
Université de Lille, Faculté des sciences et technologies

Département de formation doctorale en informatique École doctorale MADIS Lille

UFR IEEA

Incremental Approach for Application

GUI Migration using Metamodels

Approche Incrémentale pour la Migration des Interfaces

Graphiques d’Applications utilisant les Métamodèles

THÈSE

présentée et soutenue publiquement le 21 octobre 2021

pour l’obtention du

Doctorat de l’Université des Sciences et Technologies de Lille

(spécialité informatique)

par

Benôıt Verhaeghe

Composition du jury

Président : Franck Barbier (Professor – Université de Pau et des Pays de l’Adour)

Rapporteurs : Salah Sadou (Professor – Université Bretagne Sud)
Jean-Rémy Falleri (Associate Professor – Université de Bordeaux)

Directeurs de thèse : Nicolas Anquetil (Associate Professor – Université Lille)
Anne Etien (Professor – Université Lille)

Co-Encadrant de thèse : Abderrahmane Seriai (Associate Professor – Berger-Levrault)

Centre de Recherche en Informatique, Signal et Automatique de Lille — UMR 9189

INRIA Lille - Nord Europe

i

Acknowledgments
First of all, I would like to thank my supervisors Anne Etien and Nicolas Anquetil,
for giving me the opportunity to be part of this adventure. I also want to thank
Abderrahmane Seriai and Laurent Deruelle for helping me reduce the gap between
fundamental research and the industrial world. Thank you for all your support,
encouragement, and advice throughout the years.

I would like to thank Franck Barbier, Salah Sadou, and Jean-Rémy Falleri for
accepting to be part of my Ph.D. committee. I am honored by your presence, and I
really appreciate your comments and advice.

My thesis has been done in an especially pleasant context, thanks to the RMOD
team members. In particular, thanks to Julien, Cyril, Christopher, and Guillaume
for the many tea and coffee breaks. I also had the chance to work in the research
team of Berger-Levrault. I want to thank Pascal, Michel, Jimmy, and Julien for
the time spent with me discussing movies and politics. I also had the chance to
be accompanied by former Ph.D. students: JB, Clement, Sophie, Vincent B., and
Vincent A., who help me express frustrations and problems. Tot anoste keer!

I also had the chance to live at Bruno’s home during my Ph.D. manuscript
redaction. It was a particularly pleasant experience, and I would never thank you
enough for letting me live with you all.

I am deeply grateful to my family, who have supported me during this experi-
ence. Especially thanks to my parents and in-laws for everything they provide to
me, and my brothers, Adrien and Tristan, who unconditionally supported me.

I also want to thank my beloved Annaëlle for being part of my life and sharing
many unforgettable moments with me, supporting and encouraging me through
these years.

Above all, I want to thank my grandmother who allowed me to live with her for
8 years. Merci mémé.

iii

À Brigitte Lhomme,

v

Abstract
Developers use GUI frameworks to design the graphical user interface of their ap-
plications. It allows them to reuse existing graphical components and build ap-
plications in a fast way. However, with the generalization of mobile devices and
Web applications, GUI frameworks evolve at a fast pace: JavaFX replaced Java
Swing, Angular 8 replaced Angular 1.4 which had replaced GWT (Google Web
Toolkit). Moreover, former GUI frameworks are not supported anymore. This
situation forces organizations to migrate their applications to modern frameworks
regularly to avoid becoming obsolete.

To ease the migration of applications, previous research designed automatic
approaches dedicated to migration projects. Whereas they provide good results,
they are hard to adapt to other contexts than their original one. For instance, at
Berger-Levrault, our industrial partner, applications are written in generic pro-
gramming languages (Java/GWT), proprietary “4th generation” languages (Visu-
alBasic 6, PowerBuilder), or markup languages (Silverlight). Thus, there is a need
for a language-agnostic migration approach allowing one to migrate various GUI
frameworks to the latest technologies. Moreover, when performing automatic mi-
gration with these approaches, part of the migrated application still needs to be
manually fixed. This problem is even more important for large applications where
this last step can last months. Thus, companies need to migrate their application
incrementally to ensure end-user continuous delivery throughout the process.

In this thesis, we propose a new incremental migration approach. It aims at
allowing the migration of large applications while ensuring end-user delivery. It
consists of migrating pages using our automatic GUI migration tool, fixing them,
and integrating them in a hybrid application. To create our GUI migration tool, we
designed a pivot meta-model composed of several packages representing the visual
and the behavioral aspects of any GUI. We detailed multiple implementations of
our GUI migration tool that extract and generate GUI using different frameworks.

We successfully applied our migration approach to a real industrial application
at Berger-Levrault. The migrated application is now in production. We also val-
idated our automatic GUI migration tool on several migration projects, including
applications developed with programming and markup languages. The company is
currently using our approach for other migration projects.

Keywords: Graphical User Interface, Model-Driven Engineering, Migration, In-
dustrial

vii

Résumé
Les développeurs utilisent des frameworks d’interface graphique (GUI frameworks)
pour concevoir l’interface utilisateur graphique de leurs applications. Cela leur
permet de réutiliser des composants graphiques existants et de construire des ap-
plications rapidement. Cependant, avec la généralisation des appareils mobiles et
des applications Web, les GUI frameworks évoluent à un rythme rapide : JavaFX a
remplacé Java Swing, Angular 8 a remplacé Angular 1.4 qui avait remplacé GWT
(Google Web Toolkit). De plus, les anciens GUI frameworks ne sont plus sup-
portés. Cette situation oblige les organisations à migrer régulièrement leurs appli-
cations vers des frameworks modernes pour éviter qu’elles deviennent obsolètes.

Pour faciliter la migration des applications, des recherches antérieures ont conçu
des approches automatiques dédiées à des projets de migration. Bien qu’elles four-
nissent de bons résultats, elles sont difficiles à adapter à d’autres contextes que celui
d’origine. Par exemple, chez Berger-Levrault, notre partenaire industriel, les appli-
cations sont écrites dans des langages de programmation génériques (Java/GWT),
des langages propriétaires de “4ème génération” (VisualBasic 6, PowerBuilder),
ou des langages de balisage (Silverlight). Il est donc nécessaire d’adopter une ap-
proche de migration indépendante du langage, qui permette de faire migrer diverses
interfaces graphiques vers les technologies les plus récentes. En outre, lors d’une
migration automatique avec ces approches, une partie de l’application migrée doit
encore être corrigée manuellement. Ce problème est encore plus important pour les
grandes applications où cette dernière étape peut durer des mois. Les entreprises
doivent donc migrer leur application de manière incrémentale afin de garantir une
livraison continue à l’utilisateur final tout au long du processus.

Dans cette thèse, nous proposons une nouvelle approche de migration incré-
mentale. Elle vise à permettre la migration de grandes applications tout en garan-
tissant la livraison à l’utilisateur final. Elle consiste à migrer des pages à l’aide de
notre outil de migration automatique de GUI, à les corriger et à les intégrer dans
une application hybride. Pour créer notre outil de migration de GUI, nous avons
conçu un méta-modèle pivot de GUI composé de plusieurs paquetages représentant
les aspects visuels et comportementaux de toute GUI. Nous avons détaillé plusieurs
implémentations de notre outil de migration de GUI qui extraient et génèrent des
GUI utilisant différents frameworks.

Nous avons appliqué avec succès notre approche de migration sur une appli-
cation industrielle de Berger-Levrault. L’application migrée est maintenant en
production. Nous avons également validé notre outil de migration automatique
d’interface graphique sur plusieurs projets de migration incluant des applications
développées avec des langages de programmation et de balisage. L’entreprise
utilise actuellement notre approche pour d’autres projets de migration.

Mots-clés: Interface Graphique, Ingénierie Dirigée par les Modèles, Migration,
Industriel

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem . 3
1.3 Our Approach in a Nutshell . 4
1.4 Contributions . 5
1.5 Structure of the Thesis . 5
1.6 List of Publications . 6

2 State of the Art 9
2.1 GUI representation . 9
2.2 GUI migration . 13
2.3 Incremental migration . 18

I GUI migration 23

3 Approach 25
3.1 GUI Terminology and Concept 25
3.2 Approach overview . 31
3.3 Visual code migration approach 35
3.4 Behavioral code migration approach 46
3.5 Conclusion . 53

4 Implementation 55
4.1 Visual code extraction . 55
4.2 Visual code generation . 61
4.3 Behavioral code extraction . 63
4.4 Behavioral code generation . 68
4.5 Conclusion . 73

5 Migration Validation 75
5.1 Visual code migration validation 75
5.2 Behavioral code migration validation 83

5.3 Discussion . 87
5.4 Threats to Validity . 90
5.5 Conclusion . 92
5.6 GUI migration conclusion . 93

II Incremental migration approach 95

6 Incremental migration 97
6.1 Incremental Migration Approach 97
6.2 Hybrid architecture . 99
6.3 Implementation . 102
6.4 Conclusion . 107

7 Incremental migration validation 109
7.1 Case Study: Omaje Application 109
7.2 Research Questions and Evaluation Methods 111
7.3 Evaluation Results . 113
7.4 Incremental approach discussion 117
7.5 Threats to Validity . 119
7.6 Incremental approach conclusion 121

8 Conclusion 123
8.1 Summary . 123
8.2 Contributions . 124
8.3 Future Work . 125

Bibliography 129

List of Figures

1.1 Summary of the approach . 4

2.1 KDM - UIResources Class Diagram 10
2.2 IFML - View Elements . 11

3.1 GUI example . 27
3.2 A layout example . 28

3.3 GUI migration concrete example from Java to Angular 32
3.4 Pivot meta-model . 33
3.5 Our GUI migration process . 34
3.6 Core package . 36
3.7 Excerpt of the widget package 37
3.8 Layout package . 38
3.9 Visual code extraction steps . 40
3.10 Visual code generation sub-steps 44
3.11 Behavioral package . 47
3.12 Behavioral code extraction sub-steps 48
3.13 Behavioral code generation sub-steps 51
3.14 Our GUI detailed migration process 54

4.1 Example of model transformation for Listing 4.6 67
4.2 Angular Event Binding feature 70
4.3 Data Binding in Angular . 72

5.1 BLCore - GUI meta-model . 76
5.2 Visual comparison of a page migration (Kitchensink) 81
5.3 Visual comparison of the User Setting page (Traccar) 82
5.4 Visual comparison (DBManager) 82

6.1 The incremental migration process 98
6.2 Hybrid architecture . 100
6.3 Operational architecture of hybrid application for GWT and Angular 102
6.4 Packaging and using Angular migrated page with Web Component 103
6.5 Data transformation process in hybrid communication 107

7.1 Time spent by module to migrate the Visual code 110
7.2 Time spent by module to migrate the Behavioral code 111
7.3 Performance evaluation result . 116

8.1 Layout manager conversion . 126

List of Tables

2.1 Existing migration project . 16
2.2 Hybrid architectures fulfilling constraints 20

3.1 Sub-steps to support the extraction of a new GUI framework . . . 41
3.2 Sub-steps to extract Visual code using a known framework 42
3.3 Sub-steps to support the generation using a new GUI framework . 44
3.4 Sub-steps to generate the Visual code using a known framework . 45
3.5 Sub-steps to configure new framework extraction for Behavioral

code . 49
3.6 Sub-steps to extract application Behavioral code 50
3.7 Sub-steps toi configure new framework generation for Behavioral

code . 52
3.8 Sub-steps to generate application Behavioral code 52

5.1 Case study Description . 76
5.2 Application descriptions . 77
5.3 Extraction results . 80
5.4 Result of manual event handler extraction check 85
5.5 Natural code . 86

7.1 Communications performance in millisecond 114
7.2 Building performance in second 115

List of Listings

3.1 Behavioral code in Java . 29

4.1 Snippet of an GXT login view in XML 56
4.2 User interface creation in Java GWT 59
4.3 Building layout and DOM in Pharo Spec 60
4.4 Complex layout creation in Java GWT 60
4.5 Creating event handlers in Java/GWT 65
4.6 Example of Manipulation code 66
4.7 Example of Java code . 70
4.8 Example of HTML code migrated from Java code in Listing 4.7 . 70
4.9 Example of TypeScript code migrated from Java code in Listing 4.7 71
4.10 Data Binding - HTML part . 72
4.11 Data Binding - TypeScript part 72

List of Listings xiii

6.1 Exposed (displayPhase, addDataRefresh) and not exposed (ad-
dDataRefreshEvent) methods to hybrid architecture 106

CHAPTER 1

Introduction

Contents
1.1 Context . 1

1.2 Problem . 3

1.3 Our Approach in a Nutshell . 4

1.4 Contributions . 5

1.5 Structure of the Thesis . 5

1.6 List of Publications . 6

1.1 Context
This thesis takes place in an industrial partnership with Berger-Levrault1. Berger-
Levrault provides software solutions to public and private stakeholders. For in-
stance, it builds management software, computerized maintenance management
systems (CMMS), medical record and care software, teaching software solutions,
and so on.

A distinctive point is the company’s growth strategy. Besides of developing
new software systems for their customers, Berger-Levrault acquires other compa-
nies with existing systems. Whereas this strategy has its advantages, it also impacts
software development. Indeed, the acquired companies do not always use the pro-
gramming language selected at Berger-Levrault. This results in a plurality of soft-
ware systems developed using several programming languages and frameworks.

Fortunately, for the last ten years, Berger-Levrault has been launching a dy-
namic of innovation in its products, notably by integrating breakthrough function-
alities resulting from research. In that sense, a research and development depart-
ment was created to reduce the gap between the scientific world and the industrial
world.

Among the several scientific projects conducted at Berger-Levrault, one con-
sists of a large-scale renovation project to standardize development. It includes the

1Berger-Levrault: https://www.berger-levrault.com/fr/

https://www.berger-levrault.com/fr/

2 Chapter 1. Introduction

pooling of the company’s existing software solutions into one extensive and ex-
tensible system using a component-oriented architecture [Allier et al., 2011]. To
achieve this goal, several projects were carried out, are currently in progress, and
are planned for the future. Micro-services [Selmadji et al., 2020], micro front-end,
software interoperability [Amokrane et al., 2020], software testing, and software
migration are among the hot topics in software renovation at Berger-Levrault. This
thesis is part of the renovation project and deals with the migration of Graphical
User Interface (GUI) of its applications.

Companies, as Berger-Levrault, develop Graphical User Interface for their cus-
tomers. GUI facilitates end-users interaction with a software system. To build
easy-to-use user interfaces, developers use GUI frameworks. A framework consists
of a group of generic functionality that helps developers creating software systems.
Using GUI frameworks, developers have access to existing graphic components,
such as buttons and text inputs. It allows them to develop faster and reduce the cost
of creating GUIs.

However, these GUI frameworks evolve at a fast pace. More than 90 GUI
frameworks were developed during the past 40 years2. On the one hand, the old
GUI frameworks are not supported anymore: for example, the last major version
of GWT was in 2009. On the other hand, modern GUI frameworks evolve fast: in
2020 three major versions of Angular3, one major version and two minors versions
of React.js4, one minor version of Vue.js5, and two major versions of Ember.js6

were released. Using the most modern GUI frameworks is essential for companies.
Indeed, from the end-users point of view, the GUI is the software system. Thus,
software systems using the last GUI standards are more attractive and are a plus
for companies selling them. Using modern GUI frameworks improves the code
reusability, the development agility, and reduces the risk of bugs and regressions.
This situation forces companies to regularly update their software systems to keep
their customers and avoid being stuck in old technologies.

Approaches that ease the migration of application GUIs have already been pro-
posed [Fleurey et al., 2007, Sánchez Ramón et al., 2014, Robillard and Kutschera,
2019]. However, each proposed approach is dedicated to the migration of GUI
using one specific framework. For companies using several GUI frameworks, it
would impose re-developing a migration approach for each application. Moreover,
these existing approaches only perform partial GUI migrations. For example, some
approaches do not automatically migrate the possible interactions with the end-
user. Thus, the remaining code must be manually migrated before the new system

2See https://en.wikipedia.org/wiki/List_of_widget_toolkits
3https://angular.io/
4https://reactjs.org/
5https://vuejs.org/
6https://emberjs.com/

https://en.wikipedia.org/wiki/List_of_widget_toolkits
https://angular.io/
https://reactjs.org/
https://vuejs.org/
https://emberjs.com/

1.2. Problem 3

is delivered. Such a manual step could take months when migrating large appli-
cations. Consequently, the development of new functionalities would be blocked
during this period, and the final users would not receive any update. Such an ap-
proach is not acceptable in an industrial context with intense pressure to deliver.

1.2 Problem

The industrial context in which this thesis takes place allows us to identify two
problems when it comes to supporting GUI migration: support GUI frameworks
agnostic migration, and enable incremental migration.

Support GUI frameworks agnostic migration. Tools and approaches have
been proposed to support GUI migration [Fleurey et al., 2007, Włodarski et al.,
2019, Joorabchi and Mesbah, 2012, Samir et al., 2007, Shah and Tilevich, 2011].
They use meta-models to represent the GUI structure. However, these approaches
are not sufficient for modern applications. Indeed, the authors did not apply their
migration approaches to multiple and different GUI frameworks. Moreover, the
authors present only partially their GUI models which makes it hard to adapt their
solutions to other contexts.

Enable incremental migration. The existing approaches ease the migration by
performing a partial GUI migration. Whereas they give good results automatically
migrating an important part of application GUIs, developers must manually fix the
remaining code before delivering the new system to customers. During the manual
step, the old version of the software system is not maintained. Thus, the customer
can not benefit from bug fixes and improvements until the end of the migration
process. This can take months. Moreover, systems must be updated according
to each country laws that evolve independently of the company migration project.
Thus, not maintaining the former software system is not feasible.

One solution is to migrate the applications incrementally. Robillard and
Kutschera [2019] used a hybrid architecture to mix Java Swing and JavaFX. This
allows one to migrate part of the application while maintaining the part not mi-
grated. Whereas this solution offers GUI hybridization, it does not fit in web con-
texts used in many industrial projects. Teppe [2009] proposed to migrate a part of
an application with an automatic tool, test the migrated part, improve the automatic
tool in case of issues, and iterate. When all the parts are migrated, they switch from
the source application to the migrated one. However, all along the migration pro-
cess, when new developments are made in the source application, developers must
replicate the modification in the migrated version. Thus, developers have to ensure
the maintenance of two applications during the migration process.

4 Chapter 1. Introduction

1.3 Our Approach in a Nutshell

To tackle the above problems, we designed an approach and meta-model that ease
GUI migration. The approach is summarized in Figure 1.1. It takes an application
GUI as input and migrates the GUI incrementally.

GUI Application
Page 1
Page 2
Page 3

Page 4

Some text

OK

GUI pivot
Model

Extraction Generation

GUI Migration
Part I - Chapters 3, 4, and 5

Incremental migration approach
Part II - Chapters 6 and 7

Hybrid application
Page 1
Page 2
Page 3

Page 4

Some text

OK

Original GUI Application -
All pages are developed

with the source framework

Hybrid application -
Page 3 is developed with

the target framework

Fix
manually

Page developed with the source framework
Page developed with the target framework

Figure 1.1: Summary of the approach

To tackle the first problem, support GUI frameworks agnostic migration, we
proposed a highly extensible GUI migration approach with its meta-model. It is
the central part of Figure 1.1. The approach comes with:

• steps that one can adapt to extract and generate GUIs in other contexts (i.e.
other frameworks);

• extensible meta-model to represent the GUI to migrate; and

• implementation examples that extract GUIs from applications using a web-
based framework (Java/GWT) or desktop-based framework (Pharo/Spec) and
to generate applications using a web-based framework (TypeScript/Angular
and Pharo/Seaside), or desktop-based framework (Pharo/Spec2).

To tackle the second problem, enable incremental migration, we built a hybrid
architecture that authorizes one to mix different GUI frameworks (right-hand side
of Figure 1.1) in the same application. Our hybrid architecture is part of an incre-
mental approach that migrates web applications part by part (i.e., page by page or
module by module).

We implemented the hybrid architecture and used it during an industrial migra-
tion project from GWT to Angular. The results show that our hybrid architecture
enables the migration of the application. It allows one to mix GWT and Angular
without performance losses.

1.4. Contributions 5

In summary, our approach consists of taking an application with its GUI as
input, automatically migrating the application part by part using a tool based on
a GUI meta-model, fixing each part manually and integrating them in a hybrid
application. The hybrid application is then delivered to end users all along the
migration process.

1.4 Contributions
The main contribution of this thesis is an incremental GUI migration approach. It
includes:

• A detailed approach to migrate application GUI;

• A meta-model representing the GUIs;

• A hybrid architecture enabling incremental migration.

1.5 Structure of the Thesis
We organized the thesis as follows: Chapter 2 presents the state of the art related to
this thesis. We list the relevant literature and highlight the shortcoming of existing
solutions. Then, the thesis is split into two parts. First, in Part I, we present our
solution to support GUI migration:

• Chapter 3 details the approach we designed to support the GUI migration.

• Chapter 4 presents several implementation details that migrate different ap-
plication GUIs.

• Chapter 5 validates our approach and meta-model on five migration projects
including real case app.

Then, in Part II, we present how we enable the migration of large industrial appli-
cations:

• Chapter 6 presents how we enable incremental GUI web application migra-
tion using a hybrid architecture.

• Chapter 7 validates the hybrid architecture and the incremental approach on
an actual industrial migration.

Finally, Chapter 8 summarizes and concludes the work presented in this thesis
and proposes future work.

6 Chapter 1. Introduction

1.6 List of Publications

The list of papers published in the context of the thesis is listed below in chrono-
logical order:

1. Benoît Verhaeghe, Anne Etien, Nicolas Anquetil, Abderrahmane Seriai, Lau-
rent Deruelle, Stéphane Ducasse, and Mustapha Derras. GUI migration us-
ing MDE from GWT to Angular 6: An industrial case. In 2019 IEEE 26th
International Conference on Software Analysis, Evolution and Reengineer-
ing (SANER’19), pages 579–583, Hangzhou, China, 2019b. doi: 10.1109/
SANER.2019.8667989. URL https://hal.inria.fr/hal-02019015

2. Benoît Verhaeghe, Anne Etien, Stéphane Ducasse, Abderrahmane Seriai,
Laurent Deruelle, and Mustapha Derras. Migration de GWT vers Angular
6 en utilisant l’IDM. In Conférence en Ingénierie du Logiciel, Toulouse,
France, June 2019c. URL https://hal.inria.fr/hal-02304296

3. Benoît Verhaeghe, Nicolas Anquetil, Stéphane Ducasse, Abderrahmane Se-
riai, Laurent Deruelle, and Mustapha Derras. Migrating GWT to Angular 6
using MDE. In 12th Seminar on Advanced Techniques & Tools for Software
Evolution, Bolzano, Italy, July 2019a. URL https://hal.inria.fr/hal-02304301

4. Clement Dutriez, Benoît Verhaeghe, and Mustapha Derras. Switching of
GUI framework: the case from Spec to Spec 2. In Proceedings of the 14th
Edition of the International Workshop on Smalltalk Technologies, Cologne,
Germany, August 2019. URL https://hal.archives-ouvertes.fr/hal-02297858

5. Santiago Bragagnolo, Benoît Verhaeghe, Abderrahmane Seriai, Mustapha
Derras, and Anne Etien. Challenges for layout validation: Lessons learned.
In International Conference on the Quality of Information and Communica-
tions Technology, QUATIC’2020, September 2020b. URL https://hal.inria.fr/hal-

02914750

6. Benoît Verhaeghe, Nicolas Anquetil, Anne Etien, Stéphane Ducasse, Abder-
rahmane Seriai, and Mustapha Derras. GUI visual aspect migration: a frame-
work agnostic solution. Automated Software Engineering, 28(2):6, 2021a.
ISSN 0928-8910. doi: 10.1007/s10515-021-00284-z

7. Benoît Verhaeghe, Anas Shatnawi, Abderrahmane Seriai, Anne Etien, Nico-
las Anquetil, Mustapha Derras, and Stéphane Ducasse. From GWT to An-
gular: An experiment report on migrating a legacy web application. IEEE
Software, 2021c

https://hal.inria.fr/hal-02019015
https://hal.inria.fr/hal-02304296
https://hal.inria.fr/hal-02304301
https://hal.archives-ouvertes.fr/hal-02297858
https://hal.inria.fr/hal-02914750
https://hal.inria.fr/hal-02914750

1.6. List of Publications 7

8. Benoît Verhaeghe, Nicolas Anquetil, Anne Etien, Abderrahmane Seriai, Anas
Shatnawi, Stéphane Ducasse, and Mustapha Derras. Migrating GUI behav-
ior: from GWT to Angular. In IEEE International Conference on Software
Maintenance and Evolution (ICSME’21), Luxembourg City, Luxembourg,
September 2021b

9. Benoît Verhaeghe, Anne Etien, Nicolas Anquetil, Abderrahmane Seriai, Anas
Shatnawi, Mustapha Derras, and Stéphane Ducasse. An hybrid architecture
for the incremental migration of web front-end. In International Confer-
ence on Advanced Information Systems Engineering (CAiSE’22), Leuven,
Belgium, June 2022. (in submission)

We also participated in other research topics during the thesis. Since these
topics are not directly relative to the focus of this thesis, we included the list of the
corresponding papers below:

1. Benoît Verhaeghe, Nicolas Anquetil, Stéphane Ducasse, and Vincent Blon-
deau. Usage of tests in an open-source community. In Proceedings of the
12th Edition of the International Workshop on Smalltalk Technologies, IWST
’17, pages 4:1–4:9, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-
5554-4. doi: 10.1145/3139903.3139909

2. Serge Demeyer, Benoît Verhaeghe, Anne Etien, Nicolas Anquetil, and
Stéphane Ducasse. Evaluating the efficiency of continuous testing during
test-driven development. In Proceedings VST 2018 (2nd IEEE International
Workshop on Validation, Analysis and Evolution of Software Tests), pages 1
– 5, March 2018. URL https://hal.inria.fr/hal-01717343

3. Benoît Verhaeghe, Christopher Fuhrman, Latifa Guerrouj, Nicolas Anquetil,
and Stéphane Ducasse. Empirical study of programming to an interface.
In Proceedings of 34th Conference on Automated Software Engineering
(ASE’19), San Diego, United States, November 2019d. doi: 10.1109/ASE.
2019.00083. URL https://hal.inria.fr/hal-02353681

4. Nicolas Anquetil, Anne Etien, Mahugnon Honoré Houekpetodji, Benoît Ver-
haeghe, Stéphane Ducasse, Clotilde Toullec, Fatija Djareddir, Jèrome Su-
dich, and Mustapha Derras. Modular moose: A new generation of software
reengineering platform. In International Conference on Software and Sys-
tems Reuse (ICSR’20), number 12541 in LNCS, December 2020

https://hal.inria.fr/hal-01717343
https://hal.inria.fr/hal-02353681

CHAPTER 2

State of the Art

Contents
2.1 GUI representation . 9

2.2 GUI migration . 13

2.3 Incremental migration . 18

In Chapter 1, we identified two main challenges when migrating applications:
(1) migrating GUI using several GUI frameworks and (2) enabling end-to-end in-
cremental migration.

In this chapter, we review the scientific literature to assess the state of the art
related to these problems. We first present the GUI representations proposed in
the literature and the existing GUIs migration approaches in Section 2.1 and Sec-
tion 2.2. Then, we detail the challenges and their existing solution to migrate GUI
incrementally in Section 2.3.

2.1 GUI representation

Hayakawa et al. [2012] divided the user interface into four parts: Meta that contains
information such as the title of the UI, Widget that includes the differents widgets
types, Style that corresponds to CSS information, and Behavior that contains the
code executed on user interactions. Following the proposition of other existing
approaches [Fleurey et al., 2007, Garcés et al., 2017, Sánchez Ramón et al., 2014,
Samir et al., 2007], we present all the visual aspect (Meta, Widget, Style) together
in Section 2.1.1.

As depicted by Rodríguez-Echeverría et al. [2011] and Sánchez Ramón et al.
[2016], the GUI layout must be represented in addition to the visual aspect. Thus,
we present the layout representation in Section 2.1.2.

Note that, to the best of our knowledge, there is no detailed representation of
the Behavior part described by Hayakawa et al. [2012] in current published work.
Thus, it will not be part of this state of the art and will be discussed in the following
chapter.

10 Chapter 2. State of the Art

2.1.1 Visual part meta-model

To represent applications GUIs, some authors propose to use meta-models. These
meta-models represent the GUI in the context of the authors’ work. In the follow-
ing, we discuss the proposed GUI meta-models.

2.1.1.1 OMG standards

The Object Management Group (OMG) defines two meta-models to represent the
GUI visual aspect. The Knowledge Discovery Metamodel (KDM) allows one to
represent any applications. The Interaction Flow Modeling Language (IFML) is
specialized in applications with a GUI.

The KDM standard defined a meta-model to represent a piece of software at a
high level of abstraction. It includes a UI package representing the elements of a
GUI.

AbstractUIElement
+UIElement

+owner

0..*

0..1
UIResource

UIDisplay UIField

ReportScreen

0..1

+owner

0..*

+UIElement

UIAction

+ kind: String

UIEvent

+ kind: String

Figure 2.1: KDM - UIResources Class Diagram

Figure 2.1 represents the core of the UI package called UIResources Class Di-
agram. The central entity is UIResource. It can be refined as UIDisplay or UIField.
UIDisplay corresponds to the physical support on which the interface will be dis-
played, e.g., a computer screen, a printed report. UIField corresponds to a user
interface widget. The composition between UIResource and AbstractUIElement is
used to define the Document Object Model (DOM). Each UIResource can contain
another one to represent a widget that contains other widgets.

Any UIResource can have a UIAction representing the user interface behavior.
However, the behavior is not described in this meta-model.

The aim of IFML [Brambilla and Fraternali, 2014] is to describe an application
GUI.

Figure 2.2 represents the IFML meta-model. The visible elements of the GUI

2.1. GUI representation 11

+subView
ComponentPart

<<Metaclass>>
IFML::CORE::

ViewContainer

+ isLandmark : Boolean
+ isDefault : Boolean
+ isXOR : Boolean

<<Metaclass>>
IFML::Extensions::

Window

+ isModel : Boolean
+ isNewWindow :
Bollean

0..1

0..*
+viewContainer

+viewElements

0..*

0..*

+parentViewComponentPart

<<Metaclass>>
IFML::Extensions::

Slot

<<Metaclass>>
IFML::Extensions::

Field

<<Metaclass>>
IFML::Extensions::

Form

<<Metaclass>>
IFML::Extensions::

Menu

<<Metaclass>>
IFML::Extensions::

Details

<<Metaclass>>
IFML::Extensions::

List

<<Metaclass>>
IFML::CORE::

ViewComponentPart

<<Metaclass>>
IFML::CORE::

ViewComponent

<<Metaclass>>
IFML::CORE::
ViewElement

Figure 2.2: IFML - View Elements

are called ViewElement. A ViewElement can be refined as a ViewContainer or a View-
Component.

