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Abstract

Real-time systems must provide functionalities that need to produce their results within
predefined time windows. Some of these functionalities may be critical: if they produce
wrong results or produce good results too late, failures occur which, in some extreme case,
may cause the loss of human lives.

Intelligent transportation systems are a good example of real-time systems with critical
functionalities. These vehicles embed complex features to enhance the driving experience,
like the so-called Advanced Driver-Assistance Systems (ADAS). Such complex function-
alities possess non-functional requirements, as the fact that they must produce results
within precise time windows, or that must be robust to transient hardware faults. For
example, the automatic obstacle detection feature assists the driver by alerting on obsta-
cles on the vehicle path, so preventing accidents dues to inattention or fatigue: however
the recognition of an obstacle must be performed in due time, otherwise the vehicle will
harm someone or destroy itself.

Thus, a precise analysis of the temporal behavior of these systems is required to
guarantee that all the timing constraints are respected. For modern vehicles, the electronic
boards chosen for these systems need to provide high performance, since there is a pressure
to integrate all the critical and non-critical functionalities on the same board and reduce
cost. Moreover, with the miniaturization of electronic components and with the reduction
in voltage, systems may be subject to transient faults during their lifetime, provoking
unexpected failures. Thus, there is a need to have analysis taking into account both
reliability and the respect of the timing constraints. In this thesis, we have proposed a
set of solutions that are positioned at two levels:

1. We have developed models to analyze the execution time of real-time systems that
integrate caches. The major scientific contribution of the thesis at this level is an
improved analysis of the effect of preemptions on memory access times in a system
scheduled by Earliest Deadline First.

2. We have also designed techniques to increase the reliability of real-time systems
integrating caches. Our approach is novel in the sense that we propose a method
to protect tasks code from transient faults in the cache by adding protection mech-
anisms to the tasks code while respecting the timing constraints.

Our work is original in that it lies at the intersection of several areas:

1. The domain of real-time critical systems;
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2. The field of processor system architectures in general and that of programmable
embedded systems integrating caches in particular;

3. The field of reliability and robustness of real-time critical systems.



Résumé en Français

Les systèmes temps réel implémentent des fonctionnalités qui doivent produire leurs ré-
sultats dans une fenêtre de temps donnée. Certaines de ces fonctionnalités peuvent être
critiques. Si une fonctionnalité critique produit un résultat erroné ou produit un bon
résultat au-delà d’une certaine limite temporelle, une défaillance se produit. Lorsqu’une
défaillance se produit, des événements catastrophiques peuvent s’ensuivre, comme la perte
d’une vie humaine. Les systèmes de transport intelligents sont un bon exemple de sys-
tèmes temps réel dotés de fonctionnalités critiques. Ces véhicules intègrent des fonction-
nalités qui améliorent la conduite en aidant le conducteur, comme les systèmes avancés
d’assistance au conducteur c(ADAS). Ces fonctionnalités doivent produire de bons résul-
tats dans une fenêtre de temps précise comme pour la détection d’objets pour éviter de
blesser des usagers de la route. Une analyse précise du comportement de ces systèmes
est par conséquent nécessaire pour garantir que les contraintes de temps sont respectées.
Pour les véhicules modernes, les cartes électroniques choisies pour ces systèmes doivent
être très performantes, et doivent intégrer toutes les fonctionnalités critiques et non cri-
tiques sur la même carte afin de réduire les coûts. Avec la miniaturisation des circuits
électronique et la réduction de la tension électrique, les systèmes peuvent subir des fautes
transitoires pendant leur durée de vie, provoquant des erreurs dans leurs comportements.
Il est donc nécessaire d’avoir une analyse prenant en compte à la fois la fiabilité et le
respect des contraintes temporelles. Dans cette thèse, nous avons proposé un ensemble
de solutions qui se positionnent à deux niveaux :

1. Nous avons mis au point des modèles d’analyse de temps d’exécution des systèmes
temps-réels intégrants des mémoires caches. La contribution scientifique majeure de
la thèse à ce niveau est une meilleure analyse de l’impact des préemptions entre les
tâches sur les temps d’accès à la mémoire dans un système ordonnancé par Earliest
Deadline First.

2. Nous avons aussi conçu des techniques pour augmenter la fiabilité des systèmes
temps-réel intégrant des mémoires caches. Notre approche est nouvelle dans le sens
où nous proposons une méthode qui permet de protéger le code des tâches des
fautes transitoires dans la mémoire cache en ajoutant des mécanismes de protection
au code des tâches tout en respectant les contraintes temporelles.

Comme on peut le voir, notre travail est original du fait qu’il se trouve à l’intersection de
plusieurs domaines :
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1. Le domaine des systèmes temps-réel critiques;

2. Le domaine des architectures de systèmes de processeurs en général et celui des
systèmes embarqués programmables intégrant des mémoires caches en particulier;

3. Le domaine de la fiabilité et de la robustesse des systèmes temps-réels critiques.
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16 CHAPTER 1. PROBLEM & MOTIVATION

This chapter will introduce real-time systems and Intelligent Transportation Systems
(ITS), using modern vehicles as an illustration. Then, I will describe the unresolved
problems and challenge handle by these systems. Finally, this chapter will conclude with
a summary of the thesis’ contents.

1.1 Real-Time Systems

Real-time systems are computing systems that must react within precise time constraints
to events in the environment. As a consequence, the correct behavior of these systems
depends not only on the value of the computation but also on the time at which the
results are produced [28, 68].

A real-time system interacts with its environment through the use of sensors and/or
actuators. Given the dynamic nature of the environment, the system’s response to a
change in the environment cannot be postponed indefinitely. The state of the system at
any point in time must be correct in relation to the state of the environment at the same
point in time. Any state of the system that causes an accident in the environment or in
the system itself, such as the destruction of system components, is regarded as a failure.

Aircraft autopilots, nuclear power plant system control, robotics and virtual reality
applications are just a few examples of real-time systems in use today. Other examples
include autonomous vehicles or missile defense applications that are used to detect, track,
and intercept missiles in order to prevent the destruction of an area or ship. Indeed, we
can find real-time systems in a wide variety of fields, each of these systems must adhere
to the temporal constraints defined by their mission in order to perform effectively. This
does not imply that all of these systems must respond immediately; rather, they must
respond in a timely and appropriate manner. For example virtual reality applications
must react to the user’s movement at a rate such that the user does not perceive any
delay between its actions in the real world and those in the virtual reality. It is also
not necessary to select the most performant electronic board if two different electronic
boards with varying levels of performance can integrate virtual reality applications while
ensuring that their respective timing constraints are respected throughout the system’s
life. Indeed, a system may seem slow to us, but if we are sure that its temporal constraints
will be respected, there is no reason to increase its speed. Also, it is essential to recognize
that the average reaction time of a system is not a guarantee of its ability to respect
its temporal constraints. For example, a system that reacts very quickly on average but
too slowly in some rare situations is not desirable. Indeed, without a guarantee that the
system will always react in time, one can assume that accidents will occur, with potentially
catastrophic consequences.

1.2 Intelligent Transportation Systems

A real-time system is exemplified by intelligent transportation systems. They evolve
in an ever-changing environment and must make decisions based on their perception
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within certain time constraints imposed by the environment. Intelligent Transportation
Systems are transportation management systems; they integrate not only vehicles, roads,
communication, and control infrastructures, but also the people who are present in the
surrounding area. They seek to alleviate traffic congestion and pollution in the city, while
also increasing vehicle and pedestrian safety.

Furthermore, we can consider these systems as cognitive systems according to [34],
i.e. systems that learn to respond to a particular situation based on data collected dur-
ing previous interactions with the environment. Three steps can be used to model the
functioning of these systems.

• The collection of data defining the environmental context;

• The analysis of data and the planning of actions;

• Action execution.

Today, ITS are critical, as existing transportation infrastructures are insufficient to
solve existing transportation problems [8]. They rely on technologies such as the Global
Positioning System (GPS) to estimate traffic congestion, the communication technologies
between vehicles and the network to share or get data with vehicles or with the intelligent
transportation system’s control center. Additionally, they are based on functionalities
embedded in modern vehicles that aid the driver in her driving by utilizing Advanced
Driver Assistance Systems (ADAS) [76]. Each of these technologies can be classified into
two distinct categories

• Critical functionalities;

• Functionalities for comfort purpose.

1.2.1 Critical functionalities

All functions that have a significant control over the vehicle or that have the purpose of
preventing an immediate accident are classified as critical features. These features must
adhere to strict time constraints in order to avoid collisions. A delayed response can
have severe consequences, including the loss of a human life. For instance, the following
functionalities can be considered critical:

Cruise control. With the Cooperative Adaptive Cruise Control (CACC) [63], cruise
control features for automobiles have become a reality. This technology aims to con-
trol a vehicle on a road in conjunction with other vehicles, forming what is known as a
distributed hybrid system [56].

Collision Avoidance Systems (CAS). These systems are based on active sensors
such as radar, laser and lidar or passive sensor as optical camera or acoustic sensors to
detect information on the environment and taking decision to avoid collision [65].
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Antilock Braking Systems (ABS). These systems are active safety systems and are
designed to maintain steering control during heavy braking by preventing the wheels from
locking [38].

Autonomous Emergency Braking (AEB). This feature is intended to detect situa-
tions in which emergency braking is required and to bring the vehicle to a complete stop
in these circumstances [40].

1.2.2 Functionalities for comfort purpose

These features are intended to enhance the driver’s overall comfort. They entail automat-
ing non-mission critical tasks, as well as advising and providing additional information to
the driver. These include the following features:

Automatic Climate Control: which automatically regulates the air humidity and
temperature inside the vehicle.

Automatic high beam control: which controls the vehicle’s headlights in order to
avoid blinding an oncoming vehicle detected by a front-facing camera.

Biometric seat: utilizes a camera to determine the driver’s level of stress, distraction,
and fatigue. When the driver’s fatigue level is too high, for example, this feature alerts him
and suggests a break. According to Mukhtar et al. [65], the primary causes of accidents
are driver inattention, fatigue, and immature behavior [69]. Additionally, more than half
of accidents involving inattention are caused by driver distractions [52] such as eating,
drinking, or using a phone or other multimedia device in the vehicle [78]. Fatigue is also
a significant factor, accounting for between 25% and 30% of road accidents [36].

GPS Tracking: enables the vehicle’s position in the environment to be tracked in real
time, assisting the driver on his route and alerting him when he exceeds the route’s
maximum allowed speed.

1.3 Autonomous Vehicles
Additionally, modern vehicles are increasingly becoming self-driving. However, various
classifications propose several levels of autonomy, with the final level representing a vehicle
with perfect autonomy [31, 1, 30, 12]. We present in Table 1.1 the SAE international
classification.

Level Name Description
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0 No Driving Au-
tomation

The driver must perform all the driving tasks.

1 Driver Assis-
tance

The driver must perform all tasks that the assistant
cannot, as well as supervise and intervene as necessary
to ensure that the vehicle behaves appropriately. The
driver also has the responsibility to choose when the as-
sistance should intervene and when it should stop, more-
over he must also be able to regain control of the vehicle
at any time, even if he does not want to. When acti-
vated, the driving automation system performs either
the longitudinal or lateral vehicle motion control sub-
task and disengages immediately upon driver request.

2 Partial Driving
Automation

The driver must perform all tasks that the assistant
cannot, as well as supervise and intervene as necessary
to ensure that the vehicle behaves appropriately. The
driver also has the responsibility to choose when the as-
sistance should intervene and when it should stop, more-
over he must also be able to regain control of the vehicle
at any time, even if he does not want to. When acti-
vated, the driving automation system performs both the
longitudinal and lateral vehicle motion control subtask
and disengages immediately upon driver request.

3 Conditional
Driving Au-
tomation

The driver decides when to activate the automated driv-
ing system. When it is activated the driver must main-
tain vigilance and be prepared to regain vehicle control.
This may occur if the system requests driver intervention
or if the driver detects a system error. The automated
driving system performs the tasks that are possible for
it to do. If the automated driving system detects a sit-
uation that it cannot handle, it requests that the driver
regain control of the vehicle. In addition, if the driver
requests to regain control of the vehicle, the vehicle must
give it back immediately.

4 High Driving
Automation

When the automated driving system is engaged, the
driver becomes a passenger. He may request to regain
control of the vehicle, but there is no assurance he will
receive it immediately. In some instances, the auto-
mated driving system may delay handing over control
to the driver. When the automated driving system’s
operating range is exceeded, the system requests the in-
tervention of the driver.
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5 Full Driving Au-
tomation

When the automated driving system is engaged, the
driver becomes a passenger. He may request to regain
control of the vehicle, but there is no assurance he will
receive it immediately. In some instances, the auto-
mated driving system may delay handing over control
to the driver.

Table 1.1: SAE Autonomous vehicle classifications [30]

While fully autonomous vehicles are not yet commercially available, some vehicles
already possess advanced levels of autonomy. Indeed, Tesla vehicles already meet the
SAE’s level 2 autonomy standard. We can conclude that, as innovation for autonomous
vehicles advances, correct embedded computing systems will be required to integrate
additional functionalities and to handle the increased number of tasks. Additionally, these
new functionalities will become increasingly critical, necessitating adherence to extremely
stringent time guarantees.

1.4 Problems

The new technologies presented so far are an excellent way to address the lack of safety
for vehicles and pedestrians caused by city traffic congestion.

However, at the same time there is a pressure for these vehicles to embed more func-
tionalities to enhance driving, and a budgetary pressure regarding electronic components
and design and development costs. In short, there is a need for high performance comput-
ing platforms with affordable price. Component-Off-The-Shelf (COTS) microprocessors
are good candidates for these platforms. An example of architecture that meets the de-
mand of such systems is the ARM Big Little, which allows a tradeoff between performance
and energy consumption [27].

However, system analysis is extremely expensive. In avionics, the verification phase
accounts for an average 60% of the project budget [18]. However, when we consider
the financial loss caused by an aircraft accident, this cost becomes reasonable. In the
automobile industry, budgets are more constrained, but financial losses during an accident
can be substantial; therefore, the verification phase is just as crucial. A variety of issues
contribute to the cost of the analyses.

The need for a precise model of the hardware for analysis tools: having an
accurate model of complex systems becomes increasingly difficult. In addition, the exact
specification for certain components, such as GPUs, is not publicily available, it is known
only to the manufacturer.

The need for a precise model of the software: obtaining an accurate software model
is difficult for the same reason as hardware models, namely the increasing complexity of
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systems. Tasks can be dependent on one another, requiring the completion of another
task before their execution can begin. There is, also, a risk of contention between tasks
over shared resources that can be utilized by only one task at a time. In addition to
temporal constraints, task scheduling should also take into account system temperature
and energy consumption, among other factors.

The need for having the least pessimistic analysis: the majority of system anal-
yses solutions in the literature are static, where an execution time is obtained without
executing the code. These analyses extract properties from the binary code as well as the
hardware and software models that are valid for the lifetime of the system. However, it is
hard to extract certain properties, necessitating a trade-off between accuracy and analysis
complexity [81]. The pessimistic nature of these analyses is a result of their consideration
of the worst-case scenario.

The COTS microprocessors’ high performance is a result of their complex features,
which include a shared bus, direct memory access (DMA), pipelines, branch prediction and
cache memories. They were designed to boost the average performance of commercially
available processors. However, their design does not account for the need to predict
their behavior, which makes their analysis extremely complex: for instance, to compute
precisely the worst-case execution time of a program, it may be necessary to model domino
effects or timing anomalies for pipelines and branch prediction [14]. To circumvent these
issues, the models used to represent their behavior contain a large number of assumptions,
which add significant amounts of pessimism to the execution time of a task.

1.4.1 Models of cache memories

An important set of simplifying assumptions is done in the analysis of cache memories.
Caches are used to bridge the speed gap between the processor and the main memory.
These memories store a copy of the data accessed from memory closer to the processor,
thereby speeding up subsequent accesses. The speed with which data is accessed is de-
termined by the cache memory’s contents. However, its content is contingent upon the
memory access history, which is complex to predict. Additionally, these memories are
susceptible to transient faults as a result of the miniaturization of electronic chips and the
reduction of electric voltage. These faults can result in bit-flipping in the cache memories,
resulting in data corruption. The cache memories thus present a lack of predictability and
a lack of reliability.

Additionally, cores may request access to memory via the shared bus at the same time
in multicore systems, resulting in bus contention [71]. However, these accesses are caused
by cache misses. As the classification of a memory access as a cache hit or a cache miss
depends on the cache’s content, it is difficult to predict bus contention. Thus, enhancing
cache prediction can consequently enhance bus-level contention prediction.
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1.5 Contributions and organization of the thesis
This thesis proposes a more accurate representation of software in the analysis and a
reduction in the analysis’ pessimism, focusing on the cache memory utilization by real-
time tasks.

First in Chapter 2, we describe the model used to represent tasks, as well as the various
scheduling algorithms and schedulability analyses proposed in the literature. The cache
memories and their vulnerability are then presented in greater detail in Chapter 3. This
chapter focuses on the improvements made to the task model and scheduling analysis
in order to account for cache memories in these analyses, as well as the state of the
art regarding these analyses and models. In addition, we will describe how to measure
the vulnerability of a cache memory and the various mechanisms proposed to safeguard
these memories from the literature. In Chapter 4 we present our contribution to improve
the predictability of the cache memories while in Chapter 5 we address the problem
of reliability of the caches. Finally in Chapter 5.5, we conclude our contributions, we
sumarize the most important results and we discuss some possible extensions of our work.
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In this chapter, I will discuss how real-time systems are modeled in the literature and
in this thesis, as well as the analyses that allow the worst-case execution time of a task
to be computed. Also, we will see the various algorithms used to schedule the execution
of tasks, as well as the analyses that ensure that this scheduling adheres to temporal
constraints.

2.1 Task Model

A real-time system can be model as a set of concurrent software tasks. A task is a software
thread, that is a sequential piece of code that executes onto a multi-threaded operating
system. In Listing 2.1 we see the pseudo-code of a typical real-time task in a POSIX-
like environment: after a first phase that initializes the local and global variables of the
task, it enters a (finite or infinite loop) where, after executing its functionality the task
suspends itself by invoking a function (in the pseudo-code of Listing 2.1 this function is
denoted as wait_for_activation(), but it could be different, depending on the operating
system). While the thread is suspended, other concurrent threads can execute. To restore
execution, the task must be activated either by a timer (e.g. a periodic task) or by an
external event (for example, an interrupt from a device driver, or a signal coming from
another software task), in which case we have a sporadic or aperiodic task.

To analyze a system consisting of a set of concurrent tasks, we will now provide a
mathematical model of the temporal behaviour of the tasks. In this thesis, we consider a
set of N independent real-time tasks, denoted as T = {τ1, · · · , τn}. A real-time task τi
is described as a (possibly infinite) succession of jobs. In Listing 2.1, a job is an instance
of the execution of the piece of code inside the while loop, between two consecutive
activations. We denote with ji,k the kth jobs of τi. In our model, a job ji,k is characterized
by three parameters. The first parameter is the arrival time, noted ai,k, that correspond
to the moment when the job is ready to start its execution; notice that this instant may
not be the start of the execution of the job since other jobs from other task may have to

void *mytask(void *args)
{

// Initialization

while(TRUE) {

// code of the task’s instance
// (job)

wait_for_activation ();
}

}

Listing 2.1: Code of a real-time task
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finish their execution before. The second parameter is the job’s absolute deadline, noted
di,k, that corresponds to the moment before which ji,k need to have finished its execution.
Finally, the latest parameter is the execution time of the job, noted ci,k.

