
Université de Lille - Faculté des Sciences et Technologies
École Doctorale Mathematics and Digital Sciences

Thèse de Doctorat

Spécialité Informatique

présentée par
Sarah Perrin

Scaling up Multi-agent Reinforcement Learning
with Mean Field Games and Vice-versa

Mise à l’échelle de l’apprentissage par renforcement multi-agent
grâce aux jeux à champ moyen et vice-versa

sous la direction d’Olivier Pietquin
et de Romuald Élie

A été soutenue publiquement à Villeneuve d’Ascq, le 8 décembre 2022 devant le jury composé de

M. François Charpillet Directeur de Recherche, Université de Lorraine, CNRS, Inria, LORIA Président du Jury
M. François Delarue Professeur, Université Côte d’Azur, CNRS Rapporteur
M. Marcello Restelli Associate Professor, Politecnico di Milano Rapporteur
Mme Émilie Kaufmann Chargée de Recherche, CNRS, Université de Lille Examinatrice
M. Olivier Pietquin Professeur, Google Research Directeur de thèse
M. Romuald Élie Professeur, DeepMind Co-directeur de thèse
M. Gergely Neu Research Assistant Professor, Universitat Pompeu Fabra Invité
M. Matthieu Geist Professeur, Google Research Invité

Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL),
UMR 9189 Équipe Scool, 59650, Villeneuve d’Ascq, France

Centre de Recherche en Informatique,
 Signal et Automatique de Lille

À mes grands-parents, Charles-Joël et Pierrette.

Remerciements

Je tiens tout d’abord à remercier très sincèrement mes deux directeurs de thèse, Olivier et
Romuald, qui m’ont toujours poussée à me dépasser tout en me soutenant avec bienveillance.
Sachez que je vous en veux toujours de m’avoir forcée à rentrer en France quand nous étions à
Berkeley et que la pandémie du covid a éclaté. Heureusement que j’ai pu aller à Montréal !
Olivier, tu as su m’aider à toujours garder les bonnes questions de recherche en tête. Merci
pour avoir passé des nuits blanches à reformuler les abstracts et introductions de nos papiers
juste avant de les soumettre, en améliorant grandement leur qualité au passage. Tu as toujours
fait en sorte que je puisse grandir sur le plan professionnel en m’offrant des opportunités et
surtout en m’apprenant à être greedy, un comble pour un chercheur en reinforcement learning
! Merci en particulier pour ce séjour à Montréal qui restera gravé dans ma mémoire. Sur une
note moins formelle, merci de m’avoir faite découvrir les meilleurs restaurants et bars de Lille,
et pour toutes ces soirées où tu nous as accueillis chez toi, qui se terminaient bien trop tard
mais qui laissent des souvenirs ineffaçables (bien que flous). Heureusement que les parties de
billard étaient accompagnées de musique de qualité, je devrais d’ailleurs remercier au passage
Corinne Charby et Bibi Flash. Romuald, merci pour ton soutien et merci d’avoir toujours fait en
sorte que je me sente bien tout au long de ma thèse. Tu as veillé à ce que je sois entourée par les
bonnes personnes pour pouvoir grandir autant sur le plan académique que personnel. Tu as
su me garder motivée et me faire voir le bon côté des choses même dans les moments difficiles.

Je tiens également à remercier profondément mes plus proches collaborateurs et mentors,
Mathieu, Julien et Matthieu, sans qui ces trois années auraient été beaucoup moins fructueuses.
Mathieu, tu as été un soutien quotidien pendant ces trois années. Merci pour ces heures de
discussions autour des jeux à champ moyen, pour tout le temps passé, de jour comme de nuit,
à faire avancer nos projets. Merci pour ta bienveillance, ta bonne humeur et ta gentillesse
sans égales, même lorsque tu n’avais dormi que cinq heures cumulées sur les trois derniers
jours. Je n’en serais clairement pas là aujourd’hui sans toi. Julien, au début de mon doctorat et
malgré le covid, tu t’es impliqué quasi quotidiennement en passant parfois de longs moments
à m’aider. Étant donné la qualité de mon code à l’époque, c’était sacrément gentil. Tu m’as
guidée académiquement tout en m’offrant de précieux conseils, et m’a intégrée dans tes projets
qui sont, par la suite, devenus plusieurs publications de ce manuscrit. Merci Matthieu pour ta
disponibilité et merci de m’avoir appris ta rigueur scientifique. J’admire sincèrement ta capacité

d’abstraction et la manière dont tu crées des liens entre différents domaines de recherche. Enfin,
merci à mes collaborateurs Paul, Sertan, Mark, Karl, Geogios et Théophile avec qui j’ai eu la
chance de travailler.

J’en viens à mes très chers collègues, et maintenant amis, Mathieu, Dorian et Nathan.
Mathieu, merci pour ces sessions d’escalades souvent suivies d’un bon dîner et pour nos
discussions sans fin. Dorian et Nathan, merci d’avoir été mes compagnons du bureau A06.
Le covid nous a empêchés de passer tout le temps que l’on aurait du ensemble mais cela ne
nous a pas empêchés d’avoir le temps de faire une virée en Belgique sur un déjeuner pour se
fournir les meilleurs bières du monde. Merci également à Marc, Antoine, Jules, Yannis, Reda,
Xuedong, Edouard, Matheus, Patrick et Fabien d’avoir égayé mes déjeuners et d’avoir fait vivre
nos interminables pauses café. Merci Odalric pour ta bienveillance et de m’avoir intégrée à
l’équipe bien que nos sujets étaient différents. Merci Émilie pour ces goûters préparés par tes
soins, et merci d’avoir accepté d’être examinatrice lors de ma soutenance. Je remercie Philippe
de m’avoir accueillie au sein de Scool. Enfin, je remercie François Delarue, Marcello Restelli,
François Charpillet et Gergely Neu d’avoir accepté de faire partie de mon jury.

Mais ma thèse aurait été bien différente sans mon expérience de quelques mois à Montréal,
au Mila, l’institut québécois d’intelligence artificielle. Je remercie en particulier Marc G. Belle-
mare de m’avoir accueillie parmi ses étudiants et m’avoir fait découvrir une autre manière
de faire de la recherche. Je tiens également à remercier tous mes collègues et amis rencontrés
là-bas. Alexandre, merci pour tous ces déjeuners qui commençaient souvent un peu trop tôt à
ton goût. Je n’oublie pas notre promesse de collaborer. Bao, merci de m’avoir fait tant rire et
pour ta sensibilité que tu m’as laissée entrevoir. Je remercie également Max, Johan, Nathan,
Pierluca, Harley, Jesse, Charline, Linda et Rishab pour nos discussions scientifiques ainsi que
pour leur accueil chaleureux au Mila. Merci à Joey, Aarash, Julien et Alex pour cette semaine
à Baltimore lorsque nous avons assisté à ICML. Enfin, merci à Antoine, Camille, Joséphine,
Clara, Gabriel, François, Chloé, Alex, Vic, Tom, Grégoire et Sarah. Vous êtes désormais de vrais
amis et vous m’avez fait voir la vie différemment.

Bien évidemment, tout cela n’aurait pas été possible sans ma famille, qui m’a toujours
soutenue et sans qui je n’en serais pas là aujourd’hui. Maman, tu as toujours fait en sorte que je
puisse travailler dans les meilleures conditions possibles, en allant jusqu’à sacrifier tes propres
vacances pour me tenir compagnie pendant mes révisions de concours. Papa, merci d’avoir
éveillé mon intérêt scientifique, en m’apprenant par exemple à résoudre des équations du
premier degré quand j’avais dix ans. Je crois que mes amis de CM1 m’ont par la suite trouvée
un peu bizarre, en me voyant manipuler des x sur un coin de table. Thierry, merci pour ces
soirées passées à m’expliquer mes cours de maths, et de m’avoir convaincue de faire une thèse
lorsque j’hésitais. Te voir travailler aussi dur est une grande source d’inspiration. Ensuite, je
n’ai pas les mots pour remercier mes grands parents, papi et mamie, qui malheureusement ne
sont plus présents. Vous rendre fiers a été ma plus grande motivation. Merci papi de m’avoir

vi

convaincue qu’il fallait absolument aller à Polytechnique si je voulais être astronaute, ce qui
ferait de moi une “ingénieure polytechnicienne astronaute cosmonaute”. Mamie, je n’oublie
pas la promesse que je t’ai faite juste avant que tu partes. Je remercie également ma soeur Lucie
pour tous les rires pendant notre enfance, et plus récemment en soirée. Merci à Théo et Eva
pour nos nombreuses batailles, dans la neige comme dans l’eau. Enfin, je remercie mes oncles
et tantes Sophie, Ekke, Sabine et Alexancre, d’avoir participé à ce qu’on garde une famille aussi
soudée, et mes cousins Laurène, Gabriel, Alexandre, Camille, Lucas, Noah et Salomé, pour nos
vacances passées à La Féclaz.

J’en viens désormais à mon cercle d’amis. Merci à DH et Vic qui ont vu les débuts un
peu difficiles de ma thèse et qui m’ont toujours soutenue. Je n’oublierai jamais nos moments
de vie chez nous, passés à mixer, jouer à la switch ou simplement à discuter dans la cuisine.
Diane, je tiens à te remercier sincèrement pour ton soutien et de m’avoir toujours poussée
vers le haut. J’admire ton énergie et ta détermination. Je remercie également mes amis les
plus proches, Antoine, Manon, Jenny, Lina, Stella, Elie, Gauthier, mes amies d’enfance Adèle,
Marianne et Clara ainsi que mes amis de Phasm, Thomas, Richard, Barth, Vincent, Manon,
Chloé et Clément. Les moments de vie en dehors de la thèse étaient une vraie bouffée d’air
frais qui m’ont apporté un équilibre précieux.

Enfin, merci mon Emma.

vii

Résumé

De la propagation d’une épidémie à l’optimisation du trafic routier, en passant par l’étude des
environnements biologiques, les systèmes multi-agent sont omniprésents dans la nature et en
ingénierie. Cependant, si les progrès en intelligence artificielle et en particulier en apprentissage
par renforcement ont permis de résoudre des jeux complexes tels que le Go, Starcraft et le
Poker, les méthodes récentes ont toujours du mal à s’attaquer à des applications de plus d’une
douzaine de joueurs. Cette difficulté est connue sous le nom de la malédiction des nombreux
agents : quand le nombre d’agents augmente, le jeu devient bien plus difficile à résoudre car le
nombre d’interactions à étudier entre les joueurs devient intraitable.

Dans cette thèse, nous étudions comment l’apprentissage par renforcement et les jeux à
champ moyen peuvent bénéficier mutuellement l’un de l’autre. D’un côté, les jeux à champ
moyen peuvent permettre à l’apprentissage par renforcementmulti-joueurs de passer à l’échelle
en termes de nombre d’agents, étant donné qu’ils comportent par définition une infinité de
joueurs. De l’autre côté, l’apprentissage par renforcement s’est avéré efficace pour résoudre
des jeux stochastiques et complexes et pourraient ainsi permettre de trouver des équilibres de
Nash dans des jeux à champ moyen compliqués, sans avoir à connaître le modèle ou à résoudre
un système forward-backward d’équations stochastiques ou aux dérivées partielles.

Au cours de cette dissertation, nous définissons précisément les jeux à champ moyen, les
processus décisionnels deMarkov et l’apprentissage par renforcement, avant de détailler les dif-
férentes configurations que le lecteur peut rencontrer en cherchant à entremêler l’apprentissage
par renforcement avec les jeux à champ moyen. Puis, nous présentons une approche unifiée
des algorithmes, aussi appelés méthodes itératives, servant à résoudre des jeux à champ
moyen, soit à l’aide de la programmation dynamique quand le modèle est connu, soit avec de
l’apprentissage par renforcement lorsqu’il ne l’est pas.

Puis, nous zoomons sur deux méthodes itératives : Fictitious Play (FP) et Online Mirror
Descent (OMD). Nous prouvons leur convergence vers l’équilibre de Nash sous la condition
de monotonicité dans le cas exact, avec ou sans bruit commun, dans des jeux à champ moyen à
une ou plusieurs populations. Nous démontrons numériquement leur convergence dans un
large set d’exemples et soulignons qu’OMD converge plus rapidement.

Dans la dernière partie, nous proposons trois contributions démontrant que l’apprentissage
par renforcement profond peut résoudre des jeux à champ moyen. La première présente
comment des agents qui utilisent ce paradigme apprennent à se regrouper ensemble, dans un
environnement continu et multi-dimensionnel. Puis, nous nous attaquons à la généralisation
par rapport à la distribution initiale, et démontrons que l’apprentissage par renforcement
profond permet le calcul de politiques population-dépendantes. Enfin, nous proposons deux
algorithmes permettant à FP et OMD de passer à l’échelle, ne requérant pas de sommer ou
moyenner des réseaux de neurones.

Abstract

From understanding the spreading of an epidemic to optimizing traffic flow or biological
swarming, multi-agent systems are ubiquitous in nature and engineering. However, if recent
progress in artificial intelligence and in particular reinforcement learning has allowed to solve
complex games such as Go, Starcraft and Poker, recent methods still struggle to tackle applica-
tions with more than a dozen a players. This difficulty is known as the curse of many agents:
when the number of agents increases, the game becomes computationally way harder to solve
as interactions among players become intractable.

In this Ph.D. thesis, we study how reinforcement learning and mean field games can benefit
mutually from each other. On one hand, Mean Field Games (MFGs) can help to scale up
games and Multi-agent Reinforcement Learning (MARL) in terms of number of agents, as
they naturally deal with an infinite number of players. On the other hand, Reinforcement
Learning (RL) has proven very efficient to solve complex stochastic games and could thus be
used to find Nash equilibria in complicated MFGs without having to know the model or to
solve forward-backward system of partial or stochastic differential equations.

During the dissertation, we define precisely mean field games, Markov Decision Processes
(MDPs) and reinforcement learning, before detailing the different settings the reader may
encounterwhen intertwiningMFGswith RL. Then, we present a unified approach of algorithms,
or iterative methods, to solve MFGs, either with Dynamic Programming (DP) when the model
is known or reinforcement learning when it is not.

Then, we zoom in two iterative methods: Fictitious Play (FP) and Online Mirror Descent
(OMD). We prove their convergence to the Nash equilibrium under the monotonicity condition
in the exact case, with or without common noise, in single and multi-populations mean field
games. We demonstrate numerically their convergence in a various set of examples and
highlight that OMD converges faster.

In the last part, we propose three contributions to demonstrate that Deep Reinforcement
Learning (DRL) can solve mean field games. The first one presents how agents using deep rein-
forcement learning and fictitious play learn to flock in a complex multi-dimensional continuous
environment. Then, we tackle the question of generalization in mean field games, and how
DRL allows to compute population-dependant policies able to be near-optimal against many
distributions. Finally, we propose new state-of-the-art algorithms which are a deep scalable
version of both fictitious play and online mirror descent and do not require to average or sum
neural networks compared to their previous counterparts.

x

Contents

List of Acronyms xv

List of Symbols xvii

1 Introduction 1

1.1 Context and Scope . 2
1.2 Outline and Contributions . 9

I Background and Settings 15

2 Background 17

2.1 From Markov Decision Process to Deep Reinforcement Learning 18
2.2 Mean Field Games: Definition and Settings . 28

3 Iterative Methods, Reinforcement Learning for Mean Field Games and Metrics 45

3.1 Iterative methods . 46
3.2 Reinforcement learning for Mean Field Games 56
3.3 Metrics and Numerical Experiments . 63

II Deep Dive to Iterative Methods: Fictitious Play and Online Mirror Descent 71

4 Fictitious Play 73

4.1 Motivation . 74
4.2 Continuous Time Fictitious Play in Mean Field Games 78

Contents

4.3 Experiments on Fictitious Play in the Finite Horizon Case 79
4.4 Finite Horizon Mean Field Games with Common Noise 82
4.5 Experiments with Common Noise . 83
4.6 Experiment at Scale . 85
4.7 Conclusion of the Chapter . 85

5 Online Mirror Descent 87

5.1 Motivation . 88
5.2 Preliminaries on Multi-Population Mean Field Games 89
5.3 Online Mirror Descent: Algorithm and Convergence 93
5.4 Numerical Experiments . 97
5.5 Conclusion of the Chapter . 102

Conclusion of Part I and II 105

III Deep Reinforcement Learning for Mean Field Games 107

6 Flocking 109

6.1 Motivation . 110
6.2 The Model of Flocking . 111
6.3 Our Approach . 112
6.4 Experiments . 116
6.5 Conclusion of the Chapter . 119

7 Generalization in Mean Field Games 121

7.1 Motivation . 121
7.2 Background and Related Works . 122
7.3 Master Policies for MFGs . 126
7.4 Algorithm . 127
7.5 Numerical Experiments . 131
7.6 Conclusion of the Chapter . 134

xii

Contents

8 Scalable Algorithms 137

8.1 Motivation . 138
8.2 Background . 139
8.3 Deep Reinforcement Learning for MFGs . 142
8.4 Experiments . 146
8.5 Conclusion of the Chapter . 152

Conclusion of Part III 155

9 General Conclusion and Perspectives 157

9.1 Conclusion on our Contributions . 157
9.2 Future Work and Perspectives . 159

A Complements on Chapter 2 163

A.1 Some applications . 163
A.2 An introduction to MFGs in OpenSpiel . 164

B Complements on Chapter 4 167

B.1 Continuous Time Fictitious Play in Finite Horizon 167
B.2 Continuous Time Fictitious Play in Finite Horizon with Common Noise 170
B.3 Continuous Time Fictitious Play: the γ-discounted case 171
B.4 Algorithms . 176
B.5 Linear Quadratic Model . 177
B.6 Common Success Metrics in Mean Field Games 179

C Complements on Chapter 5 181

C.1 Separability and Monotonicity Imply Weak Monotonicity 181
C.2 Multi-Population Reward . 182
C.3 Fictitious Play . 183
C.4 Online Mirror Descent Dynamics . 186
C.5 Weak monotonicity . 188
C.6 Strictly weak monotonicity implies uniqueness 188

xiii

Contents

C.7 Online Mirror Descent Convergence . 189
C.8 Numerical Experiments . 190

D Complements on Chapter 6 197

D.1 More numerical tests . 197
D.2 Normalizing Flows . 199
D.3 Visual Rendering with Unity . 202

E Complements on Chapter 7 203

E.1 Notations . 203
E.2 Experimental Details . 203
E.3 Learning a Population-dependent Policy with Deep RL 205
E.4 Proof of Theorem 7.1 . 205
E.5 On the Convergence of Master Fictitious Play . 207

F Complements on Chapter 8 213

F.1 Algorithms in the exact case . 213
F.2 Deep RL Algorithms . 214
F.3 Details on the link between MOMD and regularized MDPs 217
F.4 Hyperparameters sweeps . 218

List of Figures 221

List of Algorithms 226

List of Tables 227

List of References 229

xiv

List of Acronyms

A

ADP Approximate Dynamic Programming

C

CNN Convolutional Neural Network
CTOMD Continuous Time Online Mirror Descent , 94

D

DP Dynamic Programming , 10, 45
DQN Deep Q-Network
DRL Deep Reinforcement Learning , 10, 17, 109

F

FCN Fully-Connected Network
FP Fictitious Play , 73, 109

I

i.i.d. independent and identically distributed

L

LQ Linear Quadratic , 11

xv

List of Acronyms

M

MARL Multi-agent Reinforcement Learning
MCTS Monte-Carlo Tree Search
MDP Markov Decision Process , 17
MFC Mean Field Control , 5, 17, 45
MFG Mean Field Games , 2, 17, 45
ML Machine Learning
MP-MFG Multi Population-Mean Field Games , 89

N

NE Nash Equilibrium , 11, 109
NF Normalizing Flow , 109
NN Neural Network

O

OMD Online Mirror Descent , 87

P

PI Policy Iteration
POMDP Partially Observable Markov Decision Process

R

RL Reinforcement Learning , 17, 45

S

SAC Soft Actor Critic , 116

V

VI Value Iteration

xvi

List of Symbols

Mathematical notations

N set of integers
R set of real numbers
|E| Cardinal of a set E
|x| Euclidean norm for a vector x ∈ Rn

∆E Set of probability distributions on a set E; when E is finite it is the corre-
sponding simplex in the Euclidean space of dimension |E|, we view probability
distributions as normalized vectors of R|E|

2E Set of subsets of a set E
argmax Set of all maximizers
π, µ, . . . Unless otherwise specified, bold symbols denote time-dependent objects, which

can beviewed as functions of time or as sequences indexed by time steps
M⊤ transpose of a matrixM
E expectation under a probabilistic model. Given a probability distribution

p on a set X and a function φ : X → R, Ex∼p[φ(x)] = E[φ(x) |x ∼ p] =∑
x∈X p(x)φ(x).

P probability under a probabilistic model
N Normal distribution

Markov Decision Processes

X set of states x ∈ X
A set of actions a ∈ A

xvii

List of Symbols

r(x, a) reward function for single-agent RL R : x, a→ r(x, a)

P (x′ | x, a) transition distribution x′ ∼ P (x′ | x, a)

γ discount factor in [0, 1]

µ population’s distribution
m0 initial population’s distribution
k ∈ 1, ...,K iteration index inside an algorithm, used as superscript
N Number of agents
K Number of iterations in iterative methods or algorithms
Np Number of populations
π policy
NT Time horizon inside an episode
n ∈ 1, ..., NT time index inside an episode, used as subscript
π⋆ optimal policy
V state value function (⋆ for optimal value, π for policy value)
Q state-action value function (⋆ for optimal value, π for policy value)
B Bellman operator (⋆ for optimality, π for evaluation)

xviii

Chapter 1

Introduction

When I took the decision of starting a Ph.D., I knew Iwanted to do research inMachine Learning,
preferably in Reinforcement Learning. At the time, I was doing a Master of Science specialized
in Artificial Intelligence at Polytechnique and Olivier Pietquin was teaching us a course on Deep
Reinforcement Learning (RL). I was amazed by the fact that an artificial intelligence could play
Atari games, often better than humans. How was this even possible? At this point, I decided
to pursue my education with a Ph.D. in Reinforcement Learning. I contacted Olivier to know
if he would be interested in working with me. He answered positively and proposed several
possible subjects. Among them, he offered me to work on Mean Field Games, in collaboration
with Romuald Élie, who became my co-advisor. At first, I had exactly the same reaction than
you probably have at this point: what are Mean Field Games (MFGs)? I understood roughly
that MFGs are games with an infinite number of identical players, and that they have numerous
applications such as crowd motion, energy management, economics... Reinforcement learning
is already quite a tricky subject by itself, Multi-agent Reinforcement Learning (MARL) is even
more complicated. Now, I had the opportunity to do research on multi-Agent reinforcement
learning with in infinite number of agents! This choice, that could have appeared frightening
for some people, got me really curious and excited. Was it reckless to accept to work on mean
field games and reinforcement learning? Without further delay, let me dig into the heart of the
subject and explain in more details what are mean field games, what is reinforcement rearning,
and why RL and MFGs can benefit from each other.

1

Introduction

1.1 Context and Scope

1.1.1 The curse of many agents

From understanding biological swarming, ant colonies or forest ecosystems to optimizing
traffic flow, market economies or spreading of epidemics, multi-agent systems are ubiquitous in
nature and engineering. However, if recent progress in artificial intelligence and in particular
deep reinforcement learning has allowed to solve complex games such as Go, Starcraft and
Poker, recent methods still struggle to tackle applications with more than a dozen players. This
difficulty is known as the curse of many agents: when the number of agents increases, the
game becomes computationally way harder to solve as interactions among players become
intractable (L. Wang, Z. Yang, and Z. Wang, 2020). However, real-world applications such as
population dynamics, epidemics control or economics in general often involve hundreds if not
thousands of players. Are we doomed to solve multi-agent systems with only a few players?

Introduced concurrently by M. Huang, R. P. Malhamé, and Caines (2006) and Lasry and
Lions (2007), Mean Field Games could offer a way out, as they deal by definition with an
infinite number of identical and anonymous players. MFGs have the particularity of replacing
the interactions between all players by the interaction between a so-called representative player
and the distribution of the continuum of players. As a result, MFGs do not suffer the curse of
many agents anymore. Furthermore, they offer a new mathematical framework to study large-
population systems and they have found a wide variety of applications in finance, engineering
or crowd modeling1. Thus, it seems there is still hope of scaling multi-agent systems thanks
to MFGs. This observation has been the first motivation guiding my choice of subject when
I decided to start a Ph.D. more than three years ago. Besides scaling up games in terms of
number of agents, what is the benefit of solving mean field games with reinforcement learning?
I will try to provide answers to this vast (and for now ill-posed) question.

In the above, I took as granted that many applications of our everyday life can be expressed
as games. This is the goal of Game Theory, which studies strategic interactions among rational
agents. As soon as a problem can be expressed as a game, i.e. as soon as there is a notion
of reward than can be maximized (or of a cost than can be minimized) and rational agents
interacting, a problem can be turned into a game. However, what notions of convergence can
we look at when many different players come into play? Indeed, players must anticipate what
the others might do because other players’ decisions will affect the final payoff and potentially
the dynamics. In order to study such interactive systems, classical game theory is based on the
rationality of players. This central hypothesis means that agents are able to act optimally with
respect to a criterion, seeking to accumulate as much reward as possible along time. In such
context, how can we study multi-agent systems? Nash (1950) introduced the concept of Nash

1We refer the reader to Section A.1 for an extensive list of examples

2

1.1 Context and Scope

equilibrium in order to study the outcomes of games where the players only act in their own
interest, best responding to their belief about the behavior of others. These games, also known
as competitive games, are a useful framework of which Mean Field Games are a subclass. We
will define more formally what a Nash equilibrium is in the context of Mean Field Games in
the sequel. For now, let us just underline that Nash equilibrium, although being very useful
for studying what kind of equilibrium may emerge in competitive multi-agent systems, are
quite unsatisfactory as they can lead to undesirable situations. The example of the prisoner’s
dilemma is maybe the most famous instance of this kind of situation, in which individuals
receive the greatest payoffs if they betray the group rather than cooperate. It is thus well-known
that Nash equilibrium can result in bad outcomes in terms of what is socially optimal for the
group. Nonetheless, Nash equilibria provide a useful framework for studying the behavior in
large systems of rational and interactive agents and this is the main concept of solutions we
look for in the thesis.

We can now phrase more formally the goal of the dissertation: How can we use Reinforcement
Learning to find Nash equilibria in Mean Field Games?

In the rest of the introduction, I start by defining more formally what are mean field games,
and what we mean by learning and (multi-agent) reinforcement learning. I will then provide
the first insights of how reinforcement learning can scale up mean field games (and vice-versa),
before presenting the outline and our contributions.

1.1.2 Quick introduction to mean field games

General intuition. At a high level, a mean field game is a game with an infinite number of
identical and anonymous players. All players have a similar behavior, i.e. they are symmetric:
we do not need to retain the identity of a player as part of its state. Furthermore, as we have an
infinite number of players, we can replace the atomic players by their distribution over the state
(and sometimes action) space. This idea is borrowed from statistical physics and we thus name
this distribution themean field distribution (Figure 1.1). All the individual interactions can then
be replaced by the interaction between a representative player and the mean field distribution,
which considerably simplifies the model and the analysis. This approximation relies on the
assumption that the population is homogeneous and that the interactions are symmetric and
anonymous in the sense that each player interacts only with the empirical distribution of the
other players, see Figure 1.2 for a schematic view. As already mentioned, our ultimate goal is
to compute a Nash equilibrium, which corresponds to the situation where no player has any
interest in deviating from its current behavior, provided that the other players do not deviate
either.

3

Introduction

Figure 1.1 – The mean field approximation: atomic players are replaced by a distribution of players over
the state space, here a two dimensional domain.

Figure 1.2 – Reading order: Left All identical and anonymous players allow to elect a representative
player; Right The representative player adapts its policy to the distribution of players µ. In return, the
distribution is influenced by all the players using the policy of the representative player.

Example. As a typical example, we can consider crowd motion. Each player is an agent
represented by its position and is able to control its velocity so as to reach a target destination
while minimizing the effort made to move. Typically, passing through a crowded region, i.e.
a region with a high density of players, requires extra efforts or reduces the velocity, which
creates some congestion. If we assume that the number of agents is extremely large and that
these agents are homogeneous and have symmetric interactions, then we can approximate the
empirical distribution of positions by the mean field distribution corresponding to the limiting
regime with an infinite population. This allows to simplify tremendously the computation of a
Nash equilibrium because we only need to compute the optimal policy of the representative
player instead of having one different policy per player.

MeanFieldGames vs. Mean FieldControl. While computing aNash equilibrium is themain
focus of the thesis, another popular notion of equilibrium is the Pareto (or social) optimum. In
this formulation, one usually supposes that a central entity can control all the agents, which has

4

1.1 Context and Scope

Cooperative Pareto optimum MFC

N -agent system Mean-field system

Competitive Nash equilibrium MFG

approx.
Optimize (coop.)

Optimize (comp.)

N→∞

Optimize (coop.)

Optimize (comp.)

approx.

Figure 1.3 – Figure from Cui, Tahir, et al. (2022). Scheme of the links between multi-agent systems,
mean field games, mean field control and there solutions.

the benefit of allowing to converge to a better equilibrium in terms of social benefit. We refer to this
setting as Mean Field Control (MFC) (or control of McKean-Vlasov dynamics) (Bensoussan,
Frehse, and P. Yam, 2013; Carmona and Delarue, 2018b). In both cases of MFG and MFC, the
solutions are typically characterized through optimality conditions taking the form of a coupled
system of forward-backward equations. The forward equation describes the evolution of the
population distribution while the backward equation represents the evolution of the value
function (i.e. the utility of its behaviour) for a representative player. In the continuous time and
continuous space setting, the equations can be partial differential equations (PDEs) (Lasry and
Lions, 2007) or stochastic differential equations (SDEs) of McKean-Vlasov type (Carmona and
Delarue, 2013) depending on whether one relies on the analytical approach or the probabilistic
approach. We refer to Bensoussan, Frehse, and P. Yam (2013), Carmona and Delarue (2018b),
Carmona and Delarue (2018c), and Achdou, Cardaliaguet, et al. (2020) for more details. In
this thesis, we will focus on the discrete time case, which is closer to the framework of Markov
Decision Processes (MDP) (Bertsekas and Shreve, 1996; Puterman, 2014) and mainly on Nash
equilibria and mean field games even if we will also discuss the mean field control setting in
the first two chapters.

Another dichotomy between MFG and MFC is the type of games. MFGs often focus on
competitive games as each player is trying to optimize its own reward. On the other hand, we
can consider that MFC is focusing on collaborative games: we argue that it is equivalent to
consider that a central controller is optimizing for the whole population than to consider players
are willing to collaborate and optimizing a common reward (supposing perfect communication
and information). Figure 1.3 summarizes the links between multi-agent systems, MFG and
MFC.

5

Introduction

1.1.3 Learning and Reinforcement Learning

Two notions of learning. The second question we need to answer before diving more into the
thesis is what learning means in our context. There are mainly two interpretations of learning.
The first one comes from game theory and economics. According to Fudenberg and Levine,
1998a, “The theory of learning in games [. . .] examines how, which, and what kind of equilibrium
might arise as a consequence of along-run non equilibrium process of learning, adaptation, and/or
imitation.” From this point of view, the main focus is on how the players iteratively adjust their
behavior until convergence to an equilibrium. The second interpretation of learning is mainly
used in Machine Learning (ML) and in reinforcement learning. As Mitchell (1997) puts it, "a
computer program is said to learn from experience E with respect to some class of tasks T and performance
measure P if its performance at tasks in T, as measured by P, improves with experience E.” In this
concept, the concept of learning is very related to the idea of improving one’s performance by
using data or samples. In this dissertation, we are interested in delineating these two notions
of learning while explaining how they can be combined.

Learning in games. Solving decisionmaking problems involvingmultiple agents has been the
topic of intensive research in artificial intelligence for decades (Shoham, 1993; Wooldridge and
N. R. Jennings, 1995). This research direction finds its roots in the literature on learning in games,
which goes back to the works of Shannon (1959) and Samuel (1959). Despite the vast literature
on game theory and numerous fundamental results, application to real-world problems remains
a challenge. Recently, successes of combining game theory and machine learning (especially
deep learning (Goodfellow, Bengio, and Courville, 2016) and reinforcement learning (Sutton
and Barto, 2018) led to solutions for large scale games such as chess (Campbell, Hoane Jr, and
Hsu, 2002), Checkers (Schaeffer et al., 2007; Samuel, 1959), Hex (Anthony, Tian, and Barber,
2017), Go (Silver, A. Huang, et al., 2016; Silver, Schrittwieser, et al., 2017; Silver, T. Hubert, et al.,
2018), Poker (N. Brown and T. Sandholm, 2017; N. Brown and T. Sandholm, 2019; Moravcik
et al., 2017; Bowling et al., 2015), complex video games like StarCraft II (Vinyals et al., 2019)
and more recently complex imperfect information games such as Stratego (Perolat, Vylder,
et al., 2022) and no-press Diplomacy (Bakhtin et al., 2022). Although this allowed for tackling
problems involving large state spaces, the number of agents still remains limited and scaling
up to large populations of players remains intractable without the mean-field approximation.

Reinforcement learning. The primary goal of reinforcement learning is to learn to act in
a (complex) environment. It can be described as a general framework for learning-based
sequential decision-making. More formally, at each time step n, the system is described by
its state xn in which the agent is. The agent takes an action an and receives a reward rn

which often depends on its state and action, before transitioning to a new state xn+1, drawn

6

1.1 Context and Scope

from a conditional distribution p(xn+1|xn, an) that we call the transition kernel (or transition
probabilities). The ultimate goal for the agent is to learn to act optimally in such an environment
through sampled-based interactions, i.e. to learn a policy mapping its state to an action:
π(xn|an) ∈ ∆A. It is generally formalized as an MDP, i.e. a tuple (X ,A, P, r, γ) where adequate
behavior consists in optimizing the long term return of the agent, weighted with the discount
factor γ. We describe precisely MDP and reinforcement learning in Chapter 2.

Multi-agent reinforcement learning. While it is fairly straightforward to define what should
be learned in the single agent case thanks to the reward function, it is more tricky in the multi-
agent case because the optimal behaviour of a player must take into account the other players. If
one agent changes its strategy, other agents must adapt to this new strategic interaction, making
the environment from the agent point of view non stationary with respect to the behavior of
others. To circumvent this difficulty, multi-agent reinforcement learning often keeps track of all
agents’ states and use the framework of Markov games which generalizes MDPs to multi-agent
systems. We denote the number of the player i, with i ∈ [1, . . . , N] (not to be confused with the
time step n ∈ [1, . . . , NT]). In every state x of a state space X , players simultaneously take an
action ai in a setAi(x). As a result of this joint action (a1, . . . , aN), each player receives a reward
ri(x, a1, . . . , aN) = ri(x,a) and the system moves to the following state x′ with a probability
defined by the transition kernel p(x′|x, a1, . . . , aN) = p(x′|x,a). Usually in these settings, each
player’s goal is to find a strategy πi(·|x) to maximize the expected sum of γ-discounted rewards.
As explained earlier, this framework suffers from the curse of many agents: increasing the
number of agents increases exponentially the action space which makes the model intractable
when N becomes too large.

From multi-agent reinforcement learning to mean field games. While the general multi-
agent learning case might seem out of reach, considering interactions within a very large
population of players may lead to tractable models. We summarize below the main differences
between single-agent, multi-agent learning and mean-field interactions.

Table 1.1 – Notations for various number of agents
Single Agent N-player Game Mean Field Game

State space X X X
Number of players 1 N ∞
Action Space A Ai

i∈{1,...,N} A
Reward r(x, a) ri(x,a) r(x, a, µ)
Policy π(a|x) πi(a|x)i∈{1,...,N} π(a|x)
Transition kernel p(x′|x, a) p(x′|x,a) p(x′|x, a, µ)

7

Introduction

In particular, we do not need to keep track of all agents’ states inside the policy π because
having an infinite number of agents makes the evolution of the distribution deterministic thanks
to the law of large numbers. This simplifies tremendously the computation of an equilibrium.
Furthermore, most of the MFG literature assumes the representative player to be fully informed
about the game dynamics and the associated reward mechanisms.

1.1.4 Reinforcement Learning for Mean Field Games and vice-versa

In the dissertation, we argue that mean field games and reinforcement learning are two
paradigms that can be merged efficiently into what we call Mean Field Reinforcement Learn-
ing (Figure 1.4). On one hand, MFGs can scale multi-agent reinforcement learning in terms of
number of agents. The first reason, that we described before, is because mean field games allow
to focus on policies that depend only on the representative agent’s state without keeping track
of all agents. A key property is that the solution to the MFG provides an ε-Nash equilibrium for
the corresponding N -player game, with ε going to 0 as N goes to infinity. Furthermore, under
suitable assumptions, N -player Nash equilibria or social optima converge to the corresponding
mean field equilibrium or social optimum. Such results build on the idea of propagation
of chaos (Sznitman, 1991) but are more subtle since the players are not simple particles but
rational agents making optimal decisions and reacting to other players’ decisions (Lacker, 2017;
Cecchin and Pelino, 2019; Lacker, 2020; Cardaliaguet, Delarue, et al., 2019).

We now argue that on the other hand, reinforcement learning can help to scale mean field
games in terms of model complexity. Except Delarue and Vasileiadis (2021), which identifies
common noise as an exploration noise, a key concept in reinforcement learning, few works have
tried to use reinforcement learning concepts to solve MFGs. In fact, most existing numerical
methods for MFGs and MFC problems are based on the aforementioned optimality conditions
phrased in terms of PDEs or SDEs, without reinforcement learning. Such approaches typically
rely on suitable discretizations, e.g., by finite differences (Achdou and Capuzzo-Dolcetta, 2010;
Achdou, Camilli, and Capuzzo-Dolcetta, 2012) primal-dual methods (Briceño-Arias, Kalise,
and Silva, 2018; Briceño-Arias, Kalise, Kobeissi, et al., 2019), semi-Lagrangian schemes (Carlini
and Silva, 2014; Carlini and Silva, 2015), or probabilistic approaches (Chassagneux, Crisan,
and Delarue, 2019; Angiuli, Graves, et al., 2019). We refer to Achdou and Laurière (2020)
and Laurière (2021) for recent surveys on these methods. Although these methods are very
well understood and very successful in small dimension, they cannot tackle MFGs with high
dimensional states or controls due to the curse of dimensionality (Bellman, 1957). To address
this limitation, stochastic methods based on approximations by neural networks have recently
been introduced by Carmona and Laurière (2021), Carmona and Laurière (2019), Fouque
and Z. Zhang (2020), and Germain, Mikael, and Warin (2022) using optimality conditions for
general mean field games, by Ruthotto et al. (2020) for MFGs which can be written as a control

8

1.2 Outline and Contributions

problem, and by Cao, Guo, and Laurière (2020) and Lin et al. (2020) for variational MFGs
in connection with generative adversarial networks (GANs) (Goodfellow, Pouget-Abadie,
et al., 2014). We refer to R. Hu and Laurière (2022) for a recent survey on machine learning
methods for control and games, with applications to MFGs and MFC problems. However,
these methods still try to solve the problems in an exact way by relying on exact computations
of gradients i.e. exploiting the full knowledge of the model. In this thesis, we focus rather on
learning methods which aim at solving MFGs in a model-free fashion to foster the scalability of
numerical methods for these problems. Furthermore, solving MFGs without explicitly solving
a forward-backward system of continuous equations allows to deal with much more complex
domains, with possible many boundary conditions as it often occurs in three-dimensional
real-world applications, e.g., when obstacles are part of the environment.

Figure 1.4 – Mean field Reinforcement Learning.

1.2 Outline and Contributions

The goal of this thesis is to propose new methods combining mean field approximations
and reinforcement learning. We want to tackle large population games in highly complex
environments, i.e. to solve multi-agent systems at a very large scale, both in terms of population
size and model complexity. To do so, we can ask ourselves the following questions:

• How to design algorithms to find Nash equilibria in mean field games?

• How to adapt these algorithms to a model-free setting, using deep reinforcement learning?

With this clear objective in mind, we now present the outline of the thesis.
In Part I, we provide the necessary background on Reinforcement Learning and Mean

Field Games. This part is mainly dedicated to answering the first question, to reviewing the

9

Introduction

literature and to laying the foundation for the rest of the dissertation. It is largely based on
M. Laurière, S. Perrin, M. Geist, and O. Pietquin (2022). Learning Mean Field Games: A Survey.
arXiv:2205.12944, divided in two chapters.

Chapter 2 starts by giving a detailed background on Markov decision processes for a single
agent learning in an environment, both in stationary and finite horizon settings. The stationary
setting is the most encountered one in reinforcement learning, but we will stress out that the
finite horizon setting encompasses more interesting interactions when learning in an MFG.
We define the Bellman operator for the stationary setting and introduce the value and state-
value functions. We provide the equations to both evaluate a policy or find an optimal one.
We then describe the value iteration and policy iteration algorithms that both converge to an
optimal policy in these two settings. The rest of the chapter is dedicated to the Approximate
Dynamic Programming (ADP) framework that appears when the transition kernel and reward
are not known. We will describe reinforcement learning methods that have been successfully
developed in this model-free setting, with a precise characterization of what we consider as an
environment. Finally, we review classical Deep Reinforcement Learning (DRL) methods that
have proved successful to solve complex games. In the second part of the chapter, we define
mean field games in the stationary and finite horizon settings and provide several extensions
of these two frameworks. We introduce relevant notations that will be used throughout the
rest of the dissertation. We adapt the single-agent MDP framework detailed before to mean
field games and discuss the precise nature of the objects of interests, namely the policy π of the
optimal player and the distribution µ of players. In particular, we provide Bellman operator
and Fokker-Plank equation (adapted to discrete time).

Chapter 3 provides an overview of iterative methods, i.e. algorithms, using Dynamic Pro-
gramming (DP) for mean field games. The first part of the chapter is dedicated to introducing
a general framework to study iterative methods. We state that fixed point approaches often
fail by lack of contraction of the operators, which motivates the use of various techniques of
regularization to ensure convergence to a Nash equilibrium. We detail several algorithms and
their connections to single-agent reinforcement learning. Building on these methods and the
connection between MDPs and RL, we explain in Section 3.2 how RL and DRL methods can be
adapted to solve MFGs and MFC problems, when the model is unknown. Section 3.3 discusses
metrics, and in particular the exploitability, that can be used to assess the numerical convergence
of algorithms. We finish the chapter with an illustration of the algorithms on a representative
MFG example, and introduce the OpenSpiel library in which many games and algorithms for
MFGs have been implemented.

Having introduced all the necessary ingredients for combining efficiently reinforcement
learning with mean field games, Part II takes a deep dive into two iterative methods: Fictitious
Play (FP) and Online Mirror Descent (OMD).

10

1.2 Outline and Contributions

In Chapter 4, we study a continuous-time version of fictitious play, prove its convergence to
a Nash equilibrium under the monotonicity condition and even provide a rate of convergence.
This chapter is based on S. Perrin, J. Perolat, M. Laurière, M. Geist, R. Elie, and O. Pietquin
(2020). Fictitious Play for Mean Field Games: Continuous Time Analysis and Applications. In
Advances in Neural Information Processing Systems (NeurIPS 2020). Vol. 33. Curran Associates,
Inc., pp. 13199–13213. We also study the convergence under a common noise, a source of
randomness shared by all the agents. We introduce the discrete-time version of the algorithm,
implement it and test it in a Linear Quadratic (LQ) game and in a game named the beach bar
process. We test model-based algorithms, relying on dynamic programming, and model-free
algorithms such as Q-learning, and highlight that it manages to converge in simple games.
We finish our numerical study with a more involved example in two dimensions, adapting
the beach bar problem to a maze where the agents must learn to go the center while avoiding
interactions.

Chapter 5 studies Online Mirror Descent and proves the convergence of the algorithm to
a Nash Equilibrium with continuous-time updates, also under the monotonicity condition.
It uses the results of J. Perolat, S. Perrin, et al. (2021). Scaling up Mean Field Games with
Online Mirror Descent. Autonomous Agents and Multiagent Systems (AAMAS 2022) (arXiv
preprint arXiv:2103.00623). Rather than computing a full best response at each iteration, OMD
only evaluates the current policy which is computationally cheaper. Here, we introduce the
theoretical results under multi-population mean field games, a slightly different framework
that allows to have several populations competing against each other, while extending the
classical MFG setting. In particular, the results are still valid for a single-population MFG. We
show numerically that OMD converges faster than FP in all the games we consider. In these two
chapters, the theory considers that the model is known and that quantities can be computed up
to an infinite precision (apart when using Q-learning in Chapter 4). This part is thus mainly
dedicated to answering the second question, namely to design algorithms that converge to
Nash equilibria in mean field games.

Finally, Part III is dedicated to three contributions involving model-free deep reinforcement
learning methods, and clearly answers to the second question. Compared to Part II, we do not
suppose anymore that the model is known.

This part begins with Chapter 6, which provides an illustration of how deep reinforcement
learning can be used alongside fictitious play in a complex multi-dimensional continuous
example. It is based on S. Perrin, M. Laurière, J. Pérolat, M. Geist, R. Élie, and O. Pietquin (2021).
Mean Field Games Flock! The Reinforcement Learning Way. International Joint Conference
of Artificial Intelligence (IJCAI 2021) (arXiv preprint arXiv:2105.07933). We study flocking, a
collective behavior that emerges naturally in group of animals. We show that modelling this
behavior as a MFG (Cucker and Mordecki, 2008) allows the agents to all align their velocities.

11

Introduction

We propose several experiments in two and three dimensions and provide a rich visualization
thanks to an integration in Unity, a rich game engine to create three dimensional games.

Then, Chapter 7 studies the question of generalization and summarizes the results of S.
Perrin, M. Laurière, J. Pérolat, R. Élie, M. Geist, and O. Pietquin (2021). Generalization in
Mean Field Games by Learning Master Policies. Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI 2022) (arXiv preprint arXiv:2109.09717). A natural way of computing Nash
equilibria in MFGs is to suppose that the agents are distributed according to a fixed initial
distribution. We argue that this hypothesis is not natural in machine learning as there is no
reason it would happen in real-world applications which require policies able to be reactive to
the current distribution of agents. Thus, we propose a way of surpassing this issue, that relies
on three ingredients: adding the distribution of agents to the policy, using deep reinforcement
learning and learning the policy from many initial distributions. We call the resulting object
the master policy and show numerically that this approach is sound. However, it still uses the
fictitious play algorithm in a non-scalable way.

This leads us to our last contribution. InChapter 8, we propose two scalableDRL adaptations
of fictitious play and online mirror descent. This chapter uses the results of M. Lauriere et
al. (2022). Scalable Deep Reinforcement Learning Algorithms for Mean Field Games. In
Proceedings of the 39th International Conference on Machine Learning (ICML 2022). Vol. 162,
pp. 12078–12095. We recall that FP and OMD were not considered scalable, as they require to
average or sum quantities. However, this simple operation is not trivial in non-linear functions
such as neural networks, as simply averaging weights does not work. We thus propose Deep
Averaged Fictitious Play (D-AFP) and Deep Munchausen Online Mirror Descent (D-MOMD)
that surpass this difficulty. D-AFP keeps a buffer of all previous iterations and minimizes a
categorical loss in order to learn directly an average policy without having to keep in memory
all past best responses. D-MOMD uses a reparameterization based on Legendre-Fenschel
transform, which regularizes directly the Q-function and does not require anymore to sum all
previous Q-functions. To the best of our knowledge, D-MOMD is the state-of-the-art in many
different games as it is the fastest algorithm to converge to a Nash equilibrium that uses deep
reinforcement learning.

List of publications

Publications in international conferences with proceedings

• S. Perrin, J. Perolat, M. Laurière, M. Geist, R. Elie, and O. Pietquin (2020). Fictitious
Play for Mean Field Games: Continuous Time Analysis and Applications. In Advances
in Neural Information Processing Systems (NeurIPS 2020). Vol. 33. Curran Associates, Inc.,
pp. 13199–13213 (used in Chapter 4)

12

1.2 Outline and Contributions

• J. Perolat, S. Perrin, et al. (2021). Scaling up Mean Field Games with Online Mirror
Descent. Autonomous Agents and Multiagent Systems (AAMAS 2022) (arXiv preprint
arXiv:2103.00623) (used in Chapter 5)

• S. Perrin, M. Laurière, J. Pérolat, M. Geist, R. Élie, and O. Pietquin (2021). Mean Field
Games Flock! The Reinforcement Learning Way. International Joint Conference of Artificial
Intelligence (IJCAI 2021) (arXiv preprint arXiv:2105.07933) (used in Chapter 6)

• S. Perrin, M. Laurière, J. Pérolat, R. Élie, M. Geist, and O. Pietquin (2021). Generalization
in Mean Field Games by Learning Master Policies. Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI 2022) (arXiv preprint arXiv:2109.09717) (used in Chapter 7)

• M. Lauriere et al. (2022). Scalable Deep Reinforcement Learning Algorithms for Mean
Field Games. In Proceedings of the 39th International Conference on Machine Learning (ICML
2022). Vol. 162, pp. 12078–12095 (used in Chapter 8)

Preprint

• M. Laurière, S. Perrin, M. Geist, and O. Pietquin (2022). Learning Mean Field Games: A
Survey. arXiv:2205.12944 (used in Chapter 2 and Chapter 3)

Collaborations not presented in this thesis

As these papers are not presented extensively in the thesis, we provide some background here.

• M. Geist, J. Pérolat, et al. (2021). Concave utility reinforcement learning: the mean-
field game viewpoint. Autonomous Agents and Multiagent Systems (AAMAS 2022) (arXiv
preprint arXiv:2106.03787). This paper received an honorable mention as a runner up for
the AAMAS 2022 Best Paper Award. Concave Utility Reinforcement Learning (CURL)
extends RL from linear to concave utilities in the occupancy measure induced by the
agent’s policy. This encompasses not only RL but also imitation learning and exploration,
among others. Yet, thismore general paradigm invalidates the classical Bellman equations,
and calls for new algorithms. Our core contribution consists in showing that CURL is a
subclass of MFGs. We think this important to bridge together both communities. It also
allows to shed light on aspects of both fields: we show the equivalence between concavity
in CURL and monotonicity in the associated MFG, between optimality conditions in
CURL and Nash equilibrium in MFG, or that fictitious play for this class of MFGs is
simply Frank-Wolfe, bringing the first convergence rate for discrete-time FP for MFGs. We
also experimentally demonstrate that, using algorithms recently introduced for solving
MFGs, we can address the CURL problem more efficiently.

13

Introduction

• T. Cabannes et al. (2021). Solving N-player dynamic routing games with congestion:
a mean field approach. Extended abstract at AAMAS 2022 (long version: arXiv preprint
arXiv:2110.11943). This article introduces a new N-player dynamic routing game with
explicit congestion dynamics, as well as the corresponding mean field game. Experiments
reproduce several classical benchmark networks of the traffic community: the Pigou,
Braess, and Sioux Falls networks with heterogeneous origin, destination and departure
time tuples. The Pigou and Braess examples reveal that the mean field approximation is
generally very accurate and computationally efficient as soon as the number of vehicles
exceeds a few dozen. On the Sioux Falls network, this approach enables learning traffic
dynamics with more than 14,000 vehicles.

• P. Muller, R. Elie, et al. (2022). Learning Correlated Equilibria in Mean-Field Games.
arXiv:2208.10138. In this work, we provide an alternative route for studying mean field
games, by developing the concepts of mean field correlated and coarse-correlated equilib-
ria, another type of equilibria beyond Nash. We show that they can be efficiently learnt
in all games, without requiring any additional assumption on the structure of the game,
using three classical algorithms. Furthermore, we establish correspondences between
our notions and those already present in the literature, derive optimality bounds for the
mean field to N-player transition, and empirically demonstrate the convergence of these
algorithms on simple games.

Others

• I co-organized the Gamification and Multiagent solutions workshop at ICLR 2022 with
Andrea Tacchetti, Ian Gemp, Satpreet Singh, Arash Mehrjou, Noah Golowich and Nina
Vesseron.

• I contributed to the OpenSpiel library (Lanctot, Lockhart, et al., 2019).

14

Part I

Background and Settings

Chapter 2

Background

This chapter provides the background for understanding the rest of the thesis. We start by giving
an overview of Markov Decision Process, Reinforcement Learning and Deep Reinforcement
Learning to the reader, before presenting several settings of Mean Field Games and Mean Field
Control problems that have appeared in the literature (Section 2.2). We stress the similarities
and the differences, in terms of definitions and in terms of solutions.

Contents
2.1 FromMarkov Decision Process to Deep Reinforcement Learning 18

2.2 Mean Field Games: Definition and Settings 28

17

Background

2.1 FromMarkovDecision Process toDeepReinforcement Learning

2.1.1 Markov Decision Processes

We recall a few important concepts pertaining to optimal control in discrete time for a single
agent. We will only review the main ideas and we refer to e.g. Bertsekas and Shreve (1996) and
Puterman (2014) for more details. The notion of Markov decision processes will play a key
role in the description of dynamic MFGs.

Stationary MDP

A stationaryMarkovDecision Process (MDP) is a tuple (X ,A, p, r, γ) whereX is a state space,
A is an action space, p : X ×A → ∆X is a transition kernel, r : X ×A → R is a reward function
and γ ∈ (0, 1) is a discount factor. Using action awhen the current state is x leads to a new state
distributed according to p(·|x, a) ∈ ∆X and produces a reward r(x, a). The reward could be
stochastic but to simplify the presentation, we consider that r is a deterministic function of the
state and the action. A stationary policy π : X → ∆A, x 7→ π(·|x) provides a distribution over
actions for each state. The goal of the MDP is to find an optimal policy π∗ which maximizes
the total return defined as the expected (discounted) sum of future rewards:

J(π) = E
[∑

n≥0
γnr(xn, an)

]
,

subject to: x0 ∼ m0,

an ∼ π(·|xn), xn+1 ∼ p(·|xn, an), n ≥ 0,

wherem0 is an initial distribution whose choice does not influence the set of optimal policies.
Assuming the model is fully known to the agent, the problem can be solved using for

instance dynamic programming. The state-action value function, or Q-function, associated to
a stationary policy π is defined as:

Qπ(x, a) = E

∑
n≥0

γnr(xn, an)
∣∣∣x0 = x, a0 = a, an ∼ π(·|xn), xn+1 ∼ p(·|xn, an)

 . (2.1)

By dynamic programming, it satisfies the following fixed point equation with unknown Q :
X ×A → R:

Q = BπQ,

18

2.1 FromMarkov Decision Process to Deep Reinforcement Learning

where Bπ denotes the Bellman operator associated to π:

(BπQ)(x, a) = r(x, a) + γEx′∼p(·|x,a),a′∼π(·|x′)[Q(x′, a′)]. (2.2)

We recall that the expectation is to be understood as:

Ex′∼p(·|x,a),a′∼π(·|x′)[Q(x′, a′)] =
∑
x′

p(x′|x, a)
∑
a′

π(a′|x′)Q(x′, a′). (2.3)

The optimal state-action value function is defined as:

Q∗(x, a) = sup
π
Qπ(x, a). (2.4)

It satisfies the fixed point equation:
Q = B∗Q, (2.5)

where B∗ denotes the optimal Bellman operator:

(B∗Q)(x, a) = r(x, a) + γEx′∼p(·|x,a)[max
a′

Q(x′, a′)], (2.6)

with
Ex′∼p(·|x,a)[max

a′
Q(x′, a′)] =

∑
x′

p(x′|x, a) max
a′

Q(x′, a′). (2.7)

It is also convenient to introduce the (state only) value function associated to a policy V π : x 7→
Ea∼π(·|x)[Qπ(x, a)] and the (state only) optimal value function V ∗ : x 7→ Ea∼π∗(·|x)[Q∗(x, a)],
where π∗ is an optimal policy. These value functions can also be characterized as fixed points
of two Bellman operators. Note that these objects are all independent of time, as we search for
a stationary solution.

Finite Horizon MDP

One can also consider problems set with a finite time horizon. A finite-horizon Markov
decision process (MDP) is a tuple (X ,A, p, r,NT) where X is a state space, A is an action
space, NT is a time horizon, p : {0, . . . , NT − 1} × X × A → P(X) is a transition kernel, and
r : {0, . . . , NT } × X ×A → R is a reward function. At time n, using action a when the current
state is x leads to a new state distributed according to pn(·|x, a) ∈ ∆X and produces a reward
rn(x, a) ∈ R. A policy π : {0, . . . , NT−1}×X → P(A), (n, x) 7→ πn(·|x) provides a distribution
over actions for each state at time n. The goal of theMDP is to find a policy π∗ whichmaximizes
the total return defined as the expected (discounted) sum of future rewards:

J(π) = E
[NT∑

n=0
rn(xn, an)

]
,

19

Background

subject to: x0 ∼ m0,

an ∼ πn(·|xn), xn+1 ∼ pn(·|xn, an), n = 0, . . . , NT ,

wherem0 is an initial distribution whose choice does not influence the set of optimal policies.
Here again, assuming the model is known to the agent, the problem can be solved using

for instance dynamic programming. The state-action value function associated to a stationary
policy π is defined as:

Qπ
NT

(x, a) = rNT
(x, a)

Qπ
n(x, a) = E

∑
n′≥n

rn′(xn′ , an′)
∣∣∣xn = x, an = a, an′ ∼ πn′(·|xn′), xn′+1 ∼ pn′(·|xn′ , an′)

 ,
n = NT − 1, . . . , 0.

The optimal state-action value function is defined as:

Q∗(x, a) = sup
π

Qπ(x, a). (2.8)

Here again, we can introduce the (state only) value function associated to a policy: Vπ
n(x) =

Ea∼πn(·|x)[Qπ
n(x, a)], and the optimal value function: V∗

n(x) = Ea∼π∗
n(·|x)[Q∗

n(x, a)], π∗ is an
optimal policy.

Formally, the finite-horizon MDP can be restated as a stationary MDP by incorporating the
time n in the state. However, it can be simpler to directly tackle this MDP using techniques
that are specific to the finite-horizon setting. In particular we stress that, in contrast with the
stationary setting presented above, the value functions are here characterized by equations
which are not fixed point equations but backward equations. They can be solved by backward
induction, as we will discuss in the sequel (see Section 3.1). For more details on finite-horizon
MDP we refer to e.g. (Puterman, 2014).

In the rest of this section, we first recall value iteration and policy iteration methods in
standard MDPs. We then explain later in this chatper how these methods are adapted in the
MFG setting. For the sake of simplicity, we focus on two settings: the stationary setting and the
finite horizon evolutive setting. We stress the main similarities and differences between the
methods to solve these types of MFGs. The methods in these two settings can be adapted to
tackle the static setting and the γ-discounted setting, which are thus omitted for the sake of
brevity.

20

2.1 FromMarkov Decision Process to Deep Reinforcement Learning

2.1.2 Solving standard MDPs

We recall here two fundamental families ofmethods to compute optimal policies: value iteration
and policy iteration. For more details on these methods, we refer to Sutton and Barto (2018),
Bertsekas and Shreve (1996), Bertsekas (2012), Puterman (2014), and Meyn (2022).

Value iteration

One way to obtain an optimal policy is to first compute the optimal value function by using the
optimal Bellman operator, and then consider a greedy policy with respect to this optimal value
function. Since we are motivated by applications to RL algorithms, we focus on the state-action
value function.

Stationary MDP. In a stationary MDP, the value iteration method can be expressed as
follows: Q0 is given, and for k = 0, . . . ,K − 1,

Qk+1 = B∗Qk. (2.9)

At the end we use the following policy as an approximation of the optimal policy:

πK ∈ GQK ,

where G denotes the greedy policy operator defined by:

GQ =
{
π : ∀x ∈ X ,

∑
a∈A

π(a|x)Q(x, a) = arg max
a

Q(x, a)
}
. (2.10)

Thanks to the fact that the Bellman operator is a γ-contraction, whenK → +∞, πK → π∗

under suitable conditions on the MDP. Equivalently, the above iterations can also be written as
follows, by introducing the greedy policy at every iteration: Q0 is given, and for k = 0, . . . ,K−1,π

k = GQk,

Qk+1 = Bπk
Qk,

where the Bellman operator Bπk associated to the current policy πk is defined in (2.2).

21

Background

Finite horizonMDP. In a finite horizonMDP, the optimal value functionQ∗ can be computed
by dynamic programming since it satisfies the optimal Bellman equation:

Q∗

NT
(x, a) = rNT

(x, a), (x, a) ∈ X ×A,

Q∗
n(x, a) = rn(x, a) + γE

[
max
a∈A

Q∗
n+1(xn+1, a)

∣∣∣xn+1 ∼ pn(·|x, a)
]
,

(x, a) ∈ X ×A, n = NT − 1, . . . , 0.

(2.11)

Computing Q∗ using the above equation is called backward induction. Once it has been
computed, an optimal policy can be found by taking the greedy policy at each step, i.e.:

π∗ = GQ∗,

where G is the finite-horizon greedy policy operator defined as:

(GQ)n = GQn, n = 0, . . . , NT − 1. (2.12)

Remark 1. Notice that the Bellman equation (2.11) is a backward equation and not a fixed-point
equation, contrary to Eq. (2.5) characterizing the optimal value function in the stationary case. Since
the horizon is finite, the optimal value function is computed with a finite number of steps, which is an
important difference with the stationary MDP setting.

Policy iteration

The optimal policy can also be computed by successive improvements of a policy. Starting from
an initial policy, at each iteration, we evaluate the performance of this policy by computing
the associated value function, and then we take a greedy step to improve the policy. These
two steps are called policy evaluation and policy improvement, and the overall algorithm is
called policy iteration.

Stationary MDP. In a stationary MDP, the method consists in applying the Bellman operator
Bπk associated to the current policy πk (see (2.2)) and then applying the greedy policy operator
defined in (2.10). Thus, this method takes the following form: π0 is given, and for k =
0, . . . ,K − 1: Q

k+1 = Qπk
,

πk+1 ∈ GQk+1.

At the end, we return πK and use it as an approximation of π∗. AsK → +∞, we have πK → π∗

under suitable assumptions on the MDP.

22

2.1 FromMarkov Decision Process to Deep Reinforcement Learning

At iteration k, the value function Qπk can be computed by applying repeatedly the Bellman
operator Bπk until convergence to its fixed point, or until an approximation of Qπk is obtained
with a finite number of iterations: with Qk,0 given, we repeat form = 0, . . . ,M − 1,

Qk,m+1 = Bπk
Qk,m, (2.13)

and we use Qk,M as an approximation of Qπk .