A ViewContainer represents a container of other ViewContainer or ViewCompo-
nent. For example, it can be a window, an HTML page, a panel, etc. The composi-
tion between ViewContainer and ViewElement is used to define the DOM.

A ViewComponent corresponds to a widget that displays its content, e.g. a form,
a data grid, an image gallery, etc. It can be linked to multiple ViewComponentPart.
A ViewComponentPart represents an element of a ViewComponent. For example, an
input field inside a form, a text displayed inside a data grid, or an image element of
a gallery.

The two meta-models proposed by the OMG give a standard for further re-
search. However, these meta-models need to be adapted to the different research
contexts.

2.1.1.2 Adapted GUI meta-models

Whereas the OMG proposed a standard to represent GUIs applications, several
GUI meta-models have been proposed in the literature. As proposed by the OMG,
all researchers used a hierarchical representation of the GUI in the form of a DOM
[Gotti and Mbarki, 2016, Fleurey et al., 2007, Mesbah et al., 2012, Memon et al.,

12 Chapter 2. State of the Art

2003, Samir et al., 2007, Shah and Tilevich, 2011, Joorabchi and Mesbah, 2012,
Brambilla and Fraternali, 2014]. Each node in the DOM tree represents a widget of
the user interface. Thus, this representation is not controversial, and representing
the DOM appears as a good solution to represent the GUI skeleton.

In addition to the DOM and the widgets, some authors added attributes. It is
the case of Gotti and Mbarki [2016] who worked on analyzing the GUI structure
of Java projects, Garcés et al. [2017] during the migration of oracle forms appli-
cation, Memon et al. [2003] who extracted a GUI model from Java applications
or MS Windows applications at runtime, Samir et al. [2007] during the migration
process of Java application, Shah and Tilevich [2011] who extracted GUI to facili-
tate desktop to mobile migration, and Joorabchi and Mesbah [2012] who analyzed
IOS applications. In the light of the diversity of work, representing the attributes
is essential when modeling GUIs.

Others use the concept of events to later link the visual aspect with the GUI
behavior. It is the case of Fleurey et al. [2007] for the migration of an industrial
application, Mesbah et al. [2012] for the analysis of Ajax-based application and
Garcés et al. [2017], Samir et al. [2007], and Joorabchi and Mesbah [2012] again.
Representing events is a common task when migrating applications. In their work,
the behavior of an application is only about navigation between pages.

Gotti and Mbarki [2016] and Sánchez Ramón et al. [2016] propose to specialize
their meta-models with different kinds of known widgets such as Button, Label,
Panel, etc. Thus, instead of using a generic widget concept, they can map each
widget of the source code to its counterpart in their GUI meta-model.

Finally, Sánchez Ramón et al. [2016] also define a special kind of widget named
“custom” to support widgets that their GUI extraction approach might not recog-
nize.

All researchers use the DOM to represent the visual part with the attribute
and the event concepts. The authors also proposed modifications to adapt their
meta-models to their specific context. However, no study presents how those meta-
models can be used in other contexts. For instance, there is no proposed adaptation
regarding the use of a meta-model representing desktop application GUI to repre-
sent a web application GUI. Moreover, only Sánchez Ramón et al. [2016] present
the concept of a custom widget to deal with unknown widgets. Thus, one needs to
define an extensible GUI meta-model to reuse it in different contexts.

2.1.2 Layout meta-models

To correctly represent the visual aspect of a GUI, a layout representation is also
necessary [Rodríguez-Echeverría et al., 2011, Sánchez Ramón et al., 2016]. There
are three identified layout managers in the literature: hardcoded, hierarchical, and

2.2. GUI migration 13

constraint-based:

• Hardcoded layout defines for each widget its position with absolute coor-
dinates on the screen [Sánchez Ramón et al., 2016]. It is used in old GUI
frameworks. This layout is less and less used since the apparition of the
DOM representation.

• Hierarchical layout consists of subdividing the available space of the screen
into panels. Then the panels are responsible for placing their children in the
dedicated space [Hasselknippe and Li, 2017]. Sánchez Ramón et al. [2014]
propose a layout meta-model that supports hierarchical layouts. Zeidler et al.
[2012] claim that the grid-bag layout, which is a hierarchical layout, is the
most prominent and that almost all available GUI frameworks support it.
Meliá et al. [2008] work on Model-Driven Development for GWT applica-
tions. In GWT, a widget is at the same time a visual element and a layout. So,
they designed a meta-model with GUI components in which the container el-
ements are at the same time container and hierarchical layout manager, for
example, the GridPanel, the HorizontalPanel, and the VerticalPanel.

• Constraint-based layout also uses a hierarchical structure, but it uses con-
straints to place the widgets, for example: “place this button on the right
of this text”. Lutteroth et al. [2008] presented the Auckland Layout Model,
which is an implementation of a constraint-based layout.

Authors have proposed layout meta-models to represent GUIs accurately. Sev-
eral representations exist depending on the research contexts. The hierarchical
layout comes out as the most used layout manager.

2.2 GUI migration
Using their GUI representations, the authors have proposed migration approaches.

We will first rapidly mention recent work on GUI generation using Artificial
Intelligence (from screenshot examples). It is the case of Beltramelli [2017], Chen
et al. [2018], and Moran et al. [2018]. These approaches rely on a huge dataset of
screenshot examples (14,382 screenshots for Moran et al. [2018] and 10,804 for
Chen et al. [2018]) to train the model. Thus, Beltramelli [2017] warns that the
approach “is not, in any way, intended, nor able to generate code in a real-world
context” and “both the source code and the datasets are provided to foster future
research [...] and are not designed for end-users”1. Consequently, we rule out
Artificial Intelligence as a possible approach given the current state of the art.

1https://github.com/tonybeltramelli/pix2code#disclaimer

https://github.com/tonybeltramelli/pix2code#disclaimer

14 Chapter 2. State of the Art

We identified various publications related to migration. Section 2.2.1 presents
generic approaches to migrate applications. Section 2.2.2 focuses on the language
conversion research field. Section 2.2.3 presents existing projects migrating the
visual aspect. Section 2.2.4 details the steps proposed in the literature to extract the
GUI representation.

2.2.1 Migration approaches

Sneed and Verhoef [2020a] described three ways to migrate an application: con-
version, reimplementation, and wrapping.

Conversion consists in a one-step approach that translates statement by state-
ment the source code to its target language counterpart [Brant et al., 2010].

Reimplementation is used by many approaches that migrate the GUI visual code
[Fleurey et al., 2007, Garcés et al., 2017, Sánchez Ramón et al., 2014, Hayakawa
et al., 2012, Mesbah and van Deursen, 2007]. It follows this process:

1. The old application is extracted into a source language-specific model.

2. Then, the model is transformed to a higher-level representation.

3. Finally, the high-level model is transformed into a target language-specific
model or directly used to generate the target application.

Wrapping “is an established re-engineering technique to provide access to ex-
isting functionality through a preferred interface” [Tonelli et al., 2010]. In conse-
quence, the source code is not migrated but called by the new code.

Each approach allows one to execute code with the target GUI framework.
However, only conversion and reimplementation perform a migration. Moreover,
reimplementation is the most used one for GUI migration. Thus, it is the one we
will focus on.

2.2.2 Language conversion

We first present language conversion related work. The language conversion field
focuses on migrating applications written in one programming language to another
programming language. Whereas this work does not deal directly with GUI behav-
ior, it deals with the reimplementation of source code in another language, which
is part of the GUI behavior migration.

Malton [2001] classifies language conversion according to their difficulties into
three categories:

2.2. GUI migration 15

Dialect conversion deals with the migration from one version of a programming
language to another. It is the case of Python 2 to Python 3 migration [Aggar-
wal et al., 2015].

API migration is the switch of frameworks while keeping the same programming
language [Teyton et al., 2013], for example, moving from Java Swing to
JavaFX.

Language migration deals with the migration from one language to another. It
better fits our context. Thus, we focus on this category in the rest of this
section.

Brant et al. [2010] migrate a Delphi application into C#. To do so, they devel-
oped and used SmaCC, a transformation engine that allows one to write transfor-
mation patterns.

Terwilliger et al. [2012] work on the conversion of Fortran to C++ code. To
do so, they developed the FABLE tool that automatically rewrites the code in C++.
The authors wanted to generate C++ code suitable for future development, and at
the same time “similar to the original Fortran code”.

Martin and Muller [2002] translate C code to Java. To translate the application,
they used a traditional approach: create an AST representation of the source code,
transform it into an AST for Java, and then traverse this AST to generate the target
source code.

Trudel et al. [2012] migrate C to Eiffel (an object-oriented language). They
developed a tool that builds an AST of the source code and applies successive
transformations to this AST. Thus, the tool incrementally transforms the code from
C to Eiffel. The authors also manually wrote helper classes that ensure the Eiffel
classes have the same capabilities as their C structure counterparts. For example,
there is a helper class to access the stdio library aiming to help Eiffel translated
code using stdio specific features.

These approaches point out that an AST representation is necessary when mi-
grating behavioral code. It must come with a parser to build the AST and transfor-
mation rules to perform the migration.

2.2.3 Existing migration project

We are interested in a generic GUI migration approach that handles multiple source
and target frameworks. Thus, we are interested in whether the proposed solution
can (i) import GUI from markup languages (e.g., HTML), (ii) import GUI from
programming languages (e.g., Java Swing); (iii) import from binary source (e.g.,
Oracle form); (iv) handle multiple source frameworks; (v) export GUI to markup

16 Chapter 2. State of the Art

languages; (vi) export GUI to programming languages. We will not consider ex-
porting to a binary framework as no modern GUI framework uses this approach
anymore.

Table 2.1: Existing migration project

extract extract extract binary multiple export export
markup programming frameworks markup programming
language language language language

Our needs ✓ ✓ ✓ ✓ ✓ ✓

Hayakawa et al. [2012] ✓ ✓ ✓
Mesbah and van Deursen [2007] ✓ ✓
Bragagnolo et al. [2020a] ✓ ✓
Garcés et al. [2017] ✓ ✓
Sánchez Ramón et al. [2014] ✓ ✓
Fleurey et al. [2007] ✓ ✓
Samir et al. [2007] ✓ ✓
Robillard and Kutschera [2019] ✓ ✓

Prior research makes valuable contributions: migration “process” (see Sec-
tion 2.2.4) and/or GUI internal representation (models, see Section 2.1.1). How-
ever, there are rarely enough details to generalize the approaches to other lan-
guages/frameworks.

Table 2.1 summarizes the related work considered.
Some past research considered migrating from markup languages: Hayakawa

et al. [2012] (multiple markup languages), Mesbah and van Deursen [2007] (multi-
page web application to Single Page Application (SPA) using Ajax). Migrating
from markup languages is easier because the language is simple to parse (there are
numerous parsers for HTML or XML), detecting the GUI elements (widgets) is
straightforward (e.g., a tag<button>), and the DOM clearly describes the structure
of the interface.

Sánchez Ramón et al. [2014] and Garcés et al. [2017] considered the case of
Oracle Forms, a framework that we classify as a binary source since there is no tex-
tual representation of the GUI (or an incomplete XML representation [Garcés et al.,
2017, again]). Bragagnolo et al. [2020a] also worked on GUI extraction based on
binary sources with the migration of Visual Basic applications. Sánchez Ramón
et al. [2014] consider migrating to Java Swing (programming language), Garcés
et al. [2017] to JEE application (markup language because the GUI is defined in
HTML files), and Bragagnolo et al. [2020a] to Angular (markup language). The
publications focus on the extraction part of the process since there are specific
problems to access the GUI representation of binary frameworks. Their GUI meta-
models are valuable (see Section 2.1.1) as well as their generic process (see 2.2.4),
however, there are not enough details to generalize them to other languages.

Fleurey et al. [2007], Samir et al. [2007], and Robillard and Kutschera [2019]
consider the extraction of GUI based on a programming language. The first one

2.2. GUI migration 17

from Coolgen generated code2, the second and the third ones from Java Swing
code. Even if none of the publications detail how to adapt the approach to ex-
tract GUIs based on other programming languages, they give hints on the general
approach, such as how to map source and target widgets. The first two migrate
to markup language based GUI: Fleurey et al. [2007] migrate to J2EE, and Samir
et al. [2007] to Ajax Web with XUL3. The third work migrates to the JavaFX frame-
work (programming language based GUI). We note that the XUL format has been
discontinued.

Thus, none of the existing projects deal with the multi-framework migration
defined with markup and programming languages. Furthermore, only Robillard
and Kutschera [2019] present the migration from a GUI based on a programming
language to another. However, in their context, the GUI is always defined using the
Java programming language (from Java Swing framework to JavaFX framework),
which has eased the migration.

2.2.4 GUI visual code extraction approaches

The reimplementation approaches often use the horseshoe process [Kazman et al.,
1998]. To perform the extraction of their GUI models, authors follow similar steps
adapted to their contexts. Note that they only detail the steps they used for the
extraction depending on their work focus. In the following, we present these steps
common to several approaches and explain their adaptation for markup and pro-
graming language found in the literature.

Map source to meta-model concepts. All authors use a dictionary that maps
the widgets of the source framework to their meta-models. In the case of markup
language, Hayakawa et al. [2012] map the XML tags name to the widget concepts.
In the case of programming language, Samir et al. [2007] propose to map the pro-
gramming language classes (i.e., JPanel class for Java Swing) to their equivalent
meta-model concepts.

In case of missing concept in the meta-model, Sánchez Ramón et al. [2016]
propose to map the source element to a custom widget.

Identify containment. Another step is the identification of the containment
tree. This step allows authors to extract the visual aspect of the GUI as a DOM
(see Section 2.1.1). In the case of markup language, Memon et al. [2003] propose
to use the existing DOM defined in the source language to extract easily a DOM
representation.

Identify root widget. Additionally to the containment, one step is to identify
the root widget of a GUI. The root widget is the widget that contains all the others

2Coolgen: https://en.wikipedia.org/wiki/CA_Gen
3https://developer.mozilla.org/en-US/docs/Archive/Mozilla/XUL

https://en.wikipedia.org/wiki/CA_Gen
https://developer.mozilla.org/en-US/docs/Archive/Mozilla/XUL

18 Chapter 2. State of the Art

(e.g., a window, a web browser). In the case of markup language, Mesbah and van
Deursen [2007], and Memon et al. [2003] propose to look at the configuration file
of the source project. In the case of programming language, Rodríguez-Echeverría
et al. [2011] define a set of widgets that can be the GUI’s root widgets.

Create widget instances. When extracting the Visual code, approaches create
the widget instances of each GUI. While the Map source to meta-model concepts.
step defines links between the source framework and the meta-model; this step
aims to identify where each widget is used. In the case of programming language,
Rodríguez-Echeverría et al. [2011] and Silva et al. [2010] propose to create the
widget instances by looking at the widget instantiation in the source code. They
precise that a widget instantiation comes from a call to its constructor (e.g. new

JButton()) or from the usage of a widget factory.
Additional sub-step. Finally, Silva et al. [2010] propose an extra step for the

programming language. It consists of using symbolic execution to resolve more
precise information about widget position in the layout. To perform this kind of
advanced extraction process, Deltombe et al. [2012] propose to use an AST meta-
model in addition to a more global meta-model representing the source application.
It allows them to navigate between the precise and the more abstract representation
of an application.

Several steps already exist for the extraction of the GUI visual aspect. The
authors have described how to perform the steps in their specific context. However,
there is a lack of an overall approach that would help build new extractors for
another GUI framework. Moreover, whereas there are steps described to extract
the visual code, none of the published work discusses the code’s generation in a
target language.

2.3 Incremental migration
To perform an incremental GUI migration, the solution proposed in the literature
is to use a hybrid application mixing both the source and target GUI. We identi-
fied various publications related to designing or using a hybrid architecture. Sec-
tion 2.3.1 presents the challenges to build a hybrid architecture. Section 2.3.2
presents the existing hybrid architectures and the constraints they fulfill.

2.3.1 GUI migration constraints
Several constraints must be taken into consideration when designing a hybrid ar-
chitecture. Terekhov and Verhoef [2000] and Chisnall [2013] detail the challenges
to make two programming languages interoperable. In the following, we present
the constraints raised in the literature.

2.3. Incremental migration 19

Communication In the case of a hybrid application, several programming lan-
guages are involved in the implementation. At runtime, each language has to
communicate with the others (e.g., invoking methods from one programming
language to another). Chisnall [2013] details the difficulties of bridging two
programming languages. For instance, they report the need for C interfaces
to enable communication between Java and C++.

Type matching One major challenge faced when designing a hybrid architecture
is the matching of data types [Terekhov and Verhoef, 2000, Chisnall, 2013].
The two programming languages might have different structure representa-
tions for a type. For instance, Java primitive types are implemented using
specific Java wrapping classes, whereas, in JavaScript, primitive types are
common JavaScript types. Thus, a number in JavaScript can not be directly
translated into a Java Integer.

GUI mixing The need to mix GUI has only been raised by Robillard and Kutschera
[2019]. In such a context, widgets defined in different GUI frameworks are
present within the same page. Thus, a strategy must be developed to enable
the integration of one GUI with the other.

2.3.2 Hybrid architecture
In the following, we detail existing projects using a hybrid architecture and the
constraints they deal with.

Robillard and Kutschera [2019] work on the migration of a Java Swing ap-
plication to JavaFX. They migrated the application incrementally by mixing Java
Swing and JavaFX components. They deal with the communication and GUI mix-
ing constraints. In their context, dealing with these problems was eased because
Java Swing and JavaFX are both developed in Java. Thus, communication between
the two GUI frameworks is straightforward since both are implemented with the
Java programing language. To mix GUIs, they used the existing GUI mixing capa-
bilities of Java Swing and JavaFX.

Comella-Dorda et al. [2000] detail different strategies to mix application for
modernization projects. For the user interface modernization, they propose to use
screen scraping technic. It consists of analyzing the source application rendered
UI at runtime, converting it, and wrapping it for the target platform (web-based or
desktop-based). Flores-Ruiz et al. [2018] and Zhang et al. [2008] use this strategy
with different implementations. Although this approach allows one to present the
GUI of an application in another context (e.g. desktop-based GUI inside a web
browser), it does not allow communication between the source GUI and the target
one. Using screen scraping technic, the authors deal with the GUI mixing con-
straint but do not consider the communication between the hybridized elements.

20 Chapter 2. State of the Art

Kontogiannis et al. [2010] propose a set of transformation rules to migrate from
one programming language to another. Whereas they do not discuss how two dif-
ferent languages can communicate, their transformation rules deal with the type
matching problem. To do so, they created a type correspondence table for Basic
PL/IX to C. GUI mixing was out of their scope.

Teppe [2009] uses an iterative approach to migrate an SPL4 application to C++.
When performing the migration, he had to deal with the type matching problem.
The author uses a type correspondence table and an intermediate layer that trans-
forms a type defined in one language to its equivalent type in another language.
This approach is only detailed for applications without GUI and running on the
desktop (rather than the browser).

Finally, Sneed et al. [2006] propose to wrap legacy code to make it available as
a web service. This strategy allows one to create communication between different
programming languages. By making code available as a web service, the authors
also deal with the type matching problem by serializing the data in XML format.

Additionally to the academic literature, a common way to mix web GUI is the
usage of the iframe tag5. This solution allows one to insert inside one web page the
content of another one. Whereas this solution is convenient and does not require
designing a new architecture, it comes with substantial limitations. It is strongly
discouraged to enable communication with the content of an iframe for security
purposes, and the iframe content should not access the main page.

Table 2.2: Hybrid architectures fulfilling constraints

Communication Type matching GUI mixing
Robillard and Kutschera [2019] ✓ ✓
Comella-Dorda et al. [2000] ✓
Flores-Ruiz et al. [2018] ✓
Zhang et al. [2008] ✓
Kontogiannis et al. [2010] ✓
Teppe [2009] ✓
Sneed et al. [2006] ✓ ✓
Technical: iframe ✓

Table 2.2 summarizes the migration projects already designed. None of the
existing approaches deal with the communication, type matching, and GUI mixing
constraints. Thus, to enable the incremental migration of large applications, one
needs to consider all these challenges and propose solutions.

4http://www.clifford.at/spl/
5https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe

http://www.clifford.at/spl/
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe

2.3. Incremental migration 21

We presented the current state of the art on the GUI migration. It consists of
existing GUI meta-models dedicated to specific contexts as well as the extraction
approaches to create models. We also presented the constraints to perform an in-
cremental migration and the existing solution dealing with those constraints. How-
ever, none of the authors deal with all the constraints but only with specific ones.
Thus, one needs to propose an incremental migration approach dealing with all the
identified constraints, and that can be adapted to different contexts, i.e., extracting
GUI defined in markup and programming languages and exporting in markup and
programming languages.

Part I

GUI migration

CHAPTER 3

Approach

Contents
3.1 GUI Terminology and Concept 25

3.2 Approach overview . 31

3.3 Visual code migration approach 35

3.4 Behavioral code migration approach 46

3.5 Conclusion . 53

In the literature, several approaches are proposed to migrate application GUIs.
They point out two major challenges: designing GUI representations and using
them for the migration.

To build a GUI representation, the first step is to define the different aspects
composing a GUI. We define them in Section 3.1 and use them in the rest of this
thesis. It includes a separation of the GUI into the visual, the behavioral, and the
business aspects.

Then, we design a migration approach similar to the ones found in the litera-
ture including all GUI aspects (see Section 3.2). It includes the extraction of the
application source code concepts to build a model that represents the visual aspect
(see Section 3.3) and the behavioral aspect (see Section 3.4), and the generation
of the target code. We detail the extraction and generation approach steps to ease
future adaptation to other migration contexts.

3.1 GUI Terminology and Concept
As presented in the literature (see Section 2.1), there are several proposals to
represent the GUI. Some authors proposed to represent only the widgets; oth-
ers proposed to group the widgets and their attributes. Depending on their con-
text, the authors also represent the GUI layout [Rodríguez-Echeverría et al., 2011,
Sánchez Ramón et al., 2016] or the navigation between the pages [Joorabchi and
Mesbah, 2012].

Based on the existing separation of the GUI code, we define three categories of
source code: the Visual code, the Behavioral code, and the Business code.

26 Chapter 3. Approach

Visual code The Visual code describes the visual aspect of the GUI. It contains
the visual elements of the interface. It defines the inherent characteristics of
the components, such as the ability to be clicked or their color and size. It
also describes the position of these components relative to others (layout).
We group the Visual code concepts and explained them in Section 3.1.1

Behavioral code The Behavioral code defines the action/navigation flow that is
executed when a user interacts with the GUI. It is also possible that actions
are automatically triggered following an outside event. We detail the concept
of Behavioral code in Section 3.1.2.

Business code The Business code is specific to an application. It includes the
rules of the application, the distant server address, and the application-specific
data. We did not deal with the automatic migration of Business code. How-
ever, we had to handle it in some way when performing an incremental mi-
gration (see Chapter 6). We present the Business code in Section 3.1.3.

3.1.1 Visual code

One part of a GUI is the Visual code. It corresponds to the elements used to create
the GUI from the end-user point of view. We divided it into the widgets (see Sec-
tion 3.1.1.1) that are the visible elements, and the layout (see Section 3.1.1.2) that
defines the position of the widgets in the GUI.

3.1.1.1 Widget

A set of widgets and attributes commonly composes a user interface. The available
widgets and attributes of the UI are defined in the GUI framework used by the
developers.

Figure 3.1 presents a GUI example. All the visible elements are widgets.
Some widgets are simple, it is the case of the “Button Text” or the “Link”.

They have a simple visual representation and few attributes. Some widgets have
a complex visual representation. It is the case of the pie chart in the Figure 3.1.
Others are container widgets. A container widget can include other widgets. It
is the case of “Group A”, “Group B” and the toolbar at the top of the window
in Figure 3.1.

Additionally to the standard widgets found in GUI frameworks, developers can
create their custom widgets. To do so, they build a new component from scratch or
from a combination of preexisting widgets.

The widgets have attributes that configure their visual aspect. For example,
attributes set the text value of the button and link. They can also change the color
of an element. It is the case for the color of the “Button Text”. Finally, they can

3.1. GUI Terminology and Concept 27

Window Title

Group A

Setting 1

Setting 2

Setting 3

Setting 4

Group B

Button Text Link

File Edit Options Tools Window Help

Figure 3.1: GUI example

link together different widgets. For instance, in “Group A”, only one of the four
radio buttons (e.g., “Setting 1”, “Setting 2”, “Setting 3”, and “Setting 4”) can be
selected at a time. To represent the relationship between the radio buttons, some
GUI frameworks use a common attribute, e.g., the name attribute with HTML,
other GUI frameworks use a common widget container, e.g., a ToggleGroup with
JavaFX.

In summary, the widgets are the visible elements of a user interface, and the
attributes configure the widgets (e.g., text, color, . . .).
The position of the widgets in the GUI, for example, the vertical distribution of
the four radio buttons and setting labels, or the horizontal distribution of the two
groups A and B, is the layout responsibility.

3.1.1.2 Layout

From Merriam&Webster dictionary1 a Layout is the plan or design or arrangement
of something laid out.

From this definition and the proposed layout representations of the literature
(see Section 2.1.2, [Rodríguez-Echeverría et al., 2011, Sánchez Ramón et al., 2016]),
we consider that the layout defines the widgets’ position relative to others. There
are two main kinds of components in a GUI: the containers that contain other com-
ponents for defining groups of components and the leaves that are contained. The

1https://www.merriam-webster.com/dictionary/layout

https://www.merriam-webster.com/dictionary/layout

28 Chapter 3. Approach

containers, such as fieldsets, panels, etc., are responsible for defining the disposi-
tion of the contained elements in the page.

(a) Page (b) Page’s highlighted layout

Figure 3.2: A layout example

In Figure 3.2, we present the relationship between a GUI and its layout for the
Merriam&Webster web page. Figure 3.2a shows the page as interpreted by the
browser, and, in Figure 3.2b we revealed the layout.

Together, the widgets and the layout make up the visual code of a GUI.

3.1.2 Behavioral code
The Behavioral code is not as well described in the literature as the Visual code.
Only Hayakawa et al. [2012] present it as “the executed script when an event is
fired”.

Thus, we propose a definition of what the Behavioral code is. To do so, we first
present a concrete example in Section 3.1.2.1. Then, we split the Behavioral code
into two parts and present them in Section 3.1.2.2.

3.1.2.1 A concrete example

To clarify the definition of Behavioral code, we use the following concrete example.
Listing 3.1 shows an example of Java code. It corresponds to a method executed

when the end-user clicks on a button. The method reads the value of an inputText
(line 3) looking for email addresses separated by commas (line 5) and uses a service
to send an email to each address (line 6). In the following, we highlighted the code
expressions that are part of the Behavioral code. These expressions are underlined
in Listing 3.1.

3.1. GUI Terminology and Concept 29

1 button.addClickHandler(new ClickHandler() {
2 public void onClick(final ClickEvent event) {
3 String values = emailBox.getText();
4 if (values != null) {
5 List<String> results = values.split(",");
6 IService.sendEmail(results, new AsyncCallback<

List<String>>() {
7 public void onSuccess(List<String> result){
8 EventPopup.displayInfo(result.toString());
9 }

10 });
11 }}});
12

Listing 3.1: Behavioral code in Java

First, line 1, addClickHandler(new ClickHandler ...) corresponds to the cre-
ation of an event click handler and attaches it to the widget button. The event is
the entry-point of the Behavioral code. When the click event is fired, the method
onClick line 2 is executed.

Then, on line 3, there are two behavioral elements. emailBox is an access to a
UI element, here an input text of the UI. And .getText() is an access to the value
of the attribute text of the widget emailBox.

Finally, on line 8, there is a declaration and usage of a popup window. The
Popup is identified by the usage of the class EventPopup, then the type of the Popup
(info, warning, error) is defined by the invoked method, i.e., displayInfo line 8.

Except for the event handler that is the starting point of the Behavioral code,
the other behavioral elements are code expressions that manipulate GUI data (e.g.,
widget, widget’s attributes, etc.). All other parts of the code, not directly linked
to the UI, do not belong to the Behavioral code but to Business code (see Sec-
tion 3.1.3). They are control flow (if, line 4) and algorithm details (converting a
String as a List, line 5, or call to a distant service, line 6).

3.1.2.2 Behavioral code structure

From the previous example, we subdivide the Behavioral code into two categories:
the events and the Manipulation code.

Events correspond to the events raised by the system or when end-users interact
with the UI. Each GUI framework has a set of recognized events; however,
there are some common ones, and each web browser proposes an exhaustive

30 Chapter 3. Approach

events list2.

Manipulation code impacts or references part of the visual aspect of the applica-
tion. Examples of Manipulation code include showing or hiding widgets.

For the Events, by analyzing the applications of our industrial partner, we iden-
tified the following common events:

• Click corresponds to a user clicking on any UI element of the DOM. It can
be a button as well as a table, a text, or an empty zone.

• Change is raised when end-users modify the content of a text input or table.

• Error corresponds to a problem, for example, when trying to load an image
but the resource is unavailable.

• Submit corresponds to a user submitting a form.

• SubmitComplete is raised by the system after a successful Submit event, e.g.,
when a user correctly filled form fields and no network problem happens.

For Manipulation code, there is no exhaustive list of possible expressions that
impact the UI. So, we propose a first list of Manipulation code found in our context.

• Widget access is the reference in the code to a widget. For example, List-
ing 3.1 line 3: emailBox.

• Widget attribute getter or setter is the call to a widget attribute accessor. For
example, Listing 3.1 line 3: getText().

• Navigating corresponds to the navigation from one page to another.

• Open Popup shows a Popup in the application. Popups can be: info; warning;
or error. For example, Listing 3.1 line 7: EventPopup.displayInfo.

• Open Dialog3 is the piece of code used to open a dialog in the GUI. The
visual aspect of the Dialog is defined in the Visual code of the application.

Again, other kinds of Manipulation code may exist, e.g., adding or removing
a widget of the GUI or widgets’ animations. However, they do not exist in our
context, so we did not consider them in the following.

