models. The majority of current deep learning techniques are applicable in
relatively complex environments only on narrow tasks such as continuous control. In order to
attempt to solve tasks that require more flexibility, echoing the richness of the real world, some
form of model of the world may be required. Moreover, the difficulties associated with lifelong
learning reinforce the idea that memory-based or model-based RL is a solution that could
catalyse the adaptability of current algorithms. As support for this point, transfer learning
problems already benefit from a learned model (Grzes and Kudenko, 2009; Zhang, Satija, and
Pineau, 2018) which can facilitate the acquisition of conceptual knowledge abstracted from
the perceptual details from which a competence was learned. We also link model learning to
learning goal-directed policies (Pong, Gu, Dalal, et al., 2018; Nasiriany, Pong, Lin, et al., 2019)
and hierarchical RL approaches (Li, Wang, Tang, et al., 2019; Nachum, Tang, Lu, et al., 2019)
since those methods maintain a model of supervision where a top-level supervisory control
system uses RL to approximate utility based on experience. Now, the line between model-free
and model-based techniques becomes blurred. The question then of whether or not to learn
a model of the world could be circumvented by asking how to learn a model of the world
without the risk of introducing bias due to a faulty model and without losing the advantages
of model-free RL which rely entirely on online and historical ground-truth data?
All these technical questions are definitely part of the subjects on which I intend to concentrate on in my
future research. I am also increasingly interested in the less technical but equally important short-term
societal issues of the (often predictive) models found in production today.
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Appendices

The following appendices are complements to previous chapters. Appendix A comple-
ments Chapter 4 on using variance in the value function estimates as an auxiliary task, Ap-
pendix B complements Chapter 5 on using variance in the value function estimates to filter
information, Appendix C complements Chapter 6 on using variance in the value function
estimates to learn value functions, and Appendix D complements Chapter 8 on using adver-
sarial priors to motivate conservatively diversified policies. Finally, in Appendix E we include
examples of additional projects aimed at making a positive contribution to open research and
education.
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Appendix A

MERL or Using Variance in the Value
Function estimates as an auxiliary task

A.1 Implementation of MERL coupled with DDPG

Deep Deterministic Policy Gradient (DDPG) (Lillicrap, Hunt, Pritzel, et al., 2016) is a model-
free off-policy actor-critic algorithm, combining Determinist Policy Gradient (DPG) (Silver,
Lever, Heess, et al., 2014) with Deep Q-Network (DQN) (Mnih, Kavukcuoglu, Silver, et al.,
2013). While the original DQN works in discrete action space and stabilizes the learning of the
Q-function with experience replay and a target network, DDPG extends it to continuous action
space with the actor-critic framework while learning a deterministic policy.

Let P denote the distribution P (·|s, a) from which the next state s′ is sampled. The Bellman
equation describing the optimal action-value function Q∗(s, a) is given by:

Q∗(s, a) = E
s′∼P

[
r(s, a) + γmax

a′
Q∗ (s′, a′)] . (A.1)

Assuming the function approximator of Q∗(s, a) is a neural network Qϕ(s, a) with parameters
ϕ, an essential part of DDPG is that computing the maximum over actions is intractable in
continuous action spaces, therefore the algorithm uses a target policy network to compute an
action which approximately maximizes Qϕtarg . Given the collection of transitions (s, a, r, s′, d)
in a set D, where d denotes whether s′ is terminal, we obtain the mean-squared Bellman error
(MSBE) function with:

LDDPG(ϕ,D) = E
(s,a,r,s′,d)∼D

[(Qϕ(s, a)−
(
r + γ(1− d)Qϕtarg

(
s′, µθtarg

(
s′))))2]. (A.2)
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Algorithm 7 shows the pseudo-code for DDPG+MERL. In Equation A.3, the targets are
computed, then in Equation A.4 and Equation A.5 respectively the Q-function and MERLh

are updated by one step of gradient descent (each MERL objective is associated with its loss
coefficient ch). In Equation A.6, the policy is updated by one step of gradient ascent. Finally, in
Equation A.8, the targets networks are updated with ρ a hyperparameter between 0 and 1.

