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Towards Dynamic Shape Control of Mobile Soft
Continuum Manipulators: Parametric curve-based

approach

Abstract

Nowadays, soft continuum robots are increasingly used in everyday life (lo-
gistics, agriculture, medical therapy, baking, human collaboration, etc.) due
to the multiple advantages they offer over rigid robots. They are often made
up of soft and hyper-elastic materials that give them resilience, flexibility and
conformation, making them good candidates to meet some real-life needs (form
enclosure grasping, obstacle-free navigation, etc.). However, the control of their
shape remains a major challenge for the scientific community due to their very large
number of degrees of freedom (DoFs). Unfortunately, it is not physically possible
to control all the DoFs to drive their 3D motion. To address that issue, the present
research work focuses on a Reduced-Order-Model (ROM) based shape control using
Pythagorean Hodograph (PH) parametric curves. The proposed approach allows
to describe the high-order kinematics of soft continuum manipulators with a set
of finite points called control points. Hence, the control dimension of the latter
can be reduced to that of this set of finite control points. Moreover, to address
shape adaptability issues during external interactions (gripping task, collision-free
trajectory, spatio-temporal disturbances, etc.), the motions of the control points
(shape kinematics) have been described with respect to real dynamic physical
inputs considering the Euler-Bernoulli (EB) theory consistent with the large
deflections. To validate the proposed approaches, several experimental tests have
been performed on several classes of Soft Continuum Robots in various scenarios:
Fluidic Elastomeric Actuators (FEAs) for the control of gripping tasks and a
Robotino-XT for the control of motion planning with obstacles avoidance.

Keywords: Soft continuum manipulators, Pythagorean Hodo-
graph curves, Shape kinematics, Shape dynamics, Control.
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Vers la Commande Dynamique des
Manipulateurs-Mobiles Souples et Continuum:
Approche basée sur les courbes paramétriques

Résumé

De nos jours, les robots déformables et continuum sont de plus en plus utilisés
dans la vie quotidienne (logistique, agriculture, thérapie médicale, pâtisserie,
collaboration humaine, etc.) en raison des multiples avantages qu’ils offrent par
rapport aux robots rigides. Ils sont souvent constitués de matériaux deformables
et hyper-élastiques qui leur confèrent résilience, flexibilité et compliance, ce
qui en fait de très bons candidats pour répondre à certains besoins pratiques
(préhension par conformité, navigation sans obstacles, etc. Cependant, le contrôle
de leur forme reste un défi majeur pour la communauté scientifique en raison de
leur très grand nombre de degrés de liberté (DDL). Malheureusement, il n’est
physiquement pas possible de contrôler tous les degrés de liberté pour piloter leurs
mouvements dans l’espace tridimensionnel. Dans l’optique de résoudre ce problème,
les présents travaux de recherche traitent du contrôle de forme basée sur un modèle
d’ordre réduit utilisant des courbes paramétriques à Hodographe Pythagoricienne.
L’approche proposée permet de décrire la cinématique d’ordre élevé des robots
deformables et continuum via un ensemble de points finis appelés points de contrôle.
Ainsi, la dimension de leur contrôle peut être réduite à celle de cet ensemble fini
de points de contrôle. De plus, afin d’aborder les problèmes d’adaptabilité de
forme lors d’interactions externes (tâche de préhension, trajectoire sans collision,
perturbations spatio-temporelles, etc.), les mouvements des points de contrôle
(cinématique de la forme) ont été décrits en fonction des entrées physiques réelles
en considérant la théorie d’Euler-Bernoulli (EB) en grandes déformations. Afin de
valider les approches proposées, plusieurs essais expérimentaux ont été effectués
sur diverses classes de robots déformables et continuum dans des scénarios variés:
les Actionneurs Fluidiques en Élastomère (AFEs) pour le contrôle des tâches de
préhension et une classe de Manipulateurs Mobiles Souples et Continuum (MMSC)
à savoir le Robotino-XT, pour le contrôle de la planification des mouvements avec
évitement des obstacles.

Mots clés: Manipulateurs souples et continuum, Courbes à Hodographes
Pythagoriciennes, cinematique de la posture, dynamique de la posture, commande.
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1.1 General Introduction

Recent technological advances in the engineering fields of electronics, computer
sciences and mechanics have allowed the emergence of soft continuum manipulators.
These can be manufactured shortly and at lower costs. However, compared to
rigid manipulators robots [Siciliano 2016] [Bruno 2010], the performances of soft
continuum manipulators are lesser, in terms of rapidity, accuracy and repeatability.
Improvements are still required regarding their control. Henceforth, soft continuum
manipulators robots have been increasingly used in various industrial applications
such as aerospace, food, med-tech industry, etc.

With the era of industry 4.0, the need of collaborative tasks between human op-
erators and robots are more and more requested. This has led the robotic systems to
be more collaborative in a shared workspace with operators. For that objective, the
human-machine co-existance or collaboration is ensured by a high level of safety. To
come to this end, several benefits have been taken from the advances made in recent
years in materials science and mechanical design. Henceforth, soft and continuum
manipulators have highlighted the interesting characteristics of soft, hyper-elastic
and deformable materials used for their manufacturing [Case 2015][Rus 2015].

Soft robotics systems such as soft grippers, soft continuum manipulators, etc.,
have the ability to guarantee the mechanical integrity of the objects that they
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interact with. They can overcome certain difficulties encountered by rigid mate-
rials to adapt to their external environments. Nowadays, some practical indus-
trial’ issues have been partially resolved, where in agri-food industry, the usage of
soft manipulator grippers for harvesting [Gunderman 2021] [Xiong 2018] and fishing
[Galloway 2016], has shown considerable performances.

Actually, many advantages can be found within the usage of soft continuum
manipulators and therefore, largely justify the rise of the interest for these robots
[Hughes 2016]. Among these advantages, one can cite: low cost material, rapid
manufacturing, resilience, conformity with respect to external interactions and
lightweight systems with low embedded electronics requirements. However, they
are characterized by a distributed deformation along their length, where, theoreti-
cally, they are composed of an infinite number of Degrees of Freedom DoFs. This
yields them a hyper-redundant configuration space wherein the robot tip can reach
a target with an infinite number of kinematic postures [Trivedi 2008b]. A kinematic
modeling is therefore required to perform an accurate control. This issue is discussed
in the scope of the present research works.

Modeling and shape control of mobile soft continuum manipulators MSCM re-
mains a research subject that still requires multiple investigations. Nevertheless,
it seems that model reduction techniques [Singh 2018b] [Della Santina 2020b] show
very promising results in facilitating real-time control of soft robots [Thieffry 2018b]
[Della Santina 2020c], in forward kinematics. However, shape control requires some
form of computation techniques that combine conventional control approaches with
motion planning. The latter are still very energy-consuming due to their depen-
dence on the configuration of the space [Patle 2019], which increases rapidly with
the number of the DoFs that constitute the robot. In the light of all of the above, a
motion planning based control applied to a ROM might contribute in resolving the
aforementioned issues for related to their shape control. This constitutes the main
interest of the present research work.

1.2 Thesis Industrial Context

The present research project is carried out within the framework of a scientific
and industrial cooperation with a young robotics company called Niryo1. The latter
develops a wide range of lightweight and collaborative manipulators for picking and
placing of various of objects. These objects can be soft or rigid and their geometries
can vary significantly and therefore, yield considerable analysis in order to design
specific grippers for grasping and handling. In parallel, the size and the packaging of
the objects are regularly modified to meet new marketing requirements. This implies
regularly new analyses and modifications in order to obtain gripping solutions always
more fitted to the needs stated by the customers. Thus, to cover the wide range of
shapes of products to be grasped, the idea of an adaptive gripping solution based on
soft materials was investigated by Niryo company trough this research work. The

1https://niryo.com/
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shape conformation provided by the hyper-elastic materials would be suitable for
compliant and safe grasping [Zhou 2021].

1.3 Thesis Scientific Context

This Ph.D. thesis is prepared in the research team "System of Systems Engi-
neering (SOFTE)", of the laboratory "Centre de Recherche en Informatique, Signal
et Automatique de Lille (CRIStAL) (UMR CNRS 9189)". The scientific context
concerns the development of an integrated approach for modeling, sizing, control
and design of Fluidic Elastomeric Actuators FEAs used for grasping tasks in indus-
try. The aim is to overcome the issues related to shape adaptation of soft robotic
grippers while attempting a form-enclosure grasping and performing an adaptive
shape control. This research work has been developed under the supervision of Dr.
Prof. Rochdi Merzouki, Professor at Polytech Lille at University of Lille and Dr.
Gilles Tagne, Assistant Professor at Université Catholique de Lille/ JUNIA / ISEN
Lille.

1.4 Thesis Objective

Soft continuum manipulators are more and more used for various applications of
research, academia and industry. Despite being under-actuated systems, they need
to be optimally controlled to reach certain performances of rigid manipulators such
as position and shape accuracies. Many works have been conducted for kinematic
shape control of this class of soft robots, exhibiting a high number of DoFs. However,
some researches have been devoted on the optimisation of the robot shape in inter-
action with its surrounding environment, such as obstacles avoidance or for grasping
tasks. Thus, the work proposed in the present research explores new approaches for
the control of MSCM robots in structured and unstructured environments.

The main objective of this PhD work is the development of an inte-
grated approach of Fig. 1.1 for model-based dynamic shape control of
MSCM. For that, this integrated approach considers the following:

• Generating automatically a kinematic ROM of the MSCM. This is based on
Pythagorean Hodograph (PH) parametric curves and uses bending energy
and length constraints optimization, in order to reconstruct the shape of the
MSCM under kinematic constraints.

• Integrating jointly an APF to motion planning of the shape of the MSCM and
a Sliding Mode Control (SMC) to control bending energy of the PH curve in
the space configuration.

• Estimating the dynamic model of the MSCM, based on Euler Bernoulli theory,
in order to carry out a relationship between the position of the control points
of the PH kinematic ROM and the finite physical inputs FEAs.



4 Chapter 1. Introduction

• Designing a MSCM based on the optimisation of the number of the physical
inputs FEAs and the number of control points representative to its kinematic
ROM.

Reduced Order Model

(ROM)

Modeling

Pythagorean

Hodograph

Motion

Planning

Euler Bernoulli 

DynamicOptimal Energy 

Control

Artificial Potential Field

(APF)

Sliding mode control

(SMC)

Physical control

inputs

Shape

Shape Kinematics Modeling APF-based Shape 

Kinematics control 

Dynamic Control 

MSCM

Actuator physics

Figure 1.1: Integrated approach for dynamic control of MSCM manipulators

1.5 Research Problem Statement

Let’s assume that the infinite DoFs of a MSCM can be described kinematically
from a ROM of a quintic PH parametric and time t varying curve p(s, t) : [0, L] →
R3, as shown in Fig. 1.2. This quintic PH is controlled from the control polygon
Λn(p(t)), crossing the six control points {pk(t)}, where Λn(p(t)) = {p0(t)...pn(t)}.
The research problem question is: How the end point p5(t) can reach the target
object with an optimal energy bending of the shape of the curve p(s, t) in presence
of obstacles O. To answer to this research question, the motion planning and the
minimal potential bending energy Ep(t) of the shape of MSCM, have been obtained
by controlling the control points of the polygon of the PH curve. This has been
illustrated in Fig. 1.2 by a hand acting on the control points such as the case
of puppet toy. Thus, the problem formulation of this research question can be
expressed as follows:

Minimize Ep(t) =
1

2

∫ L

0
|ω(s, t)|2 dh,

ω =
√
κ2 + τ2,

subject to :

κ = κ(pin, Fext) ≤ κmax,

dpk = − ▽Φ
∥▽Φ∥


pk

,

Tk = Tk(pin, dpk, Fext)

0 ≤ s ≤ L,

(1.1)

where s is the curvilinear coordinate along the constant length L of the MSCM, κ
and τ describe respectively the curvature and the torsion of the MSCM curve.
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Figure 1.2: Shape control illustration of MSCM manipulators

κmax denotes the maximum curvature allowed by the MSCM under external
interactions Fext and pin denotes the physical control inputs (actuating pressure,
torque, etc.). The displacement of a control point pk, card(pk)≪ ∞, is denoted by
the quantity dpk, generated by the set of efforts Tk (mechanical forces, etc.). The
motion planning of dpk is obtained from the APF, with a potential field Φ(pk, pkd ,O)

where pkd denotes the target position of the control points pk.

1.6 Contribution in the framework of the group activi-
ties

The research group SOFTE 2 of CRIStAL Lab 3 is working since 2012 on the De-
sign, the modeling and the control of several classes of soft-continuum manipulators
robots. The research team SOFTE has devoted a number of their works on the devel-
opment of qualitative and quantitative kinematics models for real-time applications,
especially on a class of continuum manipulator called Compact Bionic Handling Arm
CBHA. This continuum robot is made up flexible and compliant by polyamide-based

2https://www.cristal.univ-lille.fr/en/teams/softe/?forcelang = true
3http://cristal.univ-lille.fr
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material. Several modeling techniques have been developed and implemented, where
in [Escande 2015], a geometric modeling approach has been proposed under the as-
sumption of Constant Curvature CC. Identification-based technique has also been
highlighted through neural network for both modeling and control [Melingui 2015].
Then [Lakhal 2016] has investigated hybrid modeling methods using a serial-parallel
kinematic model to calculate the inverse kinematic model of the CBHA robot. In
[Bieze 2018b], the team has explored the computational mechanics using the Finite
Element Methods (FEM) for control and simulation purposes. Recently, reduced
order kinematics using PH parametric curve has been discussed by [Singh 2018b]
for the shape reconstruction of soft continuum manipulators. The present research
works deal with dynamic modeling and shape control of MSCM, by considering its
optimal shape reconstruction under external interactions, such as obstacles avoid-
ance or grasping tasks in industrial environments.

1.7 Main Contributions

In this thesis work, the following contributions are discussed:

• Development of a kinematic ROM of a mobile soft continuum manipulator
MSCM robots made up of infinite DoFs, based on the PH parametric curve
that uses bending energy optimization and length constraints [Mbakop 2021b],

• Euler-Bernoulli dynamics model-based of MSCM, with respect to their
shape kinematics based on quintic parametric curves [Mbakop 2021b]
[Mbakop 2021c],

• Design of robust control in the spatial configuration to minimize the bending
energy of the soft-continuum manipulators in motion, during the collision-free
or grasping contact, based on APF for motion planning and SMC for the
control [Mbakop 2021a][Mbakop 2020].

• Experimental validation using 2 classes of MSCM: An integrated multi-
fingered soft gripper FEAs robot [Mbakop 2022] and a mobile-bio-inspired
trunk of elephant (Robotino-XT).

1.8 Disseminated Results

The results of this research work are disseminated through the following
publications:

Journal papers

1. Steeve Mbakop, Gilles Tagne, Marc-Henri Frouin, Achille Melingui and Rochdi
Merzouki (2021). Inverse Dynamics Model-Based Shape Control of Soft Con-
tinuum Finger Robot Using Parametric Curve. IEEE Robotics and Automa-
tion Letters (DOI: 10.1109/LRA.2021.3101874).
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2. Steeve Mbakop, Gilles Tagne, Sergey Drakunov and Rochdi Merzouki (2021).
Parametric PH Curves-Model Based Kinematic Control of the Shape of Mo-
bile Soft-Manipulators in Unstructured Environment. IEEE Transactions on
Industrial Electronics (DOI: 10.1109/TIE.2021.3123635).

3. Steeve Mbakop, Gilles Tagne, Xinrui Yang and Mouad Kahouadji and Michel
Pollart and Rochdi Merzouki (2021). Integrated Design of a Bio-Inspired Soft
Agri-Food Gripper for Mushroom Harvesting. IEEE/ASME Transactions on
Mechatronics (Under review).

International Conferences

1. Steeve Mbakop, Gilles Tagne, Marc-Henri Frouin, Achille Melingui and Rochdi
Merzouki (2021). Inverse Dynamics Model-Based Shape Control of Soft Con-
tinuum Finger Robot Using Parametric Curve. In Intelligent Robots and
Systems (IROS), 2021 IEEE/RSJ International Conference.

2. Inderjeet Singh, Steeve Mbakop, Manarshhjot Singh, Ismael Benskrane,
Rochdi Merzouki (2021, August). Curve-Based Approach for Shape Recon-
struction and planning of a Mobile-Continuum Manipulator in Structured
Environment. In 2021 IEEE 17th International Conference on Automation
Science and Engineering (CASE) (pp. 1914-1919). IEEE.

3. Steeve Mbakop, Gilles Tagne, Marc-Henri Frouin and Rochdi Merzouki (2021,
April). Interoperable Models for Dynamics and Shape Tracking of Soft Fin-
gers. In 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft)
(pp. 199-206). IEEE.

4. Steeve Mbakop, Gilles Tagne, Rochdi Merzouki and Sergey Drakunov (2020,
May). Path planning and control of mobile soft manipulators with obsta-
cle avoidance. In 2020 3rd IEEE International Conference on Soft Robotics
(RoboSoft) (pp. 64-69). IEEE.

1.9 Manuscript Organization

The manuscript is organized in the following:

• The second chapter introduces a state of art in the literature regarding the
ROM-based techniques for soft-continuum manipulators. A scientific posi-
tioning in the framework of the present work is outlined at the end of the
chapter.

• The third chapter introduces the PH-based shape kinematics control of the
MSCM. The Inverse kinematics as well as the forward kinematics model using
PH curve are developed by considering the length constraint. Also, the shape
kinematic control is studied. Some experiments are presented to prove the
validity of the proposed PH-based kinematics control approach.
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• The fourth chapter deals with the PH-based dynamic control of MSCM. The
fundamentals of the bending kinematics of the MSCM is described. Also, the
inverse dynamic modeling is discussed, and lead to the computation of the
real physical inputs by exploiting the PH features.

• The fifth chapter presents an integrated design of a soft bionic gripper made up
of hyper-elastic soft material. The performance of grasping tasks are obtained
using the attractive APF, combined to the SMC and applied to the shape of
each soft finger robot. A set of experiments have been discussed and prove
the efficiency of the grasping approach.

• Finally the sixth chapter summarizes the PhD work contributions and states
on potential directions of the prospective works.
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2.1 Introduction

Soft robotics is a field that relies on mimicking the motion of soft bodies to
achieve fluid and complex movements. Among these soft bodies capable of mov-
ing in complex environments are: earthworms, snakes, larval insects, octopuses, and
eels present a wide range of different motions bio-inspired strategies developed over
the years by scientists. These soft robotic structures have found applications in
various fields, such as the medical field, the agri-food industry, etc. However, the
continuum aspect of these soft structures makes their shape control non-obvious
because of the high order dimension induced by their kinematics. Many techniques
have been explored so far to tackle these issues, including the Reduced-Order Mod-
eling strategies, which constitute the main objective of the present state-of-art.
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2.2 Soft Continuum Manipulators

2.2.1 Global Overview

As stated earlier, soft continuum manipulators are inspired by several soft bod-
ies existing in nature like the elephant’s trunk, the octopus tentacles, the mammal’s
tongue, etc. All these biological structures are made of soft materials providing
them an infinite shape configuration during their interactions with their surround-
ing environments [Hirose 1993]. The idea with the soft continuum manipulators is
to mimic the behavior of such soft biological structures to take benefits from their
mechanics such as dexterity, conformation, resilience, smooth motion, etc. There-
fore, soft continuum manipulators are made up of soft materials, which have the
principal advantage to increase their manoeuvrability [Hughes 2016] [Rus 2015]. In
contrast to rigid-bodied robots, the mobility of soft continuum robots is determined
by the material’s deformation rather than the motion concentrated at the joints
[Robinson 1999]. The deformation of a soft continuum manipulator is achieved by
its actuation mechanism, which results in a variation of the strain, size, and shape
of the actuator material [Polygerinos 2017]. Thus, their number of DoFs are defined

Discrete

Non Redundant Redundant

Rigid
Hyper redundant

Soft

Continuum

Figure 2.1: Classification of robots based on material and degrees of freedom

by their continuous and infinite deformations leading to hyper-redundancy. There-
fore, it is physically impossible to control all these DoFs compared to rigid-bodied
robots where each of them is controlled by one actuator. In practice, a small number
of actuators can be used so that a soft manipulator can achieve any orientation in
its workspace. The combination of this dexterity and their very large number of
degrees of freedom result in their navigation in narrow and unstructured areas. The
classification of robots based on material and DoFs is presented in Fig. 2.1. The
advantages and the drawbacks of the soft robotic systems compared to other robot
structures are summarized in Table 2.1 [Trivedi 2008b].
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Table 2.1: Soft Robotics features

Features Rigid Discret
hyper-
redundant

Hard Con-
tinuum

Soft

Properties

DoF Actuators Few, Discrete Many, Discrete Continuous Continuous
Strain None None Small Large
Materials Metal, Plastics Metal, Plastics Shape memory

alloy
Rubber

Capabilities

Accuracy Very high High High Low
Load capacity High Lower Lower Lowest
Safety Dangerous Dangerous Dangerous Safe
Dexterity Low High High High

Working space Structured Structured and unstructured

Object Fixed size Variable size

Conformability None Good Fair Highest

Design

Controllability Easy Medium Difficult Difficult
Pose Sensing Easy Harder Difficult Difficult
Inspiration Mammal limbs Snakes Fish Hydrostats

2.2.2 Classification

There exists several classifications of soft continuum manipulators. Soft ma-
nipulators can be classified according to their backbone structures or actuation
strategies.