2For example, for Firefox: https://developer.mozilla.org/en-US/docs/Web/Events
3A Dialog is a window “box or other interactive components, such as a dismissable alert, in-

spector, or subwindow” (https://developer.mozilla.org/en-US/docs/Web/HTML/Element/dialog)

https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/dialog

3.2. Approach overview 31

3.1.3 Business code

The Business code consists of the code that does not deal with the visual and the
behavioral aspect of the application. In that sense, it includes the application spe-
cific code such as the data structure used in the application. In the case of web
applications, it includes the relationship between the front-end and the back-end.

In Listing 3.1 (page 29), the data manipulated by the Business code is hold by
the values and the results variables. It is then sent to the service “IService”.

From this snippet of code, we identify four Business code lines. First, line 3,
the value of emailBox.getText is set in the values variable. Second, line 4, the value
of the values variable is tested. Third, line 5, the data held by the values variable is
split. Fourth, line 6, the data are sent to a remote service named IService.

Extracting the Business code of an application is a complex task and requires
extensive work [Cariou et al., 2018, Sneed and Verhoef, 2020b]. We did not deal
with the automatic migration of the Business code. However, we discuss it when
performing the incremental migration of an application in Chapter 6.

3.2 Approach overview

Based on our GUI separation, we designed an approach to migrate applications’
GUI. We first illustrate the approach with a concrete example demonstrating its aim
in Section 3.2.1. Then, we present the approach and detail its steps in Section 3.2.3.

3.2.1 Concrete migration example

To clarify our approach, we first present a concrete example of migration. It fol-
lows the Reimplementation approach detailed in Section 2.2.1. It consists of the
migration of a button defined in Java Swing to Angular.

The approach is divided into two main parts: extraction and generation (see Fig-
ure 3.3). The extraction takes the source code as input and builds a model repre-
senting the GUI. This model is then used as a pivot for the migration. In the follow-
ing, we designate as pivot the elements of our abstract representation, allowing the
migration of several GUI defined with different GUI frameworks. The generation
takes the pivot model as input and produces the GUI target code.

The pivot model defines concepts that are common to all GUI migration projects
and enables the migration of multiple GUI frameworks. The extraction (left-hand
side of Figure 3.3) consists of building from the source code its corresponding pivot
model. To do so, we first extract, from the code, instances of source language con-
cepts in a first model. In the example, we extract the instantiation of a Java JButton
from the new JButton("OK") piece of code. Then, the pivot model is built from

32 Chapter 3. Approach

JButton b = new JButton("OK");

Java source code

Source language model

JButton constructor
invocation

Pivot model

Button pivot widget
with label attribute

Target language model

Button HTML tag
and its child text

<button> OK </button>

Angular target code

Extr
actio

n
Generation

Figure 3.3: GUI migration concrete example from Java to Angular

the language model following some mapping rules. In the example, the constructor
invocation is mapped to a button widget with its label attribute.

The generation (right-hand side of Figure 3.3) consists of the creation of the
target code from the pivot model. First, the generic pivot model is transformed into
a target language model. In the example, the pivot button is mapped to the concrete
HTML tag <button> with a child HTML text to represent the label attribute. Then,
we generate the Angular target code from the target language model.

Note that, as presented in Section 3.3.3, instead of concretely implementing
the target language model, one can define the mapping from the pivot meta-model
concepts directly to the target language code (dashed arrows in the figure). In
such a case, the generation consists of one step from the pivot model to the target
code. One can think of it as the target language meta-model being embedded in
the concept mapping. We made this choice when designing our approach (see Sec-
tion 3.2.3) and implementing it for several migration projects (see Chapter 4).

3.2.2 Pivot meta-model
In order to be independent of the source and target languages, markup or program-
ming languages, our approach uses a pivot meta-model to represent the GUI. This
meta-model aims to represent all the GUI concepts presented in Section 3.1. It is
used as a pivot during the migration, i.e., it is the target of the code extraction and
the source of the code generation.

Our Pivot meta-model is split into four packages: core, widget, layout, and
behavioral. The core, widget, and layout packages represent the Visual code of the
GUI, and the behavioral package is dedicated to the Behavioral code. Figure 3.4
illustrates the different packages in the pivot meta-model.

Core package. The core package enables to represent the DOM of the GUI with
an abstract representation of the widgets, their attributes, and the containment

3.2. Approach overview 33

relationship of the widgets ones with the others.

Widget package. The widget package adds to the core package several widget
types.

Layout package. The layout package is dedicated to the representation of wid-
gets’ positions on the GUI.

Behavioral package. The behavioral package represents the GUI behavior when
end-users interact with the visual components.

Core package

Layout packageWidget package

<<uses>> <<uses>> <<uses>>
Behavioral package

Core package

Visual code packages
Behavioral code package

Figure 3.4: Pivot meta-model

This Pivot meta-model is used by our GUI migration approach. We detail it for
the Visual code in Section 3.3.1 and for the Behavioral code in Section 3.4.1.

3.2.3 GUI migration approach

Based on our Pivot meta-model, we designed a migration approach in five steps.
This approach is based on the concrete example illustrated in Figure 3.3. It includes
the migration of the Visual code and the Behavioral code. Each step is divided
into tunable sub-steps to enable multi-framework support. Examples of sub-step
adjustments are illustrated with concrete cases in Chapter 4.

The process, represented in Figure 3.5, presents the steps to migrate the GUI.
The step in white is the preliminary step that extracts a model of the source appli-
cation; the steps in yellow correspond to the Visual code migration; and the steps
in gray are used for the Behavioral code migration. Note that the migration of
Behavioral code is based on the migration of Visual code, and both are based on
the model extraction of the source application. The process is divided into the five
following steps:

Source code model extraction. We build a model that represents the source code
of the source application. To do so, one needs a source language parser
and its meta-model. The source language can be a programming language

34 Chapter 3. Approach

Migrated
application

Behavioral code
 modelBehavioral code extraction

Source code model extraction

Visual code
extraction

Source code model

Source
application

Visual code model

Visual code
generation

Behavioral code
generation

Source code model extraction
Visual code migration steps
Behavioral code migration steps

Figure 3.5: Our GUI migration process

or a markup language like XML or HTML. One can also extract a model
from a binary file format. An example of a source code meta-model for
programming languages is Famix [Ducasse et al., 2011].

Visual code extraction. We analyze the source code model to identify the visual
elements. We build a mapping between the widgets of the source framework
and the widgets of the GUI meta-model. Finally, we create a Visual code
model (pivot model, with widget and layout parts) from this mapping.

Behavioral code extraction. This step takes as input the extracted Visual code
model and the source code model. The source code model includes the Ma-
nipulation code and the creation of event handlers. The Visual code model
includes the widgets already extracted with which users can interact. It pro-
duces a Behavioral code model (pivot model, with behavioral part).

Visual code generation. We re-create the visual aspect in the target language. First,
we define the required configuration files and the target framework file archi-
tecture. Then, we define a mapping between the pivot meta-model concepts
and their implementations in the target framework. Finally, we export the
code corresponding to the visual part in the target language. We show exam-
ples of generators in Section 4.2.

Behavioral code generation. We export the extracted Behavioral code in the target

3.3. Visual code migration approach 35

language inside the generated GUI code.

Our approach is similar to the three steps approach used in the literature (see Sec-
tion 2.2.1). However, we added the support of the Behavioral code. The Source
code model extraction step extracts the old application into a source language
model. Visual code extraction and Behavioral code extraction steps transform the
source model into a higher-level representation. It corresponds to the “Extraction”
part of our concrete example Figure 3.3. They build a pivot model. The Visual
code generation and Behavioral code generation steps transform the pivot model
into the target application. It corresponds to the “Generation” part of our concrete
example Figure 3.3. Note that, as detailed in Section 3.2.1, we did not implement
the target language meta-model. Using a target language meta-model can be done
through adding a step before the Behavioral code and Visual code generation that
build the target language model from our GUI pivot model.

This approach presents the overall direction we follow to migrate an applica-
tion. Each step is adapted to the specific migration contexts. In the following, we
detail the steps for the Visual code migration (in yellow in Figure 3.5) and the steps
for the Behavioral code migration (in gray in Figure 3.5).

3.3 Visual code migration approach

We presented our overall approach to migrate an application. We now detail the
extraction and generation steps of the visual code part of the GUI migration. First,
we design three packages part of the pivot meta-model that allow one to repre-
sent the Visual code (see Section 3.3.1). Then, we detail how to extract a model
(see Section 3.3.2). Finally, we present the generation of target code from a model
(see Section 3.3.3).

3.3.1 Visual code packages

We represent the Visual code thanks to three meta-model packages inspired by the
literature (see Section 2.1.1). The core package includes the main GUI elements.
The widget package adds existing components to improve the reusability of our
approach. The layout package represents the widget GUI arrangement.

3.3.1.1 Core package

To represent the user interfaces of desktop or web-based applications, we designed
the core package presented in Figure 3.6. The core represents the DOM of a user
interface. Developers can then tune the meta-model by adding new entities to fit

36 Chapter 3. Approach

Widget

ContainerLeaf

0..*

widgets

container

Attribute
widget

0..*attributes

RootCustom Widget

Figure 3.6: Core package

their requirements, such as additional widgets, for example, a complex parameter-
izable table component. For instance, to increase the reusability of our approach,
we extended the core meta-model with several widgets and attributes in the widget
package (see Section 3.3.1.2).

Widget is a graphical resource. It can be refined as Leaf or Container.

Container is a composite of Widgets.

Leaf is a basic widget that can not contain another widget. For example, it is the
case of text input.

Root represents the main container of a graphical interface. It is either a window
of a desktop application or a web page. The Root is a kind of Container.

Attribute represents a widget property. For example, a button may have a text
attribute. An attribute can also change the behavior of a widget. It is the
case of the attribute enable. A button with the enable attribute set to false
represents a button on which one can not click.

Custom Widgets is a kind of Container that represents an unknown widget
in our meta-model. During the migration process, it represents a detected
but not recognized widget. The Custom Widgets concept is further dis-
cussed Section 3.3.1.4.

The DOM, massively used in the literature (see Section 2.1.1), is represented
with the relation between Container and Widget. To represent the widget vi-
sual disposition, we introduced a layout package (see Section 3.3.1.3) representing
the DOM with additional information such as how children are visually disposed
inside their parent.

3.3. Visual code migration approach 37

3.3.1.2 Widget package

The core package allows one to represent the GUI structure. However, using only
the core package would not be sufficient to perform the migration. Indeed, the
Widget concept should be refined to represent the diversity of existing widgets
[Gotti and Mbarki, 2016, Sánchez Ramón et al., 2016]. It is the goal of the widget
package.

The widget package describes the most common user interface widgets. It cur-
rently contains all the entities described in the W3School website4 such as Button,
Label, or Table. Note that this website only presents the widgets of the HTML
standard. Our widget package is composed of 61 widgets and 31 attributes. An
excerpt5 of the widget package is presented in Figure 3.7.

...

Widget

ContainerLeaf

Attribute

Link

List

Input

Button

Checkbox

Table

LabelPlaceholder

NameSrc

Panel Dialog

...

...

Custom Widget

Concepts of the widget package
Concepts shared with the core package

Figure 3.7: Excerpt of the widget package

This package can be extended with other widgets to fit the needs of a specific
migration. Extending this package is an option when developers have developed
specific widgets for their company and need to migrate them. The widget package
includes the already known widgets, whereas the Custom widget represents
the unknown widgets.

4https://www.w3schools.com/html/default.asp
5The complete Pivot meta-model is presented at https://badetitou.fr/projects/Casino/#full-

widgets-meta-model

https://www.w3schools.com/html/default.asp
https://badetitou.fr/projects/Casino/#full-widgets-meta-model
https://badetitou.fr/projects/Casino/#full-widgets-meta-model

38 Chapter 3. Approach

3.3.1.3 Layout package

To represent the layout of a graphical user interface, we designed a dedicated pack-
age. It allows one to represent the visual disposition of the graphical components of
the user interface. Our layout meta-model allows one to represent any hierarchical
layout, which is the most common one (see Section 2.1.2).

Widget

Container

Layout

Cell Size Position

container

0..1
layout

0..*
cells

layoutOwner
Absolute

Size
Relative

Size
Absolute
Position

Relative
Position

Alignment

widget

0..1

0..1

position

0..10..1
size

widget

Grid
Layout

Horizontal
Layout

Vertical
Layout

0..1

0..1

widget

cellOwner

Border
Layout

Concepts of the layout package
Concepts shared with the core package

Figure 3.8: Layout package

Figure 3.8 represents our layout package. The entities Widget and
Container are part of the core package presented in Section 3.3.1.1. The layout
package adds four main entities to the core package.

Size describes the height and width of a widget. The size of a widget can be
absolute or relative. The AbsoluteSize is expressed in pixels. The
RelativeSize is expressed as a percentage of its container.

Position describes the position of a widget in the user interface. It
can be absolute, relative, or defined by alignment properties. The
AbsolutePosition represents the coordinates of a widget in the user
interface. The RelativePosition represents the coordinates of a wid-
get in its container. The Alignment defines how to position a widget inside
its container. It can be in the top, bottom, right, left or center of its container
or a combination of them.

Layout represents rules to position the children of one container. Any
Container of the core package can have one layout. A Layout can

3.3. Visual code migration approach 39

be refined as a Grid Layout; a Border Layout; a Horizontal
Layout and a Vertical Layout. We currently support these layouts
because they are most frequently used in our context. However, one can
extend the layout package to support other hierarchical layout managers.

Cell A Layout can contain multiple Cells. Then, each Cell contains one
widget. Thus, the layout arranges the widgets using Cells. It allows one to
fine control the final GUI layout.

Note that some Containers do not have a Layout. For instance, a <se-

lect> in HTML has multiple <option>, thus, it is considered as a Container
but does not have Layout.

3.3.1.4 Custom widget

One of the challenges when considering GUI framework migration is the ability to
handle widgets that might not be present in the pivot meta-model. Indeed, widgets
in a source framework might be absent of the target framework [Shah and Tilevich,
2011, Gerdes Jr, 2009, Sánchez Ramón et al., 2014, Sánchez Ramón et al., 2016].
For example, AWT is an old GUI framework, and some of its widgets do not have
a counterpart in Angular. It is the case of the MenuBar Java class6 that corresponds
to a toolbar positioned at the top of a window. It is a common widget in AWT but
must be recreated in Angular. Note that in the case of migration between standard
web applications, the problem is less important because most of the widgets are
also standard (i.e.,<div>, , <input>, etc.).

To tackle such a problem, we use the concept of Custom Widget
[Sánchez Ramón et al., 2014, Sánchez Ramón et al., 2016]. When an unknown wid-
get type is encountered during the extraction step, the extractor creates a Custom
Widget. Then, it extracts the DOM of the Custom Widget as if it was a con-
tainer (i.e., <div> in HTML, or Container in Java Swing). During the generation,
Custom Widgets are generated as generic containers with a comment in the
generated code to warn developers and give them additional information: name
of the source widget, attributes (if identified), possible children widgets (if identi-
fied), location in the source code. With this information, developers can manually
add a new widget to the Pivot meta-model and update the known widgets mapping
(mapping source to pivot).

We designed our approach and the meta-model to be specializable. Thus,
to avoid migrating unknown widgets as a generic container using the Custom
Widget, one can create specific widgets and use them with our approach. The
added widgets will then be migrated. It also enables our approach to be iterative:

6MenuBar AWT javadoc: https://docs.oracle.com/javase/8/docs/api/java/awt/MenuBar.html

https://docs.oracle.com/javase/8/docs/api/java/awt/MenuBar.html

40 Chapter 3. Approach

one performs the migration, our tool identifies Custom Widgets, then the de-
velopers extend our meta-model and iterates. Note that such a widget should also
be created (programmed) in the target framework to improve migration results. If
the developers felt the need to create them in the source framework, there is a good
chance that the same need applies to the target framework.

We presented the three Visual code packages that compose our Pivot meta-
model representation (see Figure 3.4). It allows us to present the DOM, the differ-
ent widgets, and their layout. We also detailed the Custom Widget functioning
that deals with unknown widgets. In the following, we present the steps to build a
model instance of this meta-model from an application and how it can be used to
generate the target application GUI.

3.3.2 Visual code extraction
The Visual code migration consists of extracting the widgets, their attributes, and
their layout and linking them together. Custom widgets defined by the developers
and used in the applications should also be managed. We divided the Visual code
extraction into several steps. Some steps are framework dependent, others are ap-
plication dependent. Framework dependent steps must be performed to support a
new source GUI framework. Application dependent steps must be performed for
each migration project.

Visual code extraction

Framework
configuration

Application
extraction

Figure 3.9: Visual code extraction steps

Figure 3.9 presents the two steps to extract the Visual code. In the follow-
ing, we describe the first step applied (once) for each new GUI framework in Sec-
tion 3.3.2.1. Then we describe the second step applied for each application of an
already known framework in Section 3.3.2.2.

3.3.2.1 Visual code extraction — framework configuration

To extract an application’s GUI, one must first configure our approach to support
the GUI framework it uses. The result of this step will then be used for every
migration project using the same source GUI framework. It consists of analyzing
the source GUI framework and defining mapping and rules.

3.3. Visual code migration approach 41

Table 3.1: Sub-steps to support the extraction of a new GUI framework

source Map source framework Indentify Indentify custom Indentify root
to Pivot meta-model containment rules widgets rules widgets rules

Markup Map tags Use DOM Unknown tag Configuration file
language

Programming Map source classes Use method invocation Unknown Specific set
language and factories subclasses of widgets

To support a new source framework (see Table 3.1) we define the following
sub-steps:

1. Map source framework to Pivot meta-model, where we define dictionaries
mapping known widgets, attributes, layouts of the framework to their coun-
terpart in our Pivot meta-model. For programming languages, we map the
widget class and the factory methods to their pivot counterparts. For ex-
ample, in Swing, JButton maps to our pivot Button widget of the widget
package (see Section 3.3.1.2 and concrete example Section 3.2.1), and .set-

Label() is mapped to our pivot Label attribute. We also map factory meth-
ods to their widget counterpart. For instance, FactoryButton.create(Object
obj) is a factory that create a widget button depending on the obj parame-
ter. We map the method create of FactoryButton class to our pivot Button
widget. For markup languages, we map a tag to a widget concept. For exam-
ple, in HTML, <button> maps to our pivot Button widget, and the label

attribute maps to our pivot Label attribute.

2. Then, we need to identify containment rules in the source code. Contain-
ment links together widgets/layout and their children attributes/widgets. In
the case of programming languages, such containment links may come from
specific method calls as add(. . .) or setWidget(. . .) on a container wid-
get. For attributes, identifying the containments might use the setter methods
as for the previous sub-step. For instance, in myButton.setLabel("aLabel"),
setLabel is mapped to the pivot Label attribute and its receiver (myButton)
is the attribute owner. For markup languages, the containment is already
defined in the DOM.

3. Identify custom widgets rules specifies how to identify application-specific
widgets that are not part of the source to pivot dictionary map defined in the
first step. It means identifying that something is a widget even though we do
not know this widget. For programming languages, it generally corresponds
to unknown subclasses of a generic widget class. For example, the rule for
GWT is to look for all subclasses of the Widget class; in Angular, one looks
for all component.ts files. For markup languages, we look for unknown tags.

42 Chapter 3. Approach

Such custom widgets can typically not be translated automatically but need
to be identified. Thus, the generator flags them in the generated GUI for
developers to take actions (either migrate them manually or update the source
to pivot map, see Section 3.3.1.4).

Note that we only care about custom widgets and not custom attributes or
layout. We consider it impossible to define custom attributes (that would
apply to already known widgets) or custom layouts. Such new attributes/lay-
outs can only come as part of new custom widgets.

4. Finally, identify root widgets rules specifies how the root widgets will be
recognized. Root widgets are the root of the DOM defining the application’s
GUI. They correspond to windows in a desktop application or pages in a
web application. For markup languages, roots are defined in a configuration
file, whereas in programming languages, they are identifiable as a specific
set of widgets (e.g., JWindow in Java Swing). Later, we will see that they are
essential to build the hierarchical representation of a GUI.

We detail the implementation of these sub-steps in Section 4.1.1.

3.3.2.2 Visual code extraction — application extraction

Once our approach is “configured” to support a new GUI framework, one can ex-
tract the Visual code of an application using this GUI framework. Again, sub-steps
must be considered for the migration of each application. Contrary to the ones de-
scribed in the previous section, these sub-steps should be adapted to every migra-
tion project, even if the applications use the same GUI framework. These sub-steps
are inspired by the ones described in the literature (Section 2.2.4).

Table 3.2: Sub-steps to extract Visual code using a known framework

Source Identify Custom Widget Create widgets instances Detect composition Perform layout
additional sub-step

Markup Browse markup file Children in the GUI
language and create widgets when are children in the DOM

Apply encounter recognized tags
Custom widgets

Programming identification rules Look for source Look for call to Use symbolic execution
language class instantiation pre-determined methods to resolve precise

or call to factories position of widget

In the following, we present the four sub-steps for the extraction of the visual
code part of the GUI migration. These sub-steps actually perform the extraction of
application GUI based on the rules defined for the GUI framework. We also detail
how to adapt each sub-step for GUI based on programming languages and markup
languages. Table 3.2 summarizes the sub-steps and how we adapt them.

3.3. Visual code migration approach 43

1. First, identify custom widgets is based on the rules for the framework (cus-
tom widget rules). This sub-step actually performs the identification of the
custom widget in the application to migrate. For both markup and program-
ming languages, it corresponds to applying the custom identification rules
defined in the third sub-step of the preceding section. The new widgets are
added, on the fly, to the framework source to pivot dictionary. Each instance
of unknown widgets is mapped to a different instance of Custom Widget.
No effort is made to group various instances of the same unknown widget
together.

2. Second, in the create widget instances sub-step, the source to pivot dictio-
nary for the framework defined in the previous section is used to identify all
instances of known widgets, attributes, and layouts. We create for each in-
stance its equivalent in our GUI pivot model. For markup languages, we visit
the markup source file and create widgets corresponding to recognized tags.
For programming languages, we look for widget class instantiations. They
can occur by calling the widget constructor (e.g., in Java: new) or through
a factory defined by developers or the source framework. This strategy is
similar to the one proposed in the litterature (see Section 2.2.4).

3. Third, detect composition is based on identified containment rules of the
previous section sub-step. This sub-step links each instance of widgets, at-
tributes, and layouts with its parent widget. As a result, this sub-step extracts
the DOM of the GUI. In markup languages, the composition is already de-
fined in the DOM, so children in the source DOM are children in the pivot
DOM. For programming languages, we look for call to methods defined in
the containment rules (i.e., add(...), setWidget(...)). This sub-step results in
a DOM that includes the widgets, their attributes, and also the layouts.

4. Finally, performing a layout additional sub-step is often necessary to im-
prove the computation of widgets layout (typically with grid layouts). For
example, widgets could be positioned one relative to the other, or some com-
putation might be required to get the row and column values in a grid layout.
In markup languages, information such as the row and column values are
already provided by the DOM. Thus, there is no need for this sub-step for
markup languages. However, this sub-step is necessary for programming
languages and might require symbolic execution to resolve widgets’ position
in the GUI. Note that using symbolic execution to better extract application
GUI was proposed in the literature Section 2.2.4.

We detail the implementation of these sub-steps in Section 4.1.2.

44 Chapter 3. Approach

3.3.3 Visual code generation

There is no study nor detailed explanation in the literature on how to export Visual
code into the target language (see Section 2.2.4). The basic approach consists of
visiting the DOM of the pivot model and generating appropriate code. However,
the generated code may be split into different files, or one pivot entity may produce
several target entities, or several pivot entities may be grouped in only one target
entity.

Visual code generation

Framework
configuration

Application
generation

Figure 3.10: Visual code generation sub-steps

As for the extraction, the generation is split into the configuration for new GUI
frameworks and new applications. Figure 3.10 presents the two steps of the Vi-
sual code generation. The steps that configure our approach for a new target GUI
framework are detailed in Section 3.3.3.1. Then we discuss actual generation of an
application using a known target framework in Section 3.3.3.2.

3.3.3.1 Visual code generation — framework configuration

As for the Visual code extraction (see Section 3.3.2.1), the first step for the gen-
eration is to configure our approach to support the target GUI framework. This
configuration will then be reused for every application generation using the same
target GUI framework. It consists of analyzing the target GUI framework and
defining mapping and rules.

Table 3.3: Sub-steps to support the generation using a new GUI framework

Source Identify target Map Pivot meta-model
framework environment to target framework

Markup Written in one or multiple files Widget concept to tag
Language

Programming Defined in one method or Widget concept to
Language multiple methods according widget instantiation method

to the target framework

Two sub-steps are needed to support a new framework (see Table 3.3): identify
target framework environment and map Pivot meta-model to target framework.

3.3. Visual code migration approach 45

1. The first sub-step, identify target framework environment, defines where
the code will be generated to be supported by the target GUI framework. As
a result, the generator is configured to generate the target code in compli-
ance with the target GUI framework requirements. For instance, for markup
languages, the GUI can be fully defined in a file (.html) or multiple files
(Angular components). In the case of programming languages, some frame-
works force the user to define the GUI in a specific method, or the GUI can
be defined at any place in the code (Java Swing).

2. In the second sub-step, map Pivot meta-model to target framework, we
define a mapping between widgets, attributes, and layouts to their target
framework counterpart. For markup languages, it corresponds to the target
tag, and for programming languages, the way to instantiate the widget or set
the attribute (i.e., calling the constructor or a factory).

We detail the implementation of these substeps in Section 4.2.1.

3.3.3.2 Visual code generation — application generation

Once the support of the target framework is configured, it is possible to generate an
application. The generation uses the mapping between the pivot meta-model and
the target framework and the identified target framework environment to supervise
the target application code generation.

Table 3.4: Sub-steps to generate the Visual code using a known framework

Source Identify target Generate Code
application environment

Markup Visit the pivot model DOM
Language and generate for each

Configuration information widget/attribute/layout/ its tag counterpart
(URL for web application

Programming data access) Generate the GUI code using setter,
Language DOM builder methods, and constructor

Two sub-steps are needed to support the generation of a new application (see Ta-
ble 3.4): identify target application environment and generate code.

1. Identify target application environment is identical for programming and
markup languages. It consists of configuring the generator with the target
application environment settings. For example, by setting up the back-end
URL endpoints, the generator can generate calls to back-end services and set
the path to the image source for image widgets.

46 Chapter 3. Approach

2. The second sub-step, generate code, defines how the code is exported.
Whereas configuring how the code generator visits the GUI model to gen-
erate the code is defined at the “support new framework” level, one must
perform the code generation for each migration project. For target markup
languages, it consists of visiting the pivot model DOM. For each widget, the
generator creates its target language counterpart with its attributes. In the
case of generating programming languages, it calls methods that instantiate
the widgets (e.g., call to the constructor, call to a factory, etc.) and the meth-
ods used to build the DOM (i.e., add(), setWidget()) to generate the target
GUI.

We detail the implementation of these sub-steps in Section 4.2.2.
We detailed the sub-steps to extract and to generate the Visual code. Using

these sub-steps, one can migrate the visual aspect of an application. However, end-
users will not be able to interact with the UI. To enable interaction, one must before
migrate the Behavioral code.

3.4 Behavioral code migration approach
Based on the Behavioral code description and the literature, we designed a Behav-
ioral code migration approach. First, Section 3.4.1 describes our Behavioral code
package linked to the core package (see Figure 3.4). Then, Section 3.4.2 presents
the extraction steps. Finally, Section 3.4.3 presents the generation steps.

3.4.1 Behavioral code package
To represent the Behavioral code, we designed a behavioral package. It is based
on an AST meta-model to represent as closely as possible the executed code. It
comes as an extension of the FAST meta-model7 a generic AST meta-model. The
package is divided into two parts: the Events raised by user interaction, and the
Manipulation code.

To integrate all the behavioral concepts inside the generic AST, we defined
Manipulation code entities as ASTExpressions. Thus, we can attach our be-
havioral model to any AST model using the ASTExpression concept.

In the following, we present the concepts of our behavioral package illus-
trated in Figure 3.11. Events are represented at the right of the figure; and
Manipulation code at the center and left of the figure.

Event corresponds to the events that will be raised when the end-user interacts
with the UI. It can be refined as Click, Change, Error, Submit, and

7FAST (generic AST): https://github.com/moosetechnology/FAST/

https://github.com/moosetechnology/FAST/

3.4. Behavioral code migration approach 47

InvocableEntity

root

navigations 1
Navigating dialog

1

openers
0..*

OpeningDialog

widget
behavioralAccess
0..*1

Accessing
DOMElement

behavioralAccess

0..*

attribute
1

Accessing
AttributeValue

Setting
AttributeValue

Getting
AttributeValue

Widget

Attribute

Root Dialog

behavior
0..*

0..1

Event

Container

widget

attributes
0..*

events

events 0..*widget

Click

Change Submit

SubmitComplete

OpeningPopup

Error

ASTExpression

0..*

...

Submit

OpeningDialog

OpeningPopup

Accessing
AttributeValue

Getting
AttributeValue

Setting
AttributeValue

...

Concepts of the behavioral package
Concepts shared with the visual packages (Figure 3.7)
Concepts shared with the generic AST meta-model

Figure 3.11: Behavioral package

SubmitComplete or any other event (see Section 3.1.2.2). An Event is
linked to the AST concept InvocableEntity which represents an ele-
ment that can be invoked, e.g., a method or a lambda expression. An Event
is also linked to a Widget on which it is attached.

AccessingDOMElement represents the reference to any widget of the DOM.
For example, in myInput.value, there is the access to the Java variable myIn-
put. Assuming this variable contains an Input widget, there is an access to
the Input widget from the Behavioral code. Note that, a widget can have
multiple references.

AccessingAttributeValue represents an access to a widget attribute, and
so is linked to the Attribute concept of the core package. It can be refined
as a GettingAttributeValue or a SettingAttributeValue.

Navigating corresponds to the Manipulation code to navigate from one page
of the application to another. This concept is linked to the Root concept of
the core package. This piece of Manipulation code is the most represented
one in the literature.

OpeningPopup corresponds to the code executed to open a Popup.

OpeningDialog corresponds to code executed to open a dialog. The Dialog
concept is already defined in the widgets package (see Section 3.3.1.2), and
several OpeningDialog can be associated to the same Dialog.

48 Chapter 3. Approach

We presented the Behavioral code package and its integration with the Visual
code packages and a generic AST meta-model. Using this representation, we now
present how to perform the Behavioral code migration.

3.4.2 Behavioral code extraction
Because the Behavioral code package is linked to the Visual code packages (see Sec-
tion 3.4.1), the first step to extract the behavioral code is to extract the Visual code
model (Section 3.3).

