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Abstract
Understanding the dynamics of complex systems, and how to optimally act in them impacts all aspects of
human societies where a careful management of natural, energetic, human and computational resources is
required. To overcome the limitations of human capabilities to process large amounts of data, researchers
from the field of machine learning and mathematical statistics for sequential decision making pursue the long-
term goal of developing an optimal and automatic method that can, from partial observations and sequential
interactions with a complex system, learn an optimal behavior. While optimal control considers the dynamics
of the system is assumed to be known, reinforcement learning is interested in the case when the dynamics is
unknown and must be learned from observations only. A key difficulty to design a solution for these problems
is that typically, when a decision is made, one only gets to see a noisy effect of that decision, and little about
the effect of other alternatives. This gives rise to the study of the fundamental exploration- exploitation trade-
off: Shall we follow a algorithm that has been used a lot in the past and has empirically proven good until now
(exploitation), or shall we explore a less known but potentially promising algorithm (exploration)? Addressing
this trade-off does not yield the same approach depending on the underlying structure of the dynamical system,
where structure can be understood in several ways. Since not taking advantage of this (possibly hidden)
structure is prone to obtaining loose algorithms, it is crucial to investigate how to build learning algorithms
that can be adaptive to it. In this thesis, we want to better understand how the notion of structure modifies
the learning guarantees and suggests novel improved algorithms in the context of bandits. We give special
attention to the cases of unimodal, multimodal and graph structure. We introduce an algorithm for each of
these structures, respectively IMED-UB, IMED-MB and IMED-GS. These algorithms are extensions of the
popular Indexed Minimum Empirical Divergence (IMED) algorithm from Honda and Takemura (2015) to
the considered structures. We provide a finite time analysis for each of them and prove their asymptotic
optimality. In particular, we considered new exploring mechanisms (second order exploration allowed by
IMED approach) and developed new tools (concentrations inequalities) we think that are are of independent
interest for the bandit community. Furthermore, these novel algorithms perform well in practice. This is
confirmed by numerical illustrations on synthetic data.



Résumé
Dans nos sociétés modernes, une gestion minutieuse des ressources naturelles, énergétiques, humaines et in-
formatiques est nécessaire. Comprendre les dynamiques de systèmes complexes et gérer les interactions de
manière optimale constituent un enjeu majeur. Pour surmonter la limite des capacités humaines à traiter de
grandes quantités de données, les chercheurs en apprentissage automatique et statistiques mathématiques pour
la prise de décision séquentielle ont pour objectif de développer une méthode automatique et optimale pou-
vant, à partir d’observations partielles et d’interactions séquentielles avec un système complexe, apprendre un
comportement optimal. Alors que le contrôle optimal considère que la dynamique du système est supposée
connue, l’apprentissage par renforcement s’intéresse au cas où la dynamique est inconnue et doit être apprise
uniquement à partir d’observations. Une difficulté clé pour concevoir une solution à ces problèmes est que,
lorsqu’une décision est prise, seulement un effet bruité de cette décision est observée. Et cela renseigne peu sur
les décisions alternatives. Cela donne lieu à l’étude du compromis fondamental entre exploration et exploita-
tion: doit-on suivre un algorithme déjà beaucoup utilisé par le passé et empiriquement viable (exploitation)
ou doit-on explorer un algorithme moins connue mais potentiellement meilleur (exploration)? Aborder ce
compromis donne lieu à diverses approches en fonction de la structure sous-jacente au système dynamique,
la notion de structure pouvant être comprise de différentes façons. Puisque ne pas tirer avantage de la struc-
ture (éventuellement cachée) est susceptible d’occasionner des algorithmes largement sous-optimaux, il est
crucial d’examiner la manière de concevoir des algorithmes d’apprentissage qui peuvent s’adapter à celle-ci.
Dans cette thèse, nous souhaitons mieux comprendre comment la notion de structure modifie les garanties
d’apprentissage et suggère de nouveaux algorithmes plus performants dans le contexte des bandits. Notre at-
tention sera particulièrement portée sur les structures dites unimodal, multimodal et de graphe. Pour chacune
de ces structures nous introduisons un algorithme, respectivement IMED-UB, IMED-MB et IMED-GS, dont
nous prouvons l’optimalité asymptotique et dont nous étudions les performances à horizon fini. Ces algo-
rithmes vise à adapter l’algorithme IMED introduit par Honda and Takemura (2015) pour le cas des bandits
non-structurés au cas des bandits unimodaux, multimodaux et structure de graphe. En outre, l’étude de ces
algorithmes, nous a amené à développer des outils nouveaux (inégalités de concentration) et considérer de
nouveaux méchanismes d’exploration (exploration de second ordre permise par l’approche IMED) dont nous
pensons qu’ils bénéficieront à la communauté. Enfin, nous illustrons par des simulations l’éfficacité pratique
de ces nouveaux algorithmes.
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Chapter 1

Introduction

1.1 The stochastic multi-armed bandit problem
The multi-armed bandit problem is a popular framework to formalize sequential decision making problems. It
was first introduced in the context of medical trials (Thompson, 1933, 1935) and later formalized by Robbins
(1952): A bandit instance is specified by a configuration, that is a set of unknown probability distributions,
ν = (νa)a∈A with means (µa(ν))a∈A. When there is no possible confusion, the means are simply denoted
(µa)a∈A. At each time t ∈ N, the learner chooses an arm at ∈ A, based only on the past, the learner then
receives and observes a reward Xt, conditionally independent, sampled according to νat . The goal of the
learner is to maximize the expected sum of rewards received over time (up to some unknown horizon T ), or
equivalently minimize the regret with respect to the algorithm constantly receiving the highest mean reward

R(ν, T ) = Eν

[
T∑
t=1

µ⋆ −Xt

]
where µ⋆ = max

a∈A
µa .

Both means and distributions are unknown, which makes the problem non trivial, and the learner only knows
that ν ∈D where D is a given set of bandit configurations. This problem received increased attention in the
middle of the 20th century, and the seminal paper Lai and Robbins (1985) established the first lower bound
on the cumulative regret, showing that designing an algorithm that is optimal uniformly over a given set of
configurations D comes with a price. The study of the lower performance bounds in multi-armed bandits
successfully lead to the development of asymptotically optimal algorithms for specific configuration sets, such
as KLUCB algorithm (Lai, 1987; Cappé et al., 2013; Maillard, 2018) for exponential families, or alternatively
DMED and IMED algorithms from Honda and Takemura (2011, 2015). We refer to Lattimore and Szepesvári
(2020) for a recent survey. In this regard, it should be highlighted two another main approaches to solve
optimally the stochastic bandit problem: Bayesian algorithm (Thompson, 1933) and algorithms based on re-
sampling methods, such as RB-SDA introduced in a recent work by Baudry et al. (2020).

Both to propose an effective presentation of some relevant algorithms and start introducing the framework
within which our work is included, we assume one-dimensional exponential family distributions and then
explain the known lower bounds on the regret from Lai and Robbins (1985) under this assumption.

Assumption 1 (One-dimensional exponential family distributions). For all ν ∈ D, ν ⊂ P1 := {p(µ), µ∈ I},
where p(µ) is a canonical exponential-family distribution probability with parameter η(µ) and density f(·, µ)
with respect to some positive measure λ on R and mean µ∈ I⊂R. f(·, µ) has the following shape:

f(·, µ) : x 7→ h(x) exp(η(µ)T (x)− A(µ)) ,

where h∈RR
+, T ∈RR and A(µ)=log

∫
h(x) exp(η(µ)T (x))λ(dx) are such that |A(µ)|<∞.
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We consider algorithms that are consistent in order to obtain non trivial lower bound on the regret.

Definition 1 (Consistent algorithm). An algorithm is consistent on D if for all configuration ν ∈ D, for all
sub-optimal arm a /∈A⋆ :=argmax

a∈A
µa, for all α>0,

lim
T→∞

Eν

[
Na(T )

Tα

]
= 0 ,

where Na(t)=
t∑

s=1

I{as=a} is the number of pulls of arm a at time t⩾0.

In particular, for α=1, the number of pulls of a sub-optimal arm is sub-linear under a consistent algorithm.

Thanks to the tower rule, we have

R(ν, T ) = Tµ⋆ − Eν

[
T∑
t=1

Xt

]
= Tµ⋆ − Eν

[
T∑
t=1

µat

]
.

We can then rewrite the regret as follows.

R(ν, T ) = Eν

[
T∑
t=1

µ⋆ − µat

]
= Eν

[
T∑
t=1

∑
a∈A

I{at=a}(µ
⋆ − µa)

]
=
∑
a∈A

Eν [Na(T )]∆a . (1.1)

When D=PA
1 and under a consistent algorithm, from Lai and Robbins (1985) we have the following lower

bounds on the numbers of pulls:

∀a /∈ A⋆, lim inf
T→∞

Eν [Na(T )] KL(µa|µ⋆)

log(T )
⩾ 1 . (1.2)

This implies

lim inf
T→∞

R(ν, T )

log(T )
⩾ C1(µ) :=

∑
a∈A

∆a

KL(µa|µ⋆)
, (1.3)

where KL(µ|µ′) =
∫
Rlog(f(x, µ)/f(x, µ

′))f(x, µ)λ(dx) denotes the Kullback-Leibler divergence between
ν=p(µ) and ν ′=p(µ′), for µ, µ′∈ I.

We refer to the proof of Theorem 1 from Garivier et al. (2016) for a proof of Equation (1.2) that provides lower
bounds on the numbers of pulls when assuming non-structured bandits and consistent algorithms. Note that
we adapt this same proof in Proposition 2 to obtain a lower bound on the regret when assuming multimodal
structure (see Chapter 3) and consistent algorithms.

Remark 1. For Bernoulli distributions, a possible setting is to assume λ = δ0+δ1 (with δ0, δ1 Dirac measures),
I = (0, 1) and for µ ∈ (0, 1), f(·, µ) =: x ∈ {0, 1} 7→ µx(1 − µ)1−x. Then for all µ, µ′ ∈ (0, 1), KL(µ|µ′) =
µ log(µ/µ′) + (1−µ) log((1−µ)/(1−µ′)). For Gaussian distributions (variance σ2=1), we assume λ to be
the Lebesgue measure, I=R, and for µ∈R, f(·, µ) =: x∈R 7→ (

√
2π)−1e−(x−µ)2/2. Then for all µ, µ′ ∈R,

KL(µ|µ′)=(µ′−µ)2/2. For Exponential distributions, we assume λ to be the Lebesgue measure, I=]0 ;+∞[,
and for µ>0, f(·, µ)=: x>0 7→ e−x/µ/µ. Then for all µ, µ′>0, KL(µ|µ′)=log(µ′/µ)+µ/µ′−1.

Remark 2. We allow and reserve the notation kl(·|·) for the Kullback-Leibler divergence between Bernoulli
distributions.
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1.2 Optimal algorithms for non-structured bandit problems
We briefly present in this section some of the main (asymptotically) optimal algorithms (under Assumption 1)

for the classical multi-armed bandit problem. Here, optimal means that lim inf
T→∞

R(ν, T )

log(T )
⩽ C1(µ) under these

algorithms.

Kullback-Leibler Upper Confidence Bounds (KLUCB). For an arm a∈A and a time step t⩾1, the upper
confidence bound is defined as follows:

Ua(t) = sup

{
λ ⩾ µ̂a(t) : KL(µ̂a(t)|λ) ⩽

f(t)

Na(t)

}
where f(t) = log(t)+3 log log(t) if t ⩾ 3, 0 otherwise, with the convention 0/0 = 0. This upper bound is
motivated by the following concentration inequality:

Pν(Ua(t) < µa) ⩽ e ⌈f(t) log(t)⌉ exp(−f(t)) .

We refer to Theorem 10 of Garivier and Cappé (2011) for a more general formulation and a proof of this
concentration inequality. KLUCB algorithm then consists in pulling an arm with maximal upper bound at each
time step, at+1=argmax

a∈A
Ua(t). KLUCB algorithm is summarized in Algorithm 1.

Algorithm 1 KLUCB
for t = 0 . . . T − 1 do

Pull at+1 ∈ argmax
a∈A

Ua(t) (chosen arbitrarily)

end for

Indexed Minimum Empirical Divergence (IMED). For an arm a∈A and a time step t⩾1, the IMED index
is defined as follows:

Ia(t) = Na(t)KL(µ̂a(t), µ̂⋆(t)) + log(Na(t)) .

This quantity can be seen as a transportation cost for “moving” a sub-optimal arm to an optimal one, plus
exploration terms (the logarithms of the numbers of pulls). When an optimal arm is considered, the trans-
portation cost is null and it remains only the exploration part. Note that, as stated in Honda and Takemura
(2011), Ia(t) is an index in the weaker sense since it cannot be determined only by samples from the pair a
but also uses empirical means of current optimal arms. IMED is the algorithm that consists in pulling an arm
with minimal index at each time step, at+1=argmin

a∈A
Ia(t). Finite time guarantees for IMED algorithm and its

optimality are established in Corollary 2 from next Chapter 2. IMED algorithm is summarized in Algorithm 2.

Algorithm 2 IMED
for t = 0 . . . T − 1 do

Pull at+1 ∈ argmin
a∈A

Ia(t) (chosen arbitrarily)

end for
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Thomson Sampling (TS). After pulling each arm once, we denote by πa(t) the posterior distribution of arm
a∈A at time t⩾ |A| and sample µ̃a(t) from πa(t), what we note µ̃a(t)∼πa(t). TS algorithm consists then in
pulling the arm with the maximal sample, at+1 = argmax

a∈A
µ̃a(t). Note the choice of the posteriors is crucial.

TS algorithm is proven to be asymptotically optimal for one-dimensional exponential family distributions in
Korda et al. (2013) when the posteriors are obtained from Jeffreys priors. TS algorithm is summarized in
Algorithm 3.

Algorithm 3 TS
Pull each arm once
for t = |A| . . . T − 1 do

for a ∈ A do
µ̃a(t) ∼ πa(t)

end for
Pull at+1 ∈ argmax

a∈A
µ̃a(t) (chosen arbitrarily)

end for

Best Empirical Sampled Average (BESA). We restrain ourselves to the case of two arms when A={1, 2}.
We refer to Baransi et al. (2014) and Baudry et al. (2020) for an optimal generalization beyond the case of two
arms of the following approach. After pulling each arm once, we consider at each time t⩾2, the sample size
n(t) =min {N1(t), N2(t)} and choose arbitrarily two samples S1(t) and S2(t) of rewards of same size n(t),
respectively from arm 1 and arm 2: Sa(t)⊂{Xs : as=a, 1⩽s⩽ t}, |Sa(t)| =n(t), a∈{1, 2}. The empirical
sub-sampled averages can be then computed as follows:

m̂a(t) =
∑

X∈Sa(t)

X/n(t) .

BESA algorithm consists in pulling an arm with maximal empirical sample average, at+1 = arg max
i∈{1,2}

m̂i(t).

BESA algorithm is summarized in Algorithm 4.

Algorithm 4 BESA
Pull each arm once
for a ∈{1, 2} do

Choose an arbitrarily n(t)-sized sample Sa(t) of rewards from arm a
Compute the empirical sampled average m̂a(t)

end for
Pull at+1 ∈ argmax

a∈{1,2}
m̂a(t) (chosen arbitrarily)

1.3 Structured configurations
The lower bounds from Lai and Robbins (1985), later extended by Burnetas and Katehakis (1997) did not cover
all possible configurations, and in particular structured configuration sets were not handled until Agrawal et al.
(1989) and then Graves and Lai (1997) established generic lower bounds. Here, structure refers to the fact
that pulling an arm may reveals information that enables to refine estimation of other arms. Unfortunately,
designing numerical efficient algorithms that are provably optimal remains a challenge for many structures.
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The study of specific structured configuration sets D has received increasing attention over the last few years,
motivated by the growing popularity of bandits in a number of industrial and societal application domains:
The study of Unimodal structure naturally appears in many contexts, e.g. single-peak preference economics,
voting theory or wireless communications, and has been first considered in Yu and Mannor (2011) from a
bandit perspective, then in Combes and Proutiere (2014a); Trinh et al. (2020); Saber et al. (2021a) providing
an explicit lower bound and corresponding algorithms. Note that in Saber et al. (2021a), we adapt IMED
algorithm to the Unimodal structure simply by narrowing on the current best arm and its neighbourhood for
pulling an arm at a given time step. See also Kunne et al. (2020); Gao et al. (2019). Lipschitz bandits were
studied in Magureanu et al. (2014); Wang et al. (2020); Lu et al. (2019) while combinatorial structures have
been studied e.g. in Kveton et al. (2015); Magureanu (2018), and more recently Cuvelier et al. (2021b). The
Linear bandit problem is also one typical illustration (Abbasi-Yadkori et al. (2011); Srinivas et al. (2010);
Durand et al. (2017); Kveton et al. (2020)), see Lattimore and Szepesvari (2017) for a study of the lower
bound (and Degenne et al. (2020a) for the related pure-exploration setup). Another body or work focuses on
proving asymptotic minimax optimality in the worst-case setting rather than instance-dependent performance
bounds, also targeting order optimal rather than exact optimal regret bounds. This is the case for example in
Kleinberg et al. (2008) and Bubeck et al. (2008), respectively introducing ZOOMING and HOO algorithms. In
particular the provided bounds on the regret are not instance-dependent and instance-dependent optimality is
not established for these algorithms. Such a worst-case setting is out of the scope of this thesis.

For structured bandit problems and one-dimensional exponential family distributions (Assumption 1), the
lower bound on the regret takes the generic form

lim inf
T→∞

R(ν, T )

log(T )
⩾ CD(µ) , (1.4)

where CD(µ) is a constant, solution of a constrained linear-optimization problem. When there is no structure,
D = PA

1 and then CPA
1
(µ) = C1(µ). We note that

C1(µ) := min
n∈RA

+

∑
a∈A

na

(
maxµ− µa

)
s.t. ∀a /∈ argmaxµ, na KL(µa|maxµ)⩾1 .

(1.5)

The (na)a∈A from (1.5) then appear as the normalized numbers of pulls (Eν [Na(T )] / log(T ))a∈A.

In Graves and Lai (1997) a generic algorithm was proposed to solve any structured bandit problems, with
however prohibitive computational complexity, including the requirement to compute a version of CD(µ) at
each time step. In Combes et al. (2017), another generic algorithm called OSSB (Optimal Structured Stochas-
tic Bandit) is introduced, stepping the path towards generic structure-adaptive bandit algorithms. Although
asymptotically optimal, the algorithm often suffers from poor finite-time numerical performances (as the
asymptotic regime kicks-in possibly late), and still high computational cost. Inspired by combinatorial struc-
tures for which computing CD(µ) is simply not feasible, a relaxation of the generic constrained optimization
problem was recently proposed in Cuvelier et al. (2021a), however at the price of trading-off regret optimality
for computational efficiency. In Degenne et al. (2020b), the authors explore an adaptation of KLUCB algorithm
to structured D. In Van Parys and Golrezaeiand (2020), the authors propose an approach base on convex du-
ality. Motivated by these issues, we make specific efforts to build algorithms that are regret efficient in practice.

We will address several structures such as Unimodal and Lipschitz structures which makes relevant to focus on
the following generic algorithm: Optimal Sampling for Structured Bandits (OSSB) from Combes et al. (2017).
We will naturally compare the algorithms we introduce to this known algorithm.
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Optimal Sampling for Structured Bandits (OSSB). When assuming there is a unique optimal arm a⋆

(which is a very common assumption), that is A⋆ = {a⋆}, and under the assumptions of Theorem 1 from
Combes et al. (2017), it is shown that CD(µ) can be chosen so that

CD(µ) := min
n∈RA

+

∑
a∈A

na

(
maxµ− µa

)
s.t. ∀λ ∈ Λ(µ),

∑
a∈A

na KL(µa|λa)⩾1 ,
(1.6)

where

Λ(µ) =

µ(ν ′) ∈ IA :

(1) ν ′ ∈ D
(2) µa⋆(ν

′) = µ⋆

(3) maxµ(ν ′) > µ⋆

 (1.7)

is the set of “confusing” means for means µ of configuration ν∈D.

Let (na(µ))a∈A be the solution of the previous optimization problem. Then na(µ) log(T ) indicates the asymp-
totic number of times sub-optimal arm a ̸=a⋆ should be played under efficient and consistent algorithms.

Note that for all arm a∈argmaxµ, we have na(µ)=0.

The key idea of OSSB algorithm is then to compute at each time step (na(µ̂(t)))a∈A, the current empirical
solution of CD(µ̂(t)), for t⩾1, and explore so that the number of pull of sub-optimal arm a ̸=a⋆, Na(t) grows
at speed na(µ̂(t)) log(T ), that is so that Na(t)≈na(µ̂(t)) log(T ).

In detail, OSSB algorithm takes theoretically two parameters ε, γ > 0 in input. Then, at each time step t⩾ 1
the algorithm alternate between three phases: exploitation, estimation and exploration.

If for all arm a ∈ A, we have Na(t)⩾ na(µ̂(t))(1+γ) log(t), then we consider there is enough information
to consider the structure is well estimated and we enter an exploitation phase: we pull arbitrarily an arm with
maximal current mean, that is at+1∈argmax

a∈A
µ̂a(t).

Otherwise, we consider more information is needed to identify the optimal arm. Thus, either we enter an esti-
mation phase and pull arbitrarily an arm with a minimal current number of pulls, that is at+1∈argmin

a∈A
Na(t),

or we enter an exploration phase and pull arbitrarily an arm with a minimal current ratio, where current ratio
of arm a ∈ A is Na(t)/na(µ̂(t)) if na(µ̂(t)) > 0, +∞ otherwise. Note that the current ratios measure how
much the desired constraints Na(t) ≳ na(µ̂(t)) log(t), for a∈A, are satisfied.

More precisely, we consider a counter s(t) of the number of times we have not entered an exploitation phase.
If min

a∈A
Na(t)⩽εs(t), we enter an estimation phase, otherwise we enter an exploration phase.

Finally, we note that parameters ε and γ are set equal to 0 in practice for the numerical experiments.

OSSB algorithm is summarized in Algorithm 5.
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Algorithm 5 OSSB
Input: ε, γ > 0
Pull a1∈A (arbitrarily chosen)
s(1)← 0
for t = 1 . . . T − 1 do

Compute (na(µ̂(t)))a∈A, the solution of current optimization problem CD(µ̂(t))

if Na(t) ⩾ na(µ̂(t))(1 + γ) log(t), for all a ∈ A then
s(t+ 1)← s(t)
Pull at+1 ∈ argmax

a∈A
µ̂a(t) (arbitrarily chosen) ▷ Exploitation

else
s(t+ 1)← s(t) + 1
if min

a∈A
Na(t) ⩽ εs(t) then

Pull at+1 ∈ argmin
a∈A

Na(t) (arbitrarily chosen) ▷ Estimation

else
Pull at+1 ∈ argmin

a∈A
Na(t)/na(µ̂(t)) (arbitrarily chosen) ▷ Exploration

end if
end if

end for

Comment. OSSB algorithm from Combes et al. (2017) is a quite simple, natural and generic algorithm
for structured bandit problems, which makes it a reference in the field. However, OSSB presents this major
constraint of solving current optimization problem CD(µ̂(t)) at each time step t ⩾ 1 that limits its practical
applications. Furthermore, parameters ε and γ are set equal to 0 in practice without analysis of the algorithm
for this choice of setting. That being said, we will retain the main result from Combes et al. (2017) about
the asymptotic optimality of OSSB algorithm that is reproduced in the following theorem. Note that OSSB
algorithm is the first algorithm that optimally solve genetic structured bandit problems.

Theorem 1 (OSSB optimality). Let us consider a configuration ν ∈D. If the assumptions of Theorem 2 from
Combes et al. (2017) hold, then under OSSB algorithm, we have for all 0<ε< |A|−1,

lim sup
T→∞

R(ν, T )

log(T )
⩽ CD(µ)F (µ, ε, γ) ,

with F a function such that F (µ, ε, γ)→1 as ε→0 and γ→0.

1.4 Publications
In this section, we detail the papers published in journals and conferences.

Saber, H., Ménard, P., and Maillard, O.-A. (2021a). Indexed minimum empirical divergence for unimodal
bandits. International Conference on Neural Information Processing Systems (NeurIPS)

Pesquerel, F., Saber, H., and Maillard, O.-A. (2021). Stochastic bandits with groups of similar arms. Interna-
tional Conference on Neural Information Processing Systems (NeurIPS)

Saber, H., Saci, L., Maillard, O.-A., and Durand, A. (2021b). Routine bandits: Minimizing regret on recurring
problems. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECML PPKD)
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1.5 Contributions
We summarize our contributions for structured bandit problems.

Unimodal, multimodal and graph structures are respectively the subject of Chapter 2, 3 and 4. Our work on
routine bandits is the object of Chapter 6. These chapters have been written to be largely independent and
thus facilitate the reading of the manuscript. Our work on bandits with groups of similar arms is included in
Appendix D. The complements from Saber et al. (2020) relating to unimodal bandits are not reproduced in the
manuscript.

Unimodal bandits. In the unimodal bandit problem, a graph G supports the structure and allows a notion
of neighbourhood between the arms. An arm a∈A is then considered as a local maximum if its mean µa is
greater than the means of the arms in its neighbourhood Va⊂A\{a}, that is µa>µa′ , for all a′ ∈Va. In the
unimodal bandit problem, we only consider distributions ν with a unique local maximum. This is formalized
in Chapter 2, where we provide novel regret minimization results related to the unimodal structure. We first
revisit Indexed Minimum Empirical Divergence (IMED) algorithm from Honda and Takemura (2015) intro-
duced for unstructured multi-armed bandits, and adapt it to the unimodal setting. We introduce in Section 2.3
IMED-UB algorithm that is limited to the pulling of the current best arm or their no more than d nearest arms at
each time step, with d the maximum degree of nodes in G. Being constructed from IMED, IMED-UB does not
require any optimization procedure and does not separate exploration from exploitation rounds. IMED-UB ap-
pears to be a local algorithm. We prove in Theorem 1 that IMED-UB is asymptotically optimal. Furthermore,
this novel algorithm competes with the state-of-the-art algorithms in practice. This is confirmed by numerical
illustrations on synthetic data. This is the subject of paper Saber et al. (2021a). In Saber et al. (2020), we
introduced and studied KLUCB-UB algorithm, a KLUCB version of IMED-UB. Our KLUCB-UB finite time
analysis highlighted strong links between KLUCB and IMED approaches. We further developed d-IMED-UB,
an algorithm that behaves like IMED-UB while resorting to a dichotomic second order exploration over all
nodes of the graph. This helps quickly identify the best arm within a large set of arms A by empirical con-
siderations. This second order exploration appears as a new mechanism of exploring sub-optimal arms (and
the underlying structure) and seems to be specific to IMED approach. This mechanism operates in IMED-MB
algorithm introduced in Chapter 3, where we define the multimodal structure that generalises the unimodal
bandit problem. Note that our work from Saber et al. (2020) on KLUCB-UB and d-IMED-UB algorithms is
not reproduced in the manuscript.

Multimodal bandits. In the multimodal bandit problem, a graphG supports the structure and allows a notion
of neighbourhood between the arms. An arm a∈A is then considered as a local maximum if its mean µa is
greater than the means of the arms in its neighbourhood Va⊂A\{a}, that is µa>µa′ , for all a′ ∈Va. In the
multimodal bandit problem, we only consider distributions ν with a fixed number of local maximums that is
known in advance to the learner. This is formalized in Chapter 3, where we generalize the unimodal structure
and precisely define the multimodal bandit problem. We provide regret minimization results related to the
multimodal structure. We again revisit the Indexed Minimum Empirical Divergence (IMED) algorithm from
Honda and Takemura (2015) introduced for unstructured multi-armed bandits, and adapt it to the multimodal-
structured setting. We introduce in Section 3.3 IMED-MB algorithm that is limited to the pulling of the arms
with locally maximal empirical means or their no more than d nearest arms at each time step, with d the
maximum degree of nodes in G. We do not provide finite time analysis of IMED-MB algorithm, but it could
be the focus of future work. This novel algorithm performs well in practice and competes with the state-of-the-
art algorithms when assuming unimodal structure. This is confirmed by numerical illustrations on synthetic
data. We believe that the construction of this algorithm and the use of IMED type indexes to test the local
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maximality of arms with locally maximal empirical means (Equation 3.17) are of independent interest for the
bandit community.

Bandits with groups of similar arms. We consider a variant of the stochastic multi-armed bandit problem
where arms are known to be organized into different groups having the same mean. The groups are unknown
but a lower bound q on their size is known. This situation typically appears when each arm can be described
with a list of categorical attributes, and the (unknown) mean reward function only depends on a subset of
them, the others being redundant. In this case, q is linked naturally to the number of attributes considered
redundant, and the number of categories of each attribute. For this structured problem of practical relevance,
we first derive the asymptotic regret lower bound and corresponding constrained optimization problem. They
reveal the achievable regret can be substantially reduced when compared to the unstructured setup, possibly
by a factor q. However, solving exactly the exact constrained optimization problem involves a combinatorial
problem. Owing to this key insight, we introduce IMED-EC, an adaptation of IMED algorithm from Honda
and Takemura (2015) to the considered structured set of bandits. One advantage of IMED over a KLUCB
alternative is its reduced complexity, which translates to the equivalence class setup. At each time step, the
complexity of computing the next arm to be pulled by IMED-EC is no more than the one of sorting a list of |A|
elements once the IMED indexes have been computed, which is only log(|A|) times larger than looking for the
minimal IMED index. We prove that IMED-EC achieves a controlled asymptotic regret that matches the non-
combinatorial part of the lower bound and is at most (less than) a factor of 2 times the optimal regret bound.
Last, we illustrate the benefit of the IMED-EC over its unstructured version, where it shows a substantial
improvement. This work is the subject of Pesquerel et al. (2021) and has been initiated by Fabien Pesquerel.

Graph-structured bandits. In Chapter 4, we consider a structured variant of the multi-armed bandit prob-
lem when the difference of means between any pair of arms is constrained not to exceed some value. This
graph structure is introduced to encompass some classical structures such as Unimodal and Lipschitz. We
assume Bernoulli distributions although most of this work can be generalised to one-dimensional exponen-
tial family distributions. In Section 4.2, we first provide an instance-dependent lower bound on the regret for
generic graph-structured bandits, see Proposition 3. The proof follows standard change-of-measure techniques
and reveals interesting sets of “confusing” bandit instances. In Section 4.3, building on IMED algorithm origi-
nally introduced for unstructured bandits by Honda and Takemura (2015), we introduce IMED-GS algorithm,
to which we incorporate some key modifications in order to adapt it to a graph-structure. This IMED type ap-
proach directly builds on the lower bounds. We detail IMED-GS in Section 4.3.1 and Algorithm 9. The main
theoretical result is Theorem 3 that provides a finite-time upper bound on the regret under IMED-GS, which
then implies asymptotic optimality as shown in Corollary 3. The proof of this result, detailed in Section 4.5,
involves a technique exploiting empirical lower bounds. It also involves a novel concentration inequality of
independent interest that combines stochastic orderings with approximations. In Section 4.4, we illustrate and
discuss the benefit of this approach over the state-of-the-art regarding instance-dependent optimality on some
specific structures, including Unimodal and Lipschitz bandits.

Concentration inequalities. In Chapter 5, we highlight new concentration inequalities introduced to provide
a finite time analysis of IMED-GS algorithm and prove its asymptotic optimality for graph-structured bandits
(Chapter 4). These concentration inequalities enable to obtain more precise control of the concentration terms
compared to alternative tools present in the literature like in Theorem 2 from Magureanu et al. (2014).

Routine bandits. In the online recommender system problem items are recommended to users. Items can
be seen as arms and users as bandit instances. When a recommender system is deployed on multiple users, one
does not typically assume that the best recommendation is the same for all users. The naive algorithm in this
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situation is to consider each user as being a different bandit instance and learning from scratch for each user.
When users can be recognized (e.g., characterized by features), this information can be leveraged to speed
up the learning process by sharing observations across users. The resulting setting is known as contextual
bandit (Langford and Zhang, 2007; Lu et al., 2010). We tackle the case where users cannot be or do not want
to be identified (e.g., for privacy reasons), but where we assume that there exists a (unknown) finite set of
possible user profiles (bandit instances), such that information may be shared between the current user and
some previously encountered users. We call the resulting setting as routine bandit (Saber et al., 2021b). We
establish lower bounds on the achievable cumulative regret that adapt the bound from Lai and Robbins (1985)
to the routine setting. We then extend KLUCB algorithm, known to be optimal under the classical stochastic
bandit setting, into a new algorithm called KLUCB-RB that leverages the information obtained on previously
encountered bandits. We provide a theoretical analysis of KLUCB-RB and investigate the performance of the
algorithm using extensive numerical experiments. These results highlight the empirical conditions required so
that past information can be efficiently leveraged to speed up the learning process. The main contributions of
this work are 1) the newly proposed routine bandit setting, 2) KLUCB-RB algorithm that solves this problem
with asymptotically optimal regret minimization guarantees, and 3) an empirical illustration of the conditions
for past information to be beneficial to the learning agent. This work is the subject of Saber et al. (2021b) and
has been in collaboration with Léo Saci and Audrey Durand. It is the subject of Chapter 6.
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Chapter 2

Unimodal Bandits

We consider a multi-armed bandit problem specified by a set of one-dimensional family exponential distri-
butions endowed with a unimodal structure. We introduce IMED-UB, an algorithm that optimally exploits
the unimodal-structure, by adapting to this setting Indexed Minimum Empirical Divergence (IMED) algorithm
introduced by Honda and Takemura (2015). Owing to our proof technique, we are able to provide a con-
cise finite-time analysis of IMED-UB algorithm. Numerical experiments show that IMED-UB competes with
the state-of-the-art algorithms. This chapter reproduces the contents from Saber et al. (2021a) published at
NeurIPS conference.

2.1 Introduction
We assume a unimodal structure similar to that considered in Yu and Mannor (2011) and Combes and Proutiere
(2014a). That is, there exists an undirected graph G=(A, E) whose vertices are arms A, and whose edges E
characterize a partial order among means (µa)a∈A. This partial order is assumed unknown to the learner. We
assume that there exists a unique optimal arm a⋆=argmaxa∈A µa and that for all sub-optimal arm a ̸=a⋆, there
exists a path Pa=(a1= a, . . . , aℓa = a⋆)∈Aℓa of length ℓa⩾ 2 such that for all i∈ [1, ℓa − 1], (ai, ai+1) ∈ E
and µai < µai+1

. We denote by Va := {a′∈A\{a} : (a, a′)∈E} the neighbourhood of arm a∈A in graph G.
Lastly, we assume that ν ⊂ P := {p(µ), µ∈ I}, where p(µ) is an exponential-family distribution probability
with density f(·, µ) with respect to some positive measure λ on R and mean µ ∈ I ⊂ R. P is assumed to
be known to the learner. Thus, for all a ∈ A the distribution νa is fully specified by its mean µa, and we
have νa = p(µa). We denote by D(P,G) or Duni (or simply D when there is no confusion) the structured set
of such unimodal-bandit distributions characterized by (P , G). In the following, we assume that P is a set of
one-dimensional exponential family distributions.

Notations. Let ν∈D. Let µ⋆=maxa∈A µa be the optimal mean and a⋆=argmaxa∈A µa be the optimal arm
of ν. We define for an arm a∈A its sub-optimality gap ∆a=µ

⋆−µa. Considering an horizon T ⩾1, thanks to
the tower rule we can rewrite the regret as follows:

R(ν, T ) =
∑
a∈A

∆a Eν

[
Na(T )

]
, (2.1)

where Na(t)=
∑t

s=1 I{as=a} is the number of pulls of arm a at time t.
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2.2 Regret lower bound
In this section, we recall for completeness the known lower bound on the regret when we assume a unimodal
structure. In order to obtain non trivial lower bound we consider algorithms that are consistent (Definition 1).
We can derive from the notion of consistency an asymptotic lower bound on the regret, see Combes and
Proutiere (2014a).

Proposition 1 (Lower bounds on the regret). Let us consider a consistent algorithm. Then, for all configura-
tion ν∈Duni with means µ∈ IA, it must be that

lim inf
T→∞

R(ν, T )

log(T )
⩾ Cuni(µ) :=

∑
a∈Va⋆

∆a

KL(µa|µ⋆)
,

where KL(µ|µ′)=
∫
Rlog(f(x, µ)/f(x, µ

′))f(x, µ)λ(dx) denotes the Kullback-Leibler divergence between ν=
p(µ) and ν ′=p(µ′), for µ, µ′∈ I, and where Va⋆⊂A\{a⋆} is the neighbourhood of optimal arm a⋆.

Remark 3. CDuni(µ) is simply denoted Cuni(µ).

Remark 4. The quantity Cuni(µ) is a fully explicit function of µ (it does not require solving any optimization
problem) for some set of distributions ν (see Remark 1). This useful property no longer holds in general for
arbitrary structures. Also, it is noticeable that Cuni(µ) does not involve all the sub-optimal arms but only the
ones in Va⋆ . This indicates that sub-optimal arms outside Va⋆ are sampled o(log(T )), which contrasts with the
unstructured stochastic multi-armed bandits. See Combes and Proutiere (2014a) for further insights.

2.3 Optimal algorithm for unimodal bandits
We present in this section a novel algorithm that matches the asymptotic lower bound of Proposition 1. This
algorithm is inspired by the Indexed Minimum Empirical Divergence (IMED) proposed by Honda and Take-
mura (2011). The general idea behind this algorithm is, following the intuition given by the lower bound, to
narrow on the current best arm and its neighbourhood for pulling an arm at a given time step.

Notations. The empirical mean of the rewards from the arm a at time t is denoted by µ̂a(t) =
t∑

s=1

I{as=a}
Xs

Na(t)

if Na(t)>0, 0 otherwise. We also denote by µ̂⋆(t)=maxa∈A µ̂a(t) and Â⋆(t)=argmax
a∈A

µ̂a(t) respectively the

current best mean and the current set of optimal arms.

2.3.1 OSUB algorithm
For completeness, we recall in this subsection OSUB (Optimal Sampling for Unimodal Bandits) algorithm
from Combes and Proutiere (2014a).

Algorithm 6 OSUB
Pull each arm once
for t = |A| . . . T − 1 do

Choose â⋆t ∈ argmin
â⋆∈Â⋆(t)

Nâ⋆(t) (chosen arbitrarily) so that â⋆t ∈ Â⋆(t) and Nâ⋆t
(t) ⩽ Nâ⋆(t), ∀â⋆ ∈ Â⋆(t)

Pull at+1 =

â
⋆
t if Lt(â⋆t )−1

d+1
∈ N

argmax
a∈Vâ⋆t

ua(t) else

end for
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In Algorithm 6, for some numerical constant c>0, the index computed by OSUB algorithm for arm a∈A and
step t⩾ |A| is

ua(t)=sup
{
u⩾ µ̂a(t) : Na(t)KL(µ̂a(t)|u)⩽fc(Lt(â

⋆
t ))
}
,

where Lt(a)=
∑t

t′=1 I{â⋆t′=a} counts how many times arm a was a leader (best empirical arm), d=max
a∈A
|Va| is

the maximum degree of nodes inG, and fc(·)=log(·)+c log log(·). We set c=1 for the numerical experiments.

2.3.2 IMED-UB algorithm
We first pull each arm once. For all arm a∈A and time step t⩾1 we introduce the IMED index

Ia(t) = Na(t)KL(µ̂a(t)|µ̂⋆(t)) + log(Na(t)) ,

with the convention 0×∞=0. This index can be seen as a transportation cost for moving a sub-optimal arm
to an optimal one plus an exploration term: the logarithm of the number of pulls. When an optimal arm is
considered, the transportation cost is null and there is only the exploration part. Note that, as stated in Honda
and Takemura (2011), Ia(t) is an index in the weaker sense since it cannot be determined only by samples from
the arm a but also uses the empirical mean of the current optimal arm. We define IMED-UB (Indexed Mini-
mum Empirical Divergence for Unimodal Bandits), described in Algorithm 7, to be the algorithm consisting
of pulling an arm at∈{â⋆t}∪Vâ⋆t with minimum index at each time step t, where is â⋆t ∈argminâ⋆∈Â⋆(t)Nâ⋆(t)

is a current best arm in Â⋆(t) such that for all current best arm â⋆ ∈ Â⋆(t), Nâ⋆(t)⩾Nâ⋆t
(t). This is a nat-

ural algorithm since the lower bound on the regret given in Proposition 1 involves only the arms in Va⋆ , the
neighbourhood of the arm a⋆ of maximal mean.

Algorithm 7 IMED-UB
Pull each arm once
for t = |A| . . . T − 1 do

Choose â⋆t ∈ argmin
â⋆∈Â⋆(t)

Nâ⋆(t) (chosen arbitrarily) so that â⋆t ∈ Â⋆(t) and Nâ⋆t
(t) ⩽ Nâ⋆(t), ∀â⋆ ∈ Â⋆(t)

Pull at+1 ∈ argmin
a∈{â⋆t }∪Vâ⋆t

Ia(t) (chosen arbitrarily)

end for

2.3.3 Asymptotic optimality of IMED-UB
In this section, we state the main theoretical result of this chapter.

Theorem 2 (Upper bounds). Let us consider a set of distributions ν ∈Duni with means µ ∈ IA and let a⋆ its
optimal arm. Let Va⋆ be the sub-optimal arms in the neighbourhood of a⋆. Then under IMED-UB algorithm
for all 0<ε<εν , for all horizon time T ⩾1, for all a∈Va⋆ ,

Eν [Na(T )] ⩽
1 + αν(ε)

KL(µa|µa⋆)
log(T ) + 2min{|A| , d(d+1)} Cε

√
log(cεT )

+ min{|A| , d(d+1)}
(
1 + c−1

εν

)
+min{3 |A| , (d+1)(d+3)}

2σ2
ενe

ε2ν/2σ
2
ε

ε2
+ 1

and, for all a /∈{a⋆}∪Va⋆ ,

Eν [Na(T )] ⩽ 2min{|A| , d(d+1)} Cε

√
log(cεT )

+ min{|A| , d(d+1)}
(
1 + c−1

εν

)
+min{3 |A| , (d+1)(d+3)}

2σ2
ενe

ε2ν/2σ
2
ε

ε2
+ 1 ,
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where d is the maximum degree of nodes in G, εν=
1

2
min
a̸=a⋆

max
a′∈Va

µa′ − µa,

σ2
ε =max

a∈A

{
V

X∼p(µ′)
(X) : µ′∈ [µa−ε , µa]

}
and cε, Cε> 0 are the constants involved in Theorem 6. αν(·) is a

non-negative function depending only on ν such that lim
ε→0

αν(ε)=0 (see Section 2.4.1 for more details).