Two main classes of backbone structures can be distinguished: the single back-
bone structure and the multi-backbone structure. In the case of the single backbone
structure, a central elastic structure supports all the material internal constraints
caused by the actuation [Kutzer 2011] [Camarillo 2008a]. This latter is often used to
allow the insertion of actuation or transmission elements (such as cable, fluid pipe,
etc.). Depending on its geometry, the desired motion (torsional, directional bending
or axial stretch) can be exhibited. The structure of a multi-backbone continuum
robot is made up of multiple elastic elements (rods or tubes) disposed in parallel and
constrained with respect to each other [Bryson 2014] [Moses 2013] [Simaan 2009].
This approach has been used for non constant-curvature shapes kinematics and very
high number DoFs per section [Till 2015] [Bryson 2014].
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Figure 2.2: Categories of soft continuum robots: A. Tendon driven robot
[Amanov 2021], B. Tendon/cable manipulator ©2015 Hansen Medical Inc., C.
Multi-Backbone robot ©2015 Advanced Robotics and Mechanism Applications
Laboratory, Vanderbilt University [Robotics ], D. Shape memory alloy actuators
[Cismasiu 2010], E. Fluidic actuators [Martinez 2013]
, F. Micro-motors robot [Kwok 2012].

Regarding the actuation-based classification, three main actuation configura-
tions have been investigated as a standard of classification: intrinsic, extrinsic and
hybrid. The intrinsic actuation technique describes a strategy where the actua-
tion system is located on the structure of the soft robotic system and forms a part
of it. Several soft continnum manipulators belong to these category [Ikuta 2006]
[Bailly 2011] [Ikuta 2011]. The extrinsic actuation strategy makes use of remote
actuation. In this case, the motion is transferred into the mechanism (tendon, cable
driven, etc) via a mechanical linkage [Dario 2000] [Kutzer 2011] [Camarillo 2008b].
Intrinsic and extrinsic strategy have been sometimes combined and result in a new
class of techniques called hybrid approach [Ivanescu 1995] [Immega 1995].

2.2.3 Applications

Number of applications, particularly in the medical and food industries, have
taken advantage of the attractive properties of soft robots, including dexterity, flex-
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ibility and elasticity.

2.2.3.1 Biomedical applications

In the medical area, new strategies of surgical operations have been mastered,
including minimally invasive surgery (MIS), which has become very popular in recent
years [Burgner-Kahrs 2015]. Among them, the Neurosurgery has been performed
with lower procedural times, higher accuracy, and precision [Neudorfer 2018]. The
usage of surgical robot systems such as Rosa (Medtech S.A., Castelnau Le Lez,
France), or Renaissance (Mazor Robotics Ltd., Israel) has emerged to assist the
surgeon for more specific operations [Mattei 2014].

The Lung surgical interventions have also been improved. The efficiency of
the diagnosis as well as the management of the respiratory pathologies have been
reported in [Hindman 2019]. In this investigation, the authors outlined the benefits
of ultra-thin robotic instruments for the exploration of airways. To achieve real-
time control of continuum robot of medical devices, some technologies, such as
Magellan and Sensei (Hansen Medical, Mountain View, CA, USA), and CorPath
GRX (Corindus, Inc. Waltham, MA, USA) have helped to cover a wide range of
surgical operations [Clements 2019] [Gong 2016].

A B C

Figure 2.3: Soft continuum robots for surgery operations: A. Lung intervention illus-
tration [Hindman 2019], B. Endovascular robotic catheter navigating in the hepatic
artery [Clements 2019], C. Robot flexible distal end including 2 working channels
with a needle knife and grasper [de Moura 2019]

The issues of the path planning due to the obstruction caused by some anatom-
ical organs while moving to the surgical target have been largely tackled; thanks
to the dexterity, the flexibility, and the manoeuvrability of those continuum robot
surgical tools [Petruska 2016]. Parallel to the above, the soft robotics technologies
have also been applied in the urologic surgery as they can be miniaturized to the
required scale. A tele-operated multi-backbone continuum robot has been designed
in [Petruska 2015], for Transurethral Resection of Bladder Tumors (TURBT) pro-
cedures. A handheld robot is suggested in [Hendrick 2015] for the Transurethral
Prostate Surgery to overcome the difficulties encountered for the treatment of be-
nign prostatic hyperplasia by means of Holmium Laser Nucleation of the Prostate
(HoLEP).

Better alternatives regarding the Gastroenteritis treatment have been pointed
out in [de Moura 2019] regarding the comfort and the pain reduction. Soft con-
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tinuum manipulators applications have also been highlighted in [Ahmed 2016]
[Rosemurgy 2019], for the gastro-intestinal surgery. Parallel to this, soft continuum
manipulators have been involved in Cardiac Surgery to performed MIS approaches
[Gosline 2012].

A B C

Figure 2.4: Soft continuum robots for surgery operations: A. Prostate surgery
[Hendrick 2015], B. Maxillary Sinus Surgery device [Yoon 2013], C. Percutaneous
intracardiac beating-heart surgery tools [Gosline 2012]

In addition to surgical robots, wearable robots are also popular applications in
the field of soft robotics. New approaches using soft robotic technology have emerged
with assistive and rehabilitative device designs that use soft flexible materials to
support finger movement [Polygerinos 2015]. When people have lost skills regarding
the use of their biological limbs, some robotic devices can safely interface with soft
tissue and provide them assistance during rehabilitation. They are commonly used
as a tool to assist people with disabilities [Maeder-York 2014] [Park 2014].

2.2.3.2 Agricultural applications

Soft robots have found several applications in the field of agriculture, especially
for the harvesting process. Recent studies have demonstrated the effectiveness of
the gripping systems and strategies based on hyper-elastic materials [Sinatra 2019].

The work of [Reed 2001] describes an approach of automated mushroom harvest-
ing using a suction mechanism. The designed system is able to determine their pose
and size, select a picking order, pick the mushrooms and trim them. The approach
has been assessed using a wide range of cultivated Agaricus bisporus mushrooms.
A success rate of 80% regarding mushroom pick attempts has been reported by the
authors.

Tendon-driven actuation techniques have been analysed in [Gunderman 2021].
In this latter, a tendon-driven soft robotic gripper equipped with force sensors has
been designed and results in maintaining a harvesting reliability of 95%. A simi-
lar approach has also been addressed in [Xiong 2018] for strawberries harvesting.
The authors succeeded in minimizing the picking execution by designing a six-finger
cable-driven continuum gripper with perception capabilities. Fluidic Elastomeric
Actuators (FEAs) have also been investigated in [Galley 2019]. A flexible robotic
gripper incorporating a pneumatically driven hyper-elastic actuator has been pro-
posed. Polydimethylsiloxane (PDMS) material was used for this purpose. A record
of 100% has been claimed with 0% of mushroom damage for each of the harvest at-
tempt. Another soft gripper consisting of FEAs for mushroom harvesting has been
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A B

C D

Figure 2.5: Soft continuum robots in agro-pastoral context: A. Rehabili-
tation glooves [Polygerinos 2015], B. Soft gripper for strawberries harvesting
[Gunderman 2021], C and D. Soft fiber-reinforced actuators grasping Biological
Sampling on Deep Reefs [Sinatra 2019] [Galloway 2016]

studied in [Rong 2021]. The authors proposed a three-finger gripper design, which
yielded a success rate of 86.8%. [Brown 2021] has also analysed the use of FEAs
for the harvesting process. A success rate of 42% has been observed by the authors
when using their soft gripper with complex motion.

Other soft robotic systems have proved to be successful in grasping and ma-
nipulating delicate and underseas species. In [Galloway 2016], soft robotic grippers
deployed at a depth ranging from 100 to 170 m have been discussed. The designed
soft grippers could grab specimens without any removal. [Sinatra 2019] also took
benefit from soft material robots to propose a grasping technique for delicate spec-
imens of gelatinous marine life. The soft gripper is made up of 6 fibers reinforced
soft actuators. The gripper is lightweight (123 g) and can be actuated using very
low hydraulic pressure (1 to 6 psi, or 6.9 to 41.4 kPa, with respect to ambient).

2.3 Shape control of soft continuum manipulators

Unlike standard rigid link manipulators, whose mechanical properties have been
fully discussed and mastered [Bruno 2010], the modeling of soft continuum manipu-
lators is still an open subject in terms of modeling and control. There are three types
of modeling approaches often utilized for soft continuum robots: classical methods,
modeling reduction techniques, and motion planning strategies.
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2.3.1 Classical techniques

The classical methods applied to the modeling and control of continuum soft
robots can be classified into two main categories: quantitative models, highlight-
ing a mathematical approach based on the physics of the robot, and qualitative
approaches, which make use of experimental data in order to get the closest solu-
tions to the given kinematic problem.

Qualitative approaches have been explored in order to tackle the mod-
eling challenges caused by the model-based techniques. Model-free techniques
[Kuntz 2020] [Zheng 2020] [Melingui 2015] simplify the complexity of the model-
ing, by passing through various learning algorithms. To come to more accurate
modeling, some researchers have resorted to data-driven methods [Elgeneidy 2018],
which require intensive modeling calibration. Data-driven techniques have found
several applications, namely, for specific grasping [Zhong 2019]. As one can remark,
most of the cases only focus on the tip motions of the soft continuum manipula-
tors. Such local control methods do not allow full use of the soft robots richness in
kinematic DoFs for applications that require a global control of their overall shapes
such as form-enclosure grasping or obstacle avoidance strategy. In addition, the fact
that these approaches can be specific to learning conditions might not be suitable
for real-world applications.

A

CD

B

Figure 2.6: Soft continuum robots modeling approaches: A. Rigid link techniques
[Hannan 2003], B. Deep neural network modeling [Kuntz 2020], C. Cosserat rod
modeling techniques [Rucker 2010], D. PCC modeling method [Falkenhahn 2016]

.

Quantitative models are physical model-based approaches that use inten-
sive mathematical formulations in order to get the convenient robot behavior.
The Piecewiese Constant Curvature (PCC) modeling approach is the most pop-
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ular adopted in the soft robotics community [Webster III 2010]. It defines the soft
robot as a finite collection of circular arcs, which can be described by only three
parameters (radius of curvature, angle of the arc, and bending plane). This consti-
tutes a significant simplification when compared to Cosserat Rod [Renda 2018a] and
leads to possible analytical solutions for kinematics [Escande 2015] and dynamics
[Falkenhahn 2015].

Virtual rigid links assumptions are often used [Della Santina 2019]
[Katzschmann 2019], and help to address the modeling and control issues,
using well-established approaches for rigid-bodied robots. Even if the PCC
modeling techniques may constitute a valuable trade-off between the difficulties
induced by the Cosserat rod approach and the assumptions of rigid link models
[Runge 2017], most works have focused on the single Constante Curvature (CC)
[Grazioso 2019] without exploiting the larger generalization provided by combining
constant curvature segments [Falkenhahn 2016]. In spite of the advantages of
PCC approaches, their lack of compliance, which results in significant deviations
from the real robot behaviour is one of their main drawbacks. Also, the CC
assumption might not always be valid, especially when the robot is subject to out-
of-plane external loads, such as gravity. To overcome these modeling limitations,
elastic techniques [Lyons 2009] [Webster, III 2009] [Renda 2012] [Trivedi 2007]
[Bieze 2018b] have been largely investigated, and thus, remain the most reliable
techniques for shape computation because of the material behavior taken into
account while modeling the kinematics. Nowadays, these modeling approaches are
mostly based on Cosserat approach or FEM.

The Cosserat approach [Renda 2018a] is an infinite DoFs model, where the
soft robot is represented by continuously stacking an infinite number of infinitesimal
microsolids. More recently, the Cosserat approach has been explicitly applied to soft
robotics [Boyer 2015] [Rucker 2011]. Static and dynamic considerations have also
been explored [Renda 2012] [Renda 2014], and have been extended to a wide range
of soft robotics applications [Renda 2018b], [Renda 2015]. Despite their accuracy,
the models based on the Rod theory are governed by nonlinear Partial Differen-
tial Equations (PDEs). These PDEs may be very time consuming for fast online
simulations and real time control. Therefore, these approaches can pose several
difficulties in designing and implementing in real-time, a suitable feedback control
strategy. These drawbacks have motivated the scientific community to explore sim-
pler but accurate alternative, such as FEM that can capture the kinematics and the
dynamics of soft continuum manipulators with large deformations.

FEM is the most popular numerical tool used to model the kinematics and dy-
namics of a soft robot [Bieze 2018a]. Forward and inverse kinematics problems have
been solved in [Zhang 2016], and have allowed a real-time modeling and control of
the soft manipulators’ deformation [Duriez 2013]. However, soft continuum manipu-
lator models generated by FEM are very high dimensional. Analyzing such systems
and designing controllers using such full-order models of infinite dimensions is not
obvious. These have motivated some approaches based on model reduction, which
map the entire dynamics of the soft robots to a simple and Reduced-Order-Model
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(ROM).

2.3.2 ROM-based techniques

The ROM methods are modeling approaches based on the state space reduction
of continuous and bounded systems of high dimensions. They proceed by discretiza-
tion, and thus the difficulties in solving differential equations are simplified; thanks
to a low dimensional space where, the constraints are easily considered.

ROM often proceed with weak formulations to address the complexity posed
by very high dimensional spaces. The modal approach [Chirikjian 1994] remains
the most popular, used in the soft robotics field. To design a controller, the inte-
grability properties and the reduction of the state space of a solution are required.
For that, several modal-based approaches such as the eigenvalues-based technique
for linearized systems, spectral series [Chirikjian 1992] or power expansion series
approximations [Sadati 2017] or space parametrization [Singh 2018b] for nonlinear
systems, help to characterize the modes. The modal approaches can be split into 3
categories : Assumed Modes (AM) techniques, the Parametrization of the Curvature
(PC), and the Parametrization of the Shape (PS). All these methods have allowed
to reduce the dimension of the problem to a space of lower dimension. Table 2.2
presents a quantitative and qualitative analysis of the model reduction techniques
often used in the literature.

ROM-based AM techniques allow to drastically reduce the costs and the
computation time, although the accuracy of the model is reduced. They proceed by
reducing the state space of a very high-dimensional system by identifying the main
subsets or assumed modes. Thus, the reduction problem is solved by interpolating
assumed modes in a pre-calculated base. The assumed modes are not the solution of
the problem, but allow to interpolate it as well as possible or to approximate it. This
simplifies the solution of the infinite spatial dimensional system into a fitting prob-
lem with a few weighting coefficients as system states, which reduces the theoretical
complexity. The authors in [Sayahkarajy 2018] utilized a linear modal reduction
technique to solve the dynamic modeling problems related to large deformations. It
is based on the derived modes approach, and uses the Craig-Bampton technique to
realize the coupling between the different reduced subsets. A third-order polynomial
interpolation approach, whose coefficients have been pre-calculated, has been used
for shape kinematic modeling. The author’s approach allows a significant reduc-
tion in computation time. In the work of [Wu 2016], an iso-geometric collocation
method is described. The authors make use of a parametrization of the structure
by means of Non-Uniformal Rational B-Splines (NURBS) curves to accurately de-
scribe the mean line of the shape of the studied soft continuum manipulator. The
Cosserat Rod approach is used for dynamic modeling. The data obtained from this
latter are then used to describe the kinematics of the robot via the parameterization
performed by the NURBS, while the geometric collocation allows specifying the ge-
ometric modes, namely, the control points of the curve according to the observed
dynamics. A polynomial spectral collocation method has also been extensively dis-
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cussed in [Weeger 2017]. Based on this approach, the spatial configuration of a
soft manipulator has been reduced using the discrete Kirchhoff model applied to
two different classes of control points of the polynomial curve (representative of
the kinematics to be described). The results of this approach, unlike the previous
one, allow describing a 3D kinematics of a soft robot subjected to external inter-
actions. The results of their work showed that the accuracy of their technique is
very sensitive to the number of nodes used for the polynomial interpolation. Later,
non-linear normal modes, representing a non-linear system with linear eigenspaces,
have been investigated by [Della Santina 2018] to address the elastic joint stabiliza-
tion of robots. In this study, the author succeeded in characterizing a subspace of a
reduced dimensionality on which the system would naturally evolve.

ROM-based PS approaches for soft continuum manipulators are widely dis-
cussed in the literature. The Lagrangian formulation for Shape Functions (SF)
has been investigated in [Godage 2011], where the researchers used the Taylor se-
ries with a 6th order approximation. This method simplified the shape kinematics
complexity caused by the dynamics, and the infinite dimension of the shape kine-
matics modeling was reduced to a problem of 56 unknowns. The analyses made in
[Sadati 2017] introduced a ROM technique for continuum robots dynamics control
based on the Principle of Virtual Works (PVW). An approximate series-solution
has been used for the kinematics while reconstructing the robot shape by fitting
the Lagrange polynomial function at control points. These control points have been
defined as the system modeling states. They have been used to describe the contin-
uum manipulator shape kinematics. [Boyer 2020] has based some investigations on
the Cosserat-Rod modeling technique to minimize the set of Ordinary Differential
Equations (ODEs). The authors succeeded in improving the computation time of
the robot dynamics modeling. They used a new reduced inverse Newton-Euler algo-
rithm. Parallel to this, another dynamics modeling based on Cosserat-Rod has been
suggested with the use of Magnus series solutions for dimension reduction purposes
[Orekhov 2020]. Polynomial fitting techniques have also been used in that case for
the shape kinematics reconstruction. In recent years, parametric curves-based tech-
niques have been intensively explored for ROM in the static case. The investigation
of [Singh 2018b] has solved the kinematics of continuum robots using a PH curve to
reconstruct the overall robot shape. As well as in [Wiese 2019], a reduced number of
the curve control points is highlighted for the kinematics modeling. These have al-
lowed an accurate shape kinematic computation in a static context. Their technique
differs from the others because of the boundary conditions, namely, the endpoint
poses (position and orientation), taken into account within the formulation. The
potential energy minimization criterion is considered in the formulation to specify
the optimal position of these control points. Another key feature of this modeling
is the shape-preserving properties: the reconstructed shape always follows the con-
trol polygon. The PH quintic polynomial curve appears to be the smallest degree
PH curve allowing the reconstruction of very complex shapes. In addition, among
polynomial curves, they appear to be unique in having arc lengths that are exactly
determined by simple algebraic expressions in their coefficients. These might offer
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the possibility of modeling soft continuum actuators while considering their spatial
arc length. Therefore, the workspace computation might be greatly simplified.

ROM-based PC methods have also been explored. Many works demonstrated
that these methods have one less state compared to Cartesian space parametriza-
tion used for the PS approach. However, deriving the Cartesian parameters is still
required for calculating the local effect of external loading and the system inertial
dynamics. In a recent work, [Della Santina 2019], a model-based shape control using
a finite order polynomial curvature method is suggested for soft continuum robots
kinematics modeling. Instead of operating a spatial discretization as discussed in the
above techniques, the authors described the robot with a curvature function in the
standard polynomial base of the Hilbert space. In this way, the continuum shapes
are specified as a mathematical series with the CC approximation as the first term,
and linear curvature approximations for the other terms. These allow addressing
the issues related to the infinite-dimensional formulation of the problem. Also, they
have enabled the authors to lower the modeling order by order truncation according
to the desired accuracy. In recent research, [Della Santina 2020c] proposed a dy-
namical feedback controller to stabilize a desired trajectory in the curvature space.
A dimension reduction has been analyzed using an augmented formulation linking a
soft robot to a classic rigid serial manipulator under the PCC hypothesis. An aug-
mented state space of six dimensions has been designed. The required shape features
of the soft continuum manipulator have been mapped. The equivalent vector has
been then used for the controller design. Later in [Della Santina 2020b], a topology
reduction for robot kinematics with singularities-free has been developed to control
soft robot shape dynamics. A new bending parametrization for PCC approxima-
tion is outlined by the authors to overcome some unsuitable behaviors issued from
the common PCC approaches often used. Based on some comparison studies, the
latter has been claimed as an improvement for PCC modeling techniques to address
singularity issues. An extension to external interactions with high accelerations has
been studied in [Della Santina 2020a]. The issues related to infinite DoFs using a
finite dimension reduction approach have also been addressed.

