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Résumé

Ces dernières années, les études sur les prévisions démographiques se sont considérable-
ment développées. L’un des objectifs de la démographie est d’analyser et de prévoir
statistiquement les taux de mortalité et de fécondité sans se fier aux opinions subjectives
des experts. Par conséquent, pour identifier les caractéristiques de la dynamique de mor-
talité d’une population, de nombreux modèles ont été développés depuis l’introduction du
célèbre modèle proposé par Lee et Carter (1992). De nombreuses recherches disponibles
dans la littérature tendent à se concentrer sur la perspective des séries temporelles de
la prévision des taux de mortalité. Le manque d’études dans le cadre spatial a suscité
notre intérêt pour l’étude des taux de mortalité dans le cadre spatial. L’extension du
modèle de Lee-Carter en incorporant l’idée de l’analyse des données fonctionnelles (FDA)
a inspiré la première partie de cette thèse où le concept de FDA a été appliqué au cadre
d’analyse démographique spatiale. Nous étudions l’existence d’une autocorrélation spa-
tiale pour des données de mortalité des pays voisins. Une méthode fonctionnelle spatiale
de composantes principales est proposée pour révéler les modèles spatiaux en consid-
érant directement l’information spatiale. Une statistique fonctionnelle du I de Moran est
introduite. Cette statistique aide à déterminer l’autocorrélation spatiale dans les don-
nées fonctionnelles par la mise en œuvre de l’ACP spatio-fonctionnelle. Cette statistique
fonctionnelle du I de Moran est la première de son genre dans le cadre des données fonc-
tionnelles.

La deuxième partie de cette thèse étudie l’impact du système VigilanS (programme de
prévention des tentatives de suicide en France) sur la récidive suicidaire où les données de
ce système (âge, sexe, adresse, historique des tentatives de suicide, séjour à l’hôpital etc.)
sont cartographiées sur la carte de la région Nord-Pas-de-Calais tout en construisant des
modèles de prédiction spatiale. Les risques de tentatives de suicide sont étudiés à l’aide de
modèles probit spatiaux. Nous proposons un modèle probit partiellement linéaire pour les
données spatialement dépendantes. Ce modèle n’a pas été étudié dans la littérature d’un
point de vue théorique et cette partie comble cette lacune en abordant un modèle d’erreur
autorégressive spatiale (SAE) où la structure de dépendance spatiale est intégrée dans un
terme de perturbation du modèle étudié. Une méthode d’estimation semi-paramétrique
est obtenue en combinant l’approche de la méthode des moments généralisée et la méthode
de vraisemblance pondérée. Nous avons examiné l’utilisation de ce modèle de régression
probit spatial ainsi que d’autres modèles existants dans la littérature pour étudier les
récidives de tentatives suicidaires des patients impliqués dans le système VigilanS.

Cette thèse met en évidence l’importance des statistiques spatiales dans l’analyse des
problèmes démographiques et de suicide. Il est également intéressant de voir comment les
données fonctionnelles peuvent être utilisées comme un outil dans le domaine de la démo-
graphie, notamment pour capturer l’autocorrélation spatiale dans les taux de mortalité
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lorsque l’espace est concerné. En outre, l’utilisation de modèles de régression spatiale pour
étudier les récidives de tentatives de suicide, met en évidence l’impact des localisations
voisines sur l’acte suicidaire.

Mots clés: Statistiques spatiales, Autocorrélation spatiale, I de Moran, Matrice de poids,
Démographie, Mortalité, Analyse des données fonctionnelles, Analyse fonctionnelle en
composantes principales, Statistiques non paramétriques, Récidive du suicide, Modèle
probit.



Abstract

In recent years, studies in demographic forecasting have grown significantly. One of the
goals of demography is to statistically analyse and predict mortality and fertility rates
without relying on subjective opinions of experts. Therefore, to identify the characteristics
of the mortality dynamics of a population, many models were developed since the intro-
duction of the famous model proposed by Lee and Carter (1992). Many research available
in the literature tend to focus on the time series perspective of forecasting mortality rates.
Lack of studies from the spatial framework sparked our interest in investigating the mor-
tality rates from the spatial framework. The extension of the Lee-Carter (1992) model
by incorporating the idea of functional data analysis (FDA) inspired the first part of this
thesis where the FDA concept was applied to the spatial demographic analysis framework.
We investigate the existence of spatial autocorrelation in mortality data of neighbouring
countries. A functional spatial principal component method is proposed to reveal spatial
patterns by directly considering spatial information. A functional Moran’s I statistic is
introduced. This statistic aids in determining the spatial autocorrelation in functional
data through the implementation of the spatio-functional PCA. This functional Moran’s
I statistic is the first of its kind in the functional data framework.

The second part of this thesis investigates the impact of the VigilanS system (program
to prevent suicide reattempts in France) on suicide recidivism where the data from this
system (patient’s age, sex, address, history of suicide attempts, hospital stay etc.) are
mapped on the map of the Nord-Pas-de-Calais region while constructing spatial predic-
tion models. The risks of suicide attempts are mapped with the help of spatial probit
models. We propose a partially linear probit model for spatially dependent data. This
model has not been investigated in the literature from a theoretical point of view and
this part fills that gap by addressing a spatial autoregressive error (SAE) model where
the spatial dependence structure is integrated in a disturbance term of the studied model.
A semi-parametric estimation method is obtained by combining the generalized method
of moments approach and the weighted likelihood method. We examined the use of this
spatial probit regression model as well as other existing models in the literature to study
the suicide relapses of patients involved in the VigilanS system.

Keywords: Spatial statistics, Spatial autocorrelation, Moran’s I, Weight matrix, De-
mography, Mortality, Functional data Analysis, Functional principal component analysis
(FPCA), Non-parametric statistics, Suicide relapses, Probit model.
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Notations

N set of natural numbers: 0, 1, 2 . . .

N∗ set of non-zero natural numbers: 1, 2 . . .

Z set of integers: . . . ,−1, 0, 1, . . .

R set of real numbers: ]−∞,+∞[

R+ set of real positives numbers: [0,+∞[

Rd euclidian space of dimension d
b·c integer part
| · | absolute value if the argument is number

or determinant if the argument is matrix
‖·‖ norm such that:

if the argument is a vector x ∈ Rd: ‖x‖ =
√
x2

1 + x2
2 + · · ·+ x2

p

if the argument is a matrix A: ‖A‖ =
√∑∑

a2
ij

if the argument is a function f : ‖f‖ = sup |f(x)|
x
′ or xT transpose of vector or matrix x

tr(·) trace of matrix
⊗ Kronecker product
Ā (or Ac) complement of set A
A ∪B union of A and B
A ⊂ B A is included in B
A ∩B intersection of A and B
A \B set of elements of A that are not included in B
Card(A) cardinality of A
∅ empty set
dist(A,B) euclidian distance between A and B
I(·) ( or IA(·)) indicator function ( of set A)
L2(T ) space of square-integrable functions in interval T
σ(. . .) σ-algebra generated by (. . .)

(Ω,A, P ) probability space. Ω : nonempty set, A :σ-algebra of subset of Ω

and P : probability measure on A
i.i.d independent and identically distributed
N (0, 1) normal distribution
un = O(vn) a constant c exists such that un ≤ cvn
un = o(vn) un

vn
→ 0 as n→∞

� end of a proof





Introduction

This thesis is motivated by two real population health problems such as mortality forecasting
and the mapping of suicidal relapses.

The first part of this thesis investigates mortality from a spatial perspective. In recent years,
studies of demographic forecasts have grown significantly. One of the goals in demographic re-
search is to analyse and predict mortality and fertility rates in a purely statistical way without
relying on the subjective opinions of experts. Therefore, to identify the characteristics of the
mortality dynamics of a population, many models have been developed since the introduction of
the famous model proposed by Lee and Carter (1992). Many researches available in the literature
tend to focus on time series forecasting of mortality rates. However, this research sparked the
interest in investigating mortality from the spatial framework since the main theme of this thesis
is spatial statistics. The extension of the Lee-Carter (1992) model by Hyndman and Ullah (2007)
using functional data analysis (FDA) inspired the application of the FDA concept in the spatial
framework.
In this thesis, we investigate the existence of spatial autocorrelation in mortality data of neigh-
bouring countries. The spatial principal component analysis by Jombart et al. (2008) aimed to
reveal spatial patterns by directly considering spatial information. We constructed a functional
Moran’s I statistic based on this, which will aid in determining spatial autocorrelation in func-
tional data through the implementation of the spatio-functional PCA. This functional Moran’s
I statistic is the first of its kind in the functional data framework. The data of mortality rates
for 28 European countries from the Human Mortality Database (HMD) for ages 0 to 110 (where
ages above 100 are grouped as 100 +) were used to investigate the spatial dependency at a fixed
time, where years 1990, 2000 and 2010 were examined separately).

The second part investigates the area of spatial modelling by considering a partially lin-
ear probit model for spatially dependent data. Semi-parametric binary models have not been
investigated from a theoretical point of view and this part fills that gap by addressing a spa-
tial autoregressive error (SAE) model when the spatial dependence structure is integrated in a
disturbance term of the studied model. A semi-parametric estimation method is obtained by
combining the generalized method of moments approach and the weighted likelihood method.
In France, the VigilanS healthcare system is an effort to support those who have attempted
suicide in various regions. It was established in Nord-Pas-de-Calais in February 2015. This
programme to monitor and prevent recidivism of suicide attempts is executed via phone calls by
teams of professionals who are specialized in this type of remote care. This six-month programme
is managed by the adult psychiatry department, directed by Professor Guillaume Vaiva in the
Lille University Hospital. Posthospital support is offered to those patients who attempted suicide.
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The patients receive a resource card with a dedicated contact number and are called back for
follow up after 6 months. Those with a history of suicide reattempts are contacted from the 10th
to 21st day, after the suicide attempts. The VigilanS healthcare database of the Lille University
Hospital contains the data of more than 23000 patients which include age, sex, address, history
of recidivism of suicide attempts, hospital stay (date, duration of hospitalization, establishment),
recidivism of suicide attempt at the first enrolment (mode, contact, alcohol consumption). The
aim of this study is to investigate recidivism of suicide attempts for all patients at the initial
point of enrollment and after 6 months. It is of interest to study the spatial dependency of
the occurrences of recidivism of suicide attempts. Furthermore, the risks of suicide attempts
are mapped with the help of the spatial probit models. The impact of the VigilanS system on
recidivism of suicide attempts is investigated, where the data from this system (patient’s age,
sex, address, history of suicide attempts, hospital stay etc.) are mapped on the map of Nord
Pas de Calais while constructing spatial prediction models. The factors of suicide relapse among
these patients based on the regions they belong to were studied.

Chapter 1 discusses the fundamental concepts and a state of art of the models and meth-
ods used. In Chapter 2 of this thesis, we examined the idea of FPCA which is an important
dimensionality tool reduction technique on functional data with infinite dimensionality. We in-
vestigated the spatial autocorrelation of mortality rates for 28 European countries, with data
from the Human Mortality Database (HMD) using spatial associations in the context of func-
tional areal data. This motivated to the development of a functional Moran’s I statistic which
is the first of its kind in the functional data analysis framework, which can detect spatial auto-
correlation and spatial PCA for areal data.
Chapter 3 focuses on partially linear spatial probit models. Here we are interested in various
patterns of spatial data by assuming conditional spatial heteroscedasticity, non-identically dis-
tributed observations, and a linear process for disturbances. The estimation procedure involves
the combination of a weighted likelihood and a generalised method of moments.
Chapter 4 is mainly an application of the models studied in Chapter 3. Here, we investigate
the impact of the Vigilans system (programme to prevent suicide reattempts in France) on sui-
cide recidivism where the data from this system (patient’s age, sex, address, history of suicide
attempts, hospital stay etc.) are mapped on the map of the Nord-Pas-de-Calais region. This
will aid in making spatial prediction models. The probit regression model was used to study the
suicide relapses and then the risk of suicide attempts was mapped by using the spatial probit
and spatial Poisson models.
Chapter 5 provides the concluding remarks as well as some significant contributions of this re-
search. Suggestions on extending research works related to this research are also included in this
chapter.



Chapter 1
State of art and general concepts

This chapter discusses the methods used in formulating the main outcomes of this research.
Spatial data analysis and spatial modelling are the main components of this thesis. We implement
the use of functional data analysis in the field of demography with respect to mortality models to
investigate spatial dependence of mortality rates of neighbouring countries. The second part of
this study focuses on examining the theoretical foundations and application of spatial econometric
models.

1.1 Functional data analysis

Functional data analysis (FDA) has been gaining importance in analysis of data involving sur-
faces, multidimensional objects, shapes or more complex mathematical objects of infinite dimen-
sion (Cardot et al., 2003) . Ramsay and Silverman (2005) gave an excellent overview of the
concepts, foundation and applications of FDA. Some reputable works in this field include those
of Bosq (2000), Ferraty and Vieu (2006), Horváth and Kokoszka (2012) and Hsing and Eubank
(2015).

Functional data is applied widely in various fields such as medicine, meteorology, hydrology,
genetics (genetic sequence) and so on. FDA deals with the analysis and theory of data that are
in the form of functions, rather than by vectors of Rn. In other words, each observed variable
has functional values rather than real values.
A functional random variable is a random variable which takes its values in a vector space of in-
finite dimension, and the functional data is a realization of a functional variable. The functional
data are considered as observations of infinite-dimensional stochastic processes. Let I be a com-
pact interval of Rd with d ∈ N, we observe N independant realizations X(1), . . . , X(n), . . . , X(N)

of an underlying stochastic process X = (Xt : t ∈ I), where X(n) is a continuous function on
I. Random functions can be viewed as random elements taking values in a Hilbert space L2(I).
The associated inner product is defined as:

〈f, g〉 =

∫
I
f(t)g(t)dt, f, g ∈ L2(I). (1.1)

The mean function µ : I 7→ R and the covariance function c : I × I 7→ R are defined as:

µ(t) = E(X(t)), c(s, t) = Cov[X(s), X(t)], s, t ∈ I. (1.2)
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The statistical methods for multivariate data encounter difficulties involving high dimension.
This is mainly because handling infinite dimensions of functional variables (curves, shapes, and
so on) can be complicated. Besides that, the dependency between observations when considering
time-series of spatial functional objects may be difficult to manage. Therefore, it is necessary
to develop statistical methods for visualization and modeling to handle such data. During the
last two decades, various exploration and modeling techniques have been proposed for functional
variables. As for regression models, there are essentially two popular approaches: the parametric
(Ramsay & Silverman, 2005) and nonparametric models (Ferraty & Vieu, 2006).

Hyndman and Ullah (2007) proposed the combination of ideas from FDA, nonparametric smooth-
ing and robust statistics to form a methodology which is a significant contribution to the field
of demography especially mortality modeling. This idea is widely applicable to any functional
time series data, particulary age-specific mortality and fertility. A nonparametric smoothing
method was used to smooth the data and the fitted curves were decomposed via a basis function
expansion. This method is discussed further in Section 1.2.2.

1.1.1 From discrete data to functions

The first step in FDA is to convert a discrete set of measurements (the observed data points)
into either a rough or smooth curve.
Let Φ = {φj(·) : j ∈ N} be an infinite basis of L2(I). The elements of Φ are linearly independent.
Every element of L2(I) can be written as a linear combination of the elements of Φ. The
realization X(n) of the stochastic process X is decomposed into:

X(n)(·) =
∑
j≥1

cj,nφj(·), (1.3)

where {cj,n}j≥1 is an infinite set of coefficients. The basis expansion is used to approximate the
realization X(n) by its projection on the span of a finite basis functions ΦJ = {φj(·) : 1 ≤ j ≤ J},
a finite subset of Φ and {cj,n}1≤j≤J a subset of {cj,n}j≥1 :

X(n)(·) ≈
J∑
j=1

cj,nφj(·), (1.4)

X(n) can be summarized by a J-dimensional vector. The functional data smoothing methods
imply a decomposition of each of the process realizations into a common basis of function, such
as the Fourier bases or splines bases. The Fourier basis system is commonly used for periodic
data while the B-spline basis system is preferable for nonperiodic data (Ramsay et al., 2009).
Splines are polynomial segments joined end-to-end and forced to be smoothed at the joint.

Let {ti, Xi : i = 1 . . . n} be a set of observations Xi at design points ti, modeled by the relation
Xi = s(ti) + εi where s(t) is a smooth curve and εi are iid. The s(t) that minimizes the residual
sum of squares (RSS) plus roughness penalty is the cubic smoothing spline fit to the data:

n∑
i=1

(x(ti)− s(ti))2 + λ

∫ (
s
′′
(t)
)2
dt, (1.5)
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where λ ≥ 0 is the smoothing parameter which governs the trade-off between smoothness and
goodness of fit.

1.1.2 Functional principal component analysis

Functional principal component analysis (FPCA) is the extension of the multivariate principal
component analysis in the functional framework. As in the classical case, the FPCA corresponds
to an optimal linear representation of a set of functional data in a finite dimensional space. This
is to reduce the dimensionality of the data using FPCA and then identify the main sources of
variability. The point behind FPCA which is a dimension reduction method, is transforming the
sampled curves so that only a low-dimensional space represents the patterns of variability of the
curves. The general approaches are presented by Ramsay and Silverman (2005) and Ferraty and
Vieu (2006).
If we have n functional observations in L2, X(1), . . . , X(n), we thus look for j functions of L2,
φ1, . . . , φk, orthogonal, and such that the projection of X(i) onto the vector space generated by
the φj generates the minimum loss possible. The FPCA is performed by searching the spectrum
of a compact operator. This operator is defined from the covariance function given by :

c(s, t) = Cov[X(s), X(t)],

=
1

n

n∑
i=1

(Xi(s)− µ(s))(Xi(t)− µ(t)),
(1.6)

where µ denotes the average function of Xi. FPCA identifies principal components explaining
the variability of {Xi} by computing the eigenfunctions corresponding to the ordered eigenvalues
(from largest to smallest) of an empirical covariance operator. Therefore, performing the PCA of
the Xi amounts to searching for the eigenvalues of the operator Γf(t) = L2(I) 7−→ L2(I) defined
by:

Γf(t) = 〈C(·, t), f(·)〉, t ∈ I, f ∈ L2(I), (1.7)

where Γ is a positive, linear and self-adjoint operator in L2 (Horváth & Kokoszka, 2012). In
particular, it is a compact operator and has a finite trace.
There exists a complete orthonormal basis {φj}j≥1 and a sequence of real numbers λ1 ≥ λ2 ≥
· · · ≥ 0 such that:

Γφj = λjφj , and λj → 0 as j →∞, (1.8)

where {λj}j≥1 is the set of eigenvalues of the covariance operator Γ associated to {φj}j≥1 the
set of its eigenfunctions. The eigenfunctions associated to the eigenvalues are then the {φj}. It
can be shown that the eigenfunction associated with the largest eigenvalue, φ1 , is a solution of
the following constrained optimization problem:

max
‖φ‖2=1

〈Γφ, φ〉 (1.9)

The process X admits the Karhunen-Loève representation:

X(t) = µ(t) +
∑
j≥1

cjφj(t), t ∈ I, (1.10)

with cj = 〈X − µ, φj〉, E(cj) = 0, cov(cj , cl) = λj1j=l and the {φj}j≥1 are the FPCA basis.
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Hence, X(n) is approximated by truncating the infinite sum at the first J terms:

X(n)(t) ≈ µ(t) +
J∑
j=1

cj,nφj(t), t ∈ I with cj,n = 〈X(n) − µ, φj〉. (1.11)

The concept of FPCA in FDA is the crux of the analysis of mortality data. The classical FPCA
was performed to find new functions that reveal the most important variations in the curve
data with the absence of the spatial structure. After that, this idea was extended to the spatial
framework with the implementation of the FPCA on areal spatial data.
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1.2 Mortality modeling

1.2.1 The Lee-Carter model

Mortality, fertility, and migration are processes which can change the population. The twentieth
century witnessed the improvement in mortality especially in developed countries. Mortality
forecasting has been gaining interest and this led to the development of stochastic mortality
forecasting approaches over time which involve extrapolation and time series methods. The Lee-
Carter (LC) model (Lee & Carter, 1992) is one of the most prominent contributions to the study
of mortality models which opened the path to various innovations of its kind. The Lee-Carter
model is given as follows:

log(mxt) = ax + bxkt + εx,t (1.12)

where

• mx,t is the age-specific death rate for age x and year t;

• ax is the average age of the log mortality rates across years;

• bx is a deviation in mortality due to changes in the time index (kt);

• kt is the mortality index in the year t; it describes the evolution of the level of mortality
over time.

• the error term εx,t reflects age-specific historical influences not captured by the model.It
is normally distributed with mean 0 and variance σ2

ε .

Three unboserved parameters ax, bx and kt in the single equation 1.12 means that the LC model
is over-parametrized and therefore two normalization constraints are imposed:∑

kt = 0,
∑

bx = 1.

The parameters bx and kt are obtained by singular value decomposition (SVD). Lee and Carter
(1992) fitted the parameter kt using standard ARIMA models. The random walk model with
drift given as follows:

kt = kt−1 + d+ et,

was found to be suitable to describe kt, where d is the drift parameter which reflects the average
annual change and et is an uncorrelated error.

Some of the commonly used extensions of the LC model consist of the Renshaw and Haberman
(2006) model which used the generalised linear model approach, the Lee and Miller (2001)
which involves re-estimation of the time component according to the observed life expectancy
at birth, and the Booth et al. (2002) model which adjusts the time component with respect
to the age distribution of deaths.Wiśniowski et al. (2015) extended the LC model using the
Bayesian framework. Hyndman and Ullah (2007) applied smoothing techniques in increasing
the LC variants. The HU model extended the LC model by incorporating FDA, nonparametric
smoothing and robust statistics.
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1.2.2 The Hyndman and Ullah (2007) method

The HU model is more robust than the LC model when we consider the variation explanation,
outlier identification and forecast accuracy. The HU method extends the LC method by :

• smoothing the log mortality rates before modeling,

• using the FPCA,

• using more than one principal component for forecasting.

Hyndman and Booth (2008) used functional data models with time series coefficients to model
age-specific mortality and fertility rates. Hyndman et al. (2013) proposed a method for non-
divergent or coherent forecasting of mortality rates for two or more subpopulations, based on
functional principal components models of simple and interpretable functions of rates. In a
nutshell, various approaches in forecasting mortality rates were discovered using functional data
analysis as a foundation.

The HU method is summarized in three steps:

1. Before modeling, Hyndman and Ullah (2007) proposed to smooth the log death rates using
penalized regression splines. Assume that there is a smooth continuous underlying function
St(x) which is observed with error at discrete ages.

Yt(xi) = St(xi) + σt(xi)εt,i; t = 1 . . . n; i = 1 . . . p (1.13)

where Yt(xi) denotes the log of observed death rates for age xi at year t, St(xi) is the
derived smooth function of x, σt(xi) is a noise component enables the amount of noise to
vary with x in year t, hence correcting the assumption of homoscedastic error in the LC
model, and the εt,i is an independent and identically distributed standard normal random
variable.

Estimation of the smoothing function St(x) is done through x, while yt(x) by a nonpara-
metric smoothing method ∀t.

2. The FPCA on the time series was applied to find the main sources of variability. A larger
number of principal components were used to capture additional dimensions of changes in
mortality rates. The FPCA is expressed as :

St(x) = µ(x) +
K∑
k=1

βt,kφk(x) + et(x), (1.14)

where St(x) is the derived smooth function of x, µ(x) is the mean function estimated by
µ̂(x) = 1

n

∑n
1 St(x), {φk(x)} = {φ1(x), . . . , φk(x)} is the set of first K functional principal

components (orthonormal basis function), {βk} = {β1, . . . , βk} is the set of uncorrelated
principal component scores, et(x) is the residual function with mean zero and and K is
the number of principal components used.

The bivariate surface St(x) − µ(x) is approximated through the sum of products of the
orthonormal basis functions {φk(x)} of age x and coefficients {βk(x)} of time t. The basis
functions of equation (1.14) can be obtained by principal components and the uncorrelated
coefficients are produced with PCA.
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3. We are interested to forecast the future functional data h-years ahead. Therefore, the main
idea is to use the obtained principal component scores to predict new values of β̂n,k,h, h-
years ahead conditioned to the fixed set of functional principal components φk(x). The
estimated coefficients are then used to approximate the functional data using equation
(1.14). Hence, the h-step ahead forecast of Yn+h(x) is obtained by:

Ŷn,h(x) = E[Yn+h(x)] = µ̂(x) +
K∑
k=1

β̂n,k,hφk(x); (1.15)

where β̂n,k,h is the h-step ahead forcast of βn,k,h. The coefficicients, β̂t,k and β̂t,l are
uncorrelated for k 6= l so the univariate time series model such as ARIMA is used to
predict the time-varying scores {βt,k}.

The HU method can explain more variation of the demographic dynamics when we have data of
high quality. However, its performance is comparable to the LC model when limited and scarce
data sets such as Chinese data sets are used (Fang & Härdle, 2015).
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1.3 Spatial data analysis

Statistics for spatial data was first explored in the 1960s in geology and meteorology. The main
feature of spatial data analysis is to find a correlation structure between data observed at a given
location and that available at neighbouring locations. These kind of data are widely available in
economics, epidemiology, agriculture, environmental science and so on.
The past five decades witnessed the development of several methods in analysing spatial data
and estimating values of a property of interest for the unsampled locations, from the available
sample data. Data dependency is one of the practical considerations that influence the available
techniques used in the spatial data modeling. Often, spatial data are dependent and a spatial
model is tailored to handle this aspect. The realisation of the importance of spatial data analysis
led to the development of statistical models to capture the spatial patterns (Cressie, 2015). A
wide range of models and methods have been developed by considering the spatial dependence
structure, mainly in the context of geostatistics, lattice data, and point patterns (Cressie, 2015).
In the framework of geostatistics, the spatial location is valued in a continuous set of RN , N ≥ 2.
When compared to geostatistical and lattice data, spatial point patterns occurs when the loca-
tions of the available data are random. It is not always easy to distinguish the following three
types of data:

1. Geostatistical data

• The spatial set of interest S ⊂ RN , N ≥ 2 is a fixed subset of the plane of positive
area (2-D) or volume (3-D).

• A spatial process (collection of random variables observed at spatial points) Y =

{Y (s), s ∈ S} is of interest.

2. Lattice data

• The spatial process Y = {Y (s), s ∈ S} of interest is defined on a spatial fixed regular
or irregular lattice S of RN .

• This type of process includes extensions to well know time-series process.

3. Point patterns

• The spatial locations s ∈ S ∈⊂ RN where the process Y = {Y (s), s ∈ S} is defined
are random.

• This type of process is an extension of the usual point processes.

The major distinction between time series and spatial data is the absence of an orderly relation-
ship such as past, present and future i.e. the time axis is unidirectional. Past events may have
an influence on the future while the reverse is not true. Time series models are not applicable
to spatial data directly since the natural order in the time domain does not exist in the spatial
context.

In this thesis, we are interested in the spatial lattice processes. For spatial lattice data,
the locations form a lattice set. For lattice data, the seminal work by Besag (1974) is of great
significance. The underlying idea is that a lattice has a neighbourhood structure and observations
recorded on a lattice point are conditionally independent of the remaining lattice points given
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the observation in the neighbouring lattice points (Kauermann et al., 2012). A comprehensive
collection of applications and theory in this field are available in Rue and Held (2005) as well
as Gaetan and Guyon (2010). Similar to other spatial processes, the exploration of the spatial
correlation structure is the first step in the context of the lattice. The spatial weight matrix
is a basic correlation tool in spatial econometrics describing the connectivity between different
locations. The spatial weight matrices take different forms.

1.3.1 Specification of the spatial weight matrix

Spatial autocorrelation and its modeling are essentially based on the spatial weight matrices.
In the spatial econometrics’s literature, spatial dependency between spatial units is defined via
the spatial weight matrix. Wn is a n × n non-stochastic weight matrix, it describes the spatial
interactions between the n spatial units.
Formally, Wn is a positive n× n matrix with zero on the diagonal:

Wn =



0 w1,2 · · · w1,j · · · w1, n

w2,1 0 · · · w2,j · · · w2, n
...

