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0.1 Appetiser . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
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0.3 Main results of the thesis . . . . . . . . . . . . . . . . . . . 16
0.3.1 Arithmetic equivalence of modular geodesics . . . . . . . 16
0.3.2 Linking numbers of modular knots . . . . . . . . . . . . . 22

0.4 Further directions of research . . . . . . . . . . . . . . . . 30
0.4.1 Linking forms of Fuchsian groups . . . . . . . . . . . . . . 30
0.4.2 Arithmetic and Geometric deformations . . . . . . . . . . 31
0.4.3 Special values of Poincaré Series . . . . . . . . . . . . . . 32

This introductory chapter to the thesis is divided in four sections. The appetiser
is meant to provide a direction and a possible frame of mind for reading the thesis. It
is by no means exhaustive as it omits some of its main ideas and results. The second
section provides some background explaining the relationships between the various
interpretations of modular conjugacy classes. The third section explains most of the
main ideas and results, and it is divided in two parts reflecting the structure of the
thesis as a whole. After that the thesis is divided in five chapters which, besides a
few detours, are meant to be read in this order, as each one contains sections building
on the previous. Every chapter is preceded by a specific introduction indicating its
relation to the others, its internal structure, and containing its relevant bibliography.

1
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0.1 Appetiser
This thesis is dedicated to the investigation of various structures underlying the set of
conjugacy classes in the modular group PSL2(Z), arising from arithmetic or geometry
and topology or combinatorics, such as equivalence relations and bilinear pairings.

The geometrical structures arise from the fact that PSL2(Z) is a Fuchsian group,
that is a finite type discrete subgroup of PSL2(R). Thus PSL2(Z) acts properly
discontinuously on the upper half-plane HP with quotient the modular orbifold M,
a hyperbolic surface with conical singularities i & j of order 2 & 3, and a cusp ∞.
The orbifold homotopy classes of loops in M correspond to the conjugacy classes in
its orbifold fundamental group π1(M) = PSL2(Z).

A primitive hyperbolic A ∈ PSL2(Z) acts by translation along an axis γA ⊂ HP
which projects to a closed oriented primitive geodesic [γA] ⊂M. Conversely, a closed
oriented primitive geodesic in M lifts to a set of bi-infinite oriented geodesics in HP;
each one is the translation axis of a unique primitive hyperbolic element in PSL2(Z),
and all these elements are conjugate. Consequently, primitive hyperbolic conjugacy
classes of PSL2(Z) correspond to primitive closed oriented geodesics in M.

The complexity of a modular geodesic [γA] can be measured by its length λA,
equal to the logarithm of the ratio between the eigenvalues of ±A, in other terms:

1
2
|Tr(A)| = cosh 1

2
λA or disc(A) := Tr(A)2 − 4 = 4

(
sinh 1

2
λA

)2
Observe that modular geodesics have the same length if and only if the corresponding
conjugacy classes of PSL2(Z) are conjugate in PSL2(Q(

√
Z)) where Q(

√
Z) is the field

extension of Q obtained by adjoining the square roots of all integers. This equivalence
relation, admitting both geometric and arithmetic interpretations, turns out to be
non-trivial and groups the modular geodesics into finite classes.

We are thus led to consider a field K containing Q, and ask: when are conjugacy
classes of PSL2(Z) conjugate in PSL2(K), and how to measure this K-equivalence
geometrically? To address these questions, we shall study the adjoint action of the
arithmetic group PSL2(K) on its Lie algebra sl2(K), and derive the following.
Proposition (Arithmetic equivalence of modular geodesics). Two conjugacy classes
of PSL2(Z) with discriminant ∆ > 0 are K-equivalent if and only if the corresponding
modular geodesics satisfy the following equivalent conditions:

θ There exists one intersection point with angle θ ∈ ]0, π[ such that
(
cos θ

2

)2
=

1
(2x)2−∆y2

for x, y ∈ K, in which case all intersections have this property.

λ There exists one co-oriented ortho-geodesic of length λ such that
(
cosh λ

2

)2
=

1
(2x)2−∆y2

for x, y ∈ K, in which case all such ortho-geodesics have this property.
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We now recall a combinatorial parametrization of infinite order conjugacy classes
of PSL2(Z). The euclidean algorithm shows that the group SL2(Z) is generated by the
transvections L&R, and more precisely that its submonoid SL2(N) of matrices with
non-negative entries is freely generated by L&R. This submonoid can be identified
with its image PSL2(N) ⊂ PSL2(Z).

L =

(
1 0
1 1

)
R =

(
1 1
0 1

)
In PSL2(Z), the conjugacy class of an infinite order element intersects PSL2(N) along
all cyclic permutations of a non-empty L&R-word. The primitivity of the conjugacy
class is equivalent to the primitivity of those cyclic words, and the conjugacy class
is hyperbolic exactly when both letters L and R appear.

We may wonder how to decipher the precise geometry of modular geodesics and in
particular their isotopy classes from the combinatorics of these cyclic binary words.
The most immediate measures of complexity of a binary word are given by the
numbers of letters of each sort. For a primitive hyperbolic A ∈ PSL2(Z) we call
Rad([A]) = #R −#L the Rademacher number of its conjugacy class. In his paper
[Ati87] on the Logarithm of the Dedekind eta function, M. Atiyah identified the
Rademacher function with no less than six other important functions appearing in
diverse areas of mathematics, showing how omnipresent it is. In [Ghy07] É. Ghys
added a topological interpretation in terms of modular knots which we now explain.

The unit tangent bundle U = PSL2(Z)\PSL2(R) of M = PSL2(Z)\HP is a
three-manifold, and the structure of the Seifert fibration U → M reveals that it is
homeomorphic to the complement of a trefoil knot in the sphere. The primitive closed
oriented geodesics in M lift to the primitive periodic orbits for the geodesic flow in
U which are the so called modular knots. Hence the primitive hyperbolic conjugacy
classes in the modular group index the components of a link in the complement of a
trefoil, and one may ask about their linking numbers.

In [Ghy07], É. Ghys showed that the linking number of a modular knot with
the trefoil is equal to its Rademacher invariant, and concluded by asking for an
arithmetic interpretation of the linking pairing between modular knots.

For this, we introduce for any pair of modular geodesics [γA], [γB], the sum over
their oriented intersection angles θ ∈ ]0, π[ of the quantities which appeared in our
previous arithmetic interpretation:

L1([A], [B]) :=
∑(

cos θ
2

)2
and study its variations as we deform the metric on M by opening the cusp.
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The complete hyperbolic metrics on the orbifold M correspond to the faithful
and discrete representations ρ : PSL2(Z)→ PSL2(R) up to conjugacy. They form a
1-dimensional real algebraic set parametrized by q ∈ R∗ and the matrix Aq = ρq(A)
is obtained from any L&R-factorisation of A by replacing L 7→ Lq and R 7→ Rq,
where:

Lq =

(
q 0
1 q−1

)
and Rq =

(
q 1
0 q−1

)
.

The primitive hyperbolic conjugacy classes of PSL2(Z) still index the hyperbolic
geodesics in the quotient Mq = ρq(PSL2(Z))\HP which do not surround the cusp. We
may thus define the analogous sum Lq([A], [B]) over the intersection angles θq ∈ ]0, π[
between the q-modular geodesics [γAq ], [γBq ] ⊂M∗

q of the
(
cos 1

2
θq
)2.

As q → ∞, the hyperbolic orbifold Mq has a convex core which retracts onto
a thin neighbourhood of the long geodesic arc connecting its conical singularities,
whose preimage in the universal cover HP is a trivalent tree. In the limit we re-
cover the action of PSL2(Z) on the infinite planar trivalent tree, and by studying its
combinatorics we shall prove the following.
Theorem (Linking numbers from boundary evaluations). For primitive hyperbolic
A,B ∈ PSL2(Z), the limit of the function Lq([A], [B]) at the boundary point of the
PSL2(R)-character variety of PSL2(Z) recovers their linking number:

Lq([A], [B]) −−−→
q→∞

2 lk([A], [B]).

This deformation of the hyperbolic metric provides another way to refine the par-
tition of modular geodesics [γA] according to their geometric length λA. It amounts
to asking for the equality of the trace functions Tr(Aq) ∈ Z[q, q−1] on the character
variety. This algebraic equivalence implies the equality of geometric lengths λA and
of combinatorial lengths #R +#L (which count the geometric intersection number
of modular geodesics with the infinite geodesic arc [i,∞) ⊂ M). However it is not
trivial, and to understand it better we propose a topological interpretation.

The modular knot associated to a (primitive) hyperbolic A ∈ PSL2(Z) defines
a conjugacy class in the fundamental group π1(U) of the complement of the trefoil.
This group is isomorphic to the braid group on three strands B3, and to the conjugacy
class of a braid is associated the link obtained as its closure. We shall relate ρq to the
reduced Burau-Squier representation B3 → SL2(Z[t, t−1]) to deduce the following.
Proposition. For a (primitive) hyperbolic A ∈ PSL2(Z), the Alexander polynomial
of the link [σA] is equal to ∆([σA]) =

qRad(A)−Tr(Aq)+q−Rad(A)

(q−q−1)2
, where q =

√
−t.

This suggests that the arithmetic Q-equivalence of A,B ∈ PSL2(Z) implies the
“quantum equivalence” given by Tr(Aq) = Tr(Bq) & Rad(A) = Rad(B).
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0.2 Aims of the thesis
This thesis is dedicated to the investigation of topological and arithmetical structures
on the set of conjugacy classes in the modular group PSL2(Z). These structures will
consist in various equivalence relations or functions on pairs of conjugacy classes.

Several questions arise. What is the modular group, and why is it interesting?
How to study this group, and which role is played by its conjugacy classes?

0.2.1 The modular quadratic dictionary
To fix some notations and a common ground, let us briefly retrace the emergence of
the modular group in the history of mathematics, without shying the introduction
of the matrix formalism even when it is anachronistic. We refer to [Wei84, Kle79]
and [KLLP07] for much more depth and accuracy concerning historical matters.

Euclidean monoid & continued fractions

Denote N = {0, 1, . . . } the monoid of non-negative integers, Z the ring of integers and
Q its field of fractions. The rational field was the realm of Pythagorean arithmetic:
all numbers were given by the ratio of two commensurable lengths.

The common measure of two commensurable lengths can be computed from a
repeated application of the transformations J : z 7→ z−1 and R−1 : z 7→ z − 1 to
their ratio r ∈ Q according to the Euclidean division algorithm. This leads to the
sequence of partial quotients qi ∈ N∗ appearing in its continued fraction expansion:

r = b q0, q1, . . . , qk c := q0 +
1

q1 +
1

···+ 1
qk

= (Rq0JRq1J . . . RqkJ) · ∞

The transformations J&R generate the group PGL2(Z) which acts on the rational
projective line QP1 by linear fractional transformations. Its index two subgroup
which preserves the cyclic order of QP1 is the modular group PSL2(Z), generated by
R : z 7→ z + 1 and L = JRJ : z 7→ (z−1 + 1)−1. Over any ring, the action of PGL2

on P1 is given by linear fractional transformations as follows:

A = ( a b
c d ) A · z = az+b

cz+d
so we lift J = ( 0 1

1 0 ), R = ( 1 1
0 1 ), L = ( 1 0

1 1 ).

The Euclidean algorithm leads to considering only those elements in the euclidean
monoid freely generated by L&R, which gets identified both to SL2(N) and to its
projectivization PSL2(N). Thus in Antiquity the modular group was not yet an
object of study.



Page 6 CHAPTER 0. INTRODUCTION

The next two thousand years saw no change in the use of the Euclidean algorithm,
although it was extended to numbers with no common measure around the turn of the
XVIIth century (by Bombelli, Brouncker, Wallis, Huygens and Euler among others).
This led to the decomposition of irrational numbers into infinite continued fractions:

1
2
(1 +

√
5) = b 1, 1, . . . c 3

√
2 = b 1, 3, 1, 5, 1, 1, . . . c π = b 3, 7, 15, 1, 292, . . . c

Now instead of considering the common measure of two rationals, we focus on the
successive tails rk = b qk, qk+1, . . . c of the continued fraction expansion of a real
number r = r0 ∈ R.

We thus consider equivalent those numbers whose continued fraction expansions
eventually coincide, in other terms whose orbits under the action of the aforemen-
tioned monoid have a non-empty intersection. By doing so we are secretly considering
the action of the group generated by the monoid.

If r0 = bn0, n1, . . . . . . . . . , nk−1, nk, rk+1 c
then r0 = (Rn0J Rn1J . . . Rnk−1J RnkJ) · rk+1 for all k ∈ N
whence r0 = (Rn0Ln1) . . . . . . . . . (Rnk−1Lnk) · rk+1 when k is odd as JRnJ = Ln.

Hence we find that x, y ∈ RP1 belong to the same PGL2(Z)-orbit when some tails xi
and yj of their continued fractions coincide, and they belong to the same PSL2(Z)-
orbit when there exist i, j ∈ 2N such that the tails xi and yj coincide.

The rational numbers are those for which this tail is eventually empty. After
that, the simplest numbers are those whose continued fraction expansions have pe-
riodic tails. Their study reached an effervescence in the works of Euler, Lagrange,
Legendre, Galois and Gauss, in connection with the arithmetic of quadratic forms.
Indeed, these preperiodic irrational numbers correspond to the roots of irreducible
quadratic polynomials with integral coefficients and positive discriminant. They also
correspond to primitive hyperbolic elements in the modular group.

One may learn more about continued fractions and diophantine approximation
in [HW38, Khr08], and about their relation to quadratic forms in [Ser85a, Hat22].

Arithmetic dictionary: primitive hyperbolic matrices in PSL2(Z)

The continued fraction expansion of an irrational preperiodic number α admits a
unique factorisation into a mantissa of length 2i and a period of length 2j with
minimal i, j ∈ N:

α = b c1, . . . , c2i, b1, . . . , b2j c.

Since α is irrational we have j > 0, and α is called purely periodic when i = 0.



CHAPTER 0. INTRODUCTION Page 7

We have α = C · β for C = Rc1Lc2 . . . Rc2i−1Lc2i and β = B · β is purely periodic
with monodromy B = Rb1 . . . Lb2j ∈ PSL2(N), so α is fixed under

A = CBC−1 ∈ PSL2(Z).

Since j is positive and minimal, the element B is hyperbolic and primitive: it satisfies
disc(B) := Tr(B)2 − 4 > 0 and is not the power of another matrix in PSL2(Z).
Exactly the same goes for A, which satisfies disc(A) = disc(B).

The fixed point α of A satisfies the quadratic relation cα2+(d−a)α−b = 0 where
a, b, c, d are the entries for a lift of A in SL2(Z). Dividing this by u = gcd(c, d−a,−b)
and by signTr(A) yields a primitive integral binary quadratic form

Q(x, y) = lx2 +mxy + ry2

which is indefinite, meaning that its discriminant disc(Q) = m2 − 4lr = disc(A)/u2

is positive and non-square.
This quadratic form can be polarised with respect to the determinant as follows.

Denote by sl2(Q) the Lie algebra of rational 2×2 matrices with trace 0. There exists
a unique a ∈ sl2(Q) such that Q(v) = det(v, av) and disc(a) := −4 det(a) = disc(Q).
It is given by the formula:

a =
1

2

(
−m −2r
2l m

)
.

The Q-vector space sl2(Q) is endowed with the non-degenerate quadratic form det of
real signature (1, 2). The dual lattice sl2(Z)∨ = 1

2
Z1+ sl2(Z) to sl2(Z) with respect

to det contains a as a primitive vector. Moreover a is space-like as det(a) < 0.

Dictionary: objects. We have introduced the entries of the arithmetic dictionary:

α Real quadratic irrationalities α = b c1, . . . , c2i, b1, . . . , b2j c =
−m+
√

disc(Q)

2l

A Primitive hyperbolic matrices A = ( a b
c d ) ∈ PSL2(Z)

Q Primitive indefinite integral binary quadratic forms Q(x, y) = lx2 +mxy+ ry2

a Primitive space-like vectors a =
(

−m/2 −r
l m/2

)
∈ sl2(Z)∨

The extended modular group PGL2(Z) acts on each entry: by linear fractional trans-
formation α 7→ C ·α, by conjugacy A 7→ CAC−1, by change of variables Q 7→ Q◦C−1

and by the adjoint action a 7→ CaC−1.
We also have an action of Z/2 on these entries given by Galois conjugacy α 7→ α′,

by inversion A 7→ A−1, by change of sign Q 7→ −Q and a 7→ −a. Note that it
coincides with the operation of taking the transpose comatrix A 7→ A# and a 7→ a#.
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Dictionary: morphisms. We have an explicit correspondence between the entries
Q, a, α, A of the arithmetic dictionary, that is a commutative diagram of 42 = 16
bijective maps between any two of these families, which is equivariant under the
extended modular group PGL2(Z) as well as under the Z/2-involution.

Some of them can be abbreviated by the following formulae, where we denote
v = t(x, y) and vα = t(xα, yα) such that xα/yα = α, as well as t = 1

2
Tr(A) > 0,

u = gcd(c, d− a,−b) and ∆ = disc(Q) = − disc(a) = disc(A)/u2:

Q↔ a : Q = lx2 +mxy + ry2 Q(v) = det(v, av) a =

(
−m/2 −r
l m/2

)

{Q, a} ↔ α : Q(x, y) = l(x− αy)(x− α′y) α =
−m+

√
∆

2l
avα =

√
∆

2
vα

{Q, a, α} ← A : Q(v) = 1
u
det(v, Av) A = t.1+u.a Avα =

Tr(A) + u
√
∆

2
vα

From now on we shall voyage fluently between the various entries of the dictionary.
Out of all these, we prefer to work with matrices a in the lattice sl2(Z)∨ of sl2(Q).
Indeed, the space sl2(Q) has the structure of a Lie algebra, which is preserved by the
adjoint action of PSL2(Q): the tools available for such a study are classical, allying
geometrical insight with efficient linear algebra.

We refer to [Lac88] and [Coh78, Chapter 14 & Appendix B] for the correspondence
between preperiodic continued fractions, real quadratic irrationals, quadratic forms
and matrices in the modular group. The originality in our approach, inspired by
[Thu97, Section 2.6] and [Bha04], is to consider matrices in lattices of the quadratic
space (sl2(Q), det) in order to focus on their geometric study.

Remark (Algorithmic). It is straightforward to voyage between any two of {Q, a, α},
and to deduce those from A; but computing A from α is rather delicate as it involves
extracting the mantissa and period of a continued fraction. The mantissa could be
long and contain periodic subwords beluding us into thinking we found the period
(unless we keep an eye on the periodicity of the “quadratic left overs”).

However, we may express A = t1+ua by computing the smallest positive element
t + u

√
δ ∈ Z[

√
δ] of norm t2 − δu2 = 1 where δ = 1

4
∆ (defining the fundamental

solution (t, u) to the Pell-Fermat equation t2 − δu2 = 1), and replacing
√
δ by the

square root a ∈ sl2(Z)∨ of δ1.

Remark (Negative discriminants). This dictionary can be extended to objects with
negative discriminants:
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α imaginary quadratic irrationals α = −m+
√
∆

2l

Q primitive definite integral binary quadratic forms Q(x, y) = lx2 +mxy + ry2

a primitive integral time-like vectors a = 1
2
( −m −2r

2l m ) ∈ sl2(Z)∨

Another reference about integral binary quadratic forms which eventually focuses
on the case of negative discriminants is [Cox97].

Class groups and genera

Notice that two matrices A,B ∈ PSL2(Z) have the same discriminant ∆ if and only
if they are conjugate in PSL2(C), or even in PSL2(Q(

√
Z)). Fix a positive non-square

discriminant ∆ and consider the set Cl(∆) of PSL2(Z)-equivalence classes of primitive
integral binary quadratic forms with that discriminant. This set is finite because one
may represent a class by a purely periodic number α, implying that −1/α′ is purely
periodic (with reverse period), so both of these real numbers are > 1. In particular
α′ < 0 < α so the corresponding quadratic form Q satisfies −lr > 0 and there is a
finite number of solutions to ∆ = m2 − 4lr.

A class [Q] ∈ Cl(∆) is uniquely determined by its set of values [Q](Z2). Indeed
[Hat22, Proposition 6.7] says that if two forms of the same discriminant represent
the same prime number or both represent 1 then they are equivalent, and by [Mey88]
every primitive form represents at least one prime. In [Gau07] C.-F. Gauss showed
that there is a well defined composition of classes corresponding to the multiplication
of the associated sets of values, endowing Cl(∆) with the structure of a finite abelian
group. It was later reformulated by Dirichlet as follows [Wei84]. One may represent
two elements in Cl(∆) by forms Q1 and Q2 whose first coefficients l1 and l2 are
coprime, and with the same middle coefficient m. Then their composition Q3 of the
same discriminant is determined by its first coefficient l3 = l1l2 and middle coefficient
m.

Two classes have same genus when they represent the same values in (Z/∆)×. By
[Cox97, Theorem 3.21] this is equivalent to saying that they are conjugate by a matrix
C ∈ GL2(Q) with denominators coprime to 2∆. The genera form a group Gen(∆)
given by the multiplication of their sets of values in (Z/∆)×. Gauss identified it with
the quotient of his class group by the subgroup of squares. Moreover the kernel of
the squaring map consists in the subgroup Sym(∆) of classes invariant by the Galois
involution. In other terms we have a short exact sequence of abelian groups:

1→ Sym(∆)→ Cl(∆)
square−−−−→ Cl(∆)→ Gen(∆)→ 1.
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0.2.2 Topological dictionary for conjugacy classes
The modular dictionary descends to classes under the action of the modular group.
The dictionary of PSL2(Z)-classes can be extended to include topological entries, in
particular modular geodesics and modular knots, which we now briefly describe.

In this subsection, we refer to [Thu97, Sco83, Mon87] for more about hyperbolic
geometry and geometric structures on orbifolds or their unit tangent bundles; to
[Ser77, Hat22] for the action of the modular group on the trivalent tree.

The modular orbifold and the associated trivalent tree

The automorphism group PGL2(C) of the complex projective line CP1 contains
PGL2(R) as the stabiliser of the real projective line RP1. The index-two subgroup
PSL2(R) also preserves the upper half-plane HP = {z ∈ C | =(z) > 0} ⊂ CP1, or
equivalently the orientation induced on its boundary ∂HP = RP1.

The complex structure on HP is conformal to a unique hyperbolic metric. The
hyperbolic distance λ between w, z ∈ HP can be deduced from the cross-ratio by:

1

bir(z̄, z, w̄, w)
=

(
cosh λ

2

)2
This realizes PSL2(R) as the positive isometry group of the hyperbolic plane: it
preserves the previous cross-ratio and acts simply-transitively on positive triples
of distinct points of RP1, thus it preserves the hyperbolic metric and acts simply
transitively on the unit tangent bundle of HP.

The subgroup PSL2(Q) is the stabiliser of the rational projective line QP1. The
discrete subgroup PSL2(Z) is the stabiliser of the ideal triangulation of HP with
vertex set QP1 and edges all geodesics whose endpoints p

q
, r
s

satisfy |ps− qr| = 1.
Consider the action of the modular group PSL2(Z) on this ideal triangulation.

It is transitive on the set of edges, which is in bijection with the orbit of i ∈ (0,∞).
The stabiliser of i is the subgroup of order 2 generated by S. It is transitive on the
set of triangles, which is in bijection with the orbit of j = exp(iπ/3) ∈ (0, 1,∞).
The stabiliser of j is the subgroup of order 3 generated by T . Thus it is freely
transitive on the flags, or equivalently on the oriented edges, and we deduce that
PSL2(Z) = Z/2 ∗ Z/3 is the free amalgam of its subgroups generated by S and T .

S =

(
0 −1
1 0

)
T =

(
1 −1
1 0

)
We also find that PSL2(Z) acts properly discontinuously on HP with fundamental

domain the triangle (∞, 0, j). We may cut it along the geodesic arc (i, j) to obtain a
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pair of isometric triangles (i, j,∞) and (i, j, 0). Identifying them along their isometric
edges yields the quotient

M = PSL2(Z)\HP.

It is a hyperbolic two-dimensional orbifold, with conical singularities [i] & [j] of order
2 & 3 respectively associated to the fixed points i & j of S & T , and a cusp associated
to the fixed point ∞ of R acting on ∂HP. We call M the modular orbifold.

The preimage of the segment ([i], [j]) ⊂ M in HP forms a bipartite tree T ′,
the first barycentric subdivision of a trivalent tree T which is dual to the ideal
triangulation. The group PSL2(Z) acts freely transitively on the set of edges of T ′,
or the set of oriented edges of T . The base edge (i, j) of T ′ defines the oriented base
edge e⃗i of T .

Lyndon cycles and modular geodesics

A primitive hyperbolic A ∈ PSL2(Z) acts on T by translation along an oriented
geodesic gA called its combinatorial axis. Since gA has endpoints α′, α ∈ ∂T = RP1,
it uniquely determines A. The conjugacy class of A corresponds to the orbit of gA
under the action of PSL2(Z) on T , denoted [gA] = gA mod PSL2(Z).

Observe that gA passes through the oriented base edge e⃗i of T exactly when its
endpoints satisfy α′ < 0 < α, that is when A ∈ PSL2(N). In that case, it follows a
periodic sequence of left and right turns given by the L&R-factorisation of A, or the
continued fraction expansion of the periodic number α.

Consequently, the conjugacy classes of primitive hyperbolic matrices in PSL2(Z)
correspond to the primitive cyclic words on the alphabet {L,R} with at least one oc-
currence of each letter. The linear representatives of such an L&R-cycle parametrize
the intersection of the corresponding conjugacy class with PSL2(N), whose elements
are called its Lyndon representatives. Lyndon words have appeared in the study
of free Lie algebras [Lyn54, CFL58, BP07] and [Reu93] remarks that they index
conjugacy classes in the modular group.

A hyperbolic A ∈ PSL2(Z) acts on HP by translation along an oriented geodesic
γA ⊂ HP with endpoints α′, α ∈ RP1, called its geometric axis. Its projection in M is
an oriented closed geodesic [γA] = γA mod PSL2(Z) for the hyperbolic metric whose
hyperbolic length λA is given by:

1
2
Tr(A) = cosh 1

2
λA thus disc(A) = 4

(
sinh 1

2
λA

)2
Conversely, an oriented closed geodesic lifts to a set of bi-infinite oriented geodesics

in HP, each one being the translation axis of a unique primitive element in PSL2(Z),
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and all these elements are conjugate. Consequently, primitive hyperbolic conjugacy
classes of PSL2(Z) correspond to primitive closed geodesics in M.

Notice that the combinatorial and geodesic axes of A ∈ PSL2(Z) have the same
endpoints α′, α ∈ RP1 = ∂HP = ∂T . More precisely, the geometric axis γA lies
inside a (log

√
∆)-neighbourhood of the combinatorial axis gA, where ∆ = disc(A).

In Section 3.1, we investigate the isotopy class of [γA] ⊂ M in terms of the
corresponding L&R-cycle.

−2 −1 0 1 2

JI

−2 −1 0 1 2

JI

Ideal triangulation 4 of HP, its dual trivalent tree T , and the modular tesselation.
Geometric axis γA inside a (log

√
∆)-neighbourhood of the combinatorial axis gA.

Modular knots and torus bundles

The Lie group PSL2(R) identifies with the unit tangent bundle to the hyperbolic
plane HP. Its lattice PSL2(Z) acts on the left with quotient U = PSL2(Z)\PSL2(R)
the unit tangent bundle to the modular orbifold M = PSL2(Z)\HP.

The structure of the Seifert fibration U→M reveals that U is homeomorphic to
the complement of a trefoil knot in the sphere. This was proved in [PH79, Klo16].
In particular, one may speak of linking numbers between disjoint loops in U.

The closed hyperbolic geodesics [γA] in M lift to the primitive periodic orbits for
the geodesic flow in its unit tangent bundle U. These modular knots form a second
entry in our topological dictionary. The online article [GL16] proposes an animated
introduction to the topology and dynamics of U.

The fundamental group π1(U) is isomorphic to the braid group on three strands.
We characterise in Chapter 4 which of its conjugacy classes correspond to homotopy
classes of modular knots and describe the isotopy classes of these modular knots.

The conjugacy class of a braid β in B3 yields, by taking its closure, a link in
the solid torus D2× S1 with three strands which are transverse to the disc fibration.
The ramified double cover of that solid torus over the link yields a punctured torus
bundle over the circle whose monodromy is the projection β ∈ B3 7→ A ∈ SL2(Z).
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A modular geodesic in M, lifted as a modular knot in U, Seifert fibration U → M.
Images produced by Constantin Kogler and Jos Leys with Étienne Ghys.

The homeomorphism classes of oriented punctured torus bundles with an oriented
base and primitive hyperbolic monodromy A ∈ SL2(Z) form a third entry of the
topological dictionary. However it will play a secondary role in this thesis.

The Lorenz template and the modular link

To describe the isotopy class of the master modular link consisting in all modular
knots, we rely on the construction of the Lorenz template and its embedding in U.

The Lorenz template Y is the branched surface obtained from the triangle ▽1 ⊂ R2

with vertices R−1v1 = (0, 1), v1 = (1, 1), L−1v1 = (1, 0) by identifying its right side
with the hypotenuse through R−1 and its top side with the hypotenuse through L−1.
The radial vector field on R2 intersected with ▽1 descends on Y to define a semi-flow.
The lines with rational inclination project to the orbit with finite future, forming the
past of the vertex (1, 1).

Now consider a primitive hyperbolic conjugacy class in PSL2(Z). The lifts of its
Lyndon representatives in SL2(N) act on R2 as hyperbolic transformations. Their
stable eigen-directions intersect the triangle ▽1 in a collection of disjoint segments
which quotient to a closed loop in Y. These are the primitive periodic orbits of the
Lorenz semi-flow.

In [Ghy07], Ghys isotoped the master modular link formed by all modular knots,
to the master Lorenz link formed by the primitive periodic orbits of the semi-flow
on the Lorenz template, after its embedding in U as suggested in the figure below.
The Lorenz template was introduced by Birman-Williams in [BW83] to study the

periodic orbits for the dynamical system arising from Lorenz’ equations.
The Rademacher number of a primitive hyperbolic conjugacy class of PSL2(Z) is

computed from any Lyndon representative A ∈ PSL2(N) as Rad([A]) = #R−#L. In
his paper [Ati87] on the Logarithm of the Dedekind eta function, M. Atiyah identified

http://constantinkogler.com/closedgeodesics.html
http://www.josleys.com/articles/ams_article/Lorenz3.htm
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1

1

T

R

L

0

v0 v1

v∞

1

1

A2(1) =
15

11
A = RLL

v1v0

v∞

0

1

22

3

4

4

5

6

Identifications of ▽1 yielding the Lorenz template. From an L&R-cycle to the cycle
of segments in the base triangle of 41.

the Rademacher function with no less than six other important functions appearing
in diverse areas of mathematics, showing how omnipresent it is.

In [Ghy07], É. Ghys showed that the linking number of a modular knot with
the trefoil is equal to its Rademacher invariant, and concluded by asking for an
arithmetic interpretation of the linking pairing between modular knots.

The Lorenz template Y and the trefoil. Modular knot in Y and a crossing.
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Structures on conjugacy classes: equivalence & pairings
We have given our first motivation to study conjugacy classes in the modular group:
they parametrize various kinds of mathematical objects.

The main questions about them depend on the objects under consideration and
the frame of mind. One may ask about the numbers represented by quadratic forms,
about the arithmetic of the quadratic rings generated by their roots, about the
periods of their continued fraction expansions. We may care about the algebraic
structures or the asymptotic distribution of their PSL2(Z)-classes.

The dictionary prompts us to translate structures from one entry to the other.
In this thesis we focus on two such questions, namely we want to understand:

• arithmetic equivalence relations defined over the set of binary quadratic forms
in terms of the geometry of the modular geodesics

• intersection and linking numbers of modular geodesics and modular knots in
terms of the arithmetic of real quadratic irrationalities

We have presented those arithmetic equivalence relations and the linking numbers
of modular knots in the introduction. In the next section we will say more about
them as we present the main results of the thesis.

Before going on, let us collect here some of the equivalence relations we have
already encountered on the set of hyperbolic conjugacy classes in the modular group.
For this we consider Lyndon representatives A,B ∈ PSL2(N) of the conjugacy classes
and freely use the arithmetic dictionary. In particular we denote by α = b a0, . . . , am c
and β = b b0, . . . , bn c the corresponding real quadratic irrationals.

PSL2(Q) Arithmetic Q-equivalence: ∃C ∈ PSL2(Q) : CAC−1 = B

Cl /Cl2 Genus equivalence of QA and QB

Tr(Aq) Algebraic trace equivalence: Tr(Aq) = Tr(Bq)

λA Geometric length equivalence: λA = λB, that is Tr(A) = Tr(B)

len(A) Combinatorial length equivalence: len(A) = len(B), that is
∑
ak =

∑
bk

len(α) Arithmetic length equivalence: len(α) = len(β), that is m = n

Rad(A) Rademacher equivalence: Rad(A) = Rad(B), that is
∑

(−1)kak =
∑

(−1)kbk

Conjecture 0.1. Our main conjectures are that arithmetic Q-equivalence implies
genus equivalence, as well as trace equivalence and Rademacher equivalence.
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0.3 Main results of the thesis

0.3.1 Arithmetic equivalence of modular geodesics
The adjoint action of PSL2(K) on sl2(K)

Let K be a field of characteristic different from 2. In the sequel, we specialize K = Q.
On the 3-dimensional associative K-algebra sl2(K), the commutator

{a, b} = 1
2
(ab− ba)

defines a Lie bracket. Its Killing form multiplied by −1
8

recovers the polarisation

〈a, b〉 = 1
2
Tr(ab)

of the non-degenerate quadratic form det.
The adjoint action of GL2(K) on sl2(K) preserves all this structure and yields a

representation PGL2(K) → SO(sl2(K), det) which turns out to be an isomorphism,
as we recall in Proposition 1.54. The main achievement of Chapter 1 is to describe
the structure of the orbits for the action of PSL2(K) on sl2(K).

Lemma (Parametrizing the cone). Denote by X the isotropic cone of (sl2(K), det).
We define the quadratic map ψ : K2 → sl2(K) by ψ(v) = −v · t(Sv) where S = ( 0 −1

1 0 ).
It has image XS = {p ∈ X | ∃ x, y ∈ K : 〈p, S〉 = x2 + y2} and is two-to-one

outside the origin. For all u, v ∈ K2 we have 2〈ψ(u), ψ(v)〉 = det(u, v)2. The map ψ
intertwines the tautological action of SL2(K) on K2 with its adjoint action on X.

Corollary (Actions on KP1). The projectivised map P(ψ) : P(K2) → P(X) is an
isomorphism of projective lines which intertwines the tautological action of PSL2(K)
on the projective line P(K2) to its adjoint action on the projective conic P(X).

We deduce that the action of PGL2(K) on P(X) is simply-transitive on triples
of distinct lines. Moreover, after defining the Maslov index of three lines in KP1 as
an element of {0} ∪K×/(K×)2, we shall deduce that the action of PSL2(K) on P(X)
preserves the Maslov index and is simply-transitive on triples of distinct lines with
a given Maslov index. This is Proposition 1.39 but we don’t emphasise it here.

The map ψ : Q2 → X and the isomorphism Pψ : P(Q2)→ P(X) of projective lines.

For a ∈ sl2(K) \X, choose a square root of ∆ := disc(a) = −4 det(a) and extend
the scalars to the field K′ = K[

√
∆]. The tautological action of a on the plane K′2
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has two eigendirections for the eigenvalues ±1
2

√
∆. These lines map under ψ ⊗ K′

to the intersection of the cone X⊗K′ with the orthogonal plane a⊥. We deduce an
ordered pair of points α′, α ∈ K′P1.

We may now define the cosine cos(a, b) and cross-ratio bir(a, b) of a, b ∈ sl2(K)\X,
and relate them. These quantities play important roles throughout the whole thesis.

Lemma 0.2. For a, b ∈ sl2(K), if we choose a square root of det(ab) then we may
define their cosine cos(a, b) ∈ K[

√
det(ab)]:

cos(a, b) :=
〈a, b〉√
〈a, a〉〈b, b〉

=
−1

2
Tr(ab)√
det(ab)

and we may order their polar points P(a⊥∩X) = {α′, α} and P(b⊥∩X) = {β′, β} up
to simultaneous inversion, so as to define their cross-ratio bir(a, b) ∈ K[

√
det(ab)]:

bir(a, b) := bir(α′, α, β ′, β) =
(α− α′)(β − β′)

(α− β′)(β − α′)

For a same choice of
√
det(ab), these quantities are related by:

1

bir(a, b)
=

1 + cos(a, b)

2
=

det(a+ b)

4
√
det(ab)

The following Proposition (which is 1.57 in Chapter 1) implies that PGL2(K)
acts transitively on each level set of the determinant.

Proposition 0.3. Let a, b ∈ sl2(K) have determinant d 6= 0 and bir(a, b) 6= 0.
The quadratic subalgebra K[{a, b}] of gl2(K) contains a unique M ∈ GL2(K) with

Tr(M) = 2 which conjugates a to b. It is given by:

M = 1+ bir(a,b)
2d
· {a, b} = (d+ 〈a, b〉)1+ {a, b}

d+ 〈a, b〉
and det(M) = bir(a, b).

We recall in Proposition 1.24 why the centralizer of a ∈ sl2(K) \ X in gl2(K) is
reduced to the quadratic subalgebra K[a]. We thus deduce the following Corollary
which will have arithmetic applications bearing to the genus of quadratic forms.

Corollary 0.4. Let a, b ∈ sl2(K) have discriminant ∆ 6= 0 and bir(a, b) 6= 0.
The matrices M ∈ PGL2(K) conjugating a to b have a well defined determinant

in the quotient K×/NormK(K[
√
∆]×) and its is equal to the class of bir(a, b).
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Adjoint ation of A on Qa⊕ a⊥ for elliptic, parabolic and hyperbolic A ∈ PSL2(Z).

Here is the main theorem of Chapter 1 describing the structure of the orbits for
the adjoint action of PSL2(K) on the non-zero level sets {disc = ∆} ⊂ sl2(K).

Theorem 0.5. Let a, b ∈ sl2(K) have discriminant ∆ 6= 0 and bir(a, b) /∈ {1,∞}.
The C ∈ SL2(K) such that CaC−1 = b are parametrized by the Pell-Fermat conic:

(x, y) ∈ K×K : (2x)2 −∆y2 = bir(a, b) by C = x(1+ ba−1) + y(a+ b)

In particular, a and b are conjugate by an element of PSL2(K) if and only if the
Pell-Fermat equation (2x)2 −∆y2 = bir(a, b) has a solution in K×K.

Remark 0.6. For a, b ∈ sl2(K) \ X we have bir(a, b) /∈ {1,∞} ⇐⇒ det{a, b} 6= 0.

Scholium 0.7. Of course, we may recast the previous discussion to characterise the
orbits for the action of PSL2(K) by conjugacy on itself, but we prefer to study the
adjoint action of PSL2(K) on its Lie algebra.

Indeed, the linear algebra and geometry of the adjoint action are much more
developed and fathomable than the corresponding features for the conjugacy action.
Moreover, in the arithmetic dictionary, the elements of the lattice sl2(Z) are the
bridge between hyperbolic matrices in the modular group and binary quadratic forms.
This also has the advantage of avoiding many confusions which may arise between
the group which acts and the space which is acted upon.

All this will become apparent inside the quaternion algebra gl2(K): the group of
units SL2(K), kernel of the determinant morphism det : GL2(K)→ K×, acts on the
hyperplane of pure quaternions sl2(K), kernel of the trace form tr : gl2(K)→ K.

Arithmetic implications for binary quadratic forms

The field K has characteristic different from 2, so we may consider the extension of
scalars sl2(Z[1/2])→ sl2(K), and its restriction to the lattice sl2(Z)∨ = 1

2
Z⊕ sl2(Z).
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We say that a, b ∈ sl2(Z)∨ are K-equivalent when their images in sl2(K) belong
to the same orbit under the adjoint action of PSL2(K). We may thus group the
PSL2(Z)-classes of our dictionary into K-classes and observe how this varies with K.

When K is an extension of Q, that is when it has characteristic zero, the extension
of scalars sl2(Q) → sl2(K) is injective so the K-equivalence implies the equality
of discriminants. When K = C, this groups the integral binary quadratic forms
according to their discriminant, and we find the finite class groups. Geometrically,
we are considering modular geodesics of the same length. When K = Q, this defines
for each discriminant ∆ a partition of the class group Cl(∆) into Q-classes.

Let us reformulate the results of the previous section in terms of Q-equivalence
of binary quadratic forms using the quadratic dictionary Qa ∈ Q(Z)↔ a ∈ sl2(Z)∨.
Corollary 0.8 (Reformulation). Consider primitive binary quadratic forms Qa, Qb

with the same non-square discriminant ∆ ∈ Z. Assume that they are not opposite
(after conjugating one by PSL2(Z) if necessary), so that bir(Qa, Qb) is finite.

By Corollary 0.4 the class bir(Qa, Qb) mod NormQ(Q(
√
∆)×) only depends on the

Q-classes of Qa and Qb and by Theorem 0.5 it is trivial if and only if those coincide.
The matrices C ∈ PSL2(Q) conjugating Qa to Qb are parametrized by the rational

points of the Pell-Fermat conic (2x)2 −∆y2 = bir(Qa, Qb) with an explicit formula.
We also provide a computable criterion for determining the partition of Cl(∆)

into Q-equivalence classes.
Denote P = {−1, 2} ∪ {3, 5, 7, . . . } the set of rational primes, and Qp the p-adic

completion of Q. The prime −1 refers (following Conway [CF97]) to the place at
which the completion of Q is the Archimedian field Q−1 = R.

For δ, χ ∈ Q×
p the Hilbert symbol (δ, χ)p takes the value 1 or −1 according to

whether the Pell-Fermat equation X2−δY 2 = χZ2 admits a solution in QpP2 or not.
Thus we have (δ, χ)p = 1 if and only if χ is the norm of an element in Qp(

√
δ).

Let us define the set of prime obstructions to solving the Pell-Fermat equation
(2x)2 −∆y2 = bir(Qa, Qb) by P(Qa, Qb) = {p ∈ P | (∆, bir(Qa, Qb))p = −1}.
Proposition 0.9. Consider primitive integral binary quadratic forms Qa, Qb, Q0 of
discriminant ∆ a non-square integer. Then:

• P(Qa, Qb) \ {2} is contained in the set of primes dividing ∆ to an odd power.

• Qa is Q-equivalent to Qb ⇐⇒ P(Qa, Qb) = ∅ ⇐⇒ P(Qa, Q0) = P(Q0, Qb).
We apply Proposition 0.9 to determine the partition of Cl(∆) into Q-classes in a

few relevant examples involving positive discriminants (which are all fundamental).
Observing the following tables, we are led to discover counter examples and formulate
a conjecture, for which we provide further evidence in Section 1.5.
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Cl(∆) = Z/4 for ∆ = 4 × 2022. Since δ = 2022 = 2 × 3 × 337 is square-free and
≡ 2 mod 4, the ring of integers of the field Q(

√
2022) has discriminant ∆ = 4×δ. The

fundamental solution to the Pell-Fermat equation t2 − δu2 = 1 is (t, u) = (1349, 30).
The ideal class group Cl(∆) is isomorphic to Z/4. Its partition into genera is

{α0, α2}, {α1, α3} and this coincides with its partition into Q-classes as shown by the
following table.

Qj = (lj,mj, rj) Period of αj P(Q0, Qj)
(1,−88,−86) [88, 1, 28, 1] ∅
(66,−72,−11) [1, 4, 2, 2, 3, 1, 2, 7] {2, 337}
(43,−84,−6) [2, 44, 2, 14] ∅
(34,−60,−33) [2, 4, 1, 7, 2, 1, 3, 2] {2, 337}

Cl(∆) = Z/5 for ∆ = 4 × 439. Since δ = 439 is square-free and ≡ 3 mod 4 the
ring of integers of the field Q(

√
439) has discriminant ∆ = 4 × δ. The fundamental

solution to the Pell-Fermat equation t2 − δu2 = 1 is (t, u) = (440, 21).
The ideal class group Cl(∆) is isomorphic to Z/5. Its partition into genera is

trivial: there is only one genus since all elements of Z/5 are squares. The partition
into Q-classes is {α0, α2, α4}, {α1, α3} as shown by the following table.

Qj = (lj,mj, rj) Period of αj P(Q0, Qj)
(2,−38,−39) [19, 1, 40, 1] ∅
(15,−14,−26) [1, 1, 6, 3, 13, 1] {2, 439}
(18,−10,−23) [1, 2, 3, 1, 3, 1, 7, 1] ∅
(30,−34,−5) [1, 3, 1, 3, 2, 1, 1, 7] {2, 439}
(13,−40,−3) [3, 6, 1, 1, 1, 13] ∅

Remark 0.10 (Counter-examples). Genus equivalence does not imply Q-equivalence:
there exist forms of the same genus which are not Q-equivalent.

The Q-equivalence does not control the period lengths: there exist Q-equivalent
forms whose roots have euclidean periods of different length.

Inverse elements in the class group can remain in different Q-classes.
Question 0.11 (Conjecture). The Q-equivalence implies genus-equivalence.

More precisely, the Q-equivalence classes seem to be described as follows. Decom-
pose the class group into a product of primary cyclic groups:

Cl(∆) =
∏
p∈P

∏
j∈N

(Z/pe)np,e
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and denote Qp,e,k ∈ Z/pe where 1 ≤ k ≤ np,e the coordinates of Q. Then the
Qp,e,k mod 2 provide a complete set of invariants for the Q-classes.

Remark 0.12. Our initial motivation only involved positive discriminants, but Corol-
lary 0.8 and Proposition 0.9 remain true for negative discriminants.

Geometric interpretation in terms of modular geodesics

Let us derive from Theorem 0.5 a geometric interpretation of Q-equivalence in terms
of the modular geodesics.

Consider two elements (α,A,Qa, a) and (β,A,Qb, b) in our modular dictionary
with the same discriminant disc(a) = ∆ = disc(b). They define oriented geodesics
(α′, α), (β′, β) in the hyperbolic plane which either intersect at a point with a well de-
fined angle θ ∈ ]0, π[ or have a unique common perpendicular geodesic arc of length λ
and whose co-orientations inherited by each axis may coincide or not. The quantities
θ, λ are given in terms of the cross-ratio bir(a, b) = bir(α′, α, β ′, β) by:

(
cos θ

2

)2
=

1 + cos(θ)

2
=

1

bir(a, b)

(
cosh λ

2

)2
=

1 + cosh(λ)

2
=

1

bir(a, b)

Corollary 0.13. Two PSL2(Z)-classes of disc = ∆ are Q-equivalent if and only if
the corresponding modular geodesics satisfy the following equivalent conditions:

θ There exists one intersection point with angle θ ∈ ]0, π[ such that:(
cos θ

2

)2
= 1

(2x)2−∆y2
for x, y ∈ Q

in which case all intersection points have this property.

λ There exists one co-oriented ortho-geodesic of length λ such that:(
cosh λ

2

)2
= 1

(2x)2−∆y2
for x, y ∈ Q

in which case all co-oriented ortho-geodesics have this property.

In other terms, the geometric quantities on the left hand sides belong to the group of
norms of the quadratic extension Q(

√
∆)/Q (which is stable under inversion).
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α′

α

β′

β

θ

α′

β

β′

α

λ

Angle at intersection 1
bir

=
(
cos θ

2

)2. Length of ortho-geodesic 1
bir

=
(
cosh λ

2

)2.
0.3.2 Linking numbers of modular knots
Our starting point for computing linking numbers is an algorithmic formula, which
was used by Pierre Dehornoy in [Deh11]. It relies on the description of the modular
link in terms of the Lorenz template explained at the end of Section 0.2.

We endow the submonoid PSL2(N) of PSL2(Z), which is freely generated by L&R,
with the lexicographic order extending L < R.

In the group PSL2(Z) the conjugacy class of an infinite order element intersects
the monoid PSL2(N) along its Lyndon representatives, which consist in all cyclic
permutations of a non-empty L&R-word. The primitivity of the conjugacy class is
equivalent to the primitivity of the cyclic words, and the conjugacy class is hyperbolic
when both letters L and R appear.

The set {L,R}N of infinite binary sequences on the letters L&R is given the
lexicographic order extending L < R. The monoid PSL2(N) maps to {L,R}N by
sending a finite word A to its periodisation A∞. This map is increasing, and injective
in restriction to primitive elements.

We use σ to denote the Bernoulli shift on {L,R}N which removes the first letter,
as well as the cyclic shift on PSL2(N) which moves the first letter at the end. These
shifts are intertwined by the periodisation map A 7→ A∞, namely for all A ∈ PSL2(N)
we have (σjA)∞ = σj(A∞).

In particular, the Lyndon representatives for the conjugacy class of A ∈ PSL2(N)
are the cyclic permutations σiA for 1 ≤ i ≤ len(A), and we shall consider them with
multiplicity when A is not primitive.

Denote by W [−1] ∈ {L,R} the last letter of a non-empty word W ∈ PSL2(N).
Thus for instance, (σ1W )[−1] is the first letter of W .

Following Iverson [Knu92], denote [[P ]] ∈ {0, 1} the truth value of a property P .
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Proposition 0.14. For primitive hyperbolic matrices A,B ∈ PSL2(Z) we have:

lk(A,B) =
1

2

len(A)∑
i=1

len(B)∑
j=1

[[(σiA)[−1] > (σjB)[−1]]] [[σiA∞ < σjB∞]]
+

[[(σiA)[−1] < (σjB)[−1]]] [[σiA∞ > σjB∞]]

 (Algo-Sum)

This Algo-Sum counts the pairs of Lyndon representatives whose periodisations are
ordered in the opposite way to their last letters.
Remark 0.15. When A and B are conjugate, this Algo-Sum returns the self-linking
number of the modular knot for the framing defined by the Lorenz template.
Example 0.16. The linking number between the knots associated to the primitive
hyperbolic matrices RLL,RRL ∈ PSL2(N) is 1. Indeed, the only pairs of Lyndon
representatives which add 1 to the Algo-Sum are (RLL,LRR) and (LLR,RRL).

In Section 4.2 we propose a variation on this summation formula, but we will not
relate its exploration to the core of the thesis. It can be interpreted as a factorisation
(or polarisation) of the quadratic linking form, thus opening a door onto its Hilbertian
analysis, and the investigation of its binomial statistics.

For a pattern P ∈ PSL2(N) and a hyperbolic A ∈ PSL2(N), let pref(P,A∞) =
[[A∞ ∈ P · PSL2(N)]] ∈ {0, 1} tell whether P is a prefix of A∞, and occ(P,A) =∑lenA

j=1 pref
(
P,A∞

j

)
count the number of cyclic occurrences of P in A mod σ.

Proposition 0.17 (Sum of linked patterns). For coprime hyperbolic A,B ∈ PSL2(N)
the corresponding modular knots have linking number:

lk(A,B) =
1

2

∑
w

occ(RwL,A) · occ(LwR,B)
+

occ(RwL,B) · occ(LwR,A)


where the summation extends over all words w ∈ PSL2(N) including the empty one.

Consider the free Z-module generated by the set PSL2(N)/σ of all cyclic words,
endowed with the symmetric bilinear form lk. Let us reformulate Proposition 4.34
as a factorisation of the corresponding symmetric matrix.
Definition 0.18 (Occurrence matrices). Denote P (w,A) the infinite “rectangular
matrix” with entries occ(RwL,A) indexed by w ∈ PSL2(N) and A ∈ PSL2(N)/σ.

Denote P#(w,A) = P (w#, A#) where w#&A# are the mirror images of w&A.
Its entries are given by occ(LwR,A) = occ(Lw#R,A#).

Finally we define Z = P + iP# over the ring Z[i] of Gaussian integers.
Corollary 0.19 (Factorising the linking matrix). The matrix of the bilinear form
lk(A,B) is the imaginary part of the product tZZ#.
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Invariants on pairs of conjugacy classes

We wish to compute functions of pairs of conjugacy classes in PSL2(Z), such as
linking numbers of modular knots. For this we now explain how to average conjugacy
invariants for pairs of matrices to obtain functions of pairs of conjugacy classes.

Consider a group Γ acting on a space Σ and a function f defined on Σ×Σ with
values in a commutative group Λ which is invariant under the diagonal action of Γ:

f : Σ× Σ→ Λ ∀W ∈ Γ, ∀a, b ∈ Σ : f(a, b) = f(W · a,W · b)

We define an invariant F for pairs of Γ-orbits [a], [b] by summing f over all pairs
of representatives of the orbits considered modulo the diagonal action of Γ.

The pairs of representatives for the orbits are parametrized by the (U · a, V · b)
for (U, V ) ∈ Γ/(Stab a) × Γ/(Stab b), and the quotient of this set by the diagonal
action of Γ by left translations is denoted Γ/(Stab a)×Γ Γ/(Stab b).

Consequently, the sum indexed by (U, V ) ∈ (Γ/ Stab a)×Γ (Γ/ Stab b) defines our
desired invariant:

F ([a], [b]) =
∑
(U,V )

f(U · A, V · b)

This can also be written as the sum over double cosets W ∈ (Stab a)\Γ/(Stab b):

F ([a], [b]) =
∑
W

f(a,W · b)

because the map (Γ/ Stab a) × (Γ/ Stab b) → (Stab a)\Γ/(Stab b) sending (U, V ) to
W = U−1V is surjective, and its fibers are the orbits under the diagonal action of Γ
by left translations.

We shall apply this discussion to the action of Γ = PSL2(Z) on the group PSL2(R)
or the lattice PSL2(Z), on its Lie algebra sl2(R) or the lattice sl2(Z), on the symmetric
space H ∪H′ or the trivalent tree T and thus on its bi-infinite oriented geodesics G.
These actions are closely related, for instance we may associate to A ∈ PSL2(R) its
projection in P(sl2(R)), and to A ∈ PSL2(Z) a point in T ∪ ∂T ∪ G.

Of course when PSL2(Z) acts on itself by conjugacy, we obtain invariants for pairs
of conjugacy classes. We will explain how to compute them on pairs of hyperbolic
conjugacy classes in Section 2.3, after recalling why the centraliser of a hyperbolic
matrix in PSL2(Z) is the subgroup generated by its primitive root.

The function f(a, b) could be obtained from geometrical invariants such as the
scalar product 〈a, b〉, like the cross-ratio bir(α′, α, β ′, β), as well as combinatorial
invariants like cross(ga, gb) or cosign(ga, gb) introduced in the next paragraph.
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Linking and intersection numbers from the action on (T , cord)

The group Γ = PSL2(Z) acts on Σ = T preserving its cyclic order structure, defined
on the set of edges incident to each vertex (given by the surface embedding T ⊂ HP).
This is equivalent to the cyclic order function cord(x, y, z) ∈ {−1, 1} of three distinct
points x, y, z ∈ T ∪ ∂T , or to the crossing function cross(u, v, x, y) ∈ {−1, 0, 1} of
four distinct points u, v, x, y ∈ T ∪ ∂T defined by:

cross(u, v, x, y) = 1
2
(cord(u, x, v)− cord(u, y, v))

that is the algebraic intersection number of the oriented geodesics (u, v) and (x, y).
We denote |cross|(u, v, x, y) ∈ {0, 1} the absolute value of cross(u, v, x, y) which is
the linking number of the cycles (u, v), (x, y) in the cyclically ordered boundary ∂T .

The intersection of two oriented bi-infinite geodesics ga = (α′, α) and gb = (β′, β)
of T is either empty in which case we define cosign(gA, gb) = 0, or else it consists
in a geodesic containing at least one edge along which we may thus compare their
orientations by cosign(ga, gb) ∈ {−1,+1}.

The functions cross and cosign are PSL2(Z)-invariant, symmetric, and inverting
the orientation of one argument results in a change of sign.

cosign
cross +1 0 −1

+1

α′

β′

β

α

β′

α′

β

α

β′

α′

α

β

−1

β

α′

α

β′

α′

β

α

β′

α′

β

β′

α

Configurations of axes: cross and cosign. Note that cross 6= 0 =⇒ cosign = ±1.

For coprime hyperbolic A,B ∈ PSL2(Z) with axes gA = (α′, α) and gB = (β′, β)
in T , we write cross(A,B) = cross(α′, α, β ′, β) and cosign(A,B) = cosign(gA, gB).

