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Abstract

This thesis aims to study several tree-valued stochastic processes modeling the genealogical relation-
ships within a population.

The first chapter is devoted to the infinite limit of the alpha model introduced by D. Ford [For].
It is a one-parameter family of random binary trees with a fixed number of leaves which interpolates
between the coalescent tree (also known as the Yule tree) and the branching tree (also known as
the uniform tree). To construct the α-Ford models with an infinite number of leaves, we see them
as elements of the space T2 of binary algebraic measure trees and equip T2 with the sample shape
convergence introduced by W. Löhr and A. Winter [LW21]. We show that the sequence of the α-Ford
trees with an increasing number of leaves converges weakly in T2. We then determine the annealed law
of the statistics of subtree masses in the particular case of the Kingman algebraic measure tree. We also
introduce through a well-posed martingale problem the α-Ford diffusion which generalizes the version
of the Aldous diffusion constructed by W. Löhr, L. Mytnik and A. Winter [LMW20]. Finally, using
that the α-Ford tree with infinitely many leaves is an invariant distribution of the α-Ford diffusion, we
give a complete description of the annealed law of the statistics of subtree masses for any α-Ford tree
through recursive relations on its moments.

In the second chapter, we are interested in the two-level version of two tree-valued resampling
dynamics introduced by A. Greven, P. Pfaffelhuber and A. Winter [GPW13]. We first build the two-
level tree-valued Moran dynamics as a stochastic process with values in the space of (ultra-)metric
two-level measure spaces equipped with the two-level Gromov-weak topology, defined by R. Meizis
[Mei19]. Under this model, a finite population of parasites divided in finitely many hosts undergoes
resampling, both on the parasite and the host levels. Then, we show that the operator of this dynamics
uniformly converge as the numbers of hosts and parasites both tend to infinity and that the martingale
problem associated with the limit operator is well posed. The uniqueness of the solution results from a
duality to the nested Kingman coalescent. We call the solution of the martingale problem the two-level
tree-valued Fleming-Viot dynamics. Finally, we give formulas describing the evolution of the lengths
of sampled subtrees under this dynamics.

The last chapter focuses on the space T
(2) of algebraic two-level measure trees, which are the

two-level analogues of the algebraic measure trees introduced by W. Löhr and A. Winter [LW21].
Associating each algebraic (two-level measure) tree to the metric (two-level measure) space given by
the distance arising from the distribution of branch points, we use the two-level Gromov-weak topology
to define a metrizable topology on T

(2). On the subspace of binary trees, we also introduce with the
two-level sample shape convergence a more natural topology. We encode binary algebraic two-level
measure trees with a triangulation of the circle together with a two-level measure on the circle line.
Through this encoding, we prove that the two notions of topologies we defined on the subpace of
binary algebraic two-level measure trees are equivalent and compact. We finish the chapter with a
construction of the random algebraic two-level measure tree corresponding to the nested Kingman
coalescent.
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Résumé

Cette thèse a pour objet l’étude de processus stochastiques à valeurs arbres qui modélisent les relations
généalogiques au sein d’une population.

Le premier chapitre est consacré à la limite infinie du modèle alpha introduit par D. Ford [For].
Il s’agit d’une famille à un paramètre d’arbres binaires aléatoires avec un nombre fini de feuilles,
qui interpole l’arbre coalescent (aussi connu sous le nom d’arbre de Yule) et l’arbre de branchement
(également connu sous le nom d’arbre uniforme). Pour construire les modèles alpha de Ford avec
un nombre infini de feuilles, ils sont vus comme des variables aléatoires prenant leurs valeurs dans
l’espace T2 des arbres algébriques binaires mesurés introduits par W. Löhr et A. Winter [LW21]. Nous
montrons que les modèles alpha de Ford convergent en distribution dans T2 muni de la convergence des
formes des sous-arbres échantillonnés. Nous déterminons ensuite la loi de distribution des masses des
sous-arbres autour des points d’embranchement dans le cas particulier de l’arbre algébrique mesuré de
Kingman. Nous introduisons également, via un problème de martingale bien posé, la diffusion alpha
de Ford qui généralise la diffusion d’Aldous construite par W. Löhr, L. Mytnik et A. Winter [LMW20].
Enfin, en utilisant le fait que l’arbre alpha de Ford avec un nombre infini de feuilles est une distribution
invariante de la diffusion alpha de Ford, nous donnons une description complète de la loi de distribution
des masses des sous-arbres autour des points d’embranchement pour tout arbre alpha Ford.

Dans le deuxième chapitre, nous nous intéressons à la version à deux niveaux de deux dynamiques
de rééchantillonnage sur des espaces d’arbres introduites par A. Greven, P. Pfaffelhuber et A. Winter
[GPW13]. Nous construisons d’abord le modèle de Moran à valeurs arbres à deux niveaux comme
un processus stochastique à valeurs dans l’espace U

(2) des espaces (ultra-)métriques mesurés à deux
niveaux, muni de la topologie faible-Gromov à deux niveaux, définie par R. Meizis [Mei19]. Dans ce
modèle, une population finie de parasites divisée en un nombre fini d’hôtes évolue lors d’événements de
naissance-mort, à la fois au niveau des parasites et des hôtes. Nous montrons que les opérateurs de ces
processus convergent uniformément lorsque les nombres d’hôtes et de parasites tendent tous les deux
vers l’infini, et que le problème de martingale associé à l’opérateur limite est bien posé. L’unicité de la
solution se montre par un résultat de dualité au coalescent de Kingman à deux niveaux. Nous appelons
la solution du problème de martingale le processus de Fleming-Viot à valeurs arbres à deux niveaux.
Enfin, nous donnons des formules décrivant l’évolution des longueurs des sous-arbres échantillonnés
sous cette dynamique.

Le dernier chapitre est consacré à l’espace T
(2) des arbres algébriques mesurés à deux niveaux,

qui sont les analogues à deux niveaux des arbres algébriques mesures introduits par W. Löhr et A.
Winter [LW21]. En associant chaque arbre algébrique (mesuré à deux niveaux) à l’espace métrique
(mesuré à deux niveaux) donné par la distance provenant de la distribution des points de branchement,
nous utilisons la topologie faible-Gromov à deux niveaux pour définir une topologie métrisable sur
T
(2). Sur le sous-espace des arbres binaires, nous introduisons également une topologie plus naturelle

appelée convergence des formes des sous-arbres échantillonnés à deux niveaux. Nous encodons les
arbres algébriques binaires mesurés à deux niveaux par un couple formé d’une triangulation du cercle
et d’une mesure aléatoire sur le cercle, ce qui nous permet de montrer que les deux notions de topologies
sur l’espace des arbres algébriques binaires mesurés à deux niveaux sont équivalentes et compactes.
Nous terminons le chapitre par la construction de l’arbre algébrique mesuré aléatoire à deux niveaux
correspondant au coalescent de Kingman imbriqué.
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Zusammenfassung

In dieser Dissertation werden mehrere baumwertige stochastische Prozesse untersucht, die die geneal-
ogischen Beziehungen innerhalb einer Population modellieren.

Das erste Kapitel ist dem Kontinuumslimis des von D. Ford [For] eingeführten Alpha-Modells
gewidmet. Dies ist eine einparametrige Familie von zufälligen binären Bäumen mit einer festen Anzahl
von Blättern, die zwischen dem Koaleszenzbaum (auch unter dem Namen Yule-Baum bekannt) und
dem Verzweigungsbaum (auch bekannt als der zufällige Baum) interpoliert. Um das α-Ford-Modelle
mit unendlich vielen Blättern zu konstruieren, kodieren wir binäre Bäume als binäre algebraische
Maßbäume und versehen den Raum T2 dieser mit der sogenannten sample-shape-Konvergenz, welche
von W. Löhr und A. Winter in [LW21] eingeführt wurde. Wir zeigen, dass eine Folge von α-Ford-
Bäumen mit zunehmender Blattzahl in T2 schwach konvergiert. Wir studieren dann die Statistik
der Teilbaummassen im speziellen Falle des Kingman-Koaleszentenbaumes und konstruieren dann mit
Hilfe eines gut gestellten Martingalproblems die α-Ford-Diffusion, die die sogenannte Aldous-Diffusion
verallgemeinert, welche zuvor von W. Löhr, L. Mytnik und A. Winter in [LMW20] konstruiert wurde.
Unter Verwendung der Tatsache, dass der α-Ford-Baum mit unendlich vielen Blättern eine invariante
Verteilung der α-Ford-Diffusion ist, können wir dann die Statistik der Teilbaummassen für jeden α-
Ford-Baum durch rekursive Beziehungen ihrer Momente beschreiben.

Im zweiten Kapitel interessieren wir uns für die zwei-Level Version baumwertiger Resampling-
Dynamiken, deren ein-Level Version von A. Greven, P. Pfaffelhuber und A. Winter in [GPW13] einge-
führt wurden. Wir konstruieren zunächst die zwei-Level baumwertige Moran-Dynamik als stochastis-
chen Prozess mit Werten im Raum (ultra-)metrischer zwei-Level Maßräume und statten diese mit der
zwei-Level Gromov-schwachen Topologie aus, die von R. Meizis in [Mei19] eingeführt wurde. Bei diesem
Modell wird eine endliche Population von Parasiten, die in endlich viele Wirte aufgeteilt ist, einem
Resampling unterzogen, welches sowohl auf Parasiten- als auch auf Wirtsebene wirkt. Dann zeigen
wir, dass die Operatoren dieser Dynamik gleichmäßig konvergieren, wenn die Anzahl der Wirte und
Parasiten gegen unendlich strebt, und dass das mit dem Grenzwertoperator verbundene Martingal-
problem gut gestellt ist. Die Eindeutigkeit der Lösung ergibt sich aus einer Dualität zum sogenannten
nested Kingman-Koaleszenten. Wir nennen die Lösung des Martingalproblems die zwei-Level baumw-
ertige Fleming-Viot-Dynamik. Schließlich geben wir Formeln an, die die Entwicklung der Längen von
gesampelten Teilbäumen unter dieser Dynamik beschreiben.

Das letzte Kapitel konzentriert sich auf den Raum T
(2) von algebraischen zwei-Level Maßbäu-

men, die die zwei-Level Analoga der von W.Łöhr und A. Winter in [LW21] eingeführten algebrais-
chen Maßbäume sind. Wir assoziieren jeden algebraischen (zwei-Level) Maßbaum mit dem metrischen
(zwei-Level) Maßraum, der durch den Abstand gegeben ist, der sich aus der Verteilung der Verzwei-
gungspunkte ergibt, und verwenden die zwei-Level Gromov-schwache Topologie, um eine metrisierbare
Topologie auf T

(2) zu definieren. Auf dem Unterraum von Binärbäumen führen wir auch mit der
zwei-Level sample-shape-Konvergenz eine natürlichere Topologie ein. Wir codieren binär algebraische
zwei-Level Maßbäume mit einem Paar bestehend aus einer Subtriangulation des Kreises zusammen
mit einem zwei-Level Maß auf der Kreislinie. Mit Hilfe dieser Kodierung beweisen wir, dass die zwei
Begriffe von Topologien, die wir auf dem Teilraum von binären algebraischen zwei-Level Maßbäumen
definiert haben, äquivalent und kompakt sind. Wir beenden das Kapitel mit einer Konstruktion des
zufälligen algebraischen zwei-Level Maßbaums des nested Kingman-Koaleszentenbaumes.
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General introduction

This thesis is devoted to several mathematical tree-valued models and their limits as the sizes of the
objects tend to infinity. We focus on so-called algebraic trees, which are trees without edge length gen-
eralizing countable graph-theoretic trees, and two-level models, where individuals of the first level are
grouped together in clusters to form the second level and both levels undergo resampling mechanisms.
The different stochastic processes we study are of interest in many branches of biology (e.g. population
genetics, epidemiology, evolutionary biology), as they might describe genealogical (or phylogenetic)
trees and their evolution over time.

One of the first stochastic models describing the genealogy of a large population is the Kingman
coalescent. It is a partition-valued process introduced in 1982 [Kin82] to model an evolutionary tree
by looking at the genealogy backwards in time. More precisely, for N ∈ N, the Kingman N -coalescent
is a continuous-time Markov chain (ΠN

t )t≥0 on the space of partitions of {1, ..., N} defined as follows:

• Start with a partition ΠN
0 (for example the trivial partition in singletons).

• For each pair of blocks (π, π′) in the current partition ΠN
t at rate 1, the Markov chain jumps to

the partition where the blocks π and π′ have merged, i.e. (ΠN
t \ {π, π

′}) ∪ {π ∪ π′}.

Thinking of the partition blocks as particles, every pair of particles coalesce independently at a constant
rate to form a new particle. The following property of sampling consistency plays an important role
in constructing the infinite limit of this model: the restriction of the N -coalescent to any subset of
{1, ...,m} of size m is an m-coalescent. This property allows, through Kolmogorov’s extension theorem,
to consider the projective limit and define the Kingman coalescent (Πt)t≥0 of a countable population
with the property that for each m, its restriction to {1, ...,m} is an m-coalescent.

In [Eva00], Evans encoded the evolutionary tree of the Kingman coalescent as a random metric
space by considering the natural metric on N induced by the coalescent: the distance r(i, j) between
two individuals i and j is the first time until they belong to the same block of the partition:

r(i, j) := inf{t ≥ 0 : ∃π ∈ Πt, i, j ∈ π}. (1)

Figure 1: A tree representation of a simulation of the Kingman N -coalescent with N = 100. Notice
that many partition blocks coalesce very quickly (see (2)).

ix



General introduction

x1
❇❇

❇❇
x3

⑤⑤
⑤⑤

• •

x2

⑤⑤⑤⑤⑤
x4

❇❇❇❇❇

Figure 2: The only possible tree shape spanned by four points separates them into two pairs. The
points x1, x2, x3, x4 are such that rX(x1, x2) + rX(x3, x4) ≤ max{rX(x1, x3) + rX(x2, x4), rX (x1, x4) +
rX(x2, x3)}.

Looking at the genealogy forward in time, r(i, j) is how long before the present the respective lines
of descent of i and j diverged. Evans showed that a.s. the completion of (N, r) is a compact metric
space with Hausdorff dimension 1, using in particular that the Kingman coalescent comes down from
infinity, that is,

P{∀t > 0,Πt has finitely many blocks} = 1. (2)

Moreover, r is an ultrametric and thus satisfies the so-called four-point condition, which gives that the
shape spanned by four points is “tree-like” (see Figure 2). More precisely, we say that a metric space
(X, rX ) satisfies the four-point condition if for all x1, x2, x3, x4 ∈ X,

rX(x1, x2) + rX(x3, x4) ≤ max{rX(x1, x3) + rX(x2, x4), rX(x1, x4) + rX(x2, x3)}, (3)

and if (X, rX) is also connected, we call it an R-tree. From this point of view, the Kingman coalescent
defines a random R-tree, whose leaves are the particles (or individuals) alive at time 0.

In the context of population genetics, lengths of sampled subtrees contain important information
about genealogies. For example, Watterson proposed an estimator for the mutation rate relying on
the subtree length spanned by finite samples [Wat75]. In [GPW09] was developed a theory that allows
to sample leaves in the tree and evaluate the length of the subtrees spanned by finite samples. This
was done by equipping ultrametric spaces (X, r) encoding trees with a probability measure µ. In order
to focus on the structure of the tree rather than the labels, we say that two metric measure spaces
(X, r, µ) and (X ′, r′, µ′) are equivalent if there exists an isometry φ between the supports of µ on (X, r)
and of µ′ on (X ′, r′) such that µ′ = φ∗µ. We denote by M the space of equivalence classes of Polish
metric spaces equipped with a probability measure. Note that by considering equivalence classes, we
are only interested in the restriction of r and µ to the support of µ. It is thus the measure µ that
represents the population, and it allows to pick individuals (i.e. leaves in the tree) at random. If the
number of individuals N is finite, a uniform sample can simply be obtained by considering the uniform
distribution on the individuals

µN :=
1

N

N∑

i=1

δi. (4)

If the metric space is infinite and compact as in the case of the Kingman random metric tree, one can
extend the notion of a uniform distribution by approximation, i.e. by considering the weak limit of
the probability measures µN . This requires to define a notion of (weak)-convergence on the space of
metric measure spaces. Several such notions have been introduced, either only quantitatively (e.g. via
Gromov’s �λ-metric [Gro99] or the measured Hausdorff distance [Fuk87, KS03]) or qualitatively as in
the Gromov-weak topology by requiring all finite samples to converge in distribution [GPW09]. The
latter gives rise to a family of convergence determining classes of functions which are very useful to us
as we want to study tree-valued stochastic processes.

In the Gromov-weak topology, a sequence of trees converges to a limit tree if and only if all randomly
sampled finite subtrees converge to the corresponding limit subtrees. A similar notion of convergence
had already been defined by David Aldous in [Ald93]. More precisely, his approach is analogous to the
classical way of considering weak convergence of processes, where finite-dimensional distributions must
satisfy a consistency property (as in Kolmogorov’s extension theorem above) and the initial processes a
tightness condition. In the case of trees, he replaces the property on the finite-dimensional distributions
by a condition on subtrees spanned by finitely many randomly chosen leaves. By embedding trees into

Josué Nussbaumer x



the space l+1 of positive real-valued sequences whose series is absolutely convergent, the notion of
continuous trees is formalized and the tightness criterion is expressed on l+1 . In particular, Aldous
then applied this notion of convergence to construct the continuum random tree obtained from the
Kingman coalescent (see [Ald93, Section 4.1]).

Rather than relying on the embedding of trees into l+1 , the Gromov-weak topology on M is intro-
duced in [GPW09] as the topology induced by distance polynomials, which are functions Φ: M→ R of
the form

Φ
(
(X, r, µ)

)
=

∫
µ⊗m(d(x1, ..., xn))φ

(
(r(xi, xj))1≤i,j≤m

)
, (5)

where m ∈ N and φ : [0,∞)m×m → R is a bounded continuous function. With polynomials, we consider
averages over all subspaces spanned by finitely many points sampled according to µ. The Gromov-
weak topology on M is separable and metrizable, e.g. by the Gromov-Prohorov metric, which makes it
a suitable state space for stochastic processes, and the set Π of polynomials separates metric measure
spaces and is even convergence determining (compare [DGP11, Theorem 5] and [Löh13, Corollary 2.8]),
which can be used to define Markov processes on M through well-posed martingale problems. In
[GPW09], a criterion for tightness was given and applied to show that Λ-coalescents satisfying a “dust-
free” property (which holds for the Kingman coalescent) define an infinite (random) metric measure
space.

The theory of [GPW09] has since been extended to several other state spaces: metric spaces with
finite measures ([Glö12]), marked metric measure spaces ([DGP11, GSW16, KW19]), metric spaces
equipped with locally finite measures ([ALW16]). Yet another extension of metric measure spaces was
introduced in [Mei19], namely the metric two-level measure trees, which are Polish metric spaces (X, r)
equipped with a probability measure ν on the set of probability measures on X.

This change to a two-level measure is motivated by the study of two-level systems in biology, where
individuals are divided in colonies, and both colonies and individuals within colonies are subject to
branching dynamics. For example, in a host-parasite system, parasites form the first level and are
grouped into hosts to form the second level. Multi-level models allow to take into account the different
rates at which events might happen in each level, or even the differences of mechanisms operating at
each level. By equipping metric spaces with a two-level measure ν, we allow for a two-level sampling:
first we sample with ν a colony µ ∈ M1(X), and then with µ we sample an individual within the
sampled colony. The space of two-level measure spaces is then equipped with the two-level analogue of
the Gromov-weak topology, which is the one induced by the set of two-level distance polynomials. In
Chapter 2 of this thesis, we use it as state space to construct the two-level tree-valued Moran dynamics
for finite populations and its diffusion limit as the population becomes infinite.

All the notions mentioned above have in common that they encode the structure of the genealogical
tree through a metric. However, data on branch lengths in the phylogenetical trees might be uncertain
and rather than focusing on pairwise metric distances, one might want to bring the attention to the
tree structure. In [LW21], the metric component is ignored to focus on the so-called branch point map
which assigns to each triplets of points their branch point. A set T together with such a branch point
map c is called an algebraic tree and is then equipped with a natural topology. As for the metric
measure spaces, a probability measure is added on algebraic trees and a notion of structure-preserving
morphisms is introduced to consider equivalence classes of algebraic measure trees. Similarly to the
Gromov-weak topology, a sequence of trees converges to a limit tree if all random tree shapes spanned
by finite samples converge weakly to the corresponding limit shapes. Equipped with this topology, the
space of equivalence classes of binary algebraic measure trees is compact, making it a very convenient
state space to construct trees with an infinite number of leaves. This is the object of Chapter 1, as
we study the diffusion limit of the α-Ford model ([For]), which is a one-parameter family of random
finite trees interpolating between two well-known algebraic trees, the Kingman coalescent tree and the
uniform tree.

Much like the construction of metric two-level measure spaces, we extend in the Chapter 3 the
theory of algebraic measure trees to a two-level setup. We show that the space of algebraic two-level
measure trees can again be equipped with a compact topology, and use it to define the Kingman alge-
braic two-level measure tree.
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Outline. We divide the work in three chapters. Chapter 1 is devoted to the infinite limit of the
α-Ford model in the space of algebraic measure trees. In Chapter 2, we introduce the two-level tree-
valued Fleming-Viot dynamics as a stochastic process in the space of metric two-level measure spaces.
Finally, we define in Chapter 3 the space of algebraic two-level measure trees and equip it with a
compact topology. The three chapters are strongly related but can be read independently.

0.1 Chapter 1: The α-Ford algebraic measure trees

This chapter is the subject of a paper in preprint [NW].

In [Ald96], the β-splitting model was introduced in an attempt to find a one-parameter family
of distributions on rooted cladograms (i.e. finite binary trees with labelled leaves) that models the
“neutral evolution of species”. For β ∈ (−2,∞), the β-splitting model with N leaves is constructed by
splitting the number of leaves between the two subtrees of each branch point as follows. At the root,
the N leaves are split in i and N − i according to the distribution

qN(i) =
1

aN (β)

Γ(β + i+ 1)Γ(β +N − i+ 1)

Γ(i+ 1)Γ(N − i+ 1)
, 1 ≤ i ≤ N − 1, (6)

where aN (β) is a normalizing constant. Repeat recursively at each branch point with N replaced by
the correct number of leaves. The β-splitting model interpolates between three popular models ranging
from the coalescent tree (also known as Yule tree) in the case β = 0 via the branching tree (also known
as uniform tree) in the case β = −3

2 to the totally unbalanced tree (also known as comb tree) when
β converges to −2. Furthermore, the model satisfies the two following properties which are natural
properties to hope for neutral evolutionary trees: the random cladogram is exchangeable in the labels
of the leaves and Markovian self-similar, i.e. the subtree above any edge has distribution the β-splitting
model with the correct size, and is independant of the rest of the tree. By considering the split at the
root of 30 large cladograms, Aldous observed that the model β = −1 fits the data much better than
the usual models (β = 0 and β = −3

2).
In [For], Ford defined another one-parameter family of probability models on cladograms satisfying

the properties mentioned above. For α ∈ [0, 1] and N ∈ N, the α-Ford tree of size N is a cladogram
with N leaves constructed recursively as follows (see Figure 3):

1. Start with one edge, and label its leaves by {1, 2} (yielding the only 2-cladogram).

2. Given the α-Ford tree with k ≥ 2 leaves, assign weight 1−α to each external edge and weight α
to each internal edge.

3. Choose an edge at random according to these weights and to the middle of this edge, insert a
new leaf together with an edge. Label the new leaf k + 1.

4. Stop when the current binary combinatorial tree has N leaves.

5. Randomly permute the leaf labels.

As for the β-splitting model, the α-Ford model interpolates between the Yule tree for α = 0 via the
uniform tree in the case α = 1

2 to the comb tree in the case α = 1. We notice qualitatively different
behaviours for different values of α (see Figure 4). In order to specify this difference, we are interested
in characterizing the mass distribution of the α-Ford model. Since the space of all N -cladograms grows
super-exponentially with the number of leaves N , we describe the statistics of mass distribution for
the α-Ford trees with infinite number of leaves. But for this, one first needs a state space that allows
to construct the limit of the model as the number of leaves goes to infinity.

One possible approach to define this limit is to see the cladograms as metric spaces (as R-trees) by
equipping them with the graph distance and use convergence in distribution for the Gromov-Hausdorff
topology of the suitably rescaled trees (see [HMPW08, CFW09, PW09]). We use here another approach,
that focuses on the “tree structure” rather than the metric of the considered R-trees. It relies on the
notion of algebraic measure trees, introduced in [LW21], which is based on the following property
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Figure 3: The 5 steps in constructing the α-Ford tree with 5 leaves.

Figure 4: Simulations of the α-Ford models with N = 100 leaves for different values of the parameter
α (α = 0 on the left; α = 0.5 in the middle; α = 0.9 on the right).

of R-trees. If (T, r) is an R-tree, then for all x1, x2, x3 ∈ T , there exists a unique branch point
c(x1, x2, x3) ∈ T such that

{c(x1, x2, x3)} = [x1, x2] ∩ [x2, x3] ∩ [x3, x1], (7)

where for x, y ∈ T , the interval [x, y] is defined as

[x, y] :=
{
z ∈ T : r(x, z) + r(z, y) = r(x, y)

}
. (8)

The function c : T 3 → c, (x1, x2, x3) 7→ c(x1, x2, x3), called branch point map is symmetric and satisfies
the following conditions:

(2pc) For all x1, x2 ∈ T , c(x1, x2, x2) = x2.

(3pc) For all x1, x2, x3 ∈ T , c(x1, x2, c(x1, x2, x3)) = c(x1, x2, x3).

(4pc) For all x1, x2, x3, x4 ∈ T ,

c(x1, x2, x3) ∈ {c(x1, x2, x4), c(x1, x3, x4), c(x2, x3, x4)}. (9)

Algebraic trees are defined by the tree structure encoded in such a branch point map. That is, an alge-
braic tree (T, c) is a non empty set T together with a symmetric map c : T 3 → T satisfying conditions
(2pc)-(4pc). Even though algebraic trees can be seen as metric trees where one has “forgotten” the
metric, the branch point map is defined such that the notion of leaves, branch points, degree, subtrees,
line segments, etc. can be formalized without reference to a metric and agree with the corresponding
notion in the metric tree (see Section 1.2).

In order to sample leaves from an algebraic tree, we equip it with a measure. For this, we consider
on an algebraic tree (T, c) the topology generated by so-called subtree components, which are sets of
the form

Sx(y) := {z ∈ T \ {x} : c(x, z, y) 6= x}, (10)

with x, y ∈ T . An algebraic measure tree (T, c, µ) then consists of a separable algebraic tree (T, c) to-
gether with a probability measure µ on the Borel σ-algebra B(T, c). Associating each algebraic measure
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tree to the metric measure space given by the distance arising from the distribution of branch points,
we can use the Gromov-weak topology to define a metrizable topology on the set T of (equivalence
classes of) algebraic measure trees (see Definition 1.9 and below). Since cladograms are binary by
definition, we are more specifically interested in the subspace

T2 :=
{
(T, c, µ) ∈ T : degrees at most 3, atoms of µ only at leaves

}
(11)

of (equivalence classes of) binary algebraic measure trees with no atoms on the skeleton. On T2,
another topology was introduced, which relies on the notion of tree shape

s(T,c)(u1, ..., um) (12)

spanned by m points (u1, ..., um) in an algebraic tree (T, c). We say that a sequence of trees (χN )N
converges in sample shape to χ in T2 if the random sub-cladograms spanned by finite samples in χN

converge weakly with respect to the discrete topology to the corresponding limit sub-cladograms in
χ (see Definition 1.9 for a rigorous definition). One of the main results in [LW21] states that both
topologies are equivalent on T2 and compact.

Back to the α-Ford model, a cladogram with N leaves defines an algebraic measure tree when we
forget the leaf labels and equip it with the uniform measure on the N leaves. Therefore, the α-Ford
tree with N leaves can be seen as a random algebraic measure tree χα

N ∈ T2. Using the sampling
consistency of the model, we showed that the α-Ford trees converge weakly to a tree in the set T

cont
2

of binary algebraic measure trees without atoms.

Proposition 0.1 (Continuum α-Ford trees). Fix α ∈ [0, 1]. Then their exists a random continuum
binary measure tree χα ∈ T

cont
2 such that

χα
N =⇒

n→∞
χα, (13)

where ⇒ stands for weak convergence on T2 equipped with the sample shape convergence. We call χα

the α-Ford algebraic measure tree (with infinite number of leaves).

For α = 0, we call χ0 the Kingman algebraic measure tree as it equals in law the algebraic measure
tree read off from the Kingman coalescent.

In phylogenetic trees with edge lengths, all sufficient information about genealogies is contained in
the lengths of subtrees spanned by a finite sample. We want to introduce a similar statistics which
is more suited for algebraic measure trees, for which a priori edge lengths are not defined. For that,
consider for a branch point v ∈ br(T ) the three subtree components attached to v and denote for each
u 6= v by Sv(u) the subtree component that contains u ∈ T . For u = (u1, u2, u3) ∈ T

3, let

η(u) :=
(
ηi(u)

)
i=1,2,3

:=
(
µ(Sc(u)(ui))

)
i=1,2,3

(14)

be the vector in the two-simplex ∆2 of the three masses of the components connected to c(u). We refer
to its annealed law as sample subtree mass distribution. It allows to distinguish between α-Ford models
for different α ∈ [0, 1]. For α = 1

2 a combinatorial argument shows that it is equal to the Dirichlet
distribution with parameters (12 ,

1
2 ,

1
2) (compare [Ald94a, Theorem 2] or [LMW20, Proposition 5.2]).

We showed for the case α = 0 that the sample subtree mass distribution of the Kingman algebraic
measure tree χ0 is given by the products of independant beta distributions.

Proposition 0.2 (Subtree mass distribution in the Kingman algebraic measure tree). Let B1,2 and
B2,2 be two independent beta random variables, such that B1,2 has law Beta(1, 2) and B2,2 has law
Beta(2, 2). Then for all f : ∆2 → R continuous bounded,

E

[∫

(T
χ0 )3

(µχ0)⊗3(du)f(η
χ0(u))

]
=

1

6

∑

π∈S3

E
[
f ◦ π∗(1−B1,2, B1,2B2,2, B1,2(1−B2,2))

]
, (15)

where S3 is the set of permutations of {1, 2, 3}, and for π ∈ S3, π∗ : ∆2 → ∆2 is the induced map
π∗(x) = (xπ(1), xπ(2), xπ(3)).
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0.1 Chapter 1: The α-Ford algebraic measure trees

For a general α ∈ [0, 1], we obtained a characterization of the sample subtree mass distribution
through recursive relations giving all the mixed moments of the vector of masses (see (24) below).

Another goal was to generalize with the α-Ford diffusion the results from [LMW20] on the Aldous
diffusion. Rather than adding new leaves, we now keep the number of leaves constant by first removing
a leaf picked uniformly at random and then inserting it into an edge chosen at random according to
the α-Ford weights. This dynamics defines a one-parameter family of Markov chains on the space
of cladograms CN with a fixed number of leaves N , called α-Ford chain. For α = 1

2 , the chain is
reversible and is called Aldous chain, as it was studied in detail in [Ald00] (see also [Sch01]). Aldous
conjectured in 1999 the existence of a diffusion limit of the Aldous chain as the number of leaves N
goes to infinity. Such a diffusion was since constructed in two independent and different approaches
([FPRW21, FPRW20, FPRWb, FPRWa] versus [LMW20]). This conjecture was one of the motivations
for introducing algebraic measure trees and we will therefore follow the approach of [LMW20] to
construct the α-Ford diffusion.

To do so, we consider, for α ∈ [0, 1], the operator Ωα acting on the following test functions called
sample shape polynomials

Φm,t(χ) :=

∫

Tm

µ⊗m(du)1t(s(T,c)(u)), (16)

with m ∈ N, χ = (T, c, µ) ∈ T2 and t ∈ Cm, as follows:

ΩαΦ
m,t(χ) :=

∫

Tm

µ⊗m(du)Ω̃m
α 1t(s(T,c)(u)), (17)

where 1t plays the role of the test function for Ω̃m
α , which denotes the generator of the α-Ford Markov

chain on the space of m-cladograms Cm (see (1.69) for a precise definition).
Before giving the main result of the chapter, we recall the definition of a well-posed martingale

problem:

Definition 0.3 (Well-posed martingale problem). Let (E, r) be a Polish space, P0 ∈ M1(E), F a
subspace of the space B(E) of bounded measurable functions on E and Ω a linear operator on B(E)
with domain F . An E-valued stochastic process X = (Xt)t≥0 is called a solution of the (P0,Ω,F)-
martingale problem if X0 has distribution P0, X has paths in the space DE([0,∞)) of E-valued càdlàg
functions, almost surely (where DE([0,∞) is equipped with the Skorohod topology) and for all F ∈ F ,

(
F (Xt)− F (X0)−

∫ t

0
ΩF (Xs)ds

)

t≥0

(18)

is a martingale. Moreover, the (P0,Ω,F)-martingale problem is said to be well-posed if there is a
unique solution.

Our main result states that the α-Ford chains converge weakly to the unique solution of the
(Ωα,D(Ωα))-martingale problem.

Theorem 0.4 (The well-posed martingale problem). Let α ∈ [0, 1] and P0 be a probability measure on
T
cont
2 . For each N ∈ N, let XN

0 ∈ T
N
2 and assume that XN

0 → χ, where χ is distributed according to
P0. Then the α-Ford chain XN,α starting in XN

0 converges weakly in Skorokhod path space w.r.t. the
sample shape convergence to a T

cont
2 -valued Feller process Xα with continuous paths.

Furthermore, Xα is the unique T
cont
2 -valued Markov process (Xt)t≥0 such that P0 is the distribution

of X0, and for all Φ ∈ D(Ωα), the process M := (Mt)t≥0 given by

Mt := Φ(Xt)− Φ(X0)−

∫ t

0
ΩαΦ(Xs)ds (19)

is a martingale.

We call the limit process the α-Ford diffusion. The uniqueness of the solution is shown through a
Feynman-Kac duality, that is, the α-Ford diffusion is dual to the time-reversed α-Ford chain on the
space of cladograms (see (1.71) and (1.73) for a definition of the dual chain). Furthermore, the α-Ford
algebraic measure tree is an invariant distribution of the α-Ford diffusion.
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Then we also generalized the result of [LMW20] on the evolution of the sample subtree mass
distribution as follows. We extend the domain of the operator Ωα to the set of mass polynomials of
the form

Φf (T, c, µ) :=

∫

T 3

f
(
η(c(u))

)
µ⊗3(du), (20)

where f : [0, 1]3 → R is twice continuously differentiable and (T, c, µ) ∈ T2. We then put

ΩαΦ
f (χ) =

∫
µ⊗3(du)




3∑

i,j=1

ηi(δij − ηj)∂
2
ijf(η(u)) + (2− α)

3∑

i=1

(1− 3ηi)∂if(η(u))

+ (2− 3α)

3∑

i=1

(
f(ei)− f(η(u))

)
+
α

2

3∑

i 6=j=1

1ηi 6=0

ηi

(
f ◦ θi,j(η(u))− f(η(u))

)

+
α

2

3∑

i 6=j=1

(
1ηj=0 − 1ηi=0

)
∂if(η(u))




(21)

where θi,j : ∆2 → ∆2 denotes the migration operator on the two-simplex which sends the vector η to
the vector where we subtract ηi from the ith entry (resulting in the entry zero) and add it to the jth
entry (resulting in ηi + ηj), and ei = (δij)i=1,2,3 is the ith unit vector.

Theorem 0.5 (Extended martingale problem for subtree masses). Let α ∈ [0, 1] and X = (Xt)t≥0
be the α-Ford diffusion on T

cont
2 . Then for all mass polynomials Φf with f ∈ C3([0, 1]), the process

Mf := (Mf
t )t≥0 given by

Mf
t := Φf (Xt)−Φf (X0)−

∫ t

0
ΩαΦ

f (Xs)ds (22)

is a martingale.

Since the α-Ford algebraic measure tree is an invariant distribution of the α-Ford diffusion, this
result also allowed us to provide representations of the sample subtree mass distribution for general
α ∈ [0, 1]. For k = (k1, k2, k3) ∈ N

3
0, define fk : ∆2 → [0, 1] by

fk(η) = ηk11 η
k2
2 η

k3
3 . (23)

Then, for all α ∈ [0, 1] and k ∈ N
3
0,

E

[
Φfk

(χα)
]
=

1

(|k|+ 3)(|k|+ 2− 3α)

(
3∑

i=1

1{ki 6=0}(ki + 1)(ki − α)E
[
Φfk−ei (χα)

]

+ (2− 3α)
(
1{k1=k2=0} + 1{k2=k3=0} + 1{k3=k1=0}

)

+
α

2

3∑

i=1

1ki=0

3∑

j 6=i=1

kj∑

lj=1

(
kj
lj

)
E

[
Φfk+(lj−1)ei−ljej

(χα)
])

,

(24)

where |k| = k1 + k2 + k3.

0.2 Chapter 2: Resampling dynamics on metric two-level measure

trees

This chapter is the subject of a paper in prep [Nus].

Though the Moran model is a very basic resampling dynamics, it aroused a significant interest
since its introduction in [Mor58]. It models the evolution of a finite population of fixed size, from
which each pair of individuals resamples at constant rate. At a resampling event, one individual is
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chosen at random from the pair, and replaces the other individual by a copy (or clone) of herself. If we
trace backward in time the genealogy of the population at a given time, we recover the Kingman finite
coalescent. Considering again the large population limit, the Moran model leads to the measure-valued
Fleming-Viot process, which arises as the infinite limit of a larger class of finite resampling models (see
[Daw93, EK93, FV79]).

In [GPW13], the space of metric measure trees served as state space to define the tree-valued
Fleming-Viot dynamics and its particle approximation the tree-valued Moran dynamics. Considering
tree-valued stochastic processes allows to study the evolution of the entire genealogical structure.
Both dynamics were defined using well-posed martingale problems. They showed that the Kingman
metric measure tree is dual to the tree-valued Fleming-Viot dynamics, as well as its unique equilibrium
distribution. Finally, they gave formulas to describe the evolution of the length distribution of random
finite subtrees under the dynamics. We sought to extend these results to nested populations undergoing
a two-level resampling dynamics.

Multi-level models in population dynamics can be found for example in ecology to account for the
levels of individuals and species, or in epidemiology for the modelling of hosts and parasites. The
phylogenies of such systems bring an important light on the paths and dynamical phenomenas that
are interplaying. For example in anthropology these models have served as basis for statistical studies
and understand collected data (e.g. [BJ10, JBA19, LBP+21, VAE+09]). For cell models, we can refer
for example to works by Kimmel [Kim97].

In the mathematical literature, we can find several two-level dynamics modelling various systems:
for instance particles grouped in so-called superparticles and subject to a birth-and-death process
[DHW90, Wu91, GHW95, DHV96, GH00, DGW04], parasites inside a population of cells which divide
[BT11], individuals carrying two types of cells [MR13], a population undergoing mutation, selection,
resampling and migration mechanisms, and divided in colonies that are also subject to selection and
resampling mechanisms [Daw18]. All these models have in common that the population is represented
by a measure or a two-level measure, that is, a measure on the set of measures. The dynamics we
are interested in is fitted for a host-parasite system, that is, the resampling dynamics at the lower
level, i.e. of parasites is constrained by the upper level: only pairs of parasites belonging to the same
hosts can resample. At the upper level, resampling of hosts occurs as for the usual Moran model. It
is a version of the dynamics found in [Daw18] where we focus strictly on the resampling mechanisms.
However, as we want to describe the evolution of the ancestral relationships under the dynamics, we
define stochastic processes on the space of metric two-level measure spaces, where the metric encodes
the genealogical distances between individuals.

A metric two-level measure space (X, r, ν) (m2m space for short) is defined in [Mei19] as a Polish
metric space (X, r) equipped with a probability measure ν ∈ M1(M1(X)) on the set of probability
Borel measures on X. For example by taking X := N

2, we can represent a population of parasites in
M hosts by the two-level measure

ν :=
1

M

M∑

i=1

δµ̃i
=

1

M

M∑

i=1

δ 1
N

∑N
j=1 δ(i,j)

, (25)

where (i, j) ∈ X represents the parasite j of the host i. The measure ν allows for a two-level sampling:
first we sample with ν a host µ ∈ M1(X), and then with µ we sample a parasite within the sampled
host. The two-level Moran model we introduce fits to this example, where each parasite belongs to
a unique host. Notice however that the space M1(M1(X)) allows for much more general two-level
measures where an individual might belong to several clusters (see Figure 5, left).

In the theory of two-level measures, the intensity measure Mν ∈ M1(X) plays a key role to adapt
results from the one-level setup. It is defined by

Mν(·) :=

∫
ν(dµ)µ(·). (26)

If ν is given by (25), then

Mν =
1

M

M∑

i=1

1

N

N∑

j=1

δ(i,j). (27)
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Figure 5: The two (pseudo)-m2m spaces (X1, r1, ν1) (on the left) and (X2, r2, ν2) (on the right) are
equivalent, with ν1 = 1

3 (δ 1
2
(δ(1,1)+δ(1,2))

+ δ 1
2
(δ(2,1)+δ(2,2))

+ δ 1
2
(δ(3,1)+δ(3,2))

) and ν2 = 2
3δ 1

2
(δ(1,1)+δ(1,2))

+
1
3δδ(3,1) .

In this case, the intensity measure allows to sample a parasite uniformly at random from the whole
population, regardless of their hosts. Since the population is represented by the two-level measure ν,
we are not interested in what happens on the complementary of the support of the intensity measure.
Therefore, and to focus on the tree-structure rather than the labels, we say that two m2m spaces
(X, r, ν) and (X ′, r′, ν ′) are equivalent if there exists an isometry φ between the supports of Mν on
(X, r) and of Mν′ on (X ′, r′) such that ν ′ is the two-level push-forward of ν under φ (see Figure 5 for an
example of two equivalent m2m spaces). On the set M

(2) of all equivalence classes of m2m spaces, the
two-level Gromov-weak topology is introduced as the topology induced by test functions Φ : M(2) → R

of the form

Φ
(
(X, r, ν)

)
=

∫

(M1(X))m
ν⊗m(dµ)

∫

T |n|

m⊗

i=1

µ⊗ni

i (dxi)φ ◦R(x), (28)

where m ∈ N, n = (n1, ..., nm) ∈ N
m and φ is a real bounded continuous function on R

|n|×n|
+ . As in

the one-level case, the two-level Gromov-weak topology on M is separable and metrizable, e.g. by the
so-called two-level Gromov-Prohorov metric.

We are now able to define the two-level tree-valued Fleming-Viot and Moran dynamics as stochastic
processes with values in M

(2). On each level, resampling events might occur (see Figure 6):

• Resampling of hosts: at rate γH , a resampling event occurs between any two hosts. One host
dies (with all the parasites it contains) and is replaced by a copy of the other host (with all the
parasites it contains).

• Resampling of parasites: at rate γP , any two parasites belonging to the same host resample.
One parasite dies and is replaced by a copy of the other.

We first give a construction of the two-level tree-valued Moran process following this dynamics for a
population with a fixed number of hosts each containing the same number of parasites. We then define
a corresponding operator acting on test functions of the form (28) with three components, one for the
growth of distances between distinct parasites (belonging to the same host or not), and one for the
resampling at each level. We also introduce a similar operator Ω↑ for the diffusion dynamics, that we
obtain as uniform limit of the operators for the finite dynamics.

Our main result states that when the numbers of hosts and of parasites simultaneously go to infinity,
the two-level tree-valued Moran process converges weakly to the unique solution of the (Ω↑,D(Ω↑))-
martingale problem.

Theorem 0.6 (The well-posed martingale problem). Let P0 be a probability measure on U
(2). For each

M,N ∈ N, let UM,N := (UM,N
t )t≥0 be the two-level tree-valued Moran dynamics of size (M,N). Assume

that (UM,N
0 )M,N converges weakly with respect to the two-level Gromov-weak topology, as (M,N)→∞,

to U0 distributed according to P0. Then (UM,N )M,N converges weakly in Skorohod path space w.r.t. the
two-level Gromov-weak topology to a U

(2)-valued Markov process U with càdlàg paths.
Furthermore, U is the unique U

(2)-valued Markov process (Xt)t≥0 such that P0 is the distribution
of X0, and for all Φ ∈ D(Ω↑), the process

(
Φ(Xt)− Φ(X0)−

∫ t

0
Ω↑Φ(Xs)ds

)

t≥0

(29)
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Figure 6: The graphical representation of the two-level Moran model with M = 3 hosts and N = 4
parasites in each host. An arrow from (i, k) to (i, l) indicates a parasite resampling event within host
i, where (i, l) dies and (i, k) reproduces. For the resampling of hosts k and l, we draw N arrows, from
(k, j) to (l, j) for each 1 ≤ j ≤ N . The different colors represent different hosts.

is a martingale.

To prove the weak convergence, we showed that the sequence of two-level tree-valued Moran pro-
cesses satisfies a compact containment condition and is hence tight. To show the uniqueness of the
solution, we reformulated, in terms of two-level measure trees, the well-known duality between the
Fleming-Viot process and the Kingman coalescent, which is the nested Kingman coalescent measure
tree [Mei19, Section 10] (see also [BDLS18, BRSSJ19, LS20]).

With the tools provided in [Mei19] for the extension to two-level models, the proofs are very similar
to the ones for the (one-level) tree-valued resampling dynamics in [GPW13]. However, a major obstacle
arises when expressing the diffusion limit operator in a convenient way for studying the evolution of
length statistics. We were still able to express formulas for the evolution of the length distribution of
the subtrees spanned by small samples of parasites and we compared them to the ones obtained in
[GPW13]. But when the number of hosts involved in the sampled gets larger, it becomes quickly difficult
to write more general formulas. The formulas on statistics we obtained also provided information about
the length of random subtrees in the nested Kingman coalescent, since it is the unique equilibrium
distribution of the two-level Fleming-Viot dynamics. In particular, it allows us to estimate the rates of
coalescence at each level on a real world genealogical tree, which we assume a priori to be distributed
according to a nested coalescent tree.

0.3 Chapter 3: Algebraic two-level measure trees

This chapter is the subject of a paper in prep [NTW].

In the first chapter of the thesis, we study the Kingman algebraic measure tree with infinite number
of leaves, and its generalization to the α-Ford algebraic measure trees. For this, we heavily relied on
the compactness of the space T2 of binary algebraic measure trees. Motivated by the study of two-level
models as in the second chapter, we would like to consider another extension of the Kingman algebraic
measure tree, that is, where the sampling measure is replaced by a two-level measure. But for this, one
first needs to define a proper state space and equip it with a notion of convergence. The goal of the
third chapter is to provide these tools by extending the notion of algebraic measure trees in [LW21],
in a way that is similar to the work on metric two-level measure spaces in [Mei19]. In particular, our
main emphasis here is to establish a compact state space for the two-level situation.

An algebraic two-level measure tree (T, c, ν) (a2m tree for short) is a separable algebraic tree (T, c)
equipped with a probability measure ν ∈ M1(M1(T )) on the set of probability measures on B(T, c).
We then say that two a2m trees (T, c, ν) and (T ′, c′, ν ′) are equivalent if there exists a tree isomorphism
φ between Mν of (T, c) and the support of Mν′ on (T ′, c′) such that ν ′ is the two-level push-forward of
ν under φ. Denote by T

(2) the set of equivalence classes of a2m trees.
We equip T

(2) with a topology based on the two-level Gromov-weak topology introduced in [Mei19]

xix Josué Nussbaumer



General introduction

on the space of metric two-level measure spaces. To do so, we define the branch point distribution of
a given a2m tree (T, c, ν) as the pushforward λν := c∗(Mν)

⊗3 and we associate (T, c, ν) to the metric
two-level measure space (T, rν , ν) where rν is defined by

rν(x, y) := λν [x, y]−
1

2
λν{x} −

1

2
λν{y}, x, y ∈ T. (30)

We then say that a sequence (Tn, cn, νn)n converges to (T, c, ν) if (Tn, rνn , νn)n converges to (T, rν , ν)
with respect to the two-level Gromov-weak topology on M(2). We refered to this convergence as two-
level branch point distribution distance (bpdd) Gromov-weak convergence and so we equip T

(2) with a
separable and metrizable topology.