...
. . . · · · · · · · · ·

wi,1 wi,2
... 0 · · · wi,n

...
...

...
...

. . . · · ·

wn,1 wn,2
...

...
... 0


where wi,j is the spatial weight between locations i and j.

The elements wij = wij,n of this matrix are usually considered as inversely proportional to
the distance between spatial units i and j with respect to some metric (physical distance, social
network or economic distance, Pinkse & Slade, 1998). More specifically, the weight matrices
are classified into two groups: weights based on distance and weights based on boundaries. For
weights based on distance, spatial weight matrices are constructed by using the distance dij
between each pair of spatial units (regions, cities, centroids, . . . ) i and j. Weights based on
distance are as follows:

• k-Nearest Neighbour weights

wij =

{
1 if j ∈ Nk(i),

0 Otherwise,
where Nk(i) is the set of the k closest units or regions to i for k ∈ {1, ..., n− 1}

• Radial Distance weights

wij =

{
1 if 0 ≤ dij ≤ δ,
0 if dij > δ,

where dij is the Euclidean distance between units i and j, and δ is a critical distance
(threshold distance or bandwidth) cut-off after which spatial effects are considered to be
negligible, and it should be able to guarantee that each region has at least one neighbour.

• Power Distance Decay weights

wij =

{
d−αij if 0 ≤ dij ≤ δ,

0 if dij > δ,
where α is any positive exponent, typically α = 1 or α = 2.
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• Exponential Distance Decay weights

wij =

{
exp(−αdij) if 0 ≤ dij ≤ δ,

0 if dij > δ,

• Double-Power Distance weights

wij =

{
[1− (dij/δ)]

k if 0 ≤ dij ≤ δ,
0 if dij > δ,

with k is a positive integer, typically k = 2, k = 3 or k = 4.

• Cliff-Ord weights
Cliff and Ord (1973) suggested to use the length of the common border between contiguous
regions, weighted by a distance function:

wij = d−aij D
b
ij ,

where Dij is the share of common boundary between i and j. a and b are parameters
estimated from data or chosen a priori.

• Block structure
In this case wij = 1 for all i and j in the same block. The blocks are defined according to
some specific criterion.

For weight matrices based on boundaries, the spatial contiguity is often used to specify neigh-
bouring locations that share a common boundary. Various spatial contiguities are available in
the literature. In the classical case of a regular square grid layout, the options of contiguity
are referred to as the Rook contiguity (only common boundaries), Bishop contiguity (with only
common vertices) and Queen contiguity (both boundaries and vertices). The contiguity weights
are given as follows:

wij =

{
1 if i and j are contiguous,
0 otherwise.

In general, the last equation can be rewritten as:

wij =

{
1 `ij > 0,

0 `ij = 0,
where `ij denotes the length of shared boundary.

1.3.2 The Moran’s index

The basic principle of spatial data analysis is the idea that values of variables in nearby locations
are closely related compared to those locations that are far apart.
The Moran’s index is a measure of spatial autocorrelation. It was introduced first by Moran
(1948, 1950) and developped by Cliff and Ord (1973, 1981). Moran’s I is a correlation coefficient
used to measure the overall spatial correlation in a data set and is bounded by 1 and −1. The
spatial autocorrelation in terms of Moran’s I can be classified as follows:

• positive autocorrelation occurs when Moran’s I is close to +1.
The spatial correlation is positive when similar values cluster together on a map.

• negative autocorrelation occurs when Moran’s I is close to −1.
The spatial correlation is negative when dissimilar values cluster together on a map.
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• a Moran’s I value of 0 denotes the absence spatial autocorrelation.

The results of this test is interpreted in the context of a null hypothesis which assumes that the
random of distributed among locations.
Suppose that, in at n locations {s1, . . . , sn}, we observe y1 = y(s1); . . . ; yn = y(sn). We also
suppose that spatial weights wij , the weights between each pair of spatial units si and sj , which
satisfy:

wij ≥ 0 for any i 6= j, wii = 0 for any i.

The Moran’s I index is given by:

I =
n

W

∑n
i=1

∑n
j=1wij(yi − ȳ)(yj − ȳ)∑n

i=1(yi − ȳ)2
, (1.16)

where n is the number of spatial units indexed by i and j, ȳ is the mean of y and wij is a matrix
of spatial weights with zeroes on the diagonal and W is the sum of all wij .

In this thesis, the Moran’s I is extended to the functional data analysis context which was
discussed in Section 1.1. This aims to consider the spatial dependency in the PCA to analyze
the degree of spatial autocorrelation among observations in the geographic space with the idea
of spatial principal component analysis, sPCA (Jombart et al., 2008) which highlights spatial
patterns by the direct consideration of spatial information.

1.3.3 Functional PCA for spatial data

There are many functional data sets taking the form : Xs(t), s ∈ S and t ∈ [0, T ]. where s is a
spatial location and [0, T ] is the interval of time. In such data, the spatial dependence are often
not taken into account. Note the famous example of the Canadian temperature data (Ramsay
& Silverman, 2005) available at 35 locations, the curves have very similar characteristics when
they are quite close. The research on spatial functional data is growing, and there are few
research on the fundamental properties of spatially distributed functional data. Delicado et al.
(2010) provided a useful approach which involves the integration of classical types of spatial
data structures (geostatistical data, point patterns, and areal data) with functional data. FDA
approaches were applied to PCA in a spatial framework especially in geostatistical and point
patterns((Li & Guan, 2014); (Liu et al., 2014); (Hörmann & Kokoszka, 2011);(Liu et al., 2014);
(Illian et al., 2006)). Gromenko et al. (2012, 2017) use a geostatistical framework for spatially
indexed functional data to solve space physics problems. Kuenzer et al. (2020) proposed a
dimension reduction technique suitable for functional data, indexed by spatial locations on a
grid. So far, there is no work on FPCA on spatial data in the the lattice framework.
The idea of the HU model in equation (1.13) motivated the use of functional data analysis in
our study. The versatility of functional data analysis is appealing because it can be adapted to
many areas of mortality forecasting. The smoothed data are ready for conversion to functional
objects and after that various approaches can be implemented so these data can be investigated
from different angles. This thesis investigates mortality from a spatial point of view instead of
the usual approaches which give emphasis to the time aspect of mortality models. It is of interest
to investigate the existence of spatial autocorrelation among neighbouring countries by adapting
dimensionality reduction techniques using FPCA.
The sPCA by Jombart et al. (2008) aimed to reveal spatial patterns by directly considering
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spatial information. The sPCA analyses a matrix of relative allele frequenciesX where the spatial
information is stored inside a spatial weighting matrix L, and defines the following function to
measure both the spatial structure and variability in x:

C(x) = var(x) I(x) =
1

n
xTLx. (1.17)

Interestingly, spatial autocorrelation can efficiently be captured from functional data using the
newly derived functional Moran’s I statistic in this thesis. This statistic is the first of its kind
in the functional data framework. 28 European countries whose mortality data are available on
HMD, for a fixed period since it is of interest to investigate the existence of spatial autocorrelation
in mortality data of neighbouring countries are considered. Once this approach successfully
captures the spatial autocorrelation, it will be of great help to use this idea to construct spatial
predictive models to predict mortality rates for neighbouring countries whose data are unavailable
on HMD.

1.3.4 Spatial econometric models

Modelling spatially dependent data requires correlation between random variables in one location
with those in neighbouring locations (Pinkse & Slade, 1998). In this thesis, the lattice type data
is examined. Statistical models for lattice data are linked to nearest neighbours to express the
fact that data are nearby. Two popular spatial dependence models for lattice data are the spatial
autoregressive (SAR) dependent variable model and the spatial autoregressive error model (SAE,
where the model error is an SAR), which extend the regression in a time series to spatial data.

Let (Y,X) be a random vector observed at n locations where {s1, . . . , sn} in an irregularly
spaced, countable lattice I ⊂ Rk, k ≥ 2 such that ||si − sj || ≥ d0, with d0 > 0. Suppose that
Yn = (Y1, . . . , Yn)T is the sample response and Xn the n × p matrix of explanatory variables
observations with elements Xij , i = 1, . . . , n, j = 1, . . . , p.
To explain why an observation located in a specific location depends on observations made at
other locations, it is necessary to determine the three types of interaction effects:

• Endogenous interaction effects among dependent variables. The variable Yi at spatial units
i depends on Yj at spatial units j. This model is named as the spatial lag model or spatial
autoregressive (SAR) model (Cliff & Ord, 1973),where the interaction effect is denoted by
the spatial lag WnYn.

• Exogenous interaction effects among independent variables where the variable Yi at a
spatial unit i depends on the independent explanatory variables Xj at spatial units j.

• Correlated effects, where similar unobserved characteristics result in similar behavior.
Here, the interaction is among the error terms. This model is known as the spatial autore-
gressive error (SAE) model (or spatial error model; SEM).

In practice, a population that contains these three types of interactions jointly does not exist.
Researchers always focuses on models with one interaction such as the SAR model, the SAE
model, or a model with two interactions. These kind of models are used when the spatial
autocorrelation affects the response and the error terms. According to the terminology developed
by Lesage (2008), we refer to this model as the spatial autocorrelation (SAC) model:
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Yn = λ0WnYn + Xnβ0 + Un;

Un = γ0WnUn + εn,

εn ∼ N(0, σ2
0In),

(1.18)

where Un = (U1, . . . , Un)T and εn = (ε1, . . . , εn)T . The coefficients λ0 and γ0 are scalar autore-
gressive parameters indicating the degree of spatial dependence, β0 is a p×1 vector of parameters.
WnYn is the spatial lag, which denotes the endogenous interaction effects among the dependent
variables, i.e. for each observation Yi, the corresponding element in WnYn gives weighted sum
of Yj , j 6= i, with weights given by the relative connectivity from j to i. WnUn represent the
interaction effects among the disturbance terms of the different spatial units. However, the SAR
model is a SAC model with γ0 = 0 and SAE model is a SAC model with λ0 = 0.

From a theoretical point of view, various linear spatial regression SAR and SAE models as well
as their identification and estimation methods, e.g., two-stage least squares (2SLS), three-stage
least squares (3SLS), maximum likelihood (ML) or quasi-maximum likelihood (QML) and the
generalized method of moments (GMM), have been developed and summarized by many authors
such as Anselin (2013), Kelejian and Prucha (1998), Kelejian and Prucha (1999), Conley (1999),
Cressie (2015), Case (1993), L.-F. Lee (2004), L.-f. Lee (2007), Lin and Lee (2010), Zheng and
Zhu (2012), Malikov and Sun (2017), Garthoff and Otto (2017), Yang and Lee (2017).

1.3.5 Semi-parametric modeling

A semi-parametric model is an alternative to fully parametric models when there exists a non-
linear relationship between the discrete binary variable and some explanatory variables. This
type of model is known as the partially linear probit model for spatially dependent data. A
triangular array setting is used to cover various patterns of spatial data. Allowing various spatial
dependencies, we assume the existence of conditional spatial heteroscedasticity, non-identically
distributed observations, and a linear process for disturbances.

We consider that at n spatial locations {s1, s2, . . . , sn} satisfying ‖si − sj‖ > ρ with ρ > 0,
observations of a random vector (Y,X,Z) are available. Assume that these observations are
considered as triangular arrays (Robinson, 2011) and follow the partially linear model of a latent
dependent variable Y ∗:

Y ∗in = XT
inβ0 + g0(Zin) + Uin, 1 ≤ i ≤ n, n = 1, 2, . . . (1.19)

with
Yin = I (Y ∗in ≥ 0) , 1 ≤ i ≤ n, n = 1, 2, . . . (1.20)

where I(·) is the indicator function; X and Z are explanatory random variables taking values in
the two compact subsets X ⊂ Rp(p ≥ 1) and Z ⊂ Rd(d ≥ 1), respectively; the parameter β0 is
an unknown p × 1 vector that belongs to a compact subset Θβ ⊂ Rp; and g0(·) is an unknown
smooth function valued in the space of functions G =

{
g ∈ C2(Z) : ‖g‖ = supz∈Z |g(z)| < C

}
,

with C2(Z) the space of twice differentiable functions from Z to R and C a positive constant.
In model (3.1), β0 and g0(·) are constant over i (and n). Assume that the disturbance term Uin
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in (3.2) is modelled by the following spatial autoregressive process (SAR):

Uin = λ0

n∑
j=1

WijnUjn + εin, 1 ≤ i ≤ n, n = 1, 2, . . . (1.21)

where λ0 is the autoregressive parameter, valued in the compact subset Θλ ⊂ R,Wijn, j = 1, ..., n

are the elements in the i–th row of a non-stochastic n×n spatial weight matrixWn, which contains
the information on the spatial relationship between observations. This spatial weight matrix is
usually constructed as a function of the distances (with respect to some metric) between locations
(Pinkse & Slade, 1998).
The estimation procedure is a combination of a weighted likelihood (Staniswalis, 1989) and a
generalised method of moments (Pinkse & Slade, 1998). The procedure first fixes the parametric
components of the model and then estimates the non-parametric part using weighted likelihood;
the obtained estimate is then used to construct a GMM (Generalised Method of Moments)
parametric component estimate. The consistency and asymptotic distribution of the estimators
are established under sufficient conditions. Some numerical results are provided to investigate
the finite sample performance of the estimators.
In Chapter 3 of this thesis, a semi-parametric estimation method combining the GMM approach
and the weighted likelihood method is proposed. The parametric components of the model are
first fixed and the non-linear components are estimated by the weighted likelihood approach
(Staniswalis, 1989). The estimator which is obtained depends on the values at which the para-
metric components are fixed. This is used to construct a GMM estimator (Pinkse & Slade, 1998)
of these components.

In chapter 4, spatial probit regression models are applied to study suicidal relapses to shed light
on the impact of neighbouring locations on suicide cases by investigating the impact of the Vig-
ilanS system on suicide relapses of patients involved in the VigilanS system.
The VigilanS healthcare system is an effort to support those who have attempted suicide in vari-
ous regions. It was established in Nord-Pas-de-Calais in February 2015. This program to monitor
and prevent recidivism of suicide attempts is executed via phone calls by teams of professionals
who are specialized in this type of remote care. In the Lille University Hospital, this six-month
programme is managed by the adult psychiatry department under Professor Guillaume Vaiva.
Posthospital support is offered to those patients who attempted suicide. When these patients
are discharged from the hospital, they receive a resource card with a dedicated contact number
and are called back for follow-up after 6 months. Those with a history of suicide reattempts are
contacted between the 10th to 21st day after being discharged from the hospital.
We aim to investigate the impact of spatial dependency on suicide recidivism in Nord-pas-de-
Calais and examine the effect of non-linear explanatory variables such as median revenue, unem-
ployment rates etc by applying several frameworks of the probit regression to model the suicide
recidivism, especially after 6 months from the entry of VigilanS system.



Chapter 2
Exploring spatial patterns of mortality in
Europe using functional spatial principal
components for areal data

Abstract

We examined the spatial autocorrelation of mortality rates for 28 European countries, with data
from the Human Mortality Database (HMD) using spatial associations in the context of func-
tional areal data. We developed a functional Moran’s I statistic which is the first of its kind in
the functional data analysis framework to determine spatial autocorrelation and spatial PCA for
areal data. These data were converted to functions before performing the classical and spatial
PCA. Results showed the existence of spatial autocorrelation between neighbouring countries
(using K-nearest neighbours (KNN) and contiguity neighbours) based on the functional Moran’s
I statistic applied on the functional PCA approximation. However, no strong correlation was
displayed when the scores of the classical PCA which ignored spatial information, was consid-
ered. This work proved the existence of spatial dependency in mortality rates of neighbouring
countries in Europe and showed that the functional Moran’s I statistic is a powerful tool in
measuring spatial dependency.

Keywords: functional principal component analysis, Moran’s I, spatial autocorrelation, KNN,
contiguity, mortality.

2.1 Introduction

Mortality rates depict the population health and economic status of a country. Spatial demo-
graphic models play a major role in monitoring spatial dependence of mortality. Demographers,
social scientists, economists, and many others have been extensively studying mortality pat-
terns. Most researches available in the literature are inclined to mortality models with emphasis
on temporal forecasting methods. Hence, we were motivated in investigating mortality from the
spatial framework.
The Lee-Carter (LC) model (Lee & Carter, 1992) is one of the most prominent contributions to
the study of mortality models which opened the path to various innovations of its kind. The
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Hyndman and Ullah (2007) (HU) model extended the LC model by incorporating functional
data analysis (FDA), nonparametric smoothing and robust statistics. Hyndman et al. (2013) ap-
plied coherent forecasting of mortality rates for two or more subpopulations based on functional
principal components models of simple and interpretable functions of rates to sex-specific data
for Sweden and state-specific data for Australia. Greco and Scalone (2013) combined mortality
modelling techniques with the Bayesian approach in forecasting mortality rates by age and sex
for provincial areas in Italy. Based on a study on county level mortality rates of the United
States of America, Raymer et al. (2018) argued that the mortality rate of a certain county may
be associated with the features of its neighbouring counties beyond its own features. S. Wang and
Ren (2019) explored the spatial distribution patterns and economic determinants of China by
calculating the four indexes (lifespan expectancy at birth, infant mortality rate, under-5 mortal-
ity rate and crude mortality rate) at county level in China and illustrated the spatial distribution
of these patterns.

Principal component analysis (PCA) is of the essence in FDA. The combination of these ele-
ments is of great significance in enhancing spatial demographic modelling. Delicado et al. (2010)
provided a useful approach which involves the integration of classic types of spatial data struc-
tures (geostatistical data, point patterns, and areal data) with functional data. FDA approaches
were applied to PCA in a spatial framework (Li and Guan (2014); Liu et al. (2014)). Kuenzer
et al. (2020) proposed a dimension reduction technique suitable for functional data, indexed by
spatial locations on a grid. So far, there is no work on functional PCA (FPCA) on spatial data
in the areal framework.
For a fixed country, Hyndman and Ullah (2007) applied FPCA to decompose smoothed func-
tional time series into a set of functional principal components and their principal component
scores. FPCA was applied to find the main sources of variability. Léger and Mazzuco (2021)
showed that a functional framework can be informative where it allows clustering of complete
mortality profiles without losing sight of the role played by single components where the changes
of age-specific mortality in low-mortality countries in the last few decades with functional cluster-
ing were investigated. Léger and Mazzuco (2021) suggested three different methods of functional
clustering of mortality profiles (seen as curves over age, which can be observed for every country
and every year) by: a two-stage method based on spline coefficients, a distance-based method
through FPCA and a model-based method.

In this paper, we use the functional data analysis approach since it works with smooth
curves rather than scalar data. We aim to investigate the spatial relationship of mortality of
neighbouring countries in Europe by employing a more specific form of principal component
analysis developed to reduce multidimensionality in geo-referenced genetic data. This form,
known as the spatial principal component analysis (sPCA) was introduced by Jombart et al.
(2008) and was formulated to investigate the spatial pattern of genetic variability using allelic
frequency data of individuals or populations. sPCA is effective in revealing spatial connections
in mortality data compared to the classical PCA. In our study, we consider 28 European coun-
tries whose mortality data are available on the Human Mortality Database (HMD) for a fixed
period since it is of interest to investigate the existence of spatial autocorrelation in mortality
data of neighbouring countries. The idea of sPCA by Jombart et al. (2008) aimed to reveal spa-
tial patterns by directly considering spatial information. We constructed a functional Moran’s
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I statistic which will aid in determining spatial autocorrelation in functional data through the
implementation on the spatio-functional PCA. Our functional Moran’s I statistic is the first of
its kind from the functional data framework as no work has been done so far from this perspective.

Section 2.2 gives a brief description of the data used, Section 2.3 explains the methodology
used, Section 2.4 discusses the results and Section 2.5 concludes.

2.2 Description of data

We consider mortality rates for 28 European countries (Figure 2.1) available on HMD for ages
0 to 110 (where ages above 100 are grouped as 100+) to investigate the spatial dependency at
a fixed time, where years 1990, 2000 and 2010 were investigated separately. Lee and Carter
(1992) modeled the logs of the age-specific death rates as a linear function of an unobserved
period-specific intensity index, with parameters depending on age. We followed suit but had to
translate the mortality rates by adding a constant (the smallest value of death rates of the 28
countries studied) to each death rate value before taking the natural logarithm. This step is
crucial to avoid taking logarithms of zeros because the death rates for certain age groups from
Luxembourg were zero. Each colour indicates a country in the log of death rates plots for males
and females (Figures 2.2(a) and 2.3(a)).
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Figure 2.1: The map of European countries with mortality data from HMD.
Note: Data for the red shaded region is not available on HMD.
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Figure 2.2: The female log death rates in 2010 for 28 European countries: (a) observed,
(b) smoothed, (c) reconstructed using the matrix multiplication of the scores and principal
components based on contiguity weights, (d) reconstructed using the matrix multiplication
of the scores and principal components based on KNN weights.

0 20 40 60 80 100

−
10

−
8

−
6

−
4

−
2

0

Age

Lo
g 

de
at

h 
ra

te

a

0 20 40 60 80 100

−
10

−
8

−
6

−
4

−
2

0

Age

Lo
g 

de
at

h 
ra

te

b

0 20 40 60 80 100

−
10

−
8

−
6

−
4

−
2

0

Age

Lo
g 

de
at

h 
ra

te

c

0 20 40 60 80 100

−
10

−
8

−
6

−
4

−
2

0

Age

Lo
g 

de
at

h 
ra

te

d

Bulgaria
Denmark
Ireland
Estonia
Austria
Finland
France
Germany
Greece
Hungary
Italy
Latvia
Belarus
Lithuania
Slovakia
Belgium
Luxembourg
Netherlands
Norway
Poland
Portugal
Slovenia
Spain
Sweden
Switzerland
United Kingdom
Ukraine
Czech Republic

Figure 2.3: The male log death rates in 2010 for 28 European countries: (a) observed, (b)
smoothed, (c) reconstructed using the matrix multiplication of the scores and principal
components based on contiguity weights, (d) reconstructed using the matrix multiplication
of the scores and principal components based on KNN weights.

2.3 Methodology

2.3.1 Functional principal component analysis on areal spatial

data

Consider n spatial locations i, one observed discrete measurement Yi,x,t taken at time t of location
i ∈ I ⊂ Z2, I a lattice region V , for a given x ∈ X = [0, T ] ⊂ N. In our setting x is an age
between 0 and T = 100 and Yi,x,t is a mortality rate observed at a year t ∈ D ⊂ N for a country of
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location i. We assume that for a given t these measurements points Yi,x,t are noisy observations
of a smooth areal stochastic functional process {Xi}i∈I :

Yi,x,t = µt(x) + Si,t(x) + εi,x,t = Xi,t(x) + εi,x,t (2.1)

where µt is the mean function at time t (year). The n functions Si,t(.) are centered spatio-
temporal squared integrable functional random variables on the space-time domain I×D, namely
Si(.) is valued in the Hilbert space L2(X ) endowed with the inner product 〈f, g〉 =

∫
X f(x)g(x)dx,

for f, g in L2(X ). The unobserved variables {εi,x,t, i = 1, ..., n} are i.i.d with zero mean Gaussian
measurement errors and variance σ2.
We are interested in a functional PCA study where the classical PCA is replaced with its spatial
counterpart, to consider spatial autocorrelation on the variable of interest in the sampling loca-
tions. This autocorrelation may be quantified by a weight matrix depending on the neighbour
locations.
Let us consider in the following, the measurements of a given time t, ignoring the temporal
distribution of different years. Let us fix the time t and delete the subscript t in equation (2.1),
and consider Si,t(x) = Si(x) as a spatial functional variable and postulate a Karhunen-Loève
expansion (Ash & Gardner, 1975):

Si(x) =
∞∑
k=1

βk,iφk(x), (2.2)

where φk’s are the orthonormal eigenfunctions (functional principal components, FPC) and βk,i
are auto-correlated scores. In practice, the sum is truncated to a finite integer, K which is to be
chosen.
To compute the FPCs, let us express the sample data (Si)i=1,...,n by means of a basis expansion:

Si(x) =
∞∑
m=1

ci,mBm(x) ≈
p∑

m=1

ci,mBm(x), x ∈ X , (2.3)

where Bm(.) is some collection of basis functions, ci,m = 〈Si, Bm〉 have zero-mean. In practice,
the first p functions are used where a sufficiently large p is good for approximation.
Ramsay and Silverman (2005) presented two main basis systems for building functions. The
Fourier basis system is commonly used for periodic data while the B-spline basis system is
preferable for nonperiodic data (Ramsay et al., 2009). For the log death rates data, the B-spline
basis system provides a more flexible basis. The selection of the number of basis functions is
vital where a large number can lead to overfitting while a small number may cause underfitting.
The smoothing degree depends on the aim of the analysis. An important point we took note
in setting the number of basis functions is the selection of a number less than the number of
countries studied. The selection was made using step-by-step cross validation. In our case, we
fit the data using 13 basis functions. The smoothing of the curves using B-spline was performed
using the fda (Ramsay et al., 2020) package in the R software.

Estimation of the principal components and functional Moran’s I statistic

Let us extend the well know Moran’s statistic to the functional context. This aims to take into
account the spatial dependency in the principal component analysis to analyze the degree of
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spatial autocorrelation among observations in the geographic space I (Jombart et al., 2008).

Let W = (Wij) be a weighted spatial matrix where Wij is the neighbouring relation between
locations i and j. Let W be standardised where the rows sum to one.
The functional Moran’s index of the n row vector {Si(x)}i=1,...,n is introduced:

In(S(x)) =

∑n
i=1

∑n
j=1WijSi(x)Sj(x)∑n
i=1 Si(x)2

=
Cn(S(x))

σn(S(x))
, (2.4)

where

Cn(S(x)) =
1

n

n∑
i=1

n∑
j=1

WijSi(x)Sj(x)

≈ 1

n

n∑
i=1

n∑
j=1

p∑
m=1

p∑
l=1

Wijci,mcj,lBm(x)Bl(y)

=
1

n
B(x)>X>WXB(x),

(2.5)

and

σn(S(x)) =
1

n

n∑
i=1

Si(x)2

≈ 1

n

n∑
i=1

p∑
m=1

p∑
l=1

ci,mci,lBm(x)Bl(y)

=
1

n
B(x)>X>XB(x).

(2.6)

X is the n × p matrix composed of the scores (ci,m)i=1,...,n;m=1,...p of Si, B(x) is the p × 1

vector of components Bm(x), m = 1, ..., p, S(x) is the p× 1 vector of functions Si(x).

The trace functional Moran’s index is then introduced as:

In(S) =

∫ T

0
In(S(x))dx. (2.7)

The classical univariate Moran’s index (Eckardt & Mateu, 2020; Jombart et al., 2008) of a n raw
vector Xm of components {ci,m}i=1,...,n is

Ĩ(Xm) =
X>mWXm

X>mXm
.

Let
V (Xm) =

1

n
(X>mXm)Ĩ(Xm) =

1

n
X>mWXm.

It is highly positive when Xm has a large variance and shows a global spatial structure and is
negative in a situation with high variance and gives a local structure.

The purpose of the functional areal spatial principal component (FASPCA) proposed here
is based on scaled Rp vectors u (loadings) (‖u‖=1) such that the n raw vectors χ = Xu are
scattered and spatially autocorrelated. In other words, this aims to find the extreme values
(Jombart et al., 2008) of

C(u) = V (Xu) =
1

n
u>X>WXu. (2.8)
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The solutions (Jombart et al., 2008) are the eigenvectors uk of 1
2nX

>(W+W>)X associated with
the largest and smallest eigenvalues αk = var(χk)Ĩ(χk) (where χk = Xuk, var(χk) the variance
of χk). Note that some eigenvalues αk may be negative since Ĩ(χk) is not always positive.
By the help of orthonormal vectors uk and their eigen-values αk, we introduce the estimated
functional loading (eigen-function), φ̂k(x) of the functional spatial areal PCA.
In fact, approximating X by

X ≈ X̂ =
K∑
k=1

χku
>
k ,

based on K (sufficiently large) relevant scores χk corresponding to the K largest (in absolute
values) eigen-values, lead to

S(x) ≈ X̂B(x) =

K∑
k=1

χku
>
kB(x).

