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Texture features extracted from multispectral images acquired under

uncontrolled illumination conditions—Application to precision farming.

by Anis AMZIANE

PRECISION spraying aims to fight weeds in crop fields while reducing herbi-

cide use by exclusive weed targeting. Among available imaging technologies,

multispectral (multishot) cameras sample the scene radiance according to narrow

spectral bands in the visible and/or near infrared domains and provide multispec-

tral radiance images with many spectral channels. The main objective of this work

is to develop an automatic recognition system of crop and weed plants in field con-

ditions based on multispectral imaging.

In this manuscript, we describe the formation of multispectral radiance images un-

der the Lambertian surface assumption, and provide a formalization of the linescan

multispectral camera used in this study. We then propose an original multispectral

image formation model that takes illumination variation during image acquisition

into account. From our image formation model, we propose a method to estimate the

reflectance as an illumination-invariant spectral signature. The quality of reflectance

estimated by our method is evaluated against state-of-the-art methods, and its con-

tribution to supervised crop/weed recognition is demonstrated. As spectral bands

associated to the acquired channels may be redundant or contain highly correlated

spectral information, we select the best spectral bands for crop/weed identification.

We then use them to specify a single-sensor (snapshot) camera model suited for out-

door crop/weed recognition. Finally, we propose an original approach based on a

convolutional neural network for spatio–spectral feature extraction from multispec-

tral images at reduced computation costs. Extensive experiments show the contri-

bution of our approach to outdoor crop/weed recognition.
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Attributs de texture extraits d’images multispectrales acquises en conditions

d’éclairage non contrôlées—Application à l’agriculture de précision.

Anis AMZIANE

LA pulvérisation de précision vise à lutter contre les adventices des cultures tout

en ciblant exclusivement les plantes indésirables pour réduire les quantités

utilisées d’herbicides. Parmi les technologies d’imagerie disponibles, les caméras

multispectrales (multishot) échantillonnent la radiance de la scène selon plusieurs

bandes spectrales étroites dans les domaines du visible et/ou du proche infrarouge

et fournissent des images multispectrales de radiance composées de plusieurs canaux

spectraux. L’objectif principal de ce travail est de développer un système de re-

connaissance automatique des cultures et des adventices en plein champ, basé sur

l’imagerie multispectrale.

Dans ce manuscrit, nous décrivons la formation d’images multispectrales de radi-

ance sous l’hypothèse de surface lambertienne, et fournissons une formalisation de

la caméra multispectrale à balayage linéaire utilisée dans cette étude. Nous pro-

posons ensuite un modèle original de formation d’images multispectrales qui prend

en compte la variation de l’éclairage pendant leur acquisition. À partir de ce modèle,

nous proposons une méthode pour estimer la réflectance des espèces en présence,

qui en est une signature spectrale invariante à l’éclairage. La qualité de la réflectance

estimée par notre méthode est évaluée par rapport aux méthodes de l’état de l’art,

et nous montrons sa contribution à la reconnaissance supervisée des cultures et des

adventices. Comme les bandes spectrales associées aux canaux acquis peuvent être

redondantes ou contenir des informations spectrales fortement corrélées, nous sélec-

tionnons les meilleures bandes spectrales pour l’identification des cultures et adven-

tices. Nous les utilisons ensuite pour spécifier un modèle de caméra mono-capteur
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(de type instantané, ou snapshot) adapté à la reconnaissance des cultures et adven-

tices en plein champ. Enfin, nous proposons une approche basée sur un réseau de

neurones convolutifs pour l’extraction d’attributs spatio-spectraux à partir d’images

multispectrales à coût calculatoire réduit. Des expériences approfondies montrent

la contribution de notre approche à la reconnaissance des cultures et adventices en

extérieur.
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Ib of the scene image.

βbWP Average value over the white patch subsetWP in channel R̃′b.

ρbWP Diffuse reflection factor of the white patch for the spectral band centered at λb

measured by a spectroradiometer in laboratory.

Tref Reference reflectance vectors (from R̂
(K)
ref [CC]) of the learning patches horizon-

tally stacked to form a K × 12 matrix.

Trad Radiance vectors (from R̂
(K)
ref [CC]) of the learning patches horizontally stacked

to form a K × 12 matrix.

G Estimation matrix of Wiener method.

P l Set of learning ColorChecker patches.

P lj j-th, j = 1..12, learning patch of P l.

R̂
(K)

ref,Pl
j

K-dimensional reference reflectance spectrum for learning patch P lj .

Symbols related to reflectance estimation assessment

Pt Set of test ColorChecker patches.

Ptj j-th, j = 1..12, test patch of Pt.

R̂
(K)

ref,Pt
j

K-dimensional reference reflectance spectrum for testing patch Ptj .

∆θ [·] Angular error.

MAE[·] Mean absolute error.

MAE
k

[·] Channel-wise mean absolute error.

Symbols related to RGB-NIR simulation

R′(4)
rw RGB-NIR (4-channel) image simulated from the K-channel (rw-based) one.

T ′l(λ) Normalized spectral sensibility function of the l-th RGB-NIR camera filter.

Symbols related to supervised classification

S learn Learning image/sample set.

Stest Test image/sample set.

Ci i-th class.
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NC Number of classes.

N l Number of learning pixels.

N t Number of test pixels.

N ti Number of test pixels for class Ci.

Ψ The quadratic discriminant function.

ΣCi Covariance matrix of class Ci.

ys True label of a test sample xs ∈ RK .

ŷs Predicted label of a test sample xs ∈ RK .

D Number of selected features/bands.

B(K′) Reduced set of K ′ (<< K) features.

B(D) Reduced set of D (<< K ′) features.

Symbols related to gradient boosting machine learning

M Number of boosting iterations.

ε Learning rate.

γi Per-class initialization value ∈ [0, 1].

L Differentiable loss function for vectorial inputs.

φ Differentiable loss function for scalar inputs.

θ Weak learner (ensemble model).

θ(·) Decision function (a classification logit).

θ̂i Final weak learner specialized in class Ci.

Θ Multiclass learner induced by NC ensemble models.

Θ(xj) NC-dimensional vector of classification logits provided by multiclass learner Θ.

yj True label associated to sample xj encoded as a one-hot NC-dimensional vector.

P(xj) NC-dimensional probability vector associated to sample xj .

rnj,m Pseudo residual associated to sample xj , iteration m, and class n.

T Number of terminal nodes.

Rnt,m Terminal node associated to iteration m and class n.

γnt,m Output value associated to terminal nodeRnt,m.
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AGRICULTURE is one of the most essential areas that contribute to the economic

growth of a country, and is the primary food source for a growing world

population. To fulfill the increasing demand of population, crop quality and pro-

duction quantity must be preserved. Unfortunately, crop fields are infested by weed

plants that unintentionally grow alongside crops and compete with them in light

and limited resources such as water and nutrients. When weeds become dominant,

they may also cause shadows that alter the quality (wavelength) and amount (energy)

of light reaching crops, leading to shade avoidance responses such as etiolation, leaf

shortening or curling, and delayed flowering [69]. The ubiquitous nature of weeds

affects crops and leads to crop yield reduction and crop quality alteration. According

to the Food and Agriculture Organization, between 26% and 40% of the world’s po-

tential crop production is annually lost, and this loss could double without crop pro-

tection practices [133]. Moreover, crops are also subject to several diseases, such as

Cercospora leaf spot that especially affects beet plants and alters their quality, leading

to catastrophic loss in sucrose production when the disease is not handled rapidly.

At an advanced stage, no cure is available, and the only treatment is to remove the

affected parts of the plant so that the disease does not propagate to other plants.

In order to protect crops, a continuous inspection is required. Basically, farmers

manually remove weeds and diseased plants in their fields. This task is laborious,

time-consuming, and intractable in large crop fields. Therefore, to effectively con-

trol weeds and diseases in agricultural fields, herbicide and pesticide are sprayed

by farmers (see Fig. 1.1). Uniform spraying does not require a detailed knowledge

about weed or infected plant distribution in the field. It treats soil, crops, and weeds

in the same way and with the same dose of herbicide/pesticide, regardless of its

success in preventing diseases, controlling weeds and increasing crop productivity.

In France, as elsewhere in the world, agrochemicals are sprayed in massive quanti-

ties (see Fig. 1.2) to get rid of plant diseases and weeds. The massive use of agro-

chemicals results in environmental pollution and soil degradation. It also impacts

water quality, and can be harmful to human health [151] and various living organ-

isms [174]. Moreover, weeds are not uniformly distributed within crop fields, and
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FIGURE 1.1: Uniform spraying of a crop field.
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FIGURE 1.2: Worldwide pesticide sale turnover2 (green plot) and her-
bicide volume (in tonne) sold in France 2011–20193 (red plot).

agrochemicals can largely be saved if spraying is applied in a more localized man-

ner [61]. In Europe, with the growing desire to tend towards a sustainable and less

chemical-dependent agriculture, several regulations have emerged after the 2010

ENDURE international conference [150] in order to limit the usage of agrochemi-

cals. Specifically, France projects to cut the use of pesticides by 50% for the next

few years according to the Ecophyto II plan1. Therefore, considerable investments

in precision farming are made to achieve this goal.

1 https://agriculture.gouv.fr/le-plan-ecophyto-quest-ce-que-cest
2 https://fr.statista.com/infographie/11599/chiffre-affaires-pesticides-produits-phytosanitaires-

dans-le-monde-et-par-region/
3 https://www.statista.com/statistics/1068660/sales-herbicides-defanant-anti-foam-france/

https://agriculture.gouv.fr/le-plan-ecophyto-quest-ce-que-cest
https://fr.statista.com/infographie/11599/chiffre-affaires-pesticides-produits-phytosanitaires-dans-le-monde-et-par-region/
https://fr.statista.com/infographie/11599/chiffre-affaires-pesticides-produits-phytosanitaires-dans-le-monde-et-par-region/
https://www.statista.com/statistics/1068660/sales-herbicides-defanant-anti-foam-france/
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1.1 Precision farming

1.1.1 Overview

Precision farming, also known as site-specific management [142] is the application

of advanced technologies and principles to manage spatial and temporal variability

associated with all aspects of agricultural production [32]. Precision farming aims to

increase yield production while reducing the negative impact of agrochemicals on

the environment and ecosystems. Several agricultural applications, such as pasture

systems [12], soil and yield monitoring [134, p. 143], and viticulture or horticulture

management [195], are improved using precision farming. In the last decade, with

the growing concern about food security and sustainable crop production, several

precision farming applications try to deploy robots and sensors in fields to auto-

matically identify diseased leaves or to separate crops from weeds for high-level

interventions.

Precision spraying is one of the promising solutions being currently investigated

to achieve this goal. It aims to exclusively spray weeds or diseased leaves/plants

with an adequate herbicide dose according to weed density or disease stage. This

approach is more efficient and less toxic than uniform spraying. It can achieve a

drastical reduction of agrochemicals since it treats each plant individually.

Oberti et al. [132] conduct selective spraying experiments of powdery mildew disease

on grapevine plants in a greenhouse. They use a robot equipped with a vision-based

disease detection system and a pesticide sprayer. The system performs spraying

whenever diseased spots are detected. As a result, 65% to 85% reduction of pesti-

cide is achieved in comparison with conventional uniform spraying. Søgaard and

Lund [169] conduct indoor experiments about precision spraying of weeds. Their ex-

periments show that, when selectively spraying weeds with micro-doses of a broad-

spectrum systemic herbicide (glyphosate), the amount of herbicides can be reduced

by two orders of magnitude compared to uniform spraying. Similarly, Utstumo et al.

[179] perform indoor trials in a carrot field infested by four types of weeds (grass

and three dicot species). They use a robot equipped by a drop-on-demand (DoD)

system that deposits herbicide droplets on the detected weed leaves. They report

that weeds can be effectively controlled using only 7.6 µg of glyphosate and 0.15 µg
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of iodosulfuron herbicide per plant. They also report that the herbicide amount can

be reduced by more than 90% compared to classical spraying approaches.

In 2017, the French Ministries of Agriculture and of Ecological Transition, in partner-

ship with the Ministry of Research and the French National Research Agency (ANR),

launched the Rose challenge4. It is organized by the French National Research Insti-

tute for Agriculture, Food and Environment (INRAE), and the National Metrology

and Testing Laboratory (LNE). The purpose of this challenge is to bring coopera-

tion between academic and industrial research teams to develop projects for innova-

tive technological solutions to reach the Ecophyto II objectives. Among the funded

research projects in the Rose challenge is the WeedElec5 project, that aims to over-

come the automatic weed detection/identification problem using image processing.

It combines aerial weed detection by a drone and a robot equipped with delta arms6

fitted with a high-voltage electrical weeding tool. This project provides a public

dataset7 that contains color images of different crops and weeds as well as a weed

detection approach based on convolutional neural networks (CNNs) [27].

According to the aforementioned studies, precision farming can indeed optimize the

application of agrochemicals in crop fields. However, the practical adoption of pre-

cision farming techniques such as precision spraying still faces several challenges

[21], foremost among which is probably the automatic localization of the areas to

spray (or destroy).

1.1.2 Challenges

To efficiently perform selective spraying, the targeted areas (weeds or diseases) must

be accurately located within the field. Moreover, in some cases, their type and den-

sity must be also determined in order to select the agrochemicals and the adequate

spraying dose. This is not a trivial task since most weeds and crops share a common

visual appearance. A given weed or crop plant is subject to several visual variations

caused by external factors, such as variable illumination, water stress, or nutrients

quality, which makes weed detection difficult. Moreover, color and texture of leaf

surfaces also vary during their growing cycle, which further increases variability in

4 https://challenge-rose.fr/en/home/
5 https://challenge-rose.fr/en/projet/weedelec2017-2/
6 https://github.com/Agroecology-Lab/Open-Weeding-Delta
7 https://zenodo.org/record/3906501

https://challenge-rose.fr/en/home/
https://challenge-rose.fr/en/projet/weedelec2017-2/
https://github.com/Agroecology-Lab/Open-Weeding-Delta
https://zenodo.org/record/3906501
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plant visual appearance.

Non-imaging sensors, such as spectroradiometers, provide local spectral measure-

ments of target surfaces in specific spectral bands. On the other hand, imaging sen-

sors (typically, cameras) provide spatial (shape/texture) and spectral (color/spectra)

measurements that allow for a global interpretation of the scene, hence its visual in-

spection. Such sensors are widely used in precision farming [176]. They can be used

for the analysis of crop yield and biomass, water stress, soil properties, moisture and

clay content, disease detection and crop/weed recognition.

In this study, we only focus on the crop/weed recognition problem by analysis of

their visual aspect.

1.2 State of the art in crop/weed imaging

Two types of approaches have been proposed to address the crop/weed recognition

problem, namely remote and proximal sensing.

1.2.1 Remote sensing

Early works on crop/weed mapping are based on remote vegetation sensing, which

usually relies on high-altitude platforms, such as satellites and aircrafts, to acquire

images of vegetation [9, 94, 96, 140]. Satellites (e.g., the SPOT, AVHRR, AVIRIS, ...)

are equipped with multispectral sensors and provide images with high spectral reso-

lution but coarse spatial resolution. For instance, the AVIRIS sensor provides images

composed of 224 channels associated to spectral bands in the range 400–2500 nm,

where each pixel covers an area of 20 m2 on the ground. It is difficult to determine

the optimal spatial resolution for weed mapping applications because it depends on

various factors, such as growth stage, height, and density of vegetation. Despite

outstanding improvements in aerial and satellite imaging, especially regarding the

spatial resolution (finer than 1 m2/pixel with GeoEye and WorldView satellites), im-

ages may still not carry enough textural information to analyze vegetated surfaces

precisely. A higher spatial resolution remains necessary to detect or identify weeds

from crops.

Aircrafts that embed multispectral sensors can provide images with spatial resolu-

tion between 0.25 and 4 m2/pixel, depending on the scene-to-sensor distance. As for
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satellite imaging, aerial imaging for crop/weed detection is also subject to several

barriers, such as: tedious (or expensive) image inquisition, atmospheric perturba-

tions, etc. [129]. In addition, it mainly relies on the available spectral signature at

each pixel. Indeed, pixels of images acquired from a high-altitude platform observe

large surface elements of the field. Thus, a single pixel may be associated to differ-

ent scene surfaces. This is more likely to occur in case of overlapping vegetation.

Spectral signatures are then mixed and spectral unmixing of surface elements is per-

formed in order to retrieve the correct spectral signatures [20]. High-altitude aerial

imaging systems are mostly adapted to observe fields where crops and weeds are

grouped in large and dense patches and when identifying weed species is not re-

quired. Weed can be then detected if it has specific growth spectral signatures.

In order to improve spatial resolution, proximal sensing approaches should be con-

sidered.

1.2.2 Proximal sensing

Proximal sensing of crops and weeds involves sensors (spectrometers) or cameras

mounted on tractors, unmanned ground vehicles (UGVs), or low-altitude unmanned

aerial vehicles (UAVs). UGVs such as the Thorvald II [64], BoniRob [145], AgeBot II

[16], Ladybird [184], or the Avo robot from Ecorobotix8, can be used for both image

acquisition and in-field interventions. They can embed different kinds of tools (such

as selective sprayers, mechanical weeding, cameras, lasers, etc.) to provide a per-

plant monitoring (see Fig. 1.3(a, b)). However, because the field of view (FOV) of

UGVs is usually restricted to a small area of the scene, monitoring large crop fields

may be relatively slow. They are also more expensive than UAVs, that are relatively

cheap and easier to deploy in outdoor [101]. UAVs are used to monitor crop fields at

larger scales (see Fig. 1.3(c)) since they can cover large areas in a shorter time in con-

trast to UGVs. However, because UAVs are more subject to vibrations and stability

problems, not all cameras can be embedded on them, and the acquired images may

undergo some corrections (such as image alignment in case of multi-sensor based

cameras).

Cameras originally deployed in agricultural fields are either monochromatic or color [130].

8 https://www.ecorobotix.com/en/avo-autonomous-robot-weeder/

https://www.ecorobotix.com/en/avo-autonomous-robot-weeder/
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(a) Bosch BoniRob farming UGV [145]. (b) Ladybird UGV [184].

(c) DJI Phantom 4 UAV9 [109].

FIGURE 1.3: Two UGV systems (a, b) and a UAV (c) used for outdoor
crop/weed monitoring. The BoniRob robot (a) uses RGB and RGB-
NIR cameras for weed detection and tracking. The Ladybird robot
uses a multispectral linescan camera for weed detection. (c) The DJI
Phantom 4 quad-copter (standard version) uses an RGB camera for
image acquisition.

Color cameras are usually equipped with three different optical filters that are sensi-

tive to the visible (VIS) domain of light. Thanks to one shot, they capture light along

the red (R), green (G), and blue (B) spectral bands of the VIS domain, and provide

color images composed of three RGB channels. RGB-NIR cameras provide infor-

mation in the near-infrared (NIR) domain that is combined with color information

to compute vegetation indices, such as the normalized difference vegetation index

(NDVI) [15, 43, 48, 76]. However, spectral information is averaged over wide wave-

length ranges in both color and RGB-NIR cameras, resulting in a lack of detail in

specific narrow spectral bands. Combining imaging and spectrometry has led to a

9 https://www.dji.com/fr/phantom-4

https://www.dji.com/fr/phantom-4
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new generation of optical sensing technologies generically referred to as multispec-

tral imaging.

Multispectral cameras sample the scene radiance (amount of light reflected by an

object in a given direction) according to many spectral bands of the VIS and NIR

domains, and provide a multispectral radiance image that is composed of multi-

ple channels. Each channel contains the scene spectral information associated to a

specific narrow spectral band. From this image, features are extracted by a specific

descriptor, and analyzed by a supervised classifier to discriminate crops and weeds.

For feature extraction, we can distinguish handcrafted and deep learning-based ap-

proaches.

1.2.3 State of the art about crop/weed recognition

1.2.3.1 Handcrafted features for crop/weed recognition

One of the earliest precision spraying systems was proposed in 1999 by Lee et al. [97].

The authors describe a robot equipped with an RGB camera that acquires images of

vegetation under artificial illumination (halogen lamps). In order to discriminate

tomato plants from weeds, they compute shape features (area, elongation, compact-

ness, length/perimeter ratio, etc.) that are analyzed by a Bayesian classifier for de-

cision. In field conditions, this system is able to detect about 76% of the tomato

plants, whereas only 48% of the weeds are detected. Haug et al. [72] use a two-

band camera mounted on an autonomous field robot equipped with artificial light-

ing to acquire images in the visible red and NIR domains. In each acquired radiance

image, the NDVI is computed at each pixel. The authors propose a keypoint clas-

sification approach and analyze only a small set of pixels located at sparse spatial

coordinates in each NDVI image. At these pixels, they compute shape (perimeter,

area, compactness, solidity, convexity, etc.) and statistical features (mean, median,

standard deviation, etc.) that are analyzed by a random forest (RF) classifier. To

refine and recover the final pixel classification map, they use Markov random field

(MRF) smoothing and nearest neighbor interpolation. Lottes et al. [107] use a cam-

era that samples four broad spectral bands to acquire RGB-NIR images under con-

trolled illumination (halogen spots), and compute (illumination-dependent) shape

and spectral features of vegetation. Louargant et al. [111] use a multispectral camera
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that samples four key spectral bands for NDVI computation. Their weed detec-

tion method combines prior knowledge about the spatial distribution of plants in

the field (i.e., between-row pixels are considered as weeds and within-row pixels as

crops) and spectral information. Reflectance (intrinsic optical property of materials)

is estimated from the multispectral radiance images using a reference panel (device

that reflects all incident light) that measures the downwelling illumination during

radiance image acquisition. Learning crop and weed pixels are first selected thanks

to the between/within-row assumption. Then, a supervised classifier is trained with

reflectance features estimated at the selected learning pixels. Bosilj et al. [22] pro-

pose the attribute profiles descriptor to extract texture features over a 72 × 72 pixel

grid. They use a RF classifier and compare the discrimination power of attribute

profiles features against local binary patterns (LBP) and histogram of oriented gra-

dients (HOG) features. They show that attribute profiles provide the best crop and

weed classification performance on RGB-NIR images of the Sugar Beets 201610 and

Carrots 201711 datasets.

1.2.3.2 Deep learning for crop/weed recognition

Alternatively to the handcrafted feature extraction approach, several authors propose

to use convolutional neural networks (CNNs) for crop/weed recognition [110, 124,

125, 153, 154]. CNNs can learn complex features describing non-linear relationships

between the different classes. Potena et al. [144] propose a shallow CNN and a deep

one to analyze RGB-NIR radiance images. They first separate vegetation from back-

ground thanks to a thresholding of the NDVI. They apply the trained shallow CNN

to a small patch centered at each vegetation pixel to refine vegetation detection.

Then, vegetation pixels are classified as crops or weeds by the deep CNN that ana-

lyzes larger patches. In [124], a CNN composed of 8 layers is used to analyze RGB-

NIR images for weed detection. First, vegetation pixels are isolated using the NDVI.

Then, vegetation blobs (subsets of connected vegetation pixels) are built as patches

(with different spatial resolution according to blob shape and vegetation density),

10 https://www.ipb.uni-bonn.de/data/sugarbeets2016/
11 https://lcas.lincoln.ac.uk/wp/research/data-sets-software/crop-vs-weed-discrimination-

dataset/

https://www.ipb.uni-bonn.de/data/sugarbeets2016/
https://lcas.lincoln.ac.uk/wp/research/data-sets-software/crop-vs-weed-discrimination-dataset/
https://lcas.lincoln.ac.uk/wp/research/data-sets-software/crop-vs-weed-discrimination-dataset/
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and rescaled so that each patch fits in a 64 × 64 pixel window. Blob-wise classifica-

tion is fast since it learns from vegetation blobs (patches) and classifies each blob by

considering it as a small (rescaled) patch. It however assumes that vegetation plants

do not overlap. All pixels in a vegetation blob are associated to the same class, other-

wise, blob-wise classification may provide inaccurate results. In [153], a downward-

facing RGB-NIR camera is mounted on a UAV to acquire radiance images of vege-

tation at 2 m of altitude. In order to learn complex features and to achieve semantic

detection of crop (sugar beet) and weeds, the authors use an encoder-decoder CNN

model based on the state-of-the-art SegNet framework [14]. The latter is trained with

different combinations of channels (panchromatic, Red and NIR, Red and NIR and

NDVI) and reaches a weed detection performance of 80% in terms of F1-score. De-

spite of the good results obtained by CNN-based crop/weed detection approaches,

they also show decreasing performances when the feature distribution of plants in

the test images changes due to growth stage and when test images come from dif-

ferent fields. To generalize these models, data augmentation [11, 125] and prior in-

formation about weed distribution in the field [106, 111] may be considered.

1.2.3.3 Multispectral image analysis for crop/weed recognition

Because some weeds are visually very similar to crops (e.g., in color and texture),

such as bean and datura (see Fig. 1.4(a)), or beet and goosefoot (see Fig. 1.4(b)), their

detection from color image analysis only may be difficult, especially in field condi-

tions where illumination varies and plants shade each other. As crops and weeds

also often overlap, it is difficult to compute shape features. Therefore, some re-

searchers use multispectral devices with finer spectral resolution. In [49], a multishot

multispectral device (composed of an imaging spectrograph and a camera) is used

to acquire radiance images of vegetation with a spectral resolution of 35 nanometers

(nm) in the range 435–1000 nm. In order to bypass illumination conditions, spec-

tral reflectance is estimated thanks to a reference panel included in the scene before

each image acquisition. The latter is then used as a feature to train different clas-

sifiers (k-nearest neighbour (k-NN), minimal distance, classification and regression

tree (CART), multi-layer neural network with non-linear mapping (MLNLM)). The

best performance is achieved by the MLNLM classifier with an accuracy of 80.1%
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(a) (b)

FIGURE 1.4: Two crop/weed RGB images: bean/datura (a) and
beet/goosefoot (b). Red dots show the locations of weed plants that
can hardly be distinguished from their respective crop.

for sugar beet crop and of 91.4% for weed class. In [168], a multishot (linescan) mul-

tispectral camera (integrating a spectrograph and a matrix detector) that acquires

radiance images with a spectral resolution of 10 nm between 360 nm and 1010 nm

is used to detect weeds in soybean fields. The radiance spectrum measured at each

pixel is normalized so that the minimum radiance value is zero and the average

value is one. The normalized radiance may be transformed by principal component

analysis (PCA). Either the best fifteen features selected (by step-wise feature selec-

tion based on Wilks’ lambda criterion) from normalized radiance or the best seven

features selected from normalized-transformed radiance are used to train the lin-

ear discriminant analysis (LDA) classifier and a neural network (NN). The PCA-NN

pipeline (NN classifier trained with normalized-transformed radiance) provides the

best results with a classification accuracy between 90.2% and 99.1% according to the

weed type.

Wendel and Underwood [184] use a multishot (linescan) multispectral camera mounted

on a UGV to acquire radiance images with 244 channels in the VIS and NIR domains

(between 390 and 887.4 nm). Vegetation pixels are extracted by thresholding NDVI

images. Radiance is normalized as in [168], then smoothed by Savitzky-Golay filter-

ing [158]. Then, PCA is performed on the training data for feature extraction and

the 20 most explanatory features are retained. Pixels are classified thanks to support
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vector machine (SVM) and LDA classifiers. In order to learn additional (new) spec-

tral signatures and to adapt the classifiers to changing vegetation appearance with-

out manually generating training data, the system relies on the between/within-row

assumption about crop and weed distribution. The two classifiers provide similar

results and achieve an overall crop/weed detection performance between 85% and

88% in terms of F1-score.

Despite that multishot multispectral cameras acquire high spectral resolution im-

ages, it is still difficult to use them in outdoor conditions. As these cameras build the

multispectral image from several shots, they are subject to different perturbations

that may occur during image acquisition, such as illumination variation and wind,

which may alter the quality of the spectral signatures.

1.2.4 Limitation and challenges

In order to distinguish between crops and weeds, state-of-the-art crop/weed recog-

nition systems rely on the following approaches:

• Shape features: Several studies extract shape features in order to discriminate

weeds from crops [107, 182, 185]. They can be efficient at early growth stages

when leaves of crop and weed plants do not interfere. However, at an ad-

vanced growth stage, when crop and weed leaves occlude each other, shape

features become irrelevant.

• Between/within-row assumption: To increase classification performances of

the classifier, one often assumes within-row plants as crops and between-row

plants as weeds [71, 76, 107, 109]. This assumption is however not always

verified because weeds can grow within crop rows (see Fig. 1.4). Moreover,

when the camera is mounted on a UGV, the FOV is much more bounded than

with a UAV and crop rows may not be well detected.

• UGV with controlled illumination: Most UGV-based systems acquire veg-

etation radiance images under artificial light to avoid the naturally varying

illumination of skylight [16, 72, 76, 106]. This makes them more cumbersome

and dependent on a particular illumination.
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• UAV under skylight: In the case of UAV-based systems, images are acquired

under skylight. Therefore, in order to be robust against illumination condi-

tions, a large training dataset of radiance images needs to be acquired under

various illuminations. Moreover, labeling large datasets is very tedious and

expensive (because it requires experts in agronomy) [4]. Furthermore, learn-

ing from high-dimensional datasets is problematic and requires high compu-

tational power.

• Deep learning: The acquired radiance images can be fed into a deep CNN

for feature extraction and pixel classification. Encoder-decoder CNN models,

such as SegNet [14], can take the whole image as input and provide an output

as a pixel-wise classification map [154]. However, there is no guarantee that

the model will be robust against different kinds of illuminations. Moreover,

training such models with high spatial and spectral resolution radiance images

requires a lot of memory and high computational power.

• Multispectral imaging: Multispectral linescan cameras have been used for

weed recognition [168, 184] because they acquire high spectral resolution im-

ages. However, they build a multispectral image from successive frames ac-

quired at different times, so, they have not been widely adopted in precision

farming. Hence, using them in field conditions is still a challenge because im-

age acquisition is sensitive to illumination variation. Moreover, feature extrac-

tion from multispectral images is problematic because of their dimensionality.

The CA80 project has emerged to address these challenges, and develop an auto-

matic crop/weed recognition system based on multispectral imaging.

1.3 CA80 project

Farmers are waiting for solutions that would enable them to take further steps to-

wards the reduction of herbicides, and to achieve the objectives of Ecophyto II plan.

Mechanical weeding, the main alternative to agrochemicals, has been progressively

adopted for beets, sunflowers and corns. However, it remains limited in its ability

to treat large crop fields. To investigate solutions that improve weed control appli-

cations and reach the objectives of Ecophyto II plan, the Chambre d’Agriculture de
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la Somme12 (CA80) initiated the project at the end of 2016, co-financed by the CA80,

the French government, and the Hauts-de-France region. They focus on proximal

sensing of weeds for agro-ecological weeding. Their ambition is to reduce the use

of herbicides in field crops and vegetable production by more than 80% while main-

taining a high rate of weed eradication.

1.3.1 Aims and planning

The CA80 project is based on a multidisciplinary approach (imaging, information

technology, agronomy, machinery) that associates the CRIStAL laboratory of the

University of Lille and the CA80. The research works carried out in this thesis since

October 2018 result from the collaboration between the Color Imaging Team13 of

CRIStAL and engineers of the CA80.

Based on field experiments, the CA80 project aims to develop a process ranging from

the location and qualification of weeds, to the application of the most sustainable

weeding possible. Its main tasks are:

• Protocol for outdoor image acquisition: Outdoor vegetation image acquisi-

tion by multishot multispectral devices is subject to several challenges, such

as variable illumination or shadows. Therefore, an adequate image acquisition

protocol should be established.

