
Titre Français:

Adaptation de domaine agnostique au modèle :
application à la détection de fraude

English Title:

Model Agnostic Domain Adaptation:
Application to Fraud Detection

Thèse préparée et soutenue publiquement par Luxin Zhang le 07/03/2022, pour obtenir le grade
de Docteur en Mathématiques et leurs interactions

Collaboration: Worldline - Inria
Université: Université de Lille

Ecole doctorale: Ecole doctorale MADIS

Directeur de thèse: Christophe Biernacki
Co-encadrants: Pascal Germain, Yacine Kessaci

Membres du jury

Rapporteurs: Jean-Michel Loubès Professeur à l’Université Toulouse Paul Sabatier
Massih-Reza Amini Professeur à l’Université Grenoble Alpes

Examinateurs: Elisa Fromont (prési-
dente du jury)

Professeur à l’Université de Rennes 1

Emilie Morvant Maître de conférences à l’Université Jean Monnet de Saint-
Etienne

Encadrants: Christophe Biernacki Professeur à l’Université de Lille
Pascal Germain Professeur adjoint à l’Université Laval
Yacine Kessaci Docteur chargé de recherche à Worldline

Abstract

Domain adaptation aims to alleviate the gap between different data distributions,
commonly referred to as the source distribution and target distribution. Most of
the related works seek either a latent space where source and target data share
the same distribution or a transformation of the source distribution to match the
target one. This thesis studies a realistic domain adaptation setting where one
has access to an already existing “black-box” machine learning model. Indeed,
in a industrial scenario like for Worldline, an efficient pre-trained source domain
predictive model is often available and should be preserved. To leverage such a
pre-trained model, we propose a model-agnostic adaptation function leveraging
the optimal transport theory. Besides, the proposed solution has the asset to
provide an interpretable target to source transformation, by seeking a sparse and
ordered coordinate-wise adaptation of the feature space, in addition to elementary
mapping functions.

To automatically select the subset of features to be adapted, we first introduce a
weakly supervised process relying on scarce labeled target data. Then, we address
a more challenging unsupervised version of this domain adaptation scenario. To
this end, we propose a new pseudo-label estimator over unlabeled target examples
based on rank-stability regarding the source model prediction. Such estimated
“labels” are further used in a feature selection process to assess whether each
feature needs to be transformed to achieve adaptation. We provide theoretical
foundations of our method as well as an efficient implementation.

Furthermore, we extend such weakly supervised and unsupervised adaptation
methods to a multi-subdomain adaptation case. Precisely, we consider source and
target domain data can be subdivided into data from different distributions. To
exploit such hidden subdomains, we propose to use an inter-subdomain divergence
maximization criterion. Moreover, we leverage a subdomain aggregation method
to get the final predictions. Experimental results over two fraud detection datasets
and the Amazon reviews sentiment analysis benchmark demonstrate the efficiency
of our method.

Résumé
L’adaptation de domaine vise à réduire l’écart entre des données de distributions
différentes, communément appelées distribution source et distribution cible. La
plupart des travaux associés cherchent soit un espace latent où les données sources
et cibles partagent la même distribution, soit une transformation de la distribution
source pour qu’elle corresponde à la distribution cible. Cette thèse étudie un cas
réaliste d’adaptation de domaine dans le contexte industriel de Worldline où un
modèle d’apprentissage automatique est déjà existant. En effet, un modèle prédictif
pré-entraîné de domaine source est souvent disponible et doit être préservé. Pour
bénéficier d’un tel modèle pré-entraîné, nous proposons une fonction d’adaptation
agnostique du modèle qui s’appuie sur la théorie du transport optimal. En outre, la
solution proposée présente l’avantage de fournir une transformation interprétable
de la cible à la source, en recherchant une adaptation ordonnée et parcimonieuse
de l’espace des caractéristiques, en plus des fonctions d’adaptation élémentaires.

Pour sélectionner automatiquement le sous-ensemble de caractéristiques à
adapter, nous introduisons d’abord un processus faiblement supervisé reposant sur
des données cibles rarement étiquetées. Ensuite, nous abordons une version non
supervisée, plus complexe, de ce scénario d’adaptation de domaine. À cette fin,
nous proposons un nouvel estimateur de pseudo-étiquettes sur des exemples cibles
non étiquetés, basé sur la stabilité du rang dans la prédiction du modèle source.
Ces “étiquettes” estimées sont ensuite utilisées dans un processus de sélection
de caractéristiques pour évaluer si chaque caractéristique doit être transformée
pour réaliser l’adaptation. Nous présentons les fondements théoriques de notre
méthode ainsi qu’une mise en œuvre efficace.

En outre, nous étendons ces méthodes d’adaptation faiblement supervisées et
non supervisées à un cas d’adaptation multi-sous-domaine. Plus précisément, nous
considérons que les données des domaines sources et cibles peuvent être subdivisées
en données de différentes distributions. Pour exploiter ces sous-domaines cachés,
nous proposons d’utiliser un critère de maximisation de la divergence inter-sous-
domaines. De plus, nous proposons une méthode d’agrégation des sous-domaines
pour obtenir les prédictions finales. Les résultats expérimentaux sur deux bases
des données de détection de fraude et une base de données de référence d’analyse
de sentiments Amazon reviews démontrent l’efficacité de notre méthode.

Acknowledgement

I would like to thank all my teachers, colleagues, and family members who have
been with me during my Ph.D.

First of all, my gratitude goes to my supervisors, Prof. Christophe Biernacki,
Dr. Pascal Germain, and Dr. Yacine Kessaci. Thank you for providing me with
an excellent platform, helping me determine research directions, and guiding
my Ph.D. project. Thanks to Yacine Kessaci for helping me to coordinate my
collaboration with the company. Thanks to Christophe Biernacki for welcoming
me to the Modal team. Thanks to Pascal Germain for his patient guidance. I
am also grateful to my colleagues sharing the office with me, Florent Dewez,
Vera Shalaeva, Issam Ali Moindjie, and Guillaume Braun. Thank you for the
interesting topics and discussions that you bring in the quotidian work.

Of course, a Ph.D. is not only the result of hard work: this achievement also
depends on the support and love of the people close to me. I give my deepest
gratitude to my parents and grandparents, who always stood by me. Their
companionship helped me get through the long days of confinement.

Finally, I would like to thank the thesis referees and other jury members for
evaluating my work and proposing interesting discussions.

Luxin Zhang

List of Publications

1. Zhang, L., Germain, P., Kessaci, Y., & Biernacki, C. (2020, September).
Target to Source Coordinate-wise Adaptation of Pre-trained Models. In
ECML PKDD 2020-The European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases.

2. Zhang, L., Germain, P., Kessaci, Y., & Biernacki, C. (2021). Interpretable
Domain Adaptation Using Unsupervised Feature Selection on Pre-trained
Source Models. (Under Review)

3. Zhang, L., Germain, P., Kessaci, Y., & Biernacki, C. (2022). Interpretable
Domain Adaptation for Hidden Subdomain Alignment in the Context of
Pre-trained Source Models. In AAAI 2022-Thirty-Sixth AAAI Conference
on Artificial Intelligence.

Contents

1 Introduction 1
1.1 From a Worldline Industrial Problem to an Academic Challenge . 1
1.2 Adaptation Problem Setup . 3
1.3 Contributions & Organization of the Manuscript 4

2 Machine Learning and Fraud Detection Background 6
2.1 Introduction to Machine Learning 6
2.2 Supervised and Unsupervised Learning 7

2.2.1 Supervised Generative and Discriminative Learning 7
2.2.2 Supervised Objective Functions 8
2.2.3 Unsupervised Learning . 10

2.3 Some Supervised and Unsupervised Models 10
2.3.1 Supervised Decision Tree 10
2.3.2 Supervised Neural Networks 12
2.3.3 Unsupervised Autoencoder 13
2.3.4 Unsupervised Clustering 15

2.4 Four Recurrent Challenges in Machine Learning 16
2.4.1 Mixed Types of Features 16
2.4.2 Imbalanced Dataset . 16
2.4.3 Feature Selection . 18
2.4.4 Interpretability of Machine Learning Models 19

2.5 Domain Adaptation . 20
2.5.1 Distribution Drift . 21
2.5.2 Classical Single-Source Single-Target Domain Adaptation . 22
2.5.3 Deep Single-Source Single-Target Domain Adaptation . . . 24
2.5.4 Multi-Subdomain Adaptation 26

2.6 Optimal Transport . 27
2.6.1 Monge-Kantorovich Problem 27
2.6.2 Entropy Regularization . 29
2.6.3 Optimal Transport for Domain Adaptation 29
2.6.4 One-dimensional Optimal Transport 30

I

CONTENTS Luxin Zhang

2.7 Worldline Fraud Detection Task 31
2.7.1 Worldline Pre-trained Source Domain Predictive Model . . 31
2.7.2 Worldline Domain Adaptation Tasks 32

2.8 Datasets Used in the Experiments 34
2.8.1 Worldline Fraud Detection Dataset 34
2.8.2 Kaggle Fraud Detection Dataset 35
2.8.3 Amazon Review Dataset 36

3 Single-Target to Single-Source Domain Adaptation 37
3.1 Formalization . 37
3.2 Label Shift Adjustment . 40
3.3 Target to Source Optimal Transport for Domain Adaptation . . . 42
3.4 Coordinate-wise Domain Adaptation 43

3.4.1 Numerical Feature Adaptation 44
3.4.2 Categorical Feature Adaptation 45

3.5 Weakly Supervised Feature Selection for Domain Adaptation . . . 47
3.6 Implementation . 49
3.7 Experiments . 51

3.7.1 General Setup . 51
3.7.2 Adaptation Performance Analysis 53
3.7.3 Interpretability of Adaptation Functions 64

3.8 Conclusion . 66

4 Unsupervised Feature Selection for Domain Adaptation 67
4.1 Unsupervised Target to Source Domain Adaptation Pipeline . . . 67
4.2 Pseudo-labeling Methods . 68

4.2.1 Rank Stability . 69
4.2.2 Relaxation of Rank Stability 71

4.3 Implementation . 74
4.4 Experiments . 76

4.4.1 General Setup . 76
4.4.2 Adaptation Performance Analysis 77
4.4.3 Ablation Study . 85

4.5 Conclusion . 85

5 Multi-Subdomain Adaptation 87
5.1 Hidden Subdomain Exploration 87

5.1.1 Notation . 88
5.1.2 Formalization . 89
5.1.3 Specialization to Temporal Drift 91

II

Luxin Zhang Luxin Zhang

5.2 Weakly Supervised Subdomain Aggregation 91
5.2.1 Known Number of Subdomains 92
5.2.2 Unknown Number of Subdomains 92

5.3 Unsupervised Subdomain Aggregation 94
5.3.1 Known Number of Subdomains 95
5.3.2 Unknown Number of Subdomains 95

5.4 Implementation . 95
5.5 Experiments . 98

5.5.1 General Setup . 99
5.5.2 Adaptation Performance Analysis 102
5.5.3 Interpretability of Aggregation Functions 106

5.6 Conclusion . 106

6 Conclusion & Perspectives 107
6.1 Conclusion . 107
6.2 Perspectives . 108

Appendix A Calibration 109
A.1 Evaluation Metric of Calibrated Models 109
A.2 Calibration of Pre-trained Model 110

III

List of Notations

X The input space
Xsub The input space that encodes hidden subdomains
Xd The d-th dimension of the input space
Y The output space
X The input variable
X t

i , Xs
j The marginal variables of target and source subdomains

Y The output variable
x An input vector
xd The d-th dimension of an input vector
xadapt An adapted input vector
xd

adapt The d-th dimension of an adapted input vector
y An output scalar
X An input matrix
X̃ A corrupted input matrix
D An input subspace
D A set of input subspaces
D∗ The optimal input subspace of supervised coordinate-wise adap-

tation
D̂∗ The optimal input subspace of weakly supervised coordinate-wise

adaptation
H The reproducing kernel Hilbert space
R The real value space

µt A discrete target domain input distribution
µs A discrete source domain input distribution
µd

t The d-th dimension of a discrete target input distribution
µd

s The d-th dimension of a discrete source input distribution

IV

Luxin Zhang Luxin Zhang

nt The number of all target examples
nt

i The number of target subdomain examples
ns The number of all source examples
ns

j The number of source subdomain examples
nl

t The number of labeled target examples
nu

t The number of unlabeled target examples
mh

l The number of hidden neuros of the l-th layer
mc

d The number of levels in the d-th categorical feature
nr The number of repetitions of stochastic transformations
k The number of clusters
kt The number of target subdomains
ks The number of source subdomains
K The couple of (kt, ks)

R A joint probability matrix
Rd A joint probability matrix of the d-th dimension
Ri,j The i-th row and the j-th column of R

Rd
i,j The i-th row and the j-th column of Rd

Γ A set of admissible R

Γd A set of admissible Rd

C A cost matrix
S A mapping matrix that maps hidden target subdomains to the

source ones
A An aggregation factor to reweight different numbers of subdomains

Q A set of input-output pairs in supervised learning
Qs A set of source domain input-output pairs
Qt

l A set of target domain input-output pairs
Xt A set of all target domain inputs
Xt

u A set of unlabeled target domain inputs
Xs A set of all source domain inputs
Xi A set of input examples of the i-th cluster
Xsub A set of all source and target subdomain sets of examples
Xt

stab A set of stable target domain inputs
Xt

δ−stab A set of δ-stable target domain inputs
Ed A set of categorical levels of the d-th feature

V

CONTENTS Luxin Zhang

T (·) A source to target transformation function
G(·) A target to source transformation function
G∗(·) An optimal oracle target to source transformation function
GD(·) A coordinate-wise transformation on a subset of features D
GD∗

i,j (·) The optimal coordinate-wise single-domain adaptation function
that transforms data from the i-th target subdomain Xt

i to the
j-th source subdomain Xs

j

h(·) A predictive model
hs(·) The source domain optimal predictive model
ht(·) The target domain optimal predictive model
hD

t (·) A shorthand of hs ◦ GD(·)
ĥD(·) A pseudo-label estimator
hi

t(·) A predictor of the i-th adapted subdomain of target
h†

t(·; K) The optimal target domain classifier with a known number of
subdomains

h∗
t (·; A) The optimal target domain classifier with unknown number of

subdomains

p0, p1 Propositions of negative and positive examples
w, b Parameters of a linear transformation. w is a vector and b is a

scalar
hl The output vector of the l-th layer of a neural network
ci The center of a cluster
ythres A threshold separating positive and negative examples
δ· The Dirac function
as

j The weight of a source domain input
at

i The weight of a target domain input
ηreg The weight of the entropy regularization term in the optimal

transport
ηgroup The weight of the group regularization term in the optimal trans-

port
dmax The maximum number of input space dimensions
ed

· A categorical level of the d-th feature
vd

· The global frequency of ed
· in all domains

vs,d
· , vt,d

· Frequencies of ed
· in each domain

δ A tolerance of stable inputs

VI

Luxin Zhang Luxin Zhang

tr(·) The function that computes the trace of a matrix
mean(·) The function that computes the average value of a variable
var(·) The function that computes the variance of a variable
min(·) The function that computes the minimum value of a set
max(·) The function that computes the maximum value of a set
rank(·) The function that gives the ascending order of one example
1(cond) An indicator function that gives 1 if “cond” is true

l(·, ·) A generic loss function
dH(·, ·) The H-divergence function
e(·) The target domain risk between a pseudo-label predictor and the

optimal one
dw(·, ·) The sum of one-dimensional Wasserstein distances over each

feature
d1d-w(·, ·) The one-dimensional Wasserstein distance
rl

t(·) The target domain risk
rl

s(·) The source domain risk
Ω(·) A regularization term
lreg(·) An entropy regularization term in the optimal transport
lgroup(·) A group regularization term in the optimal transport
lstab(·) The maximum bias of pseudo-labels of δ-stable examples
lbias(·, ·, δ) The expected bias of two pseudo-label estimators over δ-stable

examples

σ(·) The non-linear activation function
ϕ(·) The mapping of function an example to a RKHS
k(·, ·) A kernel function
< ·, · > A inner product between two vectors
c(·, ·) A distance measure
cp

num(·, ·) The lp norm of numerical features
fµd

s
(·) , fµd

t
(·) Cumulative distribution functions of µd

s and µd
t

fhs(·), fhD
t

(·), fht(·)Cumulative distribution functions of hs(Xs), hD
t (X t) and ht(X t).

pi(·) The probability that an example belongs to a subdomain

VII

List of Figures

2.1 Illustration of overfitted and underfitted models 9
2.2 Illustration of a simple decision tree 11
2.3 Illustration of a simple neural network 13
2.4 Illustration of a simple autoencoder 14
2.5 Illustration of PR-AUC . 18
2.6 Adversarial Deep Adaptation . 25

3.1 Three different settings of domain adaptation. 40
3.2 Example of stochastic mappings 46
3.3 Correlation between features of Worldline adapted datasets 46
3.4 Correlation between features of Worldline datasets 47
3.5 log-loss evolution according to the numbers of adapted features. . 48
3.6 Weakly supervised adaptation pipeline 49
3.7 Illustration of a correlation matrix of Amazon datasets 64
3.8 Illustration of categorical transformations 65
3.9 The evolution of log-loss risk at different steps of WCDA 65

4.1 Complete adaptation pipeline . 68
4.2 Comparison of pseudo-labeling methods 71
4.3 Coordinate-wise transformation process 71
4.4 Minimum values of upper bounds 74
4.5 Improvements of single feature adaptations 81
4.6 Improvements of each step of SCDA 86

5.1 Example of subdomain separations 92
5.2 Example of subdomain mapping 93
5.3 Example of subdomain aggregation 94
5.4 Interpretability study on the Kaggle task D-2 to M. 105

VIII

List of Tables

2.1 Comparison of some domain adaptation methods 33

3.1 CDA over Kaggle Datasets . 54
3.2 WCDA over Kaggle Datasets . 55
3.3 Numbers of adapted features by WCDA of Kaggle datasets 55
3.4 CDA over Worldline Datasets . 56
3.5 WCDA over Worldline Datasets 57
3.6 Numbers of adapted features by WCDA of Worldline datasets . . 58
3.7 CDA over Amazon Datasets with NN models 59
3.8 CDA over Amazon Datasets with LGB models 60
3.9 WCDA over Amazon Datasets with NN models 61
3.10 WCDA over Amazon Datasets with LGB models 62
3.11 Numbers of adapted features by WCDA of Amazon datasets . . . 63

4.1 SCDA over Kaggle Datasets . 78
4.2 SCDA over Worldline Datasets 79
4.3 Numbers of adapted features by SCDA of Kaggle datasets 80
4.4 Numbers of adapted features by SCDA of Worldline datasets . . . 80
4.5 SCDA over Amazon Datasets with NN models 82
4.6 SCDA over Amazon Datasets with LGB models 83
4.7 Numbers of adapted features by SCDA of Amazon datasets 84

5.1 Unsupervised HSAV over Kaggle Datasets 100
5.2 Weakly Supervised HSAV over Kaggle Datasets 101
5.3 Unsupervised HSAV over Worldline Datasets 103
5.4 Weakly Supervised HSAV over Worldline Datasets 104

IX

Chapter 1

Introduction

This chapter provides the motivations of this thesis. It starts with a
Worldline real-life problem of adapting payment fraud detection systems
to different geographical areas. Then it reframes this problem as a gen-
eral adaptation challenge of machine learning models. We summarize
our major contributions to this adaptation challenge and present the
organizations of this manuscript.

1.1 From a Worldline Industrial Problem to an
Academic Challenge

As a European leader and a major global player in the payment and transactional
services sector, Worldline provides next-generation transactional services to its
clients. The services can have different forms, from payment transactions in banks
to the exchange of information between connected objects. However, the payment
transactions remain to play a more important role in Worldline’s core business
model. Generally, Worldline operates two types of payment transactions: the
transaction of payment card through a merchant terminal, the so-called face-to-
face, and the online transaction on the Internet, the so-called e-commerce. The
purpose of payment transactions is to exchange money. By nature, they are
subject to fraud attempts that can take different forms. Worldline employees
have experimented with various fraud detection models in order to automatically
detect fraudulent transactions, ranging from expert systems to advanced machine
learning methods.

Expert-rule-based methods basically build “rules” relying on the experiences of
business experts for classifications [155]. A typical structure of rules is an if-then
expression. For example, an artificial rule can be “if the transaction amount is
over 2,000 euros, then it is fraudulent”. Such a model is easy to interpret and

1

CHAPTER 1. INTRODUCTION Luxin Zhang

apply. However, it relies highly on business expertise and is not flexible to address
all cases.

Machine learning has been proved to be a powerful tool in various real-life
applications. Among all machine learning paradigms, supervised learning is one of
the most widely used approaches. The principal objective of supervised learning
is to leverage labeled information, the so-called training data, to discover the
underlying patterns that can be generalized to infer labels of unseen data, the
so-called testing data. If one wants to have a good generalization performance,
abundant data should be annotated precisely, and testing data should obey the
same distribution as the training one. However, in real-life applications, manual
annotation is costly, and it is common to have testing data drifts from the training
one.

A particular case that violates the two conditions of supervised learning is the
payment fraud detection system. There is a drift between training and testing
data whenever customer payment habits change. A concrete example is the drift in
geographical locations. As Worldline operates payment transactions across plenty
of areas (e.g., countries), due to various payment habits of customers, transactions
of one area are more or less different from the other. Therefore, applying a fraud
detection model trained in one area is suboptimal to all other areas (e.g., a fraud
detection system trained with data from Belgium cannot be directly applied to
the Indian market). Moreover, Worldline often tackles data from new areas that
have not enough or even missing labels for supervised learning when expanding
the business. Besides drifts in geographical locations, payment transactions in
one area also continually shift due to the change of seasons. All such constraints
limit the application of classical supervised learning in cross-areas payment fraud
detection problems.

Since achieving an efficient fraud detection model is tedious and costly, World-
line aims at capitalizing on the experience gained in its already invested markets.
They expect to develop an approach to reuse these pre-trained models in new
markets. The idea of reusing pre-trained models is appealing, as it can avoid
a tedious process of model retraining. The fraud detection model in real-life
applications often aggregates predictive models from different families, such as
decision trees and neural networks. All these elementary models are precisely
developed by machine learning researchers in the company and involve business
experts’ cooperations. Retraining such an aggregation of models for every new
market can be time-consuming and is unfeasible at the early stage of business
expansion. Therefore, we should propose a predictive model-agnostic adaptation
method that transforms data of new markets to be close to the ones of existing
markets. To the best of our knowledge, there was no existing framework that

2

Luxin Zhang Luxin Zhang

fits these requirements. Moreover, Worldline is also concerned with data privacy
and transparency. The General Data Protection Regulation (GDPR) has been
applied since 2018 to protect personal private data from abuse. In that sense, the
interpretability of machine learning models is becoming increasingly important.
From a business point of view, an easily interpretable approach can potentially
contribute to exploring new markets and help machine learning researchers and
business experts to improve the existing pre-trained model. Hence, the proposed
adaptation method should be easily interpreted even by practitioners without
specific machine learning backgrounds.

Besides such business requirements, fraud detection tasks also have character-
istics that complicate the adaptation. First, frauds are rare events that seldom
occur. The proposed adaptation method should be able to capture variations of
fraudsters’ behaviors in different markets and not be confused by their camouflage.
Then, the number of transactions is generally large (e.g., Worldline operates more
than 80% of card transactions of Belgium). The adaptation methods should be
scalable to address the big data adaptation problem. Thirdly, payment transac-
tions contain discrete categorical values. The adaptation methods should be able
to transform numerical values as well as categorical ones.

1.2 Adaptation Problem Setup

Although the initial motivation of this work relies on the Worldline fraud detection
problem, it is a common machine learning challenge to reuse knowledge on unseen
data. The idea of leveraging the knowledge of existing pre-trained models to
unknown markets fits the paradigm of transfer learning [110]. Furthermore, this
thesis tackles a specific case of transfer learning, the so-called domain adaptation
(detailed discussions are given in Section 2.5). Following the taxonomies of the
domain adaptation, existing markets are referred to as source domains, and new
markets are target domains.

The domain adaptation problem commonly occurs in machine learning chal-
lenges when target domain data is different from the source ones. Based on the
Worldline challenges introduced in the previous section, this manuscript provides
solutions having the following assets:

1. Model-agnostic. Pre-trained/Legacy machine learning models can belong
to various families (details in Section 2.3); thus, the domain adaptation
methods should be generic enough to reuse them without retraining.

2. Interpretable. As the model interpretability is becoming increasingly impor-
tant, the proposed method should be easily interpreted by practitioners or

3

CHAPTER 1. INTRODUCTION Luxin Zhang

without machine learning backgrounds.

3. Feature-type free. Data that one used in various tasks often encompass
numerical and categorical feature types. Hence, the proposed solution is
expected to tackle both of them.

These three assets meet Worldline’s requirements and benefit various machine
learning tasks, particularly when a pre-trained model is given and should be
preserved.

1.3 Contributions & Organization
of the Manuscript

Contributions In order to meet both the aforementioned business requirements
and fraud detection problem characteristics, we will develop in the rest of the
document the following three main contributions:

1. We propose a new target to source domain adaptation modeling and its
associated weakly supervised domain adaptation resolution pipeline. The
domain adaptation methods based on this new perspective is model-agnostic,
interpretable and feature-type free.

2. We extend the proposed adaptation pipeline to an unsupervised case by
introducing a new pseudo-labeling method with detailed theoretical stud-
ies. The solution can be applied to a wide range of settings, including
unsupervised ones.

3. Based on the first and second contributions, we provide an intuitive approach
to discover multiple underlying distributions in source and target domains
to account for the change of seasons. This problem is known as hidden
subdomain adaptation in domain adaptation literature.

Organization Chapter 2 reviews some basic notations and taxonomies of ma-
chine learning, domain adaptation, and optimal transport theory. In particular, it
introduces different families of machine learning models that Worldline adopts
in the existing markets. It gives definitions of domain adaptation and provides
details of optimal transport theory applying to domain adaptation problems. Fur-
thermore, it introduces the characteristics of the Worldline adaptation problem,
compares our proposition with some well-known domain adaptation methods, and
explains the reason why they are not suited to address the Worldline adaptation

4

Luxin Zhang Luxin Zhang

problem. The last section of the chapter gives details about datasets that we used
for experiments.

We propose a new target to source domain adaptation perspective in Chapter 3.
We formulate this novel perspective as transforming target domain data to fit the
source domain distribution and propose a concrete coordinate-wise adaptation
function: Coordinate-wise Domain Adaptation (CDA). Additionally, we observe
that features contribute differently to domain adaptations. Consequently, we
enhance the interpretability and improve the performance of CDA by applying
a Weakly supervised feature selection for Coordinate-wise Domain Adaptation
(WCDA). Results of this chapter have been published in the paper “Target to
Source Coordinate-wise Adaptation of Pre-trained Models” [167].

We further extend the weakly supervised feature selection process to an
unsupervised case leveraging a new pseudo-label estimator in Chapter 4. We name
our proposition: Stability-based feature selection for Coordinate-wise Domain
Adaptation (SCDA). Both theoretical and empirical studies have proved efficiency
of the proposed pseudo-label estimator applying to domain adaptation tasks.
Results of this chapter have been published in the paper “Interpretable Domain
Adaptation Using Unsupervised Feature Selection on Pre-trained Source Models”
[168].

Moreover, Chapter 5 aggregates proposed single domain adaptation methods to
address a multi-subdomain adaptation scenario. We provide a general subdomain
division criterion and an aggregation method and then specialize in a real-life
case of temporal drift. We name our method: Hidden Subdomain Adaptation
with Variable Number of Subdomains (HSAV). Results of this chapter have been
published in the paper “Interpretable Domain Adaptation for Hidden Subdomain
Alignment in the Context of Pre-trained Source Models” [169].

5

Chapter 2

Machine Learning and Fraud
Detection Background

This chapter starts by presenting essential backgrounds and termi-
nologies related to machine learning. Then, it gives an overview of
supervised and unsupervised learning methods, followed by some well-
known key machine learning challenges. It introduces domain adapta-
tion methods according to various taxonomies, followed by a chapter
addressing the optimal transport theory and its application to domain
adaptation tasks. The last section of this chapter puts into perspective
the presented background by addressing them according to Worldline’s
fraud detection specifications.

2.1 Introduction to Machine Learning

Human beings are known to be able to learn knowledge from past experiences
to make reasonable guesses about the future. When it is cloudy and wet, we
know there will be a high chance of rain, and we can also foresee a decrease
in temperature. Machine learning is a discipline in computer science that aims
to teach a machine, or a program, to mimic such a reasoning process without
being explicitly programmed [132]. In computer science, experiences are generally
represented by data. Hence the essence of machine learning research is to propose
learning algorithms to extract generic patterns, the so-called models, from the
data. Machines can use the extracted models to infer consequences when similar
events occur in the future. Mitchell [100] gives a formal definition of machine
learning by focusing on the improvements of performances of such inferences.

Definition 2.1 (Machine learning). A computer program is said to learn from
experience E with respect to some class of tasks T and performance measure P if

6

Luxin Zhang Luxin Zhang

its performance at tasks in T, as measured by P, improves with experience E.

To place this definition into the industrial application studied in this manuscript,
let us consider a fraud detection task. In such a problem, experiences E are
payment transactions with labels indicating fraudulent or not. The task T aims
to classify transactions into genuine ones and fraudulent ones. The performance
measure P can be an accuracy (or any other performance measure) that reports
the percentage of actual frauds among transactions classified as fraudulent. In the
machine learning paradigm, a group of records of transactions is a dataset. Each
transaction is called an instance, an example, or simply a point. Transactions
contain attributes or features, such as currency, amount, etc. All attributes
form a so-called input space or attribute space, with the number of attributes
corresponding to such a space’s dimensionality. All possible values of labels form
a label space or output space. If an output space is discrete, such as the case
of fraud detection, the machine learning task is a classification task; otherwise,
it is called a regression task. The process to estimate a model from datasets is
called training or learning. Datasets that are used during the training process
are training sets. Every point inside is a training example. Once the model is
estimated, the prediction process of unseen data is called testing, and unseen data
are testing data.

2.2 Supervised and Unsupervised Learning

2.2.1 Supervised Generative and Discriminative Learning

When every input example is annotated by an output label, one stands in a
supervised learning scenario. Let X ∈ X , Y ∈ Y be respectively input and output
variables, where X is an input space, and Y is an output space. More specifically,
in a fraud detection task, one tackles a binary classification problem where X
encompasses numerical and categorical dimensions while Y = {0, 1}.

The training dataset is given by Q = {(xi, yi)}n
i=1, where xi ∈ X is referred to

as an input and yi ∈ Y stands for an output. When yi = 1, the example is called
positive; otherwise, the example is negative. X is a multi-dimensional space, and
we note xi in bold to stand for a multi-dimensional vector.

The underlying characteristics of input-output pairs are represented by their
joint distribution P (X, Y). Supervised learning models that aim to directly
modelize P (X, Y) from given labeled data are known as generative models. Others
that focus on the reasoning process aim to modelize a conditional distribution
P (Y |X) and are known as discriminative models [105]. Generative models can
create new examples that are never seen. Gaussian mixture model and Hidden

7

CHAPTER 2. BACKGROUND Luxin Zhang

Markov model [160, 122] are two of the most well-known ones. In contrast,
discriminative models focus on predicting the labels of given inputs. Some widely
used discriminative models are Support Vector Machine (SVM) [27], logistic
regression [13], and decision trees [119]. This manuscript gives more details
about discriminative models, as the studied fraud detection task aims to predict
fraudsters from given transactions instead of generating new ones from scratch.
In this manuscript, the learned discriminative models are also called predictive
models or classification models.

2.2.2 Supervised Objective Functions

We let h(·) be a classification model. In most machine learning algorithms,
h(·) : X → [0, 1] does not solely give a discrete class label but a continuous value
in [0, 1] that reflects a probability being classified as positive (P (Y |X)). Then,
outputs that surpass a given threshold ythres are considered as positive examples.
We define an indicator function 1(condition) that gives 1 if the “condition” is
verified and 0 otherwise. The objective of supervised learning can be formulated
as an optimization problem of estimating the optimal h(·) that minimizes a given
loss function l(·, ·) : [0, 1]→ R+, that is,

argmin
h

1
n

n∑
i=1

l(h(xi), yi) .

For a binary classification task, two most commonly used loss functions are 0-1
loss:

l(h(xi), yi) = 1
(
1(h(xi) > ythres) ̸= yi

)
,

that counts the number of false classifications, and the binary cross-entropy
(log-loss):

l(h(xi), yi) = yi log(h(xi)) + (1− yi) log(1− h(xi)) ,

that computes the negative log-likelihood of outputs. From the optimization
point of view, log-loss is continuous and derivable, which makes it easier to be
minimized. Therefore, it is commonly used during the training process, whereas
0-1 loss is generally used as an evaluation metric.

2.2.2.1 Overfitting and Underfitting

If a model is too well-trained to minimize a training risk, whereas testing risks
are high, we say the model is overfitting. An example is illustrated in Figure 2.1,

8

Luxin Zhang Luxin Zhang

Figure 2.1: Red points and blue points represent training examples of two classes.
The green curve is an overfitted model, while the black curve is a regularized one
(Chabacano 2008).1

where the green curve represents an overfitted model. Typically, overfitting
occurs if a predictive model’s number of parameters is larger than the number of
training examples. An overfitted model captures every minor variation in training
datasets, including noises. When unseen data arrive, the overfitted model fails to
correctly predict labels, as noises are completely arbitrary and unrelated to the
class of labels.

To prevent overfitting, one can adopt an early stopping technique. Early
stopping is a form of regularization applied by iterative optimization methods such
as gradient descent. It stops the minimization process of the objective function
when the potential gain is less than a defined threshold. Namely, a small subset
of training examples is left out of the training dataset to help search the optimal
threshold. Such a subset of examples is called a validation dataset. Moreover, one
can also apply a cross-validation strategy [140] for such threshold searching.

If a model performs weakly on both training and testing datasets, we say the
model is underfitting. It occurs when the trained model cannot correctly capture
the underlying structure of a dataset. A particular example of underfitting is to
apply a linear model on data that are not linearly separable. To prevent this
issue, one can leverage more flexible machine learning models such as Gradient
Boosting Decision Tree (GBDT) and neural networks (Details in Sections 2.3.1
and 2.3.2).