It is quite straigthforward to adapt most of the results in [LW21] to a2m trees. As pointed out in
[Mei19], it is often sufficient to replace the measure µ by the intensity measure Mν . However, difficulties
arise when trying to extend the coding of binary algebraic measure trees by sub-triangulations of the
circle. This coding was a crucial ingredient to show that the subspace T2 of binary algebraic measure
trees with no atoms on the skeleton is a compact space. Similar to encoding compact R-trees by
continuous excursions on the unit interval, this idea was first used by David Aldous in [Ald94a, Ald94b].
It has since then aroused significant interest (see [CLG11, BS15, CK13]) and similar approaches have
been introduced for not necessarily binary trees ([Cur14, CHK14]).

We give now a brief recall of the definitions and results concerning the coding of binary algebraic
measure trees by sub-triangulations of the circle from [LW21] and point out the differences in the
two-level setup. For a subset A of the disc D, we define

∆(A) :=
{
connected components of conv(A) \A

}
, (31)

and
∇(A) :=

{
connected components of D \ conv(A)

}
. (32)

We then say that a closed, non-empty subset C of the disc is a sub-triangulation of the circle S if:

1. ∆(C) consists of open interiors of triangles.

2. C is the union of non-crossing (non-intersecting except at endpoints), possibly degenerate closed
straight line segments with endpoints in the circle line S.

We denote by T the set of sub-triangulations of the circle.
From this definition, ∇(C) consists of circular segments with the bounding straight line excluded

and the rest of the bounding arc included. We also define for a sub-triangulation the analogue of the
components in an algebraic tree. For x ∈ ∆(C) ∪ ∇(C), and y ⊆ D connected and disjoint from ∂Dx,
let

compx(y) := the connected component of D \ ∂Dx which contains y. (33)

A sub-triangulation of the circle C induces a binary algebraic tree (Vc, cV ), where VC := ∆(C) ∪
∇(C) ∪ �(C), triangles in ∆(C) are the branch points, circular segments in ∆(C) ∪ �(C) are leaves
and the branch point of x, y, z ∈ VC is the triangle cV (x, y, z) ∈ ∆(C) “in the middle” (see Figure 7).
Furthermore, compx(y) corresponds to the tree component Sx(y) in (VC , cV ).

Using (VC , cV ) as a “skeleton”, the following result gives the algebraic measure tree associated to a
sub-triangulation.

Proposition 0.7 (One-level coding map). (i) For every C ∈ T , there is a unique (up to equiva-
lence) binary algebraic measure tree χC = (TC , cC , µC) such that:

(CM1) VC ⊆ TC , br(TC , cC) = ∆(C), and cC is an extension of cV .

(CM2) For all x, y ∈ VC and σ ≥ 0, µC(Sx(y)) = λS(compx(y) ∩ S).

(CM3) at(µC) = ∇(C).

(ii) The coding map τ : T → T2, C 7→ χC is surjective and continuous, where T is equipped with
the Hausdorff metric topology and T2 with the bpdd-Gromov-weak topology.
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Figure 7: On the left: A sub-triangulation of the circle such that #∆(C) = 3 (empty triangles),
#∇(C) = 4 (empty circular segments), #�(C) = 2 (filled areas) and #�(C) = 1 (more precisely,
�(C) = {p}). The triangle c = cV (x, y, z) is “in the middle” of x, y and z. On the right: The tree
coded by the sub-triangulation. The leaf p does not carry an atom, but the four other leaves carry
a weight given by the lengths of the corresponding arcs. The two thick segments carry a non-atomic
mass.

Figure 8: A triangulation of the 12-gon. Here, the coded tree is the dual graph, with uniform distri-
bution on the leaves.

The condition (CM2) expresses that the arc lengths encode the way the mass is distributed in the
algebraic measure tree. For example, if C is a triangulation of an n-gon, the Lebesgue measure of an
arc of the circle line is the mass on the corresponding leaf in the tree (see Figure 8).

We introduced a similar coding of binary a2m trees in the subspace

T
(2)
2 :=

{
(T, c, ν) ∈ T

(2) : degrees at most 3,

atoms of µ only at leaves for ν-almost every µ
}
.

(34)

In order to encode the information on the distribution of the random ν-mass in the tree, one cannot
rely on the Lebesgue measure of arc lengths anymore. Thus, we replaced the Lebesgue measure by a
two-level measure K on the circle. For technical reasons and to avoid degenerate cases, we require the
intensity measure MK to be the Lebesgue measure on the circle. Therefore, we formally construct the
coding map that associates an a2m tree in T

(2)
2 to a pair (C,K) ∈ D where C is a subtriangulation of

the circle, and K ∈M1(M1(S)) with MK = λS. In the theorem below, the conditions are very similar
to the ones of Proposition 0.7, where we used the Laplace transforms of the two-level measures ν and
K to define the analogue of (CM2). Notice in particular that if (C,K) encodes the a2m tree (T, c, ν),
then the sub-triangulation C encodes the algebraic (one-level) measure tree (T, c,Mν) in the sense of
Proposition 0.7.
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Figure 9: Two examples of “filled” areas b ∈ �(C) delimited by the circular segments [x, y] and [x′, y′].
They are partitioned into straight line segments with endpoints in [x, y] and [x′, y′].

A major difference lies however in the definition of the skeleton VC of the encoded tree. Contrary
to the one-level case, where there is only one way (up to equivalence) to assign a non-atomic measure
to a line segment in the tree, it is important in the two-level case to know how the random mass is
distributed along such a line segment. Therefore, one needs to add in (CM2) the information about
the mass distribution of K along the boundaries of filled areas (see Figure 7). To do this, we partition
each filled area into infinitely many straight segments with endpoints in S (see Figure 9) and define
VC := ∆(C)∪∇(C)∪�(C)∪‖(C), where ‖(C) is the set of all the straight segments partitioning filled
areas. With this adjustment, the a2m tree encoded by (C,K) is indeed unique in our main result.

Theorem 0.8 (Two-level coding map). (i) For all Γ = (C,K) ∈ D, there is a unique (up to equiv-

alence) a2m tree χΓ = (TΓ, cΓ, νΓ) ∈ T
(2)
2 such that:

(CM1) VC ⊆ TΓ, br(TΓ, cΓ) = ∆(C), and cΓ is an extension of cV .
(CM2) For all x, y ∈ VC and σ ≥ 0,

∫
ν(dµ)e−σµ(Sx(y)) =

∫
K(dκ)e−σκ(compx(y)∩S). (35)

(CM3) at(MνΓ) = ∇(C).

(ii) The coding map τ : D→ T
(2)
2 , Γ 7→ χΓ is surjective.

(iii) Let T be equipped with the Hausdorff metric topology, M1(M1(S)) with the weak topology, T ×

M1(M1(S)) with the product topology and T
(2)
2 with the two-level bpdd-Gromov-weak topology.

Then the coding map τ is continuous.

On the subspace T
(2)
2 , we introduced another topology that is based on labelled sub-cladograms

spanned by finite samples of points in the tree. It is the two-level analogue of the sample shape topology
on T2. More precisely, we now consider subtrees coming from a two-level sampling, i.e. we first sample
a finite number of measures according to ν and then we sample a finite number of leaves according
to each sampled measure. Therefore, the notion of cladograms we define keeps track of this two-level
sampling by using double indices (see Figure 10). Using the coding from Theorem 0.8 of binary trees

in T
(2)
2 , we showed the following result.

Theorem 0.9 (Equivalence of topologies and compactness). The two-level sample shape topology and

the two-level bpdd-Gromov-weak topology coincide on T
(2)
2 . Furthermore, T(2)

2 is compact and metrizable
in this topology.

As an example, we finish by constructing the Kingman algebraic two-level measure tree, which is
the nested Kingman coalescent measure tree without branch length (see [Mei19]). It is defined as the
weak limit of a sequence of finite random a2m trees that is sampling consistent, due to the properties
of finite Kingman coalescents.
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Figure 10: A tree T and the sub-cladogram spanned by u11, u12, u21, u22, u23.

0.4 Perspectives

We give here a few open questions and ideas for future work related to the content of the thesis,
many of which concern applications to real world data. For this reason, we particularly engaged in
conversations with Patrick Hoscheit about possible uses of our theory. We warmly thank him for his
suggestions and for providing workable data on phylogenetic trees.

0.4.1 On metric two-level measure trees

Several results from [GPW13] on tree-valued resampling dynamics still remain to be extended to the
two-level setup. In particular, contrary to the one-level case, the duality we provide between the two-
level tree-valued Fleming-Viot process and the nested Kingman measure tree cannot be easily adapted
to the particle approximation. Therefore such a duality relation still has to be investigated in the finite
case.

We also hope to develop richer formulas on the subtree length distribution of the nested Kingman
coalescent and apply them to estimate the rates γH and γP of coalescence on phylogenies.

We mentioned above Watterson’s mutation rate estimator that relies on the length of the subtrees
spanned by samples, but also on the number of segregating sites or SNPs in these samples [Wat75].
More detailed information concerning mutations is provided by the site frequency spectrum, which gives
how many sites are carried by each given number of individuals in the sample. It has been studied in
several tree models such as the Kingman coalescent [STH+11, SSV15], and more generally Aldous’ β-
splitting model [SV18], and is often used for population genetics inference (see [GJB13] and references
therein). Therefore, one might be interested in describing the site frequency spectrum of the nested
Kingman coalescent to allow for inferences of two-level genealogies.

0.4.2 On algebraic (two-level) measure trees

In Chapter 1, we prove that the α-Ford algebraic measure tree is an invariant distribution of the α-Ford
diffusion. In the case α = 1

2 , it has been shown in [LMW20, Proposition 5.3] that the Aldous diffusion
converges toward the algebraic measure Brownian CRT, which is thus its unique invariant distribution.
It was proved by relying on a duality relation and the symmetry of the Aldous diffusion. However, the
diffusion is no longer symmetric for other values of α and the argument breaks due to the exponential
term in the Feynman-Kac duality equation. Therefore convergence toward the α-Ford continuum tree
remains an open question for α ∈ [0, 1] \ {12}.

David Aldous observed that the β-splitting model fits the data the best when β = −1 (see [Ald96,
Section 4.3]). In a similar way, is there a parameter α which gives a better fit for the α-Ford model?

We give in Appendix A a few results concerning the subtree mass distribution of the rooted α-Ford
algebraic measure trees. We hope to obtain full descriptions of this distribution for static trees as well
as its evolution under the α-Ford diffusion. In particular, this might yield more explicit expressions of
the subtree mass distribution of the unrooted α-Ford algebraic measure tree for general α ∈ [0, 1].

The notion of sampled subtree masses is an important part of the theory of algebraic measure trees
developed in [LW21]. It still remains to investigate the analogue in the two-level setup. After defining
this object, which needs to take into account a two-level sampling, it might be used to describe the
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subtree mass distribution in Kingman algebraic two-level measure tree depending on the coalescence
rates γH and γP . A natural question to ask is whether one can estimate these rates on phylogenies
without branch lengths. Furthermore, the two-level resampling dynamics of Chapter 2 can easily be
adapted to algebraic trees, and the evolution of the subtree mass distribution under such a dynamics
is of interest.

Finally, the space of algebraic (two-level) measure trees could serve for the study of more complex
static and dynamic models. For instance in [HS21], growing models of random trees were investigated
which are built by gluing finite trees (rather than single edges in the α-Ford model) on the current
structure.
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Chapter 1
The α-Ford algebraic measure trees

1.1 Introduction and motivation

An N -cladogram is a semi-labeled, un-rooted and binary tree with N ≥ 2 leaves labeled {1, 2, ..., N}
and with N − 2 unlabeled internal nodes. Cladograms are particular phylogenetic trees for which no
information on the edge lengths is available, and which therefore only capture the tree structure.

As prototype models are needed for testing real world phylogenies, parametric families of random
cladograms have been studied (compare [Ald96, For]). One such family introduced in [For] is today
referred to as the α-Ford model (see also [HMPW08, CFW09, PW09, Ste09, CMR18]). Fix α ∈ [0, 1)
and N ∈ N. The α-Ford tree with N leaves is an N -cladogram constructed recursively as follows
(compare Figure 1.1):

1. Start with one edge, and label its leaves by {1, 2} (yielding the only 2-cladogram).

2. Given the α-Ford tree with k ≥ 2 leaves, assign weight 1−α to each external edge and weight α
to each internal edge.

3. Choose an edge at random according to these weights and to the middle of this edge, insert a
new leaf together with an edge. Label the new leaf k + 1.

4. Stop when the current binary combinatorial tree has N leaves.

5. Randomly permute the leaf labels.

Note that permuting the labels in the last step ensures consistency. That is, for all 1 ≤ m ≤ N ,
restricting to the sub-cladogram spanned by a uniform sample of size m from the leaf set {1, ..., N}
yields an m-cladogram which equals in law the α-Ford tree with m leaves.

The case α = 1 is excluded as for k = 2, 3 all edges have weight 0, and therefore the above
construction is not well-defined. However, we can extend the construction with some care. To overcome
the issue, let us simply choose the edge, at which we are inserting the next edge, uniformly among the
external edges. As soon as k = 4, there is only one possible tree shape with exactly one inner edge
and the problem disappears.

The α-Ford model interpolates between three popular models ranging from the coalescent tree (also
known as Yule tree) in the case α = 0 via the branching tree (also known as uniform tree) in the case
α = 1

2 to the totally unbalanced tree (also known as comb tree) in the case α = 1. In this paper we
are interested in limit cladograms as the number of leaves goes to infinity. For that we will rely on the
notion of continuum algebraic measure trees recently introduced in [LW21].

In what follows, we refer to (T, c) as an algebraic tree if T 6= ∅ is a set equipped with a branch point
map c : T 3 → T satisfying consistency conditions (see Definition 1.4). Even though algebraic trees can
be seen as metric trees where one has “forgotten” the metric, the branch point map is defined such that
the notion of leaves, branch points, degree, subtrees, line segments, open sets, etc. can be formalized
without reference to a metric and agree with the corresponding notion in the metric tree. An algebraic
measure tree (T, c, µ) consists of a separable algebraic tree (T, c) together with a probability measure

1



Chapter 1: The α-Ford algebraic measure trees

µ on the Borel σ-algebra B(T ). The α-Ford infinite limit takes values in the state space

T2 :=
{
(T, c, µ) ∈ T : degrees at most 3, atoms of µ only at leaves

}
(1.1)

of (equivalence classes of) binary algebraic measure trees with no atoms on the skeleton, and more
specifically in its subspace

T
cont
2 :=

{
(T, c, µ) ∈ T2 : µ non-atomic

}
(1.2)

of so called continuum binary algebraic measure trees. We equip T2 with the so-called sample shape
convergence (Definition 1.9), which says that a sequence (tN )N∈N converges to t in T2 if the random
shapes s(T,c)(x1, ..., xm) of sub-cladograms spanned by finite samples (x1, ..., xm) of size m converge
weakly with respect to the discrete topology (compare Definition 1.8 and Figure 1.4). It is shown in
[LW21] that both T2 and T

cont
2 are compact, which is very convenient for showing tightness.

To get started we first introduce the α-Ford models with an infinite number of leaves in T2. To do
this, we consider the α-Ford tree with N leaves as a random element in the subspace

T
N
2 :=

{
(T, c, µ) ∈ T2 : #lf(T, c) = N and µ = 1

N

∑
u∈lf(T,c)

δu
}
, (1.3)

where lf(T, c) denotes the set of leaves. Then, using the consistency property of Ford models, we can
show that, for each α ∈ [0, 1], the sequence of such constructed random binary algebraic measure trees
converges to an element of T

cont
2 , that we call α-Ford algebraic measure tree (with infinite number

of leaves). For α = 1
2 , we get the algebraic measure Brownian CRT, which is the unique continuum

random algebraic measure tree whose i.d.d. samples span uniform binary trees. For α = 0, we call this
tree the Kingman algebraic measure tree as it equals in law the algebraic measure tree read off from
the Kingman coalescent.

In statistical applications of phylogenies with edge lengths, it has been exploited that all sufficient
information about genealogies is contained in the lengths of subtrees spanned by a finite sample. One
such example is the Watterson estimator for the mutation rate of a neutral population, which counts
the number of segregating sites that is often represented by the edge lengths ([Wat75, BvH99]). In
this paper we want to introduce with the sample subtree mass distribution a similar statistics which
is more suited for algebraic measure trees, for which a priori edge lengths are not defined. For that,
consider for a branch point v ∈ br(T ) the three subtree components attached to v and denote for each
u 6= v by Sv(u) the subtree component that contains u ∈ T (see (1.19) below for a precise definition).
For u = (u1, u2, u3) ∈ T

3, let

η(u) :=
(
ηi(u)

)
i=1,2,3

:=
(
µ(Sc(u)(ui))

)
i=1,2,3

(1.4)

be the vector of the three masses of the components connected to c(u). We refer to its annealed
law as sample subtree mass distribution. It allows to distinguish between α-Ford models for different
α ∈ [0, 1]. For α = 1 it can be easily read off from the associated comb tree (see Proposition 1.20). For
α = 1

2 a more elaborate combinatorial argument shows that is is equal to the Dirichlet distribution with
parameters (12 ,

1
2 ,

1
2) (compare [Ald94a, Theorem 2] or [LMW20, Proposition 5.2]). The case α = 0 is

treated in Proposition 1.22 where we show that the sample subtree mass distribution of the Kingman
algebraic measure tree equals in distribution the symmetrization of (B1,2B2,2, B1,2(1−B2,2), 1−B1,2),
where B1,2 and B2,2 are independent beta distributed random variables with parameters (1, 2) and
(2, 2), respectively.

An important ingredient for several algorithms that reconstruct cladograms from DNA data are
Markov chains that move through a space of finite trees (see, for example, [Fel05] for a survey on
Markov chain Monte Carlo algorithms in maximum likelihood tree reconstruction). The present paper
has a focus on the one-parameter family of Markov chains on the space Cm of all m-cladograms which
are related to the α-Ford model in the following way. Fix α ∈ [0, 1]. Rather than adding new leaves,
we keep the number of leaves constant by first removing a leaf picked uniformly at random and then
inserting it into an edge chosen at random according to the α-Ford weights. More detailed, for each
pair (x, e) consisting of a leaf and an edge (other than the edge adjacent to x) at rate 1, the Markov
chain jumps from its current state t to t(x,e), where the latter is obtained as follows (see Figures 1.2
and 1.3):
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r 1

r 2

1 − α

r 1

r 2

r 3

1 − α

1 − α

1 − α

r 1

r 2

r 3

r 4

1 − α

1 − α
1 − α

1 − α

α

r 1

r 2

r 3

r 4

r 5 r 1

r 5

r 2

r 3

r 4

Figure 1.1: The 5 steps in constructing the α-Ford tree with 5 leaves.
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Figure 1.2: At rate (1−α)m(m−1) and rate α(m−4) a) a leaf x and an external respectively internal
edge e are picked at random, and b) the edge adjacent to x is taken away (leaving behind a branch
point of degree 2).

• erase the unique edge (including the incident vertices) which connects x to the sub-tree spanned
by all leaves but x,

• split the remaining subtree at the edge e into two pieces, and

• reintroduce the above edge (including x and the branch point) at the split point.

We call this Markov chain the α-Ford chain on m-cladograms. One can easily check that the α-Ford
model is the stationary distribution, and that the α-Ford chain is symmetric if and only if α = 1

2 . In
the latter case the mixing and relaxation time has been studied in detail in [Ald00, Sch01]. This case
is therefore often referred to as the Aldous move or the Aldous chain on cladograms. To see why the
α-Ford chain is not symmetric for general α ∈ [0, 1], notice that inserting a leaf at an edge creates a
cherry leaf if and only if the edge was external. Therefore the time reversed α-Ford chain picks at rate
(1−α) a pair consisting of a cherry leaf and an edge, and at rate α a pair consisting of a non-cherry leaf
and an edge at random, and inserts the picked leaf at the chosen edge. The discrepancy βmα (t) between
the total backward and forward rate at the current state t is a potential which links the forward α-Ford
chain Xm,α and the backward α-Ford chain Y m,α via a Feynman-Kac duality: for all s, t ∈ Cm,

Ps

({
Xm,α

t = t
})

= Et

[
1s

(
Y m,α
t

)
exp

( ∫ t

0
βmα (Y m,α

s )ds
)]

(1.5)

(compare Proposition 1.25).
One of the main goals of this paper is to construct the diffusion limit of the α-Ford chain as the

number of leaves goes to infinity, and to provide analytic characterizations. In the case α = 1
2 the

existence of such a diffusion limit was conjectured by David Aldous in a seminar held at the Field
Institute in 1999 and had been listed on his open problem list since. Only recently such a Aldous
diffusion was constructed in two independent and different approaches ([FPRW21, FPRW20, FPRWb,
FPRWa] versus [LMW20]). We will here follow the approach of [LMW20] which relies on the notion
of algebraic measure trees and the sample shape convergence, and generalize their construction to all
α ∈ [0, 1].

3 Josué Nussbaumer



Chapter 1: The α-Ford algebraic measure trees
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Figure 1.3: c) the two edges containing the branch point of degree 2 are identified while the edge e
gets opened, and d) the free edge gets shuffled there and reattached.

Consider the operator Ωα acting on test functions of so-called sample shape polynomials

Φm,t(χ) :=

∫

Tm

µ⊗m(du)1t(s(T,c)(u)), (1.6)

with m ∈ N, χ = (T, c, µ) ∈ T2 and t ∈ Cm, as follows:

ΩαΦ
m,t(χ) :=

∫

Tm

µ⊗m(du)Ω̃m
α 1t(s(T,c)(u)), (1.7)

where 1t plays the role of the test function for Ω̃m
α , which denotes the generator of the α-Ford Markov

chain on the space of m-cladograms (see (1.69) for a precise definition).
We state here our first main result. To do so, we identify as before an N -cladogram with an element

of TN
2 by forgetting the leaf labels and adding the uniform distribution on the leaves. That is, in what

follows the α-Ford chain is a T
N
2 -valued Markov chain.

Theorem 1.1 (The well-posed martingale problem). Let α ∈ [0, 1] and P0 be a probability measure on
T
cont
2 . For each N ∈ N, let XN

0 ∈ T
N
2 and assume that XN

0 → χ, where χ is distributed according to
P0. Then the α-Ford chain XN,α starting in XN

0 converges weakly in Skorokhod path space w.r.t. the
sample shape convergence to a Tcont

2 -valued Feller process Xα with continuous paths.
Furthermore, Xα is the unique T

cont
2 -valued Markov process (Xt)t≥0 such that P0 is the distribution

of X0, and for all Φ ∈ D(Ωα), the process M := (Mt)t≥0 given by

Mt := Φ(Xt)− Φ(X0)−

∫ t

0
ΩαΦ(Xs)ds (1.8)

is a martingale.

We refer to the process from Theorem 1.1 as α-Ford diffusion, which is justified by the first part
of the theorem. We point out that the α-Ford diffusion is dual to the backward α-Ford chain through
the following Feynman-Kac-duality relation: for all m ∈ N and t ∈ Cm, the α-Ford diffusion X :=
((Tt, ct, µt))t≥0 with initial law P0 = δχ, χ ∈ T

cont
2 , satisfies

E
X
χ

[
Φm,t(Xt)

]
= E

Y m

t

[
Φm,Y m

t (χ) exp
( ∫ t

0
βmα (Y m

s )ds
)]
, (1.9)

where Y m := (Y m
t )t≥0 is the α-Ford backward chain on m-cladograms started in Y m

0 = t (Proposi-
tion 1.30).

In order to provide representations of the sample subtree mass distribution for general α ∈ [0, 1],
we extend this martingale problem as follows. We consider test functions of the following form, called
mass polynomials of degree 3: for f : [0, 1]3 → R continuous,

Φf (T, c, µ) :=

∫

T 3

f
(
η(c(u))

)
µ⊗3(du), (1.10)

Josué Nussbaumer 4



1.1 Introduction and motivation

where (T, c, µ) ∈ T2. One of the main results of [LW21] is that Φf ∈ C(T2).
For all α ∈ [0, 1], we extend the domain of the operator Ωα to the set of mass polynomials Φf with

f twice continuously differentiable on [0, 1]. We then put

ΩαΦ
f (χ) =

∫

T 3

µ⊗3(du)




3∑

i,j=1

ηi(δij − ηj)∂
2
ijf(η(u)) + (2− α)

3∑

i=1

(1− 3ηi)∂if(η(u))

+ (2− 3α)
3∑

i=1

(
f(ei)− f(η(u))

)
+
α

2

3∑

i 6=j=1

1ηi 6=0

ηi

(
f ◦ θi,j(η(u))− f(η(u))

)

+
α

2

3∑

i 6=j=1

(
1ηj=0 − 1ηi=0

)
∂if(η(u))




(1.11)

where θi,j : ∆2 → ∆2 denotes the migration operator on the two-simplex

∆2 := {x ∈ [0, 1]3 : x1 + x2 + x3 = 1}, (1.12)

which sends the vector η to the vector where we subtract ηi from the ith entry (resulting in the entry
zero) and add it to the jth entry (resulting in ηi + ηj), and ei = (δij)i=1,2,3 is the ith unit vector. See
Remark 1.35 for some heuristics of the expression (1.11).

Our second main result is the following:

Theorem 1.2 (Extended martingale problem for subtree masses). Let α ∈ [0, 1] and X = (Xt)t≥0
be the α-Ford diffusion on T

cont
2 . Then for all mass polynomials Φf with f ∈ C3([0, 1]), the process

Mf := (Mf
t )t≥0 given by

Mf
t := Φf (Xt)−Φf (X0)−

∫ t

0
ΩαΦ

f (Xs)ds (1.13)

is a martingale.

Since the α-Ford algebraic measure tree is an invariant distribution of the α-Ford diffusion, this
result also yields representations of the sample subtree mass distribution for general α ∈ [0, 1]. For
k = (k1, k2, k3) ∈ N

3
0, define fk : ∆2 → [0, 1] by

fk(η) = ηk11 η
k2
2 η

k3
3 . (1.14)

Obviously, E[Φf(0,0,0)
(χα)] = 1 and

E

[
Φf(1,0,0)

(χα)
]
= E

[
Φf(0,1,0)

(χα)
]
= E

[
Φf(0,0,1)

(χα)
]
=

1

3
, (1.15)

for all α ∈ [0, 1]. Moreover, the following recursive relations hold:

Corollary 1.3 (Moments of the subtree mass distribution of the α-Ford tree). Then, for all α ∈ [0, 1]
and k ∈ N

3
0,

E

[
Φfk

(χα)
]
=

1

(|k|+ 3)(|k|+ 2− 3α)

(
3∑

i=1

1{ki 6=0}(ki + 1)(ki − α)E
[
Φfk−ei (χα)

]

+ (2− 3α)
(
1{k1=k2=0} + 1{k2=k3=0} + 1{k3=k1=0}

)

+
α

2

3∑

i=1

1{ki=0}

3∑

j 6=i=1

kj∑

lj=1

(
kj
lj

)
E

[
Φfk+(lj−1)ei−ljej

(χα)
])

,

(1.16)

where |k| = k1 + k2 + k3.
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Chapter 1: The α-Ford algebraic measure trees

Outline. The rest of the paper is organized as follows. In Section 1.2 we introduce our state space
of algebraic measure trees and recall its most important properties from [LW21]. In Section 1.3 we
consider the static α-Ford model and give a description of the sample subtree mass distribution in
the particular case of the Kingman algebraic tree. In Section 1.4 we then consider the α-Ford chain
on cladograms with a fixed number of leaves and state the Feynman-Kac duality relation to the time
reversed chain. In Section 1.5 we construct the diffusion limit of the α-Ford chain as the number of
leaves goes to infinity as a solution of a well-posed martingale problem. In Section 1.6 we extend this
martingale problem to test functions which evaluate the sample subtree mass distribution and derive
our recursive relations for the moments of the sample subtree mass distribution.

1.2 The state space: algebraic measure trees

In this section we introduce the state space. For that we rely on the framework of algebraic measure
trees, which was introduced in [LW21]. All proofs can be found there.

1.2.1 Algebraic trees

In order to focus on the algebraic tree structure rather than the metric, the definition of a tree is based
on axioms on the map which sends any three points to their branch point.

Definition 1.4 (Algebraic tree). An algebraic tree is a non-empty set T together with a symmetric
map c : T 3 → T satisfying the following:

(2pc) For all x1, x2 ∈ T , c(x1, x2, x2) = x2.

(3pc) For all x1, x2, x3 ∈ T , c(x1, x2, c(x1, x2, x3)) = c(x1, x2, x3).

(4pc) For all x1, x2, x3, x4 ∈ T ,

c(x1, x2, x3) ∈ {c(x1, x2, x4), c(x1, x3, x4), c(x2, x3, x4)}. (1.17)

We call c the branch point map. A tree isomorphism between two algebraic trees (Ti, ci), i = 1, 2, is a
bijective map φ : T1 → T2 such that for all x1, x2, x3 ∈ T1,

φ(c1(x1, x2, x3)) = c2(φ(x1), φ(x2), φ(x3)). (1.18)

For each point x ∈ T , we define an equivalence relation ∼x on T \{x} such that for all y, z ∈ T \{x},
y ∼x z if and only if c(x, y, z) 6= x. For y ∈ T \ {x}, we denote by

Sx(y) := {z ∈ T \ {x} : z ∼x y} (1.19)

the equivalence class of y for this equivalence relation ∼x. We also call Sx(y) the component of T \{x}
containing y. We introduce the following definitions to describe the tree structure of an algebraic tree
(T, c):

• a subtree of T is a set S ⊆ T such that c(S3) = S,

• the degree of x ∈ T is the number of components of T \ {x}, and we write deg(x) := #{Sx(y) :
y ∈ T \ {x}},

• a leaf is a point u ∈ T such that deg(u) = 1, and we write lf(T ) for the set of leaves,

• a branch point is a point v ∈ T such that deg(v) ≥ 3, or equivalently such that v = c(x1, x2, x3)
for some x1, x2, x3 ∈ T \ {v}, and we denote by br(T ) the set of branch points,

• for x, y ∈ T , we define the interval [x, y] as

[x, y] := {z ∈ T : c(x, y, z) = z}, (1.20)

• and we say that {x, y} is an edge if x 6= y and [x, y] = {x, y}.

Josué Nussbaumer 6



1.2 The state space: algebraic measure trees

There is a natural Hausdorff topology on a given algebraic tree, namely the topology generated by
the set of all components Sx(y) with x 6= y, x, y ∈ T . We say that an algebraic tree (T, c) is order
separable if it is separable w.r.t. this topology and has at most countably many edges. We further
equip order separable algebraic trees with a probability measure on the Borel σ-algebra B(T, c), which
allows to sample leaves from the tree.

Definition 1.5 (Algebraic measure trees). A (separable) algebraic measure tree (T, c, µ) is an order
separable algebraic tree (T, c) together with a probability measure µ on B(T, c).

We say that two algebraic measure trees (Ti, ci, µi), i = 1, 2 are equivalent if there exist subtrees
Si ⊆ Ti with µi(Si) = 1, i = 1, 2 and a measure preserving tree isomorphism φ from S1 onto S2, i.e.
c2(φ(x), φ(y), φ(z)) = φ(c1(x, y, z)) for all x, y, z ∈ S1, and µ1 ◦ φ−1 = µ2. We define

T := set of equivalence classes of algebraic measure trees. (1.21)

With an abuse of notation, we will write χ = (T, c, µ) for the algberaic tree as well as the equivalence
class.

A first way to equip T with a topology is by associating an algebraic measure tree with a metric
measure tree and define the convergence of algebraic measure trees in T as the Gromov-weak conver-
gence (compare, for example, [GPW09]) of these associated metric measure trees. We first need to
define the metric measure tree associated to an algebraic measure tree.

Definition 1.6 (branch point distribution). For an algebraic measure tree χ = (T, c, µ), the branch
point distribution on T is defined as

ν(T,c,µ) := µ⊗3 ◦ c−1, (1.22)

and we associate χ with the metric measure tree (T, rµ, µ), where we put for x, y ∈ T ,

rµ(x, y) := νχ([x, y]) −
1

2
νχ({x}) −

1

2
νχ({y}). (1.23)

The choice of the metric rµ can be understood as follows: two points are close if the mass branching
off the line segment connecting them is small rather than if the length of this line segment is small.
We then say that a sequence of algebraic measure trees converges in the branch point distribution dis-
tance Gromov-weak topology if the associated (through rµ) sequence of metric measure trees converges
Gromov-weakly.

Because cladograms are by definition binary, it is enough for the purpose of the present paper to
consider the subspace of T consisting of binary trees. More precisely, we consider the subspace of
binary algebraic measure trees with the property that the measure has atoms only (if at all) on the
leaves on the tree:

T2 = {(T, c, µ) ∈ T : deg(v) ≤ 3 ∀v ∈ T, at(µ) ⊆ lf(T )}, (1.24)

where we write at(µ) for the set of atoms of µ. Under this extra condition, the notion of Gromov-
weak convergence with respect to rν is equivalent to a more combinatorial notion of convergence. In
contrast to the Gromov-weak convergence which relies on sample distance matrices, this combinatorial
notion make use of sample shapes. To introduce the latter, we first extend our previous definition of
cladograms as follows.

Definition 1.7 (m-cladogram). For m ∈ N, an m-labelled cladogram is a binary, finite tree C = (C, c)
consisting only of leaves and branch points together with a surjective labelling map ζ : {1, ...,m} →
lf(C). An m-cladogram (C, c, ζ) is an m-labelled cladogram such that ζ is also injective.

We call two m-labelled cladograms (C1, c1, ζ1) and (C2, c2, ζ2) isomorphic if there exists a tree
isomorphism φ from (C1, c1) onto (C2, c2) such that ζ2 = φ ◦ ζ1. We then write

Cm := {isomorphism classes of m-labelled cladograms} (1.25)

and
Cm := {(C, c, ζ) ∈ Cm : ζ injective}. (1.26)

7 Josué Nussbaumer



Chapter 1: The α-Ford algebraic measure trees

u1 • •

• •
❆❆

❆❆
❆ •

❆❆❆❆❆
⑥⑥⑥⑥⑥

u1
❆❆

❆❆
u3

• u3 • u4 • • u4

u2

⑥⑥⑥⑥⑥
u2

⑥⑥⑥⑥⑥

Figure 1.4: A tree T and the shape s(T,c)(u1, u2, u3, u4). The cladogram is not isomorphic to the
subtree c({u1, u2, u3, u4}3) because u3 ∈ [u1, u4].

Note that anm-cladogram has exactlym leaves (andm−2 branch points). Anm-labelled cladogram
can have less than m leaves (and m− 2 branch points) if a leaf has multiple labels.

We next define the shape function, which allows to associate m ordered distinct leaves with a unique
m-cladogram.

Definition 1.8 (Shape function). For a binary algebraic tree (T, c), m ∈ N, and u1, ..., um ∈ T \br(T ),
there exists a unique (up to isomorphism) m-labelled cladogram

s(T,c)(u1, ..., um) = (C, cC , ζ) (1.27)

with lf(C) = {u1, .., um} and ζ(i) = ui, such that the identity on lf(C) extends to a tree homomorphism
π from C onto c({u1, ..., um}3), i.e. for all i, j, k = 1, ...,m,

π(cC(ui, uj , uk)) = c(ui, uj , uk). (1.28)

We will refer to s(T,c)(u1, ..., um) ∈ Cm as the shape of u1, ..., um in (T, c) (compare with Figure 1.4).

We are now in a position to define the sample shape convergence.

Definition 1.9 (Sample shape convergence). A sequence (χN )N∈N of binary algebraic measure trees
(TN , cN , µN ) converges in sample shape to the algebraic measure tree (T, c, µ) if and only if for
UN
1 , U

N
2 , ... i.i.d. of law µN , and U1, U2, ... i.i.d. of law µ, for all m ∈ N,

s(TN ,cN )(U
N
1 , ..., U

N
m ) =⇒

N→∞
s(T,c)(U1, ..., Um). (1.29)

Since for any m ∈ N the space of m-cladograms is finite, we have the following equivalence ([LW21,
Corollary 5.21]).

Proposition 1.10 (Convergence determining class of functions). Consider χ = (T, c, µ) and (χN =
(TN , cN , µN ))N∈N in T2. Then (χN )N∈N converges to χ w.r.t. the sample shape convergence if and
only if for all m ∈ N and t ∈ Cm,

µ⊗mN

({
(u1, ..., um) : s(TN ,cN )(u) = t

})
−→
N→∞

µ⊗m
({

(u1, ..., um) : s(T,c)(u) = t}
)
. (1.30)

In what follows we will consider α-Ford trees with N leaves as random algebraic measure tree which
belong to the following subspace:

T
N
2 :=

{
(T, c, µ) ∈ T2 : #lf(T ) = N and µ = 1

N

∑

u∈lf(T )

δu
}
, (1.31)

and let then N tend to infinity. The next proposition claims that the limit points are elements in the
following closed subspace ([LW21, Corollary 4.9]):

T
cont
2 := {(T, c, µ) ∈ T2 : at(µ) = ∅} . (1.32)

Josué Nussbaumer 8



1.2 The state space: algebraic measure trees

Proposition 1.11 (Approximations with T
cont
2 ). Let χ ∈ T2. Then χ ∈ T

cont
2 if and only if there

exists for each N ∈ N a χN ∈ T
N
2 such that χN → χ in one and thus all of the equivalent notions of

convergence on T2 given above.

Finally, the following result will be very helpful in constructing the diffusions in Section 1.5 ([LW21,
Theorem 3, Corollary 5.19]):

Proposition 1.12 (Compactness and metrizability). T2 and T
cont
2 are compact, metrizable spaces.

1.2.2 Rooted algebraic trees

In many applications rooted trees are of interest. Even though we mainly work with unrooted trees in
this paper, we want to shortly explain how algebraic trees are extended to rooted algebraic trees.

Definition 1.13 (Rooted and partially ordered algebraic tree). A partially ordered algebraic tree is a
non-empty set T together with a symmetric map c∧ : T × T → T such that:

(M1) For all x ∈ T , c∧
(
x, x

)
= x.

(M2) For all x1, x2, x3 ∈ T , c∧
(
x1, c∧(x2, x3)

)
= c∧(c∧(x1, x2), x3).

(M3) For all x1, x2, x3 ∈ T , #{c∧(x1, x2), c∧(x1, x3), c∧(x2, x3)} ≤ 2 and if c∧(x1, x2) = c∧(x1, x3),
then

c∧(x1, x2) = c∧
(
c∧(x1, x2), c∧(x2, x3)

)
. (1.33)

We refer to c∧ as the minimum map.
A rooted algebraic tree (T, c∧) is a partially ordered algebraic tree for which there exists a point

ρ ∈ T with c∧(ρ, x) = ρ for all x ∈ T . We will refer to (this unique) ρ as the root of (T, c∧).

Remark 1.14 ((M1) and (M2) define a partial order). Let (T, c∧) be a partially ordered algebraic
tree. In what follows, we write for x, y ∈ T , x ≤ y if and only if x = c∧(x, y) respectively, x < y
if and only if x = c∧(x, y) 6= y. Notice that the first two conditions (M1) and (M2) ensure that ≤
defines a partial order relation. Indeed, reflexivity follows from (M1), antisymmetry follows from the
fact that c∧ is a symmetric map and transitivity follows from (M2), i.e., if x, y, z ∈ T are such that
x ≤ y and y ≤ z, or equivalently, if x = c∧(x, y) and y = c∧(y, z), then x = c∧(x, y) = c∧(x, c∧(y, z)) =
c∧(c∧(x, y), z) = c∧(x, z).

The following lemma gives key arguments for Proposition 1.16.

Lemma 1.15. Let (T, c∧) be a partially ordered, algebraic tree.

(i) For x, y ∈ T ,
c∧(x, y) ≤ x. (1.34)

(ii) Then for all x, y, z ∈ T ,

c∧(x, y) ≤ c∧(x, z) or c∧(x, y) > c∧(x, z). (1.35)

In particular, max{c∧(x, y), c∧(x, z), c∧(y, z)} is well-defined.

Proof. “(i)” By (M2) and (M1),

c∧(x, c∧(x, y)) = c∧(c∧(x, x), y) = c∧(x, y). (1.36)

“(ii)” If x, y, z ∈ T are such that c∧(x, y) = c∧(x, z), the claim is trivial. By (M3) we can therefore
assume w.l.o.g. that c∧(x, y) = c∧(y, z). Then using (M2) together with part (i), c∧(c∧(x, y), c∧(x, z)) =
c∧(y, c∧(x, c∧(x, z))) = c∧(y, c∧(x, z)) = c∧(x, y).

When we add the third condition (M3) to the partially ordered set defined by (M1) and (M2), we
ensure that there are no loops, so that we can relate algebraic trees to rooted, algebraic trees.

9 Josué Nussbaumer



Chapter 1: The α-Ford algebraic measure trees

Proposition 1.16 (Rooted versus unrooted algebraic trees). Let T 6= ∅.

(i) If (T, c) is an algebraic tree, ρ ∈ T , and c∧ : T 2 → T the symmetric map defined as

c∧(x, y) := c(x, y, ρ), x, y ∈ T, (1.37)

then (T, c∧, ρ) is a rooted algebraic tree.

(ii) If (T, c∧) is a partially ordered, algebraic tree and c : T 3 → T the symmetric map defined as

c(x, y, z) := max{c∧(x, y), c∧(x, z), c∧(y, z)}, x, y, z ∈ T, (1.38)

then (T, c) is an algebraic tree.

Proof. “(i)” Let (T, c) be an algebraic tree, ρ ∈ T , and define c∧ as in (1.37). (M1) follows from
(2pc) as c∧(x, x) = c(ρ, x, x) = x for all x ∈ T . To verify (M2), let x, y, z ∈ T . We need to
show that c(ρ, x, c(ρ, y, z)) = c(ρ, c(ρ, x, y), z). By (4pc), three cases are possible: a) if c(ρ, y, z) =
c(ρ, x, y), then by (3pc), c(ρ, x, c(ρ, y, z)) = c(ρ, x, y) = c(ρ, c(ρ, x, y), z), b) if c(ρ, y, z) = c(ρ, x, z),
then by (3pc) together with [LW21, Lemma 2.2], c(ρ, x, c(ρ, y, z)) = c(ρ, x, z) = c(ρ, c(ρ, x, y), z) or
c) if c(ρ, x, y) = c(ρ, x, z), we use the same line of arguments as in case b). Finally, to see (M3),
let x, y, z ∈ T . By [LW21, Lemma 2.2], {c(x, y, z), c(ρ, x, y), c(ρ, x, z), c(ρ, y, z)} consists of two pairs
of equal points or one point only. Moreover, if c∧(x, y) = c∧(x, z), that is, c(ρ, x, y) = c(ρ, x, z),
then by [LW21, Lemma 2.2], c(ρ, x, y) = c(ρ, x, c(ρ, y, z)) and with (3pc), c(ρ, c(ρ, x, y), c(ρ, y, z)) =
c(ρ, c(ρ, x, c(ρ, y, z)), c(ρ, y, z)) = c(ρ, x, c(ρ, y, z)) = c(ρ, x, y).

“(ii)” Let (T, c∧) be a partially ordered, algebraic tree, and define c as in (1.37). To see (2pc),
let x1, x2, x3 ∈ T such that x2 = x3. Then c∧(x1, x2) = c∧(x1, x3), and therefore c(x1, x2, x3) =
c∧(x2, x3) = x2, by (M3) and (M1).

As for (3pc), let x1, x2, x3 ∈ T . We distinguish three cases: a) If c∧(x1, x3) = c∧(x2, x3), we have
with (1.34), c∧(x1, c∧(x1, x2)) = c∧(x1, x2) = c∧(c∧(x1, x2), x2), so that, with (1.37),

c(x1, x2, c(x1, x2, x3)) = c(x1, x2, c∧(x1, x2)) = c∧(x1, x2) = c(x1, x2, x3). (1.39)

b) If c∧(x1, x2) = c∧(x1, x3), then using (M2) and (1.34), we have that

c∧(x1, c∧(x2, x3)) = c∧(c∧(x1, x2), x3) = c∧(c∧(x1, x3), x3) = c∧(x1, x3) = c∧(x1, x2) (1.40)

and therefore, with (1.37) and (1.34),

c(x1, x2, c(x1, x2, x3)) = c(x1, x2, c∧(x2, x3)) = c∧(x2, c∧(x2, x3)) = c∧(x2, x3) = c(x1, x2, x3). (1.41)

c) If c∧(x1, x2) = c∧(x2, x3), we use the same line of arguments as in case b).
Finally for (4pc), let x1, ..., x4 ∈ T and assume w.l.o.g. that c∧(x1, x2) = c∧(x1, x3) and thus that

c(x1, x2, x3) = c∧(x2, x3) ≥ c∧(x1, x2) = c∧(x1, x3). (1.42)

We show that c∧(x2, x3) ∈ {c(x1, x2, x4), c(x1, x3, x4), c(x2, x3, x4)}. If c(x2, x3, x4) = c∧(x2, x3), this
obviously holds. Assume therefore that c(x2, x3, x4) 6= c∧(x2, x3). Then we can assume w.l.o.g. that
c∧(x2, x3) = c∧(x2, x4) < c∧(x3, x4). By (1.42), c∧(x3, x4) > c∧(x2, x3) ≥ c∧(x1, x3), so that with
(M3) applied to {x1, x3, x4}, c∧(x1, x4) = c∧(x1, x3) = c∧(x1, x2) and with (1.37), c(x1, x2, x4) =
c∧(x2, x4) = c∧(x2, x3) and we are done.

1.3 Continuum limits of the α-Ford trees

Recall from (1.31) and from (1.32) the spaces T
N
2 and T

cont
2 of all binary algebraic measure trees with

N leaves and equipped with the uniform distribution on the set of leaves respectively of all continuum
binary algebraic measure trees. In this section we consider the α-Ford trees with N leaves as elements
in T

N
2 , and establish their continuum limits as N tends to infinity.

Josué Nussbaumer 10
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Proposition 1.17 (Continuum α-Ford trees). Fix α ∈ [0, 1], and let for N ∈ N, χα
N denote the α-Ford

tree with N leaves. Then their exists a random continuum binary measure tree χα ∈ T
cont
2 such that

χα
N =⇒

N→∞
χα, (1.43)

where ⇒ stands for weak convergence on T2 equipped with the sample shape convergence.

Proof. By Proposition 1.12, the space T2 of binary algebraic measure trees with atoms only on the set
of leaves is compact. Therefore the sequence {χα

N ; N ∈ N} is clearly tight. Moreover, all limit points
are elements of Tcont

2 by Proposition 1.11.
For uniqueness of the limit we show that the family {χα

N = (Tα
N , c

α
N ); n ∈ N} is sampling consistent,

i.e., for all N ∈ N and m ≤ N , the shape s(Tα
N
,cα

N
)(U1, ..., Um) of the subtree spanned by m leaves

(U1, ..., Um) sampled at random from χα
N has the distribution of the α-Ford tree with m-leaves. Indeed,

it has been shown in [For, Proposition 42] through a combinatorial argument that the α-Ford models
are deletion stable, which means that the cladogram obtained by removing the leaf with label m from
the α-Ford tree with m leaves has the distribution of the α-Ford tree with m− 1 leaves. Furthermore,
the last step of the construction of the α-Ford cladogram assures that we have exchangeability, i.e. the
resulting distribution on cladograms is symmetric under permutation of leaf labels. This implies the
claimed sampling consistency.

Definition 1.18 (Continuum α-Ford tree). The α-Ford algebraic measure tree χα is the unique limit
in T

cont
2 of the sequence (χα

N )N , where χα
N is the random algebraic measure tree in T

N
2 obtained from

the random N -cladogram distributed according to the α-Ford model.