We called periodic task, a task that has its jobs arriving in a periodic scheme. Periodic
tasks are the most predictable tasks since we know exactly the arrival of each of their jobs.
In Listing 2.1, the function wait_for_activation() suspends the task waiting for acti-
vation from the software timer provided by the OS. For example, in the POSIX standard,
the function wait_for_activation() is replaced by function clock_nanosleep().

Sporadic tasks are tasks that have their jobs arriving at or after a minimum inter-
arrival time since the arrival time of the previous job. These tasks are less predictable
than periodic tasks since we do not know exactly the arrival time of the jobs. They
are used to model systems where tasks are activated by external events which are not
triggered regularly. For example, the reception of a packet from an Ethernet network is
often modelled by a sporadic task. However, since we can establish a minimum interarrival
time, we can upper bound the load caused by a sporadic task on the system by considering
its jobs to arrive at their earliest time.

Finally, there exists another category of tasks, the aperiodic tasks for which we do
not have any guarantees concerning the arrival time of their jobs. They are the least
predictable type of tasks because we cannot upper bound their workload.

The classic model by Liu and Layland [55] characterizes a task τi with the tuple
(Ci, Di, Ti). With Ci the worst case execution time of its jobs Ci = max

∀k
(ci,k), Di the

relative deadline, i.e. the length of any interval [ai,k, di,k], and Ti the minimum inter-
arrival time between two jobs (if we consider sporadic tasks) or the period of the arrival
times (if we consider periodic tasks). Thus, in both cases Ti = min

∀k
(ai,k+1 − ai,k).

We denote by Ui = Ci/Ti the utilization of τi.

An example of a sporadic task model is shown in Figure 2.1. It shows 3 jobs of task
τi, with their execution represented by the blue boxes.

Also, there are two different models of tasks concerning the deadlines, the constrained
deadline tasks and the implicit deadlines tasks. In the first model the relative deadline is
inferior or equal to the period Di ≤ Ti; in a case of implicit deadline tasks, the deadline
is equal to the period Di = Ti.

ai,1 ai,2 ai,3

di,1 di,2 di,3

Ti Ti

Di

Ci Ci

ji,1 ji,2 ji,3
Time

Figure 2.1: Sporadic task model



26 CHAPTER 2. REAL-TIME SYSTEMS MODEL
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Figure 2.2: Static analysis

2.2 WCET estimation
The execution time of a task depends on several parameters such as the platform charac-
teristics, its status or the data that are handled by the task. To estimate the worst-case
execution time Ci of a task, measuring the execution time of numerous instances of the
task might be seen as a good idea. However, it is not the case, since the instance that
produce the worst case execution may not be observed during the measurements. In
this case the value obtained may be too optimistic. To provide a safe upper bound of
worst-case execution time Ci, we must statically analyze the code of the task.

Static analyses extract properties from the code that are applicable to all instances
(jobs) of a program. The analysis can be done on either the source code or the compiled
binary. On the other hand, it is impossible to know a large portion of the properties about
a code because doing so would require solving undecidable problems. In these instances,
static analyses treat those properties as unknown, and if these properties have an impact
on the WCET, the worst-case scenario is always considered [81]. The WCET of a program
obtained from a static analysis is therefore an upper bound on the actual value.

Additionally, a precise model of the platform on which the program will run is required
for static analysis. The more precise the model, the more precise the analysis, and the
closer the WCET upper bound is to the actual value. Figure 2.2 shows a generic flow
to obtain an estimation of the WCET. In the diagram, the program’s binary code and
the platform’s description serve as inputs for the static analysis. The Flow Facts of the
program, are already-known properties of the program’s execution, such as the maximum
number of loop iterations. In a static analysis, every task is analyzed in isolation. The
impact of the other tasks on the execution time of the analyzed task is not considered.
This simplifies considerably the analysis, however it represent a source of imprecision:
additional analysis will be required when integrating all tasks in the system.

Several estimation strategies have been proposed for the WCET [85]. According to
Bai et al. [15], the most prevalent technique for performing a static analysis is the Implicit
Path Enumeration Technique (IPET) [54]. This procedure is based on the basic blocks
(BBs), those are blocks of sequential instructions that do not contain any branch or call
except at their ends. The IPET analysis consists of four steps:

• Analysis of the various execution paths to construct the BBs, the Control Flow
Graph (CFG), and to identify the unfeasible paths;

• Analysis considering hardware features based on execution history such as cache
memory or branch prediction;
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Control Flow Graph

Figure 2.3: Task CFG containing a loop

• Compute the WCET of the BBs;

• Compute the WCET of the task with an Integer Linear Program (ILP).

The CFG referred to in the first step of the IPET method corresponds to a graph
depicting the various possible execution paths of the analyzed task. In order to construct
this graph, the analysis connects the BBs with edges representing the destination of the
calls or the branches.

An example of task CFG is shown in Figure 2.3. In this figure we can see a task with
4 BBs, BB1, BB2, BB3, and, BB4. Also, this task includes a loop represented by BB2 and
BB3. The entry and the exit of the task are respectively BB1 and BB2 in this example.

In this thesis we use OTAWA [17] to perform the static analysis of a task, which is
based in the IPET method.

2.3 Real-Time Tasks Scheduling
According to Section 2, a real-time system comprises numerous tasks. Therefore, these
tasks must share physical resources like CPUs and cache memories. Certain resources,
such as the CPU, can only be utilized by one task at a time. Therefore, resource utilization
must be scheduled between tasks.

The WCET analysis is insufficient to ensure that the time constraints will be met,
as this step assumes that each task will run independently on its own platform, without
sharing any resource with the others.

On the Figure 2.4 is a an example of a possible schedule of two tasks τi and τj that are
sharing a platform with a single core. The task τi has WCET Ci = 5 and deadline Di = 6,
τj has WCET Cj = 3 and deadline Dj = 7. If we consider the two tasks independently,
both of them will meet their deadlines. Nonetheless, as demonstrated by this example, τj
misses a deadline due to the fact that a single core can only execute one task at a time.
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Figure 2.4: Scheduling of 2 tasks.

• Single core

• Multicore

– Global

– Partitioned

• Online scheduling

– Task level fixed
priority: Deadline
Monotonic (DM),
Rate Monotonic
(RM), Fixed Priority
in general.

– Job level fixed priority:
Earliest Deadline First
(EDF).

– Dynamic priority:
P-Fair, Least Laxity
First (LLF).

• Offline scheduling

– Time Triggered

• Preemptive

• Limited Preemption

• Non-Preemptive

Table 2.1: Scheduling Taxonomy

Therefore, it is necessary to ensure that all time constraints are met when scheduling
tasks.

Table 2.1 presents a taxonomy of scheduling algorithms. The left column displays
the various methods of task allocation among system cores. In a system with a single
core, all tasks will utilize the same core. There are two options for multicore systems:
allowing tasks to be scheduled on any core (Global) or assigning a specific core to each
task (Partitioned). In the latter case, each instance of the task must run exclusively on
this core. This is equivalent to considering multiple single-core systems, although you
must take into account that other system features, such as the bus and cache memory,
are still shared.

In the middle column, the various scheduling algorithms are represented, including
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online schedulers that will schedule the tasks during the execution of the system and
offline schedulers that will determine which task must be executed based on an offline
schedule. Time-triggered is an example of an offline scheduler.

For online schedulers, there are three distinct categories of algorithms. The first
category corresponds to algorithms that assign a fixed priority to each task, and each
instance of a task will have that priority. When several tasks are ready for execution, the
one with the highest priority will be executed first. This category contains all variations
of Fixed Priority (FP) [37, 55], such as Rate Monotonic (RM), which assigns a priority
inversely proportional to the period of the task, and Deadline Monotonic (DM), which
assigns a priority inversely proportional to the relative deadline of the task, such that the
task with the shortest relative deadline will have the highest priority.

The second category corresponds to algorithms that assign a fixed priority to each
instance (job), so that two instances of the same task may not have the same priority.
This category includes Earliest Deadline First (EDF) [55], an algorithm that executes the
job with the earliest absolute deadline that is ready to be executed.

In the last category, algorithms that assign dynamic priority to each instance are
presented. In these algorithms, we find Least Laxity First (LLF) [64], which executes
the instance with the smallest laxity (the remaining time between the expected end of
execution and its absolute deadline).

The right column represents the various preemptions modes permitted for online sched-
ulers. In preemptive systems, all preemptions are permitted, meaning that a task can be
interrupted at any point during its execution. In systems with limited preemption, a task
can only be preempted at certain specific points of its execution. And finally, there are
systems that prohibit preemption.

In this thesis, we focus on single-core systems with EDF scheduling so that we can later
adapt the solutions to partitioned multicore systems. In addition, both fully preemptive
and non-preemptive systems are addressed.

We will now present the FP and EDF schedulers for single-core systems and their
scheduling analysis in greater detail.

2.4 Fixed Priority

Fixed Priority (FP) is a family of schedulers rather than a single scheduler. FP consists
of assigning each task a fixed priority. Consequently, each job within a task has the same
priority. The scheduler executes the ready task with the highest priority at any instant
t. This priority can be assigned manually by developers, or calculated by heuristics such
as Deadline Monotonic (DM), which assigns a priority Pi inversely proportional to the
relative deadline of the task τi (Pi

∼= 1/Di). In the case of Rate Monotonic (RM), the
priority of a task τi is inversely proportional to its period that is Pi = 1/Ti. Furthermore,
DM is optimal in the class of fixed priority preemptive scheduling of periodic and sporadic
tasks with implicit and constrained deadlines, while RM is optimal only if all the deadlines
are implicit [53]. In other words, if it exists a schedule with any fixed priority assignment
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that respects time constraints, then scheduling with RM or DM will also respect time
constraints.

2.4.1 Preemptive tasks schedulability analysis

To ensure that time constraints are respected under RM scheduling, we can verify that
the utilization of the system does not exceed Ulub [55],

N∑
i=1

Ci

Ti
≤ Ulub Ulub = N(21/N − 1) (2.1)

However, this is a sufficient test, as there are schedulable systems that do not satisfy
this condition. Conversely, if the system utilization is greater than 1, the system cannot
be scheduled.

To ensure that time constraints are met with FP in general when each task has a
different priority, we can conduct the exact test below. If the maximum response time
Ri for each task τi (the maximum time between the activation of a task’s job and the
completion of its execution) is not greater than Di [11], then the system is schedulable.

∀τi ∈ T |Ri ≤ Di (2.2)

A task’s response time is calculated iteratively by Equation (2.4). The initial step is to
assume that Ri = Ci. Then, the following iterations consist of adding to the WCET of the
task the execution time of tasks that can preempt it based on the response time calculated
in the previous iterations. When the response time exceeds the relative deadline or when
the response time does not change from one iteration to the next one, we terminate the
procedure.

R0
i = Ci (2.3)

Rk+1
i = Ci +

∑
∀j∈hp(i)

⌈
Rk

i

Tj

⌉
· Cj (2.4)

2.4.2 Non-preemptive tasks schedulability analysis

The schedulability analysis for Fixed Priority Non Preemptie (FP-NP) is identical to that
for FP with shared critical resources. We assume that the processor is a critical shared
resource protected by a semaphore, hence a task that has begun execution cannot be
interrupted. Therefore, the response time for FP-NP with a different priority per task
can be calculated as follows [32, 33]:

Ri = Si + Ci (2.5)
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Where Si corresponds to the worst start time of the task τi,

S0
i = Bi (2.6)

Sk+1
i = Bi +

∑
∀j∈hp(i)

(⌊
Sk
i

Tj

⌋
+ 1

)
· Cj (2.7)

with Bi the maximum blocking time a job of task τi can experience [73]. Bi can be
calculated as follows:

Bi = max
∀j∈lp(i)

(Cj) (2.8)

In the previous equation lp(i) represents the set of tasks with a lower priority than τi.
We denote by hp(i) the set of tasks with a higher priority than τi.

2.5 Earliest Deadline First
Earliest Deadline First (EDF) is a scheduler that assign a priority for each job of a tasks
inversely proportional to its absolute deadline. With EDF, the ready job with the earliest
deadline is executed first. The preemption-level is defined for a task τi as πi = 1/Di.
Baker [16] proved that, in EDF scheduling, a task τj may preempt a task τi only if
πj > πi. We assume that tasks are sorted in non-ascending order of preemption-level: for
any two tasks τj and τi, πj > πi implies j < i. EDF is also optimal, which mean that if
there exists an online scheduler that respects the timing constraint for a set of tasks, EDF
can also schedule these tasks while respecting their timing constraints. In this chapter,
the scheduling analyses for EDF are presented for systems with and without preemptions.

2.5.1 Preemptive tasks

To analyze the schedulability of a preemptive system under EDF scheduling, we can use
the processor demand bound analysis first proposed by Baruah et al. [19]. This analysis
works for tasks with constrained and implicit deadlines. It consists in computing the
processor demand of the task set at each deadline in the interval [0, L], where L is an
estimated upper bound on the first idle time. The demand bound function [19] of a task
τi in the interval [0, t] can be computed as:

dbfi(t) = η(i, t) · Ci (2.9)

With η(i, t) an upper bound to the number of instances of the sporadic task τi that have
arrival and deadline in interval [0, t]:

η(i, t) = max

(
0,

⌊
t−Di

Ti

⌋
+ 1

)
(2.10)

The demand bound of the task consists of the sum of the demand bound for each task
in the task set:

dbf(t) =
N∑
i=1

dbfi(t) (2.11)
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If for each deadline the demand bound of the task set is less than the deadline, then the
system is schedulable. Otherwise, it is not. Thus, the system is schedulable if and only
if:

∀t ≤ L, dbf(t) ≤ t (2.12)

2.5.2 Non-preemptive tasks

In the case of non-preemptive tasks, we employ the following test, proposed by Jeffay et
al. [46], to ensure that time constraints are guaranteed. However, this test is valid only
for systems with tasks that have implicit deadlines.

It consists of two conditions, the first of which verifies that the processor’s global usage
does not exceed its computing capacity:

N∑
i=1

Ci

Ti
≤ 1 (2.13)

The second condition verifies that blocking between tasks does not jeopardize confor-
mance to time constraints:

∀i, 1 < i ≤ n; ∀t, T1 < t < Ti;

t ≥ Ci +
i−1∑
j=1

⌊
t− 1

Tj

⌋
· Cj (2.14)

Similarly to FP, we can consider the processor to be a critical shared resource. The
blocking time is also calculated in the same manner, with the exception that lp(i) repre-
sents the set of tasks with a lower preemption-level than τi. Baker et al. [16] proposed
another test to verify the schedulability of system with implicit deadlines based on the
utilization of the system:

∀k
k=1,··· ,N

(
k∑

i=1

Ci

Di

)
+
Bk

Dk

≤ 1 (2.15)

When dealing with tasks that have constrained deadlines, the demand bound function
can be modified to consider the blocking time as follows [20]:

dbf(t) = B(t) +
N∑
i=1

dbfi(t) (2.16)

B(t) = max(Cj|Dj > t) (2.17)
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The high performance, measured by the number of instructions executed per second,
of a microprocessors is limited by the speed of data transfer between the main memory
(DRAM) and the processor [43], which necessitates the use of cache memories. Cache
memories maintain a copy of the accessed data in order to speed up the data transfer for
future accesses. Cache memory access latency is significantly lower than DRAM access
latency. However, cost per byte of a cache memory is much higher than DRAM, so only
small sizes are possible. Consequently, cache memory cannot replace main memory.

3.1 Cache Memories Hierarchy
There are multiple cache memories in multicore systems, which can be shared by multiple
cores or reserved for a specific core. In addition, some of them may contain only instruc-
tions, others only data, or both instructions and data simultaneously. The majority of
multicore systems consists of three levels of cache memory. The closest level to the cores
consists of an instruction cache (IL1) and a data cache (DL1) for each core. These caches
are not shared with other cores and are directly connected to the core. The second level
consists of one cache memory (L2) per core; these cache memories are linked to the IL1
and DL1 of their respective core; these caches may contain both instructions and data
simultaneously. The third and final level contains a unique cache memory (L3) for all
multicore systems; this cache is connected to the L2 caches. An example of multicore
architecture with 2 cores and 3 level of caches is presented in Figure 3.1.

3.2 Structure
A K-way set-associative cache memory is a matrix of cache lines, the basic memory block
unit of a cache memory. Cache lines are regrouped into cache sets of K elements, also
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Figure 3.1: Example of multicore architecture
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Figure 3.2: Example of a K-way set-associative with Z cache sets

known as ways. A cache memory with a single way per set is known as a direct-mapped
cache, and a cache with a single set is known as a full-associative cache.

The memory is divided in cache blocks (CB), which are memory blocks of the size
of a cache line. Each of these CBs is assigned an index computed as the modulo between
the address of the CB and the number of cache sets, which corresponds to the cache set
where the CB may be stored. Two CBs may have the same index: to differentiate them,
each one is assigned a tag computed from their address. Figure 3.2 represents an exemple
of a K-way set-associative with Z cache sets. It is composed of two matrixes, the data
array that contains the CBs and the tags array that contains the tags of the CBs stored
in the cache memory. The columns of these matrixes correspond to the cache ways and
the lines, the cache sets.

As it exists two types of memories in a computer, physical and virtual, a cache memory
is in one of the followings categories:

• Physically indexed, physically tagged cache memories (PIPT);

• Virtually indexed, virtually tagged cache memories (VIVT);

• Virtually indexed, physically tagged cache memories (VIPT).

The operating system uses virtual addressing for the memory of processes and, by
extension, tasks. Each process has a dedicated address space. Consequently, two data
coming from separate processes can have the same virtual address. To determine the
location of data in physical memory, the Memory Management Unit (MMU) must convert
virtual addresses to physical addresses.

Therefore, PIPT caches must convert the virtual address to a physical address in
order to obtain the index and tag of a CB. Figure 3.3 represents this type of cache
memory. The virtual address is translated with the MMU that contains the Translation
Lookaside Buffer (TLB). The TLB contains the recent translations to speed up the MMU
executiontime. VIVT caches use only the virtual address for the calculation of the index
and the tag, removing the need to translate the physical address into the virtual address,
it is shown with Figure 3.4. This accelerates the access to CBs in comparison to PIPT
caches. However, these caches must be invalidated entirely whenever a process is changed.
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Figure 3.5: VIPT cache

VIPT cachees, describe with Figure 3.3 are a compromise between the two previously
mentioned cache types. The translation of the virtual address into a physical address
and the calculation of the tag are performed while the index is being calculated from the
virtual address and the cache set is being accessed. This enables the same performance
as the VIVT caches without invalidating the cache memory when a process is changed.
However , a process can have two virtual addresses that point to the same data and,
therefore, the same physical address [72]. Consequently, two instances of the same CB
can coexist in the cache memory.

It is necessary to ensure that all instances of a CB are updated when writing. Because
of this, data or hybrid caches (data and instructions) are typically of the PIPT type,
whereas instruction caches that do not support writes are typically of the VIPT type.

