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Résumé

L’apprentissage ensembliste de réseaux de neurones profonds (Deep Neural Network
- DNN) combine les prédictions de plusieurs DNN pour améliorer les performances de
résultats obtenus à l’aide d’un réseau unique (DNN) notamment en réduisant l’erreur de
généralisation.

Ces méthodes d’ensemble ont le potentiel d’améliorer des applications complexe et
stratégique ML en particulier celles du domaine de l’énergie. Cependant, implémenter
efficacement ces méthodes d’ensembles soulèvent plusieurs questions: Comment orchestrer
efficacement les différentes étapes du cycle de vie des ensembles de DNN (apprentissage,
inférence) en vue d’une exécution globale performante tirant parti des infrastructures HPC.
Comment entrainer plusieurs DNN indépendants, sélectionner un ensemble performant et
exposer les prédictions de l’ensemble construit pour des applications clientes.

Dans ce travail, nous proposons des procédures pour construire un ensemble précis
de DNN avec de multiples accélérations des étapes son cycle de vie. Nos procédures
garantissent de trouver automatiquement de bons ensembles en se basant sur la diversité
des DNN, leur précision individuelle et optimisation du coût de calcul de l’ensemble. En
ce qui concerne les deux objectifs qualité des prédictions et la vitesse d’inférence, nous
avons découvert que notre procédure construit des ensembles de DNN dont le résultat de
prédiction apporte un gain significatif (rapidité, précision des prédictions, reproductibilité,
économie en consommation de ressources) supérieur par rapport à l’utilisation d’un DNN
unique.

Ces méthodes ont été implémentées au sein de l’entreprise TotalEnergies, sur des cas
d’usages concrets et opérationnels (classification d’images, contrôle optimal d’installation
par renforcement learning). L’application sur ces cas d’usage, entre dans la stratégie de
l’entreprise son orientation vers la production d’énergie décarbonée.
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Abstract

Ensemble of Deep Neural Networks (DNNs) combines the predictions from multiple
DNNs to improve the predictions over one single DNNs by reducing generalization error.
They have the potential to develop the most complex and strategic applications such
as developing ML applications for the energy industry. However, ensembles of DNNs
raise multiple open questions such as: to run and scale efficiently the steps of their life
cycle (training and inference) to obtain global performance leveraging HPC. How to
train multiple independent DNNs, select a performant ensemble, and serving the built
ensemble’s predictions to the client application.

In this work, we propose procedures to build an accurate ensemble of DNNs with
multiple accelerations of its life cycle. Our procedures ensure to automatically find good
ensembles by searching complementary DNNs, individual accuracy, and computing cost.
In regard to those two objectives: accuracy and inference speed, we discovered that our
procedure to build Ensembles of DNNs bring high advantages: computing speed, accuracy,
and higher reproducibility, save resource consumption.

Those new methods have been implemented on practical applications at TotalEnergies
on both supervised image classification and optimal facility control by deep reinforcement
learning. Experimental proofs have been performed on multiple energy applications
towards a low-carbon future.

v





Acknowledgement

I would like to thank my esteemed supervisors Professor Serge G. Petiton and Bruno
Conche for their supervision and continuous support during the course of my Ph.D. degree.
My gratitude extends to the company TotalEnergies for the opportunity to undertake those
works.

Besides, I would like to thank the rest of my thesis committee: Professor Dean Laurence
Duchien for presiding on the committee, Prof. Joel Saltz, and Prof. Michel Daydé for
reviewing my Ph.D. dissertation. Prof. Pierre Sens, Dr. France Boillod-Cerneux, and Dr.
Cecile Pereira for participating in the committee.

Additionally, I would like to thank Tanguy Levent for making me discover the reinforce-
ment learning methods and the microgrid energy management challenges. I would like to
thank Jerome Gurhem for his help and making discover me La Maison De La Simulation
laboratory. I also thank Martial Mancip for his feedback to improve the presentation of the
Ph.D. defense.

My appreciation also goes to my wife Lisa Darey for her understanding and helping
me in my daily life.

vii



Contents

Contents viii

List of Figures xiii

1 Introduction 1

2 Scientific context 3
2.1 Deep learning promises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Deep learning challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Opportunities for Deep Learning using HPC . . . . . . . . . . . . . . . . 5

2.4 Presentation of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Machine Learning and data for energetical applications 9
3.1 Weakly Supervised Object Detection for biology protection . . . . . . 10

3.1.1 Biodiversity monitoring importance and challenges . . . . . . . . . . . . . 11

3.1.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.3 The two datasets and goal . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.4 The method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.6 Summary and future works . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Image classification for geology . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Dataset and goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 Object Detection workflow . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.3 Deep clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Object Detection for micro-biology . . . . . . . . . . . . . . . . . . . . . 25

3.4 Reinforcement Learning for electricity control . . . . . . . . . . . . . 29

3.4.1 Microgrids control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.2 Electric motor control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Lesson learned from those projects . . . . . . . . . . . . . . . . . . . . . . 31

4 Deep Learning 35
4.1 Life cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Operations and numerical formats . . . . . . . . . . . . . . . . . . . . . 38

viii



4.3 Numerical formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Transfer learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Deep Learning Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5.1 The training frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5.2 The inference frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5.3 The inference system architecture . . . . . . . . . . . . . . . . . . . . . . 42

4.6 Data file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.7 Mixed arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.8 Data parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.8.1 Data parallelism in inference phase. . . . . . . . . . . . . . . . . . . . . . 44

4.8.2 Data parallelism in the training phase. . . . . . . . . . . . . . . . . . . . 44

4.9 Ensemble Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.9.1 Theoretical explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.9.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.9.3 Experimental analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.9.4 Summary on ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.10 AutoML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.10.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.10.2 Optimization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.10.3 Hyperparameter space, neural architecture search . . . . . . . . . . . . . 52

4.10.4 AutoML with ensembling . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.11 Support of large models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.11.1 Model parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.11.2 Heterogeneous GPU-CPU memories . . . . . . . . . . . . . . . . . . . . 54

4.12 Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Asynchronous and distributed Deep Learning analysis 57
5.1 Overview of parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1.1 Different distributed patterns for supervised DNNs . . . . . . . . . . . . 59

5.1.2 Different distributed patterns for deep reinforcement learning . . . . . . . . 61

5.2 Different independent training . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Efficient training workflow . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.1 Dataset file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.2 Training workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.3 SGD data parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.4 Mixed precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Large model training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.3 Automatic model parallelism experimental results . . . . . . . . . . . . . . 71

5.5 Inference systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

ix



5.5.1 Post-training optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5.2 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5.4 Performance summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.6 Handling large deep learning workload . . . . . . . . . . . . . . . . . . 82

6 Hyperparameter optimization with ensembling 85
6.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Intuition behind complementarity . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Proposed workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3.1 Detail of the workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3.2 Distributed HPO with GPU clusters . . . . . . . . . . . . . . . . . . . . . 94

6.3.3 Distributed Ensemble Selection . . . . . . . . . . . . . . . . . . . . . . . 95

6.4 Experimental data set and hyperparameter settings . . . . . . . . . . . 95

6.4.1 The infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4.2 Hyperparameter configuration space . . . . . . . . . . . . . . . . . . . . 95

6.4.3 The two datasets used . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5.1 The infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5.2 step 1 - HPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.5.3 step 2 - Ensemble Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.6 Baseline comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.7 Replace the HPO tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.7.1 Replace HPO with homogeneous ensemblings . . . . . . . . . . . . . . . 109

6.7.2 Replace HPO with a library of on the shelf models . . . . . . . . . . . . . 110

6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 Reinforcement Learning and ensemble 115
7.1 Collective performance in reinforcement learning . . . . . . . . . . . 117

7.1.1 Multi-agents and multi-modules agent . . . . . . . . . . . . . . . . . . . 117

7.1.2 Distributed agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2 The proposed ensemble of RL agents . . . . . . . . . . . . . . . . . . . . . 120

7.2.1 Training and tuning speed . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.2.2 Training, validation, and testing . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2.3 Ensemble construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.2.4 The ensembling procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2.5 The combination rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.4 Experiment results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.4.1 Ensemble construction comparison . . . . . . . . . . . . . . . . . . . . . 126

7.4.2 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.4.3 Expansion of ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

x



7.4.4 Power and time consumption at training time . . . . . . . . . . . . . . . 132

7.4.5 Interpretation of hyperparameter values . . . . . . . . . . . . . . . . . . 134

7.4.6 Ensemble at inference time . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.5 Future works and distribution shift . . . . . . . . . . . . . . . . . . . . . 139

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8 Inference system for ensembles 141
8.1 Potential workflows and challenges . . . . . . . . . . . . . . . . . . . . . 141

8.2 Data flow applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.2.1 Allocation system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.2.2 Prediction system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.3 Batch predictions workflow . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.3.1 Using our server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.3.2 The allocation matrix data structure . . . . . . . . . . . . . . . . . . . . . 146

8.3.3 The inference system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.3.4 The worker pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.3.5 The allocation optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.3.6 Offline benchmark settings: ensembles, hardware . . . . . . . . . . . . . 152

8.4 Offline benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.4.1 Overhead of the inference system . . . . . . . . . . . . . . . . . . . . . . 154

8.4.2 Varying GPUs and ensembles . . . . . . . . . . . . . . . . . . . . . . . . 154

8.4.3 Baseline comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

9 Conclusion and perspectives 159
9.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.2 Methodological perspectives . . . . . . . . . . . . . . . . . . . . . . . . . 162

9.2.1 Keep following the deep learning progress . . . . . . . . . . . . . . . . . 163

9.2.2 Keep following the IA hardware progress . . . . . . . . . . . . . . . . . . 163

9.2.3 Faster inference of ensembles . . . . . . . . . . . . . . . . . . . . . . . . 164

9.2.4 AutoML for business logic . . . . . . . . . . . . . . . . . . . . . . . . . . 165

9.3 Application perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

9.3.1 Generalize to other deep learning applications . . . . . . . . . . . . . . . 165

9.3.2 Generalize to other applications . . . . . . . . . . . . . . . . . . . . . . . 166

xi





List of Figures

2.1 This thesis is about the intersection of applied Deep Learning last research
and the HPC world for diverse energy applications . . . . . . . . . . . . . . 3

2.2 Correlation between accuracy and number of parameters on ImageNet 2012

[136] for representative state-of-the-art image classification models in recent
years. Original image from [158]. . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Comparison between the usual supervised object detection and the proposed
Weakly Supervised Object Detection workflow. . . . . . . . . . . . . . . . . . 14

3.2 Our localization algorithm proceeds running step-by-step. The pacific emer-
ald dove is detected despite its camouflage. After training on images like
the sixth one, Faster-RCNN+FPN can be accurate on similar images. . . . . 15

3.3 In absence of a taxon in our training dataset, the classifier will classify them
among known classes leading to an avoidable error. The “palm cockatoo”
taxon (right) was not photographed during our previous campaigns. . . . . 18

3.4 Micro-fossil detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Image clustering using transfer learning on CNN . . . . . . . . . . . . . . . 22

3.6 InceptionV3 neural network customized. We experiment after which layer
to extract features: 7 split locations have been assessed identified from 1 to 7. 23

3.7 3 examples image took randomly for each clusters predicted. The global
clustering purity is 84.96% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.8 Effect of the number of training iterations on the best tuned validation
accuracy among a population of 100 sampled dnns . . . . . . . . . . . . . . 27

3.9 Effect of the training data size on the test accuracy of ResNet50 DNN. For
each assessed amount of training samples we train-test 15 times the DNN
we draw the green point represents the mean, the bar represents the extreme
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.10 The reinforcement learning scenario . . . . . . . . . . . . . . . . . . . . . . . 29

3.11 The Pymgrid digital twin allows to model a microgrid. The Energy Manage-
ment System algorithm (i.e., RL algorithm) consists in providing electricity
to customers by reducing production cost. Original image from [60]. . . . . 30

3.12 The GEM simulator allows modeling an electric motor. The goal is to
reduce the distance between the torque of the motor and the expected torque.
Original image from [161]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

xiii



4.1 Architecture of LeNet5, the first modern Convolutional Neural Network.
Each gray block are features flowing through deep learning layers. Original
image from [86]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Standard life cyclic of machine learning model. Data is given for super-
vised/unsupervised machine learning, the environment is given for rein-
forcement learning. The updating hyperparameters loop may be performed
in parallel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Simple and efficient convolutional neural network architectures given by the
Tensorflow documentation. We use this tiny deep neural network allows to
evaluate quickly ensemble methods without advanced parallelism across
multiple GPUs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Ensemble accuracy by varying the ensemble size from 1 to 100. . . . . . . . 49

4.5 Sketch of the three families of hyperparameter optimizers: rather exploratory
optimizer, rather exploitative optimizer, or use on-the-shelf hyperparameters 51

5.1 Taxonomy of works on Deep Learning and HPC . . . . . . . . . . . . . . . . 58

5.2 Different distributed patterns for supervised deep neural networks . . . . . 60

5.3 Two common distributed training patterns for the two reinforcement learning
sub-type: on-policy and off-policy. . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Format comparison between raw and HDF5 files format. Left the chunk of
size 10243 × 3 and the right one is of size 10244 . . . . . . . . . . . . . . . . 64

5.5 Effect of data parallelism a ResNet50 on the accuracy-over-time trained on
the microfossile dataset with SGD and the 0.001 learning rate. We vary
the global batch size (“B”), and the number of GPUs (“G”) computing the
synchronous SGD. GPU are NVIDIA Tesla V100 in a DGX1 server. . . . . . 65

5.6 Connection topology between GPUs in a DGX1 server. Each GPU may
deliver up to delivers 125 teraFLOPS of deep learning. NVLINKv1 links
transfer gradients up to 20GB/sec. PCIe links are 16 lanes of PCIe 3.0
delivering 15.8GB/sec. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.7 We perform training of ResNet50 on the micro-fossils dataset by varying
the numeric format: FP32 training, FP16 training, FP16 with loss scale and
mixed-precision training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.8 Comparison between FP32 and post-training conversion from FP32 to FP16 70

5.9 Plot of the throughput and power consumption of 3 GPU inference frame-
works (“TRT” for TensorRT, “TF” for Tensorflow, “ORT” for ONNX-RT) with
{1,32,128} batch size. The trend seems to follow the power law with two
different coefficients according different GPU. . . . . . . . . . . . . . . . . . 78

5.10 Inference time (sec.) according different deep learning model and different
inference technologies on the machine A. No bar means out-of-memory error
conversion fail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xiv



5.11 Inference time (sec.) according different deep learning model and different
inference technologies on the machine B. . . . . . . . . . . . . . . . . . . . . 80

5.12 Memory consumption (MB) of the ensemble with different frameworks
varying the batch size. We use this ensemble due to the diversity of topology
between neural network: one have wide convolution, one is deep, one is dense. 81

6.1 Simple comparison of the different workflows . . . . . . . . . . . . . . . . . 86

6.2 Three automatic ensemble selection procedure illustrated. Each grey stack
represents neural networks with two different hyperparameters: depth and
width. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3 Distance matrix between predictions of 22 models on the microfossils test
dataset containing 6400 images and trained on 25600 images. To measure
the diversity, each element is the sum of the Euclidean distance between
predictions. Those model names correspond to their architectures and
initializers (“True” for pretrained with Imagenet and “false” for Glorout
random initialization [48]). InceptionV3P is a homemade architecture based
on InceptionV3 [155] with Dropout [151] and one additional dense layer. A
binary hierarchy clustering (dendrogram) is used to sort and aggregate them
for readability purposes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4 The proposed workflow runs 3 steps 1) The HPO algorithm generates a
library of models. The trials are distributed on several GPUs synchronized
by a master process. We recommend asynchronous Hyperband based on ex-
perimental results. 2) We propose a new multi-objective Ensemble Selection
algorithm to search for the most efficient ensemble honoring a budget given
by the user (here B=20). It is based on a parallel greedy algorithm evaluating
hundreds of combinations per second on multi-core CPUs. 3) The returned
ensemble predicts by combining (averaging) DNNs predictions on new data. 92

6.5 Ensemble from Hyperband algorithm on the CIFAR100 dataset . . . . . . . 100

6.6 Ensemble from Hyperband on the microfossils dataset . . . . . . . . . . . . 100

6.7 Correlation between the validation cross entropy (horizontally) and their
inference to predict on 2000 images with 32 batch size (vertically). All
black points are sampled models on CIFAR100. Left library produced with
asynchronous Hyperband and right SMAC [69] . . . . . . . . . . . . . . . . . 101

6.8 Correlation computing cost versus accuracy of randomly sampled models
on Microfossils. Left library produced with asynchronous Hyperband and
right SMAC [69] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.9 Ensembles generated from Hyperband algorithm on the CIFAR100 dataset 105

6.10 Ensembles generated from Hyperband algorithm on the microfossils dataset 105

xv



6.11 SMOBF taking as input on the shelf deep neural networks applied on
Imagenet dataset with different budgets. Imagenet contains 1000 classes, for
each class 1,300 images of training, 25 images of validation, and 25 images
of test. We also showed performance between simply averaging predictions
and stacking the ensemble. For each experiment, the number of models in
the Ensemble is indicated. We observe small prediction quality improvement
to use the stacking combination rule (orange) instead of the averaging one
(blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.1 Distributed RL training over 3 episodes. More workers increases widely
the training time (a few minutes), drawing theses bars would reduce the
readability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2 Distributed RL training over 3 episodes. More workers increases widely the
training time (a few minutes). . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.3 Correlation between validation score (horizontally) and test score (vertically)
on Pymgrid even if they are performed on different time period. . . . . . . 122

7.4 In the ensemble, the agents interact in parallel with the same environment.
Rewards are only used to evaluate the ensemble. . . . . . . . . . . . . . . . 124

7.5 Agent 1’s weight (vertically) by varying to its relative score compared to
agent 2 (horizontally) and different value of β. β allows to give more
importance to the best agent according the formula 7.1. . . . . . . . . . . . . 125

7.6 Pymgrid with DQN. Top 3 produced ensembles: Homogeneous with β = in f
(-8.75M), Homogeneous with β = 64 (-8.78M), Heterogeneous β = in f (-
8.82M). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.7 Pymgrid with DDPG. Top 3 produced ensembles: Heterogeneous with β = 4
(-30.74M), Heterogeneous with β = 1 (-33.7M), Heterogeneous with β = 16
(-36.3M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.8 GEM with DQN. Top 3 produced ensembles: Homogeneous with β =

in f (7064), Homegeneous with β = 0 (7057), HeB0(6974) . . . . . . . . . . . 128

7.9 GEM with DDPG. Top 3 produced ensembles: Homogeneous with β = in f
(7065), Homogeneous with β = 0 (7056), Heterogeneous with β = 1(6958) . 128

7.10 Performance of the ensemble compared to its individual agents over 500

training episodes. After each training episode, we assess the ensemble test
score and its base agents test scores. It is an example from the library of
homogeneous DDPG agents on the Pymgrid environment. . . . . . . . . . . 130

7.11 DQN on Pymgrid. R is the cumulative test rewards . . . . . . . . . . . . . . . 131

7.12 DDPG on Pymgrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.13 DQN on GEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.14 DDPG on GEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

xvi



7.15 Time and energy consumed by our GPU cluster with different allocation of
hardware for training 100 DQN agents 1 episode. The number represents
how many independant training runs at the same in the computing node.
The exact values are more easy to read in table 7.6 . . . . . . . . . . . . . . . 134

7.16 The distribution of the test cumulative reward by varying the learning rate
on Pymgrid. Lower is better. . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.17 The distribution of the test cumulative reward by varying the neural network
depth on Pymgrid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.18 The distribution of the test cumulative reward by varying the neural network
width (or “number of units per layer”) on Pymgrid. . . . . . . . . . . . . . . 136

7.19 The distribution of the test cumulative reward by varying the batch size on
Pymgrid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.20 The distribution of the training time by varying the batch size on Pymgrid. 137

7.21 Median prediction latency (microseconds) of diverse homogeneous ensemble
size. The DNNs have 2 layers of 256 units, 11 inputs, and 7 outputs. Note,
both axis are log2 scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.22 Cumulative rewards comparison in the Pymgrid test case. Rule-based
Control (RBC) developed by the domain specialist, Reinforcement Learning
with default hyperparameters set, the best Reinforcement Learning agent
among 400 agents, and homogeneous ensemble of 16 agents averaging their
predictions (the best hyperparameter in the space of 4 agents among 100

expanded to 16). Re-train the ensemble (RL+HPO+Ensemble) produces
about 100 times more stable cumulative rewards compared to the single
agents (RL+HPO). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.1 Toy example of allocation of 4 heterogenous DNNs into 2 GPUs for inference.
There are 5 processes, the orchestrator containing and its 4 children A, B, C
and D. The orchestrator receives data to predict and return the ensemble
prediction. Shared memory are buffers in the RAM. . . . . . . . . . . . . . . 144

8.2 Illustration of our inference server on a toy example of allocation of 2 DNNs
into 3 devices. The DNN model B is run by 2 data-parallel workers on device
J and device K. The DNN instances A1 and B1 are co-localized in device J.
The corresponding allocation matrix is described in the bottom left corner.
Threads inside a worker are not fully described for visibility purposes (see
figure 8.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.3 Anatomy of a worker. The meaning of arrows is the same than figure 8.2 . 149

8.4 Weak scalability of diverse ensemble. They have been distributed and set
according our smart allocator and deployed with our fast scheme. The exact
numbers are shown in table 8.2. . . . . . . . . . . . . . . . . . . . . . . . . . . 155

xvii



9.1 Abstract workflow to build and deploy ensembles. Note the combination
rule function is called in “Inference Deployment” and either in“inference
may be integrated with the “Ensemble Selection” (in the case of post-hoc
ensembling) or the “Training and Evaluating” step (ad-hoc ensembling). . . . 161

9.2 NVIDIA GPU evolution. For each year, we display the one with the most
CUDA cores. Other characteristics such as the number of Tensor Cores,
memory speed, FLOPS, confirm also the going fast trend. . . . . . . . . . . 164

xviii



1Introduction

Recent advances in computer science and machine learning-powered by modern hard-
ware has brought a new level of automation and optimization to various scientific

domains and industries.
While rule-based algorithms require tuning a few parameters and a good understanding

of input data, machine learning can learn automatically from input data samples and
generalize on new data samples by approximating complex functions. Machine learning
offers the possibility to automate some interpretative and repetitive tasks using historical
data samples or streaming data.

Taking advantage of the big data era, deep neural networks (or DNNs) [86] [78] with
billions of parameters can learn from a complex relationships in complex data such as
images, texts, and time series. They have produced results comparable to and in some
cases surpassing human expert performance [145] and faster time-to-response. Nowadays
they have been successfully applied in a wide range of industrial and research projects.

But the path to success is not without pain. Deep learning is an inherent
computing-intensive method and requires a high level of parallelism like GPU [78] con-
taining today several thousands of cores and gigabytes of memory to be trained. And
more, the construction of a performant model is complex itself: several initial settings
must be assessed, which requires multiple training-testing experiments, selecting the most
promising one, and deploying it. And more, their training is an indeterministic procedure
making them sensitive to random [48]. Finally, because they are data-dependent tasks,
some new training data samples require generally a newly trained model, that is why most
the machine learning projects are an eternal life cycle, and automation of their construction
in parallel is needed for the viability of those methods.

Despite its strength, the high number of parameters may also produce an over-
parametrized model which fails to generalize or produce unstable predictions. In those
cases, Ensemble of Deep Neural Networks [149] improve significantly predictions quality
compared to one single model and have been used lately in several applications. In its
simplest form, ensembles consist in interpolating the predictions of multiple independent
neural networks. However, even if ensembles produce better predictions, handling their
computational complexity and how to build them are unanswered questions. We attempt
to answer them in this thesis.
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2 Chapter 1. Introduction

In parallel to the deep learning models field, hardware technology has also quickly
evolved in recent years. We are entering the post-Moore era where we no longer enjoy
the simple general-purpose CPU performance growth which accelerates all applications.
Computes units have reached the maximum attainable frequency due to the power dissi-
pation constraints. To keep developing the applications, we are now entering a new age
where the hardware is now more and more specialized with an exponentially increase
in the number of cores. The AI accelerators such as GPUs are an excellent example of
hardware specialization, which significantly improves the performance per watt for AI
workloads. However, efficiently exploiting those new accelerators combined with the fact
deep learning models are over-parametrized and unstable requires research and develop
new machine learning procedures.

In this thesis, we make the assumption that the HPC infrastructure containing multiple
IA accelerators (multi-GPUs) is a promising field to tackle multiple drawbacks linked to
the Deep Learning models. Overall, the HPC may efficiently handle automatic construction
of neural networks in parallel [110] [133], faster training [177], the ability to handle huge
DNNs [68], faster inference [175] [119] [2] and are a promising axis of research for the
deep learning workload. Some complete ensemble workflows have been proposed for
(non-deep) machine learning [42] [118] [160] [87] [18] but ensemble deep learning and deep
reinforcement learning are different context with higher models complexity that have not
yet been studied due to their higher computing cost. Some system [49] has been proposed
for fast training ensemble deep learning but does not propose a complete ensemble
workflow letting the question unanswered: such as how to choose hyperparameters and
how to select models in the ensemble? Indeed, the literature is lacking to integrate of all
concepts logically and efficiently. This is the ambitious challenge we attempt in this thesis:
to bridge the gap between HPC and Deep Learning aiming for practical applications in the
energy industry.

This work brings together three contributions organized in three axes. First, we devel-
oped new applications for the emerging energy industry, the “clean tech”, by underlying
how high power computers may be beneficial to them. Second, we discovered and evalu-
ated novel procedures for automatically training and building Ensembles of DNNs aiming
at computing efficiency, qualitative prediction performance, and reproducibility. Third,
we propose a novel inference system to build and serve efficiently deep neural network
predicting together leveraging multi-GPUs.



2Scientific context

Computing power, big data applications, machine learning algorithms have quickly
evolved in recent years, in such a way that many projects have appeared to create one

or multiple machine learning models aiming at the efficient automation of a given task.
In this chapter, we expose the main scientific context of our work: HPC, big data for

energy applications, deep learning algorithms, and highlight some problems inherent
to automation by deep learning. We then present an overview of the last deep learning
methods and their inherent computing cost; in particular, we introduce why HPC is
specifically designed to address such issues. This gives a general context to the methods
that will be used throughout this manuscript. Figure 6.2 illustrates the scope of this thesis.

Figure 2.1 – This thesis is about the intersection of applied Deep Learning last research and the HPC world
for diverse energy applications

2.1 Deep learning promises

Machine Learning has often caught the general attention with some successes such as
recognizing images [136], winning against Go world champions [145], and decoding protein
structures [75]. This emulsion has already and continues to revolutionize science and
industrial processes.

Machine learning refers to algorithms that are trained on previous data and implicitly
infer information. It differs from standard programming by the fact the machine learning

3
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model learned itself without a programmer or an expert to explicitly write any rule-based
algorithm.

Deep neural network or “Deep Learning”, refers to the most complex machine learning
models containing a stack of layers and much more trainable parameters than non-deep
machine learning algorithms. This stack of layers allows them to learn multiple levels
of abstraction from data samples, and therefore they may learn complex relationships
between input and expected output. For example in images, they can they may filter the
visual noise such as background, and classify the relevant patterns.

The first major advantage of Deep Learning over Machine learning techniques is that
machine learning need features extraction to first extract information from complex data
(such as images, text, ...) and feed the model with vectors of information. On the opposite,
Deep Learning learns itself to extract relevant features and then, returns the associated
prediction. For instance, in the image classification task, the convolutional layers extract
information vectors from the images and the fully connected layers classify those vector
representations.

The second advantage of Deep Learning is the accuracy of its predictions. It can
calibrate a large number of parameters on a large amount of data. Deep Learning is a
relevant method today taking advantage of multi-cores and the large availability of data
samples.

2.2 Deep learning challenges

Deep neural networks (DNNs) are accurate mathematical models but they rise to some
challenges linked to their high complexity.

Over-parametrized maths models. More a DNN model is complex and higher the
risk of overfitting the training dataset. The overfitting leads to a lack of generalization
ability on never seen data samples. In addition to the trainable parameters, deep learning
requires also non-trainable parameters named the hyperparameters. The most common
hyperparameter include neural network architectures, optimization settings, the data
pre-processing.

High experiments need. As a consequence of being highly parameterized models,
multiple experiments are run by machine learning scientists with several hypotheses
to build a suitable model. Deep learning is known to be sensitive to hyperparameters.
Furthermore, because they are nondeterministic methods, multiple experiments may
produce different results. The modern computing nodes containing multiple GPUs perfectly
fit the need to assess multiple hypotheses at the same time.

One training takes time. The DNN training loop is iterative. It takes thousands of
stochastic gradient descent iterations to converge toward an optimum in the objective
function with respect to each parameter. Typically, it takes from a few minutes to a
few days according to the complexity of the neural network and the task. The machine
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learning scientist takes time to perform the experiment and its productivity to test different
hypotheses is generally linked to the speed of the DNN convergence.

Inference takes time. After training a DNN we need to predict it. Large neural
networks are not only computing-intensive and memory-intensive during the training but
during the inference phase too. The machine learning scientist must choose a relevant
trade-off between the computing intensity of the training, expected performance during
the inference, and the quality of predictions.

Memory consumption. It is admitted that the size of the deep neural networks is
correlated to their accuracy. The success of multiple applications is constrained by the
required memory such as 3D image recognition [24], text [32], ensemble deep learning
[149], embedded machine learning applications... Of course, modern CPUs have generally
much more memory than GPUs, but modern CPUs generally fail to get reasonable time
performance compared to the GPUs that are designed for the highly parallel operations of
the DNNs.

To summarize, deep learning is a computing-intensive method. One single experiment
typically takes hours to train a modern deep learning model on one GPU and is limited
to the available memory. In practice, multiple experiments are required to calibrate any
machine learning model on a given task by multiplying this computing cost. Finally, while
the more accurate models may be slower, end-users generally require fast and qualitative
predictions.

2.3 Opportunities for Deep Learning using HPC

Historically, High-Performance Computing (HPC) spans a range of application domains
including numerical simulation, data processing, and visualization. Deep learning, a new
application for HPC, benefit from lessons learned by those other applications: vectorized
instructions, GPU Programmation ( CUDA [141] and cuBLAS [163]), asynchronicity, cluster
management, heterogeneous CPU-GPU computing, and data transfer.

Deep Learning has also a few specific requirements. It needs some specific operations
implemented by low-level library cuDNN such as convolutions, activation functions,
and max-pooling. Multiple new frameworks and the Python ecosystem make this field
unique in terms of applications cluster management and access to external while satisfying
cyber-security constraints.

Deep learning operations are modeled as matrix computing to benefit from vectorized
and matrix instructions. Recent advances in GPU with thousands of CUDA cores suit the
deep learning matrix operation computing needs. CPUs are generally not efficient enough
to perform so many calculations simultaneously. We observe the emergence of specific
hardware for deep learning applications such tensor cores, specific arithmetic [52] [186]
[178], ASICs 1 [17] and AI-specific clusters [115].

1https://cloud.google.com/tpu

https://cloud.google.com/tpu
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Neural networks are a function with an input and an output. The deep Learning
models field evolves to more and more complex neural architectures to solve more and
more challenging tasks. Complex neural architectures prove a better understanding of
complex data samples (input) due to large data samples or low signal-to-noise ratio and
are also able to prove more and more complex predictions (output) such as a large number
of possible classes, multiple tasks ...

More complex is the neural networks and more resources it takes to train, infer, and
tune them. In general, deep Learning models chosen by scientists are a trade-off between
complexity and accuracy. The figure shows different model architectures 2.2. Lastly,
EfficientNet architectures [158] have been proposed showing Pareto dominance compared
to previous neural networks on Imagenet. This is a meta-architecture containing hyperpa-
rameters to balance between a low number of layers and fast architectures (EfficientNet-B0)
and a large number of layers and high accuracy (EfficientNet-B7).

Figure 2.2 – Correlation between accuracy and number of parameters on ImageNet 2012 [136] for represen-
tative state-of-the-art image classification models in recent years. Original image from [158].

2.4 Presentation of this thesis

The structure of this manuscript is organized as follows. In chapter 3, we introduce the
scientific context of this thesis, at the crossroads between energy application, deep learning,
and HPC. In particular, we introduce novel deep applications in the energy industry and
we conclude on the challenges and how powerful computer power has the potential to
alleviate them.

In chapter 4, we present the life cycle of deep learning projects in a very general manner.
Then, the last advance in this moving fast field.

In chapter 5, we detail all possibilities that high computing power brings to deep
learning applications. We propose a taxonomy of how HPC may be used, enumerate
procedures such as hyperparameter optimization, and ensemble, and it allows us to
underline the lack of the current methods.
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In chapter 6, we propose a performant and flexible HPO and Ensemble procedure to
build models. It allows to control of the inference computing power of the produced model
and allows to benefit from very high computing power for business applications requiring
maximum accuracy. This is our second novel and substantial contribution to the field.

In chapter 7, after having introduced some specifics limitations of Reinforcement Learn-
ing we introduce ensembles of reinforcement learning agents. We propose a procedure
based on experimental evidence.

In chapter 8, we propose a new inference server to deploy efficiently deep neural
networks predicting together on GPU clusters. We experiment with it for any ensemble of
deep neural networks averaging their predictions, but it also fits any computational need
of neural networks predicting together such as multi-agent, divided-and-conquer.

Finally, in chapter 9, we summarize the contributions brought by this thesis and expose
some open perspectives.





3Machine Learning and data for

energetical applications

The field of energy includes many scientific domains in order to gather data, model
phenomena, extract knowledge from data, making decisions based on the knowledge.

For instance, meteorology and climatology are interested in measuring, modeling, and
predicting phenomena related to the atmosphere: sunlight, wind direction, and wind
speed. They are of great interest to match the ambition of Net Zero carbon energy while
satisfying TotalEnergies’ customers’ demand for decarbonized energy. 1

Geology is focused on studying the outermost solid rock shell of the Earth and geo-
physics studies its physical phenomenon, two sciences intricate in hydrocarbon discoveries
and production. The geology to explore and produce oil and gas is the historical activity
of TotalEnergies. Those activities are great to found oil and gas lower and affordable oil
and gas. Emergent geology applications include developing Carbon Capture Unit Storage
(CCUS) reservoirs allowing to capture of residual emissions.

Biology consists to study living organisms and microbiology. It is a new concern for
producing biofuel and biogas, low carbon energy. Microbial CO2 sequestration is also a
potential technology for CCUS and is under investigation at TotalEnergies.

Ecology allows monitoring ecosystems where energy facilities are implemented on
earth and seas. Ecologists study the impacts of energy company policy and warn decision-
makers to protect ecosystems. TotalEnergies 2 is committed to protect biodiversity where
its facilities are located.

Electricity production, storage, and transport concern several scientific domains such
as physics, chemistry, and numerical simulation. Facility automation is an active field of
work aiming at business productivity under strict safety and environmental constraints.
The power grid automatic control systems aim to drive energy production for satisfying
the demand every day and 24 hours a day, cost reduction and lowering environment/risk
impact. The intermittent sources of renewable energy, volatility of the demand, and low
batteries capacity make the design of the power grid system challenging.

1https://totalenergies.com/media/news/press-releases/strategy-sustainability-climate-presentation-totalenergies-reports
2https://totalenergies.com/group/commitment/environmental-issues-challenges/

environment-protection/protecting-biodiversity
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These scientific domains are of central importance to the present and the future of
the energy industry. Data acquisition and data storage evolution allow us to enter the
big data era. New machine learning algorithms such as deep neural networks allow
automatically extracting knowledge from big data and have multiple applications. They
range from providing information to decision-makers (e.g. microscopy object counting
with the convolutional neural networks) to full automation of a given proceed (e.g. power
grid control with deep reinforcement learning).

In this chapter, we present four novel deep learning applications developed at TotalEn-
ergies.
• Weakly Supervised Object Detection for biology protection (section 3.1). The system

was presented at the International Conference on Image, Video and Signal Processing
(IVSP 2022) [126].

• Image classification for geology (secion 3.2). was the main subject of three talks 3 4 5

• Object Detection for micro-biology (section 3.3). The whole system including soft-
ware and patent was deposited.

• Reinforcement learning for electricity control (section 3.4 and chapter 7). was sub-
mitted in a scientific conference. It was also the subject of one talk 6.

They are novel contributions to some scientific domains aiming at energy production
raising while reducing the environmental impact. The last section summarizes lessons
learned from all those projects and allows us to introduce how Machine Learning may
benefit from high-performance computing.

3.1 Weakly Supervised Object Detection for biology protection

The energy companies operate all around the world where energy production is possible
and may be located where ecosystems need to be protected. Faced with the growing
worldwide demand, large-scale industries including Oil and Gas companies are likely to
adversely affect the areas left to wildlife. Experts from the Intergovernmental Science-Policy
Platform on Biodiversity and Ecosystem Services (IPBES) estimate that 87% of wetlands
have been lost since the 18th century as well as 50% of forests since 1990 [15]. Therefore,
ecosystem functions and services are now being altered, raising vexing issues about how

3“Object Detection with Deep Learning in the Oil and Gas Industry” P Pochelu, J Meng, S Petiton,
B Conche at RICE Data Science conference 2019 https://2019datascienceconference.sched.com/

event/UZ4a/object-detection-with-deep-learning-in-the-oil-and-gas-industry
4“Object Detection with Ensemble Deep Learning” P Pochelu, S Petiton, B Conche at MATHIAS DAYS 2019

5“Object Detection with Deep Learning in the Oil and Gas Industry” P Pochelu, S Petiton, B Conche at
SIAM HAPPENING VIRTUALLY: Conference on Imaging Science 2020 https://meetings.siam.org/

sess/dsp_talk.cfm?p=106760
6“Ensemble of Reinforcement Learning for electrical applications” P Pochelu, S Petiton, B Conche at

MATHIAS DAYS 2021

https://2019datascienceconference.sched.com/event/UZ4a/object-detection-with-deep-learning-in-the-oil-and-gas-industry
https://2019datascienceconference.sched.com/event/UZ4a/object-detection-with-deep-learning-in-the-oil-and-gas-industry
https://meetings.siam.org/sess/dsp_talk.cfm?p=106760
https://meetings.siam.org/sess/dsp_talk.cfm?p=106760
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to best monitor species and ecosystems over time - and if needed - change the policy to
preserve the ecosystem.

