
Centre de Recherche en Informatique,
 Signal et Automatique de Lille

École Doctorale Mathematiques, Sciences du Numérique et de leurs
Interactions (MADIS)

Thèse de Doctorat

Protocoles Efficaces et Robustes pour
l’Apprentissage Automatique Semi-Décentralisé

Préservant la Confidentialité

Préparée et soutenue publiquement par

César Sabater

à Villeneuve d’Ascq, le 20 Juin 2022, pour obtenir le grade de

Docteur en Informatique

Directeur: Jan Ramon

Soutenue devant le jury composé de:

Sonia Ben Mokhtar Directrice de Recherche, CNRS - LIRIS Rapporteuse et Présidente
Emiliano De Cristofaro Full Professor, University College London Rapporteur
Christian Weinert Lecturer, University of London Examinateur
Jan Ramon Directeur de Recherche, INRIA Lille Directeur

2

Centre de Recherche en Informatique,
 Signal et Automatique de Lille

Doctoral school Mathematics and Digital Sciences (MADIS)
Doctoral Dissertation

Efficient and Robust Protocols for
Privacy-Preserving

Semi-Decentralized Machine Learning

Prepared and publicly defended by

César Sabater

in Villeneuve d’Ascq, on June 20th, 2022, to obtain the degree of

Doctor in Computer Science

Supervisor: Jan Ramon

Defended before the jury composed of:

Sonia Ben Mokhtar Directrice de Recherche, CNRS - LIRIS Reviewer and President
Emiliano De Cristofaro Full Professor, University College London Reviewer
Christian Weinert Lecturer, University of London Examiner
Jan Ramon Directeur de Recherche, INRIA Lille Supervisor

2

To my father Carlos.
To my grandmother María, in loving memory.

Acknowledgments

I am grateful to Jan Ramon, my advisor, who guided me through this project. I appreciate
his dedication in reviewing my daily work and providing detailed observations. I want
to take this opportunity to thank him for challenging me to give the best of myself in the
production of qualitative results. Through his supervision, I have grown to become more
independent as a researcher.

I would like to thank all the researchers for their contributions to improve this work.
Aurélien Bellet, Andreas Peter and Florian Hahn, in addition to their collaboration in
the presented contributions, improved my insights with fruitful discussions and helped
me discover key literature for the project. I also want to express my deepest gratitude to
Sonia Ben Mokhtar, Emiliano De Cristofaro and Christian Weinert, who evaluated this
dissertation and gave important feedback to improve it.

I am grateful to all the professors and friends who motivated me in my studies. I
am deeply thankful to Eric Biagioli, my coach for the olympiads in informatics, who
was the first person to show me the beauty of computer science and encouraged me to
pursue university studies in this area. I also want to thank professors Guido Macchi, Pablo
Granitto, Guillermo Grinblat, Gabriela Argiroffo and Ana Casali, who inspired me and
wrote me recommendation letters when I applied to this great PhD topic that completely
fitted my interests.

I express my gratitude to the members of the Magnet team who created a friendly re-
search environment. I particularly enjoyed the shared midday meals, discussions, “Magnet
au vert” trips and foosball games. I thank Marc Tommasi and William De Vazelhes who
helped me to find an apartment and settle in Lille.

I would like to thank all my friends for their support. Arijus, Pauline, Brij, Mahsa,
Carlos, Onkar, Mariana and Mathieu, whom I met in Lille, made my everyday life much
more interesting by filling it with conversations and trips within France and overseas. I
am very grateful with Júlia, my girlfriend, who was an amazing listener and always gave
me her support. My Argentine friends Mariano, Javier, Maximiliano, Damian, Yueh-Wei,
Fepi, Juan and Ariel made me feel like home with their visits and phone calls. In particular,
I thank them for their company during the Covid lock-down.

I cannot express with words how thankful I am with my parents Raquel and Carlos and
my sisters Paola, Carla and María José. They gave me their unconditional love and support
from the distance. I am grateful to Adrián, my brother-in-law, who was always attentive to
my concerns and provided me with his great advice.

In this world where hostility is abundant, kindness has been one my biggest motivational
forces. I thank all those people who spread it and that have helped me in different ways
through these years. They have given purpose to this project.

3

4

Abstract

In recent years, the concern for privacy has significantly grown. This is a consequence
of the regular use of data-intensive services that require the massive outsourcing and
processing of individuals data, which is often sensitive. For that reason, measures to
regulate the manipulation of individual’s data and to prevent its exposure gained notable
relevance.

Two important limitations of existing algorithms as used in the field of machine learning
are that they often are not robust against colluding adversaries, and that a trusted party is
needed to among others perform differential privacy perturbation. This PhD dissertation
aims to address these problems. In particular it contains two major contributions:

The first contribution of this work is a decentralized and secure protocol that performs
differentially private aggregation. In this setting, each party in a group has its own
private data, and they want to collaboratively compute a statistic, e.g., an average, without
disclosing the sensitive information. Our protocol is robust against inference attacks by
colluding parties and allows for verification of the correctness of computations. It only
requires every party to communicate with a logarithmic number of other parties, and
achieves differential privacy with a utility nearly as good as in the trusted central curator
setting.

The second contribution proposes a protocol to draw random numbers in a multi-party
computing setting in such a way that all parties can verify that the generated number
follows a prescribed probability distribution and is effectively pseudo-random, i.e., no
group of colluding parties can bias the randomness. In particular, we consider drawing
random numbers publicly (so all parties can see them), privately (so exactly one party can
see them) or in a hidden way (so they are output as secret shares and hence are not known
by any of the parties). We instantiate our methods for drawing random numbers from the
Laplace and Gaussian distributions. As a byproduct of independent interest, we propose
algorithms to verify transcendental computations such as logarithmic, trigonometric and
exponential functions in zero knowledge.

5

6

Résumé

Ces dernières années, la préoccupation pour la protection de la vie privée s’est consid-
érablement accrue. Cela s’explique par l’utilisation régulière de services qui nécessitent
l’externalisation et le traitement massif de données personnelles, souvent sensibles. Pour
cette raison, les mesures visant à réglementer la manipulation des données personnelles et
à empêcher leur divulgation ont gagné en importance.

Deux limitations importantes des algorithmes existants utilisés dans le domaine de
l’apprentissage automatique sont qu’ils ne sont souvent pas robustes contre les attaques
par collusion, et qu’un tiers de confiance est nécessaire pour (entre autres) effectuer une
perturbation aléatoire permettant d’obtenir des garanties de confidentialité différentielle
(differential privacy). Cette thèse vise à résoudre ces problèmes. Elle contient en particulier
deux contributions majeures.

La première contribution est un protocole décentralisé et sécurisé qui effectue une
agrégation satisfaisant la confidentialité différentielle. Dans ce contexte, chaque partie
possède ses propres données privées et souhaite calculer de manière collaborative une
statistique, par exemple une moyenne, sans divulguer ses informations sensibles. Notre
protocole est robuste aux attaques d’inférence par des parties en collusion et permet de
vérifier l’exactitude des calculs. Il nécessite que chaque partie ne communique qu’avec un
nombre logarithmique d’autres parties et permet d’obtenir des garanties de confidentialité
différentielle avec une utilité presque équivalente au cas où l’on aurait recourt à un tiers de
confiance.

La deuxième contribution propose un protocole pour générer des nombres aléatoires
dans un cadre de calcul multipartite de telle sorte que toutes les parties puissent vérifier
que le nombre généré suit la distribution de probabilité souhaitée et est effectivement
pseudo-aléatoire, c’est-à-dire qu’aucun groupe de parties en collusion ne peut en fausser
le caractère aléatoire. En particulier, nous considérons le tirage de nombres aléatoires
publics (de sorte que toutes les parties puissent les voir), privés (de sorte qu’une seule
partie puisse les voir) ou de manière cachée (de sorte qu’ils soient émis sous forme de parts
secrètes et ne soient donc connus d’aucune des parties). Nous instancions nos méthodes de
tirage de nombres aléatoires pour la distribution de Laplace et la distribution gaussienne.
Comme sous-produit de notre approche pouvant avoir un intérêt en soi, nous proposons des
algorithmes à divulgation nulle de connaissance pour vérifier les calculs transcendantaux
tels que les fonctions logarithmique, trigonométrique et exponentielle.

7

8

Contents

1 Introduction 11
1.1 Context . 11
1.2 The Problem . 13
1.3 Contributions . 14
1.4 Structure of the Thesis . 15

2 Background 17
2.1 Setting and General notation . 17
2.2 Notions of Privacy . 18
2.3 Algorithms for Differential Privacy . 20
2.4 Basic Cryptographic Tools . 22
2.5 Zero Knowledge Proofs . 25

2.5.1 Zero Knowledge Proofs and Arguments 25
2.5.2 Basics of Σ-protocols . 26
2.5.3 Linear relations for compression 30
2.5.4 Compressing Proofs . 31
2.5.5 Proving multiplications and circuits 32
2.5.6 Compressed Range Proofs . 33
2.5.7 Cost of Compressed Proofs . 33

3 GOssip for Private Averaging (GOPA) 35
3.1 Introduction . 35
3.2 Notations and Setting . 37
3.3 Related Work . 38
3.4 Proposed Protocol . 39
3.5 Privacy Guarantees . 41

3.5.1 Effect of the Communication Structure on Privacy 41
3.5.2 Worst Case Topology . 46
3.5.3 The Complete Graph . 47
3.5.4 Random Graphs . 47
3.5.5 Matching the Utility of the Centralized Gaussian Mechanism . . . 58
3.5.6 Smaller k and σ2

∆ via Numerical Simulation 59
3.6 Correctness Against Malicious Users . 61

3.6.1 Tools for verifying computations 61
3.6.2 Verification Protocol . 62
3.6.3 Setup Phase . 64
3.6.4 Dealing with Dropout . 66
3.6.5 Robustness Against Attacks on Efficiency 68

9

10 CONTENTS

3.6.6 Further Discussion on the Impact of Finite Precision 69
3.6.7 Private Gaussian Sampling . 69

3.7 Computation and Communication Costs 78
3.8 Experiments . 79
3.9 Conclusion . 80

4 Private Sampling with Malicious Samplers 81
4.1 Introduction . 81
4.2 Preliminaries . 82
4.3 Problem Statement . 84
4.4 Related Work . 86
4.5 Method . 88

4.5.1 Inverse Cumulative Probability Distribution 88
4.5.2 Table Lookup . 88
4.5.3 Laplace distribution . 89
4.5.4 Gaussian distribution . 89

4.6 Proofs of Elementary Functions . 90
4.6.1 Building Blocks . 91
4.6.2 Cordic Algorithm . 92
4.6.3 Cordic in Zero Knowledge . 93
4.6.4 Extending the Domain . 95

4.7 The Laplace distribution . 97
4.7.1 Private Laplace sampling . 97
4.7.2 Hidden Laplace sampling . 97

4.8 The Gaussian Distribution . 98
4.8.1 The central limit theorem method 99
4.8.2 The Box Müller method . 99
4.8.3 The Polar Box-Müller method 100
4.8.4 Inversion method . 100
4.8.5 Hidden drawing . 101

4.9 Security of our protocols . 101
4.9.1 Security Definitions . 102
4.9.2 Compressed Σ-protocols as ideal functionalities 104
4.9.3 Proof of Protocol 1 . 104
4.9.4 Proof of Protocol 2 . 108
4.9.5 Non-uniform Public and Private Draws 110

4.10 Evaluation . 111
4.10.1 Setup . 111
4.10.2 Results . 111

4.11 Application: Differentially Private Machine Learning 112
4.12 Conclusion . 114

5 Conclusion and Perspectives 115
5.1 Summary . 115
5.2 Directions for Future Work . 116

Chapter 1

Introduction

In this chapter, we introduce the problems treated in this thesis. We start by describing
the context in Section 1.1 and present the problems in Section 1.2. Next, we describe
our contributions in Section 1.3 and conclude by presenting the structure of the thesis in
Section 1.4.

1.1 Context

In the last three decades, the domain of Machine Learning experienced a huge growth. It
is applied to a huge variety of domains such as consumer service, mobility and logistics in
cities, research in health, chemistry, market prediction, cognitive processes, etc. among
many others. To obtain improvements, large amounts of data are required. One of the
reasons of the popularization of machine learning is the growing amount of interconnected
digital information, e.g., due to automated data generation such as video streams, automated
patient monitoring in hospitals, news and social media, etc. Many other sources of
information improve automated tasks and services.

Much of this data belongs to individuals or organizations and is clearly sensitive:
e-mails and instant messages contain all kinds of private information, medical records
stored in hospital databases have individuals’ conditions and databases of companies might
contain data of business strategy. To generate machine learning models, the predominant
approach due to its organizational simplicity is the centralized setting: vast collections of
data of individuals, called data subjects, or other entities are accumulated and processed in
one or a few storage centers, typically owned by large companies or institutions, called
data holders.

However, the centralized setting has important issues: first, data subjects have no or
little control over their data and second, data concentration creates a single and valuable
target of external attacks. A leak in a data center is a much bigger threat than in a few
mobile phones. This risk increases if security measures are inadequate and lead to system
vulnerabilities. There have been many cases of sensitive data compromised by attacks in
production systems [114, 94, 1, 103]. Even if data is not directly exposed, it has been shown
that models obtained from its exploitation reveal sensitive information [106, 116, 67, 31].
Another issue concerns the linkage of information of a data subject from different sources.
For example, one can learn that a person regularly eats fast food from its credit card bill. A
health insurance company with access to this information could conclude that this person
has unhealthy eating habits, therefore a risk of cardiovascular and other related problems
which is above the average, and raise its insurance fee. Data about the lifestyle, political

11

12 CHAPTER 1. INTRODUCTION

orientation, religious and personal preferences is not something that people are willing to
share [30, 42, 107, 118].

Data subjects not only are exposed to such risks, but additionally they have an opaque
view of the flow that will take or has taken their data, and the specific risks it entangles (see
for example the Cambridge Analytica privacy scandal [44]). With the growing concerns,
privacy has become a priority for many legislators and citizens. Different type of measures
have been taken to protect individuals and provide them safer services. We identify two
types of measures: legislative and technical.

Legislative measures These measures define legal boundaries and regulations on the
collection and processing of data. A first measure of this kind is the creation of more
transparent privacy policies by organizations, where users could clearly be informed on
how their data will be used. However, even if this provides more information to data
subjects, data holders are still the ones who decide the exploitation boundaries. Stronger
regulations are now being imposed by governments, such as the General Data Protection
Regulation (GDPR) in the European Union or the Personal Information Protection and
Electronic Documents Act (PIPEDA) in Canada. In general lines, they establish a legal
framework that forces organizations to ask individuals for consent when data is collected,
to inform them in more level of detail whether this data is going to be shared with other
parties, how is it going to be processed and gives the option to withdraw the consent at any
point in the future, which leads to the mandatory removal of collected data.

While regulations are a significant advance into data sovereignty, data holders have
to be trusted on following the law, and sometimes it is not possible to track or audit how
data is handled. If infractions are made, it is difficult to prove. Therefore, data is safe
only if their holders are trusted. In addition, privacy practices that are considered “good
enough” change over time and specifying correctly the details of their legal applicability is
challenging.

Technical Measures Technical measures often aim at prevention, avoiding that data
subjects need to trust external parties. They provide a stronger type of guarantee in which
sensitive data is seen as little as possible by untrusted parties. They mostly rely on the
implementation of algorithms that statistically obfuscate and/or cryptographically encrypt
sensitive information.

A natural way to implement this type of guarantees is to adopt a decentralized setting,
where data is kept local to the data subjects, which then engage with each other in protocols
to access services and process their data in a privacy preserving way. This setting is
attractive not only for privacy preserving algorithms, but also for learning from excessively
large amounts of data that are prohibitive to centralize, e.g., when processing video data
from many cars in autonomous driving applications. For that reason, research work on
decentralized (or more often called federated) learning has increased exponentially in the
last few years [84].

Preventive privacy is not only applicable in current domains, but would also allow
other interesting machine learning scenarios. For example, in the case where small or
mid-sized organizations such as companies or hospitals would be willing to collaboratively
generate more qualitative models. For most of these organizations, this is not possible or
encouraging in the centralized setting, as sharing data is not allowed by law or would lead
to competitive disadvantage. If preventive measures provide sufficiently strong guarantees,
another interesting possibility is to perform machine learning in a privacy-preserving way

1.2. THE PROBLEM 13

using sensitive data that owners would be unwilling to share in a centralized setting with a
trusted curator.

Notions of Privacy Tools that provide privacy require precise definitions of what is a
privacy preserving procedure. In cryptography, a widely used notion of privacy states that
a computation is private if the only information revealed was the outcome, and no party
learned anything about the input or intermediate computations. Sometimes this does not
satisfy current needs because, as we said previously, the output can reveal a substantial
amount of sensitive data.
Another notion is k-anonymity, which defines a computation as private if the revealed data
of each participant cannot be distinguished from that of k − 1 other participants. However,
this still reveals sensitive information in certain types of computation.
A more empirical notion is to measure the resilience of an algorithm to popular attacks, for
example, an attack that aims to identify a participant of the computation. One line of work
is formed by adversarial networks [74]. This provides privacy against known attacks, but it
does not ensure any kind of protection against newly designed attacks that may come in
the future, or even to variations of current attacks.
Currently, the most popular framework for privacy in statistics is Differential Privacy (DP)
[58], which precisely quantifies the sensitive information leaked in a computation. It is
considered a gold standard for privacy in the context of exploitation of data.

DP was originally considered to prevent leakage of sensitive information in the outcome
of a computation in the centralized setting, where a trusted party is in charge of the
computation. Later, it was adopted in the decentralized setting, where no party is trusted,
for example using the Local Differential Privacy (LDP) framework [56, 87]. Algorithms
that achieve DP rely on adding noise to publicly visible information in a way that allows to
hide sensitive data while still being able to perform computations. The principle follows
the line of common practice in privacy preserving surveys, where participants randomize
their responses to sensitive questions to achieve plausible deniability. However, LDP
requires significantly more noise than in the centralized setting. This leads to models with
unacceptable accuracy except in protocols with a massive amount of participants. As we
will see, encryption strategies hiding inputs and intermediate results can reduce the amount
of needed noise to about what is needed to achieve DP in the centralized setting.

1.2 The Problem

This thesis focuses on the study of protocols that provide differential privacy in the
decentralized setting, where no trusted central party is assumed. We consider scenarios
with a realistic behavior of the participants, and aim at protocols whose cost does not make
them prohibitive to implement in practice.

As mentioned in Section 1.1, LDP results in a significant accuracy deterioration with
respect to the centralized setting. This can be overcome using cryptographic primitives such
as Secure Aggregation [59, 34, 122, 22, 80] but, except for recent contributions [12, 124],
they have a communication cost that does not scale well to a large number of parties. This
tension between privacy, accuracy and communication cost in the decentralized setting is
the first problem we focus on.

Another approach to deal with the above problem is by positioning in between the
centralized and decentralized settings, for example, using Secure Multi-party Computation

14 CHAPTER 1. INTRODUCTION

(MPC) and trusting the computation to a small set of parties assumed not to collude
[45, 78] or in the shuffle model, where there is a trusted shuffler that randomly mixes the
updates of participants [63, 38, 9, 68]. While we provide protocols for the setting with a
few non-colluding parties, we note that these alternatives have less applicability in real
scenarios.

Protocols in the decentralized setting also face new challenges. A first challenge is that
participants might be interested to bias the outcome of a computation for many reasons.
For example, a company that wants to make its competitor to perform sub-optimally,
infiltrating the computation with malicious participants that collude with each other and
thereby biasing its business analysis. Malicious participants are already a problem in
non-private decentralized machine learning and data mining [123, 130]. When protocols
are private, preventing this becomes more difficult as it is not possible to directly detect
inconsistent contributions. Privacy preserving approaches mostly assume a honest-but-
curious behavior of participants, which might try to infer data from others but will follow
the protocol. While there exist some approaches that are resilient to some malicious types
of behavior, they do not consider a broad spectrum of attacks. A second challenge is
that the more parties are involved, the more vulnerable is the computation to suffer from
unexpected events such as participants going offline due to connectivity issues. This could
significantly impact on the accuracy or directly lead to the abortion of the computation.
The problem of robustness to malicious parties and dropouts is the second focus of this
work. In this dissertation, we aim to address these challenges.

1.3 Contributions

We present two main contributions which are described below.

First Contribution The first contribution of this work is a decentralized protocol called
GOPA, which performs differentially private averaging. While the latter is a simple statistic,
its secure computation is challenging and it has important applications. It is a key primitive
to aggregate updates in federated learning algorithms and it allows to train models that can
be computed from averages, as linear models and decision trees. We propose a protocol
to compute private averages that only requires logarithmic communication cost in the
number of participants and can compute private models with an amount of noise that is
significantly lower than in LDP. In fact, it matches the amount of noise required for DP
when the central party is trusted. To prevent malicious behavior, the protocol provides in
addition a verification procedure using cryptographic zero knowledge proofs. This enables
users to prove the correctness of their computations without compromising their privacy.
Finally, we show measures to make the protocol resilient to dropouts.

This work, which will be described in Chapter 3, has been accepted for the ECML /
PKDD Journal Track1. It is also available in arXiv by

• César Sabater, Aurélien Bellet, and Jan Ramon. “An Accurate, Scalable and Ver-
ifiable Protocol for Federated Differentially Private Averaging.” arXiv preprint
arXiv:2006.07218 (2020).

1https://ecmlpkdd.org/

https://ecmlpkdd.org/

1.4. STRUCTURE OF THE THESIS 15

and parts of it have been presented in NeurIPS 2020 Workshop on Privacy Preserving
Machine Learning 2 and Conférence sur l’Apprentissage automatique (CAp) 2020 3.

All the authors made approximately equal contributions to this work. My contribution
involves, in joint work with the other authors, the proofs of privacy guarantees, the devel-
opment of techniques to detect malicious behavior and the implementation of experiments.
My contributions in privacy guarantees were produced with the guidance and expertise in
the field of the other authors. The result on random graphs presented in Section 3.5.4 was
contributed primarily by another author. The study of cryptographic tools which were used
for the robustness results presented in Section 3.6 was primarily done by me.

Second Contribution The second contribution focuses on private sampling algorithms
in the presence of malicious parties. We propose algorithms for unbiased sampling from
uniform, Gaussian, Laplacian and arbitrary distributions in 3 settings: (1) verifiably
sampling numbers that are public, (2) verifiably sampling numbers that are private to one
party and (3) verifiably sampling numbers which are a secret shared by all parties, and
therefore hidden to all of them. Such algorithms can be used in the context of differentially
private federated learning to prevent some types of data poisoning. In decentralized
machine learning, sampling unbiased noise to ensure that the participants’ information
exchanges are privacy-preserving is crucial to provide theoretical privacy guarantees.
While doing so, we propose algorithms to verify private transcendental computations such
as logarithmic, trigonometric and exponential functions. These techniques can be used as
building blocks to construct larger systems in which machine learning computations are
verifiable in zero-knowledge.

This contribution is co-authored with Jan Ramon, Andreas Peter from the University
of Oldenburg and Florian Hahn from the University of Twente. It has been accepted under
major revisions for Proceedings on Privacy Enhancing Technologies (PoPETs) 2023 4 and
parts of it have been presented in

• César Sabater and Jan Ramon. “Zero Knowledge Arguments for Verifiable Sampling.”
NeurIPS 2021 Workshop Privacy in Machine Learning. 2021.

We will present it in Chapter 4. This work was mainly produced and written by me with
the guidance of the other authors.

All the content presented in Chapters 3 and 4 has been additionally peer-reviewed in
their submission to the venues mentioned above.

1.4 Structure of the Thesis

In Chapter 2, we introduce general notations and the necessary background in privacy and
cryptography for the following chapters. In Chapter 3 we present the first contribution, the
GOPA protocol. In Chapter 4 we present how to perform private sampling with malicious
samplers, our second contribution. We conclude and discuss future work in Chapter 5.

2https://ppml-workshop.github.io/ppml20/
3https://cap-rfiap2020.sciencesconf.org/
4https://petsymposium.org/cfp23.php

https://ppml-workshop.github.io/ppml20/
https://cap-rfiap2020.sciencesconf.org/
https://petsymposium.org/cfp23.php

16 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this chapter, we present concepts on which our contributions rely. We describe common
elements of the setting we consider in Section 2.1. Then, in Section 2.2 we present several
notions of privacy and in Section 2.3 we further develop on how to achieve Differential
Privacy, the notion used in this work. After that, we introduce the required cryptographic
concepts: in Section 2.4, we describe basic cryptographic concepts present in the con-
tributions, and in Section 2.5 we describe Zero Knowledge Proofs, a key cryptographic
primitive for the robustness of our protocols.

2.1 Setting and General notation

General Notation We will denote the set of the first k positive integers by [k] = {i ∈
N | 1 ≤ i ≤ k}. a←R S means that a is sampled uniformly at random from elements of
S. For vectors ā = (a1, . . . , ak) and b̄ = (b1, . . . , bk), ā+ b̄ and ā ∗ b̄ are the element-wise
addition and product. āb̄ is the multi-exponentiation

∏k
i=1 a

bi
i . For a scalar s, s + ā =

(s, . . . , s) + ā, s ∗ ā = (s, . . . , s) ∗ ā and ās = ā(s,...,s). We denote by ‖ā‖1 =
∑k

i=1 |ai|
and ‖ā‖2 =

√∑k
i=1 a

2
i to the `1 and `2 norms respectively. The function sign(x) is equal

to 1 if x ≥ 0 and to −1 otherwise. a =? b is true if a = b and false otherwise.
In our cryptographic primitives, the security parameter will be denoted by λ. We say

that a function is negligible in λ if, for each positive polynomial f , it is smaller than 1
f(λ)

for sufficiently big λ. For an algorithmA,A(X) is the output ofA on input X . We denote
by 1λ to the string 1 · · · 1 of length λ and byA(1λ) to an algorithmA that takes an input of
size O(1λ), that is, exponential in λ. We sometimes omit λ in ‘negligible function’ when it
is clear we mean ‘a function negligible in λ’.

Multiparty Protocols We consider a scenario with n parties that have private data and
want to compute a model over it by exchanging messages. We assume that all parties have
an identifier associated with the computation which is securely generated. We will not
consider the problem of anonymization of identities of parties. For simplicity, we just
enumerate them from 1 to n. Messages between parties are sent over a secure channel and
are cryptographically signed, so that the receiver is ensured that the message comes from
the claimed sender. We describe the cryptographic elements in more detail in Section 2.4.
For a multiparty protocol or just protocol Π, we denote by Π(X) to its output on input X .

17

18 CHAPTER 2. BACKGROUND

Threat model In our model, parties are either honest-but-curious or malicious. These
are common adversary models formalized by [70] and used in the design of many secure
protocols. A honest-but-curious (honest for short) user will follow the protocol specifica-
tion, but may use all the information obtained during the execution to infer information
about other users. A honest user may accidentally drop out at any point of the execution
(in a way that is independent of the private values X). On the other hand, a malicious user
may deviate from the protocol execution (e.g, sending incorrect values or dropping out on
purpose). Malicious users can collude, and thus will be seen as a single malicious party
(the adversary) who has access to all information collected by malicious users. However,
we assume that there is sufficient deterrence (in the form of punishment or banning) so
that malicious users cannot risk that their deviations from the protocol are detected.

2.2 Notions of Privacy

We now discuss common notions of privacy in the context of the exploitation of data.

Cryptography-oriented notion First, we present a notion of privacy that is common in
cryptographically secure protocols. Let X1, . . . , Xn be sensitive data points such that for
all i ∈ [n], Xi is private to party i, and let Π be a protocol that takes as input (Xi)

n
i=1 and

outputs Y . Then Π is private if it reveals no or negligible information about the input other
than Y .

Although this notion might be sufficient for certain kinds of computations, it might not
be enough in some cases. Consider for example that Xi is the risk of cancer of a patient i
obtained by some inferences over its medical data, and suppose we want to compute the
statistic Y = miniXi. Even if the computation is private, it is revealed that one of the
patient has a risk exactly equal to Y . If the risk is measured in the range [0, 1] and the
outcome Y is equal to 0.98, we immediately learn that all patients have a risk between
0.98 and 1.

Sensitive data can be similarly exposed if Y is the result of an aggregation. Consider
that Y is the average salary of the employees of a company where the salaries are known
to range between 2400e and 10000e per month. If Y is sufficiently close to 2400e or
to 10000e, the income of all employees can be estimated accurately. Now consider that
this aggregate is computed again after one year in the same company, which hired one
extra employee, but all others employees have the same contract as in the previous year.
The result of this aggregate reveals the exact income of the newcomer. It has been shown
that exact outcome of statistics and machine learning models can reveal sensitive data
[106, 116, 67, 31].

k-anonymity A common notion when revealing a set of entries, each associated with
an individual, is k-anonymity [126]. A computation satisfies k-anonymity if each entry is
indistinguishable from k − 1 other entries. Databases can be k-anonymized by sufficiently
generalizing the attributes of individuals or suppressing identity fields. However, this
notion might not be enough. For example, when all individuals have an identical sensitive
attribute, then the entries satisfy k-anonymity but the exact sensitive information is still
revealed.

2.2. NOTIONS OF PRIVACY 19

Randomized Response When performing a survey over sensitive data, a common
method to protect individuals is randomized response. When a question is sensitive,
the technique consists on answering it non-deterministically, giving individuals plausible
deniability while the aggregation of all responses still remains a valid estimation of the true
result. Consider a survey where it is wanted to know the number of people that committed
a certain crime. To answer to this question, an individual

1. tosses a coin, if heads then it answers truthfully, and if tails then

2. it tosses a second coin and answers “Yes” if heads and “No” if tails.

Then if they answered “Yes”, they can claim that the the first coin was tails and the second
heads. While this method does not precisely define a notion of privacy, it is the principle
in which the notion of Differential Privacy, that we describe below, relies on.

Differential Privacy Differential Privacy [58] quantifies the amount of information
leaked in a protocol. To do that, it measures the difference in the output when a party
i ∈ [n] participates in the protocol with its private value Xi to that when i does not
participate or is replaced by another individual. Here, the output is all the information
publicly visible by untrusted parties.

Consider two possible input vectors (or also called databases) XA = (XA
i)ni=1 and

XB = (XB
i)ni=1. They are called neighboring or adjacent inputs if they only differ on the

input of one individual, i.e.

XB = (XA
1 . . . X

A
i−1, X

B
i , X

A
i+1 . . . X

A
n)

for some i ∈ [n]. The definition of neighboring inputs may change to suit a particular prob-
lem, but essentially it reflects the fact that some individual i is present in the computation
or not. We will use the definition as described above, where an individual is replaced by
another one with a different value.

Now we define Differential Privacy. Let Π be a probabilistic algorithm or, as usually
called, mechanism. For ε > 0 and δ ∈ [0, 1), a mechanism Π satisfies (ε, δ)-Differential
Privacy if for every pair of neighboring inputs XA and XB and for all sets of possible
outputs O, we have that

Pr(Π(XA) ∈ O) ≤ eε Pr(Π(XB) ∈ O) + δ. (2.1)

Here, ε determines the upper bound on the relative change in probability of the output, while
δ gives more flexibility by capturing some cases where the strict bound eε Pr(Π(XB) ∈ O)
might not hold. δ must be sufficiently small to ensure that the probability of leakage is
negligible. It is usually in O(1/n2) or, for more safety, in O(1/2n).

The above definition defines a framework to precisely measure privacy leakage. Con-
sider the example given for randomized response. The sensitive data X is whether the
individual in question committed a crime or not and Y is the answer. The two possible
inputs are X = “Yes” and X = “No”, which are neighboring. We have that

Pr(Y = “Yes”|X = “Yes”)

Pr(Y = “Yes”|X = “No”)
=

Pr(Y = “No”|X = “No”)

Pr(Y = “No”|X = “Yes”)
=

3/4

1/4
= 3.

Then, for the two possible outcomes R and R′, we have that

Pr(Y = R|X = R) = 3 Pr(Y = R|X = R′)

and the mechanism is (ln 3, 0)-Differentially Private.

20 CHAPTER 2. BACKGROUND

DP Flavors In order to satisfy different needs, many variations of classic DP have been
studied. Some of them are Concentrated [61], Renyi [109], Shuffle [38] and Network [49]
DP. In a similar direction, Pufferfish Privacy [90] is a customizable framework which
allows to create and analyze definitions of privacy.

Empirical Privacy DP provides strong guarantees of privacy. However, it is hard to
define which values of ε that provide a good level of privacy in practice. This also depends
on the type of computation. In addition, some machine learning applications such as
speech processing do complex transformations of the input, and it is hard to prove that
they satisfy DP. In these applications, a common notion of privacy is to empirically prove
that they are resistant to existent attacks, such as linkage [95] or membership of a group
[74]. However, this notion has the important issue that it does not prove privacy for future
attacks or variations of existent attacks.

This dissertation focuses on the theoretical guarantees provided by the classical defini-
tion of Differential Privacy.

2.3 Algorithms for Differential Privacy

Now we describe common mechanisms to achieve DP. They rely on the randomization of
the outcome of protocols. This is obtained by adding noise according to some probability
distribution. The amount of noise depends on how sensitive is the outcome to the input of
one individual. Hence, for i ∈ {1, 2} we define the `i-sensitivity of protocol Π by

∆iΠ = max
XA∼XB

‖Π(XA)− Π(XB)‖i

where XA ∼ XB denotes that XA and XB are neighboring inputs and ‖·‖i is either the
`1 or `2 norm. The sensitivity is an upper bound of the change of the output when one
individual is replaced by another. We outline below two mechanisms to obtain differentially
private protocols.

Laplace Mechanism The Laplace distribution, denoted Lap(b) is defined by

PLap(b)(x) =
1

2b
exp

(
−|x|
b

)
For a protocol Π with outcome Y ∈ Rk, the Laplace Mechanism [60] applied to Π, defines
a Protocol ΠL that takes the input of Π, computes Y and outputs

Ŷ = Y + (η1, . . . , ηk).

where the ηi’s are i.i.d. samples of Lap(∆1Π/ε) for some ε > 0.

Theorem 1 (Laplace Mechanism). The Laplace Mechanism is (ε, 0)-Differentially Private.

Proof. See Theorem 3.6 of [60].

2.3. ALGORITHMS FOR DIFFERENTIAL PRIVACY 21

Gaussian Mechanism The Gaussian Mechanism [60] adds noise according to the nor-
mal distribution, denoted by N (µ, σ2) and defined by

PN (µ,σ2)(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
.

Let Π be as defined for the Laplace Mechanism. The Gaussian Mechanism applied to Π
and derives a new protocol ΠG with output

Ŷ = Y + (η1, . . . , ηk).

where the ηi’s are i.i.d. samples of N (0, σ2) for some σ > 0.

Theorem 2. Recall that ∆2Π is the `2-sensitivity of Π as previously defined. Let ε ∈ (0, 1)
and let c2 > 2 ln(1.25/δ). Then, the Gaussian Mechanism with σ ≥ c∆2Π/ε is (ε, δ)-
Differentially Private.

Proof. See Theorem A.1 in the Appendix of [60].

Differential privacy has other practical properties. For example, upper bounds (even
if possibly loose) of the level of privacy of a composition of mechanisms can be directly
derived from the DP parameters of the sub-mechanisms. Also, it is clear that any post-
processing of the outcome of a mechanism, satisfies the same privacy as this mechanism.
Elementary properties can be found in [60].

Central and Local Privacy Above, we described two common mechanisms to make
protocols differentially private by applying noise. We now distinguish between classic
DP (also called centralized DP) and local DP (LDP). Classic DP adds to an aggregate
sufficient noise to make the aggregate differentially private. LDP adds to the data owned
by a single data owner sufficient noise to make this data differentially private by itself. The
latter requires more noise, but once data is LDP one can publish it and do any operation on
it without worrying about privacy.

Consider the task of computing a (ε, δ)-differentially private average of the input values
(X1, . . . , Xn) ∈ [a, b]n for some range [a, b] ⊂ R. We use the Gaussian Mechanism to
obtain DP. In the central DP setting, all private values are averaged without revealing them,
e.g., by sending them to a trusted curator that computes Xavg = 1

n

∑n
i=1 Xi and reveals the

perturbed average X̂avg = Xavg + η after adding noise η ∼ N (0, σ2). The only exposed
value is X̂avg. As the `2-sensitivity of Xavg is (b− a)/n, the variance σ2 of the noise must
be at least

2 ln

(
1.25

δ

)
(b− a)2

n2ε2
.

Now consider the LDP setting. The average is computed between untrusted parties.
Each party i adds noise ηi ∼ N (0, σ2

local) to its private value Xi before revealing X̂i =
Xi + ηi. The perturbed average is equal to X̂avg = 1

n

∑n
i=1 X̂i. Here, all X̂i’s are exposed.

The sensitivity is b− a and therefore it is required that σ2
local ≥ 2 ln(1.25/δ)(b− a)2/ε2.

The variance σ2 of the estimate X̂avg is

V ar

(
1

n

n∑
i=1

ηi

)
=

1

n2

n∑
i=1

σ2
local > 2 ln

(
1.25

δ

)
(b− a)2

nε2
.

This is a factor n bigger than in the classic DP setting. This may make LDP prohibitive
unless a massive amount of parties participate in the average.

22 CHAPTER 2. BACKGROUND

Privacy in Machine Learning When computing a machine learning model M with
parameters θ, achieving DP in the central setting requires to compute θ̂ = θ + η where η is
defined according to some privacy mechanism and then releasing θ̂.

Achieving accurate models with LDP is more challenging. Techniques such as fed-
erated learning [84] and distributed empirical risk minimization can be used. In these
settings, each party i holds a private dataset Di and the goal is to find θ∗ such that
θ∗ ∈ arg minθ

1
n

∑n
i=1 f(θ;Di) where f is some loss function. Popular algorithms

[97, 125, 104, 80, 3] all follow the same high-level procedure: at round t, each party
i computes a local update θti based on Di and the current global model θt−1, and the
updated global model is computed as θt = 1

n

∑
u θ

t
u. To achieve DP, each party adds noise

to each update θti before sharing it. As said, the amount of noise is substantially higher
with LDP mechanisms. These settings have the disadvantage that, as many partial updates
are exposed, they increase the attack surface for external parties.

In a decentralized setting where there is no central trusted party, LDP is one possible
strategy. To reduce the amount of noise needed, one can use encryption strategies to
hide inputs and intermediate computations, such as secure aggregation [59, 34, 122, 22,
80, 79], other kinds of multiparty computation (MPC) [45, 78] or fully homomorphic
encryption [120], can be used to reduce the noise. However, with the exception of very
recent contributions [12, 124], they relax their assumptions, for example by trusting the
computation to a few honest-but-curious parties assumed not to collude, or do not scale
well to a large number of parties.

2.4 Basic Cryptographic Tools

Below, we outline basic cryptographic primitives and concepts that are related to our
following chapters.

Signatures A signature scheme allows parties to authenticate their messages. It is a
triplet of algorithms that consist on:

• a probabilistic key generation algorithm G that takes as input a string of length O(1λ)
and produces a pair (Kp, Ks) of matching public and secret keys,

• a probabilistic signing algorithm S that takes a message m and a secret key Ks and
produces a signature s

• a verification algorithm V which given a signature s, a message m and a public
key Kp returns accept if s is a valid signature of m with respect to Kp, or reject
otherwise

The scheme must satisfy Pr[(Kp, Ks) ← G(1λ), V (S(m,Ks),m,Kp) = accept] = 1
for correctness. For security, it is required that no probabilistic adversary that runs in
polynomial time must be able to generate valid signatures with more than negligible
probability in λ. The latter must hold even if the adversary can query the signing algorithm
with arbitrary messages as input (which are not equal to the message targeted for forgery)
and see its output. A practical instance of a signature scheme is ECDSA[81].

2.4. BASIC CRYPTOGRAPHIC TOOLS 23

Public-Key Encryption A public key encryption scheme is a triplet of algorithms com-
posed of

• a probabilistic key generation algorithm G that takes as input a string of length O(1λ)
and generates a pair (Kp, Ks) of a public key and a secret key

• a probabilistic encryption algorithm E that takes a message m and a public key Kp

and generates a ciphertext c

• a decryption algorithm D that takes a ciphertext c and a private key Ks and generates
a message m

Let (Kp, Ks) be the output of G(1λ). For correctness, a scheme must satisfy

D(E(m,Ks), Kp) = m

for all messagesm. A scheme is secure (or semantically secure) if for all possible messages
m, no probabilistic polynomial time attacker who only has access to Kp (which can use to
generate ciphertexts for any message m′ 6= m) can distinguish the ciphertext E(m,Ks)
from a random number except with negligible probability in λ.

Let M be the domain of messages and C that of ciphertexts. An encryption scheme is
partially homomorphic if, for some operations + and +′, (M,+) and (C,+′) are groups,
and for every pair of messagesm1,m2 ∈M , it holds thatD(E(m1)+′E(m2)) = m1+m2.
This property allows external parties to perform computations involving the operator +
over private values without learning any information about the messages. A semantically
secure and partially homomorphic encryption scheme is ElGamal [62, 92].

Hash Functions For a positive integer T , a (cryptographic) hash function is a determin-
istic function H : Z→ {0, 1}T that is fast to evaluate, but inverting its outputs or finding
two inputs with the same output can be done only with negligible probability in T for
a polynomial time algorithm. The output of a hash function is indistinguishable from a
random number drawn from {0, 1}T . Practical instances of H can be found in [52].

Pseudo-Random Generators A (secure) pseudo-random number generator [132] (PRG)
is a deterministic function G : {0, 1}k → {0, 1}p(k) for some polynomial p with p(k) > k
such that for any randomized polynomial time algorithm A : {0, 1}p(k) → {0, 1} there
holds

|Px←R{0,1}k(A(G(x)) = 1)− Px←R{0,1}p(k)(A(x) = 1)| ≤ µ(k)

for some function µ negligible in k. In other words, a PRG is a function which takes a
string x as input and outputs a longer string G(x) which cannot be distinguished from a
random sequence by a polynomial time algorithm. It can be instantiated with AES-CTR in
practice.