When the processor needs to access an instruction, the index and the tag are com-
puted from the virtual address. The tag is compared with all the CBs contained in the
corresponding cache set: if a match is found (hit), then its age in the cache set is updated
according to the replacement policy; if the tag is not found (miss), the CB is loaded from
the main memory and stored in the cache set according to the replacement policy.

In this thesis we only consider a system composed of a single core with an instruction
cache virtually indexed and physically tagged. The contribution of this thesis targets
direct mapped and set-associative as they are the most frequently used caches. Also,
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Fully-associative caches which are caches with only one index are not suited for large
cache memory due to the large number of comparators [41].

3.2.1 Replacement policy

When a CB must be stored in a cache set, an algorithm chooses in which cache way the
block has to be stored. Such algorithm is called a replacement policy algorithm. Several
replacement policies exist [50]:

• First In First Out (FIFO). The oldest block present in the cache memory is the one
which is replaced by another one if there are no free ways available.

• Least Recently Used (LRU). Each cache way in a cache set is assigned an age: at
each access, ages are updated so that a CB with a more recent access than another
has a lower age. When a CB has to be loaded in a cache set that is full, the
least recently used CB is evicted and all the ages are updated accordingly. This
replacement policy is the most predictable.

• Pseudo Least Recently Used (PLRU). LRU is difficult to implement as it needs to
track the age of all the blocks in the memory cache. Thus, a family of replacement
algorithms with a behavior close to LRU was designed: the PLRU family. This
family of algorithms includes tree-PLRU and bit-PLRU.

• Random when a block must be stored, a random way is selected. It is the most
unpredictable replacement policy.

In this thesis, we only consider the LRU replacement policy.

3.2.2 Write Policy

As a data can have multiple copies stored in multiple cache memory, when data is written
all copies must be updated. However updates may be done at different times. They can
be done directly after the write, we call this policy “write-trough”; or it can be done when
the data is evicted, in this case it is called the “write-back” policy.

In this thesis only instruction cache memories are targeted, there is no write policy
for this memories since instructions are read only.

3.3 Cache Analysis for WCET estimation
To take cache memory into account when estimating the WCET, an analysis classifying
each memory access as a cache hit or a cache miss must be provided. There are two types
of cache analysis: must analysis and may analysis. Instead of classifying each memory
access, these analyses assign a category to each line block (LB), a block corresponding to
the intersection of a CB and a BB, to determine whether accessing the latter will result
in a hit or a miss. The may analysis categorizes LBs as either always miss or unknown.
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Figure 3.6: Relation between CBs and BBs

However, this analysis is overly optimistic if every access to a LB classified as unknown
is considered a cache hit. Alternatively, if we consider unknown accesses as accesses that
always cause cache misses, we would be considering a system without cache memory,
which would be a very pessimistic scenario.

The must analysis categorizes each LB as always hit or Unknown. This analysis can
be used safely for calculating the WCET if each access to a LB classified as unknown is
considered as always miss.

Healy et al. [42] propose an improvement in the cache analysis by providing more
categories for classifying the LBs:

• Always Hit (AH);

• Always Miss (AM);

• Unknown (U);

• First HIT (FH);

• First Miss (FM).

The categories FH and FM are used to classify the accesses that are hits or misses
during the first execution of the line block, and the opposite for subsequent executions.
This analysis is used to calculate the WCET for the tasks in this thesis.

3.3.1 Example

Figure 3.6 represents the relation between the CBs and the BBs of an example task.
The cache memory is composed of two cache sets and it is depicted on the left. At its
right, the binary code of the task is composed of 4 CBs, their arrows in direction of the
cache memory point towards their respective cache set. Continuing to the right, we show
the BBs and LBs as computed by the WCET analysis: for example, the yellow CB is
composed of two LBs, one in the purple BB and the other in the green BB.
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(b) Example of a scheduling with CRPD

On the right, we depict the CFG built from the binary during the WCET analysis.
At the beginning of the execution of the task the yellow CB will be stored in one of the
green cache lines. As the yellow CB is not present in the cache before the execution of
the purple BB, the yellow LB will be classified as always miss. During execution, the
program will first move to the grey BB, and the dark red CB will be loaded into the blue
cache set. However, if the task jumps into the green BB and returns to the grey one later,
the dark red CB will still be present in the cache. Therefore, it is classified as first miss.

3.3.2 Cache Related Preemption Delay

The classification of cache accesses with WCET analysis cannot be guaranteed in a system
that supports preemption. When a preemption occurs, the CBs of the preempted task may
be evicted by the CBs of the preempting task. The subsequent access to these CBs will
result in a cache miss. Thus, when a CB of a preempted task is evicted and its subsequent
access is considered as a cache hit by the WCET analysis, an additional delay occurs to
access the CB that was not accounted for by the WCET analysis. This additional delay is
known as "Cache Related Preemption Delay" (CRPD), and corresponds to the reloading
of the CB. By definition, there is no CRPD for non-preemptive scheduling algorithms;
however, if the scheduling algorithm used permits preemptions, the CRPD must be taken
into account during the scheduling analysis.

Figures 3.7a and 3.7b depict a scheduling example with three tasks τ1, τ2 and τ3,
with τ1 having the highest preemption-level, τ2 having an intermediate preemption-level,
and τ3 having the lowest preemption-level. In this example, we assume that each task’s
execution time is equal to its WCET. The white boxes indicate the execution time taking
into account the WCET. The blue boxes indicate the CRPD caused by task τ1 on the
other tasks. The red box represents the CRPD resulting from the task τ2.
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If we disregard the CRPD, we can observe that τ3 completes its execution on time in
Figure 3.7a. In Figure 3.7b, however, as the CRPD is considered, we can see that task τ3
completes its execution after the deadline.

Therefore, the CRPD must be considered during the scheduling analysis to ensure that
all time constraints are met, or the scheduling must be adjusted to avoid this phenomenon.

3.4 Related Works on CRPD

Many methods have been proposed in the literature to address the problem of the inter-
task interference due to cache memory. We can classify them into two different approaches.

3.4.1 Avoiding CRPD

The first method involves avoiding CRPDs between tasks. The various strategies in this
approach are designed to compartmentalize tasks in the cache and restrict preemptions.
Non-preemptive systems, on the other hand, are sensitive to long blocking times: a lengthy
task with a low preemption-level may block an urgent task with a high preemption-level for
the duration of its execution, resulting in unintended timeouts. Regarding task isolation
in cache memory, this method necessitates a substantial amount of memory space in the
cache and underutilizes it.

Luniss et al.[59] used simulated annealing to find a code layout in the memory that
minimizes the CRPD. However, tasks are not isolated on cache memory, so inter-task and
inter-core interference are still present. They used the linker to configure the code layout.
Mancuso et al. [60] propose a complete framework which defines, isolates and locks most
important memory areas in memory cache. These techniques are based on cache coloring
partitioning and cache locking, its purpose is to reduce conflicts and enhance predictability
but the cache is not optimally used because only the most important memories area are
in the cache and to access other areas require costly RAM access.

Kim et al. [48] propose a practical OS-level cache management scheme using page
coloring. They work on partitioned fixed priority preemptive scheduling system where
they partition cache memory between cores with page coloring. In their works tasks may
share the same cache area, thus intra-core interference is still present.

Ward et al. [84] consider colors as shared resources protected by critical sections, thus
priority inversion may occur during execution. To reduce this problem they propose to
slice tasks’ periods, but their method may force the preempted task to reload its data
(the set of data pages that a task may access in one job).

3.4.2 Improving CRPD estimation

A second approach is to reduce the pessimism of the CRPD analysis. Lee et al. [51]
introduced the notion of Useful Cache Block (UCB) as a block that is used by the task
at some point in the code, and that will be reused by the same task later in the code.
They proposed a static analysis of the binary code of the task to compute a set of UCBs
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for each preemption point. They also propose to compute the cost of n preemptions for
a task as the size of the union of the n largest UCB lists. However, this technique suffers
from a large pessimism because it analyzes each task in isolation. In particular, it does
not consider the set of CBs of the preempting tasks.

Tan et al. [80] take into account both the preempting and the preempted tasks. In
order to simplify the analysis and avoid combinatorial explosion, Tan et al. use a single
set of UCB per task, obtained as the union of all UCB set for every preemption point.

In Lunniss et al. [57] and Altmeyer et al. [6], the authors propose two approaches
called UCB-union multiset and ECB-union multiset. The first one consists in computing
a global cost in an interval of length t by combining the UCBs of all instances of lower
preemption-level tasks in the interval, and intersecting the result with the Evicting Cache
Blocks (ECBs) of the higher preemption-level task which causes the preemption. The
number of elements in the resulting set is an upper bound to the number of evicted
CBs. In the ECB-union multiset approach, all ECBs of higher preemption-level tasks are
merged together and intersected with the UCB of the preempted task to obtain a cost
of preemption for the lower preemption-level task. Since none of two methods dominates
the other, the authors propose a combined approach to improve the precision. Their
framework has been initially proposed for Fixed priority scheduling systems. It has been
extended later to Earliest Deadlines First scheduling systems [57]. We will extensively
discuss such approaches in Section 3.5.

Shah et al. [74] reproduced CRPD analysis methods from Altmeyer et al. [6]. They
show that the generation of synthetic task sets used in [6] is unrealistic, and propose a
different way to generate task sets based on low-level analysis with LLVMTA. They also
conclude that block reload time has a low impact on the schedulability. Something that
we could not confirm in our experiments. We will discuss this discrepancy in Section
4.6.2.

Previous papers mostly consider direct-mapped caches. Concerning the cache model
and the LRU replacement policy, Burguière et al. [26] present how to adapt existing
CRPD analysis from direct mapped caches to set-associative caches. They show that
only adaptation for LRU replacement policy is possible, since PLRU and FIFO cannot
be bounded using the number of ways.

Altmeyer et al. [7] propose to use the ages of the UCBs and the number of reloading of
ECBs to eliminate the UCBs that cannot be evicted from the analysis. They demonstrate
their algorithm on the Papabench benchmark suite [66] where they compare against the
UCB-union approach with a cache of 8 ways and 32 cache rows. However, the number of
tasks which can be involved in the same preemption is smaller than the number of cache
ways, therefore the results cannot be generalized to an arbitrary cache setting.

Marković et al. [61] recently proposed two novel methodologies for Fixed priority fully
preemptive scheduling which improve the CRPD cost estimation of [6]. Nonetheless, a
counterexample to these methodologies is provided in Chapter 4.1.
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3.5 Reminder on CRPD Analysis

3.5.1 Useful CBs and Evicting CBs

To compute the Cache Related Preemption Delay, the notions of Useful Cache Block
(UCB) and Evicting Cache Block (ECB) have been defined in the literature. We recall
the definitions here and introduce the notation that will be useful in the rest of the thesis.

3.5.1.1 ECBs

The evicting CBs of a task consist of all the CBs of this task that can evict CBs of another
task during a preemption. Most papers in the literature assume direct-mapped caches
(only one cache way in the cache memory), therefore the ECBs of a task are modeled as
a single set of cache set indexes. Indeed, in the case of a direct-mapped cache memory
only one CB per set can be evicted.

In the case of a set-associative cache memory with the LRU replacement policy, a pre-
empting task that accesses a given CB can evict all the CBs present in the corresponding
set in a chain reaction [26].

Consider, as an illustration taken from [26], a full associative cache (single index) with
four ways. This cache contains the following CBs of task τi, ordered from most frequently
used to least frequently used, at a point p during the execution of task τi : [1, 2, 3, 4].
After this point p, τi accesses the CBs in this order : 4→ 3→ 2→ 1. If τi execution does
not undergo any preemption, then these four accesses are cache hits. However, suppose
that at this point p, task τj preempts τi. The set of ECBs of τj consists of a single
element: {e}. Following this preemption, the cache will contain blocks [e, 1, 2, 3]. When
τi attempts to access block 4, a cache miss will occur; the cache will contain the values
[4, e, 1, 2]; consequently, block 3 will also be considered a cache miss. Likewise, block 2
and block 1 accesses will result in cache misses.

In summary, regarding no preemption:

[1, 2, 3, 4]
4→ [4, 1, 2, 3]

3→ [3, 4, 1, 2]
2→ [2, 3, 4, 1]

1→ [1, 2, 3, 4] 0 cache misses

and, regarding a preemption:

[1, 2, 3, 4]
e→ [e, 1, 2, 3]

4→ [4, e, 1, 2]
3→ [3, 4, e, 1]

2→ [2, 3, 4, e]
1→ [1, 2, 3, 4] 4 cache misses

Therefore, in this paper we represent the ECBs of a task as a multiset : for each ECB
index, the multiset contains K instances of the index, where K is the number of ways
in the cache set. From now on, we will use the symbol Ei for describing the multiset
representing the ECBs of a task τi.

For example, consider a task τi that accesses the CBs with index 3, 6, 7, 10 in a cache
set with 2 ways. Then Ei = {3, 3, 6, 6, 7, 7, 10, 10}.

For other replacement policies, such as FIFO, Burguière et al. [26] demonstrated that
the maximum number of cache misses that the eviction of a block by another task would
cause cannot be determined and cannot be limited by the maximum number of ways. They
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utilized a full associative FIFO cache with two ways and the following non-preemption
scenario corresponding to the execution of a task τi as an illustration.

[2, 1]
1→ [2, 1]

3→ [3, 2]
2→ [3, 2]

4→ [4, 3]
3→ [4, 3] 2 cache misses

In this example, if another task preempt τi with a single ECB e just before the first
access to block 1, the following scenario occurs:

[2, 1]
e→ [e, 2]

1→ [1, e]
3→ [3, 1]

2→ [2, 3]
4→ [4, 2]

3→ [3, 4] 5 cache misses

3.5.1.2 UCBs

Given a preemption point p in the code of a task, the set of UCBs represents all CBs
that are present in the cache and may be reused sometime later in the code. In fact, in
case of preemption at point p, in the worst case all the evicted CBs that are UCBs will
be reloaded later on, increasing the WCET of the task. Thus, only the CBs that can be
classified as first miss, always hit and first hit will be considered as UCBs. In our model,
we suppose that the LB that is preempted by another task is always evicted, thus after
each preemption we have to consider the reload time of the CB of this LB. Therefore,
each preemption point in the task is associated with a (possibly different) set of UCBs. In
the case of a fully preemptive system, each BB can be considered as a preemption point
[51]. To reduce the complexity of the analysis, recent approaches in the literature [6, 57,
5, 61, 58, 25, 26] use a single set of UCB cache set index for the entire task: the set is
computed as the fusion of all UCBs for the different preemption points (see Section 3.5.2
for a definition of the fusion operation). Moreover, because we consider a set-associative
cache memory in contrast to the current state of the art, which primarily considers direct-
mapped caches, we use multisets instead of simple sets to represent the UCBs. This allows
us to represent the fact that multiple UCBs can exist in the same cache set at the same
preemption point, which would not be possible with a simple set.

In this thesis, we use the more complete model of one UCB multiset per preemption
point. Therefore, in our model each task is characterized by a set of multisets (SOM) of
UCBs. We mitigate the combinatorial explosion of the analysis by using an approximation
function that trades off complexity against precision (described in Algorithm 1).

The multiset representing the UCBs of a task for a given preemption point p is denoted
as Up and the SOM representing the set of U for the task is denoted by U . For example,
consider a task τi that has two preemption points, where for the first preemption points
4 UCBs are present in the cache with index 3, 6, 6, 7 and 2 CBs with index 7, 7 for the
second preemption point. Then U i = {{3, 6, 6, 7}, {7, 7}}. As several useful CBs may be
stored at the same time in the same cache set, a Up may have multiple instance of the
same index.

3.5.2 Operations on multisets

In this section we formally define multisets and SOM, and we define their operations.
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Definition 3.5.1. A multiset is a set that may contain more than one instance of the
same element. Given an element a ∈ A, we denote as repA(a) the number of instances of
a in A: for all x /∈ A, repA(x) = 0.

We define the following operations on multisets:

• The size of a multiset, denoted by |A| is the number of elements in the multiset,
including repetitions.

• The multiset union between multisets A and B is a multiset, it is denoted by A⊎B,
and it is defined as:

∀x repA⊎B(x) = repA(x) + repB(x)

• The multiset fusion between multisets A and B is a multiset, it is denoted by A▽B,
and it is defined as:

∀x repA▽B(x) = max(repA(x), repB(x))

• The multiset intersection between multisets A and B is a multiset, it is denoted by
A ⊓ B, and it is defined as:

∀x repA⊓B(x) = min(repA(x), repB(x))

Definition 3.5.2. A denotes a SOM, that is a set whose elements are multisets. The
largest size of any multiset in a SOM A is denoted as:

MS(A) = max
A∈A

(|A|)

Since A is a set, the usual operations of set union, set intersection and set difference
apply, respectively, with the usual symbols.

We extend the operations of multiset union and multiset intersection to SOM in the
most natural way: the multiset union (resp. intersection) between A and B is the SOM
obtained by applying the multiset union (resp. intersection) to every pair of elements of A
and B. We define the intersection between a multiset E and SOM A as the SOM obtained
by applying the multiset intersection of every element of A and the multiset E .

3.5.3 EDF analysis with CRPD

In order to include the CRPD in the analysis, Lunniss et al. [57] redefined Condition (2.12)
as:

∀t ≤ hp(T ), dbf(t) =
N∑
i

dbfi(t) + γ(t) ≤ t (3.1)
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where hp(T ) is the hyperperiod of task set T and γ(t) is an upper bound to the total
CRPD in interval [0, t].

To compute γ(t), we use the Combined approach of Lunniss et al. [57]. This approach
is the combination of two methods, the UCB-union multiset and the ECB-union multiset.

As our task model differs from the state of the art (we use a SOM to represent
the UCBs of the task instead of a simple multiset), we denote by ECB-union SOM
the modified version of the second approach based on our task model, and Combined
SOM will be the combination of UCB-union multiset and ECB-union SOM. In order
to present the following equations in short form, we use (Uk)x as a short form for the
multiset union of Uk with itself x times.

Given a SOM of UCBs Uk for all the possible preemption points of task τk, a single
multiset UCB can be computed as:

Uk = ▽
∀UP

k ∈Uk

UP
k

3.5.4 UCB-union multiset

First, the maximum number of preemptions by task τj in interval [0, Di] is computed as:

Prj(Di) = max

(
0,

⌈
Di −Dj

Tj

⌉)
(3.2)

Then, the method constructs the multisets of UCBs and ECBs for the interval [0, t]:

Mucb
t,j =

⊎
∀k,t≥Dk>Dj

(Uk)Prj(Dk)·η(k,t) (3.3)

Mecb
t,j = (Ej)η(j,t) (3.4)

where (Ej)x is a short form for the multiset union of Ej with itself x times. Finally, the
overall preemption cost is computed as the intersection of the ECB and UCB multisets
obtained above:

γucbm
j (t) = BRT · (|Mucb

t,j ⊓Mecb
t,j |+ Y (j, t)) (3.5)

Y (j, t) = min

 ∑
∀k,t≥Dk>Dj

(
Prj(Dk) · η(k, t)

)
, η(j, t)

 (3.6)

with BRT the block reload time of a CB from the main memory. As we consider
the CB of the preempted LB evicted for each preemption, we add Y (j, t) to the cost to
consider this assumption.
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3.5.5 ECB-union SOM

This approach is the version of ECB-union multiset modified by using a SOM to represent
the UCBs of a task for the different preemption points. To obtain the same result as ECB-
union multiset, U ′

k can be used instead of Uk with U ′
k = {Uk}.