Finite horizon MDP. In a finite horizon, we can define the following method by analogy
with the stationary case: π0 is given, and for k = 0, . . . ,K − 1:Qk+1 = Qπk

,

πk+1 ∈ GQk+1.

where G is the finite-horizon greedy policy operator defined in (2.12). At the end, we return
πK and use it as an approximation of π∗.

At each iteration, the state-action value function associated to the current policy can be
computed by backward induction. Indeed, for a given policy π, Qπ satisfies the following
Bellman equation, which holds by dynamic programming:

Qπ
NT

(x, a) = 0, (x, a) ∈ X ×A,

Qπ
n(x, a) = rn(x, a) + γE

[
Qπ

n+1(xn+1, an+1)
∣∣∣xn+1 ∼ pn(·|x, a), an+1 ∼ πn(·|x)

]
,

(x, a) ∈ X ×A, n = NT − 1, . . . , 0.

(2.14)

2.1.3 Reinforcement Learning

Until now we have assumed that the model is fully known and that there are no numerical
approximations in the computation of the rewards or the transitions. In this context, the
only approximations that we have to cope with are in situations where an infinite number of
iterations would be needed but we can only afford a finite number of iterations (e.g., to compute
a stationary distribution or a stationary value function).

However, in many situations, these methods cannot be implemented as such. A typical
scenario is when the model is not completely known from the agent that is trying to learn
an optimal behavior. Another instance is when the model is known, but the state space or
the action space are too big to compute the solution on the whole domain. In such cases,
exact dynamic programming cannot be used. Instead (model-free) reinforcement learning
(RL)methods have been developed. Here we will focus on methods relying on approximate

23

Background

dynamic programming (ADP). The question of exploring efficiently the state-action domain
plays a crucial role.

RL ideas have first been developed for finite and small state and action spaces, in which
case the algorithms are called tabular methods since the value function can be described by a
table (i.e., a matrix). However, many of the recent breakthrough applications of RL have been
obtained thanks to a combination of RL methods with neural network approximations and
deep learning techniques, which leads to deep reinforcement learning (DRL) methods. The
flexibility and the generalization capabilities of deep neural networks allow us to efficiently
learn solution to highly complex problems. In the context of games, some striking examples that
were successfully tackled are ALE (Atari Learning Environment) (Mnih et al., 2013; Bellemare
et al., 2013), Go (Silver, A. Huang, et al., 2016), poker (N. Brown and T. Sandholm, 2017;
Moravcik et al., 2017) or Starcraft (Vinyals et al., 2019).

In the context of MFGs, we will build on the iterative methods presented in Section 3.1.
These methods boil down to alternating mean-field updates and policy updates, and the policy
updates stem from standard MDP techniques. As a consequence, standard RL techniques can
readily be injected at this level to learn policies or value functions.

In this section, starting from exact dynamic programming, we discuss some key ideas
underlying ADP and RL methods. We then move on to neural network approximations and
DRL. We explain later how these ideas can be adapted to the MFG setting.

Environment. Traditional RL aims at solving a stationary MDP, see Section 2.1.1. In the
typical setting, the agent who is trying to find an optimal policy for the MDP interacts with an
environment through experiments that can be summarized as follows:

1. The agent observes the current state x of the MDP (which is referred to as the state of the
environment but could be for instance its own state or the state of the world).

2. The agent takes an action a, which is going to influence the state of the MDP through the
transition kernel p and produces a reward through the function r.

3. The agent observes the new state x′ ∼ p(·|x, a) as well as the reward r(x, a) resulting
from its action.

The agents can repeat such experiments. We provide in Fig. 2.1 a schematic representation of
this setting. It is often assumed that the agent can reboot the environment from time to time.
To avoid remaining stuck in local maxima, it is common to assume that the new state is picked
randomly, which is referred to an exploring start.

We stress that the agent does not observe directly the functions p and r that are used to
compute the new state and the reward. The agent only observes the outputs of these functions.
In some cases, recovering the functions p and r from such observations is feasible, leading to

24

2.1 FromMarkov Decision Process to Deep Reinforcement Learning

Environment

Agent

Reward
rn+1

State
xn+1

Action
an

Reward
rn

State
xn

Figure 2.1 – Reinforcement learning environment: classical single-agent setup. Here, at iteration n, the
current state of the MDP is xn, the action taken by the agent is an, the new state is xn+1 ∼ p(·|xn, an)
and the reward is rn = r(xn, an). The new state xn+1 is observed by the agent and is also used for the
next step of the environment’s evolution.

the concept of model-based RL. However, for complex environments (i.e., complex p and r),
recovering the functions would require such a large number of observations that we generally
prefer to directly aim for an optimal policy, which leads to the concept of model-free RL. The
agent needs to interact multiple times to figure out the most suitable actions for a given state of
the world. For more details, we refer the interested reader to Sutton and Barto (2018), Bertsekas
(2012), Szepesvári (2010), and Meyn (2022).

Approximate dynamic programming. Some of the most popular RL methods are based on
approximations of the exact dynamic programming equations satisfied by the value functions.
Focusing on a stationary MDP, let us recall that an optimal policy can be computed for instance
by value iteration or policy iteration (see Section 2.1.2), which require computing the state-
action value functions Q∗ or Qπ respectively. These two functions satisfy fixed-point equations
whose solutions can be approximated by repeatedly applying the corresponding Bellman
operators B∗ and Bπ, see (2.9) and (2.13). This amounts to repeating:

Qπ(x, a)← r(x, a) + γEx′∼p(·|x,a),a′∼π(·|x′)[Q(x′, a′)], ∀(x, a) ∈ X ×A

Q∗(x, a)← r(x, a) + γEx′∼p(·|x,a)[max
a′

Q∗(x′, a′)], ∀(x, a) ∈ X ×A.

The arrow is used to denote that the value ofQπ(x, a) is replaced by the value in the right hand
side.

In the context of RL, we assume that the agent does not know r or p, so it cannot perform the
above updates. However, these updates can be performed approximately provided we assume
that the agent can query the environment and ask, for any pair (x, a), the value of r(x, a) and
a sample x′ ∼ p(·|x, a) (picked independently at each realization). Then to update Qπ(x, a)
and Q∗(x, a), the agent can query multiple times the pair (x, a) and replace the expectations by

25

Background

empirical averages:

Q̃π(x, a)← r(x, a) + γ
1
I

I∑
i=1

Q̃(xi, ai), xi ∼ p(·|x, a), ai ∼ π(·|xi), ∀(x, a) ∈ X ×A

Q̃∗(x, a)← r(x, a) + γ
1
I

I∑
i=1

max
a′

Q̃∗(xi, a′), xi ∼ p(·|x, a), ∀(x, a) ∈ X ×A,

where the Monte Carlo samples xi and ai are independent. However, it is generally too
computationally expensive to update every pair (x, a) using a batch of I samples. Furthermore,
in many scenarios the agent does not have the freedom to query any state x. Instead, it is usually
bound to observe the state of the environment, which is updated iteration after iteration in a
sequential manner by following the dynamics of the state. The agent can influence the evolution
of the state, but it cannot pick any new state that it wants at every iteration. In such scenarios,
the agent can only perform updates by using the available information at each iteration.

To be specific, let us assume that the agent has a policy π̃ that it uses to generate a trajectory
by interacting with the environment:x0 ∼ m0,

an ∼ π̃(·|xn), xn+1 ∼ p(·|xn, an), n ≥ 0.

The fixed-point equation satisfied by Q∗ says that Q̃∗(x, a) is well estimated if:

Q̃∗(x, a) = r(x, a) + γEx′∼p(·|x,a),a′∼π(·|x′)

[
max

a′
Q̃∗(x′, a′)

]
. (2.15)

So it is natural to use the discrepancy between the right hand side and the left hand side to
improve the estimate Q̃∗ of Q∗. Since we are bound to follow the trajectory, we cannot get the
expectation over x′ and, instead, we perform sampled-based updates using one sample at each
step and a learning α > 0:

Q̃∗(xn, an)← Q̃∗(xn, an) + α

[
r(xn, an) + γmax

a′
Q̃∗(xn+1, a

′)− Q̃∗(xn, an)
]
.

This leads to the celebratedQ-learning algorithm introduced by C. Watkins (1989) and whose
convergence under suitable conditions has been proved by C. J. Watkins and Dayan (1992).
Estimating correctly the whole functionQ∗ can be ensured if every pair (x, a) is visited infinitely
often, which can be guaranteed under some assumptions on the dynamics of the state and by
taking π̃ for instance as an ε-greedy policy (according to which in every state, every action has
some probability to be selected). To estimate Q̃π, a similar strategy can be used.

26

2.1 FromMarkov Decision Process to Deep Reinforcement Learning

Deep reinforcement learning. When state and action spaces are finite, a state-action value
function is simply a matrix, which can be stored in memory and processed easily when the
spaces are small enough. Thanks to this, we can update the value function point by point
(one point being a state-action pair in the case of Q-functions). However, when the spaces
are very large or even continuous, it becomes impossible to evaluate precisely every pair
(x, a). Furthermore, it is also impossible to visit all pairs during training, impliying that the
question of generalization (i.e., performance on unvisited pairs) cannot be avoided. Motivated
by both efficiency and generalization capabilities, we can approximate the state-action value
functions by parameterized non-linear functions such as neural networks. For example, let us
approximate Q∗ by a neural network Qθ with a given architecture and parameters θ. Going
back to (2.15), we note that now, not only we do not know the expected value, but also we
cannot update the function only at a specific pair without changing its value at other pairs.
Instead, we use the discrepancy between the left hand side and an estimation of the right hand
side to define a loss function that can be used to train the neural network Qθ. Since this neural
network appears in both sides of the equation, to make the learning process more stable, we
introduce an auxiliary neural network Qθtarget called target network and we use it to replace
Qθ in the right hand side. The parameters θtarget are fixed when we update θ, and are updated
from time to time but less frequently than θ. To be specific, we define the loss:

L(θ; θtarget) = Ex,a

[∣∣∣∣Qθ(x, a)− r(x, a)− Ex′∼p(·|x,a)

[
max

a′
Qθtarget(x′, a′)

]∣∣∣∣2
]
, (2.16)

where the expectation is over state-action pairs. We do not specify here the distribution of
this pair, but in practice it typically comes from played trajectories stored in a replay buffer.
In practice, this loss is minimized using stochastic gradient descent on mini-batches sampled
from this replay buffer. This leads to the DQN algorithm introduced by Mnih et al. (2013).

The above approach uses that we can easily compute the maximal value of Qθtarget(x′, ·)
over the action space. This is typically possible only if the action space is finite and not too large.
Otherwise, we can use another neural network to encode a policy and train this neural network
so that it approximates an optimal policy, using a so called policy loss. Then, in loss (2.16), the
term maxa′ Qθtarget(x′, a′) is replaced by the expectation of the target Q-value according to the
learnt policy. The resulting agent is called an actor-critic (the actor is the policy, the critic is the
state-action value function). Since our goal is not to present an exhaustive list of methods, we
simply mention below three popular approaches, to give an idea of the variety of algorithms:

• If we consider only deterministic policies, we can replace the policy by a parameterized
function φω : X → A with parameters ω. In this case, the corresponding policy loss
optimises for

max
ω

Ex′ [Qθtarget(x′, φω(x′))].

27

Background

Its gradient can be obtained using the chain rule. This leads to an algorithm that is remi-
niscent of the Deep Deterministic Policy Gradient (DDPG) of Lillicrap et al. (2016).

• Another approach is to look for a general stochastic policy π, in which case we have the
interpretation :

Ea′∼π(·|x′)[Qθtarget(x′, a′)] =
∫

A
Qθtarget(x′, a′)π(a′|x′)da′.

Taking the gradient and using the log trick yields the state-wise gradient:

Ea′∼π(·|x′)
[
Qθtarget(x′, a′)∇ log π(a′|x′)

]
.

The resulting algorithm is reminiscent of Reinforce (Williams, 1992). The related em-
pirical gradient requires sampling from the learnt policy and is usually of high variance.
An alternative approach consists in using the reparameterization trick. For example,
we can restrict our attention to Gaussian policies πω(·|x) = ΦN (mω(x),σω(x)I)(·), where
ΦN (mω(x),σω(x)I) denotes the density function of the normal distributionN (mω(x), σω(x)I),
withmω and σω being two parameterized functions with parameters ω. Here I denotes
the identity matrix on A. This leads to the following approximation:

Ea′∼π(·|x′)[Qθtarget(x′, a′)] ≈ Ea′∼πω(·|x′)[Qθtarget(x′, a′)]

= Eε∼N (0,I)[Qθtarget(x′,mω(x) + σω(x)ε)].

Here again, we can replace the expectation by an average over a finite number of realiza-
tions of ε. In this way, we obtain an algorithm which is similar to TD3 (Fujimoto, Hoof,
and Meger, 2018).

Since the goal of this section is simply to describe some of the key ideas behind DRL, we
do not go further into a detailed presentation of the variety of existing methods. We refer the
interested reader to e.g. Arulkumaran et al. (2017) and François-Lavet et al. (2018).

2.2 Mean Field Games: Definition and Settings

In this section, we present several settings of MFGs which depend on how time is involved (or
not) in the problem. These settings correspond to different applications and different notions
of Nash equilibrium. Here, we focus on four settings, that can be summarized as follows.
We start with games in which the agents take a single decision. There is no notion of time
intrinsic to the game so we call them static MFGs. We then turn to games in which there is
a dynamical aspect. In such games, each agent has a state that evolves along time, and it can
act on this evolution. At the level of the population, in some situations, we can expect the

28

2.2 Mean Field Games: Definition and Settings

distribution of states to converge to a stationary regime, in which the population is stable at a
macroscopic level, even though each agent’s state is possibly changing. We refer to this setting
as a stationary MFG. In other cases, one wants to understand not only the stationary regime,
but how the population evolves, starting from an initial configuration. This is relevant for
applications in which the agents’ behaviors change along time, for instance because there is
a finite horizon at which the game stops. We call such games evolutive MFGs. This setting
comes at the expense of having policies and mean-field terms that depend on time and are
thus harder to compute. To mitigate this complexity while not falling completely into the
stationary regime, an intermediate model has been introduced. The idea is to try to keep the
best of the stationary and evolutive settings by considering a proxy for the whole evolution of
the distribution. We call this setting discounted stationary MFGs. In the rest of this section,
we define each setting as well as the corresponding notion of Nash equilibrium, along with
relevant concepts.

Remark 2. Mean field games vs. non-atomic anonymous games. Games modeling infinite pop-
ulations of agents have also been studied in the framework of non-atomic anonymous games, which
have founds applications particularly in economics, see e.g. Aumann (1964), Schmeidler (1973), and
Aumann and Shapley (2015). In such games, there is typically a continuum of players, indexed by, say,
real numbers in I = [0, 1] and the population is represented by a non-atomic measure on I . Each player
perceives the other players through some aggregate quantity. Although this is very similar to the MFG
framework, the key difference is that the MFG approach completely avoids representing the continuum of
players. The main idea is to exploit the homogeneity of the population and the symmetry of interactions
to simplify the characterization of an equilibrium: it is sufficient to understand the behavior of a single
representative player facing a distribution representing the aggregate information available to this player.
The analysis is greatly simplified, particularly when it comes to stochastic games. Defining rigorously a
continuum of random variables with nice measurability properties is not trivial, as noticed for instance
by Duffie and Y. Sun (2012) and Y. Sun (2006) who used the concept of rich Fubini extension to develop
an exact law of large numbers. The MFG framework allows to carry out the mathematical analysis of
Nash equilibria without requiring such sophistication.

2.2.1 Static MFG

LetA be a finite action space. The behavior of one player, called a strategy, is an element of ∆A,
that is a distribution over the action set. In this setting, the behavior of the population is also
an element of ∆A. We denote a generic element of A by a, and we denote a generic individual
behavior and a generic population behavior by π and ξ respectively.

Besides the action space A, the model is completely defined by a reward function r :
A ×∆A → R. Given a population behavior ξ ∈ ∆A, the reward of a player using π ∈ ∆A is

29

Background

defined as the expected reward when sampling an action according to π:

Jstatic(π; ξ) = Ea∼π [r(a, ξ)] .

The reward function r : A×∆A → R can typically encode crowd aversion or attraction towards
a population action of interest.

Example 1. One of the first examples in the MFG literature is the problem of choosing a starting time
for a meeting, introduced and solved explicitly by Guéant, Lasry, and Lions (2011). In this problem, the
players choose at what time they want to arrive to the meeting room so that they are neither too late nor
too early. The global outcome is the time at which the meeting actually starts, which is not known in
advance and depends on the everyone’s arrival time. Despite its name, there is no dynamic aspect in the
original formulation of the example. Another popular example is the problem in which each agent chooses
a location on a beach, see e.g. Perrin, Perolat, et al. (2020). They want to put their towel close to a bar
(or an ice cream stall) but not in a very crowded area. The global outcome is the distribution of towels on
the beach. To be specific, a simple model can be as follows: A = [0, 1], which represents possible positions
on the beach, abar ∈ A is the position of the bar, and the reward is r(a, ξ) = −|a − abar| − ln(ξ(a)),
where the first term penalizes the distance to the bar and the second term penalizes choosing a location a
at which the density ξ(a) of people is high.

A central concept is the notion of best response. Let us define the (set-valued) best response
map by:

BRstatic : ∆A → 2∆A , ξ 7→ BRstatic(ξ) := arg max
π∈∆A

Jstatic(π; ξ).

Definition 1 (Static MF Nash Equilibrium). π̂ ∈ ∆A is a static mean field Nash equilibrium
(static MFNE) if it satisfies the following condition: π̂ ∈ BRstatic(π̂).

The above definition has the advantage to clearly show that the equilibrium is a fixed point
of BRstatic.

Another point of view, which will be useful in the dynamic settings presented in the sequel,
consists in saying that the equilibrium is given by a pair of a representative agent’s behavior
and the population’s behavior. Here, it means that the equilibrium is a pair (π̂, ξ̂) ∈ ∆A ×∆A

such that:
1. π̂ is optimal for the representative agent facing ξ̂, i.e., π̂ ∈ BRstatic(ξ̂),

2. ξ̂ corresponds to the population behavior when all every agent uses π̂, i.e., ξ̂ = π̂.
The second point represents the fact that all the agents are “rational in the same way” and
hence, at equilibrium, adopt the same behavior. This viewpoint is unnecessarily complicated
in this setting as π̂ alone is enough to define the MFNE, but will be useful in dynamic settings.

30

2.2 Mean Field Games: Definition and Settings

Remark 3. Consistently with the literature on normal-form games (Fudenberg and Tirole, 1991), each
player chooses a distribution over actionswithout seeing the strategy chosen by other players and the
resulting distribution at the population level. Each agent thus tries to anticipate, in a rational way, the
distribution generated by other players’ actions.

A Nash equilibrium corresponds to a situation in which no selfish player has any incentive
to deviate unilaterally. However, it is not necessarily a situation that is optimal from the point of
view of the whole population. The notion of social optimum is discussed below in Section 2.2.6.

Remark 4. Although we provided an intuitive explanation for ξ in terms of a continuum of players, we
want to stress that in the definition of an MFG equilibrium or social optimum, we actually never need to
consider a continuum of players. As already pointed out in Remark 2, this shortcut is one of the main
advantages of the MFG paradigm compared with non-atomic anonymous games.

2.2.2 Notations for the dynamic setting

In contrast with the static case, in the dynamic setting, each agent has a state which evolves in
time. The agent can influence the evolution of their own state using actions. The population’s
state is the distribution of the agents’ states, the joint distribution of their states and actions.
This is what constitutes the mean field, with which every agent interacts through its dynamics
and its rewards.

As far as the population distribution is concerned, we will consider mainly two types of
settings: one in which the population distribution is fixed, and one in which it can also evolve.
Typically, the former is conceptually simpler and easier to compute but the latter is more realistic
since many real world applications involve a population evolving in time. In each cases, several
variants can be considered. For the sake of brevity, we shall focus only on the main ideas.

We will consider discrete time models, with time typically denoted by n ∈ N. If a time
horizon is imposed, we will typically use the notation NT . Let X be a finite state space. A
stationary policy is an element of Π := (∆A)X . In this setting, we assume that the interactions
occur through an aggregate variable which represents the behavior of the population. A mean
field state is an element of ∆X , which is the set of probability distributions on the state space.
It represents the state of the population at a given time. We denote generic elements of X , A,
Π, and ∆X respectively by x, a, π, and µ.

Depending on the setting, we might consider policies that depend on time or on an initial
distribution. More details will be provided below, as we introduce several setups.

Remark 5. To alleviate the presentation, we choose to focus on finite state and action spaces and discrete
time. In some cases, continuous space or continuous time models might be more relevant. They are
typically analyzed using partial differential equations or stochastic differential equations. Suitable

31

Background

discretizations can lead to (possibly non-trivial) approximations of these models with discrete ones, as
presented in this survey, see e.g. Hadikhanloo and Silva (2019) for more details on the convergence of a
finite MFG to a continuous one. We do not discuss in detail the continuous settings here and we refer
the interested reader to the literature, e.g., M. Huang, R. P. Malhamé, and Caines (2006), Lasry and
Lions (2007), Bensoussan, Frehse, and P. Yam (2013), Carmona and Delarue (2018b), and Carmona
and Delarue (2018c).

2.2.3 Stationary setting

Here we consider an infinite horizon model, meaning that there is no terminal time. We assume
that the players interact through a stationary distribution, which represents a steady state of the
population. The model is defined by a tuple (X ,A, p, r, γ) consisting of:

• a state space X and an action space A,

• a one-step transition probability kernel p : X ×A×∆X → ∆X ,

• a one-step reward function r : X ×A×∆X → R,

• and a discount factor γ ∈ [0, 1].
The main difference with standard MDPs as recalled in Section 2.1.1 is the presence of a third
input for p and r, which is an element of the mean field state space ∆X . It plays the role of the
population’s state, which influences the dynamics and the rewards.

Assume the state of the population is given by µ ∈ ∆X and consider a representative agent
using policy π ∈ Π. The total, discounted reward of this player is given by:

Jstatio(π;µ) = E
[∞∑

n=0
γnr(xn, an, µ)

]
, (2.17)

where the state of the agent evolves according to:x0 ∼ µ,

xn+1 ∼ p(·|xn, an, µ), an ∼ π(·|xn), n ≥ 0.
(2.18)

Remark 6 (State-action distribution). An extension of the above model is to consider that the agents
interact through the state-action distribution. In this case, assume the state of the population is given by
ξ ∈ ∆X ×A and consider a representative agent using policy π ∈ Π. The total, discounted reward of a
representative player is given by:

Jstatio(π; ξ) = E
[∞∑

n=0
γnr(xn, an, ξ)

]
,

32

2.2 Mean Field Games: Definition and Settings

where the state of the agent evolves according to:x0 ∼ µ = ξ1,

xn+1 ∼ p(·|xn, an, ξ), an ∼ π(·|xn), n ≥ 0.

with µ = ξ1 ∈ ∆X denoting the first marginal of ξ. This setting is considered for instance by Guo,
A. Hu, et al. (2019) and Guo, A. Hu, et al. (2020). MFG with interactions through state-action
distributions have first been studied by D. A. Gomes, Patrizi, and V. Voskanyan (2014) and D. A. Gomes
and V. K. Voskanyan (2016) and are sometimes referred to as extended MFGs orMFG of controls,
see Cardaliaguet and Lehalle (2018) and Kobeissi (2022). Let us stress that a state-action distribution is
not always a product distribution, meaning that for some ξ ∈ ∆X ×A there is no µ ∈ ∆X and ν ∈ ∆A

such that ξ = µ ⊗ ν. In fact, in general the actions of a player are given by a function of the player’s
states, and hence the joint distribution cannot be written as a product. To simplify the presentation,
we restrict our attention to interactions through state-only distributions but most of the ideas can be
extended to state-action distributions. The interested reader is referred to Carmona and Delarue (2018b,
Section 4.6) and the references therein.

This stationary MFG setting has been studied for instance by J. Subramanian and Mahajan
(2019) with applications to malware spread and investments in product quality, by Guo, A. Hu,
et al. (2019) and Guo, A. Hu, et al. (2020) with applications to auctions and by Angiuli, Fouque,
and Laurière (2022) in the context of linear-quadratic MFGs.

Example 2 (Repeated auction game). As an example, Guo, A. Hu, et al. (2019) consider a repeated
game in which the players bid in an auction game. At a given time, a player’s state and action are
respectively its budget and its bid for the next auction.

The evolution of the population is given by a transition matrix defined by: for all µ̃ ∈ ∆X ,

π ∈ Π, µ ∈ ∆X and x ∈ X ,

(P⊤
µ̃,πµ)(y) =

∑
x

µ(x)
∑

a

π(a|x)p(y|x, a, µ̃). (2.19)

In words, P⊤
µ̃,πµ is the next state distribution for a representative agent starting with state

distribution µ and using policy π while the population has state distribution µ̃.
Given a population state, the goal for a representative agent, is to find the best reaction, i.e.,

a policy that maximizes their total reward. We define the (set-valued) best response map by:

BRstatio,γ : ∆X → 2Π, µ 7→ BRstatio,γ(µ) := arg max
π∈Π

Jstatio(π;µ) ⊆ Π,

and the (set-valued) population behavior map by:

33

Background

Mstatio : Π→ 2∆X , π 7→Mstatio(π) := {µ ∈ ∆X |µ = P⊤
µ,πµ}, (2.20)

which is the stationary distribution obtained when using π (that we assume to be unique).

Remark 7. Note that solving the equation is not trivial since µ is involved in the transition matrix Pµ,π.
We come back to this point in Section 3.1.2.

Definition 2 (Stationary MF Nash Equilibrium). A pair (π̂, µ̂) ∈ Π×∆X is a stationary mean
field Nash equilibrium (stationary MFNE) if it satisfies the following two conditions:

• π̂ ∈ BRstatio,γ(µ̂);

• µ̂ ∈Mstatio(π̂).
Alternatively, an equilibrium can be defined as a fixed point: π̂ is a stationary MFNE policy if it

is a fixed point of BRstatio,γ ◦Mstatio, and µ̂ is a stationary MFNE distribution if it is the stationary
distribution of a stationary MFNE policy.

In this setting, the state-action value function associated to a stationary policy π for a given
distribution µ is defined as:

Qπ,µ(x, a) = E

∑
n≥0

γnr(xn, an, µ)
∣∣∣x0 = x, a0 = a, xn+1 ∼ p(·|xn, an, µ), an ∼ π(·|xn)

 .
The problem then reduces to a standard stationary MDP, parameterized by µ. By dynamic
programming, Qπ,µ satisfies the fixed point equation:

Q = Bπ,µQ, (2.21)

where Bπ,µ denotes the Bellman operator associated to π and µ:

(Bπ,µQ)(x, a) = r(x, a, µ) + γEx′∼p(·|x,a,µ),a′∼π(·|x′)[Q(x′, a′)], (2.22)

where
Ex′∼p(·|x,a,µ),a′∼π(·|x′)[Q(x′, a′)] =

∑
x′

p(x′|x, a, µ)
∑
a′

π(a′|x′)Q(x′, a′). (2.23)

The optimal state-action value function is defined as:

Q∗,µ(x, a) = sup
π
Qπ,µ(x, a).

It satisfies the fixed point equation:
Q = B∗,µQ, (2.24)

34

2.2 Mean Field Games: Definition and Settings

where B∗,µ denotes the optimal Bellman operator associated to µ:

(B∗,µQ)(x, a) = r(x, a, µ) + γEx′∼p(·|x,a,µ)[max
a′

Q(x′, a′)], (2.25)

with
Ex′∼p(·|x,a,µ)[max

a′
Q(x′, a′)] =

∑
x′

p(x′|x, a, µ) max
a′

Q(x′, a′). (2.26)

Note that the functions Qπ,µ and Q∗,µ, and the operators Bπ,µ and B∗,µ are all independent of
time, as we search for stationary equilibria.

2.2.4 Evolutive setting

We next turn our attention to a model in which not only the agents’ state can evolve, but the
population’s distribution too. In this case, the mean field is not stationary. At each time step,
the transition and the reward of every agent depends on the current distribution instead of the
stationary one. The model is defined by a tuple (X ,A,m0, NT , p, r) consisting of:

• a state space X and an action space A,

• an initial distributionm0 ∈ ∆X ,

• a time horizon NT ∈ N ∪ {+∞},

• a sequence of one-step transition probability kernels pn : X ×A×∆X → ∆X , n ≥ 0,

• a sequence of one-step reward functions rn : X ×A×∆X → R, n ≥ 0.
In this context, a population behavior is amean field flow, generally denoted by µ, which

is an element of ∆NT
X . A policy is an element of ΠNT , generally denoted by π. We use bold

letter to stress that these are sequences, which can also be viewed as functions of time.
The total reward is:

Jevol(π; µ) = E

NT∑
n=0

rn(xn, an,µn)

 ,
subject to the following evolution of the agent’s state:x0 ∼ m0,

xn+1 ∼ pn(·|xn, an,µn), an ∼ πn(·|xn), n ≥ 0.
(2.27)

This evolution is analogous to (2.18) except that the stationary mean-field state is replaced by
the current mean-field state at time n.

We assume that the transition p and the reward r are such that the total reward is well
defined.

35

Background

Remark 8 (Finite and infinite horizon discounted settings). Our notation covers two very common
settings:

• Finite horizon: NT < +∞.

• Infinite horizon: NT = +∞. In this case, it is common to assume that p is independent of time,
and that r is of the form rn(x, a, µ) = γnr̃(x, a, µ) where r̃ is independent of time and bounded.

Note that even in the infinite horizon setting and even if p and r are stationary (constant with respect
to the time parameter n), in general the optimal policy still depends on time. This is in contrast with
the stationary setting (section 2.2.3) and is due to the fact that the population distribution starts from
m0 and evolves. The player needs to take that into account in its decisions. To be specific, even if
rn(x, a, µ) = r̃(x, a, µ) is independent of time, the reward associated to a fixed state-action pair (x, a)
is r̃(x, a,µn) at time n and r̃(x, a,µn′) at time n′. Unless the mean-field state is stationary, in general
the two reward values will be different.

Example 3 (Crowd motion). This setting is probably the most commonly studied one in the MFG
literature. As a typical example, we can think of a model for crowd motion in the spirit of e.g. Achdou
and Lasry (2019): the agents start from an initial position and want to reach a point of interest while
avoiding crowded areas. Because the population distribution changes as the agents move, looking for
a stationary solution is not satisfactory if we want to compute the evolution of the whole population.
This is because a stationary solution would only give the optimal policy (from the Nash equilibrium
perspective) against the stationary distribution, and would not be able to recover the full evolution of the
agents. In contrast, a time-dependent policy in the evolutive setup is able to adjust the agents’ behavior
step by step.

Remark 9. Discrete time finite state mean field games have been introduced by D. A. Gomes, Mohr, and
Souza (2010). In the model analyzed therein, the players can directly control their transition probabilities.
Note that the model we consider here is a bit more general since the transition probabilities are functions
of the actions, but they are not necessarily chosen freely by the players.

We define the (set-valued) best response map by:

BRevol,m0,NT
(µ) := arg max

π∈ΠNT

Jevol(π; µ) ⊆ ΠNT .

Let us define the population behavior map by:

Mevol,m0,NT
: ΠNT → ∆NT

X , Mevol,m0,NT
(π) := mean field flow when using π and starting fromm0,

(2.28)

36

2.2 Mean Field Games: Definition and Settings

where this flow is defined by:
µ0 = m0,

µn+1 = P⊤
n,µn,πn

µn, n ≥ 0.
(2.29)

When the context is clear, we will simply write µm0,π.

Definition 3 (Evolutive MFG Nash Equilibrium). A pair (π̂, µ̂) ∈ ΠNT ×∆NT
X is an evolutive

mean field Nash equilibrium (evolutive MFNE) if it satisfies the following two conditions:
• Best response: π̂ ∈ BRevol,m0,NT

(µ̂);

• Mean field flow: µ̂ = Mevol,m0,NT
(π̂).

Alternatively, an evolutive MFNE can be defined as a fixed point: π̂ is an evolutive MFNE policy if
it is a fixed point of BRevol,m0,NT

◦Mevol,m0,NT
, and µ̂ is an evolutive MFNE flow if it is the mean

field flow generated by an evolutive MFNE policy.

The state-action value function associated to a policy π and the optimal state-action value
function are defined analogously to standard MDP but parameterized by µ. We denote them
respectively by Qπ,µ and Q∗,µ.

For the sake of completeness, let us provide more details in the finite horizon setting.
Assume NT < +∞. The state-action value function associated to a policy π for a given
distribution µ is defined as:

Qπ,µ
NT

(x, a) = rNT
(x, a,µNT

)

Qπ,µ
n (x, a) = E

 NT∑
n′=n

rn′(xn′ , an′ ,µn′)
∣∣∣xn = x, an = a, xn′+1 ∼ pn′(·|xn′ , an′ ,µn′), an′ ∼ πn′(·|xn′)

 ,
n = NT − 1, . . . , 0.

The optimal state-action value function is defined as:

Q∗,µ(x, a) = sup
π

Qπ,µ(x, a).

2.2.5 Discounted stationary setting

We now discuss a setting that is somehow between the stationary and the evolutive ones. Note
that in the stationary setting, we focus on the stationary distribution of the population while in
the evolutive setting, we care about the entire sequence starting fromm0. In the first case, we
can restrict our attention to stationary policies, whereas this is not possible in the second case,
as highlighted in Remark 8. An intermediate approach consists in replacing the distribution

37

Background

µm0,π
n at time n by an aggregate which keeps some memory ofm0, instead of the stationary

distribution.
The model is defined by a tuple (X ,A,m0, p, r, γ) consisting of:
• a state space X and an action space A,

• an initial distributionm0 ∈ ∆X ,

• a one-step transition probability kernel p : X ×A×∆X → ∆X ,

• a one-step reward function r : X ×A×∆X → R„

• a discount factor γ ∈ [0, 1).
We define the discounted distribution as:

Mstatio,γ,m0(π) := µm0,π
γ := (1− γ)

∑
n≥0

γnµm0,π
n ∈ ∆X ,

where µm0,π follows the dynamics (2.29) but with πn = π for all n ≥ 0 after starting fromm0

at time 0, and with the mean-field term replaced by µm0,π
γ , i.e.,µm0,π

0 = m0,

µn+1 = P⊤
µ

m0,π
γ ,π

µm0,π
n , n ≥ 0.

This formulation allows us to work with a single distribution, which plays the role of a
summary of what happens along the mean field flow. In contrast with the stationary MFG
setting, here the initial distribution m0 still influences the mean field term, namely, µm0,π

γ .
However, we can restrict our attention to stationary policies just as in the stationary MFG
setting.

Example 4 (Exploration). In Perrin, Perolat, et al. (2020) and Geist, Pérolat, et al. (2021), this
setting has been used for an MFG in which the agents explore the spatial domain. From the point of view
of the population, it amounts to maximizing the entropy of the distribution. The discounted stationary
distribution can be used as a proxy to evaluate with a single distribution how well the population explore
the state space.

Remark 10. The discounted distribution can be interpreted as the stationary distribution of an agent
who starts with distribution m0, uses policy π but has a probability to stop at any time step. To be
specific, let τ be a random variable with geometric distribution on {0, 1, 2 . . . , } with parameter (1− γ).

38

2.2 Mean Field Games: Definition and Settings

Let us denote by µγ,m0,π
n is the distribution of xn, where:

x0 ∼ m0,

xn+1 ∼ p(·|xn, an, µ
m0,π
γ), an ∼ π(·|xn), 0 ≤ n ≤ τ

xn+1 = xn, τ ≤ n

Then we have: for every x ∈ X ,

P(xn = x) =
∑
k≤n

P(τ = k)P(xk = x|τ = k) + P(τ > n)P(xn = x|τ > n)

= (1− γ)
∑
k≤n

γkµγ,m0,π
k (x) + P(τ > n)P(xn = x|τ > n).

When n→ +∞, P(τ > n)→ 0, so we obtain that:

µm0,π
γ (x) = lim

n→+∞
P(xn = x) = (1− γ)

∑
k

γkµγ,m0,π
k (x).

Definition 4 (Discounted stationary MFG Nash Equilibrium). A pair (π̂, µ̂) ∈ Π × ∆X is a
discounted stationary mean field Nash equilibrium (discounted stationary MFNE) if it satisfies
the following two conditions:

• π̂ ∈ BRstatio,γ(µ̂);

• µ̂ = Mstatio,γ,m0(π̂).
Alternatively, µ̂ is a discounted stationary mean field Nash equilibrium distribution if it is a
fixed point of: Mstatio,γ,m0 ◦ BRstatio,γ .

2.2.6 Social optimum and Mean Field Control

The notions of MFNE discussed above correspond to non-cooperative games, in which each
player maximizes their own reward while trying to anticipate the behavior of other selfish
agents. A different question consists in considering that the agents are cooperative and try to
maximizer a social welfare criterion by choosing together a suitable policy. This situation can
also be interpreted as an optimization problem from the point of view of a social planner, who
tries to figure out which behavior is optimal from the society standpoint.

Static setting. The social welfare function is defined as the reward obtained on average by
the agents:

π 7→ J social
static (π) := Jstatic(π;π).

39

Background

A strategy π∗ is a static mean field social optimum (static MFSO) if it maximizes the social
welfare function J social

static .

Stationary case. The total, discounted social welfare associated to a policy π is:

J social
statio (π) = Jstatio(π;µπ) = E

[∞∑
n=0

γnr(xn, an, µ
π)
]

subject to: x0 ∼ µπ,

xn+1 ∼ p(·|xn, an, µ
π), an ∼ π(·|xn), n ≥ 0,

where µπ is the stationary distribution induced by π. Here we see that perturbing π changes
µπ, which is reflected in the third argument of the transition function and the reward function.
An optimal stationary policy is a π ∈ Π maximizing J social

statio . This setting has been considered
by J. Subramanian and Mahajan (2019) or by Angiuli, Fouque, and Laurière (2022).

Evolutive case. The total social welfare is:

J social
evol (π) = Jevol(π; µm0,π) = E

NT −1∑
n=0

rn(xn, an,µ
m0,π
n)

 ,
subject to the following evolution of the agent’s state:x0 ∼ m0,

xn+1 ∼ pn(·|xn, an,µ
m0,π
n), an ∼ πn(·|xn), n ≥ 0.

An optimal policy is a π maximizing J social
evol .

Discounted stationary case. The total social welfare is:

J social
d−statio(π) = Jevol(π; µm0,π

γ) = E

NT −1∑
n=0

rn(xn, an,µ
m0,π
γ)

 ,
subject to: x0 ∼ m0,

xn+1 ∼ pn(·|xn, an,µ
m0,π
γ), an ∼ πn(·|xn), n ≥ 0,

where µm0,π
γ = (1 − γ)

∑
n≥0 γ

nµm0,π
n ∈ ∆X is the discounted distribution introduced in

Section 2.2.5.

40

2.2 Mean Field Games: Definition and Settings

Price of anarchy. The average reward obtained by a representative player can only be higher
in an MFSO than in an MFNE, by the very definition of a social optimum. The discrepancy
between the two situations is quantified by the following notion the price of anarchy (PoA).
In the static setting, it is defined as:

PoAstatic = supπ J
social
static (π)

inf π̂∈N Estatic J
social
static (π̂)

.

In the denominator, NEstatic denotes the set of static MFNE. The PoA can be defined
analogously in the other settings.

The term “Price of Anarchy” has been coined by Koutsoupias and Papadimitriou (1999).
Since then, this notion has been widely studied in game theory and can be viewed as a way to
measure the inefficiency of Nash equilibria (Roughgarden and Tardos, 2007). In the context
of MFGs, it has been studied e.g. by Lacker and Ramanan (2019) in a static setting, and
by Carmona, Graves, and Tan (2019) in a dynamic setting.

2.2.7 BridgingMean-Field Control and Games: IntroducingMean-Field (Coarse)
Correlated Equilibria

We have discussed so far either fully decentralized decision makings, via Nash equilibria, or
fully centralized control, via Mean-Field Control. Equilibria denote situations of play where
agents do not have any incentive to change their behavior while Centralized implies a central
coordination of agents. Uniqueness of Mean Field Nash equilibria does not hold in general and,
in such situation, the proper coordination of agents becomes crucial for selecting a relevant
equilibrium. For this purpose, we now turn towards the in-between notion of centralized
equilibrium.

(Coarse) Correlated Equilibria are widely studied in the game theory literature (Blum and
Mansour, 2005; Morrill, D’Orazio, Sarfati, et al., 2020; Morrill, D’Orazio, Lanctot, et al., 2021;
Aumann, 1987; Neumann, 1928; Neumann and Morgenstern, 1944) and have recently been
introduced by Muller, Elie, et al. (2022), Muller, Rowland, et al. (2021), Degl’Innocenti (2018),
and Campi and Fischer (2020) in mean field games settings. They exactly fit the intuition above:
a centralized instance provides a population recommendation, i.e. a distribution over policies
according to which the population will play. For each player, a policy is sampled from the
population recommendation and sent to said player. Players only observe their policies, but they
know the probabilities that the the central instance assigns to each population recommendation.
From there, there are two deviation types that players may consider :

41

Background

• Deviate given a policy - answering the question "Given that I have been tasked to play
policy π, should I play something else ?". Equilibria for which there is no incentive to
deviate this way are called correlated equilibria.

• Deviate in general - answering the question "Given what typically happens, should I play
π′ all the time instead of listening to recommendations ?". Equilibria for which there is
no incentive to deviate this way are called coarse-correlated equilibria.

More formally, the sets of relevant policy deviations are UCE = {u | u : Π → Π} and
UCCE = {u | u : Π → Π, u constant} . We also write, given a population recommendation
ν ∈ ∆(Π), µ(ν) the mean-field state distribution when the population’s policies are distributed
according to ν. A correlated equilibrium is a distribution over state distributions, therefore it
belongs to P(∆(Π)).

Definition 5 (MF (Coarse) Correlated Equilibrium). A MF correlated equilibrium defines as a
distribution ρ ∈ P(∆(Π)) such that

Eν∼ρ,π∼ν [J(u(π), µ(ν))− J(π, µ(ν))] ≤ 0 ∀u ∈ UCE .

Similarly, ρ ∈ P(∆(Π)) is aMF coarse-correlated equilibrium if

Eν∼ρ,π∼ν [J(u(π), µ(ν))− J(π, µ(ν))] ≤ 0 ∀u ∈ UCCE .

As detailed in Muller, Elie, et al. (2022), similarly to Nash equilibria, plugging using a
mean-field (coarse) correlated equilibrium in an N-player game yields a O

(
1√
N

)
-approximate

(coarse) correlated equilibrium. We also demonstrate that learning algorithms can converge to
coarse correlated equilibrium, whenever uniqueness of Nash equilibrium is not in force in the
mean field game.

Given that the set of correlated equilibria strictly includes the set of Nash equilibria, its
price of anarchy will be at least as high. However, its Price of Stability (PoS) will, thanks to
the possibility of coordinating strategies, typically be lower than Nash. The PoS is the ratio
between the best objective function value of one of its equilibria and that of an optimal outcome
(the PoA being the ratio between the worst equilibrium and the optimal outcome).

2.2.8 Conclusion and Extensions

In this chapter, we have given background on MDPs, RL and DRL and reveiwed the different
settings that one can encounter when studying MFGs with discrete-time and discrete state
and actions spaces. We conclude this chapter by mentioning a few extensions. For the sake of

42

2.2 Mean Field Games: Definition and Settings

readability, we use the basic settings described above in the sequel. However, several variants
have been considered in the literature.

Multiple populations. Mean field theory allows us to approximate a homogeneous popula-
tion of individuals by the limiting probability distribution. In multi-population MFGs, there
is a finite number of sub-populations, each of them representing a homogeneous group of
agents. The transition function and the reward function are the same for all the agents of
one sub-population, but may be different from one group to the other. In this way, the MFG
paradigm can still be used. We refer for instance to M. Huang, R. P. Malhamé, and Caines
(2006), Feleqi (2013), Cirant (2015), and Bensoussan, T. Huang, and Laurière (2018) for an
analytical approach and to Carmona and Delarue (2018b, Section 7.1.1) for a probabilistic
formulation. In the context of reinforcement learning, multi-population MFGs have been
studied e.g. by S. G. Subramanian et al. (2020) and in our work (Perolat, Perrin, et al., 2021).

Population-dependent policies. In all the previous settings, the policies are independent of
the population distribution. This aspect is classical in the MFG and MFC literature because, if
a player anticipates correctly the policy used by the rest of the population, they can anticipate
the whole population behavior without uncertainty. As a consequence, the distribution needs
not be an input to the agent’s policy. However, this aspect might be counter-intuitive from a
learning perspective, because it means that the agents react optimally only to the equilibrium
population behavior but they cannot adjust their behavior if the distribution deviates from this
equilibrium.

Population-dependent policies are tightly connected with population-dependent value
functions, and the so-called Master equation in MFGs. This equation has been introduced
by P.-L. Lions in the continuous setting (continuous time, state and action) (Lions, 2012).
There, it is a partial differential equation (PDE) which corresponds to the limit of systems of
Hamilton-Jacobi-Bellman PDEs characterizing Nash equilibria in symmetric N -player games.
For more details in the continuous setting, we refer the interested reader to Bensoussan, Frehse,
and S. C. P. Yam (2015) and Cardaliaguet, Delarue, et al. (2019). In the discrete time and space
setting, population-dependent value functions and policies have been studied by Mishra, Vasal,
and Vishwanath (2020) and in our work (Perrin, Laurière, Pérolat, Élie, et al., 2021), where a
deep RL method to learn such policies is developed (Chapter 7).

Common noise. Besides idiosyncratic noise affecting the evolution of each agent indepen-
dently, it is possible to consider macroscopic shocks affecting the whole population. This is
referred to as common noise in the MFG literature. Because the whole population’s evolution
is stochastic, using policies functions of the player’s state only is in general suboptimal. This is
because even if the player knows the policy used by all the other players, it cannot predict with

43

Background

certainty the evolution of the distribution. In this case, it is more efficient to use population-
dependent policies. We refer to Carmona, Delarue, and Lacker (2016a) and to Cardaliaguet,
Delarue, et al. (2019) for respectively a probabilistic and an analytical treatment of MFGs with
common noise and we will discuss it in Chapter 4.

44

Chapter 3

Iterative Methods, Reinforcement
Learning for Mean Field Games and
Metrics

Having defined properly the different settings in Mean Field Games and Reinforcement Learn-
ing, we now summarize the main directions that researchers have taken to tackle this problem
and provide an overview of computing equilibria in mean field games. In Section 3.1, we
start by introducing a general framework that unify the different algorithms to solve Mean
Field Games (or Mean Field Control) with Dynamic Programming. We describe mainly two
classes of algorithms to find Nash equilibria in MFGs. These algorithms are based on iteratively
updating the mean field and the policy, so we refer to them as iterative methods. Building on
these methods and the connection between MDPs and RL, we explain in Section 3.2 how RL
and DRL methods can be adapted to solve MFGs and MFC problems. Section 3.3 discusses
metrics, namely the exploitability and Wasserstein distance, that can be used to assess the
numerical convergence of algorithms and illustrate some of the methods on a representative
MFG example.

Contents
3.1 Iterative methods . 46

3.2 Reinforcement learning for Mean Field Games 56

3.3 Metrics and Numerical Experiments . 63

45

Iterative Methods, Reinforcement Learning for Mean Field Games and Metrics

3.1 Iterative methods

We turn our attention to the question of computing mean field Nash equilibria in the settings
presented in Chapter 2. The goal is to compute a pair consisting of a policy and a mean
field which form a fixed point. A simple strategy is, starting with some initial pair, to update
alternatively the policy and the mean field until convergence to an equilibrium. In this section,
we assume that the model is completely known. We call the algorithms presented here iterative
methods for the sake of convenience and to distinguish them from the RL algorithms discussed
later on. As we will discuss in the sequel, these methods rely on fixed point-type iterations.
In contrast with the MDP setting, the underlying operator for these iterations is not always
contractive, which triggers the introduction of variants to help ensuring convergence.

3.1.1 Overview of the methods

As explained above, the main idea is to alternate an update of the population distribution and
an update of the representative agent’s policy, which can be represented as:

· · · → µℓ policy update
−−−−−−−−−−−−−→ πℓ+1 mean field update

−−−−−−−−−−−−−−−−→ µℓ+1 → . . . (3.1)

At a high level, we expect the scheme described in (3.1) to converge towards a fixed point (µ̂, π̂)
which is a Nash equilibrium.

The mean field update is done using the population distribution or the sequence of dis-
tributions induced by the current policy. Notice that, since the dynamics is known, it is
straightforward to compute the mean field induced by a given policy. The converse is more
challenging: except in some special cases, given a mean field, it is hard to find which policy
generated it as many policies can generate the same mean field. Thus, computing not only the
mean field but also an equilibrium policy is a crucial point.

The policy update can typically be done in two different ways. In the first family ofmethods,
the policy is updated by computing a best response against the mean field. In the second family,
the policy is updated based on the evaluation of the previous policy. We call these two families
best-response based and policy-evaluation based respectively. In fact, this distinction stems
from an analogous distinction between two families of methods to solve standard MDPs,
respectively value iteration and policy iteration.

46

3.1 Iterative methods

3.1.2 Solving MFGs

As explained at the beginning of this section (see Equation (3.1)), the main idea underlying
the methods we present below is to alternate an update of the population distribution and an
update the representative agent’s policy.

Inspired by the above methods for standard MDPs, we can distinguish two families of
methods for MFGs, depending on whether the policy update consists in computing an optimal
policy against µℓ or simply improving the current policy. We call these two family of methods
best-response based and policy-evaluation based.

Best response-based methods

Since an MFG equilibrium can be defined as the fixed point of a mapping, a basic strategy
consists in repeatedly applying this mapping. Under suitable conditions, this method converges
and the limit is automatically a fixed point.

Stationary MFG. In the stationary MFG setting (see Section 2.2.3), we recall that a Nash
equilibrium consists of a stationary distribution µ̂ ∈ ∆X and a stationary policy π̂ ∈ Π. The
policy π̂ is characterized as an optimal policy for a representative player facing the population
distribution µ̂. This problem can be phrased in the framework of MDPs.

If the stationary mean field is µ, then the MDP that a representative player needs to solve is:

(X ,A, p(·, ·, µ), r(·, ·, µ), γ), (3.2)

where the transition and the reward functions are given by:

p(·, ·, µ) : X ×A → P(X), r(·, ·, µ) : X ×A → R.

The optimal policy for this MDP is the best response against µ, which is denoted by BRstatio,γ(µ).
It can be obtained for example by applying the policy iteration or the value iteration algorithms
as recalled in Section 2.1.2. Conversely, given a policy π, the inducedmean field is the stationary
distribution (assuming it is unique for simplicity) induced by π and denoted by Mstatio(π), see
Equation (2.20).

This is summarized as follows: µ0 is given, and for ℓ = 0, . . . , L− 1,π
ℓ+1 = BRstatio,γ(µℓ)

µℓ+1 = Mstatio(πℓ+1).
(3.3)

47

Iterative Methods, Reinforcement Learning for Mean Field Games and Metrics

At the end, we use (πL, µL) as a proxy for the MFG equilibrium. Under suitable conditions,
it is close to (π̂, µ̂) when L is large enough. We come back to the question of convergence
in Section 3.1.3 below.

In the above iterative method, we update the mean field term by using the operator Mstatio,
which can be approximated by applying a large number of times the transition matrix defined
in (2.29). In other words, in practice, µℓ+1 is often defined by first computing:

µn+1 = P⊤
n,µn,πℓ+1µn, n = 0, . . . ,M − 1,

with µ0 a given initial distribution. For instance we can take µ0 = µℓ from the previous iteration.
AsM → +∞, we expect µM →Mstatio(πℓ+1), so we use µM as an approximation of µℓ+1.

In fact, takingM relatively small can have some advantages. In some sense, it amounts to
slowing down the updates of the mean-field term. This can bring more stability to the iterative
method, particularly when the policy πℓ+1 is computed approximately (e.g., in a reinforcement
learning setup). We will come back to this idea of damping the update of the mean field
in Section 3.1.3 below, but let us immediately emphasize that a variant of the above iterative
method consists in doing only one application of the transition matrix at each iteration ℓ. This
can be summarized as: µ0 is given, and for ℓ = 0, . . . , L− 1,π

ℓ+1 = BRstatio,γ(µℓ)

µℓ+1 = P⊤
n,µℓ,πℓ+1µ

ℓ.

This method has been used for instance by Guo, A. Hu, et al. (2019) and Anahtarcı, Karıksız,
and Saldi (2020a). It is also in line with the idea of using a two-timescale approach for mean
field Nash equilibria (J. Subramanian and Mahajan, 2019; Mguni, J. Jennings, and Munoz
de Cote, 2018; Angiuli, Fouque, and Laurière, 2022; Xie et al., 2021). A similar method has been
analyzed in (Anahtarcı, Karıksız, and Saldi, 2019b; Anahtarcı, Karıksız, and Saldi, 2020b) for
average cost MFGs (in the latter work, it is referred to as value iteration algorithm for MFGs).

Finite-horizonMFG. In the evolutiveMFG settingwith a finite horizonNT (see Section 2.2.4),
an equilibrium is a sequence of distributions µ̂ = (µ̂n)n=0,...,NT

and a sequence of policies
π̂ = (π̂n)n=0,...,NT

, indexed by the time steps in the game. Given a sequence of distributions
µ̂ = (µ̂n)n=0,...,NT

, a representative player needs to solve the following finite-horizon MDP
(see Section 2.1.1):

(X ,A, pµ, rµ, NT),

where:

pµ : {0, . . . , NT − 1} × X ×A → P(X), pµ : (n, x, a) 7→ pn(·|x, a,µn)

48

3.1 Iterative methods

and
rµ : {0, . . . , NT } × X ×A → R, rµ : (n, x, a) 7→ rn(x, a,µn).

The optimal policy for thisMDP is the best response againstµ, which is denoted by BRevol,m0,NT
(µ)

.
It can be obtained as a greedy policy for the optimal value function Q∗,µ, which can be

computed by backward induction as described in Section 2.1.2. Alternatively, the optimal
policy can be computed by policy iteration as described in Section 2.1.2. Conversely, given a
policy π = (πn)n=0,...,NT

, the induced mean-field is the sequence of distributions generated by
starting fromm0 (remember thatm0 is fixed in the definition of the MFG, see Section 2.2.4)
and using πn at time step n, n = 0, . . . , NT − 1. The resulting mean-field sequence is denoted
by Mevol,m0,NT

(π), see Equation (2.28).
This is summarized below, using the notation introduced in Section 2.2.4: µ0 is given, and

for ℓ = 0, . . . , L− 1, πℓ+1 = BRevol,m0,NT
(µℓ)

µℓ+1 = Mevol,m0,NT
(πℓ+1).

(3.4)

At the end, we use (πL,µL) as a proxy for the MFG equilibrium. Under suitable conditions on
the MFG, this pair is close to (π̂, µ̂) when L is large enough.

For the sake of completeness and future reference, we provide here the Bellman equations
satisfied by Q∗,µ and Qπ,µ, which can be derived by dynamic programming:

Q∗,µ

NT
(x, a) = rNT

(x, a,µNT
)

Q∗,µ
n (x, a) = rn(x, a,µn) + E

[
max
a∈A

Q∗,µ
n+1(xn+1, a)

∣∣∣xn+1 ∼ pn(·|xn, an,µn)
]
,

n = NT − 1, . . . , 0,

(3.5)

and
Qπ,µ

NT
(x, a) = rNT

(x, a,µNT
)

Qπ,µ
n (x, a) = rn(x, a,µn) + E

[
Qπ,µ

n+1(xn+1, an+1)
∣∣∣xn+1 ∼ pn(·|xn, an,µn), an+1 ∼ πn+1(·|xn+1)

]
,

n = NT − 1, . . . , 0.
(3.6)

In Perrin, Perolat, et al. (2020) and Perrin, Laurière, Pérolat, Élie, et al. (2021) (Chapter 4
and Chapter 7), we use backward induction to compute the optimal value function for finite-
horizon MFG (embedded in fictitious play iterations, see Section 3.1.3), which served as a
baseline to assess the performance of RL-based methods (see next section). Cui and Koeppl
(2021) solved finite-horizon MFG using fixed point iterations combined with RL methods and
entropy regularization (we come back to this point in Section 3.1.3 below). Mishra, Vasal, and

49

Iterative Methods, Reinforcement Learning for Mean Field Games and Metrics

Vishwanath, 2020 also solved MFGs based on a best-response computation, but by computing a
best response backward in time in the spirit of dynamic programming, which requires solving
for all possible distributions since the equilibrium mean field sequence is not known a priori.
The aforementioned two-timescale approach originally studied in the stationary setting has
been extended by Angiuli, Fouque, and Laurière (2021) to solve finite-horizon MFGs.

Remark 11. In the stationary regime, we can view iterations as time steps. Taking a large number of
iterations amounts to looking at the long time behavior. However, in the finite-horizon MFG setting, the
index of iterations does not coincide with the index of time in the game. At each iteration ℓ, the policy
and the distributions are updated for all time steps, n = 0, . . . , NT .

Policy evaluation-based methods

Instead of computing a full-fledged best response for the policy update at each iteration of (3.1),
we can simply do one step of policy improvement. Intuitively, evaluating the current policy
should be computationally faster than computing an optimal policy (except when the state
space is small or when we have an explicit formula for the optimizer of the value function).
To improve the policy, we can first evaluate the current policy given the latest mean field, and
then take a greedy policy.

Stationary MFG. In a stationary MFG, we can proceed as follows: we first compute the
state-action value function associated to the current policy against the current population
distribution (policy evaluation step). We then define the new policy as a greedy policy for the
newly computed value function (policy improvement step). Last, we deduce the stationary
population distribution induced by this policy (mean field update step). Concretely, the
method is: µ0 and π0 are given, and for ℓ = 0, . . . , L− 1,

Qℓ+1 = Qπℓ,µℓ

πℓ+1 ∈ GQℓ+1

µℓ+1 = Mstatio(πℓ+1).

(3.7)

This method is referred to as the Policy Iteration (PI) algorithm for MFGs and was introduced
by Cacace, Simone, Camilli, Fabio, and Goffi, Alessandro, 2021 for continuous time, continuous
space MFGs. It is not to be confused with the method that consists in using standard policy
iteration to compute a best response against a given distribution (i.e., replacing BRstatio,γ(µℓ)
in (3.3) by the result of a policy iteration method).

In practice, the evaluation step can be done by applying a finite number of times the Bellman
operator Bπℓ,µℓ as defined in Eq. (2.22). Thanks to the contraction property of this operator,

50

3.1 Iterative methods

we obtain an approximation of Qπℓ,µℓ . Furthermore, as discussed above, Mstatio(πℓ+1) can be
approximated by applying a large but finite number of times the transition matrix.

Finite-horizon MFG. In a finite-horizon MFG, the same strategy can be applied, except that
we need to take into account the evolutive aspect of the game. Each of the step is done for
all the time steps. The method can be summarized as follows: µ0 and π0 are given, and for
ℓ = 0, . . . , L− 1,

Qℓ+1 = Qπℓ,µℓ

πℓ+1 ∈ GQℓ+1

µℓ+1 = Mevol,m0,NT
(πℓ+1).

(3.8)

In this setting, Qπℓ,µℓ can be computed by backward induction, thanks to the dynamic pro-
gramming equation (3.6). Similarly, Mevol,m0,NT

(πℓ+1) can be computed by following NT

transitions, see (2.29).
Cacace, Simone, Camilli, Fabio, andGoffi, Alessandro (2021), mentioned above, also studied

policy iteration in the finite-horizon setting and proved convergence under suitable conditions.
Still in the finite-horizon setting, the convergence results were extended to other settings
by Camilli and Tang (2022) and Laurière, Song, and Tang (2021). Using a purely greedy policy
often leads to instabilities, particularly in the finite state case; see e.g., (Cui and Koeppl, 2021)
and the next section for more details. For this reason, variants with regularized policies have
been introduced, such as the online mirror descent, as we explain below.

3.1.3 Convergence and variants

Convergence of fixed point iterations. Intuitively, the scheme described in (3.1) indeed
converges towards a fixed point if the mapping (µℓ, πℓ) 7→ (µℓ+1, πℓ+1) is a strict contraction on
a suitably defined space. In a stationary setting, this property can be ensured by assuming that
the reward function and the transition function are smooth enough. Typically, this amounts to
assuming that they are Lipschitz continuous with small enough Lipschitz constants. In a finite
horizon setting, this condition can sometimes be replaced by an assumption on the smallness
of the time horizon. One advantage of having a contraction is that it provides a constructive
way to get the equilibrium through Banach-Picard iterations. This technique is commonly used
in the literature on MFGs, both to show existence and to derive algorithms. See e.g., M. Huang,
R. P. Malhamé, and Caines (2006) in the context of existence and uniqueness of the equilibrium
or Carlini and Silva (2014) in the context of numerical methods. It is in general difficult to
formulate sufficient conditions on the model (i.e., the reward and the transition) to ensure the
strict contraction property because the mapping involves the policy update step, for which
there is in general no explicit formula. In the linear-quadratic case, several sufficient conditions

51

Iterative Methods, Reinforcement Learning for Mean Field Games and Metrics

are formulated by R. Hu (2021, Proposition 3.1). Furthermore, regularizing the policy can help
to alleviate some of the conditions ensuring the contraction property, see e.g., Guo, A. Hu, et al.
(2019) and Anahtarcı, Karıksız, and Saldi (2020a). Using regularization of the policy, Guo,
A. Hu, et al. (2020) have proved convergence and analyzed the complexity of value-based and
policy-based algorithms.

However, conditions guaranteeing the strict contraction property are generally very restric-
tive and fails to hold for many games. For example, Cui and Koeppl (2021, Theorem 2) show
that non-contractivity is the rule rather than the exception. Without contractivity, Banach-Picard
iterations typically lead to oscillations, see e.g., Chassagneux, Crisan, and Delarue (2019, Figure
3) in the context of a method based on the probabilistic interpretation of MFGs, or Laurière
(2021, Figure 4) in the context of linear-quadratic MFGs.

To address this issue, several variants of the pure Banach-Picard fixed point iterations have
been proposed in the literature, relying on a few key principles.