Behavioral code extraction

Framework
configuration

Application
extraction

Figure 3.12: Behavioral code extraction sub-steps

Then, it is possible to extract the Behavioral code model.
As for Visual code extraction, we split the steps to support a new framework

and a new application. Steps to support a new framework are presented in Sec-
tion 3.4.2.1 and to actually extract Behavioral code from an application in Sec-
tion 3.4.2.2.

3.4.2.1 Behavioral code extraction — framework configuration

Two sub-steps must be performed to configure the Behavioral code extraction for
a new framework. The first one, Identify event handler types, is performed to sup-
port event extraction, and the second one, Define Manipulation code patterns, is
performed to support Manipulation code extraction.

We now detail the event extraction step.

Identify event handler types: We identify all the possible event handlers that ex-
ist in the source application framework. Example of event handler types are:
click, change, hover, . . . For markup languages, the existing handler types
are defined in the documentation8 of the GUI framework. For programming
languages, a handler is a class or a lambda responsible for executing the Be-
havioral code when an event occurs.

In addition to the event extraction configuration, we configured the extraction
of Manipulation code. Note that, since Manipulation code is expressed only in
programming languages, we only report configuration for programming languages.

8For plain HTML: https://developer.mozilla.org/en-US/docs/Web/Events#event_listingl

https://developer.mozilla.org/en-US/docs/Web/Events#event_listingl

3.4. Behavioral code migration approach 49

Define Manipulation code patterns: We define patterns to identify Manipulation
code inside the source code AST model (see Section 3.4.1 and Figure 3.5).
The different kinds of Manipulation code can be detected by one or multi-
ple patterns. Since Manipulation code depends on the GUI framework, one
must redefine patterns for each framework, but patterns are common to all
applications that use the same framework.

Table 3.5: Sub-steps to configure new framework extraction for Behavioral code

Source Identify event handler types Define Manipulation code patterns
Markup Tag attributes N/A
Language to handler concept

Programming Source class Define patterns from manual
Language migration examples

Table 3.5 summarizes the sub-steps needed to support a new framework. We
present implementation examples of these sub-steps in Section 4.3.1.

3.4.2.2 Behavioral code extraction — application extraction

Once we configured our approach for a new GUI framework, we can extract the
Behavioral code of an application using this GUI framework. Again, we split this
step into sub-steps to extract events and sub-steps to extract Manipulation code.

Two sub-steps are required to extract Behavioral code events: Detect event
handler instances, and Attach event handlers to widgets.

Detect event handler instances: We determine where, in the source code model,
the event handlers are created (i.e., instantiations of the event handler types).
For markup languages, they are represented by specific kind of attributes.
For example, in <button onclick="myFunction()"> the attribute onclick is
a special attribute that creates handler instance. For programming languages,
it corresponds to class instantiations or lambda definitions.

Attach event handlers to widgets: We link the handler instances from the previ-
ous sub-step to their widget owners. This sub-step is similar to the Detect
composition sub-step for Visual code extraction (see Section 3.3.2.2). From
this sub-step, we know the interactions allowed by the application for each
widget. For markup languages, the handler is attached to the widget that
holds the handler attribute. Again, in <button onclick="myFunction()">,

50 Chapter 3. Approach

the onclick handler is attached to the button widget. For programming lan-
guages, the handler is attached to a widget using a specific method invo-
cation. For example, button.addActionListener(...) in Java Swing or but-
ton.setOnAction(...) for JavaFX. In both cases, the handlers are attached to
the button widget.

To finalize the Behavioral code extraction, two more sub-steps are necessary.
These sub-steps aims to extract Manipulation code: Apply Manipulation code pat-
terns, and Manipulation code model transformation.

Apply Manipulation code patterns: Based on the extracted event handlers de-
tected in previous sub-steps, our tool analyses the source code model (see Fig-
ure 3.5) to identify the methods executed when an event is fired. Then, we
use a pattern matcher on the identified methods ASTs with the patterns de-
fined in the previous section (see Section 3.4.2.2). It provides the location of
the Manipulation code in the source code model.

Manipulation code model transformation: Then, we apply model transforma-
tions on Manipulation code location. It consists of creating the behavioral
entity and its associations associated with the pattern (e.g. OpeningPopup
or Navigating) and replacing the old AST expressions with the new GUI
behavioral entities.

Table 3.6: Sub-steps to extract application Behavioral code

Source Detect event handler Attach event handlers Apply Manipulation code Manipulation code
instances to widgets patterns Model Transformation

Markup Usage of the attribute The widget
Language in the DOM corresponding to the

attribute hosting tag

Programming Class instantiation Method invocation Use a patern matcher Perform the model
Language to determine transformation

Manipulation code position

Table 3.6 summarizes the sub-steps needed to extract Behavioral code of an ap-
plication. We present implementation examples of these sub-steps in Section 4.3.2.

Once the Behavioral code is extracted in a model, it is possible to generate in
the target framework.

3.4.3 Behavioral code generation
Again, we split the generation into steps to support new frameworks (Section 3.4.3.1)
and steps to support new applications (Section 3.4.3.2).

3.4. Behavioral code migration approach 51

Behavioral code generation

Framework
configuration

Application
generation

Figure 3.13: Behavioral code generation sub-steps

3.4.3.1 Behavioral code generation — framework configuration

To support the generation of Behavioral code, we first defined two sub-steps con-
figuring our approach to support a new target framework. The first one deals with
events generation and the second one with Manipulation code generation. Whereas
their implementations are different, the two sub-steps consist of creating the map-
ping between our Pivot meta-model and the target framework. These sub-steps are
similar to the second sub-step performed when supporting a new framework for Vi-
sual code generation (see Section 3.3.3.1), i.e. they map concepts from frameworks
to our Pivot meta-model.

We now detail the Map pivot events to target framework sub-step that config-
ures our approach to generate events using a target framework. This sub-step is
performed in the same way for target frameworks based on markup languages or
programming languages.

Map pivot events to target framework: We map the event handlers represented
in our Pivot meta-model to the available event handlers in the target frame-
work. This step is done only once per target framework and highlights the
handlers existing in the source framework and our Pivot meta-model but not
in the target framework. For such handlers, a specific approach should be
designed. One solution is to redevelop the handler in the target framework.
This solution is similar to migrating custom widgets (see Section 3.3.1.4).

In addition to the pivot events to target framework mapping, one has to perform
a similar mapping for Manipulation code.

Map Manipulation code to target framework: The sub-step consists of mapping
our pivot Manipulation code to its target framework counterpart. To do so,
we propose first to perform part of the migration manually to discover the
target code that corresponds to the source Manipulation code. Then, it is
possible to fill the mapping with Manipulation code and its textual target
counterpart.

Table 3.7 summarizes the sub-steps needed to configure the generation of Be-
havioral code for a new framework. We present implementation examples of these
sub-steps in Section 4.4.1.

52 Chapter 3. Approach

Table 3.7: Sub-steps toi configure new framework generation for Behavioral code

Source Map pivot events Map Manipulation code
to target framework to target framework

Markup
Language Map each Pivot meta-model

handler to its target
Programming framework counterpart Map Manipulations code
Language to their textual target

framework representation

3.4.3.2 Behavioral code generation — application generation

Once we configure our approach for the target framework, we can generate the
target Behavioral code. Again, the generation is divided between the events and
the Manipulation code generation.

Based on the mapping between pivot events and the target framework built in
the previous section, we perform the Generate event handlers generating event
handlers in the target application.

Generate event handlers: We generate the event handler in the target code. To
do so, we extend the generate code Visual code generation step (see Sec-
tion 3.3.3.2). Indeed, it consists of adding into the visual generated code
instructions to set the event handlers.

To finalize the generation of the Behavioral code, the last sub-step consists of
the generation of the target code, including Manipulation code.

Generate target AST: Finally, we generate the target code from the AST attached
to each extracted event handler. To do so, we generate the code of the method
called by the event handler, add the method dependencies (e.g., import state-
ments, variable initializations, etc.), and add potential comments in the gen-
erated code for missing migration rules.

Table 3.8: Sub-steps to generate application Behavioral code

Source Generate event Generate target
handlers AST

Markup Add in the generated markup
Language tag the handlers attribute

Programming Generate the event handlers setter Visit AST linked to handlers
Language attached to its widget and generate code

associated to each node

Table 3.8 summarizes the sub-steps needed to generate the Behavioral code of
an application. We present implementation examples of these sub-steps in Sec-
tion 4.4.2.

3.5. Conclusion 53

The generation of the Behavioral code completes the migration of the Visual
code. After the migration of the events and Manipulation code, end-users get access
to an application developed using the target framework that includes the GUI of the
source application.

3.5 Conclusion
In Chapter 2 we presented the existing GUI representations and solutions to migrate
GUIs using one GUI framework to another GUI framework. Whereas existing
solutions offer good results, they also fail to tackle two major challenges: having
a complete representation of the GUI and enabling the adaptation of their work to
other contexts.

To tackle these challenges, we, first, proposed in this chapter a definition of
the GUI. It includes a separation of the GUI inspired from the literature into the
Visual code that deals with the visual element and their disposition on a page; the
Behavioral code that deals with the end-user interaction with the GUI; and the
Business code that deals with application manipulated data. Together, Visual code,
Behavioral code, and Business code aim to represent the GUI of an application.
Thus, they tackle the first challenge.

From this definition of the GUI, we defined a generic approach to migrate appli-
cation GUIs. Following the literature’s classic horseshoe process, the approach is
subdivided into steps and sub-steps to migrate a GUI. To ease this approach adap-
tation to different contexts, we detailed each sub-step with possible adaptation for
frameworks based on programming languages or markup languages. Figure 3.14
illustrated our approach and the main steps for extraction and generation of Visual
code and Behavioral code. Using this approach and its possible adaptation, we
tackle the second challenge.

Our definition and approach allow one to migrate the GUI of an application. We
presented solutions to adapt our work to different frameworks. To better understand
how to implement our approach in a tool for different GUI migration projects, we
present several implementations of our approach in the next chapter.

54 Chapter 3. Approach

Behavioral code
model

Source code model extraction

Source code model

Source
application

Visual code model

Migrated
application

Visual code extraction

Application
extraction

Framework
configuration

Behavioral code extraction

Framework
configuration

Application
extraction

Behavioral code generation

Framework
configuration

Application
generation

Visual code generation

Framework
configuration

Application
generation

Source code model extraction
Visual code migration steps
Behavioral code migration steps

Figure 3.14: Our GUI detailed migration process

CHAPTER 4

Implementation

Contents
4.1 Visual code extraction . 55

4.2 Visual code generation . 61

4.3 Behavioral code extraction . 63

4.4 Behavioral code generation . 68

4.5 Conclusion . 73

This chapter aims to provide examples of our GUI migration approach im-
plementation for different contexts. We implemented Visual code extractors and
generators for GUI frameworks that use programming and markup languages and
a Behavioral code extractor and generator for the GWT GUI framework based on
the Java programming language.

We present our implementations for the Visual code and Behavioral code mi-
gration separately. Section 4.1 details the extractors’ implementation of the Visual
code. Section 4.2 focuses on the Visual code generators’ implementations. Sec-
tion 4.3 details the Behavioral code extractor implementation. Finally, Section 4.4
details the Behavioral code generator implementation.

4.1 Visual code extraction

We implemented three extractors for three different frameworks: The first one,
BLCore/GWT, enables designing web GUI in the Java programming language. The
BLCore framework is the one used by our industrial partner and is an extension of
the GWT GUI framework. The second one, GXT1, enables designing web GUI us-
ing the XML markup language. GXT and GWT applications contain configuration
files written in XML to describe some application parameters, such as the main
pages, the URL and the port used when deploying the application, and the URL
of the back-end. The last one, Spec [Fabry and Ducasse, 2017], enables designing

1GXT, https://www.sencha.com/products/gxt/, is also an extension of GWT

https://www.sencha.com/products/gxt/

56 Chapter 4. Implementation

desktop GUI in the Pharo2 programming language. Each extractor builds a pivot
model from an application.

In this section, we detail the steps of the visual code extraction (see Figure 3.14).
We discuss separately the sub-steps to support a new framework (see Section 3.3.2.1)
and the sub-steps to actually extract Visual code of an application (see Section 3.3.2.2)
with concrete examples from the extractors.

4.1.1 Visual code extraction — framework configuration

To support a new framework (see Section 3.3.2.1), one needs to:

• Map the source framework to the Pivot meta-model,

• Identify the containment rules,

• Identify the custom widgets rules, and

• Identify the root widgets rules.

Map source framework to pivot model. The basic approach to define a map-
ping between source and pivot meta-model is to create a dictionary. For GXT
extractor, we map an XML tag or attribute (source meta-model) to its correspond-
ing pivot widget, attribute, or layout. For example line 2 of Listing 4.1, the con-

tainer:VerticalLayoutContainer source tag maps to the pivot widget Panel contain-
ing a Vertical pivot layout. The pivot Panel concept is defined in our widget pack-
age (see Section 3.7) and the Vertical pivot layout in our layout package (see Sec-
tion 3.3.1.3).

1 <gxt:Window ui:field="window">
2 <container:VerticalLayoutContainer>
3 <form:FieldLabel text="{i18n.user}">
4 <form:widget>
5 <form:TextField/>
6 </form:widget>
7 </form:FieldLabel>
8 </container:VerticalLayoutContainer>
9 <gxt:button>

10 <button:TextButton text="{i18n.login}"/>
11 </gxt:button>
12 </gxt:Window>

Listing 4.1: Snippet of an GXT login view in XML

2https://pharo.org/

https://pharo.org/

4.1. Visual code extraction 57

For the frameworks based on programming languages (GWT and Spec), we
map a source class or method to a pivot widget, attribute, or layout. We need to
consider also methods because some widgets may be constructed through factories.
Also, an attribute of a source widget might be assigned with a setter method; in this
case, the source method (setter) maps to a pivot attribute. We already gave mapping
examples in Section 3.3.2.1. We do not consider getters for the GUI extraction
because they do not tell us anything about the value to assign to the attributes.
Therefore they do not point us to anything that could help generate code.

There are other possible mappings, for example a GWT source widget Dy-
namicFieldSetPanel maps to a pivot widget FieldSet and its boolean attribute dy-

namicFieldSet. The presence of an attribute may also be conditioned to the in-
stantiation of a widget. For example, instantiating a Button widget with a string
parameter (new Button("OK")), will set its text attribute. Another case is that of
a source attribute mapping to two pivot attributes. For example the width source
attribute maps to either the absoluteWidth or relativeWidth pivot attributes depend-
ing on whether the value assigned to it is in pixel (e.g.,"250px") or in percentage
(e.g.,"50%"). Identifying such differences requires symbolic execution and cannot
always be achieved (see Section 4.1.2).

Identify containment rules. The containment link rules identification might
be straightforward. For example, in GXT, we use the XML file’s DOM describing
the interface since it is already structured as a containment tree.

The links between a widget and its attributes are easily set for frameworks based
on programming languages when the attributes are identified. Indeed, when an
attribute is defined in a widget constructor, this attribute is represented as contained
by the widget. For instance, in new Button("OK"), the text attribute is linked to
the Button widget. When the attribute is defined with a setter method, the attribute
owner is the receiver of the method invocation. For instance, in input.setName("a

Name"), the name attribute is linked to the Input widget.
The containment links between widgets and sub-widgets, or widgets and

layouts, are identified through the use of a small set of specific meth-
ods: ownerWidget.add(<widget>) for Spec and GWT, and also ownerWid-

get.setWidget(. . . , . . . , <widget>) for GWT. For these methods, we specify that
the parent widget is the receiver and the child widget is the argument.

Finally, in some GUI frameworks, widgets and layout are mixed, it is the case
for GWT with HorizontalPanel class that mixes the Panel widget and the Horizontal
layout (see Section 2.1.2).

Identify custom widget rules. In programming language based frameworks,
we typically look for new classes inheriting from the most abstract widget in the
source language: Widget class for GWT, and ComposablePresenter for Spec.

In GXT, custom widgets are either unknown tags in a GUI description file
(named xxx.ui.xml) or a GUI description file not listed as root in the configura-

58 Chapter 4. Implementation

tion file. For example, in the snippet of Listing 4.1, we expect to know all tags
within <gxt:Window>. Any unknown tag, i.e. not present in our widget to pivot
concept mapping defined in the Map source framework to pivot model sub-step,
inside <gxt:Window> is then considered as a custom widget.

Identify root widget rules. In GWT and GXT, we browse the XML configura-
tion file describing the application where all root widgets are listed. Note that this
is the same file in both cases as GXT is just an extension of GWT.

In Spec, the notion of root widget is fuzzier because it relies on the idea that any
widget can be opened as a window or included in another widget. Therefore, in this
case, we rely on the user to tell us what the root widgets are for each application.

4.1.2 Visual code extraction — application extraction

As presented in Section 3.3.2, to migrate a new application in a known framework,
one needs to:

• Identify the custom widget types,

• Create all widget instances,

• Detect the composition of widgets, and

• Perform an optional additional sub-step for layout.

Identify custom widget. We apply the identification rule defined for the given
framework. For example, as described above, in GWT we look for all new class
descendants of Widget.

Create widget instances. In GXT, identifying widgets instances, attributes,
and layout is achieved by browsing the XML file from top to bottom, creating
pivot counterpart as we encounter tags (these tags were identified in the Mapping
Definition sub-step in the previous section). The composition of the widgets and
their attributes is extracted from the source XML file’s DOM. The same goes for
layouts.

Identifying widgets, attributes, and layout instances for applications using frame-
works based on a programming language is more complex. In the following, we
present the example for GWT based on Java, but the very same approach is appli-
cable to Spec based on Pharo.

If a source widget is identified by a class, we just look for instantiations (new)
of this class. If a source widget is identified by a method (e.g., in a factory), we look
for calls to this method. In both cases, we need to keep a reference to the instance
created for later analysis. Typically the instance is assigned to a variable, and we
retain this variable. For example, in Listing 4.2, line 4, the LinkLabel instance is

4.1. Visual code extraction 59

1 class SPBusiness1 extends AbstractBusinessPage {
2 @Override
3 public void buildPageUi(Object object) {
4 LinkLabel lblPg = new LinkLabel("Next");
5 lblPg.setEnabled(methodCall());
6 content.add(new Label("<Business content>"));
7 content.add(lblPg);
8 super.setBuild(true);
9 }

10 }

Listing 4.2: User interface creation in Java GWT

assigned to the variable lblPg. Since we are working with a source code model
and not the source code as a textual artifact, we have the variables as entities in
the source model (see Section 3.2.3). Thus, we can easily find every place where
a widget is accessed. Finally, in Listing 4.2, there are two widget instantiations:
LinkLabel, line 4; and Label (another known widget), line 6.

When looking for attributes in the source model, we search for known setter
messages sent to variables containing widget instances. Again these setter mes-
sages were identified for the framework as indicators of attributes. In Listing 4.2,
on line 5, the lblPg variable receives the setEnabled message that maps to the dis-

able pivot attribute. Note that, again, the argument of setEnabled must be inter-
preted to give the correct value to the pivot attribute. In the example, we have to
execute the method methodCall to resolve the boolean value. It is one of the most
complex and least reliable computations we perform, as will be seen in the results
of experiments given in Section 5.1.3. Nevertheless, we still achieved a worst-case
of 67% of attributes correctly detected.

Detect composition. For the DOM building, there are two examples of calls
to the add(<widget>) method in Listing 4.2, on line 6 and 7. In each case, we
already identified the variable to which these messages are sent (content) and the
children widgets that are passed as arguments.

Note that the line 8 of Listing 4.2 is not used as it does not involve any known
variable or method. It actually does not impact the interface built.

In Spec, the process is similar except that widget creation and containment links
are defined at different places. Still, they also rely on the use of variables containing
the widgets created and used later to establish the containment links. The work is
more straightforward as containment links are separated in a well-defined method,
making it a bit similar to a declarative specification.

Listing 4.3 presents a defaultSpec method in Pharo. It is the method that devel-
opers have to extends to define the DOM of a GUI with the Spec GUI framework.

60 Chapter 4. Implementation

1 defaultSpec
2 <spec: #default>
3 ^ SpecLayout composed
4 newColumn: [:col |
5 col newRow: [:row |
6 row add: #buttonNormal.
7 row add: #buttonDisabled.
8]
9];

10 yourself.

Listing 4.3: Building layout and DOM in Pharo Spec

Line 4, a vertical panel is created (newColumn:) and line 5 a horizontal panel is cre-
ated (newRow:). Line 6 and 7, two widgets contained in variables, buttonNormal
and buttonDisabled, are added to the horizontal panel. Using the method newCol-

umn:, newRow:, and add:, the DOM building of Spec GUI framework is similar to
the one used by markup based GUI framework such as GXT.

Note that, in our Pivot meta-model, children widgets are rarely added directly in
their parent widget. Because our DOM also contains the layout, widgets are added
to cells that are put in layouts, themselves children of the parent widget.

Perfom additional layout computation. To accurately represent the layout,
one needs to compute each cell position inside its parent layout. The basic case
is to recover the order in which widgets are added into their parent layout. As
an example, in a VerticalFlowLayout or HorizontalFlowLayout, the order in which
widgets are added controls their position one relative to the other, see for example
Listing 4.2 (lines 6 and 7) where two widgets are added consecutively to their
parent.

Spec having a limited number of simple layouts (VerticalFlowLayout and Hori-

zontalFlowLayout), it falls within this easy case.

1 int row = 0;
2 Grid grid = new Grid();
3 grid.setWidget(0, 0, new Label("name:"));
4 grid.setWidget(row++, 1, new Button());
5 grid.setWidget(++row, 1, new Label(""));
6 grid.setWidget(grid.getRowCount(), 0, new Label());
7 grid.getFlexCellFormatter().setWidth(0, 1, "50%");

Listing 4.4: Complex layout creation in Java GWT

More complex layouts, like the Grid layout, allow cells to occupy (span) several

4.2. Visual code generation 61

positions in the grid or to be inserted in any position of the grid. For GUI based
on markup languages (e.g., GXT, HTML), position computation is still relatively
easy as the information is hardcoded in the source. For GUI based on programming
languages (e.g., Java GWT), the position or span might be the result of computa-
tions at execution time and, therefore, more challenging to extract. For example
see lines 3 to 6 in Listing 4.4.

We try to solve some of these cases by performing symbolic computation. The
same ideas were used in other GUI extraction tools ([Silva et al., 2010], see Sec-
tion 2.2.4). Symbolic execution involves identifying all functions/operators’ se-
mantics that can be used in the source code. Here, in the example of Listing 4.4,
one needs to know the Pre/Post Increment/Decrement operators (lines 4 and 5) as
well as the getRowCount, getColumnCount, getCellCount methods, and the as-
signment operation (line 1). Concretely for our examples, we only need the pre
and post-increment operators (x++ ; ++x), and the getRowCount and getCell-

Count methods to perform the computation. Using symbolic computation, we can
resolve the successive values of row in Listing 4.4.

4.2 Visual code generation

Once we have a GUI model, it is possible to generate the GUI in the target frame-
work. As for the extractors, we implemented three generators for three different
frameworks. The first one, Angular, is web-based, and the interface is defined
in a markup language (HTML). The second one, Seaside, is web-based, and the
interface is defined in a programming language (Pharo). The last one, Spec2, is
desktop-based, and the interface is defined in a programming language (Pharo).

When generating the target code, it is possible to use an intermediate target
meta-model or to embed the target meta-model inside the Pivot meta-model to
target language mapping (see Section 3.2.1). In these implementation examples,
we chose the second option, i.e., no target meta-model.

In this section, we discuss the steps presented Section 3.3.3 to generate the
target code with concrete examples from the generators (see Figure 3.14, Visual
code generation). We present, again, separately the sub-steps to support a new
framework (see Section 4.2.1) and the sub-steps to migrate a new application (see
Section 4.2.2) with concrete examples from the generators.

4.2.1 Visual code generation — framework configuration

To handle an application using a new framework, one needs to:

• Identify target framework environment, and

62 Chapter 4. Implementation

• Map Pivot meta-model to target framework

Identify target framework environment. Before working on concrete code
generation, it is essential to discover the architecture required by the target GUI
framework. The simplest solution is to read the target framework’s documentation
to understand the good practices when developing an application with this frame-
work. We also define how to import GUI dependencies in the target framework,
e.g., how to import modules in Angular. In Angular, the GUI code is defined inside
an HTML file. However, it is also necessary to create several configuration files
(e.g., module, CSS, route). All those files are identified at this sub-step and are
necessary to create the target GUI. In Spec2 and Seaside, the GUI definition code
has to be written in a specific method.

Map Pivot meta-model to target framework. As described in Section 3.2.3,
our migration includes the mapping between source frameworks and our Pivot
meta-model and between our Pivot meta-model and the target framework. This
step takes care of the second dictionary mapping. Building the dictionary that
maps pivot meta-model concepts to the target framework is similar to building the
dictionary mapping the source framework to the Pivot meta-model. In the case of
Angular, we map pivot widgets to Angular tags (e.g., a Button corresponds to <in-

put type="button"/>). In the case of Spec2, we determine the methods used to
instantiate the target widgets. For instance, the common widgets (i.e., button, label)
should be instantiated using a factory pattern. In contrast, the traditional call to a
constructor method is favored for less frequent or more complex widgets. Finally,
the Seaside framework uses invocations to factory methods to build the widgets. As
for the extraction, a pivot meta-model concept can correspond to multiple widgets
in the target framework.

4.2.2 Visual code generation — application generation
One also needs to perform two sub-steps when it comes to generate the target code
of an application using a known GUI framework:

• Identify target application environment, and

• Generate code

Identify target application environment. This sub-step consists of determin-
ing the environment in which the target application will be executed. The sub-step
is identical for GUI defined with markup and programming languages. It con-
figures the endpoint URL for data access and URL to retrieve images (e.g.,). The generator must use this information to create a runnable
application in the target environment. The approach will complete the target GUI

4.3. Behavioral code extraction 63

code with configuration files (or annotations for programming languages) for all
our generators.

Generate code. The code generation consists of creating the target GUI. The
main approach is to visit the pivot DOM and, for each widget, create its coun-
terparts in the target application. In the case of Angular, the generation is eased
because the generated HTML file and the pivot DOM have the same structure. For
Spec2 and Seaside, our generator creates into specific methods the widgets and
their composition using constructors and a pre-defined set of methods. For Spec2
specifically, the DOM must be defined in a method and the widgets instantiated in
another method.

4.3 Behavioral code extraction

In the following, we present an implementation of our behavioral migration ap-
proach, presented in Section 3.4 (see also Figure 3.14, Behavioral code extraction)
only for the migration of Java GWT Behavioral code. As the approach is split into
two parts, we split the implementation into two parts: configuring new framework
extraction, Section 4.3.1, extracting application Behavioral code, Section 4.3.2.
We also present the critical information one should pay attention to for adapting
our extractor for other programming languages in Section 4.3.3. Note that, again,
as described in Section 3.4.2 and in Section 3.4.3, sub-steps are divided into sup-
porting events and the Manipulation code extraction.

4.3.1 Behavioral code extraction — framework configuration

We are now detailing the two sub-steps to configure a new framework for Behav-
ioral code extraction:

• Identify event handler types, and

• Define Manipulation code patterns

As presented in Section 3.4.2.1, the first sub-step is dedicated to the configura-
tion of event extraction and the second sub-step to the configuration of Manipula-
tion code extraction.

Identify event handler types. To identify all event handler types, we looked
at the GUI framework documentation. The GWT documentation3 defines the class
EventHandler as the most abstract event handler type. Thus, the available event
handlers in the source application are the subclasses of EventHandler.

3http://www.gwtproject.org/javadoc/latest/

http://www.gwtproject.org/javadoc/latest/

64 Chapter 4. Implementation

Define Manipulation code patterns. To detect Manipulation code inside the
source code model, we manually defined patterns that recognize Manipulation
code. In the following, we present the eight patterns we defined for the six pieces
of Manipulation code of our Behavioral code meta-model (see Section 3.4.1).

For OpeningPopup, we defined three patterns. The first one is about looking
in the AST for a reference to a Java class named ErrBox. The second one is similar
to the first one, but looking for a Java class named EventPopup. An example of
AST matched by this pattern is presented in the Model transformation sub-step,
Section 4.3.2, and depicted in Figure 4.1, page 67. The third one is about looking
for a method invocation. The method invoked must be named alert, and the receiver
of the invocation is a reference to a Java class named Window. An expression
matching the pattern is Window.alert(...).

For Navigating, we defined one pattern. It looks for a reference to a class
named Workspace. This class should be the receiver of an invocation of getPhase-
Manager() which, in turn, is the receiver of an invocation displayPhase(). This
pattern matches the Workspace.getPhaseManager().displayPhase(...) expression.
Again, an example of AST matching by this pattern is presented in Figure 4.1.

For OpeningDialog, the pattern matches an invocation of a method named
show. The receiver of this invocation must be a local variable reference. Moreover,
this local variable must hold a Dialog widget. At this stage, we remind the reader
that we extracted the variables to which widgets are assigned during the Visual
code extraction. This pattern matches the dialog.show(...) expression.

For AccessingDOMElement, the pattern matches a reference to a variable
that contains a widget.

For GettingAttribute and SettingAttribute, the patterns looks for
already matched AccessingDOMElement Manipulation code. Then it checks
that this AccessingDOMElement is the receiver of a getter or a setter method
invocation. Getter or setter methods are simply methods with their name beginning
with “get” or “set”. The name of the attribute is retrieved from the name of the
getter or setter, i.e.,setTitle() corresponds to a setter of the attribute title.

4.3.2 Behavioral code extraction — application extraction
Once an extractor is configured for a GUI framework, it can extract Behavioral
code from any application using this GUI framework. To do so, it performs four
sub-steps; the first two are dedicated to events extraction and the last two to Ma-
nipulation code extraction (see Section 3.4.2.2).

We now detail the implementation of the two sub-steps for events extraction:

• Detect event handler instances, and

• Attach event handlers to widgets.

4.3. Behavioral code extraction 65

Listing 4.5 presents a snippet of code that illustrates event handlers creation in
Java. The code consists in the creation of three widgets: line 1 a panel, line 2 a
linkbutton, and line 5 an anonymous button (new Button()).

1 Panel panel = new Panel();
2 LinkButton linkbutton = new LinkButton("Send");
3 linkbutton.addClickHandler(new ClickHandler() {
4 public void onClick(ClickEvent event) { ... }});
5 panel.add((new Button()).addClickHandler(new

ClickHandler() { ... }));

Listing 4.5: Creating event handlers in Java/GWT

In Listing 4.5 only the ClickHandler type is represented (lines 3 and 5).
Detect event handler instances. The basic approach consists of looking for the

constructor invocations of the event handler types. For instance, creating a Click
event in our pivot model (see Figure 3.11) is made by calling new ClickHandler(...).