Commitments Commitment schemes, first introduced in [20], allow for committing to
values while keeping them hidden. It consists of a pair of (computationally efficient) prob-
abilistic algorithms (Setup, Com). Algorithm Setup is executed once, with randomness
t ∈ O(1λ) as input, and outputs a tuple Θ← Setup(t) of parameters of the scheme. The al-
gorithm Com with parameters Θ, denoted ComΘ, is a function ComΘ : BΘ ×RΘ → CΘ,

24 CHAPTER 2. BACKGROUND

where BΘ is called the message space,RΘ the randomness space, and CΘ the commitment
space. For a message x ∈ BΘ, the algorithm draws r ∈ RΘ uniformly at random and
computes a commitment P ← ComΘ(x, r). We say that (x, r) is an opening of P . For
simplification and when r is not relevant, we relax the notation ComΘ(x, r) to ComΘ(x)
and assume r is drawn appropriately. We outline three properties of commitments below.

• A commitment is binding if there exists no polynomial time algorithm A that can
find x, y ∈ BΘ, r, s ∈ RΘ such that x 6= y and ComΘ(x, r) = ComΘ(y, s). The
binding property typically depends on the input t of Setup not being biased, in
particular, it must be hard to guess non-trivial information about t.

• A commitment scheme is hiding if, for all secrets x ∈ BΘ and given that r is chosen
uniformly at random from RΘ, the commitment ComΘ(x, r) does not reveal any
information about x.

• A commitment scheme is homomorphic if BΘ,RΘ and CΘ are abelian groups, and
for all x, y ∈ BΘ, r, s ∈ RΘ we have

ComΘ(x, r) + ComΘ(y, s) = ComΘ(x+ y, r + s).

Please note that the three occurrences of the ’+’ sign in the above definition are operations
in three different spaces, and hence may have different definitions and do not necessarily
correspond to the regular addition of numbers. Note that the authenticity of commitments
can always be trivially proven by revealing the committed value. This is sometimes known
as revealing.

Discrete Logarithm Assumption (DLA) The security of our protocols relies on the
Discrete Logarithm Assumption. Let G be a cyclic multiplicative group of large prime
order q ∈ O(1λ), and g and h two elements chosen independently and uniformly at random
from G. Then, no probabilistic polynomial time algorithm A that takes as input the tuple
(G, q, g, h) outputs a value b such that P (gb = h) is non-negligible in λ. For more details
on the DLA, see Chapter 7 of [89].

Pedersen Commitments We use the Pedersen commitment scheme [117]. Let p and q
be two large primes such that q divides p− 1, and a let G be the cyclic subgroup of order
q of the multiplicative group Z∗p. Primes p and q are such that G is suitable for the DLA
(see [89]). We have that G = {ai mod p | 0 ≤ i < q} for any a ∈ G distinct to 1, which
means that any member of G except 1 can generate it. Pedersen’s Setup function samples
at random parameters Θ = (g, h) where g, h are two generators of G. We will also refer to
g and h as bases. Recalling the definition of commitments, we have BΘ = RΘ = Zq, and
CΘ = G. The commitment function ComΘ is defined as

ComΘ : Zq × Zq → G
ComΘ(x, r) = gx · hr, (2.2)

where (·) is the product modulo p of group G, x is the secret and r is the random-
ness. Pedersen commitments are homomorphic (in particular, ComΘ(x + y, r + s) =
ComΘ(x, r) · ComΘ(y, s)), hiding and binding under the DLA.

The Setup algorithm only requires public randomness to sample random bases of
G. This can be done without a trusted party. We show how to generate such unbiased
randomness in the presence of malicious participants in Section 3.6.3.

2.5. ZERO KNOWLEDGE PROOFS 25

Vector Commitments For efficiency in communication, we also consider a generaliza-
tion for vectors of Pedersen commitments. Here, the Setup algorithm outputs a vector
ḡ = (g1, . . . , gk) of bases sampled at random from G. A commitment P ∈ G of a vector
x̄ = (x1, . . . , xk) ∈ Zkq satisfies P = ḡx̄. We have that x̄ = (x̄′, r), where x̄′ is the data
and r is sampled uniformly at random from Zq, therefore P is uniformly distributed in G
and the scheme is hiding. Binding and homomorphic properties also hold. For the latter,
given commitments P and Q of x̄ and ȳ respectively, PQ is a commitment of x̄+ ȳ.

Arithmetic Circuits We define arithmetic circuits, which will be used to relate state-
ments over committed values. An arithmetic circuit (or just circuit) C : Zkq → Zsq is a
function that only contains additions and multiplications modulo q. In the following of the
dissertation, we will define circuits using the notation

C(a; i1, . . . , ik) :=

o1
...
os

 ,
where (i1, . . . , ik) is the input, (o1, . . . , os) is the output, and a are constants that may
change the circuit structure, for example, in the case we are defining a family of similar
circuits.

2.5 Zero Knowledge Proofs

We use Zero Knowledge Proofs (ZKP) [73] to prove statements about private committed
values. Basic concepts about ZKP are explained in Section 2.5.1. We use two ZKP
techniques: Σ-protocols [46] and a compressed version of them by [5] with reduced
communication cost. They can be used to prove arithmetic relations, range membership
and certain types of logical formulas involving private values. We explain the classic (non-
compressed) Σ-protocols and show some examples of them in Section 2.5.2. In Section
2.5.3, we show a key protocol used to understand compressed Σ-protocols. After that,
in Section 2.5.4 we show the compression technique of [5]. In Section 2.5.5, we present
compressed protocols to prove arithmetic circuits. Finally, Section 2.5.6 has an application
for compressed range proofs and Section 2.5.7 discusses the costs of the compressed
techniques.

2.5.1 Zero Knowledge Proofs and Arguments
ZKP are a special case of interactive Proofs of Knowledge (PoK). We first define PoK. For
a NP relationR, a PoK is a protocol between a prover P and a verifier V in which P tries
to prove to V that he knows a witness w such that (a, w) ∈ R for a public statement a. At
the end of the protocol, V either accepts or rejects the proof. We denote by (a;w) to a
member of a relation or an input of a protocol, using a semicolon to separate the public
statement a from the private witness w. The tuple of all messages in a proof is called the
conversation or transcript. A ZKP is a PoK that satisfy the following properties:

• Completeness: a proof is complete if V always accepts the proof when (a;w) ∈ R
and P knows w.

26 CHAPTER 2. BACKGROUND

• Soundness: a proof is sound if any prover whose proof for statement a is accepted
by the verifier knows a valid witness w such that (a;w) ∈ R with overwhelming
probability. The notion of soundness we use is called witness extended emulation
[98]. Proofs that are sound only if the prover is computationally bounded are also
called arguments.

• Zero Knowledge: a proof is zero knowledge if its transcript reveals no or negligible
information about the witness other than its validity.

2.5.2 Basics of Σ-protocols
Here we explain the basics to understand classic Σ-protocols proposed by [46, 47]. While
the proofs defined therein are applicable for a wide family of commitments, we instantiate
them for the Pedersen scheme.

A Σ-protocol is a 3-message PoK with a transcript of the form (m1, t,m2), where m1

and m2 are messages of P , and t is a message of V called challenge, which is uniformly
distributed in some challenge space S, in our case, of size O(1λ).

The security of these protocols rely on V behaving honestly in the draw of challenges.
To circumvent this in settings where no trusted verifier is available, Σ-protocols can be
transformed to non-interactive using the Fiat-Shamir heuristic [66, 16]. This consists on
replacing the challenge of V by a hash function that computes t from m1 and the statement
of the proof. Then, a prover can generate a transcript by itself and send it to an untrusted
verifier. This transformation is proven secure when the hash function is modeled as a
random oracle [13]. We will use this transformation for both classic and compressed
Σ-protocols described in the following sections. However, for simplicity, we will describe
protocols in their interactive form.

Below, we describe some existent protocols, explain their complexity and refer to the
literature for other aspects such as security proofs. The protocols are secure under the DLA
and instantiated for Pedersen commitments, described in Section 2.4. Recall parameters Z∗p,
Zq, G, g and h defined therein. For some building blocks, we use extra pairs of elements
of G as bases of for Θ, where bases belonging to the same pair are always assumed to be
chosen independently at random from G. Recall that p is the order of Z∗p, of which G is
subgroup of. Products and exponentiations of members of G are group operations, which
means that they are implicitly modulo p. To analyze the computational cost of the building
blocks, we count group exponentiations (GEX), which are the dominant operations. For a
ZKP, we call the size of a proof to the size of the transcript. To describe sizes of proofs,
we overload the notation and use G for the size in bits of an element of this group. In that
context, G is equal to blog2 pc+ 1, but in some implementations the size can be different
so we abstract from details.

Basic proof of knowledge This proof is also known as the basic protocol. It allows P
to prove that he knows an opening of a commitment P . That is, a value x and randomness
r such that P = gxhr. This is a proof for the relation

{(P ∈ G;x, r ∈ Zq) : P = gxhr}.

The protocol goes as follows:

1. P draws a, b←R Zq, computes A← gahb and sends A to V .

2.5. ZERO KNOWLEDGE PROOFS 27

2. V draws a challenge t←R Zq and sends it to P .

3. P computes d← a+ xt (mod q) and e← b+ rt (mod q) and sends (d, e) to V .

4. V: if gdhe = AP t then accept, else reject

The computational cost of the proof is 2 GEX for P , and 3 for V . The proof size is of
3G bits. This protocol was first proposed by [121] for a single base, and adapted to many
bases (in our case, g and h) in [35].

We provide an intuition of how ZKP properties are obtained for the basic proof of
knowledge. Completeness follows directly from the homomorphic property. For soundness,
consider a prover P∗ that, by following the protocol, can produce an accepting transcript
(A, t1, (d1, e1)) with significant probability. Then it is shown that also with non-negligible
probability, by using P∗’s strategy many times, another accepting transcript of the form
(A, t2, (d2, e2)) can be produced, where the first message is equal in both transcripts and
such that t1 6= t2. Now, since both transcripts are accepting, we have gd1he1 = AP t1 and
gd2he2 = AP t2 so P∗ can efficiently compute the witness x = d1−d2

t1−t2 and r = e1−e2
t1−t2 which

is valid as gxhr = P . Either P∗ already knew it or he can efficiently compute the discrete
logarithms base g of h, which is a contradiction due to the DLA.

Zero knowledge is obtained by showing that all information seen in the proof is
randomness that does not depend on the secrets. By only knowing the statement P one
can sample d′ ←R Zq, e′ ←R Zq and t′ ←R Zq, compute A′ = P−t

′
gd
′
he
′ and generate

the transcript (A′, t′, (d′, e′)) has the same distribution as a conversation between an honest
prover and an honest verifier. Note that, as it is computed in reverse, (A′, t′, (d′, e′))
cannot be efficiently produced by a dishonest prover in the actual protocol, as the order of
messages cannot be changed.

In the following, classic Σ-protocols use similar arguments as the ones described for
the basic proof of knowledge to prove their properties. In particular, they can all generate
accepting transcripts “in reverse” even if witnesses are not known, as shown to prove the
zero knowledge property above. We will not describe their security proofs, but we will
point to the literature where these can be found.

Proof of equality This proof allows P to prove that he committed to the same private
value x in two different commitments P = gx1h

r
1 and P ′ = gx2h

r′
2 . That is, the relation

{(P, P ′ ∈ G;x, r, r′ ∈ Zq) : P = gx1h
r
1 ∧ P ′ = gx2h

r′

2 }.

The pairs of bases (g1, h1) and (g2, h2) might be different. This proof is described by [36]
for a single base and a generalization for many bases can be found in [35]. The protocol
goes as follows:

1. P generates a, b, c ←R Zq, computes A ← ga1h
b
1 and B ← ga2h

c
2 and sends (A,B)

to V .

2. V draws a challenge t←R Zq and sends it to P .

3. P computes d← a+ xt (mod q), e← b+ rt (mod q) and f ← c+ r′t (mod q)
and sends (d, e, f) to V .

4. V: if gd1h
e
1 = AP t and gd2h

f
2 = B(P ′)t, then accept else reject.

The proof requires the computation of 4 GEX for P and 6 for V . The proof size is of 5G
bits.

28 CHAPTER 2. BACKGROUND

Composition Let Π1 and Π2 be two Σ-protocols for ZKP of relationsR1 andR2 respec-
tively. A single Σ-protocol to prove the relation

R∧ = {(a, a′;w,w′) : (a;w) ∈ R1 ∧ (a′;w′) ∈ R2}

can be easily constructed. Basically, we just make both proofs to share the same challenge.
The protocol is as follows. The first message is (m1,m

′
1), where m1 and m′1 are exactly as

generated for the first messages of Π1 and Π2 respectively. Then V generates the challenge
t and sends it to P . Next, P generates the third message (m2,m

′
2) where m2 and m′2 are

generated from (m1, t) and from (m′1, t) as they will be generated for the third messages
of Π1 and Π2 respectively. Finally V verifies (m1, t,m2) and (m′1, t,m

′
2) are accepting as

in Π1 and Π2. Using this composition, if we wish to prove statements over many relations,
we can do it with a single Σ-protocol.

Another technique allows to construct ZKPs of disjunctions of statements. The work
by [48] proposed a Σ-protocol for the relation

R∨ = {(a, a′;w,w′) : (a;w) ∈ R1 ∨ (a′;w′) ∈ R2},

where Π1,Π2,R1 andR2 are defined as for conjunctions. We briefly describe the protocol
below. Without loss of generality, assume that P knows (a;w) ∈ R1, but he does not
know (a′;w′) ∈ R2 and that V does not know which of the two witnesses is known by P .
As Π2 is zero knowledge, an accepting transcript (m′1, tb,m

′
2) can be generated in reverse

as shown for the proof of knowledge above and without P knowing a valid witness.

1. P generates (m′1, tb,m
′
2) in reverse and generates m1 as he would normally do for

the first message of Π1.

2. P sends (m1,m
′
1) to V .

3. V draws a challenge t←R Zq and sends it to P .

4. P computes ta ← t− tb mod q and computes m2 from m1 and ta as he would have
done in the original protocol Π1.

5. P sends (m2,m
′
2) to V .

6. V checks that (m1, ta,m2) and (m′1, tb,m
′
2) are accepting as in protocols Π1 and Π2,

and that ta + tb mod q =? t. If all checks pass, then accept, else reject.

Here, P can generate (m1, ta,m2) as he knows a witness for R1 and he can simulate an
accepting transcript forR2. As ta + tb mod q = t, V is ensured that at least either ta or tb
is unpredictable for P when generating the first message of the proof, so he would not be
able to pass the proof with significant probability unless he knows at least one witness. We
refer to the paper for the security proofs and further details.

The composition techniques outlined above allow one to prove logical formulas of
conjunctions and disjunctions of statements. The computational and communication cost
for the resulting protocol is similar to the sum of the costs of the proof of each composed
statement.

2.5. ZERO KNOWLEDGE PROOFS 29

Proof of linear relation Let x̄ = (xi)
k
i=1 for some k > 0 be a vector of private values,

P̄ = (Pi)
k
i=1 a public vector of commitments such that Pi is a commitment of xi, ā =

(ai)
k
i=1 a public vector of integer coefficients, and b a public scalar. The goal ofP is to prove

the equality 〈x̄, ā〉 = b (mod q), where 〈·, ·〉 is the inner product. The proof follows almost
directly from the homomorphic property of commitments. We have that PL =

∏k
i=1 P

ai
i

is a valid commitment of 〈x̄, ā〉. Then, P and V prove that values committed with PL
and Pb = gb are equal. Note that it is not necessary to use the base h to compute the
commitment Pb as b is publicly known and hence we can use randomness equal to 0. The
proven relation is {

(P̄ ∈ Gk, ā ∈ Zkq , b ∈ Zq; x̄, r̄ = (ri)
k
i=1 ∈ Gk)

:
k∧
i=1

Pi = gxihri ∧ 〈ā, x̄〉 = b (mod q)
}
.

where r̄ is the randomness for each commitment. For P and V , the proof requires k + 1
GEX to compute PL and Pb plus one proof of equality. This leads to a final cost of k + 5
GEX for P and k + 7 for V . Considering that initial commitments P̄ are already shared
with V and that P has already proven knowledge of them, the proof size is equal to that of
the proof of equality, which is 5G bits.

Proof of a committed bit A handy special case of the composition using disjunction is
a proof that a secret b is a bit, i.e. that {b = 0 ∨ b = 1}. This instantiation is described by
([99] Section 3.2 therein). It requires 3 GEX for P and 4 for V . The size of the proof is of
4G bits.

Range proof Here, the statement to prove is that, for a positive integer M < q − 1 of
BM bits and a commitment P , P knows an opening x of P that lies in the range [0,M].
This is a folklore proof that can be done by committing to the bits b1, . . . , bBM of the bit
representation of x, i.e. that x =

∑BM
i=1 2i−1bi. For i ∈ {1, . . . , BM} it is proven that bi

is a bit with the protocol mentioned above. The validity of the decomposition of x can
be proven by a linear proof. This implies that x ∈ [0, 2BM − 1]. For ranges whose upper
bound is not of the form 2BM − 1, P commits to M − x and proves that it also lies in
[0, 2BM − 1]. This finishes the proof for arbitrary ranges.

Committing to every bit bi has a cost of BM GEX for P . The cost of proofs of bits
is dominated by 3BM GEX for P and 4BM for V . The proof that these bits are the
decomposition of x is dominated by BM GEX for both P and V . For arbitrary ranges, the
cost duplicates as described above. The total cost of the proof is dominated by 10 log2(M)
GEX for P and the same cost for V . The size of the proof is dominated by 10 log2(M)G
bits.

Proof of product In this proof, P wants to prove the knowledge of openings a, b and
d of commitments Pa = gahr1 , Pb = gbhr2 and Pd = gdhr3 and that they satisfy ab = d
(mod q). This proof can be done in a straightforward way with the knowledge and equality
proofs. We use the fact that, by properties of our cyclic group G, Pa is not only a
commitment but also a base, and that Pd = (Pa)

bh(r3−br1) is a valid commitment for b
using bases (Pa, h). For the proof, P first proves the knowledge of an opening of Pa, and
then it proves the equality of two openings Pb and Pd with the proof of equality, where

30 CHAPTER 2. BACKGROUND

commitments are computed with the pairs of bases (g, h) and (Pa, h) respectively. If P
does not know the commitment of a product of ab hidden in Pd it would not pass the
proof. The proof is the instantiation for Pedersen commitments of the protocol by [47],
and requires 6 GEX for P and 9 for V . The proof size is of 8G bits.

Proof of modular sum Here, P wants to prove that, for a public modulus M < q/2,
a public value t ∈ [0,M − 1] and two secrets x, z ∈ [0,M − 1], the relation x = z + t
mod M is satisfied. Let Px and Pz be the commitments of x and z respectively. First,
P does two range proofs to prove that x and z lie in [0,M − 1]. Then it proves that an
auxiliary value b is a bit. Finally it proves that x = z + t− bM (mod q) with a linear
proof. Because of their range, we have that z + t < q, hence the modulus q does not
interfere and the linear equality holds if and only if the modular sum is satisfied. This proof
is inspired by the more general proof of modular sum proposed by [29]. Its complexity is
given by the composition of the proofs mentioned above, where the dominant term comes
from the two range proofs, and amounts to 20 log2(M) GEX for P and the same for V .
The size of the proof is of 20 log2(M)G bits.

2.5.3 Linear relations for compression
We now show a Σ-protocol to prove linear relations over secret committed values which is
the key to understand compressed Σ-protocols. It relies on vector commitments explained
in Section 2.4 and its parameters: the commitment domain Zq, our underlying crypto-
graphic group G and vector of elements ḡ ∈ Gk. Let L : Zkq → Zq be a linear function
in Zq. That is, L(x1, . . . , xk) = a1x1 + · · · + akxk for coefficients a1, . . . , ak ∈ Zq. For
a vector commitment P ∈ G and a value y ∈ Zq, a prover P proves to know an opening
x̄ ∈ Zkq of P such that L(x̄) = y. We formally describe our linear relation by

RL = {(P ∈ G, y ∈ Zq; x̄ ∈ Zkq) : P = ḡx̄ ∧ y = L(x̄)}.

The relation is similar to the linear relation proof of Section 2.5.2, with the difference that
RL involves vector commitments. Note that in our case x̄ has a coordinate reserved for
randomness of the hiding property of commitments, so in valid relations the correspondent
coefficient of L must be 0. However, in later auxiliary protocols we will not impose such
restriction. Protocol Π0 below describes a classic proof ofRL.
Protocol Π0(P, y; x̄):

1. P computes: r̄ ←R Zkq , A = ḡr̄, t = L(r̄)

2. P sends to V: A, t

3. V sends to P: c←R Zq

4. P sends to V: z̄ = cx̄+ r̄

5. V: if ḡz̄ = AP c and L(z̄) = cy + t then accept, else reject.

The properties of Π0 are obtained from similar arguments as in the proof of knowledge
in Section 2.5.2. Completeness follows directly from the homomorphic property. For
soundness, consider a prover P∗ that by following Π0 can produce an accepting tran-
scripts ((A, t), c1, z̄1) with non-negligible probability. Then it can produce with significant

2.5. ZERO KNOWLEDGE PROOFS 31

probability as second transcript ((A, t), c2, z̄2) such that the first message is equal in both
transcripts and c1 6= c2. Now, since both transcripts are accepting, we have ḡz̄1 = AP c1

and ḡz̄2 = AP c2 so P∗ can efficiently compute the witness x̄ = z̄1−z̄2
c1−c2 such that ḡx̄ = P .

Acceptance also implies that L(z̄1) = c1y + t and L(z̄2) = c2y + t and it follows that
L(x̄) = y. Therefore is x̄ a valid witness. Either P∗ already knew it or they can efficiently
compute a non-trivial discrete logarithm relation between components of ḡ, which is a
contradiction due to the DLA.

For zero knowledge, by only knowing the statement (P, y) one can compute z̄′ ←R Zq,
c′ ←R Zq, A′ = P−c

′
ḡz̄
′ and t′ = L(z̄′) − c′y, and the transcript ((A′, t′), c′, z̄′) has the

same distribution as a conversation between an honest prover and a honest verifier.

2.5.4 Compressing Proofs
Now we reduce the communication cost of Π0 using ideas of compressed Σ-protocols [5],
which are also present in the previous works of [23, 27]. The transfer in Π0 is dominated
by the third message of the protocols in Step 4, with size of k elements of Zq. It can be
reduced if instead of sending z̄, P proves that (AP c, cy + t; z̄) ∈ RL which would imply
the condition tested in Step 5. Note that this proof does not need to be zero knowledge as z̄
is originally revealed in Π0. We first present Π1, a proof ofR that halves communication
cost by “folding” z̄ before sending it. Next, we show how to use this protocol to reduce
cost of Π0. By assuming that k is even, we define ḡL = (g1, . . . , gk/2) ∈ Gk/2 and
ḡR = (g(k/2)+1, . . . , gk) ∈ Gk/2 and analogously for x̄L ∈ Zk/2q and x̄R ∈ Zk/2q . We
also define LL : Zk/2q → Zq and LR : Zk/2q → Zq such that LL(ā) = L(ā, 0) and
LR(ā) = L(0, ā). We use an additional group element ĝ ∈ G generated in the same way
as the components of ḡ.

Protocol Π1(P, y; x̄):

1. P computes: A = ḡx̄LR ĝLR(x̄L), B = ḡx̄RL ĝLL(x̄R)

2. P sends to V: A,B

3. V sends to P: c←R Zq

4. P sends to V: z̄ = x̄L + cx̄R

5. V: if (ḡcL ∗ ḡR)z̄ĝcLL(z̄)+LR(z̄) = A(P ĝL(x̄))cBc2 then accept, else reject

Π1 is a complete and sound proof ofRL with half the communication of Π0. The commu-
nication of Step 4 can be further reduced by applying Π1 recursively until the size of z̄ is
sufficiently small. Let ΠB �ΠA be the interactive proof obtained executing ΠA except for
the last message and then executing ΠB. Now we can define to Πc = Π1 � . . . � Π1 � Π0

where the � is applied log2(k) − 2 times. Note that k requires to be a power of 2, but
padding vectors with 0’s is sufficient to fix this. Presented with more detail, it is proven
in Theorem 3 of [5], that Πc is a complete, sound and zero knowledge protocol for RL.
Completeness is straightforward, and for zero knowledge it is sufficient to see that Π0 is
already zero knowledge. The rest of the protocol only reveals as much as Π0. Soundness
follows from similar ideas than those shown for Π0.

Amortization techniques can be applied to prove many nullity checks, where the prover
claims for linear relations L1, . . . , Lr that Li(x̄) = 0 for all i ∈ {1, . . . , r}. For that, V
sends a random value ρ← Zq and thenP and V execute Πc on input (P,

∑r
i=1 ρ

i−1Li, 0; x̄).

32 CHAPTER 2. BACKGROUND

If L(x̄) = 0 then Li(x̄) = 0 for all i with overwhelming probability 1 − (r − 1)/q.
Amortized nullity checks also hold when replacing linear forms by affine forms Φ1, . . . ,Φr

where each one is the application of a linear form plus a constant. We denote this
protocol by ΠN and its input by (P, (Φ1, . . . ,Φr); x̄). A prover can prove the opening
of an affine map Φ : Zkq → Zrq to ȳ = (y1, . . . , yr) ∈ Zrq by running ΠN on input
(P, (Φ1 − y1, . . . ,Φr − yr); x̄) where Φ1, . . . ,Φr : Zkq → Zq are the affine forms that
compose Φ. The communication cost of these protocols is of r − 1 elements of Zq more
than Πc, which account for the size of ȳ.

2.5.5 Proving multiplications and circuits
Now, we show the idea of [5] to prove multiplicative relations only with black-box
access to ΠN . For a set committed triplets (α1, β1, γ1), . . . , (αm, βm, γm), P proves to
V that αiβi = γi for all i ∈ {1, . . . ,m}. Let α = (α1, . . . , αm), β = (β1, . . . , βm) and
γ = (γ1, . . . , γm).

Protocol ΠM :

1. P : samples random polynomials f(X), g(X) in Zq of degree at most m that define a
secret sharing over α and β by fixing f(i) = αi and g(i) = βi for all i ∈ {1, . . . ,m}
and sampling f(0), g(0)←R Zq.

2. P: computes the product polynomial h(X) = f(X)g(X) which has degree at most
2m.

3. P sends to V: a vector commitment of x̄ = (α, β, f(0), g(0), h(0), . . . , h(2m)).
Note that γ = (h(1), . . . , h(n)).

4. V sends to P: c←R Zq \ {0, . . . ,m}

5. P and V run ΠN to prove that f(c), g(c), h(c) open to some points u, v and w
respectively. This is possible by Lagrange interpolation, where by having sufficient
points of f , g and h, which are in the commitment of x̄, they can be evaluated its
domain by applying an affine form to x̄

6. V: if uv = w then accept else reject

As before, completeness is straightforward. Zero knowledge follows from fact that f, g
and h are random polynomials and their evaluations do not reveal information, and from
the fact that ΠN is zero knowledge. If the multiplicative relations do not hold in all triplets,
the probability that uv = w is negligible. From that and the soundness of ΠN , soundness
is obtained.

Now, let C : Zkq → Zsq be an arithmetic circuit (see Section 2.4). For a vector
commitment P , we show how ideas from ΠM are adapted to construct a proof that P
knows a opening x̄ ∈ Zkq of P such that C(x̄) = 0. Suppose that C has m multiplication
gates. We enumerate the multiplication gates from 1 to m. For i ∈ {1, . . . ,m}, let αi and
βi be inputs of the ith multiplication gate and γi its output. Let α, β and γ as defined in
the multiplication protocol. It is not necessary to commit to α and β as a commitment
of them can be obtained from affine forms on inputs (x̄, γ) which are only dependent on
C. Similarly, the output of C can be computed from an affine map ω : Zk+2m

q → Zsq that
takes as input (x̄, γ). When committing to x̄ and γ, the prover only needs to prove that
multiplication gates hold and that ω opens to 0. This can be done with amortized nullity

2.5. ZERO KNOWLEDGE PROOFS 33

checks. Let [ā] be a hiding vector commitment of ā i.e., [ā] = ḡ(ā,r) where r ∈ Zq is
chosen at random.

Protocol Πcs(C):

1. P: Computes f, g and h from α, β as in Steps 1 and 2 of ΠM .

2. P sends to V: [ȳ], where ȳ = (x̄, f(0), g(0), h(0), h(1), . . . , h(2m)) ∈ Zk+2m+3
q .

3. V sends to P: c←R Zq \ {1, . . . ,m}.

4. P sends to V: z1 = f(c), z2 = g(c), z3 = h(c).

5. P and V run ΠN with input ([ȳ], (ω, f(c)− z1, g(c)− z2, h(c)− z3); ȳ), where lin-
ear forms are obtained by Lagrange interpolation as in Step 5 of ΠM .

6. V: if z1z2 = z3 then accept else reject

Note that [ȳ], additionally to α and β, is an implicit commitment to γ = (h(1), . . . , h(m)).
We denote the protocol by ΠC . Properties of completeness, zero knowledge and sound-
ness, which can be found in Theorem 4 of [5], follow from the same arguments as the
multiplication protocol.

2.5.6 Compressed Range Proofs
A straightforward application of circuit proofs are range proofs. Namely, for a secret
x ∈ Zq and an integer k < log2(q), that x ∈ [0, 2k). For that you commit to the first k bits
b1, . . . , bk of x. Then, for b̄ = (b1, . . . , bk), a circuit proof for circuit

CRa(x, b̄) =

[
b̄ ∗ (1− b̄)

x−
∑k

i=1 2i−1bi

]
implies the range constraint. Note that in CRa the output of the multiplication gates is 0.
Therefore, in protocol Πcs, it is not necessary to include in ȳ the elements h(1), . . . , h(k),
which reduces the proof cost.

2.5.7 Cost of Compressed Proofs
We now briefly summarize communication and computational cost of the proofs. As
previously stated in this section, k is the number of inputs and m of multiplication gates in
circuits.

Theorems 3 and 4 of [5] give the communication costs for Πc and Πcs respectively. As
we use versions of the protocols transformed by the Fiat-Shamir heuristic, the verifier does
not send any message. Therefore, the proof sizes are 2dlog(k + 1)e elements of G and 3
elements of Zq for Πc, and 2dlog(k + 2m+ 4)e − 1 elements of G and 6 elements of Zq
for Πcs.

For the computational cost, we count the amount of group exponentiations in G (GEX)
as they dominate the work. In protocol Π0, P performs k GEX to compute A, and V
performs k + 1 GEX, which corresponds to the verification of Step 5. In Π1, P performs
k + 2 GEX to compute A and B, and V does k/2 + 4 GEX in the verification of Step 4.
Πc is a composition of one instance of Π0 and µ = dlog2(k)e − 2 instances of Π1. After
the first Π1 proof, k halves at each instance of Π1. Additionally, P and V have to compute

34 CHAPTER 2. BACKGROUND

ḡ′ = ḡcL+ ḡR after the first Π1 to update parameters for each of the following sub-protocols.
V avoids each of the verification checks except for the last one, which requires a constant
amount of GEX. Therefore, P performs k + 2 +

∑µ
i=1

k
2i−1 + k

2i
= 4k + 2µ − 10 GEX

and V does 3 +
∑µ

i=1
k
2i

+ 2 = k + 2µ− 1 GEX. Protocol ΠN requires the same amount
of GEX than Πc.

In Πcs, P is required to compute a (hiding) commitment of ȳ ∈ Zk+2m+3
q , which

costs l = k + 2m + 4 GEX. Then P and V engage in ΠN for an affine form of l inputs.
The final costs for Πcs are then 5k + 8m + 2dlog2(k + 2m + 4)e + 6 GEX for P and
k + 2m + 2dlog2(k + 2m + 4)e − 1 GEX for V . For a proof of membership to the
range [0, 2k), as discussed in Section 2.5.6, h(1), . . . , h(k) are not included in ȳ which
then has 2k + 4 elements. The costs are of 9k + 2dlog2(2k + 5)e + 11 GEX for P , and
2k + 2dlog2(2k + 5)e GEX for V .

We apply the same optimization done for range proofs to all of our circuits. That is,
multiplication gates that are expected to be equal to 0 are not included in ȳ. Therefore,
for circuits with k inputs, m multiplication gates, and m0 multiplication gates that will be
equal to 0,

• P performs 5k + 8m− 4m0 + 2dlog2(k + 2m−m0 + 4)e+ 6 GEX

• V performs k + 2m−m0 + 2dlog2(k + 2m−m0 + 4)e − 1 GEX.

Chapter 3

GOssip for Private Averaging (GOPA)

In this chapter, we present the first contribution of the dissertation. We introduce GOPA, our
proposed protocol for privacy-preserving averaging. We analyze its privacy guarantees and
present a methodology to provide robustness against malicious participants. In addition,
we position it with respect to other existing work and illustrate its performance in privacy-
preserving machine learning tasks.

3.1 Introduction

Individuals are producing ever growing amounts of personal data, which in turn fuel
innovative services based on machine learning (ML). The classic centralized paradigm
consists in collecting, storing and analyzing this data on a (supposedly trusted) central
server or in the cloud, which poses well documented privacy risks for the users. With the
increase of public awareness and regulations, we are witnessing a shift towards a more
decentralized paradigm where personal data remains on each user’s device, as can be seen
from the growing popularity of federated learning [84]. In this setting, users typically do
not trust the central server (if any), or each other, which introduces new issues regarding
privacy and security. First, the information shared by users during the decentralized training
protocol can reveal a lot about their private data (see [106, 116, 67] for inference attacks
on federated learning). Formal guarantees such as differential privacy (DP) [58] are needed
to provably mitigate this and convince users to participate. Second, malicious users may
send incorrect results to bias the learned model in arbitrary ways [77, 17, 7]. Ensuring the
correctness of the computation is crucial to persuade service providers to move to a more
decentralized and privacy-friendly setting.

In this contribution, we provide a protocol for private distributed averaging. In this
canonical problem, the objective is to privately compute an estimate of the average of values
owned by many users who do not want to disclose them. Beyond simple data analytics,
distributed averaging is of high relevance to modern ML. Indeed, it is the key primitive used
to aggregate user updates in gradient-based distributed and federated learning algorithms
[97, 125, 104, 80, 3, 84]. It also allows to train ML models whose sufficient statistics are
averages (e.g., linear models and decision trees). Distributed averaging with differential
privacy guarantees has thus attracted a lot of interest in recent years. In the strong model
of local differential privacy (LDP) [87, 57, 85, 86, 82, 37], each user randomizes its input
locally before sending it to an untrusted aggregator. Unfortunately, the best possible
error for the estimated average with n users is of the order O(

√
n) larger than in the

centralized model of DP where a trusted curator aggregates data in the clear and perturbs

35

36 CHAPTER 3. GOSSIP FOR PRIVATE AVERAGING (GOPA)

the output [33]. To fill this gap, some work has explored relaxations of LDP that make
it possible to match the utility of the trusted curator model. This is achieved through
the use of cryptographic primitives such as secure aggregation [59, 34, 122, 22, 80] and
secure shuffling [63, 38, 9, 68]. Many of these solutions however assume that all users
truthfully follow the protocol (they are honest-but-curious) and/or give significant power
(ability to reveal sensitive data) to a small number of servers. Furthermore, their practical
implementation poses important challenges when the number of parties is large: for
instance, the popular secure aggregation approach of [22] requires all O(n2) pairs of users
to exchange messages.

In this context, our contribution is fourfold.

• First, we propose GOPA, a novel decentralized differentially private averaging
protocol that relies on users exchanging (directly or through a server) some pairwise-
correlated Gaussian noise terms along the edges of a graph so as to mask their
private values without affecting the global average. This ultimately canceling noise
is complemented by the addition of independent (non-canceling) Gaussian noise by
each user.

• Second, we analyze the differential privacy guarantees of GOPA. Remarkably, we
establish that our approach can achieve nearly the same privacy-utility trade-off as
a trusted curator who would average the values of honest users, provided that the
graph of honest-but-curious users is connected and the pairwise-correlated noise
variance is large enough. In particular, for nH honest-but-curious users and any fixed
DP guarantee, the variance of the estimated average is only nH/(nH − 1) times
larger than with a trusted curator, a factor which goes to 1 as nH grows. We further
show that if the graph is well-connected, the pairwise-correlated noise variance can
be significantly reduced.

• Third, to ensure both scalability and robustness to malicious users, we propose a
randomized procedure in which each user communicates with only a logarithmic
number of other users while still matching the privacy-utility trade-off of the trusted
curator. Our analysis is novel and requires to leverage and adapt results from random
graph theory on embedding spanning trees in random graphs. Additionally, we show
our protocol is robust to a fraction of users dropping out.

• Finally, we propose a procedure to make GOPA verifiable by untrusted external
parties, i.e., to enable users to prove the correctness of their computations without
compromising the efficiency or the privacy guarantees of the protocol. To the best
of our knowledge, we are the first to propose such a procedure. It offers a strong
preventive countermeasure against various attacks such as data poisoning or protocol
deviations aimed at reducing utility. Our construction relies on commitment schemes
and zero knowledge proofs (ZKPs), which are very popular in auditable electronic
payment systems and cryptocurrencies. These cryptographic primitives scale well
both in communication and computational requirements and are perfectly suitable
in our untrusted decentralized setting. We use classic ZKPs to design a procedure
for the generation of noise with verifiable distribution, and ultimately to prove the
correctness of the final computation (or detect malicious users who did not follow
the protocol). Crucially, the privacy guarantees of the protocol are not compromised
by this procedure, while the integrity of the computation relies on a standard discrete
logarithm assumption. In the end, we argue that our protocol offers correctness

3.2. NOTATIONS AND SETTING 37

guarantees that are essentially equivalent to the case where a trusted curator would
hold the private data of users.

The remaining of the chapter is organized as follows. Section 3.2 introduces the
problem setting. We discuss the related work in more details in Section 3.3. The GOPA

protocol is introduced in Section 3.4 and we analyze its differential privacy guarantees in
Section 3.5. We present our procedure to ensure correctness against malicious behavior
in Section 3.6, and summarize computational and communication costs in Section 3.7.
Finally, we present some experimental results in Section 3.8 and conclude with future lines
of research in Section 3.9

3.2 Notations and Setting

We consider a set U = {1, . . . , n} of n ≥ 3 users (parties). Each user u ∈ U holds a
private value Xu, which can be thought of as being computed from the private dataset of
user u. We assume that Xu lies in a bounded interval of R (without loss of generality, we
assume Xu ∈ [0, 1]). The extension to the vector case is straightforward. We denote by
X the column vector X = [X1, . . . , Xn]> ∈ [0, 1]n of private values. Unless otherwise
noted, all vectors are column vectors. Users communicate over a network represented by a
connected undirected graph G = (U,E), where {u, v} ∈ E indicates that users u and v
are neighbors in G and can exchange secure messages. For a given user u, we denote by
N(u) = {v : {u, v} ∈ E} the set of its neighbors. We note that in settings where users
can only communicate with a server, the latter can act as a relay that forwards (encrypted
and authenticated) messages between users, as done in secure aggregation [22].

The users aim to collaboratively estimate the average value Xavg = 1
n

∑n
u=1Xu

without revealing their individual private values. Such a protocol can be readily used to
privately execute distributed ML algorithms that interact with data through averages over
values computed locally by the participants, but do not actually need to see the individual
values. We give two concrete examples below.

Example 1 (Linear regression). Let ι ≥ 0 be a public parameter. Each user u holds a
private feature vector φu = [φ1

u, . . . , φ
d
u] ∈ Rd and a private label yu ∈ R. The goal is to

solve a ridge regression task, i.e. find θ∗ ∈ arg minθ
1
n

∑
u∈U(φ>u θ − yu)2 + ι‖θ‖2. θ∗ can

be computed in closed form from the quantities 1
n

∑
u∈U φ

i
uyu and 1

n

∑
u∈U φ

i
uφ

j
u for all

i, j ∈ {1, . . . , d}.

Example 2 (Federated ML). In federated learning [84] and distributed empirical risk
minimization, each user u holds a private dataset Du and the goal is to find θ∗ such
that θ∗ ∈ arg minθ

1
n

∑
u∈U f(θ;Du) where f is some loss function. Popular algorithms

[97, 125, 104, 80, 3] all follow the same high-level procedure: at round t, each user
u computes a local update θtu based on Du and the current global model θt−1, and the
updated global model is computed as θt = 1

n

∑
u θ

t
u.

Threat model We adopt the threat model described in Section 2.1. Our privacy guar-
antees will hold under the assumption that honest users communicate through secure
channels, while the correctness of our protocol will be guaranteed under some form of the
Discrete Logarithm Assumption (DLA), described in Section 2.4.

For a given execution of the protocol, we denote by UO the set of the users who
remained online until the end (i.e., did not drop out). Users in UO are either honest or

38 CHAPTER 3. GOSSIP FOR PRIVATE AVERAGING (GOPA)

Approach Com. per party MSE Verif Risks
Central DP [60] O(1) O(1/n2) No Trusted curator
Local DP [87] O(1) O(1/n) No
Verifiable secret sharing [59] O(n) O(1/n2) Yes
Secure agg. [22] + DP [83, 2] O(n) O(1/n2) No Honest users
CAPE [79] O(n) O(1/n2) No
Shuffling [9] O(1 + log(1/δ)) O(1/n2) No Trusted shuffler
GOPA (this work) O(log n) O(1/n2) Yes

Table 3.1: Comparison of GOPA with previous DP averaging approaches with their com-
munication cost per party, mean squared error (MSE), verifiability (Verif) and additional
risks.

malicious: we denote by UH ⊆ UO those who are honest, by nH = |UH | their number
and by ρ = nH/n their proportion with respect to the total number of users.