1https://en.wikipedia.org/wiki/Overfitting

9

https://en.wikipedia.org/wiki/Overfitting

CHAPTER 2. BACKGROUND Luxin Zhang

2.2.3 Unsupervised Learning

While supervised learning leverages labeled data to estimate a model that predicts
classes of unseen examples, unsupervised learning aims to get semantic patterns
in a dataset without using labeled information [54]. In some machine learning
paradigm, the inferred patterns are also known as representations and are further
used by other learning algorithms (e.g., supervised learning algorithms) to get
more robust predictions. Although unsupervised learning reduces the workload
of data annotating, it generally needs a huge amount of data to extract efficient
patterns. Some famous applications of unsupervised learning include clustering,
dimensionality reduction, association rules, etc. (Details in Section 2.3).

2.3 Some Supervised and Unsupervised Models

This section introduces some well-known supervised and unsupervised learning
models. Among supervised methods, we provide details of decision-tree-based
models and neural networks. These models are efficient when dealing with a huge
amount of data and are well-suited for challenging machine learning tasks like
fraud detection. Besides, decision trees and neural networks are the exact opposite
extremes in terms of model interpretability. Decision trees can be reformed to
sequences of simple rules and are easily interpretable. In contrast, neural networks
combine complex mathematical transformations and are hardly interpretable.
Among unsupervised methods, we detail two families of unsupervised learning:
autoencoder and clustering, respectively. Such two methods are particularly
important to us, as our propositions and experiments rely on some principal
concepts of these methods.

To learn more about other machine learning methods, one can consult the
work of Friedman [42].

2.3.1 Supervised Decision Tree

A decision tree can be seen as a flowchart-like structure. The prediction process
of a data point starts from the root node. The point follows instructions in each
node to reach a leaf node (a node without any child). The prediction of this point
is the majority class of the leaf node.

Different algorithms like ID3 [119], C4.5 [120], and CART [14] are proposed to
build such a decision tree. All of them seek to increase the purities of leaf nodes.
ID3 and C4.5 rely on information entropy [135]: −p0 log(p0)− p1 log(p1) , while
CART uses Gini index: 1 − p2

0 − p2
1 . p0 and p1 are respectively propositions of

10

Luxin Zhang Luxin Zhang

Yes No

Amount > 2,000

Fraudulent

Yes No

Transaction
frequency > 10

Fraudulent Genuine

Figure 2.2: Illustration of a simple decision tree.

negative and positive examples in a leaf node. Note that a decision tree is easy to
interpret: each top-down flow can be translated into a sequence of rules.

Decision trees adopt pruning strategies to avoid overfitting. Classical pruning
methods include pre-pruning and post-pruning [120]. The former stops separating
examples of a node during the construction of a tree if prediction performances
on the validation dataset do not improve. While the latter removes branches from
built trees if it improves validation performances.

2.3.1.1 Gradient Boosting Decision Tree

A variant of decision trees leverages ensemble learning [107, 118] and boosting
[134, 118] methods and is known as Gradient Boosting Decision Tree (GBDT).
Recent efficient implementations like XGBoost [23] and LightGBM [63] have
simplified the application of GDBT to real-life industrial contexts.

Ensemble learning uses multiple predictive models to obtain more robust
predictions [124]. A well-known example of ensemble models is the random
forest, where one builds many decision trees over different partitions of data. The
final predictions are obtained through a majority vote process; thus, the risk of
overfitting decreases. However, random forest is computationally expensive as it
aggregates fully developed trees, the so-called strong learner. A strong learner is
a classifier that is well-correlated with ground truth labels. Hence, every single
strong learner has good prediction performances over the datasets. In contrast, a
weak learner is defined as a classifier that is just slightly better than a random
guess. Nonetheless, weak learners are advantageous as they are much easier to
train compared to strong ones. So a natural question is, “Can we aggregate weak
learners to get a strong one?” [64]. Boosting methods give a favorable answer to
this question [134].

Boosting can be considered as a particular case of ensemble learning where one
aggregates multiple weak learners. More precisely, in GBDT, to control the size
of aggregated trees, each decision tree is restrained by the maximum number of

11

CHAPTER 2. BACKGROUND Luxin Zhang

depth, the maximum number of leaf nodes, and the minimum number of examples
in each leaf node. Moreover, GBDT is an additive model; weak learners are
trained to estimate residuals instead of final prediction results. Formally, at the
t-th step of training, one looks for h(t)(·) that minimizes the following formula:

n∑
i=1

(yi − (ŷ(t−1)
i + h(t)(xi)))2 +

t∑
j=1

Ω(h(j)) ,

where

ŷ
(t−1)
i =

t−1∑
j=1

h(j)(xi) ,

and Ω(·) is a regularization term that controls the complexity of the model. The
final prediction is given by

h(xi) =
tmax∑
j=1

h(j)(xi) ,

where tmax stands for the maximum number of iterations.

2.3.2 Supervised Neural Networks

Deep neural networks have achieved impressive results over a wide range of tasks
like computer vision [71] and natural language processing [34]. It is shown to be
able to extract representations that are robust and discriminative.

A basic neuron combines two components, a linear transformation parameter-
ized by a vector w and a scaler b, and a non-linear activation function σ(·). It
has the following formula:

σ(wT xi + b) ,

where wT refers to the transpose of w. The activation function σ(·) has different
choices, such as the sigmoid function:

1
1 + exp−wT xi+b

,

and the Rectified Linear Unit (ReLU) [1]:

max(0, wT xi + b) .

The sigmoid function is highly related to logistic regression and is often used as
the activation function of the output node to get probabilities of predictions. In

12

Luxin Zhang Luxin Zhang

Output

Output

Figure 2.3: Left: illustration of a simple neuron. Right: illustration of a simple
fully connected neural network.

contrast, the ReLU function is used in intermediate layers to make a non-linear
decision boundary and avoid vanishing gradient problems [55] during the training
process.

A simple neuron and a fully connected neural network are illustrated in
Figure 2.3. The latter has multiple hidden layers. Particularly, the l-th hidden
layer contains mh

l simple neurons, and the j-th neuron of the hidden layer is
associated with a pair of linear transformation parameters (wT

j,l, bj,l). The outputs
of all neurons of the previous layer (hl−1) are the inputs of the current layer.
Consequently, the output of the current l-th layer is expressed as

hl = σ

wT

1,l

wT
2,l
...

wT
mh

l
,l

 hl−1 +

b1,l

b2,l

...
bmh

l
,l

 ,

where σ(·) is an elementwise activation function. During the training process,
one estimates all pairs of (wT

j,l, bj,l) of all layers to correlate outputs with ground
truth labels relying on a backpropagation method [65, 84].

2.3.3 Unsupervised Autoencoder

The objective of an autoencoder is to learn efficient representations of unlabeled
input data [53] (An example is illustrated in Figure 2.4). It is often represented
by a neural network where outputs are expected to be the same as inputs. A
typical autoencoder has two components: an encoder that maps the input into a
latent space and a decoder that recovers the input from the latent representation.
A latent space is also known as a latent feature space in which examples with
similar meanings are expected to be closer to each other.

In anomaly detection tasks, autoencoder is widely applied to reconstruct the
most salient pattern (genuine pattern) in datasets [131]. The autoencoder is en-

13

CHAPTER 2. BACKGROUND Luxin Zhang

Input Output

Representation

Figure 2.4: Illustration of a simple autoencoder. Outputs of the middle neurons
are extracted efficient representations.

couraged to extract representations that encode the most frequent class of examples
during the training process. As anomalies are often scarce, they seldom contribute
to the extracted representations. Therefore, the trained autoencoder often can
precisely reconstruct genuine examples while having a significant reconstruction
error over abnormal ones.

Besides classical autoencoders, there are also many variations, such as denoising
autoencoders [153] and variational autoencoders [67]. This manuscript provides
details of the method marginalized Stacked Denoising Autoencoder (mSDA) [22]
that we have used to extract discriminative representations of the Amazon reviews
datasets.

2.3.3.1 Marginalized Stacked Denoising Autoencoder

mSDA successively aggregates multiple marginalized Denoising Autoencoders
(mDA). A denoising autoencoder takes corrupted data as inputs and is expected
to recover the clean ones on outputs. Let X ∈ Rn×d be a matrix where each row
represents an input example x ∈ Rd, and X̃ be a copy of X while each dimension
has a probability pc to be set to 0. mDA aims to find a matrix W ∈ Rd×d that
minimizes in expectation the following term for every possible corrupted X̃:

tr
(
(X −W X̃)T (X −W X̃)

)
, (2.1)

where tr(·) returns the trace of a matrix. For a given corrupted X̃, a minimizer
of Equation (2.1) can be expressed as the well-known closed-form solution for
ordinary least squares [5]:

W = P Q−1

with Q = X̃X̃
T and P = XX̃

T
.

14

Luxin Zhang Luxin Zhang

We adopt a bold capital letter to represent a matrix and a plain capital letter
with indices to represent elements in the matrix.

Let B = XXT , for every possible corrupted X̃, the minimizer in expectation
of Equation (2.1) is given as

W = E[P] E[Q]−1

where , E[Q]i,j =

Bi,jp
2
c if i = j

Bi,jpc otherwise
, and E[P]i,j = Bi,jpc .

Then the extracted representation of x by mDA is defined as tanh(W x). The
choice of tanh(·) function is to introduce the nonlinearity into the model.

Additionally, mSDA uses a stack of mDA such that extracted representations
of the previous autoencoder are inputs of the following. The final resulting
representation is a concatenation of all representations of mDAs. Compared to
classical autoencoders, mSDA is not sensitive to noise in datasets and can get
more robust representations of inputs.

2.3.4 Unsupervised Clustering

Clustering is the task that groups examples into different sets, the so-called clusters,
such that examples in the same cluster are more similar than those in different
clusters. Plenty of clustering methods are available [125]: K-means, hierarchical
clustering, spectral clustering, to name a few. This manuscript explains in detail
the K-means method, as our proposition in Chapter 5 leverages a sibling approach.

K-means is an iterative clustering method. It starts by arbitrarily initializing
k points in the input space (denoted by cm). Every point represents the center of
a cluster. At each step of iterations, and for every input example x, one computes
distances between x and centers of clusters cm. x is assigned to the cluster with
the shortest distance. Then one updates cm by the following formula:

cm = 1
|Xm|

∑
x∈Xm

x ,

where Xm is a set of input examples of the m-th cluster. One stops the process
when cm remains unchanged.

The K-means clustering is easy to interpret and implement. However, one
needs to know the number of clusters k a priori.

15

CHAPTER 2. BACKGROUND Luxin Zhang

2.4 Four Recurrent Challenges in Machine Learn-
ing

Previous sections focus on introductions of different families of supervised and
unsupervised models. In addition, this section introduces some well-known key
challenges that are particularly important to the challenge tackled in this thesis.

2.4.1 Mixed Types of Features

In machine learning tasks, especially when predicting tabular data, it is common
to have the input space encompassing numerical and categorical dimensions, the
so-called mixed types of features. However, some well-known models such as
neural networks cannot directly tackle categorical features. Therefore, numerical
representations of categorical values are required. A common approach is to
encode one categorical feature into a real-valued vector. Different approaches are
proposed to create such vectors.

One-hot encoding is one of the most widely used ones. The one-hot encoding
of a categorical value is represented by a vector having the same length as the
number of unique values. All dimensions of such a vector are 0 except the position
that represents the unique value equals 1 [51]. Although one-hot encoding is easy
to interpret, it is not scalable to attributes with plenty of categories. Moreover,
distances (e.g., the Euclidean distance) between the one-hot encoding of arbitrary
pairs of unique values are always the same. Consequently, one-hot encoding cannot
reveal different similarities between different pairs of categorical values.

A more advanced technique is the so-called embedding method, which is
widely used in natural language processing tasks to search for real-valued vectors
of words. Typically, embedding vectors encode words such that words that are
closer, in terms of a given distance measure (e.g., the cosine distance), in the
embedding space, are expected to be similar in meaning [144]. The pioneering
work word2vec [99] showed the efficiency of such word embedding techniques.
Analogously, instance embedding methods [76, 161] are developed to get semantic
representations of instance categories.

2.4.2 Imbalanced Dataset

As it is shown in Section 2.2.2, an example xi is classified as positive if its
prediction score h(xi) > ythres. Note that the predicted labels depend on the
values of the threshold ythres. A default choice of ythres is 0.5, supposing that the
dataset has balanced classes. However, such a choice of ythres is not suited for
the case where numbers of positive and negative examples are different. When

16

Luxin Zhang Luxin Zhang

proportions of negative and positive examples are significantly different, one
addresses the problem of imbalanced datasets.

The principal idea of dealing with class imbalance is rescaling. Specifically,
there are three types of rescaling approaches. i) The first approach is undersam-
pling [89]; that is, one eliminates examples of the majority class such that both
classes have nearly the same number of examples. ii) The second approach is
oversampling [19], where one generates examples of the minority class through
a sampling with replacing process. iii) The third approach is threshold-moving
[26]; instead of sampling training datasets, one directly adjusts the threshold of
classification ythres such that proportions of different classes in outputs of classifiers
correspond to the proportions of positive and negative classes in training datasets.

Note that the undersampling removes training examples and may eliminate
important information of classifications. The oversampling makes some examples
over-represented than the other, which increases the risk of overfitting these
examples.