3.1.1 Biodiversity monitoring importance and challenges

Through their variability of living organisms, ecosystems yield a flow of vital services
ranging from production (food, water, oxygen...) to regulation (soil purification, climate
regulation...) through cultural and recreational benefits [43]. Habitat loss and fragmentation,
pollution, climate change, species introduction, and disturbance are the current drivers
of biodiversity decline. Biodiversity does not only provide services but is also linked to
human health. Human health and well-being are influenced by the health of local plant
and animal communities and the integrity of the local ecosystems that they form. The
COVID-19 pandemic is a reminder that 60.3% [74] of all emerging infectious diseases
affecting humans are zoonotic i.e., transferred from animals to humans.

Camera traps have revolutionized the animal research of many species that were
previously nearly impossible to observe due to their habitat or behavior. Although not a
recent technology, the use of motion-sensor or heat-sensor cameras called “camera traps”
has intensified in recent years. The choice of these remotely-activated devices is due to their
non-invasive nature, minimal labor costs, high mobility, and battery autonomy. It allows
for estimating population trends over time with a continuous, repeatable, and replicable
sampling. While being one of the main advantages of the technique, this large amount of
data collected also proves to be one of its constraints.

Taking advantage of the big data era, Deep Learning has had a breakthrough impact
on many domains. Since its popularity, deep learning was applied to many-colored image
datasets often containing several animal classes. Furthermore, deep learning has already
shown human-like performance in animal detection. That is why it is a natural choice to
help ecologists to leverage the workload.

Faster-RCNN+FPN [99] is specifically suitable to detect small regions in high-definition
images but requires high annotation costs including animal localization and animal taxa. By
contrast, classification neural networks require only the taxa annotation but they generally
fail when images contain small objects to classify and cluttered backgrounds. Based on
those previous works, we propose Weakly Supervised Faster-RCNN+FPN to combine
those two advantages: image-level annotation cost (Weakly Supervised) and recognition
ability similar to the full supervised Faster-RCNN+FPN.

3.1.2 Related works

Over the last 5 years, the landscape of weakly object detection pushed forward the adoption
of efficient end-to-end learning frameworks. Some methods extract the saliency map (i.e.,
object localization probability map) from a CNN classifier trained with an image-level
annotation [168]. More advanced methods with the same label requirement consist in
combining a CNN classifier and, with a saliency map extracted from it, training another
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semantic segmentation CNN [180]. However, they share in common that the majority
of works focus on VOC2007 or VOC2012 datasets where objects are rather centered and
occupy a large portion of the image.

Another weak supervision method consists in using a standard strongly supervised
model but a labelling rule-based function to automatically build labels with unknown
accuracy. For example, the JFT-300M dataset was built automatically gathering 375 million
images from the web associated with one of the 19 thousand categories depending on web
signals. It can be noisy (estimated to 20% error) in terms of label confusion and incorrect
labels which are not cleaned by humans. This weak supervision machine learning method
is popular when it comes to entity extraction where a label function can be found with
some relevant hypothesis.

This label function is domain-specific which is why we propose one to localize animals
on camera traps and evaluate their performance. In the ’experimental results’ section, we
compare the complete workflow compared to some relevant baselines.

Weak supervision is especially useful in video recognizing [172] [146] containing
tens of frames per seconds. They often rely on motion cues on images and propagated
the objectness information over the neighboring pixels (spatial) and neighboring frames
(temporal). Generally, the Weakly Supervised Object Detection in videos assumes that
relevant objects are similar from frame to frame which is a not relevant assumption in
camera traps data. We are facing a rather different problem: the animal can be present in
only one frame or present on multiple frames but with very different positions.

In summary, this work is built on previous research on weak supervision methods
and supervised object detection frameworks. The goal is to save the annotation effort on
camera traps and to benefit from the state-of-the-art supervised object detection method
to spot tiny objects (animals). While most recent initiatives are focusing on how to apply
WSOD to localize objects with an end-to-end CNN classifier with some reasonable size
objects (VOC2007, VOC2012) or video with multiple similar frames, we focus on building
a labeling function applied to small moving objects on a short sequence of images.

3.1.3 The two datasets and goal

Papua New Guinea biodiversity. Images are collected from a monitoring campaign that
took place in Papua New Guinea. 8 motion-triggered wildlife camera traps have been
used for 15 months with the same settings. They have been operated tied to a tree from
43 to 101 days and took between 474 and 1,272 photographs. When triggered, they shot
a burst of three photographs spaced by 1 second, increasing the chances to have at least
one good image of the animal. As a majority of mammals are nocturnal, camera traps are
also equipped with a flash mode. To decrease potential errors made by our localization
algorithm, tuning the settings of cameras is an axis of improvement including the number
of shots per sequence and the delay between shots in one sequence.

25 taxa have been captured (dorcopsis luctuosa, bandicoot, scrubfowl, emerald dove...)
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into 5400 images with 8 cameras. Each one is fixed to a tree and captures similar back-
ground when it is triggered, even if the background may slowly evolve due to leaves falling,
weather, flowers blooming ...

Missouri biodiversity. This dataset comes from Missouri campaign 7 [185]. It contains
approximately 24,673 camera trap images. There are about 1277 fully labeled images with
bounding boxes and classes (squirrel, European hare, red deer, red fox, ...).

Computer vision challenges. Wildlife camera trap automatic recognition present some
challenging situation for deep learning methods. First, the animals are small in a cluttered
background making it difficult to recognize them. We measure on the Papua New Guinea
dataset that the surface of animals can occupy from the entire image to less than 0.2% of
pixels of the photo depending on its actual size and its proximity to the camera, with a
median of 4%. Additionally, both datasets contain imbalanced classes.

In addition, we summarize the difficulty to recognize an animal in five challenging
situations: when the animal is hidden, when the animal is badly framed, when the animal
appears blurred (e.g., motion blur when it is running or jumping), hidden behind foliage,
unusually small (less than 0.2% of the surface of the image), when the animal is unknown
to the training dataset.

3.1.4 The method

Before applying deep learning, the ecologists manually check all images and they input a
mapping file that maps the name of the photograph with a taxon number or ‘0’ if there
is no animal in the photo. Now, after labeling a few thousand images, the ecologist runs
the training phase before running the deep learning inference model on the other images.
Because no deep learning model is perfect, to save ecologists’ time and reduce errors,
all predictions of the systems are sorted in ascending order to their Softmax posterior
probability. Therefore, the first images have more chance to contain challenging animals
absent from the training dataset. After that, the ecologist goes through the predictions and
associated images and corrects the mapping file when needed.

Our model is the fruit of previous works. It uses a meta-architecture Faster-RCNN [131]
with Features Pyramid Network [99] and ResNet50 features extractor [58]. It is pre-trained
[157] with ImageNet dataset [136] containing 1,000 classes of which 398 are animal classes.
Pre-training allows to reduce by about 5 times the convergence speed but it does not make
the training converges significantly higher.

One of the main criticism against deep learning is the long labeling time needed for
the algorithms to be accurate. The advantage of the proposed classification Deep Learning
method is that only one piece of information is needed by an animal in a picture - its taxon
- which makes it faster and easier to label training images.

Our weakly supervised Faster-RCNN+FPN method is winning on both sides. First, it
can accurately localize and classify a small signal in a cluttered background thanks to the

7"http://lila.science/"

"http://lila.science/"
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FPN module. Second, it requires only classification labeling effort (taxa) and not the usual
object detection effort (localization annotations and taxa). The overall proposed method is
shown in figure 3.1 and described in the following paragraphs.

Fully Supervised Object Detection Weakly Supervised Object Detection

Training the object detector

Image1

Image2

…

Imagen

{X1, Y1, width1, height1, class1}
{X2, Y2, width2, height2, class2}

…

{Xn, Yn, widthn, heightn, classn }

Training the object detector

Unsupervised localization

The object detector trained

FP box correction

Class1

Class2

…

Classn

{X’1, Y’1, width’1, height’1}
{X’2, Y’2, width’2, height’2}
…

{X’n, Y’n, width’n, height’n}

{X’’1, Y’’1, width’’1, height’’1}
{X’’2, Y’’2, width’’2, height’’2}
…

{X’’n, Y’’n, width’’n, height’’n}

The object detector trained

Image1

Image2

…

Imagen

Figure 3.1 – Comparison between the usual supervised object detection and the proposed Weakly Supervised
Object Detection workflow.

The localization algorithm. The presence of burst mode on modern camera traps
makes it possible to capture the same animal in a short sequence of frames in a few seconds
when the camera is triggered. Therefore, the animal motion in those frames is possible
to distinguish from the background. A motion-based localization allows the ecologists to
handle the workload induced by automatically computing bounding boxes of the animals
and it enables them to feed the object detection neural network.

Our localization algorithm proceeds following those 6 steps and they are illustrated in
figure 3.2:

1. Input a short sequence of images I1, I2, ..., In.

2. It computes a background B computed with median filtering of all the n images of
the burst.

3. Motion map M1, M2, ..., Mn are euclidean distance between each pixel into I1, I2, ..., In

and each associated pixel in B

4. A binary threshold t is applied on M with t=12%. This new map named T may
contain some anomalic values on a few pixels (called “salt and pepper noise”).
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5. A morphological opening operation is applied on those previous binary map T. First
an erosion operation with kernel 3x3 allows us to erase noisy connected components.
Then, a dilation operation with kernel 151x151 ensures all animal parts are connected.
It yields D standing for “denoising”.

6. The bounding boxes of the largest connected components (if any) is computed from
D and returned.

Figure 3.2 – Our localization algorithm proceeds running step-by-step. The pacific emerald dove is detected
despite its camouflage. After training on images like the sixth one, Faster-RCNN+FPN can be accurate on
similar images.

The accuracy of the localization algorithm is 77.6% on the Papua New Guinea dataset
test dataset, with 14.7% of false-positive error (motion from raindrops, flying bugs, or wind
in the vegetation) and 7.7% of false-negative error (The animal motion is missed).

The FP box correction algorithm. All the FP errors are automatically corrected based
on a simple if-then-else code structure. It compares the presence of a detected box and the
presence of an animal in the class label to avoid FP errors. Thus, Faster-RCNN+FPN is
trained on 92.3% of correct labels.

3.1.5 Experimental results

The accuracy comparison of different workflows is shown in table 3.1. Those workflows,
their settings, and their characteristics are discussed in the following text.

CNN Classifier. It is a trained classification deep learning model ResNet50 [58]. It
takes as an input the overall photograph and classifies it among 26 classes, 25 animal taxa,
or the empty class. Despite we spend time assessing many neural network architectures
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and optimizer settings, we have not obtained satisfactory results. It takes only 1 hour to be
trained, thus this workflow and RP+Classifier are the fastest to converge.

RP+Classifier. (Region proposals+Classifier) This method uses also a ResNet50 clas-
sifier with the same training set as the CNN Classifier workflow. The difference is that
it is trained on the region of interests yielded by the localization algorithm presented in
section 3.2 and the overall image such as Faster-RCNN and classifier models. An empty
class is added because the localization algorithm provides frequent (14.7%) false-positive
error motions (again, wind, flying bugs, ...). We explain the performance gained compared
to the standard classifier by the fact that the localization algorithm crops most of the
cluttered background, thus the classifier part is trained and predicts with a better focus on
the moving object.

Auto-Keras. (version 1.0.12) It is an AutoML strategy named Auto-Keras Image Clas-
sifier [72]. It is a Bayesian optimization algorithm searching for the best neural network
architecture using validation metrics and calibrating the weights of the candidate on the
training dataset. We observe a small improvement compared to the ResNet50 classifier after
tuning 100 models trained for a maximum of 20 epochs but the training computing cost is
about multiplied by 100 (4 days on 1 NVIDIA Tesla V100 GPU). It shows that the famous
ResNet50 neural architecture is relevant to our datasets and spending days searching for a
specific neural architecture may only improve the results a little bit.

Weakly Supervised Faster-RCNN. We use ResNet50 inside Faster-RCNN and Faster-
RCNN+FPN meta-architecture. In the case of the Papua New Guinea dataset, we compare
our workflow with and without manually correcting the bounding box annotations. And
in the case of the Missouri dataset, we compare our workflow and the original bounding
boxes downloaded with the Missouri dataset.

The downloaded dataset annotation of the Missouri dataset ((3) in the figure 3.1) [185]
contains inaccurate bounding box annotations. It suffers from about 10% images that
contain wrong animal labels or boxes without a visible animal in them. Our proposed
workflow can cancel a bounding box when the class of the image is “empty” but it cannot
handle when a wrong animal class is given and thus the biggest move (e.g., the wind on
the grass) is used as a bounding box associated to a false taxon. We run our Localization
based on the motion on this same dataset and provide better annotations ((2) in the figure
3.1).

RP+Classifier works better than classifier thanks to its ability to focus on the region of
interest but is still inferior to Faster-RCNN+FPN. RP+Classifier loses contextual informa-
tion: the relative size of the region of interest is lost because it is resized to the fixed size
256x256 to feed the classifier. And more, the surrounding is also lost it may be a major
issue when the localization poorly frames the animal, thus some animal parts are cropped
and not given to the neural network.

Finally, we observe on the Papua New Guinea dataset that fully supervised deep
learning performs +4.6% on the test compared to the weakly supervised counterpart (again,
7.7% of the training dataset is affected by false-negative error boxes).
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Presence err. Presence OK
Data Annotation Method FN FP Taxa error Acc.

PNG

Supervis. classif. CNN classifier 31.4 6.7 34.3 27.6
Supervis. classif. Auto-Keras 28.7 5.1 37.6 28.6
Weak Obj. Det.(2) RP+Classifier 7.7 11 10.3 71

Weak Obj. Det.(2) F-RCNN 27.7 18.1 12 42.2
Weak Obj. Det.(2) F-RCNN+FPN(ours) 2.8 1.7 13.8 81.7
Supervised O.D.(1) F-RCNN+FPN 1.8 1.6 10.3 86.3

MIS

Supervis. classif. CNN classifier 24.2 12.5 30.9 32.4
Supervis. classif. Auto-Keras 20.2 11.7 34.4 33.7
Weak Obj. Det.(2) RP+Classifier 19.9 8.5 22.5 49.1
Weak Obj. Det.(2) F-RCNN 26.4 10.4 22.6 40.6
Weak Obj. Det.(2) F-RCNN+FPN(ours) 15.9 4.2 20.5 59.4
Weak Obj. Det.(3) F-RCNN+FPN 18.1 4.6 27.3 50

Table 3.1 – Summary of the different deep learning methods tested and their performance on two datasets
Missouri (MIS) and Papua New Guinea (PNG). Regarding the method, the localization refers either to class
if an animal is present in the picture (in the case of classifiers) or to localizing its bounding boxes (in the
case of Faster-RCNN models). (1) our localization algorithm with handcraft corrections, (2) our localization
algorithm motion-based (3) localization algorithm by [185]

3.1.6 Summary and future works

Results obtained in this application show us that Faster-RCNN+FPN suits the ability to
recognize small objects in a rather fixed cluttered background. One disadvantage of our
workflow is the need for a localization algorithm, even if it shows robust results on two
datasets, it is a non-trainable part that cannot properly work if the background contains
background motions (such as a city) or if the quality of the overall image change between
shots (blur, contrast, ...).

Deep learning has led to progress in image recognition and has been tested extensively
to identify animals and yet its application to biodiversity monitoring is still in its infancy.
The limitation of the application to a real need comes from the need to have a dataset
previously labeled for a given region. The successful application of our weakly-supervised
Faster-RCNN with Feature Pyramid Network addresses the need to recognize small objects
with a few thousand labeled images. Compared to the fully supervised counterpart we
divide by factor 5 the amount of information (the taxon and 4 box coordinates) and the
accuracy drops by less than 5%. Now the ecologists can check if the predictions are correct
in priority where the model gives a high uncertainty estimate. This allows focusing on the
most challenging images or animals absent from the training dataset. It is by this means
that in our campaign we discover the Palm Cockatoo taxon visible in figure 3.3 which was
absent from our initial training dataset. This method could boost camera traps adoption
by tackling the inherent challenges. Additionally, we also hope it will shed light on the
benefits of weakly supervised deep learning methods for all disciplinary communities.
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Figure 3.3 – In absence of a taxon in our training dataset, the classifier will classify them among known
classes leading to an avoidable error. The “palm cockatoo” taxon (right) was not photographed during our
previous campaigns.

Bigger datasets. More effort should be provided to increase the volume of the training
dataset.

Uncertainty estimates. An important line of research consists in evaluating uncertainty
estimates allowing to focus ecologists’ attention on the most uncertain predictions (badly
framed, blurred, unknown species, ...). Ensemble Deep Learning has already been shown
to be not only useful to boost the accuracy but also to produce qualitative uncertainty
estimates [82]. However, those methods multiply the computing cost over one single
neural network. It seems only experiments and throughout analysis may study the balance
between costs and benefits of ensembling.

3.2 Image classification for geology

Lower carbon oil and gas, as well as Carbon Capture Storage (CCS), require a performant
geology process. Modern geology companies are used to analyze more and more 2D
images. For instance, to date rocks, many microfossils are identified and counted on large
microscope images.

Microfossils are extremely useful in age dating, correlation, and paleo-environmental
reconstruction to refine our knowledge of geology. Microfossil species are identified and
counted on large microscope images and thanks to their frequencies we can compute the
date of sedimentary rocks.

To do reliable statistics, a big number of objects need to be identified. That is why we
need deep learning to automate this work. Today, thousands of fields of view (microscopy
imagery) need to be shot for 1 rock sample. In each field of view, there are hundreds of
objects to identify. Among these objects, there are non-fossils (crystals, rock grains, etc...)
and others are fossils that we are looking for to study rocks.

3.2.1 Dataset and goal

Microfossils are calcareous objects taken with polarized light microscopy on RGB 2048x2048

images. One image contains hundreds of objects, each object is a region of interest: there
are 30% of fossils on average and 70% are other objects (rock fragments, crystals, ...).
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Our dataset is a catalog of objects. There are 91 classes (taxa fossils) of 224x224 RGB
images (after homemade preprocessing). The classes are imbalanced, we have from 50

images to 2500 images by class, with a total of 32K images in all the datasets. The
train/validation/test split is as following: 72% 8% 20%. The F1 score was used and labeled
as ’accuracy’ on all benchmarks.

3.2.2 Object Detection workflow

To automate these fastidious works, we suggest a hybrid system working with two steps 1)
a localization algorithm to localize regions of interest and 2) a supervised Convolutional
Neural Network to classify ROIs. This hybrid system presents two advantages compared
to the CNN object detection like Faster-RCNN [131]. First, data management of CNN
classifiers is more flexible because they take region-of-interest (ROIs) and not on the overall
input image, while object detectors require the overall input image. Those ROIs are easier
to maintain, extract from geological books, perform data augmentation at ROIs scale and
interpret which pixel contributes to the output [132] [103].

The proposed workflow consists in computing large numbers of potential objects using
heuristic image analysis. Those potential objects are sent to the CNN classifier previously
trained to predict regions. The overall system is shown in figure 3.4.

Figure 3.4 – Micro-fossil detector

The data management of the classification dataset is lighter and more flexible than a
standard object detection dataset allowing geologists to manage easily those data according
to their knowledge. All regions of interest (ROIs) are stored (taking 100 pixels squared)
and not the entire image photo (taking 2048 pixels squared) this approach is much easier to
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Fscore (%)
Fscore (%) with
TTA

glorout imagenet glorout imagenet
DenseNet121 89,04 90,27 89.42 91.83

InceptionResNetV2 89,89 89,92 90.72 90.83

InceptionV1 88,89 90,70 89.60 91.16

InceptionV3 88,80 90,11 89.49 90.94

InceptionV3P 85,37 90,12 86.32 91.78

InceptionV4 83,59 90,49 84.32 91.27

Xception 89,99 90,04 90.76 90.94

MobileNet 88,05 89,82 89.31 90.53

resnet18 87,02 N/A 87.55 N/A
resnet50 86,21 89,90 90.23 90.94

VGG16 86,86 N/A 90.23 N/A
VGG19 86,27 89,26 87.42 90.03

Mean Fscore (%) 88.66 89.80

Table 3.2 – Fscore of different models with and without test-time-augmentation. They are trained 20 epochs,
15K images spread among 91 classes of micro-fossils.

manage. And more, they are easier to label: each ROIs are associated with a label without
requiring multiple box coordinates and classes [41].

The localization algorithm detects 6% of aggregates among fossils (or 1.8% among all
ROIs). Although we cannot detect what aggregates contain, it is not a problem because the
goal is to compute quickly a global static on large amounts of fossils. Both localization for
polarized and natural light produces negligible amounts of false-negative compared to the
classification part.

Fossil/look-alike is between 98,5% and 99% of accuracy. Morpho-group classification
test accuracy is 89% with a custom InceptionV3 CNN. This score is 93% on the training
datasets, meaning we are facing over-fitting problems.

Fossils are rotation invariant and symmetry invariant, we use this property to reduce
the variance of predictions. We exploit Test-Time-Augmentation [143]. One input image
from microscopy acquisition contains 8 degrees of freedom (4 rotations x 2 symmetries)
given to the input of the models to compute the averaging predictions. The table 3.2
shows the benefit of this method. We experiment it with different state-of-art classification
CNN architectures. VGG16 [184], VGG19, ResNet50 [58], ResNet18, InceptionV1 [154],
InceptionV3 [155], InceptionV4 [156], InceptionResNetV2, Xception [23], MobileNet [137].
For each architecture we train it twice : one with glorout initialisation [48], second with
imagenet pretrained weights [157]. Regarding resnet18 we do not find public imagenet pre-
trained weights, and for VGG16 the training with imagenet pre-trained weights diverges.
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3.2.3 Deep clustering

Supervised machine learning is very accurate but requires labeled data samples. For
example, each time the context change, we require to create a new dataset from scratch
which limits the applicability of supervised deep learning. Unsupervised deep learning
has the potential to go further by automatically gathering similar images. We expect an
unsupervised system to gather fossils images in terms of taxa and not in terms of low-level
features (e.g., color, edges, size).

This unsupervised system is trained on data samples without labels. However, to
evaluate its ability to make good clusters we use a few labeled data samples in the test
dataset. In this work, we measure two scores to measure the quality of cluster predictions.
Both of them, give a score between 0 (low cluster quality) and 1 (high-quality cluster):

• Purity. It is the percentage of the same class objects that are correctly gathered in the
same cluster. This is an intuitive measure, however, this measure may not always be
relevant: purity increases as the number of clusters increases. For instance, if each
data samples are in a separate cluster, the purity becomes one.

• NMI (Normalized Mutual Information) is a less intuitive measure but it corrects
the previous purity main disadvantage based on information theory calculation.

We propose a new workflow to evaluate the potential of unsupervised deep learning
that we evaluated with both purity and NMI scores. Here are the 3 steps of the workflow:

1. Pre-training. A deep neural network is supervised and trained on some microfossils
X1. X1 is specific to a certain context (e.g., a certain region in the world)

2. Data collection. In a new context, we gather big data samples X2. We label a few
fossils images X3, only to evaluate the unsupervised deep learning.

3. Transfer learning and feature extraction. We use the previous DNN to extract
features on X2 and X3. The next paragraph will allow us to identify after which layer
the features should be extracted.

4. Dimension reduction. We use a dimension-reduction based on PCA to reduce the
size of the features.

5. Clustering and evaluation of the clustering. We use a clustering algorithm on X2,
we evaluate the cluster computed on X3.

The workflow is illustrated in figure 3.5.
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Figure 3.5 – Image clustering using transfer learning on CNN

Unlike previous authors [50], we add a dimension-reduction based on PCA between
the features extractor and the clustering algorithm. We discovered that PCA has three
interests: First, it reduces noise and produces better quality cluster decisions. Second, it
accelerates (at least linearly) the clustering execution by reducing its input dimensions.
Third, features take less place on the disk that making easier data management.

The number of components of PCA must be carefully configured to denoise data
without losing any useful information.

• When n_components is too big, all variance is caught and does not affect the clustering
algorithm results.

• When n_components is just fine, a large amount of variance is caught, noise is
reduced and the dimension reduction benefits the clustering algorithm.

• When n_components is too small, useful information is lost.

Experimental settings. Our clustering is made by using 515 images distributed among
13 classes with between 20 to 50 images by classes never seen during the pre-training of
the neural network. The goal is to see how well our clustering method is able to gather
them under the right clusters automatically. In this section, customized inceptionV3 is
used and TTA (Test Time Augmentation) is enabled with 4 rotations which increase slightly
cluster quality. Agglomerative Clustering [166] (AC) with TTA gets nmi=0.8346 against
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Figure 3.6 – InceptionV3 neural network customized. We experiment after which layer to extract features: 7
split locations have been assessed identified from 1 to 7.

Where features are extracted nb. elements nmi purity
After Concatenate (7th split) 110592 0.7330 0.7196

After Concatenate (6th split) 32000 0.8197 0.7625

After Concatenate (5th split) 51200 0.8346 0.8236
After Concatenate (4th split) 51200 0.7053 0.6871

After Avg Pool (3rd split) 2048 0.7209 0.7058

After Dense (2nd split) 1024 0.7231 0.7037

After Dense (1st split) 91 0.5315 0.4700

Table 3.4 – Comparison of clustering score after different layers where features are extracted. The split
locations are visualized in figure 3.6.

0.8198 without it. We tried different clustering algorithms and go to the same conclusion:
Agglomerative Clustering produces the best clusters.

Clustering tuning. We evaluate three clustering algorithms 3.3 automatically set with
the Elbow method to set the number of clusters of AC and K-Means and the epsilon value
of DBSCAN. Epsilon controls the maximum Euclidean distance between data points and
another one to decide if they belong to the same cluster.

Clutering method AC [166] Kmeans DBSCAN [40]
NMI score 0.8346 0.7496 0.6418

Table 3.3 – Different clustering algorithms are compared: Agglomerative clustering, K-means and DBSCAN

We manually tune DBSCAN but at best 33% of the whole dataset is considered noise,
and yet we know that all the samples should belong to a cluster with 13 clusters as the
optimal number.

Transfer learning. In classification deep learning problems, the last layers are trained
to separate data and on the other hand, the last layers are too specialized to be transferable.
These two contradictory arguments motivated experiments to find after which layer to
extract features to increase the NMI score. The figure 3.6 shows different locations split
and the tabular 3.4 shows scores of the split.

PCA tuning. We tried different values to reduce the dimensionality of clustering as
shown in tabular 3.5. Initial vectors contain 51,200 elements (5th split). Best results are
reached with PCA set to n_components=256. PCA projects data points to 256 elements and
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PCA variance explained nmi purity
disabled 100% 0.8346 0.8236

n_components=512 >99.99% 0.8346 0.8236

n_components=256 92.71% 0.8648 0.8496
n_components=128 82.85% 0.8367 0.8192

n_components=64 72.15% 0.8440 0.8274

n_components=32 61.07% 0.8332 0.8163

n_components=16 49.83% 0.8209 0.8032

n_components=8 37.27% 0.7870 0.7619

Table 3.5 – Comparison of score with different numbers of components of PCA to denoise data points

allows to increase NMI by +0.0302 and reduces linearly the computing cost of K-means. We
can explain this ease to reduce dimensions because firstly, data points are sparse thanks to
the Feature extractor, and secondly because InceptionV3 uses the ReLu activation function
that produces multiple 0 values.

Final results. Our clustering system is quite robust. The figure 3.7 illustrates all
predicted clusters. Clusters 4, 10, and 12 contain at least 1 image different from the others.
The 9 other clusters gather 3 images of the same class. We can observe the robustness of
the algorithm: some fossils can be partially destroyed or the image quality can be more or
less bad for some optical reasons. For example, the second image of cluster 6 is partially
broken.

Figure 3.7 – 3 examples image took randomly for each clusters predicted. The global clustering purity is
84.96%

Similar clustering workflow may be re-used. They require 1 training dataset similar
to the target data samples. For example, in microbiology (next section) we may train a
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convolutional neural network to classify a few species and apply the clustering workflow
to new species.

3.2.4 Summary

We showed image classification can work in this use case too. We can localize accurately
93% fossils from an image. The classifier can classify correctly 88% of fossils but we are op-
timistic about the outcome of multiple neural network architectures assessed, initialization
procedures, and Ensemble techniques.

The possible future works may follow 2 paths to improve results by leveraging a larger
amount of computing power:

• Clustering. Recent works [8] have shown the benefits of ensemble deep learning to
improve the clustering ability in computer vision. Ensemble of deep learning has
already shown the potential to tackle the imbalance datasets [22] which is especially
beneficial due to the fact most applications have an imbalanced dataset.

• Semi-supervision. Semi-supervision consists in using an unlabeled dataset and a
few labeled data samples that may be relevant in this case. A key ingredient of the
state-of-the-art approach [21] is the use of a big (deep and wide) neural network
to pre-train on the unlabeled dataset and tune it on the small number of labeled
data samples. Even if ensembles have not been applied yet, due to the fact big deep
neural networks are more prone to overfitting, building ensembles should drastically
improve predictions [149].

Many supervised applications have those two characteristics of data samples: available
unlabeled samples and imbalance between labeled ones. Previous authors [22] [21] shows
that big deep learning models (either ensembles or big neural network) are linked to better
results in those case. This reinforces our claim that high computing power is important for
the applicability of deep learning, not only with academic datasets but in real applications
too.

3.3 Object Detection for micro-biology

Carbon Capture Unit Storage (CCUS) aims to capture CO2 instead of releasing it into the
atmosphere. Micro-algae cultivation is a method to perform CCUS. The main challenge of
those cultivations comes from the health of the micro-organism to maintain CO2-consuming
cells alive. This is why regular image microscopy and automatic counting based on deep
learning have the potential to detect a rapid change in the basin population and quickly
take a decision to save the culture. This project has a similar target to the biodiversity
one (in section 3.1): monitor living being to analyze how well the population grows. Each
microscope image is a 2048x2048 RGB image and may contain from zero to tens of cells,
and hundreds of images must be processed to obtain reliable statistics. This application
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and the previous one (in section 3.2) are both microscopy projects but aim at a different
goals.

Methodology Because the end goal is to reduce CO2 in the atmosphere, we want to
create a deep learning model with the same spirit. To do this, we are interested in both
objectives: quality of predictions expressed as AP50 [100] to accurately count algae and the
energy consumption expressed as kWh.

We use detectron2
8 framework in this section and ResNet50 as the neural network

architecture. Detectron2 proposes default hyperparameters and the number of SGD
iterations to apply to a new dataset. We propose a simple procedure to find efficient
hyperparameters (Pareto front).

Our dataset contains 200 microscopy images, spread as 180/10/10 as training/validat-
ing/testing datasets.

Hyperparameters tuning and computational cost. Note that the Detectron2 framework
is evolving fast (like everything in the deep learning field) and default configurations may
have been updated. The hyperparameter space is defined as:

1. The batch size {4,8,16,32,64}, default (in the detectron2 config) : 16.

2. The fraction of SGD iterations dedicated to warmup [177]. The warmup can last {1%,
3%, 9%}, default 3%.

3. The warmup factor 10−1, 10−2, 10−3. Default : 10−2.

4. The L2 regulation rate 10−2, 10−3, 10−4. Default : 10−4.

5. The learning rate initialization (after warmup) 0.03, 0.01, 0.003. Default : 0.01.

6. The learning rate is divided three times between the end of the warmup and the
termination of the training. The learning rate is divided by a factor after the 50%,
80%, and 95% SGD iterations. The learning rate factor potential values are 4, 8, 16.
Default: 10.

The number of SGD steps is 180K in the default configuration and we propose to bound
it to 2500. To get efficient training we randomly evaluate 100 optimizer samples and we
select the best one according to the score on the validation set.

It is now well established that the first SGD iterations improve the quality of the
model, but this trend slowly declines until plateaus. In some cases, after more training
effort the training dynamics may decline to fit the training data samples but fail to
generalization on the validation data samples. Indeed, even if training a DNN is a
computing-intensive process, a large amount of training effort maybe sometime overfit
the data samples too much. This is why a large number of SGD iterations may be a bad
usage of computing resources compared to small SGD iterations and multiple assessed
hyperparameter optimization.

8https://github.com/facebookresearch/detectron2

https://github.com/facebookresearch/detectron2
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In the figure 3.8 we illustrate the effect of more SGD iterations on the hyperparameter
optimization process. We observe more than 2500 SGD iterations may be not worth more
computing effort.

Figure 3.8 – Effect of the number of training iterations on the best tuned validation accuracy among a
population of 100 sampled dnns

Once hyperparameters have been found we fix them, and evaluate multiple Detec-
tron2 object detection architecures: ResNet50/ResNet101, enabling/disabling FPN[99],
enabling/disabling dilated convolutions (“DC5”) [179]. It makes a total of 8 different
architectures. The pareto-front and the default configuration are shown in table 3.6.

Training Inference (2000 images)
Time (sec.) Conso (kWh) Time (sec.) Conso (kWh) AP error (%)

Default
R50+FPN

52441 3.979 40.34 0.00306 41.26

HPO
R50

551 0.036 26.36 0.00148 28.58

HPO
R101

647 0.049 47.34 0.00332 23.11

HPO
R101+FPN+DC5

1093 0.088 41.10 0.00355 21.07

Table 3.6 – We evaluate the default Detectron2 architectures and settings with all Detectron2 architectures
and parallel grid search as hyperparameter optimizer. The pareto front between the two objectives AP50 and
training kWh is made of those 3 DNNs: R50,R101 and R101+FPN+DC5.

This table shows that hyperparameter optimization is worth its computing time. If
we fix to 2500 SGD iterations and optimize the hyperparameter, the optimized training
(e.g., second line) divides by about 100 the computing energy consumed compared to the
default settings (first line), and more, it reduces significantly AP50 errors too.
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This is the experimental proof that hyperparameter optimization is an essential step of
the machine learning life cycle and progress in this field is important for the future of the
applications. In other words, it shows how much it is dangerous for performance sake to
use the default settings of any machine learning algorithm and software.

Big data. Data samples quantity and quality are of major importance in the machine
learning field. This is why we evaluate the importance of gathering data samples, and we
attempt to answer if collecting more than 181 images would be beneficial.

Figure 3.9 – Effect of the training data size on the test accuracy of ResNet50 DNN. For each assessed amount
of training samples we train-test 15 times the DNN we draw the green point represents the mean, the bar
represents the extreme values

We observe that more data improves widely the final accuracy with a slow decline in
the trend. And more, we show that more training datasets increase also the stability of the
training process (bars are smaller and smaller). However, these experiments may not be
ideal because the hyperparameters are tuned for 181 training data samples, if low data
samples are available we should tune the optimizer for this volume of data. We will not
enter more details regarding data in this thesis to stay focused on deep learning models
with the computing angle.

Conclusion. To conclude, the first major observation is that the default settings of any
machine learning algorithm and software should be tuned according to its own dataset.
Hyperparameter optimization at scale may follow successfully two objectives predictions
quality and a computational cost. One must keep in mind that improving the data to feed
the machine learning is always beneficial and orthogonal to the tuning of a model. We will
not enter into more details in this thesis about the data aspects to be more focused on the
model and computational aspects.
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3.4 Reinforcement Learning for electricity control

The world lacks safe, low-carbon, and powerful energy alternatives to fossil fuels. Electric-
ity control is a challenging subject due to many aspects: intermittent nature of renewable
energy, variations in demand, low storage abilities, [60] [61] significant room for improve-
ment for running electric engines [161]. Deep learning has shown great success in scaling
up model-free reinforcement learning algorithms to challenge the Markov Decision Process
[109] [145] and are promising methods to solve issues of electricity control [122].

In this ML type, the RL agent learns to control the environment (e.g., the simulator) to
optimize a scalar target (the reward). The reinforcement learning loop is formally described
in figure 3.10.

Figure 3.10 – The reinforcement learning scenario

A multitude of other RL environments exists and may potentially use our works in
this thesis. However, we limited ourselves to the applications where we control electricity
in industrial applications with already developed simulators: Pymgrid [60] to simulate
microgrids and GEM [161] to simulate the control of an electric engine. Pymgrid is an
internal application developed at TotalEnergies becoming open source during this thesis
and GEM is an open-source simulator.

3.4.1 Microgrids control

The Microgrids are electrical grids that are capable of disconnecting from the main grid
(e.g., a national grid). It holds potential in both tackling climate change mitigation via
reducing CO2 emissions and adaptation by increasing infrastructure resiliency. The
microgrid simulated in this work is drawn in figure 3.12. The volatility of phenomena such
as the sun production, the demand, and the market price combined with the low capacity
of the battery makes the control of these systems nontrivial.
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Figure 3.11 – The Pymgrid digital twin allows to model a microgrid. The Energy Management System
algorithm (i.e., RL algorithm) consists in providing electricity to customers by reducing production cost.
Original image from [60].

3.4.2 Electric motor control

The electric motors are used in many industrial applications and their efficiency is depen-
dent on how they are controlled. The algorithm (RL) drives the power converter that either
directly controls the torque via applied voltage (continuous action space of the RL agent)
or by defining the switching on/off the transistors (discrete action space of the RL agent).
The goal (reward) is to match the angular velocity of the torque between the motor with
the expected torque load by avoiding overheating. The state (not modeled for visibility
purposes) is the concatenation of the overall system information and the expected torque.

Figure 3.12 – The GEM simulator allows modeling an electric motor. The goal is to reduce the distance
between the torque of the motor and the expected torque. Original image from [161].

Deep Reinforcement Learning (or just “RL”) is gaining popularity for industrial and
research applications. However, it still suffers from some key limits slowing down its
widespread adoption. First, its performance is sensitive to initial conditions and non-
determinism making it unstable and its reproducibility is far from being straightforward
[59].

We propose in chapter 7 a new machine learning procedure exploiting distributed
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computing, ensemble learning, and hyperparameter optimization to tackle those two
strategic challenges.

3.5 Lesson learned from those projects

The development of data acquisition techniques (e.g., camera, captors,...) allows for
capturing of accurate real-time data samples, data storage allows storing terabytes of
data to feed it to the machine learning algorithms. The development of computing units
containing now thousands of core and GBs of memory in the same chipset make possible
the training and deployment of deep learning models.

We show in this chapter four projects in the modern and cleaner energy industry that
bring out certain challenges.

The increasing number of projects. The increasing number of machine learning
projects and their experimental requirement for successful deployment show the need for
the automation of the machine learning life cycle. Projects generally have different metrics
for success and data preparation requirements (scoping phase). When the goal is specified,
it is possible to observe the three steps: tuning, training, and inference.