• Acquisition of a crop/weed multispectral radiance image dataset: Once im-

ages have been collected according to the established protocol, they should

be stored and organized following an efficient management. The CA80 has

already developed a graphical user interface for an efficient archiving of the

dataset thanks to several parameters such as acquisition date, plant species,

growth stage, hydric or nutritional stresses, disease type, etc. An expert in

agronomy should also analyze the images to build the ground truth (pixel la-

bels) associated to each of them.

• Creation of a database of vegetation spectral signatures: The radiance images

in the dataset should be analyzed to estimate reflectance. Region of interests

12 https://hautsdefrance.chambre-agriculture.fr/chambre-agriculture-somme/
13 https://color.univ-lille.fr/

https://hautsdefrance.chambre-agriculture.fr/chambre-agriculture-somme/
https://color.univ-lille.fr/
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(ROIs) are defined based on the vegetation ground truth to extract reflectance

spectra of the plants as their spectral signatures.

• Supervised crop/weed recognition: This task is to design an illumination-

robust crop/weed classification system thanks to the analysis of the extracted

reflectance signatures and/or of extra texture features.

• Spectral band selection for crop/weed recognition: To reduce the dimension

of the multispectral images, and to specify a low-cost sensor dedicated to out-

door crop/weed recognition, the relevant spectral bands for crop/weed clas-

sification should be selected.

1.3.2 Examined crops and weeds

The Hauts-de-France region is one of the most important agricultural regions in

France, with about 67% of its area dedicated to agriculture. It is a leading producer

of different crops such as wheat, beet, chicory, bean, and peas14.

The Chambre d’Agriculture de la Somme has an experimental greenhouse in parcels

(see Fig. 1.5(a)) located near Amiens, France, where they carried out an image acqui-

sition campaign of vegetation under skylight in April 2017.

(a) Parcel with two aisles of cultivation. (b) Experimental greenhouse over the
parcel shown in (a).

FIGURE 1.5: The parcel (a) and greenhouse (b) used for plant cultiva-
tion and image acquisition experiments.

14 https://draaf.hauts-de-france.agriculture.gouv.fr/IMG/pdf/memento_hauts-de-france-
edition2020_2-11-2020_cle0b35c6-1.pdf

https://draaf.hauts-de-france.agriculture.gouv.fr/IMG/pdf/memento_hauts-de-france-edition2020_2-11-2020_cle0b35c6-1.pdf
https://draaf.hauts-de-france.agriculture.gouv.fr/IMG/pdf/memento_hauts-de-france-edition2020_2-11-2020_cle0b35c6-1.pdf
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The experimental greenhouse is organized into several micro-plots allowing the es-

tablishment of rooted crops. It contains a custom-designed guided moving frame

(see Fig. 1.5(b)) to be equipped with a camera and or a spectroradiometer. The CA80

Project considers several crops that are representative and somewhat specific to the

Hauts-de-France region such as sugar beet, green bean, wheat, barley, canola, and

peas. In this study, we focus on three crop types that represent one of the main crop

productions of the region, namely (sugar) beet (Beta vulgaris), wheat (Triticum sp.),

and (green) bean (Phaseolus vulgaris). These plants are implanted in greenhouse

under skylight along with three weed species that commonly infest them, namely

thistle (Cirsium arvense), goosefoot (Chenopodium sp.), and datura (Datura stramo-

nium). We assess the discrimination of these species using multispectral imaging. To

acquire outdoor crop/weed images, an acquisition system based on a linescan mul-

tispectral camera has been designed (see Fig. 1.6(a)). The camera is mounted on top

of the acquisition system (about 1.5 m from the ground) and observes vegetation

from nadir (see Fig. 1.6(b)). It also observes a white diffuser for reflectance estima-

tion and a ColorChecker chart for estimated reflectance assessment.

snapscan VNIR

snapscan VNIR

snapscan VNIR

snapscan VNIR

White diffuser

ColorChecker chart

Multispectral camera

1.
50

m

(a) Acquisition setup. (b) Scene observed from nadir (RGB rendering
of an acquired multispectral image).

FIGURE 1.6: Multispectral image acquisition.

A second main image acquisition campaign has been conducted in 2019 in order to

acquire outdoor radiance images of vegetation. These images are used in this study
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as a support to investigate solutions for weed recognition. Figure 1.7 shows 9 multi-

spectral images that illustrate the considered plant species, rendered as RGB images

with D65 illuminant.

(a) Beet/thistle (b) Beet/thistle (c) Beet/thistle/goosefoot

(d) Beet/goosefoot (e) Wheat (f) Wheat

(g) Bean/datura (h) Bean/datura (i) Bean/datura

FIGURE 1.7: Samples of the plant species (at various growth stages)
considered in this study. Dots show weed plant: thistle in blue (a,
b, c), goosefoot in cyan (c, d), and datura in magenta (g, h, i). Other
plants are crop: beet (a, b, c, d), wheat (e ,f), and bean (g, h , i)).
As we can see some crop/weed pairs such as beet/goosefoot and
bean/datura are barely distinguishable because they have similar col-
ors and textures. Although textures and shapes of thistle and wheat
leaves are different, they have a slightly darker green color than beet
and bean ones.
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1.4 Thesis contributions and structure

1.4.1 Contributions

The main objective of this work is to develop an automatic recognition system of the

considered crop and weed plants in field conditions. Specifically, this thesis investi-

gates the deployment of a multispectral camera in outdoor conditions. The ultimate

goal is to design illumination-robust classification methods and to specify a dedi-

cated sensor for the discrimination of the considered plants. The main contributions

are:

• Multispectral image database acquisition: Because there is no publicly avail-

able dataset that contains high spectral resolution images associated to the con-

sidered vegetation species, we build a new database from the acquired vegeta-

tion images and annotate it with the segmentation ground truth. The targeted

species are beet, wheat, and green bean for crops, and thistle, goosefoot, and

datura for weeds.

• Multispectral image formation model: Radiance image acquisition by a lines-

can camera follows a specific process that is influenced by variable illumina-

tion conditions. Thus, the classical image formation model is not adapted to

model the acquisition process. Therefore, we propose an original image for-

mation model for multispectral image acquisition by a linescan camera [7].

• Reflectance estimation: To compute features that are invariant to illumina-

tion conditions and tend towards specific spectral signatures of vegetation, we

propose to compute the reflectance at each pixel. However, because radiance

acquired by linescan cameras is sensitive to variable illumination, state-of-the-

art reflectance estimation methods are not suited to images acquired with this

type of camera. From our image formation model, we propose a method to

estimate reflectance [6, 7].

• Supervised crop/weed recognition based on reflectance features: A super-

vised classifier is trained using estimated reflectance features. To assess their

discrimination power, they are compared against reflectance features estimated

by state-of-the-art methods [7, 8].
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• Band selection: A supervised feature selection approach is applied to reduce

the dimension of our images. It selects the most discriminant spectral bands

for crop/weed recognition.

• Spatio–spectral texture feature extraction: We propose an original method

based on a CNN to extract texture features directly from low dimensional mul-

tispectral images. These features are fed into a supervised classifier for training

and classification.

1.4.2 Manuscript structure

The rest of the manuscript is organized as follows.

In Chapter 2 we describe the formation of multispectral radiance images under the

Lambertian surface assumption and the different devices that can be used to acquire

such images. We then provide a detailed description of the multispectral camera

used in this study. Because radiance multispectral images are acquired under vary-

ing illumination, we propose an original multispectral image formation model that

takes the variation of illumination conditions into account.

In chapter 3, we estimate the reflectance as an illumination-invariant spectral signa-

ture. First, we present state-of-the-art methods that can be used to estimate the re-

flectance from multispectral images. We then introduce the reference state-of-the-art

method for reflectance estimation and describe our proposed method for reflectance

estimation under varying illumination.

Chapter 4 focuses on estimated reflectance assessment. The quality of reflectance

estimated by our method is evaluated against state-of-the-art methods, and its con-

tribution to supervised crop/weed recognition is demonstrated.

Chapter 5 addresses the dimension reduction issue. The acquired multispectral im-

ages are composed of a high number of spectral channels, whose analysis is memory-

and time-consuming. Moreover, spectral bands associated to these channels may be

redundant or contain highly correlated spectral information. Therefore, we select

the best spectral bands for crop/weed classification and use them to specify a cam-

era suited for crop/weed recognition.
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Chapter 6 deals with the problem of spatio–spectral feature extraction from mul-

tispectral images. We propose an approach that extracts both spatial and spec-

tral information at reduced computation costs based on a CNN. Its contribution to

crop/weed recognition is demonstrated.
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2.1 Introduction

THE trichromatic approach has been dominating for a long time in color repre-

sentation to mimic the human color vision. With the development of tech-

nology, merging conventional imaging techniques with spectrophotometers prop-

erties is possible through multispectral imaging sensors that acquire the radiance

of a scene with a high spectral and spatial resolution. The first applications of this

technology were dedicated to satellite remote sensing for environmental monitoring,

geological research, or mineral mapping. Increasing the number of spectral bands

to more than three is an active research topic with a great potential for a plethora

of applications, such as quality assessment of agro-food products [30, 46, 80], art

studies [187], medical imaging [135], or texture and material classification [79, 121].

During the last decade, multispectral imaging has gained much attention and is cur-

rently a very promising technology being investigated in precision farming applica-

tions like pest and disease detection [114], plant classification [72], and weed detec-

tion [99, 184].

Section 2.2 presents the basics of multispectral imaging and how radiance results

from the interaction between the spectral properties of illumination and objects. Sec-

tion 2.3 introduces the main devices that can be used to acquire multispectral radi-

ance images. To acquire outdoor multispectral radiance images of plant parcels in a

greenhouse under skylight, we use a multishot camera called the “Snapscan” [141]

that is presented in Sec. 2.4.1. To build a multispectral image, this camera acquires

several frames. We detail how it measures radiance (see Sec. 2.4.2) and formalize

frame acquisition by the Snapscan (see Sec. 2.4.3). We explain how the multispectral

radiance image is obtained from frame stripes in Sec. 2.4.4, and we propose a specific

model of multispectral image formation in Sec. 2.4.5. This model shows that when

outdoor illumination varies during frame acquisitions, the spatio–spectral correla-

tion assumption does not hold.
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2.2 Illumination and surfaces

We first introduce the notions of spectral band and illumination in Sec. 2.2.1. Then,

we specify the key notions of radiance and reflectance, and explain how radiance is

related to illumination and reflectance in Sec. 2.2.2.

2.2.1 Bands and wavelengths

The electromagnetic spectrum of light is composed of different waves, each being

identified by its wavelength. Figure 2.1 shows the VIS and NIR domains in the elec-

tromagnetic spectrum. A spectral sensing instrument collects light energy within

specific domains of the electromagnetic spectrum.

10
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Wavelength λ (nm)

Gamma Rays X Rays Ultraviolet Infrared Radio Waves

VIS NIR

400nm 700nm 1000nm

FIGURE 2.1: Visible and near infrared domains in the electromagnetic
spectrum.

Each domain is associated to a band-pass filter simply referred to as a band, that

is embedded in the camera. For example, the wavelengths between 400 nm and

450 nm might correspond to one (spectral) band whose bandwidth is ≈50 nm. The

bandwidth of a band depends on the spectral sensitivity function (SSF) of the opti-

cal filter. Specifically, it is the wavelength range through which light passes the filter,

defined by the full width at half maximum (FWHM) of the filter SSF.

The scene is enlightened by a light source called illumination, that is characterized

by different electromagnetic waves spreading at light speed. The spectral power dis-

tribution (SPD) (in W · sr−1 ·m−2) of a light source is the amount of photons emitted

by unit surface per unit solid angle with respect to the wavelength. Light sources

are often characterized by their relative SPD (RSPD) E(λ) (with no unit), obtained
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as their SPD in a certain spectral domain Ω normalized by that of a reference wave-

length (the wavelength where SPD is maximal for example, as in Fig. 2.2) . Several

light sources called illuminants have been normalized by the International Commis-

sion on Illumination (Commission Internationale de l’Éclairage, CIE) [62]. In 1931,

the CIE defined three standard illuminants (A, B, and C). The RSPD of illuminant A

theoretically represents an incandescent tungsten filament lamp whose temperature

is about 2856 K. Illuminants B and C represent direct sunlight and average daylight

with a temperature of approximately 4900 K and 6800 K. In 1964, the CIE recom-

mended a new set of illuminants (prefixed by the letter D) to represent additional

variations of daylight throughout the VIS and ultraviolet (UV) domains (as far as

300 nm). The most commonly used D illuminant in color analysis is D65 that repre-

sents typical daylight with a temperature of about 6500 K. However, D65 illuminant

is difficult to reproduce in practice. It can only be approximated by daylight simula-

tors based on fluorescent lamps such as the broadband F7 illuminant for instance. In

addition to these illuminants, we can also distinguish the equienergetic illuminant E

whose RSPD does not depend on the wavelength, that is also commonly considered

as a theoretical reference in color analysis.

Note that as these CIE standard illuminants are not defined along the NIR domain

of the spectrum, they may not be adapted for multispectral imaging that usually con-

siders the NIR domain. Figure 2.2 displays the RSPDE(λ), for all λ ∈ [400 nm, 1000 nm]

of alternative (computed or measured) illuminants used in [175] to characterize a

multispectral camera.

Incident light is either absorbed, reflected, or refracted according to the optical prop-

erties of the material surface. Specular reflection occurs when the incident light hits

a smooth (mirror-like) surface, in which case the reflection angle (measured accord-

ing to the normal) is equal to that of the incident one. Diffuse reflection occurs in

the case of rough surfaces when ideal diffusion surfaces (a.k.a. Lambertian surfaces)

uniformly reflect the incident light in all directions. In this study, we only consider

the Lambertian diffuse reflection model, so that the reflected radiance does not de-

pend on the angle of view.



2.3. Multispectral radiance image acquisition devices 27

E
(λ

)

Wavelength λ (nm)

D65 simulatorSolar Extended A Tungsten Extended E

FIGURE 2.2: Computed RSPDs of extended A and E illuminants, and
measured RSPDs of solar emission at ground level, of a D65 simula-
tor, and of a practical tungsten realization of A illuminant in the VIS
(λ ∈ [400 nm, 700 nm[) and NIR (λ ∈ [700 nm, 1000 nm]) domains.

2.2.2 Radiance and reflectance

The amount of light reflected by a surface element s according to wavelength λ is

called radiance and is defined as the product between the RSPD E(λ) of the illumi-

nation and the reflectance spectrum Rs(λ) of the material at s, as shown in Fig. 2.3.

Reflectance is an intrinsic property of a material that depends on the pigments of

which it is made. Each surface element s is characterized by a reflectance spectrum

(reflection function of the wavelength) usually normalized between 0.0 and 1.0. Ideal

cases are the perfect black chart for which Rs(λ) ≡ 0, and the perfect white diffuser

for which Rs(λ) ≡ 1 at any element s of their surface.

2.3 Multispectral radiance image acquisition devices

In this section, we first explain how radiance is measured and stored in a pixel of a

multispectral radiance image, then we present the main devices that can be used to

acquire such an image.
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FIGURE 2.3: Interaction between light and surface (Lambertian
model). (a) Illumination (solar) RSPD, (b) Reflectance spectrum, (c)
Radiance spectrum. (d) Spectral sensitivity function (SSF) of the
red filter centered at λb= 600 nm. (e) Filtered radiance. (f) Intensity
value Ibp.

2.3.1 Multispectral radiance image

The radiance reflected by an object in a given direction can be observed by a digi-

tal camera. The latter embeds a photosensitive surface that is composed of a grid

of sites covered with spectrally-sensitive filters, that convert the incoming radiance

(amount of photons) into an analog signal. This signal is digitized in binary coding

by an analog-to-digital converter, which provides a spatially discrete digital image

as a two-dimensional matrix of X × Y picture elements called pixels. Each pixel p

is associated to a value that represents the quantity of photons reflected by the sur-

face element s of the scene in the spectral domain of the filter band. A multispectral

image is composed of B spectral channels, B > 3, and can be seen as a rectangular

cuboid (often called cube for short) of size X × Y pixels × B channels. A spectral



2.3. Multispectral radiance image acquisition devices 29

channel Ib is the representation of the scene radiance filtered according to a given

bandpass filter centered at wavelength λb, and characterized by its spectral sensitiv-

ity function (SSF) T b(λ) (see Fig. 2.3(d))15. Assuming ideal optics, the radiance at a

given pixel p in channel Ib is expressed by the classical image formation model as:

Ibp = Q

(
τ

∫

Ω
E(λ) ·Rp(λ) · T b(λ) dλ

)
, (2.1)

where τ is the image integration time and Q is a quantization function.

A multispectral image composed of a high number of (typically, more than 25) spec-

tral channels is generally referred to as a hyperspectral image, even if no consensus

exists in the literature for this term. In the following, we stick to the multispectral

adjective whatever the number of channels.

Two categories of devices can be distinguished for multispectral image acquisition:

“snapshot” (multi-sensor or filter array-based) and “multishot” (tunable filter or

illumination-based, push-broom, spatio-spectral linescan) devices (see Fig. 2.5).

2.3.2 Snapshot devices

A snapshot device builds the multispectral image from a single shot [67]. This tech-

nology provides images composed of few channels. It can acquire multispectral im-

ages at video frame rate, and is therefore adapted to observe moving objects. We can

distinguish two types of snapshot devices: multi-sensor and single-sensor devices.

Multi-sensor snapshot devices acquire a fully-defined multispectral image thanks to

dichroic beam splitters that selectively redirects the incoming radiance onto B sen-

sors according to the wavelength. However, they are expensive, cumbersome, and

can sample only a very small number of spectral bands [67]. Single-sensor snapshot

devices embed a multispectral filter array (MSFA) (see Fig. 2.4), like the widely-used

Bayer color filter array in color imaging, to spatio-spectrally sample the incoming

radiance according to the sensor element’s location (see Fig. 2.5(f)) [25, 95]. Each

filter in the MSFA is sensitive to a specific narrow spectral band, so that each pixel

of the acquired image contains a single radiance value. The fully-defined multispec-

tral radiance image must (afterwards) be estimated thanks to a demosaicing proce-

dure [122].

15 Note that T b(λ) includes the sensitivity (spectral response curve) of the sensor itself.
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FIGURE 2.4: Image sensor covered by an MSFA. In this example, the
3 × 3 MSFA basic and periodic pattern is sensitive to five different
spectral bands. Each pixel in the raw image provided by the sensor
contains a single intensity value, and demosaicing is required to esti-
mate the fully-defined 5-channel image.

The computed tomography imaging spectrometer (CTIS) [38] requires no spatio-

spectral scan of the scene to acquire a multispectral radiance image, and can there-

fore also be considered as a snapshot device. To collect radiance in several wave-

lengths in one shot, CTIS cameras use a diffraction grating and a focal plane array

(FPA) to obtain a set of projections. The central projection results from the diffracted

scene radiance called the 0th-order of diffraction. This projection can be seen as the

summation of the scene radiance over all spectral bands. It contains the scene spatial

information. The surrounding projections result from a non-diffracted scene radi-

ance called the 1th-order of diffraction (see Fig. 2.5(g)). They partially overlap and

are spatially organized as a spread-out deck of cards. They mostly contain the scene

spectral information. The provided 2D image that contains all the projections can be

seen as a compressed version of the scene radiance. Because it does not represent

a spatio-spectral scan of the scene, each of its pixels cannot be directly associated

to a surface element of the scene. A specific reconstruction procedure is needed to

provide the fully-defined radiance cube [68].

2.3.3 Multishot devices

Multishot devices build the multispectral image from several and successive acqui-

sitions [18, 58, 188]. Although restricted to still scenes, they provide images with
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a high spectral resolution, and allow to analyze material surfaces in many narrow

spectral bands. Multishot technologies can be categorized according to whether they

rely on a channel-wise, row-wise, or pixel-wise scan of the scene.

The tunable filter-based technology [58] acquires one fully-defined channel at a time

(see Fig. 2.5(b)) by changing the optical filter in front of the camera mechanically

(e.g., thanks to a filter wheel) or electronically (e.g., thanks to liquid crystal or acousto-

optic tunable filters [58]). Alternatively, this kind of scan can also be achieved using

tunable illumination technology [136]. The scene is successively illuminated with B

narrow-band LED illuminations in order to provide the B channels [138].

Other scanning technologies can acquire all channels pixel by pixel or row by row.

The whisk-broom technology [178] acquires all channels at a single pixel (see Fig. 2.5(c)),

therefore X×Y acquisitions are needed to build the multispectral image. The push-

broom (also called linescan) technology [66] proceeds similarly, but scans the scene

in a row-wise manner. At each time, a single row ofX pixels is acquired for all theB

channels so that Y acquisitions are required to build the entire cube (see Fig. 2.5(d)).

Both approaches proceed by spatially scanning the scene to provide the fully-defined

cube. This can be done by moving either the scene or the camera (using a translation

stage) according to the direction orthogonal to the acquired rows.

Spatio-spectral scanning devices [40] provide a 2-D representation (frame) of the

scene of size X × B pixels at each time (see Fig. 2.5(e)). The b-th pixel row contains

the spectral information associated to the b-th channel. The multispectral image

is provided thanks to a specific reconstruction procedure from Y acquired frames

of size X × B pixels. Recently, a new type of spatio-spectral linescan device has

emerged that does not require to move the scene or the camera. Indeed, the sensor

moves inside the camera in order to scan a still scene. This feature is particularly

interesting to deploy the device in field conditions. In this thesis, we use such a

spatio-spectral linescan camera called the Snapscan [141] for multispectral radiance

image acquisition. Further details about this camera are given in the next section.
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2.4 Multispectral radiance image acquisition by Snapscan cam-

era

In this section, we first introduce the Snapscan camera, then we explain how radi-

ance reflected by a given surface element of a scene is measured by the Snapscan

camera. In Secs. 2.4.3 and 2.4.4, we present how the Snapscan acquires frames and

assembles their stripes into a multispectral radiance image. Finally, in Sec. 2.4.5 we

present our proposed multispectral image formation model for multispectral im-

ages acquired by multishot devices such as the Snapscan. This model shows that the

spatio-spectral correlation assumption does not hold for radiance images acquired

by such a device. This section is extracted from our published paper [7].

2.4.1 Snapscan camera

The Snapscan [141] is a multispectral camera manufactured by IMEC that embeds

a single matrix sensor, covered by a series of narrow stripes of Fabry-Perot filters

(see Fig. 2.6). It contains B = 192 optical filters whose central wavelengths range

from λb=0 = 475.1 nm to λb=191 = 901.7 nm with a variable center step (from 0.5 nm

to 5 nm). Specifically, each filter is associated to 5 adjacent rows of 2048 pixels that

form a filter stripe, and samples a band from the VIS or NIR spectral domain accord-

ing to its SSF T b(λ), b = 0, ..., B − 1, with a full width at half maximum (FWHM)

between 2 nm and 10 nm (see Fig. 2.7). We can see that the SSFs of some filters (those

centered at 884.7 nm and 888.0 nm for instance) strongly overlap, which means that

the spectral information associated to these filters may be redundant or highly cor-

related.
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2.4.2 Radiance measurement

Understanding how a multispectral camera measures radiance and forms images is

necessary to develop adequate techniques to analyze them, and to accurately esti-

mate reflectance. This also provides the ability to simulate the acquisition of multi-

spectral radiance images according to the known camera characteristics.

The Snapscan camera acquires a sequence of frames to provide a multispectral im-

age. During frame acquisitions, both the object and camera remain static while the

sensor moves inside the camera. Therefore, the measurement of the radiance that is

reflected by a given Lambertian surface element s of the scene varies according to the

frame acquisition time t, although s is projected at a fixed point q of the image plane.

During frame acquisitions, illumination may spectrally vary in outdoor conditions

and we denote its RSPD at t as Et(λ) ∈ [0, 1], assuming that it homogeneously illu-

minates all of the surface elements of the scene. The radiance that is reflected by s

and refracted by the camera lens projects onto the image plane at q as a stimulus

Lt,q(λ):

Lt,q(λ) = Et(λ) ·Rq(λ) ·Aq(λ), (2.2)

where Rq(λ) ∈ [0, 1] is the spectral reflectance of the surface element s that is ob-

served by q, and Aq(λ) ∈ [0, 1] is the optical attenuation of the camera lens at q.

All these functions depend on the wavelength λ. The sensor moves forward on

the image plane according to the direction perpendicular to the filter stripes (see

Fig. 2.8(a)). Between two successive frame acquisitions, it moves by a constant step

v = 5 (in pixels) that is equal to the number of rows in each stripe. Therefore, the

radiance that is measured at q is filtered by a different Fabry–Perot filter of index

bt,q (0 ≤ bt,q < B) at each acquisition time t. The radiance at q is fully sampled

over N frame acquisitions, provided that each of them measures the radiance there,

i.e., N ≥ B. Let the coordinates of point q be (xq, yq)C in the camera 2D coordinate

system (O, x, y) whose origin O corresponds to the intersection between the optical

axis and image plane. The unit vectors of x and y are given by the photo-sensitive

element size (i.e., axis units match with pixels), and y is oriented opposite to the
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sensor movement. At a given point q, the filter index bt,q can then be expressed as:

bt,q = t+

⌊
yq − y0

v

⌋
, (2.3)

where y0 is the coordinate along y of the first filter row at first acquisition time t = 0.

Note that the light stimulus Lt,q is only associated to a filter at a given point q when

t0q ≤ t < tBq . The lower bound t0q = b(y0 − yq)/vc is the acquisition time at which the

first optical filter of the sensor observesLt,q. The upper bound tBq = b(y0 − yq)/vc+B

is the time at which all of the sensor filters have observed Lt,q.

Besides, at a given time t, the coordinate yq of point q that is associated to a photo-

sensitive element of the sensor satisfies:

y0 − t · v ≤ yq < y0 + (B − t) · v, (2.4)

since 0 ≤ bt,q < B. Given these restrictions, the radiance St,q that is then measured

at q by the sensor at acquisition time t is expressed as:

St,q = Q

(
τ

∫

Ω
Lt,q(λ) · T bt,q(λ) dλ

)
, (2.5)

where Q is the quantization function according to the camera bit depth, τ is the

integration time of the frames, and Ω is the working spectral domain. Note that τ is

set to the highest possible value that prevents saturation.

2.4.3 Frame acquisition

The radiance measured at q is stored by the camera as a pixel value ft,q = St,q in

frame ft (see Fig. 2.8(b)). We define the coordinate system (O′, x′, y′) attached to the

sensor, such that its origin O′ is the first (top-left) photo-sensitive element location,

axis y′ corresponds to y, and x′ is parallel to x, in order to compute the coordinates

of q relative to the frame. In this frame system, the coordinates of q are (x′q, y
′
q)F =

(xq, yq − y0 + t · v)F . Note that Eq. (2.4) allows us to check that 0 ≤ y′q < B · v.

Conversely, any given pixel p(x′p, y′p)F of a frame ft is mapped to the coordinates in

the camera coordinate system as:

(xp, yp)C = (x′p, y
′
p + y0 − t · v)C , (2.6)
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FIGURE 2.8: (a) Side view of Snapscan camera observing a surface
element s of a static scene. (b) Location of the measured radiance ob-
served at point q associated to s in frames acquired at t = 0, t0q, t

B−1
q .

at which the stimulus Lt,p(λ) of a surface element radiance is filtered by the filter of

index bp = by′p/vc. From this point of view, each frame pixel value is, therefore, also

expressed as:

ft,p = St,p = Q

(
τ

∫

Ω
Lt,p(λ) · T bp(λ) dλ

)
. (2.7)

Before the frame acquisitions, the Snapscan uses its internal shutter to acquire a

dark frame fdark whose values are subtracted pixel-wise from the acquired frames.

Therefore, we assume that the pixel value expressed by Eq. (2.7) is free from thermal

noise. Let us also point out that, at two (e.g., successive) acquisition times t1 and

t2, the sensor is at different locations. Therefore it acquires the values ft1,p and ft2,p

from the stimuli Lt1,p and Lt2,p of two different surface elements at a given pixel p

whose coordinate yp in the camera system is time-dependent (see Eq. (2.6)). Besides,

the stimuli Lt1,p and Lt2,p are filtered by the same filter whose index only depends
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(top) and multispectral image with B spectral channels (bottom).

on the pixel coordinate y′p in the frame system. Equations (2.5) and (2.7) model the

radiance measured at a given point in the image plane and stored at a given pixel of a

frame, respectively. Both equations take account of illumination variation during the

frame sequence acquisition, but differently take the sensor movement into account.

Indeed, the filter index changes at a given point of the image plane during the frame

acquisition (see Eq. (2.5)), whereas the observed surface element changes at a given

pixel in the successive frames (see Eq. (2.7)).

2.4.4 Stripe assembly

We now determine the first and last acquisition times of the frame sequence that is

required to capture an object of interest whose projection points on the image plane

are bounded along the y axis by qa(xqa , yqa)C and qm(xqm , yqm)C , with yqa > yqm .

Given the initial coordinate y0 of the sensor along y, we can compute the first and
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last frame acquisition times t0qa and tB−1
qm , so that the measured radiances at the points

between qa and qm are consecutively filtered by the B sensor filters (see the top part

of Fig. 2.9). The multispectral image composed from the frame sequence {ft}t
B−1
qm

t=t0qa

takes account of the spatial and spectral organizations of each frame. A frame ft

is spatially organized as juxtaposed stripes of v adjacent pixel rows. A stripe f bt ,

b = 0, . . . , B − 1, of v adjacent pixel rows contains the spectral information of the

scene radiance that is filtered according to the SSF T b(λ) of filter b centered at wave-

length λb. All of the stripes that are associated with filter b in the acquired frames

are stacked by the assembly function
⊕

to provide a stripe assembly defined as:

{f bt }
tB−1
qm

t=t0qa

def
=
⊕(

{ft}t
B−1
qm

t=t0qa
, b

)
= [f b

tB−1
qm

, . . . , f bt+1, f
b
t , f

b
t−1, . . . , f

b
t
q0a

]ᵀ. (2.8)

The size of each stripe assembly is 2048 pixels in width and N · v pixels in height,

where N =
⌊(
tB−1
qm − t0qa

)
/∆
⌋

+ 1 is the number of acquired frames and ∆ is the

frame acquisition period. To form the multispectral image I(B) = {Ib}B−1
b=0 of the

object of interest, only the scene part that is common to all stripe assemblies is con-

sidered by the camera (see the bottom part of Fig. 2.9). Specifically, the retained

stripes in the b-th assembly are acquired between tbqa and tbqm to form each channel

Ib:

Ib = {f bt }
tbqm
t=tbqa

. (2.9)

The multispectral image I(B) has its own coordinate system. For convenience, in

the sequel, we denote a pixel as p(x, y) in this system, since the camera and frame

coordinate systems are not used any longer.

2.4.5 Image formation model for Snapscan camera

We can now infer an image formation model for multishot linescan cameras, such

as the Snapscan. At any pixel p, the radiance value Ibp that is associated to a channel

index b ∈ [[0, B − 1]] is acquired at t = tbp, with tbqa ≤ tbp ≤ tbqm (see Eq. (2.9)). It

results from the light stimulus Ltbp,p that is filtered according to T b (whose index

dependence upon p is dropped by stripe assembly step), and is therefore defined
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from Eqs. (2.2) and (2.7), as:

Ibp = Q

(
τ

∫

Ω
Etbp(λ) ·Rp(λ) ·Ap(λ) · T b(λ) dλ

)
. (2.10)

The term Etbp(λ) of Eq. (2.10) points out that illumination is associated to both a

channel index and a pixel. These dependencies may weaken the spatio-spectral cor-

relation assumptions of the measured scene radiance. Spectral correlation relies on the

assumption that the SSFs that are associated to adjacent spectral channels strongly

overlap. Thus, radiance measures at a given pixel in these channels should be very

similar (or correlated). Let us consider the radiance values in two channels b1 and

b2 at a given pixel p. Even if the SSFs T b1(λ) and T b2(λ) strongly overlap (and are

equal in the extreme case), the illumination conditions at tb1p and tb2p are different,

hence Ib1p 6= Ib2p . Spatial correlation relies on the assumption that reflectance across

locally close surface elements of a scene does (almost) not change. Thus, under the

same illumination, the radiance measures at their associated pixels within a channel

are correlated. Let us consider two pixels, p1(xp1 , yp1) and p2(xp2 , yp2) that observe

surface elements of a scene with the same reflectance Rp1(λ) = Rp2(λ) for all λ ∈ Ω.