Before describing these principles, let us mention that besides the aforementioned class
of assumptions to ensure contractivity which are somehow quantitative assumptions since they
boil down to smallness of some coefficients, an alternative class of hypotheses are in some
sense qualitative assumptions which pertain to the structure of the game. For example, potential
structure and MFG satisfying Lasry-Lions monotonicity (Lasry and Lions, 2007) can be used
to prove convergence of best-response based and policy evaluation based algorithms, see
respectively (Cardaliaguet and Hadikhanloo, 2017; Perrin, Perolat, et al., 2020; Geist, Pérolat,
et al., 2021) and (Hadikhanloo, 2017; Perolat, Perrin, et al., 2021). In particular, the Lasry-Lions
monotonicity condition, which basically refers to the fact that players tend to avoid crowded
regions, has been interpreted in terms of exploitability (see Section 3.3.1). These convergence
results do not rely on smallness conditions on the coefficients. However, even for MFGs with
such nice structure, pure fixed point iterations rarely converge and smoothing the iterations if
typically required to ensure convergence.

Remark 12. Regularization has also been the subject of extensive studies in reinforcement learning,
most of the time for exploration or robustness purposes. See Geist, Scherrer, and Pietquin (2019) or
Neu, Jonsson, and Gómez (2017) for a general framework of entropy-regularized MDPs in the average
reward setting.

Smoothing the mean field updates. First, a simple modification consists in using damping
to slow down the updates of the mean field term. Even if the mapping µℓ → πℓ → µℓ+1 is not
contractive, we can hope that the following mapping is contractive, at least for small enough
values of α ∈ (0, 1):

µ̄ℓ → πℓ → µ̄ℓ+1 := (1− α)µ̄ℓ + αµℓ+1. (3.9)

52

3.1 Iterative methods

Here µℓ+1 is the mean field associated to policy πℓ while µ̄ℓ is an average over past mean
field terms. See Laurière (2021, Section 2) for an example in which damping with a constant
coefficient helps ensuring numerical convergence. We also refer to Tembine, Tempone, and
Vilanova (2012) for more algorithms developed along these lines and presented in the context
of static games.

We can also let α change with the iteration index, i.e. take a different αℓ for ℓ = 1, 2,
One of the most popular versions consist in taking αℓ = 1/(ℓ + 1) and is called Fictitious
Play. It was first introduced in two-player games by G. W. Brown (1951) and Robinson (1951)
and extended to MFG by Cardaliaguet and Hadikhanloo (2017), Hadikhanloo (2018), and
Hadikhanloo and Silva (2019). In the context of stationary MFGs for example, (3.3) is replaced
by: µ0 is given, and for ℓ = 0, . . . , L− 1,

πℓ+1 = BRstatio,γ(µ̄ℓ)

µℓ+1 = Mstatio(πℓ+1)

µ̄ℓ+1 = ℓ

ℓ+ 1 µ̄
ℓ + 1

ℓ+ 1µ
ℓ+1.

(3.10)

Under suitable assumptions, µ̄ℓ converges to a stationary MFG equilibrium distribution. It is
important to note that in general the last iterate πℓ of the policy does not generate µ̄ℓ and hence
does not converge towards an equilibrium policy. If one cares about the equilibrium policy, it
is thus required to learn a policy generating µ̄ℓ. In some cases, convergence of the last iterate
towards an equilibrium holds, see e.g., Cardaliaguet and Hadikhanloo (2017).

For finite-state MFGs, we have obtained a rate of convergence (Perrin, Perolat, et al., 2020)
for continuous-time FP (see Chapter 4) under monotonicity condition and in Geist, Pérolat,
et al. (2021) and Bonnans, Lavigne, and Pfeiffer (2021) respectively for discrete-time FP in some
potential MFGs. In linear-quadratic MFGs, a rate of convergence has been obtained by Delarue
and Vasileiadis (2021), who also studied the impact of common noise.

Slowing down the updates of the mean field term is also in line with the idea of using a
two-timescale approach for mean field Nash equilibria (J. Subramanian and Mahajan, 2019;
Mguni, J. Jennings, and Munoz de Cote, 2018; Angiuli, Fouque, and Laurière, 2022; Xie et al.,
2021). Here, the distribution and the policy (or the value function) are both updated at every
iteration but the distribution is updated at a slower rate than the policy. Intuitively, this implies
that the representative agent has enough time to compute an approximate best response before
the distribution changes too much.

Whenever Nash equilibria are not unique, one can use a slight alteration of the Fictitious
Play algorithm, Joint Fictitious Play, that we have defined in Muller, Elie, et al. (2022) as a
continuous time algorithm following

53

Iterative Methods, Reinforcement Learning for Mean Field Games and Metrics

πBR
τ = arg max

π′∈Π

τ∫
s=0

⟨µπ′
, rπ′(·, µπs)⟩ds and µπτ (x) = 1

τ

τ∫
0

µπBR
s (x)ds,

which is proven to converge to a Mean-Field Coarse Correlated Equilibrium. More precisely,
the distribution which uniformly samples πBR

t with t ∈ [0, T], and recommends this policy to
the whole population, converges towards a Mean-Field Coarse Correlated Equilibrium at a
rate of O

(
1
T

)
.

Smoothing the policy updates. Another way to bring more stability to the iterative method
is to regularize the policy update. For instance, the greedy policy operator defined in (2.10)
is very sensitive to perturbations of the state-action value function. Small changes in this
value function might lead to significant changes in the induced greedy policy. To mitigate this
problem, it is common to replace the arg max by a softmax, meaning that we can define:

π(k+1)(·|x) = softmaxτQ(x, ·), (3.11)

where τ > 0 is an inverse temperature parameter and softmax : R|A| → ∆A is defined by: for
q = (q1, . . . , q|A|),

softmaxτ (q) =

 eτqi∑|A|
j=1 e

τqj

i=1,...,|A|

.

It transforms a vector of Q-values into a discrete probability distribution on the action space in
which the actions with larger value have a higher probability. Using a softmax instead of the
argmax generally yields smoother and more stable learning curves, see e.g., Guo, A. Hu, et al.
(2019) and Anahtarcı, Karıksız, and Saldi (2020a).

In fact, finite-state finite-action MFGs typically admit only randomized policy equilibria
and no pure equilibria. This is also the reason why we generally allow for randomized policies
in finite-player games (Nash, 1950; Nash, 1951). Hence, iterative methods with pure greedy
policies cannot be expected to converge to Nash equilibria in general, and using mixed policies
is unavoidable.

Regularized policies can be obtained e.g., by directly changing the way the policy is obtained
from the value function (Guo, A. Hu, et al., 2019; Perolat, Perrin, et al., 2021) or by adding a
penalty in the reward function, which changes the value function and hence the policy, see
Anahtarcı, Karıksız, and Saldi (2019a), Guo, Xu, and Zariphopoulou (2020), Cui and Koeppl
(2021), Firoozi and Jaimungal (2022), and Lauriere et al. (2022). However, it should be noted
that regularizing the policies also has drawbacks: if πℓ is forced to be smooth, this constraint
might prevent the iterative method from converging towards the Nash equilibrium since πℓ

can only be smooth version of the equilibrium policy.

54

3.1 Iterative methods

One way to circumvent this limitation and to allow the regularized policy to concentrate
on optimal actions is to let the underlying Q-function take larger and larger values. This can be
achieved by considering a cumulative Q-function, which leads to the Online Mirror Descent
(OMD) algorithm (Hadikhanloo, 2017; Perolat, Perrin, et al., 2021):

Qℓ+1 = Qπℓ,µℓ

Q̃ℓ+1 = Q̃ℓ + αQℓ+1

πℓ+1 = softmaxτ Q̃
ℓ+1

µℓ+1 = Mstatio(πℓ+1).

(3.12)

where α > 0 is a parameter which determines the cumulative factor. This algorithm can be
viewed as a modification of the policy evaluation method described in (3.7) with a cumulative
Q-function and a regularized greedy policy. Instead of the softmax, we can more generally
take the gradient of the convex conjugate of a strongly convex regularizer, see Perolat, Perrin,
et al. (2021) (Chapter 5) for more details.

In situations where the MFG does not admit a unique Nash equilibrium, Muller, Elie, et al.
(2022) verifies that recommending an OMD policy at uniformly-sampled times to the whole
population yields a Mean-Field Coarse-Correlated Equilibrium as presented in Definition 5.

3.1.4 Iterative methods for Mean Field Control

We recall that the MFC problem introduced in Section 2.2.6 corresponds to the maximization
of a social reward. In the evolutive case, it can be reformulated as an MDP by considering the
population distribution as the state. Indeed, we can rewrite:

J social
evol (π) =

NT −1∑
n=0

∑
x∈X

∑
a∈A

rn(x, a,µm0,π
n)µm0,π

n (x)πn(a|x)︸ ︷︷ ︸
=:r̄n(µm0,π

n ,πn)

,

subject to the following evolution of the mean field state:µm0,π
0 = m0,

µm0,π
n+1 = P⊤

n,µ
m0,π
n ,πn

µm0,π
n , n ≥ 0.

This is an MDP with:
• state space ∆X ,

• action space Π,

• probability transition function: p̄n(·|µ, π) = (Pµ,π
n)⊤µ,

55

Iterative Methods, Reinforcement Learning for Mean Field Games and Metrics

• reward function: r̄n(µ, π) =
∑

x∈X
∑

a∈A rn(x, a, µ)µ(x)π(a|x).
Wewill refer to this MDP as themean fieldMDP (MFMDP). An action, taken by the central

planner or collectively by the population, is an element of A = (∆A)X . A one-step policy at
the level of the population is a function from X to ∆A. Note that, even if X and A are finite,
the state space X and the action space A of the MFMDP are continuous and hence rigorously
defining and analyzing this MDP requires a careful formulation. We refer to the work of Gast,
Gaujal, and Le Boudec (2012), Gu et al. (2019), Gu et al. (2021a), Motte and Pham (2019),
Carmona, Laurière, and Tan (2019b), and Bäuerle (2021) for more details on MFMDP.

Let us stress that this MFMDP is not to be confused with the MDP arising in MFGs, which
is the MDP for a single representative player when the mean field term is given. In the latter
case, the state is simply the agent’s state and not the population state.

With this reformulation, the evolutive MFC problem can be analyzed and solved using
methods developed from MDP. However, notice that the policies are, in general, functions of
both the representative agent’s state and the mean field state. The main challenges thus pertain
to the numerical implementation of these methods, since we need to represent efficiently the
distribution and the policy. We will come back to this question in Section 3.2.1.

Remark 13. Note that, in the present model, the evolution of µm0,π is in fact completely deterministic
oncem0 and π are given. Noise affecting the distribution and making its evolution stochastic is referred to
as common noise. We refer to Motte and Pham (2019) and Carmona, Laurière, and Tan (2019b) for more
details. Furthermore, since an action is an element ofΠ, a policy is a function π̄ : ∆X ∋ µ 7→ π̄(µ) ∈ ∆Π.
Sampling from π̄(µ) amounts to sample an element π to be used by the whole population. Carmona,
Laurière, and Tan (2019b) referred to this as common randomness.

3.2 Reinforcement learning for Mean Field Games

As for the single-agent case, the iterative methods developed for MFGs in the previous section
are described with exact updates, meaning that we assume that the model is fully known and
that there are no numerical approximations in the computation of the rewards or the transitions.
In this context, the only approximations that we have to cope with are in situations where
an infinite number of iterations would be needed but we can only afford a finite number of
iterations (e.g., to compute a stationary distribution or a stationary value function).

In the context of MFGs, in this section we will build on the iterative methods presented
in Section 3.1. These methods boil down to alternating mean-field updates and policy updates,
and the policy updates stem from standard MDP techniques. As a consequence, standard
RL techniques can readily be injected at this level to learn policies or value functions, in a
model-free fashion.

56

3.2 Reinforcement learning for Mean Field Games

Environments with mean field interactions

To study RLmethods for MFGs, the first question is the definition of the environment. In MFGs,
the transitions and the rewards depend on the population distribution, which should thus
be part of the environment. Since we are going to focus on how a representative agent learns
an equilibrium policy, we also include the state of this representative agent in the state of the
environment.

The next question is: What is the information available to the agent who is learning? In other
words, we should decide what the output of one query to the environment is. Remember that
for a given population distribution (or sequence of distributions in the evolutive setting), the
agent tries to solve an MDP parameterized by this distribution but the policy is not a function
of the population distribution (see e.g., Section 2.1.3 in the stationary MFG case). From this
point of view, to learn an optimal policy, the agent does not need to observe the rest of the
population: it is sufficient to observe the result of the reward function and some samples of
transitions.

Remark 14. The fact that the representative agent does not need to observe the rest of the population in
order to learn an optimal policy is specific to the mean-field setting with an infinite number of players.
In a finite-player game, the equilibrium policy of each player generally depends on the configuration of
the rest of the population, even when the interactions are symmetric or when a mean-field approximation
is used, see e.g., Y. Yang, Luo, et al. (2018), Y. Yang and J. Wang (2020), and K. Zhang, Z. Yang,
and Başar (2021) in the context of MARL. This is because in a mean-field setting, the law of large
numbers allows to get rid of the randomness of the evolution of the crowd, provided that the crowd is
always starting from the same initial distribution and all the players are anonymous, identical and use
the same policy (which is exactly the mean-field setting). With a finite number of players, even if the
players are always starting from the same set of states, having a stochastic environment (e.g., a stochastic
transition kernel) compels the agents to keep track of the current states of other agents. Thus, focusing
on population-independent policies (which are sometimes referred to as decentralized policies) is one
of the main advantage of the MFG approach compared with a finite-player game framework. We stress
that this is possible because the agents always start from the same initial distribution. Relaxing this
constraint requires to consider population-dependant policies (Perrin, Laurière, Pérolat, Élie, et al.,
2021) see Chapter 7.

We summarize the environment in Figure 3.1, which is very similar to the classical RL setup
described in Figure 2.1 except that the distribution is involved in the environment.

Remark 15 (On the implementation of the environment). In some cases, the environment is truly
based on the mean field state corresponding to the regime with an infinite number of agents. This can be
the case for example when the state space and the action space are finite and small, and the evolution of the
distribution or the stationary distribution can be computed exactly using the transition matrix. However,

57

Iterative Methods, Reinforcement Learning for Mean Field Games and Metrics

Environment

Agent

Reward
rn+1

State
xn+1

Distribution
µn

Action
an

Reward
rn

State
xn

Figure 3.1 – Environment for MFGs: Here, the current state of the MDP is the representative agent’s
state xn and the population distribution µn, the action taken by the agent is an, the new state is xn+1 ∼
p(·|xn, an, µn) and the reward is rn = r(xn, an, µn). The new state xn+1 is observed by the agent and is
also used for the next step of the environment’s evolution along with µn.

in general, the environment relies on some approximate version of the population distribution (e.g.,
using an empirical distribution with a finite number of agents, or using some function approximations).
Compared with the ideal environment with the true mean-field distribution, this adds an extra layer of
approximation which can be neglected if one is purely interested in the performance of RL algorithms.
We come back to this point in Section 3.2.1 below, in the context of MFC.

Reinforcement learning for MFGs

We focus on two settings: stationary and finite horizon. The ideas developed in these cases can
be adapted to tackle static and infinite horizon MFGs.

Stationary MFG setting. In a nutshell, in the stationary MFG setting, when using one of the
iterative methods presented in Section 3.1, at each iteration the representative agent faces a
stationary MDP parameterized with a fixed distribution µ. We can thus use off-the-shelf RL
methods.

To be more specific, we assume that a representative agent is encoded by a stationary
policy π ∈ Π, either explicitly or implicitly (through a Q-function) and can interact with the
environment in the following way: at each step, the agent observes its current state x, chooses
action a ∼ π(·|x), and the environment returns a realization of x′ ∼ p(·|x, a, µ) and r(x, a, µ).
Note that the agent does not need to observe directly the mean field flow µ, which is stored
in the environment and simply enters as a parameter of the transition and reward functions
p and r. In this stationary setting, in Figure 3.1, µn is constant equal to µ for all n. Based on
such samples, the representative agent can implement any of the RL methods (e.g., the ones
discussed in Section 2.1.3) for standard MDPs.

58

3.2 Reinforcement learning for Mean Field Games

Notice that, at each new step of the iterative method described in (3.1), after the mean field
update the environment needs to be updated with the new population distribution. That is
to say, when the mean field state is µ(ℓ), the agent uses the environment of Figure 3.1 with
µn = µ(ℓ) for every n to learn a best-response or evaluate a policy. Here n is the index of the RL
method iteration. Then, the newmean field µ(ℓ+1) is computed. For the next iteration, the MDP
is updated so the agent interacts with the environment of Figure 3.1 but now with µn = µ(ℓ) for
every n.

For stationary MFG equilibria, Guo, A. Hu, et al. (2019) introduced a best-response based
iterative method with tabular Q-learning to compute the best response at each iteration. More-
over, they proved convergence using bounds on classical Q-learning, combined with a strict
contraction argument. Guo, A. Hu, et al. (2020) generalized this idea notably using a policy gra-
dient approach in lieu of Q-learning. A similar algorithm but combined with fitted Q-learning
instead of tabular Q-learning was analyzed and proved to converge by Anahtarcı, Karıksız, and
Saldi (2019a). Furthermore, Anahtarcı, Karıksız, and Saldi (2020a) and Anahtarci, Kariksiz,
and Saldi (2021) showed that some of the conditions to obtain convergence in the tabular
Q-learning case can be relaxed if the MDP is regularized.

J. Subramanian and Mahajan (2019) and Angiuli, Fouque, and Laurière (2022) used a
two-timescale approach combined with model-free RL to compute stationary equilibria. The
convergence has been proved under suitable conditions on the underlying ODEs by using
stochastic approximation techniques (Borkar, 2009).

In the γ-discounted setting, Elie, Perolat, et al. (2020) analysed the propagation of error
in fictitious play (i.e., how errors made in the computation of the best response propagate
through the algorithm) and implemented this schemewith an actor-critic DRLmethod (namely,
DDPG (Lillicrap et al., 2016)) to compute the best response. Fictitious play and DRL combined
with neural network approximation of the population distribution allowed us to solve a flocking
model with continuous and high-dimensional space, see Perrin, Laurière, Pérolat, Geist, et al.
(2021) or Chapter 6. Still in the γ-discounted setting, in Perrin, Perolat, et al. (2020) we provide
a convergence rate for continuous-time fictitious play under monotonicity assumption (see
Appendix of Chapter 4), while in Geist, Pérolat, et al. (2021) we establish a rate of convergence
for discrete-time fictitious play in MFGs with a potential structure.

Finite horizon MFG setting. To learn finite horizon MFG solutions in a model-free way, we
assume that a representative agent is encoded by a time-dependent policy π = (πn)n=0,...,NT −1

and can interact with the environment to realize episodes. Each episode is done in the following
way: the environment picks x0 ∼ m0 and reveals it to the agent; then for n = 0, . . . , NT , the
agent observes xn, chooses action an ∼ πn(·|xn), and the environment returns a realization of
xn+1 ∼ pn(·|xn, an,µn) as well as the value of rn(xn, an,µn). Note that the agent does not need

59

Iterative Methods, Reinforcement Learning for Mean Field Games and Metrics

to observe directly the mean field flow (µn)n=0,...,NT
, which simply enters as a parameter of

the transition and reward functions pn and rn.
Based on such episodes, the agent can for example estimate a policy π by approximately

computing the state-action value function Qπ,µ, or compute a best response by first approxi-
mating the optimal value function Q∗,µ. The value functions can be estimated by backward
induction as in (3.6) and (3.5), replacing the expectation by empirical averages over Monte
Carlo samples.

In Perrin, Perolat, et al. (2020) (Chapter 4), we solve finite-horizon MFG by a fictitious
play method in which the best responses are computing using tabular Q-learning. Mishra,
Vasal, and Vishwanath, 2020 proposed a combination of RL and backward induction to solve
finite-horizon MFGs by approximating the policy starting from the terminal time. Cui and
Koeppl, 2021 applied best-response based and policy-evaluation based methods combined
with DRL techniques and studied numerically the impact of entropy regularization on the
convergence of these methods. Although DRL methods offer many promises in terms of
scalability, it is in general hard to average or sum non-linear function approximators such as
neural networks. Lauriere et al., 2022 proposed best-response based and policy-evaluation
based methods (namely fictitious play and OMD) with DRL techniques in such ways that
average or sum of neural networks can be approximated efficiently. This leads to scalable
model-free methods for finite-horizon MFGs.

Some remarks about the distribution

Observing the mean field. In the above presentation, we assume that the agent does not
observe the distribution, or at least does not exploit this information to learn the equilibrium
policy. Although this is the most common approach in the RL andMFGs literature, the question
of learning population-dependent policies arises quite naturally since one could expect that
agents learn how to react to the current distribution they observe. This is usual in MARL,
see Y. Yang, Luo, et al. (2018) who consider Q-functions depending on the actions of all the
other players. In MFGs, we can expect that by learning a population-dependent policy, the
agent will be able to generalize, i.e., to behave (approximately) optimally even for population
configurations that have not been encountered during training.

Such policies take as input a distribution, which is a high-dimensional object. As a conse-
quence, they are much more challenging to approximate than population-independent policies.
Mishra, Vasal, and Vishwanath (2020) considered a population-dependent value function and
proposed an approach based on solving a fixed point at each time step for every possible distri-
bution. Implementing this approach (at least in its current form) seems feasible only for very
small state space. In Perrin, Laurière, Pérolat, Élie, et al. (2021), we introduce the concept of
master policies, which are population-dependent policies allowing to recover an equilibrium

60

3.2 Reinforcement learning for Mean Field Games

policy for any observed population distribution. They can be approximately computed by a
combination of Fictitious play, DRL, and a suitable randomization of the initial distribution.

The concept of a value function depending on the population distribution is connected
to the so-calledMaster equation in MFGs. Introduced by Lions (2012) in continuous MFGs
(continuous time, continuous state and action spaces), this partial differential equation (PDE)
corresponds to the limit of systems of Hamilton-Jacobi-Bellman PDEs characterizing Nash
equilibria in symmetric N -player games. We refer the interested reader to Bensoussan, Frehse,
and S. C. P. Yam (2015) and Cardaliaguet, Delarue, et al. (2019) for more details on this topic.

Distribution estimation. When the state space is finite but very large, storing the population
distribution in a tabular way for every state and computing the evolution of this distribution
in an exact way is prohibitive in terms of memory and computational time. Representing
and updating the distribution is even more challenging in the continuous space setting, even
if it is just for the purpose of implementing the RL environment. In this case, one needs to
rely on approximations. As already mentioned above, a possible method consists in using an
empirical distribution, whose evolution can be implemented by Monte Carlo samples of an
interacting agent system. This amounts to using a finite population of agents to simulate the
environment. For example, in linear-quadratic MFGs the interactions are only through the
mean, which can be estimated even using a single agent, see Angiuli, Fouque, and Laurière
(2022) in the stationary setting and Angiuli, Fouque, and Laurière (2021), Zaman et al. (2020),
and Miehling and Başar (2022) in the finite-horizon setting. However, it should be noted that
even if a finite number of agents is used in the environment, this approach does not directly
reduce the problem to a MARL problem because the goal is still to learn the equilibrium policy
for the MFG instead of the finite-agent equilibrium policy.

Another approach consists in representing efficiently the distribution using function approx-
imation. This raises the questions of the choice of parameterization and of the training method
for the parameters. This approach can be implemented in a model-free way using Monte
Carlo samples, which is particularly suitable for spaces that are too large to be explored in an
exhaustive fashion. For example, in Perrin, Laurière, Pérolat, Geist, et al. (2021) (Chapter 6), we
use normalizing flows (Rezende and Mohamed, 2015; Papamakarios et al., 2021) to represent
the distribution of agents in a flocking model.

3.2.1 Reinforcement learning for Mean Field Control and MFMDP

As discussed in Section 3.1.4, the problem of maximizing the social reward can be interpreted in
theMDP framework through amean-fieldMDP in which the state incorporates the whole mean
field state. Adapting in a straightforward way the RL framework represented in Figure 2.1, we
can consider the environment described in Figure 3.2 where the state is µ ∈ X = ∆X instead of

61

Iterative Methods, Reinforcement Learning for Mean Field Games and Metrics

Environment

Population

Reward
rn+1

MF State
µn+1

Action
an

Reward
rn

MF State
µn

Figure 3.2 – Environment for MFC and MFMDP.

x, and the reward and the transition are given respectively by r̄ and p̄. An action, taken by the
central planner or collectively by the population, is an element of A = (∆A)X .

The problem can be interpreted as a situation in which all the agents in the population
cooperate to learn a socially optimal behavior. Alternatively, we can adopt the point of view of
a central planner trying to find an optimal policy that leads to a social optimum if it is followed
by all the agents. In both cases, we assume here that the agent who is learning observes the
whole population distribution (which is sometimes referred to as the centralized setting). The
value function and the policy can thus depend on the state of the mean field, which is consistent
with the dynamic programming equations presented in Section 3.1.4.

From here, standard RL techniques can be adapted to solve an MFMDP. In their implemen-
tation, the main challenge is the representation of the population distribution. A few noticeable
cases are the following:

• In continuous space linear-quadratic case, the interaction is only through the mean so we
do not need to give the full distribution as an input to the policy but only its first moment.
In this case, policy gradient for the parameters of a suitable representation of the policy
can be implemented and shown to converge, (Carmona, Laurière, and Tan, 2019a; W.
Wang et al., 2021; Gu et al., 2020; Gu et al., 2021b). This approach can also be extended to
more complex settings such as mean-field type games (Carmona, Hamidouche, et al.,
2020; Carmona, Hamidouche, et al., 2021).

• When the state space X is finite, the mean field state can be represented as an element of
the simplex, identified as a subset of R|X |: {µ ∈ [0, 1]|X | :

∑|X |
i=1 µi = 1}. We can then use

two different approaches.
– First, this simplex can be discretized and replaced by a finite set X̃ ⊂ X . We can
then approximate the MFMDP by an MDP with this finite state space. The action
space is in principle ∆X̃ , which is continuous, but if we are also willing to discretize
this space, then we obtain a finite state space, finite action space MDP for which
tabular RL methods can be used. For example tabular Q-learning can be shown to

62

3.3 Metrics and Numerical Experiments

converge under suitable conditions (Carmona, Laurière, and Tan, 2019b; Gu et al.,
2020).

– Alternatively, the original MFMDP can be tackled without space discretization by
using RL techniques for continuous space MDPs. For example, Carmona, Laurière,
and Tan (2019b) used DRL to learn optimal policies as functions of the population
distribution viewed as an element of {µ ∈ [0, 1]|X | :

∑|X |
i=1 µi = 1}.

It can be argued that the environment described in Figure 3.2 is not very realistic because
in general, we cannot assume that an agent observes the mean field distribution. Indeed, this
distribution corresponds to the regime with an infinite number of agents while in practice,
the number of agents is always finite. One can thus replace the “ideal” McKean-Vlasov
environment by a more realistic finite-population environment. The former can be viewed
as an approximation of the latter. The quality of the approximation gets better as the number
of agents N in the environment increases. These two types of environments are discussed
by Carmona, Laurière, and Tan (2019a), in which the finite-population environment analysis
benefits from the analysis of the McKean-Vlasov environment. The connection between RL
for MFC and finite-agent problems has also been analyzed by L. Wang, Z. Yang, and Z. Wang
(2020), M. Chen et al. (2021), and Y. Li et al. (2021). Lastly, as in the MFG setting, for some
MFC problems, it has been shows that observing the state of a single agent is sufficient to
approximate the mean field distribution and learn the optimal behavior, see Angiuli, Fouque,
and Laurière (2022) and Angiuli, Fouque, and Laurière (2021).

3.3 Metrics and Numerical Experiments

We now present numerical experiments to illustrate some of the techniques introduced in the
previous sections. We first discuss metrics that can be used to assess convergence. We then
present an MFG model in which the agents are encouraged to explore the spatial domain. Last,
we present numerical results obtained using iterative methods.

3.3.1 Metrics

Here we discuss ways to measure convergence of the iterative methods discussed in Section 3.1.
First, since many methods are based on fixed point iterations, we can measure distances
between mean field terms or policies. Second, we can also measure convergence in terms of
the exploitability of the current policy.

63

Iterative Methods, Reinforcement Learning for Mean Field Games and Metrics

Wasserstein distance

Let us recall that the iterative methods described previously are based on the scheme described
in (3.1). The pair (µℓ, πℓ) computed at iteration ℓ is expected to converge to a fixed point. We can
thus use the distance between µℓ and µℓ+1, and the distance between πℓ and πℓ+1 to see whether
the method has converged. Since both the mean field and the policy are distributions (respec-
tively on the state space and the action space), we can use for instance the Wasserstein distance.

Let us focus on the mean field and look at the macroscopic behavior, at the scale of the
whole population. We can proceed similarly with the policy. For simplicity, let us assume the
state space X is a finite set endowed with a distance denoted by d. The Wasserstein distance
W (or earth mover’s distance) measures the minimum cost of turning one distribution into
another and is defined as follows: for µ, µ′ ∈ ∆X ,

W(µ, µ′) = inf
ν∈Γ(µ,µ′)

∑
(x,x′)∈X ×X

d(x, x′)ν(x, x′),

where Γ(µ, µ′) is the set of probability distributions on X × X with marginals µ and µ′.
In a finite-horizon setting, the mean field term is a sequence of distributions, so we average

the distances over theNT + 1 time steps to get the following distance between mean field flows:
for µ,µ′ ∈ ∆NT

X ,

WT (µ,µ′) = 1
NT + 1

NT∑
n=0
W(µn,µ

′
n).

This distance can be used in two ways to assess convergence in the context of the iterative
scheme (3.1). First, in some cases the Nash equilibrium distribution (or an approximation of
the equilibrium) µ̂ is known, so we can useW(µℓ, µ̂) to assess convergence. TheMFG solution is
typically unknown but in a few cases it admits an analytical solution, which can be convenient
to check if a new numerical method works properly. Second, we can always measure the
distance between two successive iterates, namely,W(µℓ, µℓ+1). Although there is in general
no guarantee that this distance should decrease monotonically, it goes to zero if the method
converges to a fixed point. Similar ideas can be used for policies.

If W(µℓ, µℓ+1) or W(πℓ, πℓ+1) provide some information about the scale of the changes
occurring between two iterations, these quantities do not directly say how close the pair (µℓ, πℓ)
is to a Nash equilibrium. One way to tackle this question is to measure the exploitability.

Exploitability

Instead of focusing directly on the quantities that are updated in the iterative procedure, namely
the mean field and the policy, another way to assess the convergence of learning algorithms is

64

3.3 Metrics and Numerical Experiments

to consider the reward function. Indeed, the definition of an approximate Nash equilibrium can
be formalized by measuring to what extent a representative player can improve their reward
by deviating from the policy used by the rest of the population.

In the stationary setting for instance (similar ideas can be used in the other settings), the
exploitability of a policy π is defined as (Perrin, Perolat, et al., 2020):

ϕ(π) = sup
π′
Jstatio(π′;µπ)− Jstatio(π;µπ),

where µπ = Mstatio(π) is the stationary mean field distribution induced by π as defined
in (2.20), and Jstatio is defined in (2.17). This notion is inspired by analogous concepts intro-
duced in the context of computational game theory (Zinkevich et al., 2007; Lanctot, Waugh,
et al., 2009).

Using this notion, we can rephrase the definition of mean field Nash equilibrium (see Defi-
nition 2) as: π̂ is a stationary MFNE policy if:

ϕ(π̂) = 0.

Furthermore, ϕ is always non-negative, and for ε > 0,

ϕ(π) ≤ ε

corresponds to saying that the policy π is an ε-stationary MFNE, meaning that a represen-
tative player can improve its reward by at most ε by unilaterally deviating from the policy π
used by the rest of the population. As such, the exploitability offers a different perspective
than the Wasserstein distance discussed above to assess the convergence of learning methods.
In the context of iterations described by (3.1), the quantity ϕ(πℓ) measures convergence from
the point of view of the potential reward improvement by deviating from πℓ. Note that, as it
scales with rewards, the absolute value of the exploitability is not meaningful. What matters is
its relative value compared with a reference point, such as the exploitability of the policy at
initialization of the algorithm. In fact, the exploitability is game dependent and hard to re-scale
without introducing other issues (dependence on the initial policy if we re-normalize with the
initial exploitability for example).

In practice, the exploitability of a policy π can be computed only if we can compute
supπ′ Jstatio(π′;µπ). For many problems, there is not explicit formula for this value and if
the environment is complex, exact methods cannot be used. However an approximation can be
computed by learning an approximate best response to µπ, for example using RL. If this step
is too computationally expensive, then we can replace the supremum by a maximum over a
finite set, say Π̃. For example, we can take the set of policies computed in previous iterations.

65

Iterative Methods, Reinforcement Learning for Mean Field Games and Metrics

We then obtain a notion of approximate exploitability (Perrin, Laurière, Pérolat, Geist, et al.,
2021; Perrin, Laurière, Pérolat, Élie, et al., 2021):

ϕ̃(π) = max
π′∈Π̃

Jstatio(π′;µπ)− Jstatio(π;µπ).

We conclude this section by mentioning that in the case of MFC, the convergence can be
assessed through the social cost, see Section 2.2.6.

3.3.2 Experiments

In this section, we present a canonical example and we compare how the algorithms perform.
The game and the algorithms are implemented in OpenSpiel (Lanctot, Lockhart, et al., 2019)
and are publicly available, alongwithmore examples and algorithms. OpenSpiel is a framework
for many games besides MFGs, and it contains many reinforcement learning algorithms besides
exact algorithms. See https://github.com/deepmind/open_spiel/.

Canonical example: Exploration via entropy maximization. We consider the following
model, where the state space is a two dimensional grid world as in Figure 3.3. At each time
step, the representative agent stay still or move by one step in the four directions provided
there are no obstacles:

xn+1 = xn + an + εn

with an ∈ {(−1, 0), (0,−1), (0, 0), (0, 1), (1, 0)} and such that xn+1 belongs to the admissible
states. Here εn+1 is a perturbation which pushes the agents to a neighbor state with a small
probability. In particular, in this simple model, the transitions probabilities do not depend on
the mean field state. we define the reward as:

r(x, a, µ) = r(x, a, µ(x)) = − log(µ(x))

The goal for the representative agent is thus to avoid the crowd because the reward decreases
as the density increases. Overall, we expect the population to spread as much as possible. In
fact, at the macroscopic level of the population, the average one-step reward if the population
distribution is µ is:

Ex∼µ[− log(µ(x)] = −
∑

x

µ(x) log(µ(x)),

which is the entropy of µ. So maximizing the average reward amounts to maximizing the
entropy. This model has been introduced and studied by Geist, Pérolat, et al. (2021), in which
it is shown that it relates to an MFC problem.

66

https://github.com/deepmind/open_spiel/

3.3 Metrics and Numerical Experiments

For the numerical tests below, we assume that the initial distribution µ0 is concentrated in
the top-left corner as in Figure 3.3 (left). Since the reward is maximal when the distribution is
uniform over the domain, one can wonder whether a uniform policy provides an approximately
optimal solution. However, this is not the case, see Figure 3.3 (right), where we see that the
distribution diffuses but remains mostly concentrated near the starting point. So learning a
policy which induces a uniform distribution is not trivial.

0 2 4 6 8 10
0

2

4

6

8

10

0 2 4 6 8 10
0

2

4

6

8

10 6

5

4

3

Figure 3.3 – Reading order: (a) the considered environment initial state in yellow, walls in white); (b)
the log-density of a uniform policy (to illustrate entropy maximization).

Numerical experiments. For the sake of illustration, we now focus on the evolutive setting
and compare the algorithms on the canonical example. We focus here on the exact iterative
methods as described in Section 3.1, i.e. without RL approximations. In Figure 3.4, we use the
notion of exploitability to check the performance of the following algorithms, which are based
on the iterations described in (3.1):

• Fixed point: πℓ+1 is a best response against µℓ and µℓ+1 is the mean field sequence
induced by πℓ+1. We see that this method does not converge and the population concen-
trates on only a few states.

• Fictitious play: As described in (3.10), we update the mean field by averaging over past
iterations. This method converges since the exploitability goes towards 0. Furthermore,
the final distribution is close to uniform.

• OnlineMirror Descent: As described in (3.12), the policy is updated by first computing
a cumulative Q-function and then taking a softmax. This method converges even faster
than Fictitious play, possibly because the size of each update in Fictitious play decreases
with the iteration index whereas this is not the case for OMD. Accordingly, for the same
number of iterations, the distribution is even closer to being uniform than with Fictitious
play.

• Damped Fixed Point: As described in (3.9), the mean field term is updated by taking
the average of the previous mean field and the mean field induced by the most recent

67

Iterative Methods, Reinforcement Learning for Mean Field Games and Metrics

policy, with constant weights for the average. We see that the exploitability decreases
but does not seem to converge, and the induced terminal distribution is not very close to
uniform.

• Softmax fixed point: This method is like the fixed point iterations except that the policy
is a softmax of the Q-function instead of being an argmax as in the pure best response
case. We see that the method does not converge, even though the exploitability is a bit
lower than in the pure fixed point method case. The induced terminal distribution is
concentrated in one of the four rooms.

• Softmax fictitious play: This method is like the fictitious play iterations except that the
policy is a softmax of the Q-function instead of being an argmax as in the pure fictitious
play case. In this method, the exploitability goes down more quickly than the pure
fictitious play case, as quickly as in the OMD case. However, it does not go towards 0.
Instead, it remains roughly constant after a number of iterations. This is probably due
to the regularization of the policy which prevents convergence towards the true Nash
equilibrium policy. The induced terminal distribution is quite close to uniform but we see
that the agents tend to avoid the walls, which is probably due to the extra regularization
of the policy.

• Boltzmann policy iteration: This method corresponds to the policy iteration method
described in (3.8) except that the policy is a softmax of the Q-function instead of be-
ing an argmax as in the pure fictitious play case. This method does not converge as
the exploitability increases to a very high level. The induced terminal distribution is
concentrated in one small part of the domain.

Based on these observations, we see that a few methods are failing to converge even when
using exact updates. As discussed in Section 3.1.3, this is probably due to the lack of contraction
property for the operator on which the iterations rely. In particular, we believe that in this
example, only Fictitious Play and Online Mirror Descent converge to the true Nash Equilibrium.
This is consistent with the results we will present in Chapter 4 and Chapter 5.

For other methods, it is worth investigating how they perform when combined with RL
as described in Section 3.2. The model of exploration with four rooms considered above as
well as a few other examples have been treated using DRL in Lauriere et al. (2022), where we
observed that a DRL versions of pure fixed point iterations still fail to converge, while a DRL
version of OMD still tends to perform better than a DRL version of fictitious play. This tends
to show that testing methods with exact methods before implementing DRL versions can be
helpful to compare the performance of learning methods.

68

3.3 Metrics and Numerical Experiments

(a) (b) (c) (d)

(e) (f) (g)

(h)
Figure 3.4 – Entropy maximization. From left to right: Terminal distribution induced by (a) Fixed
Point; (b) Fictitious Play; (c) OMD; (d) Damped Fixed Point; (e) Softmax Fixed Point; (f) Softmax
Fictitious Play; (g) Boltzmann Policy Iteration; (h) Exploitability curves for these methods.

Conclusion of the Chapter In this chapter, we have surveyed some of the main recent de-
velopments related to the question of learning MFGs and MFC solutions. We first clarified
the definitions of several classical settings that have appeared in the literature. As far as we
know, it is the first time that these settings are summarized and discussed in comparison with
each other. Second, we proposed an overview of iterative methods to learn MFG and MFC
solutions by updating the mean field and the policy. Starting from simple fixed-point iterations,
we explained how these procedures can be enhanced by incorporating various smoothing
methods. Along the way, we clarified the link with the framework of MDPs. Third, building on
this connection with MDPs, we presented RL and DRL methods for MFGs and MFC. Finally,
we provided some numerical results on a simple benchmark problem, highlighting that regu-

69

Iterative Methods, Reinforcement Learning for Mean Field Games and Metrics

larization is often needed to ensure convergence. In the following chapters, we will zoom in
two algorithms: Fictitious Play and Online Mirror Descent, and prove their convergence under
the monotonicity condition.

70

Part II

Deep Dive to Iterative Methods:
Fictitious Play and Online Mirror

Descent

Chapter 4

Fictitious Play

In the previous chapter, we have discussed a general framework for iterative methods, which
consists at a high level in alternatively updating the distribution and the policy. We now turn our
attention to the Fictitious Play algorithm. We deepen the analysis of continuous time Fictitious
Play learning algorithm to the consideration of various finite state Mean Field Game settings
(finite horizon, γ-discounted), allowing in particular for the introduction of an additional
common noise. We first present a theoretical convergence analysis of the continuous time
Fictitious Play process and prove that the induced exploitability decreases at a rate O(1

t). Such
analysis emphasizes the use of exploitability as a relevant metric for evaluating the convergence
towards aNash equilibrium in the context ofMean Field Games. These theoretical contributions
are supported by numerical experiments provided in either model-based or model-free settings.
We provide hereby for the first time converging learning dynamics for Mean Field Games in
the presence of common noise. 1

Contents
4.1 Motivation . 74

4.2 Continuous Time Fictitious Play in Mean Field Games 78

4.3 Experiments on Fictitious Play in the Finite Horizon Case 79

4.4 Finite Horizon Mean Field Games with Common Noise 82

4.5 Experiments with Common Noise . 83

4.6 Experiment at Scale . 85

4.7 Conclusion of the Chapter . 85

1This chapter is based on a preprint (Perrin, Perolat, et al., 2020) presented at the NeurIPS 2020 conference.

73

Fictitious Play

4.1 Motivation

We investigate a generic and scalable simulation-based learning algorithm for the computation
of approximate Nash equilibria, building upon the Fictitious Play scheme (Robinson, 1951;
Fudenberg and Levine, 1998b; Shapiro, 1958). We study the convergence of Fictitious Play for
MFGs, using tools from the continuous learning time analysis (Harris, 1998; Ostrovski and
Strien, 2013; Hofbauer and W. H. Sandholm, 2002). We then derive the convergence of the
Fictitious Play process at a rateO(1

t) in finite horizon or over γ-discountedmonotoneMFGs (see
Section B.5), thus extending previous convergence results restricted to simpler games (Harris,
1998). Besides, our approach covers games where the players share a common source of risk,
which are widely studied in the MFG literature and crucial for applications. To the best of
our knowledge, we derive for the first time convergence properties of a learning algorithm for
these so-called MFGs with common noise (where a common source of randomness affects all
players (Carmona and Delarue, 2018a)). Furthermore, our analysis emphasizes the role of
exploitability as a relevant metric for characterizing the convergence towards a Nash equilibrium,
whereas most approximation schemes in the MFG literature quantify the rate of convergence
of the population empirical distribution. The contribution of this chapter is thus threefold: (1)
we provide several theoretical results concerning the convergence of continuous time Fictitious
Play in MFGs matching the O(1

t) rate existing in zero-sum two-player normal form game, (2)
we generalize the notion of exploitability to MFGs and we show that it is a meaningful metric
to evaluate the quality of a learned control in MFGs, and (3) we empirically illustrate the
performance of the resulting algorithm on several MFG settings, including examples with
common noise.

4.1.1 Related Work

Theoretical results in MFGs. Theoretical results in terms of uniqueness, existence and stabil-
ity of Nash equilibrium in such games are numerous (Cardaliaguet, 2012; Bensoussan, Frehse,
and S. C. P. Yam, 2013; Carmona and Delarue, 2018a). A key motivation is that the optimal
control derived in an MFG provides an approximate Nash equilibrium in a game with a large
but finite number of players. In general, most games are considered in a continuous setting
while Gomes et al. D. A. Gomes, Mohr, and Souza (2010) proved existence results for finite
state and action spaces MFGs and Saldi, Başar, and Raginsky (2018) considered finite state
discounted cost MFGs. An important and challenging extension is the case of players sharing a
common source of risk (such as several companies in the same economy market), giving rise to
the so-called MFG with common noise (Carmona, Delarue, and Lacker, 2016b) or (Carmona
and Delarue, 2018a, Volume II). These games are usually solved by numerical methods for
partial differential equations (Achdou and Laurière, 2020) or probabilistic methods (Angiuli,
Graves, et al., 2019; Carmona and Laurière, 2019; Fouque and Z. Zhang, 2020).

74

4.1 Motivation

Learning in games and MFGs. The scaling limitations of traditional multi-agent learning
methods with respect to the number of players remain quite hard to overcome as the complexity
of independent learning methods (J. Foerster, R. Y. Chen, et al., 2018; Perolat, Piot, and Pietquin,
2018; Pérolat et al., 2021; Srinivasan et al., 2018; Omidshafiei et al., 2019; J. N. Foerster et al.,
2018; J. Foerster, Nardelli, et al., 2017) scales at least linearly with the number of players and
some methods may scale exponentially (e.g. Nash Q-learning (J. Hu and Wellman, 2003) or
correlated Q-learning (Greenwald, Hall, and Serrano, 2003)). By approximating the discrete
population by a continuous one, the MFG scheme made learning approaches more suitable
and attracted a surge of interest. Model-based methods have been first considered (Yin et al.,
2010) studied a MF oscillator game, (Cardaliaguet and Hadikhanloo, 2017) initiated the study
of fictitious play in MFGs. Recently, several works have focused on model-free methods such as
Q-learning (Guo, A. Hu, et al., 2019) but the convergence results rely on very strong hypotheses.
Note that, although our method can make use of Q-learning to learn a best response, it does
not rely on it. Also, our method can make use of both model-based and model-free algorithms.
Finally, our method relies only on the Lasry-Lions monotonicity condition, which is much less
restrictive than a potential or variational structure.

Fictitious Play (FP), which is also a classical method to learn in N -player games (Robinson,
1951; Ostrovski and Strien, 2013; Harris, 1998; Hofbauer and W. H. Sandholm, 2002; Heinrich,
Lanctot, and Silver, 2015; Perolat, Piot, and Pietquin, 2018), combined with a model-free
algorithm has been considered by Mguni, J. Jennings, and Munoz de Cote (2018) but with
several inaccuracies, as already pointed out by J. Subramanian and Mahajan (2019), which
focuses on policy gradient methods. However, they study a restricted stationary setting as
opposed to the finite time horizon covered by our contribution and their convergence results
hold under hardly verifiable assumptions.

Convergence of approximate FP has been proved by Elie, Perolat, et al. (2020) (based on the
FP analysis of Hadikhanloo and Silva (2019)) but without common noise and their analysis is
for discrete time FP and only for first-orderMFGs (without noise in the dynamics). Our analysis,
done in continuous time, is more transparent and works for MFGs with both idiosyncratic
and common sources of randomness in the dynamics. Furthermore, their numerical example
was stationary whereas we were also able to learn the solution of time-dependent MFGs,
which covers a larger scope of meaningful applications. Finally, our analysis provides a rate of
convergence (O(1

t)) while previous FP work in MFG do not.

4.1.2 Background on Finite Horizon Mean Field Games

We recall the definition of the cumulative sum of rewards, in a finite horizon setting (with
horizon NT) where the representative player starts in x0 ∼ m0 and follows the sequence
of policies π = (πn)n, while the rest of the population evolves following the sequence of

75

Fictitious Play

distributions µ = (µn)n

J(m0, π, µ) = E

NT∑
n=0

r(xn, an, µn) | x0 ∼ m0, xn+1 = p(.|xn, an), an ∼ πn(.|xn)

 . (4.1)

Q-functions and value functions. The Q-function is defined as the expected sum of rewards
starting from state x and doing action a at time n:

Qπ,µ
n (x, a) = E

NT∑
k=n

r(xk, ak, µk) | xn = x, an = a, xk+1 = p(.|xk, ak), ak ∼ πk(.|xk)

 . (4.2)

By construction, it satisfies the recursive equation:

Qπ,µ
NT

(x, a) = r(x, a, µNT
), Qπ,µ

n−1(x, a) = r(x, a, µn−1) +
∑

x′∈X
p(x′|x, a)Eb∼πn(.|x′)

[
Qπ,µ

n (x′, b)
]
.

The value function is the expected sum of rewards for the player that starts from state x and
can thus be defined as: V π,µ

n (x) = Ea∼π(.|x) [Qπ,µ
n (x, a)]. Note that the objective function J of

a representative player rewrites in particular as an average at time 0 of the value function V
under the initial distributionm0: J(m0, π, µ) = Ex∼m0(.) [V π,µ

0 (x)] .

Distribution induced by a policy. The state distribution induced by π = {πn}n is defined
recursively by the forward equation starting from µπ

0 (x) = m0(x) and:

µπ
n+1(x′) =

∑
x,a∈X ×A

πn(a|x)p(x′|x, a)µπ
n(x)

Best Response. A best response policy πBR is a policy that satisfies:

J(m0, π
BR, µπ) = max

π′
J(m0, π

′, µπ)

Intuitively, it is the optimal policy an agent could take if it was to deviate from the crowd’s
policy.

Exploitability. We recall that the exploitability ϕ(π) of policy π quantifies the average gain
for a representative player to replace its policy by a best response, while the entire population
plays with policy π: ϕ(π) := max

π′
J(m0, π

′, µπ)− J(m0, π, µ
π). Please refer to Section 3.3.1 for

further details.

76

4.1 Motivation

Nash equilibrium. ANash equilibrium is a policy satisfying ϕ(π) = 0, while an approximate
Nash equilibrium has a small level of exploitability.

The exploitability is an already well known metric within the computational game theory
literature (Zinkevich et al., 2007; Bowling et al., 2015; Lanctot, Waugh, et al., 2009; Burch,
Johanson, and Bowling, 2014), and one of the objectives of this chapter is to emphasize its
important role in the context of MFGs. Classical ways of evaluating the performance of nu-
merical methods in the MFG literature typically relate to distances between distribution µ
or value function V , as for example in Achdou and Laurière (2020). A close version of the
exploitability has been used in this context (Guo, A. Hu, et al., 2019), but being computed
over all possible starting states at any time. Such formulation gives too much importance to
each state, in particular those having a (possibly very) small probability of appearance. In
comparison, the exploitability provides a well balanced average metrics over the trajectories of
the state process.

Monotone games. Agame is saidmonotone if the reward has the following structure: r(x, a, µ) =
r̃(x, a) + r̄(x, µ) and ∀µ, µ′,

∑
x∈X (µ(x) − µ′(x))(r̄(x, µ) − r̄(x, µ′)) ≤ 0. This so-called Lasry-

Lionsmonotonicity condition is classical to ensure the uniqueness of theNash equilibrium (Lasry
and Lions, 2007).

Learning in finite horizon problems. When the distribution µ of the population is given,
the representative player faces a classical finite horizon Markov Decision problem. Sev-
eral approaches can be used to solve this control problem such as model-based algorithms
(e.g. backward induction: Algorithm B.3 in Section B.4, with update rule ∀a, x ∈ A ×
X Qµ

n−1(x, a) = r(x, a, µn−1) +
∑

x′∈X p(x′|x, a) max
b
Qµ

n(x′, b)) or model-free algorithms (e.g.
Q-learning: Algorithm B.1 in Section B.4 with update ruleQk+1

n (xk
n, a

k
n) = (1−α)Qk+1

n (xk
n, a

k
n)+

α[r(xk
n, a

k
n, µk−1) + maxbQ

k
n+1(xk

n+1, b)]).

Computing the population distribution. Once a candidate policy is identified, one needs
to be able to compute (or estimate) the induced distribution of the population at each time
step. It can either be computed exactly using a model-based method such as Algorithm B.4
in Section B.4, or alternatively be estimated with a model-free method like Algorithm B.2 in
Section B.4.

Fictitious Play for MFGs. Consider available (1) a computation scheme for the population
distribution given a policy, and (2) an approximation algorithm for an optimal policy of the
representative player in response to a population distribution. Then, discrete time Fictitious
Play presented in Algorithm 4.1 provides a robust approximation scheme for Nash equilibrium

77

Fictitious Play

by computing iteratively the best response against the distribution induced by the average
of the past best responses. We will analyse this discrete time process in continuous time in
Section 4.2. To differentiate the discrete time from the continuous time, we denote the discrete
time with k and the continuous time with t. At a given step k of Fictitious Play, we have that:

∀n, µ̄k
n = k − 1

k
µ̄k−1

n + 1
k
µπk

n (4.3)

The policy generating this average distribution is:

∀n, π̄k
n(a|x) =

∑k
i=0 µ

πi

n (x)πi
n(a|x)∑k

i=0 µ
πi

n (x)
. (4.4)

Algorithm 4.1: Fictitious Play in Mean Field Games
1 input :Start with an initial policy π0, an initial distributionm0 and define π̄0 = π0
2 for k = 1, . . . ,K: do
3 find πk a best response against µ̄k (either with Q-learning or with backward

induction);
4 compute π̄k the average of (π0, . . . , πk);
5 compute µπk (either with a model-free or model-based method);
6 compute µ̄k the average of (µ0, . . . , µπk)
7 return π̄K , µ̄K

4.2 Continuous Time Fictitious Play in Mean Field Games

In this section, we study a continuous time version of Algorithm 4.1. The continuous time
Fictitious Play process is defined following the lines of Harris (1998) and Ostrovski and Strien
(2013). First, we start for t < 1 with a fixed policy π̄t<1 = {π̄t<1

n }n = {πt<1
n }n with induced

distribution µ̄t<1 = µt<1 = µπt<1 = {µπt<1
n }n (this arbitrary policy for t ∈ [0, 1] is necessary for

the process to be defined at the starting point). Then, the Fictitious Play process is defined for
all t ≥ 1 and n ∈ [1, . . . , NT] as:

d

dt
µ̄t

n(x) = 1
t

(
µBR,t

n (x)− µ̄t
n(x)

)
or in integral form: µ̄t

n(x) = 1
t

t∫
s=0

µBR,s
n (x)ds , (4.5)

where µBR,t
n denotes the distribution induced by a best response policy {πBR,t

n }n against µ̄t
n(x).

Hence, the distribution µt
n(x) identifies to the population distribution induced by the averaged

78

4.3 Experiments on Fictitious Play in the Finite Horizon Case

policy {πt
n}n defined as follows (proof in Section B.1):

∀n, µ̄t
n(x) d

dt
π̄t

n(a|x) = 1
t
µBR,t

n (x)[πBR,t
n (a|x)− π̄t

n(a|x)] (4.6)

or in integral form: ∀n, π̄t
n(a|x)

t∫
s=0

µBR,s
n (x)ds =

t∫
s=0

µBR,s
n (x)πBR,s

n (a|x)ds, (4.7)

with πBR,s
n being chosen arbitrarily for t ≤ 1. We are now in position to provide the main result

of the chapter, quantifying the convergence rate of the continuous Fictitious Play process.

Theorem 4.1. If the MFG satisfies the monotony assumption, we can show that the exploitability is a
strong Lyapunov function of the system, ∀t ≥ 1: d

dtϕ(π̄t) ≤ −1
tϕ(π̄t). Hence ϕ(π̄t) = O(1

t).

The proof of the theorem is postponed to Section B.1. Furthermore, a similar property for γ
discounted MFGs is provided in Section B.3. We chose to present an analysis in continuous
time because it provides convenient mathematical tools allowing to exhibit state of the art
convergence rate. In discrete time, similarly to normal form games (Karlin, 1959; Daskalakis
and Pan, 2014), we conjecture that the convergence rate for monotone MFGs is O(t−

1
2), the

same that in potential MFGs (Geist, Pérolat, et al., 2021).

4.3 Experiments on Fictitious Play in the Finite Horizon Case

In this section, we illustrate the theoretical convergence of continuous time Fictitious Play
by looking at the discrete time implementation of the process. We focus on classical linear
quadratic games which have been extensively studied (Bensoussan, Sung, et al., 2016; Graber,
2016; Duncan and Tembine, 2018) and for which a closed form solution is available. We then
turn to a more difficult numerical setting for experiments2. We chose either a full model-
based implementation or a full model-free approach of Algorithm 4.1. The model-based uses
Backward Induction (Algorithm B.3) and an exact calculation of the population distribution (
Algorithm B.2). The model-free approach uses Q-learning (Algorithm B.1) and a sampling-
based estimate of the distribution (Algorithm B.4).

4.3.1 Linear Quadratic Mean Field Game

Environment. We consider aMarkovDecision Process a finite action spaceA = {−M, . . . ,M}
together with a one dimensional finite state space domain X = {−L, . . . , L}, which can be
viewed as a truncated and discretized version of R. The dynamics of a typical player picking

2In all experiments, we represent µ̄, but applying π̄ to m0 would give the same result as µ̄ = µπ̄ .

79

Fictitious Play

action an at time n are governed by the following equation:

xn+1 = xn + (K(mn − xn) + an)∆n + σεn

√
∆n , (4.8)

allowing the representative player to either stay still or move to the left or to the right. In order
to make the model more complex, an additional discrete noise εn can also push the player to
the left or to the right with a small probability: εn ∼ N (0, 1), which is in practice discretized
over {−3σ, . . . , 3σ}. The resulting state xn+1 is rounded to the closest discrete state.

At each time step, the player can move up toM nodes and it receives the reward:

r(xn, an, µn) = [−1
2 |an|2 + qan(mn − xn)− κ

2 (mn − xn)2]∆n

where mn =
∑

x∈X xµn(x) is the first moment of the state distribution µn. ∆n is the time
lapse between two successive steps, while q and κ are given non-negative constants. The
first term quantifies the action cost, while the two last ones encourage the player to remain
close to the average state of the population at any time. Hereby, the optimal policy pushes
each player in the direction of the population average state. We set the terminal reward to
r(xN , aN , µN) = − cterm

2 (mN − xN)2.

Time

0
5
10
15
20
25
30

States 0204060801000.00
0.05
0.10
0.15
0.20
0.25

(a) Exact Solution

Time

0
5
10
15
20
25
30

States 0204060801000.00
0.05
0.10
0.15
0.20
0.25

(b)Model-based

Time

0
5
10
15
20
25
30

States 0204060801000.00
0.05
0.10
0.15
0.20
0.25

(c)Model-free
100 101 102

Log(iterations)

101

102

103

Backward Induction
Q-learning

(d) Exploitability

Figure 4.1 – Evolution of the distribution in the linear quadratic MFG with finite horizon.

Experimental setup. We consider a Linear Quadratic MFG with 100 states and an horizon
NT = 30, which provides a closed-form solution for the continuous state and action version
of the game (see Section B.3) and bounds the number of actions M = 37 required in the
implementation. In practice, the variance σ of the idiosyncratic noise εn is adapted to the
number of states. Here, we set σ = 3, ∆n = 0.1,K = 1, q = 0.01, κ = 0.5 and cterm = 1. In all
the experiments, we set the learning rate α of Q-learning to 0.1 and the ε-greedy exploration
parameter to 0.2.

Numerical results. Figure 4.1 illustrates the convergence of Fictitious Play model-based and
model-free algorithm in such context. The initial distribution, which is set to two separated
bell-shaped distributions, are both driven towards m and converge to a unique bell-shaped

80

4.3 Experiments on Fictitious Play in the Finite Horizon Case

distribution as expected. The parameter σ of the idiosyncratic noise influences the variance of
the final normal distribution. We can observe that both Backward Induction and Q-learning
provide policies that approximate this behaviour, and that the exploitability decreases with a
rate close to O(1/t) in the case of the model-based approach, while the model-free decreases
more slowly.

4.3.2 The Beach Bar Process

2

1

Bar

|X |-2

...

|X |-1

Figure 4.2 – The beach bar process.

As a second illustration, we now consider the beach bar
process, a more involved monotone second order MFGwith
discrete state and action spaces, that does not offer a closed-
form solution but can be analyzed intuitively. This exam-
ple is a simplified version of the well known Santa Fe bar
problem, which has received a strong interest in the MARL
community (Arthur, 1994; Farago, Greenwald, and Hall,
2002).

Environment. The beach bar process (Figure 4.2) is a Markov Decision Process with |X |
states disposed on a one dimensional torus (X = {0, . . . , |X | − 1}), which represents a beach.
A bar is located in one of the states. As the weather is very hot, players want to be as close as
possible to the bar, while keeping away from too crowded areas. Their dynamics is governed
by the following equation:

xn+1 = xn + b(xn, an) + εn

where b is the drift, allowing the representative player to either stay still or move one node to
the left or to the right. The additional noise εn can push the player one node away to the left or
to the right with a small probability:

b(xn, an) =

1 if an = right
0 if an = still
−1 if an = left

εn =

1 with probability 1−p

2
0 with probability p
−1 with probability 1−p

2

(4.9)

Therefore, the player can go up to two nodes right or left and it receives, at each time step,
the reward:

r(xn, an, µn) = r̃(xn)− |an|
|X |
− log(µn(xn)) ,

where r̃(xn) denotes the distance to the bar, whereas the last term represents the aversion of
the player for crowded areas in the spirit of Almulla, Ferreira, and D. Gomes (2017).

81

Fictitious Play

Numerical results. We conduct an experiment with 100 states and an horizon NT = 15.
Starting from a uniform distribution, we can observe in Figure 4.3 that both backward induction
and Q-learning algorithms converge quickly to a peaky distribution where the representative
player intends to be as close as possible to the bar while moving away if the bar is already
too crowded. The exploitability offers a nice way to measure how close we are from the Nash
equilibrium and shows as expected that the model-based algorithm (backward induction)
converges at a rate O(1/t) and faster than the model-free algorithm (Q-learning).

Time

0 2 4 6 8 10 12 14
States

0
20

40
60

80
100

0.006
0.008
0.010

0.012

0.014

(a) Model-based
Time

0 2 4 6 8 10 12 14
States

0
20

40
60

80
100

0.006
0.008
0.010
0.012

0.014

(b)Model-free

100 101 102 103

Log(iterations)

10 2

10 1

100

101 Backward Induction
Q-learning

(c) Exploitability

Figure 4.3 – Beach bar process in finite horizon: (a, b) evolution of the distribution, (c) exploitability.