Lemma 0.20 (cosign = 1). Consider infinite order A,B ∈ PSL2(Z). There exists
C ∈ PSL2(Z) such that CAC−1, CBC−1 ∈ PSL2(N) if and only if the combinatorial
axes gA, gB ⊂ T share an oriented edge, that is when cosign(A,B) = 1.
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Template crossings ↔ {(gA, gB) : |cross|(gA, gB) = 1 = cosign(gA, gB)} mod Γ× Γ.

We shall use this important observation to recast the algorithmic formula (Algo-
Sum) according to the general framework introduced in the previous paragraph.

Theorem 0.21. For coprime hyperbolic matrices A,B ∈ Γ = PSL2(Z) we have:

lk(A,B) =
1

2

∑(
|cross| ×1 + cosign

2

)
(Au, Bv)

where the sum extends over pairs of representatives Au = UAU−1 and Bv = V BV −1

for the conjugacy classes with (U, V ) ∈ Γ/ Stab(A)×Γ Γ/ Stab(B).

In particular, we recover the intersection number between modular geodesics as:

lk(A,B) + lk(A,B−1) =
1

2

∑
|cross|(Au, Bv) =

1
2
· I(A,B)

whereas the sum of the cosign over pairs of intersecting axes yields:

lk(A,B)− lk(A,B−1) =
1

2

∑
(|cross| × cosign) (Au, Bv).

We deduce an efficient algorithm computing the intersection number I(A,B) from
the L&R-factorisation of A,B by applying Algo-Sum formula to the linking numbers
lk(A,B) and lk(A,B−1).

Remark 0.22. Note that if A is conjugate to B, then I(A,B) is the intersection
number between two parallel copies of the corresponding modular geodesic, which is
twice its self-intersection number (counted as the number of double points).

For instance, the modular geodesic corresponding to RLL has self-intersection
1
2
I([RLL], [RLL]) = lk([RLL], [RLL]) + lk([RLL], [LLR]) = 1

2
4 + 1

2
2 = 3.
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Deforming the PSL2(Z)-action on HP to the PSL2(Z)-action on T

Let us finally show how to recover the linking number of two modular knots as the
limiting value of a function defined on the character variety of the modular group.

We first define a one parameter family of representations ρq : SL2(Z) → SL2(R)
depending algebraically on the parameter q ∈ R∗ and with integral coefficients. Fix
Sq = S and let Tq be the conjugate of T by exp 1

2
log(q)( 1 0

0 −1 ). Given A ∈ PSL2(Z),
we deduce Aq = ρq(A) from any S&T -factorisation by replacing T 7→ Tq, for instance:

Rq =

(
q 1
0 q−1

)
and Lq =

(
q 0
1 q−1

)
.

This descends to a representation ρ̄q : PSL2(Z)→ PSL2(R) which is faithful and
discrete (this follows from the positivity of disc(Rq) = (q−q−1)2), and positive in the
sense that Tq is a 2π/3-rotation of HP in the positive direction. Conversely, every
such representation is conjugate to ρ̄q for a unique q > 0, so we have parametrized
the Teichmüller space of PSL2(Z) by the real algebraic set R∗

+.
As q → ∞, the hyperbolic orbifold Mq = ρq(Γ)\HP has a convex core which

retracts onto the long geodesic arc (i, jq) connecting the conical singularities. The
hyperbolic geodesics of Mq remain in this convex core, so their angles tend to 0 mod
π.

Proposition 0.23. Consider hyperbolic A,B ∈ PSL2(Z) such that |cross|(A,B) = 1.
For all q > 0 the elements Aq, Bq ∈ PSL2(R) are hyperbolic, and their oriented

geometric axes intersect at an angle whose cosine is given by:

cos(Aq, Bq) =
Tr(AqBq)− Tr(AqB

−1
q )√

disc(Aq) disc(Bq)

which is an algebraic function of q with limit cos(Aq, Bq) −−−→
q→∞

cosign(A,B).

The formula for the cosine is derived from Lemma 0.2 and some trace identities.
To find the limit as q → ∞ we compute the degrees and dominant terms of the
polynomials involved in this expression as follows.

For C ∈ PSL2(Z), denote len(C) ∈ N the minimum displacement length d(e, C ·e)
of an edge e ∈ T . When C has infinite order, it is the L&R-length of a Lyndon
representative, and when C has finite order it is zero.

For all C ∈ PSL2(Z) the Laurent polynomial Tr(Cq) is reciprocal of degree len(C).
To identify the limit, we show that for infinite order elements A,B ∈ PSL2(Z) whose
axes intersect, we have cosign(A,B) = sign (len(AB)− len(AB−1)).
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This should not surprise someone acquainted with compactifications of Teich-
müller space by actions on trees or by valuations [Ota15, MS21]. Here the unique
boundary point q =∞ corresponds to the action on T or to the valuation − degq.

The convex core of Mq lifts in HP to an ϵ-neighbourhood of Tq with ϵ = Θ(1/q2).

Definition 0.24. For conjugacy classes [A], [B] of hyperbolic elements in PSL2(Z),
consider the algebraic functions of q defined by:

Lq([A], [B]) =
∑(

[[bir > 1]]

bir

)(
Ãq, B̃q

)
(Lq)

Cq([A], [B]) =
∑

(|cross| × cos)
(
Ãq, B̃q

)
(Cq)

where the sums extend over pairs of representatives Ã = UAU−1 and B̃ = V BV −1

for the conjugacy classes with (U, V ) ∈ Γ/ Stab(A)×Γ Γ/ Stab(B).

The appearance of [[bir > 1]] = |cross| as a factor in the terms of Lq and Cq

amounts to restricting the summations over pairs of matrices whose axes intersect.
Hence the support of the sums corresponds to the intersection points of the modular
geodesics [γA] and [γB] associated to the conjugacy classes, which must be counted
with appropriate multiplicity when A or B is not primitive, and we have:

Lq([A], [B]) =
∑(

cos θ
2

)2
and Cq([A], [B]) =

∑
(cos θ) .

Theorem 0.25. For conjugacy classes [A], [B] of hyperbolic elements in PSL2(Z),
the functions Lq([A], [B]) and Cq([A], [B]) have limits at the boundary point of the
PSL2(R)-character variety of PSL2(Z), which recover the linking and intersection
numbers of the corresponding modular knots and modular geodesics:

1
2
Lq([A], [B]) −−−→

q→∞
lk(A,B)

1
2
Cq([A], [B]) −−−→

q→∞
2 lk(A,B)− 1

2
I(A,B)

Let us display here some graphs of q 7→ Lq(A,B) for a few pairs (A,B), and refer
to the end of Section 5.3 for more.
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The graphs of Lq(A,B) & Lq(A,B
−1) and their average I(A,B) = I(A,B−1).

Graphs of Lq(A,B) for q ∈ C and |q| < 1.6.
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0.4 Further directions of research

0.4.1 Linking forms of Fuchsian groups
To begin with, we compare the definitions of the functions Lq and Cq and their
limiting behaviour at q = ∞ with similar considerations which have been made for
non-oriented loops in a closed surface S of genus g ≥ 2. Such loops, corresponding
to the conjugacy classes of α, β ∈ π1(S) up to inversion, define trace functions
Tr(α),Tr(β) on the SL2(C)-character variety of π1(S) (whose real locus contains the
Teichmüller space of S as a Zariski dense open set). This character variety carries a
natural symplectic structure [Gol84], given by the Weil-Petersson symplectic form.

The sum Cq(A,B) looks very much like Wolpert’s cosine formula [Wol82, Wol81]
computing the Poisson bracket {Tr(α),Tr(β)} of the trace functions. The major
difference is that Wolpert’s formula is a skew-symmetric expression in two non-
oriented loops. In fact, we are able to define an analog of Wolpert’s formula by
summing the product cross(A,B)×cos(A,B). However, the Teichmüller space of M is
reduced to a point so any Poisson structure in the usual sense would be trivial, and we
expect this function to be zero (as corroborated by our computer experimentation).

Moreover, the Weil-Petersson symplectic form has been extended to several com-
pactifications of the character variety [PP91, SB01, MS]. The limits of the Poisson
bracket {Tr(α),Tr(β)} at the respective boundary points have been interpreted in
[Bon92, Proposition 6] and [MS]. Thus, we may generalise the definitions of our
functions Lq & Cq to oriented geodesics in hyperbolic surfaces and ask for an inter-
pretation of their limits at boundary points of the Teichmüller space.

Pursuing this direction, one may ask for extension of Lq & Cq to pairs A,B
of oriented geodesic currents. This should be analogous to the extension of the
intersection form described in Bonahon [Bon88]. One may also wish to replace ρ
with a semi-conjugacy class of representations Γ → Homeo(S1) or a generalised
cross-ratio [Ota92]. The aim would be to think of Lq & Cq as differential forms on
the “tangent bundle” to these spaces of representations or generalized cross-ratios.
The semi-conjugacy class of representations Γ→ Homeo(S1) form a cone in the first
bounded cohomology group H1

b (Γ;R), and we suspect that something similar is true
for some spaces of general cross-ratios. Thus we ask

Question 0.26. How to interpret Lρ(A,B) as a “differential form” on (an appro-
priate subspace in) the first bounded cohomology group H1

b (Γ;R) ?

Besides, we believe that the functions Lq would yield some kind of Killing form
on Goldman’s Lie algebra of oriented loops [Gol86].
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0.4.2 Arithmetic and Geometric deformations

Let us mention another general context in which our definitions Lq & Cq seem to
apply with almost no changes. Recall that our definitions of the cross-ratios and
cosine in Lemma 0.2 hold for pairs of semi-simple elements in PGL2(K). Thus for
any faithful representation of a group ρ : Γ → PSL2(K) sending A,B ∈ Γ to semi-
simple elements, one may try define the following invariants for the pair of conjugacy
classes:

Lρ(A,B) =
∑

bir(ρÃ, ρB̃)−1 Cρ(A,B) =
∑

cos(ρÃ, ρB̃)

where the sum is indexed by the double-coset space StabA\Γ/ StabB with some
restrictions analog to [[bir > 1]] and [[|cross| > 1]] ensuring that it has finite support,
which we shall comment later on. These define functions on (a subset in) the space
of representations Hom(Γ,PSL2(K)) considered up to PSL2(K)-conjugacy at the tar-
get. One may ask for interpretations of their limiting values at special points in its
appropriate compactifications.

As suggested above, this construction works in particular for discrete subgroups
of PSL2(R) called Fuchsian groups. In general, we may want to specify that ρ(Γ) is
a discrete subgroup of PSL2(K) after K has been given a topology, or furthermore
that ρ(Γ) has finite covolume for the Haar measure on PSL2(K) with respect to a
measure on K. In that case, one may consider the quotient of the symmetric space
P(sl2(K) \ X) of PSL2(K) by ρ(Γ), and observe the relative position between the
“cycles” corresponding to A,B in that quotient.

We may now suggest some tantalising connections between arithmetic and topol-
ogy. For this, we should compare our summations (Lq) and (Cq) with the modular
cocycles introduced in [DIT17] and the products appearing in [DV22].

Let us note however that [DIT17] considers the linking numbers lk(A+A−1, B+
B−1) between cycles obtained by lifting a geodesic and its inverse: this number
amounts to the geometric intersection I(A,B) of the modular geodesics. Furthermore
[DV22] considers deformations of an arithmetic nature for these intersection numbers.

None of these address the actual linking numbers, and their approach is motivated
by the arithmetic of modular forms, while ours will be inspired by the geometry of
the character variety. Thus it would be interesting on the one hand to understand
the arithmetic of linking numbers in terms of the modular forms appearing in [Kat84]
or the modular cocycles in [DIT17], and on the other hand to relate the p-arithmetic
intersections numbers considered in [DV22] to the special values of functions Lρ &
Cρ defined for representations ρ : PSL2(Z)→ PSL2(Qp) as suggested above.
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0.4.3 Special values of Poincaré Series
We may apply the general averaging procedure explained at the beginning of subsec-
tion 0.3.2 to other conjugacy invariants fq(A,B) and define new functions Fq(A,B)
on the character variety of PSL2(Z). Their limit at the boundary point q = ∞ will
be expressed in terms of the linking number lk(A,B) as soon as fq(A,B) converges
to an expression of cosign(A,B) as q →∞.

Various motivations (including special values for Poincaré series [Sie65, Dir42],
and McShane’s identity [Bow96]) suggest to choose fq(A,B) = (x +

√
x2 − 1)−s for

some complexe variable s ∈ C where x = −1
2
tr(aqbq) is the numerator of cos(Aq, Bq)

in the formula of Proposition 0.23.
This summand fq(A,B) can also be written e−siθ where θ is the angle between

the oriented geometric axes of Aq and Bq when they intersect and e−sl where l is the
length of the ortho-geodesic arc γ connecting the geometric axes of Aq and Bq when
they are disjoint. In formula:

Fq(A,B) =
∑

(x+
√
x2 − 1)−s =

∑
[γA]⊥γ⊥[γB ]

exp(−slγ)−
∑

p∈[γA]∩[γB ]

exp(−siθp).

So the sum over all double cosets splits as a finite sum computable in a similar way
to the Algo-Sum, and an infinite series which converges for <(s) > 1 (the topological
entropy for the action of PSL2(Z) on the hyperbolic plane). The infinite sum is a
bivariate analog (in (A,B)) of the univariate Poincaré “theta-series” which appeared
in the works of Eisenstein: those admit meromorphic continuation to s ∈ C and their
special values in the variable s have been of interest for arithmetics and dynamics.
Similar Poincaré series associated to one modular geodesic are also defined in [Kat84].
The earliest appearance we found for such bivariate series is in [For23, Section 50],
and the only other one is [Pau13].

When q =∞ and s = 1, the real part of the finite sum evaluates to 2 lk(A,B)−
I(A,B), but one may wonder about the infinite series (now the order in which we
take limits in s and q may import). More generally, one strategy to relate modular
topology and quadratic arithmetic is to choose f with appropriate symmetries and
analyticity properties so that the sum over all double cosets can be understood: then
one deduces a relationship between a topologically meaningful finite sum, and the
infinite series whose special values may be of interest in arithmetic.
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Chapter 1

Geometric algebra of gl2

Outline of the chapter
In this chapter K is a field of characteristic different from 2. A good example to
keep in mind is the field of rational numbers, as one can both visualise the geometry
and wonder about the arithmetic. Many statements will remain true over a subring
containing 1/2, which can be any commutative integral ring in which 2 is invertible.
Let
√
K be a universal quadratic closure. For instance

√
Q is the venerable field of

numbers constructible by ruler and compas.
We consider a K-vector space V of dimension 2 with no additional structure, and

denote gl(V) its K-algebra of linear endomorphisms, whose invertible elements form
the group GL(V). Only after choosing a basis of V do we have the identifications
V = K2 as well as gl(V) = gl2(K) and GL(V) = GL2(K).

Involutive algebra : Quaternion algebra and Lie algebra
In the first two sections, we describe from a synthetic viewpoint the algebra and
geometry underlying the space gl(V), emphasizing the role played by the canonical
involution M 7→ M# given by the transpose comatrix. One guiding thread is the
interplay of two algebraic structures characterising gl2(V) over its underlying four-
dimensional vector space: a quaternion algebra and a Lie algebra. Both yield the
non degenerate quadratic form det with which they bare tight relations. In short,
commutativity rhymes with colinearity whereas anti-commutativity rhymes with or-
thogonality. The orthogonal decomposition gl(V) = K1 ⊕ sl(V) with respect to
det will also play an important role. The orthogonal projections are given by the
half-trace tr : gl(V)→ K, and the quotient pr : gl(V)→ sl(V).

35
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Along the way we derive various identities involving tr&pr which serve as step-
ping stones in the current chapter as well as the future ones. Most of them are
probably well known, but let us highlight the presumably new identities in Lemma
1.30, for which lots of effort was spent in devising an ingenious proof. It relates the
projection of the commutator pr[M,N ] of elements M,N ∈ GL(V) to the commu-
tator of their projection [prM, prN ] ∈ sl(V). The idea behind those identities is
to use the orthogonal projections tr : GL(V) → K and pr : SL(V) → sl(V) which
satisfy tr2− pr2 = det by the Pythagorean theorem, and invert them by solving such
Pell-Fermat equations. This “quadratic algebra” replaces the “infinitesimal analysis”
involved in the use of the transcendental function exp: gl(V)→ GL(V).

Let us mention that a basis of V yields a canonical way to choose a basis
(1, S, J,K) for gl(V). This relies on the representation of the dihedral group D4 ⊂
GL(V) acting by symmetries of the square. We shall often use this basis, once it will
be clear what depends on this coordinate system.

This forms the content of the first two sections, which is mostly basic. The core of
the material can be found in [Car92, Art57, Die71] for the geometry of Lie groups and
Lie algebras, and [Vig80, Sha90, MR03] for the arithmetic of quaternion algebras.
The trace identities also have a long history, for which we refer to [Mag81].

Geometry of the isotropic cone
The structures of quaternion algebra and Lie algebra on gl2(V) yield complementary
insights on the geometry of its isotropic cone for the quadratic form det, which we
investigate in a third section. We shall provide a parametrization for the projectivized
isotropic cone of (gl(V), det) in 1.11 and 1.37.

More importantly, we also define a parametrization ψ : K2 → X for the isotropic
cone of (sl2(K), det) in Lemma 1.33. This map ψ is responsible for some of the
originality and coherence in our presentation: it will serve repeatedly, including in
the future chapters. As suggested by its notation, it is expressed in our favourite
coordinate system (S, J,K) obtained after choosing a basis of V. Yet one only
needs to fix a symplectic form on V, so we also explain its (not so obvious) intrinsic
counterpart in Lemma 1.36.

Then we recall the definition and properties of the cross-ratio between four ele-
ments in KP1. As an amusing curiosity, we apply the parametrization ψ to derive an
analog of Ptolemy’s theorem for quadruples of lines in the cone. When K = R, such a
quadruple of lines corresponds to an ideal quadrilateral in the hyperbolic plane. This
Proposition 1.40 relies on the identity (CRS) relating the cross-ratio between lines
in X to the scalar product of vectors sl2(K), which may be of independent interest.
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Finally, we define and relate the ubiquitous notions of cross-ratio and cosine
between two semi-simple elements of PGL(V) (e.g. hyperbolic matrices in SL2(R)).
The important statements are summed up in Lemma 0.2. Those relations are crucial
ingredients in our Theorem 0.25 expressing linking numbers of modular knots as
limits of functions on the character variety of the modular group. In fact, the cosine
identity in Remark 1.51 was used in [Wol81, Wol82] to express the Weil-Petersson
scalar product of certain functions on character varieties of closed hyperbolic surfaces.
We believe that our presentation sheds light on the geometric nature of this identity.

Adjoint action and equivalence of binary quadratic forms
This brings us to the culminating point of the chapter: in the fourth section we
study the adjoint action of PGL(V) on its symmetric space, defined as its subset of
elements having order two, which is in correspondence with P(sl(V) \ X). The aim
is to describe the conjugacy classes in PGL(V) and in PSL(V). More precisely, for
a, b ∈ sl(V) of the same determinant such that det{a, b}, we parametrize the set of
C ∈ PSL(V) which conjugate a to b. This is the content of Theorem 0.5 = 1.64
which can be considered as the main result in this chapter.

In a fifth section, which is independent from the sequel, we apply this main theo-
rem over the fields Q and its completions Qp. The goal is to describe certain “arith-
metic K-equivalence relations” on the set of integral binary quadratic forms, which
arise naturally in this context, and seem to be new. For this we will need to solve
Pell-Fermat equations using the notion of Hilbert symbol which we briefly recall from
[Ser70]. After displaying some experimental data concerning this Q-equivalence, we
comment on its relation to genus equivalence. One may find background concerning
binary quadratic forms and their genera in [Ser70, Coh78, Cox97, Hat22].

Hyperbolic geometry
In a last section we focus on the case K = R and investigate the geometry of the
Lorentz space sl2(R) with a special emphasis on orientation matters. We made our
best to make this last section accessible for the geometer who has not assimilated the
algebraic results accumulated until then, by recalling the basic facts in this context,
and proposing alternative arguments or geometric intuition instead of systematically
referring to the first two sections. One may benefit from reading this section first to
gain some geometric intuition before starting afresh. This projective perspective on
hyperbolic geometry is akin to [Thu97, Chapter 2] and [Mon87, Appendix B].

We end with the geometric interpretation 0.13 = 0.13 of our main theorem.
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1.1 Quaternion algebra of gl(V)

Central algebra with involution
On a finite dimensional vector space, the set of alternate multilinear forms of top
degree constitutes a one-dimensional vector space, which is generated by the deter-
minant in some basis. Thus in dimension two we have, up to scalar multiplication, a
unique anti-symmetric non-degenerate bilinear form, also called a symplectic form.

The adjoint of an endomorphism M ∈ gl(V) for such a form ω on V is the unique
endomorphism M# ∈ gl(V) satisfying ω(u,Mv) = ω(M#u, v) for all u, v ∈ V. The
adjoint map M 7→M# is invariant under scaling of the symplectic form ω.

To insist, if we consider a two-dimensional K-vector space V with no additional
structure, then its algebra of endomorphisms gl(V) admits a canonically defined
adjoint map, which we use as a starting point to investigate its algebra and geometry.

Proposition 1.1. The adjoint map M 7→M# is an involution of the algebra gl(V),
meaning that for all M,N ∈ gl(V) and λ ∈ K we have:

Linear map: (λM +N)# = λM# +N#

Anti-multiplicative: (MN)# = N#M#

Order two: (M#)# =M

The fixed points of # consist in K1, that is the center of gl(V).

Proof. Suppose M = M#. Then for all v ∈ V we have det(v,Mv) = det(M#v, v)
equal to det(Mv, v) = − det(v,Mv) thus 2 det(v,Mv) = 0. Since the characterstic is
different from 2 we deduce that Mv = λv · v for some λv ∈ K. If there exist u, v ∈ V
for which λu 6= λv then λuu+ λvv =M(u+ v) = λu+v(u+ v) yields a linear relation
between them so λu = λv which is a contradiction. Hence M ∈ K1.

The center of gl(V) contains K1. Conversely, the previous argument shows that
if M /∈ K1 then it sends a line L0 ⊂ V to a distinct line L1 ⊂ V. Then the projection
P on L0 parallel to L1 does not commute with M .

Remark 1.2. Notice that the determinant det(M) of an endomorphism is invariant
by rescaling the symplectic form ω on V.

Composing (M,M#) with addition or multiplication yields the central elements:

Tr(M)1 :=M +M# det(M)1 :=MM#

which define the linear map Tr: gl(V) → K called the trace, and the multiplicative
map det : gl(V)→ K called the determinant.
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Remark 1.3. The maps Tr and det can be defined intrinsically in terms of tensor
algebra as follows.

Using the canonical isomorphism V⊗V∗ 7→ gl(V) sending a pure tensor f ⊗ v to
the projector p : u 7→ f(u)v we have Tr(f ⊗ v) = f(v).

The action of m ∈ gl(V) on the 1-dimensional vector space Λ2V is the multipli-
cation by a scalar det(m).

We leave it as an exercise to define the adjoint action in terms of tensor powers.

Developing the relation M2 − (M +M#)M + (MM#) = 0 yields the Cayley-
Hamilton identity χM(M) = 0 for χM(X) = X2 − Tr(M)X + det(M) ∈ K[X] the
characteristic polynomial of M . Hence an element M ∈ gl2(K) generates a commu-
tative subalgebra K[M ] which has dimension at most 2, and equals Span(1,M).

Moreover, if M /∈ K1 then this subalgebra K[M ] has dimension at least 2 and is
thus isomorphic to the quadratic extension K[X]/(χM) of K. Hence when M is not
central, its minimal polynomial equals its characteristic polynomial. In any case, the
involution # restricts on K[M ] to the Galois involution of this K-extension.

Scholium 1.4. We shall see, by studying the adjoint action that M,N ∈ gl(V) are
conjugate by GL(V) if and only if they have the same characteristic polynomial.

The discriminant of M ∈ gl(V) is defined as that of its characteristic polynomial,
equal to disc(M) = Tr(M)2 − 4 det(M).

We call M semi-simple when disc(M) 6= 0, that is when χM has simple roots in√
K. If these roots belong to K the algebra K[M ] is isomorphic to the direct product

K×K, otherwise K[M ] is a simple K-algebra (no proper ideals). In both cases K[M ]
is a semi-simple K-algebra (a product of simple algebras).

When disc(M) = 0 we have χM(X) = (X − λ)2 for λ ∈ K so the algebra K[M ]
is not integral (it has zero divisors). Either λ = 0 in which case M is nipotent,
otherwize M/λ is idempotent.

Remark 1.5. In general for F ∈ K[X] the condition disc(P ) 6= 0 is equivalent to
saying that F has simple roots in an algebraic closure of K. Hence the K-algebra
K[X]/(F ) is semi-simple if and only if disc(F ) 6= 0.

Indeed, it splits as the direct product of the K[X]/(P k) where P ∈ K[X] range
over the irreducible factors of F . If disc(P ) 6= 0 then K[X]/(P k) defines a simple
algebra (with no proper ideals) if and only if k = 1.

Note that the irreducibly of P does not imply that disc(P ) 6= 0. However it does
provided that deg(P ) is prime to the characteristic of the field (which is always the
case when degP = 2 and K has characteristic different from 2) or when the field K
is assumed to be perfect (which we do not need to assume).
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The involution # preserves the group GL(V) of invertible elements. It consists
in those A ∈ gl(V) such that det(A) ∈ K×, in which case A−1 = det(A)−1A#.

For A ∈ GL(V) and M ∈ gl(V) we have (AMA−1)# = AM#A−1, so the left
adjoint linear action of GL(V) on gl(V) preserves the involution, whence the trace
and determinant.

Dihedral basis for the quaternion algebra
A choice of basis for V amounts to an isomorphism with the numerical space K2, this
identifies its endomorphism algebra gl(V) with the algebra gl2(K) of 2× 2 matrices.

In such coordinates, the adjoint corresponds to the transpose comatrix, while the
determinant and trace have their usual expressions:

M =

(
a b
c d

)
M# =

(
d −b
−c a

)
Tr(M) = a+ d det(M) = ad− bd

Remark 1.6. Note that choosing a basis (u0, v0) of V yields a preferred normalisation
of the area form so that ω(u0, v0) = 1. Then the area ω(u, v) of the parallelogram
spanned by two vectors is the determinant of the endomorphism sending the basis
(u0, v0) to (u, v) and one may use det(u, v) to denote both of these.

More importantly a basis defines a unique euclidean structure, that is a symmetric
non-degenerate bilinear form β, for which this basis is orthonormal. In gl2(K), the
adjoint with respect to that symmetric bilinear form is the transposition M 7→ tM .

If we have a Euclidean scalar product β, hence a symplectic form ω one may
polarise the latter with respect to the former and find the unique element S ∈ gl(V)
such that β(u, v) = ω(u, Sv) for all u, v ∈ V. This is nothing else than the rotation
S ∈ SO(V, β) of order 4 in the positive direction.

In fact, given a symplectic form, it is equivalent to fix an element of order 4 up to
inversion and a euclidean metric inducing the same area. (But one must be careful
about the notion of orientation over general fields.)

Let us explain why choosing a basis of V leads to a preferred basis for gl2(V),
in other terms we exhibit a favourite basis for gl2(K). The following elements form,
together with their opposites, the dihedral group D4 of order 8 which acts faithfully
on the square in K2 whose vertices have coordinates ±1, as in Figure 1.1.

1 =

(
1 0
0 1

)
S =

(
0 −1
1 0

)
J =

(
0 1
1 0

)
K =

(
−1 0
0 1

)
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Having coordinates in {−1, 0, 1}, these elements are defined over any field of
characteristic different from 2, and they form a basis for gl2(K). In particular, we can
present gl2(K) as the group algebra K[D4] quotiented by the identification between
the units {±1} ∈ K× and the central elements {±1} ⊂ D4.

1

◁ S ▷

◁ − 1 ▷< J >< −J > < K > < −K >

◁ − 1,K ▷◁ − 1,J ▷

D4

Figure 1.1: Poset of subgroups in D4 and their action on the square.

For future reference, we display some of the relations satisfied between S, J,K.
Geometrically, the dihedral group D4 is generated by two reflections J,K whose
product KJ = S is a rotation of order 4. In particular we have the squaring relations:

J2 = 1 K2 = 1 S2 = −1

Algebraically, the trace relations Tr(S) = Tr(J) = Tr(K) = 0 imply that # changes
S, J,K in their opposite, and then det(S) = − det(J) = − det(K) = 1 recover the
squaring relations.

Combining them with KJ = S yields the cyclic permutation relations:

SJ = K JK = S−1 KS = J
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Combining those with Tr(K) = Tr(S) = Tr(J) = 0 yields the anti-commutation
relations:

SJ = −JS JK = −KJ KS = −SK

which imply that every element S, J,K conjugates any other in its opposite.
We may recombine those anti-commutation relations with the cyclic permutation

relations to yield the following commutator relations, which only make sense in the
group algebra:

SJ − JK = 2K JK −KJ = −2S KS − SK = 2J.

Scholium 1.7. A quaternion algebra over K is a 4-dimensional K-algebra spanned
by elements (1, jk, j, k) satisfying j2 = x1, k2 = y1 and kj = −jk for x, y ∈ K×. For
x = y = 1 we recover gl2(K) whereas for x = y = −1 and K = R we find Hamilton’s
algebra of quaternions.

Over K, the only quaternion algebra which is not a division algebra is gl2(K). On
may consult [Sha90, Vig80, MR03] for much more about quaternion algebras.

We can also present the four-dimensional K-algebra gl2(K) as a non-commutative
multiquadratic extension of K, or as a hermitian extension of a quadratic extension:

gl2(K) ' K[J,K]

(J2 = K2 = 1, JK = −KJ)
' K[J ][K]

(K2 = 1, KJ = J#K)

Such a definition extends to quaternion algebras over fields of characteristic 2.

Structure of the dihedral group
Let us investigate the structure of D4, starting with its poset of subgroups, depicted
in 1.1. Recall that a subgroup is normal if it is invariant by inner-automorphism,
and characteristic if it is invariant by every automorphism.

Since every element S, J,K conjugates any other in its opposite, we deduce on
the one hand that its center equals {±1}, and on the other hand that its normal
subgroups must contain {±1}. Hence the normal subgroups are given by:

{±1} {±1,±S} ≈ Z/4 {±1,±J} ≈ Z/2× Z/2 {±1,±K} ≈ Z/2× Z/2

The center {±1} is characteristic (as always), and so is {±1,±S} since ±S are
the only elements of order 4. The automorphism Φ swapping the generators J ↔ K
(and thus changing S into S−1) exchanges the two other normal subgroups, which
are thus not characteristic.
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Since an automorphism must preserve the non-central elements of order two
{±J,±K}, it must equal Φ up to composition with an inner-automorphism (cor-
responding to the quotient D4/{±1}).

Remark 1.8. We have just seen that J and K are not conjugate in D4. Still, as
elements of GL2(K) they have the same trace and determinant, so Corollary 1.52
should imply that they are conjugate.

A straightforward computation shows that C ∈ GL2(K) satisfies CJ = KC if and
only if it has the form:

C =

(
x −x
y y

)
for x, y ∈ K with det(C) = 2xy 6= 0.

Thus by taking x = 1 and y = 1 we have an element in GL2(K) defined over any
field K of characteristic different from 2 which conjugates J to K as desired.

They are also conjugate by the rotation of π/4 which belongs to SO2(K) ⊂ SL2(K)
provided that K contains cos(π/4) =

√
2/2, that is a root to the equation z2 = 1/2.

In fact, the matrix C with x = y = 1 is nothing else than the rotation of π/4
multiplied by

√
2. We are lucky enough that its multiples in gl2(R) contains such a

primitive vector C of the lattice gl2(Z) whose entries are defined over any field K of
characteristic different from 2.

Notice that J and K are also conjugate by an element SL2(K) by choosing 2x =
y = 1. We shall come back to this example in Remark 1.63 and Corollary 1.62.

Now let us describe the quotients of D4 by its normal subgroups and analyse the
corresponding short exact sequences

The quotient ofD4 by its center {±1} is the Klein four group Z/2×Z/2, generated
by the classes of J,K, S. Thus we have a central extension:

1→ {±1} → D2 → Z/2× Z/2→ 1

We may compute the classifying cohomology class H2(Z/2 × Z/2; {±1}) from the
squaring relations and the anti-commutation relations. A representative is given by:

c(J, J) = c(K,K) = 1 c(S, S) = −1

c(S, J) = −c(J, S) = 1 − c(J,K) = c(K, J) = 1 c(K,S) = −c(S,K) = 1

We may further quotient by S to find an extension whose quotient Z/2 is gener-
ated by the class of J or K.

1→ Z/4→ D4 → Z/2→ 1
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The quotient acts on the kernel by its only non trivial automorphism (equal to
inversion, which is trivial only in restriction to the {±1} central subgroup). Since
the sequence is split, it gives rise to a semi-direct product D4 = Z/4o Z/2.

If we quotient by the center and either J or K we find two extensions, which are
isomorphic by Φ:

1→ {±1} × Z/2→ D4 → Z/2→ 1 (1.1)

The quotient Z/2 is generated by the class of S, which has order 4 in D4, so the
sequence cannot be split. The quotient acts on the kernel by its only non trivial
automorphism (equal to inversion, which is trivial only in restriction to the {±1}
central subgroup). Denoting ϕ : Z/2 → Out(Z/2 × Z/2) = Aut(Z/2 × Z/2) the
corresponding representation, we may compute classifying twisted cohomology class
in H2(Z/2; (Z/2× Z/2)ϕ), but we already know it is a non trivial element (because
the sequence is not split), and its explicit computation follows from that for the
central extension: c(S, S) = −1.

Finally, we described the inner-automorphisms Int(D4) = D4/{±1} ≈ Z/2×Z/2
and the outer-automorphisms Out(D4) = Aut(DD)/ Int(D4) ≈ Z/2 generated by Φ.
They fit into the following extension:

1→ Int(D4)→ Aut(D4)→ Out(D4)→ 1

Since Φ ◦ IntJ = IntK ◦Φ and Φ commutes with IntS we find that the corresponding
representation is the same ϕ : Z/2→ Out(Z/2× Z/2) as the previous extension 1.1.
But this time the sequence is split, in other terms Aut(D4) ≈ (Z/2× Z/2)oϕ Z/2.

Remark 1.9. The transcomatrix M 7→ M# and the tranpose M 7→ tM restrict to
anti-automorphisms of D4. The former changes S, J,K in their opposite, while the
latter changes S in its opposite. (In particular the restriction of the transpose is
equal to the inversion map M 7→M−1.)

Their composition yields the comatrix, which is thus an automorphism of D4. It
changes K and J in their opposites while leaving S invariant, that is IntS.

In Chapter 2, we will often use the fact that StMS−1 =M# for all M ∈ gl(V).

Scholium 1.10. For a group G denote Aut±(G) be its group of automorphisms and
anti-automorphisms. If G is abelian then Aut±(G) = Aut(G). If G is not abelian
then Aut±(G) = Aut(G)×Z/2 where the second factor is generated by the inversion.

Indeed, in the non-abelian case, the inversion is an anti-automorphism, and by
definition every automorphism commutes with it. Moreover, since the product of two
anti-automorphisms is an automorphism, there is a unique anti-automorphism up to
multiplication by an automorphism.
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Quadratic space
On the vector space gl(V) the determinant is a non degenerate quadratic form, and
as det(M+N)1 = (M+N)(M+N)# =

(
det(M) + Tr(MN#) + det(N)

)
1, its polar

symmetric bilinear form is:

〈M,N〉 = tr(MN#) where tr(P ) := 1
2
Tr(P ) (1.2)

The isotropic cone of gl(V) is the set gl(V)\GL(V) of non invertible elements, and
it is a cone over non-degenerate projective quadric in the projective space P(gl(V)).

The units SL(V) = {A ∈ gl(V) | det(A) = 1} form a subgroup of GL(V), kernel
of the determinant morphism det : GL(V)→ K×, thus A ∈ SL(V) ⇐⇒ A# = A−1.

Denote sl(V) the kernel of the trace form, or the anti-symmetric part for the
involution, thus a ∈ sl(V) ⇐⇒ tr(a) = 0 ⇐⇒ a# = −a.

The involution # has eigenvalues ±1 and its eigenspaces provide a decomposition
gl(V) = K1⊕ sl(V) which is orthogonal with respect to the determinant form, thus
every element M ∈ gl(V) splits as the sum of its symmetric and anti-symmetric parts
with respect to the involution:

M = tr(M)1+pr(M) where tr(M)1 =
M +M#

2
and pr(M) :=

M −M#

2
.

In particular det(M)1 = tr(M)21− pr(M)2 which we may write det = tr2− pr2.
The 4-dimensional space gl(V), which contains the isotropic cone gl(V) \GL(V)

defined by det(M) = 〈M,M〉 = 0, decomposes as the direct sum of the anistropic
line K1 and its orthogonal hyperplane sl(V) defined by tr(M) = 〈1,M〉 = 0. Denote
X = {M ∈ gl(V) | 〈M,M〉 = 0 = 〈1,M〉} the isotropic cone for the determinant
restricted to the kernel of the trace.

In the projective 3-space P(gl(V)), the point P(K1) and the plane P(sl(V)) are
mutually polar with respect the non-degenerate quadric P(gl(V)\GL(V)). The point
does not lie on the quadric and its polar plane intersects the quadric transversely, in
the non-degenerate conic P(X).

In projective coordinates, this conic consists in the set of points p ∈ gl(V) such
that 〈p, p〉 = 0 = 〈1, p〉, or equivalently det(x1+ yp) = x2 for all [x : y] ∈ KP1, which
means that the restriction of the quadratic form on the line (1, p) vanishes to the
second order at p.

Hence the conic P(X) consists in the set of tangency points between the quadric
P({det = 0}) and the pencil of lines through P(1). Figure 1.2 provides a schematic
picture (recall that this is valid over any field of characteristic different from 2).
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Figure 1.2: A non-degenerate projective quadric in P3. A point 1 off the quadric and
its polar plane P2, which intersects the quadric in a non degenerate conic.

The isomorphism types of quadrics over K are given, in terms of the diagonali-
sation of the quadratic form, by the classes of the diagonal elements in K×/(K×)2.

Proposition 1.11. The map Ψ: M 7→ (kerM, imM) defines a bijective algebraic
correspondence between the projective quadric P({det = 0}) and P(V)×P(V) sending
the conic projective conic P(X) to the diagonal P(V).

It conjugates the adjoint action of PGL(V) restricted to P({det = 0}) with its
tautological diagonal action on P(V)× P(V).

Proof. Notice that in terms of endomorphisms, an element M ∈ gl(V) in the isotropic
cone if and only if its rank is either 0 or rank 1.

If M has rank 0 then it is nilpotent, and the line im(M) = ker(M) ⊂ V uniquely
determines P(M). In this case we have tr(M) = 0. We recover the fact that the cone
P(X) is parametrized by P(V).

Otherwize M has rank 1, so it is the multiple of an idempotent element, that
is the projector on one line im(M) parallel to another ker(M). In this case it has
tr(M) 6= 0. Thus P({det = 0} \ X) corresponds to pairs of distinct lines in V.

If A ∈ GL(V) then im(AMA−1) = A(imM) and ker(AMA−1) = A(kerM).

Scholium 1.12. In Section 1.3 we shall parametrize the istropic quadric and cone
providing an inverse to the map Ψ.

Quadratic identities: trace, projection and discriminant
Recall that for all M ∈ gl(V) = K1 ⊕ sl(V) we have det(M)1 = tr(M)21 − pr(M)2

which we may write det = tr2− pr2.
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Proposition 1.13. For all M,N ∈ gl(V) we have the following trace identity:

tr(MN) = tr(M) tr(N)− 〈prM, prN〉 (1.3)

This implies in particular:

tr(MN) = tr(NM) (1.4)
tr(MN) + tr(MN#) = 2 tr(M) tr(N) (1.5)
tr(MN)− tr(MN#) = −2〈pr(M), pr(N)〉 (1.6)

Finally Tr(MNM#N#) equals:

det(M) Tr(N)2 +det(N) Tr(M)2 +Tr(MN)2−Tr(M) Tr(N) Tr(MN)− 2 det(MN).

Proof. We obtain identity (1.3) by multiplying the orthogonal decompositions of
M,N into K1 ⊕ sl(V) and projecting on K1. Then (1.4), (1.5), (1.6) follow easily.
To show the last identity we apply the identities (1.4) and (1.5) several times:

Tr(MNM#N#) = Tr(MNM#) Tr(N#)− Tr(MNM#N)

= det(M) Tr(N)2 − (Tr(MN) Tr(M#N)− Tr(MNN#M))

= det(M) Tr(N)2 + det(N) Tr(M2)− Tr(MN) Tr(M#N)

Substituting Tr(M2) = Tr(M)2−2 det(M) and Tr(M#N) = Tr(M) Tr(N)−Tr(MN)
which are consequences of (1.4), yields the desired identity.

Remark 1.14. We recover the usual trace relation formulated for A,B ∈ SL(V) as
Tr(AB) + Tr(AB−1) = Tr(A) Tr(B), which implies Tr(AB) = Tr(BA) and:

Tr[A,B] = Tr(A)2 + Tr(B)2 + Tr(AB)2 − Tr(A) Tr(B) Tr(AB)− 2.

The discriminant ofM ∈ gl(V) was defined as that of its characteristic polynomial
X2−Tr(M)X+det(M), equal to disc(M) = 4 (tr(M)2 − det(M)). Thus A ∈ SL(V)
has disc(A) = 4 tr(M)2 − 4 and a ∈ sl(V) has disc(a) = −4 det(a).

The orthogonal projection pr : gl(V) → sl(V) preserves the discriminant since
the characteristic polynomial of t1+ u is that of u shifted by t.

Corollary 1.15. For all M,N ∈ gl(V) we have:

−〈prM, prN〉 = Tr(MN)2 − Tr(MN#)2

Tr(M) Tr(N)
=

disc(MN)− disc(MN#)

Tr(M) Tr(N)
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Proof. Multiply relations (1.5) & (1.6), and notice that det(MN) = det(MN#).

Scholium 1.16. We will apply Lemma 1.15 in Propositions 1.89 and 1.94 to hyper-
bolic elements M,N ∈ SL2(R) acting on the hyperbolic plane.

The left hand side will have a geometric interpretation in terms of the translation
axes of M and N whereas the right hand side will have a dynamical interpretation
in terms of the translation lengths of MN and MN−1.
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1.2 The Lie algebra sl(V)

Lie algebra and Killing form
The kernel sl(V) of the trace form is a 3-dimensional Lie algebra for the bracket
{a, b} = 1

2
(ab−ba), that of the Lie group SL(V), kernel of the determinant morphism.

Notice that if M,N ∈ gl(V) have orthogonal projections prM = a, prN = b ∈ sl(V)
then 1

2
(MN −NM) = {a, b}, which explains why we restrict our attention to sl(V).

For a, b ∈ sl(V), the decomposition ab = tr(ab)1+ pr(ab) rewrites as

ab = −〈a, b〉1+ {a, b} (1.7)

hence a, b are orthogonal if and only if they anticommute, in which case {a, b} = ab.
The Jacobi relation implies that {a, b} ⊥ Span(a, b) for all a, b ∈ sl(V).

Remark 1.17. The squaring and anti-commutation relations imply that (1, S, J,K)
is an orthonormal basis of gl2(K) respecting the decomposition K1⊕sl2(K). We have:

det(t1+ sS + jJ + kK) = t2 + s2 − j2 − k2

Moreover, we combined the anti-commutation and permutation relations to find:

{S, J} = K {J,K} = −S {K,S} = J

The Killing form associated to the bracket is proportional to the scalar product:

−1
8
Tr(c 7→ 2{a, 2{b, c}}) = − tr(c 7→ {a, {b, c}}) = − tr(ab) = tr(ab#) = 〈a, b〉

The non degeneracy of the polar form 〈·, ·〉, implies that of the Killing form, hence
of the bracket {·, ·} (we thus recover the fact the center of gl(V) is precisely K1).

Lemma 1.18. Two elements a, b ∈ sl(V) are colinear if and only if {a, b} = 0.

Proof. Of course the bracket vanishes on colinear pairs. Let us prove the converse.
Suppose {a, b} = 0, so that ab = −〈a, b〉.
If det(a) 6= 0 then multiplying by a# = −a we have det(a)b = 〈a, b〉a and dividing

by det(a) yields the conclusion. If det(b) 6= 0 the argument is similar.
Otherwize det(a) = 0 = det(b), whence 0 = det(ab) = 〈a, b〉2. Thus for all

x, y ∈ K we have det(xa+yb) = det(a)x2+2〈a, b〉xy+det(b)y2 = 0. But the isotropic
spaces of a non degenerate quadratic form cannot exceed half the dimension hence
dimSpan(a, b) ≤ 3/2 and we are done.
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Figure 1.3: Constructing polarities with respect to a conic.It relies on choosing pro-
jective basis O,P,Q,R on the conic, to exploit the following property. The pencil of
conics passing through such base points contains three singular members: the pairs
of lines (OP )∪(QR), (OQ)∪(PR), (OR)∪(PQ), with intersection points p, q, r. The
polarity relations p⊥ = (qr), q⊥ = (pr), r⊥ = (pq) hold for any conic of the pencil.

When a, b ∈ sl(V) are not colinear, they span a plane Span(a, b) which is orthog-
onal to {a, b} and thus equal to {a, b}⊥. In the projective plane P(sl(V)) the line
through the distinct points P(a),P(b) is polar to the point P({a, b}) with respect to
the conic P(X).

When det{a, b} 6= 0 the restriction of det to the plane Span(a, b) is a non degen-
erate quadratic form. In this case the point P({a, b}) lies off the conic and its polar
line P{a, b}⊥ is transverse to the conic (but their intersection may be empty over K).
Notice that the points P(a) and P(b) could either be on or off the conic, and this
independently of one another.

When det{a, b} = 0 the restriction of det to the plane Span(a, b) is a degenerate
quadratic form. In this case the point {a, b} lies on the conic P(X) and its polar line
P{a, b}⊥ is tangent to the conic. Notice that at most one among P(a) and P(b) can
lie on the conic, in which case it equals P{a, b}.

These configurations have been represented in Figure 1.4.

Remark 1.19. As there may exist non-colinear a, b ∈ sl(V) such that det{a, b} = 0,
one may thus think of (a, b) 7→ det{a, b} as the square of a degenerate area form.

Corollary 1.20. The quantity [a, b, c] := 〈{a, b}, c〉 = 1
2
(tr(bac) − tr(abc)) defines a

volume form on sl(V), that is an alternate non-degenerate trilinear form.
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Figure 1.4: In the projective plane P(sl(V)) with the conic P(X): the line (P(a),P(b))
and its pole P{a, b}.

Proof. It is clearly trilinear. It vanishes if and only if: either {a, b} = 0 in which
case they are colinear; or else c ∈ {a, b}⊥ = Span(a, b). The alternate property can
be read of the expression in terms of the trace.

Example 1.21. On sl2(K) we have [K, J, S] = 1 and [S, J,K] = −1.

Subalgebras and their commutants
Elements a, b ∈ sl(V) generate an associative subalgebra (K[a, b], ·) of (gl(V), ·) and
generate a Lie subalgebra (L(a, b), {·, ·}) of (sl(V), {·, ·}). Since the Lie bracket has
been defined as half the commutator of the associative product we clearly have
K[a, b] ⊃ K1⊕ L(a, b).

Proposition 1.22. Let a, b ∈ sl(V). In terms of the underlying vector spaces we
have K[a, b] = K1⊕ L(a, b) and L(a, b) = Span(a, b, {a, b}).

There are four possibilities for the isomorphism type of L(a, b) given by the relative
position of a, b, {a, b} with respect to the isotropic cone X ⊂ sl(V), as follows.

0 If a = 0 = b, then L(a, b) = {0}.

1 If {a, b} = 0 but det(a) 6= 0 then L(a, b) is the abelian Lie algebra of dim = 1.

2 If {a, b} 6= 0 but det{a, b} = 0 then L(a, b) is the affine Lie algebra of dim = 2.

3 If det{a, b} 6= 0 then L(a, b) = sl(V).

Over every field K of characteristic different from 2, each of these cases can be
realised by choosing a, b appropriately.
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Remark 1.23. The previous corollary could have been formulated for M,N ∈ gl(V).
Indeed, the algebra generated by M,N ∈ gl(V) is the same as that generated by

their projections a, b ∈ sl(V), and we already saw that {a, b} = 1
2
(MN −NM).

Proof. After permuting a and b we are in one of the four cases, and these are mutually
exclusive. The analysis of each case will show that K[a, b] = K⊕ L(a, b).

The case 0 is obvious. The case 1 follows from Lemma 1.18; it includes the
possibility b = 0, and we could have either det(a) = 0 or det(a) 6= 0.

To prove the others, suppose that a, b are not colinear, and recall that {a, b} is a
non zero vector orthogonal vector to the plane Span(a, b).

If det{a, b} 6= 0 then (a, b, {a, b}) is a basis of sl(V) and we have shown case 4.
Otherwize {a, b} generates the unique isotropic line in Span(a, b), and we may

decompose {a, b} = xa + yb for x, y ∈ K. At least one of the vectors a, b is not
isotropic (as they are not colinear), say det(a) 6= 0. In particular we have a 6= {a, b}
and y 6= 0. Thus (a, {a, b}) form a linear basis of L(a, b) and {a, {a, b}} = y{a, b}.
This proves the isomorphism with the affine Lie algebra of dimension 2.

Notice that in case 2, the pair (a, b) also forms a basis of L(a, b). Besides, the
relations ab = −〈a, b〉1 + xa + yb and ba = −〈a, b〉1 − xa − yb imply that (1, a, b)
form a linear basis of the (non commutative) algebra K[a, b].

To realise each of these configurations, we explicit pairs of elements of sl2(K)
with coefficients in {−1, 0, 1} so that everything makes sense over all K characteristic
different from 2. It is clear how one may realise cases 0, 1. An instance of case 2 is
obtained by choosing a = K diagonal and b = 1

2
(J − S) upper triangular such that

{a, b} = b. An instance of 3 is given by choosing two elements in an orthogonal basis
of sl2(K), such as the one appearing the next paragraph.

In the next two corollaries the symbol ⊥ refers to orthogonality in (gl(V), det).

Proposition 1.24. Consider the adjoint actions of the groups GL(V) and SL(V) on
the space sl(V) and its projectivisation P(sl(V)).

The stabilizer of p ∈ sl(V) \X under GL(V) is (K[p])×, which is the complement
of the degenerate conic x2 + y2 det(p) = 0 in the plane K[p] = {x1+ yp}.

The stabilizer of p ∈ sl(V) \ X under SL(V) is (K[p])× ∩ sl(V), which is the
non-degenerate conic x2 + y2 det(p) = 1 in the plane K[p] = {x1+ yp}.

The stabiliser of P(p) ∈ P(sl(V) \ X) under GL(V) is the Z/2-graded subgroup
(K[p])×t (K[p]⊥)× formed by the union of the complements of two degenerate conics.

The stabiliser of P(p) ∈ P(sl(V) \ X) under SL(V) is the Z/2-graded subgroup
(K[p] ∩ SL(V)) t (K[p]⊥ ∩ sl(V)) formed by the union of two non-degenerate conics.
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Proof. Let p ∈ sl(V) \X and C ∈ GL(V) and suppose CpC−1 = λp for some λ ∈ K.
Then 0 6= det(p) = det(CpC−1) = λ2 det(p) so λ2 = 1. The first two state-

ments correspond to the case λ = 1, and the analysis for the last two statements is
completed by considering the case λ = −1.

Denoting z + c the decomposition of C according to K1⊕ sl(V) we have:
CpC−1 = p ⇐⇒ (z + c)p = p(z + c) ⇐⇒ {c, p} = 0 and by Lemma 1.18 this

is equivalent to C ∈ K[p]×,
CpC−1 = −p ⇐⇒ (z + c)p = −p(z + c) ⇐⇒ 2zp = 2〈c, p〉 ⇐⇒ z = 0 = 〈c, p〉

which is equivalent to C ∈ sl(V) ∩ (K[p]⊥)×.

Remark 1.25. The Z/2-graded group (K[p])× t (K[p]⊥)× is a non trivial extension
of Z/2 by K[p]. Hence the Z/2-graded group (K[p] ∩ SL(V)) t (K[p]⊥ ∩ sl(V)) is a
non trivial extension of Z/2 by K[p] ∩ SL(V).

Question 1.26 (Exercise). Describe the isomorphism types of the stabilisers in the
previous proposition in terms of K and K× and disc(p) ∈ (K×)/(K×)2.

Example 1.27. The stabiliser of S by GL2(K) is {t1 + sS | t2 + s2 6= 0} and by
SL2(K) is {t1+ sS | t2 + s2 = 1}.

The latter is also equal to the stabiliser of P(S) by SL2(K). However, the stabiliser
of P(S) by GL2(K) is {t1+ sS | t2 + s2 = 1} t {jJ + kK | j2 + k2 = 1}.

For completeness, and to compare with the previous proposition, we also describe
the stabiliser of an isotropic vector p ∈ sl(V) and a its projectivisation P(p) ∈ P(X),
but we will not make much use of this result.

Proposition 1.28. Consider the adjoint actions of the groups GL(V) and SL(V) on
the space sl(V) and its projectivisation P(sl(V)), and assume p ∈ X \ {0}.

The stabilizer of p ∈ X ⊂ sl(V) under GL(V) is (K[p])×, which is the complement
of the very degenerate conic x2 = 0 in the plane K[p] = {x1+ yp}.

The stabilizer of p ∈ X ⊂ sl(V) under SL(V) is (K[p])× ∩ sl(V), which is the
degenerate conic x2 = 1 in the plane K[p] = {x1+ yp}.

The stabiliser of P(p) ∈ P(sl(V) \X) under GL(V) is (p⊥)× which is the comple-
ment of a degenerate quadric in the hyperplane p⊥ ⊂ gl(V).

The stabiliser of P(p) ∈ P(sl(V) \ X) under SL(V) is sl(V) ∩ (p⊥)× which is a
degenerate quadric in the hyperplane p⊥ ⊂ gl(V).

Proof. We use the same notations as in the previous proof. The first two statements
follow from Cp = pC ⇐⇒ {c, p} = 0. As for the last two statements, notice
first that by Proposition 1.22 for c ∈ sl(V) we have {c, p} ∈ Kp ⇐⇒ c ∈ p⊥.
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Now Cp = λpC ⇐⇒ (z − λ)p + λ{c, p} = (1 − λ)〈c, p〉1 which is equivalent to
(x − λ)p + λ{c, p} = 0 = 〈c, p〉, whether λ 6= 1 or λ = 1 by the previous remark.
But for every c ∈ sl(V) ∩ p⊥ and z ∈ K1 there exists some λ ∈ K such that
λ{c, p} = (λ− z)p hence Cp = λpC ⇐⇒ c ⊥ p ⇐⇒ C ⊥ p.

Question 1.29 (Exercise). Describe the isomorphism types of the stabilisers in the
previous proposition in terms of K and K×.

We may define the one parameter subgroup of SL(V) generated by c ∈ sl(V) as
the intersection K[c] ∩ sl(V). It consists in the set of elements C = x+ yc satisfying
x2 + y2 det(c) = 1, a conic in Span(1, c) defined by the Pell-Fermat equation of
parameter − det(c) = c2.

We have not defined the exponential map because it would lead to considering
transcendental elements over K. Instead, one may think of the (restricted) projection
pr : SL(V)→ sl(V) as a renormalised version of the logarithm.

Computing with the orthogonal decomposition gl(V) = K1⊕ sl(V) and the rela-
tion det = tr2− pr2 remains in the realm of quadratic algebra over K.

Quadratic identities and commutators
Lemma 1.30. Let A,B ∈ SL(V) and a = prA, b = prB their projections in sl(V).
Then their commutator [A,B] = ABA−1B−1 has projection and discriminant:

pr[A,B] = 2 (AB − {a, b}) {a, b} (1.8)
disc[A,B] = 2 tr([A,B]) disc{a, b} (1.9)

The second formula implies that t = tr[A,B] 6= 0, and can then be rewritten as:

det{a, b} = −1
2
(t− t−1)

In particular det{a, b} = 0 ⇐⇒ tr[A,B] = ±1.