Concerning evaluation metrics, for a binary classification task, one can combine
ground-truth outputs yi with predictions 1(h(xi) > ythres) to build a confusion
matrix [139]:

``````````````````
Ground truth

Prediction Positive Negative

Positive TP FN
Negative FP TN

TP, FN, FP, TN stand for the number of true positive, false negative, false positive,
and true negative examples, respectively. Based on such a confusion matrix, one
can define precision and recall metrics that are widely used in fraud detection
tasks.

precision = TP

TP + FP
,

recall = TP

TP + FN
.

Generally speaking, values of precision and recall depend on the choice of ythres

and can hardly be maximized together. Setting ythres to a large value results
in considering the most confident positive examples; thus, the precision is high.
However, only a few examples with yi = 1 are considered positive, which gives a
low recall value. In contrast, one can get a high recall value by considering all
examples as positive, while the precision would be low.

Note that both precision and recall metrics are sensitive to the choice of ythres,
which complicates the comparison of performances between different models. To

17



CHAPTER 2. BACKGROUND Luxin Zhang

Figure 2.5: An illustration example of precision recall curve (Thomas Kurbiel
2020).2

get an evaluation metric independent of the choice of ythres, one can use the area
under a precision-recall curve (PR-AUC) to report performances of predictive
models.

PR-AUC computes values of precision-recall pairs for different choices of ythres

and integrates the area under the formed curve to evaluate the performances of
models. An example of computed PR-AUC is illustrated in Figure 2.5. A model
has better performance if its PR-AUC is larger.

2.4.3 Feature Selection

In various tasks, input spaces of raw data generally contain noisy, classification
irrelevant, or redundant features. For example, in the public Kaggle fraud detection
tasks, the raw data have over 400 dimensions while most of them contain over
98% missing values. Identifying and removing such features can reduce the
dimensionality of input space, simplify the training process and increase prediction
performances. Therefore, feature selection is often an essential step in the machine
learning paradigm [50]. Feature selection approaches can be roughly categorized
as filter methods, wrapper methods, and embedded methods.

Filter methods select the optimal subset of features before the training process.
One filters features with predefined statistical measures to estimate their contribu-
tions to classification approximately. Typical measures include mutual information
and Pearson correlation [138] between features and outputs. Specifically, for a
binary classification problem, Relief [69] is one of the most widely used measures.
Given a point xi of a training dataset, Relief finds the nearest point xi,nh from the
same class, the so-called near-hit, and the nearest point xi,nm from the opposite

2https://towardsdatascience.com/gaining-an-intuitive-understanding-of-
precision-and-recall-3b9df37804a7

18

https://towardsdatascience.com/gaining-an-intuitive-understanding-of-precision-and-recall-3b9df37804a7
https://towardsdatascience.com/gaining-an-intuitive-understanding-of-precision-and-recall-3b9df37804a7


Luxin Zhang Luxin Zhang

class, the so-called near-miss. Then the Relief measure of the d-th feature is
computed by

n∑
i=1

c(xd
i , xd

i,nm)2 − c(xd
i , xd

i,nh)2 ,

where xd
i is the value of the d-th feature, and c(·, ·) is a distance measure. The

computational complexity of Relief increases linearly with the number of features;
thus, it is efficient for high-dimensional data.

Wrapper methods are applied after the training process. It uses testing
performances as the criterion for the selection of subsets of features. Namely,
one trains a classifier for every possible subset of features and evaluates the
performance of the estimated classifier over a testing dataset. Clearly, how to
create candidate subsets is a critical problem. A naive search of subsets of features
explores all combinations of features. It suffers from the combinatorial explosion
problem. Therefore, different search strategies such as particle swarm [106], and
Las Vegas Wrapper [88] are applied to this problem.

Another feature selection approach is the embedded method. It plugs into
the training process a regularization term; hence one automatically performs the
feature selection during the estimation of classifiers. Two widely used embedded
methods are ridge regression [147] and LASSO [146]. The ridge regression utilizes
a L2 norm to penalize large values of model parameters, whereas LASSO adopts
a L1 norm. Compared to ridge regression, LASSO can shrinkage the weights of
certain features to 0; thus, it provides a sparser subset of features. In contrast,
ridge regression provides a dense weighting parameter for each feature. One should
manually eliminate features having a weighting parameter close to 0.

In Chapter 3, we propose our feature selection process leveraging wrapper
methods. Different from feature selection methods for classical supervised learning,
our proposition does not change the input space of classifiers and requires no
retraining. In contrast, the method consists of finding the optimal subset of
features that should be adapted before being given to the pre-trained model.

2.4.4 Interpretability of Machine Learning Models

Although most machine learning models solely aim to make more accurate pre-
dictions, one often wants to know “how” and “why” the models work. In many
real-world scenarios, such as diagnoses, a single performance metric is incomplete
to describe such a task [35]. Additionally, one should be able to explain “why” a
model gives such predictions.

Some machine learning models, such as logistic regression and decision trees,

19



CHAPTER 2. BACKGROUND Luxin Zhang

are interpretable by design. In logistic regression, one can directly know the
importance of each feature by examining its weighting factor. As for decision
trees, each classification result is obtained by following a sequence of simple rules.
However, some well-performing models such as neural networks cannot be easily
disentangled due to the depth and structural complexity. Therefore, various
techniques are developed to help interpret more complex models. According to
different levels of granularities, one can categorize such assistant methods as global
interpretation methods and local interpretation methods.

Global interpretation methods aim to describe the average behavior of a
machine learning model. An example is the permutation feature importance
[16, 40] that measures contributions of features relying on the decreasing of
prediction performances over permuted datasets. Namely, one chooses one feature
from input spaces and shuffles its values of all input examples. Then, one
computes the prediction performance of this shuffled dataset. Intuitively, shuffling
a significant feature for predicting labels will decrease the performance more;
hence the importance of features can be measured by such a performance decrease.

In contrast, local interpretation methods explain the prediction result of every
individual example. Local Interpretable Model-agnostic Explanations (LIME)
[123] is one of the most well-known ones. LIME first fixes an example of interest
and samples its “neighborhoods” from an artificial Gaussian distribution, ignoring
the correlation between features. Then, it builds a surrogate prediction model
from classes of interpretable models over sampled data. Hence, the prediction
result of the point of interest can be explained by the surrogate model. Another
local interpretation method for deep neural networks is the saliency maps [137]
method. For image recognition tasks, the saliency maps method can be applied to
understand the contributions of each pixel to a classification result. For example,
it may highlight pixels forming stripes when predicting a zebra.

2.5 Domain Adaptation

Machine learning methods of previous sections assume that testing data obey the
same distribution as the training one. In real-life applications, such an assumption
may not always hold [52, 110, 121]. For example, a fraud detection system trained
in one country may not be appropriate to predict fraudsters in another country
where customers have different payment habits. Clearly, one may not expect a
good performance in this case, as testing data drift from the training ones.

The question is, “when the training and testing data are different, how can
one leverages the knowledge that one has acquired from labeled training data to
predict testing labels?” Transfer learning is one of the solutions. In a transfer

20



Luxin Zhang Luxin Zhang

learning paradigm, such a training dataset is referred to as the source domain, and
the testing dataset is referred to as the target domain. In real-life applications,
source domains represent well-known markets. Generally, one has abundant
labeled data in source domains, and a well pre-trained predictive model often
exists. In contrast, target domains often represent new markets where one wants
to expand their business, and they often have scarce or even missing labels. When
source and target domains share the same input and output spaces, while their
distributions are different, we stand in a particular case of transfer learning, the
so-called domain adaptation.

Some other domain adaptation works [112, 130, 38] tackle a slightly different
case where the target domain contains classes that are not in the source one. They
refer to such a setting as open set domain adaptation. As the output space of
the target domain is unknown, open set domain adaptation methods assign an
artificial out-of-category label to unseen classes instead of true labels.

One can use different taxonomies to categorize domain adaptation methods.
According to the family of transformation functions, it can be categorized as
classical domain adaptation methods and deep adaptation methods. According to
the number of adapted domains, it can be categorized as single-source single-target
domain (single-domain) adaptations or multi-subdomain adaptations. We further
introduce details of current adaptation methods according to different taxonomies
and provide discussions of applying these methods to the Worldline adaptation
tasks in Section 2.7.2.

2.5.1 Distribution Drift

We denote by Xt = {xt
i}nt

i=1 a set of realizations of target domain inputs that obey a
marginal distribution P (X t), and Qs = {(xs

j , ys
j )}ns

i=1 a set of realizations of source
domain input-output pairs that obey a joint distribution P (Xs, Y s). We also define
Xs = {xs

j}ns
j=1 a set that contains only input examples of Qs. The distribution

drift between target and source domain is expressed as P (Xs, Y s) ̸= P (X t, Y t).
As target domain labels are scarce or even missing, one cannot directly align
source and target domain joint distributions to mitigate the distribution drift.
Alternatively, a common assumption is considering source and target domain
distributions are “similar”; thus, any rigorous domain adaptation study must
characterize the underlying source-target similarity assumptions.

One common assumption is the so-called covariate shift setting [136], which
describes the case where the source domain and target domain conditional output
distributions coincide, that is P (Y s|Xs) = P (Y t|X t), whereas the marginal input
distributions P (Xs) and P (X t) differ. Typically, marginal input distributions

21



CHAPTER 2. BACKGROUND Luxin Zhang

can be different in two domains due to a label-irrelevant sample selection bias
[37, 59, 47], where samples in source and target domains are not collected according
to the same criterion.

Label shift describes a case where proportions of classes in source and target
domains are different, whereas conditional input distributions are the same [166],
that is P (Y s) ̸= P (Y t) while P (Xs|Y s) = P (X t|Y t). Although target domains
labels are not enough to precisely estimate P (Y t|X t), one may have an estimation
of propositions of different classes (P (Y t) can be known). For example, although it
is costly to annotate all payment transactions in fraud detection tasks, fraudulent
proportions are much easier to estimate and can be given by business experts.
Under such an assumption, Saerens et al. [127] propose a simple procedure to
calibrate outputs of source domain classifiers to fit target domain data. In a more
challenging case when P (Y t) is unknown, an Expectation-Maximization (EM)
algorithm [33] is applied to iteratively approximate P (Y t) and adjusts source
domain outputs [127, 2].

Besides output calibration methods, another family of approaches leverages
the confusion matrix to estimate weighting factors P (Y t = y)/P (Y s = y) for
different values of y ∈ Y and then reweight source domain examples to retrain a
predictive model [85]. Recent researches also leverage adversarial learning [80] to
mitigate drifts in output distributions.

Another widely studied domain adaptation scenario is the so-called concept
shift [70]. In such a setting, one assumes the existence of a transformation function
T (·) that aligns source domain conditional output distribution to the target one,
that is P (Y s|T (Xs)) = P (Y t|X t). The scenario addressed by this manuscript
built upon a sibling setting and is introduced in Section 2.7.2.

2.5.2 Classical Single-Source Single-Target Domain Adap-
tation

In the following sections, we first introduce a single-source single-target domain
adaptation scenario, then we talk about multi-subdomain adaptation in Sec-
tion 2.5.4.

According to classes of transformation functions, domain adaptation can be
roughly categorized as deep adaptation methods that rely on deep neural networks
and classical adaptation methods that do not use neural networks to adapt data.
In contrast to deep adaptations, classical methods are also referred to as shallow
methods in some deep learning works [164, 24].

A sample approach to mitigate differences in marginal input distributions
among classical adaptation methods leverages examples reweighting techniques

22



Luxin Zhang Luxin Zhang

[141, 142]. One first estimates marginal input distributions in two domains and
then reweights source examples to match target ones by minimizing Kullback–Leibler
divergence (KL divergence) [72]:

KL(P (X t) ∥ P (Xs)) =
∫

X
P (X t = x) log

(
P (X t = x)
P (Xs = x)

)
dx .

Note that KL divergence is asymmetric and can be appropriately defined only if
the support of P (X t) overlaps with the support of P (Xs). Therefore, the scope
of application of KL divergence is limited.

Statistical moment matching is another widely used technique. A particular
moment matching method leverages the Maximum Means Discrepancy (MMD)
[12] as a criterion for comparing distributions based on a Reproducing Kernel
Hilbert Space (RKHS) [114]. The empirical formula of MMD is expressed as

∥∥∥∥∥∥ 1
ns

ns∑
j=1

ϕ(xs
j)−

1
nt

nt∑
i=1

ϕ(xt
i)
∥∥∥∥∥∥

H

,

where xs
j ∈ Xs , xt

i ∈ Xt, H is a universal RKHS and ϕ(·) maps inputs to this
space. Based on this measure, Pan et al. [111] and Baktashmotlagh et al. [6]
propose to match target and source examples into a latent space where the MMD
between source and target domains marginal input distributions is minimized.
Long et al. [90] introduce pseudo-labeling techniques to “guess” target domain
labels and propose to align the conditional distributions instead of the marginal
ones.

In practice, MMD is computed relying on a kernel trick. For all input examples
x, x′ ∈ X ×X , a kernel function k(x, x′) : X ×X → R of the original input space
can express the result of the inner product of < x, x′ >H in a RKHS. Relying on
such kernel functions, one can compute MMD without explicitly defining ϕ(·) [30].

Gong et al. [46] solve the domain adaptation problem by seeking an average
representation of the source and target domains. They suppose that target and
source domains are two points on a manifold. Then the average representation is
the average of all representations along the geodesic between target and source
domains. Other classical methods focus on the adaptation of correlation matrix
[143] or principal axes [39]. The work of Ying et al. [163] proposes a new transfer
learning perspective and introduces an approach to utilize meta-learning to solve
domain transfer problems.

Another intuitive approach to mitigate domain drift is to identify domain
invariant features between source and target domains. Blitzer et al. [8] introduce
structural correspondence learning to induce correspondences among source and

23



CHAPTER 2. BACKGROUND Luxin Zhang

target domain features automatically. Daumé III [32] leverages augmented input
space and semi-supervised learning methods to train a common source and target
domains classifier. Satpal and Sarawagi [133], Uguroglu and Carbonell [150],
Gautheron et al. [45], Alshawabkeh et al. [3] adopt feature selection techniques to
keep only features that do not shift between domains. However, such methods may
eliminate discriminative features (features that contribute to label classification)
from input spaces and decrease prediction performances.

2.5.3 Deep Single-Source Single-Target Domain Adapta-
tion

Similar to classical domain adaptation methods, some deep adaptation methods
also adopt a statistical moment matching method [91, 92] to align deep repre-
sentations in a latent space. They plug into deep neural networks an adaptation
layer to compute MMD between target examples and source ones. To reduce
the computational complexity and fit the stochastic optimization regime of deep
neural networks, they propose an approximate estimation of MMD, leveraging the
stochastic gradient descent method [91]. Namely, they show that the global MMD
can be iteratively approximated by MMDs of small batches of data. Therefore,
the MMD can be added as a regularization term to the classification loss function.
In light of this idea, Chen et al. [20] propose a higher-order moment matching
method expecting a more precise alignment. Although the stochastic version of
MMD requires less computation time, one still needs lots of iterations to get a
precise approximation when dealing with a massive amount of data.

Another family of deep adaptation methods leverages batch normalization
techniques [60, 78, 17] to align target and source domain mean and variance
(the first and second-order moments). Intuitively, source and target data are
respectively normalized in each layer, relying on standard normalization formulas:

Xs −mean(Xs)√
var(Xs)

, and X t −mean(X t)√
var(X t)

.

As batch normalization based domain adaptation methods solely focus on the
mean and variance of source and target domains, they may not perform a precise
adaptation when the underlying drifts between two domains are more complex.
Nonetheless, they are easy to implement and far quicker to compute compared to
MMD based adaptation methods.

Current deep adaptation methods focus more on the adversarial learning
paradigm to generate domain invariant features [44, 149, 94]. A basic structure
of adversarial neural networks is illustrated in Figure 2.6. A typical adversarial

24



Luxin Zhang Luxin Zhang

Input Representation
Extractor

Label Classifier

Domain
Discriminator

Prediction
of label

Prediction
of domain

Testing data flowTraining data flow

extracted target representations

source

target

extracted source representations

Figure 2.6: A basic structure of deep adversarial domain adaptation neural
network.

domain adaptation schema consists of three components: i) A domain discrim-
inator is trained to correctly distinguish source domain data from target ones
by minimizing prediction errors of domains. ii) A label classifier is trained using
source domain labeled data to classify examples. iii) A representation extractor
is trained to generate domain invariant representations to fool the domain dis-
criminator while minimizing classification errors. We often say the representation
extractor and the domain discriminator play a minimax game [102] to evolve
together. Such a structure encourages the representation extractor to generate
classification discriminative while domain invariant features.

Inspired by the idea of adversarial adaptation networks, plenty of deep adap-
tation methods have been developed. Long et al. [93] propose to align not only
source and target domain marginal distributions but also the conditional input
distributions over pseudo-labeled outputs. Saito et al. [129] propose to train two
classifiers by maximizing divergences of distributions of their outputs instead of
explicitly training a domain discriminator.

Besides the aforementioned methods, various domain adaptation approaches
leverage deep neural networks to improve their adaptation performances. Saito
et al. [128] utilize tri-training to get robust and precise predictions of target exam-
ples by separately initializing two deep neural networks with different parameters.
Kim et al. [66] translate the maximum output discrepancy principle [129] into
the maximum posterior separation through a Gaussian process framework. The
work of Teshima et al. [145] performs a casual mechanism transfer by supposing
that invertible neural networks [68] can approximate the mechanism to generate
labeled data.

25



CHAPTER 2. BACKGROUND Luxin Zhang

Furthermore, pseudo-labeling methods have drawn more and more attention
in domain adaptation tasks [74]. A classical yet efficient approach is to annotate
examples of the most confident predictions (predictions close to 0 or 1 in a binary
classification task) using their predicted labels. Such confidence-based pseudo-
labeling approaches have achieved impressive performances in domain adaptation
problems over various tasks [93, 157]. However, confident predictions are not
guaranteed to be correct, and it is not clear how falsely annotated examples
influence adaptation results.

Besides object classification tasks, deep adaptation approaches are also applied
to address other challenges, such as visual question answering [18], style translation
[75, 86], semantic segmentation [81, 171, 148], etc. Particularly, in the adaptation
problem of semantic segmentation tasks, not only extracted representations are
aligned between source and target domains, the pixel-level distance between source
and target domains is also minimized [170].

2.5.4 Multi-Subdomain Adaptation

Although most domain adaptation works tackle the one source domain to one
target domain adaptation problem, it is common to have the source or target
domains encompass data from different distributions known as subdomains. Sub-
dividing source and target domains into subdomains transforms the one-to-one
adaptation problem to many-to-many (or one-to-many, many-to-one) problems,
and can increase the flexibility of adaptation methods. Generally, there are two
families of multi-subdomain adaptation problems: The first addresses a setting
where separations of subdomains are known, while the second discovers hidden
subdomains.

When labels of subdomains are given, similar to the single-source single-target
domain adaptation scenario, different measures are used to lead multi-subdomain
adaptations. Liu et al. [87] and Peng et al. [115] propose to match statistical
moments between different source-target subdomain pairs relying on MMD. Zhao
et al. [172] leverage adversarial learning to align multi-subdomains. However,
building a transformation function between every pair of source-target subdomains
is a combination problem. It is undesirable when the number of subdomains
is significant. Alternatively, Li et al. [79] explore subdomain relationships by
creating a subdomain similarity graph based on the Wasserstein distance [152].
Then transformation functions are only learned between subdomains and their
nearest subdomains to decrease the computational complexity.

Furthermore, ideas of representation learning are also applied to multi-subdomain
adaptation problems. Zhu et al. [175] propose to search a subspace that separates

26



Luxin Zhang Luxin Zhang

the best subdomains and align source and target subdomain distributions in the
subspace. Zhao et al. [173] extract subdomain invariant features and adjust the
source subdomain predictive model to match target data. Different from the
aforementioned methods, instead of aligning explicitly source and target subdo-
main input distributions, Venkat et al. [151] seamlessly adapt subdomains by
encouraging predictions of subdomain classifiers to be similar.

The works of Mansour et al. [97], Xu et al. [158], and Hoffman et al. [57] leverage
a weighted distribution combining rule for target label predictions. Basically, they
suppose that the target domain distribution can be formed by combining multiple
source subdomain distributions. Duan et al. [36] also use a weighting method of
pre-trained source subdomain predictors, while their proposition only addresses
the setting where a few target domain labels are given.

When dealing with hidden subdomains without subdomain labels, the first
step is to reveal such hidden structures. Gong et al. [48] propose to discover
them by maximizing subdomain discrepancies, and the number of subdomains is
chosen to be the one that maximizes the source domain prediction performances.
Hoffman et al. [56] leverage a clustering method of the input space to get hidden
subdomains. Xu et al. [159] and Li et al. [77] build source subdomains by including
only one positive example, and all negative examples. However, such a method
creates lots of subdomains and is not scalable to massive datasets. Recent works of
Mancini et al. [95, 96] discover hidden subdomains relying on a neural network of
subdomain classifier, while the number of subdomains should be known a priori.

2.6 Optimal Transport

This section introduces some essential concepts of the optimal transport theory.
The optimal transport has been revisited over the past years to solve a variety
of computational problems [117], including many machine learning ones [31]. It
is naturally suited for tabular data domain adaptation problems [28], as it offers
a principled method to transform numerical and categorical target distributions
seamlessly to source ones. Recent works that leverage optimal transport for
domain adaptation suppose that adaptation functions between source and target
domains can be considered as a transportation plan that minimizes displacement
cost in Euclidean distance [116, 28, 29].

2.6.1 Monge-Kantorovich Problem

The optimal transport problem was first introduced by Monge in the 18th cen-
tury [101] and further developed by Kantorovich in the mid-20th [62]. Intuitively,

27



CHAPTER 2. BACKGROUND Luxin Zhang

the original Monge-Kantorovich problem looks for minimal efforts to move masses
of dirt to fill a given collection of pits.

Let a discrete distribution µs = ∑ns
j as

jδxs
j

represents the distribution of de-
parture, and µt = ∑nt

i at
iδxt

i
be the distribution of destination. δx here is a Dirac

function on the point x, and xs
j ∈ Xs , xt

i ∈ Xt. at
i, as

j are weights of xt
i and xs

j,
respectively. We formalize the problem by discrete distributions since distributions
are often represented by examples of their realizations in real-life applications.

Definition 2.2 (Monge problem). Monge supposes that there are functions
T (·) : X → X that relates all xs

j ∈ Xs to xt
i ∈ Xt. The solution of optimal

transport is the T (·) that minimizes

ns∑
j

c(xs
j , T (xs

j)) ,

s.t. ∀i ∈ {1, . . . , nt} : at
i =

∑
j:T (xs

j)=xt
i

as
j .

Note that this original Monge problem is an assignment problem: One point
of Xs will be assigned to another location represented by a point in Xt. It is
known that such an assignment problem is NP-hard to resolve [109]. Moreover,
this problem can be ill-posed, as T (·) is restrained to one-to-one or one-to-many
mapping functions and cannot address many-to-one cases.

The main issue of the Monge problem is that the whole weights of one source
domain point can only be assigned to one location of another target domain
discrete distribution. Kantorovich proposed a relaxation formalization of the
original Monge problem to tackle this problem.

Definition 2.3 (Kantorovich relaxation). Kantorovich [62] proposes to dispatch
the weight of one source domain point across several locations of target domain.
The resulting transportation is no more deterministic but probabilistic. A joint
probability matrix R ∈ Rns×nt represents the potential assignment between xs

j

and xt
i, and the relaxed minimization problem becomes

argmin
R

∑
i,j

c(xs
j , xt

i)Rj,i ,

s.t.
ns∑
j

Rj,i = at
i , and

nt∑
i

Rj,i = as
j .

(2.2)

The relaxed optimal transport formalization is a linear optimization problem
that has a polynomial computational complexity [108].

28



Luxin Zhang Luxin Zhang

2.6.2 Entropy Regularization

The joint probability matrix obtained by minimizing Equation (2.2) generally gives
a sparse solution where Rj,i = 0 for plenty of pairs of (xs

j , xt
i). Such a solution

eliminates possible mappings between certain xs
j and xt

i and cannot reflect some
real cases [156]. Particularly, in a traffic simulation task, the predicted pattern
leveraging optimal transport theory is much sparser than the real one. Indeed,
one can always expect some traffic flows around the estimated optimal routes.
Therefore, entropy regularization is applied to simulate such observations [117].
The regularized formalization of Equation (2.2) is expressed as

argmin
R

∑
i,j

(
c(xs

j , xt
i)Rj,i

)
+ ηreg×lreg(R) ,

s.t.
∑

j

Rj,i = at
i , and

∑
i

Rj,i = as
j ,

(2.3)

where

lreg(R) =
∑
i,j

Rj,i log(Rj,i)

is an entropy regularization term, and ηreg > 0 is a weighting hyperparameter
to be fixed. As is proposed by Cuturi [31], this minimization problem is less
computationally expensive and can be solved by a matrix scaling method [104].

Altschuler et al. [4] show that in the cases where nt = ns = n, solving
the regularized optimal transport of Equation (2.3) requires about O(n2 log(n))
operations. Although this is less complex than the non-regularized version, it is
still too expensive to apply to large dataset learning problems.3

2.6.3 Optimal Transport for Domain Adaptation

As optimal transport moves one distribution to another, it is natural to adopt
this theory to address the domain adaptation problem, which aims to align source
and target domain distributions. From the definition of regularized Kantorovich
problem (Equation (2.3)), one can infer a deterministic transformation function
to map source domain examples to the target domain:

∀j ∈ {1, . . . , ns} : T (xs
j) = argmin

x′∈X

ns∑
i=1

R∗
j,ic(x′, xt

i) , (2.4)

where R∗ is the minimizer of Equation (2.3). This method is known as the
barycentric mapping in optimal transport literatures [11].

3The number of transactions in the Worldline fraud detection datasets is around ten millions.

29



CHAPTER 2. BACKGROUND Luxin Zhang

Note that the presented optimal transport does not use any label information,
while abundant labels are available in source domains and should be taken into
account in adaptation. To this end, Courty et al. [28] propose to estimate a
transportation plan by penalizing couplings that match source examples with
different labels to the same target points. They add a new regularization term
lgroup(R) to Equation (2.3) and introduce the following optimization problem:

argmin
R

∑
i,j

(
c(xs

j , xt
i)Rj,i

)
+ ηreg×lreg(R) + ηgroup×lgroup(R) ,

s.t.
∑

j

Rj,i = at
i , and

∑
i

Rj,i = as
j ,

where ηgroup is a weighting factor. Besides, Courty et al. [28] propose two choices
of the regularizer lgroup(R): The first one is based on the group-LASSO [165]
where each target example is only mapped with source examples from the same
class, and the second is based on the graph Laplacian regularization [25], which
promotes a structural consistency between original source data and the mapped
ones. However, as we have already mentioned, computations of all these methods
are still too costly to apply to a huge amount of data.

2.6.4 One-dimensional Optimal Transport

If supports of µs and µt are on the real-value axis, one stands in a special case
of optimal transport, the so-called one-dimensional optimal transport. Instead
of solving the regularized Kantorovich problem (Equation (2.3) and (2.4)) to
get a probabilistic assignment matrix, one-dimensional optimal transport has a
closed-form deterministic solution:

T (xs
j) = f−1

µt
(fµs(xs

j)) , (2.5)

where fµs(·) and fµt(·) are cumulative distribution functions of µs and µt.
Let µ be an arbitrary one-dimensional real-value discrete distribution, and X a

set of n realizations. Of note, X contains one-dimensional vectors, that is, scalars.
A naive definition of the empirical cumulative distribution function of the discrete
distribution µ is

fµ(x) = rank(x)
n

; ∀x ∈ X , (2.6)

where rank(·) gives the ascending order of one example in the dataset it belongs
to. Note that such a cumulative distribution function is only defined on a finite
number of points. Following this definition, the output space of fµt(·) is discrete.

30



Luxin Zhang Luxin Zhang

Hence f−1
µt

(·) may be undefined on some points of fµs(x) ,∃x ∈ X. Consequently,
Equation (2.5) can be ill-posed.

In the computational optimal transport, it is common to extend Equation (2.6)
to a continuous interval ∆X =

(
min(X), max(X)

)
by interpolation [117] such that

fµ(x) =
x−xlower

xupper−xlower
+ rank(xlower)
n

;∀x ∈ ∆X, x /∈ X .

xlower and xupper are respectively the largest value smaller than x and the smallest
value larger than x in X. After the interpolation, f−1

µt
(·) is properly defined on

the interval [1/nt, 1]. For values fµs(x) < 1/nt, one can simply set f−1
µt

(fµs(x)) =
min(Xt).

This solution of Equation (2.5) is known as the increasing arrangement. As
estimating cumulative distribution functions involves sorting a set of real values,
the computational complexity is O(n log(n)), which is far simpler than the original
multi-dimensional optimal transport.

In light of the simplicity of one-dimensional optimal transport, when tackling
multi-dimensional distributions, Bonneel et al. [10] propose to project them to a
large set of random directions and iteratively perform one-dimensional optimal
transport among each direction. In comparison, Meng et al. [98] leverage the pro-
jection pursuit regression [43] to find the most informative direction of projection
at each step of iterations. However, in some real-life applications, features are
often generated by business experts and represent meaningful characteristics of
transactions. Projections of these features may not be easily interpreted.

2.7 Worldline Fraud Detection Task

This section presents the characteristic of the problem brought by Worldline. For
the existing markets where Worldline has abundant labeled data, the company
trains well-performed predictive models leveraging supervised learning methods.
Whereas for the new markets, Worldline needs domain adaptation strategies to
predict fraudsters.

2.7.1 Worldline Pre-trained Source Domain Predictive
Model

As we have introduced in Chapter 1, Worldline processes a considerable amount of
transactions. Therefore, applied predictive models should be scalable to massive
datasets. In addition, as fraudsters pretend to be genuine ones, predictive models
are also required to be flexible enough to capture such slight differences. Indeed,

31



CHAPTER 2. BACKGROUND Luxin Zhang

in the source domains, Worldline aggregates GBDT and neural networks (Sec-
tions 2.3.1.1, 2.3.2) in complement to pre-defined expert rules to predict fraudsters.
This aggregation of models is what we name in the following a “black-box” model.

During the training process, Worldline relies on log-loss to estimate predictive
models on existing markets. For neural network models, Worldline leverages
instance embedding methods to get real-valued numerical representations of
categorical attributes. Embedding features and other numerical attributes are
then passed to a fully connected neural network for fraud predictions. Hornik
et al. [58] has proved that, if a feedforward neural network is deep enough, it
can approximate arbitrary continuous functions at any precision. Theoretically,
neural network models are flexible enough for Worldline fraud detection tasks.
Additionally, thanks to the improvements of computing power in CPUs and
GPUs, the training of deep neural networks over massive datasets is possible.
Moreover, the threshold-moving approach is applied to find the optimal threshold
of separations in the fraud detection tasks. For evaluation, Worldline adopts
PR-AUC to take into account the imbalanced characteristics of fraud detection