4.4 Finite Horizon Mean Field Games with Common Noise

We now turn to the consideration of so-called MFG with common noise, that is including an
additional discrete and common source of randomness in the dynamics. Players still sequentially
take actions (a ∈ A) in a state space X , but the dynamics and the reward are affected by
a common noise sequence {ξn}0≤n≤N . We denote Ξn = {ξk}0≤k<n = Ξn−1.ξn−1 where |Ξn|
represents the total length of the sequence. The extra common source of randomness ξ affects
both the reward r(x, a, µ, ξ) and the probability transition function p(x′|x, a, ξ). We consider
policies πn(a|x,Ξ) and population distribution µn(x|Ξ) which are both noise-dependent, and
will simply be denoted πn,Ξ(a|x) and µn|Ξ(x). The Q function is defined as:

Qπ,µ
N (x, a|ΞN) = r(x, a, µN |ΞN

, ξN), Qπ,µ
n−1(x, a|Ξn−1) =

∑
ξ

P (ξn−1 = ξ|Ξn−1)
[

(4.10)

r(x, a, µn−1,Ξn−1 , ξ) +
∑

x′∈X
p(x′|x, a, ξ)Eb∼πn(.|x′,Ξn−1.ξ)

[
Qπ,µ

n (x′, b|Ξn−1.ξ)
]]
, (4.11)

while the value function is simply V π,µ
n (x,Ξn) = Ea∼πn,Ξn (.|x) [Qπ,µ

n (x, a|Ξn)]. Similarly, the
distribution over states is conditioned on the sequence of noises and satisfies the balance
equation: µπ

0 (x,Ξ0) = m0(x) (with Ξ0 being the empty sequence {}) and µπ
n+1(x′|Ξ.ξ) =

82

4.5 Experiments with Common Noise

∑
x∈X

pπn,Ξ.ξ(x′|x, ξ)µπ
n(x|Ξ). The expected return for a representative player starting atm0 is:

J(m0, π, µ) =
∑
x∈X

m0(x)V π,µ
0 (x,Ξ0) =

NT∑
n=0

∑
Ξ,ξ,|Ξ|=n

P (Ξ.ξ)
∑
x∈X

[µn(x,Ξ)r(x, a, µn,Ξ, ξ)]

(4.12)

with P (Ξ0) = 1 and P (Ξ.ξ) = P (ξ|Ξ)P (Ξ). Finally the exploitability is again defined as:

ϕ(π) = max
π′

J(m0, π
′, µπ)− J(m0, π, µ

π). (4.13)

Continuous time Fictitious Play for MFGs with common noise. The Fictitious play process
on MFGs with common noise is as follows. For t < 1, we start with an arbitrary policy π̄t<1

(by convention we will take π̄t = πBR,t for t < 1) whose distribution is µ̄t<1 = µπt<1 (with the
convention that µ̄t = µBR,t). Then, for all t and Ξ:

µ̄t
n(x|Ξ) = 1

t

t∫
s=0

µBR,s
n (x|Ξ)ds, (4.14)

where µBR,t is the distribution of a best response policy πBR,t against µ̄t when t ≥ 1. The
distribution µt is the distribution of a policy π̄t, which is defined as follows for t ≥ 1:

∀n,Ξ, π̄t
n(a|x,Ξ)

t∫
s=0

µBR,s
n (x|Ξ)ds =

t∫
s=0

µBR,s
n (x|Ξ)πBR,s

n (a|x,Ξ)ds. (4.15)

Theorem 4.2. Under the monotony assumption, the exploitability is a strong Lyapunov function of the
system for t ≥ 1: d

dtϕ(π̄t) ≤ −1
tϕ(π̄t). Therefore, ϕ(π̄t) = O(1

t).

4.5 Experiments with Common Noise

4.5.1 Linear Quadratic Mean Field Game

Environment. We use a similar environment as the one described in the Linear Quadratic
MFG. On top of the idiosyncratic noise εn, we add a common noise ξn, which is assumed to be
stationary and i.i.d. We now consider the following dynamics:

xn+1 = xn + (K(mn − xn) + an)∆n + σ(ρξn +
√

1− ρ2εn)
√

∆n . (4.16)

The reward remains unchanged, except that the first moment of the state distribution µ̄n now
depends on the sequence of common noises Ξn: mn = E[xn|Ξn]. We set ρ = 0.5.

83

Fictitious Play

Time

0.02.55.07.510.012.515.017.5

States 051015202530

0.0
0.1
0.2

(a) Exact Solution

Time

0.02.55.07.510.012.515.017.5

States 051015202530

0.00.10.20.3

(b)Model-based

Time

0.02.55.07.510.012.515.017.5

States 051015202530

0.00.10.20.3

(c)Model-free

100 101

Log(iterations)

100

Backward Induction
Q-learning

(d) Exploitability

Figure 4.4 – Linear Quadratic with Common Noise.

Numerical results. On Figure 4.4, the two separated bell-shaped distributions reassemble
and follow the sequence of common noises. Namely, the mean of the distribution moves with
the successive common noises, which are represented by the red line below the distribution’s
evolution. This evolution can be interpreted as a school of fish which undergoes a water
flow (i.e. the sequence of common noises). Both model-based and model-free approaches
approximate the exact solution. The exploitability of model-based still decreases at a rate
O(1/t), while the one of model-free decreases more slowly.

4.5.2 The Beach Bar Process

Environment. We consider a setting where the bar can close at only one given time step. This
gives two possible realizations of the common noise: (1) the bar stays open or (2) it closes at this
time step. Here, the dynamics remain unchanged but the reward now depends on the common
noise: ropen is the same reward as before, whereas rclosed(xn, an, µn) = − |an|

|X | − log(µn(xn)).

Time

0 5 10 15 20 25 30
States

0
20

40
60

80
100

0.006
0.008
0.010
0.012

0.014

(a) Model-based, the bar stays
open

Time

0 5 10 15 20 25 30
States

0
20

40
60

80
100

0.007
0.008
0.009
0.010
0.011
0.012
0.013
0.014
0.015

(b)Model-based, the bar closes

100 101 102

Log(iterations)

100

101

Backward Induction
Q-learning

(c) Exploitability

Time

0 5 10 15 20 25 30
States

0
20

40
60

80
100

0.006
0.008
0.010
0.012
0.014

(d)Model-free, the bar stays open
Time

0 5 10 15 20 25 30
States

0
20

40
60

80
100

0.008
0.010

0.012

0.014

(e) Model-free, the bar closes

Figure 4.5 – First Common Noise setting, the bar has a probability 0.5 of closing at time step 15.

84

4.6 Experiment at Scale

Numerical results. We set the time step of closure at NT
2 where NT = 30 is the horizon of

the game and the number of states |X | to 100. We choose the probability of closure to be 0.5.
Figure 4.5 shows that the players anticipate the possibility that the bar may close: the density of
people next to the bar decreases before the time step of the common noise. After the common
noise, the distribution becomes uniform if the bar has closed or people go back next to the bar if
the bar stays open. Once again, the exploitability indicates that themodel-based andmodel-free
approaches both converge to the Nash equilibrium and that the model-based converges faster.

4.6 Experiment at Scale

0

(a) Start

50

(b)Middle

500

(c) End

100 101 102 103 104

Iteration

102

103

Ex
pl

oi
ta

bi
lit

y
(d) Exploitability

Figure 4.6 – 2D crowd modeling example.

We finally present a crowd modeling experiment, motivated by swarm robotics (McGuire
et al., 2019; Szymanski et al., 2006; Ducatelle et al., 2014), where a distribution of players is
encouraged to move in a maze towards the center of a 100× 100 grid. The reward at a state
(i, j) is described as r(s = (i, j), a, µ) = 10 ∗ (1 − ∥(i,j)−(50,50)∥1

100) − 1
2 log(µ(x)), where the last

term captures the aversion for crowded areas. The initial distribution is chosen proportional
to (1 − ∥(i,j)−(5,5)∥2√

2×952)10 while being null on the maze obstacles (the yellow strait lines). The
evolution of the distribution as well as the exploitability are represented in Figure 4.6.

4.7 Conclusion of the Chapter

In this chapter we have shown that Fictitious Play can serve as a basis for building practical
algorithms to solve a wide variety of MFGs including finite horizon and γ-discounted MFGs as
well as games perturbed by a common noise. We proved that, in all these settings, the resulting
exploitability decreases at a rate ofO(1

t) and that this metrics can be used to monitor the quality
of the control throughout the learning. To illustrate our findings and the versatility of the
method, we instantiated the Fictitious Play scheme using Backward Induction and Q-Learning
to learn intermediate best responses. Application of these instances on different MFGs have

85

Fictitious Play

shown that the proposed algorithms consistently learned a near-optimal control and led to
the desired behaviour for the population of players. This scheme has the potential to scale
up dramatically by using advanced reinforcement learning algorithms combined with neural
networks for the computation of the best response.

86

Chapter 5

Online Mirror Descent

We now turn our attention to Online Mirror Descent (OMD), another iterative method for com-
puting Nash equilibria in Mean Field Games. We prove that continuous-time OMD converges
to a Nash equilibrium under a natural and well-motivated set of monotonicity assumptions. A
thorough experimental investigation on various single and multi-population MFGs highlights
that OMD outperforms traditional algorithms such as Fictitious Play. We empirically show that
OMD scales and converges significantly faster than Fictitious Play by solving, for the first time
to our knowledge, examples of MFGs with hundreds of billions states. 1

Contents
5.1 Motivation . 88

5.2 Preliminaries on Multi-Population Mean Field Games 89

5.3 Online Mirror Descent: Algorithm and Convergence 93

5.4 Numerical Experiments . 97

5.5 Conclusion of the Chapter . 102

1This chapter is based on a preprint (Perolat, Perrin, et al., 2021) presented at the AAMAS 2022 conference.

87

Online Mirror Descent

5.1 Motivation

In Chapter 4, we have proved that Fictitious Play converges to a Nash equilibrium under the
monotonicity condition. We recall that Fictitious Play is a generic algorithm that alternates two
steps starting from an arbitrary strategy for the representative player: i) computing the best
response of this agent against the rest of the population, ii) compute the mixture of that best
response with its previous strategy. Unfortunately, Fictitious Play seems hard to scale further
for several reasons. Firstly, the computation of the best response remains a hard problem
even if RL is promising, as it requires to solve a full best response at each iteration in order to
converge, which is not convenient as it amounts to find a (near) optimal solution to a different
MDP at each iteration. Furthermore, the regularization in Fictitious Play happens through the
averaging of the distribution and policy. However, policies are pure (i.e. deterministic) as they
are computed as the argmax of Q-functions. This means that Fictitious Play requires a high
number of iterations in order for the averaging to be efficient (i.e. in order for the policies to be
mixed enough). In contrast, we will see that Online Mirror Descent is mixing policies faster
as it directly regularizes policies by computing a mixed policy (in practice, often a soft-max)
with respect to the Q-function. Finally, Fictitious Play requires storing multiple quantities (e.g.,
averaged policies and induced distributions, etc.), which contributes to cap scalability.

Contributions. In this context, our main contribution in this chapter is the introduction
of a new algorithm that can tackle a large number of agents as well as large state spaces.
This algorithm, namely Online Mirror Descent (OMD) (Shalev-Shwartz, 2011), computes
a NE in a large class of MFGs. Inspired by convex optimization and the Mirror Descent
algorithm (Nemirovsky and Yudin, 1979), our method does not require the computation of
a best response. It rather alternates a step of evaluation of the current strategy with a step of
improvement of that strategy. The evaluation is done through the computation of the expected
accumulated pay-offs of the strategy over time in the shape of a so-called Q-function. The
improvement step reduces to computing the soft-max of the quantity obtained by integrating the
Q-functions over iterations (like the Mirror Descent algorithm suggests). Quantities that need
to be stored by OMD (the strategy and the integrated Q-function) are thus limited compared
to Fictitious Play. As a second contribution, we provide a proof of convergence for continuous
time OMD to a NE for MFGs under reasonable assumptions. These theoretical results naturally
extend to multi-population MFGs as well as to settings where noise is commonly shared by all
agents. Our third contribution is an extensive empirical evaluation of OMD on different tasks
involving single or multiple populations, in the presence of common noise or not, with non
trivial topologies. We highlight that the scale of the considered problems reaches 1011 states
and trillions of state-action pairs, surpassing by four or five orders of magnitudes existing
results. These experiments demonstrate that OMD’s computational efficiency is much stronger

88

5.2 Preliminaries on Multi-Population Mean Field Games

than Fictitious Play, which results in faster convergence. Furthermore, we provide a proof
of convergence under a monotonicity assumption which improve over the more widely used
contraction assumption used in the literature.

Related Work. OMD dynamics have been studied extensively within the field of multi-agent
games (Cesa-Bianchi and Lugosi, 2006; Nisan et al., 2007). Leveraging the well known advan-
tageous regret properties of such dynamics (Srebro, Sridharan, and Tewari, 2011), one can
prove strong time-average convergence results both in zero-sum games (and network variants
thereof) (Freund and Schapire, 1999; Cai et al., 2016) as well as in smooth-games (Roughgarden,
2009). Recently, there has been explicit focus on understanding their day-to-day behavior which
has been shown to be non-equilibrating even in standard bilinear zero-sum games (Piliouras
and Shamma, 2014; Mertikopoulos, Papadimitriou, and Piliouras, 2018). Moreover, even in
simple games the behavior of such dynamics can become formally chaotic (Sato, Akiyama, and
Farmer, 2002; Palaiopanos, Panageas, and Piliouras, 2017; Chotibut et al., 2019). Nevertheless,
sufficient conditions have been established under which converge to NE is guaranteed even
in the sense of the day-to-day behavior (Zhou et al., 2017; Bravo, Leslie, and Mertikopou-
los, 2018). We find sufficient conditions for convergence in the more demanding setting of
MP-MFG. Mirror Descent for MFGs has been introduced by Hadikhanloo (2017) for first-
order, single-population MFG, while our results cover second order MP-MFG. As far as we
know, our work is the first one to provide a well-suited monotonicity condition for MP-MFG.
Traditional numerical methods for solving MFGs typically rely on a finite difference scheme
introduced by Achdou and Capuzzo-Dolcetta (2010). This approach can be extended to solve
MP-MFG (Achdou, Bardi, and Cirant, 2017). However, to the best of our knowledge, there is
no general convergence guarantees, nor has it been tested on examples with as many states as
we consider. Last, the question of learning with multiple infinite populations of agents has
also been studied recently by J. Subramanian, Seraj, and Mahajan (2018). The authors consider
several groups where the agents cooperate among each group, which differs from our setting
where all the agents compete.

5.2 Preliminaries on Multi-Population Mean Field Games

We now present the theory under a slightly more general framework: Multi Population-Mean
Field Games. Generalizations of the MFG framework to models with multiple populations have
been introduced by M. Huang, R. P. Malhamé, and Caines (2006) and have attracted a growing
interest (Bensoussan, Frehse, and S. C. P. Yam, 2013; Carmona and Delarue, 2018b; Bensoussan,
T. Huang, and Laurière, 2018). Applications include urban settlements (Achdou, Bardi, and
Cirant, 2017) and crowd motion (Lachapelle and Wolfram, 2011; Aurell and Djehiche, 2018).
In this chapter, we denote the current iteration t in continuous time as a subscript instead of a

89

Online Mirror Descent

superscript, to alleviate the notations (because we added the number of the population i as a
superscript).

In a Multi-Population Mean Field Game (MP-MFG), an infinite number of players from Np

different populations interact with each other in a temporally and spatially extended game (the
case Np = 1 corresponds to a standard MFG). MP-MFG are easily encompassed within MFGs
on an extended state space (including the population type), but we use this setting for sake of
clarity and completeness. Let X be the finite discrete state space and A be the finite discrete
action space of the MP-MFG. We denote by ∆X and ∆A respectively the spaces of probability
distributions over states and actions. In this sequential decision problem, a representative
player of population i ∈ {1, . . . , Np} starts at a state xi

0 ∈ X according to a distributionmi
0 ∈ ∆X .

We consider a finite time horizonNT > 0. At each time step n ∈ {0, . . . , NT }, the representative
player of population i is in state xi

n and takes an action according to πi
n(.|xi

n), where πi
n ∈ (∆A)X

is a policy. Given this action ai
n, the representative player moves to a next state xi

n+1 with
probability p(.|xi

n, a
i
n) and receives a reward ri(xi

n, a
i
n, µ

1
n, . . . , µ

Np
n), where µj

n is the distribution
of the population j at time n. Here p ∈ (∆X)X ×A and ri : X ×A× (∆X)Np → R. Observe that
the transition kernel does not depend on the Multi-population distribution as in most classical
MFG examples, see e.g., the original work of Lasry and Lions (2007).

For the reader’s convenience, we denote πi = {πi
n}n∈{0,...,NT }, µi = {µi

n}n∈{0,...,NT }, π =
{πi}i∈{1,...,Np}, µ = {µi}i∈{1,...,Np}, πn = {πi

n}i∈{1,...,Np} and µn = {µi
n}i∈{1,...,Np}. Please note

that accordingly to previous chapters, we keep the convention of bold symbols for time-
dependant quantities.

During the game and given a fixed multi-population distributions sequence µ, a represen-
tative player of population i accumulates the following sum of rewards:

J i(πi,µ) = E
[NT∑

n=0
ri(xi

n, a
i
n, µn)

∣∣∣ xi
0 ∼ mi

0, a
i
n ∼ πi

n(.|xi
n), xi

n+1 ∼ p(·|xi
n, a

i
n)
]
.

Backward Equation: Given a population i, a time n, a state xi, an action ai, a policy πi and a
multi-population distribution sequence µ, we define the Q-function:

Qi,πi,µ
n (xi, ai) = E

[NT∑
k=n

ri(xi
k, a

i
k, µk)

∣∣∣ xi
n = xi, ai

n = ai, ai
k ∼ πi

k(.|xi
k), xi

k+1 ∼ p(.|xi
k, a

i
k)
]

and the value function:

V i,πi,µ
n (xi) = E

[NT∑
k=n

ri(xi
k, a

i
k, µk)

∣∣∣ xi
n = xi, ai

k ∼ πi
k(.|xi

k), xi
k+1 ∼ p(.|xi

k, a
i
k)
]
.

90

5.2 Preliminaries on Multi-Population Mean Field Games

These two quantities can be computed recursively with the following backward equations:

Qi,πi,µ
NT

(xi, ai) = ri(xi, ai, µNT
)

Qi,πi,µ
n−1 (xi, ai) = ri(xi, ai, µn−1) +

∑
x′i∈X

p(x′i|xi, ai)Ebi∼πi
n(.|x′i)

[
Qi,πi,µ

n (xi, bi)
]
,

V i,πi,µ
n (xi) = Eai∼πi

n(.|x′i)

[
Qi,πi,µ

n (xi, ai)
]
.

Finally, the sum of rewards is J i(πi,µ) = Exi∼mi
0
[V i,πi,µ

n (xi)].
Forward Equation: If all the agents of a population i follow the policy πi, the induced

population distribution defines recursively via the following forward equation: µi,πi

0 = µi
0 and,

for all x′i ∈ X ,

µi,πi

n+1(x′i) =
∑

(xi,ai)∈X ×A
πi

n(ai|xi)p(x′i|xi, ai)µi,πi

n (xi) , for n ≤ N − 1 . (5.1)

We denote µπ = (µi,πi)i∈{1,...,Np} and emphasize the following property for the cumulative
sum of rewards:

J i(πi,µ) =
NT∑
n=0

∑
(xi,ai)∈X ×A

µi,πi

n (xi)πi
n(ai|xi)ri(xi, ai, µn)

.

Best Response and Exploitability. A best response policy πi,BR,µ to a multi-population
distribution sequence µ verifies the following property max

πi
J i(πi,µ) = J i(πi,BR,µ,µ). It can

be computed recursively by finding the best responding Q-function Qi,BR,µ:

Qi,BR,µ
NT

(xi, ai) = ri(xi, ai,µNT
)

Qi,BR,µ
n−1 (xi, ai) = ri(xi, ai,µn−1) +

∑
x′i∈X

p(x′i|xi, ai) max
bi

[
Qi,BR,µ

n (xi, bi)
]
.

Finally, πi,BR,µ
n (.|xi) ∈ arg maxQi,BR,µ

n (xi, .).

The exploitabilitymeasures the distance to an equilibrumand is defined asϕ(π) =
Np∑
i=1

ϕi(π)

where, for each i, ϕi(π) = maxπ′i J i(π′i,µπ)− J i(πi,µπ).

91

Online Mirror Descent

Monotonicity. A multi-population game is said to beweakly monotone if, for any ρi
n, ρ

′i
n ∈

∆(X ×A) and µi
n, µ

′i
n ∈ ∆X satisfying

µi
n =

∑
ai∈A

ρi
n(·, ai) and µ′i

n =
∑

ai∈A
ρ′i

n(·, ai)

for all i, n, we have

∑
i

∑
(xi,ai)∈X ×A

(ρi
n(xi, ai)−ρ′i

n(xi, ai))× (ri(xi, ai, µn)− ri(xi, ai, µ′
n)) ≤ 0 .

It is strictly weakly monotone if the inequality is strict whenever ρn ̸= ρ′
n. This condition

means that the players are discouraged from taking similar state-action pairs as the rest of the
population. Intuitively, it can be interpreted as an aversion to crowded areas.

We have the following property, whose proof is postponed to Section C.5.

Lemma 1. The weak monotonicity property implies that for any π,π′ with π ̸= π′,

M̃(π,π′) :=
Np∑
i=1

[
J i(πi,µπ) + J i(π′i,µπ′)− J i(πi,µπ′)− J i(π′i,µπ)

]
≤ 0. (5.2)

Strictly weak monotonicity implies a strict inequality above.

Moreover, the weak monotonicity condition is met in the following classical setting (see
Section C.1).

Lemma 2. Assume the reward is separable, i.e. ri(xi, ai, µ) = r̄i(xi, ai)+ r̃i(xi, µ) and the following
monotonicity condition holds: for all µ ̸= µ′,

∑
i

∑
x∈X

(µi(xi)− µ′i(xi))(r̃i(xi, µ)− r̃i(xi, µ′)) ≤ 0

(resp. < 0). Then the game is weakly monotone (resp. strictly weakly monotone).

An example of such a separable and monotone reward can be found in multi-population
predator prey models where the reward can be expressed as a network zero-sum game:

ri(xi, ai, µ) = r̄i(xi, ai) + r̂i(xi, µi) +
∑
j ̸=i

µj(xi)r̂i,j(xi)

︸ ︷︷ ︸
=r̃i(xi,µ)

(5.3)

if r̂i,j = −r̂j,i and r̂ satisfies the previous monotonicity condition.

Nash Equilibrium (NE). ANE is a vector of policies for all populations that has 0 exploitabil-
ity. The existence of a NE in MFGs has been studied in many settings (Cardaliaguet, 2012;

92

5.3 Online Mirror Descent: Algorithm and Convergence

Bensoussan, Frehse, and S. C. P. Yam, 2013; Carmona and Delarue, 2018a). In our framework, it
is a consequence of the convergence of the Fictitious Play dynamics in monotone games, which
is detailed in Section C.3.

Proposition 1 (Existence and uniqueness of Nash). Any weakly monotone MP-MFG admits a NE.
Besides, if the weak monotonicity is strict, the NE is unique.

Proof. The existence result follows from Theorem C.1 and uniqueness is proven in Section C.6.

5.3 Online Mirror Descent: Algorithm and Convergence

We now turn to the Online Mirror Descent Algorithm and introduce a regularizer h : ∆A → R,
that is assumed to be ρ-strongly convex for some constant ρ > 0. Furthermore, we will assume
from this point forward that the regularizerh is steep, i.e., ∥∇h(π)∥ → ∞whenever π approaches
the border of ∆A; The classic negentropy regularizer, which results to replicator dynamics is
the prototypical example of this class. Denote by h∗ : R|A| → R its convex conjugate defined by
h∗(y) = max

π∈∆A
[⟨y, π⟩ − h(π)]. Since h is differentiable almost everywhere, we have, for almost

every y,
Γ(y) := ∇h∗(y) = arg max

π∈∆A
[⟨y, π⟩ − h(π)]. (5.4)

Discrete Time Online Mirror Descent. The OMD algorithm is implemented as described
in Algorithm 5.1. At each iteration, the first step consists in computing, for each population,
the evolution of the population’s distribution by using the current policy, see Equation (5.1).
In the second step, each population’s policy is updated with learning rate α. This update is
done by first updating the corresponding y variable and then obtaining the policy thanks to
the function Γ. As in Chapter 4, we denote the discrete iterations k ∈ {1, . . . ,K} and not t than
we keep for continuous-time updates. We have for all k ∈ N∗, i ∈ {1, . . . , Np}, n ∈ {0, . . . , NT },

yi,k+1
n (xi, ai) =

k∑
l=0

αQi,πi,l,µπl

n (xi, ai),

πi,k+1
n (.|xi) = Γ(yi,k+1

n (xi, .)).

93

Online Mirror Descent

Algorithm 5.1: Online Mirror Descent (OMD)
1 input :Learning rate α, yi,0

n = 0 for all i, n; number of iterationsK
2 for k = 1, . . . ,K: do
3 Forward Update: Compute for all i, µi,πk ;
4 Backward Update: Compute for all i, Qi,πi,k,µi,πk

;
5 Update for all i, n, x, a,

yi,k+1
n (x, a) = yi,k

n (x, a) + αQi,πi,k,µπk

n (x, a)

πi,k+1
n (.|x) = Γ(yi,k+1

n (x, .))

6 output :Last policy πK and mean field flow µK

Continuous Time Online Mirror Descent. We study the theoretical convergence of the con-
tinuous time version of Algorithm 5.1. Namely, the Continuous Time Online Mirror Descent
(CTOMD) algorithm (Mertikopoulos, Papadimitriou, and Piliouras, 2018) is defined as: for all
i ∈ {1, . . . , Np}, n ∈ {0, . . . , NT }, yi

n,0 = 0, and for all t ∈ R+,

yi
n,t(xi, ai) =

t∫
0

Qi,πi
s,µπs

n (xi, ai)ds, (5.5)

πi
n,t(.|xi) = Γ(yi

n,t(xi, .)). (5.6)

From here on, unless otherwise specified, we assume that the weak monotonicity condition
holds and denote by π∗ the policy of a NE, whose existence follows from Proposition 1. We let
yi,∗ : (xi, ai) 7→ yi,∗(xi, ai) be the corresponding dual variable such that πi,∗(.|xi) = Γ(yi,∗(xi, .))
for every i.

Measure of similarity with the NE π∗. Based on the regularizer h, we define in the dual
space the following measure of similarity H : R|A| → R with the NE π∗:

H(y) :=
Np∑
i=1

NT∑
n=0

∑
xi∈X

µi,π∗
n (xi)

[
h∗(yi

n,t(xi, .))− h∗(yi,∗(xi, .))− ⟨πi,∗
n,t, y

i
n,t(xi, .)− yi,∗

n,t(xi, .)⟩
]
.

As detailed below, this quantity will be decreasing through the iterations of CTOMD.
Observe that since the regularizer is steep and thus always maps in the interior of the simplex,

94

5.3 Online Mirror Descent: Algorithm and Convergence

it can also be expressed in terms of Bregman divergence as:

H(y) =
Np∑
i=1

NT∑
n=0

∑
xi∈X

µi,π∗
n (xi)[Dh(πi,∗

n (xi, ·), πi
n(xi, ·))].

which is always non-negative. Here DF denotes the Bregman divergence associated with a
map F and defined as :

DF (p, q) := F (p)− F (q)− ⟨∇F (q), p− q⟩.

In this derivation we have used known relations between Fenchel couplings and Bregman
divergences (Mertikopoulos and W. H. Sandholm, 2016) and denoted πi

n := Γ(yi
n). Thus, the

similarity measure H can also be expressed in terms of proximity between policies.
We are now in position to characterize the dynamics of the similarity to the Nash mapping

via the following lemma, whose proof is provided in Section C.4.

Lemma 3 (Similarity dynamics). In CTOMD, the measure of similarity H to the Nash π∗ satisfies

d

dt
H(yt) = ∆J(πt,π

∗) + M̃(πt,π
∗) (5.7)

where ∆J(πt,π
∗) :=

∑Np

i=1 J
i(πi

t,µ
π∗)− J i(πi,∗,µπ∗) is always non-positive, and the weak mono-

tonicity metric M̃ is defined in (5.2).

Convergence to the Nash for MP-MFGs We now turn to the main theoretical contribution
of the paper, by deriving the convergence of CTOMD to the set of NE for MP-MFGs (proof in
Section C.7).

Environment |X | |X | × |A| OMD Fictitious Play
Garnet 2× 103 – 2× 104 2× 104 – 4× 105 84 – 229KB 168 – 458KB
Building 8× 109 5.6× 1010 0.21TB 0.42TB

Common noise 2.73× 1011 1.092× 1012 5.0TB 10TB
Multi-Pop. medium 5× 107 2× 108 0.93GB 1.9GB
Multi-Pop. large 8× 108 3.2× 109 73GB 146GB

Table 5.1 – Number of states, action-states pairs & RAMmemory required for the experiments. |X | =
positions× timesteps× common noise× number of populations (KB stands for Kilo Byte, G stands for
Giga and T stands for Tera).

Theorem 5.1 (Convergence of CTOMD). If a MP-MFG satisfies M̃(π, π′) < 0 if µπ ̸= µπ′ and 0
otherwise, then (πt)t≥0 generated by CTOMD given in (5.6) converges to the set of Nash equilibria of
the game as t→ +∞.

95

Online Mirror Descent

Figure 5.1 – 5 Garnet sampled with param nx = 20000, na = 10, t = 2000, sf = 10

Proof. The assumption dH(yt)
dt < 0 is enough to guarantee convergence of H(yt) to 0. This

relies on the so-called strict Lyapunov condition, which is classical in Lyapunov theory. It can
be found in non-linear system books such as Khalil (2002) or more recently in discrete time
in Pérolat et al. (2021). Let’s briefly sketch themain argumentation that relies on a contradiction
argument and divides in the following steps in the context of our problem:

• First, in order to have a one to onemapping between π and y, one can rewrite an equivalent
dynamical system on the policy

yi
n,t(xi, ai) =

t∫
s=0

Qi,πi
s,µπs

n (xi, ai)ds−
t∫

s=0

Qi,πi
s,µπs

n (xi, ai
xi)ds

where ai
xi is a fixed action for state xi without changing the trajectory of the policy.

• Second, if d
dtH(yt) = ∆J(πt,π

∗)+M̃(πt,π
∗) = 0, we haveM̃(πt,π

∗) = 0 as∆J(πt,π
∗) ≤

0 which is only true if πt is a Nash (under Theorem 5.1 conditions).

• Then, assume thatH(yt) is bounded from below by c > 0. Given the sign of the derivative,
it is also bounded from above by C = H(y0).

• The set {y|H(y) ≤ C}must be bounded which is true in our case as h is steep (H goes to
infinity as π gets close to the boundary) and :

H(y) =
Np∑
i=1

NT∑
n=0

∑
xi∈X

µi,π∗
n (xi)[Dh(πi,∗

n (xi, ·), πi
n(xi, ·))]

• Hence, the set ACc = {y|c ≤ H(y) ≤ C} is compact as a closed bounded set (recall that
H is continuous in y).

96

5.4 Numerical Experiments

• As
dH(yt)
dt

= ∆J(Γ(yt),π∗) + M̃(Γ(yt),π∗)

while ∆J(Γ(y), π∗) + M̃(Γ(y),π∗) < 0 for all y in the compact set ACc, we deduce the
existence of a constant kmax such that∆J(Γ(y),π∗)+M̃(Γ(y),π∗) ≤ kmax < 0 for y ∈ ACc

(the image of a compact through a continuous function is a compact).

• As H(yt) = H(y0) +
∫ t

0
dH(yτ)

dτ dτ , this implies that H(yt) ≤ C + t × kmax, so there will
be a time twhenH(yt) < c. This provides a contradiction and implies thatH(yt) must
converge to 0.

This concludes the sketch of the proof.

Thanks to Lemma 1 together with Proposition 1, we easily deduce the convergence to
the unique NE in some more stringent classes of MP-MFGs. It is worth noticing that our
line of argument differs from the usual approaches on regret minimization arguments as e.g.
considered by Zinkevich et al. (2007).

Corollary 1 (Convergence of CTOMD for weakly monotone MFG). For any strictly weakly
monotone MP-MFG, (πt)t≥0 generated by CTOMD given in (5.6) converges to the unique NE, as
t→ +∞.

Restriction to single population MFG. Finally, considering the number of populations Np

equal to 1, the convergence of CTOMD to the NE for single population strictly weaklymonotone
MFG follows.

Corollary 2 (Convergence of CTOMD for Single Population MFG). For any single population
MFG satisfying the strictly weak monotonicity assumption, (π(t))t≥0 generated by CTOMD given
in (5.6) converges to the unique NE of the game, as t→ +∞.

Remark 16. Our proofs only give an asymptotic result and we don’t think anything better is achievable
in general. However if one can upper bound the monotony coefficient M̃(πt,π

∗) by the Lyapunov
function H(yt) for example, the Gronwall inequality would give an exponential convergence rate.

5.4 Numerical Experiments

We illustrate the theoretical convergence of CTOMD with an extensive empirical evaluation of
OMD described in Algorithm 5.1 within various settings involving single or multiple popula-
tions as well as non trivial topologies (videos available here). These settings are typically hardly
tractable using classical numerical approximation schemes for partial differential equations.

97

https://www.youtube.com/channel/UCsyraNAh_zmwvChXLKZo_Eg

Online Mirror Descent

Figure 5.2 – Population distribution at consecutive dates (three first figures on the left). Each plot of a
subfigure is a different floor, the bottom floor is the bottom-right plot, the top floor is the top-left plot.
The figure on the right displays the exploitability of: Fictitious Play (red, α = 10−5), Fictitious Play
damped (green, α = 10−3) and OMD (blue, α = 10−4).

Figure 5.3 – Crowd position at different consecutive dates when the point of interest is randomly shifted
to the right by a common noise. The fourth graph is displaying the exploitability of MD.

Besides, the scale of the numerical experiments grows up to 1012 states, establishing a new scal-
ability benchmark in the MFG literature. We emphasize the diversity of tractable environments
by considering (randomized MDP) Garnet settings, a twenty-storey high building evacuation,
a crowd movement example in the presence of common noise and finally an essentially zero
sum multi-population chasing game.

Experimental setup. We compare OMD and Fictitious Play with different learning rates α.
In discrete-time OMD, α appears in the backward update of y:

yi,k+1
n (x, a) = yi,k

n (x, a) + αQi,πi,k,µπk

n (x, a)

whereas in discrete-time Fictitious Play, it corresponds to the weight for updating the
average policy with the new best response πi,k+1

n (xi, ai) given by

(1− αk)µi,πk

n (xi)πi,k+1
n (xi, ai) + αkµ

i,k,br
n (xi)πi,k,br

n (xi, ai)
(1− αk)µi,πk

n (xi) + αkµ
i,k,br
n (xi)

.

98

5.4 Numerical Experiments

Fictitious Play is experimented with decreasing αk = α/(2 + k) or constant αt = α learning
rate. This latter is referred to hereafter as Fictitious Play damped, while α = 1 corresponds to the
fixed point iteration algorithm, i.e. the population applies the last best response policy. The
theoretical proof of convergence relies on restrictive conditions which only hold for a small class
of games. We provide a thorough evaluation in Table 5.1 of the complexity of the environments
along with the memory required to compute our results. For OMD, we only need to store y of
size |X | × |A| and the distributions, of size |X |. For Fictitious Play, we need to store the last best
response, the average policy, the last distribution and the average distribution, requiring a total
of 2× (|X |× |A|) + 2× |X |. In all the experiments, h is the entropy: h = −

∑
a∈A π(a) log(π(a)).

This implies that h∗(y) = log(
∑

a exp(y(a))), and we find that Γ is a softmax if we take the
gradient of h∗.

5.4.1 Garnet

We first evaluate our algorithm Algorithm 5.1 on a set of randomly generated problems (re-
peatability of our results for varying sizes).

Environment. A garnet is an abstract and randomly generated MDP (Archibald, McKinnon,
and Thomas, 1995). We adapt this concept to single-population MFGs by modifying the
reward. In our case, a Garnet is built from the set of parameters (nx, na, nb, sf , η), with nx

and na respectively the numbers of states and actions. The term nb is a branching factor, and
the transition kernel (independent of µ) is built as follows: nb transiting states are drawn
randomly without replacement, and the associated transition probabilities are obtained by
partitioning the unit interval with nx − 1 uniformly sampled random points. The reward term
r̃(x, u) is set to 0 for sf states sampled randomly without replacement, for each of the remaining
states it is set for all actions to a random value sampled uniformly in the unit interval. We
set r̄(s, µ) = −η log(µ(x)). This reward encourages the agents to spread out accross the MDP
states and can model social distancing. This process generates a monotone MFG.

Numerical results. Figure 5.1 and Figure C.4 (Section C.8.1) shows various Garnet exper-
iments. We fix sf = 10, NT = 2000, η = 1 and nb = 1 (deterministic dynamics) and vary
nx ∈ {2.103; 2.104} and na ∈ {10, 20}. In each case, results are averaged over 5 randomly
generated Garnets. We compare OMD to Fictitious Play, damped or not. We observe that OMD
consistently converges faster for the right choice of α. α = 1 might lead to unstable results
while α = 0.1 consistently provides fast convergence to the Nash. In all cases, the number of
states influences the convergence rate, but much less for OMD.

99

Online Mirror Descent

Figure 5.4 – 4-population chasing. Right figure : Fictitious Play (red, α = 10−3), Fictitious Play damped
(green, α = 10−5) and OMD (blue, α = 10−5). From left to right, 3 picture chowing the distribution
evolving through time and a fourth one displaying the exploitability.

5.4.2 Building evacuation

Environment. We now turn to a single-population crowd modeling problem, namely a build-
ing evacuation. This kind of problem has been considered in several studies on MFG (see
e.g. Achdou and Laurière (2015) and Achdou and Lasry (2019) for a single room and Djehiche,
Tcheukam, and Tembine (2017) for a multilevel building). The building consists of 20 floors,
each of dimension 200× 200. At each floor, two staircases are located at two opposite corners,
such as the crowd has to cross the whole floor to take the next staircase. Each agent can remain
in place, move in the 4 directions (up, down, right, left) as well as go up or down when on
a staircase location. The initial distribution is uniform over all the floors. Each agent of the
crowd wants to go downstairs as quickly as possible - as it gets a reward of 10 at the bottom
floor - while favoring social distancing:

r(x, a, µ) = −η log(µ(x)) + 10× 1floor=0

Figure 5.5 – Building environment.

100

5.4 Numerical Experiments

Numerical results. We compute this problem with a horizon of 10000, so |X | = 810. We take
η = 1. To ensure that the reward stays bounded, we clip the first part −η log(µ(x)) to −40. As
expected, we observe in Figure 5.2 that the agents go downstairs and do not concentrate on the
shortest path but rather spread mildly. OMD converges faster than both Fictitious Play and
damped Fictitious Play.

5.4.3 Crowd motion with randomly shifted point of interest

Environment. We consider a second crowdmodelingMFG, extending the Beach Bar problem
(Perrin, Perolat, et al., 2020) in two dimensions. The environment is a 2D torus of dimensions
1000 × 1000, with a point of interest initially located at the center of the square. After 200
timesteps, the point of interest changes location, moving randomly in the direction of one of
the corner. This process repeats itself 5 times. This random location change adds common
noise to the environment and increases exponentially the number of states. Considering
MFG with common noise can be encompassed in our previous study by simply increasing
the state space with the common noise and adding time to the reward and the transition
kernel. For every random movement, four possible directions are possible, making the total
number of states |X | = 2× 108 ×

∑4
k=0 4k = 2.73× 1011 states. The reward is: r(xn, an, µn) =

C × (1− ∥bar−(i,j)∥1
2×Nside

)− log(µn(xn)).

Numerical results. We set C = 10. We observe in Figure 5.3 that the population is organizing
itself with respect to the point of interest and follows it closely as it randomly moves within
the dedicated square region. In the common noise setting, we get more than a trillion states,
making it hard for Fictitious Play to scale. More plots with a smaller state space are available in
Section C.8 for a comparison of OMD and Fictitious Play.

5.4.4 Multi-population chasing

Environment. We finally look at MP-MFGs, where the populations are chasing each other in
a cyclic manner. For the sake of clarity, we explain the reward structure with 3 populations,
but more populations are considered in the experiments. With three populations, the game
closely relates to the well known Hens-Foxes-Snakes outdoor game for kids. Hens are trying
to catch snakes, while snakes are chasing foxes, who are willing to eat hens. It can also be
interpreted as a control version of the spatially extended Rock-Paper-Scissors, where patterns
of travelling waves appear under certain conditions (Postlethwaite and Rucklidge, 2017). The
interplay between nontransitive interactions and biodiversity has been the subject of extensive,
mostly experimental, research showing that the setting details critically affect the emergent

101

Online Mirror Descent

behavior (Szolnoki, Oliveira, and Bazeia, 2020). To ensure r̄i,j = −r̄j,i we implement MP-MFGs
with the reward structure defined in Figure 5.6 (ex. with 3 populations).

R P S
R 0 -1 1
P 1 0 -1
S -1 1 0

Figure 5.6 – r̄i,j for three-population.

The reward of population i is monotone (cf. Section C.8.4) and follows the definition (5.3):

ri(x, a, µ1, . . . , µN) = − log(µi(x)) +
∑
j ̸=i

µj(x)r̄i,j(x)

.
The distributions are initialized either randomly or in different corners. The number of

agents of each population is fixed, but the reward encourages the agent to chase the population
that it dominates. For example, if an agent is Rock, the second term of the reward is proportional
to the amount µS of Scissors agents where the Rock agent is located, and inversely proportional
to the proportion µP of Paper agents, making the Rock agent to flee from places populated by
Paper agents.

Numerical results. We present a four-population example, each is initially located at a corner
of the environment. We observe that the populations are chasing each other in a cyclic fashion.
Figure 5.4 highlights that OMD algorithm outperforms Fictitious Play in terms of exploitability
minimization (full comparison with different values of α in Section C.8.4). It demonstrates the
robustness of the OMD algorithm within the different topologies considered. Topologies of the
environment are a torus, a basic square or the “donut” topology (an environment where the
agent gets a negative reward if it goes inside a large zone at the center of the square).

5.5 Conclusion of the Chapter

We proposed Online Mirror Descent for MP-MFGs and proved that, under appropriate mono-
tonicity assumptions, OMD converges to a NE. Moreover, we considered multiple experimental
benchmarks, some with hundreds of billions states, and have extensively compared OMD to
Fictitious Play. OMD scales empirically remarkably well, and consistently converges signifi-
cantly faster than Fictitious Play. An interesting direction of future work would be to study the
rate of convergence of OMD. Fictitious Play benefits from a O(1/t) rate of convergence (see
Section C.3) but the corresponding line of argument does not extend to OMD. Empirically,

102

5.5 Conclusion of the Chapter

we envision to extend this approach to a model-free setting with function approximation and
address even larger problems.

103

Conclusion of Part I and II

To this point, we have introduced the different settings that the reader may encounter in
the literature (Chapter 2) and explain how to successfully combine Mean Field Games with
Reinforcement Learning (Chapter 3). We have zoomed in two algorithms, Fictitious Play
(Chapter 4) and Online Mirror Descent (Chapter 5), and proved that they both converge to
a Nash equilibrium under the monotonicity condition. Thus, we have brought answers to
the first question, i.e. How to design algorithms to find Nash equilibria in Mean Field Games? We
also demonstrated through a wide variety of numerical examples than Mean Field Games
can scale multi-agent games up to an infinite number of agents, answering positively to the
title of the thesis “Scaling up Multi-agent Reinforcement Learning with Mean Field Games”.
What about the “Vice-versa”? Although we have not yet tackled the resolution with model-free
methods (except through the use of Q-learning in Chapter 4), our methods can tackle complex
domains, with any type of conditions at borders. In this sense, they are thus already more
applicable to real-world problems than the ones solving forward-backward systems. However,
as our methods still require to know the full model, i.e. transition dynamics and reward, and
scale linearly with the size of the state and action spaces, they remain limited to relatively
small domains, except when we distribute the code and have access to a gigantic amount of
computational power as in Chapter 5.

Thus, the third part is dedicated to the last question, How to adapt these algorithms to a
model-free setting, using deep reinforcement learning? In particular, we will study how Deep
Reinforcement Learning can be efficiently combined to Fictitious Play in the flocking example
(Chapter 6). However, we restrict ourselves to the γ-stationary setting and our resulting policy
is only applicable to the initial distribution considered during training. This is why we then
question one of the basic hypothesis of MFGs, namely that agents are always starting from
the same distribution, and propose a new approach that allows policies to both generalize to
many initial distributions and react to the current distribution of agents (Chapter 7). However,
we were still bound to use Fictitious Play, which has proven quite slow compared to Online
Mirror Descent. Thus, lastly, we propose two deep RL adaptations of Fictitious Play and Online
Mirror Descent that are both scalable and we demonstrate their applicability in a wide variety

105

Online Mirror Descent

of problems, all implemented in the OpenSpiel library. We find that in line with Chapter 5, the
deep version of OMD surpasses Fictitious Play.

106

Part III

Deep Reinforcement Learning for
Mean Field Games

Chapter 6

Flocking

We start this part with a focus on the application of flocking, that we address in a total
model-free way. This problem is particularly challenging as it has many continuous dimensions,
both in the state and action spaces, making it impossible to track the exact distribution of agents
with dynamic programming as we did before. We present a model-free method enabling a large
number of agents to learn how to flock, which is a natural behavior observed in large populations
of animals. We phrase this problem as a Mean Field Game, where each individual chooses its
acceleration depending on the population behavior. Combining Deep Reinforcement Learning
and Normalizing Flow, we obtain a tractable solution requiring only very weak assumptions.
Our algorithm finds a Nash Equilibrium and the agents adapt their velocity to match the
neighboring flock’s average one. We use Fictitious Play and alternate: (1) computing an
approximate best response with Deep RL, and (2) estimating the next population distribution
with NF. We show numerically that our algorithm learn multi-group or high-dimensional
flocking with obstacles. 1

Contents
6.1 Motivation . 110

6.2 The Model of Flocking . 111

6.3 Our Approach . 112

6.4 Experiments . 116

6.5 Conclusion of the Chapter . 119

1This chapter is based on a preprint (Perrin, Laurière, Pérolat, Geist, et al., 2021) presented at the AAMAS 2022
conference.

109

Flocking

6.1 Motivation

The term flocking describes the behavior of large populations of birds that fly in compact groups
with similar velocities, often exhibiting elegant motion patterns in the sky. Such behavior (e.g.
herding, schooling, swarming), is pervasive in the animal realm, from fish to birds, bees or
ants. This intriguing property has been widely studied in the scientific literature (Shaw, 1975;
Partridge, 1982; Okubo, 1986; Reynolds, 1987; Toner and Tu, 1998; Olfati-Saber, 2006) and its
modeling finds applications in psychology, (e.g. to understand animal behaviors), animation,
(e.g. to simulate natural crowdmotions), social science, (e.g. for consensus formation) or swarm
robotics. One of the most popular approaches to model flocking was proposed by Cucker and
Smale (2007) and allows predicting the evolution of each agent’s velocity from the speeds of
its neighbors.

To go beyondpure description of population behaviours and emphasize on the decentralized
aspect of the underlying decision making process, this model has been revisited to integrate an
optimal control perspective (Caponigro et al., 2013; Bailo et al., 2018). Under this point of view,
each agent controls its velocity and hence its position by dynamically adapting its acceleration
so as to maximize a reward that depends on the others’ behavior. An important question is a
proper understanding of the nature of the equilibrium reached by the population of agents,
emphasizing how a consensus can be reached in a group without centralized decisions. Such
question is often studied using the notion of Nash equilibrium and becomes extremely complex
when the number of agents grows.

A way to approximate Nash equilibria in large games is to study the limit case of an
continuum of identical agents, in which the local effect of each agent becomes negligible. This
is the basis of the Mean Field Games (MFGs) paradigm introduced by Lasry and Lions (2007).
However, finding an equilibrium in MFGs is computationally intractable when the state space
exceeds a few dimensions. In traditional flocking models, each agent’s state is described by a
position and a velocity, while the control is the acceleration. In terms of computational cost, this
typically rules out state-of-the-art numerical techniques for MFGs based on finite difference
schemes for partial differential equations (PDEs) (Achdou and Capuzzo-Dolcetta, 2010). In
addition, PDEs are in general hard to solve when the geometry is complex and require full
knowledge of the model.

For these reasons, Reinforcement Learning (RL) to learn control strategies for MFGs has
recently gained in popularity (Guo, A. Hu, et al., 2019; Elie, Perolat, et al., 2020; Perrin, Perolat,
et al., 2020). Combined with deep neural nets, RL has been used successfully to tackle problems
which are too complex to be solved by exact methods Silver, T. Hubert, et al., 2018 or to address
learning in multi-agent systems (Lanctot, Zambaldi, et al., 2017). Particularly relevant in
our context, are works providing techniques to compute an optimal policy (Haarnoja et al.,

110

6.2 The Model of Flocking

2018; Lillicrap et al., 2016) and methods to approximate probability distributions in high
dimension (Rezende and Mohamed, 2015; Kobyzev, Prince, and Brubaker, 2020).

Contributions. Our main contributions are: (1) we cast the flocking problem into a MFG
and propose variations which allow multi-group flocking as well as flocking in high dimension
with complex topologies, (2) we introduce the Flock’n RL algorithm that builds upon the
Fictitious Play paradigm and involves deep neural networks and RL to solve the model-free
flocking MFG, and (3) we illustrate our approach on several numerical examples and evaluate
the solution with approximate performance matrix and exploitability.

Related Work Most work using flocking models focus on the dynamical aspect without
optimization. To the best of our knowledge, the only existing numerical approach to tackle a
MFGwith flocking effects is in Carmona andDelarue (2018b, Section 4.7.3), but it is restricted to
a very special and simpler type of rewards. The idea of using FP in MFGs has been introduced
by Cardaliaguet and Hadikhanloo (2017), assuming the agent can compute perfectly the best
response. Elie, Perolat, et al. (2020) and Perrin, Perolat, et al. (2020) combined FP with RL
methods. However, the numerical techniques used therein do not scale to higher dimensions
as needed for flocking MFGs.

6.2 The Model of Flocking

To model a flocking behaviour, we consider the following system of N agents derived in
a discrete time setting by Nourian, Caines, and R. P. Malhamé (2011) from Cucker-Smale
flocking modeling. Each agent i has a position and a velocity, each in dimension d and denoted
respectively by xi and vi. We assume that it can control its velocity by choosing the acceleration,
denoted by ui. The dynamics of agent i ∈ {1, . . . , N} is:

xi
n+1 = xi

n + vi
n∆n, vi

n+1 = vi
n + ui

n∆n+ εi
n+1,

where ∆n is the time step and εi
n is a random variable playing the role of a random distur-

bance. We assume that each agent is optimizing for a flocking criterion f that is underlying to
the flocking behaviour. For agent i at time t, f is of the form:

f i
n = f(xi

n, v
i
n, u

i
n, µ

N
n), (6.1)

where the interactions with other agents are only through the empirical distribution of states
and velocities denoted by: µN

n = 1
N

∑N
j=1 δ(xj

n,vj
n). Thismodel is inspired byMFG setting derived

111

Flocking

from Cucker-Smale type flocking (Nourian, Caines, and R. P. Malhamé, 2011), in a discrete
time setting.

We focus on criteria incorporating a term of the form:

fflock
β (x, v, u, µ) = -

∥∥∥∥∫
R2d

(v − v′)
(1 + ∥x − x′∥2)β

dµ(x′, v′)
∥∥∥∥2

, (6.2)

where β ≥ 0 is a parameter and (x, v, u, µ) ∈ Rd×Rd×Rd×∆Rd×Rd , with ∆E denoting the set
of probability measures on a set E. This criterion incentivises agents to align their velocities,
especially if they are close to each other. Note that β parameterizes the level of interactions
between agents and strongly impacts the flocking behavior: if β = 0, each agent tries to align
its velocity with all the other agents of the population irrespective of their positions, whereas
the larger β > 0, the more importance is given to its closest neighbors (in terms of position).

In the N -agent case, for agent i, it becomes:

fflock,i
β,n = −

∥∥∥∥∥∥ 1
N

N∑
j=1

(vi
n − vj

n)
(1 + ∥xi

n − x
j
n∥2)β

∥∥∥∥∥∥
2

. (6.3)

The actual criterion will typically include other terms, for instance to discourage agents from
using a very large acceleration, or to encourage them to be close to a specific position. We
provide such examples in Section 6.4.

Since the agents may be considered as selfish (they try to maximize their own criterion)
and may have conflicting goals (e.g. different desired velocities), we consider Nash equi-
librium as a notion of solution to this problem and the individual criterion can be seen
as the payoff for each agent. The total payoff of agent i given the other agents’ strategies
u−i = (u1, . . . , ui−1, ui+1, . . . , uN) is: F i

u−i(ui) = Exi
n,vi

n

[∑
t≥0 γ

tf i
n

]
, with f i

n defined Equa-
tion (6.1). In this context, a Nash equilibrium is a strategy profile (û1, û2, . . . , ûN) such that
there’s no profitable unilateral deviation, i.e., for every i = 1, . . . , N , for every control ui,
F i

û−i(ûi) ≥ F i
û−i(ui).

6.3 Our Approach

In this section, we put together the pieces of the puzzle to numerically solve the flocking model.
Based on a mean-field approximation, we first recast the flocking model as an MFG with
decentralized decision making, for which we propose a numerical method relying on RL and
deep neural networks.

112

6.3 Our Approach

6.3.1 Flocking as an MFG

Mean field limit. We go back to the model of flocking introduced in Section 6.2. When
the number of agents grows to infinity, the empirical distribution µN

n is expected to converge
towards the law µn of (xn, vn), which represents the position and velocity of an infinitesimal
agent and have dynamics:

xn+1 = xn + vn∆n, vn+1 = vn + un∆n+ εn+1.

This problem can be viewed as an instance of the MFG framework discussed before, by taking
the state to be the position-velocity pair and the action to be the acceleration, i.e., the dimensions
are ℓ = 2d, k = d, and ξ = (x, v), α = u. To accommodate for the degeneracy of the noise as

only the velocities are disturbed, we take σ =
(

0d 0d

0d 1d

)
where 1d is the d-dimensional identity

matrix.
The counterpart of the notion of N -agent Nash equilibrium is an MFG equilibrium. We

focus here on equilibria which are stationary in time, in the γ-stationary setting described in
Section 2.2.5. In other words, the goal is to find a pair (µ̂, û) where µ̂ ∈ ∆Rℓ×Rℓ is a position-
velocity distribution and û : Rℓ × Rℓ 7→ Rℓ is a feedback function to determine the acceleration
given the position and velocity, such that: (1) µ̂ is an invariant position-velocity distribution if
the whole population uses the acceleration given by û, and (2) ûmaximizes the rewards when
the agent’s initial position-velocity distribution is µ̂ and the population distribution is µ̂ at every
time step. In mathematical terms, û maximizes Jµ̂(u) = Exn,vn,un

[∑
n≥0 γ

nφ(xn, vn, un, µ̂)
]
,

where (xn, vn)n≥0 is the trajectory of an infinitesimal agent who starts with distribution µ̂ at
time n = 0 and is controlled by the acceleration (un)n≥0. As the payoff function φ we use fflock

β

from Equation (6.2). Moreover, the consistency condition rewrites as: µ̂ is the γ-stationary
distribution of (xn, vn)n≥0 if controlled by (ûn)n≥0.

Theoretical analysis. The analysis of MFG with flocking effects is challenging due to the
unusual structure of the dynamics and the payoff, which encourages gathering of the population.
This is running counter to the classical Lasry-Lions monotonicity condition (Lasry and Lions,
2007), which typically penalizes the agents for being too close to each other. However, existence
and uniqueness have been proved in some cases. If β = 0, every agent has the same influence
over the representative agent and it is possible to show that the problem reduces to a Linear-
Quadratic setting. Th 2 in Nourian, Caines, and R. P. Malhamé (2011) shows that a mean-
consensus in velocity is reached asymptotically with individual asymptotic variance σ2

2 . If
β > 0, Nourian, Caines, and R. P. Malhamé (2011) shows that if the MF problem admits a
unique solution, then there exists an εN Nash equilibrium for the Na agents problem and

lim
N→+∞

εN = 0. Existence has also been proved when β > 0 in Carmona and Delarue (2018b,

113

Flocking

Algorithm 6.1: Flock’n RL
1 input : MFG = {(x, v), fflock

β ,m0}; # of iterationsK
2 Define µ̄0 = m0 for k = 1, . . . ,K do
3 1. Set best response πk = arg max

π
Jµ̄k−1(π) with SAC and let π̄k be the average of

(π0, . . . , πk)
4 2. Using a Normalizing Flow, compute µk = γ-stationary distribution induced by πk

5 3. Using a Normalizing Flow and samples from (m0, µ1, . . . , µk−1), estimate µ̄k

6 return π̄K , µ̄K

Section 4.7.3), with a slight modification of the payoff, namely considering, with φ a bounded
function, rn = −φ

(∥∥∥ ∫R2d
(vn−v′)

(1+∥xn−x′∥2)β µn(dx′, dv′)
∥∥∥2)

.

6.3.2 The Flock’n RL Algorithm

We propose Flock’n RL, a deep RL version of the Fictitious Play algorithm for MFGs (Elie,
Perolat, et al., 2020) adapted to flocking. We consider a γ-discounted setting with continuous
state and action spaces andwe adapt Algorithm 6.1 from its original tabular formulation (Perrin,
Perolat, et al., 2020). It alternates 3 steps: (1) estimation of a best response (using DRL) against
themean distribution µ̄k−1, which is fixed during the process, (2) estimation (withNormalizing
Flows (Kobyzev, Prince, and Brubaker, 2020)) of the new induced distribution from trajectories
generated by the previous policy, and (3) update of the mean distribution µ̄k.

Computing the Best Response with SAC

The first step in the loop of Algorithm 6.1 is the computation of a best response against µ̄k.
In fact, the problem boils down to solving an MDP in which µ̄k enters as a parameter. We
take the state and action spaces to be respectively X = R2d (for position-velocity pairs) and
A = Rd (for accelerations). Letting s = (x, v) and a = u, the reward is: (x, v, u) = (s, a) 7→
r(s, a) = f(x, v, u, µ̄k), which depends on the given distribution µ̄k. Remember that r is the
reward function of the MDP while f is the optimization criterion in the flocking model.

As we set ourselves in continuous state and action spaces and in possibly high dimensions,
we need an algorithm that scales. We choose to use Soft Actor Critic (SAC) (Haarnoja et al.,
2018), an off-policy actor-critic deep RL algorithm using entropy regularization. SAC is trained
to maximize a trade-off between expected return and entropy, which allows to keep enough
exploration during the training. It is designed to work on continuous action spaces, which
makes it suited for acceleration controlled problems such as flocking.

114

6.3 Our Approach

The best response is computed against µ̄k, the fixed average distribution at step k of Flock’n
RL. SAC maximizes the reward which is a variant of fflock,i

β,n from Equation (6.3). It needs
samples from µ̄k in order to compute the positions and velocities of the fixed population. Note
that, in order to measure more easily the progress during the learning at step j, we sample N
agents from µ̄k at the beginning of step 1 (i.e. we do not sample new agents from µ̄k every time
we need to compute the reward). During the learning, at the beginning of each episode, we
sample a starting state s0 ∼ µ̄k.

In the experiments, wewill not need π̄k but only the associated reward (see the exploitability
metric in Section 6.4). To this end, it is enough to keep in memory the past policies (π0, . . . , π

k)
and simply average the induced rewards.

Normalizing Flow for Distribution Embedding

We choose to represent the different distributions using a generative model because the con-
tinuous state space prevents us from using a tabular representation. Furthermore, even if we
could choose to discretize the state space, we would need a huge amount of data points to
estimate the distribution using methods such as kernel density estimators. In dimension 6
(which is the dimension of our state space with 3-dimensional positions and velocities), such
methods already suffer from the curse of dimensionality.

Thus, we choose to estimate the second step of Algorithm 6.1 using a Normalizing Flow
(NF) (Rezende and Mohamed, 2015; Kobyzev, Prince, and Brubaker, 2020), which is a type
of generative model, different from Generative Adversarial Networks (GAN) (Goodfellow,
Pouget-Abadie, et al., 2014) or Variational Autoencoders (VAE). (Kingma and Welling, 2014).
A flow-based generative model is constructed by a sequence of invertible transformations
and allows efficient sampling and distribution approximation. Unlike GANs and VAEs, the
model explicitly learns the data distribution and therefore the loss function simply identifies
to the negative log-likelihood. An NF transforms a simple distribution (e.g. Gaussian) into
a complex one by applying a sequence of invertible transformations. In particular, a single
transformation function f of noise z can be written as x = f(z) where z ∼ h(z). Here, h(z) is
the noise distribution and will often be in practice a normal distribution.

Using the change of variable theorem, the probability density of x under the flow can be
written as: p(x) = h(f−1(x))

∣∣∣den (∂f−1

∂x

)∣∣∣ .We thus obtain the probability distribution of the
final target variable. In practice, the transformations f and f−1 can be approximated by neural
networks. Thus, given a dataset of observations (in our case rollouts from the current best
response), the flow is trained by maximizing the total log likelihood∑n log p(x(n)).

115

Flocking

Computation of µ̄k

Due to the above discussion on the difficulty to represent the distribution in continuous space
and high dimension, the third step (Line 5 of Algorithm 6.1) can not be implemented easily.
We represent every µk as a generative model, so we can not “average” the normalizing flows
corresponding to (µi)i=1,...,k in a straightforward way but we can sample data points x ∼ µi for
each i = 1, . . . , k. To have access to µ̄k, we keep in memory every model µk, k ∈ {1, . . . ,K} and,
in order to sample points according to µ̄k for a fixed k, we sample points from µi, i ∈ {1, . . . , k},
with probability 1/k. These points are then used to learn the distribution µ̄k with an NF, as it is
needed both for the reward and to sample the starting state of an agent during the process of
learning a best response policy.

6.4 Experiments

Environment. We implemented the environment as a custom OpenAI gym environment
(Brockman et al., 2016) to benefit from the powerful gym framework and use the algorithms
available in stable baselines (Hill et al., 2018). We define a state s ∈ S as s = (x, v) where x and
v are respectively the vectors of positions and velocities. Each coordinate xi of the position can
take any continuous value in the d-dimensional box xi ∈ [−100,+100], while the velocities are
also continuous and clipped vi ∈ [−1, 1]. The state space for the positions is a torus, meaning
that an agent reaching the box limit reappears at the other side of the box. We chose this setting
to allow the agents to perfectly align their velocities (except for the effect of the noise), as we
look for a stationary solution.

At the beginning of each iteration k of Fictitious Play, we initialize a new gym environment
with the current mean distribution µ̄k, in order to compute the best response.

Model - Normalizing Flows. To model distributions, we use Neural Spline Flows (NSF)
with a coupling layer (Durkan et al., 2019). More details about how coupling layers and NSF
work can be found in Section D.2.