If |yp1 − yp2 | ≥ v, then the radiances at p1 and p2 are acquired at different times tbp1

and tbp2 associated to different illumination conditions Etbp1 and Etbp2 , hence Ibp1 6= Ibp2 .

Therefore, the spatio-spectral correlation assumption does not hold in the image for-

mation model of the Snapscan camera when illumination varies.

2.5 Conclusion

In this chapter, we have first provided an overview about multispectral radiance

image acquisition and presented the available technologies that can be used to ac-

quire such an image. Specifically, we have introduced the camera used in this study

(i.e., IMEC Snapscan camera), and detailed its working principles. We have shown

how illumination variation during the multispectral image acquisition by this de-

vice impacts the measured radiance from a Lambertian surface element. This makes

the classical image formation model not adapted to our case. Therefore, we have

proposed an original multispectral image formation model suited to outdoor acqui-

sition conditions. This model can be adapted to several multishot devices, such as
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the HySpex VNIR-180016 or the V-EOS Bragg-grating camera [44]. In Chapter 3,

we use it to propose a specific reflectance estimation method that takes illumination

variation during frame acquisitions into account.

16 https://www.hyspex.com/hyspex-products/hyspex-classic/hyspex-vnir-1800/

https://www.hyspex.com/hyspex-products/hyspex-classic/hyspex-vnir-1800/
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3.1 Introduction

THE Snapscan camera acquires a sequence of frames to build a multispectral im-

age. During frame acquisitions, both object and camera remain static while

the sensor moves. Since illumination may vary in the meanwhile, the measured

radiance reflected by a surface element s of the object depends on the frame acquisi-

tion time t. To get illumination-invariant spectral signatures, we propose to estimate

reflectance [115]. Besides, reflectance is strongly related to the biophysical and bio-

chemical properties of a material (vegetation in our case) [156]. In order to get a

description of these properties, reflectance needs to be estimated.

In this chapter, we address the problem of reflectance estimation from the multi-

spectral radiance images acquired by Snapscan camera in outdoor conditions. The

multispectral image formation model of Eq. (2.10) shows that radiance values within

each channel are measured under different illumination conditions. Therefore, illu-

mination variation must be considered at the frame level to accurately estimate re-

flectance.

In Sec. 3.2, we present state-of-the-art reflectance estimation methods, including

their assumptions and limitations. In Sec. 3.3, we first validate our assumptions

about filter SSFs and illumination used for reflectance computation. Then, we present

the classical approach to estimate reflectance from radiance images acquired in con-

stant illumination conditions, and the post-processing steps that such images un-

dergo due to the sensor configuration. In Sec. 3.4, we introduce reflectance estima-

tion in outdoor conditions and present two reflectance estimation methods that take

illumination variations into account at the frame level.

3.2 State-of-the-art about reflectance estimation

In order to compute reflectance, the following assumptions are generally considered:
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(i) Each of the optical filters (Fabry-Perot for Snapscan) has an ideal SSF:

T b(λ) = δ(λ− λb) =





1, if λ = λb

0, otherwise.

(ii) The illumination does not vary during the image acquisition, thus Etbp(λ) =

E(λ) for all b ∈ [[0, B − 1]] and p ∈ I(B). Recall that the term Etbp(λ) points out

that illumination is associated to both a channel index and a pixel (see Eq. (2.10)).

(iii) The illumination is spatially uniform.

The ideal SSF assumption (i) is usually retained in order to derive reflectance ac-

cording to the image formation model (see Eq. (2.1)) [51, 148]. However, assumption

(ii) fundamentally depends on the camera technology, and assumption (iii) on the

acquisition environment. Since snapshot devices provide an image from a single

shot, their acquisitions are ideally not affected by illumination variation. Hence, as-

sumption (ii) actually holds and the accuracy of reflectance estimation only depends

on the estimation method. Because multishot linescan devices provide multispectral

images from several and successive frame acquisitions (see Sec. 2.3.3), the estimated

reflectance accuracy both depends on the estimation method and on illumination

variation. Assumption (iii) can be considered fulfilled in outdoor conditions where

the main source of illumination is the sun. However, in indoor (or laboratory) con-

ditions where scene illumination is generated by an artificial light source, the spatial

uniformity assumption (iii) depends on the capacity of the light source to provide

enough radiant energy in the considered spectral bands to illuminate all surface ele-

ments of the scene equally.

In Sec. 3.2.1, we present state-of-the-art reflectance estimation methods that assume

constant illumination conditions during image acquisition. Section 3.2.1.1 focuses on

device-based reflectance estimation methods, Sec. 3.2.1.2 on statistical-based ones,

and Sec. 3.2.1.3 on methods based on a training procedure. Then in Sec. 3.2.2, we

present some state-of-the-art methods that estimates reflectance from radiance im-

ages acquired in outdoor conditions using multishot devices.
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3.2.1 Reflectance estimation under constant illumination

Considering the classical image formation model of Eq. (2.1) and the above assump-

tions, several reflectance computation methods have been proposed for color or

multispectral imaging. Most of these methods rely either on illumination estima-

tion [50, 85, 183], or on finding a linear transform that maps radiance measure-

ments (RGB values or spectra, depending on the camera spectral resolution) into

reflectance spectra thanks to prior knowledge about the SSFs of the sensor filters or

reference reflectances of samples from the scene of interest [59, 104, 137, 187]. Ac-

cording to the approach followed to estimate reflectance, we categorize these meth-

ods into three main groups: device-based, statistics-based, and training-based meth-

ods.

3.2.1.1 Device-based methods

When multispectral images are acquired by a snapshot camera [24, 88], they are not

affected by illumination variation. So, device-based methods first estimate the illu-

mination by including a reference panel (a white diffuser or a ColorChecker Chart)

in the scene [24, 37, 49, 177]. Then, reflectance is estimated at each pixel p by channel-

wise dividing the radiance image value at p by the pixel values of the white diffuser

at p or the average value of the ColorChecker white patch.

A snapshot multispectral camera is embedded on a UAV to acquire outdoor mul-

tispectral radiance images in [88]. Incident illumination (irradiance) is measured

thanks to the acquisition of a white diffuser image. To estimate scene reflectance,

the authors assume that only the brightness of illumination varies. They split the

measured illumination into brightness and spectral components. A correction factor

is then estimated for each channel from the spectral component using a maximum

likelihood approach. Reflectance is deduced by normalizing each radiance channel

with respect to its associated estimated correction factor. Other methods use a spec-

troradiometer rather than reference devices to directly measure the downwelling

irradiance. In [191], a multispectral camera is used in conjunction with a skyward

pointing spectrometer to estimate reflectance from the acquired scene radiance.
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3.2.1.2 Statistics-based methods

As an alternative to device-based methods, illumination can be estimated thanks

to image statistics [52]. The max-RGB, gray-world, shades-of-gray, and gray-edge

algorithms are commonly used in color imaging [180]. These algorithms operate

channel-wise to estimate illumination. Khan et al. [85] propose an extension of these

algorithms to the multispectral domain. The max-spectral algorithm uses the max-

imum pixel value within each channel to estimate illumination. The spectral gray-

world algorithm uses the average values within each channel. The spectral shades

of gray algorithm computes the mean p-norm of radiance values, and the spectral

gray-edge computes the mean p-norm of radiance differences (deduced by Gaussian

filtering). The authors use reflectance images (estimated by channel-wise dividing

radiance images acquired by a multishot tunable filter-based camera with radiance

values of a small neutral (Munsell) reference surface measured by a spectroradiome-

ter after each image acquisition) from the Foster Dataset 2004 [53]. They simulate ra-

diance images using different illuminants (D65, F11, mixture of both) and different

filter SSFs (equi-Gaussian, Dirac delta, equi-energy). They evaluate the performance

of illumination estimation using different numbers of channels. They report good

performances for the max-spectral and the spectral gray-edge algorithms. Note that

because radiance is simulated from reflectance images, assumptions (ii) and (iii)

hold. However the first assumption (i) holds only when the filter SSFs used to sim-

ulate radiance images are Dirac delta.

Although statistics-based methods are simple to implement since they do not require

additional devices included in the scene, they may be prone to errors because they

directly depend on the physical properties of the imaged scenes.

3.2.1.3 Training-based methods

Reflectance may also be estimated using methods based on a training procedure.

Linear inverse methods build a mapping matrix to transform the radiance values

measured by a camera into reflectance ones [164]. To obtain this matrix, conventional

methods are used such as Wiener estimation [160, 166], pseudo-inverse method [33],

or partial least-squares [161]. In [87], a model based on Wiener estimation and spec-

tral gray-edge method is proposed to estimate multispectral reflectance. The authors
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show that incorporating a spectral adaptation transform [84] to the linear model can

improve the quality of reflectance estimation, especially when the SSFs of the sensor

filters overlap. To improve reflectance estimation, the mapping matrix is estimated

in [75] from a training set of radiance and reflectance values using regression and

Gaussian kernel functions.

A similar approach is proposed in [187] to estimate reflectance spectra of art paint-

ing images, using k-means clustering to extract relevant training samples. At the

surface elements associated to these samples, reflectance spectra are measured us-

ing a spectroradiometer. The mapping matrix is deduced from these samples using

a Gaussian kernel function and pseudo-inverse computation. Other methods as-

sume that spectral reflectance can be approximated by a linear combination of a few

basis vectors derived by principal component analysis [102] or singular value de-

composition [92, 131] deduced from training reflectance spectra. In [116] and [82], a

learning approach based on neural networks is proposed to estimate reflectance. The

training set is composed of radiance and reflectance spectra of the GretagMacbeth™

ColorChecker chart patches. The trained neural networks behave like a mapping

matrix: they take radiance values as inputs and give probabilistic outputs that rep-

resent an estimate of spectral reflectance. Other methods use CNNs to estimate illu-

mination [19, 163]. They assume a strong relationship between the training samples

(ColorChecker patches for example) used to build the mapping matrix and the re-

maining scene objects. The underlying assumption is that reflectance of the scene ob-

jects can be estimated from the mapping matrix deduced from the training samples.

This generalization however depends on both the training set and the physical prop-

erties of scene objects. When their spectral reflectance is too different from that of

the training samples used to build the mapping matrix, their estimated reflectances

might be inaccurate.

3.2.2 Reflectance estimation under varying illumination

In outdoor conditions, the main source of illumination is the sun. Thus, the incident

irradiance can be assumed to be spatially uniform over the scene but is subject to

variations during frame acquisitions by the Snapscan camera. Figure 3.1 illustrates

the variation of incident irradiance during 2 hours of a cloudy day at wavelengths
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FIGURE 3.1: Illumination variation on a cloudy day (after noon) at
wavelengths 500, 600, 700, 800, and 900 nm. The spectroradiometer
was configured to perform an irradiance measurement each 10 s dur-
ing 2 h.

500, 600, 700, 800, and 900 nm measured in crop field by the AvaSpec-ULS2048L

spectrometer. We can see that the downwelling irradiance can vary significantly on

cloudy days. These variations may be more significant and abrupt when sun light is

obscured by small clouds.

Since the Snapscan camera builds a multispectral image from successive frame ac-

quisitions that may last several seconds, radiance measurement is described by Eq. (2.10).

With Etbp(λ) 6= E(λ), assumption (ii) (see Sec. 3.2) does not hold any longer. Since

the Snapscan can be considered as a spatio-spectral linescan camera, we now review

the literature about reflectance estimation from radiance images acquired by lines-

can cameras under varying illumination.

In [44], a Bragg-grating-based multispectral camera (the V-EOS) manufactured by

Photon Etc. is used to provide outdoor multispectral radiance images by spatio-

spectrally scanning the scene (see Sec. 2.3.3). The spatio-spectral scans provide a

sequence of frames that contain columnly variable spectral information. The multi-

spectral image is obtained by a resampling procedure of the acquired frames, which

provides a so-called rectified multispectral image. To compute reflectance, the de-

vice acquires two images. The first one is a full-field white diffuser image. The

second image characterizes the scene of interest in which two white diffusers are
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included, such that one covers the bottom image border while the second is fully

visible. To estimate scene reflectance, the scene image is first pixel-wise divided by

the white diffuser image. Because illumination conditions vary among frame acqui-

sitions, illumination is column-wise scaled using correction factors deduced from

the white diffuser image and the white diffuser stripe at the scene image bottom.

Finally, reflectance of the interest scene part (all image pixels but those of the two

white diffusers) is deduced from the second white diffuser included in the image.

Wendel and Underwood [183] use a UGV equipped with a linescan multispectral

camera to gather high resolution multispectral images of vegetation under natu-

ral illumination. A process of illumination compensation is performed to extract

the inherent reflectance properties of vegetation, despite variable illumination. This

work adopts the subspace model approach proposed by Drew and Finlayson [42]

to recover reflectance and illumination, and enhance its performance by learning a

historical database of reflectance spectra and illuminations (measured by a white

diffuser) associated to various natural lighting conditions. The methods presented

above account for varying illumination conditions, but that of [44] is cumbersome

since it needs two white diffusers and two image acquisitions to compute its re-

flectance, and that of [183] requires to learn historical illuminations and reflectances

for better performances.

In Sec. 3.4, we propose a practical method to estimate reflectance from outdoor radi-

ance images acquired under skylight. This method has to be robust against illumi-

nation variations during frame acquisitions.

3.3 Reference reflectance estimation

This section focuses on reflectance estimation from images acquired by the Snap-

scan camera in constant illumination conditions. This reflectance is considered as

a reference that is useful to compare the quality of outdoor reflectance estimations.

First, assumptions about our illumination setup and the Snapscan filter SSFs are val-

idated in Sec. 3.3.1. Then, the classical reflectance estimation model is presented in

Sec. 3.3.2. Finally, in Secs. 3.3.3 and 3.3.4, we present the post-processings applied to

our estimated reflectance images.
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3.3.1 Assumption validation

In order to compute reflectance according to the linear image formation model pro-

posed in Eq. (2.10), the assumptions of Sec. 3.2 need to be verified. Let us consider

to what extent these assumptions are satisfied by our experimental acquisition envi-

ronment, specifically filter sensitivities and illumination.

3.3.1.1 Filter sensitivities

Our first assumption is that each Fabry-Perot filter has an ideal response that can

be modeled as a Dirac delta function. This assumption is commonly used to model

the sensor responses for scene reflectance or illumination estimation [45, 50, 78, 118].

The Snapscan sensor incorporates narrow filters with a full width at half maximum

(FWHM) between 2 and 10 nm, some of which are shown in Fig. 3.2.

T b(λ)

Wavelength λ (nm)

δλ10

δλ20

δλ30

δλ40

δλ50
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δλ70

δλ80

δλ90
δλ100

δλ110
δλ120

δλ130

δλ140

δλ150

δλ160

FIGURE 3.2: SSF T b(λ) and FWHM δλb of 16 filters ((b = 10 : 10 : 160)
among the 192 ones) embedded in the Snapscan. Caption shows the
filter centers. Respective FWHM values (in nm) are: 2.74, 1.83, 2.40,
3.81, 3.64, 4.22, 4.88, 4.88, 4.39, 3.98, 3.48, 2.57, 2.16, 3.23, 5.46, 4.88.

An important property when using devices integrating narrow band filters is the

spectral resolving power (or finesse). To quantify the finesse F of devices such as

Fabry-Perot interferometers, the Rayleigh’s criterion, the free spectral range (FSR)

∆λ, and the FWHM δλ are generally used [77, 81, 152]. To quantify the finesse of

the Snapscan’s integrated filters, we compare the FSR ∆λb,b+1 = λb+1 − λb and the
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FWHM δλ
b,b+1

=
δλb+1 + δλb

2
for each pair of successive SSF centers. The criterion

∆λb,b+1 ≥ δλb,b+1 simply stipulates that two successive SSF centers λb and λb+1 must

be distant from each other by at least the average of those SSFs (because FWHM is

specific to each SSF). In other words, the ratio
∆λb,b+1

δλ
b,b+1

must be at least equal to 1 for

a satisfying finesse.

The overall average finesse is given by:

F =
1

B − 1

B−2∑

b=0

∆λb,b+1

δλ
b,b+1

. (3.1)

For the Snapscan, F equals 0.87. We also compute the average transmitted energy

of the Fabry-Perot filters as the average area of their associated SSFs {T b(λ)}B−1
b=0 over

Ω:

E =
1

B − 1

B−1∑

b=0

∑

λ∈Ω

T b(λ), (3.2)

which is 1.62.

The SSFs of the Fabry-Perot filters integrated in the Snapscan’s sensor are not ex-

actly Dirac delta functions (E>1), and the ratio
∆λb,b+1

δλ
b,b+1

is below 1 for most pairs of

successive SSF centers. To the extent of our knowledge, there is no multispectral

camera with such a fine resolving power allowing to fully validate assumption (i)

(see Sec. 3.2).

However, the filters embedded in the Snapscan are very narrow, and because of the

optical attenuation Ap(λ) (see Eq. (2.10)), the intensity of the incoming light sup-

posed to reach each filter may be attenuated. As a consequence, the average trans-

mitted energy of the Fabry-Perot filters may be also attenuated. The Snapscan’s

filters approximate the Dirac delta assumption of (i) at best for today’s technology.

3.3.1.2 Illumination

Let us now focus on assumptions (ii) and (iii) about illumination. Since the Fabry-

Perot filters sample the spectrum over different narrow spectral bands in the VIS and

NIR domains, the illumination source must provide enough radiant energy in all of

these bands. This would ensure that multispectral images acquired by the Snapscan

contains no low-dynamics channel, which could impact reflectance computation. In

addition, the multispectral image of either the white diffuser or the color rendition
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chart [119] are used as references. Therefore, they must be acquired in laboratory

conditions under a constant illumination that is as spatially and spectrally uniform

as possible. Thus, we combine different light sources to illuminate the scene in the

VIS and NIR domains. Specifically, we use 3 halogen lamps, a white lamp, a blue

and a green lamp, that are powered by a stabilized supply (10V) and placed at par-

ticular locations above the observed scene (see Fig. 3.4).

To evaluate our illumination system, we use a white diffuser (Spectralon® Standards

with 95% diffuse reflectance) and a spectroradiometer (Avantes AvaSpec-ULS2048L),

that samples the VIS and NIR domains (from 426 nm to 971 nm) with a sampling step

of 0.3 nm. For the measurements, we set the integration time to 2 ms.

Figure 3.3 shows the radiance spectra measured at the five locations of the white

diffuser surface displayed in Fig. 3.4.

400 500 600 700 800 900

0.050

0.025

0.000

0.025

0.050

0.075

0.100

R
ad

ia
nc

e
W
/
m

2
/
n
m

Center

Bottom right

Wavelength λ (nm)

Bottom left

Top left
Top right

Spectral working domain of the Snapscan camera475 nm 901 nm

FIGURE 3.3: Illumination at five locations of the white diffuser (center
and four corners).
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FIGURE 3.4: Illumination system. Colored dots show the white dif-
fuser locations to which the optical fiber is pointed to measure the
reflected radiance.

The five radiance spectra have similar shapes, but we can see that the white diffuser

center (blue spectrum) receives a slightly larger amount of energy than its corners.

Below 550 nm, illumination intensity slightly differs on the left and right sides of

the white diffuser. Since the blue and green lamps point to the right, this part of

the white diffuser receives more energy from these two lamps. We can also notice

that radiance measurements become very noisy above 900 nm since the lamps emit

almost no radiant energy in this range of the spectrum. This is not a problem for

our image acquisitions since the spectral working domain of the Snapscan camera is

[475 nm, 901 nm].

To evaluate our illumination system quantitatively, we assess its spatial uniformity

by computing the mean and Kullback-Leibler divergence (KLD) of each spectrum

considered as a distribution. KLD is a non-symmetric difference measure between

two distributions for which a value of 0.0 indicates that these are identical. It is

defined as:

DKL(Sref , S) =
B′−1∑

l=0

Sref (λl) · log
Sref (λl)

S(λl)
, (3.3)
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where Sref (λ) is the radiance measured at the center of the white diffuser considered

as the reference, S(λ) is the radiance measured at a corner of the white diffuser, and

B′ is the number of spectral bands sampled by the spectroradiometer. Note that

after mean computation, all radiance distributions are normalized to compute KLD.

The evaluation is restricted to the Snapscan working domain. Table 3.1 shows the

illumination uniformity measurements.

Radiance spectrum Mean (×102) KLD (×102)
SBR(λ) 2.377 2.758
SBL(λ) 2.008 1.629
STR(λ) 2.210 2.117
STL(λ) 2.011 1.993
Sref (λ) 3.004 -

TABLE 3.1: Spatial uniformity evaluation of the illumination system
used in laboratory. BR: bottom-right, BL: bottom-left, TR: top-right,
TL: top-left corner.

KLD values show that the illumination distributions at the four corners of the white

diffuser are very similar to that at the center. However, KLD reflects the similarity

between distributions but not between values. For example, the radiance spectrum

SBR(λ) has the lowest similarity (0.027) to the reference distribution Sref (λ), but has

the closest mean value. When comparing the means, we can see that illuminations at

the corners of the white diffuser are similar, but have somewhat lower mean values

than the illumination at the center. Illumination intensity is slightly higher at the

center of the white diffuser. However, this slight difference vanishes away from the

center. Thus, we consider that the system delivers an illumination which is nearly

spatially uniform, which allows us to check the spatial uniformity assumption (iii)

(see Sec. 3.2).

3.3.2 Reflectance estimation

3.3.2.1 Model

We can now formulate a discrete version of the image formation model of Eq. (2.10)

as:

Ibp = τ ·
B−1∑

l=0

E(λl) ·Rp(λl) ·Ap(λl) · T b(λl). (3.4)

Note that the quantization function Q is omitted in (3.4) since the different terms are

considered as being already quantized. Assuming that T b(λ) has an ideal response
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that can be modeled as a Dirac delta function (see Sec. 3.2), we can rewrite Eq. (3.4)

as:

Ibp = τ · E(λb) ·Rp(λb) ·Ap(λb). (3.5)

We can now derive the reflectance for any surface element s observed by pixel p

associated to spectral band centered at λb as:

Rp(λ
b) =

Ibp
τ · E(λb) ·Ap(λb)

, (3.6)

where the product E(λb) · Ap(λb) characterizes the illumination in the sensor do-

main for channel Ib, and can be deduced by acquiring the image of a calibration tile,

typically a white diffuser.

3.3.2.2 Estimation

In order to estimate reflectance from radiance images that were acquired under an il-

lumination that is almost constant over time, one classically uses the image I(B)[WD]

of a white diffuser acquired in full field beforehand. The white diffuser is assumed

to be perfectly diffuse and reflect the incident light with a constant diffuse reflection

factor ρwd that neither depends on the pixel p nor on the wavelength λ (ρwd= 95% in

our case). Using again assumption (i), we can write:

ρwd =
Ibp[WD]

τwd · E(λb) ·Ap(λb)
, (3.7)

where τwd is the frame integration time of I(B)[WD]. Plugging Eq. (3.7) into (3.6)

yields the reflectance image that is estimated from a B-channel radiance image I(B):

R̂bp = ρwd ·
Ibp

Ibp[WD]
· τwd

τ
. (3.8)

This reflectance estimation model implicitly compensates the vignetting effect, since

the white diffuser and object (scene of interest) occupy the same (full) field of view.

Accordingly, Ibp and Ibp[WD] are affected by the same optical attenuation whose effect

vanishes after division.

The estimated B-channel reflectance image R̂
(B)

should then undergo two post-

processing steps: spectral correction and negative value removal.
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3.3.3 Spectral correction

Each of the Fabry-Perot integrated filters is designed to sample a specific spectral

band from the spectrum according to its spectral sensitivity function T b(λ). How-

ever, due to both SSFs and optical properties of some filters (angular dependence [63],

high-energy harmonics), several bands are redundant, which limits the accuracy

of the spectral imaging system. Figure 3.5 shows two filter SSFs with harmon-

ics and overlapping (finesse F equals 0.80) central peaks. According to their cen-

tral wavelengths, these filters should sample the spectrum at λ40 = 582.3 nm and

λ41 = 585.3 nm in the green domain, but high-energy harmonics make them sen-

sitive to incident wavelengths in the blue domain. This leads to redundancy in

spectral bands and introduces spectral information bias. Therefore, the B-channel

(B=192) reflectance image R̂
(B)

is spectrally corrected and only K = 141 channels

are kept in practice.

Wavelength λ (nm)

Harmonics

Main SSF peaks
T b(λ)

FIGURE 3.5: SSF harmonics of the filters centered at λb=40 = 582.3 nm
and λb=41 = 585.3 nm (FWHMs: δλb=40 = 3.81 nm and δλb=41 =
3.64 nm).

The spectral correction of R̂
(B)

provides a spectrally correctedK-channel reflectance

image R̂
(K)

that is expressed at each pixel p as:

R̂
(K)
p = M · R̂(B)

p , (3.9)
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where M is the sparse K × B correction matrix that is provided by the calibration

file of our Snapscan camera. The linear combinations of the channel values of R̂
(B)

according to Eq. (3.9) are designed by the manufacturer to remove the redundant

channels and attenuate second-order harmonics. This spectral correction provides

new centers {λk}K−1
k=0 for the bands (referred to as “virtual” bands by the manufac-

turer) that are associated to the image channels, but the spectral working domain

Ω = [475.1 nm, 901.7 nm] is unchanged.

3.3.4 Negative value removal

The acquired radiance image contains negative values due to dark frame subtrac-

tion, when the value of a dark frame pixel is higher than the measured radiance

at this pixel. This generally occurs in low-dynamics channels, where the central

wavelengths are in the range [475.1 nm, 560.4 nm] (before spectral correction). These

negative values may lay on vegetation pixels and corrupt reflectance estimation at

these pixels. Because we intend to classify vegetation pixels, this could lead to un-

expected prediction errors. Negative values also occur—for even more pixels—in

the spectrally-corrected reflectance image R̂
(K)

(see Eq. (3.9)), because the correction

matrix M contains negative coefficients. Negative values have no physical meaning

and they must be discarded. Because our images mostly contain smooth textures

(vegetation, reference panels, soil), we consider that, unlike radiance, reflectance

values are highly correlated over close surface elements. Thus, we propose correct-

ing negative values in image R̂
(K)

by conditionally using a 3× 3 median filter, as:

R̂kref,p =





median
3×3

{R̂kp} if R̂kp < 0,

R̂kp otherwise,
(3.10)

where R̂kref,p is the final reflectance value at pixel p for channel k. Because we con-

sider the reflectance that is estimated by this model (Eqs. (3.8)–(3.10)) as a reference,

it is denoted as R̂
(K)
ref . Figure 3.6(b) shows the rate of negative values in the reflectance

image of Fig. 3.6(a) before and after median filtering.
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FIGURE 3.6: Negative values in a reflectance image R̂
(K)

[CC] (a)

shown in red on an RGB rendering of R̂
(K)

[CC]. The rate of negative

values per channel in R̂
(K)

[CC] before and after removal is shown
in (b).

3.4 Reflectance estimation under varying illumination

This section focuses on reflectance estimation when radiance images are acquired in

varying illumination conditions. In the previous section, we show that a B-channel

multispectral reflectance image R̂
(B)

= {R̂b}B−1
b=0 can be estimated from a radiance

one when the illumination of the acquired scene is known (see Eq. (3.6)). Because

illumination varies between the acquisitions of the white diffuser image and that of

the scene, the reflectance estimation method described by Eq. (3.8) is not adapted to

our problem. Moreover, our image formation model (see Eq. (2.10)) shows that illu-

mination variations during the frame acquisitions affect the radiance measurements.

Since the multispectral radiance image is reconstructed from individual frames ac-

quired at different times, the pixel rows containing the values of the scene radi-

ance filtered by a given filter are associated to different illumination conditions (see

Sec. 2.4.5). Thus, we propose to compute reflectance by analyzing each row of the

radiance image. For this purpose, we need to estimate the illumination condition for

each row of every channel.

From a given radiance channel Ib, we propose two methods to estimate the re-

flectance R̂b. The first one (see Sec. 3.4.3) is based on a row-wise estimation from

the white diffuser, and denoted by the subscript rw. The second one (see Sec. 3.4.4)
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is an optimization of the rw method based on a linear regression of the ColorChecker

patch values, and denoted by the subscript orw.

3.4.1 White diffuser in the scene

We propose to mount the white diffuser on the acquisition system, so that the sensor

vertically observes a portion of it. Therefore, the (about 10%) right border pixels

of each row in any channel represent the white diffuser (WD zone in Fig. 3.7(b)).

Thanks to these pixels, we can estimate the illumination condition for the scene part

associated to this row acquired at a specific time. To estimate the reflectance with

the proposed method, we assume that the illumination is spatially uniform within

each pixel row, such that at each row the white diffuser and the scene part pixels

row-wise observe surface elements that are enlightened by the same illumination.

Note that this assumption may be violated if local shadows occur during the frame

acquisitions.

Since reflectance is no longer estimated according to Eq. (3.8), it would be affected

by vignetting effect. To highlight this effect on reflectance estimation, let us consider

the quantized discrete version of Eq. (2.10) at pixel p1 associated to a surface element

of the scene of interest as:

Ibp1 = τ ·
B−1∑

l=0

Etbp1
(λl) ·Rp1(λl) ·Ap1(λl) · T b(λl). (3.11)

Under the Dirac delta assumption about T b(λ), Eq. (3.11) can be rewritten as:

Ibp1 = τ · Etbp1 (λb) ·Rp1(λb) ·Ap1(λb). (3.12)

Thus, the reflectance at p1 is expressed as:

Rp1(λb) =
Ibp1

τ · Etbp1 (λb) ·Ap1(λb)
. (3.13)

The illumination Etbp1 (λb) that is associated to p1 can be determined using the radi-

ance measured at a white diffuser pixel pWD ∈ WD. We can rewrite Eq. (3.12) at

pWD as:

IbpWD
= τ · EtbpWD

(λb) ·RpWD(λb) ·ApWD(λb), (3.14)
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FIGURE 3.7: (a) Acquisition system. The Snapscan camera is mounted
on the top of it and observes from nadir a portion of the white diffuser
WD and the scene. (b) Channel of a radiance image with white dif-
fuser along its right border.

where RpWD(λb) = ρwd is the diffuse reflection factor of the white diffuser. Since

p1 and pWD are located on the same row, tbp1 = tbpWD
and the spatial uniformity as-

sumption stipulates that Etbp1 (λb) = EtbpWD
(λb). Therefore Eq. (3.14) can be rewritten

as:

Etbp1
(λb) ·ApWD(λb) =

IbpWD

τ · ρwd
, (3.15)

where
IbpWD

τ · ρwd
can be considered as an estimation of the illumination condition as-

sociated to pixel p1. However, since the optical attenuation Ap1(λ) at p1 is different

from that of pWD, we cannot replace ApWD(λ) by Ap1(λ) in Eq. (3.15). Thus, to ac-

curately estimate the reflectance, we propose to correct the vignetting effect at each

pixel p of the radiance image I(B) so that optical attenuation is compensated.

3.4.2 Vignetting correction

Vignetting effect refers to a loss in intensity values from the image center to its bor-

ders due to the geometry of the sensor optics. This phenomenon can be well ob-

served on the image I(B)[WD] of a uniformly illuminated white diffuser, as shown

in Fig. 3.8.