In Listing 4.5, there are two event handler creations, line 3 and 5, both identified
by new ClickHandler.

Attach event handlers to widgets. For each handler instance, our implemen-
tation extracts its widget owner. To do so, it looks for the receiver of the handler’s
creation. The extractor performs an analysis of the source code model to retrieve
the widget owner (see Section 4.1.2). The owner can be declared in the same
method or another method or class.

In Listing 4.5, the first click handler (line 3) is created inside the method add-

ClickHandler sent to the variable linkbutton. And the variable linkbutton holds the
linkbutton widget defined line 2. Thus, the event handler owner is the LinkButton
widget. The second click handler (line 5) is created inside the method addClickHan-
dler sent to the anonymous instance of the Button class. Thus, the event handler
owner is the anonymous button.

In addition to the extraction of the events, our approach extracts Manipulation
code from the application. The extraction of Manipulation code is done in two
sub-steps:

• Apply Manipulation code patterns, and

• Manipulation code model transformation.

Listing 4.6 presents a snippet of code that includes Manipulation code. In
this example, the method onClick() is called when the end-user clicks on a but-
ton which, in turn, calls the method generateError(). In case the application has

66 Chapter 4. Implementation

been launched in debug mode (line 5), a Popup is displayed with the message �I

am an error� (line 7). Otherwise, the navigation to the root APage is performed
(line 9).

1 public void onClick(final ClickEvent event) {
2 this.generateError();
3 }
4 private void generateError() {
5 if(debugMode){
6 System.err.println("logging error");
7 EventPopup.displayError("I am an error");
8 } else {
9 Workspace.getPhaseManager().displayPhase(

ConstantsPhase.APage());
10 }
11 }

Listing 4.6: Example of Manipulation code

Apply Manipulation code pattern. To extract Manipulation code, we first
use a pattern matcher on the source code model (see Figure 3.14) with the pat-
tern defined at the configure framework level (see Section 4.3.1). This step re-
trieves Manipulation code position inside the source code model. In our exam-
ple (Listing 4.6), our implementation identifies two pieces of Manipulation code.
EventPopup.displayError(...) matches one of the OpeningPopup pattern, and
Workspace.getPhaseManager().displayPhase(...) matches the Navigating pat-
tern.

Manipulation code model transformation. Then, we perform model trans-
formations on detected Manipulation code. Figure 4.1 presents the model trans-
formation performed for the method generateError() of Listing 4.6. The left-hand
side presents a simplified version of the source method AST. The circled entities
(Worspace, getPh. . . , EventPopup, displayError(), and "I am an. . . ") are the enti-
ties found by the pattern matcher. The right-hand side presents a simplified version
of the produced pivot model. For instance, for the OpeningPopup (Listing 4.6,
line 7), we replace EventPopup.displayError by a OpeningPopup entity. The
string parameter is preserved during the transformation. The case of Navigating
is more complex, as the parameter ConstantsPhase.APage() refers to a Root de-
fined in the UI model, our approach also retrieves the root (in gray in Figure 4.1).

4.3. Behavioral code extraction 67

generate
Error()

If/Else

ElseIf

Workspace

getPh...

...

EventPopup

displayError()

System

err

...

"I am an..."

generate
Error()

If/Else

ElseIf

NavigatingOpening
PopupSystem

err

...

"I am an..." Root

Figure 4.1: Example of model transformation for Listing 4.6
left: Source AST ; right: GUI pivot model

Concepts of the behavioral package
Concepts shared with the Visual code packages
Concepts shared with the generic AST meta-model

68 Chapter 4. Implementation

4.3.3 Behavioral code extraction — adapting to other program-
ming languages

We presented the implementation of our Behavioral code extractor for the Java/GWT
programming language. To help future research adapt our work for the migration
of other applications, we now present some lessons and tools.

Our extraction approach is based on pattern matching on an AST. Designing an
AST and parser for a source language is time-consuming and error-prone. Thus,
we advise using an existing tool when possible. Even if they are defined using
an unknown programming language of the practitioner, the effort of learning the
language is worth it. In our context, we used the FAST meta-model, which is
an abstract meta-model that can be extended to represent different programming
languages ASTs. We also use the SmaCC project [Brant et al., 2017] that comes
with several parsers.

Another takeaway message is to focus on the main pieces of Manipulation code
and events. As depicted in Section 3.1.2.2, hundreds of events and kinds of Ma-
nipulation code exist. Thus, building a migration tool that deals with all of them
for industrial projects is not feasible. We advise future researchers to perform a
first analysis of the source code to determine the Manipulation code and events of
interest for the migration.

Finally, as the extraction is based on pattern matching, the higher the number of
patterns is to be defined, the worst it is. To avoid creating many patterns, one should
first perform a source code standardization [Włodarski et al., 2019]. It consists
of modifying the source code to express Manipulation code with as few different
expressions as possible. Thus, only one pattern is to be defined for each piece of
Manipulation code.

4.4 Behavioral code generation

From the behavioral model, it is possible to generate the target code, which is the
last step of our approach. As depicted in Figure 3.14, Behavioral code generation,
we split the generation into two parts: Section 4.4.1 presents how we configure
our approach to support new framework, Section 4.4.2 presents how we actually
generate events and Manipulation code. We also implemented additional features
to ease the migration (Section 4.4.3).

4.4.1 Behavioral code generation — framework configuration

Before performing the actual generation of the code, we configure our approach to
support a new target framework. During this step, we build the mapping between

4.4. Behavioral code generation 69

the pivot events and the Manipulation code with the target framework. With the
mapping between pivot Visual code and target language (see Section 4.2.1), these
mappings take care of the Pivot meta-model to target framework mapping (see Sec-
tion 3.2.1). Two sub-steps are necessary to create the Behavioral code generation
mapping:

• Map pivot events to target framework, and

• Map Manipulation code to target framework

The first step builds the mapping between the events and the target framework.
Map pivot events to target framework. The basic approach consists of cre-

ating a dictionary. In the case of Angular, we map the Click concept (see Fig-
ure 3.11) to the Angular attribute (click), or the Submit concept to the Angular
attribute (ngSubmit).

Then, the second sub-step to support the generation of Behavioral code using a
new framework consists of mapping Manipulation code with the target framework.

Map Manipulation code to target framework. To map Manipulation code
to its counterpart in the target framework, we create a dictionary. This mapping
includes for each piece of Manipulation code: its textual representation and its
dependencies (e.g., import statements and variable initializations).

4.4.2 Behavioral code generation — application generation
Once we configured our approach for a new framework, it is possible to actually
generate the target Behavioral code for a given application. To illustrate the Behav-
ioral code migration, we present the migration of the Java piece of code presented
in Listing 4.7 to Angular.

The Behavioral code generation is split into two sub-steps:

• Generate event handlers, and

• Generate target AST.

The first step consists of the generation of the event handlers in the target code.
Generate event handlers. During the generation step of the Visual code (Sec-

tion 4.2), our tool adds handlers instances to the list of widgets attributes. List-
ing 4.7 line 4, the link button has a click handler. In Angular, the handlers are
defined in the HTML file representing the Visual code using the event-binding fea-
ture. Figure 4.2 presents how event-binding feature is used. It consists of adding in
the HTML source code the template statement (e.g., a method) executed when an
event is fired.

70 Chapter 4. Implementation

1 Panel panel = new Panel();
2 LinkButton linkbutton = new LinkButton("Send");
3 panel.add(linkbutton);
4 linkbutton.addClickHandler(new ClickHandler() {
5 public void onClick(final ClickEvent event) {
6 String values = emailBox.getText();
7 if (values != null) {
8 values.split(",");
9 EventPopup.displayInfo("can access");

10 } else {
11 Workspace.getPhaseManager().displayPhase(

ConstantsPhase.AnotherPage());
12 }
13 }});

Listing 4.7: Example of Java code

Figure 4.2: Angular Event Binding feature

1 <panel>
2 <input type="email" name="emailBox">
3 <button (click)="onClick()">
4 Send
5 </button>
6 </panel>

Listing 4.8: Example of HTML code migrated from Java code in Listing 4.7

4.4. Behavioral code generation 71

Listing 4.8 present the generated HTML file for the Listing 4.7 migration exam-
ple. Line 3, we generate the Angular (click) attribute that is linked to the template
statement onClick() when end-users click on the button.

To finalize the migration, our tool generates the code executed when an event is
fired. It includes the generation of the target code based on the pivot AST (see Sec-
tion 3.4.1). Manipulation code is generated following the mapping defined in Sec-
tion 4.4.2.

Generate target AST. We generate the target code in the target language based
on the Behavioral code model. The generation is done by visiting the model and
generating its target language counterpart for each node. Here we remind the
reader that the Behavioral code model is comparable to a modified AST (see Sec-
tion 3.4.1).

For the Manipulation code, we also generate its dependencies. For instance,
the Angular navigation service is required to perform the navigation from one page
to another. To generate the code that initializes Manipulation code dependencies,
we used the mapping between Manipulation code and its dependencies defined in
the preceding section. Then, during the code generation step, our implementation
generates the code to initialize the dependencies in the class constructor. In our
context, it is the case for multiple Manipulation code elements. For instance, the
Navigating and the OpeningPopup Manipulation code need to use two An-
gular services: DesktopService, and ToastrService.

1 constructor(
2 protected _desktopService: DesktopService,
3 private _toastrService: ToastrService,) {
4 }
5
6 onClick() {
7 let values = (<any>this.input).nativeElement.value;
8 if (values != null) {
9 values.split(’,’); // <ToReview> : Unknown

invocation: split(...)
10 this._toastrService.success(’can access’);
11 } else {
12 this._desktopService.openPage(’AnotherPage’);
13 }
14 }

Listing 4.9: Example of TypeScript code migrated from Java code in Listing 4.7

The Listing 4.9 present the generated TypeScript file for the Listing 4.7 migra-

72 Chapter 4. Implementation

tion example. Lines 2 to 3, the generator automatically declared the DesktopService
service dependency to allow the navigation between pages and the ToastrService

used by the OpeningPopup Manipulation code.

4.4.3 Additional features

In addition to the Behavioral code migration, we have implemented features in the
generator to help developers during the migration process. It consists of making the
code more natural (i.e., respecting the conventions of the target language as used
by an expert).

Migration of Java to TypeScript. Additionally to the migration of the Ma-
nipulation code, our implementation migrates the rest of the code (i.e., variable
declaration, control flow, etc.). Although it is not one of our main goals, it helps
developers understand the target language4 and speeds up the migration process.
For instance, Listing 4.7 line 6, the variable values is a string declared in Java. Our
generator produced, Listing 4.9 line 7, let values which corresponds to the values

variable declaration in Angular.
Add comments. Our generator adds comments with a tag ToReview at the end

of each statement where part of the statement is not fully migrated. It helps the
developers focus on problematic expressions. For instance, Listing 4.7 line 8, the
split(...) method is not known by our tool, so, it is migrated as a TypeScript method
invocation, Listing 4.9 line 9, and flagged with the comment Unknown invocation.

Follow target framework guidelines. The generated code should use the tar-
get framework features. Indeed, it is important to follow the target framework
guidelines to produce natural code. For example, we can use both JQuery or the
Angular framework to access a DOM element in our context. Whereas the code
using JQuery would be more concise, we prefer to use Angular native features.
Listing 4.9 line 7, (<any>this.input).nativeElement is an Angular DOM element
access. Using JQuery, the code would be translated as $("#input"), which is more
concise but does not use Angular features.

1 <div>
2 <img [src]="itemImageURL

">
3 </div>

Listing (4.10) Data Binding - HTML part

1 class myComponent {
2 itemImageUrl = ’../

path/to/image.png’
3 }

Listing (4.11) Data Binding - TypeScript part

Figure 4.3: Data Binding in Angular

4Note that, in our company, most developers are experts in GWT but novices in Angular

4.5. Conclusion 73

We acknowledge that we could use the Angular data binding feature to access
the DOM elements’ value. However, using this specific feature is more challenging
because it requires modification of the HTML source code. Figure 4.3 presents an
example of data binding of the itemImageUrl attribute. The value of the data is
specified in the TypeScript file (Listing 4.11, line 2) whereas the attribute is linked
to the GUI in the HTML file (Listing 4.10, line 2).

Allow API switching. API differences exist between the source GUI frame-
work, the target GUI framework, and the GUI meta-model. This problem was
raised in the literature (see Section 2.2.2). It consists of using different terminolo-
gies in different GUI frameworks to express the same concept. For example, the
attribute text in the GUI meta-model represents the content of an input. However,
in Angular, it translates as value.

Our generator must take into account the differences to produce code that has
the correct behavior. To handle such differences, we manually mapped each source
UI concept to its target counterpart. In a concrete example, Listing 4.7 line 6,
emailBox.getText() allows one to get the value of the input text emailBox. We
manually map the GWT attribute text to the Angular attribute value. So, Listing 4.9
line 7, our tool generated in Angular an access to the value property.

4.5 Conclusion
In this chapter, we presented implementation examples of our approach for the
migration of the Visual code and the Behavioral code.

For the Visual code migration, we detailed the extraction sub-steps in Sec-
tion 4.1 and the generation sub-steps in Section 4.2. For each sub-step, we pro-
posed adaptation for GUI defined using programming and markup languages.

For the Behavioral code migration, we also detailed the extraction sub-steps
in Section 4.3 and the generation sub-steps in Section 4.4. We presented the imple-
mentation for the migration from Java GWT to Angular. It includes details on the
implementation and the mapping between the two frameworks through our Pivot
meta-model.

Based on these real implementation examples, we evaluate our approach for the
GUI migration in the following chapter.

CHAPTER 5

Migration Validation

Contents
5.1 Visual code migration validation 75

5.2 Behavioral code migration validation 83

5.3 Discussion . 87

5.4 Threats to Validity . 90

5.5 Conclusion . 92

5.6 GUI migration conclusion . 93

In this chapter, we validate our approach and the Pivot meta-model. To do so,
we perform application migrations using our approach implementations presented
in the preceding chapter. We present the validation of the Visual code migration
and of the Behavioral code migration respectively in Section 5.1 and Section 5.2.
In Section 5.3, we discuss our GUI migration results. In Section 5.5, we conclude
on the validation of our approach. Finally, in Section 5.6, we conclude the Part I
on the presentation of our approach to support GUI migration.

5.1 Visual code migration validation
We validated the Visual code migration on five real applications. In Section 5.1.1,
we present the case studies. In Section 5.1.2, we present the metrics used for
the validation. In Section 5.1.3 and Section 5.1.4, we detail the result get for the
extraction and the generation.

5.1.1 Case studies
To validate our approach, we migrated five applications: Kitchensink, PostOffice,
Traccar, DBManager, and SpecDB. In the following, we present the migration
projects with their source GUI framework and target GUI framework. Table 5.1
details the different migrations projects.

Kitchensink and PostOffice are written using BLCore, a web-based GUI de-
fined using programming language, and migrated to Angular, a web-based GUI

76 Chapter 5. Migration Validation

Table 5.1: Case study Description

Source GUI definition Target GUI definition
Project Framework Type Framework Type
Kitchensink BLCore programming Angular markup
PostOffice BLCore programming Angular markup
Traccar GXT markup Seaside programming
DBManager Spec programming Spec2 programming
SpecDB Spec programming Spec2 programming

defined using a markup language. BLCore is the custom GUI framework of Berger-
Levrault that extends the GWT GUI framework with specific widgets. This frame-
work consists of 763 classes in 169 packages. It also encourages some coding
conventions. Angular is a modern GUI framework supported by Google based on
TypeScript.

Core package

Layout package
Widgets package

BLCore package

<<uses>>
<<uses>>

<<uses>>

Figure 5.1: BLCore - GUI meta-model

The GUI meta-model used for BLCore GUIs extraction, presented in Figure 5.1,
is composed of the Visual code packages (Section 3.3.1): the layout package using
the core package (Figure 3.8), and the widget package (Figure 3.7) that extends the
core package. We also extended the widget package with a BLCore package. This
package includes eight widgets created by Berger-Levrault. It allows us to deal
with the Custom Widget (see Section 3.3.1.4) of the company.

Kitchensink is a closed-source application of Berger-Levrault. This software
system targets developers and gathers the widgets available for building a user in-
terface at Berger-Levrault. It contains 470 Java classes and 56 web pages. PostOf-
fice is a software system used in French administrations. It aims to ease the dispatch
and digitalization of (ground) mails. It contains 3,227 classes and 98 pages.

5.1. Visual code migration validation 77

Two migration cases, DBManager and SpecDB, use Spec as a source frame-
work and Spec2 as a target framework. SpecDB is part of the Spec widgets pre-
sentation package. It is used to show the different configurations of a Spec but-
ton. DBManager1 provides a GUI to manage the connections between Pharo and
databases. Its user interface is divided into multiple pages. Note that even if Spec2
is the next version of Spec, the framework has been completely rewritten. So the
migration corresponds to a GUI migration and not a GUI framework update.

The last one, Traccar2, uses the GXT framework (a GWT extension) as a source
framework and Seaside as a target framework. Traccar is an open-source server and
web client for various GPS tracking devices. It contains 649 classes and 28 pages.

We now give more detail about the GUI of each application to migrate. For
instance, we provide the number of widgets, attributes, and roots (i.e., number of
web pages or desktop windows) to extract and generate in the target application.
Table 5.2 gathers the information about the different projects.

Table 5.2: Application descriptions

Source framework Project Widgets Attributes Roots

BLCore
Kitchensink 238 156 6 (out of 56)1

PostOffice 724 1065 10 (out of 98)1

GXT Traccar 125 104 3 (out of 28)1

Spec
DBManager 38 27 3
SpecDB 15 21 1

1 10% sample

For the Kitchensink, PostOffice, and Traccar projects, we take a sample of the
root pages for validation. So we present the number of widgets, attributes, and roots
of the sample. This choice is explained in the next section (Section 5.1.2). There
are for Kitchensink 238 widgets and 156 attributes; for PostOffice 724 widgets and
1065 attributes; for Traccar 125 widgets and 104 attributes; for DBManager 38
widgets and 27 attributes; for SpecDB 15 widgets and 21 attributes.

5.1.2 Validation set-up

We divided the migration validation into two parts: extraction validation and gen-
eration validation. The extraction validation consists of checking that our pivot

1https://github.com/juliendelplanque/DBConnectionsManager
2https://github.com/traccar/traccar-web

https://github.com/juliendelplanque/DBConnectionsManager
https://github.com/traccar/traccar-web

78 Chapter 5. Migration Validation

model includes the elements of the source application. It compares the DOM and
the attributes of the GUI without considering the final visual aspect. The genera-
tion validation consists of visually comparing each source page with the exported
one.

For the extraction validation, we check that all the widgets and attributes are
detected and correctly identified. This validation consists of the following three
metrics [Hayakawa et al., 2012, Joorabchi and Mesbah, 2012, Sánchez Ramón
et al., 2014]:

• The percentage of widgets correctly detected regardless of whether their
types are detected or attached to the correct container and created in our
pivot model. It checks that the number of widgets in the source application
is the same as in our pivot model.

• The percentage of widgets correctly identified, i.e., a button in the source
framework corresponds to a button in the pivot model. On the contrary, the
widgets not identified are mapped to Custom Widgets or wrong widget
types (e.g., a button mapped to a panel).

• The percentage of widgets assigned to the correct container. It validates the
DOM building.

We use the same metrics for the attributes:

• The percentage of attributes correctly detected compared the number of at-
tributes in the source application with the number of attributes in our GUI
pivot model. This checks that we identified all instantiations of widget types,
even for Custom Widgets (unknow types) and calls to factory methods.

• The percentage of widgets correctly identified validates that each source at-
tribute is correctly mapped to its attribute concept counterpart.

• The percentage of attributes assigned to the correct widget checks that each
attribute is attached to the same widget in the source application and in our
GUI pivot model.

We rely on manual validation to check all these metrics. Because the manual
validation is tedious and error-prone for large applications, we take a sample of
the pages of the Kitchensink, PostOffice, and Traccar applications. For each case,
we consider a sample representing at least 10% of the application. We randomly
selected 6 pages out of 56 for Kitchensink, 10 pages out of 98 for PostOffice, and
3 pages out of 28 for Traccar. The sample selection is further discussed in Sec-
tion 5.3.2.

5.1. Visual code migration validation 79

For the generation validation, work has been proposed to compare images
[Moran et al., 2018, Cao et al., 2010] of the source GUI with the migrated one.
However, none is directly applicable to our migration cases. Indeed, to apply this
strategy, one must deal with several challenges [Bragagnolo et al., 2020b]:

• Page access: to automatically take the screenshot of the pages, one needs
to access every page of an application. This step is easy for standard web
applications in which all pages are accessible using their URL. However, for
applications in which a page is accessed only when a user performs some
interaction, such as clicking on a button, getting access to every page is te-
dious. It is the case for desktop applications and for web applications using
an Ajax-based architecture.

• Successive shifting: when a migrated widget is not visually equivalent to its
original version, it might impact the position of others widgets. A few pixel
differences can add up and give a migrated page completely different from
the source one.

• Dynamic content support: some widgets, as a table, display information
coming from an external server. The same data would need to be presented in
the source and target generated application for the validation to be successful.

Validation by image comparison is further discussed in Section 5.3.3. One
could also think of using tests for validation. However, this is not applicable in our
cases because the migrated applications do not have such tests.

Thus, we rely on a manual visual comparison of the pages. First, we check that
the generated application is runnable. Then, we visually compare the application
with the source one.

5.1.3 Extraction result

We perform the extraction on the five case studies projects. In this section, we
report the extraction result using our tool. Table 5.3 summarizes the extraction
results.

Our tool detects 99% of all the widget instantiations for all the applications.
The six non-detected widgets are created with a factory not present in our wid-
get to pivot concepts map. To solve the missing widgets detection, one needs to
add the corresponding factory methods in the mapping source framework to Pivot
meta-model mapping (see sub-step Map source framework to Pivot meta-model
in Section 3.3.2.1). It shows that we have good heuristics to find out the widgets in
the source applications.

80 Chapter 5. Migration Validation

Table 5.3: Extraction results

Framework Project Widget Widget Widget Attribute Attribute Attribute
source detected identified well assigned detected identified well assigned

BLCore
Kitchensink 100% (238) 94% (224) 99% (236) 77% (118) 95% (112) 100% (118)
PostOffice 99% (718) 99% (712) 96% (695) 88% (940) 98% (923) 99% (937)

GXT Traccar 100% (125) 99% (124) 100% (125) 81% (84) 100% (84) 100% (84)

Spec
DBManager 100% (38) 94% (36) 100% (38) 92% (25) 100% (25) 100% (25)
SpecDB 100% (15) 100% (15) 100% (15) 67% (14) 100% (14) 100% (14)

Average 99% 98% 99% 87% 98% 100%

Our implementation identifies correctly 98% of the widgets type. For the Trac-
car and DBManager, the tool misses widgets used in toolbars. This kind of widget
is mainly used in desktop applications, and since our widgets meta-model comes
from W3School, which describes standard web components, we did not have them.
For Kitchensink and PostOffice, the tool identifies 94% and 99% of the widgets.
All the unidentified widgets are created by the company for its business. So they
are mapped to Custom Widgets. To solve these problems, one can extend our
meta-model with the missing widgets.

Except for the BLCore framework, all the widgets are perfectly assigned to
their container. With BLCore, the problem comes from the variety of ways to
define widget containment. For instance, the custom widgets defined in BLCore
does not use our heuristics, i.e. call to method add() or parameter in the constructor
(see Section 3.3.2.1, Identify containment rules), to define the containement. Each
custom widget defines its method that defines the containment. One solution to this
problem would be first to modify all custom widgets to make them use the add()

method. Another solution is to add new containment identification rules in our tool.
Attributes are correctly detected at 87%. The best result appears in the DB-

Manager application with 92%. Attributes are harder to detect for two reasons. (1)
GUI frameworks define default attributes for widgets, so we have to analyze those
attributes and add them in our extractors manually, for instance, the color of but-
tons is defined at the level of the GUI framework and not for each button instance
of the application, and (2) in programming languages, attributes can be declared
in multiple ways: using a setter or a parameter in a constructor. This diversity
forces us to analyze all the possibilities since we did not find a heuristic that will
select all attributes definitions. Again, to avoid enumerating all possibilities in our
extractors, it would be beneficial to standardize the code to migrate.

All the attributes of Traccar, DBManager, and SpecDB are identified by our
tool. For Kitchensink, 95% of the attributes are identified, and for PostOffice, 98%
of the attribute are identified. The attributes incorrectly identified are attributes
absent in our Pivot meta-model. One solution to deal with those attributes is to add
them in our BLCore package (see Section 5.1.1, Figure 5.1)

5.1. Visual code migration validation 81

Finally, nearly all the detected attributes are well assigned to their container.

Our implementation of the Visual code extraction approach gives good results
for widgets and attributes extraction. It extracts 98% of the widgets and 87% of
the attributes. It is possible to improve our extractor by adding specific widgets
and attributes concepts to our meta-model and add them to our source framework
to Pivot meta-model mapping.

5.1.4 Generation result

Then, we generated the five applications using the target GUI framework with our
tool. All the generated applications are runnable out of the box.

We visually compared the aspect of the pages where the widgets are well iden-
tified. In the following, we present a comparison for three of the case studies
presented in Section 5.1.1. Note that other comparisons for the Kitchensink and
the Traccar migration are available on the documentation page of our project3.

(a) GWT source (b) Angular migration

Figure 5.2: Visual comparison of a page migration (Kitchensink)

Figure 5.2 presents the visual differences for the page Input box of the
Kitchensink application. On the left-hand side, there is the page in the source
application, and on the right-hand side, the page after the migration. We can see
that there are no differences between the two versions.

Figure 5.3 presents the visual differences for the User Setting page of Trac-
car. On the left-hand side, there is the page in the source application, and on the
right-hand side, the page after the migration to Seaside. There are more differ-
ences in this example. The sizes of the input boxes are different, the text of the
labels is replaced by the i18n notation, the “overlay” table has a completely dif-
ferent visual aspect, the checkbox is not centered, and the buttons at the bottom
are not well placed. The table is not correctly migrated because the table with se-
lection is a custom widget for the tool, and we did not take the time to introduce

3https://badetitou.fr/projects/Casino/#current-results

https://badetitou.fr/projects/Casino/#current-results

82 Chapter 5. Migration Validation

(a) User Setting source (b) User Setting migrated

Figure 5.3: Visual comparison of the User Setting page (Traccar)

it. In such a context, our implementation generates the super type of the concept,
i.e., in this example the superclass of TableWithCheckBox which is Table. So,
TableWithCheckBox is migrated as a simple table. The i18n notations are cor-
rectly extracted. However, we did not implement the support of these notations in
our generator. A first step to solve this problem would be to determine how the
target framework supports i18n in the Identify target framework environment sub-
step (see Section 3.3.3.1). The other differences come from application-specific
CSS. Despite all these imprecisions, the structure and the layout of the page are
respected.

(a) DBManager source (b) DBManager migrated

Figure 5.4: Visual comparison (DBManager)

Figure 5.4 presents the visual differences for the DBManager application. Again
on the left-hand side, there is the page in the source application, and on the right-

5.2. Behavioral code migration validation 83

hand side, the page after the migration. There are some differences in this example.
The text of the buttons on the left of the image is not present. The buttons on the
image’s right are enabled but are disabled in the source application and are not
correctly placed. Apart from the last difference that comes from a developer hack,
all the differences are due to attribute extraction problems. Those problems come
from missing attributes identification rules in our tool. Finally, the drop-box input
has visual differences between the source and the generated application. It is due to
a difference in the drop-box implementation in the source and target frameworks.

The migration does not create the same visual aspect. We saw that there are
few differences, and the layouts are respected. Most of the imprecisions come from
missing attributes or incorrect values. Those problems are easy to fix manually by
developers.

In conclusion, we do not report important differences in the visual aspect of
pages of the validation. Thus, the migration of the Visual code is successful.

5.2 Behavioral code migration validation

To validate the migration of the Behavioral code, we built another validation. We
evaluated our behavioral migration approach on the Kitchensink case study (see Sec-
tion 5.2.1). We validated our tool with metrics similar to the Visual code validation
one (see Section 5.2.2). Finally, we present results for the extraction (see Sec-
tion 5.2.3), and generation (see Section 5.2.4).

5.2.1 Case studies

To validate the Behavioral code migration, we performed it on two applications.
The first one, Kitchensink, was already used for the Visual code migration valida-
tion.

Our implementation runs without raising any errors for both applications. How-
ever, there is a lack of automatic tools to evaluate the correctness of the produced
code. Thus, we performed a manual validation of the Kitchensink application that
took us two full-time weeks. Note that performing the same validation for the
Human Resources application, i.e. the company biggest application comprising
more than 50,000 widgets and 21,000 classes, has been estimated by our industrial
partner to 5 man/months. For such a migration project, an incremental migration
approach and validation are required. We present work relative to incremental mi-
gration in Chapter 6.

84 Chapter 5. Migration Validation

5.2.2 Validation set-up

Since no behavioral migration approach was found in the literature, we propose a
new validation set-up, divided into two parts: check the structure and check the
code naturalness.

For the structure, our solution checks that the event handlers are correctly de-
tected and migrated. It consists of the following three metrics: detect, identify, as-
sign, similar to the one used in Visual code migration validation (see Section 5.1.2):

• The percentage of event handlers correctly detected, i.e., the event handlers
are detected regardless of whether their types are detected or attached to the
correct widget. For example, the onDrag event handler type is not in our
meta-model. However, our approach detects that an event handler exists and
that the owner widget has not been extracted during GUI extraction.

• The percentage of event handler types correctly identified, i.e., a click handler
in the source application corresponds to a click handler in our Pivot model.

• The percentage of event handlers assigned to the correct widget, i.e., a click
handler attached to a button is extracted as a click handler and attached to the
same button in the pivot model.

Because no tool performs such an evaluation, we rely on manual validation to
check all these metrics. For the percentage of event handlers correctly detected,
we looked at the source code of the application, file by file, counting the number
of created event handlers, and compared it with the number of elements found
by our tool. For the percentage of event handler types correctly identified and
the percentage of event handlers assigned to the correct widget, for each detected
event handler, we manually checked, in the source code, that its type and owner
were correctly extracted by our tool.