Model - SAC. To compute the best response at each Flock’n RL iteration, we use Soft Actor
Critic (SAC) (Haarnoja et al., 2018) (but other Policy Gradient algorithms would work). SAC is
an off-policy algorithm which, as mentioned above, uses the key idea of regularization: instead
of considering the objective to simply be the sum of rewards, an entropy term is added to
encourage sufficient randomization of the policy and thus address the exploration-exploitation
trade-off. To be specific, in our setting, given a population distribution µ, the objective is to

116

6.4 Experiments

maximize: Jµ(π) = E(sn,un)
[∑+∞

n=0 γ
nr(xn, vn, un, µn) + δH(π(·|sn))

]
, where H denotes the

entropy and δ ≥ 0 is a weight.
To implement the optimization, the SAC algorithm follows the philosophy of actor-critic by

training parameterized Q-function and policy. To help convergence, the authors of SAC also
train a parameterized value function V . In practice, the three functions are often approximated
by neural networks.

In comparison to other successful methods such as Trust Region Policy Optimization
(TRPO) (Schulman et al., 2015) or Asynchronous Actor-Critic Agents (A3C), SAC is expected
to be more efficient in terms of number of samples required to learn the policy thanks to the
use of a replay buffer in the spirit of methods such as Deep Deterministic Policy Gradient
(DDPG) (Lillicrap et al., 2016).

Metrics. An issue with studying our flocking model is the absence of a gold standard.
Especially, we can not compute the exact exploitability (Perrin, Perolat, et al., 2020) of a policy
against a given distribution since we can not compute the exact best response. The exploitability
measures how much an agent can gain by replacing its policy π with a best response π′, when
the rest of the population plays π: ϕ(π) := max

π′
J(m0, π

′, µπ) − J(m0, π, µ
π). If ϕ(π̄k) → 0 as

the number of iterations k of the algorithm increases, FP approaches a Nash equilibrium. To
cope with these issues, we introduce the following ways to measure progress of the algorithm:

• Performance matrix: we build the matrixM of performance of learned policies versus
estimated distributions. The entryMi,j on the i-th row and the j-th column is the total
γ-discounted sum of rewards:Mi,j = E

[∑NT
n=0 γ

nrn,i | s0 ∼ µ̄i−1, un ∼ πk(.|sn)
]
,where

rn,i = r(sn, un, µ̄
i−1), obtained with πk against µ̄i−1. The diagonal termMj,j corresponds

to the value of the best response computed at iteration j.

• Approximate exploitability: We do not have access to the exact best response due to the
model-free approach and the continuous spaces. However, we can approximate the first
term of ϕ(π̄) directly in the Flock’n RL algorithmwith SAC. The second term, J(m0, π̄, µ

π̄),
can be approximated by replacing π̄ with the average over past policies, i.e., the policy
sampled uniformly from the set {π0, . . . , π

k}. At step j, the approximate exploitability is
ej =Mj,j − 1

j−1
∑j−1

k=1Mj,k. To smoothen the exploitability, we take the best response
over the last 5 policies and use a moving average over 10 points. Please note that only
relative values are important as it depends on the scale of the reward.

A 4-Dimensional Example. We illustrate in a four dimensional setting (i.e. two-dimensional
positions and velocities) how the agents learn to adopt similar velocities by controlling their
acceleration. We focus on the role of β in the flocking effect. We consider noise εi

n ∼ N (0,∆n)
and the following reward: ri

n = fflock,i
β,n −∥ui

n∥22 + ∥vi
n∥∞−min{∥xi

2,n± 50∥},where xi
2,n stands

117

Flocking

(a) Initial positions and velocities (b) At convergence

0 20 40 60 80 100
Approximate Best Response

0

20

40

60

80

100

M
ea

n
di

st
rib

ut
io

n

0

20

40

60

80

(c) Performance matrix

0 10 20 30 40 50 60 70 80

2

4

6

8

10

12

(d) Approximate exploitability

Figure 6.1 – Multi-group flocking with noise and β = 100.

for the second coordinate of the i-th agent’s position at time t. The last term attracts the agents’
positions towards one of two lines corresponding to the second coordinate of x being either−50
or +50. We added a term regarding the norm of the velocity to prevent agents from stopping.
Here we take ∥vi

n∥∞ = max{|vi
1,n|, |vi

2,n|}. Hence, a possible equilibrium is with two groups
of agents, one for each line. When β = 0, the term fflock,i

β,n encourages agent i to have the same
velocity vector as the rest of the whole population. At equilibrium, the agents in the two groups
should thus move in the same direction (to the left or to the right, in order to stay on the two
lines of x’s). On the other hand, when β > 0 is large enough (e.g. β = 100), agent i gives more
importance to its neighbors when choosing its control and it tries to have a velocity similar to
the agents that are position-wise close to. This allows the emergence of two groups moving in
different directions: one group moves towards the left (overall negative velocity) and the other
group moves towards the right (overall positive velocity).

This is confirmed by Figure 6.1. In the experiment, we set the initial velocities perpendicular
to the desired ones to illustrate the robustness of the algorithm. We observe that the approximate
exploitability globally decreases. In the case β = 0, we experimentally verified that there is
always a global consensus, i.e., only one line or two lines but moving in the same direction.

118

6.5 Conclusion of the Chapter

(a) Initial positions and velocities
(b) At convergence

0 20 40 60 80
Approximate Best Response

0

20

40

60

80

M
ea

n
di

st
rib

ut
io

n

300

250

200

150

100

50

0

50

(c) Performance matrix

0 20 40 60 80

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(d) Approximate exploitability

Figure 6.2 – Flocking with noise and many obstacles.

Scaling to 6 Dimensions and non-smooth topology. We now present an example with ar-
bitrary obstacles (and thus non-smooth topology) in dimension 6 (position and velocity in
dimension 3) which would be very hard to address with classical numerical methods. In this
setting, we have multiple columns that the agents are trying to avoid. The reward has the
following form: ri

n = fflock,i
β,n − ∥ui

n∥22 + ∥vi
n∥∞ − min{∥xi

2,n∥} − c ∗ 1obs. If an agent hits an
obstacle, it gets a negative reward and bounces on it like a snooker ball. After a few iterations,
the agents finally find their way through the obstacles. This situation can model birds trying to
fly in a city with tall buildings. In our experiments, we noticed that different random seeds
lead to different solutions. This is not surprising as there are a lot of paths that the agents
can take to avoid the obstacles and still maximizing the reward function. The exploitability
decreases quicker than in the previous experiment. We believe that this is because agents find
a way through the obstacles in the first iterations.

6.5 Conclusion of the Chapter

In this work we introduced Flock’n RL, a new numerical approach which allows solving
MFGs with flocking effects where the agents reach a consensus in a decentralized fashion.
Flock’n RL combines Fictitious Play with deep neural networks and reinforcement learning

119

Flocking

techniques (normalizing flows and soft actor-critic). We illustrated the method on challenging
examples, for which no solution was previously known. In the absence of existing benchmark,
we demonstrated the success of the method using a new kind of approximate exploitability.
Thanks to the efficient representation of the distribution and to the model-free computation
of a best response, the techniques developed here could be used to solve other acceleration
controlled MFGs (Achdou, Mannucci, et al., 2020) or, more generally, other high-dimensional
MFGs. Last, the flexibility of RL, which does not require a perfect knowledge of themodel, allow
us to tackleMFGswith complex topologies (such as boundary conditions or obstacles), which is
a difficult problem for traditional methods based on partial differential equations. However, we
restricted ourselves to the γ-stationary setting, which as we have seen has limited applicability.
Furthermore, our resulting policy is only applicable to the initial distribution considered during
training, which is counter-intuitive from the reinforcement learning perspective.

120

Chapter 7

Generalization in Mean Field Games

In this chapter, we make a first step towards generalization in Mean Field Games. Mean
Field Games (MFGs) can potentially scale multi-agent systems to extremely large populations
of agents. Yet, most of the literature assumes a single initial distribution for the agents, which
limits the practical applications of MFGs. Machine Learning has the potential to solve a wider
diversity ofMFG problems thanks to generalizations capacities. Thus, we study how to leverage
these generalization properties to learn policies enabling a typical agent to behave optimally
against any population distribution. In reference to the Master equation in MFGs, we coin the
term “Master policies” to describe them and we prove that a single Master policy provides a
Nash equilibrium, whatever the initial distribution. We propose a method to learn such Master
policies. Our approach relies on three ingredients: adding the current population distribution
as part of the observation, approximating Master policies with neural networks, and training
via Reinforcement Learning and Fictitious Play. We illustrate on numerical examples not only
the efficiency of the learned Master policy but also its generalization capabilities beyond the
distributions used for training. This chapter directly extends the notion of population-dependent
policies discussed in section 2.2.8. 1

7.1 Motivation

As in many multi-player games, solving an MFG boils down to finding a Nash equilibrium.
Intuitively, it corresponds to a situation where no player can increase their reward (or decrease
their cost) by changing their strategy, given that other players keep their current behavior.
MFGs are classically describedwith a forward-backward system of partial differential equations

1This chapter is based on a preprint (Perrin, Laurière, Pérolat, Élie, et al., 2021) presented at the AAAI 2022
conference.

121

Generalization in Mean Field Games

(PDEs) or stochastic differential equations (SDEs) and can only be solved analytically in some
specific cases. When an analytical solution is not available, numerical methods such as finite
differences can be called to solve the PDE system. However, these techniques do not scale well
with the dimensions of the state and action spaces. Another issue with PDE methods is their
sensitivity to initial conditions. Especially, the policy obtained is only valid for a single initial
distributionm0 for the population over the state space. This is a strong limitation for practical
applications. For example, in an evacuation or traffic-flow scenario, the solution found by a
PDE solver could potentially lead to an unforeseen congestion if the agents are not initially
distributed as the model expected. This could have dramatic consequences. On the other hand,
solving for every possible initial distribution is of course infeasible. Following the traditional
trend in the literature, even solutions to MFGs that use most recent Machine Learning methods
consider that the initial distribution is fixed and thus compute policies that are agnostic to
the current population. A sensible idea to alleviate the sensitivity issue is to incorporate the
population as part of the observation for the representative agent, such that it can behave
optimally against the population, and not only with respect to its current state. Yet, using such
a modification of the observation cannot be done seamlessly as the uniqueness of the initial
distribution is a core assumption of existing methods, including very recent ones based on
Machine Learning.

Here we do a first crucial step in this direction using Deep Reinforcement Learning (DRL),
which sounds particularly well fitted to overcome the aforementioned difficulty. Our core con-
tribution is to propose the first DRL algorithm that calculates an optimal policy independently
of the initial population distribution.

Main contributions. First, we extend the basic framework of MFGs by introducing a class of
population-dependent policies enabling agents to react to any population distribution. Within this
class, we identify aMaster policy and establish its connection with standard population-agnostic
policies arising inMFGNash equilibria (Theorem 7.1). Second, we propose an algorithm, based
on Fictitious Play and DRL, to learn a Master policy. We analyze a continuous time version of
Fictitious Play and prove convergence at a linear rate (Theorem 7.2). Last, we provide empirical
evidence that not only this method learns the Master policy on a training set of distributions,
but that the learned policy generalizes to unseen distributions. Our approach is the first to tackle
this question in the literature on MFGs.

7.2 Background and Related Works

In this section, we introduce the key concepts needed to explain ourmain contributions. Wewill
use the same formalism than in the previous chapters but we write explicitly the dependency

122

7.2 Background and Related Works

in the initial distributionm0. This will be important for introducing the concept of population-
dependent policies and Master policies in the sequel.

Although there is no prior work tackling explicitly the question of generalization in MFG,
we review along the way several related studies.

7.2.1 Mean Field Games

In the usual MFG setup (Lasry and Lions, 2007; M. Huang, R. P. Malhamé, and Caines, 2006),
a stationary policy is a function π : X → ∆A and a non-stationary policy π is an infinite
sequence of stationary policies. Let Π and Π = ΠN be the sets of stationary and non-stationary
policies respectively. Unless otherwise specified, by policy we mean a non-stationary policy. A
mean-field (MF) state is a µ ∈ ∆X . It represents the state of the population at one time step.
An MF flow µ is an infinite sequence of MF states. We denote byM = ∆X and M =MN the
sets of MF states and MF flows. For µ ∈M, π ∈ Π, let

ψ(µ, π) : x 7→
∑

x′∈X
p(x|x′, π(x′), µ)µ(x′)

denote the next MF state. The MF flow starting fromm0 and controlled by π ∈ Π is denoted
by Φ(m0,π) ∈M:

Φ(m0,π)0 = m0, Φ(m0,π)n+1 = ψ(Φ(m0,π)n,πn), n ≥ 0.

Facing such a population behavior, an infinitesimal agent seeks to solve the following
Markov Decision Process (MDP). Given an initialm0 and a flow µ, maximize:

π 7→ J(m0,π; µ) = E
[+∞∑

n=0
γnr(xn, an,µn)

]
,

subject to: x0 ∼ m0, xn+1 ∼ p(.|xn, an,µn), an ∼ πn(.|xn). Note that, at time n, the reward
and transition depend on the current MF state µn. So this MDP is non-stationary but since
the MF flow µ is fixed and given, it is an MDP in the classical sense. In an MFG, we look for
an equilibrium situation, in which the population follows a policy from which no individual
player is interested in deviating.

Definition 6 (MFG Nash equilibrium). Given m0 ∈ M, (π̂m0 , µ̂m0) ∈ Π ×M is an MFG
Nash equilibrium (MFG-NE) consistent with m0 if: (1) π̂m0 maximizes J(m0, ·; µ̂m0), and (2)
µ̂m0 = Φ(m0, π̂

m0).

123

Generalization in Mean Field Games

Being an MFG-NE amounts to say that the exploitability ϕ(m0, π̂
m0) is 0, where the ex-

ploitability of a policy π ∈ Π given the initial MF statem0 is defined as:

ϕ(m0,π) = max
π′

J(m0,π
′; Φ(m0,π))− J(m0,π; Φ(m0,π)).

It quantifies how much a representative player can be better off by deciding to play another
policy than π when the rest of the population uses π and the initial distribution is m0 for
both the player and the population. Similar notions are widely used in computational game
theory (Zinkevich et al., 2007; Lanctot, Waugh, et al., 2009).

In general, π̂m0 is not an MFG-NE policy consistent withm′
0 ̸= m0. Imagine for example a

game in which the agents need to spread uniformly throughout a one-dimensional domain
(see the experimental section). Intuitively, the movement of an agent at the center depends on
where the bulk of the population is. If m0 is concentrated on the left (resp. right) side, this
agent should move towards the right (resp. left). Hence the optimal policy depends on the
whole population distribution.

Equilibria in MFG are traditionally characterized by a forward-backward system of equa-
tions (Lasry and Lions, 2007; Carmona and Delarue, 2018b). Indeed, the value function of an
individual player facing an MF flow µ is:

Vn(x; µ) = sup
π∈Π

Ex,π

[+∞∑
n′=n

γn′−nr(xn′ , an′ ,µn′)
]
,

where xn = x and an′ ∼ πn′(·|xn′), n′ ≥ n. Dynamic programming yields:

Vn(x; µ) = sup
π∈Π

Ex,π

[
r(xn, an,µn) + γVn+1(x′; µ)

]
,

where xn = x, an ∼ π(·|x) and x′ ∼ p(·|x, a,µn). Taking the maximizer gives an optimal
policy for a player facing µ. To find an equilibrium policy, we replace µ by the equilibrium
MF flow µ̂: V̂n(·) = Vn(·; µ̂). But µ̂ is found by using the corresponding equilibrium policy.
This induces a coupling between the backward equation for the representative player and the
forward population dynamics.

The starting point of our Master policy approach is to notice that Vn(·; µ) depends on n and
µ only through (µn′)n′≥n hence Vn depends on n only through (µn′)n′≥n:

Vn(x; µ) = V (x; (µn′)n′≥n)

where, for µ ∈M, x ∈ X ,

V (x; µ) = sup
π∈Π

Ex,π

[
r(x, a,m0) + γV (x′; (µn)n≥1)

]
, (7.1)

124

7.2 Background and Related Works

where a ∼ π(·|x) and x′ ∼ p(·|x, a,m0).
From here, we will express the equilibrium policy π̂n as a stationary policy (independent

of n) which takes µ̂n as an extra input. Replacing n by µ̂n increases the input size but it opens
new possibilities in terms of generalization in MFGs.

7.2.2 Learning and Generalization in MFGs

For background on iterative methods for MFGs, we refer the reader to previous chapters. We
review here the other parts where learning can occur when solving MFGs with RL.

Reinforcement learning subroutine. For a given population distribution, to update the rep-
resentative player’s policy or value function, we can rely on RL techniques. For instance Guo,
A. Hu, et al. (2019) and Anahtarcı, Karıksız, and Saldi (2020a) rely on Q-learning to approx-
imate the Q-function in a tabular setting, Fu et al. (2019) study an actor-critic method in a
linear-quadratic setting, and Elie, Perolat, et al. (2020) and Perrin, Laurière, Pérolat, Geist, et al.
(2021) solve continuous spaces problems by relying respectively on deep deterministic policy
gradient (Lillicrap et al., 2016) or soft actor-critic (Haarnoja et al., 2018). Two time-scales
combined with policy gradient has been studied by J. Subramanian and Mahajan (2019) for
stationary MFGs. Policy iterations together with sequential decomposition has been proposed
by Mishra, Vasal, and Vishwanath (2020) while Guo, A. Hu, et al. (2020) proposes a method
relying on Trust Region Policy Optimization (TRPO, Schulman et al. (2015)).

Distribution embedding. Another layer of complexity in MFGs is to take into consideration
population distributions for large spaces or even continuous spaces. To compute MFG solutions
through a PDE approach, Al-Aradi et al. (2018) and Carmona and Laurière (2021) used deep
neural networks to approximate the population density in high dimension. In the context of
RL for MFGs, recently, Perrin, Laurière, Pérolat, Geist, et al. (2021) have used Normalizing
Flows (Rezende and Mohamed, 2015) to approximate probability measures over continuous
state space in complex environments.

So far, learning approaches for MFGs have considered only two aspects: optimization
algorithms (e.g., Fictitious Play or Online Mirror Descent), or model-free learning of a repre-
sentative player’s best response based on samples (e.g., Q-learning or actor-critic methods).
Here, we build upon the aforementioned notions and add to this picture another dimension
of learning: generalization over population distributions. We develop an approach to learn
the representative player’s best response as a function of any current population distribution
and not only the ones corresponding to a fixed MFG-NE. This is tightly connected with the
so-called Master equation in MFGs (Lions, 2012; Bensoussan, Frehse, and S. C. P. Yam, 2015;

125

Generalization in Mean Field Games

Cardaliaguet, Delarue, et al., 2019). Introduced in the continuous setting (continuous time,
state and action), this equation is a partial differential equation (PDE) which corresponds
to the limit of systems of Hamilton-Jacobi-Bellman PDEs characterizing Nash equilibria in
symmetric N -player games. In our discrete context, we introduce a notion of Master Bellman
equation and associated Master policy, which we then aim to compute with a new learning
algorithm based on Fictitious Play. To the best of our knowledge, the literature focuses on
Master equations on a finite horizon. Here, we consider infinite horizon discounted problems,
which allows us to look for stationary solutions.

7.3 Master Policies for MFGs

We introduce the notion ofMaster policy and connect it to standard population-agnostic policies
arising in MFG-NE.

Consider an MFG-NE (π̂m0 , µ̂m0) consistent with somem0. Let V̂ (·;m0) = V (·; µ̂m0), i.e.,

V̂ (x;m0) = sup
π∈Π

Eπ

[
r(x, a,m0) + γV (x′; (µ̂m0

n)n≥1)
]
,

where a ∼ π(·|x,m0) and x′ ∼ p(·|x, a,m0). By definition, π̂m0
0 is a maximizer in the sup above.

Moreover, in the right-hand side,

V (x′; (µ̂m0
n)n≥1) = V̂ (x′; µ̂m0

1), µ̂m0
1 = ψ(m0, π̂

m0
0).

By induction, the equilibrium can be characterized as:
π̂m0

n ∈ arg maxπ∈Π Eπ

[
r(x, a, µ̂m0

n) + γV̂ (x′; µ̂m0
n+1)

]
V̂ (x; µ̂m0

n) = Eπ̂
m0
n

[
r(x, a, µ̂m0

n) + γV̂ (x′; µ̂m0
n+1)

]
µ̂m0

n+1 = ψ(µ̂m0
n , π̂m0

n).

Note that µ̂m0
n+1 and π̂m0

n depend on each other (and also on m0), which creates a forward-
backward structure.

In the sequel, we will refer to this function V as theMaster value function. Computing the
value function (x, µ) 7→ V̂ (x;µ) would allow us to know the value of any individual state x
facing an MFG-NE starting from any MF state µ. However, it would not allow to easily find
the corresponding equilibrium policy, which still depends implicitly on the equilibrium MF
flow. For this reason, we introduce the notion of population-dependent policy. The set of
population-dependent policies π̃ : X ×∆X → ∆A is denoted by Π̃.

126

7.4 Algorithm

Definition 7. A population-dependent π̃∗ ∈ Π̃ is a Master policy if for everym0, (πm0,π̃∗
,µm0,π̃∗) is

an MFG-NE, where: µm0,π̃∗

0 = m0 and for n ≥ 0,
πm0,π̃∗

n (x) = π̃∗(x,µm0,π̃∗
n)

µm0,π̃∗

n+1 = ψ(µm0,π̃∗
n ,πm0,π̃∗

n).
(7.2)

A Master policy allows recovering the MFG-NE starting from any initial MF state. A core
question is the existence of such a policy, which we prove in Theorem 7.1 below. Hence, if
there is a unique Nash equilibrium MF flow (e.g., thanks to monotonicity), the MF flow µm0,π̃∗

obtained with the Master policy π̃∗(a|x,µm0,π̃∗
n) is the same as the one obtained with a best

response policy π̂m0
n (a|x) starting fromm0.

Theorem 7.1. Assume that, for allm0 ∈M, the MFG admits an equilibrium consistent withm0 and
that the equilibrium MF flow is unique. Then there exists a Master policy π̃∗.

Existence and uniqueness of the MFG-NE for a given m0 can be proved under a mild
monotonicity condition (Perrin, Perolat, et al., 2020). Theorem 7.1 is proved by checking, step
by step, that the MF flow generated by π̃∗ and the associated population-agnostic policy as
defined in (7.2) form a MFG-NE. The key idea is to use dynamic programming relying on the
Master value function V and the uniqueness of the associated equilibrium MF flow. We omit
the details for brevity.

7.4 Algorithm

We have demonstrated above that the Master policy is well-defined and allows to recover Nash
equilibria. We now propose a method to compute such a policy.

7.4.1 Fictitious Play

We introduce an adaptation of the Fictitious Play algorithm to learn a Master policy. This
extends to the case of population-dependent policies the algorithm introduced by Cardaliaguet
and Hadikhanloo (2017). In the same fashion, at every iteration k, it alternates three steps: (1)
computing a best response policy π̃k against the current averaged MF flows M̄k, (2) computing
(µm0,π̃k)m0∈M, the MF flows induced by π̃k, and (3) updating M̄k+1 with (µm0,π̃k)m0∈M.

We choose Fictitious Play rather than a simpler fixed-point approach because it is generally
easier to check that an MFG model satisfies the assumptions used to prove convergence (mono-
tonicity condition rather than contraction properties, as e.g. in M. Huang, R. P. Malhamé, and
Caines (2006) and Guo, A. Hu, et al. (2019)).

127

Generalization in Mean Field Games

Ideally, we would like to train the population-dependent policy on every possible distri-
butions, but this is not feasible. Thus, we take a finite training setM of initial distributions.
Each training distribution is used at each iteration of Fictitious Play. Another possibility would
have been to swap these two loops, but we chose not to do this because of catastrophic forgetting
(French, 1999; Goodfellow, Mirza, et al., 2014), a well-know phenomenon in cognitive science
that also occurs in neural networks, describing the tendency to forget previous information
when learning new information. Our proposed algorithm is summarized in Algorithm 7.1 and
we refer to it as Master Fictitious Play.

Algorithm 7.1:Master Fictitious Play
1 input : Initial π̃0 ∈ Π̃, training set of initial distributionsM, number of Fictitious Play

stepsK
2 Let π̄ = π̃0; let µ̄m0

0,n = m0 for allm0 ∈M, all n ≥ 0
3 Let M̄0 = (µ̄m0

0)m0∈M
4 for k = 1, . . . ,K do
5 Train π̃k against M̄k = (µ̄m0

k)m0∈M, to maximize Eq. (7.4)
6 for m0 ∈M do
7 Compute µm0

k , the MF flow starting fromm0 induced by π̃k against µ̄m0
k

8 Let µ̄m0
k = k

k+1 µ̄m0
k−1 + 1

k+1µm0
k

9 end
10 Update π̃k = UNIFORM(π̃0, . . . , π̃k)
11 end
12 return π̃K = UNIFORM(π̃0, . . . , π̃K)

Algorithm 7.1 returns π̃K , which is the uniform distribution over past policies. We use it as
follows. First, let: µm0

k,0 = m0, k = 1, . . . ,K, µ̄m0
K,0 = 1

K

∑K
k=1 µm0

k,0 , and then, for n ≥ 0,
µm0

k,n+1 = ψ(µm0
k,n, π̃k(·|·, µ̄m0

K,n)), k = 1, . . . ,K

µ̄m0
K,n+1 = 1

K

∑K
k=1 µm0

k,n+1.

Note that π̃K is used in the same way for everym0. We will show numerically that this average
distribution and the associated average reward are close to the equilibrium ones.

Define the average exploitability as:

ϕ̄M(π̃K) = Em0∼UNIFORM(M)
[
ψ̄(m0, π̃K)

]
, (7.3)

where
ϕ̄(m0, π̃K) = max

π′
J(m0,π

′; µ̄m0
K)− 1

K

K∑
k=1

J(m0, π̃k; µ̄m0
K).

128

7.4 Algorithm

We expect ϕ̄(m0, π̃K) → 0 as K → +∞. We show that this indeed holds under suitable
conditions in the idealized setting with continuous time updates, where π̃k, k = 0, 1, 2, . . . , is
replaced by π̃t, t ∈ [0,+∞).

Theorem 7.2. Assume the reward is separable and monotone, i.e., r(x, a, µ) = rA(x, a) + rM (x, µ)
and∑x∈X (rM (x, µ)− rM (x, µ′))(µ− µ′)(x) < 0 for every µ ̸= µ′. Assume the transition depends
only on x and a: p(·|x, a, µ) = p(·|x, a). Then ϕ̄M(π̃t) = O(1/t), where π̃t is the average policy at
time t in the continuous time version of Master Fictitious Play.

The proof follows the lines of Perrin, Perolat, et al. (2020) adapted to our setting and is
omitted for the sake of brevity. Studying continuous time updates instead of discrete ones
enables us to use calculus, which leads to a simple proof. To the best of our knowledge, there is
no rate of convergence for discrete time Fictitious Play in the context of MFG except for potential
or linear-quadratic structures (Geist, Pérolat, et al., 2021; Delarue and Vasileiadis, 2021).

7.4.2 DRL to Learn a Population-dependent Policy

In Algorithm 7.1, a crucial step is to learn a population-dependent best response against the
current averaged MF flows M̄k = (µ̄m0

k)m0∈M, i.e., π̃∗
k maximizing

π̃ 7→ 1
|M|

∑
m0∈M J(m0, π̃; µ̄m0

k). (7.4)

Solving the optimization problem (7.4) can be reduced to solving a standard but non-
stationary MDP. Since we aim at optimizing over population-dependent policies, the corre-
sponding Q-function is a function of not only an agent’s state-action pair (x, a) but also of the
population distribution: Q̃(x, µ, a). Adding the current mean field state µ to the Q-function
allows us to recover a stationary MDP. As we know that the optimal policy is stationary, we
now have a classical RL problem with state (x, µ) (instead of x only), and we can use DRL
methods such as DQN (Mnih et al., 2013) to compute Q̃k. The policy π̃k can then be recovered
easily by applying the arg max operator to the Q-function.

Various algorithms could be used, but we choose DQN to solve our problem because it is
sample-efficient. For the numerical results presented below,we used the default implementation
of RLlib (Liang et al., 2017).

The neural network representing theQ-function takes as inputs the state x of the representa-
tive player and the current distribution µ of the population, which can simply be represented as
a histogram (the proportion of agents in each state). In practice, µ is a mean-field state coming
from one of the averaged MF flows µ̄m0

k and is computed in steps 7 and 8 of Algorithm 7.1
with a Monte-Carlo method, i.e. by sampling a large number of agents that follow the last
population-dependent best response π̃k and averaging it with µ̄m0

k−1. Then, the Q-function can

129

Generalization in Mean Field Games

be approximated by a feedforward fully connected neural network with these inputs. In the
examples considered below, the finite state space comes from the discretization of a continuous
state space in dimension 1 or 2. The aforementioned simple approximation gives good results in
1D. However, in 2D, the neural network did not manage to learn a good population-dependent
policy. This is probably because passing a histogram as a flat vector ignores the geometric
structure of the problem. We thus resort to a more sophisticated representation. We first create
an embedding of the distribution by passing the histogram to a convolutional neural network
(ConvNet). The output of this embedding network is then passed to a fully connected network
which outputs probabilities for each action (see Figure 7.1). The use of a ConvNet is motivated
by the fact that the state space in our examples has a clear geometric interpretation and that
the population can be represented as an image.

Figure 7.1 – Neural network architecture of the Q-function for the 2D beach bar experience.

7.4.3 On the Theoretical vs. Experimental Settings

Theoretically, we expect the algorithm Algorithm 7.1 to converge perfectly to a Master policy.
This intuition is supported by Theorem 7.2 and comes from the fact that Fictitious Play has been
proved to converge to population-agnostic equilibrium policies when the initial distribution
is fixed (Cardaliaguet and Hadikhanloo, 2017; Perrin, Perolat, et al., 2020). However, from a
practical viewpoint, here we need to make several approximations. The main one is related
to the challenges of conditioning on a MF state. Even though the state space X is finite, the
space of MF statesM = ∆X is infinite and of dimension equal to the number of states, which
is potentially very large. This is why we need to rely on function approximation (e.g., by
neural networks as in our implementation) to learn an optimal population-dependent policy.

130

7.5 Numerical Experiments

Furthermore, the training procedure uses only a finite (and relatively small) set of training
distributions. On top of this, other more standard approximations are to be taken into account,
in particular due to the use of a DRL subroutine.

7.5 Numerical Experiments

7.5.1 Experimental Setup

We now illustrate the efficiency and generalization capabilities of the Master policy learned
with our proposed method.

Procedure. To demonstrate experimentally the performance of the learned Master policy
trained by Algorithm 7.1, we consider: several initial distributions, several benchmark policies
and several metrics. For each metric, we illustrate the performance of each policy on each
initial distribution. The initial distributions come from two sets: the training setM used in
Algorithm 7.1 and a testing set. For the benchmark policies, in the absence of a population-
dependent baseline of reference (since, to the best of our knowledge, our work is the first to
deal with Master policies), we focus on natural candidates that are population-agnostic. The
metrics are chosen to give different perspectives: the population distribution and the policy
performance in terms of reward.

Training set of initial distributions. In our experiments, we consider a training setM com-
posed of Gaussian distributions such that the union of all these distributions sufficiently covers
the whole state space. This ensures that the policy learns to behave on any state x ∈ X . Fur-
thermore, although we call “training set” the set of initial distributions, the policy actually sees
more distributions during the training episodes. Each distribution visited could be considered
as an initial distribution. Note however that it is very different from training the policy on all
possible population distributions (which is a simplex with dimension equal to the number of
states, i.e., 32 or 162 = 256 in our examples).

Testing set of initial distributions. The testing set is composed of two types of distributions.
First, random distributions generated by sampling uniformly a number in [0, 1] for each state
independently, and then normalizing the distribution. Second, Gaussian distributions with
means located between the means of the training set, and various variances.

Benchmark type 1: Specializedpolicies. For a given initial distributionmi
0 with i ∈ {1, . . . , |M|},

we consider a Nash equilibrium starting from this MF state, i.e., a population-agnostic policy π̂i

131

Generalization in Mean Field Games

and a MF flow µ̂i satisfying Definition 6 withm0 replaced bymi
0. In the absence of analytical

formula, we compute such an equilibrium using Fictitious Play algorithm with backward
induction (Perrin, Perolat, et al., 2020). We then compare our learned Master policy with each
π̂i, either onmi

0 or on anothermj
0. In the first case, it allows us to check the correctness of the

learned Master policy, and in the second case, to show that it generalizes better than π̂i.

Benchmark type 2: Mixture-reward policy. Each (population-agnostic) policy discussed
above is specialized for a given mi

0 but our Algorithm 7.1 trains a (population-dependent)
policy on various initial distributions. It is thus natural to see how the learned Master policy
fares in comparison with a population-agnostic policy trained on various initial distributions.
We thus consider another benchmark, called mixture-reward policy, which is a population-
agnostic policy trained to optimize an average reward. It is computed as the specialized
policies described above but we replace the reward definition with an average over the training
distributions. For 1 ≤ i ≤ |M|, recall µ̂i is a Nash equilibrium MF flow starting with MF
statemi

0. We consider the average reward: r̄n(x, a) = 1
|M|

∑|M|
i=1 r(x, a, µ̂i

n). The mixture-reward
policy is an optimal policy for the MDP with this reward function. In our experiments, we
compute it as for the specialized policies described above.

Benchmark type 3: Unconditioned policy. Another meaningful comparison is to use the
same algorithm while removing the population input. This amounts to running Algorithm 7.1
where, in the DQN subroutine, the Q-function neural network is a function of x and a only.
So in Figure 7.1, we replace the µ input embedding by zeros. We call the resulting policy
unconditioned policy because it illustrates the performance when removing the conditioning on
the MF term. This benchmark will be used to illustrate that the success of our approach is not
only due to combining DRL with training on variousm0: conditioning the Q-function and the
policy on the MF term plays a key role.

Metric 1: Wasserstein distance betweenMF flows. We first measure how similar the policies
are in terms of induced behavior at the scale of the population. Based on the Wasserstein
distanceW between two distributions, we compute the following distance between MF flows
truncated at some horizon NT :

Wi,j := 1
NT +1

∑NT
n=0W (µπi,mj

0
n ,µ

πj ,mj
0

n).

Note thatWi,i = 0. The term µπj ,mj
0 = µ̂j is the equilibrium MF flow starting frommj

0, while
µπi,mj

0 is the MF flow generated by starting frommj
0 and using policy πi.

132

7.5 Numerical Experiments

Metric 2: Exploitability. We also assess the performance of a given policy by measuring how
far from being a Nash it is. To this end, we use the exploitability. We compute for each i, j:
Ei,j = ϕ(mj

0, π̂
i).When i = j, Ei,i = 0 because (π̂i, µ̂i) is a Nash equilibrium starting frommi

0.
When i ̸= j, Ei,j measures how far from being optimal π̂i is when the population also uses π̂i,
but both the representative player and the population start withmj

0. If Ei,j = 0, then π̂i is a
Nash equilibrium policy even when starting frommj

0.

7.5.2 Experiment 1: Pure Exploration in 1D

We consider a discrete 1D environment inspired by Geist, Pérolat, et al. (2021). Transitions
are deterministic, the state space is X = {1, . . . , |X | = 32}. The action space is A = {−1, 0, 1}:
agents can go left, stay still or go right (as long as they stay in the state space). The reward
penalizes the agent with the amount of people at their location, while discouraging them from
moving too much: r(x, a, µ) = − log(µ(x)) − 1

|X| |a|. The training set of initial distributions
M consists of four Gaussian distributions with the same variance but different means. The
testing set is composed of random and Gaussian distributions with various variances. We can
see that the Master policy is still performing well on these distributions, which highlights its
generalization capacities. The diagonal is white since theWasserstein distance and exploitability
are zero for specialized baselines evaluated on their correspondingm0. We also observe that
the random policy is performing well on random distributions, and that exact solutions trained
on a randomly generated distribution seem to perform quite well on other randomly generated
distributions. We believe this is due to this specific environment, because a policy that keeps
enough entropy performs well.

7.5.3 Experiment 2: Beach Bar in 2D

We now consider the 2 dimensional beach bar problem, introduced by Perrin, Perolat, et al.
(2020), to highlight that the method can scale to larger environments. The state space is
a discretization of a 2-dimensional square. The agents can move by one state in the four
directions: up, down, left, right, but there are walls on the boundaries. The instantaneous
reward is: r(x, a, µ) = dbar(x)−log(µ(x))− 1

|X|∥a∥1,where dbar is the distance to the bar, located
at the center of the domain. Here again, the second term discourages the agent from being in a
crowded state, while the last term discourages them from moving if it is not necessary. Starting
from an initial distribution, we expect the agents to move towards the bar while spreading a bit
to avoid suffering from congestion.

We use the aforementioned architecture (Figure 7.1) with one fully connected network
following two ConvNets: one for the agent’s state, represented as a one-hot matrix, and one for
the MF state, represented as a histogram. Having the same dimension (equal to the number
|X | of states) and architecture for the position and the distribution makes it easier for the deep

133

Generalization in Mean Field Games

Figure 7.2 – Exploration 1D: Performance matrices when the training set is made of Gaussian distribu-
tions. From left to right: (a) Log of Wasserstein distances to the exact solution (time average); (b) Log
of exploitabilities. The x-axis is the initial distribution index: on the left (resp. right) of the vertical red
line are the training (resp. testing) distributions.

Figure 7.3 – Beach bar 2D: Environment. From left to right: (a) an initial distribution m0 ∈ M; (b)
MF state at equilibrium (specialized policy); (c) MF state at equilibrium (learned Master policy); (d)
MF state at equilibrium (specialized policy of another initial distribution). Note that the scale is very
different for the last figure.

neural network to give an equal importance to both of these features. DRL is crucial to cope
with the high dimensionality of the input. Here |X | = 162 = 256.

Figure 7.4 illustrates the performance of the learned Master policy. Once again, it out-
performs the specialized policies as well as the random, mixture-reward, and unconditioned
policies. An illustration of the environment and of the different policies involved is available in
Figure 7.3.

7.6 Conclusion of the Chapter

Motivated by the question of generalization in MFGs, we extended the notion of policies
to let them depend explicitly on the population distribution. This allowed us to introduce
the concept of Master policy, from which a representative player is able to play an optimal

134

7.6 Conclusion of the Chapter

Figure 7.4 – Beach bar 2D: Performance matrices with Gaussian distributions. From left to right: (a)
Log of Wasserstein distances to the exact solution (average over time steps); (b) Log of exploitabilities.
Each row is a policy. Top part: a row j gives the performance of the equilibrium policy for the j-th
initial distribution. Bottom part: policies given in the text).

policy against any population distribution, as we proved in Theorem 7.1. We then proved
that a continuous time adaptation of Fictitious Play can approximate the Master policy at a
linear rate (Theorem 7.2). However, implementing this method is not straightforward because
policies and value functions are now functions of the population distribution and, hence, out
of reach for traditional computational methods. We thus proposed a DRL-based algorithm to
compute an approximate Master policy. Although this algorithm trains the Master policy using
a small training set of distributions, we demonstrated numerically that the learned policy is
competitive on a variety of unknown distributions. In other words, for the first time in the RL
for MFG literature, our approach allows the agents to generalize and react to many population
distributions. This is in stark contrast with the existing literature, which focuses on learning
population-agnostic policies (Guo, A. Hu, et al., 2019; Anahtarcı, Karıksız, and Saldi, 2020a; Fu
et al., 2019; Elie, Perolat, et al., 2020; Perrin, Laurière, Pérolat, Geist, et al., 2021). To the best of
our knowledge, the only work considering policies that depend on the population is Mishra,
Vasal, and Vishwanath (2020), but their approach relies on solving a fixed point at each time
step for every possible distribution, which is infeasible except for very small state space.

Our approach opens many directions for future work. First, the algorithm we proposed
should be seen as a proof of concept and other methods could be investigated, such as On-
line Mirror Descent (Hadikhanloo, 2017; Perolat, Perrin, et al., 2021). For high-dimensional
examples, the question of distribution embedding deserves a special attention. Second, the
generalization capabilities of the learned Master policy offers many new possibilities for ap-

135

Generalization in Mean Field Games

plications. We plan to investigate how it can be used when the agent can only access a partial
observation of the population. Last, the theoretical properties (such as the approximation and
generalization theory) are also left for future work. An interesting question, from the point of
view of learning is choosing the training set so as to optimize generalization capabilities of the
learned Master policy.

136

Chapter 8

Scalable Algorithms

This last chapter presents two scalable Deep Reinforcement Learning algorithms for Mean
Field Games. We have learned in Chapter 3 that one limiting factor to further scale up MFGs
using RL is that existing algorithms such as Fictitious Play or Online Mirror Descent require the
mixing of approximated quantities such as strategies or Q-values. This is far from being trivial
in the case of non-linear function approximation that enjoy good generalization properties,
such as neural networks. We propose two methods to address this shortcoming. The first
one learns a mixed strategy from distillation of historical data into a neural network and is
applied to the Fictitious Play algorithm. The second one is an online mixing method based
on regularization that does not require memorizing historical data or previous estimates. It
is used to extend Online Mirror Descent. We demonstrate numerically that these methods
efficiently enable the use of DRL algorithms to solve various MFGs. In addition, we show that
these methods outperform SotA baselines from the literature.1

Contents
8.1 Motivation . 138

8.2 Background . 139

8.3 Deep Reinforcement Learning for MFGs . 142

8.4 Experiments . 146

8.5 Conclusion of the Chapter . 152

1This chapter is based on a preprint (Lauriere et al., 2022) presented at the ICML 2022 conference.

137

Scalable Algorithms

8.1 Motivation

Many recent works have combined MFGs with RL to leverage their mutual potential – albeit
mostly without deep neural nets thus far. The intertwinement of MFGs and RL happens
through an optimization (or learning) procedure. The simplest algorithm of this type is the
(Banach-Picard) fixed-point approach, consisting in alternating a best response computation
against a given population distribution with an update of this distribution (M. Huang, R. P.
Malhamé, and Caines, 2006). However, this method fails in many cases by lack of contractivity
as proved by Cui and Koeppl (2021). Several other procedures have thus been introduced,
often inspired by game theory or optimization algorithms. Fictitious Play (FP) and its variants
average either distributions or policies (or both) to stabilize convergence (Cardaliaguet and
Hadikhanloo, 2017; Elie, Perolat, et al., 2020; Perrin, Perolat, et al., 2020; Xie et al., 2021; Perrin,
Laurière, Pérolat, Élie, et al., 2021; Perrin, Laurière, Pérolat, Geist, et al., 2021), whereas Online
Mirror Descent (OMD) (Hadikhanloo, 2017; Perolat, Perrin, et al., 2021) relies on policy
evaluation. Other works have leveraged regularization (Anahtarcı, Karıksız, and Saldi, 2020a;
Cui and Koeppl, 2021; Guo, Xu, and Zariphopoulou, 2020) to ensure convergence, at the cost of
biasing the Nash equilibrium. These methods require to sum or average some key quantities:
FP needs to average the distributions, while OMD needs to sum Q-functions. This is a key
component of most (if not all) smoothing methods and needs to be tackled efficiently. These
operations are simple when the state space is finite and small, and the underlying objects can
be represented with tables or linear functions. However, there is no easy and efficient way to
sum non-linear approximations such as neural networks, which raises a major challenge when
trying to combine learning methods (such as FP or OMD) with deep RL.

Contributions. The main contribution of the chapter is to solve this important question in
dynamic MFGs. We propose two algorithms. The first one, that we name Deep Average-
network Fictitious Play (D-AFP), builds on FP and uses the Neural Fictitious Self Play (NFSP)
approach (Heinrich and Silver, 2016) to compute a neural network approximating an average
over past policies. The second one is Deep Munchausen Online Mirror Descent (D-MOMD),
inspired by the Munchausen reparameterization of Vieillard, Pietquin, and Geist (2020). We
prove that in the exact case, Munchausen OMD is equivalent to OMD. Finally, we conduct
numerical experiments and compare D-AFP and D-MOMD with SotA baselines adapted to
dynamic MFGs. We find that D-MOMD converges faster than D-AFP on all tested games from
the literature, which is consistent with the results obtained for exact algorithms (without RL)
in (Perolat, Perrin, et al., 2021; Geist, Pérolat, et al., 2021).

138

8.2 Background

8.2 Background

8.2.1 Mean Field Games

We recall briefly the main quantities of interest needed in this chapter. We stress that we
consider a finite horizon setting as it encompasses a broader class of games, which needs time-
dependant policies and distributions. The two main quantities of interest are the policy of the
representative player π = (πn)n ∈ (∆X

A)NT +1 and the distribution flow (i.e. sequence) of agents
µ = (µn)n ∈ ∆NT +1

X . Given a population mean field flow µ, the goal for a representative agent
is to maximize over π the total reward:

J(π, µ) = Eπ

[NT∑
n=0

rn(xn, an, µn)
∣∣∣x0 ∼ m0

]
s.t.: an ∼ πn(·|xn), xn+1 ∼ pn(·|xn, an, µn), n ≥ 0.

A policy π is called a best response (BR) against a mean field flow µ if it is a maximizer of
J(·, µ). We denote by BR(µ) the set of best responses to the mean field flow µ.

Given a policy π, a mean field flow µ is said to be induced by π if: µ0 = m0 and for
n = 0, . . . , NT − 1,

µn+1(x) =
∑
x′,a′

µn(x′)πn(a′|x′)pn(x|x′, a′, µn),

which we can simply write µn+1 = Pµn,πn
n µn, where Pµn,πn

n is the transition matrix of xn. We
denote by µπ or Φ(π) ∈ ∆NT +1

X the mean-field flow induced by π.

Definition 8. A pair (π̂, µ̂) is a (finite horizon) Mean Field Nash Equilibrium (MFNE) if (1) π̂ is a
BR against µ̂, and (2) µ̂ is induced by π̂.

Equivalently, π̂ is a fixed point of themapBR◦Φ. Given amean field flow µ, a representative
player faces a traditional MDP, which can be studied using classical tools. The value of a policy
can be characterized through the Q-function defined as: Qπ,µ

NT +1(x, a) = 0 and for n ≤ NT ,

Qπ,µ
n (x, a) = E

[∑
n′≥n

rn′(xn′ , an′ , µn′)
∣∣∣(xn, an) = (x, a)

]
.

It satisfies the Bellman equation: for n ≤ NT ,

Qπ,µ
n (x, a) = rn(x, a, µn) + Ex′,a′ [Qπ,µ

n+1(x′, a′)], (8.1)

where x′ ∼ p(·|x, a, µn) and a′ ∼ πn(·|x, a, µn), with the convention Qπ,µ
NT +1(·, ·) = 0. The

optimal Q-function Q∗,µ is the value function of any best response π∗ against µ. It is defined as
Q∗,µ

n (x, a) = maxπ Q
π,µ
n (x, a) for every n, x, a, and it satisfies the optimal Bellman equation: for

139

Scalable Algorithms

n ≤ NT ,
Q∗,µ

n (x, a) = rn(x, a, µn) + Ex′,a′ [max
a′

Q∗,µ
n+1(x′, a′)], (8.2)

where Q∗,µ
NT +1(·, ·) = 0.

8.2.2 Fictitious Play

The most straightforward method to compute a MFNE is to iteratively update in turn the policy
π and the distribution µ, by respectively computing a BR and the induced mean field flow.
The BR can be computed with the backward induction of (8.2), if the model is completely
known. We refer to this method as Banach-Picard (BP) fixed point iterations. See Algorithm F.4 in
appendix for completeness. The convergence is ensured as soon as the composition BR ◦Φ is a
strict contraction (M. Huang, R. P. Malhamé, and Caines, 2006). However, this condition holds
only for a restricted class of games and, beyond that, simple fixed point iterations typically fail
to converge and oscillations appear (Cui and Koeppl, 2021).

To address this issue, amemory of past plays can be added. The Fictitious Play (FP) algorithm,
introduced by G.W. Brown (1951) computes the new distribution at each iteration by taking the
average over all past distributions instead of the latest one. This stabilizes the learning process
so that convergence can be proved for a broader class of games under suitable assumptions on
the structure of the game such as potential structure (Cardaliaguet and Hadikhanloo, 2017;
Geist, Pérolat, et al., 2021) or monotonicity (Perrin, Perolat, et al., 2020). The method can be
summarized as follows: after initializing Q0

n and π0
n for n = 0, . . . , NT , repeat at each iteration

k:
1. Distribution update: µk = µπk

, µ̄k = 1
k−1

∑k−1
i=1 µ

i

2. Q-function update: Qk = Q∗,µ̄k

3. Policy update: πk+1
n (.|x) = arg maxaQ

k
n(x, a).

In the distribution update, µ̄k corresponds to the population mean field flow obtained if, for
each i = 1, . . . , k − 1, a fraction 1/(k − 1) of the population follows the policy πi obtained as a
BR at iteration i. At the end, the algorithm returns the latest mean field flow µk as well as a
policy that generates this mean field flow. This can be achieved either through a single policy
or by returning the vector of all past BR, (πi)i=1,...,k−1, from which µ̄k can be recovered. See
Algorithm F.5 in appendix for completeness.

8.2.3 Online Mirror Descent

The aforementioned methods are based on computing a BR at each iteration. Alternatively, we
can follow a policy iteration based approach and simply evaluate a policy at each iteration. In

140

8.2 Background

finite horizon, this operation is less computationally expensive than computing a BR because it
avoids a loop over the actions to find the optimal one.

The Policy Iteration (PI) algorithm for MFG (Cacace, Simone, Camilli, Fabio, and Goffi,
Alessandro, 2021) consists in repeating, from an initial guess π0, µ0, the update: at iteration k,
first evaluate the current policy πk by computing Qk+1 = Qπk,µk , then let πk+1 be the greedy
policy such that πk+1(·|x) is a maximizer of Qk(x, ·). The evaluation step can be done with the
backward induction (8.1), provided the model is known. See Algorithm F.6 in appendix for
completeness.

Here again, to stabilize the learning process, one can rely on information from past iterations.
Using a weighted sum over past Q-functions yields the so-called Online Mirror Descent (OMD)
algorithm for MFG, which can be summarized as follows: after initializing q0

n and π0
n for n =

0, . . . , NT , repeat at each iteration k:
1. Distribution update: µk = µπk

2. Q-function update: Qk = Qπk,µk

3. Regularized Q-function update: q̄k+1 = q̄k + 1
τQ

k

4. Policy update: πk+1
n (·|x) = softmax(q̄k+1

n (x, ·)).

For more details, see Algorithm F.7 in appendix. Although we focus on softmax policies in
the sequel, other conjugate functions of steep regularizers could be used in OMD, see Perolat,
Perrin, et al. (2021).

This method is known to be empirically faster than FP, as illustrated by Perolat, Perrin, et al.
(2021). Intuitively, this can be explained by the fact that the learning rate in FP is of the order
1/k so this algorithm is slower and slower as the number of iterations increases.

8.2.4 Deep Reinforcement Learning

Reinforcement learning aims to solve optimal control problems when the agent does not
know the model (i.e., p and r) and must learn through trial and error by interacting with an
environment. In a finite horizonMFG setting, we assume that a representative agent is encoded
by a policy π, either explicitly or implicitly (through a Q-function) and can realize an episode,
in the following sense: for n = 0, . . . , NT , the agent observes xn (with x0 ∼ m0), chooses
action an ∼ πn(·|xn), and the environment returns a realization of xn+1 ∼ pn(·|xn, an, µn) and
rn(xn, an, µn). Note that the agent does not need to observe directly the mean field flow µn,
which simply enters as a parameter of the transition and cost functions pn and rn.

Based on such samples, the agent can approximately compute the Q-functions Qπ,µ and
Q∗,µ following (8.1) and (8.2) respectively where the expectation is replaced by Monte-Carlo
samples. In practice, we often use trajectories starting from time 0 and state x0 ∼ m0 instead of

141

Scalable Algorithms

starting from any pair (x, a). Vanilla RL considers infinite horizon, discounted problems and
looks for a stationary policy, whereas we consider a finite-horizon setting with non-stationary
policies. To simplify the implementation, we treat time as part of the state by considering (n, xn)
as the state. We can then use standard Q-learning. However, it is important to keep in mind
that the Bellman equations are not fixed-point equation for some stationary Bellman operators.

When the state space is large, it becomes impossible to evaluate precisely every pair (x, a).
Motivated by both memory efficiency and generalization, we can approximate the Q-functions
by non linear functions such as neural networks, say Qπ,µ

θ and Q∗,µ
θ , parameterized by θ. Then,

the quantities in (8.1) and (8.2) are replaced by the minimization of a loss to train the neural
network parameters θ. Namely, treating time as an input, one minimizes over θ the quantities

Ê
[∣∣∣Qπ,µ

θ,n (x, a)− rn(x, a, µn)−Qπ,µ
θt,n+1(x′, a′)

∣∣∣2]
Ê
[∣∣∣∣Q∗,µ

θ,n(x, a)− rn(x, a, µn)−max
a′

Q∗,µ
θt,n+1(x′, a′)

∣∣∣∣2
]
,

where Ê is an empirical expectation based on Monte Carlo samples and θt is the parameter of a
target network.

8.3 Deep Reinforcement Learning for MFGs

To develop scalable methods for solving MFGs, a natural idea consists in combining the above
optimization methods (FP and OMD) with deep RL. This requires summing or averaging
policies or distributions, and induces hereby a major challenge as they are approximated by non
linear operators, such as neural networks. In this section, we develop innovative and scalable
solutions to cope with this. In the sequel, we denote Qθ((n, x), a) with the time in the input
when we refer to the neural network Q-function.

8.3.1 Deep Average-network Fictitious Play

To develop a model-free version of FP, one first needs to compute a BR at each iteration, which
can be done using standard deep RL methods, such as DQN (Mnih et al., 2013). A policy that
generates the average distribution over past iterations can be obtained by simply keeping in
memory all the BRs from past iterations. This approach has already been used successfully e.g.
by Perrin, Perolat, et al. (2020) and Perrin, Laurière, Pérolat, Geist, et al. (2021). However, it
requires a memory that is linear in the number of iterations and each element is potentially
large (e.g., a deep neural network), which does not scale well. Indeed, as the complexity of the

142

8.3 Deep Reinforcement Learning for MFGs

Algorithm 8.1: D-AFP
1 input : Initialize an empty reservoir bufferMSL for supervised learning of average

policy, the mean field distribution flow µ̄0 = m0 and the parameters θ̄0

2 for k = 1, . . . ,K: do
3 1. Distribution: Generate µ̄k with π̄θ̄k−1 ;
4 2. BR: Train π̂θk against µ̄k−1 using DQN;
5 Collect Nsamples state-action using π̂θk and add them toMSL;
6 3. Average policy: Update π̄θ̄k by adjusting θ̄k (through gradient descent) to

minimize:
L(θ̄) = E(s,a)∼MSL

[− log (π̄θ̄(a|s))] ,

where π̄θ̄ is the neural net policy with parameters θ̄
7 output : µ̄K , π̄θ̄K

environment grows, we expect FP to need more and more iterations to converge, and hence the
need to keep track of a larger and larger number of policies.

An alternative approach is to learn along the way the policy generating the average distri-
bution. We propose to do so by keeping a buffer of state-action pairs generated by past BRs
and learning the average policy by minimizing a categorical loss. To tackle potentially complex
environments, we rely on a neural network representation of the policy. This approach is in-
spired by the Neural Fictitious Self Play (NFSP) method (Heinrich and Silver, 2016), developed
initially for imperfect information games with a finite number of players, and adapted here
to the MFG setting. The proposed algorithm, that we call D-AFP because it learns an average
policy, is summarized in Algorithm 8.1. Details are in Section F.2.

This allows us to learn an approximation of the MFNE policy with a single neural network
instead of having it indirectly through a collection of neural networks for past BRs. After
training, we can use this neural average policy in a straightforward way. Although the buffer is
not needed after training, a drawback of this method is that during the training it requires to
keep a buffer whose size increases linearly with the number of iterations. This motivates us to
investigate a modification of OMD which is not only empirically faster, but also less memory
consuming.

8.3.2 Deep Munchausen Online Mirror Descent

We now turn our attention to the combination of OMD and deep RL. One could simply use RL
for the policy evaluation step by estimating the Q-function using equation (8.1). However, it is
not straightforward to train a neural network to approximate the cumulative Q-function. To
that end, we propose a reparameterization allowing us to compute the cumulative Q-function

143

Scalable Algorithms

in an implicit way, building on the Munchausen trick from Vieillard, Pietquin, and Geist (2020)
for classical RL (with a single agent and no mean-field interactions).

Reparameterization in the exact case. OMD requires summing up Q-functions to compute
the regularized Q-function q̄. However, this quantity q̄ is hard to approximate as there exists
no straightforward way to sum up neural networks. We note that this summation is done by
Pérolat et al. (2021) via the use of the NeuRD loss. However, this approach relies on two types
of approximations, as one must learn the correct Q-function, but also the correct sum. This is
why we instead transform the OMD formulation into Munchausen OMD, which only relies
on one type of approximation. We start by describing this reparameterization in the exact
case, i.e., without function approximation. We show that, in this case, the two formulations are
equivalent.

We consider the following modified Bellman equation: Q̃k+1
NT +1(x, a) = 0

Q̃k+1
n−1(x, a) = r(x, a, µk

n−1) +τ ln πk
n−1(a|x) + Ex′,a′

[
Q̃k+1

n (x′, a′)−τ ln πk
n(a′|x′)

]
,

(8.3)

where x′ ∼ pn(·|x, a, µk
n−1) and a′ ∼ πk

n(·|x′). The red term penalizes the policy for deviating
from the one in the previous iteration, πk

n−1, while the blue term compensates for this change
in the backward induction, as we will explain in the proof of Theorem 8.1 below.

The Munchausen OMD (MOMD) algorithm for MFG is as follows: after initializing π0,
repeat for k ≥ 0:

Distribution update: µk = µπ̃k

Regularized Q-function update: Q̃k+1
n as in (8.3)

Policy update: π̃k+1
n (·|x) = softmax(1

τ Q̃
k+1
n (x, ·)).

Theorem 8.1. MOMD is equivalent to OMD in the sense that π̃k = πk for every k.

As a consequence, despite seemingly artificial log terms, this method does not bias the
Nash equilibrium (in contrast with, e.g., Cui and Koeppl (2021) and Xie et al. (2021)). Thanks
to this result, MOMD enjoys the same convergence guarantees as OMD, see (Hadikhanloo,
2017; Perolat, Perrin, et al., 2021).

Proof. Step 1: Softmax transform. We first replace this projection by an equivalent viewpoint
based on the Kullback-Leibler (KL) divergence, denoted by KL(·∥·). We will write Qk+1

n =
Qπk,µπk

n for short and Q0
n = q̄0

n. We have: q̄k+1
n = 1

τ

∑k+1
ℓ=0 Q

ℓ
n. We take π0

n as the uniform policy
over actions, in order to have a precise equivalence with the following for q̄0

n = 0. We could

144

8.3 Deep Reinforcement Learning for MFGs

consider any π0
n with full support, up to a change of initialization q̄0

n. We have:

πk+1
n (·|x) = softmax

(
1
τ

k+1∑
ℓ=0

Qℓ
n(·|x)

)

= arg max
π∈∆A

(
⟨π,Qk+1

n (x, ·)⟩ − τKL(π∥πk
n(·|x))

)
, (8.4)

where ⟨·, ·⟩ denotes the dot product.
Indeed, this can be checked by induction, using the Legendre-Fenchel transform: omitting

n and x for brevity,

πk+1 ∝ πke
1
τ

qk+1

∝ πk−1e
1
τ

Qk
e

1
τ

Qk+1 = πk−1e
1
τ

(Qk+Qk+1)

∝ ... ∝ eq̄k+1
.

Step 2: Munchausen trick. Simplifying a bit notations,

πk+1 = arg max(⟨π,Qk+1⟩ − τKL(π∥πk))

= arg max(⟨π,Qk+1 + τ ln πk︸ ︷︷ ︸
Q̃k+1

⟩−τ⟨π, ln π︸ ︷︷ ︸
+τH(π)

⟩)

= softmax
(1
τ
Q̃k+1

)
whereH denotes the entropy and we defined Q̃k+1

n = Qk+1
n + τ ln πk

n. Since Qk+1
n satisfies the

Bellman equation (8.1) with π replaced by πk and µ replaced by µk, we deduce that Q̃k+1
n

satisfies (8.3).

Remark: In OMD, 1
τ (denoted α in the original paper (Perolat, Perrin, et al., 2021)), is

homogeneous to a learning rate. In the MOMD formulation, τ can be seen as a temperature.

Stabilizing trick. We have shown that MOMD is equivalent to OMD. However, the above
version of Munchausen sometimes exhibits numerical instabilities. This is because, if an action
a is suboptimal in a state x, then πk

n(a|x)→ 0 as k → +∞, so Q̃k(x, a) diverges to −∞ due to
the relation Q̃k+1

n = Qk+1
n + τ ln πk

n. This causes issues even in the tabular setting when we get
close to a Nash equilibrium, due to numerical errors on very large numbers. To avoid this issue,
we introduce another parameter, denoted by α ∈ [0, 1] and we consider the following modified
Munchausen equation:

Q̌k+1
n−1(x, a) = rn−1(x, a, µk

n−1) +ατ log(πk−1
n−1(a|x)) + Ex′,a′

[
Q̃k+1

n (x′, a′)−τ ln πk
n(a′|x′)

]
, (8.5)

145

Scalable Algorithms

where x′ ∼ pn(·|x, a, µk
n−1) and a′ ∼ πk

n(·|x′). In fact, such iterations have a natural interpreta-
tion as they can be obtained by applying OMD to a regularized problem in which, when using
policy π, a penalty −(1 − α)τ log(πn(·|xn)) is added to the reward rn(xn, an, µn). Details are
provided in Section F.3.