Data management. Deep learning is a data-centric approach the way we gather data
has a significant impact on accuracy. Rigorous data management and managing imbalanced
datasets are the daily life of the data scientist. Gathering, storing, loss function design, and
over-sampling/under-sampling are not in the scope of this thesis we will rather on the
machine learning model life cycle with a fixed dataset and given target metrics.

Multi-goal objectives. despite most of the literature and contests being formulated
as some simple mono-objective problems such as a percentage of right predictions, our
applications contain generally more objectives.

1. Technical quality such as model speed, memory constraint, and power consumption.

2. Reproducibility for comparison between algorithm and re-training.

3. Uncertainty estimates to automatically trigger a procedure such as asking for human
intervention when the algorithm is unsure.

Reproducibility challenge. deep learning is indeterministic and highly parameterized
method. They are also data dependent meaning the performant of one model is linked to
the training dataset version. And to reproduce any training process, the training must be
fully automated, for example, stopping criteria must be fixed in advance before training
any model. Therefore the reproducibility of the construction of a model requires gathering
all those conditions: the same random seed, the same dataset version, the same training
loop code, and no human intervention.

Leveraging hardware if beneficial Like seen previously, deep learning requires gen-
erally multiple experiments, and each experiment is computing-intensive. That is why
efficient implementation leveraging the underlying cluster of GPUs is needed.
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Training and inference are two different projects. The code performing training and
inference are generally two different projects aiming at different goals. The training phase
search to maximize an objective (e.g. “accuracy”), and some efficient implementation
aims to maximize “accuracy-over-time”. In the inference phase, it is desirable to keep the
accuracy but maximize speed criteria such as the throughput (prediction per second) or
the latency (time to get one prediction). Some scientists attempt to blur the line between
training and inference by training and predicting a continuous flow of information but
online machine learning is out of our scope in the thesis.

More and more initiatives We are facing an explosion in the number of academic and
industrial projects in the field of machine learning and especially deep learning. It is now
hard to follow those subjects because the state-of-the-art for each problem type is going
faster and faster.

1. The platforms are evolving fast in the post-Moore era: development of IA dedicated
computing units such as GPU, TPU... Different cloud providers, and on-premise
clusters. Computing libraries such as Tensorflow and Torch are one of the most open
source projects. Arithmetic libraries such as CudNN, and MKL. Components and
instructions set for handling tensor operators.

2. Multiple viable neural networks may solve the same problem. For example, different
neural network architectures are regularly proposed and often with multiple versions.
For example AlexNet [78] (2012), VGG [184] (2014), Inception [155], ResNet [58] [173]
(2016), EfficientNet [158] (2019), EfficientNetV2 [159] (2021)...

3. Generally speaking, the number of scientific works has increased making the literature
harder and harder to follow. We assisted recently to an increasing number of scientific
conferences in the machine learning field, some ancient scientific conferences have
set specialized tracks on machine learning too.

This is why our main contributions are complete workflows made of multiple steps and
not a few detailed algorithms. We compare and analyze the effect by varying different steps
of the workflows based on experimental evidence but stay in mind it is impossible to be
exhaustive. Our workflows are original because they propose novel procedures by aiming
both the deep learning prediction quality and a computational cost too by leveraging
efficiently multiple GPUs clusters at each step. Furthermore, we assess it on real private
applications and compare it all along with the thesis on public testbeds for comparison
with previous authors. Finally, we conclude that ensembles of deep neural networks are
generally worth the computing cost when they are built with the appropriate workflow in
all our projects. Due to the results obtained in this thesis, we encourage future works to
follow similar scientific directions: true problems are generally multi-objective problems,
and the complete ML life cycle includes model construction, training, and inference.

Now that deep learning applications at TotalEnergies are introduced, the following
chapter will describe in more detail the deep learning workload. The next one (chapter
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5) will enter more details on the distribution methods across multiple-GPUs computing
nodes.





4Deep Learning

In the mathematical theory of artificial neural networks, the universal approximation
theorem [65] states that “a neural network of a single hidden layer containing a finite

number of neurons can approximate continuous functions over compact subsets of Rn”. In
other words, a neural network can learn any continuous mapping from data samples x
and their corresponding labels y by fitting its thousands of internal parameters.

The back-propagation [135] was invented and re-invented multiple times in history. It
uses the chain rule to be able to derivative multiple stacks of operations, called the layers.
The gradient descent updates the parameters in direction of the minimization of a loss
(descent of the loss). The loss measures how well the neural network predicts the data x.
For example, the formula (yp − y)2 with yp the predictions and y the ground-truth labels
is a commonly used loss.

The authors discovered that applying backpropagation in multiple small batches
randomly drawn from the dataset is much more efficient than training directly on the
overall dataset. This phenomenon is explained by the fact that at each iteration we only
need to evaluate a partial gradient and not the full gradient which is significantly faster.
And more, the stochasticity introduced by a small batch of randomly selected data samples
improves the convergence by avoiding being stuck in local minimum and saddle points.

The forward pass and the backward pass are the two operations a neural network
performs. In the training phase, forward and backward are called sequentially to compute
the loss and then update weights according to the loss. While in the inference phase, only
the forward phase is performed.

The application of neural networks for image classification appeared in 1980 [45]. In
1998, LeCun et al. [86] invented the modern Convolutional Neural Network (CNN) and
applied them to recognize zip codes on images. He succeeded in both tasks to classify
images with CNN classification and object detection by repeating CNN classification
without requiring an explicit segmentation into characters. The figure 4.1 the specification
of LeNet5, the first modern convolutional neural network.

35
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Figure 4.1 – Architecture of LeNet5, the first modern Convolutional Neural Network. Each gray block are
features flowing through deep learning layers. Original image from [86].

Scientists quickly use the neural network with a large number of layers and more
parameters to leverage a large amount of data and improve predictions. Thousands of SGD
iterations must be performed to iteratively train efficiently and neural networks making
the training loop computing-intensive.

In 2012, the AlexNet [136] architecture implementing a new CNN won the ImageNet
challenge mostly because the matrix and vector operations have been parallel on GPUs.
It obtained an error rate of 15.3% while the second place was 26.2%. Most operations in
deep learning are represented as linear algebra operations and GPUs containing an order
of magnitudes more cores than GPUs suit this computation need.

To summarize, Deep Learning is inherited from scalable mathematics where more
complexity generally performs better predictions but require also more data samples
and more computing requirements. Therefore, this is common knowledge that machine
learning applications progress is interleaved with the ability to collect Big Data and the
investments in IA-specific clusters.

4.1 Life cycle

The figure 4.2 allows us to put the lexical used in this thesis in perspective.

No

Yes
Training

Initial Machine 
Learning model

Data or 
Environment

Testing
Inference 
optimizer

Inference
deployment

Updating 
hyperparameters

Is it 
enough ?

Figure 4.2 – Standard life cyclic of machine learning model. Data is given for supervised/unsupervised
machine learning, the environment is given for reinforcement learning. The updating hyperparameters loop
may be performed in parallel.



4.1. Life cycle 37

Training. Training consists in calibrating the parameters iteratively until the termina-
tion.

Evaluation. The most common way to test a machine learning model consists in
evaluating its prediction quality on two disjoint samples: validation samples and testing
samples. The validation score allows making some decisions on the model such as early
stopping or model selection among a library of previously generate a model. For readability
purposes, we do not show early stopping or model selection in the figure. And more,
some technical performances may be also measured such as forward speed, memory
consumption, and energy consumption.

Hyperparameters. We define hyperparameters as non-trainable parameters by the
backpropagation which are fixed such as the batch size, the learning rate ... In this
thesis, we consider also neural architecture as belonging to hyperparameters such as the
number of convolutional blocks, the number of filters per convolution, different activation
functions, and so on... Hyperparameters are critical for performance such as generalization
performance, error distribution, and technical performance.

Updating hyperparameters. Machine learning training is empiric, due to the fact best
hyperparameters are unknown a priori. Therefore, multiple trials are generally required to
build an efficient model by sweeping different hyperparameters. The best model on the
validation score is selected (i.e., using the accuracy or a Pareto front), then its generalization
ability is measured on the test score.

Update of the data, update of the model. The datasets may be periodically updated.
When a small update occurs, we may want to train again the neural network to take into
account the new dataset version.

Sometimes, all the dataset is entirely replaced. For example, when a new camera
investment makes obsolete all previously collected images. In this case, complete hyper-
parameter optimization may be desired to find a new hyperparameter set that is suitable
for the new images. Each time the training data set is updated, the machine learning
engineer must ask itself if searching new hyperparameters worth the computing cost, if
new training is required, or if the current model suffices. Because the periodic training
schedule depends mostly on the application we do not explore them in this thesis.

When a machine learning scientist is facing a new application, the construction of the
machine learning model may be more or less automatized. We defined here three scenarios.

1. Manual tuning. The machine learning model is taken on the shelf and may benefit
from transfer learning to accelerate the process (transfer learning is defined in 4.4).
For example, we can take ResNet50 with pre-trained weights on ImageNet. Then, the
machine learning scientist trains and tests it for its dataset. If it is not satisfactory, it
manually updates it such as changing the learning rate. Multiple experiments may
be launched manually in parallel but it may be very time-consuming for the machine
learning scientist.

2. On-the-shelf architecture but the optimizer tuning. Like the previous scenario, the
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machine learning scientist takes an architecture on the shelf and it may benefit from
transfer learning. Then, non-architecture hyperparameters are automatically sampled
and the experiments are computed independently and asynchronously.

3. Auto tuning. All hyperparameters such as neural architectures and optimization
settings are sampled and calibrated automatically on the validation dataset. This
allows a maximum level of calibration and automation of the process. The machine
learning engineer has more time to interpret the produced experiments, tune the
evaluation target functions, or may calibrate the hyperparameter space.

Those three scenarios underline that hyperparameters search must be calibrated at any
rate. And more, they may be evaluated in parallel automatically to alleviate the scientist to
launch manually all those experiments.

4.2 Operations and numerical formats

First, we introduce the three actions we may do with a neural network: forward, backward
and parameters update.

Forward. Neural networks are formulated as a stack of layers. The forward phase may
be formulated as 4.1 with a(), b() and c() the three layers. Each layer takes the data flow
as the first argument and their corresponding parameters as the second argument. All
operations and data flows are matrices except l which is the scalar loss to minimize.

l = c(b(a(x, wa), wb)wc) (4.1)

Backward. The partial derivative of all weights with any batch of data x is computed
with 4.2.

∂l
∂wa

= a′(x, wa) (4.2a)

∂l
∂wb

= b′(a(x, wa), wb) ∗ a′(x, wa) (4.2b)

∂l
∂wc

= c′(b(a(x, wa), wb)wc) ∗ b′(a(x, wa), wb) ∗ a′(x; wa) (4.2c)

We may notice that the most advanced neural networks have a more complex topology
than a simple stack of layers. Some contains multiple paths [58] [66] and some contains
“while loop” operations [131]. However, the main idea stays unchanged on the fact the
gradient information is back-propagated from the output to the input.

Parameters update. The parameter update (or “gradient descent”) of any layer i is
performed with formula 4.3 and the learning rate α.

Wi = wi − α ∗ ∂l
∂wi

(4.3)
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More advanced optimizers [76] have shown robust results on a wide range of applications.
All the used optimizers rely on the stochastic gradient descent algorithm, that stays one of
the most used.

4.3 Numerical formats

The commonly used artificial neural networks are represented as multiple dimensions
arrays (“Tensor”) of floating-point numbers. They present the advantage to be fast to
compute on modern highly parallel devices.

Here are the structures in the neural networks:

• Parameters: they are weights and bias: They are frequently updated during the
training phase but constant during the prediction phase.

• Features of the input data samples flowing through the neural network layers in the
forward phase from the input to the output.

• Gradients of the parameters. It is the correction of parameters during the learning
phase.

• Input data samples and labels: The data to train on or to predict. Labels are used
only to train supervised deep neural networks.

All those values are historically stored as float 32 bits. However, this format raises some
criticisms on the fact it under-used extreme values from this encoded range and poorly
uses computing resources. The precision is especially important during training when the
loss is becoming lower and lower and back-propagated through layers but in the forward
phase, such precision has been shown less useful. This is why other float format is used or
have been invented:

• float32: 1 bit sign, 8 exponent, 23 fraction. It is the most common byte representation
for all DNNs data structures.

• float16 (or “half-precision”): 1 bit sign, 5 exponent, 10 fraction. This is a format more
and more used for faster computation, saving memory, and consuming less energy.
float16 may hurt deep learning accuracy compared to float32.

• uint8 (or "byte" or "char"): integers from 0 to 255. They are often used to quantify
image pixel intensity.

• bfloat16: 1 sign, 8 exponent, 7 fraction. bfloat has been introduced by Google. Cloud
TPUs are designed to efficiently train a deep neural network with mixed precision
between matrix multiplication with bfloat16 and accumulation with float32. More
details in section 5.3.4.

• ...
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Some criticisms persist with this current formalism. Most operations are performed
with values very close to or equal to zero, indicating that the dense operation is maybe not
the ideal representation.

However, a new sparse layer [159], well-tuned deep learning, efficient parallel pattern,
and low-level code optimization are the lines of research to overcome this challenge. In
this thesis, we propose in particular to tune and to ensemble neural networks efficiently.

The brain is also a source of inspiration for the current research:

• Spiking Neural Network. (SNNs) are machine learning models which can be applied
to some usual machine learning problems. They have the specificity to closely
simulate brain functions compared to the usual artificial neural networks (ANNs).
However, usual ANNs as such those used in this thesis achieve better accuracy than
SNNs with equivalent neural network complexity [152].

• Neuromorphic hardware. Neuromorphic devices are physical neural networks to
perform neural network computations. Among the most promising SNN dedicated
chipsets, Intel developed the Loihi experimental chipset [29]. It is between 0.7 and
5760 times more computing efficient to achieve the SNNs workload compared to a
low-voltage Intel 1.67GhZ Atom CPU (2010).

However, due to the lack of systematic improvement, we still use the usual ANNs for
this thesis. The Von-Neumann massively parallel chipsets (e.g., GPUs or TPUs) are the
most suitable hardware for our ANN workloads. However, we will remain vigilant to the
progress in SNNs and Neuromopism toward energy-efficient systems.

4.4 Transfer learning

Transfer learning [157] technics consists in using previous knowledge and using it for a
different but related task. Under the transfer learning framework, they are two multiple
methods serving multiple purposes: pre-training and fine-tuning.

Pre-training consists of re-using all parameters from a previous task to the targeted
task. For example, to classify 224x224 RGB microfossil images, we may use the previously
trained ResNet50 neural network on Imagenet instead of random initialization [48]. It
is now well established that transfer learning accelerates the convergence speed with a
relevant initialization point but it may sometimes decrease the final prediction accuracy
compared to the random initialization [38].

Fine-tuning consists of re-using a part of the previous neural network from a previous
task and training only a sub-part. For example, we may re-use a previously trained
ResNet50 on Imagenet, froze its 49 first layers, and train only the last layer. This allows fast
convergence and an accurate model in condition the split how many layers to freeze and
how many layers to train is well chosen. A well-chosen split corresponds to well identifying
the two parts of the neural network: the general enough layers which are common to two
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tasks and should be frozen (such as contour extraction low level), and the layers too specific
which are specific to the task (such as the aggregation of high-level features). Because the
trainable part may contain a low number of parameters this procedure is known efficient
to avoid overfitting and fast to be trained.

4.5 Deep Learning Frameworks

4.5.1 The training frameworks

We see in previous years the emergence of Theano framework followed by a plethora of
frameworks like Tensorflow, Torch, Keras, Caffe, CNTK, MXNet... Today some frameworks
are still massively used: Tensorflow2, Tensorflow1, Keras, and Torch.

They are 2 API types, either programming with the mathematical operations such
as Tensorflow 1 (lower level of abstraction) where 1 line of code is typically one maths
operation. Another interface consists in stacking neural network layers (higher level of
abstraction) such as Keras where 1 line is directly one neural layer.

Another important distinction is by their execution mode, some or eager others are
lazy:

• Eager execution mode. It is the most common code behavior. Each line of code
specifies a compute and returns the corresponding result immediately.

• Lazy execution mode. Each line specifies a compute and returns the specification of
the building graph. A final instruction run the graph.

The eager mode is simpler to write and debug because the developer can run and assess
them one by one. While the lazy mode allows compilation and instruction of the overall
graph.

Tensorflow 1 is lazy, Torch is eager, and the Tensorflow 2 developer can switch from
eager mode to lazy mode. The eager interface is more intuitive and flexible, but this can be
slower performance and deployability. On the simple example of the official documentation,
lazy computing may be 75% faster than their eager equivalent. Graph optimization is
further discussed for the inference phase in section 4.5.2 and some computational technics
may be re-used for the training phase.

Those frameworks are extremely popular with thousands of contributors. Their internal
mechanism and programming API are maybe the fast-developing open-source projects
with several updates every day, increasing their features, bug fixes, and increasing their
performance. This fast evolution of training frameworks mixed with the fast low-level
computing libraries evolution and the IA dedicated hardware evolution make the field of
the ML platform improving fast.

This evolution in performance makes the training of neural networks easier and
easier. This unlocks the possibility of new methodologies such as training multiple
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models independently for hyperparameter optimization and ensemble learning that were
impossible before.

4.5.2 The inference frameworks

The inference frameworks contain generally two main functions, the “load” function to load
a trained DNN from the disk to a targeted device and the prediction function f (x) → y
with x the data samples and y the associated predictions. The most sophisticated inference
frameworks [30], [47], [138], [144] perform post-training optimization such as operations
optimization and device-specific optimizations with low or no impact on the accuracy.

A critical part of optimizing the performance of a DNN model is to calibrate its batch
size for a target device. It controls the internal cores utilization, the memory consumption,
and the data exchange between the CPU containing input data and the device supporting
the DNN (if different). That is why some tools 1 scan multiple batch size values and return
the fastest one. This Best Batch Strategy (or “BBS”) is a relevant mechanism to optimize a
single DNN on one device, but it is a naive and rigid method to optimize multiple DNNs
predicting together.

4.5.3 The inference system architecture

After training the desired DNN or building the desired ensemble of DNNs we want to
infer with it to serve a user application. There are multiple ways to serve this application,
either to embed the neural network in the application or delegate it to a server.

The most common metrics are throughput (prediction per second) and latency (time to
predict on one data sample). The stability of the latency may be also an important metric
in some critical applications such as autonomous vehicles.

Embedded inference. The first way to infer with a neural network consists to embed
the neural network in the application. A neural network file may take a few seconds to
load into the GPU memory. Therefore, the application must be built by persisting the
neural network in the memory to be ready to answer the requests.

This design is simple and applicable in numerous applications. It is also suitable in
embedded systems applications in which requesting an external server of DNNs is not
always possible. Finally, the absence of middleware between the DNNs and the remaining
business application is efficient to improve real-time performance and this is a suitable
architecture for real-time application.

Client-server inference. Embedded the DNNs in the business applications is a simple
and intuitive design. However, argued architecture choices can separate the DNNs from
the rest of the business logic applications.

When a light client machine is connected to a distant powerful machine, it suits the
client-server architecture: The light client requests data samples and receives predictions

1"https://github.com/triton-inference-server/model_analyzer/blob/main/docs/

config_search.md"

"https://github.com/triton-inference-server/model_analyzer/blob/main/docs/config_search.md"
"https://github.com/triton-inference-server/model_analyzer/blob/main/docs/config_search.md"
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from the server. Additionally, a client-server approach can be also desirable for software
architecture’s sake: It allows centralizing the responsibility, changing, and extending of
DNNs into one single application while keeping the code of the business applications
focused on the business logic.

The last few years, we show the emergence of software [28] [175], [110], [119] to serve
inference framework predictions as a service. Most of them serve wrap prediction in a
REST service or sometimes in database management service [3]. They implement often the
same features. Ensemble selection allows the client application to choose the model which
will answer among multiple applications or the same application but the desired trade-off
between accuracy and speed. To improve performance under redundant requests, caching
allows avoiding recomputing similar requests. When the amount of requests is low and
irregular, adaptative batching allows triggering prediction before the buffered batch is full
to improve the latency. We will not enter the details of the engineering of the server to stay
focused on the specificity to predict with multiple DNNs together.

To conclude. We stay vigilant to answer those two architectures types when developing
an inference system in section 8. This is why we develop it like an intermediate layer
between the inference framework (to benefit from computing graph acceleration) and the
remainder of the business application (either embedded or client-server). Our proposed
inference system is a simple function taking data samples as input and predicting as output
by persisting the ensemble of neural networks in the memory. It may be nested in any web
server or business logic application.

4.6 Data file format

Deep learning is a data-driven approach requiring a large dataset to be properly trained.
In Big Data applications, the entire training set cannot be stored in the memory, so
the machine learning algorithm must load it multiple times part by part to be trained.
Therefore, machine learning is a reading-intensive method requiring efficient data file
format. That is why we are interested to benchmark different dataset formats for energy
efficiency sake and to avoid the bottleneck performance of our application. We emphasis
also on the simplicity of the API and its robustness to external conditions.

Multiple performances may take into account and no strategy allows for optimizing
each one. This is why the best data file format must be evaluated in a given context, in this
thesis we focus on HPC applications rather than the cloud. First, the access of data should
take into account the acceptability between many small I/Os or a few large I/Os.

In our HPC case, small I/Os may stress the file system for all users. In our HPC
environment, the Lustre file system allows parallel access to the content of the files but
requires a few best practices such as avoiding storing a large number of files in the same
directory and reading a large number of small files.

For the performance’s sake when a new application is incoming, we must analyze if
the disk is on-premise (multiple 100GBs/sec.) or if a network is bottlenecking and may be



44 Chapter 4. Deep Learning

worth compress/decompression time. To make this analysis we compare different reading
speeds (including I/O and decompression speed), the compression rate, and the error
introduced.

We benchmark and analyze multiple formats in section 5.3.1. We then use the best-
suited one for our platform during the remaining of our works.

4.7 Mixed arithmetic

The majority of the deep learning applications use the single-precision floating-point
number IEEE 754 (or FP32). Lower precision improves the computing speed but it reduces
the arithmetic stability and reduces the deep learning ability to recognize objects. Due to
the complexity of the underlying phenomenon and the potential gain in the training and
inference phase we dedicate a section 5.3.4.

4.8 Data parallelism

Data parallelism consists in duplicating the neural network on multiple GPUs and dividing
the global data batch into local batches. Each GPU takes charge of a local batch resulting
in the parallel computing of batches. We may divide the data parallelism into two distinct
algorithms according to if we accelerate the inference phase or the training phase.

Data parallelism makes sense only when the neural network handles multiple data
samples. For example, it does not suit deep reinforcement learning applications in inference
mode where data samples (i.e., “states”) and predictions (i.e., “actions”) are exchanged
with the simulator.

4.8.1 Data parallelism in inference phase.

The inference phase is a long-running process delivering the predictions to the associated
business client application whenever it is requested. Therefore, optimizing the inference
speed is sometimes considered more strategic than training [33].

Data parallel prediction consists in splitting data, predicting with the neural network in
parallel, and combining predictions. The independent nature of predictions makes the task
trivial with existing frameworks such as the MapReduce framework [31] and the emergent
inference server technologies such as RayServe [110] and Triton [175]. However, those
technologies may fail to handle efficiently ensembles of neural networks, this is why we
dedicated the chapter 8 with novel and substantial contributions.

4.8.2 Data parallelism in the training phase.

Accelerating the training speed is strategic because it is a computing-intensive step of the
machine life cycle that must be repeated each time the dataset is updated. Data parallel
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training consists in attempting to improve speed by distributing computation on multiple
GPUs at the cost of communication time.

Each worker is associated with a training device (generally a GPU), and iterates on
those steps :

1. Loads the local batch of data samples

2. Compute the local gradients (forward and backward)

3. The global gradients are gathered and averaged across all workers. This is a synchro-
nization step.

4. Parameters are updated using the global gradients.

Ideal optimizer settings in data-parallel may not be ideal in sequential training. This
claim makes the comparison challenging to formulate if data parallelism really accelerates
the training convergence speed.

The fact the question is strategic and complex is the reason we dedicated a chapter 5.3.3.
We attempt to evaluate the behaviors under the concept of training convergence, perform
general conclusions, and propose directions to follow toward efficient deep learning model
construction and deployment.

4.9 Ensemble Machine Learning

Ensembles of deep neural networks may improve significantly generalization ability com-
pared to one single neural network [149].

Ensemble Machine Learning, in its simplest form, consists of 1) training N models
independently with different random seeds 2) averaging those N models’ predictions to
create a better final prediction.

In figure 4.2, we do not make appear ensemble of machine learning models in the
standard machine life cycle. Even if machine learning scientists have well understood the
benefits of ensembles, the procedure to build them automatically is unknown. And more,
predicting efficiently with ensembles is out of the scope of the current inference frameworks
and inference servers. This thesis underlines those missing pieces of the pipeline and
proposes new procedures for both applications types: supervised deep learning and deep
reinforcement learning.

4.9.1 Theoretical explanation

Thanks to a huge number of parameters, DNNs have a lot of freedom to denoise signals,
identify patterns and classify them. However, this great advantage becomes a drawback
when DNNs fit too much training dataset and cannot generalize on the test dataset. Over-
fitting refers to the behavior of a model to take too much attention to non-informative
noise.



46 Chapter 4. Deep Learning

Let’s try to discover how an ensemble of neural networks improves the final predictions.
We first consider that neural networks have unbiased but noisy predictions of standard
deviation σ with 0 as of right answers. We can note the prediction of a neural network
following X ∼ N (0, σ2). When n independent neural networks predictions are interpolated
the ensemble error prediction becomes σ/

√
(n). The square root function shows that

increasing the number of models n is always beneficial and allows to converge predictions
towards 0 but the benefits of ensembling are declining according to the square root function.

Indeed, the above formalism hides a lot of complexity. First, each neural network
contains an unknown amount of bias error and variance error and each error follows
an unknown distribution. There are multiple procedures to build ensembles. Any good
procedure should ensure that the ensemble predictions outperform the best neural network
in it. Finally, any good procedure should ensure the final accuracy is obtained with a
reasonable amount of computing power.

Authors [149] first promotes the same algorithms at different runtime to reduce variance
by averaging their predictions. Then, authors [97] [11] [42] promote more and more
diversity, not only based on the random effects, but with different Machine Learning
algorithms in the same Ensemble to maximize diversity and so promote diverse biases in
the same ensemble.

All those previous works have been applied to non-deep learning. The optimal proce-
dure for (non-deep) machine learning algorithms may not be ideal in the deep learning
case. This is what we discovered in section 4.9.3.

4.9.2 Challenges

The majority of scientists build ensembles manually by gathering neural networks from
a library of models. It allows them to use already implemented neural networks and
pre-trained weights. These simple technics have multiple limitations to be applied to a new
task. We will attempt to enumerate them here.

• Large amount of manual experiments. The number of possible ensembles from a
library of models is defined by n2 − 1. For each neural network, we can imagine a
bit to decide if we select it, minus the empty ensemble. For example, a library of 10

state-of-art models requires a workload of 1023 ensembles to evaluate.

• Absence of available library. First, if the deep learning task is original no library
will be available or the on-the-shelf architectures poorly adapted. Of course, hyper-
parameter optimization may generate a library of models, but HPO works have been
thought to tune the best neural network possible and not the best library to then
ensemble them.

• How combine them ?. Multiple procedures have been proposed. Multiple questions
may be answered. How to ensure some base neural networks are complementary?
Is it necessary to give more importance to the best base model in the ensemble
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according to the validation score? Do ensemble methods improve accuracy compared
to only select the best available neural network in it?

• High computing cost. A Deep Neural Network is already a computing-intensive
maths model. Ensemble of deep neural networks raises the question of whether the
accuracy is worth the increased computing cost. An ideal procedure should allow
selecting the trade-off according to the user’s preference.

• Software to handle the parallelism. Some inference server [175] [119] [2] allows man-
aging multiple DNNs in parallel mostly for multi-user purpose or multi-applications.
However, they are not adapted to compute heterogeneous deep neural networks
predicting together.

4.9.3 Experimental analysis

Multiple ensemble procedures have been proposed to predict with multiple machine
learning algorithms. Our goal is to experiment fairly the most of the Ensemble Deep
Learning methods available.

Experimental conditions. The base neural network, optimizer, and database used for
experiments are the ones that are proposed in the tutorial of the framework Tensorflow and
are drawn in figure 4.3. It is a simple and efficient architecture allowing fast experiments.
Models have trained 10 epochs on the CIFAR10 dataset and they perform an accuracy of
70.70±1.65.

Figure 4.3 – Simple and efficient convolutional neural network architectures given by the Tensorflow
documentation. We use this tiny deep neural network allows to evaluate quickly ensemble methods without
advanced parallelism across multiple GPUs.

All experiments have been done with an ensemble of 4 models. All methods require a
combination rule, that is to say, a method taking the base predictions of the base neural
networks and computing the final. This algorithm may be the simple average, the majority
voting... Some more complex combination rule such as weighted averaging and stacking
consists of more complex algorithms which require calibration data, in this case, this is
called “meta-learner”. The ensemble with a meta-learner can be trained with the 1-split
mode or 2-splits mode. In 1-split mode, models and meta-models are trained on the
training dataset containing 5000 images by class. In 2-splits mode, models are trained
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Major. vot. Avg. W. avg. Stacking Gating
1-split mode 74.97±0.49 76.22±0.50 76.83±0.45 76.87±0.25 76.28±0.47

2-split mode N/A N/A 76.61±0.20 76.40±0.16 76.51±0.50

Table 4.1 – Different combiner rules. N/A means the combination rule cannot be calibrated on the validation
samples.

Bagging Bag+Stack AdaBoost NCL
1-split mode 76.63±0.42 76.92±0.46 76.94±0.40 76.50±0.92

2-split mode N/A 76.33±0.34 N/A N/A

Table 4.2 – Different training procedure in Ensemble
Int. Stacking Int.Stacking2 FS Snapshot L.

1-split mode 72.64±0.65 76.08±0.34 75.81±0.50 73.36±0.26

2-split mode N/A 74.14±0.31 N/A N/A

Table 4.3 – Accuracy of some deep learning of individual model in Ensemble.

on 4500 images by class and meta-learner on the 500 remaining images by class. Some
algorithms do not have a meta-learner so the 2-splits mode is not applicable.

To test the effect of neural architecture diversity we build and trained 4 models with
different architectures until reach ≈ 70% accuracy. To classify new data we use the
Averaging strategy.

Results with 4 base neural networks. The table 4.3 shows all method implemented
and tested. We implement and assess: averaging, majority voting, weighted averaging [55],
bagging[9], stacking [170], AdaBoost [140], gating [7], snapshot learning [67], Negative
Correlation Learning (NCL) [102], Features pyramid ensemble inspired by [99] (each
DNN is independently trained on different resolution of images: 24x24, 32x32, 48x48 and,
64x64)+averaging, bagging+stacking [10].

We may attempt to class them among diverse categories but a complete taxonomy is
difficult due to the multiple strategies proposed: implicit diversity (averaging, bagging), ex-
plicit diversity (NCL, features pyramid ensemble), priority to the best (weighted averaging,
stacking, gating).

Implicit diversity does not guarantee enough diversity and the best one has the same
weight as the poorest. Explicit diversity does not guarantee to be the ’right’ form of
diversity and risks damaging individual accuracy. In the elitist approaches, the data
samples used to evaluate which base model is the best may not well generalize and may
produce low diversity.

Scale the number of base neural networks. Figure 4.4 shows the effect of increasing
the number of models on the accuracy. The meta-learner of the stacker is set to be linear
regression, its performance declines when the number of input decline due to overfitting.
It shows that averaging is a simpler and more robust method than stacking.
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Figure 4.4 – Ensemble accuracy by varying the ensemble size from 1 to 100.

4.9.4 Summary on ensembles

To conclude, multiple advanced methods have been proposed for decision trees but our
first experiments show that simply averaging predictions deep neural network is simpler,
accurate, and robust. First it success to reduce over-fitting, without the need to calibrate
a meta-learn on some validation samples. However, there are still a lot of challenges to
overcome: such as how to select the model in the ensemble? How ensure that the prediction
gain is worth the computing cost? What about reinforcement learning? How to deploy
them in inference? We will attempt to all those questions later.

4.10 AutoML

The empirical nature of research in Deep Learning leads scientists to try manually multiple
model architecture settings, optimization settings, and domain-specific settings to find the
best-suited one for a new task. AutoML or (“Automated Machine Learning”) attempts to
automatically perform the tuning hyperparameters, training parameters, and testing loop
of machine learning illustrated in section 4.1.

The performance of those models is optimal when both parameters and hyperparame-
ters are optimized. They are especially difficult to calibrate in the context of deep learning
where the architecture contains millions of parameters to optimize toward qualitative
prediction, and tens of hyperparameters aiming at both qualitative and a suitable technical
performance.



50 Chapter 4. Deep Learning

4.10.1 Definition

AutoML is generally made of at least 3 modules that will be presented in the next sections:
the hyperparameter space (“HPS” for short) defining all potential DNNs, the hyperparam-
eter optimization algorithm (“HPO” for short) defining the DNNs sampling strategy, the
evaluation phase consisting to compare DNNs.

Some additional modules can be proposed to improve the automation of DNNs con-
struction. For example, in section 6 we propose the idea to store on the disk all assessed
models during the hyperparameter search, and we propose a fourth module to build
ensembles of deep neural networks.

More formally, any model previously trained of hyperparameter λ sampled from
hyperparameter space Λ is written Mλ. The hyperparameter optimization goal defined in
equation 4.4 consists in finding the best hyperparamer λ∗ ∈ Λ building a model to reduce
the error measured by E. The error is measured on the validation data xvalid matching
labels yvalid.

λ∗ = arg min
λ∈Λ

E(Mλ(xvalid), yvalid) (4.4)

In the literature, AutoML algorithms are typically compared based on their results
in the evaluation phase. While this may seem intuitive, this field is now facing multiple
methodological questions [90] on the relevance of comparing multiple workflows made of
different stages and different initial conditions, using different hardware. And more, to
fairly compare their robustness, multiple datasets, and multiple random seeds must be
reported which is a computing-intensive research area limiting initiatives.

4.10.2 Optimization methods

No Free Lunch theorem [169] proves that no black-box hyperparameter optimization
(HPO) can show superior performance to random search in all cases. Nevertheless,
methods searching between global exploration and local exploitation have shown a stable
performance in diverse applications.
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Figure 4.5 – Sketch of the three families of hyperparameter optimizers: rather exploratory optimizer, rather
exploitative optimizer, or use on-the-shelf hyperparameters

Even if most optimizers balance between exploration and exploitation, some methods
are “more exploratory” and others “more exploitative”. The more explorative approaches
consist in using the previous values to compute the next one, they may converge fast
towards an optimum but may be stuck there forever. Due to their sequential nature,
exploitative methods generally fail to exploit efficiently multiple GPUs.

On the opposite, explorative methods consist of sweeping hyperparameter space with
low attention to the previous values. It may take more time to get reasonable accuracy
compared to the exploitative, but in the long term or with a large amount of computing
power, they generally outperform because they leverage naturally from multiple computing
units and do not fail in a local optimum.

Last but not least, explorative approaches are more robust to the initial condition, while
the initial hyperparameter affects critically exploitative approaches. The robustness of the
hyperparameter optimizer is of major importance in AutoML because the end goal is to
automate the fastidious work to run the life cycle of the model with the low intervention
of a human.

A more general approach consists in searching not only neural network architectures
but optimization settings and data processing with fixed-length vector hyperparameters.
Bayesian optimization, like Sequential Model-Based Optimization (SMBO) with Gaussian
model is known to perform well to optimize continuous hyperparameters [147] [63].
Tree-based models are more adapted to the discrete hyperparameters like Tree Parzen
Estimator (TPE) [5] and Sequential Model-based Algorithm Configuration (SMAC) [69].
Despite SMBO being inherently sequential methods, parallel versions have been proposed
[147] based on successive populations to explore the hyperparameter space by leveraging
multi-cores.

Evolutionary methods [129] [176] are a naturally parallel approach running successive
generations of trials in parallel. By running them on a large scale on GPU clusters for
several days, the authors discovered they are capable to converge very late and very high.
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They seem the state-of-the-art to reach the maximum accuracy on complex realistic image
datasets like CIFAR100.

Additionally to the exploration/exploitation dilemma some technics have been pro-
posed to boost optimization performance. Early stopping [127] [93] has been also proposed
to stop the less promising trials to focus hardware on the most promising trials accelerating
the overall convergence process. However, when training dynamics are noisy (such as
Reinforcement Learning) we cannot guarantee that an experiment performing badly in
short term will be performing badly in the longer term.

Weights sharing [88] consists to perform previously trained parameters as initialization
of the previous experiment as initialization of the next experiments. It allows to save
computing costs and converge faster. However, sharing weights requires common neural
network architectures between experiment which make these technics hard to apply if the
neural architecture must be explored. Weights sharing leads also make the reproducibility
of experiments difficult.

4.10.3 Hyperparameter space, neural architecture search

The literature proposes two hyperparameters space approaches. Global hyperparameter
optimization searching all hyperparameters (optimization settings, neural architecture,
domain-specific settings, ...). The second approach is neural architecture search (or “NAS”)
where only the neural network is optimized and the other settings are fixed.

Global hyperparameters optimization is often made with a fixed-vector length that
associates each hyperparameter to its corresponding value (e.g., for example, see 6.1). It
is a convenient approach allowing to explore all aspects of the machine learning model
and its training but it may be limitations in terms of neural network architecture explored
compared to NAS.

In NAS approaches [123] [72] [101] neural networks are build by taking a sequence
of decisions to build a specialized convolutional block. This convolutional bock is then
repeated a fixed number of times to generate the entire neural architecture.

NAS is more suited to create a specialized neural network with a higher degree
of freedom to generate the DNN architecture by taking “micro-decisions” to tune the
convolutional block, for example, the number of convolutions per convolutional block,
their activation function... However, it cannot take the “macro-decisions” on the overall
architecture such as the number of convolutional blocks, the learning rate, and the batch
size.

We use a more global hyperparameter optimization with fixed-vector encoding to
search hyperparameters, this is a simpler and a more general approach. We exploit this
approach in the supervised context 6 and the reinforcement learning one 7.
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4.10.4 AutoML with ensembling

AutoML+ensemble proposed workflow is proposed in table 4.4. Due to the strong impact
on the business, those frameworks are going fast and are sometimes hidden behind
commercial services.