Algorithm 7 MERL coupled with DDPG.
Initialize policy parameters θ
Initialize Q-function and MERLh functions parameters ϕ
Initialize empty replay buffer D
Set target parameters: θtarget ← θ and ϕtarget ← ϕ
while did not converge do

Observe state s and select action a
Execute action a in the environment
Observe next state s′, reward r and done signal d to indicate whether s′ is terminal
Collect (s, a, r, s′, d) in the replay buffer D, if s′ is terminal, reset the environment state

if time to update then
for k = 0,1,2,... do

Randomly sample a batch B = {(s, a, r, s′, d)} of transitions from D.
Compute targets

y
(
r, s′, d

)
= r + γ(1− d)Qϕtarg

(
s′, µθtarg

(
s′)) (A.3)

Gradient Update

ϕk+1 ← argmin
ϕ

∑
B

(
Qϕ(s, a)− y

(
r, s′, d

))2 (A.4)

+ argmin
ϕ

H∑
h=0

chL
MERLh (A.5)

θk+1 ← argmax
θ

∑
B

Qϕ (s, µθ(s)) (A.6)

ϕ targ ← ρϕ targ + (1− ρ)ϕ (A.7)
θ targ ← ρθ targ + (1− ρ)θ (A.8)

A.2 Implementation Details

The policy network used for the MuJoCo tasks is a fully-connected multi-layer perceptron with
two hidden layers of 64 units. For Atari 2600, the neural network is shared between the policy
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and the value function and is the same as in Mnih, Badia, Mirza, et al. (2016). Each MERL head
MERLh is composed of a fully-connected layer of 64 units and outputs the desired quantity.

A.3 Additional Results

A.3.1 Single-Task Learning: Continuous Control

Figure A.1 evaluates PPO+MERL on the complete set of 9 MuJoCo tasks. In Figure A.2, we
evaluate MERL on 3 MuJoCo tasks in an off-policy setting, using DDPG (Silver, Lever, Heess,
et al., 2014).

Note that, while others have reported similar issues in the open-sourced implementationswe
experimented with, including baselines from OpenAI, it is difficult to tune DDPG to reproduce
results from other works even when using the reported hyperparameters. That is why in
Figure A.2 we only include the tasks for which DDPG was performing well, and we evaluate
MERL on those tasks. Those curves suggest that the auxiliary losses introduced by MERL allow
to further improve the performance of an agent learning off-policy.
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Figure A.1 – Experiments on 9 MuJoCo environments (106 timesteps, 7 seeds) with PPO+MERL. Red
is the baseline, blue is with our method. The line is the average performance, while the shaded area
represents its standard deviation.
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Figure A.2 – Experiments on 2MuJoCo environments (106 timesteps, 7 seeds) with DDPG+MERL. Red is
the baseline and blue our method. The line is the average performance, while the shaded area represents
its standard deviation.

A.3.2 Transfer Learning: Atari 2600 Domain
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MERL or Using Variance in the Value Function estimates as an auxiliary task

A.4 Environment Details

A.4.1 MuJoCo environments

Table A.1 – MuJoCo environments
Environment Description
Ant-v2 Make a four-legged creature walk forward

as fast as possible.
HalfCheetah-v2 Make a 2D cheetah robot run.
Hopper-v2 Make a two-dimensional one-legged robot

hop forward as fast as possible.
Humanoid-v2 Make a three-dimensional bipedal robot

walk forward as fast as possible, without
falling over.

InvertedPendulum-v2 This is aMuJoCo version of CartPole. The
agent’s goal is to balance a pole on a cart.

InvertedDoublePendulum-v2 This is a harder version of InvertedPendu-
lum, where the pole has another pole on
top of it. The agent’s goal is to balance a
pole on a pole on a cart.

Reacher-v2 Make a 2D robot reach to a randomly lo-
cated target.

Swimmer-v2 Make a 2D robot swim.
Walker2d-v2 Make a two-dimensional bipedal robot

walk forward as fast as possible.
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A.4.2 Atari 2600 games (action space size = 9)

Table A.2 – Every Atari 2600 games with action space size = 9
Environment Screenshot Description

AsterixNoFrameskip-v4 The agent guides Taz between the stage lines
in order to eat hamburgers and avoid the dyna-
mites.

BeamRiderNoFrameskip-v4 The agent’s objective is to clear the Shield’s 99
sectors of alien craft while piloting the Beam-
Rider ship.