DeepRLversion. Motivated by problemswith large spaces, we then replace theMunchausen
Q-function at iteration k, namely Q̌k, by a neural network whose parameters θk are trained
to minimize a loss function representing (8.5). Since we want to learn a function of time, we
consider (n, x) to be the state. To be specific, given samples of transitions

{(
(ni, xi), ai, rni(xi, ai, µ

k
ni

), (ni + 1, x′
i)
)}NB

i=1
,

with x′
i ∼ pni(xi, ai, µ

k
ni

), the parameter θk is trained using stochastic gradient descent to
minimize the empirical loss:

1
NB

∑
i

∣∣∣Q̌θ((ni, xi), ai)− Ti

∣∣∣2,
where the target Ti is:

Ti = −rni(xi, ai, µ
k
ni

)−ατ log(πk−1(ai|(ni, xi)))

−
∑
a′

πk−1(a′|(ni + 1, x′
i))
[
Q̌θk−1((ni + 1, x′

i), a′)

−τ log(πk−1(a′|(ni + 1, x′
i)))

]
. (8.6)

Here the time n is passed as an input to the Q-network along with x, hence our change of
notation. This way of learning the Munchausen Q-function is similar to DQN, except for two
changes in the target: (1) it incorporates the penalization for deviating from the previous
policy, and (2) we do not take the argmax over the next action but an average according to the
previous policy. A simplified version of the algorithm is presented in Algorithm 8.2 and more
details are provided in Section F.2.

8.4 Experiments

In this section, we first discuss the metric used to assess quality of learning, detail baselines to
which we compare our algorithms, and finally present numerical results on diverse and numer-

146

8.4 Experiments

Algorithm 8.2: D-MOMD
1 input :Munchausen parameters τ and α; numbers of OMD iterationsK and DQN

estimation iterations L
2 Initialize the parameters θ0 ;
3 Set π0(a|(n, x)) = softmax

(
1
τ Q̌θ0((n, x), ·)

)
(a) ;

4 for k = 1, . . . ,K: do
5 1. Distribution: Generate µk with πk−1;
6 2. Value function: Initialize θk ;
7 for ℓ = 1, . . . , L: do
8 Sample a minibatch of NB transitions:{(

(ni, xi), ai, rni(xi, ai, µ
k
ni

), (ni + 1, x′
i)
)}NB

i=1
with ni ≤ NT ,

x′
i ∼ pni(·|xi, ai, µ

k
ni

) and ai is chosen by an ε−greedy policy based on Q̌θk ;
9 Update θk with one gradient step of:
10 θ 7→ 1

NB

∑NB
i=1

∣∣∣Q̌θ((ni, xi), ai)− Ti

∣∣∣2
11 where Ti is defined in (8.6)
12 3. Policy: for all n, x, a, let
13 πk(a|(n, x)) = softmax

(
1
τ Q̌θk((n, x), ·)

)
(a)

14 output :Cumulated Q value function Q̌θK , policy πK

ous environments. The code for Deep Munchausen OMD is available in OpenSpiel (Lanctot,
Lockhart, et al., 2019).2

8.4.1 Exploitability

To assess the quality of a learnt equilibrium, we check whether, in response to the reward
generated by the population MF flow, a typical player can improve their reward by deviating
from the policy used by the rest of the population. This is formalized through the notion of
exploitability.

The exploitability of a policy π is defined as:

ϕ(π) = max
π′

J(π′;µπ)− J(π;µπ),

where µπ is the mean field flow generated fromm0 when using policy π. Intuitively a large
exploitabilitymeans that, when the population plays π, any individual player can bemuch better
off by deviating and choosing a different strategy, so π is far from being a Nash equilibrium

2See https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/mfg/
algorithms/munchausen_deep_mirror_descent.py.

147

https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/mfg/algorithms/munchausen_deep_mirror_descent.py
https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/mfg/algorithms/munchausen_deep_mirror_descent.py

Scalable Algorithms

policy. Conversely, an exploitability of 0 means that π is an MFNE policy. Similar notions are
widely used in computational game theory (Zinkevich et al., 2007; Lanctot, Waugh, et al., 2009).

In the sequel, we consider problems for which a BR can be computed exactly given a mean-
field flow. Otherwise an approximate exploitability could be used as a good proxy to assess
convergence, see e.g. Perrin, Laurière, Pérolat, Geist, et al. (2021).

8.4.2 Baselines

To assess the quality of the proposed algorithms, we consider three baselines from the literature:
Banach-Picard (BP) fixed point iterations, policy iterations (PI), and Boltzmann iterations (BI).
FP can be viewed as a modification of the first one, while OMD as a modification of the second
one. They have been discussed at the beginning of Section 8.2.2 and Section 8.2.3 respectively,
in the exact case. Adapting them to the model-free setting with deep networks can be done in
a similar way as discussed above for D-AFP and D-MOMD. See Section F.2 for more details.
The third baseline has been introduced recently by Cui and Koeppl (2021). It consists in
updating in turn the population distribution and the policy, but here the policy is computed
as a weighted softmax of the optimal Q-values (and hence requires the resolution of an MDP
at each iteration). More precisely, given a reference policy πB , a parameter η > 0, and the
Q-function Qk computed at iteration k, the new policy is defined as:

πk
n(a|x) =

πB,n(a|x) exp
(
Qk

n(x, a)/η
)∑

a′ πB,n(a′|x) exp
(
Qk

n(x, a′)/η
) .

In the plots, D-BP, D-AFP, D-PI, D-BI and D-MOMD refer respectively to Deep Banach-Picard it-
erations, DeepAverage-network Fictitious Play, Deep Policy Iteration, Deep Boltzmann Iteration,
and Deep Munchausen OMD.

8.4.3 Numerical results

Epidemics model. We first consider the SIS model of Cui and Koeppl (2021), which is a toy
model for epidemics. There are two states: susceptible (S) and infected (I). Two actions can
be used: social distancing (D) or going out (U). The probability of getting infected increases
if more people are infected, and is smaller when using D instead of U. The transitions are:
p(S|I,D, µ) = p(S|I, U, µ) = 0.3, p(I|S,U, µ) = 0.92 · µ(I), p(I|S,D, µ) = 0, the reward is:
r(s, a, µ) = −1I(s)− 0.5 · 1D(s), and the horizon is NT = 50. Note that, although this model
has only two states, the state dynamics is impacted by the distribution, which is generally
challenging when computing MFG solutions. As shown in Figure 8.1, both D-MOMD and D-
AFP generate an exploitability diminishing with the learning steps, whereas the other baselines
are not able to do so. Besides, D-MOMD generates smooth state trajectories, as opposed to the

148

8.4 Experiments

one observed in Cui and Koeppl (2021), that contained many oscillations. For this example
and the following ones, we display the best exploitability curves obtained for each method
after running sweeps over hyperparameters. See Section F.4 for some instances of sweeps for
D-MOMD.

0 50000 100000 150000 200000 250000 300000 350000 400000
step

10 1

100

101

ex
pl

oi
ta

bi
lit

y D-BP
D-AFP
D-PI
D-BI
D-MOMD

0 10 20 30 40 50
time

0.3

0.4

0.5

0.6

0.7

po
pu

la
tio

n

S
I

Figure 8.1 – Left: exploitability. Right: evolution of the distribution obtained by the policy learnt with
D-MOMD.

Linear-Quadratic MFG.We then consider an example with more states, in 1D: the classical
linear-quadratic environment of Carmona, Fouque, and L.-H. Sun (2015a), which admits an
explicit closed form solution in a continuous space-time domain. We focus on a discretized
approximation (Perrin, Perolat, et al., 2020) of the time grid {0, . . . , NT }, where the dynamics of
the underlying state process controlled by action an is given by xn+1 = xn + an∆n + σεn

√
∆n ,

with (m̄n)n the average of the population states, ∆n the time step and (εn)n i.i.d. noises on
{−3,−2,−1, 0, 1, 2, 3}, truncated approximations of N (0, 1) random variables. Given a set of
actions (an)n in state trajectory (xn)n and a mean field flow (µn)n, the reward r(xn, an, µn) of a
representative player is given for n < NT by

[
− 1

2 |an|2 + qan(m̄n − xn)− κ

2 |m̄n − xn|2
]
∆n ,

together with the terminal reward − cterm
2 |m̄NT

− xNT
|2. The reward penalizes high actions,

while providing incentives to remain close to the average state despite the noise (εn)n. For the
experiments, we used NT = 10, σ = 1, ∆n = 1, q = 0.01, κ = 0.5, cterm = 1 and |X | = 100. The
action space is {−3,−2,−1, 0, 1, 2, 3}.

In Figure 8.2 (top), we see that the distribution estimated by D-MOMD concentrates, as is
expected from the reward encouraging a mean-reverting behavior: the population gathers as
expected into a bell-shaped distribution. The analytical solution (Appx. E in (Perrin, Perolat,
et al., 2020)) is exact in a continuous setting (i.e., when the step sizes in time, state and action go
to 0) but only approximate in the discrete one considered here. Hence, we choose instead to use
the distribution estimated by exact tabular OMD as a benchmark, as it reaches an exploitability

149

Scalable Algorithms

of 10−12 in our experiments. Figure 8.2 (bottom right) shows that the Wasserstein distance
between the learnt distribution by D-MOMD and the benchmark decreases as the learning
occurs. In Figure 8.2 (bottom left), we see that D-MOMD andD-AFP outperform othermethods
in minimizing exploitability.

State

0
20

40
60

80
100

Time

0
2

4
6

8
10
0.00

0.02

0.04

0.06

0.08

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e6

101

102

103

Ex
pl

oi
ta

bi
lit

y

D-BP
D-AFP
D-PI
D-BI
D-MOMD

0 2000 4000 6000 8000 10000
Iteration

0.001

0.002

0.003

0.004

0.005

W
as

se
rs

te
in

 D
ist

an
ce

Figure 8.2 – Top: Evolution of the distribution generated by the policy learnt by D-MOMD. Bottom left:
Exploitability of different algorithms on the Linear Quadratic environment. Bottom right: Wasserstein
distance between the solution learnt by D-MOMD and the benchmark one, over its iterations.

Exploration.

We now increase the state dimension and turn our attention to a 2-dimensional grid world
example. The state is the position. An action is a move, and valid moves are: left, right, up,
down, or stay, as long as the agent does not hit a wall. In the experiments, we consider 10× 10
states and a time horizon of NT = 40 time steps. The reward is: r(x, a, µ) = rpop(µ(x)), where
rpop(µ(x)) = − log(µ(x)) discourages being in a crowded area – which is referred to as crowd
aversion. Note that Ex∼µ(rpop(µ(x))) = H(µ), i.e., the last term of the reward provides, in
expectation, the entropy of the distribution. This setting is inspired by the one considered
by Geist, Pérolat, et al. (2021). The results are shown in Figure 8.3. D-MOMD and D-AFP

150

8.4 Experiments

outperform all the baselines. The induced distribution matches our intuition: it spreads
symmetrically until filling almost uniformly the four rooms.

0.0 0.2 0.4 0.6 0.8 1.0
step 1e6

101

102

103

ex
pl

oi
ta

bi
lit

y

D-BP
D-FP
D-PI
D-BI
D-MOMD

0 5 10

0.0

2.5

5.0

7.5

10.0

12.5
0 5 10 0 5 10 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.008

0.009

0.010

0.011

Figure 8.3 – Top: exploitability. Bottom: evolution of the distribution obtained by the policy learnt with
D-MOMD.

Crowd modeling with congestion. We consider the same environment but with a maze,
and a more complex reward function:

r(x, a, µ) = rpos(x) + rmove(a, µ(x)) + rpop(µ(x)),

where rpos(x) = −dist(x, xref) is the distance to a target position xref , rmove(a, µ(x)) =
−µ(x)∥a∥ is a penalty for moving (∥a∥ = 1) which increases with the density µ(x) at x – which
is called congestion effect in the literature. The state space has 20 × 20 states, and the time
horizon is NT = 100. We see in Figure 8.4 that D-MOMD outperforms the other methods.

Multi-population chasing. We finally turn to an extension of the MFG framework, where
agents are heterogeneous: each type of agent has its own dynamics and reward function. The
environment can be extended to model multiple populations by simply extending the state
space to include the population index on top of the agent’s position. Following Perolat, Perrin,
et al. (2021), we consider three populations and rewards of the form: for population i = 1, 2, 3,

ri(x, a, µ1, µ2, µ3) = − log(µi(x)) +
∑
j ̸=i

µj(x)r̄i,j(x).

151

Scalable Algorithms

0 50000 100000 150000 200000 250000 300000
step

103

ex
pl

oi
ta

bi
lit

y
D-BP
D-AFP
D-PI
D-BI
D-MOMD

0 10 20

0

5

10

15

20
0 10 20 0 10 20 0 10 20

0.0

0.2

0.4

0.6

0.8

1.0

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.0000
0.0025
0.0050
0.0075
0.0100
0.0125
0.0150
0.0175
0.0200

0.0025
0.0050
0.0075
0.0100
0.0125
0.0150
0.0175
0.0200

Figure 8.4 – Maze example. Top: exploitability. Bottom: evolution of the distribution obtained by the
policy learnt with D-MOMD.

where r̄i,j = −r̄j,i, with r̄1,2 = −1, r̄1,3 = 1, r̄2,3 = −1. In the experiments, three are 5× 5
states and the time horizon is NT = 10 time steps. The initial distributions are in the corners,
the number of agents of each population is fixed, and the reward encourages the agent to chase
the population it dominates and flee the dominating one. We see in Figure 8.5 that D-AFP
outperform the baselines and D-MOMD performs even better.

8.5 Conclusion of the Chapter

We proposed two scalable algorithms that can compute Nash equilibria in various MFGs in the
finite horizon setting. The first one, D-AFP, is the first implementation of Fictitious Play for
MFGs that does not need to keep all previous best responses in memory and that learns an
average policy with a single neural network. The second one, D-MOMD, takes advantage of
a subtle reparameterization to learn implicitly a sum of Q-functions usually required in the
Online Mirror Descent algorithm. We demonstrated numerically that they both perform well
on five benchmark problems and that D-MOMD consistently performs better than D-AFP as
well as three baselines from the literature.

In our D-OMD algorithm the policy is computed using a softmax, which is reminiscent
of maximum entropy RL methods (Todorov, 2008; Toussaint, 2009; Rawlik, Toussaint, and
Vijayakumar, 2012) which led to efficient deep RL methods such as soft actor critic (Haarnoja

152

8.5 Conclusion of the Chapter

0 20000 40000 60000 80000 100000
step

0

5

10

15

20

25

30

35

ex
pl

oi
ta

bi
lit

y D-BP
D-AFP
D-PI
D-BI
D-MOMD

Figure 8.5 – Multi-population chasing example. Top: Exploitability. Bottom: evolution of the distribu-
tions for the three populations.

et al., 2018). However there is a crucial difference: here we use a KL divergence with respect to
the previous policy, as can be seen in (8.4).

Future work. We would like to include more complex examples, with larger state spaces
or even continuous spaces. Continuous state spaces should be relatively easy to address,
as neural networks can handle continuous inputs, while continuous actions would require
some adjustments particularly to compute argmax or softmax of Q-functions. Furthermore
continuous spaces requiremanipulating continuous population distributions, raising additional
questions related to how to represent and estimate them efficiently.

153

Conclusion of Part III

In Part III, we examined the last question: How to adapt the algorithms to a model-free setting,
using deep reinforcement learning? While Part I and Part II were dedicated to answering the first
question, mostly taking into consideration what we refer to as the first meaning of learning, i.e.
the game-theoretic meaning, in Part III, we tackle the second meaning, i.e. from the machine
learning perspective.

Chapter 6 is a proof of work that fictitious play can be efficiently combined with deep
(reinforcement) learning. In fact, we demonstrate that replacing the computation of the best
response with a DRL algorithm (here soft actor-critic) and the estimation of the distribution
with a generative model (here normalizing flows) still allows to learn a Nash equilibrium
despite the various approximations introduced. The overall approach is completely model-free
and solve up to a six-dimensional continuous state space, three-dimensional action space, with
complex geometry. This problem could not have been solved with standard methods of mean
field games. However, it remains limited to a (γ-)stationary setting; because estimating one
distribution per time step as required in a finite-horizon setting seems out-of-reach without
access to powerful resources. The question of applicability then arises: what is the point of
using this method in a setting where the agents are only optimal against the (γ)-stationary
distribution? Real-life systems are more often than not evolutive, and possible deviations from
a Nash equilibrium are likely to happen.

Therefore, in Chapter 7, we introduced the new paradigm of population-dependant policies.
This chapter mostly studies a third variation of what learning means, under the prism of
generalization. Population-dependant policies allow to take into consideration the current
state of the population, by incorporating directly into the policy the distribution of agents. We
demonstrate that under the monotonicity condition, and assuming that the representative agent
can start from every possible initial distribution, there exists a population-dependant policy, that
we name the Master policy, able to be optimal against any distribution of agents. In practice, as
it is not possible to start from infinitely many distributions, we build a set of initial distributions
and demonstrate experimentally that agents learning with the Master fictitious play algorithm
learn an approximate Nash equilibrium in many configurations, even in some not observed
during training. Although the approach is the first to tackle the question of generalization,

155

Scalable Algorithms

the overall method is computationally expensive; converging to a solution requires days of
training even in simple examples with finite state and action spaces. In particular, the deep
reinforcement learning adaptation of fictitious play is not scalable, in the sense that it needs to
keep in memory all best responses computed along the iterations of the algorithm.

Our last contribution thus proposed a scalable version of fictitious play and online mirror
descent. In the two previous contributions, although we were aware that online mirror descent
could probably converge faster to aNash equilibrium than fictitious play, adapting the algorithm
to a deep reinforcement learning setting was not straightforward. In Chapter 8, we introduced
two algorithms: Deep Average Fictitious Play (D-AFP) and Deep Munchausen Online Mirror
Descent (D-MOMD) that do not require to keep in memory all previous policies orQ-functions.
D-AFP approximates the average policy by keeping transitions of all iterations in a buffer
and optimizing a categorical loss in a supervised learning fashion. D-MOMD leverages the
Legendre-Fenchel transform and regularizes directly the Q-function, allowing to get rid of
the previous sum. Consistently with results in the exact case, D-MOMD converges faster
than D-AFP and other baselines, suggesting strongly that it should be used from now on in
applications.

The contributions in this last part clearly validate that Reinforcement Learning can scale up
Mean Field Games, both in terms of model complexity (Chapter 6), generalization (Chapter 7)
and algorithms (Chapter 8).

156

Chapter 9

General Conclusion and Perspectives

9.1 Conclusion on our Contributions

In this thesis, we have built brick by brick all the ingredients to solve complex multi-agent
problems in real-world settings. Our first question was How to design algorithms to find Nash
equilibria in mean field games?, let us see what elements of answer we brought.

In Chapter 2, we have introduced the necessary background to the understanding of the
dissertation. We started by introducing Markov Decision Processes in both stationary and finite
horizon, followed by Reinforcement Learning and Deep Reinforcement Learning basics. We
also defined properly the different settings that one may encounter when using mean-field
approximations with reinforcement learning. This chapter, along with Chapter 3 are based on
Laurière, Perrin, et al. (2022).

Then, Chapter 3 spelled out iterative methods, why fixed point iterations easily fail and
proposed a unified approach that summarizes the different types of regularization one can
introduce to stabilize convergence. We concluded Part I with a numerical comparison of several
iterative methods and showed that fictitious play and online mirror descent converge to the
Nash equilibrium in the considered example. Consequently, Part II was dedicated to a more
detailed study of these two algorithms.

Chapter 4, based on Perrin, Perolat, et al. (2020), introduced a continuous-time version of
fictitious play in order to prove the convergence to the Nash equilibrium under themonotonicity
condition and even exhibited a convergence rate thanks to Lyapunov theory. It studied the
finite horizon setting as well as the γ-discounted one, with and without common noise. We
also introduced a discrete time version which we implemented, and verified experimentally
that the exploitability of the algorithm went towards zero, which ensures the convergence to
the equilibrium.

157

General Conclusion and Perspectives

Chapter 5 was dedicated to the study of Online Mirror Descent and proved its convergence
with continuous-time updates to the Nash equilibrium under themonotonicity condition, in the
finite horizon setting. We proved that the algorithm also works with common noise and with
multiple populations. This chapter drew on Perolat, Perrin, et al. (2021) which was published
at AAMAS 2022. Therefore, Part I and Part II brought clear answers to the first question, as
using either FP or OMD allows to find Nash equilibrium in mean field games.

The last part of the thesiswas dedicated to the third question: How to adapt these algorithms to a
model-free setting, using deep reinforcement learning? Based on Perrin, Laurière, Pérolat, Geist, et al.
(2021), in Chapter 6wedemonstrated that a deep reinforcement learning adaptation of Fictitious
Play was able to converge in the complex continuous multi-dimensional example of flocking,
even without the monotonicity condition. We believe that using neural networks, i.e. replacing
the computation of the best response by the SAC algorithm and learning the population’s
distribution with a Normalizing Flow naturally leads to the selection of a single equilibrium,
even in games with potentially an infinite amount of equilibria. However, our application
was limited to the (γ-)stationary setting and scaling this method to a finite horizon where we
need a different policy and mean field state at every time step is not feasible. Furthermore, it
is restricted to a single initial distribution which limits its possible applications to real-world
problems.

It justified the introduction of the concept of master policy in Chapter 7, which allows to
be optimal against many different initial distributions by letting the policy depending on the
current distribution of agents. Based on Perrin, Laurière, Pérolat, Élie, et al. (2021), this work is
yet still using fictitious play in a non-scalable way, i.e. requiring to keep in memory all past best
responses. Although we demonstrated numerically that the approach worked in some simple
examples, the computational cost of the algorithm prevented us to use this approach in more
complex games.

Our last contribution is Lauriere et al. (2022) in Chapter 8. It proposed two deep rein-
forcement learning adaptations that finally allowed to use fictitious play and online mirror
descent in a scalable way, i.e. without requiring to store every past policy of Q-function. Deep
Averaged Fictitious Play (D-AFP) scaled up fictitious play by keeping a replay buffer con-
taining transitions for all past best responses. Minimizing a categorical over this dataset in a
supervised learning way allowed to directly approximate the average policy that we needed.
Deep Munchausen Online Mirror Descent (D-MOMD) is a new state-of-the-art for Mean Field
Games with Reinforcement Learning. It took advantages of a clever reparameterization based
upon Legendre-Fenschel transform that regularizes directly the Q-function instead of having
to sum them up. We compared these algorithms with three baselines in a variety of games
and open-sourced everything in OpenSpiel (Lanctot, Lockhart, et al., 2019).1, hoping that it

1https://github.com/deepmind/open_spiel

158

https://github.com/deepmind/open_spiel

9.2 Future Work and Perspectives

will incite other researchers to contribute, which would be very beneficial for the community
as numerical results are not always easy to compare. I personally hope that this thesis will
contribute to harmonizing the research on this topic although many aspects remain to be
unified, and that it will inspire other people to try to extend even further the field.

9.2 Future Work and Perspectives

I would like to finish this dissertation with a more personal point of view about what remains
to be done and how our work could be applied to real-world scenarios. Although our research
is mostly theoretical, mean field games can model a wide variety of situations and the ultimate
goal remains to use these tools for practical applications. Reinforcement learning, on its hand,
aims at developing algorithms for real-world problems; this was indeed the very first reason
whywe decided to solvemean field gameswith (model-free) reinforcement learning. Cabannes
et al. (2021), which studies traffic routing with the lens of mean field games, is a first step
towards applying MFGs to such scenarios. However, it supposes a perfect knowledge of the
model and it is not clear that it would work better in practice than methods based on heuristics.
Therefore, I believe there are several points that need to be addressed before being able to
deploy our methods to other applications.

Approximation of the distribution. Approximating the distribution has received relatively
less interest than the question of approximating the policy and the value function. Efficiently
representing and learning the distribution is important for mean field problems, particularly for
large or continuous environments for which exact tabular representations are not suitable. In
Chapter 6, we have used normalizing flows to learn the continuous distribution of agents over
their positions and velocities in a γ-discounted setting. However, it does not seem scalable to use
thismethod for evolutive settings, as it would require either to learn a different normalizing flow
at every time step or to condition the normalizing flow on time. We did some preliminary tests
following both of these approaches, but they did not give satisfying results. But approximating
distributions is a central problem in Machine Learning and there are numerous methods for
doing it, which makes me believe that other methods could efficiently solve this problem.
Although exploring this question for mean field games remains largely open, I believe the
next priority is to tackle this question before hoping to apply our algorithms to very large or
continuous domains.

Types of equilibria. The second question of importance concerns the type of solutions we
are looking for. On one hand, Nash equilibria model purely competitive games, in which
the players are solely interested in maximizing their own reward. On the other hand, Pareto

159

General Conclusion and Perspectives

optimum can be reached in collaborative settings with perfect communication, or when a
central controller can decide exactly on the behavior of all players. However, there is evidence
that equilibria in real-world problems are often in-between these two notions. In a wide
variety of problems, people do not act selfishly, while even in completely collaborative games, a
perfect communication and coordination are not always possible between players. We recently
contributed to extend the notion of (coarse) correlated equilibria from Aumann (1987) to
Mean Field Games (Muller, Elie, et al., 2022). The general idea of correlated equilibria is to
have a correlation device that recommends an action to each player, in order to coordinate the
population’s action. The player can decide to follow or not this recommendation: it may have a
partial misalignment with correlation device, but taking its decision without the mediator’s
knowledge can be dangerous. The classical example is the one of traffic lights, where it is
obviously very dangerous not to respect the lights but deviating can sometimes save you time.
This work, along with Muller, Rowland, et al. (2021) and X. Wang et al. (2022), are a first step
to find more subtle notions of solutions that could be more adapted to real applications.

What is the right model? In the dissertation, we took as granted a model of a game and
focused mainly on finding a Nash equilibrium given this fixed model. We proved that when a
reward function and an environment are provided, our methods can find such equilibrium.
We can now take a step back and wonder how models are designed, and if they always lead to
desirable outcomes. If designing meaningful reward functions is easy in games such as Go
or video games wherein there is an intrinsic notion of what winning or losing means, it is less
straightforward to know what is the good reward function in economics or societal problems.
Furthermore, when there exists several equilibria in such games, there is no guarantee that the
algorithm will converge to a good one in terms of social benefit. To circumvent this difficulty, a
possible approach is to useMechanism design, which providesways of influencing the behavior of
players. For example, Balaguer et al. (2022) propose a method where an agent or a mechanism
allows to shape other agents behavior in order to reach a better equilibrium. This method could
maybe be extended to a mean field setting. Another idea to shape more realistic models would
be to use data-oriented methods and infer directly the reward and transition probabilities from
the data.

Gamification. Lastly, another orthogonal research question I would like to explore concerns
gamification of machine learning problem. The general principle of gamification is to rewrite
or gamify a problem as a game, which would be here a mean field game. Once the problem has
been casted in as an MFG, it is straightforward to apply all existing results of the MFG theory
to this newly formulated problem. This is exactly what we did in Geist, Pérolat, et al. (2021)
with concave utility reinforcement learning, allowing to draw new connections between fields
and prove new theoretical results. I would like to try to do the same in other domains such as

160

9.2 Future Work and Perspectives

generative modeling, and explore how and if diffusion models, which are based on stochastic
equations, could be cast in as an MFG or MFC problem.

161

Appendix A

Complements on Chapter 2

A.1 Some applications

Mean Field Games have found applications in various domains such as population dynamics
(Guéant, Lasry, and Lions, 2011; Achdou, Bardi, and Cirant, 2017; Cardaliaguet, Porretta,
and Tonon, 2016), crowd motion modeling (Achdou and Lasry, 2019; Burger et al., 2013;
Djehiche, Tcheukam, and Tembine, 2017; Aurell and Djehiche, 2019; Achdou and Laurière,
2016; Chevalier, Le Ny, and R. Malhamé, 2015), flocking (Nourian, Caines, and R. P. Malhamé,
2010; Nourian, Caines, and R. P. Malhamé, 2011; Grover, Bakshi, and Theodorou, 2018; Perrin,
Laurière, Pérolat, Geist, et al., 2021), opinion dynamics and consensus formation (Stella et al.,
2013; Bauso, Tembine, and Basar, 2016; Parise et al., 2015), autonomous vehicles (K. Huang
et al., 2017; Shiri, Park, and Bennis, 2019), epidemics control (Laguzet and Turinici, 2015; E.
Hubert and Turinici, 2018; Elie, E. Hubert, and Turinici, 2020; Lee et al., 2021; Aurell, Carmona,
et al., 2022; Doncel, Gast, and Gaujal, 2022). But MFGs have also naturally found applications
in banking, finance and economics including banking systemic risk (Carmona, Fouque, and
L.-H. Sun, 2015b; Elie, Ichiba, and Laurière, 2020), high frequency trading (Lachapelle, Lasry,
et al., 2016; Cardaliaguet and Lehalle, 2018), income and wealth distribution (Achdou, Han,
et al., 2017), economic contract design (Elie, Mastrolia, and Possamai, 2019), economics in
general (Achdou, Han, et al., 2017; Achdou, Buera, et al., 2014; Chan and Sircar, 2015; D. Gomes,
Velho, and Wolfram, 2014; Djehiche, Tcheukam Siwe, and Tembine, 2017), price formation
(Lasry and Lions, 2007; Lachapelle, Lasry, et al., 2016; D. A. Gomes and Saúde, 2020), finance
in general (Cardaliaguet and Lehalle, 2018; Lasry and Lions, 2007; Carmona, 2020), energy
production and management (Alasseur, Taher, and Matoussi, 2020; Couillet et al., 2012; Elie, E.
Hubert, Mastrolia, et al., 2019; Bagagiolo and Bauso, 2014; Kizilkale, Salhab, and R. P. Malhamé,
2019; F. Li, R. P. Malhamé, and Le Ny, 2016; Guéant, Lasry, and Lions, 2011; Achdou, Giraud,
et al., 2016; Chan and Sircar, 2017; Graber and Bensoussan, 2018), security and communication
(Mériaux, Varma, and Lasaulce, 2012; Samarakoon et al., 2015; Hamidouche et al., 2016; C.

163

Complements on Chapter 2

Yang et al., 2017; Kolokoltsov and Bensoussan, 2016; Kolokoltsov and Malafeyev, 2018), traffic
modeling (Bauso, X. Zhang, and Papachristodoulou, 2016; Salhab, Le Ny, and R. P. Malhamé,
2018; K. Huang et al., 2019; Tanaka et al., 2020; Cabannes et al., 2021) or engineering (Djehiche,
Tcheukam Siwe, and Tembine, 2017).

A.2 An introduction to MFGs in OpenSpiel

We distinguishmodels (games or environments in the sense of RL) and algorithms. Intuitively,
a game contains everything that is needed to define the model, whereas an algorithm is
dedicated to computing a solution to the problem.

For now, OpenSpiel focuses primarily on the evolutive setting. The stationary setting is
indirectly supported through transforming stationary games into evolutive ones, and other
settings could also be implemented. In the sequel, we restrict our attention to evolutive MFGs.

A.2.1 Models

Games can be implemented in C++ or in python. We discuss here the implementation
in python, but implementation in C++ follows the same lines. The games are located in
open_spiel/tree/master/open_spiel/python/mfg/games. To compute the evolution of one
player’s state, the dynamics can be viewed as sequence of nodes. One round consists in updat-
ing the representative player’s state and the mean field state. For the sake of consistency with
other games implemented in OpenSpiel, we represent this evolution using the notion of player.
The idea is that each player influences one transition between two nodes, in turn. For MFGs,
the representative player and the population are encoded as two different players, respectively
called DEFAULT_PLAYER_ID and MEAN_FIELD. Furthermore, the randomness appearing in the
dynamics is also encoded as a player, called CHANCE. This is the main difference with the way
MFGs are presented in this survey (and more generally in the literature). Randomness at initial
time is also encoded as an action of the chance player.

Another difference is that the end of the game (e.g., the finite horizon) is encoded through
the notion of terminal state. The game starts from an initial state and runs until a terminal state
is reached. This can be used to represent finite-horizon MFGs by considering that the state of
the game is not only the state of the representative player but also the time index. In this way,
we can define the terminal states of the game as all the states for which the time index is equal
to the time horizon.

164

A.2 An introduction to MFGs in OpenSpiel

From an implementation viewpoint, we stress the following points. We can use the
crowd_modeling1 game as typical example.

• The two main building blocks are:
– One class for the game, which inherits from pyspiel.Game.
– One class for the state, which inherits from pyspiel.State

• The state’s evolution is implemented in the state’s class.

• The basic order of nodes is:

CHANCE
_apply_action−−−−−−−−−→ MEAN_FIELD

update_distribution−−−−−−−−−−−−−→ DEFAULT_PLAYER_ID
_apply_action−−−−−−−−−→ CHANCE . . .

where wewrite over the arrow themethod that is used for the update. These twomethods
are:

– _apply_action: it takes an action as an input and uses it to update the state; notice
that not only the representative player but also the can player can take actions, the
actions of the chance player representing the randomness from the environment
that influences the evolution of the representative player’s state.

– update_distribution: it updates the distribution using the one that is passed as
an input (and which needs to be computed externally)

• Other functions of the state class include:
– chance_outcomes: it returns the probabilities of all the actions when at a chance
node; this can be viewed as the (fixed) policy of the chance player

– _legal_actions: it returns the actions are valid in the current state; this can be
used to forbid some actions; for example, in a grid world, some movements can be
forbidden due to the presence of obstacles

– _rewards: it computes the reward of the representative player in the current state

A.2.2 Algorithms

The algorithms for MFGs are located in:
open_spiel/tree/master/open_spiel/python/mfg/algorithms.

To implement algorithms, some important auxiliary files are:
• greedy_policy.py: allows to compute the greedy policy with respect to a Q-function.

1https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/mfg/
games/crowd_modelling.py

165

https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/mfg/games/crowd_modelling.py
https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/mfg/games/crowd_modelling.py

Complements on Chapter 2

• distribution.py: the class DistributionPolicy contains a tabular representation of a
distribution associated to a given policy.

• nash_conv.py: computes the exploitability of a policy.

• policy_value.py: the class PolicyValue allows to compute the value of a policy.
We discuss here the fictitious play algorithm as an example.
At the moment, existing algorithms for MFGs in OpenSpiel are:
• Fictitious play as introduced in Elie, Perolat, et al., 2020 (based on the continuous MFGs

version of Cardaliaguet and Hadikhanloo, 2017): see fictitious_play.py; it also covers
fixed point (damped fixed point) with learning_rate equal to 1.0 (resp. in (0, 1)) in the
iteration method

• Onlinemirror descent as introduced in Perolat, Perrin, et al., 2021: see mirror_descent.py

• Deep RL fictitious play with average neural network as introduced in Lauriere et al., 2022:
see average_network_fictitious_play.py

• Deep Munchausen Online Mirror Descent as introduced in Lauriere et al., 2022: see
munchausen_deep_mirror_descent.py

166

Appendix B

Complements on Chapter 4

B.1 Continuous Time Fictitious Play in Finite Horizon

In this section, we prove the Fictitious Play convergence result in the absence of common noise.
For the sake of clarity, we will write:

rπ(x, µ) = Ea∼π(.|x) [r(x, a, µ)] and pπ(x′|x) = Ea∼π(.|x)
[
p(x′|x, a)

]
for the rest of this section.

First, we prove the following property, which stems from monotonicity.

Property 1. Let f be a smooth enough function and let assume that the ODE µ̇ = f(µ) (with µ̇ = d
dtµ)

has a solution (µt)t≥0 = (µt
n(x))t≥0,x∈X . If the game is monotone, then:

∑
x∈X

< ∇µr̄(x, µ), µ̇ > µ̇(x) ≤ 0.

Proof. The monotonicity condition implies that, for all τ ≥ 0, we have:
∑
x∈X

(µt(x)− µt+τ (x))(r̄(x, µt)− r̄(x, µt+τ)) ≤ 0.

Thus: ∑
x∈X

µt(x)− µt+τ (x)
τ

r̄(x, µt)− r̄(x, µt+τ)
τ

≤ 0.

The result follows when τ → 0.

Property 2. Let π̂t = (π̂t
n)n=0,...,N be a sequence of time-dependent policies and let

µπ̂t = (µπ̂t

n (x))n=0,...,N,x∈X

167

Complements on Chapter 4

be the sequence of their distributions over states. Let us denote, for all t, n, x, µ̄t
n(x) = 1

t

t∫
s=0

µπ̂s

n (x)ds.
Then, the policy generating this average distribution is:

π̄t
n(a|x) =

t∫
s=0

µπ̂s

n (x)π̂s
n(a|x)ds

t∫
s=0

µπ̂s

n (x)ds
. (B.1)

Note that
t∫

0
µπ̂s

n (x)ds can be chosen to be strictly positive as one can choose an arbitrary policy on the
time interval [0, 1] (for example, the uniform policy).

Or, more simply, one can write:

µ̄t
n(x)π̄t

n(a|x) = 1
t

t∫
s=0

µπ̂s

n (x)π̂s
n(a|x)ds. (B.2)

Moreover, we have:

˙̄µt
n(x)π̄t

n(a|x) + µ̄t
n(x) ˙̄πt

n(a|x) = 1
t

[
µπ̂t

n (x)π̂t(a|x)− µ̄π̂t

n (x)π̄t
n(a|x)

]
. (B.3)

Proof. Let us start with the following equality, which holds by definition of the dynamics:

µπ̂s

n+1(x′) =
∑
x∈X

∑
a∈A

p(x′|x, a)π̂s
n(a|x)µπ̂s

n (x). (B.4)

Then, taking on both sides the average over the Fictitious Play time yields:

1
t

t∫
s=0

µπ̂s

n+1(x′)ds =
∑
x∈X

∑
a∈A

p(x′|x, a)1
t

t∫
s=0

π̂s
n(a|x)µπ̂s

n (x)ds. (B.5)

The left hand side is µ̄t
n+1(x′) by definition, and the time average in the right hand side can

be written as:

1
t

t∫
s=0

π̂s
n(a|x)µπ̂s

n (x)ds =

t∫
s=0

π̂s
n(a|x)µπ̂s

n (x)ds

t∫
s=0

µπ̂s

n (x)ds

1
t

t∫
s=0

µπ̂s

n (x)ds = µ̄π̂t

n (x)π̄t
n(a|x).

168

B.1 Continuous Time Fictitious Play in Finite Horizon

Combining the terms, we obtain:

µ̄t
n+1(x′) =

∑
x∈X

∑
a∈A

p(x′|x, a)µ̄π̂t

n (x)π̄t
n(a|x),

which proves that the policy π̄t
n defined in (B.1) indeed generates µ̄t

n. The other equalities in
the statement can be deduced from here readily.

Based on the above properties, we now proceed to the proof of the convergence of Fictitious
Play (Theorem 4.1) in the finite horizon case.

Proof of Theorem 4.1. To alleviate the notation, given a policy π, we denote:

rπ(x, µ) =
∑

a

π(a|x)r(x, a, µ).

We start by noticing that, thanks to the structure of the reward coming from the monotonicity
assumption,

∇µr
πBR,t

n (x, µ̄t
n) = ∇µr̄(x, µ̄t

n) and∇µr
πn(x, µ̄t

n) = ∇µr̄(x, µ̄t
n). (B.6)

Moreover, from Property 2 with π replaced by π̂BR and µπ̂t replaced by µBR,t, we obtain (B.2).
Dropping the overlines to alleviate the presentation (so µt and πt denote respectively the
average sequence of distributions and the average sequence of policies), it implies:

µt
n(x) d

dt
πt

n(a|x) = 1
t
µBR,t

n (x)[πBR,t
n (a|x)− πt

n(a|x)]. (B.7)

Moreover, recall that:
d

dt
µt

n(x) = 1
t

[
µBR,t

n (x)− µt
n(x)

]
. (B.8)

From the above observations, we deduce successively:

d

dt
ϕ(πt) = d

dt

[
max

π′
J(m0, π

′, µt)− J(m0, π
t, µt)

]

=
N∑

n=0

∑
x∈X

[
< ∇µr

πBR
n (x, µt

n), d
dt
µt

n > µBR,t
n (x)− < ∇µr

πn(x, µt
n), d

dt
µt

n > µt
n(x)

− < d

dt
πt

n(.|x), r(x, ., µt
n) > µt

n(x)− rπn(x, µt
n) d
dt
µt

n(x)
]

=
N∑

n=0

∑
x∈X

[
t < ∇µr̄(x, µt

n), d
dt
µt

n >
1
t

(
µBR,t

n (x)− µt
n(x)

)]

+
N∑

n=0

∑
x∈X

[1
t
rπn(x, µt

n)µt
n(x)− 1

t
rπBR,t

n (x, µt
n)µBR,t

n (x)
]

169

Complements on Chapter 4

= −1
t
ϕ(πt) +

N∑
n=0

∑
x∈X

[
t < ∇µr̄(x, µt

n), d
dt
µt

n >
d

dt
µt

n(x)
]
,

where the third equality holds by (B.6), (B.7) and (B.8). Note that the product< ∇µr̄(x, µt
n), d

dtµ
t
n >

in the last sum above is non-positive thanks to Property 1 (i.e., thanks to the monotonicity
assumption). Hence, the conclusion holds.

B.2 Continuous Time Fictitious Play in Finite Horizon with Com-
mon Noise

In this section, we prove the convergence result of continuous time fictitious play in finite hori-
zon MFGs with common noise (Theorem 4.2). The reasoning is similar as in the finite horizon
case without common noise (Section B.1). The only difference comes from the conditioning
with the common noise.

Proof of Theorem 4.2. For any policy, recall that we write πt
n,Ξ(a|x) = πt

n(a|x,Ξ).
We first note that, by the structure of the reward function, we have,

∇µr
πBR,t

n,Ξ.ξ(x, µt
n|Ξ) = ∇µr̄(x, µt

n|Ξ) and∇µr
πn,Ξ.ξ(x, µt

n|Ξ) = ∇µr̄(x, µt
n|Ξ).

Moreover,

− < d

dt
πt

n,Ξ.ξ(.|x), r(x, ., µt
n|Ξ) > µt

n|Ξ(x) = −1
t
rπBR,t

n,Ξ.ξ(x, µt
n|Ξ)µBR,t

n|Ξ(x)+ 1
t
rπn,Ξ.ξ(x, µt

n|Ξ)µBR,t
n|Ξ(x)

and

−rπn,Ξ.ξ(x, µt
n|Ξ) d

dt
µt

n|Ξ(x) = 1
t
rπn,Ξ.ξ(x, µt

n|Ξ)µt
n|Ξ(x)− 1

t
rπn,Ξ.ξ(x, µt

n|Ξ)µBR,t
n (x)

Using the definition of exploitability together with the above remarks, we deduce:

d

dt
ϕ(πt) = d

dt

[
max

π′
J(m0,π

′,µπ)− J(m0,π,µ
π)
]

(B.9)

=
NT∑
n=0

∑
Ξ,|Ξ|=n

∑
ξ

P (Ξ.ξ)
∑
x∈X

[
< ∇µr

πBR
n,Ξ.ξ,ξ(x, µt

n|Ξ), d
dt
µt

n|Ξ > µBR,t
n,Ξ.ξ(x) (B.10)

− < ∇µr
πn,Ξ.ξ(x, µt

n|Ξ, ξ),
d

dt
µt

n|Ξ > µt
n|Ξ(x) (B.11)

− < d

dt
πt

n,Ξ.ξ(.|x), r(x, ., µt
n|Ξ) > µt

n|Ξ(x)− rπn,Ξ.ξ(x, µt
n|Ξ) d

dt
µt

n|Ξ(x)
]

(B.12)

170

B.3 Continuous Time Fictitious Play: the γ-discounted case

=
NT∑
n=0

∑
Ξ,|Ξ|=n

∑
ξ

P (Ξ.ξ)
∑
x∈X

[
t < ∇µr̄(x, µt

n|Ξ)), d
dt
µt

n|Ξ >
1
t

(
µBR,t

n|Ξ(x)− µt
n|Ξ(x)

)]
(B.13)

+
NT∑
n=0

∑
Ξ,|Ξ|=n

∑
ξ

P (Ξ.ξ)
∑
x∈X

[1
t
rπn,Ξ.ξ(x, µt

n|Ξ)µt
n|Ξ(x)− 1

t
rπBR,t

n,Ξ.ξ(x, µt
n|Ξ)µBR,t

n|Ξ(x)
] (B.14)

= −1
t
ϕ(πt) +

NT∑
n=0

∑
Ξ,|Ξ|=n

∑
ξ

P (Ξ.ξ)
∑
x∈X

[
t < ∇µr̄(x, µt

n|Ξ), d
dt
µt

n|Ξ >
d

dt
µt

n|Ξ(x)
]
, (B.15)

where the last term is non-positive by Property 1 (i.e., thanks to the monotonicity assumption).

Experiments: A More Complex Setting for the Beach Bar Process with common
noise

Environment. Following the first setting of the paper where the bar could only close at one
given time step, we now introduce a second more complex setting, bringing also of common
noise in the beach bar process. Namely, the bar has a probability p to close at every time step
up to a point (in practice, this point is half of the horizon: NT

2). Once the bar is closed, it does
not open again. This setting gives NT

2 + 1 possible realizations of the common noise: (1) the
case where the bar never closes and (2) the NT

2 cases where it closes at any of the first NT
2 time

steps. For the sake of clarity, we only present the evolution of the distributions when the bar
finally remains open after NT

2 time steps, and when it closes at the NT
2

th time step.

Numerical results. Similarly to the first setting, we take |X | = 100 states and NT = 30 time
steps. As the bar has a probability p = 0.5 to close at every time step until NT

2 , the distribution is
flatter to anticipate the fact that people might need to spread. We can see that both model-based
and model-free approaches converge to a Nash equilibrium and that model-based converges
faster than model-free.

B.3 Continuous Time Fictitious Play: the γ-discounted case

Surprisingly, the analysis also holds in the γ-discounted case with again the same style of
reasoning. However, the distribution considered will be the γ-weighted occupancy measure
instead of the distribution over states. In this section, we reintroduce the notations and we
prove similar continuous time FP convergence results.

Consider, given the following:
• a finite state space X (x ∈ X),

171

Complements on Chapter 4

(a) Model-based, the bar stays open (b)Model-based, the bar closes

100 101 102

Log(iterations)

10 3

10 2

10 1

Backward Induction
Q-learning

(c) Exploitability

(d)Model-free, the bar stays open (e) Model-free, the bar closes

Figure B.1 – 2nd common noise setting, the bar has a probability p = 0.5 to close at every time step
before N

2 .

172

B.3 Continuous Time Fictitious Play: the γ-discounted case

• a finite action space A (a ∈ A),

• the set of distributions over state is ∆X (µ ∈ ∆X),

• a reward function r(x, a, µ),

• the transition function p(x′|x, a),

• a policy: π(a|x).
We will write:

• pπ(x′|x) = Ea∼π(.|x)[p(x′|x, a)],

• rπ(x, µ) = Ea∼π(.|x)[r(x, a, µ)],
The cumulative γ-discounted reward is defined as:

Jγ(x0, π, µ) = E
[+∞∑

n=0
γnr(xn, an, µ) | xn+1 ∼ p(.|xn, an), an ∼ π(.|xn)

]

Useful properties. We have µπ
γ (x′) = m0(x′) + γ

∑
x∈X

pπ(x′|x)µπ
γ (x) (in vectorial notations

µπ
γ

⊤ = m⊤
0 (I − γP π)−1).

The γ-discounted reward can be written as: Jγ(x0, π, µ) =
∑

x∈X
µπ

γ (x)rπ(x, µ).
We then have a similar formula for the policy generating the average distribution µ̄π

γ (x, t) =

1
t

t∫
s=0

µπ
γ (x, s)ds can be written π̄γ(a|x, t) =

t∫
s=0

µπ
γ (x,s)π(a|x,s)ds

t∫
s=0

µπ
γ (x,s)ds

.

Finally, we can write:

µ̄π
γ (x, t)π̄γ(a|x, t) = 1

t

t∫
s=0

µπ
γ (x, s)π(a|x, s)ds (B.16)

And:

˙̄µπ
γ (x, t)π̄γ(a|x, t) + µ̄π

γ (x, t) ˙̄πγ(a|x, t) = 1
t

[
µπ

γ (x, t)π(a|x, t)− µ̄π
γ (x, t)π̄γ(a|x, t)

]
. (B.17)

Fictitious Play in MFGs. In the γ-discounted case, Fictitious Play can be written as (for
t ≥ 1):

µ̇(x, t) = 1
t
(µBR

γ (x, t)− µ(x, t))

where µBR
γ (x, t) is the distribution of a best response against µ(x, t) of policy πBR(a|x, t). In this

section, we will write π(a|x, t) the policy of the distribution µ(x, t). From Eq.(B.17), we can
deduce the following property:

173

Complements on Chapter 4

Property 3.
∀n, π̇(a|x, t)µ(x, t) = 1

t
µBR

γ (x, t)[πBR(a|x, t)− π(a|x, t)]

Proof. Such representation directly follows from Eq.(B.17).

We are now in position to turn to the Lyapounov congerging property of the Fictitious
process.

Property 4. Under themonotony assumption, we can show that the exploitability (ϕ(t) = max
π′

Jγ(x0, π
′, µπ)−

Jγ(x0, π, µ
π)) is a strong Lyapunov function of the system:

ϕ̇(t) ≤ −1
t
ϕ(t)

Proof.

ϕ̇(t)

=
∑
x∈X

[With ∇µrπBR (x,µ(t))=∇µr̄(x,µ(t)) and ∇µrπ(x,µ(t))=∇µr̄(x,µ(t))︷ ︸︸ ︷
< ∇µr

πBR(x, µ(t)), µ̇(t) > µBR
γ (x, t)− < ∇µr

π(x, µ(t)), µ̇(t) > µ(x, t)

− < π̇(.|x, t), r(x, ., µ(t)) > µ(x, t)︸ ︷︷ ︸
=− 1

t
rπBR (x,µ(t))µBR

γ (x,t)+ 1
t
rπ(x,µ(t))µBR

γ (x,t)

−rπ(x, µ(t))µ̇(x, t)︸ ︷︷ ︸
= 1

t
rπ(x,µ(t))µ(x,t)− 1

t
rπ(x,µ(t))µBR

γ (x,t)

]

=
∑
x∈X

[
t < ∇µr̄(x, µ(t))), µ̇(t) > [1

t
(µBR

γ (x, t)− µ(x, t))]
]

+
∑
x∈X

[1
t
rπ(x, µ(t))µ(x, t)− 1

t
rπBR(x, µ(t))µBR

γ (x, t)
]

= −1
t
ϕ(t) +

∑
x∈X

[
t < ∇µr̄(x, µ(t))), µ̇(t) > µ̇(x, t))

]
︸ ︷︷ ︸

≤0 by monotony

(B.18)

≤ −1
t
ϕ(t) (B.19)

Experiment: the Beach Bar Process with γ-discounted reward.

Environment. We implement the beach bar process in the γ-discounted setting.

Numerical results. We set γ = 0.9. The algorithm estimating the best response to a fixed
distribution µ is Policy Iteration in the case of the model based approach and Q-learning in the
model-free. As the flow of distributions converges towards the stationary distribution which

174

B.3 Continuous Time Fictitious Play: the γ-discounted case

is not time-dependant, we only plot the final distribution obtained after 300 time steps (and
not the evolution throughout time as before). In particular, we notice that model-based and
model-free approaches converge towards the same distribution. We can also observe that the
convergence rate of exploitability is O(1/t) for the model-based and slower for the model-free
approach.

0 20 40 60 80 100
States

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016
Policy Iteration

(a) Model-based

0 20 40 60 80 100
States

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016 Q-learning

(b)Model-free

100 101 102

Log(iterations)

10 1

100

101 Backward Induction
Q-learning

(c) Exploitability

Figure B.2 – Final distributions and exploitability in the γ-discounted case

175

Complements on Chapter 4

B.4 Algorithms

Algorithm B.1: Q-Learning in Mean Field Games
1 input :Start with a fixed distribution µ = (µk)k and Qk = 0 and ε and the learning rate

α.
2 for k = 0, . . . ,K: do
3 sample xk

0 ∼ m0 ;
4 for n = 0, . . . , NT : do
5 ak

n is ε-greedy with respect to Qk(xk
n, .).;

6 if not terminal sample xk
n+1 according to p(.|xk

na
k
n).;

7 Qk+1
n (xk

n, a
k
n) = (1− α)Qk+1

n (xk
n, a

k
n) + α[r(xk

n, a
k
n, µk−1) + maxbQ

k
n+1(xk

n+1, b)];
8 return π∗ a greedy policy with respect to QK

Algorithm B.2: Empirical Density Estimation
1 input :Start with a fixed policy π and an initial distributionm0 = µπ

0
2 for k = 0, . . . ,K: do
3 sample xk

0 ∼ m0 ;
4 for n = 0, . . . , NT : do
5 ak

n with respect to Qk(xk
n, .).;

6 if not terminal sample xk
n+1 according to p(.|xk

na
k
n).

7 Finally ∀x, n ∈ X × {0, . . . , N} µ̂π
n(x) = 1

K+1
∑K

k=0 1xk
n=x;

8 return µ̂π
n

Algorithm B.3: Backward Induction in Mean Field Games
1 input :Start with a fixed distribution µ = (µk)k and a terminal Q-function

Qµ
NT

(x, a) = r(x, a, µNT
)

2 for n = NT , . . . , 0: do
3 π∗

k is greedy with respect to Qµ
k(x, a). ;

4 ∀a, x ∈ A× X Qµ
n−1(x, a) = r(x, a, µn−1) +

∑
x′∈X

p(x′|x, a) max
b
Qµ

n(x′, b) ;

5 return π∗

Algorithm B.4: Density Estimation
1 input :Start with a fixed policy π and an initial distributionm0 = µπ

0
2 for n = 1, . . . , NT : do
3 ∀x ∈ X µπ

n(x′) =
∑

x,a∈X ×A
πn−1(a|x)p(x′|x, a)µπ

n−1(x) ;

4 return µπ

176

B.5 Linear Quadratic Model

B.5 Linear Quadratic Model

B.5.1 Description

For the sake of completeness, we explain here how we obtained the benchmark solution for
the LQ problem. The original model has been introduced by Carmona, Fouque, and L.-H. Sun
(2015b) and corresponds to the continuous time and continuous spaces version of the LQ
problem implemented in Section 4.3. Each player can influence their speed with a control
denoted by αt. The dynamics of the players is linear in their state, their control and the mean
position, denoted by m̄t. It is affected by an idiosyncratic source of randomness W = (Wt)t≥0

as well as a common noise in the form of a Brownian motion W0 = (W 0
t)t≥0. Given a flow of

conditionalmean positions µ̄ = (µ̄t)t∈[0,T] adapted to the filtration generated by W0, the cost
function of a representative player is defined as:

J(a; µ̄) = E
[∫ T

t=0

(1
2a

2
t − qat(µ̄t −Xt) + κ

2 (µ̄t −Xt)2
)
dt+ cterm

2 (µ̄T −XT)2
]

(B.20)

Subject to the dynamics:

dXt = [K(µ̄t −Xt) + at]dt+ σ

(
ρ dW 0

t +
√

1− ρ2dWt

)
.

At equilibrium, we must have µ̄t = E[Xt|(W 0
s)s≤t] for every t ∈ [0, T].

Here, ρ ∈ [0, 1] is a constant parameterizing the correlation between the noises, and
q, κ, c, a, σ are positive constants. We assume that q ≤ κ2 so that the running cost is jointly
convex in the state and the control variables.

The terms (µ̄t −Xt) in the dynamics and the cost function attract the process towards the
mean µ̄t. For the interpretation of this model in terms of systemic risk, the reader is referred
to Carmona, Fouque, and L.-H. Sun (2015b). The model is of linear-quadratic type and has
an explicit solution through a Riccati equation, which we use as a benchmark. The optimal
control at time t is a linear combination ofXt and µ̄t, whose coefficients depend on time. More
precisely, it is given by:

at = (q + ηt)(µ̄t −Xt),

where η solves the following Riccati ODE:

η̇t = 2(a+ q)ηt + η2
t − (κ− q2), ηT = cterm,

177

Complements on Chapter 4

whose solution is explicitly given by:

ηt =
−(κ− q2)

(
e(δ+−δ−)(T −t) − 1

)
− c

(
δ+e(δ+−δ−)(T −t) − δ−

)
(
δ−e(δ+−δ−)(T −t) − δ+)− c (e(δ+−δ−)(T −t) − 1

)
where δ± = −(a+ q)±

√
R with R = (a+ q)2 + (κ− q2) > 0.

178

B.6 Common Success Metrics in Mean Field Games

B.6 Common Success Metrics in Mean Field Games

The optimal value function satisfies the recursive equation:

V ∗,µ
NT

(x) = r(x, µNT
), V ∗,µ

n−1(x) = max
a

r(x, a, µn−1) +
∑

x′∈X
p(x′|x, a)V ∗,µ

n (x′)

 .
In particular, by definition:

max
π′

J(m0, π
′, µπ) = Ex∼m0 [V ∗,µπ

0 (x)]

And:
J(m0, π, µ

π) = Ex∼m0 [V π,µπ

0 (x)].

Let (x, µ) 7→ a∗(x, µ) be such that for every n and (reasonable?) µ:

V ∗,µ
n−1(x) = r(x, a∗(x, µn−1), µn−1) +

∑
x′∈X

p(x′|x, a∗(x, µn−1))V ∗,µ
n (x′), (B.21)

i.e. a∗ is an optimal control. Then, one way to check whether the value function we learned
(e.g., deduced from the Q-table) is a good approximate solution, is to compute the residual
in the fixed point equation (B.21). In other words, if the learned value function is Ṽ and the
policy is π with associated distribution µπ, then, we compute:

Ṽn−1(x)−

r(x, a∗(x, µπ
n−1), µπ

n−1) +
∑

x′∈X
p(x′|x, a∗(x, µπ

n−1))Ṽn(x′)

for every n, x. Taking the norm over (n, x) ∈ {1, . . . , N} × X provides a metric to assess the
convergence of the value function.

Link with fixed-point iterations. One of the most basic methods to compute a MFG equi-
librium is to iteratively solve the forward equation for the distribution and the backward
equation for the value function. A typical stopping criterion is that the distribution and the
value function do not change too much between two successive iterations. We argue that this
property implies an upper bound on the exploitability. To be specific, say that at iteration k,
given a value function V k and its associated optimal control πk, we compute the induced flow
of distributions µk = µπk , and then we compute the value function V k+1 and the best response
πk+1 of an infinitesimal player against this flow of distributions. Note that:

max
π′

J(m0, π
′, µk) = max

π′
J(m0, π

′, µπk) = J(m0, π
k+1, µπk) =

∑
x

V k+1
0 (x)m0(x)

179

Complements on Chapter 4

And:
J(m0, π

k, µk) =
∑

x

V k
0 (x)m0(x).

Hence, if we know that ∥V k+1 − V k∥∞ := supx,n |V k+1
n (x)V k

n (x)| < ε, then, in particular,
|V k+1

0 (x)− V k
0 (x)| < ε for all x and hence the exploitability is at most ε too. Conversely, under

suitable regularity assumptions, we can expect that a small exploitability implies V k+1 ≈ V k

not only at time 0 but at every time.

180

Appendix C

Complements on Chapter 5

C.1 Separability and Monotonicity Imply Weak Monotonicity

Proof of Lemma 2. Let us assume that the reward is separable ri(xi, ai, µ) = r̄i(xi, ai) + r̃i(xi, µ)
and that it follows the monotonicity condition:

∀µ ̸= µ′,
∑

i

∑
x∈X

(µi(xi)− µ′i(xi))(r̃i(xi, µ)− r̃i(xi, µ′)) ≤ 0

. Then, we have:

Np∑
i=1

[
J i(π, µπ)− J i(π′, µπ)− J i(π, µπ′) + J i(π′, µπ′)

]
=

Np∑
i=1

NT∑
n=0

∑
(xi,ai)∈X ×A

[
µi,πi

n (xi)πi
n(ai|xi)ri(xi, ai, µπ

n)− µi,π′i

n (xi)π′i
n(ai|xi)ri(xi, ai, µπ

n)

− µi,πi

n (xi)πi
n(ai|xi)ri(xi, ai, µπ′

n) + µi,π′i

n (xi)π′i
n(ai|xi)ri(xi, ai, µπ′

n)
]

=
Np∑
i=1

NT∑
n=0

∑
(xi,ai)∈X ×A

(
µi,πi

n (xi)πi
n(ai|xi)− µi,π′i

n (xi)π′i
n(ai|xi)

)(
ri(xi, ai, µπ

n)− ri(xi, ai, µπ′
n)
)

=
Np∑
i=1

NT∑
n=0

∑
(xi,ai)∈X ×A

(
µi,πi

n (xi)πi
n(ai|xi)− µi,π′i

n (xi)π′i
n(ai|xi)

)(
r̃i(xi, µπ

n)− r̃i(xi, µπ′
n)
)

=
Np∑
i=1

NT∑
n=0

∑
xi∈X

(
µi,πi

n (xi)− µi,π′i

n (xi)
)(
r̃i(xi, µπ

n)− r̃i(xi, µπ′
n)
)
≤ 0.

With a similar proof, we obtain the corresponding property with strict inequality.

181

Complements on Chapter 5

C.2 Multi-Population Reward

Let us suppose:

ri(xi, ai, µ) = r̄i(xi, ai) + r̂i(xi, µi) +
∑
j ̸=i

µj(xi)r̂i,j(xi)

︸ ︷︷ ︸
=r̃i(xi,µ)

With ∀x ∈ X , r̂i,j(x) = −r̂j,i(x) and if ∀µ ̸= µ′, ∀i,
∑

x∈X

(
µi(xi)−µ′i(xi)

)(
r̂i(xi, µi)−r̂i(xi, µ′i)

)
≤

0.

∑
i

∑
x∈X

(µi(xi)− µ′i(xi))(r̃i(xi, µ)− r̃i(xi, µ′))

=
∑

i

∑
x∈X

(µi(xi)− µ′i(xi))(r̂i(xi, µi) +
∑
j ̸=i

µj(xi)r̂i,j(xi)− r̂i(xi, µ′i)−
∑
j ̸=i

µ′j(xi)r̂i,j(xi))

=
∑

i

∑
x∈X

(µi(xi)− µ′i(xi))(r̂i(xi, µi)− r̂i(xi, µ′i))︸ ︷︷ ︸
≤0

+
∑

i

∑
j ̸=i

∑
x∈X

(µi(xi)− µ′i(xi))(µj(xi)− µ′j(xi))r̂i,j(xi)

︸ ︷︷ ︸
=0 since r̂i,j(x)=−r̂j,i(x)

≤ 0

182

C.3 Fictitious Play

C.3 Fictitious Play

We can extend the fictitious play algorithm of Perrin, Perolat, et al. (2020) to a multi-population
setting. In the multi-population case, the fictitious play process is defined as follows. Let first
picking 1 as an arbitrary but classical reference time. For t < 1, we consider a fixed uniform
policy for all representative player i at all time-step n denoted πi,br

n,t<1 and inducing a distribution
µi,br

n,t . We define ∀t ≥ 1 the distribution µi
n,t as:

∀i, n, µi
n,t(xi) = 1

t

t∫
s=0

µi,br
n,s (xi)ds ,

where, for all t ≥ 1, µi,br
n,t is the distribution of a best response policy πi,br

n,t to µi
n,t(xi). The policy

πi
n,t of the distribution µi

n,t verifies the following equation (see Perrin, Perolat, et al. (2020)):
for all i, n, xi, ai,

πi
n,t(ai|xi)

t∫
s=0

µi,br
n,s (xi)ds =

t∫
s=0

πi,br
n,s (ai|xi)µi,br

n,s (xi)ds

Theorem C.1. If a MP-MFG satisfies the weak monotony assumption, the exploitability is a strong
Lyapunov function of the Fictitious Play dynamical system, ∀t ≥ 1: d

dtϕ(πt) ≤ −1
tϕ(πt). Hence

ϕ(πt) = O(1
t).