Name Backend Type Optimization Ens. sel. strategy Ensemble combiner

Auto WEKA [160] WEKA ML SMAC [69]
Ad hoc
5 models

Voting or Stacking

Auto Sklearn [42] sklearn ML
SMAC
with Dask

Forward greedy
# given

Averaging

TPOT [118] sklearn ML
Genetic
with Dask

Ad hoc Stacking

Autostacker [18]
sklearn
XGBoost

ML Evolutionary Ad hoc H. Stacking

H2O AutoML [87] H2O ML
RS [6]
with Spark

the best of each algo.
1 model per family

Stacking

H2O Driverless AI 2 H2O DL
???
with Spark

Ad hoc
# given

Averaging

Ours (section 6) Keras DL
Hyperband [91]
with Ray

SMOBF[124]
Averaging
in parallel
section 8

Ours (section 7) RLLIB DRL
RS
with Ray

Ad hoc
# given

Averaging
in parallel
section 8

Table 4.4 – Comparison of AutoML workflows.

Some columns are detailed below:

1. Type: “ML” stands for (non-deep) machine learning, DL such as image recognition
and DRL for Deep Reinforcement Learning.

2. Optimization: The optimization algorithm used. The mention “with Spark”, “with
Ray” or “with Dask” indicates the hyperparameter optimization is distributed with
one of those frameworks.

3. Ens. sel. strategy: stands for “Ensemble Selection strategy” defining how ensembles
are built. The first row indicates how the population is aggregated and the second
how the number (i.e., Fixed or calibrated on the validation set ?).

4. The mention “???” means the information is not present in the documentation. H2O
Driverless IA is a commercial tool with not enough information.

We observe that most of those tools are applied to (non-deep) machine learning or
hidden behind commercial services. Those facts reinforce the claim that our works on
chapters 6, 7 are a substantial and original answer to this literature gap.



54 Chapter 4. Deep Learning

4.11 Support of large models

The history of deep learning shows that those maths models’ quality increase when their
complexity increase. Bigger is a DNN and more time it will take to be handled. However,
memory is generally the true hard constraint limiting the execution of those models.

This section will describe the most popular method to handle those big models: model
parallelism and heterogeneous GPU-CPU memories.

4.11.1 Model parallelism

Model parallelism consists to split DNNs data structures across multiple GPUs to store
DNNs data structures such as parameters, gradients and features flowing through layers.
DNNs are generally a sequence of layers and so the cut is performed between layers and
generates n portions, each portion is associated with a different GPU among n GPUs.

In general, each portion is computed sequentially, the ith waits for the features from
the previous one and gives output to the next one. It makes n− 1 communications for
both forward and backward phases. The “model parallelism” may be confusing, layers
are computed sequentially with important communication costs, and no acceleration is
expected. To be more accurate, some rare DNN topologies contain different computing
branches such that Alexnet and Siamese Neural Networks that may be partially accelerated
with model parallelism.

This method succeeds to leverage multiple GPU memories in the condition the compu-
tational blocks may be fairly spread across multiple GPUs. For example, VGG16 containing
16 convolution layers cannot model-parallel properly with more than 16 GPUs. And more,
the convolution layers may have different settings and different resources requirement.

Multiple approaches have been proposed to tackle the computing time such as data-
parallelism and stale gradient mixed with the model-parallelism. Model-parallelism is
experimented in more details in section 5.4.

4.11.2 Heterogeneous GPU-CPU memories

As seen in section 4.2 the GPU suits well the deep learning operations compared to the
CPU. On the opposite, the CPU memory (RAM) is significantly bigger than the GPU
memory (VRAM). An ideal computation design should implement DNNs computing on
the GPU and the DNN parameters stored on the CPU with asynchronous marshaling
features an exchange between the GPU and the CPU.

We observe no deep learning framework still natively implements this heterogeneous
GPU-CPU implementation. However, some tools have been popularized such as Large
Model Support [84].
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4.12 Recap

We begin this chapter by showing the standard life cycle of a machine learning application
is iterative. We then show that deep learning is computing and memory intensive by
nature.

Transfer learning is generally a good parameter initialization to fast training but is
limited to applications where deep neural networks are used on the shelf.

Then, we see that data-parallelism attempts to increase the training speed by exploit-
ing multiple GPUs. It generally requires a large number of experiments before finding
optimization settings to limit the communication time with efficient convergence. This
thin equilibrium between communication time and efficient training convergence makes it
difficult to generalize on any DNN and any task.

We see that the history of deep learning shows that bigger model complexity is generally
more accurate, and memory is the true hard constraint in computers. Model parallelism
and heterogeneous CPU-GPU memories are procedures allowing for successfully exploiting
the memory of multiple devices, but they may introduce a significant communication
overhead.

Both AutoML and ensemble learning aims to improve accuracy. They raise multiple
challenges on the exact procedure to apply such as the control of the computing cost, the
distribution of computing if the accuracy gains with ensemble worth the computing cost...

We then explore state-of-art inference frameworks that are in active development to
increase the deployment and their speed. Although float 32 bits format is the most common
format, we observe deep learning arithmetics and format is under active research and
development: mixed arithmetic is a simple technic to train faster and convert to float 16

bits for faster inference with no or low accuracy loss. In this thesis, we keep using float 32

bits due to serialization issues when mixing technics with current frameworks.
For the following chapters, we will keep in mind the two important pieces of infor-

mation. First, the deep learning methods require multiple experiments to be well-tuned.
The second one is that the most computing-intensive deep learning models (ensembles
or big neural networks) produce generally better predictions. To overcome this compu-
tation requirement, optimizing the hardware utilization is strategic for machine learning
applications. The next chapter is an analysis and comparison of parallel patterns for deep
learning applications. The conclusion of this next chapter is also the stepping stone for the
contributions introduced in chapters 6, 7, and 8).
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Deep Learning analysis

High computing power allows to efficiently handle each step of the large neural
networks life cycle. To give the big picture, we begin this chapter (section 5.1) by

defining a taxonomy of the possibility offered by HPC for Deep Learning.
The next sections will follow the defined taxonomy point by point.
• Independant training. First (section 5.2) HPC allows training independent DNNs.

They are multiple reasons why we may require such as multiple machine learning
scientists submitting jobs or building highly accurate models.

• Building accurate model. Building a very accurate model is either performed with
either with hyperparameter optimization (generating multiple DNNs and selects the
best one [6] [123], or ensemble learning where multiple DNNs are trained and their
prediction are combined [184] [58] [155].

• Hudge DNN. The HPC (section 5.4) offers resources to train and infer very big DNNs
(>1B parameters) by splitting its representation among heterogeneous memories and
cores.

• Fast training. Some technics attempt to use the HPC to train fastest a given DNN
(section 5.3) by accelerating its convergence speed. Because time-to-accuracy may be
far from straightforward when exploiting multi-GPUs, it requires careful tuning of
the optimizer with multiple independent experiments run in parallel.

• Fast inference. Last but not least, HPC may allow hosting a performant service to
infer with previously trained deep neural networks (chapter 8).

We benchmark and provide a detailed analysis of most of those approaches. However,
due to the increasing number of frameworks and computing units for deep learning, it is
impossible to be exhaustive.

57
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5.1 Overview of parallelism

Achieving machine learning at scale is a complex notion due to the fact they are projects
made of multiple steps: such as the tuning of hyperparameters, the training, and the
inference requiring different parallelism patterns and facing different scalability issues. The
end goal is generally to maximize the end-user quality of service in terms of qualitative
predictions and predictions speed. On another side, the infrastructure has progressed into
complex heterogeneous architectures containing CPU, and GPUs making the design of
deep learning software more and more complex.

A useful taxonomy should achieve two things: firstly categorize and list all possibilities
offered by high computing power, the potential methods, and their expected outcome.
Secondly to allow us to spot gaps in the literature, allowing us to explore new techniques
or merges methods to overcome individual limitations.

The taxonomy is presented in figure 5.1.

• Phase

• Goal

• ML method

• HPC goal

• HPC method

Training Inference

Generate the 
best model

AutoMLEnsemble

Speed up the 
training loop

Deep Learning project

Improve time-to-acc.
(of 1 given DNN)

Large model handling Speed up

Batch size 
minimization

Increase 
avail. mem.

Data-parallel,
Intra-parallel, 
Comput. CPU-GPU

Independent 
training

Co-habitation,
inter-model parallel

Asynch. pipeline,
Data-parallel

Asynch. pipeline

Optimizer 
tuning

Speed up the 
inference loop

Batch size 
tuning

DNN 
compression

Major contributions
Analyzed and discussed

Figure 5.1 – Taxonomy of works on Deep Learning and HPC

For instance, we identify that Ensembling and HPO (or “AutoML”) aim for the same
goal: producing the best models, but comparing both approaches is not possible because
they are very different methods: ensemble learning seeks to predict with multiple models,
while HPO generates multiple models and select only the best one. They are very different
procedures and we ignore a priori which procedures are the most suited for a given task.

This is why we merge both approaches into the same method called “HPO+ensemble”.
This is the first published contribution to deep learning applications. We dedicate chapter 6
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to the first published HPO+Ensemble for computer vision the supervised case and chapter 7

the first one for reinforcement learning.
We also identify that ensemble learning is a well-known method and yet no software

allows it to serve them efficiently: no inference server nor inference framework is compatible
with the ensemble of independent neural networks. We fill this gap in chapter 8.

This tree allows us to see that the batch size has a lot of impacts on different phenomena.
It affects loss convergence, internal parallelism, and memory consumption.

5.1.1 Different distributed patterns for supervised DNNs

Deep learning applications may benefit from computing-intensive infrastructures by im-
plementing different patterns. We attempt in figure 5.2 to be the most exhaustive as
possible.
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Figure 5.2 – Different distributed patterns for supervised deep neural networks

The mapping between applications and computing patterns is flexible. Some deep
learning applications may use different parallel patterns. For example, training independent
DNNs may be distributed across multiple devices (if available) or can be co-localized into
one single powerful device.

On the opposite, some parallel patterns may be useful for multiple deep learning
applications, for example, model parallelism may be used in both the training and the
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inference phase. In the case of asynchronous data-parallelism with the server, some exploit
this pattern to distribute computing to leverage multiple GPUs, but some others [16] train
with geographically distant data samples for distributed applications.

Independent training. Independent training of DNNs may deserve multiple purposes:
hyperparameter optimization, training an ensemble of deep neural networks, or multiple
users submitting different training jobs on an infrastructure. We exploit distributed
independent training in this thesis and we enter more details in section 5.2.

Data parallelism. Data parallelism consists of training on different splits of the data
samples to attempt to accelerate the overall training. Data parallelism is more in-depth
analyzed in section 5.3.3. It is declined in multiple versions: without server [171] where
gradients are synchronized with AllReduce operation [31] or with a parameter server [95]
allowing to centralize parameters and distribute the computation.

5.1.2 Different distributed patterns for deep reinforcement learning

Multi-threaded Reinforcement Learning training has been proposed under multiples
patterns to accelerate multiple algorithms [112] [39] [112] [64].
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The environment 
instances may be in 
the same or different 
devices than the 
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Figure 5.3 – Two common distributed training patterns for the two reinforcement learning sub-type: on-policy
and off-policy.

We represent in this figure the most common and effective pattern for distributed
reinforcement learning. The experience gathering is distributed across multiple cores/-
machines with rollout workers. Distributed reinforcement learning is in-depth discussed
in section 7.1.2 and compared to independent training when multiple experiments are
required. Due to the fact deep reinforcement learning is an experimental field [59] [37],
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one should not formulate the workload as training faster one single agent, but instead
compute faster a workload of RL experiments.

5.2 Different independent training

This section describes how n experiments may be run on m devices efficiently, with
generally n ≥ m.

The software architecture is typically launched with three steps who launch processes:

• First we launch the master (or scheduler). It runs the HPO algorithm and sends jobs
(1 experiment = 1 job) to the worked pool. All communications are TCP/IP between
client-master and between master-workers. It schedules the jobs on the underlying
hardware. It is aware of how much a training consumes resources (typically, one
GPU) and it is informed of how much there are resources in the devices.

• Second, we launch a worker pool which is parameterized with the number of nodes
to use and the number of GPUs to use by node. They are associated with a GPU,
when the GPU is free, they request one trial to run to the master. and share memory
between worker

• Finally we run client which sends Python code to the master. It contains the HPO
algorithm and the CNN framework

This general-purpose scheme fits perfectly with the computation need of the majority
of parallel HPO algorithms [110] [133] [98].

5.3 Efficient training workflow

Speed up training offers faster iteration times, and the ability to explore more ideas.
Increased training iteration speed (“time-to-epoch”) is not always relevant if the general-
ization ability is sacrificed [62]. That is why both time and accuracy must be considered
together. Accelerating the training speed may be done in multiple ways: improving I/O
speed, prefetching, asynchronous training between I/O and training, data parallelism, and
mixed precision. In our applications, accelerating further I/O is not a priority because they
are compute-bound applications.

5.3.1 Dataset file format

Supervised algorithms require big data to produce qualitative predictions. In this section,
we compare multiple formats and technics on our data at TotalEnergies. Results are
summarized on table 5.1.

There is no ideal format because it depends on the context of the application. we
enumerate strategic characteristics before choosing a dataset file format:
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Microfossils Sentinel Comment
I/O
sec.

Comp.
rate

I/O
sec.

Comp.
rate

Without compression
numpy 1.54 1 0.67 1

pickle 2.99 1 1.41 1

hdf5 3.12 1 0.94 1

Only converted
numpy float16 13.52 2 6.77 2

numpy uint8 12.48 4 5.84 4

Generic compression

numpy zip 32.76 10.45 15.9 8.02

lzma - - - - Stopped after > 1 hour
zlib comp=1 26 8.4 12.14 7.16

zlib comp=9 23.16 10.65 11.45 8.02

bz2 comp=1 194.41 15.63 113.31 9.16

bz2 comp=9 217.1 19.27 133.31 12.33

blosc Error Error Error Error Error “too much bytes”

Compress
individually
each image

tiff 27.74 17.38 14.18 8.74

jpg 24.71 15.62 16.62 16.83

Microfossils MSE=2.3e-5
and Sentinel MSE=1e-4

jp2 277.47 10.61 Error Error Decompression error
png 37.86 7.1 20.85 5.26

Compress
as a mosaic

tiff 24.92 19.95 N/A N/A
Microfossils images are
stored as a 125*160 mosaic

jpg 22.96 115.21 N/A N/A
jp2 Error Error N/A N/A Microfossils decompression error
png 35.14 20.4 N/A N/A

Table 5.1 – Different file format, reading speed (I/O) and compression factor (C) on two different chunks of
training dataset: 20000 micro-fossils small images, and 1 big sentinel image. Some formats performance are
data dependant such as zip and jpg

• Reading time (I/O time + decompression time)

• Mean compression rate

• Mean loss introduced

• I/O pattern. Many small I/Os or a few big I/Os

We evaluate HDF5 [44] in figure 5.4 to parallel the reading with different settings. The
best HDF5 settings is still slower than the raw file format.
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Figure 5.4 – Format comparison between raw and HDF5 files format. Left the chunk of size 10243 × 3 and
the right one is of size 10244

To summarize, the raw file format is the fastest lossless file format. In the case where
the I/O is bottlenecking (distant data samples, disk stress) the JPG file in a mosaic achieves
a higher compression rate by factor 7 compared to naively stored independent files,
without affecting significantly the MSE values. The PNG compression rate is multiplied
by 3 compared to the independent files. Those results show that to improve the image
compression algorithms, storing images side-by-side in a bigger file is beneficial.

5.3.2 Training workflow

The choice of file format is argued in the previous section and the best one is dependent
on the application. In the remaining of this thesis, we keep the original dataset built by
experts and copy it for machine learning purposes. The ML dataset must be regenerated
each time the original one is updated.

We safely load the DNN based on the "try-except" Python code instructions. We try to
load the DNN on a GPU and we catch "out of memory" of the GPU. If it does not fit on a
GPU either a large model training approach (section 5.4) or we use another deep learning
architecture. In case of a hardware crash or divergence, the DNN is checkpointed regularly
on the disk.

The trainer loop is built of multiple threads: The reader performs reading instructions,
the preprocessor performs batches and data augmentation on the CPU, and the trainer
runs the gradient descent on the GPU. Some additional processes may be implemented
such as the evaluatator performing and displaying metrics to the engineer.

The compilation and time-optimization of neural networks training is an active field of
research with recent initiatives such as XLA [85].

5.3.3 SGD data parallelism

Data-parallelism aims to accelerate the training time of one candidate DNN (or "trial"),
but despite hardware improvement (such as NVLINK [115]) and performant improvement
(such as ring-all-reduce [171]), they are challenging to well scale. This is due to the
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relative speed performance compared to forward-backward compute on GPUs and the
communication of millions of weights at each batch.

Some authors [177] succeed to get good scalability on thousands of GPUs based on
hudge batch size to reduce communication and a very careful learning rate scheduling.
However, the scalability is hard to reproduce on other DNNs because a huge batch size
sharpens the loss function and increases the sensibility of the optimizer, and is prone to
overfitting.

Experimental results Figure 5.5 shows the validation accuracy when we vary the
number of data-parallel workers and diverse batch size. A complete benchmark should
also assess different optimizer settings such the learning rate, the optimizer (e.g. Adam
[76], SGD, SGD with momentum [128] ...).

Figure 5.5 – Effect of data parallelism a ResNet50 on the accuracy-over-time trained on the microfossile
dataset with SGD and the 0.001 learning rate. We vary the global batch size (“B”), and the number of GPUs
(“G”) computing the synchronous SGD. GPU are NVIDIA Tesla V100 in a DGX1 server.

We run those experiments on a DGX1 computer node. It contains multiple GPUs
and implements performant connectors between them to accelerate GPU communication,
the “NVLINK”. We observe that only a few GPUs are directly connected with NVLINK
technology and the other one with PCI-EXPRESS. The complete interconnection topology
is presented in figure 5.6. In all data parallel experiments shown in figure 5.5, we exploit
contiguously the GPU in ascending order beginning with the GPU 0.
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Figure 5.6 – Connection topology between GPUs in a DGX1 server. Each GPU may deliver up to delivers
125 teraFLOPS of deep learning. NVLINKv1 links transfer gradients up to 20GB/sec. PCIe links are 16
lanes of PCIe 3.0 delivering 15.8GB/sec.

The literature tries different data-parallel methods mainly focusing on the best proce-
dure to optimize leaving out the neural architecture search as a different problem. And
yet, the architecture and the parallel optimizer are linked. First, the best data-parallel
optimizer and its settings (e.g., batch size, learning rate, number of GPUs) for one neural
network may not ideal for another neural network. Second, some neural networks are
easier than others to scale [171]. In absence of further explanations, we analyze different
neural networks and observe they are different computing/communication rates. The
table 5.2 shows the estimation of computation and communication ratio.
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Neural network Forward time (sec.) Parameters (M) Comp/Comm ratio
MobileNet 2.12 4.3 0.492

MobileNetV2 [137] 2.20 3.5 0.628

MobileNetV3S 1.56 2.5 0.626

MobileNetV3L 2.18 5.4 0.405

ResNet50V2 2.00 25.6 0.078

ResNet101V2 3.54 44.7 0.079

ResNet152V2 4.83 60.4 0.080

NASNetMobile 1.87 5.3 0.352

NASNetLarge 17.33 88.9 0.195

Xception 5.49 22.9 0.240

InceptionV3 [155] 2.88 23.9 0.120

InceptionResnetV2 [156] 2.08 8.1 0.257

DenseNet169 2.28 14.3 0.159

DenseNet201 2.84 20.2 0.141

VGG16 [184] 3.19 138.4 0.023

VGG19 3.41 143.7 0.024

ResNet50 [58] 2.95 25.6 0.115

ResNet101 4.03 44.7 0.090

ResNet152 5.02 60.4 0.083

EfficientNetB0 [158] 3.08 5.3 0.581

EfficientNetB1 2.46 7.9 0.311

EfficientNetB2 3.34 9.2 0.364

EfficientNetB3 4.52 12.3 0.368

EfficientNetB4 12.01 19.5 0.616

EfficientNetB5 22.00 30.6 0.719

EfficientNetB6 36.76 43.3 0.849

EfficientNetB7 61.97 66.7 0.929

EfficientNetB0V2 1.21 7.2 0.168

EfficientNetB1V2 2.04 8.2 0.249

EfficientNetB2V2 2.54 10.2 0.249

EfficientNetB3V2 3.67 14.5 0.253

EfficientNetV2S [159] 7.81 21.6 0.361

EfficientNetV2M 19.40 54.4 0.357

EfficientNetV2L 32.08 119 0.270

Table 5.2 – Estimation of the compute-communication ratio. The “compute” is expressed as the forward
time to predict with a 64 batch size (An ideal computation measure should be expressed with not only the
forward time but forward+backward but we lack time to obtain those figures). The communication complexity
is linearly dependent on the number of weights to exchange between data-parallel threads.

The forward time is used as an approximation of the training time and the number of
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parameters is linearly linked to the communication time. The estimated compute/commu-
nication ratio confirms what previous authors [171] experimentally observe: ResNet101

generally scales better than VGG16, and InceptionV3 scales slightly better than ResNet101.
This ratio allows knowing quickly if a neural network may have a chance to scale without
requiring sweeping several hyperparameters. This method does not give accurate informa-
tion on the ground-truth scalability but it is a rather heuristic that could allow identifying
which neural network has the most chance to scale.

The first major observation is that the last invented convolutional blocks are not only
more efficient on one GPU, but we demonstrate they have the potential to better scale on
multiple GPUs. The invented EfficientNet convolutional blocks (2019) and EfficientNetV2

(2021) are between 0.3 and 0.9, ResNet convolutional blocks (2016) between 0.08 and 0.012,
and than VGG convolutional blocks (2014) around 0.002. The second observation is that this
rate varies in one given architecture family. It teaches us that the settings of convolutional
blocks are also important for scalability’s sake.

Now let’s quickly summarize the phenomena interacting together when we want to
accelerate the training of any deep neural network on multiple GPUs with data parallelism.

• Smaller batch size values generally improve and accelerate the convergence. However
small batch sizes increase the gradient synchronization frequency.

• Bigger batch size generally decreases the convergence and reduces the gradient
synchronization

• We list multiple deep neural networks and show that they have very different
computing-communicating rates.

Data parallelism does not guarantee to systematically speed up the training convergence
of a DNN compared to training it on one single GPU. For example, with the Resnet50 we
converge faster with small batch size values and 1 GPU. Therefore, another data parallel
was introduced to run asynchronous SGD where weights are centralized on a parameter
server. This avoids SGD workers waiting for gradients, so they spend more time iterating
locally on SGD iterations and regularly load and update global weights from the server.
However, due to the asynchronous nature of this process, the workers may update obsolete
versions of the server and send non-consistent gradients (“stale gradients”). This is why it
is now accepted [19] that synchronous SGD has a faster convergence than asynchronous
SGD.

To conclude, as far we know, no data-parallelism method allows to accelerate the
training convergence in all cases compared to one GPU. In the next chapters, we argue that
asynchronous hyperparameters such as asynchronous hyperband [91] and random search
[6] [90] is an efficient way to leverage from multiple GPUs.

Due to the fact we exploit multiple GPUs to perform many experiments in parallel, we
do not exploit NVLINKs connections between them. The hyperparameter optimization
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workload may be run on any infrastructure containing multiple GPUs regardless of the
links between them.

5.3.4 Mixed precision

As previously seen in section 4.2, deep learning applications need to store accurate gradients
(precision around 0) but we generally don’t require precision for large values. 32-bits
floating point (FP32) is the most common format in deep learning but it raises some
criticism on the fact it is not adapted to the deep learning workload. Multiple benefits
are expected to use a lower precision format: faster arithmetic operations, faster memory
exchange, lower memory consumption, and lower power consumption. This is why lower
precision has been introduced under different arithmetic formats and different procedures
to improve the training and the inference phase.

Here is the commonly used format with the current GPU:

1. FP16. consists in storing weights in FP16 and computing FP16 gradients. It may
critically reduce the gradient magnitude precision around zero and keep the large
number representation unused.

2. FP16 with loss scale. [186] This procedure consists of artificially multiplying by a
value the FP16 loss to better use FP16 bits. Authors propose to tune it empirically:
disable it, fix a loss scale factor empirically or use a dynamic loss scale value according
to the current loss. A too high loss scale value may cause an FP16 overflow that is
fatal for the training process.

3. Mixed Precision. [186] It aims to improve the DNN training speed. It consists to
store and computing the forward and backward phase in FP16 by maintaining an
FP32 copy of the DNN. Authors and frameworks propose to use the loss scale to
attempt to improve the convergence. Finally, the FP16 copy may be used as the final
model for the inference phase.

We evaluate them on our microfossil case in figure 5.7 and the NVIDIA Volta 100 GPU.
Dynamic Loss scaling is set with the default parameters of Tensorflow. The fixed loss scaling
was performed with 1024 which is a common value in some technical documentations.

Figure 5.7 – We perform training of ResNet50 on the micro-fossils dataset by varying the numeric format:
FP32 training, FP16 training, FP16 with loss scale and mixed-precision training

When precision is lowered, it seems unpredictable how the training convergence
behaves. This is explained by multiple interleaved phenomena:

• Lower precision increases the iteration speed.
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• Lower precision may underflow the weights update.

• The noise introduced may regularize the training. For example, Stochastic Gradient
Descent and dropout operation [151] are good examples of intentional noise to
improve the generalization ability.

We also assess the simple procedure where the DNN is trained with FP32 and then, it
is simply converted in FP16 in figure 5.8. This FP16 model produced is the fastest FP16

produced model but it requires an usual FP32 training.

Figure 5.8 – Comparison between FP32 and post-training conversion from FP32 to FP16

Those complex and unpredictable phenomena reinforce our previous claim on the fact
that deep learning is a method requiring multiple experiments. Those results illustrate the
importance of launching automatically multiple experiments to select the best performing
one based on generalization and its computing speed. The numerical precision should
be ideally included in the hyperparameter space to let an automatic smart optimization
process tune it according to the desired performance. Despite the potential lower precision
gain, in the remaining of this thesis, we will only experiment with FP32 due to serialization
issues with current frameworks.

5.4 Large model training

The larger deep neural networks have been known as an effective approach to improving
model quality for several tasks [68]. To handle large neural networks, authors propose
several methods, a few tools emerged to tackle the challenge of training large neural
networks but they are still in an experimental stage. Today, no consensus seems to emerge
and each method hurts multiple practical challenges. They are different approaches
to balance the ability to exploit multiple memory devices and the speed. This section
compares those multiple methods.

5.4.1 Methods

Batch accumulation. A deep neural network replicates the entire model across all data
samples from the batch resulting in poor memory efficiency. Batch accumulation consists
in eliminating this redundancy. The training with a batch size of size n is performed by
cumulating n gradients with a fixed batch size of 1. Once the gradients are known, it
performs the usual parameters update. This method has two major drawbacks. First, it is
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useless if the neural network cannot be stored with a batch size of 1. Second, 1 batch size
generally lets a large proportion of unsued cores and so may.

Data parallelism. Data parallelism was previously discussed to speed up training, but
it can allow training of large neural networks too. The scalability depends on the batch size,
if the desired batch size is large, multiple GPUs can split the global batch across multiple
GPUs. On the opposite, the data parallelism fails to handle a large neural network if the
global batch size is already 1.

More generally, if the desired n batch size and g GPUs (such as n divisible by g). One
GPU must be able to store the neural network with a batch size of size n/g. When n is small,
the data parallelism is not a viable solution because it makes it impossible the division of
the workload across multiple GPUs. In general, when the neural network is large such that
U-net [134] or 3D U-net [24] the chosen batch size value chosen by scientists is generally
small: 1, 2, or 4. We may conclude by saying that the data parallelism approach is not a
viable method to handle a large neural network.

Model parallelism Model parallelism [78] is described in section 4.11.1. This method
succeeds to leverage multiple GPU memories in the condition the computational blocks
may be fairly spread across multiple GPUs.

Pipeline parallelism Combine model-parallelism and data-parallelism have been pro-
posed aiming both to train large models and to accelerate the training speed.

Gpipe [68] attempts to increase the training speed by mixing model-parallelism and
data-parallelism with synchronous SGD. In our experiments, the data-parallelism fails to
accelerate the training in all cases due to high communication costs between workers like
previously seen in section 5.3.3.

To attempt to alleviate this, PipeDream [114] has been proposed, it performs model-
parallelism and asynchronously SGD with stale gradients. Even if PipeDream accelerates
the training iterations compared to GPIPE, better convergence has not been shown in
practice.

5.4.2 Experimental results

The table 5.3 shows all those benchmarks.
Model parallelism is the only assessed method that can scale to multiple GPUs to

store huge neural networks. However, model parallelism requires the developer to spend
time mapping tensors and devices memory, this is quickly painful when multiple neural
networks must be managed and multiple GPU counts. Fortunately, some methods exist to
perform automatic model parallelism, this is the idea explored in the next section.

5.4.3 Automatic model parallelism experimental results

Automatic model parallelism is a method to automatically split a large neural network to
fit it in multiple devices’ memory. We use the Gpipe [68] method to automatically allocate
tensor operations to devices implemented with the TorchGpipe framework. We disable



72 Chapter 5. Asynchronous and distributed Deep Learning analysis

Initialization time (sec.)
Depth factor x1 x2 x4 x8 x16 x32 x64

#layers 152 302 602 1202 2402 4802 9602

1 GPU 53.8 105.5 233.2 OOM OOM OOM OOM
1 GPU accum. 107.6 304.8 1104.8 4294.1 OOM OOM OOM
1 CPU 112.1 227.2 434.7 913 1939.9 OOM OOM
LMS 69.6 166.4 470.4 17.6 OOM OOM OOM
4GPUs data-// 34.8 66.8 137.1 277.7 583.7 OOM OOM
4GPUs-model// 77 102.4 115.7 212 579 OOM OOM
8GPUs-model// 65.9 66.1 99.8 174.5 351 554.3 OOM

Time to train 1 epoch on 16 images (sec.)
Depth factor x1 x2 x4 x8 x16 x32 x64

#layers 152 302 602 1202 2402 4802 9602

1 GPU 1.3 2.2 4.3 OOM OOM OOM OOM
1 GPU accum. 3.7 7.2 14.9 33.1 OOM OOM OOM
1 CPU 11 21.2 70.3 122.1 222.4 OOM OOM
LMS 2.5 4.4 8.4 17.6 OOM OOM OOM
4GPUs data-// 2.4 4.7 9.9 21.2 46.1 OOM OOM
4GPUs-model// 1.2 1.6 2 3.4 6.2 OOM OOM
8GPUs-model// 1.1 1.2 1.5 2.3 5.5 7.4 OOM

Table 5.3 – The number of convolutional blocks of the ResNet152 is multiplied to benchmark different methods
to handle huge neural networks. The training time is given to train 4 batches of 4 data samples. The mention
“OOM” stands for “out of memory”.
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ResNet152 conv. multiplier x1 x2 x4 x8 x16 x32 x64 x128 x256
Number of parameters 60M 116M 228M 452M 901M 1.8B 3.6B 7.2B 14.4B
1 Tesla GPU (no GPIPE) 1.3 2.2 4.3 OOM OOM OOM OOM OOM OOM
2 Tesla GPUs 1.5 2.6 4.7 9.1 17.9 38.5 OOM OOM OOM
4 Tesla GPUs 1.8 3.2 6.1 10.9 21.8 47.1 OOM OOM OOM
8 Tesla GPUs 1.9 3 5.5 10.6 19 39.5 78.4 OOM OOM
8 Tesla GPUs + 1 CPU 11.4 21 41.8 82.2 166.3 466 666.7 1353.2 2504.3
1 Amper GPU (no GPIPE) 0.4 0.8 1.6 3.3 6.8 OOM OOM OOM OOM
4 Amper GPUs 1 1.8 3.7 7 13.6 27.1 56.2 OOM OOM
4 Amper GPUs+1CPU 2.2 4 7.4 14.9 28.2 56.9 113.6 207.8 OOM

Table 5.4 – Automatic model parallelism with TorchGPIPE by multiplying the ResNet152 convolutional
blocks from 1 to 256.

data parallelism because the additional communication cost increases the training time in
the majority of cases.

Experimental results. We multiply the ResNet152 DNN convolutional blocks from 1

to 256. Values are expressed as time (sec.) to train 4 batches of 4 images. OOM stands
for “out-of-memory’‘ when at least one device cannot store all the attributed tensors by
TorchGPIPE.

Experimental results are given in table 5.4.
Experimental results. We observe multiple phenomenon when we increase the number

of GPU in model parallelism:

• Memory scalability. Model parallelism successes to scale the memory. For example,
1 GPU may handle ResNet152x4, while 8 GPUs may handle ResNet152x64, a progres-
sive increase in the DNN size should exhibit the 8 factors. We also observe that the
memory of the CPU may be exploited but dramatically divide the training speed
between 2 and 8.5 according to the computing node type.

• Communication time. Computations are performed with sequential dependency
between layers, which leads to only one active GPU and letting the other ones idle.
The communication overhead may be estimated with a weak scalability analysis.
ResNet154x4 takes 4.3 seconds in 1 GPU and 5.5 on 8 GPUs.

• Alleviate the GPUs. Splitting the computational graph across multiple GPUs may
allow reducing the amount of needed memory per GPU, the memory traffic, and
different allocation between operations and cores. In some cases, model parallelism
accelerates slightly the training loop. For example, ResNet154x8 takes 5.5 seconds on
8 GPUs against 6.1 on 4 GPUs.

The “communication time” mixed with “alleviate GPU” have opposite effects on the
overall time, making the neural network computation time difficult to estimate a priori.
The complex relationships between phenomena illustrate that higher speed under memory
constraints may be obtained experimentally by varying some parameters such as batch
size and parallelism. This is what we do later in the context of the inference in chapter 8.
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Conclusion.
To be efficiently performed neural network architecture design must be tuned not only

to optimize prediction quality but to target given hardware architecture. For instance,
using model parallelism efficiently requires generally that the neural network can be
split into fine grains blocks to spread the memory consumption across target devices.
Mixing model-parallelism and data-parallelism have been proposed, but data parallelism
is challenging to tune in practice due to the large communication cost at each batch and
convergence issues.

Another approach is to perform ensembles made of an independent neural network
to then, combine their predictions. Training a larger neural network than one hurts
multiple performance issues due to the sequential dependency between layers. It is
reasonable to think that training multiple smaller neural networks to fit and combine
their predictions may be an efficient turnaround. This claim is reinforced by the fact we
previously discovered that an ensemble of DNNs from a library of DNNs, is often Pareto
superior to the best one regarding the accuracy and computational time.

5.5 Inference systems

It is common knowledge that machine learning tuning and training are time bounded and
intense computing activities, while the inference phase serves its predictions for a long
period. This is why optimizing the inference time is sometimes considered more strategic.

An inference deep learning framework consists in predicting with an already-trained
neural network. This section analyzes the performance of prediction of some frameworks:
Tensorflow, ONNX, OpenVINO, and TensorRT benchmarked on diverse computer vi-
sion neural networks. For each framework, we gather more than 80 values including
throughputs (predictions per second), latencies (time to predict one image), load time, and
memory consumption on both GPU and CPU. We provide a comprehensive review of used
optimization technics and evaluate them to guide the inference framework choice.

5.5.1 Post-training optimization

As seen in the ML life cycle diagram 4.2, an intermediate step may exist between training
and inference to optimize the model speed. We classify possible optimize technics falling
into four categories and shown in figure 5.5.

Graph representation Low level representation
No effect on accuracy Fusing [30] [85] Code optimization [94] [83]
Effect on accuracy Pruning [54] [117] Lower precision arithmetic [165] [27]

Table 5.5 – Different post-training optimization

These high-level and low-level optimizations are orthogonal to global optimization,
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Width
#params/#layers

Depth
#layers

Density
#jumps

Params Jump type

VGG19 7.26M 19 0 138M N/A
ResNet50 0.52M 50 16 26M Additions
DensetNet201 0.1M 201 98 20M Concatenations
EfficientNetB0 0.06M 89 25 5.3M 16 Mult. and 9 Add.

Table 5.6 – Four deep neural network architecture. We choose them diverse in terms of depth (# layers),
width (# number of filters) and density (# number of jumps).

and they can be used together to obtain further performances. We may also notice that
some optimization is beneficial to both training and inference such as XLA [85].

A critical part of optimizing the performance of a DNN model is its batch size. It
controls the internal cores utilization, the memory consumption, and the data exchange
between the CPU containing input data and the device supporting the DNN (if different).
That is why some tools 1 scan multiple batch size values of a given DNN. Then, the batch
size offering the best performance is used. This Best Batch Strategy (or BBS) is a relevant
mechanism to optimize a single DNN on one device, but it is a naive and rigid method to
optimize multiple DNNs predicting together.

Inference frameworks [30], [47], [138], [144] allows to load the DNN, to optimize with it
and to serve the DNN in production.

5.5.2 Experimental settings

Neural networks. The ML scientists, and AutoML have developped a variety of viable
neural networks. We present four of them in table 5.6.

GPU technologies have evolved in computing devices containing thousands of cores
and gigabytes of memory, and modern deep neural networks may not guarantee the use of
all resources in one single GPU. To match the ML community computing needs, an ideal
inference framework should not only efficiently leverage its resources to one DNN but
should be performant to run multiple DNNs at the same time. That is why propose the
ensembles in our thesis. All values in parentheses are our evaluated test top1-accuracy
on ImageNet: VGG19 (69.80%), ResNet50 (74.26%), DenseNet201 (75.11%) and ensemble
them by interpolating their predictions performs 76.92%. We choose not to ensemble
efficient-netB0 due to operations errors with some frameworks.

Platform. Our benchmarks are performed on two machines. Evaluations are made on
only one GPU at a time.

Machine A is an HGX1 equipped with Tesla V100 SXM2 GPUs containing 5120 Cuda
cores running at 1312Mhz-1530Mhz frequency and 16G of GPU memory. Its CPU is a

1"https://github.com/triton-inference-server/model_analyzer/blob/main/docs/

config_search.md"

"https://github.com/triton-inference-server/model_analyzer/blob/main/docs/config_search.md"
"https://github.com/triton-inference-server/model_analyzer/blob/main/docs/config_search.md"
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dual-socket Intel(R) Xeon(R) CPU E5-2698 v4 with a total of 80 cores @ 1.2Ghz-3.6Ghz and
512GB of RAM. The total GPU board power is 300 watts.

Machine B is an in-house machine equipped with NVIDIA Amper A100 PCI-E GPUs,
each one containing 6912 Cuda cores running at 765Mhz-1410Mhz and 40G of GPU memory.
Its CPU is a single socket AMD EPYC 7F52 with 16 cores running at 2.5Ghz-3.5Ghz and
256GB of RAM. The total GPU board power is 250 watts.