CrazyClimberNoFrameskip-v4 The agent assumes the role of a person attempt-
ing to climb to the top of four skyscrapers.

EnduroNoFrameskip-v4 Enduro consists of manoeuvring a race car. The
objective of the race is to pass a certain number
of cars each day. Doing so will allow the player
to continue racing for the next day.

MsPacmanNoFrameskip-v4 The gameplay of Ms. Pac-Man is very similar to
that of the original Pac-Man. The player earns
points by eating pellets and avoiding ghosts.

VideoPinballNoFrameskip-v4 Video Pinball is a loose simulation of a pinball
machine: ball shooter, flippers, bumpers and
spinners.





Appendix B

SAUNA or Using Variance in the Value
Function estimates to filter information

B.1 Additional Results

Table B.1 – Average total reward of the last 100 episodes over 6 runs on the 6 MuJoCo environments on
PPO andA2C.Boldfacemean±std indicate better mean performance. (.%) is the change in performance
due to SAUNA.
Task PPO PPO+SAUNA A2C A2C+SAUNA
HalfCheetah 2277± 432 2929± 169 (+29%) 1389± 157 1731± 147 (+25%)
Hopper 2106± 133 2250± 73 (+7%) 1367± 110 1627± 97 (+19%)
InvertedDoublePendulum 6100± 143 6893± 350 (+12%) 4151± 67 5132± 409 (+24%)
InvertedPendulum 532± 19 609± 24 (+14%) 686± 15 684± 10 (−0.3%)
Reacher −7.5± 0.8 −7.2± 0.3 (+4%) −9.2± 0.8 −8.5± 0.7 (+8%)
Swimmer 99.5± 5.4 100.8± 10.4 (+1%) 44.1± 10.3 59.0± 5.5 (+34%)





Appendix C

AVEC or Using Variance in the Value
Function estimates to learn value
functions

C.1 Proof of Section 6.4.1 results

In this section, we consider the case in which the state-action-value function of a policy πθ is
approximated. We prove that given some assumptions on this estimator function, we can use it
to yield a valid gradient direction, i.e., we are able to prove policy improvement when following
this direction.

In this setting, the critic minimizes the following loss:

E(s,a)∼π
[
(Q̂πθ(s, a)− fϕ(s, a)− E(s,a)∼π[Q̂πθ(s, a)− fϕ(s, a)])2

]
.

When a local optimum is reached, the gradient of the latter expression is zero:

∇ϕLAVEC = E(s,a)∼π

[
(Q̂πθ(s, a)− fϕ(s, a)− E(s,a)∼π[Q̂πθ(s, a)− fϕ(s, a)])(∂fϕ(s, a)

∂ϕ
− E(s,a)∼π[∂fϕ(s, a)

∂ϕ
])
]

= 0.

In the expression above, the expected value of the partial derivative disappears because the
term in the first bracket is centered:

E(s,a)∼π

[
(Q̂πθ(s, a)− fϕ(s, a)− E(s,a)∼π[Q̂πθ(s, a)− fϕ(s, a)])E(s,a)∼π[∂fϕ(s, a)

∂ϕ
]
]
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AVEC or Using Variance in the Value Function estimates to learn value functions

= E(s,a)∼π

[
∂fϕ(s, a)

∂ϕ

]
���������������������:= 0

E(s,a)∼π[Q̂πθ(s, a)− fϕ(s, a)− E(s,a)∼π[Q̂πθ − fϕ]]

= 0.

Simplifying the gradient at the local optimum becomes:

E(s,a)∼π

[
(Q̂πθ(s, a)− fϕ(s, a)− E(s,a)∼π[Q̂πθ(s, a)− fϕ(s, a)])(∂fϕ(s, a)

∂ϕ
)
]

= 0. (C.1)

Then, if we denote gϕ = fϕ(s, a) + E(s,a)∼π[Q̂π(s, a)− fϕ(s, a)], and use the policy parame-
terization assumption:

∂fϕ(s, a)
∂ϕ

= ∂πθ(s, a)
∂θ

1
πθ(s, a) , (C.2)

we obtain:

∇θJ = E(s,a)∼πθ [∇θ log(πθ(s, a))gϕ(s, a)] . (C.3)