We also denote by GH = (UH , EH) the subgraph of G induced by the set of honest
users UH , i.e., EH = {{u, v} ∈ E : u, v ∈ UH}. The properties of G and GH will play a
key role in the privacy and scalability guarantees of our protocol.

Privacy definition Our goal is to design a protocol that satisfies differential privacy (DP)
defined in Section 2.2, which has become a gold standard in private information release.

3.3 Related Work

In this section we review the most important work related to ours. A set of key approaches
together with their main features are summarized in Table 3.1.

Distributed averaging is a key subroutine in distributed and federated learning [97,
125, 104, 80, 3, 84]. Therefore, any improvement in the privacy-utility-communication
trade-off for averaging implies gains for many ML approaches downstream.

Local differential privacy (LDP) [87, 57, 85, 86, 82] requires users to locally randomize
their input before they send it to an untrusted aggregator. This very strong model of privacy
comes at a significant cost in utility: the best possible mean squared is of order 1/n2 in the
trusted curator model while it is of order 1/n in LDP [33, 37]. This limits the usefulness
of the local model to industrial settings where the number of participants is huge [64, 54].
Our approach belongs to the recent line of work which attempts to relax the LDP model so
as to improve utility without relying on a trusted curator (or similarly on a small fixed set
of parties).

Previous work considered the use of cryptographic primitives like secure aggregation
protocols, which can be used to compute the (exact) average of private values [59, 122,
22, 34]. While secure aggregation allows in principle to recover the utility of the trusted
curator model, it suffers three main drawbacks. Firstly, existing protocols require Ω(n)
communication per party, which is hardly feasible beyond a few hundred or thousand
users. In contrast, we propose a protocol which requires only O(log n) communication1.

1We note that, independently and in parallel to our work, [12] recently proposed a secure aggregation
protocol with O(log n) communication at the cost of relaxing the functionality under colluding/malicious
users.

3.4. PROPOSED PROTOCOL 39

Secondly, combining secure aggregation with DP is nontrivial as the noise must be added
in a distributed fashion and in the discrete domain. Existing complete systems [83, 2]
assume an ideal secure aggregation functionality which does not reflect the impact of
colluding/malicious users. In these more challenging settings, it is not clear how to
add the necessary noise for DP and what the resulting privacy/utility trade-offs would
be. Alternatively, [80] adds the noise within the secure protocol but relies on two non-
colluding servers. Thirdly, most of the above schemes are not verifiable. One exception is
the verifiable secret sharing approach of [59], which again induces Ω(n) communication.
Finally, we note that secure aggregation typically uses uniformly distributed pairwise
masks, hence a single residual term completely destroys the utility. In contrast, we use
Gaussian pairwise masks that have zero mean and bounded variance, which provides more
robustness but requires the more involved privacy analysis we present in Section 3.5.

Recently, the shuffle model of privacy [38, 63, 76, 9, 68], where inputs are passed
to a trusted/secure shuffler that obfuscates the source of the messages, has been stud-
ied theoretically as an intermediate point between the local and trusted curator models.
For differentially private averaging, the shuffle model allows to match the utility of the
trusted curator setting [9]. However, practical implementations of secure shuffling are not
discussed in these works. Existing solutions typically rely on multiple layers of routing
servers [55] with high communication overhead and non-collusion assumptions. Anony-
mous communication is also potentially at odds with the identification of malicious parties.
To the best of our knowledge, all protocols for averaging in the shuffle model assume
honest-but-curious parties.

The protocol proposed in [79] uses correlated Gaussian noise to achieve trusted curator
utility for averaging, but the dependence structure of the noise must be only at the global
level (i.e., noise terms sum to zero over all users). Generating such noise actually requires
a call to a secure aggregation primitive, which incurs Ω(n) communication per party as
discussed above. In contrast, our pairwise-canceling noise terms can be generated with only
O(log n) communication. Furthermore, [79] assume honest parties, while our protocol is
robust to malicious participants.

In summary, an original aspect of our work is to match the privacy-utility trade-off of
the trusted curator model at a relatively low cost without requiring to trust a fixed small
set of parties. By spreading trust over sufficiently many parties, we ensure that even in
the unlikely case where many parties collude they will not be able to infer much sensitive
information, reducing the incentive to collude. We are not aware of other differential
privacy work sharing this feature. Overall, our protocol provides a unique combination
of three important properties: (a) utility of same order as trusted curator setting, (b)
logarithmic communication per user, and (c) robustness to malicious users.

3.4 Proposed Protocol

In this section we describe our protocol called GOPA (GOssip noise for Private Averaging).
The high-level idea of GOPA is to have each user u mask its private value by adding two
different types of noise. The first type is a sum of pairwise-correlated noise terms ∆u,v

over the set of neighbors v ∈ N(u) such that each ∆u,v cancels out with the ∆v,u of user
v in the final result. The second type of noise is an independent term ηu which does not
cancel out. At the end of the protocol, each user has generated a noisy version X̂u of its

40 CHAPTER 3. GOSSIP FOR PRIVATE AVERAGING (GOPA)

Algorithm 1 GOPA protocol
Input: G = (U,E), (Xu)u∈U , σ2

∆, σ
2
η ∈ R+

1: for all neighbor pairs {u, v} ∈ E s.t. u < v do
2: u and v draw a random y ∼ N (0, σ2

∆) and set ∆u,v ← y, ∆v,u ← −y
3: end for
4: for all users u ∈ U do
5: u draws a random ηu ∼ N (0, σ2

η) and reveals X̂u ← Xu +
∑

v∈N(u) ∆u,v + ηu
6: end for

private value Xu, which takes the following form:

X̂u = Xu +
∑

v∈N(u) ∆u,v + ηu. (3.1)

Algorithm 1 presents the detailed steps. Neighboring nodes {u, v} ∈ E contact each other
to draw a real number from the Gaussian distribution N (0, σ2

∆), that u adds to its private
value and v subtracts. Intuitively, each user thereby distributes noise masking its private
value across its neighbors so that even if some of them are malicious and collude, the
remaining noise values will be enough to provide the desired privacy guarantees. The
idea is reminiscent of uniformly random pairwise masks in secure aggregation [22] but we
use Gaussian noise and restrict exchanges to the edges of the graph instead of requiring
messages between all pairs of users. As in gossip algorithms [25], the pairwise exchanges
can be performed asynchronously and in parallel. Additionally, every user u ∈ U adds an
independent noise term ηu ∼ N (0, σ2

η) to its private value. This noise will ensure that the
final estimate of the average satisfies differential privacy (see Section 3.5). The pairwise
and independent noise variances σ2

∆ and σ2
η are public parameters of the protocol.

Utility of GOPA The protocol generates a set of noisy values X̂ = [X̂1, . . . , X̂n]> which
are then publicly released. They can be sent to an untrusted aggregator, or averaged in
a decentralized way via gossiping [25]. In any case, the estimated average is given by
X̂avg = 1

n

∑
u∈U X̂u = Xavg + 1

n

∑
u∈U ηu, which has expected value Xavg and variance

σ2
η/n. Recall that the local model of DP, where each user releases a locally perturbed input

without communicating with other users, would require σ2
η = O(1). In contrast, we would

like the total amount of independent noise to be of order O(1/nH) as needed to protect
the average of honest users with the standard Gaussian mechanism in the trusted curator
model of DP [60]. We will show in Section 3.5 that we can achieve this privacy-utility
trade-off by choosing an appropriate variance σ2

∆ for our pairwise noise terms.

Dealing with dropout A user u /∈ UO who drops out during the execution of the protocol
does not actually publish any noisy value (i.e., X̂u is empty). The estimated average is
thus computed by averaging only over the noisy values of users in UO. Additionally,
any residual noise term that a user u /∈ UO may have exchanged with a user v ∈ UO

before dropping out can be “rolled back” by having v reveal ∆u,v so it can be subtracted
from the result (we will ensure this does not threaten privacy by having sufficiently many
neighbors, see Section 3.5.4). We can thus obtain an estimate of 1

|UO|
∑

u∈UO Xu with
variance σ2

η/|UO|. Note that even if some residual noise terms are not rolled back, e.g. to
avoid extra communication, the estimate remains unbiased (with a larger variance that

3.5. PRIVACY GUARANTEES 41

depends on σ2
∆). This is a rather unique feature of GOPA which comes from the use of

Gaussian noise rather than the uniformly random noise used in secure aggregation [22].
We discuss strategies to handle users dropping out in more details in Section 3.6.4.

3.5 Privacy Guarantees

Our goal is to prove differential privacy guarantees for GOPA. First, we develop in
Section 3.5.1 a general result providing privacy guarantees as a function of the structure of
the communication graph GH , i.e., the subgraph of G induced by UH . Then, in Sections
3.5.2 and 3.5.3, we study the special cases of the path graph and the complete graph
respectively, showing they are the worst and best cases in terms of privacy. Yet, we show
that as long as GH is connected and the variance σ2

∆ for the pairwise (canceling) noise is
large enough GOPA can (nearly) match the privacy-utility trade-off of the trusted curator
setting. In Section 3.5.4, we propose a randomized procedure to construct the graph G and
show that it strikes a good balance between privacy and communication costs. In each
section, we first discuss the result and its consequences, and then present the proof. In
Section 3.5.5, we show how to scale noise in practice and in Section 3.5.6 we compare our
theoretical results in random graphs with empirical results via numerical simulations.

3.5.1 Effect of the Communication Structure on Privacy
The strength of the privacy guarantee we can prove depends on the communication graph
GH over honest users. Intuitively, this is because the more terms ∆u,v a given honest user
u exchanges with other honest users v, the more he/she spreads his/her secret over others
and the more difficult it becomes to estimate the private value Xu. We first introduce in
Section 3.5.1.1 a number of preliminary concepts. Next, in Section 3.5.1.2, we prove an
abstract result, Theorem 3, which gives DP guarantees for GOPA that depend on the choice
of a labeling t of the graph GH .

In Section 3.5.1.3 we discuss a number of implications of Theorem 3 which provide
some insight into the dependency between the structure of GH and the privacy of GOPA,
and will turn out helpful in the proofs of Theorems 4, 5 and 6.

3.5.1.1 Preliminary Concepts

Recall that each user u ∈ UO who does not drop out generates X̂u from its private value
Xu by adding pairwise noise terms ∆̄u =

∑
v∈N(u) ∆u,v (with ∆u,v + ∆v,u = 0) as well as

independent noise ηu. All random variables ∆u,v (with u < v) and ηu are independent. We
thus have the system of linear equations

X̂ = X + ∆̄ + η,

where ∆̄ = (∆̄u)u∈UO and η = (ηu)u∈UO .
We now define the knowledge acquired by the adversary (colluding malicious users)

during a given execution of the protocol. It consists of the following:

i. the noisy value X̂u of all users u ∈ UO who did not drop out,

ii. the private value Xu and the noise ηu of the malicious users, and

42 CHAPTER 3. GOSSIP FOR PRIVATE AVERAGING (GOPA)

iii. all ∆u,v’s for which u or v is malicious.

We also assume that the adversary knows the full network graph G and all the pairwise
noise terms exchanged by dropped out users (since they can be rolled back, as explained in
Section 3.4). The only unknowns are thus the private value Xu and independent noise ηu
of each honest user u ∈ UH , as well as the ∆u,v values exchanged between pairs of honest
users {u, v} ∈ EH .

Letting NH(u) = {v : {u, v} ∈ EH}, from the above knowledge the adversary can
subtract

∑
v∈N(u)\NH(u) ∆u,v from X̂u to obtain

X̂H
u = Xu +

∑
u∈NH(u)

∆u,v + ηu

for every honest u ∈ UH . The view of the adversary can thus be summarized by the
vector X̂H = (X̂H

u)u∈UH and the correlation between its elements. Let X̂H
u = X̂u −∑

v∈N(u)\NH(u) ∆u,v. Let XH = (Xu)u∈UH be the vector of private values restricted to

the honest users and similarly ηH = (ηu)u∈UH . Let the directed graph (UH , ~EH) be
an arbitrary orientation of the undirected graph GH = (UH , EH), i.e., for every edge
{u, v} ∈ EH , the set ~EH either contains the arc (u, v) or the arc (v, u). For every
arc (u, v) ∈ ~EH , let ∆(u,v) = ∆u,v = −∆v,u. Let ∆H = (∆H

e)e∈ ~EH be a vector of
pairwise noise values indexed by arcs from ~EH . Let K ∈ RUH× ~EH denote the oriented
incidence matrix of the graph GH , i.e., for (u, v) ∈ ~EH and w ∈ UH \ {u, v} there holds
Ku,(u,v) = −1, Kv,(u,v) = 1 and Kw,(u,v) = 0. In this way, we can rewrite the system of
linear equations as

X̂H = XH +K∆H + ηH . (3.2)

Now, adapting differential privacy (Definition 2.1) to our setting, for any input X and
any possible outcome X̂ , we need to compare the probability of the outcome being equal to
X̂ when a (non-malicious) user v1 ∈ U participates in the computation with private value
XA
v1

to the probability of obtaining the same outcome when the value of v1 is exchanged
with an arbitrary value XB

v1
∈ [0, 1]. Since honest users drop out independently of X and

do not reveal anything about their private value when they drop out, in our analysis we
will fix an execution of the protocol where some set UH of nH honest users have remained
online until the end of the protocol. For notational simplicity, we denote by XA the vector
of private values (Xu)u∈UH of these honest users in which a user v1 has value XA

v1
, and by

XB the vector where v1 has value XB
v1

. XA and XB differ in only in the v1-th coordinate,
and their maximum difference is 1.

All noise variables are zero mean, so the expectation and covariance matrix of X̂H are
respectively given by:

E
[
X̂H
]

= XH , var
(
X̂H
)

= σ2
ηIUH + σ2

∆L,

where IUH ∈ RnH×nH is the identity matrix and L = KK> is the graph Laplacian matrix
of GH .

Now consider the real vector space Z = RnH × R|EH | of all possible values pairs
(ηH ,∆H) of noise vectors of honest users. For the sake of readability, in the remainder of
this section we will often drop the superscript H and write (η,∆) when it is clear from the
context that we work in the space Z.

3.5. PRIVACY GUARANTEES 43

Let

Σ(g) =

[
σ2
ηIUH 0
0 σ2

∆IEH

]
,

and let Σ(−g) =
(
Σ(g)

)−1, we then have a joint probability distribution of independent
Gaussians:

P ((η,∆)) = C1 exp

(
−1

2
(η,∆)>Σ(−g)(η,∆)

)
,

where C1 = (2π)−(nH+|EH |)/2|Σ(g)|−1/2.
Consider the following subspaces of Z:

ZA = {(η,∆) ∈ Z | η +K∆ = X̂H −XA},
ZB = {(η,∆) ∈ Z | η +K∆ = X̂H −XB}.

Assume that the (only) vertex for which XA and XB differ is v1. Recall that without
loss of generality, private values are in the interval [0, 1]. Hence, if we set XA

v1
−XB

v1
= 1

then XA and XB are maximally apart and also the difference between P (X̂ | XA) and
P (X̂|XB) will be maximal.

Now choose any t = (tη, t∆) ∈ Z such that tη + Kt∆ = XA −XB. It follows that
ZA = ZB + t, i.e., Y ∈ ZA if and only if Y + t ∈ ZB.

3.5.1.2 Abstract Differential Privacy Result

We start by proving differential privacy guarantees which depend on the particular choice
of labeling t. Theorem 3 holds for all possible choices of t, but some choices will lead
to more advantageous results than others. Later, we will apply this theorem for specific
choices of t for proving theorems giving privacy guarantees for communication graphs
GH with specific properties.

We first define the function Θmax : R+× (0, 1) 7→ R+ such that Θmax maps pairs (ε, δ)
on the largest positive value of θ satisfying

ε ≥ θ1/2 + θ/2, (3.3)

(ε− θ/2)2

θ
≥ 2 log

(
2

δ
√

2π

)
. (3.4)

Note that for any ε and δ, any θ ∈ (0,Θmax] satisfies Eqs (3.3) and (3.4).

Theorem 3. Let ε, δ ∈ (0, 1). Choose a t ∈ Z and let θ = t>Σ(−g)t. Under the setting
introduced above, if θ ≤ Θmax(ε, δ) then GOPA is (ε, δ)-DP, i.e.,

P (X̂ | XA) ≤ eεP (X̂ | XB) + δ.

Proof. We adapt ideas from [60] to our setting. It is sufficient to prove that∣∣∣∣log
P ((η,∆))

P ((η,∆) + t)

∣∣∣∣ ≤ ε (3.5)

with probability 1 − δ over (η,∆). Denoting γ = (η,∆) for convenience, we need to
prove that with probability 1− δ it holds that | log(P (γ)/P (γ + t))| ≥ eε. We have∣∣∣ log

P (γ)

P (γ + t)

∣∣∣ =
∣∣∣− 1

2
γ>Σ(−g)γ +

1

2
(γ + t)>Σ(−g)(γ + t)

∣∣∣
=

∣∣∣1
2

(2γ + t)>Σ(−g)t
∣∣∣.

44 CHAPTER 3. GOSSIP FOR PRIVATE AVERAGING (GOPA)

To ensure Equation (3.5) holds with probability at least 1− δ, since we are interested in
the absolute value, we will show that

P
(1

2
(2γ + t)>Σ(−g)t ≥ ε

)
≤ δ/2,

the proof of the other direction is analogous. This is equivalent to

P (γΣ(−g)t ≥ ε− t>Σ(−g)t/2) ≤ δ/2. (3.6)

The variance of γΣ(−g)t is

var(γΣ(−g)t) =
∑
v

var
(
ηvσ

−2
η tv

)
+
∑
e

var
(
∆eσ

−2
∆ te

)
=

∑
v

var (ηv)σ
−4
η t2v +

∑
e

var (∆e)σ
−4
∆ t2e

=
∑
v

σ2
ησ
−4
η t2v +

∑
e

σ2
∆σ
−4
∆ t2e

=
∑
v

σ−2
η t2v +

∑
e

σ−2
∆ t2e

= t>Σ(−g)t.

For any centered Gaussian random variable Y with variance σ2
Y , we have that

P (Y ≥ τ) ≤ σY

τ
√

2π
exp

(
−τ 2/2σ2

Y

)
. (3.7)

Let Y = γΣ(−g)t, σ2
Y = t>Σ(−g)t and τ = ε− t>Σ(−g)t/2, then satisfying

σY

τ
√

2π
exp

(
−τ 2/2σ2

Y

)
≤ δ/2 (3.8)

implies (3.6). Equation (3.8) is equivalent to

τ

σY
exp

(
τ 2/2σ2

Y

)
≥ 2/δ

√
2π,

or, after taking logarithms on both sides, to

log

(
τ

σY

)
+

1

2

(
τ

σY

)2

≥ log

(
2

δ
√

2π

)
.

To make this inequality hold, we require

log

(
τ

σY

)
≥ 0 (3.9)

and
1

2

(
τ

σY

)2

≥ log

(
2

δ
√

2π

)
. (3.10)

Equation (3.9) is equivalent to τ ≥ σY . Substituting τ and σY we get

ε− t>Σ(−g)t/2 ≥ (t>Σ(−g)t)1/2,

which is equivalent to (3.3). Substituting τ and σY in Equation (3.10) gives (3.4). Hence,
if Equations (3.3) and (3.4) are satisfied the desired differential privacy follows.

3.5. PRIVACY GUARANTEES 45

3.5.1.3 Discussion

Essentially, given some ε, Equation (3.3) provides a lower bound for the noise (the diagonal
of Σ(g)) to be added. Equation (3.3) also implies that the left hand side of Equation (3.4)
is larger than 1. Equation (3.4) may then require the noise or ε to be even higher if
2 log(2/δ

√
2π) ≥ 1, i.e., δ ≤ 0.48394.

If δ is fixed, both (3.3) and (3.4) allow for smaller ε if θ is smaller. Let us analyze the
implications of this result. We know that θ = σ−2

η t>η tη + σ−2
∆ t>∆t∆. As we can make σ∆

arbitrarily large without affecting the variance of the output of the algorithm (the pairwise
noise terms canceling each other) and thus make the second term σ−2

∆ t>∆t∆ arbitrarily small,
our first priority to achieve a strong privacy guarantee will be to chose a t making σ−2

η t>η tη
small. We have the following lemma.

Lemma 1. In the setting described above, for any t satisfying tη +Kt∆ = 0 we have:∑
u∈UH

tu = 1. (3.11)

Proof. Due to the properties of the incidence matrix K, i.e., ∀u, v : Ku,{u,v} = −Kv,{u,v},
the sum of the components of the vector K∆ is zero, i.e.,

∑
u∈UH

(K∆)u =
∑
u∈UH

 ∑
{u,v}∈EH

Ku,{u,v}∆{u,v}

u

= 0

Combining this with the fact that tη +Kt∆ = XA −XB with
∑

u∈UH (XA −XB)u = 1
we obtain Equation (3.11).

Therefore, the vector tη satisfying Equation (3.11) and minimizing t>η tη is the vector
1nH/nH , i.e., the vector containing nH components with value 1/nH . The proofs of the
several specializations of Theorem 3 we will present will all be based on this choice for tη.
Below, we derive another constraint from these observations.

Lemma 2. In the setting described above, if tη + K∆ = XA −XB and tη = 1nH/nH ,
then GH must be connected.

Proof. Suppose GH is not connected, then there is a connected component C ⊆ UH \{v1}.
Let tC = (tu)u∈C and ∆C = (∆e)e∈ ~EH∩(C×C). Let KC = (Ku,e)u∈C,e∈ ~EH∩(C×C) be the
incidence matrix of GH [C], the subgraph of GH induced by C. Due to the properties of
the incidence matrix of a graph there would hold

∑
u∈C(KC∆C)u = 0. As there would be

no edges between vertices in C and vertices outside C, we would have
∑

u∈C(K∆)u = 0.
There would follow

∑
u∈C tu =

∑
u∈C(XA −XB −K∆)u = 0 which would contradict

with tη = 1nH/nH . In conclusion, GH must be connected.

Given a fixed privacy level and fixed variance of the output, a second priority is to
minimize σ∆, as this may be useful when a user drops out and the noise he/she exchanged
cannot be rolled back or would take too much time to roll back (see Section 3.6.4). For this,
having more edges in GH implies that the vector t∆ has more components and therefore
typically allows a solution to tη + Kt∆ = XA − XB with a smaller t>∆t∆ and hence a
smaller σ∆.

46 CHAPTER 3. GOSSIP FOR PRIVATE AVERAGING (GOPA)

3.5.2 Worst Case Topology
We now specialize Theorem 3 to obtain a worst-case result.

Theorem 4 (Privacy guarantee for worst-case graph). Let XA and XB be two databases
(i.e., graphs with private values at the vertices) which differ only in the value of one user.
Let ε, δ ∈ (0, 1) and θP = 1

σ2
ηnH

+ nH
3σ2

∆
. If GH is connected and θP ≤ Θmax(ε, δ), then

GOPA is (ε, δ)-differentially private, i.e., P (X̂ | XA) ≤ eεP (X̂ | XB) + δ.

Crucially, Theorem 4 holds as soon as the subgraph GH of honest users who did not
drop out is connected. Note that if GH is not connected, we can still obtain a similar but
weaker result for each connected component separately (nH is replaced by the size of the
connected component).

In order to get a constant ε, inspecting the term θP shows that the variance σ2
η of the

independent noise must be of order 1/nH . This is in a sense optimal as it corresponds to
the amount of noise required when averaging nH values in the trusted curator model. It
also matches the amount of noise needed when using secure aggregation with differential
privacy in the presence of colluding users, where honest users need to add n/nH more
noise to compensate for collusion [122].

Further inspection of the conditions in Theorem 4 also shows that the variance σ2
∆ of

the pairwise noise must be large enough. How large it must be actually depends on the
structure of the graph GH . Theorem 4 describes the worst case, which is attained when
every node has as few neighbors as possible while still being connected, i.e., when GH is a
path. In this case, Theorem 4 shows that the variance σ2

∆ needs to be of order nH . Recall
that this noise cancels out, so it does not impact the utility of the final output. It only has a
minor effect on the communication cost (the representation space of reals needs to be large
enough to avoid overflows with high probability), and on the variance of the final result if
some residual noise terms of dropout users are not rolled back (see Section 3.4).

Proof of Theorem 4. Let T be a spanning tree of the (connected) communication graph
GH . Let ET be the set of edges in T . Let t ∈ RnH+|EH | be a vector such that:

• For vertices u ∈ UH , tu = 1/nH .

• For edges e ∈ EH \ ET , te = 0.

• Finally, for edges e ∈ ET , we choose te in the unique way such that tη + Kt∆ =
(XA −XB).

In this way, tη +Kt∆ is a vector with a 1 on the v1 position and 0 everywhere else. We can
find a unique vector t using this procedure for any communication graph GH and spanning
tree T . It holds that

t>η tη =

(
1nH

nH

)>(
1nH

nH

)
=

1

nH
. (3.12)

Both Equations (3.3) and (3.4) of Theorem 3, require t>Σ(−g)t to be sufficiently small.
We can see t>∆σ

−2
∆ t∆ is maximized (thus producing the worst case) if the spanning tree T

is a path (v1 v2 . . . vnH), in which case t{vi,vi+1} = (nH − i)/nH . Therefore,

t>∆t∆ ≤
nH−1∑
i=1

(
nH − i
nH

)2

=
nH(nH − 1)(2nH − 1)/6

n2
H

=
(nH − 1)(2nH − 1)

6nH
. (3.13)

3.5. PRIVACY GUARANTEES 47

Combining Equations (3.12) and (3.13) we get

θ = t>Σ(−g)t ≤ σ−2
η

1

nH
+ σ−2

∆

nH(nH − 1)(2nH − 1)/6

n2
H

We can see that θ ≤ θP and hence θ ≤ Θmax(ε, δ) satisfies the conditions of Theorem 3
and GOPA is (ε, δ)-differentially private.

In conclusion, we see that in the worst case σ2
∆ should be large (linear in nH) to keep ε

small, which has no direct negative effect on the utility of the resulting X̂ . On the other
hand, σ2

η can be small (of the order 1/nH), which means that independent of the number of
participants or the way they communicate a small amount of independent noise is sufficient
to achieve DP as long as GH is connected.

3.5.3 The Complete Graph

The necessary value of σ2
∆ depends strongly on the network structure. This becomes clear

in Theorem 5, which covers the case of the complete graph and shows that for a fully
connected GH , σ2

∆ can be of order O(1/nH), which is a quadratic reduction compared to
the path case.

Theorem 5 (Privacy guarantee for complete graph). Let ε, δ ∈ (0, 1) and let GH be the
complete graph. Let θC = 1

σ2
ηnH

+ 1
σ2

∆nH
. If θC ≤ Θmax(ε, δ), then GOPA is (ε, δ)-DP.

Proof. If the communication graph is fully connected, we can use the following values for
the vector t:

• As earlier, for v ∈ UH , let tv = 1/nH .

• For edges {u, v} with v1 6∈ {u, v}, let t{u,v} = 0.

• For u ∈ UH \ {v1}, let t{u,v1} = 1/nH .

Again, one can verify that tη +Kt∆ = XA −XB is a vector with a 1 on the v1 position
and 0 everywhere else. In this way, again t>η tη = 1/nH but now t>∆t∆ = (nH − 1)/n2

H is
much smaller. We now get

θ = t>Σ(−g)t = σ−2
η /nH + σ−2

∆ (nH − 1)/n2
H ≤ θC ≤ Θmax(ε, δ).

Hence, we can apply Theorem 3 and GOPA is (ε, δ)-differentially private.

A practical communication graph will be between the two extremes of the path and the
complete graph, as shown in the next section.

3.5.4 Random Graphs
Our results so far are not fully satisfactory from the practical perspective, when the number
of users n is large. Theorem 4 assumes that we have a procedure to generate a graph G
such that GH is guaranteed to be connected (despite dropouts and malicious users), and
requires a large σ2

∆ of O(nH). Theorem 5 applies if we pick G to be the complete graph,
which ensures connectivity of GH and allows smaller O(1/nH) variance but is intractable
as all n2 pairs of users need to exchange noise.

48 CHAPTER 3. GOSSIP FOR PRIVATE AVERAGING (GOPA)

To overcome these limitations, we propose a simple randomized procedure to construct
a sparse network graph G such that GH will be well-connected with high probability, and
prove a DP guarantee for the whole process (random graph generation followed by GOPA),
under much less noise than the worst-case. The idea is to make each (honest) user select k
other users uniformly at random among all users. Then, the edge {u, v} ∈ E is created if
u selected v or v selected u (or both). Such graphs are known as random k-out or random
k-orientable graphs [21, 65]. They have very good connectivity properties [65, 131] and
are used in creating secure communication channels in distributed sensor networks [32].
Note that GOPA can be conveniently executed while constructing the random k-out graph.
Recall that ρ = nH/n is the proportion of honest users. We have the following privacy
guarantees.

Theorem 6 (Privacy guarantee for random k-out graphs). Let ε, δ ∈ (0, 1) and let G
be obtained by letting all (honest) users randomly choose k ≤ n neighbors. Let k
and ρ = nH/n be such that ρn ≥ 81, ρk ≥ 4 log(2ρn/3δ), ρk ≥ 6 log(ρn/3) and
ρk ≥ 3

2
+ 9

4
log(2e/δ). Let

θR =
1

nHσ2
η

+
1

σ2
∆

(1

b(k − 1)ρ/3c − 1
+

12 + 6 log(nH)

nH

)
If θR ≤ Θmax(ε, δ) then GOPA is (ε, 3δ)-differentially private.

This result has a similar form as Theorems 4 and 5 but requires k to be large enough (of
order log(ρn)/ρ) so that GH is sufficiently connected despite dropouts and malicious users.
Crucially, σ2

∆ only needs to be of order 1/kρ to match the utility of the trusted curator, and
each user needs to exchange with only 2k = O(log n) peers in expectation, which is much
more practical than a complete graph.

Notice that up to a constant factor this result is optimal. Indeed, in general, random
graphs are not connected if their average degree is smaller than logarithmic in the number
of vertices. The constant factors mainly serve for making the result practical and (unlike
asymptotic random graph theory) applicable to moderately small communication graphs,
as we illustrate in the next section.

In the remaining of Section 3.5.4, we will study the differential privacy properties
of selecting k neighbors randomly, leading to a proof of Theorem 6. We will start by
analyzing the properties of GH (Section 3.5.4.1). Section 3.5.4.2 consists of preparations
for embedding a suitable spanning tree in GH . Next, in Section 3.5.4.3 we will prove
a number of lemmas showing that such suitable spanning tree can be embedded almost
surely in GH . Finally, we will apply these results to proving differential privacy guarantees
for GOPA when communicating over such a random k-out graph G in Section 3.5.4.4,
proving Theorem 6.

In this section, all newly introduced notations and definitions are local and will not be
used elsewhere. At the same time, to follow more closely existing conventions in random
graph theory, we may reuse in this section some variable names used elsewhere and give
them a different meaning.

3.5.4.1 The Random Graph GH

Recall that the communication graph GH is generated as follows:

• We start with n = |U | vertices where U is the set of agents.

3.5. PRIVACY GUARANTEES 49

• All (honest) agents randomly select k neighbors to obtain a k-out graph G.

• We consider the subgraph GH induced by the set UH of honest users who did not
drop out. Recall that nH = |UH | and that a fraction ρ of the users is honest and did
not drop out, hence nH = ρn.

Let kH = ρk. The graph GH is a subsample of a k-out-graph, which for larger
nH and kH follows a distribution very close to that of Erdős-Rényi random graphs
Gp(nH , 2kH/nH). To simplify our argument, in the sequel we will assume GH is such
random graph as this does not affect the obtained result. In fact, the random k-out
model concentrates the degree of vertices more narrowly around the expected value than
Erdős-Rényi random graphs, so any tail bound our proofs will rely on that holds for Erdős-
Rényi random graphs also holds for the graph GH we are considering. In particular, for
v ∈ UH , the degree of v is a random variable which we will approximate for sufficiently
large nH and kH by a binomial B(nH , 2kH/nH) with expected value 2kH and variance
2kH(1− 2kH/nH) ≈ 2kH .

3.5.4.2 The Shape of the Spanning Tree

Remember that our general strategy to prove differential privacy results is to find a spanning
tree in GH and then to compute the norm of the vector t∆ that will “spread” the difference
between XA and XB over all vertices (so as to get a ση of the same order as in the trusted
curator setting). Here, we will first define the shape of a rooted tree and then prove that
with high probability this tree is isomorphic to a spanning tree of GH . Of course, we make
a crude approximation here, as in the (unlikely) case that our predefined tree cannot be
embedded in GH it is still possible that other trees could be embedded in GH and would
yield similarly good differentially privacy guarantees. While our bound on the risk that our
privacy guarantee does not hold will not be tight, we will focus on proving our result for
reasonably-sized U and k, and on obtaining interesting bounds on the norm of t∆.

Let GH = ([nH], EH) be a random graph where between every pair of vertices there is
an edge with probability 2kH/nH . The average degree of GH is 2kH .

Let kH ≥ 4. Let q ≥ 3 be an integer. Let ∆1, ∆2 . . . ∆q be a sequence of positive
integers such that(

q∑
i=1

i∏
j=1

∆j

)
− (∆q + 1)

q−2∏
j=1

∆j < nH ≤
q∑
i=1

i∏
j=1

∆j. (3.14)

Let T = ([nH], ET) be a balanced rooted tree with nH vertices, constructed as follows.
First, we define for each level l a variable zl representing the number of vertices at that level,
and a variable Zl representing the total number of vertices in that and previous levels. In
particular: at the root Z−1 = 0, Z0 = z0 = 1 and for l ∈ [q − 2] by induction zl = zl−1∆l

and Zl = Zl−1 + zl. Then, zq−1 = d(nH − Zq−2)/(∆q + 1)e, Zq−1 = Zq−2 + zq−1,
zq = nH − Zq−1 and Zq = nH . Next, we define the set of edges of T :

ET = {{Zl−2 + i, Zl−1 + zl−1j + i} | l ∈ [q] ∧ i ∈ [zl−1] ∧ zl−1j + i ∈ [zl]}.

So the tree consists of three parts: in the first q − 2 levels, every vertex has a fixed, level-
dependent number of children, the last level is organized such that a maximum of parents
has ∆q children, and in level q− 1 parent nodes have in general ∆q−1− 1 or ∆q−1 children.
Moreover, for 0 ≤ l ≤ q− 2, the difference between the number of vertices in the subtrees

50 CHAPTER 3. GOSSIP FOR PRIVATE AVERAGING (GOPA)

rooted by two vertices in level l is at most ∆q + 2. We also define the set of children of a
vertex, i.e., for l ∈ [q] and i ∈ [zl−1],

ch(Zl−2 + i) = {Zl−1 + zl−1j + i | zl−1j + i ∈ [zl]}.

In Section 3.5.4.3, we will show conditions on nH , ∆1 . . .∆q, kH and δ such that for a
random graph GH on nH vertices and a vertex v1 of GH , with high probability (at least
1− δ) GH contains a subgraph isomorphic to T whose root is at v1.

3.5.4.3 Random Graphs Almost Surely Embed a Balanced Spanning Tree

The results below are inspired by [93]. We specialize this result to our specific problem,
obtaining proofs which are also valid for graphs smaller than 1010 vertices, even if the
bounds get slightly weaker when we drop terms of orderO(log(log(nH))) for the simplicity
of our derivation.

Let F be the subgraph of T induced by all its non-leafs, i.e., F = ([Zq−1], EF) with
EF = {{i, j} ∈ ET | i, j ≤ Zq−1}.

Lemma 3. Let GH and F be defined as above. Let v1 be a vertex of GH . Let nH ≥
kH ≥ ∆i ≥ 3 for i ∈ [l]. Let γ = maxq−1

l=1 ∆l/kH and let γ + 4(∆q + 2)−1 + 2n−1
H ≤ 1.

Let kH ≥ 4 log(2nH/δF (∆q + 2)). Then, with probability at least 1 − δF , there is an
isomorphism φ from F to a subgraph of GH , mapping the root 1 of F on v1.

Proof. We will construct φ by selecting images for the children of vertices of F in increas-
ing order, i.e., we first select φ(1) = v1, then map children {2 . . .∆1 + 1} of 1 to vertices
adjacent to v1, then map all children of 2 to vertices adjacent to φ(2), etc. Suppose we
are processing level l ∈ [q − 1] and have selected φ(j) for all j ∈ ch(i′) for all i′ < i
for some Zl−1 < i ≤ Zl. We now need to select images for the ∆l children j ∈ ch(i) of
vertex i (or in case l = q − 1 possibly only ∆l − 1 children). This means we need to find
∆l neighbors of i not already assigned as image to another vertex (i.e., not belonging to
∪0≤i′<iφ(ch(i′))). We compute the probability that this fails. For any vertex j ∈ [nH] with
i 6= j, the probability that there is an edge between i and j in GH is 2kH/nH . Therefore,
the probability that we fail to find ∆l free neighbors of i can be upper bounded as

Pr [FAILF (i)] = Pr

[
Bin

(
nH − Zl,

2kH
nH

)
< ∆l

]

≤ exp

−
(

(nH − Zl)2kH
nH
−∆l

)2

2(nH − Zl)2kH
nH

 . (3.15)

We know that nH − Zl ≥ zq. Moreover, (zq + ∆q − 1)/∆q ≥ zq−1 and Zq−2 + 1 ≤ zq−1,
hence 2(zq+∆q−1)/∆q ≥ Zq−2+zq−1+1 = Zq−1+1 and 2(zq+∆q−1)/∆q+zq ≥ nH+1.
There follows

zq(2 + ∆q) ≥ nH + 1− 2(∆q − 1)/∆q ≥ nH − 1.

Therefore,
nH − Zl ≥ zq ≥ nH(1− 2(∆q + 2)−1 − n−1

H). (3.16)

3.5. PRIVACY GUARANTEES 51

Substituting this and ∆l ≥ γkH in Equation (3.15), we get

Pr [FAILF (i)] ≤ exp

−
(
nH(1− 2(∆q + 2)−1 − n−1

H)2kH
nH
− kHγ

)2

2nH(1− 2(∆q + 2)−1 − n−1
H)2kH

nH

≤ exp

(
−k2

H

(
2(1− 2(∆q + 2)−1 − n−1

H)− γ
)2

4kH

)

≤ exp

(
−k2

H

4kH

)
= exp

(
−kH

4

)
,

where the latter inequality holds as γ+4(∆q+2)−1+2n−1
H ≤ 1. As kH ≥ 4 log(2nH/δF (∆q+

2)) we can conclude that

Pr [FAILF (i)] ≤ δF (∆q + 2)

2nH
.

The total probability of failure to embed F in GH is therefore given by

Zq−1∑
i=2

FAILF (i) ≤ (Zq−1 − 1)
δF (∆q + 2)

2nH

≤
(
nH(2(∆q + 2)−1 + n−1

H)− 1
) δF (∆q + 2)

2nH

=
2nH

∆q + 2

δF (∆q + 2)

2nH
= δF ,

where we again applied (3.16)

Now that we can embed F in GH , we still need to embed the leaves of T . Before doing
so, we review a result on matchings in random graphs. The next lemma mostly follows
[21] (Theorem 7.11 therein), we mainly adapt to our notation, introduce a confidence
parameter and make a few less crude approximations2.

Lemma 4. Let m ≥ 27 (in our construction, m = zq) and Υ ≥ 4. Consider a random
bipartite graph with vertex partitions A = {a1 . . . am} and B = {b1 . . . bm}, where for
every i, j ∈ [m] the probability of an edge {ai, bj} is p = Υ(log(m))/m. Then, the
probability of a complete matching between A and B is higher than

1− em−2(Υ−1)/3

1−m−(Υ−1)/3
.

Proof. For a set X of vertices, let Γ(X) be the set of all vertices adjacent to at least one
member of X . Then, if there is no complete matching between A and B, there is some set
X , with either X ⊂ A or X ⊂ B, which violates Hall’s condition, i.e., |Γ(X)| < |X|. Let
X be the smallest set satisfying this property (so the subgraph induced by X ∪ Γ(X) is
connected). The probability that such setsX and Γ(X) of respective sizes i and j = |Γ(X)|
exist is upper bounded by appropriately combining:

2In particular, even though Bollobas’s proof is asymptotically tight, its last line uses the fact that
(e log n)3an1−a+a2/n = o(1) for all a ≤ n/2. This expression is only lower than 1 for n ≥ 5.6 · 1010, and
as the sum of this expression over all possible values of a needs to be smaller than δF , we do not expect this
proof applies to graphs representing current real-life datasets.

52 CHAPTER 3. GOSSIP FOR PRIVATE AVERAGING (GOPA)

• the number of choices for X , i.e., 2 (for selecting A or B) times
(
m
i

)
,

• the number of choices for Γ(X), i.e.,
(

m
i− 1

)
(considering that j ≤ i− 1),

• an upper bound for the probability that under these choices of X and Γ(X) there
are at least 2i− 2 edges (as the subgraph induced by X ∪ Γ(X) is connected), i.e.,(

ij
i+ j − 1

)
possible choices of the vertex pairs and pi+j−1 the probability that

these vertex pairs all form edges, and

• the probability that there is no edge between any of X ∪Γ(X) and the other vertices,
i.e., (1− p)i(m−j)+j(m−i) = (1− p)m(i+j)−2ij .

Thus, we upper bound the probability of observing such sets X and Γ(X) of sizes i
and j as follows:

FAILB(i, j) ≤
(
m
i

)(
m
j

)(
ij

i+ j − 1

)
pi+j−1(1− p)m(i+j)−2ij

≤
(me
i

)i(me
j

)j (
ije

i+ j − 1

)i+j−1

pi+j−1(1− p)m(i+j)−2ij.