Methods of vignetting correction can be divided into two groups: physically-based

ones (with anti-vignetting optical filters for example) and soft methods (image-based

approaches, modeling the optical pathway) [88, 93, 190]. Image-based methods are
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FIGURE 3.8: Vignetting effect. (a) Channel of white diffuser radiance
image. (b), (c) Profile of pixel values over the red vertical and yellow
diagonal lines on image (a), respectively.

easier to implement, and are generally performed by computing a correction factor

for each pixel [190]. In order to compensate for the spatial variation of Ap(λb), we

choose to use this approach because it requires no prior knowledge about the opti-

cal system behavior. To generate correction factors, one first acquires a B-channel

multispectral radiance image I(B)[WD] of a white diffuser under a spatially uniform

illumination (like the one described in Sec. 3.3.1.2) and in a dark room to avoid ambi-

ent light interference. The correction factor is channel-wise and pixel-wise computed

as:

Cbp =
Ib[WD]

Ibp[WD]
, (3.16)

where Ib[WD] is the median value of the m pixels with highest values over Ib[WD]

(m = 11 in our experiments), which discards saturated or defective pixel values. The

correction factors are stored in a B-channel multispectral image denoted as C(B).

Because C(B) is deduced from a single white diffuser image, it would be corrupted
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by noise (even after thermal noise removal during the frame acquisitions). One sim-

ple method is to acquire several white diffuser images to compute correction factors

on the averaged image. However, this only considers the temporal noise related

to the acquisition that affects each pixel, but neglects spatial noise that is more im-

portant (see red profile in Fig. 3.9). Thus, we propose to directly denoise C(B) by

convolving each of its channels Cb with an 11× 11 averaging filterH:

C̃b = Cb ∗ H. (3.17)

The vignetting effect in the B-channel radiance image I(B) is corrected pixel-wise

and channel-wise using the smoothed correction factors:

Ĩbp = Ibp · C̃bp, (3.18)

where Ibp and Ĩbp are the intensity values before and after vignetting correction. This

procedure should reduce noise while preserving image textures. Figure 3.9 illus-

trates a case of spatial correction. We can see that vignetting effect is compensated

whether C(B) is smoothed or not. But, smoothed correction factors produce a spa-

tially corrected image Ĩ
(B)

that is less affected by noise. Indeed, the standard de-

viation of corrected radiance values over the yellow line is 9.1 without smoothing

but is decreased to 6.9 with smoothed factors. In Fig. 3.9(b), we can also observe

that spatially corrected radiance image Ĩ
(B)

presents a slight shift of values along

the green (or red) profile plot due to illumination variation during the frame ac-

quisitions. However, we can assume that the attenuation is spatially uniform after

vignetting correction (i.e., Ap(λb) · C̃bp = αb ∈ R for any given channel index b and

pixel p), such that each value of the vignetting-free radiance image is expressed from

Eq. (3.12) as:

Ĩbp = τ ·Rp(λb) · Etbp(λb) · αb. (3.19)

3.4.3 Row-wise (rw) based reflectance estimation

The underlying assumption is that illumination is spatially uniform over each row

at both the white diffuser and scene pixels (that may be not verified in the case of

shadows). Based on this row uniformity assumption for illumination, we estimate
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FIGURE 3.9: (a) Multispectral image channel with the observed scene
and a portion of a white diffuser. (b) Intensity values of the pixels
under the yellow line before (in black) and after spatial correction
using correction factor smoothing (in green) or not (in red).

reflectance from Ĩ
(B)

in a row-wise manner, as follows. At pixel p with spatial coor-

dinates xp and yp, Eq. (3.19) can be rewritten as:

Rp(λ
b) =

Ĩbp
τ · Etbyp (λb) · αb . (3.20)

To determine the illumination Etbyp (λb) that is associated to the row of p for channel

index b, we use a white diffuser pixel rWD ∈ WD located on the same row as p. At

rWD, the reflectance is equal to the white diffuser reflection factor ρwd, and Eq. (3.19)

provides the vignetting-free radiance as:

ĨbrWD
= τ · ρwd · EtbrWD

(λb) · αb. (3.21)

Because p and rWD are located on the same row, tbyp = tbrWD
andEtbyp (λb) = EtbrWD

(λb)

according to the assumption regarding the spatial uniformity over each row. There-

fore, Eq. (3.21) can be rewritten as:

Etbyp
(λb) =

ĨbrWD

τ · ρwd · αb
, (3.22)
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FIGURE 3.10: rw-based reflectance estimation (from channel Ĩb=100).

which can be considered to be an estimation of the illumination that is associated

to pixel p. For robustness sake, we propose to compute it from the median value

Ĩ
b
WD,yp of the m highest pixel values17 that represent the white diffuser subsetWD

in yp, rather than from a single value ĨbrWD
. Plugging Eq. (3.22) into (3.20) yields our

row-wise (rw) reflectance estimation at pixel p for channel index b:

R̂brw,p = ρwd ·
Ĩbp

Ĩ
b
WD,yp

. (3.23)

As it was done to obtain the reference reflectance R̂
(B)
ref (see Eqs. (3.9) and (3.10)),

the B-channel reflectance image R̂
(B)
rw is spectrally corrected to provide a K-channel

reflectance image R̂
(K)
rw that is afterwards freed from negative values (see Eq. (3.10)).

17 In practice, setting m = 11 pixels is a good compromise for accurately estimating the illumination
for each row and each channel.
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3.4.4 Optimized row-wise (orw) based reflectance estimation

We propose to optimize the rw-based reflectance estimation thanks to the patches

of the GretagMacbeth™ ColorChecker that is present in each of our images. The so-

called orw method can be seen as a hybrid method that combines illumination and

training-based principles. The K-channel rw-based reflectance image R̂
(K)
rw is first

estimated by Eq. (3.23), then optimized according to correction factors computed by

least square regression of learning patch reflectance.

Assuming that reflectance across a patch of the ColorChecker is spatially uniform,

each patch Pj (j = 1..24) is represented as a K-dimensional reflectance vector R̂
(K)
Pj

.

Each coordinate of this vector is associated to a channel index k and is computed as

the average value for this channel over all the patch pixels:

R̂kPj
=

1

|Pj |
∑

p∈Pj

R̂kp , (3.24)

where |Pj | is the number of pixels characterizing the considered patch, and R̂
(K)

a

given K-channel reflectance image.

Among the 24 color patches of the Macbeth ColorChecker chart, we use a set P l of

12 patches for the learning procedure and a set Pt of 12 patches (used in the next

chapter) for testing the estimated reflectance quality (see Fig. 3.11(a)). The patches

of P l are selected using an exhaustive search. We have tested all the 2,704,156 combi-

nations and retained the combination that provides the lowest reflectance estimation

error.

From the reference reflectance image R̂
(K)
ref [CC] (see Fig. 3.6(a)) estimated by Eqs. (3.8)–

(3.10), we compute the reference reflectance value R̂k
ref,Pl

j
[CC] for each learning patch

P lj and channel k according to Eq. (3.24), that we consider as the target output. The

reflectance R̂k
rw,Pl

j
of each learning patch P lj within each channel k of the rw-based

reflectance image is considered as the predicted output.
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FIGURE 3.11: (a) ColorChecker patch numbers and (b, c) reference
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We can thus define the following relationship:




R̂k
ref,Pl

1
[CC]

.

.

.

R̂k
ref,Pl

12
[CC]




= b̂k0 + b̂k1 ·




R̂k
rw,Pl

1

.

.

.

R̂k
rw,Pl

12




, (3.25)

where b̂k0 is the bias coefficient and b̂k1 is the scale factor. Least square regression leads

to the following values:



68 Chapter 3. Reflectance estimation

b̂k1 =

∑12
j=1(R̂k

rw,Pl
j
− µkrw)(R̂k

ref,Pl
j
[CC]− µkref)

∑12
j=1(R̂k

rw,Pl
j

− µkrw)2
(3.26)

and

b̂k0 = µkref − b̂k1 · µkrw, (3.27)

where µkref and µkrw are the means of all reflectance values over the 12 training patches

for channel index k of the reference and rw-based reflectance images, respectively.

b̂k0 and b̂k1 are then used to optimize the reflectance estimated by rw method. Thus,

the reflectance value R̂korw,p estimated for channel index k at pixel p is given by:

R̂korw,p = b̂k0 + b̂k1 · R̂krw,p. (3.28)

Finally, the reflectance image R̂
(K)
orw undergoes negative value removal (see Eq. (3.10)).

Figure 3.12 outlines the process of reflectance estimation from a B-channel radiance

image I(B) using the proposed rw and orw methods.

3.5 Conclusion

To compute features that are invariant to illumination conditions, we estimate re-

flectance in this chapter. Our proposed image formation model (see Eq. (2.10)) shows

that varying illumination during the frame acquisitions can alter classical reflectance

estimation. Indeed, reflectance estimation methods usually assume constant illumi-

nation conditions during the multispectral image acquisition. Therefore, they may

be inappropriate to estimate reflectance from radiance images acquired by a multi-

shot camera such as the Snapscan. We first highlight the effect of vignetting induced

by the sensor optics on reflectance computation, and perform vignetting correction

based on a correction factor computed for each pixel in each channel. Then, we pro-

pose a method that exploits a portion of a white diffuser to estimate reflectance in a

row-wise manner, such that illumination variation is considered at the frame level.

Furthermore, we propose a method that combines illumination and training-based

principles to refine reflectance estimation.
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FIGURE 3.12: Flowchart of rw and orw methods. (a) Computation

of the reference reflectance image R̂
(K)

ref with controlled illumination
condition. (b) and (c) rw and orw-based reflectance estimation in un-
controlled illumination conditions.

The next chapter focuses on the assessment of reflectance estimation methods. We

compare the performance of our proposed methods against state-of-the-art ones. We

also evaluate the contribution of the reflectance features provided by each method

to the crop/weed detection and identification problems.
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4.1 Introduction

SPECIFICALLY, we need a database of images to assess reflectance-based

crop/weed recognition systems. Preparing a campaign of vegetation image

acquisition is time-consuming and tedious because crops and weeds must be first

planted in the field, then maintained healthy throughout the entire acquisition pe-

riod to prevent additional variations of their spectral signatures caused by diseases

or a hydric stress. Furthermore, the acquisition itself may be challenging and the

quality of acquired images be unsatisfying in outdoor conditions where several ex-

ternal variations (such as illumination, wind, etc.) are uncontrolled. In this chapter,

we assess the performance reached by reflectance estimation methods in the agri-

cultural context. The contribution of reflectance features for supervised crop/weed

detection and identification is evaluated.

Section 4.2 presents an overview of some public multispectral vegetation databases

dedicated to crop/weed control applications. Because there is no public database

that contains high spectral resolution images of the plants of interest, we acquire our

own. Details about the acquisition procedure are provided in Sec. 4.3. In Sec. 4.4,

we present the considered state-of-art methods used to estimate reflectance. Then in

Sec. 4.5, we compare their performance to that of our proposed methods.

4.2 Multispectral vegetation databases

Most of studies about weed detection use their own multispectral images due to the

lack of available public datasets. Among the few available ones [112], the Carrots

2017 and Onions 2017 datasets18 [23] of RGB-NIR images have been acquired in the

fields of Lincolnshire, UK, in June 2017 using two cameras (Teledyne DALSA Genie

Nano). The WeedMap19 [154] and weedNet20 [153] datasets are acquired by a UAV

equipped with two sensors, one that acquires channels in the VIS domain and the

18 https://lcas.lincoln.ac.uk/wp/research/data-sets-software/crop-vs-weed-discrimination-
dataset

19 https://projects.asl.ethz.ch/datasets/doku.php?id=weedmap:remotesensing2018weedmap
20 https://github.com/inkyusa/weedNet

https://lcas.lincoln.ac.uk/wp/research/data-sets-software/crop-vs-weed-discrimination-dataset
https://lcas.lincoln.ac.uk/wp/research/data-sets-software/crop-vs-weed-discrimination-dataset
https://projects.asl.ethz.ch/datasets/doku.php?id=weedmap:remotesensing2018weedmap
https://github.com/inkyusa/weedNet
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second one in the NIR domain. RGB-NIR images of the Sugar Beets dataset21 [28]

have been acquired in a sugar beet farm near Bonn, Germany, in spring 2016 us-

ing the autonomous field robot BoniRob [28] equipped with a prism-based 2-charge-

coupled device (CCD) multispectral camera (JAI AD-130GE). The same devices have

been used to acquire the CWFID dataset22 [71] under controlled illumination in an

organic carrot farm located in Northern Germany in 2013. The Ladybird Cobbitty

2017 Brassica dataset23 [17] has been acquired using a multispectral linescan cam-

era (Resonon Pika XC2) that samples 447 spectral bands in the range 400–1000 nm.

The targeted cauliflower and broccoli plants have been planted at Lansdowne Farm,

Cobbitty, a suburb 70 km southwest of Sydney, Australia.

These datasets mostly contain crop/weed images with RGB channels and an ad-

ditional channel associated to a NIR band. The Ladybird Cobbitty 2017 Brassica

dataset contains images with a high number of channels, but targets other plant

species than those considered in this study. Because no publicly available dataset

contains the crops (beet, wheat, and bean) and weeds (thistle, goosefoot, and datura)

we aim to analyze, we acquire our own vegetation database.

4.3 Multispectral dataset acquisition

This section presents our multispectral vegetation database. In Sec. 4.3.1, we present

the experimental setup used for outdoor image acquisition, then we explain how

vegetation pixels are extracted and labelled in Sec. 4.3.2.

4.3.1 Experimental setup

An image acquisition campaign has been conducted in a greenhouse under sky-

light (see Fig. 4.1(a)) by the Chambre d’Agriculture de la Somme in early April 2019.

The targeted plants are beet, wheat, and bean for crops, and datura, thistle, and

goosefoot for weeds. These plants have been planted in a greenhouse located near

Amiens, France, that contains 80 micro-plots, 36 of which are used for implantations

and 44 are reserved for future settlements. The images have been acquired at differ-

ent dates of May and June 2019, and different day times (see Fig. 4.1(b)). The camera

21 http://www.ipb.uni-bonn.de/data/sugarbeets2016/
22 https://github.com/cwfid/dataset
23 https://researchdata.edu.au/ladybird-cobbitty-2017-brassica-dataset/1370660

http://www.ipb.uni-bonn.de/data/sugarbeets2016/
https://github.com/cwfid/dataset
https://researchdata.edu.au/ladybird-cobbitty-2017-brassica-dataset/1370660
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FIGURE 4.1: (a) Our experimental site and apparatus for vegetation
image acquisitions. (b) Acquisition dates and times of the 109 images
for the 2019 campaign. The text along each bar gives the acquisition
time range and a coarse estimation of global solar irradiance (W·m−2)
at the median acquisition time in parentheses [1]. The images used
to assess supervised beet and weed detection/identification (see
Sec. 4.6) are shown in red and green, other images in blue. All im-
ages are used to assess the estimated reflectance quality. Series are
stacked for readability and their order is not meaningful in regards to
any acquisition time order.

is mounted on top of the acquisition system (see Fig. 3.7 (b)) at a distance of about

1.50 m from the ground. The white diffuser is mounted on the acquisition system so

that the camera vertically observes a portion of it, as explained in Sec. 3.4. Among

the acquired images, we distinguish “single-species” images that represent only one

type of plant, and “mixed” images where several (at least two) plants are present.

This campaign provided U = 109 radiance images of 2048× 2048 pixels ×192 chan-

nels of 10 bit depth. The memory size of each image stored in ENVI format is 3.2 GB.

These images represent the observed crop (beet, wheat, and bean) and weed (thistle,

goosefoot, and datura) species at different growth stages (see Fig. 4.2). The pheno-

logical development of plants is generally described by the BBCH-scale [120] that

categorizes plant development cycle into ten principal growth stages, starting from

the germination stage to the full maturity stage. Analyzing each crop and weed

species at each of these ten growth stages is not experimentally possible to us, nei-

ther it is our main concern. Our database contains images of several growth stages
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(a) Beet/thistle (b) Beet/thistle (c) Beet/thistle

(d) Beet/goosefoot (e) Beet/goosefoot (f) Wheat/thistle

(g) Wheat (h) Bean/datura (i) Bean/datura

FIGURE 4.2: Illustration of nine multispectral images from our
database rendered as RGB under D65 illuminant, that show the con-
sidered plant species. Each image contains a white diffuser on its
right border and a ColorChecker chart. Dots show weeds: thistle in
blue (a, b, c, f), goosefoot in cyan (d, e), and datura in magenta (h, i).
Other plants are crop: beet (a, b, c, d, e), wheat (f, g), and bean (h , i).

for each species (see Fig. 4.2(e, i)). Therefore, we categorize plant growth according

to the size and number of leaves into two stages only: youth stage (development of

2 to 9 leaves to stem elongation) and mature stage where the plant has fully evolved.

The database also contains images where crop and weed plants strongly overlap (see

Fig. 4.2(f)) or are shaded (see Fig. 4.2(a)), which makes crop/weed recognition chal-

lenging.

All images contain a GretagMacbeth™ ColorChecker that is principally used to as-

sess the quality of reflectance estimation. Figure 4.2 shows an RGB rendering of

nine multispectral images under D65 illuminant from the database acquired by the

Snapscan camera.
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4.3.2 Vegetation pixel extraction and labelling

Only vegetation pixels are analyzed because we aim to detect/identify crops and

weeds. They are distinguished from the background (white diffuser, ColorChecker,

and soil pixels) using the normalized difference vegetation index (NDVI) [172]. We

compute the NDVI values from the rw-based reflectance image R̂
(K)
rw , since the rw

method considers illumination variation, but the images provided by any other re-

flectance estimation method should yield similar vegetation pixel detection results.

We consider p to be a vegetation pixel if its NVDI value is greater than a threshold γ:

R̂139
rw,p − R̂67

rw,p

R̂139
rw,p + R̂67

rw,p

≥ γ, (4.1)

with the Snapscan “virtual” band centers λ67 = 678.2 nm and λ139 = 899.2 nm. Set-

ting γ = 0.45 experimentally provides a good trade-off between under- and over-

segmentation of vegetation pixels. Noisy vegetation pixels are filtered out as much

as possible by morphological opening. The vegetation pixels are then manually la-

belled by an expert in agronomy to build the segmentation ground truth for each

multispectral image. Table 4.1 displays the number of pixels for each considered

class.

TABLE 4.1: Number of pixels per class.

Class Crop/weed label Class-wise label #Pixels
Beet 22,503,437

Wheat 16,497,666
Bean 23,481,321

Thistle 19,251,028
Goosefoot 32,577,057

Datura 10,877,044
Total - - 125,187,553

4.4 State-of-the-art methods adapted to the Snapscan

In this section, we present the state-of-the-art reflectance estimation methods that

we adapt to the images acquired by the Snapscan camera. We consider four meth-

ods: three ones based on illumination estimation (see Sec. 4.4.1), and one based on

training from the ColorChecker patches (see Sec. 4.4.2).
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4.4.1 Illumination-based reflectance estimation

The classical white-average (wa) method [49, 86] uses the surface of a white diffuser

fully included in the scene to estimate the illumination for each channel. We adopt

the wa implementation by considering a subsetWS ofWD (see dashed green square

in Fig. 4.3). Reflectance is estimated at each image pixel by the wa method as:

R̂bwa,p = ρwd ·
Ĩbp

1

|WS|
∑

s∈WS Ĩ
b
s

, (4.2)

where | · | is the set cardinal.

Similarly, the max-spectral (ms) method [85] assumes that the pixel with maximum

value within each channel can be considered to be a white diffuser pixel for esti-

mating the illumination. While ignoring the diffuse reflection factor, reflectance is

estimated at each pixel in each channel by the ms method, as:

R̂bms,p =
Ĩbp

maxs∈X Ĩbs
, (4.3)

whereX contains all of the image pixels, exceptWD, and those of the ColorChecker.

The wa and ms-based B-channel reflectance images undergo spectral correction and

negative value removal (see Eqs. (3.9) and (3.10)) to provide the final K-channel

reflectance images R̂
(K)
wa and R̂

(K)
ms .

The double white diffuser (dwd) method described in [44] uses two images to both

eliminate vignetting effect and estimate reflectance in a pixel-wise manner as in

Eq. (3.8). The first image is the full-field white diffuser image I(B)[WD] and the

second one characterizes the scene of interest and contains two white diffusers (one

covers the bottom image border while the second is fully visible).

Our images contain a single white diffuser on the right image border that is used

by rw and orw methods to estimate reflectance. The dwd method requires a second

white diffuser fully included in the scene to be more robust against spatially non

uniform illumination. The ColorChecker white patch (WP) (see Fig. 4.3) is present

in each of our images and exhibits optical properties that are very similar to that of

a white diffuser. We therefore consider it as the second white diffuser to adapt the

dwd method to our images. The dwd method estimates reflectance thanks to three
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ColorChecker

100 pixels

WD
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FIGURE 4.3: White diffuser subset (WS) and the white patch subset
(WP) used respectively by wa and dwd methods for reflectance esti-
mation.

successive steps, that are adapted to our image contents as follows:

• Following Eq. (3.8) but neglecting integration times and diffuse reflection fac-

tor, a coarse reflectance estimation is first computed as:

R̃bp =
Ibp

Ibp[WD]
. (4.4)

Like in Section 3.3.2, this step aims to compensate the vignetting effect by

a pixel-wise division of values Ibp[WD] associated to the full-field white dif-

fuser and Ibp associated to the scene. Note that a full-field white diffuser image

I(B)[WD] is acquired before each image acquisition.

• Because the illumination associated to I(B)[WD] is different from that of the

scene image I(B), R̃
(B)

is rescaled row-wise at each pixel p as:

R̃′bp = R̃bp · αbyp , (4.5)
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where the illumination scaling factor αbyp is computed at the row yp of p as:

αbyp =
I
b
WD,yp [WD]

I
b
WD,yp

. (4.6)

Each term in this equation is the average value over the row of p within the

white diffuser subset WD in channel Ib of either the full-field white diffuser

image or the scene image.

• Finally, the values of R̃
′(B)

are normalized channel-wise to provide the dwd

reflectance estimation as:

R̂bdwd,p = R̃′bp ·
ρbWP
βbWP

, (4.7)

where βbWP is the average value over the white patch subset WP in channel

R̃′b, and ρbWP is the diffuse reflection factor of the white patch for the spectral

band centered at λb measured by a spectroradiometer in laboratory.

The B-channel reflectance image R̂
(B)
dwd undergoes spectral correction and negative

value removal (see Eqs (3.9) and (3.10)) to provide the final K-channel reflectance

image R̂
(K)
dwd.

Like rw method, dwd accounts for illumination variation during the frame acquisi-

tion. It attempts to use the properties of a full-field white diffuser image acquired

in outdoor to both estimate reflectance and eliminate vignetting effect pixel-wise.

Illumination scaling and reflectance normalization are required because the illumi-

nations associated to the object and full-field white diffuser images are different.

In contrast, rw method is more straightforward. It uses the same correction factors

(stored in the B-channel image C̃
(B)

, see Sec. 3.4.2) to spatially correct vignetting

effect in all acquired radiance images before estimating reflectance in a row-wise

approach.

4.4.2 Training-based reflectance estimation

We also apply the linear Wiener (wn) estimation technique [166] to estimate re-

flectance. It is based on matrix G that transforms radiance spectra into reflectance.

From any radiance image I(B) in the database, we compute the spectrally-corrected
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vignetting-free radiance image Ĩ
(K)

while using Eqs. (3.9) and (3.18), and then esti-

mate the K-channel reflectance image as:

R̂
(K)
wn,p = G · Ĩ(K)

p . (4.8)

To compute G, we use the spectra of the ColorChecker learning patches (P l subset,

see Fig. 3.11(a)) that are represented in each of our images. The estimation matrix G

that is associated to each input radiance image is determined as:

G = Tref · Tᵀ
rad

(
Trad · Tᵀ

rad

)−1
, (4.9)

where Tref and Trad are the K×12 matrices that are formed by horizontally stacking

the centered and transposed reference reflectance vectors (from R̂
(K)
ref [CC]) and radi-

ance vectors (from the current image Ĩ
(K)

) of the learning patches, and ᵀ denotes the

transpose. Figure 4.4 outlines the process of reflectance estimation of a B-channel

radiance image I(B) using ms, wa, wn, and dwd methods.
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Ĩ
(K)

Spatial correction
(Eq. (3.18))

Spatial correction
(Eq. (3.18))

Spatial correction
(Eq. (3.18))

Reflectance estimation
(Eq. (4.3))

Reflectance estimation
(Eq. (4.2))

R̂
(B)

ms R̂
(B)

wa

Spectral correction (Eq. (3.9) ) and
Negative value removal (Eq. (3.10))

Spectral correction (Eq. (3.9) ) and
Negative value removal (Eq. (3.10))

Spectral correction (Eq. (3.9) ) and
Negative value removal (Eq. (3.10))

R̂
(K)

ms
R̂

(K)

wa

Negative value removal
(Eq. (3.10))

Spectral correction
(Eq. (3.9))

Computation of
G (Eq. (4.9))

G

Reflectance estimation
(Eq. (4.8))

R̂
(K)

wn

Tref

Trad

R̃
′(B)

Computation of scaling
factors (Eq. (4.6))

First estimation of
reflectance (Eqs. (4.4) and (4.5))

Final reflectance
estimation (Eq. (4.7))

R̂
(B)

dwd

R̂
(K)

dwd

Illumination scaling factors

FIGURE 4.4: Flowchart of ms, wa, wn, and dwd methods. (a) Compu-
tation of the reference reflectance image acquired under controlled il-
lumination. (b), (c), (d), and (e) ms, wa, wn, and dwd-based reflectance
estimation from I(B) acquired under uncontrolled illumination.
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4.5 Estimated reflectance fidelity

This section focuses on reflectance quality assessment. We compare the quality of

reflectance estimated by the proposed rw and orw methods, with the results obtained

by the considered state-of-art methods. In Sec. 4.5.1, we present the metrics used in

the objective evaluation. In Sec. 4.5.2, we focus on qualitative results. In Sec. 4.5.3,

we provide a subjective assessment of the estimated reflectance spectra.

4.5.1 Metrics

To evaluate the accuracy of estimated reflectance, we use the set of test patches Pt

of the ColorChecker (see Fig. 3.11(a)). Let R̂
(K)
∗ , ∗ ∈ {rw, orw,wa,ms,wn, dwd}, de-

note the reflectance image estimated by either the proposed methods (see Eqs. (3.23)

and (3.28)) or the four implemented state-of-the-art methods (see Eqs. (4.2)–(4.8)).

All surface elements of a test patch Ptj are assumed to have the same spectral re-

sponse. Each test patch Ptj , j = 1..12 is then represented by a K-dimensional re-

flectance vector R̂
(K)

∗,Pt
j

whose k-th component is computed as the average value in

channel k over all the pixels characterizing the patch (see Eq. (3.24)). This vector

is compared to the reference reflectance R̂
(K)

ref,Pt
j
[CC] of the same patch estimated ac-

cording to Eqs. (3.8)–(3.10) from an image acquired in laboratory under controlled

illumination. When outdoor reflectance is well estimated, the spectra of the consid-

ered color chart patches should be similar, and ideally superposed to their laboratory

counterparts.

Note that the ColorChecker is placed at various spatial coordinates in the images of

our database. In case of high vegetation density, it is placed on the top of a wooden

block to prevent patch occlusions by leaves. Thus we use a 14 × 14 pixel window

around the automatically detected center of each patch to ensure all these pixels be-

long to the same patch whatever the image.

We objectively assess each estimated reflectance image thanks to the mean absolute

error (MAE) and angular error ∆θ of each test patch Ptj ∈ Pt given by:

MAE(R̂
(K)

ref,Pt
j
[CC], R̂

(K)

∗,Pt
j
) =

1

K

K∑

k=1

∣∣∣R̂kref,Pt
j
[CC]− R̂k∗,Pt

j

∣∣∣ , (4.10)

and:
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∆θ(R̂
(K)

ref,Pt
j
[CC], R̂

(K)

∗,Pt
j
) = arccos




〈
R̂k

ref,Pt
j
[CC], R̂k∗,Pt

j

〉
∥∥∥R̂

(K)

ref,Pt
j
[CC]

∥∥∥
2
·
∥∥∥R̂

(K)

∗,Pt
j

∥∥∥
2


 , (4.11)

where ‖·‖2 is the Euclidean norm. When ∆θ between two vectors (spectra in our

case) is equal to zero, it means that these two vectors are collinear. We compute the

average mean absolute error MAE∗ and angular error ∆θ∗ over all test patches of all

estimated reflectance images.

We also compute the average channel-wise mean absolute error MAE
k
∗ over all test

patches of all reflectance images {uR̂
(K)
∗ }Uu=1 provided by method ∗, defined as:

MAE
k
∗ =

1

U

1

J

U∑

u=1

J∑

j=1

|R̂kref,Pt
j
[CC]− uR̂

k
∗,Pt

j
|, (4.12)

where J = 12 is the number of test patches, and U = 109 is the number of images.

Moreover, we evaluate the computational cost of the examined reflectance estima-

tion methods, and perform a visual observation of estimated reflectance at veg-

etation pixels to ensure that their integrity is preserved. At last, we assess the

contribution of each reflectance estimation method for beet/weed detection and

beet/thistle/goosefoot identification tasks.

4.5.2 Results

4.5.2.1 Mean absolute and angular errors

Table 4.2 shows the average mean absolute and angular errors over all images in the

database for the six tested methods.

TABLE 4.2: Estimated reflectance errors. Bold shows the best result
and italics the second best one.

Method
Illumination-based Training-based Hybrid

rw wa ms dwd wn orw

MAE∗(%) 4.315 5.883 14.670 3.236 3.628 1.426
∆θ∗ (rad) 0.046 0.046 0.309 0.063 0.063 0.036

We can see that in terms of estimated reflectance error, the hybrid orw method pro-

vides the lowest average mean absolute (MAE) and angular (∆θ) errors. The dwd

and wn-based methods provide the second and third lowest MAE, respectively. The

rw-based method provides lower estimation error in terms of MAE than wa and ms
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and the second lowest angular error along with wa method.

The MAE and ∆θ are complementary metrics and they, respectively, highlight two

important properties: the scale and shape of the estimated spectra. Indeed, while

MAE is mainly sensitive to the scale of the estimated spectra, ∆θ especially fo-

cuses on the shape of the spectra, because it is a scale-insensitive measure. Con-

sequently, there might be no correlation between the results that were obtained by

the MAE measure and those obtained by ∆θ. An optimal reflectance estimation

method should satisfy both constraints (as does orw). As we can see from Tab. 4.2,

wn and dwd provide better results than rw and wa in terms of MAE. However, in

terms of ∆θ, rw and wa provide better results. In our case, more importance should

be granted to the shape of the estimated spectra, and then the ∆θ metric is more

relevant than the MAE. Reflectance error related to the scale between the reference

and estimated reflectance spectra can be compensated by a normalization procedure

[126, p. 54]. However, the shape of estimated spectra cannot be modified.

The ms method provides the worst results because it only analyzes pixels of back-

ground and vegetation that strongly absorb the incident light in the VIS domain.

Hence, the biased illumination estimation in this domain affects the performance of

ms method. It is worthwhile to mention that the wn method performance might also

be biased, since it uses some of the ColorChecker patches as training references (to

build the estimation matrix G), while the other patches of the same chart are used to

evaluate the reflectance estimation quality. The best results are obtained by our orw

method ; however, its performance might also be biased because it uses some of the

ColorChecker patches to refine rw estimation.

Among illumination-based methods that analyze a single reference device, rw pro-

vides similar results to wa in terms of ∆θ, as well as better MAE results. This shows

that taking account of the illumination variation during the frame acquisitions im-

proves the reflectance estimation quality.