In particular one can note that the arms in the neighbourhood of the optimal one are pulled O(log(T )) times
while the other sub-optimal arms are pulled O

(√
log(T )

)
of times under IMED-UB. This is coherent with

the lower bound that only involves the neighbourhood of the best arm. More precisely, combining Theorem 2
and the tower rule (2.1) gives the asymptotic optimality of IMED-UB with respect to the lower bound of
Proposition 1.

Corollary 1 (Asymptotic optimality). With the same notations as in Theorem 2, then under IMED-UB algo-
rithm

lim sup
T→∞

R(ν, T )

log(T )
⩽ Cuni(µ) =

∑
a∈Va⋆

∆a

KL(µa|µa⋆)
.

A finite time analysis of IMED-UB is provided in following Section 2.4.

2.3.4 Asymptotic optimality of IMED
The non-structured multi-armed bandit problem can be seen as a particular case of unimodal bandits. Indeed,
if we consider E = {(a, a′) : a ̸=a′} then G is the fully connected graph and Va =A\{a} for all arm a∈A.
In particular, the path from any sub-optimal arm a to a⋆, the optimal one, is simply (a, a⋆)∈E. Furthermore,
in such a case, IMED and IMED-UB algorithms, respectively summarized in Algorithms 2 and 7, coincide
perfectly. Thus, a straightforward application of Theorem 2 gives us optimal finite time guarantees for IMED
algorithm. Note that this natural shift from the structured unimodal case to the unstructured case from both
an algorithmic and analytical point of view makes the IMED approach an innovative approach to deal with
structured bandit problems.

Corollary 2 (Upper bounds under IMED algorithm). Let us consider a set of distributions ν ∈D with means
µ∈ IA and let a⋆ its optimal arm. Then under IMED algorithm for all 0<ε<εν , for all horizon time T ⩾ 1,
for all sub-optimal arm a ̸=a⋆,

Eν [Na(T )] ⩽
1 + αν(ε)

KL(µa|µa⋆)
log(T ) + 2 |A|Cε

√
log(cεT ) + |A|

(
1 + c−1

εν

)
+ 3 |A|

2σ2
ενe

ε2ν/2σ
2
ε

ε2
+ 1

where εν=
1

2
min
a̸=a⋆

µ⋆−µa, σ2
ε =max

a∈A

{
V

X∼p(µ′)
(X) : µ′∈ [µa−ε , µa]

}
and cε, Cε>0 are the constants involved

in Theorem 6. αν(·) is a non-negative function depending only on ν such that lim
ε→0

αν(ε)=0 (see Section 2.4.1
for more details). Thus under IMED algorithm, we have

lim sup
T→∞

R(ν, T )

log(T )
⩽ C1(µ) =

∑
a̸=a⋆

∆a

KL(µa|µa⋆)
.

2.4 IMED-UB finite time analysis
At a high level, the key interesting step of the proof is to realize that the considered algorithm implies em-
pirical lower and empirical upper bounds on the numbers of pulls (see Lemma 1, Lemma 2). Then, based on
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concentration lemmas (see Section B.2), the algorithm-based empirical lower bounds ensure the reliability of
the estimators of interest (Lemma 4). Interestingly, this makes use of arguments based on recent concentration
of measure that enable to control the concentration without adding some log log bonus (such a bonus was
required for example in the initial analysis of KLUCB algorithm from Cappé et al. (2013)). Then, combining
the reliability of these estimators with the obtained algorithm-based empirical upper bounds, we obtain upper
bounds on the average numbers of pulls (Theorem 2). The proof is concise to fit mostly in the next few pages.

2.4.1 Notations
Let us consider ν∈D and let us denote by a⋆ its best arm. We recall that for all a∈A, Va={a′ ∈ A : (a, a′) ∈ E}
is the neighbourhood of arm a in graph G=(A, E), and that

d = max
a∈A
|Va| , εν =

1

2
min
a̸=a⋆

max
a′∈Va

µa′ − µa . (2.2)

Then, there exists a function αν(·) such that for all 0<ε<εν , for all a ̸=a⋆,

KL(µa+ε|µ⋆−ε) ⩾(1+αν(ε))
−1 KL(µa|µ⋆) (2.3)

and lim
ε↓0
↓ αν(ε) = 0. Indeed, since KL(·|·) is a convex function, it is a continuous function within the

interior of its domain of definition. At each time step t⩾ 1, â⋆t is arbitrarily chosen in argmin
a∈Â⋆(t)

Na(t) where

Â⋆(t)=argmax
a∈A

µ̂a(t), that is {
â⋆t ∈ Â⋆(t)

∀â⋆ ∈ Â⋆(t), Nâ⋆(t) ⩾ Nâ⋆t
(t) .

2.4.2 Algorithm-based empirical bounds
IMED-UB algorithm implies inequalities between the indexes that can be rewritten as inequalities on the
numbers of pulls. While lower bounds involving log(t) may be expected in view of the asymptotic regret
bounds, we show lower bounds on the numbers of pulls involving instead log

(
Nat+1(t)

)
, the logarithm of the

number of pulls of the current chosen arm. We also provide upper bounds on Nat+1(t) involving log(t).
We believe that establishing these empirical lower and upper bounds is a key element of our proof technique,
that is of independent interest and not a priori restricted to the unimodal structure.

Lemma 1 (Empirical lower bounds). Under IMED-UB, at each step time t⩾ |A|, for all a∈Vâ⋆t ,

log
(
Nat+1(t)

)
⩽ Na(t)KL(µ̂a(t)|µ̂⋆(t)) + log(Na(t)) (2.4)

and
Nat+1(t) ⩽ Nâ⋆t

(t) . (2.5)

Proof. For a∈A, by definition, we have Ia(t)=Na(t)KL(µ̂a(t)|µ̂⋆(t))+log(Na(t)), hence

log(Na(t)) ⩽ Ia(t) .

This implies, since the arm with minimum index is pulled, log
(
Nat+1(t)

)
⩽ Iat+1(t) = min

a′∈{â⋆t }∪Vâ⋆t

Ia′(t) ⩽

Iâ⋆t (t)=log
(
Nâ⋆t

(t)
)
. By taking the log−1(·), the last inequality allows us to conclude.
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Lemma 2 (Empirical upper bounds). Under IMED-UB at each step time t⩾ |A|,

Nat+1(t)KL
(
µ̂at+1(t)|µ̂⋆(t)) ⩽ log(t) . (2.6)

Proof. As above, by construction we have

Iat+1(t) ⩽ Iâ⋆t (t) .

It remains, to conclude, to note that

Nat+1(t)KL
(
µ̂at+1(t)|µ̂⋆(t)) ⩽ Iat+1(t) ,

and
Iâ⋆t (t) = log(Nâ⋆t

(t)) ⩽ log(t) .

2.4.3 Non-reliable current best arm
Before going further in the analysis, we inform the reader that sets E+a,a′(ε), E

−
a,a′(ε), K

−
a,a′(ε) for a, a′ ∈ A,

ε>0, used in this section are introduced and study in Section B.1.

For accuracy ε > 0, letM⋆(ε) be the set of times t⩾1 that do not belong to E+â⋆t ,at+1
(ε) and where some of the

current best arm â⋆t differs from a⋆,

M⋆(ε) :=

{
t ⩾ |A| :

(1) t /∈ E+â⋆t ,at+1
(ε)

(2) â⋆t ̸= a⋆

}
. (2.7)

Lemma 3 (Relation between subsets of times). Under IMED-UB, for all accuracy 0<ε<εν ,

M⋆(ε) ⊂
⋃
t⩾1

a∈Vâ⋆t

K−
a,at+1

(εν) , (2.8)

where εν =
1

2
min
a̸=a⋆

max
a′∈Va

µa′ − µa.

Proof. Let us consider t∈M⋆(ε). Since â⋆t ̸=a⋆, there exists a∈argmax
a′∈Vâ⋆t

µa′ such that

µa > µâ⋆t
. (2.9)

Then, since â⋆t ∈argmaxa∈A µ̂a(t), we have

µ̂â⋆t
(t) = µ̂⋆(t) ⩾ µ̂a(t) . (2.10)

Since t ∈M⋆(ε), t /∈ E+â⋆t ,at+1
(ε), where E+â⋆t ,at+1

(ε) =
{
t ∈ J1, T−1K : Nat+1(t) ⩽ Nâ⋆t

(t), µ̂â⋆t
(t) ⩾ µâ⋆t

+ ε
}

according to Equation (B.1). From empirical lower bounds (2.5), we have Nat+1(t)⩽Nâ⋆t
(t). This implies

µâ⋆t
+ ε ⩾ µ̂â⋆t

(t) . (2.11)

By combining Equations (2.10) and (2.11), it comes

µâ⋆t
+ ε ⩾ µ̂⋆(t) ⩾ µ̂a(t) . (2.12)
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Since ε<εν⩽
∣∣µa−µâ⋆t

∣∣/2, Equation (2.9) and previous Equation (2.12) imply

µa − εν > µ̂â⋆t
(t) ⩾ µ̂a(t) . (2.13)

Since a∈Vâ⋆t , empirical lower bounds (2.4) imply

log
(
Nat+1(t)

)
⩽ Na(t)KL(µ̂a(t)|µ̂⋆(t)) + log(Na(t)) . (2.14)

The classical monotonic properties of KL(·|·) and Equation (2.13) imply{
µ̂a(t) < µa−εν
KL(µ̂a(t)|µ̂⋆(t)) ⩽ KL(µ̂a(t)|µa−εν) .

(2.15)

Combining Equations (2.14) and (2.15), we get{
µ̂a(t) < µa−εν
log
(
Nat+1(t)

)
⩽ Na(t)KL(µ̂a(t)|µa−εν) + log(Na(t)) ,

(2.16)

which means t∈K−
a,at+1

(εν).

2.4.4 Reliable current means and current best arm
In this subsection, we characterize subsets of times where both the mean of current pulled arm and the optimal
mean are well-estimated.

Let us consider for 0<ε<εν , for a ̸=a⋆,

Ua(ε)={t⩾ |A| : at+1=a}
⋂(⋃

t⩾1

E+at+1,at+1
(ε) ∪ E−â⋆t ,at+1

(ε) ∪ E+â⋆t ,at+1
(ε) ∪M⋆(ε)

)
. (2.17)

According to IMED-UB algorithm (summarized in Algorithm 7), for all t⩾ |A|, current pulled arm at+1 is cho-
sen in {â⋆t}∪Vâ⋆t so that â⋆t ∈{at+1} ∪Vat+1 . Furthermore, from Lemma 3 we haveM⋆(ε)⊂

⋃
t⩾1

a∈Vâ⋆t

K−
a,at+1

(εν).

This implies

Ua(ε) ⊂
⋃

a′∈{a}∪Va

a′′∈Va′

E−a′,a(ε) ∪ E
+
a′,a(ε) ∪ K

−
a′′,a(εν) ⊂

⋃
a′′′∈A

E−a′′′,a(ε) ∪ E
+
a′′′,a(ε) ∪ K

−
a′′′,a(εν) , (2.18)

where dummy variables at+1 and â⋆t have been respectively replaced by a and a′.

In particular, from Lemma 30 and previous Equation (2.18) we have

Eν [Ua(ε)] ⩽ 2min{|A| , (d+ 1)} 2σ
2
ε e

ε2/2σ2
ε

ε2

+min{|A| , d(d+ 1)}

(
2σ2

ενe
ε2ν/2σ

2
εν

ε2ν
+ 1 + c−1

εν + 2Cε

√
log(cεT )

)

⩽ min{3 |A| , (d+ 1)(d+ 3)}
2σ2

ενe
ε2ν/2σ

2
ε

ε2

+min{|A| , d(d+ 1)}
(
1 + c−1

εν + 2Cε

√
log(cεT )

)
, (2.19)

where d=maxa∈A |Va| is the maximum degree of nodes in graph G.
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Lemma 4 (Reliable current means). Under IMED-UB, for all accuracy 0< ε < εν , for all sub-optimal arm
a ̸=a⋆, for all time step t /∈Ua(ε), t⩾ |A|, such that at+1=a,

â⋆t = a⋆

µ̂⋆(t) ⩾ µ⋆ − ε
µ̂a(t) ⩽ µa + ε .

Proof. For 0< ε< εν = min
a̸=a′
|µa−µa′|/2, for a ̸= a⋆, let us consider a time step t /∈ Ua(ε), t⩾ |A| such that

at+1=a.

Since at+1 = a and t /∈ Uat+1(ε) then t /∈ E+at+1,at+1
(ε), that is µ̂at+1(t) < µat+1 +ε or µ̂a(t) < µa+ε (since

at+1=a).

Since at+1=a and t /∈Uat+1(ε) then t /∈E−â⋆t ,at+1
(ε), where

E−â⋆t ,at+1
(ε)=

{
t ∈ J1, T−1K : Nat+1(t) ⩽ Nâ⋆t

(t), µ̂â⋆t
(t) ⩽ µâ⋆t

− ε
}

according to Equation (B.2). From empirical lower bounds (2.5), we have Nat+1(t)⩽Nâ⋆t
(t). This implies

µ̂⋆(t) = µ̂â⋆t
(t) > µâ⋆t

− ε . (2.20)

Since at+1=a and t /∈Uat+1(ε) then t /∈E+â⋆t ,at+1
(ε) ∪M⋆(ε). From Equation (2.7), this implies

â⋆t = a⋆ . (2.21)

By combining Equations (2.20) and (2.21), we get

µ̂⋆(t) > µa⋆ − ε = µ⋆ − ε . (2.22)

2.4.5 Upper bounds on the numbers of pulls of sub-optimal arms
In this subsection, we now combine the different results of the previous subsections to prove Theorem 2.

Proof of Theorem 2. For 0< ε < εν , for a ̸= a⋆, let us consider t /∈ Ua(ε), t⩾ |A|, such that at+1 = a. From
empirical upper bounds (2.6), we have

Na(t)KL(µ̂a(t)|µ̂⋆(t)) ⩽ log(t) . (2.23)

From Lemma 4 and Algorithm 7, we have a ∈ Va⋆ and µ̂a(t) ⩽ µa + ε < µ⋆− ε ⩽ µ̂⋆(t). From clas-
sical monotonic properties of KL(·|·) and Equation (2.3), we have KL(µ̂a(t)|µ̂⋆(t)) ⩾ KL(µa+ε|µ⋆−ε) ⩾
(1+αν(ε))

−1 KL(µa|µ⋆). In view of Equation (2.23), this implies

∀t /∈ Ua(ε), t ⩾ |A| , such that at+1 = a,


a ∈ Va⋆

Na(t) ⩽
(1 + αν(ε)) log(t)

KL(µa|µ⋆)
.

(2.24)

For all arm a∈A, for all time step t⩾ |A|, we denote by

τa(t) = max {t′ ∈ J|A| ; tK : at′+1 = a and t′ /∈ Ua(ε)} (2.25)
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the last time step before time step t that does not belong to Ua(ε) such that we pull arm a.

Then, from Equations (2.24) and (2.25) we have

∀a ̸= a⋆, ∀t ⩾ 1, Na(t) = Na(|A|) +
t−1∑

t′⩾|A|

I{at′+1=a}

⩽ 1 +
t−1∑
t′⩾1

I{at′+1=a, t′∈Ua(ε)} +
t−1∑

t′⩾|A|

I{at′+1=a, t′ /∈Ua(ε)}

⩽ 1 + |Ua(ε)|+
t−1∑

t′⩾|A|

I{at′+1=a, t′ /∈Ua(ε)}

⩽ 1 + |Ua(ε)|+ I{a/∈Va⋆} × 0 + I{a∈Va⋆} ×Na(τa(t))

⩽ 1 + |Ua(ε)|+ I{a∈Va⋆}
(1 + αν(ε)) log(τa(t))

KL(µa|µ⋆)

⩽ 1 + |Ua(ε)|+ I{a∈Va⋆}
(1 + αν(ε)) log(t)

KL(µa|µ⋆)
.

This implies

∀a ̸= a⋆,∀t ⩾ 1, Na(t) ⩽


(1 + αν(ε)) log(t)

KL(µa|µ⋆)
+ |Ua(ε)|+ 1 if a ∈ Va⋆

|Ua(ε)|+ 1 if a /∈ Va⋆ .
(2.26)

From Equation (2.19), averaging these inequalities allows us to conclude.
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2.5 Numerical experiments
In this section, we compare empirically the following algorithms : OSUB, UTS (Combes and Proutiere, 2014a;
Trinh et al., 2020) and IMED-UB described in Algorithm 7. We illustrate how performs IMED-UB algo-
rithm under Bernoulli, Gaussian (variance σ2 = 0.25) or Exponential distribution assumption. For the ex-
periments we consider a graph G with maximal degree d = 2 and the unimodal unimodal vectors of means
µ=(0.05, 0.10, 0.15, 0.20, 0.25, 0.20, 0.15, 0.10, 0.05), and average regrets over 500 runs for each distribution
family. Based on these experiments (Figure 2.1), it seems that IMED-UB competes with OSUB and UTS.

Figure 2.1: Cumulative regrets averaged over 500 runs.
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Chapter 3

Multimodal Bandits

We consider a multi-armed bandit problem specified by a set of one-dimensional family exponential dis-
tributions endowed with a multimodal structure. The multimodal structure naturally extends the unimodal
structure studied in Chapter 2. We introduce IMED-MB, an algorithm that exploits the multimodal structure,
by adapting to this setting the popular Indexed Minimum Empirical Divergence (IMED) algorithm. Numerical
experiments show that IMED-MB performs well in practice and competes with the state-of-the-art algorithms
when assuming unimodal structure.

3.1 Introduction
We assume there exists an undirected graph G = (A, E) whose vertices are arms A, and whose edges E
characterize a partial order among means (µa)a∈A. This partial order is assumed unknown to the learner. We
denote by Va = {a′ ̸=a : (a, a′)∈E} the neighbours of arm a ∈ A in graph G = (A, E) and by A+(ν) =
{a∈A : ∀a′ ∈ Va, µ′

a<µa} the set of arms with locally maximal means. When there is no possible confusion
A+(ν) is simply denoted A+. We assume that |A+(ν)|,the size of subset A+(ν), is equal to M , the number
of local maximums. We assume that M is known to the learner (Assumption 2). Lastly, we assume that
ν ⊂P := {p(µ), µ∈ I}, where p(µ) is an exponential-family distribution probability with density f(·, µ) with
respect to some positive measure λ on R and mean µ ∈ I ⊂ R. P is assumed to be known to the learner.
Thus, for all a ∈ A we have νa = p(µa). We denote by D(P,G) or DM-modal (or simply D when there is no
confusion) the structured set of such unimodal-bandit distributions characterized by (P , G). In the following,
we assume that P is a set of one-dimensional exponential family distributions. For ν ⊂ P , we denote by
A⋆(ν) = argmaxa∈A µa the set of optimal arms of ν. When there is no possible confusion A⋆(ν) is simply
denoted A⋆. In particular, we have

A⋆ ⊂ A+ . (3.1)

Assumption 2 (Local maximums). The number M = |A+| of arms with locally maximal means is known to
the learner.

Assumption 3 (Unique optimal arm). We assume there exists a⋆∈A such that A⋆ = {a⋆}.

Unimodal Structure. When A+ = A⋆ = {a⋆}, the introduced multimodal coincides with the unimodal
structure (Chapter 2) that has been first considered in Yu and Mannor (2011) from a bandit perspective. The
study of unimodal structure naturally appears in many contexts, e.g. single-peak preference economics, voting
theory or wireless communications, and Combes and Proutiere (2014a); Trinh et al. (2020) provide an explicit
lower bound and optimal corresponding algorithms, respectively OSUB, UTS.
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Notations. Let ν ∈ D. Let µ⋆ = maxa∈A µa be the optimal mean. We define for an arm a ∈ A its sub-
optimality gap ∆a=µ

⋆−µa. Considering an horizon T ⩾1, thanks to the tower rule we can rewrite the regret
as follows:

R(ν, T ) =
∑
a∈A

∆a Eν

[
Na(T )

]
, (3.2)

where Na(t)=
∑t

s=1 I{as=a} is the number of pulls of arm a at time t.

3.2 Regret lower bound
In order to obtain non trivial lower bound on the regret we consider algorithms that are consistent (Defini-
tion 1). We can derive from the notion of consistency an asymptotic lower bound on the regret.

Proposition 2 (Lower bounds on the regret). Let us consider a consistent algorithm. Let us consider a config-
uration ν∈DM-modal with means µ∈ IA such that for all a+1 , a

+
2 ∈A+(ν),

a+1 ̸= a+2 ⇒ Va+1 ∩ Va+2 = ∅ . (3.3)

Then it must be that

lim inf
T→∞

R(ν, T )

log(T )
⩾ Cmulti(µ) :=

∑
a+∈A+

∑
a∈{a+}∪Va+

µa ̸=µ⋆

∆a

KL(µa|µ⋆)
,

where KL(µ|µ′)=
∫
Rlog(f(x, µ)/f(x, µ

′))f(x, µ)λ(dx) denotes the Kullback-Leibler divergence between ν=
p(µ) and ν ′=p(µ′), for µ, µ′∈ I, and where Va is the neighbourhood of arm a∈A.

A proof of Proposition 2 is provided after the discussion below.

Remark 5. CDM-modal(µ) is simply denoted Cmulti(µ).

Remark 6. The quantity Cmulti(µ) is a fully explicit function of µ (it does not require solving any optimization
problem) for some set of distributions ν (see Remark 1). This useful property no longer holds in general for
arbitrary structures. Also, it is noticeable that Cmulti(µ) does not involve all the sub-optimal arms but only the
ones in ∪a+∈A+{a+} ∪ Va+ . This indicates that sub-optimal arms outside ∪a+∈A+{a+} ∪ Va+ are sampled
o(log(T )), which contrasts with the unstructured stochastic multi-armed bandits.

Discussion. In Proposition 2, the conditions on A+(ν) detailed in Equation 3.3 ensure that for all local
maximum a+ ∈ A+, for all sub-optimal a ∈ Va+ in its neighbourhood, all “most confusing”1 configuration
ν(a) (defined in Equation (3.4)) still remains in DM-modal. This allows us to use the consistency on DM-modal of
the considered algorithm. Without the conditions detailed in Equation (3.3), a most confusing configuration
ν(a) could have only |A+(ν)|−1=M−1 local maximums. However, these conditions are not very restrictive
and only imply that two local maximums cannot follow each other in graph G. For clarity, let us illustrate in
Figure 3.1 the situation in dimension one when the initial configuration has 2-modal means but may have a
most confusing configuration with unimodal means.

1This notion of “most confusing” refers to the generic proof technique used to derive regret lower bounds. It involves a change-
of-measure argument, from the initial configuration in which the arm is sub-optimal to another one chosen to make it optimal.
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Figure 3.1: Configuration with 1-dimensional 2-modal means admitting unimodal most confusing configura-
tion. Here, A=J1, 10K and Va={a−1, a+1}∩A for all a∈A so we have A+={4, 6} and V4∩V6={5} ̸=∅.

Proof. We consider a configuration ν∈D satisfying Equation (3.3), that is such that for all a+1 , a
+
2 ∈A+(ν),

a+1 ̸= a+2 ⇒ Va+1 ∩ Va+2 = ∅ ,

where Va is the neighbourhood of arm a∈A.

Let us consider a sub-optimal a∈∪a+∈A+{a+}∪Va+\A⋆(ν). The proof consists in used Lemma 5 below from
Garivier et al. (2016) with configuration ν and the most confusing configuration ν(a)(ε) for ε>0, with means
µ(a)(ε), where

∀a′ ∈ A, µ
(a)
a′ (ε) =

{
µa′ if a′ ̸= a

µ⋆ + ε if a′ = a .
(3.4)

Note that the set of optimal arms for the most confusing configuration ν(a) reduces to the singletonA⋆
(
ν(a)
)
=

{a} and that, due to Equation (3.3), the most confusing configuration ν(a)(ε) still belongs to DM-modal, that is
µ(a)(ε) has exactly |A+(ν)|=M local maximums.

Let us consider the random variable ZT =Na(T )/T ∈ [0, 1]. Then previous Lemma 5 implies∑
a′∈A

Eν [Na′(T )]KL
(
µa′
∣∣µ(a)

a′ (ε)
)
⩾ kl

(
Eν [ZT ]

∣∣Eν(a)(ε)[ZT ]
)
. (3.5)

Since for all a′ ̸= a we have the equality of means µa′ = µ
(a)
a′ (ε) and since µ(a)

a (ε) = µ⋆+ε, previous Equa-
tion (3.5) rewrites

Eν [Na(T )]KL
(
µa

∣∣µ⋆+ε
)
⩾ kl

(
Eν [ZT ]

∣∣Eν(a)(ε)[ZT ]
)
. (3.6)

From there, what remains of the proof is classic. For instance, the reader can refer to the proof of Theorem 1
in Garivier et al. (2016).
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Since we consider a consistent algorithm on DM-modal and

{
ν∈DM-modal

a /∈A⋆(ν)
, the averaged number of pulls of

arm a for configuration ν is sub-linear and

lim
T→∞

Eν [ZT ] = lim
T→0

Eν [Na(T )]/T = 0 . (3.7)

Since we consider a consistent algorithm onDM-modal and

{
ν(a)∈DM-modal

{a}=A⋆(ν(a)(ε))
, the averaged number of pulls

of arm a for configuration ν(a) is linear and

lim
T→∞

Eν(a)(ε)[ZT ] = lim
T→0

Eν(a)(ε)[Na(T )]/T = 1 . (3.8)

By combining Equation (3.7) and (3.8), we have in particular when T tends to∞ that

kl
(
Eν [ZT ]

∣∣Eν(a)(ε)[ZT ]
)
∼

T→∞
log

(
1

1− Eν(a)(ε)[ZT ]

)
. (3.9)

Note that the right term of the last equation can be rewritten as follows,

log

(
1

1− Eν(a)(ε)[ZT ]

)
= log

 T∑
a′ /∈A⋆(ν(a)(ε))

Eν(a)(ε))[Na′(T )]

 = log

(
T

O(Tα)

)
, ∀α > 0 . (3.10)

In particular, by combining previous Equation (3.10) and Equation (3.9) we get the following asymptotic
result,

lim
T→∞

kl
(
Eν [ZT ]

∣∣Eν(a)(ε)[ZT ]
)

log(T )
= 1 . (3.11)

We prove Proposition 2 by combining this last Equation (3.11) with Equation (3.6).

Lemma 5 (Fundamental inequality). Let us consider a consistent algorithm on D. Then for all configurations
ν, ν ′∈D with means µ, µ′∈ IA, for all horizon T ⩾1, for random variable ZT with values in [0, 1],∑

a∈A

Eν [Na(T )]KL(µa|µ′
a) ⩾ kl

(
Eν [ZT ]

∣∣Eν′ [ZT ]
)
,

where kl(p|q)=p log(p
q
)+(1−p) log(1−p

1−q
) for p, q∈ [0, 1].

3.3 Numerically efficient algorithm for multimodal bandits
We start this section by considering some useful notations before introducing and definingIMED-MB algorithm.

3.3.1 Notations
The empirical mean of the rewards from the arm a is denoted by µ̂a(t)=

∑t
s=1 I{as=a}Xs/Na(t) if Na(t)>0,

0 otherwise. We also denote by µ̂⋆(t) = max
a∈A

µ̂a(t) and Â⋆(t) = argmax
a∈A

µ̂a(t) respectively the current best

mean and the current set of optimal arms. We denote by â⋆t an arm arbitrarily chosen in Â⋆(t). We denote
by A(t) := {a∈A : ∀a′ ∈ Va, µ̂a′(t)⩽ µ̂a(t)} the set of arms with locally maximal empirical means and by
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Â+(t) ⊂ A(t) the set of no more than |A+| arms with locally maximal empirical means (ties are broken
arbitrarily), 

if
∣∣A(t)∣∣ < |A+| : Â+(t) = A(t)

if
∣∣A(t)∣∣ ⩾ |A+| : Â+(t) ∈ argmax

a1,...,a|A+|∈A(t)

∑
a∈{a1,...,a|A+|}

µ̂a(t) .

Note that this choice of Â+(t) gives priority to local maximums with greater current empirical means.

3.3.2 IMED-MB algorithm.
For all arm a∈A and time step t⩾1 we introduce the IMED index from Honda and Takemura (2015),

Ia(t) = Na(t)KL(µ̂a(t)|µ̂⋆(t)) + log(Na(t)) , (3.12)

with the convention 0×∞=0 and log(0)=−∞, and denote by at the arm with minimal IMED index

at ∈ argmin
a∈A

Ia(t) (arbitrarily chosen). (3.13)

This index can be seen as a transportation cost for moving a sub-optimal arm to an optimal one plus an
exploration term: the logarithm of the numbers of pulls. When an optimal arm is considered, the transportation
cost is null and there is only the exploration part. Note that, as stated in Honda and Takemura (2015), Ia(t)
is an index in the weaker sense since it cannot be determined only by samples from the arm a but also uses
empirical means of current optimal arms. If multimodal structure is not considered, arm at may be seen as the
current most informative arm. However, regarding the lower bound for multimodal structure (Proposition 2),
the current most informative arm may be

at ∈ argmin
a∈

⋃
â+∈Â+(t)

{â+}∪Vâ+

Ia(t) (arbitrarily chosen). (3.14)

When
∣∣∣Â+(t)

∣∣∣< |A+|, obviously the underlying multimodal structure is poorly estimated and arm at is used
to deal with the trade-off exploitation versus exploration: if at coincides with the current best arm, that is
at= â

⋆
t , we exploit and then pull best arm â⋆t , otherwise we explore in order to better estimate the underlying

multimodal structure and then pull the arm with the minimal number of pull in exploration phases

a
t
∈ argmin

a∈A
Na(t) (arbitrarily chosen). (3.15)

When
∣∣∣Â+(t)

∣∣∣= |A+|, arm at is now used to deal with the trade-off exploitation versus exploration. We do not

directly pull at during exploration phases but consider second order IMED type indexes (Eq. 3.17) to ensure
better estimations of the arms with locally maximal empirical means, that is the arms from set Â+(t). We
explore in order to improve confidence in arms with locally maximal empirical means and then pull an arm
with minimal second order index (Eq. 3.18). Let us consider

â+t ∈ argmax
a∈{at}∪Vat

µ̂a(t) (arbitrarily chosen). (3.16)
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In particular, we have â+t ∈Â+(t). We then consider the second order index for arm a∈A,

Ia(t) =


if µ̂a(t) < µ̂â+t

(t) :

Na(t)KL
(
µ̂a(t)

∣∣∣µ̂â+t
(t)
)
+ log(Na(t))

if µ̂a(t) ⩾ µ̂â+t
(t) :

log(Na(t))

(3.17)

and
at ∈ argmin

a∈{â+t }∪V
â+t

Ia(t) (arbitrarily chosen). (3.18)

We speak of second order exploration because of the following inequalities on the indexes. At each time step
t⩾1, we have

Iat(t) ⩽ log
(
Nâ+t

(t)
)
⩽ Iâ+t (t) . (3.19)

Note that when â+t = â⋆t , then both IMED type indexes coincide, that is Iat(t)=Iat(t). However, when â+t ̸= â⋆t ,
we expect arm â+t to be a sub-optimal one and so to be pulled a logarithmic number of times. In that particular
case and according to previous Equation (3.19), we then expect Iat(t) to be a O(log log t).

IMED-MB algorithm is summarized in Algorithm 8.

Algorithm 8 IMED-MB
for t = 1 . . . T − 1 do

▷ ▷ ▷ MULTIMODAL STRUCTURE BADLY ESTIMATEDif
∣∣∣Â+(t)

∣∣∣ < |A+| then
if at = â⋆t then ▷ Exploitation

Pull arm at+1 = at (Eq. 3.13)
else ▷ Exploration

Pull arm at+1 = a
t

(Eq. 3.15)
end if

▷ ▷ ▷ MULTIMODAL STRUCTURE WELL ESTIMATEDelse
if at = â+t then ▷ Reliable local maximum â+t :exploration-exploitation

Pull arm at+1 = at
else ▷▷ Non-reliable local maximum â+t :second order exploration

Pull arm at+1 = at (Eq. 3.18)
end if

end if
end for
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3.4 Numerical experiments
In this section, we compare empirically the following algorithms : OSUB, UTS (Combes and Proutiere, 2014a;
Trinh et al., 2020) and IMED-MB described in Algorithm 8. We illustrate how perform IMED-MB algorithm
under Bernoulli, Gaussian (variance σ2 = 0.25) or Exponential distribution assumption. For the experiments
we consider a graph G with maximal degree d = 8 and the multimodal vectors of means is of dimension 2,
and average regrets over 100 runs for each distribution family. Additional details are provided in the paragraph
below. Based on these experiments (Figures 3.2, 3.3), it seems that IMED-MB competes with OSUB and UTS
for the unimodal structure.

Figure 3.2: Cumulative regrets averaged over 100 runs for ν with 2-dimensional 1-modal means.
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Figure 3.3: Cumulative regrets averaged over 100 runs for ν with 2-dimensional 3-modal means.

Additional details. In the following we provide additional details about experiments summarized in Fig-
ures 3.2 and 3.3.

The parameter of OSUB algorithm is set equal to γOSUB= d, where d=maxa∈A |Va| is the maximal degree of
nodes. The parameter of UTS algorithm is set equal to γUTS=2. These parameters are those recommended in
Combes and Proutiere (2014a) and Trinh et al. (2020).

For all the algorithms, we do not consider initial phase consisting in pulling each arm once. Indeed, we are in-
terested in algorithm that do not necessarily explore all the arms. This is motivated by practical considerations:
since the set of armsA can be large, we focus on algorithms that a priori do not explore all the arms. We show
in Figures 3.4 and 3.5 that IMED-MB indeed concentrate the pulls around the arms with local maximal means.
In both figures we represent the averaged numbers of pulls of sub-optimal arms under IMED-MB algorithm
used to plot the averaged regrets in Figures 3.2 and Figures 3.3. Note that for readability purpose, we removed
the pulls of optimal arms in both Figures.
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Figure 3.4: Number of pulls of sub-optimal arms under IMED-MB used in the unimodal case of Figure 3.2.
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Figure 3.5: Numbers of pulls of sub-optimal arms under IMED-MB used in the 3-modal case of Figure 3.3.
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Chapter 4

Graph-Structured Bandits

We consider a structured variant of the multi-armed bandit problem when the difference of means between any
pair of arms is constrained not to exceed some value. This graph structure is introduced to encompass as special
cases the classical structures Unimodal and Lipschitz. We derive the asymptotic lower bound on the cumulative
regret for this structure, and introduce IMED-GS an extension of the popular Indexed Minimum Empirical
Divergence (IMED) algorithm to such structured configurations. In order to show asymptotic optimality in
a graph-structured scenario, we further add a tracking step to the IMED approach whose aim is to ensure
the sub-optimal arms are played with correct asymptotic frequencies. Interestingly, this tracking step that
requires solving an optimization problem is only triggered when the IMED index suggests exploration, which
provably happens no more than O(log(T )) times within T rounds. We further carefully handle the rounds
when the structure cannot be exploited due to large uncertainty (e.g. initial rounds), by combining structured
and unstructured versions of IMED. Our analysis enables an explicit finite-time regret bound emphasizing the
role of the second-order terms. Last, we illustrate the benefit of IMED-GS over alternative structured bandit
algorithms on numerical experiments.

4.1 Introduction
For a given closed set of relationship matrices Θ⊂ [−1, 1]A2 we introduce

DΘ :=

{
ν ∈ B : ∃θ∈Θ, ∀a, a′∈A, µa−µa′ ⩽θa,a′

}
, (4.1)

whereB is the set of Bernoulli distributions with means in (0, 1). We call this a graph structure, as it constraints
pairs of means. We further impose a pseudo-metric property on each matrix θ ∈ Θ.

Remark 7. DΘ may be denoted D when there is no possible confusion.

Assumption 4 (Pseudo-metric). For all θ ∈Θ, for all arms a, a′, a′′∈A, one has θa,a= 0 (definiteness) and
θa,a′′ ⩽θa,a′+θa′,a′′ (triangular inequality).

This formulation is flexible enough to capture as special cases popular structures such as Unimodal, Lipschitz
or Aggregate of bandits (see details in Section A.1), which makes it appealing to study. Note that it can also
naturally interpolates between a fully structured and fully unstructured case.

Remark 8. Assumption 4 does not require θa,a′ to be non-negative for a, a′∈A.

Remark 9. The notion of Lipschitz bandit we refer to is the one used in Magureanu et al. (2014). When
Θ = {θ} is a singleton and θ is a symmetric relationship matrix, that is θa,a′ = θa′,a for a, a′ ∈ A, we then
recover a generic notion of Lipschitz structure as a particular case of graph structure. However, the Unimodal
structure, for example, cannot be described with Lipschitz properties but still remains a particular case of
graph structure (see details in Section A.1).
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Goal. First, we target the design of a single algorithm able to achieve, for any given graph structure, instance-
dependent asymptotic optimality against any instance. We also want this algorithm to be computationally
efficient, in the sense it avoids computing (a version of) CD(µ) when estimations are ”too noisy”, and only
solves this costly problem provably scarcely. Second, we want to obtain finite-time analysis with explicit
terms using the same generic proof technique for each structure. Last, although our algorithm applies to
other structures, we want it to be competitive against both structure-dependent (like e.g. OSUB, CKL-UCB
respectively for Unimodal and Lipschitz) and generic (like OSSB) state-of-the-art algorithms in practice on
classical structures. We now address these challenges.

4.2 Regret lower bound
In this section, we specify the regret lower bound when assuming a graph structure. To this end, we follow the
classical approach from Lai and Robbins (1985); Graves and Lai (1997). In order to obtain non trivial lower
bound we consider algorithms that are consistent on DΘ (Definition 1). Using this notion, asymptotic regret
lower bounds are proved using change-of-measure argument by considering most confusing bandit configu-
rations. We identify them first introducing, for each sub-optimal arm a /∈A⋆(ν) = argmax

a∈A
µa, the following

distribution-dependent subset of relationship matrices

Θa(ν) :=

{
θ∈Θ⋆(ν) :

(1) ∀a⋆∈A⋆(ν), θa,a⋆>0

(2) ∀a′ /∈A⋆(ν), θa,a′ ⩾0

}
, (4.2)

where Θ⋆(ν)=
{
θ∈Θ: ν∈D{θ}

}
, and then the corresponding set of informative sub-optimal arms

Aa(ν, θ) :={a′∈A : µa′ ⩽µ
⋆−θa,a′} , θ∈Θa(ν) . (4.3)

When “moving” sub-optimal arm a to make it optimal in a most confusing configuration, Aa(ν, θ) represents
the set of sub-optimal arms which must also be “moved” to ensure the “most confusing”1 bandit for sub-
optimal a belongs to the structure Dθ. Establishing lower bounds is also a key component towards building an
efficient algorithm. To avoid technical issues, we make the mild assumption that there exists most confusing
configurations in DΘ for each sub-optimal arm.

Assumption 5. Each sub-optimal arm a /∈A⋆(ν) admits a most confusing instance, that is Θa(ν) ̸=∅.

Proposition 3 (Lower bound on the regret). Let us consider a consistent algorithm. Then, for all configuration
ν∈DΘ with means µ=(µa)a∈A, under Assumptions 4 and 5 it must be that

lim inf
T→∞

R(ν, T )

log(T )
⩾ C

Θ
(µ) := min

η∈RA
+

∑
a∈A

ηa
(
max(µ)− µa

)
s.t. ∀a /∈ argmax(µ),

min
θ∈Θa(ν)

∑
a′∈A

µa′⩽max(µ)−θa,a′

kl
(
µa′|max(µ)−θa,a′

)
ηa′ ⩾1,

(4.4)

where Θa(ν)={θ∈Θ⋆(ν) : ∀a′∈A, θa,a′ ⩾0} denotes the closure of Θa(ν) in Θ, for all a /∈A⋆(ν).

1These notions of “moving” and “most confusing” refer to the generic proof technique used to derive regret lower bounds. It
involves a change-of-measure argument, from the initial configuration in which the arm is sub-optimal to another one chosen to
make it optimal.

H. Saber page 41 2022



The proof of this result uses a change-of-measure argument and follows classical proof techniques from the
literature, see Lai and Robbins (1985); Agrawal et al. (1989); Graves and Lai (1997); Cappé et al. (2013). We
detail it in Section A.2 for completeness. Intuitively, the vector η represents an asymptotic number of pulls of
arms rescaled by log(T ).

Remark 10. CDΘ
(µ) is simply denoted CΘ(µ).

Remark 11. Proposition 3 is a specification to the graph structure of the known lower bounds on the regret
for generic structures. Assumption 5 is satisfied by both Unimodal and Lipschitz structures (Section A.1). By
straightforward calculations, we recover for these structures the regret lower bounds respectively established
in Combes and Proutiere (2014a) and Magureanu et al. (2014). The regret lower bound formulation from
Proposition 3 motivates the shape of the indexes for IMED-GS algorithm (Section 4.3.1).