The functional spatial PCA is then obtained by letting the estimated eigen-functions as φ̂k(x) =

u>kB(x) and the n-row functional scores β̂k = 〈S (.) , φ̂k (.)〉.

Then the FASPCA decomposition is obtained using equation (2.3) where the orthonormality
of the vectors uk and the functions Bm gives:

Si(x) ≈
K∑
k=1

β̂k,iφ̂k(x), (2.9)

Xi(x) ≈ µ̂(x) +
K∑
k=1

β̂k,iφ̂k(x), (2.10)

where µ̂(x) = 1
n

∑n
i=1Xi(x), is the empirical mean with β̂k,i =

∫ T
0 Si(x)φ̂k(x)dx.

2.3.2 Implemention of the functional Moran’s I statistic on spa-

tial weight matrices

This study aims at examining if spatial autocorrelation exists in the mortality rates for 28 Eu-
ropean countries with data from HMD. The Moran’s I statistic was extended and applied to
the functional context. To ensure robustness, we used spatial weight matrices such as the k-
nearest neighbour (KNN) and contiguity matrices. We constructed a KNN matrix of the 28
countries studied, belonging to the set of the five nearest neighbours of each other. For the
contiguity weight matrix, we built a list of neighbours based on these 28 countries with con-
tiguous boundaries where the single shared boundary point meets the contiguity condition. The
weighted spatial matrixWij can be classified into weights based on distance and weights based on
boundaries. We use the distance dij between each pair of spatial units (regions, cities, centroids,
. . . ); i and j to construct spatial weight matrices for weights based on distance. The k-nearest
neighbour weights are given as

wij =

{
1 if j ∈ Nk(i);

0 otherwise;

where Nk(i) is the set of the k closest units or regions to i for k ∈ {1, . . . , n− 1}.
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For weights based on boundaries, we often use spatial contiguity to specify neighbouring loca-
tions in the sense of sharing a common border. There are various types of spatial contiguities
but the classical cases are those known as the Rook’s contiguity (where two cells of a matrix
which share a common boundary are neighbours), the Bishop’s contiguity (where two cells of a
matrix share a common vertice) and the Queen’s contiguity (neighbours by either the Rook’s or
the Bishop’s contiguity). The contiguity weights are given as

wij =

{
1 if i and j are contiguous;
0 otherwise.

A Shapiro-Wilk test to assess multivariate normality on the log of death rates data is required
to investigate if the data fulfills the normality assumption. If the data fulfils this assumption,
we can proceed with computing the functional Moran’s I statistic for the KNN- and contiguity-
based neighbourhoods to show spatial autocorrelation of log death rates. If the data violates
the normality assumption, we are required to run a Monte Carlo simulation on the Moran’s I
statistic. It is essential to investigate the global autocorrelation which measures the degree of
clustering as well as the local indicators which allows the decomposition of the Moran’s I global
indicator into the contribution of each observation. The spdep (Bivand & Wong, 2018) package
in the R software was used to aid the use of spatial weights as well as the Moran’s I statistic to
measure the spatial autocorrelation.
For the first part of the study, the classical functional PCA is performed on the smoothed data
(Figures 2.2(b) and 2.3(b)). The classical functional PCA does not account for spatial informa-
tion. Hence, the application of FASPCA enhanced with the implementation of the multivariate
(non-functional) spatial pca (sPCA) by Jombart et al. (2008). sPCA which complements PCA,
was introduced to explicitly include spatial information in the analysis of genetic variation for
investigating spatial genetic structures (Jombart et al., 2008). We employed FASPCA to reduce
the dimensionality of data in our study since spatial information is a vital aspect in studying
spatial autocorrelation. The PC scores of FASPCA consist of two types of patterns which are
defined as global and local structures (Jombart et al., 2008). A global pattern differentiates
between two spatial groups or a cline (or any intermediate state) while local scores retrieve
stronger genetic differences among neighbours than among random pairs of entities (Jombart
et al., 2008). The global pattern corresponds to positive spatial autocorrelation while the local
pattern corresponds to negative spatial autocorrelation (Jombart et al., 2008). FASPCA was
implemented using the fda (Ramsay et al., 2020), adegenet (Jombart, 2008), ade4 (Bougeard
& Dray, 2018; Chessel et al., 2004; Dray & Dufour, 2007; Dray et al., 2007) and adespatial

(Dray et al., 2019) packages from the R software.

2.4 Results and discussion

The log death rates data for the 28 countries involving males and females described previously are
analysed with the proposed FASPCA. First, the data are smoothed for convertion to functional
objects. Figures 2.2(b) and 2.3(b) represent the smoothed log death rates data using B-splines
for the male and female populations in year 2010. The smoothed data for years 1990 and 2000
portray similar characteristics to those in Figures 2.2(b) and 2.3(b).
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We then investigate the presence of spatial autocorrelation among the data. The log death
rates data for the 28 countries involving males and females do not satisfy the normality as-
sumption. We performed the Shapiro-Wilk test to assess multivariate normality (mvnormtest
R package (Jarek, 2012)) on the log death rates data and found that this data violated the
normality assumption. Hence, permutation tests for the Moran’s I statistics are calculated for
these data using 999 random permutations of the log death rates for all cases studied based on
the KNN and contiguity weighting schemes. Table 2.1 shows the existence of significant spatial
autocorrelation for female and male log death rates for years 1990, 2000 and 2010 for the 28
countries. In this table, a classical Moran’s I index is calculated considering for each year and
gender, the raw data matrix as a panel dataset. Positive spatial autocorrelation indicates that
locations nearby tend to be similar on map where high values tend to be near high values and
low values near low values. On the other hand, when geographic values are dissimilar, the map
shows negative spatial autocorrelation. The Moran’s I statistics reported values close to +1 for
both males and females in years 1990, 2000 and 2010. This suggests that neighbouring locations
have strong positive autocorrelation in mortality for both KNN and contiguity neighbours. The
Moran’s I index reported in Table 1 are somehow aggregations of the functional index (equa-
tion (2.4)) like the functional trace index defined in equation (2.7).

Table 2.1: Moran’s test for spatial autocorrelation based on log of death rates for females
and males in 28 countries in Europe based on KNN and contiguity weights.

Female Male
Year 1990 2000 2010 1990 2000 2010
KNN 0.9857∗∗∗ 0.9835∗∗∗ 0.9842∗∗∗ 0.9770∗∗∗ 0.9814∗∗∗ 0.9831∗∗∗

Contiguity 0.9846∗∗∗ 0.9756∗∗∗ 0.9734∗∗∗ 0.9782∗∗∗ 0.9802∗∗∗ 0.9699∗∗∗

Note: ∗∗∗ p-value < 0.001

Figure 2.4 illustrates the smoothed functional Moran statistics for ages 0 to 100+ using B-
splines for the female and male log death rates data based on the KNN and contiguity weights.
Figure 2.4 also highlights that the functional Moran’s I statistics showed comparable behaviour
for the KNN and contiguity weights for all three years. For females, higher spatial dependency
is visible from approximately 20 years of age to 80 years of age. The similar attributes are
observed in the log death rates of males. Generally, for ages approximately 80 years and above,
spatial autocorrelation decreases because the number of people who live past 80 is low. The
life expectancy for the countries in Europe is between 70 to 80 years of age, from 1990 to 2010
(European Union Data, 2020). This contributed to the high spatial dependency (approximately
0.6) for these ages. We also observed that the spatial dependency increased from 1990 to 2010.
The formation of the European Union on 1 November 1993 could be the possible reason for the
spatial dependence of mortality rates in these countries to increase over time as one of the objec-
tives of the European Union is towards improving the quality of life of the population through
cross-border cooperation, especially in healthcare.

We performed the classical FPCA to find new functions that reveal the most important types
of variation in the curve data with the absence of the spatial structure. Table 2.2 gives the re-
sults for this FPCA on the male and female log death rates data for the aforesaid years and an
autocorrelation Moran’s test on the scores. The first PC reveals autocorrelation for both genders
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Figure 2.4: Smoothed functional Moran’s I statistics curves for log death rates from ages
0 to 100+ of: (a) females using KNN, (b) females using contiguity, (c) males using KNN,
and (d) males using contiguity, weight matrices for years 1990, 2000 and 2010.

for the three years studied. Table 2.2 also reveals that the first PC alone accounts to more than
99.5% of the total variability of the data for all cases where we can see the data alone on one
dimension. This does not give a clear picture of the data due to the absence of the spatial factor
in the method.

We then proceeded to perform FASPCA for KNN and contiguity neighbours for the basis
functions of the male and female log death rates data for all three years. Figure 2.5 gives a
picture of the global structures (positive spatial autocorrelation, where the log of death rates are
similar at neighbouring locations) and local structures (negative spatial autocorrelation, where
the log of death rates tend to be dissimilar at neighbouring locations) to be retained for female
and male data using KNN weights (Figure 2.6 for contiguity weights). Then, we ran the FASPCA
described in Section 2.3 for the cases studied by considering the top three positive and top two
negative eigen-values (Table 2.2). The percentage of variability explained by the functional prin-
cipal components of FASPCA are given in Table 2.2.

The functional Moran’s I statistics calculated based on these functional principal compo-
nents show significant spatial autocorrelation for the principal components reported in Table 2.2
for KNN and contiguity weights (refer to p-values). Spatial autocorrelation can effectively be
detected from the spatial principal components of the functional data which explains more than
95% of the percentage of variability based on the KNN and contiguity weights involving males
and females. We reconstructed the data for each case by using the top two positive and top one
negative PCs (Figures 2.2(c,d) and 2.3(c,d)). These PCs were mapped onto geographic spaces
(representing 28 European countries generated using the maps package (Becker et al., 2018) and
the rgdal package (Bivand et al., 2019) where the black and white squares of the variable size
represent positive and negative scores of the PCs respectively. The large black squares are well
differentiated from the large white squares, while the small squares are less differentiated. The
area of the square is proportional to the absolute value of the score. These graphical represen-
tations are applied to the significant PCs of each case for KNN and contiguity neighbours.
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Table 2.2: Moran’s test on principal components using FPCA and FASPCA, based on
KNN and contiguity weight matrices for females and males of 28 European countries in
2010.

Female Male
Moran’s I variability (%) Moran’s I variability (%)

Classical FPCA
1st score 0.4973∗∗∗ 99.81 0.5482∗∗∗ 99.67
2nd score 0.0402 0.08 −0.0873 0.14
3rd score 0.2305∗∗ 0.04 0.2687∗∗ 0.08
4th score 0.1448∗ 0.03 −0.0548 0.04
Total 99.96 99.93
FASPCA (KNN (3,2))
1st score positive 0.5400∗∗∗ 77.74 0.6021∗∗∗ 85.14
2nd score positive 0.3442∗∗ 8.93 0.3239∗∗ 2.54
3rd score positive 0.1636∗ 4.09 0.1821∗ 0.86
2nd score negative −0.1775∗ 2.29 −0.1575† 2.29
1st score negative −0.1030 3.72 −0.1516† 6.65
Total 96.77 97.48
FASPCA (Contiguity (3,2))
1st score positive 0.5041∗∗ 67.15 0.6315∗∗∗ 83.41
2nd score positive 0.3857∗∗ 14.37 0.1831† 1.87
3rd score positive 0.3890∗∗ 5.89 0.2537∗ 1.78
2nd score negative −0.1546 1.64 −0.2023 1.60
1st score negative −0.3316∗ 5.99 −0.2544† 8.61
Total 95.04 97.27

Note: † p < 0.1; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001

Figure 2.7 displays the projection of the log death rates scores for females in year 2010 using
the KNN neighbours of the three spatial PCs (top two positive and top one negative PC scores)
onto the geographical map. The first positive PC (Figure 2.7(a)) shows spatial connectivity
between the states split into two clusters, one in the west and one in the east. The projection
for the second positive PC (Figure 2.7(b)) also shows spatial connectivity where two clusters are
formed (northern and southern regions). The first negative PC (Figure 2.7(c)) does not seem
to display a particular spatial pattern. Similar patterns are observed for cases involving the
contiguity neighbours (Figure 2.8). This outcome is anticipated because the negative principal
components are associated with local structures that highlight dissimilarities on the geographi-
cal map at neighbouring locations. In general, spatial patterns are noticeable for the first and
second PCs involving male and female mortality data for years 1990, 2000 and 2010. These
characteristics appear to be similar for the KNN and contiguity neighbours.

The scores of the first PC from the classical FPCA were displayed on the geographical map
(Figure 2.9). This FPCA does not consider spatial autocorrelation and as mentioned earlier,
the first PC alone accounts to more than 99.5% of the total variability (Table 2.2) indicating its
failure to cluster the locations based on spatial dependency. Hence, it is vital to consider the
spatial aspect when performing PCA to identify spatially dependent locations on a geographical
map. Since this is done on functional data, the functional Moran’s I statistic will be the best tool
to efficiently assess the spatial autocorrelation in functional data. We found that all the scores
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belonged to the same group. This outcome was expected since the FPCA does not consider
spatial autocorrelation and as mentioned earlier the first PC alone accounts to more than 99.5%
of the total variability (Table 2.2).
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Figure 2.5: Eigenvalues based on FASPCA using the KNN weight matrices for (a) females
and (b) males from 28 European countries in 2010.
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Figure 2.6: Eigenvalues based on FASPCA using the contiguity weight matrices for (a)
females and (b) males from 28 European countries in 2010.

2.5 Concluding remarks

We extended the Moran’s I statistic in the context of functional data analysis and applied it to
the mortality data of 28 countries in Europe. The objective step in preparing the data to be
used in the FDA context is by data smoothing. After converting the data into functions, spatial
functional PCA was employed to find new functions that reveal the most important type of vari-
ation in the curve. The data was analysed from classical and spatial perspectives. Interestingly,
we found the existence of spatial dependency in the mortality rates of neighbouring countries via
the KNN and contiguity neighbourhood approaches. Our newly introduced functional Moran’s
I statistic is proved to be efficient in identifying the existence of spatial dependency of mor-
tality rates of neighbouring countries effectively using functional principal components, which
are outcomes of dimensionality reduction. In our future work, this idea of spatial dependency
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Figure 2.7: The scores of the (a) first positive, (b) second positive, and (c) first negative
eigenvalues of the FASPCA based on KNN weights for females from 28 European countries
in 2010.
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Figure 2.8: The scores of the (a) first positive, (b) second positive, and (c) first negative
eigenvalues of the FASPCA based on contiguity weights for females from 28 European
countries in 2010.
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Figure 2.9: The scores of the first eigenvalues based on the classical FPCA for (a) females
and (b) males from 28 European countries in 2010.
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in mortality rates will be extended towards constructing a spatial predictive model to predict
mortality rates for neighbouring countries with limited or no data. It is also of interest to further
modify this work to the spatio-temporal framework.

2.6 Appendix

Table 2.3: Moran’s test on principal components using FPCA and FASPCA, using KNN
and contiguity weight matrices for females and males of 28 European countries for 1990.

Female Male
Moran’s I variability (%) Moran’s I variability (%)

Classical FPCA
1st score 0.4135∗∗∗ 99.79 0.5233∗∗∗ 99.73
2nd score −0.1203 0.08 −0.1342† 0.11
3rd score −0.0019 0.05 0.3420∗∗∗ 0.06
4th score 0.4431∗∗∗ 0.03 −0.0271 0.03
Total 99.95 99.93
FASPCA (KNN (3,2))
1st score positive 0.4905∗∗∗ 65.46 0.5527∗∗∗ 81.18
2nd score positive 0.4211∗∗ 11.77 0.3575∗∗∗ 5.33
3rd score positive 0.1067† 1.64 0.0957† 0.88
2nd score negative −0.1026 4.51 −0.2093∗∗ 2.98
1st score negative −0.1324 10.66 −0.1655∗ 7.78
Total 94.04 98.15
FASPCA (Contiguity (3,2))
1st score positive 0.5723∗∗∗ 58.16 0.6376∗∗∗ 80.64
2nd score positive 0.5975∗∗∗ 13.96 0.3917∗ 6.38
3rd score positive 0.2018† 6.52 0.2248† 2.90
2nd score negative −0.0948 2.26 −0.1105 2.32
1st score negative −0.3174∗ 12.30 −0.2637† 3.71
Total 93.2 95.95

Note: † p < 0.1; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001
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Table 2.4: Moran’s test on principal components using FPCA and FASPCA, using KNN
and contiguity weight matrices for females and males of 28 European countries for 2000.

Female Male
Moran’s I variability (%) Moran’s I variability (%)

Classical FPCA
1st score 0.4710∗∗∗ 99.75 0.5418∗∗∗ 99.69
2nd score −0.1141 0.12 0.1414∗ 0.15
3rd score 0.0070 0.06 0.4498∗∗∗ 0.07
4th score 0.3234∗∗∗ 0.02 −0.1972∗ 0.03
Total 99.95 99.94
FASPCA (KNN (3,2))
1st score positive 0.4786∗∗∗ 71.66 0.5645∗∗∗ 83.74
2nd score positive 0.4584∗∗∗ 6.79 0.2613∗∗ 9.24
3rd score positive 0.0968† 1.69 0.1128† 0.66
2nd score negative −0.1553∗ 3.94 −0.1790∗ 1.78
1st score negative −0.2072∗ 13.27 −0.1563∗ 3.10
Total 97.35 98.52
FASPCA (Contiguity (3,2))
1st score positive 0.5182∗∗ 72.7 0.6758∗∗∗ 87.16
2nd score positive 0.3055∗ 7.53 0.1626 5.56
3rd score positive 0.2524∗ 3.78 0.2606∗ 1.91
2nd score negative −0.1558† 4.32 −0.0977 1.11
1st score negative −0.1479 6.30 −0.3445∗ 1.94
Total 94.63 97.68

Note: † p < 0.1; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001



30
Chapter 2. Exploring spatial patterns of mortality in Europe using

functional spatial principal components for areal data

 −2.5  −1.5  −0.5  0.5  1.5

a

 −0.3  −0.1  0.1  0.3  0.5

b

 −0.5  −0.3  −0.1  0.1  0.3  0.5

c

Figure 2.10: The scores of the (a) first positive, (b) second positive, and (c) first negative
eigenvalues based on KNN weights for males from 28 European countries in 2010.
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Figure 2.11: The scores of the (a) first positive, (b) second positive, and (c) first negative
eigenvalues based on contiguity weights for males from 28 European countries in 2010.



Chapter 3
Partially linear spatial probit models

Abstract

A partially linear probit model for spatially dependent data is considered. A triangular array
setting is used to cover various patterns of spatial data. Conditional spatial heteroscedasticity
and non-identically distributed observations and a linear process for disturbances are assumed,
allowing various spatial dependencies. The estimation procedure is a combination of a weighted
likelihood and a generalized method of moments. The procedure first fixes the parametric com-
ponents of the model and then estimates the non-parametric part using weighted likelihood; the
obtained estimate is then used to construct a GMM (Generalised Method of Moments) para-
metric component estimate. The consistency and asymptotic distribution of the estimators are
established under sufficient conditions. Some numerical results are provided to investigate the
finite sample performance of the estimators.

Keywords: Binary choice model, GMM, non-parametric statistics, spatial econometrics, spatial
statistics.

Introduction

Agriculture, economics, environmental sciences, urban systems, and epidemiology activities often
utilize spatially dependent data. Therefore, modelling such activities requires one to find a type
of correlation between some random variables in one location with other variables in neighbouring
locations; see for instance Pinkse and Slade (1998). This is a significant feature of spatial data
analysis. Spatial/Econometrics statistics provides tools to perform such modelling. Many studies
on spatial effects in statistics and econometrics using many diverse models have been published;
see Cressie (2015), Anselin (2010), Anselin (2013) and Arbia (2006) for a review.
Two main methods of incorporating a spatially dependent structure (see for instance Cressie,
2015) can essentially be distinguished as between geostatistics and lattice data. In the domain of
geostatistics, the spatial location is valued in a continuous set of RN , N ≥ 2. However, for many
activities, the spatial index or location does not vary continuously and may be of the lattice type,
the baseline of this current work. In image analysis, remote sensing from satellites, agriculture
etc., data are often received as a regular lattice and identified as the centroids of square pixels,
whereas a mapping often forms an irregular lattice. Basically, statistical models for lattice data
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are linked to nearest neighbours to express the fact that data are nearby.
Two popular spatial dependence models have received substantial attention for lattice data, the
spatial autoregressive (SAR) dependent variable model and the spatial autoregressive error model
(SAE, where the model error is an SAR), which extend the regression in a time series setting to
spatial one.
From a theoretical point of view, various linear spatial regression SAR and SAE models as well
as their identification and estimation methods, e.g., two-stage least squares (2SLS), three-stage
least squares (3SLS), maximum likelihood (ML) or quasi-maximum likelihood (QML) and the
generalized method of moments (GMM), have been developed and summarized by many authors
such as Anselin (2013), Kelejian and Prucha (1998), Kelejian and Prucha (1999), Conley (1999),
Cressie (2015), Case (1993), L.-F. Lee (2004), L.-f. Lee (2007), Lin and Lee (2010), Zheng and
Zhu (2012), Malikov and Sun (2017), Garthoff and Otto (2017), Yang and Lee (2017).

Introducing nonlinearity into the field of spatial linear lattice models has attracted less at-
tention; see Robinson (2011), who generalised kernel regression estimation to spatial lattice data.
Su (2012) proposed a semi-parametric GMM estimation for some semi-parametric SAR models.
Extending these models and methods to discrete choice spatial models has seen less attention
where only a few researches are concerned with this topic in recent years. This may be as noted
by Fleming (2004) (see also Smirnov (2010) and Billé (2014)) due to the "added complexity that
spatial dependence introduces into discrete choice models". Estimating the model parameters
with a full ML approach in spatially discrete choice models often requires solving a very compu-
tationally demanding problem of n-dimensional integration, where n is the sample size.
For linear models, many discrete choice models are fully linear and utilize a continuous latent
variable; see Smirnov (2010), H. Wang et al. (2013) and Martinetti and Geniaux (2017), who
proposed pseudo-ML methods, and Pinkse and Slade (1998) who studied a method based on the
GMM approach. Also, others methodologies of estimation are used such as the EM algorithm
(McMillen, 1992) and Gibbs sampling approach (LeSage, 2000).

When the relationship between the discrete choice variable and some explanatory variables is
not linear, a semi-parametric model may be an alternative to fully parametric models. This type
of model is known in the literature as partially linear choice spatial models and is the baseline of
this current work. When the data are independent, these choice models can be viewed as special
cases of the famous generalised additive models (Hastie & Tibshirani, 1990) and have received
substantial attention in the literature, and various estimation methods have been explored (see
for instance Carroll et al., 1997; Hunsberger, 1994; Severini & Staniswalis, 1994).
To the best of our knowledge, semi-parametric spatial choice models have not yet been inves-
tigated from a theoretical point of view. To fill this gap, this work addresses an SAE spatial
probit model for when the spatial dependence structure is integrated in a disturbance term of
the studied model.
We propose a semi-parametric estimation method combining the GMM approach and the weighted
likelihood method. The method consists of first fixing the parametric components of the model
and non-parametrically estimating the non-linear component by weighted likelihood (Staniswalis,
1989). The obtained estimator depending on the values at which the parametric components are
fixed is used to construct a GMM estimator (Pinkse & Slade, 1998) of these components.
The remainder of this paper is organised as follows. In Section 3.1, we introduce the studied
spatial model and the estimation procedure. Section 3.2 is devoted to hypotheses and asymptotic
results, while Section 3.3 reports a discussion and computation of the estimates. Section 3.4 gives
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some numerical results based on simulated data to illustrate the performance of the proposed
estimators. The last section presents the proofs of the main results.

3.1 Model

We consider that at n spatial locations {s1, s2, . . . , sn} satisfying ‖si − sj‖ > ρ with ρ > 0,
observations of a random vector (Y,X,Z) are available. Assume that these observations are
considered as triangular arrays (Robinson, 2011) and follow the partially linear model of a latent
dependent variable Y ∗:

Y ∗in = XT
inβ0 + g0(Zin) + Uin, 1 ≤ i ≤ n, n = 1, 2, . . . (3.1)

with
Yin = I (Y ∗in ≥ 0) , 1 ≤ i ≤ n, n = 1, 2, . . . (3.2)

where I(·) is the indicator function; X and Z are explanatory random variables taking values in
the two compact subsets X ⊂ Rp(p ≥ 1) and Z ⊂ Rd(d ≥ 1), respectively; the parameter β0 is
an unknown p × 1 vector that belongs to a compact subset Θβ ⊂ Rp; and g0(·) is an unknown
smooth function valued in the space of functions G =

{
g ∈ C2(Z) : ‖g‖ = supz∈Z |g(z)| < C

}
,

with C2(Z) the space of twice differentiable functions from Z to R and C a positive constant.
In model (3.1), β0 and g0(·) are constant over i (and n). Assume that the disturbance term Uin

in (3.2) is modelled by the following spatial autoregressive process (SAR):

Uin = λ0

n∑
j=1

wijnUjn + εin, 1 ≤ i ≤ n, n = 1, 2, . . . (3.3)

where, we assume that, for all n = 1, 2, . . ., {εin, 1 ≤ i ≤ n} is independent of {Xin, 1 ≤ i ≤ n}
and {Zin, 1 ≤ i ≤ n}, and {Xin, 1 ≤ i ≤ n} is independent of {Zin, 1 ≤ i ≤ n}.
λ0 is the autoregressive parameter, valued in the compact subset Θλ ⊂ R, wijn, j = 1, ..., n are
the elements in the i–th row of a non-stochastic n×n spatial weight matrix Wn, which contains
the information on the spatial relationship between observations. This spatial weight matrix is
usually constructed as a function of the distances (with respect to some metric) between locations;
see Pinkse and Slade (1998) for additional details. The n × n matrix (In − λ0Wn) is assumed
to be non-singular for all n, where In denotes the n × n identity matrix and {εin, 1 ≤ i ≤ n}
are assumed to be independent random Gaussian variables; E(εin) = 0 and E(ε2

in) = 1 for
i = 1, . . . , n n = 1, 2, . . .. Note that one can rewrite (3.3) as

Un = (In − λ0Wn)−1 εn, n = 1, 2, . . . (3.4)

where Un = (Un1, . . . , Unn)T and εn = (εn1, . . . , εnn)T . Therefore, the variance-covariance matrix
of Un is

Vn(λ0) ≡ Var(Un) = (In − λ0Wn)−1
{

(In − λ0Wn)T
}−1

, n = 1, 2, . . . (3.5)

This matrix allows one to describe the cross-sectional spatial dependencies between the n
observations. Furthermore, the fact that the diagonal elements of Vn(λ0) depend on λ0 and
particularly on i and n allows some spatial heteroscedasticity. These spatial dependencies and
heteroscedasticity depend on the neighbourhood structure established by the spatial weight ma-
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trix Wn.
The elements wijn ofWn are usually considered as inversely proportional to the distance between
spatial units i and j with respect to some metric Pinkse and Slade (physical distance, social net-
work or economic distance, see for instance 1998). The matrices Wn are usually classified into
two groups: Weights Based on Distance and Weights Based on Boundaries. For Weights Based
on Distance, the distance dij between each pair of spatial units (regions, cities, centroids,...) i

and j are basically considered.

• k-Nearest Neighbor weights

wij =

{
1 if j ∈ Nk(i),

0 Otherwise
where Nk(i) is the set of the k closest units or regions to i for k ∈ {1, ..., n− 1}

• Power Distance Decay weights

wij =

{
d−αij if 0 ≤ dij ≤ δ,

0 if dij > δ
where α is any positive exponent, typically α = 1 or α = 2.