The first step consists in taking the SOM of UCBs for the preempted task, and
compute the size of the worst-case intersection with higher preemption-level tasks’ ECBs:

Qmax
j (Uk) = max

∀U∈Uk

(∣∣U ⊓ E ′j∣∣)+ 1 (3.7)

With E ′j defined as:
E ′j = (

⊎
∀h,Dh<Dj

Eh) ⊎ Ej

Notice that we add 1 to the cost to consider the CB of the preempted LB as evicted. Then,
the algorithm computes a multiset as the union of all costs of the multisets computed for
the preemptions that occur in interval [0, t]:

Qt,j =
⊎

∀k,t≥Dk>Dj

(
({Qmax

j (Uk)})Prj(Dk)·η(k,t)
)

(3.8)

Finally:
γecbSOM
j (t) = BRT · sum_max_elems(Qt,j, η(j, t)) (3.9)

where function sum_max_elems(A, n) computes the sum of the n greatest elements in
multiset A.

Notice that we slightly changed the algorithm of [57], in particular we modified Equa-
tion (3.7): instead of using a multiset which represents the UCBs of all the tasks, we
changed the Equation to use only the multiset of UCBs at the point p of the task which is
involved in the worst CRPD cost. This modification actually improves the performance
of ECB-union multiset as it reduces the pessimism of considering additional CBs.

The combined SOM approach is the minimum between the demand bound of the
task set computed with the previous approaches.

dbf combinedSOM(t) = min(dbfucbm(t), dbfecbSOM (t)). (3.10)

3.6 Weak robustness in computing systems
A well-known source of problems is the presence of faults on L1 cache memories. There
are two types of faults, permanent faults and transient faults [29, 4, 70].

Permanent faults, when they appear, remain for the whole life of the system. They
are due to short or open circuit provoked by error in the manufacturin process, the aging
of the system and process variations [29, 70, 13, 67].

Transient faults are logical faults in the operation of a circuit that occur at random
and are primarily caused by charged particle emissions [29, 47]. These faults can provoke
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Figure 3.8: Example of task CFG

bit-flipping in the cache memory. With the progress of the technology, which tends to
integrate more transistors at a smaller scale, the presence of bit-flipping errors in cache
memories becomes a challenge [82].

Transient faults are temporary unpredictable faults due to environment factors, such
as temperature and radiations. They corrupts data in memory units, in particular SRAM-
based cache memories. Transient faults are different from permanent faults because the
hardware is not damaged, and the electronics components affected by these faults will
work correctly after the errors have been corrected.

Definition 3.6.1 (Vulnerability interval). Given a CB x used by task τi, a vulnerability
interval of x is an interval of time between the moment x is loaded into the cache and a
subsequent read operation on x, without any reload or write operation within the interval.
During one of its vulnerability interval, x might suffer from transient fault in the cache
memory.

Definition 3.6.2 (Vulnerable path). Given a CB x used by task τi, a vulnerable path of
x is an execution path between two BBs in the task’s CFG corresponding to a vulnerability
interval of x. During the execution of this path, x might suffer from a transient fault in
the cache memory.

3.6.1 Example of vulnerability

Figure 3.8 represents the CFG of a task and the correspondence between BBs and CBs:
the nodes of the graph (blue rectangles) represent the BBs; the colored rectangles inside
the nodes represent the LBs; rectangles with the same color represent LBs belonging to
the same CB. For example, the two yellow rectangles are two LBs belonging to the same
CB: A, and to two different BBs: BB1 and BB3 (nodes of the tasks).
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Figure 3.9: Example vulnerability intervals

In the example, we consider a set associative cache with K = 2 which contains only 2
cache sets. We assume that the addresses of the CBs are such that A and C fit into cache
set 1, and B and D into cache set 2.

The graph contains a loop between BB2 and BB3, therefore their execution is repeated
a certain number of times.

After the execution of BB1, A is considered as UCB because there exists a path without
eviction between BB1 and BB3. Thus, we can state that A is vulnerable on path BB1 →
BB2 → BB3. Following the same reasoning, A, B, C and D are both vulnerable along path
BB3 → BB2 → BB3. On path BB2 → BB4, neither A nor B and C need to be considered
as vulnerable, because they are not accessed after BB4.

3.6.2 Estimation of the cache memory vulnerability

Temporal Vulnerability Factor(TVF) is a metric proposed by Wang et al. [83] to measure
the vulnerability of a cache. This metric measures a vulnerability factor between 0 (not
vulnerable) and 1 (completely vulnerable) for a given execution trace of time t for the
cache. During this execution trace, the system will use k data items. Depending on the
accuracy of the analysis, these data items may be bits, LBs or CBs, for example. Each
data item is distinct from the others, and they do not share any data. The cache’s TVF
can be calculated as follows:

TV Fcache =

∑k
i (data_itemi ·

∑
j vul_interi,j)∑k

i (data_itemi · t)
(3.11)

where vul_interi,j corresponds to the size of the jth vulnerable interval of the ith data
item. data_itemi is the size in bytes of the ith data item.

Figure 3.9 shows the vulnerability intervals of CBs A, B, C and D in red. In this
example, we consider an execution trace of size t = 13 and CB’s size of 64 bytes. The
TVF for this example can be computed as follows:

TV Fcache =
64 · 6 + 64 · 1 + 64 · 1 + 64 · 7

4 · 64 · 13
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TV Fcache =
960

3328

TV Fcache = 0.288

3.6.3 Protection mechanisms

To reduce the impact of these transient faults, hardware protection mechanisms are usu-
ally proposed. We list here three types of protection mechanisms: the first and most naive
is to disable cache units; the second type is the use of Error Detection mechanisms, such
as a parity code or double-modular redundancy. These mechanisms detect the corrupted
instructions or data and trigger a reload of the memory block from a higher memory layer.
The last type consists of Error Correcting Codes (ECC) or Triple-Modular Redundancy
(TMR) which can also automatically correct the data.

While protecting the cache, these mechanisms decrease the system performance in
terms of executed instructions per second. This loss of performance comes from the
reduction of the useful cache memory size, the error correction logic [62] or by delays
added by the protection mechanism to detect and correct faults. Hijaz et al. [44] proposed
a study to quantify the impact of a constant delay on cache hit access. They show in
their experiments that increasing the L1 cache hit latency from 1 to 2 cycles incurs a
performance loss of 10%, and when the latency climbs to 3 cycles, the loss of performance
is more than 30%.

We assume in this thesis that higher layers of memory (L2, L3 or DRAM memory)
are protected by fault-tolerance mechanisms. In fact, the impact of error correction
mechanisms for DRAM in terms of performance loss is less important, and it is usually
estimated around 1-2%. Also, the cost of an ECC DRAM memory is proportionally lower
than the cost of the L1 cache memory [45].

3.7 Related Works on Cache Memory Vulnerability

Faults in computing systems can be classified in two categories: permanent faults when
it affects the hardware in an irreversible way, and transient faults when it does not affect
the hardware in an irreversible way.

In Siddiqua et al.[75] the authors realized several experiments to collect data concern-
ing memory robustness and faults. They gathered data memory reliability from the Cielo
supercomputer at Los Alamos National Laboratory over a five-year period. The investi-
gation is centered on DRAM (main memory) and SRAM (cache memory and registers).
Each fault is classified as either permanent or transient. Their experimental results show
that 99.36% of the faults in L3 cache (SRAM) are transient faults, and 99.98% of the
errors are single bit errors. The fault does not alter the entire cache index and cache way,
as they mostly affect only one cache line at a time, while the other types of faults are
permanent faults and affect cache ways entirely.



3.7. RELATED WORKS ON CACHE MEMORY VULNERABILITY 51

3.7.1 Permanent Faults

When a permanent fault occurs, Agnola et al. [2] propose a method for reorganizing mem-
ory locations called Self Adaptive Cache Memories. Their method consists in replacing a
faulty cache line location by a healthy cache line location from another set to avoid an
entirely faulty cache set. They limit the number of faulty cache line per set to one. When
all the cache sets contain a faulty cache line, the mechanism reduces the associativity, thus
not considering the faulty cells anymore. Wilkerson et al. [86] present a scheme to improve
the reliability of cache memory when a low-voltage is used. Cache memories consume an
important quantity of energy. To reduce this consumption, it has been proposed to use
a near-threshold voltage for caches at the cost of higher fault probability. The authors
provide a precise characterization of errors that may occur during systems execution at
low-voltage. They derive the relation between the voltage and the probability of errors in
the cache memories. They assume that a probability of failure lower than 0.001 respects
the manufacturing yields and suggest minimal voltage value according this assumption.

Yan et al. [87] consider voltage scaling for delay sensitive L1 cache memory. Reducing
voltage of a chip is an efficient way to reduce power consumption, but has some draw-
backs, such as the reduction in reliability. They propose specific methods for data and
instruction caches. The method proposed for instruction caches is a remapping of in-
structions from defective blocks to free-fault blocks in cache memory. They use Built-in
Self Test (BIST) to identify defective words and remap them by using static compilation,
just-in-time compilation or binary translation. They achieve an energy reduction of 64%
per instruction.

The most important differences between these works and ours is the type of considered
faults. Indeed, this thesis focuses only on transient faults. Furthermore, they do not
consider real-time guarantees.

3.7.2 Transient Faults

Sugihara et al. [79] propose a MIP formulation that produces a scheduling of non-preemptive
tasks on multicore systems allowing to minimize the vulnerability of the systems while
respecting real-time constraints. They use a reliable cache architectures instead of our
cache misses insertion. Reliable cache architectures reduce vulnerability by deactivating
cache ways or by merging them. While our method is similar to their approach, we deac-
tivate cache lines at a finer granularity and at determined points in the program. Also,
their methods do not work with direct mapped caches and necessitates specific hardware
modifications.

Wang et al. [83] develop a lifetime model for L1 caches. They propose to classify inter-
vals of time during which cache elements (cache lines, words, . . . ) are used as vulnerable
or non-vulnerable. If a fault (a bit-flip) happens between two read instructions, the fault
becomes an error. The variable accessed by the instructions is considered as vulnerable
and the interval between the two reads is declared as a vulnerable interval. On the other
hand, if the fault happens between a read and a write instructions, the faulty data is
overwritten and does not cause any errors in the program execution. For instruction
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Ref PF TF ECCs RT HM
[86] ✓
[87] ✓
[79] ✓ ✓ ✓
[83] ✓
[82] ✓ ✓
[77] ✓ ✓
[21] ✓ ✓

Our proposition ✓ ✓/ × ✓ ✓/ ×

Table 3.1: State of the art methods against our contributions on improving reliability

caches, the vulnerability interval corresponds to the time the instruction remains in the
cache before being evicted by the cache replacement algorithm. In this respect, Wang
et al. [83] propose the TVF (Temporal Vulnerability Factor), a reliability score for the
cache: a higher score indicates a less reliable cache.

Driven by the TVF metric, they propose a Clean Cache line Invalidation (CCI) tech-
nique to refresh the data in the cache after a given amount of time without any activity.
For the instruction cache, they propose to insert cache misses (called cache scrubbing)
instead of CCI to refresh the instructions of the L1 cache from the L2 cache. To reduce
the overhead, they propose to insert cache misses during the idle cycles of cache mem-
ory. In this thesis, we propose to insert cache misses at strategic points during the task’s
execution while considering timing constraints.

Later, the same authors focused on instruction cache memories for embedded sys-
tems [82]. A new metric has been proposed, the System-level Instruction Cache Vulnera-
bility Factor (SICVF). This metric aims to have a more accurate reliability measurement
by considering some specific properties of the 32 bit ARM ISA. Then, they suggest ways
to improve the ARM ISA in order to reduce the SICVF. In comparison, our contribution
neither requires new instructions in the ISA nor code re-compilation.

Song et al. [77] propose a predictable system-level fault tolerance system implementa-
tion on the COMPOSITE component-based OS. Their method does not require hardware
redundancy. It performs recovery of components by tracking their state during their exe-
cution. The authors provide also timing analysis of their system. Their method does not
focus specifically on cache memories but on the reliability of OS components. However,
they consider timing constraints.

Hardware redundancy based methods such as DMR, TMR or CRC, are expensive
solutions for embedded systems [21]. However, Bhat et al. observe a trend around software
based approaches to increase reliability. In their framework, the authors propose a novel
task allocation heuristic to respect fault-tolerance requirements and minimize the number
of cores in multi-core architecture. They also provide a schedulability analysis and testing
of their AUTOSAR-based framework. While their method takes into account timing
constraints, our work differs from theirs in that we do not require any redundancy. In
addition, we use cache miss insertion to improve reliability.
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A summary of the comparison between the state-of-the-art methods presented in this
chapter and our method is given in Table 3.1. In this table, PF and TF represents methods
that target respectively, permanents faults and transient faults. ECCs symbolizes the
methods using ECCS, RT, the methods considering real-time constraints and finally, HM,
the methods requiring hardware modifications. The mark ✓/ × for ECCs and HM means
that the methods may use ECCs or need harware modifications but it is not mandatory.
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The scheduling analysis of a real-time system requires an estimation of the Worst-Case
Execution Times (WCETs) of all the tasks, and an analysis of their interactions. The
WCET is usually calculated by analyzing the task as if it executed in isolation on the
target platform. However, even when tasks are considered to be functionally independent,
they can indirectly interfere with each other due to shared hardware resources, like cache
memory, bus, DMA, etc. Concerning the interference due to shared caches, a higher
preemption-level task that preempts a lower preemption-level task can evict some of the
CBs of the latter; when the lower preemption-level task resumes execution, it may need
to reload the CBs, thus increasing its execution time.

Several solutions to this problem have been proposed in the literature, from non-
preemptive or limited-preemptive scheduling strategies, to fully preemptive systems with
Cache Related Preemption Delay (CRPD) analysis. In this chapter we focus on improv-
ing the CRPD analysis of single-processor fully preemptive real-time systems with one
level of cache. In addition, we provide a counterexample to the Partitioning-ver1 and
Partitioning-ver2 analyses [61].

CRPD analysis works as follows: first, a WCET is computed for each task, assuming
the task is executed alone on the processor. The computed WCET includes the effect
of cache misses caused by the task itself (intra-task cache misses). A static analysis also
produces one or more lists of CBs used by the task.

The CRPD analysis computes an upper bound to the number of cache misses caused
by preemptions to consider in the scheduling analysis.

One limitation of existing CRPD analyses with the Earliest Deadline First scheduling
policy is the computation of the number of preemptions on a given task. Since most of the
existing analyses were originally designed for Fixed Priority, they consider a preemption
interval (that is the interval of time where a task may be preempted) of the size of the
task’s worst-case response time. However, computing the task’s response time for EDF is
computationally expensive (and very complex). For this reason, existing CRPD analysis
consider a preemption interval size that is equal to the relative deadline of the task, thus
introducing extra pessimism.

Another source of pessimism is the computation of the set of UCBs that may be evicted
by a preemption. Existing analyses use a single set for every possible preemption point,
thus simplifying the analysis by introducing extra pessimism. We propose to consider a
number M > 1 of UCB sets per task, thus increasing precision without exploding the
complexity.

Summarizing, in this chapter we present a counter example of CRPD analyses from
the literature and two improvements over the state of the art CRPD analysis:

• a simple algorithm for computing a more precise preemption interval of a task
scheduled by EDF on a single processor; by reducing the preemption interval, we
tighten the upper bound on the number of preemptions a task can suffer;

• A simple algorithm to reduce the number of UCB sets per tasks to a given constant
M > 1.
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This chapter is organized as follows. First we present a counter example for two
analyses from the state of the art in Section 4.1. Then, in Section 4.2, we introduce the
model used in in the rest of this chapter. In Sections 4.3 and 4.4, we present our original
contributions. We discuss the complexity of the preemption interval length computation
in Section 4.5. We evaluate our methods against the state of the art [57, 6], and we
present the results of the evaluation in Section 4.6.

4.1 Partitioning-ver1 and ver2

4.1.1 Reminder of the approaches

Marković et al. [61] proposed two methods for computing the CRPD, called Partitioning-
ver1 and Partitioning-ver2. The algorithms assume Fixed Priority scheduling with pre-
emptive tasks. In order to calculate the response time of a task using their methods, they
proposed the following equation:

Rl+1
i = Ci + γ(i, Rl

i) +
∑

∀h∈hp(i)

⌈
Rl

i

Th

⌉
· Ch (4.1)

with γ(i, t), the CRPD between the first i tasks by considering a set of tasks ordered from
highest to lowest priority, during the interval of time [0, t].

Their method for computing γ(i, t) consists of four steps.

1. Count the number of preemptions of τh on τj during interval [0, t]. To do so, they
propose the following equation:

Eh
j (t) =


⌈

t
Th

⌉
, if

⌈
t
Th

⌉
≤
⌈

t
Tj

⌉⌈
t
Tj

⌉
·
⌈
Rj

Th

⌉
, otherwise

(4.2)

It is the maximum number of times a job of task τh starts in the interval [0, t], if
this number is less than the maximum number of jobs of task τj starting in this
interval. Otherwise, it is the maximum number of jobs of task τj beginning within
the interval [0, t] multiplied by the maximum number of times a job of task τj can
be preempted by τh.

2. Build the preemption partitions during interval [0, t]. It consists in computing a
multiset Λi,t of preemption partitions between the first i tasks, with each partition
not considering twice a preemption between two tasks.

Λi,t = {λ1, λ2, · · · , λZ}|λr = {(τh, τj)|r ≤ Eh
j (t)|∀h, j ≤ i} (4.3)

The rationale is that, by partitioning the preemptions into disjoint sets, they can
avoid a complete enumeration of all possible preemptions while still obtaining an
upper bound.
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3. Compute CRPD cost for each preemption partition.

At this stage, they propose two divergent approches. In fact, Partitioning-ver1
proposes a method based on the combined approach by Altmeyer et al. [6], whereas
Partitioning-ver2 proposes a completely new method.

Partitioning-ver1. To evaluate γi(λr), the CRPD of a partition λr, Marković et
al. modified the equations used by the combined approach as follows:

γi(λr) = min(γecbpi (λr), γ
ucbp
i (λr)) · BRT (4.4)

γecbpi (λr) =
i−1∑
h=1

γecbpi,h (λr) (4.5)

γecbpi,h (λr) = max
∀τk∈aff(i,h,λr)

min
∣∣∣∣∣∣
 ⋃

τh′∈(hp(h,λr)∪{τh})

Eh′

 ∩ Uk
∣∣∣∣∣∣ ,MS(Uk)

 (4.6)

γucbpi (λr) =
i−1∑
h=1

γucbpi,h (λr) (4.7)

γucbpi,h (λr) = min

∣∣∣∣∣∣
 ⋃

τk∈aff(i,h,λr)

Uk

 ∩ Eh
∣∣∣∣∣∣ ,

∑
∀τk∈aff(i,h,λr)

MS(Uk)

 (4.8)

with aff(i, h, λr), the set of tasks with priorities higher than or equal to Pi which
can be preempted by τh according to λr; and hp(h, λr) denotes the set of tasks with
higher priorities than task τh that, according to λr, can preempt τh.