Proof. If A = x + a, B = y + b, then AB = z + (u + v) where z = xy − 〈a, b〉,
u = xb+ ya and v = {a, b}, while BA = z + u− v whence (BA)# = z − u+ v.

Now [A,B] = (AB)(BA)# = (z2 + 〈v + u, v − u〉) + (2zv + {v + u, v − u}), so
[A,B] = (z2 + u2 − v2) + pr[A,B] with pr[A,B] = 2zv + 2{u, v}. But u ∈ Span(a, b)
and v = {a, b} imply u ⊥ v, whence uv = {u, v}. Consequently pr[A,B] = (z+u)2v.

Now focus on disc[A,B] = disc pr[A,B] = −4 det pr[A,B] = 4 det(z + u) disc(v).
Develop det(z + u) = 〈a, b〉2 − (xy)2 + x2 det(b) + y2 det(a) and replace det(a) =
1 − x2, det(b) = 1 − y2. Then notice that tr(AB) tr(AB#) = (xy)2 − 〈a, b〉2. Thus
4 det(z + u) = 4 (tr(A)2 + tr(B)2 − tr(AB) tr(AB−1)) = 2 tr([A,B]).

Finally for t = tr[A,B] we have 4(t2 − 1) = disc[A,B] = 2t disc{a, b}.
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Scholium 1.31 (Motivation). Let A,B,∈ SL(V) and C = AB. Denote x+ a, y+ b
and z + c their decomposition according to K1⊕ sl(V).

The lemma expresses disc{a, b} = 2(t− t−1) in terms of 2t = tr[A,B] which is in
turn given in terms of x, y, z by the trace formula t/2 = x2 + y2 + z2 − 2xyz.

The motivation which led to proving such a lemma was to show that when K ⊂ R,
sign disc{a, b} is positive for t ∈]− 1, 0[∪]1,∞[ and negative for t ∈]−∞,−1[∪]0, 1[.

Let us apply identity 1.8 to describe the pairs of elements A,B ∈ SL(V) whose
commutator [A,B] belongs to the center {±1} of SL(V).

Clearly we have [A,B] = 1 ⇐⇒ {a, b} = 0 and this situation has already been
described in Lemma 1.18 and its Corollary 1.22

Corollary 1.32. Let A,B ∈ SL(V). We have [A,B] = −1 if and only if A and B
belong to sl(V) and are orthogonal. This can be written:

[A,B] = −1 ⇐⇒ tr(A) = tr(B) = tr(AB) = 0

Proof. Denote x+ a, y + b the decompositions of A,B according to K1⊕ sl(V).
Since A,B do not commute we have {a, b} 6= 0. Identity 1.8 implies AB = {a, b}.

This yields tr(AB) = 0 along with xy = 〈a, b〉 and xb+ ya = 0.
Suppose by contradiction that xy 6= 0. Then the previous equalities imply that

xy = 〈a,−ay/x〉 whence x2 + 〈a, a〉 = 0 which is det(A) = 0, a contradiction.
The relation xb + ya = 0 reveals, together with the non commutativity of a&b,

that x = 0 ⇐⇒ y = 0. We have thus shown that x = y = 0, as desired.
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1.3 The projective conic P(X) and cross-ratios

Parametrizing the isotropic cone X of sl(V)
In this paragraph we parametrize the isotropic cone X, and construct an explicit
inverse to the map Ψ appearing in Proposition 1.11.

For sake of clarity we start with the case of sl2(K) using our preferred basis, before
providing an intrinsic formulation in the case of sl(V) which has the advantage of
revealing the nature of the parametrization.

Thus we choose a basis of V identifying it with K2, which yields one for gl(V) as
we saw by exhibiting our favourite basis {1, S, J,K} of gl2(K).

Lemma 1.33. Define the quadratic map ψ : K2 → sl2(K) by ψ(v) = v · tvS, whose
matrix expression is given for v = t(x y) by:

ψ

(
x
y

)
=

(
x
y

)
·
(
y −x

)
=

(
xy −x2
y2 −yx

)
=

(y2 − x2)J − 2xyK + (x2 + y2)S

2

It has image the set XS = {a ∈ X | 〈a, S〉 = x2 + y2} of elements in the cone
whose scalar product with S is a sum of squares, and is two-to-one outside the origin.

The map ψ sends the determinant square to the scalar product: for all u, v ∈ K2

we have 2〈ψ(u), ψ(v)〉 = det(u, v)2.
Finally, the map ψ intertwines the tautological action of SL2(K) on K2 to the

restriction of its adjoint to X.

Proof. If A ∈ SL2(K) then tAS = SA−1, so ψ(Av) = (Av) · t(Av)S = Aψ(v)A−1.

The quadratic map ψ : K2 → XS is in particular homogeneous and does not vanish
outside the origin, so it has a well defined projectivization P(ψ) : P(K2) → P(XS),
which (from the polynomial nature of ψ) defines an algebraic morphism.

Notice that P(XS) equals P(X) because one can lift a representative of the later
in X to obtain an element p whose entries satisfy p11 = −p22 and p211 = −p12p21 so
multiplying p by p21 will sent it to XS.

Since P(ψ) is one-to-one, it defines an isomorphism of projective lines. Thus,
cross-ratios of lines in K2 correspond to cross-ratios of points on the conic P(X).

Corollary 1.34. The isomorphism of projective lines P(ψ) : P(K2) → P(X) inter-
twines the tautological action of PSL2(K) on P(K2) to its adjoint action on P(X).

We now provide an intrinsic formulation for the map ψ.
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Consider a non degenerate bilinear form ω on V. Being non degenerate, it
amounts to the isomorphism Ω: V→ V∗ given by Ω(v) : u 7→ ω(u, v).

The diagonal map 1⊗ Ω: V→ V⊗ V∗ given by v 7→ v ⊗ Ω(v) can be composed
with the natural isomorphism gl(V) 7→ V ⊗ V∗ to yield a map ψ : V → gl(V). The
map ψ is quadratic, in the sense that ψ(λv) = λ2ψ(v) for all λ ∈ K.

By definition, for v ∈ V the element ψ(v) ∈ gl(V) has image Kv and kernel the
ω-orthogonal v⊥. In particular detψ(v) = 0 and ψ(v) = 0 ⇐⇒ v = 0.

Moreover Trψ(v) = ω(v, v) as one can see either from the intrinsic definitions of
Tr ◦ψ : V→ V⊗ V∗ → K or by completing v in a basis of V.

Remark 1.35. Suppose ω is symmetric and anisotropic.
Then detψ(v) = 0 and Trψ(v) = ω(v, v) 6= 0 so ψ(v) has rank one and equals

ω(v, v) times the ω-orthogonal projection on v (the unique idempotent element with
image Kv and kernel v⊥). It belongs to the complement of the cone X in {det = 0}.

From now on we suppose that ω is symplectic, it is unique to scaling by a factor.
Its group of linear automorphisms Sp(V, ω) is naturally isomorphic to SL(V).

A symplectic basis of (V, ω) is a pair (u, v) ∈ V×V such that ω(u, v) = 1. Denote
Su,v ∈ GL(V) the unique element of order 4 sending u to v. Since detSu,v = 1 and
TrSu,v = 0 we have Su,v ∈ SL(V) ∩ sl(V). Denote Hω the set of such elements Su,v.

Lemma 1.36. Let ω be a symplectic form on V and consider the quadratic map
ψ : V→ gl(V) defined above. If we choose a symplectic basis (u, v) of (V, ω) then we
recover the map ψ in Lemma 1.33 with S = Su,v.

The map ψ has image the set Xω of elements p ∈ X such that for all Su,v ∈ Hω

the scalar product 〈p, Su,v〉 = x2 + y2 is a sum of squares of elements x, y ∈ K. It is
two-to-one outside the origin. For all u, v ∈ V we have 2〈ψ(u), ψ(v)〉 = ω(u, v)2.

The map ψ intertwines the tautological action of SL(V) on V with the restriction
of its adjoint action on Xω.

Proof. The first statement follows from the Remark 1.6: a basis (u, v) of V yields
canonical euclidean and symplectic forms, and the element Su,v is the polarisation of
the later with respect to the former.

The rest follows from 1.33, but let us prove the second paragraph to add some
geometric insight and make sure the signs are correct.

If v 6= 0 then ψ(v) has image and kernel equal to Kv, therefore ψ(v) ∈ X.
Alternatively we already computed detψ(v) = 0 and Trψ(v) = ω(v, v) = 0, thus
ψ(v) is nilpotent, that is ψ(v)2 = 0, and Proposition 1.11 says that ψ(v) ∈ X.

Now consider w ∈ V and let us compute 〈ψ(w), Su,v〉 = −1
2
Tr(ψ(w) ◦ Su,v).

Decomposing w = xu + yv in the basis (u, v) we have ω(w, Su,vu) = (xu + yv)x



Page 58 CHAPTER 1. GEOMETRIC ALGEBRA OF gl2

and ω(w, Su,vv) = (xu + yv)y. Thus, remembering that ψ(w) = w.ω(·, w), we have
Tr(−ψ(w) ◦ Su,v) = x2 + y2. Hence imψ ⊂ Xω.

Conversely, let p ∈ Xω. There exists a pair u, v ∈ V defined over K such that
ω(u, v) = 1, so there exist x, y ∈ K such that 〈p, Su,v〉 = x2 + y2. Then w = xu+ yv
has image ψ(w) = p hence im(ψ) ⊃ Xω. We notice that if 〈p, Su,v〉 is a sum of squares
for one element Su,v ∈ Hω then it is a sum of squares for all Su′,v′ ∈ Hω.

For distinct u, v ∈ V the composition ψ(u) ◦ ψ(v) is the projector on Ku parallel
to Kv multiplied by Tr(ψ(v) ◦ ψ(u)) = ω(u, v)ω(v, u) = −ω(u, v)2. In particular
2〈ψ(u), ψ(v)〉 = ω(u, v)2.

Note, as in the previous paragraph, that P(Xω) = P(X). Recall that the algebraic
correspondence Ψ: P(V×V)→ {det = 0} from Proposition 1.11 maps the diagonal .
One may restrict Ψ to the diagonal P(V) and its image P(X), or to their complements.
This expresses Ψ as the disjoint union of two maps Ψ = Ψ1 tΨ2.

Corollary 1.37. The projectivized map P(ψ) : P(V) → P(X) is the inverse of the
isomorphism Ψ1 of projective lines. In particular it conjugates the adjoint action of
PGL(V) on P(X) to its tautological action on P(V) which are 3-transitive.

The bi-quadratic map ψ ◦ ψ : v, w 7→ ψ(v) ◦ ψ(w) from (V× V) \ {(v, v) | v ∈ V}
to {det = 0} \ X has a well defined projectivization: P(ψ ◦ ψ) is the inverse of Ψ2.

The disjoint union P(ψ) t P(ψ ◦ ψ) is inverse to Ψ = Ψ1 t Ψ2. In particular it
defines an isomorphism of projective quadrics and conjugates the adjoint action of
PSL(V) on P({det = 0}) to its tautological diagonal action on P(V)× P(V).

Remark 1.38. For u, v ∈ V the element {ψ(u), ψ(v)} ∈ sl(V) is −1
2
ω(u, v)2 times

the symmetry with respect to the line Ku parallel to the line Kv. In formula:

ψ(u)ψ(v) = −ω(u, v)2 · Proju/v {ψ(u), ψ(v)} = −1
4
ω(u, v)2 · Symu/v

This follows from 1+ Symu/v = 2Proju/v and Symv/u = −Symu/v.

Maslov index of 3 lines and cross-ratio of 4 lines
We define the Maslov index ϵ : P(V) × P(V) × P(V) → {0} ∪ K×/(K×)2 as follows.
It is alternate and non degenerate in the sense that ϵ(Lu, Lv, Lw) = 0 if and only if
at least two lines coincide. Let Lu, Lv, Lw be three distinct lines in K2 generated by
u, v, w. We may suppose u+ v + w = 0 by considering a linear dependance relation
xu + yv + zw = 0 and replacing u, v, w by xu, yv, zw; such a triple is unique up to
multiplication by a scalar. Then we have ω(u, v) = ω(v, w) = ω(w, u) and this yields
a well defined quantity ϵ(Lu, Lv, Lw) ∈ K×/(K×)2.
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We say that the triple of lines is ordered when ϵ(Lu, Lv, Lw) = 1. Notice that
there exists a triple of distinct lines such that ϵ(Lu, Lv, Lw) = ϵ(Lw, Lv, Lu) if and
only if −1 ∈ (K×)2.

Proposition 1.39. The action of PGL(V) on P(V) is simply-transitive on triples
of distinct lines. The action of PSL(V) on P(V) preserves the Maslov index ϵ and is
simply-transitive on triples of distinct lines with a given Maslov index.

Proof. Fix a symplectic basis of V in order to identify P(V) with KP1. Let Lu, Lv, Lw

be three distinct lines in K2 and choose generators u, v, w such that u+v+w = 0. The
matrices of GL2(K) sending the lines with inclinations (0, 1,∞) ∈ KP1 to (Lu, Lv, Lw)
are the scalar multiples of the matrix with columns (u,w).

The cross-ratio of four points α′, β′, α, β on a projective line (with respect to any
affine chart yielding coordinates KP1 = K ∪ {∞}) is given by:

bir(α′, α, β ′, β) =
(α− α′)(β − β′)

(α− β′)(β − α′)
(bir)

which specializes to bir(z, 0, 1,∞) = z and bir(∞, w, 0, z) = z/w.

Z =
(α− α′)

(α− β′)

(β − β′)

(β − α′)

1− Z =
(α− β)

(α− β′)

(β′ − α′)

(α′ − β)

1

1− 1
Z

=
(α− α′)

(α− β)

(β′ − β)

(β′ − α′)
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1−Z
=
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=
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=
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Figure 1.5: The cross-ratio and its tetrahedral group of transformations.
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It satisfies the following symmetries, which we express as L ◦σ = Σ◦L where σ is a
permutation of the four entries and Σ ∈ PGL2(Z) is a linear fractional transformation
belonging to the subgroup generated by J : z 7→ 1/z and RK : z 7→ 1− z.

bir(β′, β, α′, α) = bir(α′, α, β ′, β) (α′β′)(αβ) 7→ 1

bir(α, α′, β, β ′) = bir(α′, α, β ′, β) (α′α)(ββ′) 7→ 1

bir(α′, β, β ′, α) = 1/ bir(α′, α, β ′, β) (αβ) 7→ J

bir(α′, β′, α, β) = 1− bir(α′, α, β ′, β) (αβ′) 7→ RK

This map σ 7→ Σ described on the right yields the famous representation S4 → S3.
Note that the subgroup Σ ⊂ PSL2(Z) generated by J and RK in PSL2(Z) maps
isomorphically onto PSL2(Z/2).

These symmetries imply that the cross-ratio also satisfies the addition rule:

1

bir(α′, α, β ′, β)
+

1

bir(α′, α, β, β ′)
= 1. (1.10)

The formula for the cross-ratio is designed to be equivariant under perspectives
between projective lines in a projective space. In particular, it does not depend on
the choice of affine coordinates, and is equivariant under the triply-transitive action
of PGL2(K) on KP1.

The division of two points in the affine line K satisfies a multiplicative cocycle
identity on three points, namely for all x, y, z ∈ K we have (z/x) = (z/y)(y/x).
Using bir(∞, x, 0, z) = z/x and the aforementioned triple transitivity, we find that
the cross-ratio of four points in the projective line KP1 satisfies a multiplicative
cocycle relation on five points, which is depicted in Figure 1.6:

∀u, v, x, y, z ∈ KP1 bir(u, x, v, y)× bir(u, y, v, z) = bir(u, x, v, z) (1.11)

Ptolemy’s theorem for quadrilaterals inscribed in P(X)
In this paragraph which is not necessary for the sequel, the tools developed to describe
the quadratic geometry of (sl(V), det) are applied to show the following analogue of
Ptolemy’s theorem for quadrilaterals inscribed in the projective conic P(X).

In fact, it is better formulated if we fix a symplectic form ω on V and consider
vectors in the subset Xω of the isotropic cone X. Since P(Xω) = P(X) we may always
lift a quadrilateral to such a quadruple, and any lift will satisfy the identity.
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Figure 1.6: The cross-ratio satisfies a multiplicative cocyle property.

Proposition 1.40. For distinct u, v, x, y ∈ Xω, the following identity holds in
√
K:√

〈u, v〉 · 〈x, y〉 =
√
〈u, y〉 · 〈x, v〉+

√
〈u, x〉 · 〈v, y〉 (IPS)

Remark 1.41. Formula IPS is invariant under the action of (K×)2 by individual
dilatation of u, v, x, y, so we may suppose they lie on a conic {p ∈ Xω | 〈Su,v, p〉 = 1}.

Proof. The identity IPS is equivalent, after dividing by the left hand side, to:

(
〈u, v〉 · 〈x, y〉
〈u, y〉 · 〈x, v〉

)−1
2

+

(
〈u, v〉 · 〈x, y〉
〈u, x〉 · 〈v, y〉

)−1
2

= 1.

But we know from the addition rule that bir(u, v, x, y)−1+bir(u, v, y, x)−1 = 1 so the
identity follows from the following lemma.

Lemma 1.42. For distinct u, v, x, y ∈ Xω we have in
√
K:

bir(u, v, x, y) =

√
〈u, v〉 · 〈x, y〉
〈u, y〉 · 〈x, v〉

. (CRS)

Proof. We use the map ψ : V→ Xω which preserves the cross-ratios of four lines and
satisfies 2〈ψ(u⃗) | ψ(v⃗)〉 = ω(u⃗, v⃗)2 for all u⃗, v⃗ ∈ V. Thus denoting w = ψ(w⃗):√

〈u, v〉 · 〈x, y〉
〈u, y〉 · 〈x, v〉

=
ω(u⃗, v⃗) · ω(x⃗, y⃗)
ω(u⃗, y⃗) · ω(x⃗, v⃗)

But the last equality equals the cross-ratio of the four lines generated by u⃗, v⃗, x⃗, y⃗ as
one can see in the following Figure 1.7, which is equal to bir(u, v, x, y).
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x⃗ v⃗ y⃗ u⃗

O

XY

XV
=

det(x⃗, y⃗)

det(x⃗, v⃗)

UV

UY
=

det(u⃗, v⃗)

det(u⃗, y⃗)

Figure 1.7: The cross-ratio of four lines in (V, ω) in terms of the area form.

Ordering fixed points of a, b ∈ sl(V) \X and cross-ratio bir(a, b)

The object of this paragraph is to define the cross-ratio bir(a, b) of two elements
a, b ∈ sl(V) \X with the same determinant and find its expression in terms of 〈a, b〉.

Let a ∈ sl(V)\X and fix the choice of a square root for its discriminant
√

disc(a).
Since a2 = − det(a)1 = 1

4
disc(a)1, the eigen-values of a for its action on V are

±1
2

√
disc(a) and we may denote α± ∈ P(V) the corresponding eigen-directions.

Now fix a symplectic form ω on V. One may choose eigenvectors v± of a for the
eigenvalues ±1

2

√
disc(a) such that ω(v−, v+) =

√
disc(a) and which are defined over

V⊗K[
√
disc(a)]. Any other basis is obtained by the transformation (λ−1v−, λ

+1v+)
for λ 6= 0. Besides, multiplying ω by µ 6= 0 has the effect of multiplying ψ by
µ and dividing v± by a same square root √µ. Since ψ is quadratic, we find that
ψ(v±) ∈ Xω are invariant under multiplication of ω by any scalar µ. Moreover, the
quantitity {ψ(v−), ψ(v+)} does not depend on the choice of normalised eigen-basis
since {ψ(λ−1v−), ψ(λ

+1v+)} = {ψ(v−), ψ(v+)}, it only depends on the normalisation.
The intersection a⊥ ∩ X ⊗ K[

√
disc(a)] consists in two lines spanned by ψ(v±)

hence the well defined quantity {ψ(v−), ψ(v+)} belongs to the line K[
√
disc a] · a.

This scalar multiple is equal to that ω(v−, v+) appearing in the normalisation of the
basis, that is the the square root

√
disc(a) chosen at the beginning:

{ψ(v−), ψ(v+)} = ω(v−, v+) · a =
√

disc(a) · a

Computation. We work on K2 with the standard symplectic form u, v 7→ det(u, v).
Let a ∈ sl2(K) be given by the following expression, so that disc(a) = m2−4lr and

choose the following eigen-vectors v± normalised such that det(v+, v−) =
√
disc(a).

a =

(
−m/2 −r
l m/2

)
α± =

−m±
√

disc(a)

2l
v± =

√
l

(
α±
1

)
Their images by ψ are given, according to Lemma 1.33, by:

ψ(v±) = l

(
α± −α2

±
1 −α±

)
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so using l(α+ − α−) =
√

disc(a) and l(α+ + α−) = −m and lα+α− = r, we find:

{ψ(v−), ψ(v+)} = 1
2
l2(α+ − α−)

(
(α+ + α−) −2α+α−

2 −(α+ + α−)

)
=

√
disc(a) · a.

We recover the fact that given a ∈ sl(V) \ X, it is equivalent to choose a square
root

√
disc(a), to order its fixed points α−, α+ ∈ P(V), or to order its fixed points

P(ψ(v−)),P(ψ(v+)) ∈ P(X) which are well defined independently of ω.

Remark 1.43. In some cases there is a preferred choice for the square root of d ∈ K.
This happens for instance when the field K[

√
d] is totally ordered.

A theorem of Artin-Schreier says that a field admits a total order if and only if
−1 is not a sum of squares (see [MH73, Chapter III, ğ2] for a proof).

Now given two elements a, b ∈ sl(V) \ X, we wish to order the sets of points
P(a⊥ ∩ X) = {α′, α} and P(b⊥ ∩ X) = {β′, β} up to simultaneous inversion.

The square roots of two elements da, db ∈ K× generate isomorphic extensions
when dadb ∈ (K×)2. In that case the choice of a square root

√
dadb ∈ K× determines√

da and
√
db up to simultaneous change of sign, by imposing

√
da
√
da =

√
dadb. This

yields an identification between the extensions K[
√
da] = K[

√
db]. Note that if we are

given the same element da = db then we have a canonical choice for
√
dadb. A choice

for all such pairs da, db amounts to a determination of the square root (K×)2 → K×

and that is equivalent to a character of the group K×/(K×)2 → {±1}.

Definition 1.44. Consider a, b ∈ sl(V) \ X with a preferred choice of
√

det(ab).
From the previous remarks we may order their fixed points (α′, α) and (β′, β) up to
simultaneous inversion. Thus we may define their cross-ratio:

bir(a, b) ∈
√
KP1 by bir(a, b) = bir(α′, α, β ′, β).

When det(a) = d = det(b) we define this value as the preferred choice d =
√
det(ab).

We have bir(a, b) ∈ KP1 ⇐⇒ det(ab) ∈ (K×)2. The cross-ratio satisfies the
symmetry relations bir(b, a) = bir(a, b) = bir(a#, b#) and the addition rule:

1

bir(a, b)
+

1

bir(a, b#)
= 1.

which reflects the Galois symmetry acting on
√

det(ab).
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Definition 1.45. For a, b ∈ sl(V) \ X and a choice of d =
√

det(ab) we define:

cos(a, b) ∈
√
K by cos(a, b) =

〈a, b〉√
〈a, a〉〈b, b〉

=
〈a, b〉
d

When det(a) = det(b) we choose d equal to this common value.

We have cos(a, b) ∈ K ⇐⇒ det(ab) ∈ (K×)2. Moreover cos(a, b) is invariant
when multiplying a, b by a common factor, which may belong to any extension of K.

Proposition 1.46. Consider a, b ∈ sl(V) \X with a choice for d =
√
det(ab). Then

bir(a, b) and cos(a, b) are both defined and related by:

1

bir(a, b)
=

1 + cos(a, b)

2
=
d+ 〈a, b〉

2d

We have bir(a, b) = ∞ ⇐⇒ 〈a, b〉 = −d and bir(a, b) = 1 ⇐⇒ 〈a, b〉 = d. In
particular det{a, b} = d2 − 〈a, b〉2 is non zero if and only if bir(a, b) /∈ {∞, 1}.

Proof. The statement is invariant under multiplication of a, b by a common factor.
To avoid ambiguity, we prove it in the case det(a) = d = det(b) and choose a branch
of
√
· over

√
K such that

√
d2 = d. We fix a symplectic form on V and a symplectic

basis to work in sl2(
√
K).

The action of PGL2 on P1 is triply transitive and preserves the cross-ratio so we
may assume (α′, α, β ′, β) = (∞, 1, 0, β). Our task is now to compute an corresponding
pair (a, b), and express β = bir(a, b) in terms of cos(a, b).

We must set a = {ψ(u−), ψ(u+)} and b = {ψ(v−), ψ(v+)} for u±, v± such that
P(u−) = ∞,P(u+) = 1, P(v−) = 0,P(v+) = β and det(u−, u+) = det(v−, v+). The
latter determinant equals

√
disc(a) =

√
disc(b) and we normalise it to 1, choosing:

u− =

(
0
−1

)
u+ =

(
1
1

)
v− =

(
0

−1/
√
β

)
v+ =

( √
β

1/
√
β

)
We compute a = 1

2
(S−J−K) and b = 1

2
((S+J)/β−K), whence 〈a, b〉 = 1

4
(1−2/β).

Since det(a) = −1/4 = det(b) we have cos(a, b) = −1 + 2/β as desired.

Ordering fixed points of A,B ∈ PGL(V) and cross-ratio bir(A,B)

Now let us extend the previous discussion concerning the ordering of fixed points
and cross-ratios to elements in PGL(V).

An M ∈ P(gl(V)) has a well defined discriminant disc(M) ∈ {0} ∪ K×/(K×)2.
We call M semi-simple when disc(M) 6= 0. Also M ∈ P(gl(V)) has a well defined
determinant det(M) ∈ {0}∪ (K)×/(K×)2. We have M ∈ PGL(V) when det(M) 6= 0.
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Definition 1.47. For A ∈ PGL(V) we define δ(A) := disc(A)/(TrA)2 ∈ KP1.
We have δ(A) = ∞ if and only if A ∈ P(sl(V) \ X), if and only if A2 ∈ K×1, in

other terms when A ∈ PGL(V) has order exactly two in the ring.

Let A ∈ PGL(V) with δ(A) 6=∞ and consider its action on P(V).
Its fixed points correspond to the eigen-directions in V of a lift in GL(V). If

δ(A) = 0 then A has only one fixed point. If δ(A) = 0 then A has exactly two
distinct fixed points, which can be defined over K[

√
δ(A)].

We wish to distinguish, among its fixed points in P(V), one which is “repulsive”
and one which is “attractive”, in such a way that their roles are interchanged when A
is inverted. As we shall see, this is equivalent to choosing a square root

√
δ(A). For

this we shall reduce the problem to the previous discussion w had for a ∈ sl(V) \X.
Let us assign to an element A ∈ PGL(V) such that disc(A) 6= 0 and tr(A) 6= 0

modulo (K×)2, a canonical element a0 ∈ sl(V)\X with the same fixed points in P(V).

Definition 1.48 (Normalised projection). For a semi-simple A ∈ PGL(V) which
is not an involution, we define its normalised projection a0 ∈ sl(V) \ X as follows.
Choose a lift still denoted A ∈ GL(V), and set:

a0 =
pr(A)

tr(A)

We have A⊥ ∩ X = a⊥0 ∩ X so A and a0 act on P(V) with the same fixed points.
Moreover disc(a0) = disc(A)/(trA)2 = 4δ(A) thus det(a0) = −δ(A).

The normalised projection commutes with the involution #, in other terms in-
verting A changes a0 in its opposite.

Remark 1.49. Note that a semi-simple non involutive A ∈ PGL(V) has always
exactly two lifts in ±A ∈ SL(V) defined over K[

√
det(A)].

Consider semi-simple non-involutive A,B ∈ PGL(V) and a choice of
√
δ(A)δ(B).

Denote a0, b0 ∈ sl(V) their normalised projections. Since det(a0) = −δ(A) and
det(b0) = −δ(B) we make opposite choices for d =

√
det(ab) = −

√
δ(A)δ(B) = −δ.

We may thus define:

bir(A,B) = bir(a0, b0) and cos(A,B) = cos(a0, b0)

The cross-ratio satisfies the relations bir(A,B) = bir(B,A) = bir(A−1, B−1) and
the addition rule:

1

bir(A,B)
+

1

bir(A,B−1)
= 1
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Corollary 1.50. Consider semi-simple non involutive A,B ∈ PGL(V) and a choice
for δ =

√
δ(A)δ(B). Denoting a0 and b0 their normalised projections, we have:

1

bir(A,B)
=

1 + cos(A,B)

2
=
δ − 〈a0, b0〉

2δ

Remark 1.51. We may use Corollary 1.15 to express the cosine after choosing lifts
A,B ∈ GL(V) and the square root

√
disc(A) disc(B) = Tr(A) Tr(B)

√
δ(A)δ(B) as:

cos(A,B) =
Tr(AB)− Tr(AB#)√

disc(A) disc(B)
=

disc(AB)− disc(AB#)

Tr(A) Tr(B)
√
disc(A) disc(B)

Loosely speaking, the cosine cos(A,B) measures the parallelism between the one-
parameter subgroups of PGL(V) containing A and B.
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1.4 Adjoint action of PSL2(K) on sl2(K)

Groups of units and their conjugacy classes
The central quotient GL(V) → PGL(V) and the determinant GL(V) → K× fit into
the following commutative diagram in which both columns and lines are short exact
sequences (we omitted the trivial groups for presentation purposes).

{±1}

��

// K×1

��

// (K×)2

��
SL(V)

��

// GL(V)

��

// K×

��
PSL(V) // PGL(V) // K×/(K×)2

Let us recall the description of conjugacy classes in GL2(K) and PGL2(K), start-
ing with the classical invariant theory of gln(K) under the action of GLn(K).

First recall that finite type modules over the principal ring K[X] are classified up
to isomorphism by their unique invariant form: K[X]/(d1) ⊕ · · · ⊕ K[X]/(dl) where
the so called invariant factors dk ∈ K[X] are unitary, and satisfy d1 | · · · | dl.

An endomorphism M ∈ gln(K) endows the vector space Kn with the structure
of a K[X]-module. In this GLn(K)-equivariant correspondence, the characteristic
polynomial of M is the order of the K[X]-module, that is the product of all invariant
factors, while its minimal polynomial is the exponent of the K[X]-module, that is
the last invariant factor.

In particular, conjugacy classes of semi-simple matrices in GL2(K) correspond
to equivalence classes of semi-simple torsion K[X]-modules with length l = 1 (since
the order, which is a degree two polynomial, must equal the exponent), so they are
uniquely characterised by the determinant and trace.

Proposition 1.52. The semi-simple conjugacy classes in PGL(V) are parametrized
by the well defined quantity A 7→ disc(A)/ det(A) ∈ K.

We will recover this fact by studying the adjoint action of PGL(V) on sl(V),
without needing the classification of finite type modules over a principal ideal ring.

Moreover, we shall describe the conjugacy classes in PSL(V), while the classifi-
cation of finite type modules over a principal ideal ring says nothing about those.
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Adjoint action
We saw that the left adjoint linear action of GL(V) on gl(V) preserves the involution,
thus every structure which derives from it. It preserves in particular the restriction
of the determinant form to the kernel sl(V) of trace, hence its level sets like the
isotropic cone X and the unit hyperboloid H:

X = sl(V) ∩ {det = 0} H = sl(V) ∩ {det = 1}.

Remark 1.53. The adjoint action GL(V) → End(sl(V)) is the composition of left
multiplication and right multiplication by the inverse, and these operations are con-
jugate (by the right adjoint action). In particular the adjoint action preserves the
orientations of sl(V) defined for a basis as the class of its determinant in K×/(K×)2.

Only the scalar matrices act trivially, and the maximal subspace on which the
action is trivial equals K1. Therefore no information is lost after quotienting by
these centers, and this yields a faithful representation PGL2(K) → SO(sl2(K), det)
into the group of orientation preserving isometries of (sl2(K), det).
Proposition 1.54. For a plane V over a field K of characteristic different from 2,
the adjoint action yields an isomorphism PGL(V)→ SO(sl(V), det).
Proof. To prove surjectivity, we use a theorem of Cartan-Dieudonné [Die71]. It
states that every isometry of a symmetric non-degenerate bilinear form over a d-
dimensional K-vector space is a product of at most d reflections. In particular,
an element of SO(sl2(K), det) is a product of at most 3 reflections, but since it has
determinant 1 it is in fact a product of exactly two reflections. Thus we must express
all products of two reflections as the conjugacy for some element.

If q ∈ gl(V) is not isotropic, that is det(q) 6= 0, then the orthogonal reflection
σq ∈ End(gl(V)) of vector q across q⊥ is given by:

σq(m) = m− 2
〈q,m〉
〈q, q〉

· q

Notice that the orthogonal reflection of vector 1 across sl(V) equals σ1 : m 7→ −m#.
The endomorphism µq ∈ End(gl(V)) corresponding to left multiplication by q, left
conjugates σ1 to σq. In formulae, we have µq : m 7→ qm and σq = µq ◦σ1 ◦µq−1 . Thus

σq(m) = −q(qm)# = − qm
#q

det(q)

We now restrict our attention to End(sl(V)) and notice that for q,m ∈ sl(V)
this formula becomes σq(m) = −qmq−1. Hence for p, q ∈ sl(V) \ X the reflection
σp ◦ σq ∈ SO(sl(V), det) coincides with the left adjoint action of pq ∈ GL(V).
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The adjoint action commutes with the projectivization map sl(V) → P(sl(V)).
This realizes PGL(V) as a subgroup inside the automorphism group PGL(sl(V)) of
the projective plane P(sl(V)), namely the stabiliser of the non-degenerate conic P(X).

The actions of PGL(V) and PSL(V) on P(X) follow from Corollary 1.37 & 1.39.

Action of A on (prA)⊥

Let us describe the adjoint action of a non scalar element A ∈ GL(V) on sl(V), which
only depends on its class in PGL(V). It fixes the line through pr(A) on which it acts
identically, and stabilizes the plane pr(A)⊥. Restricted to that orthogonal plane,
it stabilizes the degenerate conic section (prA)⊥ ∩ X as well as the quadric section
(prA)⊥ ∩H, the former being asymptotic to the latter.

If disc(A) = 0, then prA is an isotropic vector for the determinant and pr(A)⊥ is
tangent to the cone X along the line K ·pr(A), hence the conic section is a degenerate
double line while the quadric section is empty. Otherwize disc(A) 6= 0, and the shape
of the conic and quadric sections depend on the class of disc(A) in K×/(K×)2.

Corollary 1.55. For A ∈ SL(V), the adjoint action of A on sl(V) restricted to the
plane (prA)⊥ is equivalent over K to the tautological action of A2 on V.

Remark 1.56. The hypothesis that A ∈ SL(V) is important when considering the
tautological action on V.

Proof 1. The line through (prA) and its orthogonal plane (prA)⊥ project to a point
and a line in P(sl(V)) which are polars to one another with respect to the conic P(X)
and are both fixed by the adjoint action of A.

Consider the map P(X) → P((prA)⊥) sending p to p⊥ ∩ (prA)⊥, as depicted in
Figure 1.8. Being projective, it conjugates the adjoint actions of PSL(V) restricted
to P(X) and restricted to P((prA)⊥). Notice that it is two-to-one if prA /∈ X, but
one-to-one if prA ∈ X in which case disc(A) = 0 and A2 is conjugate to A in PGL(V).

Precomposing with the quadratic map ψ, and the projectivization, we obtain
a map V → Xω → P(X) → P((prA)⊥) which admits a unique lift V → (prA)⊥

conjugating the tautological action of A2 to the adjoint action of A.

Proof 2. The Lemma 1.33 is valid over field of characteristic different from 2, so one
may extend the scalars to any K-algebra, including K and its quadratic closure

√
K.

Over
√
K, the fixed subspaces for the adjoint action of A on the plane (prA)⊥

are precisely those obtained by intersecting it with X. From Lemma 1.33, these
eigenspaces pull back by ψ ⊗

√
K to those of A acting on the plane V ⊗

√
K, and
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P(X)

pr(H) ∩ pr(A)⊥ prA

(prA)⊥

Figure 1.8: Projecting the conic P(X) onto the open segment pr(A)⊥ ∩ pr(H).

since ψ is quadratic the corresponding eigenvalues for the adjoint action are the
squares of those for the tautological action.

Thus the adjoint action of A on (prA)⊥ endows the later with the structure of
a
√
K[A2]-module. Since A2 is defined over K, one may restrict the scalars to that

field and obtain equivalent K[A2]-modules, and this proves the corollary.

Symmetries
We call symmetry of PGL(V) an element of order two (since it maps to an orthogonal
symmetry in SO(sl(V), det) under the adjoint action).

A symmetry of PGL(V) is represented by a non-scalar s ∈ GL(V) such that s2
belongs to the center, say s2 = λ1. This implies that det(s)2 = λ2 so det(s) = ±λ,
and dividing by s yields s# = ±s, whence s ∈ sl(V). Conversely, only those elements
in GL(V) ∩ sl(V) represent symmetries of PGL(V).

Notice that GL(V)∩ sl(V) = sl(V) \X, so the symmetries of PGL(V) correspond
by the projectivisation map to the complement P(sl(V) \ X) of the projective conic.
This is an open projective variety whose irreducible components over K are indexed
by the values of det : GL(V) ∩ sl(V)→ K×/(K×)2.

We call this variety P(sl(X) \ X) the symmetric space of PGL(V). Hence the
group PGL(V) acts on its symmetric space P(sl(V) \X) by the projectivised adjoint
representation, and the elements of order two are the symmetries.

Since s ∈ GL(V)∩sl(V) maps to an element of order two in SO(sl(V), det) which
fixes the line Ks, it acts like minus the identity on the orthogonal plane s⊥, which
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may be called an orthogonal symmetry across the line Ks. In formula:

∀x ∈ sl(V) : sxs−1 + x = 2
〈s, x〉
〈s, s〉

· s

and one may recognise from the proof of Proposition 1.54, the expression for the
composition of reflections σs ◦ σ1 ∈ SO(gl(V), det) restricted to sl(V).

The elements S, J,K of our favourite basis for sl2(K) have order two in PGL2(K),
so they are symmetries. Being orthogonal in sl2(K), each one conjugates the others
in their opposites. In other terms the projective classes of S, J,K in P(sl2(K) \ X)
are fixed under the adjoint actions of S, J,K ∈ PGL2(K).

Acting on the symmetric space P(sl(V) \ X)
The following proposition is the key to understanding the action of the group PGL(V)
on its symmetric space P(sl(V) \ X) and will be used extensively in the following
chapters, in particular to derive Propositions 1.82, 1.89 and 5.4.

Recall the Definition 1.44 for the cross-ratio bir(a, b) of a, b ∈ sl(V) \ X with the
same determinant d and the Proposition 1.46 expressing it in terms of 〈a, b〉/d.

Proposition 1.57. Consider distinct a, b ∈ sl(V) \ X with the same determinant
d 6= 0 such that d+ 〈a, b〉 6= 0 and let us work over the extension K′ = K[

√
bir(a, b)].

There exists a unique pair of opposite elements ±C with determinant 1 in the
quadratic subalgebra K′[{a, b}] of gl(V⊗K′) which conjugate a to b. They are:

C =
1√

bir(a, b)
· 1+

√
bir(a, b)

2
· {a, b}

d
=

(d+ 〈a, b〉)1+ {a, b}√
2d(d+ 〈a, b〉)

(1.12)

There exists a unique element M in the quadratic subalgebra K[{a, b}] of gl(V)
with tr(M) = 1/ bir(a, b) which conjugates a to b, it is given by:

M =
C√

bir(a, b)
=

(d+ 〈a, b〉)1+ {a, b}
2d

and det(M) =
1

bir(a, b)
.

Idea of the Proof. The computational proof translates the geometrical reasoning sug-
gested (over the real field) in Figure 1.9, and relies on the following observations.

The plane through a, b ∈ sl(V) is {a, b}⊥ and it intersects the quadric {det = d}
in a conic. (The projective line P(a, b) ⊂ P(sl(V)) is polar to the point P({a, b}).)

For the adjoint action of SL(V) on sl(V) the stabiliser of {a, b}⊥ is the stabiliser
of K{a, b}. This contains K[{a, b}] ∩ SL(V) which forms a conic in Span(1, {a, b}),
consisting of all matrices C = t1+ u{a, b} such that t2 + u2 det({a, b}) = 1.
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a
b

{a, b}

{a, b}
a

b

Figure 1.9: The one parameter group generated by {a, b}, which is contained in
Span(1, {a, b}), acts by translation along the line (a, b).

If C maps a to b then (trC)2 is determined by the distance between a and b,
that is by 〈a, b〉. Hence, after a quadratic extension of the field, there is up to sign
a unique element C ∈ SL(V) preserving the plane (a, b) and translating a to b.

Proof. Suppose first that d = 1 so a, b ∈ H. Let x, y ∈ K and C = t+u{a, b}. It has
det(C) = t2+u2 det({a, b}). Since ab ∈ H we have 1 = det(ab) = 〈a, b〉2+det({a, b})
so det({a, b}) = 1− 〈a, b〉2. Consequently det(C) = t2 + u2(1− 〈a, b〉2) and we find:

C = t+ u{a, b} ∈ SL(V) ⇐⇒ t2 + u2(1− 〈a, b〉2) = 1

Now Ca = bC ⇐⇒ ta+ u{a, b}a = tb+ ub{a, b}. But {a, b}a = 1
2
(aba+ b), and

since a ∈ H acts like a symmetry across Ka, we have aba = −aba−1 = b− 2〈a, b〉a so
{a, b}a = b− 〈a, b〉a. Similarly b{a, b} = a− 〈a, b〉b. Thus Ca = bC is equivalent to
(a− b)(t− u(1 + 〈a, b〉)) = 0 and since a− b 6= 0 we find

Ca = bC ⇐⇒ t = u(1 + 〈a, b〉)

The conditions C ∈ SL(V) and Ca = bC translate into a system of equations in (t, u)
which has no solutions if 1+ 〈a, b〉 = 0 and otherwise it has a unique solution ±(t, u)
up to simultaneous change of sign of the entries, given by:

t =

√
1 + 〈a, b〉

2
=

1√
bir(a, b)

u =
1√

2 + 2〈a, b〉
=

√
bir(a, b)

2
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This proves the Lemma for d = 1.
Now suppose a, b ∈ sl(V) have the same determinant d 6= 0. Divide them by

√
d,

which may live in another quadratic extension of K, to get a′, b′ ∈ H as before. Since
〈a, b〉/d = 〈a′, b′〉 and {a, b}/d = {a′, d′} we have K′[{a, b}] = K′[{a, b}].

Now for C ∈ K′[{a, b}]× an invertible element of this quadratic algebra, we have
Ca = bC ⇐⇒ Ca′ = b′C which completes the proof for all d.

Remark 1.58. Notice that, using the notations of Lemma 1.57, we have:

dC2 = 〈a, b〉+ {a, b} = −ba thus C2 = ba−1.

Consequently ±C are the unique square roots of the product of symmetries ba−1 in
the extended quadratic algebra K′[{a, b}].

Proof. Since det(ab) = 〈a, b〉2+det{a, b}2, we have {a, b}2 = − det{a, b} = 〈a, b〉2−d2
thus using the right hand side of identity 1.12 we develop:

C2 =
d+ 〈a, b〉

2d
+
{a, b}
d

+
〈a, b〉 − d

2d
=
〈a, b〉+ {a, b}

d

Then use ba = −〈a, b〉−{a, b} and a−1 = a#/d = −a/d to rewrite this C2 = ba−1.

Scholium 1.59. If we suppose that K = R there are two cases of interest depending
on the class of d ∈ R∗/(R∗)2, which will be interpreted geometrically.

If d = 1, we may write tr(C) = cosh(λ) so that 〈a, b〉 = k = cosh(2λ).

If d = −1, we may write tr(C) = cos(θ) so that −〈a, b〉 = dk = cos(2θ).

Let us reap our first fruit from (the second part of) Lemma 1.57. This will enable
us to describe the conjugacy classes in PGL(V).

Corollary 1.60. Over a field K if characteristic different from 2, the group PGL2(K)
acts transitively on each irreducible component of P(sl2(K) \ X).

Proof. Consider two elements of P(sl2(K) \ X) which lift to a, b ∈ sl2(K) with the
same determinant d 6= 0. Multiplying b by −1 preserves its projective class and its
determinant d, while changing 〈a, b〉 in its opposite so we may suppose d+ 〈a, b〉 6= 0.
Lemma 1.57 constructs C ∈ PGL2(K) conjugating a to b.

Corollary 1.61. The semi-simple conjugacy classes in PGL2(K) are classified by
the value of 1/δ(A) = (TrA)2/ disc(A) ∈ K which is 0 for the class of involutions.
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Now we focus on the action of PSL2(K) on the components of P(sl2(K) \ X).
There is a class of fields K over which we may immediately deduce the transitivity:
those which are closed under square roots.

Corollary 1.62. If K×/(K×)2 = {1} then PSL2(K) acts transitively on P(sl2(K)\X).

The most general examples of such fields are obtained from an arbitrary given
field with characteristic different from 2 by taking its universal quadratic closure:
starting with Q we obtain the venerable field of numbers constructible by ruler and
compas. Other examples include algebraically closed fields.

Remark 1.63. We noticed in Remark 1.8 that J and K are conjugate by C ∈ GL2(K)
if and only if:

C(x, y) =

(
x −x
y y

)
for x, y ∈ K with det(C) = 2xy 6= 0.

Applying Lemma 1.57 to J,K of determinant −1 with 〈J,K〉 = 0 and {J,K} = −S
yields C = 1√

2
C(1, 1) ∈ SL2(K[

√
2]).

Yet, one may avoid the need of extending the field by choosing any x, y ∈ K such
that 2xy = 1, for instance C(1/2, 1) ∈ SL2(K) is valid over all K. Notice that

C(1/2, 1) = 3
4
(1+ S) + 1

4
(J +K)

has a balanced decomposition according to K[{J,K}]⊕{J,K}⊥, the summands being
respectively the commutator and the anti-commutator of {J,K} in GL(V) by 1.24.

Consequently, Corollary 1.62 which only focuses on the transitivity of the action,
is unsatisfying. The reason is that Lemma 1.57 only searches C ∈ K[{a, b}].

Theorem 1.64. Consider a, b ∈ H such that det{a, b} 6= 0, that is bir(a, b) /∈ {0,∞}.
The elements C ∈ SL(V) conjugating a to b correspond to the pairs (x, y) ∈ K × K
such that bir(a, b) = 4(x2 + y2) by the formula:

C(x, y) = x(1− ba) + y(a+ b) (1.13)

In particular, a and b are conjugate by an element of PSL(V) defined over K if and
only if bir(a, b) is a sum of squares of two elements in K.

Proof. Since det{a, b} 6= 0 the elements 1, a, b, {a, b} form a basis of gl(V). Notice
moreover that the planes K[{a, b}] and Span(a, b) are orthogonal. Let C ∈ gl(V)
decomposed as C = t1+ x{a, b}+ ya+ zb for t, x, y, z ∈ K.
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The condition Ca = bC can be rewritten using a2 = −1 = b2 as well as {a, b}a =
b − 〈a, b〉a and b{a, b} = a − 〈a, b〉b. After grouping terms according to the basis
(1, a, b, ab) we find:

Ca = bC ⇐⇒ (t− x(1 + 〈a, b〉)) · (a− b) + (z − y) · (1+ ba) = 0

But ba = −〈a, b〉 − {a, b} ∈ K[{a, b}] \ {0} and b − a ∈ Span(a, b) \ {0} so by
orthogonality of these planes we have Ca = bC ⇐⇒ t = x(1 + 〈a, b〉) & y = z.

Now for x, y ∈ K the determinant of C = x(1− ba) + y(a+ b) can be computed
using the orthogonality of Span(1, ab) and Span(a, b) and the hypothesis a, b ∈ H:

det(C) = (x2 + y2) · (2 + 2〈a, b〉) = 4(x2 + y2)

bir(a, b)

so C ∈ SL(V) ⇐⇒ bir(a, b) = (2x)2 + (2y)2.

Remark 1.65. The expression obtained for y = 0 recovers an alternative expression
of 1.12 which is valid for all a, b ∈ sl(V) \ X with the same determinant, namely:

C = 1
2

√
bir(a, b)

(
1+ ba−1

)
.

Corollary 1.66. Consider a, b ∈ sl(V) \X defined over K, of the same determinant
d, such that det{a, b} 6= 0. The elements C ∈ SL(V) defined over K which conjugate
a to b correspond to the pairs (x, y) ∈ K×K such that:

x2 + dy2 = 1
4
bir(a, b) by C = x(1+ ba−1) + y(a+ b)

In particular, a and b are conjugate by an element of PSL(V) defined over K if and
only if the Pell-Fermat equation x2 + dy2 = 1

4
bir(a, b) has a solution in K.

Proof. The points a′ = a/
√
d and b′ = b/

√
d satisfy bir(a, b) = bir(a′, b′) and the

endomorphisms C ∈ SL(V) defined over K′ = K[
√
d] conjugating a to b are the same

as those conjugating a′ to b′.
By Theorem 1.64 these elements C correspond to the pairs (x, y) ∈ K′ ×K′ such

that bir(a, b) = 4(x′2 + y′2) by the formula C = x′(1+ b′a′−1) + y′(a′ + b′).
Setting x = x′ and y = y′ 1√

d
which satisfy 4(x2+dy2) = bir(a, b), we may rewrite:

C = x(1+ ba−1) + y(a+ b)

Now recall that a and b are defined over K and that a + b 6= 0 is orthogonal to
1+ ba−1 6= 0. Hence C is defined over K if and only if x, y ∈ K.
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Remark 1.67. If we are given C ∈ SL2(K) conjugating a to b then the quickest way
of computing its decomposition C = x(1+ ba−1) + y(a+ b) is to notice that:

x = Tr(C)1
4
bir(a, b)

and then solve x2 + dy2 = 1
4
bir(a, b).

By definition, the Hilbert symbol (δ, χ)K of δ, χ ∈ K× takes the value 1 or −1
according to whether the equation x2 = δy2 + χz2 admits a solution in KP2 or not.
Thus we have (δ, χ)K = 1 if and only if χ is the norm of an element in K(

√
δ).

Scholium 1.68 (Transitivity). Let a, b, b ∈ sl2(K) \ X have the same discriminant
∆ 6= 0 and be such that bir(a, b), bir(b, b) and bir(b, a) do not belong to {0,∞}.

Corollary 1.66 implies that if bir(a, b) and bir(b, b) are represented by the form
(2x)2 −∆y2, then so is bir(a, b). This can be written using the Hilbert symbol as:

(∆, bir(b, b))K = 1 =⇒ (∆, bir(a, b))K = (∆, bir(b, a))K

If we express the cross-ratio in terms of the fixed points using formula bir, we
find that bir(a, b) bir(b, b) bir(a, b) equals −∆ times the norm of an element K(

√
∆).

This can be rewritten in terms of the Hilbert symbol as:

(∆, bir(a, b) bir(b, b) bir(a, b))K = 1

We shall say more about the Hilbert symbol and this identity in the next section.

Remark 1.69. Theorem 1.64 and its Corollary 1.66 provide a first step towards
describing the orbits for the action on PSL(V) on the symmetric space P(sl(V) \ X)
and the conjugacy classes in PSL(V).

To complete such a description we must characterise the classes under the equiv-
alence relation “bir(a, b) is a sum of squares”, and more generally (∆, bir(a, b)) = 1.

This depends on the arithmetic of K as we shall see for Q in the next section.

1.5 Application: binary quadratic forms & genera
In this section we reformulate the previous results in terms of binary quadratic forms,
and apply them to study the group of genera.
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Binary quadratic forms over K as elements of sl2(K)

Let Q : V → K be a quadratic form. After choosing a basis of V this amounts to a
homogeneous polynomial in two ordered variables with coefficients in K.

One may polarise Q with respect to any non degenerate bilinear form on the plane
V, and one usually learns this for some euclidean scalar product, but we may also
use a symplectic form: there exists a unique q ∈ sl2(K) such that Q(v) = ω(v, qv).

If we fix a basis V = K2 and ω = det we have the formula:

Q = lx2 +mxy + ry2 ∈ Q(K) ←→ q =
1

2

(
−m −2r
2l m

)
∈ sl2(K)

This yields a one to one correspondence between Q(K) and sl2(K) through which
the adjoint action of PGL2(K) corresponds to the action by change of variables. It
preserves the discriminantm2−4lr and sends the Lie bracket {q1, q2} = 1

2
(q1q2−q2q1)

to the Poisson bracket of functions, under which quadratic forms are closed:
{Q1, Q2} = 1

4
((∂xQ1)(∂yQ2)− (∂xQ2)(∂yQ1)) = {q1, q2}.

Consequently, all the notions defined for single elements q ∈ sl2(K) or pairs
of element a, b ∈ sl2(K) can be translated in terms of the corresponding binary
quadratic forms Q,Qa, Qb ∈ Q(K).

Cross-ratio and cosine. After choosing a root
√

disc(A) disc(B) = −4
√
det(ab),

we may define the cosine:

cos(Qa, Qb) =
disc(Qa +Qb)− (disc(Qa) + disc(Qb))

2
√
disc(A) disc(B)

= cos(a, b)

and the cross-ratio of their roots, which are ordered up to simultaneous inversion:

bir(Qa, Qb) = bir(α′, α, β ′, β) =
(α′ − α)(β′ − β)
(α− β′)(β − α′)

= bir(a, b)

For a common choice of root these are related by:
1

bir(Qa, Qb)
=

1 + cos(Qa, Qb)

2

In particular if Qa, Qb have the same discriminant ∆ which is to be chosen as root
of

√
disc(Qa) disc(Qb), we have:

1

bir(Qa, Qb)
=

disc(Qa +Qb)

4∆

As for matrices, it is equivalent to say that Qa and Qb have non-degenerate cross-
ratio bir(Qa, Qb) /∈ {0,∞} or non-degenerate Poisson bracket disc{Qa, Qb} 6= 0.
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The variables live in the cone. Conversely one may try to recover some notions
defined for binary quadratic form in terms of the corresponding matrices. Let us
explain the initial motivation leading to lemma 1.33, which was to recover the values
that a form Q takes on V in terms of the geometry of q with respect to X.

Consider a binary quadratic form Q as above, and its corresponding q ∈ sl2(R)
such that Q(v) = det(v, qv). Then Lemma 1.33 expresses Q(v) only in terms of the
geometry of sl2(R) as Q(v) = 〈q, ψ(v)〉.

Hence the elements of the cone v ∈ X play the role of the vector of variables (x, y)
whereas the other elements q ∈ sl(V) \ X are the non degenerate binary quadratic
forms. The value of q at v is given by the scalar product, which may be interpreted in
terms of the “distance” from v ∈ X to q⊥, or the geometry of the pencil of degenerate
conics generated by q⊥ taken twice and X.

Question 1.70. One may hope to understand the geometry of the Gauss composition
written as Q1(p1) × Q2(p2) = 〈q1, p1〉〈q2, p2〉 using an analog in Minkowski space of
an appropriate "classical geometric theorem" on scalar products, to express this as
〈q3, p3〉 for some Q3 = G(Q1, Q2) and a bilinear expression p3 = FQ1,Q2(p1, p2).

Question 1.71. How to interpret the associative product of sl2(K) in terms of Q(K)?

PSL2(K)-equivalence of binary quadratic forms
Let Qa, Qb ∈ Q(K) and denote a, b ∈ sl2(K) the corresponding matrices. We call
them K-equivalent when there exists C ∈ PSL2(K) such that Qa ◦ C−1 = Qb. This
amounts to saying that CaC−1 = b.

Remark 1.72. If K is a subfield of K′ then K-equivalence implies K′-equivalence.
Over a field K such that K×/(K×)2 = 1, two non-degenerate forms Qa, Qb are K-
equivalent if and only if they have the same discriminant.

Corollary 1.73. Consider Qa, Qb ∈ Q(K) with discriminant 4δ 6= 0 and cross-ratio
4χ /∈ {0,∞}. The C ∈ PSL2(K) such that Qa = Qb ◦ C are parametrized by:

(x, y) ∈ K×K : x2 − δy2 = χ (Pell-Fermat)

according to the formula:

C(x, y) = x(1+ ba−1) + y(a+ b)

where as usual:
a = 1

2

( −ma −2ra
2la ma

)
b = 1

2

( −mb −2rb
2lb mb

)
.
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Example 1.74. The purely periodic irrational α = 44 +
√
2022 = b 88, 1, 28, 1 c is

the first root of the primitive indefinite binary quadratic form Qa = x2− 88xy− 86y2

discriminant 4× δ with δ = 2022. It corresponds to the matrix a = ( 44 86
1 −44 ).