For Weights Based on Boundaries, spatial contiguity is often used to specify neighboring lo-
cation in the sense of sharing a common border. There are different type of spatial contiguity but
the classical cases are those referred to Rook contiguity (with only common boundaries), Bishop
contiguity (with only common vertices) and Queen contiguity (with both Rook and Bishop con-
tiguity).

wij =

{
1 if i and j are contiguity
0 Otherwise

In general, we can rewrite the last equation as:

wij =

{
1 `ij > 0

0 `ij = 0
,

with `ij denotes the length of shared boundary.
Before proceeding further, let us give some particular cases of the model.
If one considers i.i.d observations, that is, Vn(λ0) = σ2In, with σ depending on λ0, the obtained
model may be viewed as a special case of classical generalised partially linear models (e.g. Sev-
erini & Staniswalis, 1994) or the classical generalised additive model (Hastie & Tibshirani, 1990).
Several approaches for estimating this particular model have been developed; among these meth-
ods, we cite that of Severini and Staniswalis (1994) based on the concept of the generalised profile
likelihood Severini and Wong (e.g 1992). This approach consists of first fixing the parametric
parameter β and non-parametrically estimating g0(·) using the weighted likelihood method. This
last estimate is then used to construct a profile likelihood to estimate β0.
When g0 ≡ 0 (or is an affine function), that is, without a non-parametric component, several
approaches have been developed to estimate the parameters β0 and λ0. The basic difficulty en-
countered is that the likelihood function of this model involves an n-dimensional normal integral;
thus, when n is high, the computation or asymptotic properties of the estimates may present
difficulties (e.g. Poirier & Ruud, 1988). Various approaches have been proposed to addressed
this difficulty; among these approaches, we cite the following:

• Feasible Maximum Likelihood approach: this approach consists of replacing the true like-
lihood function by a pseudo-likelihood function constructed via marginal likelihood func-
tions. Smirnov (2010) proposed a pseudo-likelihood function obtained by replacing Vn(λ0)
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by some diagonal matrix with the diagonal elements of Vn(λ0). Alternatively, H. Wang
et al. (2013) proposed to divide the observations by pairwise groups, where the latter are
assumed to be independent with a bivariate normal distribution in each group, and esti-
mate β0 and λ0 by maximizing the likelihood of these groups. Recently Martinetti and
Geniaux (2017) proposed a pseudo-likelihood function defined as an approximation of the
likelihood function where the latter is inspired by some univariate conditioning procedure.

• Generalised Method of Moments (GMM) approach used by Pinkse and Slade (1998). These
authors used the generalized residuals defined by Ũin(β, λ) = E (Uin|Yin, β, λ) , 1 ≤ i ≤
n, n = 1, 2, . . . with some instrumental variables to construct moment equations to define
the GMM estimators of β0 and λ0.

In what follows, using the n observations (Xin, Yin, Zin), i = 1, ..., n, we propose parametric es-
timators of β0, λ0 and a non-parametric estimator of the smooth function g0(·).
We give asymptotic results according to increasing domain asymptotic. This consists of a sam-
pling structure whereby new observations are added at the edges (boundary points) compare to
the infill asymptotic, which consists of a sampling structure whereby new observations are added
in-between existing observations. A typical example of an increasing domain is lattice data. An
infill asymptotic is appropriate when the spatial locations are in a bounded domain.

3.1.1 Estimation Procedure

We propose an estimation procedure based on a combination of a weighted likelihood method
and a generalized method of moments. We first fix the parametric components β and λ of the
model and estimate the non-parametric component using a weighted likelihood. The obtained
estimate is then used to construct generalised residuals, where the latter are combined with the
instrumental variables to propose GMM parametric estimates. This approach will be described
as follows:

By equation (3.2), we have

E0 (Yin|Xin, Zin) = Φ
(

(vin(λ0))−1 (XT
inβ0 + g0(Zin)

))
, 1 ≤ i ≤ n, n = 1, 2, . . . (3.6)

where E0 denotes the expectation under the true parameters (i.e., β0, λ0 and g0(·)), Φ(·) is the cu-
mulative distribution function of a standard normal distribution, and (vin(λ0))2 = Viin(λ0), 1 ≤
i ≤ n, n = 1, 2, · · · are the diagonal elements of Vn(λ0).
For each β ∈ Θβ , λ ∈ Θλ, z ∈ Z and η ∈ R, we define the conditional expectation on Zin of the
log-likelihood of Yin for 1 ≤ i ≤ n, n = 1, 2, . . ., as

H(η;β, λ, z) = E0

(
L
(

Φ
(

(vin(λ))−1 (η +XT
inβ
))

;Yin

)∣∣∣Zin = z
)
, (3.7)

with L(u; v) = log
(
uv(1− u)1−v). Note that H(η;β, λ, z) is assumed to be constant over i (and

n). For each fixed β ∈ Θβ , λ ∈ Θλ and z ∈ Z, gβ,λ(z) denotes the solution in η of

∂

∂η
H(η;β, λ, z) = 0. (3.8)

Then, we have gβ0,λ0(z) = g0(z) for all z ∈ Z.
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Now, using gβ,λ(·), we construct the GMM estimates of β0 and λ0 as in Pinkse and Slade,
1998. For that, we define the generalised residuals, replacing g0(Zin) in (3.1) by gβ,λ(Zin):

Ũin(β, λ, gβ,λ) = E (Uin|Yin, β, λ) (3.9)

=
φ (Gin(β, λ, gβ,λ)) (Yin − Φ (Gin(β, λ, gβ,λ)))

Φ (Gin(β, λ, gβ,λ)) (1− Φ (Gin(β, λ, gβ,λ)))
,

where φ(·) is the density of the standard normal distribution and
Gin(β, λ, gβ,λ) = (vni(λ))−1 (XT

inβ + gβ,λ(Zin)
)
.

For notational simplicity, we write θ = (βT , λ)T ∈ Θ ≡ Θβ ×Θλ when possible.
Note that in (3.9), the generalised residual Ũin(· , ·) is calculated by conditioning only on Yin

and not on the entire sample {Yin, i = 1, 2, . . . , n, n = 1, . . .} or a subset of it. This of course
will influence the efficiency of the estimators of θ obtained by these generalised residuals, but it
allows one to avoid a complex computation; see Poirier and Ruud (1988) for additional details.
To address this loss of efficiency, let us follow Pinkse and Slade (1998)’s procedure, which consists
of employing some instrumental variables to create some moment conditions, and use a random
matrix to define a criterion function. Both the instrumental variables and the random matrix
permit one to consider more information about the spatial dependences and heteroscedasticity
characterizing the dataset. Let us now discuss the details of the estimation procedure. Let

Sn(θ, gθ) = n−1ξTn Ũn(θ, gθ), (3.10)

where Ũn(θ, gθ) is an n × 1 vector, composed of Ũin(θ, gθ), 1 ≤ i ≤ n and ξn is an n × q

matrix of instrumental variables, whose ith row is given by the 1 × q random vector ξin. The
latter may depend on gθ(·) and θ. We assume that ξin is σ(Xin, Zin), measurable for each
i = 1, . . . , n, n = 1, 2, . . .. We suppress the possible dependence of the instrumental variables
on the parameters for notational simplicity. The GMM approach consists of minimising the
following sample criterion function:

Qn(θ, gθ) = STn (θ, gθ)MnSn(θ, gθ), (3.11)

where Mn is some positive-definite q × q weight matrix that may depend on the sample infor-
mation. The choice of the instrumental variables and weight matrix characterizes the difference
between GMM estimator and all pseudo-maximum likelihood estimators. For instance, if one
takes

ξin(θ, gθ) =
∂Gin(θ, ηi)

∂θ
+
∂Gin(θ, ηi)

∂η

∂gθ
∂θ

(Zin), (3.12)

with ηi = gθ(Zin), Gin(θ, ηi) = (vin(λ))−1 (XT
inβ + ηi

)
, and Mn = Iq with q = p + 1, then the

GMM estimator of θ is equal to a pseudo-maximum profile likelihood estimator of θ, accounting
only for the spatial heteroscedasticity.
Now, let

S(θ, gθ) = lim
n→∞

E0 (Sn(θ, gθ)) , (3.13)

and
Q(θ, gθ) = ST (θ, gθ)MS(θ, gθ),

where M , the limit of the sequence Mn, is a nonrandom positive-definite matrix. The functions
Sn(·, ·) and Qn(·, ·) are viewed as empirical counterparts of S(·, ·) and Q(·, ·), respectively.
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Clearly, gθ(·) is not available in practice. However, we need to estimate it, particularly by an
asymptotically efficient estimate. By (3.8) and for fixed θT = (βT , λ) ∈ Θ, an estimator of gθ(z),
for z ∈ Z, can be given by ĝθ(z), which denotes the solution in η of

n∑
i=1

∂

∂η
L (Φ (Gin(θ, η)) ;Yin)K

(
z − Zin
bn

)
= 0, (3.14)

where K(·) is a kernel from Rd to R+ and bn is a bandwidth depending on n.

Now, replacing gθ(·) in (3.11) by the estimator ĝθ(·) permits one to obtain the GMM estimator
θ̂ of θ as

θ̂ = argminθ∈ΘQn(θ, ĝθ). (3.15)

A classical inconvenience of the estimator ĝθ(z) proposed in (3.14) is that the bias of ĝθ(z) is
high for z near the boundary of Z. Of course, this bias will affect the estimator of θ given in
(3.15) when some of the observations Zin are near the boundary of Z. A local linear method,
or more generally the local polynomial method (Fan & Gijbels, 1996), can be used to reduce
this bias. Another alternative is to use trimming (Severini & Staniswalis, 1994), in which the
function Sn(θ, gθ) is computed using only observations associated with Zin that are away from
the boundary. The advantage of this approach is that the theoretical results can be presented in
a clear form, but it is less tractable from a practical point of view, in particular, for small sample
sizes.

3.2 Large sample properties

We now turn to the asymptotic properties of the estimators derived in the previous section:
θ̂T = (β̂T , λ̂) and ĝθ̂(·). Let us use the following notation: d

dθS(θ, gθ) means that we differentiate
S(., .) with respect to θ, and ∂

∂θS(θ, gθ) is the partial derivative of S(·, ·) w.r.t the first variable.
The partial derivative of Sn(θ, g) w.r.t g, for any function v ∈ G, is

∂Sn
∂g

(θ, g)(v) = n−1
n∑
i=1

ξin
∂Ũin
∂η

(θ, ηi)v(Zin).

Without ambiguity, ‖a‖ denotes supt |a(t)| when a is a function,
(∑

a2
i

)1/2 when a is a vector,

and
(∑∑

a2
ij

)1/2
when a is a matrix.

Let the following matrices be needed in the asymptotic variance-covariance matrix of θ̂:

B1(θ0) = lim
n→∞

E0

(
nSn (θ0, g0)STn (θ0, g0)

)
, B2(θ0) =

{
d

dθ
ST (θ, gθ)

∣∣∣∣
θ=θ0

}
M

{
d

dθ
S (θ, gθ)

∣∣∣∣
θ=θ0

}
,

with
d

dθ
S (θ, gθ) =

∂S

∂θ
(θ, gθ) +

∂S

∂g
(θ, gθ)

∂

∂θ
gθ, (3.16)

and

Ω(θ0) = {B2(θ0)}−1

{
d

dθ
ST (θ, gθ)

∣∣∣∣
θ=θ0

}
MB1(θ0)M

{
d

dθ
S (θ, gθ)

∣∣∣∣
θ=θ0

}
{B2(θ0)}−1 .
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The following assumptions are required to establish the asymptotic results.
Assumption A1. (Smoothing condition). For each fixed θ ∈ Θ and z ∈ Z, let gθ(z) denote

the unique solution with respect to η of

∂

∂η
H(η; θ, z) = 0.

For any ε > 0 and g ∈ G, there exists γ > 0 such that

sup
θ∈Θ,z∈Z

∣∣∣∣ ∂∂ηH(g(z); θ, z)

∣∣∣∣ ≤ γ =⇒ sup
θ∈Θ,z∈Z

|g(z)− gθ(z)| ≤ ε. (3.17)

Assumption A2. (Local dependence). The density fin(·) of Zin exists, is continuous on Z
uniformly on i and n and satisfies

lim inf
n→∞

inf
z∈Z

1

n

n∑
i=1

fin(z) > 0. (3.18)

The joint probability density fijn(., .) of (Zin, Zjn) exists and is bounded on Z ×Z uniformly on
i 6= j and n.
Assumption A3. (Spatial dependence). Let hθ, ηiin (·|·, ·) denote the conditional log likelihood
function of Yin given (Xin, Zin), where ηi = g(Zin). Let Tin be the vector (Yin, Xin, Zin), i =

1, . . . , n , n = 1, 2 . . ., p̃ = p+ 1, and assume that for all i, l = 1, . . . , n,

|Cov0 (ψ(Tin), ψ(Tln))| ≤ {Var0 (ψ(Tin)) Var0 (ψ(Tln))}1/2 αiln, (3.19)

with

ψ(Tin) = K

(
z − Zin
bn

)
or ψ(Tin) = K

(
z − Zin
bn

)
∂j1+···+jp̃+r

∂θj11 · · · ∂θ
jp̃
p̃ ∂η

r
hθ, ηin (Yin|Xin, Zin = z),

for all z ∈ Z, θ ∈ Θ, η = g(z) with g ∈ G, and for all nonnegative integers j1, . . . , jp̃ = 0, 1, 2

and r = 0, . . . , 4, such that j1 + · · ·+ jp̃ + r ≤ 6.
We assume that∣∣∣Cov0

(
ξitnŨin(θ, gθ), ξjsnŨjn(θ, gθ)

)∣∣∣ ≤ {Var0 (ξitnŨin(θ, gθ)
)
Var0

(
ξjsnŨjn(θ, gθ)

)}1/2
αijn,

(3.20)
for all θ ∈ Θ, i, j = 1, . . . , n, n = 1, 2, . . . and for any s, t = 1, . . . , q,
and∣∣∣Cov0

(
ξ

(2)
in (θ0, η

0
i ), ξ

(2)
jn (θ0, η

0
j )
)∣∣∣ ≤ {Var0 (ξ(2)

in (θ0, η
0
i )
)
Var0

(
ξ

(2)
jn (θ0, η

0
j )
)}1/2

αijn, (3.21)

with
ξ

(2)
in (θ0, η

0
i ) := wT ξiΛ

(
Gin(θ0, η

0
i )
)
φ
(
Gin(θ0, η

0
i )
) ∂Gin
∂θ

(θ0, η
0
i ),

where η0
i = g0(Zi) for each w ∈ Rq such that ‖w‖ = 1.

In addition, assume that there is a decreasing (to 0) positive function ϕ(·) such that the
"mixing" numbers verify αijn = O (ϕ (‖si − sj‖)), r2ϕ(rr∗)/ϕ(r∗) = o(1), as r → 0, for all fixed
r∗ > 0, where si and sj are spatial coordinates associated with observations i and j, respectively.
Assumption A4. The kernel K satisfies

∫
K(u)du = 1. It is Lipschitzian, i.e., there is a
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positive constant C such that

|K(u)−K(v)| ≤ C‖u− v‖ for all u, v ∈ Rd.

Assumption A5. The bandwidth bn satisfies bn → 0 and nb3d+1
n →∞ as n→∞.

Assumption A6. The instrumental variables satisfy supi, n ‖ξin‖ = Op(1), where ξin is the
i-th column of the n× q matrix of instrumental variables ξn.
Assumption A7. θT = (βT , λ) takes values in a compact and convex set Θ = Θβ × Θλ ⊂

Rp × R, and θT0 = (βT0 , λ0) is in the interior of Θ.
Assumption A8. S(·, ·) is continuous on both arguments θ and g, and Q(·, g.) attains a unique

minimum over Θ at θ0.
Assumption A9. The square root of the diagonal elements of Vn(λ) are twice continuous differ-

entiable functions with respect to λ and sup
λ∈Θλ

∣∣∣∣v−1
in (λ) +

d

dλ
vin(λ) +

d2

dλ2
vin(λ)

∣∣∣∣ < ∞ uniformly

on i and n.
Assumption A10. B1(θ0) and B2(θ0) are positive-definite matrices, and Mn −M = op(1).

Remark 1. Assumption A1 ensures the smoothness of H(.; ., .) around its extrema point gθ(.); see
Severini and Staniswalis (1994). Assumption A2 is a decay of the local independence condition of
the covariates Zin, meaning that these variables are not identically distributed; a similar condition
can be find in Robinson (2011). Condition (3.18) generalizes the classical assumption infz f(z) >

0 used in the case of estimating the density function f(·) with identically distributed or stationary
random variables. This assumption has been used in Robinson (2011) (Assumption A7(x),
p. 8). Assumption A3 describes the spatial dependence structure, it is a particular case of the
Assumption A in Pinkse et al. (2007) and may be verified by mixing random variables, see Pinkse
et al. (2007) for more details. Note that the processes that we use are not assumed stationary;
this allows for greater generalizability and the dependence structure to change with the sample
size n (see Pinkse and Slade (1998) for more discussion). Conditions (3.19), (3.20) and (3.21)
are not restrictive. When the regressors and instrumental variables are deterministic, conditions
(3.19) and (3.20) are equivalent to |Cov0(Yin, Yln)| ≤ αiln. The condition on ϕ(·) is satisfied
when the latter tends to zero at a polynomial rate, i.e., ϕ(t) = O(t−τ ), for all τ > 2, as in the
case of mixing random variables.
Assumption A6 requires that the instruments and explanatory variables be bounded uniformly on
i and n. In addition, when the instruments depend on θ and g(·), they are also uniformly bounded
with respect to these parameters. The compactness condition in Assumption A7 is standard, and
the convexity is somewhat unusual; however, it is reasonable in most applications. Condition A8
is necessary to ensure the identification of the true parameters θ0. Assumption A9 requires the
standard deviations of the errors to be uniformly bounded away from zero with bounded derivatives.
This has been considered by Pinkse and Slade (1998). Assumption A10 is classic (Pinkse and
Slade (1998)) and required in the proof of Theorem 3.2.2. Those authors noted that in their
model (without a non-parametric component), when the autoregressive parameter λ0 = 0, B2(θ0)

is not invertible, regardless of the choice of Mn. This is also the case in our context because for
each gθ(z) solution of (3.8), θ ∈ Θ and z ∈ Z, we have

∂gθ
∂β

(z) = −E (Γjn(θ, gθ(z))Xjn|Zjn = z)

E (Γjn(θ, gθ(z))|Zjn = z)
,



40 Chapter 3. Partially linear spatial probit models

and

∂gθ
∂λ

(z) =
v
′
jn(λ)

vjn(λ)

E
(

Γjn(θ, gθ(z))
(
XT
jnβ + gθ(z)

)∣∣∣Zjn = z
)

E (Γjn(θ, gθ(z))|Zjn = z)

=
v
′
jn(λ)

vjn(λ)

(
gθ(z)− βT

∂gθ
∂β

(z)

)
,

where v′jn(λ) = d
dλvjn(λ) = vjn(λ)

[
WnS

−1
n (λ)Vn(λ)

]
jj
,

Γjn(·) = Λ
′
(Gjn(·)) [Yjn − Φ(Gjn(·))]− Λ (Gjn(·))φ (Gjn(·))

and Λ(·) = φ(·)/(1− Φ(·))Φ(·). However

∂gθ
∂λ

(z)

∣∣∣∣
λ=0

= 0 because v
′
jn(0) = 0,

then B2(θ0) will be singular when λ0 = 0.

With these assumptions in place, we are able to give some asymptotic results. The weak
consistencies of the proposed estimators are given in the following two results. The first theorem
and corollary below establish the consistency of our estimators, whereas the second theorem
addresses the question of convergence to a normal distribution of the parametric component
when it is properly standardised.

Theorem 3.2.1. Under Assumptions A1-A10, we have

θ̂ − θ0 = op(1).

Corollary 3.2.1. If the assumptions of Theorem 3.2.1 are satisfied, then we have

∥∥ĝθ̂ − g0

∥∥ = op(1).

Proof of Corollary 3.2.1 Note that

∥∥ĝθ̂ − g0

∥∥ ≤ ‖ĝθ̂ − gθ̂‖+ ‖gθ̂ − g0‖

≤ sup
θ
‖ĝθ − gθ‖+ sup

θ

∥∥∥∥∂gθ∂θ
∥∥∥∥ ‖θ̂ − θ0‖ = op(1),

since, by the assumptions of Theorem 3.2.1, supθ ‖ĝθ − gθ‖ = op(1) and supθ

∥∥∥∂gθ∂θ ∥∥∥ <∞.

The following gives an asymptotic normality result of θ̂.

Theorem 3.2.2. Under assumptions A1-A10, we have

√
n
(
θ̂ − θ0

)
→ N (0,Ω(θ0))

Remark 2. In practice, the previous asymptotic normality result can be used to construct asymp-
totic confidence intervals and build hypothesis tests when a consistent estimate of the asymptotic
covariance matrix Ω(θ0) is available. To estimate this matrix, let us follow the idea of Pinkse
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and Slade (1998) and define the estimator

Ωn(θ̂) =
{
B2n(θ̂)

}−1
{
d

dθ
STn (θ, ĝθ)

∣∣∣∣
θ=θ̂

}
MnB1n(θ̂)Mn

{
d

dθ
Sn (θ, ĝθ)

∣∣∣∣
θ=θ̂

}{
B2n(θ̂)

}−1
,

with

B1n(θ) = nSn(θ, ĝθ)S
T
n (θ, ĝθ) and B2n(θ) =

{
d

dθ
STn (θ, ĝθ)

}
Mn

{
d

dθ
Sn (θ, ĝθ)

}
.

The consistency of Ωn(θ̂) will be based on that of B1n(θ̂) and B2n(θ̂), the estimators of B1(θ0)

and B2(θ0), respectively. Note that the consistency of B2n(θ̂) is relatively easy to establish. On
the other hand, that of B1n(θ̂) asks for additional assumptions and an adaption of the proof of
Theorem 3 of Pinkse and Slade (1998, p.134) to our case; this is of interest to future research.

3.3 Computation of the estimates

The aim of this section is to outline in detail how the regression parameters β, the spatial auto-
correlation parameter λ and the non-linear function gθ can be estimated. We begin with the
computation of ĝθ(z), which will play a crucial role in what follows.

3.3.1 Computation of the estimate of the non-parametric compo-

nent

An iterative method is needed to compute the ĝθ(z) solution of (3.14) for each fixed θ ∈ Θ and
z ∈ Z. For fixed θT = (β, λ) ∈ Θ and z ∈ Z, let ηθ = gθ(z) and ψ(η; θ, z) denote the left-hand
side of (3.14), which can be rewritten as

ψ(η; θ, z) =

n∑
i=1

[vin(λ)]−1 Λ (Gin(θ, η)) [Yin − Φ(Gin(θ, η))]K

(
z − Zin
bn

)
. (3.22)

Consider the Fisher information:

Ψ(ηθ; θ, z) = E0

(
∂

∂η
ψ(η; θ, z)

∣∣∣∣
η=ηθ

∣∣∣∣∣ {(Xin, Zin), 1 ≤ i ≤ n, n = 1, . . .}

)

= −
n∑
i=1

[vin(λ)]−2 Λ (Gin(θ, ηθ))φ (Gin(θ, ηθ))K

(
z − Zin
bn

)
+ (3.23)

n∑
i=1

[vin(λ)]−2 Λ
′
(Gin(θ, ηθ)) [Φ (Gin(θ0, η0))− Φ (Gin(θ, ηθ))]K

(
z − Zin
bn

)

Note that the second term in the RHS (Right Hand Side) of (3.24) is negligible when θ is near
the true parameter θ0.
Because ψ(η; θ, z) = 0 for η = ĝθ(z), an initial estimate η̃ can be updated to η† using Fisher’s
scoring method:

η† = η̃ − ψ(η̃; θ, z)

Ψ(η̃; θ, z)
. (3.24)

The iteration procedure (3.24) requests some starting value η̃ = η̃0 to ensure convergence of the
algorithm. To this end, let us adapt the approach of Severini and Staniswalis (1994), which
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consists of supposing that for fixed θ ∈ Θ, there exists a η̃0 satisfying Gin(θ, η̃0) = Φ−1(Yin) for
i = 1, . . . , n. Knowing that Gin(θ, η̃0) = (vin(λ))−1 (XT

niβ + η̃0

)
, we have η̃0 = vin(λ)Φ−1(Yin)−

XT
inβ. Then, (3.24) can be updated using the following initial value:

η†0 = η̃0 −
ψ(η̃0; θ, z)

Ψ(η̃0; θ, z)
=

∑n
i=1 [vin(λ)]−1 Λ(Cin)φ(Cin)

[
Cin − [vin(λ)]−1XT

inβ
]
K
(
z−Zin
bn

)
∑n

i=1 [vin(λ)]−2 Λ(Cin)φ(Cin)K
(
z−Zin
bn

) ,

where Cin = Φ−1(Yin), i = 1, . . . , n, is computed using a slight adjustment because Yin ∈ {0, 1}.
With this initial value, the algorithm iterates until convergence.

Selection of the bandwidth

A critical step (in non- or semi-parametric models) is the choice of the bandwidth parameter bn,
which is usually selected by applying some cross-validation approach. The latter was adapted
by Su (2012) in the case of a spatial semi-parametric model. Because cross-validation may be
very time consuming, which is true in the case of our model, we adapt the following approach
used in Severini and Staniswalis (1994) to achieve greater flexibility:

1. Consider the linear regression of Cin on Xin, i = 1, . . . , n, without an intercept term, and
let R1n, . . . , Rnn denote the corresponding residuals.

2. Since we expect E(Rin|Zin = z) to have similar smoothness properties as g0(.), the optimal
bandwidth bn is that of the non-parametric regression of the {Rin}i=1,··· ,n on {Zin}i=1,··· ,n,
chosen by applying any non-parametric regression bandwidth selection method. For that,
we use the cross-validation method in the np R Package.

3.3.2 Computation of θ̂

The parametric component β and the spatial autoregressive parameter λ are computed as men-
tioned above by a GMM approach based on some instrumental variables ξn and the weight matrix
Mn. The choices of these instrumental variables and weight matrix Mn are as follows.
Because ψ(ĝθ(z); θ, z) = 0, if we differentiate the latter with respect to β and λ, we have

∂

∂β
ĝθ(z) = −

∑n
i=1 [vin(λ)]−2 ∆in(θ, z)XinK

(
z−Zin
bn

)
∑n

i=1 [vin(λ)]−2 ∆in(θ, z)K
(
z−Zin
bn

) ,

and

∂

∂λ
ĝθ(z) =

∑n
i=1 [vin(λ)]−1 v

′
in(λ)∆in(θ, z)

[
XT
inβ + ĝθ(z)

]
K
(
z−Zin
bn

)
∑n

i=1 [vin(λ)]−2 ∆in(θ, z)K
(
z−Zin
bn

)
+

∑n
i=1 [vin(λ)]−2 v

′
in(λ)Λ (Gin(θ, ĝθ(z))) [Yin − Φ (Gin(θ, ĝθ(z)))]K

(
z−Zin
bn

)
∑n

i=1 [vin(λ)]−2 ∆in(θ, z)K
(
z−Zin
bn

) ,

with

∆in(θ, z) = Λ
′
(Gin(θ, ĝθ(z))) [Yin − Φ (Gin(θ, ĝθ(z)))]− Λ (Gni(θ, ĝθ(z)))φ (Gin(θ, ĝθ(z))) .
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Then, the previous result is used to define the following instrumental variables:

ξin(θ, ĝθ) =
∂Gin(θ, η̂i)

∂θ
+
∂Gin(θ, η̂i)

∂η

∂

∂θ
ĝθ(Zin),

with η̂i = ĝθ(Zin).
For the weight matrix, one can use Mn = Iq with q = p + 1 as in Pinkse and Slade (1998).
Then, the obtained GMM estimator of θ with this choice of Mn is equal to the pseudo-profile
maximum likelihood estimator of θ, accounting only for the spatial heteroscedasticity. Another
empirical choice could be the idea of continuous updating GMM estimator (One step GMM)
used in Pinkse et al. (2006):

Mn(θ) =

n−1
n∑

i,j=1

δijξniξ
T
jnŨin(θ, ĝθ)Ũjn(θ, ĝθ)


−1

(3.25)

with the weights

δij =

∑n
r=1 τriτrj[∑n

r=1 τ
2
ri

∑n
r=1 τ

2
rj

]1/2
for i, j = 1, . . . , n,

where τij is a number depending on wnij such that the nearer location i is to location j, the
larger τij is. For instance, we expect to have more efficient estimators with this matrix.