Partitioning-ver2. As an alternative to the combined approach, Marković et al.
propose an equation to compute the preemption cost for a preempted task τi by a
list of preempting tasks PT such as:

γ(τi, PT ) = |Ui ∩ (
⋃

∀τh∈PT

Eh)| · BRT (4.9)

In partitioning-ver2 the CRPD cost of a partition γi(λr) consist in the CRPD cost
of the worst preemptions scenario that can be built with λr. To build the list of
the preemption scenarios possible for a partition λr, Marković et al. propose an
Algorithm in [6]. The preemption costs of the preemptions scenarios are computed
with Equation (4.9). An example is given in Section 4.1.2.3.



4.1. PARTITIONING-VER1 AND VER2 61

4. Compute the overall CRPD cost.
This final step is simply the total CRPD costs for each partition.

γ(i, t) =
∑

∀λr∈Λi,t

γi(λr) (4.10)

with γi(λr) the CRPD cost of preemption partition λr.

Unfortunately, both methods are incorrect, in the sense that they cannot correctly
upper bound the CRPD, as shown by the following counterexample.

4.1.2 Counter Example

Consider 4 sporadic tasks τ1, τ2, τ3 and τ4, with P1 > P2 > P3 > P4, whose parameters
are described in Table 4.1, while their UCBs and ECBs sets are described in Table 4.3.

Name WCET Deadline Period
τ1 20 300 440
τ2 50 700 1000
τ3 100 800 1000
τ4 300 900 1000

Table 4.1: Counter Example

Consider the preemption matrix A4,1000, reported in Table 4.2, which has been com-
puted using Equation (4.2). This matrix represents the possible preemptions during any
interval of time of size 1000. Thus, this matrix should also represent the scenario from Fig-
ure 4.1 where the execution of tasks considered by the WCET analysis tool is represented
by the white boxes, while the CRPD is represented by the red boxes. The CRPD cost for
this scenario can be computed as: {(τ4, {τ2, τ1}), (τ2, {τ1}), (τ4, {τ3, τ1}), (τ3, {τ1})} with,

(τ4, {τ2, τ1}) = |(E1 ∪ E2) ∩ U4| = 11

(τ2, {τ1}) = |E1 ∩ U2| = 8

(τ4, {τ3, τ1}) = |(E1 ∪ E3) ∩ U4| = 11

(τ3, {τ1}) = |E1 ∩ U3| = 8

Which gives a CRPD cost of: 38× BRT.

4.1.2.1 Partitioning

For both methods, Partitioning-ver1 and Partitioning-ver2, two partitions are built: λ1 =
{(τ1, τ2), (τ1, τ3), (τ1, τ4), (τ2, τ3), (τ2, τ4), (τ3, τ4)} and λ2 = {(τ1, τ4)}.

The CRPD cost for the matrix A4,1000 is computed as (γ(4, λ1) + γ(4, λ2)) ·BRT. The
cost of λ2 in both approaches is:

γ(4, λ2) = |ECB1 ∩ UCB4| × BRT = 5 · BRT

We now compute the cost of λ1 with both approaches starting with Partitioning-ver1.
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τ2 τ3 τ4

τ1 1 1 2
τ2 - 1 1
τ3 - - 1

Table 4.2: Preemptions matrix

4.1.2.2 Cost of λ1 with Partitioning-ver1.

We only compute the cost of γecbp4 (λ1), since γ(4, λ1) = min(γecbp4 (λ1), γ
ucbp
4 (λ1)). Then,

γecbp4 (λ1) = γecbp4,1 (λ1) + γecbp4,2 (λ1) + γecbp4,3 (λ1)

γecbp4,1 (λ1) = max(|E1 ∩ U2|, |E1 ∩ U3|, |E1 ∩ U4|) = 8

γecbp4,2 (λ1) = max(|(E1 ∪ E2) ∩ U3|, |(E1 ∪ E2) ∩ U4|) = 11

γecbp4,3 (λ1) = max(|(E1 ∪ E2 ∪ E3) ∩ U4|) = 13

γ4(λ1) ≤ 32 · BRT

We can say now that γ(4, t) ≤ 37 · BRT with Partitioning-ver1.

4.1.2.3 Cost of λ1 with Partitioning-ver2.

The cost of γ4(λ1) with Partitioning-ver2 can be described as:

γ4(λ1) = BRT ·max



γ4({(τ4, {τ1}), (τ4, {τ2}), (τ4, {τ3})}) = 25

γ4({(τ4, {τ1, τ2}), (τ4, {τ3}), (τ2, {τ1})}) = 29

γ4({(τ4, {τ1, τ3}), (τ4, {τ2}), (τ3, {τ1})}) = 29

γ4({(τ4, {τ2, τ3}), (τ4, {τ1}), (τ3, {τ2})}) = 25

γ4({(τ4, {τ1, τ2, τ3}), (τ3, {τ1, τ2}), (τ2, {τ1})}) = 31

γ4({(τ4, {τ1, τ2, τ3}), (τ3, {τ1}), (τ3, {τ2})}) = 28

γ4(λ1) = 31 · BRT

We can say now that γ(4, t) = 36 · BRT with Partitioning-ver2.

4.1.2.4 Conclusions

The CRPD cost of the matrix A4,1000 with Partitioning-ver1 is less than or equal to
(32+5) ·BRT = 37 ·BRT; with Partitioning-ver2 the cost is (31+5) ·BRT = 36 ·BRT. In
both methods the cost computed is less than the CRPD cost of the scenario (38 · BRT).
This shows that Partitioning-ver1 and Partitioning-ver2 do not provide a correct upper
bound for this specific scenario.
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Tasks ECBs UCBs
τ1 {1,2,3,4,5,6,7,8,9,10,11,20} ∅
τ2 {1,2,3,4,6,7,8,9,12,13,14,15,16,17,20} {1,2,3,4,6,7,8,15,16,17,20}
τ3 {2,3,4,5,7,8,9,10,11,13,14,16,17,18,19,20} {3,4,5,8,9,10,11,14,17,19,20}
τ4 ∅ {5,6,7,8,9,12,13,14,15,16,17,18,19}

Table 4.3: ECBs and UCBs sets

τ1

τ2

τ3

τ4

Figure 4.1: Counter example

4.2 System model

In this chapter we consider, a preemptive system of N independent real-time sporadic
tasks with constrained deadlines. We assume that the tasks are scheduled by Earliest
Deadline First (EDF) [19].

4.3 Preemption Interval

In [57], in the case of EDF scheduling the number of preemptions on a job of task τi is
computed using the relative deadline Di. In particular, all instances of jobs with arrival
and deadline in [0, Di] may preempt τi. This is a pessimistic assumption because jobs
that arrive after the completion of τi are counted as preempting jobs. A less pessimistic
assumption would be to consider only jobs that arrive before the worst-case response
time of τi. However, computing an upper bound to the response time of a task in EDF is
complex.

In this chapter, we propose to use the concept of preemption interval : an upper bound
Ii to the length of the interval of time where a job of task τi may be preempted. Therefore
Ii is a bound on the length of the interval between the start of the execution of any job
of τi and its completion. Indeed, a task can be preempted only after it has started its
execution, and before it completes.

Please notice that Ii is different from the worst-case response time Ri: the latter
corresponds to the size of an interval starting from the job’s arrival until its completion.
As the start time of a job is always greater than or equal to its arrival time, it follows
that Ri ≥ Ii by definition.
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Let η′i(j, t) be the number of jobs of task τj that can preempt τi on an interval of
length t, with t ≤ Di.

Lemma 4.3.1. The number of preemptions by higher preemption-level task τj on task τi
on any contiguous interval of size t inside [0, Di] (with t ≤ Di) is:

η′i(j, t) = min

(⌈
t

Tj

⌉
,Prj(Di)

)
.

Proof. η′i(j, t) cannot be larger than Prj(Di), that is the maximum number of preemptions
of τj on τi. Also, since any job of τj must arrive inside the interval, η′i(j, t) cannot be
larger than the number of jobs of τj arriving in any contiguous interval of size t. The
latter can be computed as

⌈
t
Tj

⌉
. Hence the lemma is proved.

Preempting jobs, that arrive during the preemption interval Ii of a task τi, contribute
to increasing the length of the interval: in fact, we must account for their execution and
for their cache impact.

Thus, to compute Ii we use an iterative formula starting with the WCET of the task.
Since the preemption interval can only increase with the preempting jobs and cannot be
greater than the relative deadline, we can use η′i(j, t) to count the number of instances
of τj that can increase the preemption interval. The WCET of the preempting jobs and
the CRPD provoked by them must be added to the WCET of the task to obtain the
new preemption interval. The iterative procedure is guaranteed to stop, since η′i(j, t) is
bounded by a constant Prj(Di).

Theorem 4.3.2. The following iterative equation gives an upper bound to the preemption
interval of task τi: 

I
(0)
i = Ci

I
(k)
i = Ci + γ′(I

(k−1)
i ) +

∑
j|Dj<Di

Cj · η′i(j, I
(k−1)
i ) (4.11)

where γ′(Ii) is the CRPD provoked by the preempting jobs during interval Ii. The iteration
stops when I

(k)
i > Di (unschedulable) or I(k−1)

i = I
(k)
i .

Proof. Only higher preemption-level tasks can interfere with the execution of a given
task. In our model, we only consider two resources, the processor and the cache memory,
thus the possible sources of interference are the suspension of the execution by a higher
preemption-level task, and its CRPD. Lemma 4.3.1 provides an upper bound on the
number of preemptions in interval Ii. Therefore, the value obtained in the last iteration
represents an upper bound to the length of the preemption interval, or the fact that the
task is not schedulable.
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Computing the CRPD during the Preemption Interval. Equations (3.3), (3.6)
and (3.8) use Prj(Di) to count the number of preemptions by task τj on a job of τi.

We assume to compute the preemption interval in the task order from τ1 (the task
with the highest preemption-level) to τn (the task with the lowest preemption-level). Of
course, I1 = C1. We define Pr′j(Di) as:

Pr′j(Di) = min

(⌈
Ii
Tj

⌉
,

⌈
Di −Dj

Tj

⌉)
(4.12)

and we use Pr′j(Di) instead of Prj(Di) in the above equations. Also, to properly bound
the number of preempting jobs from higher preemption-level tasks during the compu-
tation of a preemption interval Ii, we use η′i(j, Ii), which represents the number of jobs
arriving in the preemption interval Ii and with relative deadline less than Di, instead of
η(j, Ii) in Equations (3.3), (3.4), (3.6), (3.8) and (3.9). Therefore, we change the sum∑
∀k,t≥Dk>Dj

to
∑

∀k,Dk>Dj

in the Equation (3.6) and the multiset union
⊎

∀k,t≥Dk>Dj

to
⊎

∀k,Dk>Dj

in Equation (3.3) and Equation (3.8).

Computing the CRPD with the Preemption Interval. To do so, we use Pr′j(Di)
instead of Prj(Di) in Equations (3.3), (3.6) and (3.8).

4.4 Reduce the number of UCBs
As we use a multiset to represent the UCBs for each preemption point in the task, the
size of the obtained SOM may be too large. Indeed the complexity of the Combined
SOM approach depends on the size of the SOM of each preempted task.

Algorithm 1 describes the reduce operation on a SOM A. The algorithm removes the
multiset X with the minimum size from the copy of the input vector (Lines 3 and 4); then
it performs a multiset fusion of X with every other multiset of R, and selects the one that
gives the smallest result (Lines 5-9); then, it removes this multiset and adds the result
of the fusion (Line 10). It repeats the operation as long as the size of R is greater than
Mreduce (while loop at Line 2).

The resulting SOM contains at most Mreduce multisets. We highlight that the re-
duce operation may increase the size of the multisets, thus introducing some pessimism;
however, by selecting the merged multiset with smaller sizes, the pessimism is kept in
check.

4.5 Complexity
We denote by ω an upper bound to the maximum number of instances of any task con-
tained in the hyperperiod hp(T ):

ω = max
∀τi∈T

(⌊
hp(T )−Di

Ti

⌋
+ 1

)
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Algorithm 1 reduce()

Require: A vector of multisets A
Require: Max size Mreduce

Ensure: A vector of multisets R
1: R← A
2: while |R| > Mreduce do
3: X← multiset with minimum size in R
4: R← R \ {X}
5: L← X▽ Y, with any Y ∈ R
6: for Z ∈ R do
7: if |X▽ Z| < |L| then
8: L← X▽ Z
9: Y ← Z

10: R← R ∪ {L} \ {Y}
return R

We denote by ψ an upper bound of the maximum number of preemptions by any task on
any job from another task as follows:

ψ = max
∀τj ,τi∈τ ;j<i

(Prj(Di))

The complexity of any multiset operation (union, intersection, etc.) is bounded by O(Z2)
with Z the number of cache sets (we represent a multiset as a list of pairs (value, rep-
etition factor)). The complexity of any operation between a multiset and a SOM is
O(MreduceZ

2), with Mreduce the maximum number of elements in a SOM.

4.5.1 Complexity of UCB multiset

In the UCB multiset union approach, we need to perform the union of the UCBs of lower
preemption-level tasks. In the worst-case, the complexity is O(NZ2). As a task τi can
be preempted at most ωψ times by another task τj, the complexity of the union between
all the lower preemption-level tasks is O(ωψNZ2). The intersection with the ECB has
complexity O(Z2), thus the complexity for a preempting task is again O(ωψNZ2), and
the total complexity is O(ωψN2Z2).

4.5.2 Complexity of ECB-union SOM

The ECB-union SOM approach can be split in three steps: the computation for the pre-
empting task, building the list of costs, and summing the largest costs. The first step is a
union between all the preempting tasks ECBs, thus its complexity is O(NZ2). The second
step consists of listing all the preemption costs, its complexity is O(NωψMreduceZ

2).
The last step consists of sorting and summing the ω greatest values. The number of

element in the list is bounded by Nωψ, thus the complexity is O(ω2Nψ log(Nωψ)). The
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complexity for the three steps is O(Nωψ(ω log(Nωψ) +MZ2)). Since we do this for N
tasks, the final complexity can be bound by O(N2ωψ(ω log(Nωψ) +MreduceZ

2)).
Since ω and ψ are pseudo-polynomial in the size of the input (they depend on periods

and relative deadlines), we can state that the overall complexity is pseudo-polynomial,
hence in the same complexity class as the original demand bound function.

The iterative formula for computing the preemption interval has the same structure of
the response time analysis in Fixed Priority analysis, hence it is also pseudo-polynomial
in the input.

4.6 Evaluation

4.6.1 Experiments Setup

To evaluate the impact of the preemption interval on schedulability. We consider a single
core ARM7 processor with one level of set-associative cache memory. We use OTAWA [17]
to compute the WCET of the tasks and the list of UCBs and ECBs. Blocks are collected
based on the method proposed by Healy et al. [42]. Tasks are chosen from the Malärdalen
benchmark suite [39] and from TACLeBench [35].

Tasks Bench WCET Nb ECB Nb UCB
fibcall Malärdalen 5235 14 7
lcdnum Malärdalen 9132 16 8

duff Malärdalen 12034 20 10
binarysearch TACLeBench 21511 42 21

insertsort TACLeBench 26086 58 29
iir TACLeBench 31439 62 31

complex_updates TACLeBench 62040 64 34
ns Malärdalen 88058 32 16
cnt Malärdalen 112574 54 27
ud Malärdalen 132411 64 36

fir2dim TACLeBench 228105 64 36
ludcmp TACLeBench 340181 64 37

crc Malärdalen 442317 64 32
expint Malärdalen 554166 46 25

nsichneu Malärdalen 569174 64 32

Table 4.4: List of tasks used in the experiments: Cache size of 2KB, 2 ways, BRT = 200
cycles.

The analysis has been repeated multiple times with different cache configurations:
2KB, 4KB, with 2 and 4 ways. The size of a cache line has been fixed to 32 bytes, as it
is a standard in ARM processors, like the MPCore A7.

Following of [24], we set the Block Reload Time BRT = 50, 100, 200. In all configu-
rations we considered the LRU replacement policy. In Table 4.4 we report the value of
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the WCET (in processor cycles) and the size of the ECB multiset for the corresponding
benchmarks. The number reported for the UCB is the size of the multiset obtained by
merging all the UCB multisets for each preemption point using the fusion operation.
Please notice that the WCET and the number of UCBs and ECBs depends on the cache
configuration.

To adhere to a more realistic setting in a real compiler and linker, once the tasks have
been selected to build a task set of 6,8,10 or 12 tasks, their memory locations are randomly
assigned by adding a random offset to the cache sets index of their CB addresses such
that:

U ′k
i =

⊎
∀e∈Uk

i

{(e+ ϕ)modZ} (4.13)

with Z the number of cache sets in the cache, and ϕ a random number in [0, Z − 1].
We generate a set of utilizations using the UUnifast algorithm [22], and we com-

pute a tentative period T ′
i = Ci

Ui
. In order to generate realistic workloads, and to

avoid an excessive length of the hyperperiod of the task sets, we approximate the value
of T ′

i to a value Ti taken from a list of periods (expressed in thousands of “ticks”):
{10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000}, taken from [49]. Then, we assign
each task a relative deadline uniformly chosen in interval [max(Ci, 0.9Ti), Ti]. Finally, all
schedulability analyses were performed with the data computed in the previous step.

4.6.2 Results

All experiments have been conducted using the tasks of Table 4.4, taken from [39] and
[35], and applying all algorithms on 1000 randomly generated task sets per utilization
point.

In all the figures the No-CRPD curves represent the results of the dbf analysis without
considering the CRPD cost, and it is reported as a reference for the other algorithms.
We decide to use the combined approach from Lunniss et al. [57] to see the impact of the
preemption interval. Our approach is labeled as Combined-PI and Combined-PI-pp for
Combined preemption interval and Combined preemption points and preemption interval.
The original version from the literature are denoted as Combined and Combined-pp, how-
ever, the maximum number of preemption points per task is limited with Algorithm 1.
To the best of our knowledge, the combined approach is the best approach so far for
EDF scheduling. For both Combined-PI and Combined we use the reduce operation 1
to consider only one multiset of UCBs per task. For each point, we also report the 95%
confidence interval, computed as:

CI = p̂± Z∗

√
p̂ · (1− p̂)

n

where p̂ is the ratio of schedulable task sets for a given workload, n is the sample size
(here 1000), and 1.96 is the value for Z∗.