Performing a cyclic permutation of its period yields another purely periodic irra-
tional β = b 28, 1, 88, 1 c satisfying β = C1 · α for C1 = R28L =∈ PSL2(Z), which is
the first root of Qb = 3x2 − 84xy − 86y2. It corresponds to the matrix b = ( 42 86

3 −44 ).
Their cross-ratio is 4χ = 2022/2021.
Let us test the theorem in both directions.
In one direction, setting x1 = Tr(C1)χ and solving x21− δy21 = χ in y1 we recover:

C1 = 30× 1
4
× 2022

2021
× (1+ ba−1) + 673

2×2021
× (a+ b) = ( 29 28

1 1 ).

Notice that (x1, y1) become integral after multiplying by the denominator of χ.
In the other direction, notice that x2 − 2022y2 takes the values −2022,−2021, 4

on the pairs (0, 1), (1, 1), (2, 0). We deduce a solution x22 − 2022 y22 = −2022
−2021×4

by
multiplying or dividing the corresponding numbers x+ y

√
2022. This yields a matrix

C2 =
(

1 0
1/43 1

)
and we may indeed check that C2a = bC2, in other terms β = 43α

α+43
.

Characterisation of Q-equivalence
Now consider the set of PSL2(Z)-equivalence classes of primitive integral binary
quadratic forms with non-square discriminant. Every field K yields a partition of
this set into K-classes, and we may observe how this partition varies with K. This
is true in particular for extensions of Q. When K = R we are considering binary
quadratic forms with a same discriminant ∆, that is the class group Cl(∆).

Until the end of this paragraph we fix ∆ a non-square discriminant, and let us
investigate the partition of Cl(∆) given by Q-equivalence. We abuse notations and
identify classes in Cl(∆) with their representatives. Let Qa, Qb represent variable
classes in Cl(∆) and Q0 represent the principal class, that is the neutral element.

To characterise Q-equivalence we look for obstructions to solving the Pell-Fermat
equation locally at the various places of Q, and if there are no obstructions then the
local-to-global principle will ensure a solution exists over Q. We describe an explicit
method to compute some examples.

Method: local-to-global principle.

Denote P = {−1, 2} ∪ {3, 5, 7, . . . } the set of rational primes, and Qp the p-adic
completion of Q. The prime −1 refers (following Conway [CF97]) to the place at
which the completion of Q is the Archimedian field Q−1 = R.
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In what follows we rely on several properties of the Hilbert symbol, which we
recall from [Ser70, Chapter III] when needed.

For δ, χ ∈ Q×
p , the Hilbert symbol (δ, χ)p equals 1 or −1 according to whether

the homogenised Pell-Fermat equation x2 − δy2 = χz2 admits a solution in QpP2 or
not. Thus (δ, χ)p = 1 if and only if χ is the norm of an element in Qp(

√
δ).

Let us define the set of prime obstructions to solving the Pell-Fermat equation
(2x)2 −∆y2 = bir(Qa, Qb) by P(Qa, Qb) = {p ∈ P | (∆, bir(Qa, Qb))p = −1}.

Theorem 1.75. Qa, Qb ∈ Cl(∆) are Q-equivalent if and only if P(Qa, Qb) = ∅.

Proof. Apply the Hasse-Minkowski theorem [Ser70, Chapter IV, Theorème 8] to the
ternary quadratic form (2x)2 −∆y2 − bir(Qa, Qb)z

2: it represents 0 over QP2 if and
only if it represents 0 over QpP2 for all p ∈ P .

The following Lemma enable us to turn the previous proposition into an explicit
method for computing Q-classes.

Lemma 1.76. If p ∈ P \ {2} divides δ and χ to even powers, then (δ, χ)p = 0.
In other terms P(Qa, Qb) \ {2} is contained in the set of primes appearing with

odd valuations in the factorisation of ∆ or bir(Qa, Qb). In particular it is finite.

Proof. A pedestrian method is to reduce the equation mod p, argue that there exists
a solution by a counting procedure, and lift it to Qp using Hensel’s lemma.

Alternatively, one may use the explicit formulae [Ser70, Theorem III.1] of the
Hilbert symbol at p in terms of the Legendre symbols of δ, χ ∈ Qp at −1 and p.

Remark 1.77. The set P(Qa, Qb) \ {2} determines P(Qa, Qb).

Proof. Hilbert proved a global relation among the local symbols:
∏

p∈P(δ, χ)p = 1,
which is a reformulation of the quadratic reciprocity law. Hence if we know the
symbols at all primes except one of them, then we know the last one.

Our final Proposition implies that Qa and Qb are Q-equivalent if and only if
P(Q0, Qa) = P(Q0, Qb). This simplifies the determination of all sets P(Qa, Qb) to
those involving Q0.

Proposition 1.78. For Qa, Qb, Qc ∈ Cl(∆) the set P(Qa, Qb) is equal to the sym-
metric difference of P(Qc, Qa) and P(Qb, Qc).

Proof. The Hilbert symbol of Qp defines, by [Ser70, Theorem III.2], a non-degenerate
symmetric bilinear form on the F2-vector space (Q×

p )/(Q×
p )

2. The Lemma can thus
be reformulated as (∆, χa,b,c)p = 1 where χa,b,c = bir(Qc, Qa) bir(Qa, Qb) bir(Qb, Qc).
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We must therefore compare χa,b,c ∈ Q× with the subgroup generated by the
norms of elements in Q(

√
∆)×. Using the explicit formula for the cross-ratio we find

that:

bir(Qa, Qb) =
−∆/(lalb)

Norm∆(α′ − β)
hence χa,b,c =

−∆3/(lalblc)
2

Norm∆((γ′ − α)(α′ − β)(β′ − γ))

Consequently (∆, χa,b,c) = (∆,−∆)p = 1 as desired.

Examples for fundamental ∆ > 0.

In the following examples, we fix a positive non-square discriminant ∆ and describe
the partition of Cl(∆) into Q-classes.

For this we choose a set of reduced representatives Qj = ljx
2 + mjxy + rjy

2

so that the roots αj = (−mj +
√
∆)/(2rj) have purely periodic continued fraction

expansions and for each j we compute the set P ′(Qj, Q0). The indices j are meant to
reflect the structure of the class group, in particular 0 refers to the neutral element.

Cl(∆) = Z/4 for ∆ = 4 × 2022. Since δ = 2022 = 2 × 3 × 337 is square-free and
≡ 2 mod 4 the ring of integers of the field Q(

√
2022) has discriminant ∆ = 4×δ. The

fundamental solution to the Pell-Fermat equation t2 − δu2 = 1 is (t, u) = (1349, 30).
The ideal class group Cl(∆) is isomorphic to Z/4. Its partition into genera is

{α0, α2}, {α1, α3} and this coincides with its partition into Q-classes as shown by the
following table.

Qj = (lj,mj, rj) Period of αj P(Q0, Qj)
(1,−88,−86) [88, 1, 28, 1] ∅
(66,−72,−11) [1, 4, 2, 2, 3, 1, 2, 7] {2, 337}
(43,−84,−6) [2, 44, 2, 14] ∅
(34,−60,−33) [2, 4, 1, 7, 2, 1, 3, 2] {2, 337}

Partition of Cl(8088) = Z/4 into Q-classes: {0, 2}, {1, 3}.

Cl(∆) = Z/5 for ∆ = 4 × 439. Since δ = 439 is square-free and ≡ 3 mod 4 the
ring of integers of the field Q(

√
439) has discriminant ∆ = 4 × δ. The fundamental

solution to the Pell-Fermat equation t2 − δu2 = 1 is (t, u) = (440, 21).
The ideal class group Cl(∆) is isomorphic to Z/5. Its partition into genera is

trivial: there is only one genus since all elements of Z/5 are squares. The partition
into Q-classes is {α0, α2, α4}, {α1, α3} as shown by the following table.
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Qj = (lj,mj, rj) Period of αj P(Q0, Qj)
(2,−38,−39) [19, 1, 40, 1] ∅
(15,−14,−26) [1, 1, 6, 3, 13, 1] {2, 439}
(18,−10,−23) [1, 2, 3, 1, 3, 1, 7, 1] ∅
(30,−34,−5) [1, 3, 1, 3, 2, 1, 1, 7] {2, 439}
(13,−40,−3) [3, 6, 1, 1, 1, 13] ∅

Partition of Cl(1756) = Z/5 into Q-classes: {0, 2}, {1, 3, 5}.

Cl(∆) = Z/2×Z/3 for ∆ = 4×427. Since δ = 7×61 is square-free and ≡ 3 mod 4
the ring of integers of the field Q(

√
427) has discriminant ∆ = 4×δ. The fundamental

solution to the Pell-Fermat equation t2 − δu2 = 1 is (t, u) = (62, 3).
The ideal class group Cl(∆) is isomorphic to Z/4. Its partition into genera is

{α0, α2}, {α1, α3} and this coincides with its partition into Q-classes as shown by the
following table.

Qj = (lj,mj, rj) Period of αj P(Q0, Qj)
(14,−14,−27) [1, 1, 40, 1] ∅
(23,−34,−6) [1, 1, 1, 1, 3, 6] {2, 61}
(9,−32,−19) [4, 13, 1, 1] ∅
(7,−28,−33) [4, 1, 19, 1] {2, 61}
(22,−6,−19) [1, 13, 4, 1] ∅
(11,−38,−6) [3, 1, 1, 1, 1, 6] {2, 61}

Partition of Cl(1708) = Z/6 into Q-classes: {0, 2, 4}, {1, 3, 5}.

Cl(∆) = Z/7 for ∆ = 4 × 1087. Since δ = 1087 is square-free and ≡ 1 mod 4 the
ring of integers of the field Q(

√
1087) has discriminant ∆ = 4× δ. The fundamental

solution to the Pell-Fermat equation t2 − δu2 = 1 is (t, u) = (1088, 33).
The ideal class group Cl(∆) is isomorphic to Z/7. Its partition into genera is

trivial: there is only one genus since all elements in Z/7 are squares. Its partition
into Q-classes is {α0, α2, α4, α6}, {α1, α3, α5} as shown by the following table.

Cl(∆) = Z/2×Z/2 for ∆ = 4× 195. Since δ = 195 = 3× 5× 13 is square-free and
≡ 3 mod 4 the ring of integers of the field Q(

√
195) has discriminant ∆ = 4× δ. The

fundamental solution to the Pell-Fermat equation t2 − δu2 = 1 is (t, u) = (14, 1).
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Qj = (lj,mj, rj) Period of αj P(Q0, Qj)
(2,−62,−63) [31, 1, 64, 1] ∅
(23,−22,−42) [1, 1, 10, 3, 21, 1] {2, 1087}
(18,−46,−31) [3, 9, 7, 4, 1, 1] ∅
(11,−50,−42) [5, 3, 1, 2, 2, 1, 1, 1, 2, 1] {2, 1087}
(34,−42,−19) [1, 1, 1, 2, 2, 1, 3, 5, 2, 1] ∅
(7,−64,−9) [9, 3, 1, 1, 4, 7] {2, 1087}
(41,−58,−6) [1, 1, 1, 21, 1, 10] ∅

Partition of Cl(4348) = Z/7 into Q-classes: {0, 2, 4, 6}, {1, 3, 5}.

The ideal class group Cl(∆) is isomorphic to Z/2×Z/2. Its partition into genera
corresponds to the cosets for the subgroup of squares which is trivial: each genus is
represented by one class. This coincides with the partition into Q-classes as shown
by the following table.

(1,−26,−26) (19,−18,−6)
[26, 1] [1, 4, 1, 3]
∅ {2, 13}

(17,−10,−10) (2,−26,−13)
[1, 8, 1, 1] [13, 2]
{3, 5} {2, 3, 5, 13}

Partition of Cl(780) = Z/2× Z/2 into Q-classes: {00}, {01}, {10}, {11}.

Cl(∆) = Z/2×Z/4 for ∆ = 4× 399. Since δ = 399 = 3× 7× 19 is square-free and
≡ 3 mod 4 the ring of integers of the field Q(

√
399) has discriminant ∆ = 4× δ. The

fundamental solution to the Pell-Fermat equation t2 − δu2 = 1 is (t, u) = (20, 1).
The ideal class group Cl(∆) is isomorphic to Z/2×Z/4. Its partition into genera

corresponds to the cosets for the subgroup of squares {α00, α02}. This coincides with
the partition into Q-classes as shown by the following table.

Remark 1.79 (Observations). Genus equivalence does not imply Q-equivalence:
there exist forms of the same genus which are not Q-equivalent.

The Q-equivalence does not control the period lengths: there exist Q-equivalent
forms whose roots have euclidean periods of different length.

Inverse elements in the class group can remain in different Q-classes.
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(1,−38,−38) (10,−34,−11) (25,−14,−14) (10,−26,−23)
[38, 1] [3, 1, 2, 3] [1, 12, 1, 1] [3, 3, 2, 1]
∅ {7, 19} ∅ {7, 19}

(2,−38,−19) (5,−34,−22) (29,−30,−6) (5,−36,−15)
[19, 2] [7, 2, 2, 1] [1, 4, 1, 5] [7, 1, 1, 2]
{3, 19} {3, 7} {3, 19} {3, 7}

Partition of Cl(1596) = Z/2×Z/4 in Q-classes: {00, 02}, {01, 03}, {10, 12}, {11, 13}.

Question 1.80 (Conjecture). The Q-equivalence implies genus-equivalence.
More precisely, the Q-equivalence classes seem to be described as follows. Decom-

pose the class group into a product of primary cyclic groups:

Cl(∆) =
∏
p∈P

∏
j∈N

(Z/pe)np,e

and denote Qp,e,k ∈ Z/pe where 1 ≤ k ≤ np,e the coordinates of Q. Then the
Qp,e,k mod 2 provide a complete set of invariants for the Q-classes.
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1.6 Hyperbolic geometry of PSL2(R)
In this section, we apply the previous results to the the field R of real numbers, to
expand them in this geometrical setting. We provide a few alternative proofs by
recasting them in the language of hyperbolic geometry.

Almost everything can be adapted to real closed fields (ordered fields in which
all positive elements are squares, like the set of real numbers constructible by ruler
and compass) and even to formally real fields (fields which admit an order, which is
equivalent to saying that −1 is not a sum of squares).

Consider a two-dimensional real vector space endowed with a basis denoted R2

and write gl2(R) its algebra of endomorphisms.

Topology of the quadratic space
Quadratic form. On gl2(R) the determinant form det has signature (2, 2), in
particular the isotropic vectors form a cone over a torus, and the set of units SL2(R)
is an affine quadric which is homeomorphic to a solid torus.

The restriction of the determinant to sl2(R) has signature (1, 2), the isotropic
vectors form a cone X over the circle, and the set of units, that is the intersection
H = {det = 1} ∩ sl2(R), consists in a double-sheeted hyperboloid.

The upper and lower connected components of H refer to the subsets of elements
whose scalar product with S are respectively positive and negative. We denote
H′ = {det = −1} ∩ sl2(R), it is a single-sheeted hyperboloid.

Adjoint action. By Proposition 1.54, the adjoint action provides an isomorphism

PGL2(R)→ SO(sl2(R), det)

to the group of orientation preserving isometries for the determinant form over sl2(R),
which is isomorphic to SO(1, 2). As we shall see, the subgroup PSL2(R) maps to
the connected component SO+(1, 2) of the identity which preserves the connected
components of X \ {0} or of the double-sheeted hyperboloid H.

The adjoint actions commute with the projectivization map sl2(R)→ P(sl2(R)).
This represents PGL2(R) ⊂ PGL3(R) as the stabiliser of the non-degenerate conic
P(X) which is homeomorphic to a circle, the subgroup PSL2(R) corresponds to the
elements preserving each orientation of the circle. The interior of the conic is P(H),
homeomorphic to a disc, and inherits the orientation from sl2(R) restricted to the
upper component of the double-sheeted hyperboloid.
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Group of units. Denote SL±
2 (R) the preimage of {±1} under the morphism

det : GL2(R)→ R∗. This gives the short exact sequence SL2(R)→ SL±
2 (R)→ {±1},

which is split: the element −1 in the cokernel is represented by any matrix of deter-
minant −1, like J . The central extension R∗1 → GL2(R) → PGL2(R) restricts to
give a double cover {±1} → SL±

2 (R)→ PGL2(R).

Symmetries. The elements of PGL2(R) acting as symmetries on sl2(R) correspond
to those in SL±

2 (R) ∩ sl2(R) = H ∪ H′. Hence there are two types of symmetries
depending on the sign of their determinant, or on the relative position of their axis
with respect to X. Accordingly, they preserve or exchange the components of X\{0}.
For instance the element S ∈ H preserves them, whereas J ∈ H′ exchanges them.

The action on P(H) is obtained by composing the action on H with H → P(H).
If det(a) = 1, then a ∈ H projects to a point in P(H) through which it acts by
symmetry, preserving the orientation. If det(a) = −1, then P(a⊥) intersects P(H)
along a line, across which a acts by reflection, reversing the orientation.

Exponential mapping. Let us describe the adjoint actions of the one parameter
subgroups of SL2(R) generated by S,K, S + J ∈ sl2(R).

As S2 = −1, we have A := exp(θS) = x + yS with x = cos(θ) and y = sin(θ).
We have ASA−1 = S and AJA−1 = (x2 − y2)J + 2xyK = cos(2θ)J + sin(2θ)K,
AKA−1 = (x2 − y2)K − 2xyJ = cos(2θ)K − sin(2θ)J , so A acts by an elliptic
rotation of angle 2θ on the plane S⊥ oriented by (J,K).

As K2 = 1 we have A := exp(λK) = x+ yK with x = cosh(λ) and y = sinh(λ).
We have AKA−1 = K and ASA−1 = (x2 + y2)S + 2xyJ = cosh(2λ)S + sinh(2λ)J ,
AJA−1 = (x2 + y2)J + 2xyS = cosh(2λ)J + sinh(2λ)S, so A acts like a hyperbolic
rotation of angle 2λ on K⊥ with stable and unstable eigenvectors S + J and S − J .

Let L = 1+ 1
2
(S+J). As (L−1)2 = 0 we have exp (t(L− 1)) = 1+ t(L−1) = Lt.

We leave it as an exercise to contemplate the adjoint action of Lt on 1
2
(S ±K).

Remark 1.81. For a ∈ sl2(R) and t ∈ R, the adjoint action of the exponential
exp(ta) on sl2(R) expands like:

exp(ta) · exp(−ta) = 1+ t{a, ·}+ o(t) thus {a, b} = d

dt
[exp(ta)b exp(−ta)]t=0

as expected from the classical relationship between a Lie group and its Lie algebra.
This enables one to guess the orientation of the rotation under the adjoint action

of exp(θS) from the relations {S, J} = K and {S,K} = −J .
Similarly, the expanding an contracting directions under the adjoint action of

exp(λK) follow from the relations {K,S} = J and {K, J} = S.
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Action on the symmetric space
Proposition 1.82. The adjoint action of PGL2(R) is free and transitive on the
unit tangent bundle of H. The isomorphism PGL2(R) → SO(1, 2) sends the sub-
group PSL2(R) to the connected component of the identity SO+(1, 2) preserving each
component of H.

The restriction of det to the tangent planes of H defines a metric with constant
curvature −1 for which PGL2(R) is the group of orientation preserving isometries.
This is the linear or hyperboloid model for (a double copy of) the hyperbolic plane.

The disc P(H) inherits the metric pushforewarded by the projection map: this is
the projective model for the hyperbolic plane.

Proof. We first prove that PGL2(R) acts transitively on H. As JSJ−1 = −S, the
action of J exchanges both components of H, so we may restrict to the action of
PSL2(R) on a single component. Since two element a, b ∈ H belonging to a same
component have 〈a, b〉 ≥ 1, the Lemma 1.57 provides C conjugating a to b.

The stabiliser of S is its centraliser, that is the subgroup PSO(2) ⊂ PSL2(R),
and it acts freely transitively on the unit vectors of TSH = Span(J,K). This shows
that the action is free and transitive on the unit tangent bundle. Moreover PGL2(R)
preserves the determinant, hence the metric induced on H, of which it is thus the
group of all orientation preserving isometries.

We are left to compute the curvature of H at S. The tangent space TSH is
spanned by J,K on which the first fundamental form has determinant −1. If we
parametrize the neighbourhood of S by x = (1 + y2 + z2)1/2 we find that the second
fundamental form has determinant 1. The curvature is by definition the ratio of
these determinants which is therefore −1.

Proposition 1.83. The group PSL2(R) acts transitively on the single-sheeted hyper-
boloid H′. The stabiliser of K is the subgroup of diagonal matrices.

The restriction of det to the tangent planes of H defines a metric with constant
curvature +1 for which PGL2(R) is the group of orientation preserving isometries.

Proof. It is clear from the description of the one parameter subgroups generated
by S and K that every element in H′ is the image of J by an element of the form
exp(θS) exp(λK). Note that J acts on H′ by orientation preserving isometries.

The computation of the curvature is similar. The tangent space TJH′ is spanned
by S,K on which the first fundamental form has determinant +1. If we parametrize
the neighbourhood of S by y = (x2− z2− 1)1/2 we find that the second fundamental
form has determinant +1. The ratio yields the curvature.
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Figure 1.10: Inside sl2(R): isotropic cone, unit quadrics, and preferred basis.
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Figure 1.11: Constructing polarities with respect to the conic. See Figure 1.3.
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Discriminant and projection
The matrix A ∈ SL2(R) is called elliptic, parabolic or hyperbolic according to the sign
of its discriminant. Recall that disc(prA) = −4 det(prA) whose sign can be read off
the relative position of prA with respect to the isotropic cone X = sl2(R)∩{det = 0},
or the intersection of (prA)⊥ with X, as in Figure 1.12. We say that A ∈ SL2(R) is
semi-simple when disc(A) 6= 0, thus when A is not parabolic.
Remark 1.84. The projection pr : SL2(R) → sl2(R) is not surjective. Its image is
the region {det ≤ 1} outside the hyperboloid H. It is a regular degree two covering
above {det < 1}, and presents fold singularities above H. The parabolic elements map
to the cone, the hyperbolic elements cover the outside of the cone, and the elliptic
elements map to the region between the cone and the hyperboloid.

Notice that for A ∈ PSL2(R), its discriminant makes sense independently of its
lift in SL2(R), and so does the point sign(trA)(prA) ∈ sl2(R) which changes into its
opposite under inversion of A. For the special case where A is involutive, we have two
possible lifts with trA = 0 which coincide with their projections ±A = ± prA ∈ H.

The discriminant defines an algebraic stratification of the space sl2(R) consist-
ing in its regular levels, along with X \ {0} and {0}. We may refine this into a
semi-algebraic stratification using the sign of the scalar product with S, which dis-
tinguishes the connected components of a double-sheeted hyperboloid and of X\{0}.
Corollary 1.85 (Conjugacy classes in PSL2(R)). Let A ∈ PSL2(R). If A is an
involution it is conjugate to ±S. Otherwize its conjugacy class corresponds to the
semi-algebraic stratum containing sign(trA) pr(A).
Proof. Suppose A is non trivial (for which the statement is obvious), and not an
involution (for which the statement is contained in Proposition 1.82).

Recall from Proposition 1.52 that the conjugacy class of A ∈ PSL2(R) \ {1}
inside PGL2(R) is characterised by its discriminant. The map A 7→ sign(trA) prA
preserves the discriminant and is equivariant under conjugacy. Consequently, the
statement is a corollary of the descriptions of the orbits under the adjoint action of
PSL2(R) on sl2(R), given in 1.82 for disc(A) < 0, and in 1.83 for disc(A) > 0.

For disc(A) = 0, the action of PSL2(R) preserves the components of X \ {0}, and
the one parameter groups generated by S,K show that it is transitive on each.

Explicitly, if A ∈ PSL2(R) is neither trivial nor involutive, then one may lift
it to SL2(R) and decompose it as x + ya with x, y > 0 and a ∈ sl2(R) such that
det(a) = −1 or det(a) = 1. Thus sign(trA)(prA) =

√
|det(prA)|a.

Then there exists P ∈ PSL2(R) whose adjoint action sends a to K or ±S, and
thus conjugates A to exp(λK) for λ ∈ R or to exp(±θS) for θ ∈]0, π[.
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Orientations

We orient sl2(R) according to the sign of the volume form defined in Corollary 1.20.
Thus [K,S, J ] = 〈{K, J}, S〉 = det(S) = 1 implies that (S, J,K) is a positive basis.

Consider a semi-simple A ∈ PSL2(R). We wish to explicit the orientations in-
volved in the action of A on sl2(R) in terms of the decomposition R ·(prA)⊕(prA)⊥.

We know that it restricts to the identity on R · (prA) and its action on (prA)⊥

is equivalent to the tautological action of A2 on R2.
The following proposition says that for disc(A) > 0, the orientation of the rotation

is positive on H ∩ (prA)⊥ when the plane is seen from the point sign(trA)(prA).

Proposition 1.86. Let A ∈ PSL2(R) have discA > 0. Then for all v ∈ (prA)⊥ ∩H
the triple (v, AvA−1, sign(trA) prA) forms a positive basis of sl2(R).

Proof. Lift A ∈ SL2(R) and decompose it as A = x+ya with x, y ∈ R and a ∈ sl2(R)
such that |det(a)| = 1 and sign(x) = sign(y). Thus sign(trA)(prA) =

√
|det(prA)|a.

The plane a⊥ intersects the cone in two lines L± which are the eigenspaces for the
action of A, denote L+ and L− the expanding and contracting directions respectively.
If v± ∈ L± are eigenvectors in the same half-cone, the proposition amounts to showing
that (v−, v+, a) is a positive basis for sl2(R), that is [v+, a, v−] = 〈{v+, v−}, a〉 > 0.

From Corollary 1.85, we have some P ∈ PSL2(R) diagonalising A to B = x+yK.
Since the adjoint action of PSL2(R) preserves both the orientation of sl2(R) and the
components of H, it conjugates the action of A on a⊥ to that of B on b⊥, preserving
the orientations on a⊥ and b⊥. Hence the proposition is equivariant under conjugacy
by P ∈ PSL2(R) and we are reduced to showing it for B.

For b = K, the point S ∈ b⊥ ∩ H is conjugated by B = x + yK to the element
(x2 + y2)S + (2xy)J , which is between S and J since xy > 0. More precisely,
B = x+ yK has eigenvectors v± = S± J for the eigenvalues x± y > 0 and the basis
(v−, v+, K) is positive indeed.

Proposition 1.87. One may similarly prove that an elliptic element A which is not
an involution acts like a rotation on (prA)⊥ turning in the trigonometric direction:
(v, AvA−1, sign(trA) prA) is a positive basis for all non zero v ∈ (prA)⊥.

Finally if A = prA is an involution, then the infinitesimal action v 7→ {A, v}
preserves A⊥ and acts in like a rotation of order four in the trigonometric direction:
for all non zero v ∈ A⊥, the triple (v, {A, v}, A) is a positive basis.
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Figure 1.13: Orientations of (v, AvA−1, sign(trA) prA) for semi-simple A.

Figure 1.14: Sign of the cosine between almost parallel hyperbolic geodesics (orthog-
onal planes to vectors, almost equal or opposite, two extremal cases)
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The sign of the cosine
A hyperbolic A ∈ PSL2(R) acts by translation on the hyperbolic plane P(H) along
an axis which we orient from the repulsive to the attractive fixed point of A on the
boundary P(X). We may define the normalised projection a ∈ H′ of A as:

a = sign(tr(A))
2 pr(A)√
|disc(A)|

Scholium 1.88. Note that this normalised projection is a positive multiple of that in
definition 1.48. This one is only defined for hyperbolic elements in PSL2(R) whereas
the other was defined for all non involutive semi-simple elements in PGL2(K). Here
we have no qualms about taking square roots in order to obtain an element in H′.

Proposition 1.89. For hyperbolic A,B ∈ PSL2(R) whose axes intersect in P(H),
denote a, b ∈ sl2(R) their normalised projections, and call θ ∈] − π, π[ the angle
between their oriented axes, going from a⊥ to b⊥.

Then θ is determined by sign(θ) given by the orientation of the basis (a, b, {a, b}),
and cos(θ) which we denote cos(A,B). Those are given by:

cos(A,B) = −〈a, b〉 and sign cos(A,B) = sign
(
disc (AB)− disc

(
AB−1

))
.

Proof. Lemma 1.57 provides a square root of ba−1 in SL2(R)∩ Span(1, {a, b}) which
conjugates a to b while fixing {a, b}. The restriction of this adjoint action to {a, b}⊥
must be a rotation of angle θ, but by Corollary 1.55 it is conjugate to the action of its
square ba on R2: hence the half-trace cos θ of that rotation must equal tr ba = −〈a, b〉.

The first part of Proposition 1.87 applied to the square root of ba provided in
Lemma 1.57 says that (a, b, {a, b}) forms a positive basis if and only if 0 < θ < π.

Corollary 1.15 implies that sign(−〈a, b〉) = sign (discAB − discAB−1).

Intuitive proofs. Let us provide some other geometric intuitions supporting the proof.
Conjugation by ba is the composition of two symmetries across the axes a⊥ and

b⊥ which meet in a point a⊥ ∩ b⊥, yielding a rotation of angle 2θ around that point.
This conjugation is quadratic in ba so one must have tr ba = cos θ.

Here is another geometric explanation for why sign(cos θ) = sign(−〈a, b〉), relying
on Figure 1.14. By Proposition 1.86 the elements a, b are close in sl2(R) if and only
if their oriented axes a⊥ and b⊥ are close. If they are close enough then θ is small
enough to have a positive cosine while 〈a, b〉 is close enough for det(a) ≈ det(b) to be
negative. On the contrary, if a and −b come close then θ approaches π, so its cosine
is negative, whereas 〈a, b〉 approaches − det(a) ≈ − det(b) which is positive.

The last two paragraphs lead to another slick geometric proof that sign(cos θ)
equals sign (disc(AB)− disc(AB−1)) by composing symmetries.
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Remark 1.90. The Proposition 1.89 recovers the fact that the angle between the
oriented axes a⊥ and b⊥ is equal to the angle cos(a, b) defined in 1.45.

Proposition 1.91. Consider hyperbolic elements A,B ∈ PSL2(R) with normalised
projections a, b ∈ sl2(R).

Then according to whether a⊥ ∩ b⊥ lies inside or outside the conic and denoting
θ or λ the angle or distance between their oriented axes respectively, we have:

1

bir(A,B)
= cos(θ/2)2 =

1 + cos(θ)

2

1

bir(A,B)
= cosh(λ/2)2 =

1 + cosh(λ)

2

Proof. Since PGL2(R) acts on RP1 triple-transitively, and preserving the cross-ratio
of quadruples of points, we are reduced to expressing the angle θ or distance d
between the geodesics (0z) and (∞1) in terms of bir(z, 0, 1,∞) = z.

Working in the half plane model for hyperbolic geometry, we may compute cos(θ)
from the conformal property and trigonometric geometry, and cosh(d) from a trigono-
metric integral involving the explicit metric. We find −1 + 2/z in both cases.

Scholium 1.92. We provided several proofs for Proposition 1.89 because it will play
a key role in what follows, especially to relate the hyperbolic geometry and combi-
natorics of translation axes for pairs of matrices A,B ∈ PSL2(Z). In particular, it
must be compared with Proposition 2.44.

We could have derived it independently from Propositions 1.91 and 1.46, implying
that for hyperbolic A,B ∈ PSL2(R) with normalised projections a, b ∈ H′ we have:

1

bir(A,B)
=

1− 〈a, b〉
2

.

The crossing function
Definition 1.93. Let cord: S1×S1×S1 → {−1, 0, 1} be the cyclic order function of
three points in an oriented circle S1. Define cross : (S1 × S1 \∆)2 → ±{0, 1/2, 1} by

cross(u, v, x, y) = 1
2
(cord(u, x, v)− cord(u, y, v))

which takes the values ±1 when the chords uv and xy are linked on the boundary,
±1/2 if they share one extremity, and 0 otherwize.

If the circle is realised as the boundary of the hyperbolic plane S1 = ∂H, then
cross(u, v, x, y) is the oriented intersection number of the geodesics uv and xy, which
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is ±1 when they intersect inside H, ±1/2 when they meet on the boundary ∂H at
one point, and 0 otherwize.

We denote |cross|(u, v, x, y) ∈ {0, 1/2, 1} the absolute value of cross(u, v, x, y).
When A,B ∈ PSL2(R) are hyperbolic with fixed points (α′, α) and (β′, β), we also
write cross(A,B) = cross(α′, α, β ′, β) and |cross|(A,B) = |cross|(α′, α, β ′, β).

Following Iverson [Knu92], denote [[P ]] ∈ {0, 1} the truth value of a property P ,
it satisfies the usual rules of boolean algebra.

Proposition 1.94. Consider hyperbolic elements A,B ∈ PSL2(R) whose fixed points
α′, α, β ′, β are all distinct. If a, b denote their normalised projections in sl2(R), and
t = tr[A,B] the half trace of their well defined commutator [A,B] ∈ SL2(R), then:

|cross|(A,B) = [[bir(α′, α, β ′, β) > 1]] =
1 + sign det{a, b}

2
=

1− sign(t− t−1)

2

Proof. The first three quantities equal 0 or 1 according to whether (α′, α) and (β′, β)
cross inside or outside the conic. The last equality follows from Corollary 1.15.

Scholium 1.95. For hyperbolic elements A,B ∈ PSL2(R) with normalised projec-
tions a, b ∈ sl2(R), we shall make use of the function:

[[bir(A,B) > 1]]

bir(A,B)
=

1 + sign det{a, b}
2

× 1− 〈a, b〉
2

which equals 0 unless the oriented axes of A and B intersect in the hyperbolic plane.
If the oriented axes a⊥ and b⊥ intersect at an angle θ approaching to 0 mod π,

meaning that a± b→ 0, then this quantity approaches:

|cross|(A,B)× sign cos(A,B) =
1 + sign det{a, b}

2
× 1− sign〈a, b〉

2
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Figure 1.15: Drawing configurations: cross and sign cos.

Composing symmetries
Let us compose the symmetries of PGL2(R) acting on P(H) to express distances
and angles between fixed points and lines of isometries in terms of scalar products.
Before describing the geometry, we recall the algebra. We saw that symmetries lift to
(pairs of opposite) elements in H∪H′ = SL±

2 (R)∩ sl2(R). In particular a, b ∈ H∪H′

have product ab = −〈a, b〉 + {a, b}, which belongs to SL±
2 (R). We shall assume

det(a) = det(b) and a 6= ±b, so that ab ∈ SL2(R) fixes only P({a, b}) = a⊥ ∩ b⊥ and
is either elliptic, parabolic or hyperbolic depending on sign disc{a, b}.

Composing symmetries in H. The adjoint action of a ∈ H is by hyperbolic
reflection through a, also an order two rotation around a. Figure 1.17 represents such
an action on the conic P(X). The elements a, b ∈ H compose to give a hyperbolic
element, acting by translation along the axis passing through them, that is the line
{a, b}⊥. Figure 1.17 represents such a composition acting on the conic P(X). The
displacement length of ab is twice the distance d(a, b) separating them:

〈a, b〉 = − tr(ab) = ± cosh d(a, b)

the last sign being +1 if a and b belong to the same connected component of H and
−1 otherwize. Note in passing that Lemma 1.57 provides an element sending a to b,
which can be characterised as the unique square root of ba in PSL2(R).
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Figure 1.16: Constructing symmetries trough points inside and outside the conic.

Composing symmetries in H′. The adjoint action of a ∈ H′ is by hyperbolic
symmetry across a⊥, and restricts to the conic P(X) as represented in Figure 1.18.
Now consider a, b ∈ H′ acting as symmetries accros a⊥ and b⊥. The composition
ab can be elliptic, parabolic or hyperbolic depending on the position of P({a, b}) =
a⊥ ∩ b⊥ with respect to the conic P(X).

If disc{a, b} > 0, then ab acts by translation along the axis {a, b}⊥ which is (the
unique common) perpendicular to a⊥ and b⊥. The displacement length is twice the
distance d(a⊥, b⊥), and given by

〈a, b〉 = − tr(ab) = ± cosh d(a⊥, b⊥)

where (as before) the last sign equals +1 if the line (a, b) intersects twice the same
component of H and −1 if it intersects both components.

If disc{a, b} < 0, then ab acts by rotation around their intersection a⊥ ∩ b⊥. The
angle of rotation is twice the angle θ at which a⊥ and b⊥ meet, and given by:

〈a, b〉 = − tr(ab) = ± cos(θ)

where again the sign is −1 if (a, b) intersects both components of H and +1 otherwize.
We leave the case disc{a, b} = 0 as an exercise (see Figure 1.18).

Decomposing products of translations
Let us now decompose the product of two hyperbolic translations A,B ∈ PSL2(R)
in products of symmetries. Denote c the intersection of their axes (prA)⊥ ∩ (prB)⊥

in P(sl2(R)), and suppose it does not lie on the conic P(X).
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Figure 1.17: Composing symmetries trough points inside the conic.
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Figure 1.18: Composing symmetries trough points outside the conic.

Axes intersect inside P(X). If c lies inside the conic, we may lift c ∈ H and then
decompose A = ac and B = cb′ for some unique a, b′ ∈ H in the same component as
c. Thus AB = −ab′ is a hyperbolic translation along (a, b′) of length 2d(a, b′). Notice
that A−1 = ca′ and B−1 = bc where a′ = cac−1 and b = cb′c−1 are the symmetric
points of a and b′ through c. The parallelogram with vertices a, b, a′, b′ and center
c may have three possible shapes: long, square or short; according to the value of
the sign(cos θ) ∈ {+1, 0,−1} where θ ∈] − π, π[ is the angle between the oriented
diagonals a′a and b′b. This sign(cos θ) also equals:

sign(d(a, b)− d(a, b′)) = sign(tr(AB)2 − tr(AB−1)2) = sign(disc(AB)− disc(AB−1))

Remark 1.96. The aforementioned “parallelogram” refers to the notion which makes
sense in a uniquely geodesic metric space: a quadrilateral whose diagonals intersect in
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their midpoint. In the hyperbolic metric space P(H), the sides of such parallelograms
may well intersect inside the conic P(X), once extended in both directions.

Axes intersect outside P(X). If c lies outside the conic, we may lift c ∈ H′,
and decompose A = ac and B = cb′ for some a, b′ ∈ H′. Then AB = ab′ is a
hyperbolic translation with axis (a, b′) and displacement length 2d(a⊥, b′⊥). Notice
that A−1 = ca′ and B−1 = bc where a′ = cac−1 and b = cb′c−1 are the symmetric
points of a and b′ through c.
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a⊥ b⊥

c
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b′

A

B

AB
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Figure 1.19: Decomposing products of translations whose axes intersect inside P(X).
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Figure 1.20: Decomposing products of translations whose axes intersect outside P(X).



CHAPTER 1. GEOMETRIC ALGEBRA OF gl2 Page 99

Geometric interpretations of the main theorem
Consider primitive integral binary quadratic forms Qa, Qb with non-square discrimi-
nant ∆.

If ∆ > 0 then they correspond to pairs of complex conjugate points in C or
equivalently (by ordering the roots up to simultaneous inversion) to points α, β in
the upper half plane HP. The PSL2(Z)-classes correspond to points [α], [β] modular
orbifold M = PSL2(Z)\HP often called singular moduli in the study of elliptic curves.

The geodesic arc from α to β in HP has length λ given in terms of the cross-ratio
bir(α′, α, β ′, β) by the formula:

(
cosh λ

2

)2
=

1 + cosh(λ)

2
=

1

bir(Qa, Qb)

The Corollary 1.73 implies the following.

Corollary 1.97. Two singular moduli [α], [β] ∈ Q(
√
∆) are Q-equivalent if and only

if there exists a hyperbolic geodesic arc in M from [α] to [β] whose length λ is of the
form:

cosh
(
λ
2

)
=

1√
(2x)2 −∆y2

for x, y ∈ Q

in which case all geodesic arcs from [α] to [β] have this property.

If ∆ < 0 then Qa and Qb correspond to oriented geodesic axes (α′, α), (β′, β)
in the upper half-plane model HP of the hyperbolic plane. Their PSL2(Z)-classes
correspond to the primitive closed oriented geodesics γa, γb in the modular orbifold
M = PSL2(Z)\HP.

Consider the oriented hyperbolic axes (α′, α) and (β′, β) in HP. If they intersect,
then their angle θ is given in terms of the cross-ratio bir(α′, α, β ′, β) by the formula:

(
cos θ

2

)2
=

1 + cos(θ)

2
=

1

bir(Qa, Qb)

If they do not intersect, then they have a unique common perpendicular geodesic arc,
which may receive compatible co-orientations from each axis or not. When it is the
case, its length λ is given in terms of the cross-ratio bir(α′, α, β ′, β) by the formula:

(
cosh λ

2

)2
=

1 + cosh(λ)

2
=

1

bir(Qa, Qb)

The Corollary 1.73 implies the following.
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Corollary 1.98. Two modular geodesics are Q-equivalent if and only if we have one
of the following equivalent conditions:

θ There exists one intersection point with angle θ ∈ ]0, π[ such that:(
cos θ

2

)2
= 1

(2x)2−∆y2
for x, y ∈ Q

in which case all intersection points have this property.

λ There exists one co-oriented ortho-geodesic of length λ such that:(
cosh λ

2

)2
= 1

(2x)2−∆y2
for x, y ∈ Q

in which case all co-oriented ortho-geodesics have this property.

In other terms, the geometric quantities on the left hand sides belong to the group of
norms of the quadratic extension Q(

√
∆)/Q (which is stable by inversion).

α′
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β′

β

θ

α′

β

β′

α

λ

Figure 1.21: Cross-ratios and cosines in the real case.
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Angle well defined in ]0, π[. Ortho-geodesics well and badly co-orientated.



Chapter 2

The modular group PSL2(Z)

Outline of the chapter
This chapter concerns the combinatorics of the modular group PSL2(Z), represented
as the automorphism group of a planar trivalent tree. The aim is to describe its
conjugacy classes and define functions of pairs of conjugacy classes. It is divided in
three sections, all of which are highly connected to the rest of the thesis.

The first one constructs the action of PSL2(Z) on the infinite planar trivalent tree
T from an intrinsic viewpoint, in the spirit of the Bruhat-Tits theory of buildings.

The second one concerns hyperbolic matrices in SL2(Z) and takes advantage of
their relation with real quadratic irrationals to compare their action on the euclidean
plane R2 and the hyperbolic plane HP. In particular we determine the intersection
patterns of their eigen-directions and their translation axes with certain triangu-
lations of those planes. This will serve in Chapter 3 to describe the geometry of
modular geodesics.

The third one exploits the combinatorial action of PSL2(Z) on T to extract
conjugacy-invariants for pairs of hyperbolic matrices. It ends with a general method
for constructing functions of pairs of conjugacy classes by averaging such invariants.
We shall specify those functions in later chapters to recover intersection numbers of
modular geodesics and linking numbers of modular knots.

Action of PSL2(Z) on the space of lines P(Z2)

The first section provides an intrinsic construction of the trivalent tree T . For this
we consider the following simplicial complex 42 of dimension 2. Its vertex set is the
space of lines P(Z2) of the plane Z2. Two vertices are connected by an edge when the

101
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corresponding lines generate Z2. Then we fill in each triangle by a face. The dual
graph to the 1-skeleton of 42 is the first barycentric subdivision T ′ of the trivalent
tree T . The group PSL2(Q) acts on QP1 and the stabiliser of the incidence relation
defining 42 is PSL2(Z). In fact, PSL2(Z) acts freely transitively on the edges of T ′,
from which we deduce that it is isomorphic to the free amalgam Z/2 ∗ Z/3.

All this is well known. One may consult [CF97, Hat22] for similar descriptions of
the trivalent tree (and much more concerning its relation to binary quadratic forms).
The intrinsic construction of the complex 42 is inspired by the book [Ser77] which
christened the Bass-Serre theory of groups acting on trees.

We also propose a geometric realisation of 42 as an ideal triangulation of the hy-
perbolic plane HP. For this we construct another triangle complex ∆4 ⊂ R2 whose
vertices are the primitive vectors of the lattice Z2, the edges connect pairs of primitive
vectors forming a basis of Z2, and three vertices form a triangle when the correspond-
ing vectors have an alternating sum equal to zero. Then we use the quadratic map
ψ : R2 → X from 1.33 to send 44 into the isotropic cone of (sl2(R), det). After
“rectifying the edges” of ψ(44) we obtain a polytope ψ̄(44) inscribed in the double
sheeted hyperboloid H, which is isomorphic to the simplicial complex 42 t42. Fi-
nally we projectify to obtain an ideal triangulation of the hyperbolic plane HP by
42. The first barycentric subdivision4′

4 maps to a tesselation of HP under PSL2(Z),
which is thus a geometric realisation of the first barycentric subdivision 4′

2.
This construction connects the geometric study of sl2(R) and its symmetric space

HP of Chapter 1 with the combinatorics of T ′ and the arithmetics of44. If the details
are original, the ideas are largely superseded by the Bruhat-Tits theory of buildings,
to which [Ser77] can again serve as a reference for the case of SL2.

Conjugacy classes of matrices in PSL2(Z)
The second section opens with the dictionary between hyperbolic matrices in PSL2(Z)
and real quadratic irrationals, as briefly summarised in the introductory Section 0.2.
We emphasize the importance of the elements A in the euclidean monoid PSL2(N)
which is freely generated by the parabolic matrices L&R. They correspond to the
real numbers α whose continued fraction expansions are periodic from the first or
second entry onward (the numbers −1/α′ also have the same form, with mirror image
periods). The article [Lac88] surveys this arithmetic dictionary in detail.

A hyperbolic A ∈ PSL2(Z) acts on HP by translation along its geometric axis γA
and on T by translation along its combinatorial axis gA. Both axes join the boundary
points α′, α ∈ ∂T = ∂HP = RP1. Besides, the lifts of a hyperbolic A ∈ PSL2(Z)
to SL2(Z) acts on R2 with stable eigen-direction Vα. We recall in Proposition 2.28
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why the intersections of Vα with 44 ⊂ R2 and of γA with 42 ⊂ HP follow the same
patterns, given by the continued fraction expansion of α. Finally, we describe the
intersection patterns of Vα with 4′

4 in Proposition 2.33 and of γA with 42 ⊂ HP in
Proposition 2.40. These patterns are different, and both will serve in Chapter 3 to
describe the geometry of modular geodesics.

One may consult [Smi77, Hum16] and [Ser85b, KU06] for related discussions con-
cerning various continued fraction expansions of real numbers, and the intersection
patterns of hyperbolic geodesics with the modular tessellations of HP under (certain
subgroups of) the modular group.

Conjugacy invariants of matrices in PSL2(Z)
In the third section, we construct conjugacy invariants for pairs of hyperbolic matrices
A,B ∈ PSL2(Z) by studying the relative positions of their combinatorial axes gA, gB
in the trivalent tree T . One invariant is given by the order of their endpoints on the
boundary. Another is given by the length of their intersection, or of the combinatorial
geodesic which connects them. We combine these two invariants to form the relevant
quantities cross(gA, gB) and cosign(gA, gB) for computing intersection numbers and
linking numbers later on. The important facts are Lemma 2.43 saying that A,B
can be simultaneously conjugated in PSL2(N) if and only if cosign(A,B) = 1, and
Proposition 2.44 which computes cosign(A,B) = len(AB) − len(AB−1). The latter
proposition refers to [Pau89, CP20], which one may consult for similar discussions
of groups acting on trees, and much more can be found in [GdlH90, Pau97].

Then we recall in Proposition 2.48 that hyperbolic matrices commute if and only
if their non-oriented combinatorial axes coincide, if and only if they are integral
powers of a same element in PSL2(Z). This enables us to describe the stabiliser
of hyperbolic matrices under conjugacy. Finally, we provide a general method for
constructing functions F ([A], [B]) of pairs of conjugacy classes in PSL2(Z) by sum-
ming conjugacy invariants f(A,B) of pairs in PSL2(Z). The sum is performed over
all representatives A,B modulo the diagonal action of PSL2(Z) by conjugacy, and
modulo the stabilisers of A and B. This construction will serve in Chapters 3 and
4 where we shall specify the function f as linear combinations of cross& cosign to
recover functions F computing the intersection numbers of modular geodesics and
linking numbers of modular knots. It will serve again in Chapter 5 where f will be
given by bir(A,B).

The functions F can be considered as Poincaré series in two variables, especially
when f is a function of Tr(A),Tr(B),Tr(AB), such as bir(A,B). Special cases of
such bivariate Poincaré series have appeared in [For23, Chapter V] and [Pau13].
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2.1 Action of PSL2(Z) on the space of lines P(Z2)

Let us recall here the following elements of GL2(Z), all in SL2(Z) except J . They
satisfy the relations S2 = T 3 = −1 and J2 = 1 as well as L = T−1S and R = TS−1.

S =

(
0 −1
1 0

)
T =

(
1 −1
1 0

)
J =

(
0 1
1 0

)
L =

(
1 0
1 1

)
R =

(
1 1
0 1

)
To prevent confusion, notice that although L and R are not conjugate in PSL2(Z),
the identities LJ = JR, and LS = SR−1 show that L is conjugate to R in PGL2(Z)
and to R−1 in PSL2(Z).

The Lagrangian complex 42

Consider an integral plane with a fixed basis (v∞, v0), that is a free Z-module of
rank 2 decomposed as Zv∞ ⊕ Zv0, which we can write as Z2. In particular the basis
induces an orientation and a symplectic form (u, v) 7→ det(u, v).

A line V ⊂ Z2 is a maximal submodule of rank 1, that is a lagrangian subspace.
The set of lines P(Z2) forms a rational projective line, which is cyclically ordered
by the symplectic form on Z2 so that if three lines U, V,W ∈ QP1 are generated by
vectors u, v, w ∈ Q2 with sum u+ v + w = 0, the cyclic order cord(U, V,W ) is given
by the common value sign det(u, v) = sign det(v, w) = sign det(w, u).

Remark 2.1. As a matter of convention, we represent oriented planes in such a way
that the positive direction induced on their unit circle is the trigonometric one, but
we represent the associated projective lines with the induced cyclic order so that the
positive direction is the clockwise one.

This is because we parametrize the set of lines according to their inclination using
the affine chart x ∈ Q 7→ [x : 1] ∈ QP1 instead of their slope which is given by the
affine chart y ∈ Q 7→ [1 : y] ∈ QP1. We will often denote Vx the line of inclination
[x : 1] and vx a primitive vector on this line.

The Lagrangian complex 42 is the simplicial complex of dimension two whose
vertices are the lines in Z2, whose edges are the pairs of lines whose sum is Z2, and
such that every triangle is filled by a face. Its orientation is given by the cyclic order
on P(Z2). The base edge of 42 connects the lines generated by the basis vectors.

A simplex is labelled when we fix a linear order on its vertices. An oriented
triangle has three positive labellings and three negative labellings.
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Proposition 2.2. The group PSL2(Z) acts on the Lagrangian complex 42, freely
transitively on the labelled edges, as well as on the positively labelled triangles. The
stabilisers of an edge or triangle permute their labels cyclically and are respectively
conjugate to the subgroups Z/2 or Z/3 generated by S or T .
Proof. The group PSL2(Z) acts on the space of lines P(Z2), hence on its cartesian
products P(Z2)k modulo the alternate groups Ak. We must check that the simplices
of ∆2 are preserved under these actions.

A line is generated by a unique vector up to change of sign (this vector is prim-
itive, meaning not a non trivial multiple of another one, or visible from the origin).
The group SL2(Z) acts transitively on the set of primitive vectors, so PSL2(Z) acts
transitively on the space of lines.

The lines U1, U2 generate a submodule U1 + U2 equal to Z2 if and only if they
admit generators uj forming a positive basis, in which case the tuple (u1, u2) is unique
up to change of sign. The group SL2(Z) acts freely transitively on the set of oriented
bases, so PSL2(Z) acts freely transitively on the set of ordered pairs of lines.

In particular PSL2(Z) preserves the set of vertices and edges of 42 so it acts by
simplicial automorphisms.

Recall the basis (v∞, v0) and let v±1 = v∞ ± v0. Denote Vj the line Zvj. The
triples (V0, V1, V∞) and (V0, V−1, V∞) form positive and negative triangles in 42. Up
to relabelling, these are the only triangles containing the base edge (because the only
solutions to the system det(v∞, v)

2 = 1 = det(v, v0)
2 are v±1).

We deduce from the transitive action on labelled edges that each one is the first
of a unique positively labelled triangle, thus PSL2(Z) acts transitively on positively
labelled triangles. The assertion about stabilisers follows from the fact that the order
two matrix S acts by switching the labels of the edge (V∞, V0), whereas the order
three matrix T acts by cyclically permuting the labels of the triangle (V0, V1, V∞).
Remark 2.3. The action of PGL2(Z) on 42 is freely transitive on labelled triangles,
and its elements preserve or reverse the orientation according to the sign of their
determinant. Indeed, the matrix J generates the kernel of det : PGL2(Z) → {±1}
and acts like a symmetry of P(Z2) exchanging v∞ and v0 while fixing v±1.

The lotus and the spiderweb
The universal lotus 41 is an oriented simplicial complex with a base edge (v∞, v0),
which can be embedded in R2 as represented in figure 2.1, and constructed as follows.
The vertices are all primitive vectors in N2, every pair of vertices forming a basis of Z2

yields an edge, and every edge (u, v) yields a positively oriented triangle (u, u+v, v).
The boundary of 41 consists in the base edge (v∞, v0) and the set of all vertices.



Page 106 CHAPTER 2. THE MODULAR GROUP PSL2(Z)

Scholium 2.4. P. Popescu-Pampu baptised the universal Lotus in [PP11] while in-
vestigating resolutions of plane curve singularities, and used it to relate several of
their combinatorial invariants (see [GBGPPP20] for a recent account).

We define the oriented simplicial complex 44 from the embedding 41 ⊂ R2 by
taking symmetries in the axes. The quotient by the antipodal map of R2 sends it to
an oriented CW-complex which is not simplicial, but after identifying the base edges
one recovers an oriented simplicial complex obtained by attaching two copies of the
lotus along their base edges, which is isomorphic to the Lagrangian complex 42.

The map P(ψ) : P(R2)→ P(X) in Corollary 1.34 which intertwines the tautolog-
ical and adjoint actions of PSL2(Z) on P(R2) and P(X), quotients 44 to 42. As
before, this quotient is in the category of cell complexes: let us rectify ψ(44) to
obtain a geometric realisation of 44 in sl2(R), which projectivizes to a geometric
realisation of 42 in sl2(R). The piecewize linear map ψ̄ : 44 → sl2(R) is defined like
ψ on the vertices of 44 and extends linearly on each triangle.

1 2 3 4 5

1

2

3

4

5

v1v0

v∞

Figure 2.1: The lotus 41 and its quadruple 44.

The spiderweb is the simplicial complex embedded in sl2(R) as represented in
figure 2.2, and constructed as follows. Vertices are all primitive vectors of sl2(Z)
belonging to the isotropic cone X, edges are all segments connecting pairs of vertices
p, q such that 〈p, q〉 = 1, and every triangle is filled by a face.

Proposition 2.5. The spiderweb is a geometric realisation of 42t42, whose upper
half-component is ψ̄(44), obtained from ψ(44) by rectifying its edges.

The map sl2(Z)→ P(sl2(Z)) sends the spiderweb to a geometric realisation of 42

yielding an ideal triangulation of the projective model for the hyperbolic plane HP.
We deduce an adjoint action of PGL2(Z) on the geometric realisation of 42. It

is equivalent to its tautological action on the Lagrangian complex 42.
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Proof. Recall the quadratic map ψ : R2 → X from Lemma 1.33 whose image is the
upper half cone, and which sends det(u, v)2 to 〈ψ(u), ψ(v)〉.

The image of 44 by ψ defines a simplicial complex in the upper half cone: the
vertices are the primitive vectors of sl2(Z) lying in the upper half cone, and the edges
connect the pairs of vertices p, q such that 〈p, q〉 = 1. If the arcs of ellipses forming its
edges are rectified to segments with the same endpoints, we obtain a new simplicial
complex which is the one defining the upper half component of the spiderweb.