3.4 Finite sample properties

In this section, we study the performance of the proposed model based on some numerical results,
which highlight the importance of accounting for both the spatial dependence and the partial
linearity. Random datasets from the following spatial semi-parametric models are generated and
first we investigate the estimation quality of the proposed procedure which accounts both the
spatial dependence and the partial linearity. The influences of the spatial dependence and the
partial linearity are investigated by comparing the behavior of our model to that of the non-
spatial partially linear probit (NSPLP) model and the fully linear SAE probit (LSAEP) model,
respectively. The GAM and ProbitSpatial (Martinetti & Geniaux, 2016) R packages will be used
to provide the estimates associated to NSPLP and LSAEP models respectively. We generate
observations from the following spatial latent partial linear model:

Y ∗in = β1X
(1)
in + β2X

(2)
in + g(Zin) + Uin; Yin = I(Y ∗in > 0), i = 1, . . . , n

Un = (In − λWn)−1εn

where Un ∼ N (0, In) and Wn is the spatial weight matrix associated to n locations chosen
randomly in a 60×60 regular grid and with elements constructed in such way that each location
has at least 6 neighbors. The explanatory variables X(1) and X(2) are generated as pseudo
B(0.7) and U [−2, 2], respectively, and the other explanatory variable Z is equal to the sum of 48

independent random variables, each uniformly distributed over [−0.25, 0.25]. Here, we use the
non-linear function g(t) = t+ 2 cos(0.5πt) and parameters β1 = −1, β2 = 1.

Different spatial dependence parameters λ; 0.2 (weak spatial dependence) 0.5 and 0.8 (strong
spatial dependence) are considered. Finally, the sample size effect is observed by considering n
equals to 200, 400 and 800 with 300 replications of each simulation.



44 Chapter 3. Partially linear spatial probit models

Our estimation procedure is applied with a Gaussian kernel K(t) = (2π−1/2) exp(−t2/2) and
optimal bandwidth bn selected by Severini and Staniswalis (1994)’s approach detailed previously.
We consider the trivial instrumental variables and two choices of matrix Mn = In which leads
to the pseudo-maximum profile likelihood estimators (named PLSP 1) and a second choice Mn

given in (3.25) with components τij = wnij , the estimates obtained with this matrix choice are
denoted PLSP 2. The second choice of the weight matrix allows to incorporate more information
about the spatial dependance.
The results are given in Table 3.1, the columns titles Mean, Median and SD give the average,
median and standard deviation, respectively, over these 300 replications associated with each
estimation method.

In one hand, when we compare the estimators (PLSP 1 and PLSP2) based on our approach
(PLSPM) with those based on the LSAEP model, we notice that the latter yields more biased
estimators of the coefficients β1 and β2. It makes sense that ignoring the partial linearity (see
also Figure 3.1) weakens the quality of the estimation of the coefficients β1 and β2.

On the other hand, note that the LSAEP and PLSP 1 estimates are similar in case of low
spatial dependence (λ = 0.2) compare to large spatial dependence (λ = 0.8) framework. It makes
sense that ignoring a high spatial dependence does not allow a model that does not account any
spatial structure to find consistent estimates of the coefficients β1 and β2 and the smooth function
g(·) (see Figure 3.1) .
Note that the second choice of the weight matrix (estimates PLSP 2 ) allowed to improve the
efficiency of the proposed estimates particularly in case of high spatial dependence (see PLSP 2
estimates in case of λ = 0.8). In contrast, it is less appropriate in case of low spatial dependance.
However, one may think of testing the intensity of the spatial dependence before applying the
proposed model with a non identity weight matrix, using for instance Moran’s test.

Discussion

In this manuscript, we have proposed a spatial semi-parametric probit model for identifying risk
factors at onset and with spatial heterogeneity. The parameters involved in the models are esti-
mated using weighted likelihood and generalised method of moment methods. A technique based
on dependent random arrays facilitates the estimation and derivation of asymptotic properties,
which otherwise would have been difficult to perform due to the complexity introduced by the
spatial dependence to the model and high-dimensional integration required by a full maximum
likelihood approach. Moreover, the technique yields consistent estimates through proper choices
of the bandwidth, weight matrix, and instrumental variables. The proposed models provide
a general framework and tools for researchers and practitioners when addressing binary semi-
parametric choice models in the presence of spatial correlation. Although they provide significant
contributions to the body of knowledge, additional investigations need to be done.
As indicated previously, weights are used to improve the efficiency and convergence of the GMM
procedure. For instance, the finite sample properties section shown that the kind of weight matrix
defined in 3.25 with elements τij may improve the efficiency of the proposed estimator but is less
appropriate in case of weak spatial dependence. Then, it would be interesting to develop other
choices of weights τij toward achieving a better performance. Another topic of future research is
to allow some spatial dependency in the covariates (SAR models) and the response (endogenous
models) for more generality.
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Table 3.1: The mean, median and standard deviation (SD) of the parameters β1, β2, and
λ estimates, over the 300 replications

λ n Methods β1 = −1 β2 = 1 λ
Mean Median SD Mean Median SD Mean Median SD

0.20

200

PLSP 1 -1.06 -1.00 0.40 1.05 0.98 0.26 0.12 0.00 0.40
PLSP 2 -1.06 -1.07 0.28 1.06 1.04 0.19 0.24 0.16 0.43
LSAEP -0.65 -0.65 0.20 0.67 0.67 0.10 -0.14 0.01 0.5
NSPLP -1.02 -1.00 0.22 1.02 1.00 0.11

400

PLSP 1 -1.01 -0.99 0.23 1.01 0.99 0.15 0.05 0,00 0.32
PLSP 2 -1.08 -1.06 0.22 1.06 1.05 0.15 0.21 0.08 0.40
LSAEP -0.64 -0.66 0.15 0.66 0.66 0.06 -0.02 0.09 0.37
NSPLP -1.02 -1.00 0.22 1.02 1.00 0.11

800

PLSP 1 -0.99 -1.01 0.16 0.99 0.98 0.09 0.05 0.00 0.23
PLSP 2 -1.06 -1.06 0.21 1.06 1.04 0.13 0.27 0.24 0.42
LSAEP -0.62 -0.62 0.12 0.65 0.64 0.05 0.01 0.05 0.29
NSPLP -1.01 -1.00 0.16 0.98 0.99 0.07

0.50

200
PLSP 1 -1.10 -1.04 0.42 1.08 1.00 0.34 0.24 0.01 0.43
PLSP 2 -1.06 -1.06 0.32 1.12 1.09 0.24 0.33 0.49 0.45
LSAEP -0.62 -0.62 0.12 0.65 0.64 0.05 0.01 0.05 0.29
NSPLP -1.00 -1.00 0.30 0.98 0.97 0.16

400

PLSP 1 -1.04 -1.01 0.30 1.04 0.98 0.23 0.23 0.01 0.36
PLSP 2 -1.03 -1.01 0.25 1.06 1.03 0.18 0.33 0.42 0.42
LSAEP -0.62 -0.61 0.17 0.65 0.64 0.08 0.15 0.27 0.37
NSPLP -0.96 -0.94 0.24 0.97 0.97 0.11

800

PLSP 1 -0.96 -0.94 0.16 1,00 0.97 0.13 0.24 0.06 0.29
PLSP 2 -1.02 -1.00 0.18 1.05 1.00 0.15 0.36 0.47 0.40
LSAEP -0.62 -0.60 0.12 0.65 0.65 0.05 0.27 0.30 0.19
NSPLP -0.98 -0.98 0.15 0.97 0.96 0.07

0.80

200

PLSP 1 -1.11 -1.03 0.53 1.12 1,00 0.4 0.54 0.79 0.41
PLSP 2 -0.99 -1.01 0.31 0.99 0.95 0.23 0.45 0.65 0.44
LSAEP -0.67 -0.67 0.26 0.65 0.65 0.12 0.47 0.54 0.24
NSPLP -0.86 -0.87 0.30 0.85 0.84 0.15

400

PLSP 1 -1.03 -0.97 0.36 1.06 0.95 0.35 0.52 0.70 0.39
PLSP 2 -0.97 -0.93 0.26 0.98 0.96 0.19 0.54 0.74 0.39
LSAEP -0.62 -0.62 0.19 0.67 0.66 0.08 0.56 0.57 0.11
NSPLP -0.81 -0.81 0.21 0.82 0.81 0.11

800

PLSP 1 -0.97 -0.95 0.26 1.00 0.92 0.27 0.49 0.60 0.38
PLSP 2 -1,00 -0.97 0.23 1,00 0.97 0.20 0.57 0.76 0.39
LSAEP -0.63 -0.61 0.13 0.67 0.66 0.06 0.60 0.60 0.07
NSPLP -0.80 -0.81 0.15 0.83 0.83 0.08
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Figure 3.1: The true function g(·) and the average of its estimates, over the 300 replications
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3.5 Appendix

Proposition 3.5.1. Under Assumptions A1-A6, for θ ∈ Θ and z ∈ Z, the functions gθ(z) and
ĝθ(z), solutions of (3.8) and (3.14), respectively, satisfy

1. for all i, j = 0, 1, 2, i+ j ≤ 2,

∂i+j

∂θil∂θ
j
r

gθ(z) and
∂i+j

∂θil∂θ
j
r

ĝθ(z) exist and are finite for all 1 ≤ l, r ≤ p+ 1.

2. sup
θ∈Θ
‖ĝθ − gθ‖, sup

θ∈Θ
max

j=1,...,p+1

∥∥∥∥ ∂

∂θj
(ĝθ − gθ)

∥∥∥∥ and sup
θ∈Θ

max
1≤i,j≤p+1

∥∥∥∥ ∂2

∂θi∂θj
(ĝθ − gθ)

∥∥∥∥,
are all order op(1) as n→∞.

Without loss of generality, the proof of this proposition is ensured by Lemma 3.5.2 in the
univariate case i.e., Θ, Z ⊂ R.

The following lemma is useful in the proof of Lemma 3.5.2. It is an extension of Lemma 8 in
Severini and Wong (1992) to spatially dependent data.

Lemma 3.5.1. Let ζθ(Yi) denote a scalar function of Yin, i = 1, . . . , n, n = 1, 2, . . ., depending
on a scalar parameter θ ∈ Θ, and for j = 0, 1, 2, let

ζ
(j)
θ (Yin) =

∂j

∂θj
ζθ(Yin), i = 1, . . . , n, n = 1, 2, . . .

Let fi(·) denote the density of Zin (given in Assumption A2), and let f̄(z) = 1
n

∑n
i=1 fi(z).

Assume that

H.1 sup
θ

sup
1≤i≤n,n

∣∣∣ζ(j)
θ (Yin)

∣∣∣ <∞ for j = 0, . . . , 3.

H.2 For all θ ∈ Θ, j = 0, 1, 2, and 1 ≤ i, l ≤ n:

|Cov (Kin(z),Kln(z))| ≤ {Var(Kin(z))Var(Kin(z))}1/2 ϕ (‖si − sl‖) , (3.26)

∣∣∣Cov
(
ζ

(j)
θ (Yin)Kin(z), ζ

(j)
θ (Yln)Kln(z)

)∣∣∣ ≤{
Var

(
ζ

(j)
θ (Yin)Kin(z)

)
Var

(
ζ

(j)
θ (Yln)Kln(z)

)}1/2
ϕ (‖si − sl‖) , (3.27)

with Kin(z) = K ((z − Zin)/b).

Let mθ(z) = E (ζθ(Yin)|Zin = z) for z ∈ Z, and assume that
∂j

∂θj
mθ(·) is continuous on Z,

j = 0, 1, 2.

For each fixed θ ∈ Θ and z ∈ Z, let the kernel estimator m̂θ(z) of mθ(z) be defined by

m̂θ(z) =

∑n
i=1 ζθ(Yin)Kin(z)∑n

i=1Kin(z)
.

If Assumptions A2, A4, and A5 are satisfied, then

sup
θ∈Θ

sup
z∈Z

∣∣∣∣ ∂j∂θj m̂θ(z)−
∂j

∂θj
mθ(z)

∣∣∣∣ = op(1),
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for j = 0, 1, 2.

Lemma 3.5.1 generalizes Lemma 8 in Severini and Wong (1992) to spatially dependent data.

Proof of Lemma 3.5.1

We give the proof in the case where j = 0, corresponding to the study of the uniform consistency
of the kernel estimator of the regression function of ζθ(Yin) on Zin. The other cases are similar
to this case and thus are omitted.
Let

v̂θ(z) =
1

nbd

n∑
i=1

ζθ(Yin)Kin(z); f̂(z) =
1

nbd

n∑
i=1

Kin(z),

vθ(z) = mθ(z)f̄(z).

We have to show that

sup
θ

sup
z
|v̂θ(z)− vθ(z)| = op(1) (3.28)

and

sup
z

∣∣∣f̂(z)− f̄(z)
∣∣∣ = op(1) (3.29)

We give the proof of (3.28), and that of (3.29) is similar.

Asymptotic behavior of |v̂θ(z)− vθ(z)|

Let us first consider the bias |E(v̂θ(z))− vθ(z)|. We have

E(v̂θ(z)) = (nbd)−1
n∑
i=1

∫
K

(
z − u
b

)
mθ(u)fi(u)du

= b−d
∫
vθ(u)K

(
z − u
b

)
du;

=

∫
vθ(z − bu)K(u)du

thus,

E(v̂θ(z))− vθ(z) =

∫
(vθ(z − bu)− vθ(z))K(u)du = o(1)

by Assumption A4, the continuity of fi(·) (see A2) andmθ(·), and the compactness of Z. Clearly,
the bias term does not depend on θ or z.
Let us now treat |v̂θ(z)− E(v̂θ(z))|. Consider the sum of variances

Sn = (nbd)−2
n∑
i=1

Var (ζθ(Yin)Kin(z)) .
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We have

Var (ζθ(Yin)Kin(z)) ≤ E
(
ζ2
θ (Yin)K2

in(z)
)

≤ CE
(
K2
in(z)

)
= Cbd

n∑
i=1

∫
K2(u)fi(z − ub)du

= Cbd sup
u
|K(u)|2

∫
fi(z − ub)du = Cbd sup

u
|K(u)|2 , (3.30)

because ζθ(Yin) is bounded uniformly on i and θ by assumption H.1,
∫
fi(z − ub)du ≤ C (see

assumption A2) and supu |K(u)|2 < ∞ (see Assumption A4 and the compactness of Z). Then,
we have

Sn = O
(

(nbd)−1
)
. (3.31)

Now, consider the covariance term

Rn = (nbd)−2
n∑
i=1

n∑
j=1
j 6=i

Cov (ζθ(Yin)Kin(z), ζθ(Yjn)Kjn(z)) .

Let us partition the spatial locations of the observations using

Dn = {1 ≤ i, j ≤ n : ρ < ‖si − sj‖ ≤ cn}

with cn being the sequence of integers going to ∞, and let D̄n denote the complement of Dn in
the set of locations {si, i = 1, ..., n}.
On the one hand, let

R(1)
n = (n bd)−2

∑
i,j∈Dn

|Cov (ζθ(Yin)Kin(z), ζθ(Yjn)Kjn(z))| = (n bd)−2
∑
i,j∈Dn

|A−B|,

with

|A| = |E (ζθ(Yin)Kin(z)ζθ(Yjn)Kjn(z))|

≤ C
∣∣∣∣∫ K

(
z − u
b

)
K

(
z − v
b

)
fi,j(u, v)dudv

∣∣∣∣
≤ C b2d

∣∣∣∣∫ K(u)K(v)fi,j(z − bu, z − bv)dudv

∣∣∣∣
≤ Cb2d

(
sup
u
|K(u)|

)2 ∣∣∣∣∫ fi,j(z − bu, z − bv)dudv

∣∣∣∣ = Cb2d,

by Assumption H.1, supu |K(u)| < ∞ (Assumption A4 and the compactness of Z), with fi,j

being the joint density (Assumption A2 and the compactness of Z).
Note that the second term B is

B = E (ζθ(Yin)Kin(z))E (ζθ(Yjn)Kjn(z)) .
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Using similar arguments as above, we have |B| ≤ Cb2d by Assumptions A2 and A4, the com-
pactness of Z and the continuity of mθ(·). Thus, we have

R(1)
n ≤ Cn−2

∑
i,j∈Dn

≤ C c
2
n − ρ2

n
= O

(
c2
n

n

)
. (3.32)

On the other hand, let

R(2)
n = (n bd)−2

∑
i,j∈D̄n

|Cov (ζθ(Yin)Kin(z), ζθ(Yjn)Kjn(z))| .

By Assumption H.2 combined with (3.30), we have for all θ ∈ Θ and i, j = 1, . . . , n,

|Cov (ζθ(Yin)Kin(z), ζθ(Yjn)Kjn(z))| ≤ C bdϕ(‖si − sj‖).

Then, we have
R(2)
n ≤ C(n bd)−1

∑
i>cn/ρ

iϕ(iρ). (3.33)

Thus, we derive the following result:

Rn = R(1)
n + R(2)

n = O

n−1

c2
n + b−d

∑
i>cn/ρ

iϕ(iρ)


 . (3.34)

The following steps of the proof are inspired by the proof of Lemma 8 in Severini and Wong
(1992) (p. 1800–1801). Let

ṽθ(z) =
1

n
b−d

n∑
i=1

{ζθ(Yin)Kin(z)− E (ζθ(Yin)Kin(z))} .

For some ε > 0, Markov’s inequality yields

P (|ṽθ(z)| > ε) ≤ Rn + Sn
ε2

. (3.35)

Now, let θ1 and θ2 be two elements in Θ; because E

(
sup

θ,1≤i≤n,n
|ζ(1)
θ (Yin)|

)
< ∞ (by H.1),

there exists a random triangular array (see Severini &Wong, 1992, p.1801)
{
W

(1)
in , 1 ≤ i ≤ n, n = 1, 2 . . .

}
not depending on θ1 and θ2 such that sup1≤i≤n, n E

(
|W (1)

in |
)
<∞ and

sup
z
|ṽθ1(z)− ṽθ2(z)| ≤ sup

z
|K(z)| |θ2 − θ1|

bd
1

n

n∑
i=1

W
(1)
in .

Similarly, for all z(1) and z(2) in Z, there exists a random triangular array{
W

(2)
in , 1 ≤ i ≤ n, n = 1, 2 . . .

}
not depending on z(1) and z(2) such that sup1≤i≤n, n E

(
|W (2)

i |
)
<

∞ and

sup
θ

∣∣∣ṽθ(z(2))− ṽθ(z(1))
∣∣∣ ≤ C ‖z(2) − z(1)‖

bd+1

1

n

n∑
i=1

W
(2)
in ,

because K(·) is Lipschitzian (see Assumption H.2).
Hence, there exists a random triangular array {Win, 1 ≤ i ≤ n, n = 1, 2 . . .} such that sup1≤i≤n, n E (|Win|) <
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∞ and

sup
‖z(2)−z(1)‖<δ1

sup
|θ2−θ1|<δ2

∣∣∣ṽθ2(z(2))− ṽθ1(z(1))
∣∣∣ ≤ C (b−dδ2 + b−(d+1)δ1

) 1

n

n∑
i=1

Win,

for some δ1 > 0, δ2 > 0 and large n.

Because Z is compact, one can define a real number δ1 > 0, an integer ln such that lnδ1 < C

with ln = bγnb−(d+1)c and

Z ⊂
ln⋃
j=1

B(z(j), δ1),

where B(z, δ) is the closed ball in Rd with center z and radius δ > 0.
In addition, because Θ is compact, one can cover it by rn = bγnb−dc finite intervals of centers θi
with the same half length δ2 = O(1/rn).
With these coverings, we have

P

(
sup
θ,z
|ṽθ(z)| > ε

)
≤ P

(
max
j≤rn

max
k≤ln

∣∣∣ṽθj (z(k))
∣∣∣ > ε/2

)

+ P

(
sup

‖z(2)−z(1)‖<δ1
sup

|θ2−θ1|<δ2

∣∣∣ṽθ2(z(2))− ṽθ1(z(1))
∣∣∣ > ε/2

)
≤ rn ln P (|ṽθ(z)| > ε/2) + Cb−d

(
δ2 + δ1b

−1
)

= C rn ln(Sn + Rn) + Cb−d
(
δ2 + δ1b

−1
)

:= I(1) + I(2) + I(3),

where

I(1) = O

 γ2
n

nb2d+1

c2
n + b−d

∑
i>cn/ρ

iϕ(iρ)

 ; I(2) = O
(
γ−1
n

)
; I(3) = O

(
γ2
n

nb3d+1

)
.

If we take cn = o(b−d/2) and γ2
n = o(nb3d+1), then I(1), I(2) and I(3) are all of order o(1) by

Assumption A5 and by the fact that ϕ(t) → 0 as t → ∞ by Assumption A3. This yields the
proof. �

Lemma 3.5.2. For each θ ∈ Θ and z ∈ Z, let

H(η; θ, z) = E0

(
hθ, ηin (Yin|Xin, Zin)|Zin = z

)
, 1 ≤ i ≤ n, n = 1, 2, . . .

where η = g(z), g ∈ G and hθ, ηin (·|·, ·) is defined in Assumption A3.

Condition I: For fixed but arbitrary θ1 ∈ Θ and η1 ∈ Π with Π = g0(Z), let

ϑ(θ, η) =

∫
hθ,ηin (y|x , z) exp(hθ1,η1in (y|x , z))dy, θ ∈ Θ, η ∈ Π, (x, z) ∈ Z × Z

where {exp(hθ,ηin (y|x , z)), θ ∈ Θ, η ∈ Π} denotes the family of conditional density functions
(indexed by the parameters θ and η) of Yin given (Xin, Zin) = (x, z) ∈ X × Z. For each θ 6= θ1,
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assume that
ϑ(θ, η) < ϑ(θ1, η1).

Condition S: Let p̃ = p+1, and for all nonnegative integers j1, . . . , jp̃ = 0, 1, 2 and r = 0, . . . , 4,
such that j1 + · · ·+ jp̃ + r ≤ 6, assume that the derivative

∂j1+···+jp̃+rhθ,ηin

∂θj11 · · · ∂θ
jp̃
p̃ ∂η

r
(y|x , z),

exists for almost all y and that

E0

sup
i, n

sup
θ∈Θ

sup
g∈G

∣∣∣∣∣∂j1+···+jp̃+rhθ,ηiin

∂θj11 · · · ∂θ
jp̃
p̃ ∂η

r
(Yin|Xin , Zin)

∣∣∣∣∣
2
 <∞, with ηi = g(Zin).

Assume that
sup
z

sup
θ

sup
η

∣∣∣∣ ∂j∂θjH(k)(η; θ, z)

∣∣∣∣ <∞, (3.36)

for j = 0, 1, 2 and k = 2, 3, 4 such that j + k ≤ 4, with

H(k)(η; θ, z) =
∂k

∂ηk
H(η; θ, z).

Let

Ĥ(η; θ, z) =

∑n
i=1 h

θ,η
in (Yin|Xin, z)Kin(z)∑n

i=1Kin(z)
;

then, ĝθ(z) is a solution of Ĥ(1)(η; θ, z) = 0 with respect to η for each fixed θ ∈ Θ and z ∈ Z.
If we assume that Assumptions A1-A6 are satisfied, then we have, for all j = 0, 1, 2,

sup
θ

sup
z

∣∣∣∣ ∂j∂θj (ĝθ(z)− gθ(z))
∣∣∣∣ = op(1). (3.37)

The assumptions used in the previous lemma are satisfied under the conditions used in the
main results. Condition I is needed to ensure the identifiability of the arbitrary parameter
θ1 (it plays the role of the true parameter θ0). This condition is verified when θ1 = θ0 by
the identifiability of our model (3.1). Condition S allows integrals to be interchanged with
differentiation; this will be combined with the implicit function theorem (see Saaty & Bram,
2012) to ensure the differentiability of ĝθ(z) with respect to θ.
Knowing that Φ(·) is a smooth function on R and hθ,ηin (·|· , ·) is

hθ,ηiin (Yin|Xin , Zin) = Yin log

(
Φ(Gin(θ, ηi))

1− Φ(Gin(θ, ηi))

)
− log (1− Φ(Gin(θ, ηi))) ,

Condition S and Assumption (3.36) are satisfied under the continuity condition of Φ(·) and
φ(·), Assumption A9 and the compactness of X and Z.
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Proof of Lemma 3.5.2

The proof of this lemma is similar to that of Lemma 5 in Severini and Wong (1992). Let us
follow similar lines as in the proof of Lemma 3.5.1 above, replacing ζ(j)

θ (Yin) by

ζ
(j,k)
θ,η (Yin, Xin) =

∂j

∂θj
∂k

∂ηk
hθ,ηin (Yin|Xin , z).

and Assumptions H.1 and H.2 in Lemma 3.5.1 by the following:

H.1’ sup
θ

sup
η

sup i, n
∣∣∣ζ(j,k)
θ,η (Yin, Xin)

∣∣∣ <∞, for j = 0, . . . , 3, k = 0, . . . , 5

H.2’ For all k = 0, . . . , 4, j = 0, 1, 2 and θ ∈ Θ, z ∈ Z, (3.26) is satisfied and (3.27) holds with
ζ

(j)
θ (Yin) replaced by ζ(j,k)

θ,η (Yin, Xin).

Under the conditions used in the lemma, it is clear that H.1’ is verified, and H.2’ is also satisfied
by Assumption A3 (in particular, conditions (3.19)).
Using the results of Lemma 3.5.1, we have the following for all j = 0, 1, 2:

sup
θ, η, z

∣∣∣∣ ∂j∂θj (Ĥ(1)
n (η; θ, z)−H(1)(η; θ, z)

)∣∣∣∣ = op(1), (3.38)

sup
θ, η, z

∣∣∣∣ ∂j∂θj (Ĥ(2)
n (η; θ, z)−H(2)(η; θ, z)

)∣∣∣∣ = op(1), (3.39)

sup
θ, η, z

∣∣∣∣ ∂j∂θj (Ĥ(3)
n (η; θ, z)−H(3)(η; θ, z)

)∣∣∣∣ = op(1), (3.40)

sup
θ, η, z

∣∣∣∣ ∂j∂θj (Ĥ(4)
n (η; θ, z)−H(4)(η; θ, z)

)∣∣∣∣ = op(1). (3.41)

Under Assumption A1, for any ε > 0, there exists γ > 0 such that

P

(
sup
θ,z
|ĝθ(z)− gθ(z)| > ε

)
≤ P

(
sup
θ,z
|H(1)(θ, ĝθ(z), z)| > γ

)

= P

(
sup
θ,z
|Ĥ(1)(ĝθ(z); θ, z)−H(1)(ĝθ(z); θ, z)| > γ

)

≤ P

(
sup
θ,z,η
|Ĥ(1)(η; θ, z)−H(1)(η; θ, z)| > γ

)
.

Hence,
sup
θ,z
|ĝθ(z)− gθ(z)| = op(1) (3.42)

The remainder of the proof is very similar to that of Lemma 5 in Severini and Wong (1992) (p.
1798–1799); for the sake of completeness, we present the details.
We have by Condition I

inf
θ

inf
z
−H(2)(gθ(z); θ, z) > 0.

In addition, by Condition S, for every δ > 0, there exists ε > 0 such that

sup
θ

sup
z

sup
η1,η2:|η1−η2|≤ε

∣∣∣H(2)(η2; θ, z)−H(2)(η1; θ, z)
∣∣∣ < δ.
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Hence, there exists ε > 0 such that

inf
θ

inf
z

inf
|η−gθ(z)|≤ε

∣∣∣H(2)(η; θ, z)
∣∣∣ > 0. (3.43)

Because gθ(z) and ĝθ(z) satisfy

H(1)(gθ(z); θ, z) = 0 and Ĥ(1)(ĝθ(z); θ, z) = 0,

respectively, for each θ and z, it follows that

0 = Ĥ(1)(ĝθ(z); θ, z)−H(1)(gθ(z); θ, z)

= Ĥ(1)(ĝθ(z); θ, z)−H(1)(ĝθ(z); θ, z) +H(1)(ĝθ(z); θ, z)−H(1)(gθ(z); θ, z)

= rn(θ, z) + dn(θ, z) (ĝθ(z)− gθ(z)) , (3.44)

for each θ, z, where

rn(θ, z) = Ĥ(1)(ĝθ(z); θ, z)−H(1)(ĝθ(z); θ, z) and dn(θ, z) =

∫ 1

0
H(2)(tgθ(z)+(1−t)ĝθ(z); θ, z)dt.

Note that by (3.43) and supθ ‖ĝθ − gθ‖ = op(1), we have

lim inf inf
z

inf
θ

∣∣∣Ĥ(2)(ĝθ(z); θ, z)
∣∣∣ > 0 and lim inf inf

z
inf
θ
|dn(θ, z)| > 0 as n→∞.