2.3.3 MOR-based techniques

Model reduction aims at simplifying the complexity of physical systems in terms
of dimension and computational cost [Benner 2005], [Panzer 2010]. Modeling-Order-
Reduction (MOR) techniques are used to reduce the state space dimension of an
already developed soft robot FEM model. MOR, unlike ROM, is not a modeling
technique. It refers to a computational approach. In [Thieffry 2018b], [Goury 2018],
a MOR technique was proposed to represent the full-order dynamics model by a
subset of the large Finite Element mesh elements using Proper Orthogonal Decom-
position (POD), a snapshot POD. The POD was on a linearized FEM model around
an equilibrium point. This has enabled the formulation of a stable observer and con-
troller for the reduced linearized system. The work of [Thieffry 2018a] highlights
a state feedback controller in the states of the reduced subspace. This approach
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is also discussed in the research works of [Ficuciello 2018] [Koehler 2019], and has
proved to be very computationally efficient.

2.3.4 Motion planning approaches

Several studies [Lamiraux 2001a] have been devoted to the modeling and control
of the shape of MSCM using the classical path planning techniques often used for
mobile robots. Most of them use sampling-based approaches. These methods require
prior information about the entire workspace, i.e., a mathematical representation to
describe the workspace. They typically sample the environment as a set of nodes,
cells, or other shapes. Then the environment is mapped, or a random search is
performed to obtain a feasible path. Sampling-based approaches can be subdivided
into two categories: active and passive methods. Active methods, such as Rapid
Random Tree (RRT) or APF, can obtain the best possible path to the goal by
their processing procedure. Passive algorithms, such as PRM, only generate a road
network from start to finish, thus, a combination of search algorithms to find the
best feasible path in the network map where many feasible paths exist.

The RRT approach, proposed first by [LaValle 1998], aims at solving path
planning problems under holonomic and non-holonomic constraints. The RRT
method has the advantage of handling hyper-redundancy problems [Chitta 2012],
even though it does not take into account information from local environments,
thereby causing inappropriate sampling, which can lead to low time efficiency. RRT
algorithm has been performed in [Roussel 2014b] and [Roussel 2014a] for deformable
robotic structures in complex environments. The algorithm has been applied to a
catheter for liver chemoembolization. While using the RRT method, similar re-
sults have also been reported in [Kuntz 2017] for surgical operations. The proposed
sampling-based motion planner has been able to avoid collisions with anatomical ob-
stacles inside the body. Although the RRT approach is a good planning technique,
the quality of the results is not guaranteed. To address this issue mainly related
to the asymptotic convergence of the RRT method, the authors of [Karaman 2010]
introduced a Rapid Random Graph (RRG). Several experimental results of RRG
show its effectiveness compared to other RRT-based path planning techniques.
[Torres 2015] has made use of this approach to achieve automatic collision avoid-
ance by precomputing a roadmap of collision-free robot configurations based on a
description of the anatomical obstacles. The motion planning approach has been
used for the teleoperation of concentric tube robots with automatic obstacles avoid-
ance along with the entire structure. Although RRT can find a path to the goal,
there remains a problem because RRT relies on the Monte Carlo random sampling,
which biases the explored region as it increases with time. Thus, the method will
take a long time to find a way out when the environments are cluttered.

Unlike RRT, the Probabilistic Road Map (PRM) considers different choices for
the set of states to which connections are checked. PRM [Kavraki 1996] is the
first popular multiple query method for constructing a road map using a sampling
approach. In [Lamiraux 2001b], a path planning has been analysed using Proba-
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Table 2.3: Analysis of sampling based algorithms

Methods Drawbacks Advantages

RRT Single path, Non Optimal,
Static threat only

Low time complexity, fast
searching ability

RPM Expensive collision check,
Static threat only, Nonopti-
mal

Appropriate for complex envi-
ronments and replanning situ-
ations

APF Local minima Fast convergence

bilistic Road Map (PRM) after sampling the configuration space of the robot. The
computation of stable configurations of the soft robot has been done, subject to
manipulation constraints using a global energy minimization. A modeling based
on minimal-energy curves has also been highlighted by [Moll 2006]. This modeling
is coupled with PRM to address space configuration issues. Rather than sampling
the configuration space of the soft continuum manipulator, [Gayle 2005] used the
PRM for sampling the workspace. The path is generated for each point of the soft
robot in the road map, in order to drive the soft structure as long as the physical
constraints are satisfied. A recent investigation [Kuntz 2019] has based on PRM to
propose surgical robots. The approach is coupled with a local optimization to drive
a concentric tube robot in order to avoid obstacles.

The APF approach for mobile robot navigation has been first introduced in
[Khatib 1986]. The robot follows the negative gradient to avoid the obstacle and
reach the desired target point. Since then, several works in the scientific community
have adopted it to describe the kinematics of soft robots for shape control purposes
when avoiding obstacles. In [Ataka 2017], the author computed APF-based motion
planning strategy for MSCM in dynamic environments. The results showed that
their investigations can be a promising alternative for a dynamic industrial environ-
ment. Another work presented in [Hilario 2011] has applied the same method to
modify the shape of Bezier curves, representing the path of a mobile robot. How-
ever, such a planning motion method often suffers from local minima issues where
the robots are prone to be trapped. They are often subject to oscillations and Goals
Non Reachable with Obstacle Nearby (GNRON) problem. Many contributions have
been proposed to overcome the local minima issues using navigation functions or
APF with constraints. Amongst many others, [Connolly 1990] has discussed on a
APF-based Harmonic function [Kim 1992] using Laplace equation to constrain the
generation of a potential function. In [Montiel 2015], alternatives to solve local
minimum issues in the dynamic environment have been suggested by considering
the dynamics robots navigation [Borenstein 1989]. [Rimon 1992] proposed a Morse
function with a single minimum at the desired destination strategy to form a strong
and stable robot navigation method to jump out of the local minima. That was the
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first formally proposed navigation method. Then, the GNRON problem has been
tackled in [Ge 2000] with the introduction of a new repulsive artificial potential field.
This latter has allowed the development of a superior potential function and a su-
perior repulsive potential function [Shi 2009]. An improved version of the APF has
been considered by [Sfeir 2011]. The authors’ approach minimizes the oscillation
and conflicts when the target is close to the obstacle. A summary of the perfor-
mances of the sampling based approaches often used for soft manipulators motion
planning is summarized in Table 2.3.

2.4 Thesis Positioning with Respect to the Literature

Given the preceding, the modeling of the shape of MSCM using parametric poly-
nomial curves proves to be a promising alternative because of the balance between
the accuracy and the computational time, which allows for the control compared
to MOR-based techniques. Although these latter are more accurate and realistic,
some key issues remain regarding the need for a prior FEM model, which is costly
computation-wise. As a result, expensive and specialized hardware might be re-
quired for real-time applications. Despite the advantages of spectral and power
series modeling approaches in terms of real-time implementation, they are limited
compared to parametric polynomial curves, which can master discontinuity issues,
particularly those involving complex shape functions and Runge’s phenomenon sen-
sitivity.

Regarding the parametric polynomial curves, Lagrange polynomials curves ap-
pear not to allow any control strategy and only converge for special points place-
ment. Bernstein basis functions are used in the case of Bezier and PH curves, and
B-Spline basis functions are used for Bézier Splines (B-Spline) and NURBS curves.
The solutions of Bernstein basis functions are analytical, and the solutions to the
B-Spline basis functions are iterative. It implies that Bernstein’s basis functions are
computationally effective compared to B-Spline and NURBS curves. In addition,
the calculation of the length of the curve does not have the closed-form solution in
the case of Hermite, Bezier, B-Spline , and NURBS. Therefore, numerical methods
are needed to approximate the solutions of their length, while in the case of PH-
curves, the length calculation has a closed-form solution. Intensive investigations
on parametric curves modeling technique are discussed in [Singh 2018a] [Singh 2017]
[Singh 2018c].

In the light of the above reviews, the present investigation has been oriented to
ROM-based PH for dynamic shape control. A principal aspect regarding the PH
curve modeling is the consistency concerning bending energy minimization criteria
of a physical system.

The real-time dynamic control of the shape of soft manipulators combines the
traditional techniques and the motion planning approaches because of the consid-
eration of environmental constraints. APF-based motion planning coupled with a
Sliding Mode Control, is applied to the PH-curve modeling to drive the robot shape
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while navigating in unstructured environments for various tasks. The APF-based
algorithm has the advantage of allowing fast convergence, suitable for real-time
control. The APF-based strategy is only applied on the control points of the PH
curves (rather than all the points of the curves), while the suggested Sliding Mode
control law allows the curve to meet optimal bending energy requirements during
its motion. Thanks to Euler-Bernoulli’s modeling techniques, the physical control
inputs are mapped to the motion of the control points driving the curve posture.
This operation allows mapping the physical control inputs to the shape of the soft
continuum manipulator, suitable for adaptive shape control.

2.5 Conclusion

The current literature studies illustrate the interest of the scientific community
regarding the shape control of MSCM. However, very few works are devoted to this
subject. For real-time control applications, several simplified modeling approaches
exist. Amongst these latter, PCC techniques remain the widely used although ROM-
based techniques and MOR approaches are emerging as the most promising alterna-
tives. However, several limitations related to these classical approaches are claimed,
in particular about the non-consideration of the local environmental constraints for
the shape kinematics control of MSCM. Many of them appear to deal with the pose
control of the soft robot tip only. This may be very compromising for navigation
operations in confined spaces. To tackle these limitations, control methods based on
trajectory planning techniques have been analyzed. They are an effective solution
to the difficulties raised in the context of MSCM motion control. The advantage
of these methods compared to conventional control methods is that the environ-
mental constraints are considered. The combination of the classical techniques and
the trajectory planning is indispensable for MSCM shape control. However, the
shape control remains unclear if there is no explicit relation between the physical
control inputs and the shape of the soft continuum manipulator. These major issues
constitute one of the main interests of the present research works.
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3.1 Introduction

This research work aims to provide a framework that would allow to compute
the shape kinematic control of MSCM. To come to this end, the present chapter
discusses the inverse kinematics as well as the forward kinematics modeling of MSCM
by means of quintic Pythagorean Hodograph (PH) curves. These quintic PH curves
have proved to be enough to describe very complex shape kinematics [Farouki ]. The
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PH curves are formulated with a predefined length and hence, allow to efficiently
take into consideration the workspace of the soft continuum manipulators. The
bending energy optimization taken into consideration allows the system to achieve
its optimal shape kinematics during the motion. The configuration states of the
system are described by the position of the control points. All these have allowed to
describe the shape high order kinematics with five control points only. Therefore, the
Inverse Kinematics Modeling (IKM) is to compute the MSCM shape by specifying its
control points poses, from the knowledge of its end points pose. While, the Forward
Kinematics Modeling (FKM) is to specify the posture from the independent motions
of the control points. APF-based motion control is applied on the control points to
drive the shape of the soft continuum manipulators accordingly. The Sliding Mode
strategy is coupled to Artificial Potential Field (APF) strategy to guarantee that
the configuration states of the system are consistent with optimal bending energy
requirements.

3.2 PH-based Inverse Kinematics Modeling (PH-IKM)

The kinematics of the MSCM can be described by a set of infinite DoFs, which
make complex its shape control. In this section, the soft continuum manipulator is
modeled by parametric PH curves. This allows reconstructing the soft continuum
manipulator shape, by considering the overall total bending energy of the curve.
Two types of shape reconstruction by PH can be applied to the soft continuum ma-
nipulator: a static shape reconstruction [Singh 2018b], defined at one time instant;
a continuous shape reconstruction, when the curve is varying with the time. The
following development focuses on continuous shape reconstruction for the control
[Mbakop 2020] [Mbakop 2021a]. For that, in addition to the optimization of bend-
ing energy of the curve, other geometric constraints need to be imposed such as the
curve length. Thus, the control points of the curve of the soft continuum manipula-
tor are placed optimally according to its unstructured environment. To obtain the
PH parametric curve-based model of the soft continuum manipulator for continuous
shape reconstruction, the following steps are considered.

3.2.1 Quaternion form of PH curve of the soft continuum manip-
ulator using complex polynomials functions

The aim is to establish an explicit form of the PH of the instantaneous posture
of the MSCM with a predefined length in the space. This form will be used to
establish the interpolation conditions considering length constraints of the MSCM.

The quaternion form is chosen to simplify the writing in 3D. However, the length
constraint is not trivial in its quaternion form but in complex one. Thus, a relation
linking the complex formulation and the quaternion one of the hodograph is given.

Let us consider (ps, ds) , (pf , df ), respectively the pose of the starting point of the
MSCM curve (i.e. mobile base) and the pose of the final point of the MSCM curve
(i.e. tip of the continuum manipulator). ps, pf describe the Cartesian positions and
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ds, df their respective directions, given in polar form (3.17). Thus, the posture of
the MSCM can be written as follows, after considering the normalized curvilinear
coordinate ξ (0 ≤ ξ ≤ 1), along the MSCM of length L :

p(ξ) = (x(ξ), y(ξ), z(ξ)); 0 ≤ ξ ≤ 1 (3.1)

then, the following expressions are obtained:

ps = p(0) = (x(0), y(0), z(0)), ξ = 0

pf = p(1) = (x(1), y(1), z(1)), ξ = 1.
(3.2)
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Figure 3.1: 3D Posture of soft continuum manipulator using PH curve

The MSCM boundaries conditions namely, the poses of ps , pf , and the MSCM
length are consistent with a PH quintic formulation, necessary for the shape recon-
struction. PH can be expressed in quaternion polynomial form [Choi 2002], or in
complex polynomial form [Farouki 1990]. First, the PH curve p(ξ) and its hodo-
graph p′(ξ) = (x′(ξ), y′(ξ), z′(ξ)), namely the first derivative can be expressed in
function of quaternion polynomial A(ξ) and its conjugate A∗(ξ), as follows:

A(ξ) = u(ξ) + v(ξ)i+ r(ξ)j+ q(ξ)k

A∗(ξ) = u(ξ)− v(ξ)i− r(ξ)j− q(ξ)k
(3.3)

where i, j,k represent the 3 quaternions basis elements of the set of quaternions H.
u, v, r and q define polynomial functions. In that case:

p′(ξ) = A(ξ)iA∗(ξ) (3.4)

with,

x′(ξ) = u2(ξ) + v2(ξ)− r2(ξ)− q2(ξ)

y′(ξ) = 2u(ξ)q(ξ) + 2v(ξ)r(ξ)

z′(ξ) = 2v(ξ)q(ξ)− 2u(ξ)r(ξ)

(3.5)
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Second, the PH curve p(ξ) and its hodograph p′(ξ) can be expressed in function of
complex polynomials α(ξ) and β(ξ) as follows:

α(ξ) = u(ξ) + iv(ξ), β(ξ) = q(ξ) + ir(ξ). (3.6)

Thus,

x′(ξ) = |α(ξ)|2 − |β(ξ)|2,
y′(ξ) = 2Re(α(ξ)β(ξ)),

z′(ξ) = 2Im(α(ξ)β(ξ)),

(3.7)

with β the conjugate of β.
To obtain the same p′(ξ) expressed in Eq. 3.5 and Eq. 3.7, the quaternion

polynomial A(ξ) should be expressed in function of complex polynomials α(ξ) and
β(ξ), as follows :

A(ξ) = α(ξ) + kβ(ξ) (3.8)

where the imaginary unit i is considered equivalent to the quaternion basis element
i.

3.2.2 End points interpolation using length constraints

Now, the quaternion form of the PH has been reduced through a complex
formulation, the equations governing the interpolation at the end points of the curve
as well as the one considering the length constraint can be obtained. The main
objective is to establish a system Eq. 3.15 to uniquely determine the coefficients
αm and βm of the polynomial functions α and β, written with regard to Bernstein
form as described by Eq. 3.14.

The parametric velocity polynomial Γ(ξ) is then expressed as follows:

Γ(ξ) = |p′(ξ)| = |A(ξ)|2 = |α(ξ)|2 + |β(ξ)|2 (3.9)

Integrating p′(ξ) = (x′(ξ), y′(ξ), z′(ξ)) of Eq. 3.7 leads to end points displacement
(∆p = pf−ps) satisfaction, described by equations Eq. 3.10 and Eq. 3.11 as follows:∫ 1

0
|α(ξ)|2 − |β(ξ)|2 dξ = ∆x. (3.10)

∫ 1

0
2α(ξ)β(ξ) dξ = ∆y + i∆z. (3.11)

while the MSCM length constraint is calculated after integrating the equation Eq.
3.9 as follows: ∫ 1

0
|α(ξ)|2 + |β(ξ)|2 dξ = L. (3.12)
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After combining Eq. 3.10 with Eq. 3.12, the following relations are obtained:∫ 1

0
|α(ξ)|2 dξ = 1

2
(L+∆x),∫ 1

0
|β(ξ)|2 dξ = 1

2
(L−∆x).

(3.13)

Note that, PH quintic curve can be generated by complex polynomials using Bern-
stein form:

α(ξ) = α0(1− ξ)2 + 2α1(1− ξ)ξ + α2ξ
2

β(ξ) = β0(1− ξ)2 + 2β1(1− ξ)ξ + β2ξ
2

(3.14)

The canonical form (∆p = (1, 0, 0)) should be adopted without out loss of gen-
erality. By replacing Eq. 3.14 into Eq. 3.11 and Eq. 3.13, the following is obtained:

[4α1 + 3(α0 + α2)][4β1 + 3(β0 + β2)]

= 5[α0β2 + α2β0 − 3(α0β0 + α2β2)],

|4α1 + 3(α0 + α2)|2

= 5[12(L+ 1)− 2(|α0|2 − |α2|2)− |α0 − α2|2],
|4β1 + 3(β0 + β2)|2

= 5[12(L− 1)− 2(|β0|2 − |β2|2)− |β0 − β2|2].

(3.15)

It can be observed that the system of equations Eq. 3.15 consists in determining
the couples of (αq, βq), where q = 0, 1, 2.

The quintic PH curve has been considered for the shape modeling of the soft con-
tinuum manipulator, because the latter can have a maximum of 2 inflection points.
Quintic PH curve is a polynomial curve of degree 5, which allows reconstruction
of curvilinear geometries with 6 control points (2 end points and 4 intermediate
points). The canonical form (∆p = (1, 0, 0)) should be adopted without loss of gen-
erality. By substituting Eq. 3.14 into Eq. 3.11 and Eq. 3.13, the system obtained
is consistent with Eq. 3.16.

3.2.3 Calculation of Bernstein coefficients

To guarantee optimal solutions in the case of a predefined length, the symmetry
conditions of the end directions (tangents) interpolations should be applied. Thus,
the solutions do not depend on the norm of the direction vectors but only on the
directions themselves. For this purpose, the end direction vectors are all formulated
as µ-proportional to the associated unit vectors, expressed in polar form Eq. 3.17
and Eq. 3.18. Thus, to have the first equation of Eq. 3.15 compatible with the
remaining, the following relation is obtained:

|α0β2 + α2β0 − 3(α0β0 + α2β2)|2

=[12(L+ 1)− 2(|α0|2 − |α2|2)− |α0 − α2|2]
·[12(L− 1)− 2(|β0|2 − |β2|2)− |β0 − β2|2]

(3.16)
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By specifying the unit end tangents in terms of polar and azimuthal angles,
relative to x-axis as follows:

ds = (cos θs, sin θs cosϕs, sin θs sinϕs),

df = (cos θf , sin θf cosϕf , sin θf sinϕf ),
(3.17)

the interpolation at end tangents yields to:

α0 = µcs exp(iϕs) exp(iψ0), β0 = µss exp(iψ0),

α2 = µcf exp(iϕf ) exp(iψ2), β2 = µsf exp(iψ2),
(3.18)

where ψ0 and ψ2 are free angular parameters [Farouki 2002] and cs and ss are defined
as:

(cs, ss) = (cos
1

2
θs, sin

1

2
θs),

(cf , sf ) = (cos
1

2
θf , sin

1

2
θf ).

(3.19)

The use of Eq. 3.18 in Eq. 3.16 leads to the following reduced bi-quadratic
equation [Farouki 2019]:

p(µ2) = c2µ
4 + c1µ

2 + c0, (3.20)

where 
c2 = 2(c2ss

2
f + s2sc

2
f )− 4cssscfsf cos∆ϕ,

c1 = 6[(L− 1)cscf cos(∆ϕ+∆ψ)

+ (L+ 1)sssf cos∆ψ − 3L] + 9(c2s − s2s + c2f − s2f ),

c0 = 36(L2 − 1).