Software stack. All software stack versions are the same on both machines: machine A
and machine B. The assessed inference frameworks versions are Tensorflow 2.6, TensorRT
8.0, Onnx-runtime 1.10, and OpenVINO 2021. The needed neural network converters to
benchmark those frameworks are tf2onnx 1.9.3, and LLVM 14.0.

Machine A is running on Ubuntu and we use Python 3.9, Machine B is running on
CentOS and uses Python 3.8. Specialized OS for real-time may improve latency determinism
and latency speed but could lower throughput performance too. We evaluated MLIR (onnx-
mlir 0.2 framework [83]) on Machine B but it support only ResNet50.

In all our benchmarks Tensorflow is accelerated with XLA [85] (Accelerated Linear
Algebra).

Graph optimization settings:

• Tensorflow [1]: The computing graph is frozen (i.e., all weights are put in “read-only
memory”). The optimizer "optimize_for_inference_lib" is enabled but it does not
impact the performance. XLA is enabled on GPU, disabling it reduces speed by 15%.
However, enabling XLA multiplies the initialization time by factor 6. And more, we
do not observe performance gain to enable it on the CPU so we let it disabled on the
CPU.

• ONNX-RT [138]: Caching is enabled, disabling it reduces speed by 3%. The
maximum graph level optimization is enabled, using the default optimization settings
reduces speed by 8%.

• OpenVINO [47]: The NCHW tensor format is enabled meaning all images must be
converted in this format. NCHW means tensors follow this format: images, channels,
height, and width. The convolution fusing is enabled, disabling it reduces speed by
9%. The concatenation optimization is disabled because it would hurt performance
by 1% on DenseNet201.

• MLIR [83] (Multi-Level Intermediate Representation from the LLVM project) is still
under development and critical issues occur. When it works, the graphs are compiled
with “-O3” option.

5.5.3 Experimental results

Not all metrics are equally important for all ML applications, and weighting some more
heavily than others is highly application-dependent. This is why we bench multiple
metrics.
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We identify three main scenarios and associated speed measures:

• Batch applications. First, when the neural network predicts the large workload of
data samples, such as predicting from a large folder of images, in this case, the
batch size must be optimized to provide maximum predictions per second, this is
the throughput. The throughput may be expressed as the number of predictions per
second.

• Data flow applications. Second, when data samples come sequentially such as in real-
time embedded systems, Markov Decision Process (deep reinforcement learning)...
the latency is measured as the number of milliseconds to get one prediction.

• Irregular batch applications. The third scenario is when the data samples come to
an irregular frequency such as web service receiving requests from multiple clients, in
this case, the batch computing must be adapted to the client requests characteristics
[28] and the metric carefully weighted between the latency for reactiveness and the
throughput when the service is under a heavy workload of requests.

We may identify other technical measures:

• Memory consumption. Lower memory consumption allows for managing more
deep learning models and higher complexity ones.

• Initialization time. It is the elapsed time from the neural network representation on
the disk and its state in memory where it is ready to predict. Some applications may
require a fast service setup to satisfy peak demand periods (e.g., elastic cloud service
[142]). In all our benchmarks, we enable or implement a cache system to measure the
loading time.

• Power consumption.

The power consumption is an important metric that interests companies and scientists
for diverse reasons such as limiting ecological footprint, energy bills, reducing thermal
problems... We express here the power consumption as watt-seconds of the inference
system to predict a fixed amount of D data samples, with D = 4096. Like the throughput,
the value depends on the considered neural network, the chosen inference engine, and
the batch size. Then, this measures may be converted in equivalent in CO2 equivalent 2,
energy bill or thermal dissipation... We express the power consumption E here as watt/sec
to predict a fixed amount of data samples D, we fix here D = 4096. E is described with
the equation 5.1, with W the mean instantaneous power consumption (watts) during the
prediction time T (sec.).

E = D×W × T (5.1)

Some devices such as Nvidia GPUs contains captors to measure power consumption. We
use the below command:

2https://www.bilans-ges.ademe.fr/docutheque/docs/[Base%20Carbone]

%20Documentation%20g%C3%A9n%C3%A9rale%20v13.pdf

https://www.bilans-ges.ademe.fr/docutheque/docs/[Base%20Carbone]%20Documentation%20g%C3%A9n%C3%A9rale%20v13.pdf
https://www.bilans-ges.ademe.fr/docutheque/docs/[Base%20Carbone]%20Documentation%20g%C3%A9n%C3%A9rale%20v13.pdf
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nvidia-smi -i ${GPUID} --format=csv --query-gpu=power.draw --loop-ms=3000

Figure 5.9 shows the correlation between throughput of an inference system and its power
consumption.

Figure 5.9 – Plot of the throughput and power consumption of 3 GPU inference frameworks (“TRT” for
TensorRT, “TF” for Tensorflow, “ORT” for ONNX-RT) with {1,32,128} batch size. The trend seems to follow
the power law with two different coefficients according different GPU.

The throughput results on machine A and machine B are presented in figure 5.10 and
in figure 5.11. We decided to not shown the latencies benchmark because it is correlated
with the throughput with the batch size of 1.
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Figure 5.10 – Inference time (sec.) according different deep learning model and different inference technologies
on the machine A. No bar means out-of-memory error conversion fail.
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Figure 5.11 – Inference time (sec.) according different deep learning model and different inference technologies
on the machine B.

The memory consumption is expressed as how many the neural network took on the
disk plus its current batch. To make a global statistics we measure the ensemble and show
it in figure 5.12.
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Figure 5.12 – Memory consumption (MB) of the ensemble with different frameworks varying the batch size.
We use this ensemble due to the diversity of topology between neural network: one have wide convolution,
one is deep, one is dense.

The loading times (seconds) of the ensemble on machine A in the ascending order:
OpenVINO (3.4), TensorRT(3.6), ONNX-RT GPU(5.7), ONNX-RT CPU(8.7), Tensorflow CPU
(8.7), TensorFlow XLA GPU (42.5). There are loading times for machine B: ONNX-RT CPU
(0.5), ONNX-RT GPU (2.1), Tensorflow CPU (2.9), TensorRT (3.9), TensorFlow XLA GPU
(29.2). We observe no clear winner between CPU and GPU technologies but Tensorflow
with XLA is especially slow due to the fact we cannot cache the optimized graph on the
disk.

5.5.4 Performance summary

Regarding GPU technologies there is no clear winner between TensorRT, Tensorflow, and
ONNX-RT, and selecting the best one will depend on the application scenario and the
underlying hardware.

ONNX-RT is systematically the fastest in terms of latency and low batch size
throughput. TensorRT is faster on large batch size values such as 512 and 1024 but it
may perform poorly on wide convolutions. TensorRT is also the framework that consumes
the least memory.

If we look at CPU optimization, Intel OpenVINO on machine A is always faster than
the others compared to ONNX-RT CPU, and Tensorflow-CPU and MLIR show promising
results on machine B even if it is still under development. Intel OpenVINO is also well
optimized to save memory.

In terms of power consumption, there is a connection between two phenomena:

• Phenomenon (A). The faster a workload is finished, the less time it has to consume
power (kWh).
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• Phenomenon (B). The faster a workload is finished, the more hardware piece has been
exploited at the same time (cores, memory exchanges). Therefore, more instantaneous
energy is consumed by the GPU (watt).

This benchmark reveals that phenomenon (A) is of greater importance than B. In this case,
faster means more power efficiency.

When an inference framework runs an optimized graph, it has less time to consume
power but, on the opposite, it uses more pieces of hardware in parallel and consumes more
energy (watt). Overall, our experiments on GPUs show that accelerating computing is
generally beneficial for power consumption.

Finally, these experiments show the need for different frameworks for training and
inference because they require different representations and optimizations. As expected,
the more optimized and specialized a framework for inference and the more efficient it is.
However, some inference frameworks are faster for small batches while some others are
faster with bigger ones. Therefore, the best framework depends on the targeted application.

5.6 Handling large deep learning workload

The key to the success of machine learning is that bigger models achieved very high
accuracy. We explore in this section different scenarios of large model workloads and the
different suitable parallel patterns.

We consider here two big deep learning models type: the first one is a single large
deep neural network, and the second one is an ensemble of multiple medium-sized deep
neural networks predicting together. We explore a few common scenarios when dealing
with GPU infrastructures. The table 5.7 summarizes previous claims of this chapter and
illustrates and compares the computing flexibility of the two model types.

Hardware
1 big DNN
training and inference

n medium DNNs
training workload

n medium DNNs
inference workload

1 GPU lacking memory Swaping GPU-CPU 4.11.2 Schedule them 5.2 Spread GPU and CPU

1 GPU with enough memory Handle it Schedule them 5.2 Co-localization

multi-GPU,
each GPU lacking memory

Model parallelism 4.11.1, and/or
Data parallelism 5.3.3

Schedule them 5.2 Spread them across GPUs

multi-GPU,
each GPU have enough

Data parallelism 4.11.1,
or sequentially

Schedule them 5.2
Data parallelism,
and/or co-localization

Table 5.7 – The most suitable parallel patterns according to different common situations. Scheduling may not
only ensure they fit in memory, but also improve an efficiency measure. For example, the figure 7.15 shows us
that handling 4-by-4 the RL agent training workload is the most energy-efficient assignment whereas 8-by-8
is the faster one.

While a large neural network is a sequence of computation blocks, an ensemble of
deep neural networks is made of independent computation blocks with only predictions
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transferred between them. This makes the training ensemble workload easily to efficiently
parallelize with no communication between blocks.

The table and arguments are focused on parallel patterns. Some methods exist to reduce
memory utilization in one single GPU, such as gradient checkpointing, lower precision
arithmetic, batch accumulation, or changing the hyperparameters to reduce its complexity...
Those technics generally come with either a more computation time increase or an accuracy
reduction. More generally speaking, those three characteristics seem impossible to gather:
low memory consumption, low computing time, and high accuracy. Only raising the
number of GPUs unlocks the available memory for DNNs and the computing power, while
ensembles allow to efficiently exploit them.

We will keep in mind for the remaining of the thesis that ensemble methods leverage
naturally to the multi-GPUs computing nodes and are more computing efficient at scale.
The remaining of this thesis are significant contributions to the designing of ensemble
workflows from hyperparameter search to inference. The next chapter deals with a
systematic procedure to build ensembles of supervised deep neural networks, chapter
7 the procedure to build ensembles of reinforcement learning agents, and chapter 8 the
inference system for the ensembles.





6Hyperparameter optimization with

ensembling

Deep Neural networks (DNNs) are notoriously difficult to tune, train, and ensemble
to achieve state-of-the-art results. Hyperparameter optimization with ensembling or

"HPO+ensembling" tools provides a simple interface to train and evaluate many ensembles
of DNN in parallel aiming at high accuracy and low overfitting. We propose a helpful
method for machine learning practitioners to run those different tasks automatically by
efficiently using the underlying hardware.

Nowadays, multiple researchers and practitioners have well understood the benefit
of homogeneous ensembles of DNNs to reduce overfitting [149] [184] [58] [155]. Then,
authors [97] [46] propose heterogeneous ensembles to not only reduce variance but attempt
to cancel out their different biases too at the cost of a more complex procedure. Further,
several winners and top performers on challenges routinely use ensembles to improve
accuracy [53]. However, ensembles of DNNs suffer from three main limitations to be
widely deployed in research and industrial applications.

The first limitation is a lack of understanding of which is the best way to build a
library of models. How to generate models to build an ensemble of DNNs is still not fully
understood [11] [148] but authors generally agreed [46] that the diversity of predictions,
individual performance, and numerous DNNs are the three key components. However, we
still ignore in which proportion they are important a priori. This is why complete ensemble
construction workflows share in common they build multiple ensembles and return the
best one on a validation dataset and are detailed in the “related works” section 6.1.

The second limitation is a lack of control of the computing cost of the produced
ensemble. In the previous works, authors apply post-hoc ensembling [14] [42] of non-deep
machine learning which are efficiently handled by multi-core CPU or GPU [20]. They
propose the number of models to put in the ensemble as a threshold between accuracy
and computing cost. Those methods require some adaptation to be applied to the deep
learning case due to two main differences:
• Each base deep neural network training is a computing-intensive GPU algorithm

taking several minutes or hours

• Different base neural networks sampled may have orders of magnitude of resources

85
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requirement (e.g., different number of convolutions, different number of filters per
convolution ...).

That is why the number of models constraint used previously is not relevant to controlling
the ensemble of deep neural network computational cost. And more, when generating
automatically a library of models it is a known [73] no clear correlation between accuracy
and model cost, meaning sometimes fast deep neural network can be prioritized without
significantly lowering the accuracy.

The third limitation, no inference server enables an efficient inference of heterogenous
DNNs by optimizing the exploitation of multiple GPUs. Current inference server allows
deploying deep neural networks [175] [119] user of those state-of-art servers attach manually
DNNs to GPUs and set the batch size. Ensemble of DNNs is much more complex because
we must deal with multiple DNNs sometimes co-localized into the same device and
multiple devices. An ideal inference server of DNNs ensemble would allow computing
automatically the best localization and batch size settings at the initialization phase. Due
to the novelty and the importance of those works for future deep learning applications we
detail this contribution in the next chapter 7.

For instance, it is time to address the missing piece in deep learning pipelines between
hyperparameter optimization and ensembles. To summarize our contributions, we run
extended benchmarks with seven algorithms to compare how best to build the library
of DNNs and conclude that asynchronous Hyperband [91] suits this goal. After the
library is generated, we propose a new simple algorithm named SMOB (scalarized-multi
objective with budget greedy) to build an efficient ensemble based on their accuracy
and a desired maximum computing cost. We measured here the computing as the time
to predict 2000 images, this metric may be easily replaced by another one such as its
power consumption or the memory consumption. Figure 6.1 compare the three workflows:
Hyperparameter optimization (HPO), ensembles of machine learning models, and our
proposed HPO+Ensemble workflow. We presented this novel workflow as a novel HPC
application in the scientific conference HPC ASIA 2021 [124].

Figure 6.1 – Simple comparison of the different workflows
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6.1 Related works

AutoML which not only selects the best model but combines them is valuable for do-
mains that require the best possible accuracy. Several benchmarks were performed and
AutoML+ensembling is today considered as the big AutoML challenge series winner on
data points like AutoML challenges [53] and Kaggle challenges on image recognition. Pre-
vious research on non-deep machine learning ensembles showed that over-fitted machine
learning algorithms predictions can be averaged out to get more accurate results [149].
This phenomenon is mainly explained by the Law of Large Numbers which claims that the
average of the results obtained from many non-biased trials should be close to the expected
value. These results are especially interesting for deep learning models. They are the most
affected models to random effects (over-fitting) due to their huge number of parameters.

We observe two main trends in AutoML with ensembling:

• HPO+Ad-hoc ensembling [160] [87] [49] [18] which consists in searching directly
ensembles. The hyperparameter space describes an ensemble of fixed size. In the end,
the HPO algorithm keeps the best ensemble and wastes all the others. For example,
an ensemble of 2 DNNs with 2 hyperparameters per model, is represented with a
size 4 vector.

• AutoML+Post-hoc ensembling [14] [162] [42] runs a standard HPO algorithm pro-
viding a library of trained models, then constructs ensembles from the library based
on a greedy algorithm.

Figure 6.2 summarize 3 different AutoML+Ensemble procedures by vizualizing for
each one three possible ensembles sampled.

#Filters

#Layers

Post-hoc Ad-hoc heterogeneous Ad-hoc homogeneous

Different weights

Ensemble B1 Ensemble B2
Ensemble B3

Ensemble A1

Ensemble A2
Ensemble A3

Ensemble C1
Ensemble C2

Ensemble C3

Legend

Figure 6.2 – Three automatic ensemble selection procedure illustrated. Each grey stack represents neural
networks with two different hyperparameters: depth and width.
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HPO+Post-hoc ensembling of supervised machine learning has 2 advantages compared
HPO+Ad-hoc ensembling: it is more flexible and may evaluate fantastically more ensembles
in a few minutes. However, HPO+Post-hoc is not well applicable to reinforcement learning
compared to HPO+Ad-hoc ensembling. Those claims are in-depth discussed below.

More flexibility. HPO+Ad-hoc ensembling suffers from a lack of flexibility because
the number of models in an ensemble is fixed before building all DNNs. In other words,
changing the number of DNNs in the ensembles requires a new HPO runtime. Second,
AutoML+Post-hoc ensembling [14] [162] [42] runs a standard HPO algorithm providing a
library of trained models, then constructs ensembles from the library based on a greedy
algorithm. This approach is flexible because we can produce several ensembles with
different numbers of models with one library of DNNs.

More ensembles assessed. The posthoc ensembling allows evaluating of more ensem-
bles than ad-hoc because each DNNs model can be used for multiple ensembles. The
number of ad-hoc models produced is given with the formula d L

S e with S the desired
ensembles size and L the library size. In comparison, the number of possible combinations
(without replacement) of posthoc ensembling is the known combination formula given by

L!
S!∗(L−S)! . Let’s put those numbers into perspective. Let’s imagine we have 100 DNNs and
we want an ensemble of size 10. The post-hoc procedure may build 1.7E+13 ensembles
against only 10 with the ad-hoc procedure.

Post-hoc procedures and ad-hoc procedures may not always be fairly compared by
counting the number of the assessed ensemble when an exploitative hyperparameter
optimizer is used. In this case, ad-hoc exploitative optimization will evaluate the next
ensemble according to previous ensembles, while post-hoc exploitative optimization will
evaluate the next DNN according to the previous DNNs.

However, the exploratory optimizers have not shown performance against exploratory
ones in hyperparameter optimization [90], this claim is reinforced by the No Free Lunch
Theorem [169] saying no optimizer may outperform another in all cases.

Not applicable efficiently to the reinforcement learning case. In RL applications, the
DNN requires interactions with the environment during the validation phase and not fixed
data samples. So, validation predictions cannot be cached on disk and thus, thousands of
combinations cannot be evaluated quickly. This is why we propose another workflow in
chapter .

6.2 Intuition behind complementarity

From homogeneity to heterogeneity. It is well known that diverse machine learning
algorithms [97] [46] such as a decision tree voting with a neural network may perform
better than homogeneous ensembles of the best base algorithm at different runtimes.

Motivated by those results, we make further analyses to understand how heteroge-
neous ensembles of DNNs behave. In particular, we are interested to answer if diverse
architectures are correlated with diverse DNN predictions.
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To make this analysis, we trained 22 DNNs, with two optimization settings and diverse
architectures. For example, ResNet18 and ResNet50 with Glorot are very correlated, like
VGG16 and VGG19 with Glorot. They are easily reproducible analyses using on-the-shelf
deep neural networks. Results are presented in figure 6.3.

Figure 6.3 – Distance matrix between predictions of 22 models on the microfossils test dataset containing
6400 images and trained on 25600 images. To measure the diversity, each element is the sum of the Euclidean
distance between predictions. Those model names correspond to their architectures and initializers (“True” for
pretrained with Imagenet and “false” for Glorout random initialization [48]). InceptionV3P is a homemade
architecture based on InceptionV3 [155] with Dropout [151] and one additional dense layer. A binary
hierarchy clustering (dendrogram) is used to sort and aggregate them for readability purposes.

We discover that diverse DNNs produce diverse predictions. In other words, similar
architecture and initializer often produce close models’ predictions, and the opposite is true.
For example, the same architecture InceptionResnetV2 with Glorot initialization and pre-
trained with Imagenet [136] are quite distant and yet produce similar scores (respectively
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Fscore=89.89% and Fscore=89.92%). Furthermore, we can observe same architecture styles
produce more correlated DNNs: Inception architectures, VGG architectures, and ResNet
architectures. Surpringlisly, varying the initialization seems to have more impact than
varying the neural architecture.

We exploit those results to build our workflow and benefit from this diversity to build
better ensembles. We confirm in section 6.7.1 that a heterogeneous ensemble built with an
HPO library outperforms a homogeneous ensemble of a robust hand-crafted model such
as ResNet50, ResNet152, ...

From diversity to complementarity. Previous authors discover that different machine
learning algorithms produce different error distributions [46]. Even if it is well established
there is a connection between base DNNs diversity and ensemble accuracy, the base DNNs
must be selected with the “right” diversity [79]. Indeed, the measure of diversity itself is a
subject of debate, and finding the most accurate subset of DNNs based on their individual
error distribution is a non-trivial problem. Indeed, an ideal ensemble should be made of
complementary neural networks which cancel out their error when they predict together.

To illustrate the effect of diversity and the complementarity here a quick example. Let’s
imagine this simple scenario:

• Classifier A outputs the probability vector [0.5,0.1,0.4] answering the first class (with
a 50% probability).

• Classifier B outputs the probability vector [0.1,0.5,0.4] answering the second class
(with a 50% probability).

• The ensemble (average) outputs the probability vector [0.3,0.3,0.4] answering the
third class (with a probability 40%).

This simple demonstration shows that even if we interpolate predictions, the ensemble
may provide an original prediction compared to its base components. In other words,
even though base machine learning algorithms are wrong, they may be complementarity
and return the right answers. Of course, it is also possible models disagreeing produce
an incorrect ensemble. For example, in section 4.2, we demonstrated that systematically
maximizing the diversity of predictions with Negative Correlation Learning (NCL) [102] is
not ideal to build good ensembles because either it hurts individual accuracy or it fails to
get the “right” diversity (diverse but not complementary).

There is no systematic procedure to know in advance which models are complementary
but to compute their combination and see how well the ensemble is accurate. This is
why it is necessary to evaluate thousands of combinations between classifiers to find
complementary ones. This challenge belongs to combinatorial optimization problems.

Computational cost of ensembles. The computational cost is an important notion
when ensembling deep neural networks. Therefore it is important to be able to measure it
to control the final ensemble computing cost. Very simplistic measures such as the number
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of parameters or the FLOPS fail to measure accurately the current deep neural network
speed because they have evolved in complex computing graphs [130].

Precise estimate speed of an ensemble with our inference system described in chapter 8

is a priori impossible. Measuring the speed of an ensemble with our system takes a long
time: to host it, distribute its computations, and benchmark it. This is why, to measure
the ensemble computational cost, we rather propose to sum the forward phase speed to
predict 2000 images of all DNNs contained in the ensemble. This fast heuristic allows
evaluating and comparing thousands and millions of ensembles in a few minutes.

Build efficient ensembles.
To summarize, we now know that to build efficient ensembles 4 key ingredients are

required:

• Maximize base DNNs accuracy

• Maximize the complementarity among DNNs

• Maximize the number of DNNs in the ensemble

• Minimize the computational cost

Optimizing all those characteristics is very difficult, and we ignore which important
they are important for a given task. And more, optimizing one may impact the other ones.
This is why our strategy consists in evaluating a thousand ensembles empirically and
selecting the most suitable one.

The procedure to build the best ensembles is an open problem. It requires answering
multiple non-trivial problems: how to build the best library of models? How to find
complementary models? How control the computing cost of the ensemble? Section 6.3
proposes a novel workflow as a systematic answer to all those questions. The next sections
will confirm empirically that this workflow suits the need to build efficient ensembles.

6.3 Proposed workflow

In this section, we give an overview of the proposed workflow 6.4. Then, we will go
into further details on the distributed architecture that accelerates these three steps of
our AutoML workflow: HPO to construct a library of models, Ensemble Selection to
construct ensembles based on their validation accuracy, and computing cost expressed here
as seconds to predict 2000 images.
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Figure 6.4 – The proposed workflow runs 3 steps 1) The HPO algorithm generates a library of models. The
trials are distributed on several GPUs synchronized by a master process. We recommend asynchronous
Hyperband based on experimental results. 2) We propose a new multi-objective Ensemble Selection algorithm
to search for the most efficient ensemble honoring a budget given by the user (here B=20). It is based on
a parallel greedy algorithm evaluating hundreds of combinations per second on multi-core CPUs. 3) The
returned ensemble predicts by combining (averaging) DNNs predictions on new data.

6.3.1 Detail of the workflow

Hyperparameter optimization (HPO). The choice of the HPO algorithm has several im-
pacts in terms of the number of produced models at a given time horizon, the accuracy
of models, and their diversity. After several experiments (section 6.4.2), we recommend
asynchronous Hyperband [91] [93] based on our experiments. The main concept of Hyper-
band consists to train in embarrassingly parallel by keeping all GPUs occupied.

To enter in more detail, asynchronous Hyperband is the fruit of 3 inventions:

• SHA (Successive Halving) [70]. SHA is initialized by randomly selecting hyperparam-
eters as a random search but periodically prunes low-performing models. Therefore
SHA focuses the computational resources on the more promising experiments.

• Asynchronous SHA (ASHA) [91]. One drawback of SHA is that the experiments
need to be frequently synchronized to gather validation scores and prune the ex-
periments. ASHA improves the SHA’s resource utilization by removing the need to
synchronously evaluate and prune low-performing models.

• Hyperband [93]. The pitfall of SHA and ASHA is that the pruning rate is sensitive to
tune to get good performance. If it is too low, the resources explore the low number
of hyperparameters but the pruning is performed on well-trained neural networks. If
it is too high, we sweep a large number of hyperparameters but the pruning is based
on low trained neural networks. To be more robust, Hyperband consists in invoking
SHA or ASHA multiple times with varying levels of pruning rates.

In this regard, Hyperband produces the biggest library of models among tested algo-
rithms because most models do not reach the maximum number of epochs. It is also a
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lock-free distributed algorithm until the termination of the algorithm, spending most of
its runtime to train models occupying all GPUs and storing them in the library. Then,
Hyperband produced also very diverse models due to the initial random sampling of
hyperparameters which is desirable in terms of final accuracy. Finally, because more
training iterations are given to the best models, Hyperband performs explore-exploit in the
time (not in the hyperparameter space) and we observe it builds a better distribution of
individual DNNs (regarding the top 10 % and top 25 %) compared to random search on
all our runtimes. But we cannot expect Hyperband to outperform or underperforms other
exploratory-exploitative HPOs in all cases such as Bayesian or genetic algorithms [169].
A large number of models, hyperparametric diversity, and efficiency are three reasons
explaining why Hyberband is robust to build a library of models but we still ignore in
which proportion they are important.

Ensemble selection. An ensemble selection algorithm finds the best combination
possible honoring the budget given by the user. We propose SMOBF greedy standing for
"Scalarized Multi-Objective with Budget Forward greedy".

Forward greedy [14] starts with the empty ensemble and successively adds the best
available model to improve the ensemble target metric. The algorithm stops when no
available model can improve accuracy or respect the budget.

First methods optimize neural network hyperparameters, not only based on accuracy
but a linear combination of accuracy and inference speed [120]. In the case of ensemble
constructions, we propose the equation 6.1 to inform the greedy algorithm to favor accurate
and cheap DNNs before consuming the overall budget. The current ensemble is a with
its computing cost Ca and its predictions ya. Penalty Pa returns 0 when the budget B
is honored (Ca ≤ B ) or an arbitrary large number when it is not to exclude a from the
possible ensembles.

The weight w allows controlling the nature of the solution found by the greedy algo-
rithm by placing greater or lesser emphasis on the objectives. The greedy algorithm is run
multiple times with different values w = 0.1, w = 0.01, and w = 0.001. Scalarization is a
convenient way to handle multi-objective problems by reducing them to a single objective
problem, so a simple mono-objective optimization can be performed.

scorea = (1− w) ∗ E(ya, y) + w ∗ Ca + Pa (6.1)

Then, the best ensemble is picked according to its validation cross-entropy loss and
respecting the given budget. To improve the robustness of the method on new applications
C_a is standardized and it is the rate between the sum of the computing cost of base
models (time to predict 2000 images) and the budget B.

The ensemble selection algorithm computes the validation loss of candidate ensembles
to evaluate how well a solution will generalize on the test database. Since the data used
for validating is taken away from training the individual models, keeping the validating
set small is important. Smaller validating sets are however easier to overfit. Contrary to
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common AutoML on data points datasets, due to the cost of training and evaluating one
model on images datasets, we do not repeat the experience with K-fold cross-validation.

In the library of models, some models diverge or have such poor performance compared
to other models that they are unlikely to be useful to improve any ensemble building [13].
Eliminating these models from the library should not reduce the performance and facilitates
the ensemble selection task by decreasing the number of non-promising combinations.
Pruning works as follows: models are sorted by their performance on the validation metric
and only the top X% of them are used for ensemble selection. After pruning, the predictions
on the validation set are cached before running the ensemble selection algorithm. This
allows handling only predictions vector and not models during the ensemble selection
process.

Ensemble combiner rule. We use the simple average as a combiner rule. More
advanced methods exist such as "ensemble selection with replacement" [14], weighted
averaging, and stacking. Those methods are calibrated on a validation set and thus prone
to over-fitting.

Now that the workflow is developed, the final accuracy depends on two settings. The
tuning time of the library of models and the budget given by the user to generate a new
ensemble to deploy.

6.3.2 Distributed HPO with GPU clusters

To assess large numbers of hyperparameter trials in a reasonable amount of time, a
distributed framework using one GPU cluster or several GPU clusters is required. Several
trials are distributed with a middleware containing one scheduler and multiple workers,
each worker being associated with heavy computing resources. Typically, the scheduler
sends a hyperparameter set to the available workers with the number of training epochs to
perform. Then, it gathers the scores of the trials from the workers and finally computes the
next hyperparameters to send and so on.

This distributed framework suits the need of the majority of optimizers by leveraging
GPUs and clusters. Each trial is run independently without slowdown among themselves.
Workers can connect or disconnect to the master at run time; however, a disconnection
interrupts the current trial. Many HPO algorithms benefit from this middleware such
as random search, Hyperband, parallel SMBO, evolutionary algorithms, and also some
greedy algorithms for discrete optimization such as SMOBF.

Modern clusters have evolved into a hybrid machine that contains both CPUs and
GPUs on each node. These heterogeneous CPU-GPU clusters are particularly useful to
accelerate the training loop of one trial. One trial is implemented with two processes, the
preprocessor which loads and preprocesses the data on multi-cores, while the trainer trains
the DNNs on the GPU. In case the entire training dataset fits into memory, the preprocessor
does not need to load multiple times the data. This is with the data samples are shared
between preprocessors of the cluster to avoid copies and useless I/O.
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6.3.3 Distributed Ensemble Selection

Ensemble selection is a greedy algorithm evaluating all neighbors of a current ensemble at
each iteration. For each ensemble a, the equation 6.1 is performed. This procedure takes
one second on one CPU with 100 elements per prediction (100 classes), 2000 validation
data samples, and a relaxed budget.

In the case of semantic segmentation images, the class predictions are at pixel scale
making this procedure much more computing-intensive. A typical dataset for autonomous
vehicle applications [25] contains 256x256 input images, 30 classes per pixel and 500

validation samples. Linear scaling indicates that the computing cost of this procedure
would take 1h20 (256x256x30x500 predictions elements compared to 100x2000 predictions
elements in CIFAR100 taking 1 second). Because SMOBF is an optimization algorithm
we may use a similar distributed framework (previous section) to distribute neighbors
evaluation on CPUs or GPUs to alleviate this computing cost.

6.4 Experimental data set and hyperparameter settings

We experiment and discuss our workflow by varying the three steps of the HPO+ensemble
workflow on CIFAR100 and the microfossils datasets.

6.4.1 The infrastructure

Experiments were done on IBM Power9 architecture, containing 2 sockets. In each socket,
there are 18 cores of CPU with a maximum frequency of 3.8Ghz and 256G of RAM.
There are also 6 GPUs by node and are Nvidia Tesla V100-SXM2 with 16G of memory.
Hyperparameter optimization framework Tune [98] was used. It runs above the Ray
framework [110], it schedules and spreads experiments to run on GPUs and stores results
into files. Deep Learning training loop and data augmentation was coded with the
framework Keras [51] with TensorFlow 1.14.0 [1] backend.

6.4.2 Hyperparameter configuration space

Table 6.1 shows all hyperparameters properties in this workflow. We use ResNet-based
architectures due to their simplicity to yield promising and robust models on many datasets.
We explore different residual block versions: "V1", "V2" [58] and "next" [173]. Regarding
the optimization method, we use Adam optimizer [76] due to its well-known performance
and its lower learning rate tuning requirement.

The simplicity of the ResNet architecture makes this work easy to test by a scientist on
its image dataset [181]. Exploring other convolutional block type like VGG [184], Xception
[23], DenseNet [66] and EfficientNet [158] are potential improvement which could increase
the degree of liberty in DNNs construction and improve again the accuracy of ensembles.
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Category Name Type Range

Optim.
Learning rate Continuous [0.001; 0.01]

Batch size Discrete [8; 48]

L2 regularization factor Continuous [0; 0.1]

NN
archi.

Convolution type Categorical {v1,v2,next}

Activation function Categorical {tanh,relu,elu}

Number of filters in the first convolutional layer Discrete [32; 128]

Multiplier of filters in the 4 blocks Discrete [32; 128]

Number of convolutional block in the first stage Discrete [1;11]

Number of convolutional block in the second stage Discrete [1;11]

Number of convolutional block in the third stage Discrete [1;11]

Number of convolutional block in the fourth stage Discrete [1;11]

Data
augment.

Max zoom Continuous [0; 0.6]

Max translation Continuous [0; 0.6]

Max shearing Continuous [0; 0.3]

Max channel shifting Continuous [0; 0.3]

Max rotation measured in degrees Discrete [0; 90]

Table 6.1 – The hyperparameter space experimented based on the ResNet neural architecture framework
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The CIFAR100 dataset contains 32x32 images while usually ResNet is adapted to be
used on ImageNet (224x244 images). Those different resolutions need some adaptation.
Therefore, in the CIFAR100 case, the first convolutional network is replaced from the 7x7

kernel size with a stride of 2, to a 3x3 kernel size with a stride of 1. With equivalent
settings, our CNN framework produces nearly the same number of weights between the
CIFAR100 and microfossils dataset, but the time complexity is factor 11 different because
of different signal resolutions flowing through the layers.

6.4.3 The two datasets used

The CIFAR100 dataset. CIFAR100 [77] consists to 60,000 32x32 RGB images in 100 classes.
For each class, there are 580 training images, 20 validation images and 100 testing images.

The Microfossils dataset. Microfossils are extremely useful in age dating, correlation,
and paleo-environmental reconstruction to refine our knowledge of geology. Microfos-
sil species are identified and counted on large microscope images and thanks to their
frequencies we can compute the date of sedimentary rocks.

To do reliable statistics, a big number of objects need to be identified. That is why we
need deep learning to automate this work. Today, thousands of fields of view (microscopy
imagery) need to be shot for 1 rock sample. In each field of view, there are hundreds of
objects to identify. Among these objects, there are non-fossils (crystals, rock grains, etc...)
and others are fossils that we are looking for to study rocks.

Our dataset contains 91 classes of 224x224 RGB images (after homemade preprocessing).
Microfossils are calcareous objects taken with polarized light microscopy. The classes are
imbalanced, we have from 50 images to 2500 images by class, with a total of 32K images in
all the datasets. The train/validation/test split is as following: 72% 8% 20%. The F1 score
was used and labeled as ’accuracy’ on all benchmarks.

6.5 Experiments and results

We experiment and discuss our workflow by varying the three steps of the AutoML
workflow of deep neural networks on CIFAR100 and the microfossils datasets. More details
is given in appendix 7.3.

6.5.1 The infrastructure

Experiments were done on IBM Power9 architecture, containing 2 sockets. In each socket,
there are 18 cores of CPU with a maximum frequency of 3.8Ghz and 256G of RAM.
There are also 6 GPUs by node and are Nvidia Tesla V100-SXM2 with 16G of memory.
Hyperparameter optimization framework Tune [98] was used. It runs above the Ray
framework [110], it schedules and spreads experiments to run on GPUs and stores results
into files. Deep Learning training loop and data augmentation was coded with the
framework Keras [51] with TensorFlow 1.14.0 [1] backend.
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9 trials 100 epochs 30 trials 30 epochs
acc (%) duration speed up #epochs gpu (%) acc (%) duration speed up #epochs gpu (%)

RS 6GPUs 67.08± 3.85 10h13 6.2 900 85 64.90+-0.92 11h40 5.5 900 82

HB 6GPUs
62.58± 4.73

5h48 4.4 710 49

62.94± 5.28
1h40 5.2 388 62

HB 4nodes*6GPUs 2h00 8.8 710 33 0h48 10.9 388 34

GA 6GPUs 61.85± 2.55 14h29 2.8 900 27 65.33± 2.33 10h01 4.1 900 57

Table 6.2 – Limited scale benchmarks of some HPO algorithms. Hyperband was set up with a halving of
3 and the genetic number of trials is divided into 3 successive generations. The columns from the left to
the right are: The accuracy error which is not dependent on the number of resources, the duration of the
HPO process, the speed up measured compared to the single GPU version, the #epochs is the number of train
iteration performed, the mean percentage of occupied GPU during all the entire HPO process.

6.5.2 step 1 - HPO

Comparison of hardware allocation

Our CNN framework based on ResNet can take between 15 seconds and 11min30 regarding
the complexity of the neural architecture assessed (number of filters per convolution,
number of convolutional blocks, ...). Our benchmark 6.2 reveals that Random Search and
Hyperband occupy more the GPUs than algorithms based on a sequence of population
algorithms (such as GA) which is explained by the fact that no intermediate stopping of
all GPUs is required. Those benchmarks also confirm that Hyperband terminates earlier
than Random Search because the less promising DNNs have been stopped before the
maximum number of epochs is reached. The scalability of HPO algorithms and saving
useless computations are two important algorithmic characteristics to explore a large
number quantity of DNNs.
At the end of any HPO algorithm, the last few DNNs free the GPUs but they take various
amounts of time to terminate, this explains why we do measure not a perfect usage of GPUs
of Random Search and Hyperband. Hyperband emphasizes this phenomenon because the
early stopping increases the variability of time taken between DNNs.

HPO to produce ensembles

We compare in table 6.3 our presented workflow by varying the HPO algorithm to generate
a different library of models. Random Search (RS) [6], asynchronous Hyperband (HB) [91],
Bayesian Optimization with Gaussian Processes (BOGP) [63], BOHB, Sequential Model-
based Algorithm Configuration (SMAC) [69], Tree Parzen Estimator (TPE) [5], Genetic
Algorithm (GA). To combine generated models, we benchmark them with the SMOBF
greedy ensemble selection algorithm. We benchmark three times each algorithm and we
show the median value of each computing. When the budget is relaxed we observe the
standard deviation is generally lower than 0.1%. When the budget is lower the standard
deviation is lower than 1.5%.