(3.45)
Because

Ĥ(1)(ĝθ(z); θ, z) = 0,

for all θ, z, we have

Ĥ(2)(ĝθ(z); θ, z)
∂ĝθ
∂θ

(z) +
∂Ĥ(1)

∂θ
(ĝθ(z); θ, z) = 0.

Then, we can deduce from (3.45), (3.38), and (3.39) that

sup
θ

sup
z

∣∣∣∣∂ĝθ∂θ (z)

∣∣∣∣ = Op(1).

Similarly, we have

sup
θ

sup
z

∣∣∣∣∂j ĝθ∂θj
(z)

∣∣∣∣ = Op(1), j = 0, 1, 2. (3.46)

Then, (3.46) and (3.38)–(3.41) yield

sup
θ

sup
z

∣∣∣∣ ∂j∂θj rn(θ, z)

∣∣∣∣ = op(1), and sup
θ

sup
z

∣∣∣∣ ∂j∂θj dn(θ, z)

∣∣∣∣ = Op(1), j = 0, 1, 2.

(3.47)
Now, differentiating (3.44) with respect to θ yields

∂rn
∂θ

(θ, z) + (ĝθ(z)− gθ(z))
∂dn
∂θ

(θ, z) + dn(θ, z)

(
∂ĝθ
∂θ

(z)− ∂gθ
∂θ

(z)

)
= 0. (3.48)

Then, by (3.38)–(3.47),

sup
θ

sup
z

∣∣∣∣∂ĝθ∂θ (z)− ∂gθ
∂θ

(z)

∣∣∣∣ = op(1).
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On can similarly obtain

sup
θ

sup
z

∣∣∣∣∂2ĝθ
∂θ2

(z)− ∂2gθ
∂θ2

(z)

∣∣∣∣ = op(1).

This completes the proof. �

Proof of Theorem 3.2.1

By Lemmas 3.5.3 and 3.5.4, Qn converges to Q in probability uniformly, i.e.,

sup
θ∈Θ
|Qn(θ, gθ)−Q(θ, gθ)| = op(1). (3.49)

This result allows one to obtain ∣∣∣Q(θ̂, gθ̂)−Q(θ0, g0)
∣∣∣ = op(1). (3.50)

Indeed, using | sup a− sup b| ≤ sup |a− b|, we have∣∣∣Q(θ̂, gθ̂)−Q(θ0, g0)
∣∣∣ ≤ ∣∣∣Qn(θ̂, ĝθ̂)−Q(θ̂, gθ̂)

∣∣∣+
∣∣∣Qn(θ̂, ĝθ̂)−Q(θ0, g0)

∣∣∣
≤ sup

θ
|Qn(θ, ĝθ)−Q(θ, gθ)|+

∣∣∣∣sup
θ
Qn(θ, ĝθ)− sup

θ
Q(θ, gθ)

∣∣∣∣
≤ 2 sup

θ
|Qn(θ, ĝθ)−Q(θ, gθ)|

≤ 2 sup
θ
|Qn(θ, ĝθ)−Qn(θ, gθ)|+ 2 sup

θ
|Qn(θ, gθ)−Q(θ, gθ)|

= op(1),

by Lemma 3.5.5, (3.49) and supθQ(θ, gθ) = Q(θ0, g0) (see Assumption A8).

By Assumption A8, we have for a given θ ∈ Θ that there exists ε > 0 and an open neigh-
bourhood Nθ such that

inf
θ1∈Nθ

|Q(θ1, gθ1)−Q(θ0, g0)| > ε. (3.51)

This and (3.50) imply that

P0

(
θ̂ ∈ Nθ

)
≤ P0

(∣∣∣Q(θ̂, gθ̂)−Q(θ0, g0)
∣∣∣ > ε

)
→ 0, as n→∞. (3.52)

Let N0 be an open neighbourhood of θ0, and consider the compact set Θ0 = Θ \ N0. Let
{Nθ : θ ∈ Θ, θ 6= θ0} denote the open covering of Θ0 by the procedure given above (each
neighbourhood Nθ satisfies (3.51)). By the compactness of Θ0, let {Nθ1 , . . . , Nθr} be a finite
sub-covering; then,

P0

(
θ̂ /∈ N0

)
= P0

(
θ̂ ∈ Θ0

)
≤

r∑
j=1

P0

(
θ̂ ∈ Nθj

)
→ 0, as n→∞,

by (3.52). Therefore, we can conclude that

θ̂ − θ0 = op(1), as n→∞.
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This yields the proof of Theorem 3.2.1. �

Lemmas 3.5.3-3.5.5

We use the following notation:

ηi = g(Zin); Ũin = Ũin(θ, ηi); Φin = Φ(Gin(θ, gθ)); Λin = Λ(Gin(θ, gθ)),

for all θ ∈ Θ, 1 ≤ i ≤ n, n = 1, 2, . . ., with Λ(·) = φ(·)/Φ(·)(1− Φ(·)).
The partial derivatives of Sn(θ, g) with respect to g of order s = 1, 2, . . ., for any functions
v1, . . . , vs in G, are given by

∂sSn
∂gs

(θ, g)(v1, · · · , vs) = n−1
n∑
i=1

ξin
∂sŨin
∂ηs

(θ, ηi)v1(Zin) · · · vs(Zin).

Lemma 3.5.3. Under Assumptions A3, A6 and A9, we have for all θ ∈ Θ,

Sn (θ, gθ)− S (θ, gθ) = op(1). (3.53)

In addition, we have
Qn (θ, gθ)−Q (θ, gθ) = op(1), (3.54)

if Mn −M = op(1).

Note that if Assumption A10 is satisfied, then Mn −M = op(1).

Proof of Lemma 3.5.3

Let us start with the proof of (3.53). We remark that

Sn(θ, gθ) = n−1ξTn Ũn(θ, gθ) = n−1
n∑
i=1

ξinŨin(θ, gθ),

where ξi is the q× 1 vector representing the ith row in the matrix of instrumental variables. By
definition (see (3.13)), we have E0 (Sn(θ, gθ))− S(θ, gθ) = o(1). Then, it suffices to show that

Sn(θ, gθ)− E0 (Sn(θ, gθ)) = op(1). (3.55)

Indeed (omitting the (θ, gθ)−arguments to simplify the notation), we have

E0

(
‖Sn − E0 (Sn)‖2

)
= n−2

n∑
i,j=1

E0

((
ξinŨin − E0(ξinŨin)

)T (
ξjnŨjn − E0(ξjnŨjn)

))
(3.20)

≤ n−2
n∑

i,j=1

αijn

q∑
t=1

{
Var0

(
ξitnŨin

)
Var0

(
ξjtnŨjn

)}1/2

≤ Cn−2
n∑

i,j=1

αijn = O

n−1

√
n∑

s=1

sϕ(s)

 = o(1),

because Var0(ξitnŨin) is bounded uniformly on θ, i, and t = 1, . . . , q (by Assumption A6) and
because ϕ(s) → as s → +∞ (by assumption A3). This completes the proof of (3.55) and thus
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that of (3.53).
The proof of (3.54) is made straightforward by combining (3.53) with Assumption A10. �

Lemma 3.5.4. Under Assumptions A6-A9, we have Sn (·, g·)−S (·, g·) is stochastically equicon-
tinuous on Θ.
In addition, if Mn −M = op(1), then we have Qn (·, g·)−Q (·, g·) is also stochastically equicon-
tinuous on Θ.

Proof of Lemma 3.5.4

Stochastic equicontinuity in Θ can be obtained by proving that Sn(θ, gθ) satisfies a stochastic
Lipschitz-type condition on θ (see Mátyás, 1999, p. 17).
Let us show that Sn(·, g·) is stochastically equicontinuous on θ because S(·, g·) is continuous by
Assumption A8. It suffices to show that (Andrews, 1992) for each θ1, θ2 ∈ Θ:

‖Sn(θ1, gθ1)− Sn(θ2, gθ2)‖ = Op (‖θ1 − θ2‖) . (3.56)

Indeed, for θ1, θ2 ∈ Θ,

‖Sn(θ1, gθ1)− Sn(θ2, gθ2)‖ ≤ n−1 sup
i, n
‖ξin‖

n∑
i=1

∣∣∣Ũin(θ1, gθ1)− Ũin(θ2, gθ2)
∣∣∣

≤ n−1 sup
i, n
‖ξin‖

n∑
i=1

{
sup
θ, η

∥∥∥∥∥∂Ũin∂θ
(θ, η)

∥∥∥∥∥ ‖θ1 − θ2‖

+ sup
θ, η

∣∣∣∣∣∂Ũin∂η
(θ, η)

∣∣∣∣∣ ‖gθ1 − gθ2‖
}

≤ n−1 sup
i, n
‖ξin‖

n∑
i=1

{
sup
θ, η

∥∥∥∥∥∂Ũin∂θ
(θ, η)

∥∥∥∥∥
+ sup

θ

∥∥∥∥∂gθ∂θ
∥∥∥∥ sup
θ, η

∣∣∣∣∣∂Ũin∂η
(θ, η)

∣∣∣∣∣
}
‖θ1 − θ2‖.

By Assumption A6 and Proposition 3.5.1, we have that supi, n ‖ξin‖ is bounded and supθ

∥∥∥∂gθ∂θ ∥∥∥
is finite, respectively. Then, we have to show that

n−1
n∑
i=1

sup
θ,η

∥∥∥∥∥∂Ũin∂θ
(θ, η)

∥∥∥∥∥+ sup
θ,η

∣∣∣∣∣∂Ũin∂η
(θ, η)

∣∣∣∣∣ = Op(1); (3.57)

This is equivalent to

sup
θ,η

∥∥∥∥∥∂Ũin∂θ
(θ, η)

∥∥∥∥∥ = Op(1), 1 ≤ i ≤ n, n = 1, 2, . . . (3.58)

and

sup
θ,η

∣∣∣∣∣∂Ũin∂η
(θ, η)

∣∣∣∣∣ = Op(1), 1 ≤ i ≤ n, n = 1, 2, . . . (3.59)

Let us prove (3.58) in the following. The proof of (3.59) follows the same lines and is thus omitted.
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Proof of (3.58):
Recall that

Λ(t) =
φ(t)

Φ(t)(1− Φ(t))
.

By definition, we have

Ũin(θ, η) = Λ(Gin(θ, η)) (Yin − Φ(Gin(θ, η))) ,

with Gin(θ, η) = ain(θ)bin(θ, η), where ain(·) and bin(·) are defined by

ain(θ) := (vin(λ))−1 and bin(θ, η) := XT
inβ + η, 1 ≤ i ≤ n, n = 1, 2, . . . , (3.60)

with θT = (βT , λ). We have

∂Ũin
∂θ

(θ, η) =
{

Λ
′
(Gin(θ, η))(Yin − Φ(Gin(θ, η)))

− Λ(Gin(θ, η))φ(Gin(θ, η))} ∂Gin
∂θ

(θ, η) (3.61)

where Λ
′
(·) denotes the derivative of Λ(·).

Let us first establish that

sup
t∈M,y∈{0,1}

∣∣∣Λ′(t)(y − Φ(t))− φ(t)Λ(t)
∣∣∣ <∞, (3.62)

which is equivalent to showing that Λ
′
(t) and φ(t)Λ(t) are bounded uniformly in t ∈ M (the

definition ofM is given in A.1). Because φ′(t) = −tφ(t), we can rewrite Λ
′
(t) as

Λ
′
(t) =

1

Φ(t)

{
φ(t)

1− Φ(t)

(
φ(t)

1− Φ(t)
− t
)}
− φ2(t)

Φ2(t)(1− Φ(t))
. (3.63)

Notice that Λ(·) and Λ
′
(·) may be unbounded only at ±∞, and becauseM is a compact subset

of R, these functions are bounded on R. This establishes (3.62).
We remark that ∥∥∥∥∂Gin(θ, η)

∂θ

∥∥∥∥ ≤ ∥∥∥∥∂ain(θ)

∂θ

∥∥∥∥ |bin(θ, η)|+
∥∥∥∥∂bin(θ, η)

∂θ

∥∥∥∥ |ain(θ)| . (3.64)

Then,
∥∥∥∂Gin(θ,η)

∂θ

∥∥∥ is bounded uniformly in i, n, θ, η by Assumptions A6 and A9 and the
compactness of Θ (see assumption A7). This completes the proof of (3.58); hence, (3.56) is
proved. �

Lemma 3.5.5. Under the assumptions of Proposition 3.5.1 and Assumptions A6 and A9, we
have

sup
θ∈Θ
‖Sn(θ, ĝθ)− Sn(θ, gθ)‖ = op(1). (3.65)

If in addition Mn −M = op(1), then we have

sup
θ∈Θ
|Qn(θ, ĝθ)−Qn(θ, gθ)| = op(1). (3.66)



3.5. Appendix 59

Proof of Lemma 3.5.5

Let us prove (3.65). For each θ ∈ Θ

‖Sn(θ, ĝθ)− Sn(θ, gθ)‖ = n−1

∥∥∥∥∥
n∑
i=1

ξi

(
Ũin(θ, ĝθ)− Ũin(θ, gθ)

)∥∥∥∥∥
≤ n−1

n∑
i=1

sup
i,n
‖ξin‖

∣∣∣Ũin(θ, ĝθ)− Ũi(θ, gθ)
∣∣∣

≤ n−1
n∑
i=1

sup
i,n
‖ξin‖ sup

θ,η

∣∣∣∣∣∂Ũin∂η
(θ, η)

∣∣∣∣∣ sup
θ
‖ĝθ − gθ‖

= op(1),

because supi,n ‖ξin‖ = Op(1) (by Assumption A6), supθ ‖ĝθ− gθ‖ = op(1) (see Proposition 3.5.1)
and supθ,η

∣∣∣∂Ũin∂η (θ, η)
∣∣∣ = Op(1) uniformly on i and n (see the proof of Lemma 3.5.4).

The proof of (3.66) is made trivial by combining (3.65) with Assumption A10. �

Proof of Theorem 3.2.2

Recall that d
dθQn(θ, gθ) denotes differentiation with respect to θ, while ∂

∂θQn(θ, gθ) denotes the
partial derivative with respect to θ.
Using a Taylor’s series expansion and the fact that

d

dθ
Qn(θ, ĝθ)

∣∣∣∣
θ=θ̂

= 0,

we have

θ̂ − θ0 = −
{

d2

dθdθT
Qn(θ, ĝθ)

∣∣∣∣
θ=θ∗

}−1
{
d

dθ
Qn(θ, ĝθ)

∣∣∣∣
θ=θ0

}
, (3.67)

for some θ∗ between θ0 and θ̂.
First, we would like to replace ĝθ(.) in (3.67) with gθ(.). For this, let us show that d

dθQn(θ, ĝθ)

(resp.
d2

dθdθT
Qn(θ, ĝθ)) and d

dθQn(θ, gθ) (resp.
d2

dθdθT
Qn(θ, gθ)) have the same behavior as a

function of θ in a neighbour of θ0. In other words,

sup
θ

∥∥∥∥ d2

dθdθT
Qn(θ, ĝθ)−

d2

dθdθT
Qn(θ, gθ)

∥∥∥∥ = op(1) (3.68)

and

d

dθ
Qn(θ, ĝθ)

∣∣∣∣
θ=θ0

− d

dθ
Qn(θ, gθ)

∣∣∣∣
θ=θ0

= op(1). (3.69)

We remark that (3.68) is equivalent to

sup
θ

∥∥∥∥ ddθSn(θ, ĝθ)−
d

dθ
Sn(θ, gθ)

∥∥∥∥ = op(1) (3.70)

and
sup
θ

∥∥∥∥ d2

dθdθT
Sn(θ, ĝθ)−

d2

dθdθT
Sn(θ, gθ)

∥∥∥∥ = op(1) (3.71)
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by (3.11) (because Mn −M = op(1) thanks to Assumption A10) and

sup
θ
‖Sn(θ, ĝθ)− Sn(θ, gθ)‖ = op(1)

(see Lemma 3.5.5).
Then, (3.70) and (3.71) follow immediately from Lemma 3.5.8.
To prove (3.69), we have the following Taylor expansion

d

dθ
(Qn(θ, ĝθ)−Qn(θ, gθ)) =

d

dθ

(
∂Qn
∂g

(θ, gθ)(ĝθ − gθ) + r̃n(θ)

)
,

where

r̃n(θ) =

∫ 1

0

∂2Qn
∂g2

(θ, gθ + t(ĝθ − gθ))(ĝθ − gθ)2 dt.

We have
d

dθ
r̃n(θ)

∣∣∣∣
θ=θ0

= op(1),

using similar arguments as for the terms
dj

dθj
r(1)
n (θ) for j = 0, 1 and

d2

dθdθT
r(1)
n (θ) in Lemma 3.5.8

below (see (3.89)). Therefore, we obtain

d

dθ
Qn(θ, ĝθ)

∣∣∣∣
θ=θ0

− d

dθ
Qn(θ, gθ)

∣∣∣∣
θ=θ0

=
d

dθ

∂Qn
∂g

(θ, gθ)

∣∣∣∣
θ=θ0

(ĝ0 − g0)

+
∂Qn
∂g

(θ0, g0)(ĝ
′
0 − g

′
0) +

d

dθ
rn(θ)

∣∣∣∣
θ=θ0

,

= op(1)

by Lemma 3.5.7, where g
′
0(.) =

gθ
∂θT

(.)
∣∣∣
θ=θ0

.
Consequently, we obtain

θ̂ − θ0 = −
{

d2

dθdθT
Qn(θ, gθ)

∣∣∣∣
θ=θ∗

}−1
{
d

dθ
Qn(θ, gθ)

∣∣∣∣
θ=θ0

}
+ op(1) (3.72)

where θ∗ is between θ̂ and θ0.
Let us show that for each θ∗ lying between θ0 and θ̂,

d2

dθdθT
Qn(θ, gθ)

∣∣∣∣
θ=θ∗

= 2B2(θ0) + op(1),

to replace the Hessian matrix in the right-hand side of (3.72) by its limit B2(θ0).
Let us consider the first- and second-order differentials of Qn(θ, gθ) with respect to θ:

d

dθ
Qn(θ, gθ) = 2STn (θ, gθ)Mn

{
∂Sn
∂θ

(θ, gθ) +
∂Sn
∂g

(θ, gθ)g
′
θ

}
(3.73)

with g′θ being a 1× p̃ (p̃ = p+ 1) matrix given by
∂gθ
∂θT

and

d2

dθdθT
Qn(θ, gθ) = 2

{
∂Sn
∂θ

(θ, gθ) +
∂Sn
∂g

(θ, gθ)g
′
θ

}T
Mn

{
∂Sn
∂θ

(θ, gθ) +
∂Sn
∂g

(θ, gθ)g
′
θ

}
+2STn (θ, gθ)Mn

d

dθT

{
∂Sn
∂θ

(θ, gθ) +
∂Sn
∂g

(θ, gθ)g
′
θ

}
(3.74)
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with
d

dθT
∂Sn
∂θ

(θ, gθ) =
∂2Sn
∂θ∂θT

(θ, gθ) +
∂2Sn
∂θ∂g

(θ, gθ)g
′
θ,

d

dθT
∂Sn
∂g

(θ, gθ) =
∂2Sn
∂θ∂g

(θ, gθ) +
∂2Sn
∂g2

(θ, gθ)
∂gθ
∂θ

.

Note that

Sn(θ∗, gθ∗) = Sn(θ∗, gθ∗)− Sn(θ0, g0) + Sn(θ0, g0)− S(θ0, g0) = op(1),

because S(θ0, g0) = 0 and by Lemmas 3.5.3-3.5.4,

Sn(θ0, g0)− S(θ0, g0) = op(1),

and because θ∗ lies between θ̂ and θ0, by Lemma 3.5.4

Sn(θ∗, gθ∗)− Sn(θ0, g0) = op(1).

Using similar arguments as in the proof of (3.58) in Lemma 3.5.4 using Assumption A9 to ensure
the boundedness when differentiating twice with respect to θ, we have∥∥∥∥ d

dθT
∂Sn
∂θ

(θ, gθ)

∥∥∥∥ = Op(1) and

∥∥∥∥ d

dθT
∂Sn
∂g

(θ, gθ)g
′
θ

∥∥∥∥ = Op(1). (3.75)

Then, we can ignore the second term in the right-hand side of (3.74) at θ = θ∗. Hence, by
Lemma 3.5.6 and θ∗ − θ0 = op(1) (thanks to Theorem 3.2.1), we have

∂Sn
∂θ

(θ∗, gθ∗)−
∂S

∂θ
(θ0, g0) = op(1)

and
∂Sn
∂g

(θ∗, gθ∗)g
′
θ∗ −

∂S

∂g
(θ0, g0)g

′
0 = op(1),

with g
′
θ∗ =

gθ
∂θT

∣∣∣
θ=θ∗

.
In addition, if Mn −M = op(1), we deduce that

d2

dθdθT
Qn(θ, gθ)

∣∣∣∣
θ=θ∗

= 2

{
∂S

∂θ
(θ0, g0) +

∂S

∂g
(θ0, g0)g

′
0

}T
M

{
∂S

∂θ
(θ0, g0) +

∂S

∂g
(θ0, g0)g

′
0

}
+ op(1)

= 2B2(θ0) + op(1).

We remark that

d

dθ
Qn(θ, gθ)

∣∣∣∣
θ=θ0

= 2STn (θ0, g0)Mn

{
∂Sn
∂θ

(θ0, g0) +
∂Sn
∂g

(θ0, g0)g
′
0

}
.

Then, by (3.79) (see the proof of Lemma 3.5.6), we have

∂Sn
∂θ

(θ0, g0)− ∂S

∂θ
(θ0, g0) = op(1) and

∂Sn
∂g

(θ0, g0)g
′
0 −

∂S

∂g
(θ0, g0)g

′
0 = op(1).
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Consequently, we obtain

d

dθ
Qn(θ, gθ)

∣∣∣∣
θ=θ0

= 2STn (θ0, g0)M

{
∂S

∂θ
(θ0, g0) +

∂S

∂g
(θ0, g0)g

′
0

}
+ op(1).

Then, we have

θ̂ − θ0 = −{B2(θ0)}−1

{
∂S

∂θ
(θ0, g0) +

∂S

∂g
(θ0, g0)g

′
0

}T
M Sn(θ0, g0) + op(1).

To end the proof, it remains to be shown that

√
nB1(θ0)−1/2Sn(θ0, g0) −→ N (0, Iq).

Consider, for all w ∈ Rq such that ‖w‖ = 1,

An = wT
{
E0

(
nSn(θ0, g0)STn (θ0, g0)

)}−1/2√
nSn(θ0, g0)

= n−1/2
n∑
i=1

Bin,

with
Bin = wT

{
E0

(
nSn(θ0, g0)STn (θ0, g0)

)}−1/2
ξinŨin(θ0, g0).

By the Cramer-Wold device, it suffices to show that An converges asymptotically to a standard
normal distribution, for all w ∈ Rq, such that ‖w‖ = 1.
To prove this, we will use the central theorem limit (CTL) proposed by Pinkse et al. (2007).
These authors used an idea of Bernstein (1927) based on partitioning the observations into
J groups Gn1, . . . ,GnJ , 1 ≤ J < ∞, which are divided up into mutually exclusive subgroups
Gj1n, . . . ,Gjmjnn, j = 1, . . . , J . Each observation belongs to one subgroup, and its membership
can vary with the sample size n, as can the number of subgroups mjn in group j. We assume
that the partition is constructed such that

mjn/m1n = o(1) j = 2, . . . , J

and

Card(Girn) = O (Card(Gjtn)) , ∀ i, j = 1, . . . , J, r = 1, . . . ,min , t = 1, . . . ,mjn.

Partial sums over elements in groups and subgroups are denoted by Anj and Ajtn,j = 1, . . . , J ,
and t = 1, . . . ,mjn, respectively. Thus, we have

An =

J∑
j=1

Ajn =

J∑
j=1

mjn∑
t=1

Ajtn, Ajtn = n−1/2
∑
i∈Gjtn

Bin.

Let us recall in the following the assumptions under which the CTL of Pinkse et al. (2007) holds.
Assumption A. For any j = 1, . . . , J , let G∗, G∗∗ ⊂ Gjn be any sets for which

∀t = 1, . . . ,mjn : G∗ ∩ Gjtn 6= ∅ ⇒ G∗∗ ∩ Gjtn = ∅.

Then, for any function f in F =
{
f : ∀t ∈ Rf(t) = t or ∃υ ∈ R : ∀t ∈ Rf(t) = eιυt

}
, where ι is



3.5. Appendix 63

the imaginary number∣∣∣∣∣Cov

(
f

(∑
i∈G∗

Bin

)
, f

(∑
i∈G∗∗

Bin

))∣∣∣∣∣ ≤{
Var

(
f

(∑
i∈G∗

Bin

))
Var

(
f

(∑
i∈G∗∗

Bin

))}1/2

αjn,

for some mixing numbers αjn with

lim
n→∞

J∑
j=1

m2
jnαjn = 0.

Assumption B.

lim
n→∞

max
t≤mjn

σjtn
γjn

= 0, j = 1, . . . , J, lim
n→∞

γjn
γ1n

= 0, j = 2, . . . , J,

where

σ2
jtn = E0(A2

jtn), and γ2
nj =

mjn∑
t=1

σ2
jtn.

Assumption C. For some τ > 1

E0

(
|Ajtn|2τ

)
= o

(
σ2
jtnγ

2τ−2
jn

)
, j = 1, . . . , J, t = 1, . . . ,mjn.

If assumptions A−C hold, then by Theorem 1 in Pinkse et al. (2007), we have An −→ N (0, 1).

Thus, to complete the proof, we have to check these assumptions in our context.

Assumption A: This holds under (3.20) (Assumption A3).
Let us choose for instance J = 2 groups, each with m1n,m2n subgroups such that m2n = o(m1n).
Each subgroup is viewed as an area of size O(

√
cn ×

√
cn) such that (m1n + m2n)cn = O(n).

Because ϕ(·) is a decreasing function (Assumption A3), αjn = O(ϕ(
√
cn)) for j = 1, 2. The

sequence cn must be such that cn = O(n−ν+1/2) for some 0 < ν < 1/2 and nν+1/2ϕ(
√
cn) → 0

as n→∞.
If for instance ϕ(t) = O(t−ι), then nν+1/2ϕ(

√
cn) = O(nι(ν−1/4)+(1+ν)/2); this tends to 0 for each

ι > 2(1 + ν)/(1− 4ν).
Assumption B : By assumption A10, B1(θ0) is positive definite and by definition is the limit
of
E0

(
nSn(θ0, g0)STn (θ0, g0)

)
. Then, for sufficiently large n, the last matrix is positive definite, and

its inverse is O(1). Therefore, Bin is bounded uniformly on i and n because ξin is bounded
uniformly on i and n by Assumption A6, as is Ũin(θ0, g0). Then, for all j = 1, . . . , J and
t = 1, . . . ,mnj ,

σjtn =

n−1E0

 ∑
i∈Gjtn

Bin


1/2

= O
(
n−1/2Card(Gjtn)

)

and
γjn = O

(
mjn√
n

max
t≤mjn

Card(Gjtn)

)
.
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Therefore,
σjtn
γjn

= O(1/mjn)→ 0 as n→∞,

for all j = 1, . . . , J and t = 1, . . . ,mjn.
Now, consider the second limit in Assumption B. We have for all j = 2, . . . , J

γjn
γ1n

= O

(
mjn maxt≤mjn Card(Gjtn)

m1n maxt≤m1n Card(G1tn)

)
= O

(
mjn

m1n

)
→ 0 as n→∞,

because mjn/m1n = o(1) for all j = 2, . . . , J as n→∞.
Assumption C : By an easy calculation, we can show that

E0

(
|Ajtn|2τ

)
σ2
jtnγ

2τ−2
jn

= O(m2−2τ
jn )→ 0 as n→∞.