(3.21)

3.2.4 Optimal position of the control points

As one can remark, the coefficients of αq and βq, where q = 0, 1, 2, reflect the
length features of the MSCM. However, the minimization of the potential energy
needs to be determined for optimal shape reconstruction. In view of Eq. 3.18, the
minimal values of µ ≥ 0 minimize the quaternion polynomials in Eq. 3.22 and Eq.
3.24. This implies a minimization of the potential energy from Eq. 3.27 and Eq.
3.28.

After having formulated that A(ξ) = α(ξ) + kβ(ξ) in Eq. 3.8, the complex
polynomial Eq. 3.6 can be expressed by the following quaternion polynomial :

A(ξ) = A0(1− ξ)2 + 2A1(1− ξ)ξ +A2ξ
2.

Then, the interpolation of the tangents of end points yields to the coefficients
A0 = α0 + kβ0 and A2 = α2 + kβ2. Both are obtained from Eq. 3.18 with regard
to Eq. 3.8 as follows:

A0 = µ[cs exp(ϕsi) + ssk] exp(ψ0i),

A2 = µ[cf exp(ϕf i) + sfk] exp(ψ2i),
(3.22)
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where the imaginary unit i is identified with the quaternion element i.
The satisfaction of the arc length constraints is achieved by choosing the positive

smaller root µ2 of Eq. 3.20. The end point displacement ∆p allows us to define d

as:
d = 120∆p− 15µ2(ds + df ) + 5(A0iA∗

2 +A2iA∗
0). (3.23)

The coefficient A1 is thus carried out through the end point displacement inter-
polation by the following expression:

A1 = −3

4
(A0 +A2) +

√
|d|
4

|d|i+ d

|(|d|i+ d)|
exp(ψ1i), (3.24)

where ψ1 is a free angular parameter. The knowledge of A0,A1 and A2 enables to
completely define the control points pk in the p(ξ) Bézier form :

p(ξ) =

5∑
k=0

pk

(
5

k

)
(1− ξ)5−kξk, (3.25)

Thus, expression Eq. 3.25 describes the PH-based Forward Kinematics Mod-
eling (FKM). After formulating each PH quintic control points, the following
expression is obtained :

p1 = p0 +
1

5
A0iA∗

0, p2 = p1 +
1

10
(A0iA∗

1 +A1iA∗
0),

p3 = p2 +
1

30
(A0iA∗

2 + 4A1iA∗
1 +A2iA∗

0),

p4 = p3 +
1

10
(A1iA∗

2 +A2iA∗
1), p5 = p4 +

1

5
(A2iA∗

2),

(3.26)

with: pf = p5 and ps = p0. If pf is well identified, then expression Eq. 3.26 will
describe the PH-based Inverse Kinematics Modeling (IKM) of the MSCM.

The successive derivatives of p(ξ) can be expressed as follows:

p′(ξ) = A(ξ)iA∗(ξ),

p′′(ξ) = A′(ξ)iA∗(ξ) +A(ξ)iA′∗(ξ),

p′′′(ξ) = A′′(ξ)iA∗(ξ) + 2A′(ξ)iA′∗(ξ) +A(ξ)iA′′∗(ξ).

(3.27)

The potential energy should therefore be evaluated. For a curve-based kinematic
model, it can be written in the canonical form as follows: :

Ep =
1

2

∫ L

0
|ω(h)|2 dh. (3.28)

If the normalized parameter is chosen, one can remark that:

dh =
dh

dξ
dξ and

dh

dξ
= Γ(ξ).
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κ(ξ) =
|p′(ξ)× p(ξ)′′|

|p′(ξ)|3
,

τ(ξ) =
(p′(ξ)× p′′(ξ)).p′′′(ξ)

|p′(ξ)× p′′(ξ)|2
.

(3.29)

It is demonstrated from Eq. 3.25 and Eq. 3.26 that the MSCM shape can
be reconstructed, thanks to control points knowledge through the end points pose.
Amongst them, 2 are independent (p2 and p3) and are responsible of the shape
changes.

One can note that the µ value ensures that the potential energy is minimised,
see Eq. 3.22, Eq. 3.24, Eq. 3.27 and Eq. 3.28.

However, the free parameters ψ0 and ψ2 can influence the shape of the curve
representing the MSCM posture since they vary from 0 to π. The reason for this
observation is their effects on the value of the potential energy (see Eq. 3.22 and Eq.
3.24). By imposing ψ1 = 0, it is possible to determine the appropriate combination
(ψ0, ψ2) inducing a minimum value of the potential energy.

3.3 PH-based Forward Kinematic Modeling (PH-FKM)

The adaptive shape issue implies the deformation of the PH-curve (representa-
tive of the soft continuum manipulator shape) from an initial one to the required one
as described in Fig. 3.2. This results in moving the control points pk independently
using the PH-based Forward Kinematics Modeling (FKM) namely Eq. 3.25.

However, the Bézier control points defined in Eq. 3.25 can not have independent
motions while keeping PH advantageous features (prescribed length, interpolation,
etc.). In [Farouki 2015], this issue is largely analyzed. To solve that problem, a
rectifying control polygon based on the Gauss-Lobatto quadrature is investigated.
This technique enables to deform a PH curve from its control points while keeping
all the interesting properties of PH curves, contrary to the drawbacks caused by the
direct motions of the Bézier control points. Furthermore, one interesting feature
of using Gauss-Lobatto control points is the endpoints interpolation properties and
the length preserving properties during the shape modeling.

3.3.1 Gauss-Lobatto quadrature

In Eq. 3.25, the Bézier control points pk are supposed to have independent
motions from each other. Unfortunately, this appears to be not possible while
keeping PH features [Farouki 2015]. In the following, a method using a rectified
control polygon by using Gauss-Lobatto control polygon is discussed through Gauss-
Lobatto quadrature [Abramowitz 1964] [Quarteroni 2010].

In the case of a MSCM of length L, a quadrature rule can estimate the inte-
gral of a function (describing the MSCM shape) p(s) : [0, L] → R3 as a weighted
sum

∑m
k=1 ω̄kp(sm) of m function values, sampled at nodes sm ∈ [0, L] along the

manipulator length. When the nodes and the weights are chosen conveniently, the
estimate is exact for a maximum degree dependent of m, of the polynomial curve.
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Figure 3.2: Deformation of a PH curve using control points

The exactitude of a quadrature rule for sufficiently high m, for MSCM, may be
exploited to identify the PH curves representative of their shapes [Kythe 2005].

The Gauss-Lobatto polygon uses the Gauss-Lobatto quadrature. For the in-
tegrable function p(ξ) on [−1, 1], the Gauss-Lobatto quadrature utilizes both end
parameters (−1 and 1) as preselected nodes. With m nodes, it takes the form of:

Īm = ω̄m,0p(−1) + ω̄m,m−1p(1) +
m−2∑
k=1

ω̄m,kp(τ̄m,k) (3.30)

When the domain of the integration is [0, 1], consistent with the normalized
parametrization of MSCM to be described, the Gauss-Lobatto quadrature is scaled
as follows:

Īm(p; [0, 1]) =
1

m(m− 1)
(p(0) + p(1)) +

m−2∑
k=1

ω̄m,kp(
1 + τ̄m,k

2
) (3.31)

This quadrature is used to define the Gauss-Lobatto polygon of a regular curve p(ξ)
(defining the shape of the MSCM) in the Euclidean space R3.

The rest of the nodes τ̄m,k for k = 1 · · ·m− 2 and the weights are chosen so that
this quadrature evaluates the exact integral of the polynomial of the degree as high
as possible. According to [Abramowitz 1964] [Quarteroni 2010], the values of the
nodes and the weights for small number of nodes are listed in Tab. 3.1.

Recall that, quintic PH curves are generally recognized to have sufficient shape
flexibility for any complex MSCM shape kinematics reconstruction. Henceforth, the
investigation is made on the consistency of a 5th order PH polynomial curve.
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Table 3.1: Nodes and weights of Gauss-Lobatto quadrature up to order 5

No. of Nodes m Nodes τ̄m,k Weights ω̄m,k

2 ±1 1

3 ±1,0 1
3 ,

4
3

4 ±1,±
√

1
5

1
6 ,

5
6

5 ±1,±
√

3
7 ,0

√
1
5

1
10 ,

49
90 ,

32
45

3.3.2 Gauss Lobatto control polygon

Definition 3.3.1. Let define p(ξ) : [0, 1] → R3, a regular parametric curve describ-
ing the shape of a soft continuum manipulator. The Gauss-Lobatto control polygon
Ξm(p) = {rk} of p(ξ), with m edges is defined by:

r0 = p(0),

rk+1 = rk +
ω̄m,k

2
p′(

1 + τ̄m,k

2
) for k = 0, · · · ,m− 1

(3.32)

One can note that the number of edges of a Gauss-Lobatto polygon is specified
by the number of nodes of the Gauss-Lobatto quadrature. So any Gauss-Lobatto
polygon should have at least 2 edges since the Gauss-Lobatto quadrature has two
pre-selected nodes. Therefore, from Definition 3.3.1, it is obvious that the MSCM
shape and its Gauss-Lobatto control polygon share the same tangents at the end-
points (starting and final points). In the remaining, Gauss-Lobatto control points
are denoted rk.

Proposition 3.3.1. Let define p(ξ) : [0, 1] → R3, a regular parametric curve de-
scribing the shape of a soft continuum manipulator. Any both terminal edges of the
Gauss-Lobatto polygon Ξm(p) read the tangents of p as:

p′(0) =
2

ω̄m,0
∆r0 =

2

ω̄m,0
(r1 − r0),

p′(1) =
2

ω̄m,m−1
∆rm−1 =

2

ω̄m,m−1
(rm − rm−1),

(3.33)

In the present context that the Gauss-Lobatto control polygon is specified with
end tangents interpolation properties, it is of crucial importance to ascertain whether
this latter meets endpoint interpolation properties regarding the polynomial curve
p(ξ) representing the MSCM shape.

Proposition 3.3.2. Let define m, l ∈ N. p(ξ) : [0, 1] → R3, a regular polynomial
curve of degree l, representing the soft continuum manipulator shape. If m ≥ l

2 +1,
then its Gauss-Lobatto polygon has endpoint interpolation property: rm = p(1)
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According to Definition 3.3.1, it is obvious that p(ξ) and Ξm(p) share the same
starting point. Also, it is obvious that

rm = r0 +
m−1∑
k=0

ω̄m,kp
′(
1 + τ̄m,k

2
) (3.34)

Since p′ is of degree l − 1, for any l − 1 ≤ 2m − 3, the Gauss-Lobatto quadrature
computes the exact integral. Hence:

rm = r0 +

∫ 1

0
p(ξ)dξ = p(1) (3.35)
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Figure 3.3: Gauss-Lobatto control points illustration

It has been established that the Gauss-Lobatto control polygon of the PH para-
metric curve representing the MSCM posture has both endpoints and end tangents
interpolation properties.

3.3.3 Properties

The rectifying properties of a given control polygon regarding a PH curve p(ξ) have
been discussed in [Kim 2017] by three properties :

• The endpoint interpolation,

• The rectifying property, i.e., the polygon has the same length as the PH curve
p(ξ),

• The polygon has the same degree of freedom as the PH curve p(ξ).

With the preceding rectifying properties, the Gauss-Lobatto control polygon is
analyzed accordingly.

Let us remind that if the complex or the quaternion polynomial is of degree n,
then the corresponding PH curve is of degree 2n+ 1.

The endpoint interpolation and the rectifying property of the Gauss-Lobatto
polygon have already been investigated in proposition 3.3.1 and 3.3.2. Now DoFs of
the Gauss-Lobatto polygon have to be discussed.
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Proposition 3.3.3. Let m,n ∈ N and p(ξ) : [0, 1] → R3, a regular parametric
curve of degree 2n+ 1. Also, let be Ξm(p), a Gauss-Lobatto control polygon of p(ξ).
Suppose that p(ξ) is the representative shape of a soft continuum manipulator. The
necessary and sufficient condition for the existence of Ξm(p) as a rectifying control
polygon is consistent with m ≥ n+ 2.

The proposition 3.3.3 is easily derived from the observation on the endpoints
and end the tangents interpolations. Analyzing spatial PH curves, it is known
from rectifying properties that the Gauss-Lobatto control polygon must have the
same degree as the PH curve to be controlled. This implies that 3m = 4n + 3.
This observation keeps valid if n = 3h, for any h ∈ N. Thus, all pairs of numbers
(m,n) = (4h+1, 3h) satisfym ≥ n+2. Henceforth, the following must be considered
for the modeling of spatial motions of MSCM with PH curves:

Proposition 3.3.4. Let define p(ξ) : [0, 1] → R3, a regular parametric curve de-
scribing the shape of a soft continuum manipulator and let be m,n ∈ N, 2 integers.
Assume p(ξ), a spatial PH curve of degree 2n+1. Take Ξ(p), a Gauss-Lobatto poly-
gon of p(ξ) with m edges. Ξ(p) is the rectifying control polygon of p(ξ) if n = 3h

and m = 4h+ 1 for h ∈ N.

3.3.4 Toward Bézier control points correspondance

Now, it is desired to control the MSCM shape described by a PH curve p(ξ)
by moving its control points. However, according to proposition 3.3.4, the first
nontrivial case arises for septic PH curves. The idea is to increase the degree of
the quintic PH curve by degree elevation (see Eq. A.12). After that, the Gauss-
Lobatto polygon has to be specified from Eq. 3.3.1. After that, the Bézier control
points are carried out by computing the quaternion pre-image Am=0···3, issued from
Gauss-Lobatto rectifying polygon motion.

So, for a given rectifying control polygon Ξ(p), the quaternion pre-image
Am=0···3, leading the Bézier control points pk kinematics, need to be specified. From
Eq. 3.3.1, the following holds:

∆rk = rk+1 − rk =
ω̄m,k

2
p′
(
1 + τ̄m,k

2

)
(3.36)

Hence,

∆rk =
ωk

2
A
(
1 + τ̄m,k

2

)
iA

(
1 + τ̄m,k

2

)∗
(3.37)

which is equivalent to

A
(
1 + τ̄m,k

2

)2★

=
2

ωk
∆pk. (3.38)

Eq. 3.38 can be solved by determining A (see Eq. A.7 and Eq. A.3.1 of the
Appendix) by :



38
Chapter 3. Shape Kinematic Control Soft-Continuum Manipulators:

PH-APF approach

A
(
1 + τ̄m,k

2

)
= ★

√
2

ω̄m,k
∆rkQ(ϕk) (3.39)

Recalling that quaternion polynomial A(ξ) has a free parameter θ (see
[Farouki 2002]), the real system is:

A
(
1 + τ̄m,k

2

)
Q(θ) = ★

√
2

ω̄m,k
∆rkQ(ϕk) (3.40)

Without loss of generalities, one can take θ = ϕ0 and redefine ϕk = ϕk − θ for
k = 1 · · · 4. Henceforth, an over-determined linear system is obtained and reads:

M̄


A0

A1

A2

A3

 =



★

√
2

ω̄5,0
∆r0

★

√
2

ω̄5,1
∆r1Q(ϕ1)

★

√
2

ω̄5,2
∆r2Q(ϕ2)

★

√
2

ω̄5,3
∆r3Q(ϕ3)

★

√
2

ω̄5,4
∆r4Q(ϕ4)


(3.41)

with 4 free parameters ϕ1, · · · , ϕ4 ∈ [−π, π]. M̄ defines the Bernstein-Vandermonde
matrix [Marco 2007]:

M̄ =


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2 ) B3
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2 ) B3

2(
1+τ5,0

2 ) B3
3(

1+τ5,0
2 )
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0(
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2 ) B3

3(
1+τ5,1

2 )

B3
0(

1+τ5,2
2 ) B3

1(
1+τ5,2

2 ) B3
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0(

1+τ5,4
2 ) B3

1(
1+τ5,4

2 ) B3
2(

1+τ5,4
2 ) B3
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1+τ5,4

2 )

 (3.42)

The linear system (Eq. 3.41) can be expressed as M̄x = q. This allows the least
square solution to be found (x̂ = (M̄T M̄)−1M̄T q) using the standard theory of
linear algebra. Note that M̄T M̄ is invertible since M̄ has a full rank.

The new Bézier control points pk used to describe the deformed shape are com-
puted as described in [Kim 2019a] by considering a degree reduction (see Eq. A.12)
as follows (Eq. 3.43):

p1 = p0 +
1

5
A0iA∗

0, p2 = p1 +
1

10
(A0iA∗

1 +A1iA∗
0),

p3 = p2 +
1

30
(A0iA∗

2 + 4A1iA∗
1 +A2iA∗

0),

p4 = p3 +
1

10
(A1iA∗

2 +A2iA∗
1), p5 = p4 +

1

5
(A2iA∗

2),

(3.43)

As one can see in the above development, multiple instances of a quintic PH curve
should be obtained. However this is a typical situation for a PH curve construction
problems. For a real physical system, it is suggested to deal with the one that
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exhibits the smallest bending potential energy (Eq. 3.28). The PH-FKM is thus
described by:

p(ξ) =

5∑
k=0

pk

(
5

k

)
(1− ξ)5−kξk. (3.44)

3.4 APF-based Shape Kinematic Control Theory

3.4.1 Control Law

The following control strategy is applied on the control points to drive the
MSCM to target with obstacles avoidance. A single soft robotic arm is represented
by a PH quintic curve with length L and is expressed in the form of the arc-length
parametrization p(ξ) : [0, 1] → R3. Such approximation is valid since the geometrical
dimensions of a particular design can be taken into account by the corresponding
potential field considered below. The initial point ps = p0 = p(0) is a position of the
mobile part of the MSCM. It is assumed that the position p0 as well as the curvature
of the soft manipulator can be controlled. Also, it is assumed for the shape control,
that the MSCM has a pure bending (the torsion τ(ξ) = 0).

Let T (ξ) = p′(ξ) be the unit tangent vector to the curve, then the curvature is

ω(ξ) = κ(ξ) = ∥T ′(ξ)∥ = ∥p′′(ξ)∥ =
1

R(ξ)
, (3.45)

where R(ξ) is the radius of the osculating circle to the curve p(ξ). It is assumed
that the curvature is bounded by a function κmax(ξ), as follows:

κ(ξ) ≤ κmax(ξ). (3.46)

This assumption describes the design constraints of the soft manipulator part of the
MSCM, having possibly variable thickness or stiffness (e.g. thicker at the base than
at the end) or constraints on the distributed control actions along the curve. Note
that, a real physical system allows a maximal curvature which can be interpreted
as the upper bound κmax, consistent with its design.

Let Φ(pk, pd;O) ≥ 0 be a potential function depending on the position of pk ∈ R3,
the control points of the curve p(h, t) and such that, pd ∈ R3 is the desired position
(attractor) and O ⊂ R3 is a set of obstacles to be avoided. In the case of the
MSCM, the potential field acts on the control points pk of the PH curve p(ξ, t),
instead of acting on all the curve points. It is assumed that the potential is made
up in two parts: one at the desired point which is Φ(pk, pd;O) = 0, where pf = pd
, and another at pf ̸= pd, where Φ(pk, pd;O) > 0 so that the positions of obstacles
represents the poles of the potential:

lim
p→O

Φ(pk, pd;O) = +∞. (3.47)

or at least Φ(pk, pd;O) for p ∈ O is big enough to guarantee that the arm never
touches the obstacles in real-life situations.
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Let us note that we allow the target position and the obstacles to move i.e. being
functions of time pd(t), O(t). Also the obstacles set may include the own manipulator
points to avoid self-intersections of the curve p(s) ∈ O(t) for all s ∈ [0, L].

First, consider that the displacement of the PH curve p(ξ, t) is described by the
kinematic relations:

∂p(ξ, t)

∂t
= v(ξ, t), (3.48)

where v(ξ, t) ∈ R3 is a velocity function of ξ at time t, and

∂p(ξ, t)

∂ξ
= T (ξ, t), (3.49)

where T (ξ, t) is an instant tangent unit vector to the curve representing manipulator.
It is clear that the best way moving to the target with desired speed vd > 0 that
can be done to avoid obstacles is to have the robot position p0(t) moving along the
minimum potential:

ṗ0(t) = −vd
▽pΦ(p0(t), pd;O)

∥▽pΦ(p0(t), pd;O)∥
. (3.50)

The manipulator curve is moved along the minimum potential line according to
the displacement T of control points from the point p0 to p5 as follows:

T (t) = − ▽pΦ(pk(t), pd;O)

∥▽pΦ(pk(t), pd;O)∥
. (3.51)

Thus Eq. 3.50 and Eq. 3.51, are the equations for the planning motion of the
manipulator.