Figure 4.5(a)–(l) show the reference reflectance spectrum R̂ref,Pt
j
[CC] (in black) and

the average reflectance spectrum R̂∗,Pt
j

of each test patch computed over all re-

flectance images.



86 Chapter 4. Reflectance estimation assessment

500 550 600 650 700 750 800 850 900
Wavelength (nm)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R *
,P

1

Max

Reference
rw-based
orw-based
wa-based
ms-based
wn-based
dwd-based

500 550 600 650 700 750 800 850 900
Wavelength (nm)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R *
,P

4

Max

Reference
rw-based
orw-based
wa-based
ms-based
wn-based
dwd-based

(a) Dark-skin patch (Pt1 in Fig. 3.11) (b) Foliage patch (Pt4 in Fig. 3.11)
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(c) Blue flower patch (Pt5 in Fig. 3.11) (d) Bluish-green patch (Pt6 in Fig. 3.11)
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(e) Orange patch (Pt7 in Fig. 3.11) (f) Purple-blue patch (Pt8 in Fig. 3.11)
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(g) Moderated-red patch (Pt9 in Fig. 3.11) (h) Yellow-green patch (Pt11 in Fig. 3.11)
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(i) Green patch (Pt14 in Fig. 3.11) (j) Magenta patch (Pt17 in Fig. 3.11)
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FIGURE 4.5: Estimated reflectance spectra of the ColorChecker test
patches.

We can see that the shape of the reference reflectance spectra of the ColorChecker test

patches and their rw and orw-based estimations are very similar and totally overlap
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for some patches (e.g., purple-blue and bluish-green patches). This also can be de-

duced from the low angular error values (see Tab. 4.2) that indicate to what extent

the estimated spectra are similar (in a collinearity sense) to the reference spectra.

The wn-based reflectance spectra are very similar to the reference reflectance spec-

tra except for certain patches (such as orange or moderated-red) where their shapes

slightly differ. The dwd method provides also good estimation results. For some

patches (such as blue flower, bluish-green, and purple-blue), the estimated reflectance

values in the range [475 nm, 500 nm] are different from the reference reflectance val-

ues. The wa method provides acceptable estimations in the range [475 nm, 901 nm].

In the range [475 nm, 745 nm], the ms method provides the worst estimation results.

However, in the range [750 nm, 901 nm], ms provides similar reflectance estimation

results to those of rw method.

4.5.2.2 Channel-wise estimated reflectance error

Figure 4.6 shows the average channel-wise MAE of estimated reflectance computed

according to Eq. (4.12), and Fig. 4.7 shows the channel-wise average energy that is

computed as the average reflectance value over all images for each channel R̂k∗ .

M
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%
)

Wavelength λ (nm)

VIS domain NIR domain

rw

orw

wa

ms
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dwd

FIGURE 4.6: Channel-wise MAE over all reflectance images estimated
by each method.

We can see that the estimated reflectance error for each channel is correlated with

the channel-wise energy. Indeed, higher errors of estimated reflectance are more
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FIGURE 4.7: Channel-wise energy over all reflectance images esti-
mated by each method.

susceptible to occur in channels associated to the NIR domain since energy within

these channels is higher than within those associated to the VIS domain.

Considering the channel-wise error (see Fig. 4.6), the highest error rates in the range

[475 nm, 750 nm] are obtained by ms because it only analyzes pixels of background

and vegetation that strongly absorb the incident light. Hence, illumination estima-

tion is biased using ms in this domain. In the range [750 nm, 901 nm] (NIR domain),

the light reflection factor of vegetation is high (it appears brighter in Fig. 4.3), and the

ms method gives very similar results as rw. The rw method provides lower channel-

wise error than the wa method. The dwd and wn provide the second and third lowest

error rates respectively along the working domain [475 nm, 901 nm] of the Snapscan

camera, while orw method provides the lowest error rates.

In the following, we assess a visual observation of some vegetation spectra. In-

deed, the quality of reflectance estimation evaluated at pixels of test patches of the

ColorChecker chart may not be generalized over all image pixels, especially for

reflectance estimation methods such as wn. Reflectance estimated at pixels of test

patches might be accurate while being inaccurate or biased at vegetation or soil pix-

els.
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4.5.3 Reflectance estimated at vegetation pixels

To ensure that there is a correlation between low estimated reflectance errors at Col-

orChecker chart patches and the integrity of the estimated vegetation reflectance, we

assess reflectance spectra estimated at vegetation pixels by the six considered meth-

ods thanks to a visual observation. We expect that vegetation spectra estimated by

methods that provide low reflectance estimation errors (computed on chart patches)

should be similar. For this purpose, we estimate the reflectance using the six tested

methods from two radiance images that contain beet plants and a mixture of beet,

thistle and goosefoot. The vegetation signature of each species is computed by av-

eraging the spectra at 100 pixels defined by a small region of interest (colored spots

in Figs. 4.8(a) and 4.9(a)). From Fig. 4.8(b), we can see that the rw, orw, wa, ms, and

(a) (b)

R̂
k ∗

Wavelength λ (nm)

min

max

rw-based

orw-based
wa-based

ms-based

wn-based

dwd-based

FIGURE 4.8: (a) RGB rendering of a multispectral image of beet. (b)
Estimation of beet reflectance spectrum at the yellow spot.

dwd-based estimations provide a similar spectrum with values in the range [0, 1]

except for dwd reflectance spectrum whose values in the range [760 nm, 901 nm] are

above 1 (saturated). Thus, spectral information held by several spectral bands in this

range might be lost. The shape of the averaged spectrum deduced from spectra that

are estimated using wn method is different from those estimated by other methods in

the range [475 nm, 680 nm]. The same phenomenon is observed in Fig. 4.9 where the

shape of the wn-based reflectance spectrum is also different. Moreover, in the range

[620 nm, 680 nm], it contains negative values. This analysis confirms our first intu-

ition about estimation methods based on a transform matrix (see Sec. 3.2.1.3). Such
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FIGURE 4.9: (a) RGB rendering of a multispectral image of a mixture
of beet, thistle, and goosefoot. (b)–(d) Estimation of thistle and

goosefoot reflectance spectra at the red and cyan spots respectively.

methods strongly depend on the training set of radiance and reflectance spectra. Be-

cause they generally use GretagMacbeth™ ColorChecker patches to build the matrix

G (see Eq. (4.9)), these methods might be able to accurately estimate the reflectance of

the other patches, but are not adapted to estimate the reflectance of remaining scene

objects especially when (as vegetation spectra) their spectral signatures are much

different from those of the chart patches. Besides, such methods do not consider the

illumination variation during the frame acquisitions that is highlighted by our im-

age formation model (see Eq. (2.10)), which further weakens their performances in

reflectance estimation. The dwd method provides generally accurate estimations of

vegetation spectra (see Fig. 4.9(b)–(d)). However, in some cases, dwd provides spec-

tra with saturated reflectance values in the range [760 nm, 901 nm] (see Fig. 4.8(b)).

This is due to the channel-wise normalization of the first estimated reflectance by

the white patch reflectance. Indeed, since vegetation strongly reflects light in the

NIR domain, reflectance values estimated at vegetation pixels in this spectral range
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might be higher than those of the white patch, which provides saturated values after

normalization according to Eq. (4.7). Therefore, spectral information that might be

crucial for pixel classification is lost in this spectral range.

4.5.4 Computation cost

Table 4.3 shows the average execution time per image (evaluated over 10 images) re-

quired by each considered reflectance estimation method. Note that steps of spatial

and spectral corrections, and negative value removal are not considered in Tab. 4.3

because they are performed in all methods. Thus, only reflectance estimation com-

putation cost is evaluated because it is specific to each method. The tests were con-

TABLE 4.3: Average execution time of each reflectance estimation method.

Method
Illumination-based Training-based Hybrid

rw wa ms dwd wn orw

Eqs. (3.23) (4.2) (4.3) (4.4)–(4.7) (4.8), (4.9) (3.23), (3.26)–(3.28)
Average execution

time (s)
28 20 15 42 81 41

ducted on a PC running under Linux Mint 19.3 (Tricia) operating system, featuring

a 6-core Intel CPU at 2.6 GHz with 32 GB of RAM, and using the python kernel 3.7.9.

The ms method is the fastest among the six tested methods and takes only 15 s to

estimate the reflectance image. It is followed by the wa method with 20 s because

illumination is only estimated B times. The reflectance at all pixels associated to

channel index b is estimated by dividing the radiance values at these pixels by the

estimated illumination associated to channel index b. The wn method is the most

greedy because of the vectorial procedure of reflectance estimation. The K ×K ma-

trix G is applied successively at each pixel p. The number of elementary operations

to estimate the reflectance spectrum at p using G is (2K − 1)×K operations. It takes

81 s to process all the X×Y pixels. The dwd operates in three steps and takes 42 s on

average to estimate the reflectance image. The radiance image I(B) is first divided by

the white diffuser image I(B)[WD], then each resulting value in each channel at each

pixel is multiplied by an illumination scaling factor to provide the first reflectance

image R̃
′(B)

. Finally, R̃
′(B)

is normalized in each channel by the reflectance of the

white patch to provide the final reflectance image R̂
(B)
dwd. Our rw method operates

row-wise and estimates illumination Y × B times. For each channel, reflectance at
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all pixels in a row is estimated by dividing the radiance values at these pixels by

the estimated illumination in the same pixel row. The average running time of rw

method is 28 s with our implementation. The orw method takes 41 s (including 13 s

for the optimization step) on average to process all pixels and requires 2 ×K extra

operations per pixel to optimize the rw reflectance image. Our rw method provides a

good trade-off between computation cost and robustness against illumination vari-

ation during acquisitions.

4.6 Reflectance features for beet/weed detection and identifi-

cation

In this section, we evaluate the contribution of our proposed rw and orw-based re-

flectance estimation methods for supervised beet/weed detection and identification.

For this experiment, we focus on beet (crop) that must be distinguished from thistle

and goosefoot (weeds). For this purpose, we compare the performance of a pixel

classifier that analyzes these features. We use a data set composed of 37 radiance (13

single-species and 24 mixed) images acquired at different days (on May and June

2019) that we split into a learning set and a test set, denoted as S learn (23 images)

and Stest (14 images) (see Tab. 4.4). Illumination conditions are various in the two

sets and Stest mostly includes images that are acquired on different days from those

of S learn (see Fig. 4.1(b)). Note that, as a consequence, vegetation in the learning

and test image sets may not be exactly at the same growth stages. We first com-

pare the discrimination power of reflectance features provided by our rw and orw

methods against radiance features to assess each reflectance estimation method for

crop/weed identification and detection. Subsequently, we compare them with re-

flectance features that are estimated using each of the four considered state-of-the-

art methods (wa,ms,wn, and dwd) (Secs. 4.6.4–4.7).

4.6.1 Learning and test pixel extraction

From the learning set S learn, we randomly extract N l learning pixels per class. For

a given class Ci, i ∈ [[1, NC ]], the number of extracted learning pixels per image de-

pends on the number of images where class Ci is represented in S learn (occurrences).
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Among the 23 learning images, the beet (crop) class appears in 17 images, thistle in

nine images, and goosefoot in 12 images. In the test set Stest, beet, thistle, and goose-

foot are represented, respectively, in 12, 10, and four images. For the weed detection

task, we extract 2N l learning pixels, half for crop and half for weed class. Because we

merge thistle and goosefoot prototype pixels to build a single weed class, we extract

N l/2 learning pixels for thistle and N l/2 for goosefoot. Each pixel is characterized

by aK-dimensional (K = 141) feature vector of reflectance (or radiance) values. The

reflectance/radiance images are averaged channel-wise over a 5 × 5 pixel window

to reduce noise and within-class variability. Table 4.4 shows the number of learning

and test pixels per class for beet/weed detection and beet/thistle/goosefoot iden-

tification. All of the available pixels in Stest are used to assess the generalization

power of a supervised classifier.

TABLE 4.4: Number of learning and test pixels for beet/weed detec-
tion (left sub-column) and beet/thistle/goosefoot identification (right
sub-column) (N l = 400, 000 pixels in this experiment).

S learn (23 images) Stest (14 images)
#Learning pixels #Test pixels

Class Ci #Occurences
per occurence

#Occurences
per class

Crop Beet 17 N l/17 12 5,714,326

Weed
Thistle
Goosefoot

9
12

(N l/2)/9 N l/9
(N l/2)/12 N l/12

10
4

6,744,633
5,461,013
1,283,620

4.6.2 Supervised classification

Choosing a machine learning classifier to tackle a classification problem is strongly

related to the type of dataset. An ideal classifier should be fast during training and

inference procedures, capable of identifying non linearly separable classes in high

dimensional feature spaces, and provide good classification results. Classifiers that

are fast during the learning and inference procedures are highly appreciated.

From a machine learning standpoint, a classification problem is called linear if the

set of samples characterizing each class (cluster) can be separated by a hyperplane in

the feature space (low within-class dispersion and high between-class dispersion).

Figure 4.10 shows a 2D projection of rw-based estimated reflectance spectra at 15,000

(5,000 per class) vegetation pixels of beet, thistle, and goosefoot. These spectra are

projected into a 2-dimensional space computed with the linear supervised partial

least squares discriminant analysis (PLS-DA) technique [162] in Fig. 4.10 (a), and by
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FIGURE 4.10: Visualization of rw-based estimated reflectance spectra
associated to beet, thistle, and goosefoot pixels using PLS-DA and
t-SNE dimension reduction techniques.

the non-linear non-supervised t-SNE technique [181] in Fig. 4.10(b). We can see that

the clusters strongly overlap. So, we can deduce that the classes are not linearly sep-

arable. In this case, classifiers that model non-linear rules should be applied in order

to separate these classes.

Quadratic discriminant analysis (QDA) is a well-known supervised method used to

predict class membership. Like linear discriminant analysis (LDA), QDA assumes

Gaussian distributions for all classes. However, in contrast to LDA that computes a

common covariance matrix for all classes, QDA determines a class-specific covari-

ance matrix, and provides a quadratic boundary decision. In order to take local

distributions into account, support vector machines (SVMs) can be an alternative

to decision rules based on the distance to the gravity center of each cluster. The

SVM classifier was originally introduced by Cortes and Vapnik [34] and has been

extensively used in machine learning community for various tasks. An SVM is in-

herently a two-class classifier as it aims to find the optimal hyperplane that maxi-

mizes the margin between two classes. In the case of linearly separable classes, this

optimal hyperplane has the largest distance to the closest learning samples of each

class (so-called “support vectors”). To handle multiclass problems (NC>2), the al-

gorithm proceeds in a “one-vs-all” way and NC classifiers are inferred, where each

one specializes in a specific class. Because the decision rule of an SVM is based on
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a hyperplane, it is inherently adapted to linearly separable data. In order to gen-

eralize to non-linear problems, the “kernel trick” [70, p. 423] is used to provide the

so-called kernel support vector machines (K-SVMs). A K-SVM classifier uses a ker-

nel function that maps features into a higher dimensional space in which classes are

assumed to be linearly separable. Then, linear SVM is applied in the transformed

feature space in order to obtain the hyperplane that maximizes the distance between

the classes. Combining SVMs with the kernel trick provides a powerful classifier that

is able to handle non-linear problems. SVMs have been successfully used to classify

multispectral data [5, 47]. However, the learning step of SVM (computation of the

support vectors) is computationally expensive when dealing with high-dimensional

and large data sets.

The method based on k-nearest neighbors (k-NN) is a popular non-parametric learning-

free one (no prior statistical assumption about the class distributions) that has been

successfully used in classifying multispectral data [57]. The classification of a given

test (or query) sample is achieved thanks to a similarity-based or distance measure

(such as the Euclidean distance) between the test sample and each learning sample.

The test sample is assigned to the majority class of its k nearest learning neighbors.

This classifier is simple yet efficient since it does not rely on any assumption about

the class distributions. Unfortunately, predictions with k-NN tend to be computa-

tionally expensive since all learning samples need to be scanned in order to predict

the class of each test sample. In our case, both learning and test data sets are large

(see Tab. 4.4) and lay in a high-dimensional feature space (141 spectral features).

Therefore, k-NN might not be adapted to this problem. Moreover, accuracy of k-NN

strongly depends on the used metric [2, 3].

The Random Forest (RF) is a “bagging” algorithm that combines multiple weak ran-

domly created learners (or decision trees) to predict the final output as the majority

class among all classes predicted by each model. The weak learner models are inde-

pendent since each one is trained with a different subset of samples/features gen-

erated using “bootstrap aggregation” method. RF has been successfully adopted by

several applications such as weed detection [72, 108] because it is able to discrimi-

nate non-linear classes. However, the learning step with large datasets might still be

slow (though faster than K-SVM).
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4.6.3 Supervised classification by boosting approach

Alternatively to the bagging approach, the “boosting” approach attempts to build a

strong classifier by using weak learners in series. One of the first successful boosting

algorithms is AdaBoost [54]. In contrast to RF, AdaBoost generally uses “decision

stumps” (trees with one node and two leaves) as weak learners rather than fully

grown trees. It sequentially fits these stumps, and new ones are added thanks to

a sample reweighting procedure to concentrate on samples where previous learn-

ers performed poorly [54]. The final predicted output is deduced by the weighted

majority voting rule since each stump has a different weight according to its perfor-

mance.

Another kind of non-linear classifier is a gradient boosting machine (GBM). A GBM

also sequentially fits several weak learners in order to build a strong learner. While

AdaBoost updates the sample weights to reduce classification errors, a GBM follows

gradient descent optimization using a differentiable loss function to sequentially im-

prove the performance of a weak learner. Considering a learning dataset with NC

classes, NC ensemble models are induced in order to build the final learner denoted

as Θ̂ = {θ̂i}NCi=1 : RK → RNC . The classification score associated to each model θ̂i is

used to determine the class membership of a given sample [55]. The predicted label

ŷs for a test sample xs ∈ RK is obtained thanks to Bayes’ rule:

ŷs = arg max
i=1, ..., NC

P̂ i(xs), (4.13)

where P̂ i(xs) = exp(θ̂i(xs))∑NC
l=1 exp(θ̂l(xs))

. The classification procedure using a GBM for multi-

class classification is detailed in Appendix A.1.

GBMs can be very efficient but conventional implementations face several chal-

lenges. Indeed, for every feature, the algorithm scans all the samples to estimate

the information gain of all possible split points (thresholds) in order to find the opti-

mal one. Because it also scans all the samples in order to compute the gradients, the

algorithm can be quite slow to analyze large and high-dimensional datasets. Fur-

thermore, because there are several hyper-parameters to adjust, the resulting classi-

fier can be also over-fitted.

Recent GBM implementations such as XGBoost [29], CatBoost [146], or LightGBM [83]
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bypass these problems and provide efficient classifiers. The LightGBM implementa-

tion for instance is known to be highly efficient in both learning and inference steps

and to reach high classification performances. In our case, only few seconds are re-

quired to analyze all learning samples, and all test pixels of a multispectral image

are classified within few seconds (less than 3 s for 500,000 test pixels). Such a classi-

fier of course requires to adjust specific parameters such as the number of leaves, the

depth of trees, and the learning rate, and needs to be fine-tuned in order to achieve

good performances and avoid over-fitting.

4.6.4 Evaluation metrics

Since our application is dedicated to process real-world data (crop/weed monitor-

ing), we do not control the number of test samples (pixels) that have to be regrouped

into each class (crop and weeds). Table 4.4 shows that the number N i of test pixels

associated to each class is highly skewed. Therefore, the classical accuracy score

can be a misleading measure to evaluate a classifier performance [73, p. 114]. A

classification model that predicts the majority class for all test pixels reaches a high

classification accuracy. However, this model can also be considered as weak when

misclassifying pixels of the minority classes is worse than missing pixels from the

majority classes. This phenomenon is known as the “accuracy paradox”.

To overcome the accuracy paradox, the performance of a classification model for

imbalanced datasets should be assessed with appropriate metrics such as balanced

accuracy and precision/recall curve [73, pp. 53–56, 114]. Although some of the met-

rics may be more meaningful and easy to interpret than others, there is no consensus

in the literature for choosing a single optimal metric. In our case, we want to cor-

rectly detect weed pixels without sub-detection and to correctly detect crop pixels

without over-detection, to avoid both missing weeds and spraying crops. Therefore,

the performance of our classification model on both crop and weed detection should

be comparable. For this purpose, we compute the per-class accuracy score and the

weighted overall accuracy score. We also compute the F1-score that combines the

precision and recall measures. These three measures should well summarize the

classification performance of imbalanced sets of test pixels.

Let us denote the set of true test pixel labels as y and the set of predicted labels as ŷ.
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The per-class accuracy score for class Ci, i ∈ [[1, NC ]], is:

AccuracyCi =
1

N ti

N i∑

j=1

1(ŷij = yij), (4.14)

where yij and ŷij are the true and predicted labels for the j-th test pixel of class Ci,

and N ti is the number of test pixels characterizing the class Ci.

The weighted overall accuracy is defined as:

Accuracy =

∑NC
i=1 AccuracyCi · ωCi∑NC

i=1 ωCi
, (4.15)

where ωCi =
1

N ti
is the weight associated to class Ci computed as the inverse of

its size, so as to handle imbalanced classes. Because the F1-score (see Eqs. (4.17)–

(4.19)) privileges the classification of true positives pixels (weed pixels in our case),

we compute the overall F1-score as the population-weighted F1-score so that the

performances over all classes are considered:

F1 =

∑NC
i=1 F1Ci · ωCi∑NC

i=1 ωCi
. (4.16)

The F1-score of class Ci is computed as:

F1Ci =
2 · PrecisionCi · RecallCi

PrecisionCi + RecallCi
, (4.17)

where

PrecisionCi =

∑N i

j=1 1(ŷij = yij)

|ŷi| , (4.18)

and

RecallCi =

∑N ti

j=1 1(ŷij = yij)

N ti
, (4.19)

where |ŷi| is the number of predicted pixels for class Ci.

4.6.5 Classification experiments

4.6.5.1 Retained classifier

The non-parametric QDA and parametric LightGBM (LGBM) classifiers are applied

for supervised weed detection and identification problems. The choice of these two
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FIGURE 4.11: Non-linear decision boundaries learned by (a) QDA
and (b) LGBM in the case of three synthetic classes. Samples have
been generated using the sklearn24 Python module.

non-linear classifiers is motivated by their processing time during the learning and

prediction procedures.

Furthermore, QDA is a simple non-parametric classifier that is based on Bayes’ the-

orem to perform predictions, whereas LGBM is a parametric tree-based classifier

that requires a learning procedure to model a complex classification rule. It uses

a histogram-based algorithm to bucket the features into discrete bins, which dras-

tically reduces the memory and time consumption. Figure 4.11 illustrates the dif-

ference between their decision boundary in the case of three non-linearly separable

classes projected in a 2D feature space. The parameter-free QDA computes statis-

tics of the features that characterize each class in order to perform predictions. A

sample xs ∈ RK is assigned to the class that maximizes the quadratic discriminant

function Ψ:

ŷs = arg max
i=1,...,NC

Ψi(xs), (4.20)

where

Ψi(xs) = −1

2
log |ΣCi | −

1

2
(xs − µCi)ᵀΣ−1

Ci (xs − µCi) + log(πCi), (4.21)

where ΣCi is the covariance matrix of class Ci, µCi is the mean feature vector of class

Ci, and πCi is the prior probability of class Ci.

24 https://scikit-learn.org

https://scikit-learn.org


4.6. Reflectance features for beet/weed detection and identification 101

LGBM is a histogram-based algorithm that uses gradient boosted decision trees (GB-

DTs) in a way that solves the high-dimensional learning problem thanks to two tech-

niques named Exclusive Feature Bundling (EFB) and Gradient-based One-Side Sampling

(GOSS) [83]. Details about EFB and GOSS techniques are given in Appendix A.2.

For the learning procedure of LGBM (see Appendix A.1), we set the learning rate ε

to 0.05. This value is chosen experimentally as it allows the classifier to learn from

the learning samples while preventing over-fitting. Training with low learning rate

values is also a common practice when using deep convolutional neural networks

for classification [165]. The sampling ratios a and b (see Appendix A.2.2) are set to

0.2 and 0.1 respectively (default values). The number of leaves and boosting opera-

tions are set to 150 and 100 respectively so that the underlying structure of our data

is learned. As learning evaluation metrics, we use the log loss function since it is one

of the major metrics used in classification that can handle binary (weed detection)

and multiclass (weed identification) classification tasks. The number of bins used

for histogram building is set to 255 (default value).

4.6.5.2 Classification results

Tables 4.5a and 4.5b show the classification results obtained by QDA and LGBM

classifiers for weed detection and identification, respectively. Figures 4.12 and 4.13

show the color-coded vegetation pixel classification of two test images using the

LGBM classifier in weed detection and identification tasks, respectively.

Let us first compare the classification performance of reflectance against radiance

features for the weed detection task. From the results given in Tab. 4.5a, we can

see that reflectance features estimated by illumination-based methods (rw, wa, ms,

and dwd) provide better classification results than radiance features in terms of av-

erage F1 and accuracy scores, whatever the classifier. The worst classification results

are obtained by reflectance features estimated using the wn method. Training-based

methods, such as wn, can provide an accurate reflectance estimation of scene ob-

jects when their optical properties are close to those of the training samples used to

build the matrix G (see Eq. (4.9)). In our case, the optical properties of vegetation are

very different from that of the training ColorChecker patches. Thus, wn provides
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TABLE 4.5: Beet/weed detection (4.5a) and beet/thistle/goosefoot
identification (4.5b) results with QDA and LGBM classifiers. Bold
shows best result and italics second best one.

Reflectance features
Illumination-based Training-based HybridClassifier

Radiance
feature

rw wa ms dwd wn orw

QDA 90.5 73.6 73.3 86.8 78.3 36.5 76.6
Beet

LGBM 81.0 85.8 81.7 82.1 84.1 66.4 69.6
QDA 49.3 72.9 73.4 70.2 75.3 61.8 74.7Per-class Accuracy (%)

Weed
LGBM 72.3 83.4 82.8 82.0 82.5 76.5 78.5
QDA 71.6 76.0 73.3 79.5 76.9 48.1 75.7

Accuracy (%) LGBM 77.0 86.1 84.7 79.2 83.4 71.0 73.4
QDA 67.9 76.0 73.0 78.2 76.5 48.0 75.4

F1 (%) LGBM 76.2 85.4 84.4 77.8 83.1 71.3 73.9

(a) Beet/Weed detection.

Reflectance features
Illumination-based Training-based HybridClassifier

Radiance
feature

rw wa ms dwd wn orw

QDA 88.5 73.9 73.5 86.0 77.7 18.8 77.5
Beet

LGBM 78.8 87.0 82.1 83.6 82.5 65.7 68.0
QDA 47.8 70.9 68.1 75.2 55.0 55.3 62.7

Thistle
LGBM 68.3 73.4 71.8 65.6 72.8 63.1 75.8
QDA 19.1 32.2 28.5 1.0 24.1 52.6 26.2

Per-class accuracy (%)

Goosefoot
LGBM 23.9 35.7 38.1 33.7 31.5 20.0 19.9
QDA 34.4 44.9 41.8 26.0 37.3 47.8 40.0

Accuracy (%) LGBM 39.5 49.7 50.3 46.5 46.0 34.0 36.3
QDA 34.3 40.8 40.1 25.4 33.7 27.0 37.3

F1 (%) LGBM 39.7 47.1 44.4 41.4 42.5 32.9 35.1

(b) Beet/thistle/goosefoot identification.

inaccurate reflectance estimations at vegetation pixels, which affects its classifica-

tion performance.

Let us now compare the classification performances of the reflectance features. The

overall classification performance using reflectance features estimated by the pro-

posed hybrid method orw does not outperform those obtained by rw method despite

that orw achieves the lowest reflectance estimation errors (see Tab. 4.2 and Fig. 4.6).

It provides comparable results with rw method using QDA classifier for weed detec-

tion. However its classification performances are degraded with LGBM, where wa

and dwd methods perform globally better. The best overall classification results are

obtained by our proposed rw method that performs well with both classifiers and

reaches the highest average F1 and accuracy scores with LGBM for weed detection

(85.4% and 86.1%, respectively). The wa method provides good classification results,

often better than those obtained by dwd, although the latter accounts for illumina-

tion variations during the frame acquisitions.

Figure 4.12 illustrates the satisfying Accuracy and F1 scores obtained thanks to the

analysis of illumination-based (including the hybrid orw) reflectance features by
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LGBM. The figure shows that weed is globally well detected by these methods. For

weed identification, the classification performances of all features are degraded, be-

cause they provide weak performances on the goosefoot class (see Fig. 4.13). This

lack of generalization may be caused by the high within-class dispersion (since we

consider vegetation at different growth stages) and/or the physiological vegetation

changes.

Crop (Beet) Weed (Thistle) 83.8% 89.1%

(a) Test image 1 (b) Ground truth (c) radiance (F1 = 83.5%, Accuracy = 87.3%)

92.8% 92.6% 77.4% 91.2% 99.3% 20.6%

(d) rw (F1 = 91.3%, Accuracy = 92.7%) (e) wa (F1 = 80.3%, Accuracy = 86.4%) (f) ms (F1 = 50.5%, Accuracy = 47.6%)

85.0% 89.1% 87.8% 67.7% 92.5% 89.4%

(g) dwd (F1 = 84.3%, Accuracy = 87.7%) (h) wn (F1 = 76.0%, Accuracy = 74.6%) (i) orw (F1 = 90.5%, Accuracy = 89.7%)

FIGURE 4.12: Crop/weed detection. Beet is displayed as green and
weed as red. The per-class accuracy score is displayed near each col-
ored circle (class label) for each considered feature. Bold values show
the best results among all methods, italics show the second best ones.

To summarize evaluation results, Tabs. 4.6a (for weed detection) and 4.6b (for weed

identification) show the rank Rank�,∗ obtained by each reflectance estimation method ∗

according to each evaluation criterion � used in Tabs. 4.2, 4.5a, and 4.5b. The method

with the lowest total rank is considered to be the best one, since it satisfies several

criteria.
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Beet Thistle Goose-foot 92.7% 86.2% 2.4%

(a) Test image 2 (b) Ground truth (c) radiance (F1 = 35.1%, Accuracy = 35.5%)

87.2% 60.5% 27.6% 90.1% 58.6% 19.9% 97.3% 10.4% 13.0%

(d) rw (F1 = 42.9%, Accuracy = 43.0%) (e) wa (F1 = 39.9%, Accuracy = 37.9%) (f) ms (F1 = 19.8%, Accuracy = 20.2%)

86.2% 52.3% 5.6% 95.1% 49.3% 14.5% 77.6% 83.6% 26.6%

(g) dwd (F1 = 29.6%, Accuracy = 26.9%) (h) wn (F1 = 34.6%, Accuracy = 32.3%) (i) orw (F1 = 44.2%, Accuracy = 48.1%)

FIGURE 4.13: Beet/thistle/goosefoot identification. Beet is displayed
as teal, thistle as blue, and goosefoot as cyan. The per-class accuracy
score is displayed near each colored circle (class label) for each con-
sidered feature. Bold values show the best results among all methods,
italics show the second best ones.

The total ranks of ms and wn methods are the highest ones, because they provide

the worst results for either reflectance estimation quality (ms) or classification per-

formance (wn). On the one hand, the dwd method that uses two reference devices

to cope with illumination variation provides the second best total rank for weed de-

tection (see Tab. 4.6a). On the other hand, the wa method that uses one reference

device, but assumes constant illumination, gives the second best total rank for weed

identification (see Tab. 4.6b). Our rw method, which row-wise analyzes one single

reference device in order to take account of illumination variations, reaches the best

total ranks for both weed detection and identification problems and outperforms

orw method that provides the lowest estimated reflectance errors. This suggests that
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TABLE 4.6: The ranking of reflectance estimation methods for
beet/weed detection (4.6a) and beet/thistle/goosefoot identification
(4.6b). Bold shows best result and italics second best one.