datasets.

2.7.2 Worldline Domain Adaptation Tasks

In the Worldline fraud detection tasks, as the company wants to predict fraudsters
in different countries, the source and target domains’ output spaces are always
the same. Besides, they are in a homogeneous case where they utilize the same
input features for all countries. Therefore, we stand in the domain adaptation
paradigm of transfer learning.

In the Worldline domain adaptation problem, proportions of fraudulent trans-
actions are different between markets; thus, we are in a label shift setting. Besides,
due to different payment habits, we also observe P (Y s|Xs) ̸= P (Y t|X t). P (Y s|Xs)
is represented by pre-trained source domain classifiers hs(·). Such classifiers are
required to be preserved and should not be changed. Therefore, we are not in
a concept shift scenario (concept shift applies a transformation T (·) over Xs to
change hs(·)). Consequently, we propose our target to source domain adaptation
formalization in Chapter 3 to address this particular setting.

Although the aforementioned classical and deep adaptation methods have
achieved impressive performances over some benchmark datasets of image recogni-
tion and sentiment analysis tasks, they are not adequate to address the Worldline
domain adaptation problem.

Of note, the introduced classical domain adaptation methods are efficient in
transforming numerical features. However, some essential concepts that they

32



Luxin Zhang Luxin Zhang

Table 2.1: Comparison of some domain adaptation methods

Methods Model-agnostic Interpretable Feature-type Free Huge Dataset Retraining-Free

Classical

Ours ✓ ✓ ✓ ✓ ✓

Pan et al. [111] ✓ ✗ ✗ ✗ ✗

Long et al. [90] ✓ ✗ ✗ ✗ ✗

Courty et al. [28] ✓ ✓ ✗ ✗ ✓

Sun et al. [143] ✓ ✓ ✗ ✓ ✗

Deep
Long et al. [92] ✗ ✗ ✓ ✓ ✗

Ganin et al. [44] ✗ ✗ ✓ ✓ ✗

Saito et al. [129] ✗ ✗ ✓ ✓ ✗

adopt, such as the covariance matrix and the principal axis, cannot be defined for
categorical dimensions. Whereas categorical features commonly exist in machine
learning datasets, especially for the Worldline fraud detection tasks. Furthermore,
some metrics such as MMD are not scalable to a massive dataset. Indeed, to
compute MMD, one should apply the kernel function over every pair of inputs in
a dataset. The number of input pairs increases quadratically with the number
of inputs. The Worldline fraud detection datasets contain tens of millions of
transactions, so it is unfeasible to compute MMD over the entire dataset for
classical domain adaptation methods.

Although deep adaptation methods can address the computational problem
and tackle categorical features, they are highly dependent on deep neural networks
and are not model-agnostic. Most deep adaptation methods transform source and
target data into a common latent space or adapt source domain data into the
target one. Therefore, a retraining process is necessary during the adaptation
process. Such a retraining process requires lots of expertise and is unfeasible
to apply to every new market. Several recent works [82, 73, 162] that leverage
a pre-trained source model for domain adaptation focus on the adaptation of
image data. Moreover, they stand in a setting where source domain data are
unavailable and assume that the pre-trained models are neural networks. However,
such methods do not address the Worldline domain adaptation problem, as the
company expects domain adaptation methods to work on tabular data and has
no restriction over the family of predictive models. Indeed, in the Worldline
industrial applications, the source domain pre-trained model can be from various
methods such as decision trees or expert rules. The adaptation method should be
model-agnostic to address such “black-box” predictive models.

Furthermore, the training process of deep neural networks leverages stochastic
gradient descent optimization methods. However, applying such a stochastic
method for domain adaptation over highly imbalanced datasets may create bias.
Namely, batches of data may contain examples of only one class and fail to
represent the global marginal input distribution. For example, the proportion of

33



CHAPTER 2. BACKGROUND Luxin Zhang

fraud in the Worldline datasets is around 0.2%. By a simple computation, one
can know that, for a batch of 256 data points, there is a chance of more than 59%
that no negative example is presented in this batch.

Consequently, our propositions (Chapters 3, 4 and 5) address the Worldline
domain adaptation problem by leveraging optimal transport theory. Specifically,
we transform target domain data into the source one by performing one-dimensional
optimal transport among each feature dimension.

Table 2.1 highlights the added values of our proposition compared to some
typical classical and deep adaptation methods.

2.8 Datasets Used in the Experiments

This section deals with datasets that we utilize in experiments of the following
chapters. We evaluate the proposed machine learning methods over three datasets:
Worldline fraud detection dataset, Kaggle fraud detection dataset, and Amazon
review dataset. The Worldline dataset represents a real-life scenario of applications.
However, the dataset is not published for confidential reasons. Besides, we choose
to evaluate performances over the Kaggle fraud detection dataset, as it has similar
characteristics as the Worldline fraud detection dataset while being public. Both
datasets have imbalanced classes and mixed types of features. The Amazon review
dataset is a common benchmark of domain adaptation researches. Although
most domain adaptation methods using the Amazon review dataset do not fit
the requirements of Worldline adaptation tasks, it is instructive to evaluate our
proposition and compare it with other adaptation methods over this well-known
dataset.

2.8.1 Worldline Fraud Detection Dataset

This dataset consists of real anonymous clients’ transactions from July 2018 to
September 2018 of two geographical areas: Belgium and Germany. Both datasets
have 23 numerical attributes and 7 categorical ones. All features are generated by
experts in payment, and a preprocessing process is already applied to guarantee
that irrelevant features for fraud detection are removed. The number of examples
in the Belgian dataset is over 30 million and is around 15 million in the German
dataset. The proportions of fraud are respectively 0.3% and 0.5% in the two
countries. Clearly, as proportions are different in the two countries, we can
conclude that there is a potential drift between them. Note that classes of labels
are highly unbalanced in our fraud detection datasets, thus completing domain
adaptation tasks.

34



Luxin Zhang Luxin Zhang

We consider the whole Belgian dataset as our source domain (denoted by B).
The Belgian dataset is separated into four parts among the axis of time. The first
two parts are used to estimate the source domain predictive model, and the third
part is served as a validation set for searching of training parameters. We use
the fourth part as the testing set to report prediction performances of machine
learning models. As for German data, to have a more realistic experiment, we
consider every month of data as one target domain, which results in 3 target
domains in total (denoted by G-1, G-2, G-3 separately). This setting is based on
the realistic fact that the amount of data of a new market is generally far less
than existing markets. Then in each target domain, we separate data into training
sets, validation sets, and testing sets as the source domain.

In reality, both source domain and target domains are total labeled. To simulate
a domain adaptation setting, we use little target domain labeled information in a
weakly supervised case and no label in an unsupervised setting when estimating
adaptation functions. We only leverage labels of target domain testing sets to
evaluate the performances of proposed adaptation methods.

2.8.2 Kaggle Fraud Detection Dataset4

The dataset contains payment transactions issued from mobile devices and desktop
devices, and one aims to predict if an online transaction is fraudulent or not. The
raw data dimension is over 400, while most features contain missing values and
some are not discriminative. We discard features with more than 1% of missing
values and all transactions containing missing values. To discard label-irrelevant
features, we first train a predictive model in a supervised setting and predict test
data where one feature’s values are randomly shuffled. The feature is considered
label-irrelevant if the prediction performance remains nearly the same compared
to the not-shuffled test dataset’s performance. After preprocessing, the dataset
used in experiments has around 400,000 examples with 43 numerical features and
8 categorical ones.

Similar to the Worldline fraud detection dataset, transactions of this dataset
follow a chronologic order. We consider the mobile device as the source domain
(denoted by M) and separate the dataset into training, validation, and testing
sets. Transactions of the desktop device are divided among axis of time to create
three target domains denoted by D-1, D-2 and D-3. The proportions of fraud in
each domain are respectively 10% and 7%, which are much larger than our fraud
detection dataset.

Although we evaluate our methods on two fraud detection datasets, the drifts
4www.kaggle.com/c/ieee-fraud-detection

35

www.kaggle.com/c/ieee-fraud-detection


CHAPTER 2. BACKGROUND Luxin Zhang

between source and target domains of these two datasets are different. In the
Kaggle fraud detection task, the drift comes from the change of device. In contrast,
in the Worldline fraud detection task, source and target distributions differ as
geographical localization (users’ payment habits) changes. Hence, they are entirely
two different domain adaptation tasks.

2.8.3 Amazon Review Dataset

The dataset contains reviews of buyers on the Amazon website across different
categories of products [8]. Each review is a small paragraph of texts, transformed
into bags-of-words representation and labeled as positive or negative. Note that
the sentiment classification model trained using supervised learning to predict
buyers’ points of view for one category does not directly generalize to another.
Following the setting of Chen et al. [22], we consider 4 domains: Books (B), DVDs
(D), Electronics (E), and Kitchen appliances (K). Each domain has 2,000 training
examples and around 4,000 test examples with perfectly balanced labels. We keep
the most frequent 400 words dimensions and generate features from bags-of-words
representations using mSDA unsupervised auto-encoder [22] with 5 layers. Instead
of stacking all hidden dimensions as Chen et al. [22] and Ganin et al. [44], we
take only the representation of the last layer. Different from the aforementioned
two fraud detection datasets, the features of the Amazon reviews dataset are all
numerical ones and may not have explicit meaning that can be easily interpreted.

36





Chapter 3

Single-Target to Single-Source
Domain Adaptation

This chapter presents the first contribution of this thesis. Results
of this chapter have been published in the paper “Target to Source
Coordinate-wise Adaptation of Pre-trained Models” [167]. We propose
a new target to source paradigm for domain adaptation without re-
training the predictive models. Based on such a new setting, we propose
to use one-dimensional optimal transport to transform target domain
data. Moreover, instead of adapting all dimensions of input spaces,
we propose to seek a sparse and ordered coordinate-wise adaptation of
the feature space, in addition to elementary mapping functions. We
introduce a weakly supervised process that relies on scarce labeled target
data to automatically select the subset of features to be adapted. The
proposed final approach is model-agnostic, feature-type free, and easy
to interpret.

3.1 Formalization

Recall that X and Y are respectively input space and output space. In this
manuscript, we are interested in fraud detection problems such that X encompasses
vectors of categorical and numerical types, possibly mixed together. Moreover, we
focus on classification problems with binary labels Y = {0, 1}, but our method
naturally extends to multilabel classification. In the domain adaptation framework,
one observes a labeled dataset Qs = {(xs

j , ys
j )}ns

j=1 over source domains, and each
observed sample (xs

j , ys
j ) is viewed as a realization of a random variable pair

(Xs, Y s) ∈ X × Y obeying a joint probability P (Xs, Y s).
Besides, an unlabeled target domain dataset Xt

u = {xt
i}

nu
t

i=1 is available, with

37



CHAPTER 3. SINGLE-DOMAIN ADAPTATION Luxin Zhang

xt
i realizations of X t ∈ X obeying a marginal probability P (X t). When ad-

dressing a weakly supervised setting, one also have a few labeled target data
Qt

l = {(xt
i, yt

i)}
nl

t
i=1, where (xt

i, yt
i) are realizations of (X t, Y t) ∈ X × Y obeying a

joint probability P (X t, Y t). Recall that Xt and Xs are defined to be marginal
input sets, we have Xt = Xt

u ∪ {xt
i|(xt

i, ·) ∈ Qt
l} standing for all input examples of

the target domain. The size of Xt is nt = nl
t + nu

t . Analogously, the source domain
input set is expressed as Xs = {xs

j|(xs
j , ·) ∈ Qs}.

The aim of domain adaptation classification problem is to infer the target
domain predictive model P (Y t|X t) relying on such data. Courty et al. [28] assume
that there exists a mapping function T (·) : X → X that models the domain
drift from the source to the target, such that P (Y s|T (Xs)) = P (Y t|X t). Our
work builds on a sibling assumption, that is the existence of a mapping function
G(·) : X → X that models the domain drift from the target to the source:

P (Y s|Xs) = P (Y t|G(X t)) . (3.1)

Note that P (Y s|Xs) is estimated over source domain data and is often given as a
pre-trained model in real-life industrial applications. In fraud detection tasks, Y s

takes values in {0, 1}, and we can further denote the pre-trained predictive model
by hs(x) = P (Y s=1|Xs=x) for the sake of simplicity. Precisely, hs(x) gives the
probability that a source transaction x is fraudulent. Relying on Equation (3.1),
we give the definition of target domain predictive model ht(·) in Definition 3.1.

Definition 3.1 (Target domain predictor).

∀x ∈ X : ht(x) = hs ◦ G(x) ,

where ◦ represents the composition operation between two functions.

Relying on such a formalization of target domain predictor, we do not need to
train a target domain predictive model ht(·) to predict target labels. Instead, we
“move” target domain data to source domains through G(·) to directly use pre-
trained source predictors. However, it is clear that, one cannot directly modelize
P (Y t|G(X t)) to estimate G(·) in the lack of annotated target data. Nonetheless,
we propose a guarantee over target domain risk when using G(·) as an adaptation
function.

Proposition 3.1 (Guarantee over target domain risk). Under the assumption
that

P (Y s) = P (Y t) , (3.2)

38



Luxin Zhang Luxin Zhang

if we can find a transformation G(·) : X → X such that

∀x ∈ X ;∀y ∈ Y : P (X t = x|Y t = y) = P (Xs = G(X t = x)|Y s = y) , (3.3)

then given a loss function l(·, ·): [0, 1]×Y→R+, for any hs(·) : X → [0, 1], we have

rl
t(hs ◦ G) = rl

s(hs) , (3.4)

where

rl
t(hs ◦ G) = E

(x ,y)∼P (Xt,Y t)

[
l(hs ◦ G(X t = x), Y t = y)

]
,

rl
s(hs) = E

(x ,y)∼P (Xs,Y s)

[
l(hs(Xs = x), Y s = y)

]
.

Proof. The proof is straightforward by noticing that Equations (3.2) and (3.3)
imply

∀x ∈ X ;∀y ∈ Y : P (X t = x, Y t = y) = P (Xs = G(X t = x), Y s = y) .

Since the G-mapped target joint probability equals the source joint probability,
P (G(X t), Y t) = P (Xs, Y s). Then Equation (3.4) is obtained by a change of
variable.

As the pre-trained hs(·) is the source domain optimal Bayes predictor, the risk
on source domain data rl

s(hs) is generally small, which induces the risk on target
domain data rl

t(hs ◦ G) to be small. However, due to the lack of labeled data, we
cannot properly estimate the conditional distribution of the input X t given the
output Y t. In these conditions, we relax the requirement of Equation (3.3), and
we seek for a function G(·) belonging to the family of transformations that aligns
the input marginal distributions:

P (Xs) = P (G(X t)) . (3.5)

As source and target domain inputs are given, estimating G(·) that aligns Equa-
tion (3.5) is possible.

Albeit simple, this training-free target to source perspective on domain adapta-
tion is, up to our knowledge, an unexplored problem. Figure 3.1 illustrates three
domain adaptation settings. Figure 3.1a shows our proposition. Figure 3.1b is
the method applied by Courty et al. [28]. Figure 3.1c is widely used by current
deep adaptation methods [44, 129].

39



CHAPTER 3. SINGLE-DOMAIN ADAPTATION Luxin Zhang

Source Domain

Source Domain
Predictive Model

Source Domain
Labeled Data

Pre-train

Target Domain

Target Domain
Unlabeled Data

Adapted Target
Domain Data

Re-use

Adapt

(a) Target to source domain adaptation.

Source Domain

Source Domain
Predictive Model

Source Domain
Labeled Data

Pre-train

Target Domain

Target Domain
Unlabeled Data

Adapted Source
Domain Data

Target Domain
Predictive Model

UseRetrain

Adapt

(b) Source to target domain adaptation.

Source Domain

Source Domain
Predictive Model

Source Domain
Labeled Data

Pre-train

Target Domain

Target Domain
Unlabeled Data

Latent Space

Adapted Source
Domain Data

Adapted Target
Domain Data

Adapt Adapt

Latent Space
Predictive Model

Retrain Use

(c) Latent space domain adaptation.

Figure 3.1: Three different settings of domain adaptation.

3.2 Label Shift Adjustment

Proposition 3.1 assumes an equality between source and target domain output
distributions. However, this assumption can be violated in some real-life appli-
cations, such as the Worldline fraud detection tasks. It is shown in Section 2.8
that the proportion of fraud changes for different geological locations. Therefore,
we should first correct this label shift before seeking the adaptation function G(·).
Although target labels are scarce or missing in weakly and unsupervised domain
adaptation scenarios, proportions of each class in the target domain can be known.
For example, despite the lack of labels in target domains in a fraud detection
system, one may have the proportion of fraud estimated by payment experts.
For a classification problem where the output space is discrete, the proportion of
classes represents the output distribution P (Y t).

As input-output pairs (Xs, Y s) of source domains are given, and target domain

40



Luxin Zhang Luxin Zhang

output marginal distribution P (Y t) is accessible, then, one can get P (Y s) = P (Y t)
by reweighting source examples by classes. The reweighted source data have no
label shift compared to target ones. However, one can no longer guarantee the
pre-trained black-box model hs(·) to be the optimal one in the reweighted source
domain. Thus, in light of the work of Saerens et al. [127] and Lin et al. [83],
we propose to calibrate hs(·) by the following method such that it gives optimal
predictions for examples in the reweighted source domain.

For the simplicity of analysis, we note respectively Xp and Y p the input
and output variables of reweighted source domain. By definition, the output
distribution of the reweighted source domain is the same as the target one, and
input examples of the same class are reweighted by the same factor. Consequently,
we have

P (Y p) = P (Y t) and P (Xp|Y p) = P (Xs|Y s) .

Proposition 3.2 (Calibration of source model). Let hs(·) be the pre-trained
optimal Bayes binary classifier in the source domain. The optimal predictor
hp(x) = P (Y p = 1|Xp = x) in the reweighted source domain is obtained by:

hp(x) = hs(x)w(1)
hs(x)w(1) + (1− hs(x))w(0) , (3.6)

where

w(y) = P (Y t = y)
P (Y s = y) . (3.7)

The proof of this proposition is detailed in Appendix A.2. This calibration
approach was first proposed by Saerens et al. [127]. However, we get this similar
proposition independently.

The proposition suggests that the difference between marginal output distribu-
tions of source and target domains can be mitigated by calibrating outputs of the
pre-trained black-box model. For the sake of simplicity, hereafter, we use Xs and
Y s instead of Xp and Y p to express the source domain where data are already
reweighted to match the target domain output distribution, and hs(·) refers to
the calibrated optimal predictive model in the reweighted domain. As it is shown
in Appendix A.1, to measure the impact of model calibration, PR-AUC is not
an adequate measure. Therefore, we report performances in both log-loss and
PR-AUC whenever possible.

41



CHAPTER 3. SINGLE-DOMAIN ADAPTATION Luxin Zhang

3.3 Target to Source Optimal Transport for Do-
main Adaptation

To seek the transformation function G(·) that maps target examples into the
source domain, one should define the family of this transformation. Besides,
some constraints should be verified: i) the transformation should be feature-type
free, ii) the transformation should be scalable to a huge amount of data, iii) the
transformation should be easily interpretable. We decide to leverage the optimal
transport for domain adaptation, as it naturally satisfies the first requirement
through different definitions of numerical and categorical distance functions. We
further relax the original multi-dimensional optimal transport in Section 3.4 using
coordinate-wise adaptation functions to meet the second requirement. Moreover,
we introduce a feature selection process in Section 3.5 to make our proposition
easily interpretable.

Following the definition of classical optimal transport introduced in Section 2.6,
the remainder of this section tailors the formalization of optimal transport to
the target to source domain adaptation scenario. Central to optimal transport
methods is the notion of a cost function between a source point and a target point,
denoted by

c(·, ·) : X × X → R . (3.8)

Moreover, we let C ∈ Rnt×ns denote the cost matrix between source and target
training points such that Ci,j = c(xt

i, xs
j) corresponds to the cost of moving weight

from xt
i ∈ Xt to xs

j ∈ Xs. As discuss in Section 3.4, the cost may be defined both
for categorical and numerical features.

Based on these concepts, we present below the target domain to source domain
Kantorovich [62] formulation of the multi-dimensional optimal transport problem
in the discrete case.

Definition 3.2 (Target to source domain Kantorovich’s discrete optimal transport
problem). The relationship between source and target examples is encoded as
a joint probability coupling matrix R ∈ Rnt×ns

+ , where Ri,j corresponds to the
weight to be moved from xt

i ∈ Xt to xs
j ∈ Xs. The set of admissible coupling

matrices is given by

Γ =
R ∈ Rnt×ns

+

∣∣∣∣ at
i =

ns∑
j′=1

Ri,j′ and as
j =

nt∑
i′=1

Ri′,j

 ,

where at
i (resp. as

j) is the weight of xt
i ∈ Xt (resp. xs

j ∈ Xs), and we have discrete
target (resp. source) domain distributions expressed by µt = ∑nt

i at
iδxt

i
(resp.

µs = ∑ns
j as

jδxs
j
).Typically, we consider that the mass is uniformly distributed

42



Luxin Zhang Luxin Zhang

among each point, i.e. at
i = 1/nt and as

j = 1/ns, but the framework allows
reweighing the samples, such that

nt∑
i=1

at
i =

ns∑
j=1

as
j = 1 ; at

i, as
j ≥ 0 .

Then, the optimal coupling matrix R∗ is obtained by solving

R∗ = argmin
R∈Γ

⟨C, R⟩ = argmin
R∈Γ

nt∑
i=1

ns∑
j=1

Ci,jRi,j . (3.9)

Following the barycentric mapping introduced in Equation (2.4), the transforma-
tion function G(·) is given by

∀i ∈ {1, . . . , nt} ,G(xt
i) = argmin

x′∈X

ns∑
j=1

R∗
i,jc(x′, xs

j) . (3.10)

The obtained joint probability R∗ reveals the allocation of mass from one domain
to the other.

Note that Equation (3.10) is only defined on examples in Xt. For unseen target
examples x drawn from P (X t) while x /∈ Xt, we first project x to its nearest
xt

i ∈ Xt according to c(xt
i, x) before applying the barycentric mapping.

3.4 Coordinate-wise Domain Adaptation

The transformation function given by Equation (3.10) is a sibling form of Equa-
tion (2.4) where the essential difference is the domain of input examples. The
former transforms target domains data while the latter adapts source domain
data. Analogously, they have some common issues that we aim to overcome:

• As we have introduced in Section 2.6, directly optimizing Equation (3.10) is
computationally unfeasible when addressing huge amount of data.

• In the case where the input space X contains mixed attributes, such as a
mix of numerical and categorical values, defining a cost function might be
difficult.

• Even in the case where the input space contains exclusively numerical
attributes (e.g., X ⊆ Rd), multi-dimensional distance metrics like Euclidean
distance is not able to deal properly with the different scaling of each
coordinate.

43



CHAPTER 3. SINGLE-DOMAIN ADAPTATION Luxin Zhang

• As performing multi-dimensional optimal transport addresses the dependence
across attributes, the estimator of the optimal transformation will have a
larger variance, especially when the amount of data is insufficient.

Therefore, we should relax the classical optimal transport problem to get
simpler solutions. The proposed domain adaptation method is then performed by
solving a sequence of one-dimensional optimal transport method. Doing so, we
consider all dimensions as independent and decompose the transformation G(·) by
coordinate-wise transformations Gd(·):

G = [G1, ...,Gd, ...,Gdmax ] , (3.11)

where dmax is equal to the number of features of the input space X .
Each elementary transformation Gd(·) solves the Kantorovich optimization

problem (Equation (3.9)) on one feature only, which is further shown to be more
computationally efficient. The distance measure can also be easily defined for each
specific feature, especially when each of them has a different significance. Note
that this feature by feature transformation is also robust to variation of scaling.
We name this adaptation method Coordinate-wise Domain Adaptation (CDA).
The next two sections detail how we process the numerical and the categorical
features.

3.4.1 Numerical Feature Adaptation

When the d-th feature is numerical, the 1-D optimal transport on the real line
has a closed-form solution [117] provided that the cost of moving one point to
another is defined with respect to an ℓp norm:

cp
num(xd, x′d) = |xd − x′d|p ,

where xd and x′d are scalars and stand for the d-th dimension of arbitrary examples
x, x′ ∈ X . Let Xd represent the d-th dimension of the input space. Instead of
solving Gd(·) relying on Equation (3.9) and Equation (3.10), there is a closed-form
solution of the Kantorovich optimization problem according to Section 2.6.4.:

Gd(xd) = (fµd
s

−1 ◦ fµd
t
)(xd) . (3.12)

From a domain adaptation perspective, x can be a target domain realization
drawn from P (X t), and xd is its d-th dimension. fµd

s
(·) and fµd

t
(·) are respectively

cumulative distribution functions (defined by Equation (2.6)) of µd
s and µd

t . µd
s and

µd
t represent respectively empirical marginal distributions of the d-th dimension

44



Luxin Zhang Luxin Zhang

of Xs and X t.

3.4.2 Categorical Feature Adaptation

In contrast, if the d-th feature is categorical, we have Xd = Ed, where Ed =
{ed

1, . . . , ed
mc

d
} is the (non-ordered) set of values taken by the d-th categorical

feature, the so-called levels, and mc
d is the number of unique values in Ed.

We use a generic strategy that can be applied to any categorical features, by
defining the cost in terms of the occurrence frequency [61]:

∀ed
l , ed

r ∈ Ed × Ed , ccate(ed
l , ed

r) = Cd
l,r =


0 if ed

l = ed
r ,

1− 1
1 + log( 1

vd
l

) log( 1
vd

r
) otherwise,

with

vd
l =

∣∣∣{i′ | xd
i′=ed

l ,∀i′∈{1, . . . , nt+ns}}
∣∣∣

nt + ns

, and

vd
r =

∣∣∣{j′ | xd
j′=ed

r , ∀j′∈{1, . . . , nt+ns}}
∣∣∣

nt + ns

respectively representing the global frequencies of ed
l and ed

r in all domains. xd
i′

and xd
j′ are the d-th dimension of realizations xi′ , xj′ ∈ Xt ∪ Xs.

Furthermore, the admissible set of coupling matrix Rd for the d-th categorical
dimension is defined as

Γd =
Rd ∈ Rmc

d×mc
d

+

∣∣∣∣ mc
d∑

r=1
Rd

l,r = vt,d
l and

mc
d∑

l=1
Rd

l,r = vs,d
r

 ,

with

vt,d
l =

∣∣∣{i′ | xt,d
i′ =ed

l ,∀i′∈{1, . . . , nt}}
∣∣∣

nt

, and

vs,d
r =

∣∣∣{j′ | xs,d
j′ =ed

r ,∀j′∈{1, . . . , ns}}
∣∣∣

ns

respectively representing the frequencies of ed
l and ed

r in each domain. xt,d
i′ (Resp.

xs,d
j′ ) is the d-th dimension of realizations xt

i′ ∈ Xt (Resp. xs
j′ ∈ Xs). Therefore, we

perform the optimal transport on the mc
d categorical values instead on the nt target

(and ns source) examples. Typically, mc
d ≪ nt (and ns), and the computation is

thus less expensive than the original problem. However, unlike numerical features
where we can compute a barycenter thanks to Equation (3.10), the barycenter of

45



CHAPTER 3. SINGLE-DOMAIN ADAPTATION Luxin Zhang

A1 A2 B1 B2 C1 C2

Elementary Limited Working Minimum
Professional Full Professional Native or Bilingual

0.9 0.1 0.7 0.3 0.5 0.5 0.3 0.7 0.1 0.9

Figure 3.2: Illustration of the categorical stochastic mapping between language
proficiencies on Linkedin and the European standard language levels. Values
between categories indicate the probability of transformation.

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829
Index of numerical dimensions

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

In
de

x 
of

 n
um

er
ica

l d
im

en
sio

ns

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829
Index of numerical dimensions

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

In
de

x 
of

 n
um

er
ica

l d
im

en
sio

ns

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.3: Correlation matrices of all numerical dimensions of a Worldline target
domain dataset. Left: the correlation matrix before the coordinate-wise adaptation.
Right: the correlation matrix after the coordinate-wise adaptation.

categorical features is difficult to define. Consequently, we propose a stochastic
mapping strategy to tackle this problem. The probability of transforming one
value ed

l to ed
r is

P (Gd(ed
l ) = ed

r) =
Rd

l,r∑mc
d

r′=1 Rd
l,r′

, (3.13)

where Gd(·) is a stochastic mapping function. For an arbitrary target example x

drawn from P (X t), the d-th feature xd and its adapted value xd
adapt take values

in Ed. Consequently Equation (3.13) forms a distribution of adapted xadapt

conditioned to x for every categorical dimension. To get the final prediction
score of x, we perform a Monte Carlo estimation by sampling xadapt relying
on Equation (3.13), and compute the average of hs(xadapt) on these stochastic
adapted examples.

An example of stochastic categorical mapping is illustrated in Figure 3.2.
Supposing that the Monte Carlo sampling method generates 10 points, in this
example, one point (person) having a full processional language level will probably
become 3 points of B2 level and 7 points of C1 level under the European standard.

One may argue that the coordinate-wise transformation assumes independence

46



Luxin Zhang Luxin Zhang

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829
Index of numerical dimensions

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

In
de

x 
of

 n
um

er
ica

l d
im

en
sio

ns

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829
Index of numerical dimensions

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

In
de

x 
of

 n
um

er
ica

l d
im

en
sio

ns

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.4: Correlation matrices of all numerical dimensions of Worldline target
and source domain datasets. Left: the target domain correlation matrix. Right:
the source domain correlation matrix.

between input space dimensions, which is hardly verified in real-life applications.
However, the one-dimensional optimal transport does not ignore all interactions
between features. Indeed, the transformation (Equation (3.12)) preserves the
relative orders of features. For example, one point ranked as the second-largest in
a training dataset according to the d-th feature is still the second-largest after
the adaptation. Such a characteristic of the one-dimensional optimal transport
guarantees all dimensions of such a point keep their ranks. We illustrate the
correlation matrix of numerical dimensions of a Worldline target domain dataset in
Figure 3.3. Note that coordinate-wise adaptations preserve most of the correlations
between features of this dataset. Moreover, we note that the source domain
correlation matrices are similar to that of the target domain (Figure 3.4) in
Worldline domain adaptation tasks; thus, the one-dimensional optimal transport
is well-suited.

3.5 Weakly Supervised Feature Selection for Do-
main Adaptation

We have noticed in various experiments on different domain adaptation tasks
that some features contribute more to domain adaptation than others. Figure 3.5
illustrates decreasing percentages of log-loss (log-loss improvement) in a feature
selection process. We presents performances of different datasets and predictive
models to show that it is a common phenomenon. At initialization, no feature
is adapted. Then, at each step of the process, we transform one more feature
to the source domain that has the minimal value of log-loss over target data.
We stop when all features are adapted. Note that we use all target labels to
select the feature to transform at each step only for illustration, whereas they

47



CHAPTER 3. SINGLE-DOMAIN ADAPTATION Luxin Zhang

Figure 3.5: Evolution of log-loss improvements according to the number of adapted
features. Left: The Kaggle fraud detection dataset with a neural network pre-
trained model. Right: The real fraud detection dataset with a tree-based pre-
trained model.

are not accessible in practice. Interestingly, instead of adapting all features, the
adaptation of a well-selected subset of features has better performance (larger value
of log-loss improvement). Therefore, in the target to source domain adaptation
scenario where a “black-box” source model hs(·) is available, we aim to seek a
subset of features D ∈ D to adapt, where D contains all possible subsets of features
of the input space X , that is,

∀D ∈ D : D ⊆ X .

The selected features are adapted one-by-one using coordinate-wise optimal
transport mapping functions, while other features remain identical without being
excluded from the dataset. Consequently, we can use the source model directly
on adapted target data to predict labels. The resulting predictive model of target
domain is expressed by hD

t (·) = hs ◦GD(·), where GD(·) is the transformation func-
tion that adapts the feature subset D ∈ D. Empirically, we show in experiments
that D generally contains just a few features; thus, it is very sparse. Let G∗(·) be
the transformation that verifies Equation (3.3), then the optimal target predictor
is expressed by ht(·) = hs ◦ G∗(·).

In a supervised setting, one tackles this feature selection problem by leveraging
on labeled data in target domains to find the optimal subset of features that
minimizes the expected risk, that is,

D∗ = argmin
D∈D

E
(x,y)∼P (Xt,Y t)

[
|hD

t (x)− y|
]

. (3.14)

The solution D∗ is the optimal subset of features to adapt. One may note that
GD∗(·) could be different from G∗(·), as GD∗(·) is restricted to the class of coordinate-
wise transformations, whereas G∗(·) refers to the optimal transformation among

48



Luxin Zhang Luxin Zhang

Output  
Calibration  
(Section 3.2)

Coordinate-wise 
Adaptation  

(Section 3.3 and 3.4)

Weakly Supervised
Feature Selection

(Section 3.5)

1st Step 2nd Step 3rd Step

Figure 3.6: Main modules composing our proposed adaptation pipeline in a weakly
supervised setting.

all possible adaptation functions.
In typical domain adaptation problems, P (X t, Y t) is unknown, thus directly

minimizing Equation (3.14) is not feasible. When few labeled target data are
available, i.e., in a weekly supervised setting, we propose to seek the subset of
features that minimizes the following term:

D̂∗ = argmin
D∈D

1
nl

t

∑
(xt,yt)∈Qt

l

∣∣∣∣hD
t (xt)− yt

∣∣∣∣ . (3.15)

The target domain predictive model is given by hD̂∗
t (·) = hs ◦ GD̂∗(·).

3.6 Implementation

The global pipeline of our proposed transformation is illustrated in Figure 3.6.
Our proposition combines an output calibration process, a coordinate-wise optimal
transport step and a feature selection process. We name our method WCDA
standing for Weakly Supervised Coordinate-wise Domain Adaptation.

Output Calibration The key to the output calibration process is the estimation
of source domain and target domain classes proportions. The target domain classes
proportions are given by business experts, and source domain proportions can
be easily estimated using source domain labels. Therefore, we do not provide