Proof. By combining the parameterization assumption in Equation C.2 with Equation C.1,
we have:

E(s,a)∼πθ

[
(Q̂πθ(s, a)− gϕ(s, a))∂πθ(s, a)

∂θ

1
πθ(s, a)

]
= 0. (C.4)

Since the expression above is null, we have the following:

∇θJ = E(s,a)∼πθ [∇θ log(πθ(s, a))Q̂πθ(s, a)]

= E(s,a)∼πθ [∇θ log(πθ(s, a))Q̂πθ(s, a)]− E(s,a)∼πθ [(Q̂
πθ(s, a)− gϕ(s, a))∂πθ(s, a)

∂θ

1
πθ(s, a) ]

= E(s,a)∼πθ [∇θ log(πθ(s, a))gϕ(s, a)].

□

Remark C.1 (Assumption in Equation C.2). While the proof seems more or less generic, the
assumption in Equation C.2 is extremely constraining to the possible approximators. Sutton,
McAllester, Singh, et al. (2000) quotes J. Tsitsiklis who believes that a linear gϕ in the features of the
policy may be the only feasible solution for this condition. Concretely, such an assumption cannot
hold since neural networks are the standard approximators used in practice. Moreover, empirical
analysis (Ilyas, Engstrom, Santurkar, et al., 2020) indicates that commonly used algorithms fail to
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C.2 Additional Results

fit the true value function. However, this does not rule out the usefulness of the approach but rather
begs for more questioning of the true effect of such biased baselines.

C.2 Additional Results

C.2.1 Comparative Evaluation of AVEC with TRPO

In order to evaluate the performance gains in using AVEC instead of the usual actor-critic
framework, we produce some additional experiments with the TRPO (Schulman, Levine,
Abbeel, et al., 2015) algorithm. Figure C.1 shows the learning curves while Table C.1 reports
the results.
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Figure C.1 – Comparative evaluation of AVEC with TRPO.We runwith 6 different seeds: lines are average
performances and shaded areas represent one standard deviation.

Table C.1 – Average total reward of the last 100 episodes over 6 runs of 106 timesteps. Comparative
evaluation of AVEC with TRPO. ± corresponds to a single standard deviation over trials and (.%) is the
change in performance due to AVEC.

Task TRPO AVEC-TRPO
Ant −50.5 −43.5± 2.2 (+16%)
AntBullet 564 970± 70 (+72%)
HCheetah 346 466± 56 (+35%)
HCBullet 1154 1281± 94 (+11%)
Humanoid 352 344± 1.2 (−3%)
Reacher −8.5 −9.9± 1.3 (−16%)
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AVEC or Using Variance in the Value Function estimates to learn value functions

C.2.2 Continuous Control: Walker2d

Figure C.2 shows the total average return for AVEC coupled with SAC and PPO on the Walker2d
task. Similar to considered other continuous control tasks from MuJoCo and PyBullet, AVEC
brings a significant performance improvement (+26% for SAC and +33% for PPO), confirming
the generality of our approach.
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Figure C.2 – Comparative evaluation (6 seeds) of AVEC with SAC (left) and PPO (right) on theWalker2d
MuJoCo task. Lines are average performances and shaded areas represent one standard deviation.

C.2.3 Variation of the Bias and Variance terms: AVEC +PPO

In Figure C.3, we show the variation of the bias and variance terms in the MSE between the
estimators (of AVEC-PPO and PPO) and the true target: E[∥gϕ−V π∥22] = Bias(AVEC)2+Var(AVEC)
and E[∥Vϕ(PPO) − V π∥22] = Bias(PPO)2 + Var(PPO) where Vϕ(PPO) is the value function
estimator in PPO. We observe that the variance reduction is more substantial than that of the
bias. Using those results and Figure 6.5 showing that the distance of the estimator to V π is lower
when using AVEC confirms that the variance reduction effect counterbalances the bias increase.
Note that the % Variation of the Var term is always negative in our experiments, and that
the shaded areas that suggest otherwise are merely due to a false assumption of symmetrical
deviations, itself due to the assumption of Gaussianity needed to construct confidence intervals.
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C.2 Additional Results
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Figure C.3 – % variation of the bias and variance terms in the MSE between the estimator and the true
target: %Variation(Bias) = Bias2(AVEC-PPO)−Bias2(PPO)