For the naturalness of the code, we want to check that the generated code
respects the convention of code written by Angular developers. We used external
tools that check the quality of the produced code:

SonarQube is a well-known open-source tool that analyzes code quality and se-
curity. It categories the errors by severities4. Blockers have an important
impact on the system and are likely to happen; majors have a limited impact
and are likely to happen; minors have a limited impact and are unlikely to
happen.

4https://docs.sonarqube.org/display/SONARqube71/Rules+-+types+and+severities

https://docs.sonarqube.org/display/SONARqube71/Rules+-+types+and+severities

5.2. Behavioral code migration validation 85

TypeScript transpiler reports poorly written TypeScript code and potential prob-
lems (such as missing classes). It also detects type matching problems.

Codelizer 5 is an Angular linter that reports problems such as using spaces instead
of tabs

To avoid bias in the results, we used the default setting of each tool.
We also compare our approach to JSweet, a transpiler from Java to TypeScript.

It claims to produce code that compiles and is “programmer-friendly”. This is
further discussed in Section 5.3.5.

5.2.3 Extraction result

We now check that the source application’s event handlers are well detected, asso-
ciated with the correct Event concept of our behavioral meta-model, and linked
to the right exported widget.

Table 5.4: Result of manual event handler extraction check

Event handler Event handler Event handler
detected type identified correctly assigned

100% (232) 98% (228) 95% (221)

In parentheses: number of event handlers

Table 5.4 summarizes the results for the structure check. Our manual evalua-
tion reported 232 event handlers created in the Java code.

Our prototype detected 100% of the created event handlers. Among them, it
identified 98% of the event handler types. The four event handler types not detected
correspond to handlers for events created by the developers, e.g. custom events. For
example, one of the events is raised when a custom progress bar widget created by
the developers is stopped. To support such events, developers would need to create
them in the target language and add the newly created events in the behavioral
package (see Section 3.4.1) as a kind of Event (as click, change, etc.). 95% of
the event handlers are assigned to the correct widget. 4 out of the 11 incorrectly
assigned event handlers are the unidentified handlers, so our implementation did
not assign them to widgets. For the other 7, their owners were not present in the
UI model. To summarize, our approach detected 232 event handlers comprising
214 click handlers, 5 change handlers, 1 hover handler, and 1 out handler. The
remaining 11 event handlers were not correctly extracted.

5codelyzer: http://codelyzer.com/

http://codelyzer.com/

86 Chapter 5. Migration Validation

Our approach allows one to extract the event handlers of an application. It also
identifies them and assigns them to the correct widget. As for the Visual code, only
the custom events needs additional work.

5.2.4 Generation result
Then, we generated the two applications using our tool. We validated the natural-
ness of the code on the Kitchensink application migration. Table 5.5 summarizes
the results.

Table 5.5: Natural code

Approach SonarQube TypeScript transpiler Linter
(blocker/major/minor) (codelyser)

Our approach 520 (0/98/422) 130 367
JSweet 986 (3/566/417) 6,539 21,344

According to SonarQube, our migrated code has 520 errors. It corresponds to
98 “major” problems and 422 “minor” ones. More than half of the major problems
(64/98) are “deprecated HTML attribute usage” and “missing table header”. The
first one should be avoided to ensure web browser compatibility. Note that fixing
these kinds of problem manually is often an easy task, but fixing them in our gen-
erator allows developers to fix the problem for all future migration. The second
one creates problems with web accessibility. For instance, assistive technologies,
such as screen readers, use table headers to provide context to users. Whereas de-
veloping an automatic solution that deals with this problem is tedious, one can tune
our generator to highlight the locations where developers have to look in the mi-
grated code. For the JSweet migrated version, SonarQube reports 986 errors with
3 “blocker problems”, 566 “major”, and 417 “minor”. More than half of the ma-
jor problems (492/566) are TypeScript problems with multiline blocks and control
flow that might raise issues with non-empty statements. This analysis shows that
our approach produces a code of better quality according to SonarQube than the
JSweet approach.

The TypeScript transpiler provides information about the number of unknown
class usage, i.e., references to classes that do not exist. For our approach, the
TypeScript transpiler reports 130 missing classes. They are helper classes and
classes that represent data. For the JSweet exported version, it reports 6,539 miss-
ing classes. They are helper classes, classes representing data, and widget and
behavioral classes (Button, ClickHandler, etc.). Indeed, JSweet only migrates the
classes of the source application and not its dependencies which include the GUI

5.3. Discussion 87

framework. Thus, the classes representing the GUI are not migrated. The transpiler
does not report critical problems for both approaches. This analysis shows that our
approach generates far fewer problems to fix.

The lint, codelizer, reports only minor problems due to code formatting. It re-
ports 367 problems for our approach and 21,344 problems for the JSweet exported
version. It also reports missing bracket for if and for statements for the JSweet
exported version. Although brackets are not always mandatory, missing brackets
might introduce bugs in the application. Tuning the generator to generate the brack-
ets is an easy task. This analysis shows that our approach has a lot fewer problems
than the JSweet approach.

Our approach allows one to generate code that has a lot fewer problems than
other existing tools.

The approach gives good results for the migration of the Visual code and the
Behavioral code. In the following, we discuss the factors that impact our results.

5.3 Discussion

In this section, we discuss our approach and the validation set-up. We first dis-
cuss the reason to preserve the visual aspect during the migration in Section 5.3.1.
Then, we present how we ensure good representativity of the sample selected for
the validation in Section 5.3.2. We detail the challenges of validating migration
using image comparison in Section 5.3.3. We present the manual work required to
implement our approach in Section 5.3.4. Finally, we discuss the choice of using
JSweet as another migration tool for the validation in Section 5.3.5.

5.3.1 Similar visual aspect

Our approach allows one to migrate the Visual code among different GUI frame-
works. As validation, we proposed to compare the visual aspect of the former
GUI to the generated one. However, widgets do not have the same visual aspect
in different GUI frameworks. For instance, an AWT button does not look like an
AngularJS button.

It is possible to perform an expensive manual step to tune the visual aspect
of all target framework widgets to mimic the former visual. Because of its cost,
performing this step is not always desirable.

Thus, before performing a GUI migration, one should consider the following
question: must the migrated application have the exact same visual aspect as the
source one, or should it follow target GUI framework visual aspect standards?

Different answers to this question are in the literature. On the one hand, as
depicted by Moore et al. [1994], “The resulting user interface should have the true

88 Chapter 5. Migration Validation

look and feel of the new environment”. On the other hand, for commercial soft-
ware, keeping the same visual aspect increases the acceptance rate of client users
[Sánchez Ramón et al., 2014].

5.3.2 Sample selection

As depicted in the previous sections, we had to validate the Visual code extraction
manually. However, performing a manual validation on the 182 pages of the case
studies (see Section 5.1.1) is too time-consuming.

Thus, we decided to perform the validation of a subset. To do so, we decided
to selected 10% of the pages of the applications. This selection is crucial because
it must not introduce bias in the validation. So, to avoid introducing bias, we
decided to perform a random selection of the pages. However, it could still not
fully represent the application.

To ensure the good representativity of the selected pages, we compare the total
number of widgets and attributes in the application to the number of widgets and
attributes of the selected pages. The selected pages include 9% of the total number
of widgets and 13% of the total number of attributes. The sample also includes 43%
of the widget types existing in our Pivot meta-model, including the most common
ones, such as button and input, as well as complex ones, such as tab manager and
parameterizable fieldset. Thus, it appears that the 10% pages randomly selected
are representative of the entire application in terms of the number of elements.

Additionally, to compare the number of elements, we check that selected pages
are of different sizes. As a result, the pages have from one to hundreds of widgets.
Thus, the randomly selected pages are of different sizes, ensuring no bias in the
validation.

5.3.3 Image comparison validation

To validate the proper generation of target GUI, we rely on a manual comparison
of the pages visual aspect. We acknowledge the existence of projects that compare
the visual aspect of two screenshots [Cao et al., 2010, Moran et al., 2018]. Cao
et al. [2010] proposed an algorithm that extracts the GUI layout from a screenshot.
Then, one can compare the layout of the source application pages with the one of
the migrated pages. Moran et al. [2018] detected differences between two versions
of the same GUI after modification made by developers. Since the modifications
are minimal and the GUI developed with the same framework, one can expect few
differences between the screenshots.

We performed a preliminary work [Bragagnolo et al., 2020b] to adapt image
comparison to the validation of GUI migration. In this work, we reported several
challenges that must be first solved.

5.3. Discussion 89

First, for Ajax-based applications such as GWT and Angular, one should be
able to browse the pages of the web application. Indeed, to automatically take
screenshots of the pages, one must crawl all pages. However, with some frame-
works, pages are not directly accessible with their URL. It is the case with some
Ajax-based applications, such as the applications using GWT in our context.

Second, we must deal with the successive shifting challenge. When migrating
a widget from a source framework to a target framework, it might not have the
same visual aspect. However, if a target widget has a size different than the source
widget, it introduces a shift in the screenshot of a few pixels. Repeating this shift
on several widgets in a page can lead to two completely different source and target
pages, preventing an automated screenshot comparison.

Finally, to enable the image comparison in the migration context, one must
deal with dynamic content. Indeed, a table filled with data will not take the same
space in a GUI as an empty table. However, in our context, we do not support the
migration of back-end connections. Thus, migrated tables are always empty, and
visual comparison can not be used.

Thus, automatic validation through visual comparison of page screenshots is
not applicable in the current state of GUI visual aspect migration among multiple
technologies.

5.3.4 Manual work

As explained in Chapter 3 and Chapter 4, the migration requires two manual tasks:
(1) mapping the source widgets with our Pivot meta-model concepts and (2) iden-
tifying how the DOM is built in each GUI framework.

Mapping the widget consists of analyzing each GUI framework’s documenta-
tion, retrieving the widgets and their attributes, and mapping them to our meta-
model. Whereas the second task is easy for markup languages, it requires more
knowledge for programming languages analysis. Indeed, in programming lan-
guages based GUI, developers can define the DOM in several ways. So, we had to
enumerate all the DOM building possibilities and integrate them into our extrac-
tors.

To reduce the required manual effort, one can perform a renovation of its soft-
ware system before migrating. The renovation consists of improving the source
code of the application. To do so, developers reduce the number of code smells
and rewrite code to make it easier to manipulate. For example, one can rewrite
all widgets creation using the basic new method. By following this Quality First
[Włodarski et al., 2019] rule, the GUI extraction becomes more straightforward,
and the DOM is built using only one approach. Widgets are always instantiating
using the constructor. Moreover, the number of custom widgets might be reduced
in favor of standard ones.

90 Chapter 5. Migration Validation

5.3.5 Validation with JSweet
For the Behavioral code migration, we focused on the migration of Java GWT
code to TypeScript Angular one. Since we did not find any other tool that migrates
Behavioral code, we used JSweet as another Java to TypeScript migration tool.
However, JSweet does not migrate from GWT to Angular. Thus, we do not have
the same goal. Whereas it gives us a baseline to compare to, another study with a
tool that migrates Behavioral code would be preferable. However, there is no other
tool in the literature that performs such a migration.

5.4 Threats to Validity
This section discusses the validity of our case study using the validation scheme
defined by Runeson and Höst [2009]. Threats to construct validity, internal validity,
external validity, and reliability are presented.

First of all, our validation does not correspond to a formal validation consisting
of research questions and their associated hypothesis testing. We instead performed
several experiments with several applications and in different contexts. We want
to highlight that defining a formal approach to validate GUI migration should be
addressed in future work to improve GUI migration validation quality.

5.4.1 Construct Validity
Construct validity indicates whether the studied measures really represent what is
investigated according to the research questions.

Evaluating whether the migrated UI is satisfactory or not depends on different
factors. For example, the exact similarity of original and migrated GUI is highly
dependent on the effort invested in fine-tuning the CSS. However, this is unlikely
to happen in real situations because one would probably prefer to use the look
and feel of the new framework (see discussion in Section 5.3.1). We, therefore,
resorted to validate whether the GUI was (i) correctly modeled (extracted) and
(2) correctly regenerated (from the model). These two conditions are necessary to
ensure that all information displayed in the original GUI is available in the migrated
one and similarly that all end-user actions originally possible are still available after
migration.

Extraction validation We selected three metrics to perform the validation of the
extraction: detect, identify, and assign. These metrics were considered relevant
in Hayakawa et al. [2012], Joorabchi and Mesbah [2012], Sánchez Ramón et al.
[2014]. However, some pieces of information are missing in these metrics. For
instance, they do not check that values of widgets’ attributes are correctly extracted.

5.4. Threats to Validity 91

Note that, even if such a missing piece of information is absent from the extraction
validation, incorrect attributes values will impact the generation validation.

Generation validation We discuss the generation validation for Visual code and
Behavioral code separately.

For the Visual code, we rely on manual visual comparison. This solution allows
us to validate the generation from the point of view of an end-user of the applica-
tion. As discussed previously, it is probably not realistic to want to have the same
interface. However, it is a way to ensure that we can regenerate an interface with
the same information displayed.

For the Behavioral code, checking code behavior would have required auto-
mated tests that do not exist in the company for our case studies (a “normal” situ-
ation in the industry) or asking testers to check every piece of code, which would
be too time-consuming.

We validated the generated code using linters and SonarQube. We acknowledge
that they are not entirely satisfactory as it does not ensure that the generated code
compiles or performs the same actions as in the original version.

Instead of ensuring the correct behavior of all the generated methods, we chose
to, at least, check the maintainability of the generated code. Thus, we validate
that it would be easy for developers to perform potential manual fixes after the
migration.

5.4.2 Internal Validity
Internal validity indicates whether no other variables except the studied one im-
pacted the result.

We applied our approach to various applications from different organizations,
in different domains, with different source and target GUI frameworks (language
and markup frameworks). We are confident that this rules out any bias that the
main experiment (GWT to Angular) could have introduced.

The validation relies on manual work performed by the author (see Section 5.3.4).
This is always subject to some human mistakes. However, by validating on several
applications, including hundreds of elements, human mistakes can not have a large
impact on the final result.

The Visual code generation is also manually validated by the author. This may
introduce a bias. As discussed in Section 5.3.3, we worked on image comparison
validation to reduce this bias. However, the solutions found have proven to be
insufficient to validate application migration.

For the validation of the Behavioral code generation, we rely on external tools.
We use them with their default configuration to avoid introducing any potential
bias.

92 Chapter 5. Migration Validation

5.4.3 External Validity

External validity indicates whether it is possible to generalize the findings of the
study.

Again, we performed our approach on applications, open and closed source, of
different sizes and defined with different GUI frameworks. These GUI frameworks
use markup and programming languages. This diversity ensures that our approach
can be generalized to several frameworks.

However, we did not experiment with binary (or proprietary) frameworks. For
instance, GUI defined with Rapid Application Development (RAD) tools are more
difficult to extract. Bragagnolo et al. [2020a] have studied the extraction of the
Access projects GUI. In their case study, they had to perform the GUI extraction
through the Access IDE, which limited the extraction capabilities, but they were
able to populate our pivot meta-model.

Once a pivot model is created, the rest of the approach applies normally. Mi-
gration of binary file-based GUI is part of our industrial partner projects with a
WebDev to Angular migration project

For the Behavioral code migration, extraction and generation were only vali-
dated against closed-source applications of Berger-Levrault. Thus, there is a risk
that our results can not be easily generalized. Future replication work must be per-
formed, and it is in the planned roadmap of the company (Access and WebDev
applications).

5.4.4 Reliability

Reliability indicates whether others can replicate our results.
Except for the closed-source applications of Berger-Levrault, we provide links

to every application used for the validation. We also provide the implementation of
our approach as a documented and tested software artifact that anyone can use. The
implementation comes with a companion project web page6 detailing the approach,
the results, and direct links to the existing importers and exporters.

5.5 Conclusion

In this chapter, we presented the validation of our approach (see Chapter 3) based
on the implementation examples detailed in Chapter 4.

We validated the extraction and generation aspect of both Visual code and Be-
havioral code. For the extraction, we designed it based on existing proposed vali-
dation set-up of the literature (see Section 5.1.2). For the generation, our validation

6https://badetitou.fr/projects/Casino/

https://badetitou.fr/projects/Casino/

5.6. GUI migration conclusion 93

is based on manual comparison of the visual aspect and comparison of our im-
plementation results with other tools results using well-known quality evaluation
software system (e.g., SonarQube, etc.).

Then, we discussed our validation set-up and our results. We detailed how
keeping the same visual aspect during the migration can be challenging and how
we ensured good representativity of the selected samples for the validation. We
also presented current challenges when using image comparison to validate GUI
migration. Finally, we discussed the manual work one needs to perform to adapt
our work and the choice of JSweet as another migration tool.

5.6 GUI migration conclusion
We presented our terminology and concept that composed a GUI. It consists of the
Visual code, i.e., the visual aspect of an application, the Behavioral code, i.e., the
code executed when end-users interact with the Visual code, and the Business code,
i.e., the data manipulated by the GUI. To ease the migration of application GUI,
we designed a meta-model representing the visual and the behavioral aspect and an
approach based on this meta-model. Our approach comes with several steps and
sub-steps that can be tuned to fit different migration contexts. We also proposed
ways to perform the sub-steps for markup and programming languages.

Then, we built a tool implementing our approach for different source and target
GUI frameworks. We detailed the implementations with both the Visual code and
the Behavioral code migration. Following the implementation details we provided,
one can easily implement our approach to another context.

Finally, we validated our approach on five migration projects. Some of these
projects are part of our industrial context, and others are the migration of open-
source applications’ GUI. Then, we proposed a validation set-up for both the Visual
code and the Behavioral code. It aims to point out the strengths and weaknesses of
our approaches.

Whereas our approach gives good results, our implementation does not migrate
100% of the applications’ GUI. To finalize the migration, developers must check
every page and fix the remaining errors. This process of automatically migrating a
page using our tool, manually fine-tuning the migration of this page, and delivering
it to end-users is part of our incremental migration approach. In the following, we
present how we design this approach, the challenges we had to deal with, and how
we actually migrate applications.

Part II

Incremental migration approach

CHAPTER 6

Incremental migration

Contents
6.1 Incremental Migration Approach 97

6.2 Hybrid architecture . 99

6.3 Implementation . 102

6.4 Conclusion . 107

We presented in the previous chapters an approach that enables one to perform
the migration of application GUIs. Even if we have shown that the approach is
efficient, part of the GUI is not perfectly migrated. To finalize the migration, de-
velopers must check all pages and, eventually, fix them manually. When migrating
large applications, such as the ones of our industrial partner, this step can last for
months. However, the migration team can not spend months finalizing the migra-
tion while the clients ask for new developments and modifications.

Consequently, the migration team must use an incremental approach enabling
the migration with a hybrid application deliverable to end-users. During the mi-
gration period, the hybrid application includes migrated pages written in the new
framework co-existing with source pages written in the old framework. Constraints
to design such a hybrid application have already been detailed in the literature
(see Section 2.3).

In this chapter, we present our incremental migration approach (Section 6.1).
This approach uses our GUI migration approach detailed in Chapters 3 and 4 to mi-
grate each page of the source application. Then, the incremental approach consists
of integrating each automatically migrated page into a hybrid application delivered
to the end-users. The hybrid application is built using our hybrid architecture de-
tailed in Section 6.2. We present an implementation of our hybrid architecture for
GWT and Angular in Section 6.3.

6.1 Incremental Migration Approach
An incremental migration approach aims to ensure the delivery process during the
migration of an application. To do so, it migrates part of the application, integrates

98 Chapter 6. Incremental migration

it inside the source application, and delivers an application including parts with old
code and other parts with new code. In the following, we named “hybrid appli-
cation” the application that includes parts with old code and other parts with new
code.

Select source page to
migrate

Transform
source page to
migrated page

Package and deploy
migrated page

Source Hybrid

Repeat until all pages are migrated

Page developed with the source framework
Page developed with the target framework

Figure 6.1: The incremental migration process

We designed an incremental migration process that takes advantage of our hy-
brid architecture. The input of this process is a source application. The intermedi-
ate output is a hybrid application composed of migrated pages and the remaining
source pages. The final output is a fully migrated application that is equivalent to
the source application. This process, illustrated in Figure 6.1, is composed of three
main steps as follows:

Select source page to migrate. This step aims to select a page in the source
application to be migrated. The migration developers select a page based on their
knowledge of the application. Without priority between the page in terms of mi-
gration, one is randomly selected. The output of this step is the selected page to
migrate.

Transform source page to migrated page. This step aims to transform the
source code of the page, selected in the first step, to target language using the target
framework. It includes the migration of the three GUI categories of source code:
Visual code, Behavioral code, and Business code (see Section 3.1). The transfor-
mation of the Visual code and the Behavioral code can be done automatically using
our GUI migration approach (see Chapters 3 and 4). The Business code migration
is done manually. It consists of the migration of the data transferred between the
front-end and the back-end.

Package and deploy migrated page. This step consists of packaging the mi-
grated page. The page is then integrated into the hybrid application to replace the
source page. This step results in a hybrid application composed of source and
migrated pages.

The three steps of this process are repeated until all source pages are migrated
to the target framework. When all pages are migrated, one can deliver the migrated
application using the target technology instead of the hybrid application.

6.2. Hybrid architecture 99

Our incremental migration approach is based on the usage of a hybrid archi-
tecture. The hybrid architecture allows the integration of migrated pages within
the source application. In our industrial context, the GUI frameworks mixed in the
hybrid application are GWT and Angular.

This first step, select source page to migrate, is not further discussed in this
thesis and might be interesting for future research. The second step, transform
source page to migrated page, was already discussed in Chapters 3, 4, and 5. In our
incremental approach, it takes one source page as input and gives the page migrated
using our tool as output. The last step, package and deploy migrated page, is the
focus of the remaining of this chapter. It presents the hybrid architecture in which
the pages migrated are integrated.

6.2 Hybrid architecture

Our hybrid architecture allows one to mix, inside an application, two GUIs defined
with two different frameworks possibly in different programming languages. In
the following, we present the architecture we designed to mix two GUIs and how
it is used to build an application. Specifically, it aims to enable mixing GWT and
Angular.

Section 6.2.1 presents the hybrid architecture. Section 6.2.2 details how each
part of the architecture is compiled to build the final application.

6.2.1 Hybrid architecture description

Our incremental approach enables the migration of applications using a hybrid ar-
chitecture. This architecture tackles the three challenges depicted in the literature
(Section 2.3): communication, type matching, and GUI mixing. For the commu-
nication challenge, in a hybrid architecture, several frameworks and programming
languages are involved. We must define an approach to enable communication be-
tween the elements of the hybrid application. For the Type matching challenge,
when communicating, the elements of the hybrid architecture could exchange data.
However, data created in one programing language might not be supported by
another programing language. Thus, we have to design allowing data exchange.
Finally, for the GUI mixing challenge, our hybrid architecture aims to mix GUI
defined using different GUI frameworks. Again, a strategy must be designed to
integrate widgets coming from one GUI framework with widgets coming from an-
other GUI framework.

Figure 6.2 presents the hybrid architecture in which the front-end is divided
into three parts: controller, source pages (i.e., not migrated), and target pages.

100 Chapter 6. Incremental migration

Hybrid web application (SPA)

Web browser

Target
framework

Target Pages

Manage URL Mapping
Inject Session ID
Render header and Footer

Controller

Source
framework

Source Pages

Communications

Figure 6.2: Hybrid architecture

The controller is the central part of our hybrid architecture. It can be devel-
oped using the source programming language, the target programming language,
or another language. It is the front-end entry point of the web application. When
the end-users want to access a web page, they request the controller that manages
URL mapping to send the correct page. The controller also manages the context of
the application (e.g., the currently logged user, the page currently displayed, etc.).
Because of its central position, it is also in charge of rendering web pages header
and footer.

The pages (source and target) contain the GUI visual aspects (see Section 3.1).
They are independent of each other, and only navigation between pages is allowed.
For instance, a page can not request the value of a text field from another page.
In the hybrid architecture, we package pages independently one from the other.
A packaged page includes all the code necessary to represent the page GUI, i.e.
visual, behavioral, and business, see Section 3.1, again. It allows us to integrate the
pages inside the architecture independently of their programming language. Thus,
packaging pages tackles down the GUI mixing challenge.

When navigating from one page to another, the source page might send data to
the other one. It is the case when a selected item in an overview page is described
in a detail page. To enable such communication, the overview page sends the data
to the controller. Then, when the data are required, the detail page pulls it from the
controller. The central position of the controller is thus used to tackle the commu-
nication challenge. Moreover, when the data are pulled, the controller checks if the

6.2. Hybrid architecture 101

page that sent the data uses the same GUI framework as the page pulling the data.
If pages are defined with different GUI frameworks, the controller takes care of
converting data if needed before sending them to the target page. An implementa-
tion example of this process is described in Section 6.3.2. Thus, it tackles the type
matching challenge.

6.2.2 Operational Architecture of hybrid application

Additionally to the hybrid architecture, we designed an operational architecture
allowing the pages (source and target) to be compiled into one hybrid application.

One critical challenge is to enable communication between the GUI defined
with the source framework and the one defined with the target framework. We
identified two main solutions to this problem. First solution, one can use the for-
eign function interface (FFI) [Polito et al., 2020] that enables one programming
language to call methods defined in shared libraries. FFI is a common solution
for desktop applications. However, one can not use it for web applications. In-
deed, a website accessing user personal files would create a security threat. Second
solution, one can compile the source and the target GUIs in the same program-
ming language. This solution requires the source and the target GUI frameworks
to be developed with the same programming language, for example, when mixing
JavaFX and JavaSwing [Robillard and Kutschera, 2019], or to create transpilers
that compile the two GUIs into the same programming language.

Since we are migrating web applications, we selected the second option: tran-
spiling GUIs to the same programming language. We benefit from the Angular
transpiler and the GWT transpiler that compiles TypeScript and Java respectively
to the JavaScript programming language.

Figure 6.3 presents the operational architecture for a GWT and Angular hybrid
application. The hybrid application source code (left) includes the front-end and
the back-end parts. The front-end contains the source code of the GWT pages, the
source code of the Angular migrated pages, and the source code of the controller.
Note that the controller can be developed in any programming language. In our
implementation (see Section 6.3), we used the existing GWT controller. The back-
end can be developed in any other programming language.

At compilation time (center), we use one compiler for each programming lan-
guage. Thus, GWT pages are compiled using the GWT compiler, Angular with the
Angular compiler, and the back-end with its own compiler (i.e., in our context, the
classic Java compiler).

At runtime (right), the compilers produce the hybrid application using our hy-
brid architecture presented Figure 6.2. In our GWT and Angular example, both are
compiled in the JavaScript language to be run in a web browser. The hybrid web
application is also linked with the back-end. The back-end does not need to be

102 Chapter 6. Incremental migration

Hybrid application
source code Compilation Runtime

communication

Front-end

Back-end

Angular
compiler

GWT
compiler

Back-end
compiler Back-end Services

Web browser

Angular
JavaScript

Hybrid web application

RPC/Rest

Angular
pages
source
code

GWT
pages
source
code

Controller
source code

Controller
compiler Controller

JavaScript

GWT
JavaScript

Back-
end
code

Figure 6.3: Operational architecture of hybrid application for GWT and Angular

migrated. However, we had to perform some modifications in the back-end relative
to the front-end to back-end communication. These modifications are discussed
in Section 7.4.2.

We presented the main concepts to mix GUI of applications inside a hybrid
architecture. Using our architecture, one can migrate the GUI incrementally. Our
hybrid architecture tackles the three major challenges: communication, type match-
ing, and GUI mixing. In the following, we detail an implementation for the migra-
tion of GWT applications to Angular and detail how it deals with the three chal-
lenges.

6.3 Implementation
In the following, we present an implementation of our hybrid architecture (Sec-
tion 6.3.1) dealing with the GUI mixing challenge. Then we describe how we
enabled communication in the architecture (Section 6.3.2) to deal with the commu-
nication and type matching challenges.

6.3.1 Implementation of our hybrid architecture through Web
Components

Our hybrid architecture mixes independent pages inside one application. The pack-
aged pages must include all the GUI categories of code (Visual code, Behavioral

6.3. Implementation 103

code, and Business code, see Section 3.1). To create packaged page for the GWT
and Angular hybrid architecture, we used Web Components1. The idea behind
Web Components is to build a reusable JavaScript module from a markup structure
(HTML), its associated script (JavaScript), and style (CSS). Then, any Web Com-
ponent can be inserted into any web application independently of its programming
language and GUI framework.

In our context, we build one Web Component from each migrated page pro-
duced by our automatic migration tool (see Section 6.1). Then, they are used as
packaged pages in our hybrid architecture (see Section 6.2).

Use Web ComponentCreate Web Component

Angular migrated page

Build the Web
Component

Register the Web Component
with tag

MyWebComponent

Add the Web Component tag
in the HTML DOM

Instantiate the Web
Component

Inject the Web Component

<my-tag></my-tag>

<my-tag>
 <content-migrated-page>
 </content-migrated-page>
</my-tag>

Figure 6.4: Packaging and using Angular migrated page with Web Component

In the following, we present how we concretely package migrated pages as Web
Components and deploy them into the hybrid architecture. It consists of five steps.
We illustrated the steps to create and use the Web Component in Figure 6.4.

The first two steps, left-side of Figure 6.4, create the Web Component.
1 - Build the Web Component. This step takes as input an Angular page

migrated using our GUI migration tool (see Section 6.1) and builds a Web Com-
ponent. To build the Web Component, we use the Angular element library2 that
can package as Web Component any Angular component. An Angular component
is a widget defined by the developer in an Angular application. In our context,
each Angular migrated page is an Angular component. In other contexts, they are

1Web Component: https://developer.mozilla.org/en-US/docs/Web/Web_Components
2Angular element: https://angular.io/guide/elements#how-it-works

https://developer.mozilla.org/en-US/docs/Web/Web_Components
https://angular.io/guide/elements#how-it-works

104 Chapter 6. Incremental migration

similar to custom widgets (see Section 3.3.1.4). Thus, we use the Angular element
library on each migrated page to build the Web Components

2 - Register the Web Component. Once we have a Web Component, we
register it in the Web Components registry of the web browser. Every web browser
has a registry that contains all the Web Components that can be used at runtime.
To do so, we use the JavaScript code that registers a Web Component with an
associated HTML tag. The HTML tag will then be used to refer to the newly
created Web Component.

Once the Web Components are registered, end-users can use the application.
The browser performs three steps for each Web Component when end-users nav-
igate to a page: add the Web Component tag in the HTML DOM, instantiate the
Web Component, inject the Web Component. These steps are illustrated on the
right side of Figure 6.4 They are used to display the migrated pages in the hybrid
application at runtime.