Lemma 3.5.6. Under the assumptions of Theorem 3.2.2 and for any θ̃ such that θ̃− θ0 = op(1),
we have

∂Sn
∂θ

(θ̃, gθ̃)−
∂S

∂θ
(θ0, g0) = op(1) (3.76)

and
∂Sn
∂g

(θ̃, gθ̃)g
′

θ̃
− ∂S

∂g
(θ0, g0)g

′
0 = op(1), (3.77)

with g
′

θ̃
(.) =

gθ
∂θT

(.)
∣∣∣
θ=θ̃

.

Proof of Lemma 3.5.6

To prove (3.76), we need to show that for all w ∈ Rq with ‖w‖ = 1,

wT
{
∂Sn
∂θ

(θ̃, gθ̃)−
∂S

∂θ
(θ0, g0)

}
= op(1)

, which is equivalent to

wT
{
∂Sn
∂θ

(θ̃, gθ̃)−
∂Sn
∂θ

(θ0, g0)

}
= op(1) (3.78)

and
wT
{
∂Sn
∂θ

(θ0, g0)− ∂S

∂θ
(θ0, g0)

}
= op(1). (3.79)

The proof of (3.78) is similar to that of (3.56), using the fact that

sup
θ, η

∥∥∥∥∥ ∂2Ũi
∂θ∂θT

(θ, η)

∥∥∥∥∥ and sup
θ, η

∥∥∥∥∥ ∂2Ũi
∂θ∂η

(θ, η)

∥∥∥∥∥
are bounded uniformly on i and n, and θ̃ − θ0 = op(1).
Now, let us prove (3.79). By the definition of S(· , ·) (see 3.13)

lim
n→∞

E0

(
∂Sn
∂θ

(θ0, g0)

)
=
∂S

∂θ
(θ0, g0).

Thus, it suffices to prove that

wT
∂Sn
∂θ

(θ0, g0)− wTE0

(
∂Sn
∂θ

(θ0, g0)

)
= op(1). (3.80)



3.5. Appendix 65

Let

wT
∂Sn
∂θ

(θ0, g0) = n−1wT ξin
∂Ũin
∂θ

(θ0, η
0
i ),= ∆n1 −∆n2, (3.81)

where

∆n1 = n−1
n∑
i=1

ξ
(1)
in (θ0, η

0
i )
(
Yin − Φ

(
Gin(θ0, η

0
i )
))

and ∆n2 = n−1
n∑
i=1

ξ
(2)
in (θ0, η

0
i ),

with
ξ

(1)
in (θ0, η

0
i ) := wT ξiΛ

′ (Gin(θ0, η
0
i )
) ∂Gi
∂θ

(θ0, η
0
i ),

ξ
(2)
in (θ0, η

0
i ) := wT ξinΛ

(
Gin(θ0, η

0
i )
)
φ
(
Gin(θ0, η

0
i )
) ∂Gin
∂θ

(θ0, η
0
i ),

and η0
i = g0(Zin).

The proof of (3.80) is then reduced to proving

E0

(
‖∆n1‖2

)
= o(1) and E0

(
‖∆n2 − E0(∆n2)‖2

)
= o(1). (3.82)

This last part is trivial because ξ(1)
in and ξ(2)

in are bounded uniformly on i and n (see Assumption
A6 and the compactness of Θ, X , and Z) and by use of the mixing condition (3.20) and (3.21)
in Assumption A3. This completes the proof of (3.76).

To prove (3.77), we remark that

∂Sn
∂g

(θ̃, gθ̃)g
′

θ̃
− ∂S

∂g
(θ0, g0)g

′
0 ={

∂Sn
∂g

(θ̃, gθ̃)−
∂S

∂g
(θ0, g0)

}
g
′

θ̃
+
∂S

∂g
(θ0, g0)

(
g
′

θ̃
− g′0

)
. (3.83)

Consider the second term on the right-hand side in (3.83), where we remark that because∥∥∥∥∂S∂g (θ0, g0)

∥∥∥∥ and sup
θ

sup
z

∥∥∥∥∂gθ(z)∂θ∂θT

∥∥∥∥ are finite and θ̃ − θ0 = op(1),

∂S

∂g
(θ0, g0)

(
g
′

θ̃
− g′0

)
= (θ̃ − θ0)O

(∥∥∥∥∂S∂g (θ0, g0)

∥∥∥∥ sup
θ

sup
z

∥∥∥∥∂gθ(z)∂θ∂θT

∥∥∥∥) = op(1).

For the first term on the right-hand side in (3.83), because g′
θ̃

= Op(1) by Proposition 3.5.1,
using similar arguments as when proving (3.76) permits one to obtain

∂Sn
∂g

(θ̃, gθ̃)−
∂S

∂g
(θ0, g0) = op(1).

This yields the proof of (3.77). �

Lemma 3.5.7. Under the assumptions of Theorem 3.2.2, we have

(i)
d

dθ

∂Qn
∂g

(θ, gθ)

∣∣∣∣
θ=θ0

(ĝ0 − g0) = op(1)

(ii)
∂Qn
∂g

(θ, gθ)

∣∣∣∣
θ=θ0

(ĝ
′
0 − g

′
0) = op(1),
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where
ĝ
′
0(.) =

∂ĝθ
∂θ

(.)

∣∣∣∣
θ=θ0

and g
′
0(.) =

∂gθ
∂θ

(.)

∣∣∣∣
θ=θ0

.

Proof of Lemma 3.5.7

To prove (i), and we note that

d

dθ

∂Qn
∂g

(θ, gθ) = 2
d

dθ

{
STn (θ, gθ)Mn

∂Sn
∂g

(θ, gθ)

}
= 2

d

dθ
STn (θ, gθ)Mn

∂Sn
∂g

(θ, gθ) + 2STn (θ, gθ)Mn
d

dθ

∂Sn
∂g

(θ, gθ).

One can easily see that

d

dθ
Sn(θ, gθ) =

∂Sn
∂θ

(θ, gθ) +
∂Sn
∂g

(θ, gθ)g
′
θ

and
d

dθ

∂Sn
∂g

(θ, gθ) =
∂2Sn
∂θ∂g

(θ, gθ) +
∂2Sn
∂g2

(θ, gθ)g
′
θ.

Therefore, we have

d

dθ

∂Qn
∂g

(θ, gθ)

∣∣∣∣
θ=θ0

(ĝ0 − g0) =

2STn (θ0, g0)Mn

{
∂2Sn
∂θ∂g

(θ0, g0) +
∂2Sn
∂g2

(θ0, g0)g
′
0

}
(ĝ0 − g0)

+ 2
∂Sn
∂g

(θ0, g0)Mn

{
∂Sn
∂θ

(θ0, g0) +
∂Sn
∂g

(θ0, g0)g
′
θ

}
(ĝ0 − g0).

By Lemma (3.5.3) and S(θ0, g0) = 0, we obtain

Sn(θ0, g0) = Sn(θ0, g0)− S(θ0, g0) = op(1). (3.84)

In addition, we have∥∥∥∥∂2Sn
∂θ∂g

(θ0, g0)(ĝ0 − g0)

∥∥∥∥ = n−1

∥∥∥∥∥∑ ξin
∂2Ũin
∂θ∂η

(θ0, ηi)(ĝ0(Zin)− g0(Zin))

∥∥∥∥∥
≤ n−1

∑
sup
i,n
‖ξin‖ sup

η

∥∥∥∥∥∂2Ũin
∂θ∂η

(θ0, η)

∥∥∥∥∥ ‖ĝ0 − g0‖

= op(1), (3.85)

because ξi is bounded uniformly on i, n and θ (Assumption A6), ‖ĝ0 − g0‖ = op(1) by Proposi-
tion 3.5.1, and

sup
i, n

sup
η

∥∥∥∥∂2Uin
∂θ∂η

(θ0, η)

∥∥∥∥ <∞.
Using similar arguments as in the proof of (3.85), we obtain∥∥∥∥∂2Sn

∂g2
(θ0, g0)(ĝ0 − g0)g

′
0

∥∥∥∥ = n−1

∥∥∥∥∑ ξi
∂2Uin
∂η2

(θ0, ηi)(ĝ0(Zin)− g0(Zin))g
′
0(Zin)

∥∥∥∥
= op(1), (3.86)
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∥∥∥∥∂Sn∂g (θ0, g0)(ĝ0 − g0)g
′
0

∥∥∥∥ = n−1

∥∥∥∥∑ ξin
∂Uin
∂η

(θ0, ηi)(ĝ0(Zin)− g0(Zin))g
′
0(Zin)

∥∥∥∥
= op(1), (3.87)

and ∥∥∥∥∂Sn∂θ (θ0, g0)(ĝ0 − g0)

∥∥∥∥ = n−1

∥∥∥∥∑ ξin
∂Uin
∂θ

(θ0, ηi)(ĝ0(Zin)− g0(Zin))

∥∥∥∥
= op(1). (3.88)

Combining (3.84)-(3.88) with Assumption A10 permits one to have

d

dθ

∂Qn
∂g

(θ, gθ)

∣∣∣∣
θ=θ0

(ĝ0 − g0) = op(1).

This yields the proof of (i).
The proof of (ii) follows along similar lines as (i) and hence is omitted. �

Lemma 3.5.8. Under the assumptions of Theorem 3.2.2, we have

Sn(θ, ĝθ)− Sn(θ, gθ) = r(1)
n (θ),

where
sup
θ

∥∥∥∥ ∂∂θr(1)
n (θ)

∥∥∥∥ = op(1), and sup
θ

∥∥∥∥ ∂2

∂θ∂θT
r(1)
n (θ)

∥∥∥∥ = op(1)

Proof of Lemma 3.5.8

By applying Taylor’s theorem to Ũi(θ, ·) for each θ ∈ Θ, we obtain

Sn(θ, ĝθ)− Sn(θ, gθ) = n−1
n∑
i=1

ξin

(
Ũin(θ, ĝθ)− Ũin(θ, gθ)

)
= n−1

n∑
i=1

ξin (ĝθ(Zin)− gθ(Zin))

×
∫ 1

0

∂Ũin
∂η

(θ, gθ(Zin) + t (ĝθ(Zin)− gθ(Zin))) dt

:= r(1)
n (θ).

Because the instrumental variables are bounded uniformly on i, n, and θ (Assumption A6),

sup
θ∈Θ
‖ĝθ − gθ‖, sup

θ∈Θ
max

j=1,...,p+1

∥∥∥∥ ∂

∂θj
(ĝθ − gθ)

∥∥∥∥ and sup
θ∈Θ

max
1≤i,j≤p+1

∥∥∥∥ ∂2

∂θi∂θj
(ĝθ − gθ)

∥∥∥∥ are all of order

op(1) by Proposition 3.5.1, it suffices to show that

sup
θ,η

sup
i

∥∥∥∥∥∂Ũin∂η
(θ, η)

∥∥∥∥∥ = Op(1) (3.89)

sup
θ,η

sup
i

∥∥∥∥∥ ∂∂θ ∂Ũin∂η
(θ, η)

∥∥∥∥∥ = Op(1) and sup
θ,η

sup
i

∥∥∥∥∥ d2

∂θ∂θT
∂Ũin
∂η

(θ, η)

∥∥∥∥∥ = Op(1). (3.90)

Equation (3.89) is already proved in the proof of Lemma 3.5.4 (see (3.59)). The proof of (3.90)
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can be established in a similar manner and is thus omitted. �



Chapter 4
Application of spatial models to investigate
suicide recidivism in Nord-Pas-de-Calais.

4.1 Introduction

According to the World Health Organization (WHO), more than 800000 people die from suicide
every year, including 10000 in France, preventing suicide is a major public health issue. In
2013, the World Health Assembly adopted the first-ever Mental Health Action Plan of the World
Health Organization. This plan aimed to reduce the rates of suicide by 10% from 2013 to 2020.
The understanding of risk factors involved in suicidal behavior is crucial for the development of
effective prevention plans. Interestingly, one of the most robust risk factors for death by suicide
is a history of previous suicide attempts, as a substantial number of patients who attempt a
suicide ultimately die by suicide.

Suicide is a serious global public health issue and is among the leading causes of death
worldwide. In 2019, more than one in every 100 deaths (1.3%) were the result of suicide. A
previous suicide attempt is one of the most important contributory factors of future suicide
(Hawton and Heeringen, 2009) as well as death by suicide (Brent et al., 1996). Hulten et al.
(2001) investigated the repetition of attempted suicide among young people aged 15–19 years
in some European countries and identified relevant factors associated with repeated suicidal
behaviour. Many studies have proven that postcard or telephone follow-up helped to prevent
reattempts (Beautrais et al., 2010; Carter et al., 2005; Cedereke et al., 2002; Evans et al.,
2005; Exbrayat et al., 2017; Guillaume et al., 2006; Motto & Bostrom, 2001; Vaiva et al., 2011).
Exbrayat et al. (2017) verified that a protocol of early telephone follow-up after attempted suicide
is helpful in preventing reattempts.

In France, the VigilanS healthcare system is an effort to support those who have attempted
suicide in various regions. It was established in the Nord-Pas-de-Calais region in February 2015.
This programme to monitor and prevent recidivism of suicide attempts is executed via phone
calls by teams of professionals who are specialized in this type of remote care. At Lille Univer-
sity Hospital, this six-month programme is managed by the adult psychiatry department under
Professor Guillaume Vaiva. Posthospital support is offered to those patients who attempted
suicide.

A patient discharged from the hospital is given a resource card which includes the single
regional call number. The patient is also given an information note indicating the terms and
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recidivism in Nord-Pas-de-Calais.

conditions of the system as well as his or her right to object. At the same time, the partner center
notifies the VigilanS secretariat of the patient’s discharge and entry into the surveillance system
by sending an encrypted fax or email, or via a Web interface. The VigilanS secretariat opens a
follow-up file and sends an information letter to the care partners with the contact number for
health professionals (dedicated line).

• Non-primary suicidal patients are called by telephone between days 10 and 21 after their
discharge from the hospital by the follow-up team.

• For all suicidal persons benefiting from the system, a telephone contact is scheduled at
the end of the sixth month following discharge from hospital with a view to a clinical
assessment and evaluation with a proposal for ending the monitoring. If necessary, the
monitoring can be extended. For this call, the patient is informed 1 week before by a
letter.

• In VigilanS, the suicidal person leaves the hospital with a resource card containing the
toll-free number of the contact unit, which he or she can call at any time during opening
hours. Many incoming calls are received; these are generally long calls from patients in
need of help.

• The sending of personalized postcards; once a month for 4 months, can be decided by the
contactor after any phone call and for unreachable patients.

The aim of this chapter is to:

1. identify the recidivism risk factors in the Nord-Pas-de-Calais region;

2. model the suicide recidivism by applying several frameworks of the probit regression model;

3. investigate the impact of non-linear explanatory variables (exogenous determinants) such
as median revenue, unemployment rates, worker rates and graduation (high school gradu-
ates) rate.

The spatial autocorrelation factor as well as the non-linear explanatory variables are then
incorporated to the partially linear spatial probit model (Ahmed et al., 2020) to improve the
accuracy of predicting suicide recidivism in Nord-pas-de-Calais. This model can aid in developing
strategies to combat suicide death in a population.

4.2 Data description

The data consists of information on 34000 cases of suicide attempts from January 2015 to May
2021 for over 20000 patients. Among the suicide attempts, 31.3% entries show reattempts
(22.95% of the patients). The reattempt cases will be called as feature recidivism and treated as
our target variable.

This 6-month follow up study collected data at the point of recruitment, 10 days after and 6
months after recruitment. The database includes the data of more than 23000 patients from dif-
ferent establishments, with information on sociodemographic characteristics such as date of birth
(age), gender, address, and native country. This data set also contains information on alcohol
consumption before the suicide attempt; history of suicide attempts; suicide methods (overdose



4.2. Data description 71

of drugs, drug poisoning (medicaments), drowning, wounding (lesions), hanging, voluntary drug
intoxication (VDI), phlebotomy, jumping from a great height, combination of several methods
and others); duration of hospitalisation; information concerning calls (answered and missed calls,
and the number of these calls) that will be made on the 10th day as well as 6 months after the
suicide attempt; and if there has been contact with the patient’s family and friends or a profes-
sional.

The data at day 10 is based on the responses of the patients to the questionnaire on the 10th
day. It contains variables such as the date of call, the duration of call, and the responses (the
options are in parentheses) to the following questions (classified as categorical variables):

1. how does the patient feel? (Better, Worse, No changes)

2. does support from family, professional (psychiatrist) and social domain help to overcome
the temptation to commit suicide? (Yes/ No)

3. is there psychological monitoring of patient? (Yes/ No)

4. does the patient need help? (Yes/ No)

5. is the patient suffering and needs help? (Suffering and needs help/ suffering but does not
need help/ in difficulty/ no issues)

6. effect of postcard intervention (Helpful/ Not helpful)

7. available support (Friends, family, VigilanS professional, attending psychiatrist, doctor,
Psychiatric Medical Centre (inpatient treatment), Hospital Emergency (outpatient treat-
ment), Others)

On the other hand, the 6-month data is based on the patient’s responses to the 6-month
questionnaire. The variables are related to the date and duration of the call and the patient’s
responses (the options are in parentheses) to the following questions:

1. display of risky behaviour since the attempt (Yes/ No);

2. existence of suicidal thoughts since the attempt (Yes/ No);

3. continuous monitoring on patients (Yes/ No);

4. effect of postcard intervention (Helpful/ Not helpful);

5. the total number of lifetime suicide attempts.

REC denotes recidivism at the point of recruitment. A target variable called Recidivism
after 6 months denoted by REC6 was created for this data. REC6 is a binary variable which
tells if the patient attempted suicide after the 6-month-call. It was created using the following
logic:

• for a patient with single entry: REC = No,

• for a patient with multiple entries: REC = Yes for all but the last entry No.

Then, based on the date of call made at the 6th month, the duration between two successive
acts was calculated and classified as follows for the post 6-month study:
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• if REC = Yes and duration is more than 6 months, REC6 = Yes,

• if REC = Yes and duration is lesser than 6 months, REC6 = No,

• if REC = No, then REC6 = No.

4.2.1 Data for exogenous determinants

Apart from the data collected by VigilanS, it was of interest to examine the impact of exogenous
determinants such as the income, the manual worker rate and the level of education of the
population in the Nord-Pas-de-Calais region. The data was retrieved from website atlasante.fr.

4.2.2 Predictors examined

The predictors examined at initial point of recruitment and 6 months after recruitment are given
in the following table:

Table 4.1: Description of the variables.

Predictors
Age age of the patient.

Gender male or female.

Total SA the total number of suicide attempts.

Alcohol alcohol consumption by patients before the suicide attempt.

Companion Patient accompanied to hospital after the first suicide attempt.

VSA Using violent means of suicide such as firearm, wounding,
hanging, VDI, wrist-cutting.

Hospitalisation Hospitalisation of patient after the suicide attempt.

Contact Family and friends OR Professional OR both OR none
(to attend calls from VigilanS).

Impact domain

Affected by family, social or professional surroundings
- one of the factors mentioned above has an impact,
- two of the factors mentioned above have an impact,
- three of the factors mentioned above have an impact,
- none of the factors mentioned above have an impact.

Follow up after 6 months If the patient is continued to be monitored after 6 months.

Psychological monitoring D10 Follow-up with psychiatrist.

Native country France, Outside France, No information.

VSA Yes: Hospitalisation No combination of VSA and No Hospitalisation

Median income Median of income in Euros.

Unemployment rate Rate in % of share of unemployed in the 15-64 age group.

Worker rate Rate in % of share of manual workers in the 15-64 age group.

Graduation rate Rate in % of share of high school graduates.
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Figure 4.1: Map of suicide attempts per 1000 people

4.3 Methods

Modeling the suicide attempt by taking into account potential spatial dependency requires to
find a correlation structure between data observed at a given location and that available at
neighboring locations. In spatial econometrics, spatial dependency is usually modeled by using
a spatial linear process defined by a spatial weight matrix which is a n×n non-stochastic weight
matrix, Wn describing the spatial interactions between n spatial units. For a lattice data, the
spatial autoregressive (SAR) dependent variable model and the spatial autoregressive error model
(SAE).

Our goal is to model suicide recidivism for patients enrolled in the VigilanS programme. The
response variable is a binary variable so we use the probit regression model. The integration
space-dependent correlation to the model (if exists) further enhances the ability of the model
by increasing its accuracy. Space-dependent correlation is detected when data observed between
neighbouring locations form a correlation structure. The inclusion of the spatial index based on
the location of the address reported for each patient lead to the use of the spatial probit model.

Suppose we have a sample of n observations collected from points in a region of interest located
on an irregularly spaced, countable lattice I ⊂ RN , N ≥ 2. Let (Ysi , Xsi)i=1,...,n be a sequence
of spatially dependent observations at these spatial n points denoted si ∈ RN drawn from lattice
I. Assume that all sites in I are located at distances of at least d > 0 for each other; i.e ∀
si, sj ∈ I: ‖si − sj‖ ≥ d. In this section, to facilitate the notation, we denote i for individual in
location si. The variables Yi are binary responses (Yi = 1 correspond to recidivism while 0 is no
recidivism). Let Xn be a n × p matrix of p exogenous discrete or continuous random variables
with elements Xij , i = 1, . . . , n, j = 1, . . . , p. Suppose two alternatives for each observation is
based on a latent dependent variable Y ∗i via the following spatial autoregressive regression:

Y∗n = λ0WnY
∗
n + Xnβ0 + εn, εn ∼ N(0, In),

Yi = I (Y ∗i ≥ 0) , i = 1, . . . , n. (4.1)
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where the coefficient λ0 is a scalar autoregressive parameter indicating the degree of spatial
dependence, β0 is a p×1 vector of parameters. Wn is a spatial weight matrix described by one of
previous methods given in Chapter 1. Assume that the n×n matrix (In−λ0Wn) is nonsingular
for all n, therefore the variance-covariance matrix of the latent dependent vector of variables Y∗n
is

Vn(λ0) = Var (Y∗n|Xn) = (In − λ0Wn)−1
{

(In − λ0Wn)
′
}−1

.

The ProbitSpatial R package was used to provide the estimates of β0 and λ0 in the following
where the results are based on the spatial weight matrix Wn with K-nearest neighbour (KNN)
weights.

The SAR probit model will be compared with the classical binary probit model (does not consider
spatial dependence). We will present the numerical results for the spatial probit SAR (model 4.1)
and the following basic non-spatial binary probit model:

Y∗n = Xnβ0 + εn, εn ∼ N(0, In),

Yi = I (Y ∗i ≥ 0) , i = 1, . . . , n. (4.2)

4.3.1 Partially linear spatial probit model

We consider that at n spatial locations {s1, s2, . . . , sn} satisfying ‖si − sj‖ > ρ with ρ > 0,
observations of a random vector (Y,X,Z) are available. Assume that these observations are
considered as triangular arrays (Robinson, 2011) and follow the partially linear model of a latent
dependent variable Y ∗:

Y ∗in = XT
inβ0 + g0(Zin) + Uin, 1 ≤ i ≤ n, n = 1, 2, . . . (4.3)

with
Yin = I (Y ∗in ≥ 0) , 1 ≤ i ≤ n, n = 1, 2, . . . (4.4)

where I(·) is the indicator function; X and Z are explanatory random variables taking values in
the two compact subsets X ⊂ Rp(p ≥ 1) and Z ⊂ Rd(d ≥ 1), respectively; the parameter β0 is
an unknown p × 1 vector that belongs to a compact subset Θβ ⊂ Rp; and g0(·) is an unknown
smooth function valued in the space of functions G =

{
g ∈ C2(Z) : ‖g‖ = supz∈Z |g(z)| < C

}
,

with C2(Z) the space of twice differentiable functions from Z to R and C a positive constant.
In model (4.3), β0 and g0(·) are constant over i (and n). Assume that the disturbance term Uin

in (4.4) is modelled by the following spatial autoregressive process (SAR):

Uin = λ0

n∑
j=1

WijnUjn + εin, 1 ≤ i ≤ n, n = 1, 2, . . . (4.5)

where λ0 is the autoregressive parameter, valued in the compact subset Θλ ⊂ R, Wijn, j =

1, . . . , n are the elements in the i–th row of a non-stochastic n× n spatial weight matrix Wn.
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4.4 Results and discussion

Bivariate analysis (Tables 4.8, 4.9, 4.10, 4.11) showed statistically significant differences in the
potential predictors of suicide recidivism. P-value less than 0.05 indicates statistical significant
difference in the category studied.

Females consist about 61% of the total patients enrolled with those in the adolescent phase as
well as in their 20s contributing the highest number of cases. On the other hand, for males,
patients in their 40s and 50s contribute to the highest number of suicide cases.

This study also shows that alcohol consumption prior to a suicide attempt contributes to suicide
recidivism (more than 50% of the patients, Table 4.2). Patients aged 40 and above have higher
tendency in consuming alcohol before the act of committing suicide (Figure 4.5). Alcohol con-
sumption among males (60%) is higher than that of females (40%) based on findings.

Patients use various methods for attempting suicide where VDI was used by almost 80% of fe-
males and 70% of males. Males tend to resort to violent means of committing suicide such as
hanging, using firearms, wounding, VDI and wrist cutting. Some patients even adopted more
than one method of suicide. Firearm (86%), wounding (67%) and hanging (73%) methods are
more common among men (Table 4.8). Women were more likely to use VDI (64%) and wrist
cutting (55%) (Table 4.8).

Note that 62% of those who were recruited were accompanied by someone to enroll in the Vig-
ilanS programme (Tabel 4.2). Our data revealed that those that suicide recidivism was more
common among those who were unaccompanied during their visit to enroll for the VigilanS pro-
gramme.

The chi-squared test was performed to investigate the relationship between two qualitative vari-
ables. Statistical significance for the test was defined as p<0.05. Tabel 4.2 shows the predictors
that have high association with recidivism. The chi-square test shows a strong dependence be-
tween recidivism and age with other essential variables such as alcohol consumption, which is a
factor contributing to recidivism, and with other variables.
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Table 4.2: Factors of suicide recidivism and methods used.

Variables Total Sample recidivism No recidivism
t/χ2 df p-valueN= 1364 N= 417 N=947

Gender 3.53 0.06
Male (%) 433 (31.74) 117 (28.06) 316 (33.37)
Female (%) 931 (68.26%) 300 (71.94) 631 (66.63)

Age (mean±SD) 42.58 ± 15.38 42.87 ± 13.35 42.45 ± 16.19 -0.51 953.42 0.6

Alcohol (Yes) 689 (50.51) 212 (50.83) 477 (50.37) 0.01 1 0.8

Companion (Yes) 984 (62.14) 275 (65.95) 709 11.02 1 0.0008

TotalSA 7.396 ± 13.59 9.66 ± 16.17 6.4 ± 12.15 -3.68 631.43 0.00025

Hospitalisation (Yes) 593 172 421 1.08 1 0.2

Methods 36.10 8 1.68 e−5

Firearm 5 0 5
Other ways 24 0 24
VDI 1075 334 741
Wounding 12 2 10
Drowning 11 4 7
Hanging 31 3 28
Phlebo 112 52 60
Several ways 82 19 63
Jump 12 3 9

Native country 30.4 2 2.5e−7

Not France 32 11 21
France 1047 357 690
Not available 285 49 236

Contact 30.11 3 1.3e−6

Entourage 126 20 106
Professional 320 121 199
Ent/prof 259 97 162
No contact 659 179 480

Impact domain 8.88 3 0.03
One domain 535 179 356
Two domains 209 59 150
Three domains 40 5 35
No impact 580 174 406
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4.4.1 Models to predict suicide recidivism

Models predicting suicide recidivism over 6 months were developed. To determine the strongest
predictors of suicide recidivism in Northern France, the data of the patients at the point of
recruitment was modelled using a binary regression model (see Appendix section 4.6) for the table
of predictors examined). The best predictors of suicide recidivism at the point of recruitment
are marked with asterisks (Table 4.12).