Bias2(PPO) and %Variation(Var) = Var(AVEC-PPO)−Var(PPO)
Var(PPO) . X-axis:

we run PPO and AVEC-PPO and for every t ∈ {1, 2, 4, 6, 9} ·105, we stop training, use the current policy to
interact with the environment for 3 · 105 transitions, and use these transitions to estimate the true value
function. Lines are average variations and shaded areas represent one standard deviation (5 seeds).
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AVEC or Using Variance in the Value Function estimates to learn value functions

C.2.4 Learning the True Target: AVEC +SAC

In Figure C.4, we compare the error between the Q-function estimator and the true Q-function
for SAC and AVEC-SAC in AntBullet and HalfCheetahBullet. We note a modest but consistent
reduction in this error when using AVEC coupled with SAC, echoing the significant performance
gains in Figure 6.2.
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Figure C.4 – Distance to the true Q-function (SAC). X-axis: we run SAC and AVEC-SAC and for every
t ∈ {1, 2, 4, 6, 9} · 105 we stop training, use the current policy to interact with the environment for 3 · 105

transitions, and use these transitions to estimate the true value function. Lines are average performances
and shaded areas represent one standard deviation.

170



C.2 Additional Results

C.2.5 Variance Reduction: AVEC +PPO

In Figure C.5, we study the empirical variance of the gradient in measuring the average pairwise
cosine similarity (10 gradient measurements) in two additional tasks: HopperBullet and
Walker2DBullet. We also vary the trajectory size used in the estimation of the gradient.
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Figure C.5 – Average cosine similarity between gradient measurements. AVEC empirically reduces
the variance compared to PPO or PPO without a baseline (PPO-nobaseline). Trajectory size used in
estimation of the gradient variance: 3000 (upper row), 6000 (middle row), 9000 (lower row). Lines are
average performances and shaded areas represent one standard deviation.
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AVEC or Using Variance in the Value Function estimates to learn value functions

C.3 Experiment Details

In all experiments we choose to use the same hyperparameter values for all tasks as the best-
performing ones reported in the literature or in their respective open source implementation
documentation. We thus ensure the best performance for the conventional actor-critic frame-
work. In other words, since we are interested in evaluating the impact of this new critic,
everything else is kept as is. This experimental protocol may not benefit AVEC.

In Table C.2, C.3 and C.4, we report the list of hyperparameters common to all continuous
control experiments.

Table C.2 – Hyperparameters used both in SAC and AVEC-SAC.
Parameter Value
Adam stepsize 3 · 10−4

Discount (γ) 0.99
Replay buffer size 106

Batch size 256
Nb. hidden layers 2
Nb. hidden units per layer 256
Nonlinearity ReLU
Target smoothing coefficient (τ) 0.01
Target update interval 1
Gradient steps 1

Table C.3 – Hyperparameters used both in PPO and AVEC-PPO.
Parameter Value
Horizon (T ) 2048
Adam stepsize 2.5 · 10−4

Nb. epochs 10
Nb. minibatches 32
Nb. hidden layers 2
Nb. hidden units per layer 64
Nonlinearity tanh
Discount (γ) 0.99
GAE parameter (λ) 0.95
Clipping parameter (ε) 0.2
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C.4 Implementation Details

Table C.4 – Hyperparameters used both in TRPO and AVEC-TRPO.
Parameter Value
Horizon (T ) 2048
Adam stepsize 1 · 10−4

Nb. hidden layers 2
Nb. hidden units per layer 64
Nonlinearity tanh
Discount (γ) 0.99
GAE parameter (λ) 0.95
Stepsize KL 0.01
Nb. iterations for the conjugate gradient 15

C.4 Implementation Details

C.4.1 Implementation of AVEC in practice

Theoretically, LAVEC is defined as the residual variance of the value function (cf. Equation 6.3).
However, state-values for a non-optimal policy are dependent and the variance is not tractable
without access to the joint law of state-values. Consequently, to implement AVEC in practice
we use the best-known proxy at hand, which is the empirical variance formula assuming
independence:

LAVEC = 1
T − 1

T∑
t=1

((
fϕ(st)− V̂ π(st)

)
− 1
T

T∑
t=1

(
fϕ(st)− V̂ π(st)

))2
,

where T is the size of the sampled trajectory.