Method
Evaluation criterion rw wa ms dwd wn orw

MAE∗ (%) 4 5 6 2 3 1
∆θ∗ (rad) 2 2 6 4 4 1

QDA 3 5 1 2 6 4
Accuracy∗ LGBM 1 2 4 3 6 5

QDA 3 5 1 2 6 4
Beet/weed detection

F1∗ LGBM 1 2 4 3 6 5∑6
�=1 Rank�,∗ 14 21 22 16 31 20

(a) Beet/weed detection.

Method
Evaluation criterion rw wa ms dwd wn orw

MAE∗ (%) 4 5 6 2 3 1
∆θ∗ (rad) 2 2 6 4 4 1

QDA 2 3 6 5 1 4
Accuracy∗ LGBM 2 1 3 4 6 5

QDA 1 2 6 4 5 3
Beet/thistle/goosefoot

identification
F1∗ LGBM 1 2 4 3 6 5∑6

�=1 Rank�,∗ 12 15 31 22 25 19
(b) Beet/thistle/goosefoot identification.

rw-based reflectance features are relevant for crop/weed recognition under variable

illumination conditions.

4.7 Conclusion

The experiments on our outdoor image database allow us to compare the perfor-

mances of different reflectance features according to the estimation quality and pixel

classification, and to draw the following conclusions:

(i) Reflectance features are illumination-invariant, therefore more adapted to out-

door classification tasks than radiance features (see Tabs. 4.5a and 4.5b).

(ii) Illumination-based reflectance estimation methods provide more accurate scene

reflectance estimation and achieve better classification performances than the

training-based reflectance estimation method wn. Moreover, accounting for il-

lumination variation during the frame acquisition reduces estimated reflectance
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errors and improves classification performances. Indeed, as rw considers the

illumination variation at the frame level, it provides better performances than

wa method.

(iii) Estimated reflectance quality and discrimination power are two distinct prop-

erties. Better estimation results does not necessarily imply better classification

results. Indeed, the hybrid orw method provides the lowest reflectance estima-

tion errors, but rw method performs better for classification.

In the next chapter, we use rw-based reflectance images to further assess the prob-

lem of crop/weed recognition. Specifically, we focus on the problem of dimension

reduction and band selection.
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5.1 Introduction

CHAPTER 4 shows that crops and weeds can be well detected by the analysis of

reflectance features extracted from K-channel (K=141) images. However, as

the number of channels is high, the analysis (feature extraction and segmentation)

of these images is time- and memory-consuming. Therefore, we propose to reduce

the spectral dimension of the analyzed 141-channel reflectance images.

To reduce feature space dimension, two main strategies have been widely followed

in the computer vision community: feature transform and feature selection [35]. In

Sec. 5.2, we first present state-of-the-art feature transform techniques that are based

on the analysis of data distribution. Then we introduce the SSF-based feature trans-

form method. In Sec. 5.3, we evaluate the performance of the transformed reflectance

features for crop/weed recognition. In Sec. 5.4, we first present state-of-the-art fea-

ture selection methods, then the procedure that we consider. As each feature is asso-

ciated to a specific spectral band, feature selection can be considered as band selec-

tion in our case. The selected bands are finally used to design a specific multispectral

camera for outdoor crop/weed recognition.

5.2 Feature transform

The goal is to transform the original K-dimensional feature space into a new D-

dimensional feature space, where D << K. The assumption is that the D trans-

formed features carry an amount of information that is comparable with the original

K-dimensional feature vectors. In a classification context, the discrimination power

of the original features could be carried by a relatively small set of transformed fea-

tures. In Sec. 5.2.1, we first present state-of-the-art data-driven feature transform

techniques. Then, in Sec. 5.2.2 we present the spectral sensitivity function (SSF) fea-

ture transform method that computes D features from the K reflectance ones.
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5.2.1 Data-driven methods

Several unsupervised and supervised feature transform methods have been pro-

posed in the literature. All of them share a common goal, but the assumptions re-

garding the information hold by their transformed features differ. One of the most

known and used techniques in the field of computer vision is probably the unsuper-

vised linear principal component analysis (PCA) technique [173, pp. 331-332] and

its non-linear variant (K-PCA) [173, pp. 351–353]. These two methods assume that

most of the variance of the data is carried by only few (usually two or three) trans-

formed features laying in a space spanned by uncorrelated orthogonal axes (known

as the principal components). K-PCA follows exactly the same procedure as PCA,

except that the data points are first projected onto a higher dimensional space us-

ing a kernel function such as the radial basis function (RBF), then PCA is applied

to reduce the dimension of these feature vectors. Another efficient unsupervised

technique that became very popular in the machine learning community is the t-

Distributed Stochastic Neighbor Embedding (t-SNE) technique [181]. This method

converts Euclidean distances between high dimensional data points into similarities

expressed as conditional probabilities. It aims to minimize the Kullback-Leibler di-

vergence between the conditional probabilities computed in the high-dimensional

feature space.

The supervised linear discriminant analysis (LDA) [171] is a powerful technique

used for both classification and dimension reduction. LDA projects the features onto

a lower dimensional space that maximizes the between-class variance SB while re-

ducing the within-class variance SW . Data points are projected onto the eigenvectors

of S−1
W SB associated with the largest eigenvalues. To solve non-linear problems by

LDA, the kernel trick is used before applying LDA in the same way as for K-PCA.

Note that in case of collinear features, assumption about feature independence is

violated, and LDA might not be adapted. In this case, the partial least square dis-

criminant analysis (PLS-DA) [162] should be used. PLS-DA is derived from PLS

regression methods used to analyze multivariate features (the predictors) when the

response vector (the predicted variables) contains categorical values (pixels labels).

PLS-DA handles the feature collinearity problem thanks to a specific decomposition

of the features and response vector.
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Feature transform methods have been successfully applied to analyze multispectral

data [39, 89]. However, because the transformed features are obtained by a linear

or non-linear combination of the original features, the ability to interpret the data

distribution in the original feature space from the transformed feature space is not

straightforward and is often lost. In our case, keeping the interpretation ability of

the feature space is very important. Furthermore, we seek to find the set of relevant

features that provides a good trade-off between computation cost and classification

performances.

5.2.2 SSF-based method

Rather than analyzing the data distribution, spectral features can be computed from

the SSF of optical filters that are embedded in the camera. The Snapscan camera for

instance provides a K-dimensional (K = 141) feature vector at each pixel, that can

be reduced to a 4-dimensional vector by simulating its acquisition thanks to an RGB-

NIR camera. The feature vectors produced in this way can be then interpreted since

each of their components is associated to a specific spectral band. We then propose

to transform ourK-channel rw-based reflectance images to 4-channel ones thanks to

a spectral integration with broad-band SSFs of two different RGB-NIR cameras. The

first one is designed by Monno et al. [128] and the second one is manufactured by

IMEC25.

Because the SSFs are not ideal, spectral crosstalk occurs between SSFs of the RGB

filters and that of the NIR filter (see Figs. 5.1(a) and 5.2(a)). To avoid the undesirable

effects (such as mixing spectral information from different domains) of crosstalk,

Monno et al. [128] add an optical notch (cutoff) filter (see Fig. 5.1(b)) in front of the

lens to discard crosstalk effect in the range [660 nm, 800 nm]. Then, they compute a

correction matrix to further correct crosstalk at pixel level. To compute features from

the SSFs of the RGB-NIR camera of Monno et al. [128], we follow the same procedure

as the authors but without any pixel value correction. We only use the notch filter re-

sponse to discard crosstalk in the range [660 nm, 800 nm]. The remaining responses

of the RGB filters in the range [800 nm, 1000 nm] and that of the NIR filter in the

range [420 nm, 660 nm] are simply ignored (see Fig. 5.1(d)). Because IMEC RGB-NIR

25 https://www.imechyperspectral.com/en/cameras/ximea-snapshot-rgb-nir#specs

https://www.imechyperspectral.com/en/cameras/ximea-snapshot-rgb-nir#specs
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SSFs are less affected by crosstalk (see Fig. 5.2(a)), there is no need to use the notch

filter. To compute features, we simply ignore the responses of the RGB filters in the

range [680 nm, 1000 nm] and that of the NIR filter in the range [400 nm, 680 nm] (see

Fig. 5.2(b)).
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(a) SSFs with cross-talk (b) Notch filter response

T l(λ)

Wavelength λ (nm)

T l(λ)

Wavelength λ (nm)

(c) SSFs with notch filter response (d) Corrected SSFs

FIGURE 5.1: Filters SSFs and crosstalk correction of Monno et al. [128]
RGB-NIR camera.

5.3 K-dimensional vs. RGB-NIR reflectance feature space

The transformed features should provide at least as good results as the original fea-

tures. Below, we propose to compare the classification performance reached by

broadband RGB-NIR reflectance feature vectors with those obtained by the origi-

nal K-dimensional narrowband feature vectors. In Sec. 5.3.1, we first present our
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T l(λ)

Wavelength λ (nm)

T l(λ)

Wavelength λ (nm)

(a) IMEC RGB-NIR SSFs with crosstalk (b) Corrected SSFs

FIGURE 5.2: Filters SSFs and crosstalk correction of IMEC’s RGB-NIR
camera.

protocol to simulate RGB-NIR reflectance feature vectors from the K-dimensional

ones. Then in Secs. 5.3.2 and 5.3.3, we present the learning and test pixel extraction

steps and the classification protocol, respectively. Finally, in Sec. 5.3.4 we present

the performance of the crop/weed recognition and identification obtained by each

feature.

5.3.1 From K-dimensional to RGB-NIR feature space

The outdoor multispectral radiance images provided by our Snapscan camera are

built from successive frames acquired under different illumination conditions. There-

fore, we cannot deduce RGB-NIR radiance thanks to a spectral integration of ra-

diance spectra contained in I(K). We thus simulate the formation of a 4-channel

reflectance image R′(4)
rw from an estimated K-channel reflectance image R̂

(K)
rw (see

Eq. (3.23)). A K-channel rw-based reflectance image is converted to a 4-channel one

by:

R′lrw,p =

K−1∑

k=0

Rkrw,p · T ′l(λk), (5.1)

where T ′l(λk) is the sensitivity value for spectral band k of the RGB-NIR camera

filter l ∈ [[0, 3]] centered at λl, normalized as:

T ′l(λk) =
T l(λk)

∑K−1
k=0 T l(λk)

. (5.2)
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5.3.2 Learning and test pixel extraction

For classification experiments, we target three crop (beet, wheat, and bean) and three

weed species (thistle, goosefoot, and datura). We consider three detection problems

(beet vs. weeds, wheat vs. weeds, and bean vs. weeds) and three identification

problems (crop/thistle/goosefoot/datura for either of the three crop species).

To assess each classification problem, specific learning (S learn) and test (Stest) sets

are formed so that S learn contains learning images from which learning vegetation

pixels are extracted while all vegetation pixels of Stest are used as test pixels. For

each detection problem and for a given class Ci, the number of learning pixels per

image depends on the number of images (occurrences) where Ci is represented in

S learn. For crop/weed detection problems, we extract 2 · N l learning pixels, N l for

crop class, andN l for weed class (N l = 300, 000 pixels in these experiments). As we

merge thistle, goosefoot, and datura prototype pixels to build a single weed class,

we extract N l/3 learning pixels for each of thistle, goosefoot, and datura classes.

Note that since we do not compare the robustness of reflectance estimation methods

against illumination like in Sec. 4.6, we only focus on detection/identification per-

formances here. Therefore, S learn and Stest contain images that may be acquired on

the same day.

Tables 5.1a–5.1c show the number of learning and test images, and the number of

extracted learning and test pixels per class for each crop/weed detection and identi-

fication problem. All the available pixels in Stest are used to assess the generalization

power of a supervised classifier.

5.3.3 Classification protocol

Row-wise reflectance estimation is based on assumption about illumination spatial

uniformity in each pixel row (see Sec. 3.4.3). However, illumination may vary along

each pixel row acquired by the Snapscan. To overcome illumination non-uniformity
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TABLE 5.1: Number of learning and test pixels for crop/weeds de-
tection (left sub-columns) and crop/thistle/goosefoot/datura identi-
fication (right sub-columns).

S learn (47 images) Stest (25 images)
#Learning pixels #Test pixels

Class Ci #Occurences
per occurrence

#Occurrences
per class

Crop Beet 22 N l/22 16 9,016,280
Thistle 11 (N l/3)/11 N l/11 10 6,371,760

Weed Goosefoot 15 (N l/3)/15 N l/15 6 12,659,599 3,856,704
Datura 17 (N l/3)/17 N l/17 6 2,431,135

(a) Beet crop

S learn (49 images) Stest (18 images)
#Learning pixels #Test pixels

Class Ci #Occurrences
per occurrence

#Occurrences
per class

Crop Wheat 5 N l/5 4 8,210,142
Thistle 13 (N l/3)/13 N l/13 6 3,962,203

Weed Goosefoot 17 (N l/3)/17 N l/17 4 7,838,817 1,445,479
Datura 17 (N l/3)/17 N l/17 6 2,431,135

(b) Wheat crop

S learn (54 images) Stest (18 images)
#Learning pixels #Test pixels

Class Ci #Occurrences
per occurrence

#Occurrences
per class

Crop Bean 23 N l/5 5 2,856,367
Thistle 11 (N l/3)/11 N l/11 9 4,982,085

Weed Goosefoot 17 (N l/3)/17 N l/17 4 8,858,699 1,445,479
Datura 17 (N l/3)/17 N l/17 6 2,431,135

(c) Bean crop

issues and improve classification performances, several authors propose to normal-

ize reflectance signatures to make them robust against shading and specular reflec-

tion [79, 168]. We hence normalize estimated/simulated (K-channel/4-channel) re-

flectance images at each pixel so that reflectance energy sums up to 1:

R̄krw,p =
Rkrw,p∑K−1
i=0 Rirw,p

, (5.3)

and

R̄′lrw,p =
R′lrw,p∑3
i=0R

′i
rw,p

. (5.4)

Additionally, to reduce sparse pixel misclassification, we assume that reflectance

across locally close surface elements of a scene does (almost) not change. Thus,

these elements most likely belong to the same material, hence to the same class.

Each prediction associated to a test pixel is then filtered using a majority voting

rule. The final class label of a test vegetation pixel is the most frequent label over

its 7 px×7 px neighborhood. We compare the classification performances reached by
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analyzing the K-channel narrowband reflectance (R̂
(K)
rw and R̄(K)

rw ) against RGB-NIR

broad-band reflectance (R′(4)
rw and R̄′(4)

rw ) with LGBM classifier.

5.3.4 Results

Table 5.2 shows the classification results obtained for each feature, and Fig. 5.3 shows

the color-coded pixel classification results of three different test images.

TABLE 5.2: 141-dimensional (narrowband) reflectance vs. RGB-NIR
(broadband) reflectance feature vectors based on Monno et al. [128]
(left sub-column) and IMEC (right sub-column) RGB-NIR SSFs. Bold
and italicized values show the best and second best performance for
each problem and metric.

Weed detection Weed identification
Multispectral RGB-NIR Multispectral RGB-NIR

Crop Metric R̂
(141)
rw R̄(141)

rw R′(4)
rw R̄′(4)

rw R̂
(141)
rw R̄(141)

rw R′(4)
rw R̄′(4)

rw

Accuracy(%) 86.3 89.2 75.1 75.4 75.6 75.5 59.3 68.6 53.7 54.0 52.5 53.2
Beet

F1 (%) 87.0 89.7 77.5 77.7 78.2 78.1 49.9 64.0 40.8 41.0 45.2 45.7
Accuracy(%) 90.2 94.1 78.6 78.9 82.9 83.2 52.9 58.3 42.9 43.6 45.3 45.8

Wheat
F1 (%) 90.4 94.2 78.4 78.6 82.9 83.3 52.1 55.9 42.4 43.2 41.6 42.2
Accuracy(%) 73.3 73.8 68.4 68.3 67.1 67.3 48.9 54.4 43.4 44.0 43.9 44.1

Bean
F1 (%) 64.0 67.4 56.8 56.8 57.5 56.9 47.3 51.0 42.2 42.7 42.1 42.4

Let us first compare the classification results (weighted accuracy and F1 scores) ob-

tained by narrow-band (141-dimensional) reflectance feature vectors (R̂
(141)
rw ) and

RGB-NIR broad-band (4-dimensional) reflectance feature vectors (R′(4)
rw ). We can see

that R̂
(141)
rw -based features provide better results than those obtained by RGB-NIR

reflectance features for both problems of weed detection and identification. Nor-

malizing reflectance features improves all results except for some RGB-NIR-based

crop/weed identification (whatever the crop) and bean/weed detection cases. The

normalized 141-dimensional reflectance feature vectors R̄(141)
rw provide the best re-

sults because they are robust against variation and spatial non-uniformity of illumi-

nation. Note that beet/weed identification results obtained with both unnormalized

and normalizedK-dimensional reflectance vectors are improved in this experiment,

with regard to that of Sec. 4.6.5.2 (see Tab. 4.5b). This is probably because the clas-

sifier here learns spectral signatures from more images, which improves its general-

ization capabilities.

Reducing the dimension of multispectral reflectance images from the SSFs of an

RGB-NIR camera provides interpretable features since each feature is associated to a
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(a) Test image 1 (b) Test image 2 (c) Test image 3

(d) Crop (Beet) Weed (Goosefoot) (e) Beet Thistle (f) Wheat Thistle

76.7% 90.7% 80.4% 96.0% 65.3% 41.4%

(g) (F1=82.2% Accuracy=84.9%) (h) (F1=90.7% Accuracy=84.9%) (i) (F1=50.8% Accuracy=46.8%)

76.1% 91.3% 80.8% 95.9% 65.0% 41.3%

(j) (F1=82.3% Accuracy=84.8%) (k) (F1=91.0% Accuracy=85.1%) (l) (F1=50.7% Accuracy=46.7%)

92.5% 91.9% 93.8% 97.8% 94.1% 45.7%

(m) (F1=91.8% Accuracy=92.1%) (n) (F1=96.2% Accuracy=95.0%) (o) (F1=64.0% Accuracy=56.7%)

FIGURE 5.3: Segmentation results obtained by LightGBM classifier
trained with R̄

′(4)
rw (based on Monno et al. [128] (third row) and IMEC

(fourth row) RGB-NIR SSFs) and with R̄
′(K)
rw (fifth row) reflectance

features. (a)–(c): RGB renderings of three multispectral test images,
(d)–(f): ground truths, (g, j, m): weed detection results, (h, i, k, l, n, o):
weed identification results. The per-class accuracy score is displayed
near each colored circle (class label) for each considered feature. Bold
values show best results and italics second best one for each problem
and metric.
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specific spectral band. However, as for several state-of-the-art dimension reduction

techniques, these features are generated by linearly combining (or merging) the orig-

inal features according to the RGB-NIR SSFs. Therefore, some discriminant spectral

information may be lost in this merging process. In order to reduce the spectral di-

mension of our images in a more effective way, it is worthwhile to investigate feature

selection techniques. In the following, we first propose to assess the contribution of

NIR features to classification performances.

5.3.5 NIR feature contribution

In Sec. 5.3, we show that K-dimensional narrowband reflectance feature vectors

outperform RGB-NIR broadband ones. However, because NIR spectral bands are

highly correlated (see Fig. 5.4), several NIR features may be redundant and thus not

useful to discriminate classes. Therefore, we assess the contribution of NIR features

to the classification performance and filter out those that do not improve classifica-

tion accuracy. For this purpose, we consider the crop/weed identification problem

since it is more complex than weed detection. We assume that features that are rele-

vant for weed identification will be also relevant for weed detection. For each con-

sidered identification problem (beet, wheat, or bean vs. thistle/goosefoot/datura),

we use a learning subset to select features and a test subset to assess the classification

performance. For computation efficiency, we randomly extract 40,000 learning pix-

els and 40,000 validation pixels (10,000 per class) from the available learning pixels

(see Tabs. 5.1a–5.1c).

We follow a sequential procedure to assess the contribution of each feature. At each

iteration step, the classifier is trained with a feature subset whose size is the iteration

index d. At the first iteration, the classifier is trained with the reflectance feature as-

sociated to the first spectral band (centered at λk=0). At the second iteration, the clas-

sifier is trained with reflectance features associated to the first and second spectral

bands (centered at λk=0 and λk=1), and so on till iteration K = 140 is reached. This

first assessment allows us to determine the number of features that are necessary to

reach classification performances similar to those obtained using all the available K

features. The features that do not improve the classification performances over the
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FIGURE 5.4: Color-coded Pearson correlation values between re-
flectance features associated to spectral bands centered at λk and es-
timated at 40,000 (10,000 per class) randomly selected learning pixels
used for crop/thistle/goosefoot/datura identification problems. The
value 1.0 (white color) indicates that two features are totally corre-
lated. The red contours delimit regions where correlation is above 0.9.
Note that channel index k = 75 delimits the VIS and NIR domains.

successive iterations are discarded to provide a first reduced K ′-dimensional fea-

ture space.

Figure 5.5 shows the classification results of the validation pixels obtained by LGBM

classifier trained with rw-based reflectance features. We can see that, for the three

considered problems, once the classifier analyzes 100 features, classification accu-

racy no longer (or barely) increases using the remaining NIR spectral features be-

cause they are highly correlated (see Fig. 5.4). Therefore, spectral bands whose cen-

ters are in the range [λk=100 = 782.6 nm, λk=140 = 901.6 nm] can be dropped and only

those whose centers are in the range [λk=0 = 475.1 nmλk=99 = 779.6 nm] should be

kept. We denote this first feature subset as BK′ . In the following, we further reduce

the dimension of the feature space to D << K ′.

5.4 Feature selection

In contrast to feature transform methods, feature selection ones do not transform the

original features. They provide a subset of relevant features that are selected from

the original feature set according to a performance criterion. This section focuses on

the problem of feature selection for crop/weed recognition. As each reflectance fea-

ture is associated to a specific spectral band, feature selection can be also formulated
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FIGURE 5.5: Weighted classification accuracy obtained by LGBM clas-
sifier sequentially trained with larger and larger feature subsets on
(40,000) validation pixels.

as band selection. The spectral bands associated to the selected features will be used

to design a camera dedicated to our crop/weed recognition problem. In Sec. 5.4.1,

we present state-of-the-art feature selection methods. Then in Sec. 5.4.2.1, we intro-

duce the method that we apply for feature selection. In Sec. 5.4.2.2, we first select the

best (problem-specific) spectral bands for each crop/thistle/goosefoot/datura iden-

tification problems. Then in Sec. 5.4.3, we use the problem-specific bands to select

the best global bands that are adapted to the three identification problems. Finally in

Sec. 5.4.4, we use the selected global bands to design two multispectral filter arrays

for our crop/weed detection/identification problems.

5.4.1 State of the art

Feature selection methods can be categorized into filter, wrapper, and embedded

methods. Filter methods rely only on data distribution in the feature space and can

run in unsupervised, semi-supervised, or fully supervised learning context. The fea-

tures are ranked according to a score given by a specific evaluation criterion. Some

of these criteria are correlation [189], independence [117], or feature ability to dis-

criminate the targeted classes [65]. Features with the highest ranks are selected.

Wrapper methods rely on a supervised classifier performance to select a relevant set
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of features. A given wrapper method first generates a subset of features and evalu-

ates the classification performances reached by analyzing the selected features. This

workflow is repeated until a stopping criterion is reached. The feature subset that

provides the highest classification performance is selected. Despite the relevance of

the features provided by wrapper methods, they depend on the classifier. Moreover,

when the desired number of features is large, the exhaustive search of the optimal

feature subset becomes impractical.

Embedded methods combine both filter and wrapper strategies by including filter

selection steps into learning model [98]. These methods inherit the merits of both

filer and wrapper methods. They require far less computational efforts since the

search strategy is no more exhaustive. They usually find the optimal subset of fea-

tures.

Our feature selection problem can be referred to as spectral band selection or even

channel selection because the features are spectral information associated to specific

narrow bands in the VIS-NIR spectrum. Let B(K′) be the set of bands sampled by K ′

optical filters. Band selection consists in finding a relevant subset B(D) ⊂ B(K′), with

D << K ′, that maximizes an objective function. In the spirit of LDA for supervised

feature transform, feature selection based on Fisher score aims to find a feature space

where the between-class separation is maximized while the within-class variance is

minimized. The Fisher score is computed for each feature subset and the D features

with the highest scores are selected.

The supervised minimum-redundancy maximal-relevance (mRMR) criterion [139]

estimates relevance and redundancy between features. First, mRMR finds the fea-

ture that maximizes the mutual information with the class prototypes. Then, it se-

lects the feature that maximizes the mutual information with the class prototypes

and minimizes the mutual information with the already selected feature(s) (minimal

correlation). This process is repeated until D features are selected. Note that one

also may use different criteria such as the F-test and Pearson correlation to quantify

relevance and redundancy.

To select features in a supervised manner, one also can use tree-based models. A fea-

ture is given an importance degree based on the number of times that this feature is
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used to split the data (split count) across all trees or on the training loss reduction (in-

formation gain) obtained when using this feature. As the importance attributed for

each feature may be inconsistent if the model is re-trained with additional samples,

more advanced techniques such as SHAP (SHapley Additive exPlanations) [113] can

be applied to provide a more accurate and consistent explanation of tree-based clas-

sification models.

5.4.2 Band selection

In our case, the problem of feature selection can be formalized according to two

different ways that are strongly related. From a machine learning standpoint, the

selected D features must provide at least as good performance as the available K ′

features for the considered classification problems. From a camera-based perspec-

tive, it can be seen as a band (or filter) selection problem. Because the analyzed

features are associated to specific spectral bands, the selected features correspond

to the D optical filters of an MSFA. The snapshot camera equipped with this MSFA

samples the desiredD spectral bands and provides aD-channel multispectral image

after demosaicing. As the size of an MSFA basic square pattern can be 3×3, 4×4, or

5× 5 (larger basic patterns are less common due to demosaicing complexity and/or

technological constraints), we propose to select D ∈ {9, 16, 25} features among the

available K ′ ones.

In Sec. 5.4.2.1, we present the Sequential Forward Selection (SFS) procedure. In

Sec. 5.4.2.2, we first analyze each identification problem (beet vs. weeds, wheat vs.

weeds, and bean vs. weeds) separately to select D ∈ {9, 16, 25} problem-specific

features. Then in Sec. 5.4.3, we analyze the problem-specific features in order to find

global features that are adapted to the three problems. The performance of the clas-

sifier obtained with the selected global features over all test pixels in our database is

demonstrated.

5.4.2.1 Sequential Forward Selection (SFS)

SFS is a supervised greedy search algorithm that selects features from the accuracy

reached by a classifier. It takes all the features as input and provides the best feature

subset at each iteration d. We set the maximum number of iterations to 100 so that
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all dimensions are evaluated. The objective function to maximize is the weighted

accuracy score. At the first iteration, the feature that provides the highest accuracy

score on the validation subset (of 40,000 pixels) with LGBM classifier is retained.

At the next iterations, the feature that improves the classification accuracy score at

most when it is combined with the already selected feature(s) is retained, until the

last iteration. Although SFS does not consider correlation between features in its

selection procedure, it can provide highly discriminant features, especially when

the optimal subset search is not large.

The main steps of SFS procedure are:

• Input: B(K′) = {f1, ..., fK′}, the available set of K ′ features.

1 Initialization: B(0) = ∅, and d = 0.

2 Inclusion:

f+
k′ = arg max

fk′∈B(K
′)−B(d)

(
Accuracy(B(d) + fk′)

)
.

B(d+1) = B(d) + f+
k′ .

d = d+ 1.

3 Repeat step 2 until D features are selected.

• Output: The selected feature subset B(D).

5.4.2.2 Problem-specific band selection

We apply the SFS procedure described above to select the most discriminant fea-

tures for each identification problem. LGBM classifier analyzes the same learning

(40,000 pixels, 10,000/class) and validation pixels (40,000 pixels, 10,000/class) as in

Sec. 5.3.5.

Figure 5.6 shows the classification accuracy of the test pixels for each identification

problem obtained by LGBM classifier trained with each selected d-dimensional fea-

ture space. We can see that classification performances barely improves beyond

d = 40 selected features. We can also notice that with 9 selected features, the classifier

provides good classification results but does not reach its highest performances. The

classification performances are improved using 16 selected features (82.4%, 88.7%,

and 79.2% for beet, wheat, and bean vs. weeds, respectively), and still by about 1%
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FIGURE 5.6: Classification accuracy of the (40,000, 10,000/class) vali-
dation pixels for each identification case obtained by LGBM classifier
trained with the d features selected by SFS, at each iteration, for the
three identification problems.

for each problem with 25 selected features, for which LGBM reaches similar perfor-

mances to those obtained using all features (see colored scores in Fig. 5.6). This ex-

periment shows that when the multispectral camera is designed to sample relevant

spectral bands for crop/weed recognition, there is no need to analyze more than 40

spectral bands. In fact D =16, or 25 relevant spectral bands are enough to achieve

similar classification results to those obtained by the K-band Snapscan camera. The

index k of the best 25 bands for each identification problem is:

• Beet/thistle/goosefoot/datura:

– In ascending order of d26: 23, 93, 98, 2, 44, 79, 95, 84, 62, 15, 5, 25, 77, 69,

46, 85, 94, 53, 78, 39, 28, 18, 99, 32, 74

– In ascending order of k: 2, 5,15, 18, 23, 25, 28, 32, 39, 44, 46, 53, 62, 69, 74,

77, 78, 79, 84, 85, 93, 94, 95, 98, 99

• Wheat/thistle/goosefoot/datura:

– In ascending order of d: 79, 93, 99, 85, 2, 46, 95, 23, 65, 84, 76, 16, 96, 74, 44,

25, 64, 75, 94, 73, 80, 86, 90, 51, 15
26 Snapscan band whose center is λ23 is the first one selected by SFS for

beet/thistle/goosefoot/datura identification problem.
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– In ascending order of k: 2, 15, 16, 23, 25, 44, 46, 51, 64, 65, 73, 74, 75, 76,

79, 80, 84, 85, 86, 90, 93, 94, 95, 96, 99

• Bean/thistle/goosefoot/datura:

– In ascending order of d: 3, 33, 40, 94, 81, 95, 23, 93, 85, 66, 78, 48, 99, 15, 73,

10, 2, 84, 77, 17, 86, 43, 24, 64, 13

– In ascending order of k: 2, 3, 10, 13, 15, 17, 23, 24, 33, 40, 43, 48, 64, 66, 73,

77, 78, 81, 84, 85, 86, 93, 94, 95, 99

5.4.3 Global band selection

Our aim in this section is to select the bands that are globally the best from the three

problem-specific band sets (see Sec. 5.4.2.2). For this purpose, we apply the SFS

method and seek for the best features incrementally. For instance, to select the first

global band, we consider the first best problem-specific ones (k = 23 for beet crop,

k = 79 for wheat, and k = 3 for bean) selected at d = 1 as candidate bands. Then,

we train the LGBM classifier with the features associated to these bands and analyze

each classification problem individually. The selected global band among k =23 (re-

tained), k =79, and k =3, maximizes the average weighted accuracy score over the

three classification problems. To find the second global band, the new candidate fea-

tures are the second best problem-specific features (k ∈ {33, 93}) plus the remaining

ones that have not been selected at the previous iteration (k ∈ {3, 79}). The second

best global band maximizes the average weighted accuracy score. This step is re-

peated until the desired number of features D is reached.