4.6. EVALUATION 69

 0

 20

 40

 60

 80

 100

 0.8  0.82  0.84  0.86  0.88  0.9  0.92  0.94  0.96  0.98  1

Pe
rc

e
n
ta

g
e
 o

f 
sc

h
e
d
u
la

b
le

 t
a
sk

 s
e
ts

Workload

Combined-PI-pp
Combined-pp

No CRPD
Combined-PI

Combined

Schedulability considering CRPD

(a) Schedulability of ntasks = 12 with cache of
2KB, 2 ways, BRT = 200 and Mreduce = 4

 0

 20

 40

 60

 80

 100

 0.8  0.82  0.84  0.86  0.88  0.9  0.92  0.94  0.96  0.98  1

Pe
rc

e
n
ta

g
e
 o

f 
sc

h
e
d
u
la

b
le

 t
a
sk

 s
e
ts

Workload

Combined-PI-pp
Combined-pp

No CRPD
Combined-PI

Combined

Schedulability considering CRPD

(b) Schedulability of ntasks = 12 with cache
of 4KB, 2 ways, BRT = 200 and Mreduce = 4

Figure 4.2: Impact of cache size.
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Figure 4.3: Impact of number of ways.
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(a) Schedulability of ntasks = 6 with cache
memory of 4KB, 2 ways, BRT = 200 and
Mreduce = 4
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Figure 4.4: Impact of number of tasks and BRT.
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Impact of the cache size The variation of the cache size has a strong impact on the
Combined and Combined-PI-pp methods. Consider the experiments in Figure 4.2a and
Figure 4.2b, whose only difference is the size of the cache (2KB and 4KB, respectively).
The Combined analysis loses 10% of schedulable task sets already at U = 0.8 as we
increase the size of the cache, whereas Combined-PI-pp increases its performances for
all values of the workload. In particular, at U = 0.875 Combined-PI-pp increases its
performance by more than 10%. We explain this difference with the fact that using only
one UCB set per task produces larger UCB set as the cache size increases, thus increasing
pessimism.

Impact of the number of cache ways and cache sets. Figures 4.3a and 4.3b
show two different scenarios that use a 4KB cache, the first with 2 ways and the second
with 4 ways. As you can see, the second scenario provides better performance than the
first scenario while the performance of different versions of the combined approach are
closer. We explain this by observing that our algorithms is more effective in reducing the
pessimism as the scenario becomes more competitive (less number of ways).

Impact of the number of tasks. The number of tasks has a strong impact on the
schedulability ratio. Comparing Figure 4.2b (12 tasks) with Figure 4.4a (6 tasks), we
notice two things: first, by increasing the number of tasks, the performance of Combined-
PI decreases to become closer to combined; Second, by increasing the number of tasks, the
performance of Combined-PI-pp decreases slower than the performance of Combined-pp,
increasing the gap between the two approaches. This means that the combination of the
Preemption Interval and the use of several UCB multisets to describe preemption points
is more useful with a high number of tasks.

You may notice that overall the schedulability ratio is lower in the case of a task set
with 6 tasks compared to a task set of 12 tasks at U = 0.975. This is due to the algorithm
we use for generating the task set: in fact, in order to obtain the same workload, a set
of 6 tasks must have a higher average workload per task Ci

Ti
and thus Ci

Di
than a set of 12

tasks. Therefore, a set of 6 tasks is marginally less schedulable than a set of 12 tasks.

Impact of the block reload time. By comparing Figure 4.2b and Figure 4.4b, we
conclude that the block reload time has a strong impact on schedulability, since 90% of
task sets are schedulable with combined-PI-pp and a BRT = 50 compared to 50% in
the case of BRT = 200 at U = 0.9. With a BRT = 50 the gap between Combined-
PI-pp and Combined-pp is smaller and we observe the same between Combined-PI and
Combined. However, there is an augmentation of 40% in the schedulable task sets between
Combined and Combined-PI-pp. This gap shows the gain in precision when using the
reduce operation. As you will see later in the section, using the reduce heuristic allows us
to find a compromise between the accuracy of the analysis and its complexity.

The impact of the BRT on the schedulability contradicts the conclusions of Shah et
al. [74]. However, we observe that in the experiments of [74] the task sets are generated
differently: the WCET of all tasks is almost a multiple of the BRT (probably due to the
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Figure 4.5: Impact of their reduce operation on analysis time.
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Figure 4.6: Analysis time for a cache memory of 4KB, 2 ways, U = 0.85, BRT = 200 and
Mreduce = 4

different WCET analysis tool), and the periods are computed as Ti = Ci

Ui
≈ kiBRT

Ui
, with Ui

randomly generated by UUnifast. Therefore, the dominant factor in their experiments is
the number of preemptions, and not the value of BRT. In our case, 1) the WCETs and the
UCBs and ECBs have been computed by OTAWA, and the WCETs are not proportional
to the BRT; 2) periods are selected from a list. We believe that our experimental setting
presents a better approximation of a real application.

Analysis time. We can see in Figure 4.6 the analysis time of schedulable task sets for
the different approaches with 4 configurations of task set sizes: 6, 8, 10 and 12 tasks with
a processor load of 0.85. The other parameters are a reduce operation parameters Mreduce

equal to 4 with BRT = 200 and a cache memory of 4KB and 2 ways. Between the first
and the last case (6 and 12 tasks, respectively), we observe a multiplying factor of 10 for
the analysis time of the combined approach with SOM as model for the UCBs.

The reduce operation has a strong impact on the analysis time of schedulable task sets
as you can see with Figure 4.5a and Figure 4.5b. Both experiments use the same cache
configuration, a 2KB with 4 ways cache memory and a BRT = 50. The task set is of size
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12 for both experiments and the reduce operation parameter Mreduce is set to 4 in the first
configuration and 2 in the second. As you can see, multiplying by two Mreduce doubles
the gap between combined-PI and combined-PI-pp time analysis. The same observation
is also true between Combined and Combined-pp. We think that using all the UCB
multisets obtained by the WCET analysis for each task is not scalable. It also shows the
importance of heuristics such as the reduce operation to keep the complexity in check, to
increase the number of schedulable task sets that the analysis can verify.

4.7 Conclusions and future work
In this chapter we improve the precision of CRPD analysis while proposing a compromise
with the complexity of the analysis. We target fully preemptive real-time tasks scheduled
by EDF on single processor systems with set-associative caches. In particular, we propose
two original contributions:

• A method to precisely compute the Preemption Interval length of each task (Section
4.3), thus the number of preemptions that a task can undergo;

• A heuristic to keep the complexity of analysis in check (Algorithm 1).

In this chapter we worked on the basic techniques behind CRPD analysis. For sim-
plicity, we decided to focus on single-processor architectures with one single level of cache
and we only consider instruction caches. While this is a very limited setting compared
to modern architectures, we believe that our propositions represent a building brick that
can be reused to improve CRPD analysis in more complex settings like multilevel caches
and multicore systems with private and shared caches.

Regarding possible extensions for data caches, we believe that the problem lies mostly
in the correct computation of the UCBs and ECBs for data, especially in the presence of
pointers in the code.
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In this chapter, we propose a methodology to reduce the vulnerability of a hard real-
time application to soft errors caused by transient faults in Instruction L1 (IL1) cache
memories. The vulnerability of an instruction is proportional to the time it spends in
the cache, and it is therefore subject to transient faults. Our method is based on a
static analysis tools to analyze a binary program and compute the overall vulnerability
of its instructions. Estimating the vulnerability of data in the data cache is left for futur
works. The tool we use to perform the static analysis can not yet extract the properties
concerning the relation between the anlyzed program and the data cache.

We propose to reduce this vulnerability by invalidating some CBs at specific instants
during the execution. In this way, we force vulnerable instruction blocks to be reloaded
from higher layers in the memory hierarchy. Since adding invalidation points will likely
increase the WCETs of the tasks, we perform a static analysis to guarantee that the
system remains schedulable after modification. In this way, all the application deadlines
are respected.

In other words, our proposal is to select the most vulnerable blocks and to choose
the most suitable moments when to reload these blocks without impacting real-time con-
straints. We also present different possible practical implementations of the cache invali-
dation mechanism according to the type of the IL1 cache memory, i.e. direct mapped or
set-associative. Finally, we analyze how our methodology can be combined with existing
hardware protection mechanisms as ECC memories. The performance of our methodology
in terms of vulnerability reduction is evaluated with a set of experiments on benchmarks.

First, in Section 5.1 we present the system model and our assumptions for this chapter.
Our contributions to reduce the vulnerability in the cache memory are detailed in Sec-

tion 5.2 and Section 5.3. Then, we present a case study and experiments to demonstrate
the improvements in reliability with our methods compared to systems without any pro-
tection in Section 5.4. Finally, Section 5.5 gives a conclusion and presents new research
avenues for future works.

5.1 System model

In this chapter we consider, a non preemptive system of N independent real-time sporadic
tasks with implicit deadlines. We assume that the tasks are scheduled by Non-Preemptive
Earliest Deadline First (NP-EDF) [46]. With this scheduling, we do not have to consider
CRPD between tasks.

In this chapter we also need to estimate the worst-case vulnerability of a cache line.
Therefore, during the vulnerability analysis, all scenarios with a potential cache hit will
be considered as always hit (may analysis). Therefore, when referring to UCBs in this
chapter, we are referring to those obtained via the may analysis.

In addition, contrary to CRPD analysis, we consider two sets of UCBs per BB, one
at the entry and the other at the exit. Since we do not have to consider the BBs as
preemption points.

Finally, we consider that the contents of the IL1 cache are flushed just after the
execution of a job. Therefore, the instructions of a task cannot be vulnerable during the



5.2. TASK PROFILE 75

execution of another one.

5.2 Task Profile
To reduce the vulnerability of a task, we can artificially invalidate CBs at some point in
the code. In this way, the CBs will be reloaded from the main memory at their next read
accesses, thus reducing their vulnerability. This is equivalent to forcing artificial cache
misses. However, inserting cache misses also increases the task’s worst-case execution
time: if we insert too many cache misses, the WCET will increase to the point that the
task set becomes unschedulable. Therefore, we need to carefully select the locations where
to invalidate the cache misses so that the task set remains schedulable.

The number λ of potential locations where to invalidate the cache for a set of tasks
is linear in the size of the code. However, the number of configurations, is 2λ which is
exponential in the code size. Even the use of specialized solvers for exploring all possible
configurations is too expensive.

This chapter takes a different approach. At first, we analyze one task at a time to
build a task profile, which consists of a list of tuples containing the WCET, the task’s
vulnerability factor, and the combination of cache invalidation locations. Then, we use
these profiles to determine the best configuration of artificial cache misses for each task,
allowing the set of tasks to remain schedulable.

5.2.1 Computing the vulnerability factor of tasks

In this chapter, we use the TAsk Vulnerability Factor (TAVF) as a metric to evaluate the
vulnerability of a task in the system, that is the probability that a fault occurring on one
of the CBs used by the task will affect its behavior.

TAVF is a metric similar to the Temporal Vulnerability Factor (TVF) proposed by
Wang et al. [83]. The TVF represents the probability that a fault occurring on a used
part of cache memory will provoke a failure in the application. Therefore, the TVF is a
global metric on the cache, whereas TAVF is specific to a given task.

To compute the TAVF, we first need to compute an upper limit to the vulnerability of
the task. We consider the case where all instructions are vulnerable during its worst-case
execution time, and we denote it as task exposition. Therefore, the task exposition can
be computed simply by multiplying the WCET of the task times its size in bytes.

We use OTAWA [17], a static analysis tool that is mainly used to estimate the WCET
of a task, and that we extended to compute its vulnerability.

The vulnerability of a task consists in summing the worst vulnerability of each LB. It
can be decomposed into two components:

• The baseline vulnerability is the vulnerability of a LB during the execution of those
BBs which contain instructions from the corresponding CB;

• The path vulnerability is the vulnerability of a LB during the execution of those BBs
which contain no instructions from the corresponding CB.
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A BB1
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C
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D BB2

D BB4

Control Flow Graph

UCBb-out
BB1
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UCBb-in
BB2
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UCBb-out
BB2
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= {A,B,C,D}

UCBb-out
BB3

= {A,B,C,D}UCBb-in
BB4

= {D}

Figure 5.1: Example of task CFG (bis)

5.2.1.1 Computing the baseline vulnerability

Similarly to [83], we only consider as vulnerable the time between two readings of the
same CB without the latter being evicted.

Since the WCET estimation tool has a time granularity of a BB, we consider that all
BB instructions are vulnerable during the entire BB execution.

Equation (5.1) allows us to compute the baseline vulnerability for a LB lb.

νbv
lb = dlb · Ilb · wcetBBlb (5.1)

where wcetBBlb corresponds to the WCET of BBlb which represents the BB that contains
lb. Ilb denotes the maximum number of executions of lb for one instance of the task it
belongs, and dlb the size (in bytes) of the vulnerable instructions of the CB of lb during
the execution of BBlb.

Equation (5.2) shows how dlb is computed: UCBb-out
lb is the list of UCBs at the output

of BBlb, in the same way, the list of UCBs at the input of BBlb is denoted by UCBb-in
lb .

Also, with CBlb we denote the CB that contains lb.

dlb =

{
|CBlb|, if CBlb ∈ UCBb-out

lb

|lb|, otherwise
(5.2)

During the execution of lb, its instructions are always vulnerable. However, if CBlb belongs
to UCBb-out

lb then other instructions from CBlb may be used later by other BBs, and in this
case we have to consider the entire CB as vulnerable. In BB3 in Figure 5.1, the LB that
belongs to CB D is vulnerable during the execution of BB3. Furthermore, as D is present
in UCBb-out

BB3
as it can be reused later without eviction in the meantime in BB2 and BB4,

the other instructions of D are also vulnerable during the execution of BB3.
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To compute the baseline vulnerability for a task τi, we just sum the baseline vulnera-
bility of its LBs:

νbv
i =

∑
∀lb∈τi

νbv
lb (5.3)

Theorem 5.2.1. The baseline vulnerability of a task τi computed with Equation (5.3) is
an upper bound to the sum of the vulnerabilities of the task’s CBs during their execution.

Proof. Suppose an instruction i is stored in the cache while another instruction j from
LB lb belonging to the same CB of i is currently executed. Suppose that a path exists
from j to a point where instruction i is executed without being evicted from the cache.
Observe that instruction i is vulnerable on this path.

There are two cases:

• the instruction i is part of lb;

• the instruction i is not part of lb.

Equation (5.1) covers the first case, since it considers LBs vulnerable during the exe-
cution of their BB (it multiplies the LB size by the WCET of its BB).

Furthermore, Equation (5.1) considers that the entire CB is vulnerable, and not only
the executed LB belonging to it, if it belongs to the set UCBb-out

lb . Since i will be executed
in the future without being evicted, its CB belongs to UCBb-out

lb . This covers the second
case.

Since Equation (5.3) is the sum of the baseline vulnerability for each LB of the task
computed with Equation (5.1), we conclude that Equation (5.3) is an upper bound to the
sum of the CBs vulnerability during their execution.

5.2.1.2 Computing path vulnerability

The baseline vulnerability of a task is not sufficient to bound its vulnerability. During
the execution of a basic block BB, CBs that have no instructions in BB can be vulnerable
if they belong to the UCB set at the exit of BB. However, their vulnerability is not
considered by Equation (5.3), because the actual value of their vulnerability depends on
the path followed by the program. Therefore, we need to look at all paths in the graph
to effectively compute this additional vulnerability. We denote this component of the
vulnerability as path vulnerability since it affects only blocks in a path in which they are
not used.

For example, in Figure 5.1 CB A consists of two LBs present in BBs BB1 and BB3. By
the static analysis of the code, we know that A is present in UCBb-out

BB1
, UCBb-in

BB2
, UCBb-out

BB2

and UCBb-in
BB3

. Thus, A is vulnerable on path BB1 → BB2 → BB3. As BB1 and BB3

contain a LB from A, the vulnerability of A during the execution of BB1 and BB3 is
already considered by its baseline vulnerability. The path vulnerability therefore must
just account for the vulnerability of A during the execution of BB2.
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We propose to compute for each LB the path vulnerability νpath
lb as follows:

νpath
lb =

{
dlb · Ilb · Pmax

lb , if CBlb ∈ UCBb-in
lb

0, otherwise
(5.4)

where Pmax
lb is the WCET of the longest path from the last access to CBlb until BBlb. We

consider only the paths where CBlb is in the cache along the entire path without being
used (and it used at the end of the path). Similarly to the baseline vulnerability, the path
vulnerability for a task τi can be computed as:

νpath
i =

∑
∀lb∈τi

νpath
lb (5.5)

Theorem 5.2.2. Equation (5.5) provides an upper bound to the path vulnerability for
task τi.

Proof. To be considered as vulnerable at a point p, a LB lb must have its CB in the cache,
and it must be executed later without any eviction in the meantime.

If lb is vulnerable during the execution of a basic block BB that does not contain any
LBs from CBlb, then BB must be at least in one path of Pmax

lb′ , where lb′ is a LB from CBlb.
We are now in one of these two cases:

• lb = lb′, the vulnerability of lb between the start of the execution of BB and the
start of the execution of the BB containing lb is bounded by Equation (5.4). Indeed,
this equation consists in multiplying the length of the maximum path from Pmax

lb by
the size of lb or by the size of its CB.

• lb ̸= lb′, the vulnerability of lb between the start of the execution of BB and the start
of the execution of the BB containing lb′ is also bounded by Equation (5.4). Indeed,
as the BB of lb′ is inside a path through a future execution of lb, CBlb ∈ UCBb-out

lb′ .
In this case, the equation consists in multiplying the length of the longest path from
Pmax

lb′ by the size of CBlb.

Thus we can say that the path vulnerability of CBlb can be bounded by
∑

∀lb′∈CBlb

νpath
lb′ .

As Equation (5.5) is the sum of νpath
lb for all the LBs of task τi, it is also an upper

bound of the path vulnerability for task τi.

Finally, we compute the TAVF of τi as:

f v
i =

νbv
i + νpath

i

Ci · |τi|
(5.6)

where |τi| is the size in bytes of the task’s code.
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LB vulnerable data size baseline vulnerability path vulnerability
ABB1 |A| |A| · wcetBB1 0
DBB2 |D| |D| · wcetBB2 |D| · 0
ABB3 |A| |A| · wcetBB3 |A| · |BB3 → BB2 → BB3|
BBB3 |B| |B| · wcetBB3 |B| · |BB3 → BB2 → BB3|
CBB3 |C| |C| · wcetBB3 |C| · |BB3 → BB2 → BB3|
DBB3 |D| |D| · wcetBB3 |D| · 0
DBB4 |DBB4| |DBB4 | · wcetBB4 |DBB4| · 0

Table 5.1: Vulnerable instructions and path vulnerability for each LB in the example of
Figure 5.1.

5.2.1.3 Example

In this example we consider task τi whose CFG is shown in Figure 5.1. To compute its
vulnerability factor, we start by computing the size of the vulnerable instructions for each
LB with Equation (5.2). The results are reported in the second column of Table 5.1.

The baseline vulnerability of a task is obtained by summing the LB baseline vul-
nerabilities with Equation (5.1). The results are reported in the third column of Table 5.1,
and the baseline vulnerability of task τi is the sum of its elements.

Then, the path vulnerability is computed and the results are shown in the fourth
column of Table 5.1. As you may notice, the value of νpath

DBB4
is 0 since its greatest vulnerable

path is BB2 → BB4 and BBs at both sides of the path are not considered in the execution
time of the path.

Finally, the vulnerability task factor of this example can be computed by summing all
elements of the last two columns, and dividing them by the task’s WCET multiplied by
the size of the task.

5.2.2 CB invalidation

Without hardware support, we can invalidate cache lines by adding special sections of code
that perform the invalidation before executing the target instructions. In this section, we
present different methods to invalidate the cache depending on its architecture: direct
mapped or set-associative.

To invalidate a cache line at a point p, we change the instruction at this point with a
jump to an additional section of code that executes the replaced instruction after inval-
idating the cache line. These additional section of code will be invalidated immediately
after their execution to avoid adding too much vulnerability to the task.