C.4.2 Implementation of AVEC coupled with SAC

In Algorithm 8, JV is the squared residual error objective to train the soft value function.
See Haarnoja, Zhou, Abbeel, et al. (2018) for further details and notations about SAC, not
directly relevant here.

C.5 Environment Details
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AVEC or Using Variance in the Value Function estimates to learn value functions

Algorithm 8 AVEC coupled with SAC.
1: Input parameters: β ∈ [0, 1], λV ≥ 0, λQ ≥ 0, λπ ≥ 0
2: Initializepolicy parameter θ, value function parameterψ and ψ̄ andQ-functions parameters
ϕ1 and ϕ2

3: D ← ∅
4: for each iteration do
5: for each step do
6: at ∼ πθ(at|st)
7: st+1 ∼ P (st, at)
8: D ← D ∪ {(st, at, rt, st+1)}
9: for each gradient step do
10: sample batch B from D
11: ψ ← ψ − λV ∇̂ψJV (ψ)
12: ϕi ← ϕi − λQ∇̂ϕiL2

AVEC (ϕi) for i ∈ {1, 2}
13: θ ← θ − λπ∇̂θJ(πθ)
14: ψ̄ ← βψ + (1− β)ψ̄

Table C.5 – Environment details.
Environment Description
Ant-v2 Make a four-legged creature walk forward

as fast as possible.
AntBulletEnv-v0 Idem. Ant is heavier, encouraging it to typ-

ically have two or more legs on the ground
(source: PyBullet Guide - url).

HalfCheetah-v2 Make a 2D cheetah robot run.
HalfCheetahBulletEnv-v0 Idem.
Humanoid-v2 Make a three-dimensional bipedal robot

walk forward as fast as possible, without
falling over.

Reacher-v2 Make a 2D robot reach to a randomly lo-
cated target.

Walker2d-v0 Make a 2D robot walk forward as fast as
possible.

Walker2DBulletEnv-v0 Idem.
HopperBulletEnv-v0 Make a two-dimensional one-legged robot

hop forward as fast as possible
Acrobot-v1 Swing the end of a two-joint acrobot up to

a given height.
MountainCar-v0 Get an under powered car to the top of a

hill.
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C.5 Environment Details

Table C.6 – Actions and observations dimensions.
Task S A
Ant R111 R8

AntBullet R28 R8

HalfCheetah R17 R6

HalfCheetahBullet R26 R6

Humanoid R376 R17

Reacher R11 R2

Walker2d R17 R6

Walker2DBullet R22 R6

HopperBullet R15 R3

Acrobot R6 3
MountainCar R2 3
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Appendix D

AGAC or Using Adversarial Priors to
motivate conservatively diversified
policies

D.1 Additional Results

D.1.1 MiniGrid Performance

In this section, we report the final performance of all methods considered in theMiniGrid exper-
iments of Figure 8.2 with the scores reported in Raileanu and Rocktäschel (2019) and Campero,
Raileanu, Küttler, et al. (2021). All methods have a budget of 200M frames.

Table D.1 – Final average performance of all methods on several MiniGrid environments.
Task KC-S4R3 KC-S5R3 MR-N10S10 OM-2Dlhb OM-1Q OM-2Q
AGAC 0.95 0.93 0.52 0.64 0.78 0.63
RIDE 0.19 0. 0.40 0. 0. 0.
AMIGo 0.54 0. 0. 0.20 0. 0.
RND 0. 0. 0. 0.03 0. 0.
Count 0. 0. 0. 0. 0. 0.
ICM 0. 0. 0. 0. 0. 0.

D.1.2 State Visitation Heatmaps in Singleton Environment with No Extrinsic Re-
ward

In this section, we provide additional state visitation heatmaps. The agent has been trained on
a singleton environment from the MultiRoomN10S6 task without extrinsic reward. The last
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AGAC or Using Adversarial Priors to motivate conservatively diversified policies

ten episodes of the training suggest that although the agent experiences the same maze over
and over again, the updates force it to change behavior and try new strategies.