Here, in the second line the classic upper bound for combinations is used:
(
m
i

)
<
(
me
i

)i.
As 2j ≤ i+ j − 1, we get

FAILB(i, j) ≤
(me
i

)i(me
j

)j (
ie

2

)i+j−1

pi+j−1(1− p)m(i+j)−2ij

≤ mi+je2i+2j−1ij−1

jj2i+j−1
pi+j−1(1− p)m(i+j)−2ij. (3.17)

As 0 < p < 1, there also holds
(1− p)1/p < 1/e,

and therefore

(1− p)m(i+j)−2ij = (1− p)
1
p
p(m(i+j)−2ij) < (1/e)p(m(i+j)−2ij).

We can substitute p = Υ(log(m))/m to obtain

(1− p)m(i+j)−2ij < (1/e)(Υ(log(m))/m)(m(i+j)−2ij) =

(
1

m

)Υ(m(i+j)−2ij)/m

.

Substituting this into Equation (3.17), we get

FAILB(i, j) ≤ mi+je2i+2j−1ij−1

jj2i+j−1

(
log(m)Υ

m

)i+j−1(
1

m

)Υ(m(i+j)−2ij)/m

=
meij−1

jj

(
log(m)Υe2

2

)i+j−1(
1

m

)Υ((i+j)−2ij/m)

.

3.5. PRIVACY GUARANTEES 53

Given that mΥ/3 ≥ Υ log(m)e2/2 holds for m ≥ 27 and Υ ≥ 4, we get

FAILB(i, j) ≤ meij−1

jj

(
log(m)Υe2

2mΥ/3

)i+j−1

m−Υ((i+j)−2ij/m)+Υ(i+j−1)/3

≤ eij−1

jj
m−Υ(2

3
(i+j)+1/3−2ij/m)+1

≤ eij−1

jj
m−Υ(1

3
i+ 1

3
)+1.

As Υ ≥ 4, this implies

FAILB(i, j) ≤ e

i

(
i

j

)j
m−

Υi
3
− 1

3 . (3.18)

There holds:
i−1∑
j=1

(
i

j

)j
=

bi/3c∑
j=1

(
i

j

)j
+

i∑
j=bi/3c+1

(
i

j

)j

≤
bi/3c∑
j=1

(
i

j

)j
+

i∑
j=bi/3c+1

3j =

bi/3c∑
j=1

(
i

j

)j
+ 3bi/3c+1 3i−bi/3c − 1

3− 1

<

bi/3c∑
j=1

(
i

j

)j
+

3i+1

2
<

bi/3c∑
j=1

ii/3 +
3i+1

2

≤ i

3
ii/3 +

3i+1

2
.

Substituting in Equation (3.18) gives

FAILB =

m/2∑
i=2

i−1∑
j=1

FAILB(i, j)

<

m/2∑
i=2

i−1∑
j=1

e

i

(
i

j

)j
m−

Υi
3
− 1

3 <

m/2∑
i=2

(
ii/3+1

3
+

3i+1

2

)
e

i
m−

Υi
3
− 1

3

<

m/2∑
i=2

(
ii/3 + 3i+1

) e
2
m−

Υi
3
− 1

3 <

m/2∑
i=2

ii/3
e

2
m−

Υi
3
− 1

3 + 3i+1 e

2
m−

Υi
3
− 1

3 .

As m ≥ 27 = 33 we can now write

FAILB <
e

2

m/2∑
i=2

m−
(Υ−1)i

3
− 1

3 +m(i+1)/3m−
Υi
3
− 1

3 <
e

2

m/2∑
i=2

m−
(Υ−1)i

3
− 1

3 +m−
(Υ−1)i

3

< e

m/2∑
i=2

m−
(Υ−1)i

3 = em−
2(Υ−1)

3

m/2−2∑
i=0

(
m−

Υ−1
3

)i

= em−
2(Υ−1)

3

1−
(
m−

Υ−1
3

)m/2−1

1−
(
m−

Υ−1
3

) < em−
2(Υ−1)

3
1

1−
(
m−

Υ−1
3

) .
This concludes the proof.

54 CHAPTER 3. GOSSIP FOR PRIVATE AVERAGING (GOPA)

Lemma 5. Let m ≥ 27 and δB > 0. Let

Υ = max

(
4, 1 +

3 log(2e/δB)

2 log(m)

)
.

Consider a random bipartite graph as described in Lemma 4 above. Then, with probability
at least 1− δB there is a complete matching between A and B.

Proof. From the given Υ, we can infer that

Υ− 1 ≥ 3 log(2e/δB)
2 log(m)

Υ− 1 ≥ −3 log(δB/2e)
2 log(m)

−2
3
(Υ− 1) log(m) ≤ log (δB/2e)

m−2(Υ−1)/3 ≤ δB/2e

We also know that Υ ≥ 4 and m ≥ 27, hence (Υ − 1)/3 ≥ 1 and 1 − m−(Υ−1)/3 ≥
26/27 ≥ 1/2. We know from Lemma 4 that the probability of having a complete matching
is at least

1− em−2(Υ−1)/3

1−m−(Υ−1)/3
≥ 1− e(δB/2e)

1/2
= 1− δB.

Lemma 6. Let δB > 0, ∆ ≥ 1 (in our construction, ∆ = ∆q) and m ≥ 27. Let d1 . . . dl
be positive numbers, with di = ∆ for i ∈ [l − 1], dl ∈ [∆] and

∑l
i=1 di = m. Let

A = {a1 . . . al} and B = {b1 . . . bm} be disjoint sets of vertices in a random graph GH

where the probability to have an edge {ai, bj} is p = 2kH/nH for any i and j. Let

p ≥ 1−
(

1−max

(
4, 1 +

3 log(2e/δB)

2 log(m)

)
log(m)

m

)∆

. (3.19)

Then with probability at least 1− δB, GH contains a collection of disjoint di-stars with
centers ai and leaves in B.

Proof. Define an auxiliary random bipartite graph G′ with sides A′ = {a′1 . . . a′m} and
B = {b1 . . . bm}. For every i, j ∈ [m], the probability of having an edge between ai and
bj in G′ is p′ = 1 − (1 − p)1/∆. We relate the distributions on the edges of GH and G′

by requiring there is an edge between ai and bj if and only if there is an edge between
a′∆(i−1)+i′ and bj for all i′ ∈ [∆].

From Equation (3.19) we can derive

p′ ≥ max

(
4, 1 +

3 log(2e/δB)

2 log(m)

)
log(m)

m
. (3.20)

Setting

Υ = max

(
4, 1 +

3 log(2e/δB)

2 log(m)

)
,

this ensures p′ satisfies the constraints of Lemma 5:

p′ = Υ log(m)/m.

As a result, there is a complete matching in G′ with probability at least 1 − δB, and
hence the required stars can be found in GH with probability at least 1− δB.

3.5. PRIVACY GUARANTEES 55

Lemma 7. Let δF > 0 and δB > 0. Let GH and T and their associated variables be as
defined above. Assume that the following conditions are satisfied:

(a) nH ≥ 27(∆q + 2)/∆q,

(b) γ + 2(∆q + 2)−1 + n−1
H ≤ 1,

(c) kH ≥ 4 log(2nH/δF (∆q + 2)),

(d) kH ≥ max

(
4, 1 +

3 log(2e/δB)

2 log(nH∆q/(∆q + 2))

)
∆q + 2

2
log

(
nH∆q

∆q + 2

)
,

(e) γ = max q−1
l=1 ∆l/kH .

Let GH be a random graph where there is an edge between any two vertices with
probability p. Let v1 be a vertex of GH . Then, with probability at least 1− δF − δB , there
is a subgraph isomorphism between the tree T defined above and GH such that the root of
T is mapped on v1.

Proof. The conditions of Lemma 3 are clearly satisfied, so with probability 1− δF there is
a tree isomorphic to F in GH . Then, from condition (d) above and knowing that the edge
probability is p = 2kH/nH , we obtain

p ≥ max

(
4, 1 +

3 log(2e/δB)

2 log(nH∆q/(∆q + 2))

)
1

nH∆q/(∆q + 2)
log

(
nH∆q

∆q + 2

)
∆q.

Taking into account that m = nH∆q/(∆q + 2), we get

p ≥ max

(
4, 1 +

3 log(2e/δB)

2 log(m)

)
1

m
log (m) ∆q,

which implies the condition on p in Lemma 5. The other conditions of that lemma can be
easily verified. As a result, with probability at least 1 − δB there is a set of stars in GH

linking the leaves of F to the leaves of T , so we can embed T completely in GH .

3.5.4.4 Running GOPA on Random Graphs

Assume we run GOPA on a random graph satisfying the properties above, what can we say
about the differential privacy guarantees? According to Theorem 3, it is sufficient that
there exists a spanning tree and vectors tη and t∆ such that tη + Kt∆ = XA −XB. We
fix tη in the same way as for the other discussed topologies (see sections 3.5.2 and 3.5.3)
in order to achieve the desired ση and focus our attention on t∆. According to Lemma 7,
with high probability there exists in GH a spanning tree rooted at the vertex where XA

and XB differ and a branching factor ∆l specified per level. So given a random graph
on nH vertices with edge density 2kH/nH , if the conditions of Lemma 7 are satisfied we
can find such a tree isomorphic to T in the communication graph between honest users
GH . In many cases (reasonably large nH and kH), this means that the lemma guarantees a
spanning tree with branching factor as high as O(kH), even though it may be desirable to
select a small value for the branching factor of the last level in order to more easily satisfy
condition (d) of Lemma 7, e.g., ∆q = 2 or even ∆q = 1.

Lemma 8. Under the conditions described above,

t>∆t∆ ≤ 1

∆1

(
1 +

1

∆2

(
1 +

1

∆3

(
. . .

1

∆q

)))
+

(∆q + 2)(∆q + 2 + 2q)

nH
(3.21)

≤ 1

∆1

(
1 +

2

∆2

)
+O(n−1

H).

56 CHAPTER 3. GOSSIP FOR PRIVATE AVERAGING (GOPA)

Proof. Let q be the depth of the tree T . The tree is balanced, so in every node the number
of vertices in the subtrees of its children differs in at most ∆q + 2. For edges e incident
with the root (at level 0 node), |te −∆−1

1 | ≤ n−1
H (∆q + 2). In general, for a node at level l

(except leaves or parents of leaves), there are
∏l

i=1 ∆i vertices, each of which have ∆l+1

children, and for every edge e connecting such a node with a child,∣∣∣∣∣te −
l+1∏
i=1

∆−1
i

∣∣∣∣∣ ≤ (∆q + 2)/nH .

For a complete tree (of 1 + ∆ + . . .+ ∆q vertices), we would have

t>∆t∆ =

q∑
l=1

l∏
i=1

∆i

(
l∏

i=1

∆−1
i

)2

=

q∑
l=1

(
l∏

i=1

∆i

)−1

,

which corresponds to the first term in Equation (3.21). As the tree may not be complete,
i.e., there may be less than

∏q
i=1 ∆i leaves, we analyze how much off the above estimate

is. For an edge e connecting a vertex of level l with one of its children,∣∣∣∣∣te −
l+1∏
i=1

∆i

∣∣∣∣∣ ≤ (∆q + 2)/nH ,

and hence

∣∣∣∣∣∣t2e −
(
l+1∏
i=1

∆i

)2
∣∣∣∣∣∣ ≤

∣∣∣∣∣te −
l+1∏
i=1

∆i

∣∣∣∣∣
(
te +

l+1∏
i=1

∆i

)

≤ ∆q + 2

nH

(
te −

l+1∏
i=1

∆i + 2
l+1∏
i=1

∆i

)

≤
(

∆q + 2

nH

)2

+ 2
∆q + 2

nH

l+1∏
i=1

∆i.

Summing over all edges gives

t>∆t∆ −
q∑
l=1

(
l∏

i=1

∆i

)−1

≤
q∑
l=1

zl

(∆q + 2)/n2
H + 2

(
l+1∏
i=1

∆i

)−1

(∆q + 2)/nH

= (∆q + 2)2/nH +

q∑
l=1

2zl

(
l+1∏
i=1

∆i

)−1

(∆q + 2)/nH

≤ (∆q + 2)2/nH +

q∑
l=1

2(∆q + 2)/nH

=
(∆q + 2)(∆q + 2 + 2q)

nH
.

3.5. PRIVACY GUARANTEES 57

So if we choose parameters ∆ for the tree T , the above lemmas provide values δF and
δB such that T can be embedded in GH with probability at least 1− δF − δB and an upper
bound for t>∆t∆ that can be obtained with the resulting spanning tree in GH .

Theorem 6 in the main text summarizes these results, simplifying the conditions by
assuming that ∆i = b(k − 1)ρ/2c for i ≤ q − 1 and ∆q = 2.

Proof of Theorem 6. Let us choose ∆i = b(k − 1)ρ/3c for i ∈ [q − 1] and ∆q = 1 for
some appropriate q such that Equation (3.14) is satisfied. We also set δ = δF = δB.

Then, the conditions of Lemma 7 are satisfied. In particular, condition (a) holds as
nH = ρn ≥ 81 = 27(∆q + 2)/∆q. Condition (e) implies that

γ =
q−1

max
i=1

∆i/kH =
1

kH

⌊
(k − 1)ρ

3

⌋
.

Condition (b) holds as

γ + 2(∆q + 2)−1 + n−1
H =

1

kH

⌊
(k − 1)ρ

3

⌋
+

2

3
+ n−1

H

≤ 1

kH

(k − 1)ρ

3
+

2

3
+ n−1

H

≤ 1

3
− ρ

3kH
+

2

3
+ n−1

H =
1

3
− 1

3k
+

2

3
+ n−1

H

≤ 1

3
− 1

nH
+

2

3
+ n−1

H = 1.

Condition (d) holds because we know that ρk ≥ 6 log(ρn/3), which is equivalent to

kH ≥ 4
∆ + 2

∆
log

(
nH∆q

∆q + 2

)
,

and we know that ρk ≥ 3
2

+ 9
4

log(2e/δ), which is equivalent to

kH ≥
(

1 +
3 log(2e/δB)

2 log(nH∆q/(∆q + 2))

)
∆ + 2

∆
log

(
nH∆q

∆q + 2

)
.

Finally, condition (c) is satisfied as we know that ρk ≥ 4 log(ρn/3δ). Therefore, applying
the lemma, we can with probability at least 1− 2δ find a spanning tree isomorphic to T . If
we find one, Lemma 8 implies that

t>∆t∆ ≤
q∑
l=1

(
l∏

i=1

∆i

)−1

+
(∆q + 2)(∆q + 2 + 2q)

nH

=

q−1∑
l=1

∆−l1 + ∆1−q
1 ∆−1

q +
3(3 + 2q)

nH
= ∆−1

1

1−∆1−q
1

1−∆−1
1

+ ∆1−q
1 ∆−1

q +
9 + 6q

nH

≤ 1

∆1 − 1
+

3

nH
+

9 + 6q

nH
=

1

b(k − 1)ρ/3c − 1
+

12 + 6q

nH

=
1

b(k − 1)ρ/3c − 1
+

12 + 6 log(nH)

nH

This implies the conditions related to σ∆ and t∆ are satisfied. From Theorem 3, it follows
that with probability 1 − 2δ GOPA is (ε, δ)-differentially private, or in short GOPA is
(ε, 3δ)-differentially private.

58 CHAPTER 3. GOSSIP FOR PRIVATE AVERAGING (GOPA)

3.5.5 Matching the Utility of the Centralized Gaussian Mechanism
Using the results of previous theorems, we can precisely quantify the amount of indepen-
dent and pairwise noise needed to achieve a desired privacy guarantee depending on the
topology, as illustrated in the corollary below.

Corollary 1. Let ε, δ′ ∈ (0, 1), and σ2
η = c2/nHε

2, where c2 > 2 log(1.25/δ′). Given some
κ > 0, let σ2

∆ = κσ2
η if G is complete, σ2

∆ = κσ2
ηnH(1

b(k−1)ρ/3c−1
+ (12 + 6 log(nH))/nH)

if it is a random k-out graph with k and ρ as in Theorem 6, and σ2
∆ = κσ2

ηn
2
H/3 for

an arbitrary connected GH . Then GOPA is (ε, δ)-DP with δ ≥ a(δ′/1.25)κ/κ+1, where
a = 3.75 for the k-out graph and 1.25 otherwise.

Proof. In the centralized (trusted curator) setting, the standard centralized Gaussian mecha-
nism ([60] Theorem A.1 therein) states that in order for the noisy average (1

n

∑
u∈U Xu)+η

to be (ε′, δ′)-DP for some ε′, δ′ ∈ (0, 1), the variance of η needs to be:

σ2
gm =

c2

(ε′n)2
. (3.22)

where c2 > 2 log(1.25/δ′).
Based on this, we let the independent noise ηu added by each user in GOPA to have

variance

σ2
η =

n2

nH
σ2
gm =

c2

(ε′)2nH
, (3.23)

which, for the approximate average X̂avg, gives a total variance of:

V ar
(1

nH

∑
u∈UH

ηu

)
=

1

n2
H

nHσ
2
η =

c2

(ε′nH)2
. (3.24)

We can see that when nH = n (no malicious user, no dropout), Equation (3.24) exactly
corresponds to the variance required by the centralized Gaussian mechanism in Equation
(3.22), hence GOPA will achieve the same utility. When there are malicious users and/or
dropouts, each honest user needs to add a factor n/nH more noise to compensate for
the fact that drop out users do not participate and malicious users can subtract their own
inputs and independent noise terms from X̂avg. This is consistent with previous work on
distributed noise generation under malicious parties [122].

Now, given some κ > 0, let σ2
∆ = κσ2

η if G is the complete graph,

σ2
∆ = κσ2

ηnH(
1

b(k − 1)ρ/3c − 1
+ (12 + 6 log(nH))/nH)

for the random k-out graph, and σ2
∆ = κn2

Hσ
2
η/3 for an arbitrary connected GH . In all

cases, the value of θ in Theorems 4, 5 and 6 after plugging σ2
∆ gives

θ =
ε2

c2
+

ε2

κc2
=

(κ+ 1)ε2

κc2
.

We set ε = ε′ and require that θ ≤ Θmax(ε, δ) as in conditions of Theorems 4, 5 and 6.
Then, by Equation (3.3) we have

ε ≥ (κ+ 1)ε2

2κc2
+

√
(κ+ 1)

κ

ε

c
.

3.5. PRIVACY GUARANTEES 59

For d2 = κ
κ+1

c2 we can rewrite the above as ε ≥ ε2

2d2 + ε
d
. Since ε ≤ 1, this is satisfied if

d− ε
2d
≥ 1 and in turn when d ≥ 3/2, or equivalently when c ≥ 3

2

√
κ+1
κ

. Now analyzing
the inequality in Equation (3.4) we have:(

ε− (k + 1)ε2

2κc2

)2

≥ 2 log(2/δ
√

2π)
(ε2

c2
+

ε2

κc2

)
ε2 +

(κ+ 1)2ε4

4κ2c4
− (κ+ 1)ε3

κc2
≥ 2 log(2/δ

√
2π)
((κ+ 1)ε2

κc2

)
1

2

(κc2

κ+ 1
+

(κ+ 1)ε2

4κc2
− ε
)
≥ log(2/δ

√
2π).

Again denoting d2 = κ
κ+1

c2 we can rewrite the above as

1

2

(
d2 +

ε2

4d2
− ε
)
≥ log(2/δ

√
2π).

For d ≥ 3/2 and ε ≤ 1, the derivative of d2 + ε2

4d2 − ε is positive, so d2 + ε2

4d2 − ε > d2 − 8/9.
Thus, we only require d2 ≥ 2 log(1.25/δ). Therefore Equation (3.4) is satisfied when:

κ

κ+ 1
log(1.25/δ′) ≥ log(1.25/δ),

which is equivalent to δ ≥ 1.25
(

δ′

1.25

) κ
κ+1

. The constant 3.75 instead of 1.25 for the
random k-out graph case is because Theorem 6 guarantees (ε, 3δ)-DP instead of (ε, δ) in
Theorems 4 and 5.

In Corollary 1, σ2
η is set such that after all noisy values are aggregated, the variance of

the residual noise matches that required by the Gaussian mechanism [60] to achieve (ε, δ′)-
DP for an average of nH values in the centralized setting. The privacy-utility trade-off
achieved by GOPA is thus the same as in the trusted curator model up to a small constant
in δ, as long as the pairwise variance σ2

∆ is large enough. As expected, we see that as
σ2

∆ → +∞ (that is, as κ→ +∞), we have δ → δ′ for worst case and complete graphs, or
δ → 3δ′ for k-out graphs. Given the desired δ ≥ δ′, we can use Corollary 1 to determine a
value for σ2

∆ that is sufficient for GOPA to achieve (ε, δ)-DP.

Remark 1. For clarity of presentation, our privacy guarantees protect against an adver-
sary that consists of colluding malicious users. To simultaneously protect against each
single honest-but-curious user (who knows his own independent noise term), we can simply
replace nH by n′H = nH − 1 in our results. This introduces a factor nH/(nH − 1) in the
variance, which is negligible for large nH . Note that the same applies to other approaches
which distribute noise-generation over data-providing users, e.g., [59].

3.5.6 Smaller k and σ2
∆ via Numerical Simulation

For random k-out graphs, the conditions on k and σ2
∆ given by Theorem 6 are quite

conservative. While we are confident that they can be refined by resorting to tighter
approximations in our analysis in Section 3.5.4, an alternative option to find smaller, yet
admissible values for k and σ2

∆ is to resort to numerical simulation.

60 CHAPTER 3. GOSSIP FOR PRIVATE AVERAGING (GOPA)

Table 3.2: Examples of admissible values for k and σ∆, obtained by numerical simulation,
to ensure (ε, δ)-DP with trusted curator utility for ε = 0.1, δ′ = 1/n2

H , δ = 10δ′.

n = 100
ρ = 1

k = 3 σ∆ = 60.8
k = 5 σ∆ = 41.3

ρ = 0.5
k = 20 σ∆ = 26.8
k = 30 σ∆ = 17.2

n = 1000
ρ = 1

k = 5 σ∆ = 63.4
k = 10 σ∆ = 41.1

ρ = 0.5
k = 20 σ∆ = 45.4
k = 30 σ∆ = 27.3

n = 10000
ρ = 1

k = 10 σ∆ = 54.6
k = 20 σ∆ = 34.7

ρ = 0.5
k = 20 σ∆ = 55.5
k = 40 σ∆ = 28.4

Table 3.3: Value of σ∆ needed to ensure (ε, δ)-DP with trusted curator utility for n = 10000,
ε = 0.1, δ′ = 1/n2

H , δ = 10δ′ depending on the topology, as obtained from Corollary 1 or
numerical simulation.

ρ = 1 ρ = 0.5

Complete 1.7 2.1
k-out (Theorem 6) 44.7 (k = 105) 34.4 (k = 203)
k-out (simulation) 34.7 (k = 20) 28.4 (k = 40)

Worst-case 9655.0 6114.8

Given the number of users n, the proportion ρ of nodes who are honest and do not drop
out, and a value for k, we implemented a program that generates a random k-out graph,
checks if the subgraph GH is connected, and if so finds a suitable spanning tree for GH

and computes the corresponding value for t>∆t∆ needed by our differential privacy analysis
(see for instance sections 3.5.2 and 3.5.3). From this, we can in turn deduce a sufficient
value for σ2

∆ using Corollary 1.

Table 3.2 gives examples of values obtained by simulations for various values of n,
ρ and several choices for k. In each case, the reported σ∆ corresponds to the worst-case
value required across 105 random runs, and the chosen value of k was large enough for
GH to be connected in all runs. This was the case even for slightly smaller values of k.
Therefore, the values reported in Table 3.2 can be considered safe to use in practice.

Table 3.3 shows a numerical illustration with δ only a factor 10 larger than δ′. For
random k-out graphs, we report the values of σ∆ and k given by Theorem 6, as well as
smaller values obtained by numerical simulation. Although the conditions of Theorem 6
are a bit conservative (constants can likely be improved), they still lead to practical
values. Clearly, random k-out graphs provide a useful trade-off in terms of scalability and
robustness. Note that in practice, one often does not know in advance the exact proportion
ρ of users who are honest and will not drop out, so a lower bound can be used instead.

3.6. CORRECTNESS AGAINST MALICIOUS USERS 61

3.6 Correctness Against Malicious Users

While the privacy guarantees of Section 3.5 hold regardless of the behavior of the (bounded
number of) malicious users, the utility guarantees discussed in Section 3.4 are not valid
if malicious users tamper with the protocol. In this section, we add to our protocol the
capability of being audited to ensure the correctness of the computations while preserving
privacy guarantees.

Objective Our goal is to (i) verify that all calculations are performed correctly even
though they are encrypted, and (ii) identify any malicious behavior. As a result, we
guarantee that given the input vector X a truthfully computed X̂avg is generated which
excludes any faulty contributions.

Concretely, users will be able to prove the following properties:

X̂u = Xu +
∑

v∈N(u) ∆u,v + ηu, ∀u ∈ U, (3.25)

∆u,v = −∆v,u, ∀{u, v} ∈ E, (3.26)
ηu ∼ N (0, σ2

η), ∀u ∈ U, (3.27)

Xu is a valid input, ∀u ∈ U. (3.28)

It is easy to see that the correctness of the computation is guaranteed if Properties (3.25)-
(3.28) are satisfied. Note that, as long as they are self-canceling and not excessively large
(avoiding overflows and additional costs if a user drops out, see Section 3.6.4), we do
not need to ensure that pairwise noise terms ∆u,v have been drawn from the prescribed
distribution, as these terms do not influence the final result and only those involving honest
users affect the privacy guarantees of Section 3.5. In contrast, Properties (3.27) and (3.28)
are necessary to prevent a malicious user from biasing the outcome of the computation.
Indeed, (3.27) ensures that the independent noise is generated correctly, while (3.28)
ensures that input values are in the allowed domain. Moreover, we can force users to
commit to input data so that they consistently use the same values for data over multiple
computations.

We first explain the involved tools to verify computations in Section 3.6.1. We present
our verification protocol in Section 3.6.2. In the following sections, we explain in more
detail different verification aspects. In Section 3.6.3 we discuss the setup of the protocol
in which cryptographic and other parameters are generated. In Section 3.6.4 we discuss
measures against dropouts. In section 3.6.5 we discuss prevention against attacks on
efficiency. In Section 3.6.6 we discuss issues with finite precision. Finally, in Section 3.6.7
we discuss details on the verification of correct sampling from the Gaussian distribution,
required for Property 3.27 and which is more involved than proving other properties.

3.6.1 Tools for verifying computations
Our approach consists in publishing an encrypted log of the computation using crypto-
graphic commitments and proving that it is performed correctly without revealing any
additional information using zero knowledge proofs. These techniques are popular in a
number of applications such as privacy-friendly financial systems such as [115, 14]. We
explain below different tools to robustly verify our computations. Namely, a structure to
post the encrypted log of our computations, commitments and zero knowledge proofs.

62 CHAPTER 3. GOSSIP FOR PRIVATE AVERAGING (GOPA)

Public bulletin board We implement the publication of commitments and proofs using
a public bulletin board so that any party can verify the validity of the protocol, avoiding
the need for a trusted verification entity. Users sign their messages so they cannot deny
them. More general purpose distributed ledger technology [113] could be used here, but
we aim at an application-specific, light-weight and hence more scalable solution.

Representations We will represent numbers by elements of cyclic groups isomorphic
to Zq for some large prime q. To be able to work with signed fixed-precision values,
we encode them in Zq by multiplying them by a constant 1/ζ and using the upper half
of Zq, i.e., {x ∈ Zq : x ≥ dq/2e} to represent negative values. Unless we explicitly
state otherwise, properties (such as linear relationships) we establish for the Zq elements
translate straightforwardly to the fixed-precision values they represent. We choose the
precision so that the error of approximating real numbers up to a multiple of ζ does not
impact our results.

Pedersen Commitments For our protocol we use classical (as opposed to the vector
variant) Pedersen commitments defined in Section 2.4. We will refer to Pedersen parame-
ters as in the definition of the scheme. Namely, to parameters Θ = (G, q, g, h) where G is
a cyclic multiplicative group of prime order q, and g and h are two generators of G chosen
at random. It is sometimes needed to let users prove that they know the values underlying
commitments. In our discussion we will implicitly assume proofs of knowledge (see also
below) are inserted where needed.

Zero Knowledge Proofs We use Zero Knowledge Proofs defined in Section 2.5. Par-
ticularly, we will use (classical) Σ-protocols defined in Section 2.5.2. They can prove
arithmetic relations, range satisfiability between committed values and logical formulas
composed of conjunctions and disjunctions of these statements. Importantly, The zero
knowledge property of these proofs does not rely on any computational hardness assump-
tion. Sometimes we will refer as proof T to the transcript T of a proof generated by the
prover.

3.6.2 Verification Protocol

Our verification protocol, based on the primitives described in Section 3.6.1, consists of
four phases:

1. Private data commit. At the start of our protocol, we assume users have committed
to their private data. In particular, for every user u a commitment is available, either
directly published by u or available through a distributed ledger or other suitable
mechanism. This attenuates data poisoning, as it forces users to use the same value
for Xu in each computation where it is needed.

2. Setup. In a setup phase at the start of our protocol, users generate Pedersen com-
mitment parameters Θ and private random seeds that will be used to prove Property
(3.27). Details are discussed in Section 3.6.3.

3.6. CORRECTNESS AGAINST MALICIOUS USERS 63

3. Verification. During our protocol, users can prove that execution is performed
correctly and verify logs containing such proofs by others. If during the protocol
one detects a user has cheated he/she is added to a cheater list. After the protocol,
one can verify that all steps were performed correctly and that the protocol has been
completed. We give details on this key step below.

4. Mitigation. Cheaters and drop-out users (who got off-line for a too long period of
time) detected during the protocol are excluded from the computation, and their
contributions are rolled back. Details are provided in Section 3.6.4.

Verification phase First, we use the homomorphic property of Pedersen commitments
to prove Properties (3.25) and (3.26). Note that Property (3.26) involves secrets of two
different users u and v. This is not a problem as these pairwise noise terms are known
by both involved users, so they can use negated randomnesses r∆u,v = −r∆v,u in their
commitments of ∆u,v and ∆v,u such that everybody can verify that ComΘ(∆u,v, r∆u,v) ·
ComΘ(∆v,u, r∆v,u) = ComΘ(0, 0). Users can choose how they generate pairwise Gaus-
sian noise (e.g., by convention, the user that initiates the exchange can generate the noise).
We just require that each user holds a message on the agreed noise terms signed by the
other user before publishing commitments, so that if one of them cheats, it can be easily
discovered.

Verifying the correct drawing of Gaussian numbers is more involved and requires
private seeds r1, . . . , rn generated in Phase 2. We explain the procedure step by step in
Section 3.6.7. The proof generates a transcript Tηu for each user u.

To verify Property (3.28), we verify its domain and its consistency. For the domain,
we prove that Xu ∈ [0, 1] with the range proof described in Section 2.5.2. For the
consistency, users u publish a Pedersen commitment PXu = ComΘ(Xu) and prove its
consistency with private data committed to in Phase 1 denoted as PD. Such proof depends
on the nature of the commitment in Phase 1: if the same Pedersen commitment scheme
is used nothing needs to be done, but users could also prove consistency with a record
in a blockchain (which is also used for other applications) or they may need to prove
more complex consistency relationships. We denote the entire proof transcript as TXu .
As an illustration, consider ridge regression in Example 1. Every user u can publish
commitments Pyu = ComΘ(yu), Pφiu = ComΘ(φiu) for i ∈ {1, . . . , d} (computed with
the appropriately drawn randomness), and additionally commit to φiuyu and φiuφ

j
u, for

i, j ∈ {1, . . . , d}. Then it can be verified that all these commitments are computed
coherently, i.e, that the commitment of φiuyu is the product of secrets committed in Pyu
and Pφiu for i ∈ {1, . . . , d}, and analogously for the commitment of φiuφ

j
u in relation with

Pφiu and Pφju , for i, j ∈ {1, . . . , d}.
Compared to the central setting with a trusted curator, encrypting the input does not

make the verification of input more problematic. Both in the central setting and in our
setting one can perform domain tests, ask certification of values from independent sources,
and require consistency of the inputs over multiple computations, even though in some
cases both the central curator and our setting may be unable to verify the correctness of
some input.

Algorithm 2 gives a high level overview of the 4 verification steps described above. By
composition of ZKPs, these steps allow each user to prove the correctness of their com-
putations and preserve completeness, soundness and zero knowledge properties, thereby
leading to our security guarantees:

64 CHAPTER 3. GOSSIP FOR PRIVATE AVERAGING (GOPA)

Algorithm 2 Verification of GOPA

1: (1) Input. Import any previous commitments to private data PD
2: (2) Setup. All users jointly run Phase 2 Setup to generate Pedersen parameters Θ and

private seeds r1, . . . , rn. Each user u publishes Pru = ComΘ(ru)
3: (3a) Verification - commits.
4: for all user u ∈ U , publish as soon as available:
5: − PXu = ComΘ(Xu) and proof TXu that Xu is valid
6: − Pηu = ComΘ(ηu) and proof Tηu that ηu is not biased
7: − P∆u,v = ComΘ(∆u,v)

8: − X̂u and randomness to compute its commitment
9: (3b) Verification - checks.

10: for all u ∈ U verify when commitments/proofs are available:
11: − (TXu , PXu , PD) is correct,
12: − PXu ·

(∏
v∈N(u) P∆u,v

)
· Pηu =? ComΘ(X̂u),

13: − (Tηu , Pru , Pηu) is correct.
14: If a check is incorrect, add u to cheaters list.
15: for all user v ∈ N(u) do:
16: − if P∆u,v · P∆v,u 6= ComΘ(0, 0): add u and/or v as cheater
17: (4) Mitigation.
18: −Roll back contributions of drop-outs and exchange more noise if necessary
19: −If a harmless amount of non-canceled pairwise noise remains,

declare the computation successful, otherwise abort.

Theorem 7 (Security guarantees of GOPA). Under the DLA, a user u ∈ U that passes
the verification protocol proves that X̂u was computed correctly. Additionally, u does not
reveal any additional information about Xu by running the verification, even if the DLA
does not hold.

To reduce the verification load, we note that it is possible to perform the verification
for only a subset of users picked at random (for example, sampled using public unbiased
randomness generated in Phase 2) after users have published the involved commitments.
In this case, we obtain probabilistic security guarantees, which may be sufficient for some
applications.

We can conclude that GOPA is an auditable protocol that, through existing efficient
cryptographic primitives, can offer guarantees similar to the automated auditing which is
possible for data shared with a central party.

3.6.3 Setup Phase
Our verification protocol requires public unbiased randomness to generate Pedersen com-
mitment parameters Θ and private random seeds to generate Gaussian samples for Property
(3.27). We describe below how to perform these tasks in a Setup phase.

Public randomness To generate a public random seed, a simple procedure is the follow-
ing. First, all users draw uniformly a random number and publish a commit to it. When
all users have done so, they all reveal their random number. Then, they sum the random
numbers (modulo the order q of the cyclic group) and use the result as public random seed.

3.6. CORRECTNESS AGAINST MALICIOUS USERS 65

If at least one user was honest and drew a random number, this sum is random too, so no
user can both claim to be honest and claim that the obtained seed is not random. Finally,
the amount of randomness of the seed is expanded by the use of a PRG (see Section 2.4).

Below, we provide in more detail a folklore method which evenly distributes the work
over users. The procedure generates n public random numbers in Zq with a computational
effort of O(1) per user, and costs logarithmic in n for a negligible portion of users. We
enumerate users from 1 to n = |U | and use a cryptographic hash function H to generate
random numbers over {0, 1}T , for some T ≥ λ (see Section 2.4). We also make use of a
commitment function Com, for which a common trusted initialization is not required (see
for example [20]). The procedure is depicted in Algorithm 3.

Algorithm 3 Generation of Public Randomness
1: Input: Hash function H and a commitment function Com.
2: for all u ∈ {1, . . . , n} do
3: Draw su ←R Zq, compute Pu ← Com(su) and publish Pu
4: end for
5: for all u ∈ {1, . . . , n} do
6: Set s[u, u]← su and publish it
7: end for
8: for j = 1 to blog2(n)c+ 1 sequentially do
9: for all i ∈ {0, . . . , bn/2jc} do

10: Let umin = 2ji+ 1 and umax = min(2j(i+ 1), n)
11: if s[umin, umax] is not already published then
12: Let umid = umin + 2j−1 − 1
13: A user u ∈ {umin, . . . , umax} wakes up and:
14: • queries (s[umin, umid], s[umid + 1, umax]), if a value is not published, set it

to 0
15: • publishes s[umin, umax]← s[umin, umid] + [umid + 1, umax] mod q
16: end if
17: end for
18: end for
19: for all u ∈ {1, . . . , n} do
20: Query S ← s[1, n] and publish tu ← H(S + u)
21: end for
22: Output: A set of unbiased random numbers t1, . . . , tn ∈ Z2T

The “commit-then-reveal” protocol from in lines 2-6 is to avoid users from choosing
the value su depending on the choice of other users, which could bias the final seed
S =

∑
u∈U su mod q. The value S, computed in lines 8-15 in a distributed way, requires

at most O(log(n)) queries and sums for a user in the worst case, but O(1) for almost all
users. Inactive users do not affect the computation, but their su terms might be ignored.
As it is computed from modular sums, S is uniformly distributed over Zq if at least one
active user is honest. Finally, we compute our public random numbers t1, . . . , tn in lines
19 and 20, which are unpredictable due to the properties of H and the unpredictability and
uniqueness of its input S + u.

To verify that a user u participated correctly, one needs to check that (1) the commitment
Pu was properly computed from su, (2) all sums s[umin, umax] that u published were
computed correctly, and (3) the challenge tu was correctly computed from S + u by the

66 CHAPTER 3. GOSSIP FOR PRIVATE AVERAGING (GOPA)

application of H .
The cost of the protocol for a user is dominated in the worst case at by log2(n) sums

and 3 log2(n)G bits in total, corresponding to the several queries of s[umin, umid] and
s[umid + 1, umax] and the publication of its sum. However, this cost applies to only O(1)
users, while the rest of the users computes one commitment, one evaluation of H and O(1)
sums and transfers O(1) bits during the execution.

Private Seeds In a second part of Setup, users collaboratively generate samples r1, . . . , rn
such that, for all u ∈ U , ru is private to u and has uniform distribution in the interval
[0,M − 1] for some public integer M < q/2, the number of bins to generate Gaussian
samples (in Section 3.6.7). In particular,

1. For all u ∈ U : u draws uniformly zu ∈ [0,M − 1], and publishes Pzu = ComΘ(z).

2. The users draw a public, uniformly distributed random number z (as above).

3. For all u ∈ U : u computes ru ← z + tu mod M and publishes Pru ← ComΘ(ru)
together with the proof of the modular sum (see the Σ-protocol for modular sum in
Section 2.5.2).

It is important that the Pzu’s are published before generating the public random z to avoid
that users would try to generate several ru and check which one is most convenient for
them.

3.6.4 Dealing with Dropout
In this section, we give additional details on the strategies for dealing with dropout outlined
in Section 3.4. We consider that a user drops out of the computation if it is off-line for a
period which is too long for the community to wait until their return. This can happen
accidentally to honest users, e.g. due to lost network connection. Malicious users may also
intentionally drop out to affect the progress of the computation. Finally, a user detected as
cheater by the verification procedure of Section 3.6 and banned from the system may also
be seen as a dropout.

Unaddressed drop outs affect the outcome of the computation as we rely on the fact
that pairwise noise terms ∆u,v and ∆v,u cancel out for the correctness and utility of the
computation.

We propose a three-step approach for handling dropout:

1. First, as a preventive measure, users should exchange pairwise noise with enough
users so that the desired privacy guarantees hold even if some neighbors drop out.
This is what we proposed and theoretically analyzed in Section 3.5.4, where the
number of neighbors k in Theorem 6 depends on (a lower bound on) the proportion
ρ of honest users who do not drop out. It is important to use a safe lower bound on ρ
to make sure users will have enough safety margin to handle actual dropouts.

2. Second, as long as there is time, users attempt to repair as much as possible the
problems incurred by dropouts. A user u who did not publish X̂u yet can just remove
the corresponding pairwise noise (and possibly exchange noise with another active
user instead). Second, a user u who did publish X̂u already but has still some safety
margin thanks to step 1 can simply reveal the noise exchanged with the user who
dropped out, and subtract it from his published X̂u.

3.6. CORRECTNESS AGAINST MALICIOUS USERS 67

3. Third, it is possible that a user u did publish X̂ and afterwards still so many neigh-
bors drop out that revealing all exchanged pairwise noise would affect the privacy
guarantees for u. If that happens it means a significant fraction of the neighbors
of u dropped out, while the neighbors of u form a random sample of all users. In
such case, it is likely that also globally many users dropped out. If caused by a
large-scale network failure the best strategy could be to just wait longer than initially
planned. Else, given that u is unable to reveal more pairwise noise without risking
their privacy, the only options are either that u discards all his pairwise noise and
restarts with a new set of neighbors, or that u does not address the problem and his
pairwise noise is not compensated by the noise of another active user. To avoid such
problems, in addition to step 1, it can be useful to check which users went off-line
just before publishing X̂ and to have penalties for users who (repeatedly) drop out at
the most inconvenient times.

4. Finally, when circumstances require and allow it, we can ignore the remaining
problems and proceed with the algorithm, which will then output an estimated
average with slightly larger error. This can be the case for instance when only a
few drop outs have not yet been resolved, there is not much time available, and the
corresponding pairwise terms ∆u,v are known to be not too large (e.g., by proving
that they were drawn from N (0, σ2

∆) where σ2
∆ is small enough, or by the use of

range proofs).

0 100 200 300 400
Amount of non-rolled back dropouts

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Va
ria

nc
e

of
 th

e
es

tim
at

ed
 a

ve
ra

ge

GOPA, = 0.5, k-out graph with k=203
Central DP with n users
Local DP with n users

Figure 3.1: Impact of non-rolled back dropouts on the utility of GOPA. See text for details.