Not surprisingly, when the budget increases the ensemble selection can find better
ensembles from any library. This is explained by the fact that the number of available good
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Data Budget RS HB BOGP BOHB SMAC TPE GA

C100

20 31.26 27.8 31.58 29.24 24.44 29.97 24.61

40 24.24 22.87 28.2 25.6 22.97 26.01 22.91

60 22.27 21.85 26.91 23.53 22.65 25.44 21.51
80 22.69 21.73 26.2 22.58 22.17 24.25 21.07
120 21.63 21.55 24.78 21.86 22.17 23.03 21.95

160 20.11 21.11 24.24 21.64 21.87 22.47 21.91

240 20.7 20.46 23.76 21.2 21.87 22.55 21.91

320 20.64 20.42 23.76 21.1 21.87 22.46 21.91

Micro

125 13.45 11.93 14.44 12.18 10.27 13.91 10.33

250 10.98 9.82 10.93 11.71 9.63 10.66 9.71

375 10.84 9.32 9.93 10.5 9.45 10.49 9.5
500 10.23 8.91 9.93 9.84 9.27 9.06 9.28

750 9.7 8.87 9.21 9.28 9.18 9.3 9.18

1000 9.69 8.46 8.77 8.8 9.09 9.21 9.07

Table 6.3 – Our workflow error (%) by comparing seven HPO algorithms was run on both datasets for 6
days on 6 GPUs. Each HPO generates a library of models for a given dataset. The budget is expressed as
"sum of DNNS times (seconds) to predict 2K images on 1 GPU"

combinations between them increases. In the table 6.3 some algorithms converge and do
not find better ensembles after high budgets such as the Bayesian method and genetics
ones. Different run time shows a similar conclusion. On both datasets, the best ensemble is
found with Hyperband. 79.44% accurate on CIFAR100 and 91.54% accurate on microfossils.
We do not show results of AutoML without ensembling compared to AutoML+ensembling
due to a lack of space, but AutoML+ensembling is Pareto dominant for all budgets and all
performed run times.

Effect of tuning time

In AutoML we often want to see the evolution of performance over the tuning time, not
only the final performance after a time horizon. Therefore, we assess the workflow by
varying the budgets until it does not affect the ensemble construction anymore and at
different tuning time snapshots. Those figures are presented in figure 6.5 6.6.

First, regarding the benefit of the tuning time, we observe two main trends. When the
budget is very small (B=20) model accuracy converges early to 18, 24, or 48 hours reaching
the limit of the hyperparameter optimization with a little (or without) ensembling. When
the budget is bigger the exploding number of available combinations of ensembles leads to
the discovery of better ensembles. The post-hoc ensembling is a promising line of research
that deserves more attention and more understanding of how DNNs interact with each
other.

Then, we observe that increasing the budget systematically leads to an increasing
accuracy (colored lines are rarely crossed) but this trend decline. For example, in the
figure 6.5 we show that when Hyperband is finished, the benefit is obvious from 1 to 2
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models: +5 point of accuracy percentage, but the improvement is small from B=120 to
B=320: +1 point of accuracy percentage.

Figure 6.5 – Ensemble from Hyperband algorithm
on the CIFAR100 dataset

Figure 6.6 – Ensemble from Hyperband on the mi-
crofossils dataset

Visualization of architecture sampling results

Usually, researchers searching neural architectures look at only prediction quality as the
target metric. This is an oversimplification of the problem converging towards either very
diverse or hudge neural networks. When a library of models is generated this is crucial
to take the best one not only on its prediction quality but as a second criterion to reflect
computational requirements. In this chapter, our objective is accuracy under a computing
time constraint.

When multiple architectures are evaluated such as a different number of layers, and a
different number of units per layer, some neural networks may be one order of magnitude
slower than others. Furthermore, there is no or low correlation between the accuracy and
computing cost of models generated.

We visualize libraries of models generated with two HPO algorithms, SMAC and
Hyperband. We display libraries generated on the two datasets in the figure 6.7 and
6.8. Each point is a model in function of two objectives error rate (horizontally) and its
measured computing cost (vertically).

Those 3 phenomena: diverse accuracy, diverse computational cost, and no correlation
teach us that extracting a Pareto front is important and reinforces the need for multi-
objective optimization. This is even more critical when multiple DNNs are gathered to
build ensembles. SMOBF is designed to sample the Pareto front in the space of potential
ensembles using scalarization as a sampling strategy.
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Figure 6.7 – Correlation between the validation cross entropy (horizontally) and their inference to predict
on 2000 images with 32 batch size (vertically). All black points are sampled models on CIFAR100. Left
library produced with asynchronous Hyperband and right SMAC [69]

Figure 6.8 – Correlation computing cost versus accuracy of randomly sampled models on Microfossils.
Left library produced with asynchronous Hyperband and right SMAC [69]

6.5.3 step 2 - Ensemble Selection

Ensemble selection pruning

Some base neural networks stored in the library of models are so inaccurate they have no
chance to be selected by the Ensemble Selection algorithm. We try multiple pruning factors
X such that we select only X% of the top X% neural networks stored in the disk-based
on the validation score. It reduces the size of the library of models and thus helps the
ensemble selection algorithm. When the pruning factor is above 20% it does not reduce
accuracy and reduces the ensemble selection time, while the threshold under 15% reduces
the target metric in some experiments. For all experiments, the pruning factor is set to 20%.

We attempt to design a similar threshold for computing cost but it shows no benefit.
When the budget is relaxed, the most computing expensive model has the potential to be
selected and to improve the ensemble’s accuracy.
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Ensemble selection methods under budget

Because ensemble selection methods was a few empirically explored [162] we propose
SMOBF and compare it to multiple baselines. Methods are compared by varying the
budget on two libraries of models, one generated with SMAC (table 6.4) and the other one
with Hyperband (table 6.5), both trained with the CIFAR100 datasets.

Naive. We evaluate a naive method consists in sorting all models in function of their
error. Then naively select best models first until the budget is exhausted. Because it is
known that interaction between models are complex and the cost is not considered during
the model selection, this method generally produced sub optimal solutions. It illustrates
that the ensemble selection is a non trivial problem.

Standard optimizers. Random Search, SMAC (Sequential Model-based Algorithm
Configuration [69]), TPE (Tree Parzen Estimator [5]), GA (Genetic algorithm). We formulate
the ensemble selection as a function taking a binary vector as input B such as Bi is 1 if the
DNN i is put in the ensemble or 0 if i is not. It returns the target metrics s as output or an
arbitrary large number if the budget is violated. We apply and compare those optimized
to minimize the function f (B)→ s.

Those algorithms are tuned (e.g. numbers of samples, number of generations, ...) to
get best results. To be fairly compared they generate ensemble until a fixed time horizon
of ≈500 seconds. We also evaluate RS, SMAC, TPE and GA during more than one hour
but we do not observe measurable benefits. Random Sampling was set by increasing the
probability to disable a model regarding the mean cost of models ĉ, the budget B and the
number of models n. Random Sampling have a probability of add a model in the ensemble
of B

ĉ∗n as a rule of thumbs.
Forward with Budget greedy (FB greedy) [14]. The ensemble S is initialized empty.

Until no available model reduce the error F, the available model v decreasing the most the
formula F(S ∪ {v}) is added to S. A model is said available if it was not previously added
and if adding it does not violate the budget. This is similar to [14] but the stopping criteria
is not a fixed number of DNNs but the budget.

Backward with Budget greedy (BB greedy). [80] At the opposite of FB greedy, the
ensemble S is initialized full. Then models are eliminated one-by-one to minimize F until
the budget is respected and no model elimination would minimize again F.

There is a clear evidence of the superiority of the greedy methods. Between FB greedy
and BB greedy no one is clearly more accurate than the other one. We observe that FB
is better on 4 metrics, BB is greater on 5 ones, and they are tied on 3 ones. FB greedy
was widely faster because its empty initial state leads to very fast solution finding when
number of models in the solution is small compared to the usage of the entire library as
initialization.

SMOFB greedy beats FB greedy on 6 metrics and is beaten 2 times by FB greedy on the
error accuracy metrics. Even though SMOFB greedy is 3 times slower (because 3 values
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Budget=20 Budget=80 Budget=320

Name ACC CE ACC CE ACC CE Time (sec.)

Naive 33.12 1.4486 26.15 1.0216 23.14 0.8949 < 1
FB greedy 28.2 1.1362 22.02 0.8668 20.42 0.7919 33;105;284

BB greedy 29.23 1.1439 22.16 0.8658 20.53 0.7915 1311;1298;1447

SMOFB greedy 27.8 1.1316 21.73 0.8573 20.42 0.7919 99;248;870

RS 30.27 1.1641 23.53 0.9316 22.48 0.8444

500±40

SMAC 28.48 1.1724 23.97 0.9715 22.23 0.849

TPE 28.58 1.1994 22.32 0.8679 21.45 0.8244

GA 28.05 1.1553 23.2 0.9194 21.94 0.84

Table 6.4 – Comparison of ensemble selection algorithms from a library of models generated with Hyperband
on CIFAR100. According different budget (B) and the two metrics: error rate (%) and the cross-entropy
validation loss. To a fair comparison RS, SMAC, TPE, and GA have been set to be run with 500 seconds time
horizon. All solutions produced honor the corresponding budget B. Greedy algorithms take different amount
of time in function of the library size.

Budget=20 Budget=80 Budget=320

Name ACC CE ACC CE ACC CE Time (sec.)

Naive 23.95 0.8929 24.78 0.9573 27.08 1.1263 < 1
FB greedy 24.44 0.9458 22.65 0.8679 22.06 0.8445 47;94;151

BB greedy 25.9 1.0138 22.65 0.8543 22.06 0.8445 645;627;566

SMOFB greedy 24.72 0.9402 22.63 0.8591 22.12 0.8397 138;291;515

RS 28.78 1.1362 23.46 0.9110 23.07 0.8856

500±40

SMAC 25.74 1.059 23.21 0.9062 23.07 0.8739

TPE 24.68 0.9607 22.82 0.8871 22.7 0.8614

GA 25.05 0.979 22.97 0.9090 22.68 0.8694

Table 6.5 – Comparison of ensemble selection algorithms from a model library generated with SMAC on
CIFAR100



104 Chapter 6. Hyperparameter optimization with ensembling

of w are assessed) it is still faster than BB greedy and in addition, ensembles it found
outperforms FB greedy on the cross-entropy error.

Some other methods may be invented to automatically identify complementary and
fast ensembles with a reasonable algorithmic complexity. For example, unsupervised
approach have the potential to discover the most diversified neural network predictions
and prune the most redundant neural networks (such as used to compute the dendrogram
in figure 6.3).

SMOBF greedy compared to Forward greedy (baseline)

The forward greedy algorithm is the most commonly used ensemble selection algorithm
[14] [42], this is what we fix as the baseline. We perform three runtimes of the overall
ensemble construction workflow and observe that SMOBF (Scalarized Multi-Objective with
budget forward) is Pareto dominant or equivalent to the baseline each time.

The figures 6.9, 6.10 compares those two algorithms in the function of the cost (vertically)
and the error rate (horizontally) of produced ensembles with SMOBF greedy (blue) and
the baseline (orange) on one runtime. In figures, the mention "BX" means a budget of X
and "#Y" means an ensemble of size Y.
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Figure 6.9 – Ensembles generated from Hyperband algorithm on the CIFAR100 dataset

Figure 6.10 – Ensembles generated from Hyperband algorithm on the microfossils dataset

The gain of SMOBF is particularly obvious when the budget is small on both criteria,
but it is reduced when the budget is relaxed. Indeed, when we target the best ensemble at
any cost or any size, the objective of the two algorithms converges. On the opposite when
the budget is small, SMOBF informs the greedy algorithm to go toward efficient models
before the budget is consumed.

Assessing ensemble combiners

During the ensemble selection process, we try three ways to best combine a candidate
ensemble: majority voting, averaging, and weighted averaging. Results are summarized on
the table 6.8 and 6.9.
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Budget 20 80 320

Metric Error CE Error CE Error CE

Maj. Voting 0.2643 2.8047 0.2261 1.9208 0.2197 1.3622

Averaging 0.278 1.1316 0.2202 0.8668 0.2042 0.7919
W. Averaging 0.2808 1.1362 0.2199 0.8691 0.2092 0.7921

Table 6.6 – Forward greedy ensemble selection algorithm over the population of models trained with hyperband.
We try three combiner rules: majority voting, averaging, and weighted averaging. We evaluate them on the
cross-entropy error (“CE”) and the accuracy error (“Error”) on the test dataset.

Budget 20 80 320

Metric Error CE Error CE Error CE

Maj. Voting 0.2663 2.5460 0.2381 1.6657 0.2314 1.1860

Averaging 0.2444 0.9458 0.2265 0.8679 0.2206 0.8445

W. Averaging 0.2450 0.9461 0.2258 0.8647 0.2204 0.8414

Table 6.7 – Forward greed ensemble selection algorithm over the population of models trained with SMAC.
We try three combiner rules: majority voting, averaging and weighted averaging.

Majority voting. It counts the votes of all the predicted labels from the models and it
predicts the label with the most votes. Compared to simple averaging, it suffers from the
loss of information, as it only uses the predicted label.

Averaging. The deep learning literature has already suggested [155],[184] [58] that
averaging is a reasonable choice for homogeneous ensembles of models and therefore with
similar accuracy. However, the averaging combiner rule can suffer from a major drawback.
In an ensemble where base models have diverse performance, the weaker models in the
ensemble contribute at the same importance as stronger ones and may intuitively hurt the
performance.

Weighted averaging based on ensemble selection with replacement. We experiment
with weighted averaging using ensemble selection with replacement, the number of times
a model is taken by SMOBF in the ensemble corresponds to its weight in the ensemble
[14] [162]. Then, weights are normalized to ensure that the sum is equal to 1. We observe
no benefits to using weighted averaging, we may interpret it by the fact validation data
information is already used by SMOBF, and calibrating weighted averaging is not beneficial.
Of course, we could extract data samples from the training set to create a second validation
set, but it would reduce the number of data samples for the training phase, and would
increase the complexity of the procedure (e.g., how many data samples are required ?).

Machine learning model as combination rule. A meta-learner such as stacking [170])
is a model taking all base predictions as input and returns the final ensemble prediction.
The meta-learner is expected to combine the strengths of all the base learners. We do not
evaluate meta-learner here due to multiple reasons. First, the meta-learner is generally
calibrated on a validation split and we observe that a very simple weighted averaging
combination rule (previous paragraph) already overfits it. Second, it would increase
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Budget 20 80 320

Metric ACC CE ACC CE ACC CE

Maj. Voting 0.2643 2.8047 0.2261 1.9208 0.2197 1.3622

Averaging 0.278 1.1316 0.2202 0.8668 0.2042 0.7919
W. Averaging 0.2808 1.1362 0.2199 0.8691 0.2092 0.7921

Table 6.8 – Forward greedy ensemble selection algorithm over the population of models trained with hyperband.
We try three combiner rules: majority voting, averaging and weighted averaging.

Budget 20 80 320

Metric ACC CE ACC CE ACC CE

Maj. Voting 0.2663 2.5460 0.2381 1.6657 0.2314 1.1860

Averaging 0.2444 0.9458 0.2265 0.8679 0.2206 0.8445

W. Averaging 0.2450 0.9461 0.2258 0.8647 0.2204 0.8414

Table 6.9 – Forward greed ensemble selection algorithm over the population of models trained with SMAC.
We try three combiner rules: majority voting, averaging and weighted averaging.

the ensemble selection running time that requires assessing thousands of combinations,
training meta-learner for each combination is not possible. Third, a machine learning
model as a combination rule would also significantly hurt the time in the inference phase,
especially on the latency metrics.

To conclude, it appears that naively averaging predictions is simple and performs
as well as weighted averaging them with no risk to overfit the validation dataset. The
weighted averaging combiner performs very similarly to the averaging combiner. We can
explain this result by the fact that the validation information is already used during the
ensemble construction, so the weights tuned on this validation set are over-fitted.

6.6 Baseline comparison

We report in figure 6.10 results of authors running until convergence multiple AutoML
methods with diverse theoretical backgrounds [89], [129], [176]. We run the Auto-Keras
framework version 1.0.12 with one single GPU and default settings, except the max_trials
set to 10. We notice no improvement when max_trials is set to 20. We report our proposed
workflow results and some intermediate scores over time.

The comparison between AutoML methods is known to be difficult because authors
explore different search spaces, with different initial conditions, different data processing,
and ensembles, however, we observe two main trends. The first block of rows AutoML
methods converging fast in several GPU hours which often explore the neural architecture
space sequentially on one GPU. The second block is evolution-based algorithms that
converge later, their population-based approach allows to easily leverage of GPU clusters.
Asynchronous Hyperband is still not widely used.
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Method #GPU hours Cum h GPU name #DNNs Test(%)
RSPS [92] 1 2 2 GTX1080TI 1 52.31±5.77

DARTS-V1 [101] 1 3 3 GTX1080TI 1 15.03±0.00

DARTS-V2 1 10 10 GTX1080TI 1 15.03±0.00

GDAS [35] 1 9 9 GTX1080TI 1 71.34±0.34

SETN [34] 1 10 10 GTX1080TI 1 58.86±0.06

ENAS [123] 1 4 4 GTX1080TI 1 13.37±2.35

Auto-Keras [72] 1 2 2 Tesla V100 1 69.57±0.53

LSE [129] 250 264 66K ? ? 77.0
CNN-GA [176] 3 320 960 GTX1080TI 1 77.97

CNN-GA+cutout [176] 3 320 960 GTX1080TI 1 79.47

Ours with B=320 6 6 36 Tesla V100 4 72.39

Ours with B=320 6 24 144 Tesla V100 18 77.35

Ours with B=320 6 144 864 Tesla V100 34 79.44

Table 6.10 – The comparison between AutoML algorithms in terms of the classification accuracy (%) and
GPU hours on CIFAR100 benchmark dataset. The "?" mention means the information is missing in the
paper. Column from left to right are: the name of the method, the number of GPUs used, duration of the
algorithm (hours), cumulated time, GPU name, number of models (1=no ensembling) , mean test accuracy

As evolutionary methods, our method can benefit from high computing power. In
comparison, asynchronous Hyperband does not require intermediate stopping of all GPUs
which makes it more suitable to use GPU clusters compared to a sequence of generations.
Also, in the large-scale case where the number of available GPUs is superior to the number
of trials, Hyperband can run all trials at the same time, while genetics is limited by running
all trials of the current generation.

Furthermore, Hyperband has low settings requirements. It uses early stopping which
reduces the sensibility to the #trials/#epochs dilemma. Also, the exploration/exploitation
of the hyperparameter space is balanced by stopping a fraction of less promising trials, so
only the halving factor is needed. Evolutionary methods require many more initial settings
such as the number of generations, the crossover operation, and the mutation operation.
They make this algorithm sensitive to the initial choices and so the settings calibrated for
an application cannot be suited for a new application.

We try our best to do a fair comparison by using the same dataset. However, different
data processing, different hardware, and different initial settings can have an important
impact on experimental results. We do not perform cutout and yet it seems effective pro-
cessing on CIFAR100. Finally, we recall that with the given time horizon of 36GPU/hours
visible in figure 6.9 and figure 6.10, Hyperband+SMOB greedy has not yet converged.

6.7 Replace the HPO tuning

Our proposed workflow is made of a few modules. We attempt to replace the construction
of DNNs based on Hyperband with different technics: homogeneous ResNet architectures
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ran at different timesteps and on the shelf library of population models such as InceptionV3,
VGG16,...

6.7.1 Replace HPO with homogeneous ensemblings

Retraining the same deep learning architecture from scratch can yield significant distance
in different run times, that is why we compare different HPO strategies and different
popular ResNet architectures.

Table 6.11 show the workflow error by replacing the library from the HPO algorithm
with a library from a fixed ResNet architecture. For a fair comparison with the previous
benchmark, libraries have been generated at different run times for 6 days and 6 GPUs.

CIFAR100 dataset
ResNet archicture R18 R34 R50 RX50 R101 R152

#weights per DNN 31.6M 53.1M 53.1M 13.1M 95.8M 128.4M
Cost per DNN 10.83 14.35 14.05 11.87 21.14 28.56

#1 35.30 35.77 37.63 42.28 35.85 37.82

#2 32.98 21.70 33.60 38.67 32.77 34.86

#3 29.88 28.58 31.29 36.16 30.30 32.16

#4 28.66 27.63 29.76 35.09 29.74 31.65

#6 27.70 26.88 28.16 32.15 28.93 30.26

#8 26.98 26.21 27.33 31.86 28.26 29.33

#12 26.59 25.88 26.82 31.44 71.85 29.46

#16 26.66 25.74 26.80 31.44 28.15 29.45

The microfossils dataset
ResNet archi. R18 R34 R50 RX50 R101 R152

#weights of 1 31.6M 53.1M 53.1M 13.1M 95.8M 128.4M
Cost per DNN 120.53 169.71 164.96 118.64 254.45 354.29

#1 13.17 14.76 14.35 15.09 15.78 14.91

#2 12.26 12.23 12.46 12.74 13.96 13.39

#3 11.78 11.45 11.52 12.07 12.46 12.34

#4 11.66 11.29 11.37 11.98 12.26 12.09

#6 10.90 10.50 10.73 11.73 11.76 11.32

#8 10.87 10.41 10.61 11.27 11.60 11.20

Table 6.11 – Homogenous ensembling accuracy based on ResNet architectures. We vary the dataset, the
ResNet architectures to build the library of models, and the ensemble size. We stop assessing to add models
when it plateaus. Values are expressed as error percentage on the test dataset.

ResNet architecture is robust on-the-shelf neural architecture, but producing homoge-
neous ensembles underperform the ensembles built with an HPO library. This may be
explained by the fact homogeneous hyperparameters create similar predictions, this lack of
diversity makes it impossible to find complementary models. This reinforces our previous
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claim (section 6.2) that diversity is a necessary condition to find complementary ensembles
(but not always sufficient).

6.7.2 Replace HPO with a library of on the shelf models

SMOBF may be widely applied to any library and supervised applications. To confirm
the performance of this idea, we run the SMOBF algorithm on the shelf deep neural
networks trained on ImageNet from the “keras.applications” Python package 1. SMOBF
may also generalize to any prediction quality measure (e.g., accuracy, top5 accuracy, ...) and
computing cost (e.g., number of parameters, power consumption, memory consumption,
inference speed ...)

Experimental conditions Catalogue of architectures and their accuracy of models on
Imagenet are showed in figure 6.12.

1https://keras.io/api/applications/

https://keras.io/api/applications/
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Deep learning model Inference speed (speed) # parameters (M) Top 1 acc. Top 5 acc.
VGG16 [184] 3.1851 138.4 0.6957 0.8907

VGG19 3.4092 143.7 0.6980 0.8903

ResNet50 [58] 2.9540 25.6 0.7428 0.9165

ResNet101 4.0294 44.7 0.7546 0.9242

ResNet152 5.0209 60.4 0.7592 0.9267

ResNet50V2 1.9967 25.6 0.6936 0.8911

ResNet101V2 3.5429 44.7 0.7155 0.9039

ResNet152V2 4.8311 60.4 0.7226 0.9071

NASNetLarge [187] 17.3257 88.9 0.8249 0.9596

NASNetMobile 1.8671 5.3 0.7357 0.9140

Xception [23] 5.4912 22.9 0.7883 0.9438

InceptionV3 [155] 2.8771 23.9 0.7765 0.9379

InceptionResnetV2 [156] 7.1731 55.9 0.8030 0.9513

DenseNet121 [66] 2.0806 8.1 0.7435 0.9192

DenseNet169 2.2796 14.3 0.7559 0.9273

DenseNet201 2.8423 20.2 0.7657 0.9320

MobileNet 2.1173 4.3 0.7077 0.8967

MobileNetV2 [137] 2.1996 3.5 0.7205 0.9063

MobileNetV3S 1.5649 2.5 0.6725 0.8740

MobileNetV3L 2.1847 5.4 0.7501 0.9216

EfficientNetB0 [158] 3.0769 5.3 0.7353 0.9165

EfficientNetB1 2.4584 7.9 0.7610 0.9295

EfficientNetB2 3.3445 9.2 0.7724 0.9359

EfficientNetB3 4.5246 12.3 0.7931 0.9478

EfficientNetB4 12.0068 19.5 0.8097 0.9547

EfficientNetB5 22.0013 30.6 0.8201 0.9591

EfficientNetB6 36.7563 43.3 0.8278 0.9637

EfficientNetB7 61.9721 66.7 0.8239 0.9619

EfficientNetB0V2 [159] 1.2126 7.2 0.7802 0.9387

EfficientNetB1V2 2.0405 8.2 0.7926 0.9458

EfficientNetB2V2 2.5375 10.2 0.7995 0.9493

EfficientNetB3V2 3.6709 14.5 0.8143 0.9552

EfficientNetV2S 7.8051 21.6 0.8368 0.9655

EfficientNetV2M 19.3997 54.4 0.8493 0.9715

EfficientNetV2L 32.0848 119 0.8537 0.9721

Ensemble A 27.2048 76 0.8517 0.9725

Ensemble B 78.7326 288.2 0.8589 0.9742

Ensemble C 113.5 240.1 0.8584 0.9746

Table 6.12 – Library of deep learning models. Ensemble A contains {EffV2M, EffVS} ; Ensemble B contains
{EffV2L,EffV2S,EffV2M,NASLarge, Mobile} ; Ensemble C {EffV2L, EffV2M, EffB7}

Ensemble A and Ensemble C are produced aiming for“ top 5 accuracy” under inference
time budget. Ensemble B is produced aiming “top 5 accuracy” under the number of
parameters.

Once an ensemble is built, the weighted averaging combination rule instead of averaging



112 Chapter 6. Hyperparameter optimization with ensembling

improves slightly the top 5 accuracy (up to +0.1% accuracy gain). In this case, due to the
quantity of validation data available (25K samples), it seems weighted averaging does not
overfit this dataset split.

Experimental results We vary the budget of SMOBF in figure 6.11 taking the catalogue
presented in figure 6.12. We SMOBF procedure with two different computing costs:
inference time and the number of parameters, showing our ensemble selection SMOBF
algorithm is flexible.

Figure 6.11 – SMOBF taking as input on the shelf deep neural networks applied on Imagenet dataset with
different budgets. Imagenet contains 1000 classes, for each class 1,300 images of training, 25 images of
validation, and 25 images of test. We also showed performance between simply averaging predictions and
stacking the ensemble. For each experiment, the number of models in the Ensemble is indicated. We observe
small prediction quality improvement to use the stacking combination rule (orange) instead of the averaging
one (blue).

The first major observation is that ensembles are generally Pareto superior to the most
efficient neural network of the library. This is a major discovery that shows the benefits
of ensembling worth their computing cost when they are combined with multi-objective
combinatorial optimization. And more, SMOBF is general enough to find a more efficient
solution on any library of models and success in discovering ensembles Pareto superior
compared to the state-of-the-art deep neural networks. By performing those experiments,
we also observe that SMOBF is flexible enough to return only one single model of the
library (i.e., an ensemble of size 1).

6.8 Summary

Due to the increasing number of new Deep Learning applications and datasets, Auto
Machine Learning (AutoML) methods are an important line of research. We propose a
workflow capable to calibrate hyperparameters, training multiple neural networks at the
same time, and extracting an ensemble of DNNs that is a subset of the library of trained
DNNs. We aim to fill the gap between Machine Learning research, the new GPU clusters,
and the end-user application quality of service. To go toward this direction, we formulate
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the problems by aiming at the accuracy, the ensemble inference speed, and the flexibility of
the underlying heterogeneous infrastructure.

For the first time, we do not assess the hyperparameter optimizer to find the best
neural network, but to generate the best library of models to then combine them. We pre-
sented the experimental results demonstrating that asynchronous Hyperband is suitable
for generating a large number of diversified models thanks to 3 inherent characteristics.
First, the uniform sampling of the hyperparameter space allows for sampling statistically
diverse hyperparameters. Second, efficient asynchronous computing to keep GPUs occu-
pied by the workload. Third, the early stopping mechanism purses both goals: reducing
the overall tuning time and maintaining the most promising neural networks trained.

We then propose a novel Ensemble Selection strategy, SMOBF, that optimizes the
ensemble selection by controlling the final ensemble computing cost of heterogenous
DNNs. When the budget is relaxed, our algorithm offers high and robust accuracy
compared to other AutoML workflows. We observe that SMOBF generally found Pareto
optimum ensembles compared to the individual neural network in its library of models.

All those researches show that efficient hyperparameter optimization should be mixed
with ensemble construction to find efficient ensembles. The next chapter will present
hyperparameter optimization to compute ensembles in a very different context: the
reinforcement learning case. Chapter 8 deals with deploying those produced ensembles in
inference mode by leveraging modern computing nodes.
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ensemble

In the previous chapter we propose a novel workflow to integrate all the steps of the
automatic construction of ensembles for supervised deep learning applications. As seen

in chapter 3 we see the emergence of energy applications formulated as Markov Decision
Process leveraging reinforcement learning [109].

Reinforcement learning cannot fully benefits from the proposed workflow of
HPO+Ensemble in the last chapter. The nature of the problem to solve and some previous
choices applied to the supervised context cannot be generalized in the RL context for two
reasons:

First it is not possible to assess thousands of potential ensembles in a reasonable
amount of time. In the supervised case, we could store all DNNs predictions of the
validation data samples, it allows us the ability to assess potential ensembles on a multi-
core CPU in a reasonable amount of time. This hypothesis is not possible in the case
of reinforcement learning where future states/predictions/rewards will depend on the
ensembles’ interactions with an environment. For example, to evaluate 1000 ensembles of
4 bases agents on GPUs each one taking 1 hour to be trained, it would require 4000 GPU
hours.

Secondly, in the previous chapter, we use the Hyperband algorithm to prioritize the
most promising experiments during the training time according to the validation score.
However, RL algorithms are much more unstable than supervised ones, so comparing the
learning curves is not informative due to their high volatility. The instability of the training
at different runtimes may also ask our-self if the homogeneous ensemble procedure
is already diverse enough base agents compared to the more complex heterogeneous
ensemble procedure.

The reproducibility is also a desired characteristic of major machine learning algorithms.
To maintain scientific progress in ML and its applications, it is required to get confidence in
the reproducibility of the results of the experiments and be able to fairly compare different
algorithms. Reinforcement learning methods are especially sensitive to random effects
and hyperparameters tuning [59] making them difficult to use in practice. This is why to

115
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compare the predictions of different methods it is mandatory to compare them using the
mean score and the spread of the score at different runtimes.

To alleviate this, we propose and compare multiple workflows of ensembles in the rein-
forcement learning case. Ensemble learning is now well-known for producing qualitative
predictions by using the instability of the same learners at different run times [149]. In the
context of RL, it has the potential to improve the robustness and quality of reinforcement
learning trajectories by taking a better sequence of local better decisions.

We discovered that an ensemble of RL agents overpasses the simple baseline consist-
ing to select the best single agent in it. And more, ensembles are generally worth the
computing cost on recent hardware without systematically requiring GPU investment.
Their independent nature allows us to run them in embarrassingly parallel on multi-GPUs
computing nodes and be efficiently deployed in the inference phase too.

In the last few years, some ensembles of reinforcement learning have been proposed
and demonstrate good abilities [36] [81] to increase the diversity of samples gathered to
improve the stability and to accelerate the training process compared to one single agent.
However, there are still open research questions to be investigated: which procedure is
better to build them? Does ensemble worth the computing cost compared to selecting the
best model in it?

In this chapter, we aim to answer them. We will not limit ourselves to comparing
the training dynamic of one ensemble compared to one single agent. We instead sweep
hundreds of hyperparameters to fairly compare ensembles by splitting training/validation
and test phases to reflect the need to measure how well they generalize. Furthermore,
for the first time, we compare multiple ensemble procedures: homogeneous [149] and
heterogeneous [97] [11] ensemble construction procedures. And different combination
rules, averaging[149], weighted averaging [55], and select only the best base agent (i.e., no
ensemble). Then, we evaluate the computing cost of the building phase and the inference
phase running on modern computing nodes, and we discuss whether the ensemble is
worth the computing cost with a suited parallel implementation.

This chapter first demonstrates experimental evidence that homogeneous ensembles
with averaging as a combination rule are more performant and more stable than the other
evaluated procedures. Second, we perform extended experiments by increasing the number
of agents and conclude that it significantly improves the stabilization of the cumulative
reward without widely increasing the computation time of modern GPU computing
nodes. Indeed, GPUs have evolved into chipsets with thousands of cores that efficiently
run multiple small neural networks in parallel. Finally, due to the simplicity of the
proposed procedure and the stabilization effects, our experiments are easily reproducible
and adapted can be applied beyond our assessed environments and RL frameworks.

We experiment with diverse ensembles of RL agents constructions on two industrial
applications linked to the electricity control: Pymgrid [60] and GEM [161]. Both are
available with a continuous and discrete action space. We evaluate ensemble workflows
on both RL algorithms: DQN for discrete environments [56] [167] and DDPG [174] for
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continuous ones. However, those results may not generalize well in some RL frameworks
where RL agents lack exploration in the training phase, the interpolation of too many
specialized agents may drive the ensemble in some trajectories where agents have low
experiences.

Our chapter follows this structure: In section ?? we show the progress in what we
call “collective performance”: multi-agent, multi-module agent, multi-threaded agent. We
discuss what is beneficial to ensembles and what they bring to those fields. In (??) we
introduce the workflow we use to perform ensemble benchmarks. In (7.3) and (7.4) We
perform multiple benchmarks to assess different ensemble construction procedures in
terms of test score and stability of the test score.

7.1 Collective performance in reinforcement learning

This section is about collective performance in the context of reinforcement learning: multi-
agents, agents made of multiple modules, and distributed agents to run faster the training.
For each pattern, we will compare them with an ensemble of reinforcement learning,
explicit the difference and how they can be mixed with the ensembles.

7.1.1 Multi-agents and multi-modules agent

Multi-Agent Reinforcement learning (or “MARL”) was mentioned multiple times in liter-
ature with different variants. In general, multiple agents [12] in the same environment
perceive different states and act at the same time. On the opposite, in the ensemble of
agents, the decisions are made collectively by all agents perceiving the same state. In other
words, in MARL each step is as follows: n partially observed states by n agents predicting
and returning n actions. In the ensemble of agents, there is 1 state observed by n agents
and returning 1 final action. MARL and Ensemble do not aim to solve the same problem
but some authors [71] succeeded to apply them together. MARL allows partitioning of the
input space and the decision space to simplify the DNNs tasks, and combines multiple
DNNs on each partition of the environment allows to improve the predictions but those
works lack in-depth analysis of the ensemble procedure evaluation.

Reinforcement learning agents may be broken down into sub-modules to be more
efficient. Some architectures are separately trained modules such as actor-critic neural
networks [153] [108] and hybrid model-based and model-free [111]. On the opposite, some
architectures are neural network trained end-to-end with specialized streams such as one
auto-encoder stream and LSTM stream [116] or dueling DQN splitting advantages stream
and values stream [167]. Our proposed ensemble benefits from all those works, for instance,
we ensemble multiple DDPG agents each one being actor-critic methods and we do the
same with dueling DQN agents.
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7.1.2 Distributed agents

Distributed agents training [113] [108] [39] have been proposed to train faster RL agents
and use efficiently the underlying parallelism of the computing nodes. The training of one
agent may be break down in 4 sub-program parts:

• (A) The parameter server containing the agent parameters.

• (B) The rollout worker collecting experiences. It performs iteratively the forward of
the neural network and the next step in the environment.

• (C) The replay memory storing thousands of experiences for off-policy RL and
only a batch of data samples for the on-policy RL. One experience is a transition
{s_t, a_t, r_t + 1, s_t + 1} with s_t the current state and a_t the action performed on
this state, r_t + 1 the reward and s_t + 1 the new state after the action a_t.

• (D) The learner performing updates of the neural network based on the replay
memory.

Previous works proposed diverse mappings between multiple processes and those 4

roles. They are considerable flexibility in the number of ways the RL training loop may be
parallelized. We give below a non-exhaustive list:

• In GORILA [113], there are Multiple (A), multiple (B) on multiple servers called
“shards”, multiple (C) implementing asynchronous SGD, and multiple (D).

• In A3C [108] there are 1 process (called “master”) implementing (A) and (C); no (B);
Multiple (D).

• In Apex [64], there is 1 process (called “learner”) containing (A), (B), (C); Multiple
(D), we will name below the “the rollout workers”.

• In IMPALA [39] there are multiple learners, each one containing (A), (B), (C), and
multiple (D).

Different strategies are balancing between computing parallelism versus communication
complexity. Some of them use synchronism with consistency [39] versus asynchronism
with outdated information [109] which has already been discussed in the supervised case.
Those works share in common that they use a pool of rollout workers to accelerate the
overall training loop which is generally the main bottleneck. However, the communication
overhead may not be worth the time saved by interacting in parallel. A separated process
(B) needs to communicate regularly its experiments (C) and be synchronized with the
global parameters (A).

We assess rollout workers in figure 7.1 7.2 and observe that the parallelism allows us
to divide the computing time quite easily on modern devices but it is not ideal due to
communication overhead between the learner process and the rollout worker. We also
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observe that according to the neural network architecture the GPU is not systematically
faster than the CPU. It shows that more in-depth analysis must be done to accelerate the
hyperparameters sweeping workload.

Figure 7.1 – Distributed RL training over 3 episodes. More workers increases widely the training time (a
few minutes), drawing theses bars would reduce the readability.

Figure 7.2 – Distributed RL training over 3 episodes. More workers increases widely the training time (a
few minutes).

In our design, we have one single process by agent implementing all 4 tasks, but we
benefit from hardware parallelism by training multiple independent agents with different
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random seeds. Therefore, we reduce communication between processes to its minimum
and cores utilization rate to its maximum due to a greater number of trials than available
cores. We detail further this choice in section 7.2.1.

7.2 The proposed ensemble of RL agents

To solve a given control problem, Random Search to generate multiple Reinforcement
Learning hyperparameters given an RL framework is a simple and robust method [90]. In
this chapter, hyperparameters will not encode only one agent but the ensemble of agents.

Offline RL agents have two different policies depending on whether they are in the
training or evaluation phase. The agent is trained with an explorative-exploitative behavior
to learn to control the environment. Once the agent trained (i.e., inference phase), the
agent acts with its best guess in the environment (exploitation only). Multiple training
and evaluation are needed to measure the performance and the robustness of one given
hyperparameter.