In the following, we prove that under the weak monotonicity condition, the Fictitious Play
process converges to a NE.

First, we prove the following property, which stems from the weak monotonicity.

Property 5. Let f be a smooth enough function and let assume that the ODE ρ̇ = f(ρ) (with ρ̇ = d
dtρ)

has a solution (ρt)t≥0 = (ρt
n(x))t≥0,x∈X . If the game is weakly monotone, then:

Np∑
i=1

∑
xi,ai∈X ×A

⟨∇ρr
i(xi, ai, ρ), ρ̇⟩ρ̇i(xi, ai) ≤ 0.

Proof. The monotonicity condition implies that, for all τ ≥ 0, we have:

Np∑
i=1

∑
xi,ai∈X ×A

(ρi
t(xi, ai)− ρi

t+τ (xi, ai))(ri(xi, ai, ρt)− ri(xi, ai, ρt+τ)) ≤ 0.

Thus:
Np∑
i=1

∑
xi,ai∈X ×A

ρi
t(xi, ai)− ρi

t+τ (xi, ai)
τ

ri(xi, ai, ρt)− ri(xi, ai, ρt+τ)
τ

≤ 0.

183

Complements on Chapter 5

The result follows when τ → 0.

In the space of distributions over state actions, the fictitious play process can be expressed
as follows. First, we start with a distribution ρi

n,t following the balance equation on the state
action distributions:

∑
a′i∈A

ρi
n−1,t(x′i, a′i) =

∑
xi,ai∈X ×A

p(x′i|xi, ai)ρi
n,t(xi, ai).

And for t < 1, the policy πi
n,t(ai|xi) = ρi

n,t(xi,ai)∑
ai∈A

ρi
n,t(xi,ai) is the uniform policy whenever

∑
ai∈A

ρi
n,t(xi, ai) > 0.

A best response state action distribution to ρ is written ρi,br
n,t (xi, ai) (which will be assumed

to be equal to ρt for t < 1) and finally the Fictitious Play process on the state action distribution
is written as for all t ≥ 1:

ρi
n,t(xi, ai) = 1

t

t∫
0

ρi,br
n,s (xi, ai)ds.

The exploitability can then be written as:

ϕ(t) = max
ρ

[Np∑
i=1

NT∑
n=0

∑
xi,ai∈X ×A

ρi
n(xi, ai)ri(xi, ai, ρn,t)

]
−
[Np∑

i=1

NT∑
n=0

∑
xi,ai∈X ×A

ρi
n,t(xi, ai)ri(xi, ai, ρn,t)

]

Property 6. We have that d
dtρ

i
n,t(xi, ai) = 1

t

[
ρi,br

n,s (xi, ai) − ρi
n,t(xi, ai)

]
by taking the derivative of

ρi
n,t(xi, ai) = 1

t

t∫
0
ρi,br

n,s (xi, ai)ds on both sides.

Finally, we take the derivative of the exploitability and get:

d

dt
ϕ(t) = d

dt
max

ρ

[Np∑
i=1

NT∑
n=0

∑
xi,ai∈X ×A

ρi
n(xi, ai)ri(xi, ai, ρn,t)

]
− d

dt

[Np∑
i=1

NT∑
n=0

∑
xi,ai∈X ×A

ρi
n,t(xi, ai)ri(xi, ai, ρn,t)

]

=
[Np∑

i=1

NT∑
n=0

∑
xi,ai∈X ×A

ρi,br
n,t (xi, ai) d

dt

(
ri(xi, ai, ρn,t)

)]

−
[Np∑

i=1

NT∑
n=0

∑
xi,ai∈X ×A

(
ρi

n,t(xi, ai) d
dt

(
ri(xi, ai, ρn,t)

)
+ ri(xi, ai, ρn,t)

d

dt

(
ρi

n,t(xi, ai)
))]

184

C.3 Fictitious Play

=
[Np∑

i=1

NT∑
n=0

∑
xi,ai∈X ×A

[ρi,br
n,t (xi, ai)− ρi

n,t(xi, ai)]︸ ︷︷ ︸
=t d

dt

(
ρi

n,t(xi,ai)
)

d

dt

(
ri(xi, ai, ρn,t)

)
︸ ︷︷ ︸
=⟨∇ρri(xi,ai,ρn,t),ρ̇n,t⟩

]

−
[Np∑

i=1

NT∑
n=0

∑
xi,ai∈X ×A

ri(xi, ai, ρn,t)
d

dt

(
ρi

n,t(xi, ai)
)

︸ ︷︷ ︸
= 1

t

[
ρi,br

n,t (xi,ai)−ρi
n,t(xi,ai)

]
]

= t

Np∑
i=1

NT∑
n=0

∑
xi,ai∈X ×A

[d
dt

(
ρi

n,t(xi, ai)
)
⟨∇ρr

i(xi, ai, ρn,t), ρ̇n,t⟩
]

︸ ︷︷ ︸
≤0

− 1
t

[Np∑
i=1

NT∑
n=0

∑
xi,ai∈X ×A

[
ρi,br

n,t (xi, ai)− ρi
n,t(xi, ai)

]
ri(xi, ai, ρn,t)

]
︸ ︷︷ ︸

=ϕ(t)

≤ −1
t
ϕ(t).

185

Complements on Chapter 5

C.4 Online Mirror Descent Dynamics

Proof of Lemma 3. The Continuous Time Online Mirror Descent (CTOMD) algorithm is defined
as: for all t > 0, i ∈ {1, . . . , Np}, n ∈ {0, . . . , NT },

yi
n,t(xi, ai) =

t∫
s=0

Q
i,πi

s,µπs

n (xi, ai)ds,

πi
n,t(.|xi) = Γ(yi

n,t(xi, .)).

d

dt
H(yt) = d

dt

Np∑
i=1

NT∑
n=0

∑
xi∈X

µi,π∗
n (xi)

[
h∗(yi

n,t(xi, .))− h∗(yi,∗(xi, .))− ⟨πi,∗
n,t, y

i
n,t(xi, .)− yi,∗

n,t(xi, .)⟩
]

=
Np∑
i=1

NT∑
n=0

∑
xi∈X

µi,π∗
n (xi) d

dt

[
h∗(yi

n,t(xi, .))− h∗(yi,∗(xi, .))− ⟨πi,∗
n,t, y

i
n,t(xi, .)− yi,∗

n,t(xi, .)⟩
]

=
Np∑
i=1

NT∑
n=0

∑
xi∈X

µi,π∗
n (xi)

[d
dt
h∗(yi

n,t(xi, .))− ⟨πi,∗
n,t,

d

dt
yi

n,t(xi, .)⟩
]

=
Np∑
i=1

NT∑
n=0

∑
xi∈X

µi,π∗
n (xi)

[
⟨πi

n,t(.|xi)− πi,∗
n,t(.|xi), Qi,πi

t,µπt

n (xi, .)⟩
]

=
Np∑
i=1

NT∑
n=0

∑
xi∈X

µi,π∗
n (xi)

[
V

i,πi
t,µπt

n (xi)− ⟨πi,∗
n,t(.|xi), Qi,πi

t,µπt

n (xi, .)⟩
]

=
Np∑
i=1

NT∑
n=0

∑
xi∈X

µi,π∗
n (xi)

[
V

i,πi
t,µπt

n (xi)− ⟨πi,∗
n,t(.|xi), ri(xi, ., µπt) +

∑
x′i∈X

p(x′i|xi, ai)V i,πi
t,µπt

n+1 (x′i, .)⟩
]

=
Np∑
i=1

NT∑
n=0

[∑
xi∈X

µi,π∗
n (xi)V i,πi

t,µπt

n (xi)
]
−
[∑

xi∈X
µi,π∗

n (xi)⟨πi,∗
n,t(.|xi), ri(xi, ., µπt)

]
−
[∑

x′i∈X

V
i,πi

t,µπt

n+1 (x′i)
∑

xi,ai∈X ×A
µi,π∗

n (xi)πi,∗
n,t(ai|xi)p(x′i|xi, ai)

︸ ︷︷ ︸
=µi,π∗

n+1(x′i)

]

=
Np∑
i=1

NT∑
n=0

[∑
xi∈X

µi,π∗
n (xi)V i,πi

t,µπt

n (xi)
]
−

NT∑
n=0

[∑
x′i∈X

V
i,πi

t,µπt

n+1 (x′i)µi,π∗

n+1(x′i)
]

︸ ︷︷ ︸
=Ji(πi

t,µπt)

−
Np∑
i=1

NT∑
n=0

[∑
xi∈X

µi,π∗
n (xi)⟨πi,∗

n,t(.|xi), ri(xi, ., µπt)
]

︸ ︷︷ ︸
=Ji(πi,∗,µπt)

186

C.4 Online Mirror Descent Dynamics

=
Np∑
i=1

[
J i(πi

t, µ
πt)− J i(πi,∗, µπt)

]
= ∆J(πt, π

∗) + M̃(πt, π
∗).

187

Complements on Chapter 5

C.5 Weak monotonicity

Proof of Lemma 1. Consider two policies π, π′. Denote by µ = µπ, µ′ = µπ′ respectively the
induced distribution sequences. Let ρ, ρ′ be the associated joint distribution sequences:

ρi
n(xi, ai) = µi

n(xi)πi
n(ai|xi)

and likewise for ρ′. By the weak monotonicity, we have:

0 ≥
∑

i

∑
(xi,ai)∈X ×A

(ρi
n(xi, ai)−ρ′i

n(xi, ai))(ri(xi, ai, µn)−ri(xi, ai, µ′
n)) = ∆J(π, π′)+∆J(π′, π),

(C.1)
with

∆J(π, π′) =
∑

i

∑
(xi,ai)∈X ×A

(ρi
n(xi, ai)− ρ′i

n(xi, ai))ri(xi, ai, µn),

and
∆J(π′, π) =

∑
i

∑
(xi,ai)∈X ×A

(ρ′i
n(xi, ai)− ρi

n(xi, ai))ri(xi, ai, µ′
n).

From here, we deduce (5.2). Similarly, the strictly weak monotonicity implies a strict inequality
in (5.2).

C.6 Strictly weak monotonicity implies uniqueness

Proof of Proposition 1. Consider a strictly weakly monotone game. For the sake of contradiction,
assume that there exist two different Nash equilibria, say π, π′.

Proceeding as in the proof of Lemma 1, we obtain (C.1) with a strict inequality.
Note that ∆J(π, π′) corresponds to the difference between the reward of a typical player

following π when the population follows π and the reward of a typical player following π′

when the population still follows π, and vice versa for ∆J(π′, π). Moreover, π, π′ are Nash
equilibria, so we deduce that these two terms are non-negative, which yields a contradiction
with (C.1).

188

C.7 Online Mirror Descent Convergence

C.7 Online Mirror Descent Convergence

Proof of Theorem 5.1. Let Ξ be defined as :

Ξ(π∗, π) :=
Np∑
i=1

NT∑
n=0

∑
xi∈X

µi,π∗
n (xi)[Dh(πi,∗

n (xi, ·), πi
n(xi, ·))].

We pick π ∈ ∆A. If ∆J(π, π∗) + M̃(π, π∗) = 0 then, M̃(π, π∗) = 0 and we can deduce that
µπ = µπ∗ . This implies that π is a Nash as π and π∗ share the same distribution and thus the
reward of a best response against π or π∗ will be the same.

Let us suppose now that π is a Nash and ∆J(π, π∗) + M̃(π, π∗) < 0, then
Np∑
i=1

J i(πi, µπ)−

J i(πi,∗, µπ) < 0 meaning that there exists an i such that J i(πi, µπ)− J i(πi,∗, µπ) < 0. But as π
is a Nash, for all π′, i, we have J i(πi, µπ)− J i(π′i, µπ) ≥ 0 which is a contradiction.

Hence, if ∆J(π, π∗) + M̃(π, π∗) < 0 then π is not a Nash.
This proves that the Bregman divergence min

π∗∈Nash
Ξ(π∗, .) is a strict Lyapunov function of

the CTOMD system. Hereby, πt converges to the set of Nash equilibria.

Related to the hypothesis in Theorem 5.1, we can show the following:

Lemma 4. If a MP-MFG satisfies M̃(π, π′) < 0 if µπ ̸= µπ′ and 0 otherwise, then there is at most one
Nash equilibrium distribution.

Note that uniqueness of the equilibrium distribution does not imply uniqueness of the
equilibrium policy. This implication holds however under extra assumptions (e.g., some kind
of strict convexity of the cost function).

Proof. Consider a MP-MFG satisfying the assumption. Consider two Nash equilibria, say π, π′.
For the sake of contradiction, assume that they generate two different distributions µπ, µπ′ . We
have:

0 > M̃(π, π′)

=
Np∑
i=1

[
J i(πi, µπ) + J i(π′i, µπ′)− J i(πi, µπ′)− J i(π′i, µπ)

]
=

Np∑
i=1

[
J i(πi, µπ)− J i(π′i, µπ)

]
+

Np∑
i=1

[
J i(π′i, µπ′)− J i(πi, µπ′)

]
where both terms are non-negative because π and π′ are Nash equilibria. Hence we must have
µπ = µπ′ .

189

Complements on Chapter 5

C.8 Numerical Experiments

C.8.1 Garnet

Figure C.1 – 5 garnet sampled with param nx = 2000, na = 20, NT = 2000, sf = 10

Figure C.2 – 5 garnet sampled with param nx = 20000, na = 10, NT = 2000, sf = 10

Figure C.3 – 5 garnet sampled with param nx = 2000, na = 10, NT = 2000, sf = 10

Figure C.4 – Garnet Experiments performances

C.8.2 Building experiment

Building experiment performances

Building experiment solution

The full building evacuation dynamics over the 20 floors is presented in Figure C.9 below.

190

C.8 Numerical Experiments

Figure C.5 – Building Experiment performances

C.8.3 Crowd motion with randomly shifted point of interest

In this section, we discuss how to extend our results to the case of multi-population MFGs
with common noise. In the example of Section 5.4.3, the common noise corresponds to the
geographical shifts of the point of interest.

The action space and the state space are the same but the dynamics and the reward are
affected by a common noise sequence {ξn}0≤n≤N . We denote Ξn := {ξk}0≤k<n = Ξn−1.ξn−1 the
concatenation of the sequence Ξn−1 and the new noise ξn−1. By convention, we denote by Ξ0

the empty sequence {}. |Ξn| = n represents the total length of the sequence. The distribution
of ξn given the past sequence Ξn is denoted by P (.|Ξn). Here, ξ plays the role of a source or
randomness which affects both the reward r(x, a, µ, ξ) and the probability transition function
p(x′|x, a, ξ). It appears on top of the idiosyncratic randomness affecting each player. Policies
and population distributions are now functions of the common noise and denoted respectively
by πi

n(a|x,Ξ) and µi
n(x|Ξ) for population i. We will sometimes simply write πi

n|Ξ(a|x) and
µi

n|Ξ(x). Notice that the common noise is shared by all populations (we could also, with a
slight modification, consider noises which are common to players of a given population and
not shared with other populations). The Q function of the i-th population now satisfies the
following backward equation:

Qi,πi,µ
N (xi, ai|ΞN) = ri(xi, ai, µN |ΞN

, ξN)

Qi,πi,µ
n−1 (xi, ai|Ξn−1) =

∑
ξ

P (ξn−1 = ξ|Ξn−1)
[
ri(xi, ai, µn−1|Ξn−1 , ξ)

+
∑

x′i∈X

p(x′i|xi, ai, ξ)Ebi∼πi
n(.|x′i,Ξn−1.ξ)

[
Qi,πi,µ

n (xi, bi|Ξn−1.ξ)
]]
.

For each population, the evolution of the distribution is conditioned on the realization of
the common noise. It satisfies the forward equation: for all xi ∈ X , µi,πi

0|Ξ0
(x) = µi

0(x) and for all
x′i ∈ X ,

µi,πi

n+1|Ξn.ξn
(x′i) =

∑
(xi,ai)∈X ×A

πi
n(ai|xi,Ξn)p(x′i|xi, ai, ξn)µi,πi

n|Ξn
(xi)

191

Complements on Chapter 5

Figure C.6 – After a few timesteps Figure C.7 – Intermediate time

Figure C.8 – Almost at arrival timestep

Figure C.9 – Building Experiment solution (ground floor on the upper left corner)

for n ≤ N − 1. We denote µπ = (µi,πi)i∈{1,...,Np}.
The expected total reward for a representative player of population i using policy πi and

facing the crowd behavior given by µ is:

J i(πi, µ) = E
[NT∑

n=0
ri(xi

n, a
i
n, µn|Ξn

, ξn)
∣∣∣ xi

0 ∼ µi
0, a

i
n ∼ πi

n(.|xi
n, ξn), xi

n+1 ∼ p(.|xi
n, a

i
n, ξn), ξn ∼ P (.|Ξn)

]
.

192

C.8 Numerical Experiments

Continuous time Online Mirror Descent for MP-MFGs with common noise:

In this setting, the Continuous Time Online Mirror Descent (CTOMD) algorithm is defined
as: for all i ∈ {1, . . . , Np}, n ∈ {0, . . . , NT }, yi

n,0 = 0, and for all t ∈ R+,

yi
n,t(xi, ai|Ξn) =

t∫
0

Qi,πi
s,µπs

n (xi, ai|Ξn)ds, (C.2)

πi
n,t(.|xi,Ξn) = Γ(yi

n,t(xi, .|Ξn)). (C.3)

Our theoretical results naturally extend to this setting by following similar arguments as
the ones in Perrin, Perolat, et al. (2020).

C.8.4 Multi-population

Monotony of the multi-population reward

We prove rigorously that the MP-MFG reward is monotone. As r̃(x, a) = 0, the separability
condition is trivially verified. Furthermore, we have:

∑
i

∑
x∈X

(µi(x)− µ′i(x))(r̂i(x, µ)− r̂i(x, µ′)) =
∑

i

∑
x∈X

(µi(x)− µ′i(x))(− log(µi(x))+

∑
j ̸=i

µj(x)r̄i,j(x) + log(µi(x))−
∑
j ̸=i

µj(x)r̄i,j(x))

=
∑

i

∑
x∈X

(µi(x)− µ′i(x))(− log(µi(x)) + log(µ′i(x)))︸ ︷︷ ︸
(1)

+

∑
i

∑
x∈X

(µi(x)− µ′i(x))(
∑
j ̸=i

µj(x)r̄i,j(x)−
∑
j ̸=i

µj(x)r̄i,j(x))

︸ ︷︷ ︸
(2)

;

where we have:
• (1) ≤ 0 because ∀x,∀i, (µi(x)−µ′i(x))(− log(µi(x)) + log(µ′i(x))) ≤ 0 as log is an increas-

ing function;

• (2) = 0 because ∀i,∀j, i ̸= j, r̄i,j(x) = −r̄j,i(x).
Thus, ∑

i

∑
x∈X

(µi(x)− µ′i(x))(r̂i(x, µ)− r̂i(x, µ′)) ≤ 0.

193

Complements on Chapter 5

Multi-population performances

The performances of Fictitious Play and OMD for the multi-population chasing Mean Field
Game with different field topologies and initial distribution are presented in Figure C.16.

194

C.8 Numerical Experiments

Figure C.10 – Torus topology and corner initialization

Figure C.11 – Square topology and corner initialization

Figure C.12 – Donut topology and corner initialization

Figure C.13 – Torus topology and random initialization

Figure C.14 – Square topology and random initialization

Figure C.15 – Donut topology and random initialization

Figure C.16 – Multi-population experiments, performances with different topologies195

Appendix D

Complements on Chapter 6

D.1 More numerical tests

D.1.1 A Simple Example in Four dimensions

We illustrate in a simple four dimensional setting (i.e. two-dimensional positions and velocities
hence the total dimension is 4) how the agents learn to adopt similar velocities by controlling
their acceleration.

Here, we take εi
n ≡ 0 (no noise), and we define the reward as:

ri
n = fflock,i

β=0,n − ∥u
i
n∥22 + ∥vi

n∥22. (D.1)

We set β = 0 to have a intuitive example. The first term encourages the agent to adapt its
velocity to the crowd’s one, giving equal importance to all the agents irrespective of their
distance. The second term penalizes a strong acceleration and we added the last term (not
present in the original flocking model) to reduce the number of Nash equilibria and prevent
the agent to converge to a degenerate solution which consists in putting the whole crowd at a
common position with a null velocity.

As the velocity is bounded by 1 in our experiments, there are at least four obvious Nash
equilibria in terms of velocity that remain from reward (D.1): v̂i

n ≡ (−1,−1), (−1, 1), (1,−1)
and (1, 1), while the position is not important anymore and any distribution for the positions is
valid. Experimentally, we observe that if we start from a normal initial distribution vi

0 ∼ N (0, 1),
then the equilibrium found by Flock’n RL is randomly one of the four previous velocities.
However, if we set the initial velocities with a positive or negative bias, then we observe
experimentally that the corresponding equilibrium is reached. Thus, as we could expect, the
Nash equilibria found by the algorithm depends on the initial distribution.

197

Complements on Chapter 6

In Figure D.1, we can see that the agents have adopted the same velocities and the perfor-
mance matrix indicates that the policy learned at each step of Flock’n RL tends to perform
better than previous policies. The exploitablity decreases quickly because Flock’n RL algorithm
learns during the first iterations an approximation of a Nash equilibrium.

(a) Initial positions and ve-
locities (b) At convergence

0 5 10 15 20 25 30
Approximate Best Response

0

5

10

15

20

25

30

M
ea

n
di

st
rib

ut
io

n

0

10

20

30

40

(c) Performance matrix
(d)Approximate exploitabil-
ity

Figure D.1 – Flocking with an intuitive example

D.1.2 A Simple Example in Six Dimensions

We consider the simple example defined with reward from Eq. (D.1) but now we add an
additional dimension for the position and the velocity, making the problem six-dimensional.
As before, the agents are still encouraged to maximize their velocities. We set β = 0 and we do
not put any noise on the velocity dynamics. We can notice that experimentally a consensus
is reached by the agents as they learn to adopt the same velocities (Figure D.2b), even if the
agents start from a random distribution in terms of positions and velocities (Figure D.2a). The
performance matrix (Figure D.2c) highlights that the best response improves until iteration
40, which explains why there is a bump in performance in the exploitability before the 40th
iteration.

D.1.3 Examples with an obstacle

We present an example with a single obstacle and noise in the dynamics, both in dimension
4 and 6. In dimension 4, the obstacle is a square located at the middle of the environment,
whereas in dimension 6 it is a cube. In dimension 4, we can see in Figure D.3 that the agents

198

D.2 Normalizing Flows

(a) Initial positions and ve-
locities (b) At convergence

0 20 40 60 80
Approximate Best Response

0

20

40

60

80

M
ea

n
di

st
rib

ut
io

n

0

50

100

150

200

250

(c) Performance matrix

0 20 40 60 80

30

35

40

45

50

(d)Approximate exploitabil-
ity

Figure D.2 – Flocking for a simple example in six dimensions.

that are initially spawned in the environment with random positions and velocities manage
to learn to adopt the same velocities while avoiding the obstacle (Figure D.3b). The same
behavior is observed in dimension 6. We also notice that the exploitability is slower to decrease
in dimension 6, similarly to what we observed with the simple example without the obstacle.

D.1.4 Many obstacles in 4D

Finally, we present an example in 4D with many obstacles, in the same fashion than the 6-
dimensional example with the columns located in the main part of the article.

D.2 Normalizing Flows

In this section we provide some background on Normalizing Flows, which are an important
part of our approach.

Coupling layers. A coupling layer applies a coupling transform, which maps an input x
to an output y by first splitting x into two parts x = [x1:d−1, xd:D], computing parameters
θ = NN(x1:d−1) of an arbitrary neural network (in our case a fully connected neural network
with 8 hidden units), applying g to the last coordinates yi = gθi

(xi) where i ∈ [d, . . . ,D] and
gθi

is an invertible function parameterized by θi. Finally, we set y1:d−1 = x1:d−1. Coupling

199

Complements on Chapter 6

(a) Initial positions and ve-
locities (b) At convergence

0 20 40 60 80 100
Approximate Best Response

0

20

40

60

80

100

M
ea

n
di

st
rib

ut
io

n

0

25

50

75

100

125

150

175

(c) Performance matrix

0 20 40 60 80 100

25

30

35

40

45

50

(d)Approximate exploitabil-
ity

Figure D.3 – Flocking in 4D with one obstacle.

(a) Initial positions and ve-
locities (b) At convergence

0 20 40 60 80
Approximate Best Response

0

20

40

60

80

M
ea

n
di

st
rib

ut
io

n

0

50

100

150

200

250

(c) Performance matrix

0 10 20 30 40 50 60 70 80
60

65

70

75

80

(d)Approximate exploitabil-
ity

Figure D.4 – Flocking in 6D with one obstacle.

200

D.2 Normalizing Flows

(a) Initial positions and ve-
locities (b) At convergence

0 10 20 30 40 50 60 70 80
10

20

30

40

50

(c) Performance matrix

0 20 40 60 80
Approximate Best Response

0

20

40

60

80

M
ea

n
di

st
rib

ut
io

n
300

250

200

150

100

50

0

50

(d)Approximate exploitabil-
ity

Figure D.5 – Flocking in 4D with many obstacles.

transforms offer the benefit of having a tractable Jacobian determinant, and they can be inverted
exactly in a single pass.

Neural Spline Flows. NSFs are based on monotonic rational-quadratic splines. These splines
are used to model the function gθi

. A rational-quadratic function takes the form of a quotient
of two quadratic polynomials, and a spline usesK different rational-quadratic functions.

Following the implementation described in Durkan et al., 2019, we detail how a NSF is
computed.

1. A neural network NN takes x1:d−1 as inputs and outputs θi of length 3K − 1 for each
i ∈ [1, . . . , D].

2. θi is partitioned as θi = [θw
i , θ

h
i , θ

d
i], of respective of sizesK,K, andK − 1.

3. θw
i and θh

i are passed through a softmax andmultiplied by 2B, the outputs are interpreted
as thewidths and heights of theK bins. Cumulative sums of theK binwidths and heights
yields theK + 1 knots (xk, yk)K

k=0.

4. θd
i is passed through a softplus function and is interpreted as the values of the derivatives
of the internal knots.

201

Complements on Chapter 6

D.3 Visual Rendering with Unity

Once we have trained the policy with the Flock’n RL algorithm, we generate trajectories of
many agents and stock them in a csv file. We have coded an integration in Unity, making it
possible to load these trajectories and visualize the flock in movement, interacting with its
environment. We can then easily load prefab models of fishes, birds, or any animal that we
want our agents to be. We can also load the obstacles and assign them any texture we want.
Examples of rendering are available in Figure D.6.

Figure D.6 – Visual rendering with Unity

202

Appendix E

Complements on Chapter 7

E.1 Notations

The main notations used in the text are summarized in the following table. Please note that π,
π and π̂ are population-agnostic policies, while π̃, π̃ and π̃∗ are population-dependent policies.

Policy π ∈ Π
Average policy π ∈ Π
Equilibrium policy π̂ ∈ Π
Population-dependent policy π̃ ∈ Π̃
Average population-dependent policy π̃ ∈ Π̃
Master policy π̃∗ ∈ Π̃
Mean field state µ ∈M
Mean field flow µ ∈M
Training set of initial distributions M⊂M

E.2 Experimental Details

Wasserstein distance. The Wasserstein distanceW (or earth mover’s distance) measures the
minimum cost of turning one distribution into another: for µ, µ′ ∈M = ∆X ,

W (µ, µ′) = inf
ν∈Γ(µ,µ′)

∑
(x,x′)∈X ×X

d(x, x′)ν(x, x′),

where Γ(µ, µ′) is the set of probability distributions on X × X with marginals µ and µ′. This
notion is well defined if the state space has a natural notion of distance d, which is the case

203

Complements on Chapter 7

in our numerical examples because they come from the discretization of 1D or 2D Euclidean
domains.

Initial distributions. We provide here a representation of the initial distributions used in the
experiments.

For the pure exploration model in 1D, the training and testing sets are represented in
Figure E.1 and Figure E.2 respectively.

Figure E.1 – Pure exploration 1D: Training set

Figure E.2 – Pure exploration 1D: Testing set

204

E.3 Learning a Population-dependent Policy with Deep RL

For the beach bar model in 2D, the training and testing sets are represented in Figure E.3
and Figure E.4 respectively.

Figure E.3 – Beach bar 2D: Training set

Figure E.4 – Beach bar 2D: Testing set

E.3 Learning a Population-dependent Policy with Deep RL

Recall that in line 4 of Algorithm 7.1, we want solve an MDP which is stationary because we
have put the distribution µ as an input together with the agent’s state x. To this end, we use
DQN and, as described in Algorithm E.1, we use a finite horizon approximation NT . This
approximation is common in the literature and is not problematic as we set the horizon high
enough so that the stationary population distribution can be (approximately) reached.

E.4 Proof of Theorem 7.1

Proof of Theorem 7.1. By assumption, for everym0, there is a unique equilibrium MF flow µ̂m0 .
We also consider an associated equilibrium (population-agnostic) policy π̂m0 (if there are
multiple choices of such policies, we take one of them). The superscript is used to stress the
dependence on the initial MF state. Let us define the following population dependent policy:

π̃(x,m0) := π̂m0
0 (x). (E.1)

We prove that any population-dependent policy defined in the above way is a master policy,
i.e., for eachm0 it gives an equilibrium policy not only at initial time but at all time steps.

205

Complements on Chapter 7

Algorithm E.1: DQN for a population-dependent Best Response
1 input : Initial weights θk and θ′

k for network Q̃θk
and target network Q̃θ′

k
; training set

M of initial distributions; set M̄k of average MF flows; number of episodes
Nepisodes; number of inner steps N ; horizon NT for estimation; number of steps
C between synchronization of the two networks; parameter ε ∈ [0, 1] for
exploration

2 Initialize weights θk of network Q̃θk
and weights θ′

k of target network Q̃′
θ′

k

3 Initialize replay memory B
4 for e = 1, . . . , Nepisodes do
5 Sample initialm0 ∈M and get the associated µ̄m0

k from M̄k

6 Sample x0 ∼ m0
7 for n = 0, . . . , N − 1 do
8 With probability ε select random action an, otherwise select

an ∈ arg maxa Q̃
′
k(a|xn, µ̄

m0
k,n)

9 Execute action an, observe reward rn and state xn+1
10 Add the transition (xn, an, µ̄

m0
k,n, rn, µ̄

m0
k,n+1) to B

11 end
12 Sample a random minibatch of NT transitions

{(xn, an, µn, rn, µn+1), n = 1, . . . , NT } from B

13 Let vn = rn + γmaxa′ Q̃θk
(xn+1, µn+1, a

′) for n = 1, . . . , NT

14 Update θk by performing a gradient step in the direction of minimizing w.r.t. θ:

1
NT

NT∑
n=1

∣∣∣vn − Q̃θ(xn, µn, an)
∣∣∣2

15 Every C steps, copy weights θk of Q̃θk
to the weights θ′

k of Q̃′
θ′

k

16 end
17 return Q̃θk

Fixm0. Let µ̃m0 and π̃m0 be the MF flow and the population-agnostic policy induced by
using π̃ starting fromm0, i.e., for n ≥ 0,

π̃m0
n (x) = π̃(x, µ̃m0

n), µ̃m0
n+1 = ϕ(µ̃m0

n , π̃m0
n). (E.2)

We check that it is a Nash equilibrium starting withm0. The second condition in Definition 6
is automatically satisfied by definition of µ̃m0

n+1, see (E.2). For the optimality condition, we
proceed by induction to show that for every n ≥ 0, µ̃m0

n = µ̂m0
n , which is the unique equilibrium

MF flow starting fromm0. Note first that, by (E.1) and dynamic programming,

π̃m0
0 (x) = π̃(x,m0) = π̂m0

0 (x) ∈ arg max
π∈Π

E
[
r(x, a,m0)+γV̂ (x1; µ̂m0

1)
∣∣∣ x1 ∼ p(.|x, a,m0), a ∼ π(.|x)

]
,

206

E.5 On the Convergence of Master Fictitious Play

where V̂ is the stationary and population-dependent value function for a representative agent
facing a population playing according to a Nash equilibrium starting from a given distribution.
Moreover,

µ̃m0
1 = ϕ(µ̃m0

0 , π̃m0
0) = ϕ(m0, π̃(·,m0)) = ϕ(m0, π̂

m0
0) = µ̂m0

1 ,

where we used (E.2) for the first and second equalities, and (E.1) for the third equality. The
last equality holds because (µ̂m0 , π̂m0) is an MFG Nash equilibrium consistent withm0. So:

π̃m0
0 (x) ∈ arg max

π∈Π
E
[
r(x, a,m0) + γV̂ (x1; µ̃m0

1)
∣∣∣ x1 ∼ p(.|x, a,m0), a ∼ π(.|x)

]
,

At time n ≥ 1, for the sake of induction, assume µ̃m0
i = µ̂m0

i for all i ≤ n. Then

π̃m0
n (x) = π̃(x, µ̃m0

n) = π̂µ̃
m0
n

0 (x) ∈ arg max
π∈Π

E
[
r(x, a, µ̃m0

n)+γV̂ (x1; µ̂µ̃
m0
n

1)
∣∣∣ x1 ∼ p(.|x, a, µ̃m0

n), a ∼ π(.|x)
]
.

(E.3)
Moreover,

µ̃m0
n+1 = ϕ(µ̃m0

n , π̃m0
n) = ϕ(µ̂m0

n , π̂µ̂
m0
n

0) =︸︷︷︸
(⋆)

ϕ(µ̂m0
n , π̂m0

n) = µ̂m0
n+1,

where the first equality is by (E.2) and the second equality is by the induction hypothesis
and (E.3). Equality (⋆) means that the population distributions generated at the next time step
by π̂µ̂

m0
n

0 and π̂m0
n when starting from µ̂m0

n are the same (although these two policies could
be different). This is because both of them are best responses to this population distribution
and because we assumed uniqueness of the equilibrium MF flow. Indeed, by definition,
π̂µ̂

m0
n

0 is the initial step of a policy which is part of an MFG Nash equilibrium consistent with
µ̂m0

n . Furthermore, (π̂m0
n , µ̂m0

n)n≥0 is an MFG Nash equilibrium consistent withm0 and, as a
consequence, for any n0 ≥ 0, (π̂m0

n , µ̂m0
n)n≥n0 is an MFG Nash equilibrium consistent with µ̂m0

n0 .
We conclude that (⋆) holds by using the fact that we assumed uniqueness of the equilibrium

MF flow so these two policies must have the same result in terms of generated population
distribution.

So we proved that µ̃m0
n = µ̂m0

n for all n ≥ 0 and (π̃m0
n)n≥0 is an associated equilibrium

policy.

E.5 On the Convergence of Master Fictitious Play

In this section we study the evolution of the averaged MF flow generated by the Master
Fictitious Play algorithm, see Algorithm 7.1. We then introduce a continuous time version of
this algorithm and prove its convergence at a linear rate.

207

Complements on Chapter 7

On the mixture of policies. Given π̃K = UNIFORM(π̃1, . . . , π̃K) and given an initial m0,
we first compute an average population distribution composed of K subpopulations where
subpopulation k uses π̃k to react to the current average population. Formally, recall that we
define: µm0

k,0 = m0, k = 1, . . . ,K

µ̄m0
K,0 = 1

K

∑K
k=1 µm0

k,0

and for n ≥ 0, µm0
k,n+1 = ϕ(µm0

k,n, π̃k(·|·, µ̄m0
K,n)), k = 1, . . . ,K

µ̄m0
K,n+1 = 1

K

∑K
k=1 µm0

k,n+1.

We recall that the notation µm0
k,n+1 = ϕ(µm0

k,n, π̃k(·|·, µ̄m0
K,n)) means:

µm0
k,n+1(x) = ϕ(µm0

k,n, π̃k(·|x, µ̄m0
K,n)) =

∑
x′

µm0
k,n(x′)

∑
a

π̃k(a|x′, µ̄m0
K,n)p(x|x′, a, µ̄m0

K,n), x ∈ X .

(E.4)
Hence: for all x ∈ X ,

µ̄m0
K,n+1(x) = 1

K

K∑
k=1

∑
x′

µm0
k,n(x′)

∑
a

π̃k(a|x′, µ̄m0
K,n)p(x|x′, a, µ̄m0

K,n) (E.5)

=
∑
x′

µ̄m0
K,n(x′)

∑
a

(
1
K

K∑
k=1

µm0
k,n(x′)

µ̄m0
K,n(x′) π̃k(a|x′, µ̄m0

K,n)
)

︸ ︷︷ ︸
=:¯̃π

m0
K,n(a|x′,µ̄

m0
K,n)

p(x|x′, a, µ̄m0
K,n), (E.6)

where, in the last expression, the first sum over {x′ ∈ X : µ̄m0
K,n(x′) > 0}. So the evolution

of the average population can be interpreted as the fact that all the agents use the policy
¯̃πm0

K,n(a|x′, µ̄m0
K,n) given by the terms between parentheses above. Note that this policy depends

onm0 and n.
We then consider the reward obtained by an infinitesimal player from the average population.

This player belongs to subpopulation k with probability 1/K. So the reward can be expressed
as:

1
K

K∑
k=1

J(m0, π̃k; µ̄m0
K).

We expect that when K → +∞ (i.e., we run more iterations of the Master Fictitious Play
algorithm, see Algorithm 7.1), then this quantity converges to the one obtained by a typical
player in the Nash equilibrium starting fromm0, i.e.:

J(m0, π̂; µ̂m0)

where µ̂m0 = Φ(m0, π̂) with π̂ ∈ arg maxπ J(m0,π; µ̂m0).

208

E.5 On the Convergence of Master Fictitious Play

Note that ¯̃πm0
K,n(a|x′, µ̄m0

K,n) takes µ̄m0
K,n as an input. However, this dependence is superfluous

because µ̄m0
K,n can be derived from m0 and (¯̃πm0

K,m(a|x′, µ̄m0
K,m))m≤n. Proceeding by induction,

we can show that there exists π̄m0
K ∈ Π s.t.

¯̃πm0
K,n(a|x′, µ̄m0

K,n) = π̄m0
K,n(a|x′)

Continuous Time Master Fictitious Play. We now describe the Continuous Time Master
Fictitious Play (CTMFP) scheme in our setting. Here the iteration index k ∈ {1, 2, 3, . . . } is
replaced by a time t, which takes continuous values in [1,+∞). Intuitively, it corresponds to
the limiting regime where the updates happen continuously.

Based on (E.5), we introduce the CTMFP mean-field flow defined for all t ≥ 1 by: µ̄m0
t,n =

µm0,BR
t,n = m0, and for n = 1, 2, . . . ,

µ̄m0
t,n (x) = 1

t

t∫
s=0

µm0,BR
s,n (x)ds, or in differential form: d

dt
µ̄m0

t,n (x) = 1
t

(
µm0,BR

t,n (x)− µ̄m0
t,n (x)

)
,

(E.7)

where µm0,BR
t,n denotes the distribution induced by a best response policy (πm0,BR

t,n)n≥0 against
µ̄m0

t,n (x).
As in (E.6) for the discrete update case, the distribution µ̄m0

t,n corresponds to the population
distribution induced by the averaged policy (π̄m0

t,n)n defined as follows: for all n = 1, 2, . . . , and
all t ≥ 1:

π̄m0
t,n (a|x)

t∫
s=0

µm0,BR
s,n (x)ds =

t∫
s=0

µm0,BR
s,n (x)πm0,BR

s,n (a|x)ds (E.8)

or in differential form: µ̄m0
t,n (x) d

dt
π̄m0

t,n (a|x) = 1
t
µm0,BR

t,n (x)[πm0,BR
t,n (a|x)− π̄m0

t,n (a|x)]. (E.9)

The CTMFP process really starts from time t = 1, but it is necessary to define what happens
just before this starting time. For t ∈ [0, 1), we define π̄m0

t<1 = (π̄m0
t<1,n)n = (πm0,BR

t<1,n)n, where
πm0,BR

t<1 is constant and equal to an arbitrary policy. The induced distribution between time 0
and 1 is µ̄m0

t<1 = µm0
t<1 = µm0,π

m0
t<1 = (µm0,π

m0
t<1

n)n≥0.

Proof of convergence. We assume the transition p is independent of the distribution: xn+1 ∼
p(.|xn, an), and we assume the reward can be split as:

r(x, a, µ) = rA(x, a) + rM (x, µ). (E.10)

209

Complements on Chapter 7

A useful property is the so-called monotonicity condition, introduced by Lasry and Lions
(2007).

Definition 9. The MFG is said to be monotone if: for all µ ̸= µ′ ∈M,
∑

x

(µ(x)− µ′(x))(rM (x, µ)− rM (x, µ′)) < 0. (E.11)

This condition intuitively means that the agent gets a lower reward if the population density
is larger at its current state. Monotonicity implies that for everym0, there exists at most one
MF Nash equilibrium consistent withm0; see (Lasry and Lions, 2007). This can be checked by
considering the exploitability.

Here, we are going to use the average exploitability as introduced in (7.3):

ĒM(π̄t) = Em0∼UNIFORM(M)
[
Ē(m0, π̄

m0
t)

]
,

where π̄t = (π̄m0
t)m0∈M is the uniformdistribution over past best responses (πm0,BR

s)s∈[0,t],m0∈M,
and we define in the continuous-time setting:

Ē(m0, π̄
m0
t) = max

π′
J(m0,π

′; µ̄m0
t)− 1

t

∫ t

s=0
J(m0,π

m0,BR
t ; µ̄m0

t).

Theorem E.1 (Theorem 7.2 restated). Assume the reward is separable, the MFG is monotone, and
the transition is independent of the population. Then, for everym0 ∈M, Ē(π̄t) ∈ O(1/t).

Proof. We follow the proof strategy of Perrin, Perolat, et al. (2020), adapted to our setting. To
alleviate the notation, we denote ⟨f, g⟩A =

∑
a∈A f(a)g(a) for two functions f, g defined on A,

and similarly for ⟨·, ·⟩X . We also denote: rπ(x, µ) = ⟨π(·|x), r(x, ·, µ)⟩A .

We first note that, by the structure of the reward function given in (E.10),

∇µr
π

m0,BR
t,n (x, µ̄m0

t,n) = ∇µrM (x, µ̄m0
t,n) and ∇µr

π̄
m0
t,n (x, µ̄m0

t,n) = ∇µrM (x, µ̄m0
t,n).

Moreover, using (E.9) and (E.7) respectively, we have, for every x ∈ X ,

−⟨ d
dt

π̄m0
t,n (.|x), r(x, ., µ̄m0

t,n)⟩A µ̄m0
t,n (x) = −1

t
rπ

m0,BR
t,n (x, µ̄m0

t,n)µm0,BR
t,n (x) + 1

t
rπ̄

m0
t,n (x, µ̄m0

t,n)µm0,BR
t,n (x),

−rπ̄
m0
t,n (x, µ̄m0

t,n) d
dt

µ̄m0
t,n (x) = 1

t
rπ̄

m0
t,n (x, µ̄m0

t,n)µ̄m0
t,n (x)− 1

t
rπ̄

m0
t,n (x, µ̄m0

t,n)µm0,BR
t,n (x).

Using the definition of exploitability together with the above remarks, we deduce:

d

dt
Ē(m0, π̄

m0
t) = d

dt

[
max

π′
J(m0,π

′; µπ̄
m0
t ,m0)− J(m0, π̄

m0
t ; µπ̄

m0
t ,m0)

]

210

E.5 On the Convergence of Master Fictitious Play

=
+∞∑
n=0

γn
∑
x∈X

[
⟨∇µr

π
m0,BR
t,n (x, µ̄m0

t,n), d
dt

µ̄m0
t,n ⟩X µm0,BR

t,n (x)

− ⟨∇µr
π̄

m0
t,n (x, µ̄m0

t,n), d
dt

µ̄m0
t,n ⟩X µ̄m0

t,n (x)

− ⟨ d
dt

π̄m0
t,n (·|x), r(x, ·, µ̄m0

t,n)⟩A µ̄m0
t,n (x)− rπ̄

m0
t,n (x, µ̄m0

t,n) d
dt

µ̄m0
t,n (x)

]
=

+∞∑
n=0

γn
∑
x∈X

[
t⟨∇µrM (x, µ̄m0

t,n)), d
dt

µ̄m0
t,n ⟩X

1
t

(
µm0,BR

t,n (x)− µ̄m0
t,n (x)

)]

+
+∞∑
n=0

γn
∑
x∈X

[1
t
rπ̄

m0
t,n (x, µ̄m0

t,n)µ̄m0
t,n (x)− 1

t
rπ

m0,BR
t,n (x, µ̄m0

t,n)µm0,BR
t,n (x)

]

= −1
t
Ē(m0, π̄

m0
t) +

+∞∑
n=0

γn
∑
x∈X

[
t⟨∇µrM (x, µ̄m0

t,n), d
dt

µ̄m0
t,n ⟩X

d

dt
µ̄m0

t,n (x)
]
,

where the last term is non-positive. Indeed, the monotonicity condition (E.11) implies that, for
all τ ≥ 0, we have:

∑
x∈X

(µ̄m0
t,n (x)− µ̄m0

t+τ,n(x))(rM (x, µ̄m0
t,n)− rM (x, µ̄m0

t+τ,n)) ≤ 0.

The result follows after dividing by τ2 and letting τ tend to 0.

211

Appendix F

Complements on Chapter 8

F.1 Algorithms in the exact case

In this section we present algorithms to compute MFG equilibria when the model is fully
known.

F.1.1 Subroutines

The distribution computation for a given policy π is described in Algorithm F.1 using forward
(in time) iterations. The evaluation of the state-action value function for a given policy π and
mean field flow µ is described in Algorithm F.2. The computation of the optimal value function
Q∗,µ for a given µ is described in Algorithm F.3. A best response against µ can be obtained by
running this algorithm and then taking an optimizer of Q∗,µ

n (x, ·) for each n, x.

F.1.2 Main algorithms with fully known model

Banach-Picard Fixed point iterations are presented in Algorithm F.4. Fictitious Play is described
in Algorithm F.5. Policy iteration (for MFG) is presented in Algorithm F.6. Online Mirror
Descent is described in Algorithm F.7.

Algorithm F.1: Forward update for the distribution
1 input : Parameter: policy π = (πn)n=0,...,NT

2 µ = (µn)n=0,...,NT
= µπ = (µπ

n)n=0,...,NT
Let µ0 = m0;

3 for n = 1 . . . , NT : do
4 µπ

n = P
µπ

n−1,πn−1
n−1 µπ

n−1

5 output :Mean field flow µ = (µn)n=0,...,NT

213

Complements on Chapter 8

Algorithm F.2: Backward induction for the value function evaluation
1 input :Parameters: policy π = (πn)n=0,...,NT

, mean field flow µ = (µn)n=0,...,NT

2 Let Qπ
NT

(x, a) = rNT
(x, a, µNT

);
3 for n = NT − 1, . . . , 0 do
4

Qπ
n(x, a) = rn(x, a, µn) + Ex′∼pn(·|x,a,µn),a′∼πn(·|x′)[Qπ

n+1(x′, a′)]

where the expectation is computed in an exact way using the knowledge of the
transition:

E[Qπ
n+1(x′, a′)] =

∑
x′

pn(x′|x, a, µn)
∑
a′

πn+1(a′|x′)Qπ
n+1(x′, a′)

5 output :Return state-action value function Qπ = (Qπ
n)n=0,...,NT

Algorithm F.3: Backward induction for the optimal value function
1 input :Parameters: mean field flow µ = (µn)n=0,...,NT

2 Let Q∗
NT

(x, a) = rNT
(x, a, µNT

);
3 for n = NT − 1, . . . , 0 do
4

Q∗
n(x, a) = rn(x, a, µn) + Ex′∼pn(·|x,a,µn)[max

a′∈A
Q∗

n+1(x′, a′)]︸ ︷︷ ︸
=
∑

x′ pn(x′|x,a,µn) maxa′ Q∗
n+1(x′,a′)

where the expectation is computed in an exact way using the knowledge of the
transition pn

5 output :Optimal state-action value function Q∗ = (Q∗
n)n=0,...,NT

Algorithm F.4: Banach-Picard (BP) fixed point
1 input :Number of iterationsK; optional softmax temperature η
2 Initialize π0;
3 for k = 0, . . . ,K do
4 Forward update: Compute µk = µπk−1 , e.g. using Algorithm F.1 with π = πk−1;
5 Best response computation: Compute a BR πk against µk, e.g. by computing Q∗,µk

using Algorithm F.3 with µ = µk and then taking πk
n(·|x) as a(ny) distribution over

arg maxQ∗,µ̄k

n (x, ·) for every n, x ;
6 alternatively, compute a soft version: πk

n(·|x) = softmax(Q∗,µk

n (x, ·)/η);
7 output :µK = (µK

n)n=0,...,NT
and policy πK = (πK

n)n=0,...,NT

F.2 Deep RL Algorithms

We now present details on the deep RL algorithms used or developed in this paper. In this work,
we focus on the use of deep RL for policy computation from the point of view of a representative

214

F.2 Deep RL Algorithms

Algorithm F.5: Fictitious Play (FP)
1 input :Number of iterationsK
2 Initialize π0;
3 for k = 0, . . . ,K do
4 Forward update: Compute µk = µπk−1 , e.g. using Algorithm F.1 with π = πk−1;
5 Average distribution update: Compute µ̄k as the average of (µ0, . . . , µπk):

µ̄k
n(x) = 1

k

k∑
i=1

µi
n(x) = k−1

k µ̄k−1
n (x) + 1

kµ
k
n(x)

Best response computation: Compute a BR πk against µ̄k, e.g. by computing Q∗,µ̄k

using Algorithm F.3 and then taking πk
n(·|x) as a(ny) distribution over

arg maxQ∗,µ̄k

n (x, ·) for every n, x;
6 output : µ̄K = (µ̄K

n)n=0,...,NT
and policy π̄K = (π̄K

n)n=0,...,NT
generating this mean field

flow

Algorithm F.6: Policy Iteration (PI)
1 input :Parameters: softmax temperature η; number of iterationsK
2 Initialize the sequence of tables (q̄0

n)n=0,...,NT
, e.g. with q̄0

n(x, a) = 0 for all n, x, a;
3 Let the projected policy be: π0

n(a|x) = softmax(q̄0
n(x, ·)/η)(a) for all n, x, a;

4 for k = 1, . . . ,K do
5 Forward Update: Compute µk = µπk−1 , e.g. using Algorithm F.1 with π = πk−1 ;
6 Backward Update: Compute Qk = Qπk−1,µk , e.g. using backward induction (c.f.

Algorithm F.2) with π = πk−1 and µ = µk and then let πk
n(·|x) be a(ny)

distribution over arg maxQ∗,µ̄k

n (x, ·) for every n, x; alternatively, compute a soft
version: πk

n(·|x) = softmax(Qk
n(x, ·)/η);

7 output :QK , πK

agent. We assume that this agent has access to an oracle that can return rn(xn, an, µn) and
a sample of pn(·|xn, an, µn) when the agent follows is in state xn and uses action an. In fact,
the collection of samples is split into episodes. At each episode, the agent start from some
x0 sampled fromm0. Then it evolves by following the current policy, and the transitions are
added to a replay buffer.

In order to focus on the errors due to the deep RL algorithm, we assume that the distribution
is updated in an exact way following Algorithm F.1.

For the Deep RL part, the approaches can be summarized as follows:

215

Complements on Chapter 8

Algorithm F.7: Online Mirror Descent (OMD)
1 input :Parameters: inverse learning rate parameter τ ; number of iterationsK
2 Initialize the sequence of tables (q̄0

n)n=0,...,NT
, e.g. with q̄0

n(x, a) = 0 for all n, x, a;
3 Let the projected policy be: π0

n(a|x) = softmax(q̄0
n(x, ·))(a) for all n, x, a;

4 for k = 1, . . . ,K do
5 Forward Update: Compute µk = µπk−1 , e.g. using Algorithm F.1 with π = πk−1;
6 Backward Update: Compute Qk = Qπk−1,µk , e.g. using backward induction (c.f.

Algorithm F.2) with π = πk−1 and µ = µk;
7 Update the regularized Q-function and the projected policy: for all n, x, a,

q̄k
n(x, a) = q̄k−1

n (x, a) + 1
τ
Qk

n(x, a)

πk
n(a|x) = softmax(q̄k

n(x, ·))(a)

8 output : q̄K , πK

• Algorithm F.2: Intuitively, he updates are replaced by stochastic gradient steps so as to
minimize the following loss with respect to θ:∣∣∣Qθ((n, xn), an)− rn(xn, an, µn)− Êx′

n+1∼pn(·|xn,an,µn),a′
n+1∼πn+1 [q((n+ 1, x′

n+1), a′
n+1)]

∣∣∣2 ,
(F.1)

where Ê denotes an empirical expectation over a finite number of samples picked from the
replay buffer and q is replaced by a target networkQθ′ whose parameters are frozen while
training θ and that are updated less frequently than θ. Combined with Policy Iteration
(Algorithm F.6), this leads to the algorithm referred to asDeep Policy Iteration (D-PI).

• Algorithm F.3: We can proceed similarly, except that the target becomes:

rn(xn, an, µn) + Êx′
n+1∼pn(·|xn,an,µn)[max

a′
q((n+ 1, x′

n+1), a′)].

In fact, in our implementation we use DQN (Mnih et al., 2013) as a subroutine for the
BR computation. Combined with Banach-Picard iterations (Algorithm F.4), this leads
directly to the algorithm referred to as Deep Banach-Picard (D-BP).

• To obtain Deep Average-network Fictitious Play (D-AFP) (Algorithm 8.1), at each iter-
ation, the best response against the current distribution is learnt using DQN (Mnih et al.,
2013). This policy is used to generate trajectories, whose state-action samples are added
to a reservoir bufferMSL. This buffer stores state-actions generated using past policies
from previous iterations. Then, an auxiliary neural network for the logits representing
the average policy is trained using supervised learning usingMSL: stochastic gradient is

216

F.3 Details on the link between MOMD and regularized MDPs

used to find θ̄ minimizing approximately the loss:

L(θ̄) = E(s,a)∼MSL
[− log (π̄θ̄(a|s))]

In our implementation, for the representation of the average policy, we use a neural
network ℓ̄ω with parameters ω for the logits, and then we compute the policy as: π̄ =
softmax(ℓ̄ω). This step is reminiscent of Neural Fictitious Self Play (NFSP) introduced
in Heinrich and Silver (2016), which was used to solve Leduc poker and Limit Texas
Hold’em poker. However, the overall algorithm is different. Indeed, in NFSP as described
in Algorithm 1 of Heinrich and Silver (2016), the neural network for the average policy
and the neural network for the Q-function are both updated at each iteration. We reuse
the idea of having a buffer of past actions but in our case, between each update of the
average policy network, we do two operations: first, we update the mean field (sequence
of population distributions) and second, we learn a best response against this mean field.

• To obtainDeepMunchausen Online Mirror Descent (D-MOMD) (Algorithm 8.2), we
can simply modify the target in (F.1) as follows:∣∣∣Qθ((n, xn), an)− rn(xn, an, µn)−τ ln πn−1(an|xn)

− Êx′
n+1∼pn(·|xn,an,µn),

∑
a′

πn(a′|xn)[q((n+ 1, x′
n+1), a′

n+1)−τ ln πn(a′|x′
n+1)]

∣∣∣2,
where q = Qθ′ is a target network whose parameters θ′ are frozen while training θ. This
is similar to equation (7) of Vieillard, Pietquin, and Geist (2020) which introduced the
Munchausen RL method. However, in our case the distribution µn appears in the reward
rn and in the transition leading to the new state x′

n+1. So while Vieillard, Pietquin, and
Geist (2020) simply repeatedly update the Q-network, we intertwine the udpates of the
cumulative Q-network with the updates of the population distribution.

F.3 Details on the link between MOMD and regularized MDPs

Consider regularizing the MFG with only entropy, that is

J(π, µ) = Eπ

NT∑
n=0

(rn(sn, an, µn)− (1− α)τ ln πn(an|sn))

 . (F.2)

Notice that we choose (1− α)τ here because it will simplify later, but it would work with any
temperature (or learning rate from the OMD perspective).

217

Complements on Chapter 8

Now, let’s solve thisMFGwith OMDwith learning rate (ατ)−1, adopting the KL perspective.
The corresponding algorithm is:

πk+1
n ∈ arg max⟨πn, q

k
n⟩ − ατKL(πn||πk

n) + (1− α)τH(πn) (F.3)q
k+1
NT

= rk+1
NT

qk+1
n = rk+1

n + γP ⟨πk+1
n+1, q

k+1
n+1 − (1− α)τ ln πk+1

n+1⟩
(F.4)

Next, using Qk
n = qk

n + ατ ln πk
n, we can rewrite the evaluation part as:

πk+1
n = softmax

(
Qk

n

τ

)
(F.5)Q

k+1
NT

= rk+1
NT

+ ατ ln πk+1
NT

Qk+1
n = rk+1

n + ατ ln πk+1
n + γP ⟨πk+1

n+1, Q
k+1
n+1 − τ ln πk+1

n+1⟩
(F.6)

We remark that it corresponds to the “scaled” version of Munchausen OMD, meaning that it
amounts to solving the MFG regularized with (1−α)τH(π) with OMD. We retrieve with α = 1
the unscaled version of Munchausen OMD, addressing the unregularized MFG. It also makes a
connection with the Boltzmannn iteration method of Cui and Koeppl (2021), in which a similar
penalization except that the penalty involves a fixed policy instead of using the current policy.
Their prior descent method, in which the reference policy is updated from time to time, can
thus be viewed as a first step towards Munchausen OMD.

F.4 Hyperparameters sweeps

218

F.4 Hyperparameters sweeps

0 20000 40000 60000 80000 100000
step

101

102

ex
pl

oi
ta

bi
lit

y

[]
[32]
[64]
[128]
[256]
[32, 32]
[64, 64]
[128, 128]
[256, 256]

Figure F.1 – D-MOMD, Exploration game with four rooms: Sweep over the network size. The neural
network architecture is feedforward fully connected with one or two hidden layers, except for the curve
with label [], which refers to a linear function. This illustrates in particular that the policy can not be
well approximated using only linear functions, hence the need for non-linear approximations, which
raises the difficulty of averaging or summing such approximations (here neural networks).

219

Complements on Chapter 8

101

102

103

ex
pl

oi
ta

bi
lit

y

learning_rate = 0.001 | tau = 1 learning_rate = 0.001 | tau = 5 learning_rate = 0.001 | tau = 10 learning_rate = 0.001 | tau = 50

101

102

103

ex
pl

oi
ta

bi
lit

y

learning_rate = 0.01 | tau = 1 learning_rate = 0.01 | tau = 5 learning_rate = 0.01 | tau = 10 learning_rate = 0.01 | tau = 50

101

102

103

ex
pl

oi
ta

bi
lit

y

learning_rate = 0.05 | tau = 1 learning_rate = 0.05 | tau = 5 learning_rate = 0.05 | tau = 10 learning_rate = 0.05 | tau = 50

0 10000 20000 30000 40000 50000 60000
step

101

102

103

ex
pl

oi
ta

bi
lit

y

learning_rate = 0.1 | tau = 1

0 10000 20000 30000 40000 50000 60000
step

learning_rate = 0.1 | tau = 5

0 10000 20000 30000 40000 50000 60000
step

learning_rate = 0.1 | tau = 10

0 10000 20000 30000 40000 50000 60000
step

learning_rate = 0.1 | tau = 50

alpha
0.5
0.9
0.95
0.99
1.0

Figure F.2 – D-MOMD, Exploration game with four rooms: Sweep over τ, α and learning rate.