Figure 3.4: Avoidance illustration for a MSCM subject to APF
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There may be two types of difficulties to implement this plan: 1. the minimum
potential line may have curvature exceeding maximum allowed curvature of the
manipulator, and 2. the end of the manipulator may have already located in the
vicinity of the target object that has to be handled.

In addition, feedback control is needed to make the planned motion stable. To
solve the first difficulty, an algorithm utilizing sliding-mode along the length of the
arm, is suggested. This allows to keep the minimum potential energy of the PH
curve p(ξ, t) representing the MSCM during its motion with respect to the real-time
implementation using the independent normalized variable ξ. So, the independent
variable in this algorithm equations is ξ not the time t.

Thus, we consider the following system of equations to describe the MSCM from
its control points, calculated in space configuration:

∂pk
∂ξ

= T,

∂T

∂ξ
= ω,

(3.52)

where the vector ω ∈ R3 is viewed as a control input which describes the total
bending of the curve. Thus, the sliding manifold can be expressed as follows:

σ = ∥▽pΦ∥T + ▽pΦ = 0. (3.53)

This equation represents a manifold in the system state space represented by Eq.
3.52. To make it sliding manifold, we can use the following bounded control of the
total bending of the curve PH:

ω = −κmax
σ

∥σ∥
= −κmax

∥▽pΦ∥T + ▽pΦ

∥∥▽pΦ∥T + ▽pΦ∥
. (3.54)

If the initial orientation of the MSCM is tangent to the gradient ▽pΦ(p0, pd;O) ,
then it means that the state system (3.52) is already on the manifold σ = 0 then the
sliding may continue along the variable ξ and therefore along the potential minimum
decent line.

To describe completely the system behavior, ω is replaced by its equivalent value
ωeq which norm is less than the maximum allowed curvature ∥ωeq∥ < κmax. In the
absence of sliding ω ̸= 0, the vector ω is defined by Eq. 3.54. Its magnitude is
exactly κmax(s), so the curvature is maximum then this piece of the MSCM lies
along the circle of minimum allowable radius.

3.4.2 Convergence and stability analysis

To analyze the sliding mode existence condition, let us differentiate σ as follows:

∂σ

∂ξ
= ∥▽pΦ∥

∂T

∂ξ
+Ψ = ∥▽pΦ∥ω +Ψ,
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where Ψ includes all other terms from differentiating σ with respect to ξ:

Ψ =
∂ ∥▽pΦ∥
∂ξ

T +
∂▽pΦ

∂ξ
,

using (3.54)
∂σ

∂ξ
= −∥▽pΦ∥κmax

σ

∥σ∥
+Ψ. (3.55)

If we consider a Lyapunov function V = σTσ = ∥σ∥2 , then

∂V

∂ξ
= −2[∥▽pΦ∥κmax

√
V + σTΨ].

knowing that:

|σTΨ| ≤ ∥σ∥∥Ψ∥ ⇔ −∥σ∥∥Ψ∥ ≤ σTΨ ≤ ∥σ∥∥Ψ∥.

Using the lower bound, we obtain:

∂V

∂ξ
≤ −2[∥▽pΦ∥κmax − ∥Ψ∥]

√
V < 0,

if
∥▽pΦ∥κmax > ∥Ψ∥. (3.56)

This guarantees the sliding mode existence [Drakunov 1992].

3.5 Experimental validations

3.5.1 Materials and Methods

1. Materials

Experiments are carried on Festo Robotino-XT robot (Fig. 3.5), a type of
MSCM which is made up of two parts: a mobile part named Robotino (omni-
drive mobile base robot) and the soft continuum manipulator part named Compact
Bionic Handling Assistant (CBHA). The backbone’s length is almost constant. The
Optitrack system is used for tracking the displacement of the two parts of the MSCM.
For this purpose, the Robotino-XT is equipped with markers on the CBHA, allowing
the online reconstruction of its posture, while tracking the collision-free path of the
whole MSCM.

The validation shape control scheme is described in Fig. 3.10. The implementa-
tion of the collision free path is divided into two processes : the simulation process
is to compute the MSCM required posture p(ξ, t) and the online process is to
validate the shape control of the MSCM, after the backbones posture reconstruction
from the Optitrack Pr(ξ, t).
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Figure 3.5: Robotino-XT in real environment

2. Methods

• Kinematic control of MSCM mobile base

A non-holonomic motion of the MSCM mobile base is considered (Fig. 3.6).

𝑮

Figure 3.6: Mobile base kinematics

The kinematics of the mobile base of the MSCM (Robotino) is described by the
couple (vd,Ωd) where vd are the longitudinal velocity and Ωd the yaw angular velocity
at the starting point control p0(t) = (x0(t), y0(t)) of the PH curve representative of
the soft manipulator (CBHA). Thus, the desired longitudinal velocity at point p0 is
calculated as follows:

vd =
√
ẋ20(t) + ẏ20(t) (3.57)

The tangent angle for the planar path of the mobile base is defined as follows:

θ0 = arctan 2(ẏ0(t), ẋ0(t)) (3.58)

The angular velocity of the MSCM mobile base is obtained by calculating the time
derivative of (3.58) as :
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Ωd(t) =
ẋ0(t)ÿ0(t)− ẏ0(t)ẍ0(t)

ẋ20(t) + ẏ20(t)
= vd(t)κ0(t) (3.59)

where κ0(t) (equation (3.29)) is the curvature of the path of the MSCM mobile base
at p0 (v0(t) ̸= 0).

• Offline Simulation Process

The considered APF formulation is given as follows:
Φrep(pk;O) =

1

2
krep(

1

ρ(pk, O)
− 1

ρ0(O)
)
2

O ∈ O,

Φatt(pk, pd) =
1

2
katt

(
ρg(pk, pd)

)2
,

Φ(pk, pd;O) = Φrep(pk;O) + Φatt(pk, pd),

(3.60)

where, ρ, ρg and ρ0 are respectively, distance from point pk to obstacle O, distance
from point pk to target pd and the operating range radius of the obstacle O. krep,
katt define scale positive coefficients. Φrep(pk;O) and Φatt(pk, pd) are respectively
repulsive potential field due to obstacle O and attractive potential because of the
attractor target pd. The considered parameters for this simulation are given in
TABLE 3.2.

Table 3.2: Offline process parameters

Parameters values

(katt, krep) (2, 2)

ρ0 50 mm

κmax 2.0 m−1

L 330 mm

Fig. 3.7 shows a 3D shape control of the MSCM, characterized by p(ξ, t), in
presence of three obstacles between the MSCM and the target. It shows the behavior
of the MSCM which is bending along its length to avoid the obstacle. It is noted
that the shape control allows p(ξ, t) to avoid obstacles with a minimum bending
configuration.

The sliding mode maintains the optimal bending (optimal placement of the con-
trol points) in the presence of the obstacles. However, a MSCM practical shape is
affected by the safety distance. A maximum distance can be observed ∆max (Fig.
3.4) between the curve and the control polygon. With that, the following holds to
guarantee the non-collision with obstacles:

ρ0 ≤
1

κmax
−∆max (3.61)

In Fig. 3.8, it can be observed that the sliding surface vector is vanishing along
the MSCM length through the control points. It ensures that the simulated MSCM
posture remains in its minimal energy configuration.
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Figure 3.7: 3D potential field with dynamic shape reconstruction
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(b) Real world experiments

Figure 3.8: Real world experiments

3.5.2 Results and discussions

For the experiments, an obstacle is placed between the 3D target point and the
robot. TABLE 3.3 describes the Robotino-XT experimental parameters. Like in the

Table 3.3: Real Parameters of RobotinoXT for Shape Reconstruction

CBHA Robotino
Manipulator Mobile base

Length L: 330 mm Velocity vd: 100 mm.s−1

Pressure range: 0− 2.5 bar Height: 320 mm

Total weight: 1020 g Total weight: 11 kg

simulation, the curve p(ξ, t) is reconstructed according to the directions ▽Φ based on
the minimum potential of the curve. This allows to place, in the optimal positions,
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the control points pk which drive the MSCM posture as observed in Fig. 3.7. The
experimental reconstruction of the MSCM shape from the Robotino-XT backbone,
is obtained after making the relation between the PH curve p(ξ, t) [Singh 2018b]
and the pressure distribution [Lakhal 2015], described by [Pi] (Fig. 3.10) for each
tube of the CBHA. Simultaneously, the planar components of ▽Φ(0, t) at ps (robot
base) allow computing a collision free path at ground with non-holonomic kinematic
motion (Fig. 3.10), where vd descibes the longitudinal velocity of the centre of mass
of the robot base and Ωd(t)=vd(t)κ0(t) describes its yaw velocity.

𝜌0 = 50 mm

𝜌0 = 35 mm

𝜌0 = 15 mm

(a) Without disturbances (b) With disturbances

Figure 3.9: Planar view of the collision-free path tracking of the MSCM

Fig. 3.9 shows the results of the experimental obstacle-free path in xy-planar
view. The obstacle avoidance concerns the whole MSCM. Around 10 seconds was
necessary to achieve the navigation. When the mobile part comes close to the
obstacle, it deviates its trajectory to avoid the collision. At the soft continuum
manipulator side, it can be observed in Fig. 3.9, how the bending is exhibited along
the soft structure to reach the 3D target while avoiding the obstacle. It is noticed
with the change of ρ0, that the MSCM stays away from the obstacle.

The proposed motion control method is a unified approach that allows achieving
obstacles avoidance at the robot base and its soft continuum manipulator, both
simultaneously. To check the tracking of the shape, a superposition of both shapes:
p(ξ, t) issued from the shape control during the simulation and Pr(ξ, t), the PH
quintic curve obtained from the OptiTrack, obtained during the online process, is
given in Fig. 3.13. This figure describes a sample of posture of the Robotino-XT
taken from 359 postures along the robot trajectory to reach the target while avoiding
the obstacles during the experiments.

According to Fig. 3.13a, the control point position along x-axis seems constant
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Figure 3.10: Shape kinematic control scheme of the Robotino-XT

(a) Reconstructed posture (b) Real world posture

Figure 3.11: 3D posture comparison during the obstacle avoidance

until around 6 sec. This is because within this period, the MSCM is moving more or
less in a straight way without any big changes in its dynamics (without obstacles),
as also described by the bending energy variation (Fig. 3.13b).

From around 6 seconds, a deviation is observed when approaching the obstacle.
This occurs at the curved path. A control occurs both at CBHA and Robotino
sides. The Fig. 3.12 illustrates the absolute mean Cartesian error, observed along
the MSCM shape during its obstacle-free motion. Note that the collision free path
was repeated during eight times with close outcomes. Based on that observations,
it is noted that the MSCM positions is kept constant in y and z directions.

As the implemented control is focused on the kinematics, the tracking observed
errors in the x direction can be due to the dynamics of the MSCM (Fig. 3.12a). In
addition, the soft structure dilation due to the properties of the material constitut-
ing the CBHA might have contributed to these errors, using a nonlinear pressure-
based control to compensate spatio-temporally disturbances. The maximum error
observed along the robot length (Fig. 3.12b) is ε = 19.6 mm (6% wrt to the manip-
ulator length) while the mean error of tip tracking is ε = 13.86 mm (4.2% wrt to
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Figure 3.12: Mean error of the collision-free path tracking

the manipulator length).
It is observed from Fig. 3.13b, a change in the shape, where the curvature varies

as well as the bending energy. This explains the observation of Fig. 3.13a, which
describes the variation of the control points pk, after obstacles detection.
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Figure 3.13: 3D posture comparison during the obstacle avoidance

Other approaches [Singh 2018b] [Sadati 2019] have been investigated to evaluate
the relevance of the results obtained. Table 3.4 summarizes the results of the quali-
tative and the quantitative analyses obtained after the experiments. The PH curve
modeling proposed by [Singh 2018b] gives an average error of 28.43 mm, higher than
that of the present contribution of about 16.35 mm. The length constraints omission
in [Singh 2018b] and the search for the optimal solution to obtain a shape recon-
struction consistent with the prescribed length might explain these errors regarding
the accuracy and the higher computation time. Also, the energy-based optimiza-
tion relies only on fixed values of two free parameters ϕ0, ϕ2, which is less flexible
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Table 3.4: Comparison of curve-based techniques for MSCM shape kinematics con-
trol

Modeling approach PH curves
[Singh 2018b]

Spline curves
[Sadati 2019]

PH curves
(proposal)

Optimization Minimum poten-
tial energy

No Minimum po-
tential energy

Length constraints No No Yes

Time cost (sec) 0.0853 0.50142 0.031433

MERS (mm) 28.43 14.61 16.35

MERS: Mean Error of Robot Shape

than the proposed approach, where a third free parameter ϕ1 allows a larger range
for the optimal solution. All these latter have probably contributed to the error
compared to the suggested method. In addition, the results showed that an average
error of 14.61 mm is exhibited using the technique suggested by [Sadati 2019]. This
error is smaller than the proposed reconstruction method. Indeed, this approach
is a point-by-point local shape reconstruction technique. It requires too many con-
trol points, all belonging to the curve to be reconstructed. Therefore, it does not
require any optimization technique based on curve energy or curve length. This
would explain its better accuracy compared to the present investigation, which is
a global reconstruction technique. However, its high computation time might be
due potentially to a large number of control points necessary to achieve a shape
reconstruction compatible with the length of the manipulator, which could be not
suitable for real-time control. The advantage of considering the length constraints
is found in the present study. It allows the uniqueness of the solution to the issues
stated above while reducing the modeling and control dimension. This latter might
be suitable for real-time control purposes.

However, it is worth noting that considering length constraints supposes a perfect
knowledge of the behavior of the robot material, in particular about its extension
(Hooke’s law, etc.). It can be sometimes hard to assess, especially in the case
of hyper-elastic materials, see Fig. 3.14. In addition, some Artificial Potential
Field-based obstacle avoidance formulations can suffer from a lack of convergence
guarantee for the obstacles’ special arrangements, such as a concave arrangement.
So, careful attention needs to be taken to the APF formulation for motion planning.
Curve energy-based optimization cannot solve that issue. Also, the curve fitting
process might have potentially contributed to some control errors. Indeed, the
accuracy of curve-based modeling is related to the spatial configuration’s step
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Figure 3.14: Estimated and measured MSCM length

3.6 Conclusion

In this chapter, a kinematic model-based control of the MSCM shape is pro-
posed in space configuration. It consists of applying an APF on the finite control
points of the PH parametric curve of the MSCM for obstacle avoidance and sliding
mode control for shape optimization. Thus, a PH quintic curve is formulated with
length constraints to consider the prescribed length and the variable curvature for
3D reconstruction of the MSCM. The PH curves are subject to APF and allow to
drive the posture of the MSCM in presence of obstacles. The applied Sliding Mode
control is used to keep the MSCM posture in its minimal bending energy during the
collision-free path. The algorithm of shape control was tested on a class of MSCM
called Robotino-XT. The results obtained show us the effectiveness of the proposed
approach as well as its limitations. For shape adaptability issues, the relationship
between the control points and the physical control inputs needs to be established
explicitly. This constitutes the main interest of the next investigation.
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4.1 Introduction

In the previous chapter, the shape kinematics using the quintic PH curves
with length constraints have been analysed. This has been used in the context of
an APF coupled with SMC for the CBHA motion planning with obstacles avoid-
ance. However, the control inputs were computed through learning-based methods
[Lakhal 2015]. In the following, dynamics model-based shape control of soft contin-
uum robots in the presence and absence of external efforts is discussed. For that,
the modeling based on PH curves with prescribed lengths is combined with Euler-
Bernoulli modeling to reconstruct the robot shapes and then calculate the actuator
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inputs considering the external interactions. Thus, a relationship between the actu-
ator inputs and the PH control points is obtained. With this, the actuator inputs
can be computed accordingly, and therefore, a real-time shape control of the soft
robots for various tasks becomes possible. The results of the proposed approach
are validated both numerically and experimentally using two classes of soft contin-
uum robots: FEAs describing a 2D soft finger robot, with a single and multiple
phalanges, and a 3D continuum manipulator (CBHA).

4.2 Actuation dynamics model

This section aims to model the FEAs dynamics in 3D, based on EB theory,
where a relationship between the curvature of the soft actuator can be established
with the actuator inputs. The idea is to adaptively control the shape of the FEAs in
presence of external efforts. The curvature can be constant or variable. In the case
of soft fingers, it implies the consideration of one or multiple actuators described by
phalanges, where each phalange is modeled by a constant curvature. Finally, the
PH curves are used for shape kinematics reconstruction of the FEAs, according to
the curvature, which also depends on the actuator inputs.

4.2.1 Actuation Modeling

The Euler-Bernoulli theory enables describing the influence of the external ef-
forts on a beam of soft actuators. In the case of FEAs, the dynamics of the bending
can be observed by varying the actuator inputs (air pressure) trapped inside the
chamber.
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Figure 4.1: FEA concept and sizing
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Considering the given FEAs concept of Fig. 4.1, the normal force generated by
the actuator input, namely air pressure, along the horizontal line of the actuator,
being at a distance h from the bottom layer, is given as follows:

dFI = (2rpin sin γ)dh, (4.1)

where pin, r, and γ denote respectively the actuator input of air pressure, the radius
of the cross section for the soft actuator, and the angle of an infinitesimal distance
located on the cross section. dF is the infinitesimal normal force acting on the cross
section due to the air pressure along the infinitesimal distance dh.

Assuming one controlled actuator input pin for a given actuator, following (4.1),
the bending moment Me (Fig. 4.2) can be expressed as a function of pin and a
geometric parameter Ψ:

Me =

∫
(h+ d)dF = Ψpin. (4.2)

However, the deviated bending issued from the combined action of end moments
(Fig. 4.1) should be considered for the 3D motion :

Me = [Mex Mey Mez]
T . (4.3)

From Fig. 4.1, the following is obtained:

Me = [MIx −MIIx −MIIIx MIIy −MIIIy MIIz −MIIIz ]
T . (4.4)
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Figure 4.2: 3D bending of FEA

4.2.2 Flexural stiffness modeling

The ability of FEAs to exhibit a given bending behavior depends on some of
their intrinsic properties that take into account both micro and macro structures,
called the flexural stiffness (EI). The microstructure is represented with E, the
elastic Young Modulus for material properties. The macro-structure is described by
I(s), representing the local static moment of inertia. For the particular case of a
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circular cross-section actuator (Iy0(s) = Ix0(s)), the local static moment of inertia
can be calculated using the Huygens-Steiner theorem as follows:

Ix(s) = Ix0(s) +As(s)dy
2, (4.5)

where Ix0(s) represents local quadratic moment of inertia relative to x0 in the y0z0-
frame. During the actuation, the flexural stiffness might increase because of the
additional stiffness induced by the compressed fluid pressure. In order to consider
this aspect, the following modeling has been considered [Wielgosz 2005] :

(EI)eqx = (E + pin)Ix(s). (4.6)

4.2.3 Euler-Bernoulli theory

In the following development, it is assumed that the soft finger length remains
constant. For modeling purposes, a soft finger can be viewed as a thin cantilever
3D beam. The FEAs is supposed to be subject to an end moment as stated in
[Mihael Brojan 2007]. Let us consider a thin cantilever beam of length L subjected
to a moment Me, which is applied at the free end of the beam, as shown in Fig. 4.2.

We denote s (0 ≤ s ≤ L) as the curvilinear coordinate along the axial line,
measured from the clamped end and p(s) its Cartesian position. Also, let us define
θ(s) and ϕ(s), respectively, the polar and the azimuthal positive angles (relative to x-
axis) of the tangent p′(s) to the neutral axis at point s (Fig. 4.2). In addition, let M ,
f denote the bending moment and the internal forces at the location s, respectively.
The external forces and moments are denoted by F and Mext, respectively. The
effects of gravitational actions on the structure are described with fg, while g denotes
the gravity.

The dynamics of the structure yields [Trivedi 2008a] :

dF (s) + f(s) = ρp̈(s), (4.7)

dM(s) + p′(s)× F (s) +Mext(s) = JΘ̈(s). (4.8)

where Θ(s) = [θ(s) ϕ(s) 0]T denotes the rotation angle given in polar form
J = diag(Jxs , Jys , Jzs) the quadratic moment of inertia, and ρ is the linear mass
distribution. The bending moment that acts at each point of the beam can also be
described thanks to EB approach:

κ(s) = [
Mxs(s)

(EI)eqxs

Mys(s)

(EI)eqys
]T , τ(s) =

Mzs(s)

(EI)eqzs
. (4.9)

κ(s) and τ(s) denote the local curvature and the local torsion of the FEAs, respec-
tively. However, the twisting motion will be neglected (τ=0) in the remaining of
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the proposal. The boundary conditions read:

p(s)|s=0 = 0,

[θ(s) ϕ(s)]s=0 = 0,

F (s)|s=L = Fe,

[θ′(s) ϕ′(s)]s=L = [
Mex

(EI)eqxs

Mey

(EI)eqys
].