Figure 3.1 illustrates with a simple simulation the impact of a small number of residual
pairwise noise terms of variance σ2

∆ in the final result, which may happen in the rare
circumstances that the pairwise noise terms of some users who dropped out are not “rolled
back” by their neighbors (step 2 above). We consider n = 10000, ρ = 0.5, ε = 0.1,
δ = 10/(ρn)2 and set the values of k, σ2

η and σ2
∆ using Corollary 1 so that GOPA satisfies

(ε, δ)-DP (in particular we set them in the same way as in Table 3.3). We simulate this
by drawing a random k-out graph, selecting a certain number of dropout users at random,
marking all their exchanged noise as not rolled back (in practice it is also possible that
part of their noise gets rolled back) and computing the variance of the estimated average.
The simulation is averaged over 100 runs (even though the standard deviation across
random runs is negligible). We see that GOPA can tolerate a number of “catastrophic
drop-outs” while remaining more accurate than local DP. This ability to retain a useful
estimate despite residual pairwise noise terms is rather unique to GOPA, and not possible
with secure aggregation methods which typically use uniformly random pairwise masks

68 CHAPTER 3. GOSSIP FOR PRIVATE AVERAGING (GOPA)

[22]. We note that this robustness can be optimized by choosing smaller σ2
∆ (i.e., smaller

κ) and compensating by adding a bit more independent noise according to Corollary 1.

3.6.5 Robustness Against Attacks on Efficiency

In this section, we study several attacks, their impact and GOPA’s defense against them.

Dropout A malicious user could drop out of the computation intentionally, with the
impact described in Section 3.6.4. However, dropping out is bad for the reputation of a user,
and users dropping out more often than agreed could be banned from future participation.
One can use techniques from identity management (a separate branch in the field of
security) to ensure that creating new accounts is not free, and that possibilities to create
new accounts are limited, e.g., by requiring to link accounts to unique persons, unique
bank account or similar. This also ensures that the risk of being banned outweighs the
incentive of the (bounded) delay of the system one could cause by intentionally dropping
out.

Flooding with Neighbor Requests In Section 3.5, we discuss privacy guarantees for
complete graphs, path graphs and random communication graphs. In the case of a complete
communication graph, all users exchange noise with all other users. This is slow, but there
is no opportunity for malicious users to interfere with the selection of neighbors as the
set of neighbors is fixed. In other cases, e.g., when the number of users is too large and
every user selects k neighbors randomly as in Section 3.5.4, one could wonder whether
colluding malicious users could select neighbors in such a way that the good working of
the algorithm is disturbed, e.g., a single honest user is flooded with neighbor requests and
ends up exchanging noise with O(n) others.

We first stress the fact that detecting such attacks is easy. If all agents randomly select
neighbors uniformly at random as they should, then every agent expects to receive k
neighbor invitations, perhaps plus a few standard deviations of order O(

√
k). As soon as

a user receives a sufficiently unlikely number of neighbor invitations, we know that with
overwhelming probability the user is targeted by malicious users.

To avoid this, we can let all users select neighbors in a deterministic way starting from
a public random seed (e.g., take the public randomness generated in Section 3.6.3, add the
ID of the user to it, apply a hash function to the sum, and use the result to start selecting
neighbors). In this way, neighbor selection is public and cannot be tampered with. It is
possible some neighbors of a user u were off-line and u skipped them, but unless so many
users are off-line that the community should have noticed severe problems u should be able
to find enough neighbors among the first ck in his random sequence for a small constant c.

Other Common Attacks We assume the algorithm is implemented on a system which
is secure according to classic network-related attacks, such as denial-of-service (DoS)
attacks. Such attacks are located at the network level rather than at the algorithm level.
As such, they apply similarly to any distributed algorithm requiring communication over
a network. To the extent such attacks can be mitigated, the solutions are on the network
level, including (among others) a correct organization of the network and its routers.

Similarly, we assume that all (honest) communication is secure and properly encrypted,
referring the reader to the state-of-the-art literature for details on possible implementations.

3.6. CORRECTNESS AGAINST MALICIOUS USERS 69

3.6.6 Further Discussion on the Impact of Finite Precision

In practice, we cannot work with real numbers but only with finite precision approximations
(see Section 3.6.1). We provide a brief discussion of the impact of this on the guarantees
offered by the protocol. There is already a large body of work addressing issues which
could arise because of finite precision. Here are the main points:

1. Finite precision can be an issue for differential privacy in general, (see e.g. [8] for a
study of the effect of floating point representations). Issues can be overcome with
some care, and our additional encryption does not make the problem worse (in fact
we can argue that encryption typically uses more bits and in our setting this may
help).

2. The issue of finite precision has been studied in cryptography. While some opera-
tions such as multiplication can cause difficulties in the context of homomorphic
encryption, in our work we use a partially homomorphic scheme with only addition.
As a result, we can just represent our numbers with as many bits (after the decimal
dot) as in plaintext memory.

3. If the number of users is high (and hence also the sum of the Xu and the ∆u,v

variables), working up to the needed precision does not cause a cost which is high
compared to the cost of the digits before the decimal dot.

3.6.7 Private Gaussian Sampling

In our algorithm, every user u needs to generate a Gaussian distributed number ηu, which
he does not publish, but for which we need to verify that it is generated correctly, as
otherwise a malicious user could bias the result of the algorithm.

Proving the generation of a Gaussian distributed random number is more involved than
ZKPs such as linear relationships and range proofs we need to verify in the other parts of
the computation.

Recall that ζ is the desired fixed precision and B is a precision parameter such that
B2/ζ is an integer. We want to draw ηu from the Gaussian distribution approximated with
1/B equiprobable bins and we want to prove the correct drawing up to a precision B.

We will start from the private seed ru, generated in the Phase 2 Setup (Section 3.6.3),
which is only known to user u, for which u has published a commitment ComΘ(ru) and
for which the other users know it has been generated uniformly randomly from an interval
[0,M − 1] for M ≈ 1/B. As it will be seen in Chapter 4, there are many ways now to
exploit a uniformly distributed number to generate a Gaussian distributed one. In this
section, we describe one of them.

User u will compute x′ such that ((2ru + 1)/M) − 1 = erf(x′/
√

2). We know that
x′ is normally distributed. The main task is then to provide a ZKP that y = erf(x) for
y = ((2ru + 1)/M) − 1 and x = x′/

√
2. As erf is symmetric, we do our analysis for

positive values of x and y, while the extension for the negative case is straightforward. We
want to achieve an approximation where the error on y as a function of x is at most B.

Approximating the error function The error function relates its input and output in a
way that cannot be expressed with additive, multiplicative or exponential equations. We

70 CHAPTER 3. GOSSIP FOR PRIVATE AVERAGING (GOPA)

therefore approximate erf using a converging series. In particular, we will rely on the series

erf(x) =
2√
π

∞∑
l=0

(−1)lx2l+1

l!(2l + 1)
. (3.29)

As argued by [40], this series has two major advantages. First, it only involves additions
and multiplications, while other known series converging to erf(x) often include multiple
exp(−x2/2) factors which would require additional evaluations and proofs. Second, it is
an alternating series, which means we can determine more easily in advance how many
terms we need to evaluate to achieve a given precision.

Nevertheless, Equation (3.29) converges slowly for large x. It is more efficient to prove
either that

y = erf(x) or 1− y = erfc(x),

as for erfc(x) = 1− erf(x) there exist good approximations requiring only a few terms for
large x. An example is the asymptotic expansion

erfc(x) =
e−x

2

x
√
π
Serfc(x) +RL(x), (3.30)

where

Serfc(x) =
L−1∑
l=0

(−1)l(2l − 1)!!

(2x2)l
(3.31)

with l!! = 1 for l < 1 and (2l − 1)!! =
∏l

i=1(2i − 1). This series diverges, but if x is
sufficiently large then the remainder

RL(x) ≤ e−x
2

x
√
π

(2L− 1)!!

(2x2)L
(3.32)

after the first L terms is sufficiently small to be neglected. So u could prove either part
of the disjunction depending on whether the erf or erfc approximations achieve sufficient
precision.

Zero Knowledge Proof of erf(x) We use fixed-precision rounding operations. The
implied rounding does not cause major problems for several reasons. First, the Gaussian
distribution is symmetric, and hence the probability of rounding up and rounding down
is exactly the same, making the rounding error a zero-mean random variable. Second,
discrete approximations of the Gaussian mechanism such as binomial mechanisms have
been studied and found to give similar guarantees as the Gaussian mechanism [3]. Third,
we can require the cumulated rounding error to be an order of magnitude smaller than the
standard deviation of the noise we are generating, so that any deviation due to rounding
has negligible impact. We will use a fixed precision for all numbers (except for small
integer constants), and we will represent numbers as multiples of ζ .

Let tl = x2l+1

l!
, and Lerf + 1 be the amount of terms of the series in Equation (3.29) we

evaluate. We provide a ZKP of the evaluation of erf by proving that t0 = x,

tl =
tl−1x

2

l
for all l ∈ {1, . . . , Lerf}, (3.33)

and y = 2√
π

∑Lerf

l=0 (−1)l tl
2l+1

. The bulk of the ZKP is in Equation (3.33) and in the divisions
by 2l + 1 of the latter relation. For any fixed-precision value d, let 〈d〉 = d

ζ
be its integer

3.6. CORRECTNESS AGAINST MALICIOUS USERS 71

encoding. We can achieve a ZKP of the fixed precision product c = ab for private a,
b and c by proving that 1

ζ
〈c〉 − 〈a〉〈b〉 ∈ [−1/2ζ, 1/2ζ]. For round-off division, a ZKP

that a/b = c for private a, c and a public positive integer b is possible by proving that
〈a〉 − b〈c〉 ∈ [−b/2, b/2]. The above proofs can be achieved using additions, products and
range proofs in Zq (see Section 2.5.2).

Similarly for erfc, let ml = (2l − 1)!!/(2x)l and Lerfc be the amount of terms we
compute of the series defined in Equation (3.31), we can construct a ZKP of its evaluation
by proving m0 = 0,

ml = ml−1
2l − 1

2x2
, for all l ∈ {1, . . . , Lerfc − 1} (3.34)

and y = e−x
2

x
√
π

∑Lerfc−1
l=0 (−1)lml. Proving that 〈ml〉〈x2〉 − 2l−1

ζ
〈ml−1〉 ∈ [−〈x2〉, 〈x2〉] is

equivalent to prove the relation in Equation (3.34). This can be done with 10Bx2 cost,
where Bx2 is maximum number of bits of 〈x2〉. We can assume that Bx2 ≤ log2(q) (where
q is the order of the Pedersen group G) which makes the cost for each term not bigger than
10 log2(q). All other non-dominant computations can similarly be verified with addition
and product proofs.

The rest of Section 3.6.7 mainly studies the less interesting details of approximations
the erf and erfc series. Some readers may want to skip the derivation and continue at
“computational cost” at the end of the section.

Amount of approximation terms Now we determine the magnitudes of Lerf and Lerfc

needed to achieve an error smaller than B in our computation. We then require the
approximation and rounding error to be smaller than B/2. The amount of terms of the
series must not depend on x as the latter is a private value, but we must be able to achieve
the expected precision for all possible x.

The erf series requires more approximation terms as x gets larger. On the other hand,
the erfc series is optimal when Lerfc = bx2 + 1/2c terms are evaluated, and the error
gets smaller as x increases. Then, we use erfc only when x is large enough to satisfy the
required precision, and use erf for smaller values. We first compute the lower bound xminerfc

for the application of erfc. Then the domain of erf is restricted to [0, xminerfc) so can obtain
the an upper bound of Lerf . Similarly, the restricted domain of erfc allows us to upper
bound Lerfc.

Developing Equation (3.32), we can achieve an approximation error of erfc of

Eerfc(x) ≤ 1

ex2x
√
π

(2L− 1)!!

(2x2)L
=

1

ex2x
√
π

(2L)!

L!2L(2x2)L

≈ 1

ex2x
√
π

√
4πL(2L/e)2L

√
2πL(L/e)L2L(2x2)L

=

√
2

ex2x
√
π

(22L)(L2L)(eL)

(e2L)(LL)(2L)(2x2)L

=

√
2

ex2x
√
π

2LLL

eL(2x2)L
=

√
2

ex2x
√
π

LL

eL(x2)L
.

This is minimal in bx2 + 1/2c so given x we can achieve an error of

√
2

ex2x
√
π

LL

eL(x2)L
≤

√
2

ex2x
√
π

bx2 + 1/2cbx
2+1/2c

ebx2+1/2c(x2)bx2+1/2c ≤
√

2√
π

(1 + 1/2x2)bx
2+1/2c

xe(2x2−1/2)
.

72 CHAPTER 3. GOSSIP FOR PRIVATE AVERAGING (GOPA)

As we use erfc for large values of x, we assume x ≥ 1 which will not affect our reasoning,
and then we can simplify the above by

Eerfc(x) ≤
√

2√
π

(1 + 1/2x2)bx
2+1/2c

xe(2x2−1/2)
≤
√

2√
π

3
√

6/4

xe(2x2+3/2)
≤ 1

2

√
27

π

1

e(2x2−1/2)
.(3.35)

Then, by Equation (3.35) and if

B

2
≥ 1

2

√
27

π

1

e(2x2−1/2)
≥ Eerfc(x),

the prover will use the erfc series, else the erf series. In the latter case, we require that√
27

π

1

2e(2x2−1/2)
≥ B

2
,

which implies √
27

π

1

B
≥ e(2x2−1/2).

The above is equivalent to

ln(27/π)/2 + ln(1/B) ≥ 2x2 − 1/2,

which implies
1.076 + ln(1/B)/0.434 ≥ (2x2 − 1/2)

and

xminerfc =

√
ln(1/B)

2
+ 0.788 ≥ x. (3.36)

Now that we bounded the domains of erf and erfc, we can obtain the number of terms
to evaluate for the series. As shown in Equation (3.29), this is an alternating series too, so
to reach an error smaller than B/2, it is sufficient to truncate the series when terms get
smaller than B/2 in absolute value. In particular, we need L terms with

2x2L+1

√
πL!(2L+ 1)

≤ B

2
.

Using again Stirling’s approximation, this means

2x2L+1

√
π
√

2πL(L/e)L(2L+ 1)
≤ B

2
.

Taking logarithms, we get

ln(2) + (2L+ 1) ln(x)− ln(π
√

2)− (L+ 1/2) ln(L) +L− ln(2L+ 1) ≤ ln(B)− ln(2).

We have that 2 ln(2)− ln(π
√

2)− ln(2L+ 1) ≤ 0, so the above inequality is satisfied if

(2L+ 1) ln(x)− (L+ 1/2) ln(L) + L ≤ ln(B)

which is equivalent to
(L+ 1/2) ln(ex2/L) ≤ ln(B),

3.6. CORRECTNESS AGAINST MALICIOUS USERS 73

or written differently:

(L+ 1/2) ln

(
1− L− ex2

L

)
≤ ln(B)

As ln(1 + α) ≤ α, this is satisfied if

−(L+ 1/2)
L− ex2

L
≤ ln(B),

which is equivalent to

(L+ 1/2)
L− ex2

L
≥ ln(1/B).

The above is satisfied if
L− ex2 ≥ ln(1/B).

It follows that we need
L ≥ ln(1/B) + ex2.

Substituting the worst case value xminerfc of x from Equation (3.36), we get

L ≥
⌈(

1 +
e

2

)
ln(1/B) + 0.79e

⌉
which, approximating, is implied if

L ≥ d2.36 ln(1/B) + 2.15e = Lerf . (3.37)

Now, to compute Lerfc, we just observe in Equation (3.35) that the error gets smaller
as x increases, so the biggest error for a fixed number of terms of the series is in xminerfc .
Therefore, plugging Equation (3.36) we have

Lerfc = b(xminerfc)2 + 1/2c

=

⌊
ln(1/B)

2
+ 0.788 +

1

2

⌋
=

⌊
ln(1/B)

2
+ 1.288

⌋
. (3.38)

Required precision ζ Now we determine the storage needed in our fixed precision
representation such that the rounding error is smaller than B/2. We have to consider error
propagation and the errors Ediv and Emul due to division and product ZKPs respectively,
which are equal to ζ/2. Let El be the error to compute the tl terms of the erf series. The
total erf rounding error is then

Eround
erf =

2√
π

(
Lerf∑
l=0

El
2l + 1

+ Ediv

)
+ Emul.

We require 1/ζM2 to be an integer so as the variable x is a multiple of 1/M , we can
represent x and x2 without rounding. As t0 = x we have that E0 = 0, and for other terms

74 CHAPTER 3. GOSSIP FOR PRIVATE AVERAGING (GOPA)

we have

tl+1 ± El+1 =
(tl ± El)x2 ± Emul

l + 1
± Ediv

=
tlx

2 ± Elx2 ± ζ/2
l + 1

± ζ

2

=
tlx

2

l + 1
±
(
Elx

2 + ζ/2

l + 1
+
ζ

2

)
.

Then the absolute error at term l + 1 is

El+1 =
Elx

2 + ζ/2

l + 1
+
ζ

2
≤ Elx

2

l + 1
+ ζ.

For 1 ≤ l ≤ x2 − 1 we have El ≥ ζ and

El+1 = El
x2

l + 1
+ ζ ≤ 2El

x2

l + 1
.

If l + 1 ≤ x2, we can easily see that

El ≤ ζ2l−1x
2(l−1)

l!
. (3.39)

If l + 1 > x2, we have that

El+1 = El
x2

l + 1
+ ζ ≤ El + ζ.

From the above and plugging Equation (3.39) we have

El ≤ Ebx2c + (l − bx2c)ζ

≤ ζ2bx
2cx

2bx2c

bx2c!
+ (l − bx2c)ζ.

From the above, independently of x2 and l we have that

El ≤ ζ2bx
2cx

2bx2c

bx2c!
+

l∑
k=bx2c+1

ζ

= ζ
(2x2)bx

2c

bx2c!
+

l∑
k=bx2c+1

ζ.

We assume x ≥ 1 as Eround
erf is smaller when x ∈ [0, 1). Using the Stirling approximation

we can bound El to

El ≤ ζ
(2x2)bx

2cebx
2c√

2πbx2cbx2cbx2c
+

l∑
k=bx2c+1

ζ

≤ ζ
(2e)x

2

√
2πx

+
l∑

k=bx2c+1

ζ

≤ ζ
(2e)x

2

√
2π

+
l∑

k=bx2c+1

ζ.

3.6. CORRECTNESS AGAINST MALICIOUS USERS 75

Then

Eround
erf = Emul +

2√
π

Lerf∑
l=0

Ediv +
El

2l + 1

≤ ζ

2
+

2√
π

Lerf∑
l=0

ζ

2
+

1

2l + 1

ζ (2e)x
2

√
2π

+
l∑

k=bx2c+1

ζ

=
ζ

2
+

2√
π
ζ

Lerf + 1

2
+

Lerf∑
l=0

1

2l + 1

(2e)x
2

√
2π

+

Lerf∑
l=0

1

2l + 1

l∑
k=bx2c+1

1

=
ζ

2
+

2√
π
ζ

Lerf + 1

2
+

Lerf∑
l=0

1

2l + 1

(2e)x
2

√
2π

+

Lerf∑
l=bx2c+1

l − bx2c
2l + 1

≤ ζ

2
+

2√
π
ζ

Lerf + 1

2
+

Lerf∑
l=0

(2e)x
2

√
2π

+

Lerf∑
l=bx2c+1

l − bx2c
2l

=
ζ

2
+

2√
π
ζ

Lerf + 1

2
+ (Lerf + 1)

(2e)x
2

√
2π

+

Lerf∑
l=bx2c+1

1− bx
2c

2l

≤ ζ

2
+

2√
π
ζ

Lerf + 1

2
+ (Lerf + 1)

(2e)x
2

√
2π

+

Lerf∑
l=bx2c+1

1

≤ ζ

2
+

2√
π
ζ

(
Lerf + 1

2
+ (Lerf + 1)

(2e)x
2

√
2π

+ Lerf + 1

)

≤ ζ

2
+

2(Lerf + 1)√
π

ζ

(
1

2
+

(2e)x
2

√
2π

+ 1

)

≤ ζ

2
+

2(Lerf + 1)√
π

ζ

√
2(2e)x

2

√
π

=

(
1

2
+

√
8(Lerf + 1)(2e)x

2

π

)
ζ

≤ 2
√

8(Lerf + 1)(2e)x
2

π
ζ.

76 CHAPTER 3. GOSSIP FOR PRIVATE AVERAGING (GOPA)

By plugging Equation (3.37) we have

Eround
erf ≤ 2

√
8(2.36 ln(1/B) + 2.15)(2e)x

2

π
ζ

≤ (13.36 ln(1/B) + 12.17)(2e)(xminerfc)2

π
ζ

≤ (13.36 ln(1/B) + 12.17)(2e)ln(1/B)/2+0.788

π
ζ

≤ (13.36 ln(1/B) + 12.17)(2e)log2e(1/B) ln(2e)/2(2e)0.788

π
ζ

≤ 3.8(13.36 ln(1/B) + 12.17)(1/B)ln(2e)/2

π
ζ

≤ 50.8 ln(1/B) + 48.3

πB0.85
ζ. (3.40)

The erfc case requires a similar analysis. To compute error of terms m0, . . . ,mLerfc

defined in the ZKP we take into account the error propagation and the error of our finite
precision. Let now Fi be the absolute error of the term mi. We have that F0 = 0 and

mi+1 ± Fi+1 =
(mi ± Fi)(2i+ 1)

2x2
± Ediv

=
mi(2i+ 1)

2x2
±
(
Fi(2i+ 1)

2x2
+
ζ

2

)
= mi+1 ±

(
Fi(2i+ 1)

2x2
+
ζ

2

)
.

Hence,

Fi+1 =
Fi(2i+ 1)

2x2
+
ζ

2
.

In erfc, i < Lerfc = b(xminerfc)2 + 1/2c therefore

Fi(2i+ 1)

2x2
+
ζ

2
≤ Fi +

ζ

2
.

Then we have that Fi ≤ i ζ
2
. The total error is

Eround
erfc =

e−x
2

x
√
π

Lerfc−1∑
i=0

Fi

=
e−x

2

x
√
π

Lerfc−1∑
i=0

i
ζ

2

=
e−x

2

x
√
π

(Lerfc − 1)Lerfc

2

ζ

2
.

3.6. CORRECTNESS AGAINST MALICIOUS USERS 77

Plugging Equation (3.38) to the above we have

Eround
erfc ≤ (0.5 ln(1/B) + 1.288)2

4ex2x
√
π

ζ

≤ 0.25 ln2(1/B) + 1.288 ln(1/B) + 1.659

4e(xminerfc)2√
π

ζ

≤ 0.25 ln2(1/B) + 1.288 ln(1/B) + 1.659

4eln(1/B)/2+0.788
√
π

ζ

≤ 0.25 ln2(1/B) + 1.288 ln(1/B) + 1.659

8
√

1/B
√
π

ζ. (3.41)

Now we determine what value of ζ is needed. Equations (3.40) and (3.41) fix our
requirements to

Eround
erf ≤ 50.8 ln(1/B) + 48.3

πB0.85
ζ ≤ B

2

and to

Eround
erfc ≤ 0.25 ln2(1/B) + 1.288 ln(1/B) + 1.659

8
√

1/B
√
π

ζ ≤ B

2
.

Eround
erf imposes the biggest constraint to ζ , as it requires that

ζ ≤ πB1.85

101.6 ln(1/B) + 96.6
= O

(
B1.85

ln(1/B)

)
.

Typically, one would like the total error (due to approximation and rounding) to be
negligible with respect to the standard deviation ση, so one could choose B = ση/106|UH |.

Computation Cost We now evaluate the computational cost of the proof. When we
say a task has “cost c”, it means that requires at most c cryptographic computations for
generating the proof, c for another party to verify it, and the exchange of cG bits, recalling
that we overload G to be the size in bits of an element of the set G.

The main statement of the ZKP is{(
x ∈

[
0,

⌊
yerfc
min

ζ

⌋]
∧ y = erf(x)

)
∨
(
y ∈

[⌊
yerfc
min

ζ

⌋
+ 1,

1

ζ

]
∧ 1− y = erfc(x)

)}
(3.42)

where yerfc
min = erf (xminerfc) is a public constant. The main costs are in the proofs of erf and

erfc.
Proving computations of erf in Equation (3.33) requires 3 range proofs of cost of at

most 10 log2(1/ζ), 10 log2(l) and 10 log2(2l + 1). As l ≤ Lerf = 2.36 ln(1/B), the cost
of evaluating a term is 10 log2(1/ζ) + 20 log2(ln(1/B)). We evaluate Lerf terms. The total
cost is

Lerf(10 log2(1/ζ) + 20 log2(ln(1/B))) = 10Lerf log2(1/ζ)Lerf + 20 log2(ln(1/B)).

The dominating term above is

10 log2(1/ζ)Lerf = 23.6 log2(1/ζ) ln(1/B) < 34.1 ln(1/ζ) ln(1/B).

78 CHAPTER 3. GOSSIP FOR PRIVATE AVERAGING (GOPA)

For erfc, we require Lerfc proofs of the computation in Equation (3.34), one for each term,
and its cost is dominated by

10 log2(q)Lerfc = 10 log2(q) b0.5 ln(1/B) + 1.288c .

Neglecting lower order constants, the above is dominated by

10 log2(q)0.5 ln(1/B) = 5 log2(e) ln(q) ln(1/B) < 7.22 ln(q) ln(1/B).

The total cost is the sum of the costs of the erf and erfc ZKPs, which is dominated by

ln(1/B) (34.1 ln(1/ζ) + 7.22 ln(q))

≤ log2(1/B) (17.05 log2(1/ζ) + 3.61 log2(q)) .

3.7 Computation and Communication Costs

This section summarizes each component of the cost of GOPA, relying in particular on the
cost of proving computations of Section 3.6.

Dominant computations are exponentiations in the cryptographic group G defined for
Pedersen commitments in Section 2.4. The cost of signing messages is negligible. We
describe costs centered on any user u ∈ U , which is natural as most operations can be
performed asynchronously and in parallel. For simplicity, when we say a task costs c, it
means that costs at most c computations for proving a computation, c computations for
another party verifying this computation and it requires the exchange of cG bits, where we
overload G to be size in bits of an element of the set G. Some computations depend on
fixed-precision parameter ζ to represent numbers in Zq (see Section 3.6.1) and the amount
1/B of equiprobable bins used to sample independent noise ηu (see Section 3.6.7).

Each phase of the verification protocol is summarized in Section 3.6.2. The cost breaks
down as follows:

• The Phase 2 Setup requires generating public randomness which has constant cost
(except for O(1) parties that perform some extra computations, see Algorithm 3)
and private seeds that require 2 range proofs in the interval [0, 1/Bζ], with a final
cost of 20 log2(1/B) + 20 log2(1/ζ).

• Validity of input at Phase 3 Verification requires a range proof in the interval [0, 1/ζ],
with a cost of 10 log2(1/ζ). Extra computations of consistency cannot be accounted
here as they depend on the nature of external computations.

• Correctness of computations of properties (3.25) and (3.26) at Phase 3 Verification
cost at most 5|N(u)|+4, accounting the computations over commitments and proofs
of knowledge of terms of each property.

• The verification of Property (3.27) at Phase 3 Verification costs

log2(1/B)(17.05 log2(1/ζ) + 3.61 log2(q))

(see Section 3.6.7).

3.8. EXPERIMENTS 79

The overall cost of a protocol for user u is at most

5|Nu|+ 20 log2(1/B) + 30 log2(1/ζ) + log2(1/B)(17.05 log2(1/ζ) + 3.61 log2(q)) + 4.

The following statement summarizes our results.

Theorem 8 (Complexity of GOPA). Let ζ > 0 be the desired fixed precision such that the
number 1 is represented as 1/ζ . LetB > 0 be such that the ηu’s are drawn from a Gaussian
distribution approximated with 1/B equiprobable bins. Then, each user u, to perform and
prove its contribution, requires O(|N(u)| + log(1/ζ) log(1/B) + log(1/B) + log(1/ζ))
computations and transferred bits. The verification of its contribution requires the same
cost.

3.8 Experiments

Private averaging We present some numerical simulations to study the empirical utility
of GOPA and in particular the influence of malicious and dropped out users. We consider
n = 10000, ε = 0.1, δ = 1/n2 and set the values of k, σ2

η and σ2
∆ using Corollary 1 so that

GOPA satisfies (ε, δ)-DP. Figure 3.2 (left) shows the utility of GOPA as a function of ρ,
which is the (lower bound on) the proportion of users who are honest and do not drop out.
We see that even for reasonably small ρ, GOPA achieves a utility of the same order as a
trusted curator that would average the values of all n users. In Section 3.6.4, we already
described the ability of GOPA to tolerate a small number of residual pairwise noise terms
of variance σ2

∆ in the final result. We note that this feature is rather unique to GOPA and is
not possible with secure aggregation [22, 12].

Application to federated SGD We present some experiments on training a logistic
regression model in a federated learning setting. We use a binarized version of UCI
Housing dataset with standardized features and points normalized to unit L2 norm to
ensure a gradient sensitivity bounded by 2. We set aside 20% of the points as test set and
split the rest uniformly at random across n = 10000 users so that each user u has a local
dataset Du composed of 1 or 2 points.

We use the Federated SGD algorithm, which corresponds to FedAvg with a single
local update [104]. At each epoch, each user computes a stochastic gradient using one
sample of their local dataset; these gradients are then averaged and used to update the
model parameters. To privately average the gradients, we compare GOPA (with ρ = 0.5) to
(i) a trusted aggregator that averages all n gradients in the clear and adds Gaussian noise to
the result as per central DP, and (ii) local DP. We fix the total privacy budget to ε = 1 and
δ = 1/(ρn)2 and use advanced composition to compute the budget allocated to each epoch.
The step size is tuned for each approach, selecting the value with the highest accuracy after
a predefined number T of epochs.

Figure 3.2 (middle) shows a typical run of the algorithm for T = 50 epochs. Local
DP is not shown as it diverges unless the learning rate is overly small. On the other hand,
GOPA is able to decrease the objective function steadily, although we see some difference
with the trusted aggregator (this is expected since ρ = 0.5). Figure 3.2 (right) shows the
final test accuracy (averaged over 10 runs) for different numbers of epochs T . Despite the

80 CHAPTER 3. GOSSIP FOR PRIVATE AVERAGING (GOPA)

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Proportion of honest users that did not drop out

10 4

10 3

10 2

10 1

V
a
ri

a
n
ce

 o
f

e
st

im
a
te

d
 a

v
e
ra

g
e

GOPA (k-out graph)
Central DP with n users

Local DP n users

0 10 20 30 40 50
Number of epochs

0.2

0.3

0.4

0.5

0.6

0.7

O
b
je

ct
iv

e
 f

u
n
ct

io
n

FedSGD with GOPA (= 0.5)

FedSGD with Trusted curator (Central DP)

10 20 30 40 50
Number of epochs

0.4

0.5

0.6

0.7

0.8

0.9

T
e
st

 a
cc

u
ra

cy

FedSGD w. trusted curator (Central DP)

FedSGD w. GOPA (= 0.5)

FedSGD w. local DP

Figure 3.2: Comparing GOPA to central and local DP. Left: Utility of GOPA (measured by
the variance of the estimated average) w.r.t. ρ. Middle: Evolution of the objective for a
typical run of FedSGD. Right: Test accuracy of models learned with FedSGD. See text for
details.

small gap in objective function, GOPA nearly matches the accuracy achieved by the trusted
aggregator, while local DP is unable to learn useful models.

3.9 Conclusion

We proposed GOPA, a protocol to privately compute averages over the values of many
users. GOPA satisfies DP, can nearly match the utility of a trusted curator, and is robust
to malicious parties. It can be used in distributed and federated ML [80, 84] in place of
more costly secure aggregation schemes. In future work, we plan to provide efficient
implementations, to integrate our approach in complete ML systems, and to exploit scaling
to reduce the cost per average. We think that our work is also relevant beyond averaging,
e.g. in the context of robust aggregation for distributed SGD [19] and for computing
pairwise statistics [11].

Chapter 4

Private Sampling with Malicious
Samplers

In this chapter, we present our second contribution. We first discuss the importance of
privacy-preserving verifiable sampling and define different types of sampling tasks. We
propose a high-level methodology and several protocols to perform these tasks for different
statistical distributions. Then, we analyze the security of these protocols in the presence of
malicious participants. After that, we provide a comparison of accuracy and cost between
the proposed and previously existent techniques. Finally, we show their application to
distributed mechanisms for differential privacy.

4.1 Introduction

Nowadays, randomization is an important algorithmic technique. Its numerous applications
include randomized algorithms, e.g., for many problems the simplest or most efficient
known solution strategy is a randomized algorithm, and hiding information, e.g., in
cryptography or in differential privacy. While true randomness is hard to achieve in most
cases it is sufficient to be able to generate pseudo-random numbers. A wide range of
approaches exist to generate pseudo-random numbers of good quality.

The situation becomes more complicated when we consider generating random num-
bers in the context of multi-party computation between parties which do not trust each
other. We are particularly interested in algorithms which allow multiple parties to draw a
random number from a specified probability distribution in such a way that all parties can
be convinced that the number drawn is truly random and that either all parties, only one
party, or none of the parties learn the drawn random number. This implies that no party
should be able to influence the probability distribution or be able to predict or guess the
random number.

Such algorithms are particularly useful for differentially private federated machine
learning using sensitive data from multiple data owners. In this setting, one would like to
learn a statistical modelM with parameters θ on the sensitive data of multiple data owners.
Such model could reveal sensitive information and therefore one possible technique is to
perturb the model before publication sufficiently such that it becomes differentially private
[60], i.e., such that from the perturbed model M̂ with parameters θ̂ one cannot distinguish
a change in a single individual. This can be achieved by drawing some noise η from an
appropriate probability distribution, e.g., η often is a vector of Laplace or Gaussian random
variables, and setting θ̂ = θ + η. In such scenario it is important nobody knows η as else

81

82 CHAPTER 4. PRIVATE SAMPLING WITH MALICIOUS SAMPLERS

that party could subtract η from the published θ̂ to obtain the sensitive model parameters θ.
At the same time, all data owners want to be sure that η is drawn correctly: if anyone can
bias the distribution of this noise, privacy may not be guaranteed anymore or the model
parameters may be biased in a way similar as what one can achieve with data poisoning
[123, 130].

In this paper we develop algorithms to verifiably draw random numbers. We con-
sider uniform distributions, Laplace distributions, Gaussian distributions and arbitrary
distributions. We develop strategies with three different privacy levels for the random
number: strategies which verifiably draw a publicly known random number, strategies
which verifiably draw a random number which is revealed to only one party and strategies
which verifiably draw a random number and output it as a shared secret so that none of the
parties knows the random number.

An important tool to prove correct behavior can be found in zero knowledge proofs
(ZKP). These are cryptographic techniques that allow a party to prove statements without
revealing anything else. Typically, one considers statements involving logical and arith-
metic relations over private values which can be expressed using additions, multiplications
and other elementary operations such as comparisons. For drawing from Laplace or Gaus-
sian distributions, transcendental functions are needed. We work towards bridging this gap
based on Cordic [129], a classic technique for computing such functions.

The main contributions of this paper can be summarized as follows: (1) we propose
strategies to prove relationships involving logarithms or trigonometric functions in zero
knowledge, (2) we propose and compare several strategies to let a party verifiably draw
Gaussian random numbers, (3) we propose algorithms to let one party verifiably sample
from the Laplace distribution and from an arbitrary distribution, (4) we propose algorithms
to draw from the Gaussian or Laplace distribution a random number represented as a
shared secret.

The remainder of this chapter is structured as follows: After reviewing some prelimi-
nary concepts in Section 4.2, we formalize our problem statement in Section 4.3. Next, in
Section 4.4 we discuss related work and in Section 4.5 we provide a high-level overview
of our method. After that, in Section 4.6 we review the Cordic algorithm and adapt it for
zero-knowledge proofs. In Sections 4.7 and 4.8 we apply these techniques for sampling
from the Laplace and Gaussian distributions. In Section 4.9, we analyze the security of
our protocols. To show how our methods work in practice, in Section 4.10 we provide an
experimental comparison of the several possible strategies to sample from the Gaussian
distribution. In Section 4.11 we discuss the application of our techniques to the problem of
differentially private machine learning. Finally, in Section 4.12 we conclude and outline
directions of future work.

4.2 Preliminaries

We will follow the general notation in Section 2.1. We use the vector variant of Pedersen
commitments, and pseudo-random generators (PRG) defined in Section 2.4. Parties
communicate through secure channels and have access to a public bulletin board, as
defined in Section 3.6.1 for GOPA, that they can use to post messages. When a party
sends a message to the bulletin board, it is forwarded to all other agents as when using a
broadcast channel. In addition, all broadcasted messages remain publicly visible in the
bulletin board, which allows to have publicly verifiable protocols.

4.2. PRELIMINARIES 83

In parts of our protocols, we make use of specific Zero Knowledge Proofs that are
non-interactive versions of compressed Σ-protocols defined in Section 2.5 and whose
security relies on the Random Oracle Model [13].

We briefly summarize our threat model, which compressed Σ-protocols we use and
describe secret sharing below.

Threat Model We consider a set of n parties P = {P1, . . . , Pn}. We assume that a
subset of parties Pcor ⊂ P is corrupted and controlled by an adversary A. A can make
corrupted parties to deviate arbitrarily from the protocol and perform coordinated attacks.
Our protocols are secure if at least one party is honest. The set Pcor of corrupted parties is
assumed to be static, meaning that it does not change after the beginning of the execution.

We prove security in the simulation paradigm, using the covert security model in
its strong explicit cheat formulation [6, Def. 3.3]. We assume parties are able to detect
malicious actions and can in such cases abort the protocol. Deterrence measures may be in
place to discourage parties from being detected as malicious. In fact, unless parties stop
participating our protocols either complete successfully or abort with a proof that a specific
party is a cheater, i.e., in case our protocols abort the message trace (which is kept on the
bulletin board) allows for proving that a specific party did not follow the protocol.

Protocols with covert security provide in most cases weaker guarantees than in the
framework of malicious security with abort [71, Ch 7], because the former allows a certain
probability of success when cheating while in the latter it is guaranteed that protocols
either finish correctly or abort. In our protocols, cheaters are detected with overwhelming
probability, which provides the same guarantees as the model of malicious security with
abort [6, Prop. 3.10]. We have nonetheless decided to use the definition of the covert
security model as it explicitly formalizes the ability of honest parties to determine who
has cheated. Assuming that adversaries will be deterred if they risk getting caught is a
standard assumption that applies in many scenarios [6].

We provide a detailed description of our security framework and prove the security of
our protocols in Section 4.9.

Compressed Σ-protocols We use compressed Σ-protocols described in sections 2.5.3
to 2.5.7. Particularly, we use Protocol Πcs of in Section 2.5.5, that proves the nullity of
the output of arithmetic circuits in Zq applied to private inputs. Let G, Zq, and ḡ be as
defined for vector commitments, then for any circuit C : Zkq → Zsq, by applying Πcs to C
we obtain a complete, sound and zero knowledge proof for the relation

{(P ∈ G; x̄ ∈ Zkq) : P is a commitment of x̄ ∧ C(x̄) = 0)}.

While Πcs is an interactive protocol betweenP and V , it can be turned into a non-interactive
proof using the Strong Fiat-Shamir heuristic [16]. By this transformation, ZKPs can be
generated offline by P and later be verified by any party.

Let m be the number of multiplication gates of C, then the proof generated by the
execution of Πcs has a size of 2dlog(k + 2m+ 4)e − 1 elements of G and 6 elements of
Zq. To generate such proof, the dominant computations are modular exponentiations in G
(GEX). P performs 5k+ 8m+ 2dlog2(k+ 2m+ 4)e+ 6 GEX, and the verification cost is
of k + 2m+ 2dlog2(k + 2m+ 4)e − 1 GEX. Details on costs are explained in more detail
in Section 2.5.7.

84 CHAPTER 4. PRIVATE SAMPLING WITH MALICIOUS SAMPLERS

Secret Sharing Consider a set of n parties {i}ni=1. For a positive prime q, group Zq, and
a number a ∈ Zq, one can generate an additive secret share for a by drawing a random
vector (a1, . . . , an) ∈ Znq subject to the constraint that

∑n
i=1 ai = a mod q. We then denote

this sharing of a as JaK = (a1 . . . an). The process of computing and revealing a from the
sharing JaK is called opening the sharing JaK. If every party i only receives ai (for i ∈ [n]),
then if not all parties collude each party can only see at most n− 1 uniformly randomly
distributed numbers, and hence has no information about the value of a.

If for one or more values a sharing is available, it is possible to perform various
operations on them without revealing any new information, see [51] for an overview.
If JaK = (a1 . . . an) is a sharing of a and JbK is a sharing of b, then Ja+ bK = (a1 +
b1 . . . an + bn) is a sharing of a + b. Given a sharing JaK of a and a public constant c,
then JcaK = (ca1 . . . can) is a sharing of ca. For multiplying two sharings, one can use
pre-computed triples of sharings (JxK, JyK, JzK) with x and y random and xy = z. Given
such triple, and two sharings JaK and JbK which one wants to multiply, one can compute
JdK = JaK− JxK and JeK = JbK− JyK and open both JdK and JeK. Then, a sharing of c = ab
is obtained by JcK = JzK + dJyK + eJxK + de. Several approaches have been proposed to
generate such triples of sharings (JaK, JbK, JcK) efficiently, typically involving a somewhat
homomorphic encryption (SHE) scheme with distributed decryption, where the parties can
generate random sharings JaK and JbK uniformly at random, encrypt them, multiply them
and decrypt the product in a distributed way to obtain JcK [51].