Remark 1.19 (Rooted continuum α-Ford tree). In [For], the alpha model is introduced as a random
rooted m-cladogram, in which the edge adjacent to the root is an internal edge and thus has weight α.
Once more, we can consider rooted α-Ford measure trees as a random rooted algebraic tree with a fixed
finite number of leaves equipped with the uniform distribution on the set of leaves (not including the
root leaf). One can show by similar arguments as in [LW21] that the space of rooted binary algebraic
measure trees equipped with the rooted sample shape topology is compact. As the family of α-Ford
rooted trees indexed by the number of leaves is sampling consistent, Proposition 1.17 still holds in the
case of rooted algebraic measure trees. For each α ∈ [0, 1], we refer to the continuum limit χα,ρ as the
rooted α-Ford algebraic measure tree.

Note that by Definition 1.18, the distribution of the shape spanned by a sample of size m from the
α-Ford algebraic measure tree equals the α-Ford model on m-cladograms. In this paper we want to
promote with the sample subtree mass distribution a further statistics for testing hypotheses. More
precisely, recall the definition of the components Sv(u), u, v ∈ T , from (1.19) and for u = (u1, u2, u3) ∈
T 3, denote by η(u) the vector of the µ-masses of the components of T \ {c(u)}, that is

η(u) = (ηi(u))i=1,2,3 =
(
µ(Sc(u)(ui))

)
i=1,2,3

∈ ∆2, (1.44)

where ∆k stands for the k-simplex for k ∈ N, i.e.,

∆k :=
{
x ∈ [0, 1]k+1 : x1 + ...+ xk+1 = 1

}
. (1.45)

We here want to point out that in the following three cases we know the shape distribution as well
as the subtree mass distribution explicitly:

• α = 0: The Kingman algebraic measure tree.

• α = 1
2 : The algebraic measure Brownian CRT.

• α = 1: The comb algebraic measure tree.

Before we continue in the next sections developing analytical tools for a description of subtree mass
distribution for a general α ∈ [0, 1], we close this section by summarizing what can be obtained for the
particular cases by means of known probabilistic representations.

11 Josué Nussbaumer
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Figure 1.5: The comb tree with N leaves.

For k ∈ N and γ1, γ2, ..., γk > 0 denote by Dir(γ1, ..., γk) the Dirichlet distribution, i.e., the proba-
bility distribution on ∆k−1 with density

f(γ1,...,γk)(x1, ..., xk) :=
Γ(γ1 + ...+ γk)

Γ(γ1) · ... · Γ(γk)
xγ1−11 xγ2−12 · ... · xγk−1k . (1.46)

Recall that for k = 2 and γ1, γ2 > 0, the Dir(γ1, γ2) is referred to as the beta distribution with
parameters γ1 and γ2.

1.3.1 The comb algebraic measure tree

We will start with the simplest case α = 1. Let for each N ∈ N, χ1
N be (the equivalence class of)

the algebraic comb tree with N leaves and uniform distribution on the leaves (see Figure 1.5 for an
illustration). Let further χ1 be (the equivalence class of) the unit interval with the uniform distribution.
Clearly, if a sample of size m from χ1

N consists of m distinct points, then it spans a shape that equals
the shape spanned by a sample of size m from χ1. As the probability that a sample of size m from χ1

N

has double points converges to 0 as N →∞, χ1
N → χ1 in sample shape convergence.

Notice that χ1 is deterministic. We can therefore easily describe the subtree mass distribution.

Proposition 1.20 (Subtree mass distribution in the comb tree). Let Beta(2, 2) be the beta distribution
on [0, 1]. Then (almost surely), for all f : ∆2 → R continuous bounded,

∫

(T
χ1 )3

(µχ1)⊗3(du)f
(
η
χ1(u)

)
=

1

6

∑

π∈S3

∫

[0,1]
f ◦ π∗(x, 1 − x, 0)Beta(2, 2)(dx), (1.47)

where S3 is the set of permutations of {1, 2, 3}, and for π ∈ S3, π∗ : ∆2 → ∆2 is the induced map
π∗(x) = (xπ(1), xπ(2), xπ(3)).

Proof. Let U1, U2, U3 be independent random variables uniformly distributed on [0, 1]. Denote by
U(1), U(2), U(3) the increasingly ordered random variables. It is well-known that U(2) has law Beta(2,2).
Now, if we sample three points from χ1, the points correspond to U1, U2, U3 and their branch point to
U(2). The subtree masses around this branch point are U(2), 1− U(2) and 0, and the claim follows by
exchangeability.

1.3.2 The algebraic measure Brownian CRT

The case α = 1
2 is well-studied. Consider for each N ∈ N the equivalence class χ

1
2
N of the 1

2 -Ford tree

with N leaves and uniform distribution on the leaves. Clearly, if a sample of size m from χ
1
2
N consists

of m distinct points, then it spans a shape which is uniformly distributed among all possible shapes.

Once more, as the probability that a sample of size m from χ
1
2
N has double points converges to 0 as

N → ∞, the m-sample shape distribution of χ
1
2 is also uniform. It therefore follows from [Ald93,

Corollary 22] that χ
1
2 is (up to equivalence) equal to the algebraic tree read off from the Brownian

CRT.
Moreover, it is known that the sample subtree masses of the algebraic measure Brownian CRT is

Dirichlet distributed (see [Ald94a, Proposition 1], or [LMW20, Proposition 5.2] which gives a more

Josué Nussbaumer 12



1.3 Continuum limits of the α-Ford trees

general result for a sample of size m, proved with combinatorial arguments). More precisely, we have,
for all f : ∆2 → R continuous bounded,

E



∫
(
T
χ
1
2

)3(µχ 1
2
)⊗3(du)f

(
η
χ

1
2
(u)
)

 =

∫

∆2

f(x)Dir

(
1

2
,
1

2
,
1

2

)
(dx). (1.48)

1.3.3 The Kingman algebraic measure tree

The case α = 0 can be associated with the Kingman coalescent tree. More precisely, let K = (Kt)t≥0
be the unit rate Kingman coalescent which takes values in the space of partitions of the set N and
starts in the finest partition {{i}; i ∈ N}. Given K, we define the Kingman rooted algebraic tree as the
random rooted algebraic tree (T, c∧, ρ) with the vertex set

T := {̟ρ} ⊎
⋃

t≥0

⋃

̟∈Kt

̟, (1.49)

with ̟ρ = {1, ...,m} ⊎ {ρ} for a point ρ 6∈ N and the minimal map cρ which sends two elements
̟,̟′ ∈ T to the smallest ˜̟ ∈ T which contains both ̟ and ̟′, i.e.,

c∧(̟,̟
′) :=

⋂

˜̟∈T :̟,̟′⊆ ˜̟

˜̟ . (1.50)

Further, we define the Kingman algebraic tree as the random algebraic space (T, c) obtained from the
rooted Kingman algebraic tree (T, c∧,̟ρ) as in (1.38). We also define the rooted Kingman algebraic
measure tree and the Kingman algebraic measure tree as the weak limit as m→∞ (with respect to the
sample shape convergence) of the rooted algebraic measure Kingman tree respectively the algebraic
measure Kingman tree which are in addition equipped with

µm :=
1

m

m∑

i=1

δ{i}. (1.51)

Proposition 1.21. The rooted Kingman algebraic measure tree and the Kingman algebraic measure
tree equal in distribution with the rooted α = 0-Ford algebraic measure tree respectively the α = 0-Ford
algebraic measure tree.

Even if this fact is known, a proof does not seem easy to spot in the literature, and we therefore
give its proof.

Proof. We first consider the rooted finite models. Since there is only one equivalence class in T
N
2 for

N = 1, 2, 3, the (rooted) Kingman and (α = 0)-Ford algebraic measure trees with N = 1, 2, 3 leaves
have the same distribution.

Fix now N ∈ N. Given the Kingman N -coalescent (KN )t≥0 and a time s ≥ 0, we can define as
above the random rooted algebraic tree (TN

s , c∧, ρ) with the vertex set

TN
s := {̟ρ} ⊎

⋃

t≥s

⋃

̟∈KN
t

̟, (1.52)

with ̟ρ = {1, ..., N} ⊎ {ρ} for a point ρ 6∈ N and the minimal map cρ which sends two elements
̟,̟′ ∈ T to the smallest ˜̟ ∈ T which contains both ̟ and ̟′, i.e.,

cN∧,s(̟,̟
′) :=

⋂

˜̟∈TN
s :̟,̟′⊆ ˜̟

˜̟ . (1.53)

We further equip TN
s with the uniform measure µKN

s
on the blocks of the partition KN

s .
Let τ be the random time of the first coalescence event in the Kingman N -coalescent. Thus,

(TN
τ , c

N
∧,τ ) is the algebraic tree obtained from the N -coalescent where we removed the two leaves

13 Josué Nussbaumer



Chapter 1: The α-Ford algebraic measure trees

corresponding to the two blocks that merged first (together with the adjacent edges). Then, by a
property of the coalescent (see [Kin82]), (TN

τ , c
N
∧,τ , ρ, µKN

τ
) and (TN−1

0 , cN−1∧,0 , ρ, µKN−1
0

) have the same

distribution (up to equivalence), and (TN
τ , c

N
∧,τ , ρ, µKN

τ
) is independent (up to isomorphism) of the first

coalescence. This means that in (TN
τ , c∧), the leaf corresponding to the only block of KN

τ of size two
is uniformly distributed among all the leaves.

On the other hand, in the construction of the (α = 0)-Ford model, the N -th leaf is inserted into
the middle of an edge chosen uniformly at random among the N − 1 external edges. It follows by
induction that the rooted Kingman and (α = 0)-Ford algebraic measure trees with N leaves have same
distribution. Taking the limit when N goes to infinity yields the result.

However, the following result on the subtree mass distribution is new.

Proposition 1.22 (Subtree mass distribution in the Kingman algebraic measure tree). Let B1,2 and
B2,2 be two independent beta random variables, such that B1,2 has law Beta(1, 2) and B2,2 has law
Beta(2, 2). Then for all f : ∆2 → R continuous bounded,

E

[∫

(T
χ0 )3

(µχ0)⊗3(du)f(η
χ0(u))

]
=

1

6

∑

π∈S3

E
[
f ◦ π∗(1−B1,2, B1,2B2,2, B1,2(1−B2,2))

]
, (1.54)

where S3 is the set of permutations of {1, 2, 3}, and for π ∈ S3, π∗ : ∆2 → ∆2 is the induced map
π∗(x) = (xπ(1), xπ(2), xπ(3)).

This result is obtained by symmetrizing the subtree mass distribution in the rooted Kingman
algebraic measure tree, which is the rooted α-Ford algebraic measure tree with α = 0. In the case of
rooted algebraic trees, one of the three components contains the root ρ and we need to distinguish it
in the vector of subtree masses. For a branch point v ∈ br(T ), we write (ηρ(v), η1(v), η2(v)) for the
masses of the components of T \ {v}, with ηρ(v) being for the component which contains the root.

Proposition 1.23 (Subtree mass distribution in the rooted Kingman algebraic measure tree). Let
B1,2 and B2,2 be two independent beta random variables, such that B1,2 has law Beta(1,2) and B2,2 has
law Beta(2,2). For all f : ∆2 → R continuous and bounded,

E

[∫

(T
χ0,ρ )3

(µχ0,ρ)⊗3(du)f(η
χ0,ρ(u))

]
= E

[
f(1−B1,2, B1,2B2,2, B1,2(1−B2,2))

]
. (1.55)

We will need the following lemma for the proof.

Lemma 1.24. Let P0,ρ note the law of the rooted Kingman algebraic measure tree. P
0,ρ-almost surely,

for all v ∈ br(T ), we have

η(v) =
(
ηρ(v), (1 − ηρ(v))Uv , (1− ηρ(v))(1 − Uv)

)
, (1.56)

where Uv is a random variable uniformly distributed on (0, 1), independent of ηρ(v).

Proof. Given a rooted algebraic tree (T, c∧, ρ) denote for each v ∈ T by Sv := {z ∈ T : c∧(z, v) = v} the
subtree “above” v. Notice that the finite α-Ford tree is Markovian self-similar (see [For, Definition 24,
Lemma 27]), and that this implies that there exists a function q(·, ·) called conditional split distribution
such that for all 1 ≤ m ≤ n−1, qα(m,n−m) is the probability that if there are n leaves in the subtree
above a fixed vertex v, m leaves are put on the left side of v and n−m leaves are put on the right side
of v. For the alpha model with α = 0, this probability is simply

q0(m,n−m) =
1

n− 1
(1.57)

for all 1 ≤ m ≤ n− 1 (see [For, Lemma 27]).

Josué Nussbaumer 14



1.3 Continuum limits of the α-Ford trees

4th layer •
✻✻
✻

..
•

✟✟
✟

..
•

✻✻
✻

..
•

✟✟
✟

..
•

✻✻
✻

..
•

✟✟
✟

..
•

✻✻
✻

..
•

✟✟
✟

..

3rd layer •

❃❃
❃❃

❃❃
•

��
��
��

•

❃❃
❃❃

❃❃
•

��
��
��

2nd layer •

❊❊
❊❊

❊❊
❊❊

❊❊
❊❊

❊ •

②②
②②
②②
②②
②②
②②
②

1st layer •

ρ

Figure 1.6: The nth layer consists in the 2n−1 branch points that are at graphical distance n from the
root.

We are interested in the limit of this split distribution as the number of leaves n goes to infinity.
Let v ∈ br(T ) and consider Uv such that given ηρ(v), the vector (η1(v), η2(v)) has the same distribution
as (

(1− ηρ(v))Uv , (1− ηρ(v))(1 − Uv)
)
. (1.58)

Since the (α = 0)-Ford model is Markovian self-similar, Uv is independent of ηρ(v) and Uv has the
same distribution for all v ∈ br(T ). Moreover, for all x ∈ [0, 1],

P(Uv ≤ x) = lim
n→∞

⌊xn⌋∑

m=1

q0(m,n−m) = x, (1.59)

and the result follows.

Proof of Proposition 1.23. Due to exchangeability in the α-Ford model, for each v ∈ T the distribution
of η(v) and thus also

c∗µ
⊗3(v) = 3!ηρ(v)η1(v)η2(v) (1.60)

depend on v only through #]ρ, v]. Denote therefore for each n ∈ N by

T (n) :=
{
z ∈ T : #]ρ, z] = n

}
(1.61)

the nth layer and note that #T (n) = 2n−1 (Figure 1.6).
Let (Ui)i≥0 be a sequence of i.i.d. uniform random variables with values in (0, 1). Using the property

1.24 recursively, we find for each v ∈ T (n), n ≥ 1, that (ηρ(v), η1(v), η2(v)) equals in distribution

(
1−

n−2∏

i=0

Ui, Un−1

n−2∏

i=0

Ui, (1− Un−1)
n−2∏

i=0

Ui

)
=
(
1−An−1, An−1Un−1, An−1(1− Un−1)

)
(1.62)

with An :=
∏n−1

i=0 Ui for n ∈ N. Notice that An has density

gAn(x) =
(−1)n−1 logn−1(x)

(n− 1)!
, (1.63)

and thus
∞∑

n=2

2n−1gAn−1(x) =
∞∑

n=1

2n−1
(−1)n−2 logn−2(x)

(n− 2)!
= 2e−2 logx =

2

x2
. (1.64)
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Summing over all the layers we therefore find that for all continuous f : ∆2 → R,

E

[ ∫

T 3

µ⊗3
χ0,ρ(du)f

(
η(cχ0,ρ(u))

)]

= 3!

∞∑

n=2

2n−1E
[(
An−1

)2
(1−An−1)Un−1(1− Un−1)

× f
(
1−An−1, An−1Un−1, An−1(1− Un−1)

)]

= 3!

∫ 1

0
x2(1− x)

( ∞∑

n=2

2n−1gAn−1(x)
) ∫ 1

0
y(1− y)f

(
1− x, xy, x(1 − y)

)
dydx

= 23!

∫ 1

0
(1− x)

∫ 1

0
y(1− y)f

(
1− x, xy, x(1− y)

)
dydx

=

∫ 1

0

Γ(3)

Γ(1)Γ(2)
(1− x)

∫ 1

0

Γ(4)

Γ(2)Γ(2)
y(1− y)f

(
1− x, xy, x(1 − y)

)
dydx,

(1.65)

which gives the claim.

Further outline. Probabilistic representations as those used in the previous subsections for α = 0,
α = 1

2 and α = 1 are to the best of our knowledge not known to other α ∈ [0, 1]. However, we
will provide in Section 1.6 a complete description of the subtree mass distribution in the general case
through a recursive relation giving all the moments of the distribution (see Proposition 1.3). To obtain
the latter we will consider in Section 1.4 a Markov chain which has the finite α-Ford model as it
invariant distribution. In Section 1.5 we then find an analytic expression for its diffusion limit in terms
of a well-posed martingale problem (see Proposition 1.31) with respect to an operator which acts on
sample subtree mass polynomials (see (1.11)).

1.4 The α-Ford chain on fixed size cladograms

In this section, we introduce for each m ∈ N and α ∈ [0, 1] with the α-Ford chain a Markov chain on
Cm, which has the α-Ford model as its stationary distribution. This result will be a key argument to
prove in Section 1.5 that the α-Ford algebraic measure tree is an invariant distribution of the α-Ford
diffusion (see Proposition 1.32).

Recall from Section 1.1 that the α-Ford chain has the following transition rate: for a pair (x, e)
consisting of a leaf and an external (resp. internal) edge not adjacent to x at rate 1− α (resp. α), the
Markov chain jumps from its current state t to t(x,e), which is obtained as follows (see Figures 1.2 and
1.3):

• erase the edge (including the incident vertices) which connects x to the subtree spanned by all
leaves but x,

• split the remaining subtree at the edge e into two pieces,

• reintroduce the above edge (including x and the branch point) at the split point.

The transition rates of the α-Ford chain are, for t, t′ ∈ Cm,

qmα (t, t′)

=
∑

x∈lf(t)

∑

e∈edge(t∧x)

(
(1− α)1ext-edge(t∧x)(e) + α1int-edge(t∧x)(e)

)
1t′(t

(x,e)), (1.66)

where ext-edge(t) (resp. int-edge(t)) denotes the set of external edges of t (resp. internal edges), and
where we write

t∧x ∈ Cm−1 (1.67)
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1.4 The α-Ford chain on fixed size cladograms

◦

◦
❉❉

❉❉
• •

③③
③③

◦

• • •
❉❉

❉❉
◦

◦

③③③③
• •

③③③③

• ◦

❉❉❉❉

Figure 1.7: An 8-cladogram with 6 cherry leaves, denoted by ◦.

for the (m− 1)-cladogram obtained from t by deleting the leaf x (and relabelling the labels j > k to
j − 1, with k the label of the leaf x). As for all t ∈ Cm, #ext-edge(t) = m and #int-edge(t) = m− 3
(for m ≥ 4), we find for the total jump rate

qmα (t, t′) :=
∑

t′∈Cm

qmα (t, t′)

= m
(
(1− α)(m − 1) + α(m− 4)

)
= m(m− 1− 3α).

(1.68)

The generator Ω̃m
α of the α-Ford chain acts on all functions φ : Cm → R as follows:

Ω̃m
α φ(t) = (1− α)

∑

x∈lf(t)

∑

e∈ext-edge(t∧x)

(
φ(t(x,e))− φ(t)

)

+α
∑

x∈lf(t)

∑

e∈int-edge(t∧x)

(
φ(t(x,e))− φ(t)

)
.

(1.69)

Note that we have, for all α ∈ [0, 1],

Ω̃m
α = (1− 2α)Ω̃m

Kin + 2αΩ̃m
Ald, (1.70)

where Ω̃m
Ald := Ω̃m

1
2

is the generator of the Aldous chain and Ω̃m
Kin := Ω̃m

0 the one of the Kingman chain,

where the edges are introduced into external edges only. Although (1− 2α)Ω̃m
Kin is not a generator for

α > 1
2 , we will make use of the linearity relation (1.70) to extend to any α ∈ [0, 1] some results that

are shown for the generators in the cases α = 0, 12 . In particular, since the Aldous chain was studied
in detail in discrete time in [Ald00, Sch01], and in continuous time (up to a time change by a factor of
2) in [LMW20], it will sometimes be enough to show the result for the Kingman case α = 0.

In order to state a duality result for the α-Ford diffusion (see Proposition 1.30), we also introduce
the backward Markov chain, i.e. the Markov chain with reversed transition rates

qmα↓(t
′, t) := qmα (t, t′). (1.71)

To describe this chain through its generator, notice that after modifying the cladogram t according to
the forward chain, we can go back by a similar move: picking a leaf and inserting it to a given edge.
But in this case, the rates for a pair (x, e) will differ depending on the position of the leaf (not of the
edge) in the tree. Consider for example the Kingman chain with α = 0. Since we choose any leaf and
put it to an external edge in the forward chain, the edge we pick for the reverse move can be any edge
(not only external edge), but the leaf we pick has to be a cherry leaf. We call x a cherry leaf of t if
there exists y another leaf of t such that x and y are both adjacent to the same internal branch point
(Figure 1.7). We write

ch-lf(t) ⊆ lf(t) (1.72)

for the set of cherry leaves of t.
Thus, the generator Ω̃m

α↓ of the α-Ford backward chain acts on functions φ : Cm → R as follows:

Ω̃m
α↓φ(t) := (1− α)

∑

x∈ch-lf(t)

∑

e∈edge(t∧x)

(
φ(t(x,e))− φ(t)

)

+α
∑

x/∈ch-lf(t)

∑

e∈edge(t∧x)

(
φ(t(x,e))− φ(t)

)
.

(1.73)

17 Josué Nussbaumer



Chapter 1: The α-Ford algebraic measure trees

Note that for m ≥ 5, the α-Ford chain is symmetric if and only if α = 1
2 (Aldous chain).

We have the following relation between the α-Ford forward and backward chains:

Proposition 1.25 (Feynman-Kac duality). Let Xm,α = (Xm,α
t )t≥0 be the α-Ford forward chain and

Y m,α = (Y m,α
t )t≥0 the backward chain. Then for all t, s ∈ Cm,

Es [1t(X
m,α
t )] = Et

[
1s(Y

m,α
t ) exp

(∫ t

0
βmα (Y m,α

s )ds

)]
, (1.74)

where
βmα (t) := (1− 2α)

(
#(ch-lf(t))(2m − 5)−m(m− 1)

)
. (1.75)

Proof. For m ∈ N and t, t′ ∈ Cm, we write H(t′, t) := 1{t′ = t}. We claim that

Ω̃m
αH(·, t)(t′) = Ω̃m

α↓H(t′, ·)(t) + βmα (t)H(t′, ·)(t). (1.76)

Using (1.70) and an analogous relation for backward chains, it is enough to show the claim for α = 1
2

and α = 0. The case α = 1
2 is obvious, since the Aldous chain is symmetric and βm1

2

(t) = 0 for all t. In

the case α = 0, we have

Ω̃m
KinH(·, t)(t′)− Ω̃m

Kin↓
H(t′, ·)(t)

=
∑

x∈lf(t′)

∑

e∈ext-edge(t′∧x)

(
1t(t

′(x,e))− 1t(t
′)
)
−

∑

y∈ch-lf(t)

∑

f∈edge(t∧y)

(
1t′(t

(y,f))− 1t′(t)
)

= −
∑

x∈lf(t′)

∑

e∈ext-edge(t′∧x)

1t(t
′) +

∑

y∈ch-lf(t)

∑

f∈edge(t∧y)

1t′(t)

= βm0 (t)1t′(t),

(1.77)

where we used for the second equality that if there exists one forward move to go from t′ to t, then
there exists one backward move to go from t to t′, and reciprocally. And if this is the case, then both
moves are unique.

This proves (1.76) and the result follows by [EK86, Lemma 4.4.11, Corollary 4.4.13].

We have defined a family of Markov chains on a finite state space. For all α ∈ [0, 1), the chain is
irreducible recurrent and thus has a unique invariant distribution. But the following result stills holds
for α = 1.

Proposition 1.26 (Invariance). For all α ∈ [0, 1] and m ∈ N, the α-Ford model, χ̃α
m, on Cm is the

unique invariant distribution of the α-Ford (forward) chain. In particular, for all φ : Cm → R and
t′ ∈ Cm, ∑

t∈Cm

P
(
χ̃α
m = t

)
qmα (t, t′) = qmα (t)P

(
χ̃α
m = t′

)
. (1.78)

Proof. The proof relies heavily on the consistency property of the α-Ford model. Let α ∈ [0, 1]. By
(1.68), we want to prove for all t′ ∈ Cm that

∑

t∈Cm

P
(
{χ̃α

m = t}
)
qmα (t, t′) = m(m− 1− 3α)P

(
{χ̃α

m = t′}
)
. (1.79)

For t = (T, c, ζ) ∈ Cm, we denote the set of labels of cherry leaves of t by

ch-lb(t) :=
{
k ∈ {1, ...,m} : ζ(k) ∈ ch-lf(t)

}
, (1.80)

and for k ∈ {1, ...,m}, we write

t(k,e) := t(ζ(k),e) and t∧k := t∧(ζ(k)). (1.81)
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1.5 The α-Ford chain in the diffusion limit

For the left hand side of the equation, we exploit that for t, t′ ∈ Cm and k ∈ {1, ...,m}, t(k,e) = t′

for some e ∈ edge(t∧k) if and only if t∧k = t′∧k and more precisely, t(k,e) = t′ for some e ∈ ext-edge(t∧k)
if and only if t∧k = t′∧k and k ∈ ch-lb(t′), and in this case, the edge e is unique. This also implies that
t(k,e) = t′ for some e ∈ int-edge(t∧k) if and only if t∧k = t′∧k and k ∈ ∁ch-lb(t′), and in this case again,
the edge e is unique. Therefore,

∑

t∈Cm

P(χ̃α
m = t)qmα (t, t′)

=
∑

t∈Cm

P(χ̃α
m = t)

m∑

k=1


(1− α)

∑

e∈ext-edge(t∧k)

1t′(t
(k,e)) + α

∑

e∈int-edge(t∧k)

1t′(t
(k,e))




=

m∑

k=1

(
(1− α)1ch -lb(t′)(k) + α1∁ch -lb(t′)(k)

) ∑

t∈Cm

t∧k=t′∧k

P(χ̃α
m = t)

=

m∑

k=1

(
(1− α)1ch -lb(t′)(k) + α1∁ch -lb(t′)(k)

)
P(χ̃α

m−1 = t′∧k),

(1.82)

where we used, for the last equality, the consistency property of the α-Ford model. Moreover
For the right hand side of equation (1.79), we make use of the fact that we can construct χ̃α

m as
follows (see [For, Proposition 22]):

• take χ̃α
m−1 the α-Ford (m− 1)-cladogram,

• pick an edge e of χ̃α
m−1 randomly according to the weights of the α-Ford model,

• insert a leaf labelled m together with an edge at e, and denote this new m-cladogram by
(χ̃α

m−1)
(e,m),

• apply a uniform permutation σ to the leaf labels of (χ̃α
m−1)

(e,m). We write σ((χ̃α
m−1)

(e,m)) for the
new m-cladogram.

Therefore, writing Sm for the set of permutations of {1, ...,m}, and using similar arguments as
above,

P(χα
m = t′)

=
∑

z∈Cm−1

P(χ̃α
m−1 = z)

1

m!

∑

σ∈Sm

(
(1− α)

m− 1− 3α

∑

e∈ext-edge(z)

1t′(σ(z
(e,m)))

+
α

m− 1− 3α

∑

e∈int-edge(z)

1t′(σ(z
(e,m)))

)

=
∑

z∈Cm−1

P(χ̃α
m−1 = z)

1

m

m∑

k=1

1

(m− 1)!

∑

σ∈Sm
σ(m)=k

1t′∧k
(σ|{1,...,m−1}(z))

m− 1− 3α

×

(
(1− α)

∑

e∈ext-edge(z)

1t′(σ(z
(e,m))) + α

∑

e∈int-edge(z)

1t′(σ(z
(e,m)))

)

=
1

m(m− 1− 3α)

m∑

k=1

P(χ̃α
m−1 = t′∧k)

(
(1− α)1ch-lb(t′)(k) + α1∁ch-lb(t′)(k)

)
,

(1.83)

which together with (1.82) proves (1.78).

1.5 The α-Ford chain in the diffusion limit

In this section, we are interested in the diffusion limit of the Ford chains as the number of leaves goes
to infinity. We prove our first main result (Theorem 1.1) and thereby give an analytic construction of
what we shall call the α-Ford diffusion on cladograms.
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Chapter 1: The α-Ford algebraic measure trees

Recall from (1.1) the space T2 of binary algebraic measure tree with no atoms on the skeleton as
well as from (1.31) and from (1.32) the subspace T

N
2 of all binary algebraic measure trees with N

leaves and equipped with the uniform distribution on the set of leaves respectively the subspace T
cont
2

of all continuum binary algebraic measure trees. As we have done in Section 1.3, we here use that
by forgetting the leaf labelling and adding the uniform distribution on the leaves, cladograms with N
leaves can be seen as elements in T

N
2 ⊆ T2, where the space T2 is equipped with the sample shape

convergence and thus compact (see Definition 1.9 and Proposition 1.12). This allows to consider the
α-Ford chains with values in T

N
2 . Recall from Proposition 1.10 that a convergence determining class of

function is given by the class of sample shape polynomials Φm,t (defined in (1.6)) for some m ∈ N and
t ∈ Cm. In what follows we extend this class to the space Πs of linear combination of sample shape
polynomials. Note that Πs forms an algebra which contains the function which is constant 1.

Notice that the generator ΩN
α of the T

N
2 -valued α-Ford chain acts on sample shape polynomials as

ΩN
α Φm,t(χ) = (1− α)

∑

x∈lf(T )

∑

e∈ext-edge(T,c)

(
Φm,t(χ(x,e))− Φm,t(χ)

)

+α
∑

x∈lf(T )

∑

e∈int-edge(T,c)

(
Φm,t(χ(x,e))− Φm,t(χ)

)
.

(1.84)

Recall from (1.69) that Ω̃m
α is the generator of the α-Ford forward chain on Cm. Recall from (1.7)

the operator Ωα acting on the class of sample shape polynomials, and extend his action linearly to Πs.
Since the infinite trees we consider are limits as N →∞ of trees in T

N
2 , Proposition 1.11 provides that

we can limit our work to binary algebraic measure trees in T
cont
2 . Now consider m ∈ N and t ∈ Cm\Cm.

Then if s(T,c)(u1, ..., um) = t for some χ = (T, c, µ) ∈ T
cont
2 , we have that u1, ..., um are not distinct,

so that Φm,t(χ) = 0 because at(µ) = ∅. For this reason, we will limit the domain of the operator
of the α-Ford forward chain D(Ωα) to shape polynomials using m-cladograms instead of m-labelled
cladograms:

D(Ωα) := span{Φm,t : m ∈ N, t ∈ Cm}. (1.85)

Our first observation is the following:

Lemma 1.27. For all Φ ∈ D(Ωα), we have ΩαΦ ∈ D(Ωα). In particular,

(Φ,ΩαΦ) ∈ Cb(T2)× Cb(T2). (1.86)

Proof. Let Φ ∈ D(Ωα). The functions Φ and ΩαΦ are linear combinations sample shape polynomials,
hence continuous by definition of sample shape convergence. Furthermore, for all m ∈ N, t ∈ Cm and
χ ∈ T2, |Φm,t(χ)| ≤ 1 and by definition of Ω̃m

α (see (1.69)), |ΩαΦ
m,t(χ)| ≤ m(2m − 5). Thus, Φ and

ΩαΦ are bounded.

To prove the existence, we will follow, as in [LMW20], an argument similar to [EK86, Lemma 4.5.1].
For this, we relate the generators of α-Ford Markov chain and the prospective diffusion limit.

Proposition 1.28 (Uniform convergence of generators). Let α ∈ [0, 1]. For all Φ ∈ D(Ωα), we have

lim
N→∞

sup
χ∈TN

2

∣∣ΩN
α Φ(χ)− ΩαΦ(χ)

∣∣ = 0. (1.87)

Proof. Similar as in (1.70), note here that for all α ∈ [0, 1],

Ωα = (1− 2α)ΩKin + 2αΩAld. (1.88)

Since the result was shown by [LMW20] for the Aldous case α = 1
2 , and using (1.88), we need only to

show it for the Kingman case α = 0.
Consider Φ ∈ D(Ωα). By linearity, we can assume w.l.o.g. that Φ = Φm,t for some m ∈ N and

t ∈ Cm. If m = 1, 2, 3, #Cm = 1, so that Φm,t is constant on T
N
2 , for each N ∈ N. Therefore,
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1.5 The α-Ford chain in the diffusion limit
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✿✿✿✿✿✿
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Figure 1.8: A finite algebraic tree (T, c) and the extended tree (T , c).

ΩN
KinΦ

m,t(χ) = 0 for all χ ∈ T
N
2 , and the convergence holds since ΩKinΦ

m,t also equals to zero for
m = 1, 2, 3. Thus, we suppose m ≥ 4. Fix N ∈ N and χ = (T, c, µ) ∈ T

N
2 . We write

ǫ :=
1

N
. (1.89)

We extend the algebraic tree to allow for potential new branch points and new leaves due to the
chain moves on binary trees. To this end, for each external edge e ∈ ext-edge(T, c), we introduce two
additional points xe, ye, i.e., we consider

T = T ∪
⋃

e∈ext-edge(T,c)

{xe, ye}, (1.90)

and extend c to c : T
3
→ T which is uniquely defined as follows (see Figure 1.8). (T , c) is an algebraic

tree such that for e = {a, b} ∈ ext-edge(T, c), we have xe ∈ (a, b) in (T , c), and

c(ye, xe, z) = xe, ∀z ∈ T \ {ye}. (1.91)

For k ∈ {1, ...,m} and x ∈ T , let
θk,x : Tm → T

m
(1.92)

be the replacement operator which replaces the kth-coordinate by x. For χ = (T, µ) = (T , µ) and
(x, e) ∈ lf(T, c) × ext-edge(T, c), we write χ(x,e) the binary algebraic measure tree obtained by the
chain move with (x, e), i.e.,

χ(x,e) := (T , c, µ + ǫδye − ǫδx). (1.93)

The difference between sampling with the new and old measure is given by

(µ + ǫδye − ǫδx)
⊗m − µ⊗m

= ǫ

m∑

k=1

µ⊗(k−1) ⊗ (δye − δx)⊗ µ
⊗(m−k)

+ ǫ2
∑

1≤k<j≤m

µ⊗(k−1) ⊗ (δye − δx)⊗ µ
⊗(j−1) ⊗ (δye − δx)⊗ µ

⊗(m−j−k) + µ̃

= ǫ

m∑

k=1

(µ⊗m ◦ θ−1k,ye
− µ⊗m ◦ θ−1k,x)− ǫ

2
m∑

j 6=k=1

µ⊗m ◦ θ−1k,ye
◦ θ−1j,x + µ̃,

(1.94)

where µ̃ is a signed measure on T
m

with

µ̃{(u1, ..., um) : u1, ..., um distinct} = 0. (1.95)

As t ∈ Cm, we therefore find that

ΩN
KinΦ

m,t(χ) =
∑

x∈lf(T,c)

∑

e∈ext-edge(T,c)

(Φm,t(χ(x,e))− Φm,t(χ))

=

m∑

k=1

Ak −
m∑

k 6=j=1

Bk,j,

(1.96)
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Chapter 1: The α-Ford algebraic measure trees

with

Ak := ǫ
∑

x∈lf(T,c)

∑

e∈ext-edge(T,c)

∫

Tm

µ⊗m(du)
(
1t(s(T ,c)(θk,yeu))− 1t(s(T ,c)(θk,xu))

)

= (N − 1)

m∑

k=1

∫

Tm

µ⊗k−1 ⊗
(
ν − µ

)
⊗ µ⊗m−k(du)1t(s(T ,c)(u)),

(1.97)

and

Bk,j := ǫ2
∑

x∈lf(T,c)

∑

e∈ext-edge(T,c)

∫

Tm

µ⊗m(du)1t(s(T ,c)(θk,ye ◦ θj,xu))

= ǫ

∫

Tm

µ⊗m(du)
∑

e∈ext-edge(T,c)

1t(s(T ,c)(θk,yeu)

=

m∑

k=1

∫

Tm

µ⊗k−1 ⊗ ν ⊗ µ⊗m−k(du)1t(s(T ,c)(u))

(1.98)

and with
ν := ǫ

∑

e∈ext-edge(T,c)

δye (1.99)

which is different from µ. However, notice that if we consider u1, ..., um sampled from (T, c) according
to µ and if e is an external edge, then with ve ∈ lf(T ) being the unique leaf with ve ∈ e, s(T ,c)(θk,yeu) =

s(T ,c)(θk,veu) if and only if e ∩ {ui : i = 1, ..., um, i 6= k} = ∅. Furthermore, if e ∩ {ui : i = 1, ..., um, i 6=

k} 6= ∅, then s(T ,c)(θk,veu) 6= t because t ∈ Cm. Thus,

m∑

k=1

∫

Tm

µ⊗k−1 ⊗
(
ν − µ

)
⊗ µ⊗m−k(du)1t(s(T ,c)(u))

= ǫ

∫

Tm

µ⊗m(du)

m∑

i=1
i 6=k

1t(s(T ,c)(θk,yeui
u)).

(1.100)

It follows, in particular, that for all 1 ≤ k 6= j ≤ m,

Bk,j = Φm,t(χ) +O(ǫ), (1.101)

where the term O(ǫ) goes to 0 as N →∞ uniformly over all χ ∈ T
N
2 .

To further simplify the right hand side of (1.100), fix u ∈ Tm. Recall the notation t∧k ∈ Cm−1

for the (m− 1)-cladogram obtained from t by deleting the leaf with label k (and relabelling the labels
j > k to j − 1). If t = s(T ,c)(u), then t∧k = s(T ,c)(u∧k) with

u∧k = (u1, ..., uk−1, uk+1, ..., um). (1.102)

If s(T ,c)(θk,yeui
u) = t, then s(T ,c)(u∧k) = t∧k. Reciprocally, if s(T ,c)(u∧k) = t∧k, then s(T ,c)(θk,yeui

u) =
t if and only if k is the label of a cherry leaf of t and the leaves with labels i and k are both adjacent
to the same internal branch point of t. Therefore,

∫

Tm

µ⊗m(du)1t∧k
(s(T ,c)(u∧k)) = 1ch-lb(t)(k)Φ

m−1,t∧k(χ). (1.103)

All in all,
ΩN
KinΦ

m,t(χ) =
∑

k∈ch-lb(t)

Φm−1,t∧k(χ)−m(m− 1)Φm,t(χ) +O(ǫ). (1.104)

We have ∑

k∈ch-lb(t)

Φm−1,t∧k(χ) =

∫

Tm

µ⊗m(du)
∑

k∈ch-lb(t)

1t∧k
(s(T,c)(u∧k)). (1.105)
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1.5 The α-Ford chain in the diffusion limit

For u ∈ Tm, we have s(T,c)(u∧k) = t∧k if and only if there is an edge e of t∧k such that s(T,c)(u) = t(k,e),
where t(k,e) is the m-cladogram obtained by inserting a leaf with label k at the edge e in t∧k (and
relabelling the labels j ≥ k to j + 1). If such an edge e exists, it is unique, and we have

1t∧k
(s(T,c)(u∧k)) =

∑

e∈edge(t∧k)

1t(k,e)(s(T,c)(u)). (1.106)

Recall from (1.73) with α = 0 the generator Ω̃m
Kin↓

of the backward Kingman chain. By linearity, we
have

∑

k∈ch-lb(t)

Φm−1,t∧k(χ)

=

∫

Tm

µ⊗m(du)
∑

k∈ch-lb(t)

∑

e∈edge(t∧k)

1s(T,c)(u)(t
(k,e))

=

∫

Tm

µ⊗m(du)
(
Ω̃m
Kin↓

1s(T,c)(u)(t) + #(ch-lf(t))#edge(t∧k)1s(T,c)(u)(t)
)
.

(1.107)

With the notation βm0 (t) := #(ch-lf(t))(2m − 5)−m(m− 1),

ΩN
KinΦ

m,t(χ) =

∫

Tm

µ⊗m(du)
(
Ω̃m
Kin↓

1s(T,c)(u)(t) + βm0 (t)1s(T,c)(u)(t)
)
+O(ǫ). (1.108)

Finally, using the relation between the Kingman forward and backward chains stated in (1.76) with
α = 0,

ΩN
KinΦ

m,t(χ) =

∫

Tm

µ⊗m(du)Ω̃m
Kin1t(s(T,c)(u)) +O(ǫ)

=ΩKinΦ
m,t(χ) +O(ǫ),

(1.109)

and we have the result for all m ≥ 4.

We can now deduce from this convergence the existence of a solution to the martingale problem.

Proposition 1.29 (Existence). Let α ∈ [0, 1]. Let (χN )N∈N be a sequence of random binary algebraic
measure trees with χN ∈ T

N
2 , such that χN ⇒ χ, as N →∞, where χ is a random tree in T

cont
2 with

distribution P0. Let XN := (XN
t )t≥0 be the α-Ford forward chain started in χN . Then the sequence

(XN )N∈N is tight in DT2 , and any limit point (Xt)t≥0 has continuous paths in T
cont
2 and satisfies the

(Ωα,D(Ωα), P0)-martingale problem.
In particular, for any probability measure P0 on T

cont
2 there exists a solution in CTcont

2
(R+) to the

(Ωα,D(Ωα), P0)-martingale problem.

Proof. The proof follows the same line of arguments of [LMW20, Corollary 3.3] with replacing [LMW20,
Proposition 3.2] by Proposition 1.28. In particular, to show that all limit points satisfy the martingale
problem, we adapt the proof of [EK86, Lemma 4.5.1] in the following way.

Let (Xt)t≥0 be a limit point of (XN )N∈N. Let 0 ≤ ti ≤ t < s and hi ∈ Cb(T2), i = 1, . . . , k. For all
N ∈ N and Φ ∈ D(Ωα),

∣∣∣∣
∫ s

t
ΩαΦ(Xu)du−

∫ s

t
ΩN
α Φ(XN

u )du

∣∣∣∣

≤

∫ s

t

∣∣ΩαΦ(Xu)− ΩαΦ(X
N
u )
∣∣ du+

∫ s

t

∣∣ΩαΦ(X
N
u )− ΩN

α Φ(XN
u )
∣∣ du,

(1.110)

and we know from Lemma 1.27 that ΩαΦ is continuous and bounded. Therefore, using that (Xt)t≥0
has continuous paths (see the proof of [LMW20, Corollary 3.3]), we have by Proposition 1.28 that for
all Φ ∈ D(Ωα),

E

[(
Φ(Xt)− Φ(Xs)−

∫ s

t
ΩαΦ(Xu)du

) k∏

i=1

hi(Xti)

]

= lim
N→∞

E

[(
Φ(XN

t )− Φ(XN
s )−

∫ s

t
ΩN
α Φ(XN

u )du

) k∏

i=1

hi(X
N
ti )

]
= 0.

(1.111)
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Thus X is a solution of the martingale problem for (Ωα,D(Ωα)).

To prove the uniqueness of the solution for the martingale problem, we will use a result of duality
which appeared in the proof of Proposition 1.28. We claim that we have a duality between a diffusion
and a Markov chain on a finite state space: the dual of the α-Ford diffusion is the dual α-Ford Markov
chain, that is, the backward chain. For this, consider the duality functions given by the sample shape
polynomials, i.e. for m ∈ N, χ = (T, c, µ) ∈ T

cont
2 and t ∈ Cm, let

Hm(χ, t) := Φm,t(χ) =

∫

Tm

µ⊗m(du)1t(s(T,c)(u)). (1.112)

Proposition 1.30 (Feynman-Kac duality). Let α ∈ [0, 1]. Let P0 be a probability measure on T
cont
2 ,

let X := ((Tt, ct, µt))t≥0 be a solution to the (Ωα,D(Ωα), P0)-martingale problem in DTcont
2

(R+). For
m ∈ N and t ∈ Cm, we denote by Y m := (Y m

t )t≥0 the α-Ford backward chain on Cm-cladograms started
in Y m

0 = t. Then if Y m is independent of X,

E
X
P0

[Hm(Xt, t)] =

∫

Tcont
2

E
Y m

t

[
Hm(χ, Y m

t ) exp

(∫ t

0
βmα (Y m

s )ds

)]
P0(dχ), (1.113)

where βmα (t) = (1− 2α) (#(ch-lf(t))(2m − 5)−m(m− 1)).

Proof. Fix m ∈ N, χ = (T, c, µ) ∈ T
cont
2 and t ∈ Cm. Using (1.76),

ΩαH
m(·, t)(χ) :=

∫

Tm

µ⊗m(du)Ω̃m
α 1t(s(T,c)(u))

=

∫

Tm

µ⊗m(du)
(
Ω̃m
α↓1s(T,c)(u)(t) + βmα (t)1s(T,c)(u)(t)

)

=Ω̃m
α↓

(∫

Tm

µ⊗m(du)1s(T,c)(u)

)
(t) + βmα (t)Φm,t(χ)

=Ω̃m
α↓H

m(χ, ·)(t) + βmα (t)Hm(χ, t).

(1.114)

The result then follows by [EK86, Theorem 4.4.11, Corollary 4.4.13].

Proposition 1.31 (Uniqueness of the martingale problem). Let α ∈ [0, 1]. For all probability measures
P0 on T

cont
2 , uniqueness holds for the (Ωα,D(Ωα), P0)-martingale problem in DTcont

2
(R+).

Proof. By [EK86, Proposition 4.4.2], the uniqueness of the solution follows from the uniqueness of the
one-dimensional distributions of solutions of the martingale problem. But if (Xt)t≥0 is a solution of
the (Ωα,D(Ωα), P0)-martingale problem, then by Proposition 1.30 it satisfies (1.113) for all m ∈ N and
t ∈ Cm. By Proposition 1.10, the set of functions

{Hm(·, t) : m ∈ N, t ∈ Cm} = {Φ
m,t : m ∈ N, t ∈ Cm} (1.115)

is separating for probability measures on T
cont
2 , and the uniqueness of the one-dimensional distributions

follows.

Summing up the results of Proposition 1.29 and Proposition 1.31, we have shown Theorem 1.1.
Recall the continuum α-Ford algebraic measure tree χα (compare Definition 1.18). The following

result states that the distribution of χα is invariant under the α-Ford diffusion.

Proposition 1.32 (continuum α-Ford tree is invariant). Let α ∈ [0, 1]. The α-Ford algebraic measure
tree is an invariant distribution of the α-Ford diffusion.

Proof. Fix m ∈ N and t ∈ Cm. We have that

E
[
Φm,t(χα)

]
= P

(
χ̃α
m = t

)
, (1.116)
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where χ̃α
m is the α-Ford model on m-cladograms. Therefore for all m ∈ N and t ∈ Cm,

E
[
ΩαΦ

m,t(χα)
]
= E

[∫

Tm
χα

µ⊗mχα (du)Ω̃m
α 1t

(
s(T,c)(u)

)
]

= Ω̃m
α P
(
χ̃α
m = ·

)
(t) = 0,

(1.117)

since the α-Ford model χ̃α
m is the invariant distribution of the α-Ford chain (see Proposition 1.26).

This proves the claim.

Open question 1.33 (ergodicity). A natural question to ask is then whether the α-Ford diffusion
converges toward the α-Ford invariant distribution, for any initial distribution. This result would give
in the same time the uniqueness of the invariant distribution. It was proven in [LMW20] for the case 1

2
relying on the duality relation and the symmetry of the Aldous diffusion. However, the α-Ford diffusion
is symmetric if and only if α = 1

2 and in the non-symmetric cases the argument is destroyed due to the
exponential term in the Feynman-Kac duality equation (1.113). Ergodicity therefore remains an open
question for α ∈ [0, 1] \ {12}.