Notice that the image by ψ of the square formed by the base edges of 44 consists
in a circular bigon: after rectification it gets folded on the segment between its
vertices ψ(v∞) = ψ(1, 0) = − pr(R) and ψ(v0) = ψ(0, 1) = pr(L). Hence the upper
half component of the spiderweb, which we know equal to the rectification of ψ(44),
is the quotient of ψ(44) by the identification of the two base edges, that is 42.

The adjoint action of PGL2(Z) on sl2(Q) preserves the lattice sl2(Z) and its
subset of primitive vectors, as well as the isotropic cone X and the scalar product.
Consequently, PGL2(Z) acts on the spiderweb and its projectivization, that is the
geometric realisation of 42 in P(sl2(R)).

It follows from Corollary 1.34 to Lemma 1.33 that this adjoint action is equivalent
to the tautological action of PGL2(Z) on the Lagrangian complex.

Figure 2.2: The spiderweb ψ̄(41) inscribed in the half-cone ψ(R2).

Remark 2.6. Our conventions concerning the orientations of P(R2) and P(H ∪ X)
imply that P(ψ̄) : 44 ⊂ R2 →42 ⊂ P(H ∪ X) is orientation reversing.
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Figure 2.3: The lagrangian complex 42 and its first barycentric subdivision 4′
2.

The trivalent tree T
Let us construct the first barycentric subdivision 4′

2 of the Lagrangian complex,
represented in figure 2.3. The aim is to derive a corollary to Proposition 2.2, which
will be our starting point to classify conjugacy classes in PSL2(Z).

The k-simplices of 4′
2 correspond to the (k + 1)-flags of simplices in 42, and

their incidence relations are given by the inclusion of flags. In particular there is
one vertex per simplex of 42 called its barycenter. Therefore 4′

2 has three kinds
of vertices, three kinds of edges and one kind of face. Its vertices correspond to
barycenters of vertices, edges or faces; its edges connect the barycenters of vertices
and edges, of edges and faces, or of vertices and faces; its faces are triangles with one
vertex and one edge of each kind.

Remark 2.7. To draw the first barycentric subdivision 4′
2, consider each edge of 42

in turn and join the two vertices forming its adjacent triangles. In this way, every
triangle of 42 gets cut by three medians to the mid-point of the edge, and concurrent
at the barycenter of the triangle. For instance the edge (∞, 0) is incident to the
triangles (0, 1,∞) and (0,−1,∞) so one must join the vertices −1 and 1.

One may also construct 4′
2 using the geometric realisation of 42 in HP. The

hyperbolic ideal triangle (0, 1,∞) has a unique inscribed circle tangent at each edge:
it is centered at the fixed point of T and tangent to (∞, 0) at the fixed points of S.

The edges of 4′
2 joining the barycenters of edges and faces of 42 form a bipartite
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tree T ′. This tree T ′ is the first barycentric subdivision of a trivalent tree T , which
is by construction the dual graph to the 1-skeletton of 42. Those trees inherit a
cyclic order from their planar embeddings, meaning that around each vertex, the set
of its incident edges has a cyclic order. We endow them with simplicial metrics for
which all edges are isometric to a segment of the same length.

Corollary 2.8. The action of PSL2(Z) on T ′ is freely transitive on its set of edges.
The stabilisers of vertices with degree 2 and 3 are cyclic groups of order 2 and 3,
conjugate to those generated by S and T respectively. Thus PSL2(Z) = Z/2 ∗ Z/3.

Remark 2.9. We may define the sign of an order 3 element A ∈ PSL2(Z) according
to the cyclic order of (x,Ax,A2x) for any x ∈ QP1, or equivalently for any edge
x incident to the vertex of T stabilized by A. For instance T is a positive rotation
whereas −T 2 = T−1 is a negative rotation.

The sign of an order 3 rotation is invariant by conjugation, and the cyclic groups
appearing in the presentation of PSL2(Z) are cyclically ordered.

In T ′ we define an edge-path to be a sequence of edges, indexed by an interval of Z
whose length may be finite or infinite, such that any two successive elements share an
extremity. When such adjacent edges are distinct, they share exactly one extremity
(at which point one may describe the edge-path as being locally non-constant). An
edge-path yields a sequence of S and T±1 indicating how to turn the edges around
their bivalent and trivalent vertices to get from one to the next.

An edge-path of T ′ is called locally geodesic when the corresponding sequence of
S and T±1 alternates between both letters (so we are never turning around vertices).
This amounts to saying that any three consecutive edges in the sequence are such
that the first and the last share no common extremities (neither equal nor adjacent).
Since T ′ is a tree, all edges in a local geodesic are distinct.

Any two edges e0, el are connected by a unique edge-path (e0, . . . , el) that is locally
geodesic: it is the shortest of them all so we may call it a global geodesic, denote it
(e0, el). The distance d(e0, el) = l is the length of the corresponding S&T±1-sequence.
There is a unique shortest path connecting an edge to (an edge in) a geodesic, or
to (an edge around) a given vertex. There is a unique semi-infinite geodesic leading
from an edge to a boundary point and any two boundary points are connected by a
unique bi-infinite geodesic.

A horocycle of T ′ is a bi-infinite geodesic which bounds a connected component
of 4 \ T . These connected components are indexed by the vertices of 4, and the
horocycle corresponding to p/q ∈ QP1 = ∂4 converges either way to that point. A
geodesic is a horocycle when it turns the same way at every trivalent vertex, that
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is when the elements T±1 always appear with the same power in the corresponding
sequence of S&T±1.

Remark 2.10. One may also define paths of oriented edges in T , and consider the
corresponding sequences of L, R and S. A locally geodesic oriented edge-path of T
can only contain S at its extremities.
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Figure 2.4: The action of S, T , L, R and LRL on the dual tree T of 42.

Conjugacy classes in the modular group PSL2(Z)
We now show the structure theorems for the amalgam Z/2∗Z/3, providing a reduced
factorisation of elements and normal forms for their conjugacy classes.

Theorem 2.11. Every element in PSL2(Z) has a unique factorisation as a product
of the form

∏
k T

σkS, where σk ∈ {±1} except the first and last which may also be 0.
An element of finite order is conjugate to a power of S or T , whereas an element

of infinite order is conjugate to a non-empty product of L = T−1S and R = TS−1

which is unique up to cyclic permutation.

Remark 2.12. Recall the partition of non trivial matrices A ∈ PSL2(Z) into three
types: elliptic, parabolic, hyperbolic. These have been defined by the sign of the
discriminant of their characteristic polynomial which equals disc(A) = Tr(A)2 − 4.

The non-trivial elements of finite order are the elliptic ones whereas those of
infinite order partition into parabolic and hyperbolic.
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A trace computation shows that parabolic elements are conjugate to positive pow-
ers of L or R whereas hyperbolic elements are conjugate to products of L and R in
which each letter appears at least once.

Remark 2.13 (Unicity of elliptic generators). The structure theorem implies that
{S, T} is the unique pair, up to independent inversions and simultaneous conjugation,
of torsion elements which generate the modular group.

Scholium 2.14. In fact we shall later see that if a pair of elliptic elements in
PSL2(R) generates a subgroup conjugate to PSL2(Z), then up to independent in-
versions and simultaneous conjugation, it is {S, T}.

Proof of Theorem 2.11. The action of PSL2(Z) on T ′ is freely transitive on its edges,
so every A is identified with eA = A ·e1 where e1 denotes the base edge. The geodesic
(e1, eA) yields the unique reduced sequence of S&T±1 whose product equals A.

Now conjugate this reduced S&T±1 factorisation by the longest suffix whose
inverse appears as a prefix (they cannot overlap nor meet half way because the word
is reduced). If we obtain S or T±1 then we are done, otherwize we find a new sequence
whose first and last letters are not mutually inverse.

Notice that if this sequence starts with T±1 and ends with S then the geodesic in
T ′ can be read as a geodesic in T yielding a sequence of L&R. Similarly if it starts
with an S and ends with a T±1 then one may read it in T and find a sequence of
L−1 and R−1, but this is conjugate by S to the transpose of its inverse which is a
sequence in L and R. If it starts and ends with the same letter T±1 then one may
conjugate by that element T±1 to obtain one of the above.

Proposition 2.15. Consider the action of a non trivial A ∈ PSL2(Z) on T ′.
If A has finite order then it fixes a unique vertex in T ′ whose valence 2 or 3 equals

the order of the element.
If A has infinite order then it stabilises a unique bi-infinite geodesic of T ′ on

which it acts by translation.

Proof. For A ∈ PSL2(Z), let lA be the minimum distance d(e, A · e) over all edges e.
We have lA = 0 if and only if A = 1.

If lA > 0 then lA = 1 if and only if A fixes exactly one vertex. The geodesic
leading from the base edge to (an appropriate edge belong to the link of) that vertex
yields a matrix which conjugates A to S or T±1.

If lA > 1 then the edges e such that d(e, A · e) = lA form a bi-infinite geodesic,
which can be obtained as the limit when n goes to infinity of the intersection
(eA−n , eAn) ∩ (eA−n−1 , eAn+1). Indeed this defines a stable geodesic gA under the
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action of A along which it acts by translation, and every edge e of T ′ is sent to an
edge A · e at distance d(e, A · e) = lA + 2 · d(e, gA). A geodesic from the base edge
to (an appropriate edge in) the geodesic gA yields a matrix which conjugates A to a
matrix whose axis passes through the base edge, and which factorises as a product
of L = T−1S and R = TS−1.

Note that one must be a little careful in adjusting the edge-paths leading from
the base edge to the link of a vertex or to a geodesic, in order to yield the matrix
conjugating A to S, T±1 or a product of L&R.

Gromov boundary of the tree T
The technical details in this subsection will not be needed in the sequel so we refer
to [GdlH90] for background about Gromov hyperbolic spaces and their boundaries.

A graph becomes a metric space by declaring that all its edges are isometric to
a given segment of R. In this way T and T ′ become real trees, the latter being
identified with the former after subdividing each edge in two edges of equal length.

The automorphism group of a simplicial graph equals the isometry group of
the corresponding metric graph, so the isomorphism group of the cyclically ordered
trivalent real tree T is PSL2(Z).

A real tree is a 0-hyperbolic space, meaning that for any triangle every edge is
contained in the union of the other two. One may define its Gromov boundary: its
elements are the classes of half-infinite geodesics modulo the equivalence relation of
admitting equal tails; and to describe its topology it is convenient to take advantage
of the identification with its space of ends.

The space of ends of a topological space is the direct limit with respect to inclusion
of the connected components in the complement of compact sets, endowed with the
direct limit topology. The ends of T form a totally disconnected compact space ∂T .

Denote G the product ∂T × ∂T minus the diagonal, which corresponds to the
set of bi-infinite oriented geodesics in T . Notice that the set of primitive infinite
order elements of PSL2(Z) injects in G by the map A 7→ gA. Those are precisely the
bi-infinite periodic geodesics.

The isometric action of PSL2(Z) on T extends to a continuous action on ∂T . A
non trivial element A has 0 fixed points if it has finite order, and 2 fixed points if it
has infinite order given by the endpoints of its translation axis.

If A is parabolic then its axis is a horocycle, which as a subset of 4′
2 converges

both ways to the same vertex of 42. If A is hyperbolic its axis has two distinct
endpoints in the completion of 42 by ∂T , which do not belong to 42.
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2.2 Conjugacy classes of matrices in PSL2(Z)

Continued fractions, Euclidean monoid, Binary tree
Every positive real number x admits a Euclidean continued fraction expansion:

bn0, n1, n2, . . . c = n0 +
1

n1 +
1

n2+...

with nj ∈ N and ∀j > 0, nj > 0.

Such an expansion is infinite if and only if x is irrational, in which case it is unique.
A rational x has two expansions x = bn0, . . . , nk c: one for which nk = 1, the other
for which nk > 1, and exactly one of these has even length k + 1.

To represent negative real numbers we apply the involution x 7→ S(x) = −1/x.
Thus every number x ∈ RP1 admits exactly one representation x = bn0, . . . c or x =
−1/bn0, . . . c, except for the rationals which have two, including 0 = b c = b 0 c and
∞ = −1/b c = −1/b 0 c. This corresponds to the partition RP1 = [0,∞[tS · [0,∞[.

Remark 2.16. If we wished to work only with x > 1 so that all nj ∈ N∗, then we
must use both involutions x 7→ −x and x 7→ 1/x to obtain the four intervals of RP1.
This corresponds to the partition RP1 = 1·]1,∞] t S·]1,∞] t J ·]1,∞] tK·]1,∞].

Then every number x ∈ RP1 admits exactly one of the four representations x =
±bn0, . . . c±1 with all nj ∈ N∗, except for the rationals which have two, except again
for the fixed points under the additive or multiplicative inverses which have four.

While the extended modular group PGL2(Z) acts on RP1, its extended euclidean
submonoid generated by J&R preserves [0,∞]. If xi denotes the ith remainder of x,
given by the tail bni, . . . c of its continued fraction expansion, then x0 = (Rn0J)x1.
So the orbits of x, y ∈ [0,∞] under the extended euclidean monoid have non-empty
intersection if and only if some tails xi and yj of their continued fractions coincide.
Since J&R generate the group PGL2(Z), we deduce that x, y ∈ RP1 belong to the
same PGL2(Z)-orbit if and only if some tails of their continued fractions coincide.

Now consider the action of the modular group PSL2(Z) on RP1 and of its euclidean
submonoid generated by L&R on [0,∞]. As JRJ = L we have Rn0JRn1J = Rn0Ln1 ,
so assembling the RnkJ by pairs reveals the action of L&R as x = Rn0Ln1x2. Hence
the orbits of x, y ∈ [0,∞] under the euclidean monoid have non-empty intersection if
and only if there exist even starting points i, j at which the tails xi and yj coincide.
Since L&R generate the group PSL2(Z), we deduce that x, y ∈ RP1 belong to the
same PSL2(Z)-orbit if and only if there exist even starting points i, j at which the
tails xi and yj coincide.
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Remark 2.17. We are interested in the action of the modular group PSL2(Z) so we
must keep an eye on the parity of the indices in the continued fractions.

A real number is called purely periodic if its continued fraction expansion is
periodic from n0 onward (“immédiatement périodique” in [Gal29]). We call periodic
a real number whose continued fraction expansion is periodic either from n0 onward
if n0 > 0, or else from n1 onward.

For us, the period will always have an even length, and we shall retain the earliest
possible starting point (which may be even or odd). The positive and negative
periodic irrationals are precisely attractive and repulsive fixed points of matrices
which are products of L and R, with at least one occurrence of each.

Denote SL2(N) ⊂ SL2(Z) the submonoid of matrices with non-negative entries,
which we identify with its image PSL2(N) in PSL2(Z). It contains the parabolic
matrices L,R, and every element in the monoid that they generate.

Lemma 2.18. The submonoid of PSL2(N) generated by L and R is free, and it
coincides with PSL2(N).

The orbit map A 7→ A(1) defines a bijection PSL2(N) →]0,∞[∩Q which is in-
creasing when PSL2(N) is endowed with the lexicographic order extending L < R.

Proof. The action of PSL2(N) on QP1 preserves the interval ]0,∞[. The element R
maps it into ]1,∞[ whereas L maps it into ]0, 1[, so they generate a free submonoid.

The orbit map A 7→ A(1) defines a bijection PSL2(N) →]0,∞[∩QP1 since the
reciprocal map consists in decomposing a fraction p

q
> 0 as a Farey sum a+b

c+d
, which

is unique: it reduces to finding the minimal Bezout relations aq − cp = 1 = pd− qb.
A positive rational p

q
has a unique continued fraction expansion finishing by 1,

and ignoring the last 1, this decomposes the corresponding matrix A ∈ PSL2(N) as
a product of positive powers of L and R, hence these generate PSL2(N).

In particular, PSL2(N) has no elliptic elements, its parabolic elements are powers
of L or R, and its hyperbolic elements are products containing both L and R.

The normal form for conjugacy classes in the amalgam PSL2(Z) = Z/2 ∗ Z/3
provided in Theorem 2.11, and the previous Lemma 2.18 imply the following.

Corollary 2.19. Suppose A ∈ PSL2(Z) is not elliptic. Then the intersection of its
conjugacy class with PSL2(N) is non empty, and consists in all cyclic permutations
of a same word in the L&R alphabet. We call them its Lyndon conjugates.

Thus every non elliptic conjugacy class in PSL2(Z) is represented by a unique
maximal element in PSL2(N) for the lexicographic order, which we call the maximal
Lyndon representative.
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We also deduce that those real irrationals with eventually periodic expansions
are precisely the fixed points of hyperbolic matrices A ∈ PSL2(Z), hence the roots
of integral quadratic polynomials lX2+mX+ r with positive discriminant m2− 4lr,
also known as real quadratic irrationalities.

Lemma 2.20. Let A ∈ PSL2(Z) be a hyperbolic matrix with attractive and repulsive
fixed points α and α′ in RP1.

The fact that A ∈ PSL2(N) is equivalent to each of the following:

A−1(−1) < 0 < A(1) ⇐⇒ α′ < 0 < α ⇐⇒ |cross|(α′, α, 0,∞) = 1

Now supposing A ∈ PSL2(N), the fact that A ∈ R · PSL2(N) is equivalent to:

A(1) > 1 ⇐⇒ α > 1 ⇐⇒ |cross|(α′, α, 1,∞) = 1

Still supposing A ∈ PSL2(N), the fact that A ∈ PSL2(N) · L is equivalent to:

A−1(−1) > −1 ⇐⇒ α′ > −1 ⇐⇒ |cross|(α′, α, 0,−1) = 1

The set {L,R}N of infinite binary sequences on the letters L&R is given the
lexicographic order extending L < R. The monoid PSL2(N) maps to {L,R}N by
sending a finite word A to its periodisation A∞. This map is increasing, and injective
in restriction to primitive elements.

To a primitive hyperbolic matrix A ∈ PSL2(N) corresponds a real quadratic
irrationality α ∈]0,∞[ given by its attractive fixed point. Its continued fraction is
periodic and corresponds to the binary sequence A∞ ∈ {L,R}N, which uses both
letters L&R. Conversely, such a periodic sequence has a smallest period of even
length and this yields a matrix A and a real quadratic surd α.

Corollary 2.21. The maps between primitive hyperbolic matrices A ∈ PSL2(N),
periodic real quadratic irrationalities α > 0, and periodic binary sequences using both
letters A∞ ∈ {L,R}N, are bijective and order preserving.

Note that for all A ∈ SL2 we have tAS = SA−1. If A ∈ PSL2(N) is hyperbolic
with attractive fixed point α > 0, then the attractive fixed point of A−1 is the Galois
conjugate α′ < 0, so the attractive fixed point of tA is S(α′) = −1/α′ > 0. Thus
the transposition involution A 7→ tA which preserves PSL2(N) corresponds to the
involution α 7→ −1/α′ on positive periodic quadratic irrationalities.

Remark 2.22 (Application to a theorem of Galois [Gal29]). A real number α 6= 0 is
purely periodic, meaning it has a periodic continued fraction expansion as from n0,
if and only if it is a real quadratic surd such that α > 1 and −1/α′ > 1. If so, then
−1/α′ is purely periodic with the mirror image period. This should now be clear.
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Symmetric classes of real quadratic irrationalities
Recall from Section 0.2 the dictionary between primitive hyperbolic A ∈ PSL2(Z),
quadratic irrationals α ∈ R, primitive indefinite Q(x, y) = lx2 +mxy + ry2 ∈ Q(Z),
and primitive space-like a = 1

2
( −m −2r

2l m ) ∈ sl2(Z)∨. In particular if A = ( a b
c d ) then

(l,m, r) is proportional to (c, d− a,−b) by the factor sign(a+ d)/ gcd(c, d− a,−b).
Recall from Section 1.1 the orthogonal decomposition gl2(Q) = Q1⊕ sl2(Q) with

repesct to the scalar product 〈M,N〉 = 1
2
Tr(MN#).

Proposition 2.23. Consider a primitive hyperbolic A = ( a b
c d ) ∈ PSL2(Z), denote by

γA = (α′, α) its geometric translation axis in HP, and by (l,m, r) the coefficients of
the corresponding primitive indefinite Q ∈ Q(Z) or primitive space-like a ∈ sl2(Z)∨.

The axis γA passes through i ∈ HP if and only if equivalently:

α : 1 + αα′ = 0

a : r + l = 0 or equivalently 〈a, S〉 = 0

A : b = c or equivalently Tr(AS) = Tr(AS−1) or equivalently A = tA

Q : α = x+
√
1 + x2 for some x ∈ Q∗ such that 1 + x2 /∈ (Q∗)2

The axis γA passes through j ∈ HP if and only if equivalently:

α : α′+α
2

= 1 + αα′

a : m+ 2l + 2r = 0 or equivalently 〈a, T 〉 = 0

A : a+ 2b = 2c+ d or equivalently Tr(AT ) = Tr(AT−1)

Q : α = (1 + x) +
√
1 + x+ x2 for some x ∈ Q∗ such that 1 + x+ x2 /∈ (Q∗)2

Proof. The axis γA passes through i ∈ HP if and only if α = Sα′ = −1/α′, which
is equivalent to A = SA−1S−1 = tA by identifying the attractive fixed points. In
terms of the quadratic form Q the condition αα′ = −1 rewrites as r/l = −1, but
one may also use the condition ta = a to deduce that r = −l. In any case we have
α = −m+

√
m2+4l2

2l
, and setting x = −m/(2l) yields the last condition.

The axis γA passes through j if and only if the points α′, α, Tα, T−1α are conjugate
to (−1, 1, 0,∞), that is when bir(T−1α, α, Tα, α′) = 1+αα′−α

1+αα′−α′ is equal to −1. This
equality can be rewritten α+α′ = 2+2αα′, or in terms of Q as m/l = 2+2r/l. This
amounts to the existence coprime l, r ∈ Z such that α = (l+r)+

√
l2+lr+r2

l
, and setting

x = r/l yields the last condition.
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Remark 2.24. In particular, γA cannot pass through i and j, as this would imply
m = 0 and r = −l = ±1, contradicting the fact that disc(Q) = 4 is not a square.

However can γA pass through points in the orbit of i and j ?

Remark 2.25. If the geometric axis (α′, α) ⊂ HP of A ∈ PSL2(Z) passes through i,
then there is a unique element in {A, SAS−1} which belongs to PSL2(N).

Conversely, given A ∈ PSL2(N) it is an easy matter to read from is L&R-
factorisation if it is symmetric.

If the geometric axis (α′, α) ⊂ HP of A ∈ PSL2(Z) passes through j, then there
is a unique B ∈ {A, TAT−1, T−1AT} which belongs to PSL2(N). Furthermore, there
is a unique C ∈ {TB−1T−1, TB−1T−1} which belongs to PSL2(N).

Conversely, given B,C ∈ PSL2(N) related as such, can one read from their L&R-
factorisation if their axes pass through j ?

Definition 2.26. A matrix of SL2(Z) is symmetric when it equals its transpose.
This relation descends to PSL2(Z). We define a conjugacy class in PSL2(Z) to be
symmetric when it is globally preserved by inversion or transposition.

Lemma 2.27. A symmetric hyperbolic conjugacy class admits a symmetric Lyndon
representative A ∈ PSL2(N), it may thus be written A = tBB for some B ∈ PSL2(N).

A primitive symmetric hyperbolic conjugacy class admits exactly two symmetric
Lyndon representatives, they are of the form tBB and BtB for some B ∈ PSL2(N).

If a hyperbolic A ∈ PSL2(Z) is symmetric, then A or A−1 belongs to PSL2(N),
so up to inversion all symmetric representatives of a hyperbolic class are Lyndon.

Proof. Consider a symmetric hyperbolic conjugacy class. Transposition preserves
the set of Lyndon representatives, which are all cyclic permutations of some word
in L&R. Let A be one of them: its transpose is equal to a cyclic permutation, so
one may write A = UV and tA = V U for U, V ∈ PSL2(N), which implies that U
and V are symmetric. But transposition exchanges L and R, which freely generate
the monoid PSL2(N), so U = tXX and V = tY Y for some X,Y ∈ PSL2(N). Hence
A = (tXX)(tY Y ) is conjugate to tBB for B = X tY .

For a symmetric hyperbolic conjugacy class, consider two representatives written
as tBB = UV and tCC = V U for B,C, U, V ∈ PSL2(N), and suppose we may
find U such that 0 < lenU < lenV . Then tB = UW with W ∈ PSL2(N) non
trivial, so tBB = UW tW tU whence tCC = W tW tUU . The latter also equals its
transpose tCC = tUUW tW from which we deduce that U = tUU and W = W tW
commute. Consequently, there is some non trivial X ∈ PSL2(N) such that U = Xu

and W = Xw with u,w > 0, from which we deduce that tCC = Xu+w is not
primitive. By contraposition, if the symmetric conjugacy class were primitive, then
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we should have either lenU = 0 in which case B = C or lenU = lenV in which case
B = tC.

Intersection patterns of lines with simplicial complexes
We now relate the continued fraction expansions of real numbers to the combinatorics
of the Lagrangian complex, the lotus and the spiderweb.

Recall that Proposition 2.5 defined an isomorphism P(ψ̄) from the geometric
realisation of 44 in R2 to the geometric realisation of 42 in RP2, which is projective
linear in restriction to each triangle, in particular it defines an isomorphism between
their first barycentric subdivisions. (Beware that is reverses orientations.)

The group SL2(Z) acts on R2, and the matrices sending the lotus 41 into itself
form the submonoid SL2(N). The group PSL2(Z) acts on HP and the matrices
sending the right half of its ideal triangulation 42 into itself form the submonoid
PSL2(N). By proposition 2.5, these actions are isomorphic under P(ψ̄).

In this paragraph, the continued fraction expansion of a positive rational number
is always chosen to be the one with even length, hence given by an L&R-sequence
as explained in the first paragraph of this Section 2.2.

Proposition 2.28. The (even) continued fraction expansion of α ∈]0,∞[ encodes
the sequence of triangles in the following simplicial complexes intersected by lines.

1. The lotus 41 intersected by the line Vα of inclination α ∈ RP1.

2. The ideal triangulation 42 of HP intersected by the hyperbolic geodesic from
i ∈ HP to α ∈ ∂HP.

3. The Lagrangian complex 42 intersected by the combinatorial geodesic of T
from the barycenter i ∈ T ′ of the base edge to the boundary point α ∈ ∂T .

In the last two items we may replace i by any real α− < 0 and restrict attention to
the intersection of the geodesic (α−, α) with the right hand side of 42.

Proof. (1). The euclidean algorithm implies that the line Vα ⊂ R2 of inclination
α ∈ RP1 intersects the triangles of 41 according to its continued fraction expansion.

(1 ⇐⇒ 2). The map ψ : R2 → X sends 44 to a simplicial complex ψ(44)
in X, which intersects the line ψ(Vα) in the same way as Vα intersects 41. The
plane of sl2(R) generated by the lines R.S and ψ(Vα) intersects the edges of the
spiderweb according to the same pattern. Projectifying sends the spiderweb to the
ideal triangulation 42 of HP, the line R.S to i ∈ HP and the line ψ(Vα) to α ∈ ∂HP.
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(2 ⇐⇒ 3). This follows from the PSL2(Z)-equivariant identification of the
Lagrangian complex 42 with its geometric realisation 42 in HP ∪ QP1. Indeed,
the combinatorial and hyperbolic geodesics from i ∈ T ′ ⊂ HP to the same point
α ∈ ∂T ′ = ∂HP stay a bounded distance from one another, and this implies that
they intersect the same triangles because the triangulation of HP by 42 is ideal.

Remark 2.29. In the dual tree T of the complex 42, the geodesic from the base edge
to the boundary point α ∈ ∂T cuts a sequence of edges in 42 whose extremities in
QP1 are the successive slow convergents to the continued fraction expansion of α.

Remark 2.30. Recall that S acts on RP1 by S(α) = −1/α, on 44 ⊂ R2 by linear
(π/4)-rotation, and on T ⊂ HP by hyperbolic (π/2)-rotation around i.

So for α < 0, to read the intersection patterns Vα ∩ S41 or (α, 0) ∩ 42 coming
from infinity, one must transpose the L&R-word of −1/α, which means exchanging
L&R and reversing the order of lecture so that it becomes infinite to the left.

Corollary 2.31. For distinct α−, α+ ∈ RP1, the oriented bi-infinite geodesics (α−, α+)
connecting those boundary points, combinatorial in T and hyperbolic in HP, intersect
42 according to the same sequence of triangles (which is empty if it is an edge).

If moreover α− < 0 < α+, they intersect the base edge (0,∞), and on each side
the sequence of triangles in 42 is dictated by the continued fractions of −1

α−
and α+,

concatenating the transpose of the former with the latter.

Intersection of Vα with the first barycentric subdivision of 41

Every triangle of 41 is cut by the long legs of it medians into three triangles which
we call gliders: in the first barycentric subdivision 4′

1 they are formed by unions of
two triangles, adjacent along an edge connecting the barycenters of an edge and a
face. They map by P(ψ̄) and SP(ψ̄) to similarly defined gliders in 4′

2, which are in
bijection with the edges of T ′, and form a free transitive set under PSL2(Z).

The line Vα ⊂ R2 of irrational inclination α ∈]0,∞[ avoids the vertices of 4′
1 and

intersects it in a connected sequence of gliders. We encode this by the sequence of
s±1&t±1 describing how to rotate the gliders around their bases or tips to pass from
one to the next, with positive or negative exponents when Vα passes to the right or
left of the center of rotation, as in figure 2.5.

Scholium 2.32. The letters s and t are meant to evoke the actions of S and T
on the gliders, or the edges of T ′. However we chose different symbols s, t to avoid
confusion with the elements S, T ∈ SL2(Z) or their classes in PSL2(Z). In particular
we should not confuse the symbol s−1 with the element S−1 = −S ∈ SL2(Z).
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Besides, in Chapter 3, the letters s, t will be identified with the generators of a
free group Z ∗ Z, the fundamental group the disc with two punctures obtained from
the modular orbifold by removing its conical singularities. There again we will have
to be careful about avoiding some confusions, and tracking orientation conventions.

Proposition 2.33. The line Vα ⊂ R2 of irrational inclination α ∈]0,∞[ intersects a
sequence of gliders in 4′

1 whose t&s-encoding is deduced from the continued fraction
expansion of α by the following translation rules:

LL⇝ (t−1s−1)L RR⇝ (t+1s+1)R

LR⇝ (t−1s+1)R RL⇝ (t+1s−1)L

Up to a cyclic permutation (corresponding to a conjugacy by s±1), these translations
amount to L⇝ s−1t−1 and R⇝ s+1t+1.

Remark 2.34. The line Vα ⊂ R2 passes through a vertex of 41 if and only if α ∈ Q,
in which case it passes through exactly one vertex of each type in 4′

1.

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

Vα

Figure 2.5: The line Vα intersects a sequence of gliders in 4′
1 encoded by s±1&t±1.
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Remark 2.35. Remember that Pψ̄ sends the orientation of ∆4 ⊂ R2 to the opposite
orientation of ∆2 ⊂ P(H∪X). The cone X is seen from beneath or above respectively.

However it is the orientation of the cell complex ∆4 or ∆2 which determines the
meaning of expressions like “a line passes to the right or to the left of a vertex”, or
“turning a glider around a vertex in the positive or negative direction”.

Intersection of (α′, α) with the first barycentric subdivision of 42

For distinct α−, α+ ∈ RP1, the geodesic (α−, α+) ⊂ HP intersects a sequence of
gliders in 4′

2 encoded by a word alternating a letter in {s−1, s◦, s+1} and a letter in
{t−2, t−1, t◦, t+1, t+1} describing how to rotate them around the bivalent and trivalent
vertices of T ′. The exponents are positive, negative or ◦ when (α−, α+) passes to the
left, to the right or through the vertex. The letters t±2 appear when a glider must
be turned twice around its trivalent vertex in the direction given by the sign.

1
0

1
1

0
1

−1
1

−2
1

2
1

−1
2

1
2

− 1
β = RLRR . . .

β

α = RLRL . . .

Figure 2.6: Geodesic of P(H) intersecting the gliders of 4′
2 according to a sequence

. . . t−2s−1t−1s−1 | t+1s−1t−1s−1 . . . , the separation marks the intersection with the
base glider.

Now suppose that α−, α+ ∈ R are such that α− < 0 < α+. Then (α−, α+)
intersects positively the edge (0,∞), whence the glider containing the base edge
(i, j) of T ′, so the s&t-word contains a subword of the form s?t? characterising the
intersection of (α−, α+) with the first barycentric subdivision ▽′

2. The signs of the
exponents correspond to the position of (α−, α+) with respect to the points i and j.
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The position of (α−, α+) with respect to i is obtained by comparing α+ with −1
α−

.
The exponent of s is given by − sign(1 + α+α−). Thus (α−, α+) passes:

+ to the left of i if 1 + α+α− < 0, in which case we have s+1

◦ through i if 1 + α+α− = 0, in which case we have s◦

− to the right of i if 1 + α+α− > 0, in which case we have s−1

The position of (α−, α+) with respect to j is obtained by comparing the cross-
ratio bir(α−, α+, T

+1α−, T
−1α−) = α+−α−

1+α+α−−α−
with 2, or equivalently α++α−

2
with

1+α+α−. The exponent of t has sign
(
α++α−

2
− (1 + α+α−)

)
. Thus (α−, α+) passes:

+ to the left of j if 1 + α+α− <
α++α−

2
, in which case we have t+1 or t+2

◦ through j if 1 + α+α− = α++α−
2

, in which case we have t◦

− to the right of j if 1 + α+α− >
α++α−

2
, in which case we have t−1 or t−2

T+1α−

T−1α−

α−

bir(α−, α+, T
+1α−, T

−1α−) = 2
bir(α−, α+, T

+1α−, T
−1α−) > 2

bir(α−, α+, T
+1α−, T

−1α−) < 2

Figure 2.7: Find the exponent of t by comparing bir(α+, α−, T
−1α−, T

+1α−) with 2.

We may recast this discussion in terms of the L&R-words w− and w+ correspond-
ing to the continued fractions of Sα− and α+. Recall that w− and w+ describe the
intersection patterns of (i, Sα−) and (i, α+) with 42, and that w = tw−w+ describes
the intersection pattern of (α−, α+) with 42. After replacing the letters L&R by
t?s?, we are focusing on the exponents of the last s? of tw− and the first t? of w+.

The exponent of s? is obtained by comparing w− and w+ for the lexicographic
order on L&R, and is given by the sign(w+−w−). To compute the sign of the expo-
nent of t?, first note that the continued fractions of T−1α− and T+1α− are obtained
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by conjugating the continued fraction w− of Sα− = S−1α− by T−1S+1 = L and
T+1S−1 = R. When α− is irrational, the word w− is infinite and such conjugations
amount to left multiplications by L and R. In that case the sign of the exponent
of t? would be given by comparing the cross-ratio bir(w+, Sw−, Lw−, Rw−) with 2.
However this cross-ratio is not well defined in purely combinatorial terms and one
has to compute it in terms of the endpoints α−, α+ (or sufficiently good rational
approximations obtained by truncating the words w− and w+ far enough).

Proposition 2.36. Consider irrational real numbers α−, α+ such that α− < 0 < α0.
The geodesic (α−, α+) ⊂ HP intersects 42 in a sequence of triangles encoded by

a bi-infinite L&R-word w obtained by concatenating the transpose of the L&R-word
of −1

α−
with the L&R-word of α+.

The geodesic (α−, α+) ⊂ HP intersects 4′
2 in a sequence of gliders encoded by a

bi-infinite s&t-word obtained from its L&R-word as follows.
First create a word by the translation rules L ⇝ t?s? and R ⇝ t?s?, retaining

for each s?&t? the position of the L or R which gave rise to it. Every subword s?t?

corresponds to a factorisation w = tw−w+ and the signs of those exponents ? are
obtained by comparing tw− and w+ as explained above. Besides, the exact translation
rules must be chosen among:

L⇝ {t−1s?, t◦s?, t+2s?} R⇝ {t+1s?, t◦s?, t−2s?}

The sign computations together with these multi-valued translation rules for L&R
determine a unique s&t-word.

Remark 2.37. One may accelerate the translation process by noticing the that we
must have the local translation rules LL⇝ t?s−1t−1s? and RR⇝ t?s+1t+1s?, thus

∀m,n ∈ N : Lm ⇝ t?(s−1t−1)m−1s? Rn ⇝ t?(s+1t+1)n−1s?

After that it remains to determine the signs in exponents of the s and t in portions
coming from alternations between L and R.

One may provide local translation rules for portions of the form Lm(RL)kRn and
Rn(LR)kLm in terms of inequalities on the triples (k,m, n), but those will depend on
the (unbounded) quantity k, so the translation process is ultimately non-local.

Remark 2.38. We wish to lift the ambiguity on the exponents of the t◦ and s◦.
Notice that every t◦ must be surrounded by equal powers of s±1. In particular we

deduce a canonical way of replacing its exponent, to equal either ±2 or ∓1, and we
shall systematically choose the latter. This corresponds to a slight perturbation of the
geodesic (α−, α+) in such a way as to avoid the orbit of j, as depicted in figure 2.8.
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Notice that every s◦ is must be surrounded by opposite powers of t±1. In particular
we deduce a canonical way of replacing its exponent, to equal that of the t just before
or just after, and we shall systematically choose the latter. Hence every subword
of the form t−1s◦t+1 or t+1s◦t−1 gets replaced by t−1s+1t+1 or t+1s−1t−1 respectively.
This corresponds to a slight perturbation of the geodesic (α−, α+) in such a way as
to avoid the orbit of i, as depicted in figure 2.10.
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Figure 2.8: A t◦ must be surrounded by equal powers ϵ 6= ◦ of s. The canonical
perturbation changes t◦ in t−ϵ.

We now recast those statements in terms of a hyperbolic A = ( a b
c d ) ∈ SL2(R)

with translation axis γA = (α−, α+), which we assume to have c > 0 and thus b > 0.
This follows from the relations α+α− = −b/c and α+ + α− = −(d− a).

The position of γA with respect to i is given by comparing Tr(AS−1) and Tr(AS),
and the exponent of s equals signTr(A(S − S−1)) = signTr(AS). Thus γA passes:

+ to the left of i if Tr(AS) > 0, in which case we have s+1

◦ through i if Tr(AS) = 0, in which case we have s◦

− to the right of i if Tr(AS) < 0, in which case we have s−1

The position of γA with respect to j is given by comparing Tr(AT ) and Tr(AT−1),
and the sign in the exponent of t equals signTr(A(T − T−1)). Thus γA passes:
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Figure 2.9: Geodesic axis of γRL and a canonical perturbation: the s◦ change to s±1.

+ to the left of j if Tr(AT ) > Tr(AT−1), in which case we have t+1 or t+2

◦ through j if Tr(AT = Tr(AT−1), in which case we have t◦

− to the right of j if Tr(AT ) < Tr(AT−1), in which case we have t−1 or t−2

Remark 2.39. In view of Chapter 1, the signs in the exponents of s and t equal:

Tr(A(S − S−1)) = −2〈A, prS〉 = −2〈A, S〉
Tr(A(T − T−1)) = −2〈A, prT 〉 = −2〈A, S − 1

2
K〉

We may also propose an equivariant formulation in terms of A ∈ PSL2(R), that
is independent of its lift A ∈ SL2(R), by noticing that c + b = Tr(AJ) = −2〈A, J〉.
Hence the signs in the exponents of s and t are respectively equal to the signs of:

Tr(AJ) · Tr(A pr(S)) = 4 · 〈A, J〉 · 〈A, S〉
Tr(AJ) · Tr(A pr(T )) = 4 · 〈A, J〉 · 〈A, S − 1

2
K〉

Proposition 2.40. Consider a primitive hyperbolic element A ∈ PSL2(N) and let
Ak = σkA ∈ PSL2(N) be its Lyndon conjugates. The translation axis (α′, α) ⊂ HP
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LR⇝ t−1s±1t+1 ⇝ t−1s+1t+1

RL⇝ t+1s±1t−1 ⇝ t+1s−1t−1

Figure 2.10: Canonical choice for perturbing the axes passing through i.

of A intersects 4′
2 according to a sequence of gliders encoded by a bi-finite periodic

s&t-word determined from the L&R-factorisation of A as follows.
First apply the replacement rules L ⇝ t{−1,◦,2}s{1,◦,−1} and R ⇝ t{1,◦,−2}s{1,◦,−1}.

Then for every k ∈ [0, len(A)[, the s? at the end of Ak has exponent signTr(AS), and
the t? at the beginning of Ak has exponent of the signTr(A(T − T−1)).

Example 2.41. The translation axis of RL intersects 4′
2 in the sequence of gliders

encoded by the word w∞ where w = (t+1s◦)(t−1s◦).
The translation axis of RLL intersects 4′

2 in the sequence of gliders encoded by
the word w∞ where w = (t◦s−1)(t−1s−1)(t−1s−1).

The translation axis of RLLL intersects 4′
2 in the sequence of gliders encoded by

the word w∞ where w = (t−2s−1)(t−1s−1)(t−1s−1)(t−1s−1).
It may be amusing to find the s&t translations of L&R-sequences encoding Markov

irrationals [Ser85a].
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2.3 Invariants of two conjugacy classes in PSL2(Z)
The previous section described conjugacy classes of hyperbolic matrices in PSL2(Z)
in terms of their intersection with PSL2(N) and their combinatorial axes in T .

We now turn to the conjugacy classes of pairs of matrices in PSL2(Z). At the end
of this section, we shall average conjugacy invariants for pairs of matrices to obtain
functions of pairs of conjugacy classes.

Combinatorics of the crossing and cosign functions
The main idea is to consider the relative position of the oriented tree-axes, and there
are two features to take into account: if they share an oriented edge, and if their
endpoints are linked on the boundary.

Recall the discussion following Corollary 2.8 which introduced geodesics in T .
The tree property implies that two geodesics of T intersect along a geodesic: it may
be empty, but otherwise it has positive length so one my compare their orientations.
Definition 2.42. For oriented geodesics ga and gb in T , let sinc(ga, gb) ∈ Z∪{±∞}
be the length of their intersection, whose sign given by cosign(ga, gb) ∈ {−1, 0,+1}
compares their orientations along their intersection when it is not empty.

These functions are symmetric, invariant under the action of C ∈ PSL2(Z) on T :

sinc(C · ga, C · gb) = sinc(ga, gb) cosign(C · ga, C · gb) = cosign(ga, gb)

and inverting the orientation of one of their arguments results in a change of sign.
The previous definition holds for any two oriented geodesics: they could be finite,

half-infinite or bi-infinite; and periodic or aperiodic. However, we shall only consider
those in the set G of oriented bi-infinite geodesics. The translation axes gA of infinite
order elements A ∈ PSL2(Z) are precisely the bi-infinite periodic geodesics in G.

For infinite order elements A,B ∈ PSL2(Z) we denote sinc(A,B) = sinc(gA, gB)
and cosign(A,B) = cosign(gA, gB). Now we have invariance under the conjugacy
action of C ∈ PSL2(Z) on its subset of infinite order elements:

sinc(CAC−1, CBC−1) = sinc(A,B) cosign(CAC−1, CBC−1) = cosign(A,B)

Lemma 2.43. Two infinite order elements A,B ∈ PSL2(Z) can be simultaneously
conjugated in PSL2(N) if and only if their combinatorial axes share an oriented edge,
that is when cosign(A,B) = 1.

More precisely the set of edges belonging to the intersection of their oriented T -
axes corresponds to the set {C ∈ PSL2(Z) | CAC−1, CBC−1 ∈ PSL2(N)}, whose
cardinal equals the positive part of sinc(A,B).
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Proof. Recall that the automorphism group PSL2(Z) of the cyclically oriented T
acts freely transitively on its oriented edges: the base edge provides an identification
between the two sets. Moreover, a matrix belongs to PSL2(N) if and only if its
combinatorial translation axis passes through the base edge. Hence the matrices
C which simultaneously conjugate A and B in PSL2(N) are in bijection with the
oriented edges belonging to the intersection of gA and gB.

Let us represent the different configurations for pairs of axes gA, gB and provide
the values for the invariants cross and cosign. Note that cosign and cross can take
their values independently, except for the implication cosign = 0 =⇒ cross = 0.

cosign
cross +1 0 −1

+1

α′

β′

β

α

β′

α′

β

α

β′

α′

α

β

−1

β

α′

α

β′

α′

β

α

β′

α′

β

β′

α

Figure 2.11: Configurations of two geodesics: values of cross & cosign.

For A ∈ PSL2(Z), denote len(A) ∈ N the minimum displacement length d(e, A ·e)
of an edge e ∈ T (this quantity was denoted lA in the proof of Proposition 2.15).
When A has infinite order, it is the L&R-length of a Lyndon conjugate, and when
A has finite order it is zero.

Proposition 2.44. For hyperbolic A,B ∈ PSL2(Z) such that gA ∩ gB 6= ∅, we have:

cosign(A,B) = sign
(
len(AB)− len(AB−1)

)
.

Moreover, if n,m ∈ N satisfy min{n len(A),m len(B)} > |sinc(A,B)|, we have:

sinc(Am, Bn) = len(AmBn)− len(AmB−n).

Proof. These identities follow from [CP20], but let us prove the first one to explain
an idea which will serve in 2.48. We will not use the second, but the first will play
a crucial role in Theorem 5.24.
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Since both sides of the formula change of sign under inversion of A or B, we may
suppose that cosign(A,B) > 0.

We have len(AB) = len(A)+ len(B) because if e ∈ gA∩gB then AB sends B−1 ·e
to A · e, but the geodesic (B−1(e), A(e)) consists in a sequence of len(A) + len(B)
oriented edges of T following one another so AB is the a hyperbolic translation along
an axis which contains that segment as fundamental domain.

To see why len(AB−1) < len(A)+len(B), notice that AB sends B(e) to a A(e) and
for e ∈ gA∩ gB the geodesic (B(e), A(e)) has length at most len(A)+ len(B)− 1.

Figure 2.12: AB sends B−1(e) to A(e) separated by len(A) + len(B).

Remark 2.45. Compare the formula cosign(A,B) = sign (len(AB)− len(AB−1))
with the one from Proposition 1.89: sign cos(A,B) = sign (tr(AB)2 − tr(AB−1)2).
In Chapter 5, we shall recover the former as a limit of the latter by deforming the
representation PSL2(Z)→ PSL2(R).
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Commutation or Coprimality: equal or different axes
We now discuss in more detail the case when the unoriented axes are equal.

We begin with a lemma concerning elements in a free monoid, whose generators
called letters form an alphabet, its elements being called words. The alphabet could
be of any cardinality (even empty, in which case the monoid is reduced to the neutral
element, that is the empty word) and the lemma will hold for any elements (including
the neutral ones).

The primitive root of a word w is the smallest word admitting a power equal to
w. The boundary of the monoid is the set of words which extend infinitely to the
right. The monoid acts on its boundary by left multiplication, and the unique fixed
point of w is w∞ = ww · · · .

Lemma 2.46. For u et v in a free monoid, the following are equivalent:

1. Commutation: uv = vu.

2. Primitive roots: there is a word w and k, l ∈ N such that u = wk and v = wl.

3. Common power: ulen(v) = vlen(u).

4. Fixed points: u∞ = v∞.

Proof. We index the letters of a word w by Z/ len(w) = {0, . . . , len(w)− 1}, denote
w[ : k[ its prefix of length k, and w[k : [ the word obtained by removing this prefix.

Let us first show 1 =⇒ 2: if u & v commute, then they are powers of a same w.
Suppose len(u) ≥ len(v) and reason by induction on len(u)− len(v).

If u and v have the same length then u = v so u = w = v convenes. Otherwize
suppose len(u) > len(v) so that vu = vmv = uv with u[ : l] = m = u[−l : ] and
l = len(u) − len(v) We have mv = u = vm and len(v) − len(u) = len(m) which is
strictly larger than len(v)− len(m) so the induction hypothesis applied to m, v says
they are both powers of a same word w, and we deduce the same for u.

The implications 2 =⇒ 1 and 2 =⇒ 3 =⇒ 4 are clear, we are left with
4 =⇒ 1: let us show that if u∞ and v∞ have the same prefix of length len(u)+len(v),
then u and v have a common primitive root w.

We may suppose len(u) ≥ len(v), and denoting k, s, t ∈ N satisfying s = len(v)
and k.s+t = len(u)+s we have u.u[ : s] = vkv[ : t]. Identifying the suffix of length s in
this equality shows that u[ : s] is a cyclic permutation of v, precisely u[ : s] = v[t : ]v[ : t].

The previous equality can also be written u[ : s].u[s : ].u[ : s] = vkv[ : t] and now
identifying the prefix of length s shows that v[t : ]v[ : t] = v. In other terms v is equal
to its t-cyclic permutation so v = wl where w = v[ : t] and lt = len(v).
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Consequently we have found that u[ : s] = v[t : ]v[ : t] which is equal to wl = v.
Finally u.u[ : s] = vkv[ : t] rewrites as uwl = wkl+1 so u = w(k−1)l+1.
Remark 2.47. Since u and v have a common primitive root r if and only if they have
common powers ulen(v) = vlen(u), we may say that in a free monoid it is equivalent to
have a greatest common divisor w and to have a smallest common multiple m.

Conversely, two elements in a free monoid generate a free submonoid of rank two
if and only if they do not belong to a submonoid generated by one element, if and
only if they generate submonoids with intersection reduced to the neutral element.

The previous lemma applies to the free monoid PSL2(N) generated by L&R, and
we use it to describe commuting elements in the group PSL2(Z).

Recall that the automorphism group of the cyclically oriented trivalent tree T is
PSL2(Z), and that its bi-infinite periodic geodesics are precisely the translation axes
of infinite order elements.
Proposition 2.48. For infinite order A,B ∈ PSL2(Z), the following are equivalent:

1. Commutation: AB = BA.

2. Primitive root: ∃W ∈ PSL2(Z), ∃k, l ∈ Z : A = W k, B = W l.

3. Common power: ∃k, l ∈ Z : Al = Bk.

4. Fixed points: {α′, α} = {β′, β}.

5. The translations axes of A and B in T are equal or mutually inverse.
We say that A and B are coprime when these conditions are not satisfied: they
generate a free group of rank two.
Proof. The implications 2 =⇒ 3 =⇒ 4 are easy and 4 ⇐⇒ 5 follows from
Corollary 2.31. To show that 5 =⇒ 2 consider a minimal period of the translation
axes, this yields (up to inversion) the primitive root W of A and B.

Now clearly 2 =⇒ 1 and we shall conclude with 1 =⇒ 5. Assume that A
and B commute. After replacing A or B by its inverse we may also assume that
bir(A,B) > 0, which roughly means that gA and gB go in the same direction.

Suppose by contradiction that they are disjoint: there is a unique geodesic
(eA, eB) from gA to gB and it has positive length l ∈ N∗. Then it is not hard to
see, as on figure 2.13, that the commutator [A,B] sends the edge BA(eA) to an edge
AB(eA) separated by 2lA + 3d+ lB edges, so it cannot equal the identity.

The contradiction shows that gA and gB intersect along at least one edge, which
we may assume to be the base edge after conjugating everything by C ∈ PSL2(Z).
Thus A,B ∈ PSL2(N) by Lemma 2.43, and we may conclude with Lemma 2.46.
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Figure 2.13: [A,B] sends BA(eA) to AB(eA) separated by 2lA + 3d+ lB.

Corollary 2.49. If A ∈ PSL2(Z) has infinite order, then its centraliser is the infinite
cyclic subgroup generated by its primitive root.

Proof. We just that saw that the infinite order elements which commute with A form
the subgroup generated by its primitive root.

All we need to show is that A cannot commute with an element of finite order,
that is a conjugate of S or T by Theorem 2.11. If A is conjugate to itself by CSC−1

or CTC−1 for some C ∈ PSL2(Z) then B = C−1AC is conjugate to itself by S or T ,
which is impossible from the normal form of elements in Z/2 ∗ Z/3.

Alternatively, the actions of PSL2(Z) by conjugacy on its primitive infinite order
elements and on the periodic axes of T are equivalent by the map W 7→ gW . Hence
the centraliser of A is the stabiliser of its axis gA which is reduced to the infinite
cyclic subgroup generated by its primitive root.
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Functions of two conjugacy classes: sum over double cosets
Consider a group Γ acting on a space Σ and a function f defined on Σ × Σ with
values in a commutative group Λ which is invariant under the diagonal action of Γ:

f : Σ× Σ→ Λ ∀W ∈ Γ, ∀a, b ∈ Σ : f(a, b) = f(W · a,W · b)
We define an invariant F for pairs of Γ-orbits [a], [b] by summing f over all pairs

of representatives of the orbits considered modulo the diagonal action of Γ.
The pairs of representatives for the orbits are parametrized by the (U · a, V · b)

for (U, V ) ∈ Γ/(Stab a) × Γ/(Stab b), and the quotient of this set by the diagonal
action of Γ by left translations is denoted Γ/(Stab a)×Γ Γ/(Stab b).

Consequently, the sum indexed by (U, V ) ∈ (Γ/ Stab a)×Γ (Γ/ Stab b) defines our
desired invariant:

F ([a], [b]) :=
∑
(U,V )

f(U · A, V · b)

This can also be written as the sum over double cosets W ∈ (Stab a)\Γ/(Stab b):

F ([a], [b]) =
∑
W

f(a,W · b)

because the map (Γ/ Stab a) × (Γ/ Stab b) → (Stab a)\Γ/(Stab b) sending (U, V ) to
W = U−1V is surjective, and its fibers are the orbits under the diagonal action of Γ
by left translations.
Remark 2.50. To ensure that the sum is well defined, it must have finite support
or converge in a completion of Λ for an appropriate norm, and that depends on the
behaviour of f . (We can always bypass this problem by adding formal variables in
the sum at the expense of finding an invariant F which is too rich to be computable.)

We shall apply this discussion to the actions of Γ = PSL2(Z): on the group
PSL2(R) or its lattice PSL2(Z); on the Lie algebra sl2(R), its lattice sl2(Z), or the
symmetric space H ∪H′; on the trivalent tree T or its infinite oriented geodesics G.

We have seen that several of these actions are closely related. For instance to
an element A ∈ PSL2(R) one may associate its projection pr(A) ∈ sl2(R), and
its projectivization P(prA) ∈ P(sl2(R)). One can make a similar correspondence
between elements in PSL2(Z) and their (weighted) fixed points in T ∪ ∂T ∪ G.

The function f(a, b) could be obtained from geometrical invariants such as the
scalar product 〈a, b〉, like the cross-ratio bir(α′, α, β ′, β), as well as combinatorial
invariants related to sinc(ga, gb) and cross(ga, gb), like cosign(gA, gB)× cross(ga, gb).

Of course when PSL2(Z) acts on itself by conjugacy, we obtain invariants for
pairs of conjugacy classes, and when they are hyperbolic the stabilisers have been
described in Corollary 2.49.
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Functions of conjugacy classes: sum over Lyndon cycles
Consider a function f defined on pairs of coprime primitive infinite order elements
A,B ∈ PSL2(Z), which is invariant under the diagonal action of PSL2(Z) on itself by
left conjugacy. This amounts to a function defined on pairs of geodesics gA, gB ⊂ T
with distinct fixed points, which is invariant under the diagonal action of PSL2(Z).

In order to compute the sum defining F ([A], [B]), we may group the terms
f(UAU−1, V BV −1) according to the cosign(UAU−1, V BV −1) ∈ {−1, 0, 1} to obtain:

F = F− + F0 + F+

The sum F+ has finite support, contained in the set of pairs (σiA, σjB) of Lyndon
representatives for the conjugacy classes of A,B ∈ PSL2(N), thus:

F+([A], [B]) =

len(A)∑
i=1

len(B)∑
j=1

f
(
σiA, σjB

)
Similarly the sum F− has finite support, which we may also index by pairs of Lyndon
representatives (σiA, σjB) for the conjugacy classes of A,B ∈ PSL2(N) using the fact
that cosign(A,B) = − cosign(A, SBS−1), thus:

F−([A], [B]) =

len(A)∑
i=1

len(B)∑
j=1

f
(
σiA, S(σjB)S−1

)
These sums are easy to compute, either by hand or with the help of a computer,
given Lyndon representatives A,B ∈ PSL2(N) and an expression for f .
Remark 2.51. One may similarly decompose the sum F0 in two parts depending on
the relative orientations of the axes, which are interchanged by the action of S on
one of the components of f . However their index sets are infinite.