implementation details of this module.

Stochastic Coordinate-wise Adaptation Let a target domain point x =
[x1, . . . , xd, . . . , xdmax ] . When x contains categorical features, the adaptation func-
tion G(·) becomes stochastic. Every time we apply G(·) on x, it would transform
x to a different location. Therefore, we decide to perform the transformation nr

times and save all adapted results in a dataset Xadapt. The detailed processes of
CDA are presented in Algorithm 1.

49



CHAPTER 3. SINGLE-DOMAIN ADAPTATION Luxin Zhang

Algorithm 1 Stochastic Coordinate-wise Adaptation
1: Initialize Xadapt ← {}.
2: for t in {1, . . . , nr} do
3: for d in {1, . . . , dmax} do
4: Initialize xadapt ← [].
5: if xd is numerical then
6: get xd

adapt using Equation (3.12).
7: else
8: set ed

l ← xd in Equation (3.13).
9: sample one ed

r .
10: set xd

adapt ← ed
r .

11: end if
12: xadapt ← [xadapt, xd

adapt].
13: end for
14: add xadapt to Xadapt.
15: end for
16: return: Xadapt.

The first loop (step 2) adapts the target example nr times, and put them into
Xadapt. The second loop (step 3) performs coordinate-wise adaptation over each
dimension of x. We use the POT [41] package to compute the optimal transport
mapping (steps 6 and 9). The prediction of the point is given by

1
nr

∑
xadapt∈Xadapt

hs(xadapt) . (3.16)

Weakly Supervised Feature Selection X t
l is a matrix where rows correspond

to input examples in Qt
l , and yt

l is the associated output vector. We also define
their nr-times repeated version X t

repeat =
[
X t

l ; . . . ; X t
l

]
and yt

repeat = [yt
l , . . . , yt

l ]
respectively. We apply G(·) on each row of X t

repeat and we obtain X t
adapt. Of

note, G(·) is a stochastic transformation; hence repetitions of the same row can
be transformed to different locations.

We also introduce some basic selection operations of a matrix and a vector.
Taking an arbitrary matrix X as an example, Xa,b selects a submatrix of X. a

and b respectively correspond to the index of rows and columns, and they can
be scalars or sets of scalar values. When they are scalars, the corresponding row
(column) is selected. When they are sets, all rows (columns) corresponding to
indexes in the set are selected. Moreover, we use the “:” symbol to select all
dimensions. Following the same convention, we let ya gives a “subvector” of y. a

can be a set or a scalar value.
As we have introduced in Section 2.4.3, testing all combinations of feature

sets is computationally expensive. Alternatively, we propose to use a greedy

50



Luxin Zhang Luxin Zhang

search algorithm. Algorithm 2 illustrates the iterative process to find the subset
of features to adapt in a weakly supervised scenario. We stop the process when
adapting more features does not improve the adaptation performance on weakly
labeled data. Such an iterative loop starts from step 3 and ends at step 17.
Moreover, we apply a Bootstrap [15] strategy (step 5) to get a more robust feature
subset. We repeat several times the feature selection step (steps 7 to 11) and
count the selection frequency of each feature (step 12). Then we add the most
frequent feature to the feature subset D̂ (steps 14, 15). If no feature is selected or
less than one-half of Bootstrap results agree with the selected result, we stop the
iteration process and return the subset of features (steps 17, 18).

Algorithm 2 Weakly Supervised Greedy Search Algorithm
1: Initialize i← 0
2: Initialize D̂(i) ← {}
3: repeat
4: Initialize Count[d]← 0 ,∀d ∈ X/D̂(i) ∪ {∅}
5: for I in Bootstraps of row index of Xt

repeat do
6: Initialize Loss[d] by an empty key-value dictionary
7: for d in X/D̂(i) ∪ {∅} do
8: Xboot ←Xt

repeatI,:; XbootI,D̂(i)∪{d} ←Xt
adaptI,D̂(i)∪{d}

9: Loss[d]←
∑

j∈I

∣∣∣hs(Xbootj,:)− yj

∣∣∣
10: end for
11: dmin ← argmind Loss[d]
12: Count[dmin]← Count[dmin] + 1
13: end for
14: d∗ ← argmaxd Count[d]
15: D̂(i+1) ← D̂(i) ∪ {d∗}
16: v ← Count[d∗]/

∑
d Count[d]

17: until d∗ ← ∅ or v < 0.5; i← i + 1
18: return: D̂(i)

3.7 Experiments

In this section, we evaluate the performances of our adaptation methods CDA
and WCDA on 3 different datasets. Details of datasets and separations of source
and target domains are provided in Section 2.8.

3.7.1 General Setup

We are given two families of pre-trained source domain models, GBDT and
neural networks (NN). The models are implemented respectively in Python using
LightGBM [63] and PyTorch [113] packages. The source domain predictive models
are trained following a supervised learning paradigm with 10 different random

51



CHAPTER 3. SINGLE-DOMAIN ADAPTATION Luxin Zhang

states. The one that achieves the best performance on source domain testing
datasets is given as the pre-trained models.

Adaptation Methods of Comparison We compare our proposed methods
(CDA and WCDA) with deep adaptation methods: DAN [91], DANN [44], and
MCD [129], as well as a classical adaptation method: CORAL [143]. As described
in Section 3.5, WCDA selects features based on coordinate-wise transformations.
Whereas CDA skips the weakly supervised feature selection process (Section 3.4).
We chose to compare with CORAL as it performs domain adaptations without
modifying the input space of data. As a result, we can extend such methods
to address target to source domain adaptations and leverage pre-trained GBDT
models and NN models to predict target labels. However, it transforms only
numerical features, while categorical dimensions remain unadapted. In contrast,
deep adaptation methods can transform categorical attributes, whereas they do not
satisfy the target to source domain adaptation setting. Deep adaptation methods
transform source and target domain data into a latent space and require training
a predictive model using source labels during adaptation processes. Nonetheless,
we report performances of deep adaptation methods as they are widely used in
current domain adaptation tasks.

Hyper-parameters of NN Models Deep adaptation methods like DANN
and DAN require to find the optimal weight of the adversarial (regularization)
term, and MCD requires fine-tuning the learning rate. To select the optimal
hyper-parameter for deep adaptation methods, we use a grid search process during
the training and take the hyper-parameter that minimizes the classification error
on test datasets of source domains. For DANN and DAN methods of the Amazon
reviews datasets, we seek this weight in the set of values {0.01, 0.05, 0.1}. For
the Kaggle fraud detection dataset, the set of values that we used to search
the hyper-parameter is {0.005, 0.01, 0.1} for DAN models, and {0.05, 0.1, 0.5} for
DANN models. As for MCD models, the Amazon review tasks seek the learning
rate among {0.0001, 0.0005, 0.001, 0.005}, and the Kaggle fraud detection tasks
seek the learning rate among {0.0005, 0.0007, 0.001}.

Weakly Supervised and Unsupervised Setting We compare CDA and
WCDA with deep adaptation methods in both weakly supervised and unsuper-
vised settings. We annotate respectively 100, 200, and 5000 labeled examples of
target domains of the Amazon reviews, Kaggle, and real fraud detection datasets.
The original deep adaptation methods do not have a weakly supervised version.
However, as they integrate a retraining process during the adaptation, we extend

52



Luxin Zhang Luxin Zhang

the unsupervised deep adaptation methods to weakly supervised scenarios by
using labeled target domain data at the retraining step. We also compare our
propositions with the FineTune [126] method, where the last layer of pre-trained
NN models is adjusted to fit weakly labeled target data. Since CORAL verifies
the target to source adaptation scenario and does not have a retraining process,
we compare CDA with CORAL only in unsupervised settings.

Evaluation Metrics For the Kaggle and Worldline fraud detection tasks, we
evaluate predictive models based on the area under the precision-recall curve
(PR-AUC) and log-loss. For the Amazon review task, we report performances
in accuracy and log-loss, as classes of this dataset are balanced. For the sake
of comparison, we set the average performance of source domain NN baseline
models as references and report the percentage of improvements compared to
such models. For PR-AUC and accuracy metric, the percentage of improvements
is the rate of increase, while for the log-loss metric, it is the rate of decrease.
All experiments are repeated ten times with different random states. Besides
improvements of prediction performances, we also report standard deviations to
illustrate the stabilities of adaptation methods.

3.7.2 Adaptation Performance Analysis

3.7.2.1 Kaggle Dataset

Table 3.1 reports adaptation performances in an unsupervised setting. NN-CDA
and LGB-CDA respectively stand for our domain adaptation method (without
the feature selection step) on two pre-trained models. LGB is a shorthand of
the LightGBM package representing the GBDT model. Note that LGB Baseline
models have positive values of performance improvements; that is, pre-trained
GBDT baseline models without adaptation outperform pre-trained NN models on
target domain data.

NN-CDA methods have achieved the best adaptation results on several tasks,
such as “D-2 to M” with pre-trained NN and GBDT models and “D-3 to M”
with pre-trained GBDT models, in both log-loss metric and PR-AUC metric.
However, it does not have a good performance compared to deep adaptation
methods when using NN models. DAN achieves the best adaptation performance
in PR-AUC and DANN outperforms all the others in log-loss. LGB-CDA slightly
decreases performances of LGB Baseline in terms of PR-AUC on average. Whereas
it outperforms LGB Baseline in terms of log-loss in all experiments. Occasionally,
LGB-CDA decreases performance of baseline model like the case “D-1 to M” of
the NN model. We explain such phenomena by the fact that the adaptation of

53



CHAPTER 3. SINGLE-DOMAIN ADAPTATION Luxin Zhang

some dimensions may decrease adaptation performances (Figure 3.5). A feature
selection step is essential to overcome this issue.

Table 3.2 shows the adaptation results in a weakly supervised setting. Our
proposed pipeline WCDA has achieved the best performance over tasks with
pre-trained LGB models. It outperforms all other methods on average with
the pre-trained NN model in log-loss metric. However, in terms of PR-AUC,
NN-WCDA performs no better than DAN and FineTune on average.

Table 3.1: Adaptation performances of unsupervised adaptation methods over
Kaggle datasets (see Section 2.8.2 for the dataset description). We report
percentages of performances improvements, in PR-AUC and log-loss respectively,
compared to NN baseline models (average improvements of NN baseline models
are considered as 0%).

Method D-1 to M D-2 to M D-3 to M AVG
DAN 12.31±6.72 -3.20±7.18 1.41±3.63 3.51
DANN 3.47±9.53 -2.90±3.82 -4.21±6.51 -1.21
MCD -11.47±13.38 -6.29±6.09 -6.81±4.83 -8.19
CORAL 9.11±0.26 -2.47±0.08 -8.37±0.14 -0.58
NN-CDA (ours) -8.15±2.51 3.87±0.35 0.69±0.38 -1.20

(a) Improvements of PR-AUC of NN predictive models.

Method D-1 to M D-2 to M D-3 to M AVG
DAN 29.57±4.32 -1.58±9.64 4.37±5.39 10.79
DANN 29.58±4.05 2.39±3.98 2.06±5.07 11.34
MCD 21.59±9.25 -1.29±5.34 -7.55±10.32 4.25
CORAL 30.66±0.07 4.69±0.08 -2.80±0.13 10.85
NN-CDA (ours) 18.38±0.62 6.32±0.34 7.40±0.28 10.70

(b) Improvements of log-loss of NN predictive models.

Method D-1 to M D-2 to M D-3 to M AVG
LGB Baseline 26.13±1.53 4.18±1.47 7.58±3.26 12.63
CORAL 17.19±0.61 -8.23±0.26 -8.50±0.51 0.15
LGB-CDA (ours) 22.55±1.15 5.24±0.53 8.95±0.55 12.25

(c) Improvements of PR-AUC of LGB predictive models.

Method D-1 to M D-2 to M D-3 to M AVG
LGB Baseline 9.77±6.01 6.53±3.31 12.32±5.05 9.54
CORAL 33.75±0.26 -4.67±0.63 -7.76±1.19 7.11
LGB-CDA (ours) 32.59±0.54 8.66±0.56 14.10±0.42 18.45

(d) Improvements of log-loss of LGB predictive models.

54



Luxin Zhang Luxin Zhang

Table 3.2: Adaptation performances of weakly supervised adaptation methods
over Kaggle datasets (see Section 2.8.2 for the dataset description). We report
percentages of performances improvements, in PR-AUC and log-loss respectively,
compared to NN baseline models (average improvements of NN baseline models are
considered as 0%). Unsupervised CDAs are also reported to simplify comparisons.

Method D-1 to M D-2 to M D-3 to M AVG
DAN 15.40±6.62 -0.57±4.53 1.53±3.68 5.45
DANN 5.77±10.49 -0.87±3.82 -2.40±4.95 0.83
MCD 8.96±12.36 -2.48±5.03 -2.89±4.84 1.20
FineTune 4.23±0.72 2.12±0.15 4.95±0.30 3.76
NN-CDA(unsup) (ours) -8.15±2.51 3.87±0.35 0.69±0.38 -1.20
NN-WCDA (ours) 1.30±7.57 2.98±2.14 3.72±1.40 2.66

(a) Improvements of PR-AUC of NN predictive models.

Method D-1 to M D-2 to M D-3 to M AVG
DAN 31.70±3.58 3.02±5.34 5.94±5.52 13.55
DANN 31.03±4.33 3.16±4.25 5.78±4.62 13.32
MCD 30.28±3.59 1.26±5.39 3.74±5.45 11.76
FineTune 9.22±2.10 5.33±0.83 11.23±1.13 8.59
NN-CDA(unsup) (ours) 18.38±0.62 6.32±0.34 7.40±0.28 10.70
NN-WCDA (ours) 30.42±3.26 8.95±2.67 12.07±2.04 17.14

(b) Improvements of log-loss of NN predictive models.

Method D-1 to M D-2 to M D-3 to M AVG
LGB Baseline 26.13±1.53 4.18±1.47 7.58±3.26 12.63
LGB-CDA(unsup) (ours) 22.55±1.15 5.24±0.53 8.95±0.55 12.25
LGB-WCDA (ours) 27.85±4.41 7.18±1.85 13.66±1.56 16.23

(c) Improvements of PR-AUC of LGB predictive models.

Method D-1 to M D-2 to M D-3 to M AVG
LGB Baseline 9.77±6.01 6.53±3.31 12.32±5.05 9.54
LGB-CDA(unsup) (ours) 32.59±0.54 8.66±0.56 14.10±0.42 18.45
LGB-WCDA (ours) 39.86±1.68 14.31±2.40 22.06±1.66 25.41

(d) Improvements of log-loss of LGB predictive models.

Table 3.3: Numbers of adapted features of Kaggle fraud detection tasks in a
weakly supervised setting.

Method D-1 to M D-2 to M D-3 to M AVG
NN-WCDA (ours) 11.3±2.4 13.6±3.4 15.7±3.7 13.5
LGB-WCDA (ours) 15.3±4.3 18.5±4.9 17.5±3.1 17.1

55



CHAPTER 3. SINGLE-DOMAIN ADAPTATION Luxin Zhang

There is a significant difference between NN-WCDA and DAN for the adap-
tation task “D-1 to M”, which may be due to the fact that the pipeline without
the feature selection process (NN-CDA) decreases the performance of this task.
Moreover, the weakly supervised feature selection process based on 200 labeled
target domain examples cannot mitigate such a decrease.

Table 3.3 reports the number of adapted features when using the entire pipeline.
We see that the adapted number of features is around 1/3 of the whole input
space and LGB-WCDA generally adapts fewer features than NN-WCDA.

Table 3.4: Adaptation performances of unsupervised adaptation methods over
Worldline datasets (see Section 2.8.1 for the dataset description). We report
percentages of performances improvements, in PR-AUC and log-loss respectively,
compared to NN baseline models (average improvements of NN baseline models
are considered as 0%).

Method G-1 to B G-2 to B G-3 to B AVG
DAN 7.31±5.78 5.47±3.96 10.01±4.70 7.60
DANN 4.38±5.09 6.43±2.69 5.28±3.03 5.37
MCD 6.46±5.70 1.41±8.19 6.84±4.94 4.91
CORAL 8.31±0.02 3.83±0.02 3.54±0.02 5.23
NN-CDA (ours) 3.86±1.88 7.93±1.12 8.87±1.66 6.89

(a) Improvements of PR-AUC of NN predictive models.

Method G-1 to B G-2 to B G-3 to B AVG
DAN 4.40±2.75 9.12±2.60 17.90±3.91 10.48
DANN 2.85±2.37 9.78±1.33 16.45±2.98 9.69
MCD 4.40±1.57 7.55±3.94 14.16±7.35 8.70
CORAL 5.45±0.00 9.43±0.01 14.07±0.01 9.65
NN-CDA (ours) 4.11±0.52 8.13±0.34 18.92±0.27 10.39

(b) Improvements of log-loss of NN predictive models.

Method G-1 to B G-2 to B G-3 to B AVG
LGB Baseline 9.91±6.43 3.59±6.57 -1.94±8.31 3.85
CORAL 0.80±0.13 -8.46±0.16 -10.83±0.29 -6.17
LGB-CDA (ours) 8.96±1.98 10.25±0.86 9.76±0.97 9.65

(c) Improvements of PR-AUC of LGB predictive models.

Method G-1 to B G-2 to B G-3 to B AVG
LGB Baseline 5.02±3.54 4.38±4.00 9.43±4.65 6.28
CORAL 1.05±0.03 2.74±0.08 11.40±0.05 5.06
LGB-CDA (ours) 5.35±0.46 7.64±0.30 17.17±0.59 10.05

(d) Improvements of log-loss of LGB predictive models.

56



Luxin Zhang Luxin Zhang

Table 3.5: Adaptation performances of weakly supervised adaptation methods
over Worldline datasets (see Section 2.8.1 for the dataset description). We report
percentages of performances improvements, in PR-AUC and log-loss respectively,
compared to NN baseline models (average improvements of NN baseline models are
considered as 0%). Unsupervised CDAs are also reported to simplify comparisons.

Method G-1 to B G-2 to B G-3 to B AVG
DAN 9.40±3.50 11.85±1.86 8.85±1.73 10.03
DANN 9.56±4.54 10.27±5.78 10.46±6.94 10.10
MCD 1.64±14.30 1.77±7.82 12.71±21.75 5.38
FineTune 8.04±1.54 10.91±1.50 5.32±0.63 8.09
NN-CDA(unsup) (ours) 3.86±1.88 7.93±1.12 8.87±1.66 6.89
NN-WCDA (ours) 11.75±3.14 8.89±5.58 13.62±9.46 11.42

(a) Improvements of PR-AUC of NN predictive models.

Method G-1 to B G-2 to B G-3 to B AVG
DAN 8.05±1.04 12.66±0.88 18.83±2.07 13.18
DANN 4.41±3.58 10.99±3.05 27.49±4.75 14.30
MCD -12.28±18.49 -8.05±22.62 8.31±22.13 -4.01
FineTune 6.38±0.40 11.63±0.23 13.99±1.69 10.67
NN-CDA(unsup) (ours) 4.11±0.52 8.13±0.34 18.92±0.27 10.39
NN-WCDA (ours) 5.23±1.59 9.86±2.14 28.50±2.30 14.53

(b) Improvements of log-loss of NN predictive models.

Method G-1 to B G-2 to B G-3 to B AVG
LGB Baseline 9.91±6.43 3.59±6.57 -1.94±8.31 3.85
LGB-CDA(unsup) (ours) 8.96±1.98 10.25±0.86 9.76±0.97 9.65
LGB-WCDA (ours) 22.65±5.14 17.84±4.38 15.21±5.65 18.56

(c) Improvements of PR-AUC of LGB predictive models.

Method G-1 to B G-2 to B G-3 to B AVG
LGB Baseline 5.02±3.54 4.38±4.00 9.43±4.65 6.28
LGB-CDA(unsup) (ours) 5.35±0.46 7.64±0.30 17.17±0.59 10.05
LGB-WCDA (ours) 11.79±0.64 16.59±1.70 24.84±2.81 17.74

(d) Improvements of log-loss of LGB predictive models.

57



CHAPTER 3. SINGLE-DOMAIN ADAPTATION Luxin Zhang

Table 3.6: Numbers of adapted features of Worldline fraud detection tasks in a
weakly supervised setting.

Method G-1 to B G-2 to B G-3 to B AVG
NN-WCDA (ours) 7.0±2.4 5.1±1.7 7.8±2.3 6.6
LGB-WCDA (ours) 7.9±2.4 8.1±1.4 8.0±0.5 8.0

3.7.2.2 Worldline Dataset

Table 3.4 reports adaptation performances of Worldline fraud detection tasks
in an unsupervised setting. One observes a similar phenomenon as the Kaggle
unsupervised adaptation tasks. Additionally, in both Kaggle and Worldline fraud
detection tasks, deep adaptation methods generally have a larger variance than
classical adaptation methods including the ours.

In a weakly supervised setting (Table 3.5), WCDA outperforms all other
methods on average in all metrics. One can also see that WCDA improves CDA
in all Worldline domain adaptation tasks. The observation proves the efficiency
of weakly supervised feature selection in domain adaptation tasks. Note that,
although some deep adaptation methods have good performances over several
adaptation tasks, they do not fit a target to source domain adaptation scenario
and cannot be applied to our problem in real-life applications.

Concerning the number of adapted features (Table 3.6), similar to the results
of Kaggle adaptation tasks (Table 3.3), we improve CDA by adapting 1/4 of
dimensions.

58



Luxin Zhang Luxin Zhang

Table 3.7: Adaptation performances of NN unsupervised adaptation methods
over Amazon datasets (see Section 2.8.3 for the dataset description). We report
percentages of performances improvements, in accuracy and log-loss respectively,
compared to NN baseline models (average improvements of NN baseline models
are considered as 0%).

Task DAN DANN MCD CORAL NN-CDA (ours)
B to D -0.91±0.40 -3.42±1.31 -2.41±2.13 -0.22±0.00 -0.91±0.03
B to E 6.12±0.58 4.28±2.59 4.24±1.37 3.97±0.00 5.66±0.04
B to K 6.31±1.40 8.20±3.13 6.73±2.88 10.47±0.00 10.65±0.04
D to B -0.90±0.55 -1.67±0.81 -0.28±0.42 -0.11±0.00 -0.28±0.04
D to E 3.97±0.23 0.45±1.68 -0.73±2.47 2.18±0.00 3.28±0.04
D to K 7.20±0.27 1.74±2.18 -0.02±3.96 6.85±0.00 7.09±0.02
E to B 0.51±1.05 -3.03±1.59 -2.83±1.36 -0.71±0.00 1.55±0.02
E to D -0.05±0.38 -2.18±1.42 -1.53±1.12 0.14±0.00 0.96±0.02
E to K 0.14±1.88 0.98±0.73 1.91±0.57 2.49±0.00 2.55±0.03
K to B -0.07±0.48 -0.27±0.50 0.34±0.34 0.45±0.00 1.06±0.02
K to D -1.05±0.45 1.83±0.75 2.23±0.56 1.51±0.00 2.45±0.03
K to E -1.17±0.70 -1.47±0.75 -1.45±1.37 -1.22±0.00 -0.34±0.02

avg 1.68 0.45 0.52 2.15 2.81

(a) Improvements of accuracy of NN predictive models.

Task DAN DANN MCD CORAL NN-CDA (ours)
B to D -0.92±0.30 -4.47±1.14 -2.66±2.64 0.84±0.00 0.87±0.01
B to E 9.64±0.60 5.72±2.35 6.62±1.96 6.86±0.00 8.78±0.00
B to K 10.37±1.04 11.18±2.56 10.28±3.67 14.12±0.00 16.27±0.04
D to B -0.75±0.46 -1.72±0.77 -0.29±0.55 -0.25±0.00 -0.21±0.04
D to E 4.35±0.50 0.19±1.44 0.15±2.72 2.77±0.00 5.36±0.04
D to K 7.57±0.50 1.36±1.88 -0.07±4.31 6.40±0.00 9.23±0.02
E to B 2.29±1.46 -5.45±4.40 -8.01±3.90 -4.60±0.00 2.21±0.00
E to D -0.11±0.75 -2.90±2.48 -3.91±2.50 -4.67±0.00 0.64±0.03
E to K 0.57±3.44 1.04±1.24 3.30±0.97 5.35±0.00 6.44±0.03
K to B -1.24±1.11 1.14±0.87 1.60±0.76 -2.79±0.00 1.84±0.02
K to D -2.64±0.95 1.80±0.94 2.44±0.58 -2.38±0.00 2.80±0.01
K to E -0.96±1.22 -3.84±1.13 -2.28±2.24 -1.63±0.00 -0.53±0.03

avg 2.35 0.34 0.60 1.67 4.47

(b) Improvements of log-loss of NN predictive models.

59



CHAPTER 3. SINGLE-DOMAIN ADAPTATION Luxin Zhang

Table 3.8: Adaptation performances of LGB unsupervised adaptation methods
over Amazon datasets (see Section 2.8.3 for the dataset description). We report
percentages of performances improvements, in accuracy and log-loss respectively,
compared to NN baseline models (average improvements of NN baseline models
are considered as 0%).

Task LGB Baseline CORAL LGB-CDA (ours)
B to D -2.86±0.61 -3.90±0.00 -2.61±0.06
B to E 5.06±0.70 0.86±0.00 4.84±0.05
B to K 7.75±0.70 6.63±0.00 8.82±0.03
D to B -1.19±0.28 0.43±0.00 -0.04±0.09
D to E -1.81±1.47 -0.30±0.00 2.23±0.06
D to K -0.99±1.45 3.95±0.00 5.40±0.05
E to B -0.04±0.30 -0.52±0.00 -0.01±0.04
E to D -0.22±0.32 -1.20±0.00 -0.28±0.08
E to K 0.28±0.35 0.99±0.00 1.48±0.05
K to B -2.43±0.38 -0.20±0.00 0.12±0.03
K to D 1.72±0.38 1.92±0.00 1.85±0.04
K to E -2.58±0.18 -0.90±0.00 -1.28±0.02

avg 0.22 0.65 1.71

(a) Improvements of accuracy of LGB predictive models.

Task LGB Baseline CORAL LGB-CDA (ours)
B to D -4.24±4.55 -3.08±0.00 -1.97±0.02
B to E 1.14±5.99 2.77±0.00 5.58±0.01
B to K 6.35±5.46 9.02±0.00 11.75±0.02
D to B -3.13±0.33 -2.83±0.00 -1.59±0.04
D to E -2.19±0.81 0.17±0.00 3.30±0.03
D to K -0.68±0.55 4.63±0.00 6.89±0.03
E to B 1.57±0.70 -0.46±0.00 2.07±0.01
E to D -0.54±1.00 -1.91±0.00 0.74±0.02
E to K -0.67±2.73 3.44±0.00 4.83±0.02
K to B -0.22±0.41 1.10±0.00 2.38±0.04
K to D 1.27±0.35 0.98±0.00 2.50±0.02
K to E -6.55±1.49 -1.41±0.00 -1.50±0.01

avg -0.66 1.04 2.91

(b) Improvements of log-loss of LGB predictive models.

60



Luxin Zhang Luxin Zhang

Table 3.9: Adaptation performances of NN weakly supervised adaptation
methods over Amazon datasets (see Section 2.8.3 for the dataset description).
We report percentages of performances improvements, in accuracy and log-loss re-
spectively, compared to NN baseline models (average improvements of NN baseline
models are considered as 0%). Unsupervised CDAs are also reported to simplify
comparison s.

Task DAN DANN MCD FineTune NN-CDA NN-WCDA
(unsup) (ours) (ours)

B to D -0.97±0.38 -0.73±0.56 -0.71±0.66 -0.85±1.29 -0.91±0.03 0.61±0.10
B to E 6.28±0.52 6.86±0.91 6.85±0.85 4.55±0.43 5.66±0.04 6.83±0.02
B to K 11.02±0.48 11.75±0.53 11.68±0.65 9.31±0.18 10.65±0.04 11.64±0.02
D to B -1.40±0.41 -0.12±1.04 -0.26±1.20 -1.24±1.12 -0.28±0.04 0.25±0.10
D to E 4.01±0.23 2.93±1.08 3.28±0.68 0.99±0.66 3.28±0.04 3.46±0.05
D to K 7.26±0.24 7.85±0.37 7.87±0.42 5.32±0.25 7.09±0.02 7.51±0.03
E to B 0.86±0.41 1.38±1.09 1.25±1.20 0.05±0.50 1.55±0.02 1.73±0.10
E to D 0.27±0.16 0.05±0.63 0.31±0.49 -0.47±0.35 0.96±0.02 1.06±0.10
E to K 0.47±0.77 1.77±0.40 1.35±0.96 2.89±0.34 2.55±0.03 2.82±0.01
K to B 0.35±0.38 1.33±0.82 1.44±1.15 -0.57±1.02 1.06±0.02 1.72±0.07
K to D 0.17±0.53 2.30±1.05 2.67±0.76 2.85±0.64 2.45±0.03 3.16±0.06
K to E -0.70±0.15 -0.92±0.50 -1.14±1.20 -1.07±0.74 -0.34±0.02 0.41±0.02

avg 2.30 2.87 2.88 1.81 2.81 3.43

(a) Improvements of accuracy of NN predictive models.

Task DAN DANN MCD FineTune NN-CDA NN-WCDA
(unsup) (ours) (ours)

B to D -0.84±0.37 -1.06±0.69 -0.88±0.68 -0.22±1.05 0.87±0.01 1.48±0.01
B to E 9.77±0.36 10.78±1.16 10.37±1.58 7.95±0.39 8.78±0.00 11.33±0.01
B to K 16.12±0.53 17.29±0.62 17.31±0.78 14.66±0.29 16.27±0.00 18.51±0.00
D to B -1.23±0.39 0.12±0.99 0.12±1.06 -1.00±1.25 -0.21±0.00 0.59±0.01
D to E 4.69±0.52 6.79±0.50 6.96±1.07 2.79±0.49 5.36±0.00 5.85±0.00
D to K 7.72±0.49 10.84±0.60 11.15±0.81 6.39±0.29 9.23±0.00 9.80±0.00
E to B 3.08±0.34 4.08±1.43 4.15±1.25 -0.54±2.00 2.21±0.00 4.75±0.02
E to D 0.64±0.37 1.25±0.51 1.30±0.63 -1.17±1.32 0.64±0.00 2.11±0.01
E to K 1.12±1.30 3.46±0.83 2.45±1.80 5.92±0.61 6.44±0.00 6.99±0.00
K to B 1.85±0.50 3.90±0.98 4.21±1.04 -0.20±2.30 1.84±0.00 4.22±0.03
K to D -0.09±0.87 3.40±0.90 3.52±0.54 2.75±0.99 2.80±0.01 4.80±0.05
K to E -0.64±0.50 -1.67±1.03 -2.64±1.74 -0.85±1.02 -0.53±0.00 1.39±0.00

avg 3.52 4.93 4.84 3.04 4.47 5.99

(b) Improvements of log-loss of NN predictive models.

61



CHAPTER 3. SINGLE-DOMAIN ADAPTATION Luxin Zhang

Table 3.10: Adaptation performances of LGB weakly supervised adaptation
methods over Amazon datasets (see Section 2.8.3 for the dataset description).
We report percentages of performances improvements, in accuracy and log-loss re-
spectively, compared to NN baseline models (average improvements of NN baseline
models are considered as 0%). Unsupervised CDAs are also reported to simplify
comparisons.

Task LGB Baseline LGB-CDA LGB-WCDA
(unsup) (ours) (ours)

B to D -2.86±0.61 -2.61±0.06 -1.54±0.36
B to E 5.06±0.70 4.84±0.05 5.58±0.02
B to K 7.75±0.70 8.82±0.03 9.73±0.04
D to B -1.19±0.28 -0.04±0.09 0.46±0.11
D to E -1.81±1.47 2.23±0.06 3.10±0.03
D to K -0.99±1.45 5.40±0.05 7.43±0.09
E to B -0.04±0.30 -0.01±0.04 1.00±0.13
E to D -0.22±0.32 -0.28±0.08 0.42±0.06
E to K 0.28±0.35 1.48±0.05 1.92±0.03
K to B -2.43±0.38 0.12±0.03 -0.23±0.06
K to D 1.72±0.38 1.85±0.04 3.16±0.05
K to E -2.58±0.18 -1.28±0.02 -1.02±0.02

avg 0.22 1.71 2.50

(a) Improvements of accuracy of LGB predictive models.

Task LGB Baseline LGB-CDA LGB-WCDA
(unsup) (ours) (ours)

B to D -4.24±4.55 -1.97±0.02 -1.27±0.19
B to E 1.14±5.99 5.58±0.01 8.50±0.02
B to K 6.35±5.46 11.75±0.02 14.79±0.02
D to B -3.13±0.33 -1.59±0.04 -0.91±0.08
D to E -2.19±0.81 3.30±0.03 7.11±0.02
D to K -0.68±0.55 6.89±0.03 10.89±0.04
E to B 1.57±0.70 2.07±0.01 4.14±0.05
E to D -0.54±1.00 0.74±0.02 2.08±0.04
E to K -0.67±2.73 4.83±0.02 5.11±0.03
K to B -0.22±0.41 2.38±0.04 3.08±0.05
K to D 1.27±0.35 2.50±0.02 4.05±0.01
K to E -6.55±1.49 -1.50±0.01 -1.04±0.05

avg -0.66 2.91 4.71

(b) Improvements of log-loss of LGB predictive models.

62



Luxin Zhang Luxin Zhang

Table 3.11: Numbers of adapted features of Amazon review tasks in a weakly
supervised setting.

Task NN-WCDA LGB-WCDA
B to D 212.6±3.9 313.0±2.0
B to E 227.2±2.2 322.6±0.5
B to K 208.8±1.9 324.2±0.7
D to B 175.0±2.6 264.8±1.7
D to E 249.6±0.8 264.8±0.7
D to K 259.2±2.6 281.4±2.0
E to B 194.2±1.7 317.0±0.9
E to D 202.6±0.8 305.6±0.8
E to K 209.4±1.0 314.2±2.1
K to B 200.2±3.9 327.4±1.4
K to D 215.4±3.2 304.8±0.4
K to E 186.2±3.1 335.2±1.7
AVG 211.7 306.3

3.7.2.3 Amazon Dataset

Tables 3.7 and 3.8 report adaptation performances of Amazon review tasks in
an unsupervised setting. CDA without the feature selection step outperforms all
other methods in most adaptation tasks in different evaluation metrics. Unlike
fraud detection tasks where input spaces are mixed types, the Amazon review
datasets only contain numerical values. Furthermore, we observe that adaptation
methods based on GBDT pre-trained models are no better than NN pre-trained
models.

When using weakly labeled target domain data, both NN-WCDA and LGB-
WCDA achieve the best performance on average (Tables 3.9 and 3.10). Deep
adaptation methods like DANN and MCD have the best adaptation performances
in some sub-tasks. LGB-WCDA outperforms LGB-CDA in all tasks except the
“K to B” task in accuracy metric.

Table 3.11 represents the number of adapted features. The average number
of adapted features is around 211 for NN-WCDA and around 306 for LGB-
WCDA, respectively, representing 1/2 and 3/4 of the total number of input
space dimensions. We see that the Amazon review task has a proportion of
selected features larger than Worldline and Kaggle fraud detection tasks. This
phenomenon may be related to the high feature correlation of the input space
(Figure 3.7). Indeed, the feature spaces of the Worldline and Kaggle fraud detection
dataset are designed by business experts. Correlated dimensions are removed to
reduce redundances. In contrast, features of Amazon review tasks are generated
automatically by mSDA; thus, a high correlation may exist between attributes.

63



CHAPTER 3. SINGLE-DOMAIN ADAPTATION Luxin Zhang

Figure 3.7: Absolute values of the correlation matrix of mSDA representations of
Amazon reviews dataset (Electronics).

3.7.3 Interpretability of Adaptation Functions

Compared to classical domain adaptation methods [44, 39], interpretability is
one of our coordinate-wise optimal transport method assets. For example, by
investigating the obtained stochastic mapping function of categorical features
(Equation (3.13)), one can get details of mapping between each modality. We
show one example in Figure 3.8 where the stochastic mapping function of a
categorical feature in the Kaggle dataset is represented by a transformation
matrix. For this categorical feature, source domain has more encoded value 0 than
the one of target domain; thus, the encoded values 2 and 3 in target domain have
respectively 30.7% and 57.7% of probability to be mapped to the encoded value 0
in the source domain. Values of the Kaggle fraud detection dataset are masked
for privacy protection. This example is obtained by using the general occurrence
frequency distance [61], while business specific distance between categorical values
can also be applied to better fit different real-life industrial cases.

Moreover, the greedy feature selection process enhances this interpretability
through the selected subset of features D̂, and their selected orders. Specifically,
the feature subset D̂ reveals the source of drifts between source and target domains,
and the order provides importance of each feature in domain adaptation tasks
intuitively. All this information can provide business experts, with or without
machine learning backgrounds, insights to better understand different domains.

64



Luxin Zhang Luxin Zhang

Figure 3.8: Left: The mapping matrix of a categorical feature where different
values are encoded by integer numbers. Middle: The target domain distribution of
this categorical feature. Right: The source domain distribution of this categorical
feature.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Step of Greedy Search

0.1450
0.1475
0.1500
0.1525
0.1550
0.1575
0.1600
0.1625
0.1650

Te
st

 R
isk

Figure 3.9: The evolution of log-loss risk at different steps of the greedy algorithm
on Kaggle datasets in a weakly supervised scenario. We repeat the feature selection
process 10 times and report variations at each step by a box plot.

An example is illustrated in Figure 3.9 where evolution of log-loss risks at each
step of greedy feature selection is shown over the Kaggle payment dataset, and
the contribution of each feature can be measured by the differences of test risk.
In this example, the contribution of the first adapted feature is significantly larger
than the others. Consequently, one can investigate this feature to further modelize
payment habits of customers from different domains.

65



CHAPTER 3. SINGLE-DOMAIN ADAPTATION Luxin Zhang

3.8 Conclusion

This chapter introduced a new target to source perspective for domain adaptation
tasks. An unsupervised coordinate-wise transformation function and a weakly
supervised feature selection process were proposed to address this setting. Leverag-
ing the one-dimensional optimal transport, the proposed method was feature-type
free and interpretable. Moreover, efficient implementations were proposed and had
achieved state-of-the-art adaptation performances over three adaptation tasks.
However, the adaptation pipeline (Figure 3.6) relied on weakly labeled target
domain data; thus, the spectrum of use is limited. To generalize the method to an
unsupervised case, we further propose a stability-based pseudo-labeling method
in the following chapter.

66





Chapter 4

Unsupervised Feature Selection
for Domain Adaptation

This chapter presents the second contribution of this thesis. Results of
this chapter have been published in the paper “Interpretable Domain
Adaptation Using Unsupervised Feature Selection on Pre-trained Source
Models” [168]. We address a more challenging unsupervised target to
source domain adaptation scenario. It can be seen as a relaxation of
the weakly supervised case considered in the previous chapter. To this
end, we propose a new pseudo-label estimator over unlabeled target
examples based on rank-stability regarding the source model prediction.
Such estimated “labels” are further used in a feature selection process
to assess whether each feature needs to be transformed to achieve
adaptation. We provide theoretical foundations of our method as well
as an efficient implementation.

4.1 Unsupervised Target to Source
Domain Adaptation Pipeline

The previous Chapter 3 proposed an adaptation pipeline in a weakly supervised
setting. Note that the empirical results (Section 3.7.2) highlighted the impact of
the feature selection step in the adaptation pipeline. However, labeled information
is not always available. In cases where target domain labels are entirely missing,
one needs to skip the feature selection step of the proposed pipeline (Figure 3.6),
which gives suboptimal adaptation results (Figure 3.5).

Alternatively, this chapter addresses a more challenging unsupervised domain
adaptation setting where target labels, even few labeled examples, are not available
(nl

t = 0). However, the set of target inputs Xt is given. Since nl
t = 0, we have

67



CHAPTER 4. UNSUPERVISED FEATURE SELECTION Luxin Zhang

Output  
Calibration 

(Section 3.2 )

Coordinate-wise 
Adaptation 

(Sections 3.3 and 3.4)

Weakly Supervised
Feature Selection 

(Section 3.5)

Unsupervised
Feature Selection 

(Section 4.2)

Are Some Target Labels
Available?

Yes

No

1st Step 2nd Step 3rd Step

Figure 4.1: Main modules composing our proposed adaptation pipeline.

Xt = Xt
u in this setting. Figure 4.1 illustrates the complete adaptation pipeline.

Compared to the pipeline of Figure 3.6, we add a condition to check if the target
domain includes labeled data. If it is not the case, we use the unsupervised feature
selection process that we further detail in this chapter to find the optimal subset
of features to adapt.

Intuitively, if one gets an estimator ĥ(·) to annotate some specific target
examples x ∈ Xt approximately, one can solve the feature selection problem by
injecting ĥ(·) into Equation (3.15) to replace yt. Since ĥ(·) does not generalize to
new target examples, one cannot directly use it as the target domain predictor.
Nevertheless, it can serve as an adequate “anchor” for the unsupervised feature
selection process. Such approximate annotations are the so-called pseudo-labels.

4.2 Pseudo-labeling Methods

One of the most well-known strategies estimates target pseudo-labels using pre-
dictions of source models directly, assuming that high-confidence predictions are
correct [174, 21, 128]. However, we illustrate further on a toy example (Figure 4.2)
that this approach could be unstable and gives incorrect pseudo-labels in some
cases. In contrast, instead of pseudo-labeling target examples with confident
predictions, we estimate pseudo-labels of examples that have rank-stable pre-
dictions under different transformation functions. We name our unsupervised
domain adaptation pipeline with a pseudo-labeling method: Stability-based feature
selection for Coordinate-wise Domain Adaptation (SCDA).

68



Luxin Zhang Luxin Zhang

4.2.1 Rank Stability

In this section, we define a notion of stable inputs suited for our domain adaptation
task, we propose a pseudo-label estimator, and we prove that SCDA gives pseudo-
labels equal predictions of the optimal coordinate-wise adaptation function, making
it legitimate to be applied to the unsupervised feature selection.

Definition 4.1 (Stable inputs). A target input example x ∈ Xt is called stable over
D if its rank of prediction remains unchanged after being adapted by coordinate-
wise transformations over all different feature-subsets from D, that is,

∀x′ ∈ Xt , x′ ̸= x ,∀D,D′ ∈ D× D :
hD

t (x) > hD
t (x′)⇐⇒ hD′

t (x) > hD′

t (x′) . (4.1)

Accordingly, we denote by Xt
stab a set of all such target examples.

Recall that D∗ is the optimal subset of features to adapt (Equation (3.14)),
we suppose that predictions of hD∗

t (·) and ht(·) on target domain data have the
same distribution, that is,

P (hD∗

t (X t)) = P (ht(X t)) . (4.2)

Such an assumption can be easily verified as D∗ is the optimal subset of features
that minimizes the classification loss of target domain data (prediction difference
between hD∗