1.6 Application on sample subtree masses

In this section we are interested in the infinitesimal evolution of the law of the vector of subtree
masses under the α-Ford diffusion. Recall from (1.44) the definition of the subtree masses η(u) for
u = (u1, u2, u3) ∈ T

3, that is,

η(u) = (ηi(u))i=1,2,3 =
(
µ(Sc(u)(ui))

)
i=1,2,3

. (1.118)

Recall also from (1.10) that for mass polynomials

Φf (χ) =

∫

T 3

µ⊗3(du)f
(
η(u)

)
(1.119)

where f ∈ C2([0, 1]3) and χ = (T, c, µ) ∈ T2, we extend the generator of the α-Ford diffusion by
defining

ΩαΦ
f (χ) =

∫
µ⊗3(du)




3∑

i,j=1

ηi(δij − ηj)∂
2
ijf(η(u)) + (2− α)

3∑

i=1

(1− 3ηi)∂if(η(u))

+ (2− 3α)
3∑

i=1

(
f(ei)− f(η(u))

)
+
α

2

3∑

i 6=j=1

1ηi 6=0

ηi

(
f ◦ θi,j(η(u))− f(η(u))

)

+
α

2

3∑

i 6=j=1

(
1ηj=0 − 1ηi=0

)
∂if(η(u))


 .

(1.120)

Proposition 1.34. Let α ∈ [0, 1]. For all test functions Φf of the form (1.119) with f : [0, 1]3 → R

twice continuously differentiable,

lim
N→∞

sup
χ∈TN

2

∣∣∣ΩN
α Φf (χ)− ΩαΦ

f (χ)
∣∣∣ = 0. (1.121)

Remark 1.35 (Heuristics on the dynamics of the sample subtree mass vector). We want to stress
that the sampled vector of the three subtree masses does not perform an autonomous dynamics, and
therefore is not Markovian. It is true that for a while the subtree masses change as a result of one
α-Ford move by taking a leaf away from one subtree and simultaneously adding it to another subtree.
This however breaks down when the last leaf of one of the subtrees is taken because in that moment
also the branch point of the three originally sampled leaves jumps, and the new position depends one
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Chapter 1: The α-Ford algebraic measure trees

the whole tree rather than just the subtree spanned by the sample. One can therefore not expect the
expression under the integral of the right hand side of (1.120) to be the generator of a Markov process.

We suggest to read the expression as follows: given the sample, as long as we are shuffling around
leaves without hereby destroying a subtree, each subtree edge is attracting another subtree leaf which
leads in the continuum limit to a Wright-Fisher diffusion with a drift towards the center of the simplex
taking care of the discrepancy between the number of leaves and the number of edges in a subtree.
The moment we need to find a new position at that we attach the single edge (which was the last edge
of the original subtree), we make use of the fact that the generator acts on test functions which take
averages over all possible samples of three leaves. Comparing these averages before and after such a
jump brings us in a position to use a coupling which more or less takes one of the branch point or leaves
which are adjacent to the current branch point of the sample. We therefore see in the continuum limit
terms for which we jump from the inner of the simplex to its edges (in case the neighboring vertex was
a branch point) or even to one of its corners (in case the neighboring vertex was a leaf) of the simplex.

Proof. The result has already been proved by [LMW20] for the Aldous case α = 1
2 so it is enough

to show it for the Kingman case. Consider f ∈ C2([0, 1]3), and recall the notations introduced in
the proof of Proposition 1.28. For each permutation π of {1, 2, 3}, define π∗ : ∆2 → ∆3 by π∗(η) =

(ηπ(1), ηπ(2), ηπ(3)). Since Φf = Φf◦π∗ and ΩKinΦ
f = ΩKinΦ

f◦π∗ for every permutation of {1, 2, 3}, we
may and do assume w.l.o.g. that f is symmetric.

Let t be the only 3-cladogram. Since at(µ) = ∅, we can introduce a term 1t

(
s(T,c)(u)

)
, which we

do for later purpose. We thus have

ΩN
KinΦ

f (χ)

= ΩN
Kin

∫

T 3

µ⊗3(du)1t
(
s(T,c)(u)

)
f
(
η
χ
(u)
)

:=
∑

x∈lf(T,c)

∑

e∈ext-edge(T,c)

(∫

T
3
(µ(x,e))⊗3(du)1t

(
s(T ,c)(u)

)
f
(
η
χ(x,e)(u)

)

−

∫

T 3

µ⊗3(du)1t
(
s(T,c)(u)

)
f
(
η
χ
(u)
))

=
∑

x∈lf(T,c)

∑

e∈ext-edge(T,c)

∫

T
3
((µ(x,e))⊗3 − µ⊗3)(du)1t

(
s(T ,c)(u)

)
f
(
η
χ(x,e)(u)

)

+
∑

x∈lf(T,c)

∑

e∈ext-edge(T,c)

∫

T 3

µ⊗3(du)
(
f(η

χ(x,e)(u))− f(ηχ(u))
)

=: ∆µ +∆f .

(1.122)

The term ∆f appears when the measure µ is left unchanged, but there is change in the three
masses. It gives the Wright-Fisher term. To see this, fix u ∈ T 3. We abbreviate ηi = ηi(u) as long as
u is fixed. We denote the components of T \ {c(u)} by Si, i = 1, 2, 3, ordered such that ηi = µ(Si).
For all (x, e) ∈ lf(T, c)× ext-edge(T, c) with x ∈ Si and e ∈ Sj, we have by a Taylor expansion that

f(η
χ(x,e)(u))− f(ηχ(u)) =

(
ǫ(∂j − ∂i) +

ǫ2

2
(∂2ii + ∂2jj − 2∂2ij))

)
f(η) + o(ǫ2), (1.123)

and the o(ǫ2)-term is uniform in the binary trees with N leaves as N → ∞. Now summing over all
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(x, e) ∈ lf(T, c)× ext-edge(T, c), we have

∑

x∈lf(T,c)

∑

e∈ext-edge(T,c)

(
f(η

χ(x,e)(u))− f(ηχ(u))
)

=

3∑

i 6=j=1

ηi
ǫ

ηj
ǫ
ǫ
(
(∂j − ∂i +

ǫ

2
(∂2ii + ∂2jj − 2∂2ij))f(η) + o(ǫ)

)

=

3∑

i 6=j=1

ηiηj(∂
2
ii − ∂

2
ij)f(η) + o(1)

=

3∑

i,j=1

ηi(δij − ηj)∂
2
ijf(η) + o(1).

(1.124)

where we used for the second equality that the highest order term is anti-symmetric in i 6= j.
Finally, Fubini’s Theorem gives

∆f =

∫

Tm

µ⊗m(du)1t(s(T,c)(u))
3∑

i,j=1

ηi(δij − ηj)∂
2
ijf(η) + o(1). (1.125)

The term ∆µ gives the effect of the change in µ, when the subtree masses are considered after the
chain move. We use for this the same decomposition as in the proof of Proposition 1.28. For k = 1, 2, 3

and x ∈ T , recall that θk,x : T 3 → T
3

is the replacement operator which replaces the kth-coordinate
by x. The difference between sampling with the new and old measure is given by

(µ + ǫδye − ǫδx)
⊗3 − µ⊗3 = ǫ

3∑

k=1

(µ⊗3 ◦ θ−1k,ye
− µ⊗3 ◦ θ−1k,x)− ǫ

2
3∑

j 6=k=1

µ⊗3 ◦ θ−1k,ye
◦ θ−1j,x + µ̃, (1.126)

where µ̃ is a signed measure on T
3

with µ̃{(u1, u2, u3) : u1, u2, u3 distinct} = 0. But since t ∈ C3, the
leaf labels are distinct. The purpose of introducing 1t

(
s(T,c)(u)

)
is to be able to ignore the term due

to µ̃. Thus,

∆µ =:
3∑

k=1

Ak −
3∑

k 6=j=1

Bk,j, (1.127)

with

Ak =ǫ
∑

x∈lf(T,c)

∑

e∈ext-edge(T,c)

(∫

T 3

µ⊗3(du)1t(s(T ,c)(θk,yeu))f(ηχ(x,e)(θk,yeu))

−

∫

T 3

µ⊗3(du)1t(s(T ,c)(θk,xu))f(ηχ(x,e)(θk,xu))

)
,

(1.128)

and

Bk,j = ǫ2
∑

x∈lf(T,c)

∑

e∈ext-edge(T,c)

∫

T 3

µ⊗3(du)1t(s(T ,c)(θk,ye ◦ θj,xu))f(ηχ(x,e)(θk,ye ◦ θj,xu)). (1.129)

Let k 6= j. We calculate first Bk,j. Note that the element uj sampled according to µ does not
appear in the integrand, but is replaced by the leaf x which is sampled according to

ǫ
∑

x∈lf(T )

δx = µ. (1.130)

Thus, using first Fubini’s theorem, we can write

Bk,j = ǫ

∫

T 3

µ⊗3(du)
∑

e∈ext-edge(T,c)

1t(s(T ,c)(θk,yeu))f(ηχ(uj,e)(θk,yeu)). (1.131)
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In the same way, the element uk does not appear in the integrand. However, it is this time replaced
by the leaf ye which is sampled according to

ν := ǫ
∑

e∈ext-edge(T )

δye 6= µ. (1.132)

But we can still find a similar relation. Indeed, consider (u1, u2, u3) sampled from (T, c) according to
µ. One can notice that if e /∈ {eui

, i = 1, 2, 3}, where eu denotes the external edge connected to the
leaf u, then

1t(s(T ,c)(θk,yeu))f(ηχ(uj,e)(θk,yeu)) = 1t(s(T ,c)(θk,uu))f(ηχ(uj,eu)(θk,uu)), (1.133)

where u ∈ lf(T ) is such that eu = e. In other words, sampling according to ν instead of µ leaves the
above quantity unchanged when e /∈ {eui

, i = 1, 2, 3}. This is also true when e = euk
. But if e = eui

for some i ∈ {1, 2, 3} \ {k}, then
1t(s(T ,c)(θk,ui

u)) = 0, (1.134)

because t ∈ C3 has distinct leaf labels, but not s(T ,c)(θk,ui
u). Therefore using that at(µ) = ∅, we can

write

Bk,j =

∫

T 3

µ⊗3(du)f(η
χ(uj,euk

)(u)) + ǫ

∫

T 3

µ⊗3(du)
3∑

i=1
i 6=k

f(η
χ(uj,eui )

(θk,yeui
u))

=

∫

T 3

µ⊗3(du)f(ηj − ǫ, ηk + ǫ, ηi)) +O(ǫ)

=

∫

T 3

µ⊗3(du)f(η
χ
(u)) +O(ǫ),

(1.135)

where we used for the second equality that f is bounded on [0, 1]3, and for the last equality a Taylor
expansion and that f ′ is also bounded on [0, 1]3. We proceed in the same way to calculate Ak: since
at(µ) = ∅,

Ak =

∫

T 3

µ⊗3(du)
∑

x∈lf(T,c)

f(η
χ(x,euk

)(u))−

∫

T 3

µ⊗3(du)
∑

e∈ext-edge(T,c)

f(η
χ(uk,e)(u))

+ ǫ

∫

T 3

µ⊗3(du)
∑

x∈lf(T,c)

3∑

i=1
i 6=k

f(η
χ(x,eui )

(θk,yeui
u))

=

∫

T 3

µ⊗3(du)
3∑

i=1

ηi
ǫ
(f(ηi − ǫ, ηk + ǫ, ηj)− f(ηi + ǫ, ηk − ǫ, ηj)) + ak(ǫ)

=

∫

T 3

µ⊗3(du)2
3∑

i=1

ηi(∂k − ∂i)f(ηχ(u)) + ak(ǫ) +O(ǫ),

(1.136)

where ak(ǫ) denotes the correction term due to a difference between the sampling of leaves and the
sampling of external edges:

ak(ǫ) :=ǫ

∫

T 3

µ⊗3(du)
∑

x∈lf(T,c)

3∑

i=1
i 6=k

f(η
χ(x,eui )

(θk,yeui
u))

=

∫

T 3

µ⊗3(du)
3∑

i=1
i 6=k

ǫ


 ∑

x∈lf(T,c)\{ui}

f(ǫ, ǫ, 1− 2ǫ) + f(0, ǫ, 1− ǫ)




=

∫

T 3

µ⊗3(du)2f(0, 0, 1) +O(ǫ).

(1.137)
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In order to calculate
∑3

k=1Ak, we use that

3∑

k=1

3∑

i=1

ηi(∂k − ∂i)f(ηχ(u)) =
3∑

k=1

∂kf(ηχ(u))− 3
3∑

i=1

ηi∂if(ηχ(u))

=

3∑

i=1

(1− 3ηi)∂kf(ηχ(u)).

(1.138)

Adding up the results for ∆f (1.125) and ∆µ, the proposition is proved for α = 0, and so for all
α ∈ [0, 1].

We can now give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let α ∈ [0, 1] and Xα = (Xα
t )t≥0 be the α-Ford diffusion on T

cont
2 . By Proposi-

tion 1.11, there exists a sequence (Xα,N
0 )N∈N of random values converging in law to Xα

0 such that for
all N ∈ N, Xα,N

0 ∈ T
N
2 . As a consequence of Theorem 1.1, the sequence (Xα,N )N∈N of α-Ford chains

started in (Xα,N
0 )N∈N converges weakly in Skorokhod path space to Xα. Furthermore, by [LW21,

Proposition 5.18], Φf ∈ Cb(T2) for all f ∈ C2([0, 1]) and we can easily see from its definition (1.120)
that ΩαΦ

f ∈ Cb(T2) as well. Therefore, using Proposition 1.34, we can easily adapt the proof of
Proposition 1.29 to show that Xα is a solution of the extended martingale problem.

We finish by giving the proof of Corollary 1.3 which gives representations of the sample subtree
mass distribution of the α-Ford algebraic measure tree for general α ∈ [0, 1]. They are given by
recursive relations on the moments of the subtree mass distribution. For k = (k1, k2, k3) ∈ N

3, we
define fk : ∆2 → R by

fk(η) = ηk11 η
k2
2 η

k3
3 . (1.139)

Proof of Corollary 1.3. If we have k = (0, 0, 0), then (1.16) is just E[Φf(0,0,0)
(χα)] = 1 and whenever

k ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, we have by symmetry

E

[
Φf(1,0,0)

(χα)
]
= E

[
Φf(0,1,0)

(χα)
]
= E

[
Φf(0,0,1)

(χα)
]
=

1

3
, (1.140)

for all α ∈ [0, 1], so (1.16) holds as well. Choose k ∈ N
3
0 \ {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}, and let

α ∈ [0, 1]. As for all η ∈ (0, 1)3 and i = 1, 2, 3,

∂if
k(η) = 1{ki 6=0}kif

k−ei(η), (1.141)

and all i, j ∈ {1, 2, 3},
∂i,jf

k(η) = 1{ki,kj 6=0}

(
ki − δi,j

)
kjf

k−ei−ej(η), (1.142)

it follows that for all η ∈ (0, 1)3,

ΩαΦ
fk

(χ) =

∫
µ⊗3(du)

( 3∑

i,j=1

1{ki,kj 6=0}

(
ki − δi,j

)
kj
(
δijf

k−ei(η)− fk(η)
)

+ (2− α)
3∑

i=1

1{ki 6=0}ki
(
fk−ei(η)− 3fk(η)

)

+ (2− 3α)
∑

1≤i<j≤3

1{ki=kj=0} − 3(2 − 3α)fk(η)

+
α

2

3∑

i=1

1{ki=0}

3∑

j=1;j 6=i

(
kj
pj

)
fk+(pj−1)ei−pjej (η)

− α
3∑

i=1

1{ki 6=0}

3∑

j=1;j 6=i

(
kj
pj

)
fk−ei(η).

(1.143)
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By Proposition 1.32, ΩαΦ
fk
(χα) = 0 for all k, so that

E

[
Φfk

(χα)
]( 3∑

i,j=1

1{ki,kj 6=0}

(
ki − δi,j

)
kj + 3(2− α)

3∑

i=1

1{ki 6=0}ki + 3(2− 3α)
)

=
( 3∑

i,j=1

1{ki,kj 6=0}

(
ki − δi,j

)
kjδij + (2− α)

3∑

i=1

1{ki 6=0}ki

)
E

[
Φfk−ei

(χα)
]

+ (2− 3α)
∑

1≤i<j≤3

1{ki=kj=0}

+
α

2

3∑

i=1

1{ki=0}

3∑

j=1;j 6=i

(
kj
pj

)
E

[
Φfk+(pj−1)ei−pjej

(χα)
]
.

(1.144)

Note that
3∑

i,j=1

1{ki,kj 6=0}

(
ki − δi,j

)
kj + 3(2− α)

3∑

i=1

1{ki 6=0}ki + 3(2 − 3α)

=
( 3∑

i=1

ki
)2
−

3∑

i=1

ki + 3(2 − α)
3∑

i=1

ki + 3(2− 3α)

=
( 3∑

i=1

ki + 3
)( 3∑

i=1

ki + (2− 3α)
)

(1.145)

and
3∑

i,j=1

1{ki,kj 6=0}

(
ki − δi,j

)
kjδij + (2− α)

3∑

i=1

1{ki 6=0}ki − α
3∑

i=1

1{ki 6=0}

=
3∑

i=1

1{ki 6=0}(ki + 1)
(
ki − α

)
,

(1.146)

which finishes the proof.

For k2 = k3 = 0, the recurrence relation (1.16) becomes

E

[
Φf(k1,0,0)

(χα)
]
=

1

(k1 + 3)(k1 + 2− 3α)

(
(k1 + 1)(k1 − α)E

[
Φf(k1−1,0,0)

(χα)
]

+ (2− 3α) + α

k1∑

p=1

(
k1
p

)
E

[
Φf(k1−p,p−1,0)

(χα)
])

,

(1.147)

and we get in particular

E

[
Φf(1,0,0)

(χα)
]
=

1

3
,

E

[
Φf(2,0,0)

(χα)
]
=

1

5
,

E

[
Φf(3,0,0)

(χα)
]
=

11− 7α

15(5 − 3α)
,

E

[
Φf(4,0,0)

(χα)
]
=

37 − 25α

63(5 − 3α)
,

E

[
Φf(5,0,0)

(χα)
]
=

145− 165α + 44α2

42(5 − 3α)(7 − 3α)
.

(1.148)

Remark 1.36 (Löhr’s conjecture). While the first moment being 1
3 simply follows from the symmetry

of the sampling in the mass polynomials, we do not yet have an argument to explain why the second
moment does not depend on the parameter α. More generally, Wolfgang Löhr conjectured that this
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1.6 Application on sample subtree masses

holds for all continuum algebraic measure trees, even deterministic ones. That is, for all χ = (T, c, µ) ∈
T
cont
2 ,

Φf(2,0,0)
(χ) =

∫

T 3

µ⊗3(du)
(
η(u)

)2
=

1

5
. (1.149)
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Chapter 2
Resampling dynamics on metric two-level

measure trees

2.1 Introduction

Multi-level models in population dynamics can be found for example in ecology to account for the
levels of individuals and species, or in epidemiology for the modelling of hosts and parasites. The
phylogenies of such systems bring an important light on the paths and dynamical phenomenas that
are interplaying. For example in anthropology these models have served as basis for statistical studies
and understand collected data (e.g. [BJ10, JBA19, LBP+21, VAE+09]). For cell models, we can refer
for example to works by Kimmel [Kim97]. The dynamics on each level do not need to be symmetric.
In system of species for example, speciation can be seen as a result of underlying dynamics at the
individual level, such as mutations and selection for instance.

In the mathematical literature, we can find several two-level dynamics modelling various systems:
for instance particles grouped in so-called superparticles and subject to a birth-and-death process
[DHW90, Wu91, GHW95, DHV96, GH00, DGW04], parasites inside a population of cells which divide
[BT11], individuals carrying two types of cells [MR13], a population undergoing mutation, selection,
resampling and migration mechanisms, and divided in colonies that are also subject to selection and
resampling mechanisms [Daw18]. All these models have in common that the population is represented
by a measure or a two-level measure, that is, a measure on the set of measures. But different approaches
are used to define the population dynamics, such as the space of marked measure-valued processes (see
e.g. [DH91, Eth93, MR13, GdHKK14, BGK+21]), branching diffusions or random walks [Kim97,
Ban08, BT11, OW20]. We will rather use the idea of [DHV96, Wu94, DDV95, Daw18], where the
two-level population is described by a measure on the set of measures.

The dynamics we study in this paper is fitted for a host-parasite system, that is, the resampling
dynamics at the lower level, i.e. of parasites is constrained by the upper level. The host-parasite
population will be represented by a probability measure ν ∈ M1(M1(X)) on the set of probability
Borel measures of a set X. For example, we can represent a population of parasites in M hosts by the
two-level measure

ν :=
1

M

M∑

i=1

δµ̃i
=

1

M

M∑

i=1

δ 1
N

∑N
j=1 δ(i,j)

, (2.1)

where (i, j) ∈ X represents the parasite j of the host i. The measure ν allows for a two-level sampling:
first we sample with ν a host µ ∈ M1(X), and then with µ we sample a parasite within the sampled
host. This is related to a two-stage experiment in applications: if one wants to gain information about
a parasite population, one would first sample hosts and then sample parasites within these hosts.

Additionally, our purpose is to describe the evolution of genealogies. In order to keep track of the
genealogical structure in the population, several approaches have been developed. In [DK96, DK99a,
DK99b], the so-called look-down processes contain (in an implicit way) all information about the
genealogies. For this, one relies on labels as coordinates, which can be constraining as it requires the
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population model to be exchangeable. Otherwise, the historical processes of [DP91, GLW05] do not use
labels to encode the genealogical relationships but this approach only applies to spatially structured
populations.

In this paper, we rather adopt the point of view of [GPW09], where the metric defined by the
genealogical distances between individuals (see [Eva00]) was added to the measure-valued approach to
encode trees as metric measure spaces (X, r, µ). As we are interested in a two-level dynamics, we will
rely on the extension of this theory in [Mei19] to a hierarchical setup. A metric two-level measure space
(X, r, ν) (m2m space for short) is defined as a Polish metric space (X, r) equipped with a probability
measure ν ∈ M1(M1(X)) on the set of probability measures on X. The host-parasite population is
represented by ν and the metric r encodes the ancestral tree of the parasites. In the theory of two-level
measures, the intensity measure Mν ∈ M1(X) plays a key role to adapt results from the one-level
setup. It is defined by

Mν(·) :=

∫
ν(dµ)µ(·). (2.2)

If ν is given by (2.1), then

Mν =
1

M

M∑

i=1

1

N

N∑

j=1

δ(i,j). (2.3)

In this case, the intensity measure allows to sample a parasite uniformly at random from the whole
population, regardless of their hosts. On the set M

(2) of (equivalence classes of) m2m spaces, the
two-level Gromov-weak topology is introduced as the topology induced by test functions Φ : M(2) → R

of the form

Φ
(
(X, r, ν)

)
=

∫
ν⊗m(dµ)

∫ m⊗

i=1

µ⊗ni

i (dxi)φ ◦R(x), (2.4)

where m ∈ N, n = (n1, ..., nm) ∈ N
m and φ is a real bounded continuous function on R

|n|×n|
+ . In the

Gromov-weak topology, a sequence of trees converges to a limit tree if and only if all randomly sampled
finite subtrees converge to the corresponding limit subtrees. This topology on M

(2) is separable and
metrizable, e.g. by the so-called two-level Gromov-Prohorov metric. Furthermore, the set of functions
of the form (2.4) separates m2m spaces and is even convergence determining, which can be used to
define Markov processes on M

(2) through well-posed martingale problems.
In this paper, the space M

(2) of metric two-level measure spaces serves as state space to study
a host-parasite population undergoing resampling dynamics at each level. We rely for that on the
Moran model [Mor58], a very simple resampling dynamics, that aroused a significant interest since
its introduction. It models the evolution of a finite population of fixed size, from which each pair of
individuals resamples at constant rate. At a resampling event, one individual is chosen at random from
the pair, and replaces the other individual by a copy (or clone) of herself. In the two-level model we
consider, resampling of hosts (at the upper level) occurs as for the usual Moran model and at the lower
level, only pairs of parasites belonging to the same hosts can resample. It is a tree-valued version of the
dynamics found in [Daw18] where we focus strictly on the resampling mechanisms. Our results extend
to a two-level setup the tree-valued resampling dynamics described in [GPW13], namely tree-valued
Fleming-Viot dynamics and its particle approximation the tree-valued Moran dynamics.

We define the two-level tree-valued Fleming-Viot and Moran dynamics as stochastic processes with
values in M

(2). On each level, resampling events might occur (see Figure 2.1):

• Resampling of hosts: at rate γH , a resampling event occurs between any two hosts. One host
dies (with all the parasites it contains) and is replaced by a copy of the other host (with all the
parasites it contains).

• Resampling of parasites: at rate γP , any two parasites belonging to the same host resample.
One parasite dies and is replaced by a copy of the other.

We first give a pathwise construction of the two-level tree-valued Moran process following this dynamics
for a population with a fixed number of hosts each containing the same number of parasites. We then
define a corresponding operator acting on test functions of the form (2.4) with three components, one
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✛
✲✛

✲

✲

✛ ✲

✲ ✲ ✲ ✲

✛
✛

✲
✲

✲

✛ ✲✲

✲ ✲ ✲ ✲
✲✲ ✛

✛
✛

✲✲✲

r r r r r r r r r r r r r r r r r r r r r r r r

Figure 2.1: The graphical representation of the two-level Moran model with M = 3 hosts and N = 4
parasites in each host. An arrow from (i, k) to (i, l) indicates a parasite resampling event within host
i, where (i, l) dies and (i, k) reproduces. For the resampling of hosts k and l, we draw N arrows, from
(k, j) to (l, j) for each 1 ≤ j ≤ N . The different colors represent different hosts.

for the growth of distances between distinct parasites (belonging to the same host or not), and one for
the resampling at each level. We also introduce a similar operator for the diffusion dynamics, that we
obtain as uniform limit of the operators for the finite dynamics.

Our main result states that when the numbers of hosts and of parasites simultaneously go to
infinity, the two-level tree-valued Moran process converges weakly to the unique solution of a well-posed
martingale problem. We call two-level tree-valued Fleming-Viot process this unique solution. For this,
we showed that the sequence of two-level tree-valued Moran processes satisfies a compact containment
condition and is hence tight. To show the uniqueness of the solution, we reformulated, in terms of
two-level measure trees, the well-known duality between the Fleming-Viot process and the Kingman
coalescent, which is the nested Kingman coalescent measure tree [Mei19, Section 10]. More general
nested models of trees within trees have been investigated in [BDLS18, BRSSJ19, Duc20, LS20] to
account for the evolutionary events at both the level of genes and species.

With the tools provided in [Mei19] for the extension to two-level models, the proofs are very similar
to the ones for the (one-level) tree-valued resampling dynamics in [GPW13]. However, a major obstacle
arises when expressing the diffusion limit operator in a convenient way for studying the evolution of
length statistics. We were still able to express formulas for the evolution of the length distribution
of the subtrees spanned by small samples of parasites and we compared them to the ones obtained
in [GPW13]. But when the number of hosts involved in the sampled gets larger, it becomes quickly
difficult to write more general formulas. The formulas on statistics we obtained also provided infor-
mation about the length of random subtrees in the nested Kingman coalescent, since it is the unique
equilibrium distribution of the two-level Fleming-Viot dynamics. In particular, it allows us to estimate
the rates of coalescence at each level on a real world genealogical tree, which we assume a priori to be
distributed according to a nested coalescent tree.

Outline. We start in Section 2.2 by describing the state space M
(2) and recalling some results from

[Mei19]. We use it to define the particle approximation in Section 2.3 and show in Theorem 2.11 that
the sequence of two-level tree-valued Moran processes is tight. In Section 2.4, we construct the diffusion
limit of the Moran model as the unique solution of a well-posed martingale problem in Theorem 2.14.
In particular, we give a duality relation of the two-level tree-valued Fleming–Viot dynamics to the
nested Kingman coalescent. We study the subtree length distribution under these dynamics and at
equilibrium in Section 2.5. Finally, we gather in Section 2.6 ingredients for the proofs of the two main
results.

2.2 State space: metric two-level measure spaces

We consider trees as metric spaces together with a two-level probability measure, which can be seen as
random probability measures as defined below. This measure allows a two-level sampling, that is, the
sampling of a host and then the sampling of a parasite within the sampled host. The set of metric
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two-level measure spaces was investigated in [Mei19]. We give here some definitions and basic results.

Given a metric space (X, r) we denote by M1(X) the space of all probability measures defined on
the Borel-σ-algebra of X. As our purpose here is to deal with two-level Moran models, we can restrict
to probability measures in the whole paper. Recall that the support supp(µ) of µ ∈ M1(X) is the
smallest closed set X0 ⊆ X such that µ(X0) = 1. We will deal with two-level probability measures of
the form ν ∈ M1(M1(X)). To fix ideas, let us describe the case of a population with a finite number of
hosts each containing the same number of parasites, as in the two-level Moran model that will interest
us.

Example 2.1. Let M ∈ N be the number of hosts and for i ∈ {1, . . .M}, let N ∈ N be the number of
parasites in each host. Then, the parasite population in the host i is represented by the measure

µ̃i =
1

N

N∑

j=1

δxij
, (2.5)

where xij ∈ X represents the parasite j of the host i, and the entire two-level population is:

ν =
1

M

M∑

i=1

δµ̃i
=

1

M

M∑

i=1

δ 1
N

∑N
j=1 δxij

. (2.6)

We denote by MN
1 (X) the set of measures of the form (2.5), i.e., for N ∈ N,

MN
1 (X) :=

{
1

N

N∑

j=1

δxj
: x1, ..., xN ∈ X

}
, (2.7)

and in particular, if ν ∈M1(M1(X)) is of the form (2.6), then ν ∈MM
1 (MN

1 (X)).
In the sequel, we will introduce the two-level Moran dynamics with the xij = (i, j) being the labels

given to the parasites. In particular, the xij = (i, j) will be distinct and the support of the measures
(µ̃i)i representing the hosts will also be disjoints. However, notice that the spaceM1(M1(X)) contains
much more general two-level measures than ν as in (2.6). For instance, we could consider the space
X = {x1, x2, x3} and the two-level measure

ν =
1

2

(
δ 1

2
δx1+

1
2
δx2

+ δ 1
2
δx1+

1
2
δx3

)
. (2.8)

✷

For a two-level measure ν ∈ M1(M1(X)), the intensity measure, also called first moment measure,
is the Borel measure on X defined by

Mν(·) =

∫

M1(X)
µ(·)ν(dµ). (2.9)

Example 2.2. For a mesure ν of the form (2.6), the corresponding intensity measure is a probability
measure on X given by:

Mν =
1

M

M∑

i=1

1

N

N∑

j=1

δxij
.

This measure can be seen as the parasite population irrespectively of their hosts. In particular, all the
xij have the same weight, so that Mν allows to sample a parasite uniformly at random from the whole
population, regardless of their hosts. ✷

The push forward of a measure µ ∈ M1(X) under a measurable map ϕ from X into another metric
space Y is the probability measure ϕ∗µ ∈ M1(Y ) defined by ϕ∗µ = µ ◦ ϕ−1. In the same way, the
two-level push forward of a measure ν ∈ M1(M1(X)) under a measurable map ϕ from X into Y is
the probability two-level measure ϕ∗∗ν ∈ M1(M1(Y )) defined by

ϕ∗∗ν = ν ◦ (ϕ∗)
−1, (2.10)
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where ϕ∗ is the (one-level) push-forward operator of ϕ. We denote by B(X) and Cb(X) the bounded
real-valued functions on X which are measurable and continuous, respectively.

A triple (X, r, ν) is called a metric two-level measure space (m2m space) if X ⊂ R
N is non-empty,

(X, r) is a Polish metric space and ν ∈ M1(M1(X)). Two m2m spaces (X, r, ν) and (Y, d, λ) are called
equivalent if there exists a measurable function ϕ : X → Y such that λ = ϕ∗∗ν and ϕ is isometric on
the set supp(Mν) (but not necessarily on the whole space X). We write (X, r, ν) for the equivalence
class of a m2m space (X, r, µ), but we will often use (X, r, ν) for the equivalence class. Now define the
set of (equivalence classes of) metric two-level measure spaces

M
(2) :=

{
χ = (X, r, µ) : (X, r, µ) metric two-level measure space

}
. (2.11)

Notice that when we will consider equivalence classes in the sequel, we will no longer keep track of the
labels of the parasites (in the sense of Example 2.1), but only of the structure of the (genealogical)
trees.

If (X, r, ν) is such that r is only a pseudo-metric on X (i.e. r(x, y) = 0 is possible for x 6= y), we
can still define its equivalence class. Since the class of such a pseudo-metric two-level measure space
contains also m2m spaces, there is a bijection between the equivalence classes of pseudo-metric two-level
measure spaces and the ones of m2m spaces. Therefore, we will use both notions interchangeably.

Example 2.3 (A pseudo-m2m space equivalent to an m2m space). Consider the two following spaces:
X1 := {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)} and X2 := {(1, 1), (1, 2), (3, 1)}. On X1, define the
pseudo-metric r1 by

(r1((i, j), (i
′ , j′)))(i,j),(i′,j′)∈X1

:=




0 1 0 1 2 2
1 0 1 0 2 2
0 1 0 1 2 2
1 0 1 0 2 2
2 2 2 2 0 0
2 2 2 2 0 0




(2.12)

and the two-level measure

ν1 :=
1

3

(
δ 1

2
(δ(1,1)+δ(1,2))

+ δ 1
2
(δ(2,1)+δ(2,2))

+ δ 1
2
(δ(3,1)+δ(3,2))

)
. (2.13)

On X2, define the metric r2 by

(r2((i, j), (i
′, j′)))(i,j),(i′,j′)∈X2

:=



0 1 2
1 0 2
2 2 0


 (2.14)

and the two-level measure

ν2 :=
2

3
δ 1

2
(δ(1,1)+δ(1,2))

+
1

3
δδ(3,1) . (2.15)

Defined this way, the (pseudo)-m2m space (X1, r1, ν1) and the m2m space (X2, r2, ν2) are equivalent
(see Figure 2.2). ✷

Distance matrix distribution. We now introduce the distance matrix distribution of m2m spaces,
which is heuristically the distribution of pairwise distances for a sequence of points sampled inde-
pendently, in two stages, according to the two-level measure ν. We will see that this distribution
characterizes the m2m space.

For a metric space (X, r) we define the following distance operator :

R(X,r) : XN×N −→ R
N4

(xij)(i,j)∈N2 7−→ (r(xij, xkl))(i,j),(k,l)∈N4
. (2.16)

We use double indices (i, j) to take into account the two-level sampling we will consider. More precisely,
the index i will correspond to the sampled host, and j to the sampled parasite within the sampled host
i. We then define the distance matrix distribution of m2m space (X, r, ν) by

R(X,r)
∗ (M

∞,∞
ν ) , (2.17)
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✉

(1,1)
✉

(2,1)
✉

(1,2)
✉

(2,2)
✉

(3,1)
✉

(3,2)
✉

(1,1)
✉

(1,2)
✉

(3,1)

Figure 2.2: The two (pseudo)-m2m spaces (X1, r1, ν1) (on the left) and (X2, r2, ν2) (on the right) of
Example 2.3 are equivalent, with ν1 = 1

3(δ 1
2
(δ(1,1)+δ(1,2))

+ δ 1
2
(δ(2,1)+δ(2,2))

+ δ 1
2
(δ(3,1)+δ(3,2))

) and ν2 =
2
3δ 1

2
(δ(1,1)+δ(1,2))

+ 1
3δδ(3,1) .

where M∞,∞
ν ∈ M1(X

N×N) is the infinite mixed moment measure of ν defined by

M∞,∞
ν (·) =

∫
ν⊗N(dµ)

∞⊗

i=1

µ⊗Ni (·). (2.18)

Since the distance matrix distribution R(X,r)
∗(M

∞,∞
ν ) of (X, r, ν) is constant for all elements of its

equivalence class, we can define the distance matrix distribution of elements of M(2).

From [Mei19, Section 3], m2m spaces are uniquely determined by their distance matrix distribution
in the sense that given a random infinite matrix with distribution M∞,∞

ν and their mutual distances
(r(xij , xkl))(i,j),(k,l)∈N4 , it is possible to reconstruct the two-level measure ν and the metric space (X, r).
The reconstruction of ν is based on a Glivenko-Cantelli theorem for random probability measures (see
[Mei19, Proposition 3.5], see also [Gro99, Section 31

2 .7]). For this reason, we define the two-level
Gromov-weak topology on M

(2) as follows.
We say that a sequence (χn)n∈N = (Xn, rn, νn) converges to χ = (X, r, ν) in two-level Gromov-weak

topology if
R(Xn,rn)

∗

(
M∞,∞

νn

)
=⇒
n→∞

R(X,r)
∗ (M

∞,∞
ν ) (2.19)

in the weak topology on M1(R
N4
) (with R

N4
equipped with the product topology). This topology

is equivalent to the topology induced by the two-level Gromov-Prokhorov metric (see [Mei19, Defini-
tion 4.1, Theorem 8.1]) and one can show that the space M

(2) is Polish (see [Mei19, Proposition 4.6]).

Finally, we call (the equivalence class of) an m2m space (X, r, ν) compact whenever the metric
space (supp(Mν), r) is compact, and define

M
(2)
c := {χ ∈M

(2) : χ is compact}. (2.20)

If χ = (X, r, ν) is a finite m2m space, i.e., #supp(Mν) < ∞, then χ is compact. Moreover, every ele-
ment of M(2) can be approximated by a sequence of finite m2m spaces (see the proof of Proposition 4.6

in [Mei19]). Thus the sub-space M
(2)
c is not closed.

Relative compactness characterization in M
(2). For µ a probability Borel measure on a Polish

metric space (X, r), we define the distance distribution wµ ∈ M1(R+) of µ by

wµ := r∗µ
⊗2. (2.21)

By comparing the relative compactness criteria of [Mei19, Theorem 7.2] for M
(2) and the ones of

[GPW09, Proposition 7.1] for the space M of metric (probability) measure spaces (see also [Kle08,
EW06]), it is easy to see that the following holds (in the case of metric two-level probability measure
spaces).

Proposition 2.4. A set Γ ⊂ M
(2) is relatively compact in the two-level Gromov-weak topology if and

only if the set {
(X, r,Mν ) ∈M : (X, r, ν) ∈ Γ

}
(2.22)
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is relatively compact in the Gromov-weak topology in M.

It follows that the results stated in [GPW13, Propositions 6.1,6.2] can be adapted to our two-level
setting by replacing the (one-level) measure µ by the intensity measure Mν .

Corollary 2.5. A set Γ ⊂ M
(2) is relatively compact in the two-level Gromov-weak topology if and

only if the following two conditions hold:

(i) {wMν : (X, r, ν) ∈ Γ} is relatively compact in M1(R+).

(ii) For all ǫ > 0, there exists Cǫ > 0 such that supX∈Γ S̃ǫ(X ) ≤ Cǫ, where for X = (X, r, ν) ∈M
(2),

S̃ǫ(X ) := min

{
K : ∃x1, ..., xK ∈ X :Mν

(
K⋃

k=1

Bǫ(xi)

)
> 1− ǫ

}
. (2.23)

Proposition 2.6. A set Γ ⊂ M
(2)
c is relatively compact in the two-level Gromov-weak topology if the

following two conditions hold:

(i) {wMν : (X, r, ν) ∈ Γ} is relatively compact in M1(R+).

(ii) For all ǫ > 0, there exists Nǫ ∈ N such that supX∈Γ Sǫ(X ) ≤ Nǫ, where, for X = (X, r, ν) ∈M
(2),

Sǫ(X ) denotes the minimal number of open ǫ-balls needed to cover supp(Mν).

Ultra-metric and compact m2m spaces. Among m2m spaces, a particular attention will be given
in the sequel to ultra-metric spaces. If the m2m space (X, r, ν) is such that for all x, y, z ∈ supp(Mν),

r(x, z) ≤ r(x, y) ∨ r(y, z), (2.24)

then we call its equivalence class (X, r, ν) ultra-metric. We define

U
(2) :=

{
χ ∈M

(2) : χ is ultra-metric
}
. (2.25)

We introduce this notion because ultra-metric spaces are closely related to R-trees, i.e., complete
path-connected metric spaces (X, rX) which satisfy the four-point condition

rX(x1, x2) + rX(x3, x4) ≤ max{rX(x1, x3) + rX(x2, x4), rX(x1, x4) + rX(x2, x3)}, (2.26)

for all x1, x2, x3, x4 ∈ X (see, for example, [Dre84, Ter97]). Indeed, every metric space that satisfy the
four-point condition can be isometrically embedded in an R-tree (see Lemma 3.12 and Theorem 3.38
in [Eva08]) and it is easy to see that ultra-metric spaces satisfy the four-point conditions. Reciprocally,
if (X, rX ) is an R-tree and ρ is a distinguished point in X, then for all t ≥ 0, the level set Xt := {x ∈
X : r(ρ, x) = t} is an ultra-metric space.

Since the set U
(2) is closed in M

(2) (same as Lemma 2.3 in [GPW13]), the set U
(2) equipped with

the two-level Gromov-weak topology is again Polish.
Finally, we denote by

U
(2)
c := U

(2) ∩M
(2)
c (2.27)

the set of (equivalence classes of) ultra-metric spaces (X, r, ν) for which the metric space (supp(Mν), r)

is compact. As for M
(2)
c , U(2)

c is not closed.

2.3 Particle approximation

2.3.1 The tree-valued two-level Moran process

We now describe the Moran model as a stochastic process on the set of m2m spaces, which is the particle
approximation of the two-level tree-valued Fleming-Viot process in the limit of large population size.
This is already known in the case of measure-valued processes (see [FV79] and [Daw93] for a survey)
and in the case of metric measure spaces (see [GPW13]).
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In the classical Moran model, each pair of individuals, taken from a finite population of fixed size,
resamples at constant rate. At a resampling event, one individual is chosen at random from the pair,
and replaces the other individual by a copy (or clone) of herself. Here the main difference is the two-
level resampling, one on hosts and one on parasites, inside the hosts. The resampling rates for hosts
and parasites might be different.

Pathwise construction. The criterion for the compact containment condition we provide in Proposi-
tion 2.12 applies to sequences of m2m-spaces describing finite population dynamics in a general setting
(stated in Definition 2.7). For example, the population size might not be constant and might even go
extinct, which is not the case in the Moran model. Therefore, we first introduce this general class of
finite population dynamics and then use it to give a pathwise construction of the tree-valued two-level
Moran process. Let us introduce the notation for labelling the parasites and the hosts:

NM,N := {(i, j) : i ∈ {1, ...,M}, j ∈ {1, ..., Ni}}, (2.28)

with M ∈ N and N := (N1, ..., NM ) ∈ N
M , i denoting the host index and j the parasite index within

a host. If N1 = ... = NM , we will write NM,N := NM,N . In some cases, we will use the letters α or
β to denote an element of NM,N that is, a specific parasite within a host. In the following definition,
each parasite is given a unique label (i, j) ∈ NM,N .

Definition 2.7 (Finite population dynamics). Let (Ω, (At)t≥0,P) be a filtered probability space. Let
I = (It)t≥0 be an adapted process with values in {NM,N :M ∈ N, N ∈ N

m}. For each t ∈ R, we refer
to It as the population at time t. Furthermore, let �= (�t)t≥0 be a family of partial order on

{(α, s) : s ∈ (−∞, t], α ∈ Is} (2.29)

which defines the genealogical relationships at all times before t. Suppose (I,�) satisfy the following:

(i) For all r, s, t ∈ R, with r ≤ s ≤ t, αr ∈ Ir and αs ∈ Is such that (αr, r) �s (αs, s), we also have
(αr, r) �t (αs, s). In other words, order relations from earlier times are preserved.

(ii) For all α ∈ It and s ≤ t there is a unique As(α, t) ∈ Is such that (As(α, t), s) �t (α, t). We say
that As(α, t) is the ancestor of α at time s.

(iii) For all α, β ∈ I0, there is an almost surely finite time −∞ < T 0
αβ ≤ 0 such that AT 0

αβ
(α, 0) =

AT 0
αβ
(β, 0), i.e., all individuals at time t = 0 are related.

From such a process (I,�), we construct a random process with values in the set of m2m spaces.
Let τ := inf{s ≥ 0 : Is = ∅} be the lifetime of the population. Put then for all t ≤ τ and α, β ∈ It,

rt(α, β) := 2
(
t− sup

{
s ≤ t : As(α, t) = As(β, t)

})
. (2.30)

The two-level tree-valued population dynamics (Ut)t∈[0,τ) reads off from (I,�) and is defined as follows:
for all t ∈ [0, τ),

Ut := (It, rt, νIt) ∈ U
(2), (2.31)

where, for It = NM,N ,

νIt :=
1

M

M∑

i=1

δ
1
Ni

Ni∑
j=1

δ(i,j)

. (2.32)

The tree-valued two-level Moran process is obtained for the following choice of (I,�). In this
model, the number of hosts M and the numbers of parasites per host N are constant and we consider
the case where all hosts have the same number of parasites. The process evolves through resamplings
of hosts and parasites.

Definition 2.8 (Two-level tree-valued Moran dynamics of population size (M,N)). Fix M,N ∈ N.
The two-level tree-valued population Moran dynamics with population size (M,N), (UM,N

t )t≥0 is the
two-level tree-valued population dynamics read off from (I,�) as in (2.31), where (I,�) is as follows.
Let �0 be a partial order on NM,N × (−∞, 0] which satisfies Condition (iii) in Definition 2.7, almost
surely. Consider also the two following families of Poisson processes ηH and ηP on (Ω,P):
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2.3 Particle approximation

(a) Let ηH := {ηk,lH : 1 ≤ k, l ≤M} be an independent family of rate γH
2 -Poisson processes. At time

ηk,lH , the host l is replaced by a copy of the host k, that is, for all 1 ≤ j ≤ N , the parasite (l, j)
is replaced by a copy of the parasite (k, j).

(b) Let ηP := {η
(i,k),(i,l)
P : 1 ≤ i ≤ M, 1 ≤ k, l ≤ N} be an independent family of rate γP

2 -Poisson

processes, independent the family ηH := {ηk,lH : 1 ≤ k, l ≤ M}. At time η(i,k),(i,l)P , the parasite
(i, l) is replaced by a copy of the parasite (i, k).

For any s, t ∈ R with 0 ≤ s ≤ t and αs, αt ∈ I
M,N , we say that (αs, s) �t (αt, t) if and only if there is

path of descent from (αs, s) to (αt, t), that is, there exists n ∈ N, s = u0 ≤ u1 < u2 < · · · < un = t
and β0 = αs, βn = αt, β1, ..., βn−1 ∈ IM,N such that for all k ∈ {1, ..., n}, at time uk the parasite αk−1

is replaced by a copy of the parasite αk and during the time interval (uk−1, uk), the parasite αk−1 is
not replaced.

Through this definition, it is then possible to construct a graphical representation of the under-
lying phylogenies (see Figure 2.1) thanks to a popular graphical representation: the lookdown graph
developed by Donnelly and Kurtz [DK99a]. The bridge between the lookdown approach and the repre-
sentations of the underlying phylogenetical trees with ultrametric measure spaces has been developed
with [Eva00, GPW09, Guf18] among others.

Remark 2.9. Note that resampling events in Definition 2.8 can happen in both directions, that is for
k ≤ l and k ≥ l. In particular, we write the rates γH/2 and γP /2 for the Poisson processes, so that γH
and γP would be the rates of the nested Kingman coalescent which is dual to the diffusion limit (see
Section 2.4.3).