The probit regression model

The classical probit regression model (equation 4.2) predicting possible recidivism 6 months after
the current attempt was validated.

Residivism ∼ β0 + β1Age + β2Gender + β3TotalSA + β4Alcohol + β5Hospitalisation + β6VSA

+ β7Companion + β8Native country + β9Contact + β10Impact domains

+ β11Psychological monitoring D10 + β12Follow up 6m.

Table 4.3: Probit model.

Variable Estimate Std Error z-value p-value
Intercept -0.8353 0.1856 -4.5010 6.75e−06 ***
Age 0.0036 0.0025 1.4230 0.154642
Gender(Male) -0.0954 0.0849 -1.1240 0.261224
TotalSA 0.0060 0.0028 2.1470 0.031813 *
Alcohol (Yes) 0.0337 0.0791 0.4270 0.669584
Companion(Yes) -0.2280 0.0851 -2.6800 0.007361 **
VSA (Yes) -0.5960 0.1574 -3.7860 0.000153 ***
Hospitalisation (No) -0.1124 0.0867 -1.2960 0.194817
Contact (Ent & Prof) 0.2663 0.1012 2.6320 0.008485 **
Contact (Entourage) -0.2919 0.1521 -1.9190 0.055001 †
Contact (Professional) 0.1431 0.0944 1.5160 0.129458
One impact domain 0.0939 0.0837 1.1210 0.262124
Two impact domains -0.0334 0.1135 -0.2940 0.768647
Three impact domains -0.5364 0.2716 -1.9750 0.048281 *
Follow up after 6 months (Yes) 0.3308 0.0908 3.6420 0.000271 ***
Psychological monitoring D10 (Yes) 0.4353 0.0884 4.9270 8.37e−07 ***
Native country (Not.France) -0.5562 0.1022 -5.4420 5.28e−08 ***
Native country (Not Available) 0.0712 0.2406 0.2960 0.767191
VSA (Yes):Hospitalisation (NH) 0.8353 0.2002 4.1730 3.01e−05 ***
AUC 0.6954
AIC 1569.2900

Note: † p < 0.1; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001.
The classification in parenthesis refer to the dummy for the respective predictor.

This model treats recidivism after 6 months as the response variable, which tells if the patient
re-attempted suicide 6 months after the initial attempt or not. A p-value <0.05 indicates that
the predictor variable is statistically significant to predict suicide recidivism based on this model.
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This model resulted in an AUC of 69.54%. It was of interest to study if spatial effects are of
significance to predicting recidivism.
This model treats Recidivism after 6 months as the response variable, which informs the prob-
ability of the re-attempted suicide after 6 months of the current attempt. Male patients as well
as those who were accompanied have lower probability of recidivism after 6 months. Missing
hospitalisation after a violent suicide attempt increases the risk of reattempting suicide after 6
months.
One of the most prominent risk factors for death by suicide is a history of previous suicide
attempts as a substantial number of patients who attempt suicide ultimately die committing
suicide. If VigilanS can establish contact with the patient’s family member, the chances of re-
cidivism after 6 months are lower. The influence of more than one surrounding domain such as
family, professional and social reduces the probability of recidivism after 6 months.
The risk of suicide recidivism is lower for those who were accompanied by someone such as family
or friends to the hospital as well as those who were hospitalised. The severity of the previous
suicidal act such as a violent act instils fear in the patient to reattempt suicide. Those patients
with strong family support tend not to be victims of suicide recidivism.
When contact with a professional i.e. psychiatrist or psychologist is established, it indicates that
the patient is in need of great help. Family and people around (entourage) play a vital role in
giving support to the patient apart from consulting a professional to reduce suicide reattempts.
The duration of the VigilanS programme is 6 months and the decision of the clinician to prolong
the duration indicates that the patients need more attention and require professional help. This
also applies to the cases with follow-up after 10 days.

The spatial probit model, SAR

A Moran’s I test was conducted on the residuals for the aforesaid model to investigate the
existence of spatial autocorrelation based on spatial weight matrix created from the location
coordinates of the address of each patient. Since the Moran’s I test appeared to be significant
with I = 0.1497 and p-value = 0.001, spatial effects were included to the probit regression model.
The p-value of ρ suggests that spatial effects are significant in this model and the AUC increases
to 71.25%.
The SAR and SEM models (see in the Appendix section 4.6 Tables 4.12 and 4.13) give similar
results. The inclusion of spatial effects indicated by ρ (see Table 4.4) increased the AUC to
71.25%.
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Table 4.4: Results for the SAR probit model

Predictors Estimate Std Error p-value
Intercept -0.6567 12.3006 4.53e−04 ***
Age 0.0032 2.1130 0.1460
Gender (Male) -0.0621 0.9706 0.3245
TotalSA 0.0054 2.9662 0.0850 †
Alcohol (Yes) 0.0981 0.4347 0.5097
Companion (Yes) -0.1626 4.5991 0.0320 *
VSA (Yes) -0.4942 16.2366 5.59e−05 ***
Hospitalisation (No) -0.1013 2.3747 0.1233
Contact (Ent & Prof) 0.1926 5.4671 0.0194 *
Contact (Entourage) -0.3487 3.5624 0.0591 †
Contact (Professional) 0.1081 5.0848 0.0241 *
One impact domain 0.0698 0.2995 0.5842
Two impact domains -0.0104 0.1127 0.7371
Three impact domains -0.3460 2.7501 0.0972 †
Follow up after 6 months (Yes) 0.2819 10.0414 0.0015 **
Psychological monitoring D10 (Yes) 0.4377 24.1588 8.87e−07 ***
Native country (Not Available) -0.4843 25.6858 4.02e−07 ***
Native country (Not.France) 0.1162 0.0810 0.7759
VSA (Yes): Hospitalisation (No) 0.6192 18.5235 1.68e−07 ***
ρ 0.4524 73.7243 8.98e−18 ***
AUC 0.7125
AIC 1558.7180

Note: † p < 0.1; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001

Table 4.5: The Moran’s test

Variables Moran’s I
Median revenue 0.2048 ***
Unemployment rate 0.1598 ***
Worker rate 0.3028 ***
Graduation rate 0.3457 ***
1st score PCA 0.2476 ***
1st score positive (sPCA) 0.2048 ***

Note: *** p < 0.001
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The partially linear spatial probit model (PLSPM)

In attempting to further enhance the performance of the prediction model, features with non-
linear explanatory variables (exogenous determinants) were then added to the spatial probit
regression model: median revenue (in Euros), unemployment rates, worker rates and graduation
rates. We extract the smooth terms by fitting a GAM model (see Appendix Table 4.15) and use
them as additive terms in the spatial probit model.

This study shows that significant predictors of suicide reattempts based on the best predictive
model i.e the partially linear spatial probit model after a 6-month follow-up are gender, total
number of suicide attempts by patient, if patient was accompanied to hospital, hospitalisation,
contact with family, friends or professionals (psychiatrists), 10-day psychological monitoring, 3-
impact domain (affected by family, social and professional surroundings), monitoring of patient
for 6-months, patients with unidentified native countries, and finally the combination of violent
methods of suicide attempt as well as hospitalisation.

The Moran’s I test for each of these variables showed the existence of spatial autocorrelation
(Table 4.5). The spatial component for this model is undoubtedly significant (p-value of ρ) re-
sembling the earlier model. All the other predictors used are similar to the earlier model. This
partially linear spatial probit model has an AUC of 79.76%. The AUC curve for this model is
given in Figure 4.2a. A binned residual plot (Figure 4.2b) was also constructed for the partially
linear spatial model to assess the fit of this model. Only a few points lie outside the confidence
limits but no systematic pattern is detected in the plot. Therefore, this plot indicates that the
partially linear spatial probit model is a good fit to the data compared to some of the investigated
models from the probit regression model paradigm.

(a) (b)

Figure 4.2: Binned and AUC plots of PLSPM
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In addition to the results in Table 4.6, we provide the log odds ratio of the prediction of suicide
attempts at sample locations (Figures 4.3a and 4.4a) and the prediction maps (Figures 4.3b
and 4.4b) for all the Nord pas de calais region, based on the PLSPM model and GAM model.
Figure 4.3b highlighted the communes (Saint Omer, Dunkerque, Lille and Douai) where the
suicide attempts is high (red and yellow). This map seems to overestimate the suicide attempts
compare to the prediction given by the best model (PLSPM) (Figure 4.4b).

Table 4.6: Partially linear spatial probit model

Predictors Estimate Std Error p-value
Linear Effects
Intercept -0.8513 27.35512 1.69e−07 ***
Gender (male) -0.1712 5.34287 2.08e−02 †
TotalSA 0.0069 4.78931 2.86e−02 *
Companion(Yes) -0.1569 1.43605 2.31e−01

VSA (Yes) -0.8185 23.22975 1.44e−06 ***
Hospitalisation (No) -0.2300 6.62259 1.01e−02 *
Contact (Ent/Prof) 0.5579 19.94233 7.98e−06 ***
Contact (Entourage) -0.1413 0.31537 5.74e−01

Contact (Professional) 0.2485 5.74343 1.66e−02 *
Psychological monitoring D10 (Yes) 0.3926 13.63203 2.22e−04 ***
One impact domain 0.1668 1.58415 2.08e−01

Two impact domains -0.0655 0.07427 7.85e−01

Three impact domains -0.6247 6.25429 1.24e−02 *
Follow up after 6 months (Yes) 0.3159 9.16583 2.47e−03 **
Native country (Not Available) -0.6148 19.81851 8.52e−06 ***
Native country (Not.France) -0.0784 0.07734 7.81e−01

VSA (Yes): Hospitalisation (No) 1.2267 34.48394 4.30e−09 ***
ρ 0.3954 27.37676 1.67e−07 ***

Non-Linear Effects edf Chi.sq p-value
Median revenue 1.1178 48.3874 3.50e−12 ***
Unemployment rate 1.1348 57.3218 3.70e−14 ***
Worker rate 1.1405 46.2091 1.06e−11 ***
Graduation rate 1.1451 53.3024 2.86e−13 ***
Age 1.1549 46.4688 9.31e−12 ***
AUC 0.7976
AIC 1386.848

Note: † p < 0.1; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001
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Figure 4.3: (a) Log of odd ratios of the prediction of suicide attempts at sample locations
and (b) the prediction map in all the Nord-Pas-de-Calais region using the GAM model.
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Figure 4.4: (a) Log of odd ratios of the prediction of suicide attempts at sample locations
and (b) the prediction map in all the Nord-Pas-de-Calais region using the PLSPM model.
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PLSPM with deprivation index

We calculate the index of deprivation for each commune by extracting the first component of
the principal component analysis (PCA) of 4 available variables namely, worker rate, graduation
rate, unemployment rate and median revenue. We conduct spatial PCA and the first positive
component is also used as a spatial index of deprivation. The Moran’s test on these components
is well significant (Table 4.5). From the GAM model (Table 4.16 in Appendix), we use this index
as an additive term in this spatial probit model (Table 4.7).

Table 4.7: The PLSPM model with deprivation index.

Predictors Estimate Std Error p-value
Linear Effects
Intercept -0.8201 21.4205 3.69e−06

Gender (Male) -0.1426 4.4011 3.59e−02

TotalSA 0.0084 5.5623 1.84e−02

Companion (Yes) -0.1768 3.3318 6.80e−02

VSA (Yes) -0.6851 20.8754 4.90e−06

Hospitalisation (Yes) -0.1521 4.3604 3.68e−02

Contact (Ent/Prof) 0.3968 12.0644 5.14e−04

Contact (Entourage) -0.1732 1.5308 2.16e−01

Contact (Professional) 0.1919 3.4248 6.42e−02

Psychological monitoring D10 (Yes) 0.4425 15.8963 6.69e−05

One impact domain 0.1098 0.9976 3.18e−01

Two impact domains -0.1186 0.9021 3.42e−01

Three impact domains -0.6323 7.0471 7.94e−03

Follow up after 6 months (Yes) 0.3794 11.8171 5.87e−04

Native country (Not Available) -0.5419 18.7576 1.48e−05

Native country (Not France) -0.0293 0.2395 6.25e−01

VSA (Yes):Hospitalisation (No) 1.0426 30.8615 2.77e−08

ρ 0.5027 54.4303 1.61e−13

Non-Linear Effects edf Chi.sq p-value
Age 1.1830 35.8953 2.08e−09

spatial index deprivation 1.1555 39.5736 3.16e−10

AUC 0.7533

4.5 Conclusion

The application of the partially linear spatial probit model on the suicide recidivism data clearly
showed that the inclusion of the spatial effect significantly improved the prediction ability of the
model. This model also identified significant predictors of suicide recidivism as well as exogenous
determinants which can contribute towards suicide reattempts. Multiple suicide attempters must
be given more attention and the VigilanS programme is working towards significantly lowering
suicide cases in Northern France. This statistical analysis can work hand in hand with the



84
Chapter 4. Application of spatial models to investigate suicide

recidivism in Nord-Pas-de-Calais.

VigilanS programme towards achieving its goal. Socio-familial isolation is considered a fairly
important risk factor of suicide recidivism attempt. Moreover, a patient committing a violent
act of suicide and was not hospitalised tends to repeat the act.

4.6 Appendix

Table 4.8: Chi-square analysis for gender from the original data.

Predictors P-value Classes Gender
Female Male

Alcohol <2.2e−16 No 0.6864 0.3136
Yes 0.5177 0.4823

Methods <2.2e−16 Firearm 0.1379 0.8621
Other ways 0.4675 0.5325
IDV 0.6454 0.3546
Wounding 0.3223 0.6777
Drowning 0.5556 0.4444
Hanging 0.2648 0.7352
Phlebo 0.5655 0.4345
Several ways 0.5584 0.4416
Jump 0.5031 0.4969

Companion <2.2e−16 No 0.5310 0.4690
Yes 0.6332 0.3668

Age Groups <2.2e−16 ≤ 24 0.7111 0.2889
25 - 40 0.5322 0.4678
40 - 54 0.5683 0.4317
55 + 0.6275 0.3725

Table 4.9: Chi-square analysis for suicide recidivism from the original data.

Predictors P-value Classes Recidive
Yes No

Alcohol <2.2e−16 No 0.7885 0.2115
Yes 0.7497 0.2502

Companion 3.25e−13 No 0.2869 0.7131
Yes 0.4072 0.5928
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Table 4.10: Chi-square analysis (methods used to suicide vs alcohol).

Predictors P-value Classes Alcohol
Yes No

Methods 6.40e−10

Firearm 0.6136 0.3864
Other ways 0.5590 0.4410
VDI 0.4613 0.5387
Wounding 0.5289 0.4711
Drowning 0.4000 0.6000
Hanging 0.4962 0.5038
Phlebo 0.4671 0.5329
Several ways 0.4424 0.5576
Jump 0.3834 0.6166
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Figure 4.5: Age vs alcohol and sex.
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Table 4.11: Chi-square analysis for age groups in the orginal data.

Predictors P-value Classes Age groups
≤ 24 25-40 40-54 55+

Alcohol <2.2e−16 No 0.3804 0.2274 0.2433 0.1489
Yes 0.1511 0.2803 0.3970 0.1716

Methods <2.2e−16 Firearm 0.0805 0.2299 0.3793 0.3103
Other ways 0.2271 0.2811 0.3286 0.1632
VDI 0.2664 0.2459 0.3248 0.1629
Wounding 0.3306 0.3306 0.2397 0.0992
Drowning 0.2870 0.1389 0.2778 0.2963
Hanging 0.2352 0.2933 0.3324 0.1390
Phlebo 0.3611 0.2680 0.2271 0.1438
Several ways 0.3258 0.2851 0.2572 0.1318
Jump 0.4497 0.2516 0.2013 0.0975

Companion <2.2e−16 No 0.1809 0.2760 0.3729 0.1702
Yes 0.3043 0.2441 0.2957 0.1559

Recidivism <2.2e−16 No 0.2922 0.2536 0.2942 0.1600
Yes 0.2477 0.2565 0.3724 0.1235

10 day call 6.32e−11 No 0.2836 0.2604 0.3090 0.1469
Yes 0.2433 0.2277 0.3327 0.1963

6 month call 8.383e−08 No 0.2839 0.2584 0.3076 0.1501
Yes 0.2092 0.2135 0.3605 0.2168

Table 4.12: Model for suicide recidivism based on the original data.

Variable Estimate Std Error z-value p-value
Intercept -0.1693 0.0294 -5.7500 8.91e−09 ***
Age -0.0019 0.0005 -3.9270 8.59e−05 ***
Primo (Yes) -0.5693 0.0189 -30.0620 <2e−16 ***
Alcohol (Yes) 0.0948 0.0153 6.1790 6.45e−10 ***
Companion (Yes) -0.1262 0.0163 -7.7370 1.02e−14 ***
VSA (Yes) -0.1605 0.0196 -8.2040 2.32e−16 ***
Hospitalisation (No) -0.0217 0.0156 -1.3910 0.1640
Native.country (Not.France) -0.0678 0.0415 -1.6340 0.1020
Native.country (Not Available) -0.5122 0.0188 -27.3040 <2e−16 ***
Days since Prev. SA (>1 Year) -0.0240 0.0272 -0.8840 0.3770
Days since Prev.SA (1Year) 0.3277 0.0300 10.9060 <2e−16 ***
Days since.Prev.SA (6Months) 0.5710 0.0215 26.6170 <2e−16 ***
AUC 0.7235
AIC 37927.71

Note: † p < 0.1; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001
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Table 4.13: The SEM model after 6 months.

Variable Estimate Std Error p-value
Intercept -0.897245842 16.14462191 5.87e−05 ***
Age 0.003935661 1.40424956 2.36e−01

Gender(male) -0.096120316 0.2099344 6.47e−01

TotalSA 0.006516742 2.01090302 1.56e−01

Alcohol(Yes) 0.037510691 0.07331228 7.87e−01

Companion(Yes) -0.241803841 7.21854051 7.22e−03 ***
TS.Violent(Yes) -0.632613562 18.48920955 1.71e−05 ***
Hospitalisation(No) -0.117829442 2.34092106 1.26e−01

Contact (Entourage & Professional) 0.288350319 9.02851656 2.66e−03 **
Contact (Entourage) -0.310575309 2.61167453 1.06e−01

Contact(Professional) 0.151338502 3.17268511 7.49e−02 †
Impact.Domains (1) 0.094252792 0.70474297 4.01e−01

Impact.Domains(2) -0.044340637 0.26630705 6.06e−01

Impact.Domains (3) -0.561442638 4.93141408 2.64e−02 *
Follow up after 6 months (Yes) 0.35109305 9.28905535 2.31e−03 **
Psychological monitoring D10 (Yes) 0.460645284 17.51353636 2.85e−05 ***
Native.region(Not Available) -0.597281804 24.50062316 7.43e−07 ***
Native.country(Not.France) 0.082105223 0.10788625 7.43e−01

TS.Violent(Yes):Hospitalised(NH) 0.889339097 24.20113291 8.68e−07 ***
rho 0.528275364 76.80227304 1.89e−18 ***
AUC 0.6955

Note: † p < 0.1; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001
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Table 4.14: The variables used in the 10-day and 6-month questionnaires.

Predictors Classes Propotions (%)

Evolution of initial discomfort
unfavorable 6
favorable 66
no change 28

Impact of suicid attempt No 48
Yes 52

Exit compromise
monitoring 72
not followed 19
no news 9

Psychological Monitoring in Progress No 29
Yes 71

Need of help
No 30
Yes 70

Type of interview

crise avec ES 1
crise sans ES 4
in difficulty 57
TVB 38

Sending postcard No 51
Yes 49

Ressources indentified

Friends 6
Others 5
CMP 10
Family 13
Treating Medcin 16
Number Vigilans 31
Attending psychiatrist 9
Emergency 10

Recdivism before 6 month
No 78
Yes 16
NA 7

Recdivism after 6 month No 94
Yes 6

suicide risk
No 73
Yes 21
NA 6

suicidal thoughts
No 73
Yes 20
NA 7

continued monitoring No 80
Yes 20

send postcard No 77
Yes 23
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Table 4.15: The results of the GAM model (AUC=79.68%, AIC=1470.28).

Predictors Estimate Std Error p-value
Intercept -0.7983 0.1511 1.26e−07 ***
Gender(Male) -0.1615 0.0952 8.98e−02 †
TotalSA 0.0065 0.0030 3.12e−02 *
Companion (Yes) -0.1579 0.0927 8.84e−02 †
VSA (Yes) -0.7792 0.1820 1.85e−05 ***
Hospitalised (No) -0.2144 0.0967 2.66e−02 *
Contact(Ent & Profes) 0.5100 0.1151 9.40e−06 ***
Contact (Entourage) -0.1525 0.1671 3.61e−01

Contact (Professional) 0.2304 0.1045 2.74e−02 *
Psychological monitoring D10 (Yes) 0.3812 0.0980 9.96e−05 ***
One Impact domain 0.1562 0.0946 9.86e−02 †
Two Impact domains -0.0608 0.1273 6.33e−01

Three Impact domains -0.6051 0.2886 3.60e−02 *
Follow up after 6 months (Yes) 0.3079 0.1012 2.34e−03 **
Native region (Not Available) -0.5815 0.1219 1.83e−06 ***
Native region (Not.France) -0.0699 0.2639 7.91e−01

VSA (Yes):Hospitalised (No) 1.1571 0.2274 3.61e−07 ***

Smooth Terms edf Chi.SQ p-value
s(Age) 3.3860 40.8800 <2e−16 ***
s(Median revenue) 8.9230 29.5500 5.42e−04 ***
s(Graduation rate) 12.8090 23.6400 4.88e−02 *
s(Worker rate) 14.1820 20.4800 1.72e−01

s(Unemployment rate) 6.6330 23.6000 1.95e−03 **

Table 4.16: The results of the GAM model with depreviation index (AUC=73.24%,
AIC=1524.27).

Predictors Estimate Std Error p-value
Intercept -0.71132 0.139536 3.44e−07 ***
Gender (Male) -0.15403 0.085915 0.072998 +
TotalSA 0.007136 0.002848 0.012222 *
Companion (Yes) -0.19466 0.086297 0.024091 *
VSA (Yes) -0.61327 0.161846 0.000151 ***
Hospitalised (No) -0.15422 0.089068 0.083373 +
Contact (Ent & Prof) l 0.333436 0.104012 0.001347 **
Contact (Entourage) -0.17706 0.156075 0.256613
Contact (Professional) 0.186255 0.095993 0.052344 +
Psychological monitoring D10 (Yes) 0.401598 0.089802 7.75e−06 ***
One impact domain 0.13121 0.084663 0.121191
Two impact domains -0.06951 0.11508 0.545826
Three impact domains -0.56176 0.273615 0.040062 *
Follow up after 6 months (Yes) 0.328319 0.092329 0.000377 ***
Native region (Not Available) -0.52811 0.106015 6.31e−07 ***
Native region (Not.France) 0.019803 0.247085 0.936119
VSA (Yes):Hospitalised (No) 0.957272 0.204028 2.71e−06 ***

Smooth Terms edf Chi.sq p-value
s(depreviation index) 3.77 16.8 0.00316 **
s(Age) 3.383 39.94 <2e−16 ***
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Chapter 5
Concluding remarks and future research

5.1 Concluding remarks

The main theme of this thesis is spatial analysis. Spatial analysis can identify and solve complex
location-oriented problems. Spatial analysis provides important insights in analysing contents of
a map where characteristics of places and the relationships between these places are investigated.
This thesis is motivated by two real population health problems such as mortality modelling and
the mapping of suicidal relapses. The first application deals with data of functional and spatial
nature. Functional Data Analysis (FDA) is dedicated to analyze this kind of data.

FDA is an approach in statistics which encompasses the statistical methodology of data ex-
pressed in the form of functions. Data represented in the form of functions are then used in
statistical modelling and prediction information can be retrieved from such data with the aid
of some multivariable statistical concepts. In chapter 3 of this thesis, the study of the use of
spatial statistics on functional data in demography was done. Mortality was investigated from
a spatial perspective where the log of death rates data of 28 European countries were converted
to functional data before performing spatial analysis on these data. The aim was to construct a
tool to detect spatial autocorrelation in functional data. This led to the discovery of the func-
tional Moran’s I statistic. This statistic has the ability and potential to be used to detect spatial
relationships involving functional data in various settings besides demography.

The second part of this thesis focuses on spatial modelling by considering a partially linear
probit model for spatially dependent data. A deep dive on semi-parametric binary models from
the theoretical perspective was conducted in Chapter 4. The combination of the generalized
method of moments approach as well as the weighted likelihood method led to a semi-parametric
estimation method. A spatial autoregressive error (SAE) model when the spatial dependence
structure is integrated in a disturbance term of the studied model was addressed. This model
was then applied to the suicide recidivism data collected by the VigilanS healthcare system in
France. It was interesting to observe the existence of spatial autocorrelation of suicide recidi-
vism cases in Nord Pas de Calais. The partially linear spatial autocorrelation model proved to
be a good fit in modelling suicide recidivism by considering spatial autocorrelation and partially
linear functions which were obtained based on potential exogenous determinants of suicide such
as median income, graduation rates, unemployment rates and worker rates of populations in the



94 Chapter 5. Concluding remarks and future research

locations studied. Hence, spatial-dependent correlation can be integrated with models from a
regression framework. This opens the path to solving complex space-related issues where no
separate spatial analysis is required to investigate and predict the importance of spatial auto-
correlation since this model is versatile in handling this issue.

5.2 Future research

Future work in the field of demography can shed some light on constructing spatial predictive
models to predict mortality rates for neighbouring countries with limited or no data. This idea
can further be extended to the spatio-temporal framework where mortality of a certain location
can be predicted at a certain time.

The second part of the thesis and its application in investigating suicide recidivism, the choice
of the instrumental variables for a more efficient regression estimator is a hot point in particular
for real data.
A future work related to the project entitled: "Impact of the COVID-19 pandemic context on
suicidal behaviors and their management", proposes to study the impact of the pandemic context
on the incidence of suicide attempts and deaths by suicide and on suicidal ideation (based on
content published on social networks) during the different periods that marked the pandemic
(over a period of 3 years beginning 1 year before the pandemic).
A population which is vulnerable to suicidal behaviour i.e. that with high number of suicide his-
tory will be investigated. Finally, as the pandemic context is likely to influence the management
of suicidal behaviour, a qualitative exploration of the difficulties encountered will be carried out.
The consequences of the COVID-19 pandemic and its associated measures on the prevalence of
psychiatric troubles but also on the key factors associated with suicide (e.g. social isolation,
precariousness) as well as the reduction of access to psychiatric care during the health crisis
indicate the fear of increased suicidal behaviors which has not been evaluated in France. The
objectives of the project include:

• quantitative investigation of the impact of the Covid19 pandemic and health measures on
suicidal behaviours (suicide attempts and deaths by suicide) in the general population,
and in a particularly vulnerable population (people with a history of suicide attempts);

• extensively study the content posted on social networks to examine the impact of the
pandemic and health measures on suicidal thoughts;

• qualitatively analyse the difficulties of dealing with attempted suicides in the pandemic
context.

The first part of the analysis will concern VigilanS activity data for the population of four French
regions with sufficient history to participate in the study: Nord-Pas-de-Calais, Normandy, Brit-
tany and Languedoc-Roussillon. The VigilanS activity data will be studied over a 3-year period:
from March 17, 2019 (one year before the first lockdown) to March 17, 2022. In second phase,
the analyses will focus on the subgroup of people with a history of suicide attempt (cohort of
patients included in the VigilanS March 17, 2019, until March 17, 2022). A descriptive phase will
allow us to map suicide attempts on one hand and suicide mortality on the other hand, on the
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French territory and in accordance to time. This will allow us to study the spatial changes in the
incidence of suicide attempts and deaths by suicide before, during and after the pandemic period.

In order to study the impact of territorial factors related to the pandemic context by taking into
account the proven risk factors of suicidal behaviors, we will employ recurrent multivariate models
(by taking geography into account), multilevel models and spatial econometric and statistical
specifications to map ecological risks. Moreover, joint modeling of individual and ecological
risk factors avoid problems of ecological and individual inference and thus substantially reduce
uncertainty about the interpretation of the respective role of each level of risk factors.
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