The procedure we follow is described as follows:

1. Hyperparameters are sampled with Random Search to build hundreds of ensem-
bles. There are multiple variants we assess: either homogeneous ensembles or
heterogeneous ensembles, and different combination rules.

2. In each ensemble, all base agents are trained independently and evaluated individu-
ally to produce an individual validation score.

3. Ensembles may be calibrated according to the individual validation score to calibrate
the combination rule. Then, the validation score of the ensemble is computed.

4. The ensemble performing the best in step 3 is taken and deployed in production. We
simulate the final performance in production by testing it the last time. It is the test
score of the ensemble.

7.2.1 Training and tuning speed

In their construction phase, ensembles require the independent construction of base
agents. Hyperparameter optimization with Random Search consists also to run multiple
independent trials by sweeping some hyperparameters and in the end, taking only the best
one on a validation score. More generally speaking, Hyperparameter optimization and
ensemble both should leverage from a large amount of computing available resulting in
bigger ensembles, well-tuned, and trained during more time.

All agents are trained in embarrassingly parallel. It is ideal when the number of
trials is large, which is preferable due to a large hyperparameter space of more than 10

dimensions. We also observe that in the training phase GPUs may handle more efficiently
embarrassingly parallel neural networks. And more, an embarrassing parallel of execution
is generally a simple method available for all machine learning frameworks.
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Time (sec.) to train them
Number of DQN RL agents 1 10 100 1000

Sequence of distributed trainings with rollout workers 3.4 34 340 3,400

Sequence of distributed trainings with rollout workers 3.5 35 350 3,500

Embarrassingly parallel CPU trainings 19.8 74.5 138.2 783.6
Embarrassingly parallel GPU trainings 10.3 29.6 84 732.8

Table 7.1 – Time (sec.) to run different workload of RL training according the parallel pattern on the CPU.
The initialization time is not measured here.

Table 7.1 compares two different parallel patterns to run the workload. We use the time
using 32 rollout workers and several independent trials with the equivalent workload. The
workload consists of training on Pymgrid 1, 10, 100, and 1000 DQN RL agents of 2 layers
and 256 units:

• Sequence of distributed training, each training is distributed across 32 rollout workers
and 1 learner.

• Embarrassingly parallel the training, each training run in the same process plays both
roles: the learner and the rollout worker.

We compare a few parallel settings to accelerate the training of distributed RL agents
in a heterogeneous computing node. The possible parallel settings are endless: CPU/GPU,
number of dependant trials, number of rollout workers... But our experiment is still
incomplete, an ideal parallel setting should be tailored also a function of the nature of
workload (small or large neural networks), the number of experiments, and the memory
consumption per experiment.

7.2.2 Training, validation, and testing

Many reinforcement learning projects applied to some tasks such as video games or
playboards are only interested in maximizing rewards during the training loop and
compare RL approaches based on the training dynamics. We rather want to train our
agents on a given runtime and measure how well they generalize. The method must be
robust to the initial conditions such as different random seeds. We also want to avoid
overfitting the training transitions stored in the replay buffer and avoid overfitting the time
series data associated with the environment (Pymgrid contains some time series but not
GEM). This is why we propose that the base agent training loops are independent with no
sharing of the experience memory. No sharing of collected data samples allows them to
build their own experiences and statistically maximize their diversity.

It is well known that most supervised machine learning projects have a training phase
and two evaluations phase: the validation and the test which are a different subsets of
data samples from the training phase. We use the same terminology to make good quality
decisions in the context of Reinforcement Learning.



122 Chapter 7. Reinforcement Learning and ensemble

• The validation score allows making decisions on the neural network, like selecting
the best agent given this score, calibration of the ensemble ...

• The test score allows to simulate the true score when it will be deployed in production.
It may provide different values from the validation for multiple reasons: different
random seeds, different number of states to evaluate (“different horizon”), and
different time-series data (if any).

We name “R” the evaluation score (“test score” when it is not precised). This is the
cumulative rewards during the evaluation phase. R = ∑h

t=1 rt for each time step t returning
the reward rt until the horizon h is reached.

In the build library of agents, we observe a strong correlation between the validation
score and the test score which shows that a decision taken on the validation generalizes
well on the test. It can be observed in figure 7.3.

Figure 7.3 – Correlation between validation score (horizontally) and test score (vertically) on Pymgrid even
if they are performed on different time period.

7.2.3 Ensemble construction

Homogeneous ensembles are built with n hyperparameters: each agent shares the same n
hyperparameters but different random seeds. In heterogeneous ensembles of m agents, the
ensemble has m ∗ n hyperparameters.

Table 7.3 and 7.2 show individual hyperparameters of our RL agents. The hyperparam-
eter range has been set according to common literature values and preliminary experiments
on Pymgrid without ensembles. For example, our preliminary experiments teach us that
less than 2 layers underperform, and more than 8 is an uncommon value. Hyperparameters
importance are more in-depth discussed in section 7.4.5.

We learn from a massive amount of RL experiences the importance to process the
rewards on the cumulative reward. The processed reward r′ is used only to train our
agents, when we compare different agents we compare them based on the accumulated
raw rewards.
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DQN [56] hyperparameters used

Variable name Comment Value range

width Units per layer [32;1024] log2 space
depth Number of layers [2;8]
reward_power p of the reward processing [0.5;2]
reward_scale s of the reward processing [0.01;100] log10

nb_previous_states Temporal window size {1,2,4}
batch_size Training batch size [16;256]
lr Learning rate [1e-4;0.1] log3

gamma γ in the bellman equation [0.2;1]
explor_rate_start First exploration rate [0.06;1]
explor_rate_end Last exploration rate [0;0.05]
dueling Is dueling DQN enabled ? {Yes;No}

Table 7.2 – The hyperparameter spaces used for DQN agents

DDPG [174] hyperparameters used

Variable name Comment Value range

width DNN width of actor and critic [32;1024] log2

depth DNN depth of actor and critic [2;8]
reward_power p of the reward processing [0.5;2]
reward_scale s of the reward processing [0.01;100] log10

nb_previous_states Temporal window size {1,2,4}
batch_size Training batch size [16;256]
actor_lr Learning rate of the actor [1e-4;0.1] log3

critic_lr Learning rate of the critic [1e-4;0.1] log3

gamma γ in the bellman equation [0.2;1]
explor_rate_start First exploration rate [0.06;1]
explor_rate_end Last exploration rate [0;0.05]
tau Soft update of target parameters [ 3e-4;1e-2]

Table 7.3 – The hyperparameter spaces used for DQN agents (up) and DDPG agents (bottom)
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We use this formula: r′ = sign(r) ∗ s ∗ abs(r)p with r the raw reward given by the
environment, s a scale factor and p which allows smoothing (p < 1) or increasing (p > 1)
the relative importance of the raw rewards. The sign(r) function return -1 or 1 according
the sign of r, and abs(r) is the absolute value function. They allow to process reward even
if the environment produces negative values.

7.2.4 The ensembling procedure

After training independent agents their predictions are combined to improve their ability
to make better local decisions in the same environment and improve the overall trajectory
as well. Figure 7.4 illustrates our ensemble procedure.

Combination rule

Environment p

…
Pred. n

Pred. 2

Policy

{State,
Reward}

Agent 2

Agent 1

Agent n

Pred. 1Pred.

Action

Figure 7.4 – In the ensemble, the agents interact in parallel with the same environment. Rewards are only
used to evaluate the ensemble.

7.2.5 The combination rule

Multiple combination rules have been proposed by authors to combine neural networks
predictions. The averaging combination rule simply interpolates predictions giving the
same importance to each base agent without using the validation information. The
weighted averaging [55] combiner uses the validation score to give more weights to the
best models on the validation data but it may overfit validation information.

The Soft Gating Principle [139] is a combination method that has been proposed in
supervised regression tasks to control the relative importance of the best estimators on
some others. We observe it is also applicable to the reinforcement learning task with any
number of base agents and both discrete and continuous action space.

The Soft Gating Principle is described by formula 7.1. It computes the weight wj of
base agent j based on its validation score Rj in the ensemble of size J. ε = 1e− 7 is a small
value above zero to avoid division by zero cases. Then, computed weights are scaled such
that the sum of weights is always equal to 1. The β value is a hyperparameter and repeated
experiments will allow calibrating the combination rule. It controls the importance of
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better models in the final prediction. It unifies averaging (β = 0), selecting only the best
agent (β→ + inf) and weighted averaging (the intermediate values for β).

wj =

J
∑

i=1
Ri

Rβ
j + ε

, β ∈ R+
0 (7.1)

The effect of β on the relative importance of two agents is illustrated in figure 7.5
according to their different validation cumulative rewards. We show here only two agents
for visualization purposes but it generalizes to more agents. For example, if agent 1 gets
150 validation cumulative rewards and agent 2 100 with β = 1, agent 1 will contribute to
60% of the final prediction, and agent 2 will contribute to 40%.

Figure 7.5 – Agent 1’s weight (vertically) by varying to its relative score compared to agent 2 (horizontally)
and different value of β. β allows to give more importance to the best agent according the formula 7.1.

7.3 Experimental settings

In the first analysis, we arbitrarily choose the ensembles containing a fixed number of 4

base agents. We evaluate multiple ways to create ensembles: homogenous/heterogeneous
and different β values. This section details experimental settings. We use GEM [161] and
Pymgrid [60] environments. Both are available with a continuous and discrete action space.
We use DQN for discrete environments [56] [167] and DDPG [174] for continuous ones.

GEM environment (Gym Electric Motor) is a simulator of various electric drive motors.
They contain components such as supply voltages, converters, electric motors, and load
models. The goal is to maximize the performance of the engine under safety constraints. If
a state exceeds the specified safety limits, the episode is stopped and the lowest possible
reward is returned to the agent to punish the limit violation. In all our benchmarks we use
the Permanent Magnet Synchronous Motor (“PMSMCont-v1” and “PMSMDisc-v1” code
name). We set the horizon to 100K steps. All our agents have been trained 30 episodes in
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those environments. Validation runtime and test runtime simply run one episode but with
different random seeds.

Pymgrid environment (PYthon MicroGRID) is a simulator of microgrids. Microgrids
are contained electrical grids that are capable of disconnecting from the main grid. Au-
tomatic control allows for minimizing production costs by honoring the demand. The
reward produced are negative values to maximize given by formula r = −1 ∗ (c + p)
with c cost expressed as dollars and p a penalty term when the demand for electricity
experiences a power cut. In all our benchmarks we use the second microgrid available.
This microgrid has multiple components connected: the demand, the solar panels, the
battery, the generating set, and an unstable link with the main grid allowing to buy/sell
kWh. This simulator is mixed with real sunlight time series data. The training performs
5870 steps, 438 validation steps, and 2453 test steps. Each phase receives different sunlight
time series. Finally, all our agents have trained 500 episodes in those environments.

The software stack. We use RLLIB [96] and Ray [110].
The platform. We train and evaluate each population on one computing node identical

to the Oak Ridge Summit node. It contains 6 Tesla-V100 GPUs and a Power9 AltiVec 2

sockets CPU, each socket containing 72 virtual CPU cores. Inference experiments have
been performed on an HGX-2 containing 16 Tesla-V100 GPUs and an Intel Xeon Platinum
8168 2 sockets CPU, each one containing 48 virtual cores.

7.4 Experiment results

7.4.1 Ensemble construction comparison

We measure the performance of ensembles according to their construction (Homogeneous
or Heterogeneous) and combination rules (βin{0, 1, 4, 16, 64,+∞}) and the two simulators
(Pymgrid and GEM). They are represented in figures 7.6, 7.7, 7.8, and 7.9. Each column
in the figures represents a population of 100 ensembles with randomly drawn hyperpa-
rameters in the hyperparameter space described in table 7.3. The whisker boxes show the
10th, 25th, 50th, 75th, and 90th percentiles, and the circles the performance of the atypical
ensembles superior to the 10th percentile and inferior to the 90th percentile.
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Figure 7.6 – Pymgrid with DQN.
Top 3 produced ensembles: Homogeneous with β = in f (-8.75M), Homogeneous with β = 64 (-8.78M),
Heterogeneous β = in f (-8.82M).

Figure 7.7 – Pymgrid with DDPG.
Top 3 produced ensembles: Heterogeneous with β = 4 (-30.74M), Heterogeneous with β = 1 (-33.7M),
Heterogeneous with β = 16 (-36.3M)
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Figure 7.8 – GEM with DQN.
Top 3 produced ensembles: Homogeneous with β = in f (7064), Homegeneous with β = 0 (7057), HeB0(6974)

Figure 7.9 – GEM with DDPG.
Top 3 produced ensembles: Homogeneous with β = in f (7065), Homogeneous with β = 0 (7056), Heteroge-
neous with β = 1(6958)
‘

Hetero. Homo. distribution comparison. The first major observation is that different
ensemble construction procedures yield a very different distribution of the performance.

RL agents are unstable by nature and running the same training at different runtime
produces already diversified predictions. Heterogeneous ensembles combine hyperpara-
metric and parametric diversity yielding again more diverse base agents. This diversity
is maybe not useful, because it comes with the cost of much more dimensions in the
hyperparameter space and is much more difficult to calibrate. In most cases, heterogeneous
ensembles have a tighter distribution of R, for instance, the difference between the 1st and
the last quartile is smaller or equal to homogeneous ensembles in all our run times.

Homogeneous is a more risky construction. If a homogeneous ensemble gets a good
hyperparameter set, all four base agents have a chance to well perform but the opposite
is also true: a poor hyperparameter set means all poor agents. In practice, this is not a
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problem that several ensembles are performing poorly, because only the ability to generate
good ensembles matters.

Combination rule comparison. Another important observation is that homogeneous
ensembles with β = 0 provide the best decile or equivalent decile each time compared to
other β values. This shows that the simple procedure consisting to build homogeneous
ensembles and simply averaging predictions is a robust ensemble procedure.

In practice, the goal is to find the best ensemble and discard all the others. However,
evaluating the procedure to build them based on only the best one is noisy information,
this is why the decile is used as a measure of the robustness of the automatic ensemble
construction.

Top 3 comparison. We observe no specific pattern when we are looking only at the
top-3 best ensemble constructions due to random effects. There is a total of 12 available
positions (Top 3 with 2 environments and 2 action spaces, 3*2*2=12). 7/12 are homogeneous
compared to 5/12 heterogeneous. Furthermore, 4/12 has been build with β = +∞, 3/12

with β = 0 and 5/12 with intermediate β values.
Distribution in discrete action space. A last piece of information is that multiple

ensembles may follow the same trajectory and accumulate the same rewards in the discrete
action space. For instance, it is possible that 1st decile=1st quartile in shown figures.

7.4.2 Stability analysis

The previous section shows the final performance distribution with different ensemble
construction procedures. It is intuitive but it is often an insufficient analysis in critical
applications where stability and reproducibility are needed. Scientists want to ensure
its reproducibility for transparency, confidence, and sharing experiments. After a minor
update of the environment and re-training of the RL algorithm, it is expected to find similar
performance.

In table 7.4 the ensemble construction procedure is evaluated. First, top-3 per-
forming hyperparameters on the validation score is selected. Then, ensembles
are trained/validated/tested with 4 different random seeds. Finally, the mean
and stability of the test score of the top3 ensembles are computed. More for-
mally, they are computed with mean(mean(R1,1, R1,2, ...), mean(R2,1, R2,2, ...), ...) and
mean(std(R1,1, R1,2, ...), std(R2,1, R2,2, ...), ..., ) with Ri,j with Ri,j is such that i is the ith

best hyperparameter (from 1 to 3), and j the different run times (from 1 to 4).
Comparing only the standard deviation between construction procedures is not fully

relevant to observing the stability. For example, the bottom right corner experiments get a
low standard deviation score compared to the others, this is since the ensemble produces
a low mean score too. We propose instead the Relative Standard Deviation (RSD) given
by RSD(x) = std(x)/mean(x). In this case, we observe that β = 0 gives generally lower
RSD. It also appears that between the homogeneous and heterogeneous procedures no one
seems more stable than the other in all cases.



130 Chapter 7. Reinforcement Learning and ensemble

DQN Pymgrid DDPG Pymgrid
β Homog. Heterog. Homog. Heterog.

0 −9.21M± 35K −9.36M± 7K −30.2M± 0.75M −5.2M± 5.85M
16 −9.23M± 53K −9.14M± 99K −33.7M± 1.87M −3.8M± 1.93M
∞ −8.87M± 183K −9.02M± 144K −46.9M± 4.14M −5M± 5.88M

DQN GEM DDPG GEM
β Homogeneous Heterogeneous Homogeneous Heterogeneous

0 6193± 1066 5816± 1131 3559± 3177 5487± 1140
16 5837± 1032 5551± 1147 1675± 1346 3436± 1182
∞ 5258± 2155 4496± 2286 2423± 1775 186± 138

Table 7.4 – Reproducibility of the top ensembles. The blue figures indicate minimum Relative Standard
Deviation value for each environment and action space.

We can also observe the stability gained by ensembles compared to its base agents not
only after a horizon but after each training episode as shown in figure 7.10. The ensemble
learning dynamics is much less noisy and may be useful to perform decisions such as early
stopping [127] of all base agents at the same time.

Figure 7.10 – Performance of the ensemble compared to its individual agents over 500 training episodes.
After each training episode, we assess the ensemble test score and its base agents test scores. It is an example
from the library of homogeneous DDPG agents on the Pymgrid environment.

7.4.3 Expansion of ensembles

Once we have found hyperparameters set for homogeneous ensembles, to improve again
more the ensemble predictions we may train more base agents with the same hyperpa-
rameter set. This simple procedure is not possible with heterogeneous ensembles, if more
agents are wanted a new Random Search is required to find a new hyperparameter set.

We scale homogeneous ensembles from 1 to 16 base agents on both environments and
both RL frameworks. The blue curve indicates the mean results on 4 different training-
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test runtimes and the blue cloud around the standard deviation. They are illustrated in
figure 7.11 7.12 7.13 7.14.

Figure 7.11 – DQN on Pymgrid. R is the cumulative test rewards

Figure 7.12 – DDPG on Pymgrid

Figure 7.13 – DQN on GEM
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# Pymgrid DQN Pymgrid DDPG GEM DQN GEM DDPG

1 −9596± 716 −60566± 6020 1486± 1890 891± 290
2 −9466± 244 −50460± 5321 6112± 513 1843± 2642
4 −9457± 172 −42951± 4497 6440± 89 3858± 2825
8 −9367± 123 −36507± 3220 6602± 140 5474± 388
16 −9360± 6 −38323± 3160 6597± 32 6674± 70

Table 7.5 – We scale homogeneous ensembles from 1 to 16 base agents on both environments and both RL
frameworks. The trend is more readable in figures 7.11, 7.12, 7.13, and 7.14. Pymgrid units are expressed in
thousands.

Figure 7.14 – DDPG on GEM

We pick the best hyperparameters with β = 0 of our homogeneous ensembles of size
4. Then we run training and testing 4 times by varying the number of base agents. The
mean score and its standard deviation are given in figures 7.11 7.12 7.13 7.14 and the same
values are displayed in table 7.5 for better readability of the values.

The global trend is clear, when the number of RL increases both the mean performance
and the stability are improved. From 1 to 16 the mean cumulative rewards for those 4

cases are multiplied by {1.03, 1.58, 4.45, 7.49} and the instability measured with the relative
standard deviation is divided by {116.4, 1.2, 262.2, 31}. Those experiments show ensembling
is a huge benefit for stability and improves the mean performance too.

More agents (e.g., 32, 64, 128...) should exhibit again better results at the cost of more
computing power. However, it seems unpredictable how much may be expected before
running such experiments. The pattern between the number of agents and those metrics is
not so obvious.

7.4.4 Power and time consumption at training time

We compare different hardware allocation of agents (noted ‘a’) and the environments (or
“simulator” noted ‘s’) in terms of computing time and computing power to perform the
same work: we train 100 DDPG agents on Pymgrid during 1 episode, hyperparameters are
drawn randomly (Random Search).
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Allocation settings Mean power (watt) Training time (sec.) Energy consumed (kWh)
1a/2CPU s/CPU 870 928 0.224

1a/CPU s/CPU 875 773 0.188

a&s/CPU 885 1498 0.368

1a/GPU s/CPU 669 1791 0.333

2a/GPU s/CPU 717 1217 0.242

4a/GPU s/CPU 770 759 0.162
8a/GPU s/CPU 1005 598 0.167

16a/GPU s/CPU OOM OOM OOM

Table 7.6 – Time and energy consumed by our GPU cluster with different allocation of hardware for training
100 DQN agents 1 episode. In the “allocation settings”, “a” corresponds to “agent” and “s” to “simulator”.
The trend is more easily readble in figure 7.15.

Our cluster contains 144 virtual CPU cores and 6 GPUs. Our motherboard is equipped
with a sensor to measure power consumption. Some evaluated allocations are detailed
as follows and results are shown in table 7.6: “a/2CPUs, s/CPU” means each agent is
trained using 2 multi-threaded CPU cores while its associated simulator is put on another
CPU core. It makes 48 agents handled at the same time. “a/CPU, s/CPU” means each
agent is associated with one core while its associated simulator is associated with another
core. It makes 72 agents handled at the same time. “a&s/CPU” means each agent and
its associated simulator are handled by the same core. It makes 144 agents handled at
the same time. “8a/GPU, s/CPU” means 8 agents are co-localized in each GPU, and the
corresponding simulators are associated with CPU cores. It makes 48 agents handled at
the same time. Additionally, we stopped “4a/CPU, s/CPU” before termination because it
takes too much time, and “16a/GPU, s/CPU” leads to memory crashes.

Those results show us that we can train efficiently multiple agents at the same time on
a modern GPU cluster. Different allocations provide different computing performances,
“8a/GPU, s/CPU” is the fastest allocation while “4a/GPU, s/CPU” is the most power-
efficient. We also observe that the CPU-only implementation (“a/CPU, s/CPU”) may offer
reasonable time performance without requiring GPU investment.
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Figure 7.15 – Time and energy consumed by our GPU cluster with different allocation of hardware for
training 100 DQN agents 1 episode. The number represents how many independant training runs at the
same in the computing node. The exact values are more easy to read in table 7.6

7.4.5 Interpretation of hyperparameter values

The large number of trials performed and saved on the disk does not only allow for se-
lecting the best ensemble. It allows also us to extract useful knowledge from the mapping
between hyperparameter values and the associated score which has been randomly sam-
pled hundreds of times during the hyperparameter optimization process.

We may identify multiple pieces of information and experiment with them in prelim-
inary experiments: the sensitivity of the hyperparameter, we may formulate a criticism
of the hyperparameter range, and the global pattern of the hyperparameter on the score.
Note the hyperparameter range used in those preliminary experiments in section 7.2 may
differ from those shown here.

First, the sensitivity of the hyperparameter on the target score. In the case where the
hyperparameter has a strong impact, this may indicate which should tune them with a
smaller log base are give more liberty to tune. This is illustrated in the bar plots by the
large disparity between bars indicating a strong effect of these hyperparameters. On the
opposite, the useless hyperparameters may be removed to simplify the hyperparameter
search. For example, we discovered that the batch size has a low impact on the cumulative
rewards (figure 7.19) and a strong impact on the training time (figure 7.20). In this case, a
small and performant batch size is preferable.

Second, we can also visualize and verify if the maximum and minimum hyperparameter
values are suitable. If the hyperparameters range is too short, we may fail to explore
promising values. On the opposite, when it is too large, the hyperparameter optimizer
loses time to sample poor hyperparameter values in the nonpromising spaces. For example,
the learning rate range should be re-centered between 1e-4 and 1e-2 to sample good values
(figure 7.19).

Third, the general pattern of the hyperparameter may give additional insight for
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adapting the hyperparameter space. It may be a bell curve, a threshold function, ascending
or descending ...

Figure 7.16 – The distribution of the test cumulative reward by varying the learning rate on Pymgrid.
Lower is better.

Figure 7.17 – The distribution of the test cumulative reward by varying the neural network depth on
Pymgrid.
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Figure 7.18 – The distribution of the test cumulative reward by varying the neural network width (or
“number of units per layer”) on Pymgrid.

Figure 7.19 – The distribution of the test cumulative reward by varying the batch size on Pymgrid.
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Figure 7.20 – The distribution of the training time by varying the batch size on Pymgrid.

Even if the ensemble is more stable the hyperparameter is still of major importance to
get good results. Those analyses show a few examples of the potential of large experiments
to give insight and criticisms of the hyperparameter space. More in-depth analysis is
possible with stored information on the disk but is beyond the scope of this thesis. For
example, the hyperparameter choice is known as not transferable [182] in RL according to
the environment. Another emerging idea is that tuning hyperparameter during the training
time [88] [182] shows better results than static hyperparameter but strongly decreases
the reproducibility of experiments. It may be interesting to see how much dynamic
hyperparameter tuning may be mixed with ensembles that stabilize the learning dynamics.
We let it for future investigations.

7.4.6 Ensemble at inference time

Training and tuning hundreds of ensembles is a computing-intensive activity where the
ensembles train batch by batch, but it is a rather time-bounded activity. The inference
is a long-running activity where the ensemble is hosted in memory and waits for one
single state to quickly return its associated action. In the inference phase, the agents are
sequentially interacting with the environment one state and one action at a time. Therefore,
the computing speed is measured with the latency defined by the elapsed time between the
ensemble receiving a state from the environment, and the ensemble returning its associated
action.

The homogeneous ensembles are trivial to parallelize because each base agent predicts
at about the same speed synchronized by the combination rule. Therefore, it limits the case
when the cores are idle waiting that the slower agent finishes predicting. Figure 7.21 shows
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the study of the scalability on an HGX2 cluster containing 16 Tesla GPUs and 1 dual-socket
Intel CPU.

Figure 7.21 – Median prediction latency (microseconds) of diverse homogeneous ensemble size. The DNNs
have 2 layers of 256 units, 11 inputs, and 7 outputs. Note, both axis are log2 scale.

The first observation is that the CPU seems more suitable for the inference phase. It is
about 2 times faster than one GPU to predict the data flow. Moreover, the greater memory
of the CPU allows for handling bigger ensembles while 1 GPU cannot handle 64 DNNs.
We also observe that increasing the number of GPUs is not very effective to accelerate the
prediction flow. Finally, when the ensemble is bigger than 64, multiple GPUs become faster
than the CPU to handle the workload.

The second key observation is that increasing the number of DNNs from 1 to 8,
multiplies by only 2 the prediction times. This reinforces our claim that modern computers
may efficiently run these workloads.

Each point of this figure is the median of hundreds of timesteps in the simulator.
Another relevant information for real-time applications is the distribution of the latency
which wants the narrower as possible. The 95th percentile of the latency spread is up to 2.5
times slower than the median value, and the 99th percentile is up to 10 times slower than
the median. Experiments have been done on a generalist computing platform, real-time
operating system (RTOS), and dedicated hardware may increase the time determinism but
could decrease the batch workloads performance such as the training phase.
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7.5 Future works and distribution shift

Electric simulators may be developed with a high degree of realism but some unexpected
and rare events may occur. [105] Pymgrid does not provide events such as dust covering
solar panels. GEM does not implement the risk of captor breakdown. Indeed in industrial
applications, there are often some unexpected events, simulating and imagining every
possible event is impossible.

A key machine learning skill in dealing with such situations is that the model recognizes
its ignorance when unexpected states occur, as well as complicated states. In addition to the
performance and stability gain, ensembles are known [82] [57] to produce well-calibrated
uncertainty estimates in the supervised case. Further analysis should investigate how well
uncertainty estimate is reliable in the context of RL. If the research is conclusive, when
high uncertainty is detected we should be able either to trigger an emergency procedure.

7.6 Summary

This work answers this missing piece between reinforcement learning and industrial
applications aiming at stable, qualitative, and efficient algorithms. Today, these tasks are
generally solved with reinforcement learning agents without ensembles, but there is a
significant improvement when multiple agents predict together. The ensemble is less
sensitive to random effects and may cumulate rewards during the simulation. Then, we
observe that modern GPUs and CPUs can efficiently train multiple DNNs independently
at the same time. Furthermore, one CPU may deploy them efficiently. Today, we may say
that in those electricity control applications homogeneous ensembles is a method which
worth the computing cost.

Figure 7.22 shows different technics assessed to control Pymgrid. We observe that
HPO+Ensemble allows us to generate better results with extra-linear stability gain (not
seen in this figure). And more, while it is commonly admitted that the main drawback of
ensembles is the computing cost, we demonstrated that a homogeneous ensemble of size 4

has a limited overhead compared to 1 model due to the internal parallelism of both GPUs
and multi-core CPUs.
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Figure 7.22 – Cumulative rewards comparison in the Pymgrid test case. Rule-based Control (RBC) developed
by the domain specialist, Reinforcement Learning with default hyperparameters set, the best Reinforcement
Learning agent among 400 agents, and homogeneous ensemble of 16 agents averaging their predictions
(the best hyperparameter in the space of 4 agents among 100 expanded to 16). Re-train the ensemble
(RL+HPO+Ensemble) produces about 100 times more stable cumulative rewards compared to the single
agents (RL+HPO).

The previous chapter and this one aim to find efficient and systematic methods to build
optimized ensembles. The next one will analyze different scenarios to infer ensembles by
exploiting multiple GPUs. We contribute to the field by proposing novel methods and
evaluating them at scale.
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Amachine learning algorithm creates value only when it is deployed in the inference
phase. As previously seen, we know that the most qualitative model is often made

of several DNNs combined. That is why efficient inference systems are required to build
qualitative and high-speed underlying resources.

Our work benefits from already proposed inference servers aiming at messages man-
agement and inference systems aiming at individual DNNs performance. The novelty is
that we add an intermediate software layer to manage the ensembles of heterogeneous
DNNs. This contribution was published in IEEE BigData 2021 [125].

8.1 Potential workflows and challenges

Potential workflow exists according to if the ensembles are homogeneous or heterogeneous.
They may also differ in function of the application needs: if the data come one by one or if
the ensemble predicts a large number of data samples in batch mode. Table 8.1 illustrates
the different ensemble types, data pattern, and their inherent challenges.

Challenges
Data pattern Ensemble type Hetero. comput. Mem. Alloc. Data parallel. Batch tuning
Batching Homogeneous N Y Y Y
Batching Heterogeneous Y Y Y Y
Data flow Homogeneous N Y N N
Data flow Heterogeneous Y Y N N

Table 8.1 – The 4 inference system types according ensemble and data pattern. We associate them their
computing challenges to tackle for building fast predictions. The fifth challenge not shown in this table is
exploiting the heterogeneous devices (e.g., GPUs and CPUs).

We identify four main challenges for efficient ensemble predictions: heterogeneity of
the computing cost, allocation in the limited amount of memory, allocation of the workers
for data parallelism, the tuning of the batch size, and heterogeneous computing devices.

First, the heterogeneousity of the neural networks computing resources consumption.
In general, we should avoid, when it is possible, the biggest neural network slowdown dur-
ing the entire computing time. A smart inference algorithm should give more computing
resources to the slowest neural networks to avoid delaying ensemble predictions.

141
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Second, the allocation challenge. Inference with ensemble requires allocating n neural
networks to the m computing devices. The allocation becomes an NP-complete problem
similar to bin packing when the allocation is not trivial (i.e., a discrete optimization
problem, in which n objects of different sizes must be packed into a finite number of m
bins).

To simplify, we consider objects cannot be splittable in this section. The neural network
may be heterogeneous, meaning they have different memory requirements and different
computing times. The allocation produces a performance score or an out-of-memory error.
The problem we are facing is indeed again more complex than a pure bin-packing problem
by the fact we do not only want a possible memory allocation, we also want an allocation
that delivers fast predictions too.

If no allocation is found or possible, intensive I/O access is required to load the neural
network when data samples come. This may result in very poor performance. We do not
explore such methods in this case.

Third, in the batch applications, the data parallelism of the neural networks may allow
increasing the ensemble speed but it requires enough computing power and memory to
do this. The data parallelism in the inference mode consists in predicting with multiple
neural network replicas (or “workers”) and combining and sorting the predictions. If
enough resources are available, data-parallel to the slowest neural network is beneficial to
accelerate the overall ensemble.

Forth, in batch applications, the tuning of batch applications is essential to increase the
speed of workers. However, bigger batch sizes generally consume more computing and
memory resources. Last but not least, it is possible to give different batch size values for
different data-parallel workers of the same neural network.

Fifth, the modern computing infrastructure has evolved in heterogeneous computing
node containing CPUs, GPUs, TPUs, each one with different computing power, memory
capacity, interconnection links, ... And more, we see the emergence of more and more
interconnected infrastructures such as two different HPCs, or hybrid HPC-cloud.

All those 5 challenges are combined when we want to predict efficiently with an
ensemble of heterogeneous neural networks on batch applications with heterogeneous
devices. To do this is the main challenge we address in this chapter.

All experiments have been developed with Tensorflow on the HGX-2 machine with
Python. We consider the latency as the time between data samples known from the CPU
side and consider the prediction is finished when their associated predictions are stored on
the CPU side.

8.2 Data flow applications

Data flow applications are generally interested in improving their speed performance
measured as the latency. In those applications, data samples comes generally one per
one and therefore return their associated predictions one per one too. The reinforcement
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learning applications are a perfect illustration of data flow applications where an RL agent
receives one state and returns its associated action.

Latency improvement cannot benefit from internal data parallelism with batch size
or data parallelism. This makes those applications generally simpler to tune. Their
performance depends on the efficient parallelism of neural networks and careful data
structure for accessing the incoming data samples and synchronizing their predictions.

Reinforcement learning is typically data flow applications where data samples (states)
came one by one, and predictions (actions) are returned also one by one.

8.2.1 Allocation system

The algorithm 1 shows our proposed system to predict efficiently with m heterogeneous
model in the ensembles on d heterogeneous devices. The amount of possible allocation
is dm showing it cannot be reasonably evaluated by brut-forcing all possible allocations.
The problem is more complicated than a bin packing problem because we are not only
interested in founding an available solution in terms of memory, but we assess them on
hundred of requests to compute a latency score. A typical latency score is a median latency,
95th percentile, or the 99th percentile.

Algorithm 1: Allocate DNNs into a computing node to fit into memory and
optimize the time

1: input: N the list of neural networks in the ensemble, D the set of devices, de f ault_device where
to perform benchmarks such as de f ault_device ∈ D, calib_data contains calibration data
samples to perform offline benchmarks

2: output: P the key/values pairs which associates all the devices D to their neural networks
3: start
4: // First structures are initialized
5: Pi ← , i = 0...length(D)

6: D are sorted according their speed in de f ault_device to predict on calib_data
7: for i← 0 to length(D) do
8: avail_D ← All
9: if avail_D = then

10: raise out of memory error
11: else
12: j ← gets the identifier of the fastest in avail_D to run D[i]
13: P[j].append(D[i])
14: end if
15: end for
16: return P

We propose a greedy algorithm to break down those dm possibilities in m ∗ d evaluated
possibilities. This algorithm is thought to allocate heterogeneous neural networks on
heterogeneous devices and may generalize to all other cases: homogeneous neural networks



144 Chapter 8. Inference system for ensembles

on heterogeneous devices, heterogeneous neural networks on homogeneous devices, and
homogeneous neural networks on homogeneous devices.

8.2.2 Prediction system

After getting an ensemble of DNNs, we need to serve it efficiently on the available
computing resources. We design an efficient inference pipeline illustrated in figure 8.1.
When DNNs are waked up by the orchestrator, they read the data sample from the
shared memory space and return their associated prediction to the orchestrator. All those
operations are performed asynchronously.

The orchestrator asynchronously runs in one CPU-core the cumulative averaging of all
predictions to avoid slowing down the entire pipeline compared to gathering all predictions
and performing the average.

Figure 8.1 – Toy example of allocation of 4 heterogenous DNNs into 2 GPUs for inference. There are 5
processes, the orchestrator containing and its 4 children A, B, C and D. The orchestrator receives data to
predict and return the ensemble prediction. Shared memory are buffers in the RAM.

8.3 Batch predictions workflow

Once an ensemble has been trained and built, we need to serve it efficiently on the available
computing resources. We design an efficient inference pipeline illustrated in figure 8.2.
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Figure 8.2 – Illustration of our inference server on a toy example of allocation of 2 DNNs into 3 devices. The
DNN model B is run by 2 data-parallel workers on device J and device K. The DNN instances A1 and B1 are
co-localized in device J. The corresponding allocation matrix is described in the bottom left corner. Threads
inside a worker are not fully described for visibility purposes (see figure 8.3).

In the following sections, we will describe first how the inference server is used. Then,
the allocation matrix which drives performance. Finally, main components of our server
are presented one-by-one: the inference system, the worker-pool and the allocation optimizer.

8.3.1 Using our server

The engineer who is responsible for managing the inference server provides to the matrix
allocation optimizer the ensemble of DNNs, the CPUs, and the GPUs to use. Sometimes,
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the engineer does not want to give all available devices into its cluster to deploy an
ensemble, so he can keep GPUs for other applications. The matrix allocation optimizer
will automatically optimize the allocation of the ensemble for the given devices.

Once the allocation matrix is computed, the inference system is deployed online. It
implements the usual inference server features such as an HTTP/HTTPS wrapper and
adaptative batching. To be more precise, the term “adaptative batching” can now lead to
confusion. The buffer waiting request is now defined by the size of segments and not the
batch size of the individual DNNs.

8.3.2 The allocation matrix data structure

The allocation matrix is a data structure describing with high flexibility the design of the
worker-pool used by the inference system. It designs how DNNs are allocated into the devices
including co-localization (multiple DNNs instances into the same device), data-parallelism
(one DNN multi-threaded on multiple devices), and the batch size.

In this matrix, element 0 means an absence of a worker process in the given device,
while other values represent the batch size. The workers co-localized into the same device
are readable as non-zero values in the row of the allocation matrix. The workers which are
instances of the same DNN are data-parallel, they are readable as the non-zero values in a
given column.

Finally, some devices may not be used, so we can observe rows containing only zero
values. But it is illicit to have a column with only zero values. In other words, all DNNs
must be represented in the ensemble.

Co-localization

Co-localization allows fitting more DNNs than the number of devices (the pigeon-hole
principle). Co-localization allows maximizing the utilization of internal cores in a device
too.

It is well known that the batch size is an important setting. However, optimal batch
size values in the context of multiple DNNs co-localized into one GPU are challenging
to find. In general, the larger batch may increase cores utilization and it consumes more
memory. Due to those complex relationships between multiple DNNs co-localized and
hardware, only benchmarks allow knowing the performance of co-localized models. And
more, only multiple benchmarks allow for finding good settings such as which DNNs are
put together and their batch size values.