A stochastic differential equation for the tree-valued two-level Moran dynamics. We
introduced the two-level tree-valued Moran dynamics as a process whose values are the equivalence
classes of triplets of the form

(
{1, . . . M} × {1, . . . N}, r̃,

1

M

M∑

i=1

δ 1
N

∑N
j=1
δ(i,j)

)
, (2.33)

where r̃ is some pseudo-metric on NM,N . For this reason, the states of the two-level Moran dynamics
with population size (M,N) belong to the set

U
(2)
M,N :=

{
χ = (X, r, ν) ∈ U

(2) : ν ∈ MM
1 (MN

1 (X))

}
, (2.34)

with MN
1 (X) defined in (2.5). Note that U

(2)
M,N is a subset of U

(2)
c . Conversely, each equivalence

class χ ∈ U
(2)
M,N contains a representative of the form (2.33). For such a representative, the two-level

tree-valued Moran dynamics can also be expressed as changes on r̃ in the following way:

• Distance growth The distance between any two distinct parasites (belonging to the same host
or not) grows at speed 2, where the parasites are all the (i, j) ∈ NM,N .

• Resampling of parasites For each host i and for each pair of parasites (i, k), (i, l), at rate γP
2 ,

the distances to (i, l) are replaced by the distances to (i, k). In particular, the distances between
(i, l) and (i, k) are set to be zero. At the time t of the resampling, the pseudo-metric jumps from
r̃t− to r̃t = Θ(i,k),(i,l)(r̃t−) where Θ(i,k),(i,l) is defined by:

(
Θ(i,k),(i,l)(r̃)

)
((u, j), (u′, j′)) =





r̃((i, k), (u′, j′)) if (u, j) = (i, l) and (u′, j′) 6= (i, l)

r̃((u, j), (i, k)) if (u′, j′) = (i, l) and (u, j) 6= (i, l)

r̃((u, j), (u′, j′)) otherwise.

(2.35)

• Resampling of hosts. For each pair of hosts k, l, at rate γH
2 , the distances to (l, j) are replaced

by the distances to (k, j), for all j ∈ {1, ..., N}. In particular, the distances between (l, j) and
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(k, j) are set to be zero. At the time t of the resampling, the pseudo-metric jumps from r̃t− to
r̃t = Θk,l(r̃t−) where Θk,l is defined by:

(
Θk,l(r̃)

)
((i, j), (i′ , j′)) :=





r̃((k, j), (i′ , j′)) if i = l and i′ 6= l

r̃((i, j), (k, j′)) if i′ = l and i 6= l

r̃((i, j), (i′ , j′)) otherwise.

(2.36)

Using the Poisson point processes ηH and ηP , we can write a stochastic differential equation de-
scribing the evolution of the U

(2)
M,N -valued stochastic process (UM,N

t )t≥0. Considering again the pseudo-

metric r̃M,N
t associated with UM,N

t through (2.33), the equation is

r̃M,N
t =r̃M,N

0 + 2t+
∑

1≤i≤M

∑

1≤k,l≤N

∫ t

0

(
Θ(i,k),(i,l)(r̃

M,N
s− )− r̃M,N

s−

)
η
(i,k),(i,l)
P (ds)

+
∑

1≤k,l≤M

∫ t

0

(
Θk,l(r̃M,N

s− )− r̃M,N
s−

)
ηk,lH (ds).

(2.37)

For given M and N , and for given Poisson point processes ηH and ηP , the process UM,N associated
with (r̃M,N

t )t≥0 is a jump process with a deterministic drift and admits a unique strong solution. The
latter can be constructed algorithmically (see e.g. [FT09, DKL20]).

In order to write in the sequel the generators corresponding to this dynamics, we use that we can
equivalently express the jumps at resampling events by keeping the distance constant and changing
the two-level measure ν. For the replacement of parasite (i, l) by parasite (i, k), the two-level measure
changes from ν to

ϑ(i,k),(i,l)(ν) := ν −
1

M
δ 1

N

∑N
j=1 δ(i,j)

+
1

M
δ 1

N

∑N
j=1 δ(i,j)−

1
N
δ(i,l)+

1
N
δ(i,k)

(2.38)

and for the replacement of parasite l by parasite k, the two-level measure changes from ν to

ϑk,l(ν) := ν −
1

M
δ 1

N

∑N
j=1 δ(l,j)

+
1

M
δ 1

N

∑N
j=1 δ(k,j)

. (2.39)

Notice that in this case, the modified representative is no longer of the form (2.33) (see also Exam-
ple 2.3).

The operator of the tree-valued two-level Moran dynamics. We introduce now the operators
corresponding to the two-level Moran dynamics described above. For finite populations, it is more
convenient to proceed by sampling without repetition. We compute our generator for such sampling.
To provide the convergence of the generators to the diffusion limit operator, we will use in Section 2.4.2
that sampling without or with repetition is asymptotically equivalent in large populations.

Fix M,N ∈ N. For µ = 1
M

∑M
i=1 δyi a probability measure on some space X and m ≤ M , we

denote by

µ⊗↓m(dx) := µ(dx1)⊗
µ− 1

M δx1

1− 1
M

(dx2)⊗ · · · ⊗
µ− 1

M

∑m−1
i=1 δxi

1− m−1
M

(dxm) (2.40)

the sampling (without replacement) measure. Now if m ≤M and if for all 1 ≤ i ≤ m, ni ≤ N we can

define the polynomial (without replacement) Φ
m,n,φ
M,N , for all χ = (T, r, ν) ∈ U

(2)
M,N ,

Φ
m,n,φ
M,N (χ) = 〈〈ν, φ〉〉↓ :=

∫

(M1(T ))m
ν⊗↓m(dµ)

∫

T |n|

m⊗

i=1

µ⊗↓ni

i (dui)φ ◦R(u), (2.41)

where φ ∈ Cb(R|n|×|n|) and R = R(X,r) is the distance operator defined in (2.16). Define

ΠM,N :=
{
Φ
m,n,φ
M,N : 1 ≤ m ≤M,∀i, 1 ≤ ni ≤ N,φ ∈ Cb(R

|n|×|n|)
}

(2.42)
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and
Π1

M,N :=
{
Φ
m,n,φ
M,N : 1 ≤ m ≤M,∀i, 1 ≤ ni ≤ N,φ ∈ C

1
b (R

|n|×|n|)
}
, (2.43)

where C1b (R
|n|×|n|) is the space of bounded and continuously differentiable real-valued functions on

R
|n|×|n| with bounded derivatives. Notice that the set Π1

M,N separates point in U
(2)
M,N .

We can now introduce the operator Ω↑M,N that acts on polynomials in Π1
M,N as follows

Ω↑M,N = Ω↑,HM,N +Ω↑,PM,N +Ω↑,growM,N , (2.44)

where the distance growth operator Ω↑,HM,N is defined as

Ω↑,growM,N Φ
φ,m,n
M,N (χ) := 〈〈ν,Λφ〉〉↓ , (2.45)

with

Λφ := 2
∑

(i,j),(i′,j′)∈NM,N

(i,j)6=(i′,j′)

∂φ

∂r(i,j)(i′,j′)
. (2.46)

and the operators for the resampling of parasites and hosts are

Ω↑,PM,NΦ
φ,m,n
M,N (χ) =

γP
2

M∑

i=1

∑

1≤k,l≤N

(〈〈
ϑ(i,k),(i,l)(ν), φ

〉〉
↓
− 〈〈ν, φ〉〉↓

)
(2.47)

and

Ω↑,HM,NΦ
φ,m,n
M,N (χ) =

γH
2

∑

1≤k,l≤M

(〈〈
ϑk,l(ν), φ

〉〉
↓
− 〈〈ν, φ〉〉↓

)
, (2.48)

where ϑ(i,k),(i,l) and ϑk,l where defined in (2.38) and (2.39).
The following rewriting of the operators will be useful when showing the uniform convergence to

the generator of the tree-valued two-level Fleming-Viot process. It states in particular that for the
resampling operators, we can sum only on the indices of the sample appearing in the integrand. This
is true because all the other terms are compensated when we substract averages over all the possible
samples before and after the resampling. For 1 ≤ k, l ≤ m, denote by θk,l : (M1(T ))

m → (M1(T ))
m

the replacement map defined by

θk,l(µ1, ..., µm) = (µ1, ..., µl−1, µk, µl+1, ..., µm), (2.49)

and, for 1 ≤ i ≤ m and 1 ≤ k, l ≤ ni, denote by θ(i,k),(i,l) : R
|n|×|n| → R

|n|×|n| the one defined by

(
θ(i,k),(i,l)(r)

)
(s,t),(s′,t′)

=





r(s,t),(i,k) if (s′, t′) = (i, l)

r(i,l),(s′,t′) if (s, t) = (i, l)

r(s,t),(s′,t′) otherwise.

(2.50)

Lemma 2.10. For all polynomials in Π1
M,N ,

Ω↑,growM,N Φ
φ,m,n
M,N (χ) :=

〈〈
ν, 2

∑

(i,j)6=(i′,j′)

∂φ

∂r(i,j)(i′,j′)

〉〉

↓

, (2.51)

Ω↑,PM,NΦ
φ,m,n
M,N (χ) =

γP
2

m∑

i=1

∑

1≤k,l≤ni

(〈〈
ν, φ ◦ θ(i,k),(i,l)

〉〉
↓
− 〈〈ν, φ〉〉↓

)
, (2.52)

and
Ω↑,HM,NΦ

φ,m,n
M,N (χ) =

γH
2

∑

1≤k,l≤m

(〈
ν⊗↓m, ψ↓ ◦ θ

k,l
〉
−
〈
ν⊗↓m, ψ↓

〉)
, (2.53)

where for all µ ∈ (M1(T ))
m,

ψ↓(µ) :=

∫

T |n|

m⊗

i=1

µ⊗↓ni

i (dui)φ ◦R(u). (2.54)
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2.3.2 Tightness

In this subsection we state that the family of two-level tree-valued Moran dynamics is tight. This will
be a key ingredient in showing the existence of a solution to the diffusion limit martingale problem
introduced in Section 2.4.

Since the particle approximation above is defined for M,N ∈ N, we first need to discuss the ways
of convergence we are interested in. We can consider the following:

(C1) Finite number of hosts with infinite parasites populations: the number of hosts is of
fixed size M and in each host the number of parasites N goes to infinity.

(C2) Infinite number of hosts with finite parasites populations: the number of parasites within
a host if of fixed size N and we let the number of hosts M go to infinity.

(C3) Infinite number of hosts with infinite parasites populations: we let the number both the
number of hosts M and parasites N go to infinity simultaneously, for example in a coupled way,
that is, M is a function of N .

We made the choice of considering (C3) in the sequel, because the definitions and results of Section 2.4
can easily be adapted from (C3) to (C1) or (C2) by keeping M or N fixed.

Theorem 2.11 (Tightness). Let, for each M,N ∈ N, (UM,N
t )t≥0 be the two-level tree-valued Moran

dynamics with population sizes (M,N) such that the family {UM,N
0 :M,N ∈ N} is tight in U

(2). Then,
the family {UM,N :M,N ∈ N} is tight in D

U(2) [0,∞).

An important part of the proof of the tightness stated in Theorem 2.11 consists in showing that the
family of two-level tree-valued Moran dynamics satisfies a criterion for a compact containment condition
to hold. This criterion applies to the more general class of finite population dynamics described in
Definition 2.7, where the population size might not be constant and might even go extinct (in this case
τ <∞).

The criterion uses the following notions. Let U = (Ut)t∈[0,τ) be the tree-valued population dynamics
read off from (I,�), where (I,�) and τ are as in Definition 2.7. For t ∈ [0, τ) and ǫ > 0, denote by

S2ǫ(Ut) := # {At−ǫ(α, t) : α ∈ It} (2.55)

the number of ancestors of It at time t− ǫ, and by

S̃2ǫ(Ut) := inf
J⊆It:Mνt (J )≤2ǫ

# {At−ǫ(α, t) : α ∈ It \ J } (2.56)

the minimal number of ancestors at time t− ǫ whose descendants cover a fraction of at least 1− 2ǫ of
the population at time t. Note that S2ǫ(Ut) and S̃2ǫ(Ut) are the minimal numbers of 2ǫ-balls needed to
cover respectively supp(Mνt) and supp(Mνt) \ J where the subset J ⊆ It is such that Mνt(J ) ≤ 2ǫ.
For t ≥ τ and ǫ > 0, we set S2ǫ(Ut) = S̃2ǫ(Ut) = 0. Moreover for J ⊆ Is and s ≤ t, denote by

Dt(J , s) := # {α ∈ It : As(α, t) ∈ J } (2.57)

the number of descendants of the set J at time t.
We can now enunciate the criterion for compact containment.

Proposition 2.12 (Compact containment for population dynamics). For each M,N ∈ N, let τM,N

and (ΩM,N , (AM,N
t )t∈R,P

M,N), (IM,N ,�M,N ) be as in Definition 2.7.
Let UM,N := (UM,N

t )t∈[0,τM,N ) be the tree-valued population dynamics read off from (IM,N ,�M,N )

and assume that the family
{
UM,N
0 :M,N ∈ N

}
is tight in U

(2). Furthermore, fix T > 0, and consider

the following assumptions:

(i) For all 0 < ǫ < T there exists a δ = δ(ǫ) > 0 such that for all s ∈ [0, T ), M,N ∈ N and
AM,N

s -measurable random subsets JM,N ⊆ IM,N
s with M

νM,N
s

(
JM,N

)
≤ δ,

sup
M,N∈N

P
M,N

{
sup

t∈[s,T∧τM,N )

M
νM,N
t

(
Dt(J

M,N , s)
)
> ǫ

}
≤ ǫ. (2.58)
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(ii.i) For all 0 < ǫ ≤ t < T , the family
{
S2ǫ(U

M,N
t ) :M,N ∈ N

}
is tight.

(ii.ii) For all 0 < ǫ ≤ t < T , the family
{
S̃2ǫ(U

M,N
t ) :M,N ∈ N

}
is tight.

Then the following compact containment conditions hold:

(a) Under (i) and (ii.i), for all ǫ > 0 there exists a set Γǫ,T ⊆ U
(2)
c which is compact in U

(2)
c such

that
inf

M,N∈N
P
M,N

{
UM,N
t ∈ Γǫ,T for all t ∈ [ǫ, T ∧ τM,N )

}
> 1− ǫ. (2.59)

(b) Under (i) and (ii.ii), for all ǫ > 0 there exists a set Γ̃ǫ,T ⊆ U
(2) which is compact in U

(2) such
that

inf
M,N∈N

P
M,N

{
UM,N
t ∈ Γ̃ǫ,T for all t ∈ [0, T ∧ τM,N )

}
> 1− ǫ. (2.60)

2.4 The diffusion limit: the two-level tree-valued Fleming-Viot pro-

cess

In this section, we introduce the two-level tree-valued Fleming-Viot process as the unique solution of
a well-posed martingale problem. This process is approximated by the two-level tree-valued Moran
dynamics in the sense of Proposition 2.16 which gives the convergence of the respective generators. Fur-
thermore, the duality of the diffusion process to the nested Kingman coalescent stated in Section 2.4.3
is a key ingredient in showing the uniqueness of the solution to the martingale problem.

2.4.1 The martingale problem

In order to introduce operators for the two-level tree-valued Fleming-Viot process, we need a separating
set of test functions on M

(2). As opposed to the definition of polynomials without replacement (2.41),
we allow to sample several times the same host measure or the same parasite. A polynomial is a
function Φ: M(2) → R that is of the following form: for all χ = (X, r, ν) ∈M

(2),

Φ(χ) = Φm,n,φ(χ) :=

∫

(M1(X))m
ν⊗m(dµ)

∫

Xm|n|

m⊗

i=1

µ⊗ni

i (dxi)φ ◦R(x), (2.61)

where m ∈ N, n ∈ N
m, |n| = n1 + ... + nm, φ ∈ Cb(R|n|×|n|) and R = R(X,r) is the distance operator

defined in (2.16). We will sometimes denote Φm,n,φ(X, r, ν) by 〈〈ν, φ〉〉 . It has been shown in [Mei19]
that these test functions are well-defined, that is, Φ(χ) does not depend on the representative of the
equivalence class χ.

Define now
Π :=

{
Φm,n,φ : m ∈ N, n ∈ N

m, φ ∈ Cb(R
|n|×|n|)

}
(2.62)

and
Π1 :=

{
Φm,n,φ : m ∈ N, n ∈ N

m, φ ∈ C1b (R
|n|×|n|)

}
, (2.63)

where C1b (R
|n|×|n|) is the space of bounded and continuously differentiable real-valued functions on

R
|n|×|n| with bounded derivatives.

Remark 2.13 (Π1 is an algebra that separates points). It has been shown in [Mei19, Theorem 3.8]
that the set Π is separating for M1(M

(2)). Since the set C1b (R
|n|×|n|) is dense in Cb(R|n|×|n|) in the

topology of point-wise convergence, Π1 also separates points in M
(2). Furthermore, it is easy to see

that Π and Π1 are algebras.

We define the following operator

Ω↑ = Ω↑,H +Ω↑,P +Ω↑,grow (2.64)

on the set of test functions Π1. Let us thus consider m ∈ N, n ∈ N
m and φ ∈ C1b (R

mn).
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The operator for the resampling of hosts is

Ω↑,HΦm,n,φ(χ) =
γH
2

∑

1≤k,l≤m

(〈
ν⊗m, ψ ◦ θk,l

〉
−
〈
ν⊗m, ψ

〉)
, (2.65)

where θk,l defined in (2.49) is the map which replaces the measure µl by the measure µk and for all
µ ∈ (M1(T ))

m,

ψ(µ) :=

∫

T |n|

µ⊗n1
1 (du1)⊗ · · · ⊗ µ

⊗nm
m (dum)φ ◦R(u). (2.66)

The operator for the resampling of parasites is

Ω↑,PΦm,n,φ(χ) =
γP
2

m∑

i=1

∑

1≤k,l≤ni

(〈〈
ν, φ ◦ θ(i,k),(i,l)

〉〉
− 〈〈ν, φ〉〉

)
, (2.67)

where θ(i,k),(i,l) defined in (2.50) is the map which replaces the distances to (i, l) by the distances to
(i, k).

The distance growth operator Ω↑,grow is defined as

Ω↑,growΦm,n,φ(χ) := Φm,n,Λφ(χ) = 〈〈ν,Λφ〉〉 , (2.68)

where

Λφ := 2
∑

(i,j),(i′,j′)∈Nm,n

(i,j)6=(i′,j′)

∂φ

∂r(i,j)(i′,j′)
. (2.69)

The main result of this section reads as follows.

Theorem 2.14 (The well-posed martingale problem). Let P0 be a probability measure on U
(2). For each

M,N ∈ N, let UM,N := (UM,N
t )t≥0 be the two-level tree-valued Moran dynamics of size (M,N). Assume

that (UM,N
0 )M,N converges weakly with respect to the two-level Gromov-weak topology, as (M,N)→∞,

to U0 distributed according to P0. Then (UM,N )M,N converges weakly in Skorohod path space w.r.t. the
two-level Gromov-weak topology to a U

(2)-valued Markov process U with càdlàg paths.
Furthermore, U is the unique U

(2)-valued Markov process (Xt)t≥0 such that P0 is the distribution
of X0, and for all Φ ∈ Π1, the process

(
Φ(Xt)− Φ(X0)−

∫ t

0
Ω↑Φ(Xs)ds

)

t≥0

(2.70)

is a martingale.

We refer to the process from Theorem 2.14 as the two-level tree-valued Fleming-Viot process and
finish this section with sample path properties of the process.

Proposition 2.15. The two-level tree-valued Fleming-Viot process has the following properties:

(i) almost surely, U has sample paths in CU[0,∞).

(ii) almost surely, for all t > 0, Ut ∈ U
(2)
c .

2.4.2 Convergence of generators

We show here that the generators (Ω↑M,N )M,N for the two-level tree-valued Moran dynamics converge

uniformly to the generator Ω↑ for the two-level tree-valued Fleming-Viot dynamics. This convergence
is an important part to prove the existence of a solution to the two-level tree-valued Fleming-Viot
martingale problem. Recall that we consider the type of convergence (C3) where both the numbers of
hosts and parasites go to infinity simultaneously.
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Proposition 2.16 (Uniform convergence of the generators). Let Φ ∈ Π1. For all M,N ∈ N, there
exists ΦM,N ∈ Π1

M,N such that

lim
M,N→∞

sup
χ∈U

(2)
M,N

|ΦM,N (χ)− Φ(χ)| = 0, (2.71)

and
lim

M,N→∞
sup

χ∈U
(2)
M,N

|Ω↑M,NΦM,N(χ)− Ω↑Φ(χ)| = 0. (2.72)

Proof. The proof consists in showing that sampling with or without replacement is asymptotically
equivalent in large populations. We follow the line of arguments of [Fre77]. Let µ = 1

M

∑M
i=1 δyi a

probability measure on some space Y = {y1, ..., yM} and m ≤M . Define

E := {(z1, ..., zm) ∈ Y m : ∀i, j, zi 6= zj}. (2.73)

By definition, dV T (µ
⊗↓m, µ⊗m) := supA |µ

⊗↓m(A) − µ⊗m(A)|. For all z ∈ E, µ⊗↓m(z) ≥ µ⊗m(z) and
for all z ∈ ∁E, µ⊗↓m(z) ≤ µ⊗m(z). Therefore

dV T (µ
⊗↓m, µ⊗m) = µ⊗↓m(E)− µ⊗m(E) = 1−

m−1∏

i=1

(
1−

i

M

)
. (2.74)

Using that 1 −
∑

i xi ≤
∏

i(1 − xi) for all x1, ..., xn ∈ R with 0 < xi < 1, we get the following bound
on the difference between sampling with or without replacement

dV T (µ
⊗↓m, µ⊗m) ≤

m(m− 1)

2M
. (2.75)

Then, for all f : Y m → R bounded,

∣∣∣∣
∫ (

µ⊗↓m − µ⊗m
)
(dz)f(z)

∣∣∣∣ ≤ 2dV T (µ
⊗↓m, µ⊗m)‖f‖ ≤

m(m− 1)

M
‖f‖. (2.76)

Fix m ∈ N, n ∈ N
m and φ ∈ C1b (R

|n|×|n|). Let Φ := Φm,n,φ. Now for M ≥ m and N ≥ maxi ni, let

ΦM,N := Φ
m,n,φ
M,N . For χ = (X, r, ν) ∈ U

(2)
M,N ,

|ΦM,N(χ)− Φ(χ)|

=

∣∣∣∣∣

∫
ν⊗↓m(dµ)

∫ m⊗

i=1

µ⊗↓ni

i (dui)φ ◦R
(
u
)
−

∫
ν⊗m(dµ)

∫ m⊗

i=1

µ⊗ni

i (dui)φ ◦R
(
u
)
∣∣∣∣∣

≤
m∑

j=1

∫
ν⊗↓m(dµ)

∣∣∣∣∣∣

∫ (
µ
⊗↓nj

j − µ
⊗nj

j

)
(duj)

∫ j−1⊗

i=1

µ⊗↓ni

i (dui)

∫ m⊗

i=j+1

µ⊗ni

i (dui)φ ◦R
(
u
)
∣∣∣∣∣∣

+

∣∣∣∣∣

∫ (
ν⊗↓m − ν⊗m

)
(dµ)

∫ m⊗

i=1

µ⊗ni

i (dui)φ ◦R
(
u
)
∣∣∣∣∣ .

(2.77)

Therefore, with (2.76),

|ΦM,N(χ)− Φ(χ)| ≤
m∑

j=1

nj(nj − 1)

N
‖φ‖+

m(m− 1)

M
‖φ‖, (2.78)

and (2.71) follows.

For (2.72), observe first that Ω↑,growM,N Φ
m,n,φ
M,N = Φ

m,n,2Λφ
M,N and Ω↑,growΦm,n,φ = Φm,n,2Λφ with 2Λφ

bounded since the derivatives of φ ∈ C1b (R
|n|×|n|) are bounded. Hence, we can use (2.77) to bound
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the difference of the two generators. This also applies to the parasite resampling operator with 2Λφ
replaced by γP

2

∑m
i=1

∑
1≤k,l≤m(φ ◦ θ(i,k),(i,l) − φ). For the resampling of hosts,

∣∣∣Ω↑,HM,NΦ
m,n,φ
M,N (χ)− Ω↑,HΦm,n,φ(χ)

∣∣∣ ≤
∑

1≤k,l≤m

∣∣∣
〈
ν⊗↓m, ψ↓ ◦ θ

k,l
〉
−
〈
ν⊗m, ψ ◦ θk,l

〉∣∣∣

+m2
∣∣∣
〈
ν⊗↓m, ψ↓

〉
−
〈
ν⊗m, ψ

〉∣∣∣ ,
(2.79)

where ψ↓ and ψ are defined in (2.54) and (2.66). Then (2.72) follows by we applying (2.77) to each
term

∣∣〈ν⊗↓m, ψ↓ ◦ θk,l
〉
−
〈
ν⊗m, ψ ◦ θk,l

〉∣∣.

2.4.3 Duality

It is well known that the Kingman coalescent is dual to the neutral measure-valued Fleming-Viot
process (see [DK96]). This is also true of the tree-valued Fleming-Viot dynamics (see [GPW13]) and
the two-level measure-valued Fleming-Viot process (see [Daw18]). We show here that this duality
relation can be formulated in the two-level tree-valued case. That is, the nested Kingman coalescent
is dual to the two-level tree-valued Fleming-Viot dynamics.

The nested Kingman coalescent we consider takes value in the space Pnest of all pairs (pH , pP )
where pH and pP are two partitions of N2 such that for all (i1, j1), (i2, j2) ∈ N

2,

• if i1 = i2, then (i1, j1) and (i2, j2) belong to the same block of pH ,

• if (i1, j1) and (i2, j2) belong to the same block of pP , then they belong to the same block of pH .
In other words, each block of pP is contained in a single block of pH .

Adding a component which measures genealogical distances, the tree-valued nested Kingman coalescent
K = (Kt)t≥0 with

K(t) =
(
κH(t), κP (t), r

′(t)
)
∈ G := Pnest × R

N4
(2.80)

is defined as follows:

• Coalescence: (κH(t), κP (t))t≥0 is the nested Kingman coalescent with rates (γH , γP ) taking
values in Pnest starting in (κH(0), κP (0)) ∈ Pnest.

• Distance growth: At time t, for all (i, j) and (i′, j′) with (i, j) ≁κP (t) (i
′, j′), the genealogical

distance r′((i,j),(i′,j′))(.) grows with constant speed 2.

We now define a martingale problem associated with this dynamics. For this, we consider

G :=
{
G ∈ B(G) :∀r′ ∈ R

N4
, G(·, r′) ∈ C(Pnest) and depends on pH and pP only through

their restrictions to Nm,n for some m ∈ N, n ∈ N
m
} (2.81)

and its subset
G1 :=

{
G ∈ G : Λr′

pP
G exists for each partition pP of N2

}
, (2.82)

with

Λr′
pP
G := 2

∑

(i,j)6=(i′,j′)
pP (i,j)6=pP (i′,j′)

∂G

∂r′(i,j)(i′,j′)
, (2.83)

where pP (i, j) denotes the block of the partition pP that contains (i, j).
We consider the martingale problem associated with the operator Ω↓ defined on G and with domain

G1, where Ω↓ := Ω↓,grow +Ω↓,s +Ω↓,g with Ω↓,grow the growth operator

Ω↓,growG(pH , pP , r
′) := Λr′

pP
G(pH , pP , r

′).

Josué Nussbaumer 48



2.4 The diffusion limit: the two-level tree-valued Fleming-Viot process

The two terms for coalescence events are

Ω↓,HG(pH , pP , r
′) := γH

∑

{π,π′}⊂pH
π 6=π′

(
G(πpH (π, π

′), pP , r
′)−G(pH , pP , r

′)
)
,

Ω↓,PG(pH , pP , r
′) := γP

∑

{π,π′}⊂pP
π⊔pH π′,π 6=π′

(
G(pH , βpP (π, π

′), r′)−G(pH , pP , r
′)
)
,

(2.84)

where
βp(π, π

′) := (p\{π, π′}) ∪ {π ∪ π′}, (2.85)

and π ⊔pH π′ denotes that π ∪ π′ is contained in a single block of pH . For P0 a probability measure
on G, the tree-valued nested Kingman coalescent we defined solves the (P0,Ω

↓,G1)-martingale problem.

The duality relation. In order to give the duality relation between the two-level tree-valued Fleming-
Viot process and the tree-valued nested Kingman coalescent, we need to define suitable duality func-
tions.

We will need the following notation. For m ∈ N, n ∈ N
m, p a partition of Nm,n and r a distance

matrix indexed by the blocks of p, we write
((
r̟,̟′

)
̟,̟′∈p

)p
:=
(
rp(i,j),p(i′,j′)

)
(i,j),(i′,j′)∈Nm,n

. (2.86)

Example 2.17. Let m = 3, n1 = n2 = 1 and n3 = 2. Consider pP a partition of N2 whose restriction
to N3,(2,1,1) is

pP |N3,(2,1,1)

{
{(1, 1), (3, 2)}, {(2, 1)}, {(3, 1)}

}
. (2.87)

Then the matrix

((
r̟,̟′

)
̟,̟′∈pP |N3,(2,1,1)

)pP |N3,(2,1,1)

is




r{(1,1),(3,2)},{(1,1),(3,2)} r{(1,1),(3,2)},{(2,1)} r{(1,1),(3,2)},{(3,1),(3,2)} r{(1,1),(3,2)},{(1,1),(3,2)}
r{(2,1)},{(1,1),(3,2)} r{(2,1)},{(2,1)} r{(2,1)},{(3,1),(3,2)} r{(2,1)},{(1,1),(3,2)}
r{(3,1)},{(1,1),(3,2)} r{(3,1)},{(2,1)} r{(3,1)},{(3,1),(3,2)} r{(3,1)},{(1,1),(3,2)}

r{(1,1),(3,2)},{(1,1),(3,2)} r{(1,1),(3,2)},{(2,1)} r{(1,1),(3,2)},{(3,1),(3,2)} r{(1,1),(3,2)},{(1,1),(3,2)}


 . (2.88)

For each m ∈ N, u ∈ N
m, φ ∈ C1b (R

|n|×|n|), define the function Hm,n,φ : U(2) ×G→ R as

Hm,n,φ
(
χ, (pH , pP , r

′)
)

:=

∫ ⊗

π∈pH|Nm,n

ν(dµπ)

∫ ⊗

π∈pH|Nm,n

⊗

̟∈pP |Nm,n

̟⊂π

µπ(du̟)φ
((
R
(
(u̟′)̟′∈pP |Nm,n

))pP |Nm,n
+ r′

)
. (2.89)

For each block π in the partition pH|Nm,n
, we sample a measure (a host) µπ and for each block ̟ in

the partition pP |Nm,n
that is a subset of π, we sample a parasite u̟ according to the measure µπ. We

denote by H the set of duality functions.
Note that for m ∈ N, u ∈ N

m, φ ∈ C1b (R
|n|×|n|) and (pH , pP , r

′) ∈ G, we can express the function

Hm,n,φ
(
·, (pH , pP , r

′)
)

(2.90)

as Φm̂,n̂,φ̂ ∈ Π1 with m̂ = #(pH|Nm,n
), n̂ = (#(pP |π))π∈pH|Nm,n

and φ̂ =
(
φ
(
(·)pP + r′

))
. Conversely,

we can write each function in Π1 as a function of the form (2.90), so that the subset
{
Hm,n,φ

(
·, (pH , pP , r

′)
)
∈ H : m ∈ N, n ∈ N

m, (pH , pP , r
′) ∈ G, φ ∈ C1b (R

|n|×|n|)
}

(2.91)

is equal to Π1 and thus separates points in U
(2). Moreover, we need to make explicit how we will apply

Ω↑ to a function of the form (2.90). Indeed the operator Ω↑ acts on polynomials Φm,n,φ where φ acts
on distance matrix indexed by Nm,n (see (2.64) and below). But since the order in the indices play no
part in the definition of the generator, we simply replace the indices in Nm,n by partition-block indices.

49 Josué Nussbaumer



Chapter 2: Resampling dynamics on metric two-level measure trees

Proposition 2.18 (Duality relation). For P0 ∈ M1(U
(2)) and ζ ∈ G, let U = (Ut)t≥0 and K = (Kt)t≥0

be solutions of the (P0,Ω
↑,Π1) and (δζ ,Ω

↓,G1,0)-martingale problems, respectively. Then, if U and K
are independent,

E[H(Ut, ζ)] = E[H(U0,Kt)], (2.92)

for all t ≥ 0 and H ∈ H.

Proof. We apply [EK86, Theorem 4.4.11, Corollary 4.4.13] (with α = β = 0) to the functions in H
which are bounded. For this, we show that for all m ∈ N, n ∈ N

m and φ ∈ C1b (R
|n|×|n|),

Ω↑Hm,n,φ
(
·, (pH , pP , r

′)
)
(χ) = Ω↓Hm,n,φ (χ, ·) (pH , pP , r

′). (2.93)

We verify this for each of the three components separately. To make the calculation more readable and
since it leads to no confusion, we omit the restriction notation p|Nm,n

and simply use p in the following
equations. First, we have that

Ω↑,growHm,n,φ
(
·, (pH , pP , r

′)
)
(χ)

=

∫ ⊗

π∈pH

ν(dµπ)

∫ ⊗

π∈pH

⊗

̟∈pP
̟⊂π

µπ(du̟)
∑

̟′ 6=̟′′

∂
(
φ
(
(·)pP + r′

))

∂r̟′,̟′′

(
R
(
(u̟)̟∈pP

))

=

∫ ⊗

π∈pH

ν(dµπ)

∫ ⊗

π∈pH

⊗

̟∈pP
̟⊂π

µπ(du̟)
∑

̟′ 6=̟′′

∑

(i,j)6=(i′,j′)
pP (i,j)=̟′

pP (i′,j′)=̟′′

∂
(
φ
(
(R ((u̟)̟∈pP ))

pP + ·
))

∂r′(i,j)(i′,j′)

(
r′
)

=

∫ ⊗

π∈pH

ν(dµπ)

∫ ⊗

π∈pH

⊗

̟∈pP
̟⊂π

µπ(du̟)
∑

(i,j)6=(i′,j′)
pP (i,j)6=pP (i′,j′)

∂
(
φ
(
(R ((u̟)̟∈pP ))

pP + ·
))

∂r′(i,j)(i′,j′)

(
r′
)

=
∑

(i,j)6=(i′,j′)
pP (i,j)6=pP (i′,j′)

∂Hm,n,φ(χ, ·)

∂r′(i,j)(i′,j′)
(pH , pP , r

′)

= Ω↓,growHm,n,φ (χ, ·) (pH , pP , r
′).

(2.94)

For the generators of resampling of parasites and coalescence of parasites, we have

Ω↑,PHm,n,φ
(
·, (pH , pP , r

′)
)
(χ)

=
γP
2

∑

π′∈pH

∑

̟′,̟′′∈pP
̟′,̟′′⊂π′

∫ ⊗

π∈pH

ν(dµπ)

∫ ⊗

π∈pH

⊗

̟∈pP
̟⊂π

µπ(du̟)

(
φ
(
(θ̟′̟′′ ◦R(u))pP + r′

)
− φ((R(u))pP + r′)

)

=
γP
2

∑

π′∈pH

∑

̟′,̟′′∈pP
̟′,̟′′⊂π′

(∫ ⊗

π∈pH

ν(dµπ)

∫ ⊗

π∈pH

⊗

̟∈βpP
(̟′,̟′′)

̟⊂π

µπ(du̟)φ
(
(R(u))βpP

(̟′,̟′′) + r′
)

−

∫ ⊗

π∈pH

ν(dµπ)

∫ ⊗

π∈pH

⊗

̟∈pP
̟⊂π

µπ(du̟)φ
(
(R(u))pP + r′

)
)
,

(2.95)
which is Ω↓,PHm,n,φ(χ, ·)(pH , pP , r

′).
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Finally for the generators of resampling of hosts and coalescence of hosts, we have

Ω↑,HHm,n,φ
(
·, (pH , pP , r

′)
)
(χ)

=
γH
2

∑

π′,π′′∈pH

(∫ ⊗

π∈pH

ν(dµπ)

∫ ⊗

π∈pH
π 6=π′′

⊗

̟∈pP
̟⊂π

µπ(du̟)⊗
⊗

̟∈pP
̟⊂π′′

µπ′(du̟)φ((R(u))
pP + r′)

−

∫ ⊗

π∈pH

ν(dµπ)

∫ ⊗

π∈pH

⊗

̟∈pP
̟⊂π

µπ(du̟)φ((R(u))
pP + r′)

)

=
γH
2

∑

π′,π′′∈pH

(∫ ⊗

π∈βpH
(π′,π′′)

ν(dµπ)

∫ ⊗

π∈βpH
(π′,π′′)

⊗

̟∈pP
̟⊂π

µπ(du̟)φ
(
(R(u))pP + r′

)

−

∫ ⊗

π∈pH

ν(dµπ)

∫ ⊗

π∈pH

⊗

̟∈pP
̟⊂π

µπ(du̟)φ((R(u))
pP + r′)

)

(2.96)

which is Ω↓,HHm,n,φ(χ, ·)(pH , pP , r
′), and the result follows by combining the three terms.

2.5 Expected length distribution

In population genetics, a simple popular model is the infinitely allele model ([Kim69, Wat75] or [Ber09]
for a review). It describes the evolution of a sample of genes at a single locus. Mutations are assumed
to occur according to a Poisson point process with intensity θ > 0 along the tree, and each time, a new
allele appears. Thus, the number of mutations follows a Poisson distribution with parameter θL where
L is the total length of the tree. Several works have studied the length of a genealogical tree, with
applications to the estimation of θ or to testing hypotheses, for various one-level tree models (Kingman
process [Fel71, Section I.6], Bolthausen-Sznitman coalescent processes [DIMR07], Lambda-coalescent
processes [M0̈6], Beta-coalescent processes [BBS08, DDSJ08, DFSJY13]...).

We seek here to derive some analog results on the subtree length distribution in the two-level
tree-valued Fleming-Viot dynamics. We first consider its action on specific polynomials evaluating the
length distribution of the subtrees spanned by finite samples. Then, we study the unique stationary
distribution of the dynamics, which is the nested Kingman measure tree, and we compare its subtree
length distribution to the one of the coalescent without hierarchy.

2.5.1 Length of a subtree of the evolving two-level Fleming-Viot process

In this section, we adapt a result from [GPW13] concerning the subtree length distribution. For
a metric space (X, r) satisfying the four point condition (2.26), the length of the subtree of (X, r)
spanned by x1, . . . , xn ∈ X is given by

1

2
inf

{
n∑

i=1

rxi,xσ(i)
: σ ∈ Σ1

n

}
, (2.97)

where Σ1
n is the set of all permutations of {1, ..., n} with one cycle. Therefore, to describe the length

distribution of subtrees spanned by finite two-level samples, we define for m ∈ N, n ∈ N
m and

r ∈ R
Nm,n×Nm,n

+ ,

lm,n(r) :=
1

2
inf





m∑

i=1

ni∑

j=1

r(i,j),σ(i,j) : σ ∈ Sm,n



 , (2.98)

where Sm,n denotes the set of all permutations of Nm,n := {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ ni} with one
cycle. We also define for χ ∈ U

(2), σ > 0 and m ∈ N, n ∈ N
m,

Ψm,n,l(χ, σ) :=

∫

(M1(X))m
ν⊗m(dµ)

∫

X|n|

m⊗

i=1

µ⊗ni

i (dxi)e
−σlm,n◦R(x). (2.99)
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The following result describes the evolution of the length distribution of a sampled subtree under
the two-level tree-valued Fleming-Viot dynamics.

Proposition 2.19. For m ≥ 1 and n ∈ N
m, we have

Ω↑Ψm,n,l(χ, σ) = −σ|n|Ψm,n,l(χ, σ) +
γP
2

m∑

i=1

ni(ni − 1)
(
Ψm,n−ei,l(χ, σ) −Ψm,n,l(χ, σ)

)

+
γH
2

∑

1≤k,l≤m
k 6=l

(
Ψm−1,(n1,...,nk−1,nk+nl,nk+1,...,nl−1,nl+1,...,nm),l(χ, σ)−Ψm,n,l(χ, σ)

)
.

(2.100)

Proof. The result follows from the definition of Ω↑ (2.64) as the sum of three operators and an easy
computation of the action of each operator on Ψm,n,l(χ).

2.5.2 Subtree length distribution of the nested Kingman measure tree

First, we state that in long time, the two-level Fleming-Viot process converges in distribution w.r.t. the
Gromov-weak topology to the nested Kingman measure tree and provides statistical representations
of its subtree length distribution through a recursive relation.

The nested Kingman measure tree U (2)
∞ is a metric two-level measure space introduced in [Mei19,

Section 10] as the weak limit of a sequence of finite nested Kingman coalescent processes with rates
(γH , γP ) when the number of leaves tends to infinity.

Proposition 2.20 (Convergence to the nested Kingman measure tree). When t→ +∞, the two-level

tree-valued Fleming-Viot process (U
(2)
t )t>0 converges in distribution w.r.t. the two-level Gromov-weak

topology to the two-level Kingman process U (2)
∞ . In particular, the distribution of U (2)

∞ is the unique
equilibrium distribution of the two-level tree-valued Fleming–Viot dynamics.

Proof. By [Mei19, Theorem 9.2], the set Π1 is convergence determining so it is enough to prove that
for all Φ ∈ Π1,

lim
t→+∞

E[Φ(U
(2)
t )] = E[Φ(U (2)

∞ )]. (2.101)

To show that, we use the duality relation from Proposition 2.18. Fix m ∈ N, n ∈ N
m, |n| = n1+...+nm

and φ ∈ C1b (R
|n|×|n|). We consider the nested Kingman coalescent (K(t))t≥0 which starts in K(0) :=

(κH(0), κP (0), r
′(0)) ∈ G, where κH(0) := {((i, j), (i, j))|i, j ∈ N}, κH(0) := {((i, j), (i′ , j′))|i, j, i′, j′ ∈

N} and r′(0) ≡ 0. By construction of K, limt→+∞(κH(t), κP (t)) = ({N2}, {N2}) and

lim
t→+∞

E[φ(r′(t))] = E[Φ(U (2)
∞ )]. (2.102)

Therefore by the duality relation (2.92),

lim
t→+∞

E

[
Φ(U

(2)
t )
]
= lim

t→+∞
E

[
Hm,n,φ

(
U
(2)
t , (κH(t), κP (t), r

′(t))
)]

= lim
t→+∞

E

[
Hm,n,φ

(
U
(2)
t , ({N2}, {N2}, r′(t))

)]

= lim
t→+∞

E
[
φ(r′(t))

]

= E[Φ(U (2)
∞ )].

(2.103)

This concludes the proof.

For m ≥ 1 and n ∈ N
m, let us denote by Lm,n the length of the finite nested Kingman coalescent

started with m hosts and ni parasites in host i. From the definition of the nested Kingman coalescent
(see [Mei19, Definition 10.2]), we have in particular that for σ > 0,

E
[
e−σLm,n

]
= Ψm,n,l(U∞, σ). (2.104)
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Proposition 2.21 (Subtree length distribution in the nested Kingman tree). For all m ∈ N and
n ∈ N

m, we have

E
[
e−σLm,n

]
=

1

σ
∑m

i=1 ni +
∑m

i=1
ni(ni−1)

2 γP + m(m−1)
2 γH

(
m∑

i=1

ni(ni − 1)

2
γPE

[
e−σLm,n−ei

]

+
∑

1≤k<l≤m

γHE

[
e
−σLm−1,(n1,...,nk−1,nk+nl,nk+1,...,nl−1,nl+1,...,nm)

]

 . (2.105)

Proof. We condition on the first event of resampling that occurs in the nested coalescent. This event
occurs after a random time E1, which is exponentially distributed with parameter

∑m
i=1

ni(ni−1)
2 γP +

m(m−1)
2 γH . After this event, the process has law the nested Kingman coalescent started with one host

less, or one parasite less, so that we get the following induction relations:

E
[
e−σLm,n

]
=E

[
e−σ(

∑m
i=1 ni)E1

] 1
∑m

i=1
ni(ni−1)

2 γP + m(m−1)
2 γH

(
m∑

i=1

ni(ni − 1)

2
γPE

[
e−σLm,n−ei

]

+
∑

1≤k<l≤m

γHE

[
e
−σLm−1,(n1 ,...,nk−1,nk+nl,nk+1,...,nl−1,nl+1,...,nm)

]



=
1

σ
∑m

i=1 ni +
∑m

i=1
ni(ni−1)

2 γP + m(m−1)
2 γH

(
m∑

i=1

ni(ni − 1)

2
γPE

[
e−σLm,n−ei

]

+
∑

1≤k<l≤m

γHE

[
e
−σLm−1,(n1 ,...,nk−1,nk+nl,nk+1,...,nl−1,nl+1,...,nm)

]

 .

(2.106)
This is the announced equation.

Notice that this result is consistent with the action of the operator Ω↑ on Ψm,n,l from (2.100). In-
deed, since U∞ is the stationary distribution of the two-level Fleming-Viot dynamics, Ω↑Ψm,n,l(U∞, σ) =
0 for all σ > 0.

Let us specify the subtree length distribution in the case where m = 1 or m = 2.

Proposition 2.22. For m = 1, the nested Kingman measure tree satisfies:

E
[
e−σL1,n

]
=

n−1∏

i=1

γP
2 i

σ + γP
2 i

= E

[
e−σ

∑n
i=2 E

i
P

]
, (2.107)

where (E iP )2≤i≤n are independent and E iP is exponentially distributed with parameter γP (i−1)
2 . Moreover,

for m = 2,

E
[
e−σL2,(n,1)

]
=

γH
2

σ + γH
2

n∏

i=1

γP
2 i

σ + γP
2 i

= E

[
e−σ(E

2
H
+
∑n+1

i=2 E
i
P )
]
, (2.108)

where E2H is exponentially distributed with parameter γH
2 and independent from (E i)2≤i≤n.

Proof. Let n ∈ N. For m = 1, (2.105) rewrites:

E
[
e−σL1,n

]
=

1

σn+ n(n−1)
2 γP

n(n− 1)

2
γPE

[
e−σL1,n−1

]
. (2.109)

and a direct recursion gives the announced result for m = 1. For m = 2 and n = (n, 1), (2.105)
becomes:

E
[
e−σL2,(n,1)

]
=

1

σ(n+ 1) + n(n−1)
2 γP + γH

(
n(n− 1)

2
γPE

[
e−σL2,(n−1,1)

]
+ γHE

[
e−σL1,n+1

])
.

(2.110)
A straightforward computation shows that 2.108 solves this equation.
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2.5.3 Results on the expected tree length: comparison with the one-level case

Here, we no longer consider the mean sample Laplace transform of the subtree length distribution,
but only its expected value. It allows in particular for estimation of the coalescence rates γH and γP
genealogical trees, which we assume a priori to be distributed according to a nested coalescent tree.

As a direct consequence of Proposition 2.21, for all m ∈ N and n ∈ N
m,

E
[
Lm,n

]
=

1
∑m

i=1
ni(ni−1)

2 γP + m(m−1)
2 γH

(
m∑

i=1

ni +

m∑

i=1

ni(ni − 1)

2
γPE

[
Lm,n−ei

]

+
∑

1≤k<l≤m

γHE
[
Lm,(n1,...,nk−1,nk+nl,nk+1,...,nl−1,nl+1,...,nm)

]

 .