(4.10)

The soft finger is subjected to a combined bending. The stretch and compression
can be neglected. With that, the hodograph p′(s) = (x′(s), y′(s), z′(s)) of p(s) (the
FEAs shape) meets with the following:

p′(s) = (cosϕ(s) sin θ(s), sinϕ(s) sin θ(s), cos θ(s)). (4.11)

According to Eq. 4.7 and Eq. 4.10, the static equilibrium (dF (s) + f(s) = 0) of
the structure yields:

F (s) = Fe − ρg(s− L)y. (4.12)

Considering that the distributed moment Mext(s) = 0, and substituting Eq. 4.11
and Eq. 4.12 into Eq. 4.8, the following is obtained:

θ′′(s) =
Fez sinϕ(s) sin θ(s)− (Fey − ρg(s− L)) cos θ(s)

(EI)eqxs
,

ϕ′′(s) =
Fex cos θ(s)− Fez cosϕ(s) sin θ(s)

(EI)eqys
,

(4.13)

with
(Fey − ρg(s− L)) cosϕ(s) sin θ(s) = sinϕ(s) sin θ(s)Fex . (4.14)

By considering FEAs with multiple control inputs, the procedure can be gener-
alized by introducing the convenient boundary conditions at the portion linkages.
In this research works, only two portions FEAs have been considered (see Fig. 4.3),
and the following holds:
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Figure 4.3: Two serial FEA geometry
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1. First phalange (0 ≤ s ≤ ζ1)

p1(s) =

∫ s

0
p′(ξ) dξ,

2. Second phalange (ζ1 ≤ s ≤ ζ2)

p2(s) =

∫ s

0
p′(ξ) dξ + p1(ζ1),

(4.15)

where the subscripts 1 and 2 stand for the first and second portion of the soft
actuator, respectively.

4.3 PH-EB based model for shape control

4.3.1 Forward Dynamics Modeling based on PH curves

The advantageous features of parametric PH curves are combined with the EB
model to control the FEA shape under external loads. This is to ease the modeling
of the FEAs shape. For this purpose, the Bézier control points of the PH curve,
representative of the FEAs shape, can be expressed as functions of the actuation
inputs [pin] and the external loads. Assume that pc and pf describe respectively
the clamped and the tip positions of the FEAs with dc and df , their respective
directions under actuation input (eg. pressure effort).
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Figure 4.4: PH virtual control points

From Eq. 4.13 and Eq. 4.15, the pose of the robot tip can be computed regarding
Eq. 4.10. Therefore, the following holds:

pc = (0, 0, 0), tc = (0, 0, 1)

pf = pf (pin), tf = df (pin).
(4.16)
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According to Eq. 4.16, Eq. 3.17- Eq. 3.24, the quaternions pre-image Cm, where
m = 0, 1, 2, can be computed relative to the dynamics control inputs [pin]. That is:

Cm = Am(pin), m = 1, 2, 3. (4.17)

The minimization of the potential bending energy of the FEAs through PH
formulation leads to five virtual control points that fully describe the related shape
dynamics subject to an actuation input vector [pin]:

p1 = p0 +
1

5
C0iC∗

0 , p2(pin) = p1 +
1

10
(C0iC∗

1 + C1iC∗
0),

p3(pin) = p2(pin) +
1

30
(C0iC∗

2 + 4C1iC∗
1 + C2iC∗

0), (4.18)

p4(pin) = p3(pin) +
1

10
(C1iC∗

2 + C2iC∗
1), p5(pin) = p4(pin) +

1

5
(C2iC∗

2),

with pf = p5 and pc = p0. The above control points pk (k = 1, · · · , 5), are all
termed relative to the actuation inputs [pin] (see Eq. 4.10 and section 3.2.3). The
shape of the soft structure is recovered with:

p(ξ, pin) =

5∑
k=0

pk(pin)

(
5

k

)
(1− ξ)5−kξk. (4.19)

4.3.2 Inverse Dynamics Modeling based on PH curves

To set the real actuating pressure that drives the shape of the soft actuator, one
needs to determine first the equivalent curvature κeq of the actuated finger portion.
Second, the corresponding control input pin thanks to EB dynamics modeling (See
Eq. 4.9).

Fig. 4.3 illustrates the kinematics of a 3 tubes-soft finger once actuated. The
curvature καeq in Eq. 4.9 should be taken as the mean curvature exhibited by the
considered portion of the structure. Note that the subscripts α = 1, 2 account for
the first and the second phalanges of the soft finger, respectively.

In order to meet this requirement, the mean curvature καeq of the desired shape,
described using the PH curve, can be evaluated as described by Eq. 4.23 using the
Darboux vector (Eq. 4.22).

The desired shape can be identified by knowing the control points rk
[Farouki 1994].

pd(ξ) =
5∑

k=0

pkd

(
5

k

)
(1− ξ)5−kξk. (4.20)

The computation of the required control input [pin] can be done by calculating the
desired local curvature κr(ξ) along the soft actuator. Since r(ξ) denotes the desired
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Figure 4.5: Local curvature illustration

posture, it can be written in the matrix form as [Singh 2018b]:

rd(ξ) =



1

ξ

ξ2

ξ3

ξ4

ξ5



T 

1 0 0 0 0 0

−5 5 0 0 0 0

10 −20 10 0 0 0

−10 30 −30 10 0 0

5 −20 30 −20 5 0

−1 5 −10 10 −5 1





pd0
pd1
pd2
pd3
pd4
pd5

 (4.21)

Then, the variable curvature (Eq. 3.29) of Fig. 4.5, can be calculated as follows :

ω(ξ) = κ(ξ)b(ξ) + τ(ξ)t(ξ), τ(ξ) = 0. (4.22)

Thus, the equivalent curvature κeq is derived according to Eq. 4.23. After that, the
equivalent curvature for each section of the soft finger is carried out with:

[κ1eq] =
1

l1

∫ ξ1

0
ω(ζ)dζ,

[κ2eq] =
1

l2

∫ ξ2

ξ1

ω(ζ)dζ,

(4.23)

where ξ1 and ξ2(ξ2 = 1) denote respectively the normalized curvilinear coordinates
on the length of the soft finger. In accordance with Eq. 4.9 and Eq. 4.2, in the
case of a 2-phalanges fingers (two actuated portions), it is possible to invert the
dynamics using the EB beam modeling as [Mbakop 2021b]:

[M2]− (
∑

P2in)I2(s)κ2eq = E2I2(s)κ2eq,

[M1] + [M2]− (
∑

P1in)I1(s)κ1eq = E1I1(s)κ1eq,
(4.24)
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where Iα(s) = diag(Iαx(s), Iαy(s), Iαz(s)), Eα(dim = 1) are related to the portion
α = 1, 2 of the soft actuator. Eq. 4.24 describes a system of six equations with
six unknowns, and thus allows us to define the actuation inputs of the robot corre-
sponding to a prescribed shape.

4.4 Materials and Methods

This section describes the materials and validation method for the developed
model used in dynamic shape control.

4.4.1 Materials

A single and a multiple actuators have been designed and manufactured. They
are made up of Agilus 30 soft material. Tensile tests using Instron (Mechanical
testing machine) have been carried out to get the material properties. The results
of these tests were fitted using Ansys 2019. The Yeoh hyperelastic model for in-
compressible materials has been used. See Fig. 4.6, Tab. 4.1 for description and
parameters.

Bending

Sensor

2-control inputs FEA

1-control input FEA

Markers

Figure 4.6: Experiments materials on 2D soft fingers

Table 4.1: 2D FEA parameters

FEA’s materials constants FEA geometrical features

C1=0.062 Mpa L0: 87 mm (single input)
ν=0.45 L1: 57 mm (1st phalange)
E=0.4 Mpa L2: 63 mm (2nd phalange)

In addition, 3D shape control experiments on CBHA (see Fig. 4.7 and Tab. 4.2
) have been performed.

The actuators were equipped with markers. During the experiments, these have
enabled the Optitrack acquisition system to capture shapes and displacements of
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Markers

Figure 4.7: CBHA continuum robot with its 6 actuator inputs

Table 4.2: CBHA model parameters

CBHA materials constant CBHA geometrical features

ρ=1015 kg.m−3 Backbone Length L: 330 mm
ν=0.45 L1: 185 mm (1st section)
E=1.1 Gpa L2: 145 mm (2nd section)

the actuators. The accuracy of the Optitrack system is approximately 0.34 mm.
The bending sensors (Flexpoint Sensor System) were also embedded at the bottom
of the in-extensible layer to assess the actuator shape in real-time. The real object
shape to be tracked is measured using a 3D-camera. The present approach has
been investigated in the case of a static object. Therefore, only one image capture
by the camera largely holds by following the protocols presented in section 4.4.2.
For more insight, the parameters used for the experiments are given in the table
4.3. The Festo Proportional air regulators (FESTO VPPM-6L-L-1-G18-0L6H-V1P)
have been employed for the air pressure control, while the Simulink Dspace has been
used for the real-time acquisition and control system.

Table 4.3: Experiment test bench parameters

Hardware Performances

Optitrack System Mean 3D error: 0.348 mm
Frequency: 120 FPS

Marker size (diameter): 6.4 mm

Dspace controler Frequency: 20 kHz

Air regulator Response time: 0.5 ms
Accuracy: 2 %

Bending sensors Repeatability error: 0.3◦

FPS: Frame Per Second
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4.4.2 Methods

This subsection deals with the inverse computation of the dynamics of the
flexible finger. The objective is to define the actuation inputs such that they can
control the overall shape in a non-contact case. The essential steps for the proposed
approach are discussed as follows:

Extraction of the target object contour: The object contour is extracted
for shape reconstruction of the soft finger, by computing the data images got from
the 3D camera. The data are split into 2 parts for parallel grasping positioning,
according to the geometry of the object.

Object shape extraction: A reference shape is identified using a PH control
polygon (See Fig. 4.4) since the poses of the endpoints of the grasping process are
known. This modeling enables adjustment of the control points poses for shape
adaptability or accuracy issues.

Curvature computation : After having identified the shape to be tracked,
the equivalent curvature as discussed by Eq. 4.23 is computed. This latter one is
varying depending on the control polygon configuration.

Control inputs setting : The calculation of the dynamic inputs is defined by
Eq. 4.24 for the studied classes of soft fingers. The input air pressure is converted
to an analog signal and is provided to the Festo air regulator using the Simulink
Dspace controller.

As described in the methodology, the validation scheme is given in Fig. 4.8.
After extracting the object shape to be gripped, the reference shape of the soft
gripper is obtained by PH modeling. Then, the geometrical features allowing to
have the complex shape are estimated. The inverse model is used to determine the
different control inputs to obtain the complex reference shape. Finally, these control
inputs are applied to the real system. A comparison of the real data with those from
the model simulation allows estimating the model deviations.
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Figure 4.8: PH and inverse EB Model validation scheme
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4.5 Results and discussions

The validation process consists of two main steps: In the first step, a simulation
analysis (Section 4.5.1) is performed where the outputs of the proposed PH-EB are
compared to the shape of the object to be tracked. In the second step, an online
analysis (Sections 4.5.2 and 4.5.3) yields the real-world experiments.

4.5.1 Numerical results of shape reconstruction

In the following, the shape reconstructions for two types of objects are pre-
sented; one with a constant curvature describing a ball (Fig. 4.9) and another with
a variable curvature (Fig. 4.10) describing a mango.
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Figure 4.9: Shape reconstruction of a basket-ball

In these figures, it is shown two soft fingers encapsulating the objects from each
side for shape reconstruction and grasping tasks. The red contour legend represents
the desired shape of the object extracted from the object contour. The blue curve
with its control points describes the reconstructed shape, from the PH modeling
allowing estimating by EB inverse dynamics, the corresponding desired actuation
inputs. The grasping process is made on the xy-plane.

On Fig. 4.9a, the data using one control input actuator are plotted. Fig. 4.9b
shows an accurate reconstructed shape (Blue legend) with two phalanges soft ac-
tuator. On Fig. 4.9a, the reconstruction of the object exhibits errors bigger than
those observed in Fig. 4.9b. The errors observed in Fig. 4.9a can be explained by
the complex shape geometry of the considered object. Indeed, a variable curvature
is induced along the length of the desired shape. This is following the Eq. 4.11,
where the actuation pressure input is computed using a constant curvature.

However, when experimenting with a constant curvature shape reconstruction
described by a ball, the reconstructed shape of the ball (90 mm of diameter) using
two phalanges appears less accurate compared to the case of one phalange, where
a single actuator is considered. This observation can be explained by the difference
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Figure 4.10: Shape reconstruction of a Mango

in the arc length between the desired shape and the reconstructed one. These
results show that for optimal shape reconstruction, it is necessary to find an optimal
distribution of actuation inputs along the length of the soft fingers.

4.5.2 Validation on 2D soft fingers

Experimental tests of the PH-EB model-based control have been carried out
on the soft fingers described previously. They have been compared to the ANSYS
numerical modeling and real truncated shapes (the right side) for the two studied
contours of objects (Ball, Mango). Fig. 4.11a describes a shape tracking experi-
ments with a single phalange. Only one set of data (the ones at the right side of
experiments) was chosen to investigate the shape tracking.
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Figure 4.11: Shape reconstruction with soft fingers

The Ansys Data analysis and the position of the Optitrack markers have also



64
Chapter 4. Dynamic Control of Soft-Continuum Manipulators:

PH-Euler Bernoulli approach

been described. The Cartesian errors are analyzed along the soft actuator length to
assess the pertinence of the results. A maximum error of ∆max=15 mm along the
FEAs is observed (at the tip) comparing to the desired shape. This error is greater
than the one given by the model relative to the experiments, where the maximum
reached is around 8 mm (9.2 % of the robot length). This value of ∆max confirms
the difficulties to meet the shape adaptation requirements using a single actuation
input (single phalange), as explained in 4.5.1. However, the value of εmax ≈ 8 mm
(9.2 % of the robot length) explains the error given by the PH-EB modeling relative
to the experiments, where the maximum reached is around 8 mm.
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Figure 4.12: Shape reconstruction with soft fingers

From Fig. 4.12b, one can note that the error between the desired shape and
the one reconstructed from PH-EB model has a maximum of ∆max ≈ 5 mm (4.2 %

of the robot length). Also, the error observed between the PH-EB model and the
experiments have a maximum value close to 5 mm. These values are smaller com-
pared to the analysis of 4.12a. It confirms the influence of using multiple actuation
inputs for accurate shape reconstruction. In addition ε exhibits a biggest value at
the tip, εmax ≈ 7 mm (5.83 % of the robot length).

In addition, the results show that the Ansys modeling and the proposed approach
have similar behavior even though Ansys modeling results appear more accurate.
However, some gaps exist between the real shape and the simulated shape. Some
dynamics aspect omission, using PH-EB model, such as shear forces, normal stresses
induced by the inflated pressure, and material properties uncertainties related to the
fitting process might probably lead to the errors observed. Overall, the results are
consistent. Also, it is worth noting that the accuracy of the shape measured by
the vision system depends on its accuracy. This latter can significantly affect the
experimental results.
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(a) Real soft continuum robot
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Figure 4.13: 3D CBHA Shape in free case

4.5.3 Validation on 3D CBHA continuum manipulator

For the 3D CBHA shape of Fig. 4.13a, a reference shape is tracked (red curve)
in a free case. The PH modeling (blue color) described in [Singh 2018b] makes a
shape kinematics reconstruction without considering the length of robot constraint.
By observing the experiment results, a mean position error between the 400 points
of the real robot shape and those given by the PH modeling is equal to 4.4 mm (1.5
% of the robot length). Using the PH-EB modeling (green color), which respects
the length constraint of the robot, the obtained mean error is about 2.3 mm (0.7 %

of the robot length).

Table 4.4: Comparison results in case of external load

Methods SME MTE Time cost

PH EB modeling 7.1 mm (2.4 %) 3.8 mm (1.26 %) 0.0004 s
PH modeling 12.3 mm (4.1 %) 11.2 mm (3.7 %) 0.00031 s

SME: Shape Mean Error, MTE: Mean Tip Error

Furthermore, external efforts on the robot (Fig. 4.14) have been investigated in
load cases by adding a mass of 200g at the tip of the robot. For the same desired
endpoint (tip point) as in the free case, a shape deformation occurs along the soft
continuum manipulator. This deformation is kinematically reproduced by the PH
modeling with fewer accuracy performances according to the desired endpoint. How-
ever, the PH-EB modeling allows calculating the optimal actuator inputs (pressures)
for accurate shape reconstruction and the desired endpoint tracking. Comparative
performances between the PH modeling reconstruction [Singh 2018b] and the PH-
EB modeling with adaptive reconstruction from actuator inputs are given in Table
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4.4. Fig. 4.14 presents the 3D shape kinematics while considering external load.
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Figure 4.14: CBHA Shape kinematics in case of external load

The results of the experiments have been analyzed and showed for PH modeling
reconstruction, indicating a mean error position for the shape of 12.3 mm (4.1 %

of the robot length) and of 11.2 mm (3.7 % of the robot length) for the tip point
tracking. After applying the PH-EB modeling, the mean error of the shape is about
7.1 mm (2.4 % of the robot length) and the tip tracking error 3.8 mm (1.26 % of
the robot length).

4.6 Conclusion

The inverse dynamic modeling for 2D and 3D shape reconstruction of soft con-
tinuum robots based on the PH-EB approach has been investigated. The proposed
modeling combines features of EB beam mechanics and those of PH parametric
curves with the macro and micro properties of the soft structure. EB beam me-
chanics can be coupled with PH quintic. This allowed identifying the relationship
between the desired actuator inputs and the position of the finite virtual control
points. These latter have been been studied in more detail for shape reconstruction
in the contact-free cases and external load cases. The results obtained show the con-
sistency and the relevance of the proposed approach to reconstruct complex-shaped
objects in 2D and 3D with different types of soft continuum robots. Moreover, the
developed approach allows implementing a form of enclosure grasping. In the next
chapter, this control approach is used for the integrated design of a bio-inspired soft
gripper for mushrooms harvesting.
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5.1 Introduction

The current soft gripping systems developed in the previous chapters, although
soft, can be limited because, in most of the cases, they do not have feedback in-
formation for the grasping control. However, the advantages of hand-picking lie
simultaneously in the shaped feedback for compliance and the force feedback con-
trol for target quality preserving. This chapter gathers together and applies of
the techniques analyzed in the previous chapters for the application of automated
mushroom harvesting. An integrated design of a soft agri-food gripper for mush-
room harvesting is described. The soft gripper is made up of three soft fingers
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based on the kinetic configuration of the human hand fingers during the harvest-
ing process. An APF approach discussed in chapter 3 is considered, to tackle the
shape kinematics control issues during the grasping. An adaptation to an attractive
potential field is used for the grasping task. This APF strategy is applied to the
control points of the PH-based , allowing the control of the soft fingers to realize a
form enclosure grasping. Also, a model-based inverse dynamics that uses EB beam
modeling in presence of external efforts [Mbakop 2021c], coupled to parametric PH
curves for the soft finger shape estimation is applied. This has enabled to address
the estimation of the actuator inputs, which are used to set the desired shape of
each soft finger for safe harvesting.

5.2 Gripper Design

The design of the soft gripper is inspired by human hand-picking during mush-
room harvesting. Thus, a set of bio-inspired soft human fingers placed in parallel
has been considered for the gripper design. The three soft fingers that often operate
are the thumb, the index, and the middle finger. Each finger is composed of two
phalanges. Their relative size and orientation allow a stable grasping motion.

1

23

4

(a) Agro-Food Gripper parts (b) Soft Finger Workspace

Figure 5.1: Agro-Food Gripper: Thumb (1), Middle-finger (2), Index (3), Palm (4).

5.2.1 Soft Actuator design

The configuration of a human hand during the harvesting process has been
adopted. For that purpose, the thumb, index, and middle finger were considered
regarding the size of an adult human hand. 70 mm has been considered for the
thumb length while 75 mm and 85 mm have been used for the index and the middle
finger respectively.