Data-parallelism

Data-parallelism allows to speed up a prediction of one DNN using multiple devices. The
workers run the same DNN but in different instances. They take data samples to predict
from the same input FIFO queue.
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Ideally, n threads should multiply the number of images predicted per second by n. Yet,
because we use multiple shared data structures: one segment ids FIFO queue, the shared
data memory, and the prediction FIFO queue, perfect scalability is not ensured. Only
benchmarks allow to compute the performance and if increasing the number of workers is
worth it.

8.3.3 The inference system

The inference system is the core component of the server. It is a function f (X, A)− > {Y, S}
with X data samples to predict and Y the associated predictions of the ensemble of DNNs.
A is the allocation matrix driving the worker-pool construction and S is the performance
score.

The inference system can be run with 2 modes. In “Deploy Mode” it is deployed online
to serve client requests, A is fixed and P is ignored. In “Benchmark Mode” it measures the
performance P provided by the allocation matrix A on the data calibration samples X and
Y is ignored.

To accelerate the inference system we design it with multiple processes. The segment
identifiers broadcaster which splits the incoming workload of requests into segments, the
worker pool containing DNNs instance and return segments of predictions in the combination
accumulator FIFO queue, the combination accumulator combines segments of predictions and
returns to the client the final prediction: the prediction of the ensemble.

The segment ids broadcaster

The inference system contains thread-safe FIFO queues allowing to broadcast and gather
information with the workers. It contains also the X shared memory it is a heavy buffer of
data readable by all the workers. All those data structures are stored in the RAM.

To avoid transmitting heavy messages and stressing thread-safe FIFO queues, they are
gathered into segments, and only segment identifiers are passing through queues. All
segments contain N samples, except the last segment which contains the information of
the remaining samples.

After getting a segment identifier s, such as s >= 0, a worker knows he is responsible
to predict the images from s ∗ N position to the min((s + 1) ∗ N, nb_images) position with
nbimages the number of images in the X shared memory. The segment ids broadcaster can also
put special values like s = −1 to ask workers to shut down.

For example, in the figure 8.2 if the user requests the prediction for 300 images with
N = 128, they are represented internally as 3 segments, two are size 128 and one is size
44. Then, the metadata broadcaster put 6 messages: 0, 1, 2 integers into A queue and into B
queue.
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The prediction accumulator

This process combines efficiently predictions from workers and when it is finished it returns
them to the client. After predicting a segment of data, a worker puts a message in the
prediction queue. Each of these messages is a triplet {s, m, P} with s the segment identifier,
m the model identifier and P the prediction matrix of dimension (end(s)− start(s))×C and
C the prediction length for each image e.g., the number of classes. To combine predictions
the prediction accumulator first allocates a buffer Y of dimension nb_data× nb_classes zeroed.
Then, it updates the cumulative prediction each time it receives a message triplet {s, m, P}.
The Python code using Numpy arrays of the averaging accumulation is simply:

Y[start(s):end(s)]+=P/M

Other combination rules can be easily implemented such as majority voting or weighted
averaging. Furthermore, other applications can require specific combination rules such as
those applied in object detection [150]. Any combination rule code must be developed by
keeping in mind that predictions come into messages to be asynchronous with the neural
network predictions.

To go into further details, the workers can send special messages to the prediction
accumulator. The special message {-1, None, None} allows notifying that a device has not
enough memory to load or initialize a DNN. This triggers the shutdown of the inference
system and every process into it. The special message {-2, None, None} allows notifying
that one worker is ready to serve after its initialization. We know the inference system is
ready to receive the client requests when all workers send {-2, None, None} to the prediction
accumulator.

8.3.4 The worker pool

The worker pool gets segments from FIFO queues, predicts them, and returns the predic-
tions to the prediction accumlator.
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Figure 8.3 – Anatomy of a worker. The meaning of arrows is the same than figure 8.2

All workers are designed the same, they are illustrated in figure 8.3. To be performant
it contains 3 asynchronous threads: the batcher, the predictor and the prediction sender.

• The batcher waits for incoming segment identifiers from the input FIFO queue. When
it receives one, it splits the segment into a batch of data and gives them to the predictor.
Each worker has its batch size described in the allocation matrix.

• The predictor persists the DNN into the device memory. When it receives a segment
identifier, first it loads the segment of data. Then it runs the prediction on each batch
and finally, it gives the batch of predictions to the prediction sender.

• The prediction sender gathers predictions batch by batch to build segments of predic-
tion. When a segment is completed, this process puts the segment of prediction into
the prediction FIFO queue.

8.3.5 The allocation optimizer

The allocation matrix optimizer goal is first to fit DNNs into the memory and then optimize
their performance. That is why it runs first a worst-fit-decreasing algorithm to solve
the bin-packing problem to fit DNNs into the memory of the device. Second, a greedy
algorithm assesses thousands of matrices to find the faster one based on offline benchmarks.
Finally, the best matrix is cached to avoid recomputing it again when the server will be
restarted. These two algorithms are detailed now.
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Algorithm 1 - Worst-Fit-Decreasing with priority to GPUs

It solves a bin packing problem to put objects (DNNs) into a finite number of bins (devices).
All DNNs are set with the minimum batch size value (8 in our experiments). It is more
exactly a bin packing with an offline heuristics problem because the DNNs are known
before execution and can be sorted in decreasing order. We attempt to find a feasible
solution with the already known Worst-Fit Decreasing algorithm.

This algorithm has the already known properties to optimize memory allocation. At
each step of the worst-fit algorithm, it chooses to allocate a DNN to the device with the
largest available memory. Therefore it may remain a large memory space in the GPU after
a DNN allocation. This remaining memory space can be big enough so that other smaller
DNNs can also be placed in that remaining memory and therefore maximize the memory
filling. Second, ordering the input list by decreasing DNNs size has been proved [106]
to maximize the memory filling compared to a non-ordered version. Finally, Worst-Fit
prioritizes an equitable workload between homogeneous devices based on the memory
criterion. On the opposite, First-Fit, Best-Fit, and Next-Fit, attempt to fill the first devices
and keep the last devices empty.

To improve significantly the speed up of the allocation, we hard code a rule to allocate
in priority the GPUs rather than CPUs. It is common knowledge that GPUs can run DNNs
an order of magnitude faster than CPUs. Indeed, the CPUs start to be used by algorithm 2

only when no more space is available on the GPUs.
more_remaining_memory function returns the device with the most remaining mem-

ory. fit_mem returns if the allocation matrix is feasible in terms of memory availability.

Algorithm 2 - Bounded greedy optimization

Algorithm 2 goal is to refine the starting allocation matrix and return a faster allocation
matrix. Before explaining this algorithm, we will first provide a detailed analysis of the
complexity of its decision space which drives our choices to design it.

The number of matrices is given by equation 8.1 with D devices, B batch size values
and M DNN models in the ensemble.

total_matrices = ((B + 1)D − 1)M (8.1)

The number of possible element values is (B + 1) all possible batch size values plus the 0

elements for no worker. The number of possible values in a single column is described
by (B + 1)D − 1. The term (B + 1)D allows to brute-force all possible values in a column
minus the zero columns which are forbidden.

Note the two power terms which show the explosion number of combinations. For
example, if we have 8 DNNs, 4 GPUs, and 1 CPU total_matrices ≈ 1.3E31 much more than
the number of stars in the universe. To put the problem into perspective, one allocation
matrix takes an average of 40 seconds to be assessed. It includes the construction of the
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inference system time plus the offline benchmark time. That is why only a few thousand
matrices can be reasonably assessed and smart optimization must be used.

A greedy algorithm provides an often effective complexity reduction to many
combinatorial optimization problems. When applied to our case, it starts with the matrix
given by algorithm 2 and at each iteration, it assesses all neighborhood matrices and
replaces the current matrix with the best-assessed matrix. We consider that two matrices
are neighborhoods if they are both valid (again, no 0 columns) and if there is only one
different element between them. Any greedy algorithm is stopped when no neighborhood
improves the current matrix.

The greedy algorithm breaks down the overall complexity described in equation 8.1
into a succession of combinations (or neighbors) measured by equation 8.2 to assess. With
F the number of forbidden matrices we cannot explore such 0 ≤ F ≤ D.

total_neighs = (B + 1) ∗ (D ∗M)− F (8.2)

Let’s take our previous example, 8 DNNs, 4 GPUs, and 1 CPU. The total number of
combinations is total_matrices ≈ 1.3E31 but the greedy algorithm needs to assess only
between 232 and 240 neighbors at each iteration.

Greedy algorithms are well-known approximation algorithms. However, the number of
neighbors can still be very computing-intensive to evaluate in some cases, and the number
of required iterations can be large before to found an optimum. To limit the computing cost
of the greedy we propose two bounds. First, each iteration evaluates at most max_neighs
randomly drawn neighbors (line 9). We also limit the number of iterations to max_iter
(line 6).

Even though our algorithm is an approximation of a greedy algorithm, we have the
guarantee that in the worst-case scenario a solution as good as the starting one is returned.
This characteristic is inherited from the greedy algorithm. Line 18 can be read “if we do
not improve strictly the performance, the algorithm leaves the loop”.

The rate of visited neighbours is measured with max_neighs
total_neighs . If it is close to zero it means

the final solution performance may be very volatile. At the opposite, max_neighs
total_neighs ≥ 1 means

all neighbours are visited and does not introduce volatility. Another source of volatility is
the benchmark function (lines 4 and 11) but in practice, when the amount of calibration
data samples is large enough, the measurement is stable.

The pseudo-code is presented in bloc code 3. bench function instantiates the pipeline
with the given allocation settings (first argument) on the calibration data samples (second
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argument) and returns the performance to maximize or 0 if a DNN instance does not fit in
memory.

Algorithm 3: Bounded greedy algorithm
1: input: max_iter maximum number of greedy iteration, max_neighs maximum number

of neighboors to evaluate at each iteration, A is the zeroed allocation matrix, calib_data
contains calibration data to perform offline benchmarks

2: output: The optimized allocation matrix A
3: start
4: A_speed ← bench(A,calib_data)
5: iter ← 0

6: while iter < max_iter do
7: neighs ← neighborhood(A)
8: if length(neighs) > max_neighs then
9: neighs ← draw randomly max_neighs samples from neighs_A

10: end if
11: best_A, best_speed ← for all n in neighs return the best one and its score based on

the bench(n,calib_data) criterion
12: if best_speed > A_speed then
13: A ← best_A
14: A_speed ← best_speed
15: iter ← iter + 1

16: else
17: // local maxima (or plateau) detected
18: iter ← max_iter_greedy
19: end if
20: end while
21: return A

8.3.6 Offline benchmark settings: ensembles, hardware

This section provides a detailed description of our experimental settings.
The performance metric. The transmission of online messages with the client and their

characteristics is application dependant and thus we rather perform offline benchmarks to
evaluate the core prediction performance. This allows us to stay focused on the specificity
to deploy ensembles under a heavy workload of requests. Therefore, our metric will be the
throughput measured by the number of data samples predicted per second.

Code and framework. All the asynchronous objects are implemented with the “Multi-
processing” built-in Python 3.6 package. Our FIFO queues, shared memory, and processes
are respectively implemented with Queue class, Manager class, and Process class.

Additionally, we use two well-known external packages: the Numpy numerical library
and Tensorflow 1.14 to deploy models widely supported by GPUs and CPUs.
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The hardware. All results reported are performed into an HGX-2 cluster containing 16

Tesla-V100 GPUs. The flexibility and efficiency of our server are analyzed by varying the
number of GPUs to use from 1 to 16.

We also performed a few benchmarks on a computing node identical to the Oak Ridge
Summit node. Both clusters have the same GPUs but different CPUs and different operating
systems. The measured results are very similar to HGX-2 so we decided to not report the
performances.

The ensembles of DNNs. To assess efficiency and flexibility we benchmark 5 heteroge-
neous ensembles named according to the number of models and the name of the database
they learned from.

First, we build 3 ensembles of famous DNNs for reproducibility purposes:

• IMN1 contains only ResNet152 and it allows us to show our workflow is general
enough to optimize one single DNN.

• IMN4 contains 4 DNNs {ResNet50, ResNet101, DenseNet121 and VGG19}.

• IMN12 contains all DNNs from IMN1 and IMN2 plus {ResNet18, ResNet34,
ResneXt50, InceptionV3, Xception, VGG16, MobilNetV2}.

Then, we generate 2 others ensembles named FOS14 and CIF36. FOS14 contains 14 DNNs
and were build with the workflow described in chapter 6.

Calibration data samples. The meaning of the data has no impact on any performance
measured on the classification task. However, applying this system to other DNN methods
may need a few realistic data samples to measure a relevant performance time. For
example, in the Faster-RCNN [131] architectures the RPN module iterates on some region
of interest for each input image.

The possible batch size values. We fixed {8, 16, 32, 64, 128} as possible batch size
values. More values increase significantly the number of possible allocation matrices and
make the exploration of combinations more difficult. Fewer values reduce the degree of
freedom to control internal parallelism, memory consumption, and data exchange.

The segment size. We evaluate multiple segment sizes and we observe that smaller
values reduce the granularity of the workload and improve its distribution between
processes. In all this work the segment size is fixed to 128. It should generally be equal to
or greater than the maximum batch size.

Algorithm 2 - Greedy allocation. We choose max_neighs = 100 and max_iter = 10.
This is a total of at most 1000 combinations to assess. On average one matrix evaluation
takes 40 seconds therefore the computing is limited to 12 hours.

When D−M > max_iter with M DNNs and D devices. The max_iter is replaced with
D−M. It allows getting a chance of using all devices when the number of devices is large.
In all our benchmarks, it is used only three times with IMN1 ensemble on 12 GPUs and 16

GPUs and IMN4 on 16 GPUs.
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8.4 Offline benchmarks

This section describes 3 performance analyses of our server. The first one estimates the
overhead introduced by the inference system. Then we analyze the performance varying
the ensembles and the number of GPUs. Finally, we will compare our allocation matrix
optimizer to a simple baseline named “Best Batch Size”.

8.4.1 Overhead of the inference system

In all our benchmarks, the inference system overhead is measured at most 2% of the total
inference time. To estimate this overhead we temporarily replace all the DNNs calls with a
fake prediction containing only zero values and the combination still gathers predictions
but returns zero values.

We perform multiple offline benchmarks of those fake inference systems and we report
it takes at most 0.035 seconds in the case of IMN12 ensemble on 16 GPUs the allocation
matrix optimizer producing 22 workers. In comparison, the true inference system (without
faking predictions), takes 2.528 seconds to predict 1024 images (i.e., throughput=405 in the
table 8.2).

8.4.2 Varying GPUs and ensembles

Table 8.2 shows the performance in terms of prediction performance of the 5 ensembles.
The first major observation is that to serve efficiently an ensemble of DNNs we do not need
systematically as much as GPUs as DNNs, but more GPUs generally improve performance.

IMN1 IMN4 IMN12 FOS14 CIF36

#G A1 A2 A1 A2 A1 A2 A1 A2 A1 A2

1 106 136 - - - - - - - -
2 106 270 13 101 - - 213 233 - -
3 106 394 158 199 - - 308 339 - -
4 106 539 160 251 15 24 380 410 - -
5 106 617 160 294 65 106 388 461 15 15

6 106 722 160 351 103 194 397 470 35 37

8 106 974 160 472 103 226 483 518 239 243

12 106 1436 160 686 103 317 511 545 428 481

16 106 1897 160 877 103 405 511 559 563 633

Table 8.2 – We benchmark the throughput of 5 ensembles on different numbers of GPUs (+1 CPU). The
mention ‘-’ means memory error is returned. Because A2 is a stochastic algorithm, each run time was
performed 3 times and the median value is reported. The trend is more easily readable in figure 8.2.
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Figure 8.4 – Weak scalability of diverse ensemble. They have been distributed and set according our smart
allocator and deployed with our fast scheme. The exact numbers are shown in table 8.2.

The allocation optimizer successes in automatically constructing allocation matrices. It
found a feasible solution to store 12 DNNs into only 4 GPUs. On the opposite, it also
shows success to leverage multiple GPUs, for example, the Resnet152 model alone gets
a Weak Scaling Efficiency of 87% with 16 GPUs. Finally, when we compare algorithm 1

(Worst-Fit Decreasing) and algorithm 2 (Bounded Greedy) throughput, we observe also that
the second algorithm produces generally a significant speed-up confirming the usefulness
of this second algorithm.

We observe the different matrices produced. To illustrate the decision making of the
matrix allocation optimizer, we show an example of a matrix allocation in figure 8.3.

ResNet50 ResNet101 DenseNet121 VGG19

CPU 0 0 0 0

GPU1 8 8 0 0

GPU2 0 128 0 0

GPU3 0 0 8 0

GPU4 0 0 0 8

Table 8.3 – Allocation matrix of IMN4 on 4 GPUs returned by our allocation matrix optimizer

In general, the slower DNNs responsible for the performance bottleneck of the ensemble
are multi-threaded in priority and their batch size is optimized. Furthermore, we observe
that when some models are co-localized their batch size is often chosen smaller. Finally,
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when we increase the number of GPUs, algorithm 2 quickly stops using the CPU. Indeed,
the CPU is only used by Algorithm 1 and Algorithm 2 when the GPU memory is full. To
accelerate a DNN, some nontrivial decisions may be also automatically taken such as:

• Launching a new thread

• Optimizing the batch size of an existing thread

• Alleviating a device by removing a thread of another DNN

In addition to measuring the throughput, we also measure the good stability of this
throughput for any allocation matrix. This is a desirable property for some industrial
applications where the server must guarantee a certain quality of service. More for-
mally, the function bench(A, f ake_data) (algorithm 2) returned values varies to a relative
standard deviation (RSD) below 2% for any A. We also measure that when the rate
max_neighs/total_neighs is low (e.g., inferior to 0.2) the bounded greedy algorithm can
return diverse matrices performance at different run-time until RSD=16%.

8.4.3 Baseline comparison

We compare in table 8.4 our allocation matrix optimizer with the commonly used strategy we
named BBS as baseline. The BBS uses n GPUs for n models and for each model it searches
for the optimum batch size. It requires the same amount of GPUs as DNNs, this is a major
limitation that requires small ensembles or it requires large hardware investment.

BBS baseline Our server
img/sec # combinations img/sec # combinations

IMN1 / 1GPU 136 5 136 69

IMN4 / 4GPUs 211 20 251 200

IMN12 / 12GPUs 136 60 338 1000

” ” ” 376 2000

Table 8.4 – Comparison between two allocation strategies: The simple preferred batch size strategy and our
proposed allocation matrix optimizer with different ensembles (from IMN1 to IMN12) and different GPUs (+1
CPU each time). Those two strategies produce an allocation matrix for the inference system and benefit from
the highly asynchronous inference system design and low bottleneck. The last line we set max_iter = 20.

8.5 Summary

This work answers this missing piece of pipelines between DNNs built by machine
learning practitioners and serves them efficiently with any number of GPUs and CPUs.
We enumerate multiple scenarios for inference in machine learning applications with
ensembles and propose a solution for each of them. For the first time, we propose a
solution to the complex allocation problem of multiple heterogenous DNNs in multiple
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heterogeneous GPUs in the context of batch applications. The flexibility obtained relies on
the formalism of the allocation matrix format allowing data-parallelism, co-localization,
and batch size optimization.

To target efficiency, thousands of allocation matrices are assessed before selecting the
best one and instantiating it. The complexity of the allocation optimization is bounded for
practical utilization and the matrices may be cached to avoid recomputing the allocation
optimization.

And more, the inference system is built with many asynchronous processes to avoid
overhead and accelerate the combinations. In our benchmarks, we observe the smart de-
cision of our allocation optimizer. When the number of GPUs is superior to the number
of DNNs, the heavier DNNs are automatically data-parallel to avoid bottleneck perfor-
mance. On the opposite, when the number of GPUs is lower, we observe automatically
co-localization and smaller batch size to fit all DNNs into the memory.

Finally, the proposed inference optimization of ensembles may be widely applied to
applications requiring high accuracy. Each part of the proposed pipeline is well identified
to guarantee easy code adaptation to facilitate introduction in current inference servers.
For example, Object Detection and classification require different combination rules. To
benefit from hardware-specific optimization, changing the inference framework requires
localized updates into the predictor process.
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Algorithm 2: Worst-fit-decreasing with a priority to GPUs
1: input: M the list of DNN models in the ensemble, D the device set, de f ault_batch_size

2: output: A the allocation matrix containing all models placed
3: start
4: Am,d ← 0, m = 1...card(M) and d = 1...card(D)

5: M sorted in desc. order of memory size
6: for m in M do
7:

8: // AG is the matrix where m is put on the GPU-side
9: g← more_remaining_memory(A,de f ault_batch_size,‘GPU’)

10: AG ← copy(A)
11: AGm,g ← de f ault_batch_size
12:

13: // AC is the matrix where m is put on the CPU-side
14: c← more_remaining_memory(A,de f ault_batch_size,‘CPU’)
15: AC ← copy(A)
16: ACm,c ← de f ault_batch_size
17:

18: // Put the model m
19: if fit_mem(AG) then
20: A← AG // Priority to the GPU-side
21: else if fit_mem(AC) then
22: A← AC
23: else
24: Error no device have enough memory
25: end if
26: end for
27: return A



9Conclusion and perspectives

In the two first chapters 1 and 2, we introduced the importance of deep learning
for energy applications, and how those applications may benefit from the multi-GPU
computing nodes. Then, we discussed the challenges to run those workloads on multi-GPU
computing nodes.

9.1 Summary of contributions

In chapter 3, we introduce four novel deep learning applications at TotalEnergies to produce
lower carbon energies developed during this thesis: microfossils image recognition for
better geology understanding; biodiversity image recognition to better preserve animals
located close to any industrial facility; biology image recognition for monitor the health of
algae responsible of carbon capture; microgrid control automation to optimally control the
power supply by reducing electricity supply cost and CO2 emission.

Afterward, we summarize some relevant common goals and challenges associated with
deep learning projects. The first common point is the need to run multiple experiments
to calibrate the hyperparameters such as the gradient descent optimizer and the neural
architecture. The second common goal is that real applications generally require opti-
mizing the prediction quality (e.g., accuracy, statistical robustness, uncertainty estimates,
reproducibility) and computational quality (e.g., predictions per second, memory fitting,
power consumption). Finally, we highlight that ensembles have the potential to overcome
the prediction quality, but the computational quality should be kept under control.

In chapter 4 we detail, benchmark, and analysis the characteristics of a deep learning
workload. We present some usual approaches to attempt to handle efficiently deep learning:
transfer learning, parallel patterns, hyperparameter optimization, and ensemble learning.
We also underline common limitations.

Due to the lack of comparative study, we enumerate some complete workflows [160]
[42] [18] to build ensembles of (non-deep) machine learning algorithms. We identify those
methods construct ensembles by running a sequence of abstract steps: tuning, training,
and ensembling but with different underlying methods. Those works inspired ours.

Tuning and training neural networks require a hyperparameter space and an optimizer
to sample this space. We show that the optimizer is always set to be a trade-off [169]

159
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between global exploration and local exploitation. We then discuss that the more explorative
optimizers have better characteristics in the context of high computing power. The more
explorative ones (e.g. random search [6]) have low chance to be stuck in a local optimum,
higher robustness of the random initialization, and better GPUs utilization.

One single deep neural network may take several hours to train on a modern GPU,
therefore previous researchers have not performed a large-scale study on how system-
atically build ensembles of deep neural networks yet. Indeed, it is required to have a
multi-GPUs node to handle such ensemble workflow in a reasonable amount of time. As a
consequence, to compare multiple workflows, multi-nodes multi-GPUs fit this computation
need.

Due to this gap, we enumerate, evaluate and compare multiple ensemble technics and
assess them. We discover that simple ensemble technics provide outperform one single
base neural network from a large margin. Those results confirm the trend that more
complex machine learning maths models, (ensembles of medium-size models or one big
model), produce better predictions but require also more computing resources. This is
why optimizing the hardware utilization is strategic for those new applications.

We dedicated the chapter 5 to the deep learning parallel patterns. We first introduce
them, and present the goal they are pursuing: time reduction, push back the memory limit,
or accuracy gain. We measure and compare their performance under different settings,
and by identifying the different phenomenons interacting together.

We conclude that parallel one big deep neural network across multiple GPUs (either
model-parallelism or data-parallelism) generally fails to efficiently leverage the underlying
hardware. This is due to the nature of deep neural networks to be a sequence of computing
layers with heavy communications between them (vertical communication) and tensor
operators in each layer (horizontal communication). And more, there is generally no
possibility to efficiently interleave computation and communication due to the fact they
are a sequence of layers.

We then discuss parallelism of hyperparameter optimization, training ensembles of
deep neural networks, and inference with ensembles. They are three workloads made of
independent DNN computing with low communications between GPUs. Therefore, it is a
natural design to distribute them across multiple GPUs.

The preliminary ensemble of deep neural network results (in chapter 4), their potential
computing efficiency (chapter 5), and the development of computing nodes toward highly
parallel computing units motivated us to search for a systematic procedure to build an
ensemble of deep neural networks. This is why, in chapter 6 and 7, we contribute by
proposing novel workflows to build ensembles in both supervised deep learning and
reinforcement learning for energy applications. The abstract workflow is presented in
figure 9.1.
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Hyperparameter Optimizer

Training and Evaluating

Ensemble Selection

Inference Deployment

Inference Optimization 
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Settings for deployment

Hyperparameter samples
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Inference with 
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Figure 9.1 – Abstract workflow to build and deploy ensembles. Note the combination rule function is called
in “Inference Deployment” and either in“inference may be integrated with the “Ensemble Selection” (in the
case of post-hoc ensembling) or the “Training and Evaluating” step (ad-hoc ensembling).

In chapter 6 we apply it to the common deep learning case of image classification:
the microfossils dataset and the CIFAR100 dataset [77]. It is the first workflow integrat-
ing hyperparameter optimization and ensemble construction in the case of deep neural
networks.

We then study the expected characteristics of a good ensemble: accurate base models,
complementary models, and larger ensemble size. We also show that complementary
models require diversity between their predictions, but the diversity is not a sufficient
condition and the interaction between models is still not known a priori. This is why
ensemble selection algorithms are often formulated as combinatorial optimizers to assess
many combinations and return the most promising one. We propose a new Ensemble
Selection algorithm to optimize ensemble accuracy under a computing cost. We use the
inference speed as a constraint but it may be easily applied to other constraints such as the
power consumption, FLOPS or memory.

We also demonstrate that in the supervised case similar hyperparameter produces
similar predictions using distance matrices between predictions and hierarchical clustering.
This claim intuitively shows that to increase diversity exploration of diverse hyperparame-
ters and ensembling should be integrated to build diverse models and have a chance to
find complementary ones. However, in the case of very unstable base algorithms such as
reinforcement (chapter 7), homogeneous ensembles produce already very diverse models
and have the potential to create complementary and individually accurate models.

Multiple GPUs allow to run each step in embarrassingly parallel: hyperparameter
optimization, optimize the ensemble inference, host the prediction of the ensemble. The
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proposed workflow shows that it exploits and benefits from high computing power by
converging high and keeping the GPU occupied. We reach state-of-the art accuracy by
sampling and ensembling ResNet architectures [58] [173]. This is due to some relevant
design choices: asynchronous Hyperband [91] explores the hyperparameter by keeping
the GPUs occupied to train the most relevant neural networks. It allows generating a
diverse, accurate and large number of base neural networks. Then, this large number
of base neural networks are used to create ensembles with a controlled computing cost.
Integrating the last EfficientNetV2 [159] architecture published a few months ago should
outperform our previous results

In chapter 7, we confirm that the workflow is applicable in reinforcement learning.
More surprisingly, we discovered that ensembles are extra-linearly more stable compared
to one single RL agent. This is an important step forward in this field making experiments
much more reproducible and comparable. We also notice that we deal with DDPG [174]
and DQN [56] RL algorithms but those experiments may be applicable beyond.

Re-building ensembles and re-training them are computing-intensive algorithms taking
GPU hours or days. However, those workloads need to be launched only sometimes
when the application conditions change e.g. every week or month. Whereas, the inference
phase is a long-running process delivering the prediction to the associated business
client application whenever it is requested. Therefore, optimizing the inference speed is
sometimes considered more strategic. [33]

This is why in chapter 8, we introduce and enumerate the four inference system types
and their associated challenges. They vary according to if data come per batch or per-flow,
and if the ensemble is made of heterogeneous or homogeneous deep neural networks.

We propose an algorithm to parallel and accelerate each of them. We then under-
line that the most complex system is “the batch inference system of heterogeneous en-
sembles leveraging heterogeneous devices”. We then contribute by implementing and
evaluating this inference system. Our approach is based on two key components: 1)
We propose an optimizer to explore the space of the possible allocation matrices 2) an
efficient communication scheme between processes to deploy the allocation described by
the matrix. The proposed allocation matrix fits well the decision space: co-localization,
inference data parallelism, and batch size settings.

We observe that the exploitation of the matrix format as decision space is very flexible
and the optimizer found up to 2.8 more effective allocations compared to the baseline.
The baseline consists in spreading each DNN on each GPU and maximizing the batch size
of the DNNs.

9.2 Methodological perspectives

The proposed workflow is a succession of well-identified tasks it makes the workflow
flexible enough to integrate new algorithms, each step is easily re-utilizable, and can be
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adapted to new applications. We enumerate some open directions that we identify as a
pertinent continuation of the work presented in this thesis.

9.2.1 Keep following the deep learning progress

There has been a considerable amount of research work in the direction of deep learning,
such as designing novel operations, novel architectures [159], or automatic architecture
exploration methodologies [89] and technics [101]. Any novelty in this field may be plugged
into the proposed workflow by replacing the first 2 steps of the workflow. One must be
aware that the best architecture optimization method to optimize and return one deep
neural network may not be the best deep neural network aiming ensembling.

Deep learning frameworks and arithmetic libraries (such as CudNN, MKL), are quickly
evolving with novelty every year. They make the deep learning applications optimize
the code representation, core parallelism, and memory consumption. Maintaining this
underlying software stack frequently up-to-date is essential to ensure optimal perfor-
mance. However, only hardware investment allows for handling significantly larger neural
networks and bigger ensembles.

9.2.2 Keep following the IA hardware progress

This thesis experiments with different workflows on multi-GPU computing nodes. How-
ever, there is recently an emergence of IA dedicated hardware for handling different IA
workloads and different specific running contexts. They include but are not limited to:

• Embedded systems such as NVIDIA Jetson for cost-effectiveness and proximity with
the targeted applications. IoT (Internet of Things) are embedded systems that are also
connected to a network. They have a broad range of applications including facility
control, microscopy images, robotics, appliance, automotive and more.

• IA dedicated computing nodes such as Google TPU pods, Cerebras CS, NVIDIA
HGX. They widely differ between the number of chips in one node, the number of
cores per chip, and the instruction set.

Commercialized NVIDIA GPU progress in terms of the number of cores, and available
memory with reasonable, by keeping the energy consumption between 225 and 300 watts
until the Hopper generation. The figure 9.2 shows the non-exhaustive list of NVIDIA GPUs
for each year. The trend is favorable to the development of large deep neural networks and
handling multiple of them at the same time.
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Figure 9.2 – NVIDIA GPU evolution. For each year, we display the one with the most CUDA cores. Other
characteristics such as the number of Tensor Cores, memory speed, FLOPS, confirm also the going fast trend.

We also observe dedicated components for IA workload to attempt to handle more
efficiently tensor operators of the GPUs such as the Tensor Core, NVLINK, TensorFloat.
The MIG [26] (Multi-Instance GPU) may allow to better tune the co-localization of neural
networks and would be a natural direction for accelerating independent tasks.

More efficient deep neural networks, more computing power, and better proximity
between computing power and the applications open the door to better tuned neural
networks and bigger ensembles, and new applications.

9.2.3 Faster inference of ensembles

Smarter matrix allocator with reinforcement learning Our greedy-based algorithm find
up to X2.7 faster inference settings than baselines to optimize the placement of neural net-
works on GPUs. Reinforcement learning may take better decisions than our greedy-based
approach (i.e., automatic discover mid-term strategy and long-term strategy). Therefore it
is reasonable to believe it may improve again the placement of neural networks on available
GPUs. Multiple times, reinforcement learning has been successful to solve this kind of
(NP-Hard) optimization problems consisting in optimizing the placement of objects on
a limited amount of resources: Allocating tensor computings on GPUs [107], resource
provisioning in telecommunication networks [4], HPC jobs on multi-node resources [183]...

Leverage from diverse technologies Ensembles may offer the flexibility to be composed
of neural networks implemented with different technologies (i.e., inference compiler,
optimizer, runtime engine...). The allocation matrix optimizer (chapter 6) only optimizes
the batch size and the multi-GPU allocation with only one fixed inference framework. We
may generalize it beyond by optimizing the inference technology choice. For example, we
now know that TensorRT is faster than ONNX-RT with larger batch size values but this is
the opposite with smaller batch size values. We may reasonably hypothesize that the right
inference technology properly set may have the potential to improve again the inference
performance. In this case, each element of the allocation does not only contains the batch
size value but a fixed-vector length of settings (i.e., batch size, inference engine framework,
...). However, more degree of freedom during the exploration of the inference settings (i.e.,
allocation matrix) should increase the complexity to automatically found good settings.

On the other hand, RL agents require multiple interactions with the target software to
optimize it. It may take too much time to converge and obtain reasonable performance.
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Only benchmarks may allow us to conclude the benefit of RL compared to the simple
greedy approach (if any).

Due to the originality of our proposed inference ststem, there are no designed RL
methods on the shelf to optimize the ensemble of neural networks on GPUs. This means
we must invent it ourselves inspired by previous works [107] [4] [183]. We started to design
one RL method with the last inference frameworks. We lack time to compare it with our
proposed greedy-based approach. It will be the subject of a future paper.

9.2.4 AutoML for business logic

The invented procedure in chapter 6 and 7 allows to generate ensembles optimized for a
given task. Running the workflow allows maintaining the ensemble up to date when the
application context varies. For example, when the microfossils training dataset is updated
or when a microgrid component is replaced.

As a consequence, the question of building a model may shift from “According to the
application X how build/tune a model F to optimize the predictions Y ?” to “How tune
the application X to improve the predictions Y produced by the automatically build model
F ?”.

Following this logic, we may for example ask ourselves how best to construct microgrids
(select solar panels among different brands and characteristics, number of batteries...). We
may create multiple RL environments reflecting different scenarios to compare, run the
proposed workflow on each one, and observe the cumulative rewards. This new approach
allows fair and automatic comparison by focusing the next investigations on the business
logic rather than the machine learning models.

9.3 Application perspectives

The different ensemble constructions and deployment discussed in this thesis may be
generalized to a wide range of applications. First, we enumerate some deep learning
applications that may benefit from this method. Then, we show that an ensemble of
estimators is useful in a lot of other scientific applications and our proposed methodologies
may benefit partially from a wider range of software.

9.3.1 Generalize to other deep learning applications

Uncertainty detection. We do not perform detailed study uncertainty quality estimates in
this thesis. Yet, ensembles of classifiers are known [82] [57] to produce better uncertainty
estimates in comparison to one single classifier. That is to say, detect that the ensemble
performs well to detect when it is unsure of its own prediction due to unobserved input
data as well as complicated input data. This is an important property that allows requesting
human intervention when uncertainty is detected.
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In the case of neural networks for regression problems (e.g., time series forecasting),
individual neural networks do not return uncertainty at all. Ensemble procedures have the
potential to measure an uncertainty value based on their disagreement.

Bigger neural networks. We may integrate model parallelism while searching hyper-
parameters. It may be useful for application predicting on large dataset such as 2D image
segmentation [134], 3D image segmentation [24]... Therefore, it requires also adapting the
proposed inference system to handle model-parallel neural networks.

Ensemble of object detection. Object detection [131] differs compared to the classifica-
tion tasks by the fact that outputs multiple vectors: object localization with box coordinates,
the binary probability that the box contains an object of interest, classification of the box...
First combination rules [150] recently emerged in those applications based on geometrical
computing to interpolate object detection outputs. We lacked time to apply it to the
biodiversity project.

9.3.2 Generalize to other applications

We present a few other applications where ensemble methods have been shown useful
to combine the outputs of different software. We may notice that different communities
between machine learning scientists, meteorologists, and bio-computer scientists, ... often
use a different vocabulary to deal with similar concepts. We use our previous vocabulary
for simplicity.

For example, base applications settings and ensembling may be combined with a
similar approach to improve the complementarity of base software predictions. We classify
two approaches and discuss advantages and disadvantages to know if combinations
should be post-hoc (i.e., store predictions on disk and found combinations) or ad-hoc (the
optimization of base hyperparameter generates directly the ensemble). The combination
rule was discussed in terms of advantage, disadvantage, and applicability.

Ensemble of bioinformatics software.
Some meta-methods have been proposed in bio-informatics use a combination of

existing approaches to produce better outputs than one single method. This is the case
of MARIO [121], a heterogeneous ensemble of 4 different genomics methods that predict
together. The predictions are combined with a domain-specific combination rule. Base
components utilize the default (hyper-)parameters which may not be optimal. This thesis
shows that coupled hyperparameter optimization and ensemble on calibration data samples
allow to optimize outcomes.

Ensemble of simulators in meteorology.
Simulators are of great importance to the energy industry. They apply computational

methods aiming to improve energy production while minimizing risks and environmental
impacts. They have a wide range of applications to study phenomenons, verify the
hypothesis, make reliable predictions, evaluate concepts, compare, and refine them.

The literature is rich in applications of the ensemble of simulators. It especially true
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in the climatology and meteorology [104] [164]. Authors propose different workflows to
build an ensemble of forecasters in varying settings such as the combination rules and the
number of base models.

Previously proven ensemble methods include but are not limited to:

• Homogeneous ensemble [104]. That is to say the same forecast model but different
initial conditions of the simulation. Initial conditions are input from noisy observa-
tions. Like us, they have demonstrated that a larger number of base simulators (e.g.
often between 30 and 200) improve the accuracy and uncertainty estimates, therefore
the ensembles require smart distribution of the workload on a High-Performance
Computer.

• Heterogeneous ensembles [164]. different initial conditions, different forecast models.

• Heterogeneous ensembles with weighted averaging of the predictions [164]. Note
those methods require calibration data samples from past observations to compute
the ensemble’s weights.

Some methods proposed in this thesis may be beneficial to this context. Automatic
tuning of the base models, ensemble selection with controlled computing cost, and the
systematic optimization of the ensemble’s allocation on multiple processors.
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