(2.111)

Furthermore, from Proposition 2.22, we have for all n ∈ N,

E[L1,n] =
n−1∑

k=1

2

kγP
, (2.112)

E[L2,(n,1)] =
2

γH
+

n∑

k=1

2

kγP
. (2.113)

In order to compare these results with the subtree length distribution of the simple Kingman
coalescent, we denote by Lm the length of the Kingman m-coalescent with rate γ, and recall that
Lm,1 is the length of the nested Kingman coalescent started with m parasites in distinct hosts. The
following give a comparison of the mean values of Lm and Lm,1 for m ∈ {2, 3, 4, 5}:

E[L2] =
2

γ
, E[L2,1] =

2

γH
+

2

γP
, (2.114)

E[L3] =
3

γ
, E[L3,1] =

3

γH
+

3

γP
, (2.115)

E[L4] =
11

3γ
, E[L4,1] =

11

3γH
+

11

3γP
+

1

3

1

γP + 3γH

2γP + 3γH
2γP + γH

, (2.116)

E[L5] =
25

6γ
, E[L5,1] =

25

6γH
+

25

6γP
+

5

6

1

γP + 3γH
. (2.117)

Notice that when n = 2 or n = 3, the sampled subtree lengths have the same mean value for
1/γ = 1/γH + 1/γP . Therefore, in order to compare the lengths between both models, γ is equal
to the harmonic mean of γH and γP . The relations for n = 4 and n = 5 brings out that the length
of the nested model deviates from the one-level neutral model. Indeed, the subtrees are longer in the
two-level setup, which is not surprising, as the coalescence of parasites (in the lower level) is constrained
by the beforehand coalescence of their respective hosts (in the upper level).

Let us solve the recursion equation (2.111) for m = 2 and n = (n1, n2). Recall that |n| = n1 + n2.
For ℓ ≤ |n|, define by

Γℓ,n = {π ∈ (N2)ℓ+1 | π0 = n, and ∀0 ≤ t ≤ ℓ, πt+1 − πt ∈ {(−1, 0), (0,−1)}}

the set of west-south paths of length ℓ on N
2 started at π0 = (n1, n2). We can associate to each of

these paths a weight depending on πℓ and the directions taken by the paths between time 0 and ℓ:

w(π) =
ℓ−1∏

t=0

(
β←(πt)1{πt+1−πt=(−1,0)} + β↓(πt)1{πt+1−πt=(0,−1)}

)
× α(πℓ), (2.118)
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where for (x, y) ∈ N
2, the weight of edges β and of the final vertex α are given by:

α(x, y) =
1

(x(x−1)
2 + y(y−1)

2

)
γP + γH

,

β←(x, y) =
x(x− 1)

2
× γP × α(x, y),

β↓(x, y) =
y(y − 1)

2
× γP × α(x, y).

(2.119)

By convention, if π is of length 0, we define w(π) = α(π0).

Proposition 2.23. With the expressions of (2.112), we have:

E
[
L2,(n1,n2)

]
=

n1+n2−2∑

ℓ=0

(
n1 + n2 − ℓ+ γHE [L1,n1+n2−ℓ]

)
×Wℓ(n1, n2), (2.120)

where
Wℓ(n1, n2) =

∑

π∈Γℓ,n

w(π). (2.121)

Proof. From (2.111), we have:

E
[
L2,(n1,n2)

]
=

1(
n1(n1−1)

2 + n2(n2−1)
2

)
γP + γH

(
n1 + n2 + γHE [L1,n1+n2 ]

)

+
1(

n1(n1−1)
2 + n2(n2−1)

2

)
γP + γH

(n1(n1 − 1)

2
γP E

[
L2,(n1−1,n2)

]
+
n2(n2 − 1)

2
γP E

[
L2,(n1,n2−1)

] )
.

(2.122)

In the above equation, the first line in the right hand side is known by (2.112) and we can recognize
W0(n1, n2) in the first fraction. Iterating the formula (2.122) for E[L2,(n1−1,n2)] and E[L2,(n1,n2−1)], we
obtain for the second line:

• the term (n1 + n2 − 1 + γHE [L1,n1+n2−1]) (which depends only on the sum of the coordinates
(n1− 1, n2) or (n1, n2− 1), and is hence constant on the diagonal x+ y = n1 + n2− 1), in factor
of

n1(n1−1)
2 γP(

n1(n1−1)
2 + n2(n2−1)

2

)
γP + γH

×
1(

(n1−1)(n1−2)
2 + n2(n2−1)

2

)
γP + γH

+
n2(n2−1)

2 γP(
n1(n1−1)

2 + n2(n2−1)
2

)
γP + γH

×
1(

n1(n1−1)
2 + (n2−1)(n2−2)

2

)
γP + γH

,

which is the weight W1(n1, n2).

• terms involving the four paths of length 2 ((←,←), (↓, ↓), (←, ↓), (↓,←)):

n1(n1−1)
2 γP(

n1(n1−1)
2 + n2(n2−1)

2

)
γP + γH

×
(n1−1)(n1−2)

2 γP(
(n1−1)(n1−2)

2 + n2(n2−1)
2

)
γP + γH

× E
[
L2,(n1−2,n2)

]

+
n2(n2−1)

2 γP(
n1(n1−1)

2 + n2(n2−1)
2

)
γP + γH

×
(n2−1)(n1−2)

2 γP(
n1(n1−1)

2 + (n2−1)(n2−2)
2

)
γP + γH

× E
[
L2,(n1,n2−2)

]

+

{
n1(n1−1)

2 γP(
n1(n1−1)

2 + n2(n2−1)
2

)
γP + γH

×
n2(n2−1)

2 γP(
(n1−1)(n1−2)

2 + n2(n2−1)
2

)
γP + γH

+
n2(n2−1)

2 γP(
n1(n1−1)

2 + n2(n2−1)
2

)
γP + γH

×
n1(n1−1)

2 γP(
n1(n1−1)

2 + (n2−1)(n2−2)
2

)
γP + γH

}
× E

[
L2,(n1−1,n2−1)

]
.
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Using formula (2.122) again, the three expectations above can be replaced by a term involving
E [L1,n1+n2−2] and terms corresponding to paths of length 3.

More generally, reiterating the formula (2.122), we obtain the terms (n1 + n2 − ℓ+ γHE [L1,n1+n2−ℓ]),
for 0 ≤ ℓ ≤ n1 + n2 − 2. The multiplicative factor for the term associated with ℓ corresponds to the
weights of all south-west paths linking (n1, n2) to the diagonal x + y = n1 + n2 − ℓ. The reiteration
stops when reaching E

[
L2,1

]
that is computed in (2.113).

To conclude this section, let us mention that the formulas computed above could serve for the
statistical estimation of the parameters γH and γP . If we observe the lengths (L

(k)
m,n, 1 ≤ k ≤ K) of K

sampled subtrees of the two-level Kingman measure tree, then, it is possible to approximate E[Lm,n]
by the empirical mean of the tree lengths:

1

K

K∑

k=1

L(k)
m,n.

The moment estimators of γH and γP are then defined as the values that minimize the distance between
the vectors of empirical means and the vector of expectations, for various values of m and n.

2.6 Proofs of the main results

2.6.1 Proof of Theorem 2.11

We prove here that the sequence of two-level tree-valued Moran dynamics is tight in D
U(2) [0,∞) and

that the potential limit points take values in the space of compact ultra-metric m2m spaces. For this,
we prove the criterion for compact containment of Proposition 2.12 and that this criterion is satisfied
by the family of two-level tree-valued Moran dynamics.

Recall the distance distribution wµ of µ from (2.21). Recall also from Proposition 2.4 that a char-
acterization of relative compactness in M

(2) can be expressed with respect to the corresponding metric
measure spaces arising from the intensity measure. For this reason, the proof follows literally (apart
from a few additional comments) the proof of Proposition 2.22 in [GPW13] with the (one-level) mea-
sure µ replaced by the intensity measure Mν .

Compact containment. We now prove Proposition 2.12. The proof relies on two lemmata that give
bounds on the distance distribution and the number of ancestors, that are used in showing the sufficient
conditions for relative compactness in Proposition 2.5. The first bounds are related to Assumption (i)
of the criterion for the compact containment condition to hold.

Lemma 2.24 (Bounds on the distance distribution under Assumption (i)). Fix T > 0, and assume
that {UM,N

0 :M,N ∈ N} is tight in U
(2). If Condition (i) of Proposition 2.12 holds, then for all ǫ > 0,

there is a Cǫ > 0 such that

sup
M,N∈N

P
M,N

{
sup

t∈[0,T∧τM,N )

wM
ν
M,N
t

([Cǫ,+∞)) > ǫ

}
≤ ǫ. (2.123)

The proof uses the following lemma, applied to {UM,N
0 :M,N ∈ N}.

Lemma 2.25. If a family {Xi}i∈I = {(Xi, ri, νi)}i∈I of random variables in M
(2) is tight, then for

all ǫ > 0, there exists Cǫ > 0 such that for all i ∈ I, there is a random subset Xǫ,i ⊆ Xi with
Mνi(Xǫ,i) ≥ 1− ǫ and

P {diam(Xǫ,i) ≤ Cǫ} ≥ 1− ǫ, (2.124)

where diam(Xǫ,i) denotes the diameter of the set Xǫ,i.
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Proof. Suppose that {Xi}i∈I is tight and fix ǫ > 0. By definition, we can find a compact set Γǫ ∈M
(2)

such that inf i∈I P(Xi ∈ Γǫ) > 1− ǫ. Since Γǫ is compact, there exists, by [Mei19, Theorem 7.2], Cǫ > 0
such that for all X = (X, r, ν) ∈ Γǫ, there exists Xǫ,X ⊆ X with Mν(Xǫ,X ) ≥ 1 − ǫ and Xǫ,X has
diameter at most Cǫ.

Therefore, for all i ∈ I,

P
{
∃Xǫ,i ⊆ Xi, Mνi(Xǫ,i) ≥ 1− ǫ, diam(Xǫ,i) ≤ Cǫ

}
≥ 1− ǫ. (2.125)

On the event that Xi /∈ Γǫ, it is always possible to take Xǫ,i = Xi that verifies Mνi(Xǫ,i) ≥ 1− ǫ (but
not necessarily diam(Xǫ,i) ≤ Cǫ). And the assertion follows.

Proof of Lemma 2.24. Since {UM,N
0 :M,N ∈ N} is tight, we control with high probability the diameter

of a subset that carry most of the mass (for the intensity measure), due to the previous lemma. We
then control the mass of the descendants of the complement of this subset with Assumption (i).

Let ǫ > 0. Choose δ = δ( ǫ4 ) > 0 such that (2.58) holds with ǫ/4 (instead of ǫ) for all M,N ∈ N

and AM,N
s -measurable random subsets JM,N ⊆ IM,N

0 with M
νM,N
t

(JM,N ) ≤ δ, that is,

sup
M,N∈N

P
M,N

{
sup

t∈[s,T∧τM,N )

M
νM,N
t

(
Dt(J

M,N , s)
)
>
ǫ

4

}
≤
ǫ

4
. (2.126)

Since {UM,N
0 : M,N ∈ N} is tight in U

(2), we can find, with Lemma 2.25, a constant C̃ǫ > 0 and a
sequence of random sets {JM,N}M,N such that for all M,N ∈ N, JM,N is a measurable random subset
JM,N ⊆ IM,N

0 with M
νM,N
t

(JM,N) ≤ δ, and

sup
M,N∈N

P
M,N

{
diam

(
IM,N
0 \ JM,N

)
≤ C̃ǫ

}
> 1−

ǫ

2
. (2.127)

On the event that IM,N
0 \ JM,N has diameter at most C̃ǫ, the set Dt(I

M,N
0 \ JM,N , 0) of descendants

of IM,N
0 \ JM,N at time t has diameter at most C̃ǫ + 2t. Therefore, on this event,

wM
ν
M,N
t

([C̃ǫ + 2T,∞)) =M⊗2
νM,N
t

{
(x, x′) ∈ IM,N

t × IM,N
t : rM,N

t (x, x′) ≥ C̃ǫ + 2T
}

≤M⊗2
νM,N
t

{
(x, x′) ∈ IM,N

t × IM,N
t : x ∈ Dt(J

M,N , 0) or x′ ∈ Dt(J
M,N , 0)

}

≤ 2M
νM,N
t

(
Dt(J

M,N , 0)
)
.

(2.128)
Now, partitioning on the event that IM,N

0 \ JM,N has diameter at most C̃ǫ and its complement,

sup
M,N∈N

P
M,N

{
sup

t∈[0,T∧τM,N )

wM
ν
M,N
t

([C̃ǫ + 2T,∞)) > ǫ

}

≤ sup
M,N∈N

P
M,N

{
sup

t∈[0,T∧τM,N )

wM
ν
M,N
t

([C̃ǫ + 2T,∞)) > ǫ, diam
(
IM,N
0 \ JM,N

)
≤ C̃ǫ

}

+ sup
M,N∈N

P
M,N

{
diam

(
IM,N
0 \ JM,N

)
≥ C̃ǫ

}

≤ sup
M,N∈N

P
M,N

{
sup

t∈[0,T∧τM,N )

M
νM,N
t

(
Dt(J

M,N , 0)
)
>
ǫ

4
, diam

(
IM,N
0 \ JM,N

)
≤ C̃ǫ

}
+
ǫ

2

≤ ǫ.

(2.129)

Lemma 2.26 (Uniform bounds on S2ǫ and S̃2ǫ). Fix T > 0.
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(a) Assume Condition (ii.i) from Proposition 2.12. Then for all ǫ > 0 we can find Cǫ > 0 such that

sup
M,N∈N

P
M,N

{
sup

t∈[ǫ,T∧τM,N)

S2ǫ(U
M,N
t ) > Cǫ

}
≤ 2ǫ. (2.130)

(b) Assume that the family {UM,N
0 : M,N ∈ N} is tight in U

(2) and Conditions (i) and (ii.ii) from
Proposition 2.12. Then for all ǫ > 0 we can find Cǫ > 0 such that

sup
M,N∈N

P
M,N

{
sup

t∈[0,T∧τM,N )

S̃2ǫ(U
M,N
t ) > Cǫ

}
≤ 2ǫ. (2.131)

Proof. (a) Fix ǫ > 0. Without loss of generality, we assume that T = kǫ for some k ∈ N. Since we set
S2ǫ(Ut) = 0 for t ≥ τ , we can also assume that τM,N ≥ T for all M,N ∈ N. For each t ∈ [ǫ, T ), we can
control the number of ancestors at time t− ǫ with high probability. In order to get a uniform control
over all t ∈ [ǫ, T ), we partition [ǫ, T ) in k intervals and control S2ǫ(U

M,N
t ) on each of these intervals by

using the fact that for all t, t′, ǫ and ǫ′ such that [t− ǫ, t] ⊆ [t′ − ǫ′, t′],

S2ǫ(U
M,N
t ) ≥ S2ǫ′(U

M,N
t′ ). (2.132)

Since for all t ∈ [ǫ, T ) the family {S2ǫ(U
M,N
t ) :M,N ∈ N} is tight by assumption, there exists a Cǫ > 0

such that for all M,N ∈ N,
2k−1∑

i=2

P
M,N

{
Sǫ(U

M,N
i ǫ
2

) > Cǫ

}
≤ 2ǫ. (2.133)

Therefore, applying (2.132) yields that for all M,N ∈ N,

P
M,N

{
sup

t∈[ǫ,T )
S2ǫ

(
UM,N
t

)
> Cǫ

}
≤

2k−1∑

i=2

P
M,N

{
sup

t∈[i ǫ
2
,(i+1) ǫ

2
)
S2ǫ

(
UM,N
t

)
> Cǫ

}

≤
2k−1∑

i=2

P
M,N

{
Sǫ

(
UM,N
i ǫ
2

)
> Cǫ

}
≤ 2ǫ,

(2.134)

and the assertion follows.
(b) We use a line of arguments similar to case (a). The difference here is that we need to add a

control of the part of the population that is not covered by the descendants, which is possible with
Assumption (i). We define for ǫ > 0 and 0 < ζ < 1,

S̃2ǫ,ζ

(
UM,N
t

)
:= inf
J⊆It:M

ν
M,N
t

(J )≤ζ
# {At−ǫ(i, t) : i ∈ It \ J } . (2.135)

We have in particular, S̃2ǫ
(
UM,N
t

)
= S̃2ǫ,2ǫ

(
UM,N
t

)
, and thus for all 0 < ζ < 1 and t ∈ [ǫ, T ), the

family {S̃2ǫ,ζ
(
UM,N
t

)
:M,N ∈ N} is tight by Assumption (ii.ii).

Let t, t′, δ and δ′ be such that [t − δ, t] ⊆ [t′ − δ′, t′]. By definition of S̃2δ,ζ
(
UM,N
t

)
, for all

0 < ζ < 1, t < τM,N and M,N ∈ N there is a AM,N
t -measurable subset JM,N,ζ,t ⊆ IM,N

t such

that M
νM,N
t

(JM,N,ζ,t) ≤ ζ and IM,N
t \ JM,N,ζ,t can be covered by S̃2δ,ζ

(
UM,N
t

)
balls of radius 2δ.

Moreover, for all ζ, ζ ′ ∈ (0, 1),
{
S̃2δ,ζ

(
UM,N
t

)
< S̃2δ′,ζ′

(
UM,N
t′

)}
⊆
{
M

νM,N

t′

(
Dt′(J

M,N,ζ,t, t)
)
> ζ ′

}
, (2.136)

and hence

P
M,N

{
S̃2δ,ζ

(
UM,N
t

)
< sup

t′∈[t,(t−δ)+δ′)
S̃2δ′,ζ′

(
UM,N
t′

)}

≤ P
M,N

{
sup

t′∈[t,(t−δ)+δ′)
M

νM,N

t′

(
Dt′(J

M,N,ζ,t, t)
)
> ζ ′

}
.

(2.137)
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Fix T > 0 and ǫ > 0. Without loss of generality, we assume that T = kǫ for some k ∈ N. Since we
set S̃2ǫ(Ut) = 0 for t ≥ τ , we can also assume that τM,N ≥ T for all M,N ∈ N. By Condition (i) of
Proposition 2.12 applied (2k times) with s = i ǫ2 , i = 0, ..., 2k − 1, we can choose a ζ = ζ(ǫ, T ) suitably

small such that for each i = 0, ..., 2k − 1 and for all AM,N
i ǫ
2

-measurable subsets JM,N,ζ,i ǫ
2 ⊆ IM,N

i ǫ
2

with

M
νM,N
s

(
JM,N,ζ,i ǫ

2

)
≤ ζ,

sup
M,N

P
M,N

{
sup

t∈[i ǫ
2
,(i+1) ǫ

2
)
M

νM,N
s

(
Dt(J

M,N,ζ,i ǫ
2 , i

ǫ

2
)
)
> ǫ

}
≤

ǫ

2k
. (2.138)

Thus, inserting (2.138) into (2.137) applied with t = i ǫ2 , δ = ǫ
2 , δ

′ = ζ ′ = ǫ, and ζ from (2.138),

sup
M,N

P
M,N

{
S̃ǫ,ζ

(
UM,N
i ǫ
2

)
< sup

t∈[i ǫ
2
,(i+1) ǫ

2
)
S̃2ǫ,2ǫ

(
UM,N
t

)}
≤

ǫ

2k
. (2.139)

Since for all ζ ∈ (0, 1), t ∈ [ǫ, T ) the family
{
S̃2ǫ,ζ

(
UM,N
t

)
:M,N ∈ N

}
is tight by Assumption (ii.ii),

and
{
UM,N
0 :M,N ∈ N

}
is assumed to be tight as well, there exists a Cǫ > 0 such that for all N ∈ N,

2k−1∑

i=0

P
M,N

{
S̃ǫ,ζ

(
UM,N
i ǫ
2

)
> Cǫ

}
≤ ǫ. (2.140)

Therefore,

sup
M,N∈N

P
M,N

{
sup

t∈[0,T )
S̃2ǫ

(
UM,N
t

)
> Cǫ

}

≤ sup
M,N∈N

2k−1∑

i=0

P
M,N

{
sup

t∈[i ǫ
2
,(i+1) ǫ

2
)
S̃2ǫ

(
UM,N
t

)
> Cǫ

}

≤ sup
M,N∈N

2k−1∑

i=0

P
M,N

{
S̃ǫ,ζ

(
UM,N
i ǫ
2

)
< sup

t∈[i ǫ
2
,(i+1) ǫ

2
)
S̃2ǫ

(
UM,N
t

)}

+
2k−1∑

i=0

P
M,N

{
S̃ǫ,ζ

(
UM,N
i ǫ
2

)
> Cǫ

}

≤ 2ǫ,

(2.141)

and the assertion follows.

We can now conclude the:

Proof of Proposition 2.12. Fix T > 0 and δ > 0.
(a) Since Conditions (i) and (ii.i) from Proposition 2.12 hold, we find for all n ∈ N a Cδ2−n > 0

such that (2.123) and (2.130) hold with ǫ = δ2−n. Put

Γ1,δ :=
{
(X, r, ν) ∈ U

(2) : wMν ([Cδ2−n ,∞)) ≤ δ2−n, for all n ∈ N

}
(2.142)

and

Γ2,δ :=
{
(X, r, ν) ∈ U

(2)
c : S2δ2−n((X, r, ν)) ≤ Cδ2−n , for all n ∈ N

}
, (2.143)

where S2δ2−n((X, r, ν)) denotes the number of balls of radius δ2−n needed to cover supp(Mν). By

Proposition 2.6, we know that Γ1,δ ∩ Γ2,δ is relatively compact in U
(2)
c . Since for all n ∈ N (2.123)

59 Josué Nussbaumer



Chapter 2: Resampling dynamics on metric two-level measure trees

holds for Cδ2−n and ǫ = δ2−n, we have

inf
M,N∈N

P
M,N

{
UM,N
t ∈ Γ1,δ for all t ∈ [0, T ∧ τM,N )

}

≥ 1−
∞∑

n=1

sup
M,N∈N

P
M,N

{
sup

t∈[0,T∧τM,N )

wM
ν
M,N
T

([Cδ2−n ,∞)) > δ2−n

}

≥ 1−
∞∑

n=1

δ2−n = 1− δ.

(2.144)

With (2.130) we show in a similar way that

inf
M,N∈N

P
M,N

{
UM,N
t ∈ Γ1,δ for all t ∈ [δ, T ∧ τM,N )

}
≥ 1− 2δ, (2.145)

and thus,

inf
M,N∈N

P
M,N

{
UM,N
t ∈ Γ1,δ ∩ Γ2,δ for all t ∈ [δ, T ∧ τM,N )

}
≥ 1− 3δ, (2.146)

and the assertion (a) holds.
(b) Since Conditions (i) and (ii.ii) from Proposition 2.12 hold, we find for all n ∈ N a C̃δ2−n > 0

such that (2.123) and (2.131) hold with ǫ = δ2−n. Put

Γ3,δ :=
{
(X, r, ν) ∈ U

(2) : S̃2δ2−n((X, r, ν)) ≤ C̃δ2−n , for all n ∈ N

}
, (2.147)

where S̃2δ2−n((X, r, ν)) is the number of balls of radius δ2−n needed to cover a frequency pf (1−2δ2−n)
of supp(Mν). By Proposition 2.5, we know that Γ1,δ ∩ Γ3,δ is relatively compact in U

(2). By a similar
argument as for Γ1,δ, we find using (2.131) that

inf
M,N∈N

P
M,N

{
UM,N
t ∈ Γ3,δ for all t ∈ [0, T ∧ τM,N )

}
≥ 1− 2δ, (2.148)

and the assertion (b) follows.

The compact containment condition for the resampling dynamics. Let us now apply the
Proposition 2.12 to the two-level tree-valued Moran models:

Proposition 2.27. For each M,N ∈ N, let UM,N = (UM,N
t )t≥0 be the tree-valued Moran dynamics

with M hosts and N parasites in each host. Assume that the family {UM,N
0 : M,N ∈ N} is tight

in M1(U
(2)). Then the family

{
UM,N :M,N ∈ N

}
satisfies the Conditions (i), (ii,i) and (ii.ii) from

Proposition 2.12.

Proof. Fix T and ǫ with 0 < ǫ < T . We have here that for all M,N ∈ N, τM,N =∞.
To show that Condition (i) holds, consider s ∈ [0, T ) and a sequence (JM,N )M,N of random

subsets such that for all M,N ∈ N, JM,N is a AM,N
s -measurable random subset of IM,N . We write

YM,N = (Y M,N
t )t∈[s,T ) for the process defined for t ∈ [s, T ) by

YM,N
t :=M

νM,N
t

(
Dt(J

M,N , s)
)
=

#Dt(J
M,N , s)

MN
. (2.149)

It is a birth-death process with values in
{
0, 1

MN , ..., 1
}

and with following jumps and rates:

• with rate 1
2M

2N2γPy(1− y), the process jumps form its current state y to y + 1
MN ,

• with rate 1
2M

2N2γPy(1− y), the process jumps form its current state y to y − 1
MN ,

• with rate 1
2M

2γHy(1− y), the process jumps form its current state y to y + 1
M ,

• with rate 1
2M

2γHy(1− y), the process jumps form its current state y to y − 1
M .
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The process YM,N is a martingale so by Doob’s maximum inequality, we have

P
M,N

{
sup

t∈[s,T )
YM,N
t ≥ ǫ

}
≤

E[YM,N
T ]

ǫ
=

E[YM,N
s ]

ǫ
. (2.150)

So taking δ = ǫ2, Condition (i) follows.
For Condition (ii.i), fix 0 < t < T . We claim that the family {S2ǫ(U

M,N
t ) : M,N ∈ N} is

stochastically uniformly bounded by #κP (ǫ) where (κH , κP ) = ((κH(t), κP (t)))t≥0 denotes the two-
partitions-valued nested Kingman coalescent with rates γH and γP as defined in Subsection 2.4.3. To
show this, fix M,N ∈ N and let #κM,N

P be the process for the number of blocks in a finite nested
Kingman coalescent with inital state space {1, ...,M} × {1, ..., N}. We build a N-valued stochastic
process (Kǫ)ǫ≥0 with the same distribution as #κP and such that for all ǫ ≥ 0, S2ǫ(U

M,N
t ) ≤ Kǫ.

Consider ηH = {ηk,lH : 1 ≤ k, l ≤ M} an independent family of rate γH
2 -Poisson processes, and

ηP = {η
(i,k),(i,l)
P : 1 ≤ i ≤ M, 1 ≤ k, l ≤ N} an independent family of rate γP

2 -Poisson processes,
independent of the family ηH that define the two-level tree-valued Moran dynamics UM,N . For ǫ = 0,
S0(U

M,N
t ) =MN so put

K0 :=MN. (2.151)

We define K as a death process that jumps down by 1 at each ǫ such that t − ǫ is the time of a
resampling of two parasites that are ancestors of It at time t − ǫ. More precisely, for all ǫ such that
t− ǫ = η

(i,k),(i,l)
P for some (i, k), (i, l) ∈ {At−ǫ(α) : α ∈ It}, the process K jumps from Kǫ− to

Kǫ := Kǫ− − 1. (2.152)

At the time of a resampling between two hosts, note that (S2ǫ(U
M,N
t )) might decrease, but we keep

K constant. For this reason, S2ǫ(U
M,N
t ) ≤ Kǫ for all ǫ ≥ 0 and it is easy to see that for all ǫ ≥ 0, Kǫ

has the same distribution as #κM,N
P . Thus, S2ǫ(U

M,N
t ) is stochastically bounded by #κM,N

P , which is
bounded itself by #κP . To conclude we know from [BDLS18, Section 6] that for every t > 0, κP (t)
almost surely consists of only finitely many blocks, and thus the family {S2ǫ(U

M,N
t ) : M,N ∈ N} is

tight.
Condition (ii.ii) easily follows from Conditions (ii.i).

We can now conclude the proof of the tightness of the two-level tree-valued Moran dynamics.

Proof of Theorem 2.11. Let, for each M,N ∈ N, (UM,N
t )t≥0 be the two-level tree-valued Moran dy-

namics with population sizes (M,N) such that the family {UM,N
0 :M,N ∈ N} is tight in U

(2). We use
Remark 4.5.2 in [EK86] that states that the family {UM,N :M,N ∈ N} is relatively compact if

(i) the compact containment condition (2.60) holds,

(ii) the closure of Π1 contains an algebra that separates points and vanishes nowhere, and

(iii) for all Φ ∈ Π1, (2.71) and (2.72) hold.

Propositions 2.12 and 2.27 give (i), and Proposition 2.16 gives (iii). For (ii), we know from Remark 2.13
that Π1 is an algebra that separates points. It vanishes nowhere because it contains constant functions.

2.6.2 Proof of Theorem 2.14

Before finishing up the proof of Theorem 2.14, we show the rewriting of the resampling generators for
the two-level tree-valued Moran dynamics of Lemma 2.10. The key idea is that if any of the hosts
and parasites chosen for a resampling event do not appear in the integral sample, the average over all
possible samples after the event will be compensated by the average before the event.
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Proof of Lemma 2.10. (2.51) is just a rewriting of (2.45). For the resampling of hosts, we use (2.54)
to write that

Ω↑,HM,NΦφ
M,N(χ) =

γH
2

∑

1≤k,l≤M

(〈(
ϑk,l(ν)

)⊗↓m
, ψ↓

〉
−
〈
ν⊗↓m, ψ↓

〉)
. (2.153)

Furthermore, note that if ν = 1
M

∑M
i=1 δµ′

i
for some measures µ′i ∈ M1(T ), then for all function

ψ↓ : (M1(T ))
m → R,
〈
ν⊗↓m, ψ↓

〉
:=

∫

(M1(T ))m
ν⊗↓m(dµ)ψ↓(µ) =

1

M !

∑

σ∈SM

ψ↓
(
µ′σ(1), ..., µ

′
σ(m)

)
, (2.154)

where SM is the set of all permutations of {1, ...,M}. This is true because we sample without repetition.
Now, using again the notation µ̃i =

1
N

∑N
j=1 δxij

the sampling measure within the host i, we have:

ν =
1

M

M∑

i=1

δµ̃i
and ϑk,l(ν) =

1

M

M∑

i=1
i 6=l

δµ̃i
+

1

M
δµ̃k

. (2.155)

Therefore
〈(

ϑk,l(ν)
)⊗↓m

, ψ↓

〉
=

1

M !

m∑

p=1

∑

σ∈SM
σ(p)=l

ψ↓
(
µ̃σ(1), ..., µ̃σ(p−1), µ̃k, µ̃σ(p+1), ..., µ̃σ(m)

)

+
1

M !

M∑

p=m+1

∑

σ∈SM
σ(p)=l

ψ↓
(
µ̃σ(1), ..., µ̃σ(m)

)
.

(2.156)

We can now calculate the sum of the differences for all 1 ≤ l ≤M
M∑

l=1

(〈(
ϑk,l(ν)

)⊗↓m
, ψ↓

〉
−
〈
ν⊗↓m, ψ↓

〉)

=
M∑

l=1

1

M !

m∑

p=1

∑

σ∈SM
σ(p)=l

(
ψ↓
(
µ̃σ(1), ..., µ̃σ(p−1), µ̃k, µ̃σ(p+1), ..., µ̃σ(m)

)
− ψ↓

(
µ̃σ(1), ..., µ̃σ(m)

))

=

m∑

p=1

1

M !

∑

σ∈SM

(
ψ↓
(
µ̃σ(1), ..., µ̃σ(p−1), µ̃k, µ̃σ(p+1), ..., µ̃σ(m)

)
− ψ↓

(
µ̃σ(1), ..., µ̃σ(m)

))
.

(2.157)

Summing over all 1 ≤ k ≤M , we have
∑

1≤k,l≤M

(〈(
ϑk,l(ν)

)⊗↓m
, ψ↓

〉
−
〈
ν⊗↓m, ψ↓

〉)

=

M∑

k=1

m∑

p=1

1

M !

M∑

r=1

∑

σ∈SM
σ(r)=k

(
ψ↓
(
µ̃σ(1), ..., µ̃σ(p−1), µ̃σ(r), µ̃σ(p+1), ..., µ̃σ(m)

)
− ψ↓

(
µ̃σ(1), ..., µ̃σ(m)

))

=

m∑

p=1

M∑

r=1

1

M !

∑

σ∈SM

(
ψ↓
(
µ̃σ(1), ..., µ̃σ(p−1), µ̃σ(r), µ̃σ(p+1), ..., µ̃σ(m)

)
− ψ↓

(
µ̃σ(1), ..., µ̃σ(m)

))
.

(2.158)
Then denoting by τr,p the transposition (r, p), we have, for m+ 1 ≤ r ≤M ,

∑

σ∈SM

ψ↓
(
µ̃σ(1), ..., µ̃σ(p−1), µ̃σ(r), µ̃σ(p+1), ..., µ̃σ(m)

)

=
∑

σ∈SM

ψ↓
(
µ̃σ◦τr,p(1), ..., µ̃σ◦τr,p(p−1), µ̃σ◦τr,p(p), µ̃σ◦τr,p(p+1), ..., µ̃σ◦τr,p(m)

)

=
∑

σ∈SM

ψ↓
(
µ̃σ(1), ..., µ̃σ(m)

)
.

(2.159)
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All in all, we get

Ω↑,HM,NΦ
φ,m,n
M,N (χ) =

γH
2

m∑

p=1

m∑

r=1

1

M !

∑

σ∈SM

(
ψ↓ ◦ θ

r,p
(
µ̃σ(1), ..., µ̃σ(m)

)
− ψ↓

(
µ̃σ(1), ..., µ̃σ(m)

))
, (2.160)

and (2.53) holds. For the resampling of parasites, we can use the beginning of the previous derivation
to get an expression similar to (2.157):

M∑

i=1

∑

1≤k,l≤N

(〈(
ϑ(i,k),(i,l)(ν)

)⊗↓m
, ψ↓

〉
−
〈
ν⊗↓m, ψ↓

〉)

=
M∑

i=1

∑

1≤k,l≤N

1

M !

m∑

p=1

∑

σ∈SM
σ(p)=i

(
ψ↓
(
µ̃σ(1), ..., µ̃σ(p−1), µ̃i,k,l, µ̃σ(p+1), ..., µ̃σ(m)

)
− ψ↓

(
µ̃σ(1), ..., µ̃σ(m)

))

=
m∑

p=1

∑

1≤k,l≤N

1

M !

∑

σ∈SM

(
ψ↓
(
µ̃σ(1), ..., µ̃σ(p−1), µ̃σ(p),k,l, µ̃σ(p+1), ..., µ̃σ(m)

)
− ψ↓

(
µ̃σ(1), ..., µ̃σ(m)

))
,

(2.161)
where µ̃i,k,l := µ̃i −

1
N δxil

+ 1
N δxik

. Then, by definition of ψ↓,

Ω↑,PM,NΦ
φ,m,n
M,N (χ) =

γP
2

m∑

p=1

∫
ν⊗↓m(dµ)

∫
µ⊗↓n1
1 (du1)⊗ · · · ⊗ µ

⊗↓np−1

p−1 (dup−1)⊗ µ
⊗↓np+1

p+1 (dup+1)

⊗ · · · ⊗ µ⊗↓nm
m (dum)

∑

1≤k,l≤N

(∫
(µp,k,l)

⊗↓np(dup)φ ◦R(u)−

∫
µ
⊗↓np
p (dup)φ ◦R(u)

)
.

(2.162)
For the sum over 1 ≤ k, l ≤ N , we can use similar arguments to the one we used with the generator for
the resampling of hosts (with µp,k,l instead of ϑk,l(ν), µp instead of ν, φ ◦R instead of ψ↓...) so that

∑

1≤k,l≤N

(∫
(µp,k,l)

⊗↓np(dup)φ ◦R(u)−

∫
µ
⊗↓np
p (dup)φ ◦R(u)

)

=
∑

1≤k,l≤np

(∫
µ
⊗↓np
p (dup)φ ◦R ◦ θ

(p,k),(p,l)(u)−

∫
µ
⊗↓np
p (dup)φ ◦R(u)

)
,

(2.163)

where the map θ(p,k),(p,l) : T |n| → T |n| is defined by

(
θ(p,k),(p,l)(u)

)
ij
=

{
upk if (i, j) = (p, l)

uij otherwise,
(2.164)

and (2.52) holds.

To show that the martingale problem for the diffusion limit is well-posed, we use the tightness
of the particle approximation dynamics and the uniforem convergence of the generators to prove the
existence of a solution, and the uniqueness follows from the duality to the nested Kingman coalescent.

Proof of Theorem 2.14. Let P0 be a probability measure on U
(2). For each M,N ∈ N, let UM,N :=

(UM,N
t )t≥0 be the two-level tree-valued Moran dynamics of size (M,N) with initial distribution PM,N

0 .
Assume that (UM,N

0 )M,N converges weakly with respect to the two-level Gromov-weak topology, as
N →∞, to U0 distributed according to P0.

Uniqueness. Recall the duality result from Proposition 2.18 and that the set Π1 of polynomials
separates points in M

(2). Therefore, we can apply Proposition 4.4.7 in [EK86] to prove the uniqueness
of the (Ω↑,Π1, P0)-martingale problem.

Existence. For each M,N ∈ N, UM,N solves the (Ω↑M,N ,Π
1
M,N , P

M,N
0 )-martingale problem. Fur-

thermore, the family {UM,N :M,N ∈ N} is tight in D
U(2) [0,∞) by Theorem 2.11, and the convergence
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results of Proposition 2.16 imply by Lemma 4.5.1 in [EK86] that any limit point of {UM,N :M,N ∈ N}
is solution of the (Ω↑,Π1, P0)-martingale problem. This also implies convergence of {UM,N :M,N ∈ N}
because of the uniqueness shown above.

Proof of Proposition 2.15. (i) Recall the construction of the two-level tree-valued Moran dynamics

UM,N from Section 2.3.1. For all t ≥ 0, UM,N
t = (IM,N , rM,N

t , νM,N
t ) with IM,N = {(i, j) : 1 ≤ i ≤

M, 1 ≤ j ≤ N}. In order to apply [EK86, Theorem 3.10.2], we bound the jump sizes of UM,N . Denote

by ηH := {ηk,lH : 1 ≤ k, l ≤ M} and ηP := {η
(i,k),(i,l)
P : 1 ≤ i ≤ M, 1 ≤ k, l ≤ N} the Poisson processes

giving the resampling events.
Let t > 0. We control the distance d2GP (U

M,N
t− ,UM,N

t ), where d2GP is the two-level Gromov-
Prokhorov metric (see [Mei19, Definition 4.1]) which was shown to induce the two-level Gromov-weak
topology on M

(2) (see [Mei19, Theorem 8.1]). It is defined by

d2GP (X ,Y) := inf
Z,φX ,φY

d
M1(Z)
P (φX∗∗νX , φX∗∗νY ) (2.165)

where the infimum ranges over all isometric embeddings φX : X → Z, φY : Y → Z into a common
Polish metric space (Z, rZ) and where dM1(Z)

P denotes the Prokhorov metric for measures on the space
M1(Z), which can be written, by [EK86, Theorem 3.1.2],

d
M1(Z)
P (ν, ν ′) = inf

β
inf
{
ǫ > 0 : β

{
(µ, µ′) ∈ (M1(Z))

2 : dZP (µ, µ
′) ≥ ǫ

}
≤ ǫ
}
, (2.166)

where the infimum is taken over all couplings β of ν1 and ν2.

• Resampling of hosts: suppose t = ηk,lH for some 1 ≤ k, l ≤M . Recall that we can express the jump
by keeping the distance constant and changing the two-level measure from νM,N

t− = 1
M

∑M
i=1 δµ̃i

to

νM,N
t = ϑk,l(νM,N

t− ) =
1

M

M∑

i=1

δµ̃i
−

1

M
δµ̃l

+
1

M
δµ̃k

, (2.167)

where µ̃i = 1
N

∑N
j=1 δ(i,j). Fix Z := IM,N , rZ := rM,N

t− and φX = φY := idZ . Define now β a

coupling of νM,N
t− and νM,N

t by

β :=
1

M

∑

i 6=l

δµ̃⊗2
i

+
1

M
δµ̃l⊗µ̃k

. (2.168)

Then, β
{
(µ, µ′) ∈ (M1(Z))

2 : dZP (µ, µ
′) 6= 0

}
≤ 1

M so that

d2GP (U
M,N
t− ,UM,N

t ) ≤ d
M1(Z)
P (νM,N

t− , νM,N
t ) ≤

1

M
. (2.169)

• Resampling of parasites: suppose t = η
(i,k),(i,l)
H for some 1 ≤ i ≤M and 1 ≤ k, l ≤ N . Then it is

easy to see by the same argument that the bound (2.169) holds for d2GP (U
M,N
t− ,UM,N

t ).

• If there is no resampling event at time t, then UM,N
t− = UM,N

t .

Therefore, almost surely,

∫ ∞

0
e−T

(
sup

0≤t≤T
d2GP

(
UM,N
t− ,UM,N

t

))
dT ≤

1

M
, (2.170)

and the result follows by [EK86, Theorem 3.10.2].
(ii) The fact that the potential limit points take values in the space of compact ultra-metric m2m
spaces directly follows from Propositions 2.12 and 2.27.
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Chapter 3
Algebraic two-level measure trees

3.1 Introduction

Motivated by their applications to biology and computer science, trees have received significant interest
in the mathematical literature of the last decades. In probability theory in particular, many random
tree structures have been introduced to model genealogical (or phylogenetic) trees and their evolution
over time. The simplest of these models are defined on state spaces of trees with a finite number of
vertices. However, the size of the space of all trees with a given number of vertices grows exponentially,
and it becomes hard to study qualitative statistics of the structures. To overcome this issue, it seems
reasonable to consider continuum limits of tree models and study their properties. We are particularly
interested in a setup which unifies discrete and continuum trees.

A common approach by now is to encode trees as metric spaces. For trees defined in the sense of
graph theory, this is done by equipping them with the graph distance. The distance has then to be
properly re-scaled as to obtain some limit metric spaces, like the R-trees introduced in [Tit77], whose
topological properties have since been studied in details (see for example [MO90, MNO92]). One way
of defining R-trees is as follows. A metric space (T, r) is called R-tree if it is connected and satisfies
the so-called four-point condition : for all x1, x2, x3, x4 ∈ T ,

r(x1, x2) + r(x3, x4) ≤ max
{
r(x1, x3) + r(x2, x4), r(x1, x4) + r(x2, x3)

}
. (3.1)

It ensures that T has a tree structure as there should only be one possible shape for the subtree spanned
by four points (see Figure 3.1). However, the assumption of connectedness does not allow for discrete
trees. In [ALW17], this condition was relaxed with the notion of metric tree, which are metric spaces
(T, r) satisfying the four-point condition (3.1) and admitting branch points, i.e., for all x1, x2, x3, there
exists a (necessarily unique) c(T,r)(x1, x2, x3) ∈ T such that

r
(
xi, c(T,r)(x1, x2, x3)

)
+ r
(
c(T,r)(x1, x2, x3), xj

)
= r(xi, xj) ∀i, j ∈ {1, 2, 3}, i 6= j. (3.2)

In particular, R-trees admit branch points and each metric tree can be embedded isometrically into an
R-tree.

More recently, a new notion of potentially continuum trees was introduced in [LW21] with the
algebraic trees. The focus is now shifted from the metric to the tree structure given by the so-called
branch point map which assigns to each triple of points their branch point. The algebraic trees are
defined axiomatically by several conditions on the branch point map:

Definition 3.1 (Algebraic tree). An algebraic tree is a non-empty set T together with a symmetric
map c : T 3 → T satisfying the following:

(2pc) For all x1, x2 ∈ T , c(x1, x2, x2) = x2.

(3pc) For all x1, x2, x3 ∈ T , c(x1, x2, c(x1, x2, x3)) = c(x1, x2, x3).

(4pc) For all x1, x2, x3, x4 ∈ T ,

c(x1, x2, x3) ∈ {c(x1, x2, x4), c(x1, x3, x4), c(x2, x3, x4)}. (3.3)
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x1
❈❈

❈❈
x3

④④
④④

c1 c2

x2

④④④④
x4

❈❈❈❈

Figure 3.1: The only possible tree shape spanned by four points separates them into two pairs. Here,
c1 = c(x1, x2, x3) = c(x1, x2, x4) and c2 = c(x1, x3, x4) = c(x2, x3, x4).

In order to sample leaves from an algebraic tree, we equip it with a measure. An algebraic measure
tree (T, c, µ) consists of a separable algebraic tree (T, c) together with a probability measure µ on
the Borel σ-algebra B(T, c). Associating each algebraic measure tree to the metric measure space
given by the distance arising from the distribution of branch points, we can use the Gromov-weak
topology (introduced in [GPW09]) to define a metrizable topology on the set T of (equivalence classes
of) algebraic measure trees. The main result of [LW21] states that this topology is compact on the
subspace

T2 :=
{
(T, c, µ) ∈ T : degrees at most 3, atoms of µ only at leaves

}
(3.4)

of binary algebraic measure trees with no atoms on the skeleton. Furthermore, this topology is equiv-
alent on T2 to the sample shape convergence which is based on the weak convergence of all random
tree shapes spanned by finite samples.

This state space has served to construct and study the Aldous diffusion in [LMW20], and more
generally the α-Ford diffusion in [NW], which are Markov processes on binary trees without edge
lengths. The compactness of T2 allows to get around tightness issues in these construction. Moreover,
the sample shape convergence gives rise to a family of convergence determining classes of functions
which are very useful when one wants to study tree-valued stochastic processes.

More recently, new models of genealogical trees with two-level dynamics have been investigated.
They are motivated by the study of two-level systems in biology, such as host-parasite or cell-virus
systems, where individuals of the first level are grouped together in clusters to form the second level
and both levels are subject to resampling mechanisms. For that purpose, the space of metric two-level
measure spaces was introduced in [Mei19], where metric spaces are equipped with a measure on the
set of measures. The idea of representing a population with hierarchical structure by such a two-level
measure is not new (see e.g. [DHW90, Wu91, GHW95, GH00, DGW04, Daw18]). However, the space
of metric two-level measure spaces allows for two-level tree-valued processes describing the evolution of
the ancestral relationships, by encodes the genealogical distances between individuals with the metric.
We applied this theory to define the two-level tree-valued Fleming-Viot dynamics in [Nus].

Our goal here is to adapt the approach of [Mei19] for two-level trees in the metric setup to the
algebraic one. An algebraic two-level measure tree (T, c, ν) is thus defined as a separable algebraic tree
(T, c) together with a two-level measure ν ∈ M1(M1(T, c)), i.e. a Borel probability measure on the
set of Borel probability measures on (T, c). In particular, we are interested in extended the results

in [LW21] to the space T
(2)
2 of (equivalence classes of) algebraic two-level measure trees. For this, a

crucial ingredient for us is the intensity measure Mν of a two-level measure ν defined by

Mν(·) :=

∫
ν(dµ)µ(·). (3.5)

If (T, c, ν) is an algebraic two-level measure tree, (T, c,Mν) is an algebraic measure tree and it is then
quite straigthforward to adapt most of the results in [LW21]. However, this method does not apply to
the main result, namely the compactness of the subspace of binary trees.

Remark 3.2 (Proving the compactness of T
(2)
2 ). It seems that the compactness of T2 cannot be

directly used to prove the compactness of T(2)
2 . We explored the two following ideas which do not allow

to conclude:
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bp
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Figure 3.2: On the left: A sub-triangulation of the circle with three empty triangles, four empty circular
segments and two filled areas. On the right: The tree coded by the sub-triangulation. The leaf p does
not carry an atom, but the four other leaves carry a weight given by the lengths of the corresponding
arcs. The two thick segments carry a non-atomic mass.

1. The compactness of T2 cannot be passed on by considering the map (T, c, ν) 7→ (T, c,Mν).

Though it is continuous from T
(2)
2 to T2, it is not injective. Consider for example, T = {x, y},

c{x,y} the only branch point map on T and ν1 := 1
2 (δδx + δδy) and ν2 := δ 1

2
(δx+δy)

which both

have the same intensity measure 1
2(δx + δy).

2. An algebraic two-level measure tree naturally defines a probability measure on T2 and we know
that M1(T2) is compact since T2 is compact. However the map that sends an a2m tree to
the corresponding measure on T2 is not injective either. Indeed, ({x, y}, c, δx), ({x, y}, c, δy) and
({x}, c, δx) are equivalent in T2, so the measures on T2 associated to ({x, y}, c, ν1) and ({x}, c, δδx )
are equal.