Now suppose that for all A,B we have cosign(A,B) = 0 =⇒ f(A,B) = 0 and
f(A,B−1) = ϵf(A,B) with ϵ ∈ {±1}. This holds for cross and cosign with ϵ = −1,
and for their product or their absolute values with ϵ = 1. Then F0 = 0 and using
SCS−1 = tC−1 we find that F−([A], [B]) = ϵ · F+([A], [

tB]). Thus we may compute
F from the expression of f on pairs of Lyndon representatives:

F ([A], [B]) = F+([A], [B]) + ϵ · F+([A], [
tB])

Scholium 2.52. In the second part of this thesis we will compute intersection num-
bers of modular geodesics and linking numbers of modular knots, and recover the
sums F or F+ associated to functions f involving cross& cosign.
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Linking numbers of modular knots
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Chapter 3

Modular geodesics

Outline of the chapter
This chapter is divided in two sections, both of which will serve in the next chapter.

Geometry of modular geodesics
The first section concerns the topology and combinatorics of modular geodesics.

We first define the modular orbifold M = PSL2(Z)\HP which has two conical
singularities i&j of order 2&3 and a hyperbolic metric. We also define a “projective
linear structure” on M using the map Pψ̄ from proposition 2.5.

Then we discuss the topology of its closed hyperbolic geodesics. Proposition 2.23
characterises those which pass through i or j in terms of their Lyndon representatives,
and we use 2.38 to define their canonical perturbations. This is the content of
Corollary 3.4. Let us mention that Sarnak estimated in [Sar07] the asymptotic
number of geodesics containing i in order to investigate their distribution.

The (perturbed) modular geodesics lift in the thrice punctured sphere M \ {i, j}
whose fundamental group is freely generated by s&t. We describe their homotopy
classes in terms of the corresponding cycles of s±1&t±1. This relies on Proposition
2.40 and Remark 2.38 and forms the content of Corollary 3.8.

Then we express in Proposition 3.10 the intersection numbers between hyperbolic
geodesics using the formalism developed in the last paragraphs of chapter 2. We also
show that the lifts of (perturbed) modular geodesics in M \ {i, j} are taut, that is
minimally intersecting in their homotopy class (the same holds for finite collections).
We mention that Birman and Series [BS84] have an algorithm for computing self-
intersection numbers of taut loops in a smooth surface of negative euler characteristic.
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Finally, we define in 3.17 the linear representative of hyperbolic conjugacy class in
π1(M) as a loop in the projective linear model of M. It avoids the singularities and we
describe the homotopy class of its lift in M \ {i, j} using Proposition 2.33. We also
provide practical algorithms to draw those linear representatives. The hyperbolic
and linear representatives are homotopic in the orbifold M but they may have non-
homotopic lifts in M\{i, j}, and different self-intersection numbers. We explain why
(finite collections of) linear representatives in M \ {i, j} are taut, so that one may
compute their self-intersection numbers using the algorithm of Birman-Series.

Lifting geodesics in Galois covers
In the second section we first describe the covers M0 of the modular orbifold M
through their Galois correspondence with the subgroups Γ0 of its fundamental group
Γ = Z/2∗Z/3. They lead to the “dessins d’enfants" introduced by A. Grothendieck in
[Gro97], to which [SV90, LZ04] may serve as nice introductions. Those are embedded
graphs in the cover M0 →M obtained as pull back of the geodesic arc (i, j) ⊂M.

In particular, we focus on the Galois cover T∗ →M by the punctured torus which
corresponds to the first derived subgroup Γ′, or equivalently to the abelianisation
morphism Z/2∗Z/3→ Z/2×Z/3. The Galois action of a generator for the quotient
Γ/Γ′ = Z/6 on the cover T∗ is by rotation of order 6. This is well known (see
[Ghy17] for instance), and forms the content of Proposition 3.26. Then we consider
the universal abelian cover of this punctured torus T∗, corresponding to the second
derived subgroup Γ′′. The Galois action of the quotient Γ′/Γ′′ = Z2 is by translation.
Putting those constructions together we find that Γ/Γ′′ is canonically isomorphic to
the semi-direct product Γ/Γ′ o Γ′/Γ′′ = Z/6o Z2, realised as the isometry group of
a hexagonal lattice Γ′/Γ′′ = Z2 in the plane. These (presumably new) results are
contained in Proposition 3.29 and its Corollary 3.31, but they can be considered as
excursions.

Finally we consider the lifts of modular geodesics in Galois covers, in order to
“simplify” them and define several topological quantities. We show in Proposition
3.36 that the lifts of homotopic and linear representatives in finite Galois covers with
no orbifold singularities are connected by isotopies and Reidemeister triangle moves.
Then we focus on the lifts of combinatorial axes in the dessin d’enfant, especially in
that corresponding to the second derived subgroup Γ′′ which is a hexagonal graph
embedded in the punctured plane R2 \ Z2 forming the universal abelian cover of
T∗. In particular, we recover the Rademacher invariant as an asymptotic winding
number of combinatorial paths in this hexagonal graph.
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3.1 Loops in the modular orbifold

The modular orbifold
We denote Γ = PSL2(Z). Recall Proposition 2.2 describing the action of Γ on 42

and Proposition 2.5 providing an ideal triangulation of HP by the interior of 42. We
deduce that the subgroup Γ of PSL2(R) acts properly discontinuously on HP, with
fundamental domain the triangle (∞, 0, j) formed by the fixed points of L and R on
the boundary and of T inside. We let M = 42/Γ and M = HP/Γ.

This fundamental domain (∞, 0, j) can be cut along the geodesic arc joining i
and j to obtain a pair of isometric triangles (i, j,∞) and (i, j, 0): identifying them
along their isometric edges yields the quotient M. It is a hyperbolic two-dimensional
orbifold, with two conical points of order 2 and 3 respectively associated to the fixed
points i and j for the elliptic elements S and T , and a cusp associated to the fixed
point∞ for the parabolic element R. It is homotopically equivalent to a three-holed
sphere with discs attached along two boundary components by homeomorphisms of
the circle having degrees 2 and 3. See [Hae90] for homotopies in the orbifold category.
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Figure 3.1: The hyperbolic plane HP is triangulated by 4′
2. The union of a grey

triangle and a white triangle forms a fundamental domain under the action of Γ.
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The hyperbolic metric descending on M has finite area π/3 since three Γ-translates
of the fundamental triangle pave an ideal triangle (whose area equals π by the Gauss-
Bonnet theorem, because its angles add up to zero). This shows that Γ is a lattice
in PSL2(R), that is a discrete subgroup with finite covolume.

Remark 3.1. A finitely generated discrete subgroup of PSL2(R) with infinite co-
volume acts on HP with quotient an orbifold having ends of infinite area: they are
trumpets (whose local model is the quotient of H by a hyperbolic cyclic group) instead
of cusps (whose local model is the quotient of HP by a parabolic cyclic group).

Projective model for the modular orbifold
Recall that Proposition 2.5 defined an isomorphism P(ψ̄) from the geometric real-
isation of 44 in R2 to the geometric realisation of 42 in RP2 which reverses their
orientation. It sends the base triangle ▽1 = (v0, v1, v∞) of the lotus to the base
triangle ▽2 = (0, 1,∞) in the ideal triangulation of the hyperbolic plane. It also
conjugates the actions of the monoid PSL2(N) on the lotus and its image.

The map P(ψ̄) is projective linear in restriction to each triangle, so it matches
their first barycentric subdivisions: the center of gravity of ▽1 is sent to the incenter
of ▽2. Hence ▽1 is cut into three triangles by the long legs of its medians, each one
mapping to a fundamental domain for the action of Γ on 42.

At the target, the triangle ▽2 quotients to M under the action of T by hyperbolic
rotation of order three around its incenter, and after the identification of the edge
(0,∞) with (0, 1) and (1,∞) by L and R. Let us pull these back on ▽1 to obtain
(after removing its vertices) a projective model of the modular orbifold M.

The action of T pulls back on ▽1 to the unique projective transformation which
cyclically permutes the vertices (v∞, v1, v0) and fixes the barycenter. The actions of
L and R identify hypothenuse of ▽1 with its vertical and horizontal edges. Notice
that the transformation T restricted to the segments of the base glider joining j to∞
corresponds to the euclidean reflection across the diagonal. Moreover, in restriction
to the hypothenuse of ▽1, we may compose the transformations TL = S = R−1T and
find the symmetry across its barycenter. For the euclidean metric on ▽1, the pairs
of equidistant points on the edges (v∞, i)&(i, v0) and (v∞, j)&(j, v0) are identified.
This metric descends on M to a flat metric with conical singularities at i and j.

Remark 3.2. Recall that P(ψ̄) : 44 ⊂ R2 →42 ⊂ P(H∪X) is orientation reversing,
and ▽2 →M is orientation preserving, thus ▽1 →M is orientation reversing.
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Figure 3.2: Identifications of ▽1 yielding the projective model for M.

Modular geodesics: homotopy classes of their lifts in M\{i, j}
A geodesic in M lifts to a geodesic in HP which is the translation axis of a unique
one parameter subgroup of hyperbolic matrices in PSL2(R), and two geodesics in HP
project to the same geodesic in M if and only if the corresponding one parameter
subgroups generated by those matrices are conjugate by an element of PSL2(Z).

We are exclusively interested in closed geodesics: they correspond to conjugacy
classes of hyperbolic matrices in PSL2(Z). Taking a power of a closed geodesic,
that is winding several times around it (and inverting its direction if the exponent
is negative), has the same effect on (any representative of) the conjugacy class. The
length λA of the closed geodesic γA associated to A ∈ PSL2(Z) is the translation
length of A given by Tr(A)/2 = cosh (λA/2).

One may ask how many closed geodesics there are of length at most λ, or how are
they distributed in the orbifold. In this chapter we investigate how to draw them,
what are their intersection numbers, and how do they lift in Galois covers.

We first describe their relative position with respect to the conical singularities.

Remark 3.3. A neighbourhood of i ∈M is the quotient of a neighbourhood of i ∈ HP
by the action of S, so an arc through i ∈ HP projects to an arc which reaches i in
M, and leaves with an angle ±π ≡ 0 mod π, in the opposite direction.

Similarly, a neighbourhood of j ∈M is the quotient of a neighbourhood of j ∈ HP
by the action of J , so an arc through j ∈ HP projects to an arc which reaches j in
M, and leaves with an angle ±π ≡ ±π/3 mod 2π/3.

Corollary 3.4. A closed geodesic in M contains i if and only if the corresponding
conjugacy class in PSL2(Z) is symmetric (2.26). If it is furthermore primitive then
it reaches and leaves i twice, making an angle 2(arctan(α)− arctan(1/α′)) mod π.
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A closed geodesic in M contains j if and only if it admits a Lyndon representative
A ∈ PSL2(N) such that Tr(AT ) = Tr(AT−1).

Proof. Consider a primitive closed geodesic γ : S1 →M.
The moments γ reaches i ∈ M are defined as the preimages γ−1(i) ⊂ S1. They

are in bijection with the lifts of γ passing through i ∈ HP, modulo the action of the
stabiliser of i ∈ HP, which is generated by S. By Proposition 2.23, these lifts are the
translation axes of the symmetric representatives in the conjugacy class. By Lemma
2.27 such symmetric representatives belong to PSL2(Z) up to conjugacy by S, an
there are two of them: they are of the form tBB and BtB for some B ∈ PSL2(N).
The angle in R/2π made by two geodesics of HP intersecting at i is deduced from
their attractive fixed points by stereographic projection.

The moments γ reaches j ∈M are described similarly using Proposition 2.23.

Definition 3.5. Consider a modular geodesic in M, and let us define its privileged
perturbation in M \ {i, j}.

If the geodesic avoids i and j, then it equals its privileged perturbation. Otherwise,
choose a lift γ ⊂ HP and perturb it slightly off each point in the orbits of i and j as
prescribed by the canonical choices of Remark 2.38, and project it down to M\{i, j}.

Remark 3.6. The canonical choices of 2.38 imply that the axis of a symmetric
A ∈ PSL2(N) is perturbed in the neighbourhood of i so that it surrounds it clockwize
if A starts with an L, and couter-clockwize if A starts with an R. The opposite choice
would lead to a perturbed loop in M \ {i, j} with the inverse homotopy class.

Definition 3.7. A multiloop in M with k ∈ N components is a smooth map from
the disjoint union of k oriented circles whose components are labelled, considered up
to individual reparametrizations. A loop is a multiloop with one component.

We base the orbifold fundamental group of M at a point very close to i on the
geodesic arc towards j. It is isomorphic to Γ.

One should be carefull with homotopies in orbifolds. For instance a loop which
circles n times around a cyclic singularity of order n is contractible in the orbifold.
More generally, various representatives of the same homotopy class in M may lift
to different homotopy classes in M \ {i, j}. The inclusion of this three-holed sphere
in the modular orbifold yields a surjection π1(M \ {i, j}) → π1(M) and a single
conjugacy class of the target may lift to several conjugacy classes of the source.

Still, the algebraic simplifications in the modular group mirror the loop simpli-
fications in the modular orbifold, hence conjugacy classes in Γ correspond to free
homotopy classes of loops in M. Accordingly a closed loop has the same attributes
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Figure 3.3: The geodesic axis γRL and its canonical perturbation. Their respective
projections in M and in M \ {i, j}.

as a conjugacy class. It is trivial if it bounds a disc with no singularities, elliptic if
it circles around a conical singularity, parabolic if it circles around the cusp, and hy-
perbolic otherwize. Moreover, a non elliptic loop is primitive unless it is homotopic
to a loop wrapping several times around the same path.

To summarize, the hyperbolic conjugacy classes in the modular group parametrize
the homotopy classes of hyperbolic loops as well as the closed geodesics in M. In
other terms, every free homotopy class of hyperbolic loop contains a unique geodesic.

Consider the free homotopy class of a hyperbolic loop in M. Its unique geodesic
representative has a privileged perturbation in M\{i, j}: what is its homotopy class?

Recall that Theorem 2.11 used the presentation of π1(M) = Z/2 ∗ Z/3 as the
free amalgam of its subgroups generated by S&T to derive a normal form for its
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Figure 3.4: The loops s, t ⊂M \ {i, j} freely generate π1(M \ {i, j}).

conjugacy classes. By Corollary 2.19, the submonoid PSL2(N) ⊂ PSL2(Z) which is
freely generated by L = T−1S and R = TS−1, intersects every hyperbolic class along
its Lyndon representatives, which are cyclic permutation of a single L&R-word.

The group π1(M\{i, j}) = Z∗Z is freely generated by the loops s&t surrounding
the removed punctures i&j, with the orientation induced by M, as traced in figure
3.4. A homotopy class of loops in M \ {i, j} corresponds to a conjugacy class in its
fundamental group hence to a unique word in s&t up to cyclic permutation.

The inclusion M\{i, j} ⊂M induces the morphism of fundamental groups Z∗Z→
Z/2∗Z/3 defined by s 7→ S and t 7→ T . The question amounts to finding a “geodesic
section” of this morphism at the level of conjugacy classes.

Corollary 3.8. A closed geodesic in M encoded by an L&R-cycle lifts in M\{i, j} to
a homotopy class encoded by an s&t-cycle computed using the translation algorithm
of Proposition 2.40 and applying the canonical perturbations of Remark 2.38.

Scholium 3.9. The algorithm of Proposition 2.40 is rather cumbersome because it
does not provide local translation rules L&R⇝ s&t, as explained in Remark 2.37.

In a later subsection, we will use the projective model of the orbifold to define
a loop which is homotopic to our modular geodesic, and which lifts in M \ {i, j}
according to the simpler algorithm of 2.33.

Proof. Consider a closed geodesic in M corresponding to a conjugacy class in π1(M).
Among its lifts in HP, those which intersect (0,∞) positively are the translation axes
(α′

k, αk) of its Lyndon representatives Ak ∈ PSL2(N). The translation axis (α′
k, αk)

intersects the base triangle ▽2 ⊂ 42 along a segment, which equals the inverse image
by an element in PSL2(N) of the intersection between (α′

0, α0) and the k-th triangle
of 42 from the base edge. We obtain a union of n segments in ▽2 which intersect
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its first barycentric subdivision ▽′
2 as described by the algorithm of Proposition

2.40 translating L&R-words into s&t-words (which tells in particular whether each
segment passes to the left or right of the points i and j). (We some axes pass through
any of {i, T i, T−1i}, the same holds for their canonical perturbations.)

These (perturbed) segments project to the (perturbed) modular geodesic under
the action of T by rotation of order 3 which cyclically permutes the three gliders
in ▽′

2, and the identifications of the edges by L&R. Consequently, this (perturbed)
geodesic lifts in M \ {i, j} to a loop whose homotopy class is described by an s&t
cycle, obtained by translating the L&R-cycle according to Proposition 2.40.

Figure 3.5: Quotient ▽2 →M with the portion of an axis encoded by S−1T−2S−1.

Intersection numbers of modular geodesics
Recall we learnt at the end of Section 2.3 how to construct invariants of two conjugacy
classes in the modular group. One of them, well defined for primitive hyperbolic
classes, is the intersection number between the corresponding modular geodesics.
Of course, this intersection number extends to non primitive hyperbolic conjugacy
classes provided we count intersection numbers with the appropriate multiplicities.
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Proposition 3.10. The geometric intersection of the closed geodesics in M associ-
ated to the hyperbolic elements A,B ∈ Γ = π1(M) is equal to the finite sum:

I([A], [B]) =
∑
(U,V )

|cross|(UAU−1, V BV −1)

indexed by the (U, V ) ∈ (Γ/ StabA) ×Γ (Γ/ StabB) with Stab(A) and Stab(B) the
cyclic subgroups generated by the primitive roots of A and B.

This sum has finite support, and can be computed as :

I([A], [B]) = I+([A], [B]) + I+([A], [
tB])

where we define I+([A], [B]) as the same sum restricted over the pairs (σiA, σjB) of
Lyndon representatives for the conjugacy classes of A,B ∈ PSL2(N), that is:

I+([A], [B]) =

len(A)∑
i=1

len(B)∑
j=1

|cross|
(
σiA, σjB

)
Remark 3.11. The topological space underlying the modular orbifold has trivial ho-
mology, so the algebraic intersection numbers between modular geodesics are trivial.
Hence for all hyperbolic A,B ∈ PSL2(Z), the cross function satisfies the identity:∑

(U,V )

cross(UAU−1, V BV −1) = 0.

Remark 3.12. One may also compute the intersection numbers between (perturbed)
modular geodesics using the s&t-cycles of their lifts in M \ {i, j}.

This relies on the algorithm of Birman-Series [BS84] which computes the minimal
intersection numbers between homotopy classes of loops in a compact surface of neg-
ative euler characteristic with non-empty boundary. The fundamental group of such
a surface is free of finite type. The algorithm takes as input a free cyclically ordered
set of generators, and the description of loops as cyclic words in those generators.

Example 3.13. The formulae of Proposition 3.10 are valid even when A,B are equal
or opposite, in which case they count the intersection number between two parallel
copies of a same loop, which is twice its self-intersection. More generally they are
valid when A,B are not coprime, that is equal to powers of a same element.

For instance the loop corresponding to RLL has self-intersection 3 since:

I([RLL], [RLL]) = I+([RLL], [RLL]) + I+([RLL], [RRL]) = 4 + 2 = 2× 3.
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RLL⇝ t◦s−1t−1s−1t−1s−1 RLL⇝ t+1s−1t−1s−1t−1s−1 RL3 ⇝ (t−2s−1)(t−1s−1)3

Figure 3.6: Minimally intersecting representatives in M \ {i, j} for the homotopy
class of (t+1s−1)(t−1s−1)(t+1s−1) and (t−2s−1)(t−1s−1)(t−1s−1)(t−1s−1).

By Corollary 3.8 the modular geodesic lifts in M \ {i, j} to the homotopy class of
(t+1s−1)(t−1s−1)(t+1s−1), of which a representative is depicted in Figure 3.6.

For another example, the loop corresponding to RLLL has self-intersection 4 as:

I([RLLL], [RLLL]) = I+([RLLL], [RLLL]) + I+([RLLL], [RRRL]) = 6 + 2 = 2× 4.

By Corollary 3.8 the modular geodesic lifts in M \ {i, j} to the homotopy class of
(t−2s−1)(t−1s−1)(t−1s−1)(t−1s−1) of which a representative is depicted in Figure 3.6.

Definition 3.14. A multiloop in an orientable orbifold is called taut when it is
minimally self-intersecting in its homotopy class. It is called essential when none
of its components can be homotoped to a point whether smooth or singular, into a
boundary component, or into a cusp.

Freedman-Hass-Scott have shown [FHS82] that in a compact orientable rieman-
nian surface, a finite collection of essential geodesics which remain in the interior de-
fines a taut multiloop. (If the boundary is convex, and in particular if it is geodesic,
then any essential geodesic must remain in the interior).

Proposition 3.15. Any collection of (perturbed) modular geodesics defines a multi-
loop in M \ {i, j} which is taut.

Proof. The perturbed modular geodesic remains in the complement of two disjoint
disc neighbourhoods Di,Dj of i, j in M. Consider the restriction of the hyperbolic
metric of M to M \ (Di ∪Dj). If the modular geodesic avoids i&j, then we are done.
Otherwize, provided its perturbation and the disc neighbourhoods Di,Dj are chosen
small enough, one may slightly increase the metric in the collar neighbourhoods of the
boundaries ∂Di and ∂Dj so that the unique geodesic of M\(Di∪Dj) in the homotopy
class of the perturbed geodesic lies inside M \ (Di ∪ Dj) and remains isotopic to the
perturbed modular geodesic.
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Question 3.16. We conjecture that modular geodesics are minimally intersecting in
their orbifold homotopy class (which is a stronger statement than Proposition 3.15).

In other terms, we believe that among all homotopy classes in the surface M\{i, j}
which map to a given hyperbolic homotopy class in the orbifold M, the one defined
by the lift of the (perturbed) modular geodesic has minimal self-intersection.

Linear representatives for hyperbolic conjugacy classes in π1(M)

Let us now define the linear representative of a hyperbolic conjugacy class in the
modular group. It is a loop in the projective model of the modular orbifold described
at the beginning of this section. In particular it will have a well defined isotopy class.

Definition 3.17. Fix a conjugacy class in PSL2(Z) and let Ak = σkA ∈ PSL2(N) be
its n Lyndon representatives: their stable eigen-directions intersect the base triangle
▽1 of the lotus 41 in n disjoint segments avoiding all the vertices of ▽′

1.
After quotienting ▽1 by the L&R&T -identifications yielding the projective model

of M, we obtain a loop which we call the linear representative of the conjugacy class.
This linear representative lifts in M \ {i, j} to a homotopy class whose s&t-cycle

is obtained from the L&R-cycle of the Aj by the translation rules of Proposition 2.33:

LL⇝ (t−1s−1)L RR⇝ (t+1s+1)R

LR⇝ (t−1s+1)R RL⇝ (t+1s−1)L

which up to a cyclic permutation corresponding to a conjugacy by s+1 or s−1 amount
to L⇝ s−1t−1 and R⇝ s+1t+1.

Remark 3.18. Since ▽1 → M is orientation reversing, the rules L ⇝ s−1t−1 and
R ⇝ s+1t+1 tell us how the axis of an L&R-word in 41 projects to M seen from
beneath. From this perspective, the loops s, t ⊂M\{i, j} appear to turn anti-clockwize
around the singularities, as in Figure 3.7 (contrary to 3.4).

Let us propose practical algorithms to draw from a primitive L&R-cycle of length
n, the stable eigendirections of its Lyndon representatives Ak intersected with ▽′

1,
with enough precision. The required precision will be such that the translates under
the projective action of T provides a faithful picture of its isotopy class in the base
glider , and we shall explain how to report all segments in the base glider just after.

Arithmetic algorithm. Recall the increasing bijections Ak ↔ Ak(1) ↔ αk =
A∞

k (1), and note that the lines of inclination αk and A2
k(1) intersect the gliders in

the first n triangles in the lotus according to the same pattern.
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Figure 3.7: The loops s, t in M seen from beneath.

This yields the first algorithm: for each k, intersect the base triangle of the
lotus with the line of inclination A2

k(1) to obtain a segment, and label its initial and
endpoint by k and k + 1.

Combinatorial algorithm. The k-th segment goes from the hypothenuse (v∞, v0)
to either (v1, v0) or (v∞, v1) depending on whether Ak starts with an L or an R, the
relative position of its endpoint with respect to the middle of the edges depends
on the second letter. This determines the individual positions of the segments with
respect to the first barycentric subdivision 4′

1, and we know they are disjoint.
Let nw be the number of cyclic permutations of the L&R-word with prefix w.

Place n points on the base edge, partitioned as nL + nR on the left & right of its
midpoint, and label them by the L&R-factorisations of the Ak in lexicographic order.

Trace a segment from each of the nR points on the left to a point on the horizontal
edge, with nRR landing to the left and nRL landing to the right of its barycenter.
Trace a segment from each of the nL points on the right to a point on the vertical
edge, with nLR landing to the left and nLL landing to the right of its barycenter.

Hybrid algorithm. In the linear model, the endpoint of one segment determines
the starting point of the next as suggested in figure 3.9, whence a third algorithm.

Find an approximation of the first point on (v0, v∞) by intersecting with the
rational line through A2

0(1). Then follow the radial flow and return to (v0, v∞) each
time leaving the exiting the base triangle using the L&R identifications. Stop when
the L&R-factorisation of A0 has been read: the loop almost closes up.
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Drawing the loop after projection ▽1 → M. Now that we can draw the lin-
ear representative in ▽1, we may report all segments in the base glider using the
identifications of its edges with those of the other two gliders provided by L&R&T .

In fact, it is enough to consider the identifications given by L&R, and of the pairs
of equidistant points on the edges (v∞, i)&(i, v0) as well as (v∞, j)&(j, v0). This is
because the lines under consideration will never cross the edge (j, v1).

We may thus report all segments in the base glider and obtain a configuration of
segments providing a faithful picture for the isotopy class of the linear representative.

1
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Figure 3.8: Quotienting the axes of RL & LR under ▽1 →M. Compare Figure 3.3.

Figure 3.9: Apply the hybrid algorithm to RLL, report the segments in the base
glider and project by ▽1 → M to recover the homotopy class of s+1t+1s−1t−1s−1t−1.
Compare Figure 3.6.

Remark 3.19. The linear representatives for a finite set of primitive hyperbolic
conjugacy classes of π1(M) defines a multiloop in M.

In particular, it has a well defined isotopy class which we may draw using the
previous algorithms provided we adjust some precision issues to take into account the
relative positions between the various components.
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Remark 3.20. Using these drawing algorithms, we may observe on figure 3.9 that
the linear representative of RLL has self-intersection 4. However, we showed in
Example 3.13 that the corresponding modular geodesic has self-intersection 3.

Consequently, the linear representatives are not always minimally intersecting in
their orbifold homotopy class.

Proposition 3.21. The linear representative of a primitive hyperbolic conjugacy
class in π1(M) defines a loop in M \ {i, j} which is minimally intersecting in its
homotopy class. In M \ {i, j}, any two linear representatives realise the minimal
intersection number between loops in their homotopy classes.

Proof. The euclidean metric on the base triangle ▽1 of the lotus minus its barycenters
(of face, edges and vertices) descends to a flat metric on M \ {i, j}, for which the
linear representatives are closed geodesics. We conclude as in Proposition 3.15 that
they must be minimally intersecting.

Remark 3.22. The intersection numbers between linear representatives may thus
be computed by applying the algorithm of Birman-Series [BS84] to the s&t-cycles
encoding their homotopy classes in M \ {i, j}.

For example, the linear representative of RLL has homotopy class in M \ {i, j}
given by t+1s−1t−1s−1t−1s+1, and the Birman-Series algorithm confirms that it has
self-intersection 4.

Scholium 3.23. The linear representative and the perturbed hyperbolic representative
of a same hyperbolic conjugacy class in π1(M) are homotopic loops in the orbifold
M, but they often lift to non homotopic loops in the surface M \ {i, j}. In algorithms
terms, the Propositions 2.33 and 2.40 translate L&R-cycles into s&t-cycles which
have the same exponents of s modulo 2 and of t modulo 3, but may well be different.

Can we improve the orbifold-homotopy to a stronger equivalence relation, for
instance corresponding to homotopy of the lifted loops in the unit tangent bundle ?
We will address such questions in Section 4.1.
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3.2 Lifting geodesics to Galois covers
We wish to lift closed geodesics from the modular orbifold to Galois covers, in order to
simplify their topology, construct tractable invariants and reveal hidden structures.

Covers and Galois covers
We mark the hyperbolic plane HP at a point infinitely close to the fixed point i
of S and on the geodesic towards the fixed point j of T . The quotient orbifold
M = H/PSL2(Z) is thus pointed accordingly, and this identifies its loop fundamental
group π1(M) with the Galois group PSL2(Z) of its universal cover HP→M.

Every cover M0 of M is obtained by quotienting the universal cover HP of M by
the action of a subgroup of its fundamental group π1(M) = Gal(HP/M), that is the
fundamental group π1(M0) = Gal(HP/M).

The cover is Galois when the subgroup is normal, so the quotient is a group. Thus
a Galois cover M0 → M corresponds to a morphism from the fundamental group of
the base π1(M) = Gal(HP/M) onto the symmetry group of the cover Gal(M0/M),
and the kernel is the fundamental group of the total space π1(M0) = Gal(HP/M0).

Dessin d’enfants in general covers
Now fix a cover M0 → M and denote Γ0 → Γ the corresponding inclusion of funda-
mental groups. The cusps of M0 lie above the cusp of M and are parametrized by
the orbits under Γ0 of the ideal vertices QP1 ⊂ ∂HP for the triangulation 42 ⊂ HP.

Consider the graph T ′/Γ in M = HP/Γ whose vertices are the orbifold singu-
larities and whose only edge is the geodesic arc between them. Its preimage in
M0 = HP/Γ0 is a graph T ′/Γ0 homotopically embedded in the topological space un-
derlying the orbifold structure of M0. Every connected component of the complement
contains a unique cusp of M0. The graph is bipartite since every edge connects one
vertex covering i to another covering j, and their degrees divide 2 and 3 respectively.
Note that the edges of T ′/Γ0 are in bijection with the cosets of Γ/Γ0.

The vertices of degree one in T ′/Γ0 are (all) the orbifold singularities of M0, they
correspond to the conjugacy classes of torsion subgroups in Γ0, which are necessarily
isomorphic to Z/2 or Z/3. Indeed, an orbifold singularity of M0 is the projections of
a point p ∈ HP with non-trivial stabiliser Stab(p) ⊂ Γ0, and the singularity p mod Γ0

corresponds to the conjugacy class of Stab(p) in Γ0. Since Γ0 ⊂ Γ, the point p ∈ HP
must be a vertex of T ′, and its stabiliser must be either Z/2 or Z/3. Accordingly, it
projects to either i or j under the cover M0 →M.
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In particular Γ0 is torsion-free if and only if M0 is a smooth Riemann surface.
In that case every edge of T ′/Γ0 has an extremity of degree 2 and an extremity of
degree 3, and this quotient graph is the first barycentric subdivision of a trivalent
graph T /Γ0. The surface M0 retracts by deformation on this embedded trivalent
graph, so its fundamental group Γ0 is free.

Remark 3.24. The previous discussion implies that if a subgroup Γ0 ⊂ Γ is torsion-
free then it is free. If moreover it has finite index, then the graph T /Γ0 has twice
that amount of edges and is thus finite, so its euler characteristic equals that of M0.
Hence the rank of Γ0 equals the abelian rank of H1(M0;Z) which is one minus the
number of vertices plus the number of edges in T /Γ0.

Corollary 3.25. The modular group has exactly two free subgroups of rank 2, or
equivalently with index 6. They correspond to covers of the modular orbifold by a
surface homeomorphic to a sphere with three punctures and a torus with one puncture.

Since these surfaces are not homeomorphic, these two subgroups are not conjugate,
hence they are normal by unicity, and the covers are Galoisian.

The Galois covers with conical singularities
Now suppose the covering M0 → M is Galois and denote 1 → Γ0 → Γ → Π → 1
the corresponding short exact sequence of Galois groups. The Galois action of Π is
freely transitive on the edges of T ′/Γ0 since the quotient is T ′/Γ.

In particular the vertices above i all have degree 1 or 2 and those above j all have
degree 1 or 3. Since the graph is connected, there is at most one vertex of degree 1,
so there are only two Galois covers of M which have singularities, pictured in 3.10.

The first has two singularities of order 3, it corresponds to the kernel of the
morphism Z/2∗Z/3→ Z/2 counting the number of S modulo 2. The second has three
singularities of order 2, it corresponds to the kernel of the morphism Z/2∗Z/3→ Z/3
counting the number of T modulo 3.

The derived subgroup and the punctured torus
We now consider the Galois cover of M corresponding to the derived subgroup Γ′ =
[Γ,Γ], or to the abelianisation morphism Γ→ Γ/Γ′.

Proposition 3.26. The modular group Γ has abelianisation Z/2∗Z/3→ Z/2×Z/3.
The kernel Γ′ is freely generated by RL = [T, S] and LR = [T−1, S].

The corresponding galois cover of the modular orbifold is a punctured torus T∗,
the action of the Galois group Z/6 is represented in figure 3.11.
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Figure 3.10: Tilings of HP under the kernels of Γ→ Z/2 and Γ→ Z/3. The quotient
orbifolds are the only two covers of M with conical singularities.

Proof. The abelianisation functor from the category of groups to the category of
abelian groups (sending a group to its largest abelian quotient) is defined by a uni-
versal initial property, so it maps the sum in the category of groups (free amalgam)
to the sum in the category of abelian groups (equal to the product).

The derived subgroup of Γ, defined as the kernel Γ′ of its abelianisation map, is
generated by all its commutators [A,B] = ABA−1B−1 for A,B ∈ Γ.

The elements RL = [T, S−1] and LR = [T−1, S] generate a subgroup of Γ′ acting
on 42 with fundamental domain a quadrilateral obtained as the union of the two
adjacent triangles (∞, 0, 1) and (0,∞,−1).

In the first barycentric subdivision 4′
2, this quadrilateral is covered by 6 copies
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Figure 3.11: The group Γ′ acts on (the inside of) 42 with quotient a (punctured)
torus. The Galois action of Γ/Γ′ = Z/6 on the torus covering the modular orbifold.

of a fundamental domain for Γ, so the group generated by RL and LR has index 6
in Γ, and therefore equals Γ′.

As RL and LR match the opposite edges of this quadrilateral, the quotient HP/Γ′

is a punctured torus T∗ whose fundamental group is free on those two generators.

Remark 3.27. The derived subgroup Γ′ is the intersection of the kernels of the maps
Γ→ Z/2 and Γ→ Z/3. These count the (signed) number of occurrences of the letters
S and T modulo 2 and 3 respectively.

Remark 3.28. The vertices P(Z2) of 42 correspond to the horocycles Γ/〈R〉 of T .
They can also be visualised in HP as the components of the complement HP \ T .
What we just saw implies that Γ′ acts transitively on P(Z2), and the unique orbit
corresponds to the puncture of the torus, so Γ′ acts on 42 with quotient T.

The second derived subgroup and the hexagonal graph
Finally we study the Galois cover of M corresponding to the second derived subgroup
Γ′′ = [Γ′,Γ′] of Γ, or the metabelianisation morphism Γ→ Γ/Γ′′.

We have already covered M by T∗ using the abelianisation morphism Γ→ Γ/Γ′,
and we now investigate the Galois cover of T∗ corresponding to the abelianisation
morphism Γ′ → Γ′/Γ′′ (whose compactification yields the universal cover of T).

Proposition 3.29. The abelianitation Γ′ → Γ′/Γ′′ corresponds to the Hurwicz map
π1(T∗)→ H1(T∗;Z) of the punctured torus, and is thus given by Z ∗ Z→ Z× Z.
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It corresponds to a Galois covering of the punctured torus T∗ by a punctured plane
along a lattice R2 \ Z2, identified (by the Jacobian map) with H1(T∗;R) \H1(T∗;Z).

Its kernel Γ′′ = π1(R2 \ Z2) is freely generated by an infinite set of elements
(whose conjugacy classes in Γ′ are) indexed by H1(T∗;Z) = Γ′/Γ′′. For example, the
conjugates of [RL,LR] by all (RL)m(LR)n ∈ Γ′ with m,n ∈ Z2 freely generate Γ′′.

Remark 3.30. The vertices P(Z2) of 42 parametrize the horocycles Γ/〈R〉 of T .
They can also be visualised in HP as the components of the complement HP \ T .

Proposition 3.29 implies that the group Γ′′ acts on P(Z2) with quotient a lattice Z2

corresponding to the punctures in R2 \ Z2. In particular it acts on 42 with quotient
the universal cover R2 of T.

We now deduce the Galois action of Γ/Γ′′ on R2 \ Z2 → M by combining the
action of Γ/Γ′ on R2 \ Z2 → T∗ with the action of Γ/Γ′ on T∗ →M.

The group Γ′′ acts on the trivalent tree T ⊂ 42 \ QP1 with quotient a trivalent
graph H ⊂ R2 \Z2. The latter inclusion a homotopy equivalence, and the regions in
the complement (R2 \ Z2) \ H are punctured hexagons (for the hyperbolic metric).

Corollary 3.31. The group Γ/Γ′′ acts freely transitively on the oriented edges of
H, or equivalently on the edges of its first barycentric subdivision H′. The subgroup
Γ′/Γ′′ acts by translation of H ⊂ R2 \ Z2 with fundamental domain a tripod formed
by 3 incident edges of H as in figure 3.12.

This represents Γ/Γ′′ as the affine isometry group of a hexagonal lattice in the
oriented euclidean plane. More precisely Γ/Γ′′ = Γ′/Γ′′ o Γ′/Γ where the action of
Γ/Γ′ = Z/2 × Z/3 on Γ′/Γ′′ = Z2 is generated by the rotations S and T of order 2
and 3 around the 2-valent and 3-valent vertices of H as in figure 3.12.

Remark 3.32. Notice that Γ′/Γ′′ identifies canonically with the edges of H, which
are parallel to the base edge. On the other hand the set QP1/Γ′′ identifies canonically
with the regions of R2 \ H.

The group Γ′/Γ′′ acts freely transitively on the set QP1/Γ′′, and one may fix a
bijection sending an edge of H to the region of R2 \H placed immediately on its right
(this is not quite canonical as one may have chosen the region above or under).

Corollary 3.33. The set QP1/PSL2(Z)′′ is a free module of rank one over the ring
of integers Z[j].

The addition of two (classes of) rational numbers is obtained by concatenating
their even continued fraction expansions.
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Figure 3.12: Action of Γ/Γ′′ = Γ′/Γ′′ o Γ/Γ′ on the hexagonal graph H.

The metabelian cover HP/Γ′′ is naturally endowed with the hyperbolic metric,
but also with the unique euclidean metric which is invariant by the automorphism
action of Γ/Γ′′, for which the hexagonal lattice H ⊂ R2 \ Z2 is regular.

Question 3.34. The discovery of this hexagonal lattice structure on QP1/Γ′′ with
automorphism group Γ/Γ′′ is very intriguing.

In particular, many questions arise concerning the group structure of QP1/Γ′,
namely the arithmetics underlying the addition of such classes of fractions...

For instance can we complete this addition to Γ′′-classes of quadratic irrationals,
or to RP1/Γ′′? How to interpret alignment in Γ′/Γ′′ in terms of QP1/Γ′′?
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Lifting geodesics in Galois covers
Consider first a finite Galois covering M0 → M whose total space is non singular,
and denote Γ0 → Γ the corresponding finite index normal subgroup which is free.

The action of Γ by inner automorphisms restricts to an action by automorphisms
on Γ0, which corresponds to projecting a loop γ0 ∈ π1(M0) into π1(M), conjugating
it by γ ∈ π1(M) and lifting it back into π1(M0). On the one hand this restricts to the
inner automorphism action of Γ0, which corresponds to conjugating by those loops
in π1(M) which lift to loops in π1(M0); on the other hand it quotients to the action
of Γ/Γ0 by outer automorphism on Γ0, that is by monodromy on the fiber of M0

above the base point of M, or by Galois transformations of M0 →M.
For γ ∈ Γ and n ∈ Z, the conjugacy class of γn is either disjoint or contained

in the normal subgroup Γ0, and the latter happens when n belongs to the ideal mZ
generated by the order of γ mod Γ0. Topologically, the loop γn ∈ π1(M) lifts to an
arc which is a loop in π1(M0) when n ∈ mZ. The Γ-conjugacy class γm splits modulo
Γ0-conjugacy into the disjoint union of k classes α1, . . . , αk. The conjugacy action
of Γ/Γ0 on the set {α1, . . . , αk} is transitive, and the stabiliser of α1 is the cyclic
subgroup of order m generated by γ mod Γ0.

To recast this dicussion geometrically, let γ ∈ Γ be a hyperbolic conjugacy class.
A closed geodesic γ of length l in the base M has preimage in M0 a finite union of
closed geodesics α1∪· · ·∪αk which all have the same length ml with mk = CardΓ/Γ0.
Indeed, the Galois group Γ/Γ0 acts transitively on the αj and the stabiliser of each
αj is a cyclic group of order m. The integer m is minimal such that γm lifts to a
closed loop in M0, and together with the degree CardΠ of the covering, it determines
the number of components k in the preimage.

Remark 3.35. Most of this discussion can be adapted to infinite Galois covers, but
now the preimages of loops in M may by infinite arcs in M0, and one must be careful
to consider the right notions of homotopy adapted to the context (either equivariant
with respect to the cover, with compact support, or relative to the ends).

Recall from Section 3.1 that a hyperbolic conjugacy class in π1(M) encodes the
homotopy class of two loops in the orbifold M, namely its hyperbolic representative
and its linear representative. More generally, a finite collection of hyperbolic conju-
gacy classes in π1(M) has hyperbolic and linear representatives, which are multiloops
in M whose isotopy classes are well defined.

Recall from Example 3.13 that the (perturbed) hyperbolic and linear representa-
tives may have distinct homotopy classes in M\{i, j}. However, they are homotopic
in the orbifold M, and so are their preimages in any Galois cover M0. If we assume
that the Galois cover has no orbifold singularities, then one can say more.
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Proposition 3.36. Consider a normal subgroup Γ0 ⊂ Γ of finite index which is
torsion free, and let M0 →M be the corresponding finite Galois cover.

Consider the preimage in M0 of the hyperbolic and linear representatives associ-
ated to a finite collection of hyperbolic conjugacy classes in Γ.

Both of these multiloops are taut, and they are connected by a sequence of isotopies
and Reidemeister triangle moves RIII.

Proof. First we lift the hyperbolic and flat metrics from M to M0. The preimages
of the hyperbolic and linear representatives are collections of geodesics for those
lifted metrics. We deduce, using [FHS82] as in Propositions 3.15 and 3.21, that
these multiloops be taut. Hass and Scott [HS95] proved that in a smooth surface
with negative euler characteristic, all minimally intersecting multiloops in a same
homotopy class are connected by a sequence of isotopies and triangle moves.

Remark 3.37. Since a sub-multiloop of a taut multiloop is taut, the previous result
applies equally well to sub-multiloops of the preimage in M0 of the hyperbolic and
linear representatives, labelled by the same subsets of conjugacy classes in Γ0.

Scholium 3.38. We may apply this proposition to the case of the finite Galois cover
T∗ →M associated to the derived subgroup [Γ,Γ] ⊂ Γ.

We will do this in Section 4.1 to deduce that the hyperbolic and linear represen-
tatives have isotopic lifts in the unit tangent bundle of M.

Question 3.39. We may now ask: which loops in M pull-back in M0 to simple
multiloops, that is with disjoint and simple components? More generally, what are
the intersection numbers between these components?

Lifting combinatorial paths and geodesics
Let us define edge-paths and local geodesics in T ′

0 = T ′/Γ0 as we did in T ′ between
statements 2.8 and 2.11. An edge-path in T ′

0 is a sequence of edges indexed by an
interval of Z whose length may be finite or infinite, such that two successive elements
share an extremity. This yields a sequence of S and T±1 indicating how to turn the
edges around their bivalent and trivalent vertices to get from one to the next (which
is unique if Γ0 6= Γ). An edge-path is locally geodesic when this sequence of S and
T±1 alternates between both letters (so we are never turning around vertices).

The projection T ′ → T ′
0 between cyclically oriented based graphs sends local

geodesics of T ′ to local geodesics in T ′
0 . Conversely, if Γ0 is torsion free, then every

local geodesic in T ′
0 lifts to a unique local geodesic in T ′ once we have lifted one edge.

Note that in T ′
0 the locally geodesic edge-paths may not be injective, and that two

edges may be connected by several global geodesics.
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Lifting geodesics in the hexagonal graph
We now specialise to the discussion of the previous paragraph to case Γ0 = Γ′′ so
that T ′

0 = H′. (The primes denoting the derived subgroups and the primes denoting
the first barycentric subdivisions are unrelated, but no confusion should arise.) The
projection T ′ → H′ between cyclically oriented based graphs sends local geodesics of
T ′ to local geodesics in H′. Conversely, every local geodesic in H′ lifts to a unique
local geodesic in T ′ once we have lifted one edge.

In particular, an element of A ∈ Γ corresponds to a finite local geodesic segment
starting from the base edge of H′. Notice how the last edge eA mod Γ′′ encodes the
metabelianisation A mod Γ′′ as an automorphism of H′. In particular we may read
the abelianisation A mod Γ′ by comparing the angle made between the last edge and
the first edge which lies in 2πZ/6, and if A ∈ Γ′ we may read the metabelianisation
A mod Γ′′ from the difference between the last and first edge which is a vector in Z2.

Moreover, the translation axis in T ′ of a primitive hyperbolic A ∈ Γ projects to
a local geodesic gA mod Γ′′ in H′ which uniquely determines A. Indeed this amounts
to choosing a local geodesic from the base edge to that local geodesic, and extracting
from there its minimal period (being careful that the first and last edge of the period
may not be aligned, this depends on the abelianisation of A in Z/6).

Conversely, two primitive hyperbolic elements are conjugate in Γ if and only
if the projections of their translation axes in H′ belong to the same orbit under
the automorphism action of Γ/Γ′′. We may thus define invariants of a primitive
hyperbolic conjugacy class A ∈ Γ using the shape of the periodic (bi-infinite or
closed) local geodesic gA mod Γ′′ inH′. Of course, we know how to extract the period
of gA mod Γ′′ which encodes everything (such as the conjugacy class of A mod Γ′′),
but let us show how to read off simpler invariants from its geometry.

R L

R L2

R L

R L2

R

L

R

L2

Figure 3.13: Paths encoded by RLRLL & (RLRLL)2 in the hexagonal graph H.
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Proposition 3.40. For a hyperbolic A ∈ Γ, the hyperbolic geodesic γA mod Γ′′

in HP/Γ′′ and the combinatorial geodesic gA mod Γ′′ in T /Γ′′ avoid the vertices
P(Z2)/Γ′′ and intersect the same sequence of triangles in 42/Γ

′′; in particular they
are homotopic in R2 \ Z2 relative to the complement of large euclidean balls.

Proof. The proof follows from Proposition 2.28 and Corollary 2.31 which identify the
sequences of triangles in 42 intersected by γA and gA.

Remark 3.41. In chapter 5, we shall deform the inclusion PSL2(Z) ⊂ PSL2(R) to a
one parameter family of discrete and faithful representations ρq : Γ→ PSL2(R) such
that the quotient ρq(Γ)\HP corresponds to opening the cusp of M.

In HP/ρq(Γ′′) this yields a homotopy from the hyperbolic geodesic γA mod Γ′′ when
q = 0 to the combinatorial geodesic gA mod Γ′′ when q →∞.

Until the end of this subsection, for A ∈ Γ, let a be its order in Γ/Γ′, and A′ = Aa

its smallest power which belongs to Γ′. The (geometric or combinatorial) translation
axes of A and A′ coincide in T , hence so do their projections in H.

Note that A′ acts by translation on H ⊂ HP/Γ′′ and preserves the projected
axes gA mod Γ′′ or γA mod Γ′′. (When A′ ∈ Γ′′ the translation is trivial and these
projected axes are closed.) A fundamental domain for these projected axes under A′

consists in na periods where na is the primitivity exponent of A′ ∈ Γ, thus n is the
primitivity exponent of A ∈ Γ.

Length and distance. For an infinite order primitive A ∈ Γ, let len(A) ∈ N∗ be
the period length of gA in T , and set len(An) = n len(A). If A ∈ PSL2(N) then
len(A) = #L+#R counts the sum of the numbers of L&R in its factorisation. Since
len is invariant by conjugacy we can always compute on those Lyndon representatives.
For any A ∈ Γ with infinite order, len(A) is read off a fundamental domain for
gA mod Γ′′ under the translation action of A′ mod Γ′′ as half the length of its S&T±1

factorisation divided by the order a of A ∈ Γ/Γ′.
Recall that if λA denotes the hyperbolic translation length of A, that is the

hyperbolic length of a fundamental domain for γA mod A then Tr(A)/2 = coshλA/2
where λA is the hyperbolic length. One may ask for the relationship between the
integers l = len(A) and t = Tr(A). In terms of bounds we have l + 1 ≤ t ≤ Fib(l)
where the left term is attained for A = RLl and the right one is attained for A =
(RL)l, and we expect the normalised statistics of Tr given len to approach a Gaussian.
In terms of deformations of representations ρq : Γ→ PSL2(R), we shall see that the
hyperbolic length λAq converges to the combinatorial length len(A) as q →∞.
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Another invariant of the conjugacy class of A mod Γ′′ is the euclidean distance
in 42/Γ

′′ between the cusps indexed by 1(1) and A(1). This is easy to read off the
geometry of gA mod Γ′′ provided we know len(A).

We may also define the breadth of A as the length of the smallest B ∈ Γ such
that gA mod Γ′′ and gBAB−1 mod Γ′′ are disjoint. Alternatively we may consider the
norm of the smallest translation B ∈ Γ′/Γ′′ such that gA mod Γ′′ and B ·(gA mod Γ′′)
are disjoint.

Rademacher cocycle and the index function. For an infinite order A ∈ Γ,
consider a fundamental domain for gA mod Γ′′ under the translation action of A′,
and let aRad(A) ∈ Z be its winding number counted in multiples of 2π/6. Of course
Rad(A) is invariant by conjugacy and Rad(An) = nRad(A). We may also define
Rad(S±1) = ±3 and Rad(T±1) = ±2.

Note that if A ∈ PSL2(N) then Rad(A) = #R−#L counts the difference between
the numbers of L&R in its factorisation, so the restriction Rad: PSL2(N) → Z is a
morphism of monoids.

Now for a infinite order element A ∈ Γ we define its asymptotic index function

IndA : QP1/Γ′′ → Z

which to a cusp of HP/Γ′′ associates the index of the hyperbolic geodesic γA mod Γ′′,
or equivalently of the combinatorial geodesic gA mod Γ′′. If A ∈ Γ′′ then the projected
geodesics are closed, and we must travel around them once.

The index function of An is equal to that of A, so we might as well suppose A
primitive. The index function of a conjugacy class is well defined only modulo the
action of Γ/Γ′′ at the source, because IndCAC−1 = IndA ◦C.

This defines a “frieze pattern” with integers decorating the points of the hexagonal
lattice which is periodic under the action of A′ mod Γ′′. Then Rad(A′) is equal to
the eulerian integral of IndA along a period.
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Modular knots

Outline of the chapter
Let us recall a few facts (contained in Proposition 1.82) concerning the action of
PSL2(R) on the hyperbolic plane HP, its unit tangent bundle, and its boundary
RP1. The group PSL2(R) acts freely transitively on the unit tangent bundle of HP,
with which it therefore identifies once we have chosen a base point such as the unit
vector based at the fixed point i of S and pointing towards the fixed point j of T .

As PSL2(R) is the unit tangent bundle to the hyperbolic plane PSL2(R)/PSO2(R),
the quotient U := PSL2(Z)\PSL2(R) is the unit tangent bundle to the modular orb-
ifold M = PSL2(Z)\PSL2(R)/PSO2(R). The left action of PSL2(Z) on PSL2(R) is
free, so the quotient U is a 3-manifold. It is filled by the circular orbits for the right
action of PSO2(R), and the space of orbits is the two-dimensional orbifold M.

The primitive closed hyperbolic geodesics in M, also known as modular geodesics,
lift in U to the primitive periodic orbits for the geodesic flow, called modular knots.
Let us recall from Section 2.2 that these correspond to the primitive hyperbolic
conjugacy classes in the modular group. Such a conjugacy class intersects the monoid
PSL2(N) freely generated by L&R along its Lyndon representatives: those are the
cyclic permutations of a primitive L&R-word in which both letters occur.

This chapter is divided in two sections. The first describes the topology of the
Seifert fibration U → M and the homotopy classes of modular knots and does not
contain many new results. The second expresses the linking numbers between mod-
ular knots by various formulae with combinatorial, dynamical or group theoretical
flavour.

163
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The unit tangent bundle of the modular orbifold
The first section opens with a short discussion concerning orientation matters (which
one may skip as it mostly serves to disentangle the canonical choices and conventions
on which depend some chirality issues encountered along the way).

To describe the topology of the Seifert fibration U → M with generic fibers S1,
we first study the corresponding exact sequence of fundamental groups, which is a
central extension 1→ π1(S1)→ π1(U)→ π1(M)→ 1. Here we find it instructive to
treat it as a special case of unit tangent bundle to a Fuchsian orbifold (the quotient
of HP by a discrete subgroup of PSL2(R)).

Then we describe the Seifert parameters of the fibration, following [Sco83] and
[Mon87]. We recover the fact that U is homeomorphic to the complement of a
trefoil knot in the sphere. This had been shown in [Mil71, ğ10] and more precisely
concerning compactification matters in [PH79]. We also refer to [Pin14] and [Klo16].
Its chirality (which seems to have never been considered), depends on the orientation
matters discussed at the beginning. In any case, this homeomorphism yields an
isomorphism π1(U) ' B3 with the braid group on 3 strands.

Recall from Chapter 3 that a collection of hyperbolic conjugacy classes in π1(M)
has a hyperbolic representative and a linear representative, which are two immersed
multiloops with no self-tangencies in M. We claim in Theorem 4.13 that their tangent
lifts in U are isotopic links and provide an incomplete proof relying on Proposition
3.36. An alternative proof, referring to [Ghy07, ğ3.4], will be given in Theorem 4.24.

The homotopy classes of modular knots correspond to conjugacy classes in B3.
To describe which ones, we first explain why a conjugacy class in B3 is uniquely
characterised by that of its projection in PSL2(Z) and of its abelianisation in Z.
Then we show that the modular knot associated to a hyperbolic conjugacy class in
PSL2(Z) has abelianisation given by the Rademacher invariant Rad(A) = #R−#L.

The proof relies on the homotopy equivalence of modular knots and Lorenz knots
implied by Theorem 4.13. Indeed, unlike the hyperbolic representatives, the lin-
ear representatives have a straightforward description in terms of the L&R-cycle
encoding the PSL2(Z)-conjugacy class. The tangent lift of linear representatives
as Lorenz knots can be realised algebraically as a partial section of the projection
B3 → PSL2(Z), which is a morphism of monoids PSL2(N) → B3 sending L&R to
σ−1
1 &σ2 where σj are the Artin generators of B3.

Since the abelianisation of π1(U) is given by the linking number with the trefoil,
we recover the fact that the Rademacher invariant of a hyperbolic conjugacy class
is the linking number with the trefoil knot. This was discovered by É. Ghys in
[Ghy07] where he gave three proofs relying on various other interpretations of the
Rademacher invariant.
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Finally we describe a fibration U→ S1, whose pages are punctured tori T∗ trans-
verse to the fibers S1 of the Seifert fibration U→M. We take an algebraic standpoint,
examining the corresponding diagrams between fundamental groups. This investi-
gation could be generalised to unit tangent bundles of Fuchsian orbifolds with one
cusp (their fundamental groups are free amalgams of cyclic groups), but we have not
pushed the study in that direction. We refer to [Ghy17, Chapter on The cusp and
the trefoil] and [Mil68] for a geometric point of view on those structures.

Linking numbers of modular knots
In this section we provide several formulae for computing the linking numbers of
modular knots.