We now present some examples demonstrating how cache lines can be invalidated
on processors based on the ARMv8 AArch64 ISA for direct mapped and set-associative
caches. However, our method can be easily adapted to other architectures. In the consid-
ered architecture, instructions are coded on 32 bits, and a cache line contains 64 bytes,
therefore a CB contains 16 instructions.
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· · ·
MOVK X2, #12, LSL 0;4006C0

MOVK X2, #C0, LSL 16;4006C4
· · ·
· · ·4006FC

· · ·

(a) Original task instructions.

· · ·
B 5006C0;4006C0

MOVK X2, #C0, LSL 16;4006C4
· · ·
· · ·4006FC

· · ·

1

MOVK X2, #12, LSL 0;5006C0
B 4006C4;5006C4
· · ·

NOP;5006FF 2

(b) Modifications to invalidate the cache line.

Figure 5.2: Invalidation mechanism for direct mapped cache memories.

Let us consider the code sample presented in Figure 5.2a. Here we have a CB going
from address 4006C0 to 4006FC. In Figure 5.2b we present the code transformation to
invalidate the CB in a direct-mapped cache of 16KB.

This mechanism can be viewed as a jump through a CB with the same cache set index
that evicts the targeted CB and a return to this CB.

1 presents the modified code of the task: the instruction at address 4006C0 is replaced
by an unconditional branch instruction B 5006C0 which re-routes the execution flow to
address 5006C0. As a consequence, instructions at addresses 5006C0 and 5006C4 are
executed (see CB 2 in the figure). They are composed of the substituted instruction
and the unconditional branch to the instruction at address 4006C4. Notice that this
special CB 2 is placed at an address which shares the same cache set index as 1 . Since
this is a direct mapped cache, these CBs cannot be present at the same time in the cache
memory. This mechanism adds two cache misses to the task (for recharging each block
1 and 2 ) and only two jump instructions for each invalidation locations. We observe

that in this approach the first jump instruction is still vulnerable.
However, this simple strategy cannot be used for set-associative caches, because multi-

ple blocks with the same index can be present at the same time in the cache. Invalidating
all the cache lines of a given cache set is not efficient.

Therefore, we designed a second and a more complex strategy for set-associative
caches, which we describe in Figure 5.3b. Here, CB 1 represents the modified task
instructions, while 2 and 3 are the newly inserted CBs in the code.

Again, we substitute the instruction at address 4006C0 in CB 1 with an unconditional
branch instruction B 400C00 to CB 2 . After jumping into 2 , we execute the original
instruction, then, we find the instructions to invalidate CB 1 . Adress to be invalidated is
loaded in register X0, and instruction IC IVAU, X0 is executed. This instruction is a special
instruction that invalidates a CB in the instruction cache until the point of unification [9].
It is the point where instruction and data caches and translation tables are guaranteed
to see the same copy of a memory location [10].

In the figure we highlight the invalidation mechanism with a red dashed arrow: the
CB targeted by the arrow is invalidated by the IC IVAU instruction at the start of the
arrow. Notice that, in this example, we assume that register X0 is reserved for the sole
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· · ·
MOVK X2, #12, LSL 0;4006C0

MOVK X2, #C0, LSL 16;4006C4
· · ·
· · ·4006FC

· · ·

(a) Original task instructions

Task with inserted cache miss

· · ·
B 400C00;4006C0

MOVK X2, #C0, LSL 16;4006C4
· · ·
· · ·4006FC

· · ·

1

MOVK X2, #12, LSL 0;400C00
MOVZ X0, #C0, LSL 0;400C04
MOVK X0, #06, LSL 16;400C08
MOVK X0, #40, LSL 32;400C0C
MOVK X0, #00, LSL 48;400C10

IC IVAU, X0;400C14
MOVZ X0, #40, LSL 0;400C18

MOVK X0, #0C, LSL 16;400C1C
MOVK X0, #40, LSL 32;400C20
MOVK X0, #00, LSL 48;400C24

IC IVAU, X0;400C28
B 400C40;400C2C
· · ·

NOP;400C3C

2

MOVZ X0, #00, LSL 0;400C40
MOVK X0, #0C, LSL 16;400C44
MOVK X0, #40, LSL 32;400C48
MOVK X0, #00, LSL 48;400C4C

IC IVAU, X0;400C50
B 4006C4;400C54
· · ·

NOP;400C7C

3

Loading
value
00400C40
into X0

(b) Modified task code.

Figure 5.3: CB invalidation mechanism for set-associative cache memory.

purpose of cache invalidation. If X0 is used for another purpose, another register can be
chosen, obviously.

At this point we have to remove the additional code from the cache memory to protect
it from soft errors and continue the execution of the task. However, a jump instruction
is needed to go back to the next task instruction. This jump must not be present in the
cache memory too, otherwise it is also vulnerable. Therefore, we use a third block 3 .
We first invalidate it to ensure that it is not vulnerable. A second jump is performed to
3 where, after invalidating 2 , we jump to the next instruction in the original location.

As a result, all blocks are invalidated and 3 cache misses and 18 instructions to the task
code are added.

We assume that, by configuring the compiler and the linker, all the additional CBs
are reserved a single cache index, such that no other CB in the task uses the same cache
index. In this way, the additional CBs will not interfere with the rest of the task execution.
Notice that reserving more than one cache line for this additional code is useless since all
the CBs put in this cache line will be invalidated just after being used.
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The WCET of an Inserted Cache Miss (ICM) is defined by Equation (5.7)

CICM = δ + BRT · β (5.7)

where δ is the execution time of the code of the section and the jump instruction, and β
corresponds to the number of CBs used by the additional section.

When a cache miss is added at LB lb the impact on the WCET of the task can be
computed as follows:

C impact
lb = Ilb · (CICM + BRT) (5.8)

Let a list of LBs γ corresponding to the location of the inserted cache misses, the
modified WCET of a task τi, C ′

i can be computed as:

C ′
i = Ci +

∑
∀lb∈γ

C impact
lb (5.9)

Even if the additional sections of code have a limited vulnerability, we still need to
consider it with the following equation:

νICM =
∑

∀lb′∈ICM

wcetlb′ · |lb′| (5.10)

νICM
lb = Ilb · νICM (5.11)

where ∀lb′ ∈ ICM iterates on the LBs of the inserted cache miss mechanism.

5.2.3 ICM and TAVF

Cache misses have an impact on the task vulnerability factor. Invalidating block CBlb at
the start of lb reduces its vulnerability, but we increase the execution time of all paths that
contain lb and therefore increase the vulnerability of other LBs that may be vulnerable
along those paths. For this reason it is necessary to compute the overall vulnerability for
a cache misses combination.

First, we notice that by invalidating a LB lb, dlb will be equal instruction size, here
the jump instruction.

dlb =


σ, if lb is invalidated
|CBlb|, else if lb ∈ UCBb-out

lb

|lb|, otherwise
(5.12)

where σ is the size of the jump instruction (4 bytes in the previous example for ARMv8
architecture).

Second, the impact of the cache misses needs to be considered also along the vulnerable
paths. For any LB lb, we consider all vulnerable paths ending on lb. Let Γlb be a list of
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LBs different from lb that contain an invalidation. We compute the impact of the inserted
cache misses on the path vulnerability of lb with the following equation:

ρlb =
∑

∀m∈Γlb

{
C impact

m , if ∃p ∈ Plb|m ∈ p
0, otherwise

(5.13)

where Plb is the list of vulnerable paths ending in lb.
Finally, Equation (5.4) is modified to account for the inserted cache misses:

νpath
lb =

{
dlb · (Ilb · Pmax

lb + ρlb), if CBlb ∈ UCBb-in
lb

0, otherwise
(5.14)

Example Consider again the example of Figure 5.1, and suppose we invalidate LB ABB3 .
The value of dABB3

is equal to σ. The vulnerability path of LBs BBB3 , CBB3 , DBB3 and DBB2

is changed according to Equation (5.14), since each of their vulnerable paths contain BB3.

5.2.4 Transformation to a QP problem

We now show how the different cache misses combinations are explored to build the task
profile.

As mentioned earlier, the number of ICM combinations is exponential in the number
of potential cache misses locations. We propose to use Quadratic Programming (QP)
to search a combination with the lowest vulnerability in a given interval while providing
a WCET bounded by a given value Cbound. The idea is to run several instances of the
QP problem, every time lowering the WCET bound, thus obtaining a pareto-front of
vulnerability/WCET.

We denote as X a list of decision variables. Each element Xj of this list corresponds
to the invalidation of LB lbj, and is equal to 1 when lbj is invalidated, and 0 if it is left
unmodified. We denote as V a list of real values Vj, each one corresponds to the path
vulnerability of a LB lbj.

We first define the constraint on the WCET:

Ci +
∑

∀lbj∈τi

C impact
lbj ·Xj < Cbound. (5.15)

Then, we build a constraint to compute Vj.
We start by computing the length of vulnerable path V path

j according to the inserted
cache misses with Equation (5.16).

V path
j = Ilbj · Pmax

lbj +
∑

∀lbk∈p|∀p∈Plbj

Xk · C impact
lbk . (5.16)

Then, this length is used to compute the path vulnerability Vj:

Vj = V path
j · ((1−Xj) · dlbj +Xj · σ) +Xj · νICM

lbj (5.17)
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The factor Xj · σ from Equation (5.17) corresponds to the case where a cache miss is
inserted to LB lb and the factor (1−Xj) ·dlbj corresponds to the case when no cache miss
is inserted.

We now limit the values of the vulnerability with an upper bound. The vulnerability
should never exceed the vulnerability V Task-max-vul of the unmodified program (Equa-
tion (5.18)).

νbv
i +

∑
∀lbj∈τi

Vj ≤ V Task-max-vul (5.18)

Finally, the objective function is a minimization of the task vulnerability:

fctobj = min νbv
i +

∑
∀lbj∈τi

Vj (5.19)

We now present the Algorithm 2 that uses the QP problem to build the task profile.

Algorithm 2 Task profile builder
Require: a task τi
Ensure: a task profile L
1: L ← ∅
2: V Task-max-vul ← νbv

i + νpath
i

3: Cbound ←∞
4: while continue do
5: S ← QP (V Task-max-vul, Cbound)
6: if S = ∅ then
7: break
8: else
9: L ← L ∪ {(Ci(S), Vi(S)

Ci·|τi| ,S)}
10: Cbound ← Ci(S)

return L

It starts at Line 1 by the initialization of the combinations list L to an empty set since
we have not yet computed any combination of cache misses. Then we set the vulnerability
and WCET upper bounds respectively V Task-max-vul and Cbound. On Line 4 the algorithm
builds a combination of inserted cache miss S with a QP generated as presented earlier
in this section at Line 5. If no combination of inserted cache misses is found, we exit the
loop at Line 7. Otherwise, at Line 8, we add to L the WCET and the vulnerability factor
of the task considering cache misses combination S respectively Ci(S) and Vi(S)

Ci·|τi| , and the
combination S itself. The vulnerability and WCET bounds are also updated with the
current combination values for the next iteration.

5.2.5 Using ECC SRAM memories

So far, we presented a methodology which reduces the vulnerability for COTS hardware
architectures using cache invalidation. However, our static analysis method can be easily
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extended to hardware that provides some protection mechanisms for cache memory. In
this section we discuss the application of our method to hardware which features Error
Correcting Code (ECC) memories, and we propose a minor modification in the ISA to
exploit our methodology.

ECC protected memories can tolerate temporary faults by detecting and correcting
soft errors. Each time the processor accesses one location in the memory, an algorithm
is performed in the hardware circuitry that compares the stored code and the computed
code. To do this, the ECC memory uses extra bits to code enough information to re-
cover from faults. However, ECC memories need more die space compared to non-ECC
memories to store the extra bits and the encoding and decoding algorithms, and need an
additional delay to access the data, thus reducing the performance.

We can use our method to selectively enable the ECC correction mechanisms only on
those memory instructions which have the highest vulnerability, as computed with our
proposed methodology.

We suppose that the ARM ISA is modified to reserve a bit in the instruction encoding.
This bit is denoted as vulnerable mode: when an instruction is fetched from the cache
memory with its vulnerable mode bit equal to 1, the cache memory dedicated hardware
performs the ECC decoding algorithm on the CB’s instruction and produces the correct
instruction even in the presence of a temporary fault. In addition, the other instructions
of the CB are updated with their decoded versions. If the vulnerability mode bit is set
to zero, the instruction is stored and later returned without ECC comparison. The ECC
reduces the vulnerability to zero. However, access to instructions with the vulnerable
mode bit set to 1 takes more time than the other instructions, therefore it increases the
WCET of the task.

We observe that the mechanism described above has a much lower overhead than the
cache invalidation technique proposed in the previous section, both in terms of added
delay and in terms of additional code and vulnerability, however, it needs the support for
special ISA and ECC cache memory.

To compute the task profile using this mechanism, we substitute Equation (5.8) with:

C impact
lb = Ilb · (CECC) (5.20)

where CECC is the extra delay of the ECC mechanism expressed in cycles.
As the ECC mechanism does not use any additional instructions, thus removing

also additional vulnerability sources, the vulnerability constraint modeled with Equa-
tion (5.17) is simplified as follows:

Vj = V path
j · (1−Xj) · dlbj (5.21)

5.3 Reducing Task Set Vulnerability Factor
Once the tasks’ profiles have been computed, we can set up a QP problem to reduce the
total Task Set Vulnerability Factor (TSVF) while ensuring the respect of the schedulability
constraints.
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For each task τi of task set τ we denote as Xi a list of decision variables. An element
Xi,j ∈ Xi corresponds to the selection of the jth configuration in the profile of τi: If the
value of this variable is 1 then the j-th configuration is selected, otherwise it is not. As
only one configuration must be chosen for each task profile, the first constraint of our QP
problem is:

∀τi ∈ T ;
∑
∀j

Xi,j = 1 (5.22)

Let Ci,j and Vi,j be respectively, the WCET of τi and its TAVF when the jth configu-
ration of the task profile is selected.

We assume that the tasks are scheduled according to the non-preemptive EDF policy.
We use the following equations, proposed by Jeffay et al. [46], for the schedulability
constraints: ∑

∀τi∈T

∑
∀j

Ci,jXi,j

Ti
≤ 1 (5.23)

∀τi ∈ T ; i < 1;∀L;T1 < L < Ti; (5.24)

(
∑
∀j

Xi,j · Ci,j) +
i−1∑
k=1

⌊L− 1

Tk
⌋ · (
∑
∀g

Xk,g · Ck,g) ≤ L (5.25)

The objective function of the QP is the minimization of the TSVF. It is corresponding
to the sum of the TAVFs of the tasks multiplied by their initial utilization:

fctobj = min
∑
∀τi∈τ

∑
∀j

(Xi,j · Vi,j ·
CI

Ti
) (5.26)

5.4 Evaluation
In this section, we present the experimental results obtained using the proposed method
on a set of benchmarks. We first explain the settings of our experiments. Then, we
present and discuss some representative task profiles obtained with our analysis. In the
last two sub-sections, we discuss the performance obtained by the invalidation and ECC
mechanisms.

5.4.1 Experimental setting

We consider a single ARM7 core architecture with a 16KB IL1 cache memory. Each
cache line has a size of 64 bytes. Two IL1 configurations are explored: direct mapped and
2 way set-associative. We consider two different values for the BRT: 20 and 50 cycles.
Theses values have been chosen because they correspond to a typical embedded micro-
architecture. We assume that the tasks are scheduled non-preemptively according to the
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np-EDF scheduling policy. Since the size of the task code of the benchmarks are relatively
small, we observed that increasing the total IL1 size does not impact the WCET or the
vulnerability factor.

In the experiments, we use tasks from two benchmarks: the Malärdalen benchmark
suite [39] and TacleBench [35]. Details of these tasks are given in Table 5.2: the third
column is the WCET and the last column is the initial TAVF of the unmodified tasks
computed with the OTAWA tool [17]1.

Name Benchmark WCET (cycles) TAVF
binarysearch TacleBench 6164 0.112

bs Malärdalen 1044 0.301
cnt Malärdalen 32097 0.253

fibcall Malärdalen 5348 0.268
insertsort Malärdalen 21236 0.191

janne_complex Malärdalen 4640 0.137
ludcmp Malärdalen 64624 0.074
matmult Malärdalen 1337090 0.15
minver Malärdalen 46627 0.081
ndes TacleBench 633538 0.054
ns Malärdalen 128321 0.109

qurt Malärdalen 24685 0.172
select Malärdalen 78961 0.22
sqrt Malärdalen 7656 0.25

Table 5.2: List of programs from the 2 benchmarks. In this table we consider a 16KB IL1
and a BRT of 20 cycles.

5.4.2 Task profiles for the cache invalidation method

The impact of the inserted cache misses on the execution time and vulnerability used in
the experiments are presented in Table 5.3.

For each task in the benchmarks listed in Table 5.2, we built a profile using the
CPLEX tool. We set a limit of 3 minutes for solving each QP problem, thus obtaining
a combination of cache miss locations. Figures 5.4a, 5.4b, and 5.4c show the resulting

1The Vulnerability plugin for OTAWA can be found at the following address: https://gitlab.
cristal.univ-lille.fr/otawa-plugins/plugin_cache_blocks.git

Cache configuration β δ νICM

Direct mapped 1 3 24
Set-associative 2 33 1320

Table 5.3: Cache miss mechanism impact used in the experiments.

https://gitlab.cristal.univ-lille.fr/otawa-plugins/plugin_cache_blocks.git
https://gitlab.cristal.univ-lille.fr/otawa-plugins/plugin_cache_blocks.git
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Figure 5.4: Case Study task profiles

task profiles respectively for the binarysearch, cnt and select benchmarks. Each of these
figures presents six configurations. Each configuration is made up of a BRT value and one
of the proposed protection mechanisms: the direct mapped invalidation mechanism, the
set-associative invalidation mechanism, and the ECC mechanism. These figures shows the
relation between the task WCET and its vulnerability factor for different combinations.

As we can see in these figures, the cache configuration has a strong impact on the
task profile. Figure 5.4a shows that the profile of binarysearch with a direct mapped
cache and a BRT of 20 cycles corresponds to a nearly linear relation between the WCET
and the vulnerability factor. However, in the case of a set-associative cache with a BRT
of 20 cycles, the vulnerability is more like a constant. Figure 5.4c shows also, that the
vulnerability can not be approximated by a linear function of the WCET.

Notice that the executed tasks have different initial TAVF and the impact of the
WCET is different from one task to another. For example, binarysearch with a BRT = 20
cycles (Figure 5.4a) has an initial TAVF of 0.011. This value is small compared to cnt with
a direct mapped cache and a BRT = 20 cycles (Figure 5.4b) and an initial TAVF around
0.25. Furthermore, for cnt TAVF decreases to 0.12. This corresponds to a reduction of
50% of its initial TAVF. However, TAVF for select with a direct mapped cache and a
BRT = 20 cycles decreases by 73% compared to its initial value.
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5.4.3 TSVF reduction

In the previous section we have shown the relationship between vulnerability and WCET
by using the invalidation methods of Section 5.2.2. To do this, we built individual profiles
for each task. However, when a set of task is executed concurrently in a system, we have to
consider the impact of the WCET on the schedulability of the system. If a task’s WCET
increases too much, one of the system’s tasks can miss its deadline. In this section, we try
to reduce the global vulnerability of the system without missing any deadline by using
the optimization method of Section 5.3.