4.3 Optimal algorithm for graph-structured bandits
In this section, we introduce our main algorithm IMED-GS to handle graph-structured bandits. It is primarily
based on an IMED-type approach (see Honda and Takemura (2015)). IMED has been introduced for the
case of unstructured bandit configurations but is interesting for two reasons. First, it has been shown to
be asymptotically optimal, in the sense of matching the asymptotic (unstructured) instance-dependent lower
bounds like KLUCB or Thompson-sampling algorithms. Then, its index is directly derived from the analysis of
the lower bound, that does not requires an optimization procedure. For this reason, it constitutes an interesting
basis in order to build regret efficient algorithms for structured configurations. When extended to the structured
case, the IMED approach naturally targets satisfying the constraints of the optimization problem (which is
sometimes called Pareto-optimality), but not solving the optimization problem, which offers an interesting
advantage for the practitioner. In order to go beyond Pareto-optimality, IMED-GS employs a weak form
of (data dependent) forcing mechanisms called tracking, in which a solution to the constrained optimization
problem is computed only when Pareto-optimality is already ensured. Also, in initial rounds when the structure
is ”hidden” by the large uncertainty about the distributions, IMED-GS effectively reduces to the unstructured
IMED. These innovations yield provable optimality for any graph-structure at the price of a slight but controlled
increase in exploration.
One idea behind IMED-GS algorithm is, following the intuition given by the lower bound, to define structured
IMED-type indexes, which requires being able to estimate Θa(ν) for sub-optimal arms a /∈A⋆(ν) and Θ⋆(ν),
where ν is unknown. The following assumptions provide a convenient setting to do so and capture Unimodal
and Lipschitz structures. Assumption 6 implies in particular that either Θ⋆(ν) = Θ, or Θ⋆(ν) can be well-
estimated when the best arm is well-identified.

Assumption 6 (Arm-supported structure). Θ is either a singleton or the structure is supported by the best
arm, that is Θ=∪a∈A

{
θ(a)
}

and for a∈A, ν∈D{θ(a)} ⇔ a=a⋆.

In the following Section 4.3.1, we introduce and detail the IMED-GS algorithm. It is summarized in Algo-
rithm 9 (all ties are broken arbitrarily). We discuss its optimality properties in Section 4.3.2.
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Algorithm 9 IMED-GS
Input: Structure Θ, sequences (γt)t⩾1, positive constant Γ, ξ, integer d.
Pull each arm once
for t = |A| . . . T − 1 do

Compute structured IMED choice at ∈ argmin
a∈A

I
(d)

a (t) (Eq. 4.9)

if at ∈ Â⋆(t) then ▷ Exploitation
Pull at+1 = at

else ▷ Exploration
Compute nopt(t) to form N opt(t), and compute Aat(t).
Compute aopt

t ∈ argmax
a∈Aat (t)

N opt
a (t)−Na(t) and at ∈ argmin

a∈A
Ia(t) (Eq. 4.13)

if at == aopt
t then ▷ Reliable opt.

Pull at+1 = aopt
t (Eq. 4.13)

else ▷ Unreliable opt.

if I(d)at (t) ⩽ Γ · Iȧt(t) then
Pull at+1 = at (Eq. 4.9)

else
Pull at+1 = ȧt (Eq. 4.6)

end for

Unstructured IMED. For convenience, we introduce for ξ⩾0, the function

fξ : x ⩾ 1 7→ log(x) + ξ log(1 ∨ log(x)) ⩾ 0 . (4.5)

We note that fξ is an increasing continuous function on [1 ,+∞[. Using this notation, we redefine in this
chapter the IMED indexes for unstructured bandits: for each a∈A, for t⩾1.

(Unstructured IMED)

Ia(t) = Na(t) kl(µ̂a(t) |µ̂⋆(t)) + fξ(Na(t)) .
(4.6)

Remark 12. The classical IMED indexes from Honda and Takemura (2015) are defined using ξ = 0. We
introduce this minor extension to simplify the analysis of IMED-GS detailed in Section 4.5. In particular, later
defining the structured index Ia(t) in (4.9), the following straightforward property occurs:

∀t ⩾ |A| , ∀a ∈ A, fξ(Na(t))≤ Ia(t) ⩽ Ia(t) . (4.7)

4.3.1 IMED-GS algorithm

At time t, we denote µ̂⋆(t) = max
a∈A

µ̂a(t) the current (empirical) best mean, â⋆t ∈ Â⋆(t) = argmax
a∈A

µ̂a(t) the

current set of optimal arms and finally θ̂⋆(t)=θ if Θ={θ}, θ(â⋆t ) otherwise.

Remark 13. The definition of θ̂⋆(t), for t⩾ 1, is inspired from Assumption 6, which is satisfied for the Uni-
modal, Lipschitz structures and the Aggregate of bandits (defined in Section A.1).

We then define the current set of arms informative about arm a /∈Â⋆(t) as

Âa(t) :=
{
a′ /∈Â⋆(t) : µ̂a′(t)⩽ µ̂

⋆(t)−θ̂⋆a,a′(t)
}
. (4.8)
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In the initial rounds, not all informative arms are considered to compute the index. More precisely, (only)
when it holds that

∣∣∣Âa(t)
∣∣∣>d+1 and

∑
a′∈Âa(t)

2(µ̂⋆(t)−µ̂a′(t))
2Na′(t)<Φ(2|Âa(t)|+1), for a /∈Â⋆(t), where

d∈{1, . . . , |A|} is a parameter and Φ(x)=x log(x), we replace Âa(t) with the set Â(d)
a (t) ⊂ Âa(t) consisting

of {a} plus the d-th most pulled arms from Âa(t) \ {a}. It is justified by the fact that in the beginning, no
structure can reasonably be exploited due to the poor estimates. We note that a∈ Âa(t) since θ̂⋆a,a(t)= 0, for
all current sub-optimal arm a /∈Â⋆(t).

Graph-structured index. We are now ready to detail IMED-GS algorithm. Guided by the lower bound
established in Proposition 3 we generalize in (4.9) the IMED index from Honda and Takemura (2011) to take
into account the graph structure as follows. For convenience, we consider Ââ⋆(t) = Â(d)

â⋆ (t) = {â⋆} for all
current optimal arm â⋆∈Â⋆(t). Then, for all arm a∈A and for all time step t⩾ |A|, we define

Ia(t) :=
∑

a′∈Âa(t)

Na′(t) kl(µ̂a′(t)
∣∣∣µ̂⋆(t)−θ̂⋆a,a′(t)

)

+ log

( ∑
a′∈Âa(t)

Na′(t)

)
,

(4.9)

and its reduced version I
(d)

a (t) defined using Â(d)
a (t) in lieu of Âa(t) (this coincides with Ia(t) when the

condition for using Â(d)
a (t) does not hold). Note that

∀â⋆ ∈ Â⋆(t), I â⋆(t) = I
(d)

â⋆ (t) = fξ(Nâ⋆(t)) .

This generalized index can be seen as a transportation cost for “moving” a sub-optimal arm to an optimal one,
plus an exploration term (the term fξ(·)). When a current optimal arm is considered, the transportation cost is
null and only the exploration part remains. Then, the most informative arm at time step t⩾ |A| is defined as

at ∈ argmin
a∈A

I
(d)

a (t) . (4.10)

Pulling this arm intuitively ensures the constrains in the optimization problem of the regret lower bound are
asymptotically satisfied (Pareto optimality). In order to reach optimality, we need to ensure we pull arms in
a way that asymptotically matches CΘ(µ). In order to avoid repeatedly solving such an optimization problem
too often, we now detail an innovative approach that may look rather intricate at first sight, but is carefully
designed to avoid unnecessary computations. It is based on an interplay between exploration/exploitation
phases and reliability tests that we explain precisely below.

Exploitation. In case the most informative arm is currently optimal, that is at∈Â⋆(t), we exploit, that is the
algorithm simply pulls this arm: at+1=at. We show later that this happens asymptotically often, as the other
case detailed below is only triggered about O(log(T )) times out of T steps.

Exploration. In the other cases, we explore by trading off low regret and information gathering. To this end,
we introduce the pseudo-counts

(
N opt

a (t)
)
a∈A

=
(
nopt
a (t)Iat(t)

)
a∈A

, where nopt(t) is a solution of CΘ(µ̂(t)),
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the empirical version of (4.4), that is

nopt(t) ∈ argmin
n∈RA

+

∑
a/∈Â⋆(t)̂

∆a(t)na

s.t. ∀a /∈Â⋆(t),∑
a′∈Âa(t)

kl
(
µ̂a′(t)

∣∣∣µ̂⋆(t)−θ̂⋆a,a′(t)
)
na′ ⩾1 .

(4.11)

Note that the pseudo-counts rescale these proportions using Iat(t) and not log(t). Iat(t) behaves asymptot-
ically as log(t) but is less conservative and more natural in finite-time. We then track the current optimal
numbers of pulls by computing

aopt
t ∈ argmax

a′∈Âat (t)

N opt
a′ (t)−Na′(t) . (4.12)

Solving (4.11) is intuitively only useful asymptotically, provided that the set of informative arms are well-
estimated. In order to have meaningful current subsets of informative arms when computing current optimiza-
tion problem (4.11), for all time step t⩾ |A|, for all current sub-optimal arm a′ ̸∈ Â⋆(t) we introduce the index

Ia′(t) :=

fξ
(
Na

opt
t
(t)
)

if a′=aopt
t

Na′(t)·2γ2t (∆̂a′(t))
2+fξ(Na′(t)) if a′ ̸=aopt

t ,
(4.13)

where ∆̂a′(t) = µ̂⋆(t) − µ̂a′(t) and (γt)t⩾1 is a decreasing sequence such that 0< γt < γ1 for all t⩾ 1, with
γ1 :=1/(7 ∨

√
Φ(2|A|+ 1), where Φ(x)=x log(x). We further compute

at ∈ argmin
a′ /∈Â⋆(t)

Ia′(t) . (4.14)

This trades-off between estimating the graph structure and achieving low regret. However, rather than directly
pulling this arm, we use it as a test. Indeed, pulling this arm only makes sense when the structure is already
well estimated.

Reliability test of current optimization problem. If at = aopt
t , we consider the set of informative arms

is well estimated hence we pull the current tracked arm at+1 = aopt
t . Otherwise, the current optimization

problem is considered to be unreliable and thus either we explore the current most informative arm at or we
explore disregarding the considered structure. To trade-off between this two options, we compare I

(d)

at (t) to

the minimum index of an unstructured bandit. Let Γ > 1. If I
(d)

at (t) ⩽ Γ · Iȧt(t), we explore the current
most informative arm, that is we choose at+1 = at. Otherwise, we explore according to IMED indexes for
unstructured bandit, that is we choose

at+1 = ȧt ∈ argmin
a∈A

Ia(t) . (4.15)

Comment. When γt is set equal to zero, pulling arm aopt
t then corresponds to pulling the least pulled cur-

rent sub-optimal arm in exploration phases, which would a priori lead to a non-optimal asymptotic behavior.
Now when γt is set close to 1, pulling arm aopt

t would asymptotically yields a numbers of pulls of current
sub-optimal arms larger than O(fξ(Na

opt
t
(t))) = O(fξ(fξ(t))), which seems insufficient to properly estimate

the current optimization problem. The sequence (γt)t⩾1 is introduced in order to manage all the situations
between these two borderline cases. Now Γ trades-off between gathering information about the structure and
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reliability perspectives. When the structure is not informative, that is when Ia(t) = Ia(t) for all a ∈ A, the
ratio Iat(t)/Iȧt(t) is all equal to 1. A ratio greater than 1 for some current sub-optimal arm means that we
gather information about its interactions with other current sub-optimal arms (from a structure perspective)
at the price of a poorer estimation of its means. Reliable current means ensures reliable current optimization
problems. Lastly, the re-scaling of nopt(t), solution of CΘ(µ̂(t)), by the index Iat(t) and not log(t) results

in better performance in practice since Iat(t)⩽ fξ

(
max
a∈A

Na(t)

)
is upper bounded by the counts (Na(t))a∈A

rather than current time step t⩾1.

4.3.2 Asymptotic optimality of IMED-GS
In this section, we state the main theoretical result of this chapter about the instance-dependent regret bound
of our algorithm for graph-structured bandits. To state this result, we first introduce a few technical notations
and consider some technical assumptions detailed in Section 4.5.1. We define for the bandit configuration
ν, its minimal optimality gap as ∆min = min

a/∈A⋆(ν)
∆a. Let us also denote Σ∆−1 =

∑
a/∈A⋆(ν)

∆−1
a . With regard to

Assumption 6 and 8, we introduce for convenience the quantity εν =
δmin

4
∧(1−µ⋆), where δmin=∆min if Θ is a

singleton, and δmin = min
a̸=a′
{∆min, θ

⋆
a,a′−(µa−µa′)} otherwise. In particular, these problem-dependent quantities

are away from 0. We further introduce ∀a ∈ A,∀t ⩾ 1, the quantity εa(t) =
3

2
· γt
1− γt

· ∆a, and note that

εa(t) < ∆a/4 provided that γt<1/7. Last, we recall that γ1=1/(7 ∨
√

Φ(2|A|+1)), where Φ(x)=x log(x).
Our main result is a precise finite-time bound on the regret of IMED-GS, in which we meticulously fill out the
details, highlighting the first-order, second-order and constant terms.

Theorem 3 (Regret upper bound). Let us consider a configuration ν ∈DΘ with means µ=(µa)a∈A∈ (0, 1)A.
Under Assumptions 4-5-7-6-8-9, for all positive decreasing sequence (γt)t⩾1<γ1, for all Γ⩾ 1, for all ξ > 1,
for all d⩾0, for all accuracy 0<ε<εν , for all time horizon T ⩾ |A|,

R(ν, T ) ⩽ (A) + (B) + Cξ,d,ε , with

(A)= inf
τ∈[1,T ]

(
λτ (µ, ε)·CΘ

(
µ(ε, τ)

)
·fξ(T )+

∑
a∈A

∆a · τ
)

(B)=

∑
a/∈A⋆

∆−1
a Γγ−2

T

2(µ⋆−ε)(1−µ⋆−ε)

[
fξ
(
98Σ∆−1

δmin
fξ(T )+1

)
+fξ(Cξ,d,ε)+1

]
,

where for the first term (A), we have introduced ∀t ⩾ 1, µ(ε, t) = (µa(ε, t))a∈A with

µa(ε, t) =

{
µa + ε+ εa(t) , if a /∈ A⋆

µa − ε , if a ∈ A⋆

and λt(µ, ε) = max
a/∈A⋆

(
∆a+2ε+εa(t)

∆a′−2ε−εa(t)

)2

.

Furthermore, (λt(µ, ε))t⩾1 and
(
C

Θ

(
µ(ε, t)

))
t⩾1

are non-increasing sequences such that for t⩾1,

1⩽λt(µ, ε)⩽49 C
Θ
(µ)⩽C

Θ

(
µ(ε, t)

)
⩽2Σ∆−1

and, provided that lim
t→∞

γt=0,

lim
ε→0

lim
t→∞

λt(µ, ε)=1 lim
ε→0

lim
t→∞

C
Θ

(
µ(ε, t)

)
=C

Θ
(µ) .

Finally, the term Cξ,d,ε = O(ε−2) does not depend on T and is made explicit in Section 4.6.4.
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Asymptotically when T → ∞, provided that lim
t→∞

γt = 0, the first term is the leading term, and scales with

C
Θ
(µ) log(T ). Indeed, the infimum involved in the regret bound is bounded above by C

Θ
(µ) log(T )+o(log(T ))

when τ=
√

log(T ) for instance. Note that besides the fact the terms λτ (µ, ε) and CΘ(µ(ε, τ)) before fξ(T ) are
asymptotically optimal, these terms are decreasing and provably upper-bounded. The second term scales with
O(Γγ−2

T loglog(T )), and the third one is a constant. Further, ε can be chosen such that ε = o(log(T )−1/2) in
order to obtain an asymptotically optimal bound on the regret that only depends on horizon T , parameters ξ, d,
Γ and (γt)t⩾1 of IMED-GS and the intrisinc characteristics of the considered structured bandit. In particular,

we deduce the asymptotic optimality of IMED-GS, provided that lim
t→∞

γt

√
log(t)

log log(t)
=∞.

Corollary 3 (Asymptotic optimality). Let us consider a set of Bernoulli distributions ν ∈ DΘ. Then under

IMED-GS algorithm, for (γt)t⩾1 such that lim
t→∞

γt = 0 and lim
t→∞

γt

√
log(t)

log log(t)
=∞, it holds

lim sup
T→∞

R(ν, T )

log(T )
⩽ C

Θ
(µ) .

Discussion. Let us remark that Theorem 3 is a non-asymptotic result, were all terms are fully explicit (see
Section 4.6 for the precise value of the remaining constant term). This is not very common in structured bandits
and contrasts with regret bounds previously obtained for alternative algorithms in the literature. Further, we
highlight that we only require the parameter ξ to exceed 1 thanks to a refinement of concentration inequalities
that is of independent interest. We detail this result in Theorem 4 (Chapter 5) as we believe it can benefit other
regret analysis. The main innovation is to take into account the fact that for small values of the number of
observations, the regret can be handled with other tools than concentration. Hence, concentration only needs
to be handled after some burn-in phase and not for all time steps. Now, the use of the reduced indexes with
parameter d is interesting as it enables to decrease to value of the constant Cξ,d,ε. Indeed, this enables to
to make appear an exponential dependency in the parameter d instead of an exponential dependency of the
number of arms |A|. In contrast, in Magureanu et al. (2014) the authors required ξ>3 |A| (and so in Degenne
et al. (2020b), as they employ same concentration results): there exists t0⩾1 such that for all t⩾ t0,

Pν

(∑
a∈A

Na(t)kl(µ̂a(t)|µa)⩾ f3|A|+1(t)

)
⩽

1

t log(t)
.

A second point is that our concentration result (Theorem 4) does not directly come from stochastic orderings
alone due to the presence of the random term NA′(t) =

∑
a∈A′ Na(t) for A′ ⊂A. This random term causes

the analysis in Magureanu et al. (2014) to break, hence, we needed to derive a novel analysis to handle this
difficulty. Lastly, some terms, e.g. that Cξ,d,ε, are reminiscent of other analysis, such that appearing in the
optimality bounds for KLUCB or TS (Cappé et al. (2013); Kaufmann et al. (2012)). Indeed these terms are due
to concentration inequalities, hence it is expected that they appear here as well. We tighten their control with
respect to the previous work. Indeed it is sometimes argued that the non-first order terms are large, making the
bound unpractical even for large T . While this phenomenon cannot be completely avoided, we made specific
efforts to control the terms tightly, which is of independent interest.

4.4 Numerical experiments
In this section, we illustrate the performance of IMED-GS algorithm when specialized to Unimodal, Lipschitz
structures and Aggregates of bandits. These examples enable to compare the regret performance of this algo-
rithm to existing state-of-the-art. We detail these structures in Section A.1.
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In all considered bandit configuration, we naturally compare each time IMED-GS to IMED algorithm for
unstructured bandits. We also compare IMED-GS to OSSB algorithm for generic structured bandits. For
Unimodal structure we add specific comparison with OSUB, UTS and IMED-UB that are specialized to this
structure, and for Lipschitz structure we add numerical comparison with CKL-UCB. We further report the
IMED-GS run with setting d= |A|−1 (hence without the downsizing in the burn-in phase), in order to show
that this parameter can be chosen large in practice without hindering much performance (the parameter d=3 is
suggested by theory). Here the parameter Γ is set to |A|1.5 and ξ=1. In each experiment, we considered a time
horizon of T =3000, and results averaged over 300 independent experiments, reporting 10% and 90% quantiles
of the regret on top of its average. The results are reported in Figure 4.1, and show the potential benefit of the
algorithm. The distributions and the structures used for Figure 4.1 are provided below. Additional details and
complementary experiments are provided in Section A.4.

Figure 4.1: Comparison of IMED-GS to other algorithms on several structured bandit instances.

In Figure 4.2 below, we successively represent the vectors of means used for the experiments of Figure 4.1 to
respectively illustrate the Unimodal and Lipschitz structures and the Aggregate of bandits. Note that for the
Lipschitz structure, the vector of means is 0.03-Lipschitz as assumed in the corresponding experiment. For
the Aggregate of bandits, the set of arms is decomposed as A=X ×K and the means µ= (µx,k)x∈X ,k∈K are
represented in lexicographical order, with X = J1 , 6K and K= J1 , 3K. This means we assume an aggregate of
6 bandits with 3 arms each. We set the relationship matrix equal to ωx,x′ =0.07 |x− x′| for x, x′∈X and each
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arm is represented with a specific marker in Figure 4.2. For the Aggregate of Bandits, the first three arms are
the arms of the first bandit, the arms {4, 5, 6} are the arms of the second bandit, and so on.

Figure 4.2: Means used for the experiments of Figure 4.1 to illustrate the Unimodal and Lipschitz structures
and the Aggregate of bandits

4.5 Finite time properties of IMED-GS algorithm
In Section 4.5.1, we state the additional assumptions used in Theorem 3. We prove in Section 4.5.2 algorithm-
based empirical bounds on the numbers of pulls. Then we introduce in Section 4.5.3 several notions of de-
viation of the empirical means and define the subsets of times where these deviations occur before providing
upper bounds on the size of these subsets. Then in Section 4.5.4, we consider subset of times where undesir-
able events occur and establish, using empirical bounds from Section 4.5.2, relations between these subsets
and the subsets of times where the empirical means deviate (subsets previously introduced in Section 4.5.3).
Lastly, in Section 4.5.5 we show that we have nice reliability properties during most of time steps.

4.5.1 Additional assumptions
In this subsection, we state the technical assumptions allowing a simultaneous finite time analysis of the con-
sidered structures under the formalism of the graph structure. All theses assumptions are satisfied the structure
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Unimodal, Lipschitz and Aggregate of Bandits.

First, we assume that the instance ν has a unique optimal arm, which is a folklore assumption.

Assumption 7 (Unique optimal arm). The instance ν has a unique optimal arm a⋆∈A, that is A⋆={a⋆}.

The next assumption is motivated by technical concerns and is only used when Θ is not a singleton. For
Unimodal structure, Assumption 8 is trivially satisfied as it reads (a′′ ∈ Ja′, aK or a′′ ∈ Ja′, aK) is equivalent to
(a′′∈ Ja, a′K or a′′∈ Ja, a′K) and that for all a<a′⩽a⋆ or a⋆⩽a′<a, µa ̸=µa′ . Please refer to Section A.1 for
more details.

Assumption 8 (Symmetry, No adherence). If Θ is not a singleton, then for all a, a′, a′′∈A, θ(a)a′,a′′ = θ
(a′)
a,a′′ .

Assumption 9 (No adherence). For all arms a ̸=a′, µa−µa′ ̸=θ⋆a,a′ .

4.5.2 Algorithm-based empirical bounds
Lemma 6 (Empirical lower bounds). Under IMED-GS, at each step time t⩾ |A|, for all current sub-optimal
arm a /∈Â⋆(t),

fξ
(
Nat+1(t)

)
⩽

∑
a′∈Â(d)

a (t)

Na′(t) kl(µ̂a′(t)
∣∣∣µ̂⋆(t)−θ̂⋆a,a′(t)

)
+ fξ

(
NÂ(d)

a (t)
(t)
)
, (4.16)

and, for all current optimal arm â⋆∈Â⋆(t),

Nat+1(t) ⩽ Nâ⋆(t) . (4.17)

Furthermore, if time step t⩾ |A| corresponds to exploration, that is at /∈ Â⋆(t), for all current sub-optimal
arm a′∈A,

fξ
(
Nat

(t)
)
⩽ Na′(t) k̂a′(t) + fξ(Na′(t)) . (4.18)

Proof. First we note that
Ia(t) ⩽ I

(d)

a (t) , ∀a ∈ A , (4.19)

implies
min
a∈A

Ia(t) ⩽ min
a∈A

I
(d)

a (t) , (4.20)

that is,
Iȧt(t) ⩽ I

(d)

at (t) (4.21)

From Equations (4.9), (4.6), (4.10) and (4.15) defining indexes
(
I
(d)

a (t)
)
a∈A

, (Ia(t))a∈A, at and ȧt, we have

∀a /∈ Â⋆(t),∀a′ ∈ Aa(t), fξ(Na(t)) ⩽ Ia(t) ⩽ I
(d)

a (t)

fξ(Na′(t)) ⩽ I
(d)

a (t)

∀â⋆ ∈ Â⋆(t), fξ(Nâ⋆(t)) = Iâ⋆(t) = I
(d)

â⋆ (t) ,

(4.22)

and

∀a /∈ Â⋆(t), I
(d)

at (t) ⩽ I
(d)

a (t) ⩽
∑

a′∈Â(d)
a (t)

Na′(t) kl(µ̂a′(t)
∣∣∣µ̂⋆(t)−θ̂⋆a,a′(t)

)
+ fξ

(
NÂ(d)

a (t)
(t)
)
,

∀â⋆ ∈ Â⋆(t), I
(d)

at (t) ⩽ I
(d)

â⋆ (t) = fξ(Nâ⋆(t)) .

(4.23)
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Combining Equations (4.21), (4.22) and (4.23) yields

∀a′′ ∈ Aat(t) ∪ {at} ,∀a /∈ Â⋆(t),

fξ(Nȧt(t)) , fξ(Nat(t)) , fξ(Na′′(t)) ⩽
∑

a′∈Â(d)
a (t)

Na′(t) kl(µ̂a′(t)
∣∣∣µ̂⋆(t)−θ̂⋆a,a′(t)

)
+ fξ

(
NÂ(d)

a (t)
(t)
)
,

∀a′′ ∈ Aat(t) ∪ {at} ,∀â⋆ ∈ Â⋆(t),

Nȧt(t), Nat(t), Na′′(t) ⩽ Nâ⋆(t) ,

(4.24)

where, by convention, Aâ⋆(t)=∅ for all â⋆∈Â⋆(t). We note that {at}⊂Âat(t) when at /∈Â⋆(t). In particular,
by considering Equation (4.12) that defines aopt

t , when at /∈Â⋆(t) we have

aopt
t ∈ Aat(t)

and Equation (4.24) then implies

∀a /∈ Â⋆(t),

fξ(Nȧt(t)) , fξ(Nat(t)) , I{at /∈Â⋆(t)}fξ
(
Na

opt
t
(t)
)

⩽
∑

a′∈Â(d)
a (t)

Na′(t) kl(µ̂a′(t)
∣∣∣µ̂⋆(t)−θ̂⋆a,a′(t)

)
+ fξ

(
NÂ(d)

a (t)
(t)
)
,

∀â⋆ ∈ Â⋆(t),

Nȧt(t), Nat(t), I{at /∈Â⋆(t)}Na
opt
t
(t) ⩽ Nâ⋆(t) .

(4.25)

If at /∈Â⋆(t), from Equations (4.13) and (4.14) defining indexes (Ia′(t))a′∈A and at, we have

∀a′ /∈ Â⋆(t), fξ(Na′(t)) ⩽ Ia′(t) , (4.26)

and
∀a′ /∈ Â⋆(t), Iat(t) ⩽ Ia′(t) ⩽ Na′(t) k̂

⋆

a′(t)+ fξ(Na′(t)) . (4.27)

Lemma 7 (Empirical upper bounds). Under IMED-GS, at each step time t⩾ |A| such that at /∈Â⋆(t),

Nȧt(t) ⩽
fξ(t)

kl(µ̂ȧt(t)|µ̂⋆(t))
, (4.28)

Nat(t) ⩽
fξ(t)

kl(µ̂at(t)|µ̂⋆(t))
, (4.29)

Na
opt
t
(t) ⩽ N opt

a
opt
t

(t) , (4.30)

I{at ̸=a
opt
t }Nȧt(t) ⩽

fξ
(
Na

opt
t
(t)
)

(γt)2µ̂⋆(t)(1−µ̂⋆(t)) kl(µ̂ȧt(t)|µ̂⋆(t))
, (4.31)
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I{at ̸=a
opt
t }Nat(t) ⩽

I
(d)

at (t)

Iȧt(t)

fξ
(
Na

opt
t
(t)
)
+ 1

(γt)2µ̂⋆(t)(1−µ̂⋆(t)) kl(µ̂at(t)|µ̂⋆(t))
, (4.32)

Nat
(t) ⩽ max

N opt
at
(t) ,

fξ
(
Na

opt
t
(t)
)

k̂
⋆

at
(t)

 ⩽ N opt
at
(t) + max

a/∈Â⋆(t)

fξ(Na(t))

k̂
⋆

at
(t)

, (4.33)

with the convention 0/0=0 and I/0=∞ for I >0.

Proof. From Equations (4.9), (4.10) and Equations (4.6), (4.15) defining
(
Ia(t)

)
a∈A, at and (Ia(t))a∈A, ȧt, we

have for â⋆∈Â⋆(t),
Nȧt(t) kl(µ̂ȧt(t)|µ̂⋆(t)) ⩽ Iȧt(t) ⩽ Iâ⋆(t) ⩽ fξ(t) (4.34)

and
Nat(t) kl(µ̂at(t)|µ̂⋆(t)) ⩽ I

(d)

at (t) ⩽ I â⋆(t) ⩽ fξ(t) . (4.35)

Thus, we deduce Equations (4.28) and (4.29) from Equations (4.34) and (4.35).

From Equation (4.12) that defines aopt
t , proving Equation (4.30) from Lemma 7 amounts to prove

max
a′∈Aat (t)

N opt
a′ (t)−Na′(t) ⩾ 0 .

Since at /∈Â⋆(t), from Equation (4.11) that defines (nopt
a (t))a∈A as solution of current minimization problem,

we must have ∑
a′∈Aat (t)

kl
(
µ̂a′(t)

∣∣∣µ̂⋆(t)−θ̂⋆at,a′(t)
)
nopt
a′ (t) ⩾ 1 . (4.36)

Since (N opt
a (t))a∈A=

(
nopt
a (t) Iat(t)

)
a∈A, from Equation (4.36) we have∑

a′∈Aat (t)

kl
(
µ̂a′(t)

∣∣∣µ̂⋆(t)−θ̂⋆at,a′(t)
)
N opt

a′ (t) ⩾ Iat(t) . (4.37)

Since at /∈Â⋆(t), from Equation (4.9) that explains Ia(t) we have

Iat(t) ⩾
∑

a′∈Aat (t)

kl
(
µ̂a′(t)

∣∣∣µ̂⋆(t)−θ̂⋆at,a′(t)
)
Na′(t) . (4.38)

By combining Equations (4.37) and (4.38), we get∑
a′∈Aat (t)

kl
(
µ̂a′(t)

∣∣∣µ̂⋆(t)−θ̂⋆at,a′(t)
) (

N opt
a′ (t)−Na′(t)

)
⩾ 0 . (4.39)

Since kl
(̂
µa′(t)

∣∣∣µ̂⋆(t)−θ̂⋆at,a′(t)
)
⩾0 for all a′∈Aat(t), Equation (4.39) implies

max
a′∈Aat (t)

N opt
a′ (t)−Na′(t) ⩾ 0

which ends the proof of Equation (4.30).
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From Lemma 23, we have

(γt)
2µ̂⋆(t)(1−µ̂⋆(t)) kl(µ̂a(t)|µ̂⋆(t)) ⩽ k̂a(t) , ∀a ∈ A . (4.40)

From previous Equation (4.40) and Equations (4.13) and (4.6) defining (Ia(t))a∈A and (Ia(t))a∈A we have

(γt)
2µ̂⋆(t)(1−µ̂⋆(t)) Ia′(t) ⩽ Ia′(t) , ∀a′ ̸= aopt

t . (4.41)

Since Iȧt(t)=min
a∈A

Ia(t), previous Equation (4.41) implies

(γt)
2µ̂⋆(t)(1−µ̂⋆(t)) Iȧt(t) ⩽ min

a′ ̸=a
opt
t

Ia′(t) . (4.42)

Since Iat(t)=min
a′∈A

Ia′(t), previous Equation (4.42) implies

I{at ̸=a
opt
t }(γt)

2µ̂⋆(t)(1−µ̂⋆(t)) Iȧt(t) ⩽ I{at ̸=a
opt
t }Iat(t) ⩽ Iaopt

t
(t) = fξ

(
Na

opt
t
(t)
)
. (4.43)

Combining Equation (4.34) and (4.43), we get

I{at ̸=a
opt
t }(γt)

2µ̂⋆(t)(1−µ̂⋆(t))Nȧt(t) kl(µ̂ȧt(t)|µ̂⋆(t)) ⩽ fξ
(
Na

opt
t
(t)
)
. (4.44)

We deduce Equation (4.31) from previous Equation (4.44).

We note that

I
(d)

at (t) ⩽ I{Iȧt (t)̸=0}
I
(d)

at (t)

Iȧt(t)
Iȧt(t) + I{Iȧt (t)=0}I

(d)

at (t) . (4.45)

Combining previous Equation (4.45) and Equations (4.35), (4.43), we get

I{at ̸=a
opt
t }(γt)

2µ̂⋆(t)(1−µ̂⋆(t))Nat(t) kl(µ̂at(t)|µ̂⋆(t)) ⩽
I
(d)

at (t)

Iȧt(t)

(
fξ
(
Na

opt
t
(t)
)
+ 1
)
. (4.46)

We deduce Equation (4.32) from previous Equation (4.46).

4.5.3 Non-reliable current means
For all arms a, a′∈A and for all accuracy ε > 0, let E+a,a′(ε) be the set of times where the current mean of arm
a ε-deviates from above while arm a has more pulls than the current pulled arm a′,

E+a,a′(ε) := {t ⩾ 1 : at+1 = a′, Na′(t) ⩽ Na(t), µ̂a(t) ⩾ µa + ε} . (4.47)

We similarly define

E−a,a′(ε) := {t ⩾ 1 : at+1 = a′, Na′(t) ⩽ Na(t), µ̂a(t) ⩽ µa − ε} . (4.48)

We also define
Ea,a′(ε) = E+a,a′(ε) ∪ E

−
a,a′(ε) . (4.49)
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Definition 2 (kl-fξ deviation). For ε>0, the couple of arms (a, a′)∈A2 shows ε+-kl-fξ deviation at time step
t⩾1 if the following conditions are satisfied,

(1) at+1 = a′

(2) µ̂a(t) ⩾ µa + ε

(3) fξ(Na′(t)) ⩽ Na(t) kl(1−µ̂a(t)|1−µa−ε) + fξ(Na(t)) .

For ε>0, the couple of arms (a, a′)∈A2 shows ε−-kl-fξ deviation at time step t⩾1 if the following conditions
are satisfied,

(1) at+1 = a′

(2) µ̂a(t) ⩽ µa − ε
(3) fξ(Na′(t)) ⩽ Na(t) kl(µ̂a(t)|µa−ε) + fξ(Na(t)) .

For all couple of arms (a, a′)∈A2 and for all accuracy ε > 0, let K+
a,a′(ε) be the set of times where couple of

arms (a, a′) shows ε+-kl-fξ deviation, that is

K+
a,a′(ε) :=

t ⩾ 1 :

(1) at+1 = a′

(2) µ̂a(t) ⩾ µa + ε

(3) fξ(Na′(t)) ⩽ Na(t) kl(1−µ̂a(t)|1−µa−ε) + fξ(Na(t))

 . (4.50)

For all couple of arms (a, a′)∈A2 and for all accuracy ε > 0, let K−
a,a′(ε) be the set of times where couple of

arms (a, a′) shows ε−-kl-fξ deviation, that is

K−
a,a′(ε) :=

t ⩾ 1 :

(1) at+1 = a′

(2) µ̂a(t) ⩽ µa − ε
(3) fξ(Na′(t)) ⩽ Na(t) kl(µ̂a(t)|µa−ε) + fξ(Na(t))

 . (4.51)

We note that,
E+a,a′(ε) ⊂ K

+
a,a′(ε) E−a,a′(ε) ⊂ K

−
a,a′(ε) .

We also define
Ka,a′(ε) = K+

a,a′(ε) ∪ K
−
a,a′(ε) . (4.52)

Finally, for accuracy ε>0, we denote by

K⋆(ε) :=


t⩾1 :

(1) µ̂a(t) ⩽ µa − ε, ∀a ∈ Âa⋆(t)

(2) 1 ⩽ NÂa⋆ (t)
(t) ⩽

∣∣∣Âa⋆(t)
∣∣∣ fξ(Nat+1(t)

)
/2ε2

(3)
∑

a∈Âa⋆ (t)

Na(t) kl(µ̂a(t)|µa−ε)

⩾ I{|Âa⋆ (t)|>d+1}Φ
(
2
∣∣∣Âa⋆(t)

∣∣∣+1
)
) ∨
(

fξ
(
Nat+1(t)

)
− fξ

(
NÂa⋆ (t)

(t)
))

+ I{|Âa⋆ (t)|⩽d+1}(d+ 1) ∨
(

fξ
(
Nat+1(t)

)
− fξ

(
NÂa⋆ (t)

(t)
))


(4.53)

K⋆
a′,A′(ε) =

{
t ∈ K⋆(ε) : at+1 = a′, Âa⋆(t) = A′

}
, a′ ∈ A, A′ ⊂ A (4.54)

and

L(d)(ε)=
⋃
a∈A

L(d)
a (ε) L(d)

a (ε)=

t ⩾ 1 :

(1) µ̂a(t) ⩽ µa − ε

(2) Na(t) ⩾
fξ
(
Nat+1(t)

)
2ε2

∧
e−d−1Nat+1(t)

d+ 1

 (4.55)
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Lemma 8 (Bounded subsets of times). For ε>0, for (a, a′)∈A2,

Eν

[∣∣E+a,a′(ε)∣∣] , Eν

[∣∣E−a,a′(ε)∣∣] ⩽ e2ε
2

2ε2
(4.56)

Eν

[∣∣L(d)(ε)
∣∣] ⩽ |A| (d+ 1)ed+1

2ε2

(
fξ

(
(d+ 1)ed+1

2ε2

))2

+
∑
n⩾3

|A|2

n (log(n))ξ
(4.57)

Eν

[∣∣K+
a,a′(ε)

∣∣] , Eν

[∣∣K−
a,a′(ε)

∣∣] ⩽ Kξ,1 +
∑
n⩾3

1

n (log(n))ξ
(4.58)

Eν [|K⋆(ε)|] ⩽ K⋆
ξ , (4.59)

where for ξ>1,

K⋆
ξ = |A|

(
e2∨ |A|

2ε2

)(
fξ

(
e2∨ |A|

2ε2

))2

+
∑
n⩾3

∑
A′⊂A

e|A
′|+2

|A′||A′| log(n)
|A′|+1

[
Φ(2 |A′|+1)∨fξ(n)+2ε2N

]|A′|+1
e−[Φ(2|A′|+1)∨fξ(n)+2ε2N]

+
∑
n⩾3

∑
A′⊂A

|A′|⩽d+1

e|A
′|+2

|A′||A′| log(n)
|A′|+1

[
(d+ 1) ∨ fξ(n) + 2ε2N

]|A′|+1
e−[(d+1)∨fξ(n)+2ε2N] ,

Kξ,1 =

(
e2∨ |A|

2ε2

)(
fξ

(
e2∨ |A|

2ε2

))2

+
∑
n⩾3

e3 log(n)3
[
fξ(n) + 2ε2N

]3
e−[fξ(n)+2ε2N] ,

in which we introduce N=1∨ fξ(n)
1−log(1−maxa∈A′ µa)

.

Proof. We start by proving Eν

[∣∣E−a,a′(ε)∣∣]⩽e2ε2/2ε2. The proof that Eν

[∣∣E+a,a′(ε)∣∣]⩽e2ε2/2ε2 is similar.

We write ∣∣E−a,a′(ε)∣∣ =∑
t⩾1

I{at+1=a′,Na′ (t)⩽Na(t), µa−µ̂a(t)⩾ε} . (4.60)

Considering the stopped stopping times τn = inf {t⩾1, Na′(t)=n} we will rewrite the previous sum of indi-
cators and use Lemma 32. ∣∣E+a,a′(ε)∣∣ ⩽

∑
t⩾1

I{at+1=a′, Na′ (t)⩽Na(t), µa−µ̂a(t)⩾ε} (4.61)

⩽
∑
n⩾1

I{n−1⩽Na(τn−1), µa−µ̂a(τn−1)⩾ε}

⩽ 1 +
∑
n⩾2

I{n−1⩽Na(τn−1), µa−µ̂a(τn−1)⩾ε} .

Taking the expectation of Equation (4.61), it comes

Eν

[∣∣E+a,a′(ε)∣∣] ⩽ 1 +
∑
n⩾1

Pν


⋃
t⩾|A|

µ̂a(t)<µa

Na(t)⩾n

µa − µ̂a(t) ⩾ ε

 . (4.62)
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By Pinsker’s inequality, previous Equation (4.62) implies

Eν

[∣∣E+a,a′(ε)∣∣] ⩽ 1 +
∑
n⩾1

Pν


⋃
t⩾|A|

µ̂a(t)<µa

Na(t)⩾n

kl(µ̂a(t)|µa) ⩾ 2ε2

 . (4.63)

From Lemma 32, previous Equation (4.63) implies

Eν

[∣∣E+a,a′(ε)∣∣] ⩽∑
n⩾0

exp
(
−2nε2

)
=

1

1− e−2ε2
. (4.64)

Finally we note that
1

1− e−2ε2
=

e2ε
2

e2ε2 − 1
⩽
e2ε

2

2ε2
,

which ends the proof.