In order to ease the shape adaptability, the soft finger design has been based on
a ribbed morphology. The ribbed morphology [Rus 2015] has the advantage of large
bending. Each soft finger is made up of two phalanges actuated independently from
each other. This has the advantage of allowing to track two different curvatures
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Figure 5.2: Soft finger architecture: 1st phalange (A), 2nd phalange (B), 1st phalange
Air inlet (1), 2nd phalange Air inlet (2), Flexible air tube (3), Air chamber (4),
unextensible layer (5), Flexible layer (6).

within the same shape (Fig. 5.2). In addition, in order to better capture non-
constant curvature that might vary along with the shape of the mushrooms, the
soft finger air chamber geometry which influences the most the bending are varying
along the length of the soft actuator.

5.2.2 Material and Finite Elements Analysis

The finger has been designed with Dragon Skin 30 soft material. A general poly-
nomial form (Eq. 5.1) for incompressible material has been adopted to characterize
the material.

W =
3∑

i=1

Ci(I1 − 3)i, (5.1)

W denotes the strain-energy density function, Ci and Ii represent the material
constants. Ci were determined by fitting the model to uniaxial tensile test data
using Ansys Software fitting process. They are used to calculate Young modulus
based on the Yeoh hyperelastic material model:

2C1 = µ (5.2)

and obviously,

E = 2µ(1 + ν). (5.3)

The results of these tests were fitted using Ansys 2019 on the consistency of the Yeoh
hyperelastic model for incompressible materials. The Tab. 5.1 describes the FEAs
properties. After having modeled the material in Ansys 2019 R2, some simulations
have been carried out in order to assess the real-world behavior of the bio-inspired
gripper. The simulations have shown that the lift capabilities of the designed soft
gripper might go up to 280 mg, which has proved to be enough for mushrooms
harvesting while preserving their shape.
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Table 5.1: FEAs parameters

FEAs materials constants

C1=12.02e−2 Mpa C2=2.2204e−14 Mpa
ν=0.45 C3=1.8e−3 Mpa
E=0.7 Mpa ρ=1080 kg.m−3

5.2.3 Sensors and Embedded Electronics

The gripper designed is a proprioceptive soft gripper capable of shape adapt-
ability. This feature aims to preserve the shape of the mushrooms during their
harvesting.

1. Sensing

Each finger was equipped with a resistive bending sensor (Flexpoint Sensor
System, Draper, UT, USA) placed conveniently at the bottom layer. The Flexpoint
bending sensors are inextensible. According to the design, they have been placed
at the neutral axis bending plane of the finger (Fig. 5.3). The advantage of this
choice is that it allows capturing the effective bending of the finger part, which is
in touch with the object during the grasping process. Hence, the real-time shape
of the under-actuated finger can be measured and controlled for shape adaptation
purposes during mushroom harvesting. In addition, Force Sensing Resistor (FSR)
sensors were also used to evaluate gripping forces to avoid damaging the mushrooms
during harvesting. Several tests and simulations were carried out to determine their
optimal position in the in-extensible bottom layer (Fig. 5.3) of the soft actuators.
The major advantage of the latter is to allow the shape control while maintaining an
optimal contact value with the mushrooms without damaging them. The combined
results of all the above, allow the soft gripper to achieve a form-enclosure grasping,
suited for a safe mushrooms harvesting.

2. Controller

The control of the pressure to the FEAs is managed by a master system
which perfoms a proportional regulation of the main pressure line by means of Festo
proportional air regulators (FESTO VPPM-6L-L-1-G18-0L6H-V1P). The control
architecture consists of a master control unit, running on a PC and developed in
MATLAB/Simulink (Math-Works Inc., Natick, MA, USA), and a slave control unit
(Dspace controller). While the slave unit accomplishes low-level control operations
such as mastering the Proportional air regulators, reading the flex bend sensors
signals, the master unit computes the reference of the main line pressure. Therefore,
the computed value of the pressure is provided as reference to the pressure regulator
of the main pressure line.
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7

8

Figure 5.3: Integrated soft bionic gripper: FSR Interlinks electronics (7), Bend
sensor, FlexPoint sensor system inc. (8)

5.2.4 Manufacturing

The soft bionic actuators have been manufactured by the molding process. Each
of them is made up of two phalanges composed of a flexible layer and a rigid layer.

The manufacturing process has been structured in different steps: the first step
has consisted in the mold fabrication before the casting phase. The finger mold has
been designed using SolidWorks 2019 software and has been 3D-printed with ABS
materials. It is composed of two parts: the upper part for the flexible layer and
the lower part for the rigid layer. The flexible layer has been designed in such a
way that, it allows two air inlets (see Fig. 5.2) for the actuation: one for the first
phalange and the other for the second phalange.

After preparing the Dragon Skin 30 silicone material (Smooth-On, Inc), it was
cast for the molding of the flexible actuator layer (see Fig. 5.4a). The demolding
took place after about 16 hours of curing and the air tubes (blue and black) to
supply air to the first and second phalanges were placed appropriately (see Fig.
5.4b). Then the lower layer was also poured into its mold and the already cured soft
layer (with its air tubes) placed so that both layers polymerize (see Fig. 5.4c). This
is to ensure continuity of the material to minimize delamination. Similarly, after
approximately 16 hours of curing, the assembly was de-molded (see Fig. 5.4) and
the flexible in-extensible sensors were bonded to its bottom layer (Fig. 5.3) using
Sil-Poxy silicone adhesive (Smooth-On, Inc). This ensures that the bottom layer
does not stretch during actuation, despite its hyper-elastic characteristics.

The soft finger palm was 3D printed in 3 parts to allow the soft fingers with their
sensor wires and air tubes to be inserted without difficulty. Once the integrated
soft finger has been placed, the 3 parts of the palm was screwed to make a stable
assembly.
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(a) Flexible layer molding (b) Flexible layer with air tubes

(c) Bottom layer molding (d) Full soft actuator

Figure 5.4: Soft finger manufacturing process

5.3 Modeling

Our gripping strategy consists in extracting the shape of the object by image
processing, capturing this shape by PH curves, and reproducing these curves as well
as possible by driving the soft fingers. For this purpose, the modeling of the bio-
inspired gripper is required. To implement real-time shape control, a relationship
between the soft actuator shape and the actuator inputs has been established. The
shape kinematic modeling has been discussed in chapter 3. In chapter 4, a modeling
technique allowing the dynamics control inputs to be mapped to the shape of the
soft actuator has been explored.

5.3.1 Actuation Modeling

Each of the soft actuators of the soft bio-inspired gripper has been designed to
exhibit a planar bending motion in its corresponding workspace. Therefore, each
phalange of the finger is actuated by only one dynamics control. A rectangular
cross-section has been chosen for its simplicity during the manufacturing process.

In-extensible layer

dh

h
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Figure 5.5: FEAs sizing concept
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The details regarding the cross-section of the soft actuator are presented in Fig.
5.5. The infinitesimal normal force dF caused by the input pressure pin can be
computed as follows:

dF = (apin)dh (5.4)

If one control input pin is considered for a given portion, the bending moment Me

(Fig. 4.2) can be described as proportional to pin by a geometric constant Ψp:

M(s) =

∫
(h+ e)dF = Ψppin (5.5)

where:
Ψp = aHe(

1

2
He + e)pin. (5.6)

5.3.2 Shape dynamics modeling

The soft finger is made up of an in-extensible bottom layer. Thus, its length
L remains constant during the actuation. Also, the air pressure is used as the
actuation approach during the harvesting process. This induces an end moment Me

which causes the bending all along with the soft finger, as shown in Fig. 4.2.

(a) Soft finger under external interactions
A. Mushrooms

𝑠 + 𝑑𝑠

s

x

y

θ(s)

L

𝑀𝑒

𝐹(𝑠)
𝑠

𝑀(𝑠)

𝑓(𝑠)

𝑓(𝑠 + d𝑠)

𝑚(𝑠)

𝐹(𝐿)

(b) Planar bending of a soft finger

Figure 5.6: Soft finger bending modeling during harvesting process

The external interactions F , issued from the contact with the mushroom, might
influence the shape kinematics of the soft fingers. The self-weight, due to the dis-
tributed earth gravity is also taken into account. A single soft finger can be rep-
resented by a quintic PH curve with length L and is expressed in the form of the
arc-length parametrization p(s) : [0, L] → R3, see chapter 3. During the harvesting,
a bending angle is observed. That is θ(s), the angle between the positive x-axis and
the tangent to the neutral axis at point s (Fig. 5.6b).

Without loss of generalities, the planar dynamics of the structure can be de-
scribed with : {

dF (s) + f(s) = ρp̈(s),

dM(s) + p′(s)× F (s) +m(s) = Jθ̈(s).
(5.7)
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where all the equation terms have been defined in 4.2.3. The following is the behavior
law of the each soft finger during the harvesting process: x′(s) = cos θ(s), y′(s) = sin θ(s),

θ′′(s) =
(fey − ρg(s− L)) sin θ(s)− fex cos θ(s)

(EI)
.

(5.8)

and the boundary conditions read:
p(s)|s=0 = 0,

θ(s)|s=0 = 0, θ′(s)|s=L =
Mex

(EI)eqxs
,

F (s)|s=L = Fe.

(5.9)

1. Soft finger forward dynamics

A Reduced-Order-Model (ROM) based on quintic PH curve is used to con-
trol each soft actuator. This allows mapping the finger shapes to the actuation
inputs for a compliant grasping process.

The forward dynamics of each of the gripper soft actuator is to compute their
control points pk,(k = 1 · · · 5), with respect to the dynamic control inputs. This is
to reconstruct the shape of the soft actuator accordingly. As it has been discussed in
chapter 4, the boundaries conditions of the PH-based kinematics is consistent with:

pc = (0, 0) dc = (1, 0)

pf = pf (pin), df = df (pin).
(5.10)
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Figure 5.7: PH virtual control points

The control polygon Λ5(p) = {p0 · · · p5},is termed relative to the input pressure
[pin] (see Eq. 5.9) as follows:

p1 = p0 +
1

5
C0iC∗

0 , p2 = p1 +
1

10
(C0iC∗

1 + C1iC∗
0),

p3 = p2 +
1

30
(C0iC∗

2 + 4C1iC∗
1 + C2iC∗

0),

p4 = p3 +
1

10
(C1iC∗

2 +A2iC∗
1), p5 = p4 +

1

5
(C2iC∗

2),

(5.11)
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where Cm = Am(pin), m = 0, 1, 2, represent the quaternion pre-image, all related
to end points pose interpolation (position and direction) and the prescribed length
of the soft actuator. The shape of the soft structure is thus reconstructed with:

p(ξ, pin) =
5∑

k=0

pk(pin)

(
5

k

)
(1− ξ)5−kξk (5.12)

2. Soft finger inverse dynamics

EB modeling approach (see Eq. 4.9) is used to map the dynamic control
inputs in the configuration space of each of the soft actuators as suggested in chapter
4. The desired shape r(ξ) is identified with the knowledge of the desired control
polygon Λn(r) = {r0...rn} [Farouki 1994] issued from the shape of the mushroom
hat to be grasped.

r(ξ) =
5∑

k=0

rk

(
5

k

)
(1− ξ)5−kξk (5.13)

The local curvature along the length of the soft structure holds with:

κ(ξ) =
|r′(ξ)× r(ξ)′′|

|r′(ξ)|3
, (5.14)

and the equivalent curvatures κ1,2eq of each phalange of the soft finger read:

κ1eq =
[ 1
l1

∫ ζ1

0
κ(ξ)dξ

]
κ2eq =

[ 1
l2

∫ ζ2

ζ1

κ(ξ)dξ
] (5.15)

Also, ζ1 and ζ2(ζ2 = 1) denote respectively the normalized curvilinear coordinates
on the length of the first and the second portion of the soft finger. The following
equation allows mapping the dynamic control inputs in the configuration space of
each soft finger.

P2in =
E2I2Ψp

−1
2

1− I2κ2eqΨp
−1
2
κ2eq,

P1in =

[
E1I1κ1eq −

E2I2
1− I2κ2eqΨp

−1
2
κ2eq

]
Ψp

−1
1

1− I1κ1eqΨp
−1
1

(5.16)

The parameters (E1, I1,Ψp1) and (E2, I2,Ψp2) are related to the first and the second
portion of the soft finger respectively.

5.4 Soft gripper Control

The proposed control aims to allow a form enclosure gripping during the har-
vesting process while reducing the control dimension. The bio-inspired soft gripper
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can be described by a parametric PH curve p(ξ) : [0, 1] → R3, where ξ is a normalized
curvilinear coordinate along with the soft finger. The mushrooms hat boundaries
can be specified by the topological manifold C (Fig. 5.8). The control is applied
to the control points (rather than to all points) of the curve so that the soft finger
adapts to the shape of the mushroom’s hat for safe grasping.

C

𝑝𝑑𝑘

𝑝𝑘

𝑻(𝝃)

𝜉

𝑹(𝝃)

𝑝(𝜉)

One Finger

Figure 5.8: Grasping control illustration in 2D

With this approach, the target (the topological manifold C representing the
mushroom’s hat) is a set of points. In this application, the contours of the mush-
room cap to be grasped while respecting their shape, are modeled by a repulsive and
attractive potential field, simultaneously. The idea of the repulsive potential is to
allow the soft fingers to conveniently approach the physical contour while avoiding
the collision. Then, the attractive potential field is used to allow the soft actuators
to grasp effectively while adapting to the shape at the gripping contact. The cur-
vature of the soft finger is assumed to be controlled and the twisting motion is not
considered.

κ(ξ) ≤ κmax(ξ). (5.17)

The assumption (5.17) describes the design constraints of the soft actuators, and
the upper-bound κmax specify the maximal curvature exhibited by the mushroom
hats.

Define by Φ(pk, pdk ,Ok) ≥ 0, the potential function depending on the position
of pk ∈ R3, the control points of the curve p(ξ, t) representing the soft finger.

pdk ∈ R3 is one desired position to reach (attractor) according to the location
on the soft finger. Ok ⊂ R3 is a set of obstacles to be avoided which includes the
object boundaries C .

The proposed APF strategy is applied on the control points pk of the PH curve
p(ξ, t), rather than all the curve points. The same algorithm used in chapter 3, is
implemented except with some minor updates. The updates are made with regard
to the target which is defined as a set {pdk} rather than a single point.

It is made up two parts:

• Φ(pk, pdk ,Ok) = 0 is the attractive part located at one desired point where
pk = pdk
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• Φ(pk, pdk ,Ok) > 0 is the repulsive part of the potential such that Ok : {∀p ∈
Λn(pd)\pdk , limpk→Ok

Φ(pk, pdk ,Ok) = +∞}.

The system behavior, namely the curvature κ as well as the proof of stability of
the updated algorithm have been largely discussed in chapter 3.

5.5 Materials and Method

The experiments carried out in the frame of this research work were established
with the help of some dedicated materials and very precise procedures.

5.5.1 Materials

The UR10, a 6-DoFs collaborative manipulator from Universal Robots Com-
pany, has been used to place the soft gripper at a required location. To this, the
OnRobot Eyes vision system was used to identify the pose of the mushrooms. It
consists of a stereo camera fixed to the Tool Center Point (TCP) of the manipulator,
the control unit connected to the manipulator controller, and a PC through an Eth-
ernet port. The system has build-in programs to provide the center point positions

Figure 5.9: Harvesting scene

of registered workpieces with different shapes and colors in the manipulator base
frame.

The Festo Proportional air regulators (FESTO VPPM-6L-L-1-G18-0L6H-V1P)
have been employed for the air pressure control, while the Simulink Dspace has been
used for the real-time acquisition. All the process has been performed using a PC
Intel® CORE™ i5-8250U @1.60GHz 180GHz.

For more insight, the parameters used for the experiments are given in the table
5.2.
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Table 5.2: Hardware characteristics

Hardware Performances

Dspace controler Frequency: 20 kHz

Air controller
Response time: 0.5 ms

Repeatability: 0.5 %

Resolution: 0.06 bar

Bending sensors Repeatability : 0.3◦

FSR
Repeatability: 0.2%

Response time: ≤ 2 s

OnRobot Eyesvision system
Typical error: 0.6596 mm

Accuracy: 2 mm
Processing time: 0.5 s

5.5.2 Methods

Two main essential steps for the proposed approach have been considered: im-
age processing and actuation control.

1. Image processing

The automatic detection of a mature mushroom is made by vision-based com-
puter processing. This allows the contouring of the mushroom hat and the detection
of the pose of its center point. Once the center point is obtained, the soft gripper
can be guided by the UR10 to reach the required position of the detected mush-
room. Based on the harvesting working field as shown in Fig. 5.9, the OnRobot
Eyes detection program provides the contour and center of each detected mature
mushroom. This latter is then used to compute the potential field (Fig. 5.12a)
that will guide the soft gripper for the form enclosure grasping. Fig. 5.10 shows
an example of detection results. The coordinate of each center point in the frame
of the manipulator base will be provided to the control unit of the manipulator so
that it can guide the soft gripper to the positions of mature mushrooms one after
another. Once the mushroom’s hats contour has been extracted, a reference shape
is identified using PH control polygon (See Fig. 5.7). This latter allows specifying
the required curvatures for each phalange of the soft fingers as discussed in Eq. 5.15.

2. Actuation control

With the extracted mushrooms contour, the equivalent curvature can be com-
puted according to Eq. 5.15 after having identified the desired control polygon
{pdk} as shown in Fig. 5.8. The dynamic inputs are set by Eq. 5.16. The input air
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Figure 5.10: Mushroom detection

pressure is converted to an analog signal and is provided to the proportional air reg-
ulator using the Simulink Dspace controller. Once the soft finger has been actuated,
the force sensors allow evaluating the contact as well as the sliding motion at the
contact. An adaptative force value is also provided and the air is supplied until the
reference value is reached. This adaptative value relies on the absence of the sliding
at the contact with the mushroom’s hats. If sliding occurs, then the gripping forces
become unstable while decreasing. The control system tries to overcome the sliding
by supplying pressure until a stable behavior of the measured forces is reached.

Figure 5.11: Finger control scheme

5.6 Results and discussions

The validation process consists of two main steps: in the first step, a simulation
analysis (Section 5.6.1) is performed. In the second step, an online analysis is
discussed (Section 5.6.2) with the real-world experiments.

5.6.1 Numerical results

The considered APF formulation is given as follows:
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Φ(pk, pdk ;O) = ∥ pdk − pk∥
5∑

j ̸=k

1

∥ pdj − pk∥
, pdj ∈ O (5.18)

Fig. 5.12 is an illustration of the proposed soft gripper modeling concept using
the APF (5.18) formulation. In the latter, the soft gripper approaches a target food
(green caption) while the others (red caption), have been included in the O obstacle
set (Fig. 5.12a).
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Figure 5.12: Grasping modeling approach

The minimum potential energy of the soft fingers, represented by curves, is taken
into account by the PH formulation. The SMC (Fig. 5.12) is applied to the control
points. This enables to guarantee the shape kinematics requirements for the real
physical system while approaching the target considering the minimum potential.
The control polygon is then defined accordingly on the consistency of the potential
energy minimization requirements.

5.6.2 Experimental validation

The experiments have been for the harvesting of various shapes of mushrooms
from several poses. The curvature given by the image processing computation is set
as the reference value and is tracked by the soft finger. The quantitative analysis of
a grasping case is discussed in Fig. 5.14 and Fig. 5.15a.

In Fig. 5.14a, the reference value of the curvature, which has been computed
by the imaging system, is tracked by the soft fingers. To assess the quality of the
curvature tracking control during the grasping, the real-time values given by the
bending sensors have been plotted. The analyses of the results show that, after
reaching the steady state, the tracking error relative to the reference curvature
remains at the neighbourhood of zero (Fig. 5.15b).

However, the viscous properties of the material, which induce a certain relaxation
with time can explain the efforts variations during the grasping after 5sec. This is
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Figure 5.13: Mushroom harvesting illustration

0 5 10 15 20
Times (sec)

-1

0

1

2

3

4

5

6

C
u

r
v

a
tu

r
e
 

 (
m

-1
)

Middle Finger

Thumb

Index

Desired value

(a) Mushroom curvature tracking

0 5 10
Times (sec)

0

0.2

0.4

0.6

0.8

F
o

r
c
e
 (

N
)

Middle finger

Thumb

Index

(b) Measured grasping force

Figure 5.14: Grasping measurements

following the behavior of the forces measured by the sensors in Fig. 5.14b, where the
values at the steady-state seem to decrease. The time-dependent viscous properties
lead to an internal energy loss after structure relaxation. This can be compensated
by adaptive control of the air pressure inputs.