A key ingredient to prove the compactness of T2 in [LW21] is the coding of binary algebraic
measure trees by sub-triangulations of the circle. A similar encoding was first introduced by Aldous
[Ald94a, Ald94b]. In [LW21], a sub-triangulation of the circle S is defined as a closed, non-empty
subset C of the disc satisfying the following two conditions:

1. The complement of the convex hull of C consists of open interiors of triangles.

2. C is the union of non-crossing (non-intersecting except at endpoints), possibly degenerate closed
straight line segments with endpoints in S.

In this coding, branch points correspond to empty triangles, leaves carrying atoms to empty circular
segments, and line segments with non-atomic mass to “filled areas” (see Figure 3.2). Moreover, the arc
lengths play an important role as they encode the way the mass is distributed in the algebraic measure
tree. For example, a triangulation of an n-gon encodes the dual graph, equipped with the measure on
the leaves given by the Lebesgue measure of the corresponding arcs of the circle line (see Figure 3.3).

We extend this coding in the two-level case. For that, one cannot simply rely on the Lebesgue
measure of arc lengths anymore to encode all the information on the distribution of the random µ-mass
in the tree. We rather need to replace the Lebesgue measure by a two-level measure K ∈ M1(M1(S))
on the circle and we formally construct the coding map that associates an algebraic two-level measure
tree in T

(2)
2 to a pair (C,K) where C is a sub-triangulation of the circle, and K is a two-level measure

on the circle line.
We showed that the coding map is continuous and surjective when the set of sub-triangulations

is equipped with the Hausdorff metric topology and the set of two-level measures on the circle line
with the weak topology. Using that both of these topologies are compact, our main result states that
the space T

(2)
2 is again compact. As an application, we finish with the construction of the Kingman

algebraic two-level measure tree, which is the nested Kingman coalescent measure tree without branch
length (see [Mei19]).
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Figure 3.3: A triangulation of the 12-gon. Here, the coded tree is the dual graph, with uniform
distribution on the leaves.

Outline. We recall in Section 3.2 some definitions and results on algebraic trees and on two-level
measure spaces. In Section 3.3, we introduce the space of (equivalence classes of) order separable
algebraic measure trees, and equip it with a separable, metrizable topology based on the two-level
Gromov-weak convergence of metric reprensatives. Section 3.4 is devoted to the coding of binary
algebraic two-level measure trees by sub-triangulations of the circle together with a two-level measure
on the circle line. In Section 3.5, we introduce with the two-level sample shape another topology on
the subspace of binary algebraic two-level measure trees and we use the encoding of Section 3.4 to
show that both topologies are equivalent and compact. Finally, we apply this theory in Section 3.6 to
define the Kingman algebraic two-level measure tree.

3.2 Preliminaries

In this section, we recall tools that will be useful in the sequel. Section 3.2.1 presents notions and results
on algebraic trees from [LW21] and Section 3.2.2 on metric two-level measure spaces from [Mei19].

3.2.1 Algebraic trees

We start with the definition of algebraic trees through the branch point map, and we use it to introduce
the concepts of leaves, branch points, edges, intervals, subtrees, etc. We then recall the notion of
struture preserving morphisms to define a notion of equivalence on the space of a2m trees in Section 3.3.
We describe the natural topology that exists on an algebraic tree. We finish with relations between
algebraic trees and R-trees that we will use to exploit results on metric two-level measure spaces.

Definition 3.3 (Algebraic tree). An algebraic tree is a non-empty set T together with a symmetric
map c : T 3 → T satisfying the following:

(2pc) For all x1, x2 ∈ T , c(x1, x2, x2) = x2.

(3pc) For all x1, x2, x3 ∈ T , c(x1, x2, c(x1, x2, x3)) = c(x1, x2, x3).

(4pc) For all x1, x2, x3, x4 ∈ T ,

c(x1, x2, x3) ∈ {c(x1, x2, x4), c(x1, x3, x4), c(x2, x3, x4)}. (3.6)

We call c the branch point map.

The properties of the map c are rich enough to define common concepts on trees. To this end, we
introduce, for each point x ∈ T , an equivalence relation ∼x on T \ {x} such that for all y, z ∈ T \ {x},
y ∼x z if and only if c(x, y, z) 6= x. For y ∈ T \ {x}, we denote by

Sx(y) := {z ∈ T \ {x} : z ∼x y} (3.7)
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Figure 3.4: On the left: x and y are two points of the tree. On the right: the component Sx(y).

the equivalence class of y for this equivalence relation ∼x. We also call Sx(y) the component of T \{x}
containing y. To describe the tree structure of an algebraic tree (T, c), we also say that:

• a subtree of T is a set A ⊆ T such that c(A3) = A,

• the degree of x ∈ T is the number of components of T \ {x}, and we write deg(x) := #{Sx(y) :
y ∈ T \ {x}},

• a leaf is a point u ∈ T such that deg(u) = 1, and we write lf(T, c) for the set of leaves,

• a branch point is a point v ∈ T such that deg(v) ≥ 3, or equivalently such that v = c(x1, x2, x3)
for some x1, x2, x3 ∈ T \ {v}, and we denote by br(T ) the set of branch points,

• for x, y ∈ T , the interval [x, y] is

[x, y] := {z ∈ T : c(x, y, z) = z}, (3.8)

• {x, y} is an edge if x 6= y and [x, y] = {x, y}, that is, there is “nothing between x and y”, and we
denote by

edge(T, c) (3.9)

the set of edges of (T, c).

As first examples, there is a one-to-one correspondence between (undirected) graph-theoretical trees
and finite algebraic trees.

Example 3.4. Let (T,E) be a graph-theoretic tree. Define cE(u, v, w) as the unique vertex that
is on the path between any two of u, v, w. Then (T, cE) is an algebraic tree. Conversely, if (T, c)
is an algebraic tree with T finite, then (T, c) corresponds to the graph-theoretic tree (T, edge(T, c).
Obviously, cEc = c.

Example 3.5 (Totally ordered spaces as algebraic trees). Let (T,≤) be a totally ordered space. For
all x, y, z ∈ T such that x ≤ y ≤ z, we define c≤(x, y, z) := y. It is easy to see that c≤ is symmetric
and satisfies the conditions (2pc)–(4pc), so that (T, c≤) is an algebraic tree. Moreover, the interval
[x, y] in (T, c≤) coincides with the order interval {z ∈ T : x ≤ y ≤ z}.

Conversely, if (T, c) is an algebraic tree and ρ ∈ T a distinguished point (often called the root), we
can define a partial order ≤ρ by letting for x, y ∈ T ,

x ≤ρ y ⇐⇒ x ∈ [ρ, y]. (3.10)

This partial order allows us to define a notion of completeness of algebraic trees.

Definition 3.6 (Directed order complete trees). Let (T, c) be an algebraic tree. We call (T, c) (directed)
order complete if for all ρ ∈ T , the supremum of every totally ordered, non-empty subset exists in the
partially ordered set (T,≤ρ).

The following definition gives the analogs of complete R-trees, i.e., R-trees that are complete as
metric spaces.

Definition 3.7 (Algebraic continuum tree). We call an algebraic tree (T, c) algebraic continuum tree
if the following two conditions hold:
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1. (T, c) is order complete.

2. edge(T, c) = ∅.

Even though we mainly work with unrooted trees in this paper, we shortly explain how algebraic
trees are extended to rooted algebraic trees. We will use this idea to define the nested Kingman
algebraic tree in Section 3.6.

Definition 3.8 (Rooted and partially ordered algebraic tree). A partially ordered algebraic tree is a
non-empty set T together with a symmetric map c∧ : T × T → T such that:

(M1) For all x ∈ T , c∧
(
x, x

)
= x.

(M2) For all x1, x2, x3 ∈ T , c∧
(
x1, c∧(x2, x3)

)
= c∧(c∧(x1, x2), x3).

(M3) For all x1, x2, x3 ∈ T , #{c∧(x1, x2), c∧(x1, x3), c∧(x2, x3)} ≤ 2 and if c∧(x1, x2) = c∧(x1, x3),
then

c∧(x1, x2) = c∧
(
c∧(x1, x2), c∧(x2, x3)

)
. (3.11)

We refer to c∧ as the minimum map.
A rooted algebraic tree (T, c∧) is a partially ordered algebraic tree for which there exists a point

ρ ∈ T with c∧(ρ, x) = ρ for all x ∈ T . We will refer to (this unique) ρ as the root of (T, c∧).

Remark 3.9 ((M1) and (M2) define a partial order). Let (T, c∧) be a partially ordered algebraic tree.
In what follows, we write for x, y ∈ T , x ≤ y if and only if x = c∧(x, y) respectively, x < y if and only
if x = c∧(x, y) 6= y. Notice that the first two conditions (M1) and (M2) ensure that ≤ defines a partial
order relation. Indeed, reflexivity follows from (M1), antisymmetry follows from the fact that c∧ is a
symmetric map and transitivity follows from (M2), i.e., if x, y, z ∈ T are such that x ≤ y and y ≤ z,
or equivalently, if x = c∧(x, y) and y = c∧(y, z), then x = c∧(x, y) = c∧(x, c∧(y, z)) = c∧(c∧(x, y), z) =
c∧(x, z).

When we add the third condition (M3) to the partially ordered set defined by (M1) and (M2), we
ensure that there are no loops, so that a rooted algebraic tree defines an (unrooted) algebraic tree.
Reciprocally, by distinguishing a point in an algebraic tree, we can define a rooted algebraic tree (see
[NW, Section 2.2] for more details).

Proposition 3.10 (Rooted versus unrooted algebraic trees). Let T 6= ∅.

(i) If (T, c∧) is a partially ordered, algebraic tree and c : T 3 → T the symmetric map defined as

c(x, y, z) := max{c∧(x, y), c∧(x, z), c∧(y, z)}, x, y, z ∈ T, (3.12)

then (T, c) is an algebraic tree.

(ii) If (T, c) is an algebraic tree, ρ ∈ T , and c∧ : T 2 → T the symmetric map defined as

c∧(x, y) := c(x, y, ρ), x, y ∈ T, (3.13)

then (T, c∧, ρ) is a rooted algebraic tree.

We also recall a definition of structure-preserving morphisms of algebraic trees which will allow to
define equivalence classes of trees in Section 3.3.

Definition 3.11 (Morphisms). Let (T, c) and (T̂ , ĉ) be algebraic trees. A map f : T → T̂ is called a
tree homomorphism (from T into T̂ ) if for all x, y, z ∈ T ,

f
(
c(x, y, z)

)
= ĉ
(
f(x), f(y), f(z)

)
, (3.14)

or equivalently, if for all x, y ∈ T ,
f([x, y]) ⊆ [f(x), f(y)]. (3.15)

We refer to a bijective tree homomorphism as tree isomorphism.
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We can then equip an algebraic tree with a natural topology. Recall from (3.7) the components
Sx(y) of T \ {x} for x 6= y. The component topology is defined as the one generated by the set of all
components Sx(y) in (3.7) with x 6= y, x, y ∈ T . In the following, we will suppose that algebraic trees
are equipped with this topology.

Equipped with this topology, order completeness of the tree is equivalent to compactness [LW21,
Proposition 2.19].

Proposition 3.12 (Compactness characterization). Let (T, c) be an algebraic tree with component
topology τ . Then (T, τ) is compact if and only if (T, c) is directed order complete.

In the sequel, we will often assume the topology to be separable. But for many of our results, a
condition on the number of edges will be crucial, so we define the following notion of separability (see
also [LW21, Example 2.23]).

Definition 3.13 (Order separability). We call an algebraic tree (T, c) order separable if it is separable
w.r.t. the component topology and has at most countably many edges.

Order separability can also be characterized as follows [LW21, Proposition 2.20]:

Proposition 3.14 (Characterization of order separability). Let (T, c) be an algebraic tree. Then the
following are equivalent:

1. (T, c) is order separable.

2. The component topology of (T, c) has a countable base and has at most countably many edges.

3. There exists a countable set D such that for all x, y ∈ T with x 6= y,

D ∩ [x, y) 6= ∅. (3.16)

We call a set satisfying (3.16) order dense.

Remark 3.15 (Sufficient condition for metrizability). The component topology of any algebraic tree
is Hausdorff [LW21, Lemma 2.18]. Thus, by Propositions 3.12 and 3.14, any order complete, order
separable algebraic tree is a compact, second countable Hausdorff space. In particular, the component
topology is metrizable and thus Polish.

There exists a connection between algebraic trees and metric trees, which are defined in [ALW17]
as metric spaces (T, r) satisfying the 4-point condition (3.1) and admitting branch points, i.e., for all
x1, x2, x3, there exists a (necessarily unique) c(T,r)(x1, x2, x3) ∈ T such that

r
(
xi, c(T,r)(x1, x2, x3)

)
+ r
(
c(T,r)(x1, x2, x3), xj

)
= r(xi, xj) ∀i, j ∈ {1, 2, 3}, i 6= j. (3.17)

Obviously, c(T,r) satisifies the conditions of Definition 3.3 and we call (T, c(T,r)) the algebraic tree
induced by (T, r), and (T, r) a metric representation of (T, c(T,r)).

Remark 3.16 (Homeomorphisms are tree homomorphisms). Let (T, r) and (T̂ , r̂) be two R-trees.
Since the branch point map can be expressed in terms of intervals, a homeomorphism f between (T, c)
and (T̂ , r̂) is also a tree homomorphism between the corresponding induced algebraic trees (see [LW21,
Lemma 2.35]).

Conversely, under the assumption of order separability, one can build a metric representation of
an algebraic tree (T, c) as follows. Equip (T, c) with the Borel σ-algebra B(T, c) of the component
topology. For any measure λ on (T,B(T, c)) such that λ is finite on every interval, we consider the
following pseudometric

rλ(x, y) := λ([x, y]) −
1

2
λ({x}) −

1

2
λ({y}), x, y ∈ T. (3.18)

For such a measure λ, denote by Tλ the set of equivalence classes of points in T that are at distance
zero for rλ. More precisely, x and y are equivalent if λ puts weight zero on the interval [x, y]. Denoting
again the quotient metric on Tλ by rλ, (Tλ, rλ) is thus the quotient metric space. Let πλ : T → Tλ be
the canonical projection. We have the following [LW21, Lemma 2.29].
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Lemma 3.17 ((Tλ, rλ) is a metric tree). Let (T, c) be an algebraic tree, and λ a measure on (T, c)
with λ([x, y]) <∞ for all x, y ∈ T . Then the quotient space (Tλ, rλ) is a metric tree, and the canonical
projection πλ is a tree homomorphism.

Furthermore, if the measure λ satisfies λ[x, y] > 0 for all x, y ∈ T , then rλ is a metric on T . Such
a measure λ always exists in the case of order separable algebraic trees (see [LW21, Lemma 2.32]).

Finally, the following result [LW21, Theorem 1] states that under the assumption of order separa-
bility any algebraic tree can be embedded by an injective homomorphism into a compact R-tree and
hence is isomorphic to (the algebraic tree induced by) a totally bounded metric tree.

Proposition 3.18 (Characterization of order separable algebraic trees). Let T be a non-empty set and
c : T 3 → T .

1. (T, c) is an order separable algebraic continuum tree if and only if there exists a metric r on T
such that (T, r) is a compact R-tree with

c = c(T,r). (3.19)

2. (T, c) is an order separable algebraic tree if and only if there is an order separable algebraic
continuum tree (T , c) such that (T, c) is a subtree of (T , c). In particular, every order separable
algebraic measure tree is induced by a totally bounded metric tree.

3.2.2 Metric two-level measure spaces

We introduce in this section the set of equivalence classes of metric two-level measure spaces (see
[Mei19]). Equipped with the topology induced by so-called two-level distance polynomials, it is a
Polish space. Denoting by M1(X) the set of Borel probability measure on a metric space X, we start
with the definition of a metric two-level measure space.

Definition 3.19 (Metric two-level measure trees). A metric two-level measure tree (m2m space)
(X, r, ν) is a non-empty Polish space (X, r) together with a two-level measure ν ∈ M1(M1(X, r)),
i.e. a Borel probability measure on the set of Borel probability measures on (X, r).

Equivalence classes of metric (one-level) measure spaces are defined using the notion of push-forward
measures. In the case of two-level measures, we need to introduce the so-called two-level push-forward
operator. Let (X, r) and (X̂, r̂) be Polish metric spaces and g be a Borel measurable function from
X to X̂. As usual, g∗µ denotes the push-forward measure µ ◦ g−1 for a Borel probability measure
µ ∈ M1(X). We regard g∗ as an operator

g∗ : M1(X) −→ M1(X̂)
µ 7−→ g∗µ.

(3.20)

and call g∗ the (one-level) push-forward operator of g. This enables us to define the two-level push-
forward operator g∗∗ of g by

g∗∗ : M1(M1(X)) −→ M1(M1(X̂))
ν 7−→ g∗∗ν := ν ◦ (g∗)

−1.
(3.21)

We need yet another notion to define equivalence classes of m2m spaces. For two metric (one-
level) measure spaces to be equivalent, a measure-preserving isometry between the supports of their
respective measures is enough. Thus, by considering the equivalence classe of a metric measure space
(X, r, µ), one focuses on the structure of µ and on the restriction of r to supp(µ). For an m2m space, µ
is replaced by a two-level measure ν and the analog of supp(µ) is the support of the intensity measure
Mν ∈ M1(X), also called first moment measure, which is defined by

Mν(·) =

∫
ν(dµ)µ(·). (3.22)
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This notion allows to easily adapt some results on metric measure spaces to m2m spaces by replacing
the (one-level) measure µ by the intensity measure of the two-level measure ν (compare [GPW09,
Proposition 7.1] to [Mei19, Theorem 7.2] in the case ν ∈ M1(M1(X))). We will also exploit this idea
in the case of algebraic trees below (e.g. in Definition 3.27).

We are now able to define a notion of equivalence for m2m spaces.

Definition 3.20 (Equivalence of m2m spaces). 1. Two m2m spaces (Xi, ri, νi), i = 1, 2, are called
m2m-isomorphic if there exists a measurable function f : X1 → X2 such that ν2 = f∗∗ν1 and f
is isometric on the set supp(Mν1) (but not necessarily on the whole space X1). The function f
is called an m2m-isomorphism.

2. The relation of being m2m-isomorphic is an equivalence relation on the set of m2m spaces. The
set of equivalence classes of m2m trees is denoted by M(2).

The following notion of test functions is based on the idea of sampling finite spaces of (X, r) by
means of ν, i.e. we first sample measures from M1(X) according to ν and then with each sampled
measure, we sample finitely many points in X.

Definition 3.21 (Two-level distance polynomials). A two-level distance polynomial is a function

Φ: M
(2)
2 → R of the form

Φ(χ) :=

∫
ν⊗m(dµ)

∫ m⊗

i=1

µi(dui)ϕ
((
r(uij , ui′j′)(i,j),(i′,j′)

))
, (3.23)

where χ = (X, r, ν), m ∈ N, n ∈ N
m and ϕ ∈ Cb(R

|n|2). We write Π
(2)
r for the set of all two-level

distance polynomials.

The space M
(2) is then equipped with the coarsest topology such that all two-level distance poly-

nomials are continuous.

Definition 3.22 (Two-level Gromov-weak topology). The two-level Gromov-weak topology is the initial

topology on M
(2) induced by the test functions in Π

(2)
r . A sequence of m2m spaces (χn)n∈N is said

to converge two-level Gromov-weakly to χ in M
(2) if and only if Φ(χn) converges to Φ(χ) in R, for all

polynomials Φ ∈ Π
(2)
r .

The following result is given by Proposition 4.6 and Theorem 8.1 in [Mei19]:

Proposition 3.23 (M(2) is Polish). Equipped with the two-level Gromov-weak topology, M(2) is a Polish
space.

3.3 The space of algebraic two-level measure trees

In this section, we define algebraic two-level measure trees (a2m trees for short) and equip the space
of (equivalence classes of) a2m trees with a topology related to the two-level Gromov-weak topology
for m2m spaces. We then give a result that allows to construct a2m trees from a partial knowledge of
the two-level mass distribution.

Algebraic measure trees are introduced in [LW21] as order separable algebraic trees equipped with
probability measures. We extend this idea by equipping algebraic trees with two-level probability
measures. The order separability condition is crucial in the sequel.

Definition 3.24 (Algebraic two-level measure tree). An algebraic two-level measure tree (a2m tree)
(T, c, ν) is an order separable algebraic tree (T, c) together with a two-level measure ν ∈ M1(M1(T, c)),
i.e. a Borel probability measure on the set of Borel probability measures on (T, c).

Similarly to m2m spaces, we will consider equivalence classes of a2m trees. Recall from (3.22) the
intensity measure Mν .

Definition 3.25 (Equivalence of a2m trees). 1. Two a2m trees (Ti, ci, νi), i = 1, 2, are called a2m-
isomorphic if there exist subtrees Ai of Ti with Mν(Ai) = 1 and a tree isomorphism f : A1 → A2

such that ν2 = f∗∗ν1. The function f is called an a2m-isomorphism.
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2. The relation of being a2m-isomorphic is an equivalence relation on the set of a2m trees. The set
of equivalence classes of a2m trees is denoted by T

(2).

For an a2m tree (T, c, ν), let A := c((supp(Mν))
3). By [Mei19, Corollary 2.3], the support of ν is

a subset of {µ ∈ M1(T ) | supp(µ) ⊆ supp(Mν)}. Thus the subtree A of (T, c) is such that (T, c, ν) is
equivalent to (A, c′, ν ′), where c′ is the restriction of c to A3 and ν ′ is the restriction of ν toM1(A, c

′).
Therefore, we define for an a2m tree χ := (T, c, ν),

supp(χ) := c((supp(Mν))
3), (3.24)

and
br(χ) := br(T, c) ∩ supp(χ). (3.25)

With this in mind, note that by considering equivalence classes of a2m trees in the latter, we will only
focus on the restriction of c and ν to the support of Mν .

Example 3.26 (A2m trees without branch points nor atoms). Let χ := (T, c, ν) be an a2m tree such
that br(χ) = ∅ and at(Mν) = ∅. By Proposition 3.18, there is a tree isomorphism from T into [0, 1] and
we may thus assume T ⊆ [0, 1]. Let FMν : [0, 1]→ [0, 1] be the cumulative distribution function of the
intensity measure Mν . Define ν̃ := (FMν )∗∗ν. Then, Mν̃ = FMν∗Mν is the Lebesgue measure on [0, 1].
Indeed since at(Mν) = ∅, the function FMν is continuous and for a ∈ [0, 1], the set {x : FMν ≤ a} is of
the form [0, xa] with FMν (xa) = a, so that FMν̃

(a) =Mν({x : FMν ≤ a}) =Mν([0, xa]) = Fν(xa) = a.
Let A := {x ∈ supp(Mν) | there is no (yn)n ∈ ([0, 1] \ supp(Mν))

N : yn < x, yn → x} be the
support of Mν with left boundary points removed. Then FMν restricted to A is bijective and thus an
a2m-isomorphism from (A, c, ν) onto ([0, 1], c≤, ν̃) where c≤ is defined in Example 3.5.

We showed that if we consider the equivalence class of an a2m tree (T, c, ν) such that br(χ) =
at(Mν) = ∅, we can always assume that T = [0, 1] and Mν = λ[0,1]. More generally, if there exists an
interval (v,w) ⊆ supp(Mν) such that (v,w) ∩ at(Mν) = ∅ and (v,w) ∩ br(T, c) = ∅, we can assume
without loss of generality that Mν restricted to (v,w) is λ(v,w).

We now equip the space T
(2) with a topology that relies on the two-level Gromov-weak topology

on M
(2). To do so, we use that due to the order separability assumption, a2m trees allow for metric

representations (see Proposition 3.18). But in order to get a useful topology on T
(2), we consider a

particular metric representation of an a2m tree (T, c, ν) by using the metric rλ defined in (3.18) with
λ being the so-called branch point distribution.

Definition 3.27 (Branch point distribution). We call branch point distribution of an a2m tree (T, c, ν)
the push-forward of M⊗3ν under the branch point map,

λ := c∗M
⊗3
ν . (3.26)

Recall from Lemma 3.17 that the quotient space (Tλ, rλ) is a metric space. Therefore the following
map associates a particular metric representation to each a2m tree.

Definition 3.28 (Selection map ι). Define the selection map ι : T(2) →M
(2) by

ι(T, c, ν) := (Tλ, rλ, νλ), (3.27)

where λ = c∗M
⊗3
ν is the branch point distribution of (T, c, ν), (Tλ, rλ) is the quotient metric space,

and νλ := πλ∗∗ν is the two-level push-forward measure of ν under the canonical projection πλ.

It is easy to see that if two a2m trees are equivalent, then there images under ι are also equivalent,
with the same isomorphism (see Remark 3.16). Thus the selection map is well-defined. The following
result states that ι indeed selects metric representations, and is injective.

Proposition 3.29 (ι is an embedding). For all χ ∈ T
(2), ι(χ) is a metric representation of χ. More-

over, the selection map ι : T(2) →M
(2) is injective.

Proof. It is enough to show that for all χ ∈ T
(2), the algebraic tree induced by ι(χ) is χ, because by

Remark 3.16, if ι(χ) and ι(χ′) are equivalent in M
(2), the measure preserving bijective homeomorphism
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f : ι(χ) → ι(χ′) is a tree homomorphism and thus yields an a2m-isomorphism on the corresponding
a2m trees χ and χ′.

Fix χ = (T, c, ν) ∈ T
(2). We can assume w.l.o.g that for all v ∈ br(T ), λ{v} > 0. By Lemma 3.17,

the canonical projection πλ : T → Tλ is a (surjective) tree homomorphism. Therefore, to show equiv-
alence of (T, c, ν) and (Tλ, c(Tλ,rλ), νλ), it is sufficient to show that πλ is injective on a subtree A ⊆ T
such that Mν(A) = 1. We take A := T \N with N := {v ∈ T : πλ(v) 6= {v}}, and πλ is injective on A.

Let us first show that Mν(A) = 1. If πλ(v) 6= {v} for some v ∈ T , then we can find some u 6= v in T
such that rλ(u, v) = 0, i.e., λ([u, v])− 1

2λ{u}−
1
2λ{v} = 0. Thus, λ{v} = 0 and Mν{v} = 0. Moreover,

since πλ is a tree isomorphism, w ∈ πλ(v) implies [v,w] ⊆ πλ(v). But due to order separability, there
are at most countably many non-degenerate, disjoint closed intervals in T , which implies that this
implies that πλ(N) is countable, and thus Mν(N) = 0.

Finally, to see that A is a subtree, let x, y, z ∈ A. If v := c(x, y, z) ∈ {x, y, z}, then v ∈ A.
Otherwise, v ∈ br(T, c), and hence Mν{v} > 0 by assumption, which implies that πλ(v) = {v}, i.e.
v ∈ A.

Since the selection map is an embedding, it is suitable to define a useful topology on T
(2).

Definition 3.30 (Two-level bpdd-Gromov-weak topology). Let M
(2) be equipped with the two-level

Gromov-weak topology. We call the topology induced on T
(2) by the selction map ι two-level branch-

point distribution distance Gromov-weak topology (two-level bpdd-Gromov-weak topology).

An immediate consequence of Proposition 2.6 is the following:

Corollary 3.31 (Separability and metrizability). T
(2) equipped with the two-level bpdd-Gromov-weak

topology is a separable, metrizable space.

Proof. The two-level Gromov-weak topology on M
(2) is separable and metrizable by the two-level

Gromov-Prokhorov metric d2GP (see [Mei19, Proposition 4.6, Theorem 8.1]). Now define for χ1, χ2 ∈
T
(2),

d2BGP(χ1, χ2) := d2GP(ι(χ1), ι(χ2)). (3.28)

Since ι is injective, d2BGP is a metric on T
(2) and it induces the two-level bpdd-Gromov-weak topology.

We finish this section with an extension result from [LW21] for algebraic measure trees. This result
will be a key ingredient in connecting a2m trees to sub-triangulations of the circle in Section 3.4.

For x ∈ T , we first extend the notation for components to

Sx(x) := {x}, (3.29)

so that T is the disjoint union of the deg(x) + 1 sets in

Cx :=
{
Sx(y) : y ∈ T

}
. (3.30)

For y ∈ T and V ⊆ T , we call a function f : V → R order-left continuous on V with respect to ≤y

if for all x, xn ∈ V such that xn ↑y x, we have limn→∞ f(xn) = f(x), where xn ↑y x means that
x1 ≤y x2 ≤y · · · and x = supn∈N xn with respect to ≤y.

The following result [LW21, Proposition 3.12] allows to extend a set of functions on subtree com-
ponents giving masses to a measure on the algebraic tree.

Proposition 3.32 (Extension to a measure). Let (T, c) be an order separable algebraic continuum tree,
and V ⊆ T order dense. Then a set-function µ0 : CV :=

⋃
x∈V Cx → [0, 1] has a unique extension to a

probability measure on B(T, c) if it satisfies

1. For all x ∈ V ,
∑

A∈Cx
µ0(A) = 1.

2. For all x, y ∈ V with x 6= y,
µ0(Sx(y)) + µ0(Sy(x)) ≥ 1. (3.31)

3. For every y ∈ V , the function ψy : x 7→ µ0(Sx(y)) is order left-continuous on V with respect to
≤y.
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bp

Figure 3.5: A sub-triangulation of the circle such that #∆(C) = 3, #∇(C) = 4, #�(C) = 2 and
#�(C) = 1, (more precisely, �(C) = {p}).

3.4 Triangulations of the circle

In [LW21, Section 4], binary algebraic measure trees were encoded by sub-triangulations of the circle,
where triangles correspond to branch points in the algebraic tree and the lengths of arcs encode the
mass of the corresponding subtree components. We are interested in formulating a similar result in
the case of binary a2m trees. In order to encode the random masses of the subtree components, we
add a two-level measure on the circle to the sub-triangulation.

We first define what we mean by sub-triangulations of the circle and in Subsection 3.4.2, we
construct the map that associates an a2m tree to every sub-triangulation together with a two-level
measure on the circle line and show that, as in the one-level case, this coding map is continuous and
surjective.

3.4.1 The space of sub-triangulations of the circle

In the whole Section 3.4, we fix D a closed disc of circumference 1, and denote by S := ∂D the circle.
We will repeatedly identify S with [0, 1] where the endpoints are glued. In this section, we denote by λI
the Lebesgue measure on an interval I ⊆ S ≃ [0, 1]. For a subset A ⊆ D, we denote by A, A◦, ∂A and
conv(A) the closure, the interior, the boundary and the convex hull of A, respectively. Furthermore,
we define

∆(A) :=
{
connected components of conv(A) \A

}
, (3.32)

and
∇(A) :=

{
connected components of D \ conv(A)

}
, (3.33)

so that we have the partition of the disc

D = A ⊎
⊎

a∈∆(A)

a ⊎
⊎

b∈∇(A)

b. (3.34)

Definition 3.33 (Sub-triangulations of the circle). A sub-triangulation of the circle is a closed non-
empty subset C of D satisfying the following two conditions:

(Tri1) ∆(C) consists of open interiors of triangles.

(Tri2) C is the union of non-crossing (non-intersecting except at endpoints), possibly degenerate closed
straight line segments with endpoints in S.

We denote the set of sub-triangulations of the circle by T .

Note that given (Tri1), (Tri2) implies that ∇(C) consists of circular segments with the bounding
straight line excluded and the rest of the bounding arc included (see Figure 3.5).
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The set T can be equipped with a compact metrizable topology in the following way. Let

F(D) :=
{
F ⊆ D : F 6= ∅

}
. (3.35)

We equip F(D) with the Hausdorff metric topology. That is, we say that a sequence (Fn)n∈N converges
to F in F(D) if and only if for all ǫ > 0 and all large enough n ∈ N,

F ⊆ F ǫ
n and Fn ⊆ F

ǫ, (3.36)

where for all A ∈ F (D), Aǫ := {x ∈ D : d(x,A) < ǫ}. As D is compact, F(D) is a compact metrizable
space which contains T and it can be shown that T is actually a closed subset of F(D) (see [LW21,
Lemma 4.2]).

In order to construct the branch point map from a sub-triangulation in the next subsection, we
need another characterization of sub-triangulations of the circle. Roughly speaking, condition (Tri2)
can be replaced by the existence of triangles that separate triples of connected components of D \ C.

Proposition 3.34 (Characterization of sub-triangulations). Let C be a closed non-empty subset of D.
Then C is a sub-triangulation of the circle if and only if condition (Tri1) holds, all extreme points of
conv(C) are contained in S and

(Tri2)’ For x, y, z ∈ ∆(C) ∪ ∇(C) pairwise distinct, there exists a unique cxyz ∈ ∆(C) such that x, y, z
are subsets of pairwise different connected components of D \ ∂cxyz.

3.4.2 Coding of binary algebraic two-level measure trees

We define here a map that associates a binary a2m tree to a sub-triangulation together with a two-level
measure on the circle line whose intensity measure is the Lebesgue measure. We show that this coding
map is surjective and continuous.

We start by defining the set of binary algebraic two-level measure trees with no atoms on the
skeleton:

T
(2)
2 :=

{
χ = (T, c, ν) ∈ T

(2) : deg(v) ≤ 3 ∀v ∈ T, at(µ) ⊆ lf(T, c) ∀µ ∈ supp(ν)
}
. (3.37)

Note that for all (T, c, ν) ∈ T
(2)
2 , we also have at(Mν) ⊆ lf(T, c).

In Theorem 3.39, we introduce a coding map which associates an a2m tree (T, c, ν) ∈ T
(2)
2 to each

two-level sub-triangulation.

Definition 3.35 (Two-level sub-triangulation). A two-level sub-triangulation of the circle (C,K) con-
sists of sub-triangulation of the circle C together with a two-level measure K ∈ M1(M1(S)) on S such
that its intensity measure MK is λS the Lebesgue on the circle line.

We denote by
D :=

{
(C,K) ∈ T ×M1(M1(S)) :MK = λS

}
(3.38)

the set of all two-level sub-triangulations of the circle.

In the construction we give below, the algebraic measure tree (T, c,Mν) is the one associated to
the sub-triangulation C given by the coding map in [LW21, Theorem 2]. In particular, x ∈ ∆(C) will
correspond to a branch point of the associated a2m tree and x ∈ ∇(C) to an atom of the intensity
measure Mν of the a2m tree such that the arc x∩S has length the Mν -mass of the corresponding atom.

Example 3.36 (A simple case). Consider a triangulation C of the regular n-gon into n− 2 triangles
(see Figure 3.6). In this case, the coded tree is the dual graph. That is, a triangle correponds to a
branch point of the tree, and two branch points of the tree are connected by an edge if and only if the
triangles are adjacent. Each circular segment corresponds to a leaf and Mν will assign to each leaf the
length of the circular segment, i.e. n−1 since the n-gon is regular.

We then add on the circle line a two-level measure K such that MK = λS by defining

K =
1

2
δκ1 +

1

2
δκ2 , (3.39)
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Figure 3.6: A triangulation of the 12-gon and the tree coded by it. Suppose that we add on the
triangulation the two-level measure K = 1

2δκ1 +
1
2δκ2 , where κ1 is the renormalized Lebesgue measure

on the union of the red circular segments and κ2 on the union of the green circular segments. Then
the corresponding two-level measure on the tree is given by 1

2δµ1 +
1
2δµ2 where µ1 assigns mass 1

6 to
each red leaf and µ2 to each green leaf.

where κ1, κ2 ∈ M1(S) are defined in Figure 3.6. Then the associated two-level measure ν on the tree
is given by 1

2δµ1 +
1
2δµ2 where µi assigns to each leaf the κi-mass carried by the corresponding circular

segment.

Remark 3.37 (About the condition MK = λS). Consider the sub-triangulation C and K := δδ0 as
in Figure 3.7 on the left. We needed a condition on K to avoid such a case where MK puts an atom
on an endpoint of a line segment of C separating two circular segments. We could have overcome
this issue by deciding a priori to which of the two circular segment the atom adds mass. However,
with this solution, the coding map would not be continuous when T is equipped with the Hausdorff
metric topology andM1(M1(S)) with the weak topology. Indeed, suppose we decide to add the atom
on endpoints to the mass of the circular segment after the endpoint and let Kn := δ 1

2
δ0+

1
2
δ
n−1

(see

Figure 3.7 on the right). Then the sequence (C,Kn) converges to (C,K) but it is not true of the
corresponding a2m trees since the one associated with (C,Kn) has two leaves carrying mass but not
the one associated with (C,K).

The condition MK = λS prevents such cases from occurring and it seems natural for the specific
reason that it also ensures that the algebraic measure tree (T, c,Mν) corresponding to (C,K) is the
one associated to the sub-triangulation C in the one-level case.

Before stating the result, we need further notation. We first define on the sub-triangulation the
points that will correspond through the coding construction to leaves without mass. For x ∈ ∆(C),
let pi(x), i = 1, 2, 3, be the mid-points of the three arcs of S \ ∂x, and define

�(C) :=
{
{pi(x)} : x ∈ ∆(C), i ∈ {1, 2, 3}, compx(pi(x)) ⊆ C

}
(3.40)

which is the set of mid-points of “filled” circular segments for C (see Figure 3.5). In the tree, the
corresponding leaves will be connected to the rest of the tree through line segments in (T, c, ν) with
non-atomic measure. For (T, c, ν) an algebraic measure tree, we call an interval (v,w) ⊆ supp(Mν)
such that (v,w) ∩ at(Mν) = ∅ and (v,w) ∩ br(T, c) = ∅ a line segment with non-atomic measure. We
denote by

seg(T, c, ν) (3.41)

the set of maximal (w.r.t. inclusion) line segments with non-atomic measure. Note that if (T, c) is
order complete, every line segment with non-atomic measure is included in some (v,w) ∈ seg(T, c, ν).
The analog of these line segments in the sub-triangulation are “filled” areas, that is, elements of

�(C) :=
{
b | b is a connected component of C◦

}
. (3.42)
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Figure 3.7: Examples of two-level measures K on the circle such that MK 6= λS. On the left, K = δδ0
and on the right, we represent Kn = δ 1

2
δ0+

1
2
δ
n−1

for several n ∈ N. Then Kn converges weakly to
K. If we add the atom on endpoints to the mass of the circular segment after the endpoint, the tree
associated with (C,Kn) has two leaves carrying mass but the one associated with (C,K) is a sinle
point carrying mass. Therefore the sequence of trees corresponding to (C,Kn) do not converge to the
one associated with (C,K).

x

y

y′

x′

x

y = y′

x′

Figure 3.8: Two examples of “filled” areas b ∈ �(C) delimited by the circular segments [x, y] and [x′, y′].
They are partitioned into straight line segments with endpoints in [x, y] and [x′, y′].

For such a filled area b ∈ �(C), it will be important to be able to know the mass distribution of K
along b∩S, and not only the total mass carried by b∩S. For this reason, we use that by definition of a
sub-triangulation, b ∈ �(C) is the union of non-crossing closed straight line segments with endpoints
in S. However, there are several possible ways to decompose b into infinitely many line segments. For
the sake of simplicity, we choose to partition b “linearily” in the following sense. Recall that we identify
S with [0, 1] where the endpoints are glued. If b∩S is not connected, then it is the union of two circular
segments [x, y] and [y′, x′] (with x = y or x′ = y′ possibly, see Figure 3.8). If b ∩ S is connected, it
is a circular segment [x, x′] and we take y = y′ to be its mid-point (which belongs to �(C)), so that
b ∩ S is still the union of two circular segments. We then define ‖b(C) to be the set of all straight line
segments connecting a point of [x, y] to a point of [y′, x′] in a linear way (see Figure 3.8). For example,
if x ≤ y ≤ y′ ≤ x′,

‖b(C) :=
{
[(1− t)x+ ty, (1− t)x′ + ty′]

∣∣ t ∈ [0, 1]
}
. (3.43)

Define

‖(C) :=
⋃

b∈�(C)

‖b(C). (3.44)

Finally, we define for the sub-triangulation the analog of the components in an algebraic tree. For
x ∈ ∆(C)∪∇(C), and y ⊆ D connected and disjoint from ∂Dx, where ∂D denotes the boundary in the
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x

y

x

y

x = y

Figure 3.9: Three examples of components compx(y) in a sub-triangulation of the circle C. On the
left, x ∈ ∆(C) and y ∈ ‖(C). In the middle, x ∈ ‖(C) and y ∈ ∇(C). On the right, x = y ∈ ‖(C) and
compx(x) = x. First the two other cases, compx(y) is a circular segment with the boundary straight
line excluded and the rest of the boundary arc included.

space D, let
compx(y) := the connected component of D \ ∂Dx which contains y. (3.45)

Similarly, for x ∈ ‖(C) and y ⊆ D connected and disjoint from x, let

compx(y) := the connected component of D \ x which contains y. (3.46)

We also call them components (of the sub-triangulation) (see Figure 3.9). Define also compx(x) := x
for x ∈ ‖(C) ∪�(C).

The following lemma gives the tree associated to a triangulation C. Contrary to [LW21, Lemma 4.7],
we add the set ‖(C) to the “skeleton” of the tree as it is important in the two-level case to know how
the mass is distributed along a line segment of the tree.

Lemma 3.38 (induced branch-point map). For C ∈ T , let VC := ∆(C) ∪ ∇(C) ∪ �(C) ∪ ‖(C). If
VC 6= ∅, then there exists a unique branch-point map cV : V 3

C → VC , such that (VC , cV ) is an algebraic
tree with

S(VC ,cV )
x (y) = {v ∈ VC : compx(y) = compx(v)} (3.47)

for x, y ∈ VC . In particular, deg(x) = 3 for all x ∈ ∆(C), deg(x) = 1 for all x ∈ ∇(C) ∪ �(C) and
deg(x) = 2 for all x ∈ ‖(C) \�(C).

Proof. Condition (Tri2)’ of Proposition 3.34 gives that for pairwise distinct x, y, z ∈ ∆(C) ∪ ∇(C),
there is a unique triangle cxyz ∈ ∆(C) such that x, y, z are subsets of pairwise different connected
components of D \ ∂cxyz . This can be extended to triples of points in VC in an obvious way. It is then
easy to see that this defines a branch point map on VC .

The following theorem is the analog of [LW21, Theorem 2]. It states that each pair (C,K) where
C is a sub-triangulation of the circle and K a two-level measure on S with MK = λS can be associated
with a binary a2m tree such that ∆(C) corresponds to the set of branch points and ∇(C) corresponds
to the set of atoms of the intensity measure of ν in the tree. Furthermore, compv(w) corresponds to
the component Sv(w) and its random ν-mass is given by the random K-mass carried by compv(w).
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Theorem 3.39 (Coding map). (i) For all Γ = (C,K) ∈ D, there is a unique (up to equivalence)

a2m tree χΓ = (TΓ, cΓ, νΓ) ∈ T
(2)
2 such that:

(CM1) VC ⊆ TΓ, br(TΓ, cΓ) = ∆(C), and cΓ is an extension of cV , where (VC , cV ) is defined in
Lemma 3.38.

(CM2) For all x, y ∈ VC and σ ≥ 0,
∫
ν(dµ)e−σµ(Sx(y)) =

∫
K(dκ)e−σκ(compx(y)∩S). (3.48)

(CM3) at(MνΓ) = ∇(C).

(ii) The coding map τ : D→ T
(2)
2 , Γ 7→ χΓ is surjective.

(iii) Let T be equipped with the Hausdorff metric topology, M1(M1(S)) with the weak topology, T ×

M1(M1(S)) with the product topology and T
(2)
2 with the two-level bpdd-Gromov-weak topology.

Then the coding map τ is continuous.

Let us first sketch the proof. (i) We start by extending the tree (Vc, cV ) to an algebraic continuum
tree and apply Proposition 3.32 “almost surely” to construct the two-level measure ν. (ii) We give the

proof of the surjectivity of the coding map τ in three steps. For χ = (T, c, ν) ∈ T
(2)
2 ,

1. we first construct the sub-triangulation C associated with the algebraic measure tree (T, c,Mν)
as in the proof of [LW21, Theorem 2]. That is, for each branch point we remove an open triangle
from the set D and for each atom of Mν , we remove a circular segment.

2. we then build K by weak approximation. For this, we rely on a result from [Mei19] that the
two-level measure ν can be reconstructed from an infinite set of points randomly sampled. The
two-level measure K is then built in a similar fashion by using a correspondance between points
in the sample and subsets of the circle line.

3. finally, we prove that the constructed pair (C,K) is in D by partitioning the circle line into
different types of intervals and showing that the restriction of MK to each interval is the Lebesgue
measure.

(iii) The proof of the continuity of τ is defered to the next section, Proposition 3.47.

Proof of Theorem 3.39. (i) Let Γ = (C,K) ∈ D. For κ ∈ supp(K), we define the set-function µκ0 :⋃
x∈VC

Cx → [0, 1]

µκ0(Sx(y)) := κ(compx(y) ∩ S), x, y ∈ VC . (3.49)

We want to be in a position to apply Proposition 3.32 to each µκ0 . Since MK = λS, for K-almost every
κ, for all x ∈ VC , κ(∂Dx∩S) = 0. Thus, for K-almost every κ and all x ∈ VC ,

∑
A∈Cx

µκ0(A) = κ(S) = 1
and µκ0(Sx(y)) + µκ0(Sy(x)) ≥ 1 for y 6= x. Furthermore, the function x 7→ µκ0(Sx(y)) is order left-
continuous on VC w.r.t. ≤y for all y ∈ VC for K-almost every κ. This can be shown by using (3.49)
and the continuity from above of the measure κ, together with the condition MK = λS.

The tree (VC , cV ) is order separable. Indeed, the set ∆(C) ∪ ∇(C) is countable and one can
construct a countable order dense set of (VC , cV ) by adding the straight line segments in ‖(C) that
have at least one rational endpoint in S ≃ [0, 1]. However, (VC , cV ) is not necessarily order complete.
Since we defined �(C) to be the set of all closures of connected components of C◦, the endpoints of
line segments are included in (VC , cV ). But we still need to add leaves which are limits of an increasing
sequence (w.r.t ≤y for some y ∈ VC) of branch points. Thus we define V C as VC together with an
uncountable set of leaves given by the limit points of these increasing sequences, and we can easily
extend cV to cV so that the tree (V C , cV ) is order complete and order separable.

Furthermore, (V C , cV ) need not to be an algebraic continuum tree because edge(V C , cV ) might
be non-empty. Therefore, to apply Proposition 3.32 we also extend the tree (V C , cV ) to make it an
order separable algebraic continuum tree. Let {v,w} be an edge of (V C , cV ). Define Ṽ := V C ⊎
({(v,w)} × (0, 1)). We can extend cV to a branch point map c̃ on Ṽ in a canonical way such that
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{(v,w)} × (0, 1)

Figure 3.10: The tree is not a continuum tree because [v,w] = {v,w} is an edge. We extend the tree
in a natural way so that [v,w] is no longer an edge.

[v,w] = {v,w} ∪ ({(v,w)} × (0, 1)) (see Figure 3.10). V C is not anymore order dense in (Ṽ , c̃) so we
also define µκ0 on any Cx with x ∈ {(v,w)} × (0, 1). Fix κ ∈ supp(K). For x ∈ {(v,w)} × (0, 1), let
µκ0({x}) = 0 and for y 6= x,

µκ0(Sx(y)) :=

{
µκ0(Sx(v)) if v ∈ Sx(y),

µκ0(Sx(w)) if w ∈ Sx(y).
(3.50)

Then for K-almost every κ, µκ0 still satisfies the conditions (1)-(3) of Proposition 3.32 on (Ṽ , c̃). We
repeat this extension for each edge in edge(V C , cV ) which is countable as the set ∆(C)∪∇(C) is itself
countable. We denote by (T, c) the extended tree. By construction, it is still order complete and order
separable, and edge(T, c) = ∅. Since µκ0 was extended to

⋃
x∈T Cx and T is obviously dense in itself,

we can now apply Proposition 3.32. That is, for K-almost every κ, µκ0 has a unique extension to a
probability measure µκ on B(T, c).