t (x) and ht(x) is marginal). Under this mild assumption, we can
further infer that

P (hD∗

t (X t)) = P (ht(X t)) = P (hs(Xs)) . (4.3)

Proof. Proposition 3.1 shows that the optimal adaptation function verifies

P (G∗(X t)) = P (Xs) .

Furthermore, we have

P (hs ◦ G∗(X t)) = P (hs(Xs)) =⇒ P (ht(X t)) = P (hs(Xs)) .

Consequently, the equality of source and target domain output distributions is
necessary for an optimal target to source domain adaptation function.

Proposition 4.1 (Property of stable inputs). Given that D contains the optimal

69



CHAPTER 4. UNSUPERVISED FEATURE SELECTION Luxin Zhang

subset of features D∗, we have

∀x ∈ Xt
stab ,∀D ∈ D , fhs

−1 ◦ fhD
t

(hD
t (x)) = hD∗

t (x) , (4.4)

where fhs(·) and fhD
t

(·) are respectively cumulative distribution functions of hs(Xs)
and hD

t (X t).

Proof. As ranks of predictions can be naturally expressed by cumulative distribu-
tion functions, given Equation (4.1), and D∗, D ∈ D, we have

∀x ∈ Xt
stab , fhD∗

t
(hD∗

t (x)) = fhD
t

(hD
t (x)) , (4.5)

where fhD∗
t

(·) refers to the cumulative distribution function of hD∗
t (X t). Propo-

sition 3.1 states that P (Y s) = P (Y t), According to Equation (4.3), we have
fhD∗

t
(·) = fht(·) = fhs(·) . Analogously, fht(·) is the cumulative distribution func-

tions of ht(X t). Replacing fhD∗
t

(·) by fhs(·) in Equation (4.5), we get

fhs(hD∗

t (x)) = fhD
t

(hD
t (x)) .

As fhs(·) is invertible (see Section 2.6.4), we have

hD∗

t (x) = fhs

−1 ◦ fhD
t

(hD
t (x)) ,

which proves Equation (4.4).

Note that, hD∗
t (·) is the optimal coordinate-wise adaptation function that

we expect to get. Therefore, we define the pseudo-label estimator ĥD(·) by the
following formula:

Definition 4.2 (Rank-stable based pseudo-label estimator).

∀x ∈ Xt
stab ,∀D ∈ D ,

ĥD(x) = fhs

−1 ◦ fhD
t

(hD
t (x)) = hD∗

t (x) . (4.6)

The defined pseudo-label estimator provides the same probability score over
stable target domain examples as the prediction results of the optimal adaptation
function.

An example is illustrated in Figure 4.2, where we compare two different
pseudo-labeling techniques on a toy dataset. In this example, we first identify
stable target examples over D, where D contains all feature subsets of the two-
dimensional space. Then we estimate pseudo-labels using ĥD(·). Stable examples
x with ĥD(x) > 0.5 are colored as blue and the others as orange. Note that

70



Luxin Zhang Luxin Zhang

Figure 4.2: Left: labeled source domain data. Middle left: unlabeled target
domain data. Middle right: pseudo-labels given by confidence-based methods.
Right: pseudo-labels provided by our proposition over stable target examples.
The ground truth of target data is shown in light colors, and pseudo-labels of the
target domain are shown in deep colors. The green line in the sub-figures is the
pre-trained source domain predictor.

Figure 4.3: Steps of coordinate-wise transformations using stability-based pseudo-
labels.

according to Equation (4.6), the choice of D does not affect the pseudo-labels
for all x ∈ Xt

stab. However, if x /∈ Xt
stab, pseudo-labels change with respect to

the choice of D. The pseudo-labeled examples are further used to adapt target
data in order to fit the pre-trained source model (Figure 4.3). We provide details
of this process in Algorithm 4. In contrast, confidence-based pseudo-labeling
methods (Figure 4.2 middle right) consider predictions of target examples far
from the decision boundary as correct; thus, all examples are pseudo-labeled as
blue and provide no information to help domain adaptations. One may note that
pseudo-labels given by our method can be close to the decision boundary of the
two classes. Indeed, our method is agnostic to the prediction value while relying
only on the rank-stability over D.

4.2.2 Relaxation of Rank Stability

The method described in the previous section annotates only stable target examples.
It is ineffective when the number of examples in Xt

stab is scarce, as it needs enough
stable elements to reach a diversity that faithfully expresses the global distribution

71



CHAPTER 4. UNSUPERVISED FEATURE SELECTION Luxin Zhang

of X t. Ideally, we expect Xt
stab contains as many examples as possible. Therefore,

we introduce a relaxation of Definition 4.1 to compensate for this scarcity. The
relaxation tunes the size of Xt

stab to reach the right trade-off between the similarity
to Xt and the constraint of Equation (4.1).

Definition 4.3 (δ-stable inputs). A target input example x ∈ Xt is called δ-stable
over D if

lstab(x) = max
D,D′∈D

(
|ĥD(x)− ĥD′(x)|

)
≤ δ . (4.7)

Accordingly, we denote by Xt
δ−stab an input set that contains all such target

examples. δ here is a tolerance measure that controls the bias between stable and
δ-stable input examples. By setting δ = 0, one can retrieve Definition 4.1.

Although one can still use ĥD(·) to estimate pseudo-labels for x ∈ Xt
δ−stab, it

is uncertain that Proposition 4.1 is verified. Intuitively, a larger δ results in a
richer Xt

δ−stab but with a higher risk of violating Proposition 4.1. In the remainder
of this section, we formally analyze the effects of this relaxation over the feature
selection process and propose the corresponding unsupervised objective function.

In their seminal domain adaptation analysis, Ben-David et al. [7] proposed to
upper bound the expected target domain risk by a sum of three terms: (i) the
source domain risk, (ii) the H-divergence defined as

dH(P (X t), P (Xs)) = 2 sup
h∈H

∣∣∣∣ E
x∼P (Xt)

[h(x) ̸= 1]− E
x∼P (Xs)

[h(x) ̸= 1]
∣∣∣∣

to measure the discrepancy between source (P (Xs)) and target (P (X t)) input
marginal distributions, and (iii) an intrinsic error between true labeling functions
of two domains. We denote by

e(D) = E
x∼P (Xt)

[
|hD

t (x)− hD∗

t (x)|
]

(4.8)

the target domain risk between a label predictor hD
t (·) and the optimal one hD∗

t (·).
We notice that the drift between Xt

δ−stab and Xt is known as sample selection bias
[52]; thus, we can empirically upper bound e(D) by considering δ-stable examples
x ∈ Xt

δ−stab as the “source” domain.

Theorem 4.1 (Upper bound of target domain risk). Given a subset of features
D ∈ D, for all D′ ∈ D, δ ∈ [0, 1], the following inequality holds:

e(D) ≤ lbias(D,D′, δ) + ddiv(δ) , (4.9)

72



Luxin Zhang Luxin Zhang

where

lbias(D,D′, δ) = E
x∼P (Xt

δ
)

[
|hD

t (x)− ĥD′(x)|
]

, (4.10)

ddiv(δ) = E
x∼P (Xt

δ
)

[
lstab(x)

]
+ 1

2dH(P (X t), P (X t
δ)) , (4.11)

P (X t
δ) referring to the distribution of δ-stable target inputs.

Proof. According to the Theorem 1 of Ben-David et al. [7], we have

e(D) ≤ E
x∼P (Xt

δ
)

[
|hD

t (x)− hD∗

t (x)|
]

+ 1
2dH(P (X t), P (X t

δ)) + ce.

As examples in Xt and in Xt
δ−stab have the same true labeling function, the constant

term ce = 0. We use the triangle inequality on the expectation term of the upper
bound and we get

e(D) ≤ lbias(D,D′, δ) + E
x∼P (Xt

δ
)

[
|ĥD′(x)− hD∗

t (x)|
]

+ 1
2dH(P (X t), P (X t

δ)) .

Since fhD∗
t

(·) = fhs(·), relying on Equations 4.4 and 4.3, we get

hD∗

t (x) = fhs

−1 ◦ fhD∗
t

(hD∗

t (x)) = ĥD∗(x) .

As D′ ,D∗ are subsets of D, by replacing hD∗
t (x) by ĥD∗(x), and relying on

Equation (4.7), we have

|ĥD′(x)− hD∗

t (x)| = |ĥD′(x)− ĥD∗(x)| ≤ lstab(x)

=⇒ E
x∼P (Xt

δ
)

[
|ĥD′(x)− hD∗

t (x)|
]
≤ E

x∼P (Xt
δ
)

[
lstab(x)

]
.

Theorem 4.1 is proved.

In this bound, lbias(D,D′, δ) refers to the feature selection risk over δ-stable
target examples. ddiv(δ) encompasses the risk related to the stable inputs relax-
ation, and the discrepancy between P (X t) and P (X t

δ). All elements in this upper
bound can be computed without target domain labels. Therefore, we define the
unsupervised objective function of SCDA as

D̃∗ = argmin
D∈D

min
D′∈D

min
δ∈[0,1]

(
lbias(D,D′, δ) + ddiv(δ)

)
. (4.12)

73



CHAPTER 4. UNSUPERVISED FEATURE SELECTION Luxin Zhang

Figure 4.4: Comparison of minimum values of upper bound lbias(D,D′, δ) + ddiv(δ)
and lbias(D,D′, δ) with respect to δ of a Kaggle fraud detection task.

4.3 Implementation

Set the value of δ. Experimental results show that the optimal δ that minimizes
the sum of lbias(D,D′, δ) + ddiv(δ) is close to the minimizer of ddiv(δ) (Figure 4.4).
Therefore, we can rely first on ddiv(δ) to determinate the optimal value of δ, and
then find the couple (D,D′) that minimizes lbias(D,D′, δ). This approach reduces
the complexity by simplifying the combination problem of triplets ((D,D′, β)) to
the combination problem of couples ((D,D′)). In practice, we use a grid search
algorithm to discretize the value space of δ. The expectation part of Equation (4.11)
is empirically estimated by the average value of lstab(x) (Equation (4.7)) over δ-
stable inputs. The H-divergence is estimated by training a classifier to distinguish
examples between Xt and Xt

δ−stab. Detailed processes are presented in Algorithm 3.
Of note, a one-dimensional dictionary is a {key:value} structure, while a two-
dimensional dictionary uses a one-dimensional dictionary as its value.

Steps 4-6 compute pseudo-labels of x regarding all possible choices of D. When
the number of elements in D is large, we simplify the computation by considering
D with only one input space dimension. Step 10 discretizes the choice of δ. In
practice, we apply a log scale to this discretizing function.

Step 5 here is a simplification of notation, as ĥD(·) (Equation (4.6)) involves
a stochastic part fhD

t
(hD

t (·)) (hD
t (·) = hs ◦ GD(·) and the transform GD(·) is

74



Luxin Zhang Luxin Zhang

stochastic), the true pseudo-label is given by

Pseudo[x][D] = 1
nr

∑
nr

ĥD(x) ,

where nr is the repetition times. ĥD(x) gives slightly different pseudo-labels for
the same input value x because of the stochastic transformation GD(·).

Step 12 empirically computes ddiv(δ), and the term d̂H(Xt,Xt
δ−stab) is estimated

relying on a GBDT model. First, one divides Xt
δ−stab and Xt into training datasets

and testing datasets. Then, a GBDT model is trained using training data to
distinguish examples between Xt

δ−stab and Xt. One stops the training process when
the testing error is minimized. d̂H(Xt,Xt

δ−stab) is estimated by this empirically
optimal model over all examples in Xt

δ−stab and Xt. Note that, once δ is fixed, the
δ-stable input dataset Xt

δ−stab is also determinate.

Algorithm 3 Get δ-stable Set
1: Initialize Pseudo[ ][ ]← {{}} by an empty two-dimensional dictionary
2: Initialize Lstab[ ]← {} by an empty one-dimensional dictionary
3: Initialize Ddiv[ ]← {} by an empty one-dimensional dictionary
4: for D in D do
5: Pseudo[x][D] ← ĥD(x)
6: end for
7: for x in Xt do
8: Lstab[x] ← maxD Pseudo[x][D] - minD Pseudo[x][D]
9: end for

10: for δ in discretize(0, 1) do
11: Xt

δ−stab ← {x|Lstab[x] ≤ δ}
12: Ddiv[δ]← meanx∈Xt

δ−stab
Lstab[x] + 1

2 d̂H(Xt,Xt
δ−stab)

13: end for
14: return: argminδ Ddiv[δ], Xt

δ−stab

Unsupervised Feature Selection The unsupervised feature selection process
(Algorithm 4) follows the same paradigm as the weakly supervised one (Algo-
rithm 2). Both feature selection methods leverage a greedy search algorithm and
a bootstrap strategy.

Namely, at initialization (step 2), no feature is adapted. We use a dictionary
Count[d] to count the frequency of each newly adapted dimension (step 4). The
bootstrap process starts from step 5 and ends at step 16. We add the most
frequent feature into the selected optimal subset of features (steps 17 and 18).
We stop the process when no feature is added or no feature is significantly better
than the others (step 20).

The key difference between the unsupervised feature selection algorithm and
the weakly supervised one is the objective function. According to Equation (4.12),

75



CHAPTER 4. UNSUPERVISED FEATURE SELECTION Luxin Zhang

Algorithm 4 Unsupervised Greedy Search Algorithm
1: Initialize i← 0
2: Initialize D̃(i) ← {}
3: repeat
4: Initialize Count[d]← 0 , ∀d ∈ X/D̃(i) ∪ {∅}
5: for Xt

boot in bootstraps of Xt
δ−stab do

6: Initialize Loss[ ][ ]← {{}} by a two-dimensional dictionary
7: for d in X/D̃(i) ∪ {∅} do
8: D ← D̃(i) ∪ {d}
9: for d′ in X/D̃(i) ∪ {∅} do

10: D′ ← D̃(i) ∪ {d′}
11: Loss[d][d′]←

∑
x∈Xt

boot
|hD

t (x)− ĥD′(x)|
12: end for
13: end for
14: dmin, d′

min ← argmind,d′ Loss[d][d′]
15: Count[dmin]← Count[dmin] + 1
16: end for
17: d∗ ← argmaxd Count[d]
18: D̃(i+1) ← D̃(i) ∪ {d∗}
19: v ← Count[d∗]/

∑
d Count[d]

20: until d∗ ← ∅ or v < 0.5; i← i + 1
21: return: D̃(i)

as ddiv(δ) is fixed, the unsupervised feature selection minimization problem focuses
on Equation (4.10) (steps 6-13 of Algorithm 4). Whereas the weakly supervised
feature selection focus on Equation (3.15) (steps 6-10 of Algorithm 2). Compared
to Algorithm 2, Algorithm 4 has a nested loop and is more computationally
expensive. Nonetheless, it needs no labeled information.

4.4 Experiments

Similar to Section 3.7, in this section, we evaluate the performances of SCDA
on 3 different datasets: Kaggle fraud detection tasks, Worldline fraud detection
tasks, and Amazon review tasks. Details of datasets and separations of source
and target domains are provided in Section 2.8.

4.4.1 General Setup

We use the same NN and GBDT pre-trained models as Section 3.7 and we com-
pare with our previously proposed CDA, deep adaptation methods, and classical
adaptation methods in an unsupervised setting. We also present adaptation
performances of weakly supervised feature selection pipeline WCDA. For compar-
ison, we make the best performance of unsupervised adaptation methods bold,
while excluding WCDA. All performances are evaluated by PR-AUC (accuracy

76



Luxin Zhang Luxin Zhang

for Amazon review tasks) and log-loss. For the sake of comparison, we set the
average performance of source domain NN baseline models as references and
report the percentage of improvements compared to such models. We also report
standard deviations to illustrate the stabilities of adaptation methods. Note that
SCDA is the unsupervised version of WCDA. Hence characteristics such as the
interpretability of the adaptation method are also the asset of SCDA. However,
we do not reintroduce such a point here for the sake of document fluidity.

4.4.2 Adaptation Performance Analysis

4.4.2.1 Kaggle Dataset

Table 4.1 reports adaptation results of Kaggle fraud detection tasks in the un-
supervised setting. NN-SCDA outperforms all the other adaptation methods,
even the weakly supervised ones, on average. We explain such an observation
by the scarcity of weakly labeled examples. Recall that, in a weakly supervised
setting, we use 200 examples of labeled target domain data. However, they may
not be enough to fully disentangle underlying structures of target domain data.
In contrast, SCDA produces pseudo-labels and minimizes an upper bound of the
target domain risk. Therefore, it can tune the optimal trade-off between precisions
and numbers of pseudo-labels. Besides, SCDA is the best unsupervised domain
adaptation method in terms of log-loss improvements of NN models, and in both
metrics of LGB models.

Compared to deep adaptation methods that sometimes have a negative im-
provement (e.g., “D-1 to M of MCD”), SCDA always improves performances of
directly applying pre-trained source domain predictive models on target domain
data. Additionally, SCDA has a smaller variance than deep adaptation methods,
which results in more robust predictions. The high variance of deep adaptation
methods confirms our arguments that deep adaptation methods are tedious to
train, such that they are not practical for some real-life applications.

Concerning the number of adapted features (Table 4.3), SCDA generally
transforms less features than WCDA. Both SCDA and WCDA provide a sparse
transformation of the input space.

77



CHAPTER 4. UNSUPERVISED FEATURE SELECTION Luxin Zhang

Table 4.1: Adaptation performances of unsupervised adaptation methods over
Kaggle datasets (see Section 2.8.2 for the dataset description). We report
percentages of performances improvements, in PR-AUC and log-loss respectively,
compared to NN baseline models (average improvements of NN baseline models
are considered as 0%).

Method D-1 to M D-2 to M D-3 to M AVG
DAN 12.31±6.72 -3.20±7.18 1.41±3.63 3.51
DANN 3.47±9.53 -2.90±3.82 -4.21±6.51 -1.21
MCD -11.47±13.38 -6.29±6.09 -6.81±4.83 -8.19
CORAL 9.11±0.26 -2.47±0.08 -8.37±0.14 -0.58
NN-CDA (ours) -8.15±2.51 3.87±0.35 0.69±0.38 -1.20
NN-SCDA (ours) 3.23±1.87 2.88±0.35 5.41±0.48 3.84
NN-WCDA(sup) (ours) 1.30±7.57 2.98±2.14 3.72±1.40 2.66

(a) Improvements of PR-AUC of NN predictive models.

Method D-1 to M D-2 to M D-3 to M AVG
DAN 29.57±4.32 -1.58±9.64 4.37±5.39 10.79
DANN 29.58±4.05 2.39±3.98 2.06±5.07 11.34
MCD 21.59±9.25 -1.29±5.34 -7.55±10.32 4.25
CORAL 30.66±0.07 4.69±0.08 -2.80±0.13 10.85
NN-CDA (ours) 18.38±0.62 6.32±0.34 7.40±0.28 10.70
NN-SCDA (ours) 31.42±0.53 9.54±0.35 14.05±0.77 18.34
NN-WCDA(sup) (ours) 30.42±3.26 8.95±2.67 12.07±2.04 17.14

(b) Improvements of log-loss of NN predictive models.

Method D-1 to M D-2 to M D-3 to M AVG
LGB Baseline 26.13±1.53 4.18±1.47 7.58±3.26 12.63
CORAL 17.19±0.61 -8.23±0.26 -8.50±0.51 0.15
LGB-CDA (ours) 22.55±1.15 5.24±0.53 8.95±0.55 12.25
LGB-SCDA (ours) 32.68±1.05 7.14±0.32 14.31±0.24 18.04
LGB-WCDA(sup) (ours) 27.85±4.41 7.18±1.85 13.66±1.56 16.23

(c) Improvements of PR-AUC of LGB predictive models.

Method D-1 to M D-2 to M D-3 to M AVG
LGB Baseline 9.77±6.01 6.53±3.31 12.32±5.05 9.54
CORAL 33.75±0.26 -4.67±0.63 -7.76±1.19 7.11
LGB-CDA (ours) 32.59±0.54 8.66±0.56 14.10±0.42 18.45
LGB-SCDA (ours) 41.22±0.64 14.34±0.34 24.00±0.16 26.52
LGB-WCDA(sup) (ours) 39.86±1.68 14.31±2.40 22.06±1.66 25.41

(d) Improvements of log-loss of LGB predictive models.

78



Luxin Zhang Luxin Zhang

Table 4.2: Adaptation performances of unsupervised adaptation methods over
Worldline datasets (see Section 2.8.1 for the dataset description). We report
percentages of performances improvements, in PR-AUC and log-loss respectively,
compared to NN baseline models (average improvements of NN baseline models
are considered as 0%).

Method G-1 to B G-2 to B G-3 to B AVG
DAN 7.31±5.78 5.47±3.96 10.01±4.70 7.60
DANN 4.38±5.09 6.43±2.69 5.28±3.03 5.37
MCD 6.46±5.70 1.41±8.19 6.84±4.94 4.91
CORAL 8.31±0.02 3.83±0.02 3.54±0.02 5.23
NN-CDA (ours) 3.86±1.88 7.93±1.12 8.87±1.66 6.89
NN-SCDA (ours) 8.02±1.35 11.72±2.49 5.95±0.84 8.56
NN-WCDA(sup) (ours) 11.75±3.14 8.89±5.58 13.62±9.46 11.42

(a) Improvements of PR-AUC of NN predictive models.

Method G-1 to B G-2 to B G-3 to B AVG
DAN 4.40±2.75 9.12±2.60 17.90±3.91 10.48
DANN 2.85±2.37 9.78±1.33 16.45±2.98 9.69
MCD 4.40±1.57 7.55±3.94 14.16±7.35 8.70
CORAL 5.45±0.00 9.43±0.01 14.07±0.01 9.65
NN-CDA (ours) 4.11±0.52 8.13±0.34 18.92±0.27 10.39
NN-SCDA (ours) 7.26±0.48 13.03±1.32 13.02±0.27 11.11
NN-WCDA(sup) (ours) 5.23±1.59 9.86±2.14 28.50±2.30 14.53

(b) Improvements of log-loss of NN predictive models.

Method G-1 to B G-2 to B G-3 to B AVG
LGB Baseline 9.91±6.43 3.59±6.57 -1.94±8.31 3.85
CORAL 0.80±0.13 -8.46±0.16 -10.83±0.29 -6.17
LGB-CDA (ours) 8.96±1.98 10.25±0.86 9.76±0.97 9.65
LGB-SCDA (ours) 1.83±6.19 2.77±4.37 7.11±3.32 3.90
LGB-WCDA(sup) (ours) 22.65±5.14 17.84±4.38 15.21±5.65 18.56

(c) Improvements of PR-AUC of LGB predictive models.

Method G-1 to B G-2 to B G-3 to B AVG
LGB Baseline 5.02±3.54 4.38±4.00 9.43±4.65 6.28
CORAL 1.05±0.03 2.74±0.08 11.40±0.05 5.06
LGB-CDA (ours) 5.35±0.46 7.64±0.30 17.17±0.59 10.05
LGB-SCDA (ours) 3.14±2.33 8.58±1.60 19.36±1.52 10.36
LGB-WCDA(sup) (ours) 11.79±0.64 16.59±1.70 24.84±2.81 17.74

(d) Improvements of log-loss of LGB predictive models.

79



CHAPTER 4. UNSUPERVISED FEATURE SELECTION Luxin Zhang

Table 4.3: Numbers of adapted features of Kaggle fraud detection tasks in an
unsupervised setting.

Method D-1 to M D-2 to M D-3 to M AVG
NN-SCDA (ours) 11.0±3.1 11.3±2.9 12.0±3.4 11.4
LGB-SCDA (ours) 15.1±3.9 17.1±4.2 17.9±4.2 16.7
NN-WCDA(sup) (ours) 11.3±2.4 13.6±3.4 15.7±3.7 13.5
LGB-WCDA(sup) (ours) 15.3±4.3 18.5±4.9 17.5±3.1 17.1

Table 4.4: Numbers of adapted features of Worldline fraud detection tasks in an
unsupervised setting.

Method G-1 to B G-2 to B G-3 to B AVG
NN-SCDA (ours) 5.7±1.8 4.5±1.4 8.0±1.3 6.0
LGB-SCDA (ours) 8.7±3.1 7.7±0.7 7.7±1.0 8.0
NN-WCDA(sup) (ours) 7.0±2.4 5.1±1.7 7.8±2.3 6.6
LGB-WCDA(sup) (ours) 7.9±2.4 8.1±1.4 8.0±0.5 8.0

4.4.2.2 Worldline Dataset

As for the Worldline fraud detection task, SCDA does not outperform the weakly
supervised WCDA. In the case where one has labeled information, WCDA is more
suited for the Worldline domain adaptation tasks. We also observe that, among
unsupervised adaptation methods, SCDA has the best average performances of
NN models in both metrics and LGB models in terms of log-loss improvements.
However, it decreases performances of the all adaptation method CDA in terms
of PR-AUC when using LGB models. It shows that SCDA is better when using
the log-loss improvement as a metric. An intuitive explanation is that SCDA
minimizes the absolute error (Equation (4.10)) while PR-AUC focuses on the rank
of predictions. Alternatively, log-loss relies on the absolute value of predictions thus
can benefit more from SCDA. Additionally, when using the LGB pre-trained model
for the Worldline domain adaptation tasks, there is one feature that outperforms
all the other dimensions. If the feature selection process does not select the feature,
performance improvements can be less significant.

Figure 4.5 illustrates improvements of PR-AUC when adapting only one feature
of the Worldline tasks. For some LGB-based pre-trained models (Figures 4.5d
and 4.5f), one can find one feature (feature indexed 3) that significantly improves
performances than all the others. Without using target domain labels, identifying
the only feature is challenging for SCDA. Consequently, SCDA may perform no
better than the all adaptation solution CDA if the feature is not selected. In
contrast, for NN-based models, there is no such a “must be adapted” feature.

80



Luxin Zhang Luxin Zhang

Concerning the number of adapted features (Table 4.4), similar to the weakly
supervised case, SCDA adapts around 1/4 of the input dimensions.

0 5 10 15 20 25 30
Index of Feature

25

20

15

10

5

0

Pe
rc

en
t o

f I
m

pr
ov

em
en

ts
 (%

)

(a) NN G-1 to B

0 5 10 15 20 25 30
Index of Feature

10

5

0

5

Pe
rc

en
t o

f I
m

pr
ov

em
en

ts
 (%

)

(b) LGB G-1 to B

0 5 10 15 20 25 30
Index of Feature

2

0

2

4

6

Pe
rc

en
t o

f I
m

pr
ov

em
en

ts
 (%

)

(c) NN G-2 to B

0 5 10 15 20 25 30
Index of Feature

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Pe
rc

en
t o

f I
m

pr
ov

em
en

ts
 (%

)

(d) LGB G-2 to B

0 5 10 15 20 25 30
Index of Feature

2

1

0

1

2

3

4

5

Pe
rc

en
t o

f I
m

pr
ov

em
en

ts
 (%

)

(e) NN G-3 to B

0 5 10 15 20 25 30
Index of Feature

4

2

0

2

4

6

8

10

Pe
rc

en
t o

f I
m

pr
ov

em
en

ts
 (%

)

(f) LGB G-3 to B

Figure 4.5: Improvements of PR-AUC when adapting only one feature of the
Worldline tasks.

81



CHAPTER 4. UNSUPERVISED FEATURE SELECTION Luxin Zhang

Table 4.5: Adaptation performances of NN unsupervised adaptation methods
over Amazon datasets (see Section 2.8.3 for the dataset description). We report
percentages of performances improvements, in accuracy and log-loss respectively,
compared to NN baseline models (average improvements of NN baseline models
are considered as 0%).

Task DAN DANN MCD CORAL NN-CDA NN-SCDA NN-WCDA
(ours) (ours) (sup) (ours)

B to D -0.91±0.40 -3.42±1.31 -2.41±2.13 -0.22±0.00 -0.91±0.03 -0.60±0.10 0.61±0.10
B to E 6.12±0.58 4.28±2.59 4.24±1.37 3.97±0.00 5.66±0.04 3.94±0.40 6.83±0.02
B to K 6.31±1.40 8.20±3.13 6.73±2.88 10.47±0.00 10.65±0.04 8.89±0.13 11.64±0.02
D to B -0.90±0.55 -1.67±0.81 -0.28±0.42 -0.11±0.00 -0.28±0.04 0.40±0.14 0.25±0.10
D to E 3.97±0.23 0.45±1.68 -0.73±2.47 2.18±0.00 3.28±0.04 2.02±0.16 3.46±0.05
D to K 7.20±0.27 1.74±2.18 -0.02±3.96 6.85±0.00 7.09±0.02 5.75±0.08 7.51±0.03
E to B 0.51±1.05 -3.03±1.59 -2.83±1.36 -0.71±0.00 1.55±0.02 0.08±0.18 1.73±0.10
E to D -0.05±0.38 -2.18±1.42 -1.53±1.12 0.14±0.00 0.96±0.02 -0.02±0.21 1.06±0.10
E to K 0.14±1.88 0.98±0.73 1.91±0.57 2.49±0.00 2.55±0.03 2.53±0.06 2.82±0.01
K to B -0.07±0.48 -0.27±0.50 0.34±0.34 0.45±0.00 1.06±0.02 -0.07±0.42 1.72±0.07
K to D -1.05±0.45 1.83±0.75 2.23±0.56 1.51±0.00 2.45±0.03 0.85±0.99 3.16±0.06
K to E -1.17±0.70 -1.47±0.75 -1.45±1.37 -1.22±0.00 -0.34±0.02 -0.40±0.04 0.41±0.02

avg 1.68 0.45 0.52 2.15 2.81 1.95 3.43

(a) Improvements of accuracy of NN predictive models.

Task DAN DANN MCD CORAL NN-CDA NN-SCDA NN-WCDA
(ours) (ours) (sup) (ours)

B to D -0.92±0.30 -4.47±1.14 -2.66±2.64 0.84±0.00 0.87±0.01 -0.02±0.06 1.48±0.01
B to E 9.64±0.60 5.72±2.35 6.62±1.96 6.86±0.00 8.78±0.00 6.83±0.56 11.33±0.01
B to K 10.37±1.04 11.18±2.56 10.28±3.67 14.12±0.00 16.27±0.04 13.82±0.22 18.51±0.00
D to B -0.75±0.46 -1.72±0.77 -0.29±0.55 -0.25±0.00 -0.21±0.04 0.31±0.04 0.59±0.01
D to E 4.35±0.50 0.19±1.44 0.15±2.72 2.77±0.00 5.36±0.04 3.16±0.20 5.85±0.00
D to K 7.57±0.50 1.36±1.88 -0.07±4.31 6.40±0.00 9.23±0.02 6.68±0.02 9.80±0.00
E to B 2.29±1.46 -5.45±4.40 -8.01±3.90 -4.60±0.00 2.21±0.00 -0.06±0.52 4.75±0.02
E to D -0.11±0.75 -2.90±2.48 -3.91±2.50 -4.67±0.00 0.64±0.03 -2.35±0.15 2.11±0.01
E to K 0.57±3.44 1.04±1.24 3.30±0.97 5.35±0.00 6.44±0.03 6.23±0.11 6.99±0.00
K to B -1.24±1.11 1.14±0.87 1.60±0.76 -2.79±0.00 1.84±0.02 -0.51±0.41 4.22±0.03
K to D -2.64±0.95 1.80±0.94 2.44±0.58 -2.38±0.00 2.80±0.01 -0.95±1.38 4.80±0.05
K to E -0.96±1.22 -3.84±1.13 -2.28±2.24 -1.63±0.00 -0.53±0.03 0.02±0.07 1.39±0.00

avg 2.35 0.34 0.60 1.67 4.47 2.76 5.99

(b) Improvements of log-loss of NN predictive models.

82



Luxin Zhang Luxin Zhang

Table 4.6: Adaptation performances of LGB unsupervised adaptation methods
over Amazon datasets (see Section 2.8.3 for the dataset description). We report
percentages of performances improvements, in accuracy and log-loss respectively,
compared to NN baseline models (average improvements of NN baseline models
are considered as 0%).

Task LGB Baseline CORAL LGB-CDA LGB-SCDA LGB-WCDA
(ours) (ours) (sup) (ours)

B to D -2.86±0.61 -3.90±0.00 -2.61±0.06 -2.75±0.00 -1.54±0.36
B to E 5.06±0.70 0.86±0.00 4.84±0.05 5.26±0.28 5.58±0.02
B to K 7.75±0.70 6.63±0.00 8.82±0.03 8.88±0.19 9.73±0.04
D to B -1.19±0.28 0.43±0.00 -0.04±0.09 -1.12±0.36 0.46±0.11
D to E -1.81±1.47 -0.30±0.00 2.23±0.06 -1.42±1.02 3.10±0.03
D to K -0.99±1.45 3.95±0.00 5.40±0.05 4.57±2.50 7.43±0.09
E to B -0.04±0.30 -0.52±0.00 -0.01±0.04 0.06±0.08 1.00±0.13
E to D -0.22±0.32 -1.20±0.00 -0.28±0.08 0.18±0.14 0.42±0.06
E to K 0.28±0.35 0.99±0.00 1.48±0.05 1.51±0.09 1.92±0.03
K to B -2.43±0.38 -0.20±0.00 0.12±0.03 -0.63±0.47 -0.23±0.06
K to D 1.72±0.38 1.92±0.00 1.85±0.04 2.01±0.26 3.16±0.05
K to E -2.58±0.18 -0.90±0.00 -1.28±0.02 -0.93±0.05 -1.02±0.02

avg 0.22 0.65 1.71 1.30 2.50

(a) Improvements of accuracy of LGB predictive models.

Task LGB Baseline CORAL LGB-CDA LGB-SCDA LGB-WCDA
(ours) (ours) (sup) (ours)

B to D -4.24±4.55 -3.08±0.00 -1.97±0.02 -1.87±0.04 -1.27±0.19
B to E 1.14±5.99 2.77±0.00 5.58±0.01 5.53±0.25 8.50±0.02
B to K 6.35±5.46 9.02±0.00 11.75±0.02 11.93±0.51 14.79±0.02
D to B -3.13±0.33 -2.83±0.00 -1.59±0.04 -1.79±0.21 -0.91±0.08
D to E -2.19±0.81 0.17±0.00 3.30±0.03 0.95±0.97 7.11±0.02
D to K -0.68±0.55 4.63±0.00 6.89±0.03 6.24±2.32 10.89±0.04
E to B 1.57±0.70 -0.46±0.00 2.07±0.01 1.46±0.07 4.14±0.05
E to D -0.54±1.00 -1.91±0.00 0.74±0.02 0.33±0.15 2.08±0.04
E to K -0.67±2.73 3.44±0.00 4.83±0.02 4.64±0.10 5.11±0.03
K to B -0.22±0.41 1.10±0.00 2.38±0.04 1.64±0.39 3.08±0.05
K to D 1.27±0.35 0.98±0.00 2.50±0.02 1.36±0.14 4.05±0.01
K to E -6.55±1.49 -1.41±0.00 -1.50±0.01 -1.79±0.02 -1.04±0.05

avg -0.66 1.04 2.91 2.39 4.71

(b) Improvements of log-loss of LGB predictive models.

83



CHAPTER 4. UNSUPERVISED FEATURE SELECTION Luxin Zhang

Table 4.7: Numbers of adapted features of Amazon review tasks in a weakly
supervised setting.

Task NN-SCDA LGB-SCDA NN-WCDA LGB-WCDA

B to D 7.0±2.8 4.8±2.1 212.6±3.9 313.0±2.0
B to E 11.3±5.3 5.5±1.1 227.2±2.2 322.6±0.5
B to K 10.0±2.6 5.6±1.5 208.8±1.9 324.2±0.7
D to B 1.9±1.1 3.1±0.8 175.0±2.6 264.8±1.7
D to E 9.7±4.6 8.0±2.4 249.6±0.8 264.8±0.7
D to K 7.4±2.1 8.8±3.5 259.2±2.6 281.4±2.0
E to B 3.2±1.6 4.9±2.7 194.2±1.7 317.0±0.9
E to D 19.6±2.3 4.5±0.9 202.6±0.8 305.6±0.8
E to K 5.5±2.7 3.7±1.5 209.4±1.0 314.2±2.1
K to B 7.8±3.4 3.8±2.6 200.2±3.9 327.4±1.4
K to D 8.5±2.5 6.2±2.9 215.4±3.2 304.8±0.4
K to E 30.5±5.0 6.1±2.8 186.2±3.1 335.2±1.7
AVG 10.2 5.4 211.7 306.3

4.4.2.3 Amazon Dataset

As introduced in Section 2.8, different from fraud detection datasets, features of
Amazon reviews datasets are generated using a particular neural network: auto-
encoder. As a result, individual features may not have interpretable meanings.
Tables 4.5 and 4.6 provide results of Amazon reviews datasets using LGB and
NN models in log-loss and accuracy. Adaptation results appear to show that
SCDA does not improve performances compared to the all adaptation method
(CDA). However, when we look at the number of features adapted by SCDA
in Table 4.7, LGB-SCDA adapts on average only 5.4 features, and NN-SCDA
selects 10.2 features among 400. Compared to WCDA, SCDA selects far fewer
dimensions.

The forward feature selection process appears to stop at a very early step
and seems to be stuck at local minima. We explain this phenomenon by the fact
that features generated by neural networks are highly correlated (see Figure 3.7).
Indeed, the greedy algorithm selects only one feature that outperforms all the
others in each iteration. When there are many similar dimensions, such as the
case of Amazon review datasets, differences of improvement between similar
dimensions are marginal. The greedy algorithm stops as no feature is significantly
better than the others. One possible solution to this problem is decreasing the
acceptance threshold of a feature. Currently, a feature is added into the subset of
features to adapt if most bootstrap results agree (the acceptance threshold = 0.5).
By decreasing this value, one can include more features whose significances are
impacted by correlated features.

In a classical tabular dataset, since all features are generated manually and

84



Luxin Zhang Luxin Zhang

redundant features are removed, it is less common to have highly correlated
features like the ones generated by neural networks. Nevertheless, by adapting
on average 5.4 features for GBDT models and 10.2 features for NN models, our
feature selection method SCDA achieves the second-best among other adaptation
methods in Tables 4.5b, 4.6a, and 4.6b.

4.4.3 Ablation Study

This section aims to disentangle how each step of the proposed SCDA method
helps the adaptation (Recall that the three main steps of our method are illustrated
by Figure 4.1) and reveals challenges faced by the unsupervised feature selection
method.

Figure 4.6 illustrates the log-loss improvements of our proposition under three
different settings: with full three steps, without the first step, and without the
third step. Of note, one cannot solely eliminate the second step of our proposition,
as the third step selects the adapted dimensions of the second step. We clearly
see that all three steps of our proposition contribute to the domain adaptation.
Eliminating one of them results in a decrease in adaptation performances. However,
the impact of each step is different. Removing the label shift correction step has
less impact than removing the feature selection step on two of the studied task
(except for Figure 4.6a). Our proposed unsupervised feature selection method,
which is one of the core contributions of this work, is well-suited for this task.

4.5 Conclusion

This chapter extended the weakly supervised adaptation pipeline Figure 3.6
to an unsupervised case by providing a new pseudo-label estimator leveraging
the rank stability of predictions. Namely, we showed that the minimization
problem of relaxed pseudo-labels is an upper bound of the target domain risk
minimization problem. Both theoretical and empirical studies showed the efficiency
of our proposed unsupervised adaptation pipeline (Figure 4.1). Chapters 3 and 4
addressed a single-target to single-source domain adaptation problem, while multi
hidden subdomains commonly exist. Therefore, the following chapter extends our
unsupervised (weakly supervised) adaptation pipeline to a multi-subdomain case.

85



CHAPTER 4. UNSUPERVISED FEATURE SELECTION Luxin Zhang

20 25 30 35 40
Percentage of Performance Improvements

No Feature Selection: CDA

No Output Calibration

Full Pipeline: SCDA

(a) D-1 to M-1

8 9 10 11 12 13 14 15
Percentage of Performance Improvements

No Feature Selection: CDA

No Output Calibration

Full Pipeline: SCDA

(b) D-2 to M-2

14 16 18 20 22 24
Percentage of Performance Improvements

No Feature Selection: CDA

No Output Calibration

Full Pipeline: SCDA

(c) D-3 to M-3

Figure 4.6: The log-loss improvements of Kaggle fraud detection tasks with LGB
models. “Full Pipeline: SCDA” represents our adaptation model with full 3 steps
(see Figure 4.1). Whereas “No Output Calibration” skips the first step, and “No
Feature Selection: CDA” skips the third step.

86





Chapter 5

Multi-Subdomain Adaptation

This chapter presents the third contribution of this thesis. Results of
this chapter have been published in the paper “Interpretable Domain
Adaptation for Hidden Subdomain Alignment in the Context of Pre-
trained Source Models” [169]. We propose to explore the intra-domain
heterogeneity to create subdomains and tackle a multi-subdomain target
to source adaptation problem. To this end, we propose both a gen-
eral subdomain separation criterion and a temporal drift specialized
one. We introduce a new subdomain combination method leveraging
a variable number (possibly unknown) of subdomains for target label
predictions. By providing interpretability at two complementary levels
(transformation, similar to previous chapters, and subdomain levels,
specificity of this chapter), our method can also be easily understood by
business experts with or without machine learning backgrounds.

5.1 Hidden Subdomain Exploration

The previous chapters proposed a target to source domain adaptation method
leveraging one-dimensional optimal transport to address a domain adaptation
problem with a pre-trained source model. Moreover, a feature selection process
was applied to identify the most significant features for domain adaptation in
both weakly supervised and unsupervised settings. The proposed method was
model-agnostic, feature-type free, and easy to interpret.

This previously proposed paradigm tackled a single-source single-target (single-
domain) domain adaptation setting by considering data of a target (source) domain
obey the same distribution. However, the intra-domain drifts often naturally
exist. A specific example consists of payment habit change according to seasons.
Therefore, this chapter addresses a multi-source multi-target domain adaptation
case to tackle such a situation.

87



CHAPTER 5. MULTI-SUBDOMAIN ADAPTATION Luxin Zhang

More specifically, we consider both source and target domains can be subdivided
into data from different distributions, the so-called subdomains. Furthermore,
subdomain labels are rarely provided; thus one should propose methods to annotate
them automatically. As discrepancies between subdomains of the same domain
are not as significant as discrepancies between source and target domains, such
intra-domain drifts may be omitted and even undiscovered as “hidden” when
training a predictive model for a single domain. However, identifying such hidden
subdomains contributes to domain adaptation by increasing the precision and
flexibility of adaptation methods. Some recent works [158, 115] that study multi-
source (resp. target) domain adaptation problems focus on a scenario where
subdomain labels are provided. In contrast, we address a more challenging case
where one needs to discover these hidden subdomains. Although Gong et al.
[48], Mancini et al. [95] tackle such a hidden subdomain discovering problem, they
assume that the number of hidden subdomains is known a priori. In this chapter,
we propose a method reweighting different target domain classifiers adapted from
the best combination of subdomains. Therefore, it is not necessary to know the
number of subdomains a priori. Precisely, we first provide a general separation
criterion to exploit hidden subdomains. Then we specialize our proposition to a
practical scenario where data drift in each domain is imputed to time. We name
our method Hidden Subdomain Adaptation with Variable Number of Subdomains
(HSAV).

5.1.1 Notation

We adopt the same notation as the previous chapters. Recall that, we denote
the input (resp. output) space of predictive models of source and target domains
as X (resp. Y). As we focus on a binary classification problem (fraud detection
tasks), Y={0, 1}, and the pre-trained source domain predictor hs(x) : X→[0, 1]
gives the probability that one example x is classified as 1 (fraudulent). In a target