Figure D.1 – State visitation heatmaps of the last ten episodes of an agent trained in a singleton environ-
ment with no extrinsic reward 10M timesteps in the MultiRoomN10S6 task. The agent is continuously
engaging into new strategies.

D.1.3 (Extremely)Hard-ExplorationTaskswithPartially-Observable Environments

In this section, we include additional experiments on one of the hardest tasks available in
MiniGrid. The first is KeyCorridorS8R3, where the size of the rooms has been increased. In it,
the agent has to pick up an object which is behind a locked door: the key is hidden in another
room and the agent has to explore the environment to find it. The second, ObstructedMazeFull,
is similar to ObstructedMaze4Q, where the agent has to pick up a box which is placed in one
of the four corners of a 3x3 maze: the doors are locked, the keys are hidden in boxes and the
doors are obstructed by balls. In those difficult tasks, only our method succeeds in exploring
well enough to find rewards.
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Figure D.2 – Performance evaluation of AGAC compared to RIDE, AMIGo, Count, RND and ICM on
extremely hard-exploration problems.
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D.2 Illustration of AGAC

D.1.4 Mean Intrinsic Reward

In this section, we report the mean intrinsic reward computed for an agent trained in Mul-
tiRoomN12S10 to conveniently compare our results with that of Raileanu and Rocktäschel
(2019). We observe in Figure D.3 that the intrinsic reward is consistently larger for our method
and that, contrary to other methods, does not converge to low values. Please note that, in all
considered experiments, the adversarial bonus coefficient c in Equations 8.2 and 8.3 is linearly
annealed throughout the training since it is mainly useful at the beginning of learning when
the rewards have not yet been met. In the long run, this coefficient may prevent the agent from
solving the task by forcing it to always favour exploration over exploitation.
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Figure D.3 – Average intrinsic reward for different methods trained in MultiRoomN12S10.

D.2 Illustration of AGAC

Figure D.4 – A simple schematic illustration of AGAC. Left: the adversary minimizes the KL-divergence
with respect to the action probability distribution of the actor. Right: the actor receives a bonus when
counteracting the predictions of the adversary.
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D.3 Experiment Details

D.3.1 MiniGrid setup

Here, we describe in more details the experimental setup we used in our MiniGrid experiments.
There are several different MiniGrid scenarios that we consider in Chapter 8. MultiRoom

corresponds to a set of navigation tasks, where the goal is to go from a starting state to a goal
state. The notation MultiRoom-N2S4 means that there are 2 rooms in total, and that each room
has a maximal side of 4. In order to go from one room to another, the agent must perform a
specific action to open a door. Episodes are terminated with zero reward after a maximum of
20×N steps with N the number of rooms. In KeyCorridor, the agent also has to pick up a key,
since the goal state is behind a door that only lets it in with the key. The notation KeyCorridor-
S3R4 means that there are 4 side corridors, leading to rooms that have a maximal side of 3. The
maximum number of steps is 270. In ObstructedMaze, keys are hidden in boxes, and doors
are obstructed by balls the agent has to get out of its way. The notation ObstructedMaze-1Dl
means that there are two connected rooms of maximal side 6 and 1 door (versus a 3x3 matrix
and 2 doors if the leading characters are 2D), adding h as a suffix places keys in boxes, and
adding b as a suffix adds balls in front of doors. Using Q as a suffix is equivalent to using lhb
(that is, both hiding keys and placing balls to be moved). The maximum number of steps is
576. ObstructedMazeFull is the hardest configuration for this scenario, since it has the maximal
number of keys, balls to move, and doors possible.

In each scenario, the agent has access to a partial view of the environment, a 7x7 square
that includes itself and points in the direction of its previous movement.
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D.3 Experiment Details

D.3.2 Hyperparameters

In all experiments, we train six different instances of our algorithm with different random
seeds. In Table D.2, we report the list of hyperparameters.

Table D.2 – Hyperparameters used in AGAC.
Parameter Value
Horizon T 2048
Nb. epochs 4
Nb. minibatches 8
Nb. frames stacked 4
Nonlinearity ELU (Clevert, Unterthiner, and Hochreiter, 2016)
Discount γ 0.99
GAE parameter λ 0.95
PPO clipping parameter ε 0.2
βV 0.5
c 4 · 10−4 (4 · 10−5 in VizDoom)
c anneal schedule linear
βadv 4 · 10−5

Adam stepsize η1 3 · 10−4

Adam stepsize η2 9 · 10−5 = 0.3 · η1
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D.4 Implementation Details

In Figure D.5 is depicted the architecture of our method.