3 - Add the Web Component tag in the HTML DOM. First, the end-users
use the application. If they navigate to a page with a Web Component HTML tag
inside the DOM, a migrated page in our approach, the browser detects the tag and
tries to instantiate it.

4 - Instantiate the Web Component. To instantiate the Web Component, the
browser looks in its Web Component registry for the registred HTML tag defined
in the register the Web Component step. From this registry, it retrieves the Web
Component and can instantiate it.

5 - Inject the Web Component. Finally, the browser instantiates the Web
Component HTML DOM and injects it at the place of the Web Component HTML
tag inside the DOM of the navigated page. It also adds the specific styles and scripts
of the Web Component. In our context, the injected Web Component contains the
migrated Angular page.

Web Components allow one to insert Angular migrated pages inside a GWT
application. It tackles down the GUI mixing challenge in our context. This is the
first part of our hybrid architecture. The second part enables the communication
between the pages and the controller.

6.3.2 Enabling Communication between Angular and GWT

In the hybrid architecture, all communications between pages go through the con-
troller (see Section 6.2.1). For example, it is the case when one page displays
information selected in another one. To do so, the pages need to communicate with
the controller in charge of the data transmission.

In our context, a controller already exists in the source application, i.e. GWT
application. We decided to use this controller in our hybrid architecture. Without

6.3. Implementation 105

this preexisting controller, one would have to develop a new one. So, we need
communication between the GWT pages and the GWT controller and between the
Angular pages and the GWT controller. GWT to GWT communication is already
supported. Because the controller is the one of GWT, and the pages do not com-
municate directly between themselves, Angular to Angular communication never
happens.

We tackled two challenges to enable communication between Angular and
GWT: calling methods, which tackles the communication challenge, and send-
ing/receiving data with the type matching challenge.

Calling methods. The first challenge consists of allowing Angular to call
methods of the GWT controller. For example, Angular calls a method of the con-
troller to perform the navigation to another page or access logged user information.
Note that, again, we only need communication between the pages and the con-
troller since pages are independent of each other (see Section 6.2.1). To enable
method invocation, we studied the Angular and GWT compilers and observed that
they translate, respectively, the Java code of GWT components and the TypeScript
code of Angular components to JavaScript code to be executed on the client-side
(see Section 6.2.2). Thus, both are executed in the same programming language
(i.e., JavaScript), in the same runtime (i.e., the web browser runtime). So, the An-
gular/JavaScript code has direct access to the methods of GWT/JavaScript.

However, we had to perform additional work to enable communication. Indeed,
when GWT is compiled into JavaScript code, the Java types and methods are not
exposed externally. Thus, they can not be used by another program. To expose
Java methods and Java classes externally, GWT developers created the JSInterop
library3. This library allows developers to add annotations in their code that will
configure the GWT compiler. For instance, annotations will modify the generated
JavaScript code to expose it to others programming languages. Thus, we rely on
the JSInterop library to expose the methods of the GWT controller that needs to be
called by Angular code.

Listing 6.1 presents the exposed methods with JSInterop and not-exposed
methods of the GWT/Java class PhaseManager in our implementation. In this
example, the class has three methods: two are exposed methods (displayPhase
and addDataRefresh); and one is not-exposed (addDataRefreshEvent). The @Js-

Method(<Name>) annotation (lines 2 and 7) allows one to expose methods with
a programmer defined new name in JavaScript. The not exposed method, ad-
dDataRefreshEvent, is also exported in JavaScript but with an obfuscated name
making it impossible to be called from Angular or any other JavaScript code. Us-
ing the JSInterop library, we ensure the calling method capability and tackle the
communication challenge.

3http://www.gwtproject.org/doc/latest/DevGuideCodingBasicsJsInterop.html

http://www.gwtproject.org/doc/latest/DevGuideCodingBasicsJsInterop.html

106 Chapter 6. Incremental migration

1 public class PhaseManager {
2 @JsMethod(name="displayPhase")
3 public void displayPhase(PhaseMetadata pm) {
4 // ...
5 }
6
7 @JsMethod(name="addDataRefresh")
8 public void addDataRefresh(String data){
9 // ...

10 }
11
12 public void addDataRefreshEvent(String data) {
13 // ...
14 }
15 }

Listing 6.1: Exposed (displayPhase, addDataRefresh) and not exposed
(addDataRefreshEvent) methods to hybrid architecture

In the hybrid architecture for the GWT to Angular migration, we exposed 14
methods of the controller: 9 for the navigation (including several options), 2 to
check logged user rights, 1 to retrieve the currently opened page, and 2 to send and
receive data during navigation and deal with the type matching challenge.

Sending/Receiving data. When navigating to another page, the communica-
tion can include data. We implemented a specific process when it comes to send
and receive data. There are two cases: classic communication when data are sent
and received by pages defined with the same GUI framework, i.e. GWT to GWT
and Angular to Angular communication; and hybrid communication when data are
sent and received by pages defined with different GUI frameworks, i.e. GWT to
Angular and Angular to GWT communication.

For classic communication, a page (1) calls the navigation method of the con-
troller with the data. Then, the controller (2) stores the data and opens the navigated
page. The navigated page (3) asks the data to the controller, which, in turn, (4) re-
turns the stored data.

For hybrid communication, the process is more complex. Indeed, hybrid com-
munication suffers from the type matching challenge (see Section 2.3.1). So an
extra step is needed to transmit data. In short, type matching is achieved through
serialization and deserialization of the data. Because of its central position, this
step is implemented in the controller (see Section 6.2.1).

To present the data transformation, we detail how the navigation between two

6.4. Conclusion 107

pages is done with data coming from one page, going through the controller, and
being retrieved by another page.

:Controller:Source page
(GWT)

:Migrated page
(Angular)

(1) Navigate
with data

(3) Ask data

(4) Serialize
data

(5) Return data

(6) Deserialize
data

(2) Open page

Figure 6.5: Data transformation process in hybrid communication

Figure 6.5 presents the data transformation process when navigating from a
GWT page to an Angular one. First, the source page (1) calls the navigation method
of the controller with the data as a parameter. The controller (2) stores the data as-
is (i.e., does not perform any transformation) and performs the navigation. Then,
the navigated page (3) requests the data from the controller. There are two exposed
methods in the controller to retrieve the data; one is used by Angular, the other
one by GWT. Thus, the controller knows which framework, GWT or Angular, is
retrieving the data. The controller also knows which framework sent the data by
analyzing the data structure. In our context, the controller recognizes Java instances
coming from GWT, and plain JavaScript objects coming from Angular. In hybrid
communication, the controller (4) serializes the data in JSON and (5) returns it to
the navigated page. Then, the navigated page (6) deserializes the data.

Using this serialization/deserialization strategy, we dealt with the type matching
challenge.

We presented the implementation of our hybrid architecture to mix GWT with
Angular. It deals with the GUI mixing challenge using Web Components, with
the communication challenge thanks to the JSInterop library, and with the type
matching challenge thanks to a serialization/deserialization process. Using our in-
cremental migration approach, one can migrate applications progressively.

6.4 Conclusion
After using automatic migration tools, developers might still need to fix the mi-
grated application manually. However, this step can take several months, and de-

108 Chapter 6. Incremental migration

velopers can not freeze all updates to end-users during this period.
To ensure the delivery of the application during the application migration pro-

cess, we designed an incremental migration approach. We presented the approach
in Section 6.1. It consists of incrementally migrating the application and delivering
to the end-users a hybrid application containing pages developed with the source
GUI framework and pages developed with the target GUI framework.

We implemented our hybrid architecture to mix GWT and Angular. It enables
us to migrate applications of our industrial partner.

In the following, we validate our incremental approach and its implementation
on the migration of a Berger-Levrault application.

CHAPTER 7

Incremental migration validation

Contents
7.1 Case Study: Omaje Application 109

7.2 Research Questions and Evaluation Methods 111

7.3 Evaluation Results . 113

7.4 Incremental approach discussion 117

7.5 Threats to Validity . 119

7.6 Incremental approach conclusion 121

We designed an incremental migration approach that enables the migration
page by page of an application. It comes with a hybrid architecture that can mix
various GUI frameworks into one application. In particular, we proposed an imple-
mentation to mix GWT and Angular applications.

In this section, we validate our incremental migration approach on an industrial
application at Berger-Levrault. To do so, we performed the migration using our in-
cremental migration approach (Chapter 6) and our GUI migration tool (Chapter 3).

First, in Section 7.1, we present the application to migrate. In Section 7.2, we
detail the research questions and evaluation methods. In Section 7.3, we present
our results. In Section 7.4, we discuss our incremental approach. In Section 7.6,
we conclude our work on the incremental approach.

7.1 Case Study: Omaje Application
To evaluate our incremental approach in a real industrial set-up, we applied it to mi-
grate a GWT application to Angular at Berger-Levrault. The application is called
Omaje and was selected by its development team as representative of other Berger-
Levrault GWT applications. Omaje is a client subscription management appli-
cation used internally and, therefore, a safe case study for our experiment. The
Omaje application includes 20 main web pages distributed into 9 modules built us-
ing 6,683 GWT graphical elements. It uses 33 kinds of widgets, from basic ones,
as a button, to complex ones, as charts and tables that auto-update part of the GUI

110 Chapter 7. Incremental migration validation

when a row is selected. In total, in its original version, Omaje weights 191KLOC
in 2,669 Java classes and 14,882 methods. The developers of Omaje roughly esti-
mated the time to migrate the application manually to 104 person-days.

We hired (i) a Master student as a trainee to perform the migration of Visual
code of Omaje, and (ii) an Angular expert engineer to migrate the Behavioral code.
The Master student and the Angular expert did not know the Omaje application.
The Master student had no knowledge of Angular but had experience with ReactJS
(a similar GUI framework). The Angular expert engineer worked with Angular for
more than three years.

Visual code migration. For the trainee, the work consisted in selecting a page,
migrating it with our GUI migration tool, and fixing the visual aspect. First, he re-
quired 10 days to install the application environment, discover the Angular frame-
work, and learn how to use our migration approach and tools. When fixing a page,
the intern also encountered Custom Widgets, i.e., GUI elements not migrated auto-
matically because they only exist in the source framework (see Section 3.3.1.4). In
this case, he created the corresponding widget in the target framework and added
it into the widget map of our tool (see Section 4.1.1). Once the environment was
installed, the trainee finalized the migration of the Visual code in 14 days. In total,
the migration of the Visual code required 24 days: 10 days for the installation and
14 days for the migration.

Figure 7.1: Time spent by module to migrate the Visual code

Figure 7.1 presents the amount of time in days spent by the trainee to perform
the Visual code migration of each module. It required more time to migrate the
first two modules. It corresponds to the time required for the intern to understand

7.2. Research Questions and Evaluation Methods 111

our tool and architecture. Then, one can see that the time steadily decreases. The
trainee developed all along the process Custom Widgets that were reused for the
migration. Thus, by reusing newly created widgets, he spent less and less time on
each module. Figure 7.1 also highlights that fixing module 2 was time consuming
but do not greatly contribute to the percentage of migrated pages. For instance, the
module 2 corresponds to 11% of the final application but requires 45% of the time
required for the migration of the Visual code.

Behavioral code migration. For the Angular expert engineer, the work consisted
in taking the GUI pages produced by the trainee, fix the Behavioral code, and
integrate the migrated page into the hybrid architecture for deployment.

Figure 7.2: Time spent by module to migrate the Behavioral code

Figure 7.2 presents the amount of time in days spent by the engineer to perform
the Behavioral code migration of each module. He required 22 days to finalize the
migration. Since the engineer did not need to know our tool because he takes as
input the Angular pages pre-migrated by the intern, no extra time is required at
the beginning of the migration project. Contrary to the Visual code migration, the
time required to migrate Behavioral code (blue bars) does not decrease with the
number of remaining modules. The engineer required an average of 2.5 days and a
maximum of 4 days to migrate a module.

7.2 Research Questions and Evaluation Methods
To evaluate our approach, we defined four research questions. For these RQs, we
used three versions of the Omaje application: a GWT version, an Angular version,

112 Chapter 7. Incremental migration validation

and a hybrid version (see below).

RQ 1. Does the migrated application have the same features as the source
application?

To answer this RQ, we ask the development team to execute their functional
tests over the GWT and the migrated Angular applications. The application tests
are detailed in a user manual provided by the development team. In total, the Omaje
application has 56 functional test scenarios. Developers compare the execution
results for each version of the application and report potential discrepancies in the
migrated Angular one.

RQ 2. Does data communication overhead impact the speed of browsing
between pages?

This RQ aims to evaluate the impact of the serialization and deserialization ap-
proach we used to tackle the type matching problem (see Section 6.3.2). We expect
that GWT to GWT and Angular to Angular communications are fast since they do
not require additional data manipulation (i.e., they are handled by the controller of
the hybrid architecture but do not require serialization and deserialization). Hybrid
communications might require additional time but need to be imperceptible to the
end-user.

To evaluate this RQ, we execute scenarios requiring communications between
GWT and Angular. The scenarios include the transmission of data of different
sizes. Data includes objects with attributes of different types: primitives (i.e.,
string, int, etc.), collections, dictionaries, backward reference to an existing object
in case of data with cycles, and other objects.

We ran the scenarios using Microsoft Edge version 87.0.664.66 on a laptop with
16 Go RAM and the Intel Core i7-7500U CPU. No other application was running
on the computer during the experiment. To measure the communication time, we
used the pre-built JavaScript feature console.time(). To avoid bias in the computed
times, each scenario is run 1,000 times, and we report the average time.

RQ 3. Does the build time of the hybrid and Angular applications deteriorate
compared to the GWT one?

To evaluate this RQ, we measure the required time to build the GWT, the hybrid,
and the Angular application. Building an application consists of creating the .class
files and the transpilation of TypeScript (respectively Java) to JavaScript. Build
time for large applications can be time-consuming (hours), and it is essential to
ensure that building the hybrid application is not prohibitively long.

RQ 4. Does the GUI performance of the hybrid application deteriorate com-
pared to the GWT source and Angular migrated applications?

This RQ aims to compare the performance when displaying the GUI of pages
between the GWT, the hybrid, and the Angular applications. We measured the exe-

7.3. Evaluation Results 113

cution time of 4 execution scenarios for each application. The execution scenarios
are:

1. Accessing the first page of the application where initial scripts are run;

2. Accessing a middle-sized page;

3. Accessing a large page that requests and displays a lot of data;

4. Modifying data with several requests to the database and updating the page
UI.

When evaluating performance for the hybrid application, the accessed pages
are in Angular, whereas the controller is in GWT. Thus, for the hybrid application,
this RQ evaluates if using Web Components actually tackles down the GUI mixing
problem (see Section 6.3.1).

To measure the execution times, we used the built-in performance tool of Mi-
crosoft Edge browser1. It gives us detailed results on the GUI execution.We report
the performance in:

• scripting: time spent executing JavaScript file;

• rendering: time spent to compute the position and visual aspect of widgets;
and

• painting: time spent to display the resulting page in the web page.

We evaluated the four RQs on three applications. The GWT one is entirely writ-
ten in GWT. It is the source application. The Angular one in which the pages and
the controller are written in Angular. It is the migrated application. And the hybrid
application with a controller written in GWT, three pages migrated to Angular and
integrated into the application, and the remaining pages still in GWT. We discuss
the choice of the three migrated pages of the hybrid application in Section 7.4.4.

7.3 Evaluation Results
In the following, we present the result to the research questions.

RQ 1. Does the migrated application have the same features as the source
application?

1https://docs.microsoft.com/en-us/microsoft-edge/devtools-guide-chromium/evaluate-
performance/

https://docs.microsoft.com/en-us/microsoft-edge/devtools-guide-chromium/evaluate-performance/
https://docs.microsoft.com/en-us/microsoft-edge/devtools-guide-chromium/evaluate-performance/

114 Chapter 7. Incremental migration validation

We gave the migrated application to the current Omaje developers and testers.
They performed the 56 functional test scenarios of the application.

Developers did not report any bugs in the migrated Omaje application. From
this perspective, they decided to stop supporting the old GWT application and use
the Angular version for future development and deployment.

At this moment, developers have successfully developed two new features in
the Angular application.

Summary: Using our approach, we migrated the application in a semantically
equivalent way. The development team decided to replace the old application with
the Angular migrated one.

RQ 2. Does data communication overhead impact the speed of browsing
between pages?

To check the performance of the communications between GWT and Angu-
lar inside the hybrid architecture, we performed several communications between
pages in GWT and Angular. During the communication, data of different sizes
were exchanged, with several fields and cyclic references. We report the average
time over 1,000 executions in Table 7.1.

Table 7.1: Communications performance in millisecond

Source
Target GWT Angular

GWT 2 ms 49 ms
Angular 7 ms 2 ms

For the communications between pages defined with the same GUI framework,
both GWT-to-GWT and Angular-to-Angular communications need 2 ms. They do
not require additional data manipulation.

For the communications between pages defined with different frameworks,
GWT-to-Angular communications require 49 ms, and Angular-to-GWT commu-
nications require 7 ms. So there is a cost for converting data. After investigation,
we found that GWT-to-Angular communications are slower because the Angular
deserialization library we used is less efficient than the GWT one. The poor per-
formance of the Angular library we used for deserialization is a known issue2 and
might be solved in the future.

Summary: Hybrid communications cost does not much impact the end-user.
Although GWT-to-Angular communication is slower, it remains imperceptible for
the end-user

2https://github.com/pichillilorenzo/jackson-js/issues/18

https://github.com/pichillilorenzo/jackson-js/issues/18

7.3. Evaluation Results 115

RQ 3. Does the build time of the hybrid and Angular applications deteriorate
compared to the GWT one?

We measured the compilation time to build each application. Table 7.2 summa-
rizes the time required to build the GWT, the hybrid, and the Angular applications.
In GWT, there are two compilations: the build of the Java project and the Java
to JavaScript transpilation when first accessing the application. Building the Java
project costs 366 seconds, and the transpilation requires 131 seconds. Thus, the
complete GWT compilation costs 497 seconds.

Table 7.2: Building performance in second

Application Building time
GWT 497 s
Hybrid 526 s
Angular 96 s

For the hybrid application, the build time is the same as for GWT (366 seconds).
However, the transpilation time requires 160 seconds. The additional time for the
transpilation comes from the usage of the JSInterop library (see Section 6.3.2).
Thus, the hybrid architecture required 526 seconds.

The Angular application has a single compilation that requires 96 seconds.

Summary: This analysis shows that building the hybrid architecture is 5%
slower than building the source GWT application. The Angular application build
is 80% faster than the GWT one. Thus, using a hybrid architecture has no important
impact on building performance. It can be used to perform incremental migration.

RQ 4. Does the GUI performance of the hybrid application deteriorate com-
pared to the GWT source and Angular migrated applications?

We compare the performance of each application for the four scenarios de-
tailed Section 7.2. Figure 7.3 presents the results of the performance evaluation.
We perform the evaluation for home page first access, middle-size page first access,
database request, and large page first access. Each bar presents the time in millisec-
onds reported when evaluating the GWT application, the hybrid application, and
the Angular application.

For the first access to the home page, the GWT application is the fastest. GWT
pre-compiles the home page during compilation, thus, home page access is fast.
On the other hand, when accessing the home page of the Angular application, the
Angular runtime is loaded with the application script. This step is time-consuming
for the Angular application. Finally, the hybrid application is the worst case be-
cause it combines the worst of both worlds. We investigated the reasons that make

116 Chapter 7. Incremental migration validation

Figure 7.3: Performance evaluation result

home page access slow when using Angular, and discovered that our implemen-
tation does not use the lazy loading feature of Angular. Using this feature is part
of our future work. Additionally, using the Ahead Of Time3 (AOT) compilation
option of Angular could improve further the performances.

For the middle-size web page access, both the hybrid and the Angular appli-
cations are faster than the pure GWT one. The hybrid application benefits from
the Angular speed, and the Web Components usage does not much deteriorate the
time required to render the GUI. This scenario also highlights the low performance
of GWT to render the GUI as compared to Angular. This scenario shows that
the hybrid and Angular applications improve the application response time for the
end-user.

The third group presents the performance of the application when users request
the database (for instance, to update the data). Making a request implies a scripting
step where the data are serialized, sent to the back-end, new data are received, and
the UI is updated. Again, the hybrid and the Angular applications are the fastest.
It is due to the usage of REST/JSON instead of the GWT/RPC protocol and to the
time required by GWT to render the new UI after retrieving the data. The usage
of REST/JSON is discussed in Section 7.4.2. This scenario shows that during and
after the migration, the application is more responsive to end-user interaction.

Finally, the last group presents the performance when accessing a page display-
ing a lot of data. In the case of GWT, the Microsoft Edge built-in plugin crashed
during the evaluation. So, we do not have execution time data. This is because
GWT took several minutes to process the received data and the plugin ran out of

3https://angular.io/guide/aot-compiler

https://angular.io/guide/aot-compiler

7.4. Incremental approach discussion 117

memory. When performing the migration from GWT to Angular, the developers
improved the performance of the page. In fact, they were able to use already op-
timized existing Angular widgets to fix this page. With the fix, the hybrid and
Angular applications have better performances than the GWT one. We also note
that thanks to the optimization, the large page became the fastest one. Applying op-
timization thanks to recent Angular widgets on all application pages could improve
the overall application performance.

Summary: The hybrid application has better performances than the source
one. It is also the case of the migrated Angular application. The hybrid application
takes benefits of the Angular features. RQ4 validates the usage of Web Components
to tackle the GUI mixing problem.

7.4 Incremental approach discussion
This section discusses some difficulties that we addressed to migrate GWT appli-
cations to Angular. Section 7.4.1 discusses how the industrial context might have
eased the implementation of our approach and architecture. Section 7.4.2 presents
the migration of the back-end services when migrating to another GUI framework.
Section 7.4.3 discusses our case study and the scenarios we used to validate the
incremental migration approach. Finally, Section 7.4.4 discusses how the pages
migrated in the hybrid application might have impacted our result.

7.4.1 Industrial coding conventions
We perform the incremental migration approach in the context of Berger-Levrault
on the Omaje application. Berger-Levrault set up several coding conventions that
have eased the usage of our hybrid architecture.

In the company applications, the pages are independent one of the other. Hav-
ing independent pages is a requirement of our hybrid architecture (see Section 6.2.1).
So, we did not have to perform any step to make pages independent, and thus em-
beddable in our hybrid architecture. On the contrary, if pages were dependent on
each other, one would be forced to break these dependencies before applying our
incremental migration approach. The separation of pages is then similar to the cre-
ation of micro-services for the back-end where back-end features are separated one
from the other [Zaragoza et al., 2021].

7.4.2 RPC vs. Rest services
When migrating web applications, we had to ensure communication between the
front-end and the back-end. On the one hand, the GWT source application com-

118 Chapter 7. Incremental migration validation

municates with the back-end using RPC services and the GWT-RPC serialization.
RPC services allow one to invoke a method of the back-end and the GWT-RPC se-
rialization is a specific way to serialize data that is heavily tied to Java. By default,
GWT uses RPC services. On the other hand, Angular uses Rest services and JSON
serialization. Rest consists of accessing an external resource, and JSON is a known
serialization representation.

Our incremental migration approach focused on the GUI migration aspect and
therefore did not consider the switch of back-end request protocol. In our context,
we had to modify the back-end communication protocol. For instance, we decided
to migrate the services to Rest/JSON to use the most recent technology.

The modernization of the back-end, in particular the switch of communication
protocol, is not an easy task. However, it eases the migration of the front-end.
Indeed, since recent front-end frameworks are designed to use the same commu-
nication protocol as recent back-end frameworks, modernizing the communication
protocol on both sides eases the migration process.

We also acknowledge that switching to Rest/JSON might have improved the
performance of our Angular application as depicted in RQ4 in Section 7.3. The
renovation of the back-end, including the communication protocol switch, is fur-
ther discussed in our future work (see Section 8.3).

7.4.3 Case study and validation scenarios

We validated our incremental migration approach on one application and using four
scenarios. Thus, our results might differ for other applications or other migration
projects, i.e. migration from or to other GUI frameworks.

We decided to apply our approach to an actual industrial application instead of
a toy tool to reduce this problem. We also asked developers that are not part of the
incremental migration research team to perform the validation.

Finally, the hybrid application used for the validation (see Section 7.2) is com-
posed of three migrated pages of different sizes, including simple and complex
widgets. It allows us to use validation scenarios on a variety of pages. Thus, by
selecting different types of pages, our validation gets closer to the industrial truth.

7.4.4 Pages migrated in the hybrid application

We evaluated our approach on a hybrid application composed of three migrated
pages. However, as presented in RQ4 in Section 7.3, the number of pages migrated
impacts our result. For instance, each migrated page cost several seconds to load
the first time.

We investigated this challenge and discovered that, in our implementation, each
Web Component comes with one migrated page, the controller, and the Angular

7.5. Threats to Validity 119

runtime. Thus, in a hybrid application with three migrated pages, the Angular
runtime is imported three times. In case of a huge hybrid application with hundred
of migrated pages, the required time to load the application would explode.

We already propose, in the previous section, solutions to reduce this problem.
Using the Angular lazy loading feature will distribute the loading time on the pages
instead of only the home page. Another solution is to package all the migrated
pages into only one Web Component, and not one Web Component per page. Thus,
the browser will need to load only once the Angular runtime. We plan to explore
these options as part of our future work.

7.5 Threats to Validity

This section discusses the validity of our case study using the validation scheme
defined by Runeson and Höst [2009]. The construct validity, the internal validity,
the external validity, and the reliability are presented.

Again, our validation does not correspond to a formal validation consisting of
research questions and their associated hypothesis testing. We instead performed
one experiment in an industrial context. We also studied the industrial state of
the art and reported that some companies are developing their applications using
a hybrid architecture with other technologies than Java and Angular. For instance,
Yesplan4 develops a web application using Seaside and React.JS5.

7.5.1 Construct Validity

Construct validity indicates whether the studied measures really represent what
is investigated according to the research questions. The purpose of this study is
to evaluate the ability to use our hybrid architecture to migrate applications with
GUIs.

For developers, we validated that the build time of the hybrid architecture is not
prohibitively long. We manually recorded the time needed to compile and transpile
the application, which corresponds to the time spent by the developer waiting to see
the application running. The scale of time required to build the application (more
than 8 minutes), ensures that our conclusion is still valid, even considering some
imprecision in the time manually recorded.

For the end-users, we evaluated the application behavior and usability.
For the application behavior, developers of the application performed the func-

tional tests of the application that validates application behavior. We acknowledge

4https://yesplan.be/en
5https://www.slideshare.net/pharoproject/yesplan-10-years-later

https://yesplan.be/en
https://www.slideshare.net/pharoproject/yesplan-10-years-later

120 Chapter 7. Incremental migration validation

that the functional tests might not cover all the application requirements. How-
ever, since the development team decided to keep the migrated version for future
development, we consider the application correctly migrated.

For the application usability, we validated it against four scenarios. We reported
the total time needed to perform the scenarios. To prevent possible bias, we selected
four scenarios with different characteristics: size of the page, kind of request made
to the database, and the first page in which initialization scripts are run. Time
performances were recorded automatically and averaged over 1,000 runs to ensure
the reliability of the results.

7.5.2 Internal Validity

Internal validity indicates whether no other variables except the studied one im-
pacted the result.

Our validation is one industrial experiment consisting of the migration of a
closed-source application. Even if we paid extra care to the tools we used to report
the performance results of our hybrid architecture, it is rather difficult to isolate
variables that might have impacted our results.

7.5.3 External Validity

External validity indicates whether it is possible to generalize the findings of the
study.

We are aware that our results can not be easily generalized. We validated our in-
cremental approach and its hybrid architecture against a closed-source application,
and we can not publicly share the hybrid architecture implementation. Moreover,
we describe a functional implementation to mix GWT and Angular GUI, but some
issues might appear when mixing GUI defined with other GUI frameworks.

However, our hybrid architecture implementation is based on Web Components
and the JSInterop library of GWT that are open-source projects. Thus, future re-
search can easily reuse these projects for other hybrid architecture in a web context.

7.5.4 Reliability

Reliability indicates whether others can replicate our results.
Since our case study is a closed-source application, one can not replicate our

result in the exact same context. Moreover, we do not provide any source code of
the hybrid architecture.

To increase the reliability of our results, we perform the validation using stan-
dard free-to-use tools such as Microsoft Edge and pre-built JavaScript features.

7.6. Incremental approach conclusion 121

We also detailed our evaluation methods to ease future researchers reproducing the
same evaluation set-up.

7.6 Incremental approach conclusion
We validated our incremental migration approach on the Omaje industrial applica-
tion migration. The migration was performed by two developers that did not know
our tool nor the Omaje application. They used our GUI migration tool (see Chap-
ter 3) and the hybrid architecture of our approach (Section 6.2).

The Omaje application is now migrated, and the Angular version is used by the
development team. It is thus a successful migration.

During the migration, we also validated that the application is usable by end-
users. To do so, we ran performance tests on the GWT application, the hybrid
application (the application delivered to end-users during the migration process),
and the migrated Angular application. The hybrid application and the Angular one
have better performances than the GWT one. It validates that the performance of
the application during the incremental migration is not an issue for end-users.

Based on the result of this evaluation, the company decided to reuse this work
for the migration of the Human Resources application, i.e., the biggest application
of the company to migrate.

CHAPTER 8

Conclusion

Contents
8.1 Summary . 123

8.2 Contributions . 124

8.3 Future Work . 125

8.1 Summary

Companies, such as Berger-Levrault, developed applications with a Graphical User
Interface. To ease the creation of such GUI, they used GUI frameworks defining
reusable widgets. However, as with any software, GUI frameworks are getting old,
and companies must switch to more recent ones. Moving from one GUI framework
to another is not straightforward and raised two scientific challenges: support GUI
frameworks agnostic migration and enable incremental migration.

Chapter 2 reviews the scientific litterature. In particular, we review the exist-
ing GUI representations, the GUI migration approaches, and the constraints when
migrating incrementally an application. We concluded that using a meta-model to
represent the GUI is a common approach. However, a generic meta-model was
lacking to represent GUI coming from both desktop and web environments. We
also concluded that no approach exists to migrate application GUIs incrementally,
ensuring the ability to mix GUI and communication between the two mixed GUI
frameworks.

In Part I, we answer the first challenge: support GUI frameworks agnostic mi-
gration. It consists of representing GUI defined with different GUI frameworks
and enabling the automatic migration of GUI defined with one GUI framework to
another GUI framework.