We then prove Equation (4.57). By using in particular Pinsker’s inequality, we have

∣∣L(d)(ε)
∣∣ ⩽

∣∣∣∣∣
{
t ⩾ 1 : Nat+1(t) <

(d+ 1)ed+1

2ε2

(
fξ

(
(d+ 1)ed+1

2ε2

))2
}∣∣∣∣∣

+
∑
a∈A

∣∣{t ⩾ 1 : Na(t) ⩾ fξ
(
Nat+1(t)

)
/2ε2, µ̂a(t) < µa, kl

(
µ̂a(t)

∣∣µa

)
⩾ 2ε2

}∣∣
⩽ |A| (d+ 1)ed+1

2ε2

(
fξ

(
(d+ 1)ed+1

2ε2

))2

+
∑
a∈A

|A|
∑
n⩾3

∣∣{t ⩾ 1 : Na(t) ⩾ fξ(n)/2ε2, µ̂a(t) < µa, kl
(
µ̂a(t)

∣∣µa

)
⩾ 2ε2

}∣∣ .
By taking the expectation on both sides of previous inequality, it comes

Eν

[∣∣L(d)(ε)
∣∣] ⩽ |A| (d+ 1)ed+1

2ε2

(
fξ

(
(d+ 1)ed+1

2ε2

))2

(4.65)

+
∑
a∈A

|A|
∑
n⩾3

Pν


⋃
t⩾1

µ̂a(t)<µa

Na(t)⩾fξ(n)/2ε2

kl
(
µ̂a(t)

∣∣µa

)
⩾ 2ε2

 .

From Lemma 32, previous Equation (4.65) implies

Eν

[∣∣L(d)(ε)
∣∣] ⩽ |A| (d+ 1)ed+1

2ε2

(
fξ

(
(d+ 1)ed+1

2ε2

))2

(4.66)

+
∑
a∈A

|A|
∑
n⩾3

e−fξ(n) ,

which ends the proof.
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We now prove Equation (4.59). The remaining inequalities are proven similarly. We simply note that

|K⋆(ε)|
⩽

∑
a′∈A
A′⊂A

∣∣K⋆
a′,A′(ε)

∣∣
⩽

∑
a′∈A

nξ,A,ε

+
∑
a′∈A
A′⊂A

n⩾nξ,A,ε

∣∣∣∣∣∣∣∣∣

t⩾1 :

µ̂a(t) < µa − ε, ∀a ∈ A′

1 ⩽ NA′(t) ⩽ |A′| fξ(n)/2ε2∑
a∈A′

Na(t)kl(µ̂a(t)|µa−ε)⩾Φ(2 |A′|+1)∨(fξ(n)−fξ(NA′(t)))


∣∣∣∣∣∣∣∣∣

+
∑
a′∈A

A′⊂A,|A′|⩽d+1
n⩾nξ,A,ε

∣∣∣∣∣∣∣∣∣

t⩾1 :

µ̂a(t) < µa − ε, ∀a ∈ A′

1 ⩽ NA′(t) ⩽ |A′| fξ(n)/2ε2∑
a∈A′

Na(t)kl(µ̂a(t)|µa−ε)⩾(d+ 1)∨(fξ(n)−fξ(NA′(t)))


∣∣∣∣∣∣∣∣∣ ,

where nξ,A,ε=
(
e2∨ |A|

2ε2

)(
fξ
(
e2∨ |A|

2ε2

))2
. The proof ends by taking the expectation on both sides of previous

inequality and by applying Theorem 4.

4.5.4 Non-reliable current best arm and current informative sets of arms
For accuracy ε > 0, letM⋆(ε) be the set of times t⩾ 1 that do not belong to ∪â⋆∈Â⋆(t)E

+
â⋆,at+1

(ε) and where
some of the current best arms do not belong to A⋆,

M⋆(ε) :=

t ⩾ 1 :

(1) t /∈
⋃

â⋆∈Â⋆(t)

E+â⋆,at+1
(ε)

(2) Â⋆(t) ̸= {a⋆}

 . (4.67)

For accuracy ε> 0, letM(ε) be the set of times t⩾ 1 during exploration phases where the current means of
current informative arms are not well ε-estimated,

M(ε) :=

{
t ⩾ 1 :

(1) at /∈ Â⋆(t), at+1 = at = aopt
t

(2) ∃a′ /∈Â⋆(t), |µ̂a′(t)−µa′ |⩾ε+ ε̂⋆a′(t)

}
. (4.68)

Lemma 9 (Relation between subsets of times). For accuracy 0<ε<ε0 := δmin/3,

M⋆(ε) ⊂ K⋆(ε0) ∪ L(d)(ε0) , (4.69)

M(ε) ⊂
⋃

a∈A, t⩾1

Ka,at+1(ε) . (4.70)

Proof. We start by proving Equation (4.69).

Let us consider t∈M⋆(ε). Then there exists â⋆∈Â⋆(t)\{a⋆} and

µ̂â⋆(t) = µ̂⋆(t) ⩾ µ̂a⋆(t) . (4.71)
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Since t∈M⋆(ε), t /∈E+â⋆,at+1
(ε). By considering empirical lower bounds (4.17) and Equation (4.47), we have

µâ⋆ + ε ⩾ µ̂â⋆(t) . (4.72)

By combining Equations (4.71) and (4.72), it comes

µâ⋆ + ε ⩾ µ̂a⋆(t) . (4.73)

Since â⋆ /∈A⋆, ε<ε0⩽∆â⋆/2 and
µ⋆ − ε0 > µâ⋆ + ε ⩾ µ̂â⋆(t) . (4.74)

Then Equation (4.73) implies
µa⋆ − ε0 > µ̂a⋆(t) . (4.75)

Since t∈M⋆(ε), t /∈∪â⋆∈Â⋆(t)E
+
â⋆,at+1

(ε). By considering empirical lower bounds (4.17) and Equation (4.47),
Equation (4.75) implies

a⋆ /∈ Â⋆(t) . (4.76)

Let us then consider a∈Âa⋆(t). From Equation (4.8), this means

µ̂a(t) ⩽ µ̂⋆(t)− θ̂⋆a⋆,a . (4.77)

= µ̂â⋆(t)− θ(â
⋆)

a⋆,a

From Assumption 8, previous Equation (4.77) implies

µ̂a(t) ⩽ µ̂â⋆(t)− θ(a
⋆)

â⋆,a = µ̂â⋆(t)− θ⋆â⋆,a (4.78)

By combining Equations (4.73) and (4.78), it comes

µ̂a(t) ⩽ µ̂⋆(t)− θ̂⋆a⋆,a < µâ⋆ − θ⋆â⋆,a + ε . (4.79)

From Equation (4.1) and Assumption 8, we have

µâ⋆ − θ⋆â,a ⩽ µa − 2ε0 . (4.80)

By combining Equations (4.79) and (4.80), we show that

µ̂a(t) ⩽ µ̂⋆(t)− θ̂⋆a⋆,a ⩽ µa − ε0, ∀a ∈ Âa⋆(t) ⊃ Â(d)
a⋆ (t) . (4.81)

Since a⋆ /∈Â⋆(t), from empirical lower bounds (4.16) we have

fξ
(
Nat+1(t)

)
⩽

∑
a∈Â(d)

a⋆
(t)

Na(t) kl(µ̂a(t)|µ̂⋆(t)−θa⋆,a)+ fξ
(
NÂ(d)

a⋆
(t)
(t)
)
. (4.82)

The monotony of kl(µ̂a(t)| ·), for a∈Â(d)
a⋆ (t) and Equation (4.81) imply

kl(µ̂a(t)|µ̂⋆(t)−θa⋆,a) ⩽ kl(µ̂a(t)|µa − ε0) , ∀a ∈ Â(d)
a⋆ (t) . (4.83)

By combining Equations (4.82) and (4.83), we get

fξ
(
Nat+1(t)

)
⩽

∑
a∈Â(d)

a⋆
(t)

Na(t) kl(µ̂a(t)|µa − ε0)+ fξ
(
NÂ(d)

a⋆
(t)
(t)
)

(4.84)
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or equivalently ∑
a∈Â(d)

a⋆
(t)

Na(t) kl(µ̂a(t)|µa − ε0) ⩾ fξ
(
Nat+1(t)

)
− fξ

(
NÂ(d)

a⋆
(t)
(t)
)
. (4.85)

According to the definition of Â(d)
a⋆ (t), if

∣∣∣Â(d)
a⋆ (t)

∣∣∣>d+1 we have
∑

a∈Âa⋆ (t)
2(µ̂⋆(t)−θ̂⋆a⋆,a−µ̂a(t))

2Na(t)⩾

Φ(2|Â(d)
a⋆ (t)|+1). Then, from Equations (4.81), (4.85) and Pinsker’s inequality (Lemma 24), this implies∑

a∈Â(d)
a⋆

(t)

Na(t) kl(µ̂a(t)|µa − ε0) ⩾ Φ(2|Â(d)
a⋆ (t)|+1)∨

(
fξ
(
Nat+1(t)

)
−fξ
(
NÂ(d)

a⋆
(t)
(t)
))

. Furthermore, if
∣∣∣Â(d)

a⋆ (t)
∣∣∣⩽

d+1 andNÂ(d)
a⋆

(t)
(t)⩽e−d−1Nat+1(t), we have

∑
a∈Â(d)

a⋆
(t)

Na(t) kl(µ̂a(t)|µa − ε0) ⩾ fξ
(
Nat+1(t)

)
−fξ
(
NÂ(d)

a⋆
(t)
(t)
)
⩾

log
(
Nat+1(t)

)
−log

(
NÂ(d)

a⋆
(t)
(t)
)
⩾d+1.

Now we prove Equation (4.70).

Since t∈M(ε), there exists a′ /∈Â⋆(t), such that

|µ̂a′(t)− µa′ | ⩾ ε+ ε̂⋆a′(t) . (4.86)

From Equation (4.86), by triangle inequality we have

|µ̂a′(t)− µa′ − ε| ⩾ ε̂⋆a′(t) . (4.87)

Let us introduce

k̂a′(ε, t) :=I{µ̂a(t)<µa′−ε}kl(µ̂a′(t)|µa′−ε)+ I{1−µ̂a′ (t)<1−µa′−ε}kl(1−µ̂a′(t)|1−µa′−ε) (4.88)

k̂a′(t) :=2
(
ε̂⋆a′(t)

)2
. (4.89)

From Equation (4.88), by Pinsker’s inequality we have

k̂a′(ε, t) ⩾ 2 (µ̂a′(t)−µa′−ε)2 . (4.90)

By combining Equations (4.87) and (4.90) and Equation (4.89) that defines k̂a′(t), we obtain

k̂a′(ε, t) ⩾ 2
(
ε̂⋆a′(t)

)2
= k̂

⋆

a′(t) . (4.91)

Since a′∈Â⋆(t), by combining empirical lower bounds (4.18) and Equation (4.91), we have

fξ
(
Nat

(t)
)
⩽ Na′(t) k̂a′(ε, t) + fξ(Na′(t)) . (4.92)

Since t∈M(ε), at /∈Â⋆(t) and
at+1 = at . (4.93)

By combining Equations (4.88), (4.92) and (4.93), we have

t ∈ K+
a′,at+1

(ε) ∪ K−
a′,at+1

(ε) = Ka′,at+1(ε) .
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4.5.5 Reliable current means of current informative sets of Arms
For accuracy 0<ε<ε0=δmin/3, we define the union of the previous considered subsets of times

U(ε) :=M(ε)
⋃
M⋆(ε)

⋃
K⋆(ε0)

⋃
L(d)(ε0)

⋃
a∈A, t⩾1

Ka,at+1(ε)
⋃

a∈A, t⩾1

Ea,at+1(ε) . (4.94)

From Lemma 9, we have

U(ε) = K⋆(ε0)
⋃
L(d)(ε0)

⋃
a∈A, t⩾1

Ka,at+1(ε)
⋃

a∈A, t⩾1

Ea,at+1(ε) . (4.95)

Lemma 10 (Reliable current mean of current pulled arm). For accuracy 0<ε<ε0=δmin/3, for all t /∈U(ε),∣∣µ̂at+1(t)− µat+1

∣∣ < ε .

Proof. Let us consider t /∈U(ε). Then t /∈Eat+1,at+1(ε).

Lemma 11 (Reliable current best mean). For accuracy 0<ε<ε0=δmin/3, for all t /∈U(ε),

Â⋆(t) = {a⋆} ,

|µ̂⋆(t)− µ⋆| < ε .

Proof. Let us consider t /∈U(ε). Then t /∈M⋆(ε)
⋃

â⋆∈Â⋆(t)

E+â⋆,at+1
(ε) and Equation (4.67) implies

Â⋆(t) = {a⋆} . (4.96)

Since t /∈U(ε), t /∈
⋃

â⋆∈Â⋆(t)

Eâ⋆,at+1(ε). By considering empirical lower bounds (4.17) and Equation (4.48), we

have
|µ̂â⋆(t)− µâ⋆| < ε, ∀â⋆ ∈ Â⋆(t) . (4.97)

Since Â⋆(t)=argmax
a∈A

µ̂a(t), by combining Equations (4.96) and (4.97), we have

|µ̂⋆(t)− µ⋆| < ε . (4.98)

Lemma 12 (Reliable current means). For accuracy 0 < ε < ε0 = δmin/3, for all time step t /∈ U(ε) that
corresponds to an exploration phase (that is at /∈Â⋆(t)) such that at+1=at=a

opt
t , for all current sub-optimal

arm a′ /∈Â⋆(t),
|µ̂a′(t)− µa′ | ⩽ ε+ ε̂⋆a′(t)

and
ε̂⋆a′(t) ⩽ εa′(t) ,

where
ε̂⋆a′(t) ⩽

5

3
· γt
1− γt

·∆a′

εa′(t) =
5

3
· γt
1− γt

·∆a′ ⩽
∆a′

3
.
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Proof. Let us consider t /∈U(ε) such that at /∈Â⋆(t) and at+1=at=a
opt
t . Let us consider a current sub-optimal

arm a′ /∈Â⋆(t) . Then t /∈M(ε), at /∈Â⋆(t) and Equation (4.68) that definesM(ε) implies

|µ̂a′(t)− µa′ | < ε+ ε̂⋆a′(t) . (4.99)

Since t /∈U(ε), from Lemma 11 we have

|µ̂⋆(t)− µ⋆| < ε . (4.100)

We have by definition
ε̂⋆a′(t) = γt · (µ̂⋆(t)− µ̂a′(t)) . (4.101)

By combining Equations (4.99), (4.100) and (4.101), we have

ε̂⋆a′(t) ⩽ γt · (µ⋆ − µa′ + 2ε+ ε̂⋆a′(t)) = γt · (∆a′ + 2ε+ ε̂⋆a′(t)) . (4.102)

Equation (4.102) implies
ε̂⋆a′(t) ⩽

γt
1− γt

· (∆a′ + 2ε) . (4.103)

Since 0<ε<ε0 = δmin/3, Equation (4.103) implies

ε̂⋆a′(t) ⩽
5

3
· γt
1− γt

·∆a′ . (4.104)

Finally we note that γt is set so that
γt

1− γt
< 1/5 . (4.105)

Lemma 13 (Reliable current informative sets of arms). For accuracy 0 < ε < ε0 = δmin/3, for all time step
t /∈U(ε) that corresponds to an exploration phase, that is at /∈Â⋆(t), such that at+1=at=a

opt
t , for all current

sub-optimal arm a /∈Â⋆(t),
{a} ⊂ Aa(ε, t) ⊂ Âa(t) ,

where
Aa(ε, t) :=

{
a′ /∈ Â⋆(t) : 2ε+ εa′(t) ⩽ δa,a′(θ

⋆)
}
.

Proof. Since t /∈U(ε), at /∈Â⋆(t) and at+1=at=a
opt
t , from Lemma 12 we have

εa(t) ⩽
∆a

3
. (4.106)

Since ε<ε0⩽∆a/3, from Equation (4.106) we have

2ε+ εa(t) < ∆a . (4.107)

Since δa,a(θ⋆)=∆a, Equation (4.107) implies a∈Aa(ε, t) ̸=∅.

Let us consider a′∈Aa(ε, t). Then we have

2ε+ εa′(t) < δa,a′(θ) = µ⋆ − µa′ − θ⋆a,a′(t) , (4.108)

that is
µa′ + ε+ εa′(t) < µ⋆ − ε− θ⋆a,a′(t) . (4.109)
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Since t /∈U(ε), from Lemma 11 we have

θ⋆ = θ(a
⋆) = θ̂⋆(t)

µ⋆ − ε < µ̂⋆(t) .
(4.110)

Since t /∈U(ε), at /∈Â⋆(t) and at+1=at=a
opt
t . From Lemma 12 then we have

µa′ + ε+ εa′(t) > µ̂a′(t) . (4.111)

By combining Equations (4.109), (4.110) and (4.111), we have

µ̂a′(t) ⩽ µ̂⋆(t)− θ̂⋆a,a′(t) , (4.112)

that is a′∈Âa(t).

4.6 Upper bounds under IMED-GS algorithm
In this section, we now provide the final results related to the control of the numbers of pulls of sub-optimal
arms. We start by providing in Section 4.6.1 an upper-bound on the number of pulls N opt

a (t) solution to
the empirical optimization problem. Then, in Section 4.6.2, we provide an almost sure upper bound on the
number of pulls of sub-optimal arms, making appear the size of the random set of times U(ε) introduced in the
previous section. This is further used in Section 4.6.3 to provide a fully explicit, finite-time upper bound on
the regret valid almost surely. Last, in Section 4.6.4, we handle the size of the random set thanks to the results
of Section 4.5 (in particular, Lemma 8), and derive the main regret bound.

4.6.1 Upper bounds on the optimal numbers of pulls
Lemma 14 (Upper bounds on optimal numbers of pulls). For accuracy 0<ε<ε0= δmin/3, for all time step
t /∈U(ε) that corresponds to an exploration phase, that is at /∈Â⋆(t), such that at+1=at=a

opt
t ,

C{θ̂⋆(t)}(µ̂(t)) ⩽ max
a/∈A⋆

∆a + 2ε+ εa(t)

∆a − 2ε− εa(t)
· C{θ⋆}(µ(ε, t)) ,

∑
a/∈A⋆

N opt
a (t)∆a ⩽ max

a/∈A⋆

(
∆a + 2ε+ εa(t)

∆a − 2ε− εa(t)

)2

· C{θ⋆}(µ(ε, t)) · fξ(t) ,

where for all a∈A,

µa(ε, t) =

{
µa + ε+ εa(t) , if a /∈ A⋆

µa − ε , if a ∈ A⋆ .

Proof. Let us consider t /∈U(ε) such that at /∈Â⋆(t), at+1=at=a
opt
t and n∈RA

+ such that

∀a ̸∈ argmax
(
µ(ε, t)

)
,

∑
a′∈A

µa′ (ε,t)⩽max((µ(ε,t))−θ⋆
a,a′

kl
(
µa′(ε, t)|max(µ(ε, t))− θ⋆a,a′

)
na′ ⩾ 1 . (4.113)

Since t /∈U(ε), from Lemma 11 and Assumptions 7-6 we have

Â⋆(t) = A⋆ = {a⋆}
θ⋆ = θ(a

⋆) = θ̂⋆(t)
(4.114)
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|µ̂⋆(t)− µ⋆| < ε . (4.115)

Since t /∈U(ε) is such that at /∈Â⋆(t) and at+1=at=a
opt
t , from Lemma 12 and Equation (4.114) we have

|µ̂a(t)− µa| ⩽ ε+ εa(t) , ∀a /∈ A⋆ , (4.116)

εa(t) ⩽
∆a

3
, ∀a /∈ A⋆ . (4.117)

From Equations (4.114), (4.115) and (4.117) we have

argmax
(
µ(ε, t)

)
= A⋆ = {a⋆} . (4.118)

Since t /∈U(ε) is such that at /∈Â⋆(t) and at+1=at=a
opt
t , from Lemma 13 and Equation (4.114) we have for

all sub-optimal arm a /∈Â⋆(t),
{a} ⊂ Aa(ε, t) ⊂ Âa(t) , (4.119)

where

Aa(ε, t) = {a′ /∈ A⋆ : 2ε+ εa′(t) ⩽ δa,a′(θ
⋆)} (4.120)

=
{
a′ /∈ A⋆ : µa′(ε, t) ⩽ max ((µ(ε, t))− θ̂⋆a,a′(t)

}
.

Then, Equation (4.113) rewrites

∀a ̸∈ A⋆,
∑

a′∈Aa(ε,t)

kl
(
µa′ + ε+ εa′(t)

∣∣µ⋆ − ε− θ̂⋆a,a′(t)
)
na′ ⩾ 1 . (4.121)

From Equations (4.114), (4.116) and standard monotonic properties of kl(· |·), we have

∀a ̸∈ A⋆, ∀a′ ∈ Aa(ε, t) ,

kl
(
µa′ + ε+ εa′(t)

∣∣µ⋆ − ε− θ̂⋆a,a′(t)
)
⩽ kl(µ̂a′(t)

∣∣∣µ̂⋆(t)−θ̂⋆a,a′(t)
)
.

(4.122)

By combining Equations (4.121) and (4.122) we have

∀a ̸∈ A⋆,
∑

a′∈Aa(ε,t)

kl(µ̂a′(t)
∣∣∣µ̂⋆(t)−θ̂⋆a,a′(t)

)
na′ ⩾ 1 . (4.123)

Then, by combining Equations (4.119) and (4.123) we have

∀a ̸∈ A⋆,
∑

a′∈Âa(t)

kl(µ̂a′(t)
∣∣∣µ̂⋆(t)−θ̂⋆a,a′(t)

)
na′ ⩾ 1 . (4.124)

Since

C{θ̂⋆(t)}

(
µ̂(t)

)
= min

n∈RA
+

∑
a∈A

na

(
µ̂⋆(t)−µ̂a(t)

)
s.t. ∀a ̸∈ Â⋆(t)=A⋆,

∑
a′∈Âa(t)

kl(µ̂a′(t)
∣∣∣µ̂⋆(t)−θ̂⋆a,a′(t)

)
na′ ⩾ 1

, (4.125)
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Equation (4.124) implies
C{θ̂⋆(t)}

(
µ̂(t)

)
⩽
∑
a∈A

na

(
µ̂⋆(t)−µ̂a(t)

)
. (4.126)

By combining Equations (4.114), (4.115), (4.116), (4.117) and (4.126) we have

C{θ̂⋆(t)}

(
µ̂(t)

)
⩽
∑
a/∈A⋆

na

(
µ⋆−µa+2ε+εa(t)

)
=
∑
a/∈A⋆

na

(
∆a+2ε+εa(t)

)
. (4.127)

Then Equations (4.118) and (4.127) imply

C{θ̂⋆(t)}

(
µ̂(t)

)
⩽ max

a/∈A⋆

∆a+2ε+εa(t)

∆a−2ε−εa(t)
·
∑
a∈A

na

(
max(µ(ε, t))− µa(ε, t)

)
. (4.128)

Since previous Equation (4.128) is satisfied for all n∈RA
+ satisfying Equation (4.113), we have

C{θ̂⋆(t)}

(
µ̂(t)

)
⩽ max

a/∈A⋆

∆a+2ε+εa(t)

∆a−2ε−εa(t)
· C{θ⋆}

(
µ(ε, t)

)
. (4.129)

Furthermore, by combining Equations (4.114), (4.115), (4.116) and (4.117) we have

∑
a/∈A⋆

N opt
a (t)∆a ⩽ maxa/∈A⋆

(
∆a

∆a−2ε−εa(t)

) ∑
a/∈Â⋆(t)

N opt
a (t) ∆̂a(t)

⩽ maxa/∈A⋆

(
∆a+2ε+εa(t)

∆a−2ε−εa(t)

) ∑
a/∈Â⋆(t)

N opt
a (t) ∆̂a(t) .

(4.130)

Since (N opt
a (t))a∈A=

(
Iat(t)n

opt
a (t)

)
a∈A, we have∑

a/∈Â⋆(t)

N opt
a (t) ∆̂a(t) = min

a∈A
Ia(t)

∑
a/∈Â⋆(t)

nopt
a (t) ∆̂a(t) . (4.131)

From Equation (4.9) that defines indexes
(
Ia(t)

)
a∈A and previous Equation (4.131) we have∑

a/∈Â⋆(t)

N opt
a (t) ∆̂a(t) ⩽ fξ(t)

∑
a/∈Â⋆(t)

nopt
a (t) ∆̂a(t) . (4.132)

From Equation (4.11) that defines (nopt
a (t))a∈A we have∑
a/∈Â⋆(t)

nopt
a (t) ∆̂a(t) = C{θ̂⋆(t)}

(
µ̂(t)

)
. (4.133)

By combining Equations (4.132) and (4.133) we have∑
a/∈Â⋆(t)

N opt
a (t) ∆̂a(t) ⩽ C{θ̂⋆(t)}

(
µ̂(t)

)
· fξ(t) . (4.134)

Combining Equations (4.129), (4.130) and (4.134) ends the proof.
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4.6.2 Upper bounds on the numbers of pulls
We recall that what we call optimal numbers of pulls at time step t⩾1 are the numbers of pulls (N opt

a (t))a∈A
solution of the optimisation problem.

Lemma 15 (Upper bounds on current pulled sub-optimal arm). For accuracy 0<ε< ε0, for all sub-optimal
a /∈A⋆, for all time step t /∈U(ε) such that at+1=at=a

opt
t =a,

Na(t) ⩽ N opt
a (t) ⩽

λt(µ, ε)C{θ⋆}

(
µ(ε, t)

)
∆a

· fξ(t)

where

λt(µ, ε) := max
a′ /∈A⋆

(
∆a′+2ε+εa′(t)

∆a′−2ε−εa′(t)

)2

.

For accuracy 0<ε<ε0, for all sub-optimal a /∈A⋆, for all time step t /∈U(ε) such that at+1=a ̸=at,

Na(t) ⩽
fξ(t)

kl(µa+ε|µ⋆−ε)
.

For accuracy 0<ε<ε0, for all sub-optimal a /∈A⋆,

∀t ⩾ 1, Na(t) ⩽ max
1⩽s⩽t

{
λt(µ, ε)C{θ⋆}

(
µ(ε, s)

)
∆a

,
1

kl(µa+ε|µ⋆−ε)

}
· fξ(t) + |U(ε)|+ 1 .

For accuracy 0<ε<ε0∨(1−µ⋆), for all sub-optimal a /∈A⋆, for all time step t /∈U(ε) such that at+1=a ̸=at,

Na(t) ⩽

Γ

[
fξ

(
max
1⩽s⩽t

{
λt(µ, ε)C{θ⋆}

(
µ(ε, s)

)
∆a

,
1

kl(µa+ε|µ⋆−ε)

}
fξ(t)+|U(ε)|+1

)
+ 1

]
(γt)2(µ⋆−ε)(1−µ⋆−ε) kl(µa+ε|µ⋆−ε)

.

Proof. Let us consider a time step t /∈U(ε) such that at+1=a.

Since t /∈U(ε), from Lemma 11 and Assumption 7 we have

Â⋆(t) = A⋆ = {a⋆} . (4.135)

In particular, we have
at+1 = a /∈ Â⋆(t) . (4.136)

and Algorithm 9 implies
at /∈ Â⋆(t) . (4.137)

Since 0<ε<(µ⋆−µa)/3, t /∈U(ε) and at+1=a, Lemma 12, Lemma 11 and Equation (4.135) imply

µ̂a(t) ⩽ µa + ε < µ⋆ − ε ⩽ µ̂⋆(t) ⩽ µ⋆ + ε . (4.138)

Let us consider a time step t /∈U(ε) such that at+1=at=a
opt
t =a. Then, Lemma 7 implies

Na(t) ⩽ N opt
a (t) . (4.139)
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Since t /∈U(ε), we have at /∈ Â⋆(t) =A⋆ as shown in Equation (4.137) and at+1 = at = aopt
t . Lemma 14 then

implies

∀a′ /∈ Â⋆(t)=A⋆, N opt
a′ (t) ⩽

λt(µ, ε)C{θ⋆}

(
µ(ε, t)

)
∆a′

· fξ(t) . (4.140)

By combining Equations (4.139) and (4.140), we get

Na(t) ⩽ N opt
a (t) ⩽

λt(µ, ε)C{θ⋆}

(
µ(ε, t)

)
∆a

· fξ(t) .

Let us consider a time step t /∈U(ε) such that at+1=a ̸=at. From Equation (4.137), we have at /∈Â⋆(t). Then
Algorithm 9 implies

at+1 ∈ {at, ȧt} . (4.141)

By combining previous Equation (4.141) and Lemma 7, we have

Na(t) ⩽
fξ(t)

kl(µ̂a(t)|µ̂⋆(t))
. (4.142)

From Equations (4.138) and (4.142), the classical monotonic properties of kl(· |·) imply

Na(t) ⩽
fξ(t)

kl(µa+ε|µ⋆−ε)
.

Let us consider a time step t⩾1. We write the number of pulls Na(t) as follows

Na(t) = 1 +
t−1∑
s⩾|A|

I{at+1=a} (4.143)

= 1 +
t−1∑
s⩾|A|

I{as+1=a, s∈U(ε)} +
t−1∑
s⩾|A|

I{as+1=as=a
opt
s =a, s/∈U(ε)} + I{as+1=a̸=as, s/∈U(ε)}.

We first note that
t−1∑
s⩾|A|

I{as+1=a, s∈U(ε)} ⩽ |U(ε)| . (4.144)

Then, we denote by

τa(t) = max {s ∈ J|A|+ 1 ; tK : (as+1 = as = aopt
s = a or as+1 = a ̸= as) and s /∈ U(ε)} (4.145)

the last time step before time step t that does not belong to U(ε) such that we pull arm a. Then, we have

Na(τa(t)) ⩽ max
1⩽s⩽t

{
λt(µ, ε)C{θ⋆}

(
µ(ε, s)

)
∆a

,
1

kl(µa+ε|µ⋆−ε)

}
× fξ(t) . (4.146)

Furthermore, we note that
t−1∑
s⩾|A|

I{as+1=as=a
opt
s =a, s/∈U(ε)} + I{as+1=a̸=as, s/∈U(ε)}

⩽ Na(τa(t))

⩽ max
1⩽s⩽t

{
λt(µ, ε)C{θ⋆}

(
µ(ε, s)

)
∆a

,
1

kl(µa+ε|µ⋆−ε)

}
× fξ(t) . (4.147)
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By combining Equations (4.143), (4.144) and (4.147), we get

∀a ̸= a⋆, ∀t ⩾ 1, Na(t)⩽1+|U(ε)|+max
1⩽s⩽t

{
λt(µ, ε)C{θ⋆}

(
µ(ε, s)

)
∆a

,
1

kl(µa+ε|µ⋆−ε)

}
× fξ(t) . (4.148)

Let us consider a time step t /∈ U(ε) such that at+1 = a ̸= at. From Equations (4.135) and (4.137), we have
at /∈Â⋆(t). Then Algorithm 9 implies

at, a
opt
t /∈ Â⋆(t) = {a⋆} , at+1 ∈ {at, ȧt} . (4.149)

By combining previous Equation (4.149) and Lemma 7, we have

Na(t) ⩽

(
I{at /∈Â⋆(t) and at ̸=a

opt
t }

Iat(t)

Iȧt(t)

) fξ
(
Na

opt
t
(t)
)
+ 1

(γt)2µ̂⋆(t)(1−µ̂⋆(t)) kl(µ̂a(t)|µ̂⋆(t))
. (4.150)

From Algorithm 9, we have

I{at /∈Â⋆(t) and at ̸=a
opt
t }

Iat(t)

Iȧt(t)
⩽ Γ . (4.151)

From Equations (4.138) and (4.142) and the classical monotonic properties of kl(· |·), we have

µ̂⋆(t)(1−µ̂⋆(t)) kl(µ̂a(t)|µ̂⋆(t)) ⩾ (µ⋆−ε)(1−µ⋆−ε) kl(µa+ε|µ⋆−ε) . (4.152)

By combining Equations (4.148), (4.150), (4.151) and (4.152), we then get

Na(t) ⩽

Γ

[
fξ

(
1+|U(ε)|+max

1⩽s⩽t

{
λt(µ, ε)C{θ⋆}

(
µ(ε, s)

)
∆a

,
1

kl(µa+ε|µ⋆−ε)

}
fξ(t)

)
+ 1

]
(γt)2(µ⋆−ε)(1−µ⋆−ε) kl(µa+ε|µ⋆−ε)

. (4.153)

Remark 14. Proof of Lemma 15 highlights that for accuracy 0<ε<ε0, for all time step t /∈U(ε), if at+1 /∈A⋆

then at /∈ Â⋆(t).

4.6.3 Almost-sure upper bound on the cumulative regret
Proposition 4 (Upper bound on the non-averaged cumulative regret). For accuracy 0 < ε < ε0, for all time
horizon T ⩾ |A|,∑

a/∈A⋆ Na(T )∆a ⩽ infτ⩾1 {Λτ (µ, ε) · Cτ (µ, ε) · fξ(T ) + Σ∆ · τ}
+ GT (µ, ε) · Fξ(µ, ε, T ) + GT (µ, ε) · fξ(|U(ε)|) + |U(ε)|

where
Λτ (µ, ε) = sup

t⩾τ
λt(µ, ε) Cτ (µ, ε) = sup

t⩾τ
C{θ⋆}

(
µ(ε, t)

)
λt(µ, ε) = max

a′ /∈A⋆

(
∆a′+2ε+εa′(t)

∆a′−2ε−εa′(t)

)2
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Fξ(µ, ε, T ) = max
a/∈A⋆

fξ

(
max
t⩾1

{
λt(µ, ε)C{θ⋆}

(
µ(ε, t)

)
∆a

,
1

kl(µa+ε|µ⋆−ε)

}
fξ(T )+1

)
+ 1

GT (µ, ε) =
∑
a/∈A⋆

∆a Γ

(γ
T
)2(µ⋆−ε)(1−µ⋆−ε) kl(µa+ε|µ⋆−ε)

Σ∆ =
∑
a∈A

∆a .

Proof. Let us consider τ⩾1. For a /∈A⋆, let us consider

τa(ε, T ) = max
{
t ∈ J1, T−1K : t /∈ U(ε), at+1=at=a

opt
t =a

}
(4.154)

τa(ε, T ) = max {t ∈ J1, T−1K : t /∈ U(ε), at+1=a ̸=at} . (4.155)

Then, the number of pulls of sub-optimal arm a /∈A⋆ satisfies

Na(T ) ⩽ 1 +
T−1∑
t=|A|

I{t/∈U(ε), at+1=a̸=at} +
T−1∑
t=|A|

I{t/∈U(ε), at+1=a̸=at} +
∑
t⩾1

I{t∈U(ε), at+1=a}

⩽ Na(τa(ε, T )) +Na(τa(ε, T )) +
∑
t⩾1

I{t∈U(ε), at+1=a} . (4.156)

In particular, previous Equation (4.156) implies

Na(T ) ⩽ I{τ⩽τa(ε,T )} ·Na(τa(ε, T )) + τ +Na(τa(ε, T )) +
∑
t⩾1

I{at+1=a, t∈U(ε)} . (4.157)

Since τa(ε, T ) /∈U(ε) and aτa(ε,T )+1=aτa(ε,T )=a
opt
τa(ε,T )=a, Lemma 15 implies

Na(τa(ε, T )) ⩽ N opt
a (τa(ε, T )) . (4.158)

Since τa(ε, T ) /∈U(ε) and aτa(ε,T )+1=a /∈A⋆, Remark 14 implies

τa(ε, T ) ⩽ τ(ε, T ) := max
{
t ∈ J1, T−1K : t /∈ U(ε), at+1=at=a

opt
t /∈Â⋆(t)

}
. (4.159)

By combining Equations (4.158) and (4.159) we get

τa(ε, T ) ⩽ τ(ε, T ) Na(τa(ε, T )) ⩽ N opt
a (τ(ε, T )) . (4.160)

Since τ(ε, T ) /∈U(ε) and aτ(ε,T ) /∈Â⋆(τ(ε, T ))), from Lemma 14 we have

I{τ⩽τ(ε,T )⩽T}
∑
a/∈A⋆

N opt
a (τ(ε, T )) ∆a ⩽ Λτ (µ, ε) · Cτ (µ, ε) · fξ(T ) . (4.161)

Since τa(ε, T ) /∈U(ε) and aτa(ε,T )+1=a ̸=aτa(ε,T ), Lemma 15 plus the monotony of (γt)t⩾1 ,(fξ(t))t⩾1 imply

Na(τa(ε, T ))

⩽

Γ

[
fξ

(
max
t⩾1

{
λt(µ, ε)C{θ⋆}

(
µ(ε, t)

)
∆a

,
1

kl(µa+ε|µ⋆−ε)

}
fξ(T )+|U(ε)|+1

)
+ 1

]
(γ

T
)2(µ⋆−ε)(1−µ⋆−ε) kl(µa+ε|µ⋆−ε)

⩽

Γ

[
fξ

(
max
t⩾1

{
λt(µ, ε)C{θ⋆}

(
µ(ε, t)

)
∆a

,
1

kl(µa+ε|µ⋆−ε)

}
fξ(T )+1

)
+ 1

]
(γ

T
)2(µ⋆−ε)(1−µ⋆−ε) kl(µa+ε|µ⋆−ε)

(4.162)

+
Γ

(γ
T
)2(µ⋆−ε)(1−µ⋆−ε) kl(µa+ε|µ⋆−ε)

fξ(|U(ε)|) .
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By combining Equations (4.157), (4.158), (4.160) and (4.162), we have for all sub-optimal arm a /∈A⋆,

∆aNa(T )

⩽ I{τ⩽τ(ε,T )⩽T}∆aN
opt
a (τ(ε, T ))

+

∆a Γ

[
fξ

(
max
t⩾1

{
λt(µ, ε)C{θ⋆}

(
µ(ε, t)

)
∆a

,
1

kl(µa+ε|µ⋆−ε)

}
fξ(T )+1

)
+ 1

]
(γ

T
)2(µ⋆−ε)(1−µ⋆−ε) kl(µa+ε|µ⋆−ε)

+ ∆a τ

+
∆a Γ

(γ
T
)2(µ⋆−ε)(1−µ⋆−ε) kl(µa+ε|µ⋆−ε)

fξ(|U(ε)|) +
∑

t⩾1 I{at+1=a, t∈U(ε)} .

(4.163)

By summing previous Equation (4.163) over the sub-optimal arms, we obtain∑
a/∈A⋆

∆aNa(T )

⩽ I{τ⩽τ(ε,T )⩽T}
∑

a/∈A⋆

∆aN
opt
a (τ(ε, T ))

+
∑

a/∈A⋆

∆a Γ

[
fξ

(
max
t⩾1

{
λt(µ, ε)C{θ⋆}

(
µ(ε, t)

)
∆a

,
1

kl(µa+ε|µ⋆−ε)

}
fξ(T )+1

)
+ 1

]
(γ

T
)2(µ⋆−ε)(1−µ⋆−ε) kl(µa+ε|µ⋆−ε)

+
∑

a/∈A⋆

∆a · τ

+
∑

a/∈A⋆

∆a Γ

(γ
T
)2(µ⋆−ε)(1−µ⋆−ε) kl(µa+ε|µ⋆−ε)

fξ(|U(ε)|) +
∑
t⩾1

∑
a/∈A⋆

I{at+1=a, t∈U(ε)} .

(4.164)

Since ∑
t⩾1

∑
a/∈A⋆

I{at+1=a, t∈U(ε)} =
∑
t⩾1

I{at+1 /∈A⋆, t∈U(ε)} ⩽
∑
t⩾1

I{t∈U(ε)} = |U(ε)| (4.165)

and

Fξ(µ, ε, T ) = max
a/∈A⋆

fξ

(
max
t⩾1

{
λt(µ, ε)C{θ⋆}

(
µ(ε, t)

)
∆a

,
1

kl(µa+ε|µ⋆−ε)

}
fξ(T )+1

)
+ 1

GT (µ, ε) =
∑
a/∈A⋆

∆a Γ

(γ
T
)2(µ⋆−ε)(1−µ⋆−ε) kl(µa+ε|µ⋆−ε)

(4.166)

Σ∆ =
∑
a/∈A⋆

∆a ,

Equation (4.164) implies ∑
a/∈A⋆

∆aNa(T )

⩽ I{τ⩽τ(ε,T )⩽T}
∑

a/∈A⋆

∆aN
opt
a (τ(ε, T ))

+ GT (µ, ε) · Fξ(µ, ε, T )

+ Σ∆ · τ
+ GT (µ, ε) · fξ(|U(ε)|) + |U(ε)| .

(4.167)

Combining Equations (4.161) and (4.167) ends the proof.
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4.6.4 Upper bound on the regret
In this section, we prove Theorem 3.

Proof. Theorem 3 is obtained as a corollary of Proposition 4. More precisely, the monotony of λ·(µ, ·) and
C{θ⋆}(·) = C

Θ
(·) (see Lemma 16) simplify the expressions of Λτ (µ, ε) and Cτ (µ, ε). The upper bounds γ1 ⩽

1/7, C
Θ
(·)⩽C0(·) (see Lemma 16) and Pinsker’s inequality simplify the terms Fξ(µ, ε, T ) and GT (µ, ε). Then,

Theorem 3 is obtained by taking the expectation in both sides of the inequality. Indeed, since fξ(·) is a concave
function, we have Eν [fξ(|U(ε)|)] ⩽ fξ(Eν [|U(ε)|]) and the constant Cξ,d,ε = Eν [|U(ε)|]. From Lemma 8 and
Equation (4.95), we have

Cξ,d,ε = K⋆
ξ + 2 |A|2Kξ,1 +

(d+ 1)ed+1

2ε2

(
fξ

(
(d+ 1)ed+1

2ε2ν

))2

+
∑
n⩾3

3 |A|2

n (log(n))ξ
+ |A|2 e

2ε2

ε2
,

where K⋆
ξ and Kξ,1 are explained in Lemma 8.

We end this subsection by proving the following lemma that ensures a nice control of C
Θ
(µ(·, ·)) appearing in

the first order term of the upper bound on the regret.