Figure D.5 – Artificial neural architecture of the critic, the actor and the adversary.

D.5 Proof of Section 8.4.1 results

In this section, we provide a short proof for the result of the optimization problem in Section 8.4.1.
We recall the result here:

πk+1 = arg max
π

JPI(π) ∝
(
πk
πadv

) c
α

exp Qπk
α
,

with the objective function:

JPI(π) = EsEa∼π(·|s)[Qπk(s, a) + c (log πk(a|s)− log πadv(a|s))− α log π(a|s)].
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D.5 Proof of Section 8.4.1 results

Proof. We first consider a simpler optimization problem: arg maxπ⟨π,Qπk⟩ + αH(π), whose
solution is known (Vieillard, Kozuno, Scherrer, et al., 2020, Appendix A). The expression for
the maximizer is the α-scaled softmax:

π∗ =
exp(Qπkα )
⟨1, exp(Qπkα )⟩

.

We now turn towards the optimization problem of interest, which we can rewrite as:

arg max
π
⟨π,Qπk + c (log πk − log πadv)⟩+ αH(π).

By the simple change of variable Q̃πk = Qπk + c (log πk − log πadv), we can reuse the previous
solution (replacing Qπk by Q̃πk). With the simplification:

exp Qπk + c (log πk − log πadv)
α

=
(
πk
πadv

) c
α

exp Qπk
α
,

we obtain the result and conclude the proof.
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Appendix E

Experimentation and Learning in Deep
Reinforcement Learning

E.1 Reproducible Experiments

We have published online and open-sourced the code of all the work presented in this the-
sis: MERL, SAUNA, AVEC and AGAC. Besides, we believe that the publication of the code may not be
sufficient to allow a good use of the method and a good understanding of the implementation,
as such, my co-authors and I have done and still do our best to remain accessible when other
researchers, Ph.D. students or master students contact us regarding our methods and code.

E.2 Contributions to Open Research and Education

Below, we present two Python libraries that we contributed to and which are published online
under an open-source license.

E.2.1 rlberry software

rlberry (github.com/rlberry-py/rlberry) is an RL library designed for research and educational
purposes (Domingues, Flet-Berliac, Leurent, et al., 2021). It has been conceived to allow the
user to concentrate on the actual RL method to implement rather than on the more troublesome
and error-prone elements like running agents in parallel, reliably plotting results, optimizing
hyperparameters, comparing to baselines, or creating custom environments.

In a nutshell, the main features of rlberry is that it:
• Provides implementations of several RL agents to use as a starting point or as baselines;
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• Provides a set of benchmark environments, very useful to debug and challenge one’s
own algorithms;

• Handles all random seeds consolidated way, ensuring experiment reproducibility;
• Provides multiple notebooks that can be run directly from the browser through Google

Colab;
• Is fully compatible with several commonly used RL libraries like OpenAI gym (Brockman,

Cheung, Pettersson, et al., 2016) and Stable Baselines (Hill, Raffin, Ernestus, et al., 2018).

E.2.2 rlss-2019materials

In the context of the Reinforcement Learning Summer School (RLSS), that we organized as
members of the Scool/SequeL team at Inria in July 2019, and which consisted of two weeks
dedicated to the theory and practice of sequential decision making, a number of materials
for the practical sessions have been created by numerous contributors: senior developers
and researchers, Ph.D. students and M.Sc. students. rlss-2019 (github.com/yfletberliac/rlss-
2019) includes tutorials on how to set up a computer for development for participants with
a potentially non-technical background, notebooks with tutorials on bandits, RL, and deep
RL, and a larger project based on TextWorld (Côté, Kádár, Yuan, et al., 2019) which produces
text-based quests of custom complexity and MiniWoB (Shi, Karpathy, Fan, et al., 2017) which
is a set of browser-based tasks simulating human interaction with webpages. All notebooks
can be run directly from the browser through Google Colab notebooks.
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