Chapter 3 presents our approach to migrate application GUIs. It includes a
separation of the GUI into the Visual code, the Behavioral code, and the Business
code. We presented our migration approach and its pivot meta-model. Then, we
detailed the extraction and generation of GUI using several steps and sub-steps. For

124 Chapter 8. Conclusion

each sub-step, we provided usage examples for GUIs defined using programming
languages or markup languages.

Chapter 4 details implementations of our approach for the Visual code and
Behavioral code migration. We presented the extraction of GUI defined with the
GWT, GXT, and Spec GUI frameworks and the generation of GUI defined with
Spec2, Angular, and Seaside GUI frameworks. This chapter gives examples of
concrete usage of our approach and meta-model. One can use our detailed extrac-
tors and generators to migrate applications.

Chapter 5 validates our GUI migration approach and meta-model on real mi-
gration projects. It presents metrics used for the migration validation and our re-
sults after performing the migration of closed-source and open-source projects. It
reports that our approach correctly migrates the source applications. The gener-
ated applications are runnable, include most of the source widgets, and are visually
equivalent to the source ones. Moreover, our generator produces Behavioral code
similar to the ones that a real Angular developer might produce.

In Part II, we answer the second challenge: enable incremental migration. It
consists of defining a migration approach that allows continuous delivery of the
application during the migration process. To do so, it uses a hybrid architecture
that mixes GUIs defined with different GUI frameworks.

Chapter 6 presents our incremental migration approach. It consists of an ap-
proach including a hybrid architecture allowing mixing GUI defined with different
GUI frameworks. This chapter also presents an implementation of our approach
and hybrid architecture to migrate GWT applications to Angular. It details the
strategy used to mix GUI defined with different frameworks and to enable commu-
nication between the pages in the hybrid application. Thus, one can reproduce our
work for different contexts.

Chapter 7 validates our incremental migration approach as well as our hybrid
architecture. It considers the correctness of the final application (i.e., fully mi-
grated) as well as the performance of the intermediate application (i.e., the applica-
tion using the hybrid architecture). Finally, it shows that our incremental approach
enables the migration of large applications.

8.2 Contributions
The main contribution of this thesis is an incremental GUI migration approach. It
includes:

• A detailed approach to migrate application GUI;

• A meta-model representing the GUIs;

• A hybrid architecture enabling incremental migration.

8.3. Future Work 125

8.3 Future Work
In this section, we present open issues not addressed in the thesis. These open
issues provide opportunities to continue our research concerning the migration of
application GUIs.

Migrating binary. In this thesis, we deal with the migration of GUI defined in
programming languages or markup languages. However, some GUIs are defined
using other formats. It is the case for applications defined with Access, Delphi,
WinDev, etc..

In these cases, the GUI extraction can not be performed by directly analyzing
the source code files. Indeed, since the files are in binary format, one must discover
another path to access GUI definition.

Bragagnolo et al. [2020a] explored the usage of the Access IDE capabilities to
access the GUI. Instead of parsing the source files, they proposed to start the Access
IDE of the project and to connect an extractor to the IDE API. Using the Access
API, they can discover the defined GUIs and retrieve the widgets, attributes, and
DOM.

Additional work should be done in that direction for the extraction of the Be-
havioral code and Business code. This future work is even more challenging be-
cause, in such applications, Visual code, Behavioral code, and Business code are
often mixed, which makes their identification tedious.

Supporting various layout managers. In our context, source and target GUI
frameworks used a hierarchical layout manager. However, other layout managers
exist (see Section 2.1.2). It is the case of the hardcoded layout manager often used
in old applications.

There are two simple solutions to deal with hardcoded layout manager using our
approach. One can extend our layout package (see Section 3.3.1.3) with hardcoded
layout concepts. Alternatively, one can create an extractor that converts the source
layout into a hierarchical layout.

Both solutions have disadvantages. For the first solution, i.e., extending the
layout package, the layout manager conversion problem will persist when it comes
to generating the target application. One will need to create one generator for each
source layout manager and target GUI framework. For the second solution, con-
verting the layout during the extraction means creating a more complex extractor,
and the layout conversion can not be reused for other extractors.

An alternative solution is a mix of both. One can extend our layout package
with hardcoded layout concepts, and the extractors extract the layout using the
same layout concepts used in the source framework. Then, we need to develop an
additional module in our GUI migration that performs layout manager conversion.

126 Chapter 8. Conclusion

When generating the target application, the generator takes as input the GUI pivot
model. Before performing the generation, it performs a model transformation to
use the target GUI framework layout manager.

Automatic
extraction

Manual
intervention

instance of

Automatic
generation

instance of

Layout
conversion

New step

GUI meta-model
with source layout manager

GUI meta-model
with target layout manager

Page developed with the source framework
Page modelized with source layout manager concepts
Page modelized with target layout manager concepts
Page developed with the target framework

Figure 8.1: Layout manager conversion

Figure 8.1 shows the proposed future approach. Compared to our current ap-
proach, it includes a new step: “Layout conversion”. This step aims to transform
the layout manager concepts of the source GUI pivot model to the concepts corre-
sponding to the target GUI frameworks layout manager. Note, the core, widget, and
behavioral packages (see Section 3.2.2) are not modified during the transformation.

Back-end renovation. Our approach supports the renovation of the GUI front-
end. However, when modernizing an application, the back-end is also concerned.
It includes the architecture of the back-end and the front-end to back-end commu-
nication.

For the architecture of the back-end, current research focus on the back-end
separation. Old applications, such as the one we migrated in this thesis, are mono-
lithic. A monolithic application is a web application where the server-side appli-
cation is a single-tier application, i.e. one single logic unit. Nowadays, research
focuses on the separation of the monolithic back-end to micro-services [Zaragoza
et al., 2021].

For the front-end to back-end communication, we already described that some
modification must be performed in Section 7.4.2. It consisted of modifying the
back-end in compliance with the GUI framework standard communication proto-
col. For instance, GWT uses Java/RPC, and Angular uses REST. Moreover, when
migrating from desktop applications to web applications, there is no prior back-
end, and one would have to build one using a communication protocol.

8.3. Future Work 127

To increase the quality of the generated code, one should use a standard com-
munication protocol. However, moving from one protocol to another is not an easy
task. Indeed, one should move to another transport method, i.e., in REST HTTP:
GET, POST, PUT, PATCH and DELETE, and change the architectural style, i.e.,
methods to access a resource instead of calling a method.

To switch of transport method, one can base the migration on currently existing
method names. For instance, RPC methods at Berger-Levrault are prefixed with the
action performed. To create data the saveXX prefix is used, whereas to access a data
the getXX prefix is used. One simple transformation rule would be migrating the
saveXX method to use the POST transport method and migrate the getXX method
to use the GET method.

For the architectural style migration, one can base its migration rules on the
original return type of the RPC methods. Easy cases are GET methods that return
a data object. These methods are already getting resource-oriented. However, one
still has to modify the URL path to access the resource. One idea would be to use
the name of the data object and the method parameters to build the new URL.

Bibliography

Karan Aggarwal, Mohammad Salameh, and Abram Hindle. Using machine transla-
tion for converting python 2 to python 3 code. Technical report, PeerJ PrePrints,
2015. 15

Simon Allier, Salah Sadou, Houari Sahraoui, and Régis Fleurquin. From
object-oriented applications to component-oriented applications via component-
oriented architecture. In 2011 Ninth Working IEEE/IFIP Conference on Software
Architecture, pages 214–223. IEEE, 2011. 2

Nawel Amokrane, Jannik Laval, Philippe Lanco, Mustapha Derras, and Nejib
Moala. Analysis of data exchanges, towards a tooled approach for data inter-
operability assessment. In Intelligent Systems: Theory, Research and Innovation
in Applications, pages 345–363. Springer, 2020. 2

Nicolas Anquetil, Anne Etien, Mahugnon Honoré Houekpetodji, Benoît Ver-
haeghe, Stéphane Ducasse, Clotilde Toullec, Fatija Djareddir, Jèrome Sudich,
and Mustapha Derras. Modular moose: A new generation of software reengi-
neering platform. In International Conference on Software and Systems Reuse
(ICSR’20), number 12541 in LNCS, December 2020.

Tony Beltramelli. pix2code: Generating code from a graphical user interface
screenshot. arXiv preprint arXiv:1705.07962, 2017. 13

Santiago Bragagnolo, Nicolas Anquetil, Stéphane Ducasse, Seriai Abderrahmane,
and Mustapha Derras. Analysing microsoft access projects: Building a model
in a partially observable domain. In International Conference on Software and
Systems Reuse (ICSR’20), number 12541 in LNCS, December 2020a. 16, 92,
125

Santiago Bragagnolo, Benoît Verhaeghe, Abderrahmane Seriai, Mustapha Derras,
and Anne Etien. Challenges for layout validation: Lessons learned. In Inter-
national Conference on the Quality of Information and Communications Tech-
nology, QUATIC’2020, September 2020b. URL https://hal.inria.fr/hal-02914750. 79,
88

Marco Brambilla and Piero Fraternali. Interaction flow modeling language: Model-
driven UI engineering of web and mobile apps with IFML. Morgan Kaufmann,
2014. 10, 12

John Brant, Don Roberts, Bill Plendl, and Jeff Prince. Extreme maintenance:
Transforming Delphi into C#. In ICSM’10, 2010. 14, 15

https://hal.inria.fr/hal-02914750

130 Bibliography

John Brant, Jason Lecerf, Thierry Goubier, Stéphane Ducasse, and Andrew P.
Black. Smacc: a compiler-compiler, 2017. URL http://books.pharo.org/booklet-

Smacc/. 68

Jiuxin Cao, Bo Mao, and Junzhou Luo. A segmentation method for web page anal-
ysis using shrinking and dividing. International Journal of Parallel, Emergent
and Distributed Systems, 25(2):93–104, 2010. 79, 88

Eric Cariou, Olivier Le Goaer, Léa Brunschwig, and Franck Barbier. A generic so-
lution for weaving business code into executable models. In Regina Hebig and
Thorsten Berger, editors, 21st International Conference on Model Driven Engi-
neering Languages and Systems, volume 2245 of CEUR Workshop Proceedings,
pages 251–256. CEUR-WS.org, 2018. URL http://ceur-ws.org/Vol-2245/exe_paper_

2.pdf. 31

Chunyang Chen, Ting Su, Guozhu Meng, Zhenchang Xing, and Yang Liu. From
ui design image to gui skeleton: A neural machine translator to bootstrap mobile
gui implementation. In Proceedings of the 40th International Conference on
Software Engineering, ICSE ’18, pages 665–676, New York, NY, USA, 2018.
Association for Computing Machinery. ISBN 9781450356381. doi: 10.1145/
3180155.3180240. URL https://doi.org/10.1145/3180155.3180240. 13

David Chisnall. The challenge of cross-language interoperability. Communications
of the ACM, 56(12):50–56, 2013. 18, 19

Santiago Comella-Dorda, Kurt Wallnau, Robert C Seacord, and John Robert. A
survey of legacy system modernization approaches. Technical report, Carnegie-
Mellon univ pittsburgh pa Software engineering inst, 2000. 19, 20

Gaëtan Deltombe, Olivier Le Goaer, and Franck Barbier. Bridging KDM and
ASTM for model-driven software modernization. In Proceedings of the 24th
International Conference on Software Engineering & Knowledge Engineering
(SEKE’2012), pages 517–524. Knowledge Systems Institute Graduate School,
2012. 18

Serge Demeyer, Benoît Verhaeghe, Anne Etien, Nicolas Anquetil, and Stéphane
Ducasse. Evaluating the efficiency of continuous testing during test-driven de-
velopment. In Proceedings VST 2018 (2nd IEEE International Workshop on
Validation, Analysis and Evolution of Software Tests), pages 1 – 5, March 2018.
URL https://hal.inria.fr/hal-01717343.

Stéphane Ducasse, Nicolas Anquetil, Usman Bhatti, Andre Cavalcante Hora, Jan-
nik Laval, and Tudor Girba. MSE and FAMIX 3.0: an Interexchange Format

http://books.pharo.org/booklet-Smacc/
http://books.pharo.org/booklet-Smacc/
http://ceur-ws.org/Vol-2245/exe_paper_2.pdf
http://ceur-ws.org/Vol-2245/exe_paper_2.pdf
https://doi.org/10.1145/3180155.3180240
https://hal.inria.fr/hal-01717343

Bibliography 131

and Source Code Model Family. Technical report, RMod – INRIA Lille-Nord
Europe, 2011. 34

Clement Dutriez, Benoît Verhaeghe, and Mustapha Derras. Switching of GUI
framework: the case from Spec to Spec 2. In Proceedings of the 14th Edition
of the International Workshop on Smalltalk Technologies, Cologne, Germany,
August 2019. URL https://hal.archives-ouvertes.fr/hal-02297858.

Johan Fabry and Stéphane Ducasse. The Spec UI Framework. Square Bracket
Associates, 2017. URL http://books.pharo.org. 55

Franck Fleurey, Erwan Breton, Benoit Baudry, Alain Nicolas, and Jean-Marc
Jezéquel. Model-Driven Engineering for Software Migration in a Large Indus-
trial Context. In Gregor Engels, Bill Opdyke, Douglas C. Schmidt, and Frank
Weil, editors, Model Driven Engineering Languages and Systems, volume 4735,
pages 482–497, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN
978-3-540-75208-0 978-3-540-75209-7. doi: 10.1007/978-3-540-75209-7_33.
URL http://link.springer.com/10.1007/978-3-540-75209-7_33. 2, 3, 9, 11, 12, 14, 16, 17

Sergio Flores-Ruiz, Ricardo Perez-Castillo, Christoph Domann, and Simona Puica.
Mainframe migration based on screen scraping. In 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 675–684.
IEEE, 2018. 19, 20

Kelly Garcés, Rubby Casallas, Camilo Álvarez, Edgar Sandoval, Alejandro Sala-
manca, Fredy Viera, Fabián Melo, and Juan Manuel Soto. White-box modern-
ization of legacy applications: The oracle forms case study. Computer Standards
& Interfaces, pages 110–122, October 2017. doi: https://doi.org/10.1016/j.csi.
2017.10.004. 9, 12, 14, 16

John Gerdes Jr. User interface migration of microsoft windows applications. Jour-
nal of Software Maintenance and Evolution: Research and Practice, 21(3):171–
187, 2009. 39

Zineb Gotti and Samir Mbarki. Java swing modernization approach - complete
abstract representation based on static and dynamic analysis:. In Proceedings of
the 11th International Joint Conference on Software Technologies, pages 210–
219. SCITEPRESS - Science and Technology Publications, 2016. ISBN 978-
989-758-194-6. doi: 10.5220/0005986002100219. URL http://www.scitepress.org/

DigitalLibrary/Link.aspx?doi=10.5220/0005986002100219. 11, 12, 37

Kristian Fjeld Hasselknippe and Jingyue Li. A novel tool for automatic gui layout
testing. In 2017 24th Asia-Pacific Software Engineering Conference (APSEC),
pages 695–700, dec 2017. doi: 10.1109/APSEC.2017.87. 13

https://hal.archives-ouvertes.fr/hal-02297858
http://books.pharo.org
http://link.springer.com/10.1007/978-3-540-75209-7_33
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0005986002100219
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0005986002100219

132 Bibliography

Tomokazu Hayakawa, Shinya Hasegawa, Shota Yoshika, and Teruo Hikita. Main-
taining web applications by translating among different RIA technologies. GSTF
Journal on Computing, page 7, 2012. 9, 14, 16, 17, 28, 78, 90

Mona Erfani Joorabchi and Ali Mesbah. Reverse engineering iOS mobile ap-
plications. In 2012 19th Working Conference on Reverse Engineering, pages
177–186. IEEE, 2012. ISBN 978-0-7695-4891-3 978-1-4673-4536-1. doi:
10.1109/WCRE.2012.27. URL http://ieeexplore.ieee.org/document/6385113/. 3, 12,
25, 78, 90

R. Kazman, S.G. Woods, and S.J. Carriére. Requirements for integrating software
architecture and reengineering models: Corum ii. In Proceedings of WCRE ’98,
pages 154–163. IEEE Computer Society, 1998. ISBN: 0-8186-89-67-6. 17

Kostas Kontogiannis, Johannes Martin, Kenny Wong, Richard Gregory, Hausi
Müller, and John Mylopoulos. Code migration through transformations: An ex-
perience report. In CASCON First Decade High Impact Papers, pages 201–213.
Unknown, 2010. 19, 20

Christof Lutteroth, Robert Strandh, and Gerald Weber. Domain specific high-level
constraints for user interface layout. Constraints, 13(3):307–342, 2008. URL
https://hal.archives-ouvertes.fr/hal-00345425. 13

Andrew J Malton. The software migration barbell. In ASERC Workshop on Soft-
ware Architecture. Citeseer, 2001. 14

Johannes Martin and Hausi A Muller. C to java migration experiences. In Proceed-
ings of the Sixth European Conference on Software Maintenance and Reengi-
neering, pages 143–153. IEEE, 2002. 15

Santiago Meliá, Jaime Gómez, Sandy Pérez, and Oscar Díaz. A model-driven de-
velopment for gwt-based rich internet applications with ooh4ria. In 2008 Eighth
international conference on Web engineering, pages 13–23. IEEE, 2008. 13

Atif Memon, Ishan Banerjee, and Adithya Nagarajan. GUI ripping: reverse engi-
neering of graphical user interfaces for testing. In Reverse Engineering, 2003.
WCRE 2003. Proceedings. 10th Working Conference on, pages 260–269. IEEE,
2003. ISBN 978-0-7695-2027-8. doi: 10.1109/WCRE.2003.1287256. URL
http://ieeexplore.ieee.org/document/1287256/. 11, 12, 17, 18

Ali Mesbah and Arie van Deursen. Migrating multi-page web applications to
single-page ajax interfaces. In Proceedings of the 11th European Conference on
Software Maintenance and Reengineering, CSMR ’07, pages 181–190, Wash-
ington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2802-3. doi:
10.1109/CSMR.2007.33. URL http://dx.doi.org/10.1109/CSMR.2007.33. 14, 16, 18

http://ieeexplore.ieee.org/document/6385113/
https://hal.archives-ouvertes.fr/hal-00345425
http://ieeexplore.ieee.org/document/1287256/
http://dx.doi.org/10.1109/CSMR.2007.33

Bibliography 133

Ali Mesbah, Arie van Deursen, and Stefan Lenselink. Crawling ajax-based web
applications through dynamic analysis of user interface state changes. ACM
Transactions on the Web, 6(1):1–30, 2012. ISSN 15591131. doi: 10.1145/
2109205.2109208. URL http://dl.acm.org/citation.cfm?doid=2109205.2109208. 11, 12

Moore, Rugaber, and Seaver. Knowledge-based user interface migration. In
Proceedings 1994 International Conference on Software Maintenance, pages
72–79. IEEE Comput. Soc. Press, 1994. ISBN 978-0-8186-6330-7. doi:
10.1109/ICSM.1994.336788. URL http://ieeexplore.ieee.org/document/336788/. 87

Kevin Moran, Cody Watson, John Hoskins, George Purnell, and Denys Poshy-
vanyk. Detecting and Summarizing GUI Changes in Evolving Mobile Apps.
arXiv:1807.09440 [cs], July 2018. URL http://arxiv.org/abs/1807.09440. arXiv:
1807.09440. 13, 79, 88

Guillermo Polito, Stéphane Ducasse, Pablo Tesone, and Ted Brunzie. Unified ffi -
calling foreign functions from pharo, 2020. URL http://books.pharo.org/booklet-uffi/.
101

Martin P Robillard and Kaylee Kutschera. Lessons learned while migrating from
swing to javafx. IEEE Software, 37(3):78–85, 2019. 2, 3, 16, 17, 19, 20, 101

Roberto Rodríguez-Echeverría, José María Conejero, Pedro J Clemente, Juan C
Preciado, and Fernando Sánchez-Figueroa. Modernization of legacy web ap-
plications into rich internet applications. In International Conference on Web
Engineering, pages 236–250. Springer, 2011. 9, 12, 18, 25, 27

Per Runeson and Martin Höst. Guidelines for Conducting and Reporting Case
Study Research in Software Engineering. Empirical software engineering, 14
(2):131–164, 2009. 90, 119

Hani Samir, Amr Kamel, and Eleni Stroulia. Swing2script: Migration of Java-
Swing applications to Ajax Web applications. In 14th Working Conference on
Reverse Engineering (WCRE 2007), 2007. 3, 9, 12, 16, 17

Óscar Sánchez Ramón, Jesús Sánchez Cuadrado, and Jesús García Molina. Model-
driven reverse engineering of legacy graphical user interfaces. Automated Soft-
ware Engineering, 21(2):147–186, 2014. ISSN 0928-8910, 1573-7535. doi:
10.1007/s10515-013-0130-2. URL http://link.springer.com/10.1007/s10515-013-0130-

2. 2, 9, 13, 14, 16, 39, 78, 88, 90

Óscar Sánchez Ramón, Jesús Sánchez Cuadrado, Jesús García Molina, and Jean
Vanderdonckt. A layout inference algorithm for graphical user interfaces. Infor-
mation and Software Technology, 70:155–175, 2016. 9, 12, 13, 17, 25, 27, 37,
39

http://dl.acm.org/citation.cfm?doid=2109205.2109208
http://ieeexplore.ieee.org/document/336788/
http://arxiv.org/abs/1807.09440
http://books.pharo.org/booklet-uffi/
http://link.springer.com/10.1007/s10515-013-0130-2
http://link.springer.com/10.1007/s10515-013-0130-2

134 Bibliography

Anfel Selmadji, Abdelhak-Djamel Seriai, Hinde Lilia Bouziane, Rahina Oumarou
Mahamane, Pascal Zaragoza, and Christophe Dony. From monolithic architec-
ture style to microservice one based on a semi-automatic approach. In 2020
IEEE International Conference on Software Architecture (ICSA), pages 157–
168. IEEE, 2020. 2

Eeshan Shah and Eli Tilevich. Reverse-engineering user interfaces to facilitate
porting to and across mobile devices and platforms. In Proceedings of the
compilation of the co-located workshops on DSM’11, TMC’11, AGERE! 2011,
AOOPES’11, NEAT’11, \& VMIL’11, pages 255–260. ACM, 2011. 3, 12, 39

João Carlos Silva, Carlos C. Silva, Rui D. Goncalo, João Saraiva, and José Creis-
sac Campos. The GUISurfer tool: towards a language independent approach to
reverse engineering GUI code. In Proceedings of the 2Nd ACM SIGCHI Sym-
posium on Engineering Interactive Computing Systems, pages 181–186. ACM
Press, 2010. ISBN 978-1-4503-0083-4. doi: 10.1145/1822018.1822045. URL
http://portal.acm.org/citation.cfm?doid=1822018.1822045. 18, 61

Harry M Sneed and Chris Verhoef. Cost-driven software migration: An experience
report. Journal of Software: Evolution and Process, page e2236, 2020a. 14

Harry M Sneed and Chris Verhoef. From cobol to business rules - extracting busi-
ness rules from legacy code. In Integrating Research and Practice in Software
Engineering, pages 187–208. Springer, 2020b. 31

Harry M Sneed et al. Wrapping legacy software for reuse in a soa. In Multikon-
ferenz Wirtschaftsinformatik, volume 2, pages 345–360. Citeseer, 2006. 20

Werner Teppe. The arno project: Challenges and experiences in a large-scale indus-
trial software migration project. In 2009 13th European Conference on Software
Maintenance and Reengineering, pages 149–158. IEEE, 2009. 3, 20

A. A. Terekhov and C. Verhoef. The realities of language conversions. IEEE
Software, 17(6):111–124, November 2000. ISSN 0740-7459. doi: 10.1109/52.
895180. 18, 19

Thomas Charles Terwilliger, Nicholas Sauter, and Paul D Adams. Automatic For-
tran to C++ conversion with FABLE. Source Code for Biology and Medicine, 7
(5), May 2012. doi: 10.1186/1751-0473-7-5. URL https://scfbm.biomedcentral.com/

articles/10.1186/1751-0473-7-5. 15

Cédric Teyton, Jean-Rémy Falleri, and Xavier Blanc. Automatic discovery of func-
tion mappings between similar libraries. In 2013 20th Working Conference on
Reverse Engineering (WCRE), pages 192–201. IEEE, 2013. 15

http://portal.acm.org/citation.cfm?doid=1822018.1822045
https://scfbm.biomedcentral.com/articles/10.1186/1751-0473-7-5
https://scfbm.biomedcentral.com/articles/10.1186/1751-0473-7-5

Bibliography 135

Thiago Tonelli et al. Swing to swt and back: Patterns for api migration by wrap-
ping. In 2010 IEEE International Conference on Software Maintenance, pages
1–10. IEEE, 2010. 14

Marco Trudel, Carlo A Furia, Martin Nordio, Bertrand Meyer, and Manuel Oriol.
C to oo translation: Beyond the easy stuff. In 2012 19th Working Conference on
Reverse Engineering, pages 19–28. IEEE, 2012. 15

Benoît Verhaeghe, Nicolas Anquetil, Stéphane Ducasse, and Vincent Blondeau.
Usage of tests in an open-source community. In Proceedings of the 12th Edition
of the International Workshop on Smalltalk Technologies, IWST ’17, pages 4:1–
4:9, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-5554-4. doi: 10.1145/
3139903.3139909.

Benoît Verhaeghe, Nicolas Anquetil, Stéphane Ducasse, Abderrahmane Seriai,
Laurent Deruelle, and Mustapha Derras. Migrating GWT to Angular 6 using
MDE. In 12th Seminar on Advanced Techniques & Tools for Software Evolu-
tion, Bolzano, Italy, July 2019a. URL https://hal.inria.fr/hal-02304301.

Benoît Verhaeghe, Anne Etien, Nicolas Anquetil, Abderrahmane Seriai, Laurent
Deruelle, Stéphane Ducasse, and Mustapha Derras. GUI migration using MDE
from GWT to Angular 6: An industrial case. In 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering (SANER’19),
pages 579–583, Hangzhou, China, 2019b. doi: 10.1109/SANER.2019.8667989.
URL https://hal.inria.fr/hal-02019015.

Benoît Verhaeghe, Anne Etien, Stéphane Ducasse, Abderrahmane Seriai, Laurent
Deruelle, and Mustapha Derras. Migration de GWT vers Angular 6 en utilisant
l’IDM. In Conférence en Ingénierie du Logiciel, Toulouse, France, June 2019c.
URL https://hal.inria.fr/hal-02304296.

Benoît Verhaeghe, Christopher Fuhrman, Latifa Guerrouj, Nicolas Anquetil, and
Stéphane Ducasse. Empirical study of programming to an interface. In Pro-
ceedings of 34th Conference on Automated Software Engineering (ASE’19), San
Diego, United States, November 2019d. doi: 10.1109/ASE.2019.00083. URL
https://hal.inria.fr/hal-02353681.

Benoît Verhaeghe, Nicolas Anquetil, Anne Etien, Stéphane Ducasse, Abderrah-
mane Seriai, and Mustapha Derras. GUI visual aspect migration: a framework
agnostic solution. Automated Software Engineering, 28(2):6, 2021a. ISSN 0928-
8910. doi: 10.1007/s10515-021-00284-z.

Benoît Verhaeghe, Nicolas Anquetil, Anne Etien, Abderrahmane Seriai, Anas Shat-
nawi, Stéphane Ducasse, and Mustapha Derras. Migrating GUI behavior: from

https://hal.inria.fr/hal-02304301
https://hal.inria.fr/hal-02019015
https://hal.inria.fr/hal-02304296
https://hal.inria.fr/hal-02353681

136 Bibliography

GWT to Angular. In IEEE International Conference on Software Maintenance
and Evolution (ICSME’21), Luxembourg City, Luxembourg, September 2021b.

Benoît Verhaeghe, Anas Shatnawi, Abderrahmane Seriai, Anne Etien, Nicolas An-
quetil, Mustapha Derras, and Stéphane Ducasse. From GWT to Angular: An ex-
periment report on migrating a legacy web application. IEEE Software, 2021c.

Benoît Verhaeghe, Anne Etien, Nicolas Anquetil, Abderrahmane Seriai, Anas Shat-
nawi, Mustapha Derras, and Stéphane Ducasse. An hybrid architecture for the
incremental migration of web front-end. In International Conference on Ad-
vanced Information Systems Engineering (CAiSE’22), Leuven, Belgium, June
2022. (in submission).

Leszek Włodarski, Boris Pereira, Ivan Povazan, Johan Fabry, and Vadim Zaytsev.
Qualify first! a large scale modernisation report. In 2019 IEEE 26th Interna-
tional Conference on Software Analysis, Evolution and Reengineering (SANER),
pages 569–573. IEEE, 2019. 3, 68, 89

Pascal Zaragoza, Abdelhak-Djamel Seriai, Abderrahmane Seriai, Anas Shatnawi,
Hinde Bouziane, and Mustapha Derras. Refactoring monolithic object-oriented
source code to materialize microservice-oriented architecture. In ICSOFT, 2021.
117, 126

Clemens Zeidler, Johannes Müller, Christof Lutteroth, and Gerald Weber. Com-
paring the usability of grid-bag and constraint-based layouts. In Proceedings of
the 24th Australian Computer-Human Interaction Conference, pages 674–682.
ACM, 2012. 13

Bo Zhang, Liang Bao, Rumin Zhou, Shengming Hu, and Ping Chen. A black-box
strategy to migrate gui-based legacy systems to web services. In 2008 IEEE
International Symposium on Service-Oriented System Engineering, pages 25–
31. IEEE, 2008. 19, 20

	Introduction
	Context
	Problem
	Our Approach in a Nutshell
	Contributions
	Structure of the Thesis
	List of Publications

	State of the Art
	GUI representation
	GUI migration
	Incremental migration

	I GUI migration
	Approach
	GUI Terminology and Concept
	Approach overview
	Visual code migration approach
	Behavioral code migration approach
	Conclusion

	Implementation
	Visual code extraction
	Visual code generation
	Behavioral code extraction
	Behavioral code generation
	Conclusion

	Migration Validation
	Visual code migration validation
	Behavioral code migration validation
	Discussion
	Threats to Validity
	Conclusion
	GUI migration conclusion

	II Incremental migration approach
	Incremental migration
	Incremental Migration Approach
	Hybrid architecture
	Implementation
	Conclusion

	Incremental migration validation
	Case Study: Omaje Application
	Research Questions and Evaluation Methods
	Evaluation Results
	Incremental approach discussion
	Threats to Validity
	Incremental approach conclusion

	Conclusion
	Summary
	Contributions
	Future Work

	Bibliography