Figure 5.7 shows the index k and selection order d of each of the selected global

bands. We can see that the 25 selected bands cover the VIS (λk ∈ [481.7 nm, 698.8 nm])

and NIR domains (λk ∈ [712.3 nm, 779.6 nm]) of the spectrum. This shows that

both VIS and NIR spectral information are important to discriminate the considered

species. To validate the discrimination power and relevance of reflectance features

associated to the selected global bands for crop/weed detection and identification,

we use the same learning and test pixel sets as in Sec. 5.3 (see Tabs. 5.1a–5.1c), and

we train the LGBM classifier with the best D ∈ {9, 16, 25} global features to clas-

sify all test pixels. Tables 5.3a and 5.3b show that LGBM classification performances

with the selected global features are comparable to those obtained using theK =141
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FIGURE 5.7: 25 best selected global bands. Their indices k (in ascend-
ing order of d) are: 23, 93, 3, 40, 85, 95, 79, 46, 65, 99, 2, 94, 15, 74, 84,
25, 5, 98, 78, 64, 48, 16, 39, 80, 86.

original features, especially when analyzing 16 and 25 global features. Performances

are slightly degraded for bean/weed detection and identification (about 4% loss),

and for wheat/thistle/goosefoot/datura identification (about 2% loss). However,

performances are similar to those obtained using K features for beet/weed and

wheat/weed detection, and beet/thistle/goosefoot/datura identification, and are

even slightly better in some cases with normalized reflectance features. This ex-

periment confirms the results shown in Fig. 5.6 and validates the global features

selected by SFS method. This experiment also suggests that spectral signatures ex-

tracted from images acquired by a camera that samples D = 16 or D = 25 selected

bands can provide similar crop/weed recognition performances to those obtained

with K-band linescan devices.

5.4.4 MSFA design

As mentioned before, our feature selection problem is not only related to dimension-

ality reduction but also to band selection and camera filter specification.

Indeed, since the selected features are associated to specific narrowband filters, they

can be used to design linescan or snapshot cameras dedicated to our crop/weed

recognition problems. In this section, we focus on snapshot imaging for crop/weed
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TABLE 5.3: Crop/weed detection (5.3a) and identification (5.3b) re-
sults obtained with LGBM classifier trained with 25, 16, and 9 best
global features. Bold and italicized values show the best and second
best performance respectively.

Weed detection
Original features Selected features

Crop Metric R̂
(141)
rw R̄(141)

rw R̂
(25)
rw R̂

(16)
rw R̂

(9)
rw R̄(25)

rw R̄(16)
rw R̄(9)

rw

Accuracy(%) 86.3 89.2 85.8 85.6 83.6 89.3 88.9 86.9
Beet

F1 (%) 87.0 89.7 86.6 86.4 84.6 89.5 89.2 87.5
Accuracy(%) 90.2 94.1 89.3 89.2 88.9 94.1 93.9 93.4

Wheat
F1 (%) 90.4 94.2 89.4 89.4 89.0 94.2 94.0 93.5
Accuracy(%) 73.3 73.8 71.7 70.5 69.0 69.7 68.0 65.8

Bean
F1 (%) 64.0 67.4 61.8 61.2 59.2 63.1 61.5 58.5

(a) Detection.

Weed identification
Original features Selected features

Crop Metric R̂
(141)
rw R̄(141)

rw R̂
(25)
rw R̂

(16)
rw R̂

(9)
rw R̄(25)

rw R̄(16)
rw R̄(9)

rw

Accuracy(%) 59.3 68.6 59.3 58.7 57.5 67.1 66.5 64.8
Beet

F1 (%) 49.9 64.0 50.2 49.4 47.7 64.3 63.8 61.0
Accuracy(%) 52.9 58.3 52.0 52.4 51.0 55.8 56.0 53.5

Wheat
F1 (%) 52.1 55.9 51.4 51.5 49.9 53.8 53.7 50.7
Accuracy(%) 48.9 54.4 48.1 47.7 47.0 51.8 50.8 48.7

Bean
F1 (%) 47.3 51.0 46.4 45.9 45.1 49.4 47.9 45.3

(b) Identification.

recognition. Most of snapshot cameras use an MSFA (see Fig. 2.4) laid over the sen-

sor to sample the scene radiance. Their design provides the ability to acquire a mul-

tispectral radiance image in a single shot. Hence, they are not affected by illumina-

tion that may vary during the acquisition of a multispectral image. As the selected

D = 16 or D = 25 global bands provide similar classification performances to those

obtained with the original K = 141 bands, we propose to use them to design two

MSFAs (CA 4×4 and CA 5×5) that are defined by repetition of a
√
D×
√
D basic pat-

tern that samples D = 16 or D = 25 different bands in the VIS and NIR domains (see

Fig. 5.8(c, d)). We follow the MSFA arrangements of two snapshot cameras manufac-

tured by IMEC [60] (see Fig. 5.8(a, b)). In chapter 6, we use these MSFAs to simulate

raw images that would be acquired by a snapshot camera equipped with CA 4×4 or

CA 5×5 MSFA. We then propose to analyze raw images for crop/weed recognition.
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FIGURE 5.8: Considered MSFAs with square basic patterns and no
redundant band: (a) CA 4× 4 and (b) CA 5× 5. (c) and (d) show the
spectral bands λd sampled by each MSFA.

5.5 Conclusion

In this chapter, we address the problem of feature space dimension reduction based

on feature transform and feature selection approaches. We fist present the feature

transform approach, its assumptions and principles. We apply a feature transform

method based on the SSFs of two RGB-NIR cameras to reduce the dimension of the

K-dimensional reflectance feature space. We show that alternatively to other state-

of-the-art methods, features provided by this method are physically interpretable be-

cause they are associated to specific spectral bands. However, we also show that the

features it provides alter the performance of LGBM classifier for both weed detection

and identification problems. As we aim to reduce the dimension of the feature space

while keeping a reduced number of physically interpretable features, we focus on

a feature selection approach. We therefore analyze reflectance features by applying

the SFS method. First, we select problem-specific features that are relevant to dis-

criminate each crop/thistle/goosefoot/datura identification problem. Then, among
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these features, we select those that are relevant to all three problems. We show that

features associated to the selected global bands are discriminant since LGBM classi-

fier rapidly converges to its highest performance. The best 16 and 25 global bands

are finally used to design two MSFAs (CA 4× 4 and CA 5× 5) for crop/weed recog-

nition.

In chapter 6, we simulate multispectral (raw) images that would be acquired by a

snapshot camera equipped with the proposed MSFAs. From these images, we pro-

pose to extract texture features to improve the crop/weed recognition performances.
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6.1 Introduction

SINGLE-sensor multispectral cameras embed an MSFA laid over the sensor, like

the widely-used Bayer color filter array in color imaging, to spatio-spectrally

sample the incoming radiance according to the photosensor locations. The MSFAs

used in this chapter (CA 4×4 and CA 5×5, see Sec. 5.4.4) are defined by a repetition

of a
√
D ×

√
D basic pattern that samples D bands. Each filter of the MSFA is sensi-

tive to a specific narrow spectral band, so that each pixel of the acquired raw image

represents the radiance sampled around a single band center. Texture features are

generally extracted from a fully-defined image that is estimated from the raw image

by demosaicing [10, 122]. This step may generate spatio-spectral estimation arti-

facts, and texture feature extraction becomes computationally inefficient and yields

to a high-dimensional feature space as the number of bands increases. Some authors

propose to directly process raw images for reflectance estimation [91] or feature ex-

traction [123, 194]. In the same spirit, we here propose to extract texture features

for crop/weed recognition directly from raw images. We exploit deep learning ad-

vantages and design a convolutional neural network (CNN) that acts as a texture

feature descriptor from raw images. Experiments on crop/weed recognition show

the relevance of the proposed approach.

In Sec. 6.2, we present the state-of-the-art approaches for multispectral texture fea-

ture extraction, then we describe ours that extracts texture features directly from raw

images (see Sec. 6.2.5). In Sec. 6.3, we assess the contribution of texture features ex-

tracted from raw images to outdoor crop/weed recognition. Experimental results

show the relevance of our proposed approach for outdoor crop/weed recognition in

Sec. 6.4.

6.2 Multispectral texture features

This section focuses on texture features computed from multispectral images. In

Sec. 6.2.2, we first present state-of-the-art multispectral texture features based on the

handcrafted approach. Then, we present those based on deep learning in Sec. 6.2.3,



6.2. Multispectral texture features 131

and finally the MSFA-based features (in Sec. 6.2.4). In Sec. 6.2.5, we describe our

CNN architecture for texture feature computation from raw images.

6.2.1 Texture features from multispectral images

To classify texture images provided by a single-sensor snapshot camera that sam-

ples D bands through an MSFA, one usually estimates fully-defined (D-channel)

images from raw images by demosaicing, then applies a specific descriptor to com-

pute texture features. The simplest demosaicing scheme uses a weighted bilinear

(WB) interpolation filter to estimate the D − 1 values that miss at each pixel from

those available at its neighbors for the same band [25]. Each neighbor is associ-

ated with a weight that depends on its spatial distance to the considered pixel. This

method only exploits intra-channel spatial correlation to estimate missing values.

To improve the estimation, demosaicing should use inter-channel correlation or, if

the latter is low, the correlation between each channel and the pseudo-panchromatic

image (PPI) [122]. The PPI is first estimated from the raw image thanks to an av-

eraging filter. Then its sharpness is improved using local directional variations of

raw values. Finally, the PPI is analyzed by an iterative procedure similar to that

of [127] to provide the PPI difference (PPID) demosaicing method. Rathi and Goyal

[147] design specific WB interpolation filters based on band occurrence probability

in the MSFA. They first estimate an initial fully-defined image using the proposed

WB interpolation filters, then use the spectral difference (SD) method to compute

sparse band differences between the initial estimation and the raw image. Finally,

each sparse channel difference is interpolated using WB method to estimate the final

fully-defined image. Antonucci et al. [10] consider demosaicing as a minimization

problem and propose to use non-convex matrix completion to estimate the fully-

defined image. Specifically, they apply conjugate gradient iterative hard threshold-

ing and alternating steepest descent methods on initial estimations provided either

by intensity difference (ID) or SD methods to estimate the fully-defined image. Re-

cently, other studies [13] exploit deep learning advantages to improve demosaicing

quality.
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6.2.2 Handcrafted features

Among texture features, those based on the LBP operator and its variants have been

widely used for their robustness against illumination, rotation, and scale [143]. They

have also been extended to the multispectral domain using vector approaches [36].

Considering spectral correlation between all bands provides state-of-the-art image

classification performance, but is computationally greedy and yields high-dimensional

LBP feature vectors that are neither memory efficient nor easily interpretable [123].

The relative spectral difference occurrence matrix (RSDOM) [31] performs spectral

differences using the Kullback-Leibler pseudo-divergence measure to extract low-

dimensional texture feature vectors from multispectral images as a multi-dimensional

probability density function. Zhang et al. [192] propose to compute the vector of

locally aggregated descriptors (VLAD) at each pixel by considering its 3 × 3 neigh-

borhood. The reflectance values of neighbors are channel-wise reordered to form

different 9-dimensional feature vectors. These feature vectors are then concatenated

to form one high (9 ×D) dimensional feature vector for each pixel. The dimension

of these feature vectors is then reduced to a d-dimensional one using the random

projection technique. Finally, the d << D feature vectors associated to each class

are encoded by the VLAD descriptor to build the final texture features, that are L2-

normalized and PCA-transformed before being fed into a supervised (K-SVM) clas-

sifier.

Brown and Süsstrunk [26] propose to extract features from RGB-NIR images using

the scale-invariant feature transform (SIFT) descriptor. First, the channels of the in-

put RGB-NIR image are decorrelated using PCA technique. Then, SIFT is applied to

each channel separately, and the extracted features are concatenated to form a 512-

dimensional feature vector. Its dimension is finally reduced by PCA, which provides

the final 128-dimensional feature vector that is used for classification.

Such handcrafted texture features have recently been overshadowed by deep learn-

ing techniques based on CNNs [165]. For instance, the SegNet model has been exten-

sively and successfully applied to segment scene images [14], and to analyze multi-

spectral (RGB-NIR) images in the context of weed detection [153].
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6.2.3 Deep learning-based features

CNNs are commonly used as feature extractors and classifiers. Hidden layers per-

form feature extraction, and the output one (usually a softmax function in the multi-

class case) turns features from the last hidden layer into probabilities for prediction.

Some authors propose to use CNNs only as feature extractors. Donahue et al. [41]

show that features provided by deep hidden layers, especially the last two ones,

are highly discriminant and provide astonishing classification performances when

combined with a supervised classifier. Zhou et al. [193] use deep features of the last

hidden (fully-connected) layer to train a linear SVM classifier for scene classifica-

tion. Razavian et al. [149] conduct different recognition tasks (e.g., object detection,

visual instance, and fine-grained recognition) using the Overfeat CNN model. In

each experiment, features of the first fully-connected layer are L2-normalized and

used to train an SVM classifier to perform predictions. The 2D-CNN called S-CNN

is used to extract features from multispectral images [159, 170]. These features are

used by an SVM classifier to perform multispectral band selection and face recog-

nition. This deep scheme outperforms state-of-the-art handcrafted descriptors such

as HOG, LBP, and SIFT [159]. In spite of their performances, deep learning-based

approaches are greedy in computation time and memory, and using them with high

spectral resolution images may be intractable.

6.2.4 MSFA texture features

To consider spatio-spectral correlation, some studies directly process raw images [105,

123, 194]. When a descriptor suitably analyzes a raw image, it can achieve similar

or even better classification performances than from a demosaiced one because de-

mosaicing may introduce artifacts that alter texture representation. In [123], texture

features are directly computed from raw images, which avoids the demosaicing step

and provides discriminant features. Specifically, the method analyzes a raw image

with respect to the MSFA basic pattern and its band arrangement to build an LBP-

based texture descriptor. In the same spirit, we propose a CNN architecture that is

adapted to raw images.
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6.2.5 CNN-based raw texture features

Our CNN architecture called MSFA-Net directly extracts texture features from raw

square patches of size X ×X pixels, where X = m ·
√
D is a multiple of the MSFA

basic pattern width. MSFA-Net is composed of three convolutional blocks, followed

by an average pooling layer and two fully-connected layers (see Fig. 6.1). The first

convolutional layer is of utmost importance because it guides the feature extraction

according to the MSFA basic pattern. It uses 128 convolutional kernels {Hn}127
n=0 of

size
√
D ×

√
D and depth 1 without padding. A specific stride of

√
D pixels along

both spatial dimensions ensures that each kernel coefficient is always associated to

the same MSFA band for all convolutions. This first layer learns spatio-spectral in-

teractions among channel values in each raw patch that matches the basic MSFA

pattern. The convolution between a raw patch P raw and a kernel Hn, n ∈ [[0, 127]], is

defined at each pixel (x, y) ∈ [[0,m− 1]]2 as:

On(x, y) =

√
D−1∑

i=0

√
D−1∑

j=0

Hn(i, j) · P raw(
√
D · x+ i,

√
D · y + j). (6.1)

The resulting 128 feature maps {On}127
n=0 of sizem×m are fed into the second convo-

lutional block that uses 256 kernels of size 3× 3 with both a stride and zero-padding

of one pixel, such that its input and output feature maps have the same size. The

last convolutional block uses 384 kernels of size 3 × 3 with one pixel stride and no

padding. Feature maps of the last convolutional layer are usually vectorized using

a flattening layer before being fed into fully-connected layers. Following [193], we

introduce a global pooling layer to average feature maps channel-wise so that the re-

sulting 384-dimensional feature vector is more robust against noise and spatial trans-

lations. To introduce non-linearity and reduce the feature size, a fully-connected

layer finally provides the 128-dimensional texture feature vector that is fed into the

softmax layer.

6.3 Texture feature for crop/weed classification

To assess the contribution of features extracted from raw images for outdoor crop/weed

recognition, we use CA 4×4 and CA 5×5 MSFAs (see Sec. 5.4.4) to simulate raw im-

ages from the estimated fully-definedD-channel reflectance images. In Sec. 6.3.1, we
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FIGURE 6.1: MSFA-Net architecture. ReLU: rectified linear unit acti-
vation, BN: batch normalization, FC: fully-connected layer.

describe how raw patches are obtained and introduce our segmentation approach.

In Sec. 6.3.2, we present the considered state-of-the-art descriptors used for feature

extraction from either demosaiced or raw patches. In Sec. 6.3.3, we describe the

training procedure of the considered deep learning-based descriptors. In Sec. 6.4,

we present the experimental results of crop/weed recognition.

6.3.1 Patch extraction

We consider the same detection (beet vs. weeds, wheat vs. weeds, and bean vs.

weeds) and identification (crop/thistle/goosefoot/datura for either of the three crop

species) problems, and use the same learning and test image sets as in Sec. 5.3.

Each K-channel rw-based reflectance image is first transformed into a D-channel

one (D = 16 or D = 25) by selecting the channels associated to the selected spec-

tral bands (see Sec. 5.4.3). To obtain raw patches for feature extraction, we simu-

late raw images that would be acquired by snapshot cameras equipped with CA

4 × 4 and CA 5 × 5 MSFAs, by spatio-spectrally sub-sampling the fully-defined D-

channel images according to CA 4 × 4 or CA 5 × 5 MSFA. To compare with the

classical strategy, we also demosaic these MSFA images using PPID as one of the

state-of-the-art multispectral demosaicing methods [122]. We denote rw-based re-

flectance image demosaiced by PPID as ˆ̂R(D)
rw . Note that reflectance estimation from

raw patches/images [91] is another problem that is not addressed in this study.

Our segmentation approach is a supervised pixel classification. At each vegetation
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pixel, we consider a centered neighborhood as a patch whose size is a small multi-

ple of
√
D and in which at least 85% of the pixels represent vegetation. For each

detection case (beet vs. weeds, wheat vs. weeds, and bean vs. weeds), a spe-

cific number of learning and test patches are extracted. We extract patches of size

24 × 24 (for
√
D = 4), 25 × 25 (for

√
D = 5), or 20 × 20 pixels for the case wheat vs.

weeds (for
√
D = 4 or

√
D = 5) to have enough samples to characterize thin leaves

of wheat. Raw patches are simulated from the original multispectral patches using

the CA 4 × 4 or 5 × 5 MSFA. For crop/weed detection, we randomly extract N l
1 ≈

180 · 103 patches from learning images, half for crop and half for weed class. As

we merge thistle, goosefoot, and datura patches to build a single weed class, we ex-

tract (N l
1/2)/3 training patches for each of them. For crop/thistle/goosefoot/datura

identification, we extractN l
2 ≈ 50 · 103 training patches per class. The number of test

patches for both problems are displayed in Tab. 6.1. We extract texture features from

these patches, then the central pixel of each test patch is classified as crop or weed

(detection problem), or as one of the four (one crop and three weeds) vegetation

classes (identification problem).

TABLE 6.1: Number of CA 4×4/CA 5×5 test patches for crop/weed
detection and identification problems, for each of the three crop
species (beet, wheat, and bean).

Patch size (pixels) 24× 24/25× 25 20× 20 24× 24/25× 25

Class Beet Th. Go. Da. Wheat Th. Go. Da. Bean Th. Go. Da.

Test patches (identification case)
694,201

509,547 259,130 203,273
584,599

342,925 79,169 215,540
166,761

381,717 63,260 203,767

Test patches (detection case) 971,950 637,634 648,744

6.3.2 Compared texture features

We consider several state-of-the-art descriptors, either deep learning-based or hand-

crafted ones, to compare their performance to ours. We use a shallower version

of SegNet [14] model, called SegNet-Basic, that we adapt to image classification by

considering the sole encoder part with an extra flattening layer to vectorize feature

maps. All convolutional kernels are of size 3 × 3 instead of 7 × 7 to capture small

details (and reduce the number of hyperparameters to learn), and we add two fully-

connected layers for non-linearity and dimension reduction, which provides a 512-

dimensional feature vector. To make it possible to learn from very small patches, we
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TABLE 6.2: CNN architectures used for feature extraction from fully-
defined images. Filter depth (e.g., D for first layer) is not shown for
sake of clarity. See caption and colors of Fig. 6.1. LRN: local response
normalization.

SegNet-Basic encoder Blob-Net cNet
64 · (3× 3) Conv. kernels

1-pixel stride + zero-padding
192 · (5× 5) Conv. kernels

1-pixel stride + zero-padding
64 · (5× 5) Conv. kernels

1-pixel stride + zero-padding
BN + ReLU ReLU ReLU

Maxpool 2× 2 Maxpool 2× 2 Maxpool 2× 2 +LRN
128 · (3× 3) Conv. kernels

1-pixel stride + zero-padding
256 · (5× 5) Conv. kernels

1-pixel stride + zero-padding
64 · (5× 5) Conv. kernels

1-pixel stride + zero-padding
BN + ReLU ReLU ReLU

256 · (3× 3) Conv. kernels
1-pixel stride + zero-padding Maxpool 2× 2 Maxpool 2× 2 +LRN

BN + ReLU
256 · (3× 3) Conv. kernels

1-pixel stride + zero-padding
Flatten

512 · (3× 3) Conv. kernels
1-pixel stride + zero-padding

ReLU FC-384 + ReLU

BN + ReLU Flatten FC-192 + ReLU
Maxpool 2× 2 FC-512 + ReLU -

Flatten FC-512 + ReLU -
FC-1024 + ReLU - -
FC-512 + ReLU - -

FC-NC + Softmax FC-NC + Softmax FC-NC + Softmax

omit the second and third maxpooling layers. We also consider two additional mod-

els proposed for crop/weed detection using RGB-NIR images. Milioto et al. [125]

propose a CNN (that we denote here as Blob-Net) composed of three convolutional

layers (two of 5×5 kernels and one of 3×3 kernels), followed by two 2×2 maxpool-

ing layers, and two fully-connected layers that provide a 512-dimensional feature

vector. In [144], a CNN model called cNet that also exploits RGB-NIR images is pro-

posed for crop/weed detection. It is composed of two convolutional layers (of 5× 5

kernels), two 2 × 2 maxpooling layers, and two fully-connected layers that provide

a 192-dimensional feature vector. In all models (see details in Tab. 6.2), the texture

feature vector is fed into a fully-connected layer that uses the softmax function to

provide the NC-dimensional probability vector. Note that oppositely to MSFA-Net

(see Eq. (6.1)), the first convolutional layer of SegNet-Basic, Blob-Net, and cNet ap-

plies (with one-pixel stride) kernels H(D)
n of size w × w and depth D to the input

D-channel patch P(D) at each pixel (x, y) ∈ [[0, (m ·
√
D)− 1]]2 in a classical way:

On(x, y) =

D−1∑

d=0

w−1∑

i=0

w−1∑

j=0

Hd
n(i, j) · P d(x+ i, y + j). (6.2)
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TABLE 6.3: Feature size provided by each descriptor with CA 4 × 4
and CA 5× 5 MSFAs.

Input MSFA Demosaiced

Descriptor MSFA-Net M-LBP SegNet-Basic encoder Blob-Net cNet ˆ̂R(D)
rw / ¯̂R(D)

rw

CA 4× 4 patches 128 4096 512 512 192 16
CA 5× 5 patches 128 6400 512 512 192 25

As handcrafted features, we compute histograms of LBP operators that have proven

to be powerful for texture extraction. Specifically, we use M-LBP descriptor that

extracts features from raw patches [123]. We consider the simple case of a square

neighborhood around any given pixel in a raw patch at a spatial distance of 1 pixel

(8 neighbors with no interpolation), which provides a 256 · D-dimensional feature

vector.

We also consider reflectance spectra as features. Each demosaiced learning or test

patch is represented by a D-dimensional reflectance vector ˆ̂
R

(D)
rw,p, whose d-th com-

ponent is the average reflectance value over a small square window (of 25 pixels)

centered at the center p of the considered patch to reduce noise influence. Further-

more, to make reflectance signatures robust against shading and specular reflection,

we normalize each reflectance vector as ¯̂
R

(D)
rw,p so that its energy sums up to 1 (see

Eq. (5.3)). As D = 16 or 25 here, ˆ̂R(16)
rw,p/

ˆ̂R(25)
rw,p and ¯̂R(16)

rw,p/
¯̂R(25)

rw,p represent the 16-

/25-dimensional unnormalized and normalized reflectance feature vectors extracted

from demosaiced patches. Table 6.3 shows the texture feature size provided by each

descriptor with each MSFA.

To reduce sparse pixel misclassification after prediction, we assume that reflectance

does (almost) not change across locally close surface elements of a scene. Plausibly,

these elements belong to the same material, hence to the same class. Each prediction

associated to a test vegetation pixel is then filtered using a majority voting rule, and

its final class label is the most frequent one over its 9×9 neighborhood. Furthermore,

to get a dense visualization of the predictions, we interpolate the filtered predictions

to obtain the final (dense) classification map. We consider an interpolation window

centered at a given unpredicted vegetation pixel and check if the number of pre-

dicted vegetation pixels inside this window is higher than 2 pixels. Otherwise, the

size of the interpolation window is repeatedly increased by half of its size until the

condition is satisfied.
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6.3.3 CNN Training

To train and validate CNN-based features, 95% of the training patches are used for

learning and the remainder for validation. The CNNs are then trained using the

learning patches as follows.

Initialization: As we aim to train MSFA-Net from scratch, we must choose an

appropriate way to initialize the weights of its convolutional and fully-connected

layers. Initializing the weights with too small values may slow the learning process

and lead to the vanishing gradient problem, and larger values may lead to explod-

ing gradient. Since all compared CNNs use the ReLU as activation function, we

follow He et al. [74] technique to initialize their weights. Specifically, we use the

He-uniform variant that draws the weights from a uniform distribution instead of a

normal one because it slightly provides better results in our case.

Training: We use the stochastic gradient descent (SGD) weight optimizer for all

models. The loss function to be minimized is the multi-class log-loss, and the op-

timization is performed for 40 epochs because no performance increase is observed

afterwards. The batch size is set to 128. We train MSFA-Net with a fixed learn-

ing rate ε = 0.005 because it provides better convergence, and weight decay and

momentum values of 5 · 10−4 and 0.9 to regularize the learning process. For SegNet-

Basic, we set ε = 10−3 and momentum to 0.9 [14]. For Blob-Net and cNet, we also

use the SGD optimizer as in [124, 144] and the same learning rate and momentum

values as for SegNet-Basic.

6.4 Classification results and discussion

We now assess the contribution of texture features for crop/weed recognition ex-

tracted from raw patches by our proposed MSFA-Net with respect to those extracted

by other descriptors either from raw or demosaiced patches. The crop/weed recog-

nition performances obtained with LGBM classifier trained with features extracted

from CA 4× 4 and CA 5× 5 patches are reported in Table 6.4.
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6.4.1 CA 4× 4

Let use first study the classification performances obtained by LGBM classifier with

each tested feature in the case of raw and demosaiced patches associated to CA

4 × 4 MSFA (see Tabs. 6.4a and 6.4b). For both crop/weed detection and identifica-

tion problems, M-LBP descriptor provides bad performances because there are not

enough pixels to efficiently capture the spatio-spectral band interactions. Reflectance

features (that neither take these interactions into account) even perform better than

M-LBP in most cases. cNet-based features provide the best beet/weed detection

results in terms of precision, overall weighted accuracy, and F1-score, followed by

BlobNet, then SegNet-basic, and MSFA-Net provides comparable performances to

SegNet-Basic.

For wheat/weed and bean/weed detection problems, MSFA-Net-based features ex-

tracted from raw patches outperform all the other ones and provide the best results

according to all metrics, despite their low dimension. This is probably because the

demosaicing procedure reduces the quality of texture description from 16-channel

patches. In the case of crop/weed identification, the classification performances

of all descriptors is lower than for detection. Crop species and datura are mostly

well recognized, while thistle and especially goosefoot plants are not. The low clas-

sification performances obtained on these two classes severely impact the overall

weighted accuracy and F1 scores. Textures of goosefoot leaves are very similar to

beet and datura ones, and because texture of thistle is smooth, it can be confused

with that of wheat plant that also has a similar darkish green, especially at advanced

growth stages.

6.4.2 CA 5× 5

Let us now study the classification performances obtained using features extracted

from raw and demosaiced patches associated to CA 5 × 5 MSFA (see Tabs. 6.4c and

6.4d). We can see that performances of the descriptors are either higher or lower

than with CA 4× 4, depending on the problem. Indeed, as CA 5× 5 MSFA has more

bands than CA 4× 4 in its basic pattern, the spectral sampling of vegetation textures

increases while the spatial one decreases. Thus, M-LBP fails to capture enough spa-

tial information to well characterize crops and weeds. In order to perform well, a
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TABLE 6.4: Crop/weed detection (a, c) results (Pr(ecision), Re(call),
weighted overall accuracy, and F1-score) and identification (b, d) re-
sults (per-class accuracy, weighted overall accuracy, and F1 score) ob-
tained with LGBM classifier trained with features extracted from raw
(†) and demosaiced (?) patches simulated with CA 4×4 (a, b, D = 16)
and CA 5× 5 (c, d, D = 25) MSFAs. Bold shows best result and italics
second best one for each tested feature.