to source domain adaptation setting, hs(x) is given as a black-box classifier of
a wide variety of types (e.g., neural networks, GBDT). We denote by Xsub the
feature space that encodes hidden subdomains. Note that features in X and Xsub

can be different. X stands for the discriminative attributes in predicting class
labels, whereas Xsub contains attributes that help discover hidden subdomains
and may not be discriminative in classification; thus, Xsub can contain attributes
that are not in X .

Recall that, X t and Xs are respectively the target and source domain input
variables over the support X , and P (X t) and P (Xs) represent their distribu-
tions. Analogously, we let X t

i and Xs
j be the marginal variables of corresponding

88



Luxin Zhang Luxin Zhang

subdomains, and P (X t
i ) and P (Xs

j ) be subdomain distributions. Thus,

P (X t) =
kt∑

i=1
πt

iP (X t
i ) , and P (Xs) =

ks∑
j=1

πs
j P (Xs

j ) ,

s.t. ∀i , πt
i > 0 , and ∀j , πs

j > 0 ,

kt∑
i=1

πt
i = 1 , and

ks∑
j=1

πs
j = 1 .

where πt
i and πs

j are proportions of subdomains, and ks ∈ {1, . . . , ksup
s } and

kt ∈ {1, . . . , ksup
t } refer to the number of subdomains. ksup

t ∈ N∗ and ksup
s ∈ N∗

stand respectively for the maximum number of subdomains that we consider. Xt

(resp. Xs) contains target (resp. source) domain examples drawn from P (X t)
(resp. P (Xs)). Analogously, we define Xt

i = {xt
l}

nt
i

l=1, Xs
j = {xs

l }
ns

j

l=1 sets of nt
i and

ns
j examples of target and source subdomains respectively drawn from P (X t

i ) and
P (Xs

j ). For compactness, we denote by Xsub = {Xt
1, . . . ,Xt

kt
,Xs

1, . . . ,Xs
ks
} a set of

all target and source subdomains.

Moreover, we assume that there exists a mapping matrix S ∈ {0, 1}kt×ks that
relates hidden target subdomains to the source ones. We denote by Si,j the scalar
located at the i-th row and the j-th column of S; Si,: and S:,j represent the
row and column vectors. Si,j takes the value 1 if the target subdomain X t

i is
related to the source subdomain Xs

j , or the value 0 otherwise. Furthermore, to
enhance the interpretability, we encourage S to be sparse. Typically, we want
one target hidden subdomain maps to only one source hidden subdomain, that
is, ∀i ∈ {1, . . . , kt} ,

∑ks
j=1 Si,j = 1 . In the following, we first provide details of our

adaptation methods by starting with a known number of subdomains, and then
we generalize our method to handle a variable number of subdomains.

5.1.2 Formalization

Definition 5.1 (Target domain predictive model in a multi-subdomain adaptation
case). Let first assume that we face a domain adaptation problem from which we
know a priori the underlying number of target and source subdomains kt and ks,
and let K = (kt, ks). Given x ∈ Xt, we formalize the target domain classifier as

ht(x; K,Xsub, S) =
kt∑

i=1
pi(x;Xsub)hi

t(x; K,Xsub, S) , (5.1)

where hi
t(·) is a predictor of the i-th adapted target subdomain, and pi(x;Xsub) is

the probability that a target example x belongs to this subdomain.

89



CHAPTER 5. MULTI-SUBDOMAIN ADAPTATION Luxin Zhang

More precisely, we have

pi(x;Xsub) = πt
iP (X t

i = x)∑kt
k=1 πt

kP (X t
k = x)

.

Of note, our experiments involve both categorical and numerical features. As
it is not straightforward to compute densities of examples with mixed types of
input space, we consider the i-th subdomain density P (X t

i = x) as a product of
densities of each dimension of x. Furthermore, we formalize the classifier of the
i-th subdomain of target as

hi
t(x; K,Xsub, S) =

ks∑
j=1

Si,jhs ◦ GD∗

i,j (x;Xsub) , (5.2)

where GD∗
i,j (·;Xsub) is the optimal coordinate-wise single-domain domain adaptation

function that transforms data from the i-th target subdomain Xt
i to the j-th source

subdomain Xs
j . D∗ is the optimal subset of features to adapt, and the estimation

of GD∗
i,j (·;Xsub) follows the pipeline that we proposed in the previous chapters (see

Figure 4.1). This chapter focuses on the aggregation of these adaptation functions.
With a known subdomain number K, the hidden subdomain adaptation

consists of estimating the optimal subdomain separations Xsub and the mapping
relation S between them. In the remainder of this chapter, we first give the
criterion to estimate Xsub, as the formula is the same for both weakly supervised
and unsupervised adaptation scenarios. Then we detail estimations of S for each
case in an individual section.

5.1.2.1 Estimation of Xsub.

Logically, separations of subdomains are significant if inter-subdomain discrep-
ancies are large. If subdomains were similar, they could be adapted using the
same transformation, and there would be no need to distinguish them. Moreover,
in a predictor weighting formalization as Equations (5.1) and (5.2), one benefits
from a diversity between weighted elements. Here, such diversity is inherited from
the differences between subdomains, as they likely spawn diverse transformations
GD∗

i,j (·;Xsub). Following the same convention of Gong et al. [48] and Hoffman et al.
[56], we search the optimal Xsub by maximizing inter-subdomain discrepancies.
That is,

X∗
sub = argmax

Xsub

 kt∑
i ̸=j

dw(Xt
i,Xt

j) +
ks∑

i ̸=j

dw(Xs
i ,Xs

j)
 , (5.3)

90



Luxin Zhang Luxin Zhang

where dw(·, ·) is a domain discrepancy measure. In our case, as we focus on
adapting tabular data where the input space contains categorical and numerical
attributes, dw(·, ·) is chosen to be the sum of one-dimensional Wasserstein distances
over each feature.

5.1.3 Specialization to Temporal Drift

In our fraud detection tasks, we focus on a practical case where the feature Xsub

that encodes hidden subdomains is one temporal dimension (the time). Such a
scenario is very common in real-life applications where data arrive as time goes
on, and there is a drift between collected data. For example, in a payment fraud
detection system, payment habits are different due to the change of seasonality.
Moreover, the time is a one-dimensional feature that can be efficiently subdivided.
Consequently, in such a setting, subdomains Xt

i and Xs
j are parameterized by

separations of time {tt
1, . . . , tt

kt−1} and {ts
1, . . . , ts

ks−1} respectively. We have

∀x ∈ Xt
i , tt

i−1 < t(x) ≤ tt
i , and

∀x ∈ Xs
j , ts

j−1 < t(x) ≤ ts
j ,

where t(x) : X → Xsub gives the hidden subdomain feature (the time in our case)
of input x. As we separate subdomains following the axis of time, instead of com-
puting inter-subdomain discrepancies between every pair of subdomains, we take
into account only discrepancies between successive subdomains. Equation (5.3) is
redefined as

X∗
sub= argmax

Xsub

kt−1∑
i=1

dw(Xt
i,Xt

i+1)+
ks−1∑
j=1

dw(Xs
j ,Xs

j+1)
. (5.4)

An example of separations is illustrated in Figure 5.1. Solving Equation (5.4) con-
sists of finding the optimal separations of time {tt

1, . . . , tt
kt−1} and {ts

1, . . . , ts
ks−1}.

Some recent domain adaptation works [9, 154] also address the temporal drift,
while they do not apply to our case. The key difference between their propositions
and ours is that we adapt from target subdomains to source subdomains, whereas
they align subdomains data in the same domain.

5.2 Weakly Supervised Subdomain Aggregation

In a weakly supervised setting where Qt
l with nl

t labeled target data is given,
similar to the previously proposed feature selection process (Section 3.5), one can
minimize the prediction error over few labeled target domain points to estimate S.

91



CHAPTER 5. MULTI-SUBDOMAIN ADAPTATION Luxin Zhang

Source

Target

Figure 5.1: Separations of source and target domains into subdomains. Graduated
color represents a continuous intra-domain drift. The source domain is subdivided
into 4 subdomains, and the target domain is subdivided into 2 subdomains.

5.2.1 Known Number of Subdomains

In a classical case where the number of hidden subdomains K is known (adopted
by most of multi-subdomain adaptation methods), the optimization problem is
formulated as

S∗ = argmin
S

1
nl

t

∑
(x,y)∈Qt

l

l(ht(x; K,X∗
sub, S), y) ,

s.t.
ks∑

j=1
Si,j = 1 , ∀i ∈ {1, . . . , kt} .

(5.5)

For our fraud detection tasks, the loss function l(·) is chosen to be a binary
cross-entropy loss. As Si,j ∈ {0, 1}, such a discrete optimization problem is
computational expensive and not scalable when ks and kt are large. Alternatively,
we leverage a Softmax function to approximate S. We provide implementation
details in Section 5.4.

Figure 5.2 illustrates an example of a possible mapping matrix S. The first
target subdomain is mapped to the second source subdomain, and the second
target subdomain is mapped to the third source subdomain.

5.2.2 Unknown Number of Subdomains

In many real-life scenarios, the number of hidden subdomains is unknown. In
such cases, a natural choice is to estimate the optimal couple K, using weakly
labeled target examples, that is,

K∗ = argmin
K

1
nl

t

∑
(x,y)∈Qt

l

l(h†
t(x; K), y) ,

92



Luxin Zhang Luxin Zhang

Source

Target

Figure 5.2: An example of mapping between target and source subdomains.
Dotted lines map target subdomains to the corresponding source subdomains.

where h†
t(x; K) = ht(x; K,X∗

sub, S∗). For a given K, h†
t(·; K) is the estimated

optimal target domain classifier of the previous section. However, we empirically
observe that, when using a Bootstrap strategy, one can hardly find a single K∗

that is significantly better than others. Indeed, the scarcity of Qt
l leads to high

variability in Bootstrap predictive performances.

Therefore, instead of using a single h†
t(x; K∗) with the optimal estimated K∗

as the target domain classifier, we propose aggregate multiple target predictors
h†

t(·; K). Each h†
t(·; K) is obtained for different values of K. The weight associated

with each possible subdomain number is handled by the matrix A ∈ Rksup
t ×ksup

s ,
such that the target domain predictive model becomes

h∗
t (x; A) =

ksup
t∑

kt=1

ksup
s∑

ks=1
σkt,ks(A)h†

t(x;
K︷ ︸︸ ︷

(kt, ks)) ,

where σkt,ks(·) is a Softmax function that encourages a sparsity of the weighting
factor:

σkt,ks(A) = exp(Akt,ks)∑ksup
t

u=1
∑ksup

s
v=1 exp(Au,v)

.

The Softmax function is a smoothed version of one-hot encoding [49]. By sparsity,
we mean that A tends to give most weights to one K. Consequently, the objective
function becomes

A∗ = argmin
A

1
nl

t

∑
(x,y)∈Qt

l

l(h∗
t (x; A), y) , (5.6)

93



CHAPTER 5. MULTI-SUBDOMAIN ADAPTATION Luxin Zhang

Source

Target

Source

Target

Figure 5.3: An example of subdomain aggregation. The final prediction results
are given by a A-weighted sum of h†

t(x; (kt, ks)).

and the corresponding target domain predictor is h∗
t (·; A∗).

Figure 5.3 illustrates an example of aggregation. As the number of subdomains
is unknown, one computes h†

t(x; (kt, ks)) for different values of K and aggregates
them using A.

5.3 Unsupervised Subdomain Aggregation

When Qt
l is not available, we face a more challenging unsupervised domain

adaptation case. The unsupervised subdomain aggregation method follows the
same idea as the supervised one: one separates subdomains, maps subdomains,
and aggregates different numbers of subdomains. However, the objective functions
to estimate parameters S and A change, as no target domain labels are provided.

It is known that the given pre-trained source domain predictive model hs(·)
is often well trained to be the optimal one in source domains. Under such a
setting, Equation (4.3) shows that any optimal target to source domain adaptation
function should align source and target domain output distributions. Specifically,
when K is known, the necessary condition for S∗ to be the optimal one is

P (ht(X t; K,X∗
sub, S∗)) = P (hs(Xs)) . (5.7)

When we have a variable number of subdomains, a necessary condition of the
optimal A∗ is

P (h∗
t (X t; A∗)) = P (hs(Xs)) . (5.8)

94



Luxin Zhang Luxin Zhang

Relying on such conditions, we propose unsupervised objective functions for both
known and unknown number of K.

5.3.1 Known Number of Subdomains

Inspired by Equation (5.7), given K∈{(kt, ks)|kt∈{1, . . . , ksup
t }, ks∈{1, . . . , ksup

s }},
the unsupervised optimization problem of S is formulated as

S∗ = argmin
S

d1d-w(ht(X t; K,X∗
sub, S), hs(Xs)) ,

s.t.
ks∑

j=1
Si,j = 1 ,∀i ∈ {1, . . . , kt} .

(5.9)

where d1d-w(·, ·) is the one-dimensional Wasserstein distance over the distribution
of positive outputs. Empirically, d1d-w(·, ·) is given by

d1d-w(ht(X t; K,X∗
sub, S), hs(Xs)) =∑

x∈Xt

(
ht(x; K,X∗

sub, S)− f−1
hs

(ht(x; K,X∗
sub, S))

)2
,

where fhs(·) is the cumulative distribution function of hs(Xs).

5.3.2 Unknown Number of Subdomains

Analogously, for a variable number of subdomains, inspired by Equation (5.8), we
propose the following unsupervised objective function to mimic Equation (5.6):

A∗ = argmin
A

d1d-w(h∗
t (x; A), hs(Xs)) . (5.10)

In the implementation section, we give optimization details of our proposed
objective functions.

5.4 Implementation

For both weakly supervised and unsupervised cases, the proposed HSAV
consists of 3 steps.

1. We estimate separations of subdomains Xsub w.r.t. different numbers of
subdomains (Figure 5.1).

2. We estimate the corresponding sparse mapping factor S (Figure 5.2).

3. We combine predictions of variable numbers of subdomains relying on A

(Figure 5.3).

95



CHAPTER 5. MULTI-SUBDOMAIN ADAPTATION Luxin Zhang

Algorithm 5 Subdomains Aggregation
1: for kt in {1, . . . , ksup

t } do
2: Get target subdomains {Xt

1, . . . ,Xt
kt
} relying on Equation (5.4).

3: for ks in {1, . . . ksup
s } do

4: Get source subdomains {Xs
1, . . . ,Xs

ks
} relying on Equation (5.4).

5: for i in {1, . . . kt} do
6: for j in {1, . . . ks} do
7: Estimate GD∗

i,j (·) (Equation (5.2)).
8: end for
9: end for

10: Estimate S (Equations (5.5), (5.9)).
11: end for
12: end for
13: Estimate A.

Algorithm 5 shows the estimation of parameters at each step.

Optimization over Xsub Since Equation (5.4) is not differentiable due to the
existence of categorical features, we rely on the Nelder-Mead method [103] to
solve this objective function. Note that, since the two sums of Equation (5.4)
are independent, one can solve both parts individually. The maximum number
of subdomains is determined by gradually increasing the number of subdomains
and solving Equation (5.4). Then we rely on an empirical criterion to define the
stop condition. Empirically, every subdomain Xt

i (or Xs
j) should have a minimum

number of examples such that one can precisely estimate its distribution.
Namely, we start from kt = 2 (resp. ks = 2) and compute the subdomain

separations. We increase kt (resp. ks) by 1 if all subdomains have at least nm

examples, that is, ∀i ∈ {1, . . . , kt} , nt
i > nm (resp. ∀j ∈ {1, . . . , ks} , ns

j > nm).
Otherwise, we stop the process and take the current value of kt (resp. ks) as the
maximum number of target (resp. source) subdomains ksup

t (resp. ksup
s ).

Optimization over S Since the discrete optimization problems (Equations 5.5
and 5.9) are computationally expensive, instead of directly searching S in the
discrete space {0, 1}kt×ks , we relax the constraints over S relying on a Softmax
function by row. Specifically, we set

ωi,j(S̃) = exp(S̃i,j)∑ks
k=1 exp(S̃i,k)

,

with S̃ ∈ Rkt×ks , and ω(S̃) is a matrix where the i-th row the j-th column is
referred to as ωi,j(S̃).

Therefore, in a weakly supervised scenario, we can optimize S̃ in place of S,

96



Luxin Zhang Luxin Zhang

and Equation (5.5) becomes

S̃
∗= argmin

S̃

1
nl

t

∑
(x,y)∈Qt

l

l(ht(x; K,X∗
sub, ω(S̃)), y) ,

which can be solved by classical optimization methods (e.g., gradient descent).

Analogously, in an unsupervised scenario, Equation (5.9) becomes

S̃
∗ = argmin

S̃

d1d-w(ht(X t; K,X∗
sub, ω(S̃)), hs(Xs)) .

As f−1
hs

(·) is not differentiable, we solve it using an iterative method relying on
the gradient descent. At each step (denoted by p) of iterations, the gradient is
computed by

∇gs =
∂
∑

x∈Xt

(
ht(x; K,X∗

sub, ω(S̃))− h#(x)
)2

∂S̃
, (5.11)

where h#(x) = f−1
hs

(ht(x; K,X∗
sub, ω(S̃(p−1))). Note that we compute h#(x) using

S̃
(p−1) of the previous iteration, which is considered as a constant with respect to S̃

and does not contribute to the gradient of S̃
(p). Then we set S̃

(p) = S̃
(p−1)+c1∗∇gs

with c1 as a learning rate and continue the process until the stop criterion is met.
For both supervised and unsupervised cases, we set all S̃i,j = 0 at initialization;
thus the initial factor ωi,j(S̃) between each pair of target-source subdomain is
uniform.

To further reduce the computational cost of the proposed method, instead
of using one GD∗

i,j (·;Xsub) between each pair of target-source subdomains, we
compute a global transformation function GD∗(·) that adapts X t to Xs and let
GD∗

i,j (·;Xsub) = GD∗(·) during optimizations. The final discrete solution of S is

S∗
i,j =

1 if S̃∗
i,j = maxk S̃∗

i,k ,

0 otherwise.
(5.12)

Once the discrete factor S between target and source subdomains is determined,
we re-estimate transformation functions GD∗

i,j (·;Xsub) between the i-th subdomain
of target and the j-the subdomain of source for all S∗

i,j = 1.

Optimization over A Following a similar approach as the optimization of S̃,
in a supervised setting, we solve Equation (5.6) using a gradient descent method.

97



CHAPTER 5. MULTI-SUBDOMAIN ADAPTATION Luxin Zhang

Supposing that min(ksup
t , ksup

s ) > 1, at initialization, we set

Akt,ks =

log(3(ksup
t ×ksup

s −1)) if kt=ks=1 ,

0 otherwise,

which results the weighting factor of target classifiers of different numbers of
subdomains to be

σkt,ks(A) =

3/4 if kt=ks=1 ,

1/(4(ksup
t ×ksup

s −1)) otherwise.

We set σkt,ks(A)=3/4 for kt=ks=1 to privilege this choice if subdomains cannot
significantly improve prediction performances. Besides, the value of the gradient
at σkt,ks(A) = 3/4 is not too small to conduct an effective training.

In an unsupervised setting, we solve Equation (5.10) by the same approach as
Equation (5.11). Namely, the gradient at the p-th step of iterations is computed
by

∇gu =
∂
∑

x∈Xt

(
h∗

t (x; A)− h#
A

)2

∂A
,

where h#
A(x) = f−1

hs
(h∗

t (x; A(p−1)). Then A(p) = A(p−1) + c2∇gu with c2 as a
learning rate until the stop criteria is met.

Furthermore, we adopt a Bootstrap Bagging method [15] to enhance the
robustness of estimated parameters. Precisely, in both supervised and unsupervised
scenarios, S̃ and A are estimated over 10 Bagging datasets, and the average value is
used as the final estimation results. Then S is obtained relying on Equation (5.12)
over the average of S̃.

5.5 Experiments

The proposed method HSAV is evaluated over Kaggle and Worldline fraud de-
tection datasets. However, HSAV is not suited to extract hidden subdomains
of Amazon review datasets, as the domain separation process (Section 5.1.3) of
HSAV addresses a temporal drift, whereas the Amazon review datasets do not
have the time dimension. Details of datasets and separations of source and target
domains are provided in Section 2.8.

98



Luxin Zhang Luxin Zhang

5.5.1 General Setup

We use the same pre-trained NN and GBDT models as Chapters 3 and 4. Perfor-
mances are evaluated using improvements of PR-AUC and log-loss compared to
source domain NN baseline models.

Adaptation Methods of Comparison We compare HSAV with SCDA in an
unsupervised setting and with WCDA in a weakly supervised setting. In addition
to these single-source single-target domain adaptation methods, we also compare
with deep multi-subdomain adaptation methods: DCTN [158], and MultiDA
[95, 96]. All methods are estimated under different hyper-parameters, and the one
that achieves the best performance over source domain test data is chosen.

Both DCTN and MultiDA tackle the case with a fixed number of subdomains.
Namely, we fix the number of hidden subdomains to be 2 in the source domain and
1 in target domains for these two methods, as target domains contain a shorter
period than the source one (Sections (2.8.2), (2.8.1)). Furthermore, Figure 5.4
confirms this choice. In a weakly supervised case, similar to Section 3.7, we also
train a FineTune model by fine-tuning the last layer of NN pre-trained models
using weakly labeled target data.

Hyper-parameters of NN models In an unsupervised case, hyper-parameters
are chosen based on the prediction performances of test data of the source domain.
In contrast, in a weakly supervised case, hyper-parameters are chosen relying on
test data of source domain and weakly-labeled target domain data. We define the
hyper-parameter searching set as H = {0.001, 0.003, 0.005, 0.007, 0.01}. For DAN
and DANN, we fix the learning rate to 0.005 and search the weighting parameter
between classification error and domain alignment error among H. For all other
methods (MCD, MultiDA, DCTN), we explore the learning rate among H. As for
the FineTune case, we freeze all layers except the last one and set the learning
rate to 0.0005 to fine-tune the layer to fit weakly-labeled target domain data.

99



CHAPTER 5. MULTI-SUBDOMAIN ADAPTATION Luxin Zhang

Table 5.1: Adaptation performances of unsupervised adaptation methods over
Kaggle datasets (see Section 2.8.2 for the dataset description). We report
percentages of performances improvements, in PR-AUC and log-loss respectively,
compared to NN baseline models (average improvements of NN baseline models
are considered as 0%).

Method D-1 to M D-2 to M D-3 to M AVG
NN-HSAV (ours) 5.26±1.91 3.24±0.31 5.51±0.33 4.67
MultiDA 4.59±23.10 -7.29±8.36 -4.64±6.21 -2.45
DCTN -16.87±18.39 -13.40±10.87 -8.59±5.59 -12.95
NN-SCDA (ours) 3.23±1.87 2.88±0.35 5.41±0.48 3.84
DAN 12.31±6.72 -3.20±7.18 1.41±3.63 3.51
DANN 3.47±9.53 -2.90±3.82 -4.21±6.51 -1.21
MCD -11.47±13.38 -6.29±6.09 -6.81±4.83 -8.19

(a) Improvements of PR-AUC of NN predictive models.

Method D-1 to M D-2 to M D-3 to M AVG
NN-HSAV (ours) 31.68±0.64 9.76±0.30 14.78±0.31 18.74
MultiDA -460.04±151.52 -219.19±68.03 -182.90±40.92 -287.38
DCTN -8.65±41.45 -77.26±92.59 -32.67±27.63 -39.53
NN-SCDA (ours) 31.42±0.53 9.54±0.35 14.05±0.77 18.34
DAN 29.57±4.32 -1.58±9.64 4.37±5.39 10.79
DANN 29.58±4.05 2.39±3.98 2.06±5.07 11.34
MCD 21.59±9.25 -1.29±5.34 -7.55±10.32 4.25

(b) Improvements of log-loss of NN predictive models.

Method D-1 to M D-2 to M D-3 to M AVG
LGB-HSAV (ours) 32.87±1.31 7.41±0.28 14.43±0.24 18.24
LGB-SCDA (ours) 32.68±1.05 7.14±0.32 14.31±0.24 18.04
LGB Baseline 26.13±1.53 4.18±1.47 7.58±3.26 12.63

(c) Improvements of PR-AUC of LGB predictive models.

Method D-1 to M D-2 to M D-3 to M AVG
LGB-HSAV (ours) 41.64±0.43 14.47±0.30 24.08±0.16 26.73
LGB-SCDA (ours) 41.22±0.64 14.34±0.34 24.00±0.16 26.52
LGB Baseline 9.77±6.01 6.53±3.31 12.32±5.05 9.54

(d) Improvements of log-loss of LGB predictive models.

100



Luxin Zhang Luxin Zhang

Table 5.2: Adaptation performances of weakly supervised adaptation methods
over Kaggle datasets (see Section 2.8.2 for the dataset description). We report
percentages of performances improvements, in PR-AUC and log-loss respectively,
compared to NN baseline models (average improvements of NN baseline models
are considered as 0%). Dotted lines separate single-domain adaptation and
multi-subdomain adaptation methods.

Method D-1 to M D-2 to M D-3 to M AVG
NN-HSAV (ours) 12.61±2.76 5.64±1.09 4.87±2.10 7.70
MultiDA -5.71±19.92 -2.87±5.58 -0.25±4.85 -2.94
DCTN -13.58±18.18 -11.77±7.92 -5.00±6.81 -10.12
NN-WCDA (ours) 1.30±7.57 2.98±2.14 3.72±1.40 2.66
DAN 15.40±6.62 -0.57±4.53 1.53±3.68 5.45
DANN 5.77±10.49 -0.87±3.82 -2.40±4.95 0.83
MCD 8.96±12.36 -2.48±5.03 -2.89±4.84 1.20
FineTune 4.23±0.72 2.12±0.15 4.95±0.30 3.76

(a) Improvements of PR-AUC of NN predictive models.

Method D-1 to M D-2 to M D-3 to M AVG
NN-HSAV (ours) 32.62±1.90 11.72±1.18 14.31±1.55 19.55
MultiDA -0.27±26.13 -1.26±8.34 -4.85±11.91 -2.13
DCTN -8.92±24.68 -39.48±23.07 -42.77±34.84 -30.39
NN-WCDA (ours) 30.42±3.26 8.95±2.67 12.07±2.04 17.14
DAN 31.70±3.58 3.02±5.34 5.94±5.52 13.55
DANN 31.03±4.33 3.16±4.25 5.78±4.62 13.32
MCD 30.28±3.59 1.26±5.39 3.74±5.45 11.76
FineTune 9.22±2.10 5.33±0.83 11.23±1.13 8.59

(b) Improvements of log-loss of NN predictive models.

Method D-1 to M D-2 to M D-3 to M AVG
LGB-HSAV (ours) 29.52±3.03 8.49±0.62 14.51±0.72 17.51
LGB-WCDA (ours) 27.85±4.41 7.18±1.85 13.66±1.56 16.23
LGB Baseline 26.13±1.53 4.18±1.47 7.58±3.26 12.63

(c) Improvements of PR-AUC of LGB predictive models.

Method D-1 to M D-2 to M D-3 to M AVG
LGB-HSAV (ours) 40.61±1.46 15.92±0.70 23.65±0.78 26.73
LGB-WCDA (ours) 39.86±1.68 14.31±2.40 22.06±1.66 25.41
LGB Baseline 9.77±6.01 6.53±3.31 12.32±5.05 9.54

(d) Improvements of log-loss of LGB predictive models.

101



CHAPTER 5. MULTI-SUBDOMAIN ADAPTATION Luxin Zhang

5.5.2 Adaptation Performance Analysis

5.5.2.1 Kaggle Dataset

Table 5.1 reports performances of HSAV based on NN pre-trained model (NN-
HSAV) and LGB pre-trained model (LGB-HSAV) in an unsupervised setting.
HSAV outperforms all other adaptation methods in most tasks, while DAN only
outperforms HSAV in “D-1 to M” in terms of PR-AUC. Note that performances of
HSAV and SCDA are very close in some tasks (e.g., “D-3 to M”). Indeed, SCDA
is a particular case of HSAV where kt = ks = 1. Compared to SCDA, HSAV
can automatically decide whether one should use subdomains and the number of
subdomains.

Deep subdomain adaptation methods with a fixed number of subdomains
(MultiDA, DCTN) have an effect of negative transfer (negative improvements)
over this dataset, especially when using the log-loss improvement metric. In
the papers that propose DCTN [158] and MultiDA [95, 96], these methods are
evaluated on image datasets and are shown to be efficient. We have done our
best to train DCTN and MultiDA on the Kaggle tabular datasets. However,
the variances of their performances are very high. There could be a set of
hyperparameters that favors DCTN and MultiDA, but tedious to find. These
experimental results empirically demonstrate the difficulty of generalizing deep
multi-subdomain adaptation methods to other non-image tasks.

Although DAN significantly improves the baseline of NN models of the adap-
tation task “D-1 to M”, the improvement is less significant compared to LGB
models. The LGB baseline model without adaptation method exceeds all NN
models. Indeed, the LGB model is efficient in dealing with tabular data with
categorical variables. Moreover, LGB-HSAV further improves the LGB baseline
and is also better than the single-domain adaptation method LGB-SCDA.

Table 5.2 reports the results in a weakly supervised case. Relying on labeled
target data, all adaptation methods based on NN models improve their perfor-
mances compared to the unsupervised case. However, LGB-HSAV and LGB-SCDA
are no better than their unsupervised version, mainly in the adaptation task “D-1
to M”. We explain this result by the instability related to the scarcity of weakly
labeled data.

Compared to WCDA, HSAV is shown to be more stable. A specific example
is the adaptation task “D-1 to M” with NN models in terms of PR-AUC improve-
ments. Indeed, HSAV aggregates multiple adaptation results and can decrease
the impact of not well-performed adaptation.

102



Luxin Zhang Luxin Zhang

Table 5.3: Adaptation performances of unsupervised adaptation methods over
Worldline datasets (see Section 2.8.1 for the dataset description). We report
percentages of performances improvements, in PR-AUC and log-loss respectively,
compared to NN baseline models (average improvements of NN baseline models
are considered as 0%). Dotted lines separate single-domain adaptation and
multi-subdomain adaptation methods.

Method G-1 to B G-2 to B G-3 to B AVG
NN-HSAV (ours) 8.77±1.61 12.93±1.92 7.38±0.85 9.70
MultiDA -7.07±15.18 -6.68±5.89 8.26±4.88 -1.83
DCTN 2.14±4.38 -0.15±7.44 1.98±7.65 1.32
NN-SCDA (ours) 8.02±1.35 11.72±2.49 5.95±0.84 8.56
DAN 7.31±5.78 5.47±3.96 10.01±4.70 7.60
DANN 4.38±5.09 6.43±2.69 5.28±3.03 5.37
MCD 6.46±5.70 1.41±8.19 6.84±4.94 4.91

(a) Improvements of PR-AUC of NN predictive models.

Method G-1 to B G-2 to B G-3 to B AVG
NN-HSAV (ours) 7.67±0.52 13.81±1.03 14.50±1.14 12.00
MultiDA -787.93±262.34 -776.48±153.09 -555.38±93.78 -706.60
DCTN -2.90±3.34 -2.63±4.32 4.14±8.87 -0.46
NN-SCDA (ours) 7.26±0.48 13.03±1.32 13.02±0.27 11.11
DAN 4.40±2.75 9.12±2.60 17.90±3.91 10.48
DANN 2.85±2.37 9.78±1.33 16.45±2.98 9.69
MCD 4.40±1.57 7.55±3.94 14.16±7.35 8.70

(b) Improvements of log-loss of NN predictive models.

Method G-1 to B G-2 to B G-3 to B AVG
LGB-HSAV (ours) 5.60±4.23 6.28±2.64 9.97±1.95 7.28
LGB-SCDA (ours) 1.83±6.19 2.77±4.37 7.11±3.32 3.90
LGB Baseline 9.91±6.43 3.59±6.57 -1.94±8.31 3.85

(c) Improvements of PR-AUC of LGB predictive models.

Method G-1 to B G-2 to B G-3 to B AVG
LGB-HSAV (ours) 5.06±1.30 10.60±0.88 21.19±0.77 12.28
LGB-SCDA (ours) 3.14±2.33 8.58±1.60 19.36±1.52 10.36
LGB Baseline 5.02±3.54 4.38±4.00 9.43±4.65 6.28

(d) Improvements of log-loss of LGB predictive models.

103



CHAPTER 5. MULTI-SUBDOMAIN ADAPTATION Luxin Zhang

Table 5.4: Adaptation performances of weakly supervised adaptation methods
over Worldline datasets (see Section 2.8.1 for the dataset description). We report
percentages of performances improvements, in PR-AUC and log-loss respectively,
compared to NN baseline models (average improvements of NN baseline models
are considered as 0%). Dotted lines separate single-domain adaptation and
multi-subdomain adaptation methods.

Method G-1 to B G-2 to B G-3 to B AVG
NN-HSAV (ours) 12.57±1.99 14.30±1.42 11.79±1.38 12.88
MultiDA 0.90±5.31 -3.85±6.40 19.18±6.18 5.41
DCTN 8.30±2.42 10.41±1.03 19.17±2.15 12.63
NN-WCDA (ours) 11.75±3.14 8.89±5.58 13.62±9.46 11.42
DAN 9.40±3.50 11.85±1.86 8.85±1.73 10.03
DANN 9.56±4.54 10.27±5.78 10.46±6.94 10.10
MCD 1.64±14.30 1.77±7.82 12.71±21.75 5.38
FineTune 8.04±1.54 10.91±1.50 5.32±0.63 8.09

(a) Improvements of PR-AUC of NN predictive models.

Method G-1 to B G-2 to B G-3 to B AVG
NN-HSAV (ours) 9.03±0.59 14.09±0.97 20.83±2.34 14.65
MultiDA -78.15±38.97 -29.50±23.00 -16.96±27.13 -41.54
DCTN 1.87±2.10 4.43±0.81 21.86±5.85 9.39
NN-WCDA (ours) 5.23±1.59 9.86±2.14 28.50±2.30 14.53
DAN 8.05±1.04 12.66±0.88 18.83±2.07 13.18
DANN 4.41±3.58 10.99±3.05 27.49±4.75 14.30
MCD -12.28±18.49 -8.05±22.62 8.31±22.13 -4.01
FineTune 6.38±0.40 11.63±0.23 13.99±1.69 10.67

(b) Improvements of log-loss of NN predictive models.

Method G-1 to B G-2 to B G-3 to B AVG
LGB-HSAV (ours) 23.43±5.46 19.52±2.75 17.39±3.08 20.11
LGB-WCDA (ours) 22.65±5.14 17.84±4.38 15.21±5.65 18.56
LGB Baseline 9.91±6.43 3.59±6.57 -1.94±8.31 3.85

(c) Improvements of PR-AUC of LGB predictive models.

Method G-1 to B G-2 to B G-3 to B AVG
LGB-HSAV (ours) 12.25±0.78 17.22±1.24 26.36±1.07 18.61
LGB-WCDA (ours) 11.79±0.64 16.59±1.70 24.84±2.81 17.74
LGB Baseline 5.02±3.54 4.38±4.00 9.43±4.65 6.28

(d) Improvements of log-loss of LGB predictive models.

104



Luxin Zhang Luxin Zhang

1 2
target subdomain number
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

we
ig

ht

1 2 3
source subdomain number
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

we
ig

ht

(a) Subdomains weights in the target (left), and the source (right).

1 2
source subdomain index

1
2

ta
rg

et
 su

bd
om

ai
n 

in
de

x

0 1

1 0

1 2 3
source subdomain index

1
2

ta
rg

et
 su

bd
om

ai
n 

in
de

x

1 0 0

1 0 0

(b) Sparse matrixS, kt=ks=2 (left), and kt=2 , ks=3 (right).

Figure 5.4: Interpretability study on the Kaggle task D-2 to M.

5.5.2.2 Worldline Dataset

A similar conclusion can be drawn from Tables 5.3 and 5.4 where we evaluate
adaptation methods over the Worldline fraud detection datasets. On average, our
propositions (NN-HSAV and LGB-HSAV) outperform other adaptation methods.
Although the unsupervised DAN has the best performance on the task “G-3 to
B”, it performs no better than NN-HSAV on average. In contrast to the Kaggle
adaptation tasks, in the unsupervised setting, LGB-HSAV performs no better than
LGB Baseline on the task “G-1 to B” in terms of PR-AUC. This may be related
to the low performance of LGB-SCDA, as LGB-HSAV combines LGB-SCDA as
elementary adaptation methods. Nonetheless, LGB-HSAV largely improvements
LGB-SCDA on this task. Except for the task “G-3 to B” with NN models, HSAV
always outperforms WCDA.

Compared to the unsupervised case (Table 5.3), labeled target data always
increase the performances of all adaptation methods in this case, especially for
the multi-subdomain adaptation method DCTN. The weakly supervised DCTN
achieves the second-best performance among all NN models in terms of PR-
AUC improvements.

To sum up, both Kaggle and Worldline adaptation tasks show the efficiency
of discovering hidden subdomains relying on HSAV. Besides, HSAV is shown
to improve SCDA and WCDA in unsupervised and weakly supervised settings,
respectively.

105



CHAPTER 5. MULTI-SUBDOMAIN ADAPTATION Luxin Zhang

5.5.3 Interpretability of Aggregation Functions

The following shows the interpretability of our method by illustrating the adapta-
tion results of the Kaggle adaptation task D-2 to M. Values of parameter σ(A)
and S are displayed in Figure 5.4. More precisely, Figure 5.4a is obtained by
summing σ(A) by rows and columns, respectively. It shows the weights of each
number of subdomains in source and target domains. Specifically, in the tar-
get domain, we give more weights to the case where kt=1 (no subdomain). As
for the number of subdomains in the source domain, although ks=3 has more
weights than the others, the difference is not significant. Therefore, one should
also take into account the case when ks=1 and ks=2 to have a good prediction
performance. Such an observation intuitively explains the reason why traditional
multi-subdomain DA methods with a fixed number of subdomains cannot achieve
good results. Figure 5.4b provides the mapping matrix S of the case when kt=2
and ks ∈ {2, 3}. When ks=2, the first target subdomain maps to the second
source subdomain, while the second target subdomain maps to the first source
subdomain. When ks=3, all subdomains of the target domain are mapped to the
first source subdomain.

5.6 Conclusion

Standing in a target to source domain adaptation scenario, we provided a pre-
dictor aggregation method for a multi-subdomain adaptation scenario in weakly
supervised and unsupervised settings. The proposed methods directly extended
WCDA and SCDA to a multi-subdomain case. We added a sparse restriction over
subdomain reweighing factors to enhance the interpretability of propositions. We
first introduced a general subdomain division criterion and then specialized in a
real-life temporal drift case. Empirical results showed that the multi-subdomain
method HSAV outperforms single-domain methods WCDA and SCDA.

106





Chapter 6

Conclusion & Perspectives

6.1 Conclusion

This thesis makes contribution to a challenging domain adaptation problem with
a focus on a fraud detection task in the Worldline industrial context. Different
from existing domain adaptation scenarios, we addressed a setting where a well-
performing pre-trained source domain predictive model is given and should be
preserved. To this end, we proposed a new target to source domain adaptation
framework and a concrete solution (CDA) leveraging one-dimensional optimal
transport to tackle this adaptation scenario in Chapter 3. Central to optimal
transport is the choice of cost function. For numerical values, we adopted Euclidean
distance to have a closed-form solution of transportation plans. For categorical
values, we relied on a generic cost in terms of the occurrence frequency [61] for
the computation of transportation plans. Furthermore, we observed that feature
selection helps to improve adaptation performance and enhance the interpretability
of CDA.

In the case where few labels are available in target domains, we extended
CDA by WCDA to use a feature selection process to automatically identify the
features that drift the most between source and target domains. We then built
an ordered and sparse mapping of the global input space based on the feature
selection results. Moreover, such feature selection results provide business experts
insights to explore the new market better. Our propositions were evaluated on
three datasets and were shown to obtain state-of-the-art performances.

Chapter 4 extended the adaptation pipeline WCDA proposed in Chapter 3
to an unsupervised case. Namely, we provided an unsupervised feature selection
process by guessing labels of stable examples in terms of the order of predictions
under different adaptation functions. We argued that minimizing predicting risk
on relaxed pseudo-labels equals minimizing an upper bound of target domain

107



CHAPTER 6. CONCLUSION & PERSPECTIVES Luxin Zhang

risk. Both theoretical and empirical results proved the efficiency of the proposed
method.

Chapter 5 considered a more general case where the source and target domains
can contain examples of different distributions, and the number of underlying
distributions is unknown. We proposed a method that automatically subdivides