We will adopt a number of ideas from [50]. In particular, we will represent sharings
in binary form, denoting by BITS(x, (x(i))l−1

i=0) the relation JxK =
∑l−1

i=0

q
x(i)

y
2i with

x(i) ∈ {0, 1}.
The protocol BIT-ADD((Jx(i)K)l−1

i=0; (Jy(i)K)l−1
i=0) returns (Jz(i)K)l−1

i=0 such that there holds
z = x + y for BITS(x, (Jx(i)K)l−1

i=0), BITS(y, (Jy(i)K)l−1
i=0) and BITS(z, (Jz(i)K)l−1

i=0). To
implement it, let c(−1) = 0. For i = 0 . . . l − 1: Jz(i)K = BIT-XOR(Jx(i)K, Jy(i)K, Jc(i−1)K)
where BIT-XOR(a, b) = (a − b)2; and Jc(i)K = Jx(i)KJy(i)K + Jc(i−1)K((1− Jx(i)K)Jy(i)K +
Jx(i)K(1− Jy(i)K)). After this loop, return (Jz(i)K)li=1.

4.3 Problem Statement

We call Π a sampling protocol over a domain X if Π is a randomized multi-party protocol
which outputs sequences of elements of X . We consider sampling protocols which take
only one input per party at the beginning of the protocol. In particular, let U = {i}ni=1 be
the set of n parties which participate to a sampling protocol Π, and let si be the input (also
called seed) of party i (for i ∈ [n]). We denote the output of Π by Π(s̄) where s̄ = (si)

n
i=1

is the vector of seeds. We assume that there is some increasing polynomial p : N→ N such
that if s̄ ∈ {0, 1}k×n then Π(s̄) ∈ X p(k). Let s̄−i = (s1, . . . , si−1, si+1, . . . , s|s|) denote the
vector s̄ without the i-th component.

We use the threat model defined in Section 2.1, but we do not consider the problem of
parties dropping out. Therefore, malicious parties do not drop out as otherwise they will be
immediately detected and considered cheaters. For a multi-party protocol Π, we say a party
is honest if it follows the steps of protocol Π correctly and does not collude with other
parties. We say that a sampling protocol Π correctly samples from a probability distribution
D if there is a function µ with µ(k) negligible in k such that for every run of Π by parties
U = {i}ni=1, there exists i ∈ [n] such that party i is honest, for every s̄−i ∈ {0, 1}k×(n−1)

and for any probabilistic polynomial time algorithm A : {0, 1}k×(n−1) × X → {0, 1},

4.3. PROBLEM STATEMENT 85

there holds |Psi←R{0,1}k(A(s̄−i,Π(s̄)) = 1)− Px←RDp(k)(A(x) = 1)| ≤ µ(k), where Dp(k)

draws vectors from X p(k) whose components are independently distributed according to
D. In other words, if there is at least one honest party, then Π acts as a PRG even if all
parties except that honest party would disclose their seeds. As a result, as soon as a single
party is honest it can trust that any output of Π used by any party is pseudo-random and no
party could predict it in advance. We denote the fact that x is correctly drawn from D by
x←∗R D.

We say a protocol Π verifiably samples fromD if Π correctly samples fromD and after
every execution of Π the value of x is uniquely defined given the union of the information
obtained by all parties and the information published by Π is sufficient to convince any
party that x has been correctly drawn. We denote the fact that x is verifiably drawn from
D by x←V

R D.
In this paper, we will often informally consider both discrete and continuous probability

distributions, and PD then either represents a probability mass or probability density
according to the context. As computers work with finite precision, we will eventually
discretize up to some parameter-defined precision. While in the end all distributions
will be discrete, we will use the continuous representations whenever this simplifies the
explanation.

In the sequel, unless made explicit otherwise, we will assume there are n parties among
whom at least one is honest, and that D is a publicly agreed probability distribution. Also,
to simplify the explanation we will often describe protocols generating just one random
number, the extension to streams of random numbers is then straightforward.

We can distinguish several types of verifiable sampling protocols, depending on how
they output the sampled number x. For a verifiable sampling protocol Π, we say it is a

• public draw if after running Π the value of x is published.

• private draw if after running Π exactly one party knows x, but the other parties
have no information on x next to the prior distribution D.

• hidden draw if after running Π the parties have received an additive secret share
(x1, . . . , xn) for x, but still no party has any information about x next to the prior
distribution D.

In this paper, we study the problem of finding efficient verifiable sampling protocols of
each of the three above types given the probability distribution D.

This problem is reasonably straightforward if D is the uniform distribution over the
integers in the interval [0, L) for some L > 0:

Protocol 1 (Public uniform sampling). For each i ∈ [n] let party i generate its own
random number ri uniformly distributed over [0, L) from its own secret seed si and publish
a commitment Ci to it. Then, all parties open their commitment, i.e., they publish ri and
the randomness associated to the commitment to prove that Ci was a commitment to ri.
Finally, all parties compute publicly

∑n
i=1 ri mod L.

It is easy to see Protocol 1 draws r verifiably: if at least one party i is honest, it has
generated a uniformly distributed number ri and r is also uniformly distributed because no
dishonest party j can change their rj as a function of other parties because they start with
a commitment on their rj .

86 CHAPTER 4. PRIVATE SAMPLING WITH MALICIOUS SAMPLERS

Protocol 2 (Private uniform sampling). One can sample a vector of k numbers private
to party 1 as follows: party 1 draws uniformly at random a vector ā = (a1, . . . , ak) ∈
[0, L)k and publishes a vector commitment C to it. Then, all parties generate jointly
a public random number r ∈ [0, L) with Protocol 1. Party 1 expands r to random
numbers (r1, . . . , rk) ∈ [0, L)k using a PRG. Finally, for i ∈ [k], party 1 computes
ui = ai + ri mod L and performs a zero knowledge proof of the modular sum for each ui.
(u1, . . . , uk) is a vector of private uniform random numbers.

Again, it is easy to see that (u1, . . . , uk) is drawn verifiably. Note that Protocols 1 and 2
are simplified versions of previously described methods for generation of uniform random
numbers, explained in Section 3.6.3 of Chapter 3.

Protocol 3 (Hidden uniform sampling). For each i ∈ [n] let party i generate its own ran-
dom number ri uniformly distributed over [0, L) and publish a commitment Ci to it. Then,
they consider (r1, . . . , rn) as a secret share of the random number r =

∑n
i=1 ri mod L.

After running Protocol 3, if there is a honest party, r is fixed and follows the right
probability distribution, and as not all parties collude no party knows more about r than
that it follows the uniform distribution over [0, L).

The problem of finding efficient verifiable sampling protocols becomes more chal-
lenging when D is not the uniform distribution, but a more general distribution such as
a normal distribution or a Laplace distribution. Even for single party computation there
sometimes exist multiple approaches with varying cost and precision.

4.4 Related Work

Below we describe lines of work that are related to ours.

Multiparty Computation between unreliable participants The seminal work of [20]
proposed the first protocol to sample a public random bit (i.e. tossing a coin) between two
parties that do not trust each other. Subsequent works such as [26] proposed protocols to
perform coin tossing between an arbitrary number of parties.

The work of [43] proved that in the malicious model without aborts it is impossible
that a multiparty protocol is guaranteed to finish correctly and perform an unbiased coin
toss if the number of malicious users is half or more of the total of participants. However,
it is possible to produce an unbiased outcome if we do not guarantee that the protocol
will always finish no matter what malicious participants do. Our protocols can generate
unbiased random numbers even if only a few parties are honest-but-curious, by allowing
for aborts when parties detect that other parties cheat.

The work [6] proposes covert security, a framework for security against adversaries
where cheating adversaries can be caught. Our work fits in that framework. However, in
our work, cheaters get caught with overwhelming probability, which makes our protocols
very similar to malicious security with abort [71, Ch 7]. The malicious security with abort
framework, however, is slightly less expressive as it does not allow for detecting which
parties are cheating.

The work [72] proposes a method to securely perform a wide family of randomized
computations (related to interactive games) over private data and private random numbers,
using zero knowledge proofs to verify correctness. They prove that this is secure in the
ideal paradigm without abort if the majority of parties is honest.

4.4. RELATED WORK 87

Sampling from Gaussians and other popular non-uniform distributions. Distribu-
tions such as the Gaussian distribution, the Laplace distribution, the Poisson distribution or
the exponential distribution are important in the field of statistics. Algorithms to securely
draw from such distributions have applications in federated machine learning. Several
contributions concern the problem of verifiable noise for differential privacy [127, 88] and
hence can benefit from secure drawing.

Even in the semi-honest model where parties follow the specified protocol, drawing
hidden random numbers is sometimes non-trivial. For example, in [41] one needs to make
a sum of statistics and a Laplacian-distributed noise term, hence the authors propose a
protocol where parties generate random numbers summing to a Laplacian distributed value
which can then be included in a secure aggregation without being revealed.

In [59], protocols are proposed to generate secret-shared samples for Gaussian, Expo-
nential and Poisson distributions. For the Gaussian distribution, their approach generates
samples by averaging uniform seeds, a method which we call the Central Limit Theorem
(CLT) approach. We compare the CLT approach with our approaches in Section 4.10.
Even if more than a decade has passed since [59], recent contributions still resort to these
techniques to generate Gaussian samples among unreliable participants. For example,
recent protocols use the technique of [59] by adapting it to generate private draws from the
Exponential distribution [111] and to sample hidden draws from the Binomial distribution
[18]. The work of [102] proposes techniques to securely sample from the geometrical and
Gaussian distributions, both building on [59], and studies them in the light of differentially
private memory access patterns. In addition, [102] defines an extension of the malicious
security model which includes information leakage, as measured in differential privacy,
and proves the security of their protocols within this model.

In our work, we propose new techniques for privately drawing from the Gaussian
distribution and show that all our techniques for all but the lowest precision requirements
outperform the technique of [59], which is the most efficient method known so far. The
same dynamics are at play for exponential, Poisson and Laplace distributions. Compared to
the techniques in [59], our methods have a better complexity as a function of the precision
parameter. We extend our methodology to hidden draws of Gaussian, Laplacian and
Arbitrary distributions. Achieving sufficient precision when sampling is important for both
the statistical quality and the security of the algorithms [108].

Implementation of math functions using cryptographic primitives Using secret shar-
ing techniques, there is a large body of work on how to compute math functions such as
square roots, logarithms and trigonometric [53, 4, 96, 10, 75, 75]. However they usually
rely on splines or other approximation techniques that approximate functions by splitting
the domain and using low-degree polynomials for each part. Alternatively, they rely on
rational approximations. Piecewise approximations require the use of conditionals which
are expensive when computing with secret shares, and rational approximations only allow
for a fixed precision. Our work uses iterative approximations which allow to customize
the precision of the approximation and are easy to compute given that we avoid the use of
comparison gates in our circuits. Furthermore, for the Gaussian distribution, piecewise
approximations require an external method to sample from the tails of the distribution.
We also show protocols for private sampling from Gaussian and Laplace distributions
where we avoid the high cost of secret shared computation by letting one party perform
the calculation and then prove correct behavior using compressed Σ-protocols.

Zero Knowledge Proofs for such functions, as we apply in our work, is a less explored

88 CHAPTER 4. PRIVATE SAMPLING WITH MALICIOUS SAMPLERS

technique. [133] proposes techniques to prove a limited set of relations involving common
activation functions in machine learning.

4.5 Method

We start with discussing two generic approaches: a strategy based on the inverse cumulative
probability distribution and a strategy based on table lookup.

4.5.1 Inverse Cumulative Probability Distribution
Assume D is a probability distribution on X ⊆ R. The cumulative probability distribution
is defined as

FD(x) =

∫
t≤x

PD(t) dt

To the extent D is discrete, we can see PD as a sum of scaled Dirac delta functions over
which integration is possible and results in a sum. Then, the inverse F−1

D is a function on
the interval (0, 1).

An approach to sampling from arbitrary distributions D on domains X ⊆ R, known as
the inversion method, consists of sampling uniformly from the (0, 1) interval and applying
the inverse of the cumulative distribution function F−1

D . Indeed, if t ←R (0, 1), then
P (F−1

D (t) = x) = PD(x).

Public Sampling from an Arbitrary Distribution This approach can easily be applied
to draw random numbers publicly:

Protocol 4 (Public draw from arbitrary distribution). Run Protocol 1 to generate a public
uniformly distributed random number r′, and then publicly compute r = F−1

D (r′).

Using the inversion method for private or hidden draws is more involved since one
needs a multi-party algorithm to compute F−1

D or a ZKP algorithm to prove to other parties
that F−1

D was applied correctly. In many practical cases, F−1
D does not have a simple closed

form. This especially holds for the Gaussian distribution which we will discuss in more
detail in Section 4.8.

We can extend this method to multi-variate distributions. For example, consider a
distribution D over R2. To sample a pair (x, y) according to D, we first define Px(x) =∫
PD(x, y) dy, apply the inversion method to draw a random number x according to Px,

and then define Py|x(y) = PD(y|x) = PD(x, y)/Px(x) and apply again the inversion
method to draw a random y.

4.5.2 Table Lookup
As pointed out above, practical inverse cumulative probability functions are often expensive
to compute, especially in a secure multi-party setting. In such scenarios approaches such
as the ones discussed in Sections 4.5.1 and 4.8 incur a high cost for each drawn random
number. In this section we consider an approach based on table lookup. While the involved
techniques are well-known, this approach is interesting as a baseline, especially as it has a
number of properties which are different from the other methods considered in this paper.
In particular, the method studied here has a high pre-processing cost but then allows for
drawing random numbers at a low constant cost per drawn random number.

4.5. METHOD 89

Protocol 5 (Table-lookup private sampling).

1. Preprocessing. Let M ∈ N. The parties publicly pre-compute the pairs(
i, F−1
D

(
2i− 1

2M

))
for all i ∈ [M] and store them into a database DB.

2. Sampling. Party 1 privately draws using Protocol 2 a random number r′ distributed
uniformly in [M]. Then, party 1 sets r = F−1

D
(

2r′−1
2M

)
, publishes commitments to r′

and r, and publishes a ZKP that (r′, r) ∈ DB.

In Protocol 5 a zero knowledge set membership proof is needed. There is a large body of
work on this topic since in [28] a seminal method was shown that has a large preprocessing
cost (linear in M) but only a unit communication cost for proving membership. Several
improvements have been proposed which vary in their assumptions and efficiency, [15]
discusses some lines of recent work.

Only already storing the database DB may take a prohibitive amount of space if a high
precision is needed, as M is exponential in the number of desired correct digits. As a
result, this technique can only be used when the needed precision is not too high. If it is
feasible, it is expensive for drawing only a few random numbers but it can become more
efficient than other methods if a huge number of random numbers need to be drawn, as
asymptotically the cost per sample will dominate.

4.5.3 Laplace distribution
Recall the Laplace distribution, denoted Lap(b) and defined by

PLap(b)(x) =
1

2b
exp

(
−|x|
b

)
.

The cumulative distribution is

FLap(x) =
1

2
+

sign(x)

2
− sign(x) exp

(
−|x|

2

)
.

To sample a number r from Lap(b) it is convenient to separately draw the sign s and
absolute value a of r. Then, P (s = −1) = P (s = 1) = 1/2 and P (a) = 1

b
exp

(
−a
b

)
and

P (a ≤ t) = 1− exp
(
− t
b

)
. In Section 4.7 we will describe protocols for both private and

hidden Laplace-distributed draws.

4.5.4 Gaussian distribution

Recall the Gaussian distribution, denoted by N (µ, σ2) and defined by

PN (µ,σ2)(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
.

We will sometimes use the shorthand PN = PN (0,1). The cumulative distribution is

FN (x) =
1

2

(
1 + erf

(
x√
2

))
(4.1)

90 CHAPTER 4. PRIVATE SAMPLING WITH MALICIOUS SAMPLERS

where erf is the error function. There is no closed form for PN , FN nor its inverse. In the
single party setting multiple strategies have been investigated to sample from this important
distribution:

• the Central Limit Theorem (CLT) approach, which consists of sampling repeatedly
from a uniform distribution and computing the average, which is simple but requires
O(1/∆2) time for a root mean squared error ∆,

• the Box-Müller method [24], that can obtain two Gaussian numbers from two
uniform samples by the application of a closed form formula, but involves the
computation of a square root, trigonometric functions and a logarithm,

• rejection sampling methods, such as the polar version of Box-Müller [91] or the
Ziggurat Method [101] are efficient and highly accurate. While the former avoids
the computation of trigonometric functions and leads to an efficient verifiable imple-
mentation, the latter uses several conditional branches which are expensive to prove
in zero knowledge and requires an external method for sampling in the tails of the
distribution,

• the inversion method for Gaussians that involves the approximation of the inverse
error function erf−1, which can be done with rational functions or Taylor polynomials
(see in Section 3.6.7), and

• the recursive method of Wallace [128], which is very popular for its efficiency, but
requires as input a vector of already generated Gaussian samples to generate an
output vector of the same size; furthermore, samples from input and output vectors
are correlated, which deteriorates the statistical quality.

Before studying some of these in the multi-party setting, we will first provide Σ-
protocols of relations involving approximations of certain elementary functions.

4.6 Proofs of Elementary Functions

In this section, we construct zero knowledge proofs of statements that involve the ap-
proximation of elementary functions, i.e. sine, cosine, natural logarithm and square root.
These functions can be numerically approximated using basic operations such as addition
and multiplication. While classic cryptographic tools are used to prove statements over
integers, we operate with real numbers which we approximate with fixed precision. There-
fore, we use representations of integer multiples of 2−ψ by multiplying our values with
2ψ and rounding them deterministically to obtain elements of Zq. Negative numbers are
represented in the upper half of Zq. For example, the number a < 0 is represented with
q + 2ψa. The set of representable numbers is denoted by

Q〈q,ψ〉 =
{
v ∈ Q : 2ψv ∈ Z ∧ −q/2 ≤ 2ψv < q/2

}
which is closed under addition and multiplication modulo p (rounded up to 2−ψ). The
encoding of v ∈ Q〈q,ψ〉 is denoted by 〈v〉 = 2ψv mod q.

We show circuits such that the nullity of their output is equivalent to the statements we
want to prove. We will first construct circuits to describe low level statements and then
use these as building blocks for higher level statements. In the end, we apply compressed

4.6. PROOFS OF ELEMENTARY FUNCTIONS 91

Σ-protocols (see Section 4.2) to produce zero knowledge proofs of these circuits. For
parameters (a; b) of all circuits defined below, a always contains public constants and b
private values.

We present in Section 4.6.1 circuits for proving various types of simple statements.
In Section 4.6.2, we introduce Cordic, the core approximation algorithm. We implement
circuits to prove its correct execution in Section 4.6.3, and details on how to expand its
domain of application, particularly for our sampling techniques, in Section 4.6.4.

4.6.1 Building Blocks

We introduce below proofs of basic statements that we will use to prove approximations,
including the handling of some statements of numbers in Q〈q,ψ〉. Note that additions,
multiplication by an integer and range proofs port directly to Zq by our encoding 〈·〉. In
Section 2.5.6, we show that to prove that an integer x ∈ Zq belongs to [0, 2k) we can use
the circuit

CRa(k;x, x̄) :=

[
x̄ ∗ (1− x̄)

x−
∑k

i=1 xi2
i−1

]
where x̄ = (x1, . . . , xk) is the bit map of x. Here, x̄ ∗ (1− x̄) is a vector with at position i
the value xi(1− xi), which is 0 if xi ∈ {0, 1}. The second expression evaluates to 0 if x̄
is indeed the correct bit map of x. Hence, the nullity of the circuit, i.e., its righthandside
evaluating to the zero vector, proves x ∈ [0, 2k).

Generalized range proof CRa can be used twice to prove membership in any range
[a, b] ⊂ Zq. To prove x ∈ [a, b] we use the circuit

CGRa(a, b;x, s̄1, s̄2)

:=

[
CRa(blog(b− a)c+ 1;x− a, s̄1)

CRa(blog(b− a)c+ 1; b− x+ a, s̄2)

]
where s̄1, s̄2 ∈ {0, 1}blog(b−a)c+1 the auxiliary bit vectors required for CRa.

(Right) Bit-shift For a ∈ Q〈q,ψ〉 and an integer k > 0, a bit shift a >> k is equal to the
biggest value in Q〈q,ψ〉 smaller than a/2k. We have that b = a >> k if 〈a〉−2k〈b〉 ∈ [0, 2k).
For the vector s̄ of the bit decomposition of 〈a〉 − 2k〈b〉, the circuit is

C>>(k; 〈a〉, 〈b〉, s̄) := CRa(k; 〈a〉 − 2k〈b〉, s̄).

Note that in the definition of C>>, as in all subsequent circuits, the evaluation of inputs to
sub-circuits such as CRa are computations performed within the circuit.

Approximate product For private a, b, c ∈ Q〈q,ψ〉, it can be proven that c is the rounding
of ab, that is by proving that 〈c〉 − 〈a〉〈b〉+ 〈1/2〉 ∈ [0, 2ψ). For s̄ ∈ {0, 1}ψ the bitmap of
〈c〉 − 〈a〉〈b〉+ 〈1/2〉 our circuit is

CProd(ψ; 〈a〉, 〈b〉, 〈c〉, s̄) := CRa(ψ; 〈c〉 − 〈a〉〈b〉+ 〈1/2〉, s̄).

92 CHAPTER 4. PRIVATE SAMPLING WITH MALICIOUS SAMPLERS

Approximate division For private a, b, c ∈ Q〈q,ψ〉, we prove that c is approximately a/b
with error 2−ψ. We also require that b ∈ [A,B] for public A,B ∈ Q〈q,ψ〉. We prove that
〈b〉〈c〉 − 2ψ〈a〉+ 〈b〉 ∈ [0, 2〈b〉). Our range proofs require that the bounds are public, so
we prove that 〈b〉〈c〉 − 2ψ〈a〉 + 〈b〉 ∈ [0, 2sb+1) and 2ψ〈a〉 − 〈b〉〈c〉 ∈ [0, 2sb+1) where
sb = blog2(〈B〉 − 〈A〉)c+ 1. For s̄1, s̄2 ∈ Zsb+1

q auxiliary bit vectors, the circuit is

CDiv(ψ, sb; 〈a〉, 〈b〉, 〈c〉, s̄1, s̄2)

:=

[
CRa(sb; 〈b〉〈c〉 − 2ψ〈a〉+ 〈b〉, s̄1)
CRa(sb; 2ψ〈a〉 − 〈b〉〈c〉, s̄2)

]
.

Exponentiation in Zq Let y, x ∈ Zq be private values with x ∈ [0, 2k) and E ∈ Zq a
public integer such that Ex < p/2. We prove that y = Ex. Let x̄ ∈ {0, 1}k the vector
of bits of x, we prove that y =

∏k
y=1 yi where for i ∈ {1, . . . , k}, yi is equal to E2i−1 if

x̄i = 1, or to 1 if x̄i = 0. The circuit is

CIEx(k,E;x, y, x̄) :=

[
CRa(k;x, x̄)

y −
∏k

i=1 1 + x̄i(E
2i−1 − 1)

]
.

Modular sum We prove, for private x, z ∈ Zq and public y ∈ Zq such that all belong to
[0,M), that z = x + y mod M . Let x̄1, x̄2, z̄1 and z̄2 vectors of intermediate values for
CGRa, and let b ∈ {0, 1}, our circuit is

CMod(M, y;x, z, x̄1, x̄2, z̄1, z̄2, b)

:=

CGRa(0,M − 1;x, x̄1, x̄2)
CGRa(0,M − 1; z, z̄1, z̄2)

b(1− b)
z − (x+ y − bM)

 .
Ideas for CIEx and CMod are taken from pages 112-115 of [29].

Private magnitude shift Here, we prove that y = x >> k for public K and private
k ≤ K. Let k̄, k̄′, k̄′′ ∈ {0, 1}K and h ∈ Zq be intermediate values for range proofs and
integer exponentiations and Ī>> = (h, k̄, k̄′, k̄′′), our circuit is

CP>>(K;x, k, y, Ī>>)

:=

 CIEx(K, 2; k, h, k̄)
CRa(K;x− hy, k̄′)

CRa(K;h− x+ hy − 1, k̄′′)

 .
4.6.2 Cordic Algorithm
For approximations, we use the Cordic algorithm [129], which has long been state of the art
for computations of elementary functions from simple operations [105, 110]. Essentially,
it uses the same core iteration algorithm, which only uses additions and bit-shifts, for all
elementary function approximations. We will use Cordic parameterized for two settings
described below, the first is used for sinus and cosinus and the second for square root
and logarithm. In what follows, we only provide an algorithmic description of the Cordic
algorithm as is needed in order to understand our extension to the zero knowledge setting
in Section 4.6.3.

4.6. PROOFS OF ELEMENTARY FUNCTIONS 93

Setting 1 (Sine and Cosine) Let θ0 = 0. From input values X0, Y0, θ ∈ Q〈q,ψ〉, the
following iterations are performed:

Xi = Xi−1 − ξi(Yi−1 >> i)

Yi = Yi−1 + ξi(Xi−1 >> i)

θi = ξi tan−1(1 >> i) + θi−1

where ξi ∈ {−1, 1} is equal to sign(θ − θi−1) and tan−1(1 >> i) is taken from a
precomputed table. Let ν be the total number of iterations, and let constants K1,ν =∏ν

j=0

√
1 + (1 >> 2j) and K1 = limν→∞K1,ν ≈ 1.6. We have that

lim
ν→∞

 Xν

Yν
θν − θ

 = K1

X0 cos θ − Y0 sin θ
X0 sin θ + Y0 cos θ

0

 .
Recall the representation parameter ψ of Q〈q,ψ〉 defined at the beginning of the section.
By the convergence rate of Cordic, if ψ ≥ ν + dlog2(ν)e + 1, with input X0 = 1/K1,ν ,
Y0 = 0, and θ ∈ [−π/2, π/2], then Xν and Yν are approximations of sin(θ) and cos(θ)
respectively with error at most 21−ν .

Setting 2 (ln(x) and
√
x) In this setting Cordic only takes two inputs X0, Y0 ∈ Q〈q,ψ〉

and, with θ0 = 0, it performs the iterations

Xi = Xi−1 + ξi(Yi−1 >> Fi)

Yi = Yi−1 + ξi(Xi−1 >> Fi)

θi = ξi tanh−1(1 >> Fi) + θi−1

with ξi = sign(−Yi−1) and shift magnitude Fi = i + 1 − k where the small value k
is equal to the biggest integer such that 3k+1 + 2k − 1 ≤ 2(i + 1). Now let K2,ν =∏ν

j=1

√
1 + (1 >> 2Fj−1) and K2 = limν→∞K2,ν ≈ 0.8. In Setting 2, we have that

lim
ν→∞

Xν

Yν
θν

 =

K2

√
X2

0 − Y 2
0

0

tanh−1
(
Y0

X0

)
 .

With ψ as in Setting 1, x ∈ [1
4
, 1) and fixing X0 = x + 1, Y0 = x − 1 we get by

the identity ln(x) = 2 tanh−1(x−1
x+1

) that θν is an approximation of 1
2

ln(x) with error at
most 21−Fν . Similarly, for the same ψ and domain of x,

√
x can be obtained by setting

(X0, Y0) =
(
x+ 1

K2
2,ν+1

, x− 1
K2

2,ν+1

)
with error at most 21−Fν .

4.6.3 Cordic in Zero Knowledge

We first specify a set of statements that together are equivalent to a correctly performed
Cordic computation. Note that the iterations in Settings 1 and 2 are very similar. Except

94 CHAPTER 4. PRIVATE SAMPLING WITH MALICIOUS SAMPLERS

for the correctness of the ξi values, they can be described by equations

ξi = −1 ∨ ξi = 1 ∀i ∈ {1, . . . , ν}, (4.2)
Yi = Yi−1 + ξi(Xi−1 >> Fi) ∀i ∈ {1, . . . , ν}, (4.3)

Xi = Xi−1 −mξi(Yi−1 >> Fi) ∀i ∈ {1, . . . , ν}, (4.4)

θν =
ν∑
i=1

ξiαi, (4.5)

where the constants in Setting 1 are m = 1, Fi = i and αi = tan−1(1 >> i) and in Setting
2, Fi is already defined, m = −1 and αi = tanh−1(1 >> Fi). To prove the correct value
of the ξi’s, we avoid wide range checks at each iteration (on θ− θi or Yi−1), but instead we
use properties of the convergence of Cordic: all of ξ1, . . . , ξν ∈ {−1, 1} have been chosen
correctly if

θν − θ ∈ [−αν , αν] (4.6)

in Setting 1, and
Yν ∈ [−2−Fν−1 , 2−Fν−1] (4.7)

in Setting 2.
We outline below the circuits that imply the above statements. Let S ∈ {1, 2} be

the Cordic setting that defines the involved constants. Let ξ̄ = (ξ1, . . . , ξν) and let Ī =
(〈Xi〉, 〈Yi〉)ν−1

i=1 , (s̄i, s̄
′
i, 〈X ′i〉, 〈Y ′i 〉)ν−1

i=0 , ξ̄) be the vector of all intermediate values. The
nullity of circuit

CCrd(ν, S; 〈X0〉, 〈Y0〉, 〈Xν〉, 〈Yν〉, 〈θν〉, Ī)

:=

C>>(Fi; 〈Xi−1〉, 〈X ′i−1〉, s̄i−1) ∀i ∈ [ν]
C>>(Fi; 〈Yi−1〉, 〈Y ′i−1〉, s̄′i−1) ∀i ∈ [ν]

(1 + ξ̄) ∗ (1− ξ̄)
〈Yi〉 − 〈Yi−1〉 − ξi〈X ′i−1〉 ∀i ∈ [ν]
〈Xi〉 − 〈Xi−1〉+mξi〈Y ′i−1〉 ∀i ∈ [ν]

〈θν〉 −
∑ν

i=1 ξi〈αi〉

is a proof of the core of the execution in eqs. (4.2) to (4.5). Here, for i ∈ {1, . . . , ν},
s̄i, s̄

′
i ∈ {0, 1}Fi are auxiliary bit vectors to prove bit shifts of Xi and Yi with result X ′i−1

and Y ′i−1 respectively.
We complete the above core circuit for Setting 1. Let γ = blog2(2〈αν〉)c+ 1, and let

s̄α ∈ {0, 1}γ be the bit decomposition of 〈θ〉 − 〈θν〉. The circuit

CCrd1(ν; 〈θ〉, 〈X0〉, 〈Y0〉, 〈Xν〉, 〈Yν〉, 〈θν〉, Ī , s̄α)

:=

[
CCrd(ν, 1; 〈X0〉, 〈Y0〉, 〈Xν〉, 〈Yν〉, 〈θν〉, Ī)

CRa(γ; 〈θ〉 − 〈θν〉+ 〈αν〉, s̄α)

]
.

proves eqs. (4.2) to (4.6). Similarly, we extend the core circuit to a complete one for setting
2: for s̄Y equal to the bit decomposition of Yν ,

CCrd2(ψ, ν; 〈X0〉, 〈Y0〉, 〈Xν〉, 〈Yν〉, 〈θν〉, Ī , s̄Y)

:=

[
CCrd(ν, 2; 〈X0〉, 〈Y0〉, 〈Xν〉, 〈Yν〉, 〈θν〉, Ī)

CRa(ψ − Fν ; 〈Yν〉, s̄Y)

]
.

proves eqs. (4.2) to (4.5) and (4.7).

4.6. PROOFS OF ELEMENTARY FUNCTIONS 95

The instantiation ofCCrd1 andCCrd2 for elementary functions is straightforward. Inputs
that are intermediate values are defined as above. For trigonometric functions, we set
ĪT = (〈θν〉, Ī , s̄α) and use

CTr(ν; 〈θ〉, 〈c〉, 〈s〉, ĪT)

:= CCrd1(n; 〈θ〉, 〈1/K1,ν〉, 0, 〈s〉, 〈c〉, ĪT)

to compute s = sin(θ) and c = cos(θ). For the logarithm, let ĪL = (〈Xν〉, 〈Yν〉, 〈θν〉, Ī , s̄Y).
Then,

CLog(ψ, ν; 〈x〉, 〈l〉, ĪL)

:=

[
CCrd2(ψ, ν; 〈x〉+ 〈1〉, 〈x〉 − 〈1〉, ĪL)

〈l〉 − 2〈θν〉

]
proves l = ln(x). For the square root let ĪS = (〈Yν〉, 〈θν〉, Ī , s̄Y), then

CSqrt(ψ, ν; 〈x〉, 〈s〉, ĪS) =

CCrd2(ψ, ν; 〈x〉+ 〈1/4K2
2,ν+1〉, 〈x〉 − 〈1/4K2

2,ν+1〉, 〈s〉, ĪS)

proves s =
√
x.

Finally, we point out that, with minor adjustments to the above approximations, proofs
of hyperbolic trigonometric functions and ex can be obtained.

4.6.4 Extending the Domain

Here we extend the domain of approximations, which is necessary for our sampling
applications. We sometimes do not define inputs such as bit vectors for range proofs and
other intermediate values that are clear from the context or that are already defined in
previous circuits.

Sine and cosine As shown, sine and cosine can be approximated in
[
−π

2
, π

2

]
. For

Q ∈ {1, 2, 3, 4} we use the identity

sin
(
Q
π

2
+ θ′

)
=

cos(θ′) if Q = 1

− sin(θ′) if Q = 2

− cos(θ′) if Q = 3

sin(θ′) if Q = 4

extend the domain to [0, 2π]. Let s̄π, s̄′π be bit vectors as needed for CGRa, and

ĪTg = (〈θ′〉, 〈s′〉, 〈c′〉, Q, s̄π, s̄′π, ĪT).

Let
([j1], [j2], [j3], [j4]) = (〈c′〉,−〈s′〉,−〈c′〉, 〈s′〉)

and
([k1], [k2], [k3], [k4]) = ([j2], [j3], [j4], [j1])

96 CHAPTER 4. PRIVATE SAMPLING WITH MALICIOUS SAMPLERS

for i ∈ {1, 2, 3, 4} be literal variable replacements. Circuit

CTrG(ν; 〈θ〉, 〈s〉, 〈c〉, ĪTg)

:=

CTr(ν; 〈θ′〉, 〈s′〉, 〈c′〉, ĪT)

CGRa(〈−π
2
〉, 〈π

2
〉; 〈θ′〉, s̄π, s̄′π)

〈θ〉 −Q〈π
2
〉 − 〈θ′〉∏4

i=1(Q− i)2 + ([ji]− 〈s〉)2 + ([ki]− 〈c〉)2

proves s = sin(θ) and c = cos(θ) in the extended domain.

Natural logarithm We extend the domain of ln(x) to (0, 1). For x′ ∈ [1
2
, 1) and non-

negative integer e such that x = 2−ex′ ∈ (0, 1). We prove that l = ln(x′)−e ln(2) = ln(x).
Let ĪLg = (e, h, ē, s̄x′ , 〈x′〉, 〈l′〉, ĪL), then

CLogG(ψ, ν; 〈x〉, 〈l〉, ĪLg)

:=

CLog(ψ, ν; 〈x′〉, 〈l′〉, ĪL)

CRa(ψ − 1; 〈x′〉 − 〈0.5〉, s̄x′)
CIEx(ψ − 1, 2; e, h, ē)

h〈x〉 − 〈x′〉
〈l〉 − 〈l′〉+ e〈ln(2)〉

proves our approximation.

Square root Now, for a public bound B > 0 and a private x ∈ [0, B], we prove that
s =
√
x. Let γ = blog2(B)c+ 1. We choose x′ ∈ [1

2
, 1) and an integer e ∈ [−ψ, γ] such

that x = 2ex′, and we have that

√
x =

{
2e/2
√
x′ if e is even

2(e+1)/2
√
x′/2 if e is odd.

We break the proof in several circuits to handle different cases. For that we use bit variables
as flags to decide which computation will be proven. Let ne ∈ {0, 1} be the “negativity
flag” of e and e′ ≥ 0 such that e = (1 − ne)e′. Let ie ∈ {0, 1} be the “parity flag” of e,
such that e = 2f − ie for an integer f . We also define f ′ ≥ 0 such that f = (1 − ne)f ′.
We first handle the relations between x, x′, s =

√
x and s′ =

√
x′/(1 + ie) when e is

non-negative, or equivalently, when ne = 0. Let ĪD1 = (l, f̄ , Ī>>), then our circuit is

CSDom1(B; 〈x〉, 〈s〉, 〈x′〉, 〈s′〉, ie, e′, f ′, ĪD1)

:=

CP>>(γ; 〈x〉, e′ + ie, 〈x′〉, Ī>>)

e′ − 2f ′ + ie
CIEx(γ, 2; f ′, l, f̄)
〈s〉 − 〈s′〉l

 .
Similarly, for ĪD2 = (h, ē, Ī ′>>) the case when e is negative is described by

CSDom2(ψ; 〈x〉, 〈s〉, 〈x′〉, 〈s′〉, ie, e′, f ′, ĪD2)

:=

CIEx(ψ − 1, 2; e′ − ie, h, ē)

〈x′〉 − h〈x〉
e′ − 2f ′ − ie

CP>>(ψ − 1; 〈s〉, f ′, 〈s′〉, Ī ′>>)

 .

4.7. THE LAPLACE DISTRIBUTION 97

Now we describe the main circuit. For

ĪD = (〈x′〉, 〈s′〉, ie, e′, f ′)

and
ĪSg = (ne, s̄x′ , ĪS, ĪD, ĪD1, ĪD2)

vectors of intermediate values, we prove s =
√
x with

CSqrtG(ψ, ν,B; 〈x〉, 〈s〉, ĪSg)

:=

CSqrt(ψ, ν; 〈x′〉, 〈s′〉, ĪS)
ie(1− ie)
ne(1− ne)

ie ∗ CRa(ψ − 2; 〈x′〉 − 〈0.25〉, s̄x′)
(1− ie) ∗ CRa(ψ − 1; 〈x′〉 − 〈0.5〉, s̄x′)
(1− ne) ∗ CSDom1(B; 〈x〉, 〈s〉, ĪD, ĪD1)

ne ∗ CSDom2(ψ, 〈x〉, 〈s〉, ĪD, ĪD2)

.

While the circuit above is easier to read, the practical implementation contains a number
of further optimizations to reduce the number of multiplications. In particular, additional
variables are introduced to avoid multiplying flags such as ie with larger vectors such as the
output of a CRa circuit. This introduces additional variables, e.g., ie ∗ CRa(ψ − 2; 〈x′〉 −
〈0.25〉, s̄x′) would become ie(x′ − x′aux) and CRa(ψ − 2; 〈x′aux〉 − 〈0.25〉, s̄x′aux).

4.7 The Laplace distribution

4.7.1 Private Laplace sampling
Protocol 6 (private drawing from Laplace). First, party 1 privately draws s0 and a′

uniformly at random in [0, L) with L sufficiently large (Protocol 2). Then, party 1 computes
a = −b log(1 − a′/L), s = 2(s0 mod 2) − 1 and r = sa, and provides a ZKP for these
relations (in Section 4.6.3 we showed a ZKP for the logarithm function, in Section 4.6.1
for approximate division).

As Protocol 2 verifiably draws random numbers uniformly and for the other computa-
tions in Protocol 6 a ZKP is provided, Protocol 6 verifiably draws random numbers from
the Lap(b) distribution.

4.7.2 Hidden Laplace sampling
We can also make hidden draws from the Laplace distribution, i.e., drawing a Laplace-
distributed random number r as a secret share JrK. For this, we build on the basic operations
discussed in Section 4.2.

First, we observe that one can sample a sign s uniformly from {−1, 1} as follows: the
parties apply Protocol 3 to draw a secret shared random number uniformly distributed
in Zp, obtaining the sharing JtK, next they multiply the sharing with itself to obtain Jt2K
and open Jt2K to reveal t2, and finally they multiply JtK with the public constant 1/

√
t2 to

obtain JsK =
r
t/
√
t2

z
∈ {−1, 1}. Drawing a secret shared random bit b ∈ {0, 1} is then

just drawing a sign JsK and computing JbK = (JsK + 1) /2 (this is protocol RAN2 in [50]).

98 CHAPTER 4. PRIVATE SAMPLING WITH MALICIOUS SAMPLERS

The Cordic algorithm for logarithm computation described in Section 4.6.2 requires
only additions, bit shifts and comparisons (when setting ξi = sign (−Yi−1)). While it does
not directly use multiplications, implementations of bit operations and comparisons, e.g.,
as in [50], often are using multiplications so the use of multiplications cannot be fully
avoided. Alternative strategies to compute the logarithm suffer from similar challenges.

As in Section 4.7.1, we want to draw a number a′ uniformly from [0, L), compute
a = −b log(1 − a′/L) and multiply it with a random sign s to get the random number
as distributed according to Lap(b). To compute log(x), Cordic expects x ∈ [1/4, 1), so
before applying Cordic we may need to scale its input to fit this interval.

We set L = 2l for some sufficiently large integer l and generate a′ as an l-bit number,
i.e., Ja′K =

∑l−1
i=0

q
a(i)

y
2i where a(i) are random bits.

We can find the highest zero bit of a′ as follows: set hl = 0, h′l = 1 and a(−1) = 0,
and for i = l − 1 . . . − 1, set Jh′iK =

q
h′i+1

y
J1− hi+1K and JhiK = Jh′iK

q
1− a(i)

y
. The

meaning of hi then is ’bit i is the highest 0-bit’, and the meaning of h′i is ’the bits higher
than bit i are all ones’. Exactly one hi equals 1 and all others are 0 among i = −1 . . . l− 1.
We then can write log(1 − a′/L) = ah + log(x) with

q
ah

y
=
∑l−1

i=0 JhiK log(2i+1−l) and
BITS(x, (x(i))li=0) where

(Jx(i)K)li=0 = BIT-ADD(2l, (Jx(i)
− K)l−1

i=0)

and

Jx(i)
− K =

l−1∑
j=0

JhjKJa(i+j+1−l)K

with a(i) = 0 for i < 0.
Now we can apply Cordic on x. Cordic needs additions (using the BIT-ADD protocol),

bit shifts (moving bits to the right and duplicating the highest bit), the sign(·) function
(check the highest bit) and negation (invert all bits and add 1).