Beet vs. weed Wheat vs. weed Bean vs. weed
Feature

Pr Re Acc. F1 Pr Re Acc. F1 Pr Re Acc. F1

MSFA-Net † 88.5 96.4 88.2 89.8 99.6 94.0 96.9 96.6 97.2 93.4 90.5 85.8
M-LBP † 87.2 92.0 85.6 86.5 97.4 78.4 88.5 87.6 91.7 80.4 73.5 63.5
SegNet-Basic ? 90.1 95.1 89.4 90.3 99.4 92.7 96.2 95.9 96.1 89.3 86.7 79.1
BlobNet ? 92.7 93.6 91.3 91.5 99.5 90.6 95.2 94.9 95.4 90.4 84.7 79.1
cNet ? 93.6 93.0 91.9 91.8 99.3 90.9 95.2 95.1 95.0 87.7 83.3 75.5
ˆ̂R(16)

rw
? 85.1 92.1 83.4 84.7 98.7 88.3 93.8 93.3 91.6 77.2 73.4 61.2

¯̂R(16)
rw

? 89.3 92.1 87.7 88.1 98.7 90.8 94.9 94.6 90.6 80.7 70.2 61.7

(a) Detection results: CA 4× 4 MSFA

Feature Beet Th Go Da Acc. F1 Wheat Th Go Da Acc. F1 Bean Th Go Da Acc. F1

MSFA-Net † 82.6 76.9 61.4 77.3 72.5 66.3 99.6 57.3 58.4 82.3 66.5 55.8 89.4 51.8 48.7 81.9 62.8 48.8
M-LBP † 73.5 71.3 44.5 72.2 63.3 55.8 95.8 36.9 38.9 76.0 51.0 44.3 62.5 50.2 35.6 69.5 48.1 38.9
SegNet-Basic ? 83.5 69.4 66.0 81.5 74.8 67.3 99.2 47.1 53.0 84.5 62.5 50.8 84.9 43.4 48.9 81.0 61.1 46.2
BlobNet ? 86.3 70.4 66.7 78.7 74.5 68.1 99.3 48.9 57.1 81.6 64.5 51.8 83.3 47.0 53.7 80.4 63.6 47.6
cNet ? 86.2 69.7 61.5 77.7 72.2 65.8 99.3 46.3 57.7 82.1 65.0 53.8 78.9 42.7 53.2 79.0 61.8 45.5
ˆ̂R(16)

rw
? 68.7 55.6 50.7 75.1 63.3 53.3 97.8 40.4 52.4 74.6 59.4 49.2 60.1 34.6 45.4 71.6 51.8 37.9

¯̂R(16)
rw

? 77.7 61.5 61.3 71.6 67.3 60.5 97.7 43.8 47.0 73.3 56.6 48.1 57.5 46.2 41.3 69.4 49.7 39.0

(b) Identification results: CA 4× 4 MSFA

Beet vs. weed Wheat vs. weed Bean vs. weed
Feature

Pr Re Acc. F1 Pr Re Acc. F1 Pr Re Acc. F1

MSFA-Net † 89.7 97.2 89.7 91.2 99.4 92.6 96.1 95.8 96.8 92.6 89.1 84.0
M-LBP † 83.0 90.3 81.1 82.2 93.5 73.1 84.4 83.0 93.8 77.4 79.4 64.9
SegNet-Basic ? 92.3 96.3 91.2 92.7 99.5 91.0 95.4 95.1 96.8 90.2 82.6 77.5
BlobNet ? 93.1 95.1 92.2 92.6 99.5 91.2 95.5 95.2 94.3 88.0 81.0 74.5
cNet ? 93.2 94.8 92.2 92.5 99.5 90.1 95.0 94.7 94.7 84.7 82.3 72.0
ˆ̂R(25)

rw
? 86.1 92.8 84.7 85.9 98.7 88.0 93.6 93.1 91.7 76.2 73.7 60.7

¯̂R(25)
rw

? 90.2 92.9 88.7 89.3 98.6 90.8 94.5 94.5 90.6 81.1 70.0 61.8

(c) Detection results: CA 5× 5 MSFA

Feature Beet Th Go Da Acc. F1 Wheat Th Go Da Acc. F1 Bean Th Go Da Acc. F1

MSFA-Net † 82.6 75.5 70.2 82.5 77.4 70.4 99.2 58.1 51.6 85.7 63.4 55.2 87.7 53.0 48.9 79.8 62.4 48.5

M-LBP † 62.5 70.1 39.0 60.9 55.3 48.2 90.3 36.7 34.2 65.9 45.2 39.1 59.8 53.4 30.8 54.4 42.3 34.1

SegNet-Basic ? 83.2 69.2 70.6 83.9 77.2 69.1 99.4 50.6 52.8 86.0 63.2 52.4 81.1 47.7 47.6 80.2 59.9 46.2

BlobNet ? 90.4 81.7 29.0 82.9 66.2 61.0 99.3 50.0 57.2 83.6 65.1 52.9 83.5 49.2 52.1 79.3 62.8 47.7

cNet ? 90.9 80.9 25.4 84.4 65.6 59.9 99.4 46.8 58.6 81.9 65.2 52.2 80.7 45.8 52.4 79.4 62.1 46.4
ˆ̂R(25)

rw
? 71.3 56.1 51.3 76.1 64.3 54.7 98.3 40.2 49.5 77.0 57.9 47.1 61.3 34.2 43.8 71.9 51.2 37.9

¯̂R(25)
rw

? 80.5 63.9 60.0 75.6 69.2 62.9 98.2 43.9 44.7 77.0 55.6 46.3 58.6 47.3 41.0 73.3 50.5 40.3

(d) Identification results: CA 5× 5 MSFA
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trade-off between spatial and spectral samplings may be required for M-LBP. Simi-

larly for MSFA-Net, its wheat/weeds and bean/weeds detection and identification

performances are slightly decreased. However, they are improved in beet/weeds

detection and beet/thistle/goosefoot/datura identification problems. We observe a

similar behaviour in performance with the other CNN models. Performances are

either degraded or improved depending on the detection/identification problem.

Table 6.4c shows that deep features outperform handcrafted ones for crop/weed

detection. Moreover, our MSFA-Net provides the best recall for the three detec-

tion problems and the best precision for bean/weed detection. It also provides a

precision (99.4%) that is comparable to that of the other deep features (99.5%) for

wheat/weed detection. Even if CA 5×5 MSFA potentially allows for deep learning-

based descriptors extracted by SegNet-Basic, BlobNet, and cNet to learn more spec-

tral characteristics from the 25-channel demosaiced patches, it does not necessar-

ily mean a gain in crop/weeds recognition performance. Indeed, these CNNs may

overfit to the learning vegetation patches which impacts their performances. More-

over, since demosaicing is more complicated with CA 5 × 5 raw images than with

CA 4 × 4 ones, the fully-defined estimated 25-channel images are subject to more

estimation artifacts that may alter texture representation. For reflectance features,

we observe the opposite behaviour: the results obtained by ˆ̂R(25)
rw / ¯̂R(25)

rw reflectance

features are globally better (except in wheat/thistle/goosefoot/datura identification

problem) than those of ˆ̂R(16)
rw / ¯̂R(16)

rw .

6.4.3 Discussion

For beet/weed detection, BlobNet and cNet provide the best performances. How-

ever, for beet/thistle/goosefoot/datura identification problem, MSFA-Net provides

the best performances followed by SegNet-Basic, BlobNet, and cNet. For wheat/weed

and bean/weed detection, MSFA-Net also provides the best performance. More-

over, for wheat/thistle/goosefoot/datura and bean/thistle/goosefoot/datura iden-

tification problems, MSFA-Net and cNet provide similar performances, followed by

BlobNet, then SegNet-encoder. Figure 6.2(a) shows a t-SNE projection [181] of raw

patches characterized by MSFA-Net. We can see that MSFA-Net is able to learn a

non-linear feature space where the classes do not overlap. However, because texture
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(a) MSFA-Net-based learning patches (b) MSFA-Net-based test patches

FIGURE 6.2: t-SNE visualization of beet, thistle, goosefoot, and datura
learning (a) and test (b) patches (2000/class), characterized by MSFA-
Net.

feature and spectral signatures of the test patches are subject to a severe domain shift

(due to varying growth stage, leaf orientation, shadows, etc.), the clusters strongly

overlap. In order to improve outdoor crop/weed identification, domain adaptation

techniques [90, 186] may be applied to overcome the target domain shift problem.

Our proposed approach globally outperforms all the others in crop/weed detec-

tion and provides at least comparable crop/thistle/goosefoot/datura identification

performances. This confirms that features provided by MSFA-Net are more discrim-

inant despite their small size. This also confirms that feature extraction from raw

patches is relevant for the crop/weed recognition problem.

MSFA-Net requires to learn 17 times fewer hyperparameters than the considered

SegNet-Basic variant, and 6 times fewer than Blob-Net, with patches of size 25× 25

pixels for weed detection. cNet requires to learn slightly (≈ 10%) fewer hyperparam-

eters than MSFA-Net because it is shallower. All in all, MSFA-Net provides better

or comparable performances than other approaches at much reduced computation

costs.

Figure 6.3 shows the cost of feature extraction from raw and demosaiced patches as-

sociated to test image 1 (see Fig. 6.4(a)). We can see that MSFA-Net provides a good

trade-off between performance and computation time of feature extraction.

Figure 6.4 displays the segmentation results obtained by MSFA-Net, SegNet-Basic,

Blob-Net, and cNet approaches on three test images for beet/weed detection,
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FIGURE 6.3: Classification accuracy obtained by LGBM classifier
vs. computation time of feature extraction (parallelized over 12
CPU cores) from the (249,895) 25 × 25 patches of test image 1 (see
Fig. 6.4(a)). Nor demosaicing nor CNN training computation times
are considered. † and ?indicate feature extraction from raw and de-
mosaiced patches, respectively.

beet/goosefoot and bean/datura identification problems. It shows comparable de-

tection performances between the three tested CNNs and MSFA-Net. However, for

beet/weed and bean/datura identification, MSFA-Net has more success in recog-

nizing beet/goosefoot and bean/datura leaves.

6.5 Conclusion

In this chapter, we address crop/weed recognition using texture features. For

this purpose, we use the two MSFAs proposed in Chapter 5 to simulate raw and

fully-defined patches. We propose multispectral texture features extraction based

on a CNN architecture called MSFA-Net. It directly analyzes raw patches thanks

to its first layer that learns spatio-spectral interactions among channel values that

match the basic MSFA pattern. This approach avoids the demosaicing step that

can be greedy in computation requirements and may alter the texture representa-

tions. It requires learning much fewer hyperparameters than most of state-of-the-art

CNNs. Experimental results show the relevance of MSFA-based features for out-

door crop/weed recognition. Combining MSFA-based snapshot imaging with a

CNN provides low-size and highly discriminant features that are suitable for out-

door crop/weed recognition.
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(a) Test image 1 (b) Test image 2 (c) Test image 3

(d) Crop (Beet) Weed (Goosefoot) (e) Beet Thistle (f) Bean Datura

SegNet-Basic (g–i)

93.9% 87.9%

(g) (F1=89.8% Accuracy=89.9%)

95.7% 58.0%

(h) (F1=69.1% Accuracy=62.5%)

67.3% 77.2%

(i) (F1=78.8% Accuracy=73.0%)

BlobNet (j–l)

95.2% 85.3%

(j) (F1=89.6% Accuracy=88.5%)

94.6% 69.5%

(k) (F1=77.7% Accuracy=72.5%)

60.8% 84.3%

(l) (F1=79.8% Accuracy=74.2%)
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cNet (m–o)

96.5% 81.7%

(m) (F1=88.9% Accuracy=86.6%)

94.5% 60.9%

(n) (F1= 72.4% Accuracy=64.9%)

61.2% 82.1%

(o) (F1=78.2% Accuracy=73.0%)

MSFA-Net (p–r)

96.7% 87.4%

(p) (F1=91.8% Accuracy=90.4%)

96.7% 75.2%

(q) (F1=82.8% Accuracy=77.7%)

77.0% 89.9%

(r) (F1=86.5% Accuracy=84.4%)

FIGURE 6.4: Segmentation results obtained by LightGBM classifier
trained with features extracted from demosaiced (third to fifth row)
and raw (sixth row) patches by SegNet-Basic (g–i), BlobNet (j–l), cNet
(m–o), and MSFA-Net (p–r). (a)–(c): RGB renderings of three multi-
spectral test images, (d)–(f): ground truths, (g, j, m, p): weed detection
results, (h, i, k, l, n, o, q, r): weed identification results. The per-class
accuracy score is displayed near each colored circle (class label) for
each considered feature. Bold values show best results and italics
second best one for each problem and metric.
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Conclusion and perspectives

Conclusion

The main objective of this work is to develop an automatic recognition system of

crop and weed plants in field conditions based on multispectral imaging. This thesis

can be summarized into four main contributions:

New multispectral vegetation database

The targeted species are (sugar) beet (Beta vulgaris), wheat (Triticum sp.), and

(green) bean (Phaseolus vulgaris) for crops, and thistle (Cirsium arvense), goose-

foot (Chenopodium sp.), and datura (Datura stramonium) for weeds. To analyze

spectral signatures of the considered plants, we build our own multispectral image

database of vegetation. A specific acquisition device is designed to acquire outdoor

multispectral images of vegetation using a multishot (linescan) camera, called the

Snapscan, that observes vegetation from nadir. A white diffuser is mounted on the

acquisition device so that it is contained in the acquired images. A ColorChecker

chart is also included in the scene for estimated reflectance assessment. The dataset

built in this study contains 109 radiance images of 2048 × 2048 pixels ×192 chan-

nels of 10 bit depth. Each channel is associated to a specific narrow spectral band

centered at wavelength λb , b ∈ [[0, 191]], that ranges from 475.1 nm to 901.7 nm.

Original multispectral image formation model

Because outdoor illumination varies during the multispectral image acquisition by

the Snapscan, the classical Lambertian image formation model is not adapted in our

case. Indeed, the Snapscan camera acquires a sequence of frames to provide a multi-

spectral image. Each frame may be acquired under a specific illumination, hence, the
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measurement of the radiance that is reflected by a given Lambertian surface element

of the scene varies according to the frame acquisition time. Therefore, we propose

an original multispectral image formation model that accounts for illumination vari-

ation at the frame level. This model can be adapted to model the image acquisition

of other multishot multispectral cameras.

Illumination-variation-robust reflectance estimation

To improve outdoor crop and weed recognition, we compute illumination-invariant

features by estimating the reflectance from the acquired radiance images. Our image

formation model shows that state-of-the-art reflectance estimation methods may be

inappropriate to estimate reflectance when illumination varies during image acqui-

sition. We propose a method that exploits a white diffuser to estimate reflectance

in a row-wise approach, such that illumination variation is considered at the frame

level. The contribution of reflectance features estimated by our proposed approach

to outdoor crop/weed recognition is experimentally demonstrated.

CNN-based texture feature from raw image

As multishot cameras are sensitive to illumination variation, they are not adapted

to outdoor crop/weed recognition. Therefore, we propose to use a single-sensor

(snapshot) camera. To specify a snapshot camera based on the MSFA technology,

we propose to select the most informative spectral bands. These bands define filters

that compose the basic pattern of the MSFA. For experiments, we simulate raw patch

acquisitions by this snapshot camera.

Finally, we propose an original multispectral texture feature extraction based on a

CNN. It directly analyzes raw patches by respecting the basic pattern arrangement

in the MSFA, and learns spatio-spectral band interactions at reduced computation

costs. This approach avoids the demosaicing step that is greedy in computation

requirements and is prone to alter the texture representations. We show that com-

bining MSFA-based snapshot imaging with deep learning principles provides dis-

criminant features for outdoor crop/weed recognition.



6.5. Conclusion 149

Perspectives

Although this thesis provides several contributions, it also arises several interest-

ing problems regarding reflectance estimation, raw image analysis, and crop/weed

recognition.

Reflectance estimation from multispectral images

Our two proposed reflectance estimation methods (see Secs. 3.4.3 and 3.4.4) rely on

reference devices to estimate reflectance under varying illuminations. Specifically,

they rely on a white diffuser to estimate the illumination for each pixel row. How-

ever, the white diffuser must be fixed on the acquisition system so that it is constantly

observed by the camera. Therefore, it would be interesting to focus on reflectance es-

timation without any reference device. The next challenge is then to explore a deep

learning approach for reflectance estimation.

Reflectance estimation from raw images

We experimentally demonstrate that MSFA-based snapshot multispectral imaging is

relevant for outdoor crop/weed recognition. The raw reflectance patches have been

simulated from fully-defined reflectance patches that have been estimated from ac-

quired radiance images. In practice however, a snapshot camera provides a raw

radiance image, and not a raw reflectance one. To the best of our knowledge, the

literature reports almost no work (only one paper [91]) regarding reflectance esti-

mation from raw radiance images provided by a snapshot camera. Ongoing work

should focus on reflectance estimation from raw radiance images acquired by a snap-

shot camera. Depending on the goal, one could then either directly provide the esti-

mated raw reflectance images, or recover the fully-defined multispectral reflectance

images.

Handcrafted and deep learning-based feature fusion

To detect and identify weeds from crops, we either rely on reflectance spectra (hand-

crafted) or on deep texture features extracted from reflectance patches. However, it

is also interesting to assess the feasibility of combining reflectance spectra with deep
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texture features to improve crop/weed identification. As characteristics and dimen-

sions of both features are different, they cannot directly be concatenated. A specific

fusion strategy would be studied together with the feasibility of combining texture

features with spectra into the CNN.

MSFA-Net

Our proposed MSFA-Net directly analyzes raw patches thanks to its first convolu-

tional layer. Future works will first study the impact of band arrangement in the

basic pattern on MSFA-Net performance. They will also focus on the improvement

of MSFA-Net using residual learning to increase the spatio-spectral information in

the feature maps. Moreover, since the first convolutional layer of MSFA-Net only

captures the spatio-spectral band interactions of a specific basic pattern, setting dif-

ferent starting convolutional positions can learn several basic patterns with different

band arrangements. Then, similarly to the approach proposed in [100], we can build

a global MSFA-Net composed of micro MSFA-Nets, whose each one is specialized

in a specific pattern (see Fig. 6.5). The texture feature vector provided by each micro

MSFA-Net can be concatenated and fed into a fully-connected layer for dimension

reduction to provide the final texture feature vector.
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FIGURE 6.5: MSFA-Net learning from different band arrangements.

Domain adaptation for crop/weed recognition

Spectral signatures and textures depend on plant growth stages and plant obser-

vation conditions, e.g., leaf orientation, or shadows. As a consequence, the perfor-

mance of classical supervised learning approaches is weakened because the feature
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distribution of test samples may be different to that of the learning ones. This is

known as target domain shift or out-of-domain problem. To overcome this problem

and adapt the classifier to those variations, one can either try to adapt test feature

distributions to those of learning features thanks to unsupervised domain adapta-

tion [103, 157, 167]. Several of these techniques (e.g., based on adversarial learning)

try to align the distribution shift of test samples with that of the learning ones thanks

to a repetitive learning procedure that can be greedy in computation time, especially

with multispectral images. As we propose to learn raw images, adversarial domain

adaptation with raw multispectral texture features becomes feasible.

3D analysis

Multispectral cameras provide flat views of vegetation. Therefore, the geometri-

cal structure of crops and weeds cannot be retrieved, especially under high overlap

among plants. Because this information may be relevant to distinguish crops and

weeds, it should be interesting to investigate the potential of 3D imaging combined

with 2D texture analysis in crop/weed recognition.
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Appendix A

GBM steps and LightGBM features

A.1 GBM steps for multiclass problem

Let us consider a learning dataset S learn = {xj ,yj}Nj=1, with NC classes, where

{xj}Nj=1 are the learning samples described by K features, and yj is the label of a

given sample xj encoded as a one-hot vector of size NC (with only one non-zero

element, which is 1) such as:

yij = 1(xj ∈ Ci) =





1 if xj ∈ Ci,

0 otherwise,
(A.1)

where Ci is the i-th class. Let us also consider a decision function θ(·) (provided by

the weak leaner θ), and a differentiable loss function L for vectorial inputs and its

scalar version φ.

The classification procedure using a GBM can be summarized by the following steps:

• Step 1: Initial prediction:

The NC ensemble models are initialized with a per class value γi ∈ [0, 1] such

that θi0({xj}Nj=1) = γi. Note that γi can be deduced by seeking the value that

minimizes the loss function over all samples. However, to speed up the train-

ing phase, it is more common to initialize each model to the average class prob-

ability, or to zero [55].

• Step 2: Residual computation, model fitting and update:

For m = 1 to M boosting iterations:

- Set θi = θim−1 for i = 1, 2, ..., NC , thus, Θ = Θm−1.
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For n = 1 to NC class iterations:

- Do steps 2.(a)–2.(d):

2.(a) Compute the pseudo-residuals rnj,m for each sample xj as:

rnj,m = −
[
∂L(yj ,Θ(xj))

∂θn(xj)

]
. (A.2)

The minus sign in Eq. (A.2) reflects that it is a minimization challenge.

To solve this optimization problem in a multiclass classification context,

the multinomial log-loss (or cross-entropy loss) is a commonly used func-

tion [70, p. 348]. It can be defined for a single sample xj and its label

vector yj as :

L(yj ,Θ(xj)) = −
NC∑

i=1

yij · log(P i(xj)). (A.3)

P i(xj) is the posterior probability that sample xj belongs to class Ci given

the model θi = θim−1 computed at the previous iteration. Note that in

multiclass classification, the probability vector P(xj) ∈ RNC is usually

obtained by applying the softmax function over the classification logits

(raw scores) {θi(xj)}NCi=1 provided by the multiclass learner Θ = {θi}NCi=1.

The reason of using the softmax is to squash the scores into the range [0, 1]

and to ensure that they sum up to 1, thereby fulfilling the constraints of

a probability density [70, p. 348]. Thus, we can express each probability

P i(xj) as:

P i(xj) =
exp(θi(xj))∑NC
l=1 exp(θl(xj))

. (A.4)

We can then compute the pseudo-residual for sample xj by deriving Eq. (A.3)

with regard to the score θn(xj) of the current class Cn as:

∂L(yj ,Θ(xj))

∂θn(xj)
= −

NC∑

i=1

yij
P i(xj)

· ∂P
i(xj)

∂θn(xj)
, (A.5)
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where

∂P i(xj)
∂θn(xj)

=





exp(θn(xj))∑NC
l=1 exp(θl(xj))

·
(∑NC

l=1 exp(θl(xj))−exp(θn(xj))∑NC
l=1 exp(θl(xj))

)
if i = n,

− θn(xj)·exp(θi(xj))(∑NC
l=1 exp(θl(xj))

)2 if i 6= n.

(A.6)

Using Eq. (A.4), we can rewrite Eq. (A.6) as:

∂P i(xj)
∂θn(xj)

=





Pn(xj) · (1− Pn(xj)) if i = n,

−Pn(xj) · P i(xj) if i 6= n.
(A.7)

Plugging Eq. (A.7) into Eq. (A.5) yields:

∂L(yj ,Θ(xj))

∂θn(xj)
= −

ynj
Pn(xj)

· Pn(xj) · (1− Pn(xj)) +
∑

i 6=n

yij
P i(xj)

· Pn(xj) · P i(xj)

= −ynj (1− Pn(xj)) +
∑

i 6=n
yijPn(xj)

= −ynj + Pn(xj)

(
ynj +

∑

i 6=n
yij

)

= Pn(xj)− ynj ,

(A.8)

where ynj +
∑

i 6=n y
i
j = 1 since yj is a one-hot encoded vector. Thus, the

residual rnj,m for sample xj is:

rnj,m = −
(
Pn(xj)− ynj

)

= ynj − Pn(xj)





> 0 if ynj = 1,

< 0 if ynj = 0.

(A.9)

From Eq. (A.9), we can see that when ynj = 1, Pn(xj) should be as close to

1 as possible to minimize the loss, whereas when ynj = 0, Pn(xj) should

be as close as possible to 0. In both cases, we seek to minimize the gradi-

ent whatever the class.

2.(b) Fit a regression tree to {(xj , rnj,m)}Nj=1, then create terminal nodes {Rnt,m}Tt=1
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such that ∩Tt=1Rnt,m = ∅ and ∪Tt=1Rnt,m = S learn.

Note that the number of leaves T determines the size and complexity of

the tree. There is no rule of thumb to find the optimal value of T . It is

a tuning parameter that depends on the size and dimensionality of the

dataset and can be deduced experimentally according to model accuracy

and learning/inference speed.

A regression tree fits to continuous dependent variables. It is built thanks

to a recursive splitting procedure. The root (or parent) node that regroups

all the learning samples is split into two child nodes. Then, the child (or

leaf) nodes are further split and become parents of their child nodes. In or-

der to perform splitting, all features are scanned and for each feature, sev-

eral thresholds (split points) are tested. The pair (feature, threshold) that

minimizes the impurity within the resulting subsets is retained for split-

ting. To measure subset impurity, we usually rely on dispersion measured

thanks to an objective function such as the mean squared error (MSE) or

the residual sum of squares (RSS) [70, p. 307]. The splitting procedure of

the resulting subsets is repeated until reaching some criterion such as the

minimum number of samples in a leaf. Finally, for each terminal leaf, an

output value is computed, usually as the average of the dependent vari-

ables associated to the learning samples regrouped in that leaf. The fitted

regression tree can be then regarded as a set of decision rules (or if condi-

tions) sequentially applied to the features characterizing the test samples.

To perform a prediction, a test sample is passed through the fitted tree

and assigned to a specific terminal leaf according to the learned rules.

The predicted value for this test sample could basically be the leaf output

value computed as the average value of the dependent variables associ-

ated to that leaf. Alternatively, a Gradient-boosted Decision Tree (GBDT)

seeks to find an optimal output leaf value that minimizes the loss over all

the samples belonging to that leaf thanks to the following optimization

procedure.
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2.(c) Compute the output value in each terminal node, for t = 1 to T :

γnt,m = arg min
γnm

∑

xj∈Rn
t,m

NC∑

i=1

φ(yij , θ
i(xj) + γnm), (A.10)

where φ(yij , θ
i(xj)) = −yij · log(P i(xj)). Note that in this particular case,

rewriting the loss L using the summation of the loss φ over all the classes

allows us to introduce the constant γnm in the loss, which could not be

possible by using L directly since Θ(xj) is a vector.

Because deducing γnt,m from Eq. (A.10) is quite complex, second-order ap-

proximations of the loss function are considered [55, 56]. For instance,

recent state-of-the-art implementations of tree-based GBMs [29, 155] use

a second-order Taylor expansion of φ(yij , θ
i
m−1(xj) + γnm) for small values

of γnm:

γnt,m = arg min
γnm

∑

xj∈Rn
t,m

NC∑

i=1

φ(yij , θ
i(xj)) +

∂
∑NC

i=1 φ(yij , θ
i(xj))

∂θn(xj)
γnm

+
1

2
·
∂2
∑NC

i=1 φ(yij , θ
i(xj))

∂2θn(xj)
γnm

2.

(A.11)

Deriving the function to be minimized in Eq. (A.11) with regard to γnm

and setting it equal to zero (in order to find γnt,m according to Eq. (A.11))

yields:

∑

xj∈Rn
t,m

∂
∑NC

i=1 φ(yij , θ
i(xj))

∂θn(xj)
+
∂2
∑NC

i=1 φ(yij , θ
i
m−1(xj))

∂2θn(xj)
γnt,m = 0. (A.12)

Knowing that
∑NC

i=1 φ(yij , θ
i(xj)) = L(yj ,Θ(xj)), and using the result of

Eq. (A.8), we can rewrite Eq. (A.12) as:

∑

xj∈Rn
t,m

Pn(xj)− ynj +
∑

xj∈Rn
t,m

∂2(Pn(xj)− ynj )

∂2θn(xj)
γnt,m = 0

∑

xj∈Rn
t,m

Pn(xj)− ynj +
∑

xj∈Rn
t,m

Pn(xj) · (1− Pn(xj))γ
n
t,m = 0

(A.13)
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Finally, solving Eq. (A.13) for γnt,m yields:

γnt,m =
−∑xj∈Rn

t,m
Pn(xj)− ynj∑

xj∈Rn
t,m
Pn(xj) · (1− Pn(xj))

=

∑
xj∈Rn

t,m
ynj − Pn(xj)

∑
xj∈Rn

t,m
Pn(xj) · (1− Pn(xj))

=

∑
xj∈Rn

t,m
rnj,m∑

xj∈Rn
t,m
Pn(xj) · (1− Pn(xj))

. (A.14)

where Pn(xj) is the posterior probability that sample xj belongs to class

Cn, given θn(xj) associated to the previous iteration.

2.(d) Update learner θnm for each sample xj as:

θnm(xj) = θnm−1(xj) + ε ·
T∑

t=1

γnt,m · 1(xj ∈ Rnt,m) for j = 1, ...,N , (A.15)

where ε ∈ [0, 1] is the learning rate.

End for n.

End for m.

→ Final decision model Θ̂ = {θ̂i}NCi=1, where θ̂i(·) = ε ·∑M
m=1 θ

i
m(·).

The predicted label for a test sample xs ∈ RK is provided by Eq. (4.13).

A.2 LightGBM features

LightGBM (LGBM) learns from S learn with reduced processing time in contrast to

other GBM approaches, and bypasses the high dimensionality of its data thanks to

Exclusive Feature Bundling (EFB) and Gradient-based One-Side Sampling (GOSS) tech-

niques.

A.2.1 Exclusive Feature Bundling (EFB)

EFB focuses on how to effectively reduce the feature space size. Specifically, the au-

thors of [83] assume that a high dimensional feature space is usually sparse when

several features can be mutually exclusive (i.e., do not take non-zero values simulta-

neously). Based on this assumption, they propose to bundle exclusive features into



A.2. LightGBM features 159

a single feature called exclusive feature bundle. The sparsity assumption may not be

always verified because several features may take simultaneously non-zero values.

Thus, the algorithm tolerates a small fraction of conflicts between features. A con-

flict occurs when two features take simultaneously non-zero values. In other words,

features that are almost exclusive can be also put in the same bundle if their conflicts

is below the conflict ratio (defined as |S learn|/10000). To find candidate features to

bundle, conflicts between the features are computed. The features are then sorted

in descending order according to their total conflicts. Finally, each feature is ana-

lyzed in descending order according to its conflict degree (sum of its conflicts with

all the remaining features) and the feasibility of combining (bundling) it with other

ones depends on their conflict. If it is below the conflict ratio, then these features

can be merged to form a feature bundle. Note that in practice, the authors propose

to directly consider the count of non-zero values as a measure of conflict to avoid

building the conflict matrix. They assume that the more a feature has non-zero val-

ues, the higher it might be in conflict with other features. EFB can be summarized

by the following steps:

1 Sort features in descending order according to their number of non-zero val-

ues.

2 Analyze the features in descending order and find candidate ones to merge.

3 Merge the candidate features (see algorithm 4 of [83]) to obtain bundled fea-

tures (new features), where #bundles << K.

Table A.1 shows a simple example of conflict computation and feature sorting for a

dataset composed of 10 samples and 5 features, using 5 conflicts as the conflict ratio.

We start by feature f1 since it has the highest conflict degree and seek in descend-

ing order for a feature that can be merged with it. We can see that f1 has a conflict

with features f3, f5, and f2 superior to the conflict ratio, whereas it has a conflict

with f4 inferior than the conflict ratio. Thus f1 and f4 can be merged to form

featureBundle1,4. Then we consider feature f3 and seek a feature to be merged

with it. We can see that the conflict between f3 and f5 is superior to the con-

flict ratio whereas it is inferior with f2. Thus, f3 and f2 will be merged to form

featureBundle3,2. The remaining feature f5 is put on its own bundle featureBundle5.
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f1 f2 f3 f4 f5

x1 2 3 0 2 0
x2 3 0 1 0 4
x3 0 0 2 0 7
x4 10 8 13 10 0
x5 5 6 15 0 3
x6 15 12 2 0 12
x7 12 0 5 6 4
x8 15 1 0 9 15
x9 0 0 3 7 0
x10 1 1 9 0 2

(a) Data set. Conflicts
between f 1 and f 2 are
highlighted with yel-
low color.

f1 f2 f3 f4 f5

f1 - 6 6 4 6
f2 6 - 4 3 3
f3 6 4 - 3 6
f4 4 3 3 - 2
f5 6 3 6 2 -

(b) Conflict matrix of
the features deduced
from (a).

f1 f3 f5 f2 f4

Conflict degree 22 19 17 16 12

(c) Features ordered by
their total conflicts de-
duced from (b).

TABLE A.1: Conflict computation and feature ordering.

EFB can be seen as a preprocessing step that can considerably improve computa-

tional efficiency (see Tab. 2 of [83]). After applying EFB, the feature space dimension

is reduced from K to #bundles. Note that in case of highly dense features, the im-

provement of computational efficiency obtained using EFB is not always guaranteed

since there might be no or very few features to bundle (see also Tab. 2 of [83]).

A.2.2 Gradient-based One-Side Sampling (GOSS)

GOSS focuses on effectively reducing the number of learning samples while keep-

ing as much information as possible about the entire dataset. In order to effectively

reduce the number of learning samples, GOSS uses a sampling approach based on

the gradients. Each sample in S learn is now represented by a #bundles-dimensional

feature vector. GOSS first sorts the learning samples in descending order according

to the absolute values of their gradients. Then, the top a · |S learn| (a is a sampling

ratio) of learning samples with highest gradients are kept in order to obtain a subset

denoted asA. The remaining learning samples (1− a) · |S learn|with lower gradients

are randomly sampled according to a sampling ratio b to obtain a subset B. Finally,

the subset A ∪ B is used for further computations (information gain computation,
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split point). The assumption behind this approach is that samples with low gradi-

ents would have smaller training errors. Thus, their number might be reduced. Note

that in order to have a data distribution in the setA∪B similar to that of the original

set S learn, a constant multiplier (1−a)/b is introduced for the selected lower gradient

samples in order to normalize their sum back to the size of the set (1− a) · |S learn|.

In the end, by combining EFB and GOSS, the complexity of histogram building re-

duces fromO(|S learn| ×K) toO(|A∪B|×#bundles), where |A∪B| << |S learn| and

#bundles << K. This drastically reduces memory and time consumption. The final

prediction of LGBM is then made according to Eq. (4.13).
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