source and target domains and creates candidate predictions under different
numbers of subdomains. The final predictions are a weighted sum of candidate
predictions. We provided solutions in both weakly supervised and unsupervised
cases, and an efficient gradient descent optimization algorithm was applied to
solve the problem.

6.2 Perspectives

Based on our proposed target to source domain adaptation pipeline, we discuss
some future research perspectives here. Our adaptation method leverages multi-
ple one-dimensional optimal transport functions by supposing that correlations
between features are automatically aligned between source and target domains.
In the cases that violate such an assumption, one solution would be to regroup
the input space into several subspaces. Features in the same subspace are adapted
relying on a multi-dimensional transformation function while that in different
subspaces are adapted independently. One potential research topic is to investi-
gate the way to regroup such features. Note that the feature space encompasses
categorical and numerical dimensions; thus the method should be feature-type
free.

Another potential research topic consists of improving the feature selection
process. Our current feature selection process supposes having a small subset of
features that contribute more to domain adaptations than the others. A greedy
algorithm is applied to find such features. However, the greedy algorithm becomes
inefficient when input dimensions are very high, and all features contribute equally
to domain adaptations. How to identify domain-significant features is a challenging
task in this case requiring a deeper analysis.

From the Worldline industrial perspective, an interesting topic is to inves-
tigate other machine learning challenges besides the fraud detection, such as
recommendation systems, smart routing, etc. Our proposition focuses on a highly
class-imbalanced binary classification problem. How to apply such a method to
other tasks with a potential domain drift remains to be studied.

108





Appendix A

Calibration

A.1 Evaluation Metric of Calibrated Models

In this thesis, we suppose that the given black-box model hs(·) is well-calibrated
(optimal Bayes predictor), and it returns the probability that an example belongs
to one class. However, we give a brief proof to show that some well-known metrics
like area under the precision recall curve (PR-AUC) are not suited to evaluate
predictive model performances in this case.

Definition A.1 (Precision and recall functions). Given a set of ordered source
examples

Xs
hypo = (xs

1, . . . , xs
j , . . . , xs

ns
) , xs

j ∈ X ,

Ys
hypo = (y1, . . . , yi, . . . , yns) , yi ∈ Y ,

where X and Y are respectively the input space and the output space. Xs
hypo is a

set of inputs sorted in ascending order of hs(xs
j), and Ys

hypo is a set of outputs in
the same order:

∀i, j ∈ {1, . . . , ns} and i > j , hs(xs
j) ≥ hs(xs

j) . (A.1)

The empirical precision function of the source predictor hs(·) is defined as

prec(j) =
∑ns

i=1 1(hs(xs
j) ≥ hs(xs

j))yj∑ns
i=1 1(hs(xs

j) ≥ hs(xs
j))

, j ∈ {1, . . . , ns} , (A.2)

and the empirical recall function is defined as

recall(j) =
∑ns

i=1 1(hs(xs
j) ≥ hs(xs

j))yj∑ns
i=1 yj

, j ∈ {1, . . . , ns}. (A.3)

Equation (3.6) is a non-decreasing function of hs(·). After the adjustment of

109



APPENDIX A. CALIBRATION Luxin Zhang

label shift according to Equation (3.6), the order in Equation (A.1) is preserved
by hp(·) for the given set Xs

hypo:

∀i, j ∈ {1, . . . , ns} and i > j , hp(xs
j) ≥ hp(xs

j) .

Hence, the values of the precision function (Equation (A.2)) and the recall func-
tion(Equation (A.3)) remain unchanged. The metric PR-AUC is not able to
measure if a model is well-calibrated or not, whereas the log-loss, having the
following formula over source domain data:

− 1
ns

ns∑
i=1

[
yi log(hs(xs

j)) + (1− yi) log(1− hs(xs
j))
]

is known to be able to measure errors between the prediction and the probability
that a point belongs to a class. However, the metric PR-AUC is widely used in
fraud detection tasks. Therefore, we report these two metrics whenever possible.

A.2 Calibration of Pre-trained Model

Proof. By the Bayes’ theorem, we have

P (Y p = y|Xp = x)

= P (Xp = x|Y p = y)P (Y p = y)
P (Xp = x)

= P (Xs = x|Y s = y)P (Y t = y)
P (Xp = x)

= P (Y s = y|Xs = x)P (Y t = y)P (Xs = x)
P (Y s = y)P (Xp = x)

= P (Y s = y|Xs = x)q(x)w(y) , (A.4)

where

q(x) = P (Xs = x)
P (Xp = x) .

As we have

∑
y

P (Y p = y|Xp = x) = 1

=⇒
∑

y

P (Y s = y|Xs = x)q(x)w(y) = 1 ,

110



Luxin Zhang Luxin Zhang

we solve the equation in q(x) and we get

q(x) =
[∑

y

P (Y s = y|Xs = x)w(y)
]−1

.

We inject this solution into Equation (A.4) and we get

P (Y p = y|Xp = x) = P (Y s = y|Xs = x)w(y)∑
y′ P (Y s = y′|Xs = x)w(y′) .

In a binary classification problem, y takes values in {0, 1}. Replacing P (Y p =
y|Xp = x) and P (Y s = y|Xs = x) respectively by hp(·) and hs(·) proves Equa-
tion (3.6).

111



Bibliography

[1] Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv
preprint arXiv:1803.08375, 2018.

[2] Amr Alexandari, Anshul Kundaje, and Avanti Shrikumar. Em with bias-
corrected calibration is hard-to-beat at label shift adaptation. 2020.

[3] Malak Alshawabkeh, Javed A Aslam, Jennifer G Dy, and David Kaeli.
Feature weighting and selection using hypothesis margin of boosting. In
2012 IEEE 12th International Conference on Data Mining, pages 41–50.
IEEE, 2012.

[4] Jason Altschuler, Jonathan Niles-Weed, and Philippe Rigollet. Near-linear
time approximation algorithms for optimal transport via sinkhorn iteration.
In NIPS, 2017.

[5] Yuichiro Anzai. Pattern recognition and machine learning. Elsevier, 2012.

[6] Mahsa Baktashmotlagh, Mehrtash T Harandi, Brian C Lovell, and Mathieu
Salzmann. Unsupervised domain adaptation by domain invariant projection.
In ICCV, pages 769–776, 2013.

[7] Shai Ben-David, John Blitzer, Koby Crammer, Fernando Pereira, et al.
Analysis of representations for domain adaptation. NIPS, 19:137, 2007.

[8] John Blitzer, Ryan McDonald, and Fernando Pereira. Domain adaptation
with structural correspondence learning. In Conference on Empirical Methods
in Natural Language Processing, pages 120–128, 2006.

[9] Andreea Bobu, Eric Tzeng, Judy Hoffman, and Trevor Darrell. Adapting to
continuously shifting domains, 2018.

[10] Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter Pfister. Sliced
and radon wasserstein barycenters of measures. Journal of Mathematical
Imaging and Vision, 51(1):22–45, 2015.

112



Luxin Zhang Luxin Zhang

[11] Nicolas Bonneel, Gabriel Peyré, and Marco Cuturi. Wasserstein barycentric
coordinates: histogram regression using optimal transport. ACM Trans.
Graph., 35(4):71–1, 2016.

[12] Karsten M Borgwardt, Arthur Gretton, Malte J Rasch, Hans-Peter Kriegel,
Bernhard Schölkopf, and Alex J Smola. Integrating structured biological
data by kernel maximum mean discrepancy. Bioinformatics, 22(14):e49–e57,
2006.

[13] Carl R Boyd, Mary Ann Tolson, and Wayne S Copes. Evaluating trauma
care: the triss method. trauma score and the injury severity score. The
Journal of trauma, 27(4):370–378, 1987.

[14] L. Breiman, J. Friedman, C.J. Stone, and R.A. Olshen. Classification and
Regression Trees. Taylor & Francis, 1984. ISBN 9780412048418.

[15] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[16] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[17] Fabio Maria Carlucci, Lorenzo Porzi, Barbara Caputo, Elisa Ricci, and
Samuel Rota Bulo. Autodial: Automatic domain alignment layers. In 2017
IEEE international conference on computer vision (ICCV), pages 5077–5085.
IEEE, 2017.

[18] Wei-Lun Chao, Hexiang Hu, and Fei Sha. Cross-dataset adaptation for visual
question answering. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5716–5725, 2018.

[19] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip
Kegelmeyer. Smote: synthetic minority over-sampling technique. Journal
of artificial intelligence research, 16:321–357, 2002.

[20] Chao Chen, Zhihang Fu, Zhihong Chen, Sheng Jin, Zhaowei Cheng, Xinyu
Jin, and Xian-Sheng Hua. Homm: Higher-order moment matching for
unsupervised domain adaptation. In AAAI, volume 34, pages 3422–3429,
2020.

[21] Minmin Chen, Kilian Q Weinberger, and John Blitzer. Co-training for
domain adaptation. In NIPS, pages 2456–2464, 2011.

[22] Minmin Chen, Zhixiang Eddie Xu, Kilian Q. Weinberger, and Fei Sha.
Marginalized denoising autoencoders for domain adaptation. In ICML,
2012.

113



BIBLIOGRAPHY Luxin Zhang

[23] Tianqi Chen, Tong He, Michael Benesty, Vadim Khotilovich, Yuan Tang,
Hyunsu Cho, et al. Xgboost: extreme gradient boosting. R package version
0.4-2, 1(4):1–4, 2015.

[24] Xinyang Chen, Sinan Wang, Mingsheng Long, and Jianmin Wang. Trans-
ferability vs. discriminability: Batch spectral penalization for adversarial
domain adaptation. In ICML, pages 1081–1090, 2019.

[25] Fan RK Chung and Fan Chung Graham. Spectral graph theory. Number 92.
American Mathematical Soc., 1997.

[26] Guillem Collell, Drazen Prelec, and Kaustubh R Patil. A simple plug-in
bagging ensemble based on threshold-moving for classifying binary and
multiclass imbalanced data. Neurocomputing, 275:330–340, 2018.

[27] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
learning, 20(3):273–297, 1995.

[28] Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy.
Optimal transport for domain adaptation. IEEE TPAMI, 39(9):1853–1865,
2016.

[29] Nicolas Courty, Rémi Flamary, Amaury Habrard, and Alain Rakotomamonjy.
Joint distribution optimal transportation for domain adaptation. In NIPS,
2017.

[30] Nello Cristianini, John Shawe-Taylor, et al. An introduction to support vector
machines and other kernel-based learning methods. Cambridge university
press, 2000.

[31] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal
transport. In NIPS, 2013.

[32] Hal Daumé III. Frustratingly easy domain adaptation. In Proceedings of the
45th Annual Meeting of the Association of Computational Linguistics, pages
256–263, Prague, Czech Republic, June 2007. Association for Computational
Linguistics.

[33] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood
from incomplete data via the em algorithm. Journal of the Royal Statistical
Society: Series B (Methodological), 39(1):1–22, 1977.

[34] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

114



Luxin Zhang Luxin Zhang

[35] Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable
machine learning. arXiv preprint arXiv:1702.08608, 2017.

[36] Lixin Duan, Ivor W Tsang, Dong Xu, and Tat-Seng Chua. Domain adapta-
tion from multiple sources via auxiliary classifiers. In ICML, pages 289–296,
2009.

[37] Miroslav Dudík, Steven Phillips, and Robert E Schapire. Correcting sample
selection bias in maximum entropy density estimation. Advances in neural
information processing systems, 18:323–330, 2005.

[38] Zhen Fang, Jie Lu, Feng Liu, Junyu Xuan, and Guangquan Zhang. Open set
domain adaptation: Theoretical bound and algorithm. IEEE transactions
on neural networks and learning systems, 2020.

[39] Basura Fernando, Amaury Habrard, Marc Sebban, and Tinne Tuytelaars.
Unsupervised visual domain adaptation using subspace alignment. In ICCV,
pages 2960–2967, 2013.

[40] Aaron Fisher, Cynthia Rudin, and Francesca Dominici. All models are
wrong, but many are useful: Learning a variable’s importance by studying
an entire class of prediction models simultaneously. J. Mach. Learn. Res.,
20(177):1–81, 2019.

[41] R’emi Flamary and Nicolas Courty. Pot python optimal transport library,
2017.

[42] Jerome H Friedman. The elements of statistical learning: Data mining,
inference, and prediction. springer open, 2017.

[43] Jerome H Friedman and Werner Stuetzle. Projection pursuit regression.
Journal of the American statistical Association, 76(376):817–823, 1981.

[44] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky.
Domain-adversarial training of neural networks. JMLR, 17(1):2096–2030,
2016.

[45] Léo Gautheron, Ievgen Redko, and Carole Lartizien. Feature selection for
unsupervised domain adaptation using optimal transport. In ECML PKDD,
pages 759–776. Springer, 2018.

[46] Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow
kernel for unsupervised domain adaptation. In CVPR, pages 2066–2073.
IEEE, 2012.

115



BIBLIOGRAPHY Luxin Zhang

[47] Boqing Gong, Kristen Grauman, and Fei Sha. Connecting the dots with
landmarks: Discriminatively learning domain-invariant features for unsuper-
vised domain adaptation. In International Conference on Machine Learning,
pages 222–230. PMLR, 2013.

[48] Boqing Gong, Kristen Grauman, and Fei Sha. Reshaping visual datasets
for domain adaptation. NIPS, 26:1286–1294, 2013.

[49] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[50] Isabelle Guyon and André Elisseeff. An introduction to variable and feature
selection. Journal of machine learning research, 3(Mar):1157–1182, 2003.

[51] David Harris and Sarah Harris. Digital design and computer architecture.
Morgan Kaufmann, 2010.

[52] James J Heckman. Sample selection bias as a specification error. Economet-
rica: Journal of the Econometric Society, pages 153–161, 1979.

[53] Geoffrey E Hinton and Richard S Zemel. Autoencoders, minimum description
length, and helmholtz free energy. Advances in neural information processing
systems, 6:3–10, 1994.

[54] Geoffrey E Hinton, Terrence Joseph Sejnowski, et al. Unsupervised learning:
foundations of neural computation. MIT press, 1999.

[55] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber,
et al. Gradient flow in recurrent nets: the difficulty of learning long-term
dependencies, 2001.

[56] Judy Hoffman, Brian Kulis, Trevor Darrell, and Kate Saenko. Discovering
latent domains for multisource domain adaptation. In ECCV, pages 702–715.
Springer, 2012.

[57] Judy Hoffman, Mehryar Mohri, and Ningshan Zhang. Algorithms and theory
for multiple-source adaptation. In NeurIPS, 05 2018.

[58] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedfor-
ward networks are universal approximators. Neural networks, 2(5):359–366,
1989.

[59] Jiayuan Huang, Arthur Gretton, Karsten Borgwardt, Bernhard Schölkopf,
and Alex Smola. Correcting sample selection bias by unlabeled data. Ad-
vances in neural information processing systems, 19:601–608, 2006.

116

http://www.deeplearningbook.org


Luxin Zhang Luxin Zhang

[60] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In International
conference on machine learning, pages 448–456. PMLR, 2015.

[61] Karen Sparck Jones. A statistical interpretation of term specificity and its
application in retrieval. Journal of documentation, 1972.

[62] Leonid Kantorovich. On the translocation of masses. Management Science,
5(1):1–4, 1958.

[63] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong
Ma, Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient
boosting decision tree. NIPS, 30:3146–3154, 2017.

[64] Michael Kearns and Leslie Valiant. Cryptographic limitations on learning
boolean formulae and finite automata. Journal of the ACM (JACM), 41(1):
67–95, 1994.

[65] Henry J Kelley. Gradient theory of optimal flight paths. Ars Journal, 30
(10):947–954, 1960.

[66] Minyoung Kim, Pritish Sahu, Behnam Gholami, and Vladimir Pavlovic.
Unsupervised visual domain adaptation: A deep max-margin gaussian
process approach. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4380–4390, 2019.

[67] Diederik P Kingma and Max Welling. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114, 2013.

[68] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible
1x1 convolutions. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc., 2018.

[69] Kenji Kira, Larry A Rendell, et al. The feature selection problem: Traditional
methods and a new algorithm. In Aaai, volume 2, pages 129–134, 1992.

[70] Wouter M Kouw and Marco Loog. An introduction to domain adaptation
and transfer learning. arXiv preprint arXiv:1812.11806, 2018.

[71] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. Advances in neural
information processing systems, 25:1097–1105, 2012.

117



BIBLIOGRAPHY Luxin Zhang

[72] Solomon Kullback and Richard A Leibler. On information and sufficiency.
The annals of mathematical statistics, 22(1):79–86, 1951.

[73] Vinod K Kurmi, Venkatesh K Subramanian, and Vinay P Namboodiri.
Domain impression: A source data free domain adaptation method. In
WACV, pages 615–625, 2021.

[74] Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks. In Workshop on challenges in
representation learning, ICML, volume 3, 2013.

[75] Hsin-Ying Lee, Hung-Yu Tseng, Jia-Bin Huang, Maneesh Singh, and Ming-
Hsuan Yang. Diverse image-to-image translation via disentangled repre-
sentations. In Proceedings of the European conference on computer vision
(ECCV), pages 35–51, 2018.

[76] Siyang Li, Bryan Seybold, Alexey Vorobyov, Alireza Fathi, Qin Huang, and
C-C Jay Kuo. Instance embedding transfer to unsupervised video object
segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 6526–6535, 2018.

[77] Wen Li, Zheng Xu, Dong Xu, Dengxin Dai, and Luc Van Gool. Domain
generalization and adaptation using low rank exemplar svms. IEEE TPAMI,
40(5):1114–1127, 2017.

[78] Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou.
Revisiting batch normalization for practical domain adaptation. arXiv
preprint arXiv:1603.04779, 2016.

[79] Yitong Li, Michael Murias, Samantha Major, Geraldine Dawson, and
David E Carlson. Extracting relationships by multi-domain matching. In
NeurIPS, pages 6799–6810, 2018.

[80] Yitong Li, Michael Murias, Samantha Major, Geraldine Dawson, and David
Carlson. On target shift in adversarial domain adaptation. In The 22nd
International Conference on Artificial Intelligence and Statistics, pages
616–625. PMLR, 2019.

[81] Yunsheng Li, Lu Yuan, and Nuno Vasconcelos. Bidirectional learning
for domain adaptation of semantic segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
6936–6945, 2019.

118



Luxin Zhang Luxin Zhang

[82] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the
source data? source hypothesis transfer for unsupervised domain adaptation.
In ICML, pages 6028–6039. PMLR, 2020.

[83] Yi Lin, Yoonkyung Lee, and Grace Wahba. Support vector machines for
classification in nonstandard situations. Machine learning, 46(1-3):191–202,
2002.

[84] Seppo Linnainmaa. The representation of the cumulative rounding error of
an algorithm as a taylor expansion of the local rounding errors. Master’s
Thesis (in Finnish), Univ. Helsinki, pages 6–7, 1970.

[85] Zachary Lipton, Yu-Xiang Wang, and Alexander Smola. Detecting and cor-
recting for label shift with black box predictors. In International conference
on machine learning, pages 3122–3130. PMLR, 2018.

[86] Alexander H Liu, Yen-Cheng Liu, Yu-Ying Yeh, and Yu-Chiang Frank
Wang. A unified feature disentangler for multi-domain image translation
and manipulation. arXiv preprint arXiv:1809.01361, 2018.

[87] Hongfu Liu, Ming Shao, and Yun Fu. Structure-preserved multi-source
domain adaptation. In ICDM, pages 1059–1064. IEEE, 2016.

[88] Huan Liu and Rudy Setiono. Feature selection and classification-a proba-
bilistic wrapper approach. In Proceedings of 9th International Conference
on Industrial and Engineering Applications of AI and ES, pages 419–424,
1997.

[89] Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou. Exploratory undersampling
for class-imbalance learning. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 39(2):539–550, 2008.

[90] Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang Sun, and Philip S
Yu. Transfer feature learning with joint distribution adaptation. In ICCV,
2013.

[91] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I. Jordan. Learning
transferable features with deep adaptation networks. In ICML, 2015.

[92] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Deep
transfer learning with joint adaptation networks. In ICML, pages 2208–2217.
PMLR, 2017.

119



BIBLIOGRAPHY Luxin Zhang

[93] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan.
Conditional adversarial domain adaptation. In NeurIPS, pages 1640–1650,
2018.

[94] Zelun Luo, Yuliang Zou, Judy Hoffman, and Li Fei-Fei. Label efficient
learning of transferable representations across domains and tasks. arXiv
preprint arXiv:1712.00123, 2017.

[95] Massimiliano Mancini, Lorenzo Porzi, Samuel Rota Bulo, Barbara Caputo,
and Elisa Ricci. Boosting domain adaptation by discovering latent domains.
In CVPR, pages 3771–3780, 2018.

[96] Massimiliano Mancini, Lorenzo Porzi, Samuel Rota Bulo, Barbara Caputo,
and Elisa Ricci. Inferring latent domains for unsupervised deep domain
adaptation. IEEE TPAMI, 2019.

[97] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adap-
tation with multiple sources. In D. Koller, D. Schuurmans, Y. Bengio, and
L. Bottou, editors, NIPS, volume 21. Curran Associates, Inc., 2009.

[98] Cheng Meng, Yuan Ke, Jingyi Zhang, Mengrui Zhang, Wenxuan Zhong, and
Ping Ma. Large-scale optimal transport map estimation using projection
pursuit. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

[99] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estima-
tion of word representations in vector space. arXiv preprint arXiv:1301.3781,
2013.

[100] Tom Mitchell. Machine learning. 1997.

[101] Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. Histoire
de l’Académie Royale des Sciences de Paris, 1781.

[102] Oskar Morgenstern and John Von Neumann. Theory of games and economic
behavior. Princeton university press, 1953.

[103] John A Nelder and Roger Mead. A simplex method for function minimization.
The computer journal, 7(4):308–313, 1965.

[104] Arkadi Nemirovski and Uriel Rothblum. On complexity of matrix scaling.
Linear Algebra and its Applications, 302:435–460, 1999.

120



Luxin Zhang Luxin Zhang

[105] Andrew Y Ng and Michael I Jordan. On discriminative vs. generative
classifiers: A comparison of logistic regression and naive bayes. In Advances
in neural information processing systems, pages 841–848, 2002.

[106] Bach Hoai Nguyen, Bing Xue, and Peter Andreae. A particle swarm optimiza-
tion based feature selection approach to transfer learning in classification. In
Proceedings of the genetic and evolutionary computation conference, pages
37–44, 2018.

[107] David Opitz and Richard Maclin. Popular ensemble methods: An empirical
study. Journal of artificial intelligence research, 11:169–198, 1999.

[108] James B Orlin. A polynomial time primal network simplex algorithm for
minimum cost flows. Mathematical Programming, 78(2):109–129, 1997.

[109] Lale Özbakir, Adil Baykasoğlu, and Pınar Tapkan. Bees algorithm for
generalized assignment problem. Applied Mathematics and Computation,
215(11):3782–3795, 2010.

[110] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE
Transactions on Knowledge and Data Engineering, 22(10):1345–1359, 2009.

[111] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. Domain
adaptation via transfer component analysis. IEEE Transactions on Neural
Networks, 22(2):199–210, 2010.

[112] Pau Panareda Busto and Juergen Gall. Open set domain adaptation. In
Proceedings of the IEEE International Conference on Computer Vision,
pages 754–763, 2017.

[113] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. Pytorch: An imperative style, high-performance deep learning
library. In NeurIPS, volume 32, pages 8026–8037. Curran Associates, Inc.,
2019.

[114] Vern I Paulsen and Mrinal Raghupathi. An introduction to the theory of
reproducing kernel Hilbert spaces, volume 152. Cambridge university press,
2016.

[115] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and
Bo Wang. Moment matching for multi-source domain adaptation. In ICCV,
pages 1406–1415, 2019.

121



BIBLIOGRAPHY Luxin Zhang

[116] Michaël Perrot, Nicolas Courty, Rémi Flamary, and Amaury Habrard.
Mapping estimation for discrete optimal transport. In NIPS, pages 4204–
4212, 2016.

[117] Gabriel Peyré and Marco Cuturi. Computational optimal transport. Foun-
dations and Trends in Machine Learning, 11(5-6):355–607, 2019.

[118] Robi Polikar. Ensemble based systems in decision making. IEEE Circuits
and systems magazine, 6(3):21–45, 2006.

[119] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106,
1986.

[120] J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

[121] Joaquin Quiñonero-Candela, Masashi Sugiyama, Neil D Lawrence, and
Anton Schwaighofer. Dataset shift in machine learning. Mit Press, 2009.

[122] Lawrence R Rabiner. A tutorial on hidden markov models and selected
applications in speech recognition. Proceedings of the IEEE, 77(2):257–286,
1989.

[123] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i
trust you?" explaining the predictions of any classifier. In Proceedings of the
22nd ACM SIGKDD international conference on knowledge discovery and
data mining, pages 1135–1144, 2016.

[124] Lior Rokach. Ensemble-based classifiers. Artificial intelligence review, 33
(1):1–39, 2010.

[125] Lior Rokach and Oded Maimon. Clustering methods. In Data mining and
knowledge discovery handbook, pages 321–352. Springer, 2005.

[126] Rasmus Rothe, Radu Timofte, and Luc Van Gool. Dex: Deep expectation of
apparent age from a single image. In Proceedings of the IEEE international
conference on computer vision workshops, pages 10–15, 2015.

[127] Marco Saerens, Patrice Latinne, and Christine Decaestecker. Adjusting
the outputs of a classifier to new a priori probabilities: a simple procedure.
Neural computation, 14(1):21–41, 2002.

[128] Kuniaki Saito, Yoshitaka Ushiku, and Tatsuya Harada. Asymmetric tri-
training for unsupervised domain adaptation. In ICML, 2017.

122



Luxin Zhang Luxin Zhang

[129] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya Harada.
Maximum classifier discrepancy for unsupervised domain adaptation. In
CVPR, pages 3723–3732, 2018.

[130] Kuniaki Saito, Shohei Yamamoto, Yoshitaka Ushiku, and Tatsuya Harada.
Open set domain adaptation by backpropagation. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 153–168, 2018.

[131] Mayu Sakurada and Takehisa Yairi. Anomaly detection using autoencoders
with nonlinear dimensionality reduction. In Proceedings of the MLSDA 2014
2nd workshop on machine learning for sensory data analysis, pages 4–11,
2014.

[132] Arthur L Samuel. Some studies in machine learning using the game of
checkers. IBM Journal of research and development, 3(3):210–229, 1959.

[133] Sandeepkumar Satpal and Sunita Sarawagi. Domain adaptation of condi-
tional probability models via feature subsetting. In ECML PKDD, pages
224–235. Springer, 2007.

[134] Robert E Schapire. The strength of weak learnability. Machine learning, 5
(2):197–227, 1990.

[135] Claude Elwood Shannon. A mathematical theory of communication. The
Bell system technical journal, 27(3):379–423, 1948.

[136] Hidetoshi Shimodaira. Improving predictive inference under covariate shift
by weighting the log-likelihood function. Journal of Statistical Planning and
Inference, 90(2):227–244, 2000.

[137] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside
convolutional networks: Visualising image classification models and saliency
maps. arXiv preprint arXiv:1312.6034, 2013.

[138] HE Soper, AW Young, BM Cave, Alice Lee, and Karl Pearson. On the
distribution of the correlation coefficient in small samples. appendix ii to
the papers of" student" and ra fisher. Biometrika, 11(4):328–413, 1917.

[139] Stephen V Stehman. Selecting and interpreting measures of thematic
classification accuracy. Remote sensing of Environment, 62(1):77–89, 1997.

[140] Mervyn Stone. Cross-validatory choice and assessment of statistical predic-
tions. Journal of the royal statistical society: Series B (Methodological), 36
(2):111–133, 1974.

123



BIBLIOGRAPHY Luxin Zhang

[141] Masashi Sugiyama, Matthias Krauledat, and Klaus-Robert Müller. Covariate
shift adaptation by importance weighted cross validation. Journal of Machine
Learning Research, 8(5), 2007.

[142] Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul V Buenau,
and Motoaki Kawanabe. Direct importance estimation with model selection
and its application to covariate shift adaptation. In NIPS, 2008.

[143] Baochen Sun, Jiashi Feng, and Kate Saenko. Correlation alignment for
unsupervised domain adaptation. In Domain Adaptation in Computer Vision
Applications, pages 153–171. Springer, 2017.

[144] Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu, and Bing Qin.
Learning sentiment-specific word embedding for twitter sentiment classifi-
cation. In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1555–1565, 2014.

[145] Takeshi Teshima, Issei Sato, and Masashi Sugiyama. Few-shot domain
adaptation by causal mechanism transfer. In International Conference on
Machine Learning, pages 9458–9469. PMLR, 2020.

[146] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Methodological), 58(1):267–288,
1996.

[147] Andrei Nikolaevich Tikhonov. On the solution of ill-posed problems and the
method of regularization. In Doklady Akademii Nauk, volume 151, pages
501–504. Russian Academy of Sciences, 1963.

[148] Yi-Hsuan Tsai, Wei-Chih Hung, Samuel Schulter, Kihyuk Sohn, Ming-Hsuan
Yang, and Manmohan Chandraker. Learning to adapt structured output
space for semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7472–7481, 2018.

[149] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Simultane-
ous deep transfer across domains and tasks. In Proceedings of the IEEE
international conference on computer vision, pages 4068–4076, 2015.

[150] Selen Uguroglu and Jaime Carbonell. Feature selection for transfer learning.
In ECML PKDD, pages 430–442. Springer, 2011.

[151] Naveen Venkat, Jogendra Kundu, Durgesh Singh, Ambareesh Revanur, and
R. Babu. Your classifier can secretly suffice multi-source domain adaptation.
In NeurIPS, 03 2021.

124



Luxin Zhang Luxin Zhang

[152] Cédric Villani. The wasserstein distances. In Optimal Transport, pages
93–111. Springer, 2009.

[153] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Man-
zagol. Extracting and composing robust features with denoising autoen-
coders. In Proceedings of the 25th international conference on Machine
learning, pages 1096–1103, 2008.

[154] Hao Wang, Hao He, and Dina Katabi. Continuously indexed domain
adaptation. In Hal Daumé III and Aarti Singh, editors, ICML, volume
119 of Proceedings of Machine Learning Research, pages 9898–9907. PMLR,
13–18 Jul 2020.

[155] Sholom M Weiss and Nitin Indurkhya. Rule-based machine learning methods
for functional prediction. Journal of Artificial Intelligence Research, 3:383–
403, 1995.

[156] Alan Geoffrey Wilson. The use of entropy maximising models, in the
theory of trip distribution, mode split and route split. Journal of transport
economics and policy, pages 108–126, 1969.

[157] Shaoan Xie, Zibin Zheng, Liang Chen, and Chuan Chen. Learning semantic
representations for unsupervised domain adaptation. In ICML, pages 5423–
5432, 2018.

[158] Ruijia Xu, Ziliang Chen, Wangmeng Zuo, Junjie Yan, and Liang Lin. Deep
cocktail network: Multi-source unsupervised domain adaptation with cate-
gory shift. In CVPR, pages 3964–3973, 2018.

[159] Zheng Xu, Wen Li, Li Niu, and Dong Xu. Exploiting low-rank structure
from latent domains for domain generalization. In ECCV, pages 628–643.
Springer, 2014.

[160] Guorong Xuan, Wei Zhang, and Peiqi Chai. Em algorithms of gaussian
mixture model and hidden markov model. In Proceedings 2001 International
Conference on Image Processing (Cat. No. 01CH37205), volume 1, pages
145–148. IEEE, 2001.

[161] Mang Ye, Xu Zhang, Pong C Yuen, and Shih-Fu Chang. Unsupervised
embedding learning via invariant and spreading instance feature. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6210–6219, 2019.

125



BIBLIOGRAPHY Luxin Zhang

[162] Hao-Wei Yeh, Baoyao Yang, Pong C Yuen, and Tatsuya Harada. Sofa:
Source-data-free feature alignment for unsupervised domain adaptation. In
WACV, pages 474–483, 2021.

[163] Wei Ying, Yu Zhang, Junzhou Huang, and Qiang Yang. Transfer learning
via learning to transfer. In International conference on machine learning,
pages 5085–5094. PMLR, 2018.

[164] Kaichao You, Ximei Wang, Mingsheng Long, and Michael Jordan. Towards
accurate model selection in deep unsupervised domain adaptation. In ICML,
pages 7124–7133. PMLR, 2019.

[165] Ming Yuan and Yi Lin. Model selection and estimation in regression
with grouped variables. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 68(1):49–67, 2006.

[166] Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, and Zhikun Wang.
Domain adaptation under target and conditional shift. In ICML, pages
819–827, 2013.

[167] Luxin Zhang, Pascal Germain, Yacine Kessaci, and Christophe Biernacki.
Target to source coordinate-wise adaptation of pre-trained models. In ECML
PKDD, pages 378–394. Springer International Publishing, 2021.

[168] Luxin Zhang, Pascal Germain, Yacine Kessaci, and Christophe Biernacki.
Interpretable Domain Adaptation Using Unsupervised Feature Selection on
Pre-trained Source Models. August 2021.

[169] Luxin Zhang, Pascal Germain, Yacine Kessaci, and Christophe Biernacki.
Interpretable Domain Adaptation for Hidden Subdomain Alignment in the
Context of Pre-trained Source Models. 2022.

[170] Qiming Zhang, Jing Zhang, Wei Liu, and Dacheng Tao. Category anchor-
guided unsupervised domain adaptation for semantic segmentation. arXiv
preprint arXiv:1910.13049, 2019.

[171] Yixin Zhang and Zilei Wang. Joint adversarial learning for domain adapta-
tion in semantic segmentation. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 6877–6884, 2020.

[172] Han Zhao, Shanghang Zhang, Guanhang Wu, José MF Moura, Joao P
Costeira, and Geoffrey J Gordon. Adversarial multiple source domain
adaptation. NeurIPS, 31:8559–8570, 2018.

126



Luxin Zhang Luxin Zhang

[173] Sicheng Zhao, Guangzhi Wang, Shanghang Zhang, Yang Gu, Yaxian Li,
Zhichao Song, Pengfei Xu, Runbo Hu, Hua Chai, and Kurt Keutzer. Multi-
source distilling domain adaptation. In AAAI, number 07, pages 12975–
12983, 2020.

[174] Xiaojin Jerry Zhu. Semi-supervised learning literature survey. Technical
report, University of Wisconsin-Madison Department of Computer Sciences,
2005.

[175] Yongchun Zhu, Fuzhen Zhuang, and Deqing Wang. Aligning domain-specific
distribution and classifier for cross-domain classification from multiple
sources. In AAAI, volume 33, pages 5989–5996, 2019.

127


	Title
	Abstract
	Résumé
	List of Publications
	Contents
	List of Notations
	List of Figures
	List of Tables
	Chapter 1 : Introduction
	From a Worldline Industrial Problem to an Academic Challenge
	Adaptation Problem Setup
	Contributions & Organization of the Manuscript

	Chapter 2 : Machine Learning and Fraud Detection Background
	Introduction to Machine Learning
	Supervised and Unsupervised Learning
	Supervised Generative and Discriminative Learning
	Supervised Objective Functions
	Unsupervised Learning

	Some Supervised and Unsupervised Models
	Supervised Decision Tree
	Supervised Neural Networks
	Unsupervised Autoencoder
	Unsupervised Clustering

	Four Recurrent Challenges in Machine Learning
	Mixed Types of Features
	Imbalanced Dataset
	Feature Selection
	Interpretability of Machine Learning Models

	Domain Adaptation
	Distribution Drift
	Classical Single-Source Single-Target Domain Adaptation
	Deep Single-Source Single-Target Domain Adaptation
	Multi-Subdomain Adaptation

	Optimal Transport
	Monge-Kantorovich Problem
	Entropy Regularization
	Optimal Transport for Domain Adaptation
	One-dimensional Optimal Transport

	Worldline Fraud Detection Task
	Worldline Pre-trained Source Domain Predictive Model
	Worldline Domain Adaptation Tasks

	Datasets Used in the Experiments
	Worldline Fraud Detection Dataset
	Kaggle Fraud Detection Dataset
	Amazon Review Dataset


	Chapter 3 : Single-Target to Single-Source Domain Adaptation
	Formalization
	Label Shift Adjustment
	Target to Source Optimal Transport for Domain Adaptation
	Coordinate-wise Domain Adaptation
	Numerical Feature Adaptation
	Categorical Feature Adaptation

	Weakly Supervised Feature Selection for Domain Adaptation
	Implementation
	Experiments
	General Setup
	Adaptation Performance Analysis
	Interpretability of Adaptation Functions

	Conclusion

	Chapter 4 : Unsupervised Feature Selection for Domain Adaptation
	Unsupervised Target to Source Domain Adaptation Pipeline
	Pseudo-labeling Methods
	Rank Stability
	Relaxation of Rank Stability

	Implementation
	Experiments
	General Setup
	Adaptation Performance Analysis
	Ablation Study

	Conclusion

	Chapter 5 : Multi-Subdomain Adaptation
	Hidden Subdomain Exploration
	Notation
	Formalization
	Specialization to Temporal Drift

	Weakly Supervised Subdomain Aggregation
	Known Number of Subdomains
	Unknown Number of Subdomains

	Unsupervised Subdomain Aggregation
	Known Number of Subdomains
	Unknown Number of Subdomains

	Implementation
	Experiments
	General Setup
	Adaptation Performance Analysis
	Interpretability of Aggregation Functions

	Conclusion

	Chapter 6 : Conclusion & Perspectives
	Conclusion
	Perspectives

	Appendix A :  Calibration
	Evaluation Metric of Calibrated Models
	Calibration of Pre-trained Model

	Bibliography