220

List of Figures

1.1 The mean field approximation: atomic players are replaced by a distribution of
players over the state space, here a two dimensional domain. 4

1.2 Reading order: Left All identical and anonymous players allow to elect a repre-
sentative player; Right The representative player adapts its policy to the distri-
bution of players µ. In return, the distribution is influenced by all the players
using the policy of the representative player. 4

1.3 Figure from Cui, Tahir, et al. (2022). Scheme of the links between multi-agent
systems, mean field games, mean field control and there solutions. 5

1.4 Mean field Reinforcement Learning. 9

2.1 Reinforcement learning environment: classical single-agent setup. Here, at
iteration n, the current state of the MDP is xn, the action taken by the agent is
an, the new state is xn+1 ∼ p(·|xn, an) and the reward is rn = r(xn, an). The
new state xn+1 is observed by the agent and is also used for the next step of the
environment’s evolution. 25

3.1 Environment for MFGs: Here, the current state of the MDP is the representative
agent’s state xn and the population distribution µn, the action taken by the agent
is an, the new state is xn+1 ∼ p(·|xn, an, µn) and the reward is rn = r(xn, an, µn).
The new state xn+1 is observed by the agent and is also used for the next step of
the environment’s evolution along with µn. 58

3.2 Environment for MFC and MFMDP. 62
3.3 Reading order: (a) the considered environment initial state in yellow, walls in

white); (b) the log-density of a uniform policy (to illustrate entropy maximiza-
tion). 67

221

List of Figures

3.4 Entropy maximization. From left to right: Terminal distribution induced by (a)
Fixed Point; (b) Fictitious Play; (c)OMD; (d) Damped Fixed Point; (e) Softmax
Fixed Point; (f) Softmax Fictitious Play; (g) Boltzmann Policy Iteration; (h)
Exploitability curves for these methods. 69

4.1 Evolution of the distribution in the linear quadratic MFG with finite horizon. . 80
4.2 The beach bar process. 81
4.3 Beach bar process in finite horizon: (a, b) evolution of the distribution, (c)

exploitability. 82
4.4 Linear Quadratic with Common Noise. 84
4.5 First Common Noise setting, the bar has a probability 0.5 of closing at time step 15. 84
4.6 2D crowd modeling example. 85

5.1 5 Garnet sampled with param nx = 20000, na = 10, t = 2000, sf = 10 96
5.2 Population distribution at consecutive dates (three first figures on the left). Each

plot of a subfigure is a different floor, the bottom floor is the bottom-right plot,
the top floor is the top-left plot. The figure on the right displays the exploitability
of: Fictitious Play (red, α = 10−5), Fictitious Play damped (green, α = 10−3)
and OMD (blue, α = 10−4). 98

5.3 Crowd position at different consecutive dates when the point of interest is
randomly shifted to the right by a common noise. The fourth graph is displaying
the exploitability of MD. 98

5.4 4-population chasing. Right figure : Fictitious Play (red, α = 10−3), Fictitious
Play damped (green, α = 10−5) and OMD (blue, α = 10−5). From left to
right, 3 picture chowing the distribution evolving through time and a fourth one
displaying the exploitability. 100

5.5 Building environment. 100
5.6 r̄i,j for three-population. 102

6.1 Multi-group flocking with noise and β = 100. 118
6.2 Flocking with noise and many obstacles. 119

7.1 Neural network architecture of the Q-function for the 2D beach bar experience. 130

222

List of Figures

7.2 Exploration 1D: Performance matrices when the training set is made of Gaussian
distributions. From left to right: (a) Log of Wasserstein distances to the exact
solution (time average); (b) Log of exploitabilities. The x-axis is the initial
distribution index: on the left (resp. right) of the vertical red line are the training
(resp. testing) distributions. 134

7.3 Beach bar 2D: Environment. From left to right: (a) an initial distributionm0 ∈
M; (b)MF state at equilibrium (specialized policy); (c)MF state at equilibrium
(learned Master policy); (d) MF state at equilibrium (specialized policy of
another initial distribution). Note that the scale is very different for the last figure. 134

7.4 Beach bar 2D: Performance matrices with Gaussian distributions. From left to
right: (a) Log of Wasserstein distances to the exact solution (average over time
steps); (b) Log of exploitabilities. Each row is a policy. Top part: a row j gives
the performance of the equilibrium policy for the j-th initial distribution. Bottom
part: policies given in the text). 135

8.1 Left: exploitability. Right: evolution of the distribution obtained by the policy
learnt with D-MOMD. 149

8.2 Top: Evolution of the distribution generated by the policy learnt by D-MOMD.
Bottom left: Exploitability of different algorithms on the Linear Quadratic en-
vironment. Bottom right: Wasserstein distance between the solution learnt by
D-MOMD and the benchmark one, over its iterations. 150

8.3 Top: exploitability. Bottom: evolution of the distribution obtained by the policy
learnt with D-MOMD. 151

8.4 Maze example. Top: exploitability. Bottom: evolution of the distribution ob-
tained by the policy learnt with D-MOMD. 152

8.5 Multi-population chasing example. Top: Exploitability. Bottom: evolution of
the distributions for the three populations. 153

B.1 2nd common noise setting, the bar has a probability p = 0.5 to close at every time
step before N

2 . 172
B.2 Final distributions and exploitability in the γ-discounted case 175

C.1 5 garnet sampled with param nx = 2000, na = 20, NT = 2000, sf = 10 190
C.2 5 garnet sampled with param nx = 20000, na = 10, NT = 2000, sf = 10 190
C.3 5 garnet sampled with param nx = 2000, na = 10, NT = 2000, sf = 10 190

223

List of Figures

C.4 Garnet Experiments performances . 190
C.5 Building Experiment performances . 191
C.6 After a few timesteps . 192
C.7 Intermediate time . 192
C.8 Almost at arrival timestep . 192
C.9 Building Experiment solution (ground floor on the upper left corner) 192
C.10 Torus topology and corner initialization . 195
C.11 Square topology and corner initialization . 195
C.12 Donut topology and corner initialization . 195
C.13 Torus topology and random initialization . 195
C.14 Square topology and random initialization . 195
C.15 Donut topology and random initialization . 195
C.16 Multi-population experiments, performances with different topologies 195

D.1 Flocking with an intuitive example . 198
D.2 Flocking for a simple example in six dimensions. 199
D.3 Flocking in 4D with one obstacle. 200
D.4 Flocking in 6D with one obstacle. 200
D.5 Flocking in 4D with many obstacles. 201
D.6 Visual rendering with Unity . 202

E.1 Pure exploration 1D: Training set . 204
E.2 Pure exploration 1D: Testing set . 204
E.3 Beach bar 2D: Training set . 205
E.4 Beach bar 2D: Testing set . 205

224

List of Figures

F.1 D-MOMD, Exploration game with four rooms: Sweep over the network size.
The neural network architecture is feedforward fully connected with one or two
hidden layers, except for the curve with label [], which refers to a linear function.
This illustrates in particular that the policy can not be well approximated using
only linear functions, hence the need for non-linear approximations, which
raises the difficulty of averaging or summing such approximations (here neural
networks). 219

F.2 D-MOMD, Exploration game with four rooms: Sweep over τ, α and learning rate. 220

225

List of Algorithms

4.1 Fictitious Play in Mean Field Games . 78

5.1 Online Mirror Descent (OMD) . 94

6.1 Flock’n RL . 114

7.1 Master Fictitious Play . 128

8.1 D-AFP . 143
8.2 D-MOMD . 147

B.1 Q-Learning in Mean Field Games . 176
B.2 Empirical Density Estimation . 176
B.3 Backward Induction in Mean Field Games . 176
B.4 Density Estimation . 176

E.1 DQN for a population-dependent Best Response 206

F.1 Forward update for the distribution . 213
F.2 Backward induction for the value function evaluation 214
F.3 Backward induction for the optimal value function 214
F.4 Banach-Picard (BP) fixed point . 214
F.5 Fictitious Play (FP) . 215
F.6 Policy Iteration (PI) . 215
F.7 Online Mirror Descent (OMD) . 216

226

List of Tables

1.1 Notations for various number of agents . 7

5.1 Number of states, action-states pairs & RAMmemory required for the experi-
ments. |X | = positions× timesteps× common noise× number of populations
(KB stands for Kilo Byte, G stands for Giga and T stands for Tera). 95

227

List of References

Achdou, Y., M. Bardi, and M. Cirant (2017). Mean field games models of segregation.Mathe-
matical Models and Methods in Applied Sciences 27.1, pp. 75–113.

Achdou, Y., F. Buera, J.-M. Lasry, P.-L. Lions, and B. Moll (2014). PDE Models in Macroeco-
nomics. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences.

Achdou, Y., F. Camilli, and I. Capuzzo-Dolcetta (2012). Mean field games: numerical methods
for the planning problem. SIAM Journal on Control and Optimization 50.1.

Achdou, Y. and I. Capuzzo-Dolcetta (2010). Mean field games: numerical methods. SIAM
Journal on Numerical Analysis 48.3.

Achdou, Y., P. Cardaliaguet, F. Delarue, A. Porretta, and F. Santambrogio (2020).Mean Field
Games: Cetraro, Italy 2019. Vol. 2281. Springer Nature.

Achdou, Y., P.-N. Giraud, J.-M. Lasry, and P.-L. Lions (2016). A long-term mathematical model
for mining industries. Applied Mathematics & Optimization 74.3.

Achdou, Y., J. Han, J.-M. Lasry, P.-L. Lions, and B. Moll (2017). Income and Wealth Distribution in
Macroeconomics: A Continuous-Time Approach. Tech. rep. National Bureau of Economic Research.

Achdou, Y. and J.-M. Lasry (2019). Mean field games for modeling crowd motion. In Contribu-
tions to partial differential equations and applications. Springer, pp. 17–42.

Achdou, Y. and M. Laurière (2015). On the system of partial differential equations arising in
mean field type control. Discrete and Continuous Dynamical Systems. Series A 35.9.

— (2016). Mean field type control with congestion. Applied Mathematics & Optimization 73.3.
— (2020). Mean field games and applications: Numerical aspects.Mean field games, pp. 249–

307.
Achdou, Y., P. Mannucci, C. Marchi, and N. Tchou (2020). Deterministic mean field games with

control on the acceleration. NoDEA.
Alasseur, C., I. B. Taher, and A. Matoussi (2020). An extended mean field game for storage in

smart grids. Journal of Optimization Theory and Applications 184.2.
Almulla, N., R. Ferreira, and D. Gomes (2017). Two numerical approaches to stationary mean-

field games. Dynamic Games and Applications 7.4.
Anahtarci, B., C. D. Kariksiz, and N. Saldi (2021). Learning in Discrete-time Average-cost Mean-

field Games. In 2021 60th IEEE Conference on Decision and Control (CDC). IEEE, pp. 3048–
3053.

229

List of References

Anahtarcı, B., C. D. Karıksız, and N. Saldi (2019a). Fitted Q-learning in mean-field games. arXiv
preprint arXiv:1912.13309.

— (2019b). Learning in Discounted-cost and Average-cost Mean-field Games. arXiv preprint
arXiv:1912.13309.

— (2020a). Q-learning in regularized mean-field games. arXiv preprint arXiv:2003.12151.
— (2020b). Value iteration algorithm for mean-field games. Systems & Control Letters 143,

p. 104744.
Angiuli, A., J.-P. Fouque, and M. Laurière (2021). Reinforcement learning for mean field games,

with applications to economics. To appear in Machine Learning And Data Sciences For Financial
Markets (arXiv preprint arXiv:2106.13755).

— (2022). Unified reinforcement Q-learning for mean field game and control problems. Math-
ematics of Control, Signals, and Systems, pp. 1–55.

Angiuli, A., C. V. Graves, H. Li, J.-F. Chassagneux, F. Delarue, and R. Carmona (2019). Cemracs
2017: numerical probabilistic approach to MFG. ESAIM: Proceedings and Surveys 65.

Anthony, T., Z. Tian, and D. Barber (2017). Thinking Fast and Slow with Deep Learning and
Tree Search. In Proceedings of NeurIPS.

Al-Aradi, A., A. Correia, D. Naiff, G. Jardim, and Y. Saporito (2018). Solving nonlinear and high-
dimensional partial differential equations via deep learning. arXiv preprint arXiv:1811.08782.

Archibald, T., K. McKinnon, and L. Thomas (1995). On the generation of markov decision
processes. Journal of the Operational Research Society 46.3, pp. 354–361.

Arthur, W. B. (1994). Inductive reasoning and bounded rationality. The American Economic
Review 84.2.

Arulkumaran, K., M. P. Deisenroth,M. Brundage, andA. A. Bharath (2017). Deep reinforcement
learning: A brief survey. IEEE Signal Processing Magazine 34.6, pp. 26–38.

Aumann, R. J. (1964). Markets with a continuum of traders. Econometrica: Journal of the Econo-
metric Society, pp. 39–50.

— (1987). Correlated Equilibrium as an Expression of Bayesian Rationality. In
Aumann, R. J. and L. S. Shapley (2015). Values of non-atomic games. Princeton University Press.
Aurell, A., R. Carmona, G. Dayanikli, andM. Laurière (2022). Optimal incentives tomitigate epi-

demics: a Stackelberg mean field game approach. SIAM Journal on Control and Optimization
60.2, S294–S322.

Aurell, A. and B. Djehiche (2018). Mean-field type modeling of nonlocal crowd aversion in
pedestrian crowd dynamics. SIAM Journal on Control and Optimization 56.1, pp. 434–455.

— (2019). Modeling tagged pedestrian motion: A mean-field type game approach. Transporta-
tion Research Part B: Methodological 121.

Bagagiolo, F. and D. Bauso (2014). Mean-field games and dynamic demand management in
power grids. Dynamic Games and Applications 4.2.

230

List of References

Bailo, R., M. Bongini, J. A. Carrillo, and D. Kalise (2018). Optimal consensus control of the
Cucker-Smale model. IFAC.

Bakhtin, A., D. J. Wu, A. Lerer, J. Gray, A. P. Jacob, G. Farina, et al. (2022).Mastering the Game of
No-Press Diplomacy via Human-Regularized Reinforcement Learning and Planning.

Balaguer, J., R. Koster, C. Summerfield, and A. Tacchetti (2022). The Good Shepherd: An Oracle
Agent for Mechanism Design.

Bäuerle, N. (2021). Mean Field Markov Decision Processes. arXiv preprint arXiv:2106.08755.
Bauso, D., H. Tembine, and T. Basar (2016). Opinion dynamics in social networks through

mean-field games. SIAM Journal on Control and Optimization 54.6.
Bauso, D., X. Zhang, and A. Papachristodoulou (2016). Density flow in dynamical networks

via mean-field games. IEEE Transactions on Automatic Control 62.3, pp. 1342–1355.
Bellemare, M. G., Y. Naddaf, J. Veness, and M. Bowling (2013). The Arcade Learning Environ-

ment: An Evaluation Platform for General Agents. Journal of Artificial Intelligence Research 47,
pp. 253–279.

Bellman, R. (1957). A Markovian decision process. Journal of mathematics and mechanics, pp. 679–
684.

Bensoussan, A., J. Frehse, and P. Yam (2013). Mean field games and mean field type control theory.
Vol. 101. Springer.

Bensoussan, A., J. Frehse, and S. C. P. Yam (2013). Mean Field Games and Mean Field Type Control
Theory. Springer Briefs in Mathematics. Springer, New York.

— (2015). TheMaster equation inmean field theory. Journal deMathématiques Pures et Appliquées
103.6, pp. 1441–1474.

Bensoussan, A., T. Huang, and M. Laurière (2018). Mean field control and mean field game
models with several populations.Minimax Theory and its Applications 3.2, pp. 173–209.

Bensoussan, A., K. Sung, S. C. P. Yam, and S.-P. Yung (2016). Linear-quadratic mean field games.
Journal of Optimization Theory and Applications 169.2.

Bertsekas, D. (2012). Dynamic programming and optimal control. Vol. 1. Athena scientific.
Bertsekas, D. and S. E. Shreve (1996). Stochastic optimal control: the discrete-time case. Vol. 5.

Athena Scientific.
Blum, A. and Y. Mansour (2005). From External to Internal Regret.
Bonnans, J. F., P. Lavigne, and L. Pfeiffer (2021). Generalized conditional gradient and learning

in potential mean field games. arXiv preprint arXiv:2109.05785.
Borkar, V. S. (2009). Stochastic approximation: a dynamical systems viewpoint. Vol. 48. Springer.
Bowling, M., N. Burch, M. Johanson, and O. Tammelin (2015). Heads-up limit hold’em poker

is solved. Science 347.6218.
Bravo, M., D. S. Leslie, and P. Mertikopoulos (2018). Bandit learning in concave N -person

games. arXiv preprint arXiv:1810.01925.

231

List of References

Briceño-Arias, L. M., D. Kalise, Z. Kobeissi, M. Laurière, Á. Mateos González, and F. J. Silva
(2019). On the implementation of a primal-dual algorithm for second order time-dependent
Mean Field Games with local couplings. ESAIM: Proceedings 65.

Briceño-Arias, L. M., D. Kalise, and F. J. Silva (2018). Proximal methods for stationary mean
field games with local couplings. SIAM Journal on Control and Optimization 56.2.

Brockman, G., V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, et al. (2016). OpenAI
Gym.

Brown, G. W. (1951). Iterative solution of games by fictitious play. Activity analysis of production
and allocation 13.1, pp. 374–376.

Brown, N. and T. Sandholm (2017). Superhuman AI for heads-up no-limit poker: Libratus
beats top professionals. Science 360.6385.

— (2019). Superhuman AI for multiplayer poker. Science 365.6456.
Burch, N., M. Johanson, and M. Bowling (2014). Solving imperfect information games using

decomposition. In Proceedings of AAAI.
Burger, M., M. Francesco, P. Markowich, and M.-T. Wolfram (Apr. 2013). Mean field games

with nonlinear mobilities in pedestrian dynamics.Discrete and Continuous Dynamical Systems
- Series B 19.

Cabannes, T., M. Lauriere, J. Perolat, R. Marinier, S. Girgin, S. Perrin, et al. (2021). Solving
N-player dynamic routing games with congestion: a mean field approach. Extended abstract
at AAMAS 2022 (long version: arXiv preprint arXiv:2110.11943).

Cacace, Simone, Camilli, Fabio, and Goffi, Alessandro (2021). A policy iteration method for
mean field games. ESAIM: COCV 27, p. 85.

Cai, Y., O. Candogan, C. Daskalakis, and C. Papadimitriou (2016). Zero-Sum Polymatrix Games:
A Generalization of Minmax.Mathematics of Operations Research 41.2, pp. 648–655.

Camilli, F. and Q. Tang (2022). Rates of convergence for the policy iteration method for Mean
Field Games systems. Journal of Mathematical Analysis and Applications 512.1, p. 126138.

Campbell, M., A. J. Hoane Jr, and F.-h. Hsu (2002). Deep blue. Artificial intelligence 134.1-2,
pp. 57–83.

Campi, L. and M. Fischer (2020). Correlated equilibria and mean field games: a simple model.
arXiv preprint arXiv:2004.06185.

Cao, H., X. Guo, and M. Laurière (2020). Connecting GANs, MFGs, and OT. arXiv preprint
arXiv:2002.04112.

Caponigro, M., M. Fornasier, B. Piccoli, and E. Trélat (2013). Sparse stabilization and optimal
control of the Cucker-Smale Model.Mathematical Control and Related Fields.

Cardaliaguet, P. (2012). Notes on mean field games. P.-L. Lions’ Lectures at Collège de France.
Cardaliaguet, P., F. Delarue, J.-M. Lasry, and P. L. Lions (2019). The master equation and the

convergence problem in mean field games. Ed. by P. U. Press. Vol. 381. AMS-201.

232

List of References

Cardaliaguet, P. and S. Hadikhanloo (2017). Learning in mean field games: the fictitious play.
ESAIM: Control Optimisation and Calculus of Variations.

Cardaliaguet, P. and C.-A. Lehalle (2018). Mean field game of controls and an application to
trade crowding.Mathematics and Financial Economics 12.3, pp. 335–363.

Cardaliaguet, P., A. Porretta, and D. Tonon (2016). A segregation problem in multi-population
mean field games. In International Symposium on Dynamic Games and Applications. Springer.

Carlini, E. and F. J. Silva (2014). A fully discrete semi-Lagrangian scheme for a first order mean
field game problem. SIAM Journal on Numerical Analysis 52.1.

— (2015). A semi-Lagrangian scheme for a degenerate second order mean field game system.
Discrete and Continuous Dynamical Systems 35.9.

Carmona, R. (2020). Applications of mean field games in financial engineering and economic
theory. arXiv preprint arXiv:2012.05237.

Carmona, R. and F. Delarue (2013). Mean field forward-backward stochastic differential equa-
tions. Electronic Communications in Probability 18, pp. 1–15.

— (2018a). Probabilistic Theory of Mean Field Games with Applications I-II. Springer.
— (2018b). Probabilistic theory of mean field games with applications. I. Vol. 83. Probability Theory

and Stochastic Modelling. Mean field FBSDEs, control, and games. Springer, Cham.
— (2018c). Probabilistic theory of mean field games with applications. II. Vol. 84. Probability Theory

and Stochastic Modelling. Mean field games with common noise and master equations.
Springer, Cham.

Carmona, R., F. Delarue, and D. Lacker (2016a). Mean field games with common noise. The
Annals of Probability 44.6, pp. 3740–3803.

— (2016b). Mean field games with common noise. Annals of Probability 44.6.
Carmona, R., J.-P. Fouque, and L.-H. Sun (2015a). Mean Field Games and systemic risk. Com-

munications in Mathematical Sciences 13.4, pp. 911–933.
— (2015b). Mean field games and systemic risk. Commun. Math. Sci. 13.4.
Carmona, R., C. V. Graves, and Z. Tan (2019). Price of anarchy for mean field games. ESAIM:

Proceedings and Surveys 65, pp. 349–383.
Carmona, R., K. Hamidouche, M. Laurière, and Z. Tan (2020). Policy optimization for linear-

quadratic zero-sum mean-field type games. In 2020 59th IEEE Conference on Decision and
Control (CDC). IEEE, pp. 1038–1043.

— (2021). Linear-quadratic zero-summean-field type games: Optimality conditions and policy
optimization. Journal of Dynamics & Games 8.4, p. 403.

Carmona, R. and M. Laurière (2019). Convergence Analysis of Machine Learning Algorithms
for the Numerical Solution of Mean Field Control and Games: II - The Finite Horizon Case.
To appear in Annals of Applied Probability (preprint arXiv:1908.01613).

233

List of References

Carmona, R. and M. Laurière (2021). Convergence Analysis of Machine Learning Algorithms
for the Numerical Solution of Mean Field Control and Games I: The Ergodic Case. SIAM
Journal on Numerical Analysis 59.3, pp. 1455–1485.

Carmona, R., M. Laurière, and Z. Tan (2019a). Linear-quadratic mean-field reinforcement
learning: convergence of policy gradient methods. arXiv preprint arXiv:1910.04295.

— (2019b). Model-free mean-field reinforcement learning: mean-field MDP and mean-field
Q-learning. arXiv preprint arXiv:1910.12802.

Cecchin, A. and G. Pelino (2019). Convergence, fluctuations and large deviations for finite state
mean field games via the master equation. Stochastic Processes and their Applications 129.11,
pp. 4510–4555.

Cesa-Bianchi, N. and G. Lugosi (2006). Prediction, Learning, and Games. Cambridge University
Press.

Chan, P. and R. Sircar (2015). Bertrand and Cournot mean field games. Applied Mathematics &
Optimization 71.3.

— (2017). Fracking, renewables, and mean field games. SIAM Review 59.3.
Chassagneux, J.-F., D. Crisan, and F. Delarue (2019). Numerical method for FBSDEs ofMcKean–

Vlasov type. The Annals of Applied Probability 29.3, pp. 1640–1684.
Chen, M., Y. Li, E. Wang, Z. Yang, Z. Wang, and T. Zhao (2021). Pessimism Meets Invari-

ance: Provably Efficient Offline Mean-Field Multi-Agent RL. Advances in Neural Information
Processing Systems 34.

Chevalier, G., J. Le Ny, and R. Malhamé (2015). A micro-macro traffic model based on mean-
field games. In American Control Conference (ACC). IEEE.

Chotibut, T., F. Falniowski, M. Misiurewicz, and G. Piliouras (2019). The route to chaos in
routing games: When is Price of Anarchy too optimistic? arXiv preprint arXiv:1906.02486.

Cirant, M. (2015). Multi-population mean field games systems with Neumann boundary
conditions. Journal de Mathématiques Pures et Appliquées 103.5, pp. 1294–1315.

Couillet, R., S. M. Perlaza, H. Tembine, and M. Debbah (2012). Electrical vehicles in the smart
grid: A mean field game analysis. IEEE Journal on Selected Areas in Communications 30.6.

Cucker, F. and E. Mordecki (2008). Flocking in noisy environments. Journal de mathématiques
pures et appliquées 89.3, pp. 278–296.

Cucker, F. and S. Smale (2007). Emergent behavior in flocks. IEEE Transactions on automatic
control.

Cui, K. andH.Koeppl (2021).Approximately SolvingMean FieldGames via Entropy-Regularized
Deep Reinforcement Learning. In Proceedings of The 24th International Conference on Artificial
Intelligence and Statistics. Ed. by A. Banerjee and K. Fukumizu. Vol. 130. Proceedings of
Machine Learning Research. PMLR, pp. 1909–1917.

Cui, K., A. Tahir, G. Ekinci, A. Elshamanhory, Y. Eich, M. Li, et al. (2022). A Survey on Large-
Population Systems and Scalable Multi-Agent Reinforcement Learning.

234

List of References

Daskalakis, C. and Q. Pan (2014). A counter-example to Karlin’s strong conjecture for fictitious
play. In IEEE 55th Annual Symposium on Foundations of Computer Science. IEEE.

Degl’Innocenti, L. (2018). Correlated Equilibria in Static Mean-Field Games. PhD thesis. Uni-
versità degli Studi di Padova.

Delarue, F. and A. Vasileiadis (2021). Exploration noise for learning linear-quadratic mean
field games. arXiv preprint arXiv:2107.00839.

Djehiche, B., A. Tcheukam Siwe, and H. Tembine (Nov. 2017). Mean-Field-Type Games in
Engineering. AIMS Electronics and Electrical Engineering 1.

Djehiche, B., A. Tcheukam, and H. Tembine (2017). A mean-field game of evacuation in multi-
level building. IEEE Transactions on Automatic Control 62.10.

Doncel, J., N. Gast, and B. Gaujal (2022). A mean field game analysis of SIR dynamics with
vaccination. Probability in the Engineering and Informational Sciences 36.2, pp. 482–499.

Ducatelle, F., G. A. Di Caro, A. Förster, M. Bonani, M. Dorigo, S. Magnenat, et al. (2014).
Cooperative navigation in robotic swarms. Swarm Intelligence 8.1.

Duffie, D. and Y. Sun (2012). The exact law of large numbers for independent randommatching.
Journal of Economic Theory 147.3, pp. 1105–1139.

Duncan, T. E. andH. Tembine (2018). Linear–quadraticmean-field-type games: A directmethod.
Games 9.1.

Durkan, C., A. Bekasov, I. Murray, and G. Papamakarios (2019). Neural Spline Flows.
Elie, R., E. Hubert, T. Mastrolia, and D. Possamai (2019). Mean-field moral hazard for optimal

energy demand response management.Mathematical Finance (to appear).
Elie, R., E. Hubert, and G. Turinici (2020). Contact rate epidemic control of COVID-19: an

equilibrium view.Mathematical Modelling of Natural Phenomena.
Elie, R., T. Ichiba, and M. Laurière (2020). Large banking systems with default and recovery: A

mean field game model. arXiv preprint arXiv:2001.10206.
Elie, R., T. Mastrolia, and D. Possamai (2019). A tale of a principal and many, many agents.

Mathematics of Operations Research 44.2.
Elie, R., J. Perolat, M. Laurière, M. Geist, and O. Pietquin (2020). On the convergence of model

free learning inmean field games. InProceedings of the AAAIConference onArtificial Intelligence.
Vol. 34. 05, pp. 7143–7150.

Farago, J., A. Greenwald, and K. Hall (2002). Fair and Efficient Solutions to the Santa Fe Bar
Problem. In Proceedings of the Grace Hopper Conference on Women in Computing.

Feleqi, E. (2013). The derivation of ergodic mean field game equations for several populations
of players. Dynamic Games and Applications 3.4, pp. 523–536.

Firoozi, D. and S. Jaimungal (2022). Exploratory LQG mean field games with entropy regular-
ization. Automatica 139, p. 110177.

Foerster, J. N., G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson (2018). Counterfactual
multi-agent policy gradients. In Proceedings of AAAI.

235

List of References

Foerster, J., R. Y. Chen, M. Al-Shedivat, S. Whiteson, P. Abbeel, and I. Mordatch (2018). Learning
with opponent-learning awareness. In Proceedings of AAMAS.

Foerster, J., N. Nardelli, G. Farquhar, T. Afouras, P. H. Torr, P. Kohli, et al. (2017). Stabilising
experience replay for deep multi-agent reinforcement learning. In Proceedings of ICML.
JMLR. org.

Fouque, J.-P. and Z. Zhang (2020). Deep Learning Methods for Mean Field Control Problems
With Delay. Frontiers in Applied Mathematics and Statistics 6.

François-Lavet, V., P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau (2018). An Introduc-
tion to Deep Reinforcement Learning. Foundations and Trends® in Machine Learning 11.3-4,
pp. 219–354.

French, R. M. (1999). Catastrophic forgetting in connectionist networks. Trends in Cognitive
Sciences 3.4, pp. 128–135.

Freund, Y. and R. E. Schapire (1999). Adaptive game playing using multiplicative weights.
Games and Economic Behavior 29.1-2, pp. 79–103.

Fu, Z., Z. Yang, Y. Chen, and Z. Wang (2019). Actor-Critic Provably Finds Nash Equilibria of
Linear-Quadratic Mean-Field Games.

Fudenberg, D. and D. K. Levine (1998a). The Theory of Learning in Games. MIT Press Books 1.
— (1998b). The Theory of Learning in Games. Vol. 2. MIT press.
Fudenberg, D. and J. Tirole (1991). Game theory. MIT press.
Fujimoto, S., H. Hoof, and D. Meger (2018). Addressing function approximation error in

actor-critic methods. In International Conference on Machine Learning. PMLR, pp. 1587–1596.
Gast, N., B. Gaujal, and J.-Y. Le Boudec (2012). Mean field for Markov decision processes: from

discrete to continuous optimization. IEEE Transactions on Automatic Control 57.9, pp. 2266–
2280.

Geist, M., J. Pérolat, M. Laurière, R. Elie, S. Perrin, O. Bachem, et al. (2021). Concave utility
reinforcement learning: the mean-field game viewpoint. Autonomous Agents and Multiagent
Systems (AAMAS 2022) (arXiv preprint arXiv:2106.03787).

Geist, M., B. Scherrer, and O. Pietquin (Sept. 2019). A Theory of Regularized Markov Decision
Processes. In Proceedings of the 36th International Conference on Machine Learning. Ed. by
K. Chaudhuri and R. Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research.
PMLR, pp. 2160–2169.

Germain, M., J. Mikael, and X. Warin (2022). Numerical resolution of McKean-Vlasov FBSDEs
using neural networks.Methodology and Computing in Applied Probability, pp. 1–30.

Gomes, D. A., J. Mohr, and R. R. Souza (2010). Discrete time, finite state space mean field
games. Journal de mathématiques pures et appliquées 93.3, pp. 308–328.

Gomes, D. A., S. Patrizi, and V. Voskanyan (2014). On the existence of classical solutions for
stationary extended mean field games. Nonlinear Analysis: Theory, Methods & Applications 99,
pp. 49–79.

236

List of References

Gomes, D. A. and J. Saúde (2020). A Mean-Field Game Approach to Price Formation. Dynamic
Games and Applications.

Gomes, D. A. and V. K. Voskanyan (2016). Extended deterministic mean-field games. SIAM
Journal on Control and Optimization 54.2, pp. 1030–1055.

Gomes, D., R. M. Velho, and M.-T. Wolfram (2014). Socio-economic applications of finite state
mean field games. Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 372.2028.

Goodfellow, I., Y. Bengio, andA.Courville (2016).Deep Learning. http://www.deeplearningbook.
org. MIT Press.

Goodfellow, I., M. Mirza, D. Xiao, A. Courville, and Y. Bengio (2014). An empirical investigation
of catastrophic forgetting in gradient-based neural networks. In Proceedings of ICLR.

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, et al. (2014).
Generative adversarial nets. In Advances in Neural Information Processing Systems 27 (NIPS).

Graber, P. J. (2016). Linear quadraticmeanfield type control andmeanfield gameswith common
noise, with application to production of an exhaustible resource. Applied Mathematics &
Optimization 74.3.

Graber, P. J. and A. Bensoussan (2018). Existence and uniqueness of solutions for Bertrand and
Cournot mean field games. Applied Mathematics & Optimization 77.1.

Greenwald, A., K. Hall, and R. Serrano (2003). Correlated Q-learning. In Proceedings of ICML.
Vol. 20.

Grover, P., K. Bakshi, and E. A. Theodorou (2018). A mean-field game model for homogeneous
flocking. Chaos: An Interdisciplinary Journal of Nonlinear Science 28.6, p. 061103.

Gu, H., X. Guo, X. Wei, and R. Xu (2019). Dynamic Programming Principles for Mean-Field
Controls with Learning. arXiv preprint arXiv:1911.07314.

— (2020). Q-learning for mean-field controls. arXiv preprint arXiv:2002.04131.
— (2021a). Mean-field controls with Q-learning for cooperative MARL: convergence and

complexity analysis. SIAM Journal on Mathematics of Data Science 3.4, pp. 1168–1196.
— (2021b). Mean-field multi-agent reinforcement learning: A decentralized network approach.

arXiv preprint arXiv:2108.02731.
Guéant, O., J.-M. Lasry, and P.-L. Lions (2011). Mean field games and applications. In Paris-

Princeton lectures on mathematical finance 2010. Springer, pp. 205–266.
Guo, X., A. Hu, R. Xu, and J. Zhang (2019). Learning mean-field games. Advances in Neural

Information Processing Systems 32.
— (2020). A General Framework for Learning Mean-Field Games. CoRR abs/2003.06069.
Guo, X., R. Xu, and T. Zariphopoulou (2020). Entropy regularization for mean field games with

learning. arXiv preprint arXiv:2010.00145.

237

http://www.deeplearningbook.org
http://www.deeplearningbook.org

List of References

Haarnoja, T., A. Zhou, P. Abbeel, and S. Levine (2018). Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference on
machine learning. PMLR, pp. 1861–1870.

Hadikhanloo, S. (2017). Learning in anonymous nonatomic games with applications to first-
order mean field games. arXiv preprint arXiv:1704.00378.

— (2018). Learning in mean field games. PhD thesis. PhD thesis. Université Paris sciences et
lettres.

Hadikhanloo, S. and F. J. Silva (2019). Finite mean field games: fictitious play and convergence
to a first order continuous mean field game. Journal de Mathématiques Pures et Appliquées 132,
pp. 369–397.

Hamidouche, K., W. Saad, M. Debbah, and H. V. Poor (2016). Mean-field games for distributed
caching in ultra-dense small cell networks. In 2016 American Control Conference (ACC). IEEE.

Harris, C. (1998). On the rate of convergence of continuous-time fictitious play. Games and
Economic Behavior 22.2.

Heinrich, J., M. Lanctot, and D. Silver (2015). Fictitious self-play in extensive-form games. In
Proceedings of ICML.

Heinrich, J. and D. Silver (2016). Deep reinforcement learning from self-play in imperfect-
information games. arXiv preprint arXiv:1603.01121.

Hill, A., A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, et al. (2018). Stable Baselines.
https://github.com/hill-a/stable-baselines.

Hofbauer, J. and W. H. Sandholm (2002). On the global convergence of stochastic fictitious
play. Econometrica 70.6.

Hu, J. and M. P. Wellman (2003). Nash Q-learning for general-sum stochastic games. Journal of
Machine Learning Research 4.Nov.

Hu, R. (2021). Deep fictitious play for stochastic differential games. Communications in mathe-
matical sciences 19.2.

Hu, R. andM. Laurière (2022). Recent Developments inMachine LearningMethods for Stochas-
tic Control and Games. SSRN preprint:4096569.

Huang, K., X. Di, Q. Du, and X. Chen (2017). A game-theoretic framework for autonomous
vehicles velocity control: Bridging microscopic differential games and macroscopic mean
field games. Discrete & Continuous Dynamical Systems - B 22.11.

— (2019). Stabilizing traffic via autonomous vehicles: A continuummean field game approach.
In 2019 IEEE Intelligent Transportation Systems Conference (ITSC). IEEE, pp. 3269–3274.

Huang, M., R. P. Malhamé, and P. E. Caines (2006). Large population stochastic dynamic
games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle.
Communications in Information & Systems 6.3, pp. 221–252.

Hubert, E. and G. Turinici (2018). Nash-MFG equilibrium in a SIR model with time dependent
newborn vaccination. Ricerche di Matematica 67.1.

238

https://github.com/hill-a/stable-baselines

List of References

Karlin, S. (1959).Mathematical Methods and Theory in Games, Programming and Economics. Addison-
Wesley. American Association for the Advancement of Science.

Khalil, H. K. (2002). Nonlinear systems; 3rd ed. Prentice-Hall.
Kingma, D. P. and M. Welling (2014). Auto-Encoding Variational Bayes. In Proceedings of ICLR.
Kizilkale, A. C., R. Salhab, and R. P. Malhamé (2019). An integral control formulation of mean

field game based large scale coordination of loads in smart grids. Automatica 100.
Kobeissi, Z. (2022). On classical solutions to the mean field game system of controls. Communi-

cations in Partial Differential Equations 47.3, pp. 453–488.
Kobyzev, I., S. Prince, and M. Brubaker (2020). Normalizing flows: An introduction and review

of current methods. PAMI.
Kolokoltsov, V. N. and A. Bensoussan (2016). Mean-field-game model for botnet defense in

cyber-security. Applied Mathematics & Optimization 74.3.
Kolokoltsov, V. N. and O. A. Malafeyev (2018). Corruption and botnet defense: a mean field

game approach. International Journal of Game Theory 47.3.
Koutsoupias, E. and C. Papadimitriou (1999). Worst-case equilibria. In Annual symposium on

theoretical aspects of computer science. Springer, pp. 404–413.
Lachapelle, A., J.-M. Lasry, C.-A. Lehalle, andP.-L. Lions (2016). Efficiency of the price formation

process in presence of high frequency participants: a mean field game analysis.Mathematics
and Financial Economics 10.3.

Lachapelle, A. and M.-T. Wolfram (2011). On a mean field game approach modeling conges-
tion and aversion in pedestrian crowds. Transportation research part B: methodological 45.10,
pp. 1572–1589.

Lacker, D. (2017). Limit theory for controlled McKean–Vlasov dynamics. SIAM Journal on
Control and Optimization 55.3, pp. 1641–1672.

— (2020). On the convergence of closed-loop Nash equilibria to the mean field game limit.
The Annals of Applied Probability 30.4, pp. 1693–1761.

Lacker, D. and K. Ramanan (2019). Rare Nash equilibria and the price of anarchy in large static
games.Mathematics of Operations Research 44.2, pp. 400–422.

Laguzet, L. and G. Turinici (2015). Individual vaccination as Nash equilibrium in a SIR model
with application to the 2009–2010 influenza A (H1N1) epidemic in France. Bulletin of
Mathematical Biology 77.10, pp. 1955–1984.

Lanctot, M., E. Lockhart, J.-B. Lespiau, V. Zambaldi, S. Upadhyay, J. Pérolat, et al. (2019). Open-
Spiel: A framework for reinforcement learning in games. arXiv preprint arXiv:1908.09453.

Lanctot, M., K. Waugh, M. Zinkevich, and M. Bowling (2009). Monte Carlo sampling for regret
minimization in extensive games. In vol. 22, pp. 1078–1086.

Lanctot, M., V. Zambaldi, A. Gruslys, A. Lazaridou, K. Tuyls, J. Perolat, et al. (2017). A Unified
Game-Theoretic Approach to Multiagent Reinforcement Learning. In Proceedings of NeurIPS.

239

List of References

Lasry, J.-M. and P.-L. Lions (2007). Mean field games. Japanese journal of mathematics 2.1, pp. 229–
260.

Laurière, M. (2021). Numerical methods for mean field games and mean field type control.
Mean Field Games 78, p. 221.

Laurière, M., S. Perrin, M. Geist, and O. Pietquin (2022). Learning Mean Field Games: A Survey.
arXiv:2205.12944.

Lauriere, M., S. Perrin, S. Girgin, P.Muller, A. Jain, T. Cabannes, et al. (2022). Scalable Deep Rein-
forcement Learning Algorithms for Mean Field Games. In Proceedings of the 39th International
Conference on Machine Learning (ICML 2022). Vol. 162, pp. 12078–12095.

Laurière, M., J. Song, and Q. Tang (2021). Policy iteration method for time-dependent Mean
Field Games systems with non-separable Hamiltonians. arXiv preprint arXiv:2110.02552.

Lee, W., S. Liu, H. Tembine, W. Li, and S. Osher (2021). Controlling propagation of epidemics
via mean-field control. SIAM Journal on Applied Mathematics 81.1, pp. 190–207.

Li, F., R. P. Malhamé, and J. Le Ny (2016). Mean field game based control of dispersed energy
storage devices with constrained inputs. In 2016 IEEE 55th Conference on Decision and Control
(CDC). IEEE.

Li, Y., L. Wang, J. Yang, E. Wang, Z. Wang, T. Zhao, et al. (2021). Permutation invariant policy
optimization for mean-field multi-agent reinforcement learning: A principled approach.
arXiv preprint arXiv:2105.08268.

Liang, E., R. Liaw, R. Nishihara, P. Moritz, R. Fox, J. Gonzalez, et al. (2017). Ray RLLib: A
Composable and Scalable Reinforcement Learning Library. CoRR abs/1712.09381.

Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, et al. (2016). Continuous control
with deep reinforcement learning. In Proceedings of ICLR.

Lin, A. T., S. W. Fung, W. Li, L. Nurbekyan, and S. J. Osher (2020). APAC-Net: Alternating
the Population and Agent Control via Two Neural Networks to Solve High-Dimensional
Stochastic Mean Field Games. arXiv preprint arXiv:2002.10113.

Lions, P.-L. (2012). Lecture at the Collège de France.
McGuire, K., C. DeWagter, K. Tuyls, H. Kappen, andG. C. de Croon (2019). Minimal navigation

solution for a swarm of tiny flying robots to explore an unknown environment. Science
Robotics 4.35.

Mériaux, F., V. Varma, and S. Lasaulce (2012). Mean field energy games in wireless networks. In
2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers
(ASILOMAR). IEEE.

Mertikopoulos, P., C. Papadimitriou, and G. Piliouras (2018). Cycles in adversarial regular-
ized learning. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms. SIAM, pp. 2703–2717.

Mertikopoulos, P. and W. H. Sandholm (2016). Learning in games via reinforcement and
regularization.Mathematics of Operations Research 41.4, pp. 1297–1324.

Meyn, S. (2022). Control Systems and Reinforcement Learning. Cambridge University Press.

240

List of References

Mguni, D., J. Jennings, and E. Munoz de Cote (2018). Decentralised Learning in Systems With
Many, Many Strategic Agents. In Proceedings of AAAI.

Miehling, E. and T. Başar (2022). Reinforcement Learning for Non-stationary Discrete-Time
Linear–Quadratic Mean-Field Games in Multiple Populations. Dynamic Games and Applica-
tions, pp. 1–47.

Mishra, R. K., D. Vasal, and S. Vishwanath (2020). Model-free reinforcement learning for non-
stationary mean field games. In 2020 59th IEEE Conference on Decision and Control (CDC).
IEEE, pp. 1032–1037.

Mitchell, T. M. (1997). Machine learning.
Mnih, V., K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, et al. (2013). Playing

atari with deep reinforcement learning. In NIPS Workshop on Deep Learning and Unsupervised
Feature Learning. arXiv preprint arXiv:1312.5602.

Moravcik, M., M. Schmid, N. Burch, V. Lisy, D. Morrill, N. Bard, et al. (2017). Deepstack:
Expert-level artificial intelligence in heads-up no-limit poker. Science 356.6337, pp. 508–513.

Morrill, D., R. D’Orazio, M. Lanctot, J. R. Wright, M. Bowling, and A. R. Greenwald (2021).
Efficient Deviation Types and Learning for Hindsight Rationality in Extensive-Form Games.
In Proceedings of the 38th International Conference on Machine Learning. Ed. by M. Meila and
T. Zhang. Vol. 139. Proceedings of Machine Learning Research. PMLR, pp. 7818–7828.

Morrill, D., R. D’Orazio, R. Sarfati, M. Lanctot, J. R. Wright, A. Greenwald, et al. (2020). Hind-
sight and Sequential Rationality of Correlated Play. arXiv preprint arXiv:2012.05874.

Motte, M. and H. Pham (2019). Mean-field Markov decision processes with common noise
and open-loop controls. arXiv preprint arXiv:1912.07883.

Muller, P., R. Elie,M. Rowland,M. Laurière, J. Perolat, S. Perrin, et al. (2022). LearningCorrelated
Equilibria in Mean-Field Games. arXiv:2208.10138.

Muller, P., M. Rowland, R. Elie, G. Piliouras, J. Perolat, M. Laurière, et al. (2021). Learning
Equilibria inMean-FieldGames: IntroducingMean-Field PSRO.AAMAS2022 (arXiv preprint
arXiv:2111.08350).

Nash, J. F. (1950). Equilibrium points in n-person games. Proceedings of the national academy of
sciences 36.1, pp. 48–49.

— (1951). Non-cooperative games. Annals of mathematics, pp. 286–295.
Nemirovsky, A. and D. Yudin (1979). ProblemComplexity andOptimizationMethod Efficiency.

M.: Nauka.
Neu, G., A. Jonsson, and V. Gómez (2017). A unified view of entropy-regularized Markov decision

processes.
Neumann, J. von (1928). Zur Theorie der Gesellschaftsspiele. Mathematische Annalen 100,

pp. 295–300.
Neumann, J. von and O. Morgenstern (1944). Theory of Games and Economic Behavior. Princeton

University Press.

241

List of References

Nisan, N., T. Roughgarden, E. Tardos, and V. V. Vazirani (2007). Algorithmic Game Theory. USA:
Cambridge University Press.

Nourian,M., P. E. Caines, andR. P.Malhamé (2010). Synthesis of Cucker-Smale type flocking via
mean field stochastic control theory: Nash equilibria. In 2010 48th Annual Allerton Conference
on Communication, Control, and Computing (Allerton). IEEE, pp. 814–819.

— (2011). Mean field analysis of controlled Cucker-Smale type flocking: Linear analysis and
perturbation equations. IFAC Proceedings Volumes 44.1, pp. 4471–4476.

Okubo, A. (1986). Dynamical aspects of animal grouping: swarms, schools, flocks, and herds.
Advances in biophysics.

Olfati-Saber, R. (2006). Flocking for multi-agent dynamic systems: Algorithms and theory.
IEEE Transactions on automatic control.

Omidshafiei, S., D. Hennes, D. Morrill, R. Munos, J. Perolat, M. Lanctot, et al. (2019). Neural
Replicator Dynamics. arXiv preprint arXiv:1906.00190.

Ostrovski, G. and S. Strien (Aug. 2013). Payoff Performance of Fictitious Play. Journal of Dynamics
and Games 1.

Palaiopanos, G., I. Panageas, and G. Piliouras (2017). Multiplicative weights update with
constant step-size in congestion games: Convergence, limit cycles and chaos. In Advances in
Neural Information Processing Systems, pp. 5872–5882.

Papamakarios, G., E. Nalisnick, D. J. Rezende, S. Mohamed, and B. Lakshminarayanan (2021).
Normalizing flows for probabilistic modeling and inference. Journal of Machine Learning
Research 22.57, pp. 1–64.

Parise, F., S. Grammatico, B. Gentile, and J. Lygeros (2015). Network aggregative games and
distributed mean field control via consensus theory. arXiv preprint arXiv:1506.07719.

Partridge, B. L. (1982). The structure and function of fish schools. Scientific american 246.6,
pp. 114–123.

Pérolat, J., R. Munos, J.-B. Lespiau, S. Omidshafiei, M. Rowland, P. Ortega, et al. (2021). From
Poincaré recurrence to convergence in imperfect information games: Finding equilibrium
via regularization. In Proceedings of ICML.

Perolat, J., S. Perrin, R. Elie, M. Laurière, G. Piliouras, M. Geist, et al. (2021). Scaling up Mean
Field Games with Online Mirror Descent. Autonomous Agents and Multiagent Systems (AA-
MAS 2022) (arXiv preprint arXiv:2103.00623).

Perolat, J., B. Piot, and O. Pietquin (2018). Actor-critic fictitious play in simultaneous move
multistage games. In International Conference on Artificial Intelligence and Statistics. PMLR,
pp. 919–928.

Perolat, J., B. de Vylder, D. Hennes, E. Tarassov, F. Strub, V. de Boer, et al. (2022). Mastering the
Game of Stratego with Model-Free Multiagent Reinforcement Learning.

Perrin, S., M. Laurière, J. Pérolat, R. Élie, M. Geist, and O. Pietquin (2021). Generalization
in Mean Field Games by Learning Master Policies. Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI 2022) (arXiv preprint arXiv:2109.09717).

242

List of References

Perrin, S., M. Laurière, J. Pérolat, M. Geist, R. Élie, and O. Pietquin (2021). Mean Field Games
Flock! The Reinforcement Learning Way. International Joint Conference of Artificial Intelligence
(IJCAI 2021) (arXiv preprint arXiv:2105.07933).

Perrin, S., J. Perolat, M. Laurière, M. Geist, R. Elie, and O. Pietquin (2020). Fictitious Play for
Mean Field Games: Continuous Time Analysis and Applications. In Advances in Neural
Information Processing Systems (NeurIPS 2020). Vol. 33. Curran Associates, Inc., pp. 13199–
13213.

Piliouras, G. and J. S. Shamma (2014). Optimization despite chaos: Convex relaxations to
complex limit sets via Poincaré recurrence. In Proceedings of the twenty-fifth annual ACM-
SIAM symposium on Discrete algorithms. SIAM, pp. 861–873.

Postlethwaite, C. M. and A. M. Rucklidge (2017). Spirals and heteroclinic cycles in a spatially
extended Rock-Paper-Scissors model of cyclic dominance. EPL (Europhysics Letters) 117.4,
p. 48006.

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons.

Rawlik, K., M. Toussaint, and S. Vijayakumar (2012). On stochastic optimal control and rein-
forcement learning by approximate inference. Proceedings of Robotics: Science and Systems
VIII.

Reynolds, C.W. (1987). Flocks, herds and schools: Adistributed behavioralmodel. InProceedings
of SIGGRAPH.

Rezende, D. and S. Mohamed (2015). Variational inference with normalizing flows. In Interna-
tional conference on machine learning. PMLR, pp. 1530–1538.

Robinson, J. (1951). An iterative method of solving a game. Annals of mathematics, pp. 296–301.
Roughgarden, T. (2009). Intrinsic robustness of the price of anarchy. In Proceedings of STOC,

pp. 513–522.
Roughgarden, T. and E. Tardos (2007). Introduction to the inefficiency of equilibria. Algorithmic

game theory 17, pp. 443–459.
Ruthotto, L., S. J. Osher, W. Li, L. Nurbekyan, and S. W. Fung (2020). A machine learning

framework for solving high-dimensional mean field game and mean field control problems.
Proceedings of the National Academy of Sciences 117.17.

Saldi, N., T. Başar, and M. Raginsky (2018). Markov-Nash equilibria in mean-field games with
discounted cost. SIAM Journal on Control and Optimization 56.6.

Salhab, R., J. Le Ny, and R. P. Malhamé (2018). A mean field route choice game model. In 2018
IEEE Conference on Decision and Control (CDC). IEEE, pp. 1005–1010.

Samarakoon, S., M. Bennis, W. Saad, M. Debbah, and M. Latva-Aho (2015). Energy-efficient
resource management in ultra dense small cell networks: A mean-field approach. In IEEE
Global Communications Conference (GLOBECOM).

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal
of Research and Development 3.3.

243

List of References

Sato, Y., E. Akiyama, and J. D. Farmer (2002). Chaos in learning a simple two-person game.
Proceedings of the National Academy of Sciences 99.7, pp. 4748–4751.

Schaeffer, J., N. Burch, Y. Björnsson, A. Kishimoto, M. Müller, R. Lake, et al. (2007). Checkers is
solved. Science 317.5844.

Schmeidler, D. (1973). Equilibrium points of nonatomic games. Journal of statistical Physics 7.4,
pp. 295–300.

Schulman, J., S. Levine, P. Abbeel, M. Jordan, and P. Moritz (2015). Trust region policy opti-
mization. In International conference on machine learning. PMLR, pp. 1889–1897.

Shalev-Shwartz, S. (2011). Online learning and online convex optimization. Foundations and
trends in Machine Learning 4.2, pp. 107–194.

Shannon, C. E. (1959). Programming a Computer Playing Chess. Philosophical Magazine Series
7, 41.312.

Shapiro, H. N. (1958). Note on a computationmethod in the theory of games. InCommunications
on Pure and Applied Mathematics.

Shaw, E. (1975). Naturalist at large-fish in schools. Natural History.
Shiri, H., J. Park, and M. Bennis (2019). Massive Autonomous UAV Path Planning: A Neural

Network Based Mean-Field Game Theoretic Approach. In IEEE Global Communications
Conference (GLOBECOM).

Shoham, Y. (1993). Agent-oriented programming. Artificial Intelligence 60.1, pp. 51–92.
Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, et al. (2016).

Mastering the game of Go with deep neural networks and tree search. Nature 529.7587.
Silver, D., T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, et al. (2018). A general

reinforcement learning algorithm that masters chess, shogi, and Go through self-play.
Science 632.6419.

Silver, D., J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, et al. (2017).
Mastering the game of Go without human knowledge. Nature 550.7676.

Srebro, N., K. Sridharan, and A. Tewari (2011). On the universality of online mirror descent.
arXiv preprint arXiv:1107.4080.

Srinivasan, S., M. Lanctot, V. Zambaldi, J. Pérolat, K. Tuyls, R. Munos, et al. (2018). Actor-
critic policy optimization in partially observable multiagent environments. In Proceedings of
NeurIPS.

Stella, L., F. Bagagiolo, D. Bauso, and G. Como (2013). Opinion dynamics and stubbornness
through mean-field games. In 52nd IEEE Conference on Decision and Control. IEEE.

Subramanian, J. and A.Mahajan (2019). Reinforcement learning in stationarymean-field games.
In Proceedings of the 18th International Conference on Autonomous Agents andMultiAgent Systems
(AAMAS), pp. 251–259.

Subramanian, J., R. Seraj, and A. Mahajan (2018). Reinforcement learning for mean-field teams.
In Workshop on Adaptive and Learning Agents at International Conference on Autonomous Agents
and Multi-Agent Systems.

244

List of References

Subramanian, S. G., P. Poupart, M. E. Taylor, and N. Hegde (2020). Multi type mean field
reinforcement learning. arXiv preprint arXiv:2002.02513.

Sun, Y. (2006). The exact law of large numbers via Fubini extension and characterization of
insurable risks. Journal of Economic Theory 126.1, pp. 31–69.

Sutton, R. S. and A. G. Barto (2018). Reinforcement Learning: An Introduction. 2nd. The MIT Press.
Szepesvári, C. (2010). Algorithms for reinforcement learning. Synthesis lectures on artificial

intelligence and machine learning 4.1, pp. 1–103.
Sznitman, A.-S. (1991). Topics in propagation of chaos. In Ecole d’été de probabilités de Saint-Flour

XIX—1989. Springer, pp. 165–251.
Szolnoki, A., B. de Oliveira, and D. Bazeia (2020). Pattern formations driven by cyclic interac-

tions: A brief review of recent developments. EPL (Europhysics Letters) 131.6, p. 68001.
Szymanski, M., T. Breitling, J. Seyfried, and H. Wörn (2006). Distributed shortest-path finding

by a micro-robot swarm. In International Workshop on Ant Colony Optimization and Swarm
Intelligence. Springer.

Tanaka, T., E. Nekouei, A. R. Pedram, and K. H. Johansson (2020). Linearly solvable mean-field
traffic routing games. IEEE Transactions on Automatic Control 66.2, pp. 880–887.

Tembine, H., R. Tempone, and P. Vilanova (2012). Mean-field learning: a survey. arXiv preprint
arXiv:1210.4657.

Todorov, E. (2008). General duality between optimal control and estimation. In 2008 47th IEEE
Conference on Decision and Control. IEEE, pp. 4286–4292.

Toner, J. and Y. Tu (1998). Flocks, herds, and schools: A quantitative theory of flocking. Physical
review E 58.4, p. 4828.

Toussaint, M. (2009). Robot trajectory optimization using approximate inference. In Proceedings
of the 26th annual international conference on machine learning, pp. 1049–1056.

Vieillard, N., O. Pietquin, and M. Geist (2020). Munchausen Reinforcement Learning. In
Proceedings of NeurIPS.

Vinyals, O., I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, et al. (2019).
Grandmaster level in StarCraft II using multi-agent reinforcement learning.Nature 575.7782,
pp. 350–354.

Wang, L., Z. Yang, and Z. Wang (2020). Breaking the curse of many agents: Provable mean
embedding q-iteration for mean-field reinforcement learning. In International Conference on
Machine Learning. PMLR, pp. 10092–10103.

Wang, W., J. Han, Z. Yang, and Z. Wang (2021). Global convergence of policy gradient for
linear-quadratic mean-field control/game in continuous time. In International Conference on
Machine Learning. PMLR, pp. 10772–10782.

Wang, X., J. Cerny, S. Li, C. Yang, Z. Yin, H. Chan, et al. (2022). A Unified Perspective on Deep
Equilibrium Finding. arXiv preprint arXiv:2204.04930.

Watkins, C. J. and P. Dayan (1992). Q-learning.Machine learning 8.3-4, pp. 279–292.

245

List of References

Watkins, C. (1989). Learning form delayed rewards. Ph. D. thesis, King’s College, University of
Cambridge.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine learning 8.3, pp. 229–256.

Wooldridge, M. and N. R. Jennings (1995). Agent theories, architectures, and languages: A
survey. In Intelligent Agents. Ed. by M. J. Wooldridge and N. R. Jennings. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 1–39.

Xie, Q., Z. Yang, Z. Wang, and A. Minca (2021). Learning While Playing in Mean-Field Games:
Convergence and Optimality. In Proceedings of the 38th International Conference on Machine
Learning. Ed. byM.Meila and T. Zhang. Vol. 139. Proceedings ofMachine Learning Research.
PMLR, pp. 11436–11447.

Yang, C., J. Li, M. Sheng, A. Anpalagan, and J. Xiao (2017). Mean field game-theoretic frame-
work for interference and energy-aware control in 5G ultra-dense networks. IEEE Wireless
Communications 25.1.

Yang, Y., R. Luo, M. Li, M. Zhou, W. Zhang, and J. Wang (2018). Mean Field Multi-Agent
Reinforcement Learning. In Proceedings of ICML.

Yang, Y. and J. Wang (2020). An overview of multi-agent reinforcement learning from game
theoretical perspective. arXiv preprint arXiv:2011.00583.

Yin, H., P. G. Mehta, S. P. Meyn, and U. V. Shanbhag (2010). Learning in mean-field oscillator
games. In 49th IEEE Conference on Decision and Control (CDC). IEEE.

Zaman, M. A. uz, K. Zhang, E. Miehling, and T. Bas,ar (2020). Reinforcement learning in non-
stationary discrete-time linear-quadratic mean-field games. In 2020 59th IEEE Conference on
Decision and Control (CDC). IEEE, pp. 2278–2284.

Zhang, K., Z. Yang, and T. Başar (2021). Multi-agent reinforcement learning: A selective
overview of theories and algorithms.Handbook of Reinforcement Learning and Control, pp. 321–
384.

Zhou, Z., P. Mertikopoulos, A. L. Moustakas, N. Bambos, and P. Glynn (2017). Mirror descent
learning in continuous games. In 2017 IEEE 56th Annual Conference on Decision and Control
(CDC). IEEE, pp. 5776–5783.

Zinkevich, M., M. Johanson, M. Bowling, and C. Piccione (2007). Regret minimization in games
with incomplete information. In Proceedings of NeurIPS. Vol. 20, pp. 1729–1736.

246

List of References

248

	Title
	Résumé
	Abstract
	Contents
	List of Acronyms
	List of Symbols
	Chapter 1 : Introduction
	1.1 Context and Scope
	1.2 Outline and Contributions

	Part I : Background and Settings
	Chapter 2 : Background
	2.1 From Markov Decision Process to Deep Reinforcement Learning
	2.2 Mean Field Games: Definition and Settings

	Chapter 3 : Iterative Methods, Reinforcement Learning for Mean Field Games and Metrics
	3.1 Iterative methods
	3.2 Reinforcement learning for Mean Field Games
	3.3 Metrics and Numerical Experiments

	Part II : Deep Dive to Iterative Methods: Fictitious Play and Online Mirror Descent
	Chapter 4 : Fictitious Play
	4.1 Motivation
	4.2 Continuous Time Fictitious Play in Mean Field Games
	4.3 Experiments on Fictitious Play in the Finite Horizon Case
	4.4 Finite Horizon Mean Field Games with Common Noise
	4.5 Experiments with Common Noise
	4.6 Experiment at Scale
	4.7 Conclusion of the Chapter

	Chapter 5 : Online Mirror Descent
	5.1 Motivation
	5.2 Preliminaries on Multi-Population Mean Field Games
	5.3 Online Mirror Descent: Algorithm and Convergence
	5.4 Numerical Experiments
	5.5 Conclusion of the Chapter

	Conclusion of Part I and II

	Part III : Deep Reinforcement Learning for Mean Field Games
	Chapter 6 : Flocking
	6.1 Motivation
	6.2 The Model of Flocking
	6.3 Our Approach
	6.4 Experiments
	6.5 Conclusion of the Chapter

	Chapter 7 : Generalization in Mean Field Games
	7.1 Motivation
	7.2 Background and Related Works
	7.3 Master Policies for MFGs
	7.4 Algorithm
	7.5 Numerical Experiments
	7.6 Conclusion of the Chapter

	Chapter 8 : Scalable Algorithms
	8.1 Motivation
	8.2 Background
	8.3 Deep Reinforcement Learning for MFGs
	8.4 Experiments
	8.5 Conclusion of the Chapter

	Conclusion of Part III

	Chapter 9 : General Conclusion and Perspectives
	9.1 Conclusion on our Contributions
	9.2 Future Work and Perspectives

	Appendix A : Complements on chapter:2
	A.1 Some applications
	A.2 An introduction to MFGs in OpenSpiel

	Appendix B : Complements on chapter:3ter
	B.1 Continuous Time Fictitious Play in Finite Horizon
	B.2 Continuous Time Fictitious Play in Finite Horizon with Common Noise
	B.3 Continuous Time Fictitious Play: the -discounted case
	B.4 Algorithms
	B.5 Linear Quadratic Model
	B.6 Common Success Metrics in Mean Field Games

	Appendix C : Complements on chapter:4
	C.1 Separability and Monotonicity Imply Weak Monotonicity
	C.2 Multi-Population Reward
	C.3 Fictitious Play
	C.4 Online Mirror Descent Dynamics
	C.5 Weak monotonicity
	C.6 Strictly weak monotonicity implies uniqueness
	C.7 Online Mirror Descent Convergence
	C.8 Numerical Experiments

	Appendix D : Complements on chapter:5
	D.1 More numerical tests
	D.2 Normalizing Flows
	D.3 Visual Rendering with Unity

	Appendix E : Complements on chapter:6
	E.1 Notations
	E.2 Experimental Details
	E.3 Learning a Population-dependent Policy with Deep RL
	E.4 Proof of thm:usual-to-master
	E.5 On the Convergence of Master Fictitious Play

	Appendix F : Complements on chapter:7
	F.1 Algorithms in the exact case
	F.2 Deep RL Algorithms
	F.3 Details on the link between MOMD and regularized MDPs
	F.4 Hyperparameters sweeps

	List of Figures
	List of Algorithms
	List of Tables
	List of References