We first recall [Ghy07, ğ3.4] which isotopes the master modular braid consisting
of all modular knots into a branched surface Y ⊂ U called the Lorenz template. This
yields a diagram for modular links, in which all crossings are positive. We deduce
an algorithmic formula (Proposition 4.27) for computing linking numbers between
modular knots, which was used by P. Dehornoy in [Deh11]. This is a finite sum on
the set of all pairs of Lyndon representatives for the hyperbolic conjugacy classes.

As an excursion, we show a variation on this formula (in Proposition 4.34) in-
volving an infinite sum, which amounts to reordering the crossings. The idea consists
in cutting the Lorenz template to identify the regions containing the crossings be-
tween modular knots with the occurrence of certain patterns in their corresponding
L&R-cycles. We reformulate this as a factorisation of the infinite square matrix
representing the linking form into a product of two infinite rectangular matrices
counting the occurrences of patterns in L&R-words. This opens a door onto the
Hilbertian and statistical analysis of the linking form, although we do not pursue
those directions here.

The linking pairing is a function defined on pairs of conjugacy classes in the
modular group: we wish to express it in terms of the intrinsic algebra of PSL2(Z).
This is why we introduced the general formalism developed at the end of Section 2.3
to construct functions of pairs of conjugacy classes by averaging conjugacy invariants
of pairs of elements. Indeed, we are able to recast the algorithmic formula in this
formalism, using Lemma 2.43 which says when two matrices A,B ∈ PSL2(Z) can
be simultaneously conjugated into PSL2(N), and the quantities cross& cosign which
describe the relative position of the combinatorial axes gA, gB ⊂ T as in Figure 2.11.
Thus we arrive to the main Theorem 4.44 in this section, which expresses the linking
number lk(A,B) between primitive hyperbolic matrices as the sum over double cosets
〈A〉\Γ/〈B〉 of (1 + cross)(1 + cosign).
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4.1 Unit tangent bundle of the modular orbifold
As PSL2(R) is the unit tangent bundle to the hyperbolic plane PSL2(R)/PSO2(R),
the quotient U = PSL2(Z)\PSL2(R) is the unit tangent bundle to the modular
orbifold M = PSL2(Z)\PSL2(R)/PSO2(R).

We can also write HP = SL2(R)/ SO2(R) and U = SL2(Z)\ SL2(R) because the
center {±1} ⊂ SL2(R) belongs both to SO2(R) and to SL2(Z), each of which implies
that M = SL2(Z)\ SL2(R)/ SO2(R).

Since the left action of PSL2(Z) on PSL2(R) is free, the left quotient U is a three-
manifold. It is filled by the circular orbits for the right action of PSO2(R), and the
space of orbits is the two-dimensional orbifold M.

In this section we intend to describe the topology of this fibration U → M,
introduce a transverse fibration T∗ → U→ S1, and understand the position of their
fibers with respect to periodic orbits for the geodesic flow in U.

Orientation of U
It is equivalent to orient PSL2(R), its tangent space sl2(R) at the identity, or its
quotient U under the left action of its lattice PSL2(Z).

Note that the left action is isomorphic to the right action by the inversion map,
which reverses the orientation of PSL2(R), because its differential acts like minus the
identity on the tangent space sl2(R) at 1 ∈ PSL2(R), whose dimension is odd. We
have chosen to let PSL2(Z) act on the left to stay coherent with the left action on
the boundary of the hyperbolic plane and on continued fractions.

The real semi-simple Lie algebra sl2(R) is canonically oriented by the sign of a
volume form associated to the non-degenerate Killing form. In Chapter 1 we worked
with a metric which is −1/8 times the Killing form. Moreover, we defined our volume
form in Corollary 1.20 so that [K, J, S] = 〈{K, J}, S〉 = det(S) = 1 and (K, J, S) is
a positive basis, whereas it is negative for the Killing form.

The Killing convention defines a preferred orientation on PSL2(R) whence on U.
Let us now provide a differential viewpoint on that matter.

Remark 4.1. Let M be a differentiable manifold, and T its tangent bundle.
A Riemannian (or Finslerian) metric on M defines a unit tubular neighbourhood

of the trivial section M ⊂ T , whose boundary is the unit tangent bundle U for that
metric. Hence the homeomorphism type of the unit tangent bundle does not depend
on the metric. Intrinsically, one can define U = (T \M)/ ∼ as the complement of
the trivial section modulo the equivalence relation (p, v) ∼ (p, λv) for λ ∈ R∗

+.
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Now the tangent space at a point (p, v) ∈ T in the total space contains the tangent
space to the fiber TpM , which is identified with T0(TpM) = TpM , and the quotient is
isomorphic to the tangent space TpM of the base at the projected point. Hence the
canonical short exact sequence of vector spaces 0→ TpM → T(p,v)TM → TpM → 0.

Consequently, T is globally oriented by concatenating the orientations given by
the base followed by the fiber, independently on the initial choice for the orientation
of M . The orientation of U , thought as the boundary of a tubular neighbourhood of
M ⊂ T , is chosen so that when preceded by the outwards normal vectors, one recovers
the orientation of the total space T . This convention is employed to enhance the signs
in the formulation of Stokes theorem, which can thus be written

∫
N
dω =

∫
∂N
ω.

If M has odd dimension then it is important to respect the convention "base
followed by fiber" to orient T , and if M has even dimension it is important to respect
the convention "outwards normal first" to orient U .

The upshot of the previous remark is that Stokes convention yields a preferred
orientation on PSL2(R) as unit tangent bundle of HP = PSL2(R)/PSO2(R). This
amounts to declaring that the right adjoint action of the one parameter subgroup
PSO2(R) generated by S acts positively on the tangent plane TSH = S⊥ = Span(J,K).
One may recall Section 1.6, especially Propositions 1.82 and 1.87 for such discussions.
As {K,S} = J and {J, S} = −K, we recover the orientation of sl2(R) defined by the
basis (K, J, S), which coincides with the one derived from minus the Killing form.
Remark 4.2. If we had defined HP as the left quotient by the maximal compact sub-
group, then Stokes condition would have asked for the left adjoint action of PSO2(R)
to act positively on the plane S⊥, and we would have obtained the opposite orientation
on PSL2(R), that is the one derived from the Killing form.
Remark 4.3. Note the distinction between the canonical structures which enable to
compare different choices, and the conventions which suggest preferred choices.

It is the sign conventions employed in the definition of the Killing form and its
associated volume which orient a real semi-simple Lie algebra.

It is the sign conventions involved in the graded commutativity of alternate prod-
ucts which suggest using Stokes convention to orient boundaries.

To sum up, the orientation of sl2(R) given by the opposite of the Killing volume
matches the orientation of PSL2(R) arising from Stokes convention when it is iden-
tified with the unit tangent bundle to the right quotient HP = PSL2(R)/PSO2(R).

We chose to define U as the left quotient of the Lie group PSL2(R) by the lattice
PSL2(Z), and its orientation is equivalent to the previous. This discussion about
the orientation of U will have implications on the signs of linking numbers and the
chirality of certain knots.
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The fundamental group of U
Proposition 4.4. The group PSL2(R) retracts by deformation on PSO2(R) which
is a maximal compact subgroup, in particular its fundamental group is Z.

Proof. PSL2(R) acts transitively on its symmetric space HP with stabiliser PSO2(R),
so we have a locally trivial fibration PSL2(R)→ HP, which is globally trivial because
the base is contractible, whence the homeomorphism PSL2(R) ' HP×PSO2(R).

Remark 4.5. More generally, every connected linear Lie group G has a unique
maximal compact subgroup K up to conjugacy, on which it retracts by deformation.

Proposition 4.6. In a connected Lie group, a discrete normal subgroup is central.
Thus a cover in the category of connected Lie groups is a central extension.

In particular the universal cover of PSL2(R) yields a central extension:

1→ Z→ P̃SL2(R)→ PSL2(R)→ 1.

Proof. Denote G the connected Lie group, and C its discrete normal subgroup. Fix
(g, c) ∈ G× C and let us show that c = gcg−1. For this consider a continuous path
γ : [0, 1] → G connecting 1 to g. Since C is normal, the path s 7→ γ(s).c.γ(s)−1

remains in C. Since C is discrete this continuous path is constant.

Corollary 4.7. Let G be a connected Lie group and Γ a discrete subgroup. The
fundamental group of Γ\G is the preimage Γ̃ of Γ in the universal cover G̃ → G.
The central extension C → G̃→ G pulls-back to a central extension C → Γ̃→ Γ.

In particular the fundamental group P̃SL2(Z) of U fits in a central extension:

1→ Z→ P̃SL2(Z)→ PSL2(Z)→ 1

Proof. The group Γ̃ fits in the following commutative diagram of covering maps (as
quotients by discrete groups), in which the first two columns are central extensions:

C

��

// C

��

// 0

��

Γ̃

��

// G̃

��

// Γ̃\G̃

��
Γ // G // Γ\G

The last column shows that Γ̃\G̃ → Γ\G is a covering with trivial group, hence a
homeomorphism, so Γ̃ = π1(Γ̃\G̃) = π1(Γ\G).
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Remark 4.8. Let Γ be a discrete subgroup of a connected semi-simple Lie group G.
Let K be a maximal compact subgroup of G and S = G/K = G̃/K̃ the symmetric
space. Denote C the fundamental group π1(K) = π1(G), which is central in K̃ ⊂ G̃.
Finally denote U = Γ\G = Γ̃\G̃ and M = Γ\G/K = Γ̃\G̃/K̃.

Then we have the following diagram of quotient of spaces by group actions.

C

��

// K̃

��

// K

��
Γ̃

��

// G̃

��

// U

��
Γ // S //M

Observe the columns: the first is a short exact sequences of groups, the second is
a trivial fibration between contractible spaces, and the last is a non-trivial fibration.

The lines are all universal covers, and the first one is a short exact sequence of
groups.

The Lie group G = PSL2(R) has maximal compact subgroup K = PSO2(R)
which is homeomorphic to a circle, so they have fundamental group C = Z.

The symmetric space is S = HP and the fibration PSO2(R) → PSL2(R) → HP
corresponds to its unit tangent bundle.

The lattice Γ = PSL2(Z) acts on the symmetric space S = HP with quotient
M. Its premiage P̃SL2(Z) acts on the left of P̃SL2(R) with quotient U = U the unit
tangent bundle of M.

We find the diagram of fibrations and covers:

Z

��

// R

��

// S1

��
P̃SL2(Z)

��

// P̃SL2(R)

��

// U

��
PSL2(Z) // HP // M

We recover the fibration S1 → U → M, which corresponds to the central extension
of fundamental groups 1→ Z→ P̃SL2(Z)→ PSL2(Z)→ 1.



Page 170 CHAPTER 4. MODULAR KNOTS

Topology of the Seifert fibered space
In the Lie group PSL2(R), the discrete subgroup PSL2(Z) acts freely and properly
discontinuously by left translation, preserving the right PSO2(R)-cosets which form
the fibration S1 → PSL2(R)→ HP.

The fibers have trivial stabilisers, except for those above (a point in the orbit of)
i or j with stabilisers isomorphic to Z/2 or Z/3 and generated by (a conjugate of) S
or T . In a saturated tubular neighbourhood of such a fiber, homeomorphic to a solid
torus D2 × S1, the elements S and T acts by diagonal-rotation of 2π/2 and 2π/3.

Hence the circle fibration quotients to a Seifert fibration U→M. Our goal is to
describe its topology and in particular the homotopy type of the pair (U, Si ∪ Sj).

Recall that we work in the category of smooth oriented orbifolds, and that a loop
is an smooth map from the oriented circle. As explained in the paragraph following
Definition 4.12, a loop in the total space of a unit tangent bundle is homotopic to a
unit vector field carried by a loop in the base, and even to the tangent unit vector
field along a an immersed loop in the base. Two vector fields along a loop in an
oriented surface differ up to homotopy by multiple of the circular fiber, called their
relative index.

Trivialising the unit tangent bundle of M \ {i, j}.

Let Di,Dj be disjoint closed disc neighbourhoods of i, j in M. In their complement,
consider two based simple loops s, t which are homotopic to the oriented boundaries
−∂Di,−∂Dj: they freely generate the fundamental group of M \ (Di ∪ Dj).

Denote Ui,Uj the solid tori of U consisting in the union of fibers above Di,Dj.
Since the unit tangent bundle U \ (Ui ∪ Uj) of the surface M \ (Di ∪ Dj) is trivial,
we may choose a section such as the horizontal vector field depicted on figure 4.1.
Restricting this section to a loop in the base M \ (Di ∪ Dj) defines its horizontal lift
in the total space U \ (Ui ∪ Uj).

Figure 4.1: Horizontal vector field on M \ {i, j}: section of its unit tangent bundle.
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We thus have a split short exact sequence between their fundamental groups
1 → Z → (Z ∗ Z) × Z → Z ∗ Z → 1 whose section is defined by the horizontal lifts.
In particular, we may unambiguously use the same letters s, t in a presentation for
the fundamental group of U \ (Ui ∪Uj), and denoting u a based simple loop winding
once around the fiber we have:

π1(U \ (Ui ∪ Uj)) = 〈s, t, u | [u, s] = 1 = [u, t]〉.

The trivialisation of U \ (Ui ∪ Uj) → M \ (Ui ∪ Uj) provides a presentation for
the homology of the toric boundaries ∂Ui, ∂Uj given by restricting the section to the
oriented boundaries ∂Ui, ∂Uj followed by any fiber contained in those boundaries.
Since s, t are homotopic to −∂Di,−∂Dj, and all fibers are homotopic to u we have:

H1(∂Ui;Z) = Z · [s−1]⊕ Z[u] H1(∂Uj;Z) = Z · [t−1]⊕ Z[u]

For any smoothly immersed loop in M \ (Di∪Dj), its tangent lift in U \ (Ui∪Uj)
is homotopic to its horizontal lift multiplied by uk, where where k is the index of
its unit tangent vector with respect to the horizontal section. For instance the loops
corresponding to s and t have tangent lifts su−1 and tu−1.

Presenting U as a Dehn filling U \ (Ui ∪ Uj)

In U we denote a, b the unit tangent vector fields of the loops s−1, t−1, and c the fiber
of the base point. The inclusion U \ (Si ∪ Sj)→ U induces a surjective map:

π1(U \ (Ui ∪ Uj))→ π1(U) defined by s−1u 7→ a t−1u 7→ b u 7→ c

Notice that a2, b3 are homotopic to a regular fiber c in U since they lift in the universal
cover (which is the unit tangent bundle of HP) to closed loops homotopic to a fiber.
The relations a2 = c and b3 = c imply that s−2u 7→ 1 and t−3u2 7→ 1.

The loops s−2u and t−3u2 represent the primitive vectors (2, 1) ∈ H1(∂Ui) and
(3, 2) ∈ H1(∂Uj), so they are meridians of the solid tori Ui and Uj. This describes U
as a Dehn filling of U \ (Ui ∪ Uj). In particular the vanishing loops s−2u and t−3u2

generate the kernel of π1(U \ (Ui ∪ Uj))→ π1(U), so we have the presentation:

π1(U) = 〈a, b | a2 = b3〉

Remark 4.9. Consider a 3-manifold U whose boundary contains a component home-
omorphic to a torus S1 × S1. One may perform a Dehn filling of this component by
attaching a solid torus D2 × S1. Such Dehn fillings, well defined up to homeomor-
phism, are indexed by their slope in QP1, defined as the image of an unoriented
meridian ∂D2 × {x} in P(H1(S1 × S1;Z)) = QP1.
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Suppose that U is Seifert-fibered. The fibers in the boundary torus are given
by a class in P(H1(S1 × S1;Z)) which one may suppose to be that of ±1/0. The
Dehn fillings yielding a 3-manifold to which the Seifert fibration can be extended are
those with finite slope ±p/q ∈ Q/(±1). Such an extension is unique, and it has no
additional singular fibers only when q = ±1, that is for a finite slope ±p/q ∈ Z/(±1).

Let D∗
∞ ⊂ M be a closed punctured disc neighbourhood of the cusp ∞ which is

disjoint from Di ∪ Dj, and denote by U∞ ⊂ U the union of fibers above it. Then
s−1t−1 is homotopic to −∂D∗

∞ so the trivialisation presents its homology as:

H1(U∞) = Z · [s−1t−1] + Z · [u]

The unique Dehn filling of U\U∞ which yields S3 is obtained by adding the meridian
of ∂U∞ which, according to [Pin14, Corollary 3.4] or [BP21, Section 3], is the class
of [stu] ∈ H1(∂U∞) (it may be useful to notice that stu 7→ a−1b−1c = ab−1).

In H1(∂U∞), this meridian class intersects once the class [u] of the Seifert fibers,
so the fibration extends smoothly to a Seifert fibration U→M.

Recovering U as the complement of a trefoil knot in S3.

The Seifert fibered manifold U can be recovered by attaching the Seifert fibered solid
tori Ui and Uj along their boundary in such a way that the classes of the boundary
fibers get identified, and removing one of those common boundary fibers.

In H1(∂Ui) and H1(∂Uj) the meridians mi = (2, 1) and mj = (3, 2) have oriented
intersection number 1 with [a] = (1, 1) and [b] = (1, 1), so ([mi], [a]) and (mj, [b])
form oriented bases of these homology groups. In those coordinates the inclusion
maps H1(∂Ui)→ H1(Ui) and H1(∂Uj)→ H1(Uj) correspond to projecting onto the
second factor [mi] 7→ 0, [a] 7→ 1 and [mj] 7→ 0, [b] 7→ 1.

The fiber u = (0, 1) has intersection numbers −2 and −3 with the meridians
(2, 1) and (3, 2), and intersection number −1 with [a] = (1, 1) and [b] = (1, 1) so it
decomposes as [u] = −[mi] + 2[a] and [u] = −[mj] + 3[b]. In particular it has image
2[a] ∈ H1(Ui) and 3[b] ∈ H1(Uj).

Now let us attach the fibered solid tori Ui and Uj along their boundary. Since [a]
and [b] generate H1(Ui) and H1(Uj) we may use them as generators for the common
torus boundary. The common fibers [u] represent 2[a] + 3[b], that is a (2, 3) torus
knot of Ui ∩ Uj.

Remark 4.10. For the canonical choice of orientation on U, we may ask about the
chirality of the trefoil knot or equivalenty of the Hopf link formed by the singular
fibers. If the singular fibers have linking number +1 then the trefoil is right handed.
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Figure 4.2: In U ' S3: Hopf link Si ∪ Sj, torus knot S∞, and the loops a, b, c.

Hence the quotient of PSL2(R) by PSL2(Z) acting on the right or left is homeo-
morphic to the complement of a left or right handed trefoil knot in the sphere.

We may sum up part of the previous discussion in the following proposition.

Proposition 4.11. The space U is homeomorphic to the sphere S3 and contains
Si ∪ Sj as a Hopf link, that is a pair of trivial knots such that lk(Si, Sj) = 1.

The complement U \ (Si ∪ Sj) retracts by deformation on a torus containing S∞
as a (2, 3)-torus knot in the base (Si, Sj), so that lk(S∞, Si) = 3 and lk(S∞, Sj) = 2.

In U \ (Si ∪ Sj) the loops a, b are (1, 1)-torus knots, so lk(a, Si) = 1 = lk(b, Sj).
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Lifting loops in the unit tangent bundle
Definition 4.12. In a 3-manifold, a link with k ∈ N components is an embedding
of the disjoint union of k oriented circles whose components are labelled, considered
up to individual reparametrizations. A knot is a link with one connected component.

A knot in U can be smoothly perturbed to an isotopic knot which is transverse to
the fibers of the projection U→M, or to a unit vector field carried by an immersed
loop in M. It can also be isotoped to a Legendrian knot, that is the unit tangent vector
field along an immersed loop in M. This can be achieved by smoothly combing the
field along the loop; if a vortex appears, then introducing a twiddle in the loop will
accommodate it. We refer to [Gei08, Chapter 3] for an introduction to Legendrian
knots and their properties.

Figure 4.3: Combing vector fields and introducing twildes to accomodate vortices.

Consider Legendrian knots k1, k2 in U and let γ1, γ2 be their projections in M.
Then k1, k2 are homotopic in U if and only if γ1, γ2 are regular homotopic in M: that
is connected by a sequence of isotopies, Reidemeister moves RII & RIII, and special
moves in the neighbourhood of singularities depicted in Figure 4.4. The Legendrian
knots k1, k2 are isotopic if and only if the immersions γ1, γ2 are connected by regular-
homotopies such that none of the RII-moves involve strands crossing with the same
directions.

Figure 4.4: Regular homotopies in M: Reidemeister moves II & III, singular moves.



CHAPTER 4. MODULAR KNOTS Page 175

Recall from Section 3.1 that a hyperbolic conjugacy class in π1(M) encodes the
homotopy class of two loops in the orbifold M, namely its hyperbolic representa-
tive and its linear representative. These representatives are closed geodesics for the
hyperbolic and flat metrics on M. They lift in U to the periodic orbits for the cor-
responding geodesic flows, which (when they are primitive) are called modular knots
and Lorenz knots.

Any finite collection of modular knots is called a modular link, and the collection
of all modular knots is called the master modular link. Any finite collection of Lorenz
knots is called a Lorenz link, and the collection of all modular knots is called the
master Lorenz link. By collection we mean here that the components are labelled by
the corresponding primitive hyperbolic conjugacy classes.
Theorem 4.13. The modular link and Lorenz link associated to a finite number of
primitive hyperbolic conjugacy classes in the modular group are isotopic in U.
Incomplete Proof. Consider the hyperbolic and linear representatives associated to
this finite collection of primitive hyperbolic conjugacy classes in the modular group.

By Proposition 3.36, the multiloops obtained as their preimages in the finite
Galois cover T∗ → M are connected by isotopies and Reidemeister moves RIII.
Therefore these preimages have isotopic lifts in the unit tangent bundle of T∗.

Unable to finish the proof, we refer to Theorem 4.24 which cites [Ghy07, ğ3.4].

In particular, the homotopy classes of modular knots and Lorenz knots correspond
to the same conjugacy classes in the fundamental group π1(U), and we will now
describe which ones.

Conjugacy classes of modular knots
The Seifert fibration U → M induces an extension of the fundamental group of the
orbifold base by the fundamental group of a generic fiber:

1→ π1(S1)→ π1(U)→ π1(M)→ 1

It is central (the kernel is contained in the center) because composing by a loop
going around the fiber in the total space corresponds after projection in the base
to composing with a twiddle, which can be sled along the projected loop without
changing its regular homotopy class.

Consider preimages a, b ∈ π1(U) of S−1, T−1 ∈ π1(M) obtained by lifting in U
simple embedded based loops in M which circle once around the conical points. This
yields the usual presentation for the fundamental group of a (2, 3) torus knot:

π1(U) = 〈a, b | a2 = b3〉
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Observe that c = a2 = b3 generates the center of π1(U), and since it represents a
generic fiber of the projection, the center equals the kernel Z of the projection.

If in the presentation of π1(U) we change the variables a 7→ σ1σ2σ1 and b 7→ σ1σ2,
then we find Artin’s presentation for the braid group on three strands:

B3 = 〈σ1, σ2 | σ1σ2σ1 = σ2σ1σ2〉

The inverse isomorphism is given by σ1 7→ b−1a and σ2 7→ ab−1.

Proposition 4.14. The braid group has abelianisation lk : B3 → Z defined by σj 7→ 1
on the generators of the Artin presentation. The abelianisation injects the kernel Z
of the central extension π1(S1)→ π1(U)→ π1(M) to the subgroup of index 6 in Z.

Proof. To obtain the abelianisation from a group presentation, first abelianise the
free group on the generators and then quotient by the image of the relations.

Using Artin’s presentation, this amounts to letting the σj commute so we are left
with words in σn1

1 σ
n2
2 , and the relation σ1σ2σ1 = σ2σ1σ2 yields σ2

1σ2 = σ1σ
2
2 which

further identifies σ1 and σ2, so we are left with the sum n1+n2 of all exponents.

We obtain a central extension Z→ B3 → SL2(Z) by imposing the relation c2 = 1.
It is defined (up to an automorphism of the target) by a 7→ S−1, b 7→ T−1, c 7→ −1
so it sends σ1 = b−1a to R = TS−1 and σ−1

2 = ba−1 to L = T−1S. Composing with
the central extension {±1} → SL2(Z)→ PSL2(Z) recovers Z→ B3 → PSL2(Z).

Corollary 4.15. Two elements in B3 are conjugate if and only if they have the same
abelianisation, and their projections in PSL2(Z) are conjugate.

Proof. The implication is obvious. Suppose x, y ∈ B3 have the same abelianisation,
and project to X,Y ∈ PSL2(Z) which are conjugate by Z. Choose a lift z ∈ B3 of
Z and consider the element zxz−1y−1. It projects to the identity in PSL2(Z) so it
must belong to the center. It also abelianises to the identity, but Proposition 4.14
says that the center injects into the abelianisation, so it must be trivial.

A primitive modular geodesic in M lifts to a modular knot in U, and we shall
now describe how to perform this geodesic lift at the level of conjugacy classes.

Extend the lifts L 7→ σ−1
1 and R 7→ σ2 to a morphism PSL2(N) → B3 from the

free monoid on L&R to the free monoid on σ−1
1 &σ2. This yields a map σ from the

set of infinite order conjugacy classes in π1(M) to some conjugacy classes in π1(U).

Theorem 4.16. The map σ sends the conjugacy class associated to a closed geodesic
in M to the conjugacy class associated the the corresponding modular knot in U.
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Proof. Consider a hyperbolic conjugacy class in PSL2(Z), encoded by an L&R-cycle.
Theorem 4.13 implies that the corresponding modular knot (defined as the lift

of its hyperbolic representative), and the corresponding Lorenz knot (defined as the
lift of its linear representative), are homotopic.

By Definition 3.17, its linear representative is a loop in M whose homotopy class
in M \ {i, j} is encoded by the s±1&t±1-cycle obtained by the replacement rules
L⇝ s−1t−1 andR⇝ s+1t+1. It lifts in the unit tangent bundle U\(Si∪Sj) of M\{i, j}
to the loop given by the replacement rules L⇝ s−1t−1u−1 and R⇝ s+1t+1u+1.

Recall that the inclusion map U \ (Si ∪ Sj) → U induces a map between the
fundamental groups defined on the generators by s, t, u 7→ a−1c, b−1c, c. Hence, lifting
a linear representative from M to U results in translating the L&R-cycle according
to the replacement rules L⇝ abc−1 = σ−1

1 and R⇝ a−1b−1c = σ2.

We say that a conjugacy class in B3 = P̃SL2(Z) = π1(U) is modular if it corre-
sponds to a modular knot.
Corollary 4.17. A conjugacy class [β] in π1(U) = P̃SL2(Z) is modular if and only
if it projects to a primitive hyperbolic conjugacy class [γ] in π1(M) = PSL2(Z), and
abelianises to its Rademacher invariant:

lk([β]) = Rad([γ]).

Scholium 4.18. In terms of loops in U, the abelianisation lk : B3 → Z of the braid
group corresponds to the linking number with the trefoil given by lk π1(U)→ H1(U).
Hence, once the proof of Theorem 4.13 is completed independently from [Ghy07],
its Corollary 4.17 provides an alternative explanation for the equality between the
Rademacher invariant of a hyperbolic element of the modular group and the linking
number of the associated modular knot with the trefoil.
Remark 4.19. Note that the conjugacy class of a braid β ∈ B3 defines, by taking its
cyclic closure, a link β̄ which has at most three components.

Hence the conjugacy class of a primitive hyperbolic A ∈ PSL2(N) yields a modular
geodesic in M, which lifts to a modular knot in U corresponding the conjugacy class
of the braid σ(A) ∈ P̃SL2(Z) described in Theorem 4.16. Its closure yields a link
σ(A) in the solid tori D×S1, and the branched double cover of this solid tori over the
link yields the punctured torus bundle (T∗ × [0, 1])/A with monodromy A ∈ SL2(N).

Let us mention here that [Fun13] is dedicated to the investigation of such torus
bundles having the same quantum invariants. This should be compared with the vari-
ous equivalence relations on modular conjugacy classes mentioned in the introduction
(especially at the end of Section 0.1 and 0.2).
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Abelianisation of a central sequence
In this paragraph we work in the category of groups, but we will name objects and
morphisms so as to arouse the topological pictures and hint to the applications we
have in mind.

Lemma 4.20. Let 1 → Fibre → Total → Base → 1 be a central extension of
groups. The pull-back p′ : Total′ → Base′ of the projection p : Total → Base along
the inclusion Base′ → Base is an isomorphism.

Proof. Choose a set theoretic section s : Base→ Total, so that every t ∈ Total writes
uniquely as t = f.s(b) for f ∈ Fibre and b ∈ Base. The equality of commutators
[t1, t2] = [f1.s(b1), f2.s(b2)] = [s(b1), s(b2)] shows that s is a section to p′ which is
thus surjective, and that Fiber ∩ Total = 1 so p′ is injective.

In other terms, the abelianisation functor yields a commutative diagram of short
exact sequences in the category of groups, the columns being central extensions:

Fibre′

��

// Fibre

��

// Fibreab

��
Total′

��

// Total

��

// Totalab

��
Base′ // Base // Baseab

0

��

// Fibre

��

// Fibre

��
Page

��

// Total

��

// Dromy

��
Cover // Base // Galois

Let us explain why we rename the groups in left diagram as those in the right.
Since Fibre is contained in its own center it is abelian, equal to Fibreab, so Fibre′ =
0. We write Page = Total′ and Totalab = Dromy in reference to an open book
decomposition (the fundamental group of the binding’s complement in the total
space acts by monodromy on that of the page). We write Cover = Base′ and
Baseab = Galois in reference to a Galois cover with abelian symmetry group.

We just proved that Page = Cover, and we also deduce that the monodromy
group of the open book decomposition is a central extension of the Galois group of
the cover by the fundamental group of the fibre.

Corollary 4.21. The euler class in H2(Base;Fibre) classifying the central extension

1→ Fibre→ Total → Base→ 1

is the pull-back by Abel : Base → Galois of the euler class in H2(Galois;Fibre)
classifying the central extension

1→ Fibre→ Dromy → Galois→ 1
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Derived subgroup of the braid group B3

The complement U of the trefoil knot fibers over the circle S1 with fiber a punctured
torus T∗. This fibration is part of an open book decomposition of S3: the pages are
Seifert surfaces turning around the knotted binding, in this case punctured tori with
the trefoil as common boundary, as suggested in figure 4.5.

Figure 4.5: Open book decomposition of S3 with toric pages and trefoil binding.
Those images were created by Jos-Leys and Étienne Ghys.

The associated short exact sequence of fundamental groups:

1→ π1(T∗)→ π1(U)→ π1(S1)→ 1

corresponds to the abelianisation of π1(U), and is given by the linking number with
the trefoil, or the algebraic intersection number with its Seifert surface T∗. Conse-
quently the kernel π1(T∗) = F2 is the derived subgroup of π1(U) = B3.

By Lemma 4.20 The central extension π1(U) → π1(M) restricts and corestricts
to an isomorphism between the derived subgroups.

Besides, Proposition 4.14 says that the abelianisation map π1(U)→ H1(U) injects
the kernel π1(S1) of the central extension to its subgroup of index 6.

Corollary 4.22. We have a commutative diagram of short exact sequences (implicit
trivial groups are omitted), with abeliansations for lines and central extensions for

http://www.josleys.com/articles/ams_article/Lorenz3.htm
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columns:

0

��

// π1(S1)

��

// H1(S1)

��
π1(T∗)

��

// π1(U)

��

// H1(U)

��
π1(T∗) // π1(M) // H1(M)

1

��

// Z

��

// Z

��
F2

��

// B3

��

// Z

��
F2

// Γ // Z/6

The outer automorphism action Z → Out(F2) given by the middle line factors
through the outer automorphism action Z/6→ Out(F2) given by the bottom line.

The euler class H2(Γ;Z) classifying the central extension of the middle column
is the pull back by the abelianisation map Γ → Z/6 of the euler class H2(Z/6;Z)
classifying the central extension of the right column.

The fibration T∗ → U → S1 yields a monodromy action of the fundamental
group of the circular base on the toral page by homeomorphisms well defined up
to isotopy. The homeomorphisms of the punctured torus up to isotopy form its
mapping class group, isomorphic to the automorphisms of its fundamental group up
to inner-morphisms, that is Out(F2) = GL2(Z). The monodromy representation is
the geometric counterpart of the outer automorphism representation Z → Out(F2)
arising from the short exact sequence F2 → B3 → Z. The previous diagram implies
that the image of the generator is an orientation preserving mapping class of the
punctured torus with order 6.

Consequently, the toral page of the open book decomposition provides a geometric
model for the toral cover of the modular orbifold, and the monodromy action factors
through the Galois action: the quotient is the modular orbifold.

Z/6

⇝

Figure 4.6: The toric pages T∗ of the open book decomposition quotient to M.
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4.2 Linking numbers of modular knots
In this section we provide several formulae for computing the linking numbers of
modular knots.

We first describe the topology of the Lorenz template and the master modular
link consisting of all modular knots. This yields an algorithmic formula for linking
numbers counting the number of crossings in the corresponding link diagrams.

As an excursion, we show a variation on this formula which involves an infinite
sum: it opens a door onto the Hilbertian analysis of linking quadratic forms, although
we shall not pursue this direction here.

Then we rewrite the algorithmic formula in terms of the intrinsic algebra of
PSL2(Z), involving a summation over double cosets (but with finite support). Thus
it will recast the linking form in terms of the general formalism we developed for
invariants of pairs of conjugacy classes.

The Lorenz template in the unit tangent bundle
We now use the projective model ▽1 → M represented in figure 3.2 to construct
a multivalued section of the unit tangent bundle U → M. Its image will be a
branched surface Y ⊂ U called the Lorenz template, and will carry a semi-flow
which is conjugate to the geodesic flow of M. In particular the template Y will
handle all periodic orbits for the geodesic flow.

Consider first the branched surface Y = 41 mod PSL2(N) obtained from ▽1 by
identifying its left and right edges to its hypothenuse according to L−1 and R−1.
The branch locus is the segment formed by the identified edges, it is parametrized
by α ∈ [0,∞] 7→ Vα ∩ [v0, v∞].

The radial vector field on R2 restricts to41 and projects to Y, on which it defines
a semi-flow. The branched locus provides a section of the semi-flow, on which the
first return map is given by the inverse action of PSL2(N) on α ∈]0,∞[ deleting
the first letter of its continued fraction expansion (also known as a Bernoulli shift).
Hence the orbit emerging from α is the projection of the line Vα ∩41 in Y, and can
be represented in the fundamental domain ▽1 as a union of disjoint segments which
piece together according to the action of L&R.

The past of the vertex v0 ' v1 ' v∞ in Y is formed by the union of all segments
with rational inclination: let Y◦ be the complement of this orbit. The quadratic
irrationals have ultimately periodic orbits, and the periodic numbers have periodic
orbits. Every other number α ∈]0,∞[ whose continued fraction tails are all aperiodic,
has an aperiodic orbit which is an embedded half line Vα ∩41 → Y.
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Figure 4.7: The Lorenz template with the trefoil (and the loops L&R).

Now recall the projective model ▽1 → M, represented in figure 3.2. It pushes
down the radial field to the modular orbifold defining a 3-valued section of its unit
tangent bundle U → M whose image is a branched surface which identifies with
Y ⊂ U, we call it the Lorenz template.

Proposition 4.23. The embedding of the Lorenz template Y in U is such that the
trefoil knot follows its boundary and branch locus as depicted in figure 4.7.

Moreover, its left ear (corresponding to R-turns) arrives from above, and its right
ear (corresponding to L-turns) arrives from beneath.

Proof. Of course, one may push-forward the radial vector field by Pψ̄ : ▽1 → ▽2 to
work with the hyperbolic model ▽2 ⊂ HP.

Then up to orientation matters, the embedding of the template and its position
with respect to the trefoil are shown in [BP21], following the ideas of [Ghy07, ğ3.4].
One may also consult [Pin14] for more concerning templates carrying the periodic
orbits for the geodesic flow on the Hecke (p, q, r)-orbifolds.

Theorem 4.24. The master modular link is isotopic to the master Lorenz link.

Proof. By Proposition 4.23, this statement is equivalent to that of Theorem 4.13, for
which we only provided an incomplete proof. This time we refer to [Ghy07, ğ3.4].

The idea is to deform the hyperbolic metric on M in such a way to open the cusp.
This yields a one-parameter family of hyperbolic orbifolds whose unit tangent bundles
retract onto a Lorenz template. We do not delve upon these ideas since they will be
the subject of Chapter 5 as we deform the representation PSL2(Z)→ PSL2(R).
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Linking numbers between all pairs of hyperbolic matrices
Since U is homeomorphic to the complement of a trefoil knot in the sphere, any two
components of a link have a well defined linking number.

Let us define the linking number between any two hyperbolic matrices of PSL2(Z).
Such hyperbolic matrices correspond to periodic orbits for the modular flow.

This orbit is a knot when the matrix is primitive, otherwise the orbit travels
several times along a knot. When two matrices are coprime (meaning they are not
positive powers of a same element as we saw in Proposition 2.48), their corresponding
periodic orbits are disjoint. Thus coprime hyperbolic matrices correspond to disjoint
periodic orbits whose linking number is well defined. Since lk(Am, Bn) = mn lk(A,B)
it is enough to understand the linking number between primitive elements, but most
of our formulae will be written to hold without this assumption. We finally remove
the coprimality hypothesis by defining the self-linking number of a modular knot.

A band in a 3-manifold M is an embedding of the annulus S1× [−1, 1] in M . Up
to isotopy, a band is equivalent to a knot together with a framing, that is section of
its normal bundle defined up to multiplication by a scalar function.

Definition 4.25 (Lorenz framing & self-linking number). The Lorenz framing of a
modular knot kA ⊂ U is the band obtained from a tubular neighbourhood of kA in Y.
Its boundary consists in two parallel copies of kA and their linking number defines
the self-linking number of the modular knot kA for the Lorenz framing.

Remark 4.26. We know by Proposition 3.4 that in M, the modular geodesics avoid
the point j, and we also defined a canonical perturbation of those which contain i.
Besides, we also know that the linear representatives avoid both i and j.

Thus one may speak of the linking numbers between special fibers of the Seifert
fibration (which form a Hopf link in the complement of the trefoil), with modular
knots and Lorenz knots. However, since we showed in 3.1 that the hyperbolic and
linear representatives lift to different homotopy classes in M \ {i, j}, these linking
numbers may not coincide !

This implies in particular that during the deformation of the hyperbolic metric on
M alluded to in the proof of Theorem 4.24, the periodic orbits for the geodesic flow
will cross the singular fibres, so the projected geodesics will perform special moves to
pass over the conical singularities.

Still, for every hyperbolic matrix in PSL2(Z), one may define two conjugacy-
invariants given by the linking numbers with the special fibers: those will be combina-
tions of the exponents appearing in the s&t-cycles encoding their hyperbolic or linear
representative lifted in M \ {i, j}.
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Algorithmic formula
Let us derive from Theorems 4.23 & 4.24 the algorithmic formula of Proposition 4.27
used by Pierre Dehornoy in [Deh11] to compute linking numbers of modular knots.
For this, we must introduce some notations relying on Section 2.2.

We endow the submonoid PSL2(N) of PSL2(Z), which is freely generated by L&R,
with the lexicographic order extending L < R.

In the group PSL2(Z) the conjugacy class of an infinite order element intersects
the monoid PSL2(N) along its Lyndon representatives, which consist in all cyclic
permutations of a non-empty L&R-word. The primitivity of the conjugacy class is
equivalent to the primitivity of the cyclic words, and the conjugacy class is hyperbolic
when both letters L and R appear.

The set {L,R}N of infinite binary sequences on the letters L&R is given the
lexicographic order extending L < R. The monoid PSL2(N) maps to {L,R}N by
sending a finite word A to its periodisation A∞. This map is increasing, and injective
in restriction to primitive elements.

We use σ to denote the Bernoulli shift on {L,R}N which removes the first letter,
as well as the cyclic shift on PSL2(N) which moves the first letter at the end. These
shifts are intertwined by the periodisation map A 7→ A∞, namely for all A ∈ PSL2(N)
we have (σjA)∞ = σj(A∞).

In particular, the Lyndon representatives for the conjugacy class of A ∈ PSL2(N)
are the cyclic permutations σiA for 1 ≤ i ≤ len(A), and we shall consider them with
multiplicity when A is not primitive.

Denote by W [−1] ∈ {L,R} the last letter of a non-empty word W ∈ PSL2(N).
Thus for instance, (σ1W )[−1] is the first letter of W .

Following Iverson [Knu92], denote [[P ]] ∈ {0, 1} the truth value of a property P ,
which satisfies the usual rules of boolean algebra.

Proposition 4.27. For all hyperbolic matrices A,B ∈ PSL2(Z) we have:

lk(A,B) =
1

2

len(A)∑
i=1

len(B)∑
j=1

[[(σiA)[−1] > (σjB)[−1]]] [[σiA∞ < σjB∞]]
+

[[(σiA)[−1] < (σjB)[−1]]] [[σiA∞ > σjB∞]]

 (Algo-Sum)

This Algo-Sum counts the pairs of Lyndon representatives whose periodisations are
ordered in the opposite way to their last letters.

Proof. First we isotope the Lorenz template to look like in Figure 4.8. The projection
on the plane of the paper yields link diagrams for the collections of periodic orbits,
whose crossings all contribute positively to the intersection.
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Thus we must simply count these crossings and divide by two. Clearly, the
crossings are in bijection with the terms of the double sum.

Figure 4.8: Lorenz template positioned for a visual proof of the algorithmic formula.

Remark 4.28 (Primitivity). The Algo-Sum holds without the primitivity assumption
provided we sum over all cyclic permutations of the Lyndon representatives (and in
the proof we must count crossing numbers with appropriate multiplicities).
Remark 4.29 (Self-linking number). The proof shows that when A = B the Algo-
Sum computes the self-linking number of the modular knot for the Lorenz framing.
Remark 4.30 (Algorithmic). This formula, although mathematically cumbersome,
yields a computation of lk(A,B) with complexity O(lenA2B2) provided we recall
Proposition 2.48 saying that A∞ = B∞ ⇐⇒ AB = BA.

Symbolic dynamics: summing occurrence of linked patterns
In this paragraph we propose a combinatorial formula for the linking number which
arises from a different count of the crossings in the Lorenz template. Then we
interpret it as a factorisation (or polarisation) of the quadratic linking form, thus
opening a door onto its Hilbertian analysis.
Definition 4.31. For a pattern P ∈ PSL2(N) and a hyperbolic A ∈ PSL2(N), let
pref(P,A∞) = [[A∞ ∈ P · PSL2(N)]] ∈ {0, 1} tell whether P is a prefix of A∞, and:

occ(P,A) =
lenA∑
j=1

pref
(
P, σjA∞)

count the number of occurrences of P in A∞ beginning before the index len(A), or
equivalently the number of cyclic occurrences of P in A mod σ.
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Remark 4.32 (Long patterns). For len(P ) ≥ len(A) we have occ(P,A) > 0 if and
only if A∞ = P∞ mod σ which is equivalent to saying that P and A are not coprime.

Remark 4.33 (Primitivity). The definition holds for non primitive A ∈ PSL2(N)
and we have occ(P,An) = n occ(A).

Proposition 4.34 (Sum of linked patterns). For coprime hyperbolic A,B ∈ PSL2(N)
the corresponding modular knots have linking number:

lk(A,B) =
1

2

∑
w

occ(RwL,A) · occ(LwR,B)
+

occ(RwL,B) · occ(LwR,A)

 (Symb-Dyna-Sum)

where the summation extends over all words w ∈ PSL2(N) including the empty one.

Proof. The proof consists in rearranging the terms of the Algo-Sum rewritten as:

lk(A,B) =
1

2

lenA∑
i=1

lenB∑
j=1

[[σiA[−1] = R]] [[σiB[−1] = L]] [[σiA∞ < σjB∞]]
+

[[σiB[−1] = R]] [[σiA[−1] = L]] [[σiB∞ < σjA∞]]


Note that [[σiA[−1] = R]] = pref(R, σi−1A) and [[σjB[−1] = L]] = pref(L, σj−1B).

Moreover σiA∞ < σjB∞ if and only if the words σiA∞ and σjB∞ have prefixes of
the form wL and wR for some w ∈ PSL2(N) which is uniquely determined, thus[[

σiA∞ < σjB∞]]
=

∑
w

[[
pref(wL, σiA∞)

]]
·
[[
pref(wR, σjB∞)

]]
Of course we have pref(R, σi−1A) pref(wL, σiA∞) = pref(RwL, σi−1A∞) and

pref(L, σj−1B) pref(wR, σjB∞) = pref(LwR, σj−1B∞).
By replacing all terms in the Algo-Sum we find:

lk(A,B) =
1

2

lenA∑
i=1

lenB∑
j=1

∑
w

pref(RwL, σi−1A∞) · pref(LwR, σj−1B∞)
+

pref(RwL, σi−1A∞) · pref(LwR, σj−1B∞)


It is then a matter of reordering terms so that sums over w appears on the outside,
and recognising the definition of occ inside the sums over i, j.

Remark 4.35 (Finite support). By the Remark 4.32 concerning long patterns, the
coprimality assumption on A and B ensures that the support of the Symb-Dyna-Sum
is contained in the set of w such that lenw < max{lenA, lenB}.
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Remark 4.36 (Self-linking). We may use the same sum to define lk(A,B) even
when they are not coprime by imposing the bound lenw < max{lenA, lenB} on its
indices, as suggested by the previous remark.

In that case the proof shows that the Symb-Dyna-Sum returns the same number
as the Algo-Sum, that is (a multiple) of the self-linking number of their common
primitive root.

Remark 4.37 (Algorithmic). This formula has little algorithmic interest: first we
must list for A and B all words w (enriched with two distinct letters) which appear in
one of their cyclic permutations and count the number of occurrences, then compute
the sum: the cost is exponential in len(AB).

We have programmed it literally to ensure the coincidence with the Algo-Sum,
which is much more efficient as it is polynomial in len(AB).

The previous proof does not do justice to the way we found the formula: a clever
surgery of the Lorenz pattern (the seeds of which are to be found in the original
article of Birman and Williams [BW83]), and a careful examination of the location
of the crossings, reveals its recursive structure.

If we split the template (in its usual representation) by extending the dividing
line backwards in time, as suggested in the sequence of thumbnails 4.9, we observe
that the crossings occur in regions arranged according to a binary tree. As one cuts
farther back in time, the binary tree becomes deeper, and the crossing regions break
up into sub-regions: what is left in the limit is a fractal Cantor set.

Figure 4.9: Overlapping regions of the split template arranged in a tree-like pattern.

Visual proof. Let us provide a contemplative argument to show Proposition 4.34.
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Cut the template in the past for a finite time N counted as the number of intersec-
tions with the branching interval (which is 2, 3 in the thumbnails). The overlapping
regions corresponds to the pairs of branches leading to it, and those are indexed (re-
mounting them backwards in time) by the pairs (RwL,LwR) for words w ∈ PSL2(N)
with length lenw < N . Two coprime modular knots cross inside a certain number
of overlaps with depth at most l, and this number is given by the Symb-Dyna-Sum
with indices restricted to lenw < N . In the limit we recover the infinite sum.

Remark 4.38 (Taylor expansion). The previous proofs also shows that the trun-
cated Symb-Dyna-Sum indexed by lenw < N yields the exact linking number pro-
vided max{lenA, lenB} ≤ N . This partial sum can thus be understood as Taylor
approximation to the order N of the linking pairing.

Scholium 4.39 (Binomial statistics). The previous analysis also has the advantage
of exhibiting the statistical behaviour of the bilinear linking pairing between modular
knots. One can make precise statements about the set of all modular knots whose
L&R-length is bounded by a constant N , and let it go to infinity.

On the one hand the areas of the overlapping regions reflect the distribution of the
number of crossings between all such modular knots. In particular the distribution of
these modular knots according to the abscissa of crossing regions follows a binomial
distribution. Note that this abscissa can be parametrized by the Rademacher function.

On the other hand the modular knots that spend a long time in the deepest regions
of the tree which are located in the centre (such as (LR)n) will tend to have large
linking numbers with most of the other knots, whereas the modular knots which escape
into the ears (such as LnRn) will have weak intersection with all modular knots except
those presenting a very similar behaviour.

Consider the free Z-module generated by the set PSL2(N)/σ of all cyclic words,
endowed with the symmetric bilinear form lk. Let us reformulate Proposition 4.34
as a factorisation of the corresponding symmetric matrix.

Definition 4.40 (Occurrence matrices). Denote P (w,A) the infinite rectangular
matrix with entries occ(RwL,A) indexed by w ∈ PSL2(N) and A ∈ PSL2(N)/σ.

Denote P#(w,A) = P (w#, A#) where w#&A# are the mirror images of w&A.
Its entries are given by occ(LwR,A) = occ(Lw#R,A#).

Finally we define Z = P + iP# over the ring Z[i] of Gaussian integers.

Corollary 4.41 (Factorising the linking matrix). The matrix of the bilinear form
lk(A,B) is the imaginary part of the product tZZ#.

Proof. The Symb-Dyna-Sum amounts to the relation 2 lk = tPP# + tP#P , which is
twice the imaginary part of the product

(
tP + i · tP#

)
·
(
P + i · P#

)
.
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Group theory: orbit average of the meyer cocycle
The aim of this paragraph is to recast the Algo-Sum formula for linking numbers in
terms of the action of the group Γ = PSL2(Z) on the geometree Σ = (T , cord).

Recall that the action of the group PSL2(Z) on the trivalent tree T preserves the
cyclic order structure, and is freely transitively on the set of oriented edges.

An infinite order element A ∈ PSL2(Z) acts by translation of T along an oriented
combinatorial axis gA with endpoints α′, α ∈ ∂T .

Consider two primitive hyperbolic matrices A,B ∈ PSL2(Z). By Proposition 2.48
they are coprime when they have distinct translation axes gA, gB ⊂ T , thus when
they have distinct fixed points α′, α, β ′, β.

The algebraic intersection number cross(gA, gB) ∈ {−1, 0, 1} between their trans-
lation axes was introduced in the paragraph containing Scholia 1.95. We shall mostly
need the geometric intersection number |cross|(gA, gB) ∈ {0, 1} which takes the value
1 or 0 according to whether the fixed points α′, α of A and β′, β of B are linking on
the boundary ∂T or not.

Corollary 4.42. For coprime hyperbolic matrices A,B ∈ PSL2(Z) we have:

lk(A,B) =
1

2

∑
Ai∦Bj

|cross|(Ai, Bj)

where the sum extends over all Lyndon conjugates Ai, Bj ∈ PSL2(N) of A and B
such that their last letters differ, which we denote Ai ∦ Bj.

Proof. If hyperbolic coprime matrices A,B ∈ PSL2(N) satisfy A ∈ PSL2(N).R and
B ∈ PSL2(N).L, then cross(A,B) = [[A∞ < B∞]]. More generally if hyperbolic
coprime matrices A,B ∈ PSL2(N) have distinct last letters A[−1] 6= B[−1] then:

cross(A,B) =

[[A[−1] = R]] [[B[−1] = L]] [[A∞ < B∞]]
−

[[B[−1] = R]] [[A[−1] = L]] [[B∞ < A∞]]


and since at least one of the terms in this difference is 0 we have:

|cross|(A,B) =

[[A[−1] = R]] [[B[−1] = L]] [[A∞ < B∞]]
+

[[B[−1] = R]] [[A[−1] = L]] [[B∞ < A∞]]


which completes the proof.
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Template crossings ↔ {(gA, gB) : |cross|(gA, gB) = 1 = cosign(gA, gB)} mod Γ× Γ.

Definition 4.43. For oriented bi-infinite geodesics gA, gB ⊂ T with distinct ends we
define:

coc(gA, gB) =

(
|cross| ×1 + cosign

2

)
(gA, gB) =

(
1 + cross

2
× 1 + cosign

2

)
(gA, gB)

Theorem 4.44. For coprime hyperbolic matrices A,B ∈ Γ = PSL2(Z) we have:

lk(A,B) =
1

2

∑
U,V

coc(U · gA, V · gB) (Group-Coset-Sum)

where the sum is over the product of right cosets of PSL2(Z) under the stabilisers of
the translation axes gA and gB modulo the left action of PSL2(Z) by translation:

(U, V ) ∈ (Γ/ Stab gA)×
Γ
(Γ/ Stab gB)

This can also be written as the sum over double cosets W ∈ Stab gA\Γ/ Stab gB:

lk(A,B) =
1

2

∑
W

coc(A,WBW−1) (Double-Coset-Sum)

Proof. Let us show that the sum over (U, V ) coincides with that of Proposition 4.42.
Recall that by Lemma 2.43 the infinite order elements A,B ∈ PSL2(Z) can be

simultaneously conjugated in PSL2(N) if and only if their combinatorial axes in T
share an oriented edge, that is when cosign(A,B) = 1. Hence by Definition 4.43, the
term coc(U ·gA, V ·gB) is 0 unless the axes cross and their orientation coincides along
the intersection, in which case it is 1, so one may restrict the sum to such pairs.

Since the action of PSL2(Z) is freely transitive on the oriented edges of T , every
coset (U, V ) ∈ Γ/ Stab gA×Γ Γ/ Stab gB contains exactly one representative (U0, V∞)
such that the axes of U0AU

−1
0 and V∞BV

−1
∞ intersect along an oriented segment of

T starting at the base edge e⃗i. This precisely means that U0AU
−1
0 and V∞BV

−1
∞

belong to PSL2(N) and finish by different letters.
Consequently, we have a bijection between the non-zero terms of the Algo-Sum

and Group-Coset-Sum, and this completes the proof.
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Remark 4.45 (Stabilisers). Recall that for infinite order A ∈ PSL2(Z) the stabiliser
Stab gA is the cyclic subgroup generated by the primitive root of A.

Remark 4.46 (Intersection from linking). We recover in particular the intersection
number of the modular geodesics as:

lk(A,B) + lk(A,B−1) =
1

2

∑
|cross|(Au, Bv) =

1
2
· I(A,B)

whereas the sum of the cosign over pairs of intersecting axes yields:

lk(A,B)− lk(A,B−1) =
1

2

∑
(|cross| × cosign) (Au, Bv).

Recall that B−1 and tB are conjugate by S so lk(A,B) = lk(A, tB), and given the
L&R factorisation of B ∈ PSL2(N) it is immediate to deduce that of tB ∈ PSL2(N).
We deduce an efficient algorithm to compute the intersection number I(A,B) from
the L&R-factorisation of A,B by applying Algo-Sum formula to the linking numbers
lk(A,B) and lk(A, tB).

What about the meyer cocyle ? Let us finish this chapter with a conjectural
relationship between the quantity coc(A,B) and the Meyer cocycle.

The Rademacher function Rad: Γ → Z is a non bounded function. However its
formal coboundary dRad(A,B) := Rad(B)−Rad(AB)+Rad(A) defines a bounded
function on Γ× Γ. We say that Rad is a quasi-morphism.

Its formal coboundary dRad defines a bounded 2-cocycle, namely an element of
H2

b (Γ;R), called the Meyer cocycle.
One may consult to [BG92, Bou16] for much more concerning the Meyer cocycle,

bounded cohomology and quasimorphisms.

Conjecture 4.47 (Meyer cocycle). We believe that coc(A,B) is strongly related to
the Meyer cocycle dRad(A,B−1). Indeed, for A,B ∈ PSL2(N) we observe that:

coc(A,B) =

{
Rad(B) + Rad(AB−1)− Rad(A) if A < B

Rad(A) + Rad(A−1B)− Rad(B) if A > B

where as usual PSL2(N) is endowed with the lexicographic order extending L < R.
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Chapter 5

Bilinear forms on the
PSL2(R)-character variety of PSL2(Z)

Outline of the chapter
In this chapter we denote the modular group by Γ = PSL2(Z), which Theorem 2.11
presented as the free amalgam of its subgroups Z/2 and Z/3 generated by S and T .

Let us recall the following elements of GL2(Z), all in SL2(Z) except J and K.
They satisfy S2 = T 3 = −1 and J2 = K2 = 1 as well as T−1S = L and TS−1 = R.

S = ( 0 −1
1 0 ) T = ( 1 −1

1 0 ) J = ( 0 1
1 0 ) K = ( −1 0

0 1 ) L = ( 1 0
1 1 ) R = ( 1 1

0 1 )

Although T and T−1 are not conjugate in PSL2(Z), they are conjugate by J .