Lemma 16 (Monotonic properties of C
Θ
(µ(·, ·))). For 0 < ε < ε0, (CΘ

(µ(ε, t)))t⩾1 and C
Θ
(µ(·,∞)) are

non-increasing and lim
ε→0

lim
t→∞

C
Θ
(µ(ε, t))=lim

ε→0
C

Θ
(µ(ε,∞))=C

Θ
(µ). Finally, we denote by

C0(µ) := min
n∈RA

+

{ ∑
a∈A

na

(
max(µ)− µa

)
=

∑
a/∈argmax(µ)

max(µ)− µa

kl
(
µa|max(µ)

)
s.t. ∀a /∈argmax(µ), kl

(
µa|max(µ)

)
na⩾1

}
the minimization problem C

[−1,1]A×A (µ) when there is no structure, that is when Θ = [−1, 1]A×A, for all
µ∈(0, 1)A. Then we have C

Θ
(·)⩽C0(·) .

Proof. We first note for all µ ∈ (0, 1)A, by considering the change of variables na←∆a na if a /∈ argmaxµ
and na←na if a∈argmaxµ, we have

C
Θ
(µ) := min

n∈RA
+

{∑
a∈A

na s.t. ∀a ̸∈ argmaxµ, (4.168)

min
θ∈Θa

∑
a′∈A

µa′⩽maxµ−θa,a′

kl
(
µa′|maxµ− θa,a′

)
maxµ− µa′

na′ ⩾ 1

}
.

For 0<ε′⩽ε<ε0 and t′⩾ t⩾1, we show that

C
Θ
(µ(ε′, t′)) ⩽ C

Θ
(µ(ε, t)) . (4.169)

Then, since lim
t→∞

µ(ε, t) = µ(ε,∞) for 0 < ε < ε0 and lim
ε→0

µ(ε,∞) = µ, previous Equation (4.169) and
Lemma 27 will imply

lim
ε→0

lim
t→∞

C
Θ
(µ(ε, t)) = lim

ε→0
C

Θ
(µ(ε,∞)) = C

Θ
(µ) . (4.170)

Let 0<ε′⩽ε<ε0 and t′⩾ t⩾1. Let n∈RA
+ such that

∀a /∈ argmaxµ(ε, t), min
θ∈Θa

∑
a′∈A

µa′ (ε,t)⩽maxµ(ε,t)−θa,a′

kl
(
µa′(ε, t)|maxµ(ε, t)− θa,a′

)
maxµ(ε, t)− µa(ε, t)

na′ ⩾ 1 . (4.171)
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We first note that
argmaxµ(ε, t) = µ(ε′, t′) = argmaxµ , (4.172)

maxµ(ε, t) = µ⋆−ε ⩽ µ⋆−ε′ = maxµ(ε′, t′) , (4.173)

and
∀a /∈ argmaxµ, µa(ε, t) = µa+ε+ε(t) ⩾ µ+ε′+ε(t′) = µa(ε

′, t′) . (4.174)

In particular, from Equations (4.172), (4.173) and (4.174), Lemma 25 implies

∀a /∈argmaxµ, ∀θ∈Θa,
kl
(
µa′(ε, t)|maxµ(ε, t)−θa,a′

)
maxµ(ε, t)− µa(ε, t)

⩽
kl
(
µa′(ε

′, t′)|maxµ(ε′, t′)−θa,a′
)

maxµ(ε′, t′)− µa(ε′, t′)
. (4.175)

Combining all together Equations (4.171), (4.172), (4.173), (4.174), (4.175), we have

∀a /∈ argmaxµ(ε′, t′), min
θ∈Θa

∑
a′∈A

µa′ (ε
′,t′)⩽maxµ(ε′,t′)−θa,a′

kl
(
µa′(ε

′, t′)|maxµ(ε′, t′)−θa,a′
)

maxµ(ε′, t′)− µa(ε′, t′)
na′ ⩾ 1 . (4.176)

Previous Equation 4.176 implies
C

Θ
(µ(ε′, t′)) ⩽

∑
a∈A

na . (4.177)

Since previous Equation (4.177) holds for all n∈RA
+ satisfying Equation (4.171), we have

C
Θ
(µ(ε′, t′)) ⩽ C

Θ
(µ(ε, t)) . (4.178)
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Chapter 5

Concentration Inequalities for Structured
Bandits

In this chapter, we state and prove Theorem 4, the main concentration result used in Chapter 4 for IMED-GS
analysis. This key result enables to tighten some terms and reduce the burn-in phase as it enables the use of a
parameter d< |A|−1. See also the numerical experiments in Section A.4 showing the practical benefit of this
contribution.

Theorem 4. For all set of Bernoulli distributions ν=(νa)a∈A with means (µa)a∈A⊂ (0, 1)A, for all ξ⩾0, for
all M⩾1, for all A′⊂ A, for all Φ⩾ |A′|+1, for all ε>0, for all n⩾nξ,A′,ε,

Pν

(⋃
t⩾1

{∑
a∈A′

Na(t)kl(µ̂a(t)|µa − ε) ⩾ Φ ∨(fξ(n)− fξ(NA′(t)))

}
∩ ΩA′,ε,n(t)

)

⩽
e|A

′|+2

|A′||A′| log(n)
|A′|+1

[
Φ ∨ fξ(n) + 2ε2N ν,ξ,A′(n)

]2|A′|+1
e−[Φ∨fξ(n)+2ε2Nν,ξ,A′ (n)],

where ΩA′,ε,n(t) =
{
M ⩽ NA′(t) ⩽ |A′| fξ(n)/2ε2

}
∩ {∀a ∈ A′, µ̂a(t) < µa − ε} ,

N ν,ξ,A′(n)=M ∨
fξ(n)

1− log(1−maxa∈A′ µa)
and nξ,A′,ε=

(
e2 ∨ |A

′|
2ε2

)(
fξ

(
e2 ∨ |A

′|
2ε2

))2

.

Although the statement looks a little intricate, it enables to obtain more precise control of the concentration
terms compared to alternative tools present in the literature (e.g. in Magureanu et al. (2014)). Note the presence
of the random term NA′(t) in event ΩA′,ε,n(t) in the left-hand side of the deviation inequality. Besides, it
enables to show that setting ξ = 1 is enough for the regret to be controlled.

Proof. The five main steps of the proof are the following. First, we establishing a lower bound on the aggre-
gated number of pulls NA′(t) for t⩾1. Second, we proceed to a change of measurement applying Lemma 24.
Third, we use twice the peeling technique, for the aggregated number of pulls NA′(t) and for each ratio
Na(t)/NA′(t), a ∈ A′. Fourth, we control each band of the peeling using Lemma 17 based on multivariate
stochastic ordering, see Lemma 8 from Magureanu et al. (2014). Fifth, we apply the union bound.

Let us consider t⩾1 such that

∀a ∈ A′, µ̂a(t) < µa − ε
M ⩽ NA′(t) ⩽ |A′| fξ(n)/2ε2∑
a∈A′

Na(t)kl(µ̂a(t)|µa − ε) ⩾ Φ ∨(fξ(n)− fξ(NA′(t))) .

(5.1)
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1. Lower bound on NA′(t) :
From Equation (5.1), we have µ̂a(t)<µa−ε for all a∈A′. Then, the monotonic properties of kl(· |·) imply

∀a ∈ A′, kl(µ̂a(t)|µa − ε) ⩽ kl(0|µa) = − log(1−µa) (5.2)

and ∑
a∈A′

Na(t)kl(µ̂a(t)|µa − ε) ⩽ − log(1−max
a∈A′

µa)NA′(t) . (5.3)

From Equation (5.1), since NA′(t)⩾ fξ(NA′(t)), Equation (5.1) and previous Equation (5.3) imply

NA′(t) ⩾ N :=M ∨ fξ(n)
1− log(1−max

a∈A′
µa)∨e

. (5.4)

2. Change of measurement :
From Equation (5.1), we have µ̂a(t)<µa−ε<µa for all a∈A′. Then, Lemma 24 implies

∀a ∈ A′, kl(µ̂a(t)|µa − ε) ⩽ kl(µ̂a(t)|µa)− 2ε2 (5.5)

and ∑
a∈A′

Na(t)kl(µ̂a(t)|µa − ε) ⩽
∑
a∈A′

Na(t)kl(µ̂a(t)|µa)− 2ε2NA′(t) . (5.6)

From Lemma 28, previous Equation (5.6) implies∑
a∈A′

Na(t)kl(µ̂a(t)|µa) ⩾ Φ ∨(fξ(n)− fξ(NA′(t))) + 2ε2NA′(t) (5.7)

or similarly ∑
a∈A′

Na(t)

NA′(t)
kl(µ̂a(t)|µa) ⩾

Φ ∨(fξ(n)− fξ(NA′(t))) + 2ε2NA′(t)

NA′(t)
. (5.8)

3. Peeling :
Let us consider

ρ =

√
Φ ∨ fξ(n) + 2ε2N − 1

Φ ∨ fξ(n) + 2ε2N
. (5.9)

Since Φ∨fξ(n)+2ε2N−1>Φ−1⩾ |A′|, previous Equation (5.9) implies

|A′|
|A′|+ 1

⩽ ρ2 = 1− 1

Φ ∨ fξ(n) + 2ε2N
< 1 . (5.10)

Now we introduce decreasing geometric sequences (Nk)k⩾0 and (xℓ)ℓ⩾0 for the peeling : N0 =
|A′| fξ(n)

2ε2

Nk+1 = ρNk, k ⩾ 0

{
x0 = 1

xℓ+1 = ρ xℓ, ℓ ⩾ 0 .
(5.11)

By considering

K =

⌊
log(N0/N)

− log(ρ)

⌋
L =

⌊
log(N0)

− log(ρ)

⌋
, (5.12)

we have

NK+1 ⩽ N ⩽ NA′(t) xL+1 ⩽
1

N0

⩽
Na(t)

NA′(t)
, ∀a ∈ A′ . (5.13)
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Then, by considering the bands for k∈J0, KK, for (ℓa)a∈A′⊂J0, LK,

B(k, (ℓa)a∈A′) =


t ⩾ 1 :

∀a ∈ A′, µ̂a(t) < µa

Nk+1 ⩽ NA′(t) ⩽ Nk

∀a ∈ A′, xℓa+1 ⩽
Na(t)

NA′(t)
⩽ xℓa

∑
a∈A′

Za ⩾
Φ ∨(fξ(n)− fξ(NA′(t))) + 2ε2NA′(t)

NA′(t)


, (5.14)

we have
t ∈

⋃
k∈J0,KK

(ℓa)a∈A′⊂J0,LK

B(k, (ℓa)a∈A′) , (5.15)

where

∀a ∈ A′, Za =
Na(t)

NA′(t)
kl(µ̂a(t)|µa) . (5.16)

Monotony of both function fξ(·) and sequence (Nk)k⩾0 imply for k∈J0 , KK, for (ℓa)a∈A′⊂J0 , LK,

B(k, (ℓa)a∈A′) ⊂ B(k, (ℓa)a∈A′) ∩ S(k, (ℓa)a∈A′) , (5.17)

with

B(k, (ℓa)a∈A′) :=

t⩾1 :

∀a ∈ A′, µ̂a(t) < µa

Nk+1 ⩽ NA′(t) ⩽ Nk

∀a ∈ A′, xℓa+1 ⩽
Na(t)

NA′(t)
⩽ xℓa


S(k, (ℓa)a∈A′) :=

{
t⩾1 :

∑
a∈A′

I{t∈B(k,(ℓa)a∈A′)}Za ⩾
Φ ∨(fξ(n)− fξ(N0)) + 2ε2N

Nk

}
,

(5.18)

where, according to Lemma 28,

fξ(n)− fξ(N0) ⩾ 0 n ⩾ N0 , (5.19)

since n⩾ nν,A′,ε = (e2 ∨ (|A′| /2ε2)) (fξ(e2∨(|A′| /2ε2)))2. In particular, Equations (5.15) and (5.17)-(5.18)
imply

t ∈
⋃

k∈J0,KK
(ℓa)a∈A′⊂J0,LK

B(k, (ℓa)a∈A′) ∩ S(k, (ℓa)a∈A′) . (5.20)

4. Stochastic ordering :
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The total probability rule implies for k∈J0 , KK, (ℓa)a∈A′⊂J0 , LK, for all ζ∈RA′
+ ,

Pν

(⋂
a∈A′

I{t∈B(k,(ℓa)a∈A′)}Za ⩾ ζa

)

=
∑
M∈N

(na)a∈A′⊂N

Pν

(
NA′(t) =M,

⋂
a∈A′

Na(t) = na, I{t∈B(k,(ℓa)a∈A′)}Za ⩾ ζa

)

=
∑
M∈N

(na)a∈A′⊂N

∏
a∈A′

Pν

(
NA′(t) =M, (Na′(t))a′∈A′ = (na′)a′∈A′ , I{t∈B(k,(ℓa)a∈A′)}Za ⩾ ζa

)

⩽
∏
a∈A′

∑
M∈N

(na)a∈A′⊂N

Pν

(
NA′(t) =M, (Na′(t))a′∈A′ = (na′)a′∈A′ , I{t∈B(k,(ℓa)a∈A′)}Za ⩾ ζa

)

=
∏
a∈A′

Pν

(
I{t∈B(k,(ℓa)a∈A′)}Za ⩾ ζa

)
. (5.21)

By combining Previous Equation (5.21) and Lemma 32, we have for k ∈ J0 , KK, (ℓa)a∈A′ ⊂ J0 , LK, for all
ζ∈RA′

+ ,

Pν

(⋂
a∈A′

I{t∈B(k,(ℓa)a∈A′)}Za ⩾ ζa

)
⩽

∏
a∈A′

Pν


⋃
t⩾1

µ̂a(t)<µa

Na(t)⩾xℓa+1 Nk+1

kl(µ̂a(t)|µa) ⩾ ζa/xℓa


⩽

∏
a∈A′

exp

(
−xℓa+1

xℓa
Nk+1 ζa

)
=

∏
a∈A′

exp(−ρNk+1 ζa)

= exp

(
−ρNk+1

∑
a∈A′

ζa

)
. (5.22)

Furthermore, for k∈J0, KK,

ρNk+1
Φ ∨(fξ(n)− fξ(N0)) + 2ε2N

Nk

= ρ2
[
Φ ∨(fξ(n)− fξ(N0)) + 2ε2N

]
. (5.23)

Using Equation (5.10) we have ρ2⩾ |A′| / |A′|+1, and previous Equation (5.23) implies

ρNk+1
fξ(n)− fξ(N0) + 2ε2N

Nk

⩾
|A′|
|A′|+ 1

× Φ ⩾
|A′|
|A′|+ 1

× (|A′|+ 1) = |A′| . (5.24)

This Equation (5.24) is the key equation allowing the use of Lemma 17. From Lemma 17, Equations (5.22)
and (5.24) imply for k∈J0 , KK, (ℓa)a∈A′⊂J0 , LK,

Pν

(∑
a∈A′

I{t∈B(k,(ℓa)a∈A′)}Za ⩾
Φ ∨(fξ(n)− fξ(N0)) + 2ε2N

Nk

)
(5.25)

⩽
e|A

′|

|A′||A′|

[
ρ2
(
Φ ∨(fξ(n)− fξ(N0)) + 2ε2N

)]|A′|
e−ρ2(Φ∨(fξ(n)−fξ(N0))+2ε2N) ,
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that is, according to Equation (5.17),

Pν

(
t∈B(k, (ℓa)a∈A′)∩S(k, (ℓa)a∈A′)

)
⩽

e|A
′|

|A′||A′|

[
ρ2
(
Φ ∨(fξ(n)− fξ(N0)) + 2ε2N

)]|A′|
e−ρ2(Φ∨(fξ(n)−fξ(N0))+2ε2N)

⩽
e|A

′|

|A′||A′|

[
Φ ∨ fξ(n) + 2ε2N

]|A′|
e−ρ2(Φ∨(fξ(n)−fξ(N0))+2ε2N) . (5.26)

5. Union bound :
The union bound writes

Pν

t ∈ ⋃
k∈J0,KK

(ℓa)a∈A′⊂J0,LK

B(k, (ℓa)a∈A′) ∩ S(k, (ℓa)a∈A′)


⩽

∑
k∈J0,KK

(ℓa)a∈A′⊂J0,LK

Pν

(
t ∈ B(k, (ℓa)a∈A′) ∩ S(k, (ℓa)a∈A′)

)
. (5.27)

By combining both previous Equations (5.26) and (5.27), we have

Pν

t ∈ ⋃
k∈J0,KK

(ℓa)a∈A′⊂J0,LK

B(k, (ℓa)a∈A′) ∩ S(k, (ℓa)a∈A′)

 (5.28)

⩽
∑

k∈J0,KK
(ℓa)a∈A′⊂J0,LK

e|A
′|

|A′||A′|

[
Φ ∨ fξ(n) + 2ε2N

]|A′|
e−ρ2(Φ∨(fξ(n)−fξ(N0))+2ε2N) ,

which implies, according to Equations (5.1) and (5.20),

Pν


⋃
t⩾1

∀a∈A′, µ̂a(t)<µa−ε
M⩽NA′ (t)⩽|A′|fξ(n)/2ε2

∑
a∈A′

Na(t)kl(µ̂a(t)|µa − ε) + fξ(NA′(t)) ⩾ fξ(n)


⩽

∑
k∈J0,KK

(ℓa)a∈A′⊂J0,LK

e|A
′|

|A′||A′|

[
Φ ∨ fξ(n) + 2ε2N

]|A′|
e−ρ2(Φ∨(fξ(n)−fξ(N0))+2ε2N)

=
e|A

′|

|A′||A′| (K + 1) (L+ 1)|A
′| [Φ ∨ fξ(n) + 2ε2N

]|A′|
e−ρ2(Φ∨(fξ(n)−fξ(N0))+2ε2N).

(5.29)

We now simplify these terms in order to optimize the obtained upper bound. We note that Equations (5.10)
and (5.19) plus Lemma (29) imply

K, L ⩽ log(n)
[
Φ ∨ fξ(n) + 2ε2N

]
(5.30)

H. Saber page 76 2022



and
ρ < 1

(K + 1) (L+ 1)|A
′| ⩽ log(n)|A

′|+1 [Φ ∨ fξ(n) + 2ε2N ]
|A′|+1

.
(5.31)

Furthermore, Equations (5.9) and (5.19) imply

−ρ2
(
Φ ∨(fξ(n)− fξ(N0)) + 2ε2N

)
⩽ −ρ2

(
Φ ∨ fξ(n)− Φ ∨ fξ(N0) + 2ε2N

)
= −Φ ∨ fξ(n) + 2ε2N − 1

Φ ∨ fξ(n) + 2ε2N

(
Φ ∨ fξ(n)− Φ ∨ fξ(N0) + 2ε2N

)
= −

[
Φ ∨ fξ(n) + 2ε2N − 1

]
+

Φ ∨ fξ(N0)

Φ ∨ fξ(n) + 2ε2N

= −
[
Φ ∨ fξ(n) + 2ε2N

]
+ 1 +

Φ ∨ fξ(N0)

Φ ∨ fξ(n) + 2ε2N

⩽ −
[
Φ ∨ fξ(n) + 2ε2N

]
+ 2 . (5.32)

Thus, by combining Equations (5.29), (5.31) and (5.32) we get

Pν


⋃
t⩾1

∀a∈A′, µ̂a(t)<µa−ε
M⩽NA′ (t)⩽|A′|fξ(n)/2ε2

∑
a∈A′

Na(t)kl(µ̂a(t)|µa − ε) + fξ(NA′(t)) ⩾ fξ(n)


⩽

e|A
′|+2

|A′||A′| log(n)
|A′|+1

[
Φ ∨ fξ(n) + 2ε2N

]|A′|+1
e−[Φ∨fξ(n)+2ε2N] , (5.33)

where N=M∨ fξ(n)
1−log(1−maxa∈A′ µa)

.

We remind in the following lemma a result from Magureanu et al. (2014) based on multivariate stochastic
ordering.

Lemma 17 (Stochastic ordering). LetM>0, A⩾2. Let Z∈RA be a random variable such that for all ζ∈RA
+,

P(Z ⩾ ζ) ⩽ exp

(
−M

A∑
a=1

ζa

)
.

Then for all z⩾A/M ,

P

(
A∑

a=1

Za ⩾ z

)
⩽

(
Mze

A

)A

e−Mz .
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Chapter 6

Routine Bandits

6.1 The Routine Bandit Setting
A routine bandit problem is specified by a time horizon T ⩾ 1 and a finite set of distributions ν = (νb)b∈B
with means (µa,b)a∈A,b∈B, where A is a finite set of arms and B is a finite set of bandit configurations. Each
b∈B can be seen as a classical multi-armed bandit problem defined by νb = (νa,b)a∈A. At each period h⩾ 1
and for all time steps t ∈ J1, T K, the learner deals with a bandit bh⋆ ∈ B and chooses an arm aht ∈ A, based
only on the past. The learner then receives and observes a reward Xh

t ∼ νaht ,bh⋆ . The goal of the learner is to
maximize the expected sum of rewards received over time (up to some unknown number of periods H ⩾ 1).
The distributions are unknown, which makes the problem non-trivial. The optimal strategy therefore consists
in playing repeatedly on each period h, an optimal arm ah⋆ ∈ argmaxa∈A µa,bh⋆

, which has mean µh
⋆ = µah⋆ ,b

h
⋆
.

The goal of the learner is equivalent to minimizing the cumulative regret with respect to an optimal strategy:

R(ν,H, T ) = Eν

[
H∑

h=1

T∑
t=1

(
µh
⋆ −Xh

t

)]
. (6.1)

Related works One of the closest setting to routine bandits is the sequential transfer scenario Ghesh-
laghi Azar et al. (2013), where the cardinality |B| and quantities H and T are known ahead of time, and
the instances in B are either known perfectly or estimated with known confidence. Routine bandits also
bear similarity with clustering bandits Gentile et al. (2014), a contextual bandit setting Langford and Zhang
(2007) where contexts can be clustered into finite (unknown) clusters. While both settings are recurring bandit
problems, routine bandits assume no information on users (including their number) but users are recurring for
several iterations of interaction, while clustering bandits assume that each user is seen only once, but is charac-
terized by features such that they can be associated with previously seen users. Finally, latent bandits Maillard
and Mannor (2014) consider the less structured situation when the learner faces a possibly different user at
every time.

Assumptions and working conditions The configuration ν, the set of bandits B, and the sequence of bandits
(bh⋆)h⩾1 are unknown (in particular |B| and the identity of user bh⋆ are unknown to the learner at time t).
The learner only knows that ν ∈ D, where D is a given set of bandit configurations. In order to leverage
information from the bandit instances encountered, we should consider that bandits reoccur. We denote by
βh
b =

∑h
h′=1I{bh′⋆ =b}/h the frequency of bandit b ∈ B at period h ⩾ 1 and assume βH

b > 0. The next two
assumptions respectively allow for two bandit instances b and b′ to be distinguishable from their means when
b ̸= b′ and show consistency in their optimal strategy when b = b′.

Assumption 10 (Separation). Let us consider γν :=min
b ̸=b′

min
a∈A
{|µa,b−µa,b′| , 1}. We assume γν>0.
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Assumption 11 (Unique optimal arm). Each bandit b∈B has a unique optimal arm a⋆b .

Assumption 11 is standard. Finally, we consider normally-distributed rewards. Although most of our analysis
(e.g., concentration) would extend to exponential families of dimension 1, Assumption 12 increases readability
of the statements.

Assumption 12 (Gaussian arms). The set D is the set of bandit configurations such that for all bandit b∈B,
for all arm a∈A, νa,b is a one-dimensional Gaussian distribution with mean µa,b∈R and variance σ2=1.

For ν ∈ D, we define for an arm a ∈ A and a bandit b ∈ B their gap ∆a,b = µ⋆
b−µa,b and their total number

of pulls over H periods Na,b(H,T ) =
∑H

h=1

∑T
t=1 I{aht =a,bh⋆=b}. An arm is optimal for a bandit if their gap is

equal to zero and sub-optimal if it is positive. Thanks to the chain rule, the regret rewrites as

R(ν,H, T ) =
∑
b∈B

∑
a̸=a⋆b

Eν [Na,b(H,T )]∆a,b . (6.2)

Remark 15 (Fixed horizon time). We assume the time horizon T to be the same for all periods h ∈ J1 , HK
out of clarity of exposure of the results and simplified definition of consistency (Definition 3). Considering a
different time Th for each h would indeed require a substantial rewriting of the statements (e.g. think of the
regret lower bound), which we believe hinders readability and comparison to classical bandits.

We conclude this section by adapting for completeness the known lower bound on the regret Lai and Robbins
(1985); Agrawal et al. (1989); Graves and Lai (1997) for consistent strategies to the routine bandit setting. We
defer the proof to Appendix C.1.

Definition 3 (Consistent strategy). A strategy is H-consistent on D if for all configuration ν ∈ D, for all
bandit b∈B, for all sub-optimal arm a ̸= ab⋆, for all α > 0,

lim
T→∞

Eν

[
Na,b(H,T )

Nb(H,T )α

]
= 0 ,

where Nb(H,T )=β
H
b HT is the number of time steps the learner has dealt with bandit b.

Proposition 5 (Lower bounds on the regret). Let us consider a consistent strategy. Then, for all configuration
ν∈D, it must be that

lim inf
T→∞

R(ν,H, T )

log(T )
⩾ c⋆ν :=

∑
b∈B

∑
a̸=a⋆b

∆a,b

KL(µa,b|µ⋆
b)
,

where KL(µ|µ′)=(µ′ − µ)2/2σ2 denotes the Kullback-Leibler divergence between one-dimensional Gaussian
distributions with means µ, µ′∈R and variance σ2=1.

This lower bound differs (it is larger) from structured lower bound that can exclude some set of arms, as in
Agrawal et al. (1989); Maillard and Mannor (2014) using prior knowledge on B, which here is not available.
On the other hand, we remark that the right hand side of the bound does not depend on H , which suggests
that one at least asymptotically, one can learn from the recurring bandits. In the classical bandit setting, lower
bounds on the regret Lai and Robbins (1985) have inspired the design of the well-known KLUCB Garivier and
Cappé (2011) algorithm. In the next section, we build on this optimal strategy to propose a variant for the
routine bandit.

6.2 The KLUCB-RB Strategy
Given the current period h, the general idea of this optimistic strategy consists in aggregating observations
acquired in previous periods 1 . . . h−1 where bandit instances are tested to be the same as the current bandit
bh⋆ . To achieve this, KLUCB-RB relies both on concentration of observations gathered in previous periods and
the consistency of the allocation strategy between different periods.
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Notations The number of pulls, the sum of the rewards and the empirical mean of the rewards from the arm
a in period h⩾ 1 at time t⩾ 1, are respectively denoted by Nh

a (t)=
∑t

s=1 I{ahs=a}, S
h
a (t)=

∑t
s=1 I{ahs=a}X

h
s

and µ̂h
a(t)=S

h
a (t)/N

h
a (t) if Nh

a (t)>0, 0 otherwise.

Strategy For each period h⩾ 1 we compute an empirical best arm for bandit bh⋆ as the arm with maximum
number of pulls in this period: ah⋆ ∈ argmax

a∈A
Nh

a (T ).
1 Similarly, in the current period h⩾ 1, for each time

step t ∈ J1, T K, we consider an arm with maximum number of pulls: aht ∈ argmax
a∈A

Nh
a (t) (arbitrarily

chosen). At each period h ∈ J2, HK each arm is pulled once. Then at each time step t⩾ |A|+1, in order to
possibly identify the current bandit bh⋆ with some bandits bk⋆ from a previous period k∈J1, h−1K, we introduce
for all arm a∈A, the test statistics

Zk,h
a (t)=∞ · I{aht ̸=ak⋆}+

∣∣µ̂h
a(t)−µ̂k

a(T )
∣∣−d(Nh

a (t), δ
h(t)
)
−d
(
Nk

a (T ), δ
h(t)
)
, (6.3)

where the deviation for n⩾1 pulls with probability 1−δ, for δ>0, and probability δh(t) are, respectively,

d(n, δ) =

√
2

(
1 +

1

n

)
log
(√

n+ 1
/
δ
)

n
δh(t) =

1

4 |A|
× 1

h− 1
× 1

t(t+ 1)
.

The algorithm finally computes the test

Tk,h(t) := max
a∈A

Zk,h
a (t) ⩽ 0 . (6.4)

After t rounds in current period h, the previous bandit bk⋆ is suspected of being the same as bh⋆ if the test Tk,h(t)
is true. From Eq. 6.3, we note that this requires the current mostly played arm to be the same as the arm that
was mostly played in period k, which happens if there is consistency in the allocation strategy for both periods
under Assumption 11. We then define aggregated numbers of pulls and averaged means: For all arm a∈A,
for all period h⩾1, for all time step t⩾1,

N
h

a(t) := Nh
a (t) +

h−1∑
k=1

I{Tk,h(t)}N
k
a (T ), K

h

t :=
h−1∑
k=1

I{Tk,h(t)},

S
h

a(t) := Sh
a (t) +

h−1∑
k=1

I{Tk,h(t)}S
k
a(T ), µh

a(t) = S
h

a(t)/N
h

a(t) .

and follow a KLUCB strategy by defining the index of arm a∈A in period h⩾1 at time step t⩾1 as

uha(t) = min
{
Uh
a (t) , U

h

a(t)
}
, (6.5)

where

Uh
a (t) := µ̂h

a(t) +

√
2f(t)

Nh
a (t)

, (6.6)

U
h

a(t) := µh
a(t) +

√√√√√2f
(
K

h

t T + t
)

N
h

a(t)
, (6.7)

1ties are broken arbitrarily
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with the function f being chosen, following Cappé et al. (2013) for classical bandits, as

f(x) := log(x) + 3 log log(max {e, x}) ,∀x ⩾ 1 .

One recognizes that Eq. 6.6 corresponds to the typical KLUCB upper bound for Gaussian distributions. The
resulting KLUCB-RB strategy is summarized in Algorithm 10.

Algorithm 10 KLUCB-RB
Initialization (period h=1): follow a KLUCB strategy for bandit b1⋆.
for period h⩾2 do

Pull each arm once
for time step t∈J|A| , T−1K do

Compute for each previous period k∈J1, h−1K the test Tk,h(t) := max
a∈A

Zk,h
a (t) ⩽ 0

Aggregate data from periods with positive test and compute for each arm a∈A the index uha(t) accord-
ing to equations (6.5)-(6.6)-(6.7).
Pull an arm with maximum index aht+1 ∈ argmaxa∈A u

h
a(t)

end for
end for

Theoretical guarantees The next result shows that the number of sub-optimal pulls done by KLUCB-RB is
upper-bounded in a near-optimal way.

Theorem 5 (Upper bounds). Let us consider a routine bandit problem specified by a set of Gaussian distribu-
tions ν∈D and a number of periods H⩾1. Then under KLUCB-RB strategy, for all 0<ε<εν , for all bandit
b∈B, for all sub-optimal arm a ̸=a⋆b ,

Eν [Na,b(H,T )] ⩽
f(βH

b HT )

KL(µa,b+ε|µ⋆
b)

+
H∑

h=1

I{bh⋆=b}

[
τhν +4 |A|

(
1

ε2
+1

)(
5+

8h f(hT )

T KL(µa,b+ε|µ⋆
b)

)]
,

where, for all period h ⩾ 2, τhν := 2φ
(
8|A|

[
ε−2
ν +65γ−2

ν log
(
128|A|(4h)1/3γ−2

ν

)])
, φ : x ⩾ 1 7→ x log(x),

εν=min
b∈B

min
a̸=a⋆b

∆a,b/2 and γν=min
b ̸=b′

min
a∈A
{|µa,b−µa,b′| , 1}.

This implies that the dependency on the time horizon T in these upper bounds is asymptotically optimal with
regard to the lower bound on the regret given in Proposition 5. From Eq. 6.2, by considering the case when
the time horizon T tends to infinity, we deduce that KLUCB-RB achieves asymptotic optimality.

Corollary 4 (Asymptotic optimality). With the same notations and under the assumptions as in Theorem 5,
KLUCB-RB achieves

lim sup
T→∞

R(ν,H, T )

log(T )
⩽ c⋆ν ,

where c⋆ν is defined as in Proposition 5.

For comparison, let us remark that under the strategy that runs a separate KLUCB type strategy for each period,
the regret normalized by log(T ) asymptotically scales as H

∑
b∈B β

H
b

∑
a̸=a⋆b

∆a,b/KL(µa,b|µ⋆
b). KLUCB-RB

strategy then performs better than this naive strategy by a factor of the order of H/|B|. Also, up to our
knowledge, this result is the first showing provably asymptotic optimal regret guarantee in a setting when an
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agent attempts at transferring information from past to current bandits without contextual information. In the
related but different settings considered in Gheshlaghi Azar et al. (2013); Gentile et al. (2014); Maillard and
Mannor (2014), only logarithmic regret was shown, however asymptotic optimality was not proved for the
considered strategies. Also, let us remind that |B| does not need to be known ahead of time by the KLUCB-RB
algorithm.

6.3 Sketch of Proof
This section contains a sketch of proof for Theorem 5. We refer to Appendix C.2 for more insights and
detailed derivations. The first preoccupation is to ensure that KLUCB-RB is a consistent strategy. This is
achieved by showing that KLUCB-RB aggregates observations that indeed come from the same bandits with
high probability. In other words, we want to control the number of previously encountered bandits falsely
identified as similar to the current one.

Definition 4 (False positive). At period h⩾ 2 and step t⩾ 1, a previous period k∈ J1, h−1K is called a false
positive if the test Tk,h(t) is true while previous bandit bk⋆ differs from current bandit bh⋆ .

Combining the triangle inequality and time-uniform Gaussian concentration inequalities (see e.g., Abbasi-
Yadkori et al. (2011)), we prove necessary condition for having Zk,h

a (t) ⩽ 0 for some arm a ∈ A at current
period h and time step t, while having bk⋆ ̸= bh⋆ .

Lemma 18 (Condition for false positives). If there exists a false positive at period h⩾2 and time step t> |A|,
then with probability 1−1/t(t+1), it must be that

min
k∈J1,h−1K:bk⋆ ̸=bh⋆

min
a∈A

∣∣µa,bh⋆
− µa,bk⋆

∣∣ ⩽ 4d

(
t

|A|
, δh(t)

)
.

The proof of this key result is provided in Appendix C.2.1. It relies on time-uniform concentration inequalities.
We now introduce a few quantities.
Let us first consider at period h⩾2 the time step

thν := max

{
t ⩾ |A| : γν ⩽ 4d

(
t

|A|
, δh(t)

)}
+ 1 , (6.8)

beyond which there is no false positives with high probability. We define for all a ̸= ah⋆ , for all 0<ε< εν :=
minb∈B mina̸=a⋆b

{∆a,b, 1}/2 the subsets of times when there is a false positive

T h
a :=

{
t ⩾ thν : aht+1 = a and Kh

+(t) ̸= Kh
⋆(t)
}

T h :=
⋃
a̸=ah⋆

T h
a , (6.9)

where we introduced for convenience the setsKh
+ :=

{
k∈J1, h−1K : Tk,h(t) is true

}
andKh

⋆(t) :=
{
k∈J1, h− 1K : bk⋆=bh⋆ and aht =a

k
⋆

}
.

We also consider the times when the mean of the current pulled arm is poorly estimated or the best arm ah⋆ is
below its mean (either for the current period or by aggregation) and define

Cha,ε :=
{
t⩾1 : aht+1=a and

(∣∣µ̂h
a(t)−µh

a

∣∣>ε or uhah⋆ (t) = Uh
ah⋆
(t)<µh

⋆

)}
Chε :=

⋃
a̸=ah⋆

Cha,ε (6.10)

Ch
a,ε :=T h

a ∪
{
t⩾ thν : t /∈T h, ah

t+1=a and
(∣∣∣µh

a(t)−µh
a

∣∣∣>ε or uh
ah
⋆
(t) = U

h
ah
⋆
(t)<µh

⋆

)}
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Chε :=
⋃
a̸=ah⋆

Cha,ε . (6.11)

The size of these (bad events) sets can be controlled by resorting to concentration arguments. The next lemma
borrows elements of proof from Combes and Proutiere (2014b) for the estimation of the mean of current pulled
arm and Cappé et al. (2013) for the effectiveness of the upper confidence bounds on the empirical means of
optimal arms. We adapt these arguments to the routine-bandit setup, and provide additional details in the
appendix.

Lemma 19 (Bounded subsets of times). For all period h⩾2, for all arm a∈A, for all 0<ε<εν ,

Eν

[∣∣T h
∣∣]⩽1 Eν

[∣∣Cha,ε∣∣]⩽4ε−2 + 2 Eν

[∣∣∣Cha,ε∣∣∣]⩽4ε−2 + 3 .

By definition of the index (Eq. 6.7), we have

∀t > |A| , Nh
a (t)KL

(
µ̂h
a(t)
∣∣Uh

a (t)
)
= f(t)

N
h

a(t)KL
(
µh
a(t)
∣∣∣Uh

a(t)
)
= f

(
K

h

t T + t
)
.

We then provide logarithmic upper bounds on the aggregated number of pulls N
h

a(t) to deduce the consis-
tency of KLUCB-RB strategy. The following non-trivial result combines standard techniques with the key
mechanism of the algorithm.

Lemma 20 (Consistency). Under KLUCB-RB strategy for all period h ⩾ 2, for all 0 < ε < εν , for all sub-
optimal arm a ̸=ah⋆ , for all t> |A| such that aht+1=a,

if t /∈Cha,ε, Nh
a (t)⩽

f(t)

KL(µh
a + ε|µh

⋆)
, if t⩾ thν and t /∈Cha,ε, N

h

a(t)⩽
f
(
Kh

t T + t
)

KL(µh
a + ε|µh

⋆)
,

where Kh
t :=min

{
K

h

t , β
h−1
bh⋆

(h−1)
}

. In particular this implies

∀t ⩾ 1,∀a ̸=ah⋆ , Nh
a (t) ⩽

f(t)

KL(µh
a + ε|µh

⋆)
+
∣∣Cha,ε∣∣+Nh

a (|A|+1) ,

where Nh
a (|A|+1)⩽2 and Eν

[∣∣Cha,ε∣∣]⩽4ε−2+2.

Thanks to Eq. 6.5 that involves the minimum of the aggregated index U
h

a(t) on past episodes and (not aggre-
gated) indexes Uh

a (t) for the current epoch, the proof proceeds by considering the appropriate sets of time,
namely t /∈ Cha,ε or t /∈ Cha,ε depending on the situation. In particular, we get for the considered a that the

maximum index uha(t) is either greater than uh
ah⋆
(t) = Uh

ah⋆
(t) or uh

ah⋆
(t) = U

h

ah⋆
(t), which in turns enable to have

a control either on Nh
a (t) or N

h

a(t). In order to obtain the last statement, it essentially remains to consider the
maximum time t′ ∈ J|A|+1; tK such that aht′+1 = a and t′ /∈ Cha,ε.
In order to be asymptotically optimal (in the sense of Corollary 4), the second preoccupation is to ensure with
high probability that we aggregate all of the observations coming from current bandit bh⋆ when computing the
indexes. From the definition of T h (Eq. 6.9) and Lemma 19, this amounts to ensure that the current most
pulled arm and the most pulled arms of previous periods are the optimal arms of the corresponding periods
with high probability. By using the consistency of KLUCB-RB, we prove necessary conditions for the most
pulled arms being different from the optimal ones.
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Lemma 21 (Most pulled arms). For all period h⩾ 2, for all 0< ε < εν , for all t⩾ thν such that t /∈ T h and
aht ̸=ah⋆ ,

t+
∣∣Kh

⋆ (t)
∣∣T

2
−
(
f(t)+

∣∣∣Kh
⋆ (t)

∣∣∣f(T ))∑
a̸=ah

⋆

1

KL(µh
a+ε

∣∣µh
⋆

) −
(
1+

∣∣∣Kh
⋆ (t)

∣∣∣)|A|⩽
∑

k∈Kh
⋆ (t)∪{h}

∣∣∣Ck
ε

∣∣∣ .
Let us remind that Kh

⋆(t), defined after Lemma 18, counts the previous phases before h facing the same bandit
as the current one, and for which the most-played arm until then agree. Then, by combining Lemma 20 and
Lemma 21 we obtain randomized upper bounds on the number of pulls of sub-optimal arms.

Proposition 6 (Randomized upper bounds). Under KLUCB-RB strategy, for all bandit b ∈ B, for all sub-
optimal arm a ̸=a⋆b , for all 0<ε<εν ,

Na,b(H,T ) ⩽
f(βH

b HT )

KL(µa,b+ε|µ⋆
b)

+
H∑

h=1

I{bh⋆=b}

[
T h
ν,ε+4

∣∣Chε ∣∣+∣∣∣Chε ∣∣∣+ f(hT )

KL(µa,b+ε|µ⋆
b)

h∑
k=1

8
∣∣Ckε ∣∣
T

+I{T∈T k}

]
,

where T h
ν,ε :=max

{
t⩾ thν :

t

4
−
∑
a̸=ah⋆

f(t)

KL(µh
a+ε|µh

⋆)
⩽ |A|

}
+1 for h⩾2, with thν defined in Eq. (6.8).

We prove Theorem 5 by averaging the randomized upper bounds from Proposition 6.

6.4 Numerical Experiments
We now perform experiments to illustrate the performance of the proposed KLUCB-RB under different em-
pirical conditions. We compare KLUCB-RB with a baseline strategy which consists in using a KLUCB that
restarts from scratch at every new period, that is the default strategy when no information (features) is pro-
vided to share information across periods. We also include a comparison with the sequential transfer algorithm
tUCB Gheshlaghi Azar et al. (2013) which constitutes interesting baseline to compare with, since it transfers
the knowledge of past periods to minimize the regret in a very similar context. Through the periods h∈J1, HK,
tUCB incrementally estimates the mean vectors by the Robust Tensor Power method Anandkumar et al. (2013,
2014), then yielding a deviation of rateO(1/

√
h) over the empirical means. Thus, it needs to know in advance

the total number of instances |B|. Besides the RTP method requires the mean vectors to be linearly indepen-
dent mutually, which forces the number of arms |A| to be larger than |B|, while KLUCB-RB can tackle this
kind of distributions. The next comparisons between KLUCB-RB and tUCB will mainly illustrate the ability
of the former to make large profits from the very first periods, while the later needs to get a sufficiently high
confidence over the models estimates before beginning to use knowledge from the previous periods.
All experiments are repeated 100 times. Sequence (bh)1⩽h⩽H is chosen randomly each time. All the different
strategies are compared based on their cumulative regret (Eq. 6.1). Additional experiments are provided in
Appendix C.3.