Define ν onM1(T, c) as the pushforward of K under the map κ 7→ µκ. Let us verify the a2m tree
(T, c, ν) satisfies conditions (CM1)-(CM3). It is easy to see that (CM1) holds, and by (3.49), for all
x, y ∈ VC , ∫

ν(dµ)e−σµ(Sx(y)) =

∫
K(dκ)e−σµ

κ(Sx(y)) =

∫
K(dκ)e−σκ(compx(y)∩S). (3.51)

Moreover, points in T \ VC carry no atoms, so at(Mν) ⊆ VC . With (CM2), for each x ∈ VC ,

MνΓ{x} =MK(compx(x) ∩ S) = λ(compx(x) ∩ S), (3.52)

which is zero if x ∈ ∆(C)∪�(C) and strictly positive if x ∈ ∇(C), which yields (CM3). To see that it
is unique (up to equivalence), notice that in the construction above, the extensions of edges of (V C , cV )
carry no mass and that the extension of µκ0 to µκ is unique for K-almost every κ by Proposition 3.32.

(ii) We give the proof of the surjectivity in three steps. Let χ = (T, c, ν) ∈ T
(2)
2 . We construct a

sub-triangulation C and a two-level measure K on S such that τ(C,K) = χ. We can suppose w.l.o.g.
that (T, c) is order complete and that for all v ∈ br(T, c), c∗(M⊗3ν ){v} > 0. To make the construction
of K easier, we also assume that for all (v,w) ∈ seg(T, c, ν), Mν restricted to (v,w) is the Lebesgue
measure (see Example 3.26).

Step 1: construction of C. Fix ρ ∈ lf(T, c) and recall that ρ induces a partial order relation ≤ρ.
We can extend this partial order to a total order ≤ in the following way. For v ∈ br(T, c), denote by
S0(v), S1(v) and S2(v) the three components of T \ {v} such that S0(v) = Sv(ρ) and with S1(v) and
S2(v) chosen by picking an order for the two remaining components. Define now for all v,w,

v ≤ w ⇔
[
v ≤ρ w

]
or
[
v ∈ S1(c(v,w, ρ)) and w ∈ S2(c(v,w, ρ))

]
. (3.53)

Using this total order on the tree, the construction of C below can be understood as follows. Starting
from the root ρ which corresponds to 0 in the identification S ≃ [0, 1], we read through T according
to ≤. For each branch point v, we draw a triangle whose vertices on S are given by the Mν -mass of
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Figure 3.11: An algebraic tree (T, c) and the corresponding sub-triangulation C as constructed in Step
1 of the proof of Theorem 3.39(ii). v1, v2, v3 are branch points and ρ,w1, w2, w3 are leaves carrying an
Mν -atom. More precisely, Mν(ρ) =

1
4 and Mν(w1) = Mν(w2) = Mν(w3) =

1
8 . We extend the partial

order ≤ρ to a total order such that ρ ≤ v1 ≤ v2 ≤ w1 ≤ v3 ≤ w2 ≤ w3.

points smaller than v and the Mν -masses of the two components above v. For each leaf carrying an
atom w of Mν , we add a straight line segment to C according to the Mν-mass of points smaller than
w and the Mν-mass of w (see Figure 3.11).

We first introduce some more notations. For a ∈ [0, 1] and b, c > 0 with a + b + c ≤ 1, let
∆(a, b, c) ⊆ D be the open triangle with vertices a, a + b, a + b + c ∈ S, and let ℓ(a, b) ⊆ D be the
straight line from a to a+ b, and L(a, b) the connected component of D \ ℓ(a, b) containing a+ b

2 ∈ S.
Now for all v ∈ br(T, c) ∪ at(Mν), denote by

α(v) :=Mν ({u ∈ T : u < v}) (3.54)

the total Mν-mass of points smaller than v (with respect to ≤ defined in (3.53)). In the sub-
triangulation C defined below, α(v) gives the first vertex of the triangle or circular segment corre-
sponding to v. We define C by

D \ C :=
⊎

v∈br(T,c)

∆
(
α(v),Mν (S1(v)),Mν(S2(v))

)
⊎

⊎

w∈at(Mν)

L
(
α(w),Mν{w}

)
. (3.55)

Let us show that C is a sub-triangulation of the circle. By definition of C, conv(C) \C is the disjoint
union of open triangles, i.e. condition (Tri1) is satisfied. Furthermore, the extreme points of conv(C)
are contained in S, and for x, y, z ∈ ∆(C) ∪ ∇(C) distinct, there are corresponding u, v, w ∈ T , and a
triangle cxyz ∈ ∆(C) corresponding to c(u, v, w), which satisfies the requirements of (Tri2)’. Thus, by
Proposition 3.34, C ∈ T . Note that C is the sub-triangulation associated with the algebraic measure
tree (T, c,Mν) in the proof of Theorem 4.8 in [LW21].

To make the notations coincide with the ones from Lemma 3.38, we will use the following cor-
respondences in the rest of the proof. That is, a branch point v ∈ br(T, c) will correspond to the
triangle v = ∆

(
α(v),Mν (S1(v)),Mν(S2(v))

)
in ∆(C) and an atom w ∈ at(Mν) to the circular segment

w = L
(
α(w),Mν{w}

)
in ∇(C). A leaf with zero mass u ∈ lf(T, c), but connected to the rest of the

tree by a line segment carrying mass, will correspond to the midpoint u ∈ �(C) of the corresponding
“filled” circular segment. Finally, we associate, in a “linear” way, a point z ∈ T belonging to a line seg-
ment with non-atomic mass in seg(T, c, ν) to a straight line segment z ∈ ‖(C). That is, if the segment
(v,w) ∈ seg(T, c, ν) corresponds to the circular segments ]x, y[ and ]x′, y′[, the point y = (1− t)v + tw
with t ∈ (0, 1) is associated with the straight line segment y := [(1 − t)x + ty, (1 − t)x′ + ty′] (see
(3.43)). Denote by

VT ⊆ T (3.56)

the set of all points x in the tree that have a corresponding subset x ∈ VC .
With these notations, VT is a subtree of (T, c) and by construction, we have that for all x, y ∈ VT ,

Mν(Sx(y)) = λS(compx(y) ∩ S). (3.57)
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xi1 ∩ S

x̃i3

x̃i21

x̃i22x̃i4

x̃i5

Figure 3.12: For each atom xi1, ..., xi5 of µni , κni assigns weight 1
n on a subset of the circle, which

depends on the position of the atom in the tree. For the Mν -atom leaf xi1, κni assigns the rescaled
Lebesgue measure on the corresponding circular segment xi1∩S. For xi2, κni splits the mass 1

n between
the endpoints x̃i21 and x̃i22 of the segment xi2. For the three other ones, x̃k carries weight 1

n .

Let b ∈ �(C) such that b ∩ �(C) = ∅, that is, b corresponds to a segment line of the tree carrying
mass and that is not connected to a leaf without mass. In this case, b ∩ S is the union of two disjoint
intervals (see Figure 3.8, left). It is important for the next step of the proof to note that from the
construction of C, one (and only one) of the two intervals is a singleton. Thus, the random K-mass we
will assign to b needs to be carried by the interval with non-empty interior to ensure that MK = λS.

Step 2: construction of K. Let (xij)(i,j) be a random infinite matrix with distribution
∫
ν⊗∞(dµ)

∫ ⊗

i≥1

µ⊗∞i (·). (3.58)

We assumed the tree (T, c) to be order separable and order complete. Thus the component topology
on (T, c) is Polish (see Remark 3.15) and we know from [Mei19, Proposition 3.7] that, almost surely,

(i) for every i ∈ N, the weak limit µi := w-lim
n→∞

1
n

∑n
j=1 δxij

exists and has law ν,

(ii) the two-level measure 1
m

∑m
i=1 δµi

converges weakly to ν, and

(iii) for every j ∈ N, the sequence (xij)i is dense in supp(Mν).

Fix i, n ∈ N. We write µni := 1
n

∑n
j=1 δxij

and we first define κni a probability measure on the circle

line corresponding to µni . For each xij, we put weight 1
n on a subset of the circle depending on the

position of xij in (T, c). We will make use of the correspondence between points of VT ⊆ T and subsets

of D discussed at the end of Step 1. Since (T, c, ν) ∈ T
(2)
2 , at(µ) ⊆ lf(T, c) for all µ ∈ supp(ν) so we

have the following possible cases (see Figure 3.12):

1. Set A1: if xij ∈ at(Mν), xij is the circular segment L
(
α(xij),Mν{xij})

)
and we will put the

rescaled Lebesgue measure on the arc xij ∩ S.

2. Suppose now that xij belongs to a line segment with non-atomic mass, or equivalently that
deg(xij) = 2. Since (T, c) is order complete, there exist v,w ∈ T such that (v,w) ∈ seg(T, c, ν)
and xij ∈ (v,w).

(a) Set A2: if (v,w) is adjacent to a leaf, i.e. xij is included in a filled circular segment, then
we put weight 1

2n on the endpoints x̃ij1 and x̃ij2 of the line segment xij .

(b) Set A3: if not, then xij ⊂ b where b ∈ �(C) is such that b ∩ S is the union of an interval
and a singleton. In this case, we put weight 1

n on the endpoint x̃ij of the line segment xij
that is not the singleton.
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3.4 Triangulations of the circle

Figure 3.13: Thus union of two components is either disjoint (left), the whole circle S (middle) or one
component if one is included in the other (right).

3. Finally, suppose that xij ∈ lf(T, c) \ at(Mν).

(a) Set A4: if xij is adjacent to a line segment with non-atomic mass, then xij ∈ �(C) and we
put weight 1

n on x̃ij = xij.

(b) Set A5: if not, xij /∈ VT , i.e. xij is not defined. However, it naturally corresponds to a specific
point of the circle. To see this, let y ∈ br(T, c). Then there exists (zn)n∈N a sequence of
distinct branch points in T such that zn ≤y zn+1 ≤y xij for all n ∈ N. For all n ∈ N, let
an, bn ∈ S ≃ [0, 1] such that compzn(zn+1) ∩ S = [an, bn]. We have [an+1, bn+1] ⊆ [an, bn].
By (3.57), λS([an, bn]) =Mν(Szn(zn+1)) =Mν(Szn(xij)). But since xij /∈ at(Mν) and xij is
not adjacent to a line segment with non-atomic mass, limn→∞Mν(Szn(xij)) = 0. Therefore,
there exists x̃ij ∈ S unique such that x̃ij =

⋂
n∈N[an, bn]. We put weight 1

n on x̃ij.

Define the random probability measure κni on S by

κni :=
∑

xij∈A1

λS(· ∩ xij)

nλS(S ∩ xij)
+
∑

xij∈A2

δx̃ij1
(·) + δx̃ij2

(·)

2n
+

∑

xij∈A3∪A4∪A5

δx̃ij
(·)

n
. (3.59)

Now for each i, n ∈ N, κni is a random variable inM1(S) which is compact when equipped with the

weak topology. Therefore, the sequence (κni )n is tight and has a subsequence (κ
ϕi(n)
i )n that converges

to some random measure κi, for each i ∈ N. Before taking the weak limit of the empirical distribution
of the sequence (κi)i, note first that a.s. µi and κi agree on (union of) corresponding components on
the tree T and on the circle line S. Indeed, by construction, a.s. for all x, y ∈ VT ,

κni (compx(y) ∩ S) = µni (Sx(y)). (3.60)

Furthermore, consider x, y, x′, y′ ∈ VC . Then compx(y) and compx′(y′) are two circular segments
delimited by two straight line segments that are disjoint or equal. Thus compx(y) ∪ compx′(y′) is
either disjoint, the whole circle S or one component if one is included in the other (see Figure 3.13).
Therefore, we have a.s. for all xk, yk ∈ VT ,

κni

(
⋃

k∈N

compxk
(yk) ∩ S

)
= µni

(
⋃

k∈N

Sxk
(yk)

)
. (3.61)

Then we can generalize it by saying that for n large enough, a.s. for all xk, yk ∈ VC ,

(κn1 , ..., κ
n
m)

(
⋃

k∈N

compxk
(yk) ∩ S

)
= (µn1 , ..., µ

n
m)

(
⋃

k∈N

Sxk
(yk)

)
. (3.62)

Taking the limit of the subsequences (κ
ϕi(n)
i )n when n goes to infinity for 1 ≤ i ≤ m,

(κ1, ..., κm)

(
⋃

k∈N

compxk
(yk) ∩ S

)
and (µ1, ..., µm)

(
⋃

k∈N

Sxk
(yk)

)
. (3.63)

85 Josué Nussbaumer



Chapter 3: Algebraic two-level measure trees

have same distribution for all xk, yk ∈ VT .
We now denote by Km the empirical distribution of the sequence (κi)i, that is,

Km :=
1

m

m∑

i=1

δκi
, (3.64)

which is a random variable inM1(M1(S)). SinceM1(M1(S)) is also compact, the sequence (Km)m is
tight, so that there exists a subsequence (Kϕ(m))m that converges to some random two-level measure
K. For all m ∈ N, xk, yk ∈ VT , and σ ≥ 0,

1

m

m∑

i=1

e
−σκi

(⋃
k∈N

compxk
(yk)∩S

)

and
1

m

m∑

i=1

e−σµi(
⋃

k∈N
Sxk (yk)) (3.65)

have same distribution. Recall that the two-level measure 1
m

∑m
i=1 δµi

converges weakly to ν. Thus,
taking the limit of the subsequence (Kϕ(m))m, for all xk, yk ∈ VT , and σ ≥ 0,

∫
K(dκ)e

−σκ
(⋃

k∈N
compxk

(yk)∩S
)

and
∫
ν(dµ)e−σµ(

⋃
k∈N
Sxk (yk)) (3.66)

have same distribution. But the term on the right above is deterministic, so we have that a.s. for all
x, y ∈ VT , and σ ≥ 0,

∫
K(dκ)e

−σκ
(⋃

k∈N
compxk

(yk)∩S
)

=

∫
ν(dµ)e−σµ(

⋃
k∈N
Sxk(yk)), (3.67)

which yields in particular (CM2).
Step 3: MK = λS a.s. By taking the derivative of (3.67) at σ = 0 and with (3.57), a.s. for all
xk, yk ∈ VC ,

MK

(
⋃

k∈N

compxk
(yk) ∩ S

)
=Mν

(
⋃

k∈N

Sxk
(yk)

)
= λS

(
⋃

k∈N

compxk
(yk) ∩ S

)
. (3.68)

In other words, MK = λS on the σ-algebra generated by {compx(y) ∩ S : x, y ∈ VT }. To prove the
equality on the Borel σ-algebra of S, we partition the circle line S in the following way. Since ∆(C) is
countable, there exist countably many disjoint intervals of non-empty interior Ip, p ∈ N, such that

S =
⊎

p∈N

Ip, (3.69)

and for each p ∈ N, Ip satisfies one of the following (see Figure 3.12 for a sub-triangulation with the
different types of boundaries):

(a) Ip corresponds to an atom leaf of (T, c), that is, there exists w ∈ at(Mν) such that (Ip)◦ = w∩S,

(b) Ip corresponds to a line segment in seg(T, c, ν), i.e. there exists b ∈ �(C) such that (Ip)◦ = (b∩S)◦,

(c) Ip ⊆ C and for all distinct x, y ∈ Ip, there exists cxy ∈ ∆(C) such that x, y belong to different
connected components of D \ ∂cxy.

We show that a.s. MK = λS by showing that a.s. for any I := Ip, MK|I = λI .

(a) Suppose I◦ = w ∩ S for w ∈ at(Mν). For all n ≤ i, we defined κni such that

κni|I = Ci,n
I λI (3.70)

where Ci,n
I is a real-valued random-variable. Taking the weak limit of (κϕi(n)

i )n when n goes to
infinity,

κi|I = Ci
IλI (3.71)
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a.s. for some real-valued random-variable Ci
I . Therefore, a.s. for all m ∈ N,

MKm|I =

(
1

m

m∑

i=1

Ci
I

)
λI . (3.72)

Taking the weak limit of (Kϕ(m))m when m goes to infinity,

MK|I = CIλI (3.73)

a.s. for some real-valued random-variable CI . Noticing that I belongs to the σ-algebra generated
by {compx(y) ∩ S : x, y ∈ VC}, we have MK(I) = λI(I) so that CI = 1 a.s.

(b) Suppose that I◦ = (b ∩ S)◦ for some b ∈ �(C). We will use here the assumption that for the
corresponding (v,w) ∈ seg(T, c, ν), Mν restricted to (v,w) is the Lebesgue measure.

• If b ∩ S is the union of two disjoint intervals (one of which is a singleton), then the map
that associates a point in (v,w) to the endpoint of the corresponding segment in b is linear.
Therefore, with the assumption on ν, MK|I = λI .

• If not, let x, x′ ∈ S such that b ∩ S = [x, x′], y = y′ = x+x′

2 (see Figure 3.8). In this
case, (v,w) is adjacent to a leaf and we can assume w.l.o.g. that w ∈ lf(T, c). The point
u = (1− t)v + tw, t ∈ (0, 1) corresponds to the segment with endpoints ũ1 = (1 − t)x+ ty
and ũ2 = (1 − t)x′ + ty′ (see Figure 3.12). Therefore, by construction and assumption on

ν, MK|(x,y) is proportional to λ(x,y) and MK(x, y) = MK(x,x′)
2 = λS(x,x

′)
2 = λS(x, y) because

[x, x′] is the intersection of a component with S. Thus MK|(x,y) = λ(x,y) and since it also
holds for (y′, x′), MK|I = λI .

(c) Finally, we assume that I ⊆ C and for all distinct x, y ∈ I, there exists cxy ∈ ∆(C) such that
x, y belong to different connected components of D\∂cxy . Note that in this case, [x, y]∩ cxy 6= ∅.
In other words, the set of endpoints of (boundaries of) triangles in ∆(C) is dense in I. Let
J = [a, b] ⊆ I. There exist two sequences (an)n and (bn)n in I such that for all n, an ∈ ∂Dv
and bn ∈ ∂Dw for some v,w ∈ ∆(C) and an ↑ a and bn ↓ b. Since an ∈ ∂Dv and bn ∈ ∂Dw,
[an, bn] is the union of countably many disjoint components of C intersected with S, so that
MK([an, bn]) = λS([an, bn]). Therefore, MK(J) = limn→∞MK([an, bn]) = λS(J). Since it holds
for all interval J ⊆ I, MK|I = λI .

We have shown that a.s. the random two-level measure K together with the sub-triangulation C
is such that τ(C,K) = (T, c, ν) and MK = λS. Therefore, by taking a realization of K such that it
holds, we have shown surjectivity of τ .

3.5 Topologies on the subspace of binary algebraic two-level measure

trees

In this section we introduce on the space of binary a2m trees another notion of convergence called
two-level sample shape convergence. It exploits the idea of the Gromov-weak topology to sample finite
sub-spaces and then require these to converge in distribution. Whereas one samples metric sub-spaces
in the Gromov-weak topology, we now consider subtrees of a2m trees as combinatorial objects, which
will make it useful to show convergence of tree-valued Markov chains in the future. We then show
that this topology is equivalent to the two-level bpdd-Gromov-weak topology on T

(2)
2 , and that both

topologies are compact.

3.5.1 Two-level sample shape convergence

Obviously the two-level sample shape convergence is similar to the notion sample shape convergence
defined on the space of algebraic measure trees. A sequence of trees converges to a limit tree if all
random tree shapes spanned by finite samples converge weakly to the corresponding limit shapes.
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u21 • u23

• •
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u11 u23

• u11 • u12 • • • u12

u22

④④④④④
u2

④④④④④

Figure 3.14: A tree T and the shape s(T,c)(u11, u12, u21, u22, u23).

On T
(2)
2 , there is a two-level sampling: we first sample a finite number of measures on the tree from

the two-level measure and then sample a finite number of points according to each sampled measure.
Therefore, the notion of tree shape we define keeps track of this two-level sampling by using double
indices.

For m ∈ N and n ∈ N
m, we denote by

Nm,n = {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ ni} (3.74)

the set of indices. The sampled subtrees from an a2m tree will be cladograms, which are binary finite
trees with labelled leaves. Since the two-level measure on the tree may have atoms on leaves, a given
leaf may be sampled several times so we need to allow multi-labels in cladograms.

Definition 3.40 ((m,n)-cladogram). For m ∈ N and n ∈ N
m, an (m,n)-labelled cladogram is a

binary, finite algebraic tree (C, c) consisting only of leaves and branch points together with a surjective
labelling map ζ : Nm,n → lf(C). An (m,n)-cladogram (C, c, ζ) is an (m,n)-labelled cladogram such
that ζ is also injective.

We call two (m,n)-labelled cladograms (C1, c1, ζ1) and (C2, c2, ζ2) isomorphic if there exists a tree
isomorphism φ from (C1, c1) onto (C2, c2) such that ζ2 = φ ◦ ζ1. We then write

Cm,n := {isomorphism classes of (m,n)-labelled cladograms} (3.75)

and
Cm,n := {(C, c, ζ) ∈ Cm,n : ζ injective}. (3.76)

The shape function encodes as cladograms the shape of the subtree spanned by finite samples of
points (see Figure 3.14).

Definition 3.41 (Shape function). Let (T, c) be a binary algebraic tree, m ∈ N, n ∈ N
m, and

uij ∈ T \ br(T ) for (i, j) ∈ Nm,n. Then there exists a unique (up to isomorphism) (m,n)-labelled
cladogram

s(T,c)(u) = (C, cC , ζ) (3.77)

with lf(C) = {uij}(i,j)∈Nm,n
and ζ(i, j) = uij , such that the identity on lf(C) extends to a tree

homomorphism π from C onto c
(
({uij}(i,j)∈Nm,n

)3
)
, i.e. for all (i1, j1), (i2, j2), (i3, j3) ∈ Nm,n,

π(cC(ui1j1 , ui2j2 , ui3j3)) = c(ui1j1 , ui2j2 , ui3j3). (3.78)

We will refer to s(T,c)(u) ∈ Cm as the shape of u in (T, c).

We introduce a notion of convergence on T
(2)
2 based on the weak convergence of random tree shapes

spanned by finite samples. This topology is defined as the topology induced by the two-level shape
polynomials, which are test functions evaluating the tree shape distributions.

Definition 3.42 (Two-level shape polynomials). A two-level shape polynomial is a function Φ: T
(2)
2 →

R of the form

Φ(χ) = Φm,n,ϕ(χ) :=

∫

(M1(T ))m
ν⊗m(dµ)

∫

T |n|

m⊗

i=1

µi(dui)ϕ
(
s(T,c)(u)

)
, (3.79)

where χ = (T, c, ν), m ∈ N, n ∈ N
m and ϕ : Cm,n → R. We write Π

(2)
s for the set of all two-level shape

polynomials.
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Definition 3.43 (Two-level sample shape topology). The two-level sample shape topology on T
(2)
2 is

defined as the initial topology induced by Π
(2)
s .

Remark 3.44 (Tree shape distribution). Fix m ∈ N and n ∈ N
m. For all χ = (T, c, ν), we define the

(m,n)-tree shape distribution Sm,n(χ) as the probability measure on Cm,n such that for all ϕ : Cm,n →
R, ∫

Cm,n

dSm,n(χ) ϕ =

∫

M1(T )
ν⊗m(dµ)

∫

T |n|

m⊗

i=1

µi(dui)ϕ
(
s(T,c)(u)

)
. (3.80)

Then the two-level sample shape topology is induced by the set of functions {Sm,n : m ∈ N, n ∈ N}.

The following result gives that on T
(2)
2 , two-level sample shape convergence implies two-level bpdd-

Gromov-weak convergence.

Proposition 3.45. On T
(2)
2 , the two-level sample shape topology is stronger than the two-level bpdd-

Gromov-weak topology.

Proof. By definition, the two-level bpdd-Gromov-weak topology is induced by the set Π
(2)
ι of polyno-

mials of the form

Φ(χ) :=

∫
ν⊗m(dµ)

∫ m⊗

i=1

µi(dui)ϕ
((
rλ(uij , ui′j′)(i,j),(i′,j′)

))
, (3.81)

where χ = (T, c, ν), λ := c∗M
⊗3
ν , m ∈ N, n ∈ N

m and ϕ ∈ Cb(R
|n|2) (see Definition 3.22 and

Definition 3.30). Now, the set of φ ∈ Cb(R|n|
2
) that are Lipschitz continuous is convergence determining

for probability measure on R
|n|2 . Hence, the subset of Ψ ∈ Π

(2)
ι with

Ψ(T, c, ν) =

∫
ν⊗m(dµ)

∫ m⊗

k=1

µ⊗nk

k (duk)φ
((
rλ(uij , ui′j′)(i,j),(i′,j′)

))
(3.82)

for some m ∈ N, n ∈ N
m and a Lipschitz continuous function φ ∈ Cb(R

|n|2) also induces the two-level

bpdd-Gromov-weak topology. Therefore, it is enough to show that such a Ψ is continuous on T
(2)
2 with

respect to the sample shape topology. To do this, we show that the restriction of Ψ to T
(2)
2 can be

uniformly approximated by polynomials in Π
(2)
s .

For p ∈ N with 3p ≥ m, we define

Φp(T, c, ν) =

∫
ν⊗3p(dµ)

∫ m⊗

k=1

µ⊗nk

k (duk)

3p⊗

k=m+1

µk(duk1)φ
((
rλp,u

(uij , ui′j′)(i,j),(i′,j′)
))

(3.83)

where

λp,u :=
1

p

p∑

l=0

δc(u3l+1,1,u3l+2,1,u3l+3,1). (3.84)

Note that whether or not c(u3l+1,1, u3l+2,1, u3l+3,1) lies on [u(i,j), u(i′,j′)], for some l ∈ {0, ..., p− 1} and

(i, j), (i′ , j′) ∈ Nm,n only depends on the shape s(T,c)(u) and thus the restriction of Φp to T
(2)
2 belongs

to Π
(2)
s .

To show that Φp approximates Ψ, we uniformly bound the distance of the empirical branch point
distribution to the branch point distribution. Recall that for x, y ∈ T ,

rλ(x, y) := λ([x, y]) −
1

2
λ({x}) −

1

2
λ({y}). (3.85)

Thus, denoting by L the Lipschitz constant of φ w.r.t. the l∞-norm on R
|n|2 ,

||Ψ− Φp||∞ ≤ sup
(T,c,ν)∈T

(2)
2

∫
ν⊗3p(dµ)

∫ m⊗

k=1

µ⊗nk

k (duk)

3p⊗

k=m+1

µk(duk1)L.2 sup
I∈IT

|λ(I)− λp,u(I)|

≤ 2L sup
(T,c,ν)∈T

(2)
2

∫
(Mν)

⊗3p(du) sup
I∈IT

|λ(I)− λp,u(I)|,

(3.86)
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where IT := {[x, y] : x, y ∈ T} is the collection of all intervals of the algebraic tree T .
Then [LW21, Lemma A.4] gives the following estimates of the rate of convergence in the approxi-

mation of the branch point distribution by empirical distribution:

∫
(Mν)

⊗3p(du) sup
I∈IT

|λ(I)− λp,u(I)| ≤ 96

√
dimVC(IT)

p
= 96

√
2

p
, (3.87)

where dimVC(IT ) is the Vapnik-Chervonenkis dimension of IT which can easily be shown to be 2 (see
[LW21, Example A.2] for more details). This concludes the proof.

Corollary 3.46 (Metrizability). The two-level sample shape topology is metrizable on T
(2)
2 .

Proof. By Proposition 3.45, the two-level sample shape topology is stronger than the two-level bpdd-
Gromov-weak topology, which is Hausdorff by Proposition 3.31. Hence the two-level sample shape
topology is also Hausdorff. Moreover, by Remark 3.44, it is induced by the set {Sm,n : m ∈ N, n ∈ N

m},
which is a countable family of functions with values in metrizable spaces. Thus we can define a pseudo-
metric on T

(2)
2 that induces the two-level sample shape topology as follows: for χ, χ′ ∈ T

(2)
2 ,

ds(χ, χ
′) :=

∑

m∈N

1

2m

∑

n∈Nm

1

2|n|
min

(
dPr
(
Sm,n(χ),Sm,n(χ

′)
)
, 1
)
, (3.88)

where dPr denotes the Prokhorov distance. Therefore, the two-level sample shape topology is Hausdorff
and pseudo-metrizable. In particular, if ds(χ, χ′) = 0 then every open set that contains χ also contains
χ′, so that ds is actually a metric.

3.5.2 Equivalence and compactness of topologies

In this section, we first show that the coding map τ is continuous when T
(2)
2 is equipped with the

two-level sample shape topology. This implies that it is a compact topology. Finally, we prove that the
two-level sample shape convergence and the two-level bpdd Gromov-weak convergence are equivalent
on T

(2)
2 .

Recall the space D of pairs (C,K) ∈ T ×M1(M1(S)) such that MK = λS.

Proposition 3.47. Let T be equipped with the Hausdorff metric topology, M1(M1(S)) with the weak

topology, T ×M1(M1(S)) with the product topology and T
(2)
2 with the two-level sample shape topology.

Then the coding map τ : D→ T
(2)
2 is continuous.

We will use the following lemma in the proof.

Lemma 3.48. Let (S, d) be separable and let P,Q ∈ M1(S), ǫ > 0 such that dPr(P,Q) ≤ ǫ where
dPr denotes the Prokhorov distance. Then we can define two random variables X, resp. Y , distributed
according to P , resp. Q, on the same probability space (Ω,P) such that

P{d(X,Y ) ≥ ǫ} ≤ ǫ. (3.89)

Proof. The lemma directly follows from [EK86, Theorem 3.1.2]:

dPr(P,Q) = inf
γ

inf
{
ǫ > 0

∣∣γ{(x, y)|d(x, y) ≥ ǫ} ≤ ǫ
}
, (3.90)

where the first infimum is taken over the set of measures γ ∈ M1(S×S) with marginals P and Q.

We can now proceed with the proof of the continuity of the coding map.

Proof of Proposition 3.47. Fix Γ = (C,K) ∈ D, m ∈ N and n ∈ N
m. By Remark 3.44, it is enough to

show that Sm,n ◦ τ : T →M1(Cm,n) is continuous at (C,K).
Let κ1, ..., κm be independent, identically distributed measures onM1(S) with distribution K. For

all 1 ≤ i ≤ m, let Ui1, ..., Uini
be independent, identically distributed points on S with distribution κi.

Fix ǫ > 0. Since MK = λS, there exist N ∈ N and v1, ..., vN ∈ ∆(C) ∩ ∇(C) distinct, such that with
probability at least 1− ǫ the following holds:
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• if {Uij : (i, j) ∈ Nm,n} ∩ {v} 6= ∅ for some v ∈ ∇(C), then v ∈ {v1, ..., vN}, and

• if {Uij : (i, j) ∈ Nm,n} ∩ compv(w) 6= ∅ for some v ∈ ∆(C) and all w ∈ ∆(C) ∪ ∇(C) ∪ �(C)
with w 6= v, then v ∈ {v1, ..., vN}.

Put ǫ′ := ǫ(12N |n|)−1. Then, since MK = λS, each Uij is distributed according to the Lebesgue
measure on S, so that

P
({
d(Uij , ∂vk) ≥ ǫ

′,∀(i, j) ∈ Nm,n, k = 1, ..., N
})

= 1−
∑

(i,j)∈Nm,n

P
({
d(Uij , ∂vk) ≤ ǫ

′,∀k = 1, ..., N
})

≥ 1− |n|P
({
d(U11, ∂vk) ≤ ǫ

′,∀k = 1, ..., N
})

≥ 1− ǫ.

(3.91)

Now, there is a δ = δ(ǫ) > 0 small enough such that for any C ′ ∈ T satisfying dH(C,C ′) < δ there
are distinct v′1, ..., v

′
N ∈ ∆(C ′)∪∇(C ′) such that dH(vk, v

′
k) ≤

ǫ′

2 for k = 1, ..., N . Let K ′ ∈ M1(M1(S))

such that MK = λS. Suppose that dPr(K,K ′) ≤ ǫ′′ := min( ǫ
2|n| ,

ǫ′

2 ). By Lemma 3.48, there exist

κ′1, ..., κ
′
m independent, identically distributed measures on M1(S) with distribution K ′ coupled to

κ1, ..., κm such that for all i = 1, ...,m, P{dPr(κi, κ′i) ≥ ǫ
′′} ≤ ǫ′′. Applying again Lemma 3.48 for each

1 ≤ i ≤ m, there exist U ′i1, ..., U
′
ini

independent, identically distributed points on S with distribution
κ′i coupled to Ui1, ..., Uini

such that for all j = 1, ..., ni,

P{d(Uij , U
′
ij) ≤ ǫ

′′} = P
{
d(Uij , U

′
ij) ≤ ǫ

′′
∣∣dPr(κi, κ′i) ≤ ǫ′′

}
P{dPr(κi, κ

′
i) ≤ ǫ

′′} ≥ 1− 2ǫ′′. (3.92)

Therefore,

P
({
d(Uij , U

′
ij) ≤ ǫ

′′,∀(i, j) ∈ Nm,n

})
≥ 1− 2|n|ǫ′′. (3.93)

Thus, since ǫ′′ ≤ ǫ′

2 , and using (3.91),

P

({
d(U ′ij , ∂vk) ≥

ǫ′

2
,∀(i, j) ∈ Nm,n, k = 1, ..., N

})
≥ 1− 2ǫ. (3.94)

Let χ = (T, c, ν) := τ(C,K) and (Vij)(i,j)∈Nm,n
be distributed according to

Mm,n
ν (·) :=

∫
ν⊗m(dµ)

∫ m⊗

i=1

µ⊗ni

i (·), (3.95)

coupled to (Uij)(i,j)∈Nm,n
such that Vij ∈ Sv(w) if and only if Uij ∈ compv(w). This is possible due to

the properties of the coding map τ stated in Theorem 3.39. Define χ′ and (V ′ij)(i,j)∈Nm,n
similarly with

(C,K) replaced by (C ′,K ′). Then

P
({

s(T,c)(V ) = s(T ′,c′)(V
′)
})
≥ 1− 2ǫ. (3.96)

Therefore,

dPr
(
Sm,n(τ(C,K)),Sm,n(τ(C

′,K ′))
)
≤ 2ǫ. (3.97)

We proved that Sm,n◦τ is continuous at (C,K), with m,n and (C,K) arbitrary. Therefore, the coding
map τ is continuous.

We finish this section with our second main result.

Theorem 3.49 (Equivalence of topologies and compactness). The two-level sample shape topology and

the two-level bpdd-Gromov-weak topology coincide on T
(2)
2 . Furthermore, T(2)

2 is compact and metrizable
in this topology.
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Proof. We start by showing that the two-level sample shape topology on T
(2)
2 is compact. The set T

equipped with the Hausdorff metric topology is compact (see [LW21, Lemma 4.2]). Moreover, the circle
line S is compact so that M1(S) is compact and M1(M1(S)) as well. Since the subset of two-level
measures K such that MK = λS is closed in M1(M1(S)), D is a compact space. By Theorem 3.39,

the coding map is surjective and by Proposition 3.47, it is continuous when T
(2)
2 is equipped with the

two-level sample shape topology. Therefore, the sample shape topology is a compact topology.
Furthermore, the two-level bpdd-Gromov-weak topology is a Hausdorff topology by Proposition 3.31

and weaker than the two-level sample shape topology by Proposition 3.45. Thus, both topologies
coincide on T

(2)
2 , and we know from Corollary 3.46 that is is metrizable.

3.6 Example: the Kingman algebraic two-level measure tree

We introduce here the Kingman algebraic two-level measure tree, which corresponds to the nested
Kingman coalescent measure tree, as defined in [Mei19], without branch length. For this, we rely on a

sampling consistency of the nested Kingman coalescent and the compactness of T(2)
2 . We first recall a

definition of the nested Kingman coalescent for a host-parasite population indexed in N
2, that is, (i, j)

is the j-th parasite in the i-th host.
For I ⊆ N let E(I) ⊂ I2 be the set of equivalence relations on I. The equivalence classes of an

equivalence relation are called blocks. Let

Pnest(I) ⊂ E(I)× E(I) (3.98)

denote the set of all equivalence relations such that

• if i1 = i2, then (i1, j1) and (i2, j2) belong to the same block of pH , that is, all parasites of the
same host belong to the same block of pH ,

• if (i1, j1) and (i2, j2) belong to the same block of pP , then they belong to the same block of pH .
In other words, each block of pP is contained in a single block of pH .

Therefore, pH represents the population of hosts and pP the population of parasites.
We also define the following equivalence relations on N

2:

P0 :=
{(

(i, j), (i, j)
)∣∣(i, j) ∈ N

2
}

H0 :=
{(

(i, j), (i, k)
)∣∣i, j, k ∈ N

}
,

(3.99)

which will be the initial states of the nested Kingman coalescent.

Definition 3.50 (Finite nested Kingman coalescent). Let I be a finite subset of N2 and γH , γP > 0.
The finite nested Kingman coalescent

(KI(t))t≥0 =
(
κIH(t), κIP (t)

)
t≥0

(3.100)

on I with rates (γH , γP ) is a continuous-time Markov process with values in Pnest(I) such that:

1. The initial state is KI(0) = (H0 ∩ I
2, P0 ∩ I

2).

2. (κIH(t))t≥0 is a Kingman coalescent with rate γH , i.e. any pair of blocks in κIH(t) merge at rate
γH .

3. (κIP (t))t≥0 behaves in the following way: any pair of blocks π1, π2 of κIP (t) such that π1 ∪ π2 is
contained in a single block of κIH(t) merge at rate γP . Other blocks of κIP (t) cannot merge.

Roughly speaking, hosts merge as in a Kingman coalescent with rate γH , and parasites within the
same host merge as in a Kingman coalescent with rate γP . Since this process has only finitely many
states, it is well defined and unique. Furthermore, it satisfies an important property:

Proposition 3.51 (Sampling consistency). Let I and J be two finite subsets of N2 such that J ⊂ I
and let γH , γP > 0. The restriction of KI to J has same distribution as KJ , that is, the restriction of
KI to J is a finite nested Kingman coalescent on J with rates (γH , γP ).
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Using this property, we can show the existence of the nested Kingman coalescent for an infinite set
of hosts and of parasites (see [BDLS18, Section 5] for a construction of more general nested coalescents).

Definition 3.52 (Nested Kingman coalescent). Let γH , γP > 0. The nested Kingman coalescent K
with rates (γH , γP ) is a continuous-time Markov process with values in Pnest(N2) such that for any
finite subset I of N2, the restriction of K to I is a finite nested Kingman coalescent on I with rates
(γH , γP ).

We now construct the Kingman a2m tree with rates (γH , γP ). Recall from Definition 3.8 the notion
of rooted algebraic tree and from Proposition 3.10 its relation to (unrooted) algebraic trees. Given
K = (κH , κP ), we define the nested Kingman rooted algebraic tree as the random rooted algebraic tree
(T, c∧, ρ) with the vertex set

T := {̟ρ} ⊎
⋃

t≥0

⋃

̟∈κP (t)

̟, (3.101)

with ̟ρ = N
2 ⊎ {ρ} for a point ρ 6∈ N

2 and the minimal map cρ which sends two elements ̟,̟′ ∈ T
to the smallest ˜̟ ∈ T which contains both ̟ and ̟′, i.e.,

c∧(̟,̟
′) :=

⋂

˜̟∈T :̟,̟′⊆ ˜̟

˜̟ . (3.102)

Further, we define the nested Kingman algebraic tree as the random algebraic space (T, c) obtained
from the rooted nested Kingman algebraic tree (T, c∧,̟ρ) as in (3.10).

For M ∈ N and N ∈ N
M , define also the two-level measure

νM,N :=
1

M

M∑

i=1

δ 1
Ni

∑Ni
j=1 δ{(i,j)}

, (3.103)

so that (T, c, νM,N ) is a random binary a2m tree in T
(2)
2 . We define the Kingman a2m tree as the weak

limit (with respect to the two-level sample shape convergence) of these random trees as M,N → ∞,
that is, M and inf i∈M Ni simultaneously go to infinity.

Proposition 3.53 (Kingman algebraic two-level measure tree). For M ∈ N and N ∈ N
M , let χM,N =

(T, c, νM,N ). Then their exists a random binary a2m tree χ ∈ T
(2)
2 such that

χM,N =⇒
M,N→∞

χ, (3.104)

where ⇒ stands for weak convergence on T
(2)
2 equipped with the two-level sample shape convergence.

Proof. By Proposition 3.49, the space T
(2)
2 equipped with the two-level sample shape convergence is

compact. Therefore the sequence {χM,N : M ∈ N, N ∈ N
M} is clearly tight.

The uniqueness of the limit follows from the sampling consistency of the family of finite nested
Kingman coalescents. Fix M ∈ N and N ∈ NM , and m ∈ N, n ∈ NM such that m ≤ M and for each
1 ≤ i ≤ m, ni ≤ Ni. Consider {Uij : (i, j) ∈ Nm,n} sampled (without repetition) at random from
χM,N . By Proposition 3.51, the restriction of KNM,N to {Uij : (i, j) ∈ Nm,n} is a finite nested Kingman
coalescent on {Uij : (i, j) ∈ Nm,n}. Therefore, the shape s(T,c)(U) ∈ Cm,n of the subtree spanned by
the leaves {Uij : (i, j) ∈ Nm,n} has the distribution of the shape of χm,n. Since sampling with and
without repetition is asymptotically equivalent when M,N →∞, the claim follows by definition of the
two-level sample shape convergence.

The construction of the Kingman algebraic two-level measure tree was one of the very original goals
of this thesis.

Definition 3.54 (Kingman algebraic two-level measure tree). The Kingman algebraic two-level mea-

sure tree χ with rates (γH , γP ) is the unique limit in T
(2)
2 of the sequence (χM,N )M,N , where χM,N is

the random algebraic two-level measure tree obtained from the finite nested Kingman coalescent on
NM,N with rates (γH , γP ).
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Appendix A
Results on the subtree mass distribution of the

rooted α-Ford trees

In this paper, we have mainly worked with the subtree mass distribution of (unrooted) algebraic
measure trees by looking at the quenched law of the vector η(u) of the three masses of the components
connected to the branch point c(u) of a sample of size three u = (u1, u2, u3). Here we state analogous
results for rooted algebraic measure trees.

Recall from Definition 1.13 the definition of rooted algebraic measure tree (T, c∧, ρ, µ). For such a
tree, we can still evaluate the subtree mass distribution by sampling three leaves according to µ. Their
branch point (in the sense of unrroted trees) is given by v = max{c∧(u1, u2), c∧(u1, u3), c∧(u2, u3)}
and we can consider the quenched law of the vector η(u) = (η0(v), η1(v), η2(v)) of the three component
masses, where η0 is for the component containing the root. Nevertheless, the minimum map also
associates a branch point w = c∧(u1, u2) to only two sampled points u1, u2. Therefore, we can also
consider the quenched law of the vector η(u1, u2) = (η0(w), η1(w), η2(w)). For this reason, we state
here results in both cases, that is, when we sample two or three leaves.

We denote by χα,ρ the rooted α-Ford algebraic measure tree defined in Remark 1.19.

Sample of 2 leaves: we first consider polynomials that evaluate the vector

η(u1, u2) := (η0(w), η1(w), η2(w)), (A.1)

where w = c∧(u1, u2) is the minimum of two leaves sampled according to µ. For α = 0 and α = 1
2 , the

subtree mass distribution of the algebraic measure α-Ford tree can be explicitely expressed through
products of independent random variables.

Proposition A.1 (Subtree mass distribution in the rooted Kingman algebraic measure tree). Let Y
and B2,2 be two independent random variables, such that Y has law 1

3δ1 +
2
3U[0,1] with U[0,1] uniformly

distributed on [0, 1], and B2,2 has law Beta(2,2). For all f : ∆2 → R continuous and bounded,

E

[∫

(T
χ0,ρ )2

(µχ0,ρ)⊗2(du)f
(
η
χ0,ρ(u)

)]
= E

[
f(1− Y, Y B2,2, Y (1−B2,2))

]
. (A.2)

Proposition A.2 (Subtree mass distribution in the rooted algebraic Brownian CRT). Let B1, 1
2

and

B 1
2
, 1
2

be two independent beta random variables, such that B1, 1
2

has law Beta(1, 12) and B 1
2
, 1
2

has law

Beta(12 ,
1
2). For all f : ∆2 → R continuous and bounded,

E



∫

(T
χ
1
2 ,ρ

)2
(µ

χ
1
2 ,ρ)
⊗2(du)f

(
η
χ

1
2 ,ρ(u)

)

 = E

[
f(1−B1, 1

2
, B1, 1

2
B 1

2
, 1
2
, B1, 1

2
(1−B 1

2
, 1
2
))
]
. (A.3)
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In the general case α ∈ [0, 1], we have a recurrence relation for the first order moments. For
k = (k0, k1, k2) ∈ N

3
0, define fk : ∆2 → [0, 1] by

fk(η) = ηk01 η
k1
2 η

k2
3 . (A.4)

Obviously, E[Φf(0,0,0)
(χα)] = 1 and for all k ∈ N,

E

[
Φf(k,0,0)

(χα)
]
=

1

(k + 2)(k + 1− α)

(
k(k − 1 + α)E

[
Φf(k−1,0,0)

(χα)
]
+ 2(1− α)

)
(A.5)

Therefore, for all α ∈ (0, 1),

E

[
Φf(k,0,0)

(χα)
]
=

2(1 − α)k + Γ(1−α)Γ(k+α)
Γ(α−2)Γ(k+2−α) + 4− 3α

(3− 2α)(k + 1)(k + 2)
. (A.6)

Sample of 3 leaves: we now consider polynomials that evaluate the vector

η(u1, u2, u3) := (η0(v), η1(v), η2(v)), (A.7)

where v = max{c∧(u1, u2), c∧(u1, u3), c∧(u2, u3)} is the branch point of three leaves sampled according
to µ. For α = 0 and α = 1

2 , the subtree mass distribution of the algebraic measure α-Ford tree can be
explicitely expressed through products of independent Beta random variables.

Proposition A.3 (Subtree mass distribution in the rooted Kingman algebraic measure tree). Let B1,2

and B2,2 be two independent beta random variables, such that B1,2 has law Beta(1,2) and B2,2 has law
Beta(2,2). For all f : ∆2 → R continuous and bounded,

E

[∫

(T
χ0,ρ )3

(µχ0,ρ)⊗3(du)f
(
η
χ0,ρ(u)

)]
= E

[
f(1−B1,2, B1,2B2,2, B1,2(1−B2,2))

]
. (A.8)

Proposition A.4 (Subtree mass distribution in the rooted algebraic Brownian CRT). Let B1, 3
2

and

B 1
2
, 1
2

be two independent beta random variables, such that B1, 3
2

has law Beta(1, 32) and B 1
2
, 1
2

has law

Beta(12 ,
1
2). For all f : ∆2 → R continuous and bounded,

E



∫

(T
χ
1
2 ,ρ

)3
(µ

χ
1
2 ,ρ)
⊗3(du)f

(
η
χ

1
2 ,ρ(u)

)

 = E

[
f(1−B1, 3

2
, B1, 3

2
B 1

2
, 1
2
, B1, 3

2
(1−B 1

2
, 1
2
))
]
. (A.9)

In the general case α ∈ [0, 1], we again have a recurrence relation for the first order moments. For
k = (k0, k1, k2) ∈ N

3
0, define fk : ∆2 → [0, 1] by

fk(η) = ηk01 η
k1
2 η

k2
3 . (A.10)

Obviously, E[Φf(0,0,0)
(χα)] = 1 and for all k ∈ N,

E

[
Φf(k,0,0)

(χα)
]
=

1

(k + 3)(k + 2− α)

(
(k + 1)(k + α)E

[
Φf(k−1,0,0)

(χα)
]
+ 6(1− α)

)
(A.11)

Hence, for all α ∈ (0, 1),

E

[
Φf(k,0,0)

(χα)
]
=

3
(
2(1− α)k + Γ(1−α)Γ(k+1+α)

Γ(α−2)Γ(k+3−α) + 6− 5α
)

(3− 2α)(k + 2)(k + 3)
. (A.12)

One can prove the above results by constructing the rooted analog of the α-Ford diffusion, for
which the rooted α-Ford algebraic measure tree is an invariant distribution.
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