Protocol 7 (hidden drawing from Laplace). One can verifiably draw a hidden Laplace-
distributed random number by following the steps explained above, and by providing ZKP
for all computations. The ZKP are similar to those for private sampling, where parts of
secret shares are transfered between parties, the parties can agree on the commitment
which will represent the shared number.

4.8 The Gaussian Distribution

In this section we elaborate several strategies to sample from the Gaussian distribution. In
particular, we are interested in protocols such that upon termination one party has a private
number y ∈ Q〈q,ψ〉 and has provided a zero knowledge argument that y ∼ N (µ, σ2) for
some public µ and σ.

All methods require as a subprotocol sampling uniformly distributed numbers. There-
fore all our protocols for private drawing numbers from the Gaussian distribution follow
the same high-level structure:

1. use Protocol 2 to verifiably draw uniformly distributed number(s),

2. transform the uniformly distributed number(s) into Gaussian distributed number(s),
and

4.8. THE GAUSSIAN DISTRIBUTION 99

3. use an arithmetic circuit matching this transformation together with compressed
Σ-protocols (see Section 4.2) to prove the transformation.

We implement ZKPs of the correct execution of Gaussian draws. The sampling methods
we implement are (1) the central limit theorem approach (averaging over uniform samples),
(2) the Box Müller method [24], (3) the Polar Method [100], (4) the inversion method
using a series expansion for erf−1 [39], and (5) the inversion method using a fractional
polynomial to approximate erf−1 [69].

4.8.1 The central limit theorem method

The uniform distribution over the interval [0, L) has variance L2/12. Let a party privately
draw N random numbers {xi}Ni=1 uniformly distributed over [0, L), and compute x =

µ + σ
√

12
L
√
N

∑N
i=1

(
xi − L

2

)
. Then, x is N (µ, σ2) distributed. For a ZKP for this relation

between x and the xi we only need the homomorphic property of Pedersen commitments
(for the additions and the multiplication with a constant) and a range proof (for the
rounding).

4.8.2 The Box Müller method
The Box Müller method [24] consists of drawing two uniform samples U1 and U2 in the
interval (0, 1) and to compute

ρ =
√
−2 ln(U1),

X1 = ρ cos(2πU2),

X2 = ρ sin(2πU2).

Then, X1 and X2 are distributed according to N (0, 1). Now we use circuits of elementary
functions defined in Section 4.6 to construct our proof. Recall parameters ψ and the
number of Cordic iterations ν defined therein. Let

ĪBM = (s̄1, s̄2, s̄3, 〈s〉, 〈c〉, ĪTg, 〈aπ〉, 〈X ′1〉, 〈X ′2〉
ĪSg, 〈ρ〉, ĪLg, 〈l〉, ā′1, ā′2, Ū ′1, Ū ′2, ā′′1, ā′′2, Ū ′′1 , Ū ′′2)

be a vector containing all intermediate values of the computation. Then the approximation
circuit is

CBM(ψ, ν, z1, z2; 〈U1〉, 〈U2〉, 〈X1〉, 〈X2〉, ĪBM)

:=

CMod(2
ψ − 1, z1; a1, 〈U1〉 − 1, ā′1, ā

′
2, Ū

′
1, Ū

′
2)

CMod(2
ψ − 1, z2; a2, 〈U2〉 − 1, ā′′1, ā

′′
2, Ū

′′
1 , Ū

′′
2)

CLogG(ψ, ν; 〈U1〉, 〈l〉, ĪLg)
CSqrtG(ψ, ν, 2ψ ln(2);−2〈l〉, 〈ρ〉, ĪSg)

CProd(ψ; 2〈π〉, 〈U2〉, 〈aπ〉, s̄1)
CTrG(ν; 〈aπ〉, 〈s〉, 〈c〉, ĪTg)
CProd(ψ; 〈ρ〉, 〈c〉, 〈X ′1〉, s̄2)
CProd(ψ; 〈ρ〉, 〈s〉, 〈X ′2〉, s̄3)

.

Private values a1 and a2 and public challenges z1 and z2 are used in the modular proofs
of circuit CMod to generate U1 and U2 with Protocol 2. To obtain a sample with standard
deviation different than 1, the resulting samples can be scaled with an extra CProd circuit.
Different mean requires an extra addition gate.

100 CHAPTER 4. PRIVATE SAMPLING WITH MALICIOUS SAMPLERS

4.8.3 The Polar Box-Müller method
The polar method [91] is an optimization of Box-Müller that avoids the computation of
sine and cosine by the use of rejection sampling. It samples two uniform values V1 and V2

in the (−1, 1) interval, and keeps the result only if 0 < V 2
1 + V 2

2 ≤ 1. Otherwise V1 and
V2 are re-sampled. For non rejected V1 and V2 it computes

α = V 2
1 + V 2

2 ,

Y1 = V1

√
−2 ln(α)/α,

Y2 = V2

√
−2 ln(α)/α.

Y1 and Y2 have distribution N (0, 1).
In the private sampling, if V1 and V2 are rejected, the prover can just reveal them and

start new uniform draws until acceptance, when it proves the correctness of accepting pairs.
As in Box Müller, parameters ν and ψ define our elementary function approximations, and
a1, a2, z1, z2 are used to generate V1 and V2 in Protocol 2. Let

ĪPol = (〈s〉, ĪSg, 〈d〉, 〈α〉, 〈l〉, ĪLg, s̄6, s̄5, s̄4, s̄3, s̄2, s̄1, 〈α〉,
〈V ′2〉, 〈V ′1〉, v̄′, v̄, ā′1, ā′2, V̄ ′1 , V̄ ′2 , ā′′1, ā′′2, V̄ ′′1 , V̄ ′′2)

be a vector of intermediate computation values, then the implemented circuit is

CPol(ψ, ν, z1, z2; 〈V1〉, 〈V2〉, 〈Y1〉, 〈Y2〉, ĪPol)

:=

CMod(2
2ψ − 2, z1; a1, 〈V1〉+ 〈1〉 − 1,

ā′1, ā
′
2, V̄

′
1 , V̄

′
2)

CMod(2
2ψ − 2, z2; a2, 〈V2〉+ 〈1〉 − 1,

ā′′1, ā
′′
2, V̄

′′
1 , V̄

′′
2)

CProd(ψ; 〈V1〉, 〈V1〉, 〈V ′1〉, v̄)
CProd(ψ; 〈V2〉, 〈V2〉, 〈V ′2〉, v̄′)

〈α〉 − 〈V ′1〉 − 〈V ′2〉
CGRa(1, 〈1〉 − 1; 〈α〉, s̄1, s̄2)
CLogG(ψ, ν; 〈α〉, 〈l〉, ĪLg)

CDiv(ψ;−2〈l〉, 〈α〉, 〈d〉, s̄3, s̄4)
CSqrtG(ψ, ν, 2ψ+1ψ ln(2); 〈d〉, 〈s〉, ĪSg)

CProd(ψ; 〈s〉, 〈V1〉, 〈Y1〉, s̄5)
CProd(ψ; 〈s〉, 〈V2〉, 〈Y2〉, s̄6)

.

To avoid multiple interactions due to rejection, Protocol 2 is set to draw a sufficiently
large number of uniform samples such that at least one pair is not rejected with high
probability. The cost of the extra samples is negligible. To obtain a distribution with
different mean and variance, we scale V1 and V2 with addition and product.

4.8.4 Inversion method
Inverting eq. (4.1) we get

F−1
N (x) =

√
2erf−1(2x− 1).

There are many numerical strategies to approximate either erf or erf−1, of which we
implemented two.

4.9. SECURITY OF OUR PROTOCOLS 101

A first strategy due to [39] is described as part of the GOPA protocol in Section
3.6.7. While it is described for classical Σ-protocols, its implementation with compressed
protocols is straightforward using circuit building blocks of Section 4.6.1. A second
strategy is proposed in [69] and uses a rational approximation. Therein, erf−1 is computed
by

erfinvSP(x) =

{
xp1(w) if w ≤ 5 (central region)
xp2(s) if w > 5 (tail region)

where w = − log(1− x2), s =
√
w and p1 and p2 are two polynomials of degree 8. We

use Cordic, product and range ZKPs to prove its computation.

4.8.5 Hidden drawing
For the several strategies for sampling the Gaussian distribution described above, one can
construct a protocol based on secret sharing for hidden sampling. Similar considerations
apply as for the discussion in Section 4.7.2. As an example, we show a protocol using the
Central Limit Theorem approach.

Protocol 8. Let N/12 be a power of 4. For i = 0 . . . l − 1 and j = 1 . . . N , draw a
random bit sharing Jx(i)

j K. This yields N random numbers {xj}Nj=1 in the interval [0, 2l).
For j ∈ [N] and i = l . . . l + log2(N), set x(i)

j = 0. Let (Jy(i)
1 K)l+log2(N)

i=0 = (Jx1K)
l+log2(N)
i=0

and for j = 2 . . . N let (Jy(i)
j K)l+log2(N)

i=0 = BIT-ADD((Jy(i)
j−1K)

l+log2(N)
i=0 , (Jx(i)

j K)l+log2(N)
i=0).

Finally let JrK =
∑l+log2(N)

i=log2(N/12)/2 y
(i)
N 2i−log2(N/12)/2. Then, r approximates N (2l

√
3N, 2l).

The computations can be made verifiable using a ZKP where parties send a number to
each other can agree on using the same commitment.

4.9 Security of our protocols

In this section, we prove the security of the protocols presented in the main paper. In the
sequel, we will often restate in more detail and more formally the protocols. We consider a
set of n parties P = {P1 . . . Pn}. We will denote by P−i the set of all parties except i, i.e.,
P−i = P \ {Pi}. We assume that a subset of parties Pcor ⊂ P is corrupted and controlled
by an adversary A. The set Pcor of corrupted parties is static, i.e. does not change after the
beginning of the execution.

For the description of our protocols, we will denote the fact that a party A sends
a message M to a party B by “A → B: M”. Recall that we use a bulletin board for
communication. Among others, this means that when a protocol contains a broadcast
instruction a single message is sent from one party to all others, in practice by sending it
from that party to the bulletin board, which forwards it to all other agents. We will also
use hiding vector Pedersen commitments defined in Section 2.4. Recall the finite groups
Zq and G defined therein. For any integer k > 0, we will denote by Com(x̄, r) ∈ G the
commitment of the k-dimension vector x̄ ∈ Zkq with randomness r ∈ Zq.

We describe our security framework in Section 4.9.1. In Section 4.9.2, we describe
our model of compressed Σ-protocols in our security analysis. In sections 4.9.3 and 4.9.4
we prove the security of Protocols 1 and 2 respectively. We conclude by discussing the
security of our protocols for public and private draws from some other distributions in
Section 4.9.5.

102 CHAPTER 4. PRIVATE SAMPLING WITH MALICIOUS SAMPLERS

4.9.1 Security Definitions

We prove security in the simulation paradigm, using the covert security model in its
strong explicit cheat formulation [6, Def. 3.3]. We assume parties are able to detect
malicious actions and can in such cases abort the protocol. Deterrence measures may be
in place to discourage parties from being detected as malicious. In fact, unless parties
stop participating our protocols either complete successfully or abort while detecting that
a specific party is a cheater. We note that covert security is in most cases weaker than
the notion of malicious security with abort [71, Ch 7]. In our protocols, cheaters are
detected with overwhelming probability, which provides the same guarantees as the model
of malicious security with abort [6, Prop. 3.10]. We have nonetheless decided to use the
definition of the covert security model as it explicitly formalizes the ability of honest
parties to determine who has cheated.

We start by introducing the key concepts of multiparty computation under the covert
security model. A multiparty computation between our n parties in P is a protocol that
computes a stochastic process F : ({0, 1}∗)n → ({0, 1}∗)n, which is also called an ideal
functionality, where for all i ∈ {1, . . . , n}, the ith component of the input and output of F
maps respectively to the private input and output of party Pi.

In the simulation paradigm, a multiparty protocol securely computes an ideal function-
ality in the presence of malicious adversaries if any possible malicious behavior in the
protocol caused by colluding malicious parties is not more harmful than what such party
can cause in the ideal model as defined below.

While in the covert ideal model, parties that try to cheat are caught with probability
equal to ζ, called the deterrence factor. We use the Strong Explicit-Cheat formulation
described in [6] (Section 3.4 therein). However, as in our protocols cheaters are caught
with overwhelming probability, we omit the deterrence factor, as the negligible probability
of cheating success will not produce a distinguishable impact in the distribution of the
output. We describe such ideal model in the following before defining security.

Ideal model In this model, it is assumed that there exists a trusted party that computes
F. A malicious adversary S controls a set of corrupted parties Pcor. The ideal execution
comprises 7 phases and goes as follows:

1. Inputs: Each party Pi receives a private input ui. Additionally, S has an auxiliary
input u∗ which represents the extra knowledge other than its regular input.

2. Send inputs to the trusted party: All honest parties send their input to the trusted
party, while parties controlled by S might deviate and send what S wishes.

3. Early abort or corrupted input: S can send aborti instead of a valid input, which
means that some corrupted party Pi performed an early abortion or sent a corrupted
input. The trusted party sends either aborti (choosing the index i deterministically
if many parties aborted or sent a corrupted input) to all other parties and halts.

4. Detect cheating parties: S can send cheati instead of a valid input, which means
that a corrupted party Pi attempted to cheat. In that case, the trusted party sends
aborti to all parties (i.e. the cheating is detected). Note this is different than in the
standard definition in [6], where the cheater succeeds with probability 1− ζ . In our
definition, note that aborti and cheati are considered equivalent.

4.9. SECURITY OF OUR PROTOCOLS 103

5. Trusted party answers the adversary: If no aborti (or cheati) is sent, then the
trusted party sends to S the outputs of F of the corrupted parties. After receiving
them, S can send aborti to the trusted party or instruct it to continue.

6. Trusted party answers the honest parties: if S instructed the trusted party to
continue, then the latter sends their outputs of F to the honest parties.

7. Output: the hones parties always output what the trusted party sent to them. S
outputs any arbitrary computable function of the inputs {ui}i∈Pcor , the auxiliary
input u∗ and the messages obtained from the trusted party.

Let ū = (u1 . . . un) be the vector of inputs of all parties and u∗ the auxiliary input of S .
Recall that λ is the security parameter. We denote by IDEALF,S(u∗),Pcor(ū, λ) to the vector
of outputs of parties in the above execution.

The real model The real model of an n-party protocol Π describes its execution in the
presence of non-uniform probabilistic polynomial time advesary A that corrupts a set of
parties Pcor. Parties in P\Pcor behave as described by Π. We denote by REALΠ,A(u∗)(ū, λ)
the vector of outputs of parties in the real execution of Π with input ū and where A has
auxiliary input u∗.

We formalize the notion of covert security below.

Definition 1 (Covert security - strong explicit-cheat formulation with deterrence factor
equal to 1). Let λ be the security parameter and F : ({0, 1}∗)n → ({0, 1}∗)n be an
n-party ideal functionality. A protocol Π securely computes F in the presence of covert
adversaries with cheat detection if for every non-uniform probabilistic polynomial time
(PPT) adversary A in the real model, there exist a non-uniform PPT adversary S in the
ideal model such that the distributions of

{IDEALF,S(u∗),Pcor(ū, λ)}ū,u∗∈({0,1}∗)n+1,λ∈N

and
{REALΠ,A(u∗),Pcor(ū, λ)}ū,u∗∈({0,1}∗)n+1,λ∈N

are computationally indistinguishable.

Hybrid model In addition to the security definition, the simulation paradigm facilitates
tools to prove security of protocols which use sub-protocols already known to be secure.
Given functionalities F1, . . . ,Fk , where k is polynomial in λ, it allows to define a protocol
in which both parties can send messages to each other and place “ideal calls” to a trusted
party that computes Fi for i ∈ {1, . . . , k}. In these ideal calls, parties can send their input
to the trusted party and wait for the output of Fi. However, (1) they cannot send any
messages between each other after invoking an ideal functionality and before its response
is returned by the trusted party and (2) functionalities cannot be called concurrently. In
other words, functionalities can only be sequentially composed with all other interactions.
We denote such model as the (F1, . . . ,Fk)-hybrid model. When we describe a protocol in
the (F1, . . . ,Fk)-hybrid model, we say that F1, . . . , Fk are hybrid functionalities.

104 CHAPTER 4. PRIVATE SAMPLING WITH MALICIOUS SAMPLERS

Sequential Composition Consider the protocol Π and functionalities F1, . . . ,Fk as
defined above and let ρ1, . . . , ρk be protocols. We define the protocol Πρ1,...,ρk to be
the protocol in the ideal model that behaves exactly as Π in real messages, but for all
i ∈ {1, . . . , k} each ideal call to Fi is replaced by the execution of protocol ρi. We now
state conditions such in which sequential composition is secure.

Theorem 9 (Sequential composition). Let F1, . . . ,Fk be secure multiparty functionalities
and let ρ1, . . . , ρk be protocols that securely compute F1, . . . ,Fk in the presence of covert
adversaries with cheating detection. Let G be a multiparty functionality and let Π be a
multiparty protocol that securely computes G in the (F1, . . . ,Fk)-hybrid model in the
presence of covert adversaries with cheat detection. Then Πρ1,...,ρk securely computes G in
the real model in the presence of covert adversaries with cheating detection.

The proof of the above theorem is a special case of Theorem 4.2 in [6], with all
deterrence factors of the theorem are equal to 1.

Assumptions on adversaries We can see A as a deterministic algorithm with a special
input which is a random tape of uniformly distributed bits. In the ideal model, we can also
rewind A to a previous state in execution, where the random tape also rewinds.

4.9.2 Compressed Σ-protocols as ideal functionalities
We will use compressed Σ-protocols implemented with the Fiat-Shamir heuristic which are
proven secure in the random oracle model [119]. They have been proven secure against (by
definition) malicious provers and there is no interaction with malicious verifiers. Therefore
we can consider them as secure and abstract them as hybrid functionalities. In particular,
when we write P → FRΣ : (x;w); FRΣ → O : [b, x′], we mean that FRΣ gets as input from
party P the public data x and secret witness w, gets from all other relevant parties as input
the empty string, and returns to all parties in O the same pair [b, x′] where x′ is the data
provided as input by P and b is 1 if (x;w) ∈ R (the proof succeeds) and 0 otherwise.

4.9.3 Proof of Protocol 1
Let U be the random variable uniformly distributed over the interval [0, L) for L ≤ q. We
consider the ideal functionality

Fp1({} . . . {}) = (U . . . U),

i.e., Fp1 takes as input from each of the n parties an empty string and outputs to every
party the same uniformly distributed U .

Protocol The protocol Πp1 is explained below.
Protocol Πp1:
Security Parameter: λ
Hybrid Functionality sub-protocols: Functionalities FR1

Σ and FR2

Σ are zero knowledge
proofs of respectively

• R1 = {(C;x, r) : C = Com(x, r)}

• R2 = {(C, x; r) : C = Com(x, r)} (only r is secret),

4.9. SECURITY OF OUR PROTOCOLS 105

Protocol:

1. For i = 1 . . . n :

• Pi : choose xi ∈ [0, L), ri ∈ Zq at random

• Pi : compute the commitment Ci = Com(xi, ri)

• Pi : broadcast Ci
• Pi → FR1

Σ : (Ci;xi, ri)

• FR1

Σ : broadcast [bi, C
′
i]

• P−i: if bi 6= 1 or C ′i 6= Ci, detect Pi as a cheater and abort

2. For i = 1 . . . n:

• Pi → FR2

Σ : (Ci, xi; ri)

• FR2

Σ : broadcast [b′i, C
′′
i , x

′
i]

• P−i: if xi 6∈ [0, L), b′i 6= 1 or C ′′i 6= Ci, detect Pi as a cheater and abort

3. For i = 1 . . . n:

• output
∑n

i=1 x
′
i mod L.

We state the security of protocol Πp1 in the theorem below.

Theorem 10 (Security of Πp1). Let Com be a computationally binding and perfectly
hiding commitment scheme and let FR1

Σ and FR2

Σ be secure multiparty functionalities of
computationally sound zero-knowledge proofs of relations R1 and R2 respectively. Then,
Protocol Πp1 securely computes Fp1 in the (FR1

Σ ,FR2

Σ)-hybrid model in the presence of
covert adversaries with cheating detection if at least one party is honest.

Proof. It is clear that Πp1 securely computes Fp1 in the honest-but-curious setting.
Below, we will use A to denote a non-uniform probabilistic polynomial-time (PPT)

adversary that controls covert parties.
We define four very similar algorithms Sv, v ∈ {0, 1, 2, 3} where S0 is a simulator

and for which we will prove that their ideal execution output is indistinguishable from the
hybrid execution output.

1: Phase 1: choosing z (see also phase 4)
2: if v = 0 then
3: Fp1 → S0 : z (S0 invokes trusted party delivering ideal functionality)
4: end if
5: Phase 2: Sv simulates honest parties:
6: Sv : i′ = max{i | Pi ∈ P \Pcor}
7: for Pi ∈ (P \Pcor) \ {Pi′} do
8: Sv: choose xi randomly in [0, L) and ri randomly in Zp
9: Sv: Ci = Com(xi, ri); [bi, C

′
i] = FR1

Σ (Ci;xi, ri))

10: Sv → A : [bi, C
′
i] (as if it is sent by Pi)

11: end for
12: if v ∈ {0, 1, 2} then
13: draw ri′ randomly; Ci′ = Com(0, ri′); [bi′ , C

′
i′] = [1, Ci′]

106 CHAPTER 4. PRIVATE SAMPLING WITH MALICIOUS SAMPLERS

14: else
15: draw xi′ and ri′ randomly; Ci′ = Com(xi′ ; ri′); [bi′ , C

′
i′] = FR1

Σ (Ci′ ;xi′ , ri′))
16: end if
17: Sv → A : [1, C ′i′] (as if it is the answer of FR1

Σ (Ci′ , xi′ , ri′))
18: Phase 3: Sv simulates A:
19: for i ∈ Pcor do
20: A → Sv : Ci
21: A → FR1

Σ : (Ci;xi, ri); Sv records Ci, xi and ri.
22: FR1

Σ → S
v : [bi, C

′
i] (as if sent to all members of P \Pcor)

23: if C ′i 6= Ci or Ci 6= Com(xi, ri) detect Pi as cheater
24: end for
25: Phase 4: choosing z and xi′
26: if v ∈ {0, 1} then
27: if v = 1 then
28: S1 chooses z uniformly at random
29: end if
30: xi′ = z −

∑
i 6=i′ xi mod L

31: else
32: (i.e., if v ∈ {2, 3})
33: draw xi′ uniformly at random
34: z =

∑
i∈P xi mod L

35: end if
36: Phase 5:
37: for Pi ∈ P \Pcor do
38: Sv: set x′i = xi; C ′′i = Ci; b′i = 1 and send [b′i, C

′′
i , x

′
i] to A (as if it is sent by

FR2

Σ in answer to (xi, Ci; ri))
39: end for
40: Phase 6: Sv continues simulation of A
41: for Pi ∈ Pcor do
42: A → FR2

Σ : (C ′′i , x
′
i; r
′
i); Sv records C ′′i , x′i and r′i

43: FR2

Σ → S
v : [b′i, C

′′
i , x

′
i]

44: If x′i 6= xi or C ′′i 6= Ci or b′i = 0 detect Pi as cheater
45: end for
46: Phase 7: Output
47: A → Sv : z′ (the output of A)
48: output z′

To see that the simulation of S0 is indistinguishable from the (FR1

Σ ,FR2

Σ)-hybrid model
with adversary A, first consider that without loss of generality we can assume that at the
points where all parties send messages, the messages of the honest parties arrive first, as
everything an adversary can infer from the messages of a subset of honest parties it can
also infer from the messages of all honest parties. Then, observe that

• The outputs of S0 and S1 are identically distributed, because their only difference is
the moment on which z is chosen uniformly at random (and hence independently
from other variables).

• The outputs of S1 and S2 are identically distributed, the only difference is that S1

first draws z in line 28 and then computes xi′ from it, while S2 first draws xi′ and
then computes z from it.

4.9. SECURITY OF OUR PROTOCOLS 107

• The outputs of S2 and S3 are indistinguishable. All inputs to A are the same,
except for a commitment Com(0, ri′) versus a commitment Com(xi′ , ri′). As the
commitment scheme is hiding and ri′ is chosen independetly, the distributions of
these commitments are indistinguishable and for any A3 getting input Com(xi′ , ri′)
there is an A2 producing a computationally indistinguishable output.

• the output of S3 is identically distributed as the output of Πp1 in the hybrid model.

Vectorized version We can now consider the ideal functionality

F (k)

p1({} . . . {}) = ((U1 . . . Uk) . . . (U1 . . . Uk)),

i.e., F (k)

p1 takes as input from each of the n parties an empty string and outputs to every party
the same vector (U1 . . . Uk) where every Ui is uniformly distributed in [0, L) independently
for i = 1 . . . k. We can then similarly construct a protocol Π

(k)

p1 that draws a vector z

uniformly distributed in [0, L)k.
In this protocol we will use a pseudo-random number generator as we defined in

Section 2.4. We use a similar but equivalent definition which is more convenient in our
proof, in particular, for some polynomial p, this is a function G : {0, 1}q → [0, L)p(q) such
that for any randomized polynomial time algorithm A : [0, L)p(q) → {0, 1} there holds
that |Px←R{0,1}q(A(G(x)) = 1) − Px←R[0,L)p(q)(A(x) = 1)| ≤ µ(q) with µ a negligible
function. We choose q sufficiently large such that p(q) ≥ kdlog(L)e and µ(q) is sufficiently
small.

We describe this protocol in the hybrid model using the ideal functionality Fp1[0, 2q),
which is a variant on the Fp1 functionality we introduced above where L is set to 2q. The

protocol Π
(k)

p1 is described below:

1: Protocol Π
(k)

p1
2: Security parameter: λ
3: Hybrid functionality sub-protocols:

• Fp1[0, 2q) : draws a single public random number in [0, 2q).

4: Protocol:
5: All parties collaboratively perform:
6: z′ = Fp1[0, 2q)({} . . . {})
7: For Pi ∈ P:
8: Pi: Output z = (z1 . . . zk) with zj containing bits (j−1)dlog(L)e+1 . . . jdlog(L)e

of G(z′) for j = 1 . . . k

Theorem 11 (Security of Π
(k)

p1). Let Fp1[0, 2q) be a secure multiparty functionality as

defined above. Then, Protocol Π
(k)

p1 securely computes F (k)

p1 in the Fp1[0, 2q)-hybrid model
in the presence of covert adversaries with cheating detection if at least one party is honest.

Proof. It follows from the definition of random number generator that the output of the
protocol is indistinguishable from the output of the ideal functionality when all parties are
honest-but-curious.

108 CHAPTER 4. PRIVATE SAMPLING WITH MALICIOUS SAMPLERS

The protocol consists of first a call to a secure sub-protocol and then a public computa-
tion which each agent can do for himself without any interaction. It is hence easy to see
that the protocol is secure.

4.9.4 Proof of Protocol 2
Now we prove the security of Protocol 2, which performs a private uniform draw. Without
loss of generality, we assume that the drawn sample should be private to P1. The ideal
functionality Fp2 : ({0, 1}∗)n → ({0, 1}∗)n is defined as

Fp2({} . . . {}) = ((z, rz), Cz, . . . , Cz)

where Cz = Com(z, rz), z is uniformly randomly distributed in [0, L)k and rz is uniformly
randomly distributed in Zq (as a consequence of the distributions of z and rz, Cz is
uniformly distributed over G). The pair (z, rz) is private to P1 while Cz is known by all
parties. We will describe a detailed version of Protocol 2 in the hybrid model. Our hybrid
functionalities will be Fp1 and F (k)

p1 , which correspond to Protocol 1, and FRmΣ , which,
for some modulus L ≤ q is the ideal functionality of a zero knowledge proof for relation

Rm = {(y ∈ [0, L)k, ry ∈ Zq, Cx ∈ G, Cz ∈ G
;x ∈ [0, L)k, rx ∈ Zq, z ∈ [0, L)k, rz ∈ Zq) :

Cx = Com(x, rx) ∧ Cz = Com(z, rz) ∧ x ∈ [0, L) ∧ z = x+ y mod L

∧ rz = rx + ry mod Zq}.

Such proof can be performed by applying a compressed Σ-protocol using the techiques
decribed in Section 4.6.1. We define below the protocol Πp2 which describes Protocol 2
in more detail.

1: Protocol Πp2 (to generate single private sample):
2: Security Parameter: λ
3: Hybrid Functionalitiy sub-protocols:

• F (k)

p1 draws publicly a random number from [0, L)k.

• Fp1Zp is a variant of Fp1 that draws a random number from Zq rather than
from [0, L).

• FRmΣ performs a zero-knowledge proof for the relation Rm defined above

4: Protocol:
5: P1:
6: draw x ∈ [0, L)k and rx ∈ Zq uniformly at random
7: compute Cx = Com(x, rx)
8: broadcast Cx
9: All parties in P collaboratively:

10: call F (k)

p1 to obtain a public y uniformly distributed over [0, L)k

11: call Fp1Zp to obtain a public ry uniformly distributed over Zq
12: P1:

4.9. SECURITY OF OUR PROTOCOLS 109

13: Compute z = x+ y mod L and rz = rx + ry mod q
14: Compute Cz = Com(z, rz)
15: broadcast Cz
16: Parties perform an ideal call to FRmΣ :
17: P1 → FRmΣ : (y, ry, Cx, Cz;x, rx, z, rz)

18: FRmΣ : broadcast [b, y′, r′y, C
′
x, C

′
z]

19: P−1: if b = 0 ∨ ru 6= r′y ∨ y 6= y′ ∨ Cx 6= C ′x ∨ CZ 6= C ′z, detect P1 as a cheater,
otherwise continue the execution

20: P1: output (z, rz)
21: P−1: output Cz
Theorem 12. Let Com be a computationally binding and perfectly hiding commitment
scheme and let FRmΣ be a secure multiparty functionality of a computationally sound

zero-knowledge proof of relation Rm. Let F (k)

p1 and Fp1[0, 2q) be secure multiparty
functionalities as defined above. Then, protocol Πp2 securely computes Fp2 in the

(F (k)

p1 ,Fp1Zp ,F
Rm

Σ)-hybrid model in the presence covert adversaries with cheating detec-
tion if at least one party is honest.

Proof. First note that, except for P1, the other parties are only supposed to perform ideal
calls and do not interact with each other. We will consider first the most difficult case in
which P1 is among the corrupted parties controlled by A. We define our adversary S that
simulates the output of A in the ideal model as follows:

1: S: internally run A until broadcast Cx (line 8 in Πp2)
2: A → S : Cx
3: S: continue the run of A until after the ideal call to F (k)

p1 (line 10 in Πp2)

4: S: draw a random value y ∈ [0, L)k

5: S → A : y (as if it came from F (k)

p1)
6: S: continue the run of A until after the ideal call to Fp1Zp (line 11 in Πp2)
7: S: draw a random value ry ∈ Zq
8: S → A : ry (as if it came from Fp1Zp)
9: A → S : Cz

10: S: continue run of A: P1 → FRmΣ : (y′, r′y, C
′
x, C

′
z, x
′, r′x, z

′, r′z)

11: FRmΣ : broadcast [b, y′, r′y, C
′
x, C

′
z]

12: if b = 0 ∨ y′ 6= y ∨ r′y 6= ry ∨ C ′x 6= Cx ∨ C ′z 6= Cz, detect P1 as a cheater
13: S: invoke trusted party computing Fp2
14: Fp2 returns ((z, rz) ∈ [0, L)k×Zq, (Cz, . . . , Cz) ∈ G|Pcor|−1) to S and (Cz, . . . , Cz) ∈

G|P\Pcor| to the honest parties
15: S sets y = z − x mod L and ry = rz − rx mod q

16: S rewinds A to before the invocation of F (k)

p1

17: S continues the internal run of A, which performs ideal calls to F (k)

p1 and Fp1Zp .

18: S → A : y, ry (as if they were sent by F (k)

p1 and Fp1Zp)
19: A → S : C ′′z ; if C ′′z 6= Cz, detect P1 as a cheater
20: S continues run A: P1 → FRmΣ : (y′′, r′′y , C

′′
x , C

′′
z , x

′′, r′′x, z
′′, r′′z)

21: FRmΣ : broadcast [b′, y′′, r′′y , C
′′
x , C

′′
z]

22: if b′ = 0 ∨ y′′ 6= y ∨ r′′y 6= ry ∨ C ′′x 6= Cx ∨ C ′′z 6= Cz, detect P1 as a cheater

110 CHAPTER 4. PRIVATE SAMPLING WITH MALICIOUS SAMPLERS

23: output whatever A outputs

Now we show that the ideal and hybrid execution outputs are indistinguishable. We
first start by analyzing the view of A in the hybrid protocol and when interacting with S.

• Since A has not seen any other message, the first commitment Cx of A is the same
in both hybrid and ideal executions.

• y and ry have the same distribution in the hybrid and ideal model as they are part of
an ideal call. Therefore, also the Cz broadcasted by A follows the same distribution
in the hybrid and ideal model.

• if A cheats in Cz (i.e., Cz is not a commitment according to relation Rm), it gets
caught both in the hybrid and ideal executions

• before rewinding A, S recovers x and rx such that Cx = Com(x, rx) with over-
whelming probability (this is because A cannot fake the zero knowledge proof in
FRmΣ except with negligible probability).

• in the ideal world, S sets y and ry such that z = x+y mod L and rz = rx+ry mod q,
where x and rx are chosen by A, z and y are uniformly randomly distributed in
[0, L)k and r and ry are uniformly randomly distributed in Zq. This is the same
distribution as in the hybrid world.

• now A broadcast C ′′z and either is detected as cheater or C ′′z = Com(z, rz) with
overwhelming probability both in the hybrid or ideal executions.

Up to this point, from the view ofA the transcripts simulated by S in the ideal execution
and the transcript in the hybrid execution are indistinguishable. SinceA runs in polynomial
time, his output must be indistinguishable in both executions.

Now we analyze the case where P1 is among then honest parties. Particularly, consider
the worst case where all other parties are malicious and P1 is the only honest party. This
case is still easy since the only interaction of malicious users is to perform ideal calls
to F (k)

p1 , Fp1Zp and FRmΣ . The only role of S is to send inputs that might be consistent
according to the behavior of A. Even if all the verifiers are malicious, the honest party can
still detect them.

4.9.5 Non-uniform Public and Private Draws

Public and Private draws from many distributions such as Gaussians or Laplace distribu-
tions can be performed by first drawing uniformly distributed samples with either Protocol
1 for public draws or Protocol 2 for private draws, then applying a non-interactive transfor-
mation. For private draws, this transformation is a non-interactive compressed Σ-protocol
as described in Section 4.9.2. For each technique, we explain the appropriate transfor-
mation in Sections 4.7.1, 4.8.1, 4.8.2, 4.8.3 and 4.8.4. This procedure is secure as it is
essentially a secure drawing of a uniformly distributed random number as discussed in the
previous sections followed by a private but verifiable single-party post-processing.

4.10. EVALUATION 111

4.10 Evaluation

In this section, we present an empirical comparison of several methods to privately sample
from the Gaussian distribution. We will publish code to reproduce all experiments together
with the final version of this paper.

4.10.1 Setup
We evaluate the costs of the methods presented in Section 4.8. Namely, the Central
Limit Theorem approach (CLT), the Box Müller (BM), the Polar Method (PolM) and
the inversion method. In the latter, we evaluate the two described strategies: using series
(InvM-S) and rational approximations (InvM-R). Samples are generated for the N (0, 1)
distribution.

We evaluate the cost of each method instantiated for several parameters against the
statistical quality of the generated samples. For the computational cost we measure the
exponentiations in G (GEX), which dominate the computation. The total communication
cost is the number of elements of G and Zq sent (see Section 4.2). To measure the statistical
quality, we generate 107 samples and measure the Mean Squared Error (MSE) from the
ideal Gaussian CDF.

The varying parameter for BM and PolM is the number of iterations ν of their Cordic
approximations, which is chosen between 2 and 14. For CLT we vary the number of
averaged uniform terms between 2 and 400. For InvM-R, the number of terms of the
approximation series is changed in order to obtain different approximations with errors
between 0.5 and 2−20. The rational approach InvM-R has no varying parameter. The
representation parameter ψ which defines Q〈q,ψ〉 is chosen to be the smallest as allowed by
BM, PolM, InvM-S due to approximation constraints, and for CLT is set to optimize the
quality/cost tradeoff .

4.10.2 Results
Figure 4.1 shows the communication costs, i.e., the number of elements of G required to
prove one Gaussian draw. Note that, as described in Section 4.2, 6 elements of Zq must be
added to obtain the final cost. If high precision is not important, CLT performs well, but in
general PolM, BM and Inv-R give the best precision for a given computational investment.
The Inv-R method is much simpler but cannot be tuned to other precisions.

Figure 4.2 shows the number of GEX to prove (by the party who draws the number)
or to verify (by another party) one Gaussian draw. Here too, BM and PolM are the most
efficient methods as soon as a good statistical quality is required. We note that, as the
communication cost is logarithmic in the number of inputs and multiplication gates, several
parameter settings give different points in Figure 4.2 but may have the same communication
cost, so in Figure 4.1 we just show the proof with best statistical quality.

For illustration, if we implement Pedersen commitments using the secp256k1 1 elliptic
curve, we obtain 128 bit security and an element of G can be represented with 257 bits.
One GEX using this curve takes no more than 30 microseconds on an Intel Core i7-6600U
at 2.60 GHz CPU. With BM, PolM and InvM-R, a sample with MSE < 10−6 requires
less than 900 Bytes of communication. With PolM, such sample takes less than 360

1See https://www.secg.org/SEC2-Ver-1.0.pdf and https://github.com/
bitcoin-core/secp256k1

https://www.secg.org/SEC2-Ver-1.0.pdf
https://github.com/bitcoin-core/secp256k1
https://github.com/bitcoin-core/secp256k1

112 CHAPTER 4. PRIVATE SAMPLING WITH MALICIOUS SAMPLERS

15 20 25 30 35
Group Elements

10 6

10 5

10 4

10 3

10 2

10 1

M
ea

n
Sq

ua
re

d
Er

ro
r

BM
PolM
CLT
InvM-S
InvM-R

Figure 4.1: (Comm. costs) Required Group Elements for one sample against the MSE for
BM, PolM, InvM and CLT approaches.

milliseconds (ms) to prove and 75 ms for its verification. While CLT quickly gets very
expensive, if quality is less important and an MSE > 10−4 is satisfactory, it is the most
efficient approach. A proof of a sample using CLT with MSE 10−2 can be generated in
less than 10 ms, verified in 3 ms and has a size of 482 Bytes.

We also note that it is possible to further optimize our implementation using special-
purpose algorithms [112] to compute multiple exponentiations in the form ḡb̄.

Finally, in Figure 4.3 we show the gap in the communication cost between our PolM
and CLT sampling techniques implemented with classic (non-compressed) Σ-protocols
[46, 47] to the presented compressed techniques.

4.11 Application: Differentially Private Machine Learn-
ing

An important application of verifiable sampling can be found in the field of federated
machine learning under differential privacy. Consider the parties U = {i}ni=1 where each
party i has some sensitive private data xi. The parties U want to keep their data xi private
but want to collaborate to obtain statistical information θ of common interest. For example,
similar to GOPA in Chapter 3, assume that ∀i ∈ [n] : 0 ≤ xi ≤ 1 and that the parties in
U would like to compute θ = 1

n

∑n
i=1 xi. As shown in Chapter 2.2, common strategies to

make information DP before publication are to add noise from appropriately scaled Laplace
or Gaussian distributions. Then, for any ε > 0, if we set θ̂ = θ + η with η ∼ Lap(1/ε)
there holds that θ̂ is ε-DP. Alternatively, for any ε > 0 and δ > 0, if we set θ̂ = θ + η with
η ∼ N

(
0, 2ln(1.25/δ)

ε2

)
there holds that θ̂ is (ε, δ)-DP.

It is important that no party knows the added noise η, because knowing both θ̂ and η
would allow to reconstruct θ = θ̂ − η. We present two protocols, one privately drawing
random numbers, which produces a less accurate result, and one based on the more
expensive hidden drawing which has optimal precision.

Protocol 9 (DP learning using private sampling). Assume it is possible to partition U into
groups of parties of size at most ρn (with 0 ≤ ρ < 1) such that parties in different groups

4.11. APPLICATION: DIFFERENTIALLY PRIVATE MACHINE LEARNING 113

103 104 105

Group Exponentiations

10 6

10 5

10 4

10 3

10 2

10 1

100

M
ea

n
Sq

ua
re

d
Er

ro
r

BM
PolM
CLT
InvM-S
InvM-R

0 2000 4000 6000 8000 10000 12000
Group Exponentiations

10 6

10 5

10 4

10 3

10 2

10 1

M
ea

n
Sq

ua
re

d
Er

ro
r

BM
PolM
CLT

(a) Proving cost.

102 103 104 105

Group Exponentiations

10 6

10 5

10 4

10 3

10 2

10 1

100

M
ea

n
Sq

ua
re

d
Er

ro
r

BM
PolM
CLT
InvM-S
InvM-R

0 500 1000 1500 2000 2500
Group Exponentiations

10 6

10 5

10 4

10 3

10 2

10 1

M
ea

n
Sq

ua
re

d
Er

ro
r

BM
PolM
CLT

(b) Verification cost.

Figure 4.2: (Comp. costs) Required group exponentiations for one sample against the MSE
for BM, PolM, InvM and CLT approaches. Costs in the left side plots are in logarithmic
scale. The right side plots are zooms of their left plots, in linear scale and with a detailed
view on the most efficient methods.

do not collude with each other. As described in Section 4.8, let all parties i (i ∈ [n])
privately verifiably draw a Gaussian random number ηi ∼ N

(
0, σ2

n(1−ρ)

)
, where noise

with variance σ2 on θ would be sufficient to achieve the desired privacy level. Then,
securely sum θ̂ = 1

n

∑n
i=1(xi + ηi) and publish θ̂.