6.4.1 More Arms than Bandits: A Beneficial Case
We first investigate how Assumption 10 can be relaxed in practice. Indeed KLUCB-RB is designed such that
only data from previous periods k < h for which the most pulled arm āk⋆ is the same as the current most pulled
arm āht may be aggregated. Consequently, let us define γ⋆ν := min

b ̸=b′
min
a∈A⋆
|µa,b − µa,b′| with A⋆ being the set of

arms optimal on at least one instance b ∈ B. Assuming that KLUCB-RB converges to the optimal action in a
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(a) |A| = 2 (b) |A| = 10 (c) |A| = 50

Figure 6.1: Cumulative regret of KLUCB, KLUCB-RB and tUCB alongH = 500 periods of T = 103 rounds,
for different action sets.

(a) |A| = 2 (b) |A| = 10 (c) |A| = 50

Figure 6.2: Cumulative regret of KLUCB, KLUCB-RB and tUCB alongH = 500 periods of T = 100 rounds,
for different action sets.

given period, it is natural in practice to relax Assumption 10 from γν > 0 to γ⋆ν > 0. Let us consider a routine
two-bandit setting B = {b1, b2} with actions A such that

b1 : (µ1,b1 , µ2,b1) = (
∆

2
,−∆

2
) and ∀a ⩾ 3, µa,b1 = µ (6.12)

b2 : (µ1,b2 , µ2,b2) = (
∆

2
− γ,−∆

2
+ γ) and ∀a ⩾ 3, µa,b2 = µ, (6.13)

with µ = −∆
2

, and γ = 0.85∆, and where ∆ = 10
√

log(HT )
T

is set to accomodate the convergence of KLUCB
in the experiment. Note that Assumption 10 is not satisfied anymore since γν = 0, but that γ⋆ν = γ. Fig. 6.1
shows the average cumulative regret with one standard deviation after H = 500 periods of T = 103 rounds on
settings where |A⋆| = 2 and |A| ⩾ 2.
We observe that KLUCB-RB can largely benefit from relying on previous periods when the number of arms
exceeds the number of optimal arms, which naturally happens when |A| > |B|. This can also happen for
|A| ⩽ |B| if several bandits b ∈ B share the same optimal arm. Besides, Fig. 6.2 shows a remake of the

same experiment, that is ∆ = 10
√

log(H×103)
103

, where the number of rounds per period is decreased from 103

to T = 100. We can see that KLUCB-RB still yields good satisfying performances, although T is not large
enough to enable a sure identification at each period of the current instance.

6.4.2 Increasing the Number of Bandit Instances
We now consider experiments where we switch among |B| = 5 four-armed bandits. This highlights the kind of
settings which may cause more difficulties to KLUCB-RB in distinguishing the different instances: the lesser
is the number of arms |A| compared to the number of bandits |B|, the harder it should be for KLUCB-RB to
distinguish efficiently the different instances, in particular when the separation gaps are tight. Let us precise
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(a) Setting ν(1) (b) Setting ν(2)

Figure 6.3: Cumulative regret of KLUCB and KLUCB-RB along H = 100 periods of T = 5000 rounds over
three generated settings of |B| = 5 bandit instances with |A| = 4 arms per instance.

that tUCB cannot be tested on such settings, where the number of models |B| exceeds the number of arms |A|,
since it requires that the mean vectors (µa,b)a∈A for all b in B to be linearly independent.
Generating specific settings is far more complicated here than in cases where |B| = 2 because of the intrinsic
dependency between regret gaps (∆a,b)a∈A,b∈B and separation gaps (|µa,b − µa,b′ |)a∈A,b ̸=b′ . Thus, distributions
of bandits ν ∈ D used in the next experiments are generated randomly so that some conditions are satisfied
(see Eq. 6.14, 6.15). Recall that ν : (νb1 , . . . , νb|B|) is the set of bandit configurations in the bandit set B. We
consider two different distributions ν(1) and ν(2), resulting in associated sets of bandits B1 and B2, satisfying
the condition C(ν) in order to ensure the convergence of algorithms at each period:

C(ν) : ∀b ∈ B, 8

√
log(HT )

T
⩽ min

a̸=a⋆b

∆a,b ⩽ 12

√
log(HT )

T
. (6.14)

Let γ(α) := α
√

log(HT )
T

. We generate two sets of bandits B1 and B2 such as to ensure that ν(1) and ν(2) satisfy

γ(12) ⩽ γ⋆ν(1) ⩽ γ(16) γ(4) ⩽ γ⋆ν(2) ⩽ γ(8). (6.15)

Fig. C.3 (Appendix C.3.3) shows the bandit instances in the two generated bandit sets.
All experiments are conducted under the fair frequency β = 1/|B|. More precisely, once a period h ⩾ 1 ends,
bh+1
⋆ is sampled uniformly in B and independently of the past sequence (bk⋆)1⩽k⩽h. Fig. 6.3 shows the average

cumulative regret with one standard deviation after H = 100 periods of T = 5000 rounds for the two settings.
We observe that the performance of KLUCB-RB is tied to the smallest sub-optimal gap for all bandit instances.
Fig. 6.3a highlights that KLUCB-RB outperforms KLUCB if the minimal sub-optimal gap of each bandit is less
than the characteristic smaller separation gap γ⋆ν . This supports the observation from Sec. 6.4.1 that separation
on optimal arms is sufficient. When arms are easier to separate than bandits, one might as well restart a
classical KLUCB from scratch on each period (Fig. 6.3b). Note that situations where 0 < γν ≪ min

b∈B
min
a̸=a⋆b

∆a,b

may not result in a catastrophic loss in learning performances if the arms in A⋆ are close enough not to distort
estimates computed on aggregated samples of from false positive models (see Appendix C.3).

6.4.3 Critical Settings
We saw previously that settings where bandit instances are difficult to distinguish may yield poor perfor-
mance (see Section 6.4.2, Fig. 6.3b). Indeed, to determine if two estimated bandit models might result from
the same bandit, both KLUCB-RB and tUCB rely on a compatibility over each arm, i.e. the intersection of
confidence intervals. Therefore, it is generally harder to distinguish rollouts from many different distributions
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(a) T = 100 (b) T = 500

Figure 6.4: Cumulative regret of KLUCB, KLUCB-RB and tUCB along H = 500 period for different numbers
of rounds.

(that is the cardinal of |B| is high) when |A| is low and differences between arms are tight. To illustrate that,
we consider an experiment on the setting described in Figure C.4 (Appendix C.3.3), composed of 4-armed
bandits. We recall that tUCB requires in particular |A| ⩾ |B|. Thus we choose a set |B| of cardinal 4 in order
to include a comparison of our algorithm with tUCB.
Here we have |A⋆| = {0, 1, 3} and γ⋆ν := min

b ̸=b′
min
a∈A⋆
|µa,b − µa,b′ | = 0.15, while the minimal regret gaps of

each instances are (min
a̸=a⋆b

∆a,b)b∈B = (0.74, 0.80, 0.81, 0.89). Consequently, finding the optimal arm at each

period independently is here far less difficult than separating the different instances. Such a setting is clearly
unfavorable for KLUCB-RB and we expect KLUCB to perform better.
Fig. 6.4a and Fig. 6.4b the cumulative regret for the three strategies, along H = 500 periods of T = 100 and
T = 500 rounds respectively. As expected, KLUCB outperforms KLUCB-RB under this critical setting. On the
other hand tUCB seems more robust and displays a cumulative regret trend that would be improving compared
with KLUCB in the long run. One should still recall that tUCB requires knowing the cardinality of |B|, while
KLUCB-RB does not.
We may notice (Fig. 6.4a) that if the number of rounds T is sufficiently small, that is KLUCB does not have
enough time to converge for each bandit, then KLUCB-RB does not perform significantly worse than KLUCB
for the first periods. Then, as T rises (Fig. 6.4b), KLUCB begins to converge while KLUCB-RB still aggregate
samples from confusing instances, which yields an explosion of the cumulative regret curve. We then expect
for such setting that KLUCB will need far more longer periods (T → ∞) to reach a regime in which it will
discard all false positive rollouts and takes advantage over KLUCB. On the contrary, tUCB takes advantage
of the knowledge of |B| and then waits to have enough confidence over the mean vectors of the 4 models to
exploit them.

6.5 Conclusion
In this chapter we introduced the new routine bandits framework, for which we provided lower bounds on
the regret (Proposition 5). This setting applies well to problems where, for example, customers anonymously
return to interact with a system. These dynamics are known to be of interest to the community, as evidenced
by the existing literature Gheshlaghi Azar et al. (2013); Gentile et al. (2014); Maillard and Mannor (2014).
Routine bandits complement well these existing settings.
We then proposed the KLUCB-RB strategy (Alg. 10) to tackle the routine bandit setting by building on the sem-
inal KLUCB algorithm for classical bandits. We proved upper bounds on the number of sub-optimal plays by
KLUCB-RB (Theorem 5), which were used to prove asymptotic upper bounds on the regret (Corollary 4). This
result shows the asymptotic optimality of the strategy and thanks to the proof technique that we considered,
which is of independent interest, we further obtained finite-time regret guarantees with explicit quantities. We
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indeed believe the proof technique may be useful to handle other structured setups beyond routine bandits.
We finally provided extensive numerical experiments to highlight the situations where KLUCB-RB can effi-
ciently leverage information from previously encountered bandit instances to improve over a classical KLUCB.
More importantly, we highlighted the cost to pay for re-using observations from previous periods, and showed
that easy tasks may be better tackled independently. This is akin to an agent that would behave badly by
relying on a wrong inductive bias. Fortunately, there are many situations where one can leverage knowledge
from bandit instances faced in the past. This would notably be the case if the agent has to select products to
recommend from a large set (A) and it turns out that there exists a much smaller set of products (A⋆) that is
preferred by users (Sec. 6.4.1).
Our results notably show that transferring information from previously encountered bandits can be highly
beneficial (e.g., see Fig. 6.1 and 6.3a). However, the lack of prior knowledge about previous instances (in-
cluding the cardinality of the set of instances) introduces many challenges in transfer learning. For example,
attempting to leverage knowledge from previous instances could result in negative transfer if bandits cannot
be distinguished properly (e.g., see Fig. 6.4).
Therefore, reducing the cost incurred for separating bandit instances should constitute a relevant angle to
tackle as future work. Another natural line of other future work could investigate extensions of KLUCB-RB to
the recurring occurrence of other bandit instances, e.g., linear bandits, contextual bandits, and others.
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Chapter 7

Conclusion

7.1 Summary of the presented contributions
First, we have revisited the setup of unimodal multi-armed bandits: We introduced a novel variant based on
IMED algorithm. This algorithm does not separate exploration from exploitation rounds and is proven optimal
for one-dimensional exponential family distributions. Remarkably, IMED-UB algorithm does not require any
optimization procedure, which can be interesting for practitioners. We also provided a novel proof algorithm,
in which we make explicit empirical lower and upper bounds, before tackling the handling of bad events by
specific concentration tools, in particular Theorem 6 from Maillard (2018). This proof technique greatly sim-
plifies and shortens the analysis of IMED-UB. Last, we provided numerical experiments that show the practical
effectiveness of IMED-UB. Then, we extend our approach for unimodal bandits to what we called multimodal
structure: We introduced IMED-MB algorithm that effectively explores local maximums by involving second
order indexes (Equation 3.17). Interestingly, this second order exploration is made easy due to the considera-
tion of IMED type indexes. Finally, we introduced the novel graph-structured bandit framework, for which we
provided instance-dependent lower bounds on the regret (Proposition 3). This setting encompasses Unimodal
and Lipschitz structures, which are known to be of interest to the community as evidenced by the existing lit-
erature (Saber et al. (2021a); Trinh et al. (2020); Combes and Proutiere (2014a); Magureanu et al. (2014)), and
enables to have a unified treatment for such structures. We then proposed IMED-GS algorithm (Algorithm 9)
to tackle the graph-structured bandit setting by building on popular IMED algorithm for unstructured bandits.
We proved asymptotically optimal and fully explicit finite time guarantees on the regret, which are not very
common in this framework. The analysis of the optimality of the proposed approach led us to state and prove
a novel concentration inequality (Theorem 4) that can be useful for subsequent work. Finally, we show that
novel IMED-GS algorithm has good performance with smaller samples (Figure 4.1).

7.2 Some personal satisfactions
The first problem I wanted to solve during my PhD was to propose an optimal and efficient algorithm for
Aggregate of Bandits (Section A.1). This problem has been introduced to me by Odalric-Ambrym Maillard,
my supervisor. I succeeded in solving this problem by considering the graph-structured structure, a more
general setting, and by introducing IMED-GS algorithm. What I appreciated the most in solving this problem
was to solving it by establishing strong links between IMED approaches and Theorem 6 from Maillard (2018),
a theoretical paper of my supervisor on boundary crossing probabilities. Above all, I literally loved working
with IMED algorithm from Honda and Takemura (2015). I appreciated promoting it at SCOOL, our research
team at Inria Lille, and teaching it as a teacher assistant at l’X or CentraleSupélec. These teaching opportunies
granted me professional and personal enrichment, and have been possible thanks to Odalric-Ambrym Maillard,
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to whom I am very grateful.

7.3 Future work
First of all, the content of Chapters 3, 4 and 5 about multimodal and graph-structured bandits could be exploited
to follow up on future publications. Now, we briefly provide some possible guidelines for future work.

7.3.1 Algorithms with computational efficiency
When the number of arms |A| is large, even for non-structured bandit problems, proposing algorithms that are
computationally efficient is challenging. We illustrated in Figure 2 from Saber et al. (2020) how d-IMED-UB,
algorithm based on IMED type indexes, can be efficient despite an increasing number of arms when assuming
unimodal bandit structure. Further, the IMED indexes and its dichotomic exploration are easy to compute.
That is why computation times under d-IMED-UB algorithm are quite reasonable. Thus, d-IMED-UB effi-
ciency comes from IMED types indexes that allow second order exploration. We think that this mechanism
of exploring the underlying structure based on second order IMED type indexes can be extended to structures
other than the unimodal one.

7.3.2 IMED for Markov Decision Processes with known transition probabilities
An optimal algorithm for a given Markov Decision Process (MDP) follows optimal random cycle composed in
particular of an optimal state-action pairs. Furthermore, there is two levels of sub-optimality for a sub-optimal
state-action (s, a):

• s is a sub-optimal state but a is an optimal action in state s or state s is optimal but action a is sub-optimal

• s is a sub-optimal state and a a sub-optimal action in state s.

Thus, a mechanism allowing second order exploration may be relevant to identify and deal with these two
types of sub-optimality. We think our work that consists in proposing IMED approaches for bandit problems
can be inspiring to provide algorithms for MDPs with efficient mechanism of exploring sub-optimal state-
action pairs. However, unlike the case of bandits, the learner cannot choose an arbitrary state-action pair at
each time step when dealing with a Markov Decision Process. To work around this difficulty, we may assume
that the transition probabilities plus some bounds on the rewards are known. These additional assumptions
would make it possible to better estimate how much does it cost (in terms of regret) to reach (before being able
to explore) a specific state from the current state.

7.3.3 From routine bandit to non-stationary bandit problem
The routine bandit setting is a variant of the multi-armed bandit problem in which a learner faces every day
one of B many bandit instances. More specifically, at each period h∈J1, HK, the same bandit bh⋆ is considered
during T > 1 consecutive time steps, but the identity bh⋆ is unknown to the learner. Such a situation typically
occurs in recommender systems when a learner may repeatedly serve the same user whose identity is unknown
due to privacy issues. The numbers of time steps of episodes are supposed to be the same (equal to T ) only
for convenience. Episodes with different numbers of time steps can be considered. For routine bandits, the
end of each period is known. If we assume that the ends of periods are now unknown, then we recover
a non-stationary bandit setting where we assume a finite (but unknown) possible changes of distribution. By
combining bandit-identification tests with a KLUCB type algorithm, we introduced KLUCB for Routine Bandits
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(KLUCB-RB) algorithm. A natural question to explore is: How to adapt KLUCB-RB when the end (and the
beginning) of each period is now unknown ?
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Lattimore, T. and Szepesvári, C. (2020). Bandit algorithms. Cambridge University Press.

Lu, S., Wang, G., Hu, Y., and Zhang, L. (2019). Optimal algorithms for Lipschitz bandits with heavy-tailed
rewards. In Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 4154–4163. PMLR.

Lu, T., Pál, D., and Pál, M. (2010). Contextual multi-armed bandits. In Teh, Y. W. and Titterington, M.,
editors, Proceedings of the 13th international conference on Artificial Intelligence and Statistics, volume 9,
pages 485–492.

Magureanu, S. (2018). Efficient Online Learning under Bandit Feedback. PhD thesis, KTH Royal Institute of
Technology.

Magureanu, S., Combes, R., and Proutière, A. (2014). Lipschitz bandits: Regret lower bounds and optimal
algorithms. In COLT 2014.

Maillard, O.-A. (2018). Boundary crossing probabilities for general exponential families. Mathematical
Methods of Statistics, 27(1):1–31.

Maillard, O.-A. and Mannor, S. (2014). Latent bandits. In International Conference on Machine Learning
(ICML).

Peña, V. H., Lai, T. L., and Shao, Q.-M. (2008). Self-normalized processes: Limit theory and Statistical
Applications. Springer Science & Business Media.

Pesquerel, F., Saber, H., and Maillard, O.-A. (2021). Stochastic bandits with groups of similar arms. Interna-
tional Conference on Neural Information Processing Systems (NeurIPS).

Robbins, H. (1952). Some aspects of the sequential design of experiments. Bulletin of the American Mathe-
matics Society, 58:527–535.

H. Saber page 94 2022



Saber, H., Ménard, P., and Maillard, O.-A. (2020). Forced-exploration free strategies for unimodal bandits.
arXiv preprint arXiv:2006.16569.

Saber, H., Ménard, P., and Maillard, O.-A. (2021a). Indexed minimum empirical divergence for unimodal
bandits. International Conference on Neural Information Processing Systems (NeurIPS).

Saber, H., Saci, L., Maillard, O.-A., and Durand, A. (2021b). Routine bandits: Minimizing regret on recurring
problems. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECML PPKD).

Srinivas, N., Krause, A., Kakade, S., and Seeger, M. (2010). Gaussian process optimization in the bandit
setting: no regret and experimental design. In Proceedings of the 27th International Conference on Inter-
national Conference on Machine Learning, pages 1015–1022. Omnipress.

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25(3/4):285–294.

Thompson, W. R. (1935). On a criterion for the rejection of observations and the distribution of the ratio of
deviation to sample standard deviation. The Annals of Mathematical Statistics, 6(4):214–219.

Trinh, C., Kaufmann, E., Vernade, C., and Combes, R. (2020). Solving bernoulli rank-one bandits with
unimodal thompson sampling. In International Conference on Algorithmic Learning Theory.

Van Parys, B. and Golrezaeiand, N. (2020). Optimal learning for structured bandits. Sloan School of Manage-
ment, MIT.

Wang, T., Ye, W., Geng, D., and Rudin, C. (2020). Towards practical lipschitz bandits. Proceedings of the
2020 ACM-IMS on Foundations of Data Science Conference.

Yu, J. Y. and Mannor, S. (2011). Unimodal bandits. In ICML, pages 41–48. Citeseer.

H. Saber page 95 2022



Appendix A

Graph-Structured Bandits: Complements

We reintroduce some relevant notations in the following paragraph.

Notations. Let ν ∈DΘ. Let µ⋆=maxa∈A µa be the optimal mean and A⋆(ν)= argmaxa∈A µa be the set of
optimal arms of ν. We define for an arm a∈A its sub-optimality gap ∆a =µ⋆−µa. Considering an horizon
T ⩾1, thanks to the tower rule we can rewrite the regret as follows:

R(ν, T ) =
∑
a∈A

∆a Eν

[
Na(T )

]
, (A.1)

where Na(t) =
∑t

s=1 I{as=a} is the number of pulls of arm a at time t. For arms a, a′ ∈A and a relationship
matrix θ∈Θ we define their relative gap δa,a′(θ)=θa,a′−(µa−µa′) and their algebraic gap da,a′(θ)=∆a−δa,a′(θ).
We note that under Assumption 4 for all θ ∈ Θ, δa,a(θ) = 0 and da,a(θ) = ∆a ⩾ 0. Finally, we define
Θ⋆(ν) := {θ∈Θ: ν∈Dθ} and Θa(ν) = {θ ∈ Θ⋆(ν) : ∀a′ ∈ A, θa,a′ ⩾0} for a∈A. When there is no possible
confusion, A⋆(ν), Θ⋆(ν) and Θa(ν) are simply denoted A⋆, Θ⋆ and Θa. We note that for all θ ∈Θ⋆, for all
a, a′ ∈ A, δa,a′(θ) ⩾ 0. For a subset of arms A′ ⊂ A, we denote NA′(t) =

∑
a′∈A′ Na′(t) the aggregated

pulls from arms in A′ ⊂ A. We remind that ∆min = min
a/∈A⋆

∆a and, with regard to Assumption 6 and 8, we

introduce for convenience the quantity εν =
δmin

4
∧ (1−µ⋆), where δmin = ∆min if Θ is a singleton, and

δmin = mina̸=a′{∆min, θ
⋆
a,a′−(µa−µa′)} otherwise.

A.1 Structures Unimodal, Lipschitz and Aggregate of Bandits
We assume for convenience that A = {1, . . . , |A|} ⊂ N. Interestingly, the graph-structure encompasses the
classical structures Lipschitz, Unimodal and Aggregate of bandits. We detail each case separately in the
following.

Lipschitz bandits. The graph-structure can be specified to handle Lipschitz bandits1 by assuming that Θ=
{θ} is a singleton and there exists a positive constant k>0 such that

∀a, a′ ∈ A, θa,a′ = k |a− a′| . (A.2)

Indeed in such a case, the graph structure specializes to the following condition

∀ν ∈ DΘ, ∀a, a′ ∈ A, |µa − µa′ | ⩽ k |a− a′| .
1The notion of Lipschitz bandit we refer to is the one used in Magureanu et al. (2014). We could have considered more general

Lipschitz bandits.
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Unimodal bandits. Likewise, a unimodal structure can be recovered by assuming

Θ =

{
θ ∈ {0, 1}A

2

: ∃a⋆ ∈ A, ∀a ̸= a′, θa,a′ =

∣∣∣∣ 0 if a′ ∈ Ja, a⋆K or a′ ∈ Ja⋆, aK
1 otherwise

}
. (A.3)

Indeed in such a case, the graph structure specializes into a classical unimodal structure

∀ν ∈ DΘ, ∃a⋆ ∈ A, ∀a < a′ < a⋆ or a > a′ > a⋆, µa ⩽ µa′ ⩽ µa⋆ .

Aggregate of Bandits. We now introduce yet another specialization of the graph structure, which shows
the graph structure goes beyond the previous classical examples. Here, we assume A = X ×K and view
ν = (νa)a∈A as a set of bandits ν = (νx)x∈X , where for all x∈X , νx = (νx,k)k∈K is a |K|-multi-armed bandit.
Each bandit νx, for x∈X can be seen as a customer segment and the |K| arms as |K| new customer offers. The
goal of the learner is then to exploit the best twinnings between customer segments X and new customer offers
K while minimizing regret. We assume some similarities and dissimilarities between the customer segments
in the appreciation of customer offers are provided. These similarities and dissimilarities are encoded in a
matrix ω=(ωx,x′)x,x′∈X ⊂ [−1 ; 1]X 2 , assumed to be known to the learner, such that for all customer segments
x, x′∈X , for all customer offer k∈K,

µx,k − µx′,k ⩽ ωx,x′ .

The matrix ω measures the separation between the customer segments and satisfies a pseudo-metric property.
That is, for all customer segments x, x′, x′′ ∈X , ωx,x = 0 and ωx,x′′ ⩽ ωx,x′ + ωx′,x′′ . Now, one can express
this structure as a graph structure assuming that

Θ = {θ} , θa,a′ = ωx,x′ , ∀a=(x, k), a′=(x′, k′) ∈ A=X×K . (A.4)

Indeed, this definition yields

∀ν ∈ DΘ, ∀(x, k), (x′, k′) ∈ X ×K, µx,k − µx′,k′ ⩽ ωx,x′ .

Let us note the Aggregate of bandits is reminiscent of contextual bandits, where similarities between means
are dictated by similarities between contexts.

A.2 Proof related to the regret lower bound
In this section, we provide a lower bound on the cumulative regret when assuming a graph structure. To this
end, we follow the classical approach from Lai and Robbins (1985) that we apply to the case of a graph struc-
ture. In order to obtain non trivial lower bound we consider algorithms that are consistent (Definition 1).

For each sub-optimal arm a /∈A⋆(ν), we introduce the following distribution-dependent subset of relationship
matrices

Θa(ν) := {θ ∈ Θ⋆(ν) : ∀a⋆∈A⋆(ν), θa,a⋆>0 and ∀a′ /∈A⋆(ν), θa,a′ ⩾0} , (A.5)

where Θ⋆(ν) = {θ∈Θ: ν∈Dθ}. Then, we derive from the notion of consistency asymptotic regret lower
bounds by considering most confusing configurations for each relationship matrix in Θa(ν). These lower
bounds involve the set of informative sub-optimal arms

Aa(θ) := {a′ ∈ A : da,a′(θ) ⩾ 0} = {a′ ∈ A : µa′ ⩽ µ⋆ − θa,a′} , θ ∈ Θa(ν) . (A.6)
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When “moving” sub-optimal arm a to make it optimal in a most confusing configuration, Aa(θ) represents
the set of sub-optimal arms which must also be “moved” in order to ensure the “most confusing”2 bandit for
sub-optimal a belongs to the structure Dθ. By definition of Aa(θ), for all a′ ∈A, it holds that da,a′(θ)< 0 if
a′ /∈Aa(θ). Since θa,a=0 and θa,a⋆>0 for all a⋆∈A⋆, we further get that a∈Aa(θ) and Aa(θ)∩A⋆=∅.

Proposition 7 (Lower bounds on pulls). Let us consider a consistent bandit algorithm. Then, for all configu-
ration ν∈DΘ, for all sub-optimal arm a /∈A⋆(ν), for all relationship matrix θ∈Θa(ν), under Assumption 4 it
must be that

∀0 < ε < εa, lim inf
T→∞

1

log(T )

∑
a′∈Aa(θ)

Na′(T )kl(µa′|µ⋆ − θa,a′ + ε) ⩾ 1 ,

where εa :=min
{
(−da,a′(θ))a′ /∈Aa(θ)

, (1−µ⋆)/2
}
>0.

The proof of this result uses a change-of-measure argument and follows classical proof techniques from the
literature, see Lai and Robbins (1985); Agrawal et al. (1989); Graves and Lai (1997); Cappé et al. (2013). We
detail it in the following sub-section for completeness.

A.2.1 Proof of Proposition 7
Let us consider a sub-optimal arm a /∈ A⋆ and θ ∈ Θa(ν). From the definitions of Θa (Eq. 4.2) and εa we
respectively have

∀a′ ∈ A, θa,a′ ⩾ 0 ,

and
∀a′ ∈ Aa(θ), µ

⋆ − θa,a′ + εa < 1 and ∀a′ /∈ Aa(θ), µa′ ⩾ µ⋆ − θa,a′ + εa . (A.7)

Let us then consider 0<ε<εa and the maximal confusing distributions ν̃=(ν̃a′)a′∈A for the sub-optimal arm
a with means (µ̃a′)a′∈A such that

∀a′ ∈ Aa(θ), µ̃a′ = µ⋆ − θa,a′ + ε (A.8)
∀a′ /∈ Aa(θ), µ̃a′ = µa′ .

Then, since θa,a′ ⩾0 for all a′∈Aa(θ), we have for all a′∈A,

µ̃a′ ⩽ µ⋆ + ε ,

with equality in previous inequality if and only if a′ ∈Aa(θ) and θa,a′ = 0. The set of optimal arms for ν̃ is
then

A⋆(ν̃) = {a′ ∈ Aa(θ) : θa,a′ = 0} ∋ a . (A.9)

Furthermore, from the definition of Aa(θ) (Eq. 4.3), we get

∀a′ ∈ Aa(θ), µ̃a′ > µa′ . (A.10)

Then, under Assumptions 4, Eq. A.7, A.8 and A.10 imply

∀a′, a′′ /∈ Aa(θ), a
′ ̸= a′′, µ̃a′ − µ̃a′′ = µa′ − µa′′ ⩽ θa′,a′′

∀a′ /∈ Aa(θ),∀a′′ ∈ Aa(θ), µ̃a′ − µ̃a′′ < µa′ − µa′′ ⩽ θa′,a′′

∀a′, a′′ ∈ Aa(θ), a
′ ̸= a′′, µ̃a′ − µ̃a′′ = θa,a′′ − θa,a′ ⩽ θa′,a′′

∀a′ ∈ Aa(θ),∀a′′ /∈ Aa(θ), µ̃a′ − µ̃a′′ ⩽ µ⋆ − θa,a′ + ε− (µ⋆ − θa,a′′ + ε) ⩽ θa′,a′′ .

2These notions of “moving” and “most confusing” refer to the generic proof technique used to derive regret lower bounds. It
involves a change-of-measure argument, from the initial configuration in which the arm is sub-optimal to another one chosen to
make it optimal.

H. Saber page 98 2022



This implies
ν̃ ∈ Dθ ⊂ DΘ . (A.11)

Let 0<c<1. We will show that almost surely

lim inf
T→∞

1

log(T )

∑
a′∈Aa(θ)

Na′(T ) kl(µa′|µ̃a′) ⩾ c .

We start with the following inequality

Pν

lim inf
T→∞

1

log(T )

∑
a′∈Aa(θ)

Na′(T ) kl(µa′|µ̃a′) < c


⩽ lim inf

T→∞
Pν

 1

log(T )
⩽

∑
a′∈Aa(θ)

Na′(T )kl(µa′|µ̃a′) < c

 .

Let us consider an horizon T ⩾1 and let us introduce the event

ΩT =

 ∑
a′∈Aa(θ)

Na′(T )kl(µa′|µ̃a′) < c log(T )

 . (A.12)

We want to provide an upper bound on Pν(ΩT ) to ensure lim
T→∞

Pν(ΩT ) = 0. We start by taking advantage of
the following lemma.

Lemma 22 (Change of measure). For every measurable event Ω with respect to ν and ν̃,

∀x ∈ R, Pν(Ω ∩ Cx) ⩽ exp(x)Pν̃(Ω) ,

where Cx=
{
log
(

dν
dν̃ (ψ)

)
⩽x
}

and ψ=((at), Xt)t=1..T is the sequence of pulled arms and rewards.

Let α∈(0, 1) and let us introduce the event

Cα,T =

{
log

(
dν
dν̃

(ψ)

)
⩽ (1− α) log(T )

}
. (A.13)

Then we can decompose the probability Pν(ΩT ) as follows

Pν(ΩT ) = Pν(ΩT ∩ Cα,T ) + Pν(ΩT ∩ Ccα,T ) ⩽ T 1−αPν̃(ΩT ) + Pν

(
ΩT ∩ Ccα,T

)
. (A.14)

Now, we control successively the terms T 1−αPν̃(ΩT ) and Pν

(
ΩT ∩ Ccα,T

)
and show that they both tend to 0 as

T tends to∞.

We first provide an upper bound on I{ΩT } by noting that from Eq. A.9 we have

ΩT ⊂

 ∑
a′∈Aa(θ)

Na′(T )<
c

min
a∈Aa(θ)

kl(µa′|µ̃a′)
log(T )


=

T < c

min
a∈Aa(θ)

kl(µa′|µ̃a′)
log(T )+

∑
a′ /∈Aa(θ)

Na′(T )


⊂

T < c

min
a∈Aa(θ)

kl(µa′|µ̃a′)
log(T )+

∑
a′ /∈A⋆(ν̃)

Na′(T )

 .
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This implies

I{ΩT } ⩽
c

min
a∈Aa(θ)

kl(µa′|µ̃a′)

log(T )

T
+

∑
a′ /∈A⋆(ν̃)

Na′(T )

T
. (A.15)

Since we assume a consistent algorithm on DΘ and ν̃∈DΘ (Eq. A.11), we know that

∀a′ /∈ A⋆(ν̃), Eν̃

[
Na′(T )

Tα

]
= o(1) , (A.16)

therefore from Eq. A.15 and A.16 we get

T 1−αPν̃(ΩT ) = o(1) . (A.17)

Now we control the remaining term Pν

(
ΩT ∩ Ccα,T

)
.

For each time t∈ J1, T K, the reward Xt is sampled independently from the past and according to νat . Hence
the likelihood ratio rewrites

dν
dν̃

(ψ) =
T∏
t=1

dνat
dν̃at

(Xt) , where
dνa
dν̃a

(x) =
µx
a(1− µa)

1−x

µ̃x
a(1− µ̃a)1−x

, ∀a ∈ A,∀x ∈ {0, 1} . (A.18)

Thus, since for all a′ /∈Aa(θ), µ̃a=µa, the log-likelihood ratio is

log

(
dν
dν̃

(ψ)

)
=

∑
a′∈Aa(θ)

T∑
t=1

I{at=a′} log

(
dνa′
dν̃a′

(Xt)

)
. (A.19)

Hence from Eq. A.12, A.13 and A.19 we can rewrite the set

Ω ∩ Ccα,T =


∑

a′∈Aa(θ)

T∑
t=1

I{at=a′}

[
log

(
dνa′
dν̃a′

(Xt)

)
−kl(µa′|µ̃a′)

]
>(1−α−c) log(T )

∑
a′∈Aa(θ)

Na′(T )kl(µa′|µ̃a′) < c log(T )

 .

Let us introduce Xn
a =Xτna where τna =min {t⩾1: Na(t)=n} for all a∈A. Note that the random variables

τna are predictable stopping times, since {τna = t} is measurable with respect to the filtration generated by
(a1, X1, ..., at−1, Xt−1). For a′∈Aa(θ) and n⩾1, let us consider

Zn
a′ =

dνa′
dν̃a′

(Xn
a′) .

Then Zn
a′ is positive and bounded by Ba′ =1/µ̃a′(1−µ̃a′), with mean Eν [Z

n
a′ ] = kl(µa′|µ̃a′). Furthermore, the

random variables Zn
a′ , for a′∈Aa(θ) and n⩾1, are independent. Thus, it holds

ΩT ∩ Ccα,T ⊂

 max
m∈MT

∑
a′∈Aa(θ)

∑
n=1..ma′

Zn
a′ − Eν [Z

n
a′ ] >

(
1− α
c
− 1

)
c log(T )

 , (A.20)

whereMT :=
{
(ma′)∈J1, T KAa(θ) :

∑
a′∈Aa(θ)

ma′kl(µa′ |µ̃a′)<c log(T )
}

.
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In the following, we control the asymptotic concentration of random variables (Zn
a′) by applying Doob’s

maximal inequality. For a′∈Aa(θ) and λ>0, let us introduce the super-martingale

(Ma′,m)m⩾0 =

(
exp

(
λ

m∑
n=1

(
Zn

a′ − E[Zn
a′ ]
)
−mλ2B

2
a′

8

))
m⩾0

. (A.21)

Then noting that

∀(ma′) ∈MT ,

∑
a′∈Aa(θ)

λ2ma′
B2

a′
8

c log(T )
<

∑
a′∈Aa(θ)

λ2ma′
B2

a′
8∑

a′∈Aa(θ)

ma′kl(µa′|µ̃a′)
⩽ λ2

max
a′∈Aa(θ)

B2
a′

8 min
a′∈Aa(θ)

kl(µa′|µ̃a′)
, (A.22)

we obtain from Eq. A.20 and A.21 that

ΩT ∩ Ccα,T ⊂

 max
(ma′ )∈MT

∏
a′∈Aa(θ)

Ma′,ma′
> T

[
λ( 1−α

c
−1)−λ2

max
a′∈Aa(θ)

B2
a′

8 min
a′∈Aa(θ)

kl(µa′ |µ̃a′ )

]
c

 (A.23)

⊂
{
∃a′ ∈ Aa(θ) : max

m⩽m
Ma′,m > T γ

}
,

where m= c log(T )
min

a′∈Aa(θ)
kl(µa′ |µ̃a′ )

and γ=
[
λ(1−α

c
−1)−λ2 maxa′∈Aa(θ) B

2
a′

8mina′∈Aa(θ) kl(µa′ |µ̃a′ )

] c

|Aa(θ)|
.

In order to have γ>0 in (A.23), we impose:
- 0<α<1−c (this implies 1−α

c
−1>0)

- λ ∈ argmax
λ′⩾0

{
λ′(

1− α
c
− 1)− λ′2 maxa′∈Aa(θ) B

2
a′

8mina′∈Aa(θ) kl(µa′ |µ̃a′ )

}
> 0.

Then from (A.23) we have

Pν(ΩT ∩ Ccα,T ) ⩽
∑

a′∈Aa(θ)

Pν

(
max
m⩽m

Ma′,m > T γ

)
(Union bound)

⩽
∑

a′∈Aa(θ)

Eν [Ma′,0]

T γ
(Doob’s maximal inequality)

=
|Aa(θ)|
T γ

.

This implies the following control
Pν(ΩT ∩ Ec

T ) = o(1) . (A.24)

Finally, by combining (A.8), (A.12), (A.14), (A.17) and (A.24), we show

∀0 < ε < εa, ∀0 < c < 1, lim inf
T→∞

1

log(T )

∑
a′∈Aa(θ)

Na′(T ) kl(µa′|µ⋆ − θa,a′ + ε) ⩾ c . (A.25)

The proof ends by doing c→1.
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A.2.2 Proof of Proposition 3
Let (Tk)k∈N be a sub-sequence such that

lim inf
T→∞

R(T, ν)

log(T )
= lim

k→∞

R(Tk, ν)

log(Tk)
.

We assume that this limit is finite otherwise the result is straightforward. This implies in particular

∀a /∈ A, lim sup
k→∞

Eν [Na(Tk)]

log(Tk)
< +∞ .

By Cantor’s diagonal argument there exists an extraction of (Tk)k∈N denoted by (T ′
k)k∈N such that for all

a /∈A⋆, there exist Na∈R+ such that

lim
k′→∞

Eν [Na(T
′
k)]

log(T ′
k)

= Na .

Hence we get

lim inf
T→∞

R(T, ν)

log(T )
=
∑
a/∈A⋆

Na∆a .

But thanks to Proposition 7, under Assumptions 4, we have for all a /∈A⋆ such that Θa ̸=∅ ,

inf
θ∈Θa

∑
a′∈Aa(θ)

kl(µa′ |µ⋆ − θa,a′)Na

= inf
θ∈Θa

min
0<ε<εa

∑
a′∈Aa(θ)

kl(µa′ |µ⋆ − θa,a′ + ε)Na

= inf
θ∈Θa

min
0<ε<εa

lim
k→∞

Eν

 ∑
a′∈Aa(θ)

kl(µa′ |µ⋆ − θa,a′ + ε)
Na′(T

′
k)

log(T ′
k)


⩾ inf

θ∈Θa

min
0<ε<εa

Eν

lim inf
k→∞

∑
a′∈Aa(θ)

kl(µa′ |µ⋆ − θa,a′ + ε)
Na′(T

′
k)

log(T ′
k)


⩾ inf

θ∈Θa

min
0<ε<εa

Eν

lim inf
T→∞

∑
a′∈Aa(θ)

kl(µa′ |µ⋆ − θa,a′ + ε)
Na′(T )

log(T )

 ⩾ 1 .

Therefore we obtain the lower bound

lim inf
T→∞

R(ν, T )

log(T )
⩾ C

Θ
(ν) := inf

n∈RA
+

∑
a/∈A⋆

na∆a

s.t. ∀a ̸∈ A⋆, Θa ̸= ∅, inf
θ∈Θa

∑
a′∈Aa(θ)

kl(µa′ |µ⋆ − θa,a′)na′ ⩾ 1 .

To end the proof we show that for all n∈RA
+ for all sub-optimal arm a /∈A⋆ such that Θa ̸=∅,

inf
θ∈Θa

∑
a′∈Aa(θ)

kl(µa′|µ⋆ − θa,a′)na′ = min
θ∈Θa

∑
a′∈Aa(θ)

kl(µa′ |µ⋆ − θa,a′)na′ .
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First, we rewrite

inf
θ∈Θa

∑
a′∈Aa(θ)

kl(µa′ |µ⋆ − θa,a′)na′ = inf
θ∈Θa

∑
a′ /∈A⋆

na′ kl(µa′ |µ⋆ − θa,a′)I{µa′⩽µ⋆−θa,a′} .

Then, we simply note that the function

: θ ∈ Θa 7→
∑
a′ /∈A⋆

na′ kl(µa′ |µ⋆ − θa,a′)I{µa′⩽µ⋆−θa,a′}

is continuous.

A.3 Technical results
In this section, some practical results, in particular about kl(·|·) and the continuity of minimization problem,
are detailed.

Lemma 23 (kl inequality 1). For 0<p<q<1,

kl(p|q) ⩽ (q − p)2

q(1− q)
.

Proof. Let us consider

f : x ∈ [p ; q] 7→ kl(p|x)− (x− p)2

x(1− x)
.

Then f admits a derivative in ]p ; q[ and for x∈]p ; q[,

f ′(x) =
x− p

x(1− x)
− 2(x− p)
x(1− x)

+
(x− p)2(1− x− x)

x2(1− x)2

= − x− p
x(1− x)

+
(x− p)2(1− 2x)

x2(1− x)2

=
x− p

x2(1− x)2
[−x(1− x) + (x− p)(1− 2x)]

=
x− p

x2(1− x)2
[−x2 + 2px− p]

=
x− p

x2(1− x)2
[−(x− p)2 + p2 − p]

< 0 .