In the experiments, we assume that all the generated task set contains 12 tasks ran-
domly selected from Table 5.2. To generate a task set, we proceed as follows: For each
experiment, we first fix the initial system workload U ∈ [0.1, 1] using steps of 0.05. Then,
the utilization Ui of each task is randomly assigned with the UUnifast [23] algorithm,
such that the sum of all tasks’ utilization is equal to the total system workload U .

Then, each task is assigned a period from the list G = {20, 50, 100, 200, 500, 1000, 2000,
5000, 10000, 20000, 50000, 100000, 200000, 500000}, such that

Ti = min
∀t∈G,t≥(Ci/Ui)

(t).

As some of the WCETs in Table 5.2 are larger than their periods, the WCETs values
have been normalised, dividing them by the logarithm of the smallest WCET. For each
total workload, we generate 1000 task sets.

For each task set, we use the corresponding task profiles to perform the optimization
procedure described in Section 5.4.3, which selects the best combination of profile points
(vulnerability/WCET) such that the system remains schedulable. If a solution is found,
we report the reduction in vulnerability and the total workload after insertion of the cache
misses. In the following Figures 5.5a, 5.5b, 5.5c and 5.5d we report the results on 2 y-axis:
the y-axis on the left represents the average value, among the schedulable task sets, of
the workload after inserting the cache misses. The right y-axis depicts the average TSVF
value. On the x-axis we show the initial workload of the generated task set.

In these figures, Initial vulnerability factor and New vulnerability factor (respectively)
corresponds to the TSVF before and after cache misses insertion. The Workload after
modification represents the workload of the task set after inserting cache misses.

A first observation shows that the task set workload after inserting cache misses is not
always equal to 1, and correspondingly, vulnerability is not reduced to 0. This means that,
by using the invalidation method, we can only reduce the vulnerability to a certain limit,
even when the system is largely underutilized. For example, for an initial workload of
0.3 in Figure 5.5a, the TSVF is reduced from 0.052 to 0.034 while the workload increases
from 0.3 to 0.41.

To have a better view of the evolution of the new vulnerability factor curves compared
to the initial value, we give in Figure 5.6 the average task set vulnerability factor reduction
in percentage of the initial value. Each curve represents a different cache configuration.
Notice that the percentage reduction in the TSVF is almost constant until a certain
point. It should be noted that task sets with an initial workload greater than 0.8 are very
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(b) 2 way-set-associative, BRT = 20

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

A
v
e
ra

g
e
 W

o
rk

lo
a
d

 a
ft

e
r 

m
o
d

ifi
ca

ti
o
n

T
S

V
F

Initial Workload

workload after modification
New TSVF

Initial TSVF

TSVF reduction

(c) Direct mapped, BRT = 50
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(d) 2 way-set-associative, BRT = 50

Figure 5.5: TSVF reduction after CB invalidation with a 16KB-IL1 cache

constrained: for this task sets, even a small increase in the WCET could deem the system
unschedulable. Therefore, our optimization algorithm has a small impact on vulnerability.

From Figure 5.6, we observe that with direct mapped cache we obtain better perfor-
mance than with set associative cache. This phenomenon is explained by the different
additional costs of cache invalidation between these cache memories. This figure depicts
also the strong impact of the BRT on the performance of our method. Again, this is
intuitively due to the additional cost of every cache miss.

Summarizing, by using the invalidation technique, we can achieve on average between
22% and 34% reduction of the TSVF in task sets with initial workload inferior to 85%.

5.4.4 TSVF reduction with ECC

In this section, we evaluate the efficiency of the ECC mechanism discussed in Section
5.2.5.

Figures 5.7a, 5.7b, 5.7c and 5.7d depict the results obtained using the same configu-
rations as those presented in Section 5.4.3. The ECC mechanism execution time CECC

is set to 16 cycles in the experiments. This value is widely used in the literature [3] and
corresponds to an average value for ECC execution time with different levels of complexity.

As expected, with the ECC mechanism we obtain a higher TSVF reduction compared
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Figure 5.6: TSVF reduction with miss insertion. In these experiments, an average TSVF
value is calculated on workloads of 1000 task sets.

to the CB invalidation mechanism. These results can be explained by two factors: first,
the ECC mechanism has a lower impact on the WCET and second the lower additional
vulnerability of the mechanism itself. Also, the efficiency of the ECC mechanism is almost
constant regardless of the initial workload of the task set.

Similarly to Figure 5.6, Figure 5.8 shows the average percentage of task set vulnerabil-
ity factor reduction for the different cache configurations according to the initial workload
of the task set, this time using the ECC mechanism. This figure shows that the efficiency
of our method with the ECC mechanism is the same regardless the cache memory con-
figuration. Furthermore, it also shows that our method can reduce by 50% the TSVF for
high utilization task sets around U = 0.8.

5.5 Conclusion

Hard-real time systems become more vulnerable to faults especially in the instruction
cache memory of COTS microprocessor. We proposed in this Chapter a software based
method that guarantees the real-time constraints while increasing the reliability of the
task set. In particular, our method consists of two steps: in the first step, by using a
static analysis, the vulnerability profile of each task is computed to find the best spots
where to add a protection mechanism to reduce the vulnerability. This is done without
significantly increasing the WCET. Then we proposed two alternatives: in the first one,
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(b) 2 way-set-associative, BRT = 20
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(c) Direct mapped, BRT = 50
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Figure 5.7: TSVF reduction with the ECC mechanism for a 16KB-IL1 cache. ECC
execution time is set to 3 cycles.

we invalidate the cache in some of these spots using a software-only method; in the second
one, we propose to modify the ISA of the processor to selectively enable ECC to specific
instructions. A reduction of the task set vulnerability factor between 22% and 34% with
CB invalidation and of 50% while using ECC has been obtained on real benchmarks.

As future work, we plan to adapt this method for schedulers that allow preemptions.
We think that our method can be more performant on such systems as the vulnerable
paths in the task may become larger due to preemptions.
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Figure 5.8: TSVF reduction with ECC mechanism





Conclusion

In this chapter, we summarize the contributions presented in this thesis, along with their
adantages and their limitations as well as the various research perspectives.

5.6 Summary
In this thesis, I presented contributions related to cache analysis in two domains: real-time
schedulability of preemptive systems and reliability of non-preemptive systems.

5.6.1 Contributions on Cache Related Preemption Delay

In Chapter 4:

• A less pessimistic method for computing the maximum number of preemptions
between real-time periodic or sporadic tasks under EDF scheduling.

• An algorithm that allows a trade-off between precision and complexity when com-
puting the Cache Related Preemption Delay under EDF scheduling. The algorithm
realises a trade-off between two different types of analysis: the one that considers a
single multiset of UCB per task and the one employing a multiset of UCB per each
basic block. Our technique involves limiting the quantity of multisets for each task.
Starting with the most complete model, which considers one UCB multiset for each
BB of a task, our algorithm selects two UCB multisets to fusion so that the result-
ing multiset is the smallest of all possible multisets that could have resulted from
a fusion. When the desired number of multisets has been obtained, the procedure
ends.

These two contributions aim to improve the accuracy of schedulability analysis that
takes into account the CRPD, we have demonstrated that these methods succeed in
ensuring that task sets deemed non-schedulable by state-of-the-art analyses are, in fact,
schedulable. As an example, we have demonstrated that 40% of the randomly generated
task sets of 12 tasks, with a system utilization of 0.9 using a 2 ways cache memory of
4KB and a BRT= 50 are considered schedulable by our method, whereas they are not by
the state of the art methods.

In Chapter 4, we provided a counterexample to two schedulability analyses from the
literature, Partitioning-ver1 and Partitioning-ver2. The counterexample demonstrates

95
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that partitioning approaches to the enumeration of preemptions are not safe, in the sense
that they are not able to correctly compute an upper bound to the number of preemptions
in the general case. Hence, we need to resort to approximating the number of preemptions
using simple techniques (as the one presented in this thesis) or enumerate all possible
preemptions (which is exponential in the number of tasks in the general case).

Another known limitation of current CRPD analyses is that current models with one
or more multisets per task do not permit to estimate an upper bound to the CRPD
for caches using a different replacement policy than LRU. Further research is needed in
this direction to improve the techniques and provide correct upper bounds for different
replacement policies.

5.6.2 Contribution on Cache Reliability in Real-Time
Embedded Systems

In Chapter 5, we presented contributions to improve cache reliability.

• The first contribution consists of a method that enables the selection of specific
locations within the source code of a task to insert a protection mechanism, thereby
reducing the task’s vulnerability and ensuring that its time constraints are met.
This strategy can be viewed as a compromise between the reliability of a system to
operate despite the presence of transient faults and the reliability of a system with
respect to real-time constraints.

• In addition, we have proposed two protection mechanisms, which are software-only
and consist of inserting artificial cache misses to reload data from a less vulnerable
memory. One of these two cache miss insertion mechanisms is only compatible with
direct mapped caches, while the other is also compatible with associative set caches,
but takes longer to execute.

• Also, we proposed a mechanism that uses ECCs to protect the system instead of
inserted cache misses.

Through a series of experiments on real benchmarks, we have demonstrated that our
contributions to increasing the system’s reliability are effective. In particular, we observed
a reduction of the task set vulnerability factor between 22% and 34% with cache line
invalidations and 50% with ECCs.

The limitations are primarily hardware-based, and the platforms must provide protec-
tion features, as well as the ability to restrict their use if they interfere with the system’s
time constraints.

5.7 Perspectives
Currently, our contributions are intended for single-core systems, but the plan is to adapt
these techniques for multicore partitioned systems. A possible first step could be adapting
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our contributions to reduce the vulnerability of a system to preemptive systems using our
contributions for schedulability analysis considering CRPD. The second step would be to
consider multiple cache levels for the CRPD schedulability analysis. And finally, based
on these two steps, propose a method for protecting multicore partitioned systems while
taking time constraints into account.

Another important future direction is to research schedulability analyses for caches
employing alternative replacement policies that take into account the CRPD.
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Appendix A

List of Symbols

Symbols are listed in order of their first appearance in the manuscript.

Symbol Description pages
N Number of tasks in T . 24
T Set of independent tasks. 24
τi ith task in T . 24
ji,k kth job of τi. 24
ai,k Arrival time of the kth job of τi. 24
di,k Absolute deadline of the kth job of τi. 25
ci,k Execution time of the kth job of τi. 25
Ci WCET of task τi. 25
Di Relative deadline of τi. 25
Ti Minimum inter-arrival time between two jobs of τi. 25
Ui The utilization of τi. 25
BBi A Basic Block. 27
t An instant of time. 29
Pi Priority of τi. 29
Ulub Maximum utilization for which we are certain the

system can be scheduled with FP.
30

Ri Response time of τi. 30
Si Worst start execution time of τi. 31
Bi Blocking time of τi. 31
lp(i) Set of tasks of lower preemption-level or priority

than τi.
31

hp(i) Set of tasks of higher preemption-level than τi. 31
πi Preemption-level of τi. 31
L Upper bound on the first idle time. 31
dbfi(t) Demand bound of τi on interval [0, t]. 31
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η(i, t) An upper bound to the number of instances of the
sporadic task τi that have arrival and deadline in
interval [0, t].

31

dbf(t) Demand bound of the task setT on interval [0, t]. 31
K The number of ways in the cache memory. 34
p A preemption point. 43
Ei The multiset representing the ECBs of τi. 43
Up
i The multiset representing the UCBs of τi at the

preemption point p.
44

U i The set of multiset (SOM ) representing the set of
U of τi.

44

A A multiset. 45
repA(a) The number of instances of a in A. 45
|A| The size of multiset A. 45
A ⊎ B The multiset union between A and B. 45
A▽ B The multiset fusion between A and B. 45
A ⊓ B The multiset intersection between A and B. 45
A A SOM. 45
MS(A) The largest size of any multiset in A. 45
hp(T ) The hyperperiod of task set T . 46
γ(t) Upper bound on the total CRPD in interval [0, t]. 46
(A)x The result between the multiset union of xmultiset

A.
46

Ui The multiset representing the UCBs of τi for any
preemption point.

46

Prj(Di) The maximum number of preemptions by task τj
on one instance of τi.

46

γucbm
j (t) Upper bound computed with UCB-union multiset

of CRPD provoked by τj on interval [0, t] for EDF.
46

BRT The block reload time. 46
γecbSOM
j (t) Upper bound computed with ECB-union SOM of

CRPD provoked by τj on interval [0, t] for EDF.
47

dbf combinedSOM(t) Demand bound function on interval [0, t] with
CRPD cost computed with the combined
SOM approach.

47

dbfucbm(t) Demand bound function on interval [0, t] with
CRPD cost computed with the UCB-union mul-
tiset approach.

47

dbfecbSOM (t) Demand bound function on interval [0, t] with
CRPD cost computed with the ECB-union
SOM approach.

47

TV Fcache Temporal Vulnerability Factor of the cache (TVF). 49
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data_itemi A data item. 49
vul_interi,j The size of the jth vulnerable interval of the ith

data item.
49

Eh
j (t) The number of preemptions during interval [0, t]

for FP.
59

Λi,t A multiset of preemption partitions considering
only the i highest priority tasks.

59

λr A preemptions partition. 59
γi(λr) The CRPD cost of partition λr between the i high-

est priority tasks for FP.
60

aff(i, h, λr) The set of tasks with priorities higher than or equal
to Pi which can be preempted by τh according λr.

60

hp(h, λr) The set of tasks with higher priorities than task τh
that, according to λr, can preempt τh.

60

γ(i, t) The CRPD cost between the i highest priority
tasks on interval [0,t] for FP.

61

Ii The size of the preemption interval of τi. 63
η′i(j, t) The number of preemptions by higher preemption-

level task τj on task τi on any contiguous interval
of size t inside [0, Di] (with t ≤ Di).

64

Pr′j(Di) The maximum number of preemption by task τj
on τi considering the preemption interval of τi.

65

Mreduce The maximum number of elements in a SOM. 65
ω An upper bound to the maximum number of in-

stances of any task contained in the hyperperiod
hp(T ).

65

ψ An upper bound of the maximum number of pre-
emptions by any task on any job from another task.

66

Z The number of cache sets. 66
λ The number of potential locations in the code

where to invalidate the cache for a set of tasks.
75

lb A LB. 76
νbv

lb The baseline vulnerability of lb. 76
wcetBB The WCET of BB. 76
BBlb The BB that contains the lb. 76
Ilb The maximum number of executions of lb for one

instance of a task.
76

dlb The size (in bytes) of the vulnerable instructions
of the lb’s CB during the execution of lb’s BB.

76

UCBb-out
lb The list of UCB at the exit of BBlb. 76

UCBb-in
lb The list of UCB at the entry of BBlb. 76

CBlb The CB that contains lb. 76
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|lb| The size in bytes of lb. 76
|CBlb| The size in bytes of CBlb. 76
νbv
i The baseline vulnerability of τi. 77
UCBb-out

BB The list of UCB at the exit of BB. 77
UCBb-in

BB The list of UCB at the entry of BB. 77
νpath

lb The path vulnerability of lb. 78
Pmax

lb The WCET of the longest path from the last access
to the CBlb until BBlb. We consider only the paths
where CBlb is in the cache along the entire path
without being used (and it used at the end of the
path).

78

νpath
i The path vulnerability of τi. 78
f v
i The task vulnerability factor (TAVF) of τi. 78
|τi| The size of the code of τi in bytes. 78
CICM The WCET of an inserted cache miss (ICM). 82
C impact

lb The impact of an ICM at lb on the WCET of the
task.

82

δ The execution time of the code of one instance of
the protection mechanism.

82

β The number of CBs used by one instance of the
protection mechanism.

82

C ′
i WCET of the task considering the impact of the

inserted cache misses.
82

νICM The vulnerability of an ICM. 82
νICM

lb The impact of an ICM at lb on the vulnerability
of the task.

82

σ The size of a jump instruction. 82
Γlb The list of LBs different from lb that contain an

invalidation.
82

ρlb The impact of the inserted cache misses on the
path vulnerability of lb.

83

Plb The list of paths from the last access to the CBlb

until BBlb. We consider only the paths where CBlb

is in the cache along the entire path without being
used (and it used at the end of the path).

83

Cbound An upper bound to the WCET. 83
V Task-max-vul An upper bound to bound to the task vulnerabil-

ity.
84

Xj The decision variable representing the insertion of
a protection mechanism for lbj. This variable is
used to compute a TAVF.

83
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V path
j The variable representing the length of vulnerable

path of lbj. This variable is used to compute a
TAVF.

83

Vj The variable representing the path vulnerability of
lbj. This variable is used to compute a TAVF.

83

CECC The extra delay of the ECC mechanism expressed
in cycles.

85

Xi,j The decision variable representing the selection of
the jth point in the profile of τi. This variable is
used to compute a TSVF.

86

Ci,j The WCET of τi when the jth combination of the
task profile of τi is selected.

86

Vi,j The TAVF of τi when the jth combination of the
task profile of τi is selected.

86

Table A.1: List of symbols used in the thesis
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List of Abbreviation of Terms

The following abbreviations are listed in alphabetic order.

Abbreviation Description
ABS Antilock Braking Systems
ADAS Advanced Driver Assistance Systems
AEB Autonomous Emergency Braking
AH Always Hit
AM Always Miss
BB Basic Block
BIST Built-in Self Test
CACC Cooperative Adaptive Cruise Control
CAS Collision Avoidance Systems
CB Cache Block
CCI Clean Cache line Invalidation
CFG Control Flow Graph
COTS Component-Off-The-Shelf
CPU Central Processing Unit
CRC Cyclic Redundancy Check
CRPD Cache Related Preemption Delay
DL1 Level 1 Data cache memory
DM Deadline Monotonic
DMA Direct Memory Access
DMR Double-Modular Redundancy
DRAM Dynamic Random Access Memory
ECB Evicting Cache Block
ECC Error Correcting Codes
EDF Earliest Deadline First
FH First Hit
FIFO First In First Out
FM First Miss
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FP Fixed Priority
GPU Graphics Processing Unit
GPS Global Positioning System
ICM Inserted Cache Miss
IL1 Level 1 Instruction cache memory
ILP Integer Linear Program
IPET Implicit Path Enumeration Technique
ISA Instruction Set Architecture
ITS Intelligent Transportation Systems
L2 Level 2 cache memory
L3 Level 3 cache memory
LB Line Block
LLF Least Laxity First
LRU Least Recently Used
MMU Memory Management Unit
MIP Mixed Integer Programming
NP Non-Preemptive
PIPT Physically Indexed, Physically Tagged
PLRU Pseudo Least Recently Used
QP Quadratic Programming
RAM Random Access Memory
RM Rate Monotonic
SICVF System-level Instruction Cache Vulnerability Factor
SRAM Static Random Access Memory
TAVF Task Vulnerability Factor
TMR Triple-Modular Redundancy
TSVF Task Set Vulnerability Factor
TVF Temporal Vulnerability Factor
U Unknown
UCB Useful Cache Block
VIVT Virtually Indexed, Virtually Tagged
VIPT Virtually Indexed, Physically Tagged
WCET Worst Case Execution Time
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