The space of representations PSL2(Z)→ PSL2(R)
The first section describes the PSL2(R)-character variety of Γ, defined as the space of
representations Hom(Γ,PSL2(R)) considered up to PSL2(R)-conjugacy at the target.
A representation ρ : Γ→ PSL2(R) is uniquely determined by a pair ρ(S), ρ(T ) such
that ρ(S)2 = 1 = ρ(T )3. We are mostly interested in those which are both faith-
ful and discrete, called Fuchsian representations, because they correspond to the
holonomy maps of hyperbolic orbifolds with the same two conical singularities as M.
They are characterised by the condition that ρ(S) and ρ(T ) act on HP as rotations
of order 2 and 3 whose fixed points are separated by a distance λ ≥ λ0 = d(i, j).
This distance λ, together with the orientation of ρ(T ), determine a unique Fuchsian
representation up to conjugacy.

193
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Geometrically, the positively oriented Fuschsian representations are the holonomy
maps of hyperbolic orbifolds with conical singularities of order 2 and 3, so their
conjugacy classes they form the Teichmüller space of complete hyperbolic metrics on
such an orbifold. As soon as λ > λ0 the quotient orbifold has a funnel with a unique
collar geodesic, and all other geodesics remain beneath it, in the so called convex
core. This is the deformation which was used by É. Ghys in [Ghy07, ğ3.6] to isotope
the master modular link into the Lorenz template (Theorem 4.24).

We then provide an algebraic parametrization by q ∈ R∗
+ for the set of positively

oriented Fuchsian representations up to conjugacy. It is obtained by fixing Sq = S,
and considering for Tq the conjugate of T by exp

(
l
2
( 1 0
0 −1 )

)
where q = exp(l):

Tq =

(
1 −q
q−1 0

)
so Rq = TqS

−1
q =

(
q 1
0 q−1

)
and Lq = T−1

q Sq =

(
q 0
1 q−1

)
In particular, the Teichmüller space of the abstract orbifold M is a closed connected
real semi-algebraic set parametrized by q ∈ R∗

+, and we denote Mq = ρq(Γ)\HP.
One may consult [Thu97, FLP12, Bus92] to learn about the Teichmüller space of

(mostly compact) Riemann surfaces.

The Universal and the Burau representations
Actually, we have just defined a representation SL2(Z) → SL2(Z[q, q−1]) denoted
A 7→ Aq which we call the universal representation. The matrix Aq is obtained
from any S&T -factorisation of A by replacing T 7→ Tq, or equivalently from any
L&R-factorisation of A by replacing L 7→ Lq and R 7→ Rq. Since every irreducible
representation PSL2(Z)→ PSL2(R) can be lifted to SL2(Z)→ SL2(R), this universal
representation actually contains the information of all irreducible representations
PSL2(Z) → SL2(C) up to conjugacy. In other terms the irreducible component of
the SL2(C)-character variety of PSL2(Z) is an affine line parametrized by q ∈ C.

Every element A ∈ Γ defines a function disc(Aq) = Tr(Aq)
2 − 4 ∈ Z[q, q−1] on

the Teichmüller space of M, which is a reciprocal Laurent polynomial. When A is
hyperbolic, this yields the length of the corresponding hyperbolic geodesic in Mq. In
that case, we show (in 5.10) that disc(Aq) is unitary of degree 2 len(A), that is twice
the minimum displacement length for the action of A on the trivalent tree T . This
computation, which will serve in the next section, is a manifestation of the fact that
as q → ∞, the action of Γ on the hyperbolic plane HP through the representation
ρq : Γ→ PSL2(R) converges in a suitable sense to its action on the trivalent tree T .

Let us explain how one can make sense of this convergence, even though we will
not need it here. Geometrically, the convex core of the orbifold Mq lifts in HP to an
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ϵ-tubular neighbourhood of T with ϵ = Θ(1/q2) as q →∞. A dynamical viewpoint
is to consider the actions of Γ on the boundaries ∂HP & ∂T : this leads to the
study of groups acting on the circle, for which we refer to [Ghy01]. An algebraic
viewpoint, which is more in the spirit of this work, is to consider the Riemann-
Zariski compactification of the character variety: the point q = ∞ corresponds to
the valuation − degq centered at infinity. This approach for studying degenerations of
hyperbolic structures was developped by Culler, Morgan and Shalen in [CS83, MS84],
for which we refer to [Ota15].

We saw in Chapter 4 that the unit tangent bundle U→M of the modular orbifold
has total space homeomorphic to the trefoil complement, and this yields a central
extension B3 → PSL2(Z) of the modular group by the braid group on three strands.
As for PSL2(Z), the SL2(C)-character variety of B3 has its irreducible component
(coming from irreducible representations, but which turns out to be irreducible as an
algebraic variety) equal to an affine line. Hence it is not a surprise that we may relate
the universal representation PSL2(Z) → SL2(Z[q, q−1]) to the Burau representation
B3 → GL2(Z[t, t−1]) of the braid group on three strands.

Indeed, we explicit a representation Sq: B3 → SL2(Z[q, q−1]) which is conjugate
to the Burau representation with q =

√
−t, defined on the Artin generators by

Sq(σ−1
1 ) = q−1 · Lq and Sq(σ2) = q ·Rq. In particular, we find that for A ∈ PSL2(N)

we have Sq(A) = qRad(A)Aq where Rad(A) = #R−#L is its Rademacher invariant.
Now recall from Chapter 4 that lifting modular geodesics to modular knots associates
to the conjugacy class of a hyperbolic A ∈ PSL2(Z) the conjugacy class of a braid
σA ∈ B3, whose closure is a well defined link in the solid torus. We deduce that the
Alexander polynomial of this link [σA] is equal to

∆([σA]) =
qRad(A)−Tr(Aq)+q−Rad(A)

(q−q−1)2

This formula should be confronted with the observations in [Bir85] and the investi-
gations of [Fun13]. Altogether, they support the conjecture 0.1 advanced at the end
of Sections 0.1 & 0.2, namely that the arithmetic Q-equivalence of A,B ∈ PSL2(Z)
implies the “quantum equivalence” given by Tr(Aq) = Tr(Bq) & Rad(A) = Rad(B).
More recently, the polynomials Tr(Aq) have been studied (after a change of variables)
in [MGO20], and related to the Jones polynomials of certain knots.

In spite of the fully fledged theories concerning character varieties of Fuchsian
groups and their compactifications, it seems that no one had bothered focusing on
the character variety of the modular group, to recognise its unique boundary point
as the well known action on the trivalent tree, and relate the universal representation
of the modular group to the Burau representation of the braid group.
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Asymptotic values of functions on the character variety
In this last section we prove Theorem 0.25 expressing the linking numbers between
modular knots in terms of functions defined on the character variety of PSL2(Z), by
taking their limits at the boundary point q =∞.

Fix two hyperbolic matrices A,B ∈ PSL2(Z). Recalling the formalism developed
at the end of Section 2.3, we define functions Lq([A], [B]) and Cq([A], [B]) of their
conjugacy classes, by averaging conjugacy-invariants of pairs of conjugacy classes
obtained from bir(Aq, Bq) and cos(Aq, Bq). Geometrically, they can be expressed
as the following sums extending over the oriented intersection angles θ between the
geodesics of Mq associated to A and B:

Lq([A], [B]) =
∑(

cos θ
2

)2
Cq([A], [B]) =

∑
(cos θ) .

In Section 2.3, we described the relative positions between the combinatorial
axes of hyperbolic A,B ∈ PSL2(Z) acting on T . In particular we introduced the
cosign(A,B) to compare their orientations along their intersection when it is not
empty, and Proposition 2.44 showed that cosign(A,B) = len(AB) − len(AB−1).
Using Proposition 5.10 computing deg Tr(Cq) = len(C) we deduce in Corollary 5.19
that cos(Aq, Bq)→ cosign(A,B). Combining this with Theorem 4.44 expressing the
linking number in terms of cosign, we find our Theorem 5.24, saying that:

1
2
Lq([A], [B]) −−−→

q→∞
lk(A,B) 1

2
Cq([A], [B]) −−−→

q→∞
2 lk(A,B)− 1

2
I(A,B).

To finish, let us compare the definitions of the functions Lq and Cq and their
limiting behaviour at q = ∞ with similar considerations which have been made for
non-oriented loops in a closed surface S of genus g ≥ 2. Such loops, corresponding
to the conjugacy classes of α, β ∈ π1(S) up to inversion, define trace functions
Tr(α),Tr(β) on the SL2(C)-character variety of π1(S) (whose real locus contains the
Teichmüller space of S as a Zariski dense open set). This character variety carries a
natural symplectic structure [Gol84], given by the Weil-Petersson symplectic form.

The sum Cq(A,B) looks very much like Wolpert’s cosine formula [Wol82, Wol81]
computing the Poisson bracket {Tr(α),Tr(β)} of the trace functions. The major
difference is that Wolpert’s formula is a skew-symmetric expression in two non-
oriented loops. In fact, we are able to define an analog of Wolpert’s formula by
summing the product cross(A,B) × cos(A,B). However, the character variety of
PSL2(Z) being one-dimensional, any Poisson structure in the usual sense would be
trivial, so we expect this function to be zero (and this is confirmed by our computer
experimentation).
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Moreover, the Weil-Petersson symplectic form has been extended to several com-
pactifications of the character variety [PP91, SB01, MS]. The limits of the Poisson
bracket {Tr(α),Tr(β)} at the respective boundary points have been interpreted in
[Bon92, Proposition 6] and [MS]. Let us also mention [Ota92] which was a source of
inspiration in his understanding of cross-ratios.

Still, the definitions of our functions Lq &Cq may be generalised to oriented
geodesics in hyperbolic surfaces, and we may wonder about their limits at the bound-
ary points of Teichmüller space. Besides, we believe that the functions Lq would
yield some kind of Killing form on Goldman’s Lie algebra of oriented loops [Gol86].

5.1 The space of representations PSL2(Z)→ PSL2(R)

In this section, we describe the PSL2(R)-character variety of Γ, defined as the space of
representations Hom(Γ,PSL2(R)) considered up to PSL2(R)-conjugacy at the target.

Theorem 2.11 presented Γ as the free amalgam of its (cyclically ordered) sub-
groups Z/2 and Z/3 generated by S and T respectively. Consequently, a repre-
sentation ρ : Γ → PSL2(R) is uniquely determined by a pair ρ(S), ρ(T ) such that
ρ(S)2 = 1 = ρ(T )3, so their collection Hom(Γ,PSL2(R)) is a real algebraic subvari-
ety of PSL2(R)× PSL2(R).

Among all representations, some are faithful, some are discrete, and we are mostly
interested in those matching both conditions called Fuchsian representations.

Abelian representations

Let us first describe those representations ρ for which ρ(S) and ρ(T ) have a common
fixed point for their action on the hyperbolic plane. The image of ρ is thus contained
in an abelian subgroup of PSL2(R), thus in a conjugate of PSO2(R), and factors
through the abelianisation Γ/[Γ,Γ] = Z/2×Z/3 = Z/6. Such representations belong
to six conjugacy classes enumerated as follows.

One may have the trivial representation for which both ρ(S) and ρ(T ) trivial, or
else only ρ(S) trivial in which case ρ(Γ) ' Z/3 and there are two possibilities given
by the orientation of rotation, or else only ρ(T ) trivial in which case ρ(Γ) ' Z/2, or
neither of them trivial in which case ρ(Γ) ' Z/6 and again there are two possibilities
given by the orientation of ρ(T ).
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Non-abelian representations
From now on, the representation ρ is non-abelian, so ρ(S) and ρ(T ) are rotations of
order 2 and 3 around distinct fixed points. Then ρ is uniquely described by those
fixed points, along with the orientation of the order three rotation. Its conjugacy
class is uniquely determined by the distance λ ∈]0,∞[ between those fixed points,
along with the orientation of ρ(T ).

The space of representations admits an involution (conjugating by J) exchanging
the orientation of ρ(T ), whose only fixed points are the two abelian representations
with ρ(T ) = 1. The same goes for the character variety since T and T−1 are not
conjugate in PSL2(R). We speak of (conjugacy classes of) positive and negative
non-abelian representations.

Hence there are two components in the space of non-abelian representations, and
the same goes for the character variety which is thus homeomorphic to R∗

+ × {±1}.
This homeomorphism is analytic but not algebraic.

Proposition 5.1. Let ρ : Γ → PSL2(R) be a positive representation, and λ0 be the
hyperbolic distance between the fixed points of ρ(S) and ρ(T ), given by coshλ0 = 2.

If λ ∈ [λ0,∞[ then the representation is faithful and discrete, that is Fuchsian.
If λ ∈ ]0, λ0[ then the representation is not Fuchsian.
If λ = 0 then the representation is abelian, thus discrete but not faithful.

Proof. The image ρ(Γ) is generated by ρ(L) and ρ(R), whose trace equal cosh(λ).
Hence the result follows from the classification of Fuchsian groups [dSG10, VI].

One may replace the analytic parameter given by the hyperbolic distance λ be-
tween the fixed points of ρ(S) and ρ(T ), by the algebraic parameter given by the
discriminant of their product δ = disc ρ(R). Recall that disc = Tr2−4, so to change
parameters we must relate |Tr ρ(R)| to λ. As we shall see, this relation is given by
Tr ρ(R) = 2 coshλ′ + sinhλ′ with λ′ = λ− λ0.

Corollary 5.2. The non-abelian representations are determined by their orientation
and discriminant δ > −4; they satisfy the following dichotomy.

If δ ∈ ]− 4, 0[ then the representation is not Fuchsian.
If δ ∈ [0,∞[ then the representation is Fuchsian.

The value δ = 0 for the algebraic parameter corresponds either to an abelian
representation or to the inclusion PSL2(Z) ⊂ PSL2(R) which is Fuchsian.

Remark 5.3 (Non-faithful). The non-abelian and non-faitfull representations form
a countable set of points in the interval parametrized either by λ ∈]0, λ0[ or by δ =
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disc ρ(R) ∈]− 4, 0[ indexed by the integers n > 6. More precesely, the image of such
a representation ρ is a hyperbolic triangle group (2, 3, n) for some n > 6 which is
minimal with the property that ρ(R)n = 1.

Analytic parametrization by the distance
The subset of non-abelian positive representations projects onto the character variety:
let us parametrize a section, first analytically using the distance λ′ = λ− λ0.

Proposition 5.4. For λ′ ∈ R, define the representation ρλ′ : PSL2(Z) → PSL2(R)
by

Tλ′ = T Sλ′ =

(
sinhλ′ − coshλ′

coshλ′ − sinhλ′

)
.

The family of representations ρλ′ analytically parametrized by λ′ ∈] − λ0,∞[
projects to all positive non-abelian representations up to conjuacy, and λ′ ≥ 0 if
and only if the representation is Fuchsian.

Proof. Consider a positive non-abelian representation ρ. Up to conjugacy, we may
fix ρ(T ) = Tλ′ = T and let the center of ρ(S) vary along the half geodesic extending
from the fixed point of T towards the fixed point of S. Let us show that when it
reaches a distance λ′ from S we have ρ(S) = Sλ′ .

For this we work in the linear and projective models of the hyperbolic plane
described in Section 1.6. The fixed points of S and T in P(H) lift to prS = S and
prT in the hyperboloid H. The line passing through them is {prS, prT}⊥.

Since T = S + 1
2
(1 − K), we have prT = S − 1

2
K, so {prS, prT} = +1

2
J .

Consequently, by Proposition 1.57, the hyperbolic translation of distance λ′ along
the oriented axis from the center of T to the center of S is:

exp
(
λ′

2
J
)
= cosh(λ′/2)1+ sinh(λ′/2)J =

(
coshλ′/2 sinhλ′/2
sinhλ′/2 coshλ′/2

)
and this matrix conjugates S to the matrix Sλ′ .

The rest of the statement now follows from Proposition 5.1.

Remark 5.5. Notice that, denoting c = coshλ′ and s = sinhλ′, the values of

Lλ′ = T−1
λ′ Sλ′ =

(
c −s

c− s c− s

)
and Rλ′ = Tλ′S−1

λ′ =

(
c− s c− s
−s c

)
are still conjugate by J , but are transpose to one another only when sinhλ′ = 0.
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J⊥

i j

J

K⊥

i j

K

Figure 5.1: Parametrizing families of representations by moving S along J⊥ or K⊥.

Algebraic parametrization by the discriminant
The set of Fuchsian representations projects to (an open in) the character variety:
let us parametrize a section by q ∈ R∗ algebraically related to δ = (q − q−1)2.

This time we let S vary along the geodesic prK⊥ joining the centers of S and T
(that is the orthogonal to pr J⊥ passing through prS). This amounts to conjugating
S by exp

(
l
2
K
)

for some l ∈ R given by the distance to S.
For more symmetric formulae, we conjugate this whole family of representations

to fix Sq = S and let Tq be the conjugate of T by exp
(
− l

2
K
)

where q = exp(l):

Tq =

(
1 −q
q−1 0

)
so Rq = TqS

−1
q =

(
q 1
0 q−1

)
and Lq = T−1

q Sq =

(
q 0
1 q−1

)
which implies in particular that δ = discRq = (q − q−1)2. This defines for every
q ∈ R∗

+ a representation
ρ̄q : PSL2(Z)→ PSL2(R)

which is Fuchsian since δ > 0. Note that ρ̄q still makes sense for q ∈ R∗
−.

Proposition 5.6. The conjugacy classes of Fuchsian representations PSL2(Z) →
PSL2(R) form a closed real semi-algebraic set parametrized by (sign(q), (q − q−1)2)
for q ∈ R∗ whose sign provides the orientation of the action on HP.

Proof. By Corollary 5.2, a value of δ = (q − q−1) > 0 determines a unique Fuchsian
representation up to change of orientation, and it determines a unique value of q up
to change of sign and inversion.



CHAPTER 5. LINKING FORM ON Hom(PSL2(Z),PSL2(R)) Page 201

If q > 0 then Tq acts like a positive rotation since it is conjugate to T in SL2(R).
If q < 0 then Tq acts like a negative rotation since T−q = KTqK

−1 and det(K) = −1.
The representations ρ̄q and ρ̄q−1 are conjugate in PSL2(R) since Tq−1 = JT−1

q J−1

and Tq acts with the same orientation as det(J) = −1. Explicitly Tq−1 and Tq are
conjugate by exp(θS) for a unique −π/4 < θ < π/4 solving tan(θ) = q − q−1.

The matrices S, T ∈ PSL2(Z) are the unique lifts of S, T ∈ SL2(Z) which act as
positive orientations on the plane Z2: this fixes the projection SL2(Z) → PSL2(Z).
The group SL2(Z) is the amalgam of its (oriented) cyclic subgroups Z/4 and Z/6
generated by S and T over their intersection Z/2 generated by S2 = T 3 = −1.

We actually defined for every q ∈ R∗ a representation

ρq : SL2(Z)→ SL2(R)

Corollary 5.7. The conjugacy classes of faithful discrete representations SL2(Z)→
SL2(R) form a closed semi-algebraic set parametrized by q + q−1 for q ∈ R∗ whose
sign determines the orientation of the action on R2.

Proof. A faithful discrete representation ρ : SL2(Z)→ SL2(R) projects to a Fuchsian
representation ρ̄ : PSL2(Z) → PSL2(R) which is conjugate to ρ̄q for some q ∈ R∗

which is unique up to inversion.
Conversely for all q ∈ R∗, the lift of ρ̄q to a representation SL2(Z)→ PSL2(R) is

uniquely determined by the choices we made for the lifts of S&T This further lifts
the double cover SL2(R)→ PSL2(R) in at most two ways ρq and ρ−q, each one being
determined by the orientation of the action of ρq(S) on R2.

Finally ρq and ρq−1 are conjugate by exp(θS) ∈ SL2(R) for tan(θ) = q− q−1.

5.2 The Universal and the Burau representations

The universal representation SL2(Z)→ SL2(Z[q, q−1])
We just introduced a one parameter family of representations ρq : SL2(Z)→ SL2(R)
depending algebraically on the parameter q ∈ R∗ and with integral coefficients. This
leads to the definition of the universal representation.

Definition 5.8. The universal representation SL2(Z)→ SL2(Z[q, q−1]) denoted A 7→
Aq is defined by S 7→ Sq and T 7→ Tq, or equivalently by L 7→ Lq and R 7→ Rq where:

Sq =

(
0 −1
1 0

)
Tq =

(
1 −q
q−1 0

)
Rq =

(
q 1
0 q−1

)
Lq =

(
q 0
1 q−1

)
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Hence Aq is obtained from any S&T -factorisation of A by replacing T 7→ Tq, or
equivalently from any L&R-factorisation of A by replacing L 7→ Lq and R 7→ Rq.

Definition 5.9. The Fricke polynomial of A ∈ SL2(Z) is FA(q) = Tr(Aq) ∈ Z[q, q−1].
The discriminant polynomial of A ∈ PSL2(Z) is disc(Aq) = (TrAq)

2 − 4 ∈ Z[q, q−1].

Of course FA is invariant by conjugacy and inversion of A, hence by transposition.
Since ρq and ρq−1 are conjugate, the polynomial FA is reciprocal FA(q) = FA(q

−1),
so its degree deg(FA) is unambiguously defined by its highest monomial in q or q−1.
For instance FLn = qn + q−n = FRn has degree n.

If A ∈ SL2(Z) has finite order then it is conjugate to a power of S or T , so FA is
a constant determined by its order according to F±1 = ±2, FS±1 = 0, FT±1 = 1.

Recall that len(A) is the minimum displacement length of A acting on T .

Proposition 5.10. If A ∈ SL2(N) then Tr(Aq) is unitary of degree len(A), with
non-negative coefficients and constant term Tr(A) ≥ 2.

Hence, if A ∈ PSL2(Z) has infinite order, then disc(Aq) is unitary of degree
2 len(A), with positive coefficients and constant term disc(A) ≥ 0.

Proof. Let us prove the first assertion, the second follows immediately. Recall that
the monoid SL2(N) is freely generated by L&R. The non-negativity of the coefficients
is obvious and so is Tr(A) ≥ 2, so we are left to compute the degree and leading
coefficient of Tr(Aq).

We reason by induction on len(A) using the trace relation FUV = FUFV −FUV −1

which was equation 1.5 in Chapter 1. It is true for len(A) ≤ 1.
An astute way of performing the inductive step is to successively reduce the

number of L’s appearing in the factorisation of A to show that:

Tr(Aq) = Tr
(
Rlen(A)

q

)
+ o

(
qlen(A) + q− len(A)

)
.

If A = Rlen(A) then we are done. Otherwize we may assume (after conjugating) that
A = LA′ = T−1SA′ with len(A′) = len(A)− 1, and apply the trace relation:

Tr
(
TqS

−1
q A′

q

)
= Tr(Tq) Tr(S

−1
q A′

q)− Tr(TqS
−1
q A′

q) = Tr(TqSA
′
q)− Tr(A′

qS)

and the first term is Tr(RqA
′
q) and len(A′S) < len(A) as reveals a simplification of

the last two S’s and a combination of the remaining extremal T ’s.

Corollary 5.11. If A ∈ PSL2(Z) has infinite order, then for all q ∈ R∗ \ {1} the
element Aq ∈ PSL2(R) is hyperbolic.
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The character ring: algebraic presentation & linear basis
This paragraph is not needed in what follows, but is meant show some properties of
the character variety of PSL2(Z) which can be generalised to other of other Fuchsian
groups, while shedding light on its specificity.
Proposition 5.12. The FA generate the subring of reciprocal polynomials in Z[q, q−1].
The ideal of relations satisfied between them is generated by the trace relations:

∀A,B ∈ SL2(Z) : FAB + FAB−1 = FAFB and FS = 0, FT = 1.

Proof. The first sentence is now obvious: in fact the FRn provide a linear basis for
the sub-algebra of reciprocal Laurent polynomials, which is graded by the degree.

Note that the (FR)
n provides another graded basis, in which the expression for the

FRn is given by a family of Chebychev polynomials since they satisfy the recurrence
relations FRn = FRFRn−1 − FRn−2 .

To prove that the ideal of relations satisfied by the FA is generated by the trace
and unit relations, it is enough to show how they enable to decompose FA in the linear
basis spanned by the FRn . This follows by induction as in the previous proof.

Let us simply enunciate the following description for the algebra of functions on
the SL2(R)-character variety of a finitely generated group Γ in terms of the trace
functions FC : [ρ] 7→ Tr ρ(C) for C ∈ Γ.
Theorem 5.13. The algebra of functions on the SL2(R)-character variety of Γ is
generated by the FC for C ∈ Γ and the ideal of relations is generated by the trace
relations FAB + FAB−1 = FAFB for A,B ∈ Γ along with the unit relation F1 = 2.
Remark 5.14 (Exercise). It is an amusing exercise to recover the invariance of FC

by inversion and conjugacy of C from the trace relations and the unit relation.

The Burau representation
Recall from [Squ84] that the reduced Burau representation Br: B3 → GL2(Z[t, t−1])
is defined on the Artin generators by:

σ1 7→
(
−t 1
0 1

)
σ2 7→

(
1 0
t −t

)
Conjugating by S, then setting q =

√
−t and conjugating by the diagonal matrix

with entries 1, q we obtain a similar representation Sq: B3 → GL2(Z[q, q−1]) defined
on the Artin generators by:

Sq: σ−1
1 7→ 1

q
× Lq Sq: σ2 7→ q ×Rq
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Thus for all β ∈ B3 we have q− lk(β) Sq(β) ∈ SL2(Z[q, q−1]).

Remark 5.15. The name Sq refers to SL2(Z[q, q−1]) and is meant to recall the
similarity with the (slightly different) symplectic representation of Squier [Squ84].

Recall the discussion in Section 4.1 concerning the abelianisation map lk : B3 → Z,
where we defined a morphism of monoids σ : PSL2(N) → B3 by σ(L) = σ−1

1 and
σ(R) = σ2 which satisfies lk σ(A) = Rad(A).

Proposition 5.16. For all A ∈ PSL2(N) we have Sq(σ(A)) = qRad(A)Aq.
The link σ̄(A) obtained from the cyclic closure of the braid σA has Alexander

polynomial ∆(σ̄A)(t) ∈ Z[t, t−1] given, up to a multiple of the unit q =
√
−t, by:

∆(σ̄A)(q) =
qRad(A) − Tr(Aq) + q−Rad(A)

(q − q−1)2

Proof. The first assertion is immediate.
Following [BB05, 4.2], the Alexander polynomial of a braid β ∈ B3 is given in

terms of the reduced Burau representation by

∆(β)(t) =
det(Br(β)− 1)

1 + t+ t2

By the Cayley-Hamilton identity, for M ∈ gl2: det(M−1) = det(M)−Tr(M)+1.
Besides 1 + t+ t2 = q2(q − q−1)2. Thus:

∆(β)(q) =
det(qRad(A)Aq)− Tr(qRad(A)Aq) + 1

q(q − q−1)2
=
q2Rad(A) − qRad(A) Tr(Aq) + 1

q(q − q−1)2

The Alexander polynomial is only defind up to multiplication by a unit of the ring,
and dividing the last expression by qRad(A)−1 yields the desired result.

5.3 Asymptotic values of functions in q ∈ R∗

Before embarking on the algebraic discussion, let us think geometrically about the
deformation of the hyperbolic metric of the orbifold Mq as q →∞.

The hyperbolic orbifold Mq = ρq(Γ)\HP has a convex core which retracts onto
a thin neighbourhood of the long geodesic arc (i, jq) connecting the conical singu-
larities. It lifts in HP to an ϵ-neighbourhood of Tq with ϵ = Θ(1/q2), and whose
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collar-neck has width λ equal to the distance between the translation axes of Lq and
Rq, that is such that:

coshλ =
(

q+q−1

q−q−1

)2

The hyperbolic geodesics γAq of Mq becomes parallel to the edge (i, jq) so the geomet-
ric axis γAq comes closer and closer to the combinatorial axis gA. In particular, the
intersection angles converge to ±π and it appears that cos(Aq, Bb)→ cosign(gA, gB).

The convex core of Mq lifts in HP to an ϵ-neighbourhood of Tq with ϵ = Θ(1/q2).

This should not surprise someone acquainted with compactifications of Teich-
müller space by actions on trees or by valuations [Ota15, MS21]. Here the unique
boundary point q =∞ corresponds to the action on T or to the valuation − degq.

The cosign(A,B) as limit of cos(Aq, Bq)

Let us recall the following computations from chapter 1, in which we used to denote
tr(M) = 1

2
Tr(M) the half-trace.

Proposition 5.17. Consider A,B ∈ PSL2(Z) and let q ∈ R∗. Denoting aq and bq
the orthogonal projections of Aq and Bq in sl2(R), we have:

−〈aq | bq〉 = 1
4

(
TrAqBq − TrAqB

−1
q

)
and therefore:

cos(Aq, Bq) =
Tr(AqBq)− Tr(AqB

−1
q )√

disc(Aq) disc(Bq)

Proof. Denote xq = tr(Aq) and yq = tr(Bq) so that Aq = xq + aq and Bq = yq + bq.
Then compute:

−〈aq | bq〉 = tr(aqbq) = tr ((Aq − xq)(Bq − yq)) = tr(AqBq)− 2xqyq + xqyq

= tr(AqBq)− xqyq = 1
4
(2TrAqBq − TrAq TrBq)



Page 206 CHAPTER 5. LINKING FORM ON Hom(PSL2(Z),PSL2(R))

and the result follows by applying the trace identity.
The formula for cos(Aq, Bq) then follows from Proposition 1.89 expressing the

cosine in terms of the scalar product, or more directly from Remark 1.51.

For hyperbolic A,B ∈ PSL2(R), we defined 1.93 the algebraic intersection number
cross(A,B) ∈ {−1, 0, 1} and geometric intersection number |cross|(A,B) ∈ {0, 1}
between their oriented axes γA, γB ⊂ HP.

For infinite order A,B ∈ PSL2(Z), their cosign(A,B) ∈ {−1, 0, 1} compares the
orientation of their combinatorial axes gA, gB ⊂ T in the trivalent tree where they
intersect, according to Definition 2.42.

The following statements are immediate corollaries to Proposition 5.10 computing
the degrees of Tr(Cq) and disc(Cq).

Corollary 5.18. For infinite order elements A,B ∈ PSL2(Z), if cosign(A,B) 6= 0
then FAB − FAB−1 has degree len(A) + len(B) and leading coefficient cosign(A,B).

Corollary 5.19. For hyperbolic A,B ∈ PSL2(Z) we have cross(Aq, Bq) = cross(A,B),
whence |cross|(Aq, Bq) = |cross|(A,B).

If |cross|(A,B) = 1 then the hyperbolic elements Aq, Bq ∈ PSL2(R) have oriented
geometric axes γAq and γBq which intersect at an angle with cosine cos(Aq, Bq). In
that case, this algebraic function on the PSL2(R)-character variety of PSL2(Z) has
a limit at the boundary point: cos(Aq, Bq) −−−→

q→∞
cosign(A,B).

Linking number as limit of the cross-ratio orbital sum
Now we put into practice the general procedure explained at the end of Section 2.3
to construct invariants of pairs of conjugacy classes: it involves a summation over
pairs of representatives in each conjugacy class modulo centralisers and up to the
diagonal action of the group.

Definition 5.20. For conjugacy classes [A], [B] of hyperbolic elements in PSL2(Z),
consider the functions of q defined by:

Lq([A], [B]) =
∑
(U,V )

(
[[bir > 1]]

bir

)(
Ãq, B̃q

)
(Lq)

Cq([A], [B]) =
∑
(U,V )

(|cross| × cos)
(
Ãq, B̃q

)
(Cq)

where the sums extend over pairs of representatives Ã = UAU−1 and B̃ = V BV −1

for the conjugacy classes with (U, V ) ∈ Γ/ Stab(A)×Γ Γ/ Stab(B).



CHAPTER 5. LINKING FORM ON Hom(PSL2(Z),PSL2(R)) Page 207

Remark 5.21. Recall that by Corollary 1.94 for all Aq, Bq ∈ PSL2(R) we have
|cross|(Aq, Bq) = [[bir(Aq, Bq) > 1]], and by Corollary 5.19 for all A,B ∈ PSL2(Z)
we have |cross|(Aq, Bq) = |cross|(A,B). Thus we could also have written:

Lq([A], [B]) =
∑
(U,V )

[[bir(A,B) > 1]]

bir(Ãq, B̃q)

Cq([A], [B]) =
∑
(U,V )

|cross|(A,B)× cos(Ãq, B̃q)

Remark 5.22. The relation 1
bir

= 1+cos
2

and Remark 4.46 imply that these functions
are related through the geometric intersection function I by:

Lq =
I + Cq

2

Remark 5.23. The appearance of the factors [[bir > 1]] = |cross| in the terms of
Lq and Cq restricts the summations over the pairs of matrices whose axes intersect.
Hence the support of the sums corresponds to the intersection points of the modular
geodesics [γA] and [γB] associated to the conjugacy classes, which must be counted
with appropriate multiplicity when A or B is not primitive, and we have:

Lq([A], [B]) =
∑(

cos θ
2

)2
and Cq([A], [B]) =

∑
(cos θ) .

Theorem 5.24. For conjugacy classes of hyperbolic elements A,B ∈ PSL2(Z), the
limits of the functions Lq(A,B) and Cq(A,B) at the boundary point of the PSL2(R)-
character variety of PSL2(Z), recover the linking and intersection function of the
corresponding modular knots and modular geodesics:

1
2
Lq([A], [B]) −−−→

q→∞
lk(A,B)

1
2
Cq([A], [B]) −−−→

q→∞
2 lk(A,B)− 1

2
I(A,B)

Proof. The first limit follows from Theorem 4.44 and replace the terms of sums
defining Lq and Cq by the expression for cos(Aq, Bq) obtained in corollary 5.19 and
take the limit as q → ∞. We recover the formulae obtained for the linking and
intersection numbers in Theorem 4.44 and Remark 4.46.
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Computation and analytic behaviour of Lq and Cq

Recall the various expressions we have for the linking numbers L(A,B). From the
topology of the Lorenz template Y ⊂ U we deduced the algorithmic sum in Propo-
sition 4.27, which we reformulated in Corollary 4.42 by exploiting the combinatorics
of the trivalent tree T , to finally arrive at the algebraic formulation of Theorem 4.44
in terms of the group PSL2(Z).

Now we are facing the opposite problem: from the algebraic definition 5.20 for the
q-deformed linking numbers Lq(A,B) we wish to extract a combinatorial expression
which lends itself to algorithmic computations.

From algebra to combinatorics
Let us provide an algorithmic expression for the function Lq =

1
2
(I +Cq) which may

come in handy for practical purposes such as drawing its graph. It relies on the
general discussion at the very end of Section 2.3.

First choose Lyndon representatives A,B ∈ PSL2(N), defined in Corollary 2.19.
The intersection number I([A], [B]) can be computed rapidly in terms of the

Lyndon representatives using Proposition 3.10, which as remarked in 4.46 amounts
to expressing it in terms of the linking numbers 1

2
I(A,B) = lk(A,B) + lk(A, tB) and

applying the Algo-Sum in Proposition 4.27.
To compute Cq([A], [B]) recall the last two paragraphs of Section 2.3. We intro-

duce the function f(A,B) = |cross|(A,B)×
(
Tr(AqBq)− Tr(AqB

−1
q

)
so that

Cq([A], [B]) =
F ([A], [B])√

disc(Aq) disc(Bq)
=
F−([A], [B]) + F0([A], [B]) + F+([A], [B])√

disc(Aq) disc(Bq)

Since f satisfies (|cross|(A,B) = 0 =⇒ f(A,B) = 0) we have F0 = 0 and as
f(A,B−1) = −f(A,B) we have F−([A], [B]) = F+([A], [

tB]). We are thus reduced to
computing sums of the form:

F+([A], [B]) =

len(A)∑
i=1

len(B)∑
j=1

f
(
σiA, σjB

)
which by definition equals the sum of Tr(σiAq)(σ

jBq−(σjBq)
−1) over pairs of crossing

Lyndon representatives. Of course one makes first the cyclic permutations and then
replaces L 7→ Lq and R 7→ Rq, at the last moment changing the word into a matrix
with coefficients in SL2(N[q, q−1]).
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Real graphs of Lq(A,B)

Let us now display some graphs graphs of Lq(A,B), Lq(A,B
−1) and their average

I(A,B) = I(A,B−1) for various elements A,B ∈ PSL2(N) designed by the sequence
of exponents appearing in their R&L factorisation (starting with an R).

These graphs coroborate Theorem 5.24 and Remark 4.46.

Monotocity at infinity. The functions Lq([A], [B]) seem to be monotonous on
the interval ]1,∞[. This is neither surprising nor completely obvious.

First note that for all A,B ∈ PSL2(Z) such that |cross|(A,B) = 1, there ex-
ists q0(A,B) ≥ 1 such that cos(Aq, Bq) is monotonous on ]q0(A,B),∞[. Indeed
cos(Aq, Bq) is a rational function so it has a finite number of , and it has finite limit
cosign(A,B) at q = ∞. If we think of the geodesics [γAq ] and [γBq ] in Mq while
it undergoes the deformation, we expect that q0(A,B) = 1 for all pairs (A,B) as-
sociated to an intersecting angle which is far from the singularities. Then we must
consider the sum over all pairs of Lyndon representatives (A,B) for [A], [B] such that
|cross|(A,B) = 1, and the cos(Aq, Bq) may not all vary in the same direction inven
on a neighbourhood of +∞: some will decrease to −1 and other increase to +1.
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Complex graphs of Lq(A,B)

Finally, we cannot resist showing the graphs of Lq(A,B) for q ∈ C. Since Lq = L1/q

we bound the module |q| < 1 + ϵ for a small value of ϵ > 0 chosen according to
aesthetic criteria.

For this we assign a colour to each point of the complex plane according to the
HSV colour scheme: the hue varies according to the argument, and the brightness
varies according to the module. Since a picture is worth a thousand words, we display
beneath the graph of the identity map for |q| < 2.

The identity map for q ∈ C with |q| < 2.

Location of zeros and poles. The main general observation is that the zeros and
poles of Lq(A,B) tend to concentrate on the unit circle.

Again this is neither surprising nor obvious. It is not surprising in view of the fact
that the polynomials Tr(Cq) are closely related to Alexander polynomials of braids
on three strands as we saw in Proposition 5.16. The zeros of Alexander polynomials
of knots and links with braid have been subject to various studies (see for instance
[Sto19] for a specific study of those with braid index 3). We should also mention
that [Deh15] has shown such a concentration property for the zeroes of the Alexander
polynomial of a Lorenz knot: they lie an annulus whose inner and outer radii are
bounded in terms the genus and the braid index of the knot. Still, it would remain
a challenge to generalise such localisation results to the functions Lq([A], [B]).

Symmetric matrices Lq(A,B). There are of course many other patterns to ob-
serve on the shape of Lq(A,B) when we let A,B vary in special families.

For instance, one may ask about the properties of the symmetric q-linking matrix
Lq(A,B) for elements A,B varying in a given class group Cl(∆).
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Graphs of Lq(A,B) for complex q.
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Graphs of Lq(A,B) for complex q.



Glossary

Generalities for set theory and topological spaces.
Number sets. Inclusion of sets X ⊂ Y are always understood in the wide sense.
In an ordered set we denote by [x, y [ the interval closed at x and open at y.

N, Z Monoid of non-negative integers N = {0, 1, . . . }. Ring of integers Z.

Q, Qp Field of rational numbers Q. Field of p-adic numbers.

R, C Field R of real numbers. Field C of complex numbers.

K,
√
K Field K of characteristic different from 2. Its quadratic closure

√
K.

K×, (K×)2 The invertible elements of K form a group K× with subgroup of squares (K×)2.

Topological spaces and geometric constructions. The boundary operator ∂
has various meanings depending on the context: we use it mostly for the boundary
of subsets in topological spaces, and the Gromov boundary of hyperbolic spaces.

P(V ) Projectivization of a vector space V .

KPn Projective space P(Kn+1) of dimension n over the field K.

Sn The n-dimensional sphere.

Dn The n-dimensional disc (sometimes the context refers to its interior).

HP The hyperbolic plane (without reference to a particular model).
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Notations introduced or appearing in Chapter 1
The algebra gl2(Z) is a free Z-module of rank 4 with a preferred basis:

1 =

(
1 0
0 1

)
S =

(
0 −1
1 0

)
J =

(
0 1
1 0

)
K =

(
−1 0
0 1

)
These elements form, together with their opposites, a subgroup of GL2(Z) isomorphic
to the dihedral group D4. See Figure 1.1.

V Vector space of dimension 2 over the field K.

ω Often used to denote a symplectic form on V.

gl(V) Algebra of endomorphisms of V, and gl2(K) := gl2(K2).

GL(V) Group of automorphisms of V and GL2(K) := GL(K2).

sl(V) Endomorphisms of V with trace 0, and sl2(K) := sl2(K2).

SL(V) Group of automorphisms of V with determinant 1 and SL2(K) := SL(K2)

M# is the adjoint of M ∈ gl(V), or the transpose comatrix of M ∈ gl2(K).

Tr(M) Trace of an endomorphism or matrix, given by M +M# if M ∈ gl(V).

det(M) Determinant of an endomorphism or matrix, given by MM# of M ∈ gl(V).

disc(M) = Tr(M)2 − 4 det(M) is the discriminant of M ∈ gl(V).

〈M,N〉 = 1
2
Tr(MN#) the bilinear form polarising the quadratic form det on gl(V).

{M,N} = 1
2
(MN −NM) the commutator of M,N ∈ gl(V), usually for M,N ∈ sl(V).

tr(M) Orthogonal projection tr : gl2(K) → K1 with respect to det, which yields the
half-trace also denoted tr(M) = 1

2
Tr(M).

pr(M) Orthogonal projection pr : gl(V)→ sl(V) with respect to det. Preserves disc.

1, S, J,K These matrices defined above, which form an orthogonal-basis of (gl2(K), det)
respecting the decomposition gl2(K) = K1⊕ sl2(K).

X Isotropic cone in the quadratic space (sl(V), det).

214



H = sl(V) ∩ SL(V) ⊂ gl(V) which over R is a double-sheeted hyperboloid.

H′ = {a ∈ sl(V) | det(a) = −1} which over R is a single-sheeted hyperboloid.

⊥ The orthogonality relation in the non-degenerate quadratic space (sl2(K), det)
or the corresponding polarity relation in the projective plane P(sl2(K)) with
respect to the non degenerate conic P(X).

ψ Parametrization of the isotropic cone K2 → X ⊂ sl2(K) or V → X ⊂ sl(V)).
Defined using coordinates in Lemma 1.33, and intrinsically in Lemma 1.36.
The function ψ̄ is defined in Proposition 2.5 of Chapter 2.

bir The cross-ratio bir(u, v, x, y) of u, v, x, y ∈ KP1, the cross-ratio bir(a, b) of
a, b ∈ sl(V) \X or the cross-ratio of A,B ∈ PGL(V) are defined in Section 1.3.

cos The cosine cos(a, b) of a, b ∈ sl(V)\X with respect to det. The cosine cos(A,B)
of A,B ∈ PGL(V) is defined in Section 1.3.

cord The cyclic order cord(x, y, z) ∈ {−1, 0, 1} of three points in an oriented circle.

cross ∈ {−1,−1
2
, 0, 1

2
, 1}. The algebraic intersection number cross(w, z) between two

chords w = (u, v) and z = (x, y) with endpoints in an oriented circle.

In particular for geodesics in HP or T , for instance the translations axes of
hyperbolic transformations acting on those spaces.

|cross| ∈ {0, 1
2
, 1}. The absolute value of cross.

Q(K) The vector space of binary quadratic forms.

Q(Z) The module of integral binary quadratic forms.

Cl(∆) The class group of discriminant ∆.

NormK The norm of an algebraic K-extension. If α is quadratic then NormK(α) = αα′.

P The set of primes (with −1 as prime at infinity), see Section 1.5 for P(Qa, Qb).

Qp Field of p-adic numbers, completion of Q at place p

(δ, χ)p Hilbert symbol of (δ, χ) at prime p defined in Section 1.5.
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Notations introduced or appearing in Chapter 2
Throughout the thesis, we stick to the following notations regarding special elements
of SL2(Z). They satisfy S2 = T 3 = −1 as well as L = T−1S and R = TS−1.

S =

(
0 −1
1 0

)
T =

(
1 −1
1 0

)
L =

(
1 0
1 1

)
R =

(
1 1
0 1

)
We denote by the same letters their classes in PSL2(Z). The elements S&T act on
the hyperbolic plane HP with fixed points denoted i&j.

The submonoid SL2(N) ⊂ SL2(Z) of matrices with non-negative entries is freely
generated by L&R and we identify it with its image PSL2(N) ⊂ PSL2(Z).

We often use A,B ∈ PSL2(Z) to denote hyperbolic elements with attractive fixed
points α, β ∈ RP1 and repulsive fixed points their Galois conjugates α′, β′ ∈ RP1.

b x c Euclidean continued fraction expansion of x ∈ RP1.

4 The Lagrangian complex 42, the Lotus 41 and its quadruple 44.

▽ The base triangles ▽2 of 42 and 41 of 41.

4′,▽′ The first barycentric subdivisions of 4 and ▽.

ψ̄, Pψ̄ Proposition 2.5 introduces a map ψ̄ : R2 → sl2(R) rectifying ψ : R2 → X in
order to define a simplicial map Pψ̄ : 44 →42 between geometric realisations.

T , T ′ The infinite planar trivalent tree T , with first barycentric subdivision T ′.

∂T = ∂T ′ The boundaries of T or T ′, which are identified with ∂HP = RP1.

G The subset of bi-infinite geodesics of T or equivalently of T ′.

gA The combinatorial axis in T or T ′ of a hyperbolic translation A ∈ PSL2(Z).

len The minimum displacement length of A ∈ PSL2(Z) acting on T . For torsion
A it is zero, and for A ∈ PSL2(N) it is the length of its L&R-factorisation.

sinc, cosign Definition 2.42: For oriented geodesics ga, gb ⊂ T , let sinc(ga, gb) ∈ Z ∪ {±∞}
be the length of their intersection, whose sign cosign(ga, gb) ∈ {−1, 0,+1}
compares their orientations along their intersection when it is not empty.
These functions are defined on G × G, whence on pairs of translations axes
(gA, gB) for hyperbolic transformations A,B ∈ PSL2(Z) of T .

coc = 1
2
(1 + cross)× 1

2
(1 + cosign)
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Notations appearing mostly in Chapters 3, 4, 5
M = PSL2(Z)\HP is the modular orbifold, its conical singularities of order 2 & 3

are denoted [i] & [j] or abusively i & j.

s&t Loops encircling the punctures i&j of the thrice punctured sphere M \ {i, j}.
They freely generate its fundamental group. See figures 3.4 and 3.7.

I Geometric intersection number between loops in an orbifold or surface, or the
minimal intersection number between homotopy classes thereof.

T∗ The 6-fold abelian Galois cover of M is a 2-dimensional punctured torus T∗.

F2 A free group on two generators, often used for π1(T∗).

H, H′ The planar hexagonal graph H, with first barycentric subdivision H′.

Rad The Rademacher conjugacy invariant of an infinite order A ∈ PSL2(Z). Defined
at the end of Section 3.2 as the asymptotic winding number of its combinatorial
axis gA mod PSL2(Z)′′ ⊂ H, which is equal to #R−#L if A ∈ PSL2(N).

U = PSL2(Z)\PSL2(R) the unit tangent bundle to the modular orbifold M, which
is homeomorphic to the complement of a trefoil knot in S3.

B3, σ(A) The braid group on three strands with presentation 〈σ1, σ2 | σ1σ2σ1 = σ2σ1σ2〉.
It is isomorphic to π1(U) and we also use the presentation 〈a, b | a2 = b3〉 with
a = σ1σ2σ1 and b = σ1σ2. The monomorphism of monoids σ : PSL2(N) → B3
defined by σ(L) = σ−1

1 and σ(R) = σ2.

s, t, u The unit tangent bundle of the thrice punctured sphere M \ {i, j} has funda-
mental group (Z ∗ Z)× Z generated by s, t, u.

Y The Lorenz template introduced in Section 4.2.

[[P ]] Iverson’s convention for the truth value in [[P ]] ∈ {0, 1} of a proposition P .

lk The linking number, especially between knots in U.

σ(A) Cyclic or Bernoulli shift of a finite or infinite binary sequence like.
Not to be confused with the monoid of morphisms σ : PSL2(N)→ B3.

A∞ Periodisation of a finite binary sequence into an infinite binary sequence.
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pref, occ See Definition 4.31. For a pattern P ∈ PSL2(N) and a hyperbolic A ∈ PSL2(N),
pref(P,A∞) = [[A∞ ∈ P · PSL2(N)]] ∈ {0, 1} tells whether P is a prefix of A∞,
and occ(P,A) counts the number of cyclic occurrences of P in A.

Br, Sq The reduced Burau representation Br: B3 → PSL2(Z[t, t−1]) and the represen-
tation Sq: SL2(Z)→ SL2(Z[q, q−1]) are recalled and defined just before 5.15.
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Index

adjoint action, 7, 16, 37, 85
axis

combinatorial, 11, 216
geometric, 11

base edge, 104
base edge of 41, 105
oriented base edge, 11

basis
of gl2(K), 40, 214
of the plane V, 35, 40

binary quadratic forms
class group Cl(∆), 9, 78, 215
space Q, 7, 77, 215

boundary
of HP, 216
of tree T , 216

characteristic polynomial, 39
continued fraction, 113, 216
cosine, 215

cosign, 103, 127, 216
function cosign, 25, 127
function sign cos, 94

cross-ratio, 215
of four points, 59

crossing
function cross, 25, 93, 127

cyclic order
function cord, 25, 93

determinant, 38, 214
discriminant, 7, 214

discriminant polynomial, 202
elliptic, parabolic, hyperbolic, 89

edge-path, 109
equivalence

algebraic trace equivalence, 4
arithmetic K-equivalence, 2, 19, 78
arithmetic Q-equivalence, 19, 79
classes of quadratic forms Cl(∆),

9, 78
conjecture, 15
genus of quadratic forms, 9
geometric length equivalence, 4
quantum equivalence, 4

euclidean monoid, 5

Fricke polynomial, 202

geodesic
combinatorial, 109, 216

glider
of 4′, 119

Hilbert symbol, 19, 76, 80, 215
homotopy and isotopy

regular homotopic loops, 151
horocycle, 109
hyperboloid, 215
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unit hyperboloid, 68
upper and lower, 85

intersection
cross, 103, 215
algebraic, 25, 146
geometric, 2, 3, 21, 25, 191, 207,

217
geometric intersection, 4, 145
minimally intersecting, 151
pattern of line with complex, 102,

118
self-intersection, 147

involution
Galois involution, 7, 9, 39
transpose comatrix, 38, 214

isotropic cone, 68, 78, 214
parametrization, 215
parametrization ψ, 16, 56

knots and links, 174
Legendrian knot, 174
Lorenz knot, 175
Lorenz link, 175
master Lorenz link, 13
master modular link, 13
modular knot, 12, 175
modular link, 175

length
continued fraction, 113
displacement length, 128, 194
edge-path in T , 109
intersection length sinc, 103, 127,

216
modular geodesic, 141
period length, 161
sequence of L&R, 128
sequence of S&T , 109

translation length, 141, 161, 194,
216

Lie
Killing form, 49
Lie bracket, 49, 214
one parameter subgroup, 54, 86

linking number
self-linking number, 183

Lorenz framing, 183
Lorenz template, 13, 182
Lyndon representative, 11

Maslov index, 58
modular group, 5

extended modular group, 7
modular orbifold, 11

order
cyclic order, 59, 215

periodic
purely periodic real number, 114
orbit of the Lorenz semi-flow, 13,

181
orbit of the modular flow, 12
periodic real number, 114
purely periodic real number, 6

periodisation, 217
periodisation map, 22, 184
polar

conic, 50
quadric, 45

polarity, 215
positive representation, 198
projection

orthogonal, 89, 214

Rademacher, 3
asymptotic winding number in H,
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defined over PSL2(N), 13
from the abelianisation of B3, 177
linking number with trefoil, 177
linking with trefoil, 14
Meyer cocycle, 191

reciprocal
Laurent polynomial, 202

relative index, 170
representation

Fuchsian, 193, 197
universal representation, 194, 201

scalar product, 214
Killing form, 49
on gl(V), 45
polarisation, 40

semi-simple, 39, 89
shift

Bernoulli, 22, 184, 217
cyclic, 22, 184, 217

simplicial complex, 216
41, 101, 105, 216
Lagrangian, 101, 104, 216
spiderweb, 105, 106

symmetric
class, 9
conjugacy class of PSL2(Z), 117
matrix of PSL2(Z), 117

symmetric space, 70
symmetry, 70
symplectic, 214

symplectic basis, 57
symplectic form, 38

taut, 147, 151
trace, 38, 214
tree

bipartite tree T ′, 108, 216
trivalent tree T , 101, 108, 216
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Résumé: Dans cette thèse consacrée au groupe modulaire PSL2(Z), on étudie plusieurs structures arith-
métiques et topologiques sur l’ensemble de ses classes de conjugaison, comme des relations d’équivalence
ou des fonctions bilinéaires.
Le groupe modulaire PSL2(Z) agit sur le plan hyperbolique avec pour quotient la surface modulaire
M, dont le fibré tangent unitaire U est une variété de dimension 3 homéomorphe au complémentaire
d’un nœud de trèfle dans la sphère. Les nœuds modulaires dans U sont les orbites périodiques du flot
géodésique, relevés des géodésiques fermées orientées de M, qui correspondent aux classes de conjugaison
hyperboliques dans PSL2(Z). Leur enlacement avec le nœud de trèfle est bien compris. On s’intéresse
aux nombres d’enlacement entre ces nœuds modulaires, pour lesquels on détermine plusieurs expressions
exploitant la combinatoire, la dynamique ou l’algèbre du groupe modulaire. En particulier, on associe
à deux nœuds modulaires une fonction définie sur la variété des caractères de PSL2(Z), dont la limite
au bord retrouve leur enlacement.
Les matrices hyperboliques de PSL2(Z) indexent aussi diverses familles d’objets arithmétiques, telles
que les formes quadratiques binaires entières indéfinies. Pour un corps K contenant Q, on dit que
deux matrices de PSL2(Z) sont K-équivalentes si elles sont conjuguées par un élément de PSL2(K).
On décrit comment le groupement des PSL2(Z)-classes en K-classes varie avec K. Pour K = C cela
revient à regrouper les formes quadratiques d’un même discriminant, ou les géodésiques modulaires
de même longueur. Pour K = Q on obtient un raffinement de cette relation d’équivalence, que l’on
relie à l’arithmétique des formes quadratiques (symboles de Hilbert) et que l’on décrit en termes des
géodésiques modulaires (angles aux points d’intersection et longueurs des ortho-géodésiques).

Abstract: In this work, dedicated to the modular group PSL2(Z), we investigate several arithmetical
and topological structures underlying its set of conjugacy classes, such as equivalence relations and
bilinear pairings.
The modular group PSL2(Z) acts on the hyperbolic plane HP with quotient the modular surface M,
whose unit tangent bundle U is a 3-manifold homeomorphic to the complement of the trefoil knot in the
sphere S3. The modular knots in U are the periodic orbits for the geodesic flow, the lifts of closed oriented
geodesics in M, which correspond to hyperbolic conjugacy classes in PSL2(Z). Their linking numbers
with the trefoil is well understood. We are concerned with the linking numbers between modular knots
and derive several formulae with combinatorial, dynamical or group theoretical flavour. In particular,
we associate to a pair of modular knots a function defined on the character variety of PSL2(Z), whose
limit at the boundary point recovers their linking number.
The hyperbolic matrices in the modular group PSL2(Z) also parametrize various families of objects in
arithmetics such as indefinite integral binary quadratic forms. For a field extension K of Q, we consider
two matrices in PSL2(Z) as K-equivalent when they are conjugate by an element in PSL2(K). The set of
PSL2(Z)-classes is thus partitioned into K-classes, and we describe how this varies with K. For K = C
it amounts to grouping binary quadratic forms with the same discriminant and modular geodesics of
the same length. For K = Q we obtain a refinement of this equivalence relation, which we relate to the
arithmetic of integral binary quadratic forms (Hilbert symbols) and describe in terms of the geometry
of modular geodesics (angles at intersection points, and lengths of ortho-geodesics).
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