Thus, f is a decreasing function. Since f(p)=0, we have f(q)⩽0, which ends the proof.

Lemma 24 (kl inequality 2). For 0<p<q<q′<1,

kl(p|q′)− kl(p|q) ⩾ 2(q − q′)2 .

Proof. We note that

: x ∈ (0, q] 7→ kl(x|q′)− kl(x|q) = x log

(
q

q′

)
+ (1−x) log

(
1− q
1− q′

)

is an affine function with slope log

(
q(1− q′)
q′(1− q)

)
<0 since q<q′. This implies

kl(p|q′)− kl(p|q) ⩾ kl(q|q′)− kl(q|q) = kl(q|q′) .
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Then Pinsker’s inequality implies
kl(q|q′) ⩾ 2(q − q′)2 ,

which ends the proof.

Lemma 25 (kl inequality 3). For z⩾0, for 0<p′ < p<q−z<q′−z<1,

kl(p|q−z)
q−p

⩽
kl(p′|q′−z)
q′−p′

.

Proof. We show that functions

f : x ∈ [p′ , p] 7→ kl(x|q−z)
q−x

(A.26)

g : y ∈ [q , q′] 7→ kl(p′|y−z)
y−p′

(A.27)

are respectively decreasing and increasing functions. For x∈ [p′ , p],

f ′(x) =
1

q−x
× ∂kl
∂p

(x|q−z) + 1

(q−x)2
× kl(x|q−z)

=
1

(q−x)2
×
[

kl(x|q−z)−
(
−(q−z)∂kl

∂p
(x|q−z)

)]
.

(A.28)

Since x<p<q−z, from Equation (A.28) and Lemma 26 we get

f ′(x) = −kl(q−z|x)
(q − x)2

⩽ 0 . (A.29)

For y∈ [q , q′],
g′(y) =

1

y−p′
× ∂kl
∂q

(p′|y−z)− 1

(y−p′)2
× kl(p′|y−z)

=
1

y−p′
× y−z−p′

(y−z)(1−y+z)
− 1

(y−p′)2
× kl(p′|y−z)

=
(y − z)(y−z−p′)− (y−z)(1−y+z)kl(p′|y−z)

(y−p′)2(y−z)(1−y+z)
.

(A.30)

Since p′<q−z<y−z, from Equation (A.30) and Lemma 23 we get

g′(y) ⩾
(y − z)(y−z−p′)− (y−z−p′)2

(y−p′)2(y−z)(1−y+z)

=
p′(y−z−p′)

(y−p′)2(y−z)(1−y+z)
⩾ 0 .

(A.31)

Lemma 26 (kl inequality 4). For 0<p<q<1,

−(q − p)∂kl
∂p

(p|q) = kl(p|q) + kl(q|p) .
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Proof. We have

kl(p|q) = p log(p)− p log(q) + (1− p) log(1− p)− (1− p) log(1− q) (A.32)

kl(q|p) = q log(q)− q log(p) + (1− q) log(1− q)− (1− q) log(1− p) , (A.33)

which implies

∂kl
∂p

(p|q) = log(p) + p× 1

p
− log(q)− log(1− p) + (1− p)× (−1)

1− p
+ log(1− q)

= log(p) + 1− log(q)− 1− log(1− p) + log(1− q)
= log(p)− log(q)− log(1− p) + log(1− q)

(A.34)

and

kl(p|q) + kl(q|p) = (p− q) log(p) + (q − p) log(q) + (q − p) log(1− p) + (p− q) log(1− q)
= −(q − p) [log(p)− log(q)− log(1− p) + log(1− q)]

= −(q − p)∂kl
∂p

(p|q) .
(A.35)

Lemma 27 (Continuity of minimization problem). :ν ′∈DΘ 7→c
Θ
(ν ′)∈R+ is well defined and continuous.

Please refer to Section B.2 from Combes et al. (2017) for a proof of Lemma 27.

Lemma 28 (Real analysis 1). For x⩾e,

∀y ⩾ x (fξ(x))
2 ,

y

fξ(y)
⩾ x .

Lemma 29 (Real analysis 2). For x>1,

1

− log(1−1/x)
⩽ x .

A.4 Additional experiments
In this section we introduce PO-IMED-GS algorithm, an inspired but simplified version of IMED-GS, that
may be appealing to the practitioner. Then, we provide additional experiments in which the regret is averaged
over many random structured configurations for each of the three considered structures (Unimodal, Lipschitz
and Aggregate of bandits).

A.4.1 PO-IMED-GS algorithm
We introduce in this subsection PO-IMED-GS algorithm, for Pareto-Optimal IMED-GS algorithm. PO-IMED-GS
is inspired from IMED-GS and simply consists in pulling the arm with minimal graph-structured IMED-type
index at each time step. Pulling this arm intuitively ensures the constrains in the optimization problem of the
regret lower bound are asymptotically satisfied (Pareto optimality). In particular, PO-IMED-GS algorithm
does not solve any optimization problem Please refer to (4.9) for the definition of these graph-structured in-
dexes. Hence this algorithm is simpler to implement, interpret and also has lower computational complexity,
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although does not a priori enjoy as refined theoretical guarantees as IMED-GS. PO-IMED-GS algorithm is
summarized in Algorithm 11.

Algorithm 11 PO-IMED-GS
1: Input: Structure Θ, ξ.
2: Pull each arm once
3: for t = |A| . . . T − 1 do
4: Pull arbitrarily at+1 ∈ argmin

a∈A
Ia(t), see (4.9).

5: end for

A.4.2 Regrets Averaged on Random Structured Configurations
For each structure of Figure A.1, we considered |A| = 18 arms, a time horizon of T = 3000, and results
averaged over 100 randomly generated structured configurations with 10 independent runs for each obtained
structured configuration (that is 1000 independent runs in total). We compare each time IMED-GS to IMED
algorithm for unstructured bandits and PO-IMED-GS algorithm. We also compare IMED-GS to OSSB algo-
rithm for generic structured bandits. For Unimodal structure we add specific comparison with OSUB and UTS
that are specialized to this structure, and for Lipschitz structure we add numerical comparison with CKL-UCB.
We further report the IMED-GS run with setting d= |A|−1. Here the parameter Γ is set to |A|1.5 and ξ=1.
The sequence (γt)t⩾1 is set to (γ1 log(t)

−0.25)t⩾1. The Lipschitz constant is set to k=0.03 and applies for all
the random configurations sampled for the experiment regarding the Lipschitz structure. For the Aggregate of
bandits, the set of arms is decomposed as A=X×K, with X =J1 , 2K and K=J1 , 9K. This means we assume
an aggregate of 2 bandits with 9 arms each. The relationship matrix is set to ωx,x′ =0.05 |x− x′| and applies
for all the random configurations sampled for the experiment regarding the Aggregate of bandits.
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Figure A.1: Comparison of IMED-GS to other algorithms averaged over 100 randomly generated structured
bandit instances.

Discussion. In the experiments, IMED-GS performs well for each considered structure and competes with
specialized state-of-the-art algorithms for the Unimodal and Lipschitz structures. Furthermore, it seems
that there is little benefit to use IMED-GS with no burning phase (when the parameter d = |A|−1) over
PO-IMED-GS. This seems to confirm that reaching Pareto-Optimality provides good results in practice.
Note that there is no burn-in phase in PO-IMED-GS algorithm, which makes relevant the comparison with
IMED-GS with parameter d set to |A|−1. Finally, the theoretical benefit consisting in introducing the pa-
rameter d (less than |A|−1) in order to reduce the constant Cξ,d,ε = O(ε−2) in the upper bound on the regret
(Theorem 3) implies practical benefit as it is highlighted in Figure A.1. Indeed, it appears that IMED-GS
with parameter d set to 3 outperforms or competes with IMED-GS with parameter d set to |A|−1. This is a
practical illustration of the benefit of having introduced the refined concentration inequality (Theorem 4). We
recall that with the parameter d we replace the current informative sets of arms Âa(t) for a∈A with the sets
Â(d)

a (t) ⊂ Âa(t) consisting of {a} plus the d-th most pulled arms from Âa(t) \ {a}. It is justified by the fact
that in the beginning, no structure can reasonably be exploited due to the poor estimates.
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Appendix B

Generic Tools

B.1 Non-reliable current means
In this section, we define and study relevant subsets of time steps for which the current mean of a specific
arm is not reliable. These subsets of times appear in IMED-UB finite-time analysis. Similar subsets appear in
finite-time analysis of IMED-GS (Section 4.5.3). Note that the definitions and the stated properties of these
subsets of time steps are independent from the considered algorithms.

For all arms a, a′∈A and for all accuracy ε > 0, let E+a,a′(ε) be the set of times where the current mean of arm
a ε-deviates from above while arm a has more pulls than the current pulled arm a′,

E+a,a′(ε) := {t ∈ J1, T−1K : at+1 = a′, Na′(t) ⩽ Na(t), µ̂a(t) ⩾ µa + ε} . (B.1)

We similarly define

E−a,a′(ε) := {t ∈ J1, T−1K : at+1 = a′, Na′(t) ⩽ Na(t), µ̂a(t) ⩽ µa − ε} . (B.2)

We also define
Ea,a′(ε) = E+a,a′(ε) ∪ E

−
a,a′(ε) . (B.3)

Definition 5 (KL-log deviation). For ε>0, the couple of arms (a, a′)∈A2 shows ε−-KL-log deviation at time
step t⩾1 if the following conditions are satisfied

(1) at+1 = a′

(2) µ̂a(t) ⩽ µa − ε
(3) log(Na′(t)) ⩽ Na(t)KL(µ̂a(t)|µa−ε) + log(Na(t)) .

For all couple of arms (a, a′)∈A2 and for all accuracy ε > 0, let K−
a,a′(ε) be the set of times where couple of

arms (a, a′) shows ε−-KL-log deviation, that is

K−
a,a′(ε) :=

t ∈ J1, T−1K :
(1) at+1 = a′

(2) µ̂a(t) ⩽ µa − ε
(3) log(Na′(t)) ⩽ Na(t)KL(µ̂a(t)|µa−ε) + log(Na(t))

 . (B.4)

We note that
E−a,a′(ε) ⊂ K

−
a,a′(ε) .

We can now resort to concentration arguments in order to control the size of these sets, which yields the
following upper bounds.
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Lemma 30 (Bounded subsets of times). For ε>0, for (a, a′)∈A2,

Eν

[∣∣E+a,a′(ε)∣∣] , Eν

[∣∣E−a,a′(ε)∣∣] ⩽ 2σ2
ε e

ε2/2σ2
ε

ε2

Eν

[∣∣K−
a,a′(ε)\E

−
a,a′(ε)

∣∣] ⩽ 1 + c−1
ε + 2Cε

√
log(cεT ) ,

where σ2
ε =max

a∈A

{
V

X∼p(µ′)
(X) : µ′∈ [µa−ε , µa]

}
, cε, Cε>0 are the constants involved in Theorem 6.

Proof. We start by proving Eν

[∣∣E−a,a′(ε)∣∣]⩽ 2σ2
εe

ε2/2σ2
ε

ε2
. The proof that Eν

[∣∣E+a,a′(ε)∣∣]⩽ 2σ2
εe

ε2/2σ2
ε

ε2
is similar.

We write ∣∣E−a,a′(ε)∣∣ = T−1∑
t=1

I{at+1=a′,Na′ (t)⩽Na(t), µa−µ̂a(t)⩾ε} . (B.5)

Considering the stopped stopping times τn= inf {t⩾1, Na′(t)=n} we will rewrite the sum of indicators and
use Lemma 32. ∣∣E−a,a′(ε)∣∣ ⩽

∑
t⩾1

I{at+1=a′, Na′ (t)⩽Na(t), µa−µ̂a(t)⩾ε} (B.6)

⩽
∑
n⩾1

I{n−1⩽Na(τn−1), µa−µ̂a(τn−1)⩾ε}

⩽ 1 +
∑
n⩾2

I{n−1⩽Na(τn−1), µa−µ̂a(τn−1)⩾ε} .

Taking the expectation of Equation (B.6), by optional skipping it comes

Eν

[∣∣E−a,a′(ε)∣∣] ⩽ 1 +
∑
n⩾1

Pν

 ⋃
t⩾1

Na(t)⩾n

µ̂a(t) ⩽ µa − ε

 . (B.7)

From Lemma 32, previous Equation (B.7) implies

Eν

[∣∣E−a,a′(ε)∣∣] ⩽ 1 +
∑
n⩾1

exp(−nKL(µa−ε|µa)) . (B.8)

From Lemma 31, previous Equation (B.8) implies

Eν

[∣∣E−a,a′(ε)∣∣] ⩽∑
n⩾0

exp
(
−nε2/2σ2

ε

)
=

1

1− e−ε2/2σ2
ε
, (B.9)

where σ2
ε =max

a∈A

{
V

X∼p(µ′)
(X) : µ′∈ [µa−ε , µa]

}
. Finally we note that

1

1− e−ε2/2σ2
ε
=

eε
2/2σ2

ε

eε2/2σ2
ε − 1

⩽
2σ2

ε e
ε2/2σ2

ε

ε2
.
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We now show that Eν

[∣∣K−
a,a′(ε)

∣∣\∣∣E−a,a′(ε)∣∣]⩽1+c−1
ε +2Cε

√
log(cεT ).

We write ∣∣K−
a,a′(ε)\E

−
a,a′(ε)

∣∣
=

T−1∑
t=1

I{at+1=a′, 1⩽Na(t)<Na′ (t), µ̂a(t)⩽µa−ε, log(Na′ (t))⩽Na(t)KL(µ̂a(t)|µa−ε)+log(Na(t))}. (B.10)

Considering the stopped stopping times τn=inf {t⩾1, Na′(t)=n} we shall rewrite the sum given by∑
t∈J1,T−1K I{at+1=a′, 1⩽Na(t)<Na′ (t), µ̂a(t)⩽µa−ε, log(Na′ (t))⩽Na(t)KL(µ̂a(t)|µa−ε)+log(Na(t))} and use boundary crossing

probabilities for one-dimensional exponential family distributions.∣∣K−
a,a′(ε)\E

−
a,a′(ε)

∣∣
⩽

T−1∑
t=1

I{at+1=a′, 1⩽Na(t)<Na′ (t), µ̂a(t)⩽µa−ε, log(Na′ (t))⩽Na(t)KL(µ̂a(t)|µa−ε)+log(Na(t))}

=
T−1∑
t=1

T−1∑
n=1

I{τn+1=t+1}I{1⩽Na(τn+1−1)<n, µ̂a(τn+1−1)⩽µa−ε} ×

I{log(n)⩽Na(τn+1−1)KL(µ̂a(τn+1−1)|µa−ε)+log(Na(τn+1−1))}

=
T−1∑
n=1

I{1⩽Na(τn+1−1)<n, µ̂a(τn+1−1)⩽µa−ε} ×

I{log(n)⩽Na(τn+1−1)KL(µ̂a(τn+1−1)|µa−ε)+log(Na(τn+1−1))}

T−1∑
t=1

I{τn+1=t+1}

⩽
T−1∑
n=1

I{1⩽Na(τn+1−1)<n, µ̂a(τn+1−1)⩽µa−ε, log(n)⩽Na(τn+1−1)KL(µ̂a(τn+1−1)|µa−ε)+log(Na(τn+1−1))}

=
T−1∑
n=2

I{1⩽Na(τn+1−1)<n, µ̂a(τn+1−1)⩽µa−ε, log(n)⩽Na(τn+1−1)KL(µ̂a(τn+1−1)|µa−ε)+log(Na(τn+1−1))}. (B.11)

From Equation (B.11), we get∣∣K−
a,a′(ε)\E

−
a,a′(ε)

∣∣ (B.12)

⩽
T−1∑
n=2

I{1⩽Na(τn+1−1)<n, Na(τn+1−1)KL(µ̂a(τn+1−1)|µa−ε)⩾log(n/Na(τn+1−1)), µ̂a(τn+1−1)<µa−ε}.

Taking the expectation of Equation (B.12), it comes

Eν

[∣∣K−
a,a′(ε)\E

−
a,a′(ε)

∣∣] (B.13)

⩽
T−1∑
n=2

Pν


⋃
t⩾1

µ̂a(t)<µa−ε
1⩽Na(t)⩽n

Na(t)KL(µ̂a(t)|µa−ε)⩾ log(n/Na(t))

 .
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From Theorem 6, previous Equation (B.13) implies

Eν

[∣∣K−
a,a′(ε)\E

−
a,a′(ε)

∣∣] (B.14)

⩽ 1 + c−1
ε + Cε

T−1∑
n⩾1+c−1

ε

cε

cεn
√

log(cεn)

⩽ 1 + c−1
ε + Cε

∫ T

c−1
ε

cε dx

cεx
√

log(cεx)

= 1 + c−1
ε + 2Cε

√
log(cεT ) . (B.15)

B.2 Concentration of measure
In this section, Pinsker’s inequality for one-dimensional exponential family distributions is reminded. Please
refer to Lemma 3 from Cappé et al. (2013) for more insights. We also state two concentration results from
Maillard (2018).

Lemma 31 (Pinsker’s inequality). For µ<µ′, it holds that

KL(µ|µ′) ⩾
(µ′ − µ)2

2σ2
,

where σ2=max
{
V

X∼p(µ′′)
(X) : µ′′∈ [µ , µ′]

}
.

Lemma 32 (Time-uniform concentration). For all arm a∈A, for x<µa, m⩾1, we have

Pν

 ⋃
t⩾1

Na(t)⩾m

µ̂a(t) < x

 ⩽ exp(−mKL(x|µa)) .

Theorem 6 (Boundary crossing probabilities). For all arm a∈A, for all ε>0, for all n⩾1, we have

Pν


⋃
t⩾1

µ̂a(t)<µa−ε
1⩽Na(t)⩽n

Na(t)KL(µ̂a(t)|µa−ε)⩾ log(n/Na(t))

⩽
Cε

n
√

log(cεn)
,

where cε, Cε>0 are explained in Maillard (2018).
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Appendix C

Routine Bandits : Proof and Additional
Experiments

C.1 Proof of Proposition 5
Let us denote by S the routine bandit setting and by S0 the setting resulting from the routine bandit setting and
the additional assumption that now the sequence of bandits (bh⋆)h∈J1,HK is known to the learner. Then, since a
consistent strategy for S is also consistent for S0 (in the sense of Definition 3), we deduce Proposition 5 from
Lemma 33.

Lemma 33 (Lower bounds on the regret for S0). Let us consider a consistent strategy for the setting S0. Then,
for all configuration ν∈D, it must be that

lim inf
T→∞

R(ν,H, T )

log(T )
⩾ c⋆ν :=

∑
b∈B

∑
a̸=a⋆b

∆a,b

KL(µa,b|µ⋆
b)
.

Proof. Since the sequence of bandits (bh⋆)h∈J1,HK is known to the learner and since there is no shared informa-
tion between the bandits at first glance, the setting S0 amounts to consider each of the |B| bandits (νb)b∈B as
a separate problem, where νb := (νa,b)a∈A for b∈B. Then, from the known lower bound on the regret for the
classical multi-armed bandit problem Lai and Robbins (1985), we get under the assumption of consistency for
all bandit b∈B,

lim inf
T→∞

1

log(Nb(H,T ))

∑
a̸=a⋆b

Na,b(T )∆a,b ⩾
∑
a̸=a⋆b

∆a,b

KL(µa,b|µ⋆
b)
, where Nb(H,T ) = βH

b HT .

From previous inequalities and Eq. 6.2, we conclude that

lim inf
T→∞

R(ν,H, T )

log(T )
⩾

∑
b∈B

lim inf
T→∞

log
(
βH
b HT

)
log(T )

lim inf
T→∞

1

log(βH
b HT )

∑
a̸=a⋆b

Na,b(T )∆a,b

⩾
∑
b∈B

∑
a̸=a⋆b

∆a,b

KL(µa,b|µ⋆
b)
,

by Fatou’s Lemma and since we have lim infn unvn ⩾ lim infn un lim infn vn for all positive real-valued se-
quences u, v.
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C.2 Proof of Theorem 5
From Proposition 6, we have the following inequality

Na,b(H,T ) ⩽
f(βH

b HT )

KL(µa,b+ε|µ⋆
b)

(C.1)

+
H∑

h=1

I{bh⋆=b}

[
T h
ν,ε+4

∣∣Chε ∣∣+∣∣∣Chε ∣∣∣+ f(hT )

KL(µa,b+ε|µ⋆
b)

h∑
k=1

8
∣∣Ckε ∣∣
T

+I{T∈T k}

]
,

where for all h⩾1, Pν

(
T ∈T h

)
⩽1/T (T+1), Eν

[∣∣Chε ∣∣],Eν

[∣∣∣Chε ∣∣∣]⩽4 |A| ε−2+3 according to Lemma 38 and

T h
ν,ε⩽τ

h
ν according to Lemma 34 stated below.

By taking the expectation in Eq. C.1 then it comes

Eν [Na,b(H,T )]

⩽
f(βH

b HT )

KL(µa,b+ε|µ⋆
b)

+
H∑

h=1

I{bh⋆=b}

[
τhν +5×

(
4 |A| ε−2+3

)
+

f(hT )

KL(µa,b+ε|µ⋆
b)

h∑
k=1

32 |A| ε−2+24

T
+1/T (T+1)

]
.

We conclude the proof of Theorem 5 by using the two following inequalities

4 |A| ε−2 + 3 ⩽ 4 |A| (ε−2 + 1)

32 |A| ε−2 + 24

T
+

1

T (T + 1)
⩽

32 |A| (ε−2 + 1)

T
.

Lemma 34 (Upper bound on T h
ν,ε). With the same notations as Proposition 6, for all 0<ε<εν ,

T h
ν,ε ⩽ τhν :=2φ

(
8|A|

[
ε−2
ν + 65γ−2

ν log
(
128 |A| (4h)1/3γ−2

ν

)])
,

where φ : x⩾1 7→x log(x).

Proof. We first show that
thν < 130 |A| γ−2

ν log
(
128(4h)1/3 |A| γ−2

ν

)
. (C.2)

Let us consider t⩾3 |A|. We have

d

(
t

|A|
, δh(t)

)
=

√√√√
2

(
1 +
|A|
t

) log
(
4 |A|3 (h− 1)

√
t/ |A|+ 1(t/ |A|)(t/ |A|+ 1/ |A|)

)
t/ |A|

.

Since 1/|A|<1 and t/ |A|⩾3, we have√
t/ |A|+ 1(t/ |A|)(t/ |A|+ 1/ |A|) ⩽

√
t/ |A|+ 1(t/ |A|)(t/ |A|+ 1) ⩽ (t/ |A|)3 .

Then, since 1+|A|/t<1+1/3 and h−1⩽h, we get

d

(
t

|A|
, δh(t)

)
⩽

√
8 |A| (4h)1/3

Φ((4h)1/3t)
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where Φ : x ⩾ 3 7→ x/ log(x) ⩾ Φ(3). Φ(·) is a one-to-one function and ∀y ⩾ Φ(3),Φ−1(y) ⩽ y log(y)+
2 log(y). Thus we have

γν ⩽ 4d

(
t

|A|
, δh(t)

)
⇒ t ⩽ (4h)−1/3Φ−1

(
128(4h)1/3 |A| γ−2

ν

)
⩽ 128 |A| γ−2

ν log
(
128(4h)1/3 |A| γ−2

ν

)
+ 2(4h)−1/3 log

(
128(4h)1/3 |A| γ−2

ν

)
.

In particular, we get the following implication

γν ⩽ 4d

(
t

|A|
, δh(t)

)
⇒ t < 130 |A| γ−2

ν log
(
128(4h)1/3 |A| γ−2

ν

)
− 1

and thν<130 |A| γ−2
ν log

(
128(4h)1/3 |A| γ−2

ν

)
.

Furthermore, we have ∑
a̸=ah⋆

f(t)

KL(µh
a + ε|µh

⋆)
< 2 |A| ε−2

ν f(t) . (C.3)

By combining Eq. C.2 and Eq. C.3, from the definition of T h
ν,ε (see Proposition 6) we get

T h
ν,ε ⩽ max

{
t ⩾ 10 : t− 8 |A|

(
ε−2
ν f(t)− 65γ−2

ν log
(
128(4h)1/3 |A| γ−2

ν

))
⩽ 0
}
. (C.4)

We finally prove Lemma 34 by applying Lemma 35 with c=8 |A| ε−2
ν and

c′=130 |A| γ−2
ν log

(
128(4h)1/3 |A| γ−2

ν

)
.

Lemma 35. For all c, c′>10, it holds

max {t ⩾ 10 : t− cf(t)− c′ ⩽ 0} ⩽ 2φ(c+ c′) ,

where φ : x⩾1 7→x log(x).

Proof. It can be shown that (t−cf(t)−c′)t⩾2φ(c+c′) is non-decreasing by standard derivative analysis and that
2φ(c+c′)−cf(2φ(c+c′))−c⩾0.

In the following we prove the results stated in Section 6.3.

C.2.1 Proof of Lemma 18
In this subsection we control the number previously encountered bandits falsely identified as different to the
current one (see Definition 6) in addition to false positives and prove Lemma 36, an extension of Lemma 18.

Definition 6 (False negative). At period h⩾2 and step t⩾1, a previous period k∈ J1, h−1K is called a false
negative if the test Tk,h(t) is false while previous bandit bk⋆ corresponds to current bandit bh⋆ .

We prove necessary conditions for having false positives or false negatives.

Lemma 36 (Condition for false positives/negatives). At period h ⩾ 2 and time step t > |A|, for all period
k∈J1, h−1K, , with probability 1−1/(h−1)t(t+1),

k is a false positive =⇒ bk⋆ ̸= bh⋆ and mina∈A
∣∣µa,bh⋆

− µa,bk⋆

∣∣ ⩽ 4d

(
t

|A|
, δh(t)

)
k is a false negative ⇐⇒ bk⋆ = bh⋆ and akt ̸= aht .
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Proof. From Lemma 42, with probability 1−4 |A| δh(t)=1−1/(h−1)t(t+1), it holds,

∀a ∈ A,
∣∣µ̂h

a(t)− µh
a

∣∣ ⩽ d
(
Nh

a (t), δ
h(t)
)

and
∣∣µ̂k

a(T )− µk
a

∣∣ ⩽ d
(
Nk

a (T ), δ
h(t)
)
. (C.5)

False negative: Here we assume that bk⋆=b
h
⋆ . By the triangle inequality, this implies

∀a∈A,
∣∣µ̂h

a(t)−µ̂k
a(T )

∣∣ = ∣∣(µ̂h
a(t)−µh

a

)
−
(
µ̂k
a(T )−µk

a

)∣∣ ⩽ ∣∣µ̂h
a(t)−µh

a

∣∣+ ∣∣µ̂k
a(T )−µT

a

∣∣ . (C.6)

By combining Eq.C.5 and C.6, with probability 1−1/(h−1)t(t+1), we have

∀a ∈ A,
∣∣µ̂h

a(t)−µ̂k
a(T )

∣∣− d
(
Nh

a (t), δ
h(t)
)
− d
(
Nk

a (T ), δ
h(t)
)
⩽ 0 .

Then, from the definitions of the random variables (Zk,h
a (t))a∈A (Eq. 6.3) and the test Tk,h(t) (Eq. 6.4), this

implies with probability 1−1/(h−1)t(t+1),

max
a∈A

Zk,h
a (t) ⩽∞ · I{aht ̸=ak⋆}, Tk,h(t) =

(
aht =a

k
⋆

)
.

Thus, with probability 1−1/(h−1)t(t+1), period k is a false negative if, and only if, aht ̸=ak⋆.

False positive: Here we assume that period k is a false positive. In particular, we have bk⋆ ̸=bh⋆ . By the triangle
inequality, this implies

∀a∈A,
∣∣µ̂h

a(t)−µ̂k
a(T )

∣∣ ⩾ ∣∣µh
a − µk

a

∣∣− ∣∣µ̂h
a(t)−µh

a

∣∣− ∣∣µ̂k
a(T )−µT

a

∣∣ . (C.7)

By combining Eq.C.5 and C.7, with probability 1−1/(h−1)t(t+1), we have

∀a ∈ A, Zk,h
a (t) ⩾∞ · I{aht ̸=ak⋆}+min

a∈A

∣∣µh
a−µk

a

∣∣−2d(Nh
a (t), δ

h(t)
)
−2d

(
Nk

a (T ), δ
h(t)
)
. (C.8)

Since period is assumed to be a false positive, we have maxa∈A Z
k,h(t) ⩽ 0 and Eq. C.8 implies that, with

probability 1−1/(h−1)t(t+1),

aht = ak⋆, min
a∈A

∣∣µh
a−µk

a

∣∣ ⩽ 2d
(
Nh

aht
(t), δh(t)

)
+ 2d

(
Nk

ak⋆
(T ), δh(t)

)
. (C.9)

Since Nh
aht
(t)⩾ t/ |A|, Nk

ak⋆
(T )⩾ T/ |A| (aht and ak⋆ are most pulled arms) and δh(T )⩽ δh(t), the monotonic

properties of d(·, ·) and Eq. C.9, imply that, with probability 1−1/(h−1)t(t+1),

min
a∈A

∣∣µh
a−µk

a

∣∣ ⩽ 2d

(
t

|A|
, δh(t)

)
+ 2d

(
T

|A|
, δh(T )

)
.

We conclude the proof of Lemma 36 by using Lemma 37 stated below.

Lemma 37 (Monotonic properties of d(·, ·)). For all period h⩾2,
(
d
(
t/|A| , δh(t)

))
t>|A|is non-increasing.

Proof. For all time step t> |A|, a direct calculation gives

d

(
t

|A|
, δh(t)

)
=

√
2 |A|

(
1+
|A|
t

)(
1

2

log(t/ |A|+1)

t
+
log(4 |A| (h− 1))

t
+
log(t+1)

t
+
log(t)

t

)
.

Then, in order to prove Lemma 37, it is sufficient to note that (log(t/|A|+1)/t)t⩾1, (log(t+1)/t)t⩾2 and
(log(t)/t)t⩾3 are non-increasing.

H. Saber page 115 2022



C.2.2 Proof of Lemma 19
Let us consider the subsets of times when the mean of the current pulled arm is poorly estimated

Eha,ε :=
{
t > |A| : aht+1 = a and

∣∣µ̂h
a(t)−µh

a

∣∣>ε} Ehε :=
⋃
a̸=ah⋆

Eha,ε

Eha,ε :=
{
t ⩾ thν : t /∈ T h, aht+1 = a and

∣∣µh
a(t)−µh

a

∣∣>ε} Ehε :=
⋃
a̸=ah⋆

Eha,ε

and the subsets of times when the best arm ah⋆ is below its mean

Uh
a :=

{
t > |A| : aht+1 = a and uhah⋆ (t) = Uh

ah⋆
(t) < µh

⋆

}
Uh :=

⋃
a̸=ah⋆

Uh
a .

Uh

a :=
{
t ⩾ thν : t /∈ T h, aht+1 = a and uhah⋆ (t) = U

h

ah⋆
(t) < µh

⋆

}
Uh

:=
⋃
a̸=ah⋆

Uh

a .

Then we have
Cha,ε = T h

a ∪ Eha,ε ∪ Uh
a Chε = T h ∪ Ehε ∪ Uh

Cha,ε = T h
a ∪ Eha,ε ∪ U

h

a Chε = T h ∪ Ehε ∪ U
h

and deduce Lemma 19 from the extended Lemma 38.

Lemma 38 (Bounded subsets of times). For all period h⩾2, for all arm a∈A, for all 0<ε<εν ,

∀t∈J1, T K, Pν

(
t∈T h

)
⩽

1

t(t+1)
, Eν

[∣∣Eha,ε∣∣],Eν

[∣∣∣Eha,ε∣∣∣]⩽4ε−2, Eν

[∣∣Uh
∣∣],Eν

[∣∣∣Uh
∣∣∣]⩽2 .

This implies

Eν

[∣∣T h
∣∣]⩽1, Eν

[∣∣Cha,ε∣∣] ,Eν

[∣∣∣Cha,ε∣∣∣]⩽4ε−2+3, Eν

[∣∣Chε ∣∣] ,Eν

[∣∣∣Chε ∣∣∣]⩽4 |A| ε−2+3 .

Proof. Subset T h: From Lemma 38 and the definition of thν (see Eq. 6.8), for all t ⩾ thν , with probability
1−1/t(t+1), there is no false positive and if a previous period k∈J1, h−1K is a false negative then bk⋆=b

h
⋆ and

ak⋆ ̸= aht (the most pulled arms are different). From the definition of T h (see Eq. 6.9) this implies that for all
t⩾ thν , with probability 1−1/t(t+1), t /∈T h. That is ∀t⩾ thν , Pν

(
t∈T h

)
⩽1/t(t+1). Since on the other hand,

we have ∣∣T h
∣∣ = T∑

t=thν

I{t∈T h} ,

by taking expectation on both sides, it comes

Eν

[∣∣T h
∣∣] = T∑

t=thν

Pν

(
t ∈ T h

)
⩽

T∑
t=thν

1

t(t+ 1)
⩽ 1 .

We note that for 1⩽ t<thν , it holds that t /∈T h and Pν

(
t∈T h

)
=0⩽1/t(t+1).

Subset Eha,ε:
Since we have ∣∣Eha,ε∣∣ = T∑

t>|A|

I{aht+1=a, |µ̂h
a(t)−µh

a|>ε} ,
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by taking the expectation on both sides, it comes

Eν

[∣∣Eha,ε∣∣] ⩽ T∑
t=1

Pν

(
aht+1=a,

∣∣µ̂h
a(t)−µh

a

∣∣>ε) . (C.10)

Then, by combining Eq. C.10 and Lemma 41, we prove Eν

[∣∣Eha,ε∣∣]⩽4ε−2.

Subset Eha,ε: From the definitions of thν and T h (Eq. 6.8 and 6.9), we get the following inclusion{
t⩾ thν : t /∈T h, aht+1=a,

∣∣µh
a(t)−µh

a

∣∣>ε}⊂{t⩾ thν : aht+1=a,
∣∣∣µ̂Kh

⋆ (t),h
a (t)−µh

a

∣∣∣>ε}, (C.11)

where Kh
⋆(t) :=

{
k∈J1, h−1K : bk⋆=bh⋆ and ak⋆=a

h
t

}
and NK,h

a (t)=
∑

k∈KN
k
a (T )+N

h
a (t),

SK,h
a (t)=

∑
k∈K S

k
a(T )+S

h
a (t), µ̂

K,h
a (t)=SK,h

a (t)/NK,h
a (t), ∀K⊂Kh :=

{
k∈J1, h−1K : bk⋆=bh⋆

}
.

Thus, by defining Kt :=Kh
⋆(t) if t⩾ thν and t /∈T h, ∅ otherwise, Eq. C.11 implies

∀t⩾ thν ,Pν

(
t /∈T h, aht+1=a,

∣∣µh
a(t)−µh

a

∣∣>ε)⩽Pν

(
aht+1=a,

∣∣µ̂Kt,h
a (t)−µh

a

∣∣>ε). (C.12)

Since we have ∣∣∣Eha,ε∣∣∣ = T∑
t=thν

I{t/∈T h, aht+1=a, |µh
a(t)−µh

a|>ε} ,

by taking the expectation on both sides and using inequalities from Eq.C.12, it comes

Eν

[∣∣∣Eha,ε∣∣∣] =
T∑

t=thν

Pν

(
t /∈T h, aht+1=a,

∣∣µh
a(t)−µh

a

∣∣>ε)
⩽

T∑
t=thν

Pν

(
aht+1=a,

∣∣µ̂Kt,h
a (t)−µh

a

∣∣>ε) . (C.13)

Then, by combining Eq. C.13 and Lemma 41, we prove Eν

[∣∣∣Eha,ε∣∣∣]⩽4ε−2.

Subset Uh:
By definition of the index (Eq. 6.6), we have

∀t > |A| , Nh
ah⋆
(t)KL

(
µ̂h
ah⋆
(t)
∣∣∣Uh

ah⋆
(t)
)
= f(t) . (C.14)

Since µ̂h
ah⋆
(t)⩽Uh

ah⋆
(t) for all t> |A|, from the monotony of KL(x|·) on [x,+∞), it comes

∀t > |A| such that Uh
ah⋆
(t) ⩽ µh

ah⋆
, KL

(
µ̂h
ah⋆

∣∣∣µh
ah⋆

)
⩾ KL

(
µ̂h
ah⋆
(t)
∣∣∣Uh

ah⋆
(t)
)
. (C.15)

From Eq. C.14 and C.15 we deduce that

Uh ⊂
{
t > |A| : Nh

ah⋆
(t)KL

(
µ̂h
ah⋆
(t)
∣∣µah⋆ ,b

h
⋆

)
⩾f(t)

}
. (C.16)

From Eq. C.16 plus the union bound, it comes

∣∣Uh
∣∣ ⩽ T∑

t>|A|

I{
Nh

ah⋆
(t)KL

(
µ̂h

ah⋆
(t)

∣∣∣µ
ah⋆ ,bh⋆

)
⩾f(t)

} . (C.17)
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By taking the expectation on both sides in previous inequality (Eq. C.17), we have

Eν

[∣∣Uh
∣∣]⩽ T∑

t>|A|

Pν

(
Nh

ah⋆
(t)KL

(
µ̂h
ah⋆
(t)
∣∣µah⋆ ,b

h
⋆

)
⩾f(t)

)
. (C.18)

Combining Eq. C.18 and Lemma 42, it comes

Eν

[∣∣Uh
∣∣] ⩽ ∑

t>|A|

t−1 log(t)−2 .

This implies Eν

[∣∣Uh
∣∣]⩽2 since it can be shown that∑
t>|A|

t−1 log(t)−2 ⩽
∫ ∞

t⩾|A|
t−1 log(t)−2dt =

1

log(|A|)
⩽

1

log(2)
⩽ 2 .

Subset Uh
: From the definition of subset T h (see Eq. 6.9), we have{
t⩾ thν : t /∈T h

}
⊂
{
t⩾ thν : N

h

ah⋆
(t)=N

Kh
⋆ (t),h

ah⋆
(t), µh

ah⋆
(t)= µ̂

Kh
⋆ (t),h

ah⋆
(t), K

h

t =
∣∣Kh

⋆(t)
∣∣} , (C.19)

where Kh
⋆(t) :=

{
k∈J1, h−1K : bk⋆=bh⋆ and ak⋆=a

h
t

}
⊂Kh, Kh :=

{
k∈J1, h−1K : bk⋆=bh⋆

}
,

NK,h
a (t)=

∑
k∈KN

k
a (T )+N

h
a (t), S

K,h
a (t)=

∑
k∈K S

k
a(T )+S

h
a (t) and µ̂K,h

a (t)=SK,h
a (t)/NK,h

a (t) for allK⊂ Kh

and a∈A.
By definition of the index (Eq. 6.7), we have

∀t ⩾ thν , N
h

ah⋆
(t)KL

(
µh
ah⋆
(t)
∣∣∣Uh

ah⋆
(t)
)
= f

(
K

h

t T + t
)
. (C.20)

Since µh
ah⋆
(t)⩽U

h

ah⋆
(t) for all t⩾ thν , from the monotony of KL(x|·) on [x,+∞), it comes

∀t ⩾ thν such that U
h

ah⋆
(t) ⩽ µh

ah⋆
, KL

(
µh
ah⋆
(t)
∣∣∣µh

ah⋆

)
⩾ KL

(
µh
ah⋆

∣∣∣Uh

ah⋆
(t)
)
. (C.21)

By defining Kt :=Kh
⋆(t) if t⩾ thν and t /∈T h, ∅ otherwise, from Eq. C.19, C.20 and C.21 we deduce that

Uh ⊂
{
t ⩾ thν : NKt,h

ah⋆
(t)KL

(
µ̂Kt,h
ah⋆

(t)
∣∣µah⋆ ,b

h
⋆

)
⩾f(|Kt|T+t)

}
. (C.22)

Since we have {
t ⩾ thν : NKt,h

ah⋆
(t)KL

(
µ̂Kt,h
ah⋆

(t)
∣∣µah⋆ ,b

h
⋆

)
⩾f(|Kt|T+t)

}
=

h−1⋃
K=0

{
t ⩾ thν : |Kt|=K, NKt,h

ah⋆
(t)KL

(
µ̂Kt,h
ah⋆

(t)
∣∣µah⋆ ,b

h
⋆

)
⩾f(KT+t)

}
by using the inclusion from Eq. C.22 plus the union bound, it comes∣∣∣Uh

∣∣∣ ⩽ h−1∑
K=0

T∑
t=thν

I{
|Kt|=K, N

Kt,h

ah⋆
(t)KL

(
µ̂
Kt,h

ah⋆
(t)

∣∣∣µ
ah⋆ ,bh⋆

)
⩾f(KT+t)

} . (C.23)

By taking the expectation on both sides in previous inequality (Eq. C.23), we have

Eν

[∣∣∣Uh
∣∣∣]⩽ h−1∑

K=0

T∑
t=thν

Pν

(
|Kt|=K, NKt,h

ah⋆
(t)KL

(
µ̂Kt,h
ah⋆

(t)
∣∣µah⋆ ,b

h
⋆

)
⩾f(KT+t)

)
. (C.24)
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Combining Eq. C.24 and Lemma 42, it comes

Eν

[∣∣∣Uh
∣∣∣] ⩽

h−1∑
K=0

T∑
t=thν

(KT+t)−1 log(KT+t)−2

⩽
∑
t⩾thν

t−1 log(t)−2 .

This implies Eν

[∣∣∣Uh
∣∣∣]⩽2 since it can be shown that

∑
t⩾thν

t−1 log(t)−2 ⩽
∫ ∞

t=thν−1

t−1 log(t)−2dt =
1

log(thν − 1)
⩽

1

log(2)
⩽ 2 .