As discussed in Chapter 3, even if a group of colluding parties Ucoll = {i}i∈C with
C ⊆ [n] and |C| ≤ ρn collects all noise they have contributed ηcoll =

∑
i∈C ηi and

subtracts it from θ̂ to obtain θcoll = θ̂ − ηcoll/n, then there is still Gaussian noise with
variance σ2

1−ρ − ρ
σ2

1−ρ = σ2 left on their best estimation of θ.

Protocol 10 (DP learning using hidden sampling). Let all parties i (with i ∈ [n]) represent
their private number xi as a shared secret. Let the parties next together verifiably drawn
a hidden random number η, i.e., a random number they obtain only as a shared secret.
Finally, let them sum the secret shares and reveal θ̂ =

∑n
i=1 xi + η

The advantage of this protocol is that no parties see η or parts of it, so it is impossible to
get back towards the sensitive statistic θ. On the other hand, the full computation needs to
be performed through multi-party computations, e.g., using shared secrets, which is clearly
more expensive than the ZKPs which are needed in Protocol 9, especially as compressed
Σ-protocols allow for ZKPs of size only logarithmic in the circuit size while calculations
on secret shares have a linear communication cost.

114 CHAPTER 4. PRIVATE SAMPLING WITH MALICIOUS SAMPLERS

102 103

Group Elements

10 6

10 5

10 4

10 3

10 2
M

ea
n

Sq
ua

re
d

Er
ro

r

PolM - Compressed
PolM - Classic

101 102 103 104 105

Group Elements

10 6

10 5

10 4

10 3

10 2

M
ea

n
Sq

ua
re

d
Er

ro
r

CLT - Compressed
CLT - Classic

Figure 4.3: (Comparison w. classic Σ-protocols) Required Group Elements for one sample
against the MSE using compressed and classic Σ-protocols for PolM (left) and CLT (right).

As such drawing of random noise is a basic building block and needs to be performed
repeatedly by secure federated differentially private machine learning algorithms, being
able to draw from these probability distributions with low communication cost is essential
to make algorithms more efficient.

4.12 Conclusion

We have presented novel methods for drawing random numbers in a verifiable way in
a public, private and hidden setting. We applied the ideas to the Laplace and Gaussian
distribution, and evaluated several alternatives to sample from the Gaussian distribution.

We see several interesting directions for future work. First, we hope to develop novel
strategies to let our methods scale better when in the course of an algorithm many random
numbers are needed. Second, we would like to develop new methods which allow for more
efficient sampling in the hidden setting where the random numbers are output as shared
secrets. In particular, our current methods based on generic secret sharing techniques
require multiple rounds of computation and communication, it may be possible to develop
more efficient special-purpose strategies.

Chapter 5

Conclusion and Perspectives

We give in this chapter a conclusion to our dissertation. We summarize the presented
contributions in Section 5.1 and describe lines of future work and limitations in Section
5.2.

5.1 Summary

We presented contributions to improve differentially private decentralized machine learning
without a trusted curator. In our first contribution, we presented GOPA, a novel privacy-
preserving averaging protocol that matches the accuracy of trusted curator DP. We show that
if the communication graph between honest parties is connected, these honest parties enjoy
differential privacy. Moreover, the more connected the communication graph is, the lower
is the error if a party drops out and there is no time to roll back its contribution. We show
that a random communication graph hits a nice balance between efficiency, needing only
a logarithmic communication cost per party, and robustness against unknown colluding
adversaries. Next to our worst-case bounds, we perform random graph simulations to
obtain DP parameters that are less conservative than in our theoretical results. Our protocol
weakens the tension between privacy, accuracy and communication cost. We achieve
this using bounded pairwise noise, instead of modular unbounded uniform noise masks
common in popular techniques. This makes uncancelled pairwise noise due to dropouts to
have a bounded impact on utility and makes the protocol more robust.

Furthermore, GOPA can actively prevent malicious behavior to bias the result of the
computation via Zero Knowledge Proofs. While ZKPs have been widely studied, using
them to handle malicious behaviors in decentralized machine learning is novel.

In the second contribution, we further develop on techniques for robustness in the
context of randomized computations. We propose methods for sampling Gaussian and
Laplace distributions in malicious settings. These techniques can be applied in machine
learning, for example, when sampling noise for differential privacy. In addition, we discuss
strategies for sampling from arbitrary distributions in the malicious setting. This work
brings a broad treatment of methods for private sampling. We also propose efficient
zero knowledge proofs of transcendental relations, which can be used in robust machine
learning as building blocks to other proofs. Finally, we provide a comparative study of the
efficiency of drawing random Gaussian numbers using different approximation strategies
and applications for differential privacy.

115

116 CHAPTER 5. CONCLUSION AND PERSPECTIVES

5.2 Directions for Future Work

Now we provide directions for future work. We cover aspects that range from concrete
lines of work to long term perspectives.

Runtime evaluation It would be interesting to know how the practical execution time
depends on the parameters of our protocols. To address this, prototype implementations
that cover global aspects of our protocols are needed. A further question in this direction
is how to simulate realistic dropouts and malicious parties. For verifiable sampling, a
systematic experimental study is needed, including the complete spectrum of outlined
techniques.

Batch Computation Another question is to evaluate the impact of vectorization. That
is, averaging vectors of sensitive inputs in GOPA and generating many random numbers
at once in our sampling techniques of Chapter 4. In verifiable sampling, such evaluation
could provide interesting insights on the performance of sampling methods that are not
efficient when only generating a few samples (for example, table lookups) but their cost
is amortized when many samples are generated. For GOPA, compression methods might
reduce the communication cost when averaging vectors which, with the current protocol,
is linear in the number of vector dimensions.

Further Combination of our Contributions Another line of future work is to incor-
porate techniques of Chapter 4 into GOPA. To reduce communication, note that we
use classical Σ-protocols for GOPA while a direct improvement is to use compressed
Σ-protocols as described in Chapter 4. Furthermore, the more detailed study of generating
random numbers in Chapter 4 can significantly improve aspects such as the cryptographic
cost and utility of GOPA. For example, hidden random draws that no party knows can
get GOPA from nearly as little noise as in the trusted curator setting to exactly the same
amount of noise as in the trusted curator setting.

Efficiency and Finite Precision As explained in Chapter 3, issues of finite precision
can be overcome with care, often requiring sufficiently large finite groups as parameters
of our ZKPs. However, bigger finite groups yield to longer communication constants. In
GOPA, finite groups are only required to prove the correctness of the computation but not
for the computation itself. It could be explored how other ZKP primitives that perform
proofs over all the integers might impact on the communication cost.

From Building Blocks to Machine Learning The purpose of our contributions is to
be used as building blocks of bigger machine learning systems. While GOPA has a
direct application in federated learning aggregation, linear regression and decision trees,
a remaining question is how to compute other statistics from averages. Our ZKPs of
transcendental computations could also be incorporated into bigger systems. For example,
when implementing a ZKP of the correct evaluation of an activation function or a loss
function. Proving in zero knowledge the correct evaluation of an entire machine learning
model or a model update in federated learning is challenging. While techniques for this
purpose exist, in most of the cases they are still prohibitive in practice due to their cost.

5.2. DIRECTIONS FOR FUTURE WORK 117

Related Challenges Other challenges are related to identity control and shuffling. The
identity control problem is to check without compromising privacy that all enrolled partic-
ipants are indeed true and different individuals. This protects the identity of each party
while prevents from attacks such as the creation of fake identities to bias the computation.
In this direction, existent tools such as anonymous credentials might provide promising
solutions. The shuffling problem is to prevent that all messages of the same participant are
linked together. This can help to reduce the amount of noise required for DP, as shown in
the shuffle model of differential privacy. Algorithms that perform shuffling, i.e. a random
permutation of the updates of each party, without requiring a trusted party is an interesting
direction of research.

Limitations of this work Below, we describe scenarios in which our contributions might
not be applicable.

Some AI techniques require intensive computation that can only be performed by
certain clusters and not by multiple personal devices. This can happen if the computation is
not easily parallelizable or due to the limited computational power of participants, even if a
massive amount of them collaborate. Other approaches could be suitable in such cases: for
example, a technique in which a single party with sufficient computational power collects
encrypted data and obliviously exploits it by using fully homomorphic encryption (if such
primitive becomes an efficient alternative).

In our protocols, the interaction between parties requires a certain level of synchro-
nization. For instance, when generating noise samples, parties have sometimes to wait
for the response of a message to continue their computation. This may be problematic for
unstable networks or in the presence of participants with different computational power,
where some of them might get blocked waiting for message responses, increasing latency
and the risk of further network problems. Even if our protocols have measures to deal with
some of these issues (e.g. for dropouts in the case of GOPA) other approaches might show
better resilience to them. For example, protocols where parties send messages and can
continue their own computations without further interaction with the receivers may benefit
from a more predictable execution time and require simpler prevention measures.

Our verification protocol requires to commit to private values and to prove the correct-
ness of computations. While this approach successfully hides information about the input
and output, it still reveals the “structure” of the computation through the statements being
proven. In some settings where participants use different learning techniques to compute
their contributions, it might be desirable to keep these techniques hidden. This can prevent
from attackers that exploit vulnerabilities of a particular algorithm and hide the algorithms
that participants do not want to disclose, for example, for competitive advantage. Model
poisoning in federated learning could be reduced in such scenarios by requiring parties
to prove that their model updates perform “sufficiently good” instead of proving that the
exact computation was done correctly.

Our threat model does not contemplate some relevant scenarios that can be present in
practice. An example is a setting where each party is interested in biasing the outcome
in a different way to obtain individual benefit. In that situation, all parties are malicious
but they might not collude with each other. Even if malicious, parties may decide to
have a “honest-looking” behavior to avoid being detected and giving advantage to other
“competitors”. A game-theoretical study on these more general scenarios could provide
other solutions and a better understanding of the applicability of our protocols.

118 CHAPTER 5. CONCLUSION AND PERSPECTIVES

Long Term Perspectives Achieving privacy in machine learning and other artificial
intelligence systems are problems that face many challenges. They require the integration
of heterogeneous primitives such as the contributions presented in this dissertation together
with other techniques to compute statistics, privacy of identity, proofs of consistency, etc.
In the near future, composing primitives in large ecosystems of data exploitation might not
be enough to ensure good levels of privacy or to design computationally tractable models.
This is especially challenging for techniques that require complex data transformations.
Further research will be required to achieve more efficient integrations. Two important
lines of work are the derivation of tighter bounds on the composition of DP algorithms that
do not exhaust the privacy budget of parties, and the search of computationally tractable
techniques to verify higher level computations.

For a broad study of privacy, it is also crucial to understand what theoretical parameters
are safe to be used in practice. Methods that can derive realistic values for parameters, pos-
sibly taking into account already existent perturbations when data is shared, are important
to provide complete guarantees.

Privacy-preserving decentralized machine learning increases significantly the amount of
interactions in the network and, in some cases, the amount of transferred information. Even
if data is sent through secure channels, real implementations might expose vulnerabilities.
Hence, it is important to evaluate if decentralized machine learning can increase potential
risks such as eavesdroppers and other kinds of attacks.

Finally, we would like to point out that machine learning techniques require an intense
consumption of energy. Privacy preserving techniques, especially when they use crypto-
graphic primitives, might make this problem worse. Not all problems can be addressed at
once, but it is important to do research in more environmental friendly tools and uses of
our protocols.

Bibliography

[1] S. Advokat and K.-R. Newspapers. PUBLICATION OF BORK‘S VIDEO
RENTALS RAISES PRIVACY ISSUE. https://web.archive.org/
web/20220322015153/https://www.chicagotribune.com/news/
ct-xpm-1987-11-20-8703270590-story.html. Last Access: 2022-
03-22.

[2] N. Agarwal, P. Kairouz, and Z. Liu. The skellam mechanism for differentially
private federated learning. In NeurIPS, 2021.

[3] N. Agarwal, A. T. Suresh, F. X. Yu, S. Kumar, and B. McMahan. cpSGD:
Communication-efficient and differentially-private distributed SGD. In NeurIPS,
2018.

[4] A. Aly and N. P. Smart. Benchmarking Privacy Preserving Scientific Operations.
In R. H. Deng, V. Gauthier-Umaña, M. Ochoa, and M. Yung, editors, Applied
Cryptography and Network Security, Lecture Notes in Computer Science, pages
509–529, Cham, 2019. Springer International Publishing.

[5] T. Attema and R. Cramer. Compressed Σ-Protocol Theory and Practical Appli-
cation to Plug & Play Secure Algorithmics. In D. Micciancio and T. Ristenpart,
editors, Advances in Cryptology – CRYPTO 2020, Lecture Notes in Computer
Science, pages 513–543, Cham, 2020. Springer International Publishing.

[6] Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols
for realistic adversaries. Journal of Cryptology, 23(2):281–343, 2010.

[7] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov. How to backdoor
federated learning. In AISTATS, 2020.

[8] V. Balcer and S. Vadhan. Differential Privacy on Finite Computers. In ITCS, 2018.

[9] B. Balle, J. Bell, A. Gascón, and K. Nissim. Private Summation in the Multi-
Message Shuffle Model. In CCS, 2020.

[10] F. Bayatbabolghani, M. Blanton, M. Aliasgari, and M. Goodrich. Secure fingerprint
alignment and matching protocols. arXiv preprint arXiv:1702.03379, 2017.

[11] J. Bell, A. Bellet, A. Gascón, and T. Kulkarni. Private Protocols for U-Statistics in
the Local Model and Beyond. In AISTATS, 2020.

[12] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova. Secure
Single-Server Aggregation with (Poly)Logarithmic Overhead. In CCS, 2020.

119

https://web.archive.org/web/20220322015153/https://www.chicagotribune.com/news/ct-xpm-1987-11-20-8703270590-story.html
https://web.archive.org/web/20220322015153/https://www.chicagotribune.com/news/ct-xpm-1987-11-20-8703270590-story.html
https://web.archive.org/web/20220322015153/https://www.chicagotribune.com/news/ct-xpm-1987-11-20-8703270590-story.html

120 BIBLIOGRAPHY

[13] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing
efficient protocols. In Proceedings of the 1st ACM conference on Computer and
communications security, CCS ’93, pages 62–73, New York, NY, USA, Dec. 1993.
Association for Computing Machinery.

[14] E. Ben Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.
Zerocash: Decentralized Anonymous Payments from Bitcoin. In S&P, 2014.

[15] D. Benarroch, M. Campanelli, D. Fiore, K. Gurkan, and D. Kolonelos. Zero-
knowledge proofs for set membership: Efficient, succinct, modular. Cryptology
ePrint Archive, Report 2019/1255, 2019. https://ia.cr/2019/1255.

[16] D. Bernhard, O. Pereira, and B. Warinschi. How Not to Prove Yourself: Pitfalls
of the Fiat-Shamir Heuristic and Applications to Helios. In X. Wang and K. Sako,
editors, Advances in Cryptology – ASIACRYPT 2012, Lecture Notes in Computer
Science, pages 626–643, Berlin, Heidelberg, 2012. Springer.

[17] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. B. Calo. Analyzing federated
learning through an adversarial lens. In ICML, 2019.

[18] A. Biswas and G. Cormode. Verifiable differential privacy for when the curious
become dishonest, 2022.

[19] P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer. Machine learning
with adversaries: Byzantine tolerant gradient descent. In NIPS, 2017.

[20] M. Blum. Coin flipping by telephone a protocol for solving impossible problems.
ACM SIGACT News, 15(1):23–27, 1983.

[21] B. Bollobás. Random Graphs (2nd edition). Cambridge University Press, 2001.

[22] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel,
D. Ramage, A. Segal, and K. Seth. Practical Secure Aggregation for Privacy-
Preserving Machine Learning. In CCS, 2017.

[23] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. Efficient Zero-Knowledge
Arguments for Arithmetic Circuits in the Discrete Log Setting. In M. Fischlin and
J.-S. Coron, editors, Advances in Cryptology – EUROCRYPT 2016, Lecture Notes
in Computer Science, pages 327–357, Berlin, Heidelberg, 2016. Springer.

[24] G. E. P. Box and M. E. Muller. A Note on the Generation of Random Normal
Deviates. Annals of Mathematical Statistics, 29(2):610–611, June 1958. Publisher:
Institute of Mathematical Statistics.

[25] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip algorithms.
IEEE/ACM Transactions on Networking, 14(SI):2508–2530, 2006.

[26] A. Broder and D. Dolev. Flipping coins in many pockets (byzantine agreement on
uniformly random values). In 25th Annual Symposium onFoundations of Computer
Science, 1984., pages 157–170, 1984.

[27] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs:
Short Proofs for Confidential Transactions and More. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 315–334, May 2018. ISSN: 2375-1207.

https://ia.cr/2019/1255

BIBLIOGRAPHY 121

[28] J. Camenisch, R. Chaabouni, and A. Shelat. Efficient Protocols for Set Membership
and Range Proofs. In J. Pieprzyk, editor, Advances in Cryptology - ASIACRYPT
2008, Lecture Notes in Computer Science, pages 234–252, Berlin, Heidelberg, 2008.
Springer.

[29] J. Camenisch and M. Michels. Proving in Zero-Knowledge that a Number is
the Product of Two Safe Primes. In J. Stern, editor, Advances in Cryptology —
EUROCRYPT ’99, Lecture Notes in Computer Science, pages 107–122, Berlin,
Heidelberg, 1999. Springer.

[30] 2020-21 survey of canadians on privacy-related issues. https:
//web.archive.org/web/20220917162325/https://www.
priv.gc.ca/en/opc-actions-and-decisions/research/
explore-privacy-research/2021/por_2020-21_ca/, 2021.

[31] N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee, A. Roberts,
T. Brown, D. Song, U. Erlingsson, et al. Extracting training data from large language
models. In 30th USENIX Security Symposium (USENIX Security 21), pages 2633–
2650, 2021.

[32] H. Chan, A. Perrig, and D. X. Song. Random Key Predistribution Schemes for
Sensor Networks. In S&P, 2003.

[33] T.-H. H. Chan, E. Shi, and D. Song. Optimal Lower Bound for Differentially Private
Multi-party Aggregation. In ESA, 2012.

[34] T.-H. H. Chan, E. Shi, and D. Song. Privacy-preserving stream aggregation with
fault tolerance. In Financial Cryptography, 2012.

[35] D. Chaum, J.-H. Evertse, and J. van de Graaf. An Improved Protocol for Demon-
strating Possession of Discrete Logarithms and Some Generalizations. In D. Chaum
and W. L. Price, editors, Advances in Cryptology — EUROCRYPT’ 87, Lecture
Notes in Computer Science, pages 127–141, Berlin, Heidelberg, 1988. Springer.

[36] D. Chaum and T. P. Pedersen. Wallet Databases with Observers. In E. F. Brickell,
editor, Advances in Cryptology — CRYPTO’ 92, Lecture Notes in Computer Science,
pages 89–105, Berlin, Heidelberg, 1993. Springer.

[37] W.-N. Chen, P. Kairouz, and A. Ozgur. Breaking the communication-privacy-
accuracy trilemma. In NeurIPS, 2020.

[38] A. Cheu, A. D. Smith, J. Ullman, D. Zeber, and M. Zhilyaev. Distributed Differential
Privacy via Shuffling. In EUROCRYPT, 2019.

[39] S. Chevillard. The functions erf and erfc computed with arbitrary precision and
explicit error bounds. Information and Computation, 216:72–95, July 2012.

[40] S. Chevillard and N. Revol. Computation of the error functions erf & erfc in arbitrary
precision with correct rounding. Research Report RR-6465, INRIA, 2008.

[41] S. G. Choi, D. Dachman-Soled, M. Kulkarni, and A. Yerukhimovich. Differentially-
private multi-party sketching for large-scale statistics. Cryptology ePrint Archive,
Paper 2020/029, 2020. https://eprint.iacr.org/2020/029.

https://web.archive.org/web/20220917162325/https://www.priv.gc.ca/en/opc-actions-and-decisions/research/explore-privacy-research/2021/por_2020-21_ca/
https://web.archive.org/web/20220917162325/https://www.priv.gc.ca/en/opc-actions-and-decisions/research/explore-privacy-research/2021/por_2020-21_ca/
https://web.archive.org/web/20220917162325/https://www.priv.gc.ca/en/opc-actions-and-decisions/research/explore-privacy-research/2021/por_2020-21_ca/
https://web.archive.org/web/20220917162325/https://www.priv.gc.ca/en/opc-actions-and-decisions/research/explore-privacy-research/2021/por_2020-21_ca/
https://eprint.iacr.org/2020/029

122 BIBLIOGRAPHY

[42] Cisco consumer privacy survey. https://web.archive.org/
web/20220901043636/https://www.cisco.com/c/dam/
en_us/about/doing_business/trust-center/docs/
cisco-cybersecurity-series-2021-cps.pdf, 2021. Last accessed:
2022-09-01.

[43] R. Cleve. Limits on the security of coin flips when half the processors are faulty. In
Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing,
STOC ’86, page 364–369, New York, NY, USA, 1986. Association for Computing
Machinery.

[44] N. Confessore. Cambridge Analytica and Facebook: The Scandal and the Fall-
out So Far. https://web.archive.org/web/20220411013138/
https://www.nytimes.com/2018/04/04/us/politics/
cambridge-analytica-scandal-fallout.html, 2018. Last ac-
cess: 2022-04-11.

[45] H. Corrigan-Gibbs and D. Boneh. Prio: Private, robust, and scalable computation
of aggregate statistics. In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 259–282, 2017.

[46] R. Cramer. Modular Design of Secure yet Practical Cryptographic Protocols. PhD
thesis, University of Amsterdam, Jan. 1997.

[47] R. Cramer and I. Damgård. Zero-knowledge proofs for finite field arithmetic, or:
Can zero-knowledge be for free? In H. Krawczyk, editor, Advances in Cryptol-
ogy — CRYPTO ’98, Lecture Notes in Computer Science, pages 424–441, Berlin,
Heidelberg, 1998. Springer.

[48] R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of Partial Knowledge and
Simplified Design of Witness Hiding Protocols. In Y. G. Desmedt, editor, Advances
in Cryptology — CRYPTO ’94, Lecture Notes in Computer Science, pages 174–187,
Berlin, Heidelberg, 1994. Springer.

[49] E. Cyffers and A. Bellet. Privacy Amplification by Decentralization.
arXiv:2012.05326 [cs, stat], Mar. 2022. arXiv: 2012.05326.

[50] I. Damgard, M. Fitzi, E. Kiltz, J. Nielsen, and T. Toft. Unconditionally secure
constant rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In TCC 2006, volume 3876 of LNCS, page 285–304. Springer, 2006.

[51] I. Damgard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart. Practical
covertly secure mpc for dishonest majority – or: Breaking the spdz limits. In
ESORICS, volume 8134 of LNCS, pages 1–18. Springer, 2013.

[52] Q. Dang. Secure Hash Standard (SHS). Technical Report Federal Information
Processing Standard (FIPS) 180-4, National Institute of Standards and Technology,
Gaithersburg, MD, 2015.

[53] V. Dimitrov, L. Kerik, T. Krips, J. Randmets, and J. Willemson. Alternative Im-
plementations of Secure Real Numbers. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’16, pages 553–564,
New York, NY, USA, Oct. 2016. Association for Computing Machinery.

https://web.archive.org/web/20220901043636/https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/cisco-cybersecurity-series-2021-cps.pdf
https://web.archive.org/web/20220901043636/https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/cisco-cybersecurity-series-2021-cps.pdf
https://web.archive.org/web/20220901043636/https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/cisco-cybersecurity-series-2021-cps.pdf
https://web.archive.org/web/20220901043636/https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/cisco-cybersecurity-series-2021-cps.pdf
https://web.archive.org/web/20220411013138/https://www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html
https://web.archive.org/web/20220411013138/https://www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html
https://web.archive.org/web/20220411013138/https://www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html

BIBLIOGRAPHY 123

[54] B. Ding, J. Kulkarni, and S. Yekhanin. Collecting telemetry data privately. In NIPS,
2017.

[55] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation onion
router. Technical report, Naval Research Lab Washington DC, 2004.

[56] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local Privacy and Statistical
Minimax Rates. In 2013 IEEE 54th Annual Symposium on Foundations of Computer
Science, pages 429–438, Oct. 2013. ISSN: 0272-5428.

[57] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local privacy and statistical
minimax rates. In FOCS, 2013.

[58] C. Dwork. Differential Privacy. In ICALP, 2006.

[59] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our Data,
Ourselves: Privacy Via Distributed Noise Generation. In S. Vaudenay, editor,
Advances in Cryptology - EUROCRYPT 2006, pages 486–503, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

[60] C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Foun-
dations and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

[61] C. Dwork and G. N. Rothblum. Concentrated Differential Privacy.
arXiv:1603.01887 [cs], Mar. 2016. arXiv: 1603.01887.

[62] T. Elgamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31(4):469–472, July 1985.
Conference Name: IEEE Transactions on Information Theory.

[63] U. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan, and K. Talwar. Amplifica-
tion by Shuffling: From Local to Central Differential Privacy via Anonymity. In
SODA, 2019.

[64] U. Erlingsson, V. Pihur, and A. Korolova. Rappor: Randomized aggregatable
privacy-preserving ordinal response. In CCS, 2014.

[65] T. I. Fenner and A. M. Frieze. On the connectivity of random m-orientable graphs
and digraphs. Combinatorica, 2(4):347–359, 1982.

[66] A. Fiat and A. Shamir. How To Prove Yourself: Practical Solutions to Identification
and Signature Problems. In A. M. Odlyzko, editor, Advances in Cryptology —
CRYPTO’ 86, Lecture Notes in Computer Science, pages 186–194, Berlin, Heidel-
berg, 1987. Springer.

[67] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller. Inverting gradients - how
easy is it to break privacy in federated learning? In NeurIPS, 2020.

[68] B. Ghazi, R. Kumar, P. Manurangsi, and R. Pagh. Private counting from anonymous
messages: Near-optimal accuracy with vanishing communication overhead. In
ICML, 2020.

[69] M. Giles. Approximating the erfinv function. In GPU Computing Gems Jade
Edition, pages 109–116. Elsevier, 2012.

124 BIBLIOGRAPHY

[70] O. Goldreich. Secure multi-party computation. Manuscript. Preliminary version,
1998.

[71] O. Goldreich. Foundations of cryptography: volume 2, basic applications. Cam-
bridge university press, 2009.

[72] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,
STOC ’87, page 218–229, New York, NY, USA, 1987. Association for Computing
Machinery.

[73] S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive
Proof Systems. SIAM Journal on Computing, 18(1):186–208, Feb. 1989. Publisher:
Society for Industrial and Applied Mathematics.

[74] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in Neural
Information Processing Systems, volume 27, 2014.

[75] K. Gupta, D. Kumaraswamy, N. Chandran, and D. Gupta. Llama: A low latency
math library for secure inference. Cryptology ePrint Archive, Paper 2022/793, 2022.
https://eprint.iacr.org/2022/793.

[76] V. Hartmann and R. West. Privacy-Preserving Distributed Learning with Secret
Gradient Descent. Technical report, arXiv:1906.11993, 2019.

[77] J. Hayes and O. Ohrimenko. Contamination attacks and mitigation in multi-party
machine learning. In NeurIPS, 2018.

[78] M. Heikkilä, E. Lagerspetz, S. Kaski, K. Shimizu, S. Tarkoma, and A. Honkela.
Differentially private Bayesian learning on distributed data. In Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[79] H. Imtiaz, J. Mohammadi, and A. D. Sarwate. Distributed differentially private
computation of functions with correlated noise. arXiv preprint arXiv:1904.10059,
2021.

[80] B. Jayaraman, L. Wang, D. Evans, and Q. Gu. Distributed learning without distress:
Privacy-preserving empirical risk minimization. In NeurIPS, 2018.

[81] D. Johnson, A. Menezes, and S. Vanstone. The Elliptic Curve Digital Signature
Algorithm (ECDSA). International Journal of Information Security, 1(1):36–63,
Aug. 2001.

[82] P. Kairouz, K. Bonawitz, and D. Ramage. Discrete distribution estimation under
local privacy. In ICML, 2016.

[83] P. Kairouz, Z. Liu, and T. Steinke. The distributed discrete gaussian mechanism for
federated learning with secure aggregation. In ICML, 2021.

[84] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, et al. Advances and open problems
in federated learning. Foundations and Trends® in Machine Learning, 14(1–2):1–
210, 2021.

https://eprint.iacr.org/2022/793

BIBLIOGRAPHY 125

[85] P. Kairouz, S. Oh, and P. Viswanath. Secure multi-party differential privacy. In
NIPS, 2015.

[86] P. Kairouz, S. Oh, and P. Viswanath. Extremal Mechanisms for Local Differential
Privacy. Journal of Machine Learning Research, 17:1–51, 2016.

[87] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. D. Smith.
What Can We Learn Privately? In FOCS, 2008.

[88] F. Kato, Y. Cao, and M. Yoshikawa. Preventing manipulation attack in local
differential privacy using verifiable randomization mechanism. In K. Barker and
K. Ghazinour, editors, Data and Applications Security and Privacy XXXV, pages
43–60, Cham, 2021. Springer International Publishing.

[89] J. Katz and Y. Lindell. Introduction to Modern Cryptography, Second Edition. CRC
Press, 2014.

[90] D. Kifer and A. Machanavajjhala. Pufferfish: A framework for mathematical privacy
definitions. ACM Transactions on Database Systems, 39(1):3:1–3:36, Jan. 2014.

[91] R. Knop. Remark on algorithm 334 [G5]: normal random deviates. Communications
of the ACM, 12(5):281, 1969. Publisher: ACM New York, NY, USA.

[92] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203–
209, 1987.

[93] M. Krivelevich. Embedding spanning trees in random graphs. SIAM J. Discret.
Math., 24(4), 2010.

[94] K. K. R. Lai, N. Perlroth, T. Hsu, and J. Keller. How Many
Times Has Your Personal Information Been Exposed to Hack-
ers? https://web.archive.org/web/20220411013830/https://www.

nytimes.com/interactive/2015/07/29/technology/personaltech/

what-parts-of-your-information-have-been-exposed-to-hackers-quiz.

html, July 2015. Last acces: 2022-04-11.

[95] B. M. Lal Srivastava, N. Vauquier, M. Sahidullah, A. Bellet, M. Tommasi, and
E. Vincent. Evaluating Voice Conversion-Based Privacy Protection against Informed
Attackers. In ICASSP 2020 - 2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 2802–2806, May 2020. ISSN:
2379-190X.

[96] M. Liedel. Secure Distributed Computation of the Square Root and Applications.
In M. D. Ryan, B. Smyth, and G. Wang, editors, Information Security Practice and
Experience, Lecture Notes in Computer Science, pages 277–288, Berlin, Heidelberg,
2012. Springer.

[97] T. Lin, S. U. Stich, K. K. Patel, and M. Jaggi. Don’t Use Large Mini-batches, Use
Local SGD. In ICLR, 2020.

[98] Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation.
Journal of Cryptology, 16(3):143–184, June 2003.

https://web.archive.org/web/20220411013830/https://www.nytimes.com/interactive/2015/07/29/technology/personaltech/what-parts-of-your-information-have-been-exposed-to-hackers-quiz.html
https://web.archive.org/web/20220411013830/https://www.nytimes.com/interactive/2015/07/29/technology/personaltech/what-parts-of-your-information-have-been-exposed-to-hackers-quiz.html
https://web.archive.org/web/20220411013830/https://www.nytimes.com/interactive/2015/07/29/technology/personaltech/what-parts-of-your-information-have-been-exposed-to-hackers-quiz.html
https://web.archive.org/web/20220411013830/https://www.nytimes.com/interactive/2015/07/29/technology/personaltech/what-parts-of-your-information-have-been-exposed-to-hackers-quiz.html

126 BIBLIOGRAPHY

[99] W. Mao. Guaranteed correct sharing of integer factorization with off-line sharehold-
ers. In H. Imai and Y. Zheng, editors, Public Key Cryptography, Lecture Notes in
Computer Science, pages 60–71, Berlin, Heidelberg, 1998. Springer.

[100] G. Marsaglia and T. A. Bray. A Convenient Method for Generating Normal Variables.
SIAM Review, 6(3):260–264, July 1964. Publisher: Society for Industrial and
Applied Mathematics.

[101] G. Marsaglia and W. W. Tsang. The ziggurat method for generating random
variables. Journal of statistical software, 5(8):1–7, 2000.

[102] S. Mazloom and S. D. Gordon. Secure computation with differentially private
access patterns. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’18, page 490–507, New York, NY, USA, 2018.
Association for Computing Machinery.

[103] K. McCarthy. 2018 ain’t done yet... Amazon sent Alexa recordings of man and girl-
friend to stranger. https://web.archive.org/web/20220224164933/
https://www.theregister.com/2018/12/20/amazon_alexa_
recordings_stranger/. Last access: 2022-02-24.

[104] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In
AISTATS, 2017.

[105] P. K. Meher, J. Valls, T. Juang, K. Sridharan, and K. Maharatna. 50 Years of
CORDIC: Algorithms, Architectures, and Applications. IEEE Transactions on
Circuits and Systems I: Regular Papers, 56(9):1893–1907, Sept. 2009. Conference
Name: IEEE Transactions on Circuits and Systems I: Regular Papers.

[106] L. Melis, C. Song, E. D. Cristofaro, and V. Shmatikov. Exploiting unintended
feature leakage in collaborative learning. In S&P, 2019.

[107] T. Mendel, A. Puddephatt, B. Wagner, D. Hawtin, and N. Torres. Global survey on
internet privacy and freedom of expression. UNESCO, 2012.

[108] I. Mironov. On significance of the least significant bits for differential privacy.
In Proceedings of the 2012 ACM Conference on Computer and Communications
Security, CCS ’12, page 650–661, New York, NY, USA, 2012. Association for
Computing Machinery.

[109] I. Mironov. Rényi Differential Privacy. In 2017 IEEE 30th Computer Security
Foundations Symposium (CSF), pages 263–275, Aug. 2017. ISSN: 2374-8303.

[110] J.-M. Muller. Elementary Functions: Algorithms and Implementation. Birkhäuser
Basel, 3 edition, 2016.

[111] G. Munilla Garrido, J. Sedlmeir, and M. Babel. Towards verifiable differentially-
private polling. In Proceedings of the 17th International Conference on Availability,
Reliability and Security, ARES ’22, New York, NY, USA, 2022. Association for
Computing Machinery.

https://web.archive.org/web/20220224164933/https://www.theregister.com/2018/12/20/amazon_alexa_recordings_stranger/
https://web.archive.org/web/20220224164933/https://www.theregister.com/2018/12/20/amazon_alexa_recordings_stranger/
https://web.archive.org/web/20220224164933/https://www.theregister.com/2018/12/20/amazon_alexa_recordings_stranger/

BIBLIOGRAPHY 127

[112] B. Möller. Algorithms for Multi-exponentiation. In S. Vaudenay and A. M. Youssef,
editors, Selected Areas in Cryptography, Lecture Notes in Computer Science, pages
165–180, Berlin, Heidelberg, 2001. Springer.

[113] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. Available online at
http://bitcoin.org/bitcoin.pdf, 2008.

[114] A. Narayanan and V. Shmatikov. How To Break Anonymity of the Netflix Prize
Dataset. arXiv:cs/0610105, Nov. 2007. arXiv: cs/0610105.

[115] N. Narula, W. Vasquez, and M. Virza. zkledger: Privacy-preserving auditing for
distributed ledgers. In 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 65–80, Renton, WA, Apr. 2018. USENIX
Association.

[116] M. Nasr, R. Shokri, and A. Houmansadr. Comprehensive privacy analysis of deep
learning: Passive and active white-box inference attacks against centralized and
federated learning. In S&P, 2019.

[117] T. P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In J. Feigenbaum, editor, Advances in Cryptology — CRYPTO ’91, Lecture
Notes in Computer Science, pages 129–140, Berlin, Heidelberg, 1992. Springer.

[118] Americans and privacy: Concerned, confused and feel-
ing lack of control over their personal information. https:

//web.archive.org/web/20220921215648/https://www.pewresearch.org/internet/2019/11/15/

americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-information/,
2019. Last accessed: 2022-09-21.

[119] D. Pointcheval and J. Stern. Security proofs for signature schemes. In U. Mau-
rer, editor, Advances in Cryptology — EUROCRYPT ’96, pages 387–398, Berlin,
Heidelberg, 1996. Springer Berlin Heidelberg.

[120] S. Sav, A. Pyrgelis, J. R. Troncoso-Pastoriza, D. Froelicher, J.-P. Bossuat, J. S. Sousa,
and J.-P. Hubaux. POSEIDON: Privacy-Preserving Federated Neural Network
Learning. arXiv:2009.00349 [cs], Jan. 2021. arXiv: 2009.00349.

[121] C. P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, Jan. 1991.

[122] E. Shi, T.-H. H. Chan, E. G. Rieffel, R. Chow, and D. Song. Privacy-Preserving
Aggregation of Time-Series Data. In NDSS, 2011.

[123] M. B. Sinai, N. Partush, S. Yadid, and E. Yahav. Exploiting social navigation. Arxiv,
1410.0151, 2014.

[124] J. So, B. Güler, and A. S. Avestimehr. Turbo-Aggregate: Breaking the Quadratic
Aggregation Barrier in Secure Federated Learning. IEEE Journal on Selected Areas
in Information Theory, 2(1):479–489, Mar. 2021. Conference Name: IEEE Journal
on Selected Areas in Information Theory.

[125] S. U. Stich. Local SGD Converges Fast and Communicates Little. In ICLR, 2019.

https://web.archive.org/web/20220921215648/https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-information/
https://web.archive.org/web/20220921215648/https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-information/
https://web.archive.org/web/20220921215648/https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-information/

128 BIBLIOGRAPHY

[126] L. Sweeney. k-anonymity: A model for protecting privacy. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05):557–570, 2002.

[127] G. Tsaloli and A. Mitrokotsa. Differential privacy meets verifiable computation:
Achieving strong privacy and integrity guarantees. In Proceedings of the 16th
International Joint Conference on e-Business and Telecommunications, ICETE
2019 - Volume 2: SECRYPT, Prague, Czech Republic, July 26-28, 2019, pages
425–430, 2019.

[128] C. S. Wallace. Fast pseudorandom generators for normal and exponential variates.
ACM Transactions on Mathematical Software, 22(1):119–127, Mar. 1996.

[129] J. S. Walther. A unified algorithm for elementary functions. In Proceedings of the
May 18-20, 1971, spring joint computer conference, AFIPS ’71 (Spring), pages
379–385, New York, NY, USA, May 1971. Association for Computing Machinery.

[130] S. Weckert. Google maps hacks. https://web.archive.org/
web/20220325225255/http://www.simonweckert.com/
googlemapshacks.html.

[131] O. Yağan and A. M. Makowski. On the Connectivity of Sensor Networks Under
Random Pairwise Key Predistribution. IEEE Transactions on Information Theory,
59(9):5754–5762, 2013.

[132] A. C. Yao. Theory and application of trapdoor functions. In 23rd Annual Symposium
on Foundations of Computer Science (sfcs 1982), pages 80–91, Nov. 1982. ISSN:
0272-5428.

[133] L. Zhao, Q. Wang, C. Wang, Q. Li, C. Shen, and B. Feng. Veriml: Enabling integrity
assurances and fair payments for machine learning as a service. IEEE Transactions
on Parallel and Distributed Systems, 32(10):2524–2540, 2021.

https://web.archive.org/web/20220325225255/http://www.simonweckert.com/googlemapshacks.html
https://web.archive.org/web/20220325225255/http://www.simonweckert.com/googlemapshacks.html
https://web.archive.org/web/20220325225255/http://www.simonweckert.com/googlemapshacks.html

	Titre
	Acknowledgments
	Abstract
	Résumé
	Contents
	Chapter 1 : Introduction
	Context
	The Problem
	Contributions
	Structure of the Thesis

	Chapter 2 : Background
	Setting and General notation
	Notions of Privacy
	Algorithms for Differential Privacy
	Basic Cryptographic Tools
	Zero Knowledge Proofs
	Zero Knowledge Proofs and Arguments
	Basics of -protocols
	Linear relations for compression
	Compressing Proofs
	Proving multiplications and circuits
	Compressed Range Proofs
	Cost of Compressed Proofs

	Chapter 3 : GOssip for Private Averaging (Gopa)
	Introduction
	Notations and Setting
	Related Work
	Proposed Protocol
	Privacy Guarantees
	Effect of the Communication Structure on Privacy
	Worst Case Topology
	The Complete Graph
	Random Graphs
	Matching the Utility of the Centralized Gaussian Mechanism
	Smaller k and 2 via Numerical Simulation

	Correctness Against Malicious Users
	Tools for verifying computations
	Verification Protocol
	Setup Phase
	Dealing with Dropout
	Robustness Against Attacks on Efficiency
	Further Discussion on the Impact of Finite Precision
	Private Gaussian Sampling

	Computation and Communication Costs
	Experiments
	Conclusion

	Chapter 4 : Private Sampling with Malicious Samplers
	Introduction
	Preliminaries
	Problem Statement
	Related Work
	Method
	Inverse Cumulative Probability Distribution
	Table Lookup
	Laplace distribution
	Gaussian distribution

	Proofs of Elementary Functions
	Building Blocks
	Cordic Algorithm
	Cordic in Zero Knowledge
	Extending the Domain

	The Laplace distribution
	Private Laplace sampling
	Hidden Laplace sampling

	The Gaussian Distribution
	The central limit theorem method
	The Box Müller method
	The Polar Box-Müller method
	Inversion method
	Hidden drawing

	Security of our protocols
	Security Definitions
	Compressed -protocols as ideal functionalities
	Proof of Protocol 1
	Proof of Protocol 2
	Non-uniform Public and Private Draws

	Evaluation
	Setup
	Results

	Application: Differentially Private Machine Learning
	Conclusion

	Chapter 5 : Conclusion and Perspectives
	Summary
	Directions for Future Work

	Bibliography