External disturbances have been applied on the soft finger and discussed in Fig.
5.16. This was to assess the robustness of the grasping task. In this case, the
physical contact disturbances are applied on the mushrooms (Fig. 5.16a) and lead
to an increase of the air pressure inputs. The sliding phenomena that occur at the
contact might explain this behavior. This observation is described in Fig. 5.16b
where the contact forces are higher compared to Fig. 5.14b. This proves that the
system is trying to overcome the kinematics disturbances using a permanent air
pressure control to maintain the compliant contact with the mushroom. However,
the unstable behavior of the forces measured at each of the fingers would probably
have been caused by slippage that induces a significant loss of the normal force read
by the sensors.
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(a) Mushroom grasping case
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Figure 5.15: Mushroom soft grasping illustration
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Figure 5.16: Grasping performances under external disturbances

Some limitations were reported during the experiments and certainly led to some
of the errors observed in the present investigation. First, the camera is subject to oc-
clusion during the grasping process and therefore cannot update information about
the shape of the food being grasped. This may sometimes not be appropriate for
soft foods such as mushrooms that may deform under external interactions. A
shape model-based observer could solve this problem by updating the shape model
in real-time. As already mentioned in Chapter 3, most of the APF-based trajectory
planning suffers from a lack of convergence guarantee for special obstacle arrange-
ments, e.g., a concave arrangement. Thus, the APF formulation used for control
must be carefully considered. Finally, for an efficient form enclosure grasping, it
is necessary to find an optimal distribution of actuation inputs along the length of
the soft fingers to solve the problem related to the difference in arc length between
the shape to be tracked and the soft fingers. It can be noted that some errors exist
between the values obtained by the computation of the image processing and the
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values read by the sensors. Several causes can justify these errors. Indeed, the dif-
ference in the arc length between the desired shape and soft finger might potentially
explain the curvature tracking error. However, it can be observed that the accuracy
is increasing with the size of the mushrooms hats to be grasped. This is consistent
with the fact that, for an accurate shape conformation, the arc length of mushroom
boundaries should be considered for the distribution of actuation inputs along the
length of the soft fingers. Also, some errors might be induced from the material
characterization. First, the elastic young modulus E of the material has been ob-
tained from the fitting process, knowing the general fitting process error. Second,
the interaction with the mushrooms has probably influenced the soft finger shape
during grasping the process, and therefore the related curvature. All these latter, in
addition to some neglected behaviors (shear force, inflated air dynamics, non-linear
inertia moment, etc.) might have potentially contributed to errors observed.

5.7 Conclusion

In this chapter, an integrated design of a soft gripper for mushroom harvest-
ing has been investigated. The proposed gripper is a bio-inspired concept, which
respects the most commonly used hand grasping strategy (thumb, middle finger,
and index finger). A kinematic shape controller based on APF motion planning
and that relies on sliding mode, was proposed to address the problem related to the
form enclosure grasping, which is more secure than the force enclosure grasping. A
ROM that uses PH-based modeling techniques was considered. This allowed low-
order kinematic modeling of the shape of the continuum soft fingers. Then, the EB
theory was applied to estimate the dynamic inputs leading to the desired PH shape.
The proposed soft gripper was found to be effective in harvesting the mushrooms
and kept them safe due to the embedded sensing feedback of the contact force. The
adaptive tracking of the targets and its adaptive grasping are both issues to be in-
vestigated in future works in the framework of mushroom harvesting. For the soft
finger control, finding an optimal distribution of actuation inputs along the length
of the soft fingers in order to solve the problem related to the difference in arc length
between the shape to be tracked and the soft fingers is also a future consideration.
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Conclusion and prospective work
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6.1 Summary of the contributions

In the present Ph.D. work, an integrated approach for the shape dynamic con-
trol of Mobile Soft-Continuum Manipulators (MSCM) has been investigated. The
issue raised in the research work is related to the control of a very high order kine-
matic chain, due to the very large number of degrees of freedom (DoFs) exhibited by
the Mobile Soft-Continuum Manipulators (MSCM). To reach this objective, first,
a Pythagorean Hodograph curve has been used to reduce the order of the Mobile
Soft-Continuum Manipulators (MSCM) kinematic while keeping the spatial config-
uration of its shape. Then, to manage the Mobile Soft-Continuum Manipulators
(MSCM) trajectory planning in unstructured environments, a Artificial Potential
Field (APF)-based algorithm is applied in the space configuration, repulsive in case
of obstacles and attractive in case of target encapsulation. To maintain the shape of
the Mobile Soft-Continuum Manipulators (MSCM) stable, a Sliding Mode Control
(SMC) in the space configuration is designed and applied to the finite control points
of its representative Pythagorean Hodograph (PH) curve. Finally, the shape of the
Mobile Soft-Continuum Manipulators (MSCM) is dynamically controlled through
physical inputs estimated from Euler-Bernoulli (EB). The integrated approach has
been experimented on a class of soft grippers for agricultural harvesting and on a
class Mobile Soft-Continuum Manipulators (MSCM) robots for autonomous navi-
gation with obstacles avoidance. In this last chapter, a summary of the research
results is highlighted and prospective works are listed.
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6.2 General Conclusions

In light of all the above, the scientific literature related to technologies and
the control of soft robots was first developed, from which the main advantages
of these technologies in terms of better adaptability to the constraints imposed
by external environments have been highlighted. It has been deduced from this
review of the literature that the Reduced-Order-Model (ROM) of a Mobile Soft-
Continuum Manipulators (MSCM) makes it possible to reconstruct its kinematic and
dynamic behaviors while guaranteeing the tracking precision and the implementation
in real-time. Several promising research studies have discussed Reduced-Order-
Model (ROM)-based models. However, the relation between the Reduced-Order-
Model (ROM) and the physical inputs of the soft robot is not established. This
relation is necessary for the dynamic control of its shape. For this reason, the main
results of this research work are focused on:

• Model Order Reduction of an Mobile Soft-Continuum Manipulators (MSCM)
model by means of a parametric Pythagorean hodograph (Pythagorean Hodo-
graph (PH)) curve, constrained by the curve length,

• Motion planning of an Mobile Soft-Continuum Manipulators (MSCM) through
a potential field Artificial Potential Field (APF),

• Non-linear kinematic control of the shape of an Mobile Soft-Continuum Ma-
nipulators (MSCM), based on Sliding Mode Control (SMC) and applied to the
control points of the Pythagorean Hodograph (PH) curve through a potential
field,

• Controllable physical inputs (estimated from the curvature of the Pythagorean
Hodograph (PH) curve) according to the type of soft robot, based on the Euler
Bernoulli theory,

• Validation of the integrated approach for the dynamic control of an Mobile
Soft-Continuum Manipulators (MSCM), applied to a soft bio-inspired gripper
for handling tasks and also on mobile and bio-inspired elephant trunk for
obstacle avoidance.

The Reduced-Order-Model (ROM) kinematic modeling of the Mobile Soft-
Continuum Manipulators (MSCM) has been realized by using Pythagorean Hodo-
graph (PH) curves. To respect the work-space boundaries, a new formulation is
proposed, taking into consideration the actual length of the Mobile Soft-Continuum
Manipulators (MSCM) as an input parameter. The inverse Reduced-Order-Model
(ROM) kinematic modeling has been discussed and has enabled us to faithfully de-
scribe the shape kinematics of the Mobile Soft-Continuum Manipulators (MSCM),
by computing a finite set of Bézier control points. Hence, the quintic Pythagorean
Hodograph (PH) curve, composed of five Bézier control points, with prescribed
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length has been considered for the shape kinematics modeling of the Mobile Soft-
Continuum Manipulators (MSCM). However, the related Bézier control polygon
doesn’t allow independent motions of its control points while preserving Pythagorean
Hodograph (PH) properties. This was found to be unsuitable in the case where some
adjustments of the posture are required from the control points. To tackle this is-
sue, a rectified control polygon that relies on Gauss-Lobatto quadrature has been
explored. However, the first non-trivial case has been proved to occur for a septic
Pythagorean Hodograph (PH) curve. Parallel to this, the rectifying control polygon
cannot define itself the shape kinematics. Thus, the degree elevation process has
been used and applied to the quintic Pythagorean Hodograph (PH) curve describing
the Mobile Soft-Continuum Manipulators (MSCM). This has allowed mapping the
Gauss-Lobatto control polygon to the Bézier control polygon and vice-versa. A local
motion of the Bézier control polygon has then been made feasible without any loss of
generality regarding its Pythagorean Hodograph (PH) properties. Henceforth, the
Forward Kinematics Modeling (FKM) of the Mobile Soft-Continuum Manipulators
(MSCM) could be achieved accordingly. Experimental analysis on two classes of
Mobile Soft-Continuum Manipulators (MSCM) (Robotino-XT and soft finger) have
been discussed and compared with other kinematics modeling approaches often used
in the literature. A balance has been highlighted particularly regarding the energy
optimization, the time cost, until five times smaller compared to other Reduced-
Order-Model (ROM) models, and the tracking accuracy smaller than 5% with the
robot arc length, that such an approach can offer. However, some limitations have
been claimed regarding length constraints which suppose a perfect knowledge of the
behavior of the robot material in particular about its extension, in terms of param-
eter uncertainties (e.g. Hooke’s parameter, etc.). This can be sometimes hard to
assess especially in the case of hyper-elastic materials.

Furthermore, a motion planning-based control technique applied to Pythagorean
Hodograph (PH) parametric curves, has been investigated to address the kinematics
shape control. The Artificial Potential Field (APF) approach has been chosen for
its feature, related to the fast-time convergence over other existing motion planning
approaches. This motion planning has been applied to the control points rather
than all the curves. The non-linear control Sliding Mode Control (SMC) is then
applied in the space configuration and has allowed keeping the curve in its optimal
bending energy configuration. The idea of the curve shape control algorithm is
to ensure that the tangent vector to the curve points, remains in the direction of
the decreasing potential which is opposite to the gradient of the potential. The
normalized curvilinear coordinate along the Mobile Soft-Continuum Manipulators
(MSCM) is defined as the independent variable for the Sliding Mode Control (SMC).
The latter has appeared to be one of the novelties of the proposed research works
comparing to existing Sliding Mode Control (SMC) approaches where the time is
defined rather as the independent variable. The stability and the convergence of
the proposed control law have been rigorously proved by the standard technique
using the quadratic Lyapunov function. The robustness of the control approach
under dynamic space-time disturbances has been evaluated through two types of
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Mobile Soft-Continuum Manipulators (MSCM): Robotino-XT (mobile bio-inspired
elephant trunk) and a three-fingers bio-inspired soft gripper. Although its real-time
applications for kinematics shape control, some Artificial Potential Field (APF)-
based obstacle avoidance formulation can suffer from a lack of convergence guarantee
for special arrangements of the obstacles, such as a concave arrangement.

With the end to meet physically the shape requirements issued from the motion
planning, the dynamic modeling and control using Euler-Bernoulli (EB) have also
been addressed to compute the physical control inputs of the Mobile Soft-Continuum
Manipulators (MSCM) to map a prescribed shape configuration. Therefore, the
forward dynamic modeling has been obtained, making the relationship between the
curvature of the Pythagorean Hodograph (PH) curve and the physical inputs of
Mobile Soft-Continuum Manipulators (MSCM) such as the pressure effort. This
has enabled to control the Mobile Soft-Continuum Manipulators (MSCM) shape
from an optimal and finite number of physical actuation inputs. However, inverting
the dynamics appeared to be strongly required to drive the physical actuation to
map a predefined posture. To this end, the Pythagorean Hodograph (PH)-based
inverse dynamic approach has been analyzed and has yielded the physical control
inputs to be specified according to the spatial configuration of the Bézier control
polygon.

Experiments have been carried out on the same types of Mobile Soft-Continuum
Manipulators (MSCM) under external disturbances. The obtained results have
shown that the estimated physical control inputs can drive the kinematics of the
Mobile Soft-Continuum Manipulators (MSCM) shape to be consistent with the pre-
scribed control polygon. It is based on the estimation of the soft actuation status
from their representative parametric curve Pythagorean Hodograph (PH). Compar-
ison with other dynamic models of soft manipulators based on polynomial curves
has been realized. The time cost and the accuracy obtained have demonstrated
the interest of estimating the physical control inputs of the Mobile Soft-Continuum
Manipulators (MSCM) from the Pythagorean Hodograph (PH) control points’ po-
sition.

The integrated approach for shape dynamic control has been tested on a new
design of a bio-inspired soft gripper, composed of three fingers. The latter has been
used for mushrooms harvesting. The main issue solved is related to form-enclosure
grasping, which requires shape adaptation with regard to the soft finger during the
grasping process. The shape control strategy has proved to be efficient for real-time
mushroom grasping in an unstructured environment.

6.3 Prospective Works

6.3.1 AI techniques for intrinsic parameter estimation

In the framework of the present research work, the second moment of inertia
I has been supposed to be known and was taken as a constant. Also, it has been
assumed that the soft robot material exhibits a perfect elastic behavior, and the
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related Young modulus E has thus been taken constant as well as its length during
the actuation process. This has lead to approach the dynamics of the soft structure
with Euler-Bernoulli (EB) modeling techniques which do not take into consideration
the stretch and the compression developed under actuation. However, it appears
that one of the major errors observed comparing to real-world experiments and the
Ansys multiphysics modeling is related to the influence of the physical control in-
puts (actuation) on the macro-structure of the soft manipulator. First, this includes
the effects induced by the shear and tangent efforts on the geometry, and even on
the stiffness of the soft structure. These effects occurred during the actuation and
lead to a change of the cross area section. Second, the compressed fluid pressure
depending on the fluid nature (air, gas, water, oil, etc.) might influence accordingly
the bending stiffness. Parallel to this, for a non-regular geometry along the Mo-
bile Soft-Continuum Manipulators (MSCM), the second moment of inertia I might
be very complex to model. A qualitative solution based on artificial intelligence
(AI) techniques can be investigated to estimate the bending stiffness EI to lower
modeling error for the real-time control. For that, during the design test of the soft
actuator, a set of parametric data from ANSYS, Finite Element Methods (FEM) and
experiments can be acquired and trained to reproduce the shear forces and tangent
efforts to come to more realistic dynamics. Thus, the idea is to allow estimating the
longitudinal stretch to update the length with the Pythagorean Hodograph (PH)
formulation while using the updated length constraints. Several benefits can be
outlined using this approach.

6.3.2 Actuators placement Vs control points dynamics

One of the main issues concerning the control of the shape of the soft actuators
is the geometric configuration of the actuator over the length of the soft continuum
manipulators. Indeed, the kinematic behavior of the Fluidic Elastomeric Actuators
(FEAs) to meet a prescribed shape depends strongly on the design and placement
of the soft actuator. Typically, for Fluidic Elastomeric Actuators (FEAs), a number
of them are designed on the consistency of the intrinsic actuation. However, the
geometry of the shape to be tracked is not always equivalent to that of the soft
actuator. This might result in some inaccuracy of convergence regarding the real-
time shape control. For that, two types of shape control should be considered; one
parallel to the actuator length to map the prescribed length of the tracked shape;
the second to control the local curvature and act vertically to the length at the
control points for shape control as a puppet motion control. The first aspect may
induce the control of the stretch of the soft actuator, and the second the control of
the local bending. For prospective work, it can be investigated an optimal design
of soft actuators that can allow to physically control the virtual control points to
address external interactions. The idea is to be able to drive the soft manipulator
shape like the puppets’ shape control leading to a wide range of complex shape
tracking. Many advantages can be highlighted considering this approach notably
smooth tracking and real-time local control of the soft manipulators.
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Appendix A

Pythagorean Hodograph
Fundamentals

A.1 Definition

A spatial polynomial curve p(s) = (x(s), y(s), z(s)) is called a pythagorean hodo-
graph (PH) curve if and only if its derivative p′(s) = (x′(s), y′(s), z′(s)) satifies the
pythagorean condition

x′(s)2 + y′(s)2 + z′(s)2 = σ(s)2 (A.1)

for some polynomial σ(s).

A.2 Quaternion form of a PH curves

By using a correspondence between R3 and the set of pure quaternions H, a spatial
curve p(s) = (x(s), y(s), z(s)) can be expressed as follows:

p(s) = x(s)i+ y(s)j+ z(s)k (A.2)

in the space of pure quaternions. i, j,k represent the 3 quaternions basis elements of
the set of quaternions. In [Choi 2002], it has been established that the hodograph
of a PH curve p(s) can be obtained by the following :

p′(s) = A(s)iA(s)∗ (A.3)

where A(s) and A(s)∗ are respectively the quaternion polynomial and its conjugate
of the form :

A(s) = u(s) + v(s)i+ r(s)j+ q(s)k

A∗(s) = u(s)− v(s)i− r(s)j− q(s)k.
(A.4)

Note that A(s)iA(s)∗ is always a pure quaternion. The parametric speed polynomial
is specified by:

σ(s) = ∥p′(t)∥ = ∥A(s)iA(s)∗∥ = u(s)2 + v(s)2 + r(s)2 + q(s)2 (A.5)
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A.3 Solution to a pure quaternion AiA∗ = c

For two quaternions A and B, a binary operation ★ has been defined as follows
[Šír 2007] :

A★B =
1

2

(
AiB∗ + BiA∗) (A.6)

A★B is always a pure quaternion, which is the vector part of AiB∗. Henceforth,
the n-th power of the quaternion A is denoted An★. However, when using PH for
modeling, the main issue often requires the solution to the quaternion equation:

A2★ = AiA∗ = c (A.7)

where c is a pure quaternion. Let v = c/|c| = (λ, µ, ν) be a unit vector in the
direction of c, the solution of the previous equation of the form of one parameter
family [Farouki 2002]:

A(ϕ) =

√
1

2
(1 + λ)|c|

(
i+

µ

1 + λ
j+

ν

1 + λ
k
)
Q(ϕ) (A.8)

where Q(ϕ) = cosϕ+ sinϕi and ϕ a parameter. c must be a non negative multiple
of i.

It is also defined as [Farouki 2015] [Šír 2007]:

A(ϕ) =
√
|c|

c
|c| + i

| c
|c| + i|

Q(ϕ) (A.9)

Among the one parameter family of solutions, A(0) is a particular solution.
A new notation (★-square root) for this particular solution has been derived in
[Kim 2019b].

Definition A.3.1. For a pure quaternion c that is not a negative multiple of i, the
★-square root is defined by:

★
√
c =

√
|c|

c
|c| + i

| c
|c| + i| (A.10)

A.4 Degree elevation of spatial PH curves

The degree elevation procedure have been described for Bézier curves [Farouki ].

p(s) =

n∑
k=0

pk

(
5

k

)
(1− s)5−ksk =

n+1∑
k=0

p
′
k

(
5

k

)
(1− s)5−ksk (A.11)
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where the control points p′k for the degree-elevated representation are given by:
p
′
0 = p0,

p
′
n+1 = pn

p
′
k =

k

n+ 1
pk+1 +

(
1− k

n+ 1

)
pk, for k = 1, · · · , n

(A.12)

Therefore, it is possible to elevate the degree of any PH curve without compro-
mising the Pythagorean nature of its hodograph, since degree elevation amounts
merely to a redundant representation.
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Towards Dynamic Shape Control of Mobile Soft
Continuum Manipulators: Parametric curve-based

approach

Abstract

Nowadays, soft continuum robots are increasingly used in everyday life (lo-
gistics, agriculture, medical therapy, baking, human collaboration, etc.) due
to the multiple advantages they offer over rigid robots. They are often made
up of soft and hyper-elastic materials that give them resilience, flexibility and
conformation, making them good candidates to meet some real-life needs (form
enclosure grasping, obstacle-free navigation, etc.). However, the control of their
shape remains a major challenge for the scientific community due to their very large
number of degrees of freedom (DoFs). Unfortunately, it is not physically possible
to control all the DoFs to drive their 3D motion. To address that issue, the present
research work focuses on a Reduced-Order-Model (ROM) based shape control using
Pythagorean Hodograph (PH) parametric curves. The proposed approach allows
to describe the high-order kinematics of soft continuum manipulators with a set
of finite points called control points. Hence, the control dimension of the latter
can be reduced to that of this set of finite control points. Moreover, to address
shape adaptability issues during external interactions (gripping task, collision-free
trajectory, spatio-temporal disturbances, etc.), the motions of the control points
(shape kinematics) have been described with respect to real dynamic physical
inputs considering the Euler-Bernoulli (EB) theory consistent with the large
deflections. To validate the proposed approaches, several experimental tests have
been performed on several classes of Soft Continuum Robots in various scenarios:
Fluidic Elastomeric Actuators (FEAs) for the control of gripping tasks and a
Robotino-XT for the control of motion planning with obstacles avoidance.

Keywords: Soft continuum manipulators, Pythagorean Hodo-
graph curves, Shape kinematics, Shape dynamics, Control.
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