Subsets Cha,ε, Chε , Cha,ε and Chε : We conclude the proof of Lemma 38 by taking the expectation on both sides in

the following inequalities and by using the bounds on subsets T h, Uh, Uh
, Eha,ε and Eha,ε.∣∣Cha,ε∣∣ ⩽ ∣∣Uh

∣∣+ ∣∣Eha,ε∣∣∣∣Chε ∣∣ ⩽ ∣∣Uh
∣∣+ ∑

a̸=ah⋆

∣∣Eha,ε∣∣∣∣∣Cha,ε∣∣∣ ⩽ ∣∣T h
∣∣+ ∣∣∣Uh

∣∣∣+ ∣∣∣Eha,ε∣∣∣∣∣∣Chε ∣∣∣ ⩽ ∣∣T h
∣∣+ ∣∣∣Uh

∣∣∣+ ∑
a̸=ah⋆

∣∣∣Eha,ε∣∣∣ .

C.2.3 Proof of Lemma 20
From Lemma 38, we have the bound Eν

[∣∣Cha,ε∣∣]⩽4ε−2+2 and Eν

[∣∣∣Cha,ε∣∣∣]⩽4ε−2+3.

Let us consider t> |A| such that t /∈Cha,ε=Eha,ε ∪Uh
a and aht+1=a. By definition of the index (Eq. 6.6), we have

Nh
a (t)KL

(
µ̂h
a(t)
∣∣Uh

a (t)
)
= f(t) . (C.25)

Since aht+1=a, it follows from the KLUCB-RB strategy that

uhah⋆ (t) ⩽ uha(t) ⩽ Uh
a (t) . (C.26)

Since aht+1=a, we have t /∈Uh and
µh
⋆ ⩽ uhah⋆ (t) = Uh

ah⋆
(t) . (C.27)

Since ε<εν and since a is a sub-optimal arm, we have

µh
a + ε < µh

⋆ . (C.28)

Since aht+1=a, we have t /∈Eha,ε and
µ̂h
a(t) ⩽ µh

a + ε . (C.29)

Then Eq. C.26, C.27, C.28 and C.29 imply

µ̂h
a(t) ⩽ µh

a + ε < µh
⋆ ⩽ Uh

a (t) . (C.30)
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Combining Eq. C.25 and Eq. C.30, it holds

KL
(
µh
a + ε

∣∣µh
⋆

)
⩽ KL

(
µ̂h
a(t)
∣∣Uh

a (t)
)

and Nh
a (t)KL

(
µh
a + ε

∣∣µh
⋆

)
⩽ f(t) .

Let us consider t⩾ thν such that t /∈Cha,ε=T ∪ E
h

a,ε ∪ U
h

a and aht+1=a. By definition of the index (Eq. 6.7), we
have

N
h

a(t)KL
(
µh
a(t)
∣∣∣Uh

a(t)
)
= f

(
K

h

t T + t
)
. (C.31)

Since aht+1=a, it follows from the KLUCB-RB strategy that

uhah⋆ (t) ⩽ uha(t) ⩽ U
h

a(t) . (C.32)

Since aht+1=a, we have t /∈T h ∪ Uh
and

µh
⋆ ⩽ uhah⋆ (t) = U

h

ah⋆
(t) . (C.33)

Since ε<εν and since a is a sub-optimal arm, we have

µh
a + ε < µh

⋆ . (C.34)

Since aht+1=a, we have t /∈T h ∪ Eha,ε and

µh
a(t) ⩽ µh

a + ε . (C.35)

Then Eq. C.32, C.33, C.34 and C.35 imply

µh
a(t) ⩽ µh

a + ε < µh
⋆ ⩽ U

h

a(t) . (C.36)

Combining Eq. C.31 and Eq. C.36, it holds

KL
(
µh
a + ε

∣∣µh
⋆

)
⩽ KL

(
µh
a(t)
∣∣∣Uh

a(t)
)

and N
h

a(t)KL
(
µh
a + ε

∣∣µh
⋆

)
⩽ f

(
K

h

t T + t
)
.

In order to conclude the proof it remains to show that K
h

t ⩽βh−1
bh⋆

(h−1). Since aht+1= a, we have t /∈T h and
we deduce from the definition of T h (see Eq. 6.9) that

K
h

t =
∣∣Kh

⋆(t)
∣∣ ⩽ ∣∣{k ∈ J1, h− 1K : bk⋆ = bh⋆

}∣∣ = βh−1
bh⋆

(h− 1) ,

where Kh
⋆(t) :=

{
k ∈ J1, h−1K : bk⋆=bh⋆ and ak⋆=a

h
t

}
.

Finally, we prove the last statement of Lemma 20. For all sub-optimal arm a∈A, for all period h⩾ 1, for all
time step t> |A|, we denote by

τha (t) = max
{
t′ ∈ J|A|+ 1 ; tK : aht′+1 = a and t′ /∈ Cha,ε

}
(C.37)

the last time step before time step t that does not belong to Cha,ε such that we pull arm a in period h. In
particular, we have

Nh
a

(
τha (t)

)
⩽

f
(
τha (t)

)
KL(µh

a+ε|µh
⋆)

⩽
f(t)

KL(µh
a+ε|µh

⋆)
. (C.38)
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Then, from Eq. C.37 and Eq. C.38 we have

Nh
a (t) = Nh

a (|A|+1) +
t−1∑

t′>|A|

I{aht′+1
=a}

= Nh
a (|A|+1) +

t−1∑
t′>|A|

I{aht′+1
=a, t′∈Ch

a,ε} +
t−1∑

t′>|A|

I{aht′+1
=a, t′ /∈Ch

a,ε}

⩽ Nh
a (|A|+1) +

∣∣Cha,ε∣∣+Nh
a

(
τha (t)

)
⩽ Nh

a (|A|+1) +
∣∣Cha,ε∣∣+ f(t)

KL(µh
a+ε|µh

⋆)
.

C.2.4 Proof of Lemma 21
Let us consider t⩾ thν such that t /∈T h and aht ̸=ah⋆ . Since t /∈T h (see Eq. 6.9),

∀a ∈ A, N
h

a(t) = Nh
a (t) +

∑
k∈Kh

⋆ (t)

Nk
a (T ) , (C.39)

where Kh
⋆(t) :=

{
k∈J1, h−1K : ak⋆=aht

}
. Since for all k ∈ Kh

⋆ , ak⋆ ∈ argmaxa∈AN
k
a (T ), from Eq. C.39 we

deduce that aht ∈argmaxa∈AN
h

a(t). Since aht ̸=ah⋆ , this implies

N
h

ah⋆
(t) ⩽ N

h

aht
(t) and N

h

aht
(t) ⩽

∑
a̸=ah⋆

N
h

a(t) . (C.40)

Furthermore, since t /∈T h (see Eq. 6.9), we have

K
h

t :=
∣∣Kh

+(t)
∣∣ = ∣∣Kh

⋆(t)
∣∣ . (C.41)

Then it comes
N

h

ah⋆
(t) =

∣∣Kh
⋆(t)
∣∣T + t−

∑
a̸=ah⋆

N
h

a(t) . (C.42)

Then Eq. C.39, C.40 and C.42 imply∣∣Kh
⋆(t)
∣∣T

2
+
t

2
⩽
∑
a̸=ah⋆

Nh
a (t) +

∑
k∈Kh

⋆ (t)

Nk
a (T ) . (C.43)

For a ̸=ah⋆ and for k∈Kh
⋆(t), the arm a is sub-optimal for bandit bk⋆=b

h
⋆ . Thus, from Lemma 20, we have

∀a ̸= ah⋆ ,∀k ∈ Kh
⋆(t), Nh

a (t) ⩽
f(t)

KL(µh
a + ε|µh

⋆)
+
∣∣Cha,ε∣∣+Nh

a (|A|+1) (C.44)

Nk
a (T ) ⩽

f(T )

KL(µk
a + ε|µk

⋆)
+
∣∣Cka,ε∣∣+Nk

a (|A|+1) .

Then, by combining Eq. C.43 and Eq. C.44, we get

t

2
−

∑
a̸=ah⋆

f(t)

KL(µh
a + ε|µh

⋆)
+Nh

a (|A|+1)


+

∣∣Kh
⋆(t)
∣∣T

2
−

 ∑
k∈Kh

⋆ (t)

∑
a̸=ah⋆

f(T )

KL(µk
a + ε|µk

⋆)
+Nk

a (|A|+1)


⩽

∑
k∈Kh

⋆ (t)∪{h}

∑
a̸=ah⋆

∣∣Cka,ε∣∣ (C.45)
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We finally prove Lemma 21 from Eq. C.45 and the following inequalities

∀k ∈ Kh
⋆(t) ∪ {h} , ak⋆ = ah⋆ ,

∀k ∈ Kh
⋆(t) ∪ {h} ,

∑
a̸=ah⋆

Nk
a (|A|+1) =

∑
a̸=ak⋆

Nk
a (|A|+1) ⩽ |A| ,

∀k ∈ Kh
⋆(t) ∪ {h} ,

∑
a̸=ah⋆

∣∣Cka,ε∣∣ = ∑
a̸=ak⋆

∣∣Cka,ε∣∣ = ∣∣Ckε ∣∣ .
C.2.5 Proof of Proposition 6
We first deduce Lemma 39 from Lemma 21.

Lemma 39 (Conditions for misidentifying the best arms). For all period h ⩾ 1, for all 0 < ε < εν , for all
t⩾T h

ν,ε, (
t /∈T h and aht ̸=ah⋆

)
⇐⇒

(
t<4

∣∣Chε ∣∣ or ∃k∈J1, hK, T <8
∣∣Ckε ∣∣ ) .

This implies (
T /∈T h and ah⋆ ̸=ah⋆

)
⇐⇒ ∃k∈J1, hK, T <8

∣∣Ckε ∣∣ .
We respectively refer to Proposition 6, Eq. 6.9 and Eq. 6.11 for the definitions of T h

ν,ε, T h and Chε .

The proof of Lemma 39 is deferred to the Section C.2.5. We prove Proposition 6 in the following.

Let us introduce the subset P of pairs period-time when there is false positives or false negatives, or when
the mean of the current pulled arm is underestimated, or when the index of the best arm is below its mean, or
when the most pulled arms are different from the best arms. More formally,

P :=
{
(h, t)∈J1, hK×J1, T K :

(
t⩾T h

ν,ε, t∈C
h

ε∪Mh
ε

)
or
(
∃k∈J1, h−1K, T ∈T k∪Mk

ε

)}
, (C.46)

whereMh
ε :=

{
t⩾T h

ν,ε : t /∈T h and aht ̸=ah⋆
}

, for all period h⩾1.

Then, for a bandit b∈B and a sub-optimal arm a∈A, from Lemma 20 we have

Na,b(H,T ) ⩽
f
(
βH
b HT

)
KL(µa,b + ε|µ⋆

b)
+

H∑
h=1

T−1∑
t=0

I{bh⋆=b, aht+1=a, t<Th
ν,ε or (h,t)∈P} . (C.47)

From the definitions of P (Eq. C.46), T h
ν,ε (Proposition 6) and Chε (Eq. 6.11) for h⩾1, this implies

Na,b(H,T ) ⩽
f
(
βH
b HT

)
KL(µa,b + ε|µ⋆

b)
(C.48)

+
H∑

h=1

T−1∑
t=0

I{bh⋆=b, aht+1=a, t<Th
ν,ε}

+
H∑

h=1

T−1∑
t=0

I{
bh⋆=b, aht+1=a, t∈Ch

ε

}

+
H∑

h=1

T−1∑
t=0

I{
bh⋆=b, aht+1=a, t/∈Ch

a,ε

}I{∃k∈J1,h−1K,T∈T k}

+
H∑

h=1

T−1∑
t=0

I{
bh⋆=b, aht+1=a, t/∈Ch

a,ε

}I{t∈Mh
ε or ∃k∈J1,h−1K,T∈Mk

ε} .
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Furthermore, from Lemma 39 we have for all period h⩾1,

I{t∈Mh
ε or ∃k∈J1,h−1K,T∈Mk

ε} ⩽ I{t<4|Ch
ε |} +

h∑
k=1

I{T<8|Ck
ε |} . (C.49)

By combining Eq.C.48 and Eq.C.49, we get

Na,b(H,T ) ⩽
f
(
βH
b HT

)
KL(µa,b + ε|µ⋆

b)
(C.50)

+
H∑

h=1

I{bh⋆=b}

[
T h
ν,ε+4

∣∣Chε ∣∣+∣∣∣Chε ∣∣∣+
(

T−1∑
t=0

I{
bh⋆=b, aht+1=a, t/∈Ch

a,ε

}
)(

h∑
k=1

I{T<8|Ck
ε |}+I{T∈T k}

)]
.

Since the arm a is sub-optimal for the bandit b, the consistency (Lemma 20) implies

∀h ⩾ 1,
T−1∑
t=0

I{
bh⋆=b, aht+1=a, t/∈Ch

a,ε

} ⩽
f(hT )

KL(µa,b + ε|µ⋆
b)
. (C.51)

In addition, the following Markov’s type inequalities are satisfied

∀k ⩾ 1, I{T<8|Ck
ε |} ⩽

8
∣∣Ckε ∣∣
T

. (C.52)

By combining Eq. C.50, C.51 and C.52, we prove Proposition 6, that is

Na,b(H,T )

⩽
f(βH

b HT )

KL(µa,b+ε|µ⋆
b)

+
H∑

h=1

I{bh⋆=b}

[
T h
ν,ε+4

∣∣Chε ∣∣+∣∣∣Chε ∣∣∣+ f(hT )

KL(µa,b+ε|µ⋆
b)

h∑
k=1

8
∣∣Ckε ∣∣
T

+I{T∈T k}

]
.

Proof of Lemma 39

Let us consider a period h⩾1, 0<ε<εν , and a time step all t⩾T h
ν,ε such that t /∈T h and aht ̸=ah⋆ . Then, since

T h
ν,ε⩾ t

h
ν , from Lemma 21 we have

t+
∣∣Kh

⋆ (t)
∣∣T

2
−
(
1+

∣∣∣Kh
⋆ (t)

∣∣∣)|A| −
(
f(t)+

∣∣∣Kh
⋆ (t)

∣∣∣f(T )
)∑
a̸=ah

⋆

1

KL
(
µh
a+ε

∣∣µh
⋆

) ⩽
∑

k∈Kh
⋆ (t)∪{h}

∣∣∣Ck
ε

∣∣∣ . (C.53)

Furthermore, by definition of T h
ν,ε, since t⩾ T h

ν,ε, we have

t

2
−
∑

a̸=ah⋆

f(t)

KL(µh
a + ε|µh

⋆)
− |A| >

t

4

T

2
−
∑

a̸=ah⋆

f(T )

KL(µh
a + ε|µh

⋆)
− |A| >

T

4
.

(C.54)

By respectively combining Eq. C.53 and Eq. C.54, we thus deduce∣∣Kh
⋆(t)
∣∣ = 0 ⇒ t ⩽ 4

∣∣Chε ∣∣∣∣Kh
⋆(t)
∣∣ ⩾ 1 ⇒ ∃k ∈ J1, hK, T ⩽ 8

∣∣Ckε ∣∣
which implies Lemma 39.
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C.2.6 Tools from Concentration of Measure
This subsection gathers useful concentration lemmas that do not depend on the considered strategy.

Notations For all period h⩾ 2, for all time step t > |A|, for each (possible random) subset of past periods
K⊂Kh :=

{
k∈J1, h−1K : bk⋆=bh⋆

}
, for all arm a∈A, we define NK,h

a (t) :=
∑

k∈KN
k
a (T )+N

h
a (t), S

K,h
a (t) :=∑

k∈K S
k
a(T )+S

h
a (t) and µ̂K,h

a (t) :=SK,h
a (t)/NK,h

a (t).

In particular, forK=Kh
⋆(t) :=

{
k∈J1, h−1K : bk⋆=bh⋆ and ak⋆=a

h
t

}
, we haveNKh

⋆ (t),h
a (t)=N

h

a(t) and µ̂Kh
⋆ (t),h

a (t)=
µh
a(t) when t⩾ thν and t /∈T h (see Eq. 6.8 and 6.9).

Uniform bounds based on the Laplace method (method of mixtures for sub-Gaussian random variables, see
Peña et al. (2008)) are given in Lemma 40.

Lemma 40 (Uniform sub-Gaussian concentration). For all period h⩾2, for all time step t> |A|, for all arm
a∈A, for all δ∈(0, 1), it holds

Pν

(
µ̂h
a(t)− µa,bh⋆

⩾ d
(
Nh

a (t), δ
))

⩽ δ
Pν

(
µa,bh⋆

− µ̂h
a(t) ⩾ d

(
Nh

a (t), δ
))

⩽ δ ,

where d(n, δ)=
√

2(1+1/n) log
(√

n+ 1/δ
)
/n, for all n⩾1.

Lemma 41 reformulates Lemma B.1 from Combes and Proutiere (2014b).

Lemma 41 (Concentration inequalities). For all period h⩾ 2, for all arm a∈A, for all ε∈ (0, 1/2), and all
possibly random subset of periods Kt such that the random variable NKt,h

a (t) is a random stopping time, it
holds ∑

t⩾1

Pν

(
aht+1=a,

∣∣µ̂Kt,h
a (t)−µh

a

∣∣ ⩾ ε
)
⩽ 4ε−2 .

Lemma 42 reformulates Theorem 1 from Garivier (2013).

Lemma 42 (Self-normalized inequalities). For all period h⩾ 2, for all time step t > |A|, for all arm a∈A,
for all K∈J0, h−1K, for all δ>0 and all possibly random subset of periods Kt such that the random variable
NKt,h

a (t) is a random stopping time, it holds

Pν

(
|Kt|=K, NKt,h

a (t)KL
(
µ̂Kt,h
a (t)

∣∣µa,bh⋆

)
⩾δ
)
⩽ 2e⌈δ log(KT+t)⌉ exp(−δ) .

In particular, this implies for δ=f(KT + t),

Pν

(
|Kt|=K, NKt,h

a (t)KL
(
µ̂Kt,h
a (t)

∣∣µa,bh⋆

)
⩾f(KT+t)

)
⩽ (KT+t)−1 log(KT+t)−2 .

C.3 Additional Experiments: Ideal Cases for which Bandits are Close
Enough on the Subset of Optimal Arms

This section provides additional experiments where we investigate some favorable distributions ν where it is
hard to separate the different bandits from each other. All experiments are repeated 100 times.
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Figure C.1: Cumulative regret of KLUCB, KLUCB-RB and tUCB along H = 200 periods of T = 103 rounds
for the bandit set B = {b}.

C.3.1 A Single Instance
Let us first make a remark in the trivial limit case of a unique bandit, that is to say B = {b}. In such cases,
playing KLUCB-RB is obviously equivalent to playing for Ttotal := HT rounds a KLUCB strategy on the bandit
instance b, with an additional term (H − 1)

∑
a∈A∆a,b in the final cumulative regret due to the initialization

at each period. Figure C.1 highlights this fact for the two-armed bandit b defined in Eq. C.55, over H = 200
periods of T = 103 rounds.

b : (µ1,b, µ2,b) = (−∆

2
,
∆

2
) where ∆ = 10

√
log(HT )

T
. (C.55)

Although the case |B| = 1 is not an interesting one since there is no switches between different bandits
instances, it enables to understand what happens when |B| > 1 and bandits are similar, that is max

a∈A⋆
max
b̸=b′
|µa,b−

µa,b′| approaches 0. Besides, it highlights the need for tUCB to see a sufficient number of periods before
exploiting the estimated models of the bandits.

C.3.2 Similarity of Different Instances on the Optimal Subset A⋆

Let us consider routines over two bandits b1 and b2 composed of two arms such that (µ1,b2 , µ2,b2) = (µ1,b1 +
γ, µ2,b1 − γ) and a⋆b1 = 2. If γ > ∆2,b1/2, arms arrangements are different in both instances and these cases
are studied in subsection 6.4.1. Otherwise we have a⋆b1 = a⋆b2 = 2 if ever 0 < γ < ∆2,b1/2. Although
separation of instances is particularly hard in such cases, samples aggregation from false positive periods does
not perturb the empirical means arrangement, and thus yields great performances for KLUCB-RB. To explain
how this kind of distribution generalizes to settings composed of arbitrary numbers of bandits and arms, we
present in Fig. C.2b a distribution ν such that |B| = 5 and |A| = 4. In this setting, we have A⋆ = {1, 4}.
Considering distributions of bandits restricted to A⋆, B naturally decomposes into 3 clusters C(1) := {b1, b4},
C(2) := {b2, b3} and C(3) := {b5} so that

∀i ∈ {1, 2, 3} , ∀b, b′ ∈ C(i),∀a ∈ A⋆, |µa,b − µa,b′ | <
1

2
min
y∈C(i)

min
x∈A,x ̸=a⋆y

∆x,y (C.56)

which entails in particular

∀i ∈ {1, 2, 3} ,∃a(i) ∈ A⋆,∀b ∈ C(i), a⋆b = a(i) ,

and

∀i ∈ {1, 2, 3},∀b ∈ C(i),∀b′ /∈ C(i), |µa(i),b − µa(i),b′ | > min
x∈C(i)

min
a̸=a⋆x

∆a,x. (C.57)
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(a) Cumulative regret (b) ν : {νb1 , . . . , νb5}
rounds.

Figure C.2: KLUCB-RB and KLUCB performances on a clusterized distribution according toA⋆, alongH = 25
periods of 2× 104

(a) ν(1) : {ν(1)b1
, . . . , ν

(1)
b5
} (b) ν(2) : {ν(2)b1

, . . . , ν
(2)
b5
}

Figure C.3: Distribution ν for each bandit in sets B1 and B2.

On the one hand, Eq. C.56 sums up that different bandits from a same cluster are hard to distinguish, in
comparison with the difficulty of learning each instance independently. On the other hand, Eq. C.57 implies
that clusters are easy to separate from each other. Besides Eq. C.56 also implies that the permutation of
A sorting arms according to an increasing order is the same for all instances from a same cluster. Thus
KLUCB-RB is expected to perform well for this kind of arms distributions. Fig. C.2a shows the cumulative
regret curves with one standard deviation obtained on this setting, along H = 25 periods of T = 2 × 104

rounds. As expected, it highlights that a positive cluster effect causes an improvement in regret minimization.
In practice, KLUCB-RB naturally clusterizes the previously seen periods while the current period index h
increases. More specifically, noting C(h) the cluster containing bh⋆ , KLUCB-RB makes all the different bandits
from C(h) share their samples with bh⋆ for a large amount of rounds, which enables to boost the minimization
of regret across period h.

C.3.3 Complement of Sections 6.4.2 and 6.4.3
Figure C.3 shows the generated settings used in experiments of Section 6.4.2, and Figure C.4 the setting used
in Section 6.4.3. More specifically, each sub-figure displays the expected reward for each of the four arms, in
each of the bandits, for the three considered bandit sets.
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Figure C.4: Distribution ν for each bandit in the critical setting.
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Appendix D

Bandits with Groups of Similar Arms

This work is the subject of Pesquerel et al. (2021) and has been initiated and mainly driven by Fabien Pesquerel.
The proofs are not reproduced in this chapter. We refer to Pesquerel et al. (2021) and its Appendix for more
details.

D.1 Introduction
Motivated by various practical reasons, one may want to restrict to a subset Dsim ⊂ D of allowed bandit
configurations instead of the full set D. In this chapter study a variant of the multi-armed bandit problem in
which the reward function, µ : a ∈ A → µa, is assumed to satisfy a cluster-like structural property. A bandit
configuration ν is said to satisfy the q-equivalence property if for every arm a ∈ A, there are at least q − 1
distinct arms having the same expected value:

∀a ∈ A, |{a′ ∈ A : µa′ = µa}| ⩾ q.

Assuming the set of arms A and base distributions D is known to the learner, we denote by Dsim(q) the set of
bandit configurations having the q-equivalence property.

Definition 7 (Arm equivalence and equivalence class). Given a bandit configuration ν, two arms a, a′ ∈ A
are said to be equivalent if their associated distributions have the same expected values:

a ∼ a′ ⇔ µa = µa′

An equivalence class c in ν is a maximal subset of arms in A having the same mean, i.e., for all arm a, a′ in c,
µa = µa′ and for all arm a ∈ c and a′ ∈ A \ c, µa ̸= µa′ .

This situation typically appears in practical situations when each arm can be described with a list of categor-
ical attributes, and the (unknown) mean reward function only depends on a subset of them, the others being
redundant. In this case, q is naturally linked to the number of attributes considered redundant (or useless
descriptors), and the number of categories of each attribute. Precisely, q =

∏
i∈R ci where R is the set of re-

dundant attributes and ci the number of categories for attribute i. The learner may know that there exists such
a structure while not knowing a closed form formula mapping the list of categorical attributes to the significant
subset. In this case, q might be a lower bound on the sizes of the class since the setR might not be the largest
possible one or because the number of redundant attributes depends on the number of relevant attributes. In all
cases, the smallest possible number of redundant attributes can be naturally linked to q. We hereafter consider
the learner only knows q but would like to exploit the prior knowledge of this structure in a bandit problem.
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Goal. For the structure Dsim(q), as we show in Theorem 7 below, the term CDsim(q)(µ) unfortunately makes
appear in general a combinatorial optimization problem. This makes resorting to OSSB or any strategy tar-
geting exact asymptotic optimality a daunting task for the practitioner. In this chapter, our goal is to provide
a computationally efficient strategy adapted to the structure Dsim(q), that is able to reach optimality up to
controlled error term.

Outline and contributions The rest of this chapter is organized as follows. In section D.2, we derive a
lower bound on the regret for the structured set of bandit configurations Dsim(q). This bound makes appear
two components, one that we call non-combinatorial as optimizing it can be done efficiently, and a second term
that we term combinatorial as it involves solving a combinatorial problem. Interestingly, using in Lemma 43
and Theorem 9 that the contribution of the combinatorial part of the lower bound can be controlled. Owing to
this key insight, we introduce in section D.3, IMED-EC, an adaptation of the IMED strategy from Honda and
Takemura (2015) to the structured setDsim(q). One advantage of IMED over a KLUCB alternative is its reduced
complexity, which translates to the equivalence class setup. At each time step, the complexity of computing
the next arm to be pulled by IMED-EC is no more than the one of sorting a list of |A| elements once the IMED
indexes have been computed is at most the one of sorting a list of |A| elements, which is only log |A| times
larger than looking for the minimal IMED index. In Section D.4, we prove that IMED-EC achieves a controlled
asymptotic regret that matches the non-combinatorial part of the lower bound and is at most (less than) 2 times
from the optimal regret bound. Last, we illustrate the benefit of the IMED-EC over its unstructured version in
section D.5, where it shows a substantial improvement. Our experiments also highlights the robustness of the
algorithm to a misspecified parameter q, which is a desirable feature for the practicioner.

D.2 A regret lower bound with combinatorial and non-combinatorial parts
In this section, we derive a lower bound on the number of pulls of suboptimal arms that involves a combina-
torial optimization problem. Using that lower bound, we derive a simple algorithm, IMED-EC, that does not
involve any optimization problem. While not being asymptotically optimal, we will show in the next section
that our algorithm have an upper bound on its regret that is no more than a fraction of the unstructured regret.

Definition 8 (Confusing instance). Given a bandit configuration ν ∈ Dsim(q), a real number λ and a subset
cq ⊆ A of q equivalent arms in ν, we denote by Dsim(q, ν, cq, λ) the set of all bandit configurations having
the same set of arms as ν and such that for all ν ′ ∈ Dsim(q, ν, cq, λ), ν ′ ∈ Dsim(q) and for every arm a in cq,
µ′
a ⩾ λ. When λ > µ⋆, and cq is a subset of a suboptimal class, a bandit configuration in Dsim(q, ν, cq, λ)

is called a confusing instance of ν. Similarly to the notation introduced above, we will use the notation
Dsim(q, µ, cq, λ) to specify the set of means of bandit configurations in Dsim(q, ν, cq, λ).

The aim of an asymptotic lower bound on the number of pulls of a suboptimal arm is to mathematically
understand the minimal asymptotic amount of exploration an algorithm should perform.

Theorem 7 (Asymptotic lower bound). Let q ∈ N − {0} be a positive integer and ν ∈ Dsim(q) be a bandit
configuration having the q-equivalence property. Let c ⊂ A be a suboptimal equivalence class in ν. Assuming
uniform consistency, for all suboptimal arm a,

∀α > 0, lim
T→+∞

Eν

[
Na(T )

Tα

]
= 0,

we have the following asymptotic bandit dependent lower bound on the number of pulls of arms in c:

lim inf
T→∞

min
cq⊆c

∑
a∈cq

Eν [Na(T )]KL(µa|µ⋆) + inf
µ′∈Dsim(q,µ,cq ,λ)

∑
a/∈cq

Eν [Na(T )]KL(µa|µ′
a)

log T
⩾ 1 (D.1)
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where cq is any subset of c having q distincts arms within it.

While this lower bound involves a combinatorial optimization term, one can distinguish between two regimes
depending on the size of the suboptimal class. The combinatorial regime and the non cominatorial regime.

Non-combinatorial regime For a suboptimal class c, if |c| = q or |c| ⩾ 2q, then the lower bound reduces to

lim inf
T→∞

min
cq⊆c

∑
a∈cq

Eν [Na(T )]KL(µa|µ⋆)

log T
⩾ 1.

We call this the non-combinatorial regime because the minimum over all q-partitions of c is in fact the sum of
the q smallest elements of {Eν [Na(T )]KL(µa|λ)}a∈c. The search amongst all the q-partitions of c amount to
a research of the q smallest elements which is not more complex than sorting a list of |c| elements.

Lemma 43. Let ν ∈ Dsim(q) be a bandit configuration having the q-equivalence property. Let c be a subopti-
mal class in the non-combinatorial regime, then, under assumtion 1 and 2,

lim inf
T→∞

∑
a∈c

Eν [Na(T )]

log T
⩾
|c|
q

1

KL(µa|λ)
(D.2)

While we do not have information about individual number of time an arm in a class has been sampled, lemma
43 roughly tells us than on average, the lower bound on the minimal amount of exploration of an arm in a
suboptimal class has been divided by q.

Lemma 44. If all suboptimal classes are in the non-combinatorial regime, the regret may be asymptotically
lower bounded by

lim inf
T→∞

R(ν, T )

log T
⩾

1

q

∑
a∈A\A⋆

∆a

KL(µa|λ)
. (D.3)

Lemma 44 informs us that in the non-combinatorial regime, the classical lower bound on the regret given by
equation (1.3) has been divided by q.

Combinatorial regime For a suboptimal class c to be in the combinatorial regime, we need q < |c| < 2q.
In that case, the lower bound (D.1) involves a combinatorial optimization problem. The difficulty arising from
the term

inf
µ′∈Dsim(q,µ,cq ,λ)

∑
a/∈cq

Eν [Na(T )]KL(µa|µ′
a) ,

is two fold. First, while we could have thought that summing on the reminder c ∖ cq would be enough, the
summand has to be on a /∈ cq as a whole. Indeed, the residual c∖ cq may be of size q−1 meaning that it might
cost less to move an arm from another class to the residual in order to complete it rather than moving all the
reminder. Second, while we could have thought that moving elements from one class of ν to another might be
enough, the infimum has to be taken on Dsim(q, µ, cq, λ). Indeed, the residual c∖ cq may be of size q − 1 and
the nearest class might be of size exactly q. In this case, it may cost less to move all the 2q − 1 distributions
in between the two classes and create a new one rather than merging one of the two with the other.

Lemma 45. Let ν ∈ Dsim(q) be a bandit configuration having the q-equivalence property and c be a subopti-
mal class in the combinatorial regime. Then, we have

lim inf
T→∞

∑
a∈c

Eν [Na(T )]

log T
⩾

log(T )

2q

∑
a∈c

1

KL(µa|λ)
. (D.4)
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Those equations can be compared to the equation (D.2) from the non-combinatorial regime. We emphasize the
fact that the lower bounds given by equation (D.4) are not the largest possible lower bound and hence do not
provide as much information about the algorithmically achievable regret as the largest one given by equation
(D.1). However, together with a regret upper bound on the algorithm IMED-EC, those quantities will help
us control the asymptotic discrepancy between IMED-EC’s regret and the asymptotic lower bound given by
Theorem 7.

D.3 Information Minimization for bandits with equivalence class
The algorithm we present, IMED-EC, depends on the (weak) indexes introduced in the IMED paper by Honda
and Takemura (2015). At each time step t, for each arm a ∈ A, we can compute its IMED index as

Ia(t) = Na(t)KL(µ̂a(t)|µ̂⋆(t)) + logNa(t),

where µ̂⋆(t) = maxa∈A µ̂a(t) and for each arm a ∈ A, µ̂a(t) is the empirical mean of arm a computed with
samples from this arm collected up to time t, µ̂a(t) = 1

Na(t)

∑t
s=1XtI{as=a}. Let ν ∈ Dsim(q) be a bandit

configuration having the q-equivalence property. We denote byA⋆(t) = argmaxa∈A µ̂a(t) the set of empirical
optimal arms at time t. We will denote byAq(t) the set of arms having the q smallest IMED indexes (breaking
ties randomly so that this set has size q). We will also consider the two following quantities for each time t:

I⋆(t) = min
a∈A⋆(t)

Ia(t) = min
a∈A⋆(t)

logNa(t)

I(t) = min
A′⊂A
|A′|=q

∑
a′∈A′

Ia′(t) =
∑

a′∈Aq(t)

Ia(t)

I(t) can be computed efficiently by summing the q smallest elements of the list of IMED indexes. The com-
plexity of computing I(t) once the IMED indexes have been computed is at most the one of sorting a list of
|A| elements, O(|A| log |A|), which is only log |A| times larger than looking for the minimal IMED index.
Using selection algorithms, we may even achieve a better mean time complexity. The IMED-EC algorithm is
presented in Algorithm 12.

Algorithm 12 IMED for Equivalent classes
Pull each arm once
for t = |A| . . . T − 1 do

if I⋆(t) ⩽ I(t) then
Pull at+1 ∈ argmina∈A⋆(t)Na(t) (chosen arbitrarily)

else
Pull at+1 ∈ argmina/∈A⋆(t) Ia(t) (chosen arbitrarily)

end if
end for

While the orginal problem involves combinatorial quantities, those are not involved in the IMED-EC algo-
rithm. From a time complexity viewpoint, this make this algorithm on par with other popular algorithms such
as UCB, KLUCB, and IMED algorithm. On the contrary, the general structure algorithm OSSB involves solving
a combinatorial optimization problem at each time step which makes it numerically inefficient. We are not
aware of general relaxation method for this algorithm that we could compare IMED-EC with. It is interesting
to note that in the case where q = 1, the IMED-EC algorithms coincide with the IMED algorithm.
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Intuition For an arm a, Na(t)KL(µ̂a(t)|µ̂⋆(t)) may be interpreted as the opposite of a log-likelihood of
optimality of that arm. logNa(t) is linked to the log-frequency of play of that arm, the frequency of play of an
arm being interpreted as the probability of pulling that arm is a sequence of length t. The IMED algorithm thus
can be intuitively understood as an algorithm matching an empirical log-probability with a log-frequency of
play. In our setting, there is at least q elements in each group. It therefore makes sense to test for the optimality
of a group rather single elements. Since all arms are independent, it makes sense to sum the log-likelihood
of optimality on all the q-partitions of the set of arms. Since we have the intuition that this first part is the
logarithm of a product of probability, we may compare it to the product of the frequencies. Therefore, we get
that important quantities are the sum of IMED indexes for each q partition of the arms, seen as a comparison
between the optimality of this group of q elements and the associated frequency of play of that group. The
minimal IMED index is the one whose frequency of play is the lowest compared to its likelihood of optimality,
similarly for the sum of IMED indexes.

D.4 Regret analysis
In this section, we now detail the main bound on the regret of IMED-EC .

Theorem 8 (Upper bound on the number of pulls). Under the IMED-EC algorithms, the number of pulls of a
suboptimal arm a is upper bounded by:

Eν [Na(T )] ⩽
log T

qKL(µa|µ⋆)
(1 + α(ε)) + f(ε) (D.5)

where 0 < ε < 1
3
mina∈A\A⋆(µ⋆ − µa) α and α and f tends to 0 as ε tends to 0.

Corollary 5. Under the IMED-EC algorithms, the number of pulls of a suboptimal arm a is upper bounded
by:

min
cq⊆c

∑
a∈cq

Eν [Na(T )]KL(µa|µ⋆) ⩽ (1 + α(ε)) log T + g(ε) (D.6)

where 0 < ε < 1
3
mina∈A\A⋆(µ⋆ − µa) α and α and g tends to 0 as ε tends to 0.

Theorem 9 (Asymptotic upper bound on the number of pulls). Under the IMED-EC algorithms, the number
of pulls of a suboptimal arm a is asymptotically upper bounded by:

lim inf
t→+∞

Eν [Na(T )]

log T
⩽

1

qKL(µa|µ⋆)
(D.7)

Discussion This upper bound shows that in particular, the number of pulls of a suboptimal class,
∑

a∈c Eν [Na(T )]

is asymptotically no more than |c|
q KL(µa|µ⋆)

log T . This hence matches the lower bound in the non-combinatorial
regime. In the combinatorial regime, along with equation (D.4), this regret upper bound shows that

|c|
qKL(µa|µ⋆)

⩾ lim inf
T→∞

∑
a∈c

Eν [Na(T )]

log T
⩾

1

2
· |c|
qKL(µa|µ⋆)

proving that the regret of the proposed IMED-EC does not differ from the optimal lower bound by a factor
more than 2. This is striking result.

Full proof of Theorem 9 and Theorem 8 are provided in Appendix C from Pesquerel et al. (2021).
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D.5 Experiments
In this section, we support our theoretical analysis by conducting three sets of experiments. The Python code
used to perform those experiments is available on Github. We support our empirical evidences using plots of
cumulative regrets. In this section, all the experiments are conducted using gaussian distributions whose means
are between 0 and 1 and of unit standard deviation. Those graphs are representative of all the experiments that
we conducted.

Balanced class, perfect knowledge In this set of experiments, see Figure D.1, we focus on the bandit con-
figurations in which all equivalence classes have the same cardinality and assume that we know the number
of elements per class. This setting is interesting for two reasons. First, one can compute the theoretical lower-
bound without solving a combinatorial optimization problem. Second, the theoretical analysis shows that
IMED-EC is asymptotically optimal in this case. This setting will thus allow us to numerically grasp what
happens in the most structured case. We compare compare IMED-EC to unspecialized bandit algorithm, UCB,
IMED and KLUCB. To make the comparison fairer we also compare IMED-EC to OSSB, an algorithm special-
ized in structured bandit. Since OSSB has to solve a combinatorial optimization problem at each time step, we
can cannot carry experiments on large set of arms while comparing IMED-EC to it. In this particular setting,

Figure D.1: 3 classes, 3 distributions per class - set of means = (0.1, 0.3, 0.6, 0.8)

we see that while OSSB and IMED-EC are provably asymptotically optimal, IMED-EC numerically performs
better in finite time horizon. We recall that it is furthermore numerically more efficient since it does not in-
volve any combinatorial optimization. Without too much surprises, IMED-EC also outperforms unspecialized
algorithm.

Unperfect knowledge In the experiment plotted Figure D.2, we leverage the knowledge hypothesis and as-
sume that we only know a lower bound on the number of elements per class while the classes are still balanced.
We compare IMED-EC to unspecialized bandit algorithm,
IMED and KLUCB. We drop OSSB from our test bed due to the computational burden of solving a combina-
torial optimization problem at each time step. We can see that the finite time cumulative regret of IMED-EC
indeed is much smaller than the regret of the unspecialized algorithms.

Influence of the parameter q Here we show the numerical robustness of IMED-EC with respect to the
lower bound parameter q on the number of elements per classes. On the same bandit problem, we compare
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Figure D.2: 7 classes, 8 distributions per class - set of means = (0.1, 0.3, 0.4, 0.5, 0.6, 0.75, 0.9)

Figure D.3: 7 classes, unbalanced - set of means = (0.1, 0.3, 0.4, 0.5, 0.6, 0.75, 0.9)

different instances of IMED-EC where different values of q are used. In the legend, opt. stands for optimal
and corresponds to the largest valid lower bound on the number of elements per class, i.e. the minimal number
of elements in a class. The experiments Figure D.3 is performed on a bandit problem with 7 classes and
an uneven number of distributions per class. The smallest class has 4 elements and the largest 23. While q
increases up to the minimum cardinality of a class, we see that the performances of IMED-EC increases. It
is rather remarkable that once we go beyond that theoretical threshold, the performances of IMED-EC do not
deteriorate. We even found it difficult to find setting to deteriorate them at all. While the expected regret does
not seem to deteriorate, we sometimes see that the tails of the regret widen as it can be seen on the plot Figure
D.3 for q = 7 and q = 20 since the 0.9 quantile curves are so large for those values of q. We interpret part of
this robustness to the fact that the relaxation induced in IMED-EC makes the algorithm over explore compared
to what the true lower bound suggests. Increasing q reduces the exploration and therefore may improve the
performances of the algorithm. However, this robustness is observed even in the case where the classes are
balanced. This interpretation thus does not explain everything about the numerical robustness of IMED-EC.
This type of experiment does not take more than roughly 10 to 15 minutes on a notebook run in Google Colab
depending on the number of arms, the horizon and the number of runs. This supports the numerical efficiency
of the relaxation made in IMED-EC.
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D.6 Conclusion
In this chapter, we introduced IMED-EC, a numerically efficient algorithm to solve a structured bandit prob-
lem for which we derived a lower bound involving a combinatorial optimization problem. While not being
asymptotically optimal, we proved that the asymptotic regret of IMED-EC is always smaller than the unstruc-
tured one and that we can control the discrepancy with respect to the structured regret lower bound by a factor
